EA201891810A1 20190131 Номер и дата охранного документа [PDF] EAPO2019\PDF/201891810 Полный текст описания [**] EA201891810 20150303 Регистрационный номер и дата заявки US61/947,326 20140303 Регистрационные номера и даты приоритетных заявок EAA1 Код вида документа [PDF] eaa21901 Номер бюллетеня [**] СПОСОБ И СИСТЕМА ДЛЯ ПОДАЧИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА НЕСКОЛЬКО ПАНЕЛЕЙ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ Название документа [8] H02J 3/38, [8] H02J 7/35, [8] H01L 31/02, [8] H02S 40/32 Индексы МПК [US] Макнэмара Роберт П., [US] Рэймонд Дуглас М. Сведения об авторах [US] СОЛАРЛИТИКС, ИНК. Сведения о заявителях
 

Патентная документация ЕАПВ

 
Запрос:  ea201891810a*\id

больше ...

Термины запроса в документе

Реферат

[RU]

Система управления солнечными элементами для повышения коэффициента полезного действия и выходной мощности солнечного элемента и способы его изготовления и применения. Система управления обеспечивает электрическое поле сквозь один или несколько солнечных элементов. Приложенное электрическое поле оказывает силовое воздействие как на электроны, так и на дырки, созданные светом, падающим на фотоэлектрический элемент, и ускоряет электронно-дырочные пары в направлении электродов солнечного элемента. Система управления солнечными элементами учитывает вариации в конструкции солнечных элементов, чтобы обеспечить максимум выходной мощности солнечных элементов. Ускоренные электронно-дырочные пары имеют меньшую вероятность рекомбинировать внутри материала полупроводника элементов. Данное снижение скорости электронно-дырочной рекомбинации приводит к общему увеличению коэффициента полезного действия солнечных элементов и большей выходной мощности.


Полный текст патента

(57) Реферат / Формула:

Система управления солнечными элементами для повышения коэффициента полезного действия и выходной мощности солнечного элемента и способы его изготовления и применения. Система управления обеспечивает электрическое поле сквозь один или несколько солнечных элементов. Приложенное электрическое поле оказывает силовое воздействие как на электроны, так и на дырки, созданные светом, падающим на фотоэлектрический элемент, и ускоряет электронно-дырочные пары в направлении электродов солнечного элемента. Система управления солнечными элементами учитывает вариации в конструкции солнечных элементов, чтобы обеспечить максимум выходной мощности солнечных элементов. Ускоренные электронно-дырочные пары имеют меньшую вероятность рекомбинировать внутри материала полупроводника элементов. Данное снижение скорости электронно-дырочной рекомбинации приводит к общему увеличению коэффициента полезного действия солнечных элементов и большей выходной мощности.


Евразийское (21) 201891810 (13) A1
патентное
ведомство
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ
(43) Дата публикации заявки 2019.01.31
(22) Дата подачи заявки 2015.03.03
(51) Int. Cl.
H02J3/38 (2006.01) H02J 7/35 (2006.01) H01L 31/02 (2006.01) H02S 40/32 (2014.01)
(54) СПОСОБ И СИСТЕМА ДЛЯ ПОДАЧИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА НЕСКОЛЬКО ПАНЕЛЕЙ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
(31) 61/947,326; 62/022,087; 14/628,079
(32) 2014.03.03; 2014.07.08; 2015.02.20
(33) US
(62) 201691635; 2015.03.03
(71) Заявитель: СОЛАРЛИТИКС, ИНК. (US)
(72) Изобретатель:
Макнэмара Роберт П., Рэймонд Дуглас
М. (US)
(74) Представитель:
Липатова И.И., Новоселова С.В., Хмара М.В., Пантелеев А.С., Ильмер Е.Г., Осипов К.В. (RU)
(57) Система управления солнечными элементами для повышения коэффициента полезного действия и выходной мощности солнечного элемента и способы его изготовления и применения. Система управления обеспечивает электрическое поле сквозь один или несколько солнечных элементов. Приложенное электрическое поле оказывает силовое воздействие как на электроны, так и на дырки, созданные светом, падающим на фотоэлектрический элемент, и ускоряет электронно-дырочные пары в направлении электродов солнечного элемента. Система управления солнечными элементами учитывает вариации в конструкции солнечных элементов, чтобы обеспечить максимум выходной мощности солнечных элементов. Ускоренные электронно-дырочные пары имеют меньшую вероятность рекомбинировать внутри материала полупроводника элементов. Данное снижение скорости электронно-дырочной рекомбинации приводит к общему увеличению коэффициента полезного действия солнечных элементов и большей выходной мощности.
СПОСОБ И СИСТЕМА ДЛЯ ПОДАЧИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА НЕСКОЛЬКО ПАНЕЛЕЙ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ
ЗАЯВКИ
5 [0001] Данная заявка является частичным продолжением и заявляет приоритет по
заявке на патент США № 14/628079, поданной 20 февраля 2015 года, которая заявляет приоритет по предварительной заявке США № 61/943127, поданной 21 февраля 2014 года; предварительной заявке США № 61/943134, поданной 21 февраля 2014 года; предварительной заявке США № 61/947326, поданной 3 марта 2014 года; и 10 предварительной заявке США № 62/022087, поданной 8 июля 2014 года, описания
которых полностью и для всех целей включены в данную заявку посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ [0002] Настоящее изобретение в целом относится к фотоэлектрическим устройствам, а более конкретно, но не исключительно, к системам и способам максимального 15 увеличения генерируемой мощности или энергии и общего коэффициента полезного действия одного или нескольких солнечных элементов, например, с помощью подачи и регулирования внешнего электрического поля на солнечных элементах.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ [0003] Солнечный элемент (также называемый фотоэлектрическим элементом) 20 представляет собой электрическое устройство, которое напрямую преобразует энергию света в электричество с помощью процесса, известного как "фотоэлектрический эффект". При воздействии света солнечный элемент может генерировать и поддерживать электрический ток без подключения к любому внешнему источнику напряжения.
25 [0004] Наиболее распространенный солнечный элемент состоит из р-п-перехода 110, изготовленного из полупроводниковых материалов {например, кремния), таких как в солнечном элементе 100, показанном на фиг. 1. Например, р-п-переход 110 содержит
тонкую пластину, состоящую из сверхтонкого слоя кремния n-типа поверх более толстого слоя кремния р-типа. Там, где эти два слоя находятся в контакте, вблизи верхней поверхности солнечного элемента 100 создается электрическое поле (не показано), и происходит диффузия электронов из области высокой концентрации 5 электронов (стороны n-типа р-п-перехода 110) в область низкой концентрации электронов (сторону р-типа р-п-перехода 110).
[0005] Р-п-переход 110 заключен между двумя проводящими электродами 101а, 101Ь. Верхний электрод 101а является либо прозрачным для падающего (солнечного) излучения, либо не полностью покрывает верхнюю часть солнечного элемента 100.
10 Электроды 101а, 101Ь могут служить в качестве омических контактов металл-полупроводник, которые соединяются с внешней нагрузкой 30, которая подключена последовательно. Хотя нагрузка показана только как активная, нагрузка 30 может также содержать как активную, так и реактивную составляющие. [0006] Когда фотон попадает в солнечный элемент 100, фотон либо проходит прямо
15 через материал солнечного элемента, что обычно происходит при более низких энергиях фотонов; либо отражается от поверхности солнечного элемента; либо предпочтительно поглощается материалом солнечного элемента, если энергия фотона выше, чем ширина запрещенной зоны кремния, генерируя электронно-дырочную пару. [0007] Если фотон поглощается, его энергия передается электрону в материале
20 солнечного элемента. Обычно этот электрон находится в валентной зоне и тесно связан ковалентными связями с соседними атомами и, следовательно, не в состоянии далеко перемещаться. Энергия, переданная электрону фотоном, "возбуждает" электрон в зону проводимости, где он может свободно передвигаться в пределах солнечного элемента 100. Ковалентная связь, частью которой был ранее электрон, теперь имеет на один
25 электрон меньше - это называется дыркой. Наличие отсутствующей ковалентной связи позволяет связанным электронам соседних атомов перемещаться в дырку, оставляя позади еще одну дырку. Таким образом, дырка также может эффективно перемещаться через солнечный элемент 100. Таким образом, фотоны, поглощенные в солнечном элементе 100, создают подвижные электронно-дырочные пары.
[0008] Подвижная электронно-дырочная пара диффундирует или дрейфует в сторону электродов 101а, 101Ь. Как правило, электрон диффундирует/дрейфует в направлении отрицательного электрода, а дырка диффундирует/дрейфует в направлении положительного электрода. Диффузия носителей {например, электронов) обусловлена 5 случайным тепловым движением до тех пор, пока носитель не захватывается электрическими полями. Дрейф носителей обусловлен электрическими полями, образованными в активной области солнечного элемента 100. В тонкопленочных солнечных элементах преобладающим типом разделения носителей заряда является дрейф, обусловленный электростатическим полем р-п-перехода 110, проходящим по
10 всей толщине тонкопленочного солнечного элемента. Тем не менее для солнечных элементов с большей толщиной, не имеющих практически никакого электрического поля в активной области, преобладающим типом разделения носителей заряда является диффузия. Длина диффузии неосновных носителей {т.е. длина, которую могут проходить фотогенерируемые носители, прежде чем они рекомбинируют, должна быть
15 больше в солнечных элементах с большими толщинами.
[0009] В конечном счете, электроны, которые создаются на стороне n-типа р-п-перехода 110, "накопленные" у р-п-перехода 110 и пролетевшие на сторону п-типа, могут обеспечить питание для внешней нагрузки 30 (через электрод 101а) и вернуться на сторону р-типа (через электрод 101Ь) солнечного элемента 100. После возвращения
20 на сторону р-типа электрон может рекомбинировать с дыркой, которая была либо создана как электронно-дырочная пара на стороне р-типа, либо пролетела через р-п-переход 110 со стороны п-типа.
[0010] Как показано на фиг. 1, электронно-дырочная пара проходит круговой маршрут от точки создания электронно-дырочной пары до точки, где электронно-дырочная пара 25 накапливается на электродах 101а, 101Ь. Так как путь, проходимый электронно-дырочной парой, является длинным, для электрона или дырки существует достаточно возможностей рекомбинировать с другой дыркой или электроном, такая рекомбинация приводит к потерям тока в любой внешней нагрузке 30. Выражаясь по-другому, при создании электронно-дырочной пары один из носителей может достигать р-п-перехода
110 (накопленный носитель) и внести свой вклад в ток, вырабатываемый солнечным элементом 100. В качестве альтернативы носитель может рекомбинировать без чистого вклада в ток элемента. Рекомбинация заряда приводит к уменьшению квантовой эффективности (т. е. процента фотонов, которые преобразуются в электрический ток в 5 случае солнечного элемента 100) и, следовательно, общего коэффициента полезного действия солнечного элемента 100.
[ООН] Недавние попытки снизить затраты и повысить коэффициент полезного действия солнечных элементов включают испытания различных материалов и различных технологий изготовления, используемых для солнечных элементов. В
10 другом подходе осуществляются попытки усилить обедненную область, образованную вокруг р-п-перехода 110 для усиления движения носителей заряда через солнечный элемент 100. Например, смотрите патент США № 5215599, Hingorani и др. ("Hingorani"), поданный 3 мая 1991 года, и патент США № 8466582, Fornage ("Fornage"), поданный 2 декабря 2011 года, заявляющие приоритет на дату подачи
15 заявки 3 декабря 2010 года, описания которых полностью и для всех целей включены в данную заявку посредством ссылки.
[0012] Тем не менее эти традиционные подходы к усилению движения носителей заряда через солнечный элемент 100 требуют модификации основной конструкции солнечного элемента 100. Hingorani и Fornage, например, раскрывают подачу внешнего
20 электрического поля на солнечный элемент с использованием видоизмененной
конструкции солнечных элементов. Подача внешнего электрического поля требует напряжения, подаваемого между электродами, наводя электрическое поле (описано более подробно ниже со ссылкой на уравнение 2). Без изменения основной конструкции солнечного элемента 100 подача напряжения к существующим
25 электродам 101а, 101Ь солнечного элемента 100 закорачивает подаваемое напряжение через внешнюю нагрузку 30. Выражаясь по-другому, подача напряжения к электродам 101а, 101Ь солнечного элемента 100 является неэффективным для создания внешнего электрического поля и увеличения движения носителей заряда. Соответственно, традиционные подходы, такие, которые раскрыты в Hingoriani и Fornage, обязательно
модифицируют основную конструкцию солнечного элемента 100, например, путем вставки внешнего (и электрически изолированного) комплекта электродов в основание солнечного элемента 100. Есть несколько недостатков у этого подхода. [0013] Например, внешние электроды должны быть размещены на солнечном элементе 5 100 во время процесса изготовления, практически невозможно модифицировать внешние электроды на существующем солнечном элементе или панели. Эта модификация процесса изготовления значительно увеличивает затраты на производство и уменьшает производственный выход. Кроме того, размещение внешних электродов, расположенных на лицевой стороне или стороне падающего
10 света, солнечного элемента 100 снижает световую энергию, которая достигает
солнечного элемента 100, тем самым приводя к более низкой выходной мощности. [0014] В качестве дополнительного недостатка, чтобы привести к значительным улучшениям в выходной мощности солнечного элемента 100, на внешние электроды солнечного элемента 100 должны быть поданы значительные напряжения. Например, в
15 Fornage раскрывается, что к внешним электродам для подаваемого электрического поля должны быть поданы напряжения порядка "1000" вольт, чтобы быть эффективными и увеличить выходную мощность солнечного элемента 100. Величина этого напряжения требует специальной подготовки для обслуживания, а также дополнительного высоковольтного оборудования и проводки, которых в настоящее
20 время не существует в существующих или новых системах панелей солнечных
элементов. В качестве примера изоляционный слой между внешними электродами и солнечным элементом 100 должен быть достаточным, чтобы выдержать высокое подаваемое напряжение. В случае выхода из строя изоляционного слоя существует значительный риск повреждения не только солнечного элемента 100, но также всех
25 солнечных элементов 100, подключенных последовательно или параллельно с неисправным солнечным элементом, а также внешней нагрузки 30. [0015] В качестве дополнительного недостатка, типовая установка солнечного элемента 100 может ввести дополнительные факторы, такие как дополнительные кабели, внешнее оборудование и так далее, что может повлиять на выходную
мощность солнечного элемента 100. Например, несколько солнечных элементов 100 могут быть соединены вместе (последовательно и/или параллельно), чтобы сформировать панель 10 солнечных элементов (показанную на фиг. 2A-D). Каждая панель 10 солнечных элементов затем может быть соединена с использованием любого 5 подходящего средства, описанного в данной заявке, в том числе параллельно,
последовательно или комбинировано. Со ссылкой на фиг. 2A-D показаны типовые компоновки оборудования, использующие по меньшей мере одну панель 10 солнечных элементов.
[0016] Панели 10 солнечных элементов могут быть соединены либо параллельно (фиг.
10 2А), либо последовательно (фиг. 2В), либо комбинировано (фиг. 2С). В каждой из фиг. 2А-С панели 10 солнечных элементов могут работать на нагрузку, такую как инвертор 31. На фиг. 2А показано последовательное соединение панелей 10 солнечных элементов. Обращаясь к фиг. 2В, показаны панели 10 солнечных элементов, соединенные последовательно и работающие на инвертор 31. На фиг. 2С показана
15 альтернативная установка панелей 10 солнечных элементов, соединенных как
параллельно, так и последовательно. В еще одном варианте осуществления на фиг. 2D показана установка, как правило, встречающаяся во многих жилых помещениях, где каждая из панелей 10 солнечных элементов подключена к своему собственному инвертору 31.
20 [0017] Каждый способ подключения солнечных элементов 100 и панелей 10 солнечных элементов требует различных способов установки и прокладки проводов, которые изменяют электрические характеристики/поведение и соответствующую выходную мощность подключенных панелей 10 солнечных элементов. Обычные усилия по повышению коэффициента полезного действия солнечных элементов редко учитывают
25 сложности при установке, такие как разные способы подключения нескольких солнечных элементов 100 и/или несколько панелей 10 солнечных элементов. [0018] С учетом вышеизложенного, с целью преодоления вышеупомянутых затруднений и недостатков традиционных систем солнечных элементов существует потребность в усовершенствованной системе солнечных элементов и способе
повышения коэффициента полезного действия и выходной мощности, например, с помощью увеличения подвижности электронно-дырочных пар.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ [0019] Настоящее изобретение относится к системе для оптимизации выходной 5 мощности по меньшей мере одного фотоэлектрического устройства и к способам
использования и выполнения того же. В соответствии с первым аспектом, раскрытым в данной заявке, изложен способ управления фотоэлектрическим устройством, включающий в себя:
[0020] подачу первой составляющей сигнала напряжения на выбранное 10 фотоэлектрическое устройство, при этом первая составляющая представляет собой включенное состояние для генерирования внешнего электрического поля на выбранном фотоэлектрическом устройстве; и
[0021] подачу второй составляющей сигнала напряжения на выбранное фотоэлектрическое устройство, при этом вторая составляющая представляет собой
15 цикл отключения.
[0022] В некоторых вариантах осуществления раскрытого способа способ дополнительно включает в себя подачу первой составляющей на второе выбранное фотоэлектрическое устройство одновременно с указанной подачей первой составляющей на выбранное фотоэлектрическое устройство; и
20 [0023] подачу второй составляющей на второе выбранное фотоэлектрическое устройство одновременно с подачей указанной второй составляющей на выбранное фотоэлектрическое устройство.
[0024] В некоторых вариантах осуществления раскрытого способа указанная подача первой составляющей включает в себя подачу высоковольтного 25 изменяющегося во времени импульса напряжения от схемы генератора импульсов напряжения, и при этом указанная подача второй составляющей включает в себя отключение схемы генератора импульсов напряжения.
[0025] В некоторых вариантах осуществления раскрытого способа способ дополнительно включает в себя наложение первой составляющей поверх
существующего напряжения, вырабатываемого выбранным фотоэлектрическим устройством, причем указанное наложение первой составляющей опционально включает в себя создание отрицательного опорного уровня для первой составляющей с помощью схемы повышающего инжектора, соединенной с указанной схемой 5 генератора импульсов напряжения и выбранным фотоэлектрическим устройством. [0026] В некоторых вариантах осуществления раскрытого способа указанная подача первой составляющей включает в себя подключение источника напряжения к фотоэлектрическому устройству в первом положении переключателя, расположенного между источником напряжения и выбранным фотоэлектрическим устройством, и при 10 этом указанная подача второй составляющей включает в себя отключение источника напряжения от выбранного фотоэлектрического устройства во втором положении переключателя.
[0027] В соответствии с другим аспектом, раскрытым в данной заявке, изложен способ управления по меньшей мере одним фотоэлектрическим устройством, 15 включающий в себя:
[0028] обеспечение возможности подключения генератора импульсов напряжения к выбранному фотоэлектрическому устройству; и
[0029] подачу сигнала напряжения, вырабатываемого генератором импульсов напряжения, на выбранное фотоэлектрическое устройство, при этом сигнал 20 напряжения имеет первое состояние для генерирования внешнего электрического поля на выбранном фотоэлектрическом устройстве и второе состояние, представляющее собой цикл отключения.
[0030] В некоторых вариантах осуществления раскрытого способа способ дополнительно включает в себя обеспечение возможности подключения схемы 25 повышающего инжектора между генератором импульсов напряжения и выбранным
фотоэлектрическим устройством для обеспечения отрицательного опорного уровня для первого состояния.
[0031] В некоторых вариантах осуществления раскрытого способа способ дополнительно включает в себя подачу сигнала напряжения на второе выбранное
фотоэлектрическое устройство, указанная подача сигнала напряжения необязательно на второе выбранное фотоэлектрическое устройство происходит одновременно с указанной подачей сигнала напряжения к выбранному фотоэлектрическому устройству.
5 [0032] В некоторых вариантах осуществления раскрытого способа способ
дополнительно включает в себя обеспечение возможности подключения второй схемы генератора импульсов напряжения ко второму выбранному фотоэлектрическому устройству для одновременного обеспечения второго изменяющегося во времени импульса напряжения на втором выбранном фотоэлектрическом устройстве, при этом 10 второй изменяющийся во времени импульс напряжения обеспечивает первое состояние и второе состояние.
[0033] В некоторых вариантах осуществления раскрытого способа указанная подача сигнала напряжения включает в себя подачу регулируемого напряжения на выбранное фотоэлектрическое устройство. 15 [0034] В некоторых вариантах осуществления раскрытого способа способ
дополнительно включает в себя управление по меньшей мере одним из: частоты и длительности первого состояния и второго состояния с помощью схемы управления, подключенной к генератору импульсов напряжения.
[0035] В соответствии с другим аспектом, раскрытым в данной заявке, изложен 20 способ управления одним или несколькими фотоэлектрическими устройствами, включающий в себя:
[0036] обеспечение возможности подключения первого порта переключателя к выбранному фотоэлектрическому устройству;
[0037] обеспечение возможности подключения второго порта переключателя к 25 нагрузке, питаемой выбранным фотоэлектрическим устройством;
[0038] обеспечение возможности подключения третьего порта переключателя к источнику напряжения, причем переключатель может работать в первом положении с установлением пути тока между выбранным фотоэлектрическим устройством и
источником напряжения и во втором положении с установлением пути тока между выбранным фотоэлектрическим устройством и нагрузкой; и
[0039] подачу сигнала напряжения, вырабатываемого источником напряжения, на выбранное фотоэлектрическое устройство, при этом сигнал напряжения имеет первое 5 состояние для генерирования внешнего электрического поля на выбранном
фотоэлектрическом устройстве, когда переключатель находится в первом положении, и второе состояние для обеспечения электрической изоляции между источником напряжения и нагрузкой, когда переключатель находится во втором положении. [0040] В некоторых вариантах осуществления раскрытого способа способ
10 дополнительно включает в себя обеспечение возможности подключения первого порта второго переключателя ко второму выбранному фотоэлектрическому устройству; [0041] обеспечение возможности подключения второго порта второго переключателя к нагрузке, при этом нагрузка запитана выбранным фотоэлектрическим устройством и вторым выбранным фотоэлектрическим устройством;
15 [0042] обеспечение возможности подключения третьего порта второго
переключателя к источнику напряжения, причем второй переключатель может работать в первом положении с установлением пути тока между вторым выбранным фотоэлектрическим устройством и источником напряжения и во втором положении с установлением пути тока между вторым выбранным фотоэлектрическим устройством
20 и нагрузкой; и
[0043] подачу сигнала напряжения, вырабатываемого источником напряжения, одновременно как на выбранное фотоэлектрическое устройство, так и на второе выбранное фотоэлектрическое устройство, причем первое состояние для генерирования внешнего электрического поля как на выбранном фотоэлектрическом 25 устройстве, так и на втором выбранном фотоэлектрическом устройстве, когда
переключатель и второй переключатель находятся в первом положении, а второе состояние для обеспечения электрической изоляции между источником напряжения и нагрузкой, когда переключатель и второй переключатель находятся во втором положении.
[0044] В некоторых вариантах осуществления раскрытого способа указанное обеспечение возможности подключения первого порта переключателя включает в себя обеспечение возможности подключения первого порта двухпозиционного переключателя к выбранному фотоэлектрическому устройству. 5 [0045] В некоторых вариантах осуществления раскрытого способа способ
дополнительно включает в себя управление по меньшей мере одним из: частоты и длительности переключения между первым положением и вторым положением с помощью контроллера переключателя, подключенного к двухпозиционному переключателю.
10 [0046] В некоторых вариантах осуществления раскрытого способа способ
дополнительно включает в себя обеспечение возможности подключения устройства уменьшения любых ослаблений напряжения первой составляющей между нагрузкой и выбранным фотоэлектрическим устройством.
[0047] В некоторых вариантах осуществления раскрытого способа указанная 15 подача сигнала напряжения включает в себя подачу регулируемого напряжения на выбранное фотоэлектрическое устройство.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ [0048] На фиг. 1 приведен примерная схема в поперечном разрезе верхнего уровня, иллюстрирующая вариант осуществления солнечного элемента известного уровня 20 техники.
[0049] На фиг. 2А приведена примерная блок-схема верхнего уровня, иллюстрирующая один вариант осуществления матрицы панелей солнечных элементов известного уровня техники с использованием солнечных элементов, приведенных на фиг. 1.
25 [0050] На фиг. 2В приведена примерная блок-схема, иллюстрирующая
альтернативный вариант осуществления матрицы панелей солнечных элементов известного уровня техники с использованием солнечных элементов, показанных на фиг. 1, в котором каждая панель солнечных элементов подключена последовательно.
[0051] На фиг. 2С приведена примерная блок-схема, иллюстрирующая альтернативный вариант осуществления матрицы панелей солнечных элементов известного уровня техники с использованием солнечных элементов, показанных на фиг. 1, в котором каждая панель солнечных элементов подключена как 5 последовательно, так и параллельно.
[0052] На фиг. 2D приведена примерная блок-схема, иллюстрирующая альтернативный вариант осуществления матрицы панелей солнечных элементов известного уровня техники с использованием солнечных элементов, показанных на фиг. 1, в котором каждая панель солнечных элементов непосредственно подключается 10 к нагрузке.
[0053] На фиг. 3 приведена примерная блок-схема верхнего уровня, иллюстрирующая вариант осуществления системы управления солнечными элементами.
[0054] На фиг. 4 приведена примерная блок-схема, иллюстрирующая вариант 15 осуществления системы управления солнечными элементами, приведенной на фиг. 3, в котором матрица панелей солнечных элементов подключается параллельно в соответствии с компоновкой, показанной на фиг. 2А, и соединяется с источником напряжения через переключатель.
[0055] На фиг. 5 приведена примерная блок-схема, иллюстрирующая 20 альтернативный вариант осуществления системы управления солнечными элементами,
приведенной на фиг. 3, в котором матрица панелей солнечных элементов
подключается параллельно в соответствии с компоновкой, показанной на фиг. 2А, и
соединяется со схемой генератора импульсов напряжения.
[0056] На фиг. 6 приведена примерная блок-схема, иллюстрирующая 25 альтернативный вариант осуществления системы управления солнечными элементами,
приведенной на фиг. 4, в котором матрица панелей солнечных элементов
подключается последовательно в соответствии с компоновкой, показанной на фиг. 2В.
[0057] На фиг. 7 приведен график, иллюстрирующий подаваемое напряжение VAPP в зависимости от напряжения на каждой панели солнечных элементов системы управления солнечными элементами, приведенной на фиг. 6. [0058] На фиг. 8 приведена примерная блок-схема, иллюстрирующая 5 альтернативный вариант осуществления системы управления солнечными элементами, приведенной на фиг. 6, в котором одна или несколько матриц панелей солнечных элементов подключаются к источнику напряжения через один или несколько переключателей.
[0059] На фиг. 9 приведена примерная блок-схема, иллюстрирующая еще один 10 альтернативный вариант осуществления системы управления солнечными элементами, приведенной на фиг. 4, в котором одна или несколько матриц панелей солнечных элементов подключены к источнику напряжения через один или несколько переключателей.
[0060] На фиг. 10 приведена примерная блок-схема, иллюстрирующая еще один 15 альтернативный вариант осуществления системы управления солнечными элементами, приведенной на фиг. 4, в котором одна или несколько матриц панелей солнечных элементов подключаются как последовательно, так и параллельно в соответствии с компоновкой, показанной на фиг. 2D, и соединяются с источником напряжения через переключатель.
20 [0061] На фиг. 11 приведена примерная блок-схема, иллюстрирующая еще один
альтернативный вариант осуществления системы управления солнечными элементами, приведенной на фиг. 10, в котором одна или несколько матриц панелей солнечных элементов подключены к источнику напряжения через один или несколько переключателей.
25 [0062] На фиг. 12А-В приведены примерные блок-схемы, иллюстрирующие альтернативные варианты осуществления системы управления солнечными элементами, приведенной на фиг. 4, взаимодействующей с матрицей панелей солнечных элементов, приведенной на фиг. 2Е.
[0063] На фиг. 13 приведена примерная блок-схема, иллюстрирующая альтернативный вариант осуществления системы управления солнечными элементами, приведенной на фиг. 5, в котором матрица панелей солнечных элементов подключается последовательно в соответствии с матрицей панелей солнечных 5 элементов, приведенной на фиг. 2В.
[0064] На фиг. 14 приведен график, иллюстрирующий подаваемое напряжение VAPP в зависимости от напряжения на каждой панели солнечных элементов системы управления солнечными элементами, приведенной на фиг. 13. [0065] На фиг. 15А-В приведены примерные блок-схемы, иллюстрирующие 10 альтернативные варианты осуществления системы управления солнечными
элементами, приведенной на фиг. 13, в которых одна или несколько матриц панелей солнечных элементов подключаются к одному или нескольким генераторам импульсов напряжения.
[0066] На фиг. 16 приведена примерная блок-схема, иллюстрирующая 15 альтернативный вариант осуществления системы управления солнечными элементами,
приведенной на фиг. 5, в котором матрица панелей солнечных элементов
подключается согласно компоновке, показанной на фиг. 2С.
[0067] На фиг. 17А-В приведены примерные блок-схемы, иллюстрирующие
альтернативные варианты осуществления системы управления солнечными 20 элементами, приведенной на фиг. 5, в которых матрица панелей солнечных элементов
подключается согласно компоновке, показанной на фиг. 2D.
[0068] На фиг. 18 приведена примерная электрическая схема, иллюстрирующая вариант осуществления схемы повышения импульса для использования с системой управления солнечными элементами, приведенной на фиг. 5. 25 [0069] Следует отметить, что фигуры изображены не в масштабе, и что элементы подобных конструкций или функций, как правило, представлены одинаковыми ссылочными позициями с целью иллюстрации на всех фигурах. Следует также отметить, что фигуры предназначены только для облегчения описания предпочтительных вариантов осуществления. Данные фигуры не отражают каждый
аспект описанных вариантов осуществления и не ограничивают объем настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ
ОСУЩЕСТВЛЕНИЯ
5 [0070] Поскольку имеющиеся в настоящее время системы солнечных элементов не могут максимально увеличить выходную мощность фотоэлектрического элемента, система солнечных элементов, которая увеличивает подвижность электронно-дырочных пар и уменьшает ток при рекомбинации в полупроводниковом материале, может оказаться востребованной и обеспечить основу для широкого диапазона систем
10 солнечных элементов с тем, чтобы повысить коэффициент полезного действия и
выходную мощность солнечных элементов, выполненных в виде панели солнечных элементов. Этот результат может быть достигнут в соответствии с одним вариантом осуществления, раскрытым в данной заявке, с помощью системы 300 управления солнечными элементами, как показано на фиг. 3.
15 [0071] Обращаясь к фиг. 3, система 300 управления солнечными элементами
подходит для использования с широким диапазоном фотоэлектрических устройств. В одном варианте осуществления система 300 управления солнечными элементами может быть пригодна для использования с солнечным элементом 100, показанным на фиг. 1. Например, солнечный элемент 100 может представлять любое подходящее
20 поколение солнечных элементов, таких как элементы на подложке из
кристаллического кремния (первое поколение), тонкопленочные солнечные элементы, включая элементы на основе аморфного кремния (второе поколение), и/или элементы третьего поколения. Система 300 управления солнечными элементами преимущественно может быть использована с любым поколением солнечного
25 элемента 100 без конструкционных изменений и связанных с ними недостатков. [0072] В другом варианте осуществления система 300 управления солнечными элементами может быть пригодна для использования с несколькими солнечными элементами 100, например, с панелями 10 солнечных элементов, показанными на фиг. 2A-D. Как говорилось ранее, несколько солнечных элементов 100 могут быть
соединены вместе (последовательно и/или параллельно), чтобы сформировать панель 10 солнечных элементов. Панели 10 солнечных элементов могут быть установлены на опорной конструкции (не показана) посредством наземной установки, установки на крыше, системы слежения за Солнцем, неподвижных реек и так далее и могут быть 5 использованы как для наземных, так и для космических бортовых применений. Аналогичным образом система 300 управления солнечными элементами преимущественно может быть использована с любым поколением панели 10 солнечных элементов без конструкционных изменений панели 10 солнечных элементов и связанных с ними недостатков.
10 [0073] Как показано на фиг. 3, фотоэлектрическое устройство 200 взаимодействует с электрическим полем 250. В некоторых вариантах осуществления полярность электрического поля 250 может быть подана либо в одинаковом направлении, либо в обратном направлении с полярностью электродов 101а, 101Ь (показаны на фиг. 1) в фотоэлектрическом устройстве 200. Например, если подача электрического поля 250
15 осуществляется в одинаковом направлении с полярностью электродов 101а, 101Ь в фотоэлектрическом устройстве 200, электрическое поле 250 воздействует на электронно-дырочные пары в фотоэлектрическом устройстве 200, прикладывая силу -е'Е или h+E электрону или дырке соответственно, ускоряя тем самым подвижность электрона и дырки в направлении соответствующих электродов. В качестве
20 альтернативы, если полярность электрического поля 250 является обратной, подвижность электронно-дырочных пар в фотоэлектрическом устройстве 200 уменьшается, увеличивая тем самым ток при рекомбинации в фотоэлектрическом устройстве 200. Соответственно, коэффициент полезного действия фотоэлектрического устройства 200 может быть уменьшен по желанию, например, для
25 управления выходной мощностью фотоэлектрического устройства 200.
[0074] Кроме того, электрическое поле 250, подаваемое на фотоэлектрическое устройство 200, может быть по желанию статическим или изменяющимся во времени. В случае, когда электрическое поле 250 изменяется во времени, электрическое поле 250 обладает усредненной по времени величиной, которая отлична от нуля. Выражаясь
по-другому, чистая сила, действующая на электроны и дырки, отлична от нуля для обеспечения повышенной подвижности электронно-дырочных пар фотоэлектрического устройства 200.
[0075] Система 300 управления солнечными элементами может подавать внешнее 5 напряжение VAPP на фотоэлектрическое устройство 200 с использованием любых подходящих средств, описанных в данной заявке, в том числе с использованием переключателя 55, как показано на фиг. 4. Обращаясь к фиг. 4, фотоэлектрическое устройство 200 может представлять любое количество фотоэлектрических устройств, таких как солнечный элемент 100 и/или панели 10 солнечных элементов, как показано.
10 Панели 10 солнечных элементов показаны подключенными параллельно (также
показано на фиг. 2А) и соединены с переключателем 55, например, с однополюсным, двухпозиционным (или на три направления) переключателем. Тем не менее, как будет описано со ссылкой на фиг. 6 и фиг. 8-12, панели 10 солнечных элементов также могут быть соединены последовательно, с сочетанием последовательного и параллельного
15 соединения и независимо друг от друга. В одном варианте осуществления
переключатель 55 также подключен к источнику 50 напряжения и внешней нагрузке RL {например, показанной в виде инвертора 31). Инвертор 31 может содержать как активные, так и реактивные составляющие. В некоторых вариантах осуществления инвертор 31 может преобразовывать постоянные напряжение и ток в переменные
20 напряжение и ток, которые, как правило, совместимы с напряжением и частотой с
традиционными электрическими сетями переменного напряжения. Выходная частота инвертора 31 и амплитуда переменного тока/напряжения может зависеть от страны, местоположения и местных требований сети.
[0076] Источник 50 напряжения может содержать любые подходящие средства для 25 поддержания постоянного напряжения, в том числе идеальные источники напряжения, управляемые источники напряжения и так далее. Тем не менее, в некоторых вариантах осуществления источник 50 напряжения может иметь переменный, регулируемый выходной сигнал {например, изменяющееся во времени напряжение). Орган 45 управления переключателя (или контроллер) подключается к переключателю 55, чтобы
управлять длительностью соединения и/или частотой переключения, например, между источником 50 напряжения и инвертором 31с панелью 10 солнечных элементов. Контроллер 45 переключателя может быть предварительно установлен для работы с фиксированной длительностью D переключения и частотойfпереключения. В 5 некоторых вариантах осуществления величина напряжения VAPP, подаваемого источником 50 напряжения, длительность D подключения и/или частота/ переключения могут быть предварительно установлены и/или изменяться в зависимости от условий нагрузки.
[0077] Например, переключатель 55 подключает панели 10 солнечных элементов к 10 источнику 50 напряжения в первом положении (как показано стрелкой в
переключателе 55 на фиг. 4). При соединении в первом положении источник 50 напряжения подает напряжение VAPP на электроды 101а, 101Ь (показаны на фиг. 1) панелей 10 солнечных элементов и наводит электрическое поле 250 (показано на фиг. 3) на каждую панель 10 солнечных элементов. После того, как электрическое поле 250 15 было сформировано на панели 10 солнечных элементов, переключатель 55
переключается для соединения панелей 10 солнечных элементов с инвертором 31 (т. е. нагрузкой RL) ВО втором положении. Соответственно, источник 50 напряжения может обеспечить электрическое поле 250 без одновременного подключения к панелям 10 солнечных элементов и инвертору 31. Поэтому подача внешнего напряжения VAPP не 20 позволяет нагрузке RL (например, инвертору 31) потреблять ток непосредственно от источника 50 напряжения.
[0078] Подача электрического поля 250 на панели 10 солнечных элементов может увеличить ток и выходную мощность панелей 10 солнечных элементов на заданную величину при соединении впоследствии панелей 10 солнечных элементов с 25 инвертором 31 во втором положении. Предварительно заданная величина зависит от интенсивности света, падающего на панели 10 солнечных элементов, напряжения VAPP, подаваемого на панели 10 солнечных элементов источником 50 напряжения, толщины панелей 10 солнечных элементов, частоты/ с которой источник 50 напряжения соединяется с панелями 10 солнечных элементов, и коэффициента заполнения
процесса переключения между первым положением и вторым положением, при этом коэффициент заполнения определяется как интервал времени, когда панели 10 солнечных элементов соединены с источником 50 напряжения, деленный на время переключения \lf(m. е. умноженный на частотуfили деленный на весь период 5 сигнала). Следует отметить, что время D длительности переключения, частота/ переключения и коэффициент заполнения все являются такими взаимосвязанными величинами, что определение значений любых двух из величин позволяет определить третью величину. Например, установление частоты переключения и коэффициента заполнения позволяет определять время D длительности переключения. Например, в
10 условиях высокой интенсивности света повышение выходной мощности может быть порядка 20%; в условиях низкой освещенности - 50+%. [0079] Вариант осуществления, показанный на фиг. 4, преимущественно обеспечивает электрическое поле 250 на фотоэлектрическом устройстве 200 без необходимости видоизменения панелей 10 солнечных элементов и/или солнечных
15 элементов 100, предусматривающего дополнительные внешние электроды.
[0080] В некоторых вариантах осуществления устройство хранения энергии, такое как конденсатор 41, катушка 42 индуктивности и/или аккумуляторная батарея 43, может быть размещено перед инвертором 31, чтобы уменьшить любые ослабления напряжения, наблюдаемые инвертором 31 в то время, когда переключатель 55
20 находится в первом положении. Соответственно, в то время как инвертор 31 (т.е. нагрузка) отключен от панелей 10 солнечных элементов, когда переключатель 55 находится в первом положении, а электрическое поле 250 формируется на панели 10 солнечных элементов, устройство хранения энергии снабжает энергией инвертор 31, чтобы поддерживать ток, протекающий в течение этого интервала переключения.
25 Выражаясь по-другому, устройство хранения энергии может разряжаться в то время, когда панели 10 солнечных элементов отключены от инвертора 31. [0081] Таким образом, не требуется непрерывно подавать постоянное напряжение от источника 50 напряжения, которое, в свою очередь, создает электрическое поле 250, чтобы увидеть улучшение выходной мощности панелей 10 солнечных элементов.
Например, при длительности времени D переключения, составляющей номинально 102000 не, VAPP, составляющему номинально 100-500+ вольт, и частоте/переключения, составляющей 20 микросекунд, может быть использован коэффициент заполнения, составляющий номинально 0,1-10%. Катушка 42 индуктивности, конденсатор 41 и/или 5 аккумуляторная батарея 43 выбираются таким образом, чтобы иметь достаточный размер для обеспечения достаточного разряда в то время, когда панели 10 солнечных элементов отсоединены, а электрическое поле 250 подается с размещением на панелях 10 солнечных элементов, не вызывая ослабления напряжения на выходе инвертора 31. [0082] На фиг. 5 представлен альтернативный вариант осуществления системы 300
10 управления солнечными элементами, показанной на фиг. 3. Обращаясь к фиг. 5, фотоэлектрическое устройство 200 может представлять любое количество фотоэлектрических устройств, таких как солнечный элемент 100 и/или панели 10 солнечных элементов, как показано. Как показано, панели 10 солнечных элементов соединены параллельно (также показано на фиг. 2А), но также могут быть соединены
15 последовательно и с любым сочетанием соединений, как будет рассмотрено со ссылкой на фиг. 13 и фиг. 15-17.
[0083] Генератор 60 импульсов напряжения, такой как генератор импульсов высокого напряжения, может подавать изменяющийся во времени импульс напряжения на одну или несколько панелей 10 солнечных элементов. В одном
20 варианте осуществления длительность Dp импульса напряжения может быть короткой, номинально 10-2000 не, и величина может быть большой, номинально 100-500+ вольт. В варианте осуществления, показанном на фиг. 5, поданные напряжения, длительность импульса и частота следования импульсов фиксируются на предварительно заданном уровне, чтобы обеспечить оптимальную производительность при выбранных условиях
25 эксплуатации. Например, импульс напряжения может иметь длительность Dp
приблизительно 1000 не, с которой импульс напряжения повторяется с периодом 1/f. Длительность Dp импульса напряжения и частота/импульса напряжения выбираются таким образом, чтобы реактивное сопротивление катушек индуктивности в инверторе 31 напряжения представляло высокое полное сопротивление для генератора 60
импульсов напряжения, это высокое полное сопротивление позволяет высокому напряжению развиваться на электродах 101а, 101Ь (показаны на фиг. 1) панелей 10 солнечных элементов и не быть закороченным инвертором 31.
[0084] Кроме того, на входе инвертора 31 могут быть размещены последовательно 5 включенные катушки индуктивности (не показаны), эти последовательно включенные катушки индуктивности способны поддерживать входной ток инвертора 31 и действовать как высокочастотный дроссель таким образом, чтобы импульсы напряжения не ослаблялись (или фактически не закорачивались) активной составляющей инвертора 31. Коэффициент заполнения (время импульса/время паузы)
10 может составлять номинально 0,1-10%.
[0085] Напряженность электрического поля 250, приложенного на фотоэлектрическое устройство 200, зависит от конструкции фотоэлектрического устройства 200, например, толщины фотоэлектрического устройства 200, материала и диэлектрической проницаемости фотоэлектрического устройства 200, максимального
15 напряжения пробоя фотоэлектрического устройства 200 и так далее.
[0086] Как было описано выше, фотоэлектрическое устройство 200 может содержать любое количество солнечных элементов 100 и/или панелей солнечных элементов 10, при этом каждый солнечный элемент 100 и панель 10 солнечных элементов, например, соединяются параллельно, последовательно и/или с сочетанием
20 этих соединений. В некоторых вариантах осуществления наложение электрического поля 250 на выбранное фотоэлектрическое устройство 200 может учитывать вариации в конструкции фотоэлектрического устройства 200.
[0087] Для каждого варианта установки, описанного со ссылкой на фиг. 2A-D, система 300 управления солнечными элементами может подавать внешнее напряжение 25 VAPP на фотоэлектрическое устройство 200. Например, используя переключатель 55,
приведенный на фиг. 4, система 300 управления солнечными элементами может также подавать внешнее напряжение VAPP на панели 10 солнечных элементов, которые соединены последовательно (как показано на фиг. 2В) и как последовательно, так и параллельно (показано на фиг. 2С). Обращаясь к фиг. 6, панели 10 солнечных
элементов соединяются последовательно и подключаются к переключателю 55, такому как однополюсный, двухпозиционный (или на три направления) переключатель, приведенный на фиг. 4. В одном варианте осуществления переключатель 55 также подключен к источнику 50 напряжения и внешней нагрузке RL {например, показанной 5 в виде инвертора 31).
[0088] На фиг. 6 электрическое поле 250 (показанное на фиг. 3), подаваемое на каждую панель 10 солнечных элементов, должно быть больше, чем предварительно заданное минимальное электрическое поле Ешш. Соответственно, подаваемое внешнее напряжение VAPP, подаваемое на каждую панель 10 солнечных элементов, должно быть
10 больше, чем предварительно заданное минимальное подаваемое напряжение Утщ. В некоторых вариантах осуществления внешнее напряжение VAPP, подаваемое на каждую панель 10 солнечных элементов, также должно быть меньше, чем максимальное подаваемое напряжение Vmax, чтобы избежать пробоя напряжения и повреждения панели 10 солнечных элементов или по меньшей мере повреждения одного или
15 нескольких солнечных элементов 100 панелей 10 солнечных элементов. Выражаясь по-другому, уравнение 1 представляет верхнюю и нижнюю границы подаваемого внешнего напряжения VAPP.
Vmax > VAPP > Vmin > kVP, (Уравнение 1)
20 [0089] В уравнении 1 Vp - выходное напряжение панели 10 солнечных элементов и к - к-ая панель в конструкции. Пока отношение между подаваемым внешним напряжением VAPP и минимальным/максимальным подаваемыми напряжениями в уравнении 1 справедливо, переключатель 55 может эффективно подавать электрическое поле 250 на каждую панель 10 солнечных элементов.
25 [0090] На фиг. 7 проиллюстрировано внешнее напряжение VAPP В зависимости от напряжения, измеренного на каждой последующей панели 10 солнечных элементов (например, между узлом А и узлами В, С... N), показанной на фиг. 6, пока переключатель 55 находится во втором положении. Как показано на фиг. 7,
напряжение на каждой панели 10 солнечных элементов увеличивает выходное напряжение панели 10 солнечных элементов. Например, каждая панель 10 солнечных элементов вырабатывает напряжение, равное приблизительно двадцати четырем вольтам, и напряжение, измеренное между узлом А и любым узлом измерения 5 составляет приблизительно k х 24 вольта, где к - количество панелей 10 солнечных элементов, на которых измеряется напряжение. Если неравенство уравнения 1 не может быть выполнено, вариант осуществления, показанный на фиг. 6, может быть видоизменен, чтобы включать дополнительные переключатели 55. Например, в одном варианте осуществления второй переключатель 55 (переключатель 55Ь) может быть
10 подключен последовательно к панелям 10 солнечных элементов, как показано на фиг. 8. Тем не менее, более чем один переключатель 55 (т.е. переключатель 55а, 55Ь... 55п) может быть подключен к панелям 10 солнечных элементов при необходимости. [0091] Обращаясь к фиг. 8, между источником 50 напряжения и каждой группой панелей 10 солнечных элементов может быть добавлен перекидной переключатель 72.
15 Для упрощения фигур и исключительно с целью иллюстрации, взаимосвязи между
различными точками на фиг. 8 обозначены окаймленными прописными буквами А и В, где А соединяется с А, а В соединяется с В. Перекидной переключатель 72 может представлять собой однополюсный, однопозиционный (на два направления) переключатель. В частности, перекидной переключатель 72 может содержать N
20 входных портов и 1 выходной порт. Перекидной переключатель 72 дополнительно определяет включенное состояние и выключенное состояние. Во включенном состоянии все N входных портов одновременно подключаются к единственному выходному порту. В выключенном состоянии ни один из входных портов не подключается к единственному выходному порту. Перекидной переключатель 72
25 может быть активирован с помощью контроллера 45 переключателя, который также управляет переключателями 55а, 55Ь и так далее. Как показано на фиг. 8, перекидной переключатель 72 обеспечивает обратный электрический путь для источника 50 напряжения, когда переключатели 55 а, 55Ь находятся в первом положении (как описано со ссылкой на фиг. 4). Перекидной переключатель 72 активируется
(переводится во включенное состояние), когда переключатели 55 а, 55 подключаются к источнику 50 напряжения, и электрическое поле 250 (показанное на фиг. 3) подается на панели 10 солнечных элементов. Перекидной переключатель 72 деактивируется (переводится в выключенное состояние), когда панели 10 солнечных элементов 5 обеспечивают питание инвертора 31.
[0092] В предпочтительном варианте осуществления орган управления 45 переключателя может быть синхронизирован таким образом, что переключатели 55 а, 55Ь одновременно устанавливаются в первое положение и подключаются к источнику 50 напряжения, в то время как перекидной переключатель 72 одновременно
10 активируется во включенное состояние. Аналогично этому контроллер 45
переключателя одновременно устанавливает переключатели 55 а, 55Ь во второе положение и также деактивирует перекидной переключатель 72 (переводит в выключенное состояние). В некоторых вариантах осуществления устройство хранения энергии, такое как конденсатор 41, катушка 42 индуктивности и/или аккумуляторная
15 батарея 43, может быть размещено перед инвертором 31, чтобы уменьшить любое ослабление напряжения, наблюдаемое на инверторе 31, пока переключатели 55 а, 55Ь находятся в первом положении.
[0093] Как обсуждалось со ссылкой на фиг. 4, система 300 управления солнечными элементами также может подавать внешнее напряжение VAPP на панели 10 солнечных
20 элементов, которые соединяются параллельно. Обращаясь к фиг. 9, более чем одним переключателем 55 можно управлять с помощью контроллера 45 переключателя. В предпочтительном варианте осуществления каждый из переключателей 55 а, 55Ь может быть синхронизирован с помощью контроллера 45 переключателя, и они могут быть одновременно подключенными и отключенными. Как и ранее устройство хранения
25 энергии, такое как конденсатор 41, катушка 42 индуктивности и/или аккумуляторная батарея 43, может быть размещено перед инвертором 31, чтобы уменьшить любое ослабление напряжения, наблюдаемое на инверторе 31, пока переключатели 55 а, 55Ь находятся в первом положении.
[0094] Используя переключатель 55, приведенный на фиг. 4, система 300 управления солнечными элементами может также подавать внешнее напряжение VAPP на панели 10 солнечных элементов, которые соединены как последовательно, так и параллельно (показано на фиг. 2С). Обращаясь к фиг. 10, две или более панели 10 5 солнечных элементов показаны соединенными последовательно. Затем
последовательно соединенные панели 10 солнечных элементов соединяются между собой параллельно. Количество панелей 10 солнечных элементов, которые соединены последовательно и параллельно, может быть при необходимости предварительно выбрано.
10 [0095] Как показано на фиг. 10, один или несколько переключателей 55 могут быть использованы для подачи электрического поля 250 (показанного на фиг. 3) на панели 10 солнечных элементов. Если используется более одного переключателя 55, панели 10 солнечных элементов могут быть соединены, как показано на фиг. 11. Обращаясь к фиг. 11, последовательно соединенные панели 10 солнечных элементов соединяются
15 параллельно, а затем взаимно подключаются к переключателям 55 а, 5 5Ь. В предпочтительном варианте осуществления контроллер 45 переключателя синхронизирует переключатели 55а, 55Ь, одновременно отключая от инвертора 31. Аналогичным образом контроллер 45 переключателя одновременно подключает оба переключателя 55а, 55Ь к источнику 50 напряжения. В некоторых вариантах
20 осуществления устройство хранения энергии, такое как конденсатор 41, катушка 42 индуктивности и/или аккумуляторная батарея 43, может быть размещено перед инвертором 31, чтобы уменьшить любое ослабление напряжения, наблюдаемое на инверторе 31, пока переключатели 55а, 55Ь находятся в первом положении. [0096] В еще одном варианте осуществления система 300 управления солнечными
25 элементами может взаимодействовать с панелями солнечных элементов, как правило, используемыми часто при установках в жилых помещениях, где каждая из панелей 10 солнечных элементов подключается к своему собственному инвертору 31 (показано на фиг. 2D). Обращаясь к фиг. 12А-В, переключатель 55 может взаимодействовать с каждой панелью 10 солнечных элементов несколькими способами. В одном варианте
осуществления на фиг. 12А показаны переключатель 55, источник 50 напряжения и контроллер 45 переключателя, встроенный в инвертор 31. Поскольку инвертор 31, как правило, подключается к источнику питания, конденсатор 41 может быть размещен внутри инвертора 31. В качестве альтернативы, как показано на фиг. 2D, несколько 5 панелей 10 солнечных элементов, как правило, используются в комбинации, и каждая соединяется со своим собственным инвертором 31 таким образом, что конденсатор 41 не используется. В некоторых вариантах осуществления каждый инвертор 31 работает независимо от всех остальных инверторов 31 таким образом, что переключатель 55 не синхронизируется между инверторами 31. Соответственно, мгновенное пропадание
10 энергии на выбранной панели солнечных элементов заметно не влияет на качество энергии от нескольких панелей 10 солнечных элементов и инверторов 31. [0097] Вариант осуществления, показанный на фиг. 12А, может быть преимущественно нацелен на любой новый ввод в действие панели солнечных элементов. В альтернативном варианте осуществления со ссылкой на фиг. 12В каждая
15 пара панели 10 солнечных элементов и инвертора 31 может содержать свой
собственный переключатель 55а-55п. Каждый переключатель 55 подключается к центральному переключателю 46, который управляется контроллером 72 переключателя, и источнику 50 напряжения.
[0098] Центральный переключатель 46 может предусматривать одновременно два 20 выхода для каждой панели 10 солнечных элементов, каждого переключателя 55 и каждого инвертора 31. Первый выход центрального переключателя 46 содержит А1, В1... N1 и активирует каждый переключатель 55 в первое положение, как описано со ссылкой на фиг. 4. Внешнее напряжение VAPP подается от источника 50 напряжения через второй выход центрального переключателя 46, который содержит А2, B2...N2. 25 [0099] Контроллер 72 переключателя активирует выбранный переключатель 55, по одному за раз, через центральный переключатель 46 и подает внешнее напряжение VAPP ОТ источника 50 напряжения последовательно к каждой паре панели 10 солнечных элементов и инвертора 31. Так как коэффициент заполнения каждого отдельного переключателя 55 является низким, как правило, менее чем 2%, контроллер 72
переключателя управляет и приводит в действие большое количество переключателей 55, панелей 10 солнечных элементов и инверторов 31.
[0100] По данному варианту осуществления нет ограничений, которые бы препятствовали контроллеру 72 переключателя переключать и подключать источник 5 50 напряжения к нескольким панелям 10 солнечных элементов, пока напряжение, подаваемое на каждую панель, больше Vmin. В альтернативном варианте может быть добавлено более одного контроллера 72 переключателя, при этом каждый контроллер 72 переключателя отвечает за предварительно заданное количество панелей 10 солнечных элементов. Каждый контроллер 72 переключателя может работать 10 независимо.
[0101] Как уже говорилось выше со ссылкой на фиг. 5, система 300 управления солнечными элементами может также подавать внешнее напряжение VAPP на фотоэлектрическое устройство 200 с помощью генератора 60 импульсов напряжения для ряда конструкций панелей 10 солнечных элементов. Обращаясь к фиг. 13, схема 60
15 генератора импульсов напряжения подключается к панелям 10 солнечных элементов, соединенным последовательно. Как уже говорилось выше, до тех пор пока неравенство в уравнении 1 удовлетворяется, генератор 60 импульсов напряжения работает, как показано на фиг. 14. На фиг. 14 показано внешнее напряжение VAPP В зависимости от напряжения на каждой последующей последовательно соединенной панели 10
20 солнечных элементов (измеренное между узлом А и каждой панелью 10 солнечных
элементов в узлах В, С... N). Как показано на фиг. 14, напряжение на каждой панели 10 солнечных элементов увеличивает выходное напряжение панели 10 солнечных элементов. Например, каждая панель 10 солнечных элементов вырабатывает напряжение, равное приблизительно двадцати четырем вольтам, и напряжение,
25 измеренное на любой панели 10 солнечных элементов (между узлом А и узлом В, С.. .N) составляет приблизительно k х 24 вольта, где к - количество панелей 10 солнечных элементов, на которых измеряется напряжение. Если неравенство уравнения 1 не может быть удовлетворено, вариант осуществления, показанный на
фиг. 13, может быть видоизменен, чтобы содержать дополнительные генераторы 60 импульсов напряжения.
[0102] Со ссылкой на фиг. 5, чтобы обеспечить максимальную напряженность электрического поля 250 на комплекте солнечных элементов 100 или панелей 10 5 солнечных элементов, система 300 управления солнечными элементами учитывает напряжение постоянного тока, вырабатываемое самостоятельно каждым из солнечных элементов 100 или панелей 10 солнечных элементов. В одном варианте осуществления схема повышения напряжения, такая как схема 90 повышающего инжектора (показана на фиг. 18), может быть использована с генератором 60 импульсов напряжения для
10 наложения импульса напряжения поверх собственного напряжения постоянного тока панелей 10 солнечных элементов. Это наложение импульса напряжения от генератора 60 импульсов напряжения поверх напряжения постоянного тока, вырабатываемого панелями 10 солнечных элементов, может быть выполнено путем создания отрицательного опорного уровня для инжектируемого импульсного сигнала высокого
15 напряжения, который равен положительному напряжению постоянного тока, подаваемому панелями 10 солнечных элементов.
[0103] Обращаясь к фиг. 18, схема 90 повышающего инжектора содержит конденсатор 91, работающий совместно с катушкой 92 индуктивности, позволяет конденсатору 91 удерживать заряд, равный напряжению, подаваемому панелями 10
20 солнечных элементов. Конденсатор 91 и катушка 92 индуктивности создают
повышенный отрицательный опорный уровень для инжектируемого импульсного сигнала высокого напряжения, который подключается к генератору 60 импульсов напряжения через конденсаторы 94 и 95. Положительный опорный уровень от генератора 60 импульсов напряжения подключается через диод 93, который
25 обеспечивает защиту от обратного смещения для линии положительного напряжения, подключенной к интерфейсу, который подключается к панелям 10 солнечных элементов, и интерфейс которых подключается к инвертору 31. С целью обеспечения высокочастотной изоляции, чтобы импульсы напряжения от генератора 60 импульсов напряжения не закорачивались через инвертор 31, и с целью дополнительного
обеспечения высокочастотной изоляции между другими панелями 10 солнечных элементов, подключенными между схемой 90 повышающего инжектора и инвертором 31, катушки индуктивности 96 и 97 могут быть размещены последовательно между инвертором 31 и генератором 60 импульсов напряжения, чтобы обеспечить 5 высокочастотный дроссель для любых высоковольтных импульсов. Катушки индуктивности 96 и 97 ослабляют любой импульс напряжения от генератора 60 импульсов напряжения, проходящий через них, и изолируют генератор 60 импульсов напряжения от остальной части схемы в направлении инвертора 31. [0104] Как показано на фиг. 18, катушка 92 индуктивности обеспечивает защиту
10 высокого реактивного сопротивления для инжектируемого импульсного сигнала высокого напряжения, удерживая сигнал от обратной подачи в конденсатор 91. В результате инжектируемый импульсный сигнал высокого напряжения находится поверх напряжения постоянного тока, подаваемого панелями 10 солнечных элементов, повышается и спадает с напряжением постоянного тока, тем самым обеспечивая
15 максимальный импульс напряжения.
[0105] В предпочтительном варианте осуществления схема 90 повышающего инжектора может быть встроена как часть интерфейса между каждым генератором 60 импульсов напряжения и рядом панелей 10 солнечных элементов. [0106] В некоторых вариантах осуществления может быть использовано более
20 одного генератора 60 импульсов напряжения для предварительно заданного
количества панелей 10 солнечных элементов, как показано на фиг. 15 А. Обращаясь к фиг. 15А, панели 10 солнечных элементов расположены как последовательно, так и параллельно и взаимно подключаются к генераторам 60 импульсов напряжения. Каждый генератор 60 импульсов напряжения отвечает за к панелей и взаимно
25 подключен к инвертору 31. В некоторых вариантах осуществления подобно системе переключения, ранее описанной на фиг. 6 и фиг. 8-11, может быть синхронизировано использование более одного генератора 60 импульсов напряжения. Тем не менее в варианте осуществления, показанном на фиг. 15А, использование более одного генератора 60 импульсов напряжения предпочтительно не требует синхронизации
между различными генераторами 60 импульсов напряжения. Поскольку импульс напряжения от каждого генератора 60 импульсов напряжения является локальным для комплекта панелей 10 солнечных элементов, которые соединены между собой, подача импульса напряжения не влияет на выходную мощность инвертора 31. 5 [0107] Другой вариант осуществления нескольких генераторов импульсов
напряжения для панелей 10 солнечных элементов, соединенных последовательно, показан на фиг. 15В. Обращаясь к фиг. 15В, генератор 60 импульсов напряжения подключается к каждой панели 10 солнечных элементов через последовательный переключатель 70. Последовательный переключатель 70 может содержать N выходных
10 портов для соединения к панелей 10 солнечных элементов, как показано на фиг. 15В. В варианте осуществления, показанном на фиг. 15В, для упрощения фигур и исключительно с целью иллюстрации, взаимосвязи между различными точками в цепи обозначены заглавными буквами А1 и В1, при этом А1 подключается к Al, а В1 подключается к В1 и так далее.
15 [0108] Последовательный переключатель 70 содержит один входной порт, подключенный к генератору 60 импульсов напряжения. N выходных портов последовательного переключателя 70 подключают генератор 60 импульсов напряжения к к панелям 10 в конкретный момент времени. В одном примере последовательный переключатель 70 подключает генератор 60 импульсов напряжения
20 к выходным портам А1 и А2. Генератор 60 импульсов напряжения подает внешнее напряжение VAPP на к панелей 1 солнечных элементов. Последовательный переключатель 70 отключает генератор 60 импульсов напряжения от выходов А1 и А2 и подключает генератор 60 импульсов напряжения к выходам В1 и В2. При активации генератора 60 импульсов напряжения подается импульс напряжения VAPP на к панелей
25 в ветви соединенных последовательно панелей 10 солнечных элементов. Аналогичным образом последовательный переключатель 70 циклически повторяет подачу импульса напряжения VAPP через все порты на к панелей в конкретный момент времени. После того как на все п панелей 10 солнечных элементов, соединенных последовательно, был подан импульс напряжения Карр, последовательный переключатель 70 подключается к
выводам А1 и А2 и процесс повторяется. Таким образом, для подачи импульсов напряжения VAPP на большое количество панелей 10 солнечных элементов может быть использован один генератор 60 импульсов напряжения. Поскольку коэффициент заполнения импульса напряжения является низким, как правило, менее 2%, один 5 генератор 60 импульсов напряжения может управлять несколькими панелями 10 солнечных элементов.
[0109] Обращаясь к фиг. 16, генератор 60 импульсов напряжения взаимодействует с панелями 10 солнечных элементов, соединенными как последовательно, так и параллельно, способом, рассмотренным выше со ссылкой на фиг. 2С. Генератор 60
10 импульсов напряжения подключается к 2к панелям 10 солнечных элементов и
инвертору 31. В большинстве случаев величина последовательного и параллельного сопротивлений (" 1 МОм), встречающаяся в большинстве панелей 10 солнечных элементов, позволяет генератору 60 импульсов напряжения взаимодействовать с большим количеством панелей 10 солнечных элементов.
15 [ОНО] На фиг. 17А и 17В показан генератор 60 импульсов напряжения,
взаимодействующий с типовой панелью 10 солнечных элементов, устанавливаемой в жилых помещениях. В одном варианте осуществления, обращаясь к фиг. 17А, генератор 60 импульсов напряжения встроен в инвертор 31, подключенный на панели 10 солнечных элементов.
20 [0111] На фиг. 17В показан альтернативный вариант осуществления для
взаимодействия с типовой панелью 10 солнечных элементов, устанавливаемой в жилых помещениях, и включает каждую панель 10 солнечных элементов и инвертор 31, подключаемые через последовательный переключатель 70 к центральному генератору 60 импульсов напряжения. Центральный генератор 60 импульсов
25 напряжения подает импульс напряжения VAPP через последовательный переключатель 70 последовательно на каждую из панелей 10 солнечных элементов. Последовательный переключатель 70, приведенный на фиг. 17Ь, показан в виде переключателя Nxl. Последовательный переключатель 70 имеет один входной порт, который подключается к генератору 60 импульсов напряжения, и N выходных портов, которые подключаются
к каждой отдельной панели 10 солнечных элементов, как показано на фиг. 17Ь. Последовательный переключатель 70 поочередно подключает генератор 60 импульсов напряжения к каждой панели 10.
[0112] В одном примере последовательный переключатель 70 подключает 5 генератор 60 импульсов напряжения к выходным портам А1 и А2. При активации генератор 60 импульсов напряжения подает импульс напряжения VAPP на выбранную панель 10 солнечных элементов, соединенную с последовательным переключателем 70. Затем последовательный переключатель 70 отключает генератор 60 импульсов напряжения от выходных портов А1 и А2 и подключает генератор 60 импульсов
10 напряжения к выходным портам В1 и В2. Опять же, при активации генератор 60
импульсов напряжения подает импульс напряжения VAPP на другую выбранную панель 10 солнечных элементов, соединенную с последовательным переключателем 70. Подобным образом последовательный переключатель 70 циклически повторяет подачу импульса напряжения VAPP через все активные порты на выбранную панель 10
15 солнечных элементов в определенный момент времени. После того как на все п панелей 10 солнечных элементов был подан импульс напряжения VAPP, последовательный переключатель 70 вновь подключается к выходным портам А1 и А2, и процесс повторяется. Таким образом, для подачи импульсов напряжения VAPP на большое количество панелей 10 солнечных элементов может быть использован один
20 генератор 60 импульсов напряжения. Так как коэффициент заполнения импульсов напряжения является очень низким, как правило, менее 2%, единственный генератор 60 импульсов напряжения может управлять большим количеством панелей 10 солнечных элементов и инверторов 31.
[0113] По данному варианту осуществления нет ограничений, которые бы 25 препятствовали центральному генератору импульсов высокого напряжения
переключать импульс напряжения на несколько панелей солнечных элементов одновременно, пока напряжение, подаваемое на каждую панель, больше Vmin. Наряду с тем, что существует вариант применения переключателя импульса высокого напряжения для нескольких панелей 10 солнечных элементов одновременно,
предпочтительный вариант осуществления содержит один генератор 60 импульсов напряжения для переключения между панелями 10 солнечных элементов, например, соединенными последовательно. В случае, когда количество панелей 10 солнечных элементов становится больше, могут быть добавлены дополнительные генераторы 60 5 импульсов напряжения и последовательные переключатели 70, при этом каждый
генератор 60 импульсов напряжения отвечает за ряд панелей 10 солнечных элементов. [0114] Описанные варианты осуществления допускают различные модификации и альтернативные формы, и их конкретные примеры были показаны в качестве примера на графических материалах и подробно описаны в данной заявке. Тем не менее следует 10 понимать, что описанные варианты осуществления не должны быть ограничены конкретными формами или раскрытыми способами, но, наоборот, настоящее изобретение охватывает все модификации, эквиваленты и альтернативные варианты.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ управления одним или несколькими фотоэлектрическими устройствами, включающий в себя:
подключение первого порта переключателя к выбранному фотоэлектрическому 5 устройству;
подключение второго порта переключателя к нагрузке, питаемой выбранным фотоэлектрическим устройством;
подключение третьего порта переключателя к источнику напряжения, причем переключатель может работать в первом положении с установлением первого пути 10 тока между выбранным фотоэлектрическим устройством и источником напряжения и во втором положении с установлением второго пути тока между выбранным фотоэлектрическим устройством и нагрузкой;
подачу сигнала напряжения, вырабатываемого источником напряжения, на выбранное фотоэлектрическое устройство, при этом сигнал напряжения имеет первое 15 состояние для генерирования внешнего электрического поля на выбранном фотоэлектрическом устройстве, когда переключатель находится в первом положении, и второе состояние для обеспечения электрической изоляции между источником напряжения и нагрузкой, когда переключатель находится во втором положении;
управление по меньшей мере одним из: частоты и длительности переключения 20 между первым положением и вторым положением в зависимости от условий нагрузки, питаемой выбранным фотоэлектрическим устройством, с помощью контроллера переключателя, подключенного к переключателю.
2. Способ по п. 1, дополнительно включающий в себя:
подключение первого порта второго переключателя ко второму выбранному фотоэлектрическому устройству;
подключение второго порта второго переключателя к нагрузке, при этом 5 нагрузка запитана выбранным фотоэлектрическим устройством и вторым выбранным фотоэлектрическим устройством;
подключение третьего порта второго переключателя к источнику напряжения, причем второй переключатель может работать в первом положении с установлением первого пути тока между вторым выбранным фотоэлектрическим устройством и 10 источником напряжения и во втором положении с установлением второго пути тока между вторым выбранным фотоэлектрическим устройством и нагрузкой; и
подачу сигнала напряжения, вырабатываемого источником напряжения, одновременно как на выбранное фотоэлектрическое устройство, так и на второе выбранное фотоэлектрическое устройство, причем первое состояние для 15 генерирования внешнего электрического поля как на выбранном фотоэлектрическом устройстве, так и на втором выбранном фотоэлектрическом устройстве, когда переключатель и второй переключатель находятся в первом положении, а второе состояние для обеспечения электрической изоляции между источником напряжения и нагрузкой, когда переключатель и второй переключатель находятся во втором 20 положении.
3. Способ по любому из п. 1 или 2, где указанное подключение первого порта переключателя включает в себя подключение первого порта двухпозиционного переключателя к выбранному фотоэлектрическому устройству.
4. Способ по любому из предыдущих пунктов, дополнительно
25 включающий в себя подключение устройства для уменьшения любых ослаблений
напряжения первого состояния между нагрузкой и выбранным фотоэлектрическим устройством.
5. Способ по любому из предыдущих пунктов, где указанная подача
сигнала напряжения включает подачу регулируемого напряжения на выбранное
фотоэлектрическое устройство.
6. Способ по любому из предыдущих пунктов, где указанная подача
5 сигнала напряжения включает в себя подачу второго состояния между соседними
первыми состояниями.
7. Способ по любому из предыдущих пунктов, где указанная подача сигнала напряжения включает в себя подачу сигнала напряжения на выбранное фотоэлектрическое устройство, которое выбрано из множества фотоэлектрических
10 устройств, имеющих последовательную и/или параллельную конфигурацию подключения устройств.
8. Способ по п. 7, где указанная подача сигнала напряжения включает в себя подачу сигнала напряжения на каждое из фотоэлектрических устройств.
9. Способ по любому из предыдущих пунктов, где указанная подача
15 сигнала напряжения включает в себя подачу первого состояния в виде
последовательности импульсов напряжения с положительной величиной и подачу второй составляющей между соседними последовательностями импульсов напряжения, при этом импульсы напряжения представляют собой включенное состояние для генерирования внешнего электрического поля на выбранном 20 фотоэлектрическом устройстве.
10. Способ по п. 9, где указанная подача второго состояния включает в себя подачу второго состояния между соседними импульсами напряжения.
11. Способ по п. 9 или 10, где указанная подача второго состояния включает в себя подачу второго состояния между выбранными соседними импульсами
25 напряжения.
12. Способ по любому из п.п. 9-11, дополнительно включающий в себя
определение величины импульсов напряжения на основании конфигурации
подключения фотоэлектрических устройств.
13. Способ по любому из предыдущих пунктов, где указанная подача
5 сигнала напряжения включает в себя генерирование внешнего электрического поля с
предварительно заданным направлением поля на выбранном фотоэлектрическом устройстве.
14. Способ по п. 13, где указанная подача сигнала напряжения включает в себя генерирование внешнего электрического поля с предварительно заданным
10 направлением поля, совпадающим по направлению с полярностью выбранного фотоэлектрического устройства, для увеличения выходной мощности и/или выходного тока выбранного фотоэлектрического устройства или генерирование внешнего электрического поля с предварительно заданным направлением поля, противоположным по направлению с полярностью выбранного фотоэлектрического
15 устройства для уменьшения выходной мощности и/или выходного тока выбранного фотоэлектрического устройства.
15. Способ по любому из предыдущих пунктов, дополнительно включающий в себя преобразование постоянного напряжения и/или тока, сгенерированных выбранным фотоэлектрическим устройством, в переменное
20 напряжение и/или ток через нагрузку.
16. Способ по п. 15, где нагрузка является внешней для выбранного фотоэлектрического устройства.
17. Способ по п. 15 или 16, где нагрузка включает в себя инвертор.
18. Способ по любому из п.п. 15-17, дополнительно включающий в себя
25 электрическую изоляцию выбранного фотоэлектрического устройства от нагрузки в
высокочастотной области.
19. Способ по п. 18, где электрическая изоляция обеспечивается
посредством по меньшей мере одной катушки индуктивности, по меньшей мере одного
конденсатора, по меньшей мере одной аккумуляторной батареи или их комбинации.
20. Способ по любому из предыдущих пунктов, где указанная подача
5 сигнала напряжения включает в себя подачу первого состояния на выбранное
фотоэлектрическое устройство без конструкционных изменений выбранного фотоэлектрического устройства.
21. Способ по п. 20, где указанная подача сигнала напряжения включает в себя подачу первого состояния сигнала напряжения на выбранное фотоэлектрическое
10 устройство через существующие электроды выбранного фотоэлектрического устройства.
22. Система для управления одним или несколькими фотоэлектрическими устройствами в соответствии со способом по пунктам 1-21, включающая в себя средства переключения напряжения, содержащие первый порт, подключенный к
15 выбранному фотоэлектрическому устройству; второй порт, подключенный к нагрузке,
питаемой выбранным фотоэлектрическим устройством; и третий порт, подключенный
к источнику напряжения,
при этом указанные средства переключения напряжения выполнены с
возможностью работы в первом положении с установлением первого пути тока между 20 выбранным фотоэлектрическим устройством и источником напряжения и во втором
положении с установлением второго пути тока между выбранным фотоэлектрическим
устройством и нагрузкой,
а сигнал напряжения, вырабатываемый источником напряжения, подается на
выбранное фотоэлектрическое устройство, при этом сигнал напряжения имеет первое 25 состояние для генерирования внешнего электрического поля на выбранном
фотоэлектрическом устройстве, когда средства переключения напряжения находятся в
первом положении, и второе состояние для обеспечения электрической изоляции
между источником напряжения и нагрузкой, когда средства переключения напряжения находятся во втором положении.
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Известный уровень техники
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
.Инвертор мощности "постоянного -тока/переменного "тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Известный уровень техники
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Инвертор
'мощности
^постоянного
¦тока/переменного
•тока
lrl
2г1
Зг1
nrl
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
lrn
2гп
Згп
nrn
Известный уровень техники
Фотоэлектрическая панель
Инвертор мощности постоянного тока/переменного
Фотоэлектрическая панель
Инвертор мощности постоянного тока/переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Выход переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Выход переменного тока
Фотоэлектрическая панель
Инвертор мощности постоянного тока/переменного
Фотоэлектрическая панель
Инвертор мощности постоянного тока/переменного
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Выход переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Выход переменного тока
Электрическое поле
250
?
Фотоэлектрическое устройство
300
200
Vvy
Орган управления переключателя
Аккумуляторная батарея
300
200
-Инвертор мощности "постоянного .тока/переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Панель
Орган управления переключателя
Ууправления
Источник напряжения
3-позиционный
переключатель
55а
Конденсатор
ГГ^Г
Катушка индуктивности
Инвертор мощности постоянного I тока/переменного
Внутренняя индуетивность инвертора ПОСТОЯННОГО тока/переменного тока
Переключатель 72
(А>
j-позиционный
переключатель
55Ь
Фотоэлект-
Фотоэлект-
рическая
рическая
панель
панель
••••
••••
Фотоэлектрическая панель
Аккумуляторная батарея
Источник напряжения
Орган управления переключателя
Ууправления
Источник напряжения
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
mm mm
Фотоэлектрическая панель
I V
Инвертор мощности постоянного ' тока/переменного тока
Аккумуляторная батарея
Орган управления переключателя
Ууправления
3-позицион-
ный переключа-
тель
55а
Конденсатор
Катушка индуктивности
Источник напряжения
Инвертор мощности постоянного ¦тока/переменного
55Ь
Фотоэлектрическая панель
Фотоэлектрическая панель
••••
Фотоэлектрическая панель
Фотоэлектрическая панель
••••
Фотоэлектрическая панель
Фотоэлектрическая панель
Аккумуляторная батарея 43
••••
Источник напряжения
Vyn
)авл( ния
Фотоэлектрическая
Орган управления переключателя
Инвертор мощности постоянного тока/переменного
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Выход переменного тока
Орган управления переключателя
Источник напряжения
Nxl
Переключатель
А1 А2
N2 7JT
Выход переменного тока
Выход переменного
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Генератор импульсов напряжения
Инвертор мощности постоянного . тока/переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
в ; с з
••••
Панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Генератор импульсов напряжения
Генератор импульсов напряжения
Инвертор мощности постоянного - тока/переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
_?к_
Фотоэлектрическая панель
Фотоэлектрическая панель
Фотоэлектрическая панель
Инвертор мощности постоянного - тока/переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
ы е
Фотоэлектрическая
Фотоэлектрическая
Фотоэлектрическая
А2 В1 В2
Nx1
Переключатель
Генератор импульсов напряжения
N1 N2 60
Фотоэлектрическая
Фотоэлектрическая • •••
Фотоэлектрическая панель
Генератор импульсов напряжения
Инвертор мощности постоянного ; тока/переменного тока
Внутренняя индуктивность
инвертора постоянного
тока/переменного тока
Фотоэлектрическая панель
Фотоэлектрическая панель
••••
Фотоэлектрическая панель
Фотоэлектрическая панель
Генератор импульсов напряжения
Фотоэлектрическая
Инвертор мощности постоянного г тока/переменного тока
Внутренняя индуктивность инвертора постоянного тока/переменного тока
Инвертор мощности постоянного " тока/переменного тока
N X 1
Переключатель
Генератор импульсов напряжения
Панель солнечных элементов
INTERNATIONAL SEARCH REPORT
International application No
PCT/US2015/018552
A. CLASSIFICATION OF SUBJECT MATTER
INV. H02J3/38 H02J7/35 H01L31/02 H82S40/32
ADD.
Aooordinfl to I "rternatienal Patent Claseifwatien (IPC) or to both national otaaBifioation flftd IfeC
B. FIELDS SEARCHED
Minimum doaum^ntatian aearahed (eiaaaififtatiari ayetem followed by etaeefisatson symbols)
H02J H01L HD2S
Dooumeintatoi eeamhed other than minimum documentation to the eattent that euoh documents are included in the fields searched
Electronic date oaae consulted during the internationai search (name at ddls baae Kid, where praotisobhs, search terma used)
EPO-lnternal, KPI Data
C. DOCUMENTS CONSIDE RED TO BE BE LEV ANT
Category" Dftation of document, with indication, where appropriate, of trie relevant passages
Relevant to claim No.
US 2012/006408 Al (EL-GH0R0URY HUSSEIN S [US] ET AL) 12 January 2012 (2012-01-12) paragraphs [0062], [007G]- [G072], [0091]; claims 1, 4, 5; figures 5A, 5B, 7D" 9A, 9C
DE 20 2012 011176 Ul (PRYWEREK KARL HEINZ [DE]} 28 March 2013 (2013-03-28) the whole document
1-11
1,9
W0 2012/162268 A2 (S0LEXEL IMC [US]; ZINGHER ARTHUR R [US]) 29 November 2012 (2812-11-29) claim 1
1,9
Rmher documents are listed in the continuation of Box C,
See patent family annex.
* Special categories ol cited documents :
"A" document defining tha general stat* of the art which is not considered
to be of particular relevanoe
"E" earsieroppi oation or patent but puolisiec ал or after the international filing data
V document which may throw doubts on priarrty claim (e) or which is cited tc establish the publication date of another citation or other epeoiai reason (m apsoified)
"O" document referring to an orai diaob*ure, иве, exhtoitbn or other
means
"P* document published prior to th e intema'jona] filing date but later tfian the priority date claimed
*T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand
the principle or theory underlying the invention
*X* document of particular relevance: the claimed invention cannot be sxsnsidered novel or cannot toe oorwdered to involve an inventive step when the document is taken atone
"V" document of particular relevance; the claimed invention cannot be considered to involve an inventive etep when the document ia combined with one or more other such documents, suoh combination being obvious to a person skilled in the art
"Jo*um*frt member" of the e &ma patent family
Date of the actual completion of the international search
Date of failing of tie international March report
23 June 2015
29/06/2015
Name and mailing address of the ISA/
European Patent Office. P 3 6818 PatenHaan 2 NL - 2280 HV Rijewijk Tel. (+31-70) 340-2040, Fax- (+31-70) 340-3016
Authorized officer
Meyer, Andreas Hans
hc-rm PJI /!iiAr^1 (19)
(19)
(19)
Фиг. 2А
Фиг. 2А
Фиг. 2А
Фиг. 2А
Фиг. 2А
Фиг. 2А
Фиг. 2В
Фиг. 2В
Фиг. 2В
Фиг. 2В
Фиг. 2В
Фиг. 2В
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2С
Фиг. 2D
Фиг. 2D
Фиг. 2D
Фиг. 2D
Фиг. 2D
Фиг. 2D
Фиг. 3
Фиг. 3
200
200
Фиг. 4
Фиг. 4
Фиг. 5
Фиг. 5
Фиг. 5
Фиг. 5
Фиг. 5
Фиг. 5
Фиг. 6
Фиг. 6
Фиг. 8
Фиг. 8
Фиг. 8
Фиг. 8
Фиг. 8
Фиг. 8
Фиг. 8
Фиг. 8
Фиг. 9
Фиг. 9
Фиг. 10
Фиг. 10
Фиг. 10
Фиг. 10
Фиг. 11
Фиг. 11
Фиг. 11
Фиг. 11
Фиг. 11
Фиг. 11
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12А
Фиг. 12В
Фиг. 12В
Фиг. 13
Фиг. 13
Фиг. 13
Фиг. 13
Фиг. 14
Фиг. 14
Фиг. 14
Фиг. 14
Фиг. 14
Фиг. 14
Фиг. 15А
Фиг. 15А
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 15В
Фиг. 16
Фиг. 16
Фиг. 16
Фиг. 16
Фиг. 17А
Фиг. 17А
Фиг. 17А
Фиг. 17А
Фиг. 17В
Фиг. 17В
Фиг. 17В
Фиг. 17В
Фиг. 18
Фиг. 18
Фиг. 18
Фиг. 18