(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2024.02.28
- (22) Дата подачи заявки 2022.02.10

- **(51)** Int. Cl. *C12N 15/11* (2006.01) *A61K 48/00* (2006.01)
- (54) СОЕДИНЕНИЯ ДЛЯ СНИЖЕНИЯ ЭКСПРЕССИИ PLN И СООТВЕТСТВУЮЩИЕ СПОСОБЫ
- (31) 63/148,579
- (32) 2021.02.11
- (33) US
- (86) PCT/US2022/016015
- (87) WO 2022/173976 2022.08.18
- (71) Заявитель: АЙОНИС ФАРМАСЬЮТИКАЛЗ, ИНК. (US)
- (72) Изобретатель: Маллик Адам, Буи Хюинь-Хоа, Фрейер Сьюзан М., Е Тин Юань,
- (74) Представитель: Медведев В.Н. (RU)

Кубли Дитер (US)

(57) Представлены олигомерные средства, олигомерные соединения, способы и фармацевтические композиции для снижения количества или активности PHK PLN в клетке или в организме животного, и в определенных случаях снижения количества белка PLN в клетке или в организме животного. Такие олигомерные средства, олигомерные соединения, способы и фармацевтические композиции применимы для лечения кардиомиопатии, сердечной недостаточности или аритмии.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

2420-578862EA/061

СОЕДИНЕНИЯ ДЛЯ СНИЖЕНИЯ ЭКСПРЕССИИ PLN И СООТВЕТСТВУЮЩИЕ СПОСОБЫ

Перечень последовательностей

Настоящая заявка подается совместно с перечнем последовательностей в электронном формате. Список последовательностей представлен в виде файла под названием BIOL0421WOSEQ_ST25.txt, созданного 9 февраля 2022 г., размер которого составляет 499 КБ. Информация в электронном формате перечня последовательностей включена в данный документ посредством ссылки в полном объеме.

Область техники

Представлены олигомерные средства, олигомерные соединения, способы и фармацевтические композиции для снижения количества или активности PHK PLN в клетке или организме животного и, в определенных случаях снижения количества белка PLN в клетке или в организме животного. Такие олигомерные средства, олигомерные соединения, способы и фармацевтические композиции применимы для лечения кардиомиопатии, сердечной недостаточности или аритмии.

Уровень техники

Болезни сердца являются основной причиной смертности во всем мире. Кардиомиопатия относится к заболеваниям сердечной мышцы, которые ослабляют сердце и делают его неспособным эффективно перекачивать кровь. Поскольку сердце во время кардиомиопатии ослабевает, нормальная сердечная мышца может утолщаться, становиться жесткой или истончаться, ухудшая ее способность перекачивать кровь, что может привести к сердечной недостаточности. Аритмия представляет собой нерегулярное или аномальное сердцебиение и является основной причиной внезапной сердечной смерти. Аритмии, возникающие в нижних камерах сердца, называемых желудочками, особенно опасны и заставляют сердце биться слишком быстро, что ухудшает кровообращение и может привести к остановке сердца. Фибрилляция желудочков (vfib) представляет собой учащенный нескоординированный сердечный ритм, при котором электрические сигналы сердца часто не имеют нормального и повторяющегося характера. Желудочковая тахикардия (vtac) представляет собой учащенный сердечный ритм, который, если он слишком быстрый, может помешать сердцу эффективно сокращаться или перекачивать кровь по всему телу и вызывать потерю сознания.

Краткое описание изобретения

Олигомерные средства, олигомерные соединения, способы и фармацевтические композиции определенных вариантов осуществления, описанных в данном документе, применимы для снижения или ингибирования экспрессии PLN в клетке или в организме животного. В определенных вариантах осуществления уровни PHK или белка PLN могут быть снижены в клетке или в организме животного. Также представлены способы лечения кардиомиопатии, сердечной недостаточности или аритмии.

Подробное описание сущности изобретения

Следует понимать, что и предшествующее общее описание, и последующее подробное описание являются только иллюстративными и пояснительными и не являются ограничительными. В данном документе использование форма единственного числа подразумевает использование формы множественного числа, если конкретно не указано иное. В контексте данного документа использование «или» означает «и/или», если не указано иное. Кроме того, использование термина «включая», а также других форм, таких как «включает» и «включенный», не является ограничивающим. Кроме того, такие термины, как «элемент» или «компонент» охватывают как элементы, так и компоненты, содержащие одну единицу, и элементы и компоненты, которые содержат более одной субъединицы, если конкретно не указано иное.

Заголовки разделов, используемые в данном описании, предназначены только для организационных целей и не должны толковаться как ограничивающие описанный предмет. Все документы или части документов, процитированные в настоящей заявке, включая без ограничения патенты, заявки на патенты, статьи, книги и трактаты, прямо, тем самым в полном объеме включены в данный документ посредством ссылки в отношении частей документа, обсуждаемых в данном тексте.

ОПРЕДЕЛЕНИЯ

Если не даны конкретные определения, номенклатура, используемая в связи с описанными в данном документе процедурами и методами аналитической химии, синтетической органической химии, а также медицинской и фармацевтической химии, хорошо известна и широко используется в данной области техники. Там, где это разрешено, все патенты, заявки, опубликованные заявки и другие публикации и другие данные, упоминаемые во всем изобретении, включены в данный документ посредством ссылки в полном объеме.

Если не указано иное, приведенные ниже термины имеют следующие значения:

В контексте данного документа «2'-дезоксинуклеозид» означает нуклеозид, содержащий 2'-Н(Н)-дезоксифуранозильный сахарный фрагмент. В определенных осуществления 2'-дезоксинуклеозид представляет собой 2'-β-Dвариантах дезоксинуклеозид и содержит 2'-β-D-дезоксирибозильный сахарный фрагмент, который рибозилирование имеет **β-**D-рибозильную конфигурацию, как обнаружено встречающихся в природе дезоксирибонуклеиновых кислотах (ДНК). В определенных вариантах осуществления 2'-дезоксинуклеозид может содержать модифицированное нуклеиновое основание или может содержать нуклеиновое основание РНК (урацил).

В контексте данного документа «2'-МОЕ» означает группу 2'-ОС H_2 СС H_2 ОС H_3 вместо группы 2'-ОН фуронозильного сахарного фрагмента. «2'-МОЕ сахарный фрагмент» означает сахарный фрагмент с группой 2'-ОС H_2 СС H_2 ОС H_3 вместо группы 2'-ОН фуранозильного сахарного фрагмента. Если не указано иное, 2'-МОЕ сахарный фрагмент находится в β -D-рибозильной конфигурации. «МОЕ» означает О-метоксиэтил.

В контексте данного документа термин «2'-MOE нуклеозид» означает нуклеозид,

содержащий 2'-МОЕ сахарный фрагмент.

В контексте данного документа «2'-OMe» означает группу 2'-OCH₃ вместо группы 2'-OH фуронозильного сахарного фрагмента. «2'-O-метилсахарный фрагмент» или «2'-OMe сахарный фрагмент» означает сахарный фрагмент с группой 2'-OCH₃ вместо группы 2'-OH фуранозильного сахарного фрагмента. Если не указано иное, 2'-MOE сахарный фрагмент находится в β-D-рибозильной конфигурации.

В контексте данного документа термин «2'-ОМе-нуклеозид» означает нуклеозид, содержащий 2'-ОМе сахарный фрагмент.

В контексте данного документа термин «2'-замещенный нуклеозид» означает нуклеозид, содержащий 2'-замещенный сахарный фрагмент. В контексте данного документа термин «2'-замещенный» по отношению к сахарному фрагменту означает сахарный фрагмент, содержащий по меньшей мере одну группу 2'-заместителя, отличную от Н или ОН.

В контексте данного документа термин «3' целевой сайт» относится к 3'-крайнему нуклеотиду целевой нуклеиновой кислоты, который комплементарен антисмысловому олигонуклеотиду, когда антисмысловой олигонуклеотид гибридизуется с целевой нуклеиновой кислотой.

В контексте данного документа термин «5'-мишень» относится к 5'-крайнему нуклеотиду целевой нуклеиновой кислоты, который комплементарен антисмысловому олигонуклеотиду, когда антисмысловой олигонуклеотид гибридизуется с целевой нуклеиновой кислотой.

В контексте данного документа «5-метилцитозин» означает цитозин, модифицированный метильной группой, присоединенной в положении 5. 5-метилцитозин представляет собой модифицированное нуклеиновое основание.

В контексте данного документа «сахарный фрагмент с удаленным нуклеиновым основанием» означает сахарный фрагмент, нуклеозид которого не присоединен к нуклеиновому основанию. Такие сахарные фрагменты с удаленным нуклеиновым основанием иногда обозначают в данной области техники «нуклеозидами с удаленным нуклеиновым основанием».

В контексте данного документа термин «бициклический сахар» или «бициклический сахарный фрагмент» означает модифицированный сахарный фрагмент, содержащий два кольца, причем второе кольцо образовано через мостик, соединяющий два атома в первом кольце, тем самым образуя бициклическую структуру. В определенных вариантах осуществления первое кольцо бициклического сахарного фрагмента представляет собой фуранозильный фрагмент. В определенных вариантах осуществления бициклический сахарный фрагмент не содержит фуранозильный фрагмент.

В контексте данного документа термин «хирально обогащенная популяция» означает множество молекул с идентичной молекулярной формулой, в котором количество или процентное содержание молекул в популяции, которые имеют конкретную стереохимическую конфигурацию в конкретном хиральном центре, превышает количество

или процент ожидаемых молекул, которые имеют ту же конкретную стереохимическую конфигурацию в том же конкретном хиральном центре в популяции, если конкретный хиральный центр был стереослучайным. Хирально обогащенные популяции молекул, имеющие несколько хиральных центров внутри каждой молекулы, могут содержать один или несколько стереослучайных хиральных центров. В определенных вариантах осуществления молекулы представляют собой модифицированные олигонуклеотиды. В определенных вариантах осуществления молекулы представляют собой олигомерные соединения, содержащие модифицированные олигонуклеотиды.

В контексте данного документа термин «расщепляемый фрагмент» означает связь или группу атомов, которые расщепляются в физиологических условиях, например, внутри клетки, животного или человека.

В контексте данного документа термин «комплементарный» по отношению к олигонуклеотиду означает, что по меньшей мере 70% нуклеиновых оснований олигонуклеотида и нуклеиновых оснований другой нуклеиновой кислоты или одной или нескольких областей могут образовывать водородные связи друг с другом, когда последовательность нуклеиновых оснований олигонуклеотида и другой нуклеиновой кислоты выровнены в противоположных направлениях. «Комплементарная область» применительно к области олигонуклеотида означает, что по меньшей мере 70% нуклеиновых оснований этой области и нуклеиновых оснований другой нуклеиновой кислоты или одной или нескольких ее областей способны образовывать водородные связи друг с другом, когда последовательность нуклеиновых оснований олигонуклеотида и другая нуклеиновая кислота ориентированы в противоположных направлениях. Комплементарные нуклеиновые основания означают нуклеиновые основания, способные образовывать водородные связи друг с другом. Комплементарные пары нуклеиновых оснований включают аденин (A) и тимин (T), аденин (A) и урацил (U), цитозин (C) и гуанин (G), 5-метилцитозин (mC) и гуанин (G). Определенные модифицированные нуклеиновые основания, которые спариваются с природными нуклеиновыми основаниями или с другими модифицированными нуклеиновыми основаниями, известны в данной области техники и не считаются комплементарными нуклеиновыми основаниями, как определено в данном документе, если не указано иное. Например, инозин может спариваться с аденозином, цитозином или урацилом, но не считается комплементарным. Комплементарные олигонуклеотиды и/или нуклеиновые кислоты не должны иметь комплементарные нуклеиновые основания при каждом нуклеозиде. Скорее допускаются некоторые ошибочные спаривания. В контексте данного документа «полностью комплементарный» комплементарный» в отношении олигонуклеотидов олигонуклеотиды комплементарны другому олигонуклеотиду или нуклеиновой кислоте по каждому нуклеозиду олигонуклеотида.

В контексте данного документа термин «конъюгированная группа» означает группу атомов, которая непосредственно присоединена к олигонуклеотиду. Группы конъюгата включают фрагмент конъюгата и линкер конъюгата, который присоединяет фрагмент

конъюгата к олигонуклеотиду.

В контексте данного документа термин «линкер конъюгата» означает одинарную связь или группу атомов, содержащую по меньшей мере одну связь, которая соединяет фрагмент конъюгата с олигонуклеотидом.

В контексте данного документа термин «фрагмент конъюгата» означает группу атомов, которая модифицирует одно или несколько свойств молекулы по сравнению с идентичной молекулой, лишенной фрагмента конъюгата, включая без ограничения фармакодинамику, фармакокинетику, стабильность, связывание, абсорбцию, распределение в тканях, клеточное распределение, клеточное поглощение, заряд и клиренс.

В контексте данного документа термин «ограниченный этил», или «сЕt», или «сЕt» модифицированный сахарный фрагмент» означает β -D-рибозильный бициклический сахарный фрагмент, в котором второе кольцо бициклического сахара образовано посредством мостика, соединяющего 4'-углерод и 2'-углерод β -D-рибозильного сахарного фрагмента, где мостик имеет формулу 4'-CH(CH₃)-O-2', и метильная группа мостика находится в S-конфигурации.

В контексте данного документа термин «cEt-нуклеозид» означает нуклеозид, содержащий cEt-модифицированный сахарный фрагмент.

В контексте данного документе «дезокси-область» означает область из 5-12 смежных нуклеотидов, в которой по меньшей мере 70% нуклеозидов содержат фрагмент β -D-2'-дезоксирибозильного сахара.В определенных вариантах осуществления дезокси-область представляет собой гэп гэпмера.

В контексте данного документа термин «горячая точка» представляет собой диапазон нуклеиновых оснований целевой нуклеиновой кислоты, который поддается опосредованному олигомерным средством или олигомерным соединением снижению количества или активности целевой нуклеиновой кислоты.

В контексте данного документа термин «межнуклеозидная связь» представляет собой ковалентную связь между прилегающими нуклеозидами в олигонуклеотиде. В контексте данного документа термин «модифицированная межнуклеозидная связь» означает любую межнуклеозидную связь, отличную от фосфодиэфирной межнуклеозидной связи.

В контексте данного документа «связанные нуклеозиды» представляют собой нуклеозиды, которые соединены в непрерывную последовательность (т.е. между связанными нуклеозидами отсутствуют дополнительные нуклеозиды).

В контексте данного документа термин «линкерный нуклеозид» означает нуклеозид, который прямо или косвенно связывает олигонуклеотид с фрагментом конъюгата. Линкерные нуклеозиды расположены внутри линкера конъюгата олигомерного соединения. Линкерные нуклеозиды не считаются частью олигонуклеотидной части олигомерного соединения, даже если они являются смежными с олигонуклеотидом.

В контексте данного документа термин «ошибочное спаривание» или «некомплементарный» означает нуклеиновое основание первой последовательности

нуклеиновой кислоты, которое не является комплементарным соответствующему основанию второй последовательности нуклеиновой кислоты или целевой нуклеиновой кислоты, когда первая и вторая последовательности нуклеиновой кислоты выровнены.

В контексте данного документа «мотив» означает паттерн немодифицированных и/или модифицированных сахарных фрагментов, нуклеиновых оснований и/или межнуклеозидных связей в олигонуклеотиде.

В контексте данного документа термин «модифицированный нуклеозид» означает нуклеозид, содержащий модифицированное нуклеиновое основание и/или модифицированный сахарный фрагмент.

В контексте данного документа термин «небициклический модифицированный сахарный фрагмент» означает модифицированный сахарный фрагмент, который содержит модификацию, такую как заместитель, которая не образует мостик между двумя атомами сахара с образованием второго кольца.

В контексте данного документа термин «нуклеиновое основание» означает немодифицированное нуклеиновое основание или модифицированное нуклеиновое основание. Нуклеиновое основание представляет собой гетероциклический фрагмент. В контексте данного документа «немодифицированное нуклеиновое основание» означает аденин (А), тимин (Т), цитозин (С), урацил (U) или гуанин (G). В контексте данного документа термин «модифицированное нуклеиновое основание» означает группу атомов, отличных от немодифицированных А, Т, С, U или G, способных образовывать пары по меньшей мере с одним другим нуклеиновым основанием. «5-метилцитозин» представляет собой модифицированное нуклеиновое основание. Универсальное основание представляет собой модифицированное нуклеиновое основание, которое может спариваться с любым из пяти немодифицированных нуклеиновых оснований.

В контексте данного документа термин «последовательность нуклеиновых оснований» означает порядок смежных нуклеиновых оснований в нуклеиновой кислоте или олигонуклеотиде, не зависящий от какой-либо модификации сахара или модификации межнуклеозидной связи.

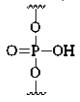
В контексте данного документа термин «нуклеозид» означает соединение или фрагмент соединения, содержащие нуклеиновое основание и сахарный фрагмент. Нуклеиновое основание и сахарный фрагмент, каждый независимо, являются немодифицированными или модифицированными.

В контексте данного документа термин «олигомерное средство» означает олигомерное соединение и необязательно один или несколько дополнительных свойств, таких как второе олигомерное соединение. Олигомерное средство может представлять собой одноцепочечное олигомерное соединение или может представлять собой олигомерный дуплекс, образованный двумя комплементарными олигомерными соединениями.

В контексте данного документа термин «олигомерное соединение» означает олигонуклеотид и необязательно один или более дополнительных элементов, таких как

конъюгатная группа или концевая группа. Олигомерное соединение может быть спарено со вторым олигомерным соединением, которое комплементарно первому олигомерному соединению или может быть не спарено. «Одноцепочечное олигомерное соединение» представляет собой неспаренное олигомерное соединение.

Термин «олигомерный дуплекс» означает дуплекс, образованный двумя олигомерными соединениями, имеющими комплементарные последовательности нуклеиновых оснований.


В контексте данного документа термин «олигонуклеотид» означает нить связанных нуклеозидов, соединенных посредством межнуклеозидных связей, где каждый нуклеозид и межнуклеозидная связь могут быть модифицированными или немодифицированными. Если не указано иное, олигонуклеотиды состоят из 8-50 связанных нуклеозидов. В контексте данного документа термин «модифицированный олигонуклеотид» означает олигонуклеотид, где по меньшей мере один нуклеозид или межнуклеозидная связь модифицированы. Используемый в данном документе термин «немодифицированный олигонуклеотид» означает олигонуклеотид, который не содержит каких-либо модификаций нуклеозидов или модификаций межнуклеозидных связей.

В контексте данного документа термин «фармацевтически приемлемый носитель или разбавитель» означает любое вещество, подходящее для применения при введении животному. Определенные такие носители позволяют составлять фармацевтические композиции в виде, например, таблеток, пилюль, драже, капсул, жидкостей, гелей, сиропов, взвесей, суспензии и пастилки для перорального приема субъектом. В определенных вариантах осуществления фармацевтически приемлемый носитель или разбавитель представляет собой стерильную воду, стерильный физиологический раствор, стерильный буферный раствор или стерильную искусственную спинномозговую жидкость.

В контексте данного документа термин «фармацевтически приемлемые соли» означает физиологически и фармацевтически приемлемые соли соединений. Фармацевтически приемлемые соли сохраняют необходимую биологическую активность исходного соединения и не оказывают на него нежелательного токсического воздействия.

Используемый в данном документе термин «фармацевтическая композиция» означает смесь веществ, подходящих для введения субъекту. Например, фармацевтическая композиция может содержать олигомерное соединение и стерильный водный раствор. В определенных вариантах осуществления фармацевтическая композиция проявляет активность в анализе свободного поглощения в определенных клеточных линиях.

В контексте данного документа «фосфодиэфирная связь» означает связывающую группу, имеющую следующую структуру:

В определенных вариантах осуществления фосфодиэфирная связь представляет собой межнуклеозидную связь. В определенных вариантах осуществления фосфодиэфирная фрагмент конъюгата модифицированным связь связывает c олигонуклеотидом.

В контексте данного документа «пролекарство» означает терапевтическое средство в первой форме вне организма, которое преобразуется во вторую форму внутри животного или его клеток. Обычно преобразование пролекарства в организме животного облегчается действием ферментов (например, эндогенного или вирусного фермента) или химических веществ, присутствующих в клетках или тканях, и/или физиологических условий. В определенных вариантах осуществления первая форма пролекарства менее активна, чем вторая форма. В определенных вариантах осуществления пролекарство содержит нацеленный на клетку фрагмент и по меньшей мере одно активное соединение.

В контексте данного документа «стабилизированная фосфатная группа» означает аналог 5'-фосфата, который метаболически более стабилен, чем 5'-фосфат, который естественным образом присутствует на ДНК или РНК.

В контексте данного документа «стандартный клеточный анализ» означает анализы, описанные в примерах, и их обоснованные вариации.

В контексте данного документа термин «стереослучайный хиральный центр» в контексте совокупности молекул идентичной молекулярной формулы означает хиральный центр, имеющий случайную стереохимическую конфигурацию. Например, в популяции молекул, содержащих стереослучайный хиральный центр, число молекул, имеющих (S)конфигурацию стереослучайного хирального центра, может быть, но не обязательно, таким же, как число молекул, имеющих (R)-конфигурацию стереослучайного хирального центра. Стереохимическая конфигурация хирального центра считается случайной, если она является результатом способа синтеза, который не предназначен для контроля стереохимической конфигурации. В определенных вариантах осуществления собой стереослучайный хиральный центр представляет стереослучайную фосфоротиоатную межнуклеозидную связь.

В контексте данного документа термин «сахарный фрагмент» означает немодифицированный сахарный фрагмент или модифицированный сахарный фрагмент. В контексте данного документа термин «немодифицированный сахарный фрагмент» означает 2'-ОН(Н) рибозильный фрагмент, встречающийся в РНК («немодифицированный сахарный фрагмент РНК»), или 2'-Н(Н) дезоксирибозильный сахарный фрагмент, встречающийся в ДНК («немодифицированный сахарный фрагмент ДНК»). Немодифицированные сахарные фрагменты имеют по одному водороду в каждом из положений 1', 3' и 4', кислород в положении 3' и два атома водорода в положении 5'. В контексте данного документа термин «модифицированный сахарный фрагмент» или «модифицированный сахар» означает модифицированный фуранозильный сахарный фрагмент или заменитель сахара.

В контексте данного документа термин «заменитель сахара» означает модифицированный сахарный фрагмент, отличающийся от фуранозильного фрагмента,

который может связывать нуклеиновое основание с другой группой, такой как межнуклеозидная связь, группа конъюгата или концевая группа в олигонуклеотиде. Модифицированные нуклеозиды, содержащие заменители сахаров, могут быть включены в одном или более положениях внутри олигонуклеотида, и такие олигонуклеотиды способны гибридизироваться с комплементарными олигомерными соединениями или целевыми нуклеиновыми кислотами.

В контексте данного документа термины «целевая нуклеиновая кислота» и «целевая РНК» означают нуклеиновую кислоту, для которой сконструировано олигомерное соединение. Целевая РНК означает транскрипт РНК и включает пре-mRNA и mRNA, если не указано иное.

В контексте данного документа термин «целевая область» означает часть целевой нуклеиновой кислоты, для которой олигомерное соединение сконструировано с целью гибридизации.

В контексте данного документа термин «концевая группа» означает химическую группу или группу атомов, которые ковалентно связаны с концом олигонуклеотида.

В контексте данного документа термин «антисмысловая активность» означает любое обнаруживаемое и/или измеримое изменение, связанное с гибридизацией антисмыслового соединения с его целевой нуклеиновой кислотой. В определенных вариантах осуществления антисмысловая активность представляет собой уменьшение количества или экспрессии целевой нуклеиновой кислоты или белка, кодируемого такой целевой нуклеиновой кислотой, по сравнению с уровнями целевой нуклеиновой кислоты или уровнями целевого белка в отсутствие антисмыслового соединения. В определенных вариантах осуществления антисмысловая активность представляет собой модуляцию сплайсинга целевой пре-mRNA.

В контексте данного документа термин «антисмысловое средство» означает антисмысловое соединение и необязательно один или несколько дополнительных свойств, таких как смысловое соединение.

В контексте данного документа «антисмысловое соединение» означает антисмысловой олигонуклеотид и необязательно один или несколько дополнительных свойств, таких как группа конъюгата.

В контексте данного документа «смысловое соединение» означает смысловой олигонуклеотид и необязательно один или несколько дополнительных свойств, таких как группа конъюгата.

В контексте данного документа «антисмысловой олигонуклеотид» означает олигонуклеотид, включая олигонуклеотидную часть антисмыслового соединения, который способен гибридизоваться с целевой нуклеиновой кислотой и обладает по меньшей мере одной антисмысловой активностью. Антисмысловые олигонуклеотиды включают без ограничения антисмысловые олигонуклеотиды для RNAi и антисмысловые олигонуклеотиды РНКазы H.

В контексте данного документа «смысловой олигонуклеотид» означает

олигонуклеотид, включая олигонуклеотидную часть смыслового соединения, который способен гибридизоваться с антисмысловым олигонуклеотидом.

В контексте данного документа термин «гэпмер» означает модифицированный олигонуклеотид, содержащий внутреннюю область, расположенную между внешними областями, содержащими один или более нуклеозидов, причем содержащиеся во внутренней области нуклеозиды химически отличаются от нуклеозида или нуклеозидов, которые содержатся во внешних областях, и где модифицированный олигонуклеотид поддерживает расщепление РНКазой Н. Внутренняя область может называться «гэп», а внешние области могут называться «крыльями». В определенных вариантах осуществления внутренняя область представляет собой дезокси-область. Положения внутренней области или гэпа относятся к порядку нуклеозидов внутренней области и отсчитываются, начиная с 5'-конца внутренней области. Если не указано иное, «гэпмер» относится к сахарному мотиву. В определенных вариантах осуществления каждый нуклеозид гэпа представляет собой 2'-β-D-дезоксинуклеозид. В некоторых вариантах осуществления гэп содержит один 2'-замещенный нуклеозид в положении 1, 2, 3, 4 или 5 гэпа, а остальные нуклеозиды гэпа представляют собой 2'-β-D-дезоксинуклеозиды. В контексте данного документа термин «МОЕ-гэпмер» означает гэпмер, имеющий гэп, содержащий 2'-β-D-дезоксинуклеозиды, и крылья, содержащие 2'-MOE нуклеозиды. В контексте данного документа термин «гэпмер смешанным крылом» обозначает гэпмер, имеющий крылья, содержащие модифицированные нуклеозиды, содержащие по меньшей мере две различные модификации сахара. Если не указано иное, гэпмер может содержать одну или несколько модифицированных межнуклеозидных связей и/или модифицированных нуклеиновых оснований, и такие модификации не обязательно соответствуют структуре гэпмеров модификаций сахара.

В контексте данного документа «нацеленный на клетку фрагмент» означает группу конъюгата или часть группы конъюгата, которые способны связываться с конкретным типом клеток или конкретными типами клеток.

В контексте данного документа термин «гибридизация» означает отжиг олигонуклеотидов и/или нуклеиновых кислот. Не ограничиваясь конкретным механизмом, наиболее распространенный механизм гибридизации включает водородную связь, которая может быть водородной связью Уотсона-Крика, Хугстина или обратной водородной связью Хугстина, между комплементарными нуклеиновыми основаниями. В определенных вариантах осуществления молекулы комплементарных нуклеиновых кислот включают без ограничения антисмысловое соединение и нуклеиновую кислоту-мишень. В определенных вариантах осуществления молекулы комплементарных нуклеиновых кислот включают без ограничения антисмысловой олигонуклеотид и нуклеиновую кислоту-мишень.

В контексте данного документа термин «средство для RNAi» означает антисмысловое средство, которое действует, по меньшей мере частично, посредством RISC или Ago2 на модуляцию целевой нуклеиновой кислоты и/или белка, кодируемого целевой нуклеиновой кислотой. Средства для RNAi включают без ограничения двухцепочечную

siRNA, одноцепочечную RNAi (ssRNAi) и микроРНК, включая имитаторы микроРНК. Средства для RNAi могут содержать группы конъюгатов и/или концевые группы. В определенных вариантах осуществления средство для RNAi модулирует количество и/или активность целевой нуклеиновой кислоты. Термин «средство для RNAi» исключает антисмысловые средства, действующие через РНКазу H.

В контексте данного документа «средство на основе РНКазы Н» означает антисмысловое средство, который действует через РНКазу Н, модулируя целевую нуклеиновую кислоту и/или белок, кодируемый целевой нуклеиновой кислотой. В определенных вариантах осуществления средства на основе РНКазы Н являются одноцепочечными. В определенных вариантах осуществления средства на основе РНКазы Н являются двухцепочечными. Соединения на основе РНКазы Н могут содержать группы коньюгатов и/или концевые группы. В определенных вариантах осуществления средство на основе РНКазы Н модулирует количество и/или активность целевой нуклеиновой кислоты. Термин «средство на основе РНКазы Н» исключает антисмысловые средства, которые действуют преимущественно через RISC/Ago2.

В контексте данного документа «лечение» означает улучшение заболевания или состояния субъекта путем введения олигомерного средства или олигомерного соединения, описанного в данном документе. В определенных вариантах осуществления лечение субъекта нормализует симптом по сравнению с тем же симптомом в отсутствие лечения. В определенных вариантах осуществления лечение снижает тяжесть или частоту симптома или задерживает появление симптома, замедляет прогрессирование симптома или замедляет тяжесть или частоту симптома.

В контексте данного документа «терапевтически эффективное количество» означает количество фармацевтического средства или композиции, которое обеспечивает терапевтическую пользу животному. Например, терапевтически эффективное количество нормализует симптом заболевания.

ОПРЕДЕЛЕННЫЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ

- 1. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины нуклеиновой кислоты PLN, и где модифицированный олигонуклеотид имеет по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.
- 2. Олигомерное соединение по варианту осуществления 1, где нуклеиновая кислота PLN имеет последовательность нуклеиновых оснований SEQ ID NO: 1 или 2.
- 3. Олигомерное соединение по варианту осуществления 1 или варианту осуществления 2, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3278-3293, 3281-3296, 3282-3297, 3284-3299, 3286-3301, 3287-3302, 3288-3303, 3327-3342, 3329-3344, 3332-3347, 3333-3348, 3336-3351, 3337-3352, 3338-

3353, 3339-3354, 3340-3355, 3341-3356, 3343-3358, 3345-3360, 3348-3363, 3349-3364, 3350-3365, 3351-3366, 3352-3367, 3353-3368, 3354-3369, 3355-3370, 3356-3371, 3357-3372, 3358-3373, 3395-3410, 3396-3411, 3405-3420, 3406-3421, 3408-3423, 3409-3424, 3410-3425, 3412-3427, 3496-3511, 3497-3512, 3498-3513, 3499-3514, 3598-3613, 3612-3627, 3614-3629, 3615-3630, 3616-3631, 3617-3632, 3618-3633, 3619-3634, 3620-3635, 3622-3637, 3703-3718, 3704-3719, 3715-3730, 3716-3731, 3723-3738, 3724-3739, 3799-3814, 3801-3816, 3802-3817, 3803-3818, 3804-3819, 3805-3820, 3806-3821, 3807-3822, 3808-3823, 3809-3824, 3811-3826, 3814-3829, 3815-3830, 3816-3831, 3817-3832, 3821-3836, 3823-3838, 3830-3845, 3831-3846, 3848-3863, 3849-3864, 3850-3865, 3851-3866, 3861-3876, 3863-3878, 3864-3879, 3869-3884, 3871-3886, 3976-3991, 3977-3992, 3978-3993, 3980-3995, 3981-3996, 4116-4131, 4159-4174, 4204-4219, 4207-4222, 4208-4223, 4209-4224, 4210-4225, 4211-4226, 4212-4227, 4214-4229, 4221-4236, 4231-4246, 4232-4247, 4233-4248, 4234-4249, 4235-4250, 4236-4251, 4238-4253, 4252-4267, 4253-4268, 4266-4281, 4348-4363, 4349-4364, 4350-4365, 4367-4382, 4373-4388, 4374-4389, 4375-4390, 4510-4525, 4511-4526, 4513-4528, 4515-4530, 4516-4531, 4517-4532, 4518-4533, 4519-4534, 4530-4545, 4537-4552, 4539-4554, 4540-4555, 4541-4556, 4542-4557, 4543-4558, 4544-4559, 4545-4560, 4562-4577, 4614-4629, 4617-4632, 4619-4634, 4620-4635, 4621-4636, 4622-4637, 4623-4638, 4624-4639, 4638-4653, 4640-4655, 4641-4656, 4642-4657, 4643-4658, 4665-4680, 4672-4687, 4693-4708, 4694-4709, 4695-4710, 4696-4711, 4697-4712, 4750-4765, 4751-4766, 4752-4767, 4753-4768, 4774-4789, 4802-4817, 4804-4819, 4805-4820, 4806-4821, 4807-4822, 4823-4838, 4825-4840, 4826-4841, 4828-4843, 4860-4875, 4862-4877, 4869-4884, 4872-4887, 4874-4889, 4878-4893, 4881-4896, 4883-4898, 4884-4899, 4942-4957, 4943-4958, 4945-4960, 4946-4961, 4957-4972, 4958-4973, 4960-4975, 4961-4976, 4964-4979, 4965-4980, 4966-4981, 4968-4983, 4969-4984, 4971-4986, 4972-4987, 4974-4989, 4984-4999, 4985-5000, 4987-5002, 4988-5003, 5024-5039, 5127-5142, 5133-5148, 5134-5149, 5158-5173, 5159-5174, 5160-5175, 5163-5178, 5294-5309, 5341-5356, 5359-5374, 5394-5409, 5399-5414, 5400-5415, 5401-5416, 5402-5417, 5404-5419, 5411-5426, 5413-5428, 5414-5429, 5415-5430, 5416-5431, 5417-5432, 5418-5433, 5419-5434, 5421-5436, 5427-5442, 5428-5443, 5489-5504, 5494-5509, 5495-5510, 5497-5512, 5498-5513, 5498-5515, 5498-5517, 5499-5514, 5499-5515, 5499-5516, 5499-5518, 5500-5515, 5500-5516, 5500-5517, 5501-5516, 5501-5514, 5501-5517, 5502-5517, 5502-5515, 5503-5518, 5504-5519, 5505-5520, 5506-5521, 5511-5526, 5532-5547, 5533-5548, 5534-5549, 5547-5562, 5557-5572, 5558-5573, 5559-5574, 5560-5575, 5562-5577, 5563-5578, 5565-5580, 5599-5614, 5673-5688, 5674-5689, 5675-5690, 5676-5691, 5677-5692, 5678-5693, 5679-5694, 5694-5709, 5695-5710, 5696-5711, 5697-5712, 5698-5713, 5774-5789, 5827-5842, 5845-5860, 5847-5862, 5848-5863, 5850-5865, 5851-5866, 5855-5870, 5859-5874, 5924-5939, 5925-5940, 5926-5941, 5927-5942, 5929-5944, 5930-5945, 5931-5946, 5932-5947, 6008-6023, 6009-6024, 6039-6054, 6053-6068, 6054-6069, 6055-6070, 6059-6074, 6066-6081, 6069-6084, 6070-6085, 6076-6091, 6092-6107, 6098-6113, 6112-6127, 6114-6129, 6117-6132, 6118-6133, 6119-6134, 6124-6139, 6125-6140, 6126-6141, 6147-6162, 6154-6169, 6155-6170, 6156-6171, 6157-6172, 6176-6191, 6177-6192, 6185-6200, 6186-6201, 6187-6202, 6188-6203, 6202-6217, 6209-6224, 6243-6258, 6249-6264, 6267-6282, 6268-6283, 6274-6289, 6275-6290, 62916306, 6338-6353, 6352-6367, 6353-6368, 6354-6369, 6365-6380, 6366-6381, 6368-6383, 6369-6384, 6403-6418, 6405-6420, 6406-6421, 6407-6422, 6408-6423, 6409-6424, 6410-6425, 6411-6426, 6413-6428, 6468-6483, 6471-6486, 6502-6517, 6546-6561, 6554-6569, 6555-6570, 6556-6571, 6557-6572, 6569-6584, 6574-6589, 6575-6590, 6576-6591, 6577-6592, 6578-6593, 6579-6594, 6644-6659, 6646-6661, 6647-6662, 6664-6679, 6665-6680, 6666-6681, 6667-6682, 6676-6691, 6677-6692, 6746-6761, 6804-6819, 6806-6821, 6825-6840, 6826-6841, 6827-6842, 6828-6843, 6831-6846, 6833-6848, 6834-6849, 6875-6890, 6877-6892, 6879-6894, 6880-6895, 6881-6896, 6893-6908, 6896-6911, 6898-6913, 6899-6914, 6900-6915, 6901-6916, 6903-6918, 6904-6919, 6906-6921, 6907-6922, 6908-6923, 6920-6935, 6921-6936, 6922-6937, 6923-6938, 6927-6942, 6928-6943, 6930-6945, 6937-6952, 6939-6954, 6940-6955, 6941-6956, 6942-6957, 6943-6958, 6944-6959, 6945-6960, 6947-6962, 6965-6980, 6966-6981, 6967-6982, 6968-6983, 6972-6987, 6975-6990, 7029-7044, 7042-7057, 7047-7062, 7050-7065, 7073-7088, 7082-7097, 7083-7098, 7102-7117, 7106-7121, 7107-7122, 7108-7123, 7120-7135, 7122-7137, 7123-7138, 7124-7139, 7125-7140, 7126-7141, 7128-7143, 7129-7144, 7130-7145, 7131-7146, 7279-7294, 7280-7295, 7282-7297, 7283-7298, 7284-7299, 7285-7300, 7286-7301, 7287-7302, 7320-7335, 7341-7356, 7342-7357, 7344-7359, 7353-7368, 7354-7369, 7356-7371, 7357-7372, 7358-7373, 7359-7374, 7360-7375, 7361-7376, 7362-7377, 7377-7392, 7378-7393, 7392-7407, 7393-7408, 7411-7426, 7425-7440, 7436-7451, 7457-7472, 7458-7473, 7459-7474, 7460-7475, 7461-7476, 7463-7478, 7464-7479, 7470-7485, 7516-7531, 7518-7533, 7519-7534, 7520-7535, 7521-7536, 7522-7537, 7546-7561, 7548-7563, 7553-7568, 7554-7569, 7555-7570, 7556-7571, 7558-7573, 7560-7575, 7561-7576, 7562-7577, 7563-7578, 7564-7579, 7565-7580, 7566-7581, 7568-7583, 7587-7602, 7588-7603, 7589-7604, 7595-7610, 7638-7653, 7679-7694, 7726-7741, 7779-7794, 7797-7812, 7799-7814, 7806-7821, 7857-7872, 7859-7874, 7860-7875, 7861-7876, 7862-7877, 7863-7878, 7864-7879, 7865-7880, 7867-7882, 7876-7891, 7878-7893, 7888-7903, 7889-7904, 7893-7908, 7908-7923, 7929-7944, 7965-7980, 7967-7982, 7968-7983, 8047-8062, 8058-8073, 8061-8076, 8089-8104, 8090-8105, 8163-8178, 8182-8197, 8194-8209, 8195-8210, 8196-8211, 8197-8212, 8284-8299, 8285-8300, 8286-8301, 8287-8302, 8288-8303, 8326-8341, 8336-8351, 8352-8367, 8353-8368, 8368-8383, 8393-8408, 8412-8427, 8413-8428, 8415-8430, 8418-8433, 8427-8442, 8447-8462, 8493-8508, 8494-8509, 8495-8510, 8496-8511, 8498-8513, 8542-8557, 8573-8588, 8621-8636, 8627-8642, 8628-8643, 8638-8653, 8639-8654, 8641-8656, 8653-8668, 8655-8670, 8703-8718, 8708-8723, 8732-8747, 8733-8748, 8739-8754, 8774-8789, 8776-8791, 8777-8792, 8818-8833, 8823-8838, 8824-8839, 8826-8841, 8827-8842, 8850-8865, 8855-8870, 8942-8957, 8943-8958, 8944-8959, 8955-8970, 8961-8976, 8962-8977, 8963-8978, 8964-8979, 9377-9392, 9443-9458, 9474-9489, 9523-9538, 9524-9539, 9525-9540, 9526-9541, 9528-9543, 9536-9551, 9537-9552, 9538-9553, 9540-9555, 9541-9556, 9545-9560, 9549-9564, 9550-9565, 9587-9602, 9630-9645, 9641-9656, 9642-9657, 9646-9661, 9647-9662, 9648-9663, 9649-9664, 9651-9666, 9660-9675, 9668-9683, 9669-9684, 9672-9687, 9697-9712, 9702-9717, 9703-9718, 9706-9721, 9707-9722, 9708-9723, 9709-9724, 9710-9725, 9711-9726, 9720-9735, 9727-9742, 9752-9767, 9756-9771, 9788-9803, 9934-9949, 9936-9951, 9937-9952, 9938-9953, 9939-9954, 9940-9955, 10019-10034, 10054-10069, 10062-10077, 10081-10096, 10106-10121, 10117-10132, 10443-10458, 10444-10459, 10445-10460, 10480-10495, 10481-10496, 10486-10501, 10489-10504, 10490-10505, 10491-10506, 10532-10547, 10623-10638, 10638-10653, 10645-10660, 10718-10733, 10719-10734, 10720-10735, 10721-10736, 10722-10737, 10723-10738, 10724-10739, 10747-10762, 10770-10785, 11066-11081, 11068-11083, 11104-11119, 11111-11126, 11112-11127, 11115-11130, 11116-11131, 11118-11133, 11130-11145, 11144-11159, 11224-11239, 11225-11240, 11237-11252, 11258-11273, 11259-11274, 11302-11317, 11353-11368, 11356-11371, 11368-11383, 11369-11384, 11409-11424, 11410-11425, 11411-11426, 11412-11427, 11413-11428, 11414-11429, 11415-11430, 11417-11432, 11457-11472, 11458-11473, 11467-11482, 11474-11489, 11475-11490, 11509-11524, 11510-11525, 11511-11526, 11524-11539, 11525-11540, 11526-11541, 11527-11542, 11529-11544, 11530-11545, 11622-11637, 11631-11646, 11632-11647, 11633-11648, 11634-11649, 11635-11650, 11636-11651, 11639-11654, 11670-11685, 11678-11693, 11679-11694, 11680-11695, 11681-11696, 11682-11697, 11684-11699, 11685-11700, 11726-11741, 11727-11742, 11740-11755, 11741-11756, 11742-11757, 11743-11758, 11799-11814, 11832-11847, 11833-11848, 11854-11869, 11855-11870, 11856-11871, 11857-11872, 11858-11873, 11859-11874, 11900-11915, 11931-11946, 11956-11971, 11988-12003, 11989-12004, 11990-12005, 11991-12006, 11992-12007, 11993-12008, 11994-12009, 11995-12010, 11997-12012, 11998-12013, 11999-12014, 12000-12015, 12015-12030, 12016-12031, 12017-12032, 12027-12042, 12032-12047, 12040-12055, 12041-12056, 12042-12057, 12076-12091, 12080-12095, 12081-12096, 12082-12097, 12084-12099, 12085-12100, 12086-12101, 12087-12102, 12088-12103, 12089-12104, 12090-12105, 12092-12107, 12194-12209, 12195-12210, 12238-12253, 12239-12254, 12241-12256, 12242-12257, 12243-12258, 12246-12261, 12282-12297, 12283-12298, 12285-12300, 12286-12301, 12287-12302, 12288-12303, 12307-12322, 12308-12323, 12310-12325, 12312-12327, 12315-12330, 12348-12363, 12355-12370, 12356-12371, 12357-12372, 12368-12383, 12388-12403, 12389-12404, 12390-12405, 12391-12406, 12392-12407, 12470-12485, 12471-12486, 12472-12487, 12473-12488, 12474-12489, 12498-12513, 12529-12544, 12530-12545, 12546-12561, 12548-12563, 12550-12565, 12551-12566, 12585-12600, 12721-12736, 12722-12737, 12723-12738, 12724-12739, 12727-12742, 12732-12747, 12733-12748, 12734-12749, 12735-12750, 12760-12775, 12812-12827, 12813-12828, 12817-12832, 12818-12833, 12912-12927, 12915-12930, 12929-12944, 12943-12958, 12946-12961, 13243-13258, 13327-13342, 13409-13424, 13431-13446, 13438-13453, 13460-13475, 13461-13476, 13484-13499, 13485-13500, 13486-13501, 13489-13504, 13490-13505, 13491-13506, 13492-13507, 13493-13508, 13525-13540, 13528-13543, 13529-13544, 13530-13545, 13717-13732, 13736-13751, 13770-13785, 13776-13791, 13777-13792, 13786-13801, 13814-13829, 13816-13831, 13818-13833, 13819-13834, 13820-13835, 13821-13836, 13822-13837, 13823-13838, 13835-13850, 13836-13851, 13837-13852, 13838-13853, 13839-13854, 13843-13858, 13870-13885, 13872-13887, 13875-13890, 13876-13891, 13877-13892, 13878-13893, 13879-13894, 13880-13895, 13881-13896, 13882-13897, 13883-13898, 13885-13900, 13904-13919, 13905-13920, 13906-13921, 13907-13922, 13908-13923, 13910-13925, 13912-13927, 13918-13933, 13924-13939, 13926-13941, 13927-13942, 13930-13945, 13934-13949, 13935-13950, 13936-13951, 13937-13952, 13938-13953, 13939-13954, 13940-13955, 13941-13956, 13942-13957, 13943-13958, 13944-13959, 13945-13960, 13946-13961, 13952-13967, 13953-13968, 13954-13969, 13955-13970, 13956-13971, 13957-13972, 13958-13973, 13959-13974, 13960-13975, 13961-13976, 13962-13977, 13963-13978, 13964-13979, 13965-13980, 13966-13981, 13967-13982, 13968-13983, 13969-13984, 13970-13985, 13973-13988, 13976-13991, 14000-14015, 14003-14018, 14028-14043, 14030-14045, 14032-14047, 14035-14050, 14036-14051, 14038-14053, 14039-14054, 14040-14055, 14041-14056, 14045-14060, 14047-14062, 14048-14063, 14049-14064, 14050-14065, 14051-14066, 14053-14068, 14054-14069, 14055-14070, 14056-14071, 14059-14074, 14060-14075, 14061-14076, 14062-14077, 14063-14078, 14064-14079, 14065-14080, 14066-14081, 14078-14093, 14081-14096, 14082-14097, 14084-14099, 14085-14100, 14086-14101, 14087-14102, 14088-14103, 14089-14104, 14090-14105, 14091-14106, 14092-14107, 14093-14108, 14095-14110, 14096-14111, 14097-14112, 14098-14113, 14099-14114, 14100-14115, 14102-14117, 14105-14120, 14110-14125, 14111-14126, 14112-14127, 14113-14128, 14115-14130, 14117-14132, 14119-14134, 14130-14145, 14163-14178, 14165-14180, 14166-14181, 14167-14182, 14169-14184, 14170-14185, 14174-14189, 14180-14195, 14181-14196, 14203-14218, 14207-14222, 14209-14224, 14212-14227, 14217-14232, 14220-14235, 14222-14237, 14223-14238, 14224-14239, 14225-14240, 14232-14247, 14233-14248, 14235-14250, 14242-14257, 14244-14259, 14247-14262, 14248-14263, 14249-14264, 14250-14265, 14251-14266, 14252-14267, 14253-14268, 14254-14269, 14255-14270, 14256-14271, 14257-14272, 14316-14331, 14317-14332, 14318-14333, 14319-14334, 14321-14336, 14324-14339, 14327-14342, 14337-14352, 14338-14353, 14339-14354, 14340-14355, 14341-14356, 14342-14357, 14343-14358, 14344-14359, 14345-14360, 14346-14361, 14347-14362, 14398-14413, 14400-14415, 14401-14416, 14403-14418, 14404-14419, 14405-14420, 14406-14421, 14408-14423, 14409-14424, 14410-14425, 14412-14427, 14443-14458, 14479-14494, 14480-14495, 14482-14497, 14504-14519, 14507-14522, 14508-14523, 14509-14524, 14510-14525, 14511-14526, 14512-14527, 14513-14528, 14514-14529, 14515-14530, 14515-14532, 14515-14534, 14516-14531, 14516-14532, 14516-14533, 14517-14532, 14517-14533, 14518-14531, 14519-14534, 14520-14535, 14522-14537, 14534-14549, 14535-14550, 14553-14568, 14569-14584, 14570-14585, 14571-14586, 14573-14588, 14601-14616, 14602-14617, 14603-14618, 14605-14620, 14606-14621, 14607-14622, 14608-14623, 14609-14624, 14610-14625, 14611-14626, 14612-14627, 14613-14628, 14614-14629, 14615-14630, 14616-14631, 14655-14670, 14656-14671, 14658-14673, 14659-14674, 14681-14696, 14683-14698, 14684-14699, 14684-14701, 14684-14703, 14685-14700, 14685-14701, 14685-14702, 14686-14701, 14686-14702, 14687-14702, 14687-14700, 14688-14703, 14689-14704, 14691-14706, 14692-14707, 14696-14711, 14703-14718, 14704-14719, 14705-14720, 14706-14721, 14707-14722, 14708-14723, 14709-14724, 14710-14725, 14711-14726, 14712-14727, 14713-14728, 14714-14729, 14759-14774, 14760-14775, 14761-14776, 14762-14777, 14763-14778, 14764-14779, 14765-14780, 14766-14781, 14767-14782, 14768-14783, 14769-14784, 14770-14785, 14771-14786, 14772-14787, 14773-14788, 14774-14789, 14775-14790, 14776-14791, 14779-14794, 14787-14802, 14792-14807, 14793-14808, 14794-14809, 14797-14812, 14798-14813, 14800-14815, 14818-14833, 14822-14837, 14823-14838, 14824-14839, 14825-14840, 14826-14841, 14827-14842, 14828-14843, 14829-14844, 14830-14845, 14831-14846, 14832-14847, 14833-14848, 14834-14849, 14835-14850, 14841-14856, 14842-14857, 14843-14858, 14844-14859, 14845-14860, 14846-14861, 14847-14862, 14848-14863, 14849-14864, 14850-14865, 14851-14866, 14852-14867, 14853-14868, 14855-14870, 14856-14871, 14857-14872, 14858-14873, 14859-14874, 14861-14876, 14862-14877, 14863-14878, 14864-14879, 14866-14881, 14877-14892, 14878-14893, 14880-14895, 14881-14896, 14889-14904, 14898-14913, 14899-14914, 14901-14916, 14903-14918, 14904-14919, 14905-14920, 14906-14921, 14913-14928, 14915-14930, 14916-14931, 14917-14932, 14918-14933, 14919-14934, 14921-14936, 14922-14937, 14923-14938, 14924-14939, 14925-14940, 14926-14941, 14927-14942, 14928-14943, 14929-14944, 14930-14945, 14931-14946, 14932-14947, 14933-14948, 14934-14949, 14935-14950, 14936-14951, 14937-14952, 14938-14953, 14938-14955, 14938-14957, 14939-14954, 14939-14955, 14939-14956, 14939-14958, 14940-14955, 14940-14956, 14940-14957, 14940-14959, 14941-14956, 14941-14954, 14941-14957, 14941-14958, 14941-14960, 14942-14957, 14942-14955, 14942-14958, 14942-14959, 14942-14961, 14943-14958, 14943-14956, 14943-14959, 14943-14960, 14943-14962, 14944-14959, 14944-14957, 14944-14960, 14944-14961, 14945-14960, 14945-14958, 14945-14961, 14946-14961, 14946-14959, 14948-14963, 14956-14971, 14957-14972, 14958-14973, 14959-14974, 14960-14975, 14961-14976, 14962-14977, 14963-14978, 14964-14979, 14965-14980, 14966-14981, 14968-14983, 14969-14984, 14970-14985, 14987-15002, 14992-15007, 14993-15008, 14994-15009, 14995-15010, 14996-15011, 15003-15018, 15005-15020, 15006-15021, 15007-15022, 15008-15023, 15009-15024, 15010-15025, 15011-15026, 15012-15027, 15013-15028, 15014-15029, 15015-15030, 15016-15031, 15017-15032, 15019-15034, 15142-15157, 15143-15158, 15150-15165, 15151-15166, 15152-15167, 15153-15168, 15154-15169, 15155-15170, 15156-15171, 15157-15172, 15158-15173, 15159-15174, 15160-15175, 15161-15176, 15162-15177, 15163-15178, 15164-15179, 15182-15197, 15184-15199, 15185-15200, 15186-15201, 15195-15210, 15197-15212, 15198-15213, 15199-15214, 15200-15215, 15201-15216, 15202-15217, 15203-15218, 15204-15219, 15205-15220, 15206-15221, 15207-15222, 15208-15223, 15209-15224, 15210-15225, 15211-15226, 15214-15229, 15215-15230, 15216-15231, 15217-15232, 15218-15233, 15219-15234, 15220-15235, 15221-15236, 15222-15237, 15222-15239, 15222-15241, 15223-15238, 15223-15239, 15223-15240, 15224-15239, 15224-15240, 15225-15240, 15225-15238, 15227-15242, 15228-15243, 15229-15244, 15230-15245, 15231-15246, 15232-15247, 15233-15248, 15234-15249, 15235-15250, 15236-15251, 15237-15252, 15238-15253, 15239-15254, 15247-15262, 15248-15263, 15249-15264, 15250-15265, 15251-15266, 15252-15267, 15253-15268, 15254-15269, 15255-15270, 15256-15271, 15257-15272, 15258-15273, 15259-15274, 15260-15275, 15261-15276, 15293-15308, 15299-15314, 15301-15316, 15302-15317, 15303-15318, 15304-15319, 15305-15320, 15320-15335, 15321-15336, 15323-15338, 15411-15426, 15414-15429, 15415-15430, 15416-15431, 15417-15432, 15496-15511, 15501-15516, 15504-15519, 15505-15520, 15506-15521, 15507-15522, 15508-15523, 15509-15524, 15510-15525, 15511-15526, 15512-15527, 15513-15528, 15515-15530, 15556-15571, 15558-15573, 15559-15574, 15560-15575, 15562-15577, 15569-15584, 15571-15586, 15574-15589, 15593-15608, 15594-15609, 15595-15610, 15596-15611, 15598-15613, 15599-15614, 15600-15615, 15601-15616, 15602-15617, 15603-15618, 15604-15619, 15605-15620, 15627-15642, 15629-15644, 15630-15645, 15631-15646, 15632-15647, 15633-15648, 15635-15650, 15636-15651, 15639-15654, 15640-15655, 15641-15656, 15642-15657, 15658-15673, 15659-15674, 15660-15675, 15661-15676, 15665-15680, 15666-15681, 15667-15682, 15668-15683, 15671-15686, 15673-15688, 15674-15689, 15675-15690, 15681-15696, 15682-15697, 15683-15698, 15684-15699, 15685-15700, 15686-15701, 15687-15702, 15740-15755, 15741-15756, 15753-15768, 15757-15772, 15758-15773, 15761-15776, 15762-15777, 15763-15778, 15765-15780, 15788-15803, 15812-15827, 15813-15828, 15814-15829, 15815-15830, 15816-15831, 15826-15841, 15827-15842, 15833-15848, 15858-15873, 15861-15876, 15863-15878, 15864-15879, 15865-15880, 15866-15881, 15867-15882, 15868-15883, 15869-15884, 15870-15885, 15871-15886, 15872-15887, 15873-15888, 15874-15889, 15875-15890, 15876-15891, 15877-15892, 15878-15893, 15882-15897, 15883-15898, 15910-15925, 15911-15926, 15912-15927, 15913-15928, 15914-15929, 15943-15958, 15947-15962, 15949-15964, 15950-15965, 15951-15966, 15955-15970, 15973-15988, 15974-15989, 15979-15994, 15980-15995, 16000-16015, 16008-16023, 16010-16025, 16026-16041, 16027-16042, 16030-16045, 16032-16047, 16034-16049, 16036-16051, 16037-16052, 16038-16053, 16039-16054, 16056-16071, 16057-16072, 16080-16095, 16117-16132, 16118-16133, 16216-16231, 16248-16263, 16265-16280, 16266-16281, 16268-16283, 16269-16284, 16273-16288, 16300-16315, 16305-16320, 16306-16321, 16327-16342, 16329-16344, 16422-16437, 16427-16442, 16428-16443, 16550-16565, 16557-16572, 16564-16579, 16569-16584, 16582-16597, 16592-16607, 16617-16632 или 16676-16691 SEQ ID NO: 2.

- 4. Олигомерное соединение по любому из вариантов осуществления 1-3, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3341-3368, 4516-4533, 5498-5517, 14337-14357, 14569-14588, 14607-14631, 14683-14703, 14828-14848, 14939-14958, 15222-15243 или 15251-15273 SEQ ID NO: 2.
- 5. Олигомерное соединение по любому из вариантов осуществления 1-4, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 5499-5514, 5500-5515, 5501-5516, 14686-14701, 14941-14956, 14942-14957 или 15224-15239 SEQ ID NO: 2.
- 6. Олигомерное соединение по любому из вариантов осуществления 1-5, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарна участку равной длины нуклеиновой кислоты PLN.
- 7. Олигомерное соединение, где олигомерное соединение содержит модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, при этом последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 15, по

меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 смежных нуклеиновых оснований любой из последовательностей нуклеиновых оснований любой из SEQ ID NO: 15-1712.

- 8. Олигомерное соединение по варианту осуществления 7, где последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 15-1712.
- 9. Олигомерное соединение по варианту осуществления 8, где модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, состоящую из последовательности нуклеиновых оснований любой из SEQ ID NO: 15-1712.
- 10. Олигомерное соединение по любому из вариантов осуществления 7-9, где модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.
- 11. Олигомерное соединение по варианту осуществления 10, где модифицированный олигонуклеотид состоит из 16-80 связанных нуклеозидов, при этом последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.
- 12. Олигомерное соединение по варианту осуществления 11, где модифицированный олигонуклеотид состоит из 16 связанных нуклеозидов и имеет последовательность нуклеиновых оснований, состоящую из последовательности нуклеиновых оснований любой из SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.
- 13. Олигомерное соединение по любому из вариантов осуществления 7-11, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарна участку равной длины нуклеиновой кислоты PLN, при этом нуклеиновая кислота PLN имеет последовательность нуклеиновых оснований SEQ ID NO: 1 или 2.
- 14. Олигомерное соединение по любому из вариантов осуществления 1-13, где модифицированный олигонуклеотид состоит из 10-25, 10-30, 10-50, 12-20, 12-25, 12-30, 12-50, 13-20, 13-25, 13-30, 13-50, 14-20, 14-25, 14-30, 14-50, 15-20, 15-25, 15-30, 15-50, 16-18, 16-20, 16-25, 16-30, 16-50, 17-20, 17-25, 17-30, 17-50, 18-20, 18-25, 18-30, 18-50, 19-20, 19-25, 19-30, 19-50, 20-25, 20-30, 20-50, 21-25, 21-30, 21-50, 22-25, 22-30, 22-50, 23-25, 23-30 или 23-50 связанных нуклеозидов.
- 15. Олигомерное соединение по любому из вариантов осуществления 1-14, где по меньшей мере один нуклеозид модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент.
- 16. Олигомерное соединение по варианту осуществления 15, где модифицированный сахарный фрагмент содержит бициклический сахарный фрагмент.

- 17. Олигомерное соединение по варианту осуществления 16, где бициклический сахарный фрагмент содержит 2'-4' мостик, выбранный из -O-CH₂-; и -O-CH(CH₃)-.
- 18. Олигомерное соединение по варианту осуществления 15, где модифицированный сахарный фрагмент содержит небициклический модифицированный сахарный фрагмент.
- 19. Олигомерное соединение по варианту осуществления 18, где небициклический модифицированный сахарный фрагмент представляет собой 2'-МОЕ сахарный фрагмент или 2'-ОМе сахарный фрагмент.
- 20. Олигомерное соединение по любому из вариантов осуществления 1-19, где по меньшей мере один нуклеозид модифицированного олигонуклеотидного соединения содержит заменитель сахара.
- 21. Олигомерное соединение по любому из вариантов осуществления 1-20, где модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.
- 22. Олигомерное соединение по варианту осуществления 21, где по меньшей мере одна модифицированная межнуклеозидная связь представляет собой тиофосфатную межнуклеозидную связь.
- 23. Олигомерное соединение по варианту осуществления 22, где каждая межнуклеозидная связь представляет собой модифицированную межнуклеозидную связь.
- 24. Олигомерное соединение по варианту осуществления 23, где модифицированная межнуклеозидная связь представляет собой тиофосфатную межнуклеозидную связь.
- 25. Олигомерное соединение по любому из вариантов осуществления 1-20, где каждая межнуклеозидная связь модифицированного олигонуклеотида независимо выбрана из фосфодиэфирной межнуклеозидной связи и фосфоротиоатной межнуклеозидной связи.
- 26. Олигомерное соединение по любому из вариантов осуществления 1-25, где модифицированный олигонуклеотид содержит по меньшей мере одно модифицированное нуклеиновое основание.
- 27. Олигомерное соединение по варианту осуществления 26, где модифицированное нуклеиновое основание представляет собой 5-метилцитозин.
- 28. Олигомерное соединение по варианту осуществления 27, где каждый цитозин представляет собой 5-метилцитозин.
- 29. Олигомерное соединение по любому из вариантов осуществления 1-28, где модифицированный олигонуклеотид содержит дезокси-область, состоящую из 5-12 смежных 2'-дезоксинуклеозидов.
- 30. Олигомерное соединение по варианту осуществления 29, где каждый нуклеозид дезокси-области представляет собой 2'-β-D-дезоксинуклеозид.
- 31. Олигомерное соединение по варианту осуществления 29 или варианту осуществления 30, где дезокси-область состоит из 6, 7, 8, 9, 10 или 6-10 связанных нуклеозидов.
 - 32. Олигомерное соединение по любому из вариантов осуществления 29-31, где

каждый нуклеозид, непосредственно прилегающий к дезокси-области, содержит модифицированный сахарный фрагмент.

- 33. Олигомерное соединение по любому из вариантов осуществления 29-32, где дезокси-область фланкирована на 5'-стороне 5'-областью, состоящей из 1-6 связанных нуклеозидов 5'-области, а на 3'-стороне 3 '-областью, состоящей из 1-6 связанных нуклеозидов 3'-области; при этом
- 3'-крайний нуклеозид 5' внешней области содержит модифицированный сахарный фрагмент; и
- 5'-крайний нуклеозид 3' внешней области содержит модифицированный сахарный фрагмент.
- 34. Олигомерное соединение по варианту осуществления 33, где каждый нуклеозид 3' внешней области содержит модифицированный сахарный фрагмент.
- 35. Олигомерное соединение по варианту осуществления 33 или варианту осуществления 34, где каждый нуклеозид 5' внешней области содержит модифицированный сахарный фрагмент.
- 36. Олигомерное соединение по варианту осуществления 35, где модифицированный олигонуклеотид имеет:
 - 5' внешнюю область, состоящую из 1-6 связанных нуклеозидов; дезокси-область, состоящую из 6-10 связанных нуклеозидов; и
 - 3' внешнюю область, состоящую из 1-6 связанных нуклеозидов;
- где каждый из 5'-нуклеозидов внешней области и каждый из 3'-нуклеозидов внешней области представляет собой cEt нуклеозид или 2'-MOE нуклеозид; и каждый из нуклеозидов дезокси-области представляет собой 2'-β-D-дезоксинуклеозид.
- 37. Олигомерное соединение по любому из вариантов осуществления 35, где модифицированный олигонуклеотид имеет сахарный мотив, содержащий:
 - 5' внешнюю область, состоящую из 3-6 связанных нуклеозидов; дезокси-область, состоящую из 7-8 связанных нуклеозидов; и
 - 3' внешнюю область, состоящую из 3-6 связанных нуклеозидов; где

каждый из нуклеозидов 3' внешней области выбран из 2'-МОЕ нуклеозида и сЕт нуклеозида, а 5' внешняя область имеет следующую формулу:

(Nk)n(Nd)(Nx),

где каждый Nk представляет собой бициклический нуклеозид, Nx 2'-OMe нуклеозид и Nd представляет собой 2'-β-D-дезоксинуклеозид;

и п равно от 1 до 4.

keddddddddkkke, kekddddddddkkk, kekddddddddkkke, kkeddddddddkkk и kkeddddddddkkke, где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «у» представляет собой сахарный фрагмент 2'-ОМе, каждый «е» представляет собой сахарный фрагмент 2'-МОЕ, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

39. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: ${}^{m}C_{ks}{}^{m}C_{ks}A_{ks}T_{ds}A_{ds}{}^{m}C_{ds}T_{ds}T_{ds}G_{ds}A_{ds}T_{ds}T_{ds}{}^{m}C_{ds}T_{ks}{}^{m}C_{ks}A_{k}$ (SEQ ID NO: 185), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

40. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $G_{ks}T_{ks}A_{ks}G_{ds}T_{ds}T_{ds}A_{ds}A_{ds}G_{ds}A_{ds}T_{ds}T_{ds}T_{ds}T_{ds}T_{cs}G_{ks}{}^{m}C_{k} (SEQ\ ID\ NO:\ 752),\ где:$

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

41. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}{}^{m}C_{ks}A_{ks}{}^{m}C_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{k} (SEQ ID NO: 609), где:$

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

42. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям:

 $A_{ks}A_{ks}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ks}G_{es}G_{ks}T_{es}A_{k}$ (SEQ ID NO: 45), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

43. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}{}^{m}C_{ks}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{es}G_{ks}A_{es}A_{k}$ (SEQ ID NO: 737), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

44. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}A_{ks}A_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}T_{es}G_{ks}G_{es}T_{k} (SEQ\ ID\ NO:\ 120),\ где:$

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

45. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: ${}^{m}C_{ks}A_{ks}{}^{m}C_{ks}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{ks}G_{e}$ (SEQ ID NO: 675), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

- 46. Олигомерное соединение по любому из вариантов осуществления 1-45, где олигомерное соединение содержит группу конъюгата.
 - 47. Олигомерное соединение по варианту осуществления 46, где группа конъюгата

содержит линкер конъюгата и фрагмент конъюгата.

- 48. Олигомерное соединение по варианту осуществления 46 или варианту осуществления 47, где линкер конъюгата состоит из одинарной связи.
- 49. Олигомерное соединение по любому из вариантов осуществления 46-48, где линкер конъюгата является расщепляемым.
- 50. Олигомерное соединение по любому из вариантов осуществления 46-49, где линкер конъюгата содержит 1-3 линкерных нуклеозида.
- 51. Олигомерное соединение по любому из вариантов осуществления 46-49, где линкер конъюгата не содержит каких-либо линкерных нуклеозидов.
- 52. Олигомерное соединение по любому из вариантов осуществления 46-51, где группа конъюгата присоединена к модифицированному олигонуклеотиду на 5'-конце модифицированного олигонуклеотида.
- 53. Олигомерное соединение по любому из вариантов осуществления 46-51, где группа конъюгата присоединена к модифицированному олигонуклеотиду на 3'-конце модифицированного олигонуклеотида.
- 54. Олигомерное соединение по любому из вариантов осуществления 46-53, где группа конъюгата содержит С22 алкил, С20 алкил, С16 алкил, С10 алкил, С21 алкил, С19 алкил, С18 алкил, С15 алкил, С14 алкил, С13 алкил, С12 алкил, С11 алкил, С9 алкил, С8 алкил, С7 алкил, С6 алкил, С5 алкил, С22 алкенил, С20 алкенил, С16 алкенил, С10 алкенил, С21 алкенил, С19 алкенил, С18 алкенил, С15 алкенил, С14 алкенил, С13 алкенил, С12 алкенил, С11 алкенил, С9 алкенил, С8 алкенил, С7 алкенил, С6 алкенил или С5 алкенил.
- 55. Олигомерное соединение по любому из вариантов осуществления 46-54, где фрагмент конъюгата представляет собой 6-пальмитамидогексильный фрагмент конъюгата.
- 56. Олигомерное соединение по любому из вариантов осуществления 46-53, где группа конъюгата имеет следующую структуру:

- 57. Олигомерное соединение по любому из вариантов осуществления 46-56, где группа конъюгата содержит нацеленный на клетку фрагмент.
- 58. Олигомерное соединение по варианту осуществления 57, где нацеленный на клетку фрагмент имеет аффинность к TfR1.
- 59. Олигомерное соединение по варианту осуществления 58, где нацеленный на клетку фрагмент содержит антитело к TfR1 или его фрагмент.
- 60. Олигомерное соединение по варианту осуществления 58, где нацеленный на клетку фрагмент содержит белок или пептид, способный связывать TfR1.
- 61. Олигомерное соединение по варианту осуществления 58, где нацеленный на клетку фрагмент содержит аптамер, способный связывать TfR1.
- 62. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-

 $HA]_oA_{ks}A_{ks}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ks}G_{es}G_{ks}T_{es}A_k$ (SEQ ID NO: 45), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] = \bigvee_{13} \bigvee_{0} \bigvee_{N} \bigvee_{0} \bigvee_{N} \bigvee_{N$$

63. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}A_{ks}{}^{m}C_{ks}A_{ks}{}^{m}C_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ks}G_{k}$ (SEQ ID NO: 609), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

64. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}G_{ks}T_{ks}A_{ks}G_{ds}T_{ds}T_{ds}A_{ds}A_{ds}G_{ds}T_{ds}$

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] = \bigvee_{13} \bigvee_{0} \bigvee_{13} \bigvee_{0} \bigvee_{0} \bigvee_{13} \bigvee_{0} \bigvee_$$

65. Олигомерное соединение, содержащее модифицированный олигонуклеотид,

соответствующий следующим химическим обозначениям: [С16-

 $HA]_oA_{ks}A_{ds}A_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}T_{ds}A_{ks}T_{es}G_{ks}G_{es}T_k$ (SEQ ID NO: 120), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] = \begin{cases} \begin{pmatrix} & & \\ &$$

- 66. Олигомерное соединение по любому из вариантов осуществления 1-65, где олигомерное соединение содержит концевую группу.
- 67. Олигомерное соединение по варианту осуществления 66, где концевая группа представляет собой сахарный фрагмент с удаленным нуклеиновым основанием.
 - 68. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 45).

69. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 45) или его соль.

- 70. Олигомерное соединение по варианту осуществления 69, которое представляет собой натриевую соль или калиевую соль.
 - 71. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 609).

72. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 609) или его соль.

- 73. Олигомерное соединение по варианту осуществления 72, которое представляет собой натриевую соль или калиевую соль.
 - 74. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 752).

75. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 752) или его соль.

- 76. Олигомерное соединение по варианту осуществления 75, которое представляет собой натриевую соль или калиевую соль.
 - 77. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 120).

78. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 120) или его соль.

- 79. Олигомерное соединение по варианту осуществления 78, которое представляет собой натриевую соль или калиевую соль.
- 80. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 185).

81. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 185) или его соль.

- 82. Модифицированный олигонуклеотид по варианту осуществления 81, который представляет собой натриевую соль или калиевую соль.
- 83. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 752).

84. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 752) или его соль.

- 85. Модифицированный олигонуклеотид по варианту осуществления 84, который представляет собой натриевую соль или калиевую соль.
- 86. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 609).

87. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 609) или его соль.

- 88. Модифицированный олигонуклеотид по варианту осуществления 87, который представляет собой натриевую соль или калиевую соль.
- 89. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

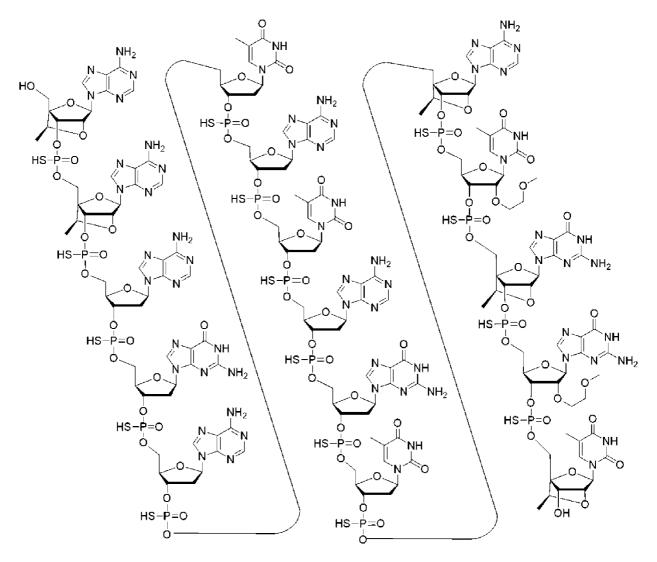
(SEQ ID NO: 45).

90. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 45) или его соль.

- 91. Модифицированный олигонуклеотид по варианту осуществления 90, который представляет собой натриевую соль или калиевую соль.
- 92. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 737).


93. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 737) или его соль.

- 94. Модифицированный олигонуклеотид по варианту осуществления 93, который представляет собой натриевую соль или калиевую соль.
- 95. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 120).

96. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 120) или его соль.

- 97. Модифицированный олигонуклеотид по варианту осуществления 96, который представляет собой натриевую соль или калиевую соль.
- 98. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 675).

99. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 675) или его соль.

- 100. Модифицированный олигонуклеотид по варианту осуществления 99, который представляет собой натриевую соль или калиевую соль.
- 101. Хирально обогащенная популяция олигомерных соединений по любому из вариантов осуществления 1-79 или модифицированных олигонуклеотидов по вариантам осуществления 80-100, где популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую конкретную стереохимическую конфигурацию.
- 102. Хирально обогащенная популяция по варианту осуществления 101, где популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую (Sp)- или (Rp)-конфигурацию.
- 103. Хирально обогащенная популяция по варианту осуществления 101, где популяция обогащена модифицированными олигонуклеотидами, имеющими особую, независимо выбранную стереохимическую конфигурацию в каждой фосфоротиоатной межнуклеозидной связи.
 - 104. Хирально обогащенная популяция по варианту осуществления 101, где

популяция обогащена модифицированными олигонуклеотидами, имеющими (*Rp*)-конфигурацию в одной конкретной фосфоротиоатной межнуклеозидной связи и (*Sp*)-конфигурацию в каждой из остальных тиофосфатных межнуклеозидных связей.

- 105. Хирально обогащенная популяция по варианту осуществления 101, где популяция обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере 3 смежные фосфоротиоатные межнуклеозидные связи в Sp-, Sp- и Rp- конфигурациях в направлении от 5' к 3'.
- 106. Популяция олигомерных соединений, содержащая модифицированные олигонуклеотиды по любому из вариантов осуществления 1-79, или популяция модифицированных олигонуклеотидов по вариантам осуществления 80-100, где все фосфоротиоатные межнуклеозидные связи модифицированного олигонуклеотида являются стереослучайными.
- 107. Олигомерный дуплекс, содержащий первое олигомерное соединение и второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, где первое олигомерное соединение представляет собой олигомерное соединение по любому из вариантов осуществления 1-59.
- 108. Олигомерный дуплекс по варианту осуществления 107, где второе олигомерное соединение содержит второй модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, и где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую по меньшей мере из 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна области равной длины первого модифицированного олигонуклеотида.

109. Олигомерный дуплекс, содержащий:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого модифицированного олигонуклеотида.

110. Олигомерный дуплекс, содержащий:

первое олигомерное соединение, содержащее первый модифицированный

олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20 или по меньшей мере 21 смежное нуклеиновое основание последовательности нуклеиновых оснований любой из SEQ ID NO: 2025-2336, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида на по меньшей мере 90% комплементарна области равной длины первого модифицированного олигонуклеотида.

111. Олигомерный дуплекс, содержащий:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 23 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида состоит из последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 21 связанного нуклеозида, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида состоит из последовательности нуклеиновых оснований любой из SEQ ID NO: 2025-2336, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида на по меньшей мере 90% комплементарна области равной длины первого модифицированного олигонуклеотида.

- 112. Олигомерный дуплекс по любому из вариантов осуществления 107-111, где модифицированный олигонуклеотид первого олигомерного соединения содержит 5'-стабилизированную фосфатную группу.
- 113. Олигомерный дуплекс по варианту осуществления 112, где 5'стабилизированная фосфатная группа содержит циклопропилфосфонат или винилфосфонат.
- 114. Олигомерный дуплекс по любому из вариантов осуществления 107-113, где модифицированный олигонуклеотид первого олигомерного соединения содержит заменитель сахара гликолевой нуклеиновой кислоты (GNA).
 - 115. Олигомерный дуплекс по любому из вариантов осуществления 107-114, где

модифицированный олигонуклеотид первого олигомерного соединения содержит 2'-NMA сахарный фрагмент.

- 116. Олигомерный дуплекс по любому из вариантов осуществления 107-115, где по меньшей мере один нуклеозид второго модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент.
- 117. Олигомерный дуплекс по варианту осуществелния 116, где модифицированный сахарный фрагмент второго модифицированного олигонуклеотида содержит бициклический сахарный фрагмент.
- 118. Олигомерный дуплекс по варианту осуществления 117, где бициклический сахарный фрагмент второго модифицированного олигонуклеотида содержит 2'-4' мостик, выбранный из -O-CH₂-; и -O-CH(CH₃)-.
- 119. Олигомерный дуплекс по варианту осуществления 116, где модифицированный сахарный фрагмент второго модифицированного олигонуклеотида содержит небициклический модифицированный сахарный фрагмент.
- 120. Олигомерный дуплекс по варианту осуществления 119, где небициклический модифицированный сахарный фрагмент второго модифицированного олигонуклеотида представляет собой 2'-МОЕ сахарный фрагмент, 2'-F сахарный фрагмент или 2'-Оте сахарный фрагмент.
- 121. Олигомерный дуплекс по любому из вариантов осуществления 107-120, где по меньшей мере один нуклеозид второго модифицированного олигонуклеотида содержит заменитель сахара.
- 122. Олигомерный дуплекс по любому из вариантов осуществления 107-121, где второй модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.
- 123. Олигомерный дуплекс по варианту осуществления 122, где по меньшей мере одна модифицированная межнуклеозидная связь второго модифицированного олигонуклеотида представляет собой фосфоротиоатную межнуклеозидную связь.
- 124. Олигомерный дуплекс по любому из вариантов осуществления 107-123, где второй модифицированный олигонуклеотид содержит по меньшей мере одну фосфодиэфирную межнуклеозидную связь.
- 125. Олигомерный дуплекс по любому из вариантов осуществления 107-124, где каждая межнуклеозидная связь второго модифицированного олигонуклеотида независимо выбрана из фосфодиэфирной или фосфоротиоатной межнуклеозидной связи.
- - 127. Олигомерный дуплекс по любому из вариантов осуществления 107-126, где

второй модифицированный олигонкулеотид содержит по меньшей мере одно модифицированное нуклеиновое основание.

- 128. Олигомерный дуплекс по варианту осуществления 127, где модифицированное нуклеиновое основание второго модифицированного олигонуклеотида представляет собой 5-метилцитозин.
- 129. Олигомерный дуплекс по любому из вариантов осуществления 107-128, где второй модифицированный олигонуклеотид содержит группу конъюгата.
- 130. Олигомерный дуплекс по варианту осуществления 129, где группа конъюгата содержит линкер конъюгата и фрагмент конъюгата.
- 131. Олигомерный дуплекс по варианту осуществления 129 или варианту осуществления 130, где группа конъюгата присоединена ко второму модифицированному олигонуклеотиду на 5'-конце второго модифицированного олигонуклеотида.
- 132. Олигомерный дуплекс по варианту осуществления 129 или варианту осуществления 130, где группа конъюгата присоединена ко второму модифицированному олигонуклеотиду на 3'-конце модифицированного олигонуклеотида.
- 133. Олигомерный дуплекс по любому из вариантов осуществления 129-132, где группа конъюгата содержит С22 алкил, С20 алкил, С16 алкил, С10 алкил, С21 алкил, С19 алкил, С18 алкил, С15 алкил, С14 алкил, С13 алкил, С12 алкил, С11 алкил, С9 алкил, С8 алкил, С7 алкил, С6 алкил, С5 алкил, С22 алкенил, С20 алкенил, С16 алкенил, С10 алкенил, С21 алкенил, С19 алкенил, С18 алкенил, С15 алкенил, С14 алкенил, С13 алкенил, С12 алкенил, С11 алкенил, С9 алкенил, С8 алкенил, С7 алкенил, С6 алкенил или С5 алкенил.
- 134. Олигомерный дуплекс по любому из вариантов осуществления 129-133, где фрагмент конъюгата представляет собой 6-пальмитамидогексильный фрагмент конъюгата.
- 135. Олигомерный дуплекс по любому из вариантов осуществления 129-132, где группа конъюгата имеет следующую структуру:

- 136. Олигомерный дуплекс по любому из вариантов осуществления 129-135, где группа конъюгата содержит нацеленный на клетку фрагмент.
- 137. Олигомерный дуплекс по варианту осуществления 136, где нацеленный на клетку фрагмент имеет аффинность к TfR1.
- 138. Олигомерный дуплекс по варианту осуществления 137, где нацеленный на клетку фрагмент содержит антитело к TfR1 или его фрагмент.
- 139. Олигомерный дуплекс по варианту осуществления 137, где нацеленный на клетку фрагмент содержит белок или пептид, способный связывать TfR1.
- 140. Олигомерный дуплекс по варианту осуществления 137, где нацеленный на клетку фрагмент содержит аптамер, способный связывать TfR1.
- 141. Олигомерный дуплекс по любому из вариантов осуществления 107-140, где второй модифицированный олигонуклеотид содержит концевую группу.

- 142. Олигомерный дуплекс по варианту осуществления 141, где концевая группа представляет собой сахарный фрагмент с удаленным нуклеиновым основанием.
- 143. Олигомерный дуплекс по любому из вариантов осуществления 107-142, где второй модифицированный олигонуклеотид состоит из 10-25, 10-30, 10-50, 12-20, 12-25, 12-30, 12-50, 13-20, 13-25, 13-30, 13-50, 14-20, 14-25, 14-30, 14-50, 15-20, 15-25, 15-30, 15-50, 16-18,16-20, 16-25, 16-30, 16-50, 17-20, 17-25, 17-30, 17-50, 18-20, 18-25, 18-30, 18-50, 19-20, 19-25, 19-30, 19-50, 20-25, 20-30, 20-50, 21-25, 21-30, 21-50, 22-25, 22-30, 22-50, 23-25, 23-30 или 23-50 связанных нуклеозидов.
- 144. Олигомерный дуплекс по любому из вариантов осуществления 107-143, где модифицированный олигонуклеотид первого олигомерного соединения состоит из 23 связанных нуклеозидов, а второй модифицированный олигонуклеотид состоит из 21 связанного нуклеозида.
- 146. Антисмысловое средство, содержащее антисмысловое соединение, где антисмысловое соединение представляет собой олигомерное соединение по любому из вариантов осуществления 1-79 или модифицированный олигонуклеотид по любому из вариантов осуществления 80-100.
- 147. Антисмысловое средство, где антисмысловое средство представляет собой олигомерный дуплекс по любому из вариантов осуществления 107-145.
- 148. Антисмысловое средство по варианту осуществления 146 или варианту осуществления 147, где антисмысловое средство представляет собой:

средство на основе РНКазы H, способное снижать количество нуклеиновой кислоты PLN посредством активации РНКазы H;

средство для RNAi, способное снижать количество нуклеиновой кислоты PLN посредством активации RISC/Ago2.

- 149. Антисмысловое средство по любому из вариантов осуществления 146-148, где группа конъюгата представляет собой нацеленный на клетку фрагмент.
- 150. Фармацевтическая композиция, содержащая олигомерное соединение по любому из вариантов осуществления 1-79, модифицированный олигонуклеотид по любому из вариантов осуществления 80-100, популяция по любому из вариантов осуществления 101-106, олигомерный дуплекс по любому из вариантов осуществления 107-145 или антисмысловое средство по любому из вариантов осуществления 146-149 и фармацевтически приемлемый разбавитель или носитель.
- 151. Фармацевтическая композиция по варианту осуществления 150, где фармацевтически приемлемый разбавитель представляет собой воду или фосфатно-солевой буферный раствор.

- 152. Фармацевтическая композиция по варианту осуществления 151, где фармацевтическая композиция состоит по сути из олигомерного соединения, модифицированного олигонуклеотида, олигомерного дуплекса или антисмыслового средства и воды или фосфатно-солевого буферного раствора.
- 153. Способ, включающий введение субъекту олигомерного соединения по любому из вариантов осуществления 1-79, модифицированного олигонуклеотида по любому из вариантов осуществления 80-100, популяции по любому из вариантов осуществления 101-106, олигомерного дуплекса по любому из вариантов осуществления 107-145, антисмыслового средства по любому из вариантов осуществления 146-149 или фармацевтическую композицию по любому из вариантов осуществления 150-152.
- 154. Способ лечения заболевания, ассоциированного с PLN, включающий введение субъекту, имеющему заболевание, ассоциированное с PLN, терапевтически эффективного количества олигомерного соединения по любому из вариантов осуществления 1-79, модифицированного олигонуклеотида по любому из вариантов осуществления 80-100, популяции по любому из вариантов осуществления 101-106, олигомерный дуплекс по любому из вариантов осуществления 107-145, антисмысловое средство по любому из вариантов осуществления 146-149 или фармацевтическую композицию по любому из вариантов осуществления 150-152; за счет чего осуществляется лечение заболевания, ассоциированного с PLN.
- 155. Способ по варианту осуществления 154, где заболевание, ассоциированное с PLN, представляет собой кардиомиопатию, сердечную недостаточность или аритмию.
- 156. Способ по варианту осуществления 155, где кардиомиопатия представляет собой генетическую кардиомиопатию.
- 157. Способ по варианту осуществления 156, где генетическая кардиомиопатия ассоциирована с генетическими мутациями p.Arg14del, Arg9Cys (R9C) или Arg25Cys (R25C).s.
- 158. Способ по варианту осуществления 155, где кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM).
- 159. Способ по варианту осуществления 157, где DCM представляет собой генетическую DCM.
- 160. Способ по варианту осуществления 159, где генетическая DMC ассоциирована с мутациями TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1.
- 161. Способ по варианту осуществления 158, где DCM представляет собой аритмогенную DCM.
- 162. Способ по варианту осуществления 155, где сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности.
- 163. Способ по варианту осуществления 155, где аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

- 164. Способ по любому из вариантов осуществления 155-163, где введение любому олигомерного соединения ПО ИЗ вариантов осуществления 1-79, модифицированного олигонуклеотида по любому из вариантов осуществления 80-100, популяции по любому из вариантов осуществления 101-106, олигомерного дуплекса по любому из вариантов осуществления 107-145, антисмыслового средства по любому из вариантов осуществления 146-149 или фармацевтической композиции по любому из вариантов осуществления 150-152 нормализует сердечную функцию, сердечно-сосудистую смерть, сердечную дилатацию, сердечный фиброз, низковольтную ЕСС, диастолическое поглощение кальция, фракцию выброса (EF), фракцию выброса левого желудочка (LVEF), конечный систолический объем левого желудочка (LVESV), конечный диастолический объем левого желудочка (LVEDV), профиль потока митрального клапана, напряжение левого желудочка (LV), скорость деформации левого желудочка (LV), размер инфаркта, госпитализацию при сердечной недостаточности, тест 6-минутной ходьбы (6MWT), оценку по опроснику кардиомиопатии Канзас-Сити (KCCQS), частоту сердечных сокращений или сердечный ритм у субъекта.
- 165. Способ снижения экспрессии PLN в клетке, включающий приведение клетки в контакт с олигомерным соединением по любому из вариантов осуществления 1-79, модифицированным олигонуклеотидом по любому из вариантов осуществления 80-100, популяцией по любому из вариантов осуществления 101-106, олигомерным дуплексом по любому из вариантов осуществления 107-145, антисмыслового средства по любому из вариантов осуществления 146-149 или фармацевтической композиции по любому из вариантов осуществления 150-152.
- 166. Способ по варианту осуществления 157, где клетка представляет собой клетку сердца.
- 167. Применение олигомерного соединения по любому из вариантов осуществления 1-79, модифицированного олигонуклеотида по любому из вариантов осуществления 80-100, популяции по любому из вариантов осуществления 101-106, олигомерного дуплекса по любому из вариантов осуществления 107-145, антисмыслового средства по любому из вариантов осуществления 146-149 или фармацевтической композиции по любому из вариантов осуществления 150-152 для лечения заболевания, ассоциированного с PLN.
- 1-79, модифицированного олигонуклеотида по любому из вариантов осуществления 80-100, популяции по любому из вариантов осуществления 101-106, олигомерного дуплекса по любому из вариантов осуществления 107-145, антисмыслового средства по любому из вариантов осуществления 107-145, антисмыслового средства по любому из вариантов осуществления 146-149 или фармацевтической композиции по любому из вариантов осуществления 150-152 в производстве лекарственного препарата для лечения заболевания, ассоциированного с PLN.
- 169. Применение по варианту осуществления 159 или варианту осуществления 160, где заболевание, ассоциированное с PLN, представляет собой кардиомиопатию, сердечную недостаточность или аритмию.

- 170. Применение по варианту осуществления 169, где кардиомиопатия представляет собой генетическую кардиомиопатию.
- 171. Применение по варианту осуществления 170, где генетическая кардиомиопатия ассоциирована с генетическими мутациями p.Arg14del, Arg9Cys (R9C) или Arg25Cys (R25C).
- 172. Применение по варианту осуществления 169, где кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM).
- 173. Применение по варианту осуществления 172, где DCM представляет собой генетическую DCM.
- 174. Применение по варианту осуществления 173, где генетическая DMC ассоциирована с мутациями TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1.
- 175. Применение по варианту осуществления 172, где DCM представляет собой аритмогенную DCM.
- 176. Применение по варианту осуществления 169, где сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности.
- 177. Применение по варианту осуществления 176, где аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

Определенные олигомерные средства и олигомерные соединения

В определенных вариантах осуществления представлены олигомерные средства, нацеленные на нуклеиновую кислоту PLN. В определенных вариантах осуществления нуклеиновая кислота PLN имеет последовательность, представленную в RefSeq, или № доступа в GENBANK NM_002667.4 или NC_000006.12, усеченную от нуклеозидов 118545001 до 118565000, каждый из которых включен посредством ссылки во всей своей полноте. В определенных вариантах осуществления олигомерное средство представляет собой одноцепочечное олигомерное соединение. В определенных вариантах осуществления олигомерный дуплекс.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины нуклеиновой кислоты PLN, и где модифицированный олигонуклеотид имеет по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи. В определенных вариантах осуществления нуклеиновая кислота PLN имеет последовательность нуклеиновых оснований SEQ ID NO: 1 или 2. В определенных вариантах осуществления последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3278-3293, 3281-3296, 3282-3297, 3284-3299, 3286-3301, 3287-3302, 3288-3303, 3327-3342, 3329-3344, 3332-3347, 3333-3348, 3336-

3351, 3337-3352, 3338-3353, 3339-3354, 3340-3355, 3341-3356, 3343-3358, 3345-3360, 3348-3363, 3349-3364, 3350-3365, 3351-3366, 3352-3367, 3353-3368, 3354-3369, 3355-3370, 3356-3371, 3357-3372, 3358-3373, 3395-3410, 3396-3411, 3405-3420, 3406-3421, 3408-3423, 3409-3424, 3410-3425, 3412-3427, 3496-3511, 3497-3512, 3498-3513, 3499-3514, 3598-3613, 3612-3627, 3614-3629, 3615-3630, 3616-3631, 3617-3632, 3618-3633, 3619-3634, 3620-3635, 3622-3637, 3703-3718, 3704-3719, 3715-3730, 3716-3731, 3723-3738, 3724-3739, 3799-3814, 3801-3816, 3802-3817, 3803-3818, 3804-3819, 3805-3820, 3806-3821, 3807-3822, 3808-3823, 3809-3824, 3811-3826, 3814-3829, 3815-3830, 3816-3831, 3817-3832, 3821-3836, 3823-3838, 3830-3845, 3831-3846, 3848-3863, 3849-3864, 3850-3865, 3851-3866, 3861-3876, 3863-3878, 3864-3879, 3869-3884, 3871-3886, 3976-3991, 3977-3992, 3978-3993, 3980-3995, 3981-3996, 4116-4131, 4159-4174, 4204-4219, 4207-4222, 4208-4223, 4209-4224, 4210-4225, 4211-4226, 4212-4227, 4214-4229, 4221-4236, 4231-4246, 4232-4247, 4233-4248, 4234-4249, 4235-4250, 4236-4251, 4238-4253, 4252-4267, 4253-4268, 4266-4281, 4348-4363, 4349-4364, 4350-4365, 4367-4382, 4373-4388, 4374-4389, 4375-4390, 4510-4525, 4511-4526, 4513-4528, 4515-4530, 4516-4531, 4517-4532, 4518-4533, 4519-4534, 4530-4545, 4537-4552, 4539-4554, 4540-4555, 4541-4556, 4542-4557, 4543-4558, 4544-4559, 4545-4560, 4562-4577, 4614-4629, 4617-4632, 4619-4634, 4620-4635, 4621-4636, 4622-4637, 4623-4638, 4624-4639, 4638-4653, 4640-4655, 4641-4656, 4642-4657, 4643-4658, 4665-4680, 4672-4687, 4693-4708, 4694-4709, 4695-4710, 4696-4711, 4697-4712, 4750-4765, 4751-4766, 4752-4767, 4753-4768, 4774-4789, 4802-4817, 4804-4819, 4805-4820, 4806-4821, 4807-4822, 4823-4838, 4825-4840, 4826-4841, 4828-4843, 4860-4875, 4862-4877, 4869-4884, 4872-4887, 4874-4889, 4878-4893, 4881-4896, 4883-4898, 4884-4899, 4942-4957, 4943-4958, 4945-4960, 4946-4961, 4957-4972, 4958-4973, 4960-4975, 4961-4976, 4964-4979, 4965-4980, 4966-4981, 4968-4983, 4969-4984, 4971-4986, 4972-4987, 4974-4989, 4984-4999, 4985-5000, 4987-5002, 4988-5003, 5024-5039, 5127-5142, 5133-5148, 5134-5149, 5158-5173, 5159-5174, 5160-5175, 5163-5178, 5294-5309, 5341-5356, 5359-5374, 5394-5409, 5399-5414, 5400-5415, 5401-5416, 5402-5417, 5404-5419, 5411-5426, 5413-5428, 5414-5429, 5415-5430, 5416-5431, 5417-5432, 5418-5433, 5419-5434, 5421-5436, 5427-5442, 5428-5443, 5489-5504, 5494-5509, 5495-5510, 5497-5512, 5498-5513, 5498-5515, 5498-5517, 5499-5514, 5499-5515, 5499-5516, 5499-5518, 5500-5515, 5500-5516, 5500-5517, 5501-5516, 5501-5514, 5501-5517, 5502-5517, 5502-5515, 5503-5518, 5504-5519, 5505-5520, 5506-5521, 5511-5526, 5532-5547, 5533-5548, 5534-5549, 5547-5562, 5557-5572, 5558-5573, 5559-5574, 5560-5575, 5562-5577, 5563-5578, 5565-5580, 5599-5614, 5673-5688, 5674-5689, 5675-5690, 5676-5691, 5677-5692, 5678-5693, 5679-5694, 5694-5709, 5695-5710, 5696-5711, 5697-5712, 5698-5713, 5774-5789, 5827-5842, 5845-5860, 5847-5862, 5848-5863, 5850-5865, 5851-5866, 5855-5870, 5859-5874, 5924-5939, 5925-5940, 5926-5941, 5927-5942, 5929-5944, 5930-5945, 5931-5946, 5932-5947, 6008-6023, 6009-6024, 6039-6054, 6053-6068, 6054-6069, 6055-6070, 6059-6074, 6066-6081, 6069-6084, 6070-6085, 6076-6091, 6092-6107, 6098-6113, 6112-6127, 6114-6129, 6117-6132, 6118-6133, 6119-6134, 6124-6139, 6125-6140, 6126-6141, 6147-6162, 6154-6169, 6155-6170, 6156-6171, 6157-6172, 6176-6191, 6177-6192, 6185-6200, 6186-6201, 6187-6202, 6188-6203, 6202-6217, 6209-6224, 6243-6258, 6249-6264, 6267-6282, 6268-6283, 62746289, 6275-6290, 6291-6306, 6338-6353, 6352-6367, 6353-6368, 6354-6369, 6365-6380, 6366-6381, 6368-6383, 6369-6384, 6403-6418, 6405-6420, 6406-6421, 6407-6422, 6408-6423, 6409-6424, 6410-6425, 6411-6426, 6413-6428, 6468-6483, 6471-6486, 6502-6517, 6546-6561, 6554-6569, 6555-6570, 6556-6571, 6557-6572, 6569-6584, 6574-6589, 6575-6590, 6576-6591, 6577-6592, 6578-6593, 6579-6594, 6644-6659, 6646-6661, 6647-6662, 6664-6679, 6665-6680, 6666-6681, 6667-6682, 6676-6691, 6677-6692, 6746-6761, 6804-6819, 6806-6821, 6825-6840, 6826-6841, 6827-6842, 6828-6843, 6831-6846, 6833-6848, 6834-6849, 6875-6890, 6877-6892, 6879-6894, 6880-6895, 6881-6896, 6893-6908, 6896-6911, 6898-6913, 6899-6914, 6900-6915, 6901-6916, 6903-6918, 6904-6919, 6906-6921, 6907-6922, 6908-6923, 6920-6935, 6921-6936, 6922-6937, 6923-6938, 6927-6942, 6928-6943, 6930-6945, 6937-6952, 6939-6954, 6940-6955, 6941-6956, 6942-6957, 6943-6958, 6944-6959, 6945-6960, 6947-6962, 6965-6980, 6966-6981, 6967-6982, 6968-6983, 6972-6987, 6975-6990, 7029-7044, 7042-7057, 7047-7062, 7050-7065, 7073-7088, 7082-7097, 7083-7098, 7102-7117, 7106-7121, 7107-7122, 7108-7123, 7120-7135, 7122-7137, 7123-7138, 7124-7139, 7125-7140, 7126-7141, 7128-7143, 7129-7144, 7130-7145, 7131-7146, 7279-7294, 7280-7295, 7282-7297, 7283-7298, 7284-7299, 7285-7300, 7286-7301, 7287-7302, 7320-7335, 7341-7356, 7342-7357, 7344-7359, 7353-7368, 7354-7369, 7356-7371, 7357-7372, 7358-7373, 7359-7374, 7360-7375, 7361-7376, 7362-7377, 7377-7392, 7378-7393, 7392-7407, 7393-7408, 7411-7426, 7425-7440, 7436-7451, 7457-7472, 7458-7473, 7459-7474, 7460-7475, 7461-7476, 7463-7478, 7464-7479, 7470-7485, 7516-7531, 7518-7533, 7519-7534, 7520-7535, 7521-7536, 7522-7537, 7546-7561, 7548-7563, 7553-7568, 7554-7569, 7555-7570, 7556-7571, 7558-7573, 7560-7575, 7561-7576, 7562-7577, 7563-7578, 7564-7579, 7565-7580, 7566-7581, 7568-7583, 7587-7602, 7588-7603, 7589-7604, 7595-7610, 7638-7653, 7679-7694, 7726-7741, 7779-7794, 7797-7812, 7799-7814, 7806-7821, 7857-7872, 7859-7874, 7860-7875, 7861-7876, 7862-7877, 7863-7878, 7864-7879, 7865-7880, 7867-7882, 7876-7891, 7878-7893, 7888-7903, 7889-7904, 7893-7908, 7908-7923, 7929-7944, 7965-7980, 7967-7982, 7968-7983, 8047-8062, 8058-8073, 8061-8076, 8089-8104, 8090-8105, 8163-8178, 8182-8197, 8194-8209, 8195-8210, 8196-8211, 8197-8212, 8284-8299, 8285-8300, 8286-8301, 8287-8302, 8288-8303, 8326-8341, 8336-8351, 8352-8367, 8353-8368, 8368-8383, 8393-8408, 8412-8427, 8413-8428, 8415-8430, 8418-8433, 8427-8442, 8447-8462, 8493-8508, 8494-8509, 8495-8510, 8496-8511, 8498-8513, 8542-8557, 8573-8588, 8621-8636, 8627-8642, 8628-8643, 8638-8653, 8639-8654, 8641-8656, 8653-8668, 8655-8670, 8703-8718, 8708-8723, 8732-8747, 8733-8748, 8739-8754, 8774-8789, 8776-8791, 8777-8792, 8818-8833, 8823-8838, 8824-8839, 8826-8841, 8827-8842, 8850-8865, 8855-8870, 8942-8957, 8943-8958, 8944-8959, 8955-8970, 8961-8976, 8962-8977, 8963-8978, 8964-8979, 9377-9392, 9443-9458, 9474-9489, 9523-9538, 9524-9539, 9525-9540, 9526-9541, 9528-9543, 9536-9551, 9537-9552, 9538-9553, 9540-9555, 9541-9556, 9545-9560, 9549-9564, 9550-9565, 9587-9602, 9630-9645, 9641-9656, 9642-9657, 9646-9661, 9647-9662, 9648-9663, 9649-9664, 9651-9666, 9660-9675, 9668-9683, 9669-9684, 9672-9687, 9697-9712, 9702-9717, 9703-9718, 9706-9721, 9707-9722, 9708-9723, 9709-9724, 9710-9725, 9711-9726, 9720-9735, 9727-9742, 9752-9767, 9756-9771, 9788-9803, 9934-9949, 9936-9951, 9937-9952, 9938-9953, 9939-9954, 9940-9955, 10019-10034, 10054-10069, 10062-10077, 10081-10096, 1010610121, 10117-10132, 10443-10458, 10444-10459, 10445-10460, 10480-10495, 10481-10496, 10486-10501, 10489-10504, 10490-10505, 10491-10506, 10532-10547, 10623-10638, 10638-10653, 10645-10660, 10718-10733, 10719-10734, 10720-10735, 10721-10736, 10722-10737, 10723-10738, 10724-10739, 10747-10762, 10770-10785, 11066-11081, 11068-11083, 11104-11119, 11111-11126, 11112-11127, 11115-11130, 11116-11131, 11118-11133, 11130-11145, 11144-11159, 11224-11239, 11225-11240, 11237-11252, 11258-11273, 11259-11274, 11302-11317, 11353-11368, 11356-11371, 11368-11383, 11369-11384, 11409-11424, 11410-11425, 11411-11426, 11412-11427, 11413-11428, 11414-11429, 11415-11430, 11417-11432, 11457-11472, 11458-11473, 11467-11482, 11474-11489, 11475-11490, 11509-11524, 11510-11525, 11511-11526, 11524-11539, 11525-11540, 11526-11541, 11527-11542, 11529-11544, 11530-11545, 11622-11637, 11631-11646, 11632-11647, 11633-11648, 11634-11649, 11635-11650, 11636-11651, 11639-11654, 11670-11685, 11678-11693, 11679-11694, 11680-11695, 11681-11696, 11682-11697, 11684-11699, 11685-11700, 11726-11741, 11727-11742, 11740-11755, 11741-11756, 11742-11757, 11743-11758, 11799-11814, 11832-11847, 11833-11848, 11854-11869, 11855-11870, 11856-11871, 11857-11872, 11858-11873, 11859-11874, 11900-11915, 11931-11946, 11956-11971, 11988-12003, 11989-12004, 11990-12005, 11991-12006, 11992-12007, 11993-12008, 11994-12009, 11995-12010, 11997-12012, 11998-12013, 11999-12014, 12000-12015, 12015-12030, 12016-12031, 12017-12032, 12027-12042, 12032-12047, 12040-12055, 12041-12056, 12042-12057, 12076-12091, 12080-12095, 12081-12096, 12082-12097, 12084-12099, 12085-12100, 12086-12101, 12087-12102, 12088-12103, 12089-12104, 12090-12105, 12092-12107, 12194-12209, 12195-12210, 12238-12253, 12239-12254, 12241-12256, 12242-12257, 12243-12258, 12246-12261, 12282-12297, 12283-12298, 12285-12300, 12286-12301, 12287-12302, 12288-12303, 12307-12322, 12308-12323, 12310-12325, 12312-12327, 12315-12330, 12348-12363, 12355-12370, 12356-12371, 12357-12372, 12368-12383, 12388-12403, 12389-12404, 12390-12405, 12391-12406, 12392-12407, 12470-12485, 12471-12486, 12472-12487, 12473-12488, 12474-12489, 12498-12513, 12529-12544, 12530-12545, 12546-12561, 12548-12563, 12550-12565, 12551-12566, 12585-12600, 12721-12736, 12722-12737, 12723-12738, 12724-12739, 12727-12742, 12732-12747, 12733-12748, 12734-12749, 12735-12750, 12760-12775, 12812-12827, 12813-12828, 12817-12832, 12818-12833, 12912-12927, 12915-12930, 12929-12944, 12943-12958, 12946-12961, 13243-13258, 13327-13342, 13409-13424, 13431-13446, 13438-13453, 13460-13475, 13461-13476, 13484-13499, 13485-13500, 13486-13501, 13489-13504, 13490-13505, 13491-13506, 13492-13507, 13493-13508, 13525-13540, 13528-13543, 13529-13544, 13530-13545, 13717-13732, 13736-13751, 13770-13785, 13776-13791, 13777-13792, 13786-13801, 13814-13829, 13816-13831, 13818-13833, 13819-13834, 13820-13835, 13821-13836, 13822-13837, 13823-13838, 13835-13850, 13836-13851, 13837-13852, 13838-13853, 13839-13854, 13843-13858, 13870-13885, 13872-13887, 13875-13890, 13876-13891, 13877-13892, 13878-13893, 13879-13894, 13880-13895, 13881-13896, 13882-13897, 13883-13898, 13885-13900, 13904-13919, 13905-13920, 13906-13921, 13907-13922, 13908-13923, 13910-13925, 13912-13927, 13918-13933, 13924-13939, 13926-13941, 13927-13942, 13930-13945, 13934-13949, 13935-13950, 13936-13951, 13937-13952, 1393813953, 13939-13954, 13940-13955, 13941-13956, 13942-13957, 13943-13958, 13944-13959, 13945-13960, 13946-13961, 13952-13967, 13953-13968, 13954-13969, 13955-13970, 13956-13971, 13957-13972, 13958-13973, 13959-13974, 13960-13975, 13961-13976, 13962-13977, 13963-13978, 13964-13979, 13965-13980, 13966-13981, 13967-13982, 13968-13983, 13969-13984, 13970-13985, 13973-13988, 13976-13991, 14000-14015, 14003-14018, 14028-14043, 14030-14045, 14032-14047, 14035-14050, 14036-14051, 14038-14053, 14039-14054, 14040-14055, 14041-14056, 14045-14060, 14047-14062, 14048-14063, 14049-14064, 14050-14065, 14051-14066, 14053-14068, 14054-14069, 14055-14070, 14056-14071, 14059-14074, 14060-14075, 14061-14076, 14062-14077, 14063-14078, 14064-14079, 14065-14080, 14066-14081, 14078-14093, 14081-14096, 14082-14097, 14084-14099, 14085-14100, 14086-14101, 14087-14102, 14088-14103, 14089-14104, 14090-14105, 14091-14106, 14092-14107, 14093-14108, 14095-14110, 14096-14111, 14097-14112, 14098-14113, 14099-14114, 14100-14115, 14102-14117, 14105-14120, 14110-14125, 14111-14126, 14112-14127, 14113-14128, 14115-14130, 14117-14132, 14119-14134, 14130-14145, 14163-14178, 14165-14180, 14166-14181, 14167-14182, 14169-14184, 14170-14185, 14174-14189, 14180-14195, 14181-14196, 14203-14218, 14207-14222, 14209-14224, 14212-14227, 14217-14232, 14220-14235, 14222-14237, 14223-14238, 14224-14239, 14225-14240, 14232-14247, 14233-14248, 14235-14250, 14242-14257, 14244-14259, 14247-14262, 14248-14263, 14249-14264, 14250-14265, 14251-14266, 14252-14267, 14253-14268, 14254-14269, 14255-14270, 14256-14271, 14257-14272, 14316-14331, 14317-14332, 14318-14333, 14319-14334, 14321-14336, 14324-14339, 14327-14342, 14337-14352, 14338-14353, 14339-14354, 14340-14355, 14341-14356, 14342-14357, 14343-14358, 14344-14359, 14345-14360, 14346-14361, 14347-14362, 14398-14413, 14400-14415, 14401-14416, 14403-14418, 14404-14419, 14405-14420, 14406-14421, 14408-14423, 14409-14424, 14410-14425, 14412-14427, 14443-14458, 14479-14494, 14480-14495, 14482-14497, 14504-14519, 14507-14522, 14508-14523, 14509-14524, 14510-14525, 14511-14526, 14512-14527, 14513-14528, 14514-14529, 14515-14530, 14515-14532, 14515-14534, 14516-14531, 14516-14532, 14516-14533, 14517-14532, 14517-14533, 14518-14531, 14519-14534, 14520-14535, 14522-14537, 14534-14549, 14535-14550, 14553-14568, 14569-14584, 14570-14585, 14571-14586, 14573-14588, 14601-14616, 14602-14617, 14603-14618, 14605-14620, 14606-14621, 14607-14622, 14608-14623, 14609-14624, 14610-14625, 14611-14626, 14612-14627, 14613-14628, 14614-14629, 14615-14630, 14616-14631, 14655-14670, 14656-14671, 14658-14673, 14659-14674, 14681-14696, 14683-14698, 14684-14699, 14684-14701, 14684-14703, 14685-14700, 14685-14701, 14685-14702, 14686-14701, 14686-14702, 14687-14702, 14687-14700, 14688-14703, 14689-14704, 14691-14706, 14692-14707, 14696-14711, 14703-14718, 14704-14719, 14705-14720, 14706-14721, 14707-14722, 14708-14723, 14709-14724, 14710-14725, 14711-14726, 14712-14727, 14713-14728, 14714-14729, 14759-14774, 14760-14775, 14761-14776, 14762-14777, 14763-14778, 14764-14779, 14765-14780, 14766-14781, 14767-14782, 14768-14783, 14769-14784, 14770-14785, 14771-14786, 14772-14787, 14773-14788, 14774-14789, 14775-14790, 14776-14791, 14779-14794, 14787-14802, 14792-14807, 14793-14808, 14794-14809, 14797-14812, 14798-14813, 14800-14815, 14818-14833, 14822-14837, 1482314838, 14824-14839, 14825-14840, 14826-14841, 14827-14842, 14828-14843, 14829-14844, 14830-14845, 14831-14846, 14832-14847, 14833-14848, 14834-14849, 14835-14850, 14841-14856, 14842-14857, 14843-14858, 14844-14859, 14845-14860, 14846-14861, 14847-14862, 14848-14863, 14849-14864, 14850-14865, 14851-14866, 14852-14867, 14853-14868, 14855-14870, 14856-14871, 14857-14872, 14858-14873, 14859-14874, 14861-14876, 14862-14877, 14863-14878, 14864-14879, 14866-14881, 14877-14892, 14878-14893, 14880-14895, 14881-14896, 14889-14904, 14898-14913, 14899-14914, 14901-14916, 14903-14918, 14904-14919, 14905-14920, 14906-14921, 14913-14928, 14915-14930, 14916-14931, 14917-14932, 14918-14933, 14919-14934, 14921-14936, 14922-14937, 14923-14938, 14924-14939, 14925-14940, 14926-14941, 14927-14942, 14928-14943, 14929-14944, 14930-14945, 14931-14946, 14932-14947, 14933-14948, 14934-14949, 14935-14950, 14936-14951, 14937-14952, 14938-14953, 14938-14955, 14938-14957, 14939-14954, 14939-14955, 14939-14956, 14939-14958, 14940-14955, 14940-14956, 14940-14957, 14940-14959, 14941-14956, 14941-14954, 14941-14957, 14941-14958, 14941-14960, 14942-14957, 14942-14955, 14942-14958, 14942-14959, 14942-14961, 14943-14958, 14943-14956, 14943-14959, 14943-14960, 14943-14962, 14944-14959, 14944-14957, 14944-14960, 14944-14961, 14945-14960, 14945-14958, 14945-14961, 14946-14961, 14946-14959, 14948-14963, 14956-14971, 14957-14972, 14958-14973, 14959-14974, 14960-14975, 14961-14976, 14962-14977, 14963-14978, 14964-14979, 14965-14980, 14966-14981, 14968-14983, 14969-14984, 14970-14985, 14987-15002, 14992-15007, 14993-15008, 14994-15009, 14995-15010, 14996-15011, 15003-15018, 15005-15020, 15006-15021, 15007-15022, 15008-15023, 15009-15024, 15010-15025, 15011-15026, 15012-15027, 15013-15028, 15014-15029, 15015-15030, 15016-15031, 15017-15032, 15019-15034, 15142-15157, 15143-15158, 15150-15165, 15151-15166, 15152-15167, 15153-15168, 15154-15169, 15155-15170, 15156-15171, 15157-15172, 15158-15173, 15159-15174, 15160-15175, 15161-15176, 15162-15177, 15163-15178, 15164-15179, 15182-15197, 15184-15199, 15185-15200, 15186-15201, 15195-15210, 15197-15212, 15198-15213, 15199-15214, 15200-15215, 15201-15216, 15202-15217, 15203-15218, 15204-15219, 15205-15220, 15206-15221, 15207-15222, 15208-15223, 15209-15224, 15210-15225, 15211-15226, 15214-15229, 15215-15230, 15216-15231, 15217-15232, 15218-15233, 15219-15234, 15220-15235, 15221-15236, 15222-15237, 15222-15239, 15222-15241, 15223-15238, 15223-15239, 15223-15240, 15224-15239, 15224-15240, 15225-15240, 15225-15238, 15227-15242, 15228-15243, 15229-15244, 15230-15245, 15231-15246, 15232-15247, 15233-15248, 15234-15249, 15235-15250, 15236-15251, 15237-15252, 15238-15253, 15239-15254, 15247-15262, 15248-15263, 15249-15264, 15250-15265, 15251-15266, 15252-15267, 15253-15268, 15254-15269, 15255-15270, 15256-15271, 15257-15272, 15258-15273, 15259-15274, 15260-15275, 15261-15276, 15293-15308, 15299-15314, 15301-15316, 15302-15317, 15303-15318, 15304-15319, 15305-15320, 15320-15335, 15321-15336, 15323-15338, 15411-15426, 15414-15429, 15415-15430, 15416-15431, 15417-15432, 15496-15511, 15501-15516, 15504-15519, 15505-15520, 15506-15521, 15507-15522, 15508-15523, 15509-15524, 15510-15525, 15511-15526, 15512-15527, 15513-15528, 15515-15530, 15556-15571, 15558-15573, 15559-15574, 15560-15575, 15562-15577, 15569-15584, 15571-15586, 15574-

15589, 15593-15608, 15594-15609, 15595-15610, 15596-15611, 15598-15613, 15599-15614, 15600-15615, 15601-15616, 15602-15617, 15603-15618, 15604-15619, 15605-15620, 15627-15642, 15629-15644, 15630-15645, 15631-15646, 15632-15647, 15633-15648, 15635-15650, 15636-15651, 15639-15654, 15640-15655, 15641-15656, 15642-15657, 15658-15673, 15659-15674, 15660-15675, 15661-15676, 15665-15680, 15666-15681, 15667-15682, 15668-15683, 15671-15686, 15673-15688, 15674-15689, 15675-15690, 15681-15696, 15682-15697, 15683-15698, 15684-15699, 15685-15700, 15686-15701, 15687-15702, 15740-15755, 15741-15756, 15753-15768, 15757-15772, 15758-15773, 15761-15776, 15762-15777, 15763-15778, 15765-15780, 15788-15803, 15812-15827, 15813-15828, 15814-15829, 15815-15830, 15816-15831, 15826-15841, 15827-15842, 15833-15848, 15858-15873, 15861-15876, 15863-15878, 15864-15879, 15865-15880, 15866-15881, 15867-15882, 15868-15883, 15869-15884, 15870-15885, 15871-15886, 15872-15887, 15873-15888, 15874-15889, 15875-15890, 15876-15891, 15877-15892, 15878-15893, 15882-15897, 15883-15898, 15910-15925, 15911-15926, 15912-15927, 15913-15928, 15914-15929, 15943-15958, 15947-15962, 15949-15964, 15950-15965, 15951-15966, 15955-15970, 15973-15988, 15974-15989, 15979-15994, 15980-15995, 16000-16015, 16008-16023, 16010-16025, 16026-16041, 16027-16042, 16030-16045, 16032-16047, 16034-16049, 16036-16051, 16037-16052, 16038-16053, 16039-16054, 16056-16071, 16057-16072, 16080-16095, 16117-16132, 16118-16133, 16216-16231, 16248-16263, 16265-16280, 16266-16281, 16268-16283, 16269-16284, 16273-16288, 16300-16315, 16305-16320, 16306-16321, 16327-16342, 16329-16344, 16422-16437, 16427-16442, 16428-16443, 16550-16565, 16557-16572, 16564-16579, 16569-16584, 16582-16597, 16592-16607, 16617-16632 или 16676-16691 SEQ ID NO: 2.

В определенных вариантах осуществления последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3341-3368, 4516-4533, 5498-5517, 14337-14357, 14569-14588, 14607-14631, 14683-14703, 14828-14848, 14939-14958, 15222-15243 или 15251-15273 SEQ ID NO: 2. В определенных вариантах осуществления последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 5499-5514, 5500-5515, 5501-5516, 14686-14701, 14941-14956, 14942-14957 или 15224-15239 SEQ ID NO: 2. В определенных вариантах осуществления последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарна участку равной длины нуклеиновой кислоты PLN.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований любой из

последовательностей нуклеиновых оснований SEQ ID NO: 15-1712.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 15-1712.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16 связанных нуклеозидов, где модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, состоящую из последовательности нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 15-1712.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.

В определенных вариантах осуществления представлено олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16 связанных нуклеозидов, где модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, состоящую из последовательности нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.

В любом из олигомерных соединений, представленных в данном документе, последовательность нуклеиновых оснований модифицированного олигонуклеотида может быть на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарна участку равной длины нуклеиновой кислоты PLN, при этом нуклеиновая кислота PLN имеет последовательность нуклеиновых оснований SEQ ID NO: 1 или 2.

В любом из олигомерных соединений, представленных в данном документе, модифицированный олигонуклеотид может состоять из 10-25, 10-30, 10-50, 12-20, 12-25, 12-30, 12-50, 13-20, 13-25, 13-30, 13-50, 14-20, 14-25, 14-30, 14-50, 15-20, 15-25, 15-30, 15-50, 16-18,16-20, 16-25, 16-30, 16-50, 17-20, 17-25, 17-30, 17-50, 18-20, 18-25, 18-30, 18-50, 19-

20, 19-25, 19-30, 19-50, 20-25, 20-30, 20-50, 21-25, 21-30, 21-50, 22-25, 22-30, 22-50, 23-25, 23-30 или 23-50 связанных нуклеозидов.

В любом из олигомерных соединений, представленных в данном документе, по меньшей мере один нуклеозид модифицированного олигонуклеотида может содержать модифицированный сахарный фрагмент. В некоторых вариантах осуществления модифицированный сахарный фрагмент содержит бициклический сахарный фрагмент, такой как 2'-4' мостик, выбранный из -O-CH2-; и -O-CH(CH3)-. В определенных вариантах осуществления модифицированный сахарный фрагмент содержит небициклический модифицированный сахарный фрагмент, такой как 2'-МОЕ сахарный фрагмент или 2'-Оте сахарный фрагмент.

В любом из олигомерных соединений, представленных в данном документе, по меньшей мере один нуклеозид модифицированного олигонуклеотидного соединения может содержать заменитель сахара.

В любом из олигомерных соединений, представленных в данном документе, по меньшей мере одна межнуклеозидная связь модифицированного олигонуклеотида может содержать модифицированную межнуклеозидную связь, такую как тиофосфатная межнуклеозидная связь. В некоторых вариантах осуществления каждая межнуклеозидная модифицированного олигонуклеотида может представлять модифицированную межнуклеозидную связь, или каждая межнуклеозидная связь модифицированного олигонуклеотида может представлять собой фосфоротиоатную межнуклеозидную связь. В некоторых вариантах осуществления по меньшей мере одна межнуклеозидная связь модифицированного олигонуклеотида может представлять собой фосфодиэфирную межнуклеозидную связь. В определенных вариантах осуществления каждая межнуклеозидная связь модифицированного олигонуклеотида может быть независимо выбрана из фосфодиэфирной или фосфортиоатной межнуклеозидной связи. В определенных вариантах осуществления по меньшей мере 2, по меньшей мере 3, по меньшей мере 4, по меньшей мере 5 или по меньшей мере 6 межнуклеозидных связей модифицированного олигонуклеотида могут представлять собой фосфодиэфирные межнуклеозидные связи. В определенных вариантах осуществления по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17 или по меньшей мере 18 межнуклеозидных связей модифицированного олигонуклеотида могут представлять собой фосфоротиоатные межнуклеозидные связи.

В любом из олигомерных соединений, представленных в данном документе, по меньшей мере одно нуклеиновое основание модифицированного олигонуклеотида может представлять собой модифицированное нуклеиновое основание, такое как 5-метилцитозин. В определенных вариантах осуществления каждый цитозин представляет собой 5-метилцитозин.

В любом из олигомерных соединений, представленных в данном документе, модифицированный олигонуклеотид может содержать дезокси-область, состоящую из 5-12

смежных 2'-дезоксинуклеозидов. В определенных вариантах осуществления каждый нуклеозид дезокси-области представляет собой 2'-β-D-дезоксинуклеозид. В определенных вариантах осуществления дезокси-область состоит из 7, 8, 9, 10 или 7-10 связанных нуклеозидов. В определенных вариантах осуществления каждый нуклеозид, непосредственно прилегающий к дезокси-области, содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления дезокси-область фланкирована на 5'стороне 5'-областью, состоящей из 1-6 связанных нуклеозидов 5'-области, и на 3'-стороне 3'-областью, состоящей из 1-6 связанных нуклеозидов 3'-области; где 3'-крайний нуклеозид 5'-области содержит модифицированный сахарный фрагмент; а 5'-крайний нуклеозид 3'области содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления каждый нуклеозид 3'-области содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления каждый нуклеозид 5'-области содержит модифицированный сахарный фрагмент.

В определенных вариантах осуществления соединение содержит или состоит из модифицированного олигонуклеотида, состоящего из 16-80 связанных нуклеиновых оснований и имеющего последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований, указанную в любой из SEQ ID NO: 185, 609 или 752, где модифицированный олигонуклеотид имеет:

сегмент гэпа, состоящий из десяти связанных 2'-дезоксинуклеозидов; сегмент 5'-крыла, состоящий из трех связанных нуклеозидов; и сегмент 3'-крыла, состоящий из трех связанных нуклеозидов;

где сегмент гэпа расположен между сегментом 5'-крыла и сегментом 3'-крыла; где каждый нуклеозид каждого сегмента крыла содержит сЕt нуклеозид; где каждая межнуклеозидная связь представляет собой тиофосфатную связь; и где каждый цитозин представляет собой 5-метилцитозин. В некоторых вариантах осуществления модифицированный олигонуклеотид состоит из 16-30 связанных нуклеозидов. В некоторых вариантах осуществления модифицированный олигонуклеотид состоит из 16 связанных нуклеозидов.

В некоторых вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: ${}^{m}C_{ks}{}^{m}C_{ks}A_{ks}T_{ds}A_{ds}{}^{m}C_{ds}T_{ds}T_{ds}G_{ds}A_{ds}T_{ds}{}^{m}C_{ds}T_{ks}{}^{m}C_{ks}A_{k}$ (SEQ ID NO: 185), где:

А=адениновое нуклеиновое основание,

^тС=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим

обозначениям: $G_{ks}T_{ks}A_{ks}G_{ds}T_{ds}T_{ds}A_{ds}A_{ds}G_{ds}A_{ds}T_{ds}T_{ds}T_{ds}T_{ks}G_{ks}^{\ m}C_k$ (SEQ ID NO: 752), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}{}^{m}C_{ks}A_{ks}{}^{m}C_{ds}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{k}$ (SEQ ID NO: 609), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}A_{ks}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ks}G_{es}G_{ks}T_{es}A_{k}$ (SEQ ID NO: 45), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}{}^{m}C_{ks}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{es}G_{ks}A_{es}A_{k}$ (SEQ ID NO: 737), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит

модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $A_{ks}A_{ds}G_{ds}A_{ds}T_{$

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: ${}^{m}C_{ks}A_{ks}{}^{m}C_{ks}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{ks}A_{e}$ (SEQ ID NO: 675), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

В определенных вариантах осуществления олигомерное соединение содержит группу конъюгата. В определенных вариантах осуществления группа конъюгата содержит линкер конъюгата и фрагмент конъюгата. В определенных вариантах осуществления линкер конъюгата состоит из одинарной связи, линкер конъюгата является расщепляемым, линкер конъюгата содержит 1-3 линкерных нуклеозида, линкер конъюгата не содержит каких-либо линкерных нуклеозидов, группа конъюгата присоединена к модифицированному олигонуклеотиду на 5'-конце модифицированного олигонуклеотида или группа конъюгата присоединена к модифицированному олигонуклеотиду на 3'-конце модифицированного олигонуклеотида.

В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1. В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из C22 алкила, C20 алкила, C16 алкила, C10 алкила, C21 алкила, C19 алкила, C18 алкила, C15 алкила, C4 алкила, C5 алкила, C22 алкенила, C20 алкенила, C16 алкенила, C10 алкенила, C10 алкенила, C10 алкенила, C10 алкенила, C10 алкенила, C12 алкенила, C13 алкенила, C13 алкенила, C13 алкенила, C15 алкенила, C15 алкенила, C15 алкенила, C16 алкен

алкенила, С11 алкенила, С9 алкенила, С8 алкенила, С7 алкенила, С6 алкенила или С5 алкенила. В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из С22 алкила, С20 алкила, С16 алкила, С10 алкила, С21 алкила, С19 алкила, С18 алкила, С15 алкила, С14 алкила, С13 алкила, С12 алкила, С11 алкила, С9 алкила, С8 алкила, С7 алкила, С6 алкила и С5 алкила, где алкильная цепь имеет одну или несколько ненасыщенных связей.

В определенных вариантах осуществления группа конъюгата имеет следующую структуру:

В определенных вариантах осуществления группа конъюгата представляет собой 6-пальмитамидогексилфосфат. В определенных вариантах осуществления олигомерное соединение содержит 6-пальмитамидогексилфосфатную группу конъюгата, присоединенную к 5'-концевой ОН-группе модифицированного олигонуклеотида.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $[C16\text{-HA}]_oA_{ks}A_{ks}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ks}G_{es}G_{ks}T_{es}A_k$ (SEQ ID NO: 45), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}A_{ks}{}^{m}C_{ks}A_{ks}{}^{m}C_{ds}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{k}$ (SEQ ID NO: 609), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] = \bigvee_{13} \bigvee_{0}^{H} \bigvee_{0}^{3}$$

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $[C16\text{-HA}]_{o}G_{ks}T_{ks}A_{ks}G_{ds}T_{ds}T_{ds}A_{ds}A_{ds}G_{ds}A_{ds}T_{ds}T_{ds}T_{ds}T_{ds}T_{ks}G_{ks}{}^{m}C_{k}$ (SEQ ID NO: 752), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] = \bigvee_{13} \bigvee_{0} \bigvee_{N} \bigvee_{0} \bigvee_{N} \bigvee_{N$$

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [C16-HA] $_{
m o}A_{
m ks}A_{
m ks}A_{
m ds}A_{
m ds}T_{
m ds}A_{
m ds}T_{
m ds}A_{
m ks}T_{
m es}G_{
m ks}G_{
m es}T_{
m k}$ (SEQ ID NO: 120), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная межнуклеозидная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] = \begin{cases} \begin{pmatrix} 1 & 1 \\ 13 & 0 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{cases} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\$$

Определенные олигомерные соединения

(SEQ ID NO: 185) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа коньюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа коньюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа коньюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа коньюгата содержит аптамер, способный связывать TfR1.

(SEQ ID NO: 752) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1.

(SEQ ID NO: 609) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1.

(SEQ ID NO: 45) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1.

Олигомерное соединение, содержащее группу конъюгата и имеющее следующую химическую структуру:

(SEQ ID NO: 737) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа коньюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа коньюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа коньюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа коньюгата содержит аптамер, способный связывать TfR1.

Олигомерное соединение, содержащее группу конъюгата и имеющее следующую химическую структуру:

(SEQ ID NO: 120) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1.

Олигомерное соединение, содержащее группу конъюгата и имеющее следующую химическую структуру:

(SEQ ID NO: 675) или его соль. В определенных вариантах осуществления олигомерное соединение представляет собой натриевую соль или калиевую соль. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1.

Определенные олигомерные дуплексы

Определенные варианты осуществления относятся к олигомерным дуплексам, содержащим первое олигомерное соединение и второе олигомерное соединение.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3278-3293, 3281-3296, 3282-3297, 3284-3299, 3286-3301, 3287-3302, 3288-3303, 3327-3342, 3329-3344,

3332-3347, 3333-3348, 3336-3351, 3337-3352, 3338-3353, 3339-3354, 3340-3355, 3341-3356, 3343-3358, 3345-3360, 3348-3363, 3349-3364, 3350-3365, 3351-3366, 3352-3367, 3353-3368, 3354-3369, 3355-3370, 3356-3371, 3357-3372, 3358-3373, 3395-3410, 3396-3411, 3405-3420, 3406-3421, 3408-3423, 3409-3424, 3410-3425, 3412-3427, 3496-3511, 3497-3512, 3498-3513, 3499-3514, 3598-3613, 3612-3627, 3614-3629, 3615-3630, 3616-3631, 3617-3632, 3618-3633, 3619-3634, 3620-3635, 3622-3637, 3703-3718, 3704-3719, 3715-3730, 3716-3731, 3723-3738, 3724-3739, 3799-3814, 3801-3816, 3802-3817, 3803-3818, 3804-3819, 3805-3820, 3806-3821, 3807-3822, 3808-3823, 3809-3824, 3811-3826, 3814-3829, 3815-3830, 3816-3831, 3817-3832, 3821-3836, 3823-3838, 3830-3845, 3831-3846, 3848-3863, 3849-3864, 3850-3865, 3851-3866, 3861-3876, 3863-3878, 3864-3879, 3869-3884, 3871-3886, 3976-3991, 3977-3992, 3978-3993, 3980-3995, 3981-3996, 4116-4131, 4159-4174, 4204-4219, 4207-4222, 4208-4223, 4209-4224, 4210-4225, 4211-4226, 4212-4227, 4214-4229, 4221-4236, 4231-4246, 4232-4247, 4233-4248, 4234-4249, 4235-4250, 4236-4251, 4238-4253, 4252-4267, 4253-4268, 4266-4281, 4348-4363, 4349-4364, 4350-4365, 4367-4382, 4373-4388, 4374-4389, 4375-4390, 4510-4525, 4511-4526, 4513-4528, 4515-4530, 4516-4531, 4517-4532, 4518-4533, 4519-4534, 4530-4545, 4537-4552, 4539-4554, 4540-4555, 4541-4556, 4542-4557, 4543-4558, 4544-4559, 4545-4560, 4562-4577, 4614-4629, 4617-4632, 4619-4634, 4620-4635, 4621-4636, 4622-4637, 4623-4638, 4624-4639, 4638-4653, 4640-4655, 4641-4656, 4642-4657, 4643-4658, 4665-4680, 4672-4687, 4693-4708, 4694-4709, 4695-4710, 4696-4711, 4697-4712, 4750-4765, 4751-4766, 4752-4767, 4753-4768, 4774-4789, 4802-4817, 4804-4819, 4805-4820, 4806-4821, 4807-4822, 4823-4838, 4825-4840, 4826-4841, 4828-4843, 4860-4875, 4862-4877, 4869-4884, 4872-4887, 4874-4889, 4878-4893, 4881-4896, 4883-4898, 4884-4899, 4942-4957, 4943-4958, 4945-4960, 4946-4961, 4957-4972, 4958-4973, 4960-4975, 4961-4976, 4964-4979, 4965-4980, 4966-4981, 4968-4983, 4969-4984, 4971-4986, 4972-4987, 4974-4989, 4984-4999, 4985-5000, 4987-5002, 4988-5003, 5024-5039, 5127-5142, 5133-5148, 5134-5149, 5158-5173, 5159-5174, 5160-5175, 5163-5178, 5294-5309, 5341-5356, 5359-5374, 5394-5409, 5399-5414, 5400-5415, 5401-5416, 5402-5417, 5404-5419, 5411-5426, 5413-5428, 5414-5429, 5415-5430, 5416-5431, 5417-5432, 5418-5433, 5419-5434, 5421-5436, 5427-5442, 5428-5443, 5489-5504, 5494-5509, 5495-5510, 5497-5512, 5498-5513, 5498-5515, 5498-5517, 5499-5514, 5499-5515, 5499-5516, 5499-5518, 5500-5515, 5500-5516, 5500-5517, 5501-5516, 5501-5514, 5501-5517, 5502-5517, 5502-5515, 5503-5518, 5504-5519, 5505-5520, 5506-5521, 5511-5526, 5532-5547, 5533-5548, 5534-5549, 5547-5562, 5557-5572, 5558-5573, 5559-5574, 5560-5575, 5562-5577, 5563-5578, 5565-5580, 5599-5614, 5673-5688, 5674-5689, 5675-5690, 5676-5691, 5677-5692, 5678-5693, 5679-5694, 5694-5709, 5695-5710, 5696-5711, 5697-5712, 5698-5713, 5774-5789, 5827-5842, 5845-5860, 5847-5862, 5848-5863, 5850-5865, 5851-5866, 5855-5870, 5859-5874, 5924-5939, 5925-5940, 5926-5941, 5927-5942, 5929-5944, 5930-5945, 5931-5946, 5932-5947, 6008-6023, 6009-6024, 6039-6054, 6053-6068, 6054-6069, 6055-6070, 6059-6074, 6066-6081, 6069-6084, 6070-6085, 6076-6091, 6092-6107, 6098-6113, 6112-6127, 6114-6129, 6117-6132, 6118-6133, 6119-6134, 6124-6139, 6125-6140, 6126-6141, 6147-6162, 6154-6169, 6155-6170, 6156-6171, 6157-6172, 6176-6191, 6177-6192, 6185-6200, 6186-6201, 6187-6202, 6188-6203, 6202-6217, 6209-6224, 6243-6258, 6249-6264, 6267-6282, 6268-6283, 6274-6289, 6275-6290, 6291-6306, 6338-6353, 6352-6367, 6353-6368, 6354-6369, 6365-6380, 6366-6381, 6368-6383, 6369-6384, 6403-6418, 6405-6420, 6406-6421, 6407-6422, 6408-6423, 6409-6424, 6410-6425, 6411-6426, 6413-6428, 6468-6483, 6471-6486, 6502-6517, 6546-6561, 6554-6569, 6555-6570, 6556-6571, 6557-6572, 6569-6584, 6574-6589, 6575-6590, 6576-6591, 6577-6592, 6578-6593, 6579-6594, 6644-6659, 6646-6661, 6647-6662, 6664-6679, 6665-6680, 6666-6681, 6667-6682, 6676-6691, 6677-6692, 6746-6761, 6804-6819, 6806-6821, 6825-6840, 6826-6841, 6827-6842, 6828-6843, 6831-6846, 6833-6848, 6834-6849, 6875-6890, 6877-6892, 6879-6894, 6880-6895, 6881-6896, 6893-6908, 6896-6911, 6898-6913, 6899-6914, 6900-6915, 6901-6916, 6903-6918, 6904-6919, 6906-6921, 6907-6922, 6908-6923, 6920-6935, 6921-6936, 6922-6937, 6923-6938, 6927-6942, 6928-6943, 6930-6945, 6937-6952, 6939-6954, 6940-6955, 6941-6956, 6942-6957, 6943-6958, 6944-6959, 6945-6960, 6947-6962, 6965-6980, 6966-6981, 6967-6982, 6968-6983, 6972-6987, 6975-6990, 7029-7044, 7042-7057, 7047-7062, 7050-7065, 7073-7088, 7082-7097, 7083-7098, 7102-7117, 7106-7121, 7107-7122, 7108-7123, 7120-7135, 7122-7137, 7123-7138, 7124-7139, 7125-7140, 7126-7141, 7128-7143, 7129-7144, 7130-7145, 7131-7146, 7279-7294, 7280-7295, 7282-7297, 7283-7298, 7284-7299, 7285-7300, 7286-7301, 7287-7302, 7320-7335, 7341-7356, 7342-7357, 7344-7359, 7353-7368, 7354-7369, 7356-7371, 7357-7372, 7358-7373, 7359-7374, 7360-7375, 7361-7376, 7362-7377, 7377-7392, 7378-7393, 7392-7407, 7393-7408, 7411-7426, 7425-7440, 7436-7451, 7457-7472, 7458-7473, 7459-7474, 7460-7475, 7461-7476, 7463-7478, 7464-7479, 7470-7485, 7516-7531, 7518-7533, 7519-7534, 7520-7535, 7521-7536, 7522-7537, 7546-7561, 7548-7563, 7553-7568, 7554-7569, 7555-7570, 7556-7571, 7558-7573, 7560-7575, 7561-7576, 7562-7577, 7563-7578, 7564-7579, 7565-7580, 7566-7581, 7568-7583, 7587-7602, 7588-7603, 7589-7604, 7595-7610, 7638-7653, 7679-7694, 7726-7741, 7779-7794, 7797-7812, 7799-7814, 7806-7821, 7857-7872, 7859-7874, 7860-7875, 7861-7876, 7862-7877, 7863-7878, 7864-7879, 7865-7880, 7867-7882, 7876-7891, 7878-7893, 7888-7903, 7889-7904, 7893-7908, 7908-7923, 7929-7944, 7965-7980, 7967-7982, 7968-7983, 8047-8062, 8058-8073, 8061-8076, 8089-8104, 8090-8105, 8163-8178, 8182-8197, 8194-8209, 8195-8210, 8196-8211, 8197-8212, 8284-8299, 8285-8300, 8286-8301, 8287-8302, 8288-8303, 8326-8341, 8336-8351, 8352-8367, 8353-8368, 8368-8383, 8393-8408, 8412-8427, 8413-8428, 8415-8430, 8418-8433, 8427-8442, 8447-8462, 8493-8508, 8494-8509, 8495-8510, 8496-8511, 8498-8513, 8542-8557, 8573-8588, 8621-8636, 8627-8642, 8628-8643, 8638-8653, 8639-8654, 8641-8656, 8653-8668, 8655-8670, 8703-8718, 8708-8723, 8732-8747, 8733-8748, 8739-8754, 8774-8789, 8776-8791, 8777-8792, 8818-8833, 8823-8838, 8824-8839, 8826-8841, 8827-8842, 8850-8865, 8855-8870, 8942-8957, 8943-8958, 8944-8959, 8955-8970, 8961-8976, 8962-8977, 8963-8978, 8964-8979, 9377-9392, 9443-9458, 9474-9489, 9523-9538, 9524-9539, 9525-9540, 9526-9541, 9528-9543, 9536-9551, 9537-9552, 9538-9553, 9540-9555, 9541-9556, 9545-9560, 9549-9564, 9550-9565, 9587-9602, 9630-9645, 9641-9656, 9642-9657, 9646-9661, 9647-9662, 9648-9663, 9649-9664, 9651-9666, 9660-9675, 9668-9683, 9669-9684, 9672-9687, 9697-9712, 9702-9717, 9703-9718, 9706-9721, 9707-9722, 9708-9723, 9709-9724, 9710-9725, 9711-9726, 9720-9735, 9727-9742, 9752-9767, 9756-9771, 9788-9803, 9934-9949, 9936-9951, 9937-9952, 9938-9953, 9939-9954, 9940-9955, 10019-10034, 10054-10069, 1006210077, 10081-10096, 10106-10121, 10117-10132, 10443-10458, 10444-10459, 10445-10460, 10480-10495, 10481-10496, 10486-10501, 10489-10504, 10490-10505, 10491-10506, 10532-10547, 10623-10638, 10638-10653, 10645-10660, 10718-10733, 10719-10734, 10720-10735, 10721-10736, 10722-10737, 10723-10738, 10724-10739, 10747-10762, 10770-10785, 11066-11081, 11068-11083, 11104-11119, 11111-11126, 11112-11127, 11115-11130, 11116-11131, 11118-11133, 11130-11145, 11144-11159, 11224-11239, 11225-11240, 11237-11252, 11258-11273, 11259-11274, 11302-11317, 11353-11368, 11356-11371, 11368-11383, 11369-11384, 11409-11424, 11410-11425, 11411-11426, 11412-11427, 11413-11428, 11414-11429, 11415-11430, 11417-11432, 11457-11472, 11458-11473, 11467-11482, 11474-11489, 11475-11490, 11509-11524, 11510-11525, 11511-11526, 11524-11539, 11525-11540, 11526-11541, 11527-11542, 11529-11544, 11530-11545, 11622-11637, 11631-11646, 11632-11647, 11633-11648, 11634-11649, 11635-11650, 11636-11651, 11639-11654, 11670-11685, 11678-11693, 11679-11694, 11680-11695, 11681-11696, 11682-11697, 11684-11699, 11685-11700, 11726-11741, 11727-11742, 11740-11755, 11741-11756, 11742-11757, 11743-11758, 11799-11814, 11832-11847, 11833-11848, 11854-11869, 11855-11870, 11856-11871, 11857-11872, 11858-11873, 11859-11874, 11900-11915, 11931-11946, 11956-11971, 11988-12003, 11989-12004, 11990-12005, 11991-12006, 11992-12007, 11993-12008, 11994-12009, 11995-12010, 11997-12012, 11998-12013, 11999-12014, 12000-12015, 12015-12030, 12016-12031, 12017-12032, 12027-12042, 12032-12047, 12040-12055, 12041-12056, 12042-12057, 12076-12091, 12080-12095, 12081-12096, 12082-12097, 12084-12099, 12085-12100, 12086-12101, 12087-12102, 12088-12103, 12089-12104, 12090-12105, 12092-12107, 12194-12209, 12195-12210, 12238-12253, 12239-12254, 12241-12256, 12242-12257, 12243-12258, 12246-12261, 12282-12297, 12283-12298, 12285-12300, 12286-12301, 12287-12302, 12288-12303, 12307-12322, 12308-12323, 12310-12325, 12312-12327, 12315-12330, 12348-12363, 12355-12370, 12356-12371, 12357-12372, 12368-12383, 12388-12403, 12389-12404, 12390-12405, 12391-12406, 12392-12407, 12470-12485, 12471-12486, 12472-12487, 12473-12488, 12474-12489, 12498-12513, 12529-12544, 12530-12545, 12546-12561, 12548-12563, 12550-12565, 12551-12566, 12585-12600, 12721-12736, 12722-12737, 12723-12738, 12724-12739, 12727-12742, 12732-12747, 12733-12748, 12734-12749, 12735-12750, 12760-12775, 12812-12827, 12813-12828, 12817-12832, 12818-12833, 12912-12927, 12915-12930, 12929-12944, 12943-12958, 12946-12961, 13243-13258, 13327-13342, 13409-13424, 13431-13446, 13438-13453, 13460-13475, 13461-13476, 13484-13499, 13485-13500, 13486-13501, 13489-13504, 13490-13505, 13491-13506, 13492-13507, 13493-13508, 13525-13540, 13528-13543, 13529-13544, 13530-13545, 13717-13732, 13736-13751, 13770-13785, 13776-13791, 13777-13792, 13786-13801, 13814-13829, 13816-13831, 13818-13833, 13819-13834, 13820-13835, 13821-13836, 13822-13837, 13823-13838, 13835-13850, 13836-13851, 13837-13852, 13838-13853, 13839-13854, 13843-13858, 13870-13885, 13872-13887, 13875-13890, 13876-13891, 13877-13892, 13878-13893, 13879-13894, 13880-13895, 13881-13896, 13882-13897, 13883-13898, 13885-13900, 13904-13919, 13905-13920, 13906-13921, 13907-13922, 13908-13923, 13910-13925, 13912-13927, 13918-13933, 13924-13939, 13926-13941, 13927-13942, 13930-13945, 13934-13949, 13935-13950, 1393613951, 13937-13952, 13938-13953, 13939-13954, 13940-13955, 13941-13956, 13942-13957, 13943-13958, 13944-13959, 13945-13960, 13946-13961, 13952-13967, 13953-13968, 13954-13969, 13955-13970, 13956-13971, 13957-13972, 13958-13973, 13959-13974, 13960-13975, 13961-13976, 13962-13977, 13963-13978, 13964-13979, 13965-13980, 13966-13981, 13967-13982, 13968-13983, 13969-13984, 13970-13985, 13973-13988, 13976-13991, 14000-14015, 14003-14018, 14028-14043, 14030-14045, 14032-14047, 14035-14050, 14036-14051, 14038-14053, 14039-14054, 14040-14055, 14041-14056, 14045-14060, 14047-14062, 14048-14063, 14049-14064, 14050-14065, 14051-14066, 14053-14068, 14054-14069, 14055-14070, 14056-14071, 14059-14074, 14060-14075, 14061-14076, 14062-14077, 14063-14078, 14064-14079, 14065-14080, 14066-14081, 14078-14093, 14081-14096, 14082-14097, 14084-14099, 14085-14100, 14086-14101, 14087-14102, 14088-14103, 14089-14104, 14090-14105, 14091-14106, 14092-14107, 14093-14108, 14095-14110, 14096-14111, 14097-14112, 14098-14113, 14099-14114, 14100-14115, 14102-14117, 14105-14120, 14110-14125, 14111-14126, 14112-14127, 14113-14128, 14115-14130, 14117-14132, 14119-14134, 14130-14145, 14163-14178, 14165-14180, 14166-14181, 14167-14182, 14169-14184, 14170-14185, 14174-14189, 14180-14195, 14181-14196, 14203-14218, 14207-14222, 14209-14224, 14212-14227, 14217-14232, 14220-14235, 14222-14237, 14223-14238, 14224-14239, 14225-14240, 14232-14247, 14233-14248, 14235-14250, 14242-14257, 14244-14259, 14247-14262, 14248-14263, 14249-14264, 14250-14265, 14251-14266, 14252-14267, 14253-14268, 14254-14269, 14255-14270, 14256-14271, 14257-14272, 14316-14331, 14317-14332, 14318-14333, 14319-14334, 14321-14336, 14324-14339, 14327-14342, 14337-14352, 14338-14353, 14339-14354, 14340-14355, 14341-14356, 14342-14357, 14343-14358, 14344-14359, 14345-14360, 14346-14361, 14347-14362, 14398-14413, 14400-14415, 14401-14416, 14403-14418, 14404-14419, 14405-14420, 14406-14421, 14408-14423, 14409-14424, 14410-14425, 14412-14427, 14443-14458, 14479-14494, 14480-14495, 14482-14497, 14504-14519, 14507-14522, 14508-14523, 14509-14524, 14510-14525, 14511-14526, 14512-14527, 14513-14528, 14514-14529, 14515-14530, 14515-14532, 14515-14534, 14516-14531, 14516-14532, 14516-14533, 14517-14532, 14517-14533, 14518-14531, 14519-14534, 14520-14535, 14522-14537, 14534-14549, 14535-14550, 14553-14568, 14569-14584, 14570-14585, 14571-14586, 14573-14588, 14601-14616, 14602-14617, 14603-14618, 14605-14620, 14606-14621, 14607-14622, 14608-14623, 14609-14624, 14610-14625, 14611-14626, 14612-14627, 14613-14628, 14614-14629, 14615-14630, 14616-14631, 14655-14670, 14656-14671, 14658-14673, 14659-14674, 14681-14696, 14683-14698, 14684-14699, 14684-14701, 14684-14703, 14685-14700, 14685-14701, 14685-14702, 14686-14701, 14686-14702, 14687-14702, 14687-14700, 14688-14703, 14689-14704, 14691-14706, 14692-14707, 14696-14711, 14703-14718, 14704-14719, 14705-14720, 14706-14721, 14707-14722, 14708-14723, 14709-14724, 14710-14725, 14711-14726, 14712-14727, 14713-14728, 14714-14729, 14759-14774, 14760-14775, 14761-14776, 14762-14777, 14763-14778, 14764-14779, 14765-14780, 14766-14781, 14767-14782, 14768-14783, 14769-14784, 14770-14785, 14771-14786, 14772-14787, 14773-14788, 14774-14789, 14775-14790, 14776-14791, 14779-14794, 14787-14802, 14792-14807, 14793-14808, 14794-14809, 14797-14812, 14798-14813, 14800-14815, 1481814833, 14822-14837, 14823-14838, 14824-14839, 14825-14840, 14826-14841, 14827-14842, 14828-14843, 14829-14844, 14830-14845, 14831-14846, 14832-14847, 14833-14848, 14834-14849, 14835-14850, 14841-14856, 14842-14857, 14843-14858, 14844-14859, 14845-14860, 14846-14861, 14847-14862, 14848-14863, 14849-14864, 14850-14865, 14851-14866, 14852-14867, 14853-14868, 14855-14870, 14856-14871, 14857-14872, 14858-14873, 14859-14874, 14861-14876, 14862-14877, 14863-14878, 14864-14879, 14866-14881, 14877-14892, 14878-14893, 14880-14895, 14881-14896, 14889-14904, 14898-14913, 14899-14914, 14901-14916, 14903-14918, 14904-14919, 14905-14920, 14906-14921, 14913-14928, 14915-14930, 14916-14931, 14917-14932, 14918-14933, 14919-14934, 14921-14936, 14922-14937, 14923-14938, 14924-14939, 14925-14940, 14926-14941, 14927-14942, 14928-14943, 14929-14944, 14930-14945, 14931-14946, 14932-14947, 14933-14948, 14934-14949, 14935-14950, 14936-14951, 14937-14952, 14938-14953, 14938-14955, 14938-14957, 14939-14954, 14939-14955, 14939-14956, 14939-14958, 14940-14955, 14940-14956, 14940-14957, 14940-14959, 14941-14956, 14941-14954, 14941-14957, 14941-14958, 14941-14960, 14942-14957, 14942-14955, 14942-14958, 14942-14959, 14942-14961, 14943-14958, 14943-14956, 14943-14959, 14943-14960, 14943-14962, 14944-14959, 14944-14957, 14944-14960, 14944-14961, 14945-14960, 14945-14958, 14945-14961, 14946-14961, 14946-14959, 14948-14963, 14956-14971, 14957-14972, 14958-14973, 14959-14974, 14960-14975, 14961-14976, 14962-14977, 14963-14978, 14964-14979, 14965-14980, 14966-14981, 14968-14983, 14969-14984, 14970-14985, 14987-15002, 14992-15007, 14993-15008, 14994-15009, 14995-15010, 14996-15011, 15003-15018, 15005-15020, 15006-15021, 15007-15022, 15008-15023, 15009-15024, 15010-15025, 15011-15026, 15012-15027, 15013-15028, 15014-15029, 15015-15030, 15016-15031, 15017-15032, 15019-15034, 15142-15157, 15143-15158, 15150-15165, 15151-15166, 15152-15167, 15153-15168, 15154-15169, 15155-15170, 15156-15171, 15157-15172, 15158-15173, 15159-15174, 15160-15175, 15161-15176, 15162-15177, 15163-15178, 15164-15179, 15182-15197, 15184-15199, 15185-15200, 15186-15201, 15195-15210, 15197-15212, 15198-15213, 15199-15214, 15200-15215, 15201-15216, 15202-15217, 15203-15218, 15204-15219, 15205-15220, 15206-15221, 15207-15222, 15208-15223, 15209-15224, 15210-15225, 15211-15226, 15214-15229, 15215-15230, 15216-15231, 15217-15232, 15218-15233, 15219-15234, 15220-15235, 15221-15236, 15222-15237, 15222-15239, 15222-15241, 15223-15238, 15223-15239, 15223-15240, 15224-15239, 15224-15240, 15225-15240, 15225-15238, 15227-15242, 15228-15243, 15229-15244, 15230-15245, 15231-15246, 15232-15247, 15233-15248, 15234-15249, 15235-15250, 15236-15251, 15237-15252, 15238-15253, 15239-15254, 15247-15262, 15248-15263, 15249-15264, 15250-15265, 15251-15266, 15252-15267, 15253-15268, 15254-15269, 15255-15270, 15256-15271, 15257-15272, 15258-15273, 15259-15274, 15260-15275, 15261-15276, 15293-15308, 15299-15314, 15301-15316, 15302-15317, 15303-15318, 15304-15319, 15305-15320, 15320-15335, 15321-15336, 15323-15338, 15411-15426, 15414-15429, 15415-15430, 15416-15431, 15417-15432, 15496-15511, 15501-15516, 15504-15519, 15505-15520, 15506-15521, 15507-15522, 15508-15523, 15509-15524, 15510-15525, 15511-15526, 15512-15527, 15513-15528, 15515-15530, 15556-15571, 15558-15573, 15559-15574, 15560-15575, 15562-15577, 1556915584, 15571-15586, 15574-15589, 15593-15608, 15594-15609, 15595-15610, 15596-15611, 15598-15613, 15599-15614, 15600-15615, 15601-15616, 15602-15617, 15603-15618, 15604-15619, 15605-15620, 15627-15642, 15629-15644, 15630-15645, 15631-15646, 15632-15647, 15633-15648, 15635-15650, 15636-15651, 15639-15654, 15640-15655, 15641-15656, 15642-15657, 15658-15673, 15659-15674, 15660-15675, 15661-15676, 15665-15680, 15666-15681, 15667-15682, 15668-15683, 15671-15686, 15673-15688, 15674-15689, 15675-15690, 15681-15696, 15682-15697, 15683-15698, 15684-15699, 15685-15700, 15686-15701, 15687-15702, 15740-15755, 15741-15756, 15753-15768, 15757-15772, 15758-15773, 15761-15776, 15762-15777, 15763-15778, 15765-15780, 15788-15803, 15812-15827, 15813-15828, 15814-15829, 15815-15830, 15816-15831, 15826-15841, 15827-15842, 15833-15848, 15858-15873, 15861-15876, 15863-15878, 15864-15879, 15865-15880, 15866-15881, 15867-15882, 15868-15883, 15869-15884, 15870-15885, 15871-15886, 15872-15887, 15873-15888, 15874-15889, 15875-15890, 15876-15891, 15877-15892, 15878-15893, 15882-15897, 15883-15898, 15910-15925, 15911-15926, 15912-15927, 15913-15928, 15914-15929, 15943-15958, 15947-15962, 15949-15964, 15950-15965, 15951-15966, 15955-15970, 15973-15988, 15974-15989, 15979-15994, 15980-15995, 16000-16015, 16008-16023, 16010-16025, 16026-16041, 16027-16042, 16030-16045, 16032-16047, 16034-16049, 16036-16051, 16037-16052, 16038-16053, 16039-16054, 16056-16071, 16057-16072, 16080-16095, 16117-16132, 16118-16133, 16216-16231, 16248-16263, 16265-16280, 16266-16281, 16268-16283, 16269-16284, 16273-16288, 16300-16315, 16305-16320, 16306-16321, 16327-16342, 16329-16344, 16422-16437, 16427-16442, 16428-16443, 16550-16565, 16557-16572, 16564-16579, 16569-16584, 16582-16597, 16592-16607, 16617-16632 или 16676-16691 SEQ ID NO: 2 SEQ ID NO: 2; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого модифицированного олигонуклеотида.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3341-3368, 4516-4533, 5498-5517, 14337-14357, 14569-14588, 14607-14631, 14683-14703, 14828-14848, 14939-14958, 15222-15243 или 15251-15273 SEQ ID NO: 2; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого

модифицированного олигонуклеотида.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 15-1712, где каждый тимин замещен урацилом; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого модифицированного олигонуклеотида.

В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 14-80 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 15-1712, где каждый тимин замещен урацилом; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 14-80 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 16 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого модифицированного олигонуклеотида.

В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой

олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого модифицированного олигонуклеотида.

В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 20 или

по меньшей мере 21 смежное нуклеиновое основание последовательности нуклеиновых оснований любой из SEQ ID NO: 2025-2336, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида на по меньшей мере 90% комплементарна участку равной длины первого модифицированного олигонуклеотида.

В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 23 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 21 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 2025-2336, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида на по меньшей мере 90% комплементарна участку равной длины первого модифицированного олигонуклеотида.

В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80%, например, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90% или по меньшей мере 95% комплементарна участку равной длины в нуклеиновых основаниях 34-56, 44-66, 54-76, 64-86, 74-96, 84-106, 94-116, 104-126, 114-136, 124-146, 134-156, 144-166, 154-176, 164-186, 174-196, 184-206, 194-216, 204-226, 214-236, 224-246, 234-256, 244-266, 254-276, 264-286, 274-296, 284-306, 294-316, 304-326, 314-336, 324-346, 334-356, 344-366, 354-376, 364-386, 374-396, 384-406, 394-416, 404-426, 414-436, 424-446, 434-456, 444-466, 454-476, 464-486, 474-496, 484-506, 494-516, 504-526, 514-536, 524-546, 534-

556, 544-566, 554-576, 564-586, 574-596, 584-606, 594-616, 604-626, 614-636, 624-646, 634-656, 644-666, 654-676, 664-686, 674-696, 684-706, 694-716, 704-726, 714-736, 724-746, 734-756, 744-766, 754-776, 764-786, 774-796, 784-806, 794-816, 804-826, 814-836, 819-841, 834-856, 844-866, 854-876, 864-886, 874-896, 884-906, 894-916, 904-926, 914-936, 924-946, 934-956, 944-966, 954-976, 964-986, 974-996, 984-1006, 994-1016, 1004-1026, 1014-1036, 1024-1046, 1034-1056, 1044-1066, 1054-1076, 1064-1086, 1074-1096, 1084-1106, 1094-1116, 1104-1126, 1114-1136, 1124-1146, 1134-1156, 1144-1166, 1154-1176, 1164-1186, 1174-1196, 1184-1206, 1194-1216, 1204-1226, 1214-1236, 1224-1246, 1234-1256, 1238-1260, 1243-1265, 1248-1270, 1254-1276, 1264-1286, 1274-1296, 1279-1301, 1284-1306, 1294-1316, 1304-1326, 1314-1336, 1324-1346, 1334-1356, 1344-1366, 1354-1376, 1364-1386, 1374-1396, 1384-1406, 1394-1416, 1404-1426, 1414-1436, 1424-1446, 1434-1456, 1444-1466, 1454-1476, 1464-1486, 1474-1496, 1484-1506, 1494-1516, 1499-1521, 1504-1526, 1514-1536, 1522-1544, 1534-1556, 1544-1566, 1554-1576, 1564-1586, 1574-1596, 1584-1606, 1594-1616, 1604-1626, 1614-1636, 1624-1646, 1634-1656, 1644-1666, 1654-1676, 1664-1686, 1674-1696, 1684-1706, 1694-1716, 1704-1726, 1714-1736, 1724-1746, 1734-1756, 1744-1766, 1754-1776, 1764-1786, 1774-1796, 1784-1806, 1794-1816, 1804-1826, 1814-1836, 1824-1846, 1834-1856, 1844-1866, 1854-1876, 1864-1886, 1874-1896, 1884-1906, 1894-1916, 1904-1926, 1914-1936, 1924-1946, 1934-1956, 1944-1966, 1954-1976, 1964-1986, 1974-1996, 1984-2006, 1994-2016, 2004-2026, 2014-2036, 2019-2041, 2024-2046, 2034-2056, 2044-2066, 2054-2076, 2064-2086, 2074-2096, 2084-2106, 2094-2116, 2104-2126, 2114-2136, 2124-2146, 2134-2156, 2144-2166, 2154-2176, 2164-2186, 2174-2196, 2184-2206, 2194-2216, 2204-2226, 2214-2236, 2219-2241, 2224-2246, 2234-2256, 2244-2266, 2254-2276, 2264-2286, 2274-2296, 2284-2306, 2294-2316, 2304-2326, 2314-2336, 2324-2346, 2334-2356, 2344-2366, 2354-2376, 2364-2386, 2374-2396, 2379-2401, 2384-2406, 2394-2416, 2404-2426, 2414-2436, 2424-2446, 2434-2456, 2444-2466, 2454-2476, 2464-2486, 2474-2496, 2479-2501, 2484-2506, 2494-2516, 2504-2526, 2514-2536, 2524-2546, 2534-2556, 2544-2566, 2554-2576, 2564-2586, 2574-2596, 2584-2606, 2594-2616, 2604-2626, 2614-2636, 2619-2641, 2624-2646, 2634-2656, 2644-2666, 2654-2676, 2664-2686, 2674-2696, 2684-2706, 2694-2716, 2699-2721, 2704-2726, 2714-2736, 2724-2746, 2734-2756, 2744-2766, 2754-2776, 2759-2781, 2764-2786, 2774-2796, 2784-2806, 2794-2816, 2804-2826, 2814-2836, 2824-2846, 2834-2856, 2844-2866, 2854-2876, 2864-2886, 2874-2896, 2879-2901, 2884-2906, 2894-2916, 2904-2926, 2914-2936, 2919-2941, 2924-2946, 2934-2956, 2944-2966, 2954-2976, 2964-2986, 2974-2996, 2981-3003, 2987-3009 или 2994-3016 SEQ ID NO: 1.

В определенных вариантах осуществления олигомерный дуплекс содержит первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, и второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где каждая из последовательности нуклеиновых оснований первого модифицированного олигонуклеотида и последовательности нуклеиновых оснований второго модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по

меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований любой из следующих пар последовательностей нуклеиновых оснований, перечисленных в SEQ ID NO: 1713/2025, 1714/2026, 1715/2027, 1716/2028, 1717/2029, 1718/2030, 1719/2031, 1720/2032, 1721/2033, 1722/2034, 1723/2035, 1724/2036, 1725/2037, 1726/2038, 1727/2039, 1728/2040, 1729/2041, 1730/2042, 1731/2043, 1732/2044, 1733/2045, 1734/2046, 1735/2047, 1736/2048, 1737/2049, 1738/2050, 1739/2051, 1740/2052, 1741/2053, 1742/2054, 1743/2055, 1744/2056, 1745/2057, 1746/2058, 1747/2059, 1748/2060, 1749/2061, 1750/2062, 1751/2063, 1752/2064, 1753/2065, 1754/2066, 1755/2067, 1756/2068, 1757/2069, 1758/2070, 1759/2071, 1760/2072, 1761/2073, 1762/2074, 1763/2075, 1764/2076, 1765/2077, 1766/2078, 1767/2079, 1768/2080, 1769/2081, 1770/2082, 1771/2083, 1772/2084, 1773/2085, 1774/2086, 1775/2087, 1776/2088, 1777/2089, 1778/2090, 1779/2091, 1780/2092, 1781/2093, 1782/2094, 1783/2095, 1784/2096, 1785/2097, 1786/2098, 1787/2099, 1788/2100, 1789/2101, 1790/2102, 1791/2103, 1792/2104, 1793/2105, 1794/2106, 1795/2107, 1796/2108, 1797/2109, 1798/2110, 1799/2111, 1800/2112, 1801/2113, 1802/2114, 1803/2115, 1804/2116, 1805/2117, 1806/2118, 1807/2119, 1808/2120, 1809/2121, 1810/2122, 1811/2123, 1812/2124, 1813/2125, 1814/2126, 1815/2127, 1816/2128, 1817/2129, 1818/2130, 1819/2131, 1820/2132, 1821/2133, 1822/2134, 1823/2135, 1824/2136, 1825/2137, 1826/2138, 1827/2139, 1828/2140, 1829/2141, 1830/2142, 1831/2143, 1832/2144, 1833/2145, 1834/2146, 1835/2147, 1836/2148, 1837/2149, 1838/2150, 1839/2151, 1840/2152, 1841/2153, 1842/2154, 1843/2155, 1844/2156, 1845/2157, 1846/2158, 1847/2159, 1848/2160, 1849/2161, 1850/2162, 1851/2163, 1852/2164, 1853/2165, 1854/2166, 1855/2167, 1856/2168, 1857/2169, 1858/2170, 1859/2171, 1860/2172, 1861/2173, 1862/2174, 1863/2175, 1864/2176, 1865/2177, 1866/2178, 1867/2179, 1868/2180, 1869/2181, 1870/2182, 1871/2183, 1872/2184, 1873/2185, 1874/2186, 1875/2187, 1876/2188, 1877/2189, 1878/2190, 1879/2191, 1880/2192, 1881/2193, 1882/2194, 1883/2195, 1884/2196, 1885/2197, 1886/2198, 1887/2199, 1888/2200, 1889/2201, 1890/2202, 1891/2203, 1892/2204, 1893/2205, 1894/2206, 1895/2207, 1896/2208, 1897/2209, 1898/2210, 1899/2211, 1900/2212, 1901/2213, 1902/2214, 1903/2215, 1904/2216, 1905/2217, 1906/2218, 1907/2219, 1908/2220, 1909/2221, 1910/2222, 1911/2223, 1912/2224, 1913/2225, 1914/2226, 1915/2227, 1916/2228, 1917/2229, 1918/2230, 1919/2231, 1920/2232, 1921/2233, 1922/2234, 1923/2235, 1924/2236, 1925/2237, 1926/2238, 1927/2239, 1928/2240, 1929/2241, 1930/2242, 1931/2243, 1932/2244, 1933/2245, 1934/2246, 1935/2247, 1936/2248, 1937/2249, 1938/2250, 1939/2251, 1940/2252, 1941/2253, 1942/2254, 1943/2255, 1944/2256, 1945/2257, 1946/2258, 1947/2259, 1948/2260, 1949/2261, 1950/2262, 1951/2263, 1952/2264, 1953/2265, 1954/2266, 1955/2267, 1956/2268, 1957/2269, 1958/2270, 1959/2271, 1960/2272, 1961/2273, 1962/2274, 1963/2275, 1964/2276, 1965/2277, 1966/2278, 1967/2279, 1968/2280, 1969/2281, 1970/2282, 1971/2283, 1972/2284, 1973/2285, 1974/2286, 1975/2287, 1976/2288, 1977/2289, 1978/2290, 1979/2291, 1980/2292, 1981/2293, 1982/2294, 1983/2295, 1984/2296, 1985/2297, 1986/2298, 1987/2299, 1988/2300, 1989/2301, 1990/2302, 1991/2303, 1992/2304, 1993/2305, 1994/2306, 1995/2307, 1996/2308, 1997/2309, 1998/2310, 1999/2311, 2000/2312, 2001/2313, 2002/2314, 2003/2315, 2004/2316, 2005/2317, 2006/2318, 2007/2319, 2008/2320, 2009/2321, 2010/2322, 2011/2323, 2012/2324, 2013/2325, 2014/2326, 2015/2327, 2016/2328, 2017/2329, 2018/2330, 2019/2331, 2020/2332, 2021/2333, 2022/2334, 2023/2335 или 2024/2336, при этом последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований второй SEQ ID NO, указанной в паре, в определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второй смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, и второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, последовательности нуклеиновых оснований первого модифицированного где олигонуклеотида и второго модифицированного олигонуклеотида содержат любую из следующих пар последовательностей нуклеиновых оснований, перечисленных в SEQ ID NO: 1713/2025, 1714/2026, 1715/2027, 1716/2028, 1717/2029, 1718/2030, 1719/2031, 1720/2032, 1721/2033, 1722/2034, 1723/2035, 1724/2036, 1725/2037, 1726/2038, 1727/2039, 1728/2040, 1729/2041, 1730/2042, 1731/2043, 1732/2044, 1733/2045, 1734/2046, 1735/2047, 1736/2048, 1737/2049, 1738/2050, 1739/2051, 1740/2052, 1741/2053, 1742/2054, 1743/2055, 1744/2056, 1745/2057, 1746/2058, 1747/2059, 1748/2060, 1749/2061, 1750/2062, 1751/2063, 1752/2064, 1753/2065, 1754/2066, 1755/2067, 1756/2068, 1757/2069, 1758/2070, 1759/2071, 1760/2072, 1761/2073, 1762/2074, 1763/2075, 1764/2076, 1765/2077, 1766/2078, 1767/2079, 1768/2080, 1769/2081, 1770/2082, 1771/2083, 1772/2084, 1773/2085, 1774/2086, 1775/2087, 1776/2088, 1777/2089, 1778/2090, 1779/2091, 1780/2092, 1781/2093, 1782/2094, 1783/2095, 1784/2096, 1785/2097, 1786/2098, 1787/2099, 1788/2100, 1789/2101, 1790/2102, 1791/2103, 1792/2104, 1793/2105, 1794/2106, 1795/2107, 1796/2108, 1797/2109, 1798/2110, 1799/2111, 1800/2112, 1801/2113, 1802/2114, 1803/2115, 1804/2116, 1805/2117, 1806/2118, 1807/2119, 1808/2120, 1809/2121, 1810/2122, 1811/2123, 1812/2124, 1813/2125, 1814/2126, 1815/2127, 1816/2128, 1817/2129, 1818/2130, 1819/2131, 1820/2132, 1821/2133, 1822/2134, 1823/2135, 1824/2136, 1825/2137, 1826/2138, 1827/2139, 1828/2140, 1829/2141, 1830/2142, 1831/2143, 1832/2144, 1833/2145, 1834/2146, 1835/2147, 1836/2148, 1837/2149, 1838/2150, 1839/2151, 1840/2152, 1841/2153, 1842/2154, 1843/2155, 1844/2156, 1845/2157, 1846/2158, 1847/2159, 1848/2160, 1849/2161, 1850/2162, 1851/2163, 1852/2164, 1853/2165, 1854/2166, 1855/2167, 1856/2168, 1857/2169, 1858/2170, 1859/2171, 1860/2172, 1861/2173, 1862/2174, 1863/2175,

1864/2176, 1865/2177, 1866/2178, 1867/2179, 1868/2180, 1869/2181, 1870/2182, 1871/2183, 1872/2184, 1873/2185, 1874/2186, 1875/2187, 1876/2188, 1877/2189, 1878/2190, 1879/2191, 1880/2192, 1881/2193, 1882/2194, 1883/2195, 1884/2196, 1885/2197, 1886/2198, 1887/2199, 1888/2200, 1889/2201, 1890/2202, 1891/2203, 1892/2204, 1893/2205, 1894/2206, 1895/2207, 1896/2208, 1897/2209, 1898/2210, 1899/2211, 1900/2212, 1901/2213, 1902/2214, 1903/2215, 1904/2216, 1905/2217, 1906/2218, 1907/2219, 1908/2220, 1909/2221, 1910/2222, 1911/2223, 1912/2224, 1913/2225, 1914/2226, 1915/2227, 1916/2228, 1917/2229, 1918/2230, 1919/2231, 1920/2232, 1921/2233, 1922/2234, 1923/2235, 1924/2236, 1925/2237, 1926/2238, 1927/2239, 1928/2240, 1929/2241, 1930/2242, 1931/2243, 1932/2244, 1933/2245, 1934/2246, 1935/2247, 1936/2248, 1937/2249, 1938/2250, 1939/2251, 1940/2252, 1941/2253, 1942/2254, 1943/2255, 1944/2256, 1945/2257, 1946/2258, 1947/2259, 1948/2260, 1949/2261, 1950/2262, 1951/2263, 1952/2264, 1953/2265, 1954/2266, 1955/2267, 1956/2268, 1957/2269, 1958/2270, 1959/2271, 1960/2272, 1961/2273, 1962/2274, 1963/2275, 1964/2276, 1965/2277, 1966/2278, 1967/2279, 1968/2280, 1969/2281, 1970/2282, 1971/2283, 1972/2284, 1973/2285, 1974/2286, 1975/2287, 1976/2288, 1977/2289, 1978/2290, 1979/2291, 1980/2292, 1981/2293, 1982/2294, 1983/2295, 1984/2296, 1985/2297, 1986/2298, 1987/2299, 1988/2300, 1989/2301, 1990/2302, 1991/2303, 1992/2304, 1993/2305, 1994/2306, 1995/2307, 1996/2308, 1997/2309, 1998/2310, 1999/2311, 2000/2312, 2001/2313, 2002/2314, 2003/2315, 2004/2316, 2005/2317, 2006/2318, 2007/2319, 2008/2320, 2009/2321, 2010/2322, 2011/2323, 2012/2324, 2013/2325, 2014/2326, 2015/2327, 2016/2328, 2017/2329, 2018/2330, 2019/2331, 2020/2332, 2021/2333, 2022/2334, 2023/2335 или 2024/2336, при этом последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит последовательность оснований первой SEQ ID NO, указанной в паре, а последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований второй SEQ ID NO, указанной в паре. В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В определенных вариантах осуществления олигомерный дуплекс содержит первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 23 связанных нуклеозидов, и второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 21 связанного нуклеозида, где последовательности нуклеиновых оснований первого модифицированного олигонуклеотида и второго модифицированного олигонуклеотида состоят из любой из следующих пар последовательностей нуклеиновых оснований, перечисленных в SEQ ID NO: 1713/2025, 1714/2026, 1715/2027, 1716/2028, 1717/2029, 1718/2030, 1719/2031, 1720/2032, 1721/2033, 1722/2034, 1723/2035, 1724/2036, 1725/2037, 1726/2038, 1727/2039,

1728/2040, 1729/2041, 1730/2042, 1731/2043, 1732/2044, 1733/2045, 1734/2046, 1735/2047, 1736/2048, 1737/2049, 1738/2050, 1739/2051, 1740/2052, 1741/2053, 1742/2054, 1743/2055, 1744/2056, 1745/2057, 1746/2058, 1747/2059, 1748/2060, 1749/2061, 1750/2062, 1751/2063, 1752/2064, 1753/2065, 1754/2066, 1755/2067, 1756/2068, 1757/2069, 1758/2070, 1759/2071, 1760/2072, 1761/2073, 1762/2074, 1763/2075, 1764/2076, 1765/2077, 1766/2078, 1767/2079, 1768/2080, 1769/2081, 1770/2082, 1771/2083, 1772/2084, 1773/2085, 1774/2086, 1775/2087, 1776/2088, 1777/2089, 1778/2090, 1779/2091, 1780/2092, 1781/2093, 1782/2094, 1783/2095, 1784/2096, 1785/2097, 1786/2098, 1787/2099, 1788/2100, 1789/2101, 1790/2102, 1791/2103, 1792/2104, 1793/2105, 1794/2106, 1795/2107, 1796/2108, 1797/2109, 1798/2110, 1799/2111, 1800/2112, 1801/2113, 1802/2114, 1803/2115, 1804/2116, 1805/2117, 1806/2118, 1807/2119, 1808/2120, 1809/2121, 1810/2122, 1811/2123, 1812/2124, 1813/2125, 1814/2126, 1815/2127, 1816/2128, 1817/2129, 1818/2130, 1819/2131, 1820/2132, 1821/2133, 1822/2134, 1823/2135, 1824/2136, 1825/2137, 1826/2138, 1827/2139, 1828/2140, 1829/2141, 1830/2142, 1831/2143, 1832/2144, 1833/2145, 1834/2146, 1835/2147, 1836/2148, 1837/2149, 1838/2150, 1839/2151, 1840/2152, 1841/2153, 1842/2154, 1843/2155, 1844/2156, 1845/2157, 1846/2158, 1847/2159, 1848/2160, 1849/2161, 1850/2162, 1851/2163, 1852/2164, 1853/2165, 1854/2166, 1855/2167, 1856/2168, 1857/2169, 1858/2170, 1859/2171, 1860/2172, 1861/2173, 1862/2174, 1863/2175, 1864/2176, 1865/2177, 1866/2178, 1867/2179, 1868/2180, 1869/2181, 1870/2182, 1871/2183, 1872/2184, 1873/2185, 1874/2186, 1875/2187, 1876/2188, 1877/2189, 1878/2190, 1879/2191, 1880/2192, 1881/2193, 1882/2194, 1883/2195, 1884/2196, 1885/2197, 1886/2198, 1887/2199, 1888/2200, 1889/2201, 1890/2202, 1891/2203, 1892/2204, 1893/2205, 1894/2206, 1895/2207, 1896/2208, 1897/2209, 1898/2210, 1899/2211, 1900/2212, 1901/2213, 1902/2214, 1903/2215, 1904/2216, 1905/2217, 1906/2218, 1907/2219, 1908/2220, 1909/2221, 1910/2222, 1911/2223, 1912/2224, 1913/2225, 1914/2226, 1915/2227, 1916/2228, 1917/2229, 1918/2230, 1919/2231, 1920/2232, 1921/2233, 1922/2234, 1923/2235, 1924/2236, 1925/2237, 1926/2238, 1927/2239, 1928/2240, 1929/2241, 1930/2242, 1931/2243, 1932/2244, 1933/2245, 1934/2246, 1935/2247, 1936/2248, 1937/2249, 1938/2250, 1939/2251, 1940/2252, 1941/2253, 1942/2254, 1943/2255, 1944/2256, 1945/2257, 1946/2258, 1947/2259, 1948/2260, 1949/2261, 1950/2262, 1951/2263, 1952/2264, 1953/2265, 1954/2266, 1955/2267, 1956/2268, 1957/2269, 1958/2270, 1959/2271, 1960/2272, 1961/2273, 1962/2274, 1963/2275, 1964/2276, 1965/2277, 1966/2278, 1967/2279, 1968/2280, 1969/2281, 1970/2282, 1971/2283, 1972/2284, 1973/2285, 1974/2286, 1975/2287, 1976/2288, 1977/2289, 1978/2290, 1979/2291, 1980/2292, 1981/2293, 1982/2294, 1983/2295, 1984/2296, 1985/2297, 1986/2298, 1987/2299, 1988/2300, 1989/2301, 1990/2302, 1991/2303, 1992/2304, 1993/2305, 1994/2306, 1995/2307, 1996/2308, 1997/2309, 1998/2310, 1999/2311, 2000/2312, 2001/2313, 2002/2314, 2003/2315, 2004/2316, 2005/2317, 2006/2318, 2007/2319, 2008/2320, 2009/2321, 2010/2322, 2011/2323, 2012/2324, 2013/2325, 2014/2326, 2015/2327, 2016/2328, 2017/2329, 2018/2330, 2019/2331, 2020/2332, 2021/2333, 2022/2334, 2023/2335 или 2024/2336, при этом последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит последовательность оснований первой SEQ ID NO, указанной в паре, а последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований второй SEQ ID NO, указанной в паре. В определенных вариантах осуществления первое олигомерное соединение представляет собой антисмысловое соединение. В определенных вариантах осуществления первый модифицированный олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления второе олигомерное соединение представляет собой смысловое соединение. В определенных вариантах осуществления второй модифицированный олигонуклеотид представляет собой смысловой олигонуклеотид.

В любом из олигомерных дуплексов, описанных в данном документе, по меньшей мере один нуклеозид первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может содержать модифицированный сахарный фрагмент. Примеры подходящих модифицированных сахарных фрагментов включают без ограничения бициклический сахарный фрагмент, такой как 2'-4' мостик, выбранный из -О-СН2-; и -О-СН(СН3)-, и небициклический сахарный фрагмент, такой как 2'-МОЕ сахарный фрагмент, 2'-F сахарный фрагмент, 2'-ОМе сахарный фрагмент или 2'-NMA сахарный фрагмент. В определенных вариантах осуществления по меньшей мере 80%, по меньшей мере 90% или 100% нуклеозидов первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида содержат модифицированный сахарный фрагмент, выбранный из 2'-F и 2'-ОМе.

В любом из олигомерных дуплексов, описанных в данном документе, по меньшей мере один нуклеозид первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может содержать заменитель сахара. Примеры подходящих заменителей сахара включают без ограничения морфолино, пептидно-(PNA), нуклеиновую кислоту гликолевую нуклеиновую кислоту (GNA) В незаблокированную нуклеиновую кислоту (UNA). определенных вариантах осуществления по меньшей мере один нуклеозид первого модифицированного олигонуклеотида содержит заменитель сахара, который может представлять собой GNA.

В любом из олигомерных дуплексов, описанных в данном документе, по меньшей мере одна межнуклеозидная связь первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может содержать модифицированную межнуклеозидную связь. В определенных вариантах осуществления модифицированная межнуклеозидная связь представляет собой тиофосфатную межнуклеозидную связь. В определенных вариантах осуществления по меньшей мере одна из первых, вторых или третьих межнуклеозидных связей с 5'-конца и/или 3'-конца первого модифицированного олигонуклеотида содержит фосфоротиоатную связь. В определенных вариантах осуществления по меньшей мере одна из первых, вторых или третьих межнуклеозидных связей с 5'-конца и/или 3'-конца второго модифицированного олигонуклеотида содержит фосфоротиоатную связь.

В любом из олигомерных дуплексов, описанных в данном документе, по меньшей мере одна межнуклеозидная связь первого модифицированного олигонуклеотида и/или

второго модифицированного олигонуклеотида может содержать фосфодиэфирную межнуклеозидную связь. В любом из олигомерных дуплексов, описанных в данном документе, по меньшей мере одна межнуклеозидная связь первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может содержать мезилфосфорамидатную межнуклеозидную связь.

В любом из олигомерных дуплексов, описанных в данном документе, каждая межнуклеозидная связь первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может быть независимо выбрана из фосфодиэфирной или фосфортиоатной межнуклеозидной связи. В любом из олигомерных дуплексов, описанных в данном документе, каждая межнуклеозидная связь первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может быть независимо выбрана из фосфодиэфирной, фосфоротиоатной межнуклеозидной связи или мезилфосфорамидатной межнуклеозидной связи.

В любом из олигомерных дуплексов, описанных в данном документе, мотив межнуклеозидной второго модифицированного олигонуклеотида связи может представлять собой ssooooooooooooss, где каждый «o» представляет собой фосфодиэфирную межнуклеозидную связь, собой каждый **((S)**) представляет фосфоротиоатную межнуклеозидную связь.

В любом из олигомерных дуплексов, описанных в данном документе, по меньшей мере одно нуклеиновое основание первого модифицированного олигонуклеотида и/или второго модифицированного олигонуклеотида может представлять собой модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированное нуклеиновое основание представляет собой 5-метилцитозин.

В любом из олигомерных дуплексов, описанных в данном документе, первый модифицированный олигонуклеотид может содержать стабилизированную фосфатную группу, прикрепленную к 5'-положению 5'-крайнего нуклеозида. В некоторых вариантах осуществления стабилизированная фосфатная группа содержит циклопропилфосфонат или (Е)-винилфосфонат.

В любом из олигомерных дуплексов, описанных в данном документе, первый модифицированный олигонуклеотид может содержать группу конъюгата. В определенных вариантах осуществления группа конъюгата содержит линкер конъюгата и фрагмент конъюгата. В определенных вариантах осуществления группа конъюгата присоединена к первому модифицированному олигонуклеотиду на 5'-конце первого модифицированного В определенных вариантах осуществления группа конъюгата олигонуклеотида. присоединена первому модифицированному олигонуклеотиду 3'-конце модифицированного олигонуклеотида. В определенных вариантах осуществления группа конъюгата содержит N-ацетилгалактозамин. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В

определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1. В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из C22 алкила, C20 алкила, C16 алкила, C10 алкила, C21 алкила, C19 алкила, C18 алкила, C15 алкила, C14 алкила, C13 алкила, C2 алкила, C5 алкила, C5 алкила, C20 алкенила, C20 алкенила, C10 алкенила, C10 алкенила, C10 алкенила, C10 алкенила, C11 алкенила, C18 алкенила, C15 алкенила, C14 алкенила, C13 алкенила, C12 алкенила, C11 алкенила, C9 алкенила, C8 алкенила, C7 алкенила, C6 алкенила или C5 алкенила. В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из C22 алкила, C20 алкила, C16 алкила, C10 алкила, C21 алкила, C19 алкила, C18 алкила, C15 алкила, C14 алкила, C15 алкила, C10 алкила, C21 алкила, C16 алкила, C16 алкила, C16 алкила, C11 алкила, C10 алкила, C10 алкила, C10 алкила, С10 алкила,

В любом из олигомерных дуплексов, описанных в данном документе, второй модифицированный олигонуклеотид может содержать группу конъюгата. В определенных вариантах осуществления группа конъюгата содержит линкер конъюгата и фрагмент конъюгата. В определенных вариантах осуществления группа конъюгата присоединена к второму модифицированному олигонуклеотиду на 5'-конце второго модифицированного олигонуклеотида. В определенных вариантах осуществления группа конъюгата присоединена второму модифицированному олигонуклеотиду 3'-конце модифицированного олигонуклеотида. В определенных вариантах осуществления группа конъюгата содержит N-ацетилгалактозамин. В некоторых вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1. В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из С22 алкила, С20 алкила, С16 алкила, С10 алкила, С21 алкила, С19 алкила, С18 алкила, С15 алкила, С14 алкила, С13 алкила, С12 алкила, С11 алкила, С9 алкила, С8 алкила, С7 алкила, С6 алкила, С5 алкила, С22 алкенила, С20 алкенила, С16 алкенила, С10 алкенила, С21 алкенила, С19 алкенила, С18 алкенила, С15 алкенила, С14 алкенила, С13 алкенила, С12 алкенила, С11 алкенила, С9 алкенила, С8 алкенила, С7 алкенила, С6 алкенила или С5 алкенила. В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из С22 алкила, С20 алкила, С16 алкила, С10 алкила, С21 алкила, С19 алкила, С18 алкила, С15 алкила, С14 алкила, С13 алкила, С12 алкила, С11 алкила, С9 алкила, С8 алкила, С7 алкила, С6 алкила и С5 алкила, где алкильная цепь имеет одну или несколько ненасыщенных связей.

В определенных вариантах осуществления антисмысловое средство содержит антисмысловое соединение, которое содержит олигомерное соединение или олигомерный

дуплекс, описанные в данном документе. В определенных вариантах осуществления антисмысловое средство, которое может содержать олигомерное соединение или олигомерный дуплекс, описанные в данном документе, представляет собой средство для RNAi, способное снижать количество нуклеиновой кислоты PLN посредством активации RISC/Ago2.

В определенных вариантах осуществления представлено олигомерное средство, содержащее два или более олигомерных дуплексов. В определенных вариантах осуществления олигомерное средство содержит два или более любых олигомерных дуплексов, описанных в данном документе. В определенных вариантах осуществления олигомерное средство содержит два или более одинаковых олигомерных дуплексов, которые могут представлять собой любой из олигомерных дуплексов, описанных в данном документе. В определенных вариантах осуществления два или более олигомерных дуплексов связаны вместе. В определенных вариантах осуществления два или более олигомерных осуществления вторые модифицированные олигонуклеотиды двух или более олигомерных дуплексов ковалентно связаны вместе. В определенных вариантах осуществления вторые модифицированные олигонуклеотиды двух или более олигомерных дуплексов ковалентно связаны вместе на своих 3'-концах. В определенных вариантах осуществления два или более олигомерных дуплексов ковалентно связаны вместе гликолевым линкером, таким как тетраэтиленгликолевый линкер.

І. Определенные олигонуклеотиды

В определенных вариантах осуществления в данном документе представлены олигомерные соединения, содержащие олигонуклеотиды, которые состоят из связанных нуклеозидов. Олигонуклеотиды могут представлять собой немодифицированные олигонуклеотиды (РНК или ДНК) или могут представлять собой модифицированные олигонуклеотиды. Модифицированные олигонуклеотиды содержат по меньшей мере одну модификацию относительно немодифицированной РНК или ДНК. Иными словами, модифицированные олигонуклеотиды содержат по меньшей мере один модифицированный нуклеозид (содержащий модифицированный сахарный фрагмент и/или модифицированное нуклеиновое основание) и/или по меньшей мере одну модифицированную межнуклеозидную связь. Ниже описаны определенные модифицированные нуклеозиды и модифицированные межнуклеозидные связи, подходящие для применения модифицированных олигонуклеотидах.

А. Определенные модифицированные нуклеозиды

Модифицированные нуклеозиды содержат модифицированный сахарный фрагмент или модифицированное нуклеиновое основание, или как модифицированный сахарный фрагмент, так и модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные нуклеозиды, содержащие следующие модифицированные фрагменты сахара и/или следующие модифицированные нуклеиновые основания, могут быть включены в модифицированные олигонуклеотиды.

1. Определенные сахарные фрагменты

В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой небициклические модифицированные сахарные фрагменты. В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой бициклические или трициклические сахарные фрагменты. В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой заменители сахара. Такие заменители сахара могут содержать одну или несколько замен, соответствующих заменам других типов модифицированных сахарных фрагментов.

В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой небициклические модифицированные сахарные содержащие фуранозильное кольцо с одной или несколькими группами заместителей, ни одна из которых не связывает два атома фуранозильного кольца с образованием бициклической структуры. Такие немостиковые заместители могут находиться в любом положении фуранозила, включая без ограничения заместители в положениях 2', 3', 4' и/или 5'. В определенных вариантах осуществления один или несколько немостиковых заместителей небициклических модифицированных сахарных фрагментов являются разветвленными. Примеры групп 2'-заместителей, подходящих для небициклических модифицированных сахарных фрагментов, включают без ограничения: 2'-F, 2'-ОСН3 («ОМе» или «О-метил») и 2'- $O(CH_2)_2OCH_3$ («МОЕ» или «О-метоксиэтил»). В определенных вариантах осуществления группы 2'-заместителей выбраны из: галогена, аллила, амино, азидо, SH, CN, OCN, CF₃, OCF₃, O-C₁-C₁₀ алкокси, O-C₁-C₁₀ замещенного алкокси, O-C₁-C₁₀ алкила, $O-C_1-C_{10}$ замещенного алкила, S-алкила, $N(R_m)$ -алкила, O-алкенила, S-алкенила, $N(R_m)$ -алкинила, О-алкинила, S-алкинила, $N(R_m)$ -алкинила, О-алкиленил-О-алкила, алкинила, алкарила, аралкила, О-алкарила, О-аралкила, $O(CH_2)_2SCH_3$, $O(CH_2)_2ON(R_m)(R_n)$ или $OCH_2C(=O)-N(R_m)(R_n)$, при этом каждый из R_m и R_n представляет собой независимо H, аминозащитную группу или замещенный или незамещенный C_1 - C_{10} алкил, -O(CH2)2ON(CH3)2 («DMAOE»), 2'-OCH2OCH2N(CH2)2 («DMAEOE») и группы 2'заместителей, описанных в Cook et al., U.S. 6531584; Cook et al., U.S. 5859221; и Cook et al., U.S. 6005087. Некоторые варианты осуществления этих групп 2'-заместителей могут быть дополнительно замещены одной или несколькими группами заместителей, независимо выбранными из: гидроксила, амино, алкокси, карбокси, бензила, фенила, нитро (NO₂), тиола, тиоалкокси, тиоалкила, галогена, алкила, арила, алкенила и алкинила. В определенных вариантах осуществления небициклические модифицированные сахарные фрагменты содержат группу заместителя в 3'-положении. Примеры групп заместителей, подходящих для 3'-положения модифицированных сахарных фрагментов, включают без ограничения алкокси (например, метокси), алкил (например, метил, этил). В определенных вариантах осуществления небициклические модифицированные сахарные фрагменты содержат группу заместителя в 4'-положении. Примеры групп 4'-заместителей, подходящих небициклических модифицированных сахарных фрагментов, включают без

ограничения алкокси (например, метокси), алкил и группы, описанные в Manoharan et al., WO 2015/106128. Примеры групп 5'-заместителей, подходящих для небициклических модифицированных сахарных фрагментов, включают без ограничения: 5'-метил (R или S), 5'-винил и 5'-метокси. В определенных вариантах осуществления небициклические модифицированные сахарные фрагменты содержат более одного немостикового сахарного заместителя, например, 2'-F-5'-метиловые сахарные фрагменты и модифицированные сахарные фрагменты и модифицированные нуклеозиды, описанные в Migawa et al., WO 2008/101157, и Rajeev et al., US2013/0203836.

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид содержит сахарный фрагмент, содержащий немостиковую группу 2'-заместителя, выбранную из: F, NH₂, N₃, OCF₃, OCH₃, O(CH₂)₃NH₂, CH₂CH=CH₂, OCH₂CH=CH₂, OCH₂CH₂OCH₃, O(CH₂)₂SCH₃, O(CH₂)₂ON(R_m)(R_n), O(CH₂)₂O(CH₂)₂N(CH₃)₂ и N-замещенного ацетамида (OCH₂C(=O)-N(R_m)(R_n)), где каждый из R_m и R_n представляет собой независимо H, аминозащитную группу или замещенный или незамещенный C_1 - C_{10} алкил.

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид содержит сахарный фрагмент, содержащий немостиковую группу 2'-заместителя, выбранную из: F, OCF₃, OCH₃, OCH₂CH₂OCH₃, O(CH₂)₂SCH₃, O(CH₂)₂ON(CH₃)₂, O(CH₂)₂O(CH₂)₂N(CH₃)₂, O(CH₂)2ON(CH₃)₂ («DMAOE»), OCH2OCH2N(CH2)2 («DMAEOE») и OCH₂C(=O)-N(H)CH₃ («NMA»).

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид содержит сахарный фрагмент, содержащий немостиковую группу 2'-заместителя, выбранную из: F, OCH₃ и OCH₂CH₂OCH₃.

В определенных вариантах осуществления модифицированные фрагменты фуранозильного сахара и нуклеозиды, включающие такие модифицированные фрагменты фуранозильного сахара, дополнительно определяют по изомерной конфигурации. Например, 2'-дезоксифуранозильный сахарный фрагмент может находиться в семи конфигурациях, отличных ОТ встречающейся изомерных природе дезоксирибозильной конфигурации. Такие модифицированные сахарные фрагменты описаны, например, в WO 2019/157531, включенном в данный документ посредством ссылки. 2'-модифицированный сахарный фрагмент имеет дополнительный стереоцентр в 2'-положении относительно 2'-дезоксифуранозильного сахарного фрагмента; следовательно, такие сахарные фрагменты имеют в общей сложности шестнадцать возможных изомерных конфигураций. 2'-Модифицированные сахарные фрагменты, описанные в данном документе, находятся в β-D-рибозильной изомерной конфигурации, если не указано иное.

Во встречающихся в природе нуклеиновых кислотах сахара связаны друг с другом от 3' к 5'. В определенных вариантах осуществления олигонуклеотиды включают один или несколько нуклеозидных или сахарных фрагментов, связанных в альтернативном положении, например, на 2'-конце или обращенном положении от 5' к 3'. Например, если

связь находится в 2'-положении, 2'-заместители вместо этого могут находиться в 3'-положении.

Определенные модифицированные сахарные фрагменты содержат заместитель, который связывает два атома фуранозильного кольца с образованием второго кольца, что приводит к образованию бициклического сахарного фрагмента. Нуклеозиды, содержащие такие бициклические сахарные фрагменты, называются бициклическими нуклеозидами заблокированными нуклеозидами или конформационно ограниченными нуклеотидами (CRN). Определенные такие соединения описаны в публикации патента США № 2013/0190383; и публикации РСТ WO 2013/036868. В определенных таких вариантах осуществления бициклический сахарный фрагмент содержит мостик между 4'- и 2'-атомами фуранозного кольца. В определенных таких вариантах осуществления фуранозное кольцо представляет собой рибозное кольцо. Примеры таких мостиковых заместителей сахара от положения 4' к положению 2' включают без ограничения: 4'-СН₂-2', 4'-(CH₂)₂-2', 4'-(CH₂)₃-2', 4'-CH₂-O-2' («LNA»), 4'-CH₂-S-2', 4'-(CH₂)₂-O-2' («ENA»), 4'-СН(СН₃)-О-2' (обозначаемый как «ограниченный этил» или «сЕt» в S-конфигурации), 4'-CH₂-O-CH₂-2', 4'-CH₂-N(R)-2', 4'-CH(CH₂OCH₃)-O-2' («ограниченный МОЕ» или «сМОЕ») и его аналоги (см., например, Seth et al., U.S. 7399845, Bhat et al., U.S. 7569686, Swayze et al., U.S. 7741457 и Swayze et al., U.S. 8022193), 4'-C(CH₃)(CH₃)-O-2' и его аналоги (см., например, Seth et al., U.S. 8278283), 4'-CH₂-N(OCH₃)-2' и его аналоги (см., например, Prakash et al., U.S. 8278425), 4'-CH₂-O-N(CH₃)-2' (см., например, Allerson et al., U.S. 7696345, и Allerson et al., U.S. 8124745), 4'-СH₂-С(H)(CH₃)-2' (см., например, Zhou, et al., J. Org. Chem., 2009, 74, 118-134), 4'-CH₂-C(=CH₂)-2' и его аналоги (см., например, Seth et al., U.S. 8278426), 4'-C(R_aR_b)-N(R)-O-2', 4'-C(R_aR_b)-O-N(R)-2', 4'-CH₂-O-N(R)-2' и 4'-CH₂-N(R)-O-2', где каждый из R, R_a и R_b представляет собой независимо H, защитную группу или C₁-C₁₂ алкил (см., например, Imanishi et al., U.S. 7427672).

В определенных вариантах осуществления такие мостики от 4'-положения к 2'- положению независимо содержат от 1 до 4 связанных групп, независимо выбранных из: - [C(Ra)(Rb)]n-, -[C(Ra)(Rb)]n-O-, C(Ra)=C(Rb)-, C(Ra)=N-, C(Ra)-, -C(Ra)-, -C(Ra

где:


х равен 0, 1 или 2;

п равен 1, 2, 3 или 4

каждый Ra и Rb независимо представляет собой H, защитную группу, гидроксил, C1-C12 алкил, замещенный C1-C12 алкил, C2-C12 алкенил, замещенный C2-C12 алкенил, C2-C12 алкинил, замещенный C5-C20 арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил, C5-C7 алициклический радикал, замещенный С5-C7 алициклический радикал, галоген, OJ1, NJ1J2, SJ1, N3, COOJ1, ацил (C(=O)-H), замещенный ацил, CN, сульфонил (S(=O)2-J1) или сульфоксил (S(=O)-J1); и каждый J1 и J2 независимо представляют собой H, C1-C12 алкил, замещенный C1-C12 алкил, C2-C12

алкенил, замещенный C2-C12 алкенил, C2-C12 алкинил, замещенный C2-C12 алкинил, C5-C20 арил, замещенный C5-C20 арил, ацил (C(=O)-H), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал, C1-C12 аминоалкил, замещенный C1-C12 аминоалкил или защитную группу.

Дополнительные бициклические сахарные фрагменты известны в данной области техники, см., например: Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Wengel et al., U.S. 7053207, Imanishi et al., U.S. 6268490, Imanishi et al. U.S. 6770748, Imanishi et al., U.S. RE44779; Wengel et al., U.S. 6794499, Wengel et al., U.S. 6670461; Wengel et al., U.S. 7034133, Wengel et al., U.S. 8080644; Wengel et al., U.S. 8034909; Wengel et al., U.S. 8153365; Wengel et al., U.S. 7572582; и Ramasamy et al., U.S. 6525191, Torsten et al., WO 2004/106356, Wengel et al., WO 1999/014226; Seth et al., WO 2007/134181; Seth et al., U.S. 7547684; Seth et al., U.S. 7666854; Seth et al., U.S. 8088746; Seth et al., U.S. 7750131; Seth et al., U.S. 8030467; Seth et al., U.S. 8268980; Seth et al., U.S. 8546556; Seth et al., U.S. 8530640; Migawa et al., U.S. 9012421; Seth et al., U.S. 8501805; Allerson et al., US2008/0039618; и Migawa et al., US2015/0191727. В определенных вариантах осуществления бициклические сахарные фрагменты нуклеозиды, включающие такие бициклические сахарные фрагменты, дополнительно определяют по изомерной конфигурацией. Например, нуклеозид LNA (описанный в данном документе) может находиться в α-L-конфигурации или в β-D-конфигурации.

LNA (β -D-конфигурации) мостик = 4'-CH₂-O-2'

α-*L*-LNA (α-*L*-конфигурации) мостик= 4'-CH₂-O-2'

Бициклические нуклеозиды α-L-метиленокси (4'-CH₂-O-2') или α-L-LNA были включены в олигонуклеотиды, которые демонстрировали антисмысловую активность (Frieden et al., *Nucleic Acids Research*, 2003, 21, 6365-6372). Было показано, что добавление заблокированных нуклеиновых кислот к siRNA повышает стабильность siRNA в сыворотке крови и снижает нецелевые эффекты (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, OR. et al., (2007) Mal Cane Ther 6(3):833-843; Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193). В данном документе общие описания бициклических нуклеозидов включают обе изомерные конфигурации. Когда в приведенных в данном документе примерах вариантов осуществления идентифицируют положения конкретных бициклических нуклеозидов (например, 3HK или сЕt), то они находятся в β-D-

конфигурации, если не указано иное.

В определенных вариантах осуществления модифицированные сахарные фрагменты содержат один или несколько мостиковых сахарных заместителей и один или несколько мостиковых сахарных заместителей (например, 5'-замещенные и 4'-2'-мостиковые сахара).

В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой заменители сахара. В определенных вариантах осуществления атом кислорода сахарного фрагмента заменен, *например*, атомом серы, углерода или азота. В определенных вариантах осуществления такие модифицированные сахарные фрагменты также содержат мостиковые и/или немостиковые заместители, как описано в данном документе. Например, некоторые заменители сахара содержат атом серы в 4'-положении и замещение в 2'-положении (*см.*, *например*, Bhat et al., US 7875733, и Bhat et al., US 7939677) и/или в 5'-положении.

В определенных вариантах осуществления заменители сахаров содержат кольца, имеющие отличное от 5 атомов количество. Например, в определенных вариантах осуществления заменитель сахара содержит шестичленный тетрагидропиран («ТНР»). Такие тетрагидропираны могут быть дополнительно модифицированы или замещены. Нуклеозиды, содержащие такие модифицированные тетрагидропираны, включают без ограничения гекситоловую нуклеиновую кислоту («НNА»), анитоловую нуклеиновую кислоту («ANA»), манитоловую нуклеиновую кислоту («MNA») (см., например, Leumann, С. Віоогд. & Med. Chem. 2002, 10, 841-854), фтор-HNA:

F-HNA

(«F-HNA», *см*, *например*, Swayze et al., U.S. 8088904; Swayze et al., U.S. 8440803; Swayze et al., U.S. 8796437; и Swayze et al., U.S. 9005906; F-HNA также может обозначаться F-THP или 3'-фтортетрагидропиран), и нуклеозиды, содержащие дополнительные модифицированные соединения THP, имеющие формулу:

где, независимо, для каждого указанного модифицированного нуклеозида ТНР:

Вх представляет собой фрагмент нуклеинового основания;

каждый из T_3 и T_4 независимо представляют собой межнуклеозидную связывающую группу, связывающую модифицированный нуклеозид THP с остатком олигонуклеотида, или один из T_3 и T_4 представляет собой межнуклеозидную связывающую группу,

связывающую модифицированный нуклеозид ТНР с остатком олигонуклеотида, а другой из T_3 и T_4 представляет собой H, гидроксильную защитную группу, связанную группу конъюгата или 5'- или 3'-концевую группу;

каждый из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 независимо представляет собой H, C_1 - C_6 алкил, замещенный C_2 - C_6 алкинил, C_2 - C_6 алкинил, или замещенный C_2 - C_6 алкинил; и

каждый из R_1 и R_2 независимо выбран из: водорода, галогена, замещенного или незамещенного алкокси, NJ_1J_2 , SJ_1 , N_3 , $OC(=X)J_1$, $OC(=X)NJ_1J_2$, $NJ_3C(=X)NJ_1J_2$ и CN, где X представляет собой O, S или NJ_1 , и каждый из J_1 , J_2 и J_3 представляет собой независимо H или C_1 - C_6 алкил.

В определенных вариантах осуществления представлены модифицированные нуклеозиды ТНР, где каждый из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 представляет собой Н. В определенных вариантах осуществления по меньшей мере один q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 отличается от Н. В определенных вариантах осуществления по меньшей мере один q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 представляет собой метил. В определенных вариантах осуществления представлены модифицированные нуклеозиды, где один из R_1 и R_2 представляет собой F. В определенных вариантах осуществления, R_1 представляет собой метокси и R_2 представляет собой H, и в определенных вариантах осуществления, R_1 представляет собой метокси и R_2 представляет собой H, и в определенных вариантах осуществления, R_1 представляет собой метокси и R_2 представляет собой H.

В определенных вариантах осуществления, заменители сахара содержат кольца, имеющие более 5 атомов и более одного гетероатома. Например, описаны нуклеозиды, содержащие морфолиносахарные фрагменты, и их применение в олигомерных соединениях (см., *например*: Braasch et al., Biochemistry, 2002, 41, 4503-4510 и Summerton et al., U.S. 5698685; Summerton et al., U.S. 5166315; Summerton et al., U.S. 5185444; и Summerton et al., U.S. 5034506). В контексте данного документа термин «морфолино» означает заменитель сахара, имеющий следующую структуру:

В определенных вариантах осуществления морфолино могут быть модифицированными, например, добавлением или изменением различных групп заместителей относительно представленной выше структуры морфолино. Такие заменители сахара упоминаются в данном документе как «модифицированные морфолино».

В определенных вариантах осуществления заменители сахара содержат ациклические фрагменты. Примеры нуклеозидов и олигонуклеотидов, содержащих такие заменители ациклических сахаров, включают без ограничения: пептидную нуклеиновую

кислоту («PNA»), ациклическую бутилнуклеиновую кислоту (см., например, Киmar et al., Org. Biomol. Chem., 2013, 11, 5853-5865) и нуклеозиды и олигонуклеотиды, описанные в Мапоharan et al., WO2011/133876. В определенных вариантах осуществления заменители сахара содержат ациклические фрагменты. Примеры нуклеозидов и олигонуклеотидов, содержащих такие заменители ациклических сахаров, включают без ограничения: пептидную нуклеиновую кислоту («PNA»), ациклическую бутилнуклеиновую кислоту (см., например, Кumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865) и нуклеозиды и олигонуклеотиды, описанные в Мапоharan et al., US2013/130378. Типовые патенты США, в которых описано получение соединений PNA, включают без ограничения патенты США №№ 5539082; 5714331; и 5719262. Дополнительные соединения PNA, подходящие для применения в олигонуклеотидах по настоящему изобретению, описаны, например, в Nielsen et al., Science, 1991, 254, 1497-1500.

В определенных вариантах осуществления заменители сахара представляют собой «разблокированную» сахарную структуру нуклеозидов UNA (разблокированная нуклеиновая кислота). UNA представляет собой разблокированную ациклическую нуклеиновую кислоту, в которой все связи сахара удалены, образуя разблокированный заменитель сахара. Типичные публикации США, в которых описано получение UNA, включают без ограничения патент США № 8314227; и публикации патентов США № 2013/0096289; 2013/0011922; и 2011/0313020, полное содержание каждого из которых включено в данный документ посредством ссылки.

В определенных вариантах осуществления заменителями сахара являются глицерин, содержащийся в нуклеозидах GNA (гликолевой нуклеиновой кислоты), как показано ниже: (S)-GNA,

где Вх представляет собой любое нуклеиновое основание.

В данной области техники известны многие другие бициклические и трициклические сахара и заменители сахара, которые можно использовать в модифицированных нуклеозидах.

2. Определенные модифицированные нуклеиновые основания

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, содержащих немодифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные

олигонуклеотиды содержат один или более нуклеозидов, в которых отсутствует нуклеиновое основание, называемые нуклеозидом с удаленным нуклеиновым основанием. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько инозиновых нуклеозидов (т.е. нуклеозидов, содержащих гипоксантиновое нуклеиновое основание).

В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из: 5-замещенных пиримидинов, 6-азапиримидинов, алкила или алкинилзамещенных пиримидинов, алкилзамещенных пуринов и N-2, N-6 и O-6 замещенных пуринов. В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из: 5-метилцитозина, 2-аминопропиладенина, гидроксиметилцитозина, ксантина, гипоксантина, 2-аминоаденина, 6-N-метилгуанина, 6-Nметиладенина, 2-пропиладенина, 2-тиоурацила, 2-тиотимина и 2-тиоцитозина, пропинил(-С≡С-СН₃)урацила, 5-пропинилцитозина, 6-азоурацила, 6-азоцитозина, азотимина, 5-рибозилурацила (псевдоурацила), 4-тиоурацила, 8-галогена, 8-амино, 8-тиола, 8-тиоалкила, 8-гидроксила, 8-аза и других 8-замещенных пуринов, 5-галогена, в частности 5-брома, 5-трифторметила, 5-галоурацила и 5-галоцитозина, 7-метилгуанина, 7 метиладенина, 2-Г-аденина, 2-аминоаденина, 7-деазагуанина, 7-деазааденина, 3-6-N-бензоладенина, 2-N-изобутирилгуанина, деазагуанина, 3-деазааденина, 4-Nбензоилцитозина, 4-N-бензоилурацила, 5-метил 4-N-бензоилцитозина, 5-метил 4-Nбензоилурацила, универсальных оснований, гидрофобных оснований, смешанных оснований, увеличенных в размере оснований и фторсодержащих оснований. Дополнительные модифицированные нуклеиновые основания включают трициклические пиримидины, такие как 1,3-диазафеноксазин-2-он, 1,3-диазафенотиазин-2-он и 9-(2аминоэтокси)-1,3-диазафеноксазин-2-он (G-фиксирующее основание). Пуриновые или пиримидиновые основания модифицированных нуклеиновых оснований могут быть заменены другими гетероциклами, например 7-дезазааденином, 7-дезазагуанозином, 2аминопиридином и 2-пиридоном. Дополнительные нуклеиновые основания включают основания, раскрытые в Merigan et al., U.S. 3,687,808, раскрытые в *The Concise Encyclopedia* Of Polymer Science And Engineering, Kroschwitz, J.I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, Crooke, S.T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; и основания, раскрытые в главах 6 и 15, Antisense Drug Technology, Crooke S.T., Ed., CRC Press, 2008, 163-166 и 442-443.

Публикации, в которых описано получение некоторых из указанных выше модифицированных нуклеиновых оснований, а также других модифицированных нуклеиновых оснований, включают, без ограничения Manoharan et al., US2003/0158403; Manoharan et al., US2003/0175906; Dinh et al., U.S. 4845205; Spielvogel et al., U.S. 5130302; Rogers et al., U.S. 5134066; Bischofberger et al., U.S. 5175273; Urdea et al., U.S. 5367066; Benner et al., U.S. 5432272; Matteucci et al., U.S. 5434257; Gmeiner et al., U.S. 5457187; Cook et al., U.S. 5459255; Froehler et al., U.S. 5484908; Matteucci et al., U.S. 5502177; Hawkins et al.,

U.S. 5525711; Haralambidis et al., U.S. 5552540; Cook et al., U.S. 5587469; Froehler et al., U.S. 5594121; Switzer et al., U.S. 5596091; Cook et al., U.S. 5614617; Froehler et al., U.S. 5645985; Cook et al., U.S. 5681941; Cook et al., U.S. 5811534; Cook et al., U.S. 5750692; Cook et al., U.S. 5948903; Cook et al., U.S. 5587470; Cook et al., U.S. 5457191; Matteucci et al., U.S. 5763588; Froehler et al., U.S. 5830653; Cook et al., U.S. 5808027; Cook et al., патент U.S. 6166199; и Matteucci et al., U.S. 6005096.

3. Определенные модифицированные межнуклеозидные связи

Встречающаяся в природе межнуклеозидная связь РНК и ДНК представляет собой 3'-5' фосфодиэфирную связь. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов могут быть связаны вместе с использованием одной или нескольких модифицированных межнуклеозидных связей. Два основных класса межнуклеозидных связывающих групп определяют по наличию или отсутствию атома Типичные фосфорсодержащие межнуклеозидные связи ограничения фосфаты, которые содержат фосфодиэфирную связь («P=O») (также немодифицированными встречающимися ИЛИ В природе связями), называемые фосфотриэфиры, метилфосфонаты, фосфорамидаты и фосфоротиоаты («P=S») и фосфородитиоаты («HS-P=S»). Типичные нефосфоросодержащие межнуклеозидные связывающие группы, включают без ограничения метиленметилимино (-CH₂-N(CH₃)-O- CH_2 -), сложный тиодиэфир, тионокарбамат (-O-C(=O)(NH)-S-); силоксан (-O-SiH₂-O-); и N, N'-диметилгидразин (- CH_2 - $N(CH_3)$ - $N(CH_3)$ -). Модифицированные межнуклеозидные связи по сравнению с встречающимися в природе фосфатными связями можно использовать для изменения, как правило, повышения устойчивости олигонуклеотида к нуклеазам. В определенных вариантах осуществления межнуклеозидные связи, имеющие хиральный атом, могут быть получены в виде рацемической смеси или в виде отдельных энантиомеров. Способы получения фосфорсодержащих и нефосфорсодержащих межнуклеозидных связей хорошо известны специалистам в данной области техники.

В определенных вариантах осуществления модифицированная межнуклеозидная связь представляет собой любую из описанных в WO/2021/030778, включенных в данный документ посредством ссылки. В определенных вариантах осуществления модифицированная межнуклеозидная связь содержит формулу:

где независимо для каждой межнуклеозидной связывающей группы модифицированного олигонуклеотида:

X выбран из О или S;

 R_1 выбран из H, C_1 - C_6 алкила и незамещенного C_1 - C_6 алкила; и

Т выбран из SO_2R_2 , $C(=O)R_3$ и $P(=O)R_4R_5$, где:

R₂ выбран из арила, замещенного арила, гетероцикла, замещенного гетероцикла,

ароматического гетероцикла, замещенного ароматического гетероцикла, диазола, замещенного диазола, C_1 - C_6 алкокси, C_1 - C_6 алкила, C_1 - C_6 алкенила, C_1 - C_6 алкинила, незамещенного C_1 - C_6 алкинила и группы конъюгата;

 R_3 выбран из арила, незамещенного арила, CH_3 , $N(CH_3)_2$, OCH_3 и группы конъюгата; R_4 выбран из OCH_3 , OH, C_1 - C_6 алкила, замещенного C_1 - C_6 алкила и группы конъюгата; и

 R_5 выбран из ОСН₃, ОН, C_1 - C_6 алкила и замещенного C_1 - C_6 алкила.

В некоторых вариантах осуществления модифицированная межнуклеозидная связь содержит мезилфосфорамидатную связывающую группу, имеющую формулу:

В определенных вариантах осуществления мезилфосфорамидатная межнуклеозидная связь может содержать хиральный центр. В определенных вариантах осуществления модифицированные олигонуклеотиды, содержащие (Rp) и/или (Sp) мезилфосфорамидаты, содержат одну или несколько из следующих формул, соответственно, где «В» обозначает нуклеиновое основание:

$$O = P - N - S - O - B - O - B - O - B - O - C - O - C - O - O - C -$$

Типичные межнуклеозидные связи, имеющие хиральный центр, включают без ограничения фосфорамидаты, алкилфосфонаты и фосфортиоаты. Модифицированные олигонуклеотиды, содержащие межнуклеозидные связи, имеющие хиральный центр, можно получить в виде популяций модифицированных олигонуклеотидов, содержащих стереослучайные межнуклеозидные связи, или в виде популяций модифицированных олигонуклеотидов, содержащих фосфоротиоатные или фосфорамидатные связи в стереохимических конфигурациях. В определенных определенных вариантах осуществления популяции модифицированных олигонуклеотидов содержат фосфоротиоатные межнуклеозидные связи, где все фосфоротиоатные межнуклеозидные связи являются стереослучайными. В определенных вариантах осуществления популяции модифицированных олигонуклеотидов содержат мезилфосфорамидатные межнуклеозидные связи, где все мезилфосфорамидатные межнуклеозидные связи являются

стереослучайными. В определенных вариантах осуществления популяции модифицированных олигонуклеотидов содержат фосфоротиоатные И мезилфосфорамидатные межнуклеозидные связи, все фосфоротиоатные где И мезилфосфорамидатные межнуклеозидные связи являются стереослучайными. Такие модифицированные олигонуклеотиды могут быть получены с использованием синтетических способов, которые приводят к случайной селекции стереохимической конфигурации каждой фосфоротиоатной связи. Тем не менее, каждый отдельный фосфоротиоат и каждый фосфорамидат каждой отдельной молекулы олигонуклеотида имеют определенную стереоконфигурацию.

вариантах осуществления популяции модифицированных В определенных олигонуклеотидов обогащены модифицированными олигонуклеотидами, содержащими конкретных фосфоротиоатных несколько или фосфорамидатных межнуклеозидных связей в конкретной, независимо выбранной стереохимической конфигурации. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной связи присутствует в по меньшей мере 65% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной связи присутствует в по меньшей мере 70% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной связи присутствует в по меньшей мере 80% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной связи присутствует в по меньшей мере 90% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной связи присутствует в по меньшей мере 99% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной мезилфосфорамидатной связи присутствует в по меньшей мере 65% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной мезилфосфорамидатной связи присутствует в по меньшей мере 70% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной мезилфосфорамидатной связи присутствует в по меньшей мере 80% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной мезилфосфорамидатной связи присутствует в по меньшей мере 90% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной мезилфосфорамидатной связи присутствует в по меньшей мере 99% молекул в популяции.

Такие хирально обогащенные популяции модифицированных олигонуклеотидов могут быть получены с использованием способов синтеза, известных в данной области техники, *например*, способов, описанных в Oka et al., *JACS* 125, 8307 (2003), Wan et al. *Nuc. Acid. Res.* 42, 13456 (2014) и WO 2017/015555. В определенных вариантах осуществления популяция модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один указанный фосфоротиоат в (*Sp*)-

конфигурации. В определенных вариантах осуществления популяция модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один фосфоротиоат в (Rp)-конфигурации. В определенных вариантах осуществления модифицированные олигонуклеотиды, содержащие (Rp) и/или (Sp) фосфоротиоаты, содержат одну или более из следующих формул, соответственно, где «В» обозначает нуклеиновое основание:

$$O = P - SH$$

В определенных вариантах осуществления популяцию модифицированных олигонуклеотидов обогащают модифицированными олигонуклеотидами, имеющими по меньшей мере один указанный фосфорамидат в (Sp) конфигурации. В определенных вариантах осуществления популяция модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один фосфорамидат в (Rp) конфигурации. Если не указано иное, хиральные межнуклеозидные связи модифицированных олигонуклеотидов, описанные в данном документе, могут быть стереослучайными или могут быть в определенной стереохимической конфигурации.

Нейтральные межнуклеозидные связи включают без ограничения фосфотриэфиры, метилфосфонаты, ММІ (3'-CH₂-N(CH₃)-O-5'), амид-3 (3'-CH₂-C(=O)-N(H)-5'), амид-4 (3'-CH₂-N(H)-C(=O)-5'), формацеталь (3'-O-CH₂-O-5'), метоксипропил (МОР), и тиоформацеталь (3'-S-CH₂-O-5'). Другие нейтральные межнуклеозидные связи включают неионные связи, включающие силоксан (диалкилсилоксан), карбоксилатный эфир, карбоксамид, сульфид, эфир сульфокислоты и амиды (см., например: *Carbohydrate Modifications in Antisense Research*; Y.S. Sanghvi and P.D. Cook, Eds., ACS Symposium Series 580; главы 3 и 4, 40-65). Другие нейтральные межнуклеозидные связи включают неионные связи, содержащие смешанные N, O, S и CH₂ составляющие.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько инвертированных нуклеозидов, как показано ниже:

где каждый Вх независимо представляет собой любое нуклеиновое основание.

В определенных вариантах осуществления инвертированный нуклеозид является концевым (т.е. последним нуклеозидом на одном конце олигонуклеотида), и поэтому будет присутствовать только одна межнуклеозидная связь, изображенная выше. В определенных таких вариантах осуществления к инвертированному нуклеозиду могут быть присоединены дополнительные структуры (например, группа конъюгата). Такие концевые инвертированные нуклеозиды могут быть присоединены к одному или обоим концам олигонуклеотида.

В некоторых вариантах осуществления такие группы не имеют нуклеинового основания и обозначаются в данном документе инвертированными сахарными остатками. В определенных вариантах осуществления инвертированный сахарный фрагмент является концевым (т.е. присоединен к последнему нуклеозиду на одном конце олигонуклеотида), и поэтому будет присутствовать только одна межнуклеозидная связь, описанная выше. В определенных таких вариантах осуществления к инвертированному сахарному фрагменту могут быть присоединены дополнительные структуры (такие как группа конъюгата). Такие концевые инвертированные сахарные фрагменты могут быть присоединены к одному или обоим концам олигонуклеотида.

В определенных вариантах осуществления нуклеиновые кислоты могут быть связаны по 2'-5'-концу вместо стандартной связи 3'-5'. Такая связь проиллюстрирована ниже.

где каждый Вх представляет собой любое нуклеиновое основание.

В. Определенные мотивы

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более модифицированных нуклеозидов, содержащих модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более модифицированных нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат одну или более модифицированных межнуклеозидных связей. В таких вариантах осуществления модифицированные, немодифицированные и различным образом модифицированные фрагменты, нуклеиновые основания и/или межнуклеозидные модифицированного олигонуклеотида определяют паттерн или мотив. В определенных вариантах осуществления каждая структура сахарных фрагментов, нуклеиновых оснований и межнуклеозидных связей не зависит друг от друга. Таким образом, модифицированный олигонуклеотид может быть описан его сахарным мотивом, мотивом нуклеиновых оснований и/или мотивом межнуклеозидной связи (в контексте данного документа мотив нуклеиновых оснований описывает модификации нуклеиновых оснований независимо от последовательности нуклеиновых оснований).

1. Определенные сахарные мотивы

В определенных вариантах осуществления олигонуклеотиды содержат один или более типов модифицированных сахарных фрагментов и/или немодифицированных сахарных фрагментов, расположенных вдоль олигонуклеотида или его области определенным образом или в виде сахарного мотива. В определенных случаях, такие мотивы могут содержать без ограничения любые сахарные модификации, рассмотренные в данном документе и/или другие известные модификации сахара.

Гэпмерные олигонуклеотиды

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат или состоят из области, имеющей гэпмерный мотив, который определяется с помощью двух внешних областей или «крыльев» и центральной или внутренней области, или «гэпа». Эти три области гэпмерного мотива (5'-крыло, гэп и 3'-крыло) образуют непрерывную последовательность нуклеиновых оснований, в которой по меньшей мере некоторые из сахарных фрагментов нуклеозидов в каждом крыле отличаются по меньшей

мере от некоторых сахарных фрагментов нуклеозидов в гэпе. В частности, по меньшей мере те сахарные фрагменты нуклеозидов каждого крыла, которые расположены ближе всего к гэпу (крайний 3'-концевой нуклеозид 5'-крыла и крайний 5'-концевой нуклеозид 3'-крыла), отличаются от сахарного фрагмента соседних нуклеозидов в гэпе, определяя таким образом границу между крыльями и гэпом (т.е. соединение крыло/гэп). В определенных вариантах осуществления сахарные фрагменты в гэпе являются одинаковыми по отношению друг к другу. В определенных вариантах осуществления гэп содержит один или более нуклеозидов, имеющих сахарный фрагмент, который отличается от сахарного фрагмента одного или более других нуклеозидов в гэпе. В определенных вариантах осуществления сахарные мотивы двух крыльев являются одинаковыми по отношению друг к другу (симметричный гэпмер). В определенных вариантах осуществления сахарные мотивы 5'-крыла отличаются от сахарного мотива 3'-крыла (асимметричный сахарный гэпмер).

В определенных вариантах осуществления крылья гэпмера содержат 1-6 нуклеозидов. В определенных вариантах осуществления каждый нуклеозид каждого крыла гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере один нуклеозид каждого крыла гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере два нуклеозида каждого крыла гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере три нуклеозида каждого крыла гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере четыре нуклеозида каждого крыла гэпмера содержит модифицированный сахарный фрагмент.

В определенных вариантах осуществления гэп гэпмера содержит 7-12 связанных нуклеозидов. В определенных вариантах осуществления каждый нуклеозид в гэпе гэпмера содержит 2'-β-D-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере один нуклеозид в гэпе гэпмера содержит модифицированный сахарный фрагмент.

определенных вариантах осуществления гэпмер представляет дезоксигэпмер. В определенных вариантах осуществления нуклеозиды на стороне гэпа каждого соединения крыло/гэп содержат 2'-дезоксирибозильные сахарные фрагменты, а нуклеозиды на сторонах крыла каждого соединения крыло/гэп содержат модифицированные сахарные фрагменты. В определенных вариантах осуществления каждый нуклеозид в гэпе содержит 2'-β-D-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления каждый нуклеозид каждого крыла гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере один нуклеозид в гэпе гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления один нуклеозид гэпа содержит модифицированный сахарный фрагмент и каждый оставшийся нуклеозид гэпа содержит 2'-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере один нуклеозид в гэпе гэпмера содержит 2'-

ОМе сахарный фрагмент.

В данном документе длины (число нуклеозидов) трех областей гэпмера могут быть указаны с использованием обозначения [число нуклеозидов в 5'-крыле] - [число нуклеозидов в гэпе] - [число нуклеозидов в 3'-крыле]. Таким образом, 3-10-3 гэпмер состоит из 3 связанных нуклеозидов в каждом крыле и 10 связанных нуклеозидов в гэпе. Если за такой номенклатурой следует конкретная модификация, эта модификация представляет собой модификацию в каждом сахарном фрагменте каждого крыла, и нуклеозиды гэпа содержат 2'-β-D-дезоксирибозильные сахарные фрагменты. 3-10-3 сЕt-гэпмер состоит из 3 связанных сЕt-нуклеозидов в 5'-крыле, 10 связанных 2'-β-D-дезоксинуклеозидов в гэпе и 3 связанных сЕt-нуклеозидов в 3'-крыле.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': ekdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': ekkddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': ekkdddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kedddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kekddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkedddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkedddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkdddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkdydddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «у» представляет собой 2'-ОМе сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkdddddddddkk; где каждый «d» представляет собой 2'- β -D-дезоксирибозильный сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkddddddddddddddeee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkddddddddddkkee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkddddddddddkkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkdddddddddddddkeeee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ

сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkdddddddddkkeee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkkddddddddddkkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkkkkddddddddddkkkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют сахарный мотив от 5' до 3': kkdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.

Определенные независимые от мишени сахарные мотивы

Определенные сахарные мотивы, представленные в данном документе, применимы для модифицированных олигонуклеотидов, как правило, независимо последовательности нуклеиновых оснований. Последовательность нуклеиновых оснований модифицированного олигонуклеотида может быть комплементарна любой мишени. В определенных вариантах осуществления олигомерные соединения содержат модифицированные олигонуклеотиды, которые представляют собой гэпмеры.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': ekddddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': ekkddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность

нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': ekkddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': keddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': kekddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': kkedddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': kkeddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид, имеющий сахарный мотив от 5' до 3': kkdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент и каждый

«k» представляет собой сЕt модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную целевой РНК.

2. Определенные мотивы нуклеиновых оснований

В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные нуклеиновые основания, расположенные вдоль олигонуклеотида или его области определенным образом или в виде мотива. В определенных вариантах осуществления каждое нуклеиновое основание является модифицированным. В определенных вариантах осуществления ни одно из нуклеиновых оснований не является модифицированным. В определенных вариантах осуществления каждый пурин или каждый пиримидин является модифицированным. В определенных вариантах осуществления каждый аденин является модифицированным. В определенных вариантах осуществления каждый гуанин является модифицированным. В определенных вариантах осуществления каждый тимин является модифицированным. В определенных вариантах осуществления каждый урацил является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных вариантах осуществления некоторые или все цитозиновые нуклеиновые основания в модифицированном олигонуклеотиде представляют собой 5-метилцитозины. В некоторых вариантах осуществления все цитозиновые нуклеиновые основания представляют собой 5нуклеиновые модифицированного метилцитозины, все другие основания олигонуклеотида представляют собой немодифицированные нуклеиновые основания.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат блок модифицированных нуклеиновых оснований. В определенных вариантах осуществления блок находится на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок находится в пределах 3 нуклеозидов 3'-конца олигонуклеотида. В определенных вариантах осуществления блок находится на 5'-конце олигонуклеотида. В определенных вариантах осуществления блок находится в пределах 3 нуклеотидов 5'-конца олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный мотив, содержат нуклеозид, содержащий модифицированное нуклеиновое основание. В определенных таких вариантах осуществления один нуклеозид, содержащий модифицированное нуклеиновое основание, находится олигонуклеотида, имеющего гэпмерный мотив. В определенных вариантах осуществления сахарный фрагмент указанного нуклеозида представляет собой 2'-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления модифицированное нуклеиновое основание выбрано из 2-тиопиримидина и 5-пропинепиримидина.

3. Определенные мотивы межнуклеозидных связей

В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области определенным образом или в виде мотива

модифицированной межнуклеозидной связи. В определенных вариантах осуществления каждая межнуклеозидная связывающая группа представляет собой фосфодиэфирную межнуклеозидную связь (Р=О). В определенных вариантах осуществления каждая модифицированного межнуклеозидная связывающая группа олигонуклеотида представляет собой фосфоротиоатную межнуклеозидную связь (P=S). В определенных вариантах осуществления каждая межнуклеозидная связь модифицированного олигонуклеотида независимо выбрана из фосфоротиоатной межнуклеозидной связи и фосфодиэфирной межнуклеозидной связи. В определенных вариантах осуществления каждая тиофосфатная межнуклеозидная связь независимо выбрана из стереослучайного тиофосфата, (Sp) тиофосфата и (Rp) тиофосфата.

В определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, и все межнуклеозидные связи внутри гэпа являются модифицированными. В определенных таких вариантах осуществления некоторые или все межнуклеозидные связи в крыльях представляют собой немодифицированные фосфодиэфирные межнуклеозидные связи. В определенных вариантах осуществления терминальные межнуклеозидные связи являются модифицированными. В определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, мотив связей содержит по межнуклеозидных меньшей мере одну фосфодиэфирную межнуклеозидную связь в по меньшей мере одном крыле, где по меньшей мере одна фосфодиэфирная связь не представляет собой концевую межнуклеозидную связь, а собой остальные межнуклеозидные связи представляют фосфоротиоатные межнуклеозидные связи. В определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, мотив межнуклеозидной связи содержит одну, две или три фосфодиэфирные межнуклеозидные связи, а остальные межнуклеозидные связи представляют собой фосфоротиоатные межнуклеозидные связи. В определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, мотив межнуклеозидной связи содержит три фосфодиэфирные межнуклеозидные связи, а остальные межнуклеозидные связи представляют собой фосфоротиоатные межнуклеозидные связи. В определенных таких вариантах осуществления все фосфоротиоатные связи являются стереослучайными. В определенных вариантах осуществления все тиофосфатные связи в крыльях представляют собой (Sp) тиофосфаты, а гэп содержит по меньшей мере один Sp, Sp, Rp мотив. В определенных вариантах осуществления популяции модифицированных олигонуклеотидов обогащают модифицированными олигонуклеотидами, содержащими такие мотивы межнуклеозидных связей.

С. Определенные длины

Существует возможность увеличивать или уменьшать длину олигонуклеотида без устранения активности. Например, в Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), ряд олигонуклеотидов длиной 13-25 нуклеиновых оснований исследовали в

отношении их способности индуцировать расщепление целевой РНК в модели инъекции в ооцит. Олигонуклеотиды длиной 25 нуклеиновых оснований с 8 или 11 ошибочно спаренными основаниями вблизи концов олигонуклеотидов оказались способны направлять специфическое расщепление целевой РНК, хотя и в меньшей степени, чем олигонуклеотиды, которые не содержали ошибочных спариваний. Аналогично, целевое специфическое расщепление было достигнуто при помощи олигонуклеотидов из 13 нуклеиновых оснований, включая те, которые содержали 1 или 3 ошибочные спаривания.

определенных вариантах осуществления олигонуклеотиды модифицированные олигонуклеотиды) могут иметь любую длину из множества диапазонов. В определенных вариантах осуществления олигонуклеотиды состоят из X-Y связанных нуклеозидов, где Х представляет наименьшее количество нуклеозидов в диапазоне, а У представляет наибольшее количество нуклеозидов в диапазоне. В определенных таких вариантах осуществления каждый из Х и У независимо выбран из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, и 50; при условии, что Х≤Ү. Например, в определенных вариантах осуществления олигонуклеотиды состоят из 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20, 12-21, 12-22, 12-23, 12-24, 12-25, 12-26, 12-27, 12-28, 12-29, 12-30, 13-14, 13-15, 13-16, 13-17, 13-18, 13-19, 13-20, 13-21, 13-22, 13-23, 13-24, 13-25, 13-26, 13-27, 13-28, 13-29, 13-30, 14-15, 14-16, 14-17, 14-18, 14-19, 14-20, 14-21, 14-22, 14-23, 14-24, 14-25, 14-26, 14-27, 14-28, 14-29, 14-30, 15-16, 15-17, 15-18, 15-19, 15-20, 15-21, 15-22, 15-23, 15-24, 15-25, 15-26, 15-27, 15-28, 15-29, 15-30, 16-17, 16-18, 16-19, 16-20, 16-21, 16-22, 16-23, 16-24, 16-25, 16-26, 16-27, 16-28, 16-29, 16-30, 17-18, 17-19, 17-20, 17-21, 17-22, 17-23, 17-24, 17-25, 17-26, 17-27, 17-28, 17-29, 17-30, 18-19, 18-20, 18-21, 18-22, 18-23, 18-24, 18-25, 18-26, 18-27, 18-28, 18-29, 18-30, 19-20, 19-21, 19-22, 19-23, 19-24, 19-25, 19-26, 19-29, 19-28, 19-29, 19-30, 20-21, 20-22, 20-23, 20-24, 20-25, 20-26, 20-27, 20-28, 20-29, 20-30, 21-22, 21-23, 21-24, 21-25, 21-26, 21-27, 21-28, 21-29, 21-30, 22-23, 22-24, 22-25, 22-26, 22-27, 22-28, 22-29, 22-30, 23-24, 23-25, 23-26, 23-27, 23-28, 23-29, 23-30, 24-25, 24-26, 24-27, 24-28, 24-29, 24-30, 25-26, 25-27, 25-28, 25-29, 25-30, 26-27, 26-28, 26-29, 26-30, 27-28, 27-29, 27-30, 28-29, 28-30, или 29-30 связанных нуклеозидов

D. Определенные модифицированные олигонуклеотиды

В определенных вариантах осуществления вышеуказанные модификации (сахар, нуклеиновое основание, межнуклеозидная связь) включены в модифицированный олигонуклеотид. В определенных вариантах осуществления модифицированные олигонуклеотиды характеризуются по их мотивам модификаций и общей длине. В определенных вариантах осуществления такие параметры не зависят друг от друга. Таким образом, если не указано иное, каждая межнуклеозидная связь олигонуклеотида, имеющего гэпмерный сахарный мотив, может быть модифицирована или немодифицирована и может или не может следовать паттерну модификаций сахара. Например, межнуклеозидные связи в областях крыла сахарного гэпмера могут быть одинаковыми или отличаться друг от друга, и могут быть такими же, или отличаться от межнуклеозидных связей в области гэпа

сахарного мотива. Аналогичным образом, такие гэпмерные олигонуклеотиды сахара могут содержать одно или несколько модифицированных нуклеиновых оснований независимо от гэпмерной структуры модификаций сахара. Если не указано иное, все модификации не зависят от последовательности нуклеиновых оснований.

Е. Определенные популяции модифицированных олигонуклеотидов

Популяции модифицированных олигонуклеотидов, которых модифицированные олигонуклеотиды популяции имеют одинаковую молекулярную формулу, могут быть стереослучайными или хирально обогащенными популяциями. Все модифицированных хиральные центры всех олигонуклеотидов являются стереослучайными в стереослучайной популяции. В хирально обогащенной популяции по меньшей мере один определенный хиральный центр не является стереослучайным в популяции. В модифицированных олигонуклеотидах определенных вариантах осуществления модифицированные олигонуклеотиды хирально обогащенной популяции обогащены в отношении β-D-рибозильных сахарных фрагментов, фосфоротиоатных межнуклеозидных связей являются стереослучайными. В определенных вариантах осуществления модифицированные олигонуклеотиды хирально обогащенной популяции обогащены как в отношении β-D-рибозил сахарных фрагментов, так и по меньшей мере в отношении одной определенной фосфоротиоатной межнуклеозидной связи в конкретной стереохимической конфигурации.

F. Последовательность нуклеиновых оснований

В определенных вариантах осуществления олигонуклеотиды (немодифицированные или модифицированные олигонуклеотиды) дополнительно описываются последовательностями нуклеиновых оснований. В определенных вариантах осуществления олигонуклеотиды последовательность нуклеиновых оснований, которая имеют или идентифицированной эталонной комплементарна второму олигонуклеотиду нуклеиновой кислоте, такой как целевая нуклеиновая кислота. В определенных таких вариантах осуществления область олигонуклеотида имеет последовательность нуклеиновых оснований, которая комплементарна второму олигонуклеотиду или идентифицированной эталонной нуклеиновой кислоте, такой как целевая нуклеиновая кислота. В определенных вариантах осуществления последовательность нуклеиновых оснований области или всего олигонуклеотида на по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарны второму олигонуклеотиду или нуклеиновой кислоте, такой как целевая нуклеиновая кислота.

II. Определенные олигомерные соединения

В определенных вариантах осуществления в данном документе представлены олигомерные соединения, которые состоят из олигонуклеотида (модифицированного или немодифицированного) и необязательно одной или нескольких групп конъюгата и/или концевых групп. Группы конъюгата состоят из одного или нескольких фрагментов конъюгата и линкера конъюгата, который связывает фрагмент конъюгата с

олигонуклеотидом. Группы конъюгата могут быть присоединены к одному или обоим концам олигонуклеотида и/или в любом внутреннем положении. В определенных вариантах осуществления группы конъюгата присоединены к 2'-положению нуклеозида модифицированного олигонуклеотида. В определенных вариантах осуществления группы конъюгата, которые присоединены к одному или обоим концам олигонуклеотида, представляют собой концевые группы. В определенных таких вариантах осуществления группы конъюгата или концевые группы присоединены на 3'- и/или 5'-конце олигонуклеотидов. В определенных таких вариантах осуществления группы конъюгата (или концевые группы) присоединены на 3'-конце олигонуклеотидов. В определенных вариантах осуществления группы конъюгата (или концевые группы) присоединены на 5'-конце олигонуклеотидов. В определенных вариантах осуществления группы конъюгата присоединены на 5'-конце олигонуклеотидов.

Примеры концевых групп включают без ограничения ими группы конъюгата, кэпгруппы, фосфатные фрагменты, защитные группы, модифицированные или немодифицированные нуклеозиды и два или более нуклеозидов, которые независимо модифицированы или немодифицированы.

А. Определенные группы конъюгата

В определенных вариантах осуществления олигонуклеотиды ковалентно связаны с одной или несколькими группами конъюгата. В определенных вариантах осуществления группы конъюгата модифицируют одно или более свойств присоединенного олигонуклеотида, включая без ограничения фармакодинамику, фармакокинетику, стабильность, связывание, абсорбцию, клеточное распределение в тканях, распределение в клетках, клеточное поглощение, заряд и клиренс.

В определенных вариантах осуществления конъюгация одного или нескольких углеводных фрагментов с модифицированным олигонуклеотидом может оптимизировать одно или несколько свойств модифицированного олигонуклеотида. В определенных вариантах осуществления углеводный фрагмент присоединен к модифицированной субъединице модифицированного олигонуклеотида. Например, сахар рибозы одной или нескольких субъединиц рибонуклеотида модифицированного олигонуклеотида можно заместить другим фрагментом, например, неуглеводным (предпочтительно циклическим) носителем, к которому присоединен углеводный лиганд. Субъединица рибонуклеотида, в которой таким образом замещен сахар рибозы, обозначается в данном документе субъединицей модификации замещения рибозы (RRMS), которая представляет собой модифицированный сахарный фрагмент. Циклический носитель может представлять собой карбоциклическую кольцевую систему, т.е. один или несколько атомов кольца могут представлять собой гетероатом, например, азот, кислород, серу. Циклический носитель может представлять собой моноциклическую кольцевую систему или может содержать два или более колец, например конденсированные кольца. Циклический носитель может представлять собой полностью насыщенную кольцевую систему или может содержать одну

или несколько двойных связей. В определенных вариантах осуществления модифицированный олигонуклеотид представляет собой гэпмер.

В определенных вариантах осуществления группы конъюгата придают новое свойство присоединенному олигонуклеотиду, например, флуорофоры или репортерные группы, которые способствуют обнаружению олигонуклеотида. Определенные группы конъюгата и фрагменты конъюгата были описаны ранее, например: фрагмент холестерина (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), холевая кислота (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), тиоэфир, например, гексил-S-тритилтиол (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Lett., 1993, 3, 2765-2770), тиохолестерин (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), алифатическая цепь, например, остатки додекандиола или ундецила (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., *Biochimie*, 1993, 75, 49-54), фосфолипид, например, дигексадецил-рацглицерин триэтиламмоний 1,2-ди-О-гексадецил-рац-глицеро-3-Н-фосфонат или (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), цепь полиамина или полиэтиленгликоля (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973) или адамантан-уксусная кислота, пальмитиловый фрагмент (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), октадециламиновый или гексиламинокарбонил-оксихолестериновый фрагмент (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937), группа токоферола (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; и Nishina et al., Molecular Therapy, 2008, 16, 734-740) или кластер GalNAc (например, WO2014/179620).

В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из C22 алкила, C20 алкила, C16 алкила, C10 алкила, C21 алкила, C19 алкила, C18 алкила, C15 алкила, C14 алкила, C13 алкила, C12 алкила, C1 алкила, C9 алкила, C8 алкила, C7 алкила, C6 алкила, C5 алкила, C22 алкенила, C20 алкенила, C16 алкенила, C10 алкенила, C21 алкенила, C19 алкенила, C18 алкенила, C15 алкенила, C14 алкенила, C13 алкенила, C12 алкенила, C11 алкенила, C9 алкенила, C8 алкенила, C7 алкенила, C6 алкенила или C5 алкенила.

В определенных вариантах осуществления группы конъюгата могут быть выбраны из любого из C22 алкила, C20 алкила, C16 алкила, C10 алкила, C21 алкила, C19 алкила, C18 алкила, C15 алкила, C14 алкила, C13 алкила, C12 алкила, C11 алкила, C9 алкила, C8 алкила, C7 алкила, C6 алкила и C5 алкила, где алкильная цепь имеет одну или несколько ненасыщенных связей.

В определенных вариантах осуществления группа конъюгата имеет следующую структуру:

1. Фрагменты конъюгата

Фрагменты конъюгата включают без ограничения интеркаляторы, репортерные молекулы, полиамины, полиамиды, пептиды, углеводы (например, GalNac), фрагменты витаминов, полиэтиленгликоли, сложные тиоэфиры, полиэфиры, холестерины, тиохолестерины, фрагменты холевой кислоты, фолат, липиды, фосфолипиды, биотин, феназин, фенантридин, антрахинон, адамантан, акридин, флуоресцеины, родамины, кумарины, флуорофоры и красители.

В определенных вариантах осуществления фрагмент конъюгата содержит активную лекарственную субстанцию, например, аспирин, варфарин, фенилбутазон, ибупрофен, супрофен, фенбуфен, кетопрофен, (S)-(+)-пранопрофен, карпрофен, дансилсаркозин, 2,3,5-трийодбензойную кислоту, финголимод, флуфенамовую кислоту, фолиновую кислоту, бензотиадиазид, хлоротиазид, диазепин, индометицин, барбитурат, цефалоспорин, сульфамидное лекарственное средство, противодиабетическое, антибактериальное или антибиотическое средство.

2. Линкеры коньюгата

Фрагменты конъюгата присоединены к олигонуклеотидам посредством линкеров конъюгата. В определенных олигомерных соединениях линкер конъюгата представляет собой одинарную химическую связь (т.е. фрагмент конъюгата присоединен непосредственно к олигонуклеотиду посредством одинарной связи). В определенных вариантах осуществления линкер конъюгата содержит цепочечную структуру, такую как гидрокарбильная цепь, или олигомер из повторяющихся единиц, таких как этиленгликоль, нуклеозиды или аминокислотные единицы.

В определенных вариантах осуществления линкер конъюгата содержит пирролидин.

В определенных вариантах осуществления линкер конъюгата содержит одну или групп, несколько выбранных ИЗ алкила, амино, оксо, амида, дисульфида, полиэтиленгликоля, эфира, тиоэфира и гидроксиламино. В определенных таких вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных, амино, оксо, амидных и эфирных групп. В определенных вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных и амидных групп. В определенных вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных и эфирных групп. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере один фосфорный фрагмент. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере одну фосфатную группу. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере одну нейтральную связывающую группу.

В определенных вариантах осуществления линкеры конъюгата, включая линкеры конъюгата, описанные выше, представляют собой бифункциональные связывающие фрагменты, например, фрагменты, которые известны из уровня техники, как пригодные для присоединения групп конъюгата к соединениям, таким как олигонуклеотиды, представленные в данном документе. Как правило, бифункциональный связывающий фрагмент содержит по меньшей мере две функциональные группы. Одна из

функциональных групп выбрана для связывания с определенным сайтом соединения, а другая выбрана для связывания с группой конъюгата. Примеры функциональных групп, используемых в бифункциональном связывающем фрагменте, включают, но без ограничения ими, электрофилы для взаимодействия с нуклеофильными группами и нуклеофилы для взаимодействия с электрофильными группами. В определенных вариантах осуществления бифункциональные связывающие фрагменты содержат одну или несколько групп, выбранных из амино, гидроксила, карбоновой кислоты, тиола, алкила, алкенила и алкинила.

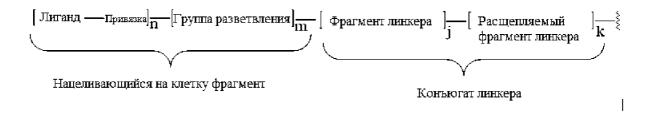
Примеры линкеров конъюгата включают, но без ограничения ими, пирролидин, 8-амино-3,6-диоксаоктановую кислоту (ADO), сукцинимидил-4-(N-малеимидометил) циклогексан-1-карбоксилат (SMCC) и 6-аминогексановую кислоту (AHEX или AHA). Другие линкеры конъюгата включают, но без ограничения ими, замещенный или незамещенный C_1 - C_{10} алкил, замещенный или незамещенный C_2 - C_{10} алкинил, при этом неограничивающий перечень предпочтительных групп заместителей включает гидроксил, амино, алкокси, карбокси, бензил, фенил, нитро, тиол, тиоалкокси, галоген, алкил, арил, алкенил и алкинил.

В определенных вариантах осуществления линкеры конъюгата содержат 1-10 линкерных нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат 2-5 линкерных нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат в точности 3 линкерных нуклеозида. В определенных вариантах осуществления линкеры конъюгата содержат мотив ТСА. В определенных вариантах осуществления такие линкерные нуклеозиды представляют собой модифицированные нуклеозиды. В определенных вариантах осуществления такие линкерные нуклеозиды модифицированный сахарный фрагмент. В определенных вариантах осуществления линкерные нуклеозиды являются немодифицированными. В определенных вариантах осуществления линкерные нуклеозиды содержат необязательно защищенное гетероциклическое основание, выбранное из пурина, замещенного пурина, пиримидина или замещенного пиримидина. В определенных вариантах осуществления расщепляемый фрагмент представляет собой нуклеозид, выбранный из урацила, тимина, цитозина, 4-N-4-N-бензоил-5-метилцитозина, 6-Nбензоилцитозина, 5-метилцитозина, аденина, бензоладенина, гуанина и 2-N-изобутирилгуанина. Обычно желательно, чтобы линкерные нуклеозиды отщеплялись от олигомерного соединения после того, как оно достигнет целевой ткани. Соответственно, линкерные нуклеозиды обычно связаны друг с другом и с остальной частью олигомерного соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые связи представляют собой фосфодиэфирные связи.

В данном документе линкерные нуклеозиды не считаются частью олигонуклеотида. Соответственно, в вариантах осуществления, в которых олигомерное соединение содержит олигонуклеотид, состоящий из определенного количества или диапазона связанных нуклеозидов и/или определенного процента комплементарности с эталонной нуклеиновой

кислотой, и олигомерное соединение также содержит группу конъюгата, содержащую линкер конъюгата, содержащий линкерные нуклеозиды, при этом эти линкерные нуклеозиды не учитываются в длине олигонуклеотида и не используются при определении процента комплементарности олигонуклеотида для эталонной нуклеиновой кислоты. соединение может содержать (1) модифицированный Например, олигомерное олигонуклеотид, состоящий из 8-30 нуклеозидов, и (2) группу конъюгата, содержащую 1-10 которые являются линкерных нуклеозидов, смежными c нуклеозидами модифицированного олигонуклеотида. Общее количество смежных связанных нуклеозидов в таком олигомерном соединении составляет более 30. В качестве альтернативы олигомерное соединение может содержать модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и не содержать группы конъюгата. Общее количество смежных связанных нуклеозидов в таком олигомерном соединении составляет не более 30. Если не указано иное, линкеры конъюгата содержат не более 10 линкерных нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 5 линкерных нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 3 линкерных нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 2 линкерных нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 1 линкерного нуклеозида.

В определенных вариантах осуществления желательно, чтобы группа конъюгата была отщеплена от олигонуклеотида. Например, в определенных обстоятельствах олигомерные соединения, содержащие определенный фрагмент конъюгата, лучше поглощаются определенным типом клеток, но после поглощения олигомерного соединения желательно, чтобы группа конъюгата была расщеплена для высвобождения неконъюгированного или исходного олигонуклеотида. Таким образом, определенные линкеры конъюгата могут содержать один или несколько расщепляемых фрагментов. В определенных вариантах осуществления расщепляемый фрагмент представляет собой расщепляемую связь. В определенных вариантах осуществления расщепляемый фрагмент представляет собой группу атомов, содержащую по меньшей мере одну расщепляемую связь. В определенных вариантах осуществления расщепляемый фрагмент содержит группу атомов, имеющих одну, две, три, четыре или более четырех расщепляемых связей.В фрагмент определенных вариантах осуществления расщепляемый расщепляется внутри клетки или субклеточного компартмента, такого как лизосома. В вариантах определенных осуществления расщепляемый фрагмент селективно расщепляется эндогенными ферментами, такими как нуклеазы.


В определенных вариантах осуществления расщепляемая связь выбрана из амида, сложного эфира, эфира, одного или обоих сложных эфиров фосфодиэфира, сложного фосфатного эфира, карбамата или дисульфида. В определенных вариантах осуществления расщепляемая связь представляет собой один или оба сложных эфира фосфодиэфира. В определенных вариантах осуществления расщепляемый фрагмент содержит фосфат или

фосфодиэфир. В определенных вариантах осуществления расщепляемый фрагмент представляет собой фосфатную связь между олигонуклеотидом и фрагментом конъюгата или группой конъюгата.

В определенных вариантах осуществления расщепляемый фрагмент содержит один или несколько линкерных нуклеозидов или состоит из них. В определенных таких вариантах осуществления один или несколько линкерных нуклеозидов связаны друг с другом и/или с остатком олигомерного соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые связи представляют собой немодифицированные фосфодиэфирные связи. В определенных вариантах осуществления расщепляемый фрагмент представляет собой 2'-дезоксинуклеозид, который присоединен к 3'-5'-концевому нуклеозиду олигонуклеотида посредством фосфатной межнуклеозидной связи и ковалентно присоединен к остатку линкера конъюгата или фрагмента конъюгата с помощью фосфатной или фосфоротиоатной связи. В определенных таких вариантах осуществления расщепляемый фрагмент представляет собой 2'дезоксиаденозин.

3. Нацеленные на клетки фрагменты

В определенных вариантах осуществления группа конъюгата содержит нацеленный на клетку фрагмент. В определенных вариантах осуществления группа конъюгата имеет общую формулу:

где п равен от 1 до приблизительно 3, m равен 0, когда n равен 1, m равен 1, когда n равен 2 или больше, j равен 1 или 0 и k равен 1 или 0.

В определенных вариантах осуществления п равно 1, ј равно 1 и k равно 0. В определенных вариантах осуществления п равно 1, ј равно 0 и k равно 1. В определенных вариантах осуществления п равно 1, ј равно 1 и k равно 1. В определенных вариантах осуществления п равно 2, ј равно 1 и k равно 0. В определенных вариантах осуществления п равно 2, ј равно 1 и k равно 1. В определенных вариантах осуществления п равно 2, ј равно 1 и k равно 1. В определенных вариантах осуществления п равно 3, ј равно 0 и k равно 1. В определенных вариантах осуществления п равно 3, ј равно 0 и k равно 1. В определенных вариантах осуществления п равно 3, ј равно 1 и k равно 1.

В определенных вариантах осуществления группы конъюгата содержат нацеленные на клетку фрагменты, которые имеют по меньшей мере один связанный лиганд. В определенных вариантах осуществления нацеленные на клетку фрагменты содержат два

связанных лиганда, ковалентно связанных с группой разветвления.

В определенных вариантах осуществления каждый лиганд нацеленного на клетку фрагмента имеет аффинность к по меньшей мере одному типу рецептора на целевой клетке. В определенных вариантах осуществления каждый лиганд имеет аффинность к по меньшей мере одному типу рецептора на поверхности клетки печени млекопитающих. В определенных вариантах осуществления каждый лиганд имеет аффинность связывания к печеночному рецептору асиалогликопротеина (ASGP-R). В определенных вариантах осуществления каждый лиганд представляет собой углевод.

В определенных вариантах осуществления олигомерные соединения содержат группу конъюгата, содержащую нацеленный на клетку фрагмент, имеющий аффинность к рецептору трансферрина (TfR), также известному как TfR1 и CD71. В определенных вариантах осуществления группа конъюгата содержит антитело к TfR1 или его фрагмент. В определенных вариантах осуществления антитело к TfR1 или его фрагмент может быть любым, известным в данной области техники, включая, помимо прочего, антитела, описанные в WO/1991/004753; WO/2013/103800; WO/2014/144060; WO/2016/081643; WO/2016/179257; WO/2016/207240; WO/2017/221883; WO/2018/129384; WO/2018/124121; WO/2019/151539; WO/2020/132584; WO/2020/028864; US 7208174; US 9034329; и US 10550188. В определенных вариантах осуществления фрагмент антитела к TfR1 представляет собой F(ab')2, Fab, Fab', Fv или scFv.

В определенных вариантах осуществления группа конъюгата содержит белок или пептид, способный связывать TfR1. В определенных вариантах осуществления белок или пептид, способный связывать TfR1, может быть любым, известным в данной области техники, включая без ограничения описанные в WO/2019/140050; WO/2020/037150; WO/2020/124032; и US 10138483.

В определенных вариантах осуществления группа конъюгата содержит аптамер, способный связывать TfR1. В определенных вариантах осуществления аптамер, способный связывать TfR1, может быть любым, известным в данной области техники, включая без ограничения описанные в WO/2013/163303; WO/2019/033051; и WO/2020/245198.

В. Определенные концевые группы

В определенных вариантах осуществления олигомерные соединения содержат одну или несколько концевых групп. В определенных таких вариантах осуществления олигомерные соединения содержат стабилизированный 5'-фосфат. Стабилизированные 5'-фосфаты включают без ограничения 5'-фосфанаты, включая без ограничения 5'-винилфосфонаты. В определенных вариантах осуществления концевые группы содержат один или несколько сахарных фрагментов с удаленным нуклеиновым основанием и/или инвертированные нуклеозиды. В определенных вариантах осуществления концевые группы содержат один или несколько 2'-связанных нуклеозидов или сахарных фрагментов. В некоторых таких вариантах осуществления 2'-связанная группа представляет собой сахарный фрагмент с удаленным нуклеиновым основанием.

III. Антисмысловая активность

В определенных вариантах осуществления олигомерные соединения и олигомерные дуплексы способны гибридизоваться с целевой нуклеиновой кислотой, что приводит к по меньшей мере одной антисмысловой активности; такие олигомерные соединения и олигомерные дуплексы представляют собой антисмысловые соединения. В определенных вариантах осуществления антисмысловые соединения обладают антисмысловой активностью, когда они снижают или ингибируют количество или активность целевой нуклеиновой кислоты на 25% или более в стандартном клеточном анализе. В определенных вариантах осуществления антисмысловые соединения избирательно влияют на одну или несколько целевых нуклеиновых кислот. Такие антисмысловые соединения содержат последовательность нуклеиновых оснований, которая гибридизуется с одной или несколькими целевыми нуклеиновыми кислотами, что приводит к одной или нескольким необходимым антисмысловым активностям, и не гибридизуется с одной или несколькими нецелевыми нуклеиновыми кислотами, или не гибридизуется с одной или несколькими нецелевыми нуклеиновыми кислотами таким образом, что приводит к значительной нежелательной антисмысловой активности.

При определенных антисмысловых активностях гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к рекрутингу белка, который расщепляет целевую нуклеиновую кислоту. Например, определенные антисмысловые соединения приводят к опосредованному РНКазой Н расщеплению целевой молекулы нуклеиновой кислоты. РНКаза Н представляет собой клеточную эндонуклеазу, которая катализирует расщепление нити РНК в составе дуплекса РНК:ДНК. ДНК в таком дуплексе РНК:ДНК необязательно должна быть немодифицированной ДНК. В определенных вариантах осуществления в данном документе описаны антисмысловые соединения, которые являются достаточно «ДНК-подобными», чтобы вызывать активность РНКазы Н. В определенных вариантах осуществления допускается наличие одного или более не ДНК-подобных нуклеозидов в гэпе гэпмера.

При определенных антисмысловых активностях антисмысловое соединение или участок антисмыслового соединения включаются в РНК-индуцированный комплекс сайленсинга (RISC), что в конечном итоге приводит к расщеплению целевой нуклеиновой кислоты. Например, определенные антисмысловые соединения приводят к расщеплению целевой нуклеиновой кислоты с помощью Argonaute. Антисмысловые соединения, которые загружаются в RISC, представляют собой соединения для RNAi. Соединения для RNAi могут быть двухнитевыми (siRNA или dsRNAi) или однонитевыми (ssRNA).

В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой не приводит к рекрутингу белка, который расщепляет эту целевую нуклеиновую кислоту. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к изменению сплайсинга целевой нуклеиновой кислоты. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к ингибированию связывающего взаимодействия между целевой

нуклеиновой кислотой и белком или другой нуклеиновой кислотой. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к изменению трансляции целевой нуклеиновой кислоты.

Антисмысловые активности могут наблюдаться прямо или косвенно. В определенных вариантах осуществления наблюдение или обнаружение антисмысловой активности включает наблюдение или обнаружение изменения количества целевой нуклеиновой кислоты или белка, кодируемого такой целевой нуклеиновой кислотой, изменение соотношения вариантов сплайсинга нуклеиновой кислоты или белка и/или фенотипическое изменение в клетке или в организме животного.

IV. Определенные целевые нуклеиновые кислоты

В определенных вариантах осуществления олигомерные соединения содержат олигонуклеотид, содержащий область, которая является комплементарной целевой нуклеиновой кислоте, или состоят из него. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой эндогенную молекулу РНК. В определенных вариантах осуществления целевая нуклеиновая кислота кодирует белок. В определенных таких вариантах осуществления целевая нуклеиновая кислота выбрана из: зрелой mRNA и пре-mRNA, включая интронные, экзонные и нетранслируемые области. В определенных вариантах осуществления целевая РНК представляет собой зрелую mRNA. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой пре-mRNA. В определенных вариантах осуществления целевая область полностью находится внутри интрона. В определенных вариантах осуществления целевая область охватывает соединение интрон/экзон. В определенных вариантах осуществления целевая область охватывает соединение интрон/экзон. В определенных вариантах осуществления целевая область составляет по меньшей мере 50% внутри интрона.

А. Комплементарность/ошибочные спаривания с целевой нуклеиновой кислотой и комплементарность дуплекса

В определенных вариантах осуществления олигонуклеотиды комплементарны целевой нуклеиновой кислоте по всей длине олигонуклеотида. В определенных вариантах осуществления олигонуклеотиды на 99%, 95%, 90%, 85% или 80% комплементарны целевой нуклеиновой кислоте. В определенных вариантах осуществления олигонуклеотиды комплементарны целевой нуклеиновой кислоте на по меньшей мере 80% по всей длине олигонуклеотида и содержат область, которая на 100% или полностью комплементарна целевой нуклеиновой кислоте. В определенных вариантах осуществления длина области полной комплементарности составляет от 6 до 20, от 10 до 18 или от 18 до 20 нуклеиновых оснований.

Можно вводить ошибочно спаренные основания без устранения активности. Например, Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) продемонстрировали способность олигонуклеотида, имеющего 100% комплементарность к mRNA bcl-2 и имеющего 3 ошибочные спаривания с mRNA bcl-xL, к снижению экспрессии как bcl-2, так и bcl-xL in vitro и in vivo. Кроме того, этот олигонуклеотид продемонстрировал значительную противоопухолевую активность in vivo. Maher and Dolnick (Nuc. Acid. Res.

16:3341-3358, 1988) исследовали серию тандемных олигонуклеотидов из 14 нуклеиновых оснований и олигонуклеотидов из 28 и 42 нуклеиновых оснований, состоящих из последовательности двух или трех тандемных олигонуклеотидов соответственно, в отношении их способности прекращать трансляцию DHFR человека в анализе ретикулоцитов кролика. Каждый из трех олигонуклеотидов из 14 нуклеиновых оснований по отдельности был способен ингибировать трансляцию, хотя и на более умеренном уровне, чем олигонуклеотиды из 28 или 42 нуклеиновых оснований.

В определенных вариантах осуществления олигонуклеотиды содержат одно или более ошибочно спаренных нуклеиновых оснований относительно целевой нуклеиновой кислоты. В определенных вариантах осуществления антисмысловая активность против целевой нуклеиновой кислоты снижается за счет такого ошибочного спаривания, но активность против нецелевой нуклеиновой кислоты снижается в большей степени. Таким вариантах осуществления улучшается селективность определенных олигонуклеотида. В определенных вариантах осуществления ошибочное спаривание специфически расположено внутри олигонуклеотида, имеющего гэпмерный мотив. В определенных вариантах осуществления ошибочное спаривание находится в положении 1, 2, 3, 4, 5, 6, 7 или 8 от 5'-конца области гэпа. В определенных вариантах осуществления ошибочное спаривание находится в положении 9, 8, 7, 6, 5, 4, 3, 2, 1 от 3'-конца области гэпа. В определенных вариантах осуществления ошибочное спаривание находится в положении 1, 2, 3 или 4 от 5'-конца области крыла. В определенных вариантах осуществления ошибочное спаривание находится в положении 4, 3, 2 или 1 от 3'-конца области крыла.

B. PLN

В определенных вариантах осуществления олигомерные средства или олигомерные соединения содержат олигонуклеотид или его участок, который комплементарным целевой нуклеиновой кислоте, при этом целевая нуклеиновая кислота представляет собой PLN. В определенных вариантах осуществления нуклеиновая кислота PLN имеет последовательность, представленную в SEQ ID NO: 1 (№ доступа в GENBANK NM 002667.4) или SEQ ID NO: 2 (№ доступа в GENBANK NC 000006.12, усеченный от нуклеозидов 118545001 до 118565000). В определенных вариантах осуществления приведение в контакт клетки с олигомерным соединением, комплементарным SEQ ID NO: 1 или 2, снижает количество РНК PLN, а в определенных вариантах осуществления снижает количество белка PLN. В определенных вариантах осуществления олигомерное соединение В модифицированного олигонуклеотида. определенных осуществления олигомерное соединение состоит из модифицированного олигонуклеотида и группы конъюгата.

С. Определенные целевые нуклеиновые кислоты в определенных тканях

В определенных вариантах осуществления олигомерные соединения содержат олигонуклеотид, содержащий область, комплементарную целевой нуклеиновой кислоте, или состоят из нее, при этом целевая нуклеиновая кислота экспрессируется в

фармакологически релевантной ткани. В определенных вариантах осуществления фармакологически значимыми тканями являются клетки и ткани сердца.

V. Определенные способы и варианты применения

Определенные варианты осуществления, представленные в данном документе, относятся к способам ингибирования экспрессии PLN, которые могут быть применимы для лечения заболевания, ассоциированного с PLN, у субъекта путем введения олигомерного средства, олигомерного соединения, модифицированного олигонуклеотида или олигомерного дуплекса, любой из которых содержит модифицированный олигонуклеотид, имеющий последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте PLN.

Примеры заболеваний, ассоциированных с PLN, которые можно лечить с помощью олигомерных средств, олигомерных соединений, модифицированных олигонуклеотидов, олигомерных дуплексов и способов, представленных в данном документе, включают кардиомиопатию, сердечную недостаточность или аритмию. В определенных вариантах осуществления кардиомиопатия является генетической, включая мутации p.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В определенных вариантах осуществления кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM). В определенных вариантах осуществления DCM является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1. В определенных вариантах осуществления DCM представляет собой аритмогенную DCM. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

В определенных вариантах осуществления способ включает введение субъекту олигомерного средства, олигомерного соединения, модифицированного олигонуклеотида или олигомерного дуплекса, любой из которых имеет последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте PLN. В определенных вариантах осуществления у субъекта имеется кардиомиопатия, сердечная недостаточность или В определенных вариантах осуществления кардиомиопатия генетической, включая мутации p.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В осуществления кардиомиопатия определенных вариантах представляет собой дилатационную кардиомиопатию (DCM). В определенных вариантах осуществления DCM является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и ТРМ1. В определенных вариантах осуществления DCM представляет собой аритмогенную DCM. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную

недостаточность или ухудшение хронической сердечной недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

В определенных вариантах осуществления способ лечения кардиомиопатии, сердечной недостаточности или аритмии у субъекта включает введение субъекту терапевтически эффективного количества олигомерного средства, олигомерного соединения, модифицированного олигонуклеотида или олигомерного дуплекса, любой из комплементарную последовательность нуклеиновых комплементарную нуклеиновой кислоте PLN, за счет чего происходит лечение субъекта. В определенных вариантах осуществления кардиомиопатия является генетической, включая мутации p.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В определенных вариантах осуществления кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM). В определенных вариантах осуществления DCM является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1. В определенных вариантах осуществления DCM представляет собой аритмогенную DCM. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib). В определенных вариантах осуществления введение терапевтически количества олигомерного эффективного средства, олигомерного модифицированного олигонуклеотида или олигомерного дуплекса нормализует сердечную функцию, сердечно-сосудистую смерть, сердечную дилатацию, сердечный фиброз, низковольтную ЕСС, диастолическое поглощение кальция, фракцию выброса (ЕF), фракцию выброса левого желудочка (LVEF), конечный систолический объем левого желудочка (LVESV), конечный диастолический объем левого желудочка (LVEDV), профиль потока митрального клапана, напряжение левого желудочка (LV), скорость деформации левого желудочка (LV), размер инфаркта, госпитализацию при сердечной недостаточности, тест 6-минутной ходьбы (6MWT), оценку по опроснику кардиомиопатии Канзас-Сити (KCCQS), частоту сердечных сокращений или сердечный ритм у субъекта.

В определенных вариантах осуществления способ ингибирования экспрессии нуклеиновой кислоты PLN, такой как PHK, у субъекта, у которого имеется заболевание, ассоциированное с PLN, включает введение субъекту олигомерного средства, олигомерного соединения, модифицированного олигонуклеотида или олигомерного дуплекса, любой из которых имеет последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте PLN, за счет чего происходит ингибирование экспрессии нуклеиновой кислоты PLN у субъекта. В определенных вариантах осуществления введение олигомерного средства, олигомерного соединения, модифицированного олигонуклеотида или олигомерного дуплекса ингибирует экспрессию

PLN в сердце. В определенных вариантах осуществления у субъекта имеется кардиомиопатия, сердечная недостаточность или аритмия. В определенных вариантах осуществления кардиомиопатия является генетической, включая мутации р.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В определенных вариантах осуществления кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM). В определенных вариантах осуществления DCM является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1. В определенных вариантах осуществления DCM представляет собой аритмогенную DCM. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность или ухудшение хронической сердечной недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

В определенных вариантах осуществления способ ингибирования экспрессии нуклеиновой кислоты PLN в клетке включает приведение клетки в контакт с олигомерным средством, олигомерным соединением, модифицированным олигонуклеотидом или олигомерным дуплексом, любой из которых имеет последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте PLN, за счет чего происходит ингибирование экспрессии нуклеиновой кислоты PLN в клетке. В определенных вариантах осуществления клетка представляет собой клетку сердца. В определенных вариантах осуществления клетка находится у субъекта, у которого имеется кардиомиопатия, сердечная недостаточность или аритмия. В определенных вариантах осуществления кардиомиопатия является генетической, включая мутации p.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В определенных вариантах осуществления кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM). В определенных вариантах осуществления DCM является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1. В определенных вариантах осуществления DCM представляет собой аритмогенную DCM. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), сердечной сердечную недостаточность ИЛИ ухудшение хронической недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

Определенные варианты осуществления относятся к олигомерному средству, олигомерному соединению, модифицированному олигонуклеотиду или олигомерному дуплексу, любой из которых имеет последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте PLN, для применения в лечении заболевания, ассоциированного с PLN. В определенных вариантах осуществления заболевание представляет собой кардиомиопатию, сердечную недостаточность или аритмию. В

определенных вариантах осуществления кардиомиопатия является генетической, включая мутации p.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В определенных вариантах осуществления кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM). В определенных вариантах осуществления DCM является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1. В определенных вариантах осуществления DCM представляет собой аритмогенную DCM. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib). В определенных вариантах осуществления олигомерное средство, олигомерное соединение, модифицированный олигонуклеотид или олигомерный дуплекс предназначены для применения для нормализации сердечной функции, сердечнососудистой смерти, сердечной дилатации, сердечного фиброза, низковольтной ЕСG, диастолического поглощения кальция, фракции выброса (ЕF), фракция выброса левого желудочка (LVEF), конечного систолического объема левого желудочка (LVESV), конечного диастолического объема левого желудочка (LVEDV), профиля потока митрального клапана, напряжение левого желудочка (LV), скорость деформации левого желудочка (LV), размер инфаркта, госпитализация по поводу сердечной недостаточности, тест 6-минутной ходьбы (6MWT), оценка по опроснику кардиомиопатии Канзас-Сити (KCCQS), частота сердечных сокращений или сердечный ритм, ассоциированный с кардиомиопатией, сердечной недостаточностью или аритмией.

Определенные варианты осуществления относятся к олигомерному средству, олигомерному соединению, модифицированному олигонуклеотиду или олигомерному дуплексу, любой из которых содержит модифицированный олигонуклеотид, имеющий последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте PLN, для производства или приготовления лекарственного средства для лечения заболевания, ассоциированного с PLN. В определенных вариантах осуществления заболевание представляет собой кардиомиопатию, сердечную недостаточность или аритмию. В определенных вариантах осуществления олигомерное средство, олигомерное соединение, модифицированный олигонуклеотид или олигомерный предназначены для производства или получения лекарственного средства для нормализации сердечной функции, сердечно-сосудистой смерти, сердечной дилатации, сердечного фиброза, низковольтной ЕСС, диастолического поглощения кальция, фракции выброса (EF), фракция выброса левого желудочка (LVEF), конечного систолического объема левого желудочка (LVESV), конечного диастолического объема левого желудочка (LVEDV), профиля потока митрального клапана, напряжение левого желудочка (LV), скорость деформации левого желудочка (LV), размер инфаркта, госпитализация по поводу сердечной недостаточности, тест 6-минутной ходьбы (6МWT), оценка по опроснику

кардиомиопатии Канзас-Сити (КССQS), частота сердечных сокращений или сердечный ритм, ассоциированный с кардиомиопатией, сердечной недостаточностью или аритмией. В определенных вариантах осуществления кардиомиопатия является генетической, включая мутации p.Arg14del, Arg9Cys (R9C) и Arg25Cys (R25C). В определенных вариантах осуществления кардиомиопатия представляет собой дилатационную кардиомиопатию (DСМ). В определенных вариантах осуществления DСМ является генетической, включая мутации TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1. В определенных вариантах осуществления DСМ представляет собой аритмогенную DСМ. В определенных вариантах осуществления сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (НFрEF), сердечную недостаточность или ухудшение хронической сердечной недостаточности. В определенных вариантах осуществления аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

В любом из способов или вариантов применения, описанных в данном документе, олигомерное средство, олигомерное соединение, модифицированный олигонуклеотид или олигомерный дуплекс может быть любым, описанным в данном документе.

VI. Определенные фармацевтические композиции

В определенных вариантах осуществления в данном документе описаны фармацевтические композиции, содержащие одно или несколько олигомерных соединений. В определенных вариантах осуществления каждое из одного или нескольких олигомерных соединений состоит из модифицированного олигонуклеотида. В определенных вариантах осуществления фармацевтическая композиция содержит фармацевтически приемлемый разбавитель или носитель. В определенных вариантах осуществления фармацевтическая композиция содержит стерильный солевой раствор и одно или несколько олигомерных соединений, или состоит из них. В определенных вариантах осуществления стерильный солевой раствор представляет собой солевой раствор фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько олигомерных соединений и стерильную воду, или состоит из них. В определенных вариантах осуществления стерильная вода представляет собой воду фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько олигомерных соединений и фосфатно-солевой буферный раствор (PBS). В определенных вариантах осуществления стерильный PBS представляет собой PBS фармацевтической степени чистоты.

В определенных вариантах осуществления фармацевтические композиции содержат одно или несколько олигомерных соединений и один или несколько наполнителей. В определенных вариантах осуществления наполнители выбраны из воды, солевых растворов, спирта, полиэтиленгликолей, желатина, лактозы, амилазы, стеарата магния, талька, кремниевой кислоты, вязкого парафина, гидроксиметилцеллюлозы и поливинилпирролидона.

В определенных вариантах осуществления олигомерные соединения могут быть смешаны с фармацевтически приемлемыми активными и/или инертными веществами для приготовления фармацевтических композиций или составов. Композиции и способы составления фармацевтических композиций зависят от ряда критериев, включая без ограничения способ введения, степень тяжести заболевания или дозу, которую необходимо ввести.

В определенных вариантах осуществления фармацевтические композиции, содержащие олигомерное соединение, охватывают любые фармацевтически приемлемые соли олигомерного соединения, сложные эфиры олигомерного соединения или соли таких В определенных вариантах осуществления фармацевтические сложных эфиров. композиции, содержащие олигомерные соединения, содержащие один или несколько олигонуклеотидов, при введении животному, включая человека, способны обеспечивать получение (прямо или косвенно) биологически активного метаболита или его остатка. Соответственно, например, настоящее изобретение также относится к фармацевтически приемлемым олигомерных соединений, пролекарствам, фармацевтически солям приемлемым солям таких пролекарств и другим биоэквивалентам. Подходящие фармацевтически приемлемые соли включают без ограничения соли натрия и калия. В определенных вариантах осуществления пролекарства содержат одну или несколько групп конъюгата, присоединенных к олигонуклеотиду, при этом группа конъюгата расщепляется эндогенными нуклеазами в организме.

Липидные фрагменты применяли в видах терапии нуклеиновыми кислотами различными способами. В определенных таких способах нуклеиновая кислота, такая как олигомерное соединение, вводится в предварительно образованные липосомы или липоплексы, состоящие из смесей катионных липидов и нейтральных липидов. В определенных способах комплексы ДНК с моно- или поликатионными липидами образуются без присутствия нейтрального липида. В определенных вариантах осуществления липидный фрагмент выбран для увеличения распределения фармацевтического средства в определенной клетке или ткани. В определенных вариантах осуществления фрагмент выбран увеличения липидный для распределения фармацевтического средства в жировой ткани. В определенных вариантах осуществления липидный фрагмент выбран для увеличения распределения фармацевтического средства в мышечной ткани.

В определенных вариантах осуществления фармацевтические композиции содержат систему доставки. Примеры систем доставки включают без ограничения липосомы и эмульсии. Определенные системы доставки применимы для приготовления определенных фармацевтических композиций, включая композиции, содержащие гидрофобные соединения. В определенных вариантах осуществления используются определенные органические растворители, такие как диметилсульфоксид.

В определенных вариантах осуществления фармацевтические композиции содержат одну или несколько тканеспецифичных молекул для доставки, предназначенных для

доставки одного или нескольких фармацевтических средств по настоящему изобретению к конкретным тканям или типам клеток. Например, в определенных вариантах осуществления фармацевтические композиции включают липосомы, покрытые тканеспецифическим антителом.

В определенных вариантах осуществления фармацевтические композиции содержат систему сорастворителей. Определенные из таких систем сорастворителей включают, бензиловый спирт, неполярное поверхностно-активное например, вещество, смешивающийся с водой органический полимер и водную фазу. В определенных вариантах осуществления такие системы сорастворителей используются для гидрофобных соединений. Неограничивающим примером такой системы сорастворителей является система сорастворителей VPD, которая представляет собой раствор абсолютного этанола, содержащий 3% масс./об. бензилового спирта, 8% масс./об. неполярного поверхностноактивного вещества Polysorbate 80^{тм} и 65% масс./об. полиэтиленгликоля 300. Пропорции таких систем сорастворителей можно значительно варьировать без значительного изменения их характеристик растворимости и токсичности. Кроме того, идентичность компонентов сорастворителей может варьироваться: например, вместо Polysorbate 80TM можно использовать другие поверхностно-активные вещества; фракционный размер полиэтиленгликоля может варьироваться; другие биосовместимые полимеры могут заменять полиэтиленгликоль, например, поливинилпирролидон; и другие сахара или полисахариды могут заменять декстрозу.

В определенных вариантах осуществления фармацевтические композиции готовят для перорального введения. В определенных вариантах осуществления фармацевтические композиции готовят для буккального введения. В определенных вариантах осуществления фармацевтическую композицию готовят для введения путем инъекции (например, внутривенной, интратекальной подкожной. внутримышечной, (IT)интрацеребровентрикулярной (ICV) и т.д.). В определенных из таких вариантов осуществления фармацевтическая композиция содержит носитель и приготовлена в водном растворе, таком как вода, или физиологически совместимых буферах, таких как раствор Хэнкса, раствор Рингера или физиологический солевой буфер. В определенных вариантах осуществления включены другие ингредиенты (например, ингредиенты, которые способствуют растворимости или служат в качестве консервантов). В некоторых вариантах осуществления суспензии для инъекций готовят с использованием подходящих жидких носителей, суспендирующих средств и т. п. Определенные фармацевтические композиции для инъекций представлены в стандартной лекарственной форме, например, в ампулах или в контейнерах для нескольких доз. Определенные фармацевтические композиции для инъекций представляют собой суспензии, растворы или эмульсии в масляных или водных носителях и могут содержать составные средства, такие как суспендирующие, стабилизирующие и/или диспергирующие средства. Определенные растворители, подходящие для использования в фармацевтических композициях для инъекций, включают в себя, помимо прочего, липофильные растворители и жирные масла, такие как кунжутное

масло, синтетические сложные эфиры жирных кислот, такие как этилолеат, или триглицериды, и липосомы.

При определенных условиях определенные соединения, описанные в данном документе, выступают в качестве кислот. Хотя такие соединения могут быть изображены или описаны в протонированной (свободной кислотной) форме или ионизированной и в ассоциации с катионной (солевой) формой, водные растворы таких соединений существуют в равновесии между такими формами. Например, фосфатная связь олигонуклеотида в водном растворе находится в равновесии между формами свободной кислоты, аниона и соли. Если не указано иное, подразумевается, что соединения, описанные в данном документе, включают все такие формы. Более того, определенные олигонуклеотиды имеют несколько таких связей, каждая из которых находится в равновесии. Таким образом, олигонуклеотиды в растворе существуют в виде ансамбля форм во многих положениях, все из которых находятся в равновесии. Термин «олигонуклеотид» включает все такие формы. Изображенные конструкции обязательно представляют единую форму. Тем не менее, если не указано иное, такие изображения также предназначены для включения соответствующих форм. В данном документе структура, изображающая свободную кислоту соединения, за которым следует термин «или его соль», явно включает все такие формы, которые могут быть полностью или частично протонированы/депротонированы/в ассоциации с катионом. В определенных случаях идентифицируется один или несколько конкретных катионов.

В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в водном растворе с натрием. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в водном растворе с калием. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в PBS. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в воде. В определенных таких вариантах осуществления рН раствора регулируют с помощью NaOH и/или HCl для достижения необходимого значения рН.

VII. Определенные области горячих точек

1. Нуклеиновые основания 3341-3368 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 3341-3368 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах нуклеиновых оснований 3341-3368 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные MOE/cEt-гэпмеры. В определенных вариантах осуществления гэпмеры осуществления гэпмеры представляют собой смешанные 2°-ОМе/cEt-гэпмеры. В

определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkddddddddkkke, kkkdyddddddkkk, kkkdddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В осуществления нуклеозиды модифицированных определенных вариантах комбинацией фосфодиэфирных фосфоротиоатных олигонуклеотидов связаны межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID No: 636, 756, 818, 864, 1416, 1419, 1512, 1513, 1530, 1563, 1622, 1623 и 1625 комплементарны нуклеиновым основаниям 3341-3368 SEQ ID NO: 2.

Соединения 1342326, 1342342, 1342785, 1342952, 1343238, 1343301, 1343367, 1393388, 1393391, 1393544, 1393555, 1393557, 1393559, 1393562, 1393563, 1393745, 1393747, 1393748, 1393749, 1393750, 1393753, 1393934, 1393935, 1393936, 1393939, 1393940, 1393942, 1393997, 1394043, 1394091, 1446717, 1446691 и 1446737 комплементарны в пределах нуклеиновых оснований 3341-3368 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 3341-3368 SEQ ID NO: 2, достигают по меньшей мере 58% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 3341-3368 SEQ ID NO: 2, достигают в среднем 77% снижения PHK PLN in vitro в стандартном клеточном анализе.

2. Нуклеиновые основания 4516-4533 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 4516-4533 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах нуклеиновых оснований 4516-4533 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой cEt-гэпмеры. В определенных вариантах осуществления гэпмеры собой смешанные МОЕ/сЕt-гэпмеры. В определенных представляют осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkddddddddkkke, kkkdddddddkkke, kkkdyddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте

сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов комбинацией фосфодиэфирных фосфоротиоатных связаны И межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID No: NO: 828, 1415, 1420, 1617 и 1621 комплементарны в пределах нуклеиновых оснований 4516-4533 SEQ ID NO: 2.

Соединения 1342919, 1393387, 1393392, 1393547, 1393551, 1393553, 1393736, 1393737, 1393742, 1393927, 1393929, 1393933 и 1446694 комплементарны в пределах нуклеиновых оснований 4516-4533 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 4516-4533 SEQ ID NO: 2, достигают по меньшей мере 60% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 4516-4533 SEQ ID NO: 2, достигают в среднем 80% снижения PHK PLN in vitro в стандартном клеточном анализе.

3. Нуклеиновые основания 5498-5517 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 5498-5517 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах оснований 5498-5517 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 14, 16, 17, 18 или 20 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до kkkdddddddddkkk, kkdddddddddkekek, kkkddddddddkkke, 3'): kkkdydddddddkkk, kkkkdddddddddkkkk, kkdddddddddkk, kkkdddddddddkkkk, kkkkkdddddddddkkkkk, kkkkdddddddddkkk. kkkdddddddddkkee. kkkdddddddddkeee. kkkdddddddddkkeee, kkkddddddddddkeeee, ekkdddddddddkkk, kekdddddddddkkk, kkedddddddddkkk, ekkddddddddkkke, kekddddddddkkke, kkeddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Ome сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны комбинацией фосфодиэфирных и фосфоротиоатных межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID No: 538, 609, 675, 737, 1396, 1595, 1671, 1678, 1685, 1689, 1696, 1700 и 1703 комплементарны в пределах нуклеиновых основаниях 5498-5517 SEQ ID NO: 2.

Соединения 1342668, 1342944, 1343077, 1343091, 1393355, 1393486, 1393487, 1393489, 1393490, 1393493, 1393674, 1393675, 1393676, 1393677, 1393682, 1393863, 1393866, 1393868, 1393869, 1393871, 1446729, 1446701, 1436544, 1446730, 1436542, 1528609, 1528610, 1528619, 1528620, 1528629, 1528630, 1528638, 1528639, 1528640, 1528649, 1528650, 1528662, 1528663, 1528671, 1528672, 1528682, 1528683, 1528842, 1528846, 1528850, 1528855, 1528858 и 1528864 комплементарны в пределах нуклеиновых оснований 5498-5517 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 5498-5517 SEQ ID NO: 2, достигают по меньшей мере 40% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 5498-5517 SEQ ID NO: 2, достигают в среднем 76% снижения PHK PLN in vitro в стандартном клеточном анализе.

4. Нуклеиновые основания 14337-14357 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 14337-14357 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах оснований 14337-14357 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkddddddddkekek, kkkdddddddkkke, kkkdyddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В осуществления модифицированных определенных вариантах нуклеозиды комбинацией фосфодиэфирных олигонуклеотидов И фосфоротиоатных связаны межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными

связями.

Последовательности нуклеиновых оснований SEQ ID NO: 336, 1360, 1469, 1485, 1486, 1488, 1600 и 1603 комплементарны в пределах нуклеиновых оснований 14337-14357 SEQ ID: 2.

Соединения 1342523, 1342787, 1393367, 1393369, 1393371, 1393505, 1393508, 1393509, 1393512, 1393694, 1393696, 1393697, 1393698, 1393885, 1393887, 1393892, 1393893, 1393983, 1394029, 1394079, 1394104, 1446735, 1446697, 1446723, 1443260 и 1446741 комплементарны в пределах нуклеиновых оснований 14337-14357 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14337-14357 SEQ ID NO: 2, достигают по меньшей мере 64% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14337-14357 SEQ ID NO: 2, достигают в среднем 81% снижения PHK PLN in vitro в стандартном клеточном анализе.

5. Нуклеиновые основания 14569-14588 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 14569-14588 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах оснований 14569-14588 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой cEt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные MOE/cEt-гэпмеры. В определенных осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkddddddddkekek, kkkdddddddkkke, kkkdyddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных комбинацией фосфодиэфирных олигонуклеотидов связаны И фосфоротиоатных межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 1072, 1136, 1407, 1411 и 1615 комплементарны в пределах нуклеиновых оснований 14569-14588 SEQ ID: 2.

Соединения 1342898, 1343100, 1393379, 1393383, 1393535, 1393536, 1393537, 1393540, 1393726, 1393727, 1393728, 1393732, 1393916, 1393917, 1393919, 1393920 и

1446733 комплементарны в пределах нуклеиновых оснований 14569-14588 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14569-14588 SEQ ID NO: 2, достигают по меньшей мере 44% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14569-14588 SEQ ID NO: 2, достигают в среднем 77% снижения PHK PLN in vitro в стандартном клеточном анализе.

6. Нуклеиновые основания 14607-14631 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 14607-14631 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны В пределах нуклеиновых оснований 14607-14631 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой cEt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В нуклеозиды модифицированных определенных вариантах осуществления олигонуклеотидов комбинацией фосфодиэфирных И фосфоротиоатных связаны межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 35, 110, 355, 457, 505, 611, 1234, 1269, 1319, 1500, 1548, 1568 и 1578 комплементарны в пределах нуклеиновых оснований 14607-14631 SEQ ID NO: 2.

Соединения 1121401, 1121402, 1342190, 1342569, 1342673, 1342749, 1343124, 1343142, 1343172, 1343258, 1343263, 1343320, 1343322, 1343357, 1343360, 1343438, 1343439, 1343440, 1343442, 1343444, 1343548, 1343549, 1343551, 1343552, 1343553, 1343626, 1343629, 1343631, 1343633, 134363, 1443234 и 1443241 комплементарны в пределах нуклеиновых оснований 14607-14631 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14607-14631 SEQ ID NO: 2, достигают по меньшей мере 38% снижения содержания PHK PLN in vitro в стандартном клеточном

анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14607-14631 SEQ ID NO: 2, достигают в среднем 74% снижения PHK PLN in vitro в стандартном клеточном анализе.

7. Нуклеиновые основания 14683-14703 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 14683-14703 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах нуклеиновых оснований 14683-14703 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 14, 16, 17, 18 или 20 нуклеиновых В вариантах осуществления оснований. определенных модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до kkdddddddddkekek, 3'): kkkdddddddddkkk. kkkdyddddddddkkk, kkkddddddddkkke, kkdddddddddkk, kkkkdddddddddkkkk, kkkkkdddddddddkkkkk, kkkdddddddddkkkk, kkkkdddddddddkkk. kkkdddddddddkeee. kkkdddddddddkkee. kkkdddddddddkkeee, kkkdddddddddddkkk, kekddddddddkkk, kkeddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В модифицированных определенных вариантах осуществления нуклеозиды комбинацией фосфодиэфирных олигонуклеотидов связаны фосфоротиоатных межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 185, 464, 474, 590, 647, 719, 1547, 1677, 1684, 1695, 1699 и 1708 комплементарны в пределах нуклеиновых оснований 14683-14703 SEQ ID NO: 2.

Соединения 1121403, 1342270, 1342393, 1342536, 1342754, 1343191, 1343436, 1343437, 1343454, 1343546, 1343562, 1343564, 1343627, 1343628, 1343630, 1443235, 1528607, 1528615, 1528617, 1528627, 1528636, 1528647, 1528658, 1528669, 1528679, 1528844, 1528848, 1528852 комплементарны в пределах нуклеиновых оснований 14683-14703 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14683-14703 SEQ ID NO: 2, достигают по меньшей мере 42% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды,

комплементарные нуклеиновым основаниям 14683-14703 SEQ ID NO: 2, достигают в среднем 63% снижения PHK PLN in vitro в стандартном клеточном анализе.

8. Нуклеиновые основания 14828-14848 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 14828-14848 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны В пределах нуклеиновых оснований 14828-14848 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В модифицированные определенных вариантах осуществления олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны комбинацией фосфодиэфирных И фосфоротиоатных межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 39, 188, 264, 713, 802, 1502 и 1581 комплементарны в пределах нуклеиновых оснований 14828-14848 SEQ ID: 2.

Соединения 1121415, 1121416, 1121417, 1342279, 1342607, 1343264, 1343316, 1343373, 1343457, 1343460, 1343461, 1343462, 1343465, 1343567, 1343569, 1343570, 1343571, 1343574, 1343649, 1343651, 1343652, 1343653, 1343655, 1443240, 1443266, 1443243, 1443270 и 1443245 комплементарны в пределах нуклеиновых оснований 14828-14848 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14828-14848 SEQ ID NO: 2, достигают по меньшей мере 43% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14828-14848 SEQ ID NO: 2, достигают в среднем 68% снижения PHK PLN in vitro в стандартном клеточном анализе.

9. Нуклеиновые основания 14939-14958 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 14939-14958 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления

модифицированные олигонуклеотиды комплементарны в пределах нуклеиновых оснований 14939-14958 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 14, 16, 17, 18 или 20 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные 2'-OMe/cEt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkdddddddddkkk, kkdddddddddkekek, kkkdydddddddkkk, kkkddddddddkkke, kkdddddddddkk, kkkdddddddddkeeee. kkkkdddddddddkkkk, kkkdddddddddkkkk, kkkkddddddddkkk, kkkddddddddkkee, kkkkkdddddddkkkkk, kkkddddddddkeee, kkkdddddddddkkeee. keddddddddkekek. ekddddddddkekek, ekkddddddddkkke. kekddddddddkkke, kkeddddddddkkke, ккeddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Ome сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны комбинацией фосфодиэфирных и фосфоротиоатных межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 45, 120, 270, 942, 1046, 1552, 1583, 1672, 1673, 1674, 1679, 1680, 1687, 1692, 1693 и 1710 комплементарны в пределах нуклеиновых оснований 14939-14958 SEQ ID NO: 2.

Соединения 1121440, 1121441, 1121442, 1342309, 1342630, 1343458, 1343467, 1343475, 1343578, 1343580, 1343584, 1343647, 1343648, 1343656, 1393344, 1393347, 1393575, 1393581, 1393766, 1393772, 1443259, 1446740, 1528604, 1528605, 1528606, 1528611, 1528612, 1528613, 1528621, 1528622, 1528623, 1528624, 1528631, 1528632, 1528633, 1528634, 1528642, 1528643, 1528644, 1528651, 1528652, 1528653, 1528654, 1528657, 1528664, 1528665, 1528666, 1528667, 1528675, 1528676, 1528677, 1528820, 1528834, 1528835, 1528836, 1528837, 1528838, 1528839, 1528840, 1528841, 1528854, 1528856, 1528857, 1528859, 1528862 и 1528863 комплементарны в пределах нуклеиновых оснований 14939-14958 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14939-14958 SEQ ID NO: 2, достигают по меньшей мере 29% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 14939-14958 SEQ ID NO: 2, достигают в среднем 71% снижения PHK PLN in vitro в стандартном клеточном анализе.

10. Нуклеиновые основания 15222-15243 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 15222-15243 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах нуклеиновых оснований 15222-15243 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 14, 16, 17, 18 или 20 нуклеиновых оснований. определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные 2'-OMe/cEt-гэпмеры. определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до kkkdddddddddkkk, kkdddddddddkkke, kkkddddddddkkke, kkkdydddddddkkk, kkkkdddddddddkkkk, kkkkdddddddddkkkkk, kkkdddddddddkkkk, kkdddddddddkk, kkkddddddddddkeee, kkkkdddddddddkkk, kkkdddddddddkkee, kkkdddddddddkkeee, kkkddddddddddddddddddddddkkk, kekdddddddddkkk, kkeddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных комбинацией фосфодиэфирных фосфоротиоатных олигонуклеотидов связаны И межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 526, 613, 689, 752, 819, 1403, 1613, 1619, 1620, 1670, 1681, 1688, 1697 и 1702 комплементарны в пределах нуклеиновых оснований 15222-15243 SEQ ID NO: 2.

Соединения 1342794, 1342911, 1342959, 1343134, 1343156, 1393375, 1393534, 1393538, 1393541, 1393545, 1393546, 1393724, 1393730, 1393740, 1393741, 1393743, 1393914, 1393918, 1393924, 1393931, 1393932, 1446716, 1436543, 1446718, 1446704, 1528608, 1528618, 1528626, 1528628, 1528637, 1528648, 1528661, 1528670, 1528680, 1528843, 1528847 и 1528851 комплементарны в пределах нуклеиновых оснований 15222-15243 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 15222-15243 SEQ ID NO: 2, достигают по меньшей мере 23% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 15222-15243 SEQ ID NO: 2, достигают в среднем 68% снижения PHK PLN in vitro в стандартном клеточном анализе.

11. Нуклеиновые основания 15251-15273 SEQ ID NO: 2

В определенных вариантах осуществления нуклеиновые основания 15251-15273 SEQ ID NO: 2 содержат область горячих точек. В определенных вариантах осуществления модифицированные олигонуклеотиды комплементарны в пределах нуклеиновых оснований 15251-15273 SEQ ID NO: 2. В определенных вариантах осуществления модифицированные олигонуклеотиды имеют длину 16 нуклеиновых оснований. В определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой cEt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные МОЕ/сЕt-гэпмеры. В определенных вариантах осуществления гэпмеры представляют собой смешанные 2'-ОМе/сЕt-гэпмеры. В определенных вариантах осуществления сахарный мотив для гэпмеров выбран из (от 5' до 3'): kkkddddddddkkk, kkdddddddddkekek, kkkdyddddddkkk, kkkdddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «у» представляет собой 2'-Оте сахарный фрагмент и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Каждый цитозиновый остаток представляет собой 5-метилцитозин. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов комбинацией фосфодиэфирных И фосфоротиоатных связаны межнуклеозидных связей. В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов связаны фосфоротиоатными межнуклеозидными связями.

Последовательности нуклеиновых оснований SEQ ID NO: 53, 128, 278, 580, 638, 704, 784, 910, 1555, 1558, 1569 и 1647 комплементарны в пределах нуклеиновых оснований 15251-15273 SEQ ID NO: 2.

Соединения 1121472, 1121473, 1121474, 1342205, 1342256, 1342369, 1342548, 1342920, 1343275, 1343282, 1343334, 1343341, 1343384, 1343390, 1343478, 1343487, 1343493, 1343495, 1343588, 1343599, 1343603, 1343604, 1343666, 1343671, 1343676, 1343685, 1393408, 1393411, 1393595, 1393603, 1393784, 1393791, 1446720 и 1446713 комплементарны в пределах нуклеиновых оснований 15251-15273 SEQ ID NO: 2.

В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 15251-15273 SEQ ID NO: 2, достигают по меньшей мере 39% снижения содержания PHK PLN in vitro в стандартном клеточном анализе. В определенных вариантах осуществления модифицированные олигонуклеотиды, комплементарные нуклеиновым основаниям 15251-15273 SEQ ID NO: 2, достигают в среднем 73% снижения PHK PLN in vitro в стандартном клеточном анализе.

Неограничивающее раскрытие и включение посредством ссылки

Каждая из литературных и патентных публикаций, перечисленных в данном документе, включена в данный документ посредством ссылки в полном объеме.

Хотя определенные соединения, композиции и способы, описанные в данном

документе, были описаны со специфичностью в соответствии с определенными вариантами осуществления, следующие примеры служат только для иллюстрации соединений, описанных в данном документе, и не предназначены для их ограничения. Каждое из литературных источников, номеров доступа в GenBank, идентификаторов в ENSEMBL и т.п., перечисленное в настоящей заявке, включено в данный документ посредством ссылки во всей своей полноте.

настоящей Хотя последовательностей, прилагаемый перечень К заявке, идентифицирует каждую последовательность как «РНК» или «ДНК», как требуется, в действительности эти последовательности могут быть модифицированы с помощью любой комбинации химических модификаций. Специалист в данной области техники легко поймет, что такое обозначение как «РНК» или «ДНК» для описания модифицированных олигонуклеотидов в определенных случаях является произвольным. олигонуклеотид, содержащий нуклеозид, содержащий 2'-ОН сахарный фрагмент и тиминовое основание, может быть описан как ДНК, имеющая модифицированный сахар (2'-ОН вместо одного 2'-Н ДНК) или как РНК, имеющая модифицированное основание (тимин (метилированный урацил) вместо урацила РНК). Соответственно, последовательности нуклеиновых кислот, представленные в данном документе, включая без ограничения последовательности в перечне последовательностей, предназначены для охвата нуклеиновых кислот, содержащих любую комбинацию природных или модифицированных РНК и/или ДНК, включая без ограничения такие нуклеиновые кислоты, имеющие модифицированные нуклеиновые основания. В качестве дополнительного примера и без ограничения олигомерное соединение, имеющее последовательность нуклеиновых оснований «ATCGATCG», охватывает олигомерные соединения, имеющие такую последовательность нуклеиновых оснований, модифицированные или немодифицированные, включая без ограничения соединения, содержащие основания PHK, такие соединения, как имеющие последовательность «AUCGAUCG» и соединения, имеющие некоторые основания ДНК и некоторые основания РНК, такие как «AUCGATCG», и олигомерные соединения, имеющие другие модифицированные нуклеиновые основания, такие как «ATmCGAUCG», где mC обозначает цитозиновое основание, содержащее метильную группу в 5-положении.

Определенные соединения, описанные В данном документе (например, модифицированные олигонуклеотиды), имеют один или несколько асимметричных центров и, таким образом, приводят к образованию энантиомеров, диастереомеров и других стереоизомерных конфигураций, которые могут быть определены с точки зрения абсолютной стереохимии как (R) или (S), как α или β , например, для аномеров сахара, или как (D) или (L), например, для аминокислот и т.д. Соединения, представленные в данном изображены документе, которые или описаны как имеющие определенные стереоизомерные конфигурации, включают только указанные соединения. Соединения, представленные в данном документе, которые изображены или описаны с неопределенной стереохимией, включают все такие возможные изомеры, включая их стереослучайные и

оптически чистые формы, если не указано иное. Аналогичным образом, если не указано иное, в данный документ также включены таутомерные формы соединений. Если не указано иное, подразумевается, что соединения, описанные в данном документе, включают соответствующие солевые формы.

Соединения, описанные в данном документе, включают варианты, в которых один или несколько атомов заменены нерадиоактивным изотопом или радиоактивным изотопом указанного элемента. Например, соединения данного документе, которые содержат атомы водорода, охватывают все возможные замещения дейтерием для каждого из атомов водорода ¹Н. Изотопные замены, охватываемые соединениями данного документа, включают без ограничения: ²Н или ³Н вместо ¹Н, ¹³С или ¹⁴С вместо ¹²С, ¹⁵N вместо ¹⁴N, ¹⁷О или ¹⁸О вместо ¹⁶О и ³³S, ³⁴S, ³⁵S или ³⁶S вместо ³²S. В определенных вариантах осуществления нерадиоактивные изотопные замены могут придавать олигомерному соединению новые свойства, которые полезны для применения в качестве терапевтического или исследовательского инструмента. В определенных вариантах осуществления радиоактивные изотопные замены могут сделать соединение подходящим для исследовательских или диагностических целей, таких как визуализация.

ПРИМЕРЫ

Следующие примеры иллюстрируют определенные варианты осуществления настоящего изобретения и не являются ограничивающими. Более того, если представлены конкретные варианты осуществления, авторы настоящего изобретения предусмотрели общее применение этих конкретных вариантов осуществления. Например, раскрытие олигонуклеотида, имеющего конкретный мотив, обеспечивает обоснованную поддержку дополнительных олигонуклеотидов, имеющих такой же или подобный мотив. Например, если определенная высокоаффинная модификация появляется в конкретном положении, другие высокоаффинные модификации в том же положении считаются подходящими, если не указано иное.

Пример 1. Влияние 3-10-3 сЕt однородных фосфоротиоат-модифицированных олигонуклеотидов на PHK PLN человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали и тестировали в отношении эффектов однократной дозы на PHK PLN *in vitro*. Модифицированные олигонуклеотиды тестировали в серии экспериментов в одинаковых условиях культивирования.

Модифицированные олигонуклеотиды в таблице ниже представляют собой 3-10-3 сЕт модифицированные олигонуклеотиды с однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 16 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где каждый 5'- и 3'-сегмент крыла состоит из трех сЕт нуклеозидов. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕт модифицированный сахарный фрагмент. Мотив

межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

«Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблице ниже, на 100% комплементарен SEQ ID NO: 1 (№ доступа в GENBANK NM_002667.4), SEQ ID NO: 2 (№ доступа в GENBANK NC_000006.12, усеченные нуклеозиды 118545001-118565000), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. R1017) обрабатывали модифицированным олигонуклеотидом концентрации 5000 нМ методом электропорации при плотности 100000 клеток на лунку. После периода обработки, продолжавшегося примерно 24 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40402 (прямая последовательность TGATGATCACAGCTGCCAA, обозначенная в данном **SEO** IDNO: 6: обратная документе как последовательность GACTTTCTCCATGATACCAGCA, обозначенная в данном документе как SEQ ID NO: 7; последовательность зонда CTCTCGACCACTTAAAACTTCAGACTTCCTG, обозначенная в данном документе как SEQ ID NO: 8). Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблице ниже в процентах РНК PLN по отношению к количеству в необработанных контрольных клетках (% UTC). Значения, отмеченные «†», указывают на то, что модифицированный олигонуклеотид комплементарен области ампликона набора праймеров и зондов. Дополнительные анализы могут быть использованы для измерения активности и эффективности модифицированных олигонуклеотидов, комплементарных области ампликона.

Каждый отдельный экспериментальный анализ, описанный в этом примере, идентифицируется буквенным идентификатором в столбце таблицы ниже, помеченном как «AID» (идентификатор анализа).

Таблица 1. Снижение уровня РНК PLN 3-10-3 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 5000 нМ в iCell®²

Номер	Старт-	Стоп-	Старт	Стоп-	Последовательность	PLN	ΑI	SE
соединен	сайт	сайт	-сайт	сайт	(от 5' к 3')	(%	D	Q

SEQ	SEQ	SEQ	SEQ		UT		ID
ID NO:	ID	ID	ID		C)		NO
1	NO: 1	NO: 2	NO: 2				
19	34	3281	3296	TGGGAACAGTTGC	141	A	15
25	40	3287	3302		153	A	16
70	85	3332	3347	TTT	26	A	17
0.5	110	2257	2272	CAGTATAGAGTAT	£0		18
93	110	3337	3372	TGT	38	A	18
127	142	Н/П	Н/П	CTTTTAGGTAGCCT	35+	Α	19
127	1 12	11/11	11/11	TG	331	7 1	
185	200	13879	13894	TTTTAAGTGGTCGA	53†	A	20
100	200	100,	15091	GA		1.	
212	227	13906	13921	GATACCAGCAGGA	34†	A	21
				CAG			
242	257	13936	13951	TGAGCGAGTGAGG	92	A	22
246	261	13940	13955		112	A	23
250	265	13944	13959		89	A	24
259	274	13953	13968		76	A	25
264	279	13958	13973		49	A	26
268	283	13962	13977		47	A	27
272	287	13966	13981	AG	40	A	28
07.6	201	12070	12025	GAGGCATTTCAAT	40		20
276	291 	139/0	13985	GGT	49	A	29
361	376	14055	14070	ATCACGATGATAC	45	A	30
	1D NO: 1 19 25 70 95 127 185 212 242 246 250 259 264 268 272 276	ID NO: ID NO: 1 19 34 25 40 70 85 95 110 127 142 185 200 212 227 242 257 246 261 250 265 259 274 264 279 268 283 272 287 276 291	ID NO: 1 ID NO: 2 19 34 3281 25 40 3287 70 85 3332 95 110 3357 127 142 H/Π 185 200 13879 212 227 13906 242 257 13936 246 261 13940 250 265 13944 259 274 13953 264 279 13958 268 283 13962 272 287 13966 276 291 13970	ID NO: ID NO: 1 ID NO: 2 ID NO: 2 19 34 3281 3296 25 40 3287 3302 70 85 3332 3347 95 110 3357 3372 127 142 H/II H/II 185 200 13879 13894 212 227 13906 13921 242 257 13936 13951 246 261 13940 13955 250 265 13944 13959 259 274 13953 13968 264 279 13958 13973 268 283 13962 13977 272 287 13966 13981 276 291 13970 13985	ID NO: 1 ID NO: 2 ID NO: 2 ID NO: 2 ID NO: 2 ITGGGAACAGTTGC AGT 19 34 3281 3296 TGGGAACAGTTGC AGT 25 40 3287 3302 AGTTTATGGGAAC AGT 70 85 3332 3347 AGTCTTACGGGTG TTT 127 142 H/II H/II CAGTATAGAGTAT TGT 127 142 H/II H/II TTTTAGGTAGCCT TG 185 200 13879 13894 GATACCAGCAGGA GA 212 227 13906 13921 TGAGCGAGTGAGG TAT 242 257 13936 13951 TAGCTGAGCGAGT GAGG TAT 246 261 13940 13955 TAGCTGAGCGAGT GAGG GAGG GAG 250 265 13944 13959 CTTATAGCTGAGC GAGG GAGG GAGG GAGG GAGG G	ID NO: ID NO: 1 ID NO: 2 <	ID NO: 1 NO: 2 NO: 2 ID NO: 2 NO: 2 ID NO: 2 NO: 2 C) 19 34 3281 3296 AGT TGGGAACAGTTGC AGT 141 A 25 40 3287 3302 AGTTTATGGGAAC AGT 153 A 70 85 3332 3347 TTT AGTCTTACGGGTG TTT 26 A 95 110 3357 3372 CAGTATAGAGTAT TGT 58 A 127 142 H/II H/II TG CTTTTAGGTAGCCT TGG 35† A 185 200 13879 13894 GA TTTTAAGTGGTCGA GAGA CAGG 53† A 212 227 13906 13921 GATACCAGCAGGA CAGG 34† A A 242 257 13936 13951 TGAGCGAGTGAGG TATT GAGG 92 A A 246 261 13940 13955 GAG TAGCTGAGCGAGT GAGG GAGT GAGG GAGG 112 A A 250 265 13944 13959 GAG CTTATAGCTGAGC GAGG GAGG GAGG 89 A A 259 274 13953 13968 AG GAGGCTCTTCTTAT AGG A A 264 279 13958 13973 TGGTTGAGGCTCTT CTTATAGGTTGAGG CTC 49 A A 268 283 13962 13977 TCAATGGTTGAGG CTCT 49 A A 272 287 13966 13981 GAGGCATTTCAAT GGTTGAGG

					AGA			
1121386	390	405	14084	14099	TAGAGGTTGTAGC	27	A	31
1121300	330	100	11001	11033	AGA		11	
1121390	397	412	14091	14106	GCAGATCTAGAGG TTG	14	Α	32
					GTTTACAAGATCC			
1121394	558	573	14252	14267	AAC	58	A	33
1121397	815	830	14509	14524	GATACTTGGTGAA	14	A	34
1121037	0.10		11005	11021	GAC			
1121401	914	929	14608	14623	TCTGATAGTTACTA CA	24	A	35
					GTAAGAGTATGGC			
1121405	1014	1029	14708	14723	СТТ	24	A	36
1121409	1067	1082	14761	14776	GTACTAGAATTCT	46	A	37
					GTG			
1121413	1132	1147	14826	14841	ATATTAACCACCA GTT	51	A	38
112111	1126	44.54	1.4000	1 10 15	TCACATATTAACC			20
1121417	1136	1151	14830	14845	ACC	25	A	39
1121421	1161	1176	14855	14870	ATTAGTGATATGA	58	A	40
					CTA			
1121425	1168	1183	14862	14877	TTAGTATATTAGTG AT	110	A	41
1101400	1200	1004	1.4002	1.4010	TAATTCACTACAGT	5.4		40
1121429	1209	1224	14903	14918	GC	54	A	42
1121433	1229	1244	14923	14938	CTAGGTAACTCTA	38	A	43
					GCT ATAGTATGGTAAG			
1121437	1242	1257	14936	14951	CTA	39	A	44
1101441	1247	1262	14941	1/056	AAGATATAGTATG	10	Α.	45
1121441	1247	1262	14941	14956	GTA	18	A	43
1121445	1311	1326	15005	15020	TGTTAGGCTGGAA	34	A	46
1121449	1457	1472	15151	15166	TGG AATAGATGGGCCA	77	A	47
1121449	143/	14/2	13131	13100	AATAUATUUUCCA	//	A	4/

					ACA			
1121453	1467	1482	15161	15176	CTGTAGATGTAAT	71	A	48
1121433	1407	1402	13101	13170	AGA	71	Λ	70
1121457	1510	1525	15204	15219	CCACGAATTGTCA	23	A	49
					GCT			
1121461	1521	1536	15215	15230	ATTTTGCGGACCC ACG	32	A	50
					GTTAAGATTTTGCG			
1121465	1527	1542	15221	15236	GA	45	A	51
1101460	1520	1.5.5.4	1.5000	15040	GGCTATTAGGTAG	4.6		50
1121469	1539	1554	15233	15248	TTA	46	A	52
1121473	1561	1576	15255	15270	GTAAGGTTTATGG	36	A	53
		10,70	1020		TCA			
1121477	1607	1622	15301	15316	ACATATAACACGC	31	A	54
					AAA CTTTTATGTTGACC			
1121481	1721	1736	15415	15430	CA	26	A	55
					ACCCCTAAGACAA			
1121485	1815	1830	15509	15524	GAC	63	A	56
1121489	1900	1915	15594	15609	TCCTATTACAGTTG	67	A	57
1121105	1700	1713	13371	13007	AC		7 1	37
1121493	1947	1962	15641	15656	AAATAGATGCTTA	75	A	58
					CCA			
1121497	1972	1987	15666	15681	ATTTAGCTCAGTA GAG	67	A	59
					ATAGCATAGCTGG			
1121501	1992	2007	15686	15701	ATC	49	A	60
1121505	2172	2100	15867	15882	AGTATAGGTGTAA	50	A	61
1121505	2173	2188	1380/	13882	ACT	30	A	01
1121509	2216	2231	15910	15925	TAGTAACATGTCTT	56	A	62
					CA			
1121513	2253	2268	15947	15962	AATTACACATCCTC	103	A	63
1121517	2285	2300	15979	15994	TA CTTTTAGTAACCAT	50	A	64
1141317	2203	2300	133/3	13334	CITIAGIAACCAI	30	A	04

					GT			
1121521	2332	2347	16026	16041	AGCAACACTTGTG TAA	67	A	65
1121525	2340	2355	16034	16049	ATTGAGTTAGCAA CAC	52	A	66
1121529	2345	2360	16039	16054	TCACTATTGAGTTA GC	92	A	67
1121533	2522	2537	16216	16231	GTGTATCACCTGTT GT	84	A	68
1121537	2575	2590	16269	16284	TTAAGACTAGGGA TAC	85	A	69
1121541	2898	2913	16592	16607	GTTTTTAGTGCCCT GT	42	A	70
1121557	Н/П	Н/П	3804	3819	GATGTAAATAGCT CAG	16	A	71
1121561	Н/П	Н/П	4614	4629	GATACCTCAGTGG TAG	55	A	72
1121565	Н/П	Н/П	4969	4984	AAGGTATAGATGA ACT	51	A	73
1121569	Н/П	Н/П	5677	5692	AGTATATAGAGGA TGT	44	A	74
1121573	Н/П	Н/П	6177	6192	CTGGGTAAGAACT TTG	41	A	75
1121577	Н/П	Н/П	6471	6486	CTTCTTAACCCTGT AG	122	A	76
1121581	Н/П	Н/П	6943	6958	TG CTTTTTTGGACTTG	29	A	77
1121585	Н/П	Н/П	7458	7473	GTAATATCAGATG CAT	37	A	78
1121589	Н/П	Н/П	8415	8430	GATGATAATTAGG CCA	30	A	79
1121593	Н/П	Н/П	8942	8957	CAATTTGTTAGTTG GA	46	A	80
1121597	Н/П	Н/П	9545	9560	TAGTATCCTAGTAC	105	A	81

					TT			
1121601	Н/П	Н/П	9672	9687	GTTTTTAATAGGGC TT	50	A	82
1121605	Н/П	Н/П	9938	9953	AGCATATACAGGA GTC	36	A	83
1121609	Н/П	Н/П	11302	11317	AGTTATTAACTACC TG	71	A	84
1121613	Н/П	Н/П	11634	11649	CCTTTTATACATCC CA	23	A	85
1121617	Н/П	Н/П	11740	11755	GTAATTAACTGCC AGA	42	A	86
1121621	Н/П	Н/П	11857	11872	CTGTATTAACTGTC CA	43	A	87
1121625	Н/П	Н/П	12474	12489	GGAGAATATGCAA GCC	73	A	88
1121629	Н/П	Н/П	13461	13476	TTCCATAAGTTCCT GG	79	A	89
1091564	273	288	13967	13982	GCATTTCAATGGTT GA	76	В	90
1091599	561	576	14255	14270	CATGTTTACAAGA TCC	33	В	91
1121325	20	35	3282	3297	ATGGGAACAGTTG CAG	66	В	92
1121329	26	41	3288	3303	CAGTTTATGGGAA CAG	60	В	93
1121333	75	90	3337	3352	TATGAAGTCTTAC GGG	69	В	94
1121337	96	111	3358	3373	ACAGTATAGAGTA TTG	77†	В	95
1121341	128	143	Н/П	Н/П	TCTTTTAGGTAGCC TT	56†	В	96
1121345	186	201	13880	13895	GTTTTAAGTGGTCG AG	50†	В	97
1121349	230	245	13924	13939	GTATTGGACTTTCT	38†	В	98

					CC			
1121352	243	258	13937	13952	CTGAGCGAGTGAG GTA	34	В	99
1121356	247	262	13941	13956	ATAGCTGAGCGAG TGA	35	В	100
1121360	251	266	13945	13960	TCTTATAGCTGAGC GA	67	В	101
1121364	260	275	13954	13969	TGAGGCTCTTCTTA TA	40	В	102
1121368	265	280	13959	13974	ATGGTTGAGGCTC TTC	49	В	103
1121372	269	284	13963	13978	TTCAATGGTTGAG GCT	71	В	104
1121379	344	359	14038	14053	CAGCAAGAGACAT ATT	53	В	105
1121383	365	380	14059	14074	AAGCATCACGATG ATA	52	В	106
1121387	391	406	14085	14100	CTAGAGGTTGTAG CAG	64	В	107
1121391	406	421	14100	14115	TGGCAAGCTGCAG ATC	17	В	108
1121398	816	831	14510	14525	TGATACTTGGTGA AGA	46	В	109
1121402	915	930	14609	14624	TTCTGATAGTTACT AC	25	В	110
1121406	1016	1031	14710	14725	ATGTAAGAGTATG GCC	60	В	111
1121410	1069	1084	14763	14778	ATGTACTAGAATT CTG	33	В	112
1121414	1133	1148	14827	14842	CATATTAACCACC AGT	38	В	113
1121418	1149	1164	14843	14858	ACTAATCTCACTGT CA	56	В	114
1121422	1162	1177	14856	14871	TATTAGTGATATG	85	В	115

					ACT			
1121426	1160	1104	14962	14070	GTTAGTATATTAGT	60	D	116
1121426	1169	1184	14863	14878	GA	00	В	116
1121430	1211	1226	14905	14920	GATAATTCACTAC	47	В	117
1121430	1211	1220	14703	14720	AGT	7/		117
1121434	1230	1245	14924	14939	GCTAGGTAACTCT	109	В	118
					AGC			
1121438	1243	1258	14937	14952	TATAGTATGGTAA	50	В	119
					GCT			
1121442	1248	1263	14942	14957	AAAGATATAGTAT	38	В	120
					GGT GCATTGGATGTTA			
1121446	1319	1334	15013	15028	GGC	40	В	121
					GTAATAGATGGGC			
1121450	1459	1474	15153	15168	CAA	45	В	122
					GCTGTAGATGTAA			
1121454	1468	1483	15162	15177	TAG	43	В	123
1101450	1511	1506	15005	15000	CCCACGAATTGTC	22	Б	104
1121458	1511	1526	15205	15220	AGC	33	В	124
1121462	1522	1537	15216	15231	GATTTTGCGGACC	34	В	125
1121402	1322	1337	13210	13231	CAC	34	В	123
1121466	1535	1550	15229	15244	ATTAGGTAGTTAA	52	В	126
1121100	1000	1000	10223	102	GAT			
1121470	1540	1555	15234	15249	AGGCTATTAGGTA	35	В	127
					GTT			
1121474	1562	1577	15256	15271	AGTAAGGTTTATG	29	В	128
					GTC			
1121478	1608	1623	15302	15317	TACATATAACACG	51	В	129
					CAA CCTAAGACAAGAC			
1121482	1812	1827	15506	15521	TGC	65	В	130
					TTGCAAGGGTCCA			
1121486	1862	1877	15556	15571	CTT	73	В	131
1121490	1901	1916	15595	15610	ATCCTATTACAGTT	49	В	132

					GA			
1121494	1964	1979	15658	15673	CAGTAGAGTGGAC TGC	89	В	133
1121498	1973	1988	15667	15682	AATTTAGCTCAGT AGA	49	В	134
1121502	2064	2079	15758	15773	GAGTTATTGGAAG ATG	60	В	135
1121506	2175	2190	15869	15884	GCAGTATAGGTGT AAA	44	В	136
1121510	2217	2232	15911	15926	TTAGTAACATGTCT TC	51	В	137
1121514	2257	2272	15951	15966	GGTTAATTACACA TCC	57	В	138
1121518	2286	2301	15980	15995	TCTTTTAGTAACCA TG	45	В	139
1121522	2333	2348	16027	16042	TAGCAACACTTGT GTA	62	В	140
1121526	2342	2357	16036	16051	CTATTGAGTTAGC AAC	86	В	141
1121530	2386	2401	16080	16095	TAGTATCTCTCATG GG	86	В	142
1121534	2554	2569	16248	16263	GTATTGGTAATTTA CT	110	В	143
1121538	2635	2650	16329	16344	TTGTAACAAACAG TGT	59	В	144
1121542	2923	2938	16617	16632	AGGCAACATTAAG CAT	65	В	145
1121558	Н/П	Н/П	3851	3866	GCTGATAATGTGC ATG	40	В	146
1121562	Н/П	Н/П	4617	4632	TAGGATACCTCAG TGG	50	В	147
1121566	Н/П	Н/П	4987	5002	ATACTTAACTTGCA CC	80	В	148
1121570	Н/П	Н/П	5679	5694	TCAGTATATAGAG	47	В	149

					GAT			
1121574	Н/П	Н/П	6186	6201	AGAATTACTCTGG	43	В	150
1121071		12/11	0100	0201	GTA			
1121578	Н/П	Н/П	6804	6819	AGTTACTTTGTGGT	65	В	151
					AG			
1121582	Н/П	Н/П	7128	7143	GTAATATCTAAGG CTA	46	В	152
					TACTATATATCAAC			
1121586	Н/П	Н/П	7520	7535	TC	73	В	153
1121590	Н/П	Н/П	8495	8510	TAATTTATTGGGCT	47	В	154
1121390	11/11	11/11	0173	0310	CA			
1121594	Н/П	Н/П	8962	8977	AGATTAACTAGTT	124	В	155
					CTA			
1121598	Н/П	Н/П	9641	9656	GAGGATATCTGTC AGA	67	В	156
					GTGGAATTGGTTG			
1121602	Н/П	Н/П	9697	9712	TCA	59	В	157
1121606	T.T./T.T.		0020	00.74	AAGCATATACAGG			1.50
1121606	Н/П	H/Π	9939	9954	AGT	63	В	158
1121610	Н/П	Н/П	11369	11384	TCATAATATTGGTC	58	В	159
1121010	11/11	11/11	11307	11301	TG			137
1121614	Н/П	Н/П	11678	11693	ATTACTACCTTACC	68	В	160
					CC			
1121618	Н/П	Н/П	11741	11756	AGTAATTAACTGC CAG	59	В	161
					TCCTATTTACAGAC			
1121622	Н/П	Н/П	12016	12031	TT	63	В	162
1121626	11/11	11/17	10702	12720	TTCGATAATAATTT	70	Ъ	1.62
1121626	Н/П	Н/П	12723	12738	GT	79	В	163
1121630	Н/П	Н/П	13484	13499	GTATTGGAGTAAT	79	В	164
					CCT			
1121326	22	37	3284	3299	TTATGGGAACAGT	93	С	165
1121330	65	80	3327	3242	TGC TACGGGTGTTTAG	59	С	166
1121330	03	80	3321	3342	TACUUUTUTTAU	39		166

					CTG			
1121334	76	91	3338	3353	GTATGAAGTCTTA	46	С	167
1121334	70	91	3336	3333	CGG	40		107
1121338	122	137	Н/П	Н/П	AGGTAGCCTTGGC	43†	С	168
1121336	122	137	11/11	11/11	AGC	45		100
1121342	129	144	13823	13838	TTCTTTTAGGTAGC	67†	С	169
1121312	129		13023	13030	CT	0,1		109
1121346	187	202	13881	13896	AGTTTTAAGTGGTC	48†	С	170
					GA	-		
1121350	233	248	13927	13942	GAGGTATTGGACT	52†	C	171
					TTC			
1121353	244	259	13938	13953	GCTGAGCGAGTGA	50	С	172
					GGT			
1121357	248	263	13942	13957	TATAGCTGAGCGA GTG	95	С	173
					TTCTTATAGCTGAG			
1121361	252	267	13946	13961	CG	76	C	174
					GTTGAGGCTCTTCT			
1121365	262	277	13956	13971	TA	57	С	175
					AATGGTTGAGGCT			1
1121369	266	281	13960	13975	CTT	70	С	176
1121373	270	285	13964	13979	TTTCAATGGTTGAG	42	С	177
1121373	270	203	13904	13979	GC	42		1//
1121376	274	289	13968	13983	GGCATTTCAATGG	24	С	178
1121570	214	209	13700	13703	TTG	2-1		170
1121380	356	371	14050	14065	GATGATACAGATC	91	С	179
			1,000	1,000	AGC			
1121384	369	384	14063	14078	AGAGAAGCATCAC	52	С	180
					GAT			
1121388	393	408	14087	14102	ATCTAGAGGTTGT	80	С	181
					AGC			
1121392	473	488	14167	14182	TCAGGAAGTGGTC	81	С	182
1101205	652	660	1.42.47	1.42.62	TGT	00		102
1121395	653	668	14347	14362	TGGGATAGAAATT	90	С	183

					TGT			
1121399	819	834	14513	14528	CTTTGATACTTGGT	72	С	184
1121377	019	051	11313	11320	GA	, 2		
1121403	992	1007	14686	14701	CCATACTTGATTCT	28	C	185
					CA			
1121407	1017	1032	14711	14726	TATGTAAGAGTAT	37	С	186
					GGC ACCTACATGTACT			
1121411	1075	1090	14769	14784	AGA	71	C	187
					ACATATTAACCAC			
1121415	1134	1149	14828	14843	CAG	31	С	188
1101410	1170	1167	14046	1.4061	ATGACTAATCTCA	102	-	100
1121419	1152	1167	14846	14861	CTG	103	С	189
1121423	1163	1178	14857	14872	ATATTAGTGATAT	147	С	190
1121123	1103	1170	11037	11072	GAC	117	Ò	150
1121427	1183	1198	14877	14892	GATTAGATTCTGTT	62	С	191
					GT			
1121431	1221	1236	14915	14930	CTCTAGCTCAGAT	90	C	192
					ACCTACCTAACTC			
1121435	1231	1246	14925	14940	AGCTAGGTAACTC TAG	92	C	193
					ATATAGTATGGTA			
1121439	1244	1259	14938	14953	AGC	90	С	194
					CTTAAGGTTTCATG			
1121443	1267	1282	14961	14976	AT	74	С	195
1121447	1321	1336	15015	15030	CTGCATTGGATGTT	82	С	196
1121447	1321	1330	13013	15050	AG	82		190
1121451	1460	1475	15154	15169	TGTAATAGATGGG	60	С	197
1121101	1100	1170	1010.	10105	CCA			
1121455	1506	1521	15200	15215	GAATTGTCAGCTC	29	C	198
					CCC			
1121459	1512	1527	15206	15221	ACCCACGAATTGT	76	C	199
1121463	1525	1540	15219	15234	CAG TAAGATTTTGCGG	79	С	200
1121703	1323	1540	13213	13237	170707111110000	1)		

					ACC			
1121467	1536	1551	15230	15245	TATTAGGTAGTTA	108	С	201
1121407	1550	1331	13230	13243	AGA	100		201
1121471	1556	1571	15250	15265	GTTTATGGTCAATA	144	С	202
1121171	1330	1371	13230	19203	GT	111	Ò	202
1121475	1565	1580	15259	15274	ATCAGTAAGGTTT	58	С	203
					ATG			
1121479	1626	1641	15320	15335	TAGGAATATAGTG	52	C	204
					TAT			
1121483	1813	1828	15507	15522	CCCTAAGACAAGA	78	C	205
					CTG			
1121487	1865	1880	15559	15574	GAATTGCAAGGGT	64	C	206
					CCA AGCTATATCCTATT			
1121491	1907	1922	15601	15616	AC	87	C	207
					TCAGTAGAGTGGA			
1121495	1965	1980	15659	15674	CTG	76	C	208
					TAATTTAGCTCAGT			
1121499	1974	1989	15668	15683	AG	69	С	209
					CAGCACTCAATTTT			
1121503	2094	2109	15788	15803	AC	72	С	210
1101507	2102	2107	15076	15001	GGATTATGCAGTA	40		011
1121507	2182	2197	15876	15891	TAG	48	С	211
1101511	2210	2233	15912	15927	ATTAGTAACATGT	88	С	212
1121511	2218	2233	13912	13921	CTT	00		212
1121515	2261	2276	15955	15970	ATATGGTTAATTAC	92	С	213
1121313	2201	2270	13933	13970	AC	92		213
1121519	2314	2329	16008	16023	AACCAAGGTCAAT	102	С	214
1121317	2311	232)	10000	10023	ATT	102		211
1121523	2336	2351	16030	16045	AGTTAGCAACACT	85	С	215
					TGT			
1121527	2343	2358	16037	16052	ACTATTGAGTTAG	80	C	216
					CAA			
1121531	2423	2438	16117	16132	GATATCCCTGAAC	85	С	217

					CAA			
1121535	2572	2587	16266	16281	AGACTAGGGATAC	64	С	218
					TTT			
1121539	2863	2878	16557	16572	TTCTATAGTAGAA	103	С	219
					CAT			
1121543	2982	2997	16676	16691	ATATAGTGATTCTG	79	C	220
					AT ATTACCAAAGTCA			
1121555	Н/П	Н/П	3408	3423	GCG	52	C	221
					AGGCATTAATAGG			
1121559	Н/П	H/Π	4209	4224	CAG	43	С	222
1121563	Н/П	Н/П	4623	4638	CACAATTAGGATA	69	С	223
1121303	П/11	П/11	4023	4036	ССТ	09		223
1121567	Н/П	Н/П	5160	5175	GAAATGATAGTGC	65	С	224
					TGT			
1121571	Н/П	Н/П	6117	6132	AGTATCGAAATGT	88	C	225
					GAT			
1121575	Н/П	Н/П	6353	6368	CCTATTAATGTGA GTG	75	C	226
					TTTACGATGAATCT			
1121579	Н/П	Н/П	6898	6913	GT	91	C	227
					AGTAATATCTAAG			
1121583	Н/П	Η/Π	7129	7144	GCT	68	С	228
1121597	11/17	11/17	9059	9072	CTTGTATATGGCCT	66		220
1121587	Н/П	H/Π	8058	8073	AA	66	С	229
1121591	Н/П	Н/П	8496	8511	TTAATTTATTGGGC	71	C	230
1121371	11/11	11/11	0170	0311	TC	71		230
1121595	Н/П	Н/П	8963	8978	CAGATTAACTAGT	111	С	231
					TCT			
1121599	Н/П	Н/П	9642	9657	TGAGGATATCTGT	102	C	232
					CAG ATTAGTTATTAAG			
1121603	Н/П	Н/П	9710	9725	GTG	102	C	233
1121607	Н/П	Н/П	10489	10504	TTATTGTAGATCTA	74	C	234
1121007	11/11		10107	10001				

					GT			
1121611	Н/П	Н/П	11411	11426	TATAGTAGACTGG GCA	59	С	235
1121615	Н/П	Н/П	11681	11696	CATATTACTACCTT AC	85	С	236
1121619	Н/П	Н/П	11799	11814	CAGTATACTTATGT GT	82	C	237
1121623	Н/П	Н/П	12307	12322	GTAATTGGTTTGAT CA	68	С	238
1121627	Н/П	Н/П	12724	12739	ATTCGATAATAATT TG	83	С	239
1121631	Н/П	Н/П	13529	13544	AGTAGTAACTTTA GTC	56	С	240
1091555	236	251	13930	13945	AGTGAGGTATTGG ACT	88†	D	241
1121327	24	39	3286	3301	GTTTATGGGAACA GTT	94	D	242
1121331	67	82	3329	3344	CTTACGGGTGTTTA GC	77	D	243
1121335	93	108	3355	3370	GTATAGAGTATTG TGT	58	D	244
1121339	125	140	Н/П	Н/П	TTTAGGTAGCCTTG GC	50†	D	245
1121343	178	193	13872	13887	TGGTCGAGAGAAA GAT	63†	D	246
1121347	188	203	13882	13897	AAGTTTTAAGTGG TCG	58†	D	247
1121354	245	260	13939	13954	AGCTGAGCGAGTG AGG	56	D	248
1121358	249	264	13943	13958	TTATAGCTGAGCG AGT	72	D	249
1121362	258	273	13952	13967	AGGCTCTTCTTATA GC	87	D	250
1121366	263	278	13957	13972	GGTTGAGGCTCTTC	46	D	251

					TT			
1121370	267	282	13961	13976	CAATGGTTGAGGC TCT	52	D	252
1121374	271	286	13965	13980	ATTTCAATGGTTGA GG	38	D	253
1121377	275	290	13969	13984	AGGCATTTCAATG GTT	57	D	254
1121381	360	375	14054	14069	TCACGATGATACA GAT	84	D	255
1121385	370	385	14064	14079	CAGAGAAGCATCA CGA	37	D	256
1121389	394	409	14088	14103	GATCTAGAGGTTG TAG	106	D	257
1121393	556	571	14250	14265	TTACAAGATCCAA CAG	86	D	258
1121396	709	724	14403	14418	GTGAACTTGTTGG CAG	42	D	259
1121400	823	838	14517	14532	ATTACTTTGATACT TG	29	D	260
1121404	1013	1028	14707	14722	TAAGAGTATGGCC TTA	90	D	261
1121408	1018	1033	14712	14727	TTATGTAAGAGTA TGG	62	D	262
1121412	1130	1145	14824	14839	ATTAACCACCAGT TCT	75	D	263
1121416	1135	1150	14829	14844	CACATATTAACCA CCA	42	D	264
1121420	1155	1170	14849	14864	GATATGACTAATC TCA	68	D	265
1121424	1167	1182	14861	14876	TAGTATATTAGTG ATA	96	D	266
1121428	1187	1202	14881	14896	TGAAGATTAGATT CTG	72	D	267
1121432	1227	1242	14921	14936	AGGTAACTCTAGC	50	D	268

					TCA			
1121436	1239	1254	14933	14948	GTATGGTAAGCTA	78	D	269
1121430	1239	1234	14933	14240	GGT	76	ט	209
1121440	1246	1261	14940	14955	AGATATAGTATGG	73	D	270
					TAA			
1121444	1275	1290	14969	14984	TCTGAAGTCTTAA	55	D	271
					GGT GGCCAACAAGTTC			
1121448	1449	1464	15143	15158	ATT	117	D	272
					ATGTAATAGATGG			
1121452	1461	1476	15155	15170	GCC	102	D	273
1121456	1509	1524	15203	15218	CACGAATTGTCAG	97	D	274
1121430	1307	1324	13203	13216	CTC	<i>)</i>	D	274
1121460	1517	1532	15211	15226	TGCGGACCCACGA	50	D	275
					ATT			
1121464	1526	1541	15220	15235	TTAAGATTTTGCGG AC	66	D	276
					GCTATTAGGTAGTT			
1121468	1538	1553	15232	15247	AA	72	D	277
1121472	1,5,5,0	1572	15050	15067	AGGTTTATGGTCA	20	D	279
1121472	1558	1573	15252	15267	ATA	30	ט	278
1121476	1599	1614	15293	15308	CACGCAAAATATG	108	D	279
	1033	101.	10230	10000	TGT			
1121480	1629	1644	15323	15338	TTGTAGGAATATA	70	D	280
					GTG CCCCTAAGACAAG			
1121484	1814	1829	15508	15523	ACT	77	D	281
					CCTATTACAGTTGA			
1121488	1899	1914	15593	15608	CC	98	D	282
1121492	1933	1948	15627	15642	CATTTGGTTGATAG	83	D	283
1121492	1933	1 240	13021	13044	AG		ע 	
1121496	1966	1981	15660	15675	CTCAGTAGAGTGG	83	D	284
					ACT			
1121500	1979	1994	15673	15688	ATCTATAATTTAGC	70	D	285

					TC			
1121504	2172	2187	15866	15881	GTATAGGTGTAAA CTA	103	D	286
1121508	2184	2199	15878	15893	TTGGATTATGCAGT AT	76	D	287
1121512	2249	2264	15943	15958	ACACATCCTCTACT CT	125	D	288
1121516	2280	2295	15974	15989	AGTAACCATGTTTT AG	64	D	289
1121520	2316	2331	16010	16025	GAAACCAAGGTCA ATA	49	D	290
1121524	2338	2353	16032	16047	TGAGTTAGCAACA CTT	56	D	291
1121528	2344	2359	16038	16053	CACTATTGAGTTA GCA	91	D	292
1121532	2424	2439	16118	16133	AGATATCCCTGAA CCA	81	D	293
1121536	2574	2589	16268	16283	TAAGACTAGGGAT ACT	90	D	294
1121540	2888	2903	16582	16597	CCCTGTAAATTAA GAT	107	D	295
1121556	Н/П	Н/П	3617	3632	ACCAGTAACCAGG ATC	37	D	296
1121560	Н/П	Н/П	4348	4363	ATAGGGTAGAATT CAA	88	D	297
1121564	Н/П	Н/П	4961	4976	GATGAACTAGTTG GGA	70	D	298
1121568	Н/П	Н/П	5533	5548	ATAATTAAGAGGA CCA	78	D	299
1121572	Н/П	Н/П	6125	6140	TAGAATAAAGTAT CGA	109	D	300
1121576	Н/П	Н/П	6408	6423	TAGTATTGAGAAA GTC	34	D	301
1121580	Н/П	Н/П	6901	6916	AGATTTACGATGA	95	D	302

					ATC			
1121584	Н/П	Н/П	7425	7440	CTCAATAGTCTTCT GA	70	D	303
1121588	Н/П	Н/П	8182	8197	CTGTTTAATAGAGT AC	121	D	304
1121592	Н/П	Н/П	8827	8842	AGTATTAACCTGA ACT	101	D	305
1121596	Н/П	Н/П	8964	8979	ACAGATTAACTAG TTC	99	D	306
1121600	Н/П	Н/П	9649	9664	ATCTATATGAGGA TAT	100	D	307
1121604	Н/П	Н/П	9937	9952	GCATATACAGGAG TCA	97	D	308
1121608	Н/П	Н/П	10490	10505	CTTATTGTAGATCT AG	67	D	309
1121612	Н/П	Н/П	11526	11541	GTAAGTATCAGGC ATG	62	D	310
1121616	Н/П	Н/П	11682	11697	ACATATTACTACCT TA	88	D	311
1121620	Н/П	Н/П	11833	11848	CGTTATTAACACTT GG	50	D	312
1121624	Н/П	Н/П	12473	12488	GAGAATATGCAAG CCC	58	D	313
1121628	Н/П	Н/П	12929	12944	GTATTTGGTGAATC AG	61	D	314
1121632	Н/П	Н/П	13770	13785	GTAACCTATCCTCA GA	126	D	315

Пример 2. Влияние 3-10-3 сЕt однородных фосфоротиоат-модифицированных олигонуклеотидов на PHK PLN человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали и тестировали в отношении эффектов однократной дозы на PHK PLN *in vitro*. Модифицированные олигонуклеотиды тестировали в серии экспериментов в одинаковых условиях культивирования.

Модифицированные олигонуклеотиды в таблице ниже представляют собой 3-10-3 сЕt модифицированные олигонуклеотиды с однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 16

нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где каждый 5'- и 3'-сегмент крыла состоит из трех сЕt нуклеозидов. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

«Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблице ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Культивированные кардиомиоциты iCell®2 (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017) обрабатывали модифицированным олигонуклеотидом концентрации 6000 нМ с помощью свободного поглощения при плотности 8000 клеток на лунку. После периода обработки, продолжавшегося примерно 72 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40402 (описанного в данном документе выше). Уровни PHK PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблице ниже в процентах РНК PLN по отношению к количеству в необработанных контрольных клетках (% UTC). Значения, отмеченные «†», указывают на то, что модифицированный олигонуклеотид комплементарен области ампликона набора праймеров и зондов. Дополнительные анализы могут быть использованы для измерения активности и эффективности модифицированных олигонуклеотидов, комплементарных области ампликона. N.D. в таблице ниже относится к случаям, когда значение не было определено.

Каждый отдельный экспериментальный анализ, описанный в этом примере, идентифицируется буквенным идентификатором в столбце таблицы ниже, помеченном как «AID» (идентификатор анализа).

Таблица 2. Снижение уровня PHK PLN 3-10-3 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 6000 hM в iCell \mathbb{R}^2

Номер соединения	Старт-сайт SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1091564	273	288	13967	13982	GCATTTCAATGG TTGA	32	Е	90
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	9	Е	198
1342182	Н/П	Н/П	6338	6353	GAGTTAGTCAA CCTTT	38	Е	316
1342231	Н/П	Н/П	8336	8351	GAACAGCAGAA TCCTA	78	Е	317
1342234	Н/П	Н/П	3396	3411	AGCGAAATCTG TTTCT	73	Е	318
1342236	Н/П	Н/П	9587	9602	CTAGACTGATA GTTTC	60	Е	319
1342254	828	843	14522	14537	GTGTTATTACTT TGAT	16	Е	320
1342267	Н/П	Н/П	11989	12004	TAGTAGTTTCCA TCAT	49	Е	321
1342283	Н/П	Н/П	8061	8076	GAACTTGTATAT GGCC	52	Е	322
1342301	1100	1115	14794	14809	ATGTCTTAGAAC AGAT	41	Е	323
1342366	Н/П	Н/П	5401	5416	GTAACTAGACTT TAGG	35	Е	324
1342380	Н/П	Н/П	6828	6843	ACTAAACTTGG ACATT	63	Е	325
1342397	Н/П	Н/П	11685	11700	TCAACATATTAC TACC	61	Е	326
1342398	Н/П	Н/П	12076	12091	CTGAAGACTGT CAAGC	34	Е	327

1342445	353	368	14047	14062	GATACAGATCA GCAAG	42	Е	328
1342456	Н/П	Н/П	6070	6085	GGATTTTAGGTA TCAG	28	Е	329
1342468	Н/П	Н/П	6157	6172	TGTACAAAGAG ACTAC	77	Е	330
1342474	Н/П	Н/П	4349	4364	AATAGGGTAGA ATTCA	59	Е	331
1342485	Н/П	Н/П	6644	6659	GTTAAAGCTCTG TCTT	38	Е	332
1342505	Н/П	Н/П	5676	5691	GTATATAGAGG ATGTG	42	Е	333
1342514	1205	1220	14899	14914	TCACTACAGTGC CTTA	23	Е	334
1342521	1541	1556	15235	15250	TAGGCTATTAG GTAGT	29	Е	335
1342523	644	659	14338	14353	AATTTGTGAGCC ATGT	35	Е	336
1342541	Н/П	Н/П	13490	13505	CTACAAGTATTG GAGT	86	Е	337
1342551	1270	1285	14964	14979	AGTCTTAAGGTT TCAT	12	Е	338
1342552	1507	1522	15201	15216	CGAATTGTCAG CTCCC	19	Е	339
1342558	Н/П	Н/П	12368	12383	GGTTATTCTTTT GGGT	52	Е	340
1342566	Н/П	Н/П	6967	6982	GCCATAAGTGA ATGTG	84	Е	341
1342576	Н/П	Н/П	7463	7478	GCAATGTAATA TCAGA	16	Е	342
1342583	Н/П	Н/П	7344	7359	GAGCATTAATCT CCAT	41	Е	343
1342593	Н/П	Н/П	4988	5003	AATACTTAACTT GCAC	66	Е	344

1342612	Н/П	Н/П	3616	3631	CCAGTAACCAG GATCA	57	Е	345
1342620	Н/П	Н/П	12282	12297	TTAATAGCTCCA GAGC	93	Е	346
1342628	Н/П	Н/П	5927	5942	AATAACTAAGG GCATC	70	Е	347
1342631	Н/П	Н/П	12818	12833	AACAATTCAAA TACGG	44	Е	348
1342648	436	451	14130	14145	CTGCATGGGAT GACAG	31	Е	349
1342655	Н/П	Н/П	12550	12565	ACAACTTAAAC ATGCC	69	Е	350
1342688	183	198	13877	13892	TTAAGTGGTCG AGAGA	9†	Е	351
1342697	Н/П	Н/П	13818	13833	TTAGGTAGCCTG GAAT	87†	Е	352
1342716	Н/П	Н/П	7562	7577	CTAATGTCATAT ACCA	26	Е	353
1342722	Н/П	Н/П	3849	3864	TGATAATGTGC ATGTT	32	Е	354
1342749	918	933	14612	14627	AGATTCTGATA GTTAC	8	Е	355
1342753	Н/П	Н/П	9443	9458	AATAATGCTGT GGGCA	87	Е	356
1342765	Н/П	Н/П	10719	10734	TACAACAAGCT CCCCA	94	Е	357
1342767	529	544	14223	14238	TGGTAACAATA AGTTT	64	Е	358
1342793	Н/П	Н/П	7859	7874	TAGAAATGCCA GACTC	52	Е	359
1342808	1153	1168	14847	14862	TATGACTAATCT CACT	57	Е	360
1342862	995	1010	14689	14704	TTTCCATACTTG ATTC	48	Е	361

1342865	Н/П	Н/П	11412	11427	ATATAGTAGAC TGGGC	42	Е	362
1342867	Н/П	Н/П	7108	7123	CTGATATACTCT AGGA	28	Е	363
1342894	Н/П	Н/П	5532	5547	TAATTAAGAGG ACCAA	85	Е	364
1342904	Н/П	Н/П	4825	4840	CAGAAGTATGT GTACT	44	Е	365
1342913	718	733	14412	14427	ATATATGAAGT GAACT	96	Е	366
1342943	Н/П	Н/П	10106	10121	GCAGAATACAG TTAAG	33	Е	367
1342945	2071	2086	15765	15780	GTTTTATGAGTT ATTG	36	Е	368
1342962	2174	2189	15868	15883	CAGTATAGGTG TAAAC	67	Е	369
1342966	392	407	14086	14101	TCTAGAGGTTGT AGCA	52	Е	370
1342973	Н/П	Н/П	4945	4960	CACAATGTATG GTACT	42	Е	371
1342984	1981	1996	15675	15690	GGATCTATAATT TAGC	60	Е	372
1343017	1935	1950	15629	15644	ACCATTTGGTTG ATAG	69	Е	373
1343050	Н/П	Н/П	4695	4710	AACATAAGACA CCTAC	58	Е	374
1343060	Н/П	Н/П	8573	8588	AGTTATTTGTAA CTAC	90	Е	375
1343062	Н/П	Н/П	11525	11540	TAAGTATCAGG CATGA	78	Е	376
1343067	Н/П	Н/П	4204	4219	TTAATAGGCAG AAATC	58	Е	377
1343068	Н/П	Н/П	3803	3818	ATGTAAATAGC TCAGT	44	Е	378

1343076	Н/П	Н/П	11116	11131	CGTAAAGACAT ACACC	106	Е	379
1343099	Н/П	Н/П	6468	6483	CTTAACCCTGTA GGAG	76	Е	380
1343101	Н/П	Н/П	9709	9724	TTAGTTATTAAG GTGG	56	Е	381
1343103	1627	1642	15321	15336	GTAGGAATATA GTGTA	9	Е	382
1343109	1072	1087	14766	14781	TACATGTACTAG AATT	85	Е	383
1343131	1864	1879	15558	15573	AATTGCAAGGG TCCAC	35	Е	384
1343136	Н/П	Н/П	6904	6919	ATTAGATTTACG ATGA	74	Е	385
1343157	1448	1463	15142	15157	GCCAACAAGTT CATTT	25	Е	386
1343189	Н/П	Н/П	8774	8789	ACAGAGATATG CCCTA	31	Е	387
1343195	Н/П	Н/П	4619	4634	ATTAGGATACCT CAGT	66	Е	388
1343196	1236	1251	14930	14945	TGGTAAGCTAG GTAAC	44	Е	389
1343216	2875	2890	16569	16584	GATAAGAACTT ATTCT	40	Е	390
1343228	2279	2294	15973	15988	GTAACCATGTTT TAGA	39	Е	391
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	17	F	198
1342169	1320	1335	15014	15029	TGCATTGGATGT TAGG	25	F	392
1342192	Н/П	Н/П	3395	3410	GCGAAATCTGTT TCTT	81	F	393
1342204	1099	1114	14793	14808	TGTCTTAGAACA GATT	62	F	394

1342216	Н/П	Н/П	13489	13504	TACAAGTATTG GAGTA	87	F	395
1342271	Н/П	Н/П	3848	3863	GATAATGTGCA TGTTG	29	F	396
1342273	1492	1507	15186	15201	CCTAACCCCCAT GTTC	69	F	397
1342289	Н/П	Н/П	5400	5415	TAACTAGACTTT AGGT	53	F	398
1342291	Н/П	Н/П	10081	10096	ATAATTAGACTT GGTA	51	F	399
1342319	Н/П	Н/П	6966	6981	CCATAAGTGAA TGTGC	27	F	400
1342335	1070	1085	14764	14779	CATGTACTAGA ATTCT	35	F	401
1342345	Н/П	Н/П	12548	12563	AACTTAAACAT GCCAG	58	F	402
1342352	2069	2084	15763	15778	TTTATGAGTTAT TGGA	33	F	403
1342354	Н/П	Н/П	5675	5690	TATATAGAGGA TGTGC	55	F	404
1342364	1204	1219	14898	14913	CACTACAGTGC CTTAA	41	F	405
1342377	Н/П	Н/П	11410	11425	ATAGTAGACTG GGCAT	54	F	406
1342389	Н/П	Н/П	4562	4577	GCTTACAGAGTT ACAA	34	F	407
1342413	Н/П	Н/П	9708	9723	TAGTTATTAAGG TGGA	31	F	408
1342432	Н/П	Н/П	4694	4709	ACATAAGACAC CTACA	64	F	409
1342447	Н/П	Н/П	6413	6428	GGAGGTAGTAT TGAGA	69	F	410
1342463	826	841	14520	14535	GTTATTACTTTG ATAC	57	F	411

1342494	Н/П	Н/П	7107	7122	TGATATACTCTA GGAT	79	F	412
1342499	Н/П	Н/П	7461	7476	AATGTAATATC AGATG	74	F	413
1342509	Н/П	Н/П	11524	11539	AAGTATCAGGC ATGAC	64	F	414
1342531	Н/П	Н/П	6827	6842	CTAAACTTGGA CATTC	68	F	415
1342537	Н/П	Н/П	4823	4838	GAAGTATGTGT ACTTT	103	F	416
1342538	388	403	14082	14097	GAGGTTGTAGC AGAAC	51	F	417
1342549	1235	1250	14929	14944	GGTAAGCTAGG TAACT	55	F	418
1342595	1821	1836	15515	15530	CCCCACACCCCT AAGA	112	F	419
1342596	Н/П	Н/П	6069	6084	GATTTTAGGTAT CAGA	47	F	420
1342603	Н/П	Н/П	6903	6918	TTAGATTTACGA TGAA	63	F	421
1342610	Н/П	Н/П	4985	5000	ACTTAACTTGCA CCTT	46	F	422
1342642	Н/П	Н/П	4266	4281	CTAAATCCGAG AGAGG	55	F	423
1342643	633	648	14327	14342	CATGTTGAGGA AATCA	43	F	424
1342677	1911	1926	15605	15620	AAATAGCTATA TCCTA	77	F	425
1342689	1610	1625	15304	15319	AATACATATAA CACGC	17	F	426
1342728	Н/П	Н/П	7556	7571	TCATATACCATG TTAG	48	F	427
1342732	351	366	14045	14060	TACAGATCAGC AAGAG	48	F	428

1342736	Н/П	Н/П	5926	5941	ATAACTAAGGG CATCT	69	F	429
1342741	Н/П	Н/П	5511	5526	ATATTTGTGTAC ACGA	32	F	430
1342746	Н/П	Н/П	8047	8062	CCTAAACAACC ATGGA	98	F	431
1342751	2171	2186	15865	15880	TATAGGTGTAA ACTAT	106	F	432
1342757	Н/П	Н/П	7806	7821	CCACAGAGTAT CTTAT	74	F	433
1342766	Н/П	Н/П	8739	8754	GTTTAAAGCAT AGTTA	97	F	434
1342768	1151	1166	14845	14860	TGACTAATCTCA CTGT	64	F	435
1342769	Н/П	Н/П	4159	4174	TAGTTAAGAAT ATTCG	72	F	436
1342782	Н/П	Н/П	11115	11130	GTAAAGACATA CACCC	85	F	437
1342848	Н/П	Н/П	11684	11699	CAACATATTACT ACCT	64	F	438
1342854	Н/П	Н/П	12042	12057	ATTATTATCTCA CTAC	69	F	439
1342866	Н/П	Н/П	12357	12372	TGGGTAAAAGT TCTAA	67	F	440
1342890	Н/П	Н/П	7342	7357	GCATTAATCTCC ATCT	37	F	441
1342896	Н/П	Н/П	11956	11971	CCACAAGCTATT GCTG	34	F	442
1342932	Н/П	Н/П	8326	8341	ATCCTATTTTG GAGT	90	F	443
1342969	Н/П	Н/П	3615	3630	CAGTAACCAGG ATCAA	46	F	444
1342974	241	256	13935	13950	GAGCGAGTGAG GTATT	50	F	445

1342986	Н/П	Н/П	9377	9392	GGACGAATGTT TGAGC	90	F	446
1342994	1537	1552	15231	15246	CTATTAGGTAGT TAAG	45	F	447
1343019	716	731	14410	14425	ATATGAAGTGA ACTTG	78	F	448
1343031	182	197	13876	13891	TAAGTGGTCGA GAGAA	9†	F	449
1343049	528	543	14222	14237	GGTAACAATAA GTTTT	24	F	450
1343051	1980	1995	15674	15689	GATCTATAATTT AGCT	76	F	451
1343072	Н/П	Н/П	8542	8557	CTAAACTTAAAT CTGC	165	F	452
1343084	Н/П	Н/П	6291	6306	AAAGATGGAGT ACCTT	55	F	453
1343112	1269	1284	14963	14978	GTCTTAAGGTTT CATG	15	F	454
1343129	Н/П	Н/П	9550	9565	TTATTTAGTATC CTAG	69	F	455
1343133	Н/П	Н/П	13816	13831	AGGTAGCCTGG AATGT	79†	F	456
1343142	917	932	14611	14626	GATTCTGATAGT TACT	17	F	457
1343160	Н/П	Н/П	12246	12261	GCATACAACAA ATTGT	57	F	458
1343165	Н/П	Н/П	4943	4958	CAATGTATGGT ACTAC	45	F	459
1343168	Н/П	Н/П	6579	6594	TGACAATTTAGC TTAT	85	F	460
1343174	Н/П	Н/П	12817	12832	ACAATTCAAAT ACGGT	37	F	461
1343180	Н/П	Н/П	6156	6171	GTACAAAGAGA CTACT	79	F	462

1343185	425	440	14119	14134	GACAGATTTTA AGCTG	33	F	463
1343191	994	1009	14688	14703	TTCCATACTTGA TTCT	28	F	464
1343199	Н/П	Н/П	10718	10733	ACAACAAGCTC CCCAT	81	F	465
1343203	Н/П	Н/П	3802	3817	TGTAAATAGCTC AGTT	32	F	466
1343213	2256	2271	15950	15965	GTTAATTACACA TCCT	42	F	467
1343225	2870	2885	16564	16579	GAACTTATTCTA TAGT	95	F	468
998326	240	255	13934	13949	AGCGAGTGAGG TATTG	32	G	469
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	11	G	198
1342191	Н/П	Н/П	11680	11695	ATATTACTACCT TACC	82	G	470
1342195	Н/П	Н/П	8288	8303	ATAATTTATGGC ATGG	69	G	471
1342207	Н/П	Н/П	7555	7570	CATATACCATGT TAGG	50	G	472
1342233	Н/П	Н/П	8498	8513	ATTTAATTTATT GGGC	50	G	473
1342270	993	1008	14687	14702	TCCATACTTGAT TCTC	13	G	474
1342292	1234	1249	14928	14943	GTAAGCTAGGT AACTC	41	G	475
1342325	715	730	14409	14424	TATGAAGTGAA CTTGT	22	G	476
1342337	1491	1506	15185	15200	CTAACCCCATG TTCA	61	G	477
1342351	Н/П	Н/П	10062	10077	CCTATTTGAACA TATG	82	G	478

1342365	Н/П	Н/П	4984	4999	CTTAACTTGCAC CTTA	51	G	479
1342372	Н/П	Н/П	4543	4558	TCTTATTTGTAG TGAG	45	G	480
1342385	Н/П	Н/П	3614	3629	AGTAACCAGGA TCAAA	51	G	481
1342395	Н/П	Н/П	8733	8748	AGCATAGTTAA CATAC	56	G	482
1342402	Н/П	Н/П	12813	12828	TTCAAATACGGT GGGA	70	G	483
1342414	Н/П	Н/П	7341	7356	CATTAATCTCCA TCTA	68	G	484
1342415	2170	2185	15864	15879	ATAGGTGTAAA CTATT	99	G	485
1342419	Н/П	Н/П	13486	13501	AAGTATTGGAG TAATC	79	G	486
1342424	Н/П	Н/П	4693	4708	CATAAGACACC TACAC	81	G	487
1342428	Н/П	Н/П	11511	11526	GACTAGTTAGA ACCCG	15	G	488
1342429	1910	1925	15604	15619	AATAGCTATATC CTAT	94	G	489
1342435	Н/П	Н/П	12243	12258	TACAACAAATT GTTCC	87	G	490
1342450	2068	2083	15762	15777	TTATGAGTTATT GGAA	64	G	491
1342455	1195	1210	14889	14904	GCCTTAAATGA AGATT	40	G	492
1342464	Н/П	Н/П	9549	9564	TATTTAGTATCC TAGT	73	G	493
1342486	Н/П	Н/П	12041	12056	TTATTATCTCAC TACC	53	G	494
1342496	181	196	13875	13890	AAGTGGTCGAG AGAAA	25†	G	495

1342504	Н/П	Н/П	3831	3846	AGTCAAATGAC TATTC	67	G	496
1342553	Н/П	Н/П	6826	6841	TAAACTTGGAC ATTCT	46	G	497
1342562	Н/П	Н/П	7799	7814	GTATCTTATGTC TGTG	46	G	498
1342565	Н/П	Н/П	7106	7121	GATATACTCTAG GATG	65	G	499
1342571	Н/П	Н/П	5925	5940	TAACTAAGGGC ATCTG	78	G	500
1342578	Н/П	Н/П	6275	6290	TTCAAAGGCAC TAGAG	90	G	501
1342599	1567	1582	15261	15276	TTATCAGTAAG GTTTA	30	G	502
1342645	Н/П	Н/П	6066	6081	TTTAGGTATCAG ATGA	29	G	503
1342665	1819	1834	15513	15528	CCACACCCCTA AGACA	108	G	504
1342673	916	931	14610	14625	ATTCTGATAGTT ACTA	34	G	505
1342674	Н/П	Н/П	6155	6170	TACAAAGAGAC TACTT	77	G	506
1342680	Н/П	Н/П	6411	6426	AGGTAGTATTG AGAAA	18	G	507
1342683	347	362	14041	14056	GATCAGCAAGA GACAT	76	G	508
1342687	Н/П	Н/П	6900	6915	GATTTACGATG AATCT	96	G	509
1342723	Н/П	Н/П	5674	5689	ATATAGAGGAT GTGCA	68	G	510
1342726	Н/П	Н/П	12356	12371	GGGTAAAAGTT CTAAC	66	G	511
1342733	Н/П	Н/П	9707	9722	AGTTATTAAGGT GGAA	56	G	512

1342781	Н/П	Н/П	11112	11127	AAGACATACAC CCATG	88	G	513
1342792	630	645	14324	14339	GTTGAGGAAAT CAACA	112	G	514
1342829	Н/П	Н/П	4942	4957	AATGTATGGTA CTACC	40	G	515
1342831	Н/П	Н/П	10645	10660	GTTAAAAATAA GGGAC	86	G	516
1342838	Н/П	Н/П	11409	11424	TAGTAGACTGG GCATT	55	G	517
1342839	Н/П	Н/П	6578	6593	GACAATTTAGCT TATT	79	G	518
1342873	1314	1329	15008	15023	GGATGTTAGGC TGGAA	7	G	519
1342881	94	109	3356	3371	AGTATAGAGTA TTGTG	48	G	520
1342892	Н/П	Н/П	6965	6980	CATAAGTGAAT GTGCA	40	G	521
1342893	825	840	14519	14534	TTATTACTTTGA TACT	57	G	522
1342930	423	438	14117	14132	CAGATTTTAAGC TGAT	93	G	523
1342939	Н/П	Н/П	4253	4268	AGGAAATGGAG TACCA	90	G	524
1342940	Н/П	Н/П	4807	4822	TTAGAGTAATAT GTGA	48	G	525
1342959	1534	1549	15228	15243	TTAGGTAGTTAA GATT	12	G	526
1342981	387	402	14081	14096	AGGTTGTAGCA GAACT	55	G	527
1342982	Н/П	Н/П	13814	13829	GTAGCCTGGAA TGTAA	75†	G	528
1342983	Н/П	Н/П	8961	8976	GATTAACTAGTT CTAA	61	G	529

1342998	Н/П	Н/П	5399	5414	AACTAGACTTTA GGTT	98	G	530
1343001	Н/П	Н/П	12546	12561	CTTAAACATGCC AGTG	99	G	531
1343022	1068	1083	14762	14777	TGTACTAGAATT CTGT	27	G	532
1343027	1268	1283	14962	14977	TCTTAAGGTTTC ATGA	57	G	533
1343039	Н/П	Н/П	11931	11946	CCTATACTTTGA TGAT	57	G	534
1343073	518	533	14212	14227	AGTTTTAGTCTT AATC	36	G	535
1343074	1977	1992	15671	15686	CTATAATTTAGC TCAG	35	G	536
1343085	1098	1113	14792	14807	GTCTTAGAACA GATTT	31	G	537
1343091	Н/П	Н/П	5502	5517	TACACGAGTAT ATTAG	23	G	538
1343094	Н/П	Н/П	7460	7475	ATGTAATATCA GATGC	47	G	539
1343116	Н/П	Н/П	3801	3816	GTAAATAGCTC AGTTC	33	G	540
1343128	1150	1165	14844	14859	GACTAATCTCAC TGTC	91	G	541
1343146	Н/П	Н/П	7968	7983	ACACAAGAGTG GTATT	64	G	542
1343221	2856	2871	16550	16565	GTAGAACATAT TTGAG	60	G	543
1343222	2255	2270	15949	15964	TTAATTACACAT CCTC	54	G	544
1343223	Н/П	Н/П	4116	4131	AAATTATTCTCT AACG	84	G	545
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	17	Н	198

1342174	Н/П	Н/П	6825	6840	AAACTTGGACA TTCTA	61	Н	546
1342194	Н/П	Н/П	8287	8302	TAATTTATGGCA TGGT	86	Н	547
1342201	Н/П	Н/П	11679	11694	TATTACTACCTT ACCC	79	Н	548
1342213	Н/П	Н/П	5673	5688	TATAGAGGATG TGCAT	48	Н	549
1342218	Н/П	Н/П	4672	4687	GACTTTTATGTA CTAT	33	Н	550
1342221	Н/П	Н/П	4974	4989	ACCTTAAGGTAT AGAT	70	Н	551
1342243	92	107	3354	3369	TATAGAGTATTG TGTT	63	Н	552
1342272	Н/П	Н/П	7797	7812	ATCTTATGTCTG TGGA	73	Н	553
1342274	Н/П	Н/П	9706	9721	GTTATTAAGGTG GAAT	83	Н	554
1342286	1971	1986	15665	15680	TTTAGCTCAGTA GAGT	47	Н	555
1342294	1066	1081	14760	14775	TACTAGAATTCT GTGA	45	Н	556
1342296	421	436	14115	14130	GATTTTAAGCTG ATGT	31	Н	557
1342310	1818	1833	15512	15527	CACACCCCTAA GACAA	71	Н	558
1342314	Н/П	Н/П	7320	7335	TAAGTATGTTCA CTTC	90	Н	559
1342316	Н/П	Н/П	3799	3814	AAATAGCTCAG TTCTG	60	Н	560
1342320	Н/П	Н/П	6409	6424	GTAGTATTGAG AAAGT	28	Н	561
1342324	Н/П	Н/П	3612	3627	TAACCAGGATC AAAGA	160	Н	562

1342330	Н/П	Н/П	7102	7117	TACTCTAGGATG TTTT	64	Н	563
1342341	625	640	14319	14334	GGAAATCAACA GTTGC	10	Н	564
1342368	1490	1505	15184	15199	TAACCCCATGT TCAA	59	Н	565
1342375	Н/П	Н/П	4252	4267	GGAAATGGAGT ACCAC	87	Н	566
1342388	176	191	13870	13885	GTCGAGAGAAA GATAA	43†	Н	567
1342416	Н/П	Н/П	8732	8747	GCATAGTTAAC ATACT	43	Н	568
1342421	Н/П	Н/П	7967	7982	CACAAGAGTGG TATTC	62	Н	569
1342441	Н/П	Н/П	10638	10653	ATAAGGGACAT AGCAG	88	Н	570
1342466	1233	1248	14927	14942	TAAGCTAGGTA ACTCT	57	Н	571
1342472	714	729	14408	14423	ATGAAGTGAAC TTGTT	57	Н	572
1342478	1186	1201	14880	14895	GAAGATTAGAT TCTGT	33	Н	573
1342487	Н/П	Н/П	6577	6592	ACAATTTAGCTT ATTG	94	Н	574
1342511	Н/П	Н/П	7554	7569	ATATACCATGTT AGGC	45	Н	575
1342528	Н/П	Н/П	12812	12827	TCAAATACGGT GGGAT	26	Н	576
1342532	232	247	13926	13941	AGGTATTGGAC TTTCT	24†	Н	577
1342533	Н/П	Н/П	12040	12055	TATTATCTCACT ACCA	73	Н	578
1342547	2067	2082	15761	15776	TATGAGTTATTG GAAG	58	Н	579

1342548	1564	1579	15258	15273	TCAGTAAGGTTT ATGG	23	Н	580
1342560	1148	1163	14842	14857	CTAATCTCACTG TCAC	24	Н	581
1342600	346	361	14040	14055	ATCAGCAAGAG ACATA	49	Н	582
1342604	Н/П	Н/П	4884	4899	CTGTTAACTGAG ACAT	63	Н	583
1342605	Н/П	Н/П	10054	10069	AACATATGGTTT TGTG	84	Н	584
1342606	Н/П	Н/П	6942	6957	TTTTTTGGACTT GTGG	16	Н	585
1342663	Н/П	Н/П	4806	4821	TAGAGTAATAT GTGAT	44	Н	586
1342672	1313	1328	15007	15022	GATGTTAGGCT GGAAT	32	Н	587
1342725	Н/П	Н/П	5394	5409	GACTTTAGGTTT TTTA	49	Н	588
1342738	Н/П	Н/П	7459	7474	TGTAATATCAG ATGCA	20	Н	589
1342754	991	1006	14685	14700	CATACTTGATTC TCAT	33	Н	590
1342783	384	399	14078	14093	TTGTAGCAGAA CTTCA	76	Н	591
1342788	Н/П	Н/П	11368	11383	CATAATATTGGT CTGT	38	Н	592
1342796	Н/П	Н/П	11111	11126	AGACATACACC CATGA	86	Н	593
1342810	2169	2184	15863	15878	TAGGTGTAAAC TATTT	59	Н	594
1342820	1909	1924	15603	15618	ATAGCTATATCC TATT	77	Н	595
1342845	Н/П	Н/П	8494	8509	AATTTATTGGGC TCAA	47	Н	596

1342861	1093	1108	14787	14802	AGAACAGATTT ATGAT	38	Н	597
1342872	Н/П	Н/П	4542	4557	CTTATTTGTAGT GAGC	15	Н	598
1342922	Н/П	Н/П	6059	6074	ATCAGATGAAT TGAAG	40	Н	599
1342929	Н/П	Н/П	11510	11525	ACTAGTTAGAA CCCGG	83	Н	600
1342941	Н/П	Н/П	13485	13500	AGTATTGGAGT AATCC	65	Н	601
1343007	Н/П	Н/П	6899	6914	ATTTACGATGA ATCTG	74	Н	602
1343015	Н/П	Н/П	3830	3845	GTCAAATGACT ATTCA	86	Н	603
1343018	Н/П	Н/П	6154	6169	ACAAAGAGACT ACTTG	76	Н	604
1343024	Н/П	Н/П	8955	8970	CTAGTTCTAATA ACAA	82	Н	605
1343053	Н/П	Н/П	11900	11915	TTACATGTCATT ACAG	49	Н	606
1343054	515	530	14209	14224	TTTAGTCTTAAT CTTG	26	Н	607
1343061	Н/П	Н/П	12530	12545	AACCTAATGTG CACTG	50	Н	608
1343077	Н/П	Н/П	5501	5516	ACACGAGTATA TTAGG	9	Н	609
1343108	Н/П	Н/П	12242	12257	ACAACAAATTG TTCCC	12	Н	610
1343124	913	928	14607	14622	CTGATAGTTACT ACAA	22	Н	611
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	7	Н	612
1343156	1533	1548	15227	15242	TAGGTAGTTAA GATTT	37	Н	613

1343167	Н/П	Н/П	6274	6289	TCAAAGGCACT AGAGG	70	Н	614
1343173	1265	1280	14959	14974	TAAGGTTTCATG ATTC	14	Н	615
1343179	Н/П	Н/П	5924	5939	AACTAAGGGCA TCTGT	80	Н	616
1343187	Н/П	Н/П	9541	9556	ATCCTAGTACTT AGTG	101	Н	617
1343201	Н/П	Н/П	13786	13801	GATTAGAATCA TCTAT	101	Н	618
1343205	Н/П	Н/П	12355	12370	GGTAAAAGTTC TAACA	75	Н	619
1343209	Н/П	Н/П	3981	3996	TGTTAAAAGTTG ACTG	94	Н	620
1343217	2220	2235	15914	15929	ATATTAGTAAC ATGTC	103	Н	621
1343220	2733	2748	16427	16442	AGTTATAGTATT CTGT	58	Н	622
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	21	I	198
1342170	Н/П	Н/П	13460	13475	TCCATAAGTTCC TGGA	76	I	623
1342172	Н/П	Н/П	7083	7098	CATCTAATTGGT TTAG	76	I	624
1342197	Н/П	Н/П	8944	8959	AACAATTTGTTA GTTG	90	I	625
1342198	Н/П	Н/П	6268	6283	GCACTAGAGGT CCTCA	68	I	626
1342211	Н/П	Н/П	8286	8301	AATTTATGGCAT GGTT	81	I	627
1342224	712	727	14406	14421	GAAGTGAACTT GTTGG	34	I	628
1342230	1967	1982	15661	15676	GCTCAGTAGAG TGGAC	67	I	629

1342261	1312	1327	15006	15021	ATGTTAGGCTG GAATG	47	I	630
1342277	Н/П	Н/П	9540	9555	TCCTAGTACTTA GTGC	75	I	631
1342284	1264	1279	14958	14973	AAGGTTTCATG ATTCC	15	I	632
1342304	1908	1923	15602	15617	TAGCTATATCCT ATTA	57	I	633
1342306	419	434	14113	14128	TTTTAAGCTGAT GTGG	33	I	634
1342321	1488	1503	15182	15197	ACCCCCATGTTC AAGG	69	I	635
1342326	91	106	3353	3368	ATAGAGTATTGT GTTG	36	I	636
1342363	Н/П	Н/П	5359	5374	ACATAATTTAGT GTAC	107	I	637
1342369	1563	1578	15257	15272	CAGTAAGGTTT ATGGT	32	I	638
1342373	Н/П	Н/П	5859	5874	GACTATTAAGA ATGTA	91	Ι	639
1342378	149	164	13843	13858	CCAAATATGAG ATAAC	77 †	I	640
1342405	Н/П	Н/П	7965	7980	CAAGAGTGGTA TTCAT	43	I	641
1342412	Н/П	Н/П	7284	7299	CAGTATTTTGG TGGT	11	I	642
1342437	Н/П	Н/П	4805	4820	AGAGTAATATG TGATA	44	I	643
1342475	624	639	14318	14333	GAAATCAACAG TTGCA	14	I	644
1342476	Н/П	Н/П	6806	6821	GAAGTTACTTTG TGGT	25	I	645
1342517	2063	2078	15757	15772	AGTTATTGGAA GATGT	47	I	646

1342536	990	1005	14684	14699	ATACTTGATTCT CATC	18	I	647
1342555	Н/П	Н/П	8708	8723	GATCTTATAATC CTAC	62	I	648
1342559	Н/П	Н/П	4530	4545	GAGCAATAGAA TTAAC	62	I	649
1342563	Н/П	Н/П	11104	11119	CACCCATGAAT ATTCA	94	I	650
1342582	Н/П	Н/П	11859	11874	AACTGTATTAAC TGTC	70	I	651
1342594	2167	2182	15861	15876	GGTGTAAACTA TTTTA	65	I	652
1342611	1147	1162	14841	14856	TAATCTCACTGT CACA	34	I	653
1342613	Н/П	Н/П	9703	9718	ATTAAGGTGGA ATTGG	54	I	654
1342622	912	927	14606	14621	TGATAGTTACTA CAAA	69	I	655
1342627	Н/П	Н/П	6930	6945	GTGGTAATAAA TTAGG	38	I	656
1342635	1085	1100	14779	14794	TTTATGATTTAC CTAC	52	I	657
1342646	Н/П	Н/П	12032	12047	CACTACCACAG ACATA	N.D.	I	658
1342653	Н/П	Н/П	12348	12363	GTTCTAACATAT AGTT	69	I	659
1342660	Н/П	Н/П	4883	4898	TGTTAACTGAG ACATA	73	I	660
1342669	Н/П	Н/П	6055	6070	GATGAATTGAA GGCAT	56	I	661
1342690	Н/П	Н/П	3724	3739	ATTAACCACTAC TACC	118	I	662
1342701	345	360	14039	14054	TCAGCAAGAGA CATAT	58	I	663

1342707	1184	1199	14878	14893	AGATTAGATTCT GTTG	29	I	664
1342731	Н/П	Н/П	4234	4249	GAGGATAATAA CTTGA	29	I	665
1342776	Н/П	Н/П	13777	13792	CATCTATGTAAC CTAT	95	I	666
1342777	513	528	14207	14222	TAGTCTTAATCT TGAC	N.D.	I	667
1342780	Н/П	Н/П	12241	12256	CAACAAATTGTT CCCT	80	I	668
1342801	Н/П	Н/П	11356	11371	CTGTAGCAAGG AGTTC	57	I	669
1342821	Н/П	Н/П	6576	6591	CAATTTAGCTTA TTGC	93	I	670
1342868	Н/П	Н/П	6896	6911	TACGATGAATCT GTTG	88	I	671
1342874	Н/П	Н/П	12760	12775	GCATTTGTATGA TCAC	29	I	672
1342888	Н/П	Н/П	6407	6422	AGTATTGAGAA AGTCT	32	I	673
1342924	Н/П	Н/П	7553	7568	TATACCATGTTA GGCA	58	I	674
1342944	Н/П	Н/П	5500	5515	CACGAGTATATT AGGA	10	I	675
1342951	Н/П	Н/П	11509	11524	CTAGTTAGAAC CCGGC	56	I	676
1342954	Н/П	Н/П	10623	10638	GCTTAAACTTGA CATA	78	I	677
1342968	Н/П	Н/П	4972	4987	CTTAAGGTATA GATGA	58	I	678
1342971	Н/П	Н/П	12529	12544	ACCTAATGTGC ACTGT	79	I	679
1342996	821	836	14515	14530	TACTTTGATACT TGGT	19	I	680

1342999	Н/П	Н/П	10019	10034	GTCTTAAAAGG TCAGA	76	I	681
1343026	1065	1080	14759	14774	ACTAGAATTCTG TGAT	33	I	682
1343106	Н/П	Н/П	7779	7794	CATGATTACTCT ACTT	50	I	683
1343107	Н/П	Н/П	3598	3613	GATGAATATGA CCTTT	23	I	684
1343118	Н/П	Н/П	3823	3838	GACTATTCATAT TAGT	73	I	685
1343119	1232	1247	14926	14941	AAGCTAGGTAA CTCTA	60	I	686
1343122	Н/П	Н/П	5599	5614	GATCTTGAGCA GTTCA	78	I	687
1343126	Н/П	Н/П	3980	3995	GTTAAAAGTTG ACTGG	30	I	688
1343134	1531	1546	15225	15240	GGTAGTTAAGA TTTTG	13	I	689
1343149	Н/П	Н/П	11670	11685	CTTACCCCAGGT GTCA	92	I	690
1343153	Н/П	Н/П	4665	4680	ATGTACTATCAA AGGA	65	I	691
1343161	Н/П	Н/П	7457	7472	TAATATCAGAT GCATT	43	I	692
1343170	Н/П	Н/П	8493	8508	ATTTATTGGGCT CAAT	76	I	693
1343176	Н/П	Н/П	6147	6162	GACTACTTGATT CTAG	82	I	694
1343192	224	239	13918	13933	GACTTTCTCCAT GATA	21†	I	695
1343204	1817	1832	15511	15526	ACACCCCTAAG ACAAG	137	I	696
1343208	372	387	14066	14081	TTCAGAGAAGC ATCAC	N.D.	I	697

1343231	2728	2743	16422	16437	TAGTATTCTGTA ATCC	64	I	698
1343232	2219	2234	15913	15928	TATTAGTAACAT GTCT	29	I	699
1091598	560	575	14254	14269	ATGTTTACAAG ATCCA	8	J	700
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	10	J	198
1342161	1254	1269	14948	14963	GATTCCAAAGA TATAG	16	J	701
1342165	Н/П	Н/П	4971	4986	TTAAGGTATAG ATGAA	87	J	702
1342186	Н/П	Н/П	8703	8718	TATAATCCTACA ACAG	34	J	703
1342205	1560	1575	15254	15269	TAAGGTTTATGG TCAA	6	J	704
1342209	Н/П	Н/П	7726	7741	TACTATTCTTTG TGGG	55	J	705
1342215	Н/П	Н/П	8447	8462	ATCCTAGTTCTA CTGA	70	J	706
1342229	Н/П	Н/П	3499	3514	GCCTAAGATTG AACTG	59	J	707
1342232	Н/П	Н/П	4519	4534	TTAACATTTGTC ATAG	43	J	708
1342245	1816	1831	15510	15525	CACCCCTAAGA CAAGA	79	J	709
1342246	1906	1921	15600	15615	GCTATATCCTAT TACA	58	J	710
1342259	Н/П	Н/П	3723	3738	TTAACCACTACT ACCA	64	J	711
1342262	Н/П	Н/П	5565	5580	AAATTGTAGAA TAGGG	79	J	712
1342279	1138	1153	14832	14847	TGTCACATATTA ACCA	29	J	713

1342281	911	926	14605	14620	GATAGTTACTAC AAAT	44	J	714
1342303	1948	1963	15642	15657	AAAATAGATGC TTACC	52	J	715
1342323	Н/П	Н/П	3978	3993	TAAAAGTTGAC TGGAC	50	J	716
1342327	2189	2204	15883	15898	AATTGTTGGATT ATGC	32	J	717
1342332	Н/П	Н/П	9940	9955	GAAGCATATAC AGGAG	37	J	718
1342393	989	1004	14683	14698	TACTTGATTCTC ATCA	37	J	719
1342396	Н/П	Н/П	12027	12042	CCACAGACATA TCCTA	40	J	720
1342400	Н/П	Н/П	4643	4658	TGAGTATAGAG ATATG	26	J	721
1342417	Н/П	Н/П	13776	13791	ATCTATGTAACC TATC	40	J	722
1342444	Н/П	Н/П	9538	9553	CTAGTACTTAGT GCAT	69	J	723
1342448	1228	1243	14922	14937	TAGGTAACTCTA GCTC	48	J	724
1342471	Н/П	Н/П	7929	7944	CAAATTGTCTTC TAGG	79	J	725
1342482	Н/П	Н/П	13438	13453	GACTTTACGCA AAACA	72	J	726
1342515	Н/П	Н/П	11068	11083	GCAAAGACATG AACCG	50	J	727
1342546	820	835	14514	14529	ACTTTGATACTT GGTG	24	J	728
1342564	Н/П	Н/П	5341	5356	GTGTAATGAGT ACATT	74	J	729
1342570	Н/П	Н/П	6575	6590	AATTTAGCTTAT TGCT	130	J	730

1342581	Н/П	Н/П	12315	12330	CTGTAGATGTA ATTGG	17	J	731
1342586	Н/П	Н/П	5850	5865	GAATGTAATGC TATGC	11	J	732
1342591	2164	2179	15858	15873	GTAAACTATTTT AGAC	96	J	733
1342624	Н/П	Н/П	8943	8958	ACAATTTGTTAG TTGG	51	J	734
1342626	Н/П	Н/П	11636	11651	GTCCTTTTATAC ATCC	38	J	735
1342658	1302	1317	14996	15011	GGAATGGAAGA CAACC	28	J	736
1342668	Н/П	Н/П	5499	5514	ACGAGTATATT AGGAA	5	J	737
1342679	Н/П	Н/П	7548	7563	CATGTTAGGCA ACATG	102	J	738
1342696	Н/П	Н/П	8285	8300	ATTTATGGCATG GTTG	104	J	739
1342698	Н/П	Н/П	4233	4248	AGGATAATAAC TTGAC	9	J	740
1342755	1082	1097	14776	14791	ATGATTTACCTA CATG	79	J	741
1342756	Н/П	Н/П	7280	7295	ATTTTTGGTGGT ATTC	32	J	742
1342761	Н/П	Н/П	11858	11873	ACTGTATTAACT GTCC	36	J	743
1342763	Н/П	Н/П	7082	7097	ATCTAATTGGTT TAGA	74	J	744
1342775	Н/П	Н/П	10532	10547	CTTTAAGTTGCT TATG	58	J	745
1342824	371	386	14065	14080	TCAGAGAAGCA TCACG	47	J	746
1342836	Н/П	Н/П	4804	4819	GAGTAATATGT GATAT	88	J	747

1342855	Н/П	Н/П	6406	6421	GTATTGAGAAA GTCTT	31	J	748
1342876	418	433	14112	14127	TTTAAGCTGATG TGGC	21	J	749
1342908	342	357	14036	14051	GCAAGAGACAT ATTAA	37	J	750
1342909	Н/П	Н/П	6928	6943	GGTAATAAATT AGGAC	26	J	751
1342911	1530	1545	15224	15239	GTAGTTAAGATT TTGC	8	J	752
1342917	Н/П	Н/П	4881	4896	TTAACTGAGAC ATACT	75	J	753
1342931	1470	1485	15164	15179	CAGCTGTAGAT GTAAT	61	J	754
1342935	Н/П	Н/П	11475	11490	ACCATATGGTTT ATGG	81	J	755
1342952	88	103	3350	3365	GAGTATTGTGTT GTAT	14	J	756
1342960	145	160	13839	13854	ATATGAGATAA CTGTC	52†	J	757
1342965	1172	1187	14866	14881	GTTGTTAGTATA TTAG	28	J	758
1342975	Н/П	Н/П	6054	6069	ATGAATTGAAG GCATG	74	J	759
1343008	Н/П	Н/П	6126	6141	CTAGAATAAAG TATCG	70	J	760
1343010	1020	1035	14714	14729	TATTATGTAAGA GTAT	112	J	761
1343020	711	726	14405	14420	AAGTGAACTTG TTGGC	16	J	762
1343034	Н/П	Н/П	12239	12254	ACAAATTGTTCC CTGG	68	J	763
1343041	Н/П	Н/П	6746	6761	GAATCTTCAAG CTGCT	32	J	764

1343045	Н/П	Н/П	6893	6908	GATGAATCTGTT GGCT	34	J	765
1343048	2059	2074	15753	15768	ATTGGAAGATG TTCTG	55	J	766
1343063	509	524	14203	14218	CTTAATCTTGAC CTTT	21	J	767
1343064	Н/П	Н/П	3821	3836	CTATTCATATTA GTTC	57	J	768
1343066	Н/П	Н/П	12498	12513	GAAACCAGAGT CCCAC	66	J	769
1343075	218	233	13912	13927	CTCCATGATACC AGCA	10†	J	770
1343083	Н/П	Н/П	9702	9717	TTAAGGTGGAA TTGGT	47	J	771
1343097	Н/П	Н/П	7436	7451	GCGGAAGGAAC CTCAA	91	J	772
1343102	Н/П	Н/П	12735	12750	TACCAATTTTTA TTCG	79	J	773
1343158	Н/П	Н/П	6267	6282	CACTAGAGGTC CTCAG	68	J	774
1343211	Н/П	Н/П	11353	11368	TAGCAAGGAGT TCCAA	94	J	775
1343226	2633	2648	16327	16342	GTAACAAACAG TGTAA	60	J	776
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	22	K	198
1342175	Н/П	Н/П	9936	9951	CATATACAGGA GTCAT	59	K	777
1342177	Н/П	Н/П	6677	6692	TCCTAAATTGAC CCAT	52	K	778
1342181	Н/П	Н/П	6053	6068	TGAATTGAAGG CATGA	45	K	779
1342210	Н/П	Н/П	8855	8870	CCTAAATTAATG GTTA	76	K	780

1342227	Н/П	Н/П	4878	4893	ACTGAGACATA CTAGT	94	K	781
1342241	Н/П	Н/П	4968	4983	AGGTATAGATG AACTA	64	K	782
1342244	2188	2203	15882	15897	ATTGTTGGATTA TGCA	37	K	783
1342256	1559	1574	15253	15268	AAGGTTTATGGT CAAT	9	K	784
1342258	Н/П	Н/П	12017	12032	ATCCTATTTACA GACT	81	K	785
1342269	Н/П	Н/П	5563	5578	ATTGTAGAATA GGGAT	35	K	786
1342307	1225	1240	14919	14934	GTAACTCTAGCT CAGA	26	K	787
1342339	368	383	14062	14077	GAGAAGCATCA CGATG	35	K	788
1342371	341	356	14035	14050	CAAGAGACATA TTAAG	65	K	789
1342427	Н/П	Н/П	7546	7561	TGTTAGGCAAC ATGTT	64	K	790
1342452	Н/П	Н/П	12734	12749	ACCAATTTTAT TCGA	65	K	791
1342460	Н/П	Н/П	7908	7923	GAATCAAGAGT ATTGA	28	K	792
1342470	1905	1920	15599	15614	CTATATCCTATT ACAG	48	K	793
1342483	818	833	14512	14527	TTTGATACTTGG TGAA	23	K	794
1342484	909	924	14603	14618	TAGTTACTACAA ATAG	44	K	795
1342490	Н/П	Н/П	5294	5309	ACTATTGTATTT ATGC	57	K	796
1342500	987	1002	14681	14696	CTTGATTCTCAT CAAC	64	K	797

1342539	Н/П	Н/П	7073	7088	GTTTAGAAGATT AGAA	76	K	798
1342567	559	574	14253	14268	TGTTTACAAGAT CCAA	24	K	799
1342575	Н/П	Н/П	6574	6589	ATTTAGCTTATT GCTG	91	K	800
1342601	1081	1096	14775	14790	TGATTTACCTAC ATGT	44	K	801
1342607	1137	1152	14831	14846	GTCACATATTAA CCAC	28	K	802
1342609	Н/П	Н/П	7679	7694	TCAAGAAAAGT AACGC	78	K	803
1342616	216	231	13910	13925	CCATGATACCA GCAGG	39†	K	804
1342623	Н/П	Н/П	6249	6264	GACTATGAGTA TGCTG	33	K	805
1342625	Н/П	Н/П	11856	11871	TGTATTAACTGT CCAG	23	K	806
1342634	Н/П	Н/П	8284	8299	TTTATGGCATGG TTGT	58	K	807
1342649	Н/П	Н/П	7411	7426	GAAAACTTTTG GTGGC	22	K	808
1342671	Н/П	Н/П	4232	4247	GGATAATAACT TGACA	52	K	809
1342675	417	432	14111	14126	TTAAGCTGATGT GGCA	33	K	810
1342686	2047	2062	15741	15756	TCTGAAATGGTC AGAG	79	K	811
1342694	1252	1267	14946	14961	TTCCAAAGATAT AGTA	41	K	812
1342695	487	502	14181	14196	AGAAACTCTTCT ACTC	72	K	813
1342702	Н/П	Н/П	6927	6942	GTAATAAATTA GGACA	80	K	814

1342734	710	725	14404	14419	AGTGAACTTGTT GGCA	29	K	815
1342739	Н/П	Н/П	6405	6420	TATTGAGAAAG TCTTA	88	K	816
1342764	Н/П	Н/П	9669	9684	TTTAATAGGGCT TTAG	79	K	817
1342785	81	96	3343	3358	GTGTTGTATGAA GTCT	17	K	818
1342794	1529	1544	15223	15238	TAGTTAAGATTT TGCG	22	K	819
1342814	Н/П	Н/П	9537	9552	TAGTACTTAGTG CATA	59	K	820
1342853	Н/П	Н/П	13736	13751	CACTAATTCATC TTCC	89	K	821
1342857	1301	1316	14995	15010	GAATGGAAGAC AACCT	53	K	822
1342859	Н/П	Н/П	11474	11489	CCATATGGTTTA TGGT	79	K	823
1342878	Н/П	Н/П	7131	7146	CAAGTAATATCT AAGG	39	K	824
1342879	Н/П	Н/П	8655	8670	TGGAAACAAAT TGGGT	49	K	825
1342882	Н/П	Н/П	6881	6896	GGCTTACAAAA GTTCA	19	K	826
1342902	Н/П	Н/П	13431	13446	CGCAAAACAAC ATATA	86	K	827
1342919	Н/П	Н/П	4518	4533	TAACATTTGTCA TAGG	16	K	828
1342926	Н/П	Н/П	8427	8442	CAACATTTGTAT GATG	86	K	829
1342937	1811	1826	15505	15520	CTAAGACAAGA CTGCA	53	K	830
1342947	1019	1034	14713	14728	ATTATGTAAGA GTATG	93	K	831

1342956	Н/П	Н/П	3817	3832	TCATATTAGTTC AGAT	50	K	832
1342961	Н/П	Н/П	3977	3992	AAAAGTTGACT GGACT	56	K	833
1342989	Н/П	Н/П	11635	11650	TCCTTTTATACA TCCC	13	K	834
1342992	Н/П	Н/П	4802	4817	GTAATATGTGAT ATAG	70	K	835
1343012	1469	1484	15163	15178	AGCTGTAGATG TAATA	70	K	836
1343038	1170	1185	14864	14879	TGTTAGTATATT AGTG	73	K	837
1343043	Н/П	Н/П	3498	3513	CCTAAGATTGA ACTGA	51	K	838
1343044	2139	2154	15833	15848	AACTTTAGTCAA CTTA	44	K	839
1343047	Н/П	Н/П	6124	6139	AGAATAAAGTA TCGAA	95	K	840
1343069	144	159	13838	13853	TATGAGATAAC TGTCT	47†	K	841
1343080	Н/П	Н/П	11259	11274	TCTAAACAGGT GGCTA	79	K	842
1343086	Н/П	Н/П	12312	12327	TAGATGTAATTG GTTT	37	K	843
1343115	Н/П	Н/П	3716	3731	CTACTACCAAAT ATGG	94	K	844
1343120	Н/П	Н/П	5827	5842	GAATTTAAATG GAGTG	60	K	845
1343123	Н/П	Н/П	5489	5504	TAGGAAATTGC TCTTT	47	K	846
1343125	Н/П	Н/П	12238	12253	CAAATTGTTCCC TGGA	82	K	847
1343169	Н/П	Н/П	4642	4657	GAGTATAGAGA TATGG	18	K	848

1343177	1946	1961	15640	15655	AATAGATGCTT ACCAT	73	K	849
1343194	Н/П	Н/П	12472	12487	AGAATATGCAA GCCCC	73	K	850
1343210	Н/П	Н/П	10491	10506	GCTTATTGTAGA TCTA	23	K	851
1343230	Н/П	Н/П	11066	11081	AAAGACATGAA CCGGC	47	K	852
1343233	2612	2627	16306	16321	GGAATATGACT AATCA	48	K	853
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	13	L	198
1342164	Н/П	Н/П	5163	5178	TAGGAAATGAT AGTGC	33	L	854
1342178	2183	2198	15877	15892	TGGATTATGCA GTATA	16	L	855
1342185	Н/П	Н/П	7893	7908	AAAACATGAAA GGTGC	48	L	856
1342203	Н/П	Н/П	7522	7537	GCTACTATATAT CAAC	50	L	857
1342220	Н/П	Н/П	12471	12486	GAATATGCAAG CCCCA	62	L	858
1342235	Н/П	Н/П	4641	4656	AGTATAGAGAT ATGGA	19	L	859
1342248	Н/П	Н/П	11467	11482	GTTTATGGTGTT TAGA	46	L	860
1342278	143	158	13837	13852	ATGAGATAACT GTCTT	68†	L	861
1342290	Н/П	Н/П	5428	5443	TGGTAATATATT GTCT	49	L	862
1342308	Н/П	Н/П	10770	10785	GCAGAAAACTG TTGGG	262	L	863
1342342	79	94	3341	3356	GTTGTATGAAGT CTTA	13	L	864

1342347	Н/П	Н/П	12015	12030	CCTATTTACAGA CTTC	39	L	865
1342349	2046	2061	15740	15755	CTGAAATGGTC AGAGG	43	L	866
1342350	Н/П	Н/П	7050	7065	TAGATTGAATA AACAG	84	L	867
1342359	Н/П	Н/П	11633	11648	CTTTTATACATC CCAT	52	L	868
1342361	1300	1315	14994	15009	AATGGAAGACA ACCTG	36	L	869
1342370	Н/П	Н/П	9536	9551	AGTACTTAGTGC ATAA	96	L	870
1342406	Н/П	Н/П	6676	6691	CCTAAATTGACC CATA	48	L	871
1342422	Н/П	Н/П	8850	8865	ATTAATGGTTAC CTGA	44	L	872
1342430	Н/П	Н/П	6119	6134	AAAGTATCGAA ATGTG	86	L	873
1342443	Н/П	Н/П	3976	3991	AAAGTTGACTG GACTT	142	L	874
1342453	486	501	14180	14195	GAAACTCTTCTA CTCA	42	L	875
1342473	Н/П	Н/П	4966	4981	GTATAGATGAA CTAGT	68	L	876
1342495	Н/П	Н/П	8418	8433	TATGATGATAAT TAGG	40	L	877
1342497	Н/П	Н/П	5562	5577	TTGTAGAATAG GGATG	54	L	878
1342501	Н/П	Н/П	8653	8668	GAAACAAATTG GGTGT	50	L	879
1342506	Н/П	Н/П	8197	8212	TTCTTAACAGCT AAGC	56	L	880
1342510	Н/П	Н/П	12733	12748	CCAATTTTATT CGAT	81	L	881

1342513	Н/П	Н/П	7638	7653	CAAGATGGTAT TCTGG	32	L	882
1342516	Н/П	Н/П	6569	6584	GCTTATTGCTGT TGCT	78	L	883
1342519	Н/П	Н/П	9668	9683	TTAATAGGGCTT TAGT	77	L	884
1342524	Н/П	Н/П	6403	6418	TTGAGAAAGTC TTAAG	54	L	885
1342529	1131	1146	14825	14840	TATTAACCACCA GTTC	44	L	886
1342568	1165	1180	14859	14874	GTATATTAGTGA TATG	94	L	887
1342579	555	570	14249	14264	TACAAGATCCA ACAGA	55	L	888
1342588	Н/П	Н/П	4874	4889	AGACATACTAG TGAGC	45	L	889
1342590	Н/П	Н/П	6243	6258	GAGTATGCTGT ACATC	27	L	890
1342608	Н/П	Н/П	9934	9949	TATACAGGAGT CATCC	71	L	891
1342636	965	980	14659	14674	AGATGTTAATGT GGCA	5	L	892
1342650	Н/П	Н/П	6039	6054	GAGTATTTAGC AATG	44	L	893
1342654	1810	1825	15504	15519	TAAGACAAGAC TGCAA	75	L	894
1342659	817	832	14511	14526	TTGATACTTGGT GAAG	23	L	895
1342678	Н/П	Н/П	6923	6938	TAAATTAGGAC AGTTC	66	L	896
1342684	Н/П	Н/П	3816	3831	CATATTAGTTCA GATG	74	L	897
1342709	Н/П	Н/П	5774	5789	GAATTTGCCTTT TGCC	21	L	898

1342711	338	353	14032	14047	GAGACATATTA AGATG	63	L	899
1342713	416	431	14110	14125	TAAGCTGATGT GGCAA	29	L	900
1342717	1224	1239	14918	14933	TAACTCTAGCTC AGAT	59	L	901
1342790	Н/П	Н/П	3715	3730	TACTACCAAAT ATGGT	95	L	902
1342815	Н/П	Н/П	4221	4236	TGACAAAACTA TAGGC	38	L	903
1342830	Н/П	Н/П	11258	11273	CTAAACAGGTG GCTAA	81	L	904
1342846	Н/П	Н/П	12310	12325	GATGTAATTGGT TTGA	23	L	905
1342871	Н/П	Н/П	7130	7145	AAGTAATATCT AAGGC	63	L	906
1342885	1904	1919	15598	15613	TATATCCTATTA CAGT	77	L	907
1342903	214	229	13908	13923	ATGATACCAGC AGGAC	47†	L	908
1342918	Н/П	Н/П	6880	6895	GCTTACAAAAG TTCAC	48	L	909
1342920	1557	1572	15251	15266	GGTTTATGGTCA ATAG	12	L	910
1342927	908	923	14602	14617	AGTTACTACAA ATAGT	60	L	911
1342948	1080	1095	14774	14789	GATTTACCTACA TGTA	36	L	912
1342949	1524	1539	15218	15233	AAGATTTTGCG GACCC	18	L	913
1342955	Н/П	Н/П	13717	13732	GCACTATTGTTA TTTA	53	L	914
1342997	707	722	14401	14416	GAACTTGTTGGC AGTG	40	L	915

1343009	367	382	14061	14076	AGAAGCATCAC GATGA	48	L	916
1343023	Н/П	Н/П	3497	3512	CTAAGATTGAA CTGAT	63	L	917
1343033	1945	1960	15639	15654	ATAGATGCTTAC CATT	45	L	918
1343042	Н/П	Н/П	11855	11870	GTATTAACTGTC CAGA	26	L	919
1343055	1015	1030	14709	14724	TGTAAGAGTAT GGCCT	41	L	920
1343056	1250	1265	14944	14959	CCAAAGATATA GTATG	25	L	921
1343057	Н/П	Н/П	7393	7408	GCTTTATGACTT GCTA	47	L	922
1343065	2133	2148	15827	15842	AGTCAACTTAA ATTAC	109	L	923
1343081	1466	1481	15160	15175	TGTAGATGTAAT AGAT	14	L	924
1343096	Н/П	Н/П	4774	4789	ACAATAAAATA ACTCG	85	L	925
1343132	Н/П	Н/П	13409	13424	CCATTTTTACCC TAGG	51	L	926
1343151	Н/П	Н/П	4511	4526	TGTCATAGGAA TTGAG	23	L	927
1343193	Н/П	Н/П	12195	12210	TGTTAAATGGG AAGTG	58	L	928
1343202	Н/П	Н/П	10486	10501	TTGTAGATCTAG TGGA	65	L	929
1343214	2611	2626	16305	16320	GAATATGACTA ATCAG	69	L	930
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	19	M	198
1342179	814	829	14508	14523	ATACTTGGTGA AGACC	22	M	931

1342180	Н/П	Н/П	11632	11647	TTTTATACATCC CATA	73	M	932
1342184	Н/П	Н/П	6922	6937	AAATTAGGACA GTTCA	58	M	933
1342188	1555	1570	15249	15264	TTTATGGTCAAT AGTA	39	M	934
1342208	1942	1957	15636	15651	GATGCTTACCAT TTGG	53	M	935
1342237	Н/П	Н/П	6879	6894	CTTACAAAAGTT CACT	75	M	936
1342268	Н/П	Н/П	12470	12485	AATATGCAAGC CCCAC	77	M	937
1342280	Н/П	Н/П	4214	4229	ACTATAGGCATT AATA	74	M	938
1342282	1807	1822	15501	15516	GACAAGACTGC AAGAC	44	M	939
1342288	554	569	14248	14263	ACAAGATCCAA CAGAT	59	M	940
1342297	480	495	14174	14189	CTTCTACTCAGG AAGT	110	M	941
1342309	1249	1264	14943	14958	CAAAGATATAG TATGG	16	M	942
1342317	Н/П	Н/П	8826	8841	GTATTAACCTGA ACTA	103	M	943
1342340	1299	1314	14993	15008	ATGGAAGACAA CCTGC	46	M	944
1342343	78	93	3340	3355	TTGTATGAAGTC TTAC	55	M	945
1342344	Н/П	Н/П	13530	13545	GAGTAGTAACT TTAGT	68	M	946
1342360	Н/П	Н/П	3704	3719	ATGGTAACATA ATTGG	18	M	947
1342374	964	979	14658	14673	GATGTTAATGTG GCAT	38	M	948

1342376	Н/П	Н/П	11458	11473	GTTTAGATTCTG TAGT	40	M	949
1342379	Н/П	Н/П	4510	4525	GTCATAGGAAT TGAGA	13	M	950
1342383	Н/П	Н/П	6009	6024	AAACTTTGATTG ATTG	75	M	951
1342384	Н/П	Н/П	6209	6224	GTTTATTTGGTA ACAC	80	M	952
1342390	Н/П	Н/П	8641	8656	GTGTAAAGGAG ATGAC	65	M	953
1342391	907	922	14601	14616	GTTACTACAAAT AGTT	74	M	954
1342401	366	381	14060	14075	GAAGCATCACG ATGAT	35	M	955
1342431	Н/П	Н/П	9788	9803	CCTTTTGATTGT CTGC	38	M	956
1342433	706	721	14400	14415	AACTTGTTGGCA GTGC	40	M	957
1342434	Н/П	Н/П	9528	9543	GTGCATAATTG GTATG	61	M	958
1342520	Н/П	Н/П	6667	6682	ACCCATAATGA AGTGC	50	M	959
1342522	336	351	14030	14045	GACATATTAAG ATGAG	35	M	960
1342525	Н/П	Н/П	4965	4980	TATAGATGAAC TAGTT	68	M	961
1342530	Н/П	Н/П	10481	10496	GATCTAGTGGA TTGGA	62	M	962
1342542	Н/П	Н/П	12194	12209	GTTAAATGGGA AGTGT	55	M	963
1342550	Н/П	Н/П	12308	12323	TGTAATTGGTTT GATC	25	M	964
1342592	Н/П	Н/П	7047	7062	ATTGAATAAAC AGGAC	49	M	965

1342632	142	157	13836	13851	TGAGATAACTG TCTTC	28†	M	966
1342637	Н/П	Н/П	7595	7610	TAGAAAAGCCA TTAGG	103	М	967
1342641	Н/П	Н/П	10747	10762	CTTAATAACGG GATGA	78	M	968
1342644	Н/П	Н/П	3871	3886	GATAATATTGG AATAG	42	M	969
1342651	Н/П	Н/П	6369	6384	CTTAATAAATAT ACCC	118	M	970
1342652	Н/П	Н/П	4753	4768	ACCCAATTTGA AGTGT	79	M	971
1342685	1465	1480	15159	15174	GTAGATGTAAT AGATG	30	M	972
1342704	Н/П	Н/П	8413	8428	TGATAATTAGG CCAGA	26	M	973
1342708	Н/П	Н/П	7521	7536	CTACTATATATC AACT	94	М	974
1342718	Н/П	Н/П	4640	4655	GTATAGAGATA TGGAG	18	M	975
1342729	Н/П	Н/П	6118	6133	AAGTATCGAAA TGTGA	87	M	976
1342760	Н/П	Н/П	9660	9675	GCTTTAGTGTTA TCTA	54	M	977
1342779	Н/П	Н/П	11237	11252	GTTATTTAGGTT GTCT	27	M	978
1342807	Н/П	Н/П	5560	5575	GTAGAATAGGG ATGCA	50	М	979
1342809	1993	2008	15687	15702	AATAGCATAGC TGGAT	54	M	980
1342812	1523	1538	15217	15232	AGATTTTGCGG ACCCA	15	M	981
1342816	1902	1917	15596	15611	TATCCTATTACA GTTG	45	M	982

1342818	Н/П	Н/П	8196	8211	TCTTAACAGCTA AGCT	58	M	983
1342823	Н/П	Н/П	6557	6572	TGCTATATTGTC TGTA	49	M	984
1342825	213	228	13907	13922	TGATACCAGCA GGACA	66†	M	985
1342833	Н/П	Н/П	4872	4887	ACATACTAGTG AGCTA	69	M	986
1342837	Н/П	Н/П	3815	3830	ATATTAGTTCAG ATGT	57	M	987
1342841	Н/П	Н/П	5698	5713	TTACTTTAAGCC ATGC	53	M	988
1342850	2181	2196	15875	15890	GATTATGCAGT ATAGG	43	M	989
1342852	1129	1144	14823	14838	TTAACCACCAGT TCTC	26	M	990
1342860	Н/П	Н/П	11854	11869	TATTAACTGTCC AGAG	55	M	991
1342906	Н/П	Н/П	5427	5442	GGTAATATATTG TCTA	28	M	992
1342910	1012	1027	14706	14721	AAGAGTATGGC CTTAC	45	M	993
1342925	Н/П	Н/П	12000	12015	CTACTTAATAGT AGTA	106	M	994
1342950	Н/П	Н/П	3496	3511	TAAGATTGAAC TGATA	68	M	995
1342967	1223	1238	14917	14932	AACTCTAGCTCA GATA	69	M	996
1342980	1164	1179	14858	14873	TATATTAGTGAT ATGA	89	M	997
1343004	Н/П	Н/П	12732	12747	CAATTTTATTC GATA	91	M	998
1343032	Н/П	Н/П	7126	7141	AATATCTAAGG CTACA	62	M	999

1343059	1079	1094	14773	14788	ATTTACCTACAT GTAC	65	M	1000
1343095	Н/П	Н/П	7889	7904	CATGAAAGGTG CTTGT	30	M	1001
1343098	405	420	14099	14114	GGCAAGCTGCA GATCT	22	M	1002
1343139	2132	2147	15826	15841	GTCAACTTAAAT TACC	42	M	1003
1343144	Н/П	Н/П	7392	7407	CTTTATGACTTG CTAG	61	M	1004
1343148	Н/П	Н/П	13327	13342	TCTCAATAAAG ACCCC	99	M	1005
1343154	Н/П	Н/П	5159	5174	AAATGATAGTG CTGTC	13	M	1006
1343215	2606	2621	16300	16315	TGACTAATCAGT TCAA	111	M	1007
1091574	334	349	14028	14043	CATATTAAGAT GAGAC	40	N	1008
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	10	N	198
1342162	1941	1956	15635	15650	ATGCTTACCATT TGGT	54	N	1009
1342163	Н/П	Н/П	11631	11646	TTTATACATCCC ATAA	122	N	1010
1342171	1298	1313	14992	15007	TGGAAGACAAC CTGCA	42	N	1011
1342225	Н/П	Н/П	9756	9771	GATTCTTAAGGT TCAG	30	N	1012
1342228	2180	2195	15874	15889	ATTATGCAGTAT AGGT	28	N	1013
1342238	Н/П	Н/П	7378	7393	AGACAATTGAT ACTTT	47	N	1014
1342250	1554	1569	15248	15263	TTATGGTCAATA GTAG	18	N	1015

1342287	1128	1143	14822	14837	TAACCACCAGTT CTCA	34	N	1016
1342295	1159	1174	14853	14868	TAGTGATATGA CTAAT	74	N	1017
1342298	Н/П	Н/П	9651	9666	TTATCTATATGA GGAT	91	N	1018
1342299	Н/П	Н/П	12288	12303	ACTGTATTAATA GCTC	47	N	1019
1342302	403	418	14097	14112	CAAGCTGCAGA TCTAG	34	N	1020
1342315	476	491	14170	14185	TACTCAGGAAG TGGTC	46	N	1021
1342329	Н/П	Н/П	3412	3427	AAGAATTACCA AAGTC	71	N	1022
1342338	141	156	13835	13850	GAGATAACTGT CTTCT	72†	N	1023
1342346	Н/П	Н/П	6666	6681	CCCATAATGAA GTGCT	32	N	1024
1342353	Н/П	Н/П	4964	4979	ATAGATGAACT AGTTG	39	N	1025
1342381	Н/П	Н/П	4638	4653	ATAGAGATATG GAGAC	16	N	1026
1342382	2122	2137	15816	15831	ATTACCAAAGTT TGGT	74	N	1027
1342386	1802	1817	15496	15511	GACTGCAAGAC CAACG	47	N	1028
1342387	Н/П	Н/П	7125	7140	ATATCTAAGGCT ACAG	64	N	1029
1342418	Н/П	Н/П	4752	4767	CCCAATTTGAA GTGTG	46	N	1030
1342420	Н/П	Н/П	12087	12102	GATGTTAAGTA CTGAA	14	N	1031
1342426	Н/П	Н/П	8639	8654	GTAAAGGAGAT GACCA	65	N	1032

1342440	553	568	14247	14262	CAAGATCCAAC AGATG	53	N	1033
1342461	Н/П	Н/П	6556	6571	GCTATATTGTCT GTAG	74	N	1034
1342465	1078	1093	14772	14787	TTTACCTACATG TACT	50	N	1035
1342467	Н/П	Н/П	4869	4884	TACTAGTGAGCT AAGG	33	N	1036
1342527	Н/П	Н/П	13528	13543	GTAGTAACTTTA GTCC	46	N	1037
1342534	Н/П	Н/П	12392	12407	TGGTTTAAGGTA CAGC	27	N	1038
1342540	Н/П	Н/П	8195	8210	CTTAACAGCTA AGCTG	85	N	1039
1342543	1222	1237	14916	14931	ACTCTAGCTCAG ATAA	63	N	1040
1342544	77	92	3339	3354	TGTATGAAGTCT TACG	68	N	1041
1342572	Н/П	Н/П	3869	3884	TAATATTGGAAT AGGC	29	N	1042
1342574	Н/П	Н/П	8824	8839	ATTAACCTGAA CTAGG	86	N	1043
1342589	Н/П	Н/П	11457	11472	TTTAGATTCTGT AGTG	33	N	1044
1342618	813	828	14507	14522	TACTTGGTGAA GACCT	47	N	1045
1342630	1245	1260	14939	14954	GATATAGTATG GTAAG	17	N	1046
1342692	Н/П	Н/П	6921	6936	AATTAGGACAG TTCAT	87	N	1047
1342740	Н/П	Н/П	5697	5712	TACTTTAAGCCA TGCT	54	N	1048
1342743	Н/П	Н/П	13243	13258	ACCAGATAGGC CAGGT	88	N	1049

1342750	Н/П	Н/П	4375	4390	ACTAAATTGAG GATTG	64	N	1050
1342759	Н/П	Н/П	5416	5431	GTCTAATTTGGA GAGG	23	N	1051
1342772	962	977	14656	14671	TGTTAATGTGGC ATAG	26	N	1052
1342784	Н/П	Н/П	8412	8427	GATAATTAGGC CAGAT	29	N	1053
1342791	Н/П	Н/П	7888	7903	ATGAAAGGTGC TTGTT	40	N	1054
1342800	704	719	14398	14413	CTTGTTGGCAGT GCAG	26	N	1055
1342847	Н/П	Н/П	11999	12014	TACTTAATAGTA GTAG	113	N	1056
1342858	Н/П	Н/П	7589	7604	AGCCATTAGGC AACTC	47	N	1057
1342869	Н/П	Н/П	5158	5173	AATGATAGTGC TGTCA	36	N	1058
1342889	Н/П	Н/П	3703	3718	TGGTAACATAA TTGGA	30	N	1059
1342907	211	226	13905	13920	ATACCAGCAGG ACAGG	29†	N	1060
1342914	1880	1895	15574	15589	GAACAACAAGG GCTTG	95	N	1061
1342915	Н/П	Н/П	7042	7057	ATAAACAGGAC TTGTC	61	N	1062
1342916	Н/П	Н/П	10724	10739	ATACATACAAC AAGCT	77	N	1063
1342942	1991	2006	15685	15700	TAGCATAGCTG GATCT	53	N	1064
1342977	Н/П	Н/П	6877	6892	TACAAAAGTTC ACTCC	88	N	1065
1343006	Н/П	Н/П	11832	11847	GTTATTAACACT TGGG	36	N	1066

1343013	Н/П	Н/П	9526	9541	GCATAATTGGT ATGCT	90	N	1067
1343036	Н/П	Н/П	10480	10495	ATCTAGTGGATT GGAA	79	N	1068
1343046	1011	1026	14705	14720	AGAGTATGGCC TTACT	33	N	1069
1343052	Н/П	Н/П	6202	6217	TGGTAACACAT GCTTC	42	N	1070
1343070	362	377	14056	14071	CATCACGATGA TACAG	57	N	1071
1343100	879	894	14573	14588	ATAACAGATGT GAGGA	16	N	1072
1343104	Н/П	Н/П	11225	11240	GTCTATAACACT TCTA	34	N	1073
1343105	Н/П	Н/П	4212	4227	TATAGGCATTA ATAGG	24	N	1074
1343110	Н/П	Н/П	3814	3829	TATTAGTTCAGA TGTA	65	N	1075
1343121	Н/П	Н/П	6114	6129	ATCGAAATGTG ATTTT	76	N	1076
1343127	1464	1479	15158	15173	TAGATGTAATA GATGG	6	N	1077
1343130	Н/П	Н/П	6008	6023	AACTTTGATTGA TTGG	20	N	1078
1343138	Н/П	Н/П	12727	12742	TTTATTCGATAA TAAT	100	N	1079
1343150	Н/П	Н/П	7519	7534	ACTATATATCAA CTCC	63	N	1080
1343155	Н/П	Н/П	5559	5574	TAGAATAGGGA TGCAG	41	N	1081
1343166	Н/П	Н/П	6368	6383	TTAATAAATATA CCCC	91	N	1082
1343171	1516	1531	15210	15225	GCGGACCCACG AATTG	28	N	1083

1343224	2579	2594	16273	16288	GTTTTTAAGACT AGGG	33	N	1084
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	17	О	198
1342183	Н/П	Н/П	4960	4975	ATGAACTAGTT GGGAC	46	О	1085
1342200	Н/П	Н/П	7124	7139	TATCTAAGGCTA CAGT	64	О	1086
1342242	Н/П	Н/П	7029	7044	GTCTATATTTGG ATTG	58	О	1087
1342249	Н/П	Н/П	4751	4766	CCAATTTGAAGT GTGA	34	О	1088
1342251	Н/П	Н/П	11743	11758	TCAGTAATTAAC TGCC	78	О	1089
1342253	399	414	14093	14108	CTGCAGATCTA GAGGT	78	О	1090
1342300	Н/П	Н/П	6366	6381	AATAAATATAC CCCCT	84	О	1091
1342336	1515	1530	15209	15224	CGGACCCACGA ATTGT	56	О	1092
1342362	Н/П	Н/П	8823	8838	TTAACCTGAACT AGGC	88	О	1093
1342367	Н/П	Н/П	4374	4389	CTAAATTGAGG ATTGT	45	О	1094
1342404	2179	2194	15873	15888	TTATGCAGTATA GGTG	34	О	1095
1342408	Н/П	Н/П	9752	9767	CTTAAGGTTCAG TTTA	56	О	1096
1342411	Н/П	Н/П	6920	6935	ATTAGGACAGT TCATC	4	О	1097
1342425	1077	1092	14771	14786	TTACCTACATGT ACTA	48	О	1098
1342436	Н/П	Н/П	3622	3637	GACAAACCAGT AACCA	17	О	1099

1342438	Н/П	Н/П	3809	3824	GTTCAGATGTA	38	О	1100
					AATAG			
1342449	Н/П	Н/П	10723	10738	TACATACAACA	80	О	1101
					AGCTC			
1342451	Н/П	Н/П	9525	9540	CATAATTGGTAT	40	О	1102
					GCTT			
1342458	Н/П	Н/П	6188	6203	TCAGAATTACTC	78	О	1103
					TGGG			
1342469	Н/П	Н/П	13822	13837	TCTTTTAGGTAG	54†	О	1104
					CCTG			
1342479	Н/П	Н/П	6665	6680	CCATAATGAAG	31	О	1105
					TGCTT			
1342488	1463	1478	15157	15172	AGATGTAATAG	9	О	1106
					ATGGG			
1342498	Н/П	Н/П	8194	8209	TTAACAGCTAA	99	0	1107
	·				GCTGT			
1342512	Н/П	Н/П	8638	8653	TAAAGGAGATG	77	0	1108
10 12012	12,11	11,11			ACCAA	, ,		
1342557	309	324	14003	14018	TAAATAGATTCT	80	0	1109
15 12557		5 2 ·	11005	11010	GTAG	00		1105
1342577	1723	1738	15417	15432	GACTTTTATGTT	57	О	1110
1542577	1723	1750	13417	13432	GACC	31		
1342597	Н/П	Н/П	12287	12302	CTGTATTAATAG	24	0	1111
1342397	11/11	11/11	12207	12302	CTCC	24		
1242602	652	667	1.42.46	1.4261	GGGATAGAAAT	22		1112
1342602	652	667	14346	14361	TTGTG	33	О	1112
12.42.622	11/17	T.T./T.T.	10046	10061	ACAAAGATAAT	70		1112
1342633	Н/П	Н/П	12946	12961	TACCC	78	О	1113
12.42.65	1010	100 :	1.40.10	1.4020	CTAGCTCAGAT			1 1 1 1
1342667	1219	1234	14913	14928	AATTC	57	О	1114
					CCCATAAAAGC		_	
1342710	Н/П	Н/П	11622	11637	CCATC	88	О	1115
					CTTAATAGTAGT			
1342719	Н/П	Η/П	11997	12012	AGTT	70	О	1116

1342727	Н/П	Н/П	4211	4226	ATAGGCATTAA TAGGC	27	О	1117
1342735	Н/П	Н/П	11224	11239	TCTATAACACTT CTAC	64	О	1118
1342737	961	976	14655	14670	GTTAATGTGGC ATAGA	13	О	1119
1342744	Н/П	Н/П	10445	10460	TTATATTTGAGT AGTC	59	О	1120
1342752	Н/П	Н/П	12722	12737	TCGATAATAATT TGTA	89	О	1121
1342758	1293	1308	14987	15002	GACAACCTGCA AAATC	33	О	1122
1342762	1990	2005	15684	15699	AGCATAGCTGG ATCTA	72	О	1123
1342771	Н/П	Н/П	5134	5149	AGTAAAGCAAG TACTC	87	О	1124
1342773	Н/П	Н/П	12084	12099	GTTAAGTACTG AAGAC	67	О	1125
1342806	1939	1954	15633	15648	GCTTACCATTTG GTTG	57	О	1126
1342813	359	374	14053	14068	CACGATGATAC AGATC	60	О	1127
1342817	788	803	14482	14497	TTAGTATTAAAG AAGC	58	О	1128
1342822	Н/П	Н/П	5696	5711	ACTTTAAGCCAT GCTG	75	О	1129
1342842	Н/П	Н/П	3864	3879	TTGGAATAGGC ATGCT	41	О	1130
1342844	Н/П	Н/П	6555	6570	CTATATTGTCTG TAGG	45	О	1131
1342877	Н/П	Н/П	6875	6890	CAAAAGTTCAC TCCAG	60	О	1132
1342880	Н/П	Н/П	7588	7603	GCCATTAGGCA ACTCT	83	О	1133

12.42002	1150	1172	1.4050	14067	AGTGATATGAC	52		1124
1342883	1158	1173	14852	14867	TAATC	53	О	1134
1342895	Н/П	Н/П	9648	9663	TCTATATGAGG	78	О	1135
13 12093	11/11	11/11	3010	7003	ATATC	70		1133
1342898	877	892	14571	14586	AACAGATGTGA	22	0	1136
					GGAGT			
1342901	Н/П	Н/П	4862	4877	GAGCTAAGGGT	45	О	1137
					AAGTT			
1342946	Н/П	Н/П	11417	11432	GAATTATATAGT	76	О	1138
					AGAC			
1342953	2121	2136	15815	15830	TTACCAAAGTTT	96	О	1139
					GGTG			
1342957	74	89	3336	3351	ATGAAGTCTTAC	27	О	1140
					GGGT GAATTACCAAA			
1342963	Н/П	Н/П	3410	3425	GTCAG	72	О	1141
					TATGGTCAATA			
1342964	1553	1568	15247	15262	GTAGG	6	О	1142
					CTATATATCAAC			
1342978	Н/П	Н/П	7518	7533	TCCT	78	О	1143
					GACAATTGATA			
1342979	Н/П	Н/П	7377	7392	CTTTA	32	О	1144
					AGAATAGGGAT			
1342988	Н/П	Н/П	5558	5573	GCAGT	31	О	1145
12.42002	11/77	T.T./T.T.	0202	0.400	ATCCATAGAAG			1146
1342993	Н/П	Н/П	8393	8408	ATGGG	64	О	1146
12.42.002	1041	1256	1.402.5	1,4050	TAGTATGGTAA	96		1147
1343002	1241	1256	14935	14950	GCTAG	86	О	1147
1343003	1124	1139	14818	14833	CACCAGTTCTCA	55	О	1148
1545005	1124	1137	14010	14033	TCTG	55		1140
1343021	Н/П	Н/П	5415	5430	TCTAATTTGGAG	31	О	1149
15 15021	11/11	11/11	5 113		AGGT	<i>J</i> 1		
1343030	Н/П	Н/П	6112	6127	CGAAATGTGAT	64	0	1150
12 12 22 0		- 1/ 11			TTTTG	<u> </u>		

1343058	Н/П	Н/П	5932	5947	TGCTTAATAACT AAGG	75	О	1151
1343088	Н/П	Н/П	4624	4639	ACACAATTAGG ATACC	47	О	1152
1343117	475	490	14169	14184	ACTCAGGAAGT GGTCT	34	О	1153
1343135	Н/П	Н/П	13525	13540	GTAACTTTAGTC CTTG	36	О	1154
1343137	550	565	14244	14259	GATCCAACAGA TGAAT	54	О	1155
1343143	1877	1892	15571	15586	CAACAAGGGCT TGAAT	100	О	1156
1343145	210	225	13904	13919	TACCAGCAGGA CAGGA	46†	О	1157
1343147	Н/П	Н/П	12391	12406	GGTTTAAGGTA CAGCT	53	О	1158
1343152	1010	1025	14704	14719	GAGTATGGCCTT ACTT	86	О	1159
1343200	Н/П	Н/П	7878	7893	CTTGTTAGGAGT TTGG	19	О	1160
1343227	2571	2586	16265	16280	GACTAGGGATA CTTTC	70	О	1161
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	12	P	198
1342166	Н/П	Н/П	6664	6679	CATAATGAAGT GCTTC	35	P	1162
1342167	786	801	14480	14495	AGTATTAAAGA AGCTT	49	P	1163
1342173	1276	1291	14970	14985	TTCTGAAGTCTT AAGG	17	P	1164
1342176	Н/П	Н/П	12390	12405	GTTTAAGGTAC AGCTT	92	P	1165
1342212	Н/П	Н/П	11994	12009	AATAGTAGTAG TTTCC	32	P	1166

1342223	Н/П	Н/П	12943	12958	AAGATAATTAC CCAGT	38	P	1167
1342247	2178	2193	15872	15887	TATGCAGTATA GGTGT	45	P	1168
1342260	Н/П	Н/П	9524	9539	ATAATTGGTATG CTTC	29	P	1169
1342264	Н/П	Н/П	3863	3878	TGGAATAGGCA TGCTG	30	P	1170
1342265	1076	1091	14770	14785	TACCTACATGTA CTAG	85	P	1171
1342293	Н/П	Н/П	8368	8383	CATACATTGAG AATTG	62	P	1172
1342305	Н/П	Н/П	6908	6923	CATCATTAGATT TACG	98	P	1173
1342331	1514	1529	15208	15223	GGACCCACGAA TTGTC	112	P	1174
1342407	1240	1255	14934	14949	AGTATGGTAAG CTAGG	14	P	1175
1342423	Н/П	Н/П	10722	10737	ACATACAACAA GCTCC	89	P	1176
1342454	1989	2004	15683	15698	GCATAGCTGGA TCTAT	46	P	1177
1342477	1157	1172	14851	14866	GTGATATGACT AATCT	77	P	1178
1342480	Н/П	Н/П	6975	6990	ACTGATAAGCC ATAAG	61	P	1179
1342492	859	874	14553	14568	GTGGACTATTTT GAAT	49	P	1180
1342502	1462	1477	15156	15171	GATGTAATAGA TGGGC	26	P	1181
1342507	1938	1953	15632	15647	CTTACCATTTGG TTGA	63	P	1182
1342508	Н/П	Н/П	11530	11545	GAAGGTAAGTA TCAGG	20	P	1183

1342561	Н/П	Н/П	4373	4388	TAAATTGAGGA TTGTA	63	P	1184
1342585	Н/П	Н/П	10444	10459	TATATTTGAGTA GTCA	38	P	1185
1342598	1722	1737	15416	15431	ACTTTTATGTTG ACCC	39	P	1186
1342614	Н/П	Н/П	7359	7374	GATGTTGTATAT GCTG	10	P	1187
1342619	Н/П	Н/П	11415	11430	ATTATATAGTAG ACTG	93	P	1188
1342638	Н/П	Н/П	9727	9742	TCCTAGTGAAA CCTTT	75	P	1189
1342647	1009	1024	14703	14718	AGTATGGCCTTA CTTT	76	P	1190
1342664	Н/П	Н/П	3620	3635	CAAACCAGTAA CCAGG	23	P	1191
1342666	357	372	14051	14066	CGATGATACAG ATCAG	48	P	1192
1342682	Н/П	Н/П	7587	7602	CCATTAGGCAA CTCTA	55	P	1193
1342691	472	487	14166	14181	CAGGAAGTGGT CTGTT	34	P	1194
1342693	306	321	14000	14015	ATAGATTCTGTA GCTT	51	P	1195
1342700	Н/П	Н/П	4210	4225	TAGGCATTAAT AGGCA	25	P	1196
1342706	Н/П	Н/П	5931	5946	GCTTAATAACTA AGGG	68	P	1197
1342715	Н/П	Н/П	12082	12097	TAAGTACTGAA GACTG	75	P	1198
1342720	Н/П	Н/П	11144	11159	ATATCCAGAGG AGTGT	90	P	1199
1342724	191	206	13885	13900	CTGAAGTTTTAA GTGG	32†	P	1200

1342745	Н/П	Н/П	13821	13836	CTTTTAGGTAGC CTGG	23†	P	1201
1342770	Н/П	Н/П	5414	5429	CTAATTTGGAG AGGTA	23	P	1202
1342778	1875	1890	15569	15584	ACAAGGGCTTG AATTG	108	P	1203
1342795	Н/П	Н/П	4860	4875	GCTAAGGGTAA GTTTA	63	P	1204
1342805	1106	1121	14800	14815	GATCATATGTCT TAGA	24	P	1205
1342819	Н/П	Н/П	6098	6113	TGTGAAAGTTTT GAGG	19	P	1206
1342827	651	666	14345	14360	GGATAGAAATT TGTGA	26	Р	1207
1342834	Н/П	Н/П	8163	8178	TTCGATGGAAA GCATA	48	P	1208
1342835	Н/П	Н/П	4750	4765	CAATTTGAAGT GTGAG	36	P	1209
1342849	Н/П	Н/П	6554	6569	TATATTGTCTGT AGGT	17	P	1210
1342864	Н/П	Н/П	6365	6380	ATAAATATACC CCCTA	83	P	1211
1342891	Н/П	Н/П	4958	4973	GAACTAGTTGG GACAC	44	P	1212
1342897	Н/П	Н/П	8628	8643	GACCAAAAATA GTATC	58	P	1213
1342899	Н/П	Н/П	6187	6202	CAGAATTACTCT GGGT	34	Р	1214
1342912	398	413	14092	14107	TGCAGATCTAG AGGTT	31	Р	1215
1342923	1212	1227	14906	14921	AGATAATTCACT ACAG	38	P	1216
1342933	Н/П	Н/П	9647	9662	CTATATGAGGA TATCT	103	P	1217

1342934	Н/П	Н/П	13493	13508	TTACTACAAGTA TTGG	134	P	1218
1342970	Н/П	Н/П	5557	5572	GAATAGGGATG CAGTA	43	Р	1219
1342972	Н/П	Н/П	4622	4637	ACAATTAGGAT ACCTC	29	P	1220
1342985	Н/П	Н/П	12721	12736	CGATAATAATTT GTAT	148	P	1221
1342990	Н/П	Н/П	6834	6849	CCTAATACTAA ACTTG	88	P	1222
1342991	1545	1560	15239	15254	ATAGTAGGCTA TTAGG	43	P	1223
1343025	Н/П	Н/П	3409	3424	AATTACCAAAG TCAGC	82	P	1224
1343040	Н/П	Н/П	3807	3822	TCAGATGTAAA TAGCT	23	P	1225
1343082	Н/П	Н/П	7516	7531	ATATATCAACTC CTTC	101	P	1226
1343089	Н/П	Н/П	7123	7138	ATCTAAGGCTA CAGTC	69	P	1227
1343093	71	86	3333	3348	AAGTCTTACGG GTGTT	21	Р	1228
1343111	Н/П	Н/П	5133	5148	GTAAAGCAAGT ACTCT	49	P	1229
1343114	Н/П	Н/П	7876	7891	TGTTAGGAGTTT GGGT	39	P	1230
1343162	Н/П	Н/П	5695	5710	CTTTAAGCCATG CTGA	93	P	1231
1343163	548	563	14242	14257	TCCAACAGATG AATAC	29	P	1232
1343164	2120	2135	15814	15829	TACCAAAGTTTG GTGA	99	P	1233
1343172	922	937	14616	14631	ATGTAGATTCTG ATAG	31	Р	1234

1343175	Н/П	Н/П	11742	11757	CAGTAATTAACT GCCA	88	P	1235
1343181	Н/П	Н/П	8818	8833	CTGAACTAGGC TTTGT	52	Р	1236
1343212	Н/П	Н/П	12286	12301	TGTATTAATAGC TCCA	27	P	1237
1343218	2363	2378	16057	16072	AATTTAATAGTG TCTC	79	P	1238
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	7	Q	198
1342187	Н/П	Н/П	8353	8368	GAAAACCTTTGT TGTG	72	Q	1239
1342193	Н/П	Н/П	6833	6848	CTAATACTAAA CTTGG	90	Q	1240
1342217	471	486	14165	14180	AGGAAGTGGTC TGTTA	26	Q	1241
1342222	Н/П	Н/П	9646	9661	TATATGAGGAT ATCTG	75	Q	1242
1342226	Н/П	Н/П	11993	12008	ATAGTAGTAGTT TCCA	18	Q	1243
1342239	Н/П	Н/П	7564	7579	GACTAATGTCAT ATAC	84	Q	1244
1342240	Н/П	Н/П	6647	6662	CATGTTAAAGCT CTGT	41	Q	1245
1342255	1104	1119	14798	14813	TCATATGTCTTA GAAC	40	Q	1246
1342266	Н/П	Н/П	11414	11429	TTATATAGTAGA CTGG	31	Q	1247
1342276	Н/П	Н/П	5404	5419	GAGGTAACTAG ACTTT	59	Q	1248
1342312	Н/П	Н/П	4957	4972	AACTAGTTGGG ACACA	30	Q	1249
1342313	Н/П	Н/П	3406	3421	TACCAAAGTCA GCGAA	113	Q	1250

1342318	Н/П	Н/П	11529	11544	AAGGTAAGTAT CAGGC	26	Q	1251
1342322	Н/П	Н/П	12915	12930	AGTGAGTAACA GTGGT	30	Q	1252
1342328	649	664	14343	14358	ATAGAAATTTGT GAGC	31	Q	1253
1342348	Н/П	Н/П	12285	12300	GTATTAATAGCT CCAG	20	Q	1254
1342392	1210	1225	14904	14919	ATAATTCACTAC AGTG	43	Q	1255
1342403	2177	2192	15871	15886	ATGCAGTATAG GTGTA	63	Q	1256
1342409	Н/П	Н/П	8090	8105	TCTAATCATAAA TAGT	98	Q	1257
1342410	785	800	14479	14494	GTATTAAAGAA GCTTT	48	Q	1258
1342439	Н/П	Н/П	13820	13835	TTTTAGGTAGCC TGGA	77†	Q	1259
1342442	Н/П	Н/П	7470	7485	TGTTTTAGCAAT GTAA	74	Q	1260
1342446	Н/П	Н/П	6907	6922	ATCATTAGATTT ACGA	49	Q	1261
1342457	541	556	14235	14250	GATGAATACAT ATGGT	15	Q	1262
1342462	Н/П	Н/П	3619	3634	AAACCAGTAAC CAGGA	29	Q	1263
1342481	1274	1289	14968	14983	CTGAAGTCTTAA GGTT	22	Q	1264
1342489	Н/П	Н/П	9523	9538	TAATTGGTATGC TTCA	28	Q	1265
1342491	Н/П	Н/П	7122	7137	TCTAAGGCTAC AGTCT	52	Q	1266
1342526	Н/П	Н/П	11130	11145	GTAAATCTTTCT GCCG	70	Q	1267

1342556	189	204	13883	13898	GAAGTTTTAAGT GGTC	6†	Q	1268
1342569	921	936	14615	14630	TGTAGATTCTGA TAGT	12	Q	1269
1342573	Н/П	Н/П	11727	11742	AGACATAGTGA CTGTT	72	Q	1270
1342580	Н/П	Н/П	13492	13507	TACTACAAGTAT TGGA	95	Q	1271
1342629	1074	1089	14768	14783	CCTACATGTACT AGAA	24	Q	1272
1342639	396	411	14090	14105	CAGATCTAGAG GTTGT	16	Q	1273
1342656	Н/П	Н/П	6972	6987	GATAAGCCATA AGTGA	55	Q	1274
1342661	Н/П	Н/П	3806	3821	CAGATGTAAAT AGCTC	26	Q	1275
1342662	1156	1171	14850	14865	TGATATGACTA ATCTC	69	Q	1276
1342670	1458	1473	15152	15167	TAATAGATGGG CCAAC	66	Q	1277
1342676	1937	1952	15631	15646	TTACCATTTGGT TGAT	55	Q	1278
1342681	1513	1528	15207	15222	GACCCACGAAT TGTCA	105	Q	1279
1342699	1002	1017	14696	14711	CCTTACTTTTCC ATAC	34	Q	1280
1342712	Н/П	Н/П	12585	12600	GATACACTCAT GTACA	107	Q	1281
1342714	Н/П	Н/П	4208	4223	GGCATTAATAG GCAGA	23	Q	1282
1342730	Н/П	Н/П	5127	5142	CAAGTACTCTG GCTCT	29	Q	1283
1342748	1868	1883	15562	15577	CTTGAATTGCAA GGGT	51	Q	1284

1342774	Н/П	Н/П	5694	5709	TTTAAGCCATGC TGAT	75	Q	1285
1342799	Н/П	Н/П	4621	4636	CAATTAGGATA CCTCA	35	Q	1286
1342802	Н/П	Н/П	10443	10458	ATATTTGAGTAG TCAC	56	Q	1287
1342803	Н/П	Н/П	6546	6561	CTGTAGGTTTGC CTTC	32	Q	1288
1342811	Н/П	Н/П	12389	12404	TTTAAGGTACA GCTTG	92	Q	1289
1342826	Н/П	Н/П	8627	8642	ACCAAAAATAG TATCC	60	Q	1290
1342840	Н/П	Н/П	7354	7369	TGTATATGCTGA GCAT	24	Q	1291
1342856	Н/П	Н/П	12081	12096	AAGTACTGAAG ACTGT	93	Q	1292
1342875	1720	1735	15414	15429	TTTTATGTTGAC CCAC	26	Q	1293
1342887	Н/П	Н/П	7862	7877	GTGTAGAAATG CCAGA	17	Q	1294
1342921	Н/П	Н/П	6185	6200	GAATTACTCTGG GTAA	69	Q	1295
1342938	Н/П	Н/П	5547	5562	GCAGTATCAAA TATAT	43	Q	1296
1342976	Н/П	Н/П	10721	10736	CATACAACAAG CTCCC	74	Q	1297
1342987	Н/П	Н/П	6354	6369	CCCTATTAATGT GAGT	74	Q	1298
1342995	Н/П	Н/П	6092	6107	AGTTTTGAGGA GATGT	61	Q	1299
1343011	Н/П	Н/П	4367	4382	GAGGATTGTAA CATAA	16	Q	1300
1343016	355	370	14049	14064	ATGATACAGAT CAGCA	68	Q	1301

1343028	2119	2134	15813	15828	ACCAAAGTTTG GTGAA	85	Q	1302
1343029	Н/П	Н/П	3861	3876	GAATAGGCATG CTGAT	61	Q	1303
1343071	16	31	3278	3293	GAACAGTTGCA GTAGG	41	Q	1304
1343078	Н/П	Н/П	8777	8792	AATACAGAGAT ATGCC	50	Q	1305
1343092	Н/П	Н/П	5930	5945	CTTAATAACTAA GGGC	49	Q	1306
1343113	282	297	13976	13991	CTTGTTGAGGCA TTTC	13	Q	1307
1343178	Н/П	Н/П	9720	9735	GAAACCTTTCAT TAGT	55	Q	1308
1343184	841	856	14535	14550	TGACACTTCATT TGTG	45	Q	1309
1343188	1238	1253	14932	14947	TATGGTAAGCT AGGTA	19	Q	1310
1343197	1988	2003	15682	15697	CATAGCTGGAT CTATA	63	Q	1311
1343198	Н/П	Н/П	4697	4712	ATAACATAAGA CACCT	30	Q	1312
1343206	1544	1559	15238	15253	TAGTAGGCTATT AGGT	31	Q	1313
1343207	Н/П	Н/П	4828	4843	ATCCAGAAGTA TGTGT	53	Q	1314
1343229	2362	2377	16056	16071	ATTTAATAGTGT CTCC	59	Q	1315
1091809	2734	2749	16428	16443	GAGTTATAGTAT TCTG	46	R	1316
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	6	R	198
1342168	Н/П	Н/П	7464	7479	AGCAATGTAAT ATCAG	23	R	1317

1342189	1154	1169	14848	14863	ATATGACTAATC TCAC	48	R	1318
1342190	920	935	14614	14629	GTAGATTCTGAT AGTT	6	R	1319
1342196	Н/П	Н/П	8089	8104	CTAATCATAAAT AGTT	101	R	1320
1342199	184	199	13878	13893	TTTAAGTGGTCG AGAG	6†	R	1321
1342202	1987	2002	15681	15696	ATAGCTGGATCT ATAA	76	R	1322
1342206	Н/П	Н/П	6831	6846	AATACTAAACTT GGAC	93	R	1323
1342214	279	294	13973	13988	GTTGAGGCATTT CAAT	69	R	1324
1342219	Н/П	Н/П	5929	5944	TTAATAACTAA GGGCA	66	R	1325
1342252	Н/П	Н/П	13491	13506	ACTACAAGTATT GGAG	90	R	1326
1342257	Н/П	Н/П	6968	6983	AGCCATAAGTG AATGT	44	R	1327
1342263	Н/П	Н/П	11413	11428	TATATAGTAGA CTGGG	40	R	1328
1342275	Н/П	Н/П	4946	4961	ACACAATGTAT GGTAC	59	R	1329
1342285	Н/П	Н/П	5402	5417	GGTAACTAGAC TTTAG	22	R	1330
1342311	395	410	14089	14104	AGATCTAGAGG TTGTA	26	R	1331
1342333	840	855	14534	14549	GACACTTCATTT GTGT	92	R	1332
1342334	Н/П	Н/П	6502	6517	GCTTTACAAGTG TATT	19	R	1333
1342355	749	764	14443	14458	ATTCACCTCAAA AGAG	69	R	1334

1342356	Н/П	Н/П	7860	7875	GTAGAAATGCC AGACT	38	R	1335
1342357	Н/П	Н/П	3850	3865	CTGATAATGTGC ATGT	28	R	1336
1342358	Н/П	Н/П	6906	6921	TCATTAGATTTA CGAT	69	R	1337
1342394	Н/П	Н/П	9630	9645	TCAGATTATAGC ACAA	53	R	1338
1342399	Н/П	Н/П	6646	6661	ATGTTAAAGCTC TGTC	29	R	1339
1342459	Н/П	Н/П	8352	8367	AAAACCTTTGTT GTGG	52	R	1340
1342493	Н/П	Н/П	10117	10132	GAAGATGTGTA GCAGA	14	R	1341
1342503	1237	1252	14931	14946	ATGGTAAGCTA GGTAA	27	R	1342
1342518	Н/П	Н/П	3618	3633	AACCAGTAACC AGGAT	47	R	1343
1342535	Н/П	Н/П	7563	7578	ACTAATGTCATA TACC	22	R	1344
1342545	Н/П	Н/П	11992	12007	TAGTAGTAGTTT CCAT	45	R	1345
1342554	Н/П	Н/П	8776	8791	ATACAGAGATA TGCCC	53	R	1346
1342584	998	1013	14692	14707	ACTTTTCCATAC TTGA	19	R	1347
1342587	1456	1471	15150	15165	ATAGATGGGCC AACAA	70	R	1348
1342615	Н/П	Н/П	7120	7135	TAAGGCTACAG TCTGA	72	R	1349
1342617	Н/П	Н/П	12388	12403	TTAAGGTACAG CTTGT	66	R	1350
1342621	Н/П	Н/П	5024	5039	CTTACTTTGAAA CCAC	20	R	1351

1342640	Н/П	Н/П	11726	11741	GACATAGTGAC TGTTA	67	R	1352
1342657	354	369	14048	14063	TGATACAGATC AGCAA	61	R	1353
1342703	Н/П	Н/П	9711	9726	CATTAGTTATTA AGGT	110	R	1354
1342705	Н/П	Н/П	3805	3820	AGATGTAAATA GCTCA	11	R	1355
1342721	Н/П	Н/П	6352	6367	CTATTAATGTGA GTGA	56	R	1356
1342742	Н/П	Н/П	4620	4635	AATTAGGATAC CTCAG	38	R	1357
1342747	Н/П	Н/П	7353	7368	GTATATGCTGA GCATT	44	R	1358
1342786	Н/П	Н/П	12551	12566	GACAACTTAAA CATGC	32	R	1359
1342787	648	663	14342	14357	TAGAAATTTGTG AGCC	19	R	1360
1342789	Н/П	Н/П	3405	3420	ACCAAAGTCAG CGAAA	73	R	1361
1342797	1936	1951	15630	15645	TACCATTTGGTT GATA	67	R	1362
1342798	1866	1881	15560	15575	TGAATTGCAAG GGTCC	32	R	1363
1342804	Н/П	Н/П	12912	12927	GAGTAACAGTG GTTGT	81	R	1364
1342828	Н/П	Н/П	10720	10735	ATACAACAAGC TCCCC	64	R	1365
1342832	1103	1118	14797	14812	CATATGTCTTAG AACA	52	R	1366
1342843	1542	1557	15236	15251	GTAGGCTATTA GGTAG	19	R	1367
1342851	469	484	14163	14178	GAAGTGGTCTG TTATA	23	R	1368

1342863	2118	2133	15812	15827	CCAAAGTTTGGT GAAT	56	R	1369
1342870	Н/П	Н/П	6176	6191	TGGGTAAGAAC TTTGA	40	R	1370
1342884	1207	1222	14901	14916	ATTCACTACAGT GCCT	39	R	1371
1342886	Н/П	Н/П	11118	11133	GCCGTAAAGAC ATACA	88	R	1372
1342900	Н/П	Н/П	6076	6091	TAACTTGGATTT TAGG	56	R	1373
1342905	1508	1523	15202	15217	ACGAATTGTCA GCTCC	14	R	1374
1342928	Н/П	Н/П	12283	12298	ATTAATAGCTCC AGAG	92	R	1375
1342936	1717	1732	15411	15426	TATGTTGACCCA CTTC	26	R	1376
1342958	Н/П	Н/П	13819	13834	TTTAGGTAGCCT GGAA	69†	R	1377
1343000	Н/П	Н/П	4696	4711	TAACATAAGAC ACCTA	74	R	1378
1343005	Н/П	Н/П	11527	11542	GGTAAGTATCA GGCAT	42	R	1379
1343014	Н/П	Н/П	5678	5693	CAGTATATAGA GGATG	24	R	1380
1343035	Н/П	Н/П	5534	5549	TATAATTAAGA GGACC	61	R	1381
1343037	Н/П	Н/П	4350	4365	GAATAGGGTAG AATTC	108	R	1382
1343079	1073	1088	14767	14782	CTACATGTACTA GAAT	80	R	1383
1343087	Н/П	Н/П	8621	8636	AATAGTATCCTG TTTC	37	R	1384
1343090	Н/П	Н/П	4826	4841	CCAGAAGTATG TGTAC	42	R	1385

1343140	538	553	14232	14247	GAATACATATG GTAAC	103	R	1386
1343159	Н/П	Н/П	12080	12095	AGTACTGAAGA CTGTC	75	R	1387
1343182	Н/П	Н/П	4207	4222	GCATTAATAGG CAGAA	23	R	1388
1343183	2176	2191	15870	15885	TGCAGTATAGG TGTAA	56	R	1389
1343186	Н/П	Н/П	9474	9489	GACTAAAACTA TTAGA	106	R	1390
1343190	1272	1287	14966	14981	GAAGTCTTAAG GTTTC	56	R	1391
1343219	2306	2321	16000	16015	TCAATATTGATG TTAC	45	R	1392
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	21	S	198
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	18	Т	198
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	18	U	198
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	19	V	198
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	15	W	198
1121455	1506	1521	15200	15215	GAATTGTCAGCT CCCC	15	X	198
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	7	AA	612
1393351	Н/П	Н/П	7362	7377	AATGATGTTGTA TATG	77	AA	1393
1393352	Н/П	Н/П	3808	3823	TTCAGATGTAA ATAGC	34	AA	1394
1393353	557	572	14251	14266	TTTACAAGATCC AACA	65	AA	1395

1393355	Н/П	Н/П	5498	5513	CGAGTATATTA GGAAA	36	AA	1396
1393359	1609	1624	15303	15318	ATACATATAAC ACGCA	25	AA	1397
1393361	1611	1626	15305	15320	TAATACATATA ACACG	92	AA	1398
1393362	Н/П	Н/П	5497	5512	GAGTATATTAG GAAAT	90	AA	1399
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	4	AB	612
1393365	Н/П	Н/П	4544	4559	TTCTTATTTGTA GTGA	35	AB	1400
1393368	Н/П	Н/П	4545	4560	GTTCTTATTTGT AGTG	28	AB	1401
1393374	Н/П	Н/П	7865	7880	TGGGTGTAGAA ATGCC	27	AB	1402
1393375	1528	1543	15222	15237	AGTTAAGATTTT GCGG	20	AB	1403
1393376	Н/П	Н/П	7861	7876	TGTAGAAATGC CAGAC	17	AB	1404
1393377	Н/П	Н/П	4515	4530	CATTTGTCATAG GAAT	38	AB	1405
1393378	1505	1520	15199	15214	AATTGTCAGCTC CCCT	17	AB	1406
1393379	876	891	14570	14585	ACAGATGTGAG GAGTC	14	AB	1407
1393380	Н/П	Н/П	7863	7878	GGTGTAGAAAT GCCAG	50	AB	1408
1393381	Н/П	Н/П	7864	7879	GGGTGTAGAAA TGCCA	65	AB	1409
1393382	1316	1331	15010	15025	TTGGATGTTAGG CTGG	8	AB	1410
1393383	875	890	14569	14584	CAGATGTGAGG AGTCA	17	AB	1411

1393384	526	541	14220	14235	TAACAATAAGT TTTAG	96	AB	1412
1393385	Н/П	Н/П	5504	5519	TGTACACGAGT ATATT	33	AB	1413
1393386	531	546	14225	14240	TATGGTAACAA TAAGT	51	AB	1414
1393387	Н/П	Н/П	4517	4532	AACATTTGTCAT AGGA	4	AB	1415
1393388	89	104	3351	3366	AGAGTATTGTGT TGTA	6	AB	1416
1393389	Н/П	Н/П	11990	12005	GTAGTAGTTTCC ATCA	44	AB	1417
1393390	530	545	14224	14239	ATGGTAACAAT AAGTT	28	AB	1418
1393391	90	105	3352	3367	TAGAGTATTGTG TTGT	6	AB	1419
1393392	Н/П	Н/П	4516	4531	ACATTTGTCATA GGAA	17	AB	1420
1393393	Н/П	Н/П	5503	5518	GTACACGAGTA TATTA	28	AB	1421
1393398	Н/П	Н/П	11991	12006	AGTAGTAGTTTC CATC	15	AB	1422
1393402	1251	1266	14945	14960	TCCAAAGATAT AGTAT	33	AB	1423
1393403	1543	1558	15237	15252	AGTAGGCTATT AGGTA	12	AB	1424
1393407	Н/П	Н/П	11995	12010	TAATAGTAGTA GTTTC	68	AB	1425
1393440	1262	1277	14956	14971	GGTTTCATGATT CCAA	9	AB	1426
1393444	1263	1278	14957	14972	AGGTTTCATGAT TCCA	11	AB	1427
1393470	1266	1281	14960	14975	TTAAGGTTTCAT GATT	31	AB	1428

1393497	623	638	14317	14332	AAATCAACAGT TGCAT	38	AB	1429
1393531	627	642	14321	14336	GAGGAAATCAA CAGTT	14	AB	1430
1393549	Н/П	Н/П	7282	7297	GTATTTTTGGTG GTAT	10	AB	1431
1393556	Н/П	Н/П	7283	7298	AGTATTTTTGGT GGTA	6	AB	1432
1393576	Н/П	Н/П	7286	7301	TTCAGTATTTTT GGTG	30	AB	1433
1393580	Н/П	Н/П	7285	7300	TCAGTATTTTG GTGG	49	AB	1434
1393582	Н/П	Н/П	7287	7302	CTTCAGTATTTT TGGT	45	AB	1435
1393587	Н/П	Н/П	12085	12100	TGTTAAGTACTG AAGA	60	AB	1436
1393597	Н/П	Н/П	12086	12101	ATGTTAAGTACT GAAG	66	AB	1437
1393605	Н/П	Н/П	12088	12103	TGATGTTAAGTA CTGA	20	AB	1438
1393632	Н/П	Н/П	12090	12105	TTTGATGTTAAG TACT	59	AB	1439
1393651	539	554	14233	14248	TGAATACATAT GGTAA	39	AB	1440
1393702	Н/П	Н/П	7560	7575	AATGTCATATAC CATG	65	AB	1441
1393711	Н/П	Н/П	7561	7576	TAATGTCATATA CCAT	48	AB	1442
1393734	Н/П	Н/П	7565	7580	TGACTAATGTCA TATA	84	AB	1443
1393751	Н/П	Н/П	7566	7581	TTGACTAATGTC ATAT	86	AB	1444
1393767	1566	1581	15260	15275	TATCAGTAAGG TTTAT	51	AB	1445

1393790	1271	1286	14965	14980	AAGTCTTAAGG TTTCA	14	AB	1446
1393805	Н/П	Н/П	5847	5862	TGTAATGCTATG CATA	29	AB	1447
1393817	Н/П	Н/П	5848	5863	ATGTAATGCTAT GCAT	87	AB	1448
1393834	Н/П	Н/П	5851	5866	AGAATGTAATG CTATG	33	AB	1449
1393876	1318	1333	15012	15027	CATTGGATGTTA GGCT	17	AB	1450
1393884	Н/П	Н/П	6941	6956	TTTTTGGACTTG TGGT	21	AB	1451
1393921	Н/П	Н/П	6944	6959	CCTTTTTTGGAC TTGT	6	AB	1452
1393923	Н/П	Н/П	6945	6960	CCCTTTTTTGGA CTTG	7	AB	1453
1393926	Н/П	Н/П	7356	7371	GTTGTATATGCT GAGC	4	AB	1454
1393953	Н/П	Н/П	7358	7373	ATGTTGTATATG CTGA	10	AB	1455
1393964	Н/П	Н/П	11998	12013	ACTTAATAGTA GTAGT	73	AB	1456
1393989	Н/П	Н/П	7279	7294	TTTTTGGTGGTA TTCC	14	AB	1457
1394015	Н/П	Н/П	12092	12107	GATTTGATGTTA AGTA	38	AB	1458
1394018	Н/П	Н/П	7558	7573	TGTCATATACCA TGTT	22	AB	1459
1394035	Н/П	Н/П	7568	7583	TTTTGACTAATG TCAT	74	AB	1460
1394055	Н/П	Н/П	5845	5860	TAATGCTATGCA TAAA	76	AB	1461
1394059	Н/П	Н/П	5855	5870	ATTAAGAATGT AATGC	56	AB	1462

1394075 H/J	I Н/П	6947	6962	TACCCTTTTTTG	44	AB	1463
1371073	11/11	0517	0702	GACT			1103
1394098 H/I	I Н/П	5411	5426	ATTTGGAGAGG	56	AB	1464
				TAACT			
1394099 H/J	I Н/П	3811	3826	TAGTTCAGATGT	84	AB	1465
				AAAT			
1394100 160	5 1620	15299	15314	ATATAACACGC AAAAT	83	AB	1466
				ATATTGTCTAAT			
1394101 H/I	І Н/П	5421	5436	TTGG	40	AB	1467
				TATATTAGGAA			
1394103 H/J	І Н/П	5494	5509	ATTGC	35	AB	1468
				ATTTGTGAGCCA			
1394104 64	658	14337	14352	TGTT	13	AB	1469
120/106 11/	T TT/TT	4229	4052	ACTGGAGGATA	72	A D	1.470
1394106 H/I	I Н/П	4238	4253	ATAAC	73	AB	1470
1394108 H/J	I Н/П	5505	5520	GTGTACACGAG	33	AB	1471
1354100 11/1	11/11	3303	3320	TATAT	33		1771
1394109 H/I	I Н/П	5495	5510	GTATATTAGGA	78	AB	1472
				AATTG			
1394110 H/I	I Н/П	7857	7872	GAAATGCCAGA	41	AB	1473
				CTCCT			
1394111 52	538	14217	14232	CAATAAGTTTTA	100	AB	1474
				GTCT TTAGGCTGGAA			
1394112 130	9 1324	15003	15018	TGGAA	26	AB	1475
				TTGTAGTGAGC			
1394113 H/I	І Н/П	4537	4552	AATAG	19	AB	1476
				TTACTTTGATAC			
1343141 82	2 837	14516	14531	TTGG	7	Y	612
1242141		1.45.5	1.4501	TTACTTTGATAC			C1.5
1343141 82	837	14516	14531	TTGG	6		612
1343141 82	2 837	14516	14531	TTACTTTGATAC	3	AC	612
1343141 82	03/	14310	14331	TTGG	3	AC	012

1393354	Н/П	Н/П	4236	4251	TGGAGGATAAT AACTT	26	AC	1477
1393356	Н/П	Н/П	4235	4250	GGAGGATAATA ACTTG	30	AC	1478
1393357	Н/П	Н/П	5413	5428	TAATTTGGAGA GGTAA	75	AC	1479
1393358	Н/П	Н/П	4231	4246	GATAATAACTT GACAA	59	AC	1480
1393360	Н/П	Н/П	5418	5433	TTGTCTAATTTG GAGA	64	AC	1481
1393363	Н/П	Н/П	5417	5432	TGTCTAATTTGG AGAG	50	AC	1482
1393364	Н/П	Н/П	5419	5434	ATTGTCTAATTT GGAG	36	AC	1483
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	4	AD	612
1393366	Н/П	Н/П	4540	4555	TATTTGTAGTGA GCAA	25	AD	1484
1393367	647	662	14341	14356	AGAAATTTGTG AGCCA	5	AD	1485
1393369	646	661	14340	14355	GAAATTTGTGA GCCAT	6	AD	1486
1393370	650	665	14344	14359	GATAGAAATTT GTGAG	19	AD	1487
1393371	645	660	14339	14354	AAATTTGTGAG CCATG	16	AD	1488
1393372	Н/П	Н/П	4541	4556	TTATTTGTAGTG AGCA	6	AD	1489
1393373	Н/П	Н/П	4539	4554	ATTTGTAGTGAG CAAT	39	AD	1490
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	4	AE	612
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	6	AF	612

1343141	822	837	14516	14531	TTACTTTGATAC TTGG	3	AG	612
1343141	822	837	14516	14531	TTACTTTGATAC TTGG	6	АН	612

Пример 3. Влияние смешанных МОЕ и сЕt однородных фосфоротиоатмодифицированных олигонуклеотидов на PHK PLN человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали и тестировали в отношении эффектов однократной дозы на PHK PLN *in vitro*. Модифицированные олигонуклеотиды тестировали в серии экспериментов в одинаковых условиях культивирования.

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

«Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблице ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017) обрабатывали модифицированным олигонуклеотидом в концентрации 6000 нМ с помощью свободного поглощения при плотности 8000 клеток на лунку. После периода обработки, продолжавшегося примерно 72 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40402 (описанного в данном документе выше). Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблице ниже в процентах РНК PLN по отношению к количеству в необработанных контрольных клетках (% UTC).

Каждый отдельный экспериментальный анализ, описанный в этом примере, идентифицируется буквенным идентификатором в столбце таблицы ниже, помеченном как «AID» (идентификатор анализа). В таблице ниже в качестве эталонов использовались соединения №№ 1121455 и 1343141 (описанные в данном документе выше).

Таблица 3. Снижение уровня PHK PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 6000 нМ в кардиомиоцитах iCell®²

	Старт	Стоп-	Старт	Стоп-	00 нм в кардиомиоцитах 			
Номер	-сайт	сайт	-сайт	сайт		PLN		SE
соединен	SEQ	SEQ	SEQ	SEQ	Последовательность	(%	ΑI	Q
	_	-	_	_	(от 5' к 3')	UT	D	ID
ИЯ	ID	ID	ID	ID		C)		NO
	NO: 1	NO: 1	NO: 2	NO: 2				
1121455	1506	1521	15200	15215	GAATTGTCAGCTCC	21	S	198
1121133	1300	1321	13200	13213	CC	21	D	170
1343235	258	273	13952	13967	AGGCTCTTCTTATA	87	S	250
1343233	238	273	13932	13907	GC	07	3	230
12.42027	270	20.4	12072	12000	GTTGAGGCATTTCA	0.0		132
1343237	279	294	13973	13988	AT	88	S	4
					AATGGTTGAGGCT		~	
1343242	266	281	13960	13975	CTT	107	S	176
					AGGCATTTCAATG			
1343243	275	290	13969	13984	GTT	44	S	254
					AAGCTGCAGATCT			149
1343244	402	417	14096	14111	AGA	99	S	1
					TTGGTGAAGACCT		~	149
1343247	810	825	14504	14519	GAA	82	S	2
10.100.50	444	12.5	4440	1 11 00	TGATGTGGCAAGC		~	149
1343250	411	426	14105	14120	TGC	65	S	3
1242254	1071	1000	1.45.00	1.4702	CCTACATGTACTAG	40	~	127
1343254	1074	1089	14768	14783	AA	49	S	2
1242250	010	022	14510	14507	TTTGATACTTGGTG	25	C	704
1343259	818	833	14512	14527	AA	25	S	794
1343261	1009	1024	14703	14718	AGTATGGCCTTACT	128	S	119
1543201	1009	1024	14/03	14/18	TT	128	3	0
1343262	909	924	14603	14618	TAGTTACTACAAAT	92	S	795

					AG			
1343263	920	935	14614	14629	GTAGATTCTGATA	28	S	131
15 15 205	J 2 0	755	11011	11023	GTT			9
1343268	1252	1267	14946	14961	TTCCAAAGATATA	35	S	812
					GTA			
1343270	1242	1257	14936	14951	ATAGTATGGTAAG CTA	60	S	44
					ATTAACCACCAGTT			
1343271	1130	1145	14824	14839	СТ	96	S	263
1343272	1140	1155	14834	14849	ACTGTCACATATTA	61	S	149
1343272	1140	1133	14034	14042	AC	01	3	4
1343274	1516	1531	15210	15225	GCGGACCCACGAA	68	S	108
					TTG			3
1343278	1545	1560	15239	15254	ATAGTAGGCTATT AGG	18	S	122
					ATTAGGTAGTTAA			
1343281	1535	1550	15229	15244	GAT	66	S	126
1343284	Н/П	Н/П	3622	3637	GACAAACCAGTAA	64	S	109
1343264	11/11	11/11	3022	3037	CCA	04	3	9
1343287	Н/П	Н/П	4204	4219	TTAATAGGCAGAA	91	S	377
					ATC			
1343292	Н/П	Н/П	4214	4229	ACTATAGGCATTA ATA	110	S	938
					TAACCAGGATCAA			
1343293	Н/П	Н/П	3612	3627	AGA	73	S	562
1242207	563	578	14257	14272	TTCATGTTTACAAG	69	S	149
1343397	303	378	14237	14272	AT	69	3	5
1343398	78	93	3340	3355	TTGTATGAAGTCTT	89	S	945
					AC			
1343401	559	574	14253	14268	TGTTTACAAGATCC	25	S	799
					AA ATGAAGTCTTACG			114
1343404	74	89	3336	3351	GGT	80	S	0
1343406	263	278	13957	13972	GGTTGAGGCTCTTC	40	S	251
					<u> </u>		<u> </u>	

					TT			
1343408	271	286	13965	13980	ATTTCAATGGTTGA	67	S	253
13 13 100	2/1	200	13703	13700	GG	07		200
1343410	269	284	13963	13978	TTCAATGGTTGAG	77	S	104
					GCT GCATTTCAATGGTT			
1343411	273	288	13967	13982	GA	51	S	90
1343417	406	421	14100	14115	TGGCAAGCTGCAG	81	S	108
1343417	400	421	14100	14113	ATC	01		108
1343419	372	387	14066	14081	TTCAGAGAAGCAT	91	S	697
					CAC CTGCAGATCTAGA			109
1343420	399	414	14093	14108	GGT	67	S	0
1343422	395	410	14089	14104	AGATCTAGAGGTT	32	S	133
13 13 122	373	110	11005	11101	GTA	32		1
1343425	368	383	14062	14077	GAGAAGCATCACG ATG	70	S	788
					TACTTTGATACTTG			
1343429	821	836	14515	14530	GT	23	S	680
1343431	815	830	14509	14524	GATACTTGGTGAA	34	S	34
					GAC			
1343433	711	726	14405	14420	AAGTGAACTTGTT GGC	104	S	762
			1.101		GAACTTGTTGGCA			0.1.5
1343435	707	722	14401	14416	GTG	50	S	915
1343437	990	1005	14684	14699	ATACTTGATTCTCA	36	S	647
					TC CTGATAGTTACTAC			
1343439	913	928	14607	14622	AA	36	S	611
1242440	017	022	1,4611	14606	GATTCTGATAGTTA	2.1	C	157
1343440	917	932	14611	14626	СТ	31	S	457
1343442	915	930	14609	14624	TTCTGATAGTTACT	27	S	110
1343443	825	840	14519	14534	AC TTATTACTTTGATA	40	S	522
157575	023	070	17017	17334	IIMITACITICATA		٥	344

					CT			
1343446	1069	1084	14763	14778	ATGTACTAGAATTC TG	58	S	112
1343449	1019	1034	14713	14728	ATTATGTAAGAGT ATG	76	S	831
1343451	1016	1031	14710	14725	ATGTAAGAGTATG GCC	105	S	111
1343454	994	1009	14688	14703	TTCCATACTTGATT CT	49	S	464
1343455	1014	1029	14708	14723	GTAAGAGTATGGC CTT	78	S	36
1343457	1134	1149	14828	14843	ACATATTAACCAC CAG	28	S	188
1343461	1138	1153	14832	14847	TGTCACATATTAAC CA	26	S	713
1343464	1132	1147	14826	14841	ATATTAACCACCA GTT	28	S	38
1343465	1136	1151	14830	14845	TCACATATTAACCA CC	43	S	39
1343468	1511	1526	15205	15220	CCCACGAATTGTC AGC	48	S	124
1343469	1509	1524	15203	15218	CACGAATTGTCAG CTC	86	S	274
1343472	1504	1519	15198	15213	ATTGTCAGCTCCCC TA	36	S	149 6
1343474	1506	1521	15200	15215	GAATTGTCAGCTCC CC	40	S	149 1
1343475	1247	1262	14941	14956	AAGATATAGTATG GTA	11	S	45
1343478	1558	1573	15252	15267	AGGTTTATGGTCA ATA	14	S	278
1343480	1556	1571	15250	15265	GTTTATGGTCAATA GT	47	S	202
1343481	1540	1555	15234	15249	AGGCTATTAGGTA	41	S	127

					GTT			
1343482	1524	1539	15218	15233	AAGATTTTGCGGA CCC	76	S	913
1343484	1520	1535	15214	15229	TTTTGCGGACCCAC GA	50	S	149 7
1343485	1513	1528	15207	15222	GACCCACGAATTG TCA	87	S	127 9
1343487	1562	1577	15256	15271	AGTAAGGTTTATG GTC	50	S	128
1343488	Н/П	Н/П	3802	3817	TGTAAATAGCTCA GTT	30	S	466
1343489	2184	2199	15878	15893	TTGGATTATGCAGT AT	79	S	287
1343490	Н/П	Н/П	3617	3632	ACCAGTAACCAGG ATC	73	S	296
1343492	2180	2195	15874	15889	ATTATGCAGTATA GGT	49	S	101
1343495	1564	1579	15258	15273	TCAGTAAGGTTTAT GG	11	S	580
1343496	Н/П	Н/П	11632	11647	TTTTATACATCCCA TA	79	S	932
1343498	Н/П	Н/П	6410	6425	GGTAGTATTGAGA AAG	41	S	149 8
1343499	Н/П	Н/П	6406	6421	GTATTGAGAAAGT CTT	54	S	748
1343501	Н/П	Н/П	3806	3821	CAGATGTAAATAG CTC	52	S	127 5
1343505	Н/П	Н/П	4209	4224	AGGCATTAATAGG CAG	89	S	222
1343514	Н/П	Н/П	11636	11651	GTCCTTTTATACAT CC	74	S	735
1121455	1506	1521	15200	15215	GAATTGTCAGCTCC CC	18	Т	198
1343236	365	380	14059	14074	AAGCATCACGATG	108	Т	106

					ATA			
1343238	81	96	3343	3358	GTGTTGTATGAAGT CT	27	Т	818
1343240	556	571	14250	14265	TTACAAGATCCAA CAG	41	Т	258
1343241	71	86	3333	3348	AAGTCTTACGGGT GTT	22	Т	122 8
1343245	820	835	14514	14529	ACTTTGATACTTGG TG	61	Т	728
1343246	714	729	14408	14423	ATGAAGTGAACTT GTT	67	Т	572
1343248	704	719	14398	14413	CTTGTTGGCAGTGC AG	79	Т	105 5
1343251	401	416	14095	14110	AGCTGCAGATCTA GAG	85	Т	149 9
1343252	392	407	14086	14101	TCTAGAGGTTGTA GCA	45	Т	370
1343255	828	843	14522	14537	GTGTTATTACTTTG AT	15	Т	320
1343256	1129	1144	14823	14838	TTAACCACCAGTTC TC	68	Т	990
1343257	987	1002	14681	14696	CTTGATTCTCATCA AC	66	Т	797
1343258	919	934	14613	14628	TAGATTCTGATAGT TA	27	Т	150
1343260	997	1012	14691	14706	CTTTTCCATACTTG AT	31	Т	150 1
1343264	1139	1154	14833	14848	CTGTCACATATTAA CC	24	Т	150 2
1343265	1515	1530	15209	15224	CGGACCCACGAAT TGT	56	Т	109
1343266	1505	1520	15199	15214	AATTGTCAGCTCCC CT	40	Т	140 6
1343267	1501	1516	15195	15210	GTCAGCTCCCCTAA	87	Т	150

					CC			3
1343269	1141	1156	14835	14850	CACTGTCACATATT	52	Т	150
15 (526)	1111	1100	11000	11000	AA			4
1343273	1131	1146	14825	14840	TATTAACCACCAGT	34	T	886
					TC			
1343275	1557	1572	15251	15266	GGTTTATGGTCAAT AG	13	Т	910
					TTATCAGTAAGGTT			
1343276	1567	1582	15261	15276	TA	48	Т	502
1343277	1553	1568	15247	15262	TATGGTCAATAGT	16	Т	114
1545277	1333	1300	13247	13202	AGG	10	1	2
1343279	1527	1542	15221	15236	GTTAAGATTTTGCG	46	T	51
					GACTAACCTTAT			
1343282	1563	1578	15257	15272	CAGTAAGGTTTAT GGT	29	Т	638
					TGCGGACCCACGA			
1343283	1517	1532	15211	15226	ATT	81	T	275
1343285	Н/П	Н/П	11639	11654	TAAGTCCTTTTATA	91	Т	150
1343263	11/11	11/11	11039	11054	CA	91	1	5
1343286	Н/П	Н/П	6413	6428	GGAGGTAGTATTG	50	Т	410
					AGA			110
1343288	Н/П	Н/П	3809	3824	GTTCAGATGTAAA TAG	55	T	$\begin{vmatrix} 110 \\ 0 \end{vmatrix}$
					TTGAGAAAGTCTT			
1343289	Н/П	Н/П	6403	6418	AAG	78	T	885
10.40001	11/77	11/77	2500	2014	AAATAGCTCAGTT	0.5		7.60
1343291	Η/Π	H/Π 	3799	3814	CTG	85	T	560
1343399	261	276	13955	13970	TTGAGGCTCTTCTT	100	Т	150
10 10077	201		13,33	13770	AT	100		6
1343400	76	91	3338	3353	GTATGAAGTCTTAC	72	T	167
					GATCTTTACAACAT			
1343402	561	576	14255	14270	CATGTTTACAAGAT CC	56	Т	91
1343407	274	289	13968	13983	GGCATTTCAATGGT	45	T	178
10 10 10 /			13330	10,00				

					TG			
1343409	272	287	13966	13981	CATTTCAATGGTTG	91	Т	28
					AG			
1343412	268	283	13962	13977	TCAATGGTTGAGG	82	T	27
					CTC			
1343413	270	285	13964	13979	TTTCAATGGTTGAG GC	53	T	177
					ATGGTTGAGGCTCT			
1343415	265	280	13959	13974	TC	44	T	103
1343416	276	291	13970	13985	GAGGCATTTCAAT	72	T	29
1343410	210	251	13570	13703	GGT	72		
1343418	404	419	14098	14113	GCAAGCTGCAGAT	89	T	150
					CTA			7
1343421	397	412	14091	14106	GCAGATCTAGAGG TTG	37	T	32
					CAGAGAAGCATCA			
1343423	370	385	14064	14079	CGA	75	T	256
1242426	400	402	1.4102	14117	TGTGGCAAGCTGC	0.4		150
1343426	408	423	14102	14117	AGA	84	T	8
1343427	813	828	14507	14522	TACTTGGTGAAGA	67	Т	104
15 15 12 1		020	11007	11022	CCT	<i></i>		5
1343428	823	838	14517	14532	ATTACTTTGATACT	40	T	260
					TG TTGATACTTGGTGA			
1343430	817	832	14511	14526	AG	29	T	895
					GTGAACTTGTTGGC			
1343434	709	724	14403	14418	AG	45	T	259
1242426	002	1007	14696	14701	CCATACTTGATTCT	34	Т	185
1343436	992	1007	14686	14701	CA	34	1	183
1343438	916	931	14610	14625	ATTCTGATAGTTAC	32	Т	505
	_	_			TA	-		
1343444	914	929	14608	14623	TCTGATAGTTACTA	29	T	35
1343445	912	927	14606	14621	CA TGATAGTTACTACA	70	T	655
1545445	912	941	14000	14021	IUATAUTTACTACA	70	1	

					AA			
1343447	1012	1027	14706	14721	AAGAGTATGGCCT TAC	91	Т	993
1343448	1067	1082	14761	14776	GTACTAGAATTCTG TG	51	Т	37
1343452	1017	1032	14711	14726	TATGTAAGAGTAT GGC	24	Т	186
1343453	1015	1030	14709	14724	TGTAAGAGTATGG CCT	86	Т	920
1343456	1071	1086	14765	14780	ACATGTACTAGAA TTC	118	Т	150 9
1343458	1245	1260	14939	14954	GATATAGTATGGT AAG	37	Т	104 6
1343460	1137	1152	14831	14846	GTCACATATTAACC AC	56	Т	802
1343462	1135	1150	14829	14844	CACATATTAACCA CCA	31	Т	264
1343463	1133	1148	14827	14842	CATATTAACCACC AGT	53	Т	113
1343467	1249	1264	14943	14958	CAAAGATATAGTA TGG	16	Т	942
1343470	1512	1527	15206	15221	ACCCACGAATTGT CAG	141	Т	199
1343471	1510	1525	15204	15219	CCACGAATTGTCA GCT	43	Т	49
1343473	1508	1523	15202	15217	ACGAATTGTCAGC TCC	70	Т	137
1343477	1522	1537	15216	15231	GATTTTGCGGACCC AC	41	Т	125
1343479	1542	1557	15236	15251	GTAGGCTATTAGG TAG	37	Т	136 7
1343483	1538	1553	15232	15247	GCTATTAGGTAGTT AA	43	Т	277
1343486	Н/П	Н/П	3619	3634	AAACCAGTAACCA	46	T	126

					GGA			3
1343491	Н/П	Н/П	3615	3630	CAGTAACCAGGAT CAA	60	Т	444
1343493	1560	1575	15254	15269	TAAGGTTTATGGTC AA	24	Т	704
1343494	2182	2197	15876	15891	GGATTATGCAGTA TAG	49	Т	211
1343497	Н/П	Н/П	3804	3819	GATGTAAATAGCT CAG	33	Т	71
1343500	Н/П	Н/П	6408	6423	TAGTATTGAGAAA GTC	68	Т	301
1343502	Н/П	Н/П	4211	4226	ATAGGCATTAATA GGC	36	Т	111 7
1343503	Н/П	Н/П	4207	4222	GCATTAATAGGCA GAA	50	Т	138 8
1343508	Н/П	Н/П	11634	11649	CCTTTTATACATCC CA	76	Т	85
1343141	822	837	14516	14531	TTACTTTGATACTT GG	7	Y	612
1393478	Н/П	Н/П	3807	3822	TCAGATGTAAATA GCT	62	Y	122 5
1393479	Н/П	Н/П	7359	7374	GATGTTGTATATGC TG	42	Y	118 7
1393480	Н/П	Н/П	3805	3820	AGATGTAAATAGC TCA	43	Y	135
1393481	Н/П	Н/П	7360	7375	TGATGTTGTATATG CT	30	Y	151
1393482	Н/П	Н/П	5497	5512	GAGTATATTAGGA AAT	56	Y	139 9
1393483	Н/П	Н/П	7358	7373	ATGTTGTATATGCT GA	39	Y	145 5
1393484	1611	1626	15305	15320	TAATACATATAAC ACG	88	Y	139 8
1393485	1609	1624	15303	15318	ATACATATAACAC	38	Y	139

					GCA			7
1393486	Н/П	Н/П	5498	5513	CGAGTATATTAGG	12	Y	139
1333 100	11/11	11/11	3 190	3313	AAA	12		6
1393487	Н/П	Н/П	5501	5516	ACACGAGTATATT	31	Y	609
					AGG			
1393488	1607	1622	15301	15316	ACATATAACACGC	30	Y	54
					AAA			
1393489	Н/П	Н/П	5502	5517	TACACGAGTATATT AG	46	Y	538
					CACGAGTATATTA			
1393490	Н/П	Н/П	5500	5515	GGA	19	Y	675
					AATACATATAACA			
1393491	1610	1625	15304	15319	CGC	41	Y	426
1393492	1608	1623	15302	15317	TACATATAACACG	22	Y	129
1393492	1008	1023	13302	13317	CAA	22		129
1393493	Н/П	Н/П	5499	5514	ACGAGTATATTAG	8	Y	737
	11/11	11/11	0 199		GAA			,,,,
1393494	Н/П	Н/П	4234	4249	GAGGATAATAACT	61	Y	665
					TGA			
1393495	Н/П	Н/П	4233	4248	AGGATAATAACTT	30	Y	740
					GAC GGAGGATAATAAC			147
1393496	Н/П	Н/П	4235	4250	TTG	58	Y	8
					TGGAGGATAATAA			147
1393498	Н/П	Н/П	4236	4251	CTT	65	Y	7
1202400	11/17	11/17	4222	40.47	GGATAATAACTTG	2.1	N/	000
1393499	Н/П	H/Π 	4232	4247	ACA	31	Y	809
1393500	Н/П	Н/П	5415	5430	TCTAATTTGGAGA	74	Y	114
1373300	11/11	11/11	3413	3430	GGT	, ,	1	9
1393501	Н/П	Н/П	5413	5428	TAATTTGGAGAGG	49	Y	147
					TAA			9
1393502	Н/П	Н/П	4231	4246	GATAATAACTTGA	72	Y	148
1202502	11/17	11/17	5/11/	5420	CAA	10	\ \mathref{V}	0
1393503	Н/П	Н/П	5414	5429	CTAATTTGGAGAG	19	Y	120

					GTA			2
1393504	Н/П	Н/П	5417	5432	TGTCTAATTTGGAG	78	Y	148
1393304	11/11	11/11	3417	3432	AG	78	1	2
1393505	647	662	14341	14356	AGAAATTTGTGAG	33	Y	148
1373303		002	11311	11330	CCA	33		5
1393506	Н/П	Н/П	5419	5434	ATTGTCTAATTTGG	49	Y	148
					AG			3
1393507	Н/П	 Н/П	5418	5433	TTGTCTAATTTGGA	66	Y	148
					GA			1
1393508	648	663	14342	14357	TAGAAATTTGTGA	36	Y	136
					GCC			0
1393509	646	661	14340	14355	GAAATTTGTGAGC	31	Y	148
					CAT			6
1393510	Н/П	Н/П	5416	5431	GTCTAATTTGGAG AGG	96	Y	105
					ATAGAAATTTGTG			125
1393511	649	664	14343	14358	AGC	47	Y	$\begin{vmatrix} 123 \\ 3 \end{vmatrix}$
					AAATTTGTGAGCC			148
1393512	645	660	14339	14354	ATG	35	Y	8
					GATAGAAATTTGT			148
1393513	650	665	14344	14359	GAG	70	Y	7
1000 -	***				TTATTTGTAGTGAG			148
1393514	Н/П	Н/П	4541	4556	CA	19	Y	9
1202515	11/17	11/17	45.40	1555	TATTTGTAGTGAGC	25	Y	148
1393515	Η/Π	H/Π 	4540	4555	AA	25	Y	4
1393516	Н/П	Н/П	4539	4554	ATTTGTAGTGAGC	62	Y	149
1393310	11/11	11/11	4339	4334	AAT	02	1	0
1393517	1311	1326	15005	15020	TGTTAGGCTGGAA	35	Y	46
1373317	1311	1320	13003	13020	TGG	33	1	40
1393518	Н/П	Н/П	4543	4558	TCTTATTTGTAGTG	59	Y	480
10,50,10	/	/			AG			
1393519	651	666	14345	14360	GGATAGAAATTTG	30	Y	120
					TGA			7
1393520	1312	1327	15006	15021	ATGTTAGGCTGGA	30	Y	630

					ATG			
1202521	11/17	Н/П	4545	4560	GTTCTTATTTGTAG	59	Y	140
1393521	Н/П	H/11 	4343	4300	TG	39	Y	1
1393522	Н/П	Н/П	4542	4557	CTTATTTGTAGTGA	38	Y	598
1393322	17/11	11/11	4342	4337	GC	36	1	398
1393523	Н/П	Н/П	4544	4559	TTCTTATTTGTAGT	56	Y	140
1373323	11/11		1344	7337	GA	30	1	0
1393524	1313	1328	15007	15022	GATGTTAGGCTGG	22	Y	587
103002.	10 10	1020	10007	10022	AAT			
1393525	1314	1329	15008	15023	GGATGTTAGGCTG	16	Y	519
					GAA			
1393526	Н/П	Н/П	7862	7877	GTGTAGAAATGCC	67	Y	129
					AGA			4
1393527	1316	1331	15010	15025	TTGGATGTTAGGCT	50	Y	141
					GG			0
1393528	Н/П	Н/П	7863	7878	GGTGTAGAAATGC	70	Y	140
					CAG			8
1393529	Н/П	Н/П	7860	7875	GTAGAAATGCCAG ACT	43	Y	133
					TAGAAATGCCAGA			,
1393530	Н/П	Н/П	7859	7874	CTC	69	Y	359
					TGTAGAAATGCCA			140
1393532	Н/П	Н/П	7861	7876	GAC	61	Y	4
					TGGATGTTAGGCT			151
1393533	1315	1330	15009	15024	GGA	122	Y	1
					TAGTTAAGATTTTG	• -		
1393534	1529	1544	15223	15238	CG	36	Y	819
1202525	077	000	1.45.00	1 450 4	CAGATGTGAGGAG		***	141
1393535	875	890	14569	14584	TCA	27	Y	1
1202526	970	904	14572	1/500	ATAACAGATGTGA	56	Y	107
1393536	879	894	14573	14588	GGA	30	Y	2
1393537	876	891	14570	14585	ACAGATGTGAGGA	22	Y	140
1373331	870	091	173/0	17303	GTC	22	1	7
1393538	1528	1543	15222	15237	AGTTAAGATTTTGC	25	Y	140

					GG			3
1393539	Н/П	Н/П	7865	7880	TGGGTGTAGAAAT GCC	47	Y	140
1393540	877	892	14571	14586	AACAGATGTGAGG AGT	26	Y	113 6
1393541	1530	1545	15224	15239	GTAGTTAAGATTTT GC	20	Y	752
1393542	1507	1522	15201	15216	CGAATTGTCAGCTC CC	50	Y	339
1393543	Н/П	Н/П	7864	7879	GGGTGTAGAAATG CCA	92	Y	140 9
1393544	86	101	3348	3363	GTATTGTGTTGTAT GA	41	Y	151 2
1393545	1533	1548	15227	15242	TAGGTAGTTAAGA TTT	50	Y	613
1393546	1531	1546	15225	15240	GGTAGTTAAGATTT TG	35	Y	689
1393547	Н/П	Н/П	4517	4532	AACATTTGTCATAG GA	28	Y	141 5
1393548	Н/П	Н/П	4515	4530	CATTTGTCATAGGA AT	29	Y	140 5
1393550	Н/П	Н/П	5503	5518	GTACACGAGTATA TTA	75	Y	142 1
1393551	Н/П	Н/П	4516	4531	ACATTTGTCATAGG AA	22	Y	142
1393552	Н/П	Н/П	4519	4534	TTAACATTTGTCAT AG	38	Y	708
1393553	Н/П	Н/П	4518	4533	TAACATTTGTCATA GG	25	Y	828
1393555	87	102	3349	3364	AGTATTGTGTTGTA TG	25	Y	151
1393557	90	105	3352	3367	TAGAGTATTGTGTT GT	37	Y	141 9
1393559	88	103	3350	3365	GAGTATTGTGTTGT	24	Y	756

					AT			
1393562	89	104	3351	3366	AGAGTATTGTGTTG	15	Y	141
103000	0,3	10.	0001		TA			6
1343141	822	837	14516	14531	TTACTTTGATACTT GG	6	Z	612
					TTTACAAGATCCA			139
1393394	557	572	14251	14266	ACA	52		5
1393395	1317	1332	15011	15026	ATTGGATGTTAGG	53	Z	151
					CTG			4
1393396	558	573	14252	14267	GTTTACAAGATCC AAC	25	Z	33
					CATTGGATGTTAG		_	145
1393397	1318	1333	15012	15027	GCT	33		0
1393399	1319	1334	15013	15028	GCATTGGATGTTA	24	Z	121
					GGC ATGTTTACAAGATC			
1393400	560	575	14254	14269	CA	19		700
1393401	562	577	14256	14271	TCATGTTTACAAGA	43	Z	151
1393401	302	311	14230	142/1	TC	-1 3		5
1393404	1321	1336	15015	15030	CTGCATTGGATGTT	24	z	196
					AG GTAGTAGTTTCCAT			141
1393405	Н/П	Н/П	11990	12005	CA	42		7
1393406	Н/П	Н/П	11991	12006	AGTAGTAGTTTCCA	38	Z	142
1535 100	11/11	11/11	11331	12000	TC			2
1393408	1559	1574	15253	15268	AAGGTTTATGGTC AAT	28	Z	784
1205 : 5 5	40	105-	4.50.5.5		CCTGCATTGGATGT			151
1393409	1322	1337	15016	15031	TA	60		6
1393410	1323	1338	15017	15032	GCCTGCATTGGAT	37	Z	151
					GTT GTAAGGTTTATGGT			7
1393411	1561	1576	15255	15270	CA	29	Z	53
1393412	Н/П	Н/П	11992	12007	TAGTAGTAGTTTCC	59	Z	134

					AT			5
1393413	1320	1335	15014	15029	TGCATTGGATGTTA GG	27	Z	392
1393414	1264	1279	14958	14973	AAGGTTTCATGATT CC	22	Z	632
1393415	1267	1282	14961	14976	CTTAAGGTTTCATG AT	60	Z	195
1393416	Н/П	Н/П	11995	12010	TAATAGTAGTAGTT TC	84	Z	142 5
1393417	1263	1278	14957	14972	AGGTTTCATGATTC CA	43	Z	142 7
1393418	Н/П	Н/П	11994	12009	AATAGTAGTAGTTT CC	79	Z	116 6
1393419	1265	1280	14959	14974	TAAGGTTTCATGAT TC	30	Z	615
1393420	Н/П	Н/П	11993	12008	ATAGTAGTAGTTTC CA	53	Z	124
1393421	1262	1277	14956	14971	GGTTTCATGATTCC AA	31	Z	142 6
1393422	1266	1281	14960	14975	TTAAGGTTTCATGA TT	58	Z	142 8
1393423	622	637	14316	14331	AATCAACAGTTGC ATT	40	Z	151 8
1393424	627	642	14321	14336	GAGGAAATCAACA GTT	39	Z	143
1393425	625	640	14319	14334	GGAAATCAACAGT TGC	33	Z	564
1393426	624	639	14318	14333	GAAATCAACAGTT GCA	44	Z	644
1393427	Н/П	Н/П	7287	7302	CTTCAGTATTTTTG GT	41	Z	143 5
1393428	Н/П	Н/П	7286	7301	TTCAGTATTTTTGG TG	80	Z	143
1393429	Н/П	Н/П	7284	7299	CAGTATTTTTGGTG	63	Z	642

					GT			
1393430	623	638	14317	14332	AAATCAACAGTTG	35	Z	142
1333 130	020	000	11317	11332	CAT			9
1393431	Н/П	Н/П	7282	7297	GTATTTTTGGTGGT AT	35	Z	143
					TCAGTATTTTTGGT			143
1393432	Н/П	H/Π	7285	7300	GG	89	Z	4
1393433	Н/П	Н/П	7283	7298	AGTATTTTTGGTGG	51	Z	143
					TA			2
1393434	Н/П	Н/П	12090	12105	TTTGATGTTAAGTA CT	82	Z	143
1202425	11/11	11/17	12095	12100	TGTTAAGTACTGA	47	7	143
1393435	Н/П	Н/П	12085	12100	AGA	47	Z	6
1393436	538	553	14232	14247	GAATACATATGGT	38	Z	138
					AAC ATGTTAAGTACTG			6 143
1393437	Н/П	Н/П	12086	12101	AAG	48	Z	7
1393438	Н/П	Н/П	12084	12099	GTTAAGTACTGAA	77	Z	112
					GAC			5
1393439	539	554	14233	14248	TGAATACATATGG TAA	48	Z	144
1202441	***	11/77	12005	10100	GATGTTAAGTACT	20		103
1393441	Н/П	H/Π	12087	12102	GAA	39	Z	1
1393442	Н/П	Н/П	12088	12103	TGATGTTAAGTACT	51	Z	143
					GA TTGATGTTAAGTAC			8 151
1393443	Н/П	Н/П	12089	12104	TG	73	Z	9
1393445	Н/П	Н/П	7563	7578	ACTAATGTCATATA	88	Z	134
13/37773	11/11	11/11	7505	7570	CC	00		4
1393446	Н/П	Н/П	7561	7576	TAATGTCATATACC AT	70	Z	144
					GACTAATGTCATAT			124
1393447	Н/П	H/Π 	7564	7579	AC	90		4
1393448	Н/П	Н/П	7562	7577	CTAATGTCATATAC	49	Z	353

					CA			
1393449	1565	1580	15259	15274	ATCAGTAAGGTTT	58	Z	203
					ATG			
1393450	Н/П	Н/П	7560	7575	AATGTCATATACC	38	Z	144
					ATG			1
1393451	Н/П	Н/П	7566	7581	TTGACTAATGTCAT AT	110	Z	144
					TGACTAATGTCATA			144
1393452	Н/П	Н/П	7565	7580	TA	59	Z	3
1393453	541	556	14235	14250	GATGAATACATAT	16	Z	126
1373 133	311	330	11233	11230	GGT			2
1393454	1271	1286	14965	14980	AAGTCTTAAGGTTT	41	Z	144
					CA			6
1393455	1268	1283	14962	14977	TCTTAAGGTTTCAT GA	64	Z	533
					GTCTTAAGGTTTCA			
1393456	1269	1284	14963	14978	TG	22		454
1393457	Н/П	Н/П	5848	5863	ATGTAATGCTATGC	91	Z	144
	11/11	11/11	2010	3003	AT			8
1393458	1270	1285	14964	14979	AGTCTTAAGGTTTC	32	Z	338
					AT AGAATGTAATGCT			144
1393459	Н/П	Н/П	5851	5866	ATG	49	Z	9
					TGTAATGCTATGCA			144
1393460	Н/П	Н/П	5847	5862	TA	81		7
1393461	Н/П	Н/П	5850	5865	GAATGTAATGCTA	39	Z	732
1393401	11/11	11/11	3630	3803	TGC	39	L	732
1393462	1272	1287	14966	14981	GAAGTCTTAAGGT	36	Z	139
					TTC			1
1393463	1566	1581	15260	15275	TATCAGTAAGGTTT AT	54	Z	144
					CTTTTTTGGACTTG			3
1393464	Н/П	Н/П	6943	6958	TG	12	Z	77
1393465	Н/П	Н/П	6945	6960	CCCTTTTTTGGACT	39	Z	145

					TG			3
1393466	Н/П	Н/П	6939	6954	TTTGGACTTGTGGT	49	Z	152
1375400	11/11	11/11	0,3,7	0754	AA	72		0
1393467	Н/П	Н/П	6941	6956	TTTTTGGACTTGTG	29	z	145
					GT			1
1393468	Н/П	Н/П	7357	7372	TGTTGTATATGCTG	59	z	152
					AG			1
1393469	Н/П	Н/П	6942	6957	TTTTTTGGACTTGT GG	30	Z	585
					GTTGTATATGCTGA			145
1393471	Н/П	Н/П	7356	7371	GC	31	Z	4
					TTTTGGACTTGTGG			152
1393472	Н/П	H/Π	6940	6955	TA	25		2
1202472	11/11	11/17	6044	6050	CCTTTTTTGGACTT	2.5	7	145
1393473	Η/Π	H/Π 	6944	6959	GT	35		2
1393474	Н/П	Н/П	3803	3818	ATGTAAATAGCTC	37	Z	378
1323474	11/11	11/11	3803	3010	AGT	31		376
1393475	Н/П	Н/П	3808	3823	TTCAGATGTAAAT	53	z	139
					AGC			4
1393476	Н/П	Н/П	7362	7377	AATGATGTTGTATA	60	z	139
					TG			3
1393477	Н/П	Н/П	7361	7376	ATGATGTTGTATAT GC	33	Z	152
					TAACAATAAGTTTT			141
1393554	526	541	14220	14235	AG	77	AA	2
					ATGGTAACAATAA			141
1393558	530	545	14224	14239	GTT	39	AA	8
1202560	500	5.42	1.4222	1.402.7	GGTAACAATAAGT	<i>5.6</i>		450
1393560	528	543	14222	14237	TTT	56	AA	450
1393561	529	544	14223	14238	TGGTAACAATAAG	63	AA	358
1575501	3 2)	J-1-T	1 1223	1 1230	TTT	<i></i>	11/1	336
1393563	91	106	3353	3368	ATAGAGTATTGTGT	31	AA	636
					TG			
1393564	531	546	14225	14240	TATGGTAACAATA	62	AA	141

					AGT			4
1393565	1466	1481	15160	15175	TGTAGATGTAATA GAT	60	AA	924
1393566	1467	1482	15161	15176	CTGTAGATGTAAT AGA	61	AA	48
1393567	1465	1480	15159	15174	GTAGATGTAATAG ATG	34	AA	972
1393568	819	834	14513	14528	CTTTGATACTTGGT GA	16	AA	184
1393569	Н/П	Н/П	5504	5519	TGTACACGAGTAT ATT	76	AA	141 3
1393570	1463	1478	15157	15172	AGATGTAATAGAT GGG	65	AA	110 6
1393571	1464	1479	15158	15173	TAGATGTAATAGA TGG	29	AA	107 7
1393572	1462	1477	15156	15171	GATGTAATAGATG GGC	83	AA	118 1
1393573	1461	1476	15155	15170	ATGTAATAGATGG GCC	91	AA	273
1393574	822	837	14516	14531	TTACTTTGATACTT GG	20	AA	612
1393575	1246	1261	14940	14955	AGATATAGTATGG TAA	12	AA	270
1393577	1250	1265	14944	14959	CCAAAGATATAGT ATG	44	AA	921
1393578	1544	1559	15238	15253	TAGTAGGCTATTA GGT	23	AA	131 3
1393579	1543	1558	15237	15252	AGTAGGCTATTAG GTA	31	AA	142 4
1393581	1248	1263	14942	14957	AAAGATATAGTAT GGT	18	AA	120
1393583	1018	1033	14712	14727	TTATGTAAGAGTAT GG	46	AA	262
1393588	1244	1259	14938	14953	ATATAGTATGGTA	33	AA	194

					AGC			
1393591	1251	1266	14945	14960	TCCAAAGATATAG	46	AA	142
					TAT			3
1393592	1243	1258	14937	14952	TATAGTATGGTAA	54	AA	119
					GCT TTATGGTCAATAGT			101
1393958	1554	1569	15248	15263	AG	17	AA	5
					TTTTTGGTGGTATT			145
1393959	Н/П	Н/П	7279	7294	CC	53	AA	7
1393960	Н/П	Н/П	11998	12013	ACTTAATAGTAGT	87	AA	145
1373700	11/11	11/11	11770	12013	AGT	07		6
1393961	Н/П	Н/П	11988	12003	AGTAGTTTCCATCA	79	AA	152
					TAGAAGATGGAAG			4
1393962	555	570	14249	14264	TACAAGATCCAAC AGA	70	AA	888
					GTTGAGGAAATCA			
1393963	630	645	14324	14339	ACA	75	AA	514
1393965	1325	1340	15019	15034	TTGCCTGCATTGGA	35	AA	152
1393903	1323	1340	13019	13034	TG	33	AA	5
1393966	Н/П	 Н/П	12082	12097	TAAGTACTGAAGA	82	AA	119
					CTG			8
1393967	1555	1570	15249	15264	TTTATGGTCAATAG TA	67	AA	934
					TGTATATGCTGAGC			129
1393968	Н/П	Н/П	7354	7369	AT	59	AA	1
1393969	1275	1290	14969	14984	TCTGAAGTCTTAAG	20	AA	271
1393909	1273	1290	14909	14764	GT	20	AA	271
1393970	Н/П	Н/П	6947	6962	TACCCTTTTTTGGA	56	AA	146
					CT			3
1393971	Н/П	Н/П	7558	7573	TGTCATATACCATG TT	45	AA	145
					TAATGCTATGCATA			146
1393972	Н/П	Н/П	5845	5860	AA	85	AA	1
1393973	Н/П	Н/П	7568	7583	TTTTGACTAATGTC	86	AA	146

					AT			0
1393974	Н/П	Н/П	6937	6952	TGGACTTGTGGTA	51	AA	152
1393974	П/11	П/11	0937	0932	ATA	31	AA	6
1393975	Н/П	Н/П	12092	12107	GATTTGATGTTAAG	53	AA	145
1373713	11/11		12072	12107	TA	33		8
1393976	Н/П	Н/П	5855	5870	ATTAAGAATGTAA	98	AA	146
1333370		11/11	2023	3070	TGC			2
1393977	Н/П	 Н/П	3801	3816	GTAAATAGCTCAG	53	AA	540
					TTC			
1393978	653	668	14347	14362	TGGGATAGAAATT	38	AA	183
					TGT			
1393979	Н/П	Н/П	5494	5509	TATATTAGGAAATT	64	AA	146
					GC			8
1393980	Н/П	Н/П	3811	3826	TAGTTCAGATGTA	47	AA	146
					AAT			5
1393981	Н/П	Н/П	4537	4552	TTGTAGTGAGCAA TAG	43	AA	147 6
					ATTTGGAGAGGTA			146
1393982	Н/П	Н/П	5411	5426	ACT	78	AA	4
					ATTTGTGAGCCATG			146
1393983	643	658	14337	14352	TT	18	AA	9
					ATATAACACGCAA			146
1393984	1605	1620	15299	15314	AAT	55	AA	6
					ACTGGAGGATAAT			147
1393985	Н/П	H/Π	4238	4253	AAC	95	AA	0
1202006	11/11	11/11	5.401	5.42.6	ATATTGTCTAATTT	40	1	146
1393986	Н/П	H/Π	5421	5436	GG	40	AA	7
1202007	1200	1224	15002	15010	TTAGGCTGGAATG	16	1	147
1393987	1309	1324	15003	15018	GAA	46	AA	5
1393988	1503	1518	15197	15212	TTGTCAGCTCCCCT	14	AA	152
1393900	1505	1310	13171	13414	AA	17	AA	7
1393990	93	108	3355	3370	GTATAGAGTATTGT	60	AA	244
1575770				3370	GT			
1393991	Н/П	Н/П	7857	7872	GAAATGCCAGACT	81	AA	147

					CCT			3
1393992	Н/П	Н/П	5505	5520	GTGTACACGAGTA TAT	70	AA	147 1
1393993	Н/П	Н/П	5495	5510	GTATATTAGGAAA TTG	68	AA	147 2
1393994	1525	1540	15219	15234	TAAGATTTTGCGG ACC	49	AA	200
1393995	Н/П	Н/П	7867	7882	TTTGGGTGTAGAA ATG	72	AA	152 8
1393996	Н/П	Н/П	4513	4528	TTTGTCATAGGAAT TG	39	AA	152 9
1393997	83	98	3345	3360	TTGTGTTGTATGAA GT	17	AA	153
1393998	1254	1269	14948	14963	GATTCCAAAGATA TAG	39	AA	701
1394000	1469	1484	15163	15178	AGCTGTAGATGTA ATA	46	AA	836
1394001	1459	1474	15153	15168	GTAATAGATGGGC CAA	86	AA	122
1394002	Н/П	Н/П	5506	5521	TGTGTACACGAGT ATA	30	AA	153 1
1394003	523	538	14217	14232	CAATAAGTTTTAGT CT	63	AA	147 4
1394004	1240	1255	14934	14949	AGTATGGTAAGCT AGG	53	AA	117 5
1394006	1274	1289	14968	14983	CTGAAGTCTTAAG GTT	36	AA	126 4

Пример 4. Влияние смешанных МОЕ и сЕt однородных фосфоротиоатмодифицированных олигонуклеотидов на PHK PLN человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали и тестировали в отношении эффектов однократной дозы на PHK PLN *in vitro*. Модифицированные олигонуклеотиды тестировали в серии экспериментов в одинаковых условиях культивирования.

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет

собой (от 5' до 3'): kkkddddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

«Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблице ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017) обрабатывали модифицированным олигонуклеотидом в концентрации 6000 нМ с помощью свободного поглощения при плотности 8000 клеток на лунку. После периода обработки, продолжавшегося примерно 72 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40402 (описанного в данном документе выше). Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблице ниже в процентах РНК PLN по отношению к количеству в необработанных контрольных клетках (% UTC).

Каждый отдельный экспериментальный анализ, описанный в этом примере, идентифицируется буквенным идентификатором в столбце таблицы ниже, помеченном как «AID» (идентификатор анализа). В таблице ниже в качестве эталонов использовались соединения №№ 1121455 и 1343141 (описанные в данном документе выше).

Таблица 4. Снижение уровня PHK PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 6000 нМ в кардиомиоцитах iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Старт -сайт SEQ ID NO: 2	Стоп- сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UT C)	AI D	SE Q ID NO
1121455	1506	1521	15200	15215	GAATTGTCAGCTC	18	U	198

					CCC			
1343249	266	281	13960	13975	AATGGTTGAGGCT CTT	45	U	176
1343253	275	290	13969	13984	AGGCATTTCAATG GTT	49	U	254
1343280	279	294	13973	13988	GTTGAGGCATTTC AAT	130	U	132
1343315	402	417	14096	14111	AAGCTGCAGATCT AGA	88	U	149 1
1343328	411	426	14105	14120	TGATGTGGCAAGC TGC	54	U	149 3
1343357	920	935	14614	14629	GTAGATTCTGATA GTT	14	U	131 9
1343359	909	924	14603	14618	TAGTTACTACAAA TAG	82	U	795
1343361	818	833	14512	14527	TTTGATACTTGGTG AA	36	U	794
1343363	810	825	14504	14519	TTGGTGAAGACCT GAA	77	U	149 2
1343364	1074	1089	14768	14783	CCTACATGTACTA GAA	80	U	127 2
1343366	1242	1257	14936	14951	ATAGTATGGTAAG CTA	91	U	44
1343369	1140	1155	14834	14849	ACTGTCACATATTA AC	47	U	149 4
1343371	1130	1145	14824	14839	ATTAACCACCAGT TCT	46	U	263
1343372	1009	1024	14703	14718	AGTATGGCCTTACT TT	97	U	119 0
1343374	1545	1560	15239	15254	ATAGTAGGCTATT AGG	57	U	122 3
1343375	1535	1550	15229	15244	ATTAGGTAGTTAA GAT	59	U	126
1343376	1252	1267	14946	14961	TTCCAAAGATATA	41	U	812

					GTA			
1343380	258	273	13952	13967	AGGCTCTTCTTATA GC	88	U	250
1343381	1516	1531	15210	15225	GCGGACCCACGAA TTG	80	U	108
1343385	Н/П	Н/П	4214	4229	ACTATAGGCATTA ATA	53	U	938
1343387	Н/П	Н/П	4204	4219	TTAATAGGCAGAA ATC	72	U	377
1343388	Н/П	Н/П	3622	3637	GACAAACCAGTAA CCA	67	U	109 9
1343389	Н/П	Н/П	3612	3627	TAACCAGGATCAA AGA	76	U	562
1343396	559	574	14253	14268	TGTTTACAAGATCC AA	24	U	799
1343405	Н/П	Н/П	11636	11651	GTCCTTTTATACAT CC	47	U	735
1343432	269	284	13963	13978	TTCAATGGTTGAG GCT	54	U	104
1343441	271	286	13965	13980	ATTTCAATGGTTGA GG	47	U	253
1343450	273	288	13967	13982	GCATTTCAATGGTT GA	61	U	90
1343476	368	383	14062	14077	GAGAAGCATCACG ATG	62	U	788
1343513	372	387	14066	14081	TTCAGAGAAGCAT CAC	84	U	697
1343516	395	410	14089	14104	AGATCTAGAGGTT GTA	24	U	133
1343540	399	414	14093	14108	CTGCAGATCTAGA GGT	90	U	109 0
1343565	406	421	14100	14115	TGGCAAGCTGCAG ATC	53	U	108
1343576	707	722	14401	14416	GAACTTGTTGGCA	48	U	915

					GTG			
1343608	711	726	14405	14420	AAGTGAACTTGTT GGC	20	U	762
1343617	821	836	14515	14530	TACTTTGATACTTG GT	28	U	680
1343618	825	840	14519	14534	TTATTACTTTGATA CT	46	U	522
1343621	815	830	14509	14524	GATACTTGGTGAA GAC	37	U	34
1343624	563	578	14257	14272	TTCATGTTTACAAG AT	81	U	149 5
1343627	994	1009	14688	14703	TTCCATACTTGATT CT	46	U	464
1343629	917	932	14611	14626	GATTCTGATAGTTA CT	11	U	457
1343630	990	1005	14684	14699	ATACTTGATTCTCA TC	22	U	647
1343631	915	930	14609	14624	TTCTGATAGTTACT AC	22	U	110
1343632	74	89	3336	3351	ATGAAGTCTTACG GGT	40	U	114 0
1343633	913	928	14607	14622	CTGATAGTTACTAC AA	36	U	611
1343636	1069	1084	14763	14778	ATGTACTAGAATT CTG	24	U	112
1343638	1016	1031	14710	14725	ATGTAAGAGTATG GCC	90	U	111
1343640	1019	1034	14713	14728	ATTATGTAAGAGT ATG	85	U	831
1343644	1014	1029	14708	14723	GTAAGAGTATGGC CTT	50	U	36
1343646	1132	1147	14826	14841	ATATTAACCACCA GTT	29	U	38
1343648	1247	1262	14941	14956	AAGATATAGTATG	8	U	45

					GTA			
1242640	1120	1152	1.4022	1.40.47	TGTCACATATTAAC	4.4	TT	712
1343649	1138	1153	14832	14847	CA	44	U	713
1343650	78	93	3340	3355	TTGTATGAAGTCTT	70	U	945
1343030	/ 0	93	3340	3333	AC	70		943
1343653	1136	1151	14830	14845	TCACATATTAACC	19	U	39
13 13 03 3	1150	1131	11050	11013	ACC	17		3,
1343655	1134	1149	14828	14843	ACATATTAACCAC	23	U	188
					CAG			
1343658	1513	1528	15207	15222	GACCCACGAATTG	105	U	127
					TCA			9
1343659	1511	1526	15205	15220	CCCACGAATTGTC	40	U	124
					AGC CACGAATTGTCAG			
1343660	1509	1524	15203	15218	CTC	35	U	274
					GAATTGTCAGCTC			153
1343664	1506	1521	15200	15215	CCC	21	U	2
					ATTGTCAGCTCCCC			149
1343665	1504	1519	15198	15213	TA	15	U	6
1343667	1520	1535	15214	15220	TTTTGCGGACCCAC	53	īī	149
1343007	1320	1333	13214	15229	GA	33	U	7
1343668	1540	1555	15234	15249	AGGCTATTAGGTA	45	U	127
13 13 000	1340	1333	13234	13219	GTT	13		127
1343669	263	278	13957	13972	GGTTGAGGCTCTTC	42	U	251
					TT			
1343671	1558	1573	15252	15267	AGGTTTATGGTCA	9	U	278
					ATA			
1343672	1524	1539	15218	15233	AAGATTTTGCGGA	26	U	913
					CCC			
1343674	1556	1571	15250	15265	GT	44	U	202
					GT TCAGTAAGGTTTAT			
1343676	1564	1579	15258	15273	GG	31	U	580
1343677	Н/П	Н/П	3802	3817	TGTAAATAGCTCA	35	U	466
15 15 07 7		11/11	5002	2017				

					GTT			
1343681	Н/П	Н/П	3617	3632	ACCAGTAACCAGG	137	U	296
					ATC			
1343683	2180	2195	15874	15889	ATTATGCAGTATA	43	U	101
					GGT			3
1343684	2184	2199	15878	15893	TTGGATTATGCAGT	78	U	287
					AT			
1343685	1562	1577	15256	15271	AGTAAGGTTTATG GTC	29	U	128
					TTTTATACATCCCA			
1343686	Н/П	Н/П	11632	11647	TA	87	U	932
					GGTAGTATTGAGA			149
1343690	Н/П	Н/П	6410	6425	AAG	33	U	8
					GTATTGAGAAAGT			
1343692	Н/П	Н/П	6406	6421	CTT	49	U	748
12.42.60.4	11/57	11/57	1200	1004	AGGCATTAATAGG		* 7	222
1343694	Н/П	H/Π	4209	4224	CAG	67	U	222
1343695	Н/П	Н/П	3806	3821	CAGATGTAAATAG	28	U	127
1545075	11/11	11/11	3000	3021	CTC	20		5
1121455	1506	1521	15200	15215	GAATTGTCAGCTC	19	V	198
					CCC			
1343234	Н/П	Н/П	11639	11654	TAAGTCCTTTTATA	80	V	150
					CA			5
1343239	556	571	14250	14265	TTACAAGATCCAA	110	V	258
					CAG AAGCATCACGATG			
1343290	365	380	14059	14074	AAGCATCACGATG	86	V	106
					TCTAGAGGTTGTA			
1343298	392	407	14086	14101	GCA	52	V	370
					AGCTGCAGATCTA			149
1343317	401	416	14095	14110	GAG	75	V	9
1242227	704	710	1.4200	14412	CTTGTTGGCAGTGC	40	τ,	105
1343337	704	719	14398	14413	AG	42	V	5
1343347	714	729	14408	14423	ATGAAGTGAACTT	67	V	572

					GTT			
1343354	987	1002	14681	14696	CTTGATTCTCATCA AC	119	V	797
1343355	820	835	14514	14529	ACTTTGATACTTGG TG	52	V	728
1343356	997	1012	14691	14706	CTTTTCCATACTTG AT	49	V	150 1
1343358	71	86	3333	3348	AAGTCTTACGGGT GTT	40	V	122 8
1343360	919	934	14613	14628	TAGATTCTGATAGT TA	17	V	150 0
1343362	828	843	14522	14537	GTGTTATTACTTTG AT	18	V	320
1343365	1141	1156	14835	14850	CACTGTCACATATT AA	39	V	150 4
1343367	81	96	3343	3358	GTGTTGTATGAAG TCT	16	V	818
1343368	1131	1146	14825	14840	TATTAACCACCAG TTC	62	V	886
1343370	1129	1144	14823	14838	TTAACCACCAGTTC TC	46	V	990
1343373	1139	1154	14833	14848	CTGTCACATATTAA CC	31	V	150 2
1343377	1515	1530	15209	15224	CGGACCCACGAAT TGT	66	V	109 2
1343378	1527	1542	15221	15236	GTTAAGATTTTGCG GA	39	V	51
1343379	1517	1532	15211	15226	TGCGGACCCACGA ATT	70	V	275
1343382	1505	1520	15199	15214	AATTGTCAGCTCCC CT	17	V	140 6
1343383	1501	1516	15195	15210	GTCAGCTCCCCTA ACC	67	V	150 3
1343384	1563	1578	15257	15272	CAGTAAGGTTTAT	31	V	638

					GGT			
1343386	Н/П	Н/П	3799	3814	AAATAGCTCAGTT CTG	105	V	560
1343390	1557	1572	15251	15266	GGTTTATGGTCAAT AG	26	V	910
1343391	Н/П	Н/П	3809	3824	GTTCAGATGTAAA TAG	51	V	110 0
1343392	1567	1582	15261	15276	TTATCAGTAAGGTT TA	53	V	502
1343393	1553	1568	15247	15262	TATGGTCAATAGT AGG	23	V	114
1343394	Н/П	Н/П	6413	6428	GGAGGTAGTATTG AGA	90	V	410
1343395	Н/П	Н/П	6403	6418	TTGAGAAAGTCTT AAG	87	V	885
1343403	268	283	13962	13977	TCAATGGTTGAGG CTC	51	V	27
1343414	270	285	13964	13979	TTTCAATGGTTGAG GC	50	V	177
1343424	272	287	13966	13981	CATTTCAATGGTTG AG	53	V	28
1343459	274	289	13968	13983	GGCATTTCAATGG TTG	56	V	178
1343466	276	291	13970	13985	GAGGCATTTCAAT GGT	90	V	29
1343504	370	385	14064	14079	CAGAGAAGCATCA CGA	46	V	256
1343515	561	576	14255	14270	CATGTTTACAAGA TCC	73	V	91
1343531	397	412	14091	14106	GCAGATCTAGAGG TTG	25	V	32
1343550	404	419	14098	14113	GCAAGCTGCAGAT CTA	57	V	150 7
1343568	408	423	14102	14117	TGTGGCAAGCTGC	92	V	150

					AGA			8
1343596	709	724	14403	14418	GTGAACTTGTTGG	53	V	259
					CAG			
1343619	823	838	14517	14532	ATTACTTTGATACT	19	V	260
					TG			
1343620	817	832	14511	14526	TTGATACTTGGTGA AG	43	V	895
					TACTTGGTGAAGA			104
1343623	813	828	14507	14522	CCT	75	V	5
1242626	016	021	14610	1.4625	ATTCTGATAGTTAC	26	*7	505
1343626	916	931	14610	14625	TA	26	V	505
1343628	992	1007	14686	14701	CCATACTTGATTCT	24	V	185
10 10 020	, , <u>, , , , , , , , , , , , , , , , , </u>	1007	11000	11,01	CA		·	
1343634	912	927	14606	14621	TGATAGTTACTAC	92	V	655
					AAA			
1343635	914	929	14608	14623	TCTGATAGTTACTA CA	24	V	35
					ACATGTACTAGAA			150
1343637	1071	1086	14765	14780	TTC	83	V	9
12.42.620	1067	1002	1.47.61	1.477.6	GTACTAGAATTCT	20	***	27
1343639	1067	1082	14761	14776	GTG	32	V	37
1343641	76	91	3338	3353	GTATGAAGTCTTA	77	V	167
10 10 0 11		7 -			CGG		·	
1343642	1017	1032	14711	14726	TATGTAAGAGTAT	29	V	186
					GGC			
1343643	1012	1027	14706	14721	AAGAGTATGGCCT TAC	94	V	993
					TGTAAGAGTATGG			
1343645	1015	1030	14709	14724	CCT	111	V	920
10.40 5 17	10:5	10.50	1.4622	1.46.7.	GATATAGTATGGT	1.0		104
1343647	1245	1260	14939	14954	AAG	18	V	6
1343651	1135	1150	14829	14844	CACATATTAACCA	17	V	264
1343031	1133	1130	14029	1+044	CCA	1 /	L	204
1343652	1137	1152	14831	14846	GTCACATATTAAC	40	V	802

					CAC			
1343654	1133	1148	14827	14842	CATATTAACCACC	20	V	113
10 10 00 1	1100	11.0	1,02,	11012	AGT			
1343656	1249	1264	14943	14958	CAAAGATATAGTA	18	V	942
					TGG			1.50
1343657	261	276	13955	13970	TTGAGGCTCTTCTT AT	78	V	150
					ACCCACGAATTGT			
1343661	1512	1527	15206	15221	CAG	64	V	199
1343662	1508	1523	15202	15217	ACGAATTGTCAGC	35	V	137
1343002	1300	1323	13202	13217	TCC	33	v	4
1343663	1510	1525	15204	15219	CCACGAATTGTCA	33	V	49
					GCT			
1343666	1560	1575	15254	15269	TAAGGTTTATGGTC AA	16	V	704
					GCTATTAGGTAGTT			
1343670	1538	1553	15232	15247	AA	55	V	277
1242672	1.5.40	1557	15006	15051	GTAGGCTATTAGG	40	***	136
1343673	1542	1557	15236	15251	TAG	49	V	7
1343675	1522	1537	15216	15231	GATTTTGCGGACC	26	V	125
10 10 07 0	1022	1007	10210	10201	CAC			
1343678	Н/П	Н/П	3619	3634	AAACCAGTAACCA	43	V	126
					GGA			3
1343679	Н/П	Н/П	3615	3630	CAGTAACCAGGAT CAA	81	V	444
					ATGGTTGAGGCTC			
1343680	265	280	13959	13974	TTC	47	V	103
12/2602	2192	2107	15076	15901	GGATTATGCAGTA	56	V	211
1343682	2182	2197	15876	15891	TAG	30	V	211
1343687	Н/П	Н/П	11634	11649	CCTTTTATACATCC	32	V	85
					CA			
1343688	Н/П	Н/П	3804	3819	GAC	39	V	71
1343689	Н/П	Н/П	4207	4222	CAG GCATTAATAGGCA	37	V	138
1373003	11/11	11/11	7207	7222	GCMITAATAUUCA	<i>J </i>	_ v	130

					GAA			8
1343691	Н/П	Н/П	6408	6423	TAGTATTGAGAAA GTC	64	V	301
1343693	Н/П	Н/П	4211	4226	ATAGGCATTAATA GGC	36	V	111 7
1393744	526	541	14220	14235	TAACAATAAGTTTT AG	96	AC	141
1393746	529	544	14223	14238	TGGTAACAATAAG TTT	51	AC	358
1393752	528	543	14222	14237	GGTAACAATAAGT TTT	23	AC	450
1393753	91	106	3353	3368	ATAGAGTATTGTG TTG	29	AC	636
1393754	1467	1482	15161	15176	CTGTAGATGTAAT AGA	55	AC	48
1393755	530	545	14224	14239	ATGGTAACAATAA GTT	34	AC	141 8
1393756	1461	1476	15155	15170	ATGTAATAGATGG GCC	96	AC	273
1393757	1464	1479	15158	15173	TAGATGTAATAGA TGG	9	AC	107 7
1393758	1462	1477	15156	15171	GATGTAATAGATG GGC	30	AC	118 1
1393759	1466	1481	15160	15175	TGTAGATGTAATA GAT	30	AC	924
1393760	1463	1478	15157	15172	AGATGTAATAGAT GGG	7	AC	110 6
1393761	531	546	14225	14240	TATGGTAACAATA AGT	36	AC	141 4
1393762	Н/П	Н/П	5504	5519	TGTACACGAGTAT ATT	55	AC	141 3
1393763	1465	1480	15159	15174	GTAGATGTAATAG ATG	27	AC	972
1393764	1018	1033	14712	14727	TTATGTAAGAGTA	24	AC	262

					TGG			
1393765	1251	1266	14945	14960	TCCAAAGATATAG TAT	23	AC	142
1393766	1246	1261	14940	14955	AGATATAGTATGG TAA	13	AC	270
1393768	1250	1265	14944	14959	CCAAAGATATAGT ATG	30	AC	921
1393769	1543	1558	15237	15252	AGTAGGCTATTAG GTA	23	AC	142 4
1393770	819	834	14513	14528	CTTTGATACTTGGT GA	13	AC	184
1393771	822	837	14516	14531	TTACTTTGATACTT GG	11	AC	612
1393772	1248	1263	14942	14957	AAAGATATAGTAT GGT	6	AC	120
1393773	1544	1559	15238	15253	TAGTAGGCTATTA GGT	38	AC	131 3
1393777	1244	1259	14938	14953	ATATAGTATGGTA AGC	47	AC	194
1393780	1243	1258	14937	14952	TATAGTATGGTAA GCT	38	AC	119
1393999	555	570	14249	14264	TACAAGATCCAAC AGA	38	AC	888
1394005	1555	1570	15249	15264	TTTATGGTCAATAG TA	44	AC	934
1394007	1325	1340	15019	15034	TTGCCTGCATTGGA TG	41	AC	152 5
1394008	Н/П	Н/П	7279	7294	TTTTTGGTGGTATT CC	30	AC	145 7
1394009	1554	1569	15248	15263	TTATGGTCAATAGT AG	18	AC	101 5
1394010	Н/П	Н/П	7568	7583	TTTTGACTAATGTC AT	66	AC	146 0
1394011	Н/П	Н/П	12092	12107	GATTTGATGTTAA	27	AC	145

					GTA			8
1394012	Н/П	Н/П	11998	12013	ACTTAATAGTAGT	81	AC	145
1394012	11/11	11/11	11996	12013	AGT	01	AC	6
1394013	630	645	14324	14339	GTTGAGGAAATCA	89	AC	514
133 1013	050	0.13	11321	1 1000	ACA	0,3	110	311
1394014	 Н/П	 Н/П	12082	12097	TAAGTACTGAAGA	77	AC	119
					CTG			8
1394016	Н/П	Н/П	7558	7573	TGTCATATACCATG	39	AC	145
					TT			9
1394017	Н/П	Н/П	11988	12003	AGTAGTTTCCATCA	33	AC	152
					TG TGGACTTGTGGTA			4
1394019	Н/П	Н/П	6937	6952	ATA	40	AC	152
					TACCCTTTTTTGGA			146
1394020	Н/П	Н/П	6947	6962	CT	50	AC	3
					TATATTAGGAAAT			146
1394021	Н/П	Н/П	5494	5509	TGC	47	AC	8
1201022			50.55	505 0	ATTAAGAATGTAA			146
1394022	Η/Π	H/Π 	5855	5870	TGC	94	AC	2
1394023	1275	1290	14969	14984	TCTGAAGTCTTAA	50	AC	271
1394023	1273	1290	14909	14704	GGT	30	AC	2/1
1394024	Н/П	Н/П	3801	3816	GTAAATAGCTCAG	31	AC	540
153 102 1	11/11	11/11	2001	5010	TTC			
1394025	Н/П	Н/П	7354	7369	TGTATATGCTGAG	47	AC	129
					CAT			1
1394026	Н/П	Н/П	5845	5860	TAATGCTATGCAT	70	AC	146
					AAA			1
1394027	Н/П	Н/П	3811	3826	TAGTTCAGATGTA	65	AC	146
					AAT ATTTGGAGAGGTA			5 146
1394028	Н/П	Н/П	5411	5426	ACT	57	AC	4
					ATTTGTGAGCCAT			146
1394029	643	658	14337	14352	GTT	8	AC	9
1394030	Н/П	Н/П	7857	7872	GAAATGCCAGACT	35	AC	147
							<u> </u>	

					CCT			3
1394031	1309	1324	15003	15018	TTAGGCTGGAATG	15	AC	147
					GAA			5
1394032	Н/П	Н/П	5421	5436	ATATTGTCTAATTT GG	48	AC	146 7
					ACTGGAGGATAAT			147
1394033	Н/П	Н/П	4238	4253	AAC	74	AC	0
					ATATAACACGCAA			146
1394034	1605	1620	15299	15314	AAT	97	AC	6
1394036	653	668	14347	14362	TGGGATAGAAATT	30	AC	183
1374030	033	000	14347	14302	TGT	30		103
1394037	Н/П	Н/П	4537	4552	TTGTAGTGAGCAA	47	AC	147
					TAG			6
1394038	1503	1518	15197	15212	TTGTCAGCTCCCCT	10	AC	152
					AA			7
1394039	Н/П	Н/П	7867	7882	TTTGGGTGTAGAA ATG	28	AC	152 8
					CAATAAGTTTTAGT			147
1394040	523	538	14217	14232	СТ	54	AC	4
1394041	93	108	3355	3370	GTATAGAGTATTG	48	AC	244
1394041	93	108	3333	3370	TGT	40	AC	244
1394042	1525	1540	15219	15234	TAAGATTTTGCGG	30	AC	200
					ACC			
1394043	83	98	3345	3360	TTGTGTTGTATGAA	15	AC	153
					GT			0
1394044	Н/П	Н/П	5506	5521	TGTGTACACGAGT ATA	47	AC	153 1
					TTTGTCATAGGAAT			152
1394045	Н/П	Н/П	4513	4528	TG	36	AC	9
					GTATATTAGGAAA			147
1394046	H/Π 	H/Π 	5495	5510	TTG	75	AC	2
1394047	Н/П	Н/П	5505	5520	GTGTACACGAGTA	53	AC	147
137404/	17/11	17/11	3303	3320	TAT		AC	1
1394048	1240	1255	14934	14949	AGTATGGTAAGCT	21	AC	117

					AGG			5
1394049	1469	1484	15163	15178	AGCTGTAGATGTA	43	AC	836
					ATA			
1394052	1459	1474	15153	15168	GTAATAGATGGGC CAA	64	AC	122
					GATTCCAAAGATA			
1394056	1254	1269	14948	14963	TAG	26	AC	701
1394057	1274	1289	14968	14983	CTGAAGTCTTAAG	41	AC	126
					GTT			4
1343141	822	837	14516	14531	TTACTTTGATACTT GG	4	AE	612
					AGATGTAAATAGC			135
1393669	H/Π 	H/Π 	3805	3820	TCA	10	AE	5
1393670	Н/П	Н/П	3807	3822	TCAGATGTAAATA	28	AE	122
		·			GCT			5
1393671	Н/П	Н/П	3803	3818	ATGTAAATAGCTC AGT	33	AE	378
120265			70.60	50.5 5	TGATGTTGTATATG			151
1393672	H/Π	H/Π	7360	7375	СТ	11	AE	0
1393673	Н/П	Н/П	7357	7372	TGTTGTATATGCTG	7	AE	152
					AGACGACTATATT			1
1393674	Н/П	Н/П	5501	5516	ACACGAGTATATT AGG	10	AE	609
1202775	11/17	11/17	5500	5515	CACGAGTATATTA	1.1	AE	(75
1393675	H/Π	Н/П	5500	5515	GGA	11	AE	675
1393676	Н/П	Н/П	5498	5513	CGAGTATATTAGG	25	AE	139
					TACACGAGTATAT			6
1393677	Н/П	Н/П	5502	5517	TAG	36	AE	538
1393678	1608	1623	15302	15317	TACATATAACACG	27	AE	129
1373070	1000	1023	15502	13317	CAA	21	1112	129
1393679	1610	1625	15304	15319	AATACATATAACA	29	AE	426
1393680	1609	1624	15303	15318	CGC ATACATATAACAC	20	AE	139

					GCA			7
1393681	1607	1622	15301	15316	ACATATAACACGC	40	AE	54
					AAA			
1393682	Н/П	Н/П	5499	5514	ACGAGTATATTAG	5	AE	737
					GAA			
1393683	Н/П	Н/П	5497	5512	GAGTATATTAGGA	47	AE	139
					AAT			9
1393684	Н/П	Н/П	5414	5429	CTAATTTGGAGAG	19	AE	120
					GTA			2
1393685	Н/П	Н/П	4233	4248	AGGATAATAACTT	24	AE	740
					GAC GGAGGATAATAAC			147
1393686	Н/П	Н/П	4235	4250	TTG	57	AE	8
					GGATAATAACTTG			8
1393687	Н/П	Н/П	4232	4247	ACA	40	AE	809
					TAATACATATAAC			139
1393688	1611	1626	15305	15320	ACG	37	AE	8
					GAGGATAATAACT			
1393689	H/Π	Н/П	4234	4249	TGA	51	AE	665
1202600	11/77	11/57	1001	10.16	GATAATAACTTGA	<i></i>	4.5	148
1393690	H/Π	Н/П	4231	4246	CAA	64	AE	0
1202601	Н/П	Н/П	4236	4251	TGGAGGATAATAA	32	AE	147
1393691	П/11	П/11	4230	4231	CTT	32	AE	7
1393692	Н/П	Н/П	5415	5430	TCTAATTTGGAGA	65	AE	114
1393092	11/11	11/11	3713	3430	GGT	03	AL	9
1393693	Н/П	Н/П	5413	5428	TAATTTGGAGAGG	73	AE	147
1333033		11/11	3 113	3 120	TAA	,	112	9
1393694	646	661	14340	14355	GAAATTTGTGAGC	10	AE	148
					CAT			6
1393695	Н/П	Н/П	5417	5432	TGTCTAATTTGGAG	77	AE	148
					AG			2
1393696	647	662	14341	14356	AGAAATTTGTGAG	14	AE	148
122262			1.1222	1.05:	CCA		1	5
1393697	645	660	14339	14354	AAATTTGTGAGCC	21	AE	148

					ATG			8
1393698	648	663	14342	14357	TAGAAATTTGTGA	25	AE	136
					GCC			0
1393699	Н/П	Н/П	5416	5431	GTCTAATTTGGAG	55	AE	105
					AGG ATTGTCTAATTTGG			1 148
1393700	Н/П	Н/П	5419	5434	AG	44	AE	3
1202701	640	664	1.42.42	1.4250	ATAGAAATTTGTG	40	AE	125
1393701	649	664	14343	14358	AGC	49	AE	3
1393703	Н/П	Н/П	5418	5433	TTGTCTAATTTGGA	47	AE	148
					GA			1
1393704	Н/П	Н/П	4544	4559	TTCTTATTTGTAGT GA	62	AE	140
					TTATTTGTAGTGAG			148
1393705	Н/П	Н/П	4541	4556	CA	7	AE	9
1393706	Н/П	Н/П	4545	4560	GTTCTTATTTGTAG	39	AE	140
1373700	11/11	11/11	1313	1300	TG			1
1393707	651	666	14345	14360	GGATAGAAATTTG	27	AE	120
					TGA CTTATTTGTAGTGA			7
1393708	Н/П	Н/П	4542	4557	GC	23	AE	598
1202700	11/57	11/57	45.40	4555	TATTTGTAGTGAGC	20	4.5	148
1393709	H/Π	Н/П	4540	4555	AA	28	AE	4
1393710	Н/П	Н/П	4543	4558	TCTTATTTGTAGTG	56	AE	480
					AG			
1393712	Н/П	Н/П	4539	4554	ATTTGTAGTGAGC	80	AE	149
					AAT GATAGAAATTTGT			0 148
1393713	650	665	14344	14359	GAG	22	AE	7
1202714	1212	1229	15007	15000	GATGTTAGGCTGG	22	AT	507
1393714	1313	1328	15007	15022	AAT	22	AE	587
1393715	1311	1326	15005	15020	TGTTAGGCTGGAA	44	AE	46
					TGG			
1393716	1312	1327	15006	15021	ATGTTAGGCTGGA	55	AE	630

					ATG			
1393717	Н/П	Н/П	7862	7877	GTGTAGAAATGCC	35	AE	129
1373717	11/11	11/11	7002	7077	AGA	33		4
1393718	1316	1331	15010	15025	TTGGATGTTAGGCT	24	AE	141
1373710	1310	1331	13010	13023	GG	2 '		0
1393719	Н/П	Н/П	7861	7876	TGTAGAAATGCCA	22	AE	140
1030,13	11/11	12/11	, 001	7070	GAC			4
1393720	 Н/П	 Н/П	7859	7874	TAGAAATGCCAGA	47	AE	359
					CTC			
1393721	 Н/П	 Н/П	7860	7875	GTAGAAATGCCAG	29	AE	133
					ACT			5
1393722	1314	1329	15008	15023	GGATGTTAGGCTG	5	AE	519
					GAA			
1393723	1315	1330	15009	15024	TGGATGTTAGGCT	12	AE	151
					GGA			1
1393724	1529	1544	15223	15238	TAGTTAAGATTTTG	18	AE	819
					CGCTCTACAAATC			140
1393725	Н/П	Н/П	7864	7879	GGGTGTAGAAATG CCA	55	AE	140
					ATAACAGATGTGA			107
1393726	879	894	14573	14588	GGA	32	AE	2
					ACAGATGTGAGGA			140
1393727	876	891	14570	14585	GTC	12	AE	7
					CAGATGTGAGGAG			141
1393728	875	890	14569	14584	TCA	24	AE	1
					CGAATTGTCAGCT			
1393729	1507	1522	15201	15216	CCC	37	AE	339
1202523	1500	1540	15000	15007	AGTTAAGATTTTGC	2.0	1.5	140
1393730	1528	1543	15222	15237	GG	30	AE	3
1202721	TT/T-	11/17	7067	7000	TGGGTGTAGAAAT	60	AF	140
1393731	Н/П	H/Π	7865	7880	GCC	60	AE	2
1202722	077	902	1/571	1/1506	AACAGATGTGAGG	1 /	A IZ	113
1393732	877	892	14571	14586	AGT	14	AE	6
1393733	Н/П	Н/П	7863	7878	GGTGTAGAAATGC	74	AE	140

					CAG			8
1393735	Н/П	Н/П	5503	5518	GTACACGAGTATA	34	AE	142
1373733		11/11	3303	3310	TTA	34		1
1393736	Н/П	Н/П	4518	4533	TAACATTTGTCATA	19	AE	828
1030,00	1111	12/11	10 10	1000	GG	17	112	020
1393737	 Н/П	Н/П	4516	4531	ACATTTGTCATAG	9	AE	142
	·	·			GAA			0
1393738	Н/П	Н/П	4515	4530	CATTTGTCATAGG	16	AE	140
					AAT			5
1393739	Н/П	Н/П	4519	4534	TTAACATTTGTCAT	43	AE	708
					AG			
1393740	1533	1548	15227	15242	TAGGTAGTTAAGA	33	AE	613
					TTT GGTAGTTAAGATT			
1393741	1531	1546	15225	15240	TTG	7	AE	689
					AACATTTGTCATA			141
1393742	Н/П	Н/П	4517	4532	GGA	19	AE	5
					GTAGTTAAGATTTT			
1393743	1530	1545	15224	15239	GC	7	AE	752
					AGTATTGTGTTGTA			151
1393745	87	102	3349	3364	TG	18	AE	3
1202747	00	102	2250	2265	GAGTATTGTGTTGT	20	A.E.	75.6
1393747	88	103	3350	3365	AT	29	AE	756
1393748	86	101	3348	3363	GTATTGTGTTGTAT	31	AE	151
1393746	80	101	3346	3303	GA	31	AL	2
1393749	89	104	3351	3366	AGAGTATTGTGTT	13	AE	141
1373717		101	3331	3300	GTA	15		6
1393750	90	105	3352	3367	TAGAGTATTGTGTT	19	AE	141
1030,00	, ,	700	2302	2207	GT	17		9
1343141	822	837	14516	14531	TTACTTTGATACTT	6	AF	612
					GG			
1393584	562	577	14256	14271	TCATGTTTACAAG	49	AF	151
40.5.5.5			45		ATC			5
1393585	1318	1333	15012	15027	CATTGGATGTTAG	17	AF	145

					GCT			0
1393586	560	575	14254	14269	ATGTTTACAAGAT CCA	6	AF	700
1393589	557	572	14251	14266	TTTACAAGATCCA ACA	32	AF	139 5
1393590	1317	1332	15011	15026	ATTGGATGTTAGG CTG	46	AF	151 4
1393593	558	573	14252	14267	GTTTACAAGATCC AAC	49	AF	33
1393594	1319	1334	15013	15028	GCATTGGATGTTA GGC	22	AF	121
1393595	1561	1576	15255	15270	GTAAGGTTTATGG TCA	26	AF	53
1393596	1322	1337	15016	15031	CCTGCATTGGATGT TA	36	AF	151 6
1393598	Н/П	Н/П	11991	12006	AGTAGTAGTTTCC ATC	28	AF	142 2
1393599	Н/П	Н/П	11990	12005	GTAGTAGTTTCCAT CA	40	AF	141 7
1393600	1321	1336	15015	15030	CTGCATTGGATGTT AG	45	AF	196
1393601	1323	1338	15017	15032	GCCTGCATTGGAT GTT	64	AF	151 7
1393602	1320	1335	15014	15029	TGCATTGGATGTTA GG	39	AF	392
1393603	1559	1574	15253	15268	AAGGTTTATGGTC AAT	11	AF	784
1393604	1264	1279	14958	14973	AAGGTTTCATGATT CC	20	AF	632
1393606	1265	1280	14959	14974	TAAGGTTTCATGAT TC	12	AF	615
1393607	Н/П	Н/П	11993	12008	ATAGTAGTAGTTTC CA	31	AF	124
1393608	1263	1278	14957	14972	AGGTTTCATGATTC	19	AF	142

					CA			7
1393609	1262	1277	14956	14971	GGTTTCATGATTCC	27	AF	142
1373007	1202	1277	14730	147/1	AA	21	711	6
1393610	Н/П	Н/П	11995	12010	TAATAGTAGTAGT	72	AF	142
					TTC			5
1393611	Н/П	Н/П	11994	12009	AATAGTAGTAGTT	30	AF	116
					TCC			6
1393612	1266	1281	14960	14975	TTAAGGTTTCATGA TT	29	AF	142 8
					TAGTAGTAGTTTCC			134
1393613	Н/П	Н/П	11992	12007	AT	44	AF	5
					GGAAATCAACAGT			
1393614	625	640	14319	14334	TGC	11	AF	564
1202615	(2.4	(20	1.4210	1 4222	GAAATCAACAGTT	1.7	A.E.	644
1393615	624	639	14318	14333	GCA	17	AF	644
1393616	Н/П	Н/П	7285	7300	TCAGTATTTTTGGT	73	AF	143
1373010	11/11	11/11	7203	7500	GG	73	711	4
1393617	627	642	14321	14336	GAGGAAATCAACA	20	AF	143
					GTT			0
1393618	1267	1282	14961	14976	CTTAAGGTTTCATG	63	AF	195
					AT CAGTATTTTTGGTG			
1393619	Н/П	Н/П	7284	7299	GT	46	AF	642
					AAATCAACAGTTG			142
1393620	623	638	14317	14332	CAT	32	AF	9
1202621	11/17	11/17	7292	7209	AGTATTTTTGGTGG	11	AE	143
1393621	H/Π	Н/П	7283	7298	TA	11	AF	2
1393622	Н/П	Н/П	7282	7297	GTATTTTTGGTGGT	12	AF	143
1373022	11/11	11/11	7202	12)1	AT	12	7 11	1
1393623	622	637	14316	14331	AATCAACAGTTGC	52	AF	151
					ATT			8
1393624	Н/П	Н/П	12088	12103	TGATGTTAAGTACT	28	AF	143
1393625	Н/П	Н/П	12086	12101	GA ATGTTAAGTACTG	52	AF	8 143
1393023	11/11	11/11	12080	12101	ATOTTAAOTACIO	34	АГ	143

					AAG			7
1393626	Н/П	Н/П	12084	12099	GTTAAGTACTGAA	45	AF	112
1373020	11/11	11/11	12004	120))	GAC	73		5
1393627	Н/П	Н/П	12090	12105	TTTGATGTTAAGTA	24	AF	143
100002	12/11	1211	12000	12100	CT			9
1393628	 Н/П	 Н/П	7286	7301	TTCAGTATTTTTGG	43	AF	143
					TG			3
1393629	Н/П	Н/П	12085	12100	TGTTAAGTACTGA	63	AF	143
					AGA			6
1393630	Н/П	Н/П	12087	12102	GATGTTAAGTACT	19	AF	103
					GAA			1
1393631	Н/П	Н/П	12089	12104	TTGATGTTAAGTAC TG	49	AF	151 9
					CTTCAGTATTTTTG			143
1393633	Н/П	Н/П	7287	7302	GT	70	AF	5
					TGAATACATATGG			144
1393634	539	554	14233	14248	TAA	31	AF	0
					AATGTCATATACC			144
1393635	H/Π	Н/П	7560	7575	ATG	75	AF	1
1202626	11/57	11/77	75.64	7.70	GACTAATGTCATA	00		124
1393636	H/Π 	H/Π	7564	7579	TAC	92	AF	4
1393637	538	553	14232	14247	GAATACATATGGT	53	AF	138
1393037	338	333	14232	14247	AAC	33	АГ	6
1393638	Н/П	Н/П	7562	7577	CTAATGTCATATAC	24	AF	353
1373030	11/11	11/11	7302	1311	CA	27	711	
1393639	Н/П	Н/П	7565	7580	TGACTAATGTCAT	117	AF	144
			, , , ,		ATA			3
1393640	 Н/П	Н/П	7563	7578	ACTAATGTCATAT	40	AF	134
					ACC			4
1393641	Н/П	Н/П	7566	7581	TTGACTAATGTCAT	112	AF	144
					AT			4
1393642	Н/П	Н/П	7561	7576	TAATGTCATATACC	32	AF	144
1202642	<i>E A</i> 1	557	14025	1.4050	AT	1.77	AT	2
1393643	541	556	14235	14250	GATGAATACATAT	17	AF	126

					GGT			2
1393644	1565	1580	15259	15274	ATCAGTAAGGTTT ATG	28	AF	203
1393645	1269	1284	14963	14978	GTCTTAAGGTTTCA TG	24	AF	454
1393646	1268	1283	14962	14977	TCTTAAGGTTTCAT GA	53	AF	533
1393647	Н/П	Н/П	5848	5863	ATGTAATGCTATG CAT	87	AF	144 8
1393648	1272	1287	14966	14981	GAAGTCTTAAGGT TTC	60	AF	139 1
1393649	1566	1581	15260	15275	TATCAGTAAGGTTT AT	52	AF	144 5
1393650	Н/П	Н/П	5847	5862	TGTAATGCTATGC ATA	49	AF	144 7
1393652	1270	1285	14964	14979	AGTCTTAAGGTTTC AT	14	AF	338
1393653	1271	1286	14965	14980	AAGTCTTAAGGTTT CA	26	AF	144 6
1393654	Н/П	Н/П	6941	6956	TTTTTGGACTTGTG GT	34	AF	145 1
1393655	Н/П	Н/П	6943	6958	TG CTTTTTTGGACTTG	5	AF	77
1393656	Н/П	Н/П	6942	6957	TTTTTTGGACTTGT GG	17	AF	585
1393657	Н/П	Н/П	6939	6954	TTTGGACTTGTGGT AA	42	AF	152 0
1393658	Н/П	Н/П	5850	5865	GAATGTAATGCTA TGC	25	AF	732
1393659	Н/П	Н/П	6940	6955	TTTTGGACTTGTGG TA	29	AF	152 2
1393660	Н/П	Н/П	6945	6960	CCCTTTTTTGGACT TG	21	AF	145 3
1393661	Н/П	Н/П	5851	5866	AGAATGTAATGCT	35	AF	144

					ATG			9
1393662	Н/П	Н/П	6944	6959	CCTTTTTTGGACTT	5	AF	145
1373002	11/11	11/11	0511	0,3,	GT	9	7 11	2
1393663	Н/П	Н/П	7356	7371	GTTGTATATGCTGA	17	AF	145
1373003	11/11	11/11	7330	7371	GC	17	7 11	4
1393664	Н/П	Н/П	7361	7376	ATGATGTTGTATAT	15	AF	152
1373004	11/11	11/11	7501	7370	GC	13	711	3
1393665	Н/П	Н/П	7359	7374	GATGTTGTATATGC	19	AF	118
1373003	11/11	11/11	1337	7374	TG	17		7
1393666	Н/П	Н/П	7362	7377	AATGATGTTGTAT	58	AF	139
1373000	11/11	11/11	7302	1311	ATG	50		3
1393667	Н/П	Н/П	3808	3823	TTCAGATGTAAAT	33	AF	139
13/3007	11/11	11/11	3000	3023	AGC	33	711	4
1393668	Н/П	Н/П	7358	7373	ATGTTGTATATGCT	20	AF	145
13/3000	11/11	11/11	7556	7373	GA	20	111	5

Пример 5. Влияние смешанных сЕt и 2'-ОМе однородных фосфоротиоатмодифицированных олигонуклеотидов на PHK PLN человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали и тестировали в отношении эффектов однократной дозы на PHK PLN *in vitro*. Модифицированные олигонуклеотиды тестировали в серии экспериментов в одинаковых условиях культивирования.

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdydddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый « у» представляет собой 2'-ОМе сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый остаток цитозина представляет собой 5-метилцитозин, если не указано иное; неметилированные остатки цитозина выделены жирным шрифтом и подчеркнуты С.

«Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид,

приведенный в таблице ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017) обрабатывали модифицированным олигонуклеотидом в концентрации 6000 нМ с помощью свободного поглощения при плотности 8000 клеток на лунку. После периода обработки, продолжавшегося примерно 72 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40402 (описанного в данном документе выше). Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблице ниже в процентах РНК PLN по отношению к количеству в необработанных контрольных клетках (% UTC).

Каждый отдельный экспериментальный анализ, описанный в этом примере, идентифицируется буквенным идентификатором в столбце таблицы ниже, помеченном как «AID» (идентификатор анализа). В таблице ниже в качестве эталонов использовались соединения №№ 1121455 и 1343141 (описанные в данном документе выше).

Таблица 5. Снижение уровня PHK PLN модифицированными олигонуклеотидами со смешанным cEt/2'-OMe сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 6000 нМ в кардиомиоцитах iCell®²

Номер соединения	Старт-сайт SEQ ID NO: 1	Cron-caŭr SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Cron-caŭr SEQ ID NO: 2	Последовательност ь (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1121455	1506	1521	15200	15215	GAATTGTCAGCTC CCC	15	W	198
1343295	279	294	13973	13988	GTTGAGGCATTTC AAT	83	W	1324
1343296	258	273	13952	13967	AGGCUCTTCTTAT AGC	83	W	1532
1343299	266	281	13960	13975	AATGGTTGAGGCT CTT	65	W	176
1343300	275	290	13969	13984	AGGCATTTCAATG GTT	28	W	254
1343304	909	924	14603	14618	TAGTUACTACAAA	54	W	1533

					TAG			
1343307	818	833	14512	14527	TTTGATACTTGGT GAA	51	W	794
1343310	810	825	14504	14519	TTGGUGAAGACCT GAA	63	W	1534
1343311	411	426	14105	14120	TGATGTGGCAAGC TGC	43	W	1493
1343313	402	417	14096	14111	AAGCUGCAGATCT AGA	70	W	1535
1343318	1009	1024	14703	14718	AGTAUGGCCTTAC TTT	83	W	1536
1343319	1074	1089	14768	14783	CCTACATGTACTA GAA	48	W	1272
1343320	920	935	14614	14629	GTAGATTCTGATA GTT	28	W	1319
1343325	1140	1155	14834	14849	ACTGUCACATATT AAC	90	W	1537
1343329	1252	1267	14946	14961	TTCCAAAGATATA GTA	38	W	812
1343330	1242	1257	14936	14951	ATAGUATGGTAAG CTA	83	W	1538
1343333	1130	1145	14824	14839	ATTAACCACCAGT TCT	33	W	263
1343335	1545	1560	15239	15254	ATAGUAGGCTATT AGG	82	W	1539
1343340	1516	1531	15210	15225	GCGGACCCACGAA TTG	47	W	1083
1343342	1535	1550	15229	15244	ATTAGGTAGTTAA GAT	62	W	126
1343344	Н/П	Н/П	4214	4229	ACTAUAGGCATTA ATA	82	W	1540
1343345	Н/П	Н/П	3612	3627	TAACCAGGATCAA AGA	75	W	562
1343350	Н/П	Н/П	4204	4219	TTAAUAGGCAGAA	69	W	1541

					ATC			
1343351	Н/П	Н/П	3622	3637	GACAAACCAGTAA CCA	25	W	1099
1343506	78	93	3340	3355	TTGTATGAAGTCT TAC	86	W	945
1343509	559	574	14253	14268	TGTTUACAAGATC CAA	29	W	1542
1343510	563	578	14257	14272	TTCAUGTTTACAA GAT	65	W	1543
1343512	74	89	3336	3351	ATGAAGTCTTACG GGT	26	W	1140
1343517	273	288	13967	13982	GCATUTCAATGGT TGA	54	W	1544
1343518	271	286	13965	13980	ATTTCAATGGTTG AGG	60	W	253
1343519	269	284	13963	13978	TTCAATGGTTGAG GCT	41	W	104
1343523	263	278	13957	13972	GGTTGAGGCTCTT CTT	24	W	251
1343527	399	414	14093	14108	CTGCAGATCTAGA GGT	80	W	1090
1343529	372	387	14066	14081	TTCAGAGAAGCAT CAC	55	W	697
1343532	395	410	14089	14104	AGATCTAGAGGTT GTA	79	W	1331
1343533	368	383	14062	14077	GAGAAGCATCACG ATG	65	W	788
1343536	707	722	14401	14416	GAACUTGTTGGCA GTG	41	W	1545
1343537	821	836	14515	14530	TACTUTGATACTT GGT	35	W	1546
1343542	815	830	14509	14524	GATACTTGGTGAA GAC	25	W	34
1343544	406	421	14100	14115	TGGCAAGCTGCAG	41	W	108

					ATC			
1343545	711	726	14405	14420	AAGTGAACTTGTT GGC	48	W	762
1343546	990	1005	14684	14699	ATACUTGATTCTC ATC	34	W	1547
1343548	917	932	14611	14626	GATTCTGATAGTT ACT	21	W	457
1343551	915	930	14609	14624	TTCTGATAGTTAC TAC	37	W	110
1343552	913	928	14607	14622	CTGAUAGTTACTA CAA	35	W	1548
1343554	825	840	14519	14534	TTATUACTTTGAT ACT	55	W	1549
1343558	1014	1029	14708	14723	GTAAGAGTATGGC CTT	17	W	36
1343559	1019	1034	14713	14728	ATTAUGTAAGAGT ATG	91	W	1550
1343563	1016	1031	14710	14725	ATGTAAGAGTATG GCC	64	W	111
1343564	994	1009	14688	14703	TTCCATACTTGAT TCT	45	W	464
1343567	1138	1153	14832	14847	TGTCACATATTAA CCA	44	W	713
1343571	1136	1151	14830	14845	TCACATATTAACC ACC	21	W	39
1343573	1132	1147	14826	14841	ATATUAACCACCA GTT	91	W	1551
1343574	1134	1149	14828	14843	ACATATTAACCAC CAG	23	W	188
1343575	1069	1084	14763	14778	ATGTACTAGAATT CTG	45	W	112
1343578	1247	1262	14941	14956	AAGAUATAGTATG GTA	37	W	1552
1343581	1509	1524	15203	15218	CACGAATTGTCAG	32	W	274

					CTC			
1343583	1506	1521	15200	15215	GAATUGTCAGCTC CCC	20	W	1553
1343585	1504	1519	15198	15213	ATTGUCAGCTCCC CTA	59	W	1554
1343586	1556	1571	15250	15265	GTTTATGGTCAAT AGT	41	W	202
1343587	1520	1535	15214	15229	TTTTGCGGACCCA CGA	69	W	1497
1343588	1558	1573	15252	15267	AGGTUTATGGTCA ATA	53	W	1555
1343590	1540	1555	15234	15249	AGGCUATTAGGTA GTT	47	W	1556
1343592	1513	1528	15207	15222	GACCCACGAATTG TCA	82	W	1279
1343593	1511	1526	15205	15220	CCCACGAATTGTC AGC	54	W	124
1343595	1524	1539	15218	15233	AAGAUTTTGCGGA CCC	22	W	1557
1343598	Н/П	Н/П	3617	3632	ACCAGTAACCAGG ATC	66	W	296
1343599	1562	1577	15256	15271	AGTAAGGTTTATG GTC	43	W	128
1343601	2184	2199	15878	15893	TTGGATTATGCAG TAT	62	W	287
1343604	1564	1579	15258	15273	TCAGUAAGGTTTA TGG	61	W	1558
1343605	2180	2195	15874	15889	ATTAUGCAGTATA GGT	66	W	1559
1343606	Н/П	Н/П	6410	6425	GGTAGTATTGAGA AAG	38	W	1498
1343611	Н/П	Н/П	6406	6421	GTATUGAGAAAGT CTT	40	W	1560
1343612	Н/П	Н/П	4209	4224	AGGCATTAATAGG	43	W	222

					CAG			
1343613	Н/П	Н/П	3806	3821	CAGAUGTAAATAG CTC	41	W	1561
1343615	Н/П	Н/П	3802	3817	TGTAAATAGCTCA GTT	38	W	466
1343616	Н/П	Н/П	11632	11647	TTTTATACATCCC ATA	116	W	932
1343625	Н/П	Н/П	11636	11651	GTCCUTTTATACA TCC	50	W	1562
1121455	1506	1521	15200	15215	GAATTGTCAGCTC CCC	15	X	198
1343294	392	407	14086	14101	TCTAGAGGTTGTA GCA	92	X	370
1343297	365	380	14059	14074	AAGCATCACGATG ATA	68	X	106
1343301	81	96	3343	3358	GTGTUGTATGAAG TCT	34	X	1563
1343302	556	571	14250	14265	TTACAAGATCCAA CAG	46	X	258
1343303	71	86	3333	3348	AAGTCTTACGGGT GTT	40	X	1228
1343305	401	416	14095	14110	AGCTGCAGATCTA GAG	106	X	1499
1343306	828	843	14522	14537	GTGTUATTACTTT GAT	72	X	1564
1343308	820	835	14514	14529	ACTTUGATACTTG GTG	85	X	1565
1343309	714	729	14408	14423	ATGAAGTGAACTT GTT	56	X	572
1343312	704	719	14398	14413	CTTGUTGGCAGTG CAG	43	X	1566
1343314	1129	1144	14823	14838	TTAACCACCAGTT CTC	69	X	990
1343316	1139	1154	14833	14848	CTGTCACATATTA	57	X	1502

					ACC			
1343321	997	1012	14691	14706	CTTTUCCATACTT GAT	56	X	1567
1343322	919	934	14613	14628	TAGAUTCTGATAG TTA	32	X	1568
1343323	987	1002	14681	14696	CTTGATTCTCATC AAC	65	X	797
1343324	1515	1530	15209	15224	CGGACCCACGAAT TGT	52	X	1092
1343326	1505	1520	15199	15214	AATTGTCAGCTCC CCT	30	X	1406
1343327	1501	1516	15195	15210	GTCAGCTCCCCTA ACC	92	X	1503
1343331	1141	1156	14835	14850	CACTGTCACATAT TAA	38	X	1504
1343332	1131	1146	14825	14840	TATTAACCACCAG TTC	69	X	886
1343334	1557	1572	15251	15266	GGTTUATGGTCAA TAG	41	X	1569
1343336	1567	1582	15261	15276	TTATCAGTAAGGT TTA	51	X	502
1343338	1517	1532	15211	15226	TGCGGACCCACGA ATT	56	X	275
1343339	1553	1568	15247	15262	TATGGTCAATAGT AGG	10	X	1142
1343341	1563	1578	15257	15272	CAGTAAGGTTTAT GGT	50	X	638
1343343	1527	1542	15221	15236	GTTAAGATTTTGC GGA	41	X	51
1343346	Н/П	Н/П	11639	11654	TAAGUCCTTTTAT ACA	81	X	1570
1343348	Н/П	Н/П	6413	6428	GGAGGTAGTATTG AGA	93	X	410
1343349	Н/П	Н/П	6403	6418	TTGAGAAAGTCTT	93	X	885

					AAG			
1343352	Н/П	Н/П	3809	3824	GTTCAGATGTAAA TAG	57	X	1100
1343353	Н/П	Н/П	3799	3814	AAATAGCTCAGTT CTG	48	X	560
1343507	561	576	14255	14270	CATGUTTACAAGA TCC	39	X	1571
1343511	76	91	3338	3353	GTATGAAGTCTTA CGG	66	X	167
1343520	272	287	13966	13981	CATTUCAATGGTT GAG	61	X	1572
1343521	270	285	13964	13979	TTTCAATGGTTGA GGC	36	X	177
1343522	268	283	13962	13977	TCAAUGGTTGAGG CTC	59	X	1573
1343524	265	280	13959	13974	ATGGUTGAGGCTC TTC	41	X	1574
1343525	261	276	13955	13970	TTGAGGCTCTTCT TAT	81	X	1506
1343526	274	289	13968	13983	GGCAUTTCAATGG TTG	46	X	1575
1343528	404	419	14098	14113	GCAAGCTGCAGAT CTA	23	X	1507
1343530	276	291	13970	13985	GAGGCATTTCAAT GGT	46	X	29
1343534	370	385	14064	14079	CAGAGAAGCATCA CGA	70	X	256
1343535	397	412	14091	14106	GCAGATCTAGAGG TTG	16	X	32
1343538	817	832	14511	14526	TTGAUACTTGGTG AAG	63	X	1576
1343539	408	423	14102	14117	TGTGGCAAGCTGC AGA	69	X	1508
1343541	813	828	14507	14522	TACTUGGTGAAGA	61	X	1577

					CCT			
1343543	709	724	14403	14418	GTGAACTTGTTGG CAG	37	X	259
1343547	823	838	14517	14532	ATTACTTTGATAC TTG	17	X	260
1343549	914	929	14608	14623	TCTGATAGTTACT ACA	38	X	35
1343553	916	931	14610	14625	ATTCUGATAGTTA CTA	62	X	1578
1343555	912	927	14606	14621	TGATAGTTACTAC AAA	74	X	655
1343556	1015	1030	14709	14724	TGTAAGAGTATGG CCT	42	X	920
1343557	1067	1082	14761	14776	GTACUAGAATTCT GTG	68	X	1579
1343560	1017	1032	14711	14726	TATGUAAGAGTAT GGC	40	X	1580
1343561	1012	1027	14706	14721	AAGAGTATGGCCT TAC	88	X	993
1343562	992	1007	14686	14701	CCATACTTGATTC TCA	38	X	185
1343566	1071	1086	14765	14780	ACATGTACTAGAA TTC	73	X	1509
1343569	1135	1150	14829	14844	CACAUATTAACCA CCA	31	X	1581
1343570	1137	1152	14831	14846	GTCACATATTAAC CAC	30	X	802
1343572	1133	1148	14827	14842	CATAUTAACCACC AGT	48	X	1582
1343577	1510	1525	15204	15219	CCACGAATTGTCA GCT	46	X	49
1343579	1512	1527	15206	15221	ACCCACGAATTGT CAG	44	X	199
1343580	1249	1264	14943	14958	CAAAGATATAGTA	15	X	942

					TGG			
1343582	1508	1523	15202	15217	ACGAATTGTCAGC TCC	17	X	1374
1343584	1245	1260	14939	14954	GATAUAGTATGGT AAG	33	X	1583
1343589	1542	1557	15236	15251	GTAGGCTATTAGG TAG	37	X	1367
1343591	1538	1553	15232	15247	GCTAUTAGGTAGT TAA	50	X	1584
1343594	1522	1537	15216	15231	GATTUTGCGGACC CAC	44	X	1585
1343597	Н/П	Н/П	3619	3634	AAACCAGTAACCA GGA	57	X	1263
1343600	2182	2197	15876	15891	GGATUATGCAGTA TAG	54	X	1586
1343602	Н/П	Н/П	3615	3630	CAGTAACCAGGAT CAA	63	X	444
1343603	1560	1575	15254	15269	TAAGGTTTATGGT CAA	20	X	704
1343607	Н/П	Н/П	6408	6423	TAGTATTGAGAAA GTC	53	X	301
1343609	Н/П	Н/П	4211	4226	ATAGGCATTAATA GGC	68	X	1117
1343610	Н/П	Н/П	4207	4222	GCATUAATAGGCA GAA	104	X	1587
1343614	Н/П	Н/П	3804	3819	GATGUAAATAGCT CAG	66	X	1588
1343622	Н/П	Н/П	11634	11649	CCTTUTATACATC CCA	46	X	1589
1393872	Н/П	Н/П	4231	4246	GATAATAACTTGA CAA	57	AD	1480
1393875	Н/П	Н/П	5415	5430	TCTAATTTGGAGA GGT	56	AD	1149
1393878	Н/П	Н/П	5416	5431	GTCTAATTTGGAG	36	AD	1051

					AGG			
1393879	Н/П	Н/П	4236	4251	TGGAGGATAATAA CTT	55	AD	1477
1393880	Н/П	Н/П	4234	4249	GAGGATAATAACT TGA	65	AD	665
1393881	Н/П	Н/П	4232	4247	GGATAATAACTTG ACA	82	AD	809
1393882	Н/П	Н/П	4235	4250	GGAGGATAATAAC TTG	38	AD	1478
1393885	647	662	14341	14356	AGAAATTTGTGAG CCA	8	AD	1485
1393888	649	664	14343	14358	ATAGAAATTTGTG AGC	29	AD	1253
1393890	650	665	14344	14359	GATAGAAATTTGT GAG	63	AD	1487
1393892	648	663	14342	14357	TAGAAATTTGTGA GCC	13	AD	1360
1393896	1311	1326	15005	15020	TGTTAGGCTGGAA TGG	29	AD	46
1393898	Н/П	Н/П	4539	4554	ATTTGTAGTGAGC AAT	78	AD	1490
1393899	Н/П	Н/П	4543	4558	TCTTATTTGTAGT GAG	62	AD	480
1393902	651	666	14345	14360	GGATAGAAATTTG TGA	50	AD	1207
1393904	Н/П	Н/П	7862	7877	GTGTAGAAATGCC AGA	37	AD	1294
1393905	Н/П	Н/П	7859	7874	TAGAAATGCCAGA CTC	33	AD	359
1393906	1316	1331	15010	15025	TTGGATGTTAGGC TGG	6	AD	1410
1393907	1314	1329	15008	15023	GGATGTTAGGCTG GAA	32	AD	519
1393909	Н/П	Н/П	7864	7879	GGGTGTAGAAATG	110	AD	1409

					CCA			
1393911	Н/П	Н/П	7860	7875	GTAGAAATGCCAG ACT	37	AD	1335
1393913	Н/П	Н/П	7861	7876	TGTAGAAATGCCA GAC	53	AD	1404
1393916	876	891	14570	14585	ACAGATGTGAGGA GTC	19	AD	1407
1393917	877	892	14571	14586	AACAGATGTGAGG AGT	27	AD	1136
1393918	1528	1543	15222	15237	AGTTAAGATTTTG CGG	32	AD	1403
1393924	1531	1546	15225	15240	GGTAGTTAAGATT TTG	10	AD	689
1393929	Н/П	Н/П	4518	4533	TAACATTTGTCAT AGG	30	AD	828
1393930	Н/П	Н/П	5503	5518	GTACACGAGTATA TTA	42	AD	1421
1393936	88	103	3350	3365	GAGTATTGTGTTG TAT	26	AD	756
1393937	526	541	14220	14235	TAACAATAAGTTT TAG	69	AD	1412
1393939	90	105	3352	3367	TAGAGTATTGTGT TGT	23	AD	1419
1393941	529	544	14223	14238	TGGTAACAATAAG TTT	42	AD	358
1393942	91	106	3353	3368	ATAGAGTATTGTG TTG	42	AD	636
1393943	528	543	14222	14237	GGTAACAATAAGT TTT	50	AD	450
1393944	1467	1482	15161	15176	CTGTAGATGTAAT AGA	74	AD	48
1393945	1465	1480	15159	15174	GTAGATGTAATAG ATG	25	AD	972
1393947	531	546	14225	14240	TATGGTAACAATA	73	AD	1414

					AGT			
1393948	1461	1476	15155	15170	ATGTAATAGATGG GCC	88	AD	273
1393951	1463	1478	15157	15172	AGATGTAATAGAT GGG	36	AD	1106
1393952	1466	1481	15160	15175	TGTAGATGTAATA GAT	27	AD	924
1393954	819	834	14513	14528	CTTTGATACTTGG TGA	30	AD	184
1393955	1544	1559	15238	15253	TAGTAGGCTATTA GGT	61	AD	1313
1393957	1543	1558	15237	15252	AGTAGGCTATTAG GTA	26	AD	1424
1394051	Н/П	Н/П	11988	12003	AGTAGTTTCCATC ATG	33	AD	1524
1394054	555	570	14249	14264	TACAAGATCCAAC AGA	53	AD	888
1394058	1554	1569	15248	15263	TTATGGTCAATAG TAG	27	AD	1015
1394060	Н/П	Н/П	7558	7573	TGTCATATACCAT GTT	65	AD	1459
1394062	1275	1290	14969	14984	TCTGAAGTCTTAA GGT	36	AD	271
1394064	Н/П	Н/П	7568	7583	TTTTGACTAATGT CAT	94	AD	1460
1394066	Н/П	Н/П	11998	12013	ACTTAATAGTAGT AGT	105	AD	1456
1394067	630	645	14324	14339	GTTGAGGAAATCA ACA	94	AD	514
1394071	Н/П	Н/П	5855	5870	ATTAAGAATGTAA TGC	70	AD	1462
1394072	1605	1620	15299	15314	ATATAACACGCAA AAT	83	AD	1466
1394073	Н/П	Н/П	5845	5860	TAATGCTATGCAT	98	AD	1461

					AAA			
1394076	Н/П	Н/П	3801	3816	GTAAATAGCTCAG TTC	50	AD	540
1394078	Н/П	Н/П	7867	7882	TTTGGGTGTAGAA ATG	81	AD	1528
1394079	643	658	14337	14352	ATTTGTGAGCCAT GTT	23	AD	1469
1394080	653	668	14347	14362	TGGGATAGAAATT TGT	44	AD	183
1394081	Н/П	Н/П	4238	4253	ACTGGAGGATAAT AAC	77	AD	1470
1394084	1309	1324	15003	15018	TTAGGCTGGAATG GAA	41	AD	1475
1394085	Н/П	Н/П	5411	5426	ATTTGGAGAGGTA ACT	111	AD	1464
1394087	Н/П	Н/П	4537	4552	TTGTAGTGAGCAA TAG	30	AD	1476
1394088	Н/П	Н/П	5505	5520	GTGTACACGAGTA TAT	108	AD	1471
1394090	Н/П	Н/П	5495	5510	GTATATTAGGAAA TTG	127	AD	1472
1394091	83	98	3345	3360	TTGTGTTGTATGA AGT	29	AD	1530
1394092	523	538	14217	14232	CAATAAGTTTTAG TCT	79	AD	1474
1394093	93	108	3355	3370	GTATAGAGTATTG TGT	83	AD	244
1394094	1274	1289	14968	14983	CTGAAGTCTTAAG GTT	45	AD	1264
1394097	1525	1540	15219	15234	TAAGATTTTGCGG ACC	27	AD	200
1394107	1469	1484	15163	15178	AGCTGTAGATGTA ATA	62	AD	836
1343141	822	837	14516	14531	TTACTTTGATACTT	3	AG	612

					GG			
1393850	Н/П	Н/П	6939	6954	TTTGGACTTGTGG TAA	57	AG	1520
1393851	Н/П	Н/П	6945	6960	CCCTUTTTTGGAC TTG	38	AG	1590
1393852	Н/П	Н/П	7358	7373	ATGTUGTATATGC TGA	18	AG	1591
1393853	Н/П	Н/П	7356	7371	GTTGUATATGCTG AGC	57	AG	1592
1393854	Н/П	Н/П	3808	3823	TTCAGATGTAAAT AGC	32	AG	1394
1393855	Н/П	Н/П	7360	7375	TGATGTTGTATAT GCT	28	AG	1510
1393856	Н/П	Н/П	3803	3818	ATGTAAATAGCTC AGT	78	AG	378
1393857	Н/П	Н/П	7362	7377	AATGATGTTGTAT ATG	106	AG	1393
1393858	Н/П	Н/П	5497	5512	GAGTATATTAGGA AAT	98	AG	1399
1393859	Н/П	Н/П	3807	3822	TCAGATGTAAATA GCT	22	AG	1225
1393860	Н/П	Н/П	7361	7376	ATGAUGTTGTATA TGC	50	AG	1593
1393861	Н/П	Н/П	3805	3820	AGATGTAAATAGC TCA	39	AG	1355
1393862	Н/П	Н/П	7359	7374	GATGUTGTATATG CTG	12	AG	1594
1393863	Н/П	Н/П	5498	5513	CGAGUATATTAGG AAA	55	AG	1595
1393864	1610	1625	15304	15319	AATACATATAACA CGC	22	AG	426
1393865	1608	1623	15302	15317	TACAUATAACACG CAA	50	AG	1596
1393866	Н/П	Н/П	5500	5515	CACGAGTATATTA	59	AG	675

					GGA			
1393867	1609	1624	15303	15318	ATACATATAACAC GCA	13	AG	1397
1393868	Н/П	Н/П	5501	5516	ACACGAGTATATT AGG	18	AG	609
1393869	Н/П	Н/П	5499	5514	ACGAGTATATTAG GAA	55	AG	737
1393870	1611	1626	15305	15320	TAATACATATAAC ACG	129	AG	1398
1393871	Н/П	Н/П	5502	5517	TACACGAGTATAT TAG	28	AG	538
1393873	1607	1622	15301	15316	ACATATAACACGC AAA	50	AG	54
1393874	Н/П	Н/П	5414	5429	CTAAUTTGGAGAG GTA	38	AG	1597
1393877	Н/П	Н/П	4233	4248	AGGAUAATAACTT GAC	58	AG	1598
1393883	Н/П	Н/П	5413	5428	TAATUTGGAGAGG TAA	76	AG	1599
1393886	Н/П	Н/П	5418	5433	TTGTCTAATTTGG AGA	83	AG	1481
1393887	645	660	14339	14354	AAATUTGTGAGCC ATG	22	AG	1600
1393889	Н/П	Н/П	5419	5434	ATTGUCTAATTTG GAG	100	AG	1601
1393891	Н/П	Н/П	5417	5432	TGTCUAATTTGGA GAG	63	AG	1602
1393893	646	661	14340	14355	GAAAUTTGTGAGC CAT	8	AG	1603
1393894	1312	1327	15006	15021	ATGTUAGGCTGGA ATG	91	AG	1604
1393895	Н/П	Н/П	4540	4555	TATTUGTAGTGAG CAA	26	AG	1605
1393897	Н/П	Н/П	4542	4557	CTTAUTTGTAGTG	39	AG	1606

					AGC			
1393900	Н/П	Н/П	4544	4559	TTCTUATTTGTAG TGA	56	AG	1607
1393901	Н/П	Н/П	4541	4556	TTATUTGTAGTGA GCA	28	AG	1608
1393903	Н/П	Н/П	4545	4560	GTTCUTATTTGTA GTG	50	AG	1609
1393908	1315	1330	15009	15024	TGGAUGTTAGGCT GGA	25	AG	1610
1393910	Н/П	Н/П	7863	7878	GGTGUAGAAATGC CAG	73	AG	1611
1393912	1313	1328	15007	15022	GATGUTAGGCTGG AAT	98	AG	1612
1393914	1529	1544	15223	15238	TAGTUAAGATTTT GCG	45	AG	1613
1393915	Н/П	Н/П	7865	7880	TGGGUGTAGAAAT GCC	74	AG	1614
1393919	879	894	14573	14588	ATAACAGATGTGA GGA	24	AG	1072
1393920	875	890	14569	14584	CAGAUGTGAGGA GTCA	17	AG	1615
1393922	1507	1522	15201	15216	CGAAUTGTCAGCT CCC	7	AG	1616
1393925	Н/П	Н/П	4519	4534	TTAACATTTGTCA TAG	58	AG	708
1393927	Н/П	Н/П	4516	4531	ACATUTGTCATAG GAA	40	AG	1617
1393928	Н/П	Н/П	4515	4530	CATTUGTCATAGG AAT	61	AG	1618
1393931	1533	1548	15227	15242	TAGGUAGTTAAGA TTT	32	AG	1619
1393932	1530	1545	15224	15239	GTAGUTAAGATTT TGC	47	AG	1620
1393933	Н/П	Н/П	4517	4532	AACAUTTGTCATA	22	AG	1621

					GGA			
1393934	87	102	3349	3364	AGTAUTGTGTTGT ATG	35	AG	1622
1393935	86	101	3348	3363	GTATUGTGTTGTA TGA	19	AG	1623
1393938	530	545	14224	14239	ATGGUAACAATAA GTT	48	AG	1624
1393940	89	104	3351	3366	AGAGUATTGTGTT GTA	18	AG	1625
1393946	1462	1477	15156	15171	GATGUAATAGATG GGC	62	AG	1626
1393949	Н/П	Н/П	5504	5519	TGTACACGAGTAT ATT	58	AG	1413
1393950	1464	1479	15158	15173	TAGAUGTAATAGA TGG	23	AG	1627
1393956	822	837	14516	14531	TTACUTTGATACT TGG	10	AG	1628
1394050	1325	1340	15019	15034	TTGCCTGCATTGG ATG	41	AG	1525
1394053	1555	1570	15249	15264	TTTAUGGTCAATA GTA	61	AG	1629
1394061	Н/П	Н/П	12082	12097	TAAGUACTGAAGA CTG	125	AG	1630
1394063	Н/П	Н/П	12092	12107	GATTUGATGTTAA GTA	146	AG	1631
1394065	Н/П	Н/П	7279	7294	TTTTUGGTGGTAT TCC	40	AG	1632
1394068	Н/П	Н/П	5494	5509	TATAUTAGGAAAT TGC	56	AG	1633
1394069	Н/П	Н/П	3811	3826	TAGTUCAGATGTA AAT	132	AG	1634
1394070	Н/П	Н/П	6937	6952	TGGACTTGTGGTA ATA	24	AG	1526
1394074	Н/П	Н/П	7354	7369	TGTAUATGCTGAG	47	AG	1635

					CAT			
1394077	Н/П	Н/П	6947	6962	TACCCTTTTTTGG ACT	61	AG	1463
1394082	1503	1518	15197	15212	TTGTCAGCTCCCC TAA	41	AG	1527
1394083	Н/П	Н/П	7857	7872	GAAAUGCCAGACT CCT	53	AG	1636
1394086	Н/П	Н/П	5421	5436	ATATUGTCTAATT TGG	50	AG	1637
1394089	1459	1474	15153	15168	GTAAUAGATGGGC CAA	36	AG	1638
1394095	Н/П	Н/П	4513	4528	TTTGUCATAGGAA TTG	73	AG	1639
1394096	Н/П	Н/П	5506	5521	TGTGUACACGAGT ATA	104	AG	1640
1394102	1240	1255	14934	14949	AGTAUGGTAAGCT AGG	27	AG	1641
1394105	1254	1269	14948	14963	GATTCCAAAGATA TAG	31	AG	701
1343141	822	837	14516	14531	TTACTTTGATACTT GG	6	АН	612
1393344	1248	1263	14942	14957	AAAGATATAGTAT GGT	41	АН	120
1393345	1244	1259	14938	14953	ATATAGTATGGTA AGC	70	АН	194
1393346	1243	1258	14937	14952	TATAGTATGGTAA GCT	80	АН	119
1393347	1246	1261	14940	14955	AGATATAGTATGG TAA	66	АН	270
1393348	1018	1033	14712	14727	TTATGTAAGAGTA TGG	55	АН	262
1393349	1250	1265	14944	14959	CCAAAGATATAGT ATG	37	АН	921
1393350	1251	1266	14945	14960	TCCAAAGATATAG	27	AH	1423

					TAT			
1393774	558	573	14252	14267	GTTTACAAGATCC AAC	83	АН	33
1393775	560	575	14254	14269	ATGTUTACAAGAT CCA	8	AH	1642
1393776	562	577	14256	14271	TCATGTTTACAAG ATC	35	AH	1515
1393778	557	572	14251	14266	TTTACAAGATCCA ACA	76	AH	1395
1393779	1320	1335	15014	15029	TGCAUTGGATGTT AGG	27	АН	1643
1393781	1318	1333	15012	15027	CATTGGATGTTAG GCT	46	АН	1450
1393782	1319	1334	15013	15028	GCATUGGATGTTA GGC	46	АН	1644
1393783	1317	1332	15011	15026	ATTGGATGTTAGG CTG	20	AH	1514
1393784	1561	1576	15255	15270	GTAAGGTTTATGG TCA	15	AH	53
1393785	Н/П	Н/П	11993	12008	ATAGUAGTAGTTT CCA	60	АН	1645
1393786	1323	1338	15017	15032	GCCTGCATTGGAT GTT	81	AH	1517
1393787	Н/П	Н/П	11990	12005	GTAGUAGTTTCCA TCA	79	AH	1646
1393788	Н/П	Н/П	11991	12006	AGTAGTAGTTTCC ATC	84	AH	1422
1393789	Н/П	Н/П	11992	12007	TAGTAGTAGTTTC CAT	73	АН	1345
1393791	1559	1574	15253	15268	AAGGUTTATGGTC AAT	17	АН	1647
1393792	1321	1336	15015	15030	CTGCATTGGATGT TAG	54	АН	196
1393793	1322	1337	15016	15031	CCTGCATTGGATG	69	AH	1516

					TTA			
1393794	1262	1277	14956	14971	GGTTUCATGATTC CAA	50	АН	1648
1393795	622	637	14316	14331	AATCAACAGTTGC ATT	67	АН	1518
1393796	Н/П	Н/П	11995	12010	TAATAGTAGTAGT TTC	103	AH	1425
1393797	1265	1280	14959	14974	TAAGGTTTCATGA TTC	22	AH	615
1393798	1264	1279	14958	14973	AAGGUTTCATGAT TCC	26	АН	1649
1393799	1266	1281	14960	14975	TTAAGGTTTCATG ATT	51	AH	1428
1393800	Н/П	Н/П	11994	12009	AATAGTAGTAGTT TCC	58	АН	1166
1393801	623	638	14317	14332	AAATCAACAGTTG CAT	83	AH	1429
1393802	1263	1278	14957	14972	AGGTUTCATGATT CCA	33	АН	1650
1393803	1267	1282	14961	14976	CTTAAGGTTTCAT GAT	50	AH	195
1393804	627	642	14321	14336	GAGGAAATCAAC AGTT	22	AH	1430
1393806	Н/П	Н/П	7282	7297	GTATUTTTGGTGG TAT	67	AH	1651
1393807	Н/П	Н/П	7284	7299	CAGTATTTTTGGT GGT	14	АН	642
1393808	Н/П	Н/П	7286	7301	TTCAGTATTTTTG GTG	73	АН	1433
1393809	625	640	14319	14334	GGAAATCAACAGT TGC	7	AH	564
1393810	624	639	14318	14333	GAAAUCAACAGTT GCA	54	АН	1652
1393811	Н/П	Н/П	7287	7302	CTTCAGTATTTTTG	92	AH	1435

					GT			
1393812	Н/П	Н/П	7283	7298	AGTAUTTTTGGTG GTA	33	АН	1653
1393813	Н/П	Н/П	7285	7300	TCAGUATTTTTGG TGG	83	AH	1654
1393814	Н/П	Н/П	12090	12105	TTTGATGTTAAGT ACT	51	AH	1439
1393815	539	554	14233	14248	TGAAUACATATGG TAA	54	АН	1655
1393816	Н/П	Н/П	12089	12104	TTGAUGTTAAGTA CTG	53	AH	1656
1393818	Н/П	Н/П	12085	12100	TGTTAAGTACTGA AGA	71	АН	1436
1393819	Н/П	Н/П	12086	12101	ATGTUAAGTACTG AAG	98	АН	1657
1393820	538	553	14232	14247	GAATACATATGGT AAC	72	АН	1386
1393821	Н/П	Н/П	12088	12103	TGATGTTAAGTAC TGA	41	АН	1438
1393822	Н/П	Н/П	12087	12102	GATGUTAAGTACT GAA	67	АН	1658
1393823	Н/П	Н/П	12084	12099	GTTAAGTACTGAA GAC	84	АН	1125
1393824	Н/П	Н/П	7562	7577	CTAAUGTCATATA CCA	34	АН	1659
1393825	1566	1581	15260	15275	TATCAGTAAGGTT TAT	54	АН	1445
1393826	541	556	14235	14250	GATGAATACATAT GGT	26	АН	1262
1393827	Н/П	Н/П	7560	7575	AATGUCATATACC ATG	85	АН	1660
1393828	Н/П	Н/П	7561	7576	TAATGTCATATAC CAT	66	АН	1442
1393829	1565	1580	15259	15274	ATCAGTAAGGTTT	65	AH	203

					ATG			
1393830	Н/П	Н/П	7563	7578	ACTAATGTCATAT ACC	25	АН	1344
1393831	Н/П	Н/П	7565	7580	TGACUAATGTCAT ATA	86	AH	1661
1393832	Н/П	Н/П	7566	7581	TTGACTAATGTCA TAT	106	АН	1444
1393833	Н/П	Н/П	7564	7579	GACTAATGTCATA TAC	89	АН	1244
1393835	1272	1287	14966	14981	GAAGUCTTAAGGT TTC	60	АН	1662
1393836	Н/П	Н/П	5850	5865	GAATGTAATGCTA TGC	56	АН	732
1393837	Н/П	Н/П	5851	5866	AGAAUGTAATGCT ATG	60	АН	1663
1393838	Н/П	Н/П	5848	5863	ATGTAATGCTATG CAT	93	AH	1448
1393839	1271	1286	14965	14980	AAGTCTTAAGGTT TCA	30	АН	1446
1393840	1269	1284	14963	14978	GTCTUAAGGTTTC ATG	83	АН	1664
1393841	1268	1283	14962	14977	TCTTAAGGTTTCA TGA	72	AH	533
1393842	1270	1285	14964	14979	AGTCUTAAGGTTT CAT	67	AH	1665
1393843	Н/П	Н/П	5847	5862	TGTAATGCTATGC ATA	40	АН	1447
1393844	Н/П	Н/П	6943	6958	CTTTUTTGGACTT GTG	56	АН	1666
1393845	Н/П	Н/П	6944	6959	CCTTUTTTGGACT TGT	52	АН	1667
1393846	Н/П	Н/П	6942	6957	TTTTUTGGACTTG TGG	64	АН	1668
1393847	Н/П	Н/П	6940	6955	TTTTGGACTTGTG	72	AH	1522

					GTA			
1393848	Н/П	Н/П	6941	6956	TTTTUGGACTTGT	79	AH	1669
1393040	11/11	11/11	0941	0930	GGT	19	AII	1009
1393849	Н/П	Н/П	7357	7372	TGTTGTATATGCT	33	AH	1521
13/304/	11/11	11/11	7337	1312	GAG	33	AII	1321

Пример 6: Влияние однородных фосфоротиоат-модифицированных олигонуклеотидов со смешанным сахарным мотивом на РНК PLN человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали и тестировали в отношении эффектов однократной дозы на PHK PLN *in vitro*. Модифицированные олигонуклеотиды тестировали в серии экспериментов в одинаковых условиях культивирования.

«Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017) обрабатывали модифицированным олигонуклеотидом в концентрации 4000 нМ с помощью свободного поглощения при плотности 8000 клеток на лунку. После периода обработки, продолжавшегося примерно 72 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40402 (описанного в данном документе выше). Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблицах ниже в процентах РНК PLN по отношению к количеству в необработанных контрольных клетках (% UTC).

Каждый отдельный экспериментальный анализ, описанный в этом примере, идентифицируется буквенным идентификатором в столбцах таблицы ниже, помеченном как «AID» (идентификатор анализа).

Модифицированные олигонуклеотиды в таблице ниже представляют собой 3-10-3 сЕt модифицированные олигонуклеотиды с однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 16 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где каждый 5'- и 3'-сегмент крыла состоит из трех сЕt нуклеозидов. Сахарный мотив для

модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 6. Снижение уровня PHK PLN 3-10-3 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 hM в iCell®²

Номер соединения	Старт-сайт SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1121440	1246	1261	14940	14955	AGATATAGTATGGT AA	34	AI	270
1342309	1249	1264	14943	14958	CAAAGATATAGTAT GG	26	AI	942
1342911	1530	1545	15224	15239	GTAGTTAAGATTTT GC	24	AI	752
1342944	Н/П	Н/П	5500	5515	CACGAGTATATTAG GA	23	AI	675
1343056	1250	1265	14944	14959	CCAAAGATATAGTA TG	38	AI	921
1393402	1251	1266	14945	14960	TCCAAAGATATAGT AT	44	AI	1423
1121400	823	838	14517	14532	ATTACTTTGATACT TG	25	AJ	260
1121403	992	1007	14686	14701	CCATACTTGATTCT CA	33	AJ	185
1121441	1247	1262	14941	14956	AAGATATAGTATGG TA	21	AJ	45
1121442	1248	1263	14942	14957	AAAGATATAGTATG GT	24	AJ	120

	1343077	Н/П	Н/П	5501	5516	ACACGAGTATATTA GG	15	AJ	609	
--	---------	-----	-----	------	------	----------------------	----	----	-----	--

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 7. Снижение уровня PHK PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер	Старт-сайт SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	FLN (% UTC)	AID	SEQ ID NO
1343467	1249	1264	14943	14958	CAAAGATATAGTA TGG	16	AI	942
1393581	1248	1263	14942	14957	AAAGATATAGTAT GGT	18	AI	120
1343467	1249	1264	14943	14958	CAAAGATATAGTA TGG	21	AJ	942
1343475	1247	1262	14941	14956	AAGATATAGTATG GTA	17	AJ	45
1393575	1246	1261	14940	14955	AGATATAGTATGG TAA	18	AJ	270

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkddddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет

собой 5-метилцитозин.

Таблица 8. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер	Старт-сайт SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1393675	Н/П	Н/П	5500	5515	CACGAGTATATTA GGA	19	AI	675
1343648	1247	1262	14941	14956	AAGATATAGTATG GTA	10	AJ	45
1393772	1248	1263	14942	14957	AAAGATATAGTAT GGT	14	AJ	120

Модифицированные олигонуклеотиды в таблице ниже представляют собой 2-10-2 cEt С однородными фосфоротиоатными модифицированные олигонуклеотиды межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 14 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где 5'- и 3'-сегменты крыла состоят из трех cEt нуклеозидов и четырех cEt нуклеозидов соответственно. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkddddddddkk; где каждый «d» представляет собой 2'-β-Dдезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 9. Снижение уровня PHK PLN 2-10-2 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 hM в iCell®²

Номер соединения	Старт-сайт SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1528618	1531	1544	15225	15238	TAGTTAAGATTTTG	77	AI	1670
1528619	Н/П	Н/П	5501	5514	ACGAGTATATTAGG	29	AI	1671

1528621	1247	1260	14941	14954	GATATAGTATGGTA	56	AI	1672
1528624	1250	1263	14944	14957	AAAGATATAGTATG	71	AI	1673
1528820	1251	1264	14945	14958	CAAAGATATAGTAT	63	AI	1674
1528821	1252	1265	14946	14959	CCAAAGATATAGTA	76	AI	1675
1528616	824	837	14518	14531	TTACTTTGATACTT	56	AJ	1676
1528617	993	1006	14687	14700	CATACTTGATTCTC	58	AJ	1677
1528620	Н/П	Н/П	5502	5515	CACGAGTATATTAG	60	AJ	1678
1528622	1248	1261	14942	14955	AGATATAGTATGGT	52	AJ	1679
1528623	1249	1262	14943	14956	AAGATATAGTATGG	50	AJ	1680

Длина модифицированных олигонуклеотидов в таблице ниже составляет 17 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkddddddddddddeee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 10. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер	Crapr-caйr SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательно сть (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1528661	1529	1545	15223	15239	GTAGTTAAGAT TTTGCG	21	AI	1670
1528662	Н/П	Н/П	5499	5515	CACGAGTATAT TAGGAA	18	AI	1671
1528664	1245	1261	14939	14955	AGATATAGTAT GGTAAG	36	AI	1672
1528667	1248	1264	14942	14958	CAAAGATATAG TATGGT	29	AI	1673
1528830	1249	1265	14943	14959	CCAAAGATATA GTATGG	36	AI	1674

1528831	1250	1266	14944	14960	TCCAAAGATAT AGTATG	51	AI	1675
1528655	822	838	14516	14532	ATTACTTTGATA CTTGG	33	AJ	1676
1528658	991	1007	14685	14701	CCATACTTGATT CTCAT	41	AJ	1677
1528663	Н/П	Н/П	5500	5516	ACACGAGTATA TTAGGA	21	AJ	1678
1528665	1246	1262	14940	14956	AAGATATAGTA TGGTAA	39	AJ	1679
1528666	1247	1263	14941	14957	AAAGATATAGT ATGGTA	42	AJ	1680

Длина модифицированных олигонуклеотидов в таблице ниже составляет 17 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ssssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 11. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединения	Старт-сайт SEQ ID NO: 1	Стоп-сайт SEQ ID NO: 1	Старт-сайт SEQ ID NO: 2	Стоп-сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1528648	1529	1545	15223	15239	GTAGTTAAGATTTT GCG	25	AI	1670
1528649	Н/П	Н/П	5499	5515	CACGAGTATATTAG GAA	19	AI	1671
1528651	1245	1261	14939	14955	AGATATAGTATGGT AAG	26	AI	1672
1528654	1248	1264	14942	14958	CAAAGATATAGTAT	16	AI	1673

					GGT			
1528826	1249	1265	14943	14959	CCAAAGATATAGTA	42	AI	1674
					TGG			
1528827	1250	1266	 14944	14960	TCCAAAGATATAGT	40	AI	1675
					ATG			
1528646	822	838	14516	14532	ATTACTTTGATACTT	21	AJ	1676
					GG			
1528647	991	1007	14685	14701	CCATACTTGATTCTC	39	AJ	1677
					AT			
1528650	Н/П	 Н/П	5500	5516	ACACGAGTATATTA	20	AJ	1678
					GGA			
1528652	1246	1262	 14940	14956	AAGATATAGTATGG	27	AJ	1679
					TAA			
1528653	1247	1263	 14941	14957	AAAGATATAGTATG	29	AJ	1680
					GTA		_	

Модифицированные олигонуклеотиды в таблице ниже представляют собой 3-10-4 cEt модифицированные олигонуклеотиды c однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 17 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где 5'- и 3'-сегменты крыла состоят из трех сЕt нуклеозидов и четырех сЕt нуклеозидов соответственно. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkkk; где каждый «d» представляет собой 2'-β-Dдезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 12. Снижение уровня PHK PLN 3-10-4 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в iCell®²

Номер соедине ния	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Старт- сайт SEQ ID NO: 2	Стоп- сайт SEQ ID NO: 2	Последова тельность (от 5' к 3')	PLN (% UT C)	AID	SEQ ID NO
1528628	1529	1545	15223	15239	GTAGTTA	36	AI	1670

					AGATTTT			
					GCG			
					CACGAGT			
1528629	Н/П	Н/П	5499	5515	ATATTAG	18	AI	1671
					GAA			
					AGATATA			
1528631	1245	1261	14939	14955	GTATGGT	20	AI	1672
					AAG			
					CAAAGAT			
1528634	1248	1264	14942	14958	ATAGTAT	15	AI	1673
					GGT			
					CCAAAGA			
1528822	1249	1265	14943	14959	TATAGTA	55	AI	1674
					TGG			
					TCCAAAG			
1528823	1250	1266	14944	14960	ATATAGT	38	AI	1675
					ATG			
					ATTACTTT			
1528625	822	838	14516	14532	GATACTT	13	AJ	1676
					GG			
					CCATACT			
1528627	991	1007	14685	14701	TGATTCT	43	AJ	1677
					CAT			
					ACACGAG			
1528630	Н/П	Н/П	5500	5516	TATATTA	13	AJ	1678
					GGA			
					AAGATAT			
1528632	1246	1262	14940	14956	AGTATGG	20	AJ	1679
					TAA			
					AAAGATA			
1528633	1247	1263	14941	14957	TAGTATG	16	AJ	1680
					GTA			

Модифицированные олигонуклеотиды в таблице ниже представляют собой 4-10-3 сЕt модифицированные олигонуклеотиды с однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 17

нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где 5'- и 3'-сегменты крыла состоят из четырех сЕt нуклеозидов и трех сЕt нуклеозидов соответственно. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkkddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 13. Снижение уровня PHK PLN 4-10-3 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в iCell®²

Harran	Старт-	Стоп-	Старт-	Стоп-	Подходоводо	PLN		SEQ
Номер	сайт	сайт	сайт	сайт	Последовате		AID	
соедин	SEQ ID	SEQ ID	SEQ ID	SEQ ID	льность (от	(%	AID	ID
ения	NO: 1	NO: 1	NO: 2	NO: 2	5' к 3')	UTC)		NO
152863 7	1530	1546	15224	15240	GGTAGTTA AGATTTTG C	25	AI	1681
152863 9	Н/П	Н/П	5500	5516	ACACGAGT ATATTAGG A	19	AI	1678
152864	1246	1262	14940	14956	AAGATATA GTATGGTA A	27	AI	1679
152864 5	1249	1265	14943	14959	CCAAAGAT ATAGTATG G	63	AI	1674
152882	1250	1266	14944	14960	TCCAAAGA TATAGTAT G	34	AI	1675
152882	1251	1267	14945	14961	TTCCAAAG ATATAGTA T	49	AI	1682
152863 5	823	839	14517	14533	TATTACTT TGATACTT	32	AJ	1683

					G			
152863	992	1008	14686	14702	TCCATACT TGATTCTC A	41	AJ	1684
152864	Н/П	Н/П	5501	5517	TACACGAG TATATTAG G	26	AJ	1685
152864	1247	1263	14941	14957	AAAGATAT AGTATGGT A	18	AJ	1680
152864 4	1248	1264	14942	14958	CAAAGATA TAGTATGG T	18	AJ	1673

Длина модифицированных олигонуклеотидов в таблице ниже составляет 18 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkddddddddddddddddddeeee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ssssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 14. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соедине ния	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Старт- сайт SEQ ID NO: 2	Стоп- сайт SEQ ID NO: 2	Послед овател ьность (от 5' к 3')	PLN (% UTC)	AID	SEQ ID NO
1528603	1244	1261	14938	14955	AGAT ATAGT ATGGT AAGC	30	AI	1686
1528606	1247	1264	14941	14958	CAAA GATAT	31	AI	1687

					AGTAT			
					GGTA			
					GTAGT			
1528680	1528	1545	15222	15239	TAAG	32	AI	1688
1328080	1326	1343	13222	13239	ATTTT	32	AI	1088
					GCGG			
					CACG			
1528682	1/11 1/11 5400 5515	5515	AGTAT	17	AI	1689		
1328082	Н/П	Н/П	5498	3313	ATTAG	17	Ai	1009
					GAAA			
			14942		CCAA		AI	
1528816	1248	1265		14959	AGAT	28		1690
1328810		1203		14939	ATAGT	28	Ai	1090
					ATGGT			
		1249 1266	14943		TCCAA			
1528817	1249			14960	AGAT	31	AI	1691
1320017	1219	1200	14543	11300	ATAGT			1001
					ATGG			
		1245 1262	14939	14956	AAGA	24		
1528604	1245				TATAG		AJ	1692
1320001					TATGG			1052
					TAAG			
					AAAG			
1528605	1246	1263	14940	14957	ATATA	24	AJ	1693
102000	12.10	1200	1.5.0	1150.	GTATG		1 20	10,5
					GTAA			
					ATTAC			
1528678	821	838	14515	14532	TTTGA	29	AJ	1694
10200,0	021		1,616	11002	TACTT		1 20	1031
					GGT			
					CCATA			
1528679	990	990 1007	14684	14701	CTTGA	48	AJ	1695
1020079					TTCTC			
					ATC			

					ACAC			
					GAGT			
1528683	Н/П	Н/П	5499	5516	ATATT	30	AJ	1696
					AGGA			
					A			

Длина модифицированных олигонуклеотидов в таблице ниже составляет 18 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkddddddddddkkeee; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ssssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 15. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO:	Стоп - сайт SEQ ID NO:	Последовательность (от 5' к 3')	PLN (% UT C)	AI D	SE Q ID NO
1528670	1528	1545	15222	1523	GTAGTTAAGATTTTG CGG	71	AI	168
1528671	Н/П	Н/П	5498	5515	CACGAGTATATTAGG AAA	13	AI	168 9
1528674	1244	1261	14938	1495 5	AGATATAGTATGGTA AGC	20	AI	168 6
1528677	1247	1264	14941	1495 8	CAAAGATATAGTATG GTA	18	AI	168 7
1528832	1248	1265	14942	1495 9	CCAAAGATATAGTAT GGT	44	AI	169 0
1528833	1249	1266	14943	1496 0	TCCAAAGATATAGTA TGG	35	AI	169 1

1528668	821	838	14515	1453	ATTACTTTGATACTT	24	AJ	169
1328008	021	030	14313	2	GGT	24	AJ	4
1528669	990	1007	14684	1470	CCATACTTGATTCTC	38	AJ	169
1328009	990	1007	14004	1	ATC		AJ	5
1528672	Н/П	Н/П Н/П	5499	5516	ACACGAGTATATTAG	25	AJ	169
1328072	11/11	11/11	J 1 99	3310	GAA	23	AJ	6
1528675	1245	1262	14939	1495	AAGATATAGTATGGT	31	AJ	169
1328073	1243	1202	14939	6	AAG	31	AJ	2
1528676	1246	1263	14940	1495	AAAGATATAGTATGG	29	AJ	169
1328070	1240	1203	14340	7	TAA	29	AJ	3

Модифицированные олигонуклеотиды в таблице ниже представляют собой 4-10-4 cEt модифицированные олигонуклеотиды c однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 18 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где каждый 5'- и 3'-сегмент крыла состоит из четырех сЕt нуклеозидов. Сахарный мотив модифицированных олигонуклеотидов представляет собой (от 5' до kkkkdddddddddkkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 16. Снижение уровня PHK PLN 4-10-4 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп - сайт SEQ ID NO:	Последовательность (от 5' к 3')	PLN (% UT C)	AI D	SE Q ID NO
1528608	1529	1546	15223	1524 0	GGTAGTTAAGATTTT GCG	45	AI	169 7
1528609	Н/П	Н/П	5499	5516	ACACGAGTATATTAG GAA	20	AI	169 6

1528611	1245	1262	14939	1495	AAGATATAGTATGGT	61	AI	169
1328011	1243	1202	14939	6	AAG	01	Ai	2
1528614	1248	1265	14942	1495	CCAAAGATATAGTAT	53	AI	169
1320014	1246	1203	14942	9	GGT	33		0
1528818	1249	1266	14943	1496	TCCAAAGATATAGTA	54	AI	169
1320010		1200	1 17 13	0	TGG	51	7	1
1528819	1250	1267	14944	1496	TTCCAAAGATATAGT	38	AI	169
1320019	1230	1207		1	ATG	50	7 11	8
1528607	991	1008	3 14685	1470	TCCATACTTGATTCT	35	AJ	169
1320007		1000		2	CAT	30	113	9
1528610	Н/П	Н/П	5500	5517	TACACGAGTATATTA	22	AJ	170
1020010	11/11	11/11	2200	3317	GGA			0
1528612	1246	1263	14940	1495	AAAGATATAGTATGG	20	AJ	169
1020012	12.10	1203	11510	7	TAA	20		3
1528613	1247	1264	14941	1495	CAAAGATATAGTATG	18	AJ	168
1020013		1204	14741	8	GTA	10	AJ	7
1528681	822	839	14516	1453	TATTACTTTGATACTT	20	AJ	170
1020001			1 1010	3	GG	20	110	1

Модифицированные олигонуклеотиды в таблице ниже представляют собой 5-10-5 модифицированные олигонуклеотиды с однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 20 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где каждый 5'- и 3'-сегмент крыла состоит из пяти сЕt нуклеозидов. Сахарный мотив для олигонуклеотидов представляет собой (ot 3'): модифицированных kkkkdddddddddkkkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой cEt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилиитозин.

Таблица 17. Снижение уровня PHK PLN 5-10-5 сЕt-модифицированными олигонуклеотидами с однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 hM в iCell \mathbb{R}^2

									_
Номер	Стар	Стоп	Стар	Сто		PLN		SE	1
	_		_	_	Последовательность (от	(0/	Al		
соединен	Т-	-сайт	Т-	П-	5' ĸ 3')	(%	П	Ų	l
ия	сайт	SEQ	сайт	сайт		UT		ID	
									ı

	SEQ	ID	SEQ	SEQ		C)		NO
	ID	NO:	ID	ID				
	NO:	1	NO:	NO:				
	1		2	2				
1528626	1528	1547	15222	1524	AGGTAGTTAAGATTTT	49	AI	170
1328020	1328	1347	13222	1	GCGG	72		2
1528638	Н/П	Н/П	5498	5517	TACACGAGTATATTAG	26	AI	170
1320030	11/11	11/11	3470	3317	GAAA	20	7 11	3
1528656	1244	1263	14938	1495	AAAGATATAGTATGGT	30	AI	170
1320030	1211	1203	11930	7	AAGC	30	111	4
1528660	1247	1266	14941	1496	TCCAAAGATATAGTAT	48	AI	170
132000	1217	1200		0	GGTA	10	111	5
1528828	1248	1267	14942	1496	TTCCAAAGATATAGTA	46	AI	170
1320020	1210	1207	1 19 12	1	TGGT	10	***	6
1528829	1249	1268	14943	1496	ATTCCAAAGATATAGT	73	AI	170
1020029	12.17	1200	11315	2	ATGG	, ,		7
1528615	990	1009	14684	1470	TTCCATACTTGATTCTC	39	AJ	170
1320013		1009	11001	3	ATC	3,		8
1528641	Н/П	Н/П	5499	5518	GTACACGAGTATATTA	48	AJ	170
1320011	11/11	11/11	3 133	3310	GGAA	10	110	9
1528657	1245	1264	14939	1495	CAAAGATATAGTATGG	33	AJ	171
1320037	1213	1201	11737	8	TAAG	33	7 13	0
1528659	1246	1265	14940	1495	CCAAAGATATAGTATG	38	AJ	171
1323037	1210	1205	14940	9	GTAA	50	110	1
1528673	821	840	14515	1453	TTATTACTTTGATACTT	34	AJ	171
1320073				4	GGT		110	2

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ekdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 18. Снижение уровня РНК PLN модифицированными олигонуклеотидами

со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп -сайт SEQ ID NO:	Последовательность (от 5' к 3')	PLN (% UTC	AI D	SE Q ID NO
1528840	1248	1263	14942	1495 7	AAAGATATAGTAT GGT	30	AI	120
1528841	1249	1264	14943	1495 8	CAAAGATATAGTA TGG	22	AI	942
1528838	1247	1262	14941	1495 6	AAGATATAGTATG GTA	26	AJ	45
1528839	1246	1261	14940	1495 5	AGATATAGTATGGT AA	35	AJ	270

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ekkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 19. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп - сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AI D	SE Q ID NO
1528843	1530	1545	15224	1523	GTAGTTAAGATTTT	37	AI	752

				9	GC			
1528842	Н/П	Н/П	5501	5516	ACACGAGTATATTA	19	AJ	609
1320012	11/11	11/11	3301	3310	GG	19	713	005
1528844	992	1007	14686	1470	CCATACTTGATTCT	47	АТ	185
1320044	992	1007	14080	1	CA	47	AJ	103
1528845	823	838	14517	1453	ATTACTTTGATACT	63	АТ	260
1328843	623	636	14317	2	TG	03	AJ	200

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): ekkddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 20. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп -сайт SEQ ID NO: 2	Последовательность (от 5' к 3')	PLN (% UTC)	AI D	SE Q ID NO
1528855	Н/П	Н/П	5500	5515	CACGAGTATATTA GGA	18	AI	675
1528854	1247	1262	14941	1495 6	AAGATATAGTATG GTA	22	AJ	45
1528856	1248	1263	14942	1495 7	AAAGATATAGTAT GGT	28	AJ	120

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kedddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов

представляет собой (от 5' до 3'): ssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 21. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединени я	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп -сайт SEQ ID NO:	Последовательность (от 5' к 3')	PLN (% UTC)	AI D	SE Q ID NO
1528836	1248	1263	14942	1495 7	AAAGATATAGTAT GGT	36	AI	120
1528837	1249	1264	14943	1495 8	CAAAGATATAGTA TGG	41	AI	942
1528834	1247	1262	14941	1495 6	AAGATATAGTATG GTA	31	AJ	45
1528835	1246	1261	14940	1495 5	AGATATAGTATGG TAA	37	AJ	270

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kekddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 22. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

	Старт	Стоп-	Стар	Сто		DI M		
Номер	-сайт	сайт	Т-	п-	Последовательность	PLN (%	ΑI	SEQ
соединен	SEQ	SEQ	сайт	сайт				ID
ия	ID	ID NO:	SEQ	SEQ	(от 5' к 3')	UTC	D	NO
	NO: 1	1	ID	ID		,		

			NO: 2	NO:				
				2				
1528847	1530	1545	15224	1523	GTAGTTAAGATTTT	39	AI	752
1020017	1000	10 10	1022.	9	GC			, , , _
1528846	 Н/П	 Н/П	5501	5516	ACACGAGTATATT	29	AJ	609
					AGG			
1528848	992	1007	14686	1470	CCATACTTGATTCT	51	AJ	185
				1	CA			
1528849	823	838	14517	1453	ATTACTTTGATACT	37	AJ	260
				2	TG			

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kekddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 23. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединен ия	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Старт -сайт SEQ ID NO: 2	Стоп- сайт SEQ ID NO: 2	Последовательност ь (от 5' к 3')	PLN (% UT C)	AI D	SE Q ID NO
1528858	Н/П	Н/П	5500	5515	CACGAGTATATTA GGA	18	AI	675
1528857	1247	1262	14941	14956	AAGATATAGTATG GTA	24	AJ	45
1528859	1248	1263	14942	14957	AAAGATATAGTAT GGT	33	AJ	120

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkeddddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ

сахарный фрагмент, и каждый «k» представляет собой сEt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 24. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединени я	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп -сайт SEQ ID NO:	Последовательность	PLN (% UTC)	AI D	SE Q ID NO
1528851	1530	1545	15224	1523 9	GTAGTTAAGATTTT GC	55	AI	752
1528850	Н/П	Н/П	5501	5516	ACACGAGTATATT AGG	26	AJ	609
1528852	992	1007	14686	1470 1	CCATACTTGATTCT CA	48	AJ	185
1528853	823	838	14517	1453 2	ATTACTTTGATACT TG	54	AJ	260
1528862	1248	1263	14942	1495 7	AAAGATATAGTAT GGT	44	AJ	120

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkeddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотив межнуклеозидной связи для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 25. Снижение уровня РНК PLN модифицированными олигонуклеотидами со смешанным MOE/cEt сахарным мотивом и однородными фосфоротиоатными межнуклеозидными связями в концентрации 4000 нМ в кардиомиоцитах iCell®²

Номер соединения	Старт -сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп -сайт SEQ ID NO:	Последовательность (от 5' к 3')	PLN (% UT C)	AI D	SE Q ID NO
1528864	Н/П	Н/П	5500	5515	CACGAGTATATTA GGA	25	AI	675
1528863	1247	1262	14941	1495 6	AAGATATAGTATG GTA	30	AJ	45

Пример 7. Дозозависимое ингибирование PLN человека в кардиомиоцитах $iCell^{\mathbb{R}^2}$ модифицированными олигонуклеотидами

Модифицированные олигонуклеотиды, выбранные из приведенных выше примеров, тестировали в различных дозах на кардиомиоцитах iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017). Культивированные кардиомиоциты iCell®² при плотности 20000 клеток на лунку обрабатывали электропорацией с различными концентрациями модифицированного олигонуклеотида, как указано в таблицах ниже. После периода обработки, продолжавшегося примерно 24 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Набор праймеров и зондов PLN человека RTS40402 (описанный в данном документе выше) использовали для измерения уровней РНК, как описано выше. Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблицах ниже в процентах РНК PLN по отношению к необработанным контрольным клеткам (% UTC).

Полумаксимальную ингибирующую концентрацию (IC₅₀) каждого модифицированного олигонуклеотида рассчитывали с использованием линейной регрессии на логарифмическом/линейном графике данных в Excel и также представляли в таблицах ниже.

Таблица 26. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Caareer Na	PHK PLN (% UTC)						
Соединение №	741 нМ	2222 нМ	6667 нМ	20000 нМ	(мкМ)		
1121334	52	58	17	5	1,36		
1121366	77	42	11	2	1,87		
1121373	79	49	20	9	2,35		
1121374	60	60	18	3	1,80		
1121376	93	44	15	4	2,55		

1121385	93	66	22	6	3,44
1121391	92	58	22	3	3,07
1121396	87	40	16	8	2,30
1121400	37	53	14	6	< 0,7
1121403	91	59	20	7	3,08
1121407	49	74	19	9	< 0,7
1121415	66	41	9	3	1,41
1121416	86	47	10	7	2,35
1121455	69	23	9	4	1,10
1121472	50	26	10	6	< 0,7
1121507	63	47	30	16	1,79
1121556	70	46	15	7	1,79
1121559	39	51	19	15	< 0,7
1121576	86	63	39	9	3,76

Таблица 27. Дозозависимое снижение уровня РНК PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №	PHK PLN (% UTC)					
	741 нМ	2222 нМ	6667 нМ	20000 нМ	(мкМ)	
1091599	65	37	25	35	1,34	
1121390	71	50	15	2	1,89	
1121391	100	51	28	38	4,75	
1121397	67	32	22	4	1,35	
1121401	91	49	18	10	2,78	
1121402	73	61	19	20	2,67	
1121405	95	54	17	6	3,02	
1121410	87	63	33	9	3,52	
1121417	71	34	10	6	1,45	
1121441	102	57	11	9	3,23	
1121457	107	79	32	11	4,86	
1121458	66	57	21	14	2,13	
1121462	37	46	18	8	< 0,7	
1121470	54	39	17	7	0,93	
1121474	45	32	20	16	< 0,7	
1121557	54	30	13	5	0,75	

1121613 186 153 16 32	9,04
-------------------------------	------

Пример 8. Дозозависимое ингибирование PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Модифицированные олигонуклеотиды, выбранные из приведенных выше примеров, тестировали в различных дозах на кардиомиоцитах iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017). Культивированные кардиомиоциты iCell®² при плотности 8000 клеток на лунку обрабатывали свободным поглощением с различными концентрациями модифицированного олигонуклеотида, как указано в таблицах ниже. После периода обработки, продолжавшегося примерно 72 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Набор праймеров и зондов PLN человека RTS40402 (описанный в данном документе выше) использовали для измерения уровней РНК, как описано выше. Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблицах ниже в процентах РНК PLN по отношению к необработанным контрольным клеткам (% UTC).

Полумаксимальную ингибирующую концентрацию (IC₅₀) каждого модифицированного олигонуклеотида рассчитывали с использованием линейной регрессии на логарифмическом/линейном графике данных в Excel и также представляли в таблицах ниже.

Таблица 28. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах iCell® модифицированными олигонуклеотидами

Соединение №		IC ₅₀ (мкМ)			
Соединение лу	80 нМ	400 нМ	2000 нМ	10000 нМ	
1121455	67	52	17	4	0,31
1342169	75	57	27	12	0,53
1342213	102	99	67	58	> 10,0
1342341	70	29	13	4	0,18
1342548	63	64	30	10	0,44
1342606	76	58	25	6	0,50
1342689	81	54	22	4	0,49
1342725	92	83	69	46	> 10,0
1342738	84	70	52	17	1,39
1342872	79	56	20	7	0,49
1343049	96	54	31	8	0,77
1343077	57	36	11	3	0,12
1343108	93	113	81	48	> 10,0
1343112	69	43	19	6	0,27

1343124	61	49	29	11	0,27
1343141	45	21	6	2	< 0,08
1343142	94	50	15	3	0,55
1343173	91	62	26	9	0,75
1343185	88	79	78	48	> 10,0

Таблица 29. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1121455	30	41	12	3	< 0,08
1342250	107	74	40	12	1,34
1342381	105	88	30	7	1,27
1342411	125	117	83	13	4,00
1342420	89	65	24	4	0,70
1342436	118	80	41	10	1,54
1342488	101	52	18	5	0,66
1342597	112	103	56	16	2,56
1342630	133	69	42	14	1,64
1342737	85	60	20	11	0,62
1342759	79	66	32	11	0,74
1342858	92	84	87	78	> 10,0
1342898	89	76	31	10	0,98
1342964	65	35	9	3	0,17
1343021	126	140	61	30	4,94
1343100	99	66	26	8	0,88
1343127	55	26	6	3	< 0,08
1343130	138	114	53	13	2,69
1343200	130	85	33	15	1,70

Таблица 30. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀ (мкМ)			
	80 нМ	400 нМ	2000 нМ	10000 нМ	1050 (MKM)
1121455	81	52	20	3	0,46
1342179	91	79	44	14	1,34

1342270	87	63	24	10	0,70
1342309	110	90	37	8	1,50
1342325	113	98	96	59	> 10,0
1342360	112	83	47	18	1,90
1342379	103	92	74	37	6,55
1342401	118	140	91	53	> 10,0
1342428	95	89	44	16	1,67
1342645	101	84	54	19	2,08
1342680	106	102	63	25	3,49
1342718	141	88	47	9	1,94
1342812	87	66	34	8	0,83
1342873	51	27	9	2	< 0,08
1342959	103	96	66	28	3,91
1342983	98	86	90	80	> 10,0
1343091	108	75	38	14	1,40
1343098	103	78	35	10	1,25
1343154	100	88	48	10	1,62

Таблица 31. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1121455	78	50	17	4	0,40
1342254	111	83	33	8	1,32
1342445	85	76	55	34	2,91
1342514	112	80	37	12	1,45
1342551	81	46	15	5	0,39
1342552	107	71	29	8	1,07
1342576	92	87	30	6	1,08
1342749	68	46	13	3	0,26
1343101	92	86	53	17	1,86
1343103	79	50	15	5	0,41
1343241	112	87	53	16	2,09
1343255	101	63	24	6	0,84
1343264	79	71	47	18	1,21

1343275	95	60	24	8	0,75
1343277	72	56	23	11	0,44
1343452	81	73	33	14	0,91
1343467	84	72	31	11	0,87
1343479	80	73	49	28	1,78
1343493	101	81	41	23	1,75

Таблица 32. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №	PHK PLN (% UTC)					
Соединение №	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)	
1121455	71	44	14	4	0,27	
1343259	113	88	44	13	1,75	
1343278	90	53	23	8	0,60	
1343320	78	62	34	20	0,80	
1343401	106	85	44	17	1,77	
1343429	104	70	32	9	1,07	
1343443	115	106	94	64	> 10,0	
1343461	84	76	44	15	1,23	
1343475	72	39	10	3	0,25	
1343478	78	40	17	5	0,32	
1343488	89	70	43	14	1,15	
1343495	74	42	15	5	0,30	
1343523	82	74	45	17	1,25	
1343548	108	55	40	15	1,14	
1343558	94	75	33	11	1,07	
1343571	100	88	39	14	1,51	
1343574	79	70	41	14	0,97	
1343583	73	73	36	11	0,78	
1343595	81	58	29	12	0,65	

Таблица 33. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1121455	90	66	32	8	0,84

1342178	119	108	61	26	3,65
1342235	95	72	33	15	1,09
1342284	96	74	28	6	0,95
1342342	98	85	37	8	1,29
1342412	112	51	14	5	0,74
1342475	96	75	37	8	1,11
1342536	124	90	46	12	1,89
1342636	76	39	13	2	0,29
1342709	101	89	79	23	4,10
1342846	131	111	69	35	5,33
1342920	82	55	23	7	0,53
1342944	85	51	13	4	0,46
1342949	115	79	37	12	1,47
1342996	102	75	36	13	1,26
1343056	138	124	85	28	5,97
1343081	118	115	79	35	7,12
1343134	100	49	17	5	0,61
1343208	98	84	79	46	> 10,0

Таблица 34. Дозозависимое снижение уровня РНК PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1121455	92	66	25	8	0,79
1342173	109	94	44	12	1,80
1342256	88	49	12	4	0,46
1342407	91	65	26	8	0,78
1342460	99	115	92	70	> 10,0
1342508	108	89	44	14	1,76
1342614	99	75	30	5	1,00
1342649	105	96	45	15	1,94
1342770	155	152	66	17	4,15
1342785	96	84	35	6	1,17
1342794	91	68	43	13	1,14
1342819	134	113	57	19	3,05

1342849	149	94	47	10	2,12
1342882	115	117	86	40	> 10,0
1342919	106	69	30	4	0,99
1342989	120	87	41	8	1,61
1343040	129	113	61	16	3,03
1343093	119	101	64	13	2,69
1343169	123	84	30	7	1,39

Таблица 35. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

C 10	РНК PLN (% UTC)					
Соединение №	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)	
1121455	79	54	22	4	0,46	
1343339	96	55	22	8	0,70	
1343360	68	37	14	5	0,22	
1343362	78	40	19	7	0,35	
1343367	80	61	23	4	0,54	
1343382	86	53	19	7	0,54	
1343390	103	74	38	19	1,44	
1343528	88	76	52	16	1,55	
1343535	101	78	38	8	1,22	
1343547	73	73	48	14	1,06	
1343580	122	81	47	11	1,73	
1343582	98	58	32	10	0,86	
1343603	81	83	43	17	1,36	
1343619	93	70	41	13	1,16	
1343647	56	48	24	10	0,19	
1343651	88	39	17	6	0,42	
1343654	97	77	41	11	1,29	
1343656	68	65	33	7	0,53	
1343666	85	59	20	6	0,57	

Таблица 36. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		PHK PLN (% UTC)					
	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)		

1091598	58	33	8	1	0,11
1121455	81	59	20	4	0,52
1342161	92	77	35	9	1,06
1342205	84	50	11	3	0,42
1342417	116	112	116	106	> 10,0
1342457	72	68	42	9	0,76
1342569	90	59	23	5	0,66
1342581	108	78	49	12	1,63
1342586	52	41	17	4	0,11
1342639	66	56	40	9	0,49
1342668	81	33	6	1	0,27
1342698	77	45	13	4	0,34
1342876	108	93	43	13	1,79
1342911	74	31	12	4	0,22
1342952	70	65	24	6	0,49
1343011	76	77	47	8	1,03
1343020	82	72	35	10	0,87
1343063	93	78	45	9	1,28
1343113	92	73	37	8	1,03

Таблица 37. Дозозависимое снижение уровня РНК PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
Соединение лу	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1121455	81	70	33	9	0,80
1342190	82	50	14	4	0,43
1342226	67	72	47	17	0,96
1342285	122	123	68	29	4,94
1342334	116	96	75	23	3,89
1342348	90	87	45	13	1,49
1342410	92	96	74	33	5,97
1342493	96	72	39	8	1,09
1342584	114	103	56	18	2,69
1342621	122	105	65	22	3,43
1342629	89	102	65	38	6,84

1342661	80	69	38	8	0,82
1342705	98	74	35	4	1,04
1342787	92	70	32	10	0,95
1342840	107	90	78	39	7,31
1342843	105	74	54	22	2,00
1342887	78	64	30	8	0,64
1342905	93	65	34	12	0,94
1343188	91	77	44	15	1,36

Таблица 38. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах iCell®² модифицированными олигонуклеотидами

Соединение №	PHК PLN (% UTC)					
Соединение лу	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)	
1121455	85	60	27	8	0,65	
1342168	86	70	43	12	1,06	
1342311	93	92	72	34	5,67	
1342535	85	53	15	13	0,52	
1342851	95	84	55	22	2,21	
1343014	93	102	90	31	9,47	
1343182	119	67	36	9	1,28	
1343357	83	57	31	10	0,66	
1343516	132	114	66	25	3,91	
1343608	109	93	45	19	2,08	
1343629	79	53	20	5	0,46	
1343630	121	84	60	15	2,31	
1343631	105	83	45	16	1,70	
1343648	79	51	19	6	0,43	
1343653	126	81	38	14	1,66	
1343664	98	83	45	14	1,56	
1343665	89	57	30	8	0,72	
1343671	79	58	16	5	0,47	
1343685	132	112	60	38	4,93	

Таблица 39. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение Л	<u> </u>	PHK PLN (% UTC)	IC ₅₀

	370 нМ	1111 нМ	3333 нМ	10000 нМ	(мкМ)
1343141	47	26	9	3	< 0,37
1393379	60	33	31	10	0,58
1393382	59	32	17	6	0,50
1393387	55	25	7	2	< 0,37
1393388	44	26	9	2	< 0,37
1393391	72	48	27	7	1,06
1393403	68	40	15	8	0,76
1393440	63	37	16	7	0,65
1393444	64	31	15	5	0,58
1393531	65	51	27	10	0,98
1393549	76	55	30	9	1,33
1393556	65	29	13	3	0,57
1393790	50	29	18	10	< 0,37
1393921	66	31	10	3	0,59
1393923	75	40	19	5	0,93
1393926	50	26	7	2	< 0,37
1393953	66	39	16	6	0,72
1393989	59	67	29	11	1,14
1394104	71	52	27	9	1,13

Таблица 40. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
Соединение л	370 нМ	1111 нМ	3333 нМ	10000 нМ	(мкМ)
1343141	54	31	13	5	0,38
1393376	85	58	35	16	1,79
1393398	78	53	31	16	1,45
1393669	77	65	33	11	1,63
1393672	73	59	29	12	1,35
1393673	82	55	26	8	1,39
1393674	75	53	27	10	1,23
1393675	58	39	23	12	0,57
1393682	52	31	10	6	< 0,37
1393694	74	24	27	10	0,75

1393705	76	45	21	8	1,05
1393722	42	25	14	6	< 0,37
1393723	59	46	25	13	0,72
1393727	79	61	32	14	1,62
1393737	71	55	29	10	1,22
1393741	52	30	16	8	< 0,37
1393743	56	32	17	8	0,44
1393749	62	46	27	11	0,82
1393876	83	61	34	18	1,82

Таблица 41. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
Соединение 312	370 нМ	1111 нМ	3333 нМ	10000 нМ	(мкМ)
1343141	48	23	8	3	< 0,37
1393486	79	40	19	5	1,01
1393490	58	53	28	14	0,84
1393493	66	27	9	3	0,54
1393503	84	67	55	33	3,70
1393525	46	34	18	11	< 0,37
1393540	81	69	49	37	3,67
1393562	63	35	17	7	0,61
1393757	48	27	11	7	< 0,37
1393760	49	26	13	5	< 0,37
1393766	66	39	19	8	0,74
1393770	61	44	22	9	0,72
1393771	60	33	14	5	0,51
1393772	59	31	13	4	0,48
1394029	69	37	18	7	0,76
1394031	68	46	26	11	0,95
1394038	58	30	15	8	0,44
1394039	90	91	74	57	> 10,0
1394043	71	45	27	9	1,00

Таблица 42. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
Соединение л	370 нМ	1111 нМ	3333 нМ	10000 нМ	(мкМ)
1343141	43	22	9	4	< 0,37
1393568	58	40	23	12	0,60
1393575	62	39	19	10	0,65
1393581	54	32	19	9	0,38
1393862	56	36	20	11	0,47
1393864	67	54	32	17	1,17
1393867	59	44	26	15	0,69
1393893	69	44	23	10	0,91
1393895	80	69	52	38	4,09
1393920	66	51	35	23	1,20
1393922	68	45	23	12	0,92
1393956	50	31	16	9	< 0,37
1393958	48	39	26	11	< 0,37
1393965	94	73	56	44	5,75
1393983	70	42	28	12	0,95
1393988	59	44	25	16	0,70
1393997	51	39	21	9	0,41

Таблица 43. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соодинация		IC ₅₀			
Соединение №	370 нМ	1111 нМ	3333 нМ	10000 нМ	(мкМ)
1343141	40	22	8	3	< 0,37
1393586	52	29	12	4	< 0,37
1393603	49	26	14	9	< 0,37
1393606	60	35	18	9	0,53
1393614	54	30	16	8	0,37
1393621	59	31	15	6	0,47
1393622	63	38	13	3	0,65
1393626	87	84	77	70	> 10,0
1393627	91	81	70	54	> 10,0
1393652	46	33	18	16	< 0,37
1393655	45	22	7	3	< 0,37

1393662	54	26	11	3	< 0,37
1393664	78	52	32	15	1,40
1393688	91	87	72	47	> 10,0
1393696	63	41	19	9	0,70
1393718	69	50	38	18	1,26
1393724	52	37	17	10	0,40
1393732	63	40	21	12	0,68
1393738	82	66	38	21	2,13

Таблица 44. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах iCell®² молифицированными олигонуклеотилами

Соединение №		IC ₅₀			
Соединение №	370 нМ	1111 нМ	3333 нМ	10000 нМ	(мкМ)
1343141	38	18	6	2	< 0,37
1393367	50	24	9	4	< 0,37
1393369	58	43	16	6	0,60
1393371	75	55	27	12	1,30
1393372	65	39	17	5	0,71
1393400	69	51	28	10	1,10
1393450	89	93	82	70	> 10,0
1393453	67	40	24	10	0,82
1393464	76	45	17	4	1,00
1393775	64	41	21	7	0,74
1393784	49	29	19	12	< 0,37
1393791	58	31	18	11	< 0,37
1393807	49	30	18	11	< 0,37
1393809	38	20	10	5	< 0,37
1393885	56	34	18	7	0,47
1393892	63	36	22	11	0,65
1393906	59	31	14	7	0,48
1393916	67	50	26	12	1,01
1393924	46	26	16	7	< 0,37

Таблица 45. Дозозависимое снижение уровня РНК PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

	•	
Соединение №	РНК PLN (% UTC)	IC ₅₀

	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1121441	76	55	35	10	0,58
1343077	65	49	22	9	0,29
1343475	55	40	17	8	0,13
1343648	80	61	28	11	0,64
1393575	86	70	33	14	0,94
1393772	76	59	29	11	0,57
1528612	65	49	28	11	0,33
1528613	55	37	17	9	0,11
1528625	89	51	22	10	0,58
1528630	81	55	23	9	0,53
1528632	56	48	29	10	0,21
1528633	71	47	21	9	0,33
1528643	80	67	29	12	0,74
1528644	86	62	33	15	0,84
1528646	73	61	38	16	0,71
1528650	64	52	16	7	0,27
1528663	63	72	35	8	0,59
1528681	68	51	29	9 13	
1528842	84	53	25	7	0,56

Таблица 46. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ модифицированными олигонуклеотидами

Соединение №		IC ₅₀			
Соединение №	80 нМ	400 нМ	2000 нМ	10000 нМ	(мкМ)
1343467	63	59	44	21	0,62
1343648	88	67	33	13	0,90
1393581	87	74	47	18	1,43
1393675	74	55	33	19	0,59
1528609	73	73	46	22	1,20
1528629	66	47	28	12	0,31
1528631	74	79	45	16	1,17
1528634	80	75	38	14	1,00
1528639	82	60	41	18	0,91
1528649	80	66	30	9	0,70

1528654	101	76	51	17	1,71
1528661	69	56	27	14	0,44
1528662	102	94	45	12	1,76
1528671	87	67	39	14	1,00
1528674	88	72	38	21	1,24
1528677	83	54	33	14	0,67
1528682	81	55	33	10	0,63
1528855	83	72	41	21	1,23
1528858	88	64	44	21	1,22

Пример 9. Конструирование модифицированных олигонуклеотидов, комплементарных нуклеиновой кислоте PLN человека

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали, как описано в таблицах ниже. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Каждый модифицированный олигонуклеотид в таблицах ниже конъюгирован с группой конъюгата 6-пальмитамидогексилфосфата, присоединенной к 5'-OH олигонуклеотида. Структура группы конъюгата:

Модифицированные олигонуклеотиды в таблицах 47-50 ниже представляют собой 3-10-3 сЕt модифицированные олигонуклеотиды с однородными фосфоротиоатными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 16 нуклеозидов, где центральный сегмент гэпа состоит из десяти 2'-β-D-дезоксинуклеозидов, и где каждый 5'- и 3'-сегмент крыла состоит из трех сЕt нуклеозидов. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Модифицированные олигонуклеотиды имеют мотив межнуклеозидной связи (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 47. Модифицированные олигонуклеотиды, конъюгированные с 6пальмитамидогексилом, с 3-10-3 cEt сахарным мотивом и однородными PS межнуклеозидными связями, комплементарными PLN человека

	ными связями, комплементар	Старт-	Стоп-	Старт-	Стоп-	
11	Последовательность (от	сайт	сайт	сайт	сайт	SEO
Номер		SEQ	SEQ	SEQ	SEQ	SEQ
соединения	5' до 3')	ID	ID	ID	ID	ID NO.
		NO: 1	NO: 1	NO: 2	NO: 2	
1436539	ATTACTTTGATACTTG	823	838	14517	14532	260
1436540	TATGTAAGAGTATGGC	1017	1032	14711	14726	186
1436542	ACACGAGTATATTAGG	Н/П	Н/П	5501	5516	609
1436543	GTAGTTAAGATTTTGC	1530	1545	15224	15239	752
1436544	CACGAGTATATTAGGA	Н/П	Н/П	5500	5515	675
1436545	GAATGTAATGCTATGC	Н/П	Н/П	5850	5865	732
1436546	GGAAATCAACAGTTGC	625	640	14319	14334	564
1443233	AAGATATAGTATGGTA	1247	1262	14941	14956	45
1443234	TCTGATAGTTACTACA	914	929	14608	14623	35
1443235	CCATACTTGATTCTCA	992	1007	14686	14701	185
1443236	ATGTACTAGAATTCTG	1069	1084	14763	14778	112
1443237	TAGTATTGAGAAAGTC	Н/П	Н/П	6408	6423	301
1443238	CATGTTTACAAGATCC	561	576	14255	14270	91
1443239	GATGTAAATAGCTCAG	Н/П	Н/П	3804	3819	71
1443240	ACATATTAACCACCAG	1134	1149	14828	14843	188
1443241	TTCTGATAGTTACTAC	915	930	14609	14624	110
1443242	CCACGAATTGTCAGCT	1510	1525	15204	15219	49
1443243	CACATATTAACCACCA	1135	1150	14829	14844	264
1443244	GTATGAAGTCTTACGG	76	91	3338	3353	167
1443245	TCACATATTAACCACC	1136	1151	14830	14845	39
1443252	AATACATATAACACGC	1610	1625	15304	15319	426
1443254	CTTATTTGTAGTGAGC	Н/П	Н/П	4542	4557	598
1443256	ATAACAGATGTGAGGA	879	894	14573	14588	1072
1443258	GATGAATACATATGGT	541	556	14235	14250	1262
1443260	TAGAAATTTGTGAGCC	648	663	14342	14357	1360
1443262	GTCTAATTTGGAGAGG	Н/П	Н/П	5416	5431	1051

1443263	ACTAATGTCATATACC	Н/П	Н/П	7563	7578	1344
1443265	ATAGTAGTAGTTTCCA	Н/П	Н/П	11993	12008	1243
1443267	GGTAACAATAAGTTTT	528	543	14222	14237	450
1443268	CAGTATTTTTGGTGGT	Н/П	Н/П	7284	7299	642
1443269	GTGTAGAAATGCCAGA	Н/П	Н/П	7862	7877	1294
1446691	AGAGTATTGTGTTGTA	89	104	3351	3366	1416
1446693	TTACTTTGATACTTGG	822	837	14516	14531	612
1446694	AACATTTGTCATAGGA	Н/П	Н/П	4517	4532	1415
1446697	AGAAATTTGTGAGCCA	647	662	14341	14356	1485
1446709	AAGTCTTAAGGTTTCA	1271	1286	14965	14980	1446
1446726	TTGGATGTTAGGCTGG	1316	1331	15010	15025	1410
1446731	AGTATTTTTGGTGGTA	Н/П	Н/П	7283	7298	1432
1446733	ACAGATGTGAGGAGTC	876	891	14570	14585	1407
1446734	CCTTTTTTGGACTTGT	Н/П	Н/П	6944	6959	1452
1446735	GAAATTTGTGAGCCAT	646	661	14340	14355	1486

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkdddddddddkekek; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Модифицированные олигонуклеотиды имеют мотив межнуклеозидной связи (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 48. Модифицированные олигонуклеотиды, конъюгированные с 6пальмитамидогексилом со смешанным MOE/cEt сахарным мотивом и однородными PS межнуклеозидными связями, комплементарными PLN человека

Номер	Последовательность (от 5' до 3')	Старт- сайт SEQ ID NO:	Стоп- сайт SEQ ID NO: 1	Старт- сайт SEQ ID NO: 2	Стоп- сайт SEQ ID NO: 2	SEQ ID NO.
1436541	AAGATATAGTATGGTA	1247	1262	14941	14956	45
1443257	ATAGTAGGCTATTAGG	1545	1560	15239	15254	1223
1443261	CAAAGATATAGTATGG	1249	1264	14943	14958	942
1443264	TATGTAAGAGTATGGC	1017	1032	14711	14726	186

1446711	GGATGTTAGGCTGGAA	1314	1329	15008	15023	519
1446712	TTATGGTCAATAGTAG	1554	1569	15248	15263	1015
1446715	AAAGATATAGTATGGT	1248	1263	14942	14957	120
1446717	TTGTGTTGTATGAAGT	83	98	3345	3360	1530
1446729	ACGAGTATATTAGGAA	Н/П	Н/П	5499	5514	737
1446736	CTTTGATACTTGGTGA	819	834	14513	14528	184
1446737	AGAGTATTGTGTTGTA	89	104	3351	3366	1416
1446740	AGATATAGTATGGTAA	1246	1261	14940	14955	270

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkke; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «e» представляет собой 2'-МОЕ сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Модифицированные олигонуклеотиды имеют мотив межнуклеозидной связи (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 49. Модифицированные олигонуклеотиды, конъюгированные с 6пальмитамидогексилом со смешанным MOE/cEt сахарным мотивом и однородными PS межнуклеозидными связями, комплементарными PLN человека

Номер	Последовательность (от 5' до 3')	Старт- сайт SEQ ID NO:	Стоп- сайт SEQ ID NO: 1	Старт- сайт SEQ ID NO:	Стоп- сайт SEQ ID NO: 2	SEQ ID NO.
1443253	AAGATATAGTATGGTA	1247	1262	14941	14956	45
1443255	CAAAGATATAGTATGG	1249	1264	14943	14958	942
1443259	GATATAGTATGGTAAG	1245	1260	14939	14954	1046
1443270	CACATATTAACCACCA	1135	1150	14829	14844	264
1446696	CCTTTTTTGGACTTGT	Н/П	Н/П	6944	6959	1452
1446698	ATGTTTACAAGATCCA	560	575	14254	14269	700
1446699	AGATGTAATAGATGGG	1463	1478	15157	15172	1106
1446701	ACGAGTATATTAGGAA	Н/П	Н/П	5499	5514	737
1446703	TAGATGTAATAGATGG	1464	1479	15158	15173	1077
1446705	GGAAATCAACAGTTGC	625	640	14319	14334	564
1446716	TAGTTAAGATTTTGCG	1529	1544	15223	15238	819

1446718	GTAGTTAAGATTTTGC	1530	1545	15224	15239	752
1446725	AAAGATATAGTATGGT	1248	1263	14942	14957	120
1446727	TTACTTTGATACTTGG	822	837	14516	14531	612
1446728	TAAGGTTTCATGATTC	1265	1280	14959	14974	615
1446730	CACGAGTATATTAGGA	Н/П	Н/П	5500	5515	675
1446738	GTATTTTTGGTGGTAT	Н/П	Н/П	7282	7297	1431

Длина модифицированных олигонуклеотидов в таблице ниже составляет 16 нуклеозидов, где сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdyddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый « у» представляет собой 2'-ОМе сахарный фрагмент, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Модифицированные олигонуклеотиды имеют мотив межнуклеозидной связи (от 5' до 3'): sssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозиновый остаток представляет собой 5-метилцитозин.

Таблица 50. Модифицированные олигонуклеотиды, конъюгированные с 6пальмитамидогексилом со смешанным cEt/2'-OMe сахарным мотивом и однородными PS межнуклеозидными связями, комплементарными PLN человека

Номер	Последовательность (от 5' до 3')	Старт- сайт SEQ ID NO:	Стоп- сайт SEQ ID NO: 1	Старт- сайт SEQ ID NO:	Стоп- сайт SEQ ID NO: 2	SEQ ID NO.
1443266	ACATATTAACCACCAG	1134	1149	14828	14843	188
1446700	GGAAATCAACAGTTGC	625	640	14319	14334	564
1446704	GGTAGTTAAGATTTTG	1531	1546	15225	15240	689
1446707	TTACUTTGATACTTGG	822	837	14516	14531	1628
1446710	CAGTATTTTTGGTGGT	Н/П	Н/П	7284	7299	642
1446713	GTAAGGTTTATGGTCA	1561	1576	15255	15270	53
1446720	AAGGUTTATGGTCAAT	1559	1574	15253	15268	1647
1446721	GATGUTGTATATGCTG	Н/П	Н/П	7359	7374	1594
1446723	AGAAATTTGTGAGCCA	647	662	14341	14356	1485
1446724	TTGGATGTTAGGCTGG	1316	1331	15010	15025	1410
1446741	TAGAAATTTGTGAGCC	648	663	14342	14357	1360

Пример 10. Активность модифицированных олигонуклеотидов, комплементарных PLN человека, у трансгенных мышей, однократная доза

Мышей, трансгенных по PLN человека, несущих мутацию R14del (трансгенные мыши huPLN R14del), получали с использованием системы нацеливания на ген CRISPR/CAS9. Линию клеток Taconic Biosciences C57BL/6N Tac ES котрансфицировали плазмидой, обеспечивающей экспрессию мРНК Cas9, специфической gRNA и пуромицин-N-ацетилтрансферазы, а также плазмидой, содержащей гомологичные области мышиного гена Pin и замещенную человеческую область, включающую мутацию R14del (полученную из мышиной библиотеки C57BL/6J RPCI-23 и человеческой RPCI-11 BAC и/или CalTechD соответственно). Мышиную геномную последовательность от экзона 1, включающую 5'-нетранслируемую область (UTR), до 29 п.н. ниже экзона 2, включая 3'-UTR, замещали ее человеческим аналогом. Ген *PLN* человека экспрессируется под контролем эндогенного мышиного промотора *Pln*.

Обработка

Трансгенных мышей разделяли на группы по 2-3 мыши в каждой. Каждой мыши вводили подкожные инъекции модифицированного олигонуклеотида в дозе 50 мг/кг или 100 мг/кг два раза в неделю в течение двух или трех недель (3, 4 или 5 процедур), как указано в таблицах ниже. Одна группа из четырех мышей получала подкожные инъекции PBS два раза в неделю в течение двух или трех недель (3, 4 или 5 процедур), как указано в таблицах ниже. Группа, получавшая инъекцию PBS, служила в качестве контрольной группы, с которой сравнивали группы, получавшие олигонуклеотиды.

Анализ РНК

Через 72 часа после последней обработки мышей умерщвляли и РНК экстрагировали из сердца, аорты и/или четырехглавой мышцы мыши, как указано для анализа экспрессии PHK PLN с помощью RTPCR в реальном времени. Набор праймеров и зондов PLN человека Hs00160179 m1 (Integrated DNA Technologies) использовали для измерения уровней РНК PLN человека, как указано в таблицах ниже. Уровни PHK PLN нормализовали либо к общему содержанию РНК, измеренному с помощью RIBOGREEN®, либо к GAPDH мыши, как указано в таблицах ниже. GAPDH мыши амплифицировали с использованием набора зондов праймеров mGapdh LTS00102 (прямая последовательность GGCAAATTCAACGGCACAGT, обозначенная в данном документе как SEQ ID NO: 9; обратная последовательность GGGTCTCGCTCCTGGAAGAT, обозначенная в данном NO: 10; документе как **SEQ** ID последовательность зонда AAGGCCGAGAATGGGAAGCTTGTCATC, обозначенная в данном документе как SEQ ID NO: 11). Результаты представлены в процентах РНК PLN по отношению к контролю PBS (% контроля).

Таблица 51. Снижение уровня PLN человека у трансгенных мышей, 50 мг/кг, 4 дозы, нормализованного к Ribogreen

	PHK PLN (%	РНК PLN (% контроля)	
Соединение №	Сердце (Hs00160179_m1)	Аорта (Hs00160179_m1)	

PBS	100	100
1436539	33	37
1436540	66	69
1436541	44	33
1436542	20	22
1436543	29	44
1436544	41	43
1436545	69	96
1436546	35	25

Таблица 52. Снижение уровня PLN человека у трансгенных мышей, 50 мг/кг, 3 дозы, нормализованного к GAPDH

Соединение №	РНК PLN (% контроля) Сердце (Hs00160179_m1)
PBS	100
1343077	72
1436542	26
1443233	65
1443234	52
1443235	46
1443236	81
1443237	78
1443238	49
1443239	44
1443240	34
1443241	40
1443242	79
1443243	43
1443244	63
1443245	37
1443252	47
1443253	38
1443254	46

Таблица 53. Снижение уровня PLN человека у трансгенных мышей, 50 мг/кг, 3 дозы,

нормализованного к GAPDH

Соединение №	PHK PLN (% контроля) Сердце (Hs00160179_m1)
PBS	100
1436542	28
1443255	64
1443256	61
1443257	36
1443258	52
1443259	65
1443260	40
1443261	48
1443262	56
1443263	62
1443264	83
1443265	64
1443266	40
1443267	55
1443268	60
1443269	60

Таблица 54. Снижение уровня PLN человека у трансгенных мышей, 50 мг/кг, 3 дозы, нормализованного к GAPDH

Соединение №	РНК PLN (% контроля) Сердце (Hs00160179_m1)
PBS	100
1436542	24
1446697	8
1446698	20
1446701	27
1446700	29
1446694	30

1446696	31
1446703	33
1446693	33
1446691	33
1446705	37
1446704	48
1446699	54

Таблица 55. Снижение уровня PLN человека у трансгенных мышей, 50 мг/кг, 3 дозы, нормализованного к GAPDH

Соединение №	РНК PLN (% контроля) Сердце (Hs00160179_m1)
PBS	100
1436542	25
1446723	13
1446721	21
1446715	37
1446707	34
1446712	38
1446709	42
1446713	33
1446711	41
1446716	48
1446717	46
1446718	54
1446720	59
1446710	70

Таблица 56. Снижение уровня PLN человека у трансгенных мышей, 50 мг/кг, 3 дозы, нормализованного к GAPDH

^	РНК PLN (% контроля) Сердце
Соединение №	(Hs00160179_m1)
PBS	100

1436542	28
1446729	22
1446724	44
1446728	44
1446726	37
1446740	53
1443270	32
1446727	43
1446730	28
1446741	36
1446725	50
1446735	42
1446731	39
1446734	41
1446737	40
1446736	50
1446733	63
1446738	46

Таблица 57. Снижение уровня PLN человека у трансгенных мышей, 100 мг/кг, 5 доз, нормализованного к Ribogreen

Соединение №	РНК PLN (% контроля) Сердце Hs00160179_m1
PBS	100
1121400	53
1121403	60
1121415	61
1342341	42
1342787	33
1342911	46
1343077	32
1343467	58
1343475	46
1343574	58
1343648	47

1343651	62
1393575	65
1393581	60
1393675	58
1393772	67
1393958	52

Пример 11. Активность модифицированных олигонуклеотидов, комплементарных PLN человека, у трансгенных мышей, многократная доза

Трансгенных мышей huPLN R14del (описанных в данном документе выше) использовали для определения активности модифицированных олигонуклеотидов, комплементарных PLN человека.

Обработка

Трансгенных мышей разделяли на группы по 3 мыши в каждой. Каждой мыши вводили подкожные инъекции модифицированного олигонуклеотида в дозе, указанной в таблицах ниже, два раза в неделю в течение двух или трех недель (либо 3, либо 6 процедур соответственно), как указано в таблицах ниже. Одна группа из четырех мышей получала подкожные инъекции PBS два раза в неделю в течение двух или трех недель (либо 3, либо 6 процедур соответственно), как указано в таблицах ниже. Группа, получавшая инъекцию PBS, служила в качестве контрольной группы, с которой сравнивали группы, получавшие олигонуклеотиды.

Анализ РНК

Через 72 часа после последней обработки мышей умерщвляли и РНК экстрагировали из сердца для анализа экспрессии РНК PLN с помощью RTPCR в реальном времени. Наборы праймеров и зондов PLN человека Hs00160179_m1 (Integrated DNA Technologies) и/или RTS40402 (описанные в данном документе выше) использовали для измерения уровней РНК PLN человека. Уровни РНК PLN нормализовали к общему содержанию РНК, измеренному с помощью RIBOGREEN. Результаты представлены в процентах РНК PLN по отношению к контролю PBS (% контроля). В некоторых случаях точка данных была недоступна, и такие случаи отмечены знаком «Н/П» (недоступно). ED50 рассчитывали в Prism с использованием нелинейной аппроксимации с переменным наклоном (четыре параметра), верхнее ограничение до 100% (или 1), нижнее ограничение до 0. Y=Hu3 + (Верх-Низ)/(1+(IC50/X)^Наклон).

Таблица 58. Снижение уровня PLN человека у трансгенных мышей, 3 дозы, нормализованного к Ribogreen

	Доза	Сердце (Нѕ001	160179_m1)	Сердце (RTS40402)		
Соединение №	мг/кг	PHK PLN (%	ED50	PHK PLN (%	ED50	
		контроля)	(мг/кг)	контроля)	(мг/кг)	
PBS	0	100	-	100	-	

	12,5	95		97	
1436539	25	82	50	82	46
	50	50		45	
	12,5	95		91	
1436542	25	62	35	66	39
	50	35		40	
	12,5	96		96	
1436543	25	80	49	80	52
	50	49		52	
	12,5	85		85	
1443235	25	59	36	59	36
	50	40		40	
	12,5	106		113	
1443261	25	90	58	98	57
	50	61		65	

Таблица 59. Снижение уровня PLN человека у трансгенных мышей, 3 дозы, нормализованного к Ribogreen

Соединение №	Доза	Сердце (Hs001	60179_m1)	Сердце (RTS40402)		
	мг/кг	PHK PLN (%	ED50	PHK PLN (%	ED50	
		контроля)	(мг/кг)	контроля)	(мг/кг)	
PBS	0	100	-	100	-	
	50	Н/П		Н/П		
1436541	25	66	31	61	29	
	12,5	95		91		
	50	46		42		
1443253	25	78	46	74	42	
	12,5	101		95		
	50	48		46		
1446715	25	75	46	69	44	
	12,5	99		89		
	50	52		48		
1446725	25	72	50	73	47	
	12,5	95		93		
1446730	50	39	42	38	39	

	25	77		72	
	12,5	93		90	
	50	60		59	
1446740	25	94	57	92	56
	12,5	95		101	

Таблица 60. Снижение уровня PLN человека у трансгенных мышей, 6 дозы, нормализованного к Ribogreen

		Сердце (Нѕ00	160179_m1)
Соединение №	Доза мг/кг	PHK PLN (%	ED50 (мг/кг)
		контроля)	EDSU (MI/KI)
PBS	0	100	
	150	46	
1343077	100	51	116
	50	66	
	80	6	
1436542	40	16	14
1430342	20	32	14
	10	68	
	150	62	
1393581	100	78	268
	50	83	
	80	25	
1446715	40	56	47
1440/13	20	87	47
	10	96	
	150	46	
1393675	100	62	144
	50	63	
	80	10	
1446720	40	22	10
1446730	20	46	19
	10	75	
1242011	150	36	64
1342911	100	31	- 04

	50	60	
1436543	80	20	
	40	25	27
	20	65	27
	10	87	

Таблица 61. Снижение уровня PLN человека у трансгенных мышей, 6 дозы, нормализованного к Ribogreen

<u> </u>		Сердце (Hs00	160179_m1)	
Соединение №	Доза мг/кг	РНК PLN (% контроля)	ED50 (мг/кг)	
PBS	0	100		
	150	49		
1343475	100	55	136	
	50	74		
	80	19		
1436541	40	38	20	
1430341	20	57	29	
	10	91		
	150	40		
1393493	100	60	117	
	50	74		
	80	5		
1446729	40	17	18	
1440729	20	40	18	
	10	81		
	150	58		
1121403	100	65	236	
	50	76		
	80	19		
1443235	40	39	25	
177 <i>3233</i>	20	61		
	10	67		

Пример 12. Разработка соединений для RNAi с антисмысловыми олигонуклеотидами для RNAi, комплементарными нуклеиновой кислоте PLN человека

Соединения для RNAi, содержащие антисмысловые олигонуклеотиды для RNAi, комплементарные нуклеиновой кислоте PLN человека, и смысловые олигонуклеотиды для RNAi, комплементарные антисмысловым олигонуклеотидам для RNAi, разрабатывали следующим образом.

Соединения для RNAi в таблице ниже состоят из антисмыслового олигонуклеотида для RNAi и смыслового олигонуклеотида для RNAi. В каждом случае длина антисмыслового олигонуклеотида для RNAi составляет 23 нуклеозида; имеет сахарный мотив (от 5' до 3'): уfyfyfyfyfyfyfyfyfyfyyyy, где каждый «у» представляет собой 2'-Ометилрибозильный сахар, а каждый «f» представляет собой 2'-фторрибозильный сахар; и имеет мотив межнуклеозидной связи (от 5' до 3'): ssooooooooooooooss, где каждый «о» представляет собой фосфодиэфирную межнуклеозидную связь, а каждый «s» собой фосфоротиоатную межнуклеозидную связь. представляет Смысловой олигонуклеотид для RNAi в каждом случае имеет длину 21 нуклеозид; имеет сахарный мотив (от 5' до 3'): fyfyfyfyfyfyfyfyfyfyfyf, где каждый «у» представляет собой 2'-Ометилрибозильный сахар, а каждый «f» представляет собой 2'-фторрибозильный сахар; и имеет мотив межнуклеозидной связи (от 5' до 3'): ssooooooooooooss, где каждый «о» представляет собой фосфодиэфирную межнуклеозидную связь, а каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый антисмысловой олигонуклеотид для RNAi комплементарен целевой нуклеиновой кислоте (PLN), и каждый смысловой олигонуклеотид для RNAi комплементарен первому из 21 нуклеозида антисмыслового олигонуклеотида для RNAi (от 5' до 3'), где два последних 3'-нуклеозида антисмысловых олигонуклеотидов для RNAi не спарены со смысловым олигонуклеотидом для RNAi (представляют собой выступающие нуклеозиды).

«Старт-сайт» указывает на 5'-крайний нуклеозид, которому комплементарны антисмысловые олигонуклеотиды для RNAi в последовательности гена человека. «Стопсайт» указывает на 3'-крайний нуклеозид, которому комплементарен антисмысловой **RNAi** В последовательности человека. олигонуклеотид для гена Каждый модифицированный антисмысловой олигонуклеозид для RNAi, указанный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа в GENBANK NM 002667.4), за исключением соединения № 1564340, которое на 100% комплементарно SEQ ID NO: 2 (№ доступа в GENBANK NC 000006.12, усеченный от нуклеозидов 118545001 до 118565000) от нуклеозидов 16694 до 16716.

Таблица 62. Соединения для RNAi, нацеленные на PLN человека SEQ ID NO: 1

	ID			SEQ ID	SEQ ID	ID	Смысло	
Номер	антисмы	Антисмысл овая	SEQ	NO:	NO:	смысло	вая	SEQ
соединен	словой	последоват	ID	Старт-	Стоп-	вой	последов	ID
ия	последов	ельность	NO.	сайт 1	сайт 1	последо	ательнос	NO.
	ательнос	(от 5' к 3')		антисмы	антисм	вательн	ТЬ	
	ТИ	,		словой	ыслово	ости	(от 5' к	

				последо	й		3')	
				вательн	последо			
				ости	ватель			
					ности			
		UCAUCAC					CAAUA	
	AGUAUAG					CUCUA		
1563877	1563889	AGUAUUG	1713	94	116	1563885	UACUG	2025
		UG					UGAUG	
							A	
		GGUGUUU					AAAAC	
1563878	1563891	AGCUGGG	1714	54	76	1563883	UCCCCA	2026
1303678	1303691	GAGUUUU	1714	34	/0	1505665	GCUAA	2020
		CU					ACACC	
		UCUGACU					AAACU	
		CUGUCAC					GGGUG	
1563874	1563886	CCAGUUU	1715	34	56	1563880	ACAGA	2027
	AU					GUCAG		
		AU					A	
		GGUAGCC					AUCAC	
		UUGGCAG					AGCUG	
1563875	1563887	CUGUGAU	1716	114	136	1563881	CCAAG	2028
		CA					GCUAC	
		CIT					C	
		GUGUUGU					CCGUA	
		AUGAAGU					AGACU	
1563876	1563890	CUUACGG	1717	74	96	1563882	UCAUA	2029
		GU					CAACA	
		GU					C	
		GAGAUAA					CUAAA	
		CUGUCUU					AGAAG	
1563879 156	1563888	CUUUUAG	1718	134	156	1563884	ACAGU	2030
		GU					UAUCU	
							C	
1563894	1563905	UUUCUCC	1719	214	236	1563900	CCUGC	2031

		AUGAUAC					UGGUA	
		CAGCAGG					UCAUG	
		AC					GAGAA	
							A	
		AAAAGCU					CAUAU	
		GGCAGCC					UUGGC	
1563897	1563909	AAAUAUG	1720	154	176	1563903	UGCCA	2032
		AG					GCUUU	
		AG					U	
		AAGUGGU					UUAUC	
		CGAGAGA					UUUCU	
1563892	1563906	AAGAUAA	1721	174	196	1563899	CUCGA	2033
		AA					CCACU	
		7.11					U	
		GACAGGA					UAAAA	
		AGUCUGA					CUUCA	
1563896	1563908	AGUUUUA	1722	194	216	1563902	GACUU	2034
		AG					CCUGU	
		110					С	
		UUGAGGC					CAGCU	
		UCUUCUU					AUAAG	
1563893	1563907	AUAGCUG	1723	254	276	1563901	AAGAG	2035
		AG					CCUCA	
							A	
		GAGCGAG					AGUCC	
		UGAGGUA					AAUAC	
1563895	1563904	UUGGACU	1724	234	256	1563898	CUCAC	2036
		UU					UCGCU	
							С	
		UUGUUGA					ACCAU	
		GGCAUUU					UGAAA	
1563910	1563925	CAAUGGU	1725	274	296	1563919	UGCCU	2037
		UG					CAACA	
							A	

							AGCAC	
		UUCUGUA					GUCAA	
1563915	1563926	GCUUUUG	1726	294	316	1563920	AAGCU	2038 2039 2040 2041 2042
		ACGUGCU					ACAGA	
		UG					A	2040 2041 2042
		TIACCACA					UGCUU	
		UAGCAGA					CUCUG	
1563911	1563924	ACUUCAG AGAAGCA	1727	374	396	1563918	AAGUU	2039
		UC					CUGCU	
							A	
		AUCACGA					GCUGA	
		UGAUACA					UCUGU	
1563913	1563922	GAUCAGC	1728	354	376	1563917	AUCAU	2040
		AA					CGUGA	
		7171					U	
		GACAGAA					AUCUA	
		AUUGAUA					UUUAU	
1563914	1563927	AAUAGAU	1729	314	336	1563921	CAAUU	2041
		UC					UCUGU	
							С	
		CAAGAGA					CUCAU	
		CAUAUUA					CUUAA	
1563912	1563923	AGAUGAG	1730	334	356	1563916	UAUGU	2042
		AC					CUCUU	
							G	
		AGCUGCA					ACAAC	
		GAUCUAG					CUCUA	
1563928	1563945	AGGUUGU	1731	394	416	1563939	GAUCU	2043
		AG					GCAGC	
							U	
		CUGUUAU					GAAAA	
15/2021	15/20/42	ACAAUAU	1722	454	476	1562024	CAAUA	2044
1563931	1563942	UGUUUUC	1732	454	476	1563934	UUGUA	2044
		CU					UAACA	
							G	

	<u> </u>		1			ı	THIOCO	
		GAUUUUA					UUGCC ACAUC	
1563933	1563940	AGCUGAU	1733	414	436	1563936	AGCUU	2045
1303933	1303340	GUGGCAA	1/33	714	430	1303930	AAAAU	40 4 3
		GC					C	
							CUGUC	
		CCUGUCU					AUCCC	
1563932	1563943	GCAUGGG	1734	434	456	1563937	AUGCA	2046
		AUGACAG					GACAG	
		AU					G	
							GACCA	
		UCUUCUA					CUUCC	
1563930	1563941	CUCAGGA	1735	474	496	1563935	UGAGU	2047
		AGUGGUC					AGAAG	
		UG					A	
		UGACCUU					AGUUU	
		UUCACAA					CUUUG	
1563929	1563944	AGAAACU	1736	494	516	1563938	UGAAA	2048
		CU					AGGUC	
							A	
		AUCAACA					GUAUA	
		GUUGCAU					AAAUG	
1563947	1563960	UUUAUAC	1737	614	636	1563954	CAACU	2049
		AC					GUUGA	
							U	
		CACUUAU					AAAUU	
15/2049	15(2050	UUUGAAG	1720	504	(1)	15(2052	AACUU	2050
1563948	1563958	UUAAUUU	1738	594	616	1563953	CAAAA	2049
		UU					UAAGU G	
							AAGAU	
		AUAAGUU					UAAGA	
1563951	1563962	UUAGUCU	1739	514	536	1563956	CUAAA	2051
1303731	1505702	UAAUCUU	1137	211		1303330	ACUUA	
		GA					U	

							CUGUU	
		CAUGUUU					GGAUC	
1563950	1563963	ACAAGAU	1740	554	576	1563957	UUGUA	2052
		CCAACAG					AACAU	
		AU					G	2053 2054 2056
		GAUGAAU					UUGUU	
		ACAUAUG					ACCAU	
1563946	1563959	GUAACAA	1741	534	556	1563955	AUGUA	2053
		UA	1740 1741 1742 1743 1744				UUCAU	
	OIL					C		
		UUUGAAA					GAAAA	
		AUAAAGC					GGGCU	
1563949	1563961	CCUUUUC	1742	574	596	1563952	UUAUU	2054
		AU					UUCAA	
							A	
		ACUAAAC					UCUGA	
1562064	1562056	UCUUCAU	17.40	6 7 4	606	1562072	AGAUG	2055
1563964	1563976	CUUCAGA	1/43	674	696	1563973	AAGAG	2055
		AA					UUUAG U	
							AGCAU	
		CAAAAGA					UAUUU	
1563965	1563977	GUAAAAA	1744	734	756	1563972	UUACU	2056
1505505	130377	UAAUGCU	1,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,	1003972	CUUUU	2000
		UU					G	
							UUUCC	
		UUGUGAG					UCAAC	
1563969	1563980	CCAUGUU	1745	634	656	1563974	AUGGC	2057
		GAGGAAA					UCACA	
		UC					A	
		CITICOCA					UUUUA	
		GUUGGCA GUGCAGU					AAACU	
1563967	1563975	UUUAAAA	1746	694	716	1563970	GCACU	2058
		CU					GCCAA	2053 2054 2056
							C	

							CAACII	
		UUUAUAU					CAAGU UCACU	
1563966	1563979	AUGAAGU	1747	714	736	1563971	UCAUA	2059
		GAACUUG					UAUAA	
		UU					A	2060 2061 2063 2064
		AAAACATI					AAUUU	
		AAAAGAU UUGGGAU					CUAUC	
1563968	1563981	AGAAAUU	1748	654	676	1563978	CCAAA	2060
		UG					UCUUU	
							U	
		UACUUUG					UCUUC	
		AUACUUG					ACCAA	
1563985	1563996	GUGAAGA	1749	814	836	1563988	GUAUC	2061
		CC					AAAGU	
							A	
		UGACACU					AAUAA	
		UCAUUUG					CACAA	
1563983	1563994	UGUUAUU	1750	834	856	1563990	AUGAA	2062
		AC					GUGUC	
							A	
		AAUAUAA					GAGGU	
15(2002	15/2007	AUUAUAU	1751	754	776	1562001	GAAUA	2062
1563982	1563997	UCACCUC	1751	754	776	1563991	UAAUU	2063
		AA					UAUAU U	
							AAUAC	
		ACCUGAA					UAAGU	
1563986	1563998	AAAUACU	1752	794	816	1563993	AUUUU	2064
1303700	1303776	UAGUAUU	1732	724	010	1303773	UCAGG	2060 2061 2062
		AA					U	
							UACAA	
		UAAAGAA					UGUAA	
1563987	1563999	GCUUUUA	1753	774	796	1563992	AAGCU	2065
1563987		CAUUGUA					UCUUU	
		AU					A	

							ACCAA	
		GUUAUUA					GUAUC	
1563984	1563995	CUUUGAU	1754	819	841	1563989	AAAGU	2066
		ACUUGGU					AAUAA	
		GA					C	
		UGUAGAU					UAGUA	
		UCUGAUA					ACUAU	
1564003	1564015	GUUACUA	1755	914	936	1564006	CAGAA	2067
		CA					UCUAC	
		CIT					A	
		CAGUGGA					AUUAU	
		CUAUUUU					UCAAA	
1564000	1564012	GAAUAAU	1756	854	876	1564009	AUAGU	2068
		GA					CCACU	
							G	
		AGAUAAC					GACUC	
		AGAUGUG					CUCAC	
1564005	1564017	AGGAGUC	1757	874	896	1564010	AUCUG	2069
		AG					UUAUC	
							U	
		AUACAAU					AUUCU	
1564002	1564013	UUCUGUU	1750	024	056	1564007	AAAAA	2070
1304002	1304013	UUAGAAU	1758	934	956	1364007	AGAAA UUGUA	2070
		GU					U	
							UUAUU	
		ACAAAUA					AUAAA	
1564004	1564016	GUUCUUU	1759	894	916	1564011	GAACU	2071
1301001	1301010	AUAAUAA	1735	0,1		1301011	AUUUG	2067
		GA					U	
							UUUUU	
		GUUAAUG					UCUAU	
1564001	1564014	UGGCAUA	1760	954	976	1564008	GCCAC	2072
1564001		GAAAAA					AUUAA	
		UA					C	

							A A T TC A	
		CUUACUU					AAUCA AGUAU	
1564021	1564029	UUCCAUA	1761	994	1016	1564025	GGAAA	2073
		CUUGAUU					AGUAA	
		CU					G	
		TITIATITATI					GGCCA	
		UUAUUAU GUAAGAG					UACUC	
1564022	1564034	UAUGGCC	1762	1014	1036	1564028	UUACA	2074
		UU					UAAUA	
							A	
		UCUCAUC					CAUCU	
		AACUUUA					UUUAA	
1564018	1564030	AAAGAUG	1763	974	996	1564026	AGUUG	2075
		UU					AUGAG	
							A	
		CAUACUU					AGUUG	
		GAUUCUC					AUGAG	
1564023	1564035	AUCAACU	1764	984	1006	1564033	AAUCA	2076
		UU					AGUAU	
							G	
		AAAAUUA					AAAUU	
		CUUAAAA					CCUUU	
1564020	1564031	GGAAUUU	1765	1034	1056	1564024	UAAGU	2077
		UA					AAUUU	
							U	
		GAAUUCU					UUUCA	
1564010	1564022	GUGAUUC	17766	1054	1076	1564027	AAGAA	2070
1564019	1564032	UUUGAAA	1766	1054	1076	1564027	UCACA	2078
		AA					GAAUU	
							C	
		UAUGUCU					AUAAA UCUGU	
1564036	1564051	UAGAACA	1767	1094	1116	1564045	UCUAA	2079
1304030	1304031	GAUUUAU	1/0/	1054	1110	1304043	GACAU	2019
		GA						
							A	

							GAGAU	
		AUUAGUG					UAGUC	
1564038	1564047	AUAUGAC	1768	1154	1176	1564043	AUAUC	2080
		UAAUCUC					ACUAA	
		AC					U	
		CACHCHC					GGUGG	
		CACUGUC ACAUAUU					UUAAU	
1564040	1564053	AACCACC	1769	1134	1156	1564048	AUGUG	2081
		AG					ACAGU	
		AG					G	
		UUAGAUU					UAUAC	
		CUGUUGU					UAACA	
1564037	1564050	UAGUAUA	1770	1174	1196	1564044	ACAGA	2082
		UU					AUCUA	
							A	
		CAGUUCU					AUGAU	
		CAUCUGU					CAACA	
1564039	1564049	UGAUCAU	1771	1114	1136	1564042	GAUGA	2083
		AU					GAACU	
							G	
		UGAUUUA					CUAGU	
1564041	1564052	CCUACAU	1770	1074	1006	1564046	ACAUG UAGGU	2004
1564041	1564052	GUACUAG	1772	1074	1096	1564046	AAAUC	2084
		AA					AAAUC	
							GUUAC	
		UAGUAUG					CUAGC	
1564058	1564071	GUAAGCU	1773	1234	1256	1564065	UUACC	2085
1301030	1301071	AGGUAAC	1775	123 1	1230	1301003	AUACU	2003
		UC					A	
							AUCUU	
		UACAGUG					CAUUU	
1564054	1564067	CCUUAAA	1774	1194	1216	1564063	AAGGC	2086
1564054		UGAAGAU					ACUGU	
		UA					A	

							AGUGA	
		CUCUAGC					AUUAU	
1564059	1564070	UCAGAUA	1775	1214	1236	1564064	CUGAG	2087
		AUUCACU					CUAGA	
		AC					G	
		CATIALIAC					CCUAG	
		GAUAUAG					CUUAC	
1564057	1564069	UAUGGUA AGCUAGG	1776	1238	1260	1564061	CAUAC	2088
		UA					UAUAU	
		UA					C	
		UGAUUCC					CAUAC	
		AAAGAUA					UAUAU	
1564055	1564068	UAGUAUG	1777	1248	1270	1564062	CUUUG	2089
		GU					GAAUC	
		30					A	
		CCAAAGA					CUUAC	
		UAUAGUA					CAUAC	
1564056	1564066	UGGUAAG	1778	1243	1265	1564060	UAUAU	2090
		CU					CUUUG	
							G	
		CUGCAUU					CCAGCC	
1564074	1564081	GGAUGUU	1779	1314	1336	1564078	UAACA	2091
		AGGCUGG					UCCAA	
		AA					UGCAG	
		GUUUCAU					AUAUC	
		GAUUCCA					UUUGG	
1564072	1564082	AAGAUAU	1780	1254	1276	1564077	AAUCA	2092
		AG					UGAAA	
							C	
		AAAUCUU					GGCAA	
1564004	1564000	UUAUUUU	1701	1224	1256	1564006	GGAAA	2002
1564084	1564088	CCUUGCC	1781	1334	1356	1564086	AUAAA	2093
		UG					AGAUU	
							U	

							UUUGC	
		GAAUGGA					AGGUU	
1564073	1564080	AGACAAC	1782	1294	1316	1564076	GUCUU	2094 2095 2096 2097 2099 2100
		CUGCAAA					CCAUU	
		AU					C	
		AUAUAUU					UCCAG	
		UUUCUGU					UGACA	
1564085	1564089	CACUGGA	1783	1354	1376	1564087	GAAAA	2095
		AA					AUAUA	
		7171					U	
		AAUCAUU					CCUUA	
		CUGAAGU					AGACU	
1564075	1564083	CUUAAGG	1784	1274	1296	1564079	UCAGA	2096
		UU					AUGAU	
							U	
		UUUAAAA					UUAUC	
		AAUACUU					UCAAG	
1564090	1564104	GAGAUAA	1785	1374	1396	1564101	UAUUU	2097
		UA					UUUAA	
							A	
		CUAAUAA					CAAAU	
1564002	1564105	UUAGUUA	1707	1 4 1 4	1.426	1564100	AUUAA	2000
1564093	1564105	AUAUUUG	1786	1414	1436	1564100	CUAAU	2098
		GA					UAUUA G	
		GGAGAGA					AAAUA	
		GAAUUCA					UAUGA	
1564094	1564102	UAUAUUU	1787	1394	1416	1564097	AUUCU	2099
		UU					CUCUCC	
							UUGUU	
		AUGUAAU					GGCCC	
1564092	1564103	AGAUGGG	1788	1454	1476	1564099	AUCUA	2100
1001002	155,1105	CCAACAA	1,00	1101			UUACA	2095 2096 2097 2098
		GU					U	

							TICTIAC	
1564001	1564105	UGUUCAA GGGUCAG	1500	1.47.4	1405	1544004	AGCUG	0101
1564091	1564107	CUGUAGA	1789	1474	1496	1564096	ACCCU	2101
		UG					UGAAC	
							A	
		AGUUCAU					GAUUA	
		UUCAAAA					UAUUU	
1564095	1564106	UAUAAUC	1790	1434	1456	1564098	UGAAA	2102
		UA					UGAAC	
							U	
		GUCAGCU					AUGGG	
		CCCCUAA					GGUUA	
1564113	1564122	CCCCCAU	1791	1494	1516	1564118	GGGGA	2103
		GU					GCUGA	
							С	
		UAGUUAA					GGGUC	
		GAUUUUG					CGCAA	
1564111	1564124	CGGACCC	1792	1522	1544	1564116	AAUCU	2104
		AC					UAACU	
							A	
		AUUUACU					CUGAU	
		GUUUAUG					AACAU	
1564110	1564120	UUAUCAG	1793	1574	1596	1564114	AAACA	2105
		UA					GUAAA	
		011					U	
		GUAAGGU					ACUAU	
		UUAUGGU					UGACC	
1564109	1564121	CAAUAGU	1794	1554	1576	1564115	AUAAA	2106
		AG					CCUUA	
		110					C	
		UAGGCUA					UCUUA	
1564112		UUAGGUA					ACUAC	
	1564123	GUUAAGA	1795	1534	1556	1564119	CUAAU	2107
		UU					AGCCU	
							A	

							CAAIIII	
		AUUUUGC					CAAUU CGUGG	
1564108	1564125	GGACCCA	1796	1514	1536	1564117	GUCCG	2108
1304100	1304123	CGAAUUG	1770	1314	1330	1304117	CAAAA	2100
		UC					U	2109 2110 2111 2112
							AAUCA	
		UAUUUUC					UAAGA	
1564127	1564139	UCUUUCU	1797	1674	1696	1564134	AAGAG	2109
		UAUGAUU					AAAAU	
	UU					A		
		IIA COLIIIA					UUCCU	
		UAGCUUA					ACAAU	
1564129	1564142	GUAGGAA	1798	1634	1656	1564137	AAAGU	2110
		UA					AAGCU	
		UA					A	
		CAUUUAA					AUAUU	
		UGAAUAG					UACUA	
1564128	1564140	UAAAUAU	1799	1694	1716	1564132	UUCAU	2111
		AU					UAAAU	
							G	
		AACACGC					UUAAC	
		AAAAUAU					ACAUA	
1564131	1564138	GUGUUAA	1800	1594	1616	1564133	UUUUG	2112
		UU					CGUGU	
							U	
		UUUCUAA					AGAGA	
1564130	1564141	AUAACAU	1801	1654	1676	1564136	AAAUG UUAUU	2112
1304130	1304141	UUUCUCU	1001	1034	1070	1304130	UAGAA	2113
		AG					A	
							UAUAU	
		AUAUAGU					GUAUU	
1564126	1564143	GUAUAAU	1802	1614	1636	1564135	AUACA	2114
		ACAUAUA		-			CUAUA	
		AC					U	

							CACAU	
		CUCCUCU					UGAGU	
1564146	1564157	GCCUACU	1803	1754	1776	1564152	AGGCA	2115
		CAAUGUG					GAGGA	
		AA					G	
		CCCCACA					UCUUG	
		CCCCLIAA					UCUUA	
1564145	1564159	CCCCUAA GACAAGA	1804	1814	1836	1564153	GGGGU	2116
		CU					GUGGG	
							G	
		UCUUCCU					GGAGA	
		CCCCAUC					AAGAU	
1564147	1564158	UUUCUCC	1805	1774	1796	1564150	GGGGA	2117
		UC					GGAAG	
							A	
		CUUUUAU					GGAAG	
		GUUGACC					UGGGU	
1564149	1564160	CACUUCC	1806	1714	1736	1564155	CAACA	2118
		AU					UAAAA	
							G	
		GAAGACA					GUCUU	
1564149	1564161	AUGAGAA	1907	1724	1756	1564154	CAUUC	2110
1564148	1304101	UGAAGAC	1807	1734	1756	1564154	UCAUU GUCUU	2119
		UU					C	
							AGAAG	
		ACUGCAA					GCGUU	
1564144	1564156	GACCAAC	1808	1794	1816	1564151	GGUCU	2120
1301111	1301130	GCCUUCU	1000	1721	1010	1301131	UGCAG	
		CU					U	
							GAGUG	
1564167		UGAAUAU					GGGGA	
	1564178	UCUUUCC	1809	1834	1856	1564169	AAGAA	2121
		CCCACUC					UAUUC	2116 2117 2118 2119
		CC					A	

							AUGUA	
		UGCAAGG					UAAGU	
1564162	1564174	GUCCACU	1810	1854	1876	1564170	GGACC	2122
		UAUACAU					CUUGC	
		GA					A	
							AAGGG	
		AUCCUAU					UCAAC	
1564166	1564175	UACAGUU	1811	1894	1916	1564168	UGUAA	2123
		GACCCUU					UAGGA	
		GA					U	
		AGAGGAA					UAUAG	
		GAAAAAU					CUAUU	
1564163	1564176	AGCUAUA	1812	1914	1936	1564172	UUUCU	2124
		UC					UCCUC	
							U	
		AUGCUUA					UAUCA	
		CCAUUUG					ACCAA	
1564164	1564177	GUUGAUA	1813	1934	1956	1564173	AUGGU	2125
		GA					AAGCA	
		_					U	
		UGAACAA					AAUUC	
		CAAGGGC					AAGCC	
1564165	1564179	UUGAAUU	1814	1874	1896	1564171	CUUGU	2126
		GC					UGUUC	
							A	
		AAAUUUA					AUUUU	
1564104	1564105	UUCAUCA	1015	2014	2026	1.5.4100	CUUGA	0.107
1564184	1564195	AGAAAAU	1815	2014	2036	1564188	UGAAU	2127
		AA					AAAUU	
							U	
		UUAUUGG					UUUCA GAACA	
1564101	1564194	AAGAUGU	1816	2054	2076	1564189	UCUUC	2120
1564181	1304194 	UCUGAAA	1010	2034	2070	1304189	CAAUA	2123
		UG						
							A	

						1	A CITIC A	
		GGAUCUA					ACUGA GCUAA	
1564180	1564192	UAAUUUA	1817	1974	1996	1564191	AUUAU	2129
		GCUCAGU AG					AGAUC	
		AU					C	
		UAAUUAU					CAGCU	
		AAAUAGC					AUGCU	
1564183	1564193	AUAGCUG	1818	1994	2016	1564190	AUUUA	2130
		GA					UAAUU	
	0/1					A		
		AUGGUCA					UUCAA	
		GAGGAGA					UUUCU	
1564182	1564197	AAUUGAA	1819	2034	2056	1564186	CCUCU	2131
		AA					GACCA	
							U	
		UAGAGUG					UCUAU	
		GACUGCA					UUUGC	
1564185	1564196	AAAUAGA	1820	1954	1976	1564187	AGUCC	2132
		UG					ACUCU	
							A	
		UUACCAA					AUAUU	
1564202	1564015	AGUUUGG	1001	0114	2126	1564005	CACCA	2122
1564202	1564215	UGAAUAU	1821	2114	2136	1564205	AACUU	2133
		AU					UGGUA	
							A	
		GAUUAUG					UUACA CCUAU	
1564199	1564210	CAGUAUA	1822	2174	2196	1564204	ACUGC	2134
1304199	1304210	GGUGUAA	1822	21/4	2190	1304204	AUAAU	2134
		AC					C	
							AAAAU	
		UAUUUUC					UGAGU	
1564198	1564212	CAGCACU	1823	2094	2116	1564209	GCUGG	2135
	1551212	CAAUUUU	1023	2 027		1551209	AAAAU	
		AC					A	
							Λ	

							AAAAU	
		AACUAUU					UAAGU	
1564200	1564214	UUAGACU	1824	2154	2176	1564208	CUAAA	2136
		UAAUUUU					AUAGU	
		AA					U	
		TIA A A CUITI					AUUUA	
		UAAACUU UAGUCAA					AGUUG	
1564201	1564211	CUUAAAU	1825	2134	2156	1564206	ACUAA	2137
		UA	1825 1826 1827				AGUUU	
		UA					A	
		UACUUCA					ACUCA	
		GUUGUUU					UAAAA	
1564203	1564213	UAUGAGU	1826	2074	2096	1564207	CAACU	2138
		UA					GAAGU	
		071					A	
		AACUGAA					CCAAC	
		AUUAAAA					AAUUU	
1564216	1564228	UUGUUGG	1827	2194	2216	1564222	UAAUU	2139
		AU					UCAGU	
							U	
		UAUAUUA					UGAAG	
		GUAACAU					ACAUG	
1564221	1564229	GUCUUCA	1828	2214	2236	1564227	UUACU	2140
		AC					AAUAU	
							A	
		UAGUAAC					UCUUC	
		CAUGUUU					UAAAA	
1564217	1564231	UAGAAGA	1829	2274	2296	1564224	CAUGG	2141
		UA					UUACU	
							A	
		AUAUGGU					AGGAU	
1564220	1564022	UAAUUAC	1020	2254	2276	1564222	GUGUA	21.42
	1564233	ACAUCCU	1830	2254	2276	1564223	AUUAA	2142
		CU					CCAUA	
							U	

1564218	1564232	AUUGAUG UUACAUA UUCUUUU AG	1831	2294	2316	1564225	AAAAG AAUAU GUAAC AUCAA U	2143
1564219	1564230	UCUACUC UUUUAAU AAUAGUU AU	1832	2234	2256	1564226	AACUA UUAUU AAAAG AGUAG A	2144
1564235	1564247	UAUCCCU GAACCAA ACACUUU CC	1833	2414	2436	1564241	AAAGU GUUUG GUUCA GGGAU A	2145
1564237	1564248	UCUCUCA UGGGUUC AGAAAAU UU	1834	2374	2396	1564242	AUUUU CUGAA CCCAU GAGAG A	2146
1564234	1564249	UAUUGAG UUAGCAA CACUUGU GU	1835	2334	2356	1564244	ACAAG UGUUG CUAAC UCAAU A	2147
1564238	1564250	UGUAAGA AACCAAG GUCAAUA UU	1836	2314	2336	1564243	UAUUG ACCUU GGUUU CUUAC A	2148
1564256	1564265	GAAUUUC CAGCUUG UAGAUGA GG	1837	2474	2496	1564261	UCAUC UACAA GCUGG AAAUU C	2149

		I	I				ACTICA	1
		UUUAAUA					AGUGA AGGAG	
1564236 1	1564246	GUGUCUC	1838	2354	2376	1564240	ACACU	2150 2151 2152 2153 2154 2156
		CUUCACU					AUUAA	
		AU					A	
		LICCACLIC					AUACU	
		UCCACUC CCCAUCU					AGAGA	
1564239 1	1564251	CUAGUAU	1839	2394	2416	1564245	UGGGG	2151
		CU					AGUGG	
							A	
		ACUAAAA					ACUCA	
1564253 1	1564269	CCAGUGA	1840	2534	2556	1564258	CCUCAC	2152
1301233	1301209	GGUGAGU	1010	2331	2330	1301230	UGGUU	2132
		GU					UUAGU	
		AGGCGUC					GAGAU	
		ACUUAAG					UUCUU	
1564257 1	1564268	AAAUCUC	1841	2454	2476	1564263	AAGUG	2153
		UG					ACGCC	
							U	
		UGUAUCA					UUAUA	
		CCUGUUG					AACAA	
1564254 1	1564267	UUUAUAA	1842	2514	2536	1564259	CAGGU	2154
		GC					GAUAC	
							A	
		CUGCCCU					AUCUG	
		UCUGUUC					AAGAA	
1564252 1	1564266	UUCAGAU	1843	2434	2456	1564260	CAGAA	2155
		AU					GGGCA	
							G	
		AGCUUUC					CCUAA	
		UACUUGU					AAACA	
1564255 1	1564264	UUUUAGG	1844	2494	2516	1564262	AGUAG	2156
		AA					AAAGC	
							U	

							TTA A ATT	
		ACUUUCU					UAAAU UACCA	
1564270	1564283	GUAUUGG	1845	2554	2576	1564280	AUACA	2157
		UAAUUUA					GAAAG	
		CU					U	
		AATICACTI					AGUGG	
		AAUCAGU					AAAAU	
1564274	1564284	UCAAAUU UUCCACU	1846	2594	2616	1564278	UUGAA	2158
		UG	1845 1846 1847 1849				CUGAU	
		UG					U	
		AAAAUAU					CACUG	
		UGUAACA					UUUGU	
1564271	1564285	AACAGUG	1847	2634	2656	1564277	UACAA	2159
		UA					UAUUU	
							U	
		GUUAUUU					UUCUC	
		CUGUUUA					AGUAA	
1564275	1564286	CUGAGAA	1848	2654	2676	1564276	ACAGA	2160
		AA					AAUAA	
							С	
		UUGUUUU					UAUCC	
		UAAGACU					CUAGU	
1564272	1564282	AGGGAUA	1849	2574	2596	1564279	CUUAA	2161
		CU					AAACA	
							A	
		GUAAUCA					UAGUC	
1564273	1564297	AAGGAAU	1950	2614	2626	1564281	AUAUU	2162
13042/3	1564287	AUGACUA	1830	2614	2636	1304281	CCUUU GAUUA	2162
		AU					C	
							CUAAU	
1564292		AAUGAAG					UUUUU	
	1564304	AACAAAA	1851	2674	2696	1564299	UGUUC	2163
	1301301	AAAUUAG	1001	2071		1501255	UUCAU	2103
		UU					U	

							A A A T T A	
		UAUGAUG					AAAUA AUUAU	
1564293	1564305	AAGAAUA	1852	2774	2796	1564298	UCUUC	2164
		AUUAUUU					AUCAU	
		AA					A	2164 2165 2166 2167 2169
		UAAAGAG					UAAAG	
		UUUAUUC					UAGAA	
1564288	1564300	UACUUUA	1853	2754	2776	1564294	UAAAC	2165
		UA					UCUUU	
		On					A	
		GAUUUUA					UCUUU	
		AUUUCUA					GAUAG	
1564291	1564302	UCAAAGA	1854	2694	2716	1564297	AAAUU	2166
		AU					AAAAU	
							С	
		AUAAUUU					GAAUA	
1564200		GAGUUAU					CUAUA	
1564289	1564301	AGUAUUC	1855	2734	2756	1564296	ACUCA	2167
		UG					AAUUA	
							U	
		CUGUAAU					CUUAU	
1564290	1564303	CCUCACA	1856	2714	2736	1564295	UCUGU GAGGA	2160
1304290	1304303	GAAUAAG	1830	2/14	2/30	1304293	UUACA	2108
		AU					G	
							UUACA	
		AUUGUUU					GGGCA	
1564308	1564319	UUAGUGC	1857	2894	2916	1564316	CUAAA	2169
	100.019	CCUGUAA	100.	203.			AACAA	
		AU					U	
							CUCAA	
1564310		CUAUAGU					AUAUG	
	1564320	AGAACAU	1858	2854	2876	1564313	UUCUA	2170
		AUUUGAG					CUAUA	
		CA					G	
	l				L	l		

							GAAUA	
		AAUUAAG					AGUUC	
1564307	1564321	AUAAGAA	1859	2874	2896	1564317	UUAUC	2171
		CUUAUUC					UUAAU	
		UA					U	
		ATTATION					AAAGU	
		AUAUCUU					GUAAA	
1564311	1564323	AUUCUUU	1860	2794	2816	1564314	GAAUA	2172
		ACACUUU					AGAUA	
		AU					U	
		GCAUUUA					AAAAU	
		GUAUAUU					UUAAU	
1564309	1564318	AAAUUUU	1861	2834	2856	1564312	AUACU	2173
		AA					AAAUG	
		AA					C	
		UAAAAAU					UAAGA	
		AAAUUGU					AAACA	
1564306	1564322	UUUCUUA	1862	2814	2836	1564315	AUUUA	2174
		UA					UUUUU	2174
							A	
		UUAAACA					UAAGA	
		AAUAUAU					AUAUA	
1564328	1564336	AUUCUUA	1863	2954	2976	1564332	UAUUU	2175
		AC					GUUUA	
							A	
		UGAGUUU					AUGAA	
		UCAAGAA					UGUUC	
1564325	1564340	CAUUCAU	1864	Н/П	Н/П	1564335	UUGAA	2176
		UU					AACUC	
							A	
1564324		AACCAAU					CCUUU	
	1564000	UAAAAUA	10.55	2021	2075	1564222	UAUAU	
	1564339	UAAAAGG	1865	2934	2956	1564333	UUUAA	2177
		CA					UUGGU	
							U	

							TITITIA	
		GCAACAU					UUUUA AAAUG	
1564329	1564341	UAAGCAU	1866	2914	2936	1564334	CUUAA	2178
1501525	1301311	UUUAAAA	1000	2211	2,50		UGUUG	2170
		UU					C	
							UCACU	
		ACAUUCA					AUAUU	
1564326	1564337	UUUUAAU	1867	2987	3009	1564330	AAAAU	2179
		AUAGUGA					GAAUG	
		UU					U	
		TIATIACTIC					AUGCA	
		UAUAGUG					AAUCA	
1564327	1564338	AUUCUGA UUUGCAU	1868	2974	2996	1564331	GAAUC	2180
		UA					ACUAU	
		UA					A	
		AUAGAGU					UCAUA	
		AUUGUGU					CAACA	
1576614	1576627	UGUAUGA	1869	84	106	1576620	CAAUA	2181
		AG					CUCUA	
		110					U	
		GCAGCUG					UACUG	
		UGAUCAU					UGAUG	
1576613	1576624	CACAGUA	1870	104	126	1576618	AUCAC	2182
		UA					AGCUG	
							С	
		AAGUCUU					AGCUA	
		ACGGGUG					AACAC	
1576616	1576629	UUUAGCU	1871	64	86	1576622	CCGUA	2183
		GG					AGACU	
							U	
		AGCCAAA					ACAGU	
155665	1556633	UAUGAGA	1072	4.4.4	4.55	1556622	UAUCU	2101
1576617	1576628	UAACUGU	1872	144	166	1576623	CAUAU	2180
		CU					UUGGC	
							U	

	ı				Γ	1		
		UCUUCUU					CCAAG	
		UUAGGUA					GCUAC	2185 2186 2187 2188 2189 2190
1576615	1576626	GCCUUGG	1873	124	146	1576619	CUAAA	
		CA					AGAAG	
							A	
		UGGGGAG					ACAGA	
1576612	1576625	UUUUCUG	1874	44	66	1576621	GUCAG	2186
		ACUCUGU					AAAAC	
		CA					UCCCCA	
		AUUUCAA					AAGAG	
		UGGUUGA					CCUCA	
1576632	1576643	GGCUCUU	1875	264	286	1576640	ACCAU	2187
		CU					UGAAA	
							U	
		CUGAAGU					CUCGA	
		UUUAAGU					CCACU	
1576634	1576645	GGUCGAG	1876	184	206	1576639	UAAAA	2188
		AG					CUUCA	
							G	
		AUACCAG					GACUU	
		CAGGACA					CCUGU	
1576635	1576646	GGAAGUC	1877	204	226	1576637	CCUGC	2189
		UG					UGGUA	
							U	
		GAGAAAG					UGCCA	
		AUAAAAA					GCUUU	
1576630	1576647	GCUGGCA	1878	164	186	1576636	UUAUC	2190
		GC					UUUCU	
		GC					C	
		GGUAUUG					UCAUG	
		GACUUUC					GAGAA	
1576633	1576644	UCCAUGA	1879	224	246	1576638	AGUCC	2191
12.000		UA					AAUAC	
		UA					C	
	I	ı			1	<u> </u>		

							CUCAC	
		UCUUAUA					UCGCU	
1576631	1576642	GCUGAGC	1880	244	266	1576641	CAGCU	2192
		GAGUGAG					AUAAG	
		GU					Α	
		AUUAAGA					CAAUU	
		UGAGACA					UCUGU	
1576652	1576664	GAAAUUG	1881	324	346	1576659	CUCAU	2193
		AU					CUUAA	
		AU					U	
		UACAGAU					UAUGU	
		CAGCAAG					CUCUU	
1576651	1576663	AGACAUA	1882	344	366	1576654	GCUGA	2194
		UU					UCUGU	
							A	
		UUUGACG					UGCCU	
		UGCUUGU					CAACA	
1576648	1576661	UGAGGCA	1883	284	306	1576657	AGCAC	2195
		UU					GUCAA	
							A	
		CUAGAGG					AAGUU	
		UUGUAGC					CUGCU	
1576649	1576660	AGAACUU	1884	384	406	1576656	ACAAC	2196
		CA					CUCUA	
							G	
		UCAGAGA					AUCAU	
1556650	155666	AGCAUCA	1005	264	206	1.55.65.5	CGUGA	2105
1576650	1576662	CGAUGAU	1885	364	386	1576655	UGCUU	2197
		AC					CUCUG	
							A	
1576653		GAUAAAU					AAGCU	
	1576665	AGAUUCU	1006	204	226	1576650	ALICUA	2100
	1576665	GUAGCUU	1886	304	326	1576658	AUCUA	2198
		UU					UUUAU	
							С	

							TIC A CTT	
		ACAAAGA					UGAGU AGAAG	
1576667	1576678	AACUCUU	1887	484	506	1576674	AGUUU	2199
		CUACUCA					CUUUG	
		GG					U	
		TIC ALICHO					GAUCU	
		UGAUGUG					GCAGC	
1576666	1576677	GCAAGCU GCAGAUC	1888	404	426	1576673	UUGCC	2200
		UA					ACAUC	
		UA					A	
		GUCUUAA					UGAAA	
		UCUUGAC					AGGUC	
1576671	1576683	CUUUUCA	1889	504	526	1576679	AAGAU	2201
		CA					UAAGA	
		0.1.2					С	
		AUAUUGU					AUGCA	
		UUUCCUG					GACAG	
1576669	1576681	UCUGCAU	1890	444	466	1576676	GAAAA	2202
		GG					CAAUA	
							U	
		AGGAAGU					UUGUA	
1576660	1576690	GGUCUGU	1001	4.6.4	40.6	1576670	UAACA	2202
1576668	1576680	UAUACAA	1891	464	486	1576672	GACCA	2203
		UA					CUUCC U	
							AGCUU	
		UGGGAUG					AAAAU	
1576670	1576682	ACAGAUU	1892	424	446	1576675	CUGUC	2204
1370070	1370002	UUAAGCU	1002	121	110	1370073	AUCCC	2201
		GA					A	
							CUAAA	
		UAUGGUA					ACUUA	
1576684	1576697	ACAAUAA	1893	524	546	1576693	UUGUU	2205
	1576697	GUUUUAG			310		ACCAU	
		UC					A	

1576686	1576694	GCAUUUU AUACACU	1894	604	626	1576692	CAAAA UAAGU GUAUA	2206
1370080	1370094	UAUUUUG AA	1094	004	020	1370092	AAAUG C	2200
1576689	1576701	AGAUCCA ACAGAUG AAUACAU AU	1895	544	566	1576696	AUGUA UUCAU CUGUU GGAUC U	2207
1576688	1576700	AAGCCCU UUUCAUG UUUACAA GA	1896	564	586	1576695	UUGUA AACAU GAAAA GGGCU U	2208
1576687	1576699	GAAGUUA AUUUUUG AAAAUAA AG	1897	584	606	1576690	UUAUU UUCAA AAAUU AACUU C	2209
1576685	1576698	UGUUGAG GAAAUCA ACAGUUG CA	1898	624	646	1576691	CAACU GUUGA UUUCC UCAAC A	2210
1576705	1576716	AAGUGAA CUUGUUG GCAGUGC AG	1899	704	726	1576708	GCACU GCCAA CAAGU UCACU U	2211
1576706	1576719	CAGUUUU AAAACUA AACUCUU CA	1900	684	706	1576713	AAGAG UUUAG UUUUA AAACU G	2212

							UCAUA	
		AAAAUAA					UAUAA	
1576704	1576714	UGCUUUA	1901	724	746	1576709	AGCAU	2213
		UAUAUGA					UAUUU	
		AG					U	
		ATTATHICA					UUACU	
		AUAUUCA					CUUUU	
1576703	1576717	CCUCAAA	1902	744	766	1576711	GAGGU	2214
		AGAGUAA					GAAUA	
		AA					U	
		GGAUAGA					AUGGC	
		AAUUUGU					UCACA	
1576702	1576715	GAGCCAU	1903	644	666	1576710	AAUUU	2215
		GU					CUAUC	
		30					С	
		UCAUCUU					CCAAA	
		CAGAAAA	1904				UCUUU	
1576707	1576718	GAUUUGG		664	686	1576712	UCUGA	2216
		GA					AGAUG	
							A	
		UACUUAG					AAGCU	
1556505	1556505	UAUUAAA	1005	7 0.4	200	1556520	UCUUU	2217
1576725	1576737	GAAGCUU	1905	784	806	1576730	AAUAC	2217
		UU					UAAGU	
							ALICAA	
		UUUUGAA					AUGAA GUGUC	
1576723	1576734	UAAUGAC	1906	844	866	1576726	AUUAU	2218
15/0/25	1370734	ACUUCAU	1900	044	800	1370720	UCAAA	2210
		UU					A	
							AUAGU	
1576722		UGUGAGG					CCACU	
	1576733	AGUCAGU	1907	864	886	1576727	GACUC	2219
		GGACUAU		804	880		CUCAC	
		UU					A	

							AUUUU	
		CUUGGUG					UCAGG	
1576724	1576736	AAGACCU	1908	804	826	1576731	UCUUC	2220
		GAAAAAU					ACCAA	
		AC					G	
		CITTIATIA					AUCUG	
		CUUUAUA AUAAGAU					UUAUC	
1576721	1576732	AACAGAU	1909	884	906	1576729	UUAUU	2221
		GU					AUAAA	
		GO					G	
		UUUACAU					UAAUU	
		UGUAAUA					UAUAU	
1576720	1576735	UAAAUUA	1910	764	786	1576728	UACAA	2222
		UA					UGUAA	
							A	
		CAUAGAA					AGAAA	
		AAAAUAC					UUGUA	
1576742	1576754	AAUUUCU	1911	944	966	1576749	UUUUU	2223
		GU					UCUAU	
							G	
		UGUUUUA					CAGAA	
		GAAUGUA					UCUAC	
1576743	1576755	GAUUCUG	1912	924	946	1576748	AUUCU	2224
		AU					AAAAC	
							A	
		UUUAAAA					GCCAC	
		GAUGUUA	1010	0.54	006		AUUAA	
1576741	1576751	AUGUGGC	1913	964	986	1576744	CAUCU	2225
		AU					UUUAA	
							A	
		AGAGUAU					GGAAA	
1576740	1576750	GGCCUUA	1014	1004	1006	1576745	AGUAA	2226
	1576750	CUUUUCC	1914	1004	1026	1576745	GGCCA	2226
		AU					UACUC	
							U	

1576738 1576753 1576752 1576774 2227 2228 2227 2228 2227 2228 2227 2228 2227 2228 2227 2228 2227 2228 2227 2228 2228 2227 2228 22		I						CAACIT	
1576738 1576753 AUAGUUC UU 1915 904 926 1576747 UAGUA 2227 ACUAU C UU ACA UAAUA UAUGUAA GA 1916 1024 1046 1576746 AAAUU 2228 CCUUU U U U U U U U U									
1576739 1576752 AAAAGGA AUUUUAU UAUGUAA GA 1916 1024 1046 1576746 AAAUU 2228 CCUUU U U U U U U U U U U U U U U U U	1576738	1576753		1915	904	926	1576747	UAGUA	2227
1576739								ACUAU	
1576752 1576752 1576765 1576765 1576765 1576766 1576767 1576								C	
1576739 1576752 1576760 1576760 1576761 1576761 1576761 1576767 1576769 1576			AAAAGGA					UUACA	
1576759 1576752 1576760 1576760 1576760 1576773 1576761 1576761 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576767 1576769 1576767 1576767 1576767 1576767 1576767 1576767 1576769 1576769 1576760 157676								UAAUA	
1576760	1576739	1576752		1916	1024	1046	1576746	AAAUU	2228
1576760								CCUUU	
1576760			UA					U	
1576760 1576773 UUAUGAU UUACCUA CA 1917 1084 1106 1576770 AUAAA 2229 UCUGU U U U U U U U U U U U U U U U U U			AACAGAII					UAGGU	
1576760 1576773 UUACCUA CA								AAAUC	
1576759	1576760	1576773		1917	1084	1106	1576770	AUAAA	2229
1576759								UCUGU	
1576759			CA					U	
1576759 1576771 CACCAGU UCUCAUC UG 1918 1124 1146 1576763 GGUGG 2230 UUAAU A AUUCUUU GAAAAAA UUACUUA AA 1919 1044 1066 1576766 UUUCA AAGAA UU 1576758 1576767 CUGUUGA UCAUAGA AC 1576757 1576769 UGACUAA AC 1576757 1576769 UGACUAA UCUCACU GUCACU AU AU 1918 1124 1146 1576763 GGAACU AAUUU A			HAIHIAAC					GAUGA	
1576759 1576771 UCUCAUC UG UG 1918 1124 1146 1576763 GGUGG 2230 UUAAU A A UUAAGU AAUUU AAUUU AAUUU AAAUUU AAAAA UUCUCAAU AAA UCUUAAA AA 1576758 1576767 UGACUAA AC 1576757 1576769 UGACUAA UCUCACU GUCACAU AU AU 1921 1144 1166 1576765 GAGAU 2233 UAGUC ACAGU AUGAU AUAGUC AUAGU								GAACU	
1576751	1576759	1576771		1918	1124	1146	1576763	GGUGG	2230
1576751								UUAAU	
1576761 1576772 GAAAAAA 1919 1044 1066 1576766 UUUCA 2231 AAGAA UUUCA AAA 1919 1044 1066 1576766 UUUCA 2231 AAGAA UUUCA AAGAA UUUCAUAGA AC UCUUAGA AC UCUUAGA AC UUUCACU GUCACAU AU 1921 1144 1166 1576765 GAGAU 2233 UAGUC AUGUC AU AU 1921 AU 1166 1576765 GAGAU 2233								A	
1576761 1576772 GAAAAAA 1919 1044 1066 1576766 UUUCA 2231 AAGAA UUUCAUAA AA 1919 11044 1066 1576766 UUUCA 2231 AAGAA UUCAUAAA AA 1920 1104 1126 1576762 AUGAU 2232 CAACA G G 1576757 1576769 UGACUAA UCUCACU GUCACAU AU 1921 1144 1166 1576765 GAGAU 2233 UAGUC 2233			AIIICIIIII					UAAGU	
1576761 1576772 UUACUUA AA 1919 1044 1066 1576766 UUUCA 2231 AAGAA U U UCUAA GACAU UCUUAGA AC UCUUAGA AC UCUCACU GUCACAU AU 1921 1144 1166 1576765 GAGAU 2233 UAGUC 2233								AAUUU	
1576757 1576769 AA CUGUUGA CUGUUGA CCAACA CCA	1576761	1576772		1919	1044	1066	1576766	UUUCA	2231
1576758 1576767 CUGUUGA UCAUAUG UCUUAGA AC 1920 1104 1126 1576762 AUGAU 2232 CAACA G G CAACA G CAACA G CAACA CAACA G G CAACA G G CAACA CAAGU CAACAGU CACACAGU CAACAGU CACAGU								AAGAA	
1576758 1576767 UCAUAUG UCAUAGA AC 1920 1104 1126 1576762 AUGAU 2232 CAACA AC GGCAU 1920 1104 1126 1576762 AUGAU 2232 CAACA G G 1576757 1576769 UGACUAA UCUCACU GUCACAU AU 1921 1144 1166 1576765 GAGAU 2233 UAGUC AU			7171					U	
1576758			CUGUUGA					UCUAA	
1576758 1576767 UCUUAGA AC 1920 1104 1126 1576762 AUGAU 2232 CAACA G G UGACUAA UCUCACU GUCACAU AU AU 1921 1144 1166 1576765 GAGAU 2233 UAGUC								GACAU	
AC AC LOGACIA G AUGUG ACAGU ACAGU ACAGU ACAGU ACAGU ACAGU ACAGU AUGUCACU GUCACAU AU AU AU AU AU AU AU AU	1576758	1576767		1920	1104	1126	1576762	AUGAU	2232
1576757 1576769 UGACUAA UCUCACU GUCACAU AU 1021 1144 1166 1576765 GAGAU 2233 UAGUC								CAACA	
1576757			AC					G	
1576757			LIGACITAA					AUGUG	
1576757 1576769 GUCACAU 1921 1144 1166 1576765 GAGAU 2233 UAGUC	1576757							ACAGU	
AU		1576769		1921	1144	1166	1576765	GAGAU	2233
								UAGUC	
			710					A	

							UCACA	
		ACAUGUA					GAAUU	
1576756	1576768	CUAGAAU	1922	1064	1086	1576764	CUAGU	2234
		UCUGUGA					ACAUG	
		UU					U	
		A A CLICITI					AAUCA	
		AAGUCUU					UGAAA	
1576777	1576786	AAGGUUU CAUGAUU	1923	1264	1286	1576781	CCUUA	2235
		CC					AGACU	
							U	
		GAUAAUU					AAGGC	
		CACUACA					ACUGU	
1576778	1576791	GUGCCUU	1924	1204	1226	1576785	AGUGA	2236
		AA					AUUAU	
		1 2.1					С	
		UAAAUGA					ACAGA	
		AGAUUAG	1925				AUCUA	
1576779	1576790	AUUCUGU		1184	1206	1576784	AUCUU	2237
		UG					CAUUU	
							A	
		AGCUAGG					CUGAG	
1506006	1556505	UAACUCU	1000	1004	1046	1556500	CUAGA	
1576776	1576787	AGCUCAG	1926	1224	1246	1576780	GUUAC	2238
		AU					CUAGC	
							U AGACU	
		UGCAAAA					UCAGA	
1576775	1576789	UCAUUCU	1927	1279	1301	1576782	AUGAU	2239
1370773	1370789	GAAGUCU	1921	1219	1301	1370782	UUUGC	2239
		UA					A	
							AUAUC	
1576774		UUGUUAG					ACUAA	
	1576788	UAUAUUA	1928	1164	1186	1576783	UAUAC	2240
		GUGAUAU		1104	1180		UAACA	
		GA					A	

	Г				Γ	1	Г. 	
		UUUUCCU					AUCCA	
		UGCCUGC					AUGCA	
1576796	1576809	AUUGGAU	1929	1324	1346	1576806	GGCAA	2241
		GU					GGAAA	
							A	
		UUCAUAU					UAUUU	
		AUUUUUA					UUUAA	
1576793	1576803	AAAAAUA	1930	1384	1406	1576801	AAAUA	2242
		CU					UAUGA	
							A	
		UGUUAGG					GUCUU	
1576797	1576808	CUGGAAU	1931	1304	1326	1576802	CCAUU	2243
1370777	1370000	GGAAGAC	1/31	1304	1320	1370802	CCAGCC	2273
		AA					UAACA	
		CAACCUG					UCAGA	
		CAACCUG					AUGAU	
1576792	1576804	AUUCUGA	1932	1284	1306	1576800	UUUGC	2244
							AGGUU	
		AG					G	
		A CLILIC A C					GAAAA	
		ACUUGAG					AUAUA	
1576794	1576807	AUAAUAU	1933	1364	1386	1576799	UUAUC	2245
		AUUUUUC					UCAAG	
		UG					U	
		CHOLICAC					AUAAA	
		CUGUCAC					AGAUU	
1576795	1576805	UGGAAAU	1934	1344	1366	1576798	UCCAG	2246
		CUUUUAU					UGACA	
		UU					G	
		********					UGAAA	
		UGGGCCA					UGAAC	
1576813	1576825	ACAAGUU	1935	1444	1466	1576819	UUGUU	2247
		CAUUUCA		1444	1400	1370017	GGCCC	
		AA					A	

1576810	1576821	GUUAAUA UUUGGAG AGAGAAU UC	1936	1404	1426	1576817	AUUCU CUCUCC AAAUA UUAAC	2248
1576812	1576826	CUAACCC CCAUGUU CAAGGGU CA	1937	1484	1506	1576820	ACCCU UGAAC AUGGG GGUUA G	2249
1576814	1576824	AAAAUAU AAUCUAA UAAUUAG UU	1938	1424	1446	1576818	CUAAU UAUUA GAUUA UAUUU U	2250
1576815	1576827	GAAUUGU CAGCUCC CCUAACC CC	1939	1499	1521	1576822	GGUUA GGGGA GCUGA CAAUU	2251
1576811	1576823	UCAGCUG UAGAUGU AAUAGAU GG	1940	1464	1486	1576816	AUCUAC UCUAC AGCUG A	2252
1576829	1576845	UAAUACA UAUAACA CGCAAAA UA	1941	1604	1626	1576838	UUUUG CGUGU UAUAU GUAUU	2253
1576830	1576840	AUAUGUG UUAAUUU ACUGUUU AU	1942	1584	1606	1576837	AAACA GUAAA UUAAC ACAUA U	2254

	I				I	1		1
		UAUUGUA					AUACA CUAUA	
1576828	1576842	GGAAUAU	1943	1624	1646	1576839	UUCCU	2255
		AGUGUAU					ACAAU	
		AA					Α	
		TIATICITIA					AUAAA	
		UAUGUUA UCAGUAA					CCUUA	
1576831	1576844	GGUUUAU	1944	1564	1586	1576834	CUGAU	2256
		GG					AACAU	
		UU					A	
		CCCACGA					GGGGA	
		AUUGUCA					GCUGA	
1576833	1576841	GCUCCCC	1945	1504	1526	1576836	CAAUU	2257
		UA					CGUGG	
		071					G	
		UGGUCAA					CUAAU	
		UAGUAGG					AGCCU	
1576832	1576843	CUAUUAG	1946	1544	1566	1576835	ACUAU	2258
		GU					UGACC	
							A	
		AGAAUGA					CAACA	
		AGACUUU					UAAAA	
1576848	1576859	UAUGUUG	1947	1724	1746	1576853	GUCUU	2259
		AC					CAUUC	
							U	
		AUAGUAA					AAGAG	
		AUAUAUU					AAAAU	
1576850	1576863	UUCUCUU	1948	1684	1706	1576860	AUAUU	2260
		UC					UACUA	
							U	
		UUCUUAU					UUAUU	
1576851	155.0.5	GAUUUUC	1045	4	1.50.5	1.55.0.5.5	UAGAA	
	1576862	UAAAUAA	1949	1664	1686	1576856	AAUCA	2261
	'	CA					UAAGA	
							A	

	I					1	THIMATI	
		GACCCAC					UUCAU UAAAU	
1576849	1576857	UUCCAUU	1950	1704	1726	1576852	GGAAG	2262
		UAAUGAA					UGGGU	
		UA					C	
		TIA CITO A A					UCAUU	
		UACUCAA					GUCUU	
1576847	1576858	UGUGAAG ACAAUGA	1951	1744	1766	1576854	CACAU	2263
		GA					UGAGU	
		UA					A	
		ACAUUUU					AAAGU	
		CUCUAGC					AAGCU	
1576846	1576861	UUACUUU	1952	1644	1666	1576855	AGAGA	2264
		AU					AAAUG	
							U	
		GGGCUUG					GGACC	
		AAUUGCA					CUUGC	
1576869	1576881	31 AGGGUCC	1953	1864	1886	1576876	AAUUC	2265
		AC					AAGCC	
							C	
		CAUCUUU					AGGCA	
1576060	1576070	CUCCUCC	1054	1764	1707	1576072	GAGGA	2266
1576868	1576879	UCUGCCU	1954	1764	1786	1576873	GGAGA	2266
		AC					AAGAU	
							G	
		CUAAGAC					GGUCU UGCAG	
1576864	1576877	AAGACUG	1955	1804	1826	1576871	UCUUG	2267
1370804	1370877	CAAGACC	1933	1804	1620	1370871	UCUUA	2207
		AA					G	
							GGGGU	
1576865		UUCCCCC					GUGGG	
	1576875	ACUCCCC	1956	1824	1846	1576872	GAGUG	2268
		ACACCCC	1956	1824			GGGGA	
		UA					A	
							= =	

							AAGAA	
		CACUUAU					UAUUC	
1576866	1576874	ACAUGAA	1957	1844	1866	1576870	AUGUA	2269
		UAUUCUU					UAAGU	
		UC					G	
		CAACCCC					GGGGA	
		CAACGCC					GGAAG	
1576867	1576880	CCUCCCC	1958	1784	1806	1576878	AGAAG	2270
		AU					GCGUU	
		AU					G	
		AGUUGAC					CUUGU	
		CCUUGAA					UGUUC	
1576882	1576895	CAACAAG	1959	1884	1906	1576889	AAGGG	2271
		GG					UCAAC	
							U	
		UUUAGCU					AGUCC	
		CAGUAGA					ACUCU	
1576884	1576894	GUGGACU	1960	1964	1986	1576888	ACUGA	2272
		GC					GCUAA	
		30					A	
		UAGCAUA					AUUAU	
		GCUGGAU					AGAUC	
1576883	1576896	CUAUAAU	1961	1984	2006	1576890	CAGCU	2273
		UU					AUGCU	
							A	
		AAAUAGC					UGUAA	
		UAUAUCC					UAGGA	
1576887	1576897	UAUUACA	1962	1904	1926	1576891	UAUAG	2274
		GU					CUAUU	
							U	
		UUUGGUU					UUUCU	
1576885		GAUAGAG					UCCUC	
	1576899	GAAGAAA	1963	1924	1946	1576892	UAUCA	2275
		AA					ACCAA	
							A	

							AUGGU	
		UGCAAAA					AAGCA	
1576886	1576898	UAGAUGC	1964	1944	1966	1576893	UCUAU	2276
		UUACCAU					UUUGC	
		UU					A	
		CACUCAA					CAACU	
		UUUUACU					GAAGU	
1576901	1576912	UCAGUUG	1965	2084	2106	1576909	AAAAU	2277
		UU					UGAGU	
							G	
		AUGUUCU					CCUCU	
		GAAAUGG					GACCA	
1576903	1576913	UCAGAGG	1966	2044	2066	1576907	UUUCA	2278
		AG					GAACA	
							U	
		GUUUUAU					UCUUC	
		GAGUUAU					CAAUA	
1576902	1576911	UGGAAGA	1967	2064	2086	1576906	ACUCA	2279
		UG					UAAAA	
							C	
		AUCAAGA					AUUUA	
4.7.7.000		AAAUAAU	10.00	• • • •			UAAUU	
1576900	1576915	UAUAAAU	1968	2004	2026	1576908	AUUUU	2280
		AG					CUUGA	
							U	
		AUUGAAA					CUUGA	
1576005	1576916	AUUUAUU	1060	2010	2041	1576010	UGAAU AAAUU	2201
1576905	13/0910	CAUCAAG	1969	2019	2041	1576910	UUCAA	2281
		AA					U	
							UGAAU	
		GAGAAAU					AAAUU	
1576904	1576917	UGAAAAU	1970	2024	2046	1576914	UUCAA	2282
		UUAUUCA	1970				UUUCU	
		UC					С	

1576919	1576933	ACAUGUC UUCAACU GAAAUUA AA	1971	2204	2226	1576926	UAAUU UCAGU UGAAG ACAUG U	2283
1576920	1576929	AAAAUUG UUGGAUU AUGCAGU AU	1972	2184	2206	1576925	ACUGC AUAAU CCAAC AAUUU U	2284
1576923	1576934	UCAACUU AAAUUAC CAAAGUU UG	1973	2124	2146	1576928	AACUU UGGUA AUUUA AGUUG A	2285
1576922	1576935	GACUUAA UUUUAAA CUUUAGU CA	1974	2144	2166	1576931	ACUAA AGUUU AAAAU UAAGU C	2286
1576921	1576930	UAUAGGU GUAAACU AUUUUAG AC	1975	2164	2186	1576924	CUAAA AUAGU UUACA CCUAU A	2287
1576918	1576932	UUGGUGA AUAUAUU UUCCAGC AC	1976	2104	2126	1576927	GCUGG AAAAU AUAUU CACCA A	2288
1576937	1576950	CAAGGUC AAUAUUG AUGUUAC AU	1977	2304	2326	1576945	GUAAC AUCAA UAUUG ACCUU G	2289

	I						CALICO	
		CAUAUUC					CAUGG UUACU	
1576938	1576947	UUUUAGU	1978	2284	2306	1576943	AAAAG	2290
		AACCAUG					AAUAU	
		UU					G	
		Синина					AUUAA	
		GUUUUAG AAGAUAU					CCAUA	
1576939	1576949	GGUUAAU	1979	2264	2286	1576942	UCUUC	2291
		UA					UAAAA	
		UA					C	
		AUAGUUA					ACAUG	
		UAUUAGU					UUACU	
1576936	1576951	AACAUGU	1980	2219	2241	1576944	AAUAU	2292
		CU					AACUA	
							U	
		UUACACA					AAAAG	
		UCCUCUA					AGUAG	
1576941	1576952	CUCUUUU	1981	2244	2266	1576946	AGGAU	2293
		AA					GUGUA	
							A	
		UAAUAAU					UUACU	
		AGUUAUA					AAUAU	
1576940	1576953	UUAGUAA	1982	2224	2246	1576948	AACUA	2294
		CA					UUAUU	
							A	
		AUCUCUA					CCCAU	
157(05)	157(0)((GUAUCUC	1002	2294	2406	157(0(1	GAGAG	2205
1576956	1576966	UCAUGGG	1983	2384	2406	1576961	AUACU AGAGA	2295
		UU					U	
							CUGAA	
		UAGUAUC					CCCAU	
1576057	576957 1576967 UCUCAUG GGUUCAG AA	UCUCAUG	1084	2379	2401	1576960	GAGAG	2296
1010001		1707	2319	2401	13/0900	AUACU		
		AA					A	
							11	

	Ι				I	T	OTTA 1 C	
		UCUCCUU					CUAAC UCAAU	
1576959	1576970	CACUAUU	1985	2344	2366	1576964	AGUGA	2297
		GAGUUAG					AGGAG	
		CA					A	
							UGGGG	
		CCAAACA					AGUGG	
1576955	1576968	CUUUCCA	1986	2404	2426	1576963	AAAGU	2298
		CUCCCCA					GUUUG	
		UC					G	
		GUUCAGA					ACACU	
		AAAUUUA					AUUAA	
1576958	1576971	AUAGUGU	1987	2364	2386	1576965	AUUUU	2299
		CU					CUGAA	
							С	
		GCAACAC					GGUUU	
		UUGUGUA					CUUAC	
1576954	1576969	AGAAACC	1988	2324	2346	1576962	ACAAG	2300
		AA					UGUUG	
							C	
		UUGUUUU					GCUGG	
1576074	1576005	UAGGAAU	1000	2484	2506	157(070	AAAUU	2201
1576974	1576985	UUCCAGC	1989	2484	2506	1576979	CCUAA AAACA	2301
		UU					AAACA	
							AAGUG	
		CUUGUAG					ACGCC	
1576976	1576988	AUGAGGC	1990	2464	2486	1576984	UCAUC	2302
1370370	1370900	GUCACUU	1770	2101	2 100	1370301	UACAA	2302
		AA					G	
							CAGAA	
		UAAGAAA	1991		2466	1576982	GGGCA	
1576977	1576989	UCUCUGC		2444			GAGAU	2303
	CCUU	CCUUCUG					UUCUU	
		UU					A	

							UACAA	
		UUUAGGA					GCUGG	
1576975	1576983	AUUUCCA	1992	2479	2501	1576978	AAAUU	2304
		GCUUGUA					CCUAA	
		GA					A	
							GUUCA	
		GUUCUUC					GGGAU	
1576972	1576986	AGAUAUC	1993	2424	2446	1576981	AUCUG	2305
		CCUGAAC					AAGAA	
		CA					C	
		Синсини					AGUAG	
		GUUGUUU AUAAGCU					AAAGC	
1576973	1576987	UUCUACU	1994	2504	2526	1576980	UUAUA	2306
		UG					AACAA	
		UG					C	
		GAAUAUG					UUGAA	
		ACUAAUC					CUGAU	
1576993	1577004	AGUUCAA	1995	2604	2626	1576996	UAGUC	2307
		AU					AUAUU	
		110					С	
		GACUAGG					AUACA	
		GAUACUU					GAAAG	
1576995	1577006	UCUGUAU	1996	2564	2586	1577000	UAUCC	2308
		UG					CUAGU	
							С	
		ACAGUGU					AUAUU	
		AAUCAAA					CCUUU	
1576992	1577002	GGAAUAU	1997	2619	2641	1576998	GAUUA	2309
		GA					CACUG	
							U	
		UUGGUAA					CUGGU	
		UUUACUA					UUUAG	
1576994	1577007	AAACCAG	1998	2544	2566	1577001	UAAAU	2310
		UG					UACCA	
							A	

1576990	1577005	GUGAGGU GAGUGUA UCACCUG UU	1999	2524	2546	1576999	CAGGU GAUAC ACUCA CCUCAC	2311
1576991	1577003	AAUUUUC CACUUGU UUUUAAG AC	2000	2584	2606	1576997	CUUAA AAACA AGUGG AAAAU U	2312
1577013	1577024	UUUACUG AGAAAAA UAUUGUA AC	2001	2644	2666	1577018	UACAA UAUUU UUCUC AGUAA A	2313
1577008	1577022	AACAAAC AGUGUAA UCAAAGG AA	2002	2624	2646	1577016	CCUUU GAUUA CACUG UUUGU	2314
1577011	1577021	UCUAUCA AAGAAUG AAGAACA AA	2003	2684	2706	1577014	UGUUC UUCAU UCUUU GAUAG A	2315
1577010	1577020	AAUAAGA UUUUAAU UUCUAUC AA	2004	2699	2721	1577015	GAUAG AAAUU AAAAU CUUAU U	2316
1577012	1577025	AAAAAAA UUAGUUA UUUCUGU UU	2005	2664	2686	1577019	ACAGA AAUAA CUAAU UUUUU U	2317

							A A A T TT T	
		CACAGAA					AAAUU AAAAU	
1577009	1577023	UAAGAUU	2006	2704	2726	1577017	CUUAU	2318
1377003	1377023	UUAAUUU	2000	2701	2,20		UCUGU	2510
		CU					G	
							UAGAA	
		UUAUUUA					UAAAC	
1577028	1577041	AAGAGUU	2007	2759	2781	1577038	UCUUU	2319
		UAUUCUA					AAAUA	
		CU					A	
		THIATIA CH					GAGGA	
		UUAUAGU					UUACA	
1577026	1577037	AUUCUGU AAUCCUC	2008	2724	2746	1577032	GAAUA	2320
		AC					CUAUA	
		AC					A	
		UUGUUUU					GAAUA	
		CUUAUAU					AGAUA	
1577030	1577043	CUUAUUC	2009	2804	2826	1577039	UAAGA	2321
		UU					AAACA	
							A	
		AAUAAUU					UAAAC	
		AUUUAAA					UCUUU	
1577027	1577035	GAGUUUA	2010	2764	2786	1577033	AAAUA	2322
		UU					AUUAU	
							U	
		AUUCUAC					ACUCA	
1.555001	1555040	UUUAUAA	• • • • •	0744	27.66	1555026	AAUUA	
1577031	1577042	UUUGAGU	2011	2744	2766	1577036	UAAAG	2323
		UA					UAGAA	
							U	
		CUUUACA					UCUUC	
1577029	1577040	CUUUAUG	2012	0704	2006	1577024	AUCAU AAAGU	2324
13//029	1577040	AUGAAGA	2012	2784	2806	1577034	GUAAA	2324
		AU						
							G	

							CUAAA	
		GCAUUUU					AACAA	
1577045	1577058	AAAAUUG	2013	2904	2926	1577052	UUUUA	2325
		UUUUUAG					AAAUG	
		UG					C	
		AGAACUU					UUCUA	
		AUUCUAU					CUAUA	
1577049	1577060	AGUAGAA	2014	2864	2886	1577054	GAAUA	2326
		CA					AGUUC	
		CA					U	
		CUGUAAA					AGUUC	
		UUAAGAU					UUAUC	
1577046	1577057	AAGAACU	2015	2879	2901	1577050	UUAAU	2327
		UA					UUACA	
							G	
		GUGCCCU					UUAUC	
		GUAAAUU					UUAAU	
1577047	1577056	AAGAUAA	2016	2884	2906	1577051	UUACA	2328
		GA					GGGCA	
							С	
		ACAUAUU					AUACU	
		UGAGCAU					AAAUG	
1577048	1577061	UUAGUAU	2017	2844	2866	1577055	CUCAA	2329
		AU					AUAUG	
							U	
		UAUUAAA					AUUUA	
1.5550.4.4	1555050	UUUUAAA	2010	2024	2016	1555050	UUUUU	
1577044	1577059	AAUAAAU	2018	2824	2846	1577053	AAAAU	2330
		UG					UUAAU	
							A	
		AAUAUAA					CUUAA	
1577066	1577075	AAGGCAA	2010	2024	2046	1577071	UGUUG	2221
1577066	1577075	CAUUAAG	2019	2924	2946	1577071	CCUUU	2331
		CA					UAUAU	
							U	

1577067	1577079	UUCAAGA ACAUUCA UUUUAAU AU	2020	2994	3016	1577073	AUUAA AAUGA AUGUU CUUGA A	2332
1577065	1577078	AUAUAUU CUUAACC AAUUAAA AU	2021	2944	2966	1577072	UUUAA UUGGU UAAGA AUAUA	2333
1577064	1577077	CUGAUUU GCAUUAA ACAAAUA UA	2022	2964	2986	1577069	UAUUU GUUUA AUGCA AAUCA G	2334
1577063	1577076	AUUUUAA UAUAGUG AUUCUGA UU	2023	2981	3003	1577068	UCAGA AUCAC UAUAU UAAAA U	2335
1577062	1577074	AAAAGGC AACAUUA AGCAUUU UA	2024	2919	2941	1577070	AAAUG CUUAA UGUUG CCUUU U	2336

Пример 13. Влияние соединений для RNAi на уровень PHK PLN человека *in vitro*, однократная доза

Описанные выше двухцепочечные соединения для RNAi тестируют в серии экспериментов в одних и тех же условиях культивирования.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017) при плотности 20000 клеток на лунку трансфицировали с помощью Lipofectamine 2000 20 нМ двухцепочечного соединения для RNAi. После периода обработки, продолжающегося примерно 24 часа, PHK выделяют из клеток и уровни PHK PLN измеряют с помощью количественной RTPCR в реальном времени. Набор человеческих праймеров и зондов RTS40402 (описанный в данном документе выше) можно использовать для измерения уровней PHK. Уровни PHK PLN нормализуют к общему содержанию PHK, измеренному с помощью RIBOGREEN®.

Пример 14. Влияние соединений для RNAi на уровень PHK PLN человека в

кардиомиоцитах, полученных из iPSC

Описанные выше двухцепочечные соединения для RNAi тестируют в серии экспериментов в одних и тех же условиях культивирования.

Культивированные кардиомиоциты iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. **№**: R1017) обрабатывали модифицированным олигонуклеотидом концентрации 125 нМ с помощью Lipofectin при плотности 8000 клеток на лунку. После периода обработки, продолжавшегося примерно 24 часа, из клеток выделяли общую РНК и измеряли уровни PHK PLN с помощью количественной RTPCR в реальном времени. Уровни РНК PLN измеряли с помощью набора человеческих праймеров и зондов RTS40406 (описанного в данном документе выше) и набора человеческих праймеров и зондов CACCCGTAAGACTTCATACAACACA. ABI53044 (прямая последовательность обозначенная в данном документе как SEQ ID NO: 12; обратная последовательность TGGCAGCCAAATATGAGATAACTGT, обозначенная в данном документе как SEQ ID NO: 13; последовательность зонда TGCCAAGGCTACCTAA, обозначенная в данном документе как SEQ ID NO: 14). Уровни РНК PLN нормализовали по отношению к общему содержанию PHK, измеренному с помощью RIBOGREEN®. Снижение PHK PLN представлено в таблице ниже в процентах РНК PLN по отношению к количеству РНК PLN в необработанных контрольных клетках (% UTC). Значения, отмеченные «†», указывают на то, что модифицированный олигонуклеотид комплементарен области ампликона праймеров и зондов. Дополнительные анализы могут быть использованы для измерения активности и эффективности модифицированных олигонуклеотидов, комплементарных области ампликона. Каждая таблица представляет собой отдельный эксперимент.

Таблица 62. Снижение уровня PHK PLN с помощью двухцепочечных соединений для RNAi в концентрации 125 нМ в кардиомиоцитах iCell®²

	PLN (% UTC)	PLN (% UTC)
Номер соединения	RTS40406	ABI53044
1564108	112	99
1564109	99	78
1564110	124	119
1564111	89	72
1564112	87	73
1564113	145	113
1564126	72	62
1564127	83	74
1564128	100	79
1564129	83	79
1564130	80	73

1564131	96	76
1564144	87	97
1564145	108	105
1564146	92	102
1564147	116	104
1564148	112	98
1564149	102	90
1564162	111	99
1564163	95	86
1564164	96	112
1564165	104	91
1564166	95	84
1564167	109	93
1564180	86	84
1564181	104	100
1564182	100	103
1564183	90	84
1564184	89	79
1564185	92	77
1564198	91	91
1564199	106	113
1564200	86	86
1564201	107	76
1564202	97	94
1564203	93	97
1564216	78	87
1564217	86	87
1564218	107	93
1564219	54	38
1564220	88	87
1564221	84	75
1564234	83	96
1564235	91	100
1564236	99	89

1564237	92	79
1564238	82	92
1564239	88	99
1564252	145	224
1564253	83	105
1564254	108	129
1564255	80	71
1564256	75	77
1564257	92	87
1564270	92	135
1564271	80	99
1564272	91	103
1564273	74	68
1564274	79	83
1564275	74	102
1564288	108	89
1564289	87	86
1564290	77	107
1564291	83	85
1564292	70	81
1564293	65	96
1564306	96	84
1564307	70	81
1564308	73	99
1564309	68	88
1564310	78	87
1564311	73	75
1564324	77	83
1564325	71	89
1564326	83	103
1564327	81	85
1564328	68	101
1564329	82	81
1307323	02	01

Таблица 63. Снижение уровня PHK PLN с помощью двухцепочечных соединений

для RNAi в концентрации 125 нМ в кардиомиоцитах iCell®²

Jaron agazzara	PLN (% UTC)	PLN (% UTC)		
Номер соединения	RTS40406	ABI53044		
1563874	155	138		
1563875	7 †	3†		
1563876	14 †	14†		
1563877	10†	7†		
1563878	122†	123†		
1563879	3†	2†		
1563892	121	124		
1563893	77	64		
1563894	94	80		
1563895	109	102		
1563896	104	89		
1563897	22†	22†		
1563910	48	47		
1563911	84	93		
1563912	50	57		
1563913	83	85		
1563914	70	67		
1563915	67	66		
1563928	99	102		
1563929	61	63		
1563930	96	96		
1563931	56	55		
1563932	81	99		
1563933	55	50		
1563946	61	69		
1563947	57	68		
1563948	55	54		
1563949	46	44		
1563950	45	46		
1563951	35	29		
1563964	56	72		

1563965	67	79
1563966	86	89
1563967	116	134
1563968	59	58
1563969	80	89
1563982	14	11
1563983	76	86
1563984	74	78
1563985	52	36
1563986	60	66
1563987	76	71
1564000	82	95
1564001	103	109
1564002	53	74
1564003	78	87
1564004	72	78
1564005	75	80
1564018	58	60
1564019	86	85
1564020	79	73
1564021	62	60
1564022	79	80
1564023	71	85
1564036	56	66
1564037	75	87
1564038	68	82
1564039	79	92
1564040	76	81
1564041	67	82
1564054	62	68
1564055	73	86
1564056	89	91
1564057	70	75
1564058	62	78

1564059	93	106
1564072	68	84
1564073	67	81
1564074	83	89
1564075	60	55
1564084	68	70
1564085	78	78
1564090	63	68
1564091	104	138
1564092	99	114
1564093	69	77
1564094	69	65
1564095	56	65

Таблица 64. Снижение уровня РНК PLN с помощью двухцепочечных соединений для RNAi в концентрации 125 нМ в кардиомиоцитах iCell®²

II	PLN (% UTC)	PLN (% UTC)
Номер соединения	RTS40406	ABI53044
1576846	78	61
1576847	107	76
1576848	78	73
1576849	101	86
1576850	70	63
1576851	80	59
1576864	120	106
1576865	149	126
1576866	109	93
1576867	91	75
1576868	123	112
1576869	107	84
1576882	84	78
1576883	104	69
1576884	106	86
1576885	97	81
1576886	112	81

1576887	93	68
1576900	94	72
1576901	90	84
1576902	97	91
1576903	130	98
1576904	107	74
1576905	89	78
1576918	103	77
1576919	97	84
1576920	116	79
1576921	88	79
1576922	75	76
1576923	109	85
1576936	102	69
1576937	105	83
1576938	93	72
1576939	134	108
1576940	86	66
1576941	103	84
1576954	84	79
1576955	21	14
1576956	102	71
1576957	106	80
1576958	97	76
1576959	105	85
1576972	129	89
1576973	92	74
1576974	78	76
1576975	108	71
1576976	99	72
1576977	117	95
1576990	121	93
1576991	109	89
1576992	58	39

1576993	106	104
1576994	101	72
1576995	108	84
1577008	93	69
1577009	102	77
1577010	113	77
1577011	95	87
1577012	97	91
1577013	78	73
1577026	112	86
1577027	99	66
1577028	90	83
1577029	104	71
1577030	88	90
1577031	97	79
1577044	101	102
1577045	91	85
1577046	90	84
1577047	88	76
1577048	96	86
1577049	85	75
1577062	75	79
1577063	90	85
1577064	77	85
1577065	77	86
1577066	86	83
1577067	80	77

Таблица 65. Снижение уровня РНК PLN с помощью двухцепочечных соединений для RNAi в концентрации 125 нМ в кардиомиоцитах iCell \mathbb{R}^2

Полов осодина	PLN (% UTC)	PLN (% UTC)
Номер соединения	RTS40406	ABI53044
1576612	83†	69
1576613	35†	27†
1576614	4†	2†

1576615	3†	1†
1576616	5†	18†
1576617	9†	10†
1576630	29†	50†
1576631	33	35
1576632	96	75
1576633	74	66
1576634	84	56
1576635	77	48
1576648	72	61
1576649	89	75
1576650	21	15
1576651	34	27
1576652	3	3
1576653	20	25
1576666	37	36
1576667	47	42
1576668	73	69
1576669	69	60
1576670	72	49
1576671	50	33
1576684	47	58
1576685	73	45
1576686	63	39
1576687	47	45
1576688	65	49
1576689	25	24
1576702	92	37
1576703	73	52
1576704	70	54
1576705	85	75
1576706	57	46
1576707	86	59
1576720	81	59

1576721	76	49
1576722	111	81
1576723	27	14
1576724	77	56
1576725	72	48
1576738	63	49
1576739	71	52
1576740	83	58
1576741	120	88
1576742	71	58
1576743	86	74
1576756	64	55
1576757	80	54
1576758	79	62
1576759	116	78
1576760	74	53
1576761	21	14
1576774	80	61
1576775	76	63
1576776	103	75
1576777	76	51
1576778	76	70
1576779	66	50
1576792	82	60
1576793	76	61
1576794	59	50
1576795	80	65
1576796	102	82
1576797	105	96
1576810	86	72
1576811	112	80
1576812	94	106
1576813	92	81
1576814	67	63

1576815	106	91
1576828	64	55
1576829	44	43
1576830	72	61
1576831	62	59
1576832	79	81
1576833	98	95

Пример 15. Дозозависимое ингибирование PLN человека в кардиомиоцитах iCell® 2 соединениями для RNAi

Двухцепочечные соединения для RNAi, выбранные из приведенных выше примеров, тестировали в различных дозах на кардиомиоцитах iCell®² (FujiFilm Cellular Dynamics, Inc.; каталожн. №: R1017). Культивированные кардиомиоциты iCell®² при плотности 8000 клеток на лунку обрабатывали электропорацией с различными концентрациями модифицированного олигонуклеотида, как указано в таблицах ниже. После периода обработки, продолжавшегося примерно 24 часа, из клеток выделяли общую РНК и измеряли уровни РНК PLN с помощью количественной RTPCR в реальном времени. Набор праймеров и зондов PLN человека RTS40406 (описанный в данном документе выше) и набор человеческих праймеров и зондов ABI53044 (описанный в данном документе выше) использовали для измерения уровней РНК, как описано выше. Уровни РНК PLN нормализовали по отношению к общему содержанию РНК, измеренному с помощью RIBOGREEN®. Снижение РНК PLN представлено в таблицах ниже в процентах РНК PLN по отношению к РНК PLN в необработанных контрольных клетках (% UTC).

Полумаксимальную ингибирующую концентрацию (IC_{50}) каждого модифицированного олигонуклеотида рассчитывали с помощью программного обеспечения GraphPad Prism (v8.2.0, Сан-Диего, Калифорния) с использованием log(ингибитор) в сравнении с нормализованным ответом - функция переменного наклона: $Y=100/(1+10^{\circ}((LogIC50-X)*Haknoh)))$. Каждая таблица представляет собой отдельный эксперимент.

Таблица 66. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах iCell®² соединениями для RNAi, набор праймеров и зондов ABI53044

Соединение №	РНК PLN (% UTC), ABI53044				IС ₅₀ (нМ)
Соединение м	3 нМ	21 нМ	125 нМ	750 нМ	1C50 (HIVI)
1564127	62	59	53	47	328
1564128	81	64	48	47	219
1564130	74	59	49	51	338
1564163	88	84	88	70	>750
1564201	98	87	83	81	>750

1564216	110	96	99	95	>750
1564219	109	86	76	82	>750
1564221	95	83	80	73	>750
1576631	82	63	48	28	89
1576650	92	56	29	6	34
1576651	96	75	57	20	139
1576652	50	33	7	3	4
1576653	46	30	15	10	<3
1576686	59	38	25	29	6
1576689	62	42	18	8	9
1576706	67	48	36	34	26
1576723	82	68	56	134	>750
1576761	62	54	28	3	15
1576828	77	56	53	59	>750

Таблица 67. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ соединениями для RNAi, набор праймеров и зондов ABI53044

Соединение №	P	PHK PLN (% UTC), ABI53044			IC ₅₀ (нМ)
Соединение лу	3 нМ	21 нМ	125 нМ	750 нМ	1C ₅₀ (HIVI)
1563950	53	32	23	20	3
1563951	41	36	22	21	<3
1563964	65	52	42	35	34
1563965	80	57	42	44	114
1563982	53	40	17	8	5
1563985	88	80	65	80	>750
1576723	76	67	59	66	>750
1576850	60	55	44	42	54
1576900	87	81	88	73	>750
1576905	81	82	68	70	>750
1576936	102	99	79	74	>750
1576939	105	92	77	93	>750
1576955	103	93	84	102	>750
1576992	91	81	88	77	>750
1576995	111	106	96	95	>750
1577009	103	103	88	87	>750

1577010	94	93	85	90	>750
1577012	99	94	86	90	>750
1577044	116	109	100	95	>750
1577048	96	90	87	86	>750

Таблица 68. Дозозависимое снижение уровня PHK PLN человека в кардиомиоцитах $iCell \mathbb{R}^2$ соединениями для RNAi, набор праймеров и зондов RTS40406

Соединение №	P	IC ₅₀ (нМ)			
	3 нМ	21 нМ	125 нМ	750 нМ	1C ₅₀ (HIVI)
1564127	64	57	53	49	418
1564128	87	68	51	46	260
1564130	75	62	51	53	ND
1564163	93	89	95	72	>750
1564201	97	87	85	81	>750
1564216	105	94	99	96	>750
1564219	111	89	80	83	>750
1564221	95	85	83	75	>750
1576631	86	63	40	15	55
1576650	92	56	30	6	35
1576651	99	72	52	19	118
1576652	52	32	6	3	4
1576653	46	29	12	5	<3
1576686	58	37	26	28	5
1576689	67	43	17	7	11
1576706	68	50	37	36	32
1576723	87	68	55	109	>750
1576761	63	55	29	3	16
1576828	78	57	54	55	>750

Таблица 69. Дозозависимое снижение уровня РНК PLN человека в кардиомиоцитах iCell®² соединениями для RNAi, набор праймеров и зондов RTS40406

Соединение №	P	IC (nM)			
	3 нМ	21 нМ	125 нМ	750 нМ	IC ₅₀ (HM)
1563950	54	34	24	19	4
1563951	40	36	21	19	<3
1563964	66	49	41	37	33

70	50	1.1	12	117
/8	38	44	42	117
54	39	16	7	5
86	84	65	76	>750
77	70	60	68	>750
61	55	46	43	69
85	84	91	76	>750
79	84	70	75	>750
106	107	80	78	>750
106	90	76	94	>750
106	95	85	105	>750
89	81	91	76	>750
119	107	96	98	>750
109	105	86	84	>750
99	101	93	97	>750
104	100	91	98	>750
113	105	99	94	>750
100	95	88	86	>750
	86 77 61 85 79 106 106 106 89 119 109 99 104 113	54 39 86 84 77 70 61 55 85 84 79 84 106 107 106 90 106 95 89 81 119 107 109 105 99 101 104 100 113 105	54 39 16 86 84 65 77 70 60 61 55 46 85 84 91 79 84 70 106 107 80 106 90 76 106 95 85 89 81 91 119 107 96 109 105 86 99 101 93 104 100 91 113 105 99	54 39 16 7 86 84 65 76 77 70 60 68 61 55 46 43 85 84 91 76 79 84 70 75 106 107 80 78 106 90 76 94 106 95 85 105 89 81 91 76 119 107 96 98 109 105 86 84 99 101 93 97 104 100 91 98 113 105 99 94

Пример 16. Конструирование модифицированных олигонуклеотидов, комплементарных нуклеиновой кислоте PLN человека

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте PLN человека, разрабатывали, как описано в таблице ниже. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. Каждый модифицированный олигонуклеотид, приведенный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (описанной в данном документе выше), SEQ ID NO: 2 (описанной в данном документе выше), или обеим. «Н/П» указывает на то, что модифицированный олигонуклеотид не на 100% комплементарен этой конкретной целевой последовательности нуклеиновой кислоты.

Каждый модифицированный олигонуклеотид в таблице ниже конъюгирован с группой конъюгата 6-пальмитамидогексилфосфата, присоединенной к 5'-OH олигонуклеотида. Структура группы конъюгата:

Модифицированные олигонуклеотиды в таблице ниже представляют собой 3-10-3

сЕt модифицированные олигонуклеотиды со смешанными межнуклеозидными связями. Длина модифицированных олигонуклеотидов составляет 16 нуклеозидов. Сахарный мотив для модифицированных олигонуклеотидов представляет собой (от 5' до 3'): kkkdddddddddkkk; где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а каждый «k» представляет собой сЕt модифицированный сахарный фрагмент. Мотивы межнуклеозидной связи для модифицированных олигонуклеотидов описаны в столбце, обозначенном «мотив межнуклеозидной связи (от 5' к 3')» в таблице ниже, где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь, а каждый «о» представляет собой фосфориэфирную межнуклеозидную связь. Все нуклеиновые основания цитозина представляют собой 5-метилцитозины.

Таблица 70. 6-пальмитамидогексилфосфат-конъюгированные 3-10-3 cEt модифицированные олигонуклеотиды со смешанными межнуклеозидными связями, комплементарными PLN человека

Соединен ие №	Последовате льность (от 5' к 3')	Старт- сайт SEQ ID NO: 1	Стоп- сайт SEQ ID NO: 1	Стар т- сайт SEQ ID NO: 2	Стоп- сайт SEQ ID NO: 2	Мотив межнуклеоз идной связи (от 5' до 3')	SEQ ID NO
1558166	ACACGAGT ATATTAGG	Н/П	Н/П	5501	5516	soosssssssss s	609
1558167	GTAGTTAA GATTTTGC	1530	1545	15224	15239	soosssssssss s	752

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по мере 80% меньшей комплементарна участку равной длины нуклеиновой кислоты PLN, где модифицированный олигонуклеотид имеет по меньшей мере одну модификацию, из модифицированного сахарного фрагмента и модифицированной выбранную межнуклеозидной связи.
- 2. Олигомерное соединение по п. 1, где нуклеиновая кислота PLN имеет последовательность нуклеиновых оснований SEQ ID NO: 1 или 2.
- 3. Олигомерное соединение по п. 1 или п. 2, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на ПО меньшей комплементарна участку равной длины в нуклеиновых основаниях 3278-3293, 3281-3296, 3282-3297, 3284-3299, 3286-3301, 3287-3302, 3288-3303, 3327-3342, 3329-3344, 3332-3347, 3333-3348, 3336-3351, 3337-3352, 3338-3353, 3339-3354, 3340-3355, 3341-3356, 3343-3358, 3345-3360, 3348-3363, 3349-3364, 3350-3365, 3351-3366, 3352-3367, 3353-3368, 3354-3369, 3355-3370, 3356-3371, 3357-3372, 3358-3373, 3395-3410, 3396-3411, 3405-3420, 3406-3421, 3408-3423, 3409-3424, 3410-3425, 3412-3427, 3496-3511, 3497-3512, 3498-3513, 3499-3514, 3598-3613, 3612-3627, 3614-3629, 3615-3630, 3616-3631, 3617-3632, 3618-3633, 3619-3634, 3620-3635, 3622-3637, 3703-3718, 3704-3719, 3715-3730, 3716-3731, 3723-3738, 3724-3739, 3799-3814, 3801-3816, 3802-3817, 3803-3818, 3804-3819, 3805-3820, 3806-3821, 3807-3822, 3808-3823, 3809-3824, 3811-3826, 3814-3829, 3815-3830, 3816-3831, 3817-3832, 3821-3836, 3823-3838, 3830-3845, 3831-3846, 3848-3863, 3849-3864, 3850-3865, 3851-3866, 3861-3876, 3863-3878, 3864-3879, 3869-3884, 3871-3886, 3976-3991, 3977-3992, 3978-3993, 3980-3995, 3981-3996, 4116-4131, 4159-4174, 4204-4219, 4207-4222, 4208-4223, 4209-4224, 4210-4225, 4211-4226, 4212-4227, 4214-4229, 4221-4236, 4231-4246, 4232-4247, 4233-4248, 4234-4249, 4235-4250, 4236-4251, 4238-4253, 4252-4267, 4253-4268, 4266-4281, 4348-4363, 4349-4364, 4350-4365, 4367-4382, 4373-4388, 4374-4389, 4375-4390, 4510-4525, 4511-4526, 4513-4528, 4515-4530, 4516-4531, 4517-4532, 4518-4533, 4519-4534, 4530-4545, 4537-4552, 4539-4554, 4540-4555, 4541-4556, 4542-4557, 4543-4558, 4544-4559, 4545-4560, 4562-4577, 4614-4629, 4617-4632, 4619-4634, 4620-4635, 4621-4636, 4622-4637, 4623-4638, 4624-4639, 4638-4653, 4640-4655, 4641-4656, 4642-4657, 4643-4658, 4665-4680, 4672-4687, 4693-4708, 4694-4709, 4695-4710, 4696-4711, 4697-4712, 4750-4765, 4751-4766, 4752-4767, 4753-4768, 4774-4789, 4802-4817, 4804-4819, 4805-4820, 4806-4821, 4807-4822, 4823-4838, 4825-4840, 4826-4841, 4828-4843, 4860-4875, 4862-4877, 4869-4884, 4872-4887, 4874-4889, 4878-4893, 4881-4896, 4883-4898, 4884-4899, 4942-4957, 4943-4958, 4945-4960, 4946-4961, 4957-4972, 4958-4973, 4960-4975, 4961-4976, 4964-4979, 4965-4980, 4966-4981, 4968-4983, 4969-4984, 4971-4986, 4972-4987, 4974-4989, 4984-4999, 4985-5000, 4987-5002, 4988-5003, 5024-5039, 5127-5142, 5133-5148, 5134-5149, 5158-5173, 5159-5174, 5160-5175, 5163-5178, 5294-5309, 5341-5356, 5359-5374, 5394-5409, 5399-5414, 5400-5415, 5401-5416, 5402-5417, 5404-5419, 5411-5426,

5413-5428, 5414-5429, 5415-5430, 5416-5431, 5417-5432, 5418-5433, 5419-5434, 5421-5436, 5427-5442, 5428-5443, 5489-5504, 5494-5509, 5495-5510, 5497-5512, 5498-5513, 5498-5515, 5498-5517, 5499-5514, 5499-5515, 5499-5516, 5499-5518, 5500-5515, 5500-5516, 5500-5517, 5501-5516, 5501-5514, 5501-5517, 5502-5517, 5502-5515, 5503-5518, 5504-5519, 5505-5520, 5506-5521, 5511-5526, 5532-5547, 5533-5548, 5534-5549, 5547-5562, 5557-5572, 5558-5573, 5559-5574, 5560-5575, 5562-5577, 5563-5578, 5565-5580, 5599-5614, 5673-5688, 5674-5689, 5675-5690, 5676-5691, 5677-5692, 5678-5693, 5679-5694, 5694-5709, 5695-5710, 5696-5711, 5697-5712, 5698-5713, 5774-5789, 5827-5842, 5845-5860, 5847-5862, 5848-5863, 5850-5865, 5851-5866, 5855-5870, 5859-5874, 5924-5939, 5925-5940, 5926-5941, 5927-5942, 5929-5944, 5930-5945, 5931-5946, 5932-5947, 6008-6023, 6009-6024, 6039-6054, 6053-6068, 6054-6069, 6055-6070, 6059-6074, 6066-6081, 6069-6084, 6070-6085, 6076-6091, 6092-6107, 6098-6113, 6112-6127, 6114-6129, 6117-6132, 6118-6133, 6119-6134, 6124-6139, 6125-6140, 6126-6141, 6147-6162, 6154-6169, 6155-6170, 6156-6171, 6157-6172, 6176-6191, 6177-6192, 6185-6200, 6186-6201, 6187-6202, 6188-6203, 6202-6217, 6209-6224, 6243-6258, 6249-6264, 6267-6282, 6268-6283, 6274-6289, 6275-6290, 6291-6306, 6338-6353, 6352-6367, 6353-6368, 6354-6369, 6365-6380, 6366-6381, 6368-6383, 6369-6384, 6403-6418, 6405-6420, 6406-6421, 6407-6422, 6408-6423, 6409-6424, 6410-6425, 6411-6426, 6413-6428, 6468-6483, 6471-6486, 6502-6517, 6546-6561, 6554-6569, 6555-6570, 6556-6571, 6557-6572, 6569-6584, 6574-6589, 6575-6590, 6576-6591, 6577-6592, 6578-6593, 6579-6594, 6644-6659, 6646-6661, 6647-6662, 6664-6679, 6665-6680, 6666-6681, 6667-6682, 6676-6691, 6677-6692, 6746-6761, 6804-6819, 6806-6821, 6825-6840, 6826-6841, 6827-6842, 6828-6843, 6831-6846, 6833-6848, 6834-6849, 6875-6890, 6877-6892, 6879-6894, 6880-6895, 6881-6896, 6893-6908, 6896-6911, 6898-6913, 6899-6914, 6900-6915, 6901-6916, 6903-6918, 6904-6919, 6906-6921, 6907-6922, 6908-6923, 6920-6935, 6921-6936, 6922-6937, 6923-6938, 6927-6942, 6928-6943, 6930-6945, 6937-6952, 6939-6954, 6940-6955, 6941-6956, 6942-6957, 6943-6958, 6944-6959, 6945-6960, 6947-6962, 6965-6980, 6966-6981, 6967-6982, 6968-6983, 6972-6987, 6975-6990, 7029-7044, 7042-7057, 7047-7062, 7050-7065, 7073-7088, 7082-7097, 7083-7098, 7102-7117, 7106-7121, 7107-7122, 7108-7123, 7120-7135, 7122-7137, 7123-7138, 7124-7139, 7125-7140, 7126-7141, 7128-7143, 7129-7144, 7130-7145, 7131-7146, 7279-7294, 7280-7295, 7282-7297, 7283-7298, 7284-7299, 7285-7300, 7286-7301, 7287-7302, 7320-7335, 7341-7356, 7342-7357, 7344-7359, 7353-7368, 7354-7369, 7356-7371, 7357-7372, 7358-7373, 7359-7374, 7360-7375, 7361-7376, 7362-7377, 7377-7392, 7378-7393, 7392-7407, 7393-7408, 7411-7426, 7425-7440, 7436-7451, 7457-7472, 7458-7473, 7459-7474, 7460-7475, 7461-7476, 7463-7478, 7464-7479, 7470-7485, 7516-7531, 7518-7533, 7519-7534, 7520-7535, 7521-7536, 7522-7537, 7546-7561, 7548-7563, 7553-7568, 7554-7569, 7555-7570, 7556-7571, 7558-7573, 7560-7575, 7561-7576, 7562-7577, 7563-7578, 7564-7579, 7565-7580, 7566-7581, 7568-7583, 7587-7602, 7588-7603, 7589-7604, 7595-7610, 7638-7653, 7679-7694, 7726-7741, 7779-7794, 7797-7812, 7799-7814, 7806-7821, 7857-7872, 7859-7874, 7860-7875, 7861-7876, 7862-7877, 7863-7878, 7864-7879, 7865-7880, 7867-7882, 7876-7891, 7878-7893, 7888-7903, 7889-7904, 7893-7908, 7908-7923, 7929-7944, 7965-7980, 7967-7982, 7968-7983, 8047-8062, 8058-8073, 8061-8076, 8089-8104, 8090-8105, 8163-8178, 8182-8197, 8194-8209, 8195-8210, 8196-8211, 8197-8212, 8284-8299, 8285-8300, 8286-8301, 8287-8302, 8288-8303, 8326-8341, 8336-8351, 8352-8367, 8353-8368, 8368-8383, 8393-8408, 8412-8427, 8413-8428, 8415-8430, 8418-8433, 8427-8442, 8447-8462, 8493-8508, 8494-8509, 8495-8510, 8496-8511, 8498-8513, 8542-8557, 8573-8588, 8621-8636, 8627-8642, 8628-8643, 8638-8653, 8639-8654, 8641-8656, 8653-8668, 8655-8670, 8703-8718, 8708-8723, 8732-8747, 8733-8748, 8739-8754, 8774-8789, 8776-8791, 8777-8792, 8818-8833, 8823-8838, 8824-8839, 8826-8841, 8827-8842, 8850-8865, 8855-8870, 8942-8957, 8943-8958, 8944-8959, 8955-8970, 8961-8976, 8962-8977, 8963-8978, 8964-8979, 9377-9392, 9443-9458, 9474-9489, 9523-9538, 9524-9539, 9525-9540, 9526-9541, 9528-9543, 9536-9551, 9537-9552, 9538-9553, 9540-9555, 9541-9556, 9545-9560, 9549-9564, 9550-9565, 9587-9602, 9630-9645, 9641-9656, 9642-9657, 9646-9661, 9647-9662, 9648-9663, 9649-9664, 9651-9666, 9660-9675, 9668-9683, 9669-9684, 9672-9687, 9697-9712, 9702-9717, 9703-9718, 9706-9721, 9707-9722, 9708-9723, 9709-9724, 9710-9725, 9711-9726, 9720-9735, 9727-9742, 9752-9767, 9756-9771, 9788-9803, 9934-9949, 9936-9951, 9937-9952, 9938-9953, 9939-9954, 9940-9955, 10019-10034, 10054-10069, 10062-10077, 10081-10096, 10106-10121, 10117-10132, 10443-10458, 10444-10459, 10445-10460, 10480-10495, 10481-10496, 10486-10501, 10489-10504, 10490-10505, 10491-10506, 10532-10547, 10623-10638, 10638-10653, 10645-10660, 10718-10733, 10719-10734, 10720-10735, 10721-10736, 10722-10737, 10723-10738, 10724-10739, 10747-10762, 10770-10785, 11066-11081, 11068-11083, 11104-11119, 11111-11126, 11112-11127, 11115-11130, 11116-11131, 11118-11133, 11130-11145, 11144-11159, 11224-11239, 11225-11240, 11237-11252, 11258-11273, 11259-11274, 11302-11317, 11353-11368, 11356-11371, 11368-11383, 11369-11384, 11409-11424, 11410-11425, 11411-11426, 11412-11427, 11413-11428, 11414-11429, 11415-11430, 11417-11432, 11457-11472, 11458-11473, 11467-11482, 11474-11489, 11475-11490, 11509-11524, 11510-11525, 11511-11526, 11524-11539, 11525-11540, 11526-11541, 11527-11542, 11529-11544, 11530-11545, 11622-11637, 11631-11646, 11632-11647, 11633-11648, 11634-11649, 11635-11650, 11636-11651, 11639-11654, 11670-11685, 11678-11693, 11679-11694, 11680-11695, 11681-11696, 11682-11697, 11684-11699, 11685-11700, 11726-11741, 11727-11742, 11740-11755, 11741-11756, 11742-11757, 11743-11758, 11799-11814, 11832-11847, 11833-11848, 11854-11869, 11855-11870, 11856-11871, 11857-11872, 11858-11873, 11859-11874, 11900-11915, 11931-11946, 11956-11971, 11988-12003, 11989-12004, 11990-12005, 11991-12006, 11992-12007, 11993-12008, 11994-12009, 11995-12010, 11997-12012, 11998-12013, 11999-12014, 12000-12015, 12015-12030, 12016-12031, 12017-12032, 12027-12042, 12032-12047, 12040-12055, 12041-12056, 12042-12057, 12076-12091, 12080-12095, 12081-12096, 12082-12097, 12084-12099, 12085-12100, 12086-12101, 12087-12102, 12088-12103, 12089-12104, 12090-12105, 12092-12107, 12194-12209, 12195-12210, 12238-12253, 12239-12254, 12241-12256, 12242-12257, 12243-12258, 12246-12261, 12282-12297, 12283-12298, 12285-12300, 12286-12301, 12287-12302, 12288-12303, 12307-12322, 12308-12323, 12310-12325, 12312-12327, 12315-12330, 12348-12363, 12355-12370, 12356-12371, 12357-12372, 12368-12383, 12388-12403, 12389-12404, 12390-12405, 12391-12406, 12392-12407, 12470-12485, 12471-12486, 12472-12487, 12473-12488, 12474-12489, 12498-12513, 12529-12544,

12530-12545, 12546-12561, 12548-12563, 12550-12565, 12551-12566, 12585-12600, 12721-12736, 12722-12737, 12723-12738, 12724-12739, 12727-12742, 12732-12747, 12733-12748, 12734-12749, 12735-12750, 12760-12775, 12812-12827, 12813-12828, 12817-12832, 12818-12833, 12912-12927, 12915-12930, 12929-12944, 12943-12958, 12946-12961, 13243-13258, 13327-13342, 13409-13424, 13431-13446, 13438-13453, 13460-13475, 13461-13476, 13484-13499, 13485-13500, 13486-13501, 13489-13504, 13490-13505, 13491-13506, 13492-13507, 13493-13508, 13525-13540, 13528-13543, 13529-13544, 13530-13545, 13717-13732, 13736-13751, 13770-13785, 13776-13791, 13777-13792, 13786-13801, 13814-13829, 13816-13831, 13818-13833, 13819-13834, 13820-13835, 13821-13836, 13822-13837, 13823-13838, 13835-13850, 13836-13851, 13837-13852, 13838-13853, 13839-13854, 13843-13858, 13870-13885, 13872-13887, 13875-13890, 13876-13891, 13877-13892, 13878-13893, 13879-13894, 13880-13895, 13881-13896, 13882-13897, 13883-13898, 13885-13900, 13904-13919, 13905-13920, 13906-13921, 13907-13922, 13908-13923, 13910-13925, 13912-13927, 13918-13933, 13924-13939, 13926-13941, 13927-13942, 13930-13945, 13934-13949, 13935-13950, 13936-13951, 13937-13952, 13938-13953, 13939-13954, 13940-13955, 13941-13956, 13942-13957, 13943-13958, 13944-13959, 13945-13960, 13946-13961, 13952-13967, 13953-13968, 13954-13969, 13955-13970, 13956-13971, 13957-13972, 13958-13973, 13959-13974, 13960-13975, 13961-13976, 13962-13977, 13963-13978, 13964-13979, 13965-13980, 13966-13981, 13967-13982, 13968-13983, 13969-13984, 13970-13985, 13973-13988, 13976-13991, 14000-14015, 14003-14018, 14028-14043, 14030-14045, 14032-14047, 14035-14050, 14036-14051, 14038-14053, 14039-14054, 14040-14055, 14041-14056, 14045-14060, 14047-14062, 14048-14063, 14049-14064, 14050-14065, 14051-14066, 14053-14068, 14054-14069, 14055-14070, 14056-14071, 14059-14074, 14060-14075, 14061-14076, 14062-14077, 14063-14078, 14064-14079, 14065-14080, 14066-14081, 14078-14093, 14081-14096, 14082-14097, 14084-14099, 14085-14100, 14086-14101, 14087-14102, 14088-14103, 14089-14104, 14090-14105, 14091-14106, 14092-14107, 14093-14108, 14095-14110, 14096-14111, 14097-14112, 14098-14113, 14099-14114, 14100-14115, 14102-14117, 14105-14120, 14110-14125, 14111-14126, 14112-14127, 14113-14128, 14115-14130, 14117-14132, 14119-14134, 14130-14145, 14163-14178, 14165-14180, 14166-14181, 14167-14182, 14169-14184, 14170-14185, 14174-14189, 14180-14195, 14181-14196, 14203-14218, 14207-14222, 14209-14224, 14212-14227, 14217-14232, 14220-14235, 14222-14237, 14223-14238, 14224-14239, 14225-14240, 14232-14247, 14233-14248, 14235-14250, 14242-14257, 14244-14259, 14247-14262, 14248-14263, 14249-14264, 14250-14265, 14251-14266, 14252-14267, 14253-14268, 14254-14269, 14255-14270, 14256-14271, 14257-14272, 14316-14331, 14317-14332, 14318-14333, 14319-14334, 14321-14336, 14324-14339, 14327-14342, 14337-14352, 14338-14353, 14339-14354, 14340-14355, 14341-14356, 14342-14357, 14343-14358, 14344-14359, 14345-14360, 14346-14361, 14347-14362, 14398-14413, 14400-14415, 14401-14416, 14403-14418, 14404-14419, 14405-14420, 14406-14421, 14408-14423, 14409-14424, 14410-14425, 14412-14427, 14443-14458, 14479-14494, 14480-14495, 14482-14497, 14504-14519, 14507-14522, 14508-14523, 14509-14524, 14510-14525, 14511-14526, 14512-14527, 14513-14528, 14514-14529, 14515-14530, 14515-14532, 14515-14534,

14516-14531, 14516-14532, 14516-14533, 14517-14532, 14517-14533, 14518-14531, 14519-14534, 14520-14535, 14522-14537, 14534-14549, 14535-14550, 14553-14568, 14569-14584, 14570-14585, 14571-14586, 14573-14588, 14601-14616, 14602-14617, 14603-14618, 14605-14620, 14606-14621, 14607-14622, 14608-14623, 14609-14624, 14610-14625, 14611-14626, 14612-14627, 14613-14628, 14614-14629, 14615-14630, 14616-14631, 14655-14670, 14656-14671, 14658-14673, 14659-14674, 14681-14696, 14683-14698, 14684-14699, 14684-14701, 14684-14703, 14685-14700, 14685-14701, 14685-14702, 14686-14701, 14686-14702, 14687-14702, 14687-14700, 14688-14703, 14689-14704, 14691-14706, 14692-14707, 14696-14711, 14703-14718, 14704-14719, 14705-14720, 14706-14721, 14707-14722, 14708-14723, 14709-14724, 14710-14725, 14711-14726, 14712-14727, 14713-14728, 14714-14729, 14759-14774, 14760-14775, 14761-14776, 14762-14777, 14763-14778, 14764-14779, 14765-14780, 14766-14781, 14767-14782, 14768-14783, 14769-14784, 14770-14785, 14771-14786, 14772-14787, 14773-14788, 14774-14789, 14775-14790, 14776-14791, 14779-14794, 14787-14802, 14792-14807, 14793-14808, 14794-14809, 14797-14812, 14798-14813, 14800-14815, 14818-14833, 14822-14837, 14823-14838, 14824-14839, 14825-14840, 14826-14841, 14827-14842, 14828-14843, 14829-14844, 14830-14845, 14831-14846, 14832-14847, 14833-14848, 14834-14849, 14835-14850, 14841-14856, 14842-14857, 14843-14858, 14844-14859, 14845-14860, 14846-14861, 14847-14862, 14848-14863, 14849-14864, 14850-14865, 14851-14866, 14852-14867, 14853-14868, 14855-14870, 14856-14871, 14857-14872, 14858-14873, 14859-14874, 14861-14876, 14862-14877, 14863-14878, 14864-14879, 14866-14881, 14877-14892, 14878-14893, 14880-14895, 14881-14896, 14889-14904, 14898-14913, 14899-14914, 14901-14916, 14903-14918, 14904-14919, 14905-14920, 14906-14921, 14913-14928, 14915-14930, 14916-14931, 14917-14932, 14918-14933, 14919-14934, 14921-14936, 14922-14937, 14923-14938, 14924-14939, 14925-14940, 14926-14941, 14927-14942, 14928-14943, 14929-14944, 14930-14945, 14931-14946, 14932-14947, 14933-14948, 14934-14949, 14935-14950, 14936-14951, 14937-14952, 14938-14953, 14938-14955, 14938-14957, 14939-14954, 14939-14955, 14939-14956, 14939-14958, 14940-14955, 14940-14956, 14940-14957, 14940-14959, 14941-14956, 14941-14954, 14941-14957, 14941-14958, 14941-14960, 14942-14957, 14942-14955, 14942-14958, 14942-14959, 14942-14961, 14943-14958, 14943-14956, 14943-14959, 14943-14960, 14943-14962, 14944-14959, 14944-14957, 14944-14960, 14944-14961, 14945-14960, 14945-14958, 14945-14961, 14946-14961, 14946-14959, 14948-14963, 14956-14971, 14957-14972, 14958-14973, 14959-14974, 14960-14975, 14961-14976, 14962-14977, 14963-14978, 14964-14979, 14965-14980, 14966-14981, 14968-14983, 14969-14984, 14970-14985, 14987-15002, 14992-15007, 14993-15008, 14994-15009, 14995-15010, 14996-15011, 15003-15018, 15005-15020, 15006-15021, 15007-15022, 15008-15023, 15009-15024, 15010-15025, 15011-15026, 15012-15027, 15013-15028, 15014-15029, 15015-15030, 15016-15031, 15017-15032, 15019-15034, 15142-15157, 15143-15158, 15150-15165, 15151-15166, 15152-15167, 15153-15168, 15154-15169, 15155-15170, 15156-15171, 15157-15172, 15158-15173, 15159-15174, 15160-15175, 15161-15176, 15162-15177, 15163-15178, 15164-15179, 15182-15197, 15184-15199, 15185-15200, 15186-15201, 15195-15210, 15197-15212, 15198-15213, 15199-15214, 15200-15215, 15201-15216, 15202-15217, 15203-15218, 15204-15219, 15205-15220, 15206-15221, 15207-15222, 15208-15223, 15209-15224, 15210-15225, 15211-15226, 15214-15229, 15215-15230, 15216-15231, 15217-15232, 15218-15233, 15219-15234, 15220-15235, 15221-15236, 15222-15237, 15222-15239, 15222-15241, 15223-15238, 15223-15239, 15223-15240, 15224-15239, 15224-15240, 15225-15240, 15225-15238, 15227-15242, 15228-15243, 15229-15244, 15230-15245, 15231-15246, 15232-15247, 15233-15248, 15234-15249, 15235-15250, 15236-15251, 15237-15252, 15238-15253, 15239-15254, 15247-15262, 15248-15263, 15249-15264, 15250-15265, 15251-15266, 15252-15267, 15253-15268, 15254-15269, 15255-15270, 15256-15271, 15257-15272, 15258-15273, 15259-15274, 15260-15275, 15261-15276, 15293-15308, 15299-15314, 15301-15316, 15302-15317, 15303-15318, 15304-15319, 15305-15320, 15320-15335, 15321-15336, 15323-15338, 15411-15426, 15414-15429, 15415-15430, 15416-15431, 15417-15432, 15496-15511, 15501-15516, 15504-15519, 15505-15520, 15506-15521, 15507-15522, 15508-15523, 15509-15524, 15510-15525, 15511-15526, 15512-15527, 15513-15528, 15515-15530, 15556-15571, 15558-15573, 15559-15574, 15560-15575, 15562-15577, 15569-15584, 15571-15586, 15574-15589, 15593-15608, 15594-15609, 15595-15610, 15596-15611, 15598-15613, 15599-15614, 15600-15615, 15601-15616, 15602-15617, 15603-15618, 15604-15619, 15605-15620, 15627-15642, 15629-15644, 15630-15645, 15631-15646, 15632-15647, 15633-15648, 15635-15650, 15636-15651, 15639-15654, 15640-15655, 15641-15656, 15642-15657, 15658-15673, 15659-15674, 15660-15675, 15661-15676, 15665-15680, 15666-15681, 15667-15682, 15668-15683, 15671-15686, 15673-15688, 15674-15689, 15675-15690, 15681-15696, 15682-15697, 15683-15698, 15684-15699, 15685-15700, 15686-15701, 15687-15702, 15740-15755, 15741-15756, 15753-15768, 15757-15772, 15758-15773, 15761-15776, 15762-15777, 15763-15778, 15765-15780, 15788-15803, 15812-15827, 15813-15828, 15814-15829, 15815-15830, 15816-15831, 15826-15841, 15827-15842, 15833-15848, 15858-15873, 15861-15876, 15863-15878, 15864-15879, 15865-15880, 15866-15881, 15867-15882, 15868-15883, 15869-15884, 15870-15885, 15871-15886, 15872-15887, 15873-15888, 15874-15889, 15875-15890, 15876-15891, 15877-15892, 15878-15893, 15882-15897, 15883-15898, 15910-15925, 15911-15926, 15912-15927, 15913-15928, 15914-15929, 15943-15958, 15947-15962, 15949-15964, 15950-15965, 15951-15966, 15955-15970, 15973-15988, 15974-15989, 15979-15994, 15980-15995, 16000-16015, 16008-16023, 16010-16025, 16026-16041, 16027-16042, 16030-16045, 16032-16047, 16034-16049, 16036-16051, 16037-16052, 16038-16053, 16039-16054, 16056-16071, 16057-16072, 16080-16095, 16117-16132, 16118-16133, 16216-16231, 16248-16263, 16265-16280, 16266-16281, 16268-16283, 16269-16284, 16273-16288, 16300-16315, 16305-16320, 16306-16321, 16327-16342, 16329-16344, 16422-16437, 16427-16442, 16428-16443, 16550-16565, 16557-16572, 16564-16579, 16569-16584, 16582-16597, 16592-16607, 16617-16632 или 16676-16691 SEQ ID NO: 2.

4. Олигомерное соединение по любому из пп. 1-3, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 3341-3368, 4516-4533, 5498-5517, 14337-14357, 14569-14588, 14607-14631, 14683-14703, 14828-14848, 14939-

14958, 15222-15243 или 15251-15273 SEQ ID NO: 2.

- 5. Олигомерное соединение по любому из пп. 1-4, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 5499-5514, 5500-5515, 5501-5516, 14686-14701, 14941-14956, 14942-14957 или 15224-15239 SEQ ID NO: 2.
- 6. Олигомерное соединение по любому из пп. 1-5, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарна участку равной длины нуклеиновой кислоты PLN.
- 7. Олигомерное соединение, где олигомерное соединение содержит модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, при этом последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 смежных нуклеиновых оснований любой из последовательностей нуклеиновых оснований любой из SEQ ID NO: 15-1712.
- 8. Олигомерное соединение по п. 7, где последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 15-1712.
- 9. Олигомерное соединение по п. 8, где модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, состоящую из последовательности нуклеиновых оснований любой из SEQ ID NO: 15-1712.
- 10. Олигомерное соединение по любому из пп. 7-9, где модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований любой из последовательностей нуклеиновых оснований SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.
- 11. Олигомерное соединение по п. 10, где модифицированный олигонуклеотид состоит из 16-80 связанных нуклеозидов, при этом последовательность нуклеиновых оснований модифицированного олигонуклеотида содержит последовательность нуклеиновых оснований любой из SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.
- 12. Олигомерное соединение по п. 11, где модифицированный олигонуклеотид состоит из 16 связанных нуклеозидов и имеет последовательность нуклеиновых оснований, состоящую из последовательности нуклеиновых оснований любой из SEQ ID NO: 45, 120, 185, 609, 675, 737 или 752.
- 13. Олигомерное соединение по любому из пп. 7-11, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарна участку равной

длины нуклеиновой кислоты PLN, при этом нуклеиновая кислота PLN имеет последовательность нуклеиновых оснований SEQ ID NO: 1 или 2.

- 14. Олигомерное соединение по любому из пп. 1-13, где модифицированный олигонуклеотид состоит из 10-25, 10-30, 10-50, 12-20, 12-25, 12-30, 12-50, 13-20, 13-25, 13-30, 13-50, 14-20, 14-25, 14-30, 14-50, 15-20, 15-25, 15-30, 15-50, 16-18,16-20, 16-25, 16-30, 16-50, 17-20, 17-25, 17-30, 17-50, 18-20, 18-25, 18-30, 18-50, 19-20, 19-25, 19-30, 19-50, 20-25, 20-30, 20-50, 21-25, 21-30, 21-50, 22-25, 22-30, 22-50, 23-25, 23-30 или 23-50 связанных нуклеозидов.
- 15. Олигомерное соединение по любому из пп. 1-14, где по меньшей мере один нуклеозид модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент.
- 16. Олигомерное соединение по п. 15, где модифицированный сахарный фрагмент содержит бициклический сахарный фрагмент.
- 17. Олигомерное соединение по п. 16, где бициклический сахарный фрагмент содержит 2'-4' мостик, выбранный из -O-CH₂-; и -O-CH(CH₃)-.
- 18. Олигомерное соединение по п. 15, где модифицированный сахарный фрагмент содержит небициклический модифицированный сахарный фрагмент.
- 19. Олигомерное соединение по п. 18, где небициклический модифицированный сахарный фрагмент представляет собой 2'-МОЕ сахарный фрагмент или 2'-ОМе сахарный фрагмент.
- 20. Олигомерное соединение по любому из пп. 1-19, где по меньшей мере один нуклеозид модифицированного олигонуклеотидного соединения содержит заменитель сахара.
- 21. Олигомерное соединение по любому из пп. 1-20, где модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.
- 22. Олигомерное соединение ПО Π. 21, где ПО меньшей мере одна модифицированная межнуклеозидная представляет собой тиофосфатную связь межнуклеозидную связь.
- 23. Олигомерное соединение по п. 22, где каждая межнуклеозидная связь представляет собой модифицированную межнуклеозидную связь.
- 24. Олигомерное соединение по п. 23, где модифицированная межнуклеозидная связь представляет собой тиофосфатную межнуклеозидную связь.
- 25. Олигомерное соединение по п. 23, где по меньшей мере одна модифицированная межнуклеозидная связь второго модифицированного олигонуклеотида представляет собой мезилфосфорамидатную межнуклеозидную связь.
- 26. Олигомерное соединение по любому из пп. 1-20, где каждая межнуклеозидная связь модифицированного олигонуклеотида независимо выбрана из фосфодиэфирной межнуклеозидной связи, фосфоротиоатной межнуклеозидной связи и мезилфосфорамидатной межнуклеозидной связи.

- 27. Олигомерное соединение по любому из пп. 1-26, где модифицированный олигонуклеотид содержит по меньшей мере одно модифицированное нуклеиновое основание.
- 28. Олигомерное соединение по п. 27, где модифицированное нуклеиновое основание представляет собой 5-метилцитозин.
- 29. Олигомерное соединение по п. 28, где каждый цитозин представляет собой 5-метилцитозин.
- 30. Олигомерное соединение по любому из пп. 1-29, где модифицированный олигонуклеотид содержит дезокси-область, состоящую из 5-12 смежных 2'-дезоксинуклеозидов.
- 31. Олигомерное соединение по п. 30, где каждый нуклеозид дезокси-области представляет собой 2'-β-D-дезоксинуклеозид.
- 32. Олигомерное соединение по п. 30 или п. 31, где дезокси-область состоит из 6, 7, 8, 9, 10 или 6-10 связанных нуклеозидов.
- 33. Олигомерное соединение по любому из пп. 30-32, где каждый нуклеозид, непосредственно прилегающий к дезокси-области, содержит модифицированный сахарный фрагмент.
- 34. Олигомерное соединение по любому из пп. 30-33, где дезокси-область фланкирована на 5'-стороне 5'-областью, состоящей из 1-6 связанных нуклеозидов 5'-области, а на 3'-стороне 3 '-областью, состоящей из 1-6 связанных нуклеозидов 3'-области; при этом
- 3'-крайний нуклеозид 5' внешней области содержит модифицированный сахарный фрагмент; и
- 5'-крайний нуклеозид 3' внешней области содержит модифицированный сахарный фрагмент.
- 35. Олигомерное соединение по п. 34, где каждый нуклеозид 3' внешней области содержит модифицированный сахарный фрагмент.
- 36. Олигомерное соединение по п. 34 или п. 35, где каждый нуклеозид 5' внешней области содержит модифицированный сахарный фрагмент.
- 37. Олигомерное соединение по п. 36, где модифицированный олигонуклеотид имеет:
 - 5' внешнюю область, состоящую из 1-6 связанных нуклеозидов; дезокси-область, состоящую из 6-10 связанных нуклеозидов; и
 - 3' внешнюю область, состоящую из 1-6 связанных нуклеозидов;
- где каждый из 5'-нуклеозидов внешней области и каждый из 3'-нуклеозидов внешней области представляет собой сЕt нуклеозид или 2'-МОЕ нуклеозид; и каждый из нуклеозидов дезокси-области представляет собой 2'-β-D-дезоксинуклеозид.
- 38. Олигомерное соединение по п. 36, где модифицированный олигонуклеотид имеет сахарный мотив, содержащий:
 - 5' внешнюю область, состоящую из 3-6 связанных нуклеозидов;

дезокси-область, состоящую из 7-8 связанных нуклеозидов; и

3' внешнюю область, состоящую из 3-6 связанных нуклеозидов; где

каждый из нуклеозидов 3' внешней области выбран из 2'-МОЕ нуклеозида и сЕt нуклеозида, а 5' внешняя область имеет следующую формулу:

(Nk)n(Nd)(Nx),

где каждый Nk представляет собой бициклический нуклеозид, Nx 2'-OMe нуклеозид и Nd представляет собой 2'-β-D-дезоксинуклеозид;

и правно от 1 до 4.

- 39. Олигомерное соединение по любому из пп. 1-29, где модифицированный олигонуклеотид имеет сахарный мотив (5'-3'), выбранный из: kkkddddddddkkk, kkdddddddddkekek, kkkddddddddkkke, kkkdydddddddkkk, kkdddddddddkk, kkkddddddddddkeee, kkkdddddddddkkee, kkkdddddddddkkkk, kkkkdddddddddkkk, ekddddddddkekek, ekkdddddddddkkk, ekkddddddddkkke, keddddddddkekek, kekddddddddkkk, kekddddddddkkke, kkeddddddddkkk и kkeddddddddkkke, где каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, каждый «у» представляет собой сахарный фрагмент 2'-OMe, каждый «е» представляет собой сахарный фрагмент 2'-MOE, и каждый «k» представляет собой сЕt модифицированный сахарный фрагмент.
- 40. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: ${}^{m}C_{ks}{}^{m}C_{ks}A_{ks}T_{ds}A_{ds}{}^{m}C_{ds}T_{ds}T_{ds}G_{ds}A_{ds}T_{ds}{}^{m}C_{ds}T_{ds}{}^{m}C_{ks}A_{k}$ (SEQ ID NO: 185), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

41. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: $G_{ks}T_{ks}A_{ks}G_{ds}T_{ds}T_{ds}A_{ds}G_{ds}T_{ds}$

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

42. Олигомерное соединение, содержащее модифицированный олигонуклеотид,

соответствующий следующим химическим обозначениям:

 ${A_{ks}}^m {C_{ks}} {A_{ks}}^m {C_{ds}} {G_{ds}} {A_{ds}} {G_{ds}} {T_{ds}} {A_{ds}} {T_{ds}} {A_{ds}} {T_{ds}} {A_{ks}} {G_{ks}} {G_k} (SEQ\ ID\ NO:\ 609),$ где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

43. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям:

 $A_{ks}A_{ks}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ks}G_{es}G_{ks}T_{es}A_{k}$ (SEQ ID NO: 45), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

44. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям:

 $A_{ks}^{m}C_{ks}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{es}G_{ks}A_{es}A_{k}$ (SEQ ID NO: 737), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

45. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям:

 $A_{ks}A_{ks}A_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}G_{ds}T_{ds}A_{ks}T_{es}G_{ks}G_{es}T_{k}$ (SEQ ID NO: 120), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

46. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: ${}^{m}C_{ks}A_{ks}{}^{m}C_{ks}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{ks}G_{e}$ (SEQ ID NO: 675), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент, и

s=фосфоротиоатная межнуклеозидная связь.

- 47. Олигомерное соединение по любому из пп. 1-46, где олигомерное соединение содержит группу конъюгата.
- 48. Олигомерное соединение по п. 47, где группа конъюгата содержит линкер конъюгата и фрагмент конъюгата.
- 49. Олигомерное соединение по п. 47 или п. 48, где линкер конъюгата состоит из одинарной связи.
- 50. Олигомерное соединение по любому из пп. 47-49, где линкер конъюгата является расщепляемым.
- 51. Олигомерное соединение по любому из пп. 47-50, где линкер конъюгата содержит 1-3 линкерных нуклеозида.
- 52. Олигомерное соединение по любому из пп. 47-50, где линкер конъюгата не содержит каких-либо линкерных нуклеозидов.
- 53. Олигомерное соединение по любому из пп. 47-52, где группа конъюгата присоединена к модифицированному олигонуклеотиду на 5'-конце модифицированного олигонуклеотида.
- 54. Олигомерное соединение по любому из пп. 47-52, где группа конъюгата присоединена к модифицированному олигонуклеотиду на 3'-конце модифицированного олигонуклеотида.
- 55. Олигомерное соединение по любому из пп. 47-54, где группа конъюгата содержит С22 алкил, С20 алкил, С16 алкил, С10 алкил, С21 алкил, С19 алкил, С18 алкил, С15 алкил, С14 алкил, С13 алкил, С12 алкил, С11 алкил, С9 алкил, С8 алкил, С7 алкил, С6 алкил, С5 алкил, С22 алкенил, С20 алкенил, С16 алкенил, С10 алкенил, С21 алкенил, С19 алкенил, С18 алкенил, С15 алкенил, С14 алкенил, С13 алкенил, С12 алкенил, С11 алкенил, С9 алкенил, С8 алкенил, С7 алкенил, С6 алкенил или С5 алкенил.
- 56. Олигомерное соединение по любому из пп. 47-55, где фрагмент конъюгата представляет собой 6-пальмитамидогексильный фрагмент конъюгата.
- 57. Олигомерное соединение по любому из пп. 47-54, где группа конъюгата имеет следующую структуру:

- 58. Олигомерное соединение по любому из пп. 47-57, где группа конъюгата содержит нацеленный на клетку фрагмент.
- 59. Олигомерное соединение по п. 58, где нацеленный на клетку фрагмент имеет аффинность к TfR1.
- 60. Олигомерное соединение по п. 59, где нацеленный на клетку фрагмент содержит антитело к TfR1 или его фрагмент.
- 61. Олигомерное соединение по п. 59, где нацеленный на клетку фрагмент содержит белок или пептид, способный связывать TfR1.
- 62. Олигомерное соединение по п. 59, где нацеленный на клетку фрагмент содержит аптамер, способный связывать TfR1.
- 63. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}A_{ks}A_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{cs}A_{ds}$

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная связь,

s=фосфоротиоатная межнуклеозидная связь, и

64. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}A_{ks}^{m}C_{ks}A_{ks}^{m}C_{ds}G_{ds}A_{ds}G_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}G_{ks}G_{k}$ (SEQ ID NO: 609), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная связь,

s=фосфоротиоатная межнуклеозидная связь, и

65. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}G_{ks}T_{ks}A_{ks}G_{ds}T_{ds}T_{ds}A_{ds}A_{ds}T_{ds}T_{ds}T_{ds}T_{ds}T_{ks}G_{ks}^{\ m}C_{k}$ (SEQ ID NO: 752), где:

А=адениновое нуклеиновое основание,

^тC=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная связь,

s=фосфоротиоатная межнуклеозидная связь, и

$$[C16-HA] =$$

66. Олигомерное соединение, содержащее модифицированный олигонуклеотид, соответствующий следующим химическим обозначениям: [С16-HA] $_{o}A_{ks}A_{ds}G_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ds}T_{ds}A_{ks}T_{es}G_{ks}G_{es}T_{k}$ (SEQ ID NO: 120), где:

А=адениновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

k=cEt модифицированный сахарный фрагмент,

d=2'-β-D-дезоксирибозильный сахарный фрагмент,

о=фосфодиэфирная связь,

s=фосфоротиоатная межнуклеозидная связь, и

- 67. Олигомерное соединение по любому из пп. 1-66, где олигомерное соединение содержит концевую группу.
- 68. Олигомерное соединение по п. 67, где концевая группа представляет собой сахарный фрагмент с удаленным нуклеиновым основанием.
- 69. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 45).

70. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 45) или его соль.

- 71. Олигомерное соединение по п. 70, которое представляет собой натриевую соль или калиевую соль.
- 72. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 609).

73. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 609) или его соль.

- 74. Олигомерное соединение по п. 73, которое представляет собой натриевую соль или калиевую соль.
- 75. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 752).

76. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 752) или его соль.

- 77. Олигомерное соединение по п. 76, которое представляет собой натриевую соль или калиевую соль.
- 78. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 120).

79. Олигомерное соединение в соответствии со следующей химической структурой:

(SEQ ID NO: 120) или его соль.

- 80. Олигомерное соединение по п. 79, которое представляет собой натриевую соль или калиевую соль.
- 81. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 185).

(SEQ ID NO: 185) или его соль.

- 83. Модифицированный олигонуклеотид по п. 82, который представляет собой натриевую соль или калиевую соль.
- 84. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

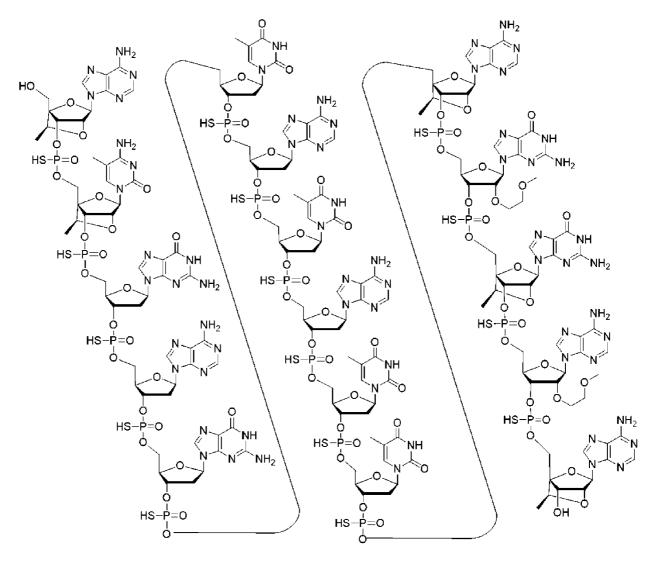
(SEQ ID NO: 752).

(SEQ ID NO: 752) или его соль.

- 86. Модифицированный олигонуклеотид по п. 85, который представляет собой натриевую соль или калиевую соль.
- 87. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 609).

(SEQ ID NO: 609) или его соль.


- 89. Модифицированный олигонуклеотид по п. 88, который представляет собой натриевую соль или калиевую соль.
- 90. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 45).

(SEQ ID NO: 45) или его соль.

- 92. Модифицированный олигонуклеотид по п. 91, который представляет собой натриевую соль или калиевую соль.
- 93. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 737).

(SEQ ID NO: 737) или его соль.

- 95. Модифицированный олигонуклеотид по п. 94, который представляет собой натриевую соль или калиевую соль.
- 96. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 120).

(SEQ ID NO: 120) или его соль.

- 98. Модифицированный олигонуклеотид по п. 97, который представляет собой натриевую соль или калиевую соль.
- 99. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 675).

(SEQ ID NO: 675) или его соль.

- 101. Модифицированный олигонуклеотид по п. 100, который представляет собой натриевую соль или калиевую соль.
- 102. Хирально обогащенная популяция олигомерных соединений по любому из пп. 1-80 или модифицированных олигонуклеотидов по пп. 81-101, где популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую конкретную стереохимическую конфигурацию.
- 103. Хирально обогащенная популяция по п. 102, где популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую (Sp)- или (Rp)-конфигурацию.
- 104. Хирально обогащенная популяция по п. 102, где популяция обогащена модифицированными олигонуклеотидами, имеющими особую, независимо выбранную стереохимическую конфигурацию в каждой фосфоротиоатной межнуклеозидной связи.
- 105. Хирально обогащенная популяция по п. 102, где популяция обогащена модифицированными олигонуклеотидами, имеющими (Rp)-конфигурацию в одной конкретной фосфоротиоатной межнуклеозидной связи и (Sp)-конфигурацию в каждой из

остальных тиофосфатных межнуклеозидных связей.

106. Хирально обогащенная популяция по п. 102, где популяция обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере 3 смежные фосфоротиоатные межнуклеозидные связи в Sp-, Sp- и Rp- конфигурациях в направлении от 5' к 3'.

107. Популяция олигомерных соединений, содержащая модифицированные олигонуклеотиды по любому из пп. 1-80, или популяция модифицированных олигонуклеотидов по пп. 81-101, где все фосфоротиоатные межнуклеозидные связи модифицированного олигонуклеотида являются стереослучайными.

108. Олигомерное соединение по п. 1 или п. 2, где последовательность нуклеиновых оснований модифицированного олигонуклеотида на по меньшей мере 80% комплементарна участку равной длины в нуклеиновых основаниях 34-56, 44-66, 54-76, 64-86, 74-96, 84-106, 94-116, 104-126, 114-136, 124-146, 134-156, 144-166, 154-176, 164-186, 174-196, 184-206, 194-216, 204-226, 214-236, 224-246, 234-256, 244-266, 254-276, 264-286, 274-296, 284-306, 294-316, 304-326, 314-336, 324-346, 334-356, 344-366, 354-376, 364-386, 374-396, 384-406, 394-416, 404-426, 414-436, 424-446, 434-456, 444-466, 454-476, 464-486, 474-496, 484-506, 494-516, 504-526, 514-536, 524-546, 534-556, 544-566, 554-576, 564-586, 574-596, 584-606, 594-616, 604-626, 614-636, 624-646, 634-656, 644-666, 654-676, 664-686, 674-696, 684-706, 694-716, 704-726, 714-736, 724-746, 734-756, 744-766, 754-776, 764-786, 774-796, 784-806, 794-816, 804-826, 814-836, 819-841, 834-856, 844-866, 854-876, 864-886, 874-896, 884-906, 894-916, 904-926, 914-936, 924-946, 934-956, 944-966, 954-976, 964-986, 974-996, 984-1006, 994-1016, 1004-1026, 1014-1036, 1024-1046, 1034-1056, 1044-1066, 1054-1076, 1064-1086, 1074-1096, 1084-1106, 1094-1116, 1104-1126, 1114-1136, 1124-1146, 1134-1156, 1144-1166, 1154-1176, 1164-1186, 1174-1196, 1184-1206, 1194-1216, 1204-1226, 1214-1236, 1224-1246, 1234-1256, 1238-1260, 1243-1265, 1248-1270, 1254-1276, 1264-1286, 1274-1296, 1279-1301, 1284-1306, 1294-1316, 1304-1326, 1314-1336, 1324-1346, 1334-1356, 1344-1366, 1354-1376, 1364-1386, 1374-1396, 1384-1406, 1394-1416, 1404-1426, 1414-1436, 1424-1446, 1434-1456, 1444-1466, 1454-1476, 1464-1486, 1474-1496, 1484-1506, 1494-1516, 1499-1521, 1504-1526, 1514-1536, 1522-1544, 1534-1556, 1544-1566, 1554-1576, 1564-1586, 1574-1596, 1584-1606, 1594-1616, 1604-1626, 1614-1636, 1624-1646, 1634-1656, 1644-1666, 1654-1676, 1664-1686, 1674-1696, 1684-1706, 1694-1716, 1704-1726, 1714-1736, 1724-1746, 1734-1756, 1744-1766, 1754-1776, 1764-1786, 1774-1796, 1784-1806, 1794-1816, 1804-1826, 1814-1836, 1824-1846, 1834-1856, 1844-1866, 1854-1876, 1864-1886, 1874-1896, 1884-1906, 1894-1916, 1904-1926, 1914-1936, 1924-1946, 1934-1956, 1944-1966, 1954-1976, 1964-1986, 1974-1996, 1984-2006, 1994-2016, 2004-2026, 2014-2036, 2019-2041, 2024-2046, 2034-2056, 2044-2066, 2054-2076, 2064-2086, 2074-2096, 2084-2106, 2094-2116, 2104-2126, 2114-2136, 2124-2146, 2134-2156, 2144-2166, 2154-2176, 2164-2186, 2174-2196, 2184-2206, 2194-2216, 2204-2226, 2214-2236, 2219-2241, 2224-2246, 2234-2256, 2244-2266, 2254-2276, 2264-2286, 2274-2296, 2284-2306, 2294-2316, 2304-2326, 2314-2336, 2324-2346, 2334-2356, 2344-2366, 2354-2376, 2364-2386, 2374-2396, 2379-2401, 2384-2406, 2394-2416, 2404-2426, 2414-2436, 2424-2446, 2434-2456, 2444-2466, 2454-2476, 2464-2486, 2474-2496, 2479-2501, 2484-2506, 2494-2516, 2504-2526, 2514-2536, 2524-2546, 2534-2556, 2544-2566, 2554-2576, 2564-2586, 2574-2596, 2584-2606, 2594-2616, 2604-2626, 2614-2636, 2619-2641, 2624-2646, 2634-2656, 2644-2666, 2654-2676, 2664-2686, 2674-2696, 2684-2706, 2694-2716, 2699-2721, 2704-2726, 2714-2736, 2724-2746, 2734-2756, 2744-2766, 2754-2776, 2759-2781, 2764-2786, 2774-2796, 2784-2806, 2794-2816, 2804-2826, 2814-2836, 2824-2846, 2834-2856, 2844-2866, 2854-2876, 2864-2886, 2874-2896, 2879-2901, 2884-2906, 2894-2916, 2904-2926, 2914-2936, 2919-2941, 2924-2946, 2934-2956, 2944-2966, 2954-2976, 2964-2986, 2974-2996, 2981-3003, 2987-3009 или 2994-3016 SEQ ID NO: 1.

109. Олигомерный дуплекс, содержащий первое олигомерное соединение и второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, где первое олигомерное соединение представляет собой олигомерное соединение по любому из пп. 1-80 или п. 108, или модифицированный олигонуклеотид по любому из пп. 81-101.

110. Олигомерный дуплекс по п. 109, где второе олигомерное соединение содержит второй модифицированный олигонуклеотид, состоящий из 8-80 связанных нуклеозидов, и где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую по меньшей мере из 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна области равной длины первого модифицированного олигонуклеотида.

111. Олигомерный дуплекс, содержащий:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит комплементарную область, состоящую из по меньшей мере 8 нуклеиновых оснований, которая на по меньшей мере 90% комплементарна части равной длины первого модифицированного олигонуклеотида.

112. Олигомерный дуплекс, содержащий:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 19-29 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по

меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20, по меньшей мере 21, по меньшей мере 22 или по меньшей мере 23 смежных нуклеиновых оснований последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 15-29 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19, по меньшей мере 20 или по меньшей мере 21 смежное нуклеиновое основание последовательности нуклеиновых оснований любой из SEQ ID NO: 2025-2336, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида на по меньшей мере 90% комплементарна участку равной длины первого модифицированного олигонуклеотида.

113. Олигомерный дуплекс, содержащий:

первое олигомерное соединение, содержащее первый модифицированный олигонуклеотид, состоящий из 23 связанных нуклеозидов, где последовательность нуклеиновых оснований первого модифицированного олигонуклеотида содержит или состоит из последовательности нуклеиновых оснований любой из SEQ ID NO: 1713-2024; и

второе олигомерное соединение, содержащее второй модифицированный олигонуклеотид, состоящий из 21 связанных нуклеозидов, где последовательность нуклеиновых оснований второго модифицированного олигонуклеотида содержит или состоит из последовательности нуклеиновых оснований любой из SEQ ID NO: 2025-2336, нуклеиновых оснований второго модифицированного последовательность олигонуклеотида на по меньшей мере 90% комплементарна участку равной длины первого модифицированного олигонуклеотида.

- 114. Олигомерный дуплекс по любому из пп. 109-113, где модифицированный олигонуклеотид первого олигомерного соединения содержит 5'-стабилизированную фосфатную группу.
- 115. Олигомерный дуплекс по п. 114, где 5'-стабилизированная фосфатная группа содержит циклопропилфосфонат или винилфосфонат.
- 116. Олигомерный дуплекс по любому из пп. 109-115, где модифицированный олигонуклеотид первого олигомерного соединения содержит заменитель сахара гликолевой нуклеиновой кислоты (GNA).
- 117. Олигомерный дуплекс по любому из пп. 109-116, где модифицированный олигонуклеотид первого олигомерного соединения содержит 2'-NMA сахарный фрагмент.
 - 118. Олигомерный дуплекс по любому из пп. 109-117, где по меньшей мере один

нуклеозид второго модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент.

- 119. Олигомерный дуплекс по п. 118, где модифицированный сахарный фрагмент второго модифицированного олигонуклеотида содержит бициклический сахарный фрагмент.
- 120. Олигомерный дуплекс по п. 119, где бициклический сахарный фрагмент второго модифицированного олигонуклеотида содержит 2'-4' мостик, выбранный из -O-CH₂-; и -O-CH(CH₃)-.
- 121. Олигомерный дуплекс по п. 118, где модифицированный сахарный фрагмент второго модифицированного олигонуклеотида содержит небициклический модифицированный сахарный фрагмент.
- 122. Олигомерный дуплекс по п. 121, где небициклический модифицированный сахарный фрагмент второго модифицированного олигонуклеотида представляет собой 2'- МОЕ сахарный фрагмент, 2'-F сахарный фрагмент или 2'-Оте сахарный фрагмент.
- 123. Олигомерный дуплекс по любому из пп. 109-122, где по меньшей мере один нуклеозид второго модифицированного олигонуклеотида содержит заменитель сахара.
- 124. Олигомерный дуплекс по любому из пп. 109-123, где первый и/или второй модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.
- 125. Олигомерный дуплекс 124, меньшей мере ПО Π. где ПО одна модифицированная межнуклеозидная связь представляет собой тиофосфатную межнуклеозидную связь.
- 126. Олигомерный дуплекс по п. 124, где по меньшей мере одна модифицированная межнуклеозидная связь представляет собой мезилфосфорамидатную межнуклеозидную связь.
- 127. Олигомерный дуплекс по любому из пп. 109-126, где первый и/или второй модифицированный олигонуклеотид содержит по меньшей мере одну фосфодиэфирную межнуклеозидную связь.
- 128. Олигомерный дуплекс по любому из пп. 109-127, где каждая межнуклеозидная связь первого и/или второго модифицированного олигонуклеотида независимо выбрана из фосфодиэфирной, фосфоротиоатной или мезилфосфорамидатной межнуклеозидной связи.
- 129. Олигомерный дуплекс по любому из пп. 109-128, где мотив межнуклеозидной модифицированного олигонуклеотида представляет связи первого ssooooooooooooss, а мотив межнуклеозидной связи второго модифицированного представляет ss000000000000000ss, олигонуклеотида собой где каждый «o» представляет собой фосфодиэфирную межнуклеозидную связь, И каждый **((S)**> представляет собой фосфоротиоатную межнуклеозидную связь.
- 130. Олигомерный дуплекс по любому из пп. 109-129, где первый и/или второй модифицированный олигонуклеотид содержит по меньшей мере одно модифицированное нуклеиновое основание.

- 131. Олигомерный дуплекс по п. 130, где модифицированное нуклеиновое основание представляет собой 5-метилцитозин.
- 132. Олигомерный дуплекс по любому из пп. 109-131, где второй модифицированный олигонуклеотид содержит группу конъюгата.
- 133. Олигомерный дуплекс по п. 132, где группа конъюгата содержит линкер конъюгата и фрагмент конъюгата.
- 134. Олигомерный дуплекс по п. 132 или п. 133, где группа конъюгата присоединена ко второму модифицированному олигонуклеотиду на 5'-конце второго модифицированного олигонуклеотида.
- 135. Олигомерный дуплекс по п. 132 или п. 133, где группа конъюгата присоединена ко второму модифицированному олигонуклеотиду на 3'-конце модифицированного олигонуклеотида.
- 136. Олигомерный дуплекс по любому из пп. 132-135, где группа конъюгата содержит С22 алкил, С20 алкил, С16 алкил, С10 алкил, С21 алкил, С19 алкил, С18 алкил, С15 алкил, С14 алкил, С13 алкил, С12 алкил, С11 алкил, С9 алкил, С8 алкил, С7 алкил, С6 алкил, С5 алкил, С22 алкенил, С20 алкенил, С16 алкенил, С10 алкенил, С21 алкенил, С19 алкенил, С18 алкенил, С15 алкенил, С14 алкенил, С13 алкенил, С12 алкенил, С11 алкенил, С9 алкенил, С8 алкенил, С7 алкенил, С6 алкенил или С5 алкенил.
- 137. Олигомерный дуплекс по любому из пп. 132-136, где фрагмент конъюгата представляет собой 6-пальмитамидогексильный фрагмент конъюгата.
- 138. Олигомерный дуплекс по любому из пп. 132-135, где группа конъюгата имеет следующую структуру:

- 139. Олигомерный дуплекс по любому из пп. 132-136, где группа конъюгата содержит нацеленный на клетку фрагмент.
- 140. Олигомерный дуплекс по п. 139, где нацеленный на клетку фрагмент имеет аффинность к TfR1.
- 141. Олигомерный дуплекс по п. 140, где нацеленный на клетку фрагмент содержит антитело к TfR1 или его фрагмент.
- 142. Олигомерный дуплекс по п. 140, где нацеленный на клетку фрагмент содержит белок или пептид, способный связывать TfR1.
- 143. Олигомерный дуплекс по п. 140, где нацеленный на клетку фрагмент содержит аптамер, способный связывать TfR1.
- 144. Олигомерный дуплекс по любому из пп. 109-143, где второй модифицированный олигонуклеотид содержит концевую группу.
- 145. Олигомерный дуплекс по п. 144, где концевая группа представляет собой сахарный фрагмент с удаленным нуклеиновым основанием.
 - 146. Олигомерный дуплекс по любому из пп. 109-145, где второй

модифицированный олигонуклеотид состоит из 10-25, 10-30, 10-50, 12-20, 12-25, 12-30, 12-50, 13-20, 13-25, 13-30, 13-50, 14-20, 14-25, 14-30, 14-50, 15-20, 15-25, 15-30, 15-50, 16-18, 16-20, 16-25, 16-30, 16-50, 17-20, 17-25, 17-30, 17-50, 18-20, 18-25, 18-30, 18-50, 19-20, 19-25, 19-30, 19-50, 20-25, 20-30, 20-50, 21-25, 21-30, 21-50, 22-25, 22-30, 22-50, 23-25, 23-30 или 23-50 связанных нуклеозидов.

- 147. Олигомерный дуплекс по любому из пп. 109-146, где модифицированный олигонуклеотид первого олигомерного соединения состоит из 23 связанных нуклеозидов, а второй модифицированный олигонуклеотид состоит из 21 связанного нуклеозида.
- 149. Антисмысловое средство, содержащее антисмысловое соединение, где антисмысловое соединение представляет собой олигомерное соединение по любому из пп. 1-80 или п. 108 или модифицированный олигонуклеотид по любому из пп. 81-101.
- 150. Антисмысловое средство, где антисмысловое средство представляет собой олигомерный дуплекс по любому из пп. 109-148.
- 151. Антисмысловое средство по п. 149 или п. 150, где антисмысловое средство представляет собой:

средство на основе РНКазы H, способное снижать количество нуклеиновой кислоты PLN посредством активации РНКазы H; или

средство для RNAi, способное снижать количество нуклеиновой кислоты PLN посредством активации RISC/Ago2.

- 152. Антисмысловое средство по любому из пп. 149-151, содержащее нацеленный на клетку фрагмент.
- 153. Фармацевтическая композиция, содержащая олигомерное соединение по любому из пп. 1-80 или п. 108, модифицированный олигонуклеотид по любому из пп. 81-101, популяция по любому из пп. 102-107, олигомерный дуплекс по любому из пп. 109-148 или антисмысловое средство по любому из пп. 149-152 и фармацевтически приемлемый разбавитель или носитель.
- 154. Фармацевтическая композиция по п. 153, где фармацевтически приемлемый разбавитель представляет собой воду или фосфатно-солевой буферный раствор.
- 155. Фармацевтическая композиция по п. 154, где фармацевтическая композиция состоит по сути из олигомерного соединения, модифицированного олигонуклеотида, популяции, олигомерного дуплекса или антисмыслового средства и воды или фосфатносолевого буферного раствора.
- 156. Способ, включающий введение субъекту олигомерного соединения по любому из пп. 1-80 или п. 108, модифицированного олигонуклеотида по любому из пп. 81-101, популяции по любому из пп. 102-107, олигомерного дуплекса по любому из пп. 109-148,

антисмыслового средства по любому из пп. 149-152 или фармацевтическую композицию по любому из пп. 153-155.

- 157. Способ лечения заболевания, ассоциированного с PLN, включающий введение субъекту, имеющему заболевание, ассоциированное с PLN, терапевтически эффективного количества олигомерного соединения по любому из пп. 1-80 или п. 108, модифицированного олигонуклеотида по любому из пп. 81-101, популяции по любому из пп. 102-107, олигомерный дуплекс по любому из пп. 109-148, антисмысловое средство по любому из пп. 149-152 или фармацевтическую композицию по любому из пп. 153-155; за счет чего осуществляется лечение заболевания, ассоциированного с PLN.
- 158. Способ по п. 157, где заболевание, ассоциированное с PLN, представляет собой кардиомиопатию, сердечную недостаточность или аритмию.
- 159. Способ по п. 158, где кардиомиопатия представляет собой генетическую кардиомиопатию.
- 160. Способ по п. 159, где генетическая кардиомиопатия ассоциирована с генетическими мутациями p.Arg14del, Arg9Cys (R9C) или Arg25Cys (R25C).s.
- 161. Способ по п. 158, где кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM).
 - 162. Способ по п. 161, где DCM представляет собой генетическую DCM.
- 163. Способ по п. 162, где генетическая DCM ассоциирована с мутациями TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1.
 - 164. Способ по п. 161, где DCM представляет собой аритмогенную DCM.
- 165. Способ по п. 158, где сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности.
- 166. Способ по п. 158, где аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).
- 167. Способ по любому из пп. 158-166, где введение олигомерного соединения по любому из пп. 1-80 или п. 108, модифицированного олигонуклеотида по любому из пп. 81-101, популяции по любому из пп. 102-107, олигомерного дуплекса по любому из пп. 109-148, антисмыслового средства по любому из пп. 149-152 или фармацевтической композиции по любому из пп. 153-155 нормализует сердечную функцию, сердечнососудистую смерть, сердечную дилатацию, сердечный фиброз, низковольтную ЕСG, диастолическое поглощение кальция, фракцию выброса (EF), фракцию выброса левого желудочка (LVEF), конечный систолический объем левого желудочка (LVESV), конечный диастолический объем левого желудочка (LVEDV), профиль потока митрального клапана, напряжение левого желудочка (LV), скорость деформации левого желудочка (LV), размер инфаркта, госпитализацию при сердечной недостаточности, тест 6-минутной ходьбы (6МWT), оценку по опроснику кардиомиопатии Канзас-Сити (КССQS), частоту сердечных сокращений или сердечный ритм у субъекта.

- 168. Способ снижения экспрессии PLN в клетке, включающий приведение клетки в контакт с олигомерным соединением по любому из пп. 1-80 или п. 108, модифицированным олигонуклеотидом по любому из пп. 81-101, популяцией по любому из пп. 102-107, олигомерным дуплексом по любому из пп. 109-148, антисмыслового средства по любому из пп. 149-152 или фармацевтической композиции по любому из пп. 153-155.
 - 169. Способ по п. 168, где клетка представляет собой клетку сердца.
- 170. Применение олигомерного соединения по любому из пп. 1-80 или п. 108, модифицированного олигонуклеотида по любому из пп. 81-101, популяции по любому из пп. 102-107, олигомерного дуплекса по любому из пп. 109-148, антисмыслового средства по любому из пп. 149-152 или фармацевтической композиции по любому из пп. 153-155 для лечения заболевания, ассоциированного с PLN.
- 171. Применение олигомерного соединения по любому из пп. 1-80 или п. 108, модифицированного олигонуклеотида по любому из пп. 81-101, популяции по любому из пп. 102-107, олигомерного дуплекса по любому из пп. 109-148, антисмыслового средства по любому из пп. 149-152 или фармацевтической композиции по любому из пп. 153-155 в производстве лекарственного препарата для лечения заболевания, ассоциированного с PLN.
- 172. Применение по п. 170 или п. 171, где заболевание, ассоциированное с PLN, представляет собой кардиомиопатию, сердечную недостаточность или аритмию.
- 173. Применение по п. 172, где кардиомиопатия представляет собой генетическую кардиомиопатию.
- 174. Применение по п. 173, где генетическая кардиомиопатия ассоциирована с генетическими мутациями p.Arg14del, Arg9Cys (R9C) или Arg25Cys (R25C).s.
- 175. Применение по п. 172, где кардиомиопатия представляет собой дилатационную кардиомиопатию (DCM).
 - 176. Применение по п. 175, где DCM представляет собой генетическую DCM.
- 177. Применение по п. 176, где генетическая DCM ассоциирована с мутациями TTN, LMNA, RBM20, SCN5A, MYH7, TNNT2 и TPM1.
 - 178. Применение по п. 175, где DCM представляет собой аритмогенную DCM.
- 179. Применение по п. 172, где сердечная недостаточность представляет собой сердечную недостаточность с сохраненной фракцией выброса (HFpEF), сердечную недостаточность со сниженной фракцией выброса (HFrEF), острую сердечную недостаточность или ухудшение хронической сердечной недостаточности.
- 180. Применение по п. 172, где аритмия представляет собой желудочковую тахикардию (Vtac) или фибрилляцию желудочков (Vfib).

По доверенности