EA201990681A1 20190830 Номер и дата охранного документа [PDF] EAPO2019\PDF/201990681 Полный текст описания EA201990681 20150508 Регистрационный номер и дата заявки US62/015,817 20140623 Регистрационные номера и даты приоритетных заявок EAA1 Код вида документа [PDF] eaa21908 Номер бюллетеня [**] ОПТИМИЗАЦИЯ ПЕРЕДАЧИ СКВАЖИННЫХ ДАННЫХ С ПОМОЩЬЮ НАДДОЛОТНЫХ ДАТЧИКОВ И УЗЛОВ Название документа [8] E21B 47/13, [8] H04B 3/00, [8] H04B 3/46 Индексы МПК [CA] Деркач Патрик Р., [CA] Логан Аарон В., [CA] Логан Джастин С., [CA] Лю Цзили, [CA] Свицер Дэвид А., [CA] Харрис Роберт, [CA] Бутерновский Барри Дэниел, [CA] Уэст Кертис Сведения об авторах [CA] ЭВОЛЮШН ИНЖИНИРИНГ ИНК. Сведения о заявителях
 

Патентная документация ЕАПВ

 
Запрос:  ea201990681a*\id

больше ...

Термины запроса в документе

Реферат

[RU]

Данные передают на поверхностное оборудование от датчиков в местоположении в скважине возле бурового долота. Связь с поверхностным оборудованием может быть прямой или может проходить через ряд узлов. Узлы в некоторых случаях логически перенастраивают для достижения желаемых скоростей передачи данных, достижения целей управления питанием и/или компенсации вышедших из строя узлов.


Полный текст патента

(57) Реферат / Формула:

Данные передают на поверхностное оборудование от датчиков в местоположении в скважине возле бурового долота. Связь с поверхностным оборудованием может быть прямой или может проходить через ряд узлов. Узлы в некоторых случаях логически перенастраивают для достижения желаемых скоростей передачи данных, достижения целей управления питанием и/или компенсации вышедших из строя узлов.


Евразийское (21) 201990681 (13) A1
патентное
ведомство
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ
(43) Дата публикации заявки 2019.08.30
(22) Дата подачи заявки 2015.05.08
(51) Int. Cl.
E21B 47/13 (2012.01) H04B 3/00 (2006.01) H04B 3/46 (2015.01)
(54) ОПТИМИЗАЦИЯ ПЕРЕДАЧИ СКВАЖИННЫХ ДАННЫХ С ПОМОЩЬЮ НАДДОЛОТНЫХ ДАТЧИКОВ И УЗЛОВ
(31) 62/015,817
(32) 2014.06.23
(33) US
(62) 201692379; 2015.05.08
(71) Заявитель:
ЭВОЛЮШН ИНЖИНИРИНГ ИНК. (CA)
(72) Изобретатель:
Деркач Патрик Р., Логан Аарон В., Логан Джастин С., Лю Цзили, Свицер Дэвид А., Харрис Роберт, Бутерновский Барри Дэниел, Уэст
Кертис (CA)
(74) Представитель:
Носырева Е.Л. (RU) (57) Данные передают на поверхностное оборудование от датчиков в местоположении в скважине возле бурового долота. Связь с поверхностным оборудованием может быть прямой или может проходить через ряд узлов. Узлы в некоторых случаях логически перенастраивают для достижения желаемых скоростей передачи данных, достижения целей управления питанием и/или компенсации вышедших из строя узлов.
Р11518492ЕА
ОПТИМИЗАЦИЯ ПЕРЕДАЧИ СКВАЖИННЫХ ДАННЫХ С ПОМОЩЬЮ НАДДОЛОТНЫХ ДАТЧИКОВ И УЗЛОВ
Область изобретения
[0001] Данное изобретение относится к подземному бурению, а именно к передаче данных на скважинные электронные системы и/или от них. Варианты осуществления применимы к бурению скважин для добычи углеводородов.
Предпосылки изобретения
[0002] Добыча углеводородов из подземных зон обычно предполагает бурение стволов скважин.
[0003] Скважины создают с использованием находящегося на поверхности бурового оборудования, вращающего бурильную колонну, которая в конечном итоге проходит от поверхностного оборудования до целевого пласта или подземной зоны перспективного пласта. Бурильная колонна может проходить тысячи футов или метров ниже поверхности. Нижний конец бурильной колонны содержит буровое долото, предназначенное для бурения (или удлинения) ствола скважины. По бурильной колонне обычно прокачивается промывочная жидкость, как правило, в виде бурового раствора. Промывочная жидкость охлаждает и смазывает буровое долото, а также выносит буровой шлам назад на поверхность. Также, использование промывочной жидкости может способствовать регулированию забойного давления для подавления притока углеводородов из пласта в ствол скважины и их потенциального выброса на поверхность.
[0004] Компоновка низа бурильной колонны (КНБК) - это название, данное оборудованию на нижнем конце бурильной колонны. В дополнение к буровому долоту КНБК может содержать такие элементы, как устройство для управления направлением бурения (например, управляемый гидравлический забойный
двигатель или роторная управляемая система); датчики для измерения свойств окружающих геологических пластов (например, датчики для использования при каротаже); датчики для измерения скважинных условий по мере прохождения бурения; одна или более систем для телеметрии данных на поверхность; стабилизаторы; утяжеленные бурильные трубы, генераторы импульсов и т. п. КНБК обычно продвигают в ствол скважины колонной металлических труб (бурильной трубой).
[0005] Современные буровые системы могут включать любые из широкого ряда механических/электронных систем в КНБК или других местах скважин. Скважинная электроника может обеспечивать любую из широкого ряда функций, включая без ограничения: сбор данных, измерение свойств окружающих геологических пластов (например, каротаж), измерение скважинных условий по мере прохождения бурения, управление скважинным оборудованием, контроль состояния скважинного оборудования, применение направленного бурения, применение измерений во время бурения (ИВБ), применение каротажа во время бурения (КВБ), измерение свойств текучих сред в скважине и т. п. Скважинная электроника может содержать одну или более систем для: телеметрии данных на поверхность; сбора данных посредством датчиков (например, датчиков для использования при каротаже), которые могут включать один или более датчиков вибрации, магнитометров, инклинометров, акселерометров, детекторов радиоактивных частиц, электромагнитных детекторов, акустических детекторов и др.; получения изображений; измерения потока текучих сред; определения направлений; излучения сигналов, частиц или полей для обнаружения другими устройствами, установления связи с другим скважинным оборудованием; отбора проб скважинных текучих сред и т. п.
[0006] Скважинная электроника посредством телеметрии может передавать на поверхность широкий диапазон информации. Телеметрическая информация может быть бесценной для проведения эффективных бурильных работ. Например, телеметрическая информация может быть использована бригадой буровой установки для принятия решений об управлении и наведении бурового
долота для оптимизации скорости и траектории бурения на основании множества факторов, включая допустимые границы, положения существующих скважин, свойства пласта, размер и положение углеводородов и т. п. По мере необходимости бригада может производить умышленные отклонения от запланированного пути на основании информации, собранной со скважинных датчиков и переданной на поверхность телеметрией во время процесса бурения. Способность получать и передавать надежные данные из мест в скважине обеспечивает относительно более экономичное и более эффективное выполнение бурильных работ.
[0007] Передача данных на скважинные системы и от них представляет существенные трудности. Есть несколько известных телеметрических методов. Они включают передачу информации путем генерирования вибраций в скважинном флюиде (например, акустическая телеметрия или гидроимпульсная (ГИ) скважинная телеметрия) и передачу информации посредством электромагнитных сигналов, которые распространяются, по меньшей мере, частично через землю (ЭМ (электромагнитная) телеметрия). В других телеметрических методах для передачи данных на поверхность применяют бурильную колонну с проводами, оптоволоконный кабель или акустическую телеметрию по утяжеленной бурильной трубе.
[0008] Преимущества ЭМ телеметрии, в сравнении с ГИ скважинной телеметрией, включают обычно более высокие скорости передачи данных в бодах, повышенную надежность благодаря отсутствию движущихся деталей в скважине, высокую устойчивость к применению материалов для борьбы с поглощением (МБП) и применимость для бурения с продувкой воздухом/бурения с отрицательным дифференциальным давлением. ЭМ система может передавать данные без сплошного столба флюида в скважине; следовательно, она может использоваться при отсутствии протекающего бурового раствора. Это является преимущественным, когда буровая бригада добавляет новую секцию бурильной трубы, поскольку ЭМ сигнал может передавать информацию (например, информацию о направлении), когда буровая бригада добавляет новую трубу.
Недостатки ЭМ телеметрии включают меньшую предельную глубину, несовместимость с некоторыми пластами (например, пласты с высоким содержанием солей и пласты с большими скачками удельного сопротивления), и некоторое сопротивление рынка из-за одобрения более старых проверенных методов. Кроме того, поскольку на больших расстояниях через толщи пласта происходит сильное затухание ЭМ передач, для обнаружения сигналов на поверхности требуется относительно большое количество энергии. Электрическая энергия, доступная для генерирования ЭМ сигналов, может быть обеспечена аккумуляторами или другим источником энергии, имеющим ограниченную энергоемкость.
[0009] В типичном устройстве для электромагнитной телеметрии в качестве антенны используются части бурильной колонны. Бурильная колонна может быть разделена на две проводящие секции посредством включения в бурильную колонну изолирующей вставки или соединителя ("стыковочного переводника"). Стыковочный переводник обычно располагается в верхней части компоновки низа бурильной колонны так, что металлическая бурильная труба в бурильной колонне выше КНБК служит как один антенный элемент, а металлические секции в КНБК служат как другой антенный элемент. Затем электромагнитные телеметрические сигналы могут быть переданы путем распространения электрических сигналов между двумя антенными элементами. Сигналы обычно включают сигналы переменного тока очень низкой частоты, приспособленные для кодирования информации для передачи на поверхность. (Более высокочастотные сигналы затухают быстрее, чем низкочастотные сигналы.) Электромагнитные сигналы могут быть обнаружены на поверхности, например, путем измерения разницы электрических потенциалов между бурильной колонной или металлической обсадной трубой, которая проходит в землю, и одним или более заземленными стержнями.
[0010] Сохраняется потребность в системах для эффективной передачи данных на скважинные электронные системы и от них.
Краткое изложение сущности изобретения
[ООН] Изобретение имеет несколько аспектов. Некоторые аспекты предусматривают способы передачи данных по бурильной колонне. Другие аспекты предусматривают системы, наборы и устройства для передачи данных по бурильной колонне. Другие аспекты предусматривают способ телеметрии данных из местоположения в скважине.
[0012] Один аспект настоящего изобретения предусматривает способ передачи данных по бурильной колонне, включающий передачу первого сигнала с первого узла на основе первой настройки передачи, когда первый узел расположен на первой глубине, измерение параметра первого сигнала на втором узле, определение второй настройки передачи на основе измерения измеренного параметра первого сигнала, продвижение бурильной колонны так, чтобы второй узел находился рядом с первой глубиной, и передачу второго сигнала на второй настройке передачи со второго узла, когда второй узел расположен рядом с первой глубиной.
[0013] В некоторых вариантах осуществления указанный параметр содержит одно или несколько из интенсивности сигнала первого сигнала на втором узле, гармонической частоты первого сигнала и отношения сигнал/шум первого сигнала на втором узле.
[0014] В некоторых вариантах осуществления настройка включает одно или более из настройки частоты, настройки амплитуды и настройки коэффициента усиления. В некоторых вариантах осуществления коэффициент усиления увеличивается с глубиной.
[0015] В некоторых вариантах осуществления способ включает передачу сигналов с первого узла на первой частоте и прием сигналов на первом узле на второй частоте, причем первая частота отличается от второй частоты. Сигналы также могут быть переданы со второго узла на второй частоте, а прием сигналов на втором узле осуществляется на первой частоте.
[0016] В некоторых вариантах осуществления первую частоту отфильтровывают на приемнике первого узла. В других вариантах осуществления на первом узле отфильтровывают несколько частот, включая первую частоту. Фильтрование может включать разделение гармоник.
[0017] В некоторых вариантах осуществления сигналы передают с первого узла на первой полярности, и передают сигналы со второго узла на второй полярности, причем первая полярность противоположна второй полярности.
[0018] В некоторых вариантах осуществления передача второго сигнала на второй настройке передачи включает декодирование и буферизацию первого сигнала. В некоторых вариантах осуществления передача второго сигнала на второй настройке передачи включает добавление к первому сигналу дополнительных данных. Добавление дополнительных данных к первому сигналу может включать предоставление идентификатора узла с дополнительными данными. Идентификатор узла может включать метку времени или наращиваемое значение.
[0019] В некоторых вариантах осуществления первый узел и второй узел каждый содержат электроизоляционную прокладку и электромагнитный телеметрический приемопередатчик.
[0020] В некоторых вариантах осуществления сигналы передают во втором направлении, противоположном первому направлению, в котором сигналы передают с помощью первой и второй частоты, с помощью третьей и четвертой частоты, причем первая, вторая, третья и четвертая частоты отличаются друг от друга, и первое направление противоположно второму направлению. Третья и четвертая частоты могут быть ниже, чем первая и вторая частоты.
[0021] Другой аспект настоящего изобретения предусматривает систему для передачи данных по бурильной колонне. Система может содержать первый узел, применяемый для передачи сигналов, расположенный вдоль бурильной колонны, первый узел обеспечивает связь с одним или несколькими датчиками, первый
узел выполнен с возможностью передачи первого сигнала на основе первой настройки передачи, второй узел, применяемый для передачи сигналов, расположенный вдоль бурильной колонны и находящийся на расстоянии от первого узла, второй узел осуществляет связь с первым узлом, второй узел выполнен с возможностью измерения параметра первого сигнала, переданного первым узлом, когда первый узел расположен на первой глубине, и контроллер выполнен с возможностью определения второй настройки передачи на основе параметра первого сигнала, измеренного вторым узлом. Второй узел может быть выполнен с возможностью передачи второго сигнала на второй настройке передачи, когда второй узел расположен рядом со второй глубиной.
[0022] В некоторых вариантах осуществления первый узел выполнен с возможностью передачи сигналов на первой частоте и приема сигналов на второй частоте, причем первая частота отличается от второй частоты. В некоторых вариантах осуществления второй узел выполнен с возможностью передачи сигналов на второй частоте и приема сигналов на первой частоте. Первый узел может быть выполнен с возможностью отфильтровывания, по меньшей мере, первой частоты на приемнике первого узла, и/или первый узел может содержать фильтр, присоединенный для блокирования, по меньшей мере, первой частоты от достижения приемника первого узла. В фильтре может применяться разделение гармоник.
[0023] В некоторых вариантах осуществления первый узел выполнен с возможностью передачи сигналов с первой полярностью, а второй узел выполнен с возможностью передачи сигналов со второй полярностью, причем первая полярность противоположна второй полярности.
[0024] Другой аспект предусматривает способ телеметрии данных, включающий подачу бурильной колонны в ствол скважины, где ствол скважины проходит через пласты так, что диапазон электромагнитных телеметрических передач изменяется как функция глубины в скважине, передачу данных из местоположения в скважине на поверхность с помощью нескольких
телеметрических ретранслирующих устройств между местоположением в скважине и поверхностью, идентификацию первого и второго несмежных телеметрических ретранслирующих устройств, так что второе из телеметрических ретранслирующих устройств находится в диапазоне электромагнитных телеметрических передач, соответствующем местоположению первого из телеметрических ретранслирующих устройств, и подавление работы одного или нескольких телеметрических ретранслирующих устройств между первым и вторым из телеметрических ретранслирующих устройств.
[0025] В некоторых вариантах осуществления способ включает продвижение бурильной колонны до уменьшения диапазона электромагнитных телеметрических передач, соответствующего положению первого из телеметрических ретранслирующих устройств, и затем активацию одного или нескольких электромагнитных телеметрических ретранслирующих устройств между первым и вторым из электромагнитных телеметрических ретранслирующих устройств.
[0026] В некоторых вариантах осуществления способ включает отслеживание диапазона электромагнитных телеметрических сигналов путем передачи электромагнитных телеметрических сигналов из передатчика на бурильной колонне и приема электромагнитных телеметрических сигналов, переданных передатчиком, на нескольких электромагнитных телеметрических ретранслирующих устройствах.
[0027] В некоторых вариантах осуществления передатчик представляет собой передатчик одного из электромагнитных телеметрических ретранслирующих устройств.
[0028] Другой аспект предусматривает способ телеметрии данных, включающий предоставление нескольких телеметрических ретранслирующих устройств в местах, разнесенных по бурильной колонне, причем каждое из телеметрических ретранслирующих устройств содержит приемник электромагнитных телеметрических сигналов и передатчик электромагнитных телеметрических
сигналов, перемещение бурильной колонны в стволе скважины, идентификацию первой области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются более сильно, и второй области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются менее сильно, передачу данных вверх по бурильной колонне путем последовательной ретрансляции данных с помощью электромагнитной телеметрии от одного из ретранслирующих устройств на другое и автоматическое подавление работы некоторых из телеметрических ретранслирующих устройств, пока эти телеметрические ретранслирующие устройства находятся во второй области.
[0029] Дополнительные аспекты настоящего изобретения и признаки иллюстративных вариантов осуществления представлены на прилагаемых графических материалах и/или описаны в последующем описании.
Краткое описание графических материалов
[0030] На прилагаемых графических материалах представлены неограничительные иллюстративные варианты осуществления настоящего изобретения.
[0031] На фиг. 1 представлен схематический вид выполнения бурильных работ.
[0032] На фиг. 2 представлен схематический вид нижнего конца бурильной колонны.
[0033] На фиг. 3 представлена блок-схема узла для сети передачи скважинных данных.
[0034] На фиг. 4А-4D представлены схематические виды, показывающие разные варианты для передачи данных на поверхностное оборудование.
[0035] На фиг. 5 представлен схематический вид секции бурильной колонны, имеющей несколько ЭМ телеметрических узлов.
[0036] На фиг. 6 представлена блок-схема, показывающая несколько узлов,
принимающих и передающих данные. Описание
[0037] По всему тексту последующего описания изложена подробная информация, чтобы обеспечить специалистам в данной области техники более полное понимание. Однако хорошо известные элементы могут быть не показаны или не описаны подробно во избежание ненужного затруднения описания изобретения. Последующее описание примеров технологии не предназначено быть исчерпывающим или ограничивающим систему точными формами любого приведенного в качестве примера варианта осуществления. Соответственно, описание и графические материалы следует рассматривать в иллюстративном, а не в ограничительном смысле.
[0038] На фиг. 1 схематически представлены иллюстративные бурильные работы. Буровая установка 10 приводит в движение бурильную колонну 12, содержащую секции бурильной трубы, проходящие до бурового долота 14. Проиллюстрированная буровая установка 10 содержит буровую вышку 10А, пол 10В буровой установки и буровую лебедку ЮС для поддержки бурильной колонны. Буровое долото 14 имеет больший диаметр, чем бурильная колонна над буровым долотом. Кольцевое пространство 15, окружающее бурильную колонну, обычно заполнено промывочной жидкостью. Буровой раствор закачивается через отверстие в бурильной колонне до бурового долота и возвращается на поверхность через кольцевое пространство 15, вынося буровой шлам от бурильных работ. По мере бурения скважины в стволе скважины может быть создана обсадная колонна 16. На верхнем конце обсадной колонны установлен противовыбросовый превентор 17. Буровая установка, представленная на фиг. 1, является лишь примером. Способы и устройство, описанные в настоящем документе, не являются характерными для любого конкретного типа буровой установки.
[0039] Один аспект настоящего изобретения предусматривает сети передачи скважинных данных, узлы для сетей передачи скважинных данных и способы для
передачи данных от электронной системы в стволе скважины на поверхность с помощью ряда ретранслирующих узлов. В некоторых вариантах осуществления узлы сети обладают встроенной логикой, которая управляет узлами для выполнения одного или более из:
• управления потреблением энергии;
• поддержания желаемой скорости передачи данных;
• поддержания надежной передачи данных.
[0040] В некоторых вариантах осуществления узлы осуществляют связь друг с другом и/или с поверхностным оборудованием с помощью ЭМ телеметрии. Узлы могут осуществлять связь друг с другом с помощью с применением частот, которые являются высокими в сравнении с частотами, обычно применяемыми для ЭМ телеметрии. В некоторых вариантах осуществления ЭМ сигналы от узлов имеют относительно короткие диапазоны (например, менее приблизительно 1000 футов - приблизительно 300 м, и обычно 200 футов - приблизительно 60 м, или менее). Узлы могут быть рассредоточены так, что каждый узел может передавать на один или несколько других узлов. В некоторых вариантах осуществления смежные узлы находятся на расстояниях от 60 до 250 футов (от приблизительно 20 м до приблизительно 80 м).
[0041] В других вариантах осуществления бурильная колонна разделена на несколько проводящих секций, которые электрически изолированы одной или несколькими электроизоляционными прокладками, как описано в международной публикации № WO 2015/031973.
[0042] Другой аспект настоящего изобретения предусматривает ЭМ телеметрическую систему, имеющую передатчик, расположенный между гидравлическим забойным двигателем и буровым долотом. Эта ЭМ телеметрическая система может быть применена для передачи данных прямо на расположенный на поверхности приемник или для передачи данных на поверхность с помощью системы, содержащей одно или несколько
ретрансляторов данных. В некоторых вариантах осуществления диапазон передаваемых ЭМ телеметрических сигналов оптимизирован путем предоставления относительно большого промежутка для ЭМ телеметрического передатчика. Эти аспекты могут быть использованы по отдельности или также могут быть объединены.
[0043] Одно преимущество применения ЭМ телеметрии для передачи данных из местоположения ниже гидравлического забойного двигателя в положение выше гидравлического забойного двигателя состоит в том, что ЭМ телеметрические сигналы не подвергаются значительному воздействию более высокой скоростью вращения частей бурильной колонны ниже гидравлического забойного двигателя.
[0044] В некоторых вариантах осуществления мощность ЭМ телеметрического передатчика, расположенного ниже гидравлического забойного двигателя, является относительно малой. Например, мощность передачи может составлять два ватта или менее. Такая низкая мощность передачи может быть достаточной для передачи ЭМ телеметрического сигнала на приемник, расположенный рядом, например, приемник, расположенный в КНБК выше гидравлического забойного двигателя. Приемник может быть связан с батареей или другим источником питания, который обеспечивает телеметрические передачи большей мощности или на всем пути на поверхность, или на другой приемник в узле далее вверх по бурильной колонне.
[0045] В некоторых вариантах осуществления ЭМ телеметрический передатчик имеет два или более функциональных узла. Один узел может применять низкочастотные (например, < 20 Гц) сигналы большей мощности для передачи на большее расстояние. Другой узел может применять более высокие частоты и необязательно меньшую мощность для передачи данных на меньшее расстояние.
[0046] На фиг. 2 схематически представлен нижний конец бурильной колонны 12. На фиг. 2 представлен гидравлический забойный двигатель 18, присоединенный для приведения в действие бурового долота 19. Электроизоляционная прокладка 20 предусмотрена в бурильной колонне между
гидравлическим забойным двигателем 18 и буровым долотом 19. Прокладка 20 может, например, быть предоставлена в переводнике, который присоединен к гидравлическому забойному двигателю на одном конце и к буровому долоту на другом конце. В альтернативном варианте осуществления прокладка 20 неотделима от гидравлического забойного двигателя 18. В другом альтернативном варианте осуществления прокладка 20 неотделима от бурового долота 19.
[0047] На прокладке 20 присоединен ЭМ телеметрический передатчик, схематически представленный ссылкой 21. ЭМ телеметрический передатчик 21 выполнен с возможностью прикладывания к прокладке 20 разности потенциалов. Изменяя по шаблону величину и/или полярность разности потенциалов, ЭМ телеметрический передатчик 21 может передавать сигналы с помощью электрического поля, которые могут быть восприняты на поверхности и/или на ЭМ телеметрическом приемнике, расположенном в некоторой точке под поверхностью.
[0048] Предусмотрен один или более датчиков 23. Датчики присоединены для генерации данных, которые могут быть переданы ЭМ телеметрическим передатчиком 21. Эти датчики могут, например, содержать датчики измерения во время бурения (ИВБ). Датчики ИВБ могут, например, содержать датчик угла наклона, датчик направления (например, детектор магнитного поля) и/или датчики для определения характеристик окружающих пластов, например, детектор гамма-излучения, датчик удельного сопротивления или т.п., и/или датчики для отслеживания условий в скважине, например, датчик давления, температурный датчик, ударный датчик/датчик вибрации или т.п. Контроллер 22 снимает показания с датчиков 23, кодирует результаты для передачи ЭМ телеметрическими сигналами и побуждает ЭМ телеметрический передатчик 21 передавать ЭМ телеметрические сигналы. Эти датчики также могут быть расположены между гидравлическим забойным двигателем и буровым долотом.
[0049] Когда датчики содержат датчик угла наклона, расположенный ниже
гидравлического забойного двигателя, поскольку часть бурильной колонны, содержащая датчик угла наклона, часто вращается, среднее показание датчика угла наклона может быть получено для измерения угла наклона бурильной колонны в местоположении датчика.
[0050] В случае, когда датчики содержат датчик, который является направленным, например, направленный детектор гамма-излучения, вращение бурильной колонны можно отслеживать (например, отслеживая выходной сигнал датчика направления и/или выходной сигнал датчика угла наклона). Показания датчиков с направления датчиков могут быть выбраны в элементы выборки, соответствующие разным квадрантам вращения. Например, каждое полное вращение может быть разделено на четыре, восемь, двенадцать или любое другое подходящее число элементов выборки. Показания с датчика (например, направленного детектора гамма-излучения) могут быть собраны в соответствующих элементах выборки в течение подходящего времени накопления и затем переданы.
[0051] На фиг. 2 также представлена сеть передачи данных, которая содержит узел 30, расположенный между поверхностью и гидравлическим забойным двигателем 18. Фиг. 3 представляет собой блок-схему иллюстративного узла 30. Узел 30 содержит электроизоляционную прокладку 32, параллельно которой присоединен ЭМ телеметрический приемник 34. ЭМ телеметрический приемник 34 выполнен с возможностью отслеживания разницы потенциалов на прокладке 32. Узел 30 также содержит генератор 36 ЭМ телеметрических сигналов. Генератор 36 ЭМ телеметрических сигналов имеет выходы 36А и 36B, соединенные с противоположными сторонами прокладки 32. Узел 30 может передавать сигнал, который может быть принят на поверхности или на другом узле, путем управления генератором 36 ЭМ телеметрических сигналов для приложения сигнала напряжения к прокладке 32, который модулируют для кодирования информации.
[0052] Пред ретрансляцией данных узлу 30 не обязательно полностью
декодировать принятые сигналы для получения изначально переданных данных. В некоторых вариантах осуществления узел 30 выполнен с возможностью работы без декодирования сигналов, например, путем обнаружения изменений фазы или других характеристик принятых сигналов и модулирования сигнала передачи таким же образом, так что ретранслируемый сигнал содержит данные, закодированные в оригинальном сигнале.
[0053] В других вариантах осуществления узел 30 декодирует полученные данные и затем перекодирует полученные данные для ретрансляции. При этом узел 30 может добавлять данные (например, показания с одного или более датчиков 39 на узле 30).
[0054] Узел 30 содержит контроллер 38. В некоторых вариантах осуществления контроллер 38 выполнен с возможностью ретрансляции данных из сигналов, которые были приняты с помощью ЭМ телеметрического приемника 34. В одном иллюстративном варианте осуществления ЭМ телеметрический приемник 34 принимает сигналы от местоположения ниже по скважине в стволе скважины, и затем контроллер 38 управляет ЭМ телеметрическим передатчиком 36 для ретрансляции этих сигналов так, чтобы сигналы могли быть приняты на поверхности или другими узлами далее выше по скважине в стволе скважины.
[0055] Узел 30 необязательно содержит один или более датчиков 39. Узел 30 может снимать показания с одного или более датчиков 39 и может передавать эти показания на поверхность и/или на другие узлы для передачи на поверхность. Дополнительные датчики 39 в узле 30 могут, например, включать датчики, такие как направленный датчик, датчик измерения крутящего момента и/или напряжения в бурильной колонне в местоположении узла, детектор гамма-излучения, датчик давления, датчик ударов/вибрации или т.п.
[0056] Данные с датчиков 39, разнесенных вдоль бурильной колонны, могут предоставлять информацию в реальном времени об изменении с глубиной широкого ряда параметров. Эта информация имеет много приложений, включая упреждающий анализ неисправностей в реальном времени.
[0057] Показания с датчиков 39 могут быть использованы в широком ряде приложений. Например, когда датчики 39 содержат датчики давления, набор показаний с датчиков 39 может предоставить профиль зависимости давления от глубины. Такой профиль может, например, быть использован для определения обрушившихся пластов, так что буровой раствор теряется в пластах.
[0058] В качестве другого примера, когда датчики 39 содержат датчики крутящего момента и/или тензодатчики, датчики напряжения, датчики нагрузки, показания с датчиков 39 могут указывать области в стволе скважины, где бурильная колонна упирается в ствол скважины. Такие области могут затем быть расширены для уменьшения сопротивления.
[0059] В качестве другого примера, информация с датчиков удельного сопротивления пласта может быть использована для построения зависимости сопротивления от глубины. Эта информация может быть использована узлами 30 для управления ЭМ телеметрической мощностью и/или частотой и/или для управления маршрутизацией данных, особенно внутри и вокруг пластов, которые имеют низкое удельное сопротивление и, следовательно, обычно ослабляют ЭМ телеметрические сигналы.
[0060] В некоторых вариантах осуществления узлы 30 находятся относительно близко друг от друга, так что они могут принимать сигналы от других узлов 30 или от другого источника скважинных сигналов, которые были бы слишком слабыми для обнаружения на поверхности. Например, ЭМ телеметрические сигналы, передаваемые между узлами 30, могут быть переданы на частотах, которые являются достаточно высокими, так что ко времени достижения поверхности из местоположений некоторых из узлов 30 сигналы были бы настолько ослаблены, что обнаружить сигналы обычным поверхностным оборудованием было бы невозможно. Применение сигналов более высокой частоты обеспечивает более высокие скорости передачи данных.
[0061] Частоты, используемые для передачи узлами 30, могут быть выше, чем частоты, обычно применяемые для ЭМ телеметрической передачи из скважины
на поверхность. Например, в некоторых вариантах осуществления частоты могут представлять собой частоты вплоть до 2 кГц или около того. В некоторых вариантах осуществления частоты выше 300 Гц и ниже 2 кГц. В некоторых вариантах осуществления частоты находятся в диапазоне от 20 Гц до 20 кГц. В некоторых вариантах осуществления могут быть использованы даже более высокие частоты. Применение частот ЭМ передачи выше 300 Гц является преимущественным, поскольку гармоники таких частот обычно быстро затухают.
[0062] Частоты, которые нужно использовать для передачи ЭМ телеметрических сигналов, могут быть установлены, например, на основе таких факторов как тип применяемого бурового раствора (буровые растворы, которые являются менее проводящими, такие как буровые растворы на нефтяной основе, обычно ослабляют меньше ЭМ телеметрические сигналы более высокой частоты, чем более проводящие буровые растворы, такие как буровые растворы на основе соленой или простой воды).
[0063] В простом варианте осуществления, представленном на фиг. 4А, сигналы от набора датчиков в местоположении в скважине, например, местоположении в НБК или местоположении между гидравлическим забойным двигателем и буровым долотом, могут быть переданы последовательно от самого нижнего узла на буровой колонне на следующий самый нижний узел на буровой колонне, и так далее, пока сигналы, наконец, не будут получены на поверхностном оборудовании. В таких вариантах осуществления каждый узел может передавать сигналы с относительно низкой мощностью, поскольку сигналы должны быть достаточно интенсивными лишь для того, чтобы надежно достичь следующего узла. Кроме того, некоторые или все узлы могут быть выполнены с возможностью передачи и/или приема сигналов, имеющих частоты, существенно выше, чем очень низкие частоты (как правило, < 20 Гц), применяемые для направленной из скважины на поверхность ЭМ телеметрии. Хотя такие более высокие частоты ослабляются сильно, узлы могут быть достаточно близки, чтобы принимать сигналы более высокой частоты. Одним преимуществом сигналов более высокой частоты является возможность обеспечения значительно более высоких
скоростей передачи данных, чем те, которые могут быть достигнуты с помощью более низких частот. Существует обратная зависимость между использованием более низких частот, которые, как правило, могут быть приняты на большем расстоянии (и, следовательно, позволяют более широкое разнесение узлов 30), и использованием более высоких частот, которые обеспечивают более низкую задержку и более высокие скорости передачи данных.
[0064] В некоторых вариантах осуществления узлы 30 выполнены с возможностью приема ЭМ телеметрических сигналов, имеющих одну частоту, и передачи ЭМ телеметрических сигналов на другой частоте. ЭМ телеметрический приемник в узле 30 может иметь фильтр, который блокирует передающую частоту узла. В таких вариантах осуществления узел 30 может одновременно принимать ЭМ телеметрические сигналы, отслеживая разность потенциалов на прокладке, и передавать ЭМ телеметрические сигналы на передающей частоте, прикладывая напряжение к прокладке, которое модулировано на передающей частоте.
[0065] Один пример представлен на фиг. 6. На фиг. 6 показана секция бурильной колонны, имеющая несколько узлов 30. Каждый узел 30 связан с электроизоляционной прокладкой так, что электропроводящая секция бурильной колонны выше прокладки электрически изолирована от электропроводящей секции бурильной колонны ниже прокладки. Каждый узел 30 имеет ЭМ телеметрический передатчик 44, подключенный для подачи ЭМ телеметрического сигнала на соответствующей прокладке, и ЭМ телеметрический приемник 46, выполненный с возможностью обнаружения ЭМ телеметрических сигналов путем отслеживания разницы потенциалов на прокладке. В этом иллюстративном варианте осуществления каждый ЭМ телеметрический приемник содержит фильтр 48, который настроен блокировать сигналы, подаваемые ЭМ телеметрическим передатчиком узла 30.
[0066] В этом представленном варианте осуществления передающие частоты узлов 30 изменяются между двумя частотами, F1 и F2, при продвижении по
бурильной колонне. В этом варианте осуществления телеметрический сигнал, несущий данные, которые необходимо передать по бурильной колонне, передают на частоте F1 с узла 30D. Сигнал не принимается приемником узла 30D, поскольку приемник имеет фильтр, который блокирует частоту F1. Сигнал принимается на узле ЗОЕ, который ретранслирует данные в ЭМ телеметрическом сигнале, имеющем частоту F2. Ретранслируемые данные не принимаются приемником на узле ЗОЕ, поскольку узел ЗОЕ имеет фильтр, который блокирует принятие частоты F2. Сигнал на частоте F2 принимается узлом 30F, который затем ретранслирует данные в ЭМ телеметрическом сигнале, имеющем частоту, отличную от F2, например, имеющем частоту F1. Поскольку каждый узел 30 не принимает сигналы, которые он передает, передача и прием одних и тех же или разных данных могут происходить на узле одновременно. Время ретрансляции или задержки на узле в некоторых вариантах осуществления может быть по существу устранено.
[0067] В некоторых вариантах осуществления частоты F1 и F2 передают по бурильной колонне в направлении вверх по стволу скважины. В других вариантах осуществления частоты F1 и F2 передают по бурильной колонне в направлении вниз по стволу скважины. В других вариантах осуществления частоты F1 и F2 могут быть переданы по бурильной колонне в направлении или вверх или вниз по стволу скважины.
[0068] В некоторых вариантах осуществления узлы 30 могут осуществлять передачу на дополнительных частотах F3 и F4. Например, частоты F3 и F4 могут быть использованы для передачи в направлении вниз по стволу скважины, тогда как частоты F1 и F2 применяют для осуществления передачи в направлении вверх по стволу скважины. В некоторых вариантах осуществления частоты F3 и F4 могут быть ниже, чем частоты F1 и F2, поскольку в направлении вниз по стволу скважины может быть необходимо передавать меньше информации (например, передача вниз по стволу скважины может содержать команды для изменения режимов, тогда как передача вверх по стволу скважины может содержать большие объемы данных, как описано в данном документе).
[0069] В некоторых вариантах осуществления наличие электроизоляционных прокладок в бурильной колонне в узлах 30 ограничивает распространение сигналов из узла 30. Например, прокладка в узле ЗОЕ может приводить к сильному ослаблению сигнала, передаваемого узлом 30D, выше узла ЗОЕ в бурильной колонне. Таким образом, узел 30G может принимать сигнал на частоте F1 от узла 30F без помех от сигнала из узла 30D, который также имеет частоту F1. Необязательно можно присоединять фильтры, индукционные муфты или т.п. параллельно прокладкам некоторых узлов, которые пропускают сигналы на выбранных частотах, для облегчения передачи сигналов на более длинные расстояния на выбранных частотах по бурильной колонне. Эти пути с выбором частоты через прокладки могут необязательно быть включены или выключены узлами 30.
[0070] Некоторые варианты осуществления предусматривают узлы, которые имеют ЭМ телеметрические передатчики, которые передают на передающей частоте FT, и приемники, которые содержат фильтры, которые блокируют сигналы на передающей частоте для узла. Это позволяет отдельным узлам одновременно быть и передающими, и принимающими, что способствует уменьшению задержки при передаче данных по бурильной колонне.
[0071] Передающие и приемные частоты для любого узла могут быть выбраны так, что они существенно отличаются, чтобы позволять фильтру приемника блокировать передающую частоту, при этом пропуская сигналы на одной или нескольких частотах, которые нужно принять. В одном иллюстративном варианте осуществления F1 составляет 1100 Гц, a F2 составляет 2000 Гц. В другом иллюстративном варианте осуществления F1 составляет 12 Гц, a F2 составляет 500 Гц. В другом иллюстративном варианте осуществления F1 и F2 каждая находятся в диапазоне от 1 Гц до 10 кГц.
[0072] Не требуется, чтобы на одном узле была лишь одна частота передачи и одна частота приема. В некоторых вариантах осуществления передача бывает одновременно на двух или более частотах, и/или прием бывает одновременно на
двух или более частотах. В таких вариантах осуществления предусмотрены один или более фильтров, которые блокируют все частоты передачи от обнаружения на приемнике.
[0073] В некоторых вариантах осуществления некоторые или все узлы 30 имеют хранилища данных и выполнены с возможностью создания в хранилищах данных журналов полученных и/или переданных данных. Журналы также могут хранить записи о выходных данных датчиков 39, расположенных на узле. Такие журналы могут быть применены для восстановления данных в случае сбоя телеметрии и/или для определения способов оптимизации работы системы, и/или для определения проблем с бурением и/или телеметрией.
[0074] На фиг. 4B представлен другой вариант осуществления, в котором ЭМ телеметрические данные передают прямо на поверхность из местоположения между гидравлическим забойным двигателем и буровым долотом.
[0075] Расстояние между узлами и диапазон узлов можно регулировать на основе различных факторов. Эти факторы могут включать информацию о пластах, сквозь которые будет проходить ствол скважины, а также желаемые диапазоны частот ЭМ передачи для узлов 30.
[0076] В некоторых случаях бурение осуществляют сквозь пласты, которые включают пласты, являющиеся плохими для ЭМ телеметрических передач. Такие плохие пласты могут, например, иметь высокую электрическую удельную проводимость, тем самым приводя к значительному ослаблению ЭМ телеметрических передач. В некоторых таких случаях расстояния между ЭМ телеметрическими узлами могут быть выбраны таким образом, чтобы узлы были достаточно близкими, так что даже в худшем случае с плохим пластом сигналы, выданные одним узлом, могли быть приняты следующим узлом вдоль бурильной колонны.
[0077] В некоторых вариантах осуществления расстояние между узлами 30 составляет порядка нескольких сотен футов. Например, узлы могут быть
отделены от своих самых близких соседних узлов расстояниями от 150 до 750 футов (от приблизительно 50 метров до приблизительно 250 метров). В случаях, когда известно, что ствол скважины проходит в пласт, который является плохим для ЭМ телеметрии (например, пласт с высокой электрической удельной проводимостью), узлы могут быть расположены более тесно друг к другу в той части бурильной колонны, которая будет ниже верхней границы плохого пласта, и могут быть более широко разнесены выше нее.
[0078] В некоторых вариантах осуществления узел присоединен к бурильной колонне после приблизительно каждых N сегментов бурильной колонны, где N -это, например, число в диапазоне от 3 до 30. Сегменты бурильной колонны, например, могут иметь длину приблизительно 30 футов (10 метров) каждый.
[0079] Путем обеспечения управления над узлами 30 может быть произведена оптимизация. Такое управление может быть осуществлено из центрального контроллера, который может быть встроен в поверхностное оборудование или может представлять собой скважинный контроллер. В некоторых альтернативных вариантах осуществления некоторые или все аспекты такого управления распределены между узлами. Такое управление может быть применено для приспособления сети узлов к различным условиям, которые могут возникнуть. Например, управление может компенсировать узел, вышедший из строя, или узел, батареи которого истощаются или истощились.
[0080] В таких случаях узлу ниже вышедшего из строя узла можно отдать команду осуществлять передачу с увеличенной мощностью, и/или узел выше по стволу скважины от вышедшего из строя узла можно настроить принимать сигналы от узла ниже по стволу скважины от вышедшего из строя узла, и/или узел выше по стволу скважины от вышедшего из строя узла может увеличить коэффициент усиления своего приемника.
[0081] На фиг. 4С представлен пример, в котором ЭМ телеметрические сигналы ретранслируются в обход вышедшего из строя узла 30Х.
[0082] Управление также может быть применено для сохранения мощности батареи путем уменьшения мощности передачи, когда это возможно, и/или перевода некоторых узлов в режим ожидания в частях бурильной колонны, в которых диапазон одного узла является достаточно длинным, так что сигналы от одного узла могут быть приняты на других несмежных узлах.
[0083] В иллюстративном варианте осуществления узлы во всей или части бурильной колонны имеют режим низкой мощности, где каждый второй узел находится в режиме ожидания, и другой режим, в котором все узлы работают для ретрансляции данных. Сеть может быть переключена между этими режимами в ответ на управляющий сигнал, измеренное качество сигнала (например, отношение сигнал/шум) в одном или нескольких режимах или т.п. Если отношение сигнала к шуму (ОСШ) является большим, может быть выбран режим малой мощности. Если ОСШ падает ниже пороговой величины, сеть может быть переведена в режим, в котором все узлы участвуют в ретрансляции данных.
[0084] На фиг. 4D представлен пример, в котором некоторые узлы в некоторых частях бурильной колонны находятся в режиме ожидания, тогда как все узлы в других частях бурильной колонны используются. В вариантах осуществления, в которых узлы имеют датчики 39, узел может продолжать записывать журнал показаний с любого из связанных датчиков 39, пока находится в режиме ожидания.
[0085] В другом приложении узел может принимать сигналы от ряда скважинных узлов и может различать эти сигналы по их частотам или другим характеристикам сигнала. В таких случаях сигналы, передаваемые смежным узлом, могут быть избыточными. Узел может передавать смежному узлу сигнал, указывающий, что он в настоящее время не нужен. В ответ смежный узел может перейти в режим ожидания. Возможны и другие более сложные схемы, в которых, в областях бурильной колонны, где сигналы распространяются на относительно длинные расстояния с уменьшенным ослаблением, промежуточные узлы переводят в режим ожидания, так что сохраняется мощность их батарей.
[0086] Без труда ЭМ телеметрические передатчики и разные узлы можно приспособить для осуществления передачи на разных частотах, так что сигналы от разных узлов можно легко отличить друг от друга. Это может облегчить управление узлами. Для определения источников данных может быть использована частота, применяемая для передачи данных, а не идентификационный номер.
[0087] В некоторых вариантах осуществления коэффициент усиления ЭМ телеметрических приемников 34 в узлах 30 является переменным. Переменный коэффициент усиления может быть использован для увеличения коэффициента усиления, когда приемник обнаруживает себя в среде с низкими электромагнитными помехами. Как правило, в местоположениях в скважине, которые существенно удалены от поверхности, число электромагнитных помех существенно уменьшается. Следовательно, в таких местоположениях в скважине коэффициент усиления ЭМ телеметрического приемника можно существенно увеличить без насыщения приемника шумовыми сигналами. Увеличение коэффициента усиления может быть использовано для приема сигналов из более удаленных мест вдоль по бурильной колонне или для приема сигналов, которые изначально переданы с меньшей мощностью.
[0088] В некоторых вариантах осуществления мощность сохраняют путем увеличения коэффициента усиления приемника 34 в узле 30 во время одного или обоих из уменьшения амплитуды принимаемого сигнала или передачи сигнала от более далекого узла.
[0089] В некоторых вариантах осуществления с увеличением глубины коэффициент усиления постепенно увеличивается. Это увеличение может необязательно быть основано на измерении давления, которое в общем увеличивается с глубиной в стволе скважины. Например, коэффициент усиления ЭМ телеметрического усилителя приемопередатчика может быть сделан прямо пропорциональным давлению, определенному датчиком давления. В других вариантах осуществления глубину измеряют косвенно, например, по времени,
которое потребовалось для получения гидроимпульса, или с помощью информации о глубине узла, полученной от отдельного контроллера или с поверхностного оборудования. В некоторых вариантах осуществления контроллер узла измеряет отношение сигнала к шуму принятых сигналов и увеличивает коэффициент усиления, если отношение сигнала к шуму меньше пороговой величины. Контроллер может уменьшать коэффициент усиления, если отношение сигнала к шуму увеличивается выше пороговой величины. В некоторых вариантах осуществления коэффициент усиления ЭМ приемника может быть увеличен до значения в диапазоне 104, 106 или даже выше.
[0090] В некоторых вариантах осуществления мощность ЭМ телеметрической передачи некоторых узлов и коэффициент усиления приемника других узлов, которые принимают сигналы, согласованы. Например, по мере увеличения глубины под поверхностью, узел 30 может и увеличивать коэффициент усиления усилителя на своем ЭМ телеметрическом приемнике, и при этом уменьшать мощность своего ЭМ телеметрического передатчика. Это увеличение и уменьшение могут осуществляться автоматически на основе измерений глубины, которые могут быть прямыми измерениями или косвенными измерениями глубины, и/или на основе измерений отношения сигнала к шуму в принятых сигналах.
[0091] ЭМ телеметрические сигналы могут быть приняты на поверхности с помощью обычных приемников ЭМ телеметрических сигналов или с помощью прокладки, встроенной в инфраструктуру буровой установки, например, прокладки, встроенной в выдвижной шпиндель или верхний привод или т.п.
[0092] Некоторые узлы 30 могут необязательно иметь встроенные генераторы импульсов бурового раствора. В случаях, когда ЭМ телеметрия на следующий узел или на поверхность является ненадежной или недоступной из-за плохого пласта, данные по-прежнему могут быть переданы с помощью генератора импульсов бурового раствора.
[0093] Контроллер в узле 30 может анализировать обнаруженные сигналы от
других узлов. Например, анализ может измерять интенсивность сигнала, отношение сигнала к шуму или т.п. Анализ сигнала может также или альтернативно определять гармоники сигнала, например, выполняя быстрое преобразование Фурье для идентификации таких гармоник.
[0094] Узел может передавать анализ обнаруженного сигнала на поверхность и/или на узел, от которого пришел сигнал. Информация этого анализа может быть использована для улучшения некоторого аспекта передачи данных в стволе скважины, например, путем установки параметров передачи и/или приема для некоторых или всех узлов 30.
[0095] Такие анализ и передачи могут быть использованы для оптимизации производительности сети узлов. Например, предположим, что узел 30 обнаруживает, что сигнал с другого узла, о котором известно, что он расположен в 500 футах (приблизительно 160 метров) ниже по бурильной колонне, ослабевает. Такое ослабевание, вероятно, объясняется природой пласта, через который проходит ствол скважины на глубине следующего узла. Узел, который обнаруживает ослабевающий сигнал, может быть выполнен с возможностью автоматического усиления передачи своего сигнала, когда он попадает в ту же область, в которой сигнал от следующего узла ниже по стволу скважины начал ослабевать. Узел также может передавать на другие узлы выше него сигналы, указывающие качество принимаемых сигналов. Эти информационные сигналы могут быть обработаны на поверхности или в другом месте для определения областей в стволе скважины, в которых узлам может быть отдана команда осуществлять передачу с повышенной мощностью (также как или в другом случае в других областях, где узлам может быть отдана команда осуществлять передачу с пониженной мощностью).
[0096] В некоторых вариантах осуществления узел 30 может передавать ряд параметров на один или более других узлов. Эти параметры могут содержать, например, давление в стволе скважины (т.е., гидростатическое давление, измеренное при отсутствии потока), напряжение передачи, ток передачи и т.п.
При получении давления в стволе скважины, напряжения передачи и/или тока передачи узел 30 может записывать эти значения в таблицу, которая содержит значения напряжения передачи, тока передачи и давления в стволе скважины для разных глубин, а также, по меньшей мере, интенсивность принятого сигнала при каждом давлении. Эта таблица значений может непрерывно наращиваться по мере продолжения бурения. По мере того как через конкретную глубину проходит все больше узлов 30, оценка мощности передачи на этой глубине может становиться все лучше. Используя данные в этой таблице значений, узел может настраивать свою мощность передачи в соответствии с локальным давлением в стволе скважины. Например, в некоторых вариантах осуществления, когда узел 30 приближается к давлению, для которого у него уже есть значения данных, он может соответственно увеличивать или уменьшать мощность своей передачи.
[0097] Приведенное выше обсуждение объясняет, как сеть узлов 30 может быть использована для передачи данных из одного или более местоположений в скважине на поверхностное оборудование. Такая сеть также может передавать команды и/или другие данные от поверхностного оборудования на узлы 30 и/или на другие скважинные системы, имеющие связь с одним или более узлами 30. Таким образом, такая сеть может обеспечивать двустороннюю передачу данных между:
• поверхностным оборудованием и любым узлом 30;
• двумя узлами 30;
• поверхностным оборудованием и скважинными системами, имеющими связь с одним или более узлами 30;
• разными скважинными системами, имеющими связь с узлами 30.
[0098] Двусторонняя связь с узлами 30 может, например, быть применена для управления конкретным узлом 30 или группой узлов 30 для изменения рабочих параметров и/или изменения частоты, на которой отправляются определенные данные, и/или для изменения набора данных, передаваемых с этого узла. Такая
двусторонняя связь также может быть применена для определения проблем на узле и/или для управления узлом с целью устранения и/или обхода таких проблем.
[0099] Не обязательно, чтобы все узлы использовали одинаковые форматы передачи сигналов. Разные узлы могут кодировать данные по-разному в зависимости от локальных условий. Например, узлы, близкие к поверхности, где, как правило, имеется больше электрического шума, который обычно ухудшает ЭМ телеметрические передачи, могут кодировать сигналы с помощью одного или более из:
• разных кодов коррекции ошибок;
• разных схем кодирования;
• разных схем модуляции (например, ЧМн, ДФМн, КФМн и т.п.);
• разных частот;
• разных протоколов;
• разного количества циклов/бит;
• и т.п.
[0100] В некоторых вариантах осуществления, например, варианте осуществления, схематически представленном на фиг. 5, каждый узел 30 предоставляет электроизоляционную прокладку в бурильной колонне, которая разделяет электропроводящие части бурильной колонны выше и ниже прокладки. Каждый узел содержит ЭМ телеметрический передатчик, который может прикладывать разность потенциалов к соответствующей прокладке. На фиг. 5 представлена часть бурильной колонны 40, имеющая несколько узлов 30, разнесенных по ней. Каждый узел связан с электроизоляционной прокладкой 42 и имеет ЭМ телеметрический передатчик 44, который может прикладывать разность потенциалов к прокладке. ЭМ телеметрический передатчик 44 может,
например, содержать мостовую схему управления.
[0101] В этом иллюстративном варианте осуществления каждый узел 30 также имеет ЭМ телеметрический приемник 46, подключенный параллельно соответствующей прокладке 42. Телеметрические приемники 46 выполнены с возможностью получения сигналов разных полярностей от ЭМ телеметрических сигналов, передаваемых ЭМ телеметрическими передатчиками 44. Например, когда ЭМ телеметрический передатчик 44 передает сигналы с помощью положительных электрических импульсов (т.е. сигналов, в которых обращенная к верху ствола скважины сторона прокладки 42 делается положительной относительно обращенной к низу ствола скважины стороны прокладки 42), это приводит к получению отрицательного импульса на следующем узле 30 выше по стволу скважины (т.е., переданный сигнал приводит к тому, что обращенная к верху ствола скважины сторона прокладки 42 следующего узла 30 является отрицательной относительно обращенной к низу ствола скважины стороны прокладки 42). Следовательно, на любом конкретном узле 30 принимаемые сигналы являются противоположными по полярности относительно передаваемых сигналов. Применяя о дно полярные сигналы передачи и приема, можно разделить сигналы передачи и приема на любом конкретном узле 30.
[0102] Например, каждый ЭМ телеметрический приемник 46 может представлять собой однополярный приемник (т.е. приемник, который блокирует или является нечувствительным к сигналам одной полярности). Каждый из представленных ЭМ телеметрических приемников 46 имеет положительный вход 46+ и отрицательный вход 46-. ЭМ телеметрический приемник 46 может обнаруживать сигналы, в которых положительный вход 46+ имеет потенциал, который является положительным относительно отрицательного входа 46-. ЭМ телеметрический приемник 46 не обнаруживает сигналы, в которых положительный вход 46+ имеет потенциал, который является отрицательным относительно отрицательного входа 46-. ЭМ телеметрический приемник 46 может, например, содержать диод или другой однополупериодный выпрямитель, подключенный последовательно с одним или обоими входами 46+ и 46-, и/или
дифференциальный усилитель, который усиливает сигналы одной полярности, но не другой полярности.
[0103] На фиг. 5 представлены узлы 30А, ЗОВ и 30С, осуществляющие связь друг с другом. В каждом узле 30 передатчик 44 и приемник 46 подключены параллельно прокладке 42. Передатчик 44 и приемник 46 подключены параллельно прокладке 42 с противоположными полярностями. В представленном варианте осуществления положительный выход однополярного передатчика 44 подключен к обращенной к верху ствола скважины стороне прокладки 42, тогда как отрицательный вход 46- однополярного приемника 46 подключен к обращенной к верху ствола скважины стороне прокладки 42. Отрицательный выход передатчика 44 и положительный вход 46+ приемника 46 подключены к обращенной к низу ствола скважины стороне прокладки 42.
[0104] Когда передатчик 44 узла 30А прикладывает положительные импульсы к прокладке 42 так, что обращенная к верху ствола скважины сторона прокладки 42 является положительной (здесь "положительный импульс" означает импульс, в котором обращенная к верху ствола скважины сторона прокладки 42 делается положительной относительно обращенной к низу ствола скважины стороне прокладки 42), отрицательный импульс индуцируется на прокладке 42 смежного узла 30 (например, узла ЗОВ в этом примере). Переданные импульсы не принимаются приемником на узле 30А, поскольку они не той полярности, чтобы быть принятыми этим приемником. Однако приемник на узле ЗОВ может обнаруживать отрицательные импульсы, индуцированные на прокладке 42 на узле ЗОВ.
[0105] В этом варианте осуществления ширина (длительность) переданных импульсов может быть узкой или широкой. Более узкие импульсы могут быть использованы для получения более высоких скоростей передачи данных и более низкого потребления энергии. Более широкие импульсы могут быть использованы для передачи на более длинные расстояния и/или в пластах, имеющих более высокую электрическую удельную проводимость. Высота
передаваемых импульсов может быть выбрана так, чтобы позволять принимать импульсы желаемой интенсивности. Например, передаваемые импульсы могут иметь высоты импульсов в диапазоне от нескольких мВ до нескольких кВ.
[0106] В варианте осуществления, представленном на фиг. 5, приемники 46 содержат однополярные буферные усилители 47, которые избирательно усиливают сигналы одной полярности.
[0107] Полярности, указанные на фиг. 5, в некоторых альтернативных вариантах осуществления являются обратными. В таких альтернативных вариантах осуществления узел может передавать сигналы путем приложения отрицательных импульсов к связанной прокладке 42, так что положительные импульсы индуцируются на прокладке на смежном узле (здесь "отрицательный импульс" означает импульс, в котором обращенная к верху ствола скважины сторона прокладки 42 делается отрицательной относительно обращенной к низу ствола скважины стороне прокладки 42). В таком варианте осуществления могут быть предусмотрены однополярные приемники, которые обнаруживают положительные импульсы на соответствующих прокладках 42, но являются нечувствительными к отрицательным импульсам на тех же прокладках 42.
[0108] В некоторых вариантах осуществления передаваемые сигналы имеют относительно высокое напряжение. Например, разница напряжений на прокладке 42 может составлять по меньшей мере 50 В, и в некоторых вариантах осуществления по меньшей мере 100 В или по меньшей мере 300 В в некоторых вариантах осуществления.
[0109] В некоторых вариантах осуществления (осуществляется ли передача сигналов с помощью однополярных сигналов или нет) ЭМ телеметрические сигналы передают на более высоких амплитудах для улучшения диапазона ЭМ телеметрических сигналов и (тем самым позволяя узлам находиться дальше друг от друга и/или облегчая передачу через такие структуры как гидравлический забойный двигатель, которые могут вносить шум в передаваемые сигналы). Например, ЭМ телеметрические сигналы могут быть переданы с применением
более высоких напряжений (например, напряжений выше 50 В и вплоть до нескольких сотен вольт). При передаче ЭМ телеметрических сигналов на таких высоких напряжениях можно сэкономить электроэнергию, делая периоды передаваемых сигналов очень короткими. Например, ЭМ телеметрические сигналы могут содержать ряд узких импульсов. При использовании узких импульсов частота передаваемых сигналов может быть высокой (например, частоты могут превышать несколько сотен Гц). Например, могут быть использованы частоты от 500 Гц до 2 кГц, или выше.
[ОНО] Более высокие частоты обеспечивают более высокие скорости передачи данных. Для передачи данных могут быть использованы разные протоколы. Например, для передачи данных может быть использован протокол 8 PSK. В некоторых вариантах осуществления эта схема передачи сигнала высокой частоты и большой амплитуды применяется только некоторыми частями системы. Другие части системы могут применять другие схемы передачи и кодирования. Например, ЭМ телеметрический протокол с большой амплитудой и высокой частотой может быть использован для передачи данных из скважинной системы, расположенной между гидравлическим забойным двигателем и буровым долотом на узел 30, расположенный над гидравлическим забойным двигателем.
[0111] Получающиеся сигналы могут иметь более низкие скорости передачи данных, чем сигналы, передаваемые в более глубоких частях ствола скважины. Чтобы компенсировать это, в некоторых вариантах осуществления узлы в верхних частях ствола скважины могут разбивать данные, подлежащие передаче, на две или более частей и одновременно передавать две или более части данных отдельными телеметрическими передачами, имеющими общую скорость передачи данных, достаточную для переноса данных, передаваемых со скважинных датчиков. Отдельные телеметрические передачи могут, например, применять разные частоты.
[0112] Узлы, как описано в данном документе, могут обладать любым из
широкого ряда конструктивных признаков. Например, каждый узел может содержать стыковочный переводник. Электронные компоненты узлов могут быть расположены в отсеках в стенках стыковочного переводника, в кожухе, удерживаемом в стволе стыковочного переводника, или в другом подходящем месте.
[0113] В некоторых вариантах осуществления, описанных в данном документе, ЭМ телеметрические данные передают с помощью передатчика, который отделен от приемника в бурильной колонне и/или отделен от бурового долота (которое обычно служит заземлением) одной или более электроизоляционными прокладками. В таких вариантах осуществления передача данных через такие прокладки может быть облегчена путем выборочного закорачивания прокладок и/или предоставления фильтров передачи сигнала в прокладках, как описано в заявке на патент РСТ № РСТ/СА2013/050683, поданной 5 сентября 2013, которая этим включена в данный документ с помощью ссылки.
[0114] Поскольку выше описан ряд иллюстративных аспектов и вариантов осуществления, специалистам в данной области техники будут очевидны определенные модификации, перестановки, дополнения и их подкомбинации. Поэтому подразумевается, что следующая прилагаемая формула изобретения и позднее представленные пункты формулы изобретения интерпретируются как включающие все такие модификации, перестановки, дополнения и подкомбинации как находящиеся в пределах сущности и объема формулы изобретения.
Интерпретация выражений
[0115] Если контекст явно не требует иного, по всему тексту описания и формулы изобретения:
• слова "содержать", "содержащий" и т. п. должны толковаться в смысле включения в отличие от смысла исключения или исчерпывания; то есть в смысле "включая, но без ограничения";
• выражения "соединенный", "связанный" или любой их вариант означают любое соединение или связь, прямую или непрямую, между двумя или более элементами; связь или соединение между элементами могут быть физическими, логическими или их сочетанием;
• выражения "в настоящем документе", "выше", "ниже" и слова подобного смысла при использовании для описания настоящего изобретения должны относиться к описанию настоящего изобретения в целом, а не к каким-либо конкретным частям описания настоящего изобретения;
• выражение "или" при ссылке на перечень из двух или более элементов охватывает все следующие интерпретации этого слова: любой элемент в перечне, все элементы в перечне и любое сочетание элементов в перечне;
• формы единственного числа включают значение любых подходящих форм множественного числа.
[0116] Слова, указывающие направления, такие как "вертикальный", "поперечный", "горизонтальный", "вверх", "вниз", "вперед", "назад", "внутренний", "наружный", "вертикальный", "поперечный", "левый", "правый", "передний", "задний", "верхний", "нижний", "вверху", "внизу", "ниже", "выше", "под" и т. п., используемые в настоящем описании и любых пунктах формулы изобретения (если используются), зависят от конкретной ориентации описанного и проиллюстрированного устройства. Объект изобретения, описанный в настоящем документе, может принимать различные альтернативные ориентации. Соответственно, эти связанные с направлением термины не определены строго и не должны интерпретироваться в узком смысле.
[0117] Когда выше производится ссылка на какой-либо компонент (например, схему, модуль, узел, устройство, компонент бурильной колонны, систему буровой установки и т. д.), то, если не указано иное, ссылка на этот компонент (включая ссылку на "средства") должна интерпретироваться как включающая эквиваленты этого компонента, любой компонент, выполняющий функцию
описываемого компонента (т. е., функционально эквивалентный), включая компоненты, конструктивно не эквивалентные раскрытой конструкции, выполняющей эту функцию в представленных иллюстративных вариантах осуществления настоящего изобретения.
[0118] Конкретные примеры систем, способов и устройства описаны в настоящем документе в целях иллюстрации. Они представляют собой лишь примеры. Технология, предлагаемая в настоящем документе, может быть применимой к другим системам, отличным от описанных выше примерных систем. В пределах практического осуществления настоящего изобретения возможны многие изменения, модификации, дополнения, исключения и перестановки. Настоящее изобретение включает изменения описанных вариантов осуществления, очевидные специалистам в данной области техники, к которой относится изобретение, включая изменения, полученные путем: замены признаков, элементов и/или действий эквивалентными признаками, элементами и/или действиями; смешивания и совмещения признаков, элементов и/или действий из других вариантов осуществления; сочетания признаков, элементов и/или действий из вариантов осуществления, описанных в настоящем документе, с признаками, элементами и/или действиями другой технологии; и/или исключения сочетания признаков, элементов и/или действий из описанных вариантов осуществления.
[0119] Поэтому подразумевается, что последующая прилагаемая формула изобретения и позднее представленные пункты формулы изобретения интерпретируются как включающие все такие модификации, перестановки, дополнения, исключения и подкомбинации, которые могут быть обоснованно выведены. Объем формулы изобретения не должен ограничиваться предпочтительными вариантами осуществления, изложенными в примерах, напротив, ему следует придавать самую широкую интерпретацию, согласующуюся с описанием в целом.
[0120] Некоторые варианты осуществления предусматривают
усовершенствованную сеть передачи скважинных данных системы электроники, в которой множество узлов прикреплены к бурильной колонне для трансляции информации на поверхность. Узлы транслируют информацию на поверхностное оборудование с помощью относительной высокой частоты ЭМ передач, обычно выше 20 Гц, обеспечивая более высокие скорости передачи данных и меньшую задержку.
[0121] Узел сети передачи скважинных данных определенных вариантов осуществления согласно настоящему изобретению содержит ЭМ телеметрический передатчик, ЭМ телеметрический приемник, контроллер и электроизоляционную прокладку. ЭМ телеметрический приемник выполнен с возможностью отслеживания разности потенциалов на прокладке и сообщения об изменениях разности потенциалов на контроллер. ЭМ телеметрический передатчик соединен с контроллером и выполнен с возможностью подачи сигнала напряжения на прокладке. В одном варианте осуществления, когда ЭМ телеметрический приемник обнаруживает разность потенциалов на прокладке, обозначающую передачу данных, ЭМ телеметрический приемник обеспечивает передачу данных на контроллер, который, в свою очередь, заставляет ЭМ телеметрический передатчик осуществляет передачу данных на смежный узел или поверхностное оборудование.
Формула изобретения
1. Способ телеметрии данных из местоположения в скважине, причем способ включает:
предоставление нескольких телеметрических ретранслирующих устройств в местах, разнесенных по бурильной колонне, причем каждое из телеметрических ретранслирующих устройств содержит приемник электромагнитных телеметрических сигналов и передатчик электромагнитных телеметрических сигналов;
перемещение бурильной колонны в стволе скважины;
идентификацию первой области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются более сильно, и второй области ствола скважины, в которой электромагнитные телеметрические передачи ослабляются менее сильно;
передачу данных вверх по бурильной колонне путем последовательной ретрансляции данных с помощью электромагнитной телеметрии от одного из ретранслирующих устройств на другое; и
усиление передачи сигнала телеметрических ретранслирующих устройств, пока эти телеметрические ретранслирующие устройства находятся в первой области, и, исходя из сигнала, обнаруженного от телеметрических ретранслирующих устройств в первой области, автоматическое подавление работы некоторых из телеметрических ретранслирующих устройств, пока эти телеметрические ретранслирующие устройства находятся во второй области.
2. Способ телеметрии данных из местоположения в скважине, причем способ включает:
подачу бурильной колонны в ствол скважины, где ствол скважины проходит через пласты так, что диапазон электромагнитных
телеметрических передач изменяется как функция глубины в
стволе скважины;
передачу данных из местоположения в скважине на поверхность с помощью нескольких телеметрических ретранслирующих устройств между местоположением в скважине и поверхностью;
идентификацию первого и второго несмежных телеметрических ретранслирующих устройств, так что второе из телеметрических ретранслирующих устройств находится в диапазоне электромагнитных телеметрических передач, соответствующем местоположению первого из телеметрических ретранслирующих устройств; и
подавление работы одного или нескольких телеметрических ретранслирующих устройств между первым и вторым из телеметрических ретранслирующих устройств, причем подавление работы одного или нескольких телеметрических ретранслирующих устройств включает помещение узла в режим ожидания с энергосбережением.
3. Способ по п. 2, отличающийся тем, что включает продвижение бурильной колонны до уменьшения диапазона электромагнитных телеметрических передач, соответствующего положению первого из телеметрических ретранслирующих устройств, и затем активацию одного или нескольких электромагнитных телеметрических ретранслирующих устройств между первым и вторым из электромагнитных телеметрических ретранслирующих устройств.
4. Способ по п. 3, отличающийся тем, что включает отслеживание диапазона электромагнитных телеметрических сигналов путем передачи электромагнитных телеметрических сигналов из передатчика на бурильной колонне и приема электромагнитных телеметрических сигналов, переданных передатчиком на нескольких электромагнитных телеметрических ретранслирующих устройствах.
5. Способ по п. 4, отличающийся тем, что передатчик
представляет собой передатчик одного из электромагнитных телеметрических ретранслирующих устройств.
-38
-39
КОНТРОЛЛЕР
ДАТЧИКИ
lb?
36А Т
ГЕНЕРАТОР СИГНАЛОВ
ПРИЕМНИК
I I I I
36В-
т-г
I I
I I
Фиг. 3
Поверхностное оборудование
ПЕРЕДАЮЩИЙ ИМПУЛЬС
JUUL
ГЕНЕРАТОР
ИМПУЛЬСА
-зос
ПОСЛЕ БУФЕРА, ПРОПУСКАЮЩЕГО ТОЛЬКО ПОЛОЖИТЕЛЬНЫЙ СИГНАЛ
J\ л л
-46
ГЕНЕРАТОР
ИМПУЛЬСА
-ЗОВ
ПРИЕМНИК ИМПУЛЬСА
-46
-30А
-46
УЗЕЛ
IS"
30G
I F1 \
30F
iS":
44-
ПЕРЕДАТЧИК,
• I
• I | "
ЗОЕ
tS":
-J442
48-| 4 &
ФИЛЬТР
ПЕРЕДАТЧИК
РИЕМНИК
МК \ nPHEN
¦ "
300
4846-
ФИЛЬТР
" I • ¦
ПЕРЕДАТЧИК
ПРИЕМНИК J
• " ¦ •
Фиг. 6
PATENT COOPERATION TREATY
PCT
INTERNATIONAL SEARCH REPORT
(PCX Article 18 and Rules 43 and 44)
Applicant's or agent's file reference E3320129GNM
FOR FURTHER see Form PCT/ISA/220
ACTION as we" as> wnefe applicable, item 5 below
International application No.
PCT/CA2015/050422
International filing date (day/monrh/year) 08 May 2015 (08-05-2015)
(Earliest)Priority date (day/month/year) 23 June 2014(23-06-2014)
Applicant
EVOLtmON ENGINEERING INC.
This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.
This international search report consists of a total of J7_ sheets.
P It is also accompanied by a copy of each prior art document cited in this report.
1. Basis of the report
a- With regard to the language, the international search was carried out on the basis of:
W the international application in the language in which it was filed.
Г" a translation of the international application into which is the language of
a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)).
b. Г This international search report has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Rule 91 (Rule 43.6iw(a)).
e. f with regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. I.
2- у Certain claims were found unsearchable (see Box No. 11).
3- Unity of invention is lacking (sec Box No. III).
4. With regard to the title,
Г" the text is approved as submitted by the applicant,
F? the text has been established by this Authority to read as follows:
Optimizing Downhole Data Communication with At Bit Sensors and Nodes
5. With regard to the abstract,
?? the text is approved as submitted by the applicant.
t~ the text has been established, according to Rule 38.2, by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. With regard to the drawings,
a. the figure of the drawings to be published with the abstract is Figure No. 4D
Г" as suggested by the applicant.
Г* as selected by this Authority, because the applicant failed to suggest a figure.
№ as selected by this Authority, because this figure better characterizes the invention.
b. Г" none of the figures is to be published with the abstract.
Bex No. II Observations where certain claims were found unsearchable (Contin tuition of item 2 of the first sheet)
This international search report has not been established in respect of certain claims under Article l7(2Xa) for the following reasons:
1. ' Claim Nos,:
because they relate to subject matter not required to be searched by this Authority, namely:
2. W Claim Nos.: 38-39
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims 38 and 39 broadly recite any new and inventive feature, combination of features, or subcombination of features as described herein and therefore no opinion was formed.
3, Г Claim Nos.:
because they are dependent claims and arc not drafted in accordance with the second and third sentences of Rule 6.4(a).
This International Searching Authority found multiple inventions in this international application, as follows: See supplemental sheet.
1. Г" As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. РУ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional
fees,
3. f As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those
claims for which fees were paid, specifically claim Nos.:
Веж No. ill Observation* where unity of invention is lacking (Continuation of item 3 of first sheet)
A. CLASSIFICATION OF SUBJECT MATTER
IPC: E21B 47/13 (2012.01), H04B 3/00 (2006.01), НШ 3/46 (201S.01)
According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols) IPC: F.21E 47/13 (2012.01) , H04B 3/00 (2006.01) , 1104B 3/46 (2015.01)
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Electronic databases) consulted during the international search (name of database^) and, where practicable, search terms used) Orbit FAMPAT (telemetry, bore-, drill-, node-, depth, trequenc1-, formation-, atten+, atfenuat+, salt)
"A"
"L" ¦ЧУ "X"
document published prior to the international filing date but later than the priority date claimed
Date of the actual completion of the international search 09 July 2015(09-07-2015)
Date of mailing of the international search report
28 July 2015 (28-07-2015)
Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage 1, CI 14 - 1st Floor, Box PCT
SO Victoria Street
Gat mean, Quebec К1Л 0C9
Facsimile No.: 001-819-953-2476
Authorized officer
Lily Truong (819) 953-1624
Form РСТЛ8А/210 (second sheet) (January 2015)
Page 3 of 7
Patent Document Cited in Search Report
Publication Date
Patent Family iVtcmbcr(s)
Publication Date
US7207396B2
24 April 2007 (24-04-2007)
US2005284663A1
СЛ2516445Л1
CA2516445C
СЛ2560479Л1
СЛ2560479С
EP1664475A2
КР1664475Л4
EP1664475B1
ЕР1718995Л2
EP171899SA4
US2005067159A1
US6982384B2
US2004U3808A1
US7098802B2
US2OO5035876A1
US7123160B2
US2005035874A1
US7139218B2
US2005035875AI
US7142129B2
US2005161215A1
US7193526B2
US2005046586A1
US7193527B2
US2005285751AI
US7200070B2
US2005001735A1
US7224288B2
US2005036507A1
US7586934B2
US2008135291A1
US7696900B2
US2006022839A1
US2006033638A1
US2006062249A1
WO2005031106A2
WO200503U06A3
WO2005052303A2
WO2005052303A3
29 December 2005 (29-12-2005) 07 April 2005 (07-04-2005)
12 March 2013 (12-03-2013)
09 June 2005 (09-06-2005)
31 December 2013 (31-12-2013)
07 June 2006 (07-06-2006)
25 June 2008 (25-06-2008)
27 November 2013 (27-11-2013)
08 November 2006 (08-11-2006)
22 August 2012 (22-08-2012)
31 March 2005 (31-03-2005)
03 January 2006 (03-01-2006)
17 June 2004(17-06-2004)
29 August 2006 (29-08-2006)
17 February 2005 (17-02-2005)
17 October 2006 (17-10-2006)
17 February 2005 (17-02-2005)
21 November 2006 (21-11-2006)
17 February 2005 (17-02-2005)
28 November 2006 (28-11-2006)
28 July 2005 (28-07-2005)
20 March 2007 (20-03-2007)
03 March 2005 (03-03-2005) 20 March 2007 (20-03-2007)
29 December 2005 (29-12-2005)
03 April 2007 (03-04-2007)
06 January 2005 (06-01-2005)
29 May 2007 (29-05-2007)
17 February 2005 (17-02-2005)
08 September 2009 (08-09-2009)
t2 June 2008 (12-06-2008)
13 April 2010(13-04-2010)
02 February 2006 (02-02-2006) 16 February 2006 (16-02-2006)
23 March 2006 (23-03-2006)
07 April 2005 (07-04-2005)
22 June 2006 (22-06-2006)
09 June 2005 (09-06-2005)
08 September 2006 (08-09-2006)
US2012286967A1 15 November 2012 (15-11-2012)C A2785651 Al
НР2519711Л1 WO201 1082122A1
07 July 2011(07-07-2011)
07 November 2012 (07-11-2012)
07 July 2011 (07-07-2011)
US2013106615A1
02 May 2013 (02-05-2013)
US2013106615A1
AU2012329100A1 EP2771544A1 MX2014005083A WO2013062949AI
2 May 2013(02-05-2013) 12 June 2014(12-06-2014)
3 September 2014 (03-09-2014) 10 February 2015 (10-02-2015) 02 May 2013(02-05-2013)
Continuation of Box III:
The independent claims are directed to a plurality of inventive concepts as follows:
Group A - Claims 1 and 26 are directed to a system and method for transmitting data along a drill string featuring transmitting a first signal from a first node based on a first transmission setting at a first depth, measuring an aspect of the first signal at a second node, determining a second transmission setting based on the measured aspect of the first signal and transmitting a second signal at the second transmission setting from the second node while the second node is proximate the first depth;
Group В - Claim 33 is directed to a method for data telemetry from a downhole location featuring providing a plurality of telemetry relay devices at locations spaced apart on a drill string, identifying a first region in which the electromagnetic transmissions are attenuated more strongly and a second region where the transmissions are attenuated less strongly, passing data and automatically inhibiting operation of some of the relay devices in the second region; and
Group С - Claim 34 is directed to a method for data telemetry featuring providing a drill string passing through formations such that a range of electromagnetic telemetry transmissions varies as a function of depth of the wellhorc, passing data using a plurality of telemetry relay devices, identifying first and second non-adjacent devices such that the second one is within the range for electromagnetic telemetry transmissions corresponding to the location of the first one and inhibiting operation of one or more of the devices between the first and second devices.
1 f~' No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos.:
Remark on Protest r- The additional search fees were accompanied by the applicants protest and, where applicable, the payment of
a protest fee.
)(tm) The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
Г No protest accompanied the payment of additional search fees.
(19)
(19)
(19)
1/8
1/8
2/8
2/8
3/8
3/8
3/8
3/8
3/8
3/8
4/8
4/8
5/8
5/8
7/8
7/8
7/8
7/8
7/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
8/8
Page 1 of7
Form PCT/ISA/210 (first sheet) (January 2015)
Page 1 of7
Form PCT/ISA/210 (first sheet) (January 2015)
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
Page 2 of7
Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)
Page 2 of7
Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
Page 6 of 7
Form PCT/1SA/210 (extra sheet) (January 2015)
Page 6 of 7
Form PCT/1SA/210 (extra sheet) (January 2015)
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
Page 6 of 7
Form PCT/1SA/210 (extra sheet) (January 2015)
Page 6 of 7
Form PCT/1SA/210 (extra sheet) (January 2015)
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
INTERNATIONAL SEARCH REPORT
International application No.
PCT/CA2015/050422
Page 7 of 7
Torm PCT/ISA/210 (extra sheet) (January 2015)
Page 7 of 7
Torm PCT/ISA/210 (extra sheet) (January 2015)