EA201700145A1 20180928 Номер и дата охранного документа [PDF] EAPO2018\PDF/201700145 Полный текст описания [**] EA201700145 20170410 Регистрационный номер и дата заявки RU2016133164 20170323 Регистрационные номера и даты приоритетных заявок EAA1 Код вида документа [PDF] eaa21809 Номер бюллетеня [**] УСТРОЙСТВО С ЗАМКНУТЫМ ЦИКЛОМ ВОДОСНАБЖЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ ТОВАРНЫХ ПОРОД РЫБ Название документа [8] A01K 61/00 Индексы МПК [RU] Дубровин Евгений Геннадьевич, [RU] Киташин Юрий Александрович, [RU] Якушев Дмитрий Леонидович, [RU] Киташин Олег Юрьевич, [RU] Дубровин Дмитрий Евгеньевич Сведения об авторах [RU] ДУБРОВИН ЕВГЕНИЙ ГЕННАДЬЕВИЧ, [RU] КИТАШИН ЮРИЙ АЛЕКСАНДРОВИЧ, [RU] ЯКУШЕВ ДМИТРИЙ ЛЕОНИДОВИЧ, [RU] КИТАШИН ОЛЕГ ЮРЬЕВИЧ, [RU] ДУБРОВИН ДМИТРИЙ ЕВГЕНЬЕВИЧ Сведения о заявителях
 

Патентная документация ЕАПВ

 
Запрос:  ea201700145a*\id

больше ...

Термины запроса в документе

Реферат

[RU]

Изобретение относится к отрасли промышленного рыбоводства и может быть использовано для выращивания товарных пород рыб в установках с замкнутым циклом водоснабжения. Предлагаемое устройство состоит из взаимодействующих между собой посредством водопроводов и информационно-коммутационных каналов блоков выращивания гидробионтов, стабилизационного водяного танка, блока механической фильтрации, блока биологического обогащения воды, денитрификационного биофильтра, нитрификационного биофильтра, канала аэрации, блока ультрафиолетового облучения, бойлера, блока стабилизации рН воды, насоса, первого воздушного компрессора, рыбных танков, резервного танка для воды, второго воздушного компрессора, блока подачи свежей воды, блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, первого затвора, второго затвора, третьего затвора, блока уровневой автоматики, включающего в свой состав IBM совместимый компьютер, блока слежения и управления параметрами воды, насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, смесителя, насоса блока биологического обогащения воды и насоса резервного танка воды. На IBM совместимом компьютере блока управления уровневой автоматики инсталлирована, помимо операционной системы, программа для ЭВМ "ПРОГРАММА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ В СОВРЕМЕННЫХ РЫБОВОДНЫХ КОМПЛЕКСАХ". Технический результат, ожидаемый от использования заявляемого устройства, состоит в повышении уровня посадки товарных пород рыб.


Полный текст патента

(57) Реферат / Формула:

Изобретение относится к отрасли промышленного рыбоводства и может быть использовано для выращивания товарных пород рыб в установках с замкнутым циклом водоснабжения. Предлагаемое устройство состоит из взаимодействующих между собой посредством водопроводов и информационно-коммутационных каналов блоков выращивания гидробионтов, стабилизационного водяного танка, блока механической фильтрации, блока биологического обогащения воды, денитрификационного биофильтра, нитрификационного биофильтра, канала аэрации, блока ультрафиолетового облучения, бойлера, блока стабилизации рН воды, насоса, первого воздушного компрессора, рыбных танков, резервного танка для воды, второго воздушного компрессора, блока подачи свежей воды, блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, первого затвора, второго затвора, третьего затвора, блока уровневой автоматики, включающего в свой состав IBM совместимый компьютер, блока слежения и управления параметрами воды, насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, смесителя, насоса блока биологического обогащения воды и насоса резервного танка воды. На IBM совместимом компьютере блока управления уровневой автоматики инсталлирована, помимо операционной системы, программа для ЭВМ "ПРОГРАММА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ В СОВРЕМЕННЫХ РЫБОВОДНЫХ КОМПЛЕКСАХ". Технический результат, ожидаемый от использования заявляемого устройства, состоит в повышении уровня посадки товарных пород рыб.


Евразийское (21) 201700145 (13) A1
патентное
ведомство
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ
(43) Дата публикации заявки 2018.09.28
(22) Дата подачи заявки 2017.04.10
(51) Int. Cl. A01K61/00 (2017.01)
(54) УСТРОЙСТВО С ЗАМКНУТЫМ ЦИКЛОМ ВОДОСНАБЖЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ ТОВАРНЫХ ПОРОД РЫБ
(31) 2016133164
(32) 2017.03.23
(33) RU
(71)(72) Заявитель и изобретатель: ДУБРОВИН ЕВГЕНИЙ ГЕННАДЬЕВИЧ; КИТАШИН ЮРИЙ АЛЕКСАНДРОВИЧ; ЯКУШЕВ
ДМИТРИЙ ЛЕОНИДОВИЧ; КИТАШИН ОЛЕГ ЮРЬЕВИЧ; ДУБРОВИН ДМИТРИЙ
ЕВГЕНЬЕВИЧ (RU)
(74) Представитель:
Богданова Г.И. (RU)
(57) Изобретение относится к отрасли промышленного рыбоводства и может быть использовано для выращивания товарных пород рыб в установках с замкнутым циклом водоснабжения. Предлагаемое устройство состоит из взаимодействующих между собой посредством водопроводов и информационно-коммутационных каналов блоков выращивания гидробионтов, стабилизационного водяного танка, блока механической фильтрации, блока биологического обогащения воды, денитрифи-кационного биофильтра, нитрификационного биофильтра, канала аэрации, блока ультрафиолетового облучения, бойлера, блока стабилизации рН воды, насоса, первого воздушного компрессора, рыбных танков, резервного танка для воды, второго воздушного компрессора, блока подачи свежей воды, блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрифи- I кационного биофильтра, первого затвора, второго затвора, третьего затвора, блока уровневой автоматики, включающего в свой состав IBM совместимый компьютер, блока слежения и управления параметрами воды, насоса откачки осадочных фракций из блока биологического обогащения воды, де-нитрификационного биофильтра и нитрификаци-онного биофильтра, смесителя, насоса блока биологического обогащения воды и насоса резервного танка воды. На IBM совместимом компьютере блока управления уровневой автоматики инсталлирована, помимо операционной системы, программа для ЭВМ "ПРОГРАММА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ В СОВРЕМЕННЫХ РЫБОВОДНЫХ КОМПЛЕКСАХ". Технический результат, ожидаемый от использования заявляемого устройства, состоит в повышении уровня посадки товарных пород рыб.
УСТРОЙСТВО С ЗАМКНУТЫМ ЦИКЛОМ ВОДОСНАБЖЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ ТОВАРНЫХ ПОРОД РЫБ
Изобретение относится к отрасли промышленного рыбоводства и может быть использовано для выращивания товарных пород рыб в условиях замкнутого цикла водоснабжения.
Из уровня техники известно устройство с замкнутым циклом водоснабжения (Патент РФ № 129762, МПК: А01К 61/00, опуб. 10.03.2013 г., Бюл. № 19). Известное устройство состоит из водоочистного сооружения, рыбоводных бассейнов (или лотков), оксигенератора, терморегулятора, центробежного насоса и бака-отстойника, при этом очистное сооружение образовано водонапорным баком, погружных биофильтров и аэратора-потокообразователя. Аэратор-потокообразователь расположен так, что создаваемый им поток направлен на переднюю поперечную стенку упомянутого бака, при встрече с которой он дробится, получает дополнительную порцию кислорода, изменяет направление движения на противоположное, создает в баке возвратно-поступательное движение одного и того же небольшого объема воды от аэратора-потокообразователя к передней поперечной стенке, а от нее к задней стенке и обратно. Таким образом, в баке образует водоворотное течение насыщающее кислородом воду, также увеличивается время контакта пузырьков воздуха с водой и повышается эффективность использования кислорода. При этом из воды удаляются гидроокись железа, свободная углекислота, сероводород, перемешиваются иловые смеси и минерализуются растворенные в воде органические вещества. Вода из водонапорный бака самотеком поступает в оксигенератор, из него в рыбоводные бассейны и в бак-отстойник, затем насосомподается в водонапорный бак. Погружные биопакеты расположены вдоль стенок водонапорного бака в водоворотном потоке насыщенной кислородом воды.
Недостатком этого устройства является низкая плотность посадки выращиваемой рыбы.
Наиболее близким по технической сущности и достигаемому результату к Предлагаемому устройству является устройство с замкнутым циклом водоснабжения для выращивания осетровых пород рыб (Полезная модель РФ № 153081, МПК А01К 61/00, опуб. 10.07.2015 г., Бюл. № 19). Это известное устройство характеризуется наличием стабилизационного водяного танка, снабжённого четырьмя выходами и четырьмя входами, блока механической фильтрации, снабженного четырьмя выходами и одним входом, блока биологического обогащения воды, снабженного двумя выходами и двумя входами,
денитрификационного биофильтра, снабженного двумя входами и двумя выходами, нитрификационного биофильтра, снабженного одним выходом и двумя входами, канала аэрации, снабженного тремя выходами, одним информационно-коммутационным выходом и шестью входами, блока ультрафиолетового облучения, снабженного одним выходом, одним входом и одним информационно-коммутационным входом, бойлера, снабженного одним выходом, одним входом и однйм информационно-коммутационным входом, блока стабилизации рН воды, снабженного одним информационно-коммутационным выходом и одним информационно-коммутационным входом, главного насоса, снабженного одним выходом и одним входом, первого воздушного компрессора, снабженного тремя выходами, по меньшей мере, одного рыбного танка, снабженного двумя выходами и двумя входами, резервного танка для воды, снабженного одним выходом, одним входом, одним информационно-коммутационным входом и одним информационно-коммутационным выходом, второго воздушного компрессора, снабженного одним выходом, блока подачи свежей воды, снабженного одним выходом, блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, снабженного двумя входами, первого затвора, снабженного одним выходом, одним входом и одним информационно-коммутационным входом, второго затвора, снабженного одним выходом, одним входом и одним информационно-коммутационным входом, третьего затвора, снабженного двумя выходами, одним входом и одним информационно-коммутационным входом, блока уровневой автоматики, снабженного четырьмя информационно-коммутационными входами и пятью информационно-коммутационными выходами, блока слежения и управления параметрами воды, снабженного тремя информационно-коммутационными выходами и одним информационно-коммутационным входом, насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, снабженного одним выходом и тремя входами, при этом первый выход стабилизационного водяного танка соединен с первым входом блока биологического обогащения воды, второй выход стабилизационного водяного танка соединен с входом блока механической фильтрации, третий выход стабилизационного водяного танка соединен с первым входом первого затвора, первый вход стабилизационного водяного танка соединен с первым выходом денитрификационного биофильтра, второй вход стабилизационного водяного танка информационно-коммутационно соединён с первым выходом блока уровневой автоматики, третий вход стабилизационного водяного танка соединен с первым выходом, по меньшей мере, одного рыбного танка, четвёртый вход стабилизационного водяного танка соединен с выходом резервного танка для воды, четвертый выход стабилизационного водяного танка информационно-коммутационно соединен с первым входом блока уровневой
автоматики, первый выход блока механической фильтрации соединен со входом второго затвора, второй выход блока механической фильтрации соединен со входом третьего затвора, третий выход блока механической фильтрации соединен со вторым входом блока биологического обогащения воды, информационно-коммутационный выход блока механической фильтрации соединен со вторым входом блока уровневой автоматики, первый выход блока биологического обогащения воды соединен с первым входом денитрификационного фильтра, а второй выход блока биологического обогащения воды соединен с первым входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, второй выход денитрификационного фильтра соединен со вторым входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, выход нитрификационного биофильтра соединен с третьим входом канала аэрации, первый вход канала аэрации соединён с выходом блока подачи свежей воды, второй вход нитрификационного биофильтра соединен с первым выходом третьего затвора, второй выход которого соединен с третьим входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, выход которого соединен со вторым входом блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра, а первый вход блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтр соединен с первым выходом канала аэрации, второй выход канала аэрации соединён со входом блока ультрафиолетового облучения, второй вход блока ультрафиолетового облучения информационно-коммутационно соединён с первым выходом блока слежения и управления параметрами воды, выход блока ультрафиолетового облучения соединён со входом бойлера, второй вход которого информационно-коммутационно соединен с третьим выходом блока слежения и управления параметрами воды, вход блока слежения и управления параметрами воды информационно-коммутационно соединён с третьим выходом канала аэрации, второй выход блока слежения и управления параметрами воды информационно-коммутационно соединен со входом блока стабилизации рН воды, выход которого информационно-коммутационно соединён с шестым входом канала аэрации, а выход бойлера соединен с входом главного насоса, выход главного насоса соединён с первым входом, по меньшей мере, одного рыбного танка, первый выход первого воздушного компрессора соединён со вторым входом денитрификационного биофильтра, второй выход первого воздушного компрессора соединен с первым входом нитрификационного биофильтра, третий выход первого воздушного компрессора соединен со вторым входом канала аэрации, выход второго воздушного компрессора
соединён со вторым входом, по меньшей мере, одного рыбного танка, второй выход, по меньшей мере, одного рыбного танка соединен с первым входом резервного танка для воды, первый выход которого соединен с четвертым входом стабилизационного водяного танка, второй выход резервного танка для воды информационно-коммутационно соединен с третьим входом блока уровневой автоматики, а второй вход резервного танка для воды информационно-коммутационно соединён со вторым выходом блока уровневой автоматики, третий выход блока уровневой автоматики информационно-коммутационно соединен со вторым входом первого затвора, выход которого соединён с четвертым входом канала аэрации, четвертый выход блока уровневой автоматики информационно-коммутационно соединён со вторым входом второго затвора, выход которого соединён с пятым входом канала аэрации, пятый выход блока уровневой автоматики информационно-коммутационно соединен со вторым входом третьего затвора, второй вход блока уровневой автоматики информационно-коммутационно соединен с четвертым выходом канала аэрации.
Этот наиболее близкий аналог принимается в качестве устройства-прототипа.
Недостаток устройства-прототипа заключается в низком уровне посадки товарных пород рыб.
Задача, на решение которой направлено Предлагаемое техническое решение, заключается в создании средства, обеспечивающего выращивание товарных пород рыб в установках замкнутого водоснабжения с большой экономической эффективностью и высокой степенью экологической безопасности.
Технический результат, ожидаемый от использования заяв;гяемого устройство состоит в повышении уровня посадки товарных пород рыб.
Заявленный технический результат достигается тем, что в устройстве с замкнутым циклом водоснабжения для выращивания товарных пород рыб, характеризующимся наличием, по меньшей мере, первого 1.1(Фиг.1-Фиг.З) и второго 1.2(Фиг.1-Фиг.З) блоков выращивания гидробионтов, которые взаимодействую между собой посредством принудительного обмена водой через смеситель 37(Фиг.1), каждый блок выращивания гидробионтов образован стабилизационным водяным танком 1.5(Фиг.4), снабжённым первым, вторым и третьим входами, и первым, вторым и третьим выходами, одним информационно-коммутационным входом и одним информационно-коммутационным выходом, блоком механической фильтрации 2(Фиг.4), снабженным первым, вторым, и третьим выходами, одним входом и одним информационно-коммутационным входом и одним информационно-коммутационным выходом, блоком биологического обогащения воды 3(Фиг.4), снабженным первым и вторым выходами и первым и вторым входами,
денитрификационным биофильтром 4(Фиг.4), снабженным первым и вторым выходами и первым и вторым входами, нитрификационным биофильтром 5(Фиг.4), снабженным первым и вторым выходами и первым и вторым входами, каналом аэрации 6(Фиг.4), снабженным первым и вторым выходами, первым и вторым информационно-коммутационными выходами и первым, вторым, третьим, четвертым, пятым и шестым входами, блоком ультрафиолетового облучения 7(Фиг.4), снабженным входом, одним информационно-коммутационным входом и выходом, бойлером 8(Фиг.4), снабженным одним выходом, одним входом и одним информационно-коммутационным входом, блоком стабилизации рН воды 9(Фиг.4), снабженным выходом и информационно-коммутационным входом, насосом 10(Фиг.4), снабженным информационно-коммутационным входом, одним входом и одним выходом, первым воздушным компрессором 11 (Фиг.4), снабженным первым, вторым и третьим выходами, и одним информационно-коммутационным входом, по меньшей мере, одним рыбным танком 12-26(Фиг.4), снабженным первым, вторым и третьим входами, одним информационно-коммутационным входом и первым и вторым выходами, резервным танком для воды 27(Фиг.4), снабженного входом и выходом, вторым воздушным компрессором 28(Фиг.4), снабженным информационно-коммутационным входом и одним выходом, блоком подачи свежей воды 29(Фиг.4), снабженным информационно-коммутационным входом, и первым и вторым выходами, блоком отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 30(Фиг.4), снабженным первым и вторым входами, первым затвором 31 (Фиг.4), снабженным выходом, входом и информационно-коммутационным входом, вторым затвором 32(Фиг.4), снабженным выходом, входом и информационно-коммутационным входом, третьим затвором 33 (Фиг.4), снабженным выходом, входом и информационно-коммутационным входом, блоком уровневой автоматики 34(Фиг.4), снабженным первым, вторым, третьим и четвертым информационно-коммутационными входами, первым, вторым, третьим, четвёртым и пятым информационно-коммутационными выходами, и первым и вторым информационно-коммуникационным входом-выходом, блоком слежения и управления параметрами воды 35(Фиг.4), снабженным первым, вторым, третьим и четвертым информационно-коммутационными выходами, информационно-коммутационным входам и информационно-коммутационным входом - выходом, насосом откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), снабженным одним выходом, первым, вторым и третьим входами и одним информационно-коммутационным входом, насосом блока биологического обогащения воды 38(Фиг.4), снабженным входом, выходом и информационно-коммутационным входом, при этом третий выход стабилизационного водяного танка 1.5 (Фиг.4) соединен с вторым входом блока биологического обогащения
воды 3(Фиг.4), второй выход стабилизационного водяного танка 1.5(Фиг.4) соединен с первым входом блока механической фильтрации 2(Фиг.4), информационно-коммутационный выход которого связан с вторым информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), а информационно-коммутационный вход блока механической фильтрации 2(Фиг.4) связан с вторым выходом блока уровневой автоматики 34(Фиг.4), первый выход стабилизационного водяного танка 1.5(Фиг.4) соединен с входом первого затвора 31 (Фиг.4), информационно-коммутационный вход которого связан с третьим информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), информационно-коммутационный выход стабилизационного водяного танка 1.5(Фиг.4) соединен с первым информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), второй вход стабилизационного водяного танка 1.5(Фиг.4) соединен с вторым выходом из смесителя 37(Фиг.4), третий вход стабилизационного водяного танка 1.5 (Фиг.4) соединен с первым выходом денитрификационного биофильтра 4(Фиг.4), второй выход денитрификационного биофильтра 4(Фиг.4) соединен с вторым входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), информационно-коммутационный вход стабилизационного водяного танка 1.5(Фиг.4) соединён с первым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), третий выход блока механической фильтрации 2(Фиг.4) соединен с входом второго затвора 32(Фиг.4), информационно-коммутационный вход которого соединен с четвертым информационно-коммутационным выходом блока уровневой автоматики 34 (Фиг,4), второй выход блока механической фильтрации 2(Фиг.4) соединен с входом третьего затвора 33(Фиг.4), информационно-коммутационный вход которого соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), первый выход блока механической фильтрации 2(Фиг.4) соединен с первым входом блока биологического обогащения воды 3(Фиг.4), первый выход блока биологического обогащения воды 3(Фиг.4) соединен с входом насоса блока биологического обогащения воды 38(Фиг.4), выход которого соединен с вторым входом денитрификационного биофильтра 4(Фиг.4), а его информационно-коммутационный вход соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), второй выход блока биологического обогащения воды 3(Фиг.4) соединён с третьим входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), информационно-коммутационный вход которого соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), выход третьего затвора 33(Фиг.4) соединен с первым входом нитрификационного биофильтра 5(Фиг.4), второй вход нитрификационного биофильтра 5(Фиг.4) соединен с первым выходом первого воздушного
компрессора 11 (Фиг.4), первый выход нитрификационного биофильтра 5(Фиг.4) соединен с первым входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), второй выход нитрификационного биофильтра 5(Фиг.4) соединен с четвертым входом канала аэрации 6(Фиг.4), второй выход первого воздушного компрессора 11 (Фиг.4) соединен с пятым входом канала аэрации 6(Фиг.4), третий выход первого воздушного компрессора 11 (Фиг.4) соединен с первым входом денитрификационного биофильтра 4(Фиг.4), информационно-коммутационный вход первого воздушного компрессора 11 (Фиг.4) соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), выход первого затвора 31 (Фиг.4) соединен с третьим входом канала аэрации 6(Фиг.4), выход второго затвора 32(Фиг.4) соединен с вторым входом канала аэрации 6(Фиг.4), второй выход блока подачи свежей воды 29(Фиг.4) соединен с шестым входом канала аэрации 6(Фиг.4), первый выход блока подачи свежей воды 29(Фиг.4) соединен с третьим входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), информационно-коммутационный вход блока подачи свежей воды 29(Фиг.4) связан с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), второй выход канала аэрации 6(Фиг.4) соединен с первым входом блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 30(Фиг.4), второй вход блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 30(Фиг.4) соединен с выходом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), первый вход канала аэрации 6(Фиг.4) соединен с выходом блока стабилизации рН 9(Фиг.4), первый информационно-коммутационный выход канала аэрации 6(Фиг.4) информационно-коммутационно связан с четвертым информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), второй информационно-коммутационный выход канала аэрации 6(Фиг.4) связан с информационно-коммутационным входом блока слежения и управления параметрами воды 35(Фиг.4), первый выход канала аэрации 6(Фиг.4) соединен с входом блока ультрафиолетового облучения 7(Фиг.4), информационно-коммутационный вход блока ультрафиолетового облучения 7(Фиг.4) связан с четвёртым информационно-коммутационным выходом блока слежения и управления параметрами воды 35(Фиг.4), выход блока ультрафиолетового облучения воды 7(Фиг.4) соединен с входом бойлера 8(Фиг.4), информационно-коммутационный вход - выход блока слежения и управления параметрами воды 35 (Фиг.4) связан с первым информационно-коммутационным выходом-выходом блока уровневой автоматики 34(Фиг.4), первый информационно-коммутационный выход блока слежения и управления параметрами воды 35(Фиг.4) связан с информационно-коммутационным входом блока стабилизации рН воды 9(Фиг,4), второй
информационно-коммутационньгй выход блока уровневой автоматики 35(Фиг.4) связан с информационно-коммутационным входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), третий информационно-коммутационный выход блока слежения и управления параметрами воды 35(Фиг.4) связан с информационно-коммутационным входом бойлера 8(Фиг.4), выход бойдера 8(Фиг.4) соединен с входом насоса 10(Фиг.4), информационно-коммутационный вход насоса 10(Фиг.4) соединён с первым информационно-коммутационным входом-выходом блока уровневой автоматики 34(Фиг.4), выход насоса 10(Фиг.4) соединен с вторым входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), информационно-коммутационный вход второго воздушного компрессора 28(Фиг.4) связан с первым информационно-коммутационным входом-выходом блока уровневой автоматики 34(Фиг.4), выход второго воздушного компрессора 28(Фиг.4) соединен с первым входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), первый выход, по меньшей мере, одного рыбного танка 12-26(Фиг.4) соединен с входом в резервный танк для воды 27(Фиг.4), выход резервного танка для воды 27(Фиг.4) соединен с входом насоса резервного танка для воды 39(Фиг.4), выход насоса резервного танка для воды 39(Фиг.4) соединен с первым входом стабилизационного водяного танка 1.5(Фиг.4), информационно-коммутационный выход насоса резервного танка воды 39(Фиг.4) соединен с третьим информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), информационно-коммутационный вход насоса резервного танка воды 39(Фиг.4) связан с пятым выходом блока уровневой автоматики 34(Фиг.4), второй выход, по меньшей мере, одного рыбного танка 12-26(Фиг.4) соединен с входом 1.1.1 (Фиг.4) в смеситель 37(Фиг.4), второй информационно-коммутационный вход-выход в блок уровневой автоматики 34(Фиг.4) связан с информационно-коммутационным входом-выходом IBM совместимого компьютера с инсталлированной на нём программой для ЭВМ "ПРОГРАММА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ В СОВРЕМЕННЫХ РЫБОВОДНЫХ КОМПЛЕКСАХ". Перечень позиций 1. Блок выращивания гидробионтов.
1.1. Первый блок выращивания гидробионтов.
1.1.1. Выход из первого блока выращивания гидробионтов.
1.1.2. Вход в первый блок выращивания гидробионтов.
1.2. Второй блок выращивания гидробионтов.
1.2.1. Выход из второго блока выращивания гидробионтов.
1.2.2. Вход во второй блок выращивания гидробионтов.
1.3. Третий блок выращивания гидробионтов.
1.3.1. Выход из третьего блока выращивания гидробионтов.
1.3.2. Вход в третий блок выращивания гидробионтов.
1.4. Четвертый блок выращивания гидробионтов.
1.4.1. Выход из четвертого блока выращивания гидробионтов.
1.4.2. Вход в четвёртый блок выращивания гидробионтов. 1.5. Стабилизационный водяной танк.
2. Блок механической фильтрации.
3. Блок биологического обогащения воды.
4. Денитрификационный биофильтр.
5. Нитрификационный биофильтр.
6. Канал аэрации.
7. Блок ультрафиолетового облучения.
8. Бойлер.
9. Блок стабилизации рН воды.
10. Насос.
11. Первый воздушный компрессор.
12. Первый рыбный танк.
13. Второй рыбный танк.
14. Третий рыбный танк.
15. Четвертый рыбный танк.
16. Пятый рыбный танк.
17. Шестой рыбный танк.
18. Седьмой рыбный танк.
19. Восьмой рыбный танк.
20. Девятый рыбный танк.
21. Десятый рыбный танк.
22. Одиннадцатый рыбный танк.
23. Двенадцатый рыбный танк.
24. Тринадцатый рыбный танк.
25. Четырнадцатый рыбный танк.
26. Пятнадцатый рыбный танк.
27. Резервный танк для воды.
28. Второй воздушный компрессор.
29. Блок подачи свежей воды.
30. Блок отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра.
31. Первый затвор.
32. Второй затвор.
33. Третий затвор.
34. Блок уровневой автоматики.
34.1. IBM совместимый компьютер.
35. Блок слежения и управления параметрами воды.
36. Насос откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра.
37. Смеситель.
37.1. Первый вход в смеситель.
37.2. Первый выход из смесителя.
37.3. Второй вход в смеситель.
37.4. Второй выход из смесителя.
37.5. Третий вход в смеситель.
37.6. Третий выход из смесителя.
37.7. Четвертый вход в смеситель.
37.8. Четвертый выход из смесителя.
38. Насос блока биологического обогащения воды.
39. Насос резервного танка воды.
Рыбоводная ферма имеет цель получить максимум товарной рыбы установленной навески при минимальных затратах на ее содержание. В процессе проектирования рыбоводных ферм учитываются факторы, обеспечивающие как бёзопасное ее выращивание, так и факторы, влияющие на темпы роста товарной рыбной продукции. Любые отклонения параметров водной среды от оптимальных для выращивания гидробионтов приводят к стрессу у рыбы с последующим последствиями в виде гибели этой рыбы, болезней рыбы и существенному замедлению ее роста.
Для исключения упомянутых выше рисков угроз системы водоподготовки установок с замкнутым водоснабжением (УЗВ) имеют развитые средства контроля за параметрами водной среды, а оборудование блока выращивания гидробионтов, обеспечивающее ее очистку, рассчитывается, как правило, на максимальные нагрузки по корму, потребляемого рыбой в течении суток.
В процессе выращивания товарной рыбы мы можем наблюдать ряд циклов ее развития, которые в процессе выращивания гидробионтов имеют свои особенности и ограничения.
Так, рыба одного вида и навески в процессе выращивания содержится в отдельных рыбных танках, входящих в состав различных блоков выращивания гидробионтов. При этом следует отметить, что один и тот же блок выращивания гидробионтов используется в процессе выращивания рыбы от малька до рыбы, имеющей товарную навеску. Мальковая рыба (т.е. рыба первого-второго года выращивания) имеет ограничения по своему количеству (плотности посадки на квадратный метр зеркала рыбоводного бассейна), которое можно единовременно выращивать. Однако это ограничение приводит к
недозагрузке оборудование блока выращивания гидробионтов в процессе полного цикла выращивания товарной рыбы в УЗВ.
Главными параметрами, влияющими на текущее состояние выращиваемой в УЗВ рыбы, является концентрация в воде аммонийного азота, аммиака и углекислого газа, выделяемого рыбой в процессе потребления корма. Вторичными важными параметрами после утилизации аммонийного азота в биофильтрах, влияющими на текущее состояние выращиваемой рыбы, являются концентрации нитритов и нитратов в воде и рН воды.
Ситуации, когда концентрации аммонийного азота в воде бассейна УЗВ превышают заданные (допустимые) значения, происходят в процессе эксплуатации блока выращивания гидробионтов после чистки его нитрификатора, которому HJOKHO 3-4 дня на восстановление колоний бактерий нитрификаторов, а также при возникновении различных технических отклонений параметров работы в обеспечивающих работу блока выращивания гидробионтов системах и оборудовании УЗВ. Следует также иметь в виду, что после каждого кормления рыбы в рыбоводных бассейнах, корм поедается рыбой в течение 15-20 минут после его подачи в рыбоводный бассейн, далее следует мощный выброс аммонийного азота в воду, который приводит к концентрации аммонийного азота, превышающего его средние расчетные значения в 3,1-3,4 раза. Работа нитрификатора блока выращивания гидробионтов в УЗВ не может мгновенно компенсировать такие выбросы и отклонения параметров воды от оптимального значения, что обусловлено известными ограничениями в работе технологического оборудования, прежде всего инерционностью.
Следовательно, пути реализации поставленной задачи предлагаемого технического решения заключаюся в том, чтобы добиться высоких плотностей посадки рыбы, что ведет к увеличению объема выращенной рыбы на стадиях ее товарного производства посредством использования потенциала недогруженных блоков выращивания гидробионтов, благодаря временному сдвигу в кормлении рыбы в блоках выращивания гидробионтов УЗВ и реализации программы управления технологическими процессами функционирования оборудования водоподготовки блоков выращивания гидробионтов, в совокупности позволяющих максимально нивелировать отрицательное воздействие на выращиваемую рыбу высоких концентраций аммонийного азота (аммиака, нитритов, нитратов и углекислого газа), всегда сопутствующих процессу ее выращивания в УЗВ.
Пример № 1
Вьгоащивание сибирского осетра осуществляется в двух блоках выращивания гидробионтов, а именно: в первом 1.1 и втором 1.2 (Фиг.1) с объемом воды составляющим значение 1200 м (один рыбный танк 12 (Фиг.4) входит в состав блока выращивания гидробионтов 1.1 (Фиг.1) с глубиной 1,5 м) и 15 рыбных танков12-26 (Фиг.4) глубиной 1,5м каждый, входящих в состав второго блока выращивания гидробионтов 1.2(Фиг.1),
причем каждый вьппеупомянутый рыбный танк 12-26 (Фиг.4) содержал по 80 м3 воды. В первом блоке вьфащивания гидробионтов 1.1. (Фиг.1) находится сибирский осетр на четвертом году вьфащивания со средней навеской в 15.8 кг (общая биомасса рыбы составляет 96 тонн), а в втором блоке вьфащивания гидробионтов 1.2 (Фиг.1) находится сибирский осетр на третьем году выращивании со средней навеской 10,2 кг (общая биомасса рыбы составляет 62 тонны). Соответствующие сведения по параметрам вьфащивания сибирского осетра раздельно для первого 1.1(Фиг.1) и второго 1.2(Фиг.1) блоков выращивания гидробионтов приведены в Таблице № 1. В упомянутых первом 1.1 (Фиг.1) и втором 1.2(Фиг.1) блоках вьфащивания гидробионтов значение температуры воды в рыбных бассейнах 12-26 (Фиг.4) составляло 25°С, а рН воды равнялось 7.1.
Концентрация NH4 через 15 минут после кормления, мг/литр
2,10
1,36
Концентрация NH4 через 60 минут после кормления, мг/литр
1,46
0,94
Концентрация NHU через 120 минут после кормления, мг/литр
1,03
0,67
Концентрация NH4 через 180 минут после кормления, мг/литр
0,82
0,53
Из Таблицы № 1 видно, что эксплуатация блока выращивания гидробионтов 1.1 (Фиг.1) происходит на значениях, превышающих допустимые по пиковой концентрации аммиака (NH3) в воде. Во втором блоке выращивания гидробионтов 1.2(Фиг.1) имеется запас по этому важному параметру, но он не востребован, так как рыба еще не достигла необходимой товарной навески. Следует подчеркнуть, что использование имеющегося запаса по пиковой концентрации аммиака в воде во втором блоке выращивания гидробионтов 1.2(Фиг.1) является тем ресурсом, который позволяет повысить плотность посадки сибирского осетра в первом блоке выращивания гидробионтов 1.1 (Фиг.1), а следовательно, и в предложенном устройстве в целом.
Этот ресурс повышения плотности посадки сибирского осетра в предлагаемом устройстве реализуется следующим образом. Вода из выхода первого рыбного танка 12 (Фиг.4) первого блока вьфащивания гидробионтов 1.1 (Фиг.1) поступает через выход последнего 1.1.1(Фиг.1) на первый вход 37.1(Фиг.1) смесителя 37 (Фиг.1), а вода из выходов всех 15 рыбных танков 12-26 (Фиг.4) второго блока выращивания гидробионтов 1.2 (Фиг.1) поступает с выхода последнего 1.2.1 (Фиг.1) на второй вход 37.3(Фиг.1) смесителя 37(Фиг.1).
С первого выхода 37.4(Фиг.1) смесителя 37(Фиг.1) вода поступает по 1.1.2 (Фиг.1) на второй вход стабилизационного водяного танка 1.5 (Фиг.4) первого блока выращивания гидробионтов 1.1 (Фиг.1), а вода со второго выхода 37.2(Фиг.1) смесителя 37(Фиг.1) поступает по 1.1.2 на второй вход стабилизационного водяного танка 1.5(Фиг.4) второго блока выращивания гидробионтов 1.2(Фиг.1).
В Таблице № 2 представлены сопоставительные результаты испытаний предложенного устройства и устройства - прототипа, подтверждающие достижение заявленного технического результата предлагаемым устройством в виде повышения плотности посадки рыбы.
Как следует из представленных в Таблице № 2 результатов сопоставительных испытаний предлагаемого устройства и устройства - прототипа, предлагаемое устройство гарантированно обеспечивает достижение заявленного технического результата (повышение плотности посадки рыбы составляет значение 31%).
Пример № 2
Выращивание русского осетра осуществляется в трех блоках выращивания гидробионтов 1.1, 1.2 и 1.3 (Фиг. 2) соответственно с объемом воды 1300 м3 (пять рыбных танков 12-15 (Фиг.4) глубиной 1,5 м и объемом по 260м3), с объемом воды 1400 м3 воды (пятнадцать рыбных танков 12-26 (Фиг.4) различной конфигурации - один рыбный танк глубиной 1м и объемом в 30м3, один рыбный танк глубиной 1,2м и объемом в 50 м3, один рыбный танк глубиной 1,5м и объемом в 60 м3, один рыбный танк глубиной 1,5м и объемом в 40 м , один рыбный танк глубиной 1,5м и объемом в 120 м , один рыбный танк глубиной 1,5м и объемом в 150 м3, один рыбньш танк глубиной 1,2м и объемом в 70 м3, один рыбный танк глубиной 1,3м и объемом в 40 м3, один рыбный танк глубиной 1,3м и объемом в 50 м , один рыбный танк глубиной 1,3м и объемом в 60 м , один рыбный танк глубиной 2м и объемом в 180 м3, один рыбный танк глубиной 2,2м и объемом в 200 м3, один рыбный танк глубиной 1,6м и объемом в 100 м3, один рыбный танк глубиной 2,1м и объемом в 120 м3, один рыбный танк глубиной 1,4м и объемом в 130 м3) и объемом воды 1100 м (десять рыбных танков различной конфигурации - пять рыбных танков глубиной по 2 м объемом по 100 м3, один рыбный танк глубиной 1,5м и объемом в 120 м3, один
рыбньш танк глубиной 1,2м и объемом 180 м3, один рыбный танк глубиной 1,3м и объемом
з ч 60 м , один рыбный танк глубиной 1,3м и объемом 50 м и один рыбный танк глубиной
1,3м и объемом 90 м3).
В первом блоке выращивания гидробионтов 1.1 (Фиг.2) находится русский осетр на четвертом году вьфащивания со средней навеской в 12 кг общей биомассой рыбы 102 тонны, во втором блоке выращивания гидробионтов 1.2(Фиг.2) находится русский осетр на третьем году выращивании со средней навеской 8,3 кг общей биомассой рыбы 48 тонн, а в третьем блоке выращивания гидробионтов1.3(Фиг.2) находится русский осетр с средней навеской в 4,5 кг общей биомассой рыбы 32 тонны.
В упомянутых первом 1.1(Фиг.2), втором 1.2(Фиг.2) и третьем 1.3(Фиг.2) блоках вьфащивания гидробионтов значение температуры воды в рыбных бассейнах 12-26 (Фиг.4) составляло 25°С, а рН воды равнялось 7.1.
Сведения по параметрам вьфащивания русского осетра раздельно в каждом из блоков вьфащивания гидробионтов 1.1-1.3 (Фиг.2) приведены в Таблице № 3.
Возраст рыбы, лет
Биомасса рыбы, тонн
102
Плотность посадки, кг/м2
118
Корм, кг/день
459
289
315
Средняя концентрация
0,66
0,39
0,54
NH4, мг/литр
Текущая концентрация
2,05
1,20
1,66
NH4, мг/литр
Концентрация аммиака
NH3, мг/литр (предельная 0,02мг/литр, допустимая 0,015мг/литр)
0,016
0,009
0,013
Концентрация NH4 через
15 минут после кормления, мг/литр
2,05
1,20
1,66
Концентрация NH4 через
60 минут после кормления, мг/литр
1,43
0,83
1,16
Концентрация NH4
через 120 минут после кормления, мг/литр
1,01
0,59
0,82
Концентрация NH4 через
180 минут после кормления, мг/литр
0,80
0,47
0,65
Вода из выходов пяти рыбных танков 12-16 (Фиг.4) первого блока выращивания гидробионтов 1.1(Фиг.2) поступает из его выхода 1,1.1(Фиг.2) на первый вход 37.1 (Фиг.2) смесителя 37(Фиг.2), вода из выходов пятнадцати 12-26(Фиг.4) рыбных танков второго блока вьфащивания гидробионтов 1.2(Фиг.2) поступает из его выхода 1.2.1 (Фиг.2) на второй вход 37.3 (Фиг.2) смесителя 37(Фиг.2), а вода из выходов десяти рыбных танков 21 (Фиг.4) третьего блока выращивания гидробионтов 1.3(Фиг.2) поступает из его выхода 1.3.1(Фиг.2) на третий вход 37.5 (Фиг.2) смесителя 37(Фиг.2).
С первого выхода 37.2(Фиг.2) смесителя 37(Фиг.2) вода поступает на второй вход стабилизационного водяного танка 1.5 (Фиг.4) первого блока выращивания гидробионтов
1.1 (Фиг.2), вода со второго выхода смесителя 37.4 (Фиг.2) поступает на второй вход стабилизационного водяного танка 1.5(Фиг.4) второго блока выращивания гидробионтов 1.2(Фиг.2), а вода с третьего выхода 37.6 (Фиг.2) смесителя 37(Фиг.2) поступает на второй вход стабилизационного водяного танка 1,5(Фиг.4) третьего блока выращивания гидробионтов 1.3(Фиг.2). В Таблице № 4 представлены сопоставительные результаты испытаний предложенного устройства и устройства - прототипа, подтверждающие достижение заявленного технического результата (в виде повышения плотности посадки рыбы) предлагаемым устройством
0,015мг/литр)
Резерв по среднему значению концентрации NH4 (в пересчете разницы между рабочей концентрации NH3 и текущей NH3), мг/литр
0,322
Корм, кг/день
682
289
315
459
289
315
Плотность посадки рыбы, кг/м2
175
118
Как следует из представленных в Таблице № 4 результатов сопоставительных испытаний предлагаемого устройства и устройства - прототипа, предлагаемое устройство гарантированно обеспечивает достижение заявленного технического результата (повышение плотности посадки товарной рыбы почти на 45 %).
Пример № 3
Выращивание белуги, сибирского осетра, севрюги и стерляди осуществляется в четырех блоках выращивания гидробионтов 1.1, 1.2, 1.3 и 1.4 (Фиг.З) соответственно с объемом воды 1200 м в них (первый блок вьфащивания 1.1 (Фиг.З) содержит восемь рыбных танков 12-19 (Фиг.4) глубиной 2 м и объемом по 150 м3 каждый), второй блок выращивания гидробионтов 1.2.(Фиг.З) с объемом воды 1350 м3 воды содержит десять рыбных танков 12-21 (Фиг.4) различной конфигурации: - один рыбный танк глубиной 1м и объемом в 30м3, один рыбный танк глубиной 1,2м и объемом в 50 м3, один рыбный танк глубиной 1,5м и объемом в 60 м , один рыбный танк глубиной 1,5м и объемом в 40 м , один рыбный танк глубиной 1,5м и объемом в 120 м , один рыбный танк глубиной 1,5м и объемом в 150 м , один рыбный танк глубиной 1,2м и объемом в 150 м , один рыбньш танк
•5 1
глубиной 1,6м и объемом в 250 м , один рыбньш танк глубиной 1,7 м и объемом в 240 м , один рыбный танк глубиной 2м и объемом в 260 м!), третий блок выращивания гидробионтов 1.3 (Фиг.З) с объемом воды 1200 м3 содержит двенадцать рыбных танков различной конфигурации: восемь рыбных танков глубиной 2,5м объемом по 100 м3, один рыбньш танк глубиной 1,2м и объемом в 150 м3, один рыбньш танк глубиной 1,6м и объемом в 50 м , один рыбный танк глубиной 1,7м и объемом в 120 м , один рыбньш танк
глубиной 2м и объемом в 80 м3) и объемом воды 400 м3 (четьфнадцать рыбных танков различной конфигурации: семь рыбных танков глубиной 1,3м объемом по 150м3 и семь рыбных танков глубиной 1м объемом по 50м3). В первом блоке выращивания гидробионтов 1.1 (Фиг.З) находится белуга средней навеской 30 кг и биомассой рыбы 90 тонн на седьмом году выращивания, во втором блоке вьфащивания гидробионтов 1.2(Фиг.З) находится сибирский осетр средней навеской 10 кг и биомассой рыбы 65 тонн на четвертом году вьфащивания, в третьем блоке выращивания гидробионтов 1.3(Фиг.З) находится севрюга средней навеской 7 кг и биомассой рыбы 50 тонн на четвертом году вьфащивания, а в четвертом блоке выращивания гидробионтов 1.4(Фиг.З) находится стерлядь средней навеской 2 кг биомассой рыбы 32 тонны на втором году вьфащивания. Вся рыба товарная.
Кормление рыбы в первом блоке выращивания гидробионтов 1.1 (Фиг.З) и во втором блоке вьфащивания гидробионтов 1.2(Фиг.З) производится одновременно. Кормление рыбы в третьем блоке вьфащивания гидробионтов 1.3(Фиг.З) и четвертом блоке вьфащивания гидробионтов 1.4(Фиг.З) производится со сдвигом на 4 часа.
В Таблице № 5 представлены сопоставительные результаты испытаний предложенного устройства и устройства - прототипа, подтверждающие достижение заявленного технического результата предлагаемым устройством.
Средняя
концентраци
яИН4,
мг/литр
0,63
0,63
0,63
0,64
Текущая
концентраци
яИЩ,
мг/литр
1,96
1,96
0,63
0,64
Концентрац
ия аммиака
NH3,
мг/литр,
(предельная
0,02мг/литр,
допустимая
0,015мг/литр
0,015
0,015
0,015
0,015
Концентрац
ия NH4 через
15 минут
после
кормления,
мг/литр
1,96
1,96
1,95
1,99
Концентрац
ия NH4 через
60 минут после
кормления, мг/литр
1,36
1,36
1,36
1,39
Концентрац
ияШ4
через120 минут после кормления,
0,97
0,96
0,96
0,98
мг/литр
Концентрац ия NKU через 180 минут после
кормления, мг/литр
0,77
0,76
0,76
0,78
Концентрац ия NH4 через 240 минут после
кормления, мг/литр
0,63
0,63
0,63
0,64
Вода из выходов восьми рыбных танков 12-19 (Фиг.4) и затем выхода 1.1.1 (Фиг.З) первого блока выращивания гидробионтов 1.1 (Фиг.З) поступает на первый вход 37.1 (Фиг.З) смесителя 37(Фиг.З), Вода из выходов десяти рыбных танков 12-21(Фиг.4) и затем выхода 1.2.1 (Фиг.З) второго блока вьфащивания гидробионтов 1.2(Фиг.З) поступает на второй вход 37.3 (Фиг.З) смесителя 37 (Фиг.З), вода из выходов двенадцати рыбных танков 12-23(Фиг.4) и затем выхода 1.3.1 (Фиг.З) третьего блока выращивания гидробионтов 1.3(Фиг.З) поступает на третий вход 37.5(Фиг.З) смесителя 37(Фиг.З), а вода из выходов четырнадцати рыбных танков 12-25(Фиг.4) и затем выхода 1.4.1 (Фиг.З) четвертого блока вьфащивания гидробионтов!.4(Фиг.З) поступает на четвертый 37.7(Фиг.4) вход смесителя 37(Фиг.З).
С первого выхода 37.2(Фиг.З) смесителя 37(Фиг.З) вода поступает на второй вход стабилизационного водяного танка 1.5(Фиг.4) первого блока вьфащивания гидробионтов 1.1 (Фиг.З), вода со второго выхода 37.4(Фиг.З) смесителя 37(Фиг.З) поступает на второй вход стабилизационного водяного танка 1.5(Фиг.4) второго блока выращивания гидробионтов 1.2(Фиг.З) , вода с третьего выхода 37. б(Фиг.З) смесителя 37(Фиг.З) поступает на второй вход стабилизационного водяного танка 1.5(Фиг.4) третьего блока вьфащивания гидробионтов 1.3 (Фиг.З), а вода с четвертого выхода 37.8(Фиг.З) смесителя 37(Фиг.З) поступает на второй вход стабилизационного водяного танка 1.5(Фиг.4) четвертого блока выращивания гидробионтов 1.4(Фиг.З).
В Таблице № 6 представлены сопоставительные результаты испытаний Предложенного устройства и устройства - прототипа, подтверждающие достижение заявленного технического результата (в виде повышения плотности посадки рыбы) при использовании предлагаемого устройства.
допустимая
0,015мг/ли
тр)
Резерв по
среднему
значению
концентрац
ИИ NH4 (в
пересчете
разницы между
0,326
0,326
0,326
0,326
рабочей
концентрац
HHNH3 и
текущей
концентрац
ией NH3),
мг/литр
Корм, кг/день
614
690
612
723
405
455
403
480
Плотность
посадки рыбы,
170
109
113
кг/м2
Как следует из представленных в Таблице № 6 результатов сопоставительных испытаний предлагаемого устройства и устройства -прототипа, предлагаемое устройство
гарантированно обеспечивает достижение заявленного технического результата (повышение плотности посадки товарной рыбы почти на 52 %).
Предлагаемое устройство может быть воплощено на известных из уровня техники материалах, узлах и комплектующих, а также известном программном обеспечении ЮМ совместимых компьютеров.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Устройство с замкнутым циклом водоснабжения для вьфащивания товарных пород рыб, характеризующееся наличием, по меньшей мере, первого 1.1 (Фиг.1-Фиг.З) и второго 1.2(Фиг.1-Фиг.З) блоков вьфащивания гидробионтов, которые взаимодействую между собой посредством принудительного обмена водой через смеситель 37(Фиг.1), при этом каждый блок вьфащивания гидробионтов образован стабилизационным водяным танком 1.5(Фиг.4), снабжённым первым, вторым и третьим входами, и первым, вторым и третьим выходами, одним информационно-коммутационным входом и одним информационно-коммутационным выходом, блоком механической фильтрации 2(Фиг.4), снабженным первым, вторым, и третьим выходами, одним входом и одним информационно-коммутационным входом и одним информационно-комм^ационным выходом, блоком биологического обогащения воды 3 (Фиг.4), снабженным первым и вторым выходами и первым и вторым входами, денитрификационным биофильтром 4(Фиг.4), снабженным первым и вторым выходами и первым и вторым входами, нитрификационным биофильтром 5(Фиг.4), снабженным первым и вторым выходами и первым и вторым входами, каналом аэрации 6(Фиг.4), снабженным первым и вторым выходами, первым и вторым информационно-коммутационными выходами и первым, вторым, третьим, четвертым, пятым и шестым входами, блоком ультрафиолетового облучения 7(Фиг.4), снабженным входом, одним информационно-коммутационным входом и выходом, бойлером 8(Фиг.4), снабженным одним выходом, одним входом и одним информационно-коммутационным входом, блоком стабилизации рН воды 9(Фиг.4), снабженным выходом и информационно-коммутационным входом, насосом 10(Фиг.4), снабженным информационно-коммутационным входом, одним входом и одним выходом, первым воздушным компрессором 11 (Фиг.4), снабженным первым, вторым и третьим выходами, и одним информационно-коммутационным входом, по меньшей мере, одним рыбным танком 12-26(Фиг.4), снабженным первым, вторым и третьим входами, одним информационно-коммутационным входом и первым и вторым выходами, резервным танком для воды 27(Фиг.4), снабженного входом и выходом, вторым воздушным компрессором 28(Фиг.4), снабженным информационно-коммутационным входом и одним выходом, блоком подачи свежей воды 29(Фиг.4), снабженным информационно-коммутационным входом, и первым и вторым выходами, блоком отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 30(Фиг.4), снабженным первым и вторым входами, первым затвором 31 (Фиг.4), снабженным выходом, входом и информационно-коммутационным входом, вторым затвором 32(Фиг.4), снабженным выходом, входом и информационно-коммутационным входом, третьим затвором 33(Фиг.4), снабженным выходом, входом и информационно-коммутационным входом, блоком уровневой
автоматики 34(Фиг.4), снабженным первым, вторым, третьим и четвертым информационно-коммутационными входами, первым, вторым, третьим, четвёртым и пятым информационно-коммутационными выходами, и первым и вторым информационно-коммуникационным входом-выходом, блоком слежения и управления параметрами воды 35(Фиг.4), снабженным первым, вторым, третьим и четвертым информационно-коммутационными выходами, информационно-коммутационным входам и информационно-коммутационным входом - выходом, насосом откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), снабженным одним выходом, первым, вторым и третьим входами и одним информационно-коммутационным входом, насосом блока биологического обогащения воды 38(Фиг.4), снабженным входом, выходом и информационно-коммутационным входом, при этом третий выход стабилизационного водяного танка 1.5(Фиг.4) соединен с вторым входом блока биологического обогащения воды 3(Фиг.4), второй выход стабилизационного водяного танка 1.5(Фиг.4) соединен с первым входом блока механической фильтрации 2(Фиг.4), информационно-коммутационный выход которого связан с вторым информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), а информационно-коммутационный вход блока механической фильтрации 2(Фиг.4) связан с вторым выходом блока уровневой автоматики 34(Фиг.4), первый выход стабилизационного водяного танка 1.5(Фиг.4) соединен с входом первого затвора 31 (Фиг.4), информационно-коммутационный вход которого связан с третьим информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), информационно-коммутационный выход стабилизационного водяного танка 1.5(Фиг.4) соединен с первым информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), второй вход стабилизационного водяного танка 1.5(Фиг.4) соединен с вторым выходом из смесителя 37(Фиг.4), третий вход стабилизационного водяного танка 1.5(Фиг.4) соединен с первым выходом денитрификационного биофильтра 4(Фиг.4), второй выход денитрификационного биофильтра 4(Фиг.4) соединен с вторым входом насоса откачки осадочных фракций из блока биологического обогащения вода, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), информационно-коммутационный вход стабилизационного водяного танка 1.5(Фиг.4) соединён с первым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), третий выход блока механической фильтрации 2(Фиг.4) соединен с входом второго затвора 32(Фиг.4), информационно-коммутационный вход которого соединен с четвертым информационно-коммутационным выходом блока уровневой автоматики 34 (Фиг.4), второй выход блока механической фильтрации 2(Фиг.4) соединен с входом третьего затвора 33(Фиг.4), информационно-коммутационный вход которого соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг,4), первый выход блока
механической фильтрации 2(Фиг.4) соединен с первым входом блока биологического обогащения воды 3(Фиг.4), первый выход блока биологического обогащения воды 3(Фиг.4) соединен с входом насоса блока биологического обогащения воды 38(Фиг.4), выход которого соединен с вторым входом денитрификационного биофильтра 4(Фиг.4), а его информационно-коммутационный вход соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), второй выход блока биологического обогащения воды 3 (Фиг.4) соединён с третьим входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), информационно-коммутационный вход которого соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), выход третьего затвора 33(Фиг.4) соединен с первым входом нитрификационного биофильтра 5(Фиг.4), второй вход нитрификационного биофильтра 5 (Фиг.4) соединен с первым выходом первого воздушного компрессора 11 (Фиг.4), первый выход нитрификационного биофильтра 5(Фиг.4) соединен с первым входом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), второй выход нитрификационного биофильтра 5(Фиг.4) соединен с четвертым входом канала аэрации 6(Фиг.4), второй выход первого воздушного компрессора 11 (Фиг.4) соединен с пятым входом канала аэрации 6(Фиг.4), третий выход первого воздушного компрессора 11 (Фиг.4) соединен с первым входом денитрификационного биофильтра 4(Фиг.4), информационно-коммутационный вход первого воздушного компрессора 11 (Фиг.4) соединен с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), выход первого затвора 31 (Фиг.4) соединен с третьим входом канала аэрации 6(Фиг.4), выход второго затвора 32(Фиг.4) соединен с вторым входом канала аэрации 6(Фиг.4), второй выход блока подачи свежей воды 29(Фиг.4) соединен с шестым входом канала аэрации 6(Фиг.4), первый выход блока подачи свежей воды 29(Фиг.4) соединен с третьим входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), информационно-коммутационный вход блока подачи свежей воды 29(Фиг.4) связан с вторым информационно-коммутационным выходом блока уровневой автоматики 34(Фиг.4), второй вьгход канала аэрации 6(Фиг.4) соединен с первым входом блока отвода отработанной воды и осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 30(Фиг.4), второй вход блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 30(Фиг.4) соединен с выходом насоса откачки осадочных фракций из блока биологического обогащения воды, денитрификационного биофильтра и нитрификационного биофильтра 36(Фиг.4), первый вход канала аэрации 6(Фиг.4) соединен с выходом блока стабилизации рН 9(Фиг.4), первый информационно-коммутационный вьгход канала аэрации 6(Фиг.4) информационно-коммутационно связан с четвертым
информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), второй информационно-коммутационный выход канала аэрации 6(Фиг.4) связан с информационно-коммутационным входом блока слежения и управления параметрами воды 35(Фиг.4), первый выход канала аэрации 6(Фиг.4) соединен с входом блока ультрафиолетового облучения 7(Фиг.4), информационно-коммутационный вход блока ультрафиолетового облучения 7(Фиг.4) связан с четвёртым информационно-коммутационным выходом блока слежения и управления параметрами воды 35(Фиг,4), выход блока ультрафиолетового облучения воды 7(Фиг.4) соединен с входом бойлера 8(Фиг.4), информационно-коммутационный вход - выход блока слежения и управленЕЯ параметрами воды 35(Фиг.4) связан с первым информационно-коммутационным выходом-выходом блока уровневой автоматики 34(Фиг.4), первый информационно-коммутационный вьгход блока слежения и управления параметрами воды 35(Фиг.4) связан с информационно-коммутационным входом блока стабилизации рН воды 9(Фиг.4), второй информационно-коммутационный выход блока уровневой автоматики 35(Фиг.4) связан с информационно-коммутационным входом, по меньшей мере, одного рыбного танка 12-26(Фйг.4), третий информационно-коммутационный выход блока слежения и управления параметрами воды 35(Фиг.4) связан с информационно-коммутационным входом бойлера 8(Фиг.4), выход бойлера 8(Фиг.4) соединен с входом насоса 10(Фиг.4), информационно-коммутационный вход насоса 10(Фиг.4) соединён с первым информационно-коммутационным входом-выходом блока уровневой автоматики 34(Фиг.4), выход насоса 10(Фиг.4) соединен с вторым входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), информационно-коммутационный вход второго воздушного компрессора 28(Фиг.4) связан с первым информационно-коммутационным входом-выходом блока уровневой автоматики 34(Фиг.4), выход второго воздушного компрессора 28(Фиг.4) соединен с первым входом, по меньшей мере, одного рыбного танка 12-26(Фиг.4), первый выход, по меньшей мере, одного рыбного танка 12-26(Фиг.4) соединен С входом в резервный танк для воды 27(Фиг.4), выход резервного танка для воды 27(Фиг.4) соединен с входом насоса резервного танка для воды 39(Фиг.4), выход насоса резервного танка для воды 39(Фиг.4) соединен с первым входом стабилизационного водяного танка 1.5(Фиг.4), информационно-коммутационный выход насоса резервного танка воды 39(Фиг.4) соединен с третьим информационно-коммутационным входом блока уровневой автоматики 34(Фиг.4), информационно-коммутационный вход насоса резервного танка воды 39(Фиг.4) связан с пятым выходом блока уровневой автоматики 34(Фиг.4), второй выход, по меньшей мере, одного рыбного танка 12-26(Фиг.4) соединен с входом 1.1.1 (Фиг.4) в смеситель 37(Фиг.4), второй информационно-коммутационный вход-выход в блок уровневой автоматики 34(Фиг.4) связан с информационно-коммутационным входом-выходом IBM совместимого компьютера с инсталлированной на нём программой для ЭВМ "ПРОГРАММА УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ В СОВРЕМЕННЫХ РЫБОВОДНЫХ КОМПЛЕКСАХ".
1.1
Блок 1 выращивания
гидробионтов
37.1
1.3.2
Блок 3 выращивания
гидробионтов
Смеситель
37.3
Блок 2 выращивания
гидробионтов
1.2.1
1.1.2
37.2
37.7 ^37.8
Блок 4 выращивания
гидробионтов
П 1
1.2.2
1.2
1.4.1
1.4
Фиг.З
1.4.2
Устройство с замкнутым циклом водоснабжения для выращивания товарных пород рыб
ЕВРАЗИЙСКОЕ ПАТЕНТНОЕ ВЕДОМСТВО
ЕАПВ/ОП-2
ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ
(статья 15(3) Е/ЛК и правило 42 Патентной иголрукции к ЕАПК)
Номер евразийской заявки: 201700145
Дата подачи: 10 апреля 2017 (10.04.2017)
Дата испрашиваемого приоритета: 23 марта 2017 (23.03.2017)
Название изобретения:
Устройство с замкнутым циклом водоснабжения для выращивания товарных пород рыб
Заявитель: ДУБРОВИН Евгений Геннадьевич и др.
| | Некоторые пункты формулы не подлежат поиску (см. раздел I дополнительного листа)
ГП Единство изобретения не соблюдено (см. раздел II дополнительного листа)
А. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ: Согласно международной патентной классификации (МПК)
А01К 61/00 (2017.01)
Б. ОБЛАСТЬ ПОИСКА:
Минимум просмотренной документации (система классификации и индексы МПК) А01К 61/00, 63/00
Другая проверенная документация в той мере, в какой она включена в область поиска:
В. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ
Категория*
Ссылки на документы с указанием, где это возможно, релевантных частей
Относится к пункту №
А А А
А A, D
RU 110927 U1 (СЕМЕНЧЕНКО СЕРГЕЙ МИХАЙЛОВИЧ и др.) 10.12.2011
WO 2006/111739 Al (UNIV GLASGOW et al.) 26.10.2006
SU 978798 А (МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. М.В. ЛОМОНОСОВА) 07.12.1982
RU 86406 U1 (ФЕРНАНДО ГАЛКИССАГЕ РАНЖИТ и др.) 10.09.2009
RU 153081 U1 (КИТАШИН ЮРИЙ АЛЕКСАНДРОВИЧ) 10.07.2015
L. 1 послЗДУЮЭДие документы указаны в продолжении графы В Щ'
данные о патентах-аналогах указаны в приложении
* Особые категории ссылочных документов:
"А" документ, определяющий общий уровень техники
"Е" более ранний документ, но опубликованный на дату
подачи евразийской заявки или после нее "О" документ, относящийся к устному раскрытию, экспонированию и т.д.
"Р" документ, опубликованный до даты подачи евразийской
заявки, но после даты испрашиваемого приоритета "D" документ, приведенный в евразийской заявке
"Т" более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения "X" документ, имеющий наиболее близкое отношение к предмету
поиска, порочащий новизну или изобретательский уровень, взятый в отдельности "Y" документ, имеющий наиболее близкое отно
поиска, порочащий изобретательский уровень в сочетании с
другими документами той же категории
" &" документ, являющийся патентом-аналогом
L" документ, приведенный в других целях
Дата действительного завершения патентного поиска:
19 декабря 2017 (19.12.2017)
Наименование и адрес Международного поискового органа: Федеральный институт промышленной собственности
РФ, 125993,Москва, Г-59, ГСП-3, Бережковская наб., 30-1. Факс: 243-3337, телетайп: 114818 ПОДАЧА
Уполномоченное лицо :
А.А. Никитин
Телефон № (495) 531-6481
ЕАПВ/ОП-2
(19)
(19)
(19)
Устройство с замкнутым циклом водоснабжения для выращивания товарных пород рыб
Устройство с замкнутым циклом водоснабжения для выращивания товарных пород рыб