EA 032062B1 20190430 Номер и дата охранного документа [PDF] EAPO2019\PDF/032062 Полный текст описания [**] EA201590762 20130625 Регистрационный номер и дата заявки RU2013122741 20130513 Регистрационные номера и даты приоритетных заявок RU2013/000538 Номер международной заявки (PCT) WO2014/185813 20141120 Номер публикации международной заявки (PCT) EAB1 Код вида документа [PDF] eab21904 Номер бюллетеня [**] ТЕРМОСТОЙКИЙ СИНТЕТИЧЕСКИЙ ЮВЕЛИРНЫЙ МАТЕРИАЛ Название документа [8] A44C 27/00, [8] C03C 10/12, [8] C30B 29/20, [8] C30B 29/34, [8] B82Y 40/00 Индексы МПК [RU] Дымшиц Ольга Сергеевна, [RU] Жилин Александр Александрович Сведения об авторах [RU] АВАКЯН КАРЕН ХОРЕНОВИЧ, [RU] ДЫМШИЦ ОЛЬГА СЕРГЕЕВНА, [RU] ЖИЛИН АЛЕКСАНДР АЛЕКСАНДРОВИЧ Сведения о патентообладателях [RU] АВАКЯН КАРЕН ХОРЕНОВИЧ, [RU] ДЫМШИЦ ОЛЬГА СЕРГЕЕВНА, [RU] ЖИЛИН АЛЕКСАНДР АЛЕКСАНДРОВИЧ Сведения о заявителях
 

Патентная документация ЕАПВ

 
Запрос:  ea000032062b*\id

больше ...

Термины запроса в документе

Реферат

[RU]

1. Термостойкий синтетический ювелирный материал, представляющий собой композиционный нанокристаллический материал, содержащий наноразмерные оксидные и силикатные кристаллические фазы и включающий по крайней мере одну кристаллическую фазу, выбранную из группы, состоящей из шпинели, кварцеподобных фаз, сапфирина, энстатита, петалитоподобной фазы, кордиерита, виллемита, циркона, алюмотитанатов магния, рутила, титаната циркония и двуокиси циркония, и содержащую от 0,001 до 4 мол.% ионов переходных, редкоземельных элементов и благородных металлов, при этом указанная по крайней мере одна кристаллическая фаза дополнительно содержит твердые растворы литиево-магниево-цинковых алюмосиликатов со структурой виргилита и состав композиционного нанокристаллического материала выбран из следующих компонентов в мол.%: SiO 2 - 45-72; Al 2 O 3 - 15-30; MgO - 0,1-23,9; ZnO - 0,1-29; Li 2 O - 1-18; PbO - 0,1-7,0; ZrO 2 - 0,1-10; TiO 2 - 0,1-15; NiO - 0,001-4,0; CoO - 0,001-3,0; CuO - 0,001-4,0; Cr 2 O 3 - 0,001-1,0; Bi 2 O 3 - 0,001-3,0; Fe 2 O 3 - 0,001-3,0; MnO 2 - 0,001-3,0; CeO 2 - 0,001-3,0; Nd 2 O 3 - 0,001-3,0; Er 2 O 3 - 0,001-3,0; Pr 2 O 3 - 0,001-3,0; Au - 0,001-1,0.

2. Термостойкий синтетический ювелирный материал по п.1, где композиционный нанокристаллический материал является прозрачным, полупрозрачным или непрозрачным.


Полный текст патента

(57) Реферат / Формула:

1. Термостойкий синтетический ювелирный материал, представляющий собой композиционный нанокристаллический материал, содержащий наноразмерные оксидные и силикатные кристаллические фазы и включающий по крайней мере одну кристаллическую фазу, выбранную из группы, состоящей из шпинели, кварцеподобных фаз, сапфирина, энстатита, петалитоподобной фазы, кордиерита, виллемита, циркона, алюмотитанатов магния, рутила, титаната циркония и двуокиси циркония, и содержащую от 0,001 до 4 мол.% ионов переходных, редкоземельных элементов и благородных металлов, при этом указанная по крайней мере одна кристаллическая фаза дополнительно содержит твердые растворы литиево-магниево-цинковых алюмосиликатов со структурой виргилита и состав композиционного нанокристаллического материала выбран из следующих компонентов в мол.%: SiO 2 - 45-72; Al 2 O 3 - 15-30; MgO - 0,1-23,9; ZnO - 0,1-29; Li 2 O - 1-18; PbO - 0,1-7,0; ZrO 2 - 0,1-10; TiO 2 - 0,1-15; NiO - 0,001-4,0; CoO - 0,001-3,0; CuO - 0,001-4,0; Cr 2 O 3 - 0,001-1,0; Bi 2 O 3 - 0,001-3,0; Fe 2 O 3 - 0,001-3,0; MnO 2 - 0,001-3,0; CeO 2 - 0,001-3,0; Nd 2 O 3 - 0,001-3,0; Er 2 O 3 - 0,001-3,0; Pr 2 O 3 - 0,001-3,0; Au - 0,001-1,0.

2. Термостойкий синтетический ювелирный материал по п.1, где композиционный нанокристаллический материал является прозрачным, полупрозрачным или непрозрачным.


Евразийское ои 032062 (13) В1
патентное
ведомство
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ
(45) Дата публикации и выдачи патента 2019.04.30
(21) Номер заявки 201590762
(22) Дата подачи заявки
2013.06.25
(51) Int. Cl. A44C27/00 (2006.01) C03C10/12 (2006.01) C30B 29/20 (2006.01) C30B 29/34 (2006.01) B82Y40/00 (2011.01)
(54) ТЕРМОСТОЙКИЙ СИНТЕТИЧЕСКИЙ ЮВЕЛИРНЫЙ МАТЕРИАЛ
(31) 2013122741
(32) 2013.05.13
(33) RU
(43) 2016.07.29
(86) PCT/RU2013/000538
(87) WO 2014/185813 2014.11.20
(71) (73) Заявитель и патентовладелец:
АВАКЯН КАРЕН ХОРЕНОВИЧ; ДЫМШИЦ ОЛЬГА СЕРГЕЕВНА; ЖИЛИН АЛЕКСАНДР АЛЕКСАНДРОВИЧ (RU)
(72) Изобретатель:
Дымшиц Ольга Сергеевна, Жилин Александр Александрович (RU)
(74) Представитель:
Поликарпов А.В. (RU)
(56) RU-C1-2426488 RU-C2-2314268 US-A1-20090011925
(57) Изобретение может быть использовано в химической промышленности. Предложен термостойкий синтетический ювелирный материал, представляющий собой композиционный нанокристаллический материал, содержащий наноразмерные оксидные и силикатные кристаллические фазы и включающий по крайней мере одну кристаллическую фазу, выбранную из группы, состоящей из шпинели, кварцеподобных фаз, сапфирина, энстатита, петалитоподобной фазы, кордиерита, виллемита, циркона, алюмотитанатов магния, рутила, титаната циркония и двуокиси циркония, и содержащую от 0,001 до 4 мол.% ионов переходных, редкоземельных элементов и благородных металлов, при этом указанная по крайней мере одна кристаллическая фаза дополнительно содержит твердые растворы литиево-магниево-цинковых алюмосиликатов со структурой виргилита, состав композиционного нанокристаллического материала выбран из следующих компонентов в мол.%: SiO2 - 45-72; Al2O3 - 15-30; MgO - 0,1-23,9; ZnO - 0,1-29; Li2O -1-18; PbO - 0,1-7,0; Z1O2 - 0,1-10; T1O2 - 0,1-15; NiO - 0,001-4,0; CoO - 0,001-3,0; CuO - 0,001-4,0; Cr2O3 - 0,001-1,0; Bi2O3 - 0,001-3,0; Fe2O3 - 0,001-3,0; MnO2 - 0,001-3,0; CeO2 - 0,001-3,0; Nd2O3 -0,001-3,0; Er2O3 - 0,001-3,0; Pr2O3 - 0,001-3,0; Au 0,001-1,0. Изобретение обеспечивает прозрачный, полупрозрачный или непрозрачный ювелирный материал с низким коэффициентом теплового расширения и высокой термостойкостью.
Область техники
Изобретение относится к синтетическим материалам для ювелирной промышленности, служащим для замены натуральных ювелирных камней.
Синтетические материалы традиционно используются в ювелирной промышленности для замены природных ювелирных камней. Эти материалы можно подразделить на две группы.
Первые имеют тот же химический состав и физические свойства, что и природные ювелирные камни. Примерами таких синтетических материалов являются аметист, цитрин, дымчатый кварц, александрит, рубин и шпинель, выращенные методом Чохральского; синтетические корунды и шпинели, выращенные методом Вернейля, гидротермальный изумруд.
Ко второй группе можно отнести искусственные, синтетические материалы, имитирующие природные камни по внешнему виду, в частности цвету, при совершенно ином химическом составе и физических свойствах, причем многие из этих материалов даже не встречаются в природе. Это, например, активированные оксидами редкоземельных и переходных элементов иттрий алюминиевый гранат, галлий гадолиниевый гранат и фианит.
Существенным недостатком синтетических камней является неоднородность их окраски, так как интенсивность окраски изменяется в ходе процесса роста кристаллов, что связано с селективным характером вхождения примесей в кристаллы; по мере роста кристаллов концентрация красителей в них может изменяться. Особенно неоднородными являются кристаллы зеленого, синего и коричневого фианита, синего сапфира, зеленого и синего иттрий-алюминиевого граната и т.д. Выращивание этих кристаллов, их огранка и сортировка по цвету сопряжены с огромными трудозатратами и технологическими сложностями, к тому же, многие цветные синтетические кристаллы, полученные в восстановительных условиях, меняют свой цвет при нагреве на воздухе (происходит окисление элемента-красителя).
В бижутерии и в относительно дешевых ювелирных изделиях часто используют как бесцветное, так и цветное стекло - хрусталь или стразы. Стекло обычно однородно по цвету, но заметно уступает синтезированным монокристаллам по показателю преломления, блеску, твердости, плотности, устойчивости к резким колебаниям температуры.
Главным недостатком многих синтетических минералов и стекол является их низкая термостойкость, т.е. неспособность сохранять целостность при перепадах температуры. Они часто трескаются, не выдерживая термический удар. Это препятствует шлифовке и полировке с использованием высоких скоростей обработки, а также созданию ювелирных изделий по экономичной технологии "литья с камнями".
Предшествующий уровень техники
В патенте РФ № 2336005, опубликованном 20,10.2008 по индексам МПК А44С 27/00, В44С 5/06, B44F 9/04, С04В 30/00, С03С 6/02, B28D 5/00, заявлена сырьевая смесь для изготовления вставок к ювелирным изделиям, заменяющих "камень". Эта смесь содержит молотое силикатное стекло и отходы обработки рубина, и/или сапфира, и/или изумруда, и/или александрита, и/или благородной шпинели, и/или эвклаза, и/или топаза, и/или аквамарина, и/или гелиодора, и/или граната, и/или аметиста, и/или гиацинта, и/или кордиерита, и/или турмалина, и/или горного хрусталя, и/или дымчатого кварца, и/или хризопраза, и/или сердолика. Использовано силикатное стекло, плавящееся при температуре 500-950°C. Таким образом изготавливается композиционный материал, в котором отходы драгоценных или полудрагоценных камней скрепляются между собой низкоплавким силикатным стеклом. Механическая прочность таких изделий невелика, их использование в серийном производстве невозможно из-за принципиальной невоспроизводимости внешнего вида изделий. Из-за разности коэффициентов термического расширения различных по природе наполнителей и силикатной матрицы полученный композиционный материал имеет низкую термостойкость. Кроме того, из-за низкой температуры плавления силикатной составляющей материала экономичная технология "литья с камнями" не может применяться.
Патент РФ № 2162456, опубликованный 27,01.2001 по индексам МПК С04В 5/14 и С01В 33/113, защищает способ получения синтетического материала со структурой благородного опала. Синтетический материал получают приготовлением монодисперсной суспензии с глобулами аморфного кремнезема размером 140-600 нм. Затем послойно осаждают осадок, который сушат сначала при 100-150°C в течение 10-30 ч, а затем при дополнительно пониженном давлении 1-10 Па. После сушки осадок подвергают пневматолитовому отжигу при 15-45 МПа и 350-400°C в присутствии паров воды и тетраэтоксиси-лана, затем пропитывают кремнезолем и термообрабатывают при 400-600°C в течение 1-2 ч.
Данный способ получения очень сложен технически, трудоемок и длителен, велика себестоимость получаемого материала. Кроме того, получение материалов разнообразного фазового состава, структур и окрасок по данному методу невозможно. Главным же недостатком данного материала является то, что он очень хрупок и растрескивается при дегидратации, которая особенно быстро протекает при нагревании, в частности процессы идут интенсивно уже при 100°C.
Представляет интерес способ окрашивания природных и синтетических ювелирных камней, защищенный патентом РФ № 2215455, опубликованным 10,11.2003 по индексам МПК А44С 17/00, С30В 31/02, С30В 33/02. Способ предназначен для окрашивания бесцветных и бледно-голубых сапфиров, бесцветных топазов, кварца. Способ заключается в размещении ювелирных камней в тонкоизмель
ченный порошок оксида кобальта с соотношением закисной и окисной форм кобальта 1:1, смешанный с оксидом цинка в соотношении 1:(0.25-3), и в последующей термообработке в окислительной атмосфере
при 900-1250°C.
Получаемые таким образом изделия окрашены с поверхности, их дополнительная механическая обработка невозможна, так как нарушается тонкий окрашенный слой материала. Этим способом невозможно также получить иные, чем синий, цвета ювелирного камня.
В патенте РФ № 2253706, опубликованном 20,01.2005 по индексам МПК С30B 29/20, С30В 28/00, С30В 31/02, С30В 33/02, представлен ювелирный материал - синтетический поликристаллический корунд "Мариит" и способ получения изделий из данного материала. В данном техническом решении заявлен материал, который состоит из глинозема, цветообразующих добавок и связки-парафина. В качестве цветообразующих добавок применяют оксиды молибдена, вольфрама, неодима, эрбия, хрома. Способ получения материала - вставок для ювелирных изделий осуществляют путем формования смеси на литьевых машинах при давлении 4 атм и обжига в печах непрерывного и периодического действия. Затем полученный цветной полупрозрачный черепок полируют алмазными материалами. Данное техническое решение обеспечивает получение только полупрозрачного материала; прозрачный материал по этой технологии изготовить невозможно, что существенно снижает разнообразие готовых изделий. Кроме того, ограничена цветовая гамма получаемых материалов - не производятся материалы синего, зеленого, желтого, коричневого цветов. Состав данного материала (наличие связующего - парафина) препятствует работе с материалом при повышенных температурах.
Известно, что стеклокристаллические материалы с близким к нулю коэффициентом термического расширения получаются в результате регулируемой кристаллизации твердых растворов со структурой Р-кварца р-эвкриптита) в стеклах литиево-алюмосиликатной системы. Этот метод используется для производства цветной прозрачной термостойкой кухонной посуды, устойчивых к термоудару верхних панелей электроплит, а также окон отопительных и металлургических печей. Так, фирмой Корнинг, США, были разработаны составы стекол, превращающихся в результате термообработки в стеклокристалличе-ские материалы, окрашенные в разнообразные оттенки желтого, коричневого и пурпурного цветов. В патенте США № 3788865, МПК С03С 10/14, опубликованном в январе 1974 г., описано получение прозрачных цветных стеклокристаллических материалов, содержащих (Р-эвкриптитовую кристаллическую фазу и окрашенных следующими добавками: V2O5, MnO, Cr2O3, Fe2O3, CuO, NiO и ZnS. Однако полученные материалы имеют относительно низкую твердость, что является важным недостатком ювелирных изделий. В патенте США № 5491115, опубликованном 13,02.1996 по индексам МПК С03С 010/14, С03С 010/12, описывается получение красно-пурпурной и фиолетовой окраски в прозрачном термостойком стеклокристаллическом материале. Однако все эти материалы имеют относительно низкую твердость, что является важным недостатком для использования их в качестве материала для ювелирных изделий.
В патенте РФ № 2426488, опубликованном 20,08.2010 по индексам МПК А44С 17/00, А44С 27/00, выбранном в качестве прототипа, описывается материал, обладающий твердостью, химической стойкостью и устойчивостью окраски к термическим ударам. Это синтетический прозрачный, полупрозрачный или непрозрачный композиционный нанокристаллический материал для ювелирной промышленности на основе наноразмерных оксидных и силикатных кристаллических фаз, содержащий по крайней мере одну из нижеперечисленных кристаллических фаз: шпинель, кварцеподобные фазы, сапфирин, энстатит, пета-литоподобная фаза, кордиерит, виллемит, циркон, рутил, титанат циркония, двуокись циркония, с содержанием ионов переходных, редкоземельных элементов и благородных металлов в количестве от 0,001 до 4,0 мол.%.
Несмотря на свои уникальные свойства, этот материал не обладает ультранизким, менее 30 10-7 К-1 коэффициентом термического расширения (КТР), а значит, не имеет требуемой высокой термостойкости, что препятствует быстрой механической обработке изделий, в частности, с использованием лазерной обработки поверхностей и создания отверстий с помощью лазера, а также осложняет технологию "литья с камнями", так как материалы с кристаллическими фазами, имеющими высокий КТР, могут растрескиваться при термоциклировании. Кроме того, температура его синтеза находится в интервале 1570-1640°C, что затрудняет проведение технологических операций осветления и гомогенизации стекол при их синтезе в стандартном стекловаренном оборудовании и требует высокого расхода электроэнергии.
Таким образом, в исследованных аналогах и прототипе нет материала, который отвечал бы всем требованиям, предъявляемым современной ювелирной промышленностью к ювелирным материалам.
Раскрытие изобретения
Задачей изобретения является получение ювелирного материала, обладающего повышенной термостойкостью и пониженным КТР по сравнению с известными материалами, в том числе с прототипом, а также снижение температуры синтеза ниже 1570°C.
Технический результат достигается с помощью создания термостойкого синтетического ювелирного материала, представляющего собой композиционный нанокристаллический материал, содержащий наноразмерные оксидные и силикатные кристаллические фазы и включающий по крайней мере одну кристаллическую фазу, выбранную из группы, состоящей из: шпинели, кварцеподобных фаз, сапфирина, энстатита, петалитоподобной фазы, кордиерита, виллемита, циркона, алюмотитанатов магния, рутила, титаната циркония и двуокиси циркония, и содержащую от 0,001 до 4 мол.% ионов переходных, редкоземельных элементов и благородных металлов, при этом указанная по крайней мере одна кристаллическая фаза дополнительно содержит твердые растворы литиево-магниево-цинковых алюмосиликатов со структурой виргилита, и состав композиционного нанокристаллического материала выбран из следующих компонентов в мол.%: SiO2 - 45-72; Al2O3 - 15-30; MgO - 0,1-23,9; ZnO - 0,1-29; Li2O - 1-18; PbO - 0,1-7,0; ZrO2 - 0,1-10; TiO2 - 0,1-15; NiO - 0,001-4,0; CoO - 0,001-3,0; CuO - 0,001-4,0; Cr2O3 - 0,001-1,0; Bi2O3 - 0,001-3,0; Fe2O3 - 0,001-3,0; MnO2 - 0,001-3,0; CeO2 - 0,001-3,0; Nd2O3 - 0,001-3,0; Er2O3 - 0,001-3,0; Pr2O3 - 0,001-3,0; Au - 0,001-1,0.
Термостойкий синтетический прозрачный, полупрозрачный или непрозрачный композиционный нанокристаллический материал для ювелирной промышленности получают из составов, представленных в табл. 1.
В табл. 1 TiO2, ZrO2, NiO, CoO, CuO, &2O3, Bi2O3, Fe2O3, MnO2, CeO2, Nd2O3, Er2O3, Pr2O3 и Au введены сверх 100% основного состава. Совокупность пяти первых компонентов, указанных в табл. 1, образует основу, формирующую ионноковалентно увязанную сетку стекла. PbO входит в созданную сетку стекла, увеличивая показатель преломления материала, TiO2 и ZrO2 создают центры кристаллизации, NiO, CoO, CuO, Cr2O3, Bi2O3, Fe2O3, MnO2, CeO2, Nd2O3, Er2O3, Pr2O3 и Au являются красителями.
Техническое решение реализуется следующим образом.
1. Плавление смеси, представляющей собой выбранный состав из исходных компонентов, приведенных в табл. 1, при температуре на 200-300°C выше ликвидуса при температуре 1520-1550°C.
2. Охлаждение расплавленного материала до температуры 1300-1410°C с приданием ему необходимой формы и отжиг при температуре 620-650°C, при которой вязкость материала равна 1010.5-1011 Па-с.
3. Превращение исходного материала в синтетический прозрачный, полупрозрачный или непрозрачный композиционный нанокристаллический материал для ювелирной промышленности путем до
1.
полнительной термообработки: нагревания, при котором образование центров кристаллизации происходит при температуре от 660 до 800°C в течение 1-24 ч, а образование по крайней мере одной из нижеперечисленных наноразмерных оксидных и силикатных кристаллических фаз: твердых растворов литиево-магниево-цинковых алюмосиликатов со структурой виргилита (Р-кварца), нанокристаллов шпинели, салфирина, энстатита, петапита, кордиерита, виллемита, циркона, рутила, титаната циркония, двуокиси циркония происходит при температуре от 780 до 1200°C в течение 1-24 ч.
4. Охлаждение синтетического прозрачного, полупрозрачного или непрозрачного композиционного нанокристаллического материала до комнатной температуры.
Окраску материала обеспечивают ионы переходных, редкоземельных элементов и благородных металлов в количестве от 0,001 до 4 мол.%.
Конкретные примеры составов, режимов термообработки и свойства предлагаемых материалов приведены в табл. 2. Из таблицы видно, что стеклокристаллические материалы данных составов, полученные по приведенным режимам, обладают оптическими характеристиками, близкими к характеристикам главных природных цветных минералов, и технологичны в производстве, имеют низкий коэффициент термического расширения, высокую твердость, химическую стойкость и устойчивость окраски к термическим ударам, а также пониженную по сравнению с прототипом температуру синтеза.
Компоненты в виде оксидов и карбонатов смешивались, перемалывались с целью получения однородной массы, масса засыпалась в тигли из кварцевой керамики, которые помещались в печь. При температуре 1520-1550°C масса плавилась в течение примерно 6 ч с перемешиванием мешалкой из кварцевой керамики, отливалась в стальную форму и образовывала прозрачный брусок.
Лучшие варианты осуществления изобретения
прозрачный
непрозрачный
непрозрачный
Коэффициент гермического расширения, fx 10"7m
15.0
19.0
22.0
Температура синтеза, °С
1540
1540
1550
Кристалличес кие фазы
Твердый раствор
литиевомагниевоц
инковых
алюмосиликатов
со структурой
виргалита (Р-
кварца)
Шпинель
Алю мотитанаты
магния
Твердый раствор
алюмосиликатов
со структурой р-
сподумена
(китита)
Шпинель
Циркон
Петалитоподобная фаза
Гитанат циркония Двуокись циркония
Твердый раствор
литиевомагниев
оцинковых
алю мосиликато
в со структурой
[3-сподумена
(китита)
шпинель
Кордиерит
Рутил
Двуокись
циркония
Компонент
Номер образца
Концентрация, мол %
Si02
54.9
АЬОЗ
MgO
12.9
0.1
ZnO
0.1
Li20
Zr02
0.1
тю2
0.1
PbO
0.1
NiO
0.001
0.001
0.001
CoO
0.001
0.001
0.001
CuO
4.000
0.050
0.000
Cr20,
0.001
0.001
0.001
Bi203
0.001
0.001
3.000
Fe203
0.001
0.001
0.001
Mn02
0.001
0.001
0.001
Ce02
0.001
0.001
0.001
Nd203
0.001
0.001
0.001
Er203
0.001
0.001
0.001
РГ2О3
0.001
3.000
0.001
0.001
0.001
0.001
УСЛОВИЯ термообработки
1 стадия
720°С, 6 часов
700°С, 12 часов
750°С, 1 час
2 стадия
1050°С, 24 часа
850°С, 12 часов
1200°С, 1 час
Окраска
коричневый, непрозрачный
голубовато
зеленый,
прозрачный
гемно-
коричневый,
непрозрачный
Коэффициент термического расширения,
(х 10*7/°С)
18.0
5.0
12.0
Температура
синтеза, °С
1520
1520
1550
Кристаллические фазы
Твердый раствор
питиевомагниевоц
инковых
алюмосиликатов со структурой ф-сподумена (китита) Сапфирин Энстатит Алюмотитанаты магния
Твердый раствор
питиевомагниевоц
инковых
алюмосиликатов со структурой виргилитаф- кварца) Шпинель Титанат циркония Двуокись циркония
Твердый раствор литиевомагниево цинковых алюмосиликатов со структурой р-сподумена (китита) Кордиерит Титанат циркония
Компонент
Номер образца
Концентрация, мол%
Si02
54.9
А1203
MgO
14.9
0.1
ZnO
0.1
Li20
Zr02
0.1
Ti02
0.1
PbO
0.1
7.0
NiO
0.001
0.001
0.001
CoO
0.001
0.001
0.001
CuO
0.001
0.001
0.001
Сг20з
1.000
0.001
0 001
В1гОз
0.001
0.001
0.001
Fe203
0.001
3.000
0.001
Mn02
0.001
0.001
0.001
Ce02
0.001
0.100
3.000
Nd203
0.001
0.001
0.001
Er20}
0.001
0.001
0 001
Pr203
0.001
0.001
0.001
0.001
0.001
0.001
Условия термообработки
1 стадия
680°С, 24 часа
800°С, 12 часов
780°С, 1 час
2 стадия
800°С, 24 часа
1100°С, 12 часов
1200°С, 1 час
Окраска
дымчатый, прозрачный
светло-коричневый непрозрачный
коричневый, непрозрачный
Коэффициент термического расширения,
(х 10"7/°С)
3.0
10.0
12.0
Температура синтеза, °С
1530
1520
1545
Кристалличес кие фазы
Твердый раствор
литиевомагниевоци
нковых
алюмосиликатов со структурой виргилита (Р-кварца) Шпинель Алюмотитанаты магния
Твердый раствор
литиевомагниевоци
нковых
алюмосиликатов со структурой р-сподумена (китита) Виллемит Шпинель Циркон
Титанат циркония Двуокись циркония
Твердый раствор литиевомагни евоцинковых алюмосиликат ов со
структурой Р-
сподумена
(китита)
Кордиерит
Двуокись
циркония
Компонент
Номер образца
Концентрация, мол %
Si02
54.9
А120з
MgO
10.0
0.1
ZnO
0.1
Li20
14.9
Zr02
0.1
Ti02
0.1
PbO
0.1
7.0
NiO
0.001
1.0
0.001
CoO
0.001
0.001
0.001
CuO
0.001
0.001
0.001
Сг20з
0.001
0.001
0.001
В12Оз
0.001
0.001
0 001
Fe203
0.001
0.001
0.001
Mn02
3.000
0.003
0.001
Ce02
0.000
0.000
0.000
Nd203
0.001
0.001
0.001
Er203
0001
0.500
3.000
Pr203
0.001
0.001
0.001
0.001
0.001
0.001
Коэффициент
2.0
5.0
21.0
термического
расширения,
(х 10"7/°С)
Температура
1520
1520
1550
синтеза, °С
Кристалличес
Твердый раствор
Твердый раствор
Твердый
кие фазы
литиевомагниевоцин
литиевомагниевоцин
раствор
ковых
ковых
литиевома
алюмосиликатов со
алюмосиликатов со
гниевоцин
структурой виргилита
структурой виргилита
ковых
(р-кварца)
(р-кварца)
алюмосили
Шпинель
Шпинель
катов со
Алюмотитанаты
Титанат циркония
Структурой
магния
Двуокись циркония
сподумена
(китита)
Кордиерит
Двуокись
циркония
Компонент
Номер образца
Концентрация, мол %
Si02
54.9
А1203
MgO
12.9
0.1
ZnO
0.1
Li20
Zr02
0.1
Ti02
0.1
PbO
0.1
7.0
NiO
0.001
0.001
0.001
CoO
0.001
0.001
0001
CuO
0.001
0.001
0.001
Сг20з
0.001
0.001
0.001
Bi203
0.001
0.001
0.001
Fe203
0.001
0.001
0001
Mn02
0.001
0.001
0.001
Ce02
0.001
0.001
0.001
Nd2Oj
0.001
0.001
3.000
Ег2Оз
0.001
0.001
0.001
Рг203
0.001
0.001
0.001
О.ООЗ
1.000
0.001
Условия термообработки
1 стадия
720°С, 6 часов
700°С, 12 часов
750°С, 1 час
2 стадия
1050°С, 24 часа
850°С, 12 часов
1200°С, 1 час
Окраска
пурпурный, непрозрачный
красный, прозрачный
сиреневый непрозрачный
Коэффициент термического расширения, (х 10-7/°С)
18.0
3.0
12.0
Температура синтеза, °С
1520
1520
1550
Кристаллические фазы
Твердый раствор
литиевомагниевоцин
ковых
алюмосиликатов со структурой р- сподумена (китита) Сапфирин Энстатит
Алюмотитанаты магния
Твердый раствор
литиевомагниевоцин
ковых
алюмосиликатов со структурой виргилита (р-кварца) Шпинель Титанат циркония Двуокись циркония
Твердый
раствор
литиевома
гниевоцин
ковых
алюмосил
икатов со
структурой р-
сподумена
(китита)
Кордиерит
Титанат
циркония
Условия термообработки: 1 стадия
2 стадия
680°С, 24 часа
820°С, 24 часа
780°С, 12 часов
900°С, 12 часов
800°С, 1 час
1200°С, 1 час
Окраска
Светло-
коричневыйвый, прозрачный Промышленная применимость.
Введение SiO2 в количествах, меньших указанного, не приводит при синтезе к образованию прозрачного материала, а введение SiO2 в количествах, больших указанного, повышает температуру плавления смеси до температур, превышающих 1600°C, что не обеспечивается стандартным стекловаренным оборудованием и препятствует получению расплава компонентов. Введение Li2O в количествах, меньших и больших заявляемого интервала концентраций, препятствует получению при термообработке твердых растворов литиево-магниево-цинковых алюмосиликатов со структурой виргилита (Р-кварца) или китита, понижающих КТР полученного материала. Введение Al2O3, MgO, ZnO и Li2O в количествах, меньших и больших заявляемого интервала концентраций, препятствует получению при синтезе прозрачного материала. Введение PbO в количествах, меньших заявляемого, не приводит к возрастанию показателя преломления материала. Введение PbO в количествах, больших заявляемого, препятствует получению при синтезе прозрачного материала. Введение TiO2 и ZrO2 в количествах меньших заявляемого препятствует получению после вторичной термообработки монолитного материала. Введение TiO2 и ZrO2 в количествах, больших заявляемого, приводит к самопроизвольной кристаллизации исходного материала при выработке. Введение красителей NiO, CoO, CuO, Cr2O3, Bi2O3, Fe2O3, MnO2, CeO2, Nd2O3, Er2O3, Pr2O3 и Au в количествах, меньших заявляемого, не приводит к окрашиванию материала. Введение NiO, CoO, CuO, Cr2O3, Bi2O3, Fe2O3, MnO2, CeO2, Nd2O3, Er2O3, Pr2O3 и Au в количествах, больших заявляемого, приводит к самопроизвольной кристаллизации исходного материала при выработке.
Дополнительная термообработка материала на первой стадии при температуре ниже 660°C не приводит к жидкостному фазовому распаду и выделению титан- и цирконийсодержащих кристаллических фаз, обеспечивающих наноразмерную кристаллизацию исходного материала. Термообработка образцов на первой стадии при температуре выше 800°C приводит к выделению крупных кристаллов силикатных фаз, что вызывает нарушение целостности образцов. Длительность термообработки на первой стадии менее 1 ч не приводит к фазовому разделению исходного материала, что вызывает нарушение целостности образцов после термообработки на второй стадии. Длительность термообработки на первой стадии более 24 ч приводит к выделению на этой стадии нежелательных кристаллических фаз. Требуемая окраска не возникает.
Термообработка образцов на второй стадии при температуре ниже 780°C не приводит к выделению требуемых кристаллических фаз, а значит, не приводит к появлению нужных окрасок. Термообработка образцов на второй стадии при температуре выше 1200°C приводит к плавлению материала.
Длительность термообработки на второй стадии менее 1 ч не достаточна для кристаллизации. Длительность второй стадии термообработки более 24 ч приводит к разрушению выделяющихся кристаллов и потере окраски.
Образцы исходного материала термообрабатывались по режимам, указанным в табл. 2. Кристаллические фазы определялись с помощью рентгенофазового анализа, также измерялся коэффициент термического расширения и термостойкость. В каждом опыте исходный материал нагревался до температуры первого плато со скоростью 300°CAi, выдерживался в течение времени, достаточного для прохождения жидкостного фазового распада, затем температура поднималась до второго плато со скоростью 300°CAi, при этом выделялись нанокристаллы твердого раствора литиевых алюмосиликатов со структурой вирги-лита (Р -кварца) или твердого раствора литиевых алюмосиликатов со структурой Р-сподумена (китита) и/или шпинели, и/или кварцеподобных твердых растворов, и/или сапфирина, и/или энстатита, и/или пе-талита, и/или кордиерита, и/или виллемита, и/или циркона, и/или рутила, и/или титаната циркония, и/или двуокиси циркония и закристаллизованный образец охлаждался до комнатной температуры в печи инерционно.
Предлагаемый материал, получаемый по данному способу, обладает однородностью окраски, оптическими характеристиками, близкими к характеристикам главных природных цветных минералов, и технологичен в производстве. Очень важным достоинством предлагаемого материала является его низкий коэффициент термического расширения, твердость, химическая стойкость и устойчивость окраски к термическим ударам, что позволяет использовать, в частности, ускоренные режимы шлифовки и полировки, а также технологию "литья с камнями", так как ограненные образцы не только не трескаются при соприкосновении с расплавом серебра или золота, но и сохраняют свою окраску.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Термостойкий синтетический ювелирный материал, представляющий собой композиционный нанокристаллический материал, содержащий наноразмерные оксидные и силикатные кристаллические фазы и включающий по крайней мере одну кристаллическую фазу, выбранную из группы, состоящей из шпинели, кварцеподобных фаз, сапфирина, энстатита, петалитоподобной фазы, кордиерита, виллемита, циркона, алюмотитанатов магния, рутила, титаната циркония и двуокиси циркония, и содержащую от 0,001 до 4 мол.% ионов переходных, редкоземельных элементов и благородных металлов, при этом указанная по крайней мере одна кристаллическая фаза дополнительно содержит твердые растворы литиево-магниево-цинковых алюмосиликатов со структурой виргилита и состав композиционного нанокристал-лического материала выбран из следующих компонентов в мол.%: SiO2 - 45-72; Al2O3 - 15-30; MgO - 0,123,9; ZnO - 0,1-29; Li2O - 1-18; PbO - 0,1-7,0; ZrO2 - 0,1-10; TiO2 - 0,1-15; NiO - 0,001-4,0; CoO - 0,001-3,0; CuO - 0,001-4,0; Cr2O3 - 0,001-1,0; Bi2O3 - 0,001-3,0; Fe2O3 - 0,001-3,0; MnO2 - 0,001-3,0; CeO2 - 0,001-3,0; Nd2O3 - 0,001-3,0; Er2O3 - 0,001-3,0; Pr2O3 - 0,001-3,0; Au - 0,001-1,0.
2. Термостойкий синтетический ювелирный материал по п.1, где композиционный нанокристалли-ческий материал является прозрачным, полупрозрачным или непрозрачным.
Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2
032062
- 1 -
032062
- 1 -
032062
- 1 -
032062
- 1 -
032062
- 4 -
032062
- 5 -
032062
- 10 -
032062
- 10 -