EA200870032A1 20090428 Номер и дата охранного документа [PDF] EAPO2009\TIT_PDF/200870032 Титульный лист описания [PDF] EAPO2009/PDF/200870032 Полный текст описания EA200870032 20061208 Регистрационный номер и дата заявки GB0525185.5 20051210 Регистрационные номера и даты приоритетных заявок GB2006/004595 Номер международной заявки (PCT) WO2007/066128 20070614 Номер публикации международной заявки (PCT) EAA1 Код вида документа [eaa] EAA20902 Номер бюллетеня [RU] ГАЗООТБОРНОЕ УСТРОЙСТВО Название документа G01K 13/02, G01K 1/18, G01N 1/22 Индексы МПК [GB] Найт Джереми Сведения об авторах [GB] ЭНДЕТ ЛТД Сведения о заявителях
 

Патентная документация ЕАПВ

 
Запрос:  ea200870032a*\id

больше ...

Термины запроса в документе

Реферат

Термокарман или газоотборное устройство, содержащее вытянутую трубку с одним или несколькими винтообразными ребрами, продольно навитыми вдоль и вокруг по меньшей мере части внешней поверхности указанной трубки, причем толщина ребер составляет от 0,005 до 0,2D, а высота ребер составляет от 0,05 до 0,5D, где D - внешний диаметр или толщина трубки. Газоотборное устройство, содержащее вытянутый основной трубчатый элемент, который содержит впускной конец и выпускной конец, а также пробоотборную трубку, расположенную в указанном основном трубчатом элементе и проходящую от впускного конца до выпускного конца.

 


Полный текст патента

(57) Реферат / Формула:
или газоотборное устройство, содержащее вытянутую трубку с одним или несколькими винтообразными ребрами, продольно навитыми вдоль и вокруг по меньшей мере части внешней поверхности указанной трубки, причем толщина ребер составляет от 0,005 до 0,2D, а высота ребер составляет от 0,05 до 0,5D, где D - внешний диаметр или толщина трубки. Газоотборное устройство, содержащее вытянутый основной трубчатый элемент, который содержит впускной конец и выпускной конец, а также пробоотборную трубку, расположенную в указанном основном трубчатом элементе и проходящую от впускного конца до выпускного конца.

 


ГАЗООТБОРНОЕ УСТРОЙСТВО
Область техники, к которой относится изобретение s Настоящее изобретение касается усовершенствованного термокармана или
устройства для отбора проб текучей среды, используемого в резервуарах химической обработки, трубопроводах и т. п.
Предшествующий уровень техники
ю Газоотборные устройства, например, вставного типа, которые используются
для динамического отбора проб газа из трубопроводов или крупных резервуаров, хорошо известны, но имеют ряд недостатков, вызванных текучей природой отбираемой среды и необходимой длиной пробоотборника.
Ряд недостатков связан с термокарманами и газоотборными устройствами,
15 используемыми в трубопроводах для природного газа (газопроводах). Например, обеспечение выполнения механических требований к установке при разработке таких пробоотборников может приводить к созданию пробоотборников, имеющих большой объем и создающих значительную турбулентность, что несовместимо с требованиями к условиям отбора проб. Так, такие пробоотборники обычно имеют
20 следующие недостатки: они обладают большим внутренним объемом, что несовместимо с анализом в режиме реального времени и выполнением требований, относящихся к внешней среде; они не обеспечивают требуемую точность отбора проб (из-за турбулентности); из-за вихреобразования могут возникать резонансные явления, приводящие к механическому повреждению пробоотборников. Ниже
25 приведено более подробное описание данных трех недостатков.
Во-первых, выполнение требований принятых стандартов на отбор проб природного газа, например, ISO 10715:2001, согласно которым отбор проб должен осуществляться из средней трети трубы, приводит к необходимости использования "длинных" пробоотборников. Пробоотборник должен не только иметь длину, не
30 меньшую 1/3 диаметра трубы (который часто бывает равен 2-4 футам, т.е. 6001200 мм), но и быть достаточно длинным для обеспечения возможности соединения пробоотборника с помощью тройника и фланца или, при наличии такой возможности, посредством резьбовой бобышки (threadolef). Как правило, предпочтительным типом соединения является отводной фланец. Во многих
35 случаях длина газового пробоотборника значительно, и даже чрезмерно, увеличивается в связи с требованием использования съемного и изолируемого
пробоотборника. В этом случае пробоотборник соединяется с помощью комбинации тройника, клапана и фланца.
Во-вторых, необходимо учитывать явление вихреобразования и возможность совпадения частоты вихреобразования с собственной частотой пробоотборника. В 5 случае совпадения двух частот велика вероятность повреждения (отламывания) пробоотборника вследствие резонансных явлений.
Сочетание двух вышеупомянутых обстоятельств приводит к необходимости создания более "толстых" пробоотборников (как правило, пробоотборников с внешним диаметром около 25 мм, т.е. 1 дюйм). В связи с тем, каким образом
10 изготавливаются трубки и трубопроводы, неэкономично/нетипично изготавливать трубки с внешним диаметром, равным, например, 1 дюйму (25 мм) и внутренним диаметром менее 1/2 дюйма (12,5 мм).
В случае газовых пробоотборников сочетание "большой" длины пробоотборника с его "относительно" большим внутренним диаметром приводит к
15 тому, что в самом пробоотборнике существует значительный объем удерживания газа. Такой накапливаемый газ, часто называемый газом в "мертвом объеме", необходимо выпускать или иным образом от него избавляться до ввода в анализатор газа из трубопровода. Объем накопленного газа или газа в "мертвом объеме" в пробоотборнике еще более возрастает под действием давления.
20 Повышение рабочего давления в трубопроводе на каждый бар свыше атмосферного приводит к пропорциональному увеличению фактического (или номинального, или стандартного) объема газа в пробоотборнике. Например, если внутренний объем пробоотборника равен, например, 0,25 л, а рабочее давление в трубопроводе составляет 40 бар абсолютного давления, то фактический
25 (номинальный или стандартный) объем накопленного или "мертвого" газа в пробоотборнике приблизительно равен 0,25x40 = 10 л. Широко распространены трубопроводы, рабочее давление в которых составляет 80 бар абсолютного давления или даже выше.
Таким образом, разработка газоотборного устройства (газового
зо пробоотборника) с временем реакции, достаточно малым, чтобы подойти для соединенной аналитической системы, связано с определенными затруднениями. В таких обстоятельствах перед подачей/вводом представительной пробы газа непосредственно из трубопровода в резервуар анализатора или резервуар для проб, соединенный с пробоотборником, необходимо удалить (выпустить)
35 значительный объем газа. Такой выпуск газа может крайне негативно влиять на окружающую среду.
В альтернативном варианте вместо трубки или трубопровода используется цельная болванка, по центру которой "просверлено" небольшое отверстие. Однако сверление отверстия диаметром 2, 3, 4, 5 мм или более по всей длине болванки из нержавеющей стали, длина которой обычно составляет приблизительно от 0,3 до 5 2,0 м, представляет собой нелегкую и недешевую операцию. Кроме того, трудно контролировать качество шлифовки поверхности в таком отверстии, что создает дополнительные проблемы при отборе представительных проб природного газа, особенно содержащего высшие углеводороды и химически активные компоненты.
Наконец, введение столь большого выступа в поток газа создает
ю значительную турбулентность, которая, в свою очередь, может вызывать кратковременные изменения структуры газа. Возможно формирование небольших капель углеводородной жидкости, аналогично тому, как образуется белый паровой след, часто наблюдаемый за самолетом (с той разницей, что в случае самолета формируются капли воды, а не углеводородной жидкости). Такие небольшие капли
15 не только изменяют структуру газообразной фазы, но и обладают способностью к кратковременному поглощению любых химически активных компонентов, например, сероводорода. Следовательно, в точке пространства, в которой происходит отбор проб газа (на самом деле, в той точке трубопровода, в которой расположен конец или входное отверстие пробоотборника), необходимо всеми средствами уменьшать
20 турбулентность.
Сущность изобретения
Задача, на решение которой направлено настоящее изобретение, заключается в уменьшении внутреннего объема газоотборного устройства (газового
25 пробоотборника). Другой задачей изобретения является минимизация или устранение вихреобразования, вызываемого использованием такого пробоотборника. Еще одной задачей изобретения является минимизация турбулентности в точке отбора проб.
В соответствии с одним из аспектов изобретения предусмотрено
30 газоотборное устройство, содержащее вытянутый основной трубчатый элемент, имеющий впускной конец и выпускной конец, а также пробоотборную трубку, расположенную в указанном основном трубчатом элементе и проходящую от указанного впускного конца до указанного выпускного конца, при этом площадь поперечного сечения пробоотборной трубки находится в диапазоне от 0,1 мм2 до
35 30 мм2.
В соответствии с другим аспектом изобретения предусмотрено газоотборное устройство, содержащее вытянутый основной трубчатый элемент, имеющий впускной конец и выпускной конец, а также пробоотборную трубку, расположенную в указанном основном трубчатом элементе и проходящую от указанного впускного 5 конца до указанного выпускного конца, причем основной элемент имеет по меньшей мере одно винтообразное ребро, которое прикреплено к внешней поверхности указанного основного трубчатого элемента и навито вокруг указанной поверхности; или же выполнено заодно с основным трубчатым элементом в качестве его части. Толщина ребра, хотя она и не является основным параметром, предпочтительно
10 находится в диапазоне от 0.005D до 0.2D, где D - диаметр основного трубчатого элемента. Высота ребра предпочтительно находится в диапазоне от 0.05D до 0.25D, где D - диаметр основного трубчатого элемента.
Газоотборное устройство предпочтительно содержит пробоотборную трубку, расположенную в указанном основном трубчатом элементе и проходящую от
15 указанного впускного конца до указанного впускного конца, при этом площадь поперечного сечения пробоотборной трубки находится в диапазоне от 0,1 мм2 до 30 мм2.
В соответствии с обеими вышеизложенными аспектами изобретения внутренняя поверхность пробоотборной трубки предпочтительно имеет
20 шероховатость менее 0,8 мкм среднего арифметического отклонения профиля (Ra). Внутренняя поверхность пробоотборной трубки предпочтительно обработана с помощью электрополировки с целью уменьшения шероховатости поверхности. Внутренняя поверхность пробоотборной трубки может быть дополнительно обработана с применением пассивации, например, с помощью процесса осаждения
25 из парообразной фазы химического вещества на основе силикона, такого, например, как покрытия Silcosteel(r) или Sulfinert(tm), с целью снижения поверхностной активности. Газоотборное устройство может быть изготовлено с использованием нержавеющей стали.
Газоотборное устройство предпочтительно дополнительно содержит
30 концевой элемент с гладкой криволинейной внешней поверхностью, расположенный на впускном конце и выполненный с возможностью обеспечения герметичности между внешней поверхностью пробоотборной трубки и внутренней поверхностью основного трубчатого элемента, причем криволинейная внешняя поверхность может преимущественно совпадать с поверхностью вращения гладкой кривой вокруг
35 центральной оси пробоотборной трубки и/или трубчатого элемента. Криволинейная внешняя поверхность может быть образована частью эллипсоида, частью
катеноида, частью коноида или частью параболоида вращения. Гладкая внешняя поверхность предпочтительно имеет шероховатость менее 0,4 мкм Ra. Гладкая внешняя поверхность может быть дополнительно обработана с применением пассивации с целью уменьшения поверхностной химической активности и 5 накапливания частиц, например, с помощью процесса осаждения из парообразной фазы химического вещества на основе силикона, например, такого как материал Silcosteel(r)-AC.
В соответствии с еще одним аспектом изобретения предусмотрено газоотборное устройство, содержащее вытянутый основной трубчатый элемент,
ю имеющий впускной конец и выпускной конец, при этом основной элемент содержит по меньшей мере одно винтообразное ребро. Такое ребро может быть прикреплено к внешней поверхности указанного основного трубчатого элемента и навито на указанную поверхность; или же может быть выполнено заодно с основным трубчатым элементом в качестве его части.
15 Введение винтообразных ребер, разумеется, устраняет необходимость
увеличения толщины и массы по причинам, связанным с собственной частотой; однако сами ребра представляют собой конструктивные элементы и могут быть учтены с точки зрения уменьшения напряжений, вызванных прямыми нагрузками, связанными со скоростью и т. п., что само по себе может уменьшить массу
20 газоотборного устройства. Газоотборное устройство предпочтительно дополнительно содержит пробоотборную трубку, размещенную в указанном основном трубчатом элементе и проходящую от указанного впускного конца до указанного впускного конца.
Газоотборное устройство предпочтительно имеет впускной конец
25 полусферической формы. Впуск для текучей среды в газоотборном устройстве может быть расположен на поверхности впускного конца газоотборного устройства, при этом условия на поверхности контролируются. Пробоотборная трубка может проходить по всей длине устройства. Винтообразные ребра предпочтительно предусмотрены на внешней части устройства, которая при использовании
30 находится в движущемся потоке газа.
Внутренний канал пробоотборной трубки предпочтительно подвергается особой обработке поверхности, например, электрополировке и/или в случае ответственного анализа процессу нанесения покрытия из материала Silcosteef(r) или Sulfinert(tm) на поверхность.
35 На полусферический конец с контролируемыми условиями на поверхности
предпочтительно наносят покрытие из материала Silcosteel(r)-AC.
В соответствии с еще одним аспектом изобретения предусмотрено газоотборное устройство, содержащее вытянутый основной трубчатый элемент, имеющий впускной конец и выпускной конец, при этом основной элемент содержит по меньшей мере одно винтообразное ребро. Такое ребро может быть прикреплено 5 к внешней поверхности указанного основного трубчатого элемента и навито на указанную поверхность; или же может быть выполнено заодно с основным трубчатым элементом в качестве его части. Устройство предпочтительно дополнительно содержит пробоотборную трубку, расположенную в указанном основном трубчатом элементе, при этом указанная пробоотборная трубка проходит
ю от указанного впускного конца до указанного выпускного конца.
Газоотборное устройство предпочтительно содержит пробоотборную трубку, расположенную в указанном основном трубчатом элементе и проходящую от указанного впускного конца до указанного выпускного конца, при этом площадь поперечного сечения пробоотборной трубки составляет от 0,1 мм2 до 30 мм2.
15 Газоотборное устройство предпочтительно имеет впускной конец
полусферической формы. Впуск для текучей среды в газоотборном устройстве может быть расположен на поверхности впускного конца газоотборного устройства, при этом условия на поверхности контролируются. Пробоотборная трубка может проходить по всей длине устройства. Винтообразные ребра предпочтительно
20 предусмотрены на внешней части устройства, которая при использовании находится в движущемся потоке газа.
Продольная ось газоотборного устройства в рабочем положении предпочтительно должна быть наклонена на угол а относительно оси трубы или трубопровода, по которому протекает текучая среда, из которой нужно брать пробы,
25 причем величина угла а находится в диапазоне от 90° до 45°. Газоотборное устройство по изобретению предпочтительно используется как часть извлекаемой пробоотборной системы, где при использовании имеется возможность по меньшей мере частичного извлечения газоотборного устройства из потока текучей среды, из которого нужно брать пробы. В предпочтительном варианте только последняя треть
30 части устройства, расположенная в потоке текучей среды, снабжена винтообразными ребрами. Однако винтообразные ребра часто проходят по большей части или по всей части устройства, расположенной в потоке текучей среды, из которой следует отбирать пробы.
В соответствии с еще одним аспектом изобретения предусмотрен способ
35 использования газоотборного устройства согласно вышеуказанным аспектам изобретения. Продольная ось газоотборного устройства в рабочем положении
может быть наклонена на угол а относительно оси трубы или трубопровода, по которому протекает текучая среда, из которой нужно взять пробы, причем величина угла а находится в диапазоне от 90° до 45°. В предпочтительном варианте только последняя треть части устройства, расположенная в потоке текучей среды, 5 снабжена винтообразными ребрами. Однако винтообразные ребра часто проходят по большей части или по всей части устройства, расположенной в потоке текучей среды, из которой следует отбирать пробы.
В простейшем варианте термокарман содержит трубку, герметично закрытую с одного конца и снабженную на другом конце соединительным элементом,
ю обеспечивающим возможность прикрепления к стенке резервуара под давлением, трубопровода и т. п. Такое устройство обычно выполняется с возможностью помещения в трубку термокармана температурного датчика, такого как термопара. Таким образом, термокарман позволяет обеспечить достаточно тесный тепловой контакт датчика с текучей средой, температуру которой необходимо измерить, также
15 термокарман защищает датчик от непосредственного контакта с данной текучей средой, тем самым предотвращая механическое повреждение датчика.
Известный недостаток при использовании термокарманов или газоотборных устройств в некоторых приложениях, например, в трубопроводах высокого давления или с высокой скоростью потока, заключается в деформации или разрушении
20 датчиков или пробоотборников под действием циклических напряжений, создаваемых в них потоком текучей среды. Эта проблема особенно значительна при высоких скоростях и может быть вызвана вихреобразованием в точках вокруг датчика.
Задача, на решение которой направлено настоящее изобретение, 25 заключается в создании термокармана, менее подверженного таким повреждениям. Дальнейшая задача, на решение которой направлено настоящее изобретение, заключается в уменьшении или полном устранении вихреобразования, вызываемого газоотборным устройством.
Для обеспечения качественного и быстрого отклика, т. е. для обеспечения 30 "быстрых и точных" измерений изменений температуры текучей среды температурным датчиком, установленным в термокармане, термокарман должен предпочтительно иметь наименьшую возможную толщину поперечного сечения и наименьшую возможную массу. Однако данное требование несовместимо с необходимостью обеспечения устойчивости термокармана к непосредственным 35 нагрузкам из-за скорости текучей среды и т.п., и выполнения его таким образом,
чтобы собственная частота значительного отличалась от любых возможных частот вихреобразования.
В соответствии с одним из аспектов изобретения предусмотрен термокарман, содержащий вытянутую трубку, имеющую одно или большее количество 5 винтообразных ребер, навитых в продольном направлении вокруг по меньшей мере части внешней поверхности указанной трубки. Введение винтообразных ребер, разумеется, устраняет необходимость увеличения толщины и массы по причинам, связанным с собственной частотой; однако сами ребра представляют собой конструктивные элементы и могут быть учтены с точки зрения уменьшения
ю напряжений, вызванных прямыми нагрузками, связанными со скоростью и т. п., что само по себе может уменьшить толщину стенок и, тем самым, массу термокармана.
Трубка предпочтительно имеет по существу круглое поперечное сечение; в более предпочтительном варианте трубка имеет цилиндрическую форму. Трубка может быть закрыта с одного конца; в таком случае закрытый конец
15 предпочтительно имеет криволинейную или плоскую форму; более предпочтительно полусферическую форму. Предпочтительно предусмотрено 2, 3, 4, 5 или б винтообразных ребер.
Внешний диаметр трубки термокармана может лежать в диапазоне от 3 мм до 75 мм. Длина трубки предпочтительно находится в диапазоне от 10 мм до
20 1 800 мм. При использовании длина вставляемой в поток текучей среды трубки находится в диапазоне от 10 мм до 1500 мм. Трубка предпочтительно содержит внутренний канал, внутренний диаметр которого лежит в диапазоне от 1 мм до 25 мм.
Термокарман по изобретению предпочтительно используется как часть 25 извлекаемой термосистемы, так что при использовании термокарман может быть извлечен, по меньшей мере частично, из потока текучей среды. Такая операция затруднена при использовании традиционных термокарманов в связи с приведенными выше требованиями к их толщине и массе. Извлекаемый термокарман должен был бы иметь большую толщину и массу по сравнению с 30 закрепленным термокарманом, чтобы обеспечить устойчивость к нагрузкам обеих вышеуказанных типов. Уменьшение массы термокармана, связанное с введением винтообразных ребер, позволяет реализовать извлекаемую конструкцию. Извлекаемый термокарман также обладает преимуществами с точки зрения: а) упрощения обслуживания и ремонта, Ь) упрощения процедуры калибровки, с) 35 возможности замены без прерывания технологического процесса.
Измерения скорости потока (точнее, массового расхода в единицу времени) текучей среды требуют, чтобы измерительный сигнал основного потока корректировался с учетом как фактической температуры, так и давления измеряемой текучей среды. В случае измерений температуры это обычно означает 5 помещение термокармана в поток текучей среды вблизи основного измеряемого потока (в общем случае правила, изложенные в сводах практических стандартов и правил (^Standards and codes of Practices), требуют проведения измерений температуры в центральной трети трубопровода и т. д.). Почти все приборы для измерений основного потока требуют для получения точного сигнала основного
ю потока наличия стационарного/однородного потока вверх и вниз по потоку о устройства. Добавление термокармана (выступающего по меньшей мере до центральной трети трубопровода) вблизи прибора, используемого для измерений основного потока, несовместимо с данным требованием, т.к. вызывает возмущения в структуре потока и, следовательно, снижает точность измерительного сигнала
15 основного потока. Поскольку использование в термокармане винтообразных ребер обеспечивает образование вокруг термокармана гораздо более стационарной структуры потока, нежели чем в случае использования термокармана без таких ребер, а также поскольку термокарман может иметь меньший диаметр (т. к. его конструкция не должна обеспечивать устойчивость к вибрации из-за
20 вихреобразования), возмущение потока может быть значительно уменьшено, и, следовательно, применение термокармана с винтообразными ребрами обеспечивает возможность получения более точного сигнала от прибора для измерений основного потока.
В простейшем случае термокарман обеспечивает две функции:
25 1. Он обеспечивает средства защиты, поддержки и крепления в случаях,
когда помещение основного устройства для измерения температуры непосредственно в требуемой точке среды, температуру которой необходимо измерить, невозможно.
2. Он обеспечивает средства передачи температуры среды основному
30 устройству для измерения температуры, в оптимальном варианте - с минимальной тепловой инерцией (задержкой на достижение температурного равновесия со средой).
Данные требования, вообще говоря, противоречат одно другому. Во многих случаях это означает, что для поддержки и защиты устройства для измерения 35 температуры необходим сравнительно массивный термокарман (гильза) и т. п.. Это приводит к значительной тепловой инерции, что создает особенно значительные
затруднения в случае измерения флуктуирующих температур; такая система будет измерять усредненную (по времени) температуру и не будет реагировать на ее кратковременные изменения.
Таким образом, еще одна задача, на решение которой направлено 5 настоящее изобретение, заключается в создании термокармана, при использовании обеспечивающего возможность реакции размещенного в нем устройства для измерения температуры на быстрые изменения измеряемой температуры текучей среды, тем самым избегая недостатков, связанных с тепловой инерцией.
В соответствии с одним из аспектов изобретения предусмотрен термокарман,
ю включающий в себя первую часть, которая содержит вытянутую трубку с впускным концом и выпускным концом, а также средства удержания на выпускном конце второй части, служащей для размещения в ней основного устройства для измерения температуры. Вторая часть предпочтительно содержит открытую решетку или раму, отходящую в осевом направлении от указанного выпускного
15 конца. Решетка/рама может содержать несколько одинаковых винтообразных ребер, навитых вокруг общей оси. В соответствии с другим вариантом осуществления изобретения вторая часть может содержать наконечник, выполненный, по меньшей мере частично, из материала с более высокой теплопроводностью и/или содержащий более тонкую стенку по сравнению с указанной первой частью, и
20 прикрепленный к выпускному концу первой части. Предпочтительно, между первой и второй частями или между второй частью и основным устройством измерения температуры, предусмотрен теплоизолирующий элемент.
Перечень Фигур чертежей 25 Ниже приведено описание предпочтительных вариантов осуществления
изобретения со ссылками на прилагаемые чертежи. На чертежах:
- на фиг. 1 представлен вид сбоку газоотборного устройства по первому варианту осуществления изобретения;
- на фиг. 2 представлен вид устройства по фиг. 1 в разрезе в 30 диаметральной плиоскости;
- на фиг. 3 более подробно представлен в разрезе полусферический впускной конец по фиг. 2;
- на фиг. 4 представлен в разрезе пример извлекаемого газоотборного устройства по второму варианту осуществления изобретения;
35 - на фиг. 5 представлен вид сбоку термокармана по третьему варианту
осуществления изобретения;
- на фиг. 6 представлен вид сбоку термокармана по четвертому варианту осуществления изобретения;
- на фиг. 7 представлен вид сбоку термокармана по пятому варианту осуществления изобретения в разрезе; и
s - на фиг. 8 представлен вид сбоку термокармана по шестому варианту
осуществления изобретения.
Сведения, подтверждающие возможность осуществления изобретения
На фиг. 1 представлен вид сбоку газоотборного устройства (газового
10 пробоотборника) по первому варианту осуществления изобретения. Газоотборное устройство 10 содержит вытянутый основной трубчатый корпус 12, имеющий впускной конец 14 и выпускной конец 16. Вблизи выпускного конца 16 к основному корпусу 12 прикреплен фланец 18. Он представляет собой фланец известной конструкции, который обеспечивает возможность герметичного в отношении текучей
15 среды присоединения пробоотборника к системе, из которой производится отбор проб. Основной корпус 12 содержит верхнюю трубчатую часть 20, выполненную как единое целое с нижней частью 22, которая имеет несколько меньший диаметр. Разница диаметров верхней части 20 и нижней части 22 может быть подобрана так, чтобы обеспечивать гладкое соединение верхней части с несколькими
20 винтообразными ребрами 24, т. е. так, чтобы суммарный радиальный размер нижней части 22 вместе с ребрами 24 достаточно точно соответствовал радиальному размеру верхней трубчатой части 20. Следует отметить что, хотя предпочтительно использовать несколько ребер, их число не обязательно равно трем; например, могут быть предусмотрены два или четыре ребра.
25 На фиг. 2 представлено в разрезе в диаметральной плоскости устройство по
фиг. 1. Как видно из чертежа, основной корпус 10 содержит канал 30 постоянного диаметра. Толщина стенок основного корпуса 10 подобрана так, чтобы обеспечить необходимую в процессе работы конструкционную прочность пробоотборника. В канале 30 расположена пробоотборная трубка 32, предпочтительно вдоль
30 центральной оси канала 30. Пробоотборную трубку 32 удерживает на месте концевой элемент 34. Пробоотборная трубка предпочтительно выполнена из нержавеющей стали и предпочтительно имеет внутренний диаметр от 0,05 мм до 5 мм; в наиболее предпочтительном варианте ее внутренний диаметр составляет от 2 мм до 4 мм. Толщина стенок пробоотборной трубки 32 подбирается так, чтобы
35 обеспечить необходимую в процессе работы конструкционную прочность. Толщина стенок пробоотборной трубки предпочтительно составляет от 0,2 мм до 2 мм.
На фиг. 3 более подробно представлен в разрезе полусферический впускной конец пробоотборника, показанный на фиг. 2. Концевой элемент 34 предпочтительно имеет вид полусферической вставки, герметично укрепленной в нижней части 22 посредством кольцевого сварного соединения 38. Поверхность 40 5 полусферической вставки 34 предпочтительно обрабатывается с тем, чтобы получить шероховатость менее 0,4 мкм Ra; это снижает локальную турбулентность и способствует предотвращению накопления частиц вещества и загрязнителей, вырабатываемых в технологическом процессе, на поверхности 40. Для обеспечения дополнительного сглаживания поверхности 40 на нее предпочтительно наносят
10 поверхностное покрытие Silcosteel(r)-AC или подобное ему. Впускной конец пробоотборной трубки 32 герметично прикреплен к полусферической вставке 34 посредством кольцевого сварного соединения 42. Внутренняя поверхность пробоотборной трубки 32 предпочтительно обрабатывается путем электрополировки с целью уменьшения шероховатости поверхности; при
15 проведении критических анализов на нее также может быть дополнительно нанесено поверхностное покрытие Silcosteel(r), Sulfinert(tm) или подобное им. Пробоотборная трубка 32 может содержать политетрафторэтилен (PTFE) или иной инертные материал, например, поливинилиденфторид (PVDF); в этом случае сварное соединение 42 заменяется на соответствующее клеевое соединение.
20 Фиг. 4 демонстрирует в разрезе извлекаемое газоотборное устройство по
второму варианту осуществления изобретения. В данном варианте осуществления основной корпус 12 прикреплен к фланцу 50 не непосредственно, а при посредстве средств 52 регулировки/извлечения. Для этого могут быть использованы средства регулировки любого из нескольких типов, известных специалистам в данной
25 области; например, они могут содержать резьбовую трубку 54, прикрепленную одним концом к фланцу 50, через которую проходит основной корпус 12, причем трубка 54 содержит средства 56 герметизации относительно текучей среды, например, в виде кольцевой прокладки. Средства 52 регулировки дополнительно содержат рукояточный элемент, который включает цилиндрический участок 60 и
30 рукояти 62. Цилиндрический участок 60 снабжен каналом с резьбой, которая взаимодействует с внешней резьбой трубки 54 и обеспечивает возможность регулировки положения пробоотборника 10 в осевом направлении.
Использование винтообразных ребер 24 и пробоотборной трубки 32 с каналом малого размера в таких извлекаемых пробоотборниках в общем случае
35 более выгодно, чем применение закрепленных пробоотборников, т. к. в последних свободно выступающая часть пробоотборника обычно имеет большую длину, что
усиливает влияние на нее вихреобразования, а сам пробоотборник значительно длиннее, что значительно увеличивает его внутренний объем.
На фиг. 5 представлен термокарман по третьему варианту осуществления изобретения. Термокарман 110 содержит вытянутую трубку 112 с внутренним 5 каналом (не представлен), герметически закрытую с одного конца полусферическим наконечником 118. Другой конец трубки 112 соединен через фланец 114 с входом 116 для датчика температуры. Вход 116 содержит короткую трубку, сквозь которую во внутренний канал трубки 112 можно вставить датчик температуры, такой как термопара или терморезистор, так, чтобы чувствительный элемент датчика был
10 расположен вблизи дна внутреннего канала и, следовательно, вблизи наконечника 118 по тепловым условиям.
Трубка 112 дополнительно содержит три винтообразных ребра 120а, 120Ь, 120с, каждое из которых имеет толщину W и высоту d. В данном случае ребра описывают трехмерную кривую вокруг цилиндра, одновременно продвигаясь по его
15 длине. Однако трубка 112 может иметь форму, отличную от цилиндрической; например, она может содержать участок приблизительно конической формы. В приведенном примере ребра проходят по всей длине вытянутой трубки 112; однако в другом варианте они могут также проходить лишь по части длины трубки 112. Ребра 120 могут составлять единое целое с трубкой 112 или быть прикреплены к
20 ней.
Было выяснено, что в использовании такие ребра обеспечивают уменьшение или полное устранение вихреобразования у термокармана; это обстоятельство представляет собой значительное преимущество, т. к. такое вихреобразование может приводить к периодическим силам, способным повредить термокарман или
25 даже сам температурный датчик, особенно если период таких циклов соответствует или примерно соответствует резонансной частоте термокармана . Хотя в предпочтительном варианте ребро имеет поперечное сечение с острыми краями, например, прямоугольной формы, могут быть предусмотрены и другие формы его поперечного сечения; например, поперечное сечение может содержать полукруглый
30 внешний участок. Толщина (W) ребра предпочтительно составляет от 0,005 D до 0,2 D, где D - внешний диаметр (ширина) трубки. Высота (d) ребра предпочтительно составляет от 0,05 D до 0,5 D. Шаг витка каждого из винтообразных ребер предпочтительно составляет от 1 D до 20 D, в более предпочтительном варианте -от 2 D до 10 D, а в наиболее предпочтительном варианте - от 3 D до 7 D. Было
35 обнаружено, что ребра, размеры которых лежат в таких пределах, обеспечивают наиболее эффективное уменьшение или устранение вихреобразования.
Фиг. 6 иллюстрирует четвертый вариант осуществления изобретения. В данном варианте осуществления термокарман 210 содержит цилиндрическую трубку 212 с плоским закрытым концом 218 на одном конце трубки, и шестиугольным соединителем 216 с резьбовым участком 214 на другом конце. Как и 5 ранее, соединитель 216, резьбовой участок 214 и трубка 212 содержат внутренний канал (не представлен), в который помещается температурный датчик. В данном варианте осуществления изобретения на внешней поверхности трубки 212 предусмотрены выполненные заодно или прикрепленные к ней три винтообразных ребра 220а, 220Ь и 220с.
10 На фиг. 7 представлен термокарман, в котором оконечность 310
термокармана, которая представляет собой активный элемент, обеспечивающий выполнение требований к условиям измерений температуры, выполнен из материала с более высокой теплопроводностью, чем основной корпус 320. Кроме того, оконечность 310 может изготовлена из более тонкого материала, нежели чем
15 основной корпус 320. В оптимальном варианте между оконечностью 310 и основным корпусом 320 предусмотрена полная или по меньшей мере частичная термоизоляция посредством теплового барьера 330. Оконечность 310 может быть привинчена, приклеена, припаяна, приварена или присоединена иными способами, соответствующими данному приложению, к основному корпусу 320.
20 На фиг. 8 представлен термокарман, в котором выполнение требований к
условиям измерений температуры обеспечивает капсула 410, содержащая основное устройство для измерения температуры (не представлено), которое удерживается и прикрепляется к защитным средствам посредством основного корпуса 420. В данном варианте осуществления основной корпус 420 представляет собой
25 открытую решетчатую конструкцию, что обеспечивает возможность теплового контакта среды, температура которой измеряется, с капсулой 410. Между термической капсулой 410 и основным корпусом 420 предпочтительно предусмотрена полная или по меньшей мере частичная термоизоляция в виде теплового барьера 430. В данном варианте осуществления средства передачи
30 измеренной температуры от основного измерительного устройства, содержащегося в капсуле 410, могут представлять собой проводник или кабель 440, герметично соединенный с основным корпусом 420 на некотором расстоянии от капсулы 410, что снижает потери проводимости.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Термокарман или газоотборное устройство, содержащее вытянутую 5 трубку с одним или большим количеством винтообразных ребер, которые навиты
вдоль и вокруг по меньшей мере части внешней поверхности указанной трубки.
2. Термокарман или газоотборное устройство по п. 1, отличающееся тем, что трубка имеет по существу круглое поперечное сечение.
3. Термокарман или газоотборное устройство по п. 2, отличающееся ю тем, что трубка имеет цилиндрическую форму.
4. Термокарман или газоотборное устройство по любому из п.п. 1-3, отличающееся тем, что ребро имеет поперечное сечение с острыми краями.
5. Термокарман или газоотборное устройство по п. 4, отличающееся тем, что ребро имеет прямоугольное поперечное сечение.
15 6. Термокарман или газоотборное устройство по любому из п.п. 1-4,
отличающееся тем, что ребро имеет поперечное сечение многоугольной формы.
7. Термокарман или газоотборное устройство по любому из п.п. 1-6,
отличающееся тем, что толщина ребра находится в диапазоне от 0.005D до 0.2D,
где D - внешний диаметр или толщина трубки. 20 8. Термокарман или газоотборное устройство по любому из п.п. 1-7,
отличающееся тем, что высота ребра находится в диапазоне от 0.05D до 0.5D, где D
- внешний диаметр или толщина трубки.
9. Термокарман или газоотборное устройство по любому из п.п. 1-8, отличающееся тем, что шаг витка винтообразного ребра находится в диапазоне от
25 1D до 20D, где D - внешний диаметр или толщина трубки.
10. Термокарман или газоотборное устройство по любому из п.п. 1-9, отличающееся тем, что высота ребра находится в диапазоне от 0,05D до 0.5D, где D - внешний диаметр или толщина трубки.
11. Термокарман или газоотборное устройство по любому из п.п. 3-10, 30 отличающееся тем, что трубка имеет внутренний диаметр в диапазоне от 1 мм до
50 мм.
12. Термокарман или газоотборное устройство по любому из п.п. 1-11, отличающееся тем, что длина трубки находится в диапазоне от 10 мм до 3000 мм.
13. Термокарман или газоотборное устройство по любому из п.п. 1-12, 35 отличающееся тем, что внешний диаметр или максимальная толщина трубки
находится в диапазоне от 3 мм до 100 мм.
14. Термокарман или газоотборное устройство по любому из п.п. 1-13, отличающееся тем, что винтообразными ребрами снабжена только последняя треть части устройства, расположенной в потоке текучей среды.
15. Термокарман или газоотборное устройство по любому из п.п. 1-14, 5 отличающееся тем, что трубка закрыта с одного конца.
16. Термокарман или газоотборное устройство по п. 15, отличающееся тем, что закрытый конец трубки имеет полусферическую форму.
17. Термокарман по п. 1 или независимый от него, включающий первую часть, которая содержит вытянутую трубку с впускным концом и выпускным концом,
10 а также средства удержания на выпускном конце второй части, служащей для размещения в ней при использовании основного устройства для измерения температуры.
18. Термокарман по п. 17, отличающийся тем, что вторая часть содержит открытую решетку или раму, идущую в осевом направлении от указанного
is выпускного конца.
19. Термокарман по п. 18, отличающийся тем, что решетка или рама содержит несколько одинаковых винтообразно закрученных ребер, которые навиты вокруг общей оси.
20. Термокарман по п. 17, отличающийся тем, что вторая часть содержит 20 оконечность, выполненную по меньшей мере частично из материала с более
высокой теплопроводностью и/или содержащую более тонкую стенку по сравнению с указанной первой частью, и прикрепленную к выпускному концу первой части.
21. Термокарман по любому из п.п. 17-20, отличающийся тем, что между первой и второй частями или между второй частью и защитным элементом
25 основного устройства для измерения температуры предусмотрен теплоизолирующий элемент.
22. Газоотборное устройство, содержащее вытянутый основной трубчатый элемент, имеющий впускной конец и выпускной конец, и пробоотборную трубку, расположенную в основном трубчатом элементе, причем указанная
30 пробоотборная трубка проходит от указанного впускного конца до указанного выпускного конца, а площадь поперечного сечения пробоотборной трубки находится в диапазоне от 0,1 мм2 до 30 мм2.
23. Газоотборное устройство по п. 22, отличающееся тем, что шероховатость внутренней поверхности пробоотборной трубки составляет менее
35 0,8 мкм Ra.
24. Газоотборное устройство по п. 22 или 23, отличающееся тем, что внутренняя поверхность пробоотборной трубки обработана посредством электрополировки с целью снижения шероховатости поверхности.
25. Газоотборное устройство по любому из п.п. 22-24, отличающееся тем, 5 что пробоотборная трубка содержит нержавеющую сталь.
26. Газоотборное устройство по любому из п.п. 22-24, отличающееся тем, что пробоотборная трубка содержит политетрафторэтилен или его производные.
27. Газоотборное устройство по п. 26, отличающееся тем, что впускной конец пробоотборной трубки прикреплен к основному трубчатому элементу при
ю помощи клеящего вещества.
28. Газоотборное устройство по любому из п.п. 22-27, отличающееся тем, что дополнительно содержит концевой элемент с гладкой криволинейной внешней поверхностью, расположенный на впускном конце газоотборного устройства и выполненный с возможностью обеспечения уплотнения между внешней
15 поверхностью пробоотборной трубки и внутренней поверхностью основного трубчатого элемента.
29. Газоотборное устройство по п. 28, отличающееся тем, что криволинейная внешняя поверхность по существу соответствует поверхности вращения гладкой кривой вокруг центральной оси пробоотборной трубки и/или
20 трубчатого элемента.
30. Газоотборное устройство по п. 28 или 29, отличающееся тем, что криволинейная внешняя поверхность образована частью эллипсоида, частью катеноида, частью коноида или частью параболоида вращения.
31. Газоотборное устройство по любому из п.п. 28-30, отличающееся тем, 25 что гладкая внешняя поверхность имеет шероховатость менее 0,4 мкм Ra.
32. Газоотборное устройство по любому из п.п. 22-31, отличающееся тем, что внутренняя поверхность пробоотборной трубки дополнительно обработана посредством пассивации с целью уменьшения поверхностной химической активности.
30 33. Газоотборное устройство по п. 28, отличающееся тем, что гладкая
поверхность концевой части дополнительно обработана посредством пассивации с целью уменьшения поверхностной химической активности и адгезии частиц.
34. Газоотборное устройство по п. 32 или 33, отличающееся тем, что пассивация представляет собой процесс осаждения из парообразной фазы
35 химического вещества на основе силикона.
35. Газоотборное устройство по п. 34, отличающееся тем, что результатом осуществления процесса осаждения химического вещества на основе силикона является покрытие из материала Silcosteel(r), Sulfinert(tm) или Silcosteel(r)-AC.
36. Газоотборное устройство по любому из п.п. 22-35 или независимое от 5 них, содержащее вытянутый основной трубчатый элемент, имеющий впускной конец
и выпускной конец, где указанный основной трубчатый элемент содержит по меньшей мере одно винтообразное ребро.
37. Газоотборное устройство по п. 36, отличающееся тем, что дополнительно содержит пробоотборную трубку, расположенную в основном
ю трубчатом элементе, причем указанная пробоотборная трубка проходит от впускного конца до выпускного конца.
38. Газоотборное устройство, содержащее вытянутый основной трубчатый элемент, имеющий впускной конец и выпускной конец, а также пробоотборную трубку, расположенную в основном трубчатом элементе, причем
15 указанная пробоотборная трубка проходит от впускного конца до выпускного конца.
39. Способ использования термокармана или газоотборного устройства, охарактеризованного в любом из предшествующих пунктов.
40. Способ по п. 39, отличающийся тем, что обеспечивают средства, позволяющие осуществить по меньшей мере частичное извлечение газоотборного
20 устройства из потока текучей среды, из которой берут пробы.
41. Способ по п. 39, отличающийся тем, что продольную ось газоотборного устройства наклоняют относительно оси трубы или трубопровода, по которому протекает текучая среда, из которой берут пробы, на угол а, причем величина угла а находится в диапазоне от 45° до 90°.
ФИГ 2
ФИГ. 3
ФИГ. 4
D+2c[
ФИГ. 5
320
310
ФИГ. 7
ФИГ. 8