EA 32543B1 20190628 Номер и дата охранного документа [PDF] EAPO2019\PDF/032543 Полный текст описания EA201700584 20171221 Регистрационный номер и дата заявки RU2017140826 20171123 Регистрационные номера и даты приоритетных заявок EAB1 Код вида документа [PDF] eab21906 Номер бюллетеня [**] СПОСОБ ПОЛУЧЕНИЯ ГРАФЕНА В УСЛОВИЯХ НИЗКИХ ТЕМПЕРАТУР Название документа [8] C01B 32/188, [8] B82Y 40/00 Индексы МПК [RU] Жижин Евгений Владимирович, [RU] Пудиков Дмитрий Александрович Сведения об авторах [RU] ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СПбГУ) Сведения о патентообладателях [RU] ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СПбГУ) Сведения о заявителях
 

Патентная документация ЕАПВ

 
Запрос:  ea000032543b*\id

больше ...

Термины запроса в документе

Реферат

[RU]

1. Способ получения графена в условиях низких температур, заключающийся в нанесении каталитического слоя металла на подложку высокоориентированного пиролитического графита с последующим ее отжигом в условиях сверхвысокого вакуума, отличающийся тем, что отжиг проводят в течение 15 мин в диапазоне 300-350°С, а в качестве каталитического слоя металла используют металлы никель, кобальт.

2. Способ по п.1, отличающийся тем, что в качестве каталитического слоя металла используют никель толщиной 16 нм при температуре отжига 300°С.

3. Способ по п.1, отличающийся тем, что в качестве каталитического слоя металла используют кобальт толщиной 16 нм при температуре отжига 350°С.


Полный текст патента

(57) Реферат / Формула:

1. Способ получения графена в условиях низких температур, заключающийся в нанесении каталитического слоя металла на подложку высокоориентированного пиролитического графита с последующим ее отжигом в условиях сверхвысокого вакуума, отличающийся тем, что отжиг проводят в течение 15 мин в диапазоне 300-350°С, а в качестве каталитического слоя металла используют металлы никель, кобальт.

2. Способ по п.1, отличающийся тем, что в качестве каталитического слоя металла используют никель толщиной 16 нм при температуре отжига 300°С.

3. Способ по п.1, отличающийся тем, что в качестве каталитического слоя металла используют кобальт толщиной 16 нм при температуре отжига 350°С.


Евразийское 032543 (13) B1
патентное
ведомство
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ
(45) Дата публикации и выдачи патента 2019.06.28
(21) Номер заявки 201700584
(22) Дата подачи заявки
2017.12.21
(51) Int. Cl. C01B 32/188 (2017.01) B82Y40/00 (2011.01)
(54) СПОСОБ ПОЛУЧЕНИЯ ГРАФЕНА В УСЛОВИЯХ НИЗКИХ ТЕМПЕРАТУР
(31) 2017140826
(32) 2017.11.23
(33) RU
(43) 2019.05.31
(71)(73) Заявитель и патентовладелец: ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СПбГУ) (RU)
(72) Изобретатель:
Жижин Евгений Владимирович, Пудиков Дмитрий Александрович
(RU)
(74) Представитель:
Матвеев А.А., Матвеева Т.И., Леонов
И.Ф. (RU)
(56) JP-A-2011051801
Жижин Е.В. и др. Синтез и электронная структура графена на пленке никеля, адсорбированной на графите. Физика твердого тела, 2015, т. 57, вып. 9, с. 1839-1845
(57) Способ получения относится к области наноэлектроники и спинтроники и может быть использован для среднесерийного производства графенсодержащих логических компонентов приборов наноэлектроники, композитных материалов для автомобильной промышленности, биомедицины, аэрокосмического сектора. Способ получения графена при низких температурах состоит из четырех этапов. На первом этапе исходная подложка высокоориентированного пиролитического графита очищается от посторонних загрязнений в условиях сверхвысокого вакуума, на втором этапе при тех же вакуумных условиях наносится каталитический слой никеля или кобальта определенной толщины. За счет выбора определенных параметров синтеза (температура отжига, время отжига, толщина каталитического слоя металла) на заключительном этапе формируется однослойный графен. Электронная структура графена, сформированного данным способом, идентична графену, полученному другими способами (например, методом каталитической реакции крекинга углеродсодержащих газов на поверхности монокристаллических слоев или методом CVD), однако на микромасштабе число разноориентированных доменов графена увеличивается из-за особенности кристаллической структуры базовой подложки. Уменьшение числа разнонаправленных доменов графена на микромасштабе на базовой подложке высокоориентированного пиролитического графита было достигнуто за счет использования каталитического слоя Со. Рентабельность получения графена данным способом значительно повышается по сравнению со способами получения графена на монокристаллических слоях за счет двукратного снижения температуры производства, упрощения технологического процесса производства, снижения себестоимости базовой подложки (графита) для производства по сравнению с монокристаллическими слоями металлов.
Способ получения относится к области наноэлектроники и спинтроники и может быть использован для среднесерийного производства графенсодержащих логических компонентов приборов наноэлектроники, композитных материалов для автомобильной промышленности, биомедицины, аэрокосмического сектора.
Известны методы получения графена: механическое отщепление от монокристалла графита [1], метод каталитической реакции крекинга углеродсодержащих газов на поверхности монокристаллических пленок и монокристаллов переходных металлов (метод CVD) [2], термическая графитизации поверхности монокристалла карбида кремния [3] и сегрегация [4]. Заявленной способ относится к последнему из них.
Известен способ получения металлсодержащего углеродного наноматериала, основанный на осаждении на подложку в вакууме металла и графита [5]. Способ заключается в том, что металл осаждается термическим испарением, а графит - испарением импульсным дуговым разрядом и осаждением с помощью компенсированных бестоковых форсгустков углеродной плазмы плотностью 5х1012-1х1013 см-3, длительностью 200-600 мкс, частотой следования 1-5 Гц, стимулируемой в процессе осаждения инертным газом в виде потока ионов с энергией 150-2000 эВ, направляемого перпендикулярно потоку форсгустков плазмы. После осаждения осуществляется отжиг подложки в среде азота при температуре 150-500°С в течение 1-10 мин. При этом используется подложка из кремния с собственной проводимостью, а в качестве металла используется металл, выбранный из группы, включающей кадмий; композицию из серебра и никеля; композицию из серебра, никеля и кадмия. Недостатком известного способа по сравнению с заявленным является высокая стоимость получения графена за счет применения более сложного технологического процесса, который включает отжиг в среде азота, использование импульсного дугового разряда и бестоковых форсгустков углеродной плазмы, стимулированных инертным газом.
Известен способ получения графеновых слоев на изолирующей подложке с использованием каталитической пленки металла [6]. Способ заключается в том, что на изолирующую подложку (такую как кремний, кварц, стекло, сапфир или нитрид бора) наносится медная пленка толщиной от 10 нм до 1 мкм и на ее поверхность методом CVD при температурах от 300 до 1050°С наносится углеродсодержащий прекурсор (метан, этилен, ацетилен, этанол, бензен, метанол, углеродсодержащие полимеры, наноугле-родные материалы или их комбинация). Вследствие низкой растворимости углерода в меди прогрев при температурах CVD (лучше всего от 800 до 900°С) приводит к проникновению атомов углерода сквозь медную пленку, и на границе подложка-медь формируется одно-, би- или многослойный графен. После этого оставшийся на поверхности слой углерода убирают, например, в кислородной плазме (мощность 60 Вт, длительность 6 мин), а пленку меди растворяют, например, травлением в Fe(NO3)3. Недостатком известного способа по сравнению с заявленным является высокая стоимость получения графена за счет применения многоступенчатого технологического процесса, который включает подготовку изолирующей подложки с нанесением медной пленки, использования метода CVD или аналогичных методов нанесения углеродсодержащих прекурсоров, высокотемпературный прогрев (до 1050°С).
Известен способ низкотемпературного осаждения графена на стекло и связанные с этим изделия/устройства, описанный в патенте [7]. Метод заключается в том, что на поверхность стекла или кремния осаждается пленка никеля толщиной 200 нм (при помощи испарителя "Cooke SJ-20" при давлении 20 мТорр). После осаждения осуществляется отжиг при температурах 800-900°С в течение 5 мин в потоке гелия (при давлении 2 Торр или атмосферном), а затем в течение 1-2 мин в потоке смеси углеродсодер-жащего газа (метана или ацетилена) с водородом или без него. После этого осуществляется отжиг при температуре 350-600°С в течение 10 мин - 3 ч. В результате данного процесса на верхней поверхности никелевой пленки и на границе пленки с подложкой формируется графен. Как и для предыдущего известного способа недостатком по сравнению с заявленным является высокая стоимость получения гра-фена за счет применения многостадийного технологического процесса.
Наиболее близким к заявленному способу получения является способ [8] получения графена большой площади на подложке высокоориентированного пиролитического графита (ВОПГ) с использованием каталитического слоя металла (Ni, Pt, Co, Fe, Cr, Cu, Mn, Rh, Ti, Pd, Ru, Or). В данной технологии, как и в заявленной, на начальном этапе подготавливается углеродсодержащая подложка ВОПГ, затем в условиях вакуума наносится каталитический слой металла и на заключительном этапе проводится отжиг в диапазоне температур от 350 до 1600°С системы при времени экспозиции от 1 с до 200 ч. После формирования графена каталитический слой металла может быть удален химическим способом. В той же технологии указывается, что наиболее приемлемая температура отжига находится в диапазоне от 500 до 1600°С при временах экспозиции от 1 с до 200 ч.
Недостатком известного способа является графитизация поверхности Ni/ВОПГ (при описании метода авторы патента не учитывают формирование второго и последующих слоев графена [8]), которая возникает при использовании указанных параметров (эксперимент № 1: толщина каталитического слоя Ni 300 нм, температура отжига 800-850°С, время отжига 28 ч; эксперимент № 3: толщина каталитического слоя Ni 300 нм, температура отжига 800°С, время отжига 18 ч; эксперимент № 4: толщина каталитического слоя Ni 300 нм, температура отжига 600°С, время отжига 28 ч). Другим недостатком известного способа является соотнесение полученного технического результата для каталитического слоя Ni на об
ширный круг металлов (Ni, Pt, Со, Fe, Cr, Cu, Mn, Rh, Ti, Pd, Ru, Os), не дающего практического руководства по применению технологии для других каталитических слоев. Заявленное изобретение свободно от этих недостатков.
Техническим результатом заявленного изобретения является снижение себестоимости получения графена и улучшением кристаллической структуры на единице площади (итоговое качество кристаллической структуры определяется количеством разноориентированных доменов графена на единице площади). Указанный технический результат достигается за счет расчета оптимальной толщины каталитического слоя металла VIII группы 4-го периода (16 нм) и оценки времени и температуры (для Ni/ВОПГ до 300°С, для Со/ВОПГ до 350°С, время отжига 15 мин) отжига на основе применения поверхностно-чувствительных методов диагностики. Итоговое качество кристаллической структуры графена и наличие графитизации поверхности характеризуется с помощью взаимодополняющих поверхностно-чувствительных методов (рентгеновская и ультрафиолетовая фотоэлектронная спектроскопия (РФЭС и УФЭС), дифракция медленных электронов (ДМЭ), сканирующая электронная микроскопия (СЭМ)).
Технический результат, достигаемый заявленным способом производства графена в условиях низких температур, состоит в следующем.
Уменьшение температуры для синтеза графена.
За счет уменьшения толщины каталитического слоя металла VIII группы 4-го периода до 16 нм и способа доступа атомов углерода ("снизу" от углеродсодержащей подложки ВОПГ) на поверхность системы была уменьшена в 2 раза температура синтеза (300-350°С) по сравнению с известными методами синтеза графена.
Уменьшение числа разнонаправленных доменов графена на микромасштабе.
За счет использования в качестве каталитического слоя Со уменьшено в 1,5 раза количество разнонаправленных доменов на единицу площади.
Сущность заявленного изобретения поясняется на фиг. 1-5.
На фиг. 1 приведена схема заявленного изобретения: на исходную базовую подложку высокоориентированного пиролитического графита (1), очищенную от посторонних загрязнений в условиях сверхвысокого вакуума, наносится каталитический слой металла VIII группы 4-го периода (либо Ni, либо Со) толщиной 16 нм (2), после чего сформированная система отжигается в условиях низких температур в диапазоне 300-350°С, и в результате на поверхности формируется однослойный графен (3).
На фиг. 2 представлены результаты РФЭС-измерений каталитического слоя Ni, напыленного на ВОПГ, до (внизу) и после (вверху) отжига и формирования графена.
На фиг. 3 представлены результаты РФЭС-измерений каталитического слоя Со, напыленного на ВОПГ, до (внизу) и после (вверху) отжига и формирования графена.
На фиг. 4 приводятся картины ДМЭ графена, сформированного на каталитическом слое Ni (а) и Со
(б).
На фиг. 5 представлены СЭМ изображения систем (область 50x50 мкм): (а) Ni/ВОПГ, (б) гра-фен/№/ВОПГ.
Заявленное изобретение было апробировано на кафедре электроники твердого тела Физического факультета Санкт-Петербургского государственного университета (СПбГУ). Конкретные примеры реализации приведены ниже.
Пример 1. Способ получения графена, реализуемый по схеме, приведенной на фиг. 1, с использованием никеля в качестве металла для каталитического слоя.
В качестве монокристаллической ориентирующей углеродсодержащей подожки использовался высокоориентированный пиролитический графит (ВОПГ). Получение исходной чистой поверхности в условиях сверхвысокого вакуума происходило в два этапа: предварительное отшелушивание поверхности с последующим скалыванием в условиях сверхвысокого вакуума при ~1х10-9 мбар, и последующее обез-гаживание при температуре ~700°С до давления лучше чем ~5х10-9 мбар. После этого проводился контроль качества подложки ВОПГ по всей поверхности с помощью ДМЭ и ФЭС в области C1s электронного уровня.
На подготовленную поверхность подложки ВОПГ при тех же сверхвысоковакуумных условиях наносился каталитический слой Ni толщиной 16 нм со скоростью ~0,15 нм/мин. Толщина пленки оценивалась с помощью кварцевых микровесов.
Система Ni/ВОПГ отжигалась при низкой температуре 300°С в течении 15 мин при давлении лучше чем ~5х10-9 мбар. Контроль температуры системы осуществлялся с помощью однолучевого инфракрасного пирометра Keller MSR PZ20 AF02 и термопары, смонтированной непосредственно на образце.
Синтез графена в условиях низких температур сопровождается формированием в приповерхностной области промежуточной карбидной фазы (Ni2C), которая с повышением температуры до 300°С трансформируется в графен. Это подтверждается результатами РФЭС-исследований тонкой структуры внутреннего уровня углерода C1s. На фиг. 2 представлены C1s спектры с разложением на спектральные компоненты, каждая из которых соответствует определенному химическому состоянию атомов углерода. На фиг. 2 (снизу) приведен спектр системы Ni/ВОПГ, полученный после напыления пленки металла. По
спектру видно, что в образце есть углерод, растворенный в каталитическом слое (компонента 22), адсорбированные во время напыления углеродсодержащие молекулы на поверхности пленки (компонента 21), и углерод, связанный с металлом (карбид Ni3C (компонента 23)).
После формирования графена на поверхности системы, как показано на фиг. 2(сверху), в структуре линии C1s содержится 3 компоненты. Компонента 24 соответствует оставшемуся в приповерхностной области образца карбиду (Ni2C). Компонента с энергией связи 284,5 эВ (25) соответствует углероду, находящемуся в структурах с sp2- и С-С связями: двуслойном и многослойном графене. Компонента с энергией связи 285,0 эВ (26) соответствует монослойному графену, связанному с нижележащей пленкой металла. Из этого следует, что на поверхности сформировался одно- и двуслойный графен, занимающий практически всю площадь образца.
На фиг. 5 показаны СЭМ изображения поверхности до и после отжига системы Ni/ВОПГ. Светлые участки (фиг. 5(б)) соответствуют доменам графена, средний размер которых составляет ~10 мкм. Темные участки соответствуют нижележащему слою атомов. Наличие участков поверхности разной высоты приводит к локальному изменению работы выхода образца, тем самым формируя контрастное СЭМ изображение. Данные СЭМ соотносятся с измерениями ДМЭ (фиг. 4(а)).
Пример 2.
В качестве каталитического слоя металла VIII группы 4-го периода, наносимого на базовую подложку ВОПГ, можно использовать другой переходный металл Со. Получение графена также происходило по процедуре, показанной на фиг. 1. Отличие от процедуры, описанной в примере 1, заключалось в использовании температуры последующего прогрева в 350°С.
Результаты РФЭС-исследований тонкой структуры внутреннего уровня углерода C1s с разложением на спектральные компоненты в процессе формирования графена на системе Со/ВОПГ представлены на фиг. 3. После напыления каталитического слоя Со (фиг. 3 (снизу)) видно, что в образце есть углерод, растворенный в толщине пленки (компонента 32), адсорбированный во время напыления углеродсодер-жащих молекул на поверхности пленки (компонента 31), и углерод, связанный с металлом (карбиды Co3C (компонента 33) и Co2C (компонента 34)).
После формирования графена на поверхности системы, как показано на фиг. 3 (сверху), в структуре линии C1s содержится 3 компоненты, аналогично результату в примере 1. Компонента 36 соответствует монослойному графену, связанному с нижележащим каталитическим слоем. Компонента 35 соответствует двуслойному и многослойному графену. Компонента 34 соответствует оставшемуся в приповерхностной области образца карбиду (Co2C).
Электронная структура графена, сформированного данным способом, идентична графену, полученному другими способами. Однако на микромасштабе число разноориентированных доменов графена увеличивается из-за особенности кристаллической структуры базовой подложки ВОПГ. Уменьшение числа разнонаправленных доменов графена на микромасштабе достигается за счет использования каталитического слоя Со вместо Ni. О данном обстоятельстве свидетельствуют ярко выраженные рефлексы на картине ДМЭ для каталитического слоя Со на фиг. 4(б) по сравнению с картиной ДМЭ для графена на пленке никеля (фиг. 4(а)).
Приведенные выше примеры доказывают достижение технического результата и позволяют использовать заявленный способ производства графена в качестве рентабельного. Графен, полученный заявленным способом, можно использовать в качестве базового компонента для производства логических элементов наноэлектроники и спинтроники (таких как графеновый спиновый фильтр, полевой транзистор) и композитных материалов для автомобильной промышленности, биомедицины, аэрокосмического сектора.
Список использованной литературы
1. A.K. Geim, et al., Nature Materials, 6, 183-191 (2007).
2. A. Griineis, et al., New Journal of Physics, 11, 073050-59 (2009).
3. K.V. Emtsev, et al., Physical Review B, 77, 155303-13 (2008).
4. J.C. Hamilton, et al., Surf. Sci. 91, 199-217 (1980).
5. Патент RU 2499850 C1.
6. Патент US 8685843 B2.
7. Патент WO 2014/151276 A1.
8. Патент JP 2011051801(A) (прототип).
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ получения графена в условиях низких температур, заключающийся в нанесении каталитического слоя металла на подложку высокоориентированного пиролитического графита с последующим ее отжигом в условиях сверхвысокого вакуума, отличающийся тем, что отжиг проводят в течение 15 мин в диапазоне 300-350°С, а в качестве каталитического слоя металла используют металлы никель, кобальт.
2. Способ по п.1, отличающийся тем, что в качестве каталитического слоя металла используют никель толщиной 16 нм при температуре отжига 300°С.
1.
3. Способ по п.1, отличающийся тем, что в качестве каталитического слоя металла используют кобальт толщиной 16 нм при температуре отжига 350°С.
2 3
I I I Г I t i I
10 20 ICS 40
a) 6) Фиг. 5
Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2
032543
- 1 -
(19)
032543
- 1 -
(19)
032543
- 6 -
(19)
032543
- 7 -