(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2024.05.06

(21) Номер заявки

202091437

(22) Дата подачи заявки

2018.12.12

(51) Int. Cl. *C12N 15/113* (2010.01) *C12N 9/10* (2006.01) C12N 9/18 (2006.01)

КОНСТРУКЦИИ ДЛЯ RNAI, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ПОДАВЛЕНИЯ ЭКСПРЕССИИ PNPLA3

62/597,841 (31)

(32) 2017.12.12

(33) US

(43) 2020.12.29

(86) PCT/US2018/065275

(87)WO 2019/118638 2019.06.20

(71)(73) Заявитель и патентовладелец:

ЭМДЖЕН ИНК. (US)

(72) Изобретатель:

Рулифсон Ингрид, Мюррей Джастин К., Оллманн Майкл, Хоманн Оливер (US)

(74) Представитель:

Медведев В.Н. (RU)

(56) US-A1-2017349903 WO-A2-2016130806 WO-A1-2017048620

Изобретение относится к конструкциям для RNAi, предназначенным для снижения экспрессии гена (57)PNPLA3. Также описаны способы применения таких конструкций для RNAi с целью лечения или предупреждения болезни печени, представляющей собой неалкогольную жировую болезнь печени (NAFLD).

Родственные заявки

Настоящая заявка испрашивает приоритет согласно предварительной заявке на патент США № 62/597841, поданной 12 декабря 2017 г., содержание которой включено в данный документ посредством ссылки.

Перечень последовательностей

Настоящая заявка содержит перечень последовательностей, который был подан в электронном виде в формате ASCII и включен в данный документ посредством ссылки во всей полноте. Указанная копия ASCII, созданная 12 декабря 2018 года, названа A-2219-WO-PCT_SL.txt и имеет размер 708961 байт. Информация о перечне последовательностей в электронной форме включена в данный документ посредством ссылки во всей своей полноте.

Область техники, к которой относится изобретение

Настоящее изобретение относится к композициям и способам модуляции экспрессии пататинподобного фосфолипазного домена 3 (PNPLA3) в печени. В частности, настоящее изобретение относится к терапевтическим средствам на основе нуклеиновой кислоты, предназначенным для снижения экспрессии PNPLA3 посредством РНК-интерференции, и к способам применения таких терапевтических средств на основе нуклеиновой кислоты с целью лечения или предотвращения болезни печени, такой как неалкогольная жировая болезнь печени (NAFLD).

Настоящая заявка содержит перечень последовательностей, который был подан в электронном виде в формате ASCII и включен в данный документ посредством ссылки во всей полноте. Указанная копия ASCII, созданная 12 декабря 2018 г., названа A-2219-WO-PCT SL.txt и имеет размер 708961 байт.

Предпосылки создания изобретения

Являясь частью спектра патологий печени, неалкогольная жировая болезнь печени (NAFLD) представляет собой самое распространенное хроническое заболевание печени в мире, заболеваемость которым удвоилась за последние 20 лет, и в настоящее время, по оценкам, она затрагивает приблизительно 20% населения в мире (Sattar et al. (2014) ВМЈ 349:g4596; Loomba and Sanyal (2013) Nature Reviews Gastroenterology & hepatology 10(11):686-690; Kim and Kim (2017) Clin Gastroenterol Hepatol 15(4):474-485; Petta et al. (2016) Dig Liver Dis 48(3):333-342). NAFLD начинается с накопления триглицеридов в печени и определяется наличием цитоплазматических липидных капель в более чем 5% гепатоцитов у индивидуума 1) без избыточного потребления алкоголя в анамнезе и 2) у которого были исключены другие типы болезней печени (Zhu et al. (2016) World J Gastroenterol 22(36):8226-33; Rinella (2015) JAMA 313(22):2263-73; Yki-Jarvinen (2016) Diabetologia 59(6): 1104-11). У некоторых индивидуумов накопление эктопического жира в печени, называемое стеатозом, вызывает воспаление и повреждение клеток печени, что приводит к более поздней стадии заболевания, называемой неалкогольным стеатогепатитом (NASH) (Rinella, выше). По состоянию на 2015 г у 75-100 млн американцев прогнозируется развитие NAFLD; при этом NASH составляет примерно 10-30% диагнозов NAFLD (Rinella, выше; Younossi et al. (2016) Hepatology 64(5): 1577-1586).

Пататин-подобный фосфолипазный домен 3 (PNPLA3), ранее известный как адипонутрин (ADPN) и кальций-независимая фосфолипаза A2-эпсилон (iPLA(2)), представляет собой трансмембранный белок II типа (Wilson et al. (2006) J Lipid Res 47(9): 1940-9; Jenkins et al. (2004) J Biol Chem 279(47):48968-75). Первоначально идентифицированный в липоцитах как мембрано-ассоциированный белок, которым богата жировая ткань, который индуцируется во время адипогенеза у мышей, в настоящее время хорошо изучен как экспрессируемый и в других тканях, включая и печень (Wilson et al., выше; Baulande et al. (2001) J Biol Chem 276(36):33336-44; Moldes et al. (2006) Eur J Endocrinol 155(3):461-8; Faraj et al. (2006) J Endocrinol 191(2):427-35; Liu et al. (2004) J Clin Endocrinol Metab 89(6):2684-9; Lake et al. (2005) J Lipid Res 46(11):2477-87). В бесклеточных биохимических системах рекомбинантный белок PNPLA3 может проявлять либо активность триацилглицерол-липазы, либо трансацилирующую активность (Jenkins et al., выше; Kumari et al. (2012) Cell Metab 15(5):691-702; He et al. (2010) J Biol Chem 285(9):6706-15). В гепатоцитах PNPLA3 экспрессируется в эндоплазматическом ретикулуме и на липидных мембранах и преимущественно проявляет активность триацилглицеролгидролазы (He et al., выше; Huang et al. (2010) Proc Natl Acad Sci USA 107(17):7892-7; Ruhanen et al. (2014) J Lipid Res 55(4):739-46; Pingitore et al. (2014) Biochim Biophys Acta 1841(4):574-80). Несмотря на отсутствие секреторного сигнала, данные указывают на то, что PNPLA3 секретируется и может быть выявлен в плазме крови человека в виде мультимеров, связанных дисульфидными связями (Winberg et al. (2014) Biochem Biophys Res Commun 446(4):1114-9). Соответственно, новое терапевтическое средство, целенаправлено воздействующее на функцию PNPLA3, представляет новый подход к снижению уровней PNPLA3 и лечению болезней печени, таких как неалкогольная жировая болезнь печени.

Краткое описание изобретения

Настоящее изобретение частично основано на конструировании и получении конструкций для RNAi, которые целенаправленно воздействуют на ген PNPLA3 и снижают экспрессию PNPLA3 в клетках печени. Ингибирование экспрессии PNPLA3 по специфической последовательности является применимым для лечения или предотвращения состояний, ассоциированных с экспрессией PNPLA3, таких как заболевания печени, такие как, например, жировой гепатоз (стеатоз), неалкогольный стеатогепатит

(NASH), цирроз печени (необратимое прогрессирующее рубцевание печени) или ожирение, связанное с PNPLA3. Соответственно, в одном варианте осуществления настоящего изобретения представлена конструкция для RNAi, содержащая смысловую нить и антисмысловую нить, где антисмысловая нить содержит участок, имеющий последовательность, которая является комплементарной последовательности мРНК PNPLA3. В определенных вариантах осуществления антисмысловая нить содержит участок, имеющий по меньшей мере 15 смежных нуклеотидов из антисмысловой последовательности, представленной в табл. 1 или 2. В некоторых вариантах осуществления RNAi по настоящему изобретению избирательно подавляет минорные аллели PNPLA3-rs738409, PNPLA3-rs738408 и/или PNPLA3-rs738409-rs738408 по сравнению с эталонным аллелем, который не содержит данных изменений.

В некоторых вариантах осуществления смысловая нить конструкций для RNAi, описанных в данном документе, содержит последовательность, которая комплементарна последовательности антисмысловой нити в достаточной степени, чтобы образовать дуплексный участок длиной от приблизительно 15 до приблизительно 30 пар оснований. В этих и других вариантах осуществления каждая смысловая и антисмысловая нити имеют длину, составляющую от приблизительно 15 до приблизительно 30 нуклеотидов. В некоторых вариантах осуществления конструкции для RNAi содержат по меньшей мере один тупой конец. В других вариантах осуществления конструкции для RNAi содержат по меньшей мере от 1 до 6 неспаренных нуклеотидов и могут быть расположены на 3'-конце смысловой нити, 3'-конце антисмысловой нити или 3'-конце как смысловой, так и антисмысловой нитей. В определенных вариантах осуществления конструкции для RNAi содержат липкий конец из двух неспаренных нуклеотидов на 3'-конце смысловой нити и на 3'-конце антисмысловой нити. В других вариантах осуществления конструкции для RNAi содержат липкий конец из двух неспаренных нуклеотидов на 3'-конце антисмысловой нити и тупой конец на 3'-конце смысловой нити/5'-конце антисмысловой нити.

Конструкции для RNAi по настоящему изобретению могут содержать один или несколько модифицированных нуклеотидов, в том числе нуклеотиды, имеющие модификации рибозного кольца, нуклеинового основания или фосфодиэфирного остова. В некоторых вариантах осуществления конструкции для RNAi содержат один или несколько 2'-модифицированных нуклеотидов. Такие 2'-модифицированные нуклеотиды могут включать 2'-фтор-модифицированные нуклеотиды, 2'-О-метил-модифицированные нуклеотиды, 2'-О-метил-модифицированные нуклеотиды, бициклические нуклеиновые кислоты (BNA), гликолевые нуклеиновые кислоты (GNA), инвертированные основания (например, инвертированный аденозин) или их комбинации. В одном конкретном варианте осуществления конструкции для RNAi содержат один или несколько 2'-фтормодифицированных нуклеотидов, 2'-О-метил-модифицированных нуклеотидов или их комбинации. В некоторых вариантах осуществления все нуклеотиды в смысловой и антисмысловой нитях конструкции для RNAi представляют собой модифицированные нуклеотиды.

В некоторых вариантах осуществления конструкции для RNAi содержат по меньшей мере одну модификацию остова, такую как модифицированную межнуклеотидную или межнуклеозидную связь. В определенных вариантах осуществления конструкции для RNAi, описанные в данном документе, содержат по меньшей мере одну фосфоротиоатную межнуклеотидную связь. В конкретных вариантах осуществления фосфоротиоатные межнуклеотидные связи могут быть расположены на 3'-или 5'-концах смысловой и/или антисмысловой нитей.

В некоторых вариантах осуществления антисмысловая нить и/или смысловая нить конструкций для RNAi по настоящему изобретению могут содержать последовательность из антисмысловой и смысловой последовательностей, представленных в табл. 1 или 2, или состоять из нее. В определенных вариантах осуществления конструкции для RNAi могут представлять собой любые из дуплексных соединений, перечисленных в любой из табл. 1 или 2.

Краткое описание графических материалов

На фиг. 1A-D показан скрининг пяти молекул siRNA как для дозозависимого нокдауна мРНК, так и для функциональной стабильности in vivo.

На фиг. 2A-G показан эффект молекул siRNA относительно PNPLA3 у мышей in vivo, вес печени, подтверждение экспрессии PNPLA3 у человека, содержание триглицеридов в печени, уровни TIMP1 в сыворотке крови и гистологические признаки стеатоза или воспаления.

На фиг. 3A-G показан эффект молекул siRNA относительно PNPLA3 in vivo, вес печени, подтверждение экспрессии PNPLA3 у человека, содержание триглицеридов в печени, уровни TIMP1 в сыворотке крови и гистологические признаки стеатоза или воспаления.

На фиг. 4A-D показаны способность молекулы siRNA, специфичной к PNPLA3^{rs738409-rs738408}, восстанавливать ассоциированные с болезнью фенотипы за счет сверхэкспрессии PNPLA3^{rs738409-rs738408}, содержание триглицеридов в печени, уровни TIMP1 в сыворотке крови и гистологические признаки стеатоза или воспаления.

На фиг. 5A-L показана способность молекул siRNA, специфичных к PNPLA3 $^{rs738409-rs738408}$, предотвращать развитие раннего фиброза.

Подробное описание изобретения

Настоящее изобретение направлено на композиции и способы регуляции экспрессии гена, кодирующего белок 3, содержащий пататин-подобный фосфолипазный домен (PNPLA3). В некоторых вариантах осуществления ген может находиться внутри клетки или субъекта, такого как млекопитающее (например, человека). В некоторых вариантах осуществления композиции по настоящему изобретению содержат конструкции для RNAi, которые целенаправленно воздействуют на мРНК PNPLA3 и снижают экспрессию PNPLA3 в клетке или млекопитающем. Такие конструкции для RNAi являются применимыми для лечения или предотвращения разных форм заболеваний печени, таких как, например, жировой гепатоз (стеатоз), неалкогольный стеатогепатит (NASH), цирроз печени (необратимое прогрессирующее рубцевание печени) или ожирение, связанное с PNPLA3.

В 2008 г. полногеномные исследования ассоциаций (GWAS), направленные на поиск несинонимичных вариаций последовательности или однонуклеотидных полиморфизмов (SNP), ассоциированных с NAFLD, идентифицировали вариант PNPLA3, (rs738409[G], кодирующий I148M; который обозначают как PNPLA3-rs738409, PNPLA3-ma или минорный аллель PNPLA3), который достоверно ассоциирован с содержанием жира в печени. После этого первичного отчета последующие GWAS подтвердили PNPLA3 rs738409 в качестве основной генетической детерминанты NAFLD, достоверно ассоциированной с 1) повышенными уровнями сывороточного биомаркера повреждения печени, аланин-аминотрансферазы (ALT), 2) заболеваемостью, прогрессированием и тяжестью NAFLD, 3) выявляемой как у страдающих ожирением, так и у худых индивидуумов, и 4) с единственным известным SNP, который, как было установлено, достоверно ассоциирован со всеми стадиями NAFLD: стеатозом, NASH, циррозом и гепатоклеточной карциномой. Консенсус среди многочисленных GWAS указывает на то, что ассоциация PNPLA3 rs738409 с NAFLD является независимой от возраста, пола, этнической принадлежности, метаболического синдрома, индекса веса тела, инсулинорезистентности и липидов сыворотки крови. Кроме того, согласно статистическим анализам нескольких источников, примерно 50% пациентов с NAFLD являются носителями мутации PNPLA3 rs738409. Пациенты могут быть носителями гомозиготной или гетерозиготной мутации PNPLA3 rs738409. Кроме того, было обнаружено, что пациенты, имеющие мутацию PNPLA3 rs738409, также часто являются носителями мутации, отстоящей на 3 пары оснований от rs738408 (Tian et al. (2010) Nature Genetics 42:21-23). Таким образом, пациент может иметь минорный аллель PNPLA3-rs738409, минорный аллель PNPLA3-rs738408 или мутацию в двух минорных аллелях (PNPLA3-dma) PNPLA3-rs738409-rs738408.

Исследователи разработали мышиные модели для изучения функции PNPLA3 in vivo. На сегодняшний день не было выявлено детектируемого метаболического фенотипа, связанного с дефицитом Pnpla3 или сверхэкспрессией Pnpla3. И напротив, экспрессия Pnpla3 как у трансгенных мышей, так и у мышей с соответствующим нокином вызывала повышение уровня печеночных триглицеридов, подобное наблюдаемому при NAFLD. Таким образом, в совокупности данные, полученные на мышиной модели in vivo, указывают на экспрессию мутантнои формы белка Pnpla3^{I148M}, а не на сверхэкспрессию белка дикого типа в качестве фактора, способствующего развитию фенотипа заболевания. Эти наблюдения, помимо высокой частоты минорных аллелей у индивидуумов, страдающих NAFLD, и преобладающей связи с заболеванием, подчеркивают значение PNPLA3 rs738409 в качестве основной терапевтической мишени при NAFLD.

РНК-интерференция (RNAi) представляет собой процесс введения экзогенной РНК в клетку, который приводит к специфической деградации мРНК, кодирующей целевой белок, с последующим снижением экспрессии белка. Достижения как в области технологии RNAi, так и в области доставки в печень, а также растущие положительные результаты применения средств терапии на основе RNAi, предполагают, что RNAi представляет собой убедительное средство терапевтического воздействия на NAFLD путем прямого целенаправленного воздействия на PNPLA 3^{1148M} . Многочисленные GWAS указывают на наличие дозозависимого эффекта PNPLA3 rs738409 в отношении заболеваемости, прогрессирования и тяжести течения NAFLD (GWAS); наблюдалась тенденция к удвоению, если не большему увеличению, отношения шансов для носителей гомозиготного генотипа по сравнению с носителями гетерозиготного генотипа, но при этом отношение шансов было в по меньшей мере два раза больше для индивидуумов с гетерозиготным генотипом по сравнению с индивидуумами с аллелем дикого типа. Таким образом, сайленсинг PNPLA3, использующий специфичность распознавания аллелей, может быть как потенциальным средством для снижения уровней печеночных триглицеридов у носителей PNPLA3^{1148M}, так и представлять вариант, при котором гетерозиготные носители могут получить пользу без сайленсинга аллеля дикого типа. В соответствии с этим мы определили короткие интерферирующие РНК (siRNA), специфичные к SNP PNPLA3^{1148M}, и продемонстрировали доказательство концепции in vitro. Используя обе линии клеток гепатомы, Hep3B (гомозиготную по эталонному аллелю, PNPLA3¹¹⁴⁸¹) и HEPG2 (гомозиготную по минорному аллелю, PNPLA3^{II48M}), авторы настоящего изобретения идентифицировали последовательности siRNA, способные специфично подавлять экспрессию гена PNPLA3^{1148M}. Ингибиторный эффект данных последовательностей был подтвержден скринингом на клетках яичника китайского хомячка (CHO) со сверхэкспрессией PNPLA3^{I148I} либо PNPLA3^{I148M}. Используя адено-ассоциированный вирус (AAV) для достижения сверхэкспрессии in vivo PNPLA3^{II48M} человека, авторы настоящего изобретения затем показали, что обработка минорными аллель-специфическими SNP не только вызывала специфическое снижение экспрессии $PNPLA3^{1148M}$ человека у мышей, но также в значительной степени обращала вспять накопление печеночных триглицеридов, вызванное сверхэкспрессией $PNPLA3^{1148M}$ человека

Используемый в данном документе термин "конструкция для RNAi" относится к средству, содержащему молекулу РНК, которая при введении в клетку способна снижать экспрессию целевого гена (например, PNPLA3) посредством механизма РНК-интерференции. РНК-интерференция представляет собой процесс, посредством которого молекула нуклеиновой кислоты вызывает расщепление и деградацию молекулы целевой РНК (например, матричной РНК или мРНК) специфичным для последовательности образом, например через путь РНК-индуцированного комплекса сайленсинга (RISC). В некоторых вариантах осуществления конструкция для RNAi содержит молекулу двухнитевой РНК, содержащую две антипараллельные нити из смежных нуклеотидов, которые достаточно комплементарны друг другу, чтобы гибридизоваться с образованием дуплексного участка. Термины "гибридизовать" или "гибридизация" относятся к спариванию комплементарных полинуклеотидов, обычно с помощью водородных связей (например, связей Уотсона-Крика, Хугстина или обратной водородной связи Хугстина) между комплементарными основаниями в двух полинуклеотидах. Нить, содержащую участок, имеющий последовательность, которая по сути комплементарна целевой последовательности (например, целевой мРНК), называют "антисмысловой нитью". Термин "смысловая нить" относится к нити, которая включает участок, который по сути комплементарен участку антисмысловой нити. В некоторых вариантах осуществления смысловая нить может содержать участок, имеющий последовательность, которая по сути идентична целевой последовательности.

В некоторых вариантах осуществления в настоящем изобретении представлено средство для RNAi, направленное на PNPLA3. В некоторых вариантах осуществления настоящего изобретения представлено средство для RNAi, которое связывается с сайтом rs738409 PNPLA3. В некоторых вариантах осуществления настоящего изобретения представлено средство для RNAi, которое связывается с сайтом rs738408 PNPLA3. В некоторых вариантах осуществления настоящего изобретения представлено средство для RNAi, которое связывается как с сайтом rs738409, так и с сайтом rs738408 PNPLA3. В некоторых вариантах осуществления настоящего изобретения представлено средство для RNAi, которое предпочтительно связывается с rs738409 PNPLA3, а не с нативной последовательностью PNPLA3 (PNPLA3-ref). В некоторых вариантах осуществления настоящего изобретения представлено средство для RNAi, которое предпочтительно связывается с rs738408 PNPLA3, а не с последовательностью PNPLA3-ref. В некоторых вариантах осуществления настоящего изобретения представлено средство для RNAi, которое предпочтительно связывается с PNPLA3-dma, а не с PNPLA3-ma. В некоторых вариантах осуществления настоящего изобретения представлена молекула для RNAi, которая содержит любую из последовательностей, перечисленных в табл. 1 или 2.

Молекула двухнитевой РНК может включать химические модификации рибонуклеотидов, в том числе модификации компонентов рибонуклеотидов, представляющих собой рибозный сахар, основание или остов, таких как те, которые описаны в данном документе или известны из уровня техники. Любые такие модификации, которые используются в двухнитевой молекуле РНК (например, siRNA, shRNA или им подобные), охватываются термином "двухнитевая РНК" в целях настоящего изобретения.

Согласно терминологии, используемой в данном документе, первая последовательность "комплементарна" второй последовательности, если полинуклеотид, содержащий первую последовательность, может гибридизоваться с полинуклеотидом, содержащим вторую последовательность, с образованием дуплексного участка при определенных условиях, таких как физиологические условия. Другие такие условия могут включать умеренные или жесткие условия гибридизации, которые известны специалистам в данной области. Первая последовательность считается полностью комплементарной (комплементарной на 100%) второй последовательности, если полинуклеотид, содержащий первую последовательность оснований, соединяется с полинуклеотидом, содержащим вторую последовательность, по всей длине одной или обеих нуклеотидных последовательностей без каких-либо ошибочно спаренных оснований. Последовательность является "по сути комплементарной" целевой последовательности, если эта последовательность на по меньшей мере приблизительно 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% или 100% комплементарна целевой последовательности. Процент комплементарности может быть рассчитан путем деления числа оснований в первой последовательности, которые являются комплементарными основаниям в соответствующих положениях во второй или целевой последовательности, на общую длину первой последовательности. Можно также сказать, что последовательность является по сути комплементарной другой последовательности, когда при гибридизации этих двух последовательностей встречается не более 5, 4, 3, 2 или 1 ошибочно спаренных по дуплексному участку из 30 пар оснований. Как правило, если присутствуют какие-либо нуклеотидные липкие концы, как это указано в данном документе, последовательность таких липких концов не учитывается при определении степени комплементарности между двумя последовательностями. Например, смысловая нить длиной 21 нуклеотид и антисмысловая нить длиной 21 нуклеотид, которые гибридизуются с образованием дуплексного участка из 19 пар оснований с 2 нуклеотидными липкими концами на 3'-конце каждой нити, будут считаться полностью комплементарными в соответствии с термином, используемым в данном документе.

В некоторых вариантах осуществления участок антисмысловой нити содержит последовательность, которая полностью комплементарна участку целевой последовательности РНК (например, мРНК PNPLA3). В таких вариантах осуществления смысловая нить может содержать последовательность, которая полностью комплементарна последовательности антисмысловой нити. В других таких вариантах осуществления смысловая нить может содержать последовательность, которая по сути комплементарна последовательности антисмысловой нити, например, имея 1, 2, 3, 4 или 5 ошибочно спаренных оснований в дуплексном участке, образованном смысловой и антисмысловой нитями. В определенных вариантах осуществления предпочтительно, чтобы любые ошибочно спаренные основания находились в концевых участках (например, в пределах 6, 5, 4, 3, 2 или 1 нуклеотидов от 5'- и/или 3'-концов нитей). В одном варианте осуществления любые ошибочно спаренные основания в дуплексном участке, образованном из смысловой и антисмысловой нитей, находятся в пределах 6, 5, 4, 3, 2 или 1 нуклеотидов от 5'-конца антисмысловой нити.

В определенных вариантах осуществления смысловая нить и антисмысловая нить двухнитевой РНК могут представлять собой две отдельные молекулы, которые гибридизуются с образованием дуплексного участка, но в остальном не связаны. Такие двухнитевые молекулы РНК, образованные двумя отдельными нитями, называют "малыми интерферирующими РНК" или "короткими интерферирующими РНК" (siR-NA). Таким образом, в некоторых вариантах осуществления конструкции для RNAi по настоящему изобретению содержат siRNA.

Если две по сути комплементарные нити dsRNA образованы отдельными молекулами РНК, эти молекулы не должны, но могут быть ковалентно связаны. Там, где две нити ковалентно соединены иным способом, чем образование непрерывной цепи нуклеотидов между 3'-концом одной нити и 5'-концом соответствующей другой нити, образующей дуплексную структуру, соединяющую структуру называют "линкер". Нити РНК могут иметь одинаковое или разное количество нуклеотидов. Максимальное количество пар оснований в дуплексе равно числу нуклеотидов в самой короткой нити dsRNA за вычетом любых липких концов, которые присутствуют в дуплексе. В дополнение к дуплексной структуре RNAi могут содержать один или несколько нуклеотидных липких концов.

В других вариантах осуществления смысловая нить и антисмысловая нить, которые гибридизуются с образованием дуплексного участка, могут быть частью одной молекулы РНК, т.е. смысловые и антисмысловые нити могут быть частью самокомплементарного участка одиночной молекулы РНК. В таких случаях одиночная молекула РНК содержит дуплексный участок (также называемый как участок стебля) и участок петли. З'-конец смысловой нити соединяется с 5'-концом антисмысловой нити непрерывной последовательностью неспаренных нуклеотидов, которые будут образовывать участок петли. Участок петли обычно имеет длину, достаточную для того, чтобы молекула РНК могла свернуться обратно так, чтобы антисмысловая нить могла образовывать пару со смысловой нитью, образуя дуплекс или участок стебля. Участок петли может содержать от приблизительно 3 до приблизительно 25, от приблизительно 5 до приблизительно 15 или от приблизительно 8 до приблизительно 12 неспаренных нуклеотидов. Такие молекулы РНК с по меньшей мере частично самокомплементарными участками обозначают как "короткие шпильковые РНК" (shRNA). В некоторых вариантах осуществления участок петли может содержать по меньшей мере 1, 2, 3, 4, 5, 10, 20 или 25 неспаренных нуклеотидов. В некоторых вариантах осуществления участок петли может содержать 10, 9, 8, 7, 6, 5, 4, 3, 2 или меньше неспаренных нуклеотидов. В определенных вариантах осуществления конструкции для RNAi по настоящему изобретению содержат shRNA. Длина одной, по меньшей мере, частично самокомплементарной молекулы РНК может составлять от приблизительно 35 нуклеотидов до приблизительно 100 нуклеотидов, от приблизительно 45 нуклеотидов до приблизительно 85 нуклеотидов или от приблизительно 50 до приблизительно 60 нуклеотидов, и содержать дуплексный участок и участок петли, каждый из которых имеет длину, указанную в данном документе.

В некоторых вариантах осуществления конструкции для RNAi по настоящему изобретению содержат смысловую нить и антисмысловую нить, где антисмысловая нить содержит участок, имеющий последовательность, которая по сути или полностью комплементарна последовательности матричной PHK (мРНК) PNPLA3. Используемый в данном документе термин "последовательность мРНК PNPLA3" относится к любой последовательности матричной PHK, включая сплайс-варианты, кодирующие белок PNPLA3, включая варианты белка PNPLA3 или изоформы любых видов (например, мыши, крысы, нечеловекообразного примата, человека). Белок PNPLA 3 также известен как адипонутрин (ADPN) и кальций-независимая фосфолипаза A2-эпсилон (iPLA(2)є)).

Последовательность мРНК PNPLA3 также включает последовательность транскрипта, экспрессируемого в виде последовательности комплементарной ДНК (кДНК). Термин "последовательность кДНК" относится к последовательности транскрипта мРНК, экспрессируемой в виде оснований ДНК (например, гуанина, аденина, тимина и цитозина), но не оснований РНК (например, гуанина, аденина, урацила и цитозина). Таким образом, антисмысловая нить конструкции для RNAi по настоящему изобретению может содержать участок, имеющий последовательность, которая по сути или полностью комплементарна последовательности мРНК PNPLA3 или последовательности кДНК PNPLA3. мРНК PNPLA3 или последо-

вательность кДНК может включать без ограничения любую мРНК PNPLA3 или последовательность кДНК такую как те, которые могут быть получены из эталонной последовательности NCBI NM 025225.2.

Участок антисмысловой нити может быть по сути комплементарен или полностью комплементарен по меньшей мере 15 последовательным нуклеотидам из последовательности мРНК PNPLA3. В некоторых вариантах осуществления целевой участок последовательности мРНК PNPLA3, антисмысловая нить которого содержит комплементарный участок, может составлять от приблизительно 15 до приблизительно 30 последовательных нуклеотидов, от приблизительно 16 до приблизительно 28 последовательных нуклеотидов, от приблизительно 18 до приблизительно 26 последовательных нуклеотидов, от приблизительно 17 до приблизительно 24 последовательных нуклеотидов, от приблизительно 19 до приблизительно 25 последовательных нуклеотидов, от приблизительно 19 до приблизительно 23 последовательных нуклеотидов или от приблизительно 19 до приблизительно 21 последовательных нуклеотидов. В определенных вариантах осуществления участок антисмысловой нити, содержащий последовательность, которая по сути или полностью комплементарна последовательности мРНК PNPLA3, в некоторых вариантах осуществления может содержать по меньшей мере 15 смежных нуклеотидов из антисмысловой последовательности, представленной в табл. 1 или 2. В других вариантах осуществления антисмысловая последовательность содержит по меньшей мере 16, по меньшей мере 17, по меньшей мере 18 или по меньшей мере 19 смежных нуклеотидов из антисмысловой последовательности, представленной в табл. 1 или 2. В некоторых вариантах осуществления смысловая и/или антисмысловая последовательность содержит по меньшей мере 15 нуклеотидов из последовательности, представленной в табл. 1 или 2, с не более чем 1, 2 или 3 ошибочно спаренными нуклеотидами.

Смысловая нить конструкции для RNAi обычно содержит последовательность, которая настолько комплементарна последовательности антисмысловой нити, что две нити гибридизуются в физиологических условиях с образованием дуплексного участка. Термин "дуплексный участок" относится к участку в двух комплементарных или по сути комплементарных полинуклеотидах, которые образуют пары оснований друг с другом либо путем спаривания оснований по Уотсону-Крику, либо посредством другого взаимодействия водородных связей, создавая дуплекс между двумя полинуклеотидами. Дуплексный участок конструкции для RNAi должен быть достаточной длины, чтобы позволить конструкции для RNAi встраиваться в механизм РНК-интерференции, например, путем взаимодействия с ферментом Dicer и/или комплексом RISC. Например, в некоторых вариантах осуществления дуплексный участок имеет длину от приблизительно 15 до приблизительно 30 пар оснований. Другие значения длины дуплексного участка в данном диапазоне также являются подходящими, такие как от приблизительно 15 до приблизительно 28 пар оснований, от приблизительно 15 до приблизительно 26 пар оснований, от приблизительно 15 до приблизительно 24 пар оснований, от приблизительно 15 до приблизительно 22 пар оснований, от приблизительно 17 до приблизительно 28 пар оснований, от приблизительно 17 до приблизительно 26 пар оснований, от приблизительно 17 до приблизительно 24 пар оснований, от приблизительно 17 до приблизительно 23 пар оснований, от приблизительно 17 до приблизительно 21 пары оснований, от приблизительно 19 до приблизительно 25 пар оснований, от приблизительно 19 до приблизительно 23 пар оснований или от приблизительно 19 до приблизительно 21 пары оснований. В одном варианте осуществления дуплексный участок имеет длину от приблизительно 17 до приблизительно 24 пар оснований. В другом варианте осуществления дуплексный участок имеет длину от приблизительно 19 до приблизительно 21 пары оснований.

В некоторых вариантах осуществления средство для RNAi по настоящему изобретению содержит дуплексный участок от приблизительно 24 до приблизительно 30 нуклеотидов, который взаимодействует с целевой последовательностью РНК, например, целевой последовательностью мРНК PNPLA3, чтобы направлять расщепление целевой РНК. Не ограничиваясь теорией, авторы настоящего изобретения напоминают, что длинная двухнитевая РНК, вводимая в клетки, может быть разрезана до siRNA посредством эндонуклеазы III типа, известной как Dicer (Sharp et al. (2001) Genes Dev. 15:485). Dicer, фермент, подобный рибонуклеазе III, осуществляет процессинг dsRNA с образованием коротких интерферирующих РНК длиной 19-23 пар оснований с характерными 3'-липкими концами длиной в два основания (Bernstein, et al. (2001) Nature 409:363). Затем siRNA встраиваются в состав комплекса сайленсинга, индуцированного РНК (RISC), в котором одна или несколько хеликаз расплетают дуплекс siRNA, что позволяет комплементарной антисмысловой нити направлять распознавание мишени (Nykanen, et al. (2001) Cell 107:309). При связывании с соответствующей целевой мРНК одна или несколько эндонуклеаз в составе комплекса RISC расщепляют мишень с индуцированием сайленсинга (Elbashir, et al. (2001) Genes Dev. 15: 188).

Для тех вариантов осуществления, в которых смысловая нить и антисмысловая нить являются двумя отдельными молекулами (например, в том случае, когда конструкция для RNAi содержит siRNA), смысловая нить и антисмысловая нить не должны быть такой же длины, как длина дуплексного участка. Например, одна или обе нити могут быть длиннее дуплексного участка и содержать один или несколько неспаренных нуклеотидов или ошибочно спаренных нуклеотидов, фланкирующих дуплексный участок. Таким образом, в некоторых вариантах осуществления конструкция для RNAi содержит по меньшей ме-

ре один нуклеотидный липкий конец. Используемый в данном документе термин "нуклеотидный липкий конец" относится к неспаренному нуклеотиду или нуклеотидам, которые выступают за пределы дуплексного участка на терминальных концах нитей. Нуклеотидные липкие концы обычно образуются в том случае, когда 3'-конец одной нити выступает за пределы 5'-конца другой нити или когда 5'-конец одной нити выступает за пределы 3'-конца другой нити. Длина нуклеотидного липкого конца обычно составляет от 1 до 6 нуклеотидов, от 1 до 5 нуклеотидов, от 1 до 4 нуклеотидов, от 1 до 3 нуклеотидов, от 2 до 6 нуклеотидов, от 2 до 5 нуклеотидов или от 2 до 4 нуклеотидов. В некоторых вариантах осуществления нуклеотидный липкий конец содержит 1, 2, 3, 4, 5 или 6 нуклеотидов. В одном конкретном варианте осуществления нуклеотидный липкий конец содержит от 1 до 4 нуклеотидов. В определенных вариантах осуществления нуклеотидный липкий конец содержит 2 нуклеотида. Нуклеотиды в составе липкого конца могут представлять собой рибонуклеотиды, дезоксирибонуклеотиды или модифицированные нуклеотиды, описанные в данном документе. В некоторых вариантах осуществления липкий конец содержит динуклеотид, представляющий собой 5'-уридин-уридин-3' (5'-UU-3'). В таких вариантах осуществления динуклеотид UU может содержать рибонуклеотиды или модифицированные нуклеотиды, например, 2'модифицированные нуклеотиды. В других вариантах осуществления липкий конец содержит динуклеотид, представляющий собой 5'-дезокситимидин-дезокситимидин-3' (5'-dTdT-3').

Нуклеотидный липкий конец может находиться на 5'-конце или 3'-конце одной или обеих нитей. Например, в одном варианте осуществления конструкция для RNAi содержит нуклеотидный липкий конец на 5'-конце и на 3'-конце антисмысловой нити. В другом варианте осуществления конструкция для RNAi содержит нуклеотидный липкий конец на 5'-конце и на 3'-конце смысловой нити. В некоторых вариантах осуществления конструкция для RNAi содержит нуклеотидный липкий конец на 5'-конце смысловой нити и на 5'-конце антисмысловой нити. В других вариантах осуществления конструкция для RNAi содержит нуклеотидный липкий конец на 3'-конце смысловой нити и на 3'-конце антисмысловой нити.

Конструкции для RNAi могут содержать один нуклеотидный липкий конец на одном конце молекулы двухнитевой РНК и тупой конец на другом. Термин "тупой конец" означает, что смысловая нить и антисмысловая нить полностью спарены по основаниям на конце молекулы и что отсутствуют какиелибо неспаренные нуклеотиды, которые выступают за пределы дуплексного участка. В некоторых вариантах осуществления конструкция для RNAi содержит нуклеотидный липкий конец на 3'-конце смысловой нити и тупой конец на 5'-конце смысловой нити и на 3'-конце антисмысловой нити. В других вариантах осуществления конструкция для RNAi содержит нуклеотидный липкий конец на 3'-конце антисмысловой нити и тупой конец на 5'-конце антисмысловой нити и на 3'-конце смысловой нити. В определенных вариантах осуществления конструкция для RNAi содержит тупой конец на обоих концах молекулы двухнитевой РНК. В таких вариантах осуществления смысловая нить и антисмысловая нить имеют одинаковую длину, а дуплексный участок имеет такую же длину, как смысловая и антисмысловая нити (т. е. молекула является двухнитевой по всей ее длине).

Длина каждой смысловой нити и антисмысловой нити может независимо составлять от приблизительно 15 до приблизительно 30 нуклеотидов, от приблизительно 18 до приблизительно 28 нуклеотидов, от приблизительно 19 до приблизительно 27 нуклеотидов, от приблизительно 19 до приблизительно 25 нуклеотидов, от приблизительно 19 до приблизительно 23 нуклеотидов, от приблизительно 21 до приблизительно 25 нуклеотидов или от приблизительно 21 до приблизительно 23 нуклеотидов. В определенных вариантах осуществления длина каждой смысловой нити и антисмысловой нити составляет приблизительно 18, приблизительно 19, приблизительно 20, приблизительно 21, приблизительно 22, приблизительно 23, приблизительно 24 или приблизительно 25 нуклеотидов. В некоторых вариантах осуществления смысловая нить и антисмысловая нить имеют одинаковую длину, но образуют дуплексный участок, который короче данных нитей, поэтому конструкция для RNAi содержит два нуклеотидных липки конца. К примеру, в одном варианте осуществления конструкция для RNAi содержит (i) смысловую нить и антисмысловую нить, каждая из которых имеет длину 21 нуклеотид, (іі) дуплексный участок, который имеет длину 19 пар оснований, и (ііі) нуклеотидные липкие концы из 2 неспаренных нуклеотидов как на 3'-конце смысловой нити, так и на 3'-конце антисмысловой нити. В другом варианте осуществления конструкция для RNAi содержит (i) смысловую нить и антисмысловую нить, каждая из которых имеет длину 23 нуклеотида, (іі) дуплексный участок, имеющий длину 21 пара оснований, и (ііі) нуклеотидные липкие концы из 2 неспаренных нуклеотидов как на 3'-конце смысловой нити, так и на 3'-конце антисмысловой нити. В других вариантах осуществления смысловая нить и антисмысловая нить имеют одинаковую длину и образуют дуплексный участок по всей их длине, поэтому на обоих липких концах двухнитевой молекулы отсутствуют нуклеотидные липкие концы. В одном таком варианте осуществления конструкция для RNAi имеет тупые концы и содержит (i) смысловую нить и антисмысловую нити, каждая из которых имеет длину 21 нуклеотид, и (іі) дуплексный участок, имеющий длину 21 пара оснований. В другом таком варианте осуществления конструкция для RNAi имеет тупые концы и содержит (i) смысловую нить и антисмысловую нить, каждая из которых имеет длину 23 нуклеотида, и (іі) дуплексный участок, имеющий длину 23 пары оснований.

В других вариантах осуществления смысловая нить или антисмысловая нить длиннее другой нити,

и при этом две нити образуют дуплексный участок, длина которого равна длине более короткой нити, поэтому конструкция для RNAi содержит по меньшей мере один нуклеотидный липкий конец. Например, в одном варианте осуществления конструкция для RNAi содержит (i) смысловую нить длиной 19 нуклеотидов, (ii) антисмысловую нить длиной 21 нуклеотид, (iii) дуплексный участок, имеющий длину 19 пар оснований, и (iv) один нуклеотидный липкий конец из 2 неспаренных нуклеотидов на 3'-конце антисмысловой нити. В другом варианте осуществления конструкция для RNAi содержит (i) смысловую нить длиной 21 нуклеотид, (ii) антисмысловую нить длиной 23 нуклеотида, (iii) дуплексный участок, имеющий длину 21 пара оснований, и (iv) один нуклеотидный липкий конец из 2 неспаренных нуклеотидов на 3'-конце антисмысловой нити.

Антисмысловая нить конструкции для RNAi по настоящему изобретению может содержать последовательность из любой из антисмысловых последовательностей, представленных в табл. 1 или табл. 2, или последовательность нуклеотидов 1-19 любой из данных антисмысловых последовательностей. Каждая из антисмысловых последовательностей, представленных в табл. 1 и 6, содержит последовательность из 19 последовательных нуклеотидов (первые 19 нуклеотидов, считая с 5'-конца), которая комплементарна последовательности мРНК PNPLA3, плюс последовательность нуклеотидного липкого конца, состоящего из двух нуклеотидов. Таким образом, в некоторых вариантах осуществления антисмысловая нить содержит последовательность нуклеотидов 1-19 из любой из SEQ ID NO: 1-166 или 167-332.

Модифицированные нуклеотиды

Конструкции для RNAi по настоящему изобретению могут содержать один или несколько модифицированных нуклеотидов. Термин "модифицированный нуклеотид" относится к нуклеотиду, который имеет одну или больше химических модификаций нуклеозида, нуклеинового основания, пентозного кольца или фосфатной группы. Используемые в данном документе "модифицированные нуклеотиды" не охватывают рибонуклеотиды, содержащие аденозинмонофосфат, гуанозинмонофосфат, уридинмонофосфат, дезоксигуанозинмонофосфат, и дезоксирибонуклеотиды, содержащие дезоксиаденозинмонофосфат, дезоксигуанозинмонофосфат и дезоксицитидинмонофосфат. Однако конструкции для RNAi могут содержать комбинации модифицированных нуклеотидов, рибонуклеотидов и дезоксирибонуклеотидов. Встраивание модифицированных нуклеотидов в одну или обе нити двухнитевых молекул PHK может улучшать стабильность молекул PHK in vivo, например, за счет снижения восприимчивости молекул к нуклеазам и другим процессам деградации. Эффективность конструкций для RNAi в отношении снижения экспрессии целевого гена также можно повысить путем встраивания модифицированных нуклеотидов.

В определенных вариантах осуществления модифицированные нуклеотиды имеют модификацию рибозного сахара. Данные модификации сахара могут включать модификации в 2'- и/или 5'-положении пентозного кольца, а также модификации бициклического сахара. Термин "2'-модифицированный нуклеотид" относится к нуклеотиду, имеющему пентозное кольцо с заместителем в положении 2', отличным от H или OH. Такие 2'-модификации включают без ограничения 2'-О-алкил (например, O-C $_1$ -C $_1$ 0 или О-C $_1$ -C $_1$ 0 замещенный алкил), 2'-О-аллил (O-CH $_2$ CH=CH $_2$), 2'-С-аллил, 2'-фторо, 2'-О-метил (ОСН $_3$), 2'-О-метоксиэтил (О-(CH $_2$) $_2$ OCH $_3$), 2'-О(CH $_2$) $_2$ SCH $_3$, 2'-О-аминоалкил, 2'-амино (например, NH $_2$), 2'-О-этиламин и 2'-азидо. Модификации в 5'-положении пентозного кольца включают без ограничения 5'-метил (R или S); 5'-винил и 5'-метокси.

Термин "бициклическая модификация сахара" относится к модификации пентозного кольца, при которой мостик соединяет два атома кольца с образованием второго кольца, что приводит к образованию бициклической структуры сахара. В некоторых вариантах осуществления бициклическая модификация сахара предусматривает мостик между атомами углерода пентозного кольца в 4'- и 2'-положениях. Нуклеотиды, содержащие сахарный фрагмент с бициклической модификацией сахара, используются в данном документе как термин "бициклические нуклеиновые кислоты" или ВNА. Иллюстративные бициклические модификации сахара включают без ограничения a-L-метиленокси (4'-CH₂-O-2') бициклическую нуклеиновую кислоту (BNA); β-D-метиленокси (4'-CH₂-O-2') BNA (также называемую закрытой нуклеиновой кислотой или LNA); этиленокси (4'-(CH₂)₂-O-2') BNA; аминоокси (4'-CH₂-O-N(R)-2') BNA; оксиамино (4'-CH₂-N(R)-O-2') BNA; метил (метиленокси) (4'-CH(CH₃)-O-2') BNA (также называемую конформационно затрудненную этилом или cEt); метилен-тио (4'-CH₂-S-2') BNA; метилен-амино (4'-CH₂-N(R)-2') BNA; метилкарбоциклическую (4'-CH₂-CH(CH₃)-2') BNA; пропиленкарбоциклическую (4'-(CH₂)₃-2') BNA и метокси (этиленокси) (4'-CH(CH₂OMe)-O-2') BNA (также называемую конформационно затрудненной МОЕ или сМОЕ). Эти и другие нуклеотиды с модифицированным сахаром, которые могут быть встроены в конструкции для RNAi по настоящему изобретению, описаны в патенте США № 9181551, в публикации патента США № 2016/0122761 и у Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, при этом все они включены в данный документ посредством ссылки во всей своей полноте.

В некоторых вариантах осуществления конструкции для RNAi содержат один или несколько 2'-фтор-модифицированных нуклеотидов, 2'-О-метил-модифицированных нуклеотидов, 2'-О-метоксиэтил-модифицированный нуклеотидов, 2'-О-аллил-модифицированных нуклеотидов, бициклических нуклеиновых кислот (BNA) или их комбинации. В определенных вариантах осуществления конструкции для RNAi содержат один или несколько 2'-фтор-модифицированных нуклеотидов, 2'-О-метил-

модифицированных нуклеотидов, 2'-О-метоксиэтил-модифицированных нуклеотидов или их комбинации. В одном конкретном варианте осуществления конструкции для RNAi содержат один или несколько 2'-фтор-модифицированных нуклеотидов, 2'-О-метил-модифицированных нуклеотидов или их комбинации.

Как смысловые, так и антисмысловые нити конструкций для RNAi могут содержать один или несколько модифицированных нуклеотидов. Например, в некоторых вариантах осуществления смысловая нить содержит 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или больше модифицированных нуклеотидов. В определенных вариантах осуществления все нуклеотиды в смысловой нити представляют собой модифицированные нуклеотиды. В некоторых вариантах осуществления антисмысловая нить содержит 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или больше модифицированных нуклеотидов. В других вариантах осуществления все нуклеотиды в антисмысловой нити представляют собой модифицированные нуклеотиды. В некоторых других вариантах осуществления все нуклеотиды в смысловой нити и все нуклеотиды в антисмысловой нити представляют собой модифицированные нуклеотиды. В этих и других вариантах осуществления модифицированные нуклеотиды могут представлять собой 2'-фтор-модифицированные нуклеотиды, 2'-О-метилмодифицированные нуклеотиды или их комбинации.

В некоторых вариантах осуществления все пиримидиновые нуклеотиды, предшествующие аденозиновому нуклеотиду в смысловой нити, антисмысловой нити или в обеих нитях, представляют собой модифицированные нуклеотиды. Например, там, где в любой нити появляется последовательность 5'-CA-3' или 5'-UA-3', нуклеотиды цитидин и уридин представляют собой модифицированные нуклеотиды, предпочтительно 2'-О-метил-модифицированные нуклеотиды. В определенных вариантах осуществления все пиримидиновые нуклеотиды в смысловой нити являются модифицированными нуклеотидами (например, 2'-О-метил-модифицированными нуклеотидами), а 5'-нуклеотиды во всех случаях последовательности 5'-CA-3' или 5'-UA-3' в антисмысловой нити являются модифицированными нуклеотидами (например, 2'-О-метил-модифицированными нуклеотидами). В других вариантах осуществления все нуклеотиды в дуплексном участке представляют собой модифицированные нуклеотиды. В таких вариантах осуществления модифицированные нуклеотиды предпочтительно представляют собой 2'-О-метил-модифицированные нуклеотиды, 2'-фтор-модифицированные нуклеотиды или их комбинации.

В ряде вариантов осуществления, в которых конструкция для RNAi содержит нуклеотидный липкий конец, нуклеотиды в липком конце могут представлять собой рибонуклеотиды, дезоксирибонуклеотиды или модифицированные нуклеотиды. В одном варианте осуществления нуклеотиды в липком конце представляют собой дезоксирибонуклеотиды, например, дезокситимидин. В другом варианте осуществления нуклеотиды в липком конце представляют собой модифицированные нуклеотиды. Например, в некоторых вариантах осуществления нуклеотиды в липком конце представляют собой 2'-О-метилмодифицированные нуклеотиды, 2'-фтор-модифицированные нуклеотиды, 2'-метоксиэтилмодифицированные нуклеотиды или их комбинации.

Конструкции для RNAi по настоящему изобретению могут также содержать одну или несколько модифицированных межнуклеотидных связей. Используемый в данном документе термин "модифицированная межнуклеотидная связь" относится к межнуклеотидной связи, отличной от природной 3'-5'фосфодиэфирной связи. В некоторых вариантах осуществления модифицированная межнуклеотидная связь представляет собой фосфорсодержащую межнуклеотидную связь, такую как сложную фосфотриэфирную, сложную аминоалкилфосфотриэфирную, алкилфосфонатную (например, метилфосфонатную, 3'-алкиленфосфонатную), фосфинатную, фосфорамидатную (например, 3'-аминофосфорамидатную и аминоалкилфосфорамидатную), фосфоротиоатную (P=S), хиралфосфоротиоатную, фосфородитиоатную, тионофосфорамидатную, тионоалкилфосфонатную, сложную атионоалкилфосфотриэфирную и боранофосфатную. В одном варианте осуществления модифицированная межнуклеотидная связь представляет собой сложную 2'-5'-фосфодиэфирную связь. В других вариантах осуществления модифицированная межнуклеотидная связь представляет собой нефосфорную межнуклеотидную связь и, таким образом, может упоминаться как модифицированная межнуклеозидная связь. Такие нефосфорсодержащие связи включают без ограничения морфолиновые связи (образованные частично из сахарной части нуклеозида); силоксановые связи (-O-Si(H)2-O-); сульфидные, сульфоксидные и сульфоновые связи; формацетильные и тиоформацетильные связи; алкенсодержащие остовы; сульфаматные остовы; метиленметилиминовые (-CH₂-N(CH₃)-O-CH₂-) и метиленгидразиновые связи; сульфонатные и сульфонамидные связи; амидные связи и другие, имеющие смешанные составные части, содержащие N, O, S и CH₂. В одном варианте осуществления модифицированная межнуклеозидная связь представляет собой пептидную связь (например, аминоэтилглицин) для создания пептидной нуклеиновой кислоты или PNA, такой как описанной в патентах США №№ 5539082; 5714331 и 5719262. Другие подходящие модифицированные межнуклеотидные и межнуклеозидные связи, которые могут быть использованы в конструкции для RNAi по настоящему изобретению, описаны в патенте США № 6693187, патенте США № 9181551, в публикации патента США № 2016/0122761 и у Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, при этом все они включены в данный документ посредством ссылки во всей своей полноте.

В определенных вариантах осуществления конструкции для RNAi содержат одну или несколько фосфоротиоатных межнуклеотидных связей. Фосфоротиоатные межнуклеотидные связи могут присутст-

вовать в смысловой нити, антисмысловой нити или в обеих нитях конструкции для RNAi. К примеру, в некоторых вариантах осуществления смысловая нить содержит 1, 2, 3, 4, 5, 6, 7, 8 или больше фосфоротиоатных межнуклеотидных связей. В других вариантах осуществления антисмысловая нить содержит 1, 2, 3, 4, 5, 6, 7, 8 или больше фосфоротиоатных межнуклеотидных связей. В дополнительных вариантах осуществления обе нити содержат 1, 2, 3, 4, 5, 6, 7, 8 или больше фосфоротиоатных межнуклеотидных связей. Конструкции для RNAi могут содержать одну или больше фосфоротиоатных межнуклеотидных связей на 3'-конце, 5'-конце, или как на 3'-, так и на 5'-концах смысловой нити, антисмысловой нити или обеих нитей. Например, в определенных вариантах осуществления конструкция для RNAi содержит от приблизительно 1 до приблизительно 6 или больше (например, приблизительно 1, 2, 3, 4, 5, 6 или больше) последовательных фосфоротиоатных межнуклеотидных связей на 3'-конце смысловой нити, антисмысловой нити или обеих нитей. В других вариантах осуществления конструкция для RNAi содержит от приблизительно 1 до приблизительно 6 или больше (например, приблизительно 1, 2, 3, 4, 5, 6 или больше) последовательных фосфоротиоатных межнуклеотидных связей на 5'-конце смысловой нити, антисмысловой нити или обеих нитей. В одном варианте осуществления конструкция для RNAi содержит одну фосфоротиоатную межнуклеотидную связь на 3'-конце смысловой нити и одну фосфоротиоатную межнуклеотидную связь на 3'-конце антисмысловой нити. В другом варианте осуществления конструкция для RNAi содержит две последовательные фосфоротиоатные межнуклеотидные связи на 3'-конце антисмысловой нити (т.е. фосфоротиоатную межнуклеотидную связь в случае первой и второй межнуклеотидных связей на 3'-конце антисмысловой нити). В другом варианте осуществления конструкция для RNAi содержит две последовательные фосфоротиоатные межнуклеотидные связи как на 3'-, так и на 5'концах антисмысловой нити. В еще одном варианте осуществления конструкция для RNAi содержит две последовательные фосфоротиоатные межнуклеотидные связи как на 3'-, так и на 5'-концах антисмысловой нити и две последовательные фосфоротиоатные межнуклеотидные связи на 5'-конце смысловой нити. В еще одном варианте осуществления конструкция для RNAi содержит две последовательные фосфоротиоатные межнуклеотидные связи как на 3'-, так и на 5'-концах антисмысловой нити и две последовательных фосфоротиоатные межнуклеотидные связи как на 3'-, так и на 5'-концах смысловой нити (т. е. фосфоротиоатную межнуклеотидную связь в первой и второй межнуклеотидной связях как на 5'-, так и на 3'-концах антисмысловой нити и фосфоротиоатную межнуклеотидную связь в первой и второй межнуклеотидной связях как на 5'-, так и на 3'-концах смысловой нити). В любом из вариантов осуществления, в котором одна или обе нити содержат одну или несколько фосфоротиоатных межнуклеотидных связей, остальные межнуклеотидные связи внутри цепей могут представлять собой природные сложные 3'-5'-фосфодиэфирные связи. Например, в некоторых вариантах осуществления каждая межнуклеотидная связь смысловой и антисмысловой нитей выбрана из сложного фосфодиэфира и фосфоротиоата, где по меньшей мере одна межнуклеотидная связь представляет собой фосфоротиоат.

В ряде вариантов осуществления, в которых конструкция для RNAi содержит нуклеотидный липкий конец, два или более неспаренных нуклеотида в составе липкого конца могут быть соединены посредством фосфоротиоатной межнуклеотидной связи. В определенных вариантах осуществления все неспаренные нуклеотиды в нуклеотидном липком конце на 3'-конце антисмысловой нити и/или смысловой нити соединены фосфоротиоатными межнуклеотидными связями. В других вариантах осуществления все неспаренные нуклеотиды в нуклеотидном липком конце на 5'-конце антисмысловой нити и/или смысловой нити соединены фосфоротиоатными межнуклеотидными связями. В еще одних дополнительных вариантах осуществления все неспаренные нуклеотиды в любом нуклеотидном липком конце соединены фосфоротиоатными межнуклеотидными связями.

В определенных вариантах осуществления модифицированные нуклеотиды, встроенные в одну или обе нити конструкции для RNAi по настоящему изобретению, имеют модификацию нуклеинового основания (также называемого в данном документе как "основание"). Термин "модифицированное нуклеиновое основание" или "модифицированное основание" относится к основанию, отличному от встречающихся в природе пуриновых оснований аденина (A) и гуанина (G) и пиримидиновых оснований тимина (T), цитозина (C) и урацила (U). Модифицированные нуклеиновые основания могут быть синтетическими или встречающимися в природе модификациями и включают без ограничения универсальные основания, 5-метилцитозин (5-me-C), 5-гидроксиметилцитозин, ксантин (X), гипоксантин (I), 2-аминоаденин, 6-метиладенин, 6-метилгуанин и другие алкильные производные аденина и гуанина, 2-тиоурацил, 2-тиотимин и 2-тиоцитозин, 5-галоурацил и -цитозин, 5-пропинилурацил и -цитозин, 6-азоурацил, -цитозин и -тимин, 5-урацил (псевдоурацил), 4-тиоурацил, 8-гало, 8-амино, 8-тиол, 8-тиоалкил, 8-гидроксил и другие 8-замещенные аденины и гуанины, 5-галогено, в частности, 5-бром, 5-трифторметил и другие 5-замещенные урацилы и цитозины, 7-метилгуанин и 7-метиладенин, 8-азагуанин и 8-азааденин, 7-дезазагуанин и 7-дезазааденин, 3-дезазааденин.

В некоторых вариантах осуществления модифицированное основание представляет собой универсальное основание. Термин "универсальное основание" относится к аналогу основания, который неизбирательно образует пары оснований со всеми природными основаниями в РНК и ДНК без изменения двойной спиральной структуры образовавшегося дуплексного участка. Универсальные основы известны

специалистам в данной области и включают без ограничения инозин, С-фенил, С-нафтил и другие ароматические производные, азольные карбоксамиды и производные нитроазола, такие как 3-нитропиррол, 4-нитроиндол, 5-нитроиндол и 6-нитроиндол.

Другие подходящие модифицированные основания, которые могут быть встроены в конструкции для RNAi по настоящему изобретению, включают те, которые описаны в публикациях Herdewijn, Antisense Nucleic Acid Drug Dev., Vol. 10:297-310, 2000 и Peacock et al., J. Org. Chern., Vol. 76: 7295-7300, 2011, при этом все они включены в данный документ посредством ссылки во всей их полноте. Специалисту в данной области хорошо известно, что гуанин, цитозин, аденин, тимин и урацил могут быть заменены другими нуклеиновыми основаниями, такими как модифицированные нуклеиновые основания, описанные выше, без существенного изменения свойств спаривания оснований у полинуклеотида, содержащего нуклеотид с таким замещенным нуклеиновым основанием.

В некоторых вариантах осуществления конструкции для RNAi по настоящему изобретению 5'конец смысловой нити, антисмысловой нити или как антисмысловой, так и смысловой нити содержит фосфатный фрагмент. Используемый в данном документе термин "фосфатный фрагмент" относится к концевой фосфатной группе, которая включает немодифицированные фосфаты (-O-P=O)(OH)OH), а также модифицированные фосфаты. Модифицированные фосфаты включают фосфаты, в которых одна или несколько групп О и ОН заменены на H, O, S, N (R) или алкил, где R представляет собой H, защитную аминогруппу или незамещенный или замещенный алкил. Иллюстративные фосфатные фрагменты вклюбез ограничения 5'-монофосфат; 5'-дифосфат; 5'-трифосфат; 5'-гуанозиновый метилированный или неметилированный); 5'-аденозиновый кэп или любую другую модифицированную или немодифицированную структуру нуклеотидного кэпа; 5'-монотиофосфат (фосфоротиоат); 5'-(фосфородитиоат); монодитиофосфат 5'-альфа-тиотрифосфат; 5'-гамма-тиотрифосфат, фосфороамидаты; 5'-винилфосфаты; 5'-алкилфосфонаты (например, алкил=метил, этил, изопропил, пропил и т.д.) и 5'-алкилэфирфосфонаты (например, алкилэфир=метоксиметил, этоксиметил и т.д).

Модифицированные нуклеотиды, которые могут быть встроены в конструкции для RNAi по настоящему изобретению, могут иметь более одной химической модификации из описанных в данном документе. Например, модифицированный нуклеотид может иметь модификацию рибозного сахара, а также модификацию нуклеинового основания. В качестве примера модифицированный нуклеотид может содержать 2'-модификацию сахара (например, 2'-фтор и 2'-метил) и содержать модифицированное основание (например, 5-метилцитозин или псевдоурацил). В других вариантах осуществления модифицированный нуклеотид может содержать модификацию сахара в сочетании с модификацией 5'-фосфата, при этом когда модифицированный нуклеотид будет включен в полинуклеотид, образуется модифицированная межнуклеотидная или межнуклеозидная связь. Например, в некоторых вариантах осуществления модифицированный нуклеотид может содержать модификацию сахара, такую как 2'-фтор-модификация, 2'-О-метил-модификация или бициклическая модификация сахара, а также 5'-фосфоротиоатную группу. Соответственно, в некоторых вариантах осуществления одна или обе нити конструкции для RNAi по настоящему изобретению содержат комбинацию 2'-модифицированных нуклеотидов или BNA и фосфоротиоатных межнуклеотидных связей. В определенных вариантах осуществления как смысловые, так и антисмысловые нити конструкции для RNAi по настоящему изобретению содержат комбинацию 2'-фтормодифицированных нуклеотидов, 2'-О-метил-модифицированных нуклеотидов и фосфоротиоатных межнуклеотидных связей. Иллюстративные конструкции для RNAi, содержащие модифицированные нуклеотиды и межнуклеотидные связи, показаны в табл. 2.

Функция конструкции для RNAi

Предпочтительно конструкции для RNAi по настоящему изобретению снижают или подавляют экспрессию PNPLA3 в клетках, в частности в клетках печени.

Соответственно, в одном варианте осуществления настоящего изобретения представлен способ снижения экспрессии PNPLA3i в клетке путем приведения клетки в контакт с любой конструкцией для RNAi, описанной в данном документе. Клетка может находиться в условиях in vitro или in vivo. Экспрессию PNPLA3 можно оценивать путем измерения количества или уровня мРНК PNPLA3, белка PNPLA3 или другого биомаркера, связанного с экспрессией PNPLA3. Снижение экспрессии PNPLA3 в клетках или у животных, обработанных конструкцией для RNAi по настоящему изобретению, можно определить по сравнению с экспрессией PNPLA3 в клетках или у животных, не обработанных конструкцией для RNAi, либо обработанных контрольной конструкцией для RNAi. Например, в некоторых вариантах осуществления снижение экспрессии PNPLA3 оценивают путем (a) измерения количества или уровня мРНК PNPLA3 в клетках печени, обработанных конструкцией для RNAi по настоящему изобретению, (b) измерения количества или уровня мРНК PNPLA3 в клетках печени, обработанных контрольной конструкцией для RNAi (например, средством для RNAi, направленным на молекулу РНК, не экспрессируемую в клетках печени, или конструкцией для RNAi, имеющей нонсенс- или скремблированную последовательность) или обработанных без конструкции, и (с) сравнения измеренных уровней мРНК РNPLA3 в обработанных клетках из (а) с измеренными уровнями мРНК PNPLA3 в контрольных клетках из (b). Уровни мРНК PNPLA3 в обработанных клетках и в контрольных клетках перед сравнением могут быть нормализованы относительно уровней РНК контрольного гена (например, 18S рибосомальной РНК). Уровни мРНК PNPLA3 можно измерять с помощью различных методик, включая нозерн-блоттинг, анализ с защитой от действия нуклеаз, гибридизацию in situ (FISH), ПНР с обратной транскрипцией ((RT)-PCR), ПНР в режиме реального времени (RT-PCR), количественную ПНР и им подобные.

В других вариантах осуществления снижение экспрессии PNPLA3 оценивают путем (а) измерения количества или уровня белка PNPLA3 в клетках печени, обработанных конструкцией для RNAi по настоящему изобретению, (b) измерения количества или уровня белка PNPLA3 в клетках печени, обработанных контрольной конструкцией для RNAi (например, средством для RNAi, направленным на молекулу PHK, не экспрессируемую в клетках печени, или конструкцией для RNAi, имеющей нонсенс-или скремблированную последовательность) или обработанных без конструкции, и (c) сравнения измеренных уровней белка PNPLA3 в обработанных клетках из (а) с измеренными уровнями белка PNPLA3 в контрольных клетках из (b). Методики измерения уровней белка PNPLA3 известны специалистам в данной области и включают вестерн-блоттинг, иммуноанализы (например, ELISA) и проточную цитометрию. Иллюстративная методика оценки экспрессии белка PNPLA3 на основе иммуноанализа описана в примере 2. В примере 3 описана иллюстративная методика измерения мРНК PNPLA3 с помощью RNA FISH. Для оценки эффективности конструкции для RNAi по настоящему изобретению может быть использована любая методика, способная измерять мРНК или белок PNPLA3.

В некоторых вариантах осуществления методики оценки уровней экспрессии PNPLA3 выполняют in vitro в клетках, которые нативно экспрессируют PNPLA3 (например, в клетках печени) или в клетках, которые были сконструированы для экспрессии PNPLA3. В определенных вариантах осуществления методики проводят in vitro в клетках печени. Подходящие клетки печени включают без ограничения первичные гепатоциты (например, гепатоциты человека, нечеловекообразных приматов или грызунов), клетки HepAD38, клетки HuH-6, клетки HuH-7, клетки HuH-5-2, клетки BNLCL2, клетки Hep3B или клетки HepG2. В одном варианте осуществления клетки печени представляют собой клетки Hep3B. В другом варианте осуществления клетки печени представляют собой клетки HepG2.

В других вариантах осуществления методики оценки уровней экспрессии PNPLA3 проводят in vivo. Можно вводить конструкции для RNAi и любые контрольные конструкции для RNAi животному (например, грызуну или нечеловекообразному примату) и оценивать уровни мРНК или белка PNPLA3 в образце ткани печени, отобранном у животного после обработки. В качестве альтернативы или дополнительно биомаркер или функциональный фенотип, ассоциированный с экспрессией PNPLA3, можно оценивать у животных, которых обрабатывали указанным средством.

В определенных вариантах осуществления экспрессия PNPLA3 снижена в клетках печени по меньшей мере на 10%, по меньшей мере на 15%, по меньшей мере на 20%, по меньшей мере на 25%, по меньшей мере на 30%, по меньшей мере на 35%, по меньшей мере на 40%, по меньшей мере на 45% или по меньшей мере на 50% за счет воздействия конструкции для RNAi по настоящему изобретению. В некоторых вариантах осуществления экспрессия PNPLA3 снижена в клетках печени на по меньшей мере 60%, на по меньшей мере 65%, на по меньшей мере 70%, на по меньшей мере 75%, на по меньшей мере 80% или на по меньшей мере 85% за счет воздействия конструкции для RNAi по настоящему изобретению. В других вариантах осуществления экспрессия PNPLA3 снижена в клетках печени на приблизительно 90% или больше, например, на 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или больше за счет воздействия конструкции для RNAi по настоящему изобретению. Процент снижения экспрессии PNPLA3 можно измерять при помощи любых способов, описанных в данном документе, а также других способов, известных в данной области. К примеру, в определенных вариантах осуществления конструкции для RNAi по настоящему изобретению на по меньшей мере 45% подавляют экспрессию PNPLA3 при концентрации 5 нМ в клетках Hep3B (содержащих PNPLA3 дикого типа) in vitro. В связанных вариантах осуществления конструкции для RNAi по настоящему изобретению на по меньшей мере 50%, на по меньшей мере 55%, на по меньшей мере 60%, на по меньшей мере 65%, на по меньшей мере 70% или на по меньшей мере 75% подавляют экспрессию PNPLA3 при концентрации 5 нМ в клетках Hep3B in vitro. В других вариантах осуществления конструкции для RNAi по настоящему изобретению на по меньшей мере 80%, на по меньшей мере 85%, на по меньшей мере 90%, на по меньшей мере 92%, на по меньшей мере 94%, на по меньшей мере 96% или на по меньшей мере 98% подавляют экспрессию PNPLA3 при концентрации 5 нМ в клетках Hep3B in vitro. В определенных вариантах осуществления конструкции для RNAi по настоящему изобретению на по меньшей мере 45% подавляют экспрессию PNPLA3 при концентрации 5 нМ в клетках HepG2 (содержащих два минорных аллеля PNPLA3-rs738409-rs738408) in vitro. В связанных вариантах осуществления конструкции для RNAi по настоящему изобретению на по меньшей мере 50%, на по меньшей мере 55%, на по меньшей мере 60%, на по меньшей мере 65%, на по меньшей мере 70% или на по меньшей мере 75% подавляют экспрессию PNPLA3 при концентрации 5 нМ в клетках HepG2 in vitro. В других вариантах осуществления конструкции для RNAi по настоящему изобретению по меньшей мере на 80%, по меньшей мере на 85%, на по меньшей мере 90%, по меньшей мере на 92%, по меньшей мере на 94%, по меньшей мере на 96% или по меньшей мере на 98% подавляют экспрессию PNPLA3 при концентрации 5 нМ в клетках HepG2 in vitro. В определенных вариантах осуществления конструкции для RNAi по настоящему изобретению по меньшей мере на 45% подавляют экспрессию PNPLA3 при концентрации 5 нМ в трансфицированных клетках CHO, экспрессирующих PNPLA3 I148I или I148М человека in vitro. В связанных вариантах осуществления конструкции для RNAi по настоящему изобретению по меньшей мере на 50%, по меньшей мере на 55%, по меньшей мере на 60%, по меньшей мере на 70% или по меньшей мере на 75% подавляют экспрессию PNPLA3 при концентрации 5 нМ в трансфицированных клетках CHO, экспрессирующих PNPLA3 I148I или I148М человека in vitro. В других вариантах осуществления конструкции для RNAi по настоящему изобретению по меньшей мере на 80%, по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 92%, по меньшей мере на 94%, по меньшей мере на 96% или по меньшей мере на 98% подавляют экспрессию PNPLA3 при концентрации 5 нМ в трансфицированных клетках CHO, экспрессирующих PNPLA3 I148I или I148М человека in vitro. Снижение PNPLA3 можно измерять с использованием различных методик, в том числе RNA FISH или капельной цифровой ПНР, как это описано в примерах 2 и 3.

В некоторых вариантах осуществления значение ІС50 рассчитывается для оценки способности конструкции для RNAi по настоящему изобретению подавлять экспрессию PNPLA3 в клетках печени. Термин "значение IC₅₀" означает дозу/концентрацию, необходимую для достижения 50% подавления биологической или биохимической функции. Значение ІС 50 для любого конкретного вещества или антагониста можно определить путем построения кривой зависимости "доза-ответ" и изучения влияния различных концентраций вещества или антагониста на уровни экспрессии или функциональную активность, определяемые в любом анализе. Значения ІС50 можно рассчитать для данного антагониста или вещества путем определения концентрации, необходимой для подавления половины максимального биологического ответа или половины уровней нативной экспрессии. Таким образом, значение IC₅₀ для любой конструкции для RNAi может быть рассчитано путем определения концентрации конструкции для RNAi, необходимой, чтобы подавить половину уровня нативной экспрессии PNPLA3 в клетках печени (например, уровня экспрессии PNPLA3 в контрольных клетках печени) в любом анализе, таком как иммуноанализ, или анализ RNA FISH, или анализ с помощью капельной цифровой ПЦР, которые описаны в примерах. Конструкции для RNAi по настоящему изобретению могут подавлять экспрессию PNPLA3 в клетках печени (например, в клетках Нер3В) со значением ІС₅₀, составляющим менее приблизительно 20 нМ. Например, конструкции для RNAi подавляют экспрессию PNPLA3 в клетках печени со значением IC_{50} , составляющим от приблизительно 0,001 до приблизительно 20 нМ, от приблизительно 0,001 до приблизительно 10 нМ, от приблизительно 0,001 до приблизительно 5 нМ, от приблизительно 0,001 до приблизительно 1 нМ, от приблизительно 0,1 до приблизительно 10 нМ, от приблизительно 0,1 до приблизительно 5 нМ или от приблизительно 0,1 до приблизительно 1 нМ. В определенных вариантах осуществления конструкция для RNAi подавляет экспрессию PNPLA3 в клетках печени (например, клетках Hep3B) со значением IC_{50} , составляющим от приблизительно 1 нM до приблизительно 10 нM. Конструкции для RNAi по настоящему изобретению могут подавлять экспрессию PNPLA3 в клетках печени (например, в клетках HepG2) со значением IC_{50} , составляющим менее приблизительно 20 нМ. Например, конструкции для RNAi подавляют экспрессию PNPLA3 в клетках печени со значением IC₅₀, составляющим от приблизительно 0,001 до приблизительно 20 нМ, от приблизительно 0,001 до приблизительно 10 нМ, от приблизительно 0,001 до приблизительно 5 нМ, от приблизительно 0,001 до приблизительно 1 нМ, от приблизительно 0,1 до приблизительно 10 нМ, от приблизительно 0,1 до приблизительно 5 нМ или от приблизительно 0,1 до приблизительно 1 нМ. В определенных вариантах осуществления конструкция для RNAi подавляет экспрессию PNPLA3 в клетках печени (например, клетках HepG2) со значением IC₅₀, составляющим от приблизительно 1 до приблизительно 10 нМ. Конструкции для RNAi по настоящему изобретению могут подавлять экспрессию PNPLA3 в клетках печени (например, в трансфицированных клетках СНО, экспрессирующих PNPLA3 I148I или I148M человека) со значением IC_{50} , составляющим менее приблизительно 20 нМ. Например, конструкции для RNAi подавляют экспрессию PNPLA3 в клетках печени со значением ІС₅₀, составляющим от приблизительно 0,001 до приблизительно 20 нМ, от приблизительно 0,001 до приблизительно 10 нМ, от приблизительно 0,001 до приблизительно 5 нМ, от приблизительно 0,001 до приблизительно 1 нМ, от приблизительно 0,1 до приблизительно 10 нМ, от приблизительно 0,1 до приблизительно 5 нМ или от приблизительно 0,1 до приблизительно 1 нМ. В определенных вариантах осуществления конструкция для RNAi подавляет экспрессию PNPLA3 в клетках печени (например, в трансфицированных клетках CHO, экспрессирующих PNPLA3 1148I или I148М человека) со значением ІС₅₀, составляющим от приблизительно 1 до приблизительно 10 нМ.

Конструкции для RNAi по настоящему изобретению можно легко получить с использованием методик, известных в данной области, например, с использованием обычного твердофазного синтеза нуклеиновых кислот. Полинуклеотиды конструкции для RNAi могут быть собраны на подходящем синтезаторе нуклеиновых кислот с использованием стандартных нуклеотидных или нуклеозидных предшественников (например, фосфорамидитов). Автоматизированные синтезаторы нуклеиновых кислот продаются коммерчески несколькими поставщиками, включая синтезаторы ДНК/РНК от Applied Biosystems (Фостер Сити, Калифорния), синтезаторы MerMade от BioAutomation (Ирвинг, Техас) и синтезаторы OligoPilot от GE Healthcare Life Sciences (Питтсбург, Пенсильвания).

Для синтеза олигонуклеотидов посредством химии фосфорамидитов может быть использована 2'силильная защитная группа в сочетании с кислотолабильным диметокситритилом (DMT) в 5'-положении рибонуклеозидов. Известно, что конечные условия снятия защиты не приводят к значительной деградации РНК-продуктов. Все процессы синтеза можно проводить в любом автоматическом или ручном синтезаторе в большом, среднем или малом масштабе. Синтез также можно проводить в многолуночных планшетах, колонках или предметных стеклах.

2'-О-силильную группу можно удалить посредством воздействия фторид-ионов, которые могут представлять собой любой источник фторид-иона, например, те соли, которые содержат фторид-ион в сочетании с неорганическими противоионами, например фторид цезия и фторид калия, или те соли, которые содержат фторид-ион в паре с органическим противоионом, например тетраалкиламмонийфторидом. В реакции снятия защиты можно использовать краун-эфирный катализатор в комбинации с неорганическим фторидом. Предпочтительным источником фторид-иона являются тетрабутиламмонийфторид или аминогидрофториды (например, объединение водного НF с триэтиламином в диполярном апротонном растворителе, например, диметилформамиде).

Выбор защитных групп для использования на сложных фосфитных триэфирах и сложных фосфотриэфирах может привести к изменению стабильности сложных триэфиров по отношению к фтору. Метильная защита сложного фосфотриэфира или сложного фосфитетриэфира может стабилизировать связь с ионами фтора и улучшить технологический выход процесса.

Поскольку рибонуклеозиды имеют реакционноспособный 2'-гидроксильный заместитель, может быть желательной защита реакционноспособного 2'-положения в РНК защитной группой, которая будет ортогональна 5'-О-диметокситритильной защитной группе, например, устойчивой к обработке кислотой. Силильные защитные группы соответствуют этому критерию и могут быть легко удалены на конечной стадии снятия защиты с фтора, что может привести к минимальной деградации РНК.

В стандартной реакции связывания фосфорамидита можно использовать тетразольные катализаторы. Предпочтительные катализаторы включают, например, тетразол, S-этил-тетразол, бензилтиотетразол, нитрофенилтетразол.

Специалисту в данной области понятно, что дополнительные способы синтеза конструкций для RNAi, описанные в данном документе, будут очевидны специалистам в данной области. Кроме того, различные стадии синтеза могут быть выполнены в альтернативной последовательности или для получения требуемых соединений. Другие превращения синтетической химии, защитные группы (например, для гидроксила, амино и т.д., присутствующие на основаниях) и методология защитных групп (защита и снятие защиты), применимые в синтезе конструкции для RNAi, описанные в данном документе, известны из уровня техники и включают, например, такие, как описанные в R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2^d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994) и L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995) и их последующих изданиях. Синтеза средств для RNAi по индивидуальному заказу также доступен у нескольких коммерческих поставщиков, в том числе от Dharmacon, Inc. (Лафайет, Колорадо), АхоLabs GmbH (Кульмбах, Германия) и Ambion, Inc. (Фостер Сити, Калифорния).

Конструкции для RNAi по настоящему изобретению могут содержать лиганд. Используемый в данном документе термин "лиганд" относится к любому соединению или любой молекуле, которые прямо или косвенно способны взаимодействовать с другим соединением или молекулой. Взаимодействие лиганда с другим соединением или молекулой может вызывать биологический ответ (например, инициировать каскад передачи сигнала, индуцировать рецептор-опосредованный эндоцитоз) или может просто представлять собой физическую связь. Лиганд может модифицировать одно или несколько свойств молекулы двухнитевой РНК, к которой он присоединен, таких как фармакодинамические, фармакокинетические, связывающие, абсорбционные свойства, распределение в клетках, поглощение клеткой, заряд и/или клиренс молекулы РНК.

Лиганд может включать белок сыворотки крови (например, человеческий сывороточный альбумин, липопротеин низкой плотности, глобулин), фрагмент холестерина, витамин (биотин, витамин Е, витамин В12), фолатный фрагмент, стероид, желчную кислоту (например, холевую кислоту), жирную кислоту (например, пальмитиновую кислоту, миристиновую кислоту), углевод (например, декстран, пуллулан, хитин, хитозан, инулин, циклодекстрин или гиалуроновую кислоту), гликозид, фосфолипид или антитело или его связывающий фрагмент (например, антитело или связывающий фрагмент, который нацеливает конструкцию для RNAi на конкретный тип клеток, такой как клетки печени). Другие примеры лигандов включают красители, интеркалирующие агенты (например, акридины), перекрестносшивающие средства (например, псорален, митомицин С), порфирины (ТРРС4, тексафирин, сапфирин), полициклические ароматические углеводороды (например, феназин, дигидрофеназин), искусственные эндонуклеазы (например, ЕDTA), липофильные молекулы, например, адамантануксусную кислоту, 1-пиренбутировую кислоту, дигидротестостерон, 1,3-бис-О(гексадецил)глицерин, геранилоксигексильную группу, гексадецилглицерин, борнеол, ментол, 1,3-пропандиол, гептадецильную группу, 03-(олеоил)литохолевую кислоту, 03-(олеоил)холеновую кислоту, диметокситритил или феноксазин), пептиды (например, пептид antennapedia), пептид Тat, пептиды RGD), алкилирующие средства, полимеры, такие как полиэтиленгликоль (РЕО)(например, РЕG-40К), полиаминокислоты и полиамины (например, спермин, спермидин).

В определенных вариантах осуществления лиганды обладают эндосомолитическими свойствами. Эндосомолитические лиганды способствуют лизису эндосомы и/или транспорту конструкции для RNAi по настоящему изобретению или ее компонентов из эндосомы в цитоплазму клетки. Эндосомолитический лиганд может представлять собой поликатионный пептид или пептидомиметик, который проявляет рН-зависимую активность мембраны и фузогенность. В одном варианте осуществления предполагается, что эндосомолитический лиганд имеет функционально активную конформацию при значении рН в эндосоме. Под "активной" конформацией подразумевается конформация, при которой эндосомолитический лиганд способствует лизису эндосомы и/или транспорту конструкции для RNAi по настоящему изобретению или ее компонентов из эндосомы в цитоплазму клетки. Иллюстративные эндосомолитические лиганды включают пептид GALA (Subbarao et al., Biochemistry, Vol. 26: 2964-2972, 1987), пептид EALA (Vogel et al., J. Am. Chern. Soc., Vol. 118: 1581-1586, 1996) и их производные (Turk et al., Biochem. Biophys. Acta, Vol.1559: 56-68, 2002). В одном варианте осуществления эндосомолитический компонент может содержать химическую группу (например, аминокислоту), которая претерпевает изменение заряда или протонирование в ответ на изменение рН. Эндосомолитический компонент может быть линейным или разветвленным.

В некоторых вариантах осуществления лиганд содержит липид или другую гидрофобную молекулу. В одном варианте осуществления лиганд содержит фрагмент холестерина или другой стероид. Сообщали, что конъюгированные с холестерином олигонуклеотиды более активны, чем их неконъюгированные аналоги (Manoharan, Antisense Nucleic Acid Drug Development, Vol. 12: 103-228, 2002). Лиганды, содержащие фрагменты холестерина и другие липиды для конъюгации с молекулами нуклеиновых кислот, также были описаны в патентах США №№ 7851615; 7745608 и 7833992, которые все включены в данный документ посредством ссылки во всей своей полноте. В другом варианте осуществления лиганд содержит фолатный фрагмент. Полинуклеотиды, конъюгированные с фолатными фрагментами, могут поглощаться клетками через рецепторно-опосредованный путь эндоцитоза. Такие конъюгаты фолатполинуклеотид описаны в патенте США № 8188247, который включен в данный документ посредством ссылки во всей своей полноте.

Принимая во внимание, что PNPLA3 экспрессируется в клетках печени (например, в гепатоцитах), в определенных вариантах осуществления желательно специфично доставлять конструкцию для RNAi именно в эти клетки печени. В некоторых вариантах осуществления конструкции для RNAi могут быть специфично нацелены на печень путем использования лигандов, которые связываются или взаимодействуют с белками, экспрессируемыми на поверхности клеток печени. Например, в определенных вариантах осуществления лиганды могут содержать антигенсвязывающие белки (например, антитела или их связывающие фрагменты (например, Fab, scFv)), которые специфически связываются с рецептором, экспрессируемым на гепатоцитах.

В определенных вариантах осуществления лиганд содержит углевод. Термин "углевод" относится к соединению, состоящему из одного или нескольких моносахаридных звеньев, имеющих по меньшей мере 6 атомов углерода (которые могут быть линейными, разветвленными или циклическими) с атомом кислорода, азота или серы, связанным с каждым атомом углерода. Углеводы включают без ограничения сахара (например, моносахариды, дисахариды, трисахариды, тетрасахариды и олигосахариды, содержащие от приблизительно 4, 5, 6, 7, 8 или 9 моносахаридных единиц) и полисахариды, такие как крахмалы, гликоген, целлюлоза и полисахаридные смолы. В некоторых вариантах осуществления углевод, включенный в лиганд, представляет собой моносахарид, выбранный из пентозы, гексозы или гептозы, и ди- и трисахариды, включающие такие моносахаридные звенья. В других вариантах осуществления углевод, встроенный в лиганд, представляет собой аминосахар, такой как галактозамин, глюкозамин, N-ацетилгалактозамин и N-ацетилглюкозамин.

В некоторых вариантах осуществления лиганд содержит гексозу или гексозамин. Гексоза может быть выбрана из глюкозы, галактозы, маннозы, фукозы или фруктозы. Гексозамин может быть выбран из фруктозамина, галактозамина, глюкозамина или маннозамина. В определенных вариантах осуществления лиганд содержит глюкозу, галактозу, галактозамин или глюкозамин. В одном варианте осуществления лиганд содержит галактозу, галактозамин или N-ацетилглюкозамин. В конкретных вариантах осуществления лиганд содержит N-ацетилгалактозамин. Лиганды, содержащие глюкозу, галактозу и N-ацетилгалактозамин (GalNAc), особенно эффективны в нацеливании соединений на клетки печени. Смотрите, например, D'Souza and Devarajan, J. Control Release, Vol. 203: 126-139, 2015. Примеры GalNAc-или галактозосодержащих лигандов, которые могут быть встроены в конструкции для RNAi по настоящему изобретению, описаны в патентах США №№ 7491805; 8106022 и 8877917; в публикации патента США № 20030130186 и публикации WIPO № WO2013166155, которые все включены в данный документ посредством ссылки во всей своей полноте.

В определенных вариантах осуществления лиганд содержит мультивалентный углеводный фрагмент. Используемый в данном документе термин "мультивалентный углеводный фрагмент" относится к фрагменту, содержащему два или более углеводных звеньев, способных независимо связываться или взаимодействовать с другими молекулами. Например, мультивалентный углеводный фрагмент содержит

два или более связывающих домена, состоящих из углеводов, которые могут связываться с двумя или более различными молекулами или двумя или более различными участками на одной и той же молекуле. Валентность углеводного фрагмента обозначает количество отдельных связывающих доменов в углеводном фрагменте. К примеру, термины "одновалентный", "двухвалентный", "трехвалентный" и "четырехвалентный", относящиеся к углеводному фрагменту, относятся к углеводным фрагментам с одним, двумя, тремя и четырьмя связывающими доменами соответственно. Мультивалентный углеводный фрагмент может содержать мультивалентный лактозный фрагмент, мультивалентный галактозный фрагмент, мультивалентный глюкозный фрагмент, мультивалентный N-ацетилгалактозаминовый фрагмент, мультивалентный N-ацетилглюкозаминовый фрагмент, мультивалентный маннозный фрагмент или мультивалентный фукозный фрагмент. В некоторых вариантах осуществления лиганд содержит мультивалентный галактозный фрагмент. В других вариантах осуществления лиганд содержит мультивалентный Nацетилгалактозаминовый фрагмент. В этих и других вариантах осуществления мультивалентный углеводный фрагмент является двухвалентным, трехвалентным или четырехвалентным. В таких вариантах осуществления мультивалентный углеводный фрагмент может быть двухантенным или трехантенным. В одном конкретном варианте осуществления мультивалентный N-ацетилгалактозаминовый фрагмент является трехвалентным или четырехвалентным. В другом конкретном варианте осуществления мультивалентный галактозный фрагмент является трехвалентным или четырехвалентным. Иллюстративные трехвалентные и четырехвалентные GalNAc-содержащие лиганды для встраивания в конструкции для RNAi по настоящему изобретению подробно описаны ниже.

Лиганд может быть присоединен или конъюгирован с молекулой РНК конструкции для RNAi непосредственно или опосредованно. К примеру, в некоторых вариантах осуществления лиганд ковалентно присоединен непосредственно к смысловой или антисмысловой нити конструкции для RNAi. В других вариантах осуществления лиганд ковалентно присоединен через линкер к смысловой или антисмысловой нити конструкции для RNAi. Лиганд может быть присоединен к нуклеиновым основаниям, сахарным фрагментам или межнуклеотидным связям полинуклеотидов (например, смысловой нити или антисмысловой нити) конструкции для RNAi по настоящему изобретению. Конъюгирование или присоединение к пуриновым нуклеиновым основаниям или их производным может происходить в любом положении, включая эндоциклические и экзоциклические атомы. В определенных вариантах осуществления 2-, 6-, 7или 8-положения пуринового нуклеинового основания присоединены к лиганду. Конъюгация с пиримидиновыми нуклеиновыми основаниями или их производными или присоединение к ним также может происходить в любом положении. В некоторых вариантах осуществления 2-, 5- и 6-положения пиримидинового нуклеинового основания могут быть присоединены к лиганду. Конъюгация с сахарными фрагментами нуклеотидов или присоединение к ним может происходить при любом атоме углерода. Иллюстративные атомы углерода сахарного фрагмента, которые могут быть присоединены к лиганду, включают атомы углерода в положениях 2'-, 3'- и 5'. Атом в положении 1' также может быть присоединен к лиганду, такому как остаток основания.

Межнуклеотидные связи также могут поддерживать прикрепление лиганда. В случае фосфорсодержащих связей (например, сложной фосфодиэфирной, фосфоротиоатной, фосфородитиоатной, фосфороамидатной и т.п.) лиганд может быть присоединен непосредственно к атому фосфора или к атому О, N или S, связанному с атомом фосфора. В случае аминосодержащих или амидсодержащих межнуклеозидных связей (например, PNA) лиганд может быть присоединен к атому азота амина или амида или к смежному атому углерода.

В определенных вариантах осуществления лиганд может быть присоединен к 3'- или 5'-концу смысловой или антисмысловой нити. В определенных вариантах осуществления лиганд ковалентно присоединен к 5'-концу смысловой нити. В других вариантах осуществления лиганд ковалентно присоединен к 3'-концу смысловой нити. Например, в некоторых вариантах осуществления лиганд присоединен к 3'-концевому нуклеотиду смысловой нити. В некоторых таких вариантах осуществления лиганд присоединен в 3'-положении 3'-концевого нуклеотида смысловой нити. В альтернативных вариантах осуществления лиганд присоединен вблизи 3'-конца смысловой нити, но перед одним или несколькими концевыми нуклеотидами (например, перед 1, 2, 3 или 4 концевыми нуклеотидами). В некоторых вариантах осуществления лиганд присоединен в 2'-положении сахара, входящего в состав 3'-концевого нуклеотида смысловой нити.

В определенных вариантах осуществления лиганд присоединен к смысловой или антисмысловой нити посредством линкера. Термин "линкер" означает атом или группу атомов, которые ковалентно соединяют лиганд с полинуклеотидным компонентом конструкции для RNAi. Длина линкера может составлять от приблизительно 1 до приблизительно 30 атомов, от приблизительно 2 до приблизительно 28 атомов, от приблизительно 3 до приблизительно 26 атомов, от приблизительно 4 до приблизительно 24 атомов, от приблизительно 6 до приблизительно 20 атомов, от приблизительно 7 до приблизительно 20 атомов, от приблизительно 8 до приблизительно 18 атомов, от приблизительно 10 до приблизительно 18 атомов и от приблизительно 12 до приблизительно 18 атомов. В некоторых вариантах осуществления линкер может содержать бифункциональный связывающий фрагмент, который обычно содержит алкильный фрагмент с двумя функциональными группами.

Одну из функциональных групп выбирают для связывания с представляющим интерес соединением (например, смысловой или антисмысловой нитью конструкции для RNAi), а другую выбирают для связывания по сути с любой выбранной группой, такой как лиганд, как это описано в данном документе. В определенных вариантах осуществления линкер содержит структуру цепи или олигомер, которые состоят из повторяющихся звеньев, таких как этиленгликоль или аминокислотные звенья. Примеры функциональных групп, которые обычно используются в бифункциональном связывающем фрагменте, включают без ограничения электрофилы для реакции с нуклеофильными группами и нуклеофилы для реакции с электрофильными группами. В некоторых вариантах осуществления бифункциональные связывающие фрагменты включают амино, гидроксил, карбоновую кислоту, тиол, ненасыщенные группы (например, двойные или тройные связи) и им подобные.

Линкеры, которые можно использовать для присоединения лиганда к смысловой или антисмысловой нити в конструкции для RNAi по настоящему изобретению, включают без ограничения пирролидин, 8-амино-3,6-ди-оксаоктановую кислоту, сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат, 6-аминогексановую кислоту, замещенный C_1 - C_{10} алкил, замещенный или незамещенный C_2 - C_{10} алкенил или замещенный или незамещенный C_2 - C_{10} алкинил. Предпочтительные группы заместителей для таких линкеров включают без ограничения гидроксил, амино, алкокси, карбокси, бензил, фенил, нитро, тиол, тиоалкокси, галоген, алкил, арил, алкенил и алкинил.

В определенных вариантах осуществления линкеры являются расщепляемыми. Расщепляемый линкер представляет собой линкер, который достаточно стабилен вне клетки, но который при поступлении в целевую клетку расщепляется, высвобождая две части, которые линкер удерживает вместе. В некоторых вариантах осуществления расщепляемый линкер расщепляется в по меньшей мере 10 раз, 20 раз, 30 раз, 40 раз, 50 раз, 60 раз, 70 раз, 80 раз, 90 раз или больше или в по меньшей мере 100 раз быстрее в целевой клетке или при первом контрольном условии (которое может быть выбрано, например, для имитации или представления внутриклеточных состояний), чем в крови субъекта, или при втором контрольном условии (которое может быть выбрано, например, для имитации или представления условий, наблюдаемых в крови или сыворотке крови).

Расщепляемые линкеры чувствительны к факторам расщепления, например к значению рН, окислительно-восстановительному потенциалу или присутствию деструктивных молекул. Как правило, расщепляющие средства более распространены или обнаруживаются при более высоких уровнях или активности внутри клеток, чем в сыворотке крови или в цельной крови. Примеры таких деструктивных средств включают окислительно-восстановительные средства, которые выбраны для конкретных субстратов или которые не обладают субстратной специфичности, включая, например, окислительные или восстановительные ферменты или восстановительные средства, такие как меркаптаны, присутствующие в клетках, которые могут разрушать окислительно-восстановительный расщепляемый линкер путем восстановления; эстеразы; эндосомы или средства, которые могут создавать кислую среду, например, такие, которые приводят к рН пять или ниже; ферменты, которые могут гидролизовать или разрушать расщепляемый кислотой линкер, действуя как обычная кислота, пептидазы (которые могут быть специфичными для субстрата) и фосфатазы.

Расщепляемый линкер может содержать фрагмент, который чувствителен к рН. Значение рН сыворотки крови составляет 7,4, в то время как среднее внутриклеточное рН немного ниже, находясь в пределах, составляющих приблизительно 7,1-7,3. Эндосомы имеют более кислое значение рН в диапазоне 5,5-6,0, а лизосомы имеют еще более кислое значение рН, составляющее приблизительно 5,0. Некоторые линкеры будут иметь расщепляемую группу, которая расщепляется при предпочтительном рН, высвобождая таким образом молекулу РНК от лиганда внутри клетки или в требуемый компартмент клетки.

Линкер может включать расщепляемую группу, которая расщепляется определенным ферментом. Тип расщепляемой группы, встроенной в линкер, может зависеть от целевой клетки. Например, нацеливающие на печень лиганды могут быть связаны с молекулами РНК посредством линкера, который включает сложноэфирную группу. Клетки печени богаты эстеразами, поэтому линкер будет более эффективно расщепляться в клетках печени, чем в других типах клеток, которые не богаты эстеразой. Другие типы клеток, богатых эстеразами, включают клетки легких, коркового вещества почек и яичка. Линкеры, содержащие пептидные связи, могут быть использованы при нацеливании на клетки, богатые пептидазами, такие как клетки печени и синовиоциты.

В целом пригодность расщепляемого кандидатного линкера может быть оценена путем тестирования способности деструктивного средства (или состояния) расщеплять кандидатный линкер. Также будет желательно проверить кандидатный расщепляемый линкер на способность противостоять расщеплению в крови или при контакте с другой нецелевой тканью. Таким образом, можно определить и выбрать относительную восприимчивость к расщеплению между первым и вторым условием, где первое выбрано для указания расщепления в клетке-мишени, а второе выбрано для указания расщепления в других тканях или биологических жидкостях, например, в крови или сыворотке крови. Такое оценивание можно проводить в бесклеточных системах, в клетках, в культуре клеток, в культуре органов или тканей или у целых животных. Может быть полезным провести первоначальное оценивание в условиях бесклеточных систем или условиях культивирования и подтвердить результаты дальнейшим оцениванием у целых жи-

вотных. В некоторых вариантах осуществления полезные кандидатные линкеры расщепляются в по меньшей мере 2, 4, 10, 20, 50, 70 или 100 раз быстрее внутри клетки (или в условиях in vitro, выбранных для имитации внутриклеточных условий) по сравнению с кровью или сывороткой крови (или в условиях in vitro, выбранных для имитации внеклеточных условий).

В других вариантах осуществления используют редокс-расщепляемые линкеры. Редокс-расщепляемые линкеры расщепляются при окислении или восстановлении. Примером восстановительно-расщепляемой группы является дисульфидная связывающая группа (-S-S-). Чтобы определить, является ли кандидатный расщепляемый линкер подходящим "восстановительно-расщепляемым линкером" или, например, подходит ли он для использования с определенной конструкцией для RNAi и с определенным лигандом, можно использовать одну или несколько методик, описанных в данном документе. Например, кандидатный линкер можно оценить путем инкубации с дитиотреитолом (DTT) или другим восстановителем, известным в данной области, который имитирует скорость расщепления, которая наблюдается в клетке, например в клетке-мишени. Кандидатные линкеры также можно оценивать в условиях, выбранных для имитации условий, протекающих в крови или в сыворотке крови. В конкретном варианте осуществления кандидатные линкеры расщепляются в крови не более чем на 10%. В других вариантах осуществления применимые кандидатные линкеры расщепляются по меньшей мере в 2, 4, 10, 20, 50, 70 или 100 раз быстрее внутри клетки (или в условиях in vitro, выбранных для имитации внутриклеточных условий) по сравнению с кровью (или в условиях in vitro, выбранных для имитации внеклеточных условий).

В еще одних дополнительных вариантах осуществления расщепляемые линкеры на основе фосфатов расщепляются средствами, которые разрушают или гидролизуют фосфатную группу. Примером средства, которое гидролизует фосфатные группы в клетках, являются ферменты, такие как внутриклеточные фосфатазы. Примерами расщепляемых групп на основе фосфатов являются -O-P(O)(ORk)-O-, -O-P(S)(ORk)-O-, -S-P(O)(ORk)-S-, -S-P(O)(ORk)-S-, -S-P(O)(ORk)-S-, -O-P(S)(ORk)-O-, -O-P(S)(ORk)-O-, -S-P(O)(ORk)-O-, -S-P(O)(ORk)-S-, -O-P(S)(ORk)-O-, -O-P(S)(ORk)-

В других вариантах осуществления линкеры могут содержать кислотно-расщепляемые группы, которые представляют собой группы, расщепляемые в кислых условиях. В некоторых вариантах осуществления кислотно-расщепляемые группы расщепляются в кислой среде со значением рН, составляющим приблизительно 6,5 или ниже (например, приблизительно 6,0, 5,5, 5,0 или ниже), или средствами, такими как ферменты, которые могут действовать как обычная кислота. В клетке специфические органеллы с низким рН, такие как эндосомы и лизосомы, могут обеспечить среду для расщепления кислотно-расщепляемых групп. Примеры кислотно-расщепляемых связывающих групп включают без ограничения гидразоны, сложные эфиры и сложные эфиры аминокислот. Кислотно-расщепляемые группы могут иметь общую формулу -C=NN-, C(O)O или -OC(O). Конкретным вариантом осуществления является случай, когда углерод, присоединенный к кислороду сложного эфира (алкоксигруппа), представляет собой арильную группу, замещенную алкильную группу или третичную алкильную группу, такую как диметил, пентил или трет-бутил. Данные кандидатные группы могут быть оценены с использованием методик, аналогичных описанным выше.

В других вариантах осуществления линкеры могут содержать расщепляемые группы на основе сложных эфиров, которые расщепляются ферментами, такими как внутриклеточные эстеразы и амидазы. Примеры расщепляемых сложноэфирных групп включают без ограничения сложные эфиры алкиленовых, алкениленовых и алкиниленовых групп. Расщепляемые сложным эфиром группы имеют общую формулу -C(O)O- или -OC(O)-. Данные кандидатные линкеры могут быть оценены с использованием методик, аналогичных описанным выше.

В дополнительных вариантах осуществления линкеры могут содержать расщепляемые группы на основе пептидов, которые расщепляются такими ферментами, как внутриклеточные пептидазы и протеазы. Расщепляемые группы на основе пептидов представляют собой пептидные связи, образовавшиеся между аминокислотами с образованием олигопептидов (например, дипептидов, трипептидов и т.д.) и полипептидов. Расщепляемые группы на основе пептидов не включают амидную группу (-C(O)NH-). Амидная группа может быть образована между любым алкиленом, алкениленом или алкинеленом. Пептидная связь представляет собой особый тип амидной связи между аминокислотами, необходимой для образования пептидов и белков. Расщепляемая группа на основе пептидов обычно ограничена пептидной связью (то есть амидной связью) между аминокислотами, образующей пептиды и белки, и не включает всю амидную функциональную группу. Расщепляемые связывающие группы на основе пептидов имеют общую формулу -NHCHRAC(O)NHCHRBC(O)-, где RA и RB являются R-группами двух смежных аминокислот. Данные кандидатные группы могут быть оценены с использованием методик, аналогичных описанным выше.

Другие типы линкеров, подходящие для присоединения лигандов к смысловой или антисмысловой

нитям в конструкции для RNAi по настоящему изобретению, известны из уровня техники и могут включать линкеры, описанные в патентах США №№ 7723509; 8017762; 8828956; 8877917 и 9181551, которые все включены в данный документ посредством ссылки во всей своей полноте.

В определенных вариантах осуществления лиганд, ковалентно присоединенный к смысловой или антисмысловой нити конструкции для RNAi по настоящему изобретению, содержит фрагмент GalNAc, например мультивалентный фрагмент GalNAc. В некоторых вариантах осуществления мультивалентный фрагмент GalNAc и он присоединен к 3'-концу смысловой нити. В других вариантах осуществления мультивалентный фрагмент GalNAc представляет собой трехвалентный фрагмент GalNAc представляет собой трехвалентный фрагмент GalNAc и он присоединен к 5'-концу смысловой нити. В еще одних дополнительных вариантах осуществления мультивалентный фрагмент GalNAc представляет собой четырехвалентный фрагмент GalNAc и он присоединен к 3'-концу смысловой нити. В еще одних дополнительных вариантах осуществления мультивалентный фрагмент GalNAc представляет собой четырехвалентный фрагмент GalNAc и он присоединен к 5'-концу смысловой нити.

В некоторых вариантах осуществления конструкции для RNAi по настоящему изобретению могут быть доставлены в клетку или ткань, представляющие интерес, путем введения вектора, который кодирует и контролирует внутриклеточную экспрессию конструкции для RNAi. Термин "вектор" (также упоминаемый в данном документе как "вектор экспрессии") относится к композиции вещества, которая может быть использована для доставки представляющей интерес нуклеиновой кислоты внутрь клетки.

Из уровня техники известны многочисленные векторы, включая без ограничения линейные полинуклеотиды, полинуклеотиды, связанные с ионными или амфифильными соединениями, а также плазмиды и вирусы. Таким образом, термин "вектор" включает автономно реплицирующуюся плазмиду или вирус. Примеры вирусных векторов включают без ограничения аденовирусные векторы, аденоассоциированные вирусные векторы, ретровирусные векторы и им подобные. Вектор может реплицироваться в живой клетке или может быть получен синтетическим путем.

В общих чертах вектор для экспрессии конструкции для RNAi по настоящему изобретению будет содержать один или несколько промоторов, функционально связанных с последовательностями, кодирующими конструкцию для RNAi. Используемые в данном документе выражения "функционально связанный" или "под контролем транскрипции" означают, что промотор находится в правильном положении и правильной ориентации относительно полинуклеотидной последовательности, чтобы контролировать инициацию транскрипции РНК-полимеразой и экспрессию полинуклеотидной последовательности. Термин "промотор" относится к последовательности, распознаваемой синтетическим аппаратом клетки, или к введенному синтетическому аппарату, необходимому для инициации специфической транскрипции последовательности гена. Подходящие промоторы включают без ограничения RNA pol I, pol II, HI или U6 RNA pol III, а также вирусные промоторы (например, промотор немедленно-раннего гена цитомегаловируса человека (CMV), ранний промотор SV40 и длинный кольцевой повтор вируса саркомы Рауса). В некоторых вариантах осуществления предпочтительным является промотор НІ или U6RNA pol III. Промотор может быть тканеспецифичным или индуцируемым промотором. Особый интерес представляют специфичные для печени промоторы, такие как промоторные последовательности гена альфа-1антитрипсина человека, гена альбумина, гена гемопексина и гена липазы печени. Индуцируемые промоторы включают промоторы, регулируемые экдизоном, эстрогеном, прогестероном, тетрациклином и изопропил-PD1-тиогалактопиранозидом (IPTG).

В некоторых вариантах осуществления, в которых конструкция для RNAi содержит siRNA, две отдельные нити (смысловая и антисмысловая нити) могут экспрессироваться с одного вектора или из двух отдельных векторов. Например, в одном варианте осуществления последовательность, кодирующая смысловую нить, функционально связана с промотором на первом векторе, а последовательность, кодирующая антисмысловую нить, функционально связана с промотором на втором векторе. В таком варианте осуществления первый и второй векторы вводят совместно, например путем инфекции или трансфекции, в клетку-мишень, так что смысловая и антисмысловая нити после прохождения транскрипции будут гибридизоваться внутри клетки с образованием молекулы siRNA. В другом варианте осуществления смысловая и антисмысловая нити транскрибируются с двух разных промоторов, расположенных в одном векторе. В некоторых таких вариантах осуществления последовательность, кодирующая смысловую нить, функционально связана с первым промотором, а последовательность, кодирующая антисмысловую нить, функционально связана со вторым промотором, при этом первый и второй промоторы расположены в одном векторе. В одном варианте осуществления вектор содержит первый промотор, функционально связанный с последовательностью, кодирующей молекулу siRNA, и второй промотор, функционально связанный с той же последовательностью в противоположном направлении, так что транскрипция последовательности из первого промотора приводит к синтезу смысловой нити молекулы siRNA, а транскрипция последовательности из второго промотора приводит к синтезу антисмысловой нити молекулы siRNA.

В других вариантах осуществления, в которых конструкция для RNAi содержит shRNA, последовательность, кодирующая одну по меньшей мере частично самокомплементарную молекулу РНК, функционально связана с промотором, что приводит к продуцированию одного транскрипта. В некоторых

вариантах осуществления последовательность, кодирующая shRNA, содержит инвертированный повтор, связанный линкерной полинуклеотидной последовательностью, что приводит к продуцированию структуры стебля и петли shRNA после транскрипции.

В некоторых вариантах осуществления вектор, кодирующий конструкцию для RNAi по настоящему изобретению, представляет собой вирусный вектор. Разные вирусные векторные системы, подходящие для экспрессии конструкций для RNAi, описанных в данном документе, включают без ограничения аденовирусные векторы, ретровирусные векторы (например, лентивирусные векторы, вирус мышиного лейкоза Малони), аденоассоциированные вирусные векторы; векторы на основе вируса простого герпеса; векторы на основе SV40; векторы на основе вируса полиомы; векторы на основе вируса папилломы; векторы на основе пикорнавируса и векторы на основе вируса оспы (например, вируса коровьей оспы). В определенных вариантах осуществления вирусный вектор представляет собой ретровирусный вектор (например, лентивирусный вектор).

Разные векторы, подходящие для использования в настоящем изобретении, способы вставки последовательностей нуклеиновых кислот, кодирующих молекулы siRNA или shRNA, в векторы, и способы доставки векторов к интересующим клеткам известны специалистам в данной области. См., например, Dornburg, Gene Therap., Vol. 2: 301-310, 1995; Eglitis, Biotechniques, Vol. 6: 608-614, 1988; Miller, Hum-Gene Therap., Vol. 1: 5-14, 1990; Anderson, Nature, Vol. 392: 25-30, 1998; Rubinson D A et al., Nat. Genet., Vol. 33: 401-406, 2003; Brummelkamp et al., Science, Vol. 296: 550-553, 2002; Brummelkamp et al., Cancer Cell, Vol. 2: 243-247, 2002; Lee et al., Nat Biotechnol, Vol. 20:500-505, 2002; Miyagishi et al., Nat Biotechnol, Vol. 20: 497-500, 2002; Paddison et al., GenesDev, Vol. 16: 948-958, 2002; Paul et al., Nat Biotechnol, Vol. 20: 505-508, 2002; Sui et al., ProcNatl Acad Sci USA, Vol. 99: 5515-5520, 2002 и Yu et al., Proc Natl Acad Sci USA, Vol. 99:6047-6052, 2002, которые все включены в данный документ посредством ссылки во всей своей полноте.

В настоящее изобретение также включены фармацевтические композиции и составы, содержащие описанные в данном документе конструкции для RNAi и фармацевтически приемлемые носители, наполнители или разбавители. Такие композиции и составы применимы в снижении экспрессии PNPLA3 у нуждающегося в этом субъекта. Когда предполагается применение в клинической практике, фармацевтические композиции и составы будут производиться в форме, подходящей для предполагаемого применения. В целом это предусматривает получение композиций, которые по сути не содержат пирогенов, а также других примесей, которые могут быть вредными для людей или животных.

Фразы "фармацевтически приемлемый" или "фармакологически приемлемый" относятся к молекулярным веществам и композициям, которые не вызывают нежелательных, аллергических или других неблагоприятных реакций при введении животному или человеку. Используемый в данном документе термин "фармацевтически приемлемый носитель, наполнитель или разбавитель" включает растворители, буферы, растворы, дисперсионные среды, покрытия, антибактериальные и противогрибковые средства, изотонические средства и средства, замедляющие абсорбцию, и им подобные, приемлемые для использования в составлении фармацевтических препаратов, как, например, фармацевтических препаратов, подходящих для введения людям. Применение таких сред и средств для фармацевтически активных веществ хорошо известно в данной области. За исключением случаев, когда какие-либо традиционные среды или средство несовместимы с конструкциями для RNAi по настоящему изобретению, предполагается их применение в терапевтических композициях. Дополнительные активные ингредиенты также могут быть включены в композиции, при условии, что они не инактивируют векторы или конструкции для RNAi в данных композициях.

Композиции и способы составления фармацевтических композиций зависят от ряда критериев, включая без ограничения способ введения, тип и степень заболевания или нарушения, подлежащего лечению, или дозу, подлежащую введению. В некоторых вариантах осуществления фармацевтические композиции составлены на основе предполагаемого способа доставки. Например, в определенных вариантах осуществления фармацевтические композиции составлены для парентеральной доставки. Парентеральные формы доставки включают внутривенную, внутриартериальную, подкожную, интратекальную, внутрибрюшинную или внутримышечную инъекцию или инфузию. В одном варианте осуществления фармацевтическая композиция составлена для внутривенной доставки. В таком варианте осуществления фармацевтическая композиция может включать средство для доставки на основе липидов. В другом варианте осуществления фармацевтическая композиция составлена для подкожной доставки. В таком варианте осуществления фармацевтическая композиция может включать нацеливающий лиганд (например, описанные в данном документе лиганды, содержащие GalNAc).

В некоторых вариантах осуществления фармацевтические композиции содержат эффективное количество описанной в данном документе конструкции для RNAi. Термин "эффективное количество" означает количество, достаточное для получения полезного или желаемого клинического результата. В некоторых вариантах осуществления эффективное количество означает количество, достаточное для снижения экспрессии PNPLA3 в гепатоцитах субъекта. В некоторых вариантах осуществления эффективное количество может быть количеством, достаточным только для частичного снижения экспрессии PNPLA3, например, до уровня, сопоставимого с экспрессией аллеля PNPLA3 дикого типа в гетерозиго-

тах человека. Сообщалось, что у людей, гетерозиготных по аллельным вариантам PNPLA3 с потерей функции, наблюдались более низкие уровни холестерина non-HDL в сыворотке крови и более низкий риск возникновения ишемической болезни сердца и инфаркта миокарда по сравнению с индивидуумами без соответствующих аллельных вариантов (Nioi et al., New England Journal of Medicine, Vol. 374(22):2131-2141, 2016). Таким образом, не ограничиваясь теорией, считается, что частичное снижение экспрессии PNPLA3 может быть достаточным для достижения полезного снижения уровней сывороточного холестерина non-HDL в сыворотке крови и снижения риска возникновения ишемической болезни сердца и инфаркта миокарда.

Эффективное количество конструкции для RNAi по настоящему изобретению может составлять от приблизительно 0,01 мг/кг веса тела до приблизительно 100 мг/кг веса тела, от приблизительно 0,05 мг/кг веса тела до приблизительно 75 мг/кг веса тела, от приблизительно 0,1 мг/кг веса тела до приблизительно 50 мг/кг веса тела, от приблизительно 1 мг/кг до приблизительно 30 мг/кг веса тела, от приблизительно 2,5 мг/кг веса тела до приблизительно 20 мг/кг веса тела или от приблизительно 5 мг/кг веса тела до приблизительно 15 мг/кг веса тела. В определенных вариантах осуществления однократная эффективная доза конструкции для RNAi по настоящему изобретению может составлять приблизительно 0,1 мг/кг, приблизительно 0,5 мг/кг, приблизительно 1 мг/кг, приблизительно 2 мг/кг, приблизительно 3 мг/кг, приблизительно 4 мг/кг, приблизительно 5 мг/кг, приблизительно 6 мг/кг, приблизительно 7 мг/кг, приблизительно 8 мг/кг, приблизительно 9 мг/кг или приблизительно 10 мг/кг. Фармацевтическую композицию, содержащую эффективное количество конструкции для RNAi, можно вводить еженедельно, раз в две недели, ежемесячно, ежеквартально или раз в два года. Точное определение того, что считается эффективным количеством и частотой введения, может основываться на нескольких факторах, включая вес пациента, его возраст и общее состояние, тип подлежащего лечению нарушения (например, инфаркт миокарда, сердечная недостаточность, ишемическая болезнь сердца, гиперхолестеринемия), конкретную используемую конструкцию для RNAi и способ ее введения. Оценки эффективных дозировок и периодов полужизни in vivo для любой конкретной конструкции для RNAi по настоящему изобретению могут быть установлены с использованием обычных методик и/или испытаний на соответствующих моделях

Введение фармацевтических композиций по настоящему изобретению можно осуществлять любым традиционным способом, если целевая ткань доступна при этом способе введения. Такие способы введения включают без ограничения парентеральный (например, подкожный, внутримышечный, внутрибрюшинный или внутривенный), оральный, назальный, буккальный, внутрикожный, трансдермальный и сублингвальный способы или путем прямой инъекции в ткань печени или доставки через печеночную портальную вену. В некоторых вариантах осуществления фармацевтическую композицию вводят парентерально. К примеру, в определенных вариантах осуществления фармацевтическую композицию вводят внутривенно. В других вариантах осуществления фармацевтическую композицию вводят подкожно.

Коллоидные дисперсионные системы, такие как макромолекулярные комплексы, нанокапсулы, микросферы, гранулы и системы на основе липидов, включая эмульсии типа "масло в воде", мицеллы, смешанные мицеллы и липосомы, могут использоваться в качестве средств доставки конструкций для RNAi по настоящему изобретению или векторов, кодирующих такие конструкции. Коммерчески доступные жировые эмульсии, которые подходят для доставки нуклеиновых кислот по изобретению, включают Intralipid®, Liposyn®, Liposyn®II, Liposyn®III, Nutrilipid и другие подобные липидные эмульсии. Предпочтительной коллоидной системой, предназначенной для использования в качестве средства для доставки in vivo, является липосома (т. е. везикула с искусственной мембраной). Конструкции для RNAi по настоящему изобретению могут быть инкапсулированы в липосомы или могут образовывать комплексы с ними, в частности с катионными липосомами. В качестве альтернативы конструкции для RNAi по настоящему изобретению могут образовывать комплексы с липидами, в частности с катионными липидами. Подходящие липиды и липосомы включают нейтральные (например, диолеоилфосфатидилэтаноламин) (DOPE), димиристоилфосфатидилхолин (DMPC) и дипальмитоилфосфатидилхолин (DPPC)), дистеароилфосфатидилхолин), отрицательно заряженные (например, димиристоилфосфатидилглицерин (DMPG)) и катионные (например, диолеоилтетраметиламинопропил (DOTAP) и диолеоилфосфатидилэтаноламин (DOTMA)) липиды и липосомы. Получение и использование таких коллоидных дисперсионных систем хорошо известны из уровня техники. Иллюстративные составы также раскрыты в патенте США № 5981505; патенте США № 6217900; в патенте США № 6383512; патенте США № 5783565; патенте США № 7202227; патенте США № 6379965; патенте США № 6127170; патенте США № 5837533; патенте США № 6747014 и WO 03/093449.

В некоторых вариантах осуществления конструкции для RNAi по настоящему изобретению полностью инкапсулированы в липидный состав, например, для образования SPLP, pSPLP, SNALP или других частиц типа "нуклеиновая кислота-липид". Используемый в данном документе термин "SNALP" относится к стабильной частице типа "нуклеиновая кислота-липид", включая SPLP. Используемый в данном документе термин "SPLP" относится к частице типа "нуклеиновая кислота-липид", которая содержит плазмидную ДНК, инкапсулированную в липидную везикулу. SNALP и SPLP обычно содержат катионный липид, некатионный липид и липид, который предотвращает агрегацию частиц (например, конъюгат

РЕG-липид). SNALP и SPLP исключительно полезны для системных применений, поскольку после внутривенного введения они демонстрируют увеличенное время циркуляции в кровотоке и накапливаются в удаленных участках (например, физически отделенных от участка введения). SPLP включают "pSPLP", которые включают инкапсулированный комплекс конденсирующего средства и нуклеиновой кислоты, как изложено в публикации по РСТ № WO 00/03683. Частицы типа "нуклеиновая кислота-липид" обычно имеют средний диаметр, составляющий от приблизительно 50 до приблизительно 150 нМ, от приблизительно 60 до приблизительно 130 нМ, от приблизительно 70 до приблизительно 110 нМ или от приблизительно 70 до приблизительно 90 нМ, и по сути они не токсичны. Кроме того, когда нуклеиновые кислоты присутствуют в частицах типа "нуклеиновая кислота-липид", в водном растворе они являются устойчивыми к деградации нуклеазой. Частицы типа "нуклеиновая кислота-липид" и способ их получения раскрыты, например, в патентах США №№ 5976567; 5981501; 6534484; 6586410; 6815432 и публикации заявки по РСТ № WO 96/40964.

Фармацевтические композиции, подходящие для инъекционного применения, включают, например, стерильные водные растворы или дисперсии и стерильные порошки для экстемпорального приготовления стерильных инъекционных растворов или дисперсий. Как правило, данные препараты являются стерильными и жидкими до такой степени, что они способны легко проходить через иглу при введении. Препараты должны быть стабильными в условиях изготовления и хранения и должны быть предохранены от загрязняющего действия микроорганизмов, таких как бактерии и грибы. Подходящие растворители или дисперсионные носители могут содержать, например, воду, этанол, полиол (например, глицерин, пропиленгликоль и жидкий полиэтиленгликоль и т. п.), их подходящие смеси и растительные масла. Надлежащая текучесть может поддерживаться, например, за счет использования покрытия, такого как лецитин, за счет поддержания требуемого размера частиц в случае дисперсии и за счет использования поверхностно-активных веществ. Предотвращение воздействия микроорганизмов может быть вызвано различными антибактериальными и противогрибковыми средствами, например, парабенами, хлорбутанолом, фенолом, сорбиновой кислотой, тиомерсалом и т.п. Во многих случаях будет предпочтительным включение изотонических средств, например сахаров или хлорида натрия. Пролонгированная абсорбция инъекционных композиций может быть достигнута за счет использования в композициях средств замедляющих абсорбцию, например моностеарата алюминия и желатина.

Стерильные инъекционные растворы могут быть получены путем добавления по мере необходимости активных соединений в соответствующем количестве в растворитель вместе с любыми другими ингредиентами (например, перечисленными выше) с последующей стерилизацией фильтрованием. Как правило, дисперсии получают путем включения различных стерилизованных активных ингредиентов в стерильную среду-носитель, которая содержит основную дисперсионную среду и другие необходимые ингредиенты из, например, перечисленных выше. В случае стерильных порошков, предназначенных для получения стерильных инъекционных растворов, предпочтительные способы получения включают методики вакуумной сушки и лиофильной сушки, которые обеспечивают получение порошка активного ингредиента (ингредиентов) плюс любого дополнительного необходимого ингредиента из его предварительно стерильно отфильтрованного раствора.

Композиции по настоящему изобретению, как правило, могут быть составлены в нейтральной или солевой форме. Фармацевтически приемлемые соли включают, например, соли присоединения кислот (образованные со свободными аминогруппами), полученные из неорганических кислот (например, соляной или фосфорной кислот) или полученные из органических кислот (например, уксусной, щавелевой, винной, миндальной и т.п.). Соли, образованные со свободными карбоксильными группами, также могут быть получены из неорганических оснований (например, гидроксидов натрия, калия, аммония, кальция или железа) или из органических оснований (например, изопропиламина, триметиламина, гистидина, прокаина и т.п.).

Например, для парентерального введения в водном растворе раствор, к примеру, в достаточной степени забуферен, а жидкий разбавитель сначала делают изотоническим, например, путем использования достаточного количества физиологического раствора или глюкозы. Такие водные растворы можно использовать, например, для внутривенного, внутримышечного, подкожного и внутрибрюшинного введения. Предпочтительно используют стерильные водные среды, известные специалистам в данной области, особенно в свете раскрытия настоящего изобретения. В качестве иллюстрации одну дозу можно растворять в 1 мл изотонического раствора NaCl и либо добавлять к 1000 мл жидкости для гиподермоклизиса, либо вводить в предлагаемый участок для инфузии (см., например, "Remington's Pharmaceutical Sciences" 15th Edition, стр. 1035-1038 и 1570-1580). Для введения человеку препараты должны соответствовать стандартам стерильности, пирогенности, общей безопасности и чистоты, как того требуют стандарты FDA. В определенных вариантах осуществления фармацевтическая композиция по настоящему изобретению содержит или состоит из стерильного физиологического раствора и описанной в данном документе конструкции для RNAi. В других вариантах осуществления фармацевтическая композиция по настоящему изобретению содержит или состоит из описанной в данном документе конструкции для RNAi и стерильной воды (например, воды для инъекции, WFI). В дополнительных других вариантах осуществления фармацевтическая композиция по настоящему изобретению содержит или состоит из описанной в данном документе конструкции для RNAi и фосфатно-буферного солевого раствора (PBS).

В некоторых вариантах осуществления фармацевтические композиции по настоящему изобретению упакованы или хранятся в устройстве для введения. Устройства для введения инъекционных составов включают без ограничения порт-системы для инъекций, предварительно заполненные шприцы, автоматические инъекторы, инъекционные помпы, нательные инъекторы и шприцы-ручки. Устройства для введения аэрозольных или порошковых составов включают без ограничения ингаляторы, инсуффляторы, аспираторы и т.п. Таким образом, в настоящее изобретение включены устройства для введения, содержащие фармацевтическую композицию по настоящему изобретению для лечения или профилактики одного или нескольких нарушений, описанных в данном документе.

Способы подавления экспрессии PNPLA3

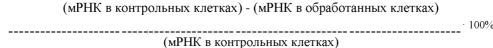
В настоящем изобретении также представлены способы подавления экспрессии гена PNPLA3 в клетке. Способы включают приведение клетки в контакт со средством для RNAi, например двухнитевым средством для RNAi, в количестве, которое является эффективным для подавления экспрессии PNPLA3 внутри клетки, за счет чего подавляется экспрессия PNPLA3 внутри клетки. Приведение клетки в контакт со средством для RNAi, например с двухнитевым средством для RNAi, можно осуществлять in vitro или in vivo. Приведение клетки в контакт со средством для RNAi in vivo включает приведение в контакт клетки или группы клеток внутри субъекта, например субъекта-человека, со средством для RNAi. Также возможны комбинации способов приведения клетки в контакт in vitro и in vivo.

В настоящем изобретении представлены способы снижения или подавления экспрессии PNPLA3 у нуждающегося в этом субъекта, а также способы лечения или предотвращения состояний, заболеваний или нарушений, ассоциированных с экспрессией или активностью PNPLA3. Выражение "состояние, заболевание или нарушение, ассоциированное с экспрессией PNPLA3" относится к состояниям, заболеваниям или нарушениям, при которых наблюдаются изменения уровней экспрессии PNPLA3 или при которых повышенные уровни экспрессии PNPLA3 ассоциированы с повышенным риском развития состояния, заболевания или нарушения.

Приведение в контакт с клеткой может быть прямым или опосредованным, как обсуждалось выше. Кроме того, приведение в контакт с клеткой может быть осуществлено посредством нацеливающего лиганда, в том числе любого лиганда, описанного в данном документе или известного из уровня техники. В предпочтительных вариантах осуществления нацеливающий лиганд представляет собой углеводный фрагмент, например лиганд GalNAc3, или любой другой лиганд, который направляет средство для RNAi к представляющему интерес участку.

В одном варианте осуществления приведение клетки в контакт с RNAi включает "введение" или "доставку средства для RNAi в клетку" путем облегчения или осуществления захвата клеткой или путем абсорбции внутрь клетки. Абсорбция или захват средства для RNAi может происходить в результате неконтролируемых диффузионных или активных клеточных процессов, либо посредством вспомогательных средств или устройств. Введение средства для RNAi в клетку может быть осуществлено in vitro и/или in vivo. Например, для введения in vivo RNAi можно вводить в участок ткани или вводить системно. Введение в клетку in vitro включает способы, известные в данной области, такие как электропорация и липофекция. Дополнительные подходы описаны в данном документе ниже и/или известны из уровня техники.

Термин "подавление", используемый в данном документе, используется взаимозаменяемо с терминами "снижение", "сайленсинг", "понижающая регуляция", "супрессия" и другими подобными терминами и включает любой уровень подавления.


Фраза "подавление экспрессии PNPLA3" подразумевает подавление экспрессии любого гена PNPLA3 (например, такого, как ген PNPLA3 мыши, ген PNPLA3 крысы, ген PNPLA3 обезьяны или ген PNPLA3 человека), а также вариантов или мутантных вариантов гена PNPLA3. Таким образом, ген PNPLA3 может представлять собой ген дикого типа PNPLA3, мутантный ген PNPLA3 (такой как мутантный ген PNPLA3, вызывающий отложение амилоида) или генетически модифицированный ген PNPLA3 в контексте генетически модифицированных клетки, группы клеток или организма.

Термин "подавление экспрессии гена PNPLA3" включает любой уровень подавления гена PNPLA3, например, по меньшей мере частичную супрессию экспрессии гена PNPLA3. Экспрессия гена PNPLA3 может быть оценена на основе уровня или изменения уровня любого параметра, ассоциированного с экспрессией гена PNPLA3, например, уровня мРНК PNPLA3, белка PNPLA3 или количества или степени амилоидных отложений. Оценку этого уровня можно проводить в отдельной клетке или в группе клеток, включая, например, образец, полученный от субъекта.

Подавление можно оценивать по снижению абсолютного или относительного уровня одного или нескольких параметров, ассоциированных с экспрессией PNPLA3, по сравнению с контрольным уровнем. Контрольный уровень может быть любым типом контрольного уровня, который используется в данной области, например, исходным уровнем до введения дозы или уровнем, определенным для аналогичного субъекта, клетки или образца, который не подвергали обработке или обрабатывали с помощью контрольного раствора (такого как, например, контроль, представляющий собой только буфер, или контроль, представляющий собой неактивное средство). В некоторых вариантах осуществления способов по

настоящему изобретению экспрессия гена PNPLA3 подавляется на по меньшей мере приблизительно 5%, по меньшей мере приблизительно 10%, по меньшей мере приблизительно 15%, по меньшей мере приблизительно 20%, по меньшей мере приблизительно 30%, по меньшей мере приблизительно 35%, по меньшей мере приблизительно 40%, по меньшей мере приблизительно 45%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 55%, по меньшей мере приблизительно 60%, по меньшей мере приблизительно 65%, по меньшей мере приблизительно 70%, по меньшей мере приблизительно 80%, по меньшей мере приблизительно 91%, по меньшей мере приблизительно 91%, по меньшей мере приблизительно 92%, по меньшей мере приблизительно 93%, по меньшей мере приблизительно 96%, по мен

Подавление экспрессии гена PNPLA3 может проявляться уменьшением количества мРНК, экспрессируемой первой клеткой или группой клеток (такие клетки могут присутствовать, например, в образце, полученном от субъекта), в которых транскрибируется ген PNPLA3 и которая была или которые были обработаны (например, путем приведения клетки или клеток в контакт со средством для RNAi по настоящему изобретению или путем введения средства для RNAi по настоящему изобретению субъекту, у которого клетки присутствуют или присутствовали), так что происходит подавление экспрессии гена PNPLA3 по сравнению со второй клеткой или группой клеток, по сути идентичной первой клетке или группе клеток, но которую не подвергали или которые не подвергали такой обработке (контрольная клетка (клетки)). В предпочтительных вариантах осуществления подавление экспрессии оценивают, выражая уровень мРНК в обработанных клетках в виде процентного содержания от уровня мРНК в контрольных клетках, используя следующую формулу:

В качестве альтернативы подавление экспрессии гена PNPLA3 можно оценивать с точки зрения уменьшения параметра, который функционально связан с экспрессией гена PNPLA3, например, экспрессии белка PNPLA3 или активности белка сигнального пути Hedgehog. Сайленсинг гена PNPLA3 может быть определен в любой клетке, экспрессирующей PNPLA3 либо конститутивно, либо в результате генной инженерии, и с помощью любого анализа, известного в данной области.

Подавление экспрессии белка PNPLA3 может проявляться снижением уровня белка PNPLA3, экспрессируемого клеткой или группой клеток (например, уровня белка, экспрессируемого в образце, полученном от субъекта). Как было объяснено выше, для оценки степени супрессии мРНК подавление уровней экспрессии белка в обработанной клетке или группе клеток может быть аналогичным образом выражено в процентах от уровня белка в контрольной клетке или группе клеток.

Контрольные клетка или группа клеток, которые могут быть использованы для оценки степени подавления экспрессии гена PNPLA3, включают клетку или группу клеток, которые еще не были приведены в контакт со средством для RNAi по настоящему изобретению. Например, контрольная клетка или группа клеток могут быть получены от отдельного субъекта (например, субъекта-человека или субъекта-животного) до лечения субъекта средством для RNAi.

Уровень мРНК PNPLA3, который экспрессируется клеткой или группой клеток, или уровень циркулирующей в крови мРНК PNPLA3 могут быть определены с использованием любой методики, известной в данной области, для оценки экспрессии мРНК. В одном варианте осуществления уровень экспрессии PNPLA3 в образце определяют путем выявления транскрибированного полинуклеотида или его части, например, мРНК гена PNPLA3. РНК может быть выделена из клеток с использованием методов экстракции PHK, включая, например, экстракцию кислым фенолом/изотиоцианатом гуанидина (RNAzol B; Biogenesis), наборами для выделения PHK RNeasy (Qiagen) или PAXgene (PreAnalytix, Швейцария). Типичные форматы анализа, использующие гибридизацию с рибонуклеиновой кислотой, включают кинетические анализы экспрессии генов, ПНР с обратной транскрипцией, анализы с защитой от действия РНКазы (Melton et al., Nuc. Acids Res. 12:7035), нозерн-блоттинг, гибридизацию in situ и микроматричный анализ. Циркулирующая в крови мРНК PNPLA3 может быть выявлена с использованием методик, описанных в заявке PCT/US 2012/043584, полное содержание которой включено в данный документ посредством ссылки.

В одном варианте осуществления уровень экспрессии PNPLA3 определяют с помощью зонда на основе нуклеиновой кислоты. Термин "зонд", используемый в данном документе, относится к любой молекуле, которая способна избирательно связываться с конкретным PNPLA3. Зонды могут быть синтезированы специалистом в данной области или получены из соответствующих биологических препаратов. Зонды могут быть специально сконструированы для введения метки. Примеры молекул, которые можно использовать в качестве зондов, включают без ограничения РНК, ДНК, белки, антитела и органические молекулы.

Выделенная мРНК может быть использована в анализах гибридизации или амплификации, которые включают без ограничения блоттинг по Саузерну и нозерн-блоттинг, анализы на основе полимеразной цепной реакции (ПНР) и матрицы зондов. Одна из методик определения уровней мРНК включает приведение в контакт выделенной мРНК с молекулой нуклеиновой кислоты (зондом), которая может гибридизоваться с мРНК РNPLA3. В одном варианте осуществления мРНК иммобилизована на твердой поверхности и ее приводят в контакт с зондом, например, путем разгона выделенной мРНК в агарозном геле и переноса мРНК из геля на мембрану, такую как нитроцеллюлозную мембрану. В альтернативном варианте осуществления зонд (зонды) иммобилизованы на твердой поверхности и мРНК вступает в контакт с зондом (зондами), например, на ДНК-чипе Affymetrix. Специалист в данной области может легко адаптировать известные способы выявления мРНК для использования при определении уровня мРНК PNPLA3.

Альтернативный способ определения экспрессии PNPLA3 в образце включает процесс амплификации нуклеиновой кислоты и/или действия обратной транскриптазой (для получения кДНК), например мРНК в образце, например, при помощи ПЦР с обратной транскрипцией (экспериментальный вариант осуществления изложен у Mullis, 1987, патент США № 4683202), лигазной цепной реакции (Barany (1991) Proc. Natl. Acad. Sci. USA 88: 189-193), самоподдерживающейся репликации последовательности (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874-1878), системы транскрипционной амплификации (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173-1177), О-бета репликазы (Lizardi et al. (1988) Bio/Technology 6: 1197), репликации по типу "катящегося кольца" (Lizardi et al., патент США № 5854033) или любого другого способа амплификации нуклеиновых кислот с последующим выявлением амплифицированных молекул с использованием методик, хорошо известных специалистам в данной области. Эти схемы выявления особенно полезны для выявления молекул нуклеиновых кислот, когда такие молекулы присутствуют в очень небольших количествах. В конкретных аспектах изобретения уровень экспрессии PNPLA3 определяют с помощью количественной флуорогенной ПЦР с обратной транскрипцией (т.е. системы TaqManTM). Мониторинг уровней экспрессии мРНК PNPLA3 можно проводить с использованием мембранного блоттинга (такого как используемый в гибридизационном анализе, например, нозернблоттинг, блоттинг по Саузерну, дот-блоттинг и т.п.) или микролунок, пробирок для образцов, гелей, гранул или волокон (или любой твердой подложки, содержащей связанные нуклеиновые кислоты). Смотрите патенты США №№ 5770722, 5874219, 5744305, 5677195 и 5445934, которые включены в данный документ посредством ссылки. Определение уровней экспрессии PNPLA3 может также включать использование зондов нуклеиновых кислот в растворе.

В предпочтительных вариантах осуществления уровень экспрессии мРНК оценивают с использованием анализов разветвленной ДНК (bDNA) или ПЦР в режиме реального времени (qPCR). Использование этих способов описано и проиллюстрировано в Примерах, представленных в данном документе.

Уровень экспрессии белка PNPLA3 может быть определен с использованием любого способа, известного в данной области, для измерения уровней белка. Такие способы включают, например, электрофорез, капиллярный электрофорез, высокоэффективную жидкостную хроматографию (HPLC), тонкослойную хроматографию (TLC), гипердиффузионную хроматографию, жидкостные или гелевые реакции преципитации в жидкости или в геле, абсорбционную спектроскопию, колориметрические анализы, спектрофотометрические анализы, проточную цитометрию, иммунодиффузию (одинарную или двойную), иммуноэлектрофорез, вестерн-блоттинг, радиоиммуноанализ (RIA), твердофазные иммуноферментные анализы (ELISA), иммунофлуоресцентные анализы, электрохемилюминесцентные анализы и т.п.

В некоторых вариантах осуществления эффективность способов по настоящему изобретению можно контролировать, выявляя или отслеживая уменьшение симптомов заболевания, связанного с PNPLA3, например, уменьшение отечности конечностей, лица, гортани, верхних дыхательных путей, живота, туловища и половых органов, продрома; отека гортани; не зудящей сыпи; тошноты; рвоты или боли в животе. Данные симптомы можно оценивать in vitro или in vivo с использованием любого способа, известного в данной области.

В некоторых вариантах осуществления способов по настоящему изобретению средство для RNAi вводят субъекту таким образом, что средство для RNAi поступает в конкретный участок внутри субъекта. Подавление экспрессии PNPLA3 может быть оценено с использованием измерений уровня или изменений уровня мРНК PNPLA3 или белка PNPLA3 в образце, полученном из жидкости или ткани в определенном участке субъекта. В предпочтительных вариантах осуществления участок выбран из группы, состоящей из печени, сосудистого сплетения, сетчатки и поджелудочной железы. Участок также может быть частью или подгруппой клеток из любых вышеупомянутых участков. Участок может также включать клетки, которые экспрессируют определенный тип рецептора.

Способы лечения или предотвращения заболеваний, ассоциированных с PNPLA3

В настоящем изобретении представлены терапевтические и профилактические способы, которые включают введение субъекту с заболеванием, нарушением и/или состоянием, ассоциированным с PNPLA3, или склонному к развитию заболевания, нарушения и/или состояния, ассоциированного с PNPLA3, композиции, содержащей средство для RNAi, или фармацевтических композиций, содержащих

средство для RNAi, или векторов, экспрессирующих средство для RNAi по настоящему изобретению. Неограничивающие примеры заболеваний, ассоциированных с PNPLA3, включают, например, жировой гепатоз (стеатоз), неалкогольный стеатогепатит (NASH), цирроз печени, накопление жира в печени, воспаление печени, гепатоцеллюлярный некроз, фиброз печени, ожирение или неалкогольная жировая болезнь печени (NAFLD). В одном варианте осуществления заболевание, ассоциированное с PNPLA3, представляет собой NASLD. В другом варианте осуществления заболевание, ассоциированное с PNPLA3, представляет собой NASH. В другом варианте осуществления заболевание, ассоциированное с PNPLA3, представляет собой жировой гепатоз (стеатоз). В другом варианте осуществления заболевание, ассоциированное с PNPLA3, представляет собой инсулинорезистентность. В другом варианте осуществления заболевание, ассоциированное с PNPLA3, не представляет собой инсулинорезистентность.

В определенных вариантах осуществления в настоящем изобретении представлен способ снижения экспрессии PNPLA3 у нуждающегося в этом пациента, предусматривающий введение пациенту любой из описанных в данном документе конструкций для RNAi. Термин "пациент", используемый в данном документе, относится к млекопитающему, в том числе к человеку, и может использоваться взаимозаменяемо с термином "субъект". Предпочтительно уровень экспрессии PNPLA3 в гепатоцитах у пациента снижается после введения конструкции для RNAi по сравнению с уровнем экспрессии PNPLA3 у пациента, не получавшего конструкцию для RNAi.

Способы по настоящему изобретению применимы для лечения субъекта с заболеванием, ассоциированным с PNPLA3, например, субъекта, который может получить пользу от снижения экспрессии гена PNPLA3 и/или продуцирования белка PNPLA3. В одном аспекте настоящего изобретения представлены способы снижения уровня экспрессии гена, кодирующего белок 3, содержащий пататин-подобный фосфолипазный домен (PNPLA3), у субъекта с неалкогольной жировой болезнью печени (NAFLD). В другом аспекте настоящего изобретения представлены способы снижения уровня белка PNPLA3 у субъекта с NAFLD. В настоящем изобретении также представлены способы снижения уровня активности сигнального пути hedgehog у субъекта с NAFLD.

В другом аспекте настоящего изобретения представлены способы лечения субъекта с NAFLD. В одном аспекте настоящего изобретения представлены способы лечения субъекта с заболеванием, ассоциированным с PNPLA3, например, с жировым гепатозом (стеатозом), неалкогольным стеатогепатитом (NASH), циррозом печени, накоплением жира в печени, воспалением печени, гепатоцеллюлярным некрозом, фиброзом печени, ожирением или неалкогольной жировой болезнью печени (NAFLD). Способы лечения (и применения) по настоящему изобретению включают введение субъекту, например человеку, терапевтически эффективного количества средства для RNAi по настоящему изобретению, целенаправленно воздействующего на ген PNPLA3, или фармацевтической композиции, содержащей средство для RNAi по настоящему изобретению, целенаправленно воздействующее на ген PNPLA3, или вектор по настоящему изобретению, экспрессирующий средство для RNAi, целенаправленно воздействующее на ген PNPLA3.

В одном аспекте настоящего изобретения представлены способы предотвращения по меньшей мере одного симптома у субъекта с NAFLD, например, наличия повышенной активности сигнальных путей hedgehog, усталости, слабости, потери веса, потери аппетита, тошноты, боли в животе, сосудистых звездочек, пожелтения кожи и глаз (желтуха), зуда, накопления жидкости и отека ног (отека), отека живота (асцита) и спутанности сознания. Способы включают введение субъекту терапевтически эффективного количества средства для RNAi, например dsRNA, фармацевтических композиций или векторов по настоящему изобретению, за счет чего предотвращается возникновение по меньшей мере одного симптома у субъекта с нарушением, которое может быть улучшено за счет снижения экспрессии гена PNPLA3.

В другом аспекте настоящего изобретения представлены варианты применения терапевтически эффективного количества средства для RNAi по настоящему изобретению для лечения субъекта, например, субъекта, который может получить пользу от снижения и/или подавления экспрессии гена PNPLA3. В дополнительном аспекте настоящего изобретения представлены варианты применения средства для RNAi, например dsRNA, по настоящему изобретению, целенаправленно воздействующей на ген PNPLA3, или фармацевтической композиции, содержащей средство для RNAi, целенаправленно воздействующее на ген PNPLA3, в производстве лекарственного препарата, предназначенного для лечения субъекта, например, субъекта, который может получить пользу от снижения и/или подавления экспрессии гена PNPLA3 и/или продуцирования белка PNPLA3, как, например, субъекта с нарушением, которое может быть улучшено за счет снижения экспрессии гена PNPLA3, например, заболевания, ассоциированного с PNPLA3.

В другом аспекте настоящего изобретения представлены варианты применения средства для RNAi, например dsRNA, по настоящему изобретению для предотвращения возникновения по меньшей мере одного симптома у субъекта, страдающего нарушением, которое может быть улучшено за счет снижения и/или подавления экспрессии гена PNPLA3 и/или продуцирования белка PNPLA3.

В дополнительном аспекте настоящего изобретения представлены варианты применения средства для RNAi по настоящему изобретению в производстве лекарственного препарата, предназначенного для предотвращения возникновения по меньшей мере одного симптома у субъекта, страдающего нарушени-

ем, которое может быть улучшено за счет снижения и/или подавления экспрессии гена PNPLA3 и/или продуцирования белка PNPLA3, например, заболеванием, ассоциированным с PNPLA3.

В одном варианте осуществления средство для RNAi, целенаправленно воздействующее на PNPLA3, вводят субъекту с заболеванием, ассоциированным с PNPLA3, например неалкогольной жировой болезнью печени (NAFLD), вследствие чего экспрессия гена PNPLA3, например, в клетке, ткани, крови или другой ткани или жидкости у субъекта уменьшается на по меньшей мере приблизительно 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 62%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, или по меньшей мере приблизительно 99% или больше, если субъекту вводят средство на основе dsRNA.

Способы и варианты применения по настоящему изобретению включают введение композиции, описанной в данном документе, вследствие чего экспрессия целевого гена PNPLA3 снижается, например, в течение приблизительно 1, 2, 3, 4 5, 6, 7, 8, 12, 16, 18, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, или приблизительно 80 ч. В одном варианте осуществления экспрессия целевого гена PNPLA3 снижается в течение длительного периода, например, в течение по меньшей мере приблизительно двух, трех, четырех, пяти, шести, семи дней или больше, например, в течение приблизительно одной недели, двух недель, трех недель или приблизительно четырех недель или дольше.

Введение dsRNA в соответствии со способами и вариантами применения по настоящему изобретению может привести к снижению тяжести, признаков, симптомов и/или уровня маркеров заболеваний или нарушений у пациента с заболеванием, ассоциированным с PNPLA3, например неалкогольной жировой болезнью печени (NAFLD). Под "снижением" в данном контексте подразумевается статистически значимое снижение такого уровня. Снижение может составлять, например, по меньшей мере приблизительно 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, или приблизительно 100%. Эффективность лечения или предотвращения заболевания можно оценить, например, путем измерения прогрессирования заболевания, ремиссии заболевания, тяжести симптомов, уменьшения боли, качества жизни, дозы лекарственного препарата, необходимого для поддержания эффекта лечения, уровня маркера заболевания или любого другого измеримого параметра, соответствующего данному заболеванию, которое лечат или которое пытаются нацеленно предотвратить. Специалист в данной области вполне способен контролировать эффективность лечения или предотвращения путем измерения любого из таких параметров или любой комбинации параметров. Например, эффективность лечения NAFLD можно оценивать, например, путем периодического мониторинга симптомов NAFLD, уровней жира в печени или экспрессии генов, регулирующих последующие звенья сигнальных каскадов. Сравнение более поздних показаний с первоначальными показаниями предоставляет врачу указание на то, является ли лечение эффективным. Специалист в данной области вполне способен контролировать эффективность лечения или предотвращения путем измерения любого из таких параметров или любой комбинации параметров. В связи с введением средства для RNAi, целенаправленно воздействующего на PNPLA3, или его фармацевтической композиции "эффективность относительно" заболевания, ассоциированного с PNPLA3, указывает на то, что введение клинически приемлемым образом приводит к положительному эффекту для, по меньшей мере, статистически значимой доли пациентов, например, к улучшению симптомов, излечению, снижению тяжести заболевания, продлению жизни, улучшению качества жизни или к другому эффекту, который является общепризнанно положительным среди врачей, знакомых с лечением NAFLD и/или заболевания, ассоциированного с PNPLA3 и связанных с ним причин.

Лечебный или превентивный эффект проявляется тогда, когда наблюдается статистически значимое улучшение одного или нескольких параметров статуса заболевания, или когда не происходит ухудшение или развитие симптомов в тех случаях, в которых иначе их можно было бы ожидать. В качестве примера благоприятное изменение, по меньшей мере, на 10% в измеряемом параметре заболевания и предпочтительно на по меньшей мере 20%, 30%, 40%, 50% или больше может свидетельствовать об эффективном лечении. Эффективность данного лекарственного средства на основе RNAi или состава с этим лекарственным средством также можно оценивать путем использования экспериментальной модели животного для данного заболевания, известной в данной области. При использовании экспериментальной модели животного эффективность лечения подтверждается, когда наблюдается статистически значимое снижение маркера или симптома.

Субъектам может быть введено терапевтическое количество средства для RNAi, как, например, приблизительно 0,01 мг/кг, 0,02 мг/кг, 0,03 мг/кг, 0,04 мг/кг, 0,05 мг/кг, 0,1 мг/кг, 0,15 мг/кг, 0,2 мг/кг, 0,25 мг/кг, 0,3 мг/кг, 0,35 мг/кг, 0,4 мг/кг, 0,45 мг/кг, 0,5 мг/кг, 0,55 мг/кг, 0,6 мг/кг, 0,65 мг/кг, 0,7 мг/кг, 0,75 мг/кг, 0,8 мг/кг, 0,85 мг/кг, 0,9 мг/кг, 0,95 мг/кг, 1,0 мг/кг, 1,1 мг/кг, 1,2 мг/кг, 1,3 мг/кг, 1,4 мг/кг, 1,5 мг/кг, 1,6 мг/кг, 1,7 мг/кг, 1,8 мг/кг, 1,9 мг/кг, 2,0 мг/кг, 2,1 мг/кг, 2,2 мг/кг, 2,3 мг/кг, 2,4 мг/кг, 2,5 мг/кг dsRNA, 2,6 мг/кг dsRNA, 2,7 мг/кг dsRNA, 2,8 мг/кг dsRNA, 2,9 мг/кг dsRNA, 3,0 мг/кг dsRNA, 3,1 мг/кг dsRNA, 3,2 мг/кг dsRNA, 3,3 мг/кг dsRNA, 3,4 мг/кг dsRNA, 3,5 мг/кг dsRNA, 3,6 мг/кг dsRNA, 3,7 мг/кг

dsRNA, 3,8 мг/кг dsRNA, 3,9 мг/кг dsRNA, 4,0 мг/кг dsRNA, 4,1 мг/кг dsRNA, 4,2 мг/кг dsRNA, 4,3 мг/кг dsRNA, 4,4 мг/кг dsRNA, 4,5 мг/кг dsRNA, 4,6 мг/кг dsRNA, 4,6 мг/кг dsRNA, 4,7 мг/кг dsRNA, 4,8 мг/кг dsRNA, 4,9 мг/кг dsRNA, 5,0 мг/кг dsRNA, 5,1 мг/кг dsRNA, 5,2 мг/кг dsRNA, 5,3 мг/кг dsRNA, 5,4 мг/кг dsRNA, 5,5 мг/кг dsRNA, 5,6 мг/кг dsRNA, 5,6 мг/кг dsRNA, 5,7 мг/кг dsRNA, 5,8 мг/кг dsRNA, 5,9 мг/кг dsRNA, 6,0 мг/кг dsRNA, 6,1 мг/кг dsRNA, 6,2 мг/кг dsRNA, 6,3 мг/кг dsRNA, 6,4 мг/кг dsRNA, 6,5 мг/кг dsRNA, 6,6 мг/кг dsRNA, 6,7 мг/кг dsRNA, 6,8 мг/кг dsRNA, 6,9 мг/кг dsRNA, 7,0 мг/кг dsRNA, 7,1 мг/кг dsRNA, 7,2 мг/кг dsRNA, 7,3 мг/кг dsRNA, 7,4 мг/кг dsRNA, 7,5 мг/кг dsRNA, 7,6 мг/кг dsRNA, 7,7 мг/кг dsRNA, 7,8 мг/кг dsRNA, 7,9 мг/кг dsRNA, 8,0 мг/кг dsRNA, 8,1 мг/кг dsRNA, 8,2 мг/кг dsRNA, 8,3 мг/кг dsRNA, 8,4 мг/кг dsRNA, 8,5 мг/кг dsRNA, 8,6 мг/кг dsRNA, 8,7 мг/кг dsRNA, 8,8 мг/кг dsRNA, 8,9 мг/кг dsRNA, 9,0 мг/кг dsRNA, 9,1 мг/кг dsRNA, 9,2 мг/кг dsRNA, 9,3 мг/кг dsRNA, 9,4 мг/кг dsRNA, 9,5 мг/кг dsRNA, 9,6 мг/кг dsRNA, 9,7 мг/кг dsRNA, 9,8 мг/кг dsRNA, 9,8 мг/кг dsRNA, 9,9 мг/кг dsRNA, 9,0 мг/кг dsRNA

Введение средства для RNAi может снижать уровни присутствующего белка PNPLA3, например, в клетке, ткани, крови, моче или другом компартменте организма пациента на по меньшей мере приблизительно 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, или на по меньшей мере приблизительно 99% или больше.

Перед введением полной дозы средства для RNAi пациентам можно вводить меньшую дозу, например 5% инфузию, и проводить мониторинг на наличие побочных эффектов, таких как аллергическая реакция. В другом примере можно проводить мониторинг пациента на наличие нежелательных иммуностимулирующих эффектов, таких как повышение уровня цитокинов (например, TNF-альфа или INF-альфа).

Из-за ингибирующих эффектов в отношении экспрессии PNPLA3 композиция по настоящему изобретению или полученная из нее фармацевтическая композиция может улучшить качество жизни.

Средство для RNAi по настоящему изобретению можно вводить в "голой" форме, где модифицированное или немодифицированное средство для RNAi непосредственно суспендировано в водном или подходящем буферном растворителе в виде "свободного средства для RNAi". Свободное средство для RNAi вводят в отсутствие фармацевтической композиции. Свободное средство для RNAi может находиться в подходящем буферном растворе. Буферный раствор может содержать ацетат, цитрат, проламин, карбонат или фосфат или любую их комбинацию. В одном варианте осуществления буферный раствор представляет собой фосфатно-буферный солевой раствор (PBS). Показатель рН и осмоляльность буферного раствора, содержащего средство для RNAi, можно откорректировать таким образом, чтобы он подходил для введения субъекту.

В качестве альтернативы средство для RNAi по настоящему изобретению можно вводить в виде фармацевтической композиции, такой как липосомальный состав с dsRNA.

Субъектами, которые могут получить пользу от снижения и/или подавления экспрессии гена PNPLA3, являются субъекты с неалкогольной жировой болезнью печени (NAFLD) и/или заболеванием или нарушением, ассоциированными с PNPLA3, описанными в данном документе.

Лечение субъекта, который может получить пользу от снижения и/или подавления экспрессии гена PNPLA3, включает терапевтическое и профилактическое лечение.

Настоящее изобретение дополнительно обеспечивает способы и варианты применения средства для RNAi или фармацевтической композиции на его основе для лечения субъекта, который может получить пользу от снижения и/или подавления экспрессии гена PNPLA3, например, субъекта с заболеванием, ассоциированным с PNPLA3, в комбинации с другими фармацевтическими средствами и/или другими терапевтическими способами, например, с известными фармацевтическими средствами и/или известными терапевтическими способами, такими как, например, те, которые в настоящее время используют для лечения данных нарушений.

Например, в определенных вариантах осуществления средство для RNAi, целенаправленно воздействующее на ген PNPLA3, вводят в комбинации, например, со средством, которое является применимым в лечении заболевания, ассоциированного с PNPLA3, описанного в другом месте данного документа. Например, дополнительные терапевтические средства и терапевтические способы, подходящие для лечения субъекта, который может получить пользу от снижения экспрессии PNPLA3, например, субъекта с заболеванием, ассоциированным с PNPLA3, включают средство для RNAi, целенаправленно воздействующее на другую часть гена PNPLA3, терапевтическое средство и/или процедуры для лечения заболевания, ассоциированного с PNPLA3, или комбинацию любого из вышеизложенного.

В определенных вариантах осуществления первое средство для RNAi, целенаправленно воздейст-

вующее на ген PNPLA3, вводят в комбинации со вторым средством для RNAi, целенаправленно воздействующим на другую часть гена PNPLA3. Например, первое средство для RNAi содержит первую смысловую нить и первую антисмысловую нить, образующие двухнитевой участок, где по сути все нуклеотиды указанной первой смысловой нити и по сути все нуклеотиды первой антисмысловой нити являются модифицированными нуклеотидами, где указанная первая смысловая нить конъюгирована с лигандом, присоединенным на 3'-конце, и где лиганд представляет собой одно или несколько производных GalNAc, присоединенных посредством двухвалентного или трехвалентного разветвленного линкера; а второе средство для RNAi содержит вторую смысловую нить и вторую антисмысловую нить, образующие двухнитевой участок, где по сути все нуклеотиды второй смысловой нити и по сути все нуклеотиды второй антисмысловой нити являются модифицированными нуклеотидами, где вторая смысловая нить конъюгирована с лигандом, присоединенным на 3'-конце, и где лиганд представляет собой одно или несколько производных GalNAc, присоединенных посредством двухвалентного или трехвалентного разветвленного линкера.

В одном варианте осуществления все нуклеотиды первой и второй смысловых нитей и/или все нуклеотиды первой и второй антисмысловых нитей содержат модификацию.

В одном варианте осуществления по меньшей мере один из модифицированных нуклеотидов выбран из группы, состоящей из 3'-концевого нуклеотида дезокситимина (dT), 2'-О-метилмодифицированного нуклеотида, 2'-фтор-модифицированного нуклеотида, 2'-дезоксимодифицированного нуклеотида, закрытого нуклеотида, открытого нуклеотида, конформационно ограниченного нуклеотида, конформационно затрудненного этилом нуклеотида, нуклеотида с удаленным азотистым основанием, 2'-амино-модифицированного нуклеотида, 2'-О-аллил-модифицированного нуклеотида, 2'-С-алкил-модифицированного нуклеотида, 2'-гидроксил-модифицированного нуклеотида, 2'метоксиэтил-модифицированного нуклеотида, 2'-О-алкил-модифицированного нуклеотида, морфолинового нуклеотида, фосфорамидата, нуклеотида, содержащего неприродное основание, тетрагидропиранмодифицированного нуклеотида, 1,5-ангидроксигекситол-модифицированного нуклеотида, циклогексенил-модифицированного нуклеотида, нуклеотида, содержащего фосфоротиоатную группу, нуклеотида, содержащего метилфосфонатную группу, нуклеотида, содержащего 5'-фосфат, и нуклеотида, содержащего миметик 5'-фосфата.

В определенных вариантах осуществления первое средство для RNAi, целенаправленно воздействующее на ген PNPLA3, вводят в комбинации со вторым средством для RNAi, целенаправленно воздействующим на ген, отличающийся от гена PNPLA3. Например, средство для RNAi, целенаправленно воздействующее на ген PNPLA3, можно вводить в комбинации со средством для RNAi, целенаправленно воздействующим на ген SCAP. Первое средство для RNAi, целенаправленно воздействующее на ген PNPLA3, и второе средство для RNAi, целенаправленно воздействующее на ген, отличающийся от гена PNPLA3, например на ген SCAP, могут быть введены как части одной и той же фармацевтической композиции. В качестве альтернативы первое средство для RNAi, целенаправленно воздействующее на ген PNPLA3, и второе средство для RNAi, целенаправленно воздействующее на ген, отличающийся от гена PNPLA3, например на ген SCAP, могут быть введены как части разных фармацевтических композиций.

Средство для RNAi и дополнительное терапевтическое средство и/или препарат можно вводить одновременно и/или в такой же комбинации, например парентерально, или дополнительное терапевтическое средство можно вводить как часть отдельной композиции, или в разные моменты времени, и/или другим способом, известным в данной области или описанным в данном документе.

В настоящем изобретении также представлены способы применения средства для RNAi по настоящему изобретению и/или композиции, содержащей средство для RNAi по настоящему изобретению, для снижения и/или подавления экспрессии PNPLA3 в клетке. В других аспектах настоящего изобретения представлены средство для RNAi по настоящему изобретению и/или композиция, содержащая средство для RNAi по настоящему изобретению, для применения с целью снижения и/или подавления экспрессии гена PNPLA3 в клетке. В еще одних аспектах представлено применение средства RNAi по настоящему изобретению и/или композиции, содержащей средство для RNAi по настоящему изобретению, или изготовление лекарственного препарата для снижения и/или подавления экспрессии гена PNPLA3 в клетке. В других аспектах настоящего изобретения представлены средство для RNAi по настоящему изобретению и/или композиция, содержащая средство для RNAi по настоящему изобретению, для применения в снижении и/или подавлении продуцирования белка PNPLA3 в клетке. В еще одних аспектах представлено применение средства для RNAi по настоящему изобретению и/или композиции, содержащей RNAi по настоящему изобретению, для изготовления лекарственного препарата для снижения и/или подавления продуцирования белка PNPLA3 в клетке. Способы и варианты применения включают приведение клетки в контакт со средством для RNAi, например dsRNA, по настоящему изобретению и поддержание клетки в течение времени, достаточного для достижения деградации транскрипта мРНК гена PNPLA3, за счет чего обеспечивается подавление экспрессии гена PNPLA3 или подавление продуцирования белка

Снижение экспрессии гена можно оценить любыми способами, известными в данной области. Например, снижение экспрессии PNPLA3 может быть установлено путем определения уровня экспрессии

мРНК PNPLA3 с помощью способов, являющихся обычной практикой для специалиста в данной области, например, с помощью нозерн-блоттинга, qRT-PCR, путем определения уровня белка PNPLA3 с помощью способов, являющихся обычной практикой для специалиста в данной области, таких как вестерн-блоттинг, иммунологические методики, методики проточной цитометрии, ELISA и/или путем определения биологической активности PNPLA3.

В способах и вариантах применения по настоящему изобретению клетка может быть приведена в контакт in vitro или in vivo, т. е. клетка может быть внутри субъекта.

Клеткой, подходящей для лечения с применением способов по настоящему изобретению, может быть любая клетка, которая экспрессирует ген PNPLA3, например, клетка от субъекта с NAFLD, или клетка, которая содержит вектор экспрессии, содержащий ген PNPLA3 или часть гена PNPLA3. Клетка, подходящая для использования в способах и вариантах применения по настоящему изобретению, может представлять собой клетку млекопитающего, например, клетку примата (такую как клетка человека или клетка нечеловекообразного примата, например, клетку обезьяны или клетку шимпанзе), клетку животного, отличного от примата (такую как клетку коровы, клетку свиньи, клетку верблюда, клетку ламы, клетку лошади, клетку козы, клетку кролика, клетку овцы, клетку хомяка, клетку морской свинки, клетку кошки, клетку собаки, клетку крысы, клетку мыши, клетку льва, клетку тигра, клетку медведя или клетку буйвола), клетку птицы (например, клетку утки или клетку гуся) или клетку кита. В одном варианте осуществления клетка представляет собой клетку человека.

Экспрессия гена PNPLA3 в клетке может быть снижена на по меньшей мере приблизительно 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или приблизительно на 100%.

Продуцирование белка PNPLA3 в клетке может быть снижено по меньшей мере на приблизительно 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или приблизительно на 100%.

Способы и варианты применения in vivo по настоящему изобретению могут включать введение субъекту композиции, содержащей средство для RNAi, где средство для RNAi включает нуклеотидную последовательность, которая комплементарна по меньшей мере части PHK-транскрипта гена PNPLA3 млекопитающего, подлежащего лечению. Когда организм, подлежащий лечению, представляет собой организм человека, композицию можно вводить любым способом, известным в данной области, включая без ограничения подкожный, внутривенный, пероральный, внутрибрюшинный или парентеральный пути, включая внутричерепной путь введения (например, внутрижелудочковый, интрапаренхиматозный и интратекальный), внутримышечное, трансдермальное, введение через дыхательные пути (аэрозоль), назальное, ректальное и местное (включая буккальное и сублингвальное) введение. В определенных вариантах осуществления композиции вводят путем подкожной или внутривенной инфузии или инъекции. В одном варианте осуществления композиции вводят путем подкожной инъекции.

В некоторых вариантах осуществления введение осуществляют путем инъекции вещества замедленного всасывания. При инъекции вещества замедленного всасывания средство для RNAi может высвобождаться последовательным образом в течение длительного периода времени. Таким образом, инъекция вещества замедленного всасывания может снижать частоту введения доз, необходимую для достижения требуемого эффекта, например, требуемого подавления PNPLA3 или терапевтического или профилактического эффекта. Инъекция вещества замедленного всасывания может также обеспечить более постоянные концентрации в сыворотке крови. Инъекции веществ замедленного всасывания могут включать подкожные инъекции или внутримышечные инъекции. В предпочтительных вариантах осуществления инъекция вещества замедленного всасывания представляет собой подкожную инъекцию.

В некоторых вариантах осуществления введение осуществляют посредством инъекционной помпы. Помпа может представлять собой внешнюю помпу или хирургически имплантированную помпу. В определенных вариантах осуществления помпа представляет собой подкожно имплантированную осмотическую помпу. В других вариантах осуществления помпа представляет собой инфузионную помпу. Инфузионную помпу можно использовать для внутривенных, подкожных, артериальных или эпидуральных инфузий. В предпочтительных вариантах осуществления инфузионная помпа представляет собой подкожную инфузионную помпу. В других вариантах осуществления помпа представляет собой хирургически имплантированную помпу, которая осуществляет доставку средства для RNAi субъекту.

Способ введения может быть выбран в зависимости от того, требуется местное или системное лечение, и в зависимости от области, подлежащей лечению. Способ и участок введения могут быть выбра-

ны для усиления целенаправленного воздействия.

В одном аспекте настоящего изобретения также представлены способы подавления экспрессии гена PNPLA3 у млекопитающего, например, у человека. В настоящем изобретении также представлена композиция, содержащая средство для RNAi, например dsRNA, которая целенаправленно воздействует на ген PNPLA3 в клетке млекопитающего, для применения в подавлении экспрессии гена PNPLA3 у млекопитающего. В другом аспекте настоящего изобретения представлены варианты применения средства для RNAi, например dsRNA, которая целенаправленно воздействует на ген PNPLA3 в клетке млекопитающего, в производстве лекарственного препарата для подавления экспрессии гена PNPLA3 у млекопитающего.

Способы и варианты применения включают введение млекопитающему, например человеку, композиции, содержащей средство для RNAi, например, dsRNA, которая целенаправленно воздействует на ген PNPLA3 в клетке млекопитающего, и поддержание млекопитающего в течение времени, достаточного для достижения деградации транскрипта мРНК гена PNPLA3, за счет чего обеспечивается подавление экспрессии гена PNPLA3 у млекопитающего.

Снижение экспрессии гена можно оценить в образце периферической крови субъекта, которому вводили средство для RNAi, при помощи любых способов, известных в данной области, например qRT-PCR, описанной в данном документе. Снижение продуцирования белка можно оценить при помощи любых способов, известных в данной области, например, при помощи ELISA или вестерн-блоттинга, описанных в данном документе. В одном варианте осуществления образец ткани служит в качестве тканевым материалом для мониторинга снижения экспрессии гена и/или белка PNPLA3. В другом варианте осуществления образец крови служит тканевым материалом для мониторинга снижения экспрессии гена и/или белка PNPLA3.

В одном варианте осуществления верификацию RISC-опосредованного расщепления мишени in vivo после введения средства для RNAi осуществляют с помощью 5'-RACE или модификаций из протокола, известных из уровня техники (Lasham A et al. (2010) Nucleic Acid Res., 38 (3) p-el9) (Zimmermann et al. (2006) Nature 441: 111-4).

Понятно, что все последовательности рибонуклеиновой кислоты, раскрытые в данном документе, могут быть преобразованы в последовательности дезоксирибонуклеиновой кислоты путем замены тиминового основания в составе последовательности урациловым основанием. Аналогичным образом все последовательности дезоксирибонуклеиновой кислоты, раскрытые в данном документе, могут быть преобразованы в последовательности рибонуклеиновой кислоты путем замены урацилового основания в составе последовательности тиминовым основанием. В настоящее изобретение включены последовательности дезоксирибонуклеиновой кислоты, последовательности рибонуклеиновой кислоты и последовательности, содержащие смеси дезоксирибонуклеотидов и рибонуклеотидов в составе всех последовательностей, раскрытых в данном документе.

Кроме того, любые последовательности нуклеиновых кислот, раскрытые в данном документе, могут быть модифицированы с помощью любой комбинации химических модификаций. Специалист в данной области легко поймет, что такое обозначение, как "РНК" или "ДНК" для описания модифицированных полинуклеотидов в некоторых случаях является произвольным. Например, полинуклеотид, содержащий нуклеотид, имеющий заместитель 2'-ОН на рибозном сахаре и тиминовое основание, можно описать как молекулу ДНК, имеющую модифицированный сахар (2'-ОН вместо природного атома 2'-Н ДНК) или как молекулу РНК, имеющую модифицированное основание (тимин (метилированный урацил) вместо природного урацила РНК).

Соответственно, последовательности нуклеиновых кислот, представленные в данном документе, включающие без ограничения те, которые указаны в перечне последовательностей, предназначены для охвата нуклеиновых кислот, содержащих любую комбинацию природной или модифицированной РНК и/или ДНК, включая без ограничения такие нуклеиновые кислоты, имеющие модифицированные нуклеиновые основания. В качестве дополнительного примера и без ограничения полинуклеотид, имеющий последовательность "ATCGATCG", охватывает любые полинуклеотиды, имеющие такую последовательность, модифицированные или немодифицированные, включая без ограничения такие соединения, содержащие основания РНК, такие как соединения, имеющие последовательность "AUCGAUCG", и те соединения, которые имеют некоторые основания ДНК и некоторые основания РНК, такие как "AUCGATCG", а также полинуклеотиды, имеющие другие модифицированные основания, такие как "ATmeCGAUCG," где meC обозначает цитозиновое основание, содержащее метильную группу в 5-положении.

Следующие примеры, в том числе проведенные эксперименты и достигнутые результаты, предоставлены только для иллюстративных целей и не должны рассматриваться как ограничивающие объем прилагаемой формулы изобретения.

Включение посредством ссылки

Все публикации, патенты и заявки на патенты, упомянутые в данном описании, включены в данный документ посредством ссылки в той же степени, как если бы каждая отдельная публикация, патент или заявка на патент была специально и индивидуально указана для включения посредством ссылки. Однако

цитирование ссылки в данном документе не должно рассматриваться как подтверждение того, что такая ссылка является предшествующим уровнем техники для настоящего изобретения. В том случае, если любое из определений или терминов, представленных в ссылочных материалах, включенных посредством ссылки, отличается от терминов и обсуждений, представленных в данном документе, преобладающими являются термины и определения по настоящему описанию.

Эквиваленты

Вышеизложенное письменное описание считается достаточным для того, чтобы позволить специалисту в данной области реализовать настоящее изобретение на практике. В вышеизложенном описании и примерах подробно описаны некоторые предпочтительные варианты осуществления настоящего изобретения и описан наилучший способ, предусматриваемый авторами настоящего изобретения. Однако следует иметь в виду, что независимо от того, насколько подробно вышеизложенное может появиться в тексте, настоящее изобретение может быть осуществлено многими способами, поэтому настоящее изобретение следует истолковывать в соответствии с прилагаемой формулой изобретения и любыми ее эквивалентами.

Следующие примеры, в том числе проведенные эксперименты и достигнутые результаты, предоставлены только для иллюстративных целей и не должны рассматриваться как ограничивающие настоящее изобретение.

Пример 1. Отбор, конструирование и синтез модифицированных молекул siRNA PNPLA3

Идентификация и отбор оптимальных последовательностей терапевтических молекул siRNA, целенаправленно воздействующих на пататин-подобный фосфолипазный домен 3 (PNPLA3), идентифицировали с использованием биоинформационного анализа транскрипта PNPLA3 человека (NM_025225.2). В табл. 1 показаны последовательности, идентифицированные как имеющие терапевтические свойства. По всей длине различных последовательностей {INVAB} обозначает инвертированное основание A, {INVDA} обозначает инвертированный дезокситимидин, GNA обозначает гликолевую нуклеиновую кислоту, dT означает дезокситимидин и dC означает дезоксицитозин.

Таблица 1. Последовательности siRNA, направленные на PNPLA3

Дупле	Смысловая	SEQ ID	NO:	Антисмысловая	SEQ	ID	NO:
кс №	последовательность (5'-3')	(смысловая	1)	последовательность (5'-3')	(антис	смысло	вая)
D-	GGGCAAUAAAGUACCU	1		AGCAGGUACUUUAUUGCC		2	
1000	GCUUU			CUU			
D-	CGGCCAAUGUCCACCA	3		AGCUGGUGGACAUUGGCC		4	
1001	GCUUU			GUU			
D-	GGUCCAGCCUGAACUU	5		AAGAAGUUCAGGCUGGAC		6	
1002	CUUUU			CUU			
D-	GCUUCAUCCCCUUCUA	7		CUGUAGAAGGGGAUGAAG		8	
1003	CAGUU			CUU			
D-	GCGGCUUCCUGGGCUU	9		UAGAAGCCCAGGAAGCCG		10	
1004	CUAUU			CUU			
D-	GCCUCUGAGCUGAGUU	11		ACCAACUCAGCUCAGAGG		12	
1005	GGUUU			CUU			
D-	GUGACAACGUACCCUU	13		AUGAAGGGUACGUUGUCA		14	
1006	CAUUU			CUU			
D-	CCCGCCUCCAGGUCCC	15		UUUGGGACCUGGAGGCGG		16	
1007	AAAUU			GUU			
D-	CUUCAUCCCCUUCUAC	17		ACUGUAGAAGGGGAUGAA		18	
1008	AGUUU			GUU			
D-	GGUAUGUUCCUGCUUC	19		CAUGAAGCAGGAACAUAC		20	
1009	AUGUU			CUU			
D-	GUAUGUUCCUGCUUCA	21		GCAUGAAGCAGGAACAUA		22	

046883

	UGCUU		CUU	
D-	UAUGUUCCUGCUUCAU	23	GGCAUGAAGCAGGAACAU	24
1011	GCCUU		AUU	
D-	AUGUUCCUGCUUCAUG	25	GGGCAUGAAGCAGGAACA	26
1012	CCCUU		UUU	
D-	UGUUCCUGCUUCAUGC	27	AGGGCAUGAAGCAGGAAC	28
1013	CCUUU		AUU	
D-	GUUCCUGCUUCAUGCC	29	AAGGGCAUGAAGCAGGAA	30
1014	CUUUU		CUU	
	UUCCUGCUUCAUGCCC	31	GAAGGCAUGAAGCAGGA	32
1015	UUCUU		AUU	
	UCCUGCUUCAUGCCCU	33	AGAAGGGCAUGAAGCAGG	34
1016	UCUUU		AUU	
D-	CCUGCUUCAUGCCCUU	35	UAGAAGGGCAUGAAGCAG	36
1017	CUAUU		GUU	
	CUGCUUCAUGCCCUUC	37	GUAGAAGGCAUGAAGCA	38
1018	UACUU		GUU	
D-	UGCUUCAUGCCCUUCU	39	UGUAGAAGGCAUGAAGC	40
1019	ACAUU		AUU	
	GCUUCAUGCCCUUCUA	41	CUGUAGAAGGCCAUGAAG	42
1020	CAGUU		CUU	
D-	CUUCAUGCCCUUCUAC	43	ACUGUAGAAGGGCAUGAA	44
1021	AGUUU		GUU	
D-	UUCAUGCCCUUCUACA	45	CACUGUAGAAGGGCAUGA	46
1022	GUGUU		AUU	
D-	UCAUGCCCUUCUACAG	47	CCACUGUAGAAGGGCAUG	48
1023	UGGUU		AUU	
D-	CAUGCCCUUCUACAGU	49	GCCACUGUAGAAGGGCAU	50
1024	GGCUU		GUU	
D-	AUGCCCUUCUACAGUG	51	GGCCACUGUAGAAGGGCA	52

046883

GCCUU		UUU	
UGCCCUUCUACAGUGG CCUUU	53	AGGCCACUGUAGAAGGGC AUU	54
GCCCUUCUACAGUGGC CUUUU	55	AAGGCCACUGUAGAAGGG CUU	56
GGUAUGUUCCUGCUUC AUCUU	57	GAUGAAGCAGGAACAUAC CUU	58
GUAUGUUCCUGCUUCA UCCUU	59	GGAUGAAGCAGGAACAUA CUU	60
UAUGUUCCUGCUUCAU CCCUU	61	GGGAUGAAGCAGGAACAU AUU	62
AUGUUCCUGCUUCAUC CCCUU	63	GGGGAUGAAGCAGGAACA UUU	64
UGUUCCUGCUUCAUCC CCUUU	65	AGGGGAUGAAGCAGGAAC AUU	66
GUUCCUGCUUCAUCCC CUUUU	67	AAGGGGAUGAAGCAGGAA CUU	68
UUCCUGCUUCAUCCCC UUCUU	69	GAAGGGGAUGAAGCAGGA AUU	70
UCCUGCUUCAUCCCCU UCUUU	71	AGAAGGGGAUGAAGCAGG AUU	72
CCUGCUUCAUCCCCUU CUAUU	73	UAGAAGGGGAUGAAGCAG GUU	74
CUGCUUCAUCCCCUUC UACUU	75	GUAGAAGGGGAUGAAGCA GUU	76
UGCUUCAUCCCCUUCU ACAUU	77	UGUAGAAGGGGAUGAAGC AUU	78
UUCAUCCCUUCUACA GUGUU	79	CACUGUAGAAGGGGAUGA AUU	80
	UGCCCUUCUACAGUGG CCUUU GCCCUUCUACAGUGGC CUUUU GGUAUGUUCCUGCUUCA UCCUU UAUGUUCCUGCUUCAUC CCCUU UGUUCCUGCUUCAUCC CCUUU UGUCCUGCUUCAUCC CCUUU UUCCUGCUUCAUCCC CUUUU UCCUGCUUCAUCCC UUCUU UCCUGCUUCAUCCCC UUCUU UCCUGCUUCAUCCCCUUCU UCUUU CCUGCUUCAUCCCCUU UCUUU UCCUGCUUCAUCCCCUU UCUUU UCCUGCUUCAUCCCCUU UCUUU UCCUGCUUCAUCCCCUU CUACUU UGCUUCAUCCCCUUC UACUU UCCUCCUUCAUC	UGCCCUUCUACAGUGG CCUUU GCCCUUCUACAGUGGC CUUUU GGUAUGUUCCUGCUUC AUCUU GUAUGUUCCUGCUUCAU CCCUU AUGUUCCUGCUUCAUC AUGUUCCUGCUUCAUC CCCUU GUUCCUGCUUCAUCC CCUUU GUUCCUGCUUCAUCC CUUUU UUCCUGCUUCAUCCC CUUUU UCCUGCUUCAUCCCC UUCUU CCUGCUUCAUCCCCUU CCUGCUUCAUCCCCUU CCUGCUUCAUCCCCUU CUACUU CUGCUUCAUCCCCUUC UCUGCUUCAUCCCCUU CUACUU CUGCUUCAUCCCCUUC UCUGCUUCAUCCCCUUC UCUGCUUCAUCCCCUUC UCUGCUUCAUCCCCUUC UCUGCUUCAUCCCCUUC UCCUGCUUCAUCCCCUUC UCCUGCUUCAUCCCCUUC UCCUGCUUCAUCCCCUUC UCCUGCUUCAUCCCCUUC UCCUGCUUCAUCCCCUUC UCCUGCUUCAUCCCCUUC UCCUUCAUCCCCUUCU T7 ACAUU UUCAUCCCCUUCUACA 79	UGCCCUUCUACAGUGG CCUUU GCCCUUCUACAGUGGC CUUUU GGUAUGUUCCUGCUUC AUU GUAUGUUCCUGCUUCA AUU GUAUGUUCCUGCUUCA AUU GUAUGUUCCUGCUUCA UCCUU UAUGUUCCUGCUUCAU CCUU AUGUUCCUGCUUCAU CCUU AUGUUCCUGCUUCAUC CCUU GUUCCUGCUUCAUCC CCUU UGUUCCUGCUUCAUCC CCUU UGUUCCUGCUUCAUCC CCUUU GUAGGGGAUGAAGCAGGAACAU CCCUU UGUUCCUGCUUCAUCC CCUUU GUUCCUGCUUCAUCC CCUUU GUUCCUGCUUCAUCC CCUUU GUAGGGGAUGAAGCAGGAACA CCUUU GUUCCUGCUUCAUCCC CUUUU GUAGGGGAUGAAGCAGGAAC CCUUU GUCCUGCUUCAUCCC CUUUU CCUGCUUCAUCCCC UUCU GAAGGGGAUGAAGCAGGA AUU CCUGCUUCAUCCCCU T1 AGAAGGGGAUGAAGCAGGA AUU CCUGCUUCAUCCCCUU T3 UAGAAGGGGAUGAAGCAG CUAUU CUGCUUCAUCCCCUUC T5 GUAGAAGGGGAUGAAGCA CUAUU CUGCUUCAUCCCCUUC T7 UGUAGAAGGGGAUGAAGCA CUAUU CUGCUUCAUCCCCUUCU T7 UGUAGAAGGGGAUGAAGCA CAAUU UUCAUCCCCUUCUACA CU CCUGCUUCAUCCCCUUCU T7 UGUAGAAGGGGAUGAAGCA CAAUU CCACUUCAUCCCCUUCU T7 UGUAGAAGGGGAUGAAGCA CAAUU CCACUUCAUCCCCUUCU T7 UGUAGAAGGGGAUGAAGCA CAAUU CCACUUCAUCCCCUUCU T7 CACUGUAGAAGGGGAUGAAGCA CAAUU CCACUUCAUCCCCUUCU T7 CACUGUAGAAGGGGAUGAAGCA CAAUU CCACUGUAGAAGGGGAUGAAGCA CACAUU CCACUGUAGAAGGGGAUGAAGCA CACAUU CCACUGUAGAAGGGGAUGAAGCA CACAUU

046883

1040	UGGUU		AUU	
D- 1041	CAUCCCCUUCUACAGU GGCUU	83	GCCACUGUAGAAGGGGAU GUU	84
D- 1042	UCCCCUUCUACAGUGG CCUUU	85	AGGCCACUGUAGAAGGGG AUU	86
D- 1043	GAUCAGGACCCGAGCC GAUUU	87	AUCGGCUCGGGUCCUGAU CUU	88
D- 1044	UGGGCUUCUACCACGU CGUUU	89	ACGACGUGGUAGAAGCCC AUU	90
D- 1045	GAGCGAGCACGCCCCG CAUUU	91	AUGCGGGGCGUGCUCGCU CUU	92
D- 1046	UGCACUGCGUCGGCGU CCUUU	93	AGGACGCCGACGCAGUGC AUU	94
D- 1047	UGGAGCAGACUCUGCA GGUUU	95	ACCUGCAGAGUCUGCUCC AUU	96
D- 1048	UGCAGGUCCUCUCAGA UCUUU	97	AGAUCUGAGAGGACCUGC AUU	98
D- 1049	CCCGGCCAAUGUCCAC CAUUU	99	AUGGUGGACAUUGGCCGG GUU	100
D- 1050	UUCUACAGUGGCCUUA UCUUU	101	AGAUAAGGCCACUGUAGA AUU	102
D- 1051	UCUACAGUGGCCUUAU CCUUU	103	AGGAUAAGGCCACUGUAG AUU	104
D- 1052	CUUCCUUCAGAGGCGU GCUUU	105	AGCACGCCUCUGAAGGAA GUU	106
D- 1053	UUCCUUCAGAGGCGUG CGAUU	107	UCGCACGCCUCUGAAGGA AUU	108
D- 1054	GCGUGCGAUAUGUGGA UGUUU	109	ACAUCCACAUAUCGCACGC UU	110
D-	CGUGCGAUAUGUGGAU	111	UCCAUCCACAUAUCGCACG	112

1055	GGAUU		UU [
D-	UGGAUGGAGGAGUGA	113	UCACUCACUCCUCCAUCCA	114
1056	GUGAUU		UU	
D-	ACGUACCCUUCAUUGA	115	ACAUCAAUGAAGGGUACG	116
1057	UGUUU		UUU	
D-	UGGACAUCACCAAGCU	117	AUGAGCUUGGUGAUGUCC	118
1058	CAUUU		AUU	
D-	CACCUGCGUCUCAGCA	119	AGAUGCUGAGACGCAGGU	120
1059	UCUUU		GUU	
D-	ACCUGCGUCUCAGCAU	121	AGGAUGCUGAGACGCAGG	122
1060	CCUUU		UUU	
D-	CCAGAGACUGGUGACA	123	ACAUGUCACCAGUCUCUG	124
1061	UGUUU		GUU	
D-	AUGGCUUCCAGAUAUG	125	AGGCAUAUCUGGAAGCCA	126
1062	CCUUU		UUU	
D-	CCGCCUCCAGGUCCCA	127	AUUUGGGACCUGGAGGCG	128
1063	AAUUU		GUU	
D-	UACCUGCUGGUGCUGA	129	ACCUCAGCACCAGCAGGU	130
1064	GGUUU		AUU	
D-	ACCUGCUGGUGCUGAG	131	ACCCUCAGCACCAGCAGGU	132
1065	GGUUU		UU	
D-	CUCUCCACCUUUCCCA	133	AACUGGGAAAGGUGGAGA	134
1066	GUUUU		GUU	
D-	UUUUUCACCUAACUAA	135	AUUUUAGUUAGGUGAAAA	136
1067	AAUUU		AUU	
D-	CGGCCAAUGUCCACCA	137	AGCUGGUGGACAUUGGCC	138
1068	GCUUU		GUU	
D-	GGUCCAGCCUGAACUU	139	AAGAAGUUCAGGCUGGAC	140
1069	CUUUU		CUU	
D-	GCGGCUUCCUGGGCUU	141	UAGAAGCCCAGGAAGCCG	142

1070	CUAUU		CUU	
D- 1071	GUGACAACGUACCCUU CAUUU	143	AUGAAGGGUACGUUGUCA CUU	144
D- 1072	GGUAUGUUCCUGCUUC AUGUU	145	CAUGAAGCAGGAACAUAC CUU	146
D- 1073	GUAUGUUCCUGCUUCA UGCUU	147	GCAUGAAGCAGGAACAUA CUU	148
D- 1074	UGUUCCUGCUUCAUGC CCUUU	149	AGGGCAUGAAGCAGGAAC AUU	150
D- 1075	GUUCCUGCUUCAUGCC CUUUU	151	AAGGGCAUGAAGCAGGAA CUU	152
D- 1076	CCUGCUUCAUGCCCUU CUAUU	153	UAGAAGGGCAUGAAGCAG GUU	154
D- 1077	GCUUCAUGCCCUUCUA CAGUU	155	CUGUAGAAGGGCAUGAAG CUU	156
D- 1078	CUUCAUGCCCUUCUAC AGUUU	157	ACUGUAGAAGGGCAUGAA GUU	158
D- 1079	UUCAUGCCCUUCUACA GUGUU	159	CACUGUAGAAGGGCAUGA AUU	160
D- 1080	AUGGCUUCCAGAUAUG CCUUU	161	AGGCAUAUCUGGAAGCCA UUU	162
D- 1081	AUGCCCUUCUACAGUG GCCUU	163	GGCCACUGUAGAAGGGCA UUU	164
D- 1082	GCUUCAUGCCCUUCUA CAUUU	165	AUGUAGAAGGGCAUGAAG CUU	166
D- 1083	GGAAAGACUGUUCCAA AAAUU	333	UUUUUGGAACAGUCUUUC CUU	334
D- 1084	GGUAUGUUCCUGCUUC AUGUU	335	CAUGAAGCAGGAACAUAC CUU	336
D-	GUAUGUUCCUGCUUCA	337	GCAUGAAGCAGGAACAUA	338

1085	UGCUU		CUU	
D-	UGUUCCUGCUUCAUGC		AGGGCAUGAAGCAGGAAC	
1086	CCUUU	339	AUU	340
D-	GCUUCAUGCCCUUCUA		CUGUAGAAGGCAUGAAG	
1087	CAGUU	341	CUU	342
D-	CUUCAUGCCCUUCUAC		ACUGUAGAAGGGCAUGAA	
1088	AGUUU	343	GUU	344
D-	GCGGCUUCCUGGGCUU		UAGAAGCCCAGGAAGCCG	
1089	CUAUU	345	CUU	346
D-	GUUCCUGCUUCAUGCC		AAGGCAUGAAGCAGGAA	
1090	CUUUU	347	CUU	348
D-	AUGGCUUCCAGAUAUG		AGGCAUAUCUGGAAGCCA	
1091	CCUUU	349	บบบ	350
D-	CCUGCUUCAUGCCCUU		UAGAAGGCAUGAAGCAG	
1092	CUAUU	351	GUU	352
D-	UUCAUGCCCUUCUACA		AACUGUAGAAGGGCAUGA	
1093	GUUUU	353	AUU	354
D-	UUCAUGCCCUUCUACA		CACUGUAGAAGGGCAUGA	
1094	GUGUU	355	AUU	356
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1095	CAUUU	357	CUU	358
D-	GGUCCAGCCUGAACUU		AAGAAGUUCAGGCUGGAC	
1096	CUUUU	359	CUU	360
D-	GCGGCUUCCUGGGCUU		UAGAAGCCCAGGAAGCCG	
1097	CUAUU	361	CUU	362
D-	GCGGCUUCCUGGGCUU		UAGAAGCCCAGGAAGCCG	
1098	CUAUU	363	CUU	364
D-	GUUCCUGCUUCAUGCC		AAGGGCAUGAAGCAGGAA	
1099	CUUUU	365	CUU	366
D-	GUUCCUGCUUCAUGCC	367	AAGGGCAUGAAGCAGGAA	368

1100	CUUUU		CUU	
D- 1101	CCUGCUUCAUGCCCUU CUAUU	369	UAGAAGGGCAUGAAGCAG GUU	370
D- 1102	CCUGCUUCAUGCCCUU CUAUU	371	UAGAAGGGCAUGAAGCAG GUU	372
D- 1103	AUGCCCUUCUACAGUG GCCUU	373	GGCCACUGUAGAAGGGCA UUU	374
D- 1104	AUGGCUUCCAGAUAUG CCUUU	375	AGGCAUAUCUGGAAGCCA UUU	376
D- 1105	GUGACAACGUACCCUU CAUUU	377	AUGAAGGGUACGUUGUCA CUU	378
D- 1106	GUAUGUUCCUGCUUCA UGCUU	379	GCAUGAAGCAGGAACAUA CUU	380
D- 1107	GUAUGUUCCUGCUUCA UGCUU	381	GCAUGAAGCAGGAACAUA CUU	382
D- 1108	GUAUGUUCCUGCUUCA UGCUU	383	GCAUGAAGCAGGAACAUA CUU	384
D- 1109	GUAUGUUCCUGCUUCA UGCCU	385	AGGCAUGAAGCAGGAACA UACUU	386
D- 1110	UGGUAUGUUCCUGCUU CAUGU	387	GCAUGAAGCAGGAACAUA CCAUU	388
D- 1111	GUAUGUUCCUGCUUCA UGU	389	GCAUGAAGCAGGAACAUA CUU	390
D- 1112	GUAUGUUCCUGCUUCA UGC{INVAB}	391	GCAUGAAGCAGGAACAUA CUU	392
D- 1113	GCUUCAUGCCCUUCUA CAUUU	393	AUGUAGAAGGGCAUGAAG CUU	394
D- 1114	GCUUCAUGCCCUUCUA CAUUU	395	AUGUAGAAGGGCAUGAAG CUU	396
D-	GCUUCAUGCCCUUCUA	397	AUGUAGAAGGCAUGAAG	398

1115	CAUUU		CUU	
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1116	CAUUU	399	CUU	400
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1117	CAUUU	401	CUU	402
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1118	CAUUU	403	CUU	404
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGGCAUGAAG	
1119	CAUUU	405	CUU	406
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1120	CAUUU	407	CUU	408
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1121	CAUUU	409	CUU	410
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1122	CAUUU	411	CUU	412
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1123	CAUUU	413	CUU	414
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1124	CAUUU	415	CUU	416
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGGCAUGAAG	
1125	CAUUU	417	CUU	418
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1126	CAUUU	419	CUU	420
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1127	CAUUU	421	CUU	422
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1128	CAUUU	423	CUU	424
D-	GCUUCAUG[DC]CCUUC		AUGUAGAAGGCAUGAAG	
1129	UACAUUU	425	CUU	426
D-	GCUUCAUGCC[DC]UUC	427	AUGUAGAAGGCAUGAAG	428

1130	UACAUUU		CUU	
D- 1131	GCUUCAUGC[DC]CUUC UACAUUU	429	AUGUAGAAGGCAUGAAG CUU	430
D- 1132	GCUUCAUGCCCUUCUA CAUUU	431	AUGUAGAAGGGCAUGAAG CUU	432
D- 1133	GCUUCAUGCCCUUCUA CAUUU	433	AUGUAGAAGGGCAUGAAG CUU	434
D- 1134	GCUUCAUGCCCUUCUA CAUUU	435	AUGUAGAAGGGCAUGAAG CUU	436
D- 1135	GCUUCAUGCCCUUCUA CAUUU	437	AUGUAGAAGGGCAUGAAG CUU	438
D- 1136	GCUUCAUGCCCUUCUA CAUUU	439	AUGUAGAAGGGCAUGAAG CUU	440
D- 1137	GCUUCAUGCCCUUCUA CAGUU	441	AACUGUAGAAGGGCAUGA AGCUU	442
D- 1138	CUGCUUCAUGCCCUUC UACAU	443	AUGUAGAAGGGCAUGAAG CAGUU	444
D- 1139	GCUUCAUGCCCUUCUA CAU	445	AUGUAGAAGGGCAUGAAG CUU	446
D- 1140	GCUUCAUGCCCUUCUA CAU{INVAB}	447	AUGUAGAAGGGCAUGAAG CUU	448
D- 1141	GCUUCAUGCCCUUCUA CAUUU{INVAB}	449	AUGUAGAAGGGCAUGAAG CUU	450
D- 1142	GCUUCAUGCCCUUCUA CAUUU	451	AUGUAGAAGGGCAUGAAG CUU	452
D- 1143	GCUUCAUGCCCUUCUA CAUUU	453	AUGUAGAAGGGCAUGAAG CUU	454
D- 1144	GCUUCAUGCCCUUCUA CAUUU	455	AUGUAGAAGGGCAUGAAG CUU	456
D-	GCUUCAUGCCCUUCUA	457	AUGUAGAAGGGCAUGAAG	458

1145	CAUUU		CUU	
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1146	CAUUU	459	CUU	460
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1147	CAUUU	461	CUU	462
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1148	CAUUU	463	CUU	464
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1149	CAUUU	465	CUU	466
D-	GCUUCAUGCCCUUCUA		AUGUAGAAGGCAUGAAG	
1150	CAUUU	467	CUU	468
D-	GUAUGUUCCUGCUUCA		GCAUGAAGCAGGAACAUA	
1151	UGCUU{INVAB}	469	CUU	470
D-	GGUAUGUUCCUGCUUC		AAUGAAGCAGGAACAUAC	
1152	AUUUU	471	CUU	472
D-	GUAUGUUCCUGCUUCA		ACAUGAAGCAGGAACAUA	
1153	UGUUU	473	CUU	474
D-	CGGCCAAUGUCCACCA		AGCUGGUGGACAUUGGCC	
1154	GCUUU	475	GUU	476
D-	UGGAGCAGACUCUGCA		ACCUGCAGAGUCUGCUCC	
1155	GGUUU	477	AUU	478
D-	ACGUACCCUUCAUUGA		ACAUCAAUGAAGGGUACG	
1156	UGUUU	479	บบบ	480
D-	CCAGAGACUGGUGACA		ACAUGUCACCAGUCUCUG	
1157	UGUUU	481	GUU	482
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1158	UUCUACAUUU	483	CUU	484
D-	[INVAB]GCUUCAUGCCU		AAAUGUAGAAAGGCAUGA	
1159	UUCUACAUUU	485	AGCUU	486
D-	[INVAB]GCUUCAUGCCU	487	AAAUGUAGAAAGGCAUGA	488

1160	UUCUACAUUU		AGCUU	
D-	UGCUUCAUGCCUUUCU		UGUAGAAAGGCAUGAAGC	
1161	ACAUU	489	AUU	490
D-	UAUGUUCCUGCUUCAU		AGCAUGAAGCAGGAACAU	
1162	GCUUU	491	AUU	492
D-	UUCCUGCUUCAUGCCU		AAAAGGCAUGAAGCAGGA	
1163	UUUUU	493	AUU	494
D-	UCAUGCCUUUCUACAG		ACACUGUAGAAAGGCAUG	
1164	UGUUU	495	AUU	496
D-	CAUGCCUUUCUACAGU		ACCACUGUAGAAAGGCAU	
1165	GGUUU	497	GUU	498
D-	AUGCCUUUCUACAGUG		AGCCACUGUAGAAAGGCA	
1166	GCUUU	499	บบบ	500
D-	GGUAUGUUCCUGCUUC		UAUGAAGCAGGAACAUAC	
1167	AUAUU	501	CUU	502
D-	GUAUGUUCCUGCUUCA		UCAUGAAGCAGGAACAUA	
1168	UGAUU	503	CUU	504
D-	UAUGUUCCUGCUUCAU		UGCAUGAAGCAGGAACAU	
1169	GCAUU	505	AUU	506
D-	UUCCUGCUUCAUGCCU		UAAAGGCAUGAAGCAGGA	
1170	UUAUU	507	AUU	508
D-	CUGCUUCAUGCCUUUC		UUAGAAAGGCAUGAAGCA	
1171	UAAUU	509	GUU	510
D-	GCUUCAUGCCUUUCUA		UUGUAGAAAGGCAUGAAG	
1172	CAAUU	511	CUU	512
D-	UUCAUGCCUUUCUACA		UACUGUAGAAAGGCAUGA	
1173	GUAUU	513	AUU	514
D-	UCAUGCCUUUCUACAG		UCACUGUAGAAAGGCAUG	
1174	UGAUU	515	AUU	516
D-	CAUGCCUUUCUACAGU	517	UCCACUGUAGAAAGGCAU	518

1175	GGAUU		GUU	
D-	AUGCCUUUCUACAGUG		UGCCACUGUAGAAAGGCA	
1176	GCAUU	519	บบบ	520
D-	ACGUACCCUUCAUUGA		UCAUCAAUGAAGGGUACG	
1177	UGAUU	521	UUU	522
D-	CCAGAGACUGGUGACA		UCAUGUCACCAGUCUCUG	
1178	UGAUU	523	GUU	524
D-	AUGGCUUCCAGAUAUG		UGGCAUAUCUGGAAGCCA	
1179	CCAUU	525	UUU	526
D-	GUUCCUGCUUCAUGCC		AAAGGCAUGAAGCAGGAA	
1180	UUUUU	527	CUU	528
D-	CCUGCUUCAUGCCUUU		UAGAAAGGCAUGAAGCAG	
1181	CUAUU	529	GUU	530
D-	GCUUCAUGCCUUUCUA		AUGUAGAAAGGCAUGAAG	
1182	CAUUU	531	CUU	532
D-	CUUCAUGCCUUUCUAC		ACUGUAGAAAGGCAUGAA	
1183	AGUUU	533	GUU	534
D-	UUCAUGCCUUUCUACA		AACUGUAGAAAGGCAUGA	
1184	GUUUU	535	AUU	536
D-	GCUUCAUCCCUUUCUA		AUGUAGAAAGGGAUGAAG	
1185	CAUUU	537	CUU	538
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1186	UUCUACAUUU	539	CUU	540
D-	[INVAB]GCUUCAUGCCC		AAAUGUAGAAGGGCAUGA	
1187	UUCUACAUUU	541	AGCUU	542
D-	[INVAB]GCUUCAUGCCC		AAAUGUAGAAGGGCAUGA	
1188	UUCUACAUUU	543	AGCUU	544
D-	[INVAB]GCGGCUUCCUG		UAGAAGCCCAGGAAGCCG	
1189	GGCUUCUAUU	545	CUU	546
D-	[INVAB]CUGCGGCUUCC	547	UAGAAGCCCAGGAAGCCG	548

1190	UGGGCUUCUA		CAGUU	
D-	CUGCGGCUUCCUGGGC		UAGAAGCCCAGGAAGCCG	
1191	UUCU{INVAB}	549	CAGUU	550
D-	[INVAB]CUGCGGCUUCC		UAGAAGCCCAGGAAGCCG	
1192	UGGGCUUCUA	551	CAGUU	552
D-	[INVAB]GCGGCUUCCUG		UAGAAGCCCAGGAAGCCG	
1193	GGCUUCUAUU	553	CUU	554
D-	CUGCGGCUUCCUGGGC		UAGAAGCCCAGGAAGCCG	
1194	UUCU{INVAB}	555	CAGUU	556
D-	[INVAB]CUGCGGCUUCC		UAGAAGCCCAGGAAGCCG	
1195	UGGGCUUCUA	557	CAGUU	558
D-	[INVAB]GCGGCUUCCUG		UAGAAGCCCAGGAAGCCG	
1196	GGCUUCUAUU	559	CUU	560
D-	CUGCGGCUUCCUGGGC		UAGAAGCCCAGGAAGCCG	
1197	UUCU{INVAB}	561	CAGUU	562
D-	[INVAB]CUGCGGCUUCC		UAGAAGCCCAGGAAGCCG	
1198	UGGGCUUCUA	563	CAGUU	564
D-	[INVAB]GCGGCUUCCUG		UAGAAGCCCAGGAAGCCG	
1199	GGCUUCUAUU	565	CUU	566
D-	[INVAB]CUGCGGCUUCC		UAGAAGCCCAGGAAGCCG	
1200	UGGGCUUCUA	567	CAGUU	568
D-	[INVAB]CUGCGGCUUCC		UAGAAGCCCAGGAAGCCG	
1201	UGGGCUUCUA	569	CAGUU	570
D-	[INVAB]CUGCGGCUUCC		UAGAAGCCCAGGAAGCCG	
1202	UGGGCUUCUA	571	CAGUU	572
D-	[INVAB]AUGGCUUCCAG		AGGCAUAUCUGGAAGCCA	
1203	AUAUGCCUUU	573	บบบ	574
D-	[INVAB]ACAUGGCUUCC		AGGCAUAUCUGGAAGCCA	
1204	AGAUAUGCCU	575	UGUUU	576
D-	ACAUGGCUUCCAGAUA	577	AGGCAUAUCUGGAAGCCA	578

1205	UGCC{INVAB}		UGUUU	
D-	[INVAB]ACAUGGCUUCC		AGGCAUAUCUGGAAGCCA	
1206	AGAUAUGCCU	579	UGUUU	580
D-	[INVAB]AUGGCUUCCAG		AGGCAUAUCUGGAAGCCA	
1207	AUAUGCCUUU	581	บบบ	582
D-	ACAUGGCUUCCAGAUA		AGGCAUAUCUGGAAGCCA	
1208	UGCC{INVAB}	583	UGUUU	584
D-	[INVAB]ACAUGGCUUCC		AGGCAUAUCUGGAAGCCA	
1209	AGAUAUGCCU	585	UGUUU	586
D-	[INVAB]AUGGCUUCCAG	=	AGGCAUAUCUGGAAGCCA	
1210	AUAUGCCUUU	587	บบบ	588
D-	ACAUGGCUUCCAGAUA	=	AGGCAUAUCUGGAAGCCA	
1211	UGCC{INVAB}	589	UGUUU	590
D-	[INVAB]ACAUGGCUUCC		AGGCAUAUCUGGAAGCCA	
1212	AGAUAUGCCU	591	UGUUU	592
D-	[INVAB]AUGGCUUCCAG	=	AGGCAUAUCUGGAAGCCA	
1213	AUAUGCCUUU	593	บบบ	594
D-	ACAUGGCUUCCAGAUA		AGGCAUAUCUGGAAGCCA	
D- 1214	ACAUGGCUUCCAGAUA UGCC{INVAB}	595	AGGCAUAUCUGGAAGCCA UGUUU	596
				596
1214	UGCC{INVAB}		UGUUU	596 598
1214 D-	UGCC{INVAB} [INVAB]ACAUGGCUUCC	597	UGUUU AGGCAUAUCUGGAAGCCA	
1214 D- 1215	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU	597	UGUUU AGGCAUAUCUGGAAGCCA UGUUU	
1214 D- 1215 D-	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC	597	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA	598
1214 D- 1215 D- 1216	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU	597	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU	598
1214 D- 1215 D- 1216 D-	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC	597 599 601	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA	598 600
D- 1215 D- 1216 D- 1217	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU	597 599 601	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU	598 600
1214 D- 1215 D- 1216 D- 1217	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC	597 599 601	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA	598 600 602
1214 D- 1215 D- 1216 D- 1217 D- 1218	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU	597 599 601	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU	598 600 602
D- 1215 D- 1216 D- 1217 D- 1218 D-	UGCC{INVAB} [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU [INVAB]ACAUGGCUUCC AGAUAUGCCU	597 599 601 603	UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU AGGCAUAUCUGGAAGCCA UGUUU ACAUCAAUGAAGGGUACG UUU	598 600 602 604

1220	UCAUUGAUGU		UUGUU	
D-	[INVAB]CAACGUACCCU		ACAUCAAUGAAGGGUACG	
1221	UCAUUGAUGU	609	UUGUU	610
D-	[INVAB]ACGUACCCUUC		ACAUCAAUGAAGGGUACG	
1222	AUUGAUGUUU	611	บบบ	612
D-	CAACGUACCCUUCAUU		ACAUCAAUGAAGGGUACG	
1223	GAUG{INVAB}	613	UUGUU	614
D-	[INVAB]ACGUACCCUUC		ACAUCAAUGAAGGGUACG	
1224	AUUGAUGUUU	615	UUU	616
D-	CAACGUACCCUUCAUU		ACAUCAAUGAAGGGUACG	
1225	GAUG{INVAB}	617	UUGUU	618
D-	[INVAB]CAACGUACCCU		ACAUCAAUGAAGGGUACG	
1226	UCAUUGAUGU	619	UUGUU	620
D-	[INVAB]ACGUACCCUUC		ACAUCAAUGAAGGGUACG	
1227	AUUGAUGUUU	621	UUU	622
D-	CAACGUACCCUUCAUU		ACAUCAAUGAAGGGUACG	
1228	GAUG{INVAB}	623	UUGUU	624
D-	[INVAB]CAACGUACCCU		ACAUCAAUGAAGGGUACG	
1229	UCAUUGAUGU	625	UUGUU	626
D-	[INVAB]CAACGUACCCU		ACAUCAAUGAAGGGUACG	
1230	UCAUUGAUGU	627	UUGUU	628
D-	[INVAB]CAACGUACCCU		ACAUCAAUGAAGGGUACG	
1231	UCAUUGAUGU	629	UUGUU	630
D-	[INVAB]CAACGUACCCU		ACAUCAAUGAAGGGUACG	
1232	UCAUUGAUGU	631	UUGUU	632
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1233	UACAU	633	CAGUU	634
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
P-				i l
	UACAU	635	CAGUU	636

1235	UUCUACAUUU		CUU	
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1236	UUCUACAUUU	639	CUU	640
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1237	UACAU	641	CAGUU	642
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1238	UACAU	643	CAGUU	644
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1239	CUUUCUACAU	645	CAGUU	646
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1240	UACA{INVAB}	647	CAGUU	648
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1241	CUUUCUACAU	649	CAGUU	650
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1242	[DC]UUUCUACAU	651	CAGUU	652
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1243	UACAU	653	CAGUU	654
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1244	CUUUCUACAU	655	CAGUU	656
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1245	UACAU	657	CAGUU	658
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1246	UACA{INVAB}	659	CAGUU	660
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1247	CUUUCUACAU	661	CAGUU	662
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1248	UACAU	663	CAGUU	664
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1249	UACA{INVAB}	665	CAGUU	666
D-	[INVAB]CUGCUUCAUGC	667	AUGUAGAAAGGCAUGAAG	668

1250	CUUUCUACAU		CAGUU	
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1251	UACA{INVAB}	669	CAGUU	670
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1252	CUUUCUACAU	671	CAGUU	672
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1253	UUCUACAUUU	673	CUU	674
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1254	UUCUACAUUU	675	CUU	676
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1255	UUCUACAUUU	677	CUU	678
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1256	UUCUACAUUU	679	CUU	680
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1257	UUCUACAUUU	681	CUU	682
D-	CUGCUUCAUGCCCUUC		AUGUAGAAGGCAUGAAG	
1258	UACAU	683	CAGUU	684
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1259	UUCUACAUUU	685	CUU	686
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1260	UUCUACAUUU	687	CUU	688
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1261	UUCUACAUUU	689	CUU	690
D-	CUGCUUCAUGCCCUUC		AUGUAGAAGGGCAUGAAG	
1262	UACA{INVAB}	691	CAGUU	692
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAGGCAUGAAG	
1263	CCUUCUACAU	693	CAGUU	694
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1264	UUCUACAUUU	695	CUU	696
D-	AUGUUCCUGCUUCAUG	697	AGGCAUGAAGCAGGAACA	698

1265	CCUUU		UUU	
D-	UGUUCCUGCUUCAUGC		AAGGCAUGAAGCAGGAAC	
1266	CUUUU	699	AUU	700
D-	UGCCUUUCUACAGUGG		AGGCCACUGUAGAAAGGC	
1267	CCUUU	701	AUU	702
D-	CGUACUUCGUCCUUGU		CAUACAAGGACGAAGUAC	
1268	AUGUU	703	GUU	704
D-	[INVAB]GCUUCAUGC[D		AUGUAGAAGGCAUGAAG	
1269	C]CUUCUACAUUU	705	CUU	706
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1270	UUCUACAUUU	707	CUU	708
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1271	UUCUACAUUU	709	CUU	710
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1272	UUCUACAUUU	711	CUU	712
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1273	UUCUACAUUU	713	CUU	714
D-	[INVAB]GCUUCAUGCCC		AUGUAGAAGGCAUGAAG	
1274	UUCUACAUUU	715	CUU	716
D-	[INVAB]CCUGCUUCAUG		UAGAAAGGCAUGAAGCAG	
1275	CCUUUCUAUU	717	GUU	718
D-	[INVAB]CCUGCUUCAUG		UAGAAAGGCAUGAAGCAG	
1276	CCUUUCUAUU	719	GUU	720
D-	UUCCUGCUUCAUGCCU		UAGAAAGGCAUGAAGCAG	
1277	UUCU{INVAB}	721	GAAUU	722
D-	[INVAB]CCUGCUUCAUG		UAGAAAGGCAUGAAGCAG	
1278	CCUUUCUAUU	723	GUU	724
D-	UUCCUGCUUCAUGCCU		UAGAAAGGCAUGAAGCAG	
1279	UUCU{INVAB}	725	GAAUU	726
D-	[INVAB]AUGCCUUUCUA	727	AGCCACUGUAGAAAGGCA	728

1280	CAGUGGCUUU		บบบ	
D- 1281	[INVAB]AUGCCUUUCUA CAGUGGCUUU	729	AGCCACUGUAGAAAGGCA UUU	730
D- 1282	[INVAB]AUGCCUUUCUA CAGUGGCUUU	731	AGCCACUGUAGAAAGGCA UUU	732
D- 1283	UCAUGCCUUUCUACAG UGGC{INVAB}	733	AGCCACUGUAGAAAGGCA UGAUU	734
D- 1284	[INVAB]AUGCCUUUCUA CAGUGGCUUU	735	AGCCACUGUAGAAAGGCA UUU	736
D- 1285	[INVAB]UCAUGCCUUUC UACAGUGGCU	737	AGCCACUGUAGAAAGGCA UGAUU	738
D- 1286	[INVAB]UGCUUCAUGCC UUUCUACAGU	739	ACUGUAGAAAGGCAUGAA GCAUU	740
D- 1287	[INVAB]CUUCAUGCCUU UCUACAGUUU	741	ACUGUAGAAAGGCAUGAA GUU	742
D- 1289	UGCUUCAUGCCUUUCU ACAG{INVAB}	743	ACUGUAGAAAGGCAUGAA GCAUU	744
D- 1290	[INVAB]CUUCAUGCCUU UCUACAGUUU	745	ACUGUAGAAAGGCAUGAA GUU	746
D- 1291	UGCUUCAUGCCUUUCU ACAG{INVAB}	747	ACUGUAGAAAGGCAUGAA GCAUU	748
D- 1292	[INVAB]UGCUUCAUGCC UUUCUACAGU	749	ACUGUAGAAAGGCAUGAA GCAUU	750
D- 1293	[INVAB]UGCUUCAUGCC UUUCUACAGU	751	ACUGUAGAAAGGCAUGAA GCAUU	752
D- 1294	[INVAB]UGCUUCAUGCC UUUCUACAGU	753	ACUGUAGAAAGGCAUGAA GCAUU	754
D- 1295	[INVAB]UGCUUCAUGCC UUUCUACAGU	755	ACUGUAGAAAGGCAUGAA GCAUU	756
D-	[INVAB]GUUCCUGCUUC	757	AAAGGCAUGAAGCAGGAA	758

1296	AUGCCUUUUU		CUU	
D-	[INVAB]CCUGCUUCAUG		UAGAAAGGCAUGAAGCAG	
1297	CCUUUCUAUU	759	GUU	760
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1298	UCUACAGUUU	761	GUU	762
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1299	UGCCUUUCUA	763	GAAUU	764
D-	UUCCUGCUUCAUGCCU		UAGAAAGGCAUGAAGCAG	
1300	UUCU{INVAB}	765	GAAUU	766
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1301	UGCCUUUCUA	767	GAAUU	768
D-	UUCCUGCUUCAUGCCU		UAGAAAGGCAUGAAGCAG	
1302	UUCU{INVAB}	769	GAAUU	770
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1303	UGCCUUUCUA	771	GAAUU	772
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1304	UGCCUUUCUA	773	GAAUU	774
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1305	UGCCUUUCUA	775	GAAUU	776
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1306	UGCCUUUCUA	777	GAAUU	778
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1307	UGCCUUUCUA	779	GAAUU	780
D-	[INVAB]UUCCUGCUUCA		UAGAAAGGCAUGAAGCAG	
1308	UGCCUUUCUA	781	GAAUU	782
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1309	UACAGUGGCU	783	UGAUU	784
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1310	UGGC{INVAB}	785	UGAUU	786
D-	[INVAB]UCAUGCCUUUC	787	AGCCACUGUAGAAAGGCA	788

1311	UACAGUGGCU		UGAUU	
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1312	UGGC{INVAB}	789	UGAUU	790
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1313	UACAGUGGCU	791	UGAUU	792
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1314	UACAGUGGCU	793	UGAUU	794
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1315	UGGC{INVAB}	795	UGAUU	796
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1316	UACAGUGGCU	797	UGAUU	798
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1317	UACAGUGGCU	799	UGAUU	800
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1318	UACAGUGGCU	801	UGAUU	802
D-	[INVAB]UGCUUCAUGCC		ACUGUAGAAAGGCAUGAA	
1319	UUUCUACAGU	803	GCAUU	804
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1320	ACAG{INVAB}	805	GCAUU	806
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1321	ACAG{INVAB}	807	GCAUU	808
D-	[INVAB]UGCUUCAUGCC		ACUGUAGAAAGGCAUGAA	
1322	UUUCUACAGU	809	GCAUU	810
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1323	UCUACAGUUU	811	GUU	812
D-	[INVAB]UGCUUCAUGCC		ACUGUAGAAAGGCAUGAA	
1324	UUUCUACAGU	813	GCAUU	814
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1325	UUCUACAUUU	815	CUU	816
D-	[INVAB]CAUGCCUUUCU	817	ACCACUGUAGAAAGGCAU	818

1326	ACAGUGGUUU		GUU	
D-	[INVAB]CUGCUUCAUGC		UUAGAAAGGCAUGAAGCA	
1327	CUUUCUAAUU	819	GUU	820
D-	[INVAB]GCUUCAUGCCU		UUGUAGAAAGGCAUGAAG	
1328	UUCUACAAUU	821	CUU	822
D-	[INVAB]UUCAUGCCUUU		UACUGUAGAAAGGCAUGA	
1329	CUACAGUAUU	823	AUU	824
D-	[INVAB]GUUCCUGCUUC		AAAGGCAUGAAGCAGGAA	
1330	AUGCCUUUUU	825	CUU	826
D-	AUGUUCCUGCUUCAUG		AAAGGCAUGAAGCAGGAA	
1331	CCUU{INVAB}	827	CAUUU	828
D-	[INVAB]AUGUUCCUGCU		AAAGGCAUGAAGCAGGAA	
1332	UCAUGCCUUU	829	CAUUU	830
D-	[INVAB]GUUCCUGCUUC		AAAGGCAUGAAGCAGGAA	
1333	AUGCCUUUUU	831	CUU	832
D-	AUGUUCCUGCUUCAUG		AAAGGCAUGAAGCAGGAA	
1334	CCUU{INVAB}	833	CAUUU	834
D-	[INVAB]AUGUUCCUGCU		AAAGGCAUGAAGCAGGAA	
1335	UCAUGCCUUU	835	CAUUU	836
D-	[INVAB]GUUCCUGCUUC		AAAGGCAUGAAGCAGGAA	
1336	AUGCCUUUUU	837	CUU	838
D-	AUGUUCCUGCUUCAUG		AAAGGCAUGAAGCAGGAA	
1337	CCUU{INVAB}	839	CAUUU	840
D-	[INVAB]AUGUUCCUGCU		AAAGGCAUGAAGCAGGAA	
1338	UCAUGCCUUU	841	CAUUU	842
D-	[INVAB]AUGUUCCUGCU		AAAGGCAUGAAGCAGGAA	
1339	UCAUGCCUUU	843	CAUUU	844
D-	[INVAB]AUGUUCCUGCU		AAAGGCAUGAAGCAGGAA	
1340	UCAUGCCUUU	845	CAUUU	846
D-	[INVAB]GCUUCAUGCCU	847	UACUGUAGAAAGGCAUGA	848

1341	UUCUACAGUA		AGCUU	
D- 1342	[INVAB]GCUUCAUGCCU UUCUACAGUA	849	UACUGUAGAAAGGCAUGA AGCUU	850
D- 1343	[INVAB]UUCAUGCCUUU CUACAGUAUU	851	UACUGUAGAAAGGCAUGA AUU	852
D- 1344	[INVAB]GCUUCAUGCCU UUCUACAGUA	853	UACUGUAGAAAGGCAUGA AGCUU	854
D- 1345	GCUUCAUGCCUUUCUA CAGU{INVAB}	855	UACUGUAGAAAGGCAUGA AGCUU	856
D- 1346	[INVAB]GCGGCUUCCUG GGCUUCUAUU	857	UAGAAGCCCAGGAAGCCG CUU	858
D- 1347	[INVAB]AUGGCUUCCAG AUAUGCCUUU	859	AGGCAUAUCUGGAAGCCA UUU	860
D- 1348	[INVAB]ACAUGGCUUCC AGAUAUGCCU	861	AGGCAUAUCUGGAAGCCA UGUUU	862
D- 1349	[INVAB]ACAUGGCUUCC AGAUAUGCCU	863	AGGCAUAUCUGGAAGCCA UGUUU	864
D- 1350	[INVAB]CAACGUACCCU UCAUUGAUGU	865	ACAUCAAUGAAGGGUACG UUGUU	866
D- 1351	[INVAB]CAACGUACCCU UCAUUGAUGU	867	ACAUCAAUGAAGGGUACG UUGUU	868
D- 1352	[INVAB]ACGUACCCUUC AUUGAUGUUU	869	ACAUCAAUGAAGGGUACG UUU	870
D- 1353	CUGCUUCAUGCCUUUC UACA{INVAB}	871	AUGUAGAAAGGCAUGAAG CAGUU	872
D- 1354	[INVAB]CUGCUUCAUGC CUUUCUACAU	873	AUGUAGAAAGGCAUGAAG CAGUU	874
D- 1355	[INVAB]GCUUCAUGCCU UUCUACAUUU	875	AUGUAGAAAGGCAUGAAG CUU	876
D-	CUGCUUCAUGCCUUUC	877	AUGUAGAAAGGCAUGAAG	878

1356	UACA{INVAB}		CAGUU	
D- 1357	[INVAB]CUGCUUCAUGC CUUUCUACAU	879	AUGUAGAAAGGCAUGAAG CAGUU	880
D- 1358	CUGCUUCAUGCCUUUC UACA{INVAB}	881	AUGUAGAAAGGCAUGAAG CAGUU	882
D- 1359	[INVAB]CUGCUUCAUGC CUUUCUACA{INVAB}	883	AUGUAGAAAGGCAUGAAG CAGUU	884
D- 1360	[INVAB]GCUUCAUGCCU UUCUACAUUU		AUGUAGAAAGGCAUGAAG CUU	886
D- 1361	[INVAB]CUUCAUGCCUU UCUACAGUUU	887	ACUGUAGAAAGGCAUGAA GUU	888
D- 1362	UGCUUCAUGCCUUUCU ACAG{INVAB}	889	ACUGUAGAAAGGCAUGAA GCAUU	890
D- 1363	[INVAB]CUGCUUCAUGC CUUUCUACAU	891	AUGUAGAAAGGCAUGAAG CAGUU	892
D- 1364	CUGCUUCAUGCCUUUC UACA{INVAB}	893	AUGUAGAAAGGCAUGAAG CAGUU	894
D- 1365	CUGCUUCAUGCCUUUC UACA{INVAB}	895	AUGUAGAAAGGCAUGAAG CAGUU	896
D- 1366	[INVAB]CUUCAUCCCUU UCUACAGUUU	897	ACUGUAGAAAGGGAUGAA GUU	898
D- 1367	[INVAB]GCUUCAUCCCU UUCUACAUUU	899	AUGUAGAAAGGGAUGAAG CUU	900
D- 1368	UGCUUCAUCCCUUUCU ACAG{INVAB}	901	ACUGUAGAAAGGGAUGAA GCAUU	902
D- 1369	CUGCUUCAUCCCUUUC UACA{INVAB}	903	AUGUAGAAAGGGAUGAAG CAGUU	904
D- 1370	[INVAB]ACAUUGCUCUU UCACCUGAUU	905	UCAGGUGAAAGAGCAAUG UUU	906
D-	CUGCUUCAUGCCUUUC	907	AUGUAGAAAGGCAUGAAG	908

1371	UACA{INVAB}		CAGUU	
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1372	UACA{INVAB}	909	CAGUU	910
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1373	UACA{INVAB}	911	CAGUU	912
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1374	UACA{INVAB}	913	CAGUU	914
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1375	UACA{INVAB}	915	CAGUU	916
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1376	UACA{INVAB}	917	CAGUU	918
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1377	UACA{INVAB}	919	CAGUU	920
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1378	UACA{INVAB}	921	CAGUU	922
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1379	UACA{INVAB}	923	CAGUU	924
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1380	UACA{INVAB}	925	CAGUU	926
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1381	UACA{INVAB}	927	CAGUU	928
D-	[INVAB]CUUCAUGCC[D		ACUGUAGAAAGGCAUGAA	
1381	T]UUCUACAGUUU	929	GUU	930
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1382	UCUACAGUUU	931	GUU	932
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1383	UCUACAGUUU	933	GUU	934
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1384	UCUACAGUUU	935	GUU	936
D-	[INVAB]CUUCAUGCCUU	937	ACUGUAGAAAGGCAUGAA	938

1385	UCUACAGUUU		GUU	
D-	[INVAB]CUUCAUGC[DC]		ACUGUAGAAAGGCAUGAA	
1386	UUUCUACAGUUU	939	GUU	940
D-	[INVAB]CUUCAUGCCU[ACUGUAGAAAGGCAUGAA	
1387	DTJUCUACAGUUU	941	GUU	942
D-	[INVAB]GCUUCAUGGG		AUGUAGAAUCCCAUGAAG	
1388	AUUCUACAUUU	943	CUU	944
D-	[INVAB]CUUCAUGCGAA		ACUGUAGAUUCGCAUGAA	
1389	UCUACAGUUU	945	GUU	946
D-	CUGCUUCAUGCCUUUC		UUGUAGAAAGGCAUGAAG	
1390	UACA{INVAB}	947	CAGUU	948
D-	[INVAB]CUGCUUCAUGC		UUGUAGAAAGGCAUGAAG	
1391	CUUUCUACAA	949	CAGUU	950
D-	CUGCUUCAUGCCUUUC		UUGUAGAAAGGCAUGAAG	
1392	UACA{INVDA}	951	CAGUU	952
D-	CUGCUUCAUGGGAUUC		AUGUAGAAUCCCAUGAAG	
1393	UACA{INVAB}	953	CAGUU	954
D-	[INVAB]CUGCUUCAUGG		AUGUAGAAUCCCAUGAAG	
1394	GAUUCUACAU	955	CAGUU	956
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1395	UCUACAGUUU	957	GUU	958
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1396	UCUACAGUUU	959	GUU	960
D-	[INVAB]GCUUCAUGCCU		AUGUAGAAAGGCAUGAAG	
1397	UUCUACAUUU	961	CUU	962
D-	[INVAB]UGCUUCAUGCC		ACUGUAGAAAGGCAUGAA	
1398	UUUCUACAG{INVAB}	963	GCAUU	964
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1399	UCUACAGUUU	965	GUU	966
D-	UGCUUCAUGCCUUUCU	967	ACUGUAGAAAGGCAUGAA	968

1400	ACAG{INVAB}		GCAUU	
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1401	ACAG{INVAB}	969	GCAUU	970
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1402	ACAG{INVAB}	971	GCAUU	972
D-	[INVAB]CUUCAUGCCUU		ACUGUAGAAAGGCAUGAA	
1403	UCUACAGUUU	973	GUU	974
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1404	ACAG{INVAB}	975	GCAUU	976
D-	AUGCCUUUCUACAGUG		AGCCACUGUAGAAAGGCA	
1405	GCUU{INVAB}	977	UGAUU	978
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1406	UGGC{INVAB}	979	UGAUU	980
D-	[INVAB]AUGCCUUUCUA		AGCCACUGUAGAAAGGCA	
1407	CAGUGGCUUU	981	บบบ	982
D-	[INVAB]AUGCCUUUCUA		AGCCACUGUAGAAAGGCA	
1408	CAGUGGCUUU	983	บบบ	984
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1409	UACAGUGGCU	985	UGAUU	986
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1410	UGGC{INVAB}	987	UGAUU	988
D-	[INVAB]AUGCCUUUCUA		AGCCACUGUAGAAAGGCA	
1411	CAGUGGCUUU	989	UUU	990
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1412	UGGC{INVAB}	991	UGAUU	992
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1413	UGGC{INVAB}	993	UGAUU	994
D-	[INVAB]UCAUGCCUUUC		AGCCACUGUAGAAAGGCA	
1414	UACAGUGGC{INVAB}	995	UGAUU	996
D-	[INVAB]AUGCCUUUCUA	997	UGCCACUGUAGAAAGGCA	998

CAGUGGCAUU		UUU	
UCAUGCCUUUCUACAG UGGC{INVAB}	999	UGCCACUGUAGAAAGGCA UGAUU	1000
[INVAB]UCAUGCCUUUC UACAGUGGCA	1001	UGCCACUGUAGAAAGGCA UGAUU	1002
UCAUGCCUUUCUACAG UGGC{INVDA}	1003	UGCCACUGUAGAAAGGCA UGAUU	1004
CUGCUUCAUGCCUUUC UACA{INVAB}	1005	AUGUAGAAAGGCAUGAAG CAGUU	1006
CUGCUUCAUGCCUUUC UACA{INVAB}	1007	UUGUAGAAAGGCAUGAAG CAGUU	1008
CUGCUUCAUGCCUUUC UACA{INVDA}	1009	UUGUAGAAAGGCAUGAAG CAGUU	1010
UCAUGCCUUUCUACAG UGGC{INVAB}	1011	UGCCACUGUAGAAAGGCA UGAUU	1012
UCAUGCCUUUCUACAG UGGC{INVDA}	1013	UGCCACUGUAGAAAGGCA UGAUU	1014
[INVAB]CUUCAUGCCUU UCUACAGUUU	1015	ACUGUAGAAAGGCAUGAA GUU	1016
CUGCUUCAUGCCUUUC UACA{INVAB}	1017	AUGUA[AB]AAAGGCAUGA AGCAGUU	1018
CUGCUUCAUGCCUUUC UACA{INVAB}	1019	AUGUA[AB]AAAGGCAUGA AGCAGUU	1020
UGCUUCAUGCCUUUCU ACAG{INVAB}	1021	ACUGU[AB]GAAAGGCAUG AAGCAUU	1022
UGCUUCAUGCCUUUCU ACAG{INVAB}	1023	ACUGU[AB]GAAAGGCAUG AAGCAUU	1024
UCAUGCCUUUCUACAG UGGC{INVAB}	1025	AGCCA[AB]UGUAGAAAGG CAUGAUU	1026
UCAUGCCUUUCUACAG	1027	AGCCA[AB]UGUAGAAAGG	1028
	UCAUGCCUUUCUACAG UGGC{INVAB} [INVAB]UCAUGCCUUUC UACAGUGGCA UCAUGCCUUUCUACAG UGGC{INVDA} CUGCUUCAUGCCUUUC UACA{INVAB} CUGCUUCAUGCCUUUC UACA{INVAB} UCAUGCCUUUCUACAG UGGC{INVDA} IINVAB]CUUCAUGCCUU UCUACAGUUU CUGCUUCAUGCCUU UCUACAGUUU CUGCUUCAUGCCUU UCUACAGUUU CUGCUUCAUGCCUUUC UACA{INVAB} CUGCUUCAUGCCUUUC UACA(INVAB) CUGCUUCAUGCCUUUC UACA(INVAB) UGCUUCAUGCCUUUC UACA(INVAB) UGCUUCAUGCCUUUCU ACAG{INVAB} UGCUUCAUGCCUUUCU ACAG{INVAB} UGCUUCAUGCCUUUCU ACAG{INVAB}	UCAUGCCUUCUACAG UGGC{INVAB} 999 [INVABJUCAUGCCUUC UACAGUGGCA 1001 UCAUGCCUUUCUACAG UGGC{INVDA} 1003 CUGCUUCAUGCCUUUC UACA{INVAB} 1005 CUGCUUCAUGCCUUUC UACA{INVAB} 1007 CUGCUUCAUGCCUUUC UACA{INVAB} 1009 UCAUGCCUUUCUACAG UGGC{INVAB} 1011 UCAUGCCUUUCUACAG UGGC{INVAB} 1013 [INVABJCUUCAUGCCUU UCUACAGUUU UCUACAGUUU UCUACAGUUU 1015 CUGCUUCAUGCCUUUC UACA{INVAB} 1017 CUGCUUCAUGCCUUUC UACA(INVAB) 1019 UGCUUCAUGCCUUUC UACA(INVAB) 1019 UGCUUCAUGCCUUUCU ACAG{INVAB} 1021 UGCUUCAUGCCUUUCU ACAG{INVAB} 1021 UGCUUCAUGCCUUUCU ACAG{INVAB} 1023	UCAUGCCUUUCUACAG UGGC{INVAB} 999 UGAUU IINVABJUCAUGCCUUUC UACAGUGGCA UGAUU UCAUGCCUUUCUACAG UGGC{INVDA} 1003 UGAUU CUGCUUCAUGCCUUUC UACAGINVAB} 1005 CAGUU CUGCUUCAUGCCUUUC UACAGINVAB} 1007 CAGUU UCAUGCCUUCAUGCCUUUC UACAGINVAB} 1009 CAGUU UCAUGCCUUCUACAG UGGC{INVDA} 1009 UCAUGCCUUUCUACAG UGGCACUGUAGAAAGGCAUGAAG UACA{INVAB} 1007 CAGUU UUGUAGAAAAGGCAUGAAG UGCCACUGUAGAAAGGCAUGAAG UGCCACUGUAGAAAGGCAUGAAG UGCCACUGUAGAAAGGCAUGAAG UGGC{INVAB} 1011 UGAUU UCAUGCCUUUCUACAG UGCCACUGUAGAAAGGCA UGGC{INVAB} 1013 UGAUU IINVABJCUUCAUGCCUUUC UACACAGUU UCACAGGUU CUGCUUCAUGCCUUUC ACACAGINVAB} 1017 ACCAGUU CUGCUUCAUGCCUUUC UACACAGUU UCACAGINVAB} 1017 ACCAGUU CUGCUUCAUGCCUUUC ACACAGIVABB 1019 AGCAGUU UGCUUCAUGCCUUUC ACAGAGIVABB 1019 AGCAGUU UGCUUCAUGCCUUUCU ACACAGINVABB 1019 ACCAGUU ACUGUIABJGAAAGGCAUGA ACCAGINVABB 1021 AAGCAUU UCAUGCCUUCAUGCCUUUCU ACAGGINVABB 1021 ACUGUIABJGAAAGGCAUG ACAGCAGUU UCCAUGCCUUCUCU ACAGGINVABB 1021 ACUGUIABJGAAAGGCAUG ACCAGINVABB 1023 AAGCAUU UCAUGCCUUUCUACAGG UGCCINVABB 1023 AAGCAUU UCAUGCCUUUCUACAGG UGCCINVABB 1024 ACCAGINVABB 1025 CAUGAUU

1430	UGGC{INVAB}		CAUGAUU	
D- 1431	CUGCUUCAUGCCUUUC UACA{INVAB}	1029	AU[GNA- G]UAGAAAGGCAUGAAGCA GUU	1030
D- 1432	CUGCUUCAUGCCUUUC UACA{INVAB}	1031	AUG[GNA- U]AGAAAGGCAUGAAGCAG UU	1032
D- 1433	CUGCUUCAUGCCUUUC UACA{INVAB}	1033	AUGU[GNA- A]GAAAGGCAUGAAGCAGU U	1034
D- 1434	CUGCUUCAUGCCUUUC UACA{INVAB}	1035	AUGUA[GNA- G]AAAGGCAUGAAGCAGUU	1036
D- 1435	CUGCUUCAUGCCUUUC UACA{INVAB}	1037	AUGUAG[GNA- A]AAGGCAUGAAGCAGUU	1038
D- 1436	CUGCUUCAUGCCUUUC UACA{INVAB}	1039	AUGUAGA[GNA- A]AGGCAUGAAGCAGUU	1040
D- 1437	CUGCUUCAUGCCUUUC UACA{INVAB}	1041	AUGUAGAAAGGCAUGAAG CAGUU	1042
D- 1438	[INVAB]CUGCUUCAUGC CUUUCUACAU	1043	AUGUAGAAAGGCAUGAAG CAGUU	1044
D- 1439	[INVAB]CUGCUUCAUGC CUUUCUACA{INVAB}	1045	AUGUAGAAAGGCAUGAAG CAGUU	1046
D- 1440	CUGCUUCAUGCCUUUC UACA{INVAB}	1047	AUGUAGAAAGGCAUGAAG CAGUU	1048
D- 1441	CUGCUUCAUGCCUUUC UACA{INVAB}	1049	AUGUAGAAAGGCAUGAAG CAGUU	1050
D- 1442	[INVAB]CUGCUUCAUGC CUUUCUACAU	1051	AUGUAGAAAGGCAUGAAG CAGUU	1052
D- 1443	CUGCUUCAUGCCUUUC UACA{INVAB}	1053	AUGUAGAAAGGCAUGAAG CAGUU	1054

D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1444	UACA{INVAB}	1055	CAGUU	1056
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1445	CUUUCUACAU	1057	CAGUU	1058
D-	[INVAB]CUGCUUCAUGC		AUGUAGAAAGGCAUGAAG	
1446	CUUUCUACA{INVAB}	1059	CAGUU	1060
D-	CUGCUUCAUGCCUUUC		A[AB]GUAGAAAGGCAUGA	
1447	UACA{INVAB}	1061	AGCAGUU	1062
D-	CUGCUUCAUGCCUUUC		AU[AB]UAGAAAGGCAUGA	
1448	UACA{INVAB}	1063	AGCAGUU	1064
D-	CUGCUUCAUGCCUUUC		AUG[AB]AGAAAGGCAUGA	
1449	UACA{INVAB}	1065	AGCAGUU	1066
D-	CUGCUUCAUGCCUUUC		AUGU[AB]GAAAGGCAUGA	
1450	UACA{INVAB}	1067	AGCAGUU	1068
D-	CUGCUUCAUGCCUUUC		AUGUAG[AB]AAGGCAUGA	
1451	UACA{INVAB}	1069	AGCAGUU	1070
D-	CUGCUUCAUGCCUUUC		AUGUAGA[AB]AGGCAUGA	
1452	UACA{INVAB}	1071	AGCAGUU	1072
D-	CAACGUACCCUUCAUU		ACAUCAAUGAAGGGUACG	
1453	GAUG{INVAB}	1073	UUGUU	1074
D-	CAACGUACCCUUCAUU		ACAUCAAUGAAGGGUACG	
1454	GAUG{INVAB}	1075	UUGUU	1076
D-	ACAUGGCUUCCAGAUA		AGGCAUAUCUGGAAGCCA	
1455	UGCC{INVAB}	1077	UGUUU	1078
D-	ACAUGGCUUCCAGAUA		AGGCAUAUCUGGAAGCCA	
1456	UGCC{INVAB}	1079	UGUUU	1080
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1457	UACA{INVAB}	1081	CAGUU	1082
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1458	UACA{INVAB}	1083	CAGUU	1084

D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1459	UACA{INVAB}	1085	CAGUU	1086
	, ,	1000		1000
D-	CUGCGGCUUCCUGGGC		UAGAAGCCCAGGAAGCCG	
1460	UUCU{INVAB}	1087	CAGUU	1088
D-	CUGCGGCUUCCUGGGC		UAGAAGCCCAGGAAGCCG	
1461	UUCU{INVAB}	1089	CAGUU	1090
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1462	ACAG{INVAB}	1091	GCAUU	1092
D-	[INVAB]UGCUUCAUGCC		ACUGUAGAAAGGCAUGAA	
1463	UUUCUACAGU	1093	GCAUU	1094
D-	[INVAB]UGCUUCAUGCC		ACUGUAGAAAGGCAUGAA	
1464	UUUCUACAG{INVAB}	1095	GCAUU	1096
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1465	ACAG{INVAB}	1097	GCAUU	1098
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1466	ACAG{INVAB}	1099	GCAUU	1100
D-	UGCUUCAUGCCUUUCU		ACUGUAGAAAGGCAUGAA	
1467	ACAG{INVAB}	1101	GCAUU	1102
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1468	UACAU	1103	CAGUU	1104
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1469	UACAU	1105	CAGUU	1106
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1470	UACAU	1107	CAGUU	1108
D-	UGCUUCAUGCCUUUCU		UCUGUAGAAAGGCAUGAA	
1471	ACAG{INVAB}	1109	GCAUU	1110
D-	UGCUUCAUGCCUUUCU		UCUGUAGAAAGGCAUGAA	
1472	ACAG{INVDA}	1111	GCAUU	1112
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1473	UACA{INVDT}	1113	CAGUU	1114
	•			

D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1474	UACA{INVAB}	1115	A]AGGCAUGAAGCAGUU	1116
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1475	UACA{INVAB}	1117	A]AGGCAUGAAGCAGUU	1118
D-	CUGCUUCAUGCCUUUC	_	AUGUAGA[GNA-	
1476	UACA{INVAB}	1119	A]AGGCAUGAAGCAGUU	1120
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1477	UACA{INVAB}	1121	AJAGGCAUGAAGCAGUU	1122
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1478	UACA{INVAB}	1123	A]AGGCAUGAAGCAGUU	1124
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1479	UACA{INVAB}	1125	A]AGGCAUGAAGCAGUU	1126
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1480	UACA{INVAB}	1127	A]AGGCAUGAAGCAGUU	1128
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1481	UACA{INVAB}	1129	A]AGGCAUGAAGCAGUU	1130
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1482	UACA{INVAB}	1131	A]AGGCAUGAAGCAGUU	1132
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1483	UACA{INVAB}	1133	A]AGGCAUGAAGCAGUU	1134
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1484	UACA{INVAB}	1135	A]AGGCAUGAAGCAGUU	1136
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1485	UACA{INVAB}	1137	A]AGGCAUGAAGCAGUU	1138
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1486	UACA{INVAB}	1139	A]AGGCAUGAAGCAGUU	1140
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1487	UACA{INVAB}	1141	A]AGGCAUGAAGCAGUU	1142
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1488	UACA{INVAB}	1143	A]AGGCAUGAAGCAGUU	1144

	T		I	1
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1489	UACA{INVAB}	1145	A]AGGCAUGAAGCAGUU	1146
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1490	UACA{INVAB}	1147	A]AGGCAUGAAGCAGUU	1148
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1491	UACA{INVAB}	1149	A]A[DG]GCAUGAAGCAGUU	1150
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1492	UACA{INVAB}	1151	A][DA]GGCAUGAAGCAGUU	1152
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1493	UACA{INVAB}	1153	A]AG[DG]CAUGAAGCAGUU	1154
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1494	UACA{INVAB}	1155	A]AGGCAUGAAGCAGUU	1156
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1495	UACA{INVAB}	1157	A]AGGCAUGAAGCAGUU	1158
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1496	UACA{INVAB}	1159	A]AGGCAUGAAGCAGUU	1160
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1497	UACA{INVAB}	1161	A]AGGCAUGAAGCAGUU	1162
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1498	UACA{INVAB}	1163	A]AGGCAUGAAGCAGUU	1164
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1499	UACA{INVAB}	1165	A]AGGCAUGAAGCAGUU	1166
D-	CUGCUUCAUGCCUUUC		AUGUAGAAAGGCAUGAAG	
1500	UACA{INVAB}	1167	CAGUU	1168
D-	UGCUUCAUGCCUUUCU		U[GNA-	
1501	ACAG{INVDA}		C]UGUAGAAAGGCAUGAAG	
		1169	CAUU	1170
D-	UGCUUCAUGCCUUUCU		UC[GNA-	
1502	ACAG{INVDA}		U]GUAGAAAGGCAUGAAGC	
		1171	AUU	1172

D-	UGCUUCAUGCCUUUCU		UCUG[GNA-	
1503	ACAG{INVDA}		UJAGAAAGGCAUGAAGCAU	
		1173	U	1174
D-	UGCUUCAUGCCUUUCU		UCUGU[GNA-	
1504	ACAG{INVDA}	1175	AJGAAAGGCAUGAAGCAUU	1176
D-	UGCUUCAUGCCUUUCU		UCUGUAG[GNA-	
1505	ACAG{INVDA}	1177	A]AAGGCAUGAAGCAUU	1178
D-	UGCUUCAUGCCUUUCU		U[AB]UGUAGAAAGGCAUG	
1506	ACAG{INVDA}	1179	AAGCAUU	1180
D-	UGCUUCAUGCCUUUCU		UC[AB]GUAGAAAGGCAUG	
1507	ACAG{INVDA}	1181	AAGCAUU	1182
D-	UGCUUCAUGCCUUUCU		UCU[AB]UAGAAAGGCAUG	
1508	ACAG{INVDA}	1183	AAGCAUU	1184
D-	UGCUUCAUGCCUUUCU		UCUG[AB]AGAAAGGCAUG	
1509	ACAG{INVDA}	1185	AAGCAUU	1186
D-	UGCUUCAUGCCUUUCU		UCUGU[AB]GAAAGGCAUG	
1510	ACAG{INVDA}	1187	AAGCAUU	1188
D-	UGCUUCAUGCCUUUCU		UCUGUA[AB]AAAGGCAUG	
1511	ACAG{INVDA}	1189	AAGCAUU	1190
D-	UGCUUCAUGCCUUUCU		UCUGUAG[AB]AAGGCAUG	
1512	ACAG{INVDA}	1191	AAGCAUU	1192
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1513	UGGC{INVDT}	1193	UGAUU	1194
D-	UCAUGCCUUUCUACAG		UGCCACUGUAGAAAGGCA	
1514	UGGC{INVAB}	1195	UGAUU	1196
D-	UCAUGCCUUUCUACAG		UGCCACUGUAGAAAGGCA	
1515	UGGC{INVDA}	1197	UGAUU	1198
D-	UCCUGCUUCAUGCCUU		AUAGAAAGGCAUGAAGCA	
1516	UCUA{INVDT}	1199	GGAUU	1200
D-	UCCUGCUUCAUGCCUU	1201	UUAGAAAGGCAUGAAGCA	1202

1517	UCUA{INVAB}		GGAUU	
D-	UCCUGCUUCAUGCCUU		UUAGAAAGGCAUGAAGCA	
1518	UCUA{INVDA}	1203	GGAUU	1204
D-	UAUGUUCCUGCUUCAU		AAGGCAUGAAGCAGGAAC	
1519	GCCU{INVDT}	1205	AUAUU	1206
D-	UAUGUUCCUGCUUCAU		UAGGCAUGAAGCAGGAAC	
1520	GCCU{INVAB}	1207	AUAUU	1208
D-	UAUGUUCCUGCUUCAU		UAGGCAUGAAGCAGGAAC	
1521	GCCU{INVDA}	1209	AUAUU	1210
D-	UCCUGCUUCAUGCCUU		AUAGAAAGGCAUGAAGCA	
1522	UCUA{INVAB}	1211	GGAUU	1212
D-	UAUGUUCCUGCUUCAU		AAGGCAUGAAGCAGGAAC	
1523	GCCU{INVAB}	1213	AUAUU	1214
D-	UCAUGCCUUUCUACAG		AGCCACUGUAGAAAGGCA	
1524	UGGC{INVDT}	1215	UGAUU	1216
D-	UCCUGCUUCAUGCCUU		AUAGAAAGGCAUGAAGCA	
1525	UCUA{INVDT}	1217	GGAUU	1218
D-	UCCUGCUUCAUGCCUU		UUAGAAAGGCAUGAAGCA	
1526	UCUA{INVDA}	1219	GGAUU	1220
D-	UAUGUUCCUGCUUCAU		UAGGCAUGAAGCAGGAAC	
1527	GCCU{INVDA}	1221	AUAUU	1222
D-	UGCUUCAUGCCUUUCU		UCUGUA[GNA-	
1528	ACAG{INVDA}	1223	G]AAAGGCAUGAAGCAUU	1224
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1529	UACA{INVAB}	1225	A]AGGCAUGAAGCAGUU	1226
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1530	UACA{INVAB}	1227	A]AGGCAUGAAGCAGUU	1228
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1531	UACA{INVAB}	1229	A]AGGCAUGAAGCAGUU	1230
D-	CUGCUUCAUGCCUUUC	1231	AUGUAGA[GNA-	1232

1532	UACA{INVAB}		A]AGGCAUGAAGCAGUU	
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1533	UACA{INVAB}	1233	A]AGGCAUGAAGCAGUU	1234
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1534	UACA{INVAB}	1235	A]AGGCAUGAAGCAGUU	1236
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1535	UACA{INVAB}	1237	A]AGGCAUGAAGCAGUU	1238
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1536	UACA{INVAB}	1239	A]AGGCAUGAAGCAGUU	1240
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1537	UACA{INVAB}	1241	A]AGGCAUGAAGCAGUU	1242
D-	CUGCUUCAUGCCU[LNA		AUGUAGA[GNA-	
1538	-T]UCUACA{INVAB}	1243	A]AGGCAUGAAGCAGUU	1244
D-	CUGCUUCAUGCC[LNA-		AUGUAGA[GNA-	
1539	TJUUCUACA{INVAB}	1245	A]AGGCAUGAAGCAGUU	1246
D-	CUGCUUCAUGCCUU[LN		AUGUAGA[GNA-	
1540	A-T]CUACA{INVAB}	1247	A]AGGCAUGAAGCAGUU	1248
D-	CUGCUUCAUGCCUUUC[AUGU[GNA-	
1541	LNA-TJACA{INVAB}		A]GAAAGGCAUGAAGCAGU	
		1249	U	1250
D-	CUGCUUCAUGCCUUUC		AUG[GNA-	
1542	U[LNA-A]CA{INVAB}		U]AGAAAGGCAUGAAGCAG	
		1251	UU	1252
D-	CUGCUUCAUGCCUUUC		A[GNA-	
1543	UAC[LNA-A]{INVAB}	1050	U]GUAGAAAGGCAUGAAGC	1054
		1253		1254
D-	CUGCUUCAUGCCUU[LN		AUGUAG[AB]AAGGCAUGA	
1544	A-T]CUACA{INVAB}	1255	AGCAGUU	1256
D-	CUGCUUCAUGCCUUUC[AUGU[AB]GAAAGGCAUGA	
1545	LNA-TJACA{INVAB}	1257	AGCAGUU	1258

D-	CUGCUUCAUGCCUUUC		AUG[AB]AGAAAGGCAUGA	
1546	U[LNA-A]CA{INVAB}	1259	AGCAGUU	1260
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1547	UACA{INVAB}	1261	A]AGGCAUGAAGCAGUU	1262
D-	CUGCUUCAUGCCUUUC		AUGUAGA[GNA-	
1548	UACA{INVAB}	1263	A]AGGCAUGAAGCAGUU	1264
D-	CUGCUUCAUGCCU[LNA		AUGUAGA[GNA-	
1549	-TJUCUACA{INVAB}	1265	AJAGGCAUGAAGCAGUU	1266
D-	CUGCUUCAUGCCU[LNA		AUGUAGA[GNA-	
1550	-TJUCUACA{INVAB}	1267	A]AGGCAUGAAGCAGUU	1268
D-	CUGCUUCAUGCCU[LNA		AUGUAGA[GNA-	
1551	-T]UCUACA{INVAB}	1269	A]AGGCAUGAAGCAGUU	1270
D-	CUGCUUCAUGCCU[LNA		AUGUAGA[GNA-	
1552	-TJUCUACA{INVAB}	1271	A]AGGCAUGAAGCAGUU	1272
D-	UGCUUCAUGCCUUUCU		UCUG[AB]AGAAAGGCAUG	
1553	[LNA-A]CAG{INVDA}	1273	AAGCAUU	1274
D-	UGCUUCAUGCCUUUC[L		UCUGU[AB]GAAAGGCAUG	
1554	NA-T]ACAG{INVDA}	1275	AAGCAUU	1276
D-	UGCUUCAUGCCUU[LNA		UCUGUAG[AB]AAGGCAUG	
1555	-T]CUACAG{INVDA}	1277	AAGCAUU	1278
D-	UGCUUCAUGCCUUUCU		UC[GNA-	
1556	AC[LNA-A]G{INVDA}		U]GUAGAAAGGCAUGAAGC	
		1279	AUU	1280
D-	UGCUUCAUGCCUUUCU		UCUG[GNA-	
1557	[LNA-A]CAG{INVDA}		U]AGAAAGGCAUGAAGCAU	
		1281	U	1282
D-	UGCUUCAUGCCUUUC[L		UCUGU[GNA-	
1558	NA-T]ACAG{INVDA}	1283	A]GAAAGGCAUGAAGCAUU	1284
D-	UGCUUCAUGCCUUUCU		U[AB]UGUAGAAAGGCAUG	
1559	ACA[LNA-G]{INVDA}	1285	AAGCAUU	1286

D- 1560	UGCUUCAUGCCUUUCU AC[LNA-A]G{INVDA}	1287	UC[AB]GUAGAAAGGCAUG AAGCAUU	1288
D- 1561	UCAUGCCUUUCUACA[L NA-GJUGGC{INVAB}		AGCCA[AB]UGUAGAAAGG CAUGAUU	1290
D- 1562	UCAUGCCUUUCUACAG [LNA-T]GGC{INVAB}	1291	AGCCA[AB]UGUAGAAAGG CAUGAUU	1292
D- 1563	UCAUGCCUUUCUACAG UGGC{INVAB}	1293	AGCCA[AB]UGUAGAAAGG CAUGAUU	1294
D- 1564	GGUAUGUUCCUGCUUC AUUUU	2257	AAUGAAGCAGGAACAUAC CUU	2258
D- 1565	GGUAUGUUCCUGCUUC AUAUU	2259	UAUGAAGCAGGAACAUAC CUU	2260
D- 1566	GUAUGUUCCUGCUUCA UGUUU	2261	ACAUGAAGCAGGAACAUA CUU	2262
D- 1567	UAUGUUCCUGCUUCAU GCAUU	2263	UGCAUGAAGCAGGAACAU AUU	2264
D- 1568	AUGUUCCUGCUUCAUG CCUUU	2265	AGGCAUGAAGCAGGAACA UUU	2266
D- 1569	UGUUCCUGCUUCAUGC CUUUU	2267	AAGGCAUGAAGCAGGAAC AUU	2268
D- 1570	GUUCCUGCUUCAUGCC UUUUU	2269	AAAGGCAUGAAGCAGGAA CUU	2270
D- 1571	UUCCUGCUUCAUGCCU UUUUU	2271	AAAAGGCAUGAAGCAGGA AUU	2272
D- 1572	UUCCUGCUUCAUGCCU UUAUU	2273	UAAAGGCAUGAAGCAGGA AUU	2274
D- 1573	UCCUGCUUCAUGCCUU UCUUU	2275	AGAAAGGCAUGAAGCAGG AUU	2276
D- 1574	CCUGCUUCAUGCCUUU CUAUU	2277	UAGAAAGGCAUGAAGCAG GUU	2278
			•	

D- 1575	CUGCUUCAUGCCUUUC UAUUU	2279	AUAGAAAGGCAUGAAGCA GUU	2280
D- 1576	CUGCUUCAUGCCUUUC UAAUU	2281	UUAGAAAGGCAUGAAGCA GUU	2282
D- 1577	UGCUUCAUGCCUUUCU ACAUU	2283	UGUAGAAAGGCAUGAAGC AUU	2284
D- 1578	GCUUCAUGCCUUUCUA CAUUU	2285	AUGUAGAAAGGCAUGAAG CUU	2286
D- 1579	GCUUCAUGCCUUUCUA CAAUU	2287	UUGUAGAAAGGCAUGAAG CUU	2288
D- 1580	CUUCAUGCCUUUCUAC AGUUU	2289	ACUGUAGAAAGGCAUGAA GUU	2290
D- 1581	UUCAUGCCUUUCUACA GUUUU	2291	AACUGUAGAAAGGCAUGA AUU	2292
D- 1582	UUCAUGCCUUUCUACA GUAUU	2293	UACUGUAGAAAGGCAUGA AUU	2294
D- 1583	UCAUGCCUUUCUACAG UGUUU	2295	ACACUGUAGAAAGGCAUG AUU	2296
D- 1584	UCAUGCCUUUCUACAG UGAUU	2297	UCACUGUAGAAAGGCAUG AUU	2298
D- 1585	CAUGCCUUUCUACAGU GGUUU	2299	ACCACUGUAGAAAGGCAU GUU	2300
D- 1586	CAUGCCUUUCUACAGU GGAUU	2301	UCCACUGUAGAAAGGCAU GUU	2302
D- 1587	AUGCCUUUCUACAGUG GCUUU	2303	AGCCACUGUAGAAAGGCA UUU	2304
D- 1588	AUGCCUUUCUACAGUG GCAUU	2305	UGCCACUGUAGAAAGGCA UUU	2306
D- 1589	UGCCUUUCUACAGUGG CCUUU	2307	AGGCCACUGUAGAAAGGC AUU	2308

	T	I	I	1
D- 1590	GCCUUUCUACAGUGGC CUUUU	2309	AAGGCCACUGUAGAAAGG CUU	2310
	GGUAUGUUCCUGCUUC AUCUU	2311	GAUGAAGCAGGAACAUAC CUU	2312
	GUAUGUUCCUGCUUCA UCCUU	2313	GGAUGAAGCAGGAACAUA CUU	2314
	UAUGUUCCUGCUUCAU CCCUU	2315	GGGAUGAAGCAGGAACAU AUU	2316
D- 1594	AUGUUCCUGCUUCAUC CCCUU	2317	GGGGAUGAAGCAGGAACA UUU	2318
	UGUUCCUGCUUCAUCC CCUUU	2319	AGGGGAUGAAGCAGGAAC AUU	2320
	GUUCCUGCUUCAUCCC CUUUU	2321	AAGGGGAUGAAGCAGGAA CUU	2322
	UUCCUGCUUCAUCCCC UUCUU	2323	GAAGGGGAUGAAGCAGGA AUU	2324
	UCCUGCUUCAUCCCCU UCUUU	2325	AGAAGGGGAUGAAGCAGG AUU	2326
	CCUGCUUCAUCCCCUU CUAUU	2327	UAGAAGGGGAUGAAGCAG GUU	2328
	CUGCUUCAUCCCCUUC UACUU	2329	GUAGAAGGGGAUGAAGCA GUU	2330
	UGCUUCAUCCCCUUCU ACAUU	2331	UGUAGAAGGGGAUGAAGC AUU	2332
D- 1602	GCUUCAUCCCCUUCUA CAGUU		CUGUAGAAGGGGAUGAAG CUU	2334
D- 1603	CUUCAUCCCCUUCUAC AGUUU	2335	ACUGUAGAAGGGGAUGAA GUU	2336
	UUCAUCCCUUCUACA GUGUU	2337	CACUGUAGAAGGGGAUGA AUU	2338
D- 1605	UCAUCCCCUUCUACAG UGGUU	2339	CCACUGUAGAAGGGGAUG AUU	2340
D- 1606	CAUCCCCUUCUACAGU GGCUU	2341	GCCACUGUAGAAGGGGAU GUU	2342
D- 1607	AUCCCCUUCUACAGUG GCCUU	2343	GGCCACUGUAGAAGGGGA UUU	2344
D- 1608	UCCCCUUCUACAGUGG CCUUU	2345	AGGCCACUGUAGAAGGGG AUU	2346
		1		

Чтобы повысить активность и стабильность in vivo последовательностей siRNA PNPLA3, встраива-

ли химические модификации в молекулы siRNA PNPLA3. В частности, встраивали 2'-О-метил- и 2'-фтормодификации рибозного сахара в определенные положения siRNA PNPLA3. Также встраивали фосфоротиоатные межнуклеотидные связи в концевые участки антисмысловых и/или смысловых последовательностей. В нижеприведенной табл. 2 изображены модификации в смысловой и антисмысловой последовательностях для каждой из модифицированных siRNA PNPLA3. Нуклеотидные последовательности в табл. Х перечислены в соответствии со следующими обозначениями: А, U, G и С=соответствующий рибонуклеотид; dT=дезокситимидин; а, u, g и с=соответствующий 2'-О-метилрибонуклеотид; Аf, Uf, Gf и Сf=соответствующий 2'-дезокси-2'-фтор ("2'-фтор") рибонуклеотид. Вставка "s" в последовательность означает, что два соседних нуклеотида связаны фосфоротиодиэфирной группой (например, фосфоротиоатной межнуклеотидной связью). Если не указано иное, все другие нуклеотиды связаны 3'-5'-фосфодиэфирными группами. Каждое из соединений на основе siRNA в табл. 2 содержит дуплексный участок длиной в 19 пар оснований, содержащий либо липкий конец из 2 нуклеотидов на 3'-конце обеих нитей, либо тупой конец на одном или на обоих концах. GalNAc3K2AhxC6 представляет собой

Таблица 2. Последовательности siRNA, направленные на PNPLA3 с модификациями

иолици 2.	Тоследовательности з			<u>С модификация</u>
Дуплекс	Смысловая	SEQ ID NO:	Антисмысловая	SEQ ID NO:
№	последовательность	(смысловая)	последовательност	(антисмыслова
	(5'-3')		ь (5'-3')	я)
D-2000	GfsgsGfcAfaUfaAfAfG	167	asGfscAfgGfuAfcuu	168
	fuAfcCfuGfcUfsusUf		UfaUfuGfcCfcsUfsu	
D-2001	CfsgsGfcCfaAfuGfUfCf	169	asGfscUfgGfuGfgac	170
	cAfcCfaGfcUfsusUf		AfuUfgGfcCfgsUfsu	
D-2002	GfsgsUfcCfaGfcCfUfGf	171	asAfsgAfaGfuUfcag	172
	aAfcUfuCfuUfsusUf		GfcUfgGfaCfcsUfsu	
D-2003	GfscsUfuCfaUfcCfCfCf	173	csUfsgUfaGfaAfggg	174
	uUfcUfaCfaGfsusUf		GfaUfgAfaGfcsUfsu	
D-2004	GfscsGfgCfuUfcCfUfG	175	usAfsgAfaGfcCfcag	176
	fgGfcUfuCfuAfsusUf		GfaAfgCfcGfcsUfsu	
D-2005	GfscsCfuCfuGfaGfCfUf	177	asCfscAfaCfuCfagc	178
	gAfgUfuGfgUfsusUf		UfcAfgAfgGfcsUfsu	
D-2006	GfsusGfaCfaAfcGfUfA	179	asUfsgAfaGfgGfuac	180
	fcCfcUfuCfaUfsusUf		GfuUfgUfcAfcsUfsu	
D-2007	CfscsCfgCfcUfcCfAfGf	181	usUfsuGfgGfaCfcug	182
	gUfcCfcAfaAfsusUf		GfaGfgCfgGfgsUfsu	
D-2008	CfsusUfcAfuCfcCfCfUf	183	asCfsuGfuAfgAfagg	184
	uCfuAfcAfgUfsusUf		GfgAfuGfaAfgsUfsu	
	,			

D-2009	GfsgsUfaUfgUfuCfCfU	185	csAfsuGfaAfgCfagg	186
D-2007	fgCfuUfcAfuGfsusUf	103	AfaCfaUfaCfcsUfsu	100
D 2010	-	105		100
D-2010	GfsusAfuGfuUfcCfUfG	187	gsCfsaUfgAfaGfcag	188
	fcUfuCfaUfgCfsusUf		GfaAfcAfuAfcsUfsu	
D-2011	UfsasUfgUfuCfcUfGfC	189	gsGfscAfuGfaAfgca	190
	fuUfcAfuGfcCfsusUf		GfgAfaCfaUfasUfsu	
D-2012	AfsusGfuUfcCfuGfCfU	191	gsGfsgCfaUfgAfagc	192
	fuCfaUfgCfcCfsusUf		AfgGfaAfcAfusUfsu	
D-2013	UfsgsUfuCfcUfgCfUfU	193	asGfsgGfcAfuGfaag	194
	fcAfuGfcCfcUfsusUf		CfaGfgAfaCfasUfsu	
D-2014	GfsusUfcCfuGfcUfUfC	195	asAfsgGfgCfaUfgaa	196
	faUfgCfcCfuUfsusUf		GfcAfgGfaAfcsUfsu	
D-2015	UfsusCfcUfgCfuUfCfA	197	gsAfsaGfgGfcAfuga	198
	fuGfcCfcUfuCfsusUf		AfgCfaGfgAfasUfsu	
D-2016	UfscsCfuGfcUfuCfAfU	199	asGfsaAfgGfgCfaug	200
	fgCfcCfuUfcUfsusUf		AfaGfcAfgGfasUfsu	
D-2017	CfscsUfgCfuUfcAfUfG	201	usAfsgAfaGfgGfcau	202
	fcCfcUfuCfuAfsusUf		GfaAfgCfaGfgsUfsu	
D-2018	CfsusGfcUfuCfaUfGfCf	203	gsUfsaGfaAfgGfgca	204
	cCfuUfcUfaCfsusUf		UfgAfaGfcAfgsUfsu	
D-2019	UfsgsCfuUfcAfuGfCfC	205	usGfsuAfgAfaGfggc	206
	fcUfuCfuAfcAfsusUf		AfuGfaAfgCfasUfsu	
D-2020	GfscsUfuCfaUfgCfCfCf	207	csUfsgUfaGfaAfggg	208
	uUfcUfaCfaGfsusUf		CfaUfgAfaGfcsUfsu	
D-2021	CfsusUfcAfuGfcCfCfUf	209	asCfsuGfuAfgAfagg	210
	uCfuAfcAfgUfsusUf		GfcAfuGfaAfgsUfsu	
D-2022	UfsusCfaUfgCfcCfUfUf	211	csAfscUfgUfaGfaag	212
	cUfaCfaGfuGfsusUf		GfgCfaUfgAfasUfsu	
D-2023	UfscsAfuGfcCfcUfUfCf	213	csCfsaCfuGfuAfgaa	214
	uAfcAfgUfgGfsusUf		GfgGfcAfuGfasUfsu	
D-2024	CfsasUfgCfcCfuUfCfUf	215	gsCfscAfcUfgUfaga	216
	aCfaGfuGfgCfsusUf		AfgGfgCfaUfgsUfsu	
D-2025	AfsusGfcCfcUfuCfUfA	217	gsGfscCfaCfuGfuag	218
	fcAfgUfgGfcCfsusUf		AfaGfgGfcAfusUfsu	

D-2026	UfsgsCfcCfuUfcUfAfCf	219	asGfsgCfcAfcUfgua	220
	aGfuGfgCfcUfsusUf		GfaAfgGfgCfasUfsu	
D-2027	GfscsCfcUfuCfuAfCfAf	221	asAfsgGfcCfaCfugu	222
	gUfgGfcCfuUfsusUf		AfgAfaGfgGfcsUfsu	
D-2028	GfsgsUfaUfgUfuCfCfU	223	gsAfsuGfaAfgCfagg	224
	fgCfuUfcAfuCfsusUf		AfaCfaUfaCfcsUfsu	
D-2029	GfsusAfuGfuUfcCfUfG	225	gsGfsaUfgAfaGfcag	226
	fcUfuCfaUfcCfsusUf		GfaAfcAfuAfcsUfsu	
D-2030	UfsasUfgUfuCfcUfGfC	227	gsGfsgAfuGfaAfgca	228
	fuUfcAfuCfcCfsusUf		GfgAfaCfaUfasUfsu	
D-2031	AfsusGfuUfcCfuGfCfU	229	gsGfsgGfaUfgAfagc	230
	fuCfaUfcCfcCfsusUf		AfgGfaAfcAfusUfsu	
D-2032	UfsgsUfuCfcUfgCfUfU	231	asGfsgGfgAfuGfaag	232
	fcAfuCfcCfcUfsusUf		CfaGfgAfaCfasUfsu	
D-2033	GfsusUfcCfuGfcUfUfC	233	asAfsgGfgGfaUfgaa	234
	faUfcCfcCfuUfsusUf		GfcAfgGfaAfcsUfsu	
D-2034	UfsusCfcUfgCfuUfCfA	235	gsAfsaGfgGfgAfuga	236
	fuCfcCfcUfuCfsusUf		AfgCfaGfgAfasUfsu	
D-2035	UfscsCfuGfcUfuCfAfU	237	asGfsaAfgGfgGfaug	238
	fcCfcCfuUfcUfsusUf		AfaGfcAfgGfasUfsu	
D-2036	CfscsUfgCfuUfcAfUfCf	239	usAfsgAfaGfgGfgau	240
	cCfcUfuCfuAfsusUf		GfaAfgCfaGfgsUfsu	
D-2037	CfsusGfcUfuCfaUfCfCf	241	gsUfsaGfaAfgGfgga	242
	cCfuUfcUfaCfsusUf		UfgAfaGfcAfgsUfsu	
D-2038	UfsgsCfuUfcAfuCfCfCf	243	usGfsuAfgAfaGfggg	244
	cUfuCfuAfcAfsusUf		AfuGfaAfgCfasUfsu	
D-2039	UfsusCfaUfcCfcCfUfUf	245	csAfscUfgUfaGfaag	246
	cUfaCfaGfuGfsusUf		GfgGfaUfgAfasUfsu	
D-2040	UfscsAfuCfcCfcUfUfCf	247	csCfsaCfuGfuAfgaa	248
	uAfcAfgUfgGfsusUf		GfgGfgAfuGfasUfsu	
D-2041	CfsasUfcCfcCfuUfCfUf	249	gsCfscAfcUfgUfaga	250
	aCfaGfuGfgCfsusUf		AfgGfgGfaUfgsUfsu	
D-2042	UfscsCfcCfuUfcUfAfCf	251	asGfsgCfcAfcUfgua	252
	aGfuGfgCfcUfsusUf		GfaAfgGfgGfasUfsu	

D-2043	GfsasUfcAfgGfaCfCfCf	253	asUfscGfgCfuCfggg	254
	gAfgCfcGfaUfsusUf		UfcCfuGfaUfcsUfsu	
D-2044	UfsgsGfgCfuUfcUfAfC	255	asCfsgAfcGfuGfgua	256
	fcAfcGfuCfgUfsusUf		GfaAfgCfcCfasUfsu	
D-2045	GfsasGfcGfaGfcAfCfGf	257	asUfsgCfgGfgGfcgu	258
	cCfcCfgCfaUfsusUf		GfcUfcGfcUfcsUfsu	
D-2046	UfsgsCfaCfuGfcGfUfCf	259	asGfsgAfcGfcCfgac	260
	gGfcGfuCfcUfsusUf		GfcAfgUfgCfasUfsu	
D-2047	UfsgsGfaGfcAfgAfCfU	261	asCfscUfgCfaGfagu	262
	fcUfgCfaGfgUfsusUf		CfuGfcUfcCfasUfsu	
D-2048	UfsgsCfaGfgUfcCfUfCf	263	asGfsaUfcUfgAfgag	264
	uCfaGfaUfcUfsusUf		GfaCfcUfgCfasUfsu	
D-2049	CfscsCfgGfcCfaAfUfGf	265	asUfsgGfuGfgAfcau	266
	uCfcAfcCfaUfsusUf		UfgGfcCfgGfgsUfsu	
D-2050	UfsusCfuAfcAfgUfGfG	267	asGfsaUfaAfgGfcca	268
	fcCfuUfaUfcUfsusUf		CfuGfuAfgAfasUfsu	
D-2051	UfscsUfaCfaGfuGfGfCf	269	asGfsgAfuAfaGfgcc	270
	cUfuAfuCfcUfsusUf		AfcUfgUfaGfasUfsu	
D-2052	CfsusUfcCfuUfcAfGfA	271	asGfscAfcGfcCfucu	272
	fgGfcGfuGfcUfsusUf		GfaAfgGfaAfgsUfsu	
D-2053	UfsusCfcUfuCfaGfAfG	273	usCfsgCfaCfgCfcuc	274
	fgCfgUfgCfgAfsusUf		UfgAfaGfgAfasUfsu	
D-2054	GfscsGfuGfcGfaUfAfU	275	asCfsaUfcCfaCfaua	276
	fgUfgGfaUfgUfsusUf		UfcGfcAfcGfcsUfsu	
D-2055	CfsgsUfgCfgAfuAfUfG	277	usCfscAfuCfcAfcau	278
	fuGfgAfuGfgAfsusUf		AfuCfgCfaCfgsUfsu	
D-2056	UfsgsGfaUfgGfaGfGfA	279	usCfsaCfuCfaCfucc	280
	fgUfgAfgUfgAfsusUf		UfcCfaUfcCfasUfsu	
D-2057	AfscsGfuAfcCfcUfUfCf	281	asCfsaUfcAfaUfgaa	282
	aUfuGfaUfgUfsusUf		GfgGfuAfcGfusUfsu	
D-2058	UfsgsGfaCfaUfcAfCfCf	283	asUfsgAfgCfuUfggu	284
	aAfgCfuCfaUfsusUf		GfaUfgUfcCfasUfsu	
D-2059	CfsasCfcUfgCfgUfCfUf	285	asGfsaUfgCfuGfaga	286
	cAfgCfaUfcUfsusUf		CfgCfaGfgUfgsUfsu	

D-2060	AfscsCfuGfcGfuCfUfCf	287	asGfsgAfuGfcUfgag	288
	aGfcAfuCfcUfsusUf		AfcGfcAfgGfusUfsu	
D-2061	CfscsAfgAfgAfcUfGfG	289	asCfsaUfgUfcAfcca	290
	fuGfaCfaUfgUfsusUf		GfuCfuCfuGfgsUfsu	
D-2062	AfsusGfgCfuUfcCfAfG	291	asGfsgCfaUfaUfcug	292
	faUfaUfgCfcUfsusUf		GfaAfgCfcAfusUfsu	
D-2063	CfscsGfcCfuCfcAfGfGf	293	asUfsuUfgGfgAfccu	294
	uCfcCfaAfaUfsusUf		GfgAfgGfcGfgsUfsu	
D-2064	UfsasCfcUfgCfuGfGfU	295	asCfscUfcAfgCfacc	296
	fgCfuGfaGfgUfsusUf		AfgCfaGfgUfasUfsu	
D-2065	AfscsCfuGfcUfgGfUfG	297	asCfscCfuCfaGfcac	298
	fcUfgAfgGfgUfsusUf		CfaGfcAfgGfusUfsu	
D-2066	CfsusCfuCfcAfcCfUfUf	299	asAfscUfgGfgAfaag	300
	uCfcCfaGfuUfsusUf		GfuGfgAfgAfgsUfs	
			u	
D-2067	UfsusUfuUfcAfcCfUfA	301	asUfsuUfuAfgUfuag	302
	faCfuAfaAfaUfsusUf		GfuGfaAfaAfasUfsu	
D-2068	CfgGfcCfaAfuGfUfCfc	303	asGfscUfgGfuGfgac	304
	AfcCfaGfcUfsusUf		AfuUfgGfcCfgsUfsu	
D-2069	GfgUfcCfaGfcCfUfGfa	305	asAfsgAfaGfuUfcag	306
	AfcUfuCfuUfsusUf		GfcUfgGfaCfcsUfsu	
D-2070	GfcGfgCfuUfcCfUfGfg	307	usAfsgAfaGfcCfcag	308
	GfcUfuCfuAfsusUf		GfaAfgCfcGfcsUfsu	
D-2071	GfuGfaCfaAfcGfUfAfc	309	asUfsgAfaGfgGfuac	310
	CfcUfuCfaUfsusUf		GfuUfgUfcAfcsUfsu	
D-2072	GfgUfaUfgUfuCfCfUfg	311	csAfsuGfaAfgCfagg	312
	CfuUfcAfuGfsusUf		AfaCfaUfaCfcsUfsu	
D-2073	GfuAfuGfuUfcCfUfGfc	313	gsCfsaUfgAfaGfcag	314
	UfuCfaUfgCfsusUf		GfaAfcAfuAfcsUfsu	
D-2074	UfgUfuCfcUfgCfUfUfc	315	asGfsgGfcAfuGfaag	316
	AfuGfcCfcUfsusUf		CfaGfgAfaCfasUfsu	
D-2075	GfuUfcCfuGfcUfUfCfa	317	asAfsgGfgCfaUfgaa	318
	UfgCfcCfuUfsusUf		GfcAfgGfaAfcsUfsu	
D-2076	CfcUfgCfuUfcAfUfGfc	319	usAfsgAfaGfgGfcau	320

	CfcUfuCfuAfsusUf		GfaAfgCfaGfgsUfsu	
D-2077	GfcUfuCfaUfgCfCfCfu	321	csUfsgUfaGfaAfggg	322
	UfcUfaCfaGfsusUf		CfaUfgAfaGfcsUfsu	
D-2078	CfuUfcAfuGfcCfCfUfu	323	asCfsuGfuAfgAfagg	324
	CfuAfcAfgUfsusUf		GfcAfuGfaAfgsUfsu	
D-2079	UfuCfaUfgCfcCfUfUfc	325	csAfscUfgUfaGfaag	326
	UfaCfaGfuGfsusUf		GfgCfaUfgAfasUfsu	
D-2080	AfuGfgCfuUfcCfAfGfa	327	asGfsgCfaUfaUfcug	328
	UfaUfgCfcUfsusUf		GfaAfgCfcAfusUfsu	
D-2081	AfuGfcCfcUfuCfUfAfc	329	gsGfscCfaCfuGfuag	330
	AfgUfgGfcCfsusUf		AfaGfgGfcAfusUfsu	
D-2082	GfcUfuCfaUfgCfCfCfu	331	asUfsgUfaGfaAfggg	332
	UfcUfaCfaUfsusUf		CfaUfgAfaGfcsUfsu	
D-2083	{Фосфат}GfsgsAfaAfg	1295	{Фосфат}usUfsuUf	1296
	AfcUfGfUfuCfcAfaAfa		uGfgAfacaGfuCfuU	
	AfsusUf		fuCfcsUfsu	
D-2084	{GalNAc3K2AhxC6}g	1297	{Фосфат}csAfsuGfa	1298
	gsuaugUfuCfCfUfGfcu		AfGfcaggAfaCfauac	
	ucaugsusu		csusu	
D-2085	{GalNAc3K2AhxC6}g	1299	{Фосфат}gsCfsaUfg	1300
	uauguUfcCfUfGfCfuuc		AfAfgcagGfaAfcaua	
	augcsusu		csusu	
D-2086	{GalNAc3K2AhxC6}u	1301	{Фосфат}asGfsgGfc	1302
	guuccUfgCfUfUfCfaug		AfUfgaagCfaGfgaac	
	cccususu		asusu	
D-2087	{GalNAc3K2AhxC6}gc	1303	{Фосфат}csUfsgUfa	1304
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgaag	
	agsusu		csusu	
D-2088	{GalNAc3K2AhxC6}cu	1305	{Фосфат}asCfsuGfu	1306
	ucauGfcCfCfUfUfcuaca		AfGfaaggGfcAfugaa	
	gususu		gsusu	
D-2089	{GalNAc3K2AhxC6}gc	1307	{Фосфат}usAfsgAf	1308
	ggcuUfcCfUfGfGfgcuu		aGfCfccagGfaAfgcc	
	cuasusu		gcsusu	

D-2090	{GalNAc3K2AhxC6}g	1309	{Фосфат}asAfsgGf	1310
	uuccuGfcUfUfCfAfugc		gCfAfugaaGfcAfgga	
	ccuususu		acsusu	
D-2091	{GalNAc3K2AhxC6}A	1311	{Фосфат}asGfsgCfa	1312
	fuGfgCfuUfcCfAfGfaU		UfaUfcugGfaAfgCfc	
	faUfgCfcUfsusUf		AfusUfsu	
D-2092	{GalNAc3K2AhxC6}cc	1313	{Фосфат}usAfsgAf	1314
	ugcuUfcAfUfGfCfccuu		aGfGfgcauGfaAfgca	
	cuasusu		ggsusu	
D-2093	{GalNAc3K2AhxC6}u	1315	{Фосфат}asAfscUfg	1316
	ucaugCfcCfUfUfCfuaca		UfAfgaagGfgCfauga	
	guususu		asusu	
D-2094	{GalNAc3K2AhxC6}u	1317	{Фосфат}csAfscUfg	1318
	ucaugCfcCfUfUfCfuaca		UfAfgaagGfgCfauga	
	gugsusu		asusu	
D-2095	{GalNAc3K2AhxC6}gc	1319	{Фосфат}asUfsgUfa	1320
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgaag	
	aususu		csusu	
D-2096	{GalNAc3K2AhxC6}g	1321	{Фосфат}asAfsgAfa	1322
	guccaGfcCfUfGfAfacuu		GfUfucagGfcUfggac	
	cuususu		csusu	
D-2097	{GalNAc3K2AhxC6}G	1323	{Фосфат}usAfsgAf	1324
	fcGfgCfuUfcCfUfGfGf		aGfCfccagGfaAfgCf	
	gcUfuCfuAfsusUf		cGfcsUfsu	
D-2098	{GalNAc3K2AhxC6}G	1325	{Фосфат}usAfsgAf	1326
	fcGfgCfuUfcCfuGfGfgc		aGfCfccAfgGfaAfg	
	UfuCfuAfsusUf		CfcGfcsUfsu	
D-2099	{GalNAc3K2AhxC6}G	1327	{Фосфат}asAfsgGf	1328
	fuUfcCfuGfcUfUfCfAf		gCfAfugaaGfcAfgG	
	ugCfcCfuUfsusUf		faAfcsUfsu	
D-2100	{GalNAc3K2AhxC6}G	1329	{Фосфат}asAfsgGf	1330
	fuUfcCfuGfcUfuCfAfu		gCfAfugAfaGfcAfg	
	gCfcCfuUfsusUf		GfaAfcsUfsu	
D-2101	{GalNAc3K2AhxC6}C	1331	{Фосфат}usAfsgAf	1332

	fcUfgCfuUfcAfUfGfCf		aGfGfgcauGfaAfgCf	
	ccUfuCfuAfsusUf		aGfgsUfsu	
D-2102	{GalNAc3K2AhxC6}C	1333	{Фосфат}usAfsgAf	1334
	fcUfgCfuUfcAfuGfCfcc		aGfGfgcAfuGfaAfg	
	UfuCfuAfsusUf		CfaGfgsUfsu	
D-2103	{GalNAc3K2AhxC6}au	1335	{Фосфат}gsGfscCfa	1336
	gcccUfuCfUfAfCfagug		CfUfguagAfaGfggca	
	gccsusu		ususu	
D-2104	{GalNAc3K2AhxC6}au	1337	{Фосфат}asGfsgCfa	1338
	ggcuUfcCfAfGfAfuaug		UfAfucugGfaAfgcca	
	ccususu		ususu	
D-2105	{GalNAc3K2AhxC6}g	1339	{Фосфат}asUfsgAfa	1340
	ugacaAfcGfUfAfCfccuu		GfGfguacGfuUfguca	
	caususu		csusu	
D-2106	{GalNAc3K2AhxC6}g	1341	{Фосфат}gsCfsaUfg	1342
	uauguUfcCfUfGfCfuuc		AfAfgcAfgGfaAfca	
	augcsusu		uacsusu	
D-2107	{GalNAc3K2AhxC6}g	1343	{Фосфат}gsCfsaUfg	1344
	uauguUfcCfuGfCfuucau		AfAfgcagGfaAfcaua	
	gcsusu		csusu	
D-2108	{GalNAc3K2AhxC6}g	1345	{Фосфат}gsCfsaUfg	1346
	uauguUfcCfuGfCfuucau		AfAfgcAfgGfaAfca	
	gcsusu		uacsusu	
D-2109	{GalNAc3K2AhxC6}g	1347	{Фосфат}asGfsgCfa	1348
	uauguUfcCfUfGfCfuuc		UfgAfAfgcagGfaAf	
	augesesu		cauacsusu	
D-2110	{GalNAc3K2AhxC6}u	1349	{Фосфат}gsCfsaUfg	1350
	gguauGfuUfCfCfUfgcu		AfaGfCfaggaAfcAfu	
	ucausgsu		accasusu	
D-2111	{GalNAc3K2AhxC6}g	1351	{Фосфат}gsCfsaUfg	1352
	uauguUfcCfUfGfCfuuc		AfAfgcagGfaAfcaua	
	ausgsu		csusu	
D-2112	{GalNAc3K2AhxC6}g	1353	{Фосфат}gsCfsaUfg	1354
	uauguUfcCfUfGfCfuuc		AfAfgcagGfaAfcaua	

	augcs{invAb}		csusu	
D-2113	{GalNAc3K2AhxC6}G	1355	{Фосфат}asUfsgUfa	1356
	fcUfuCfaUfgCfCfCfUfu		GfAfagggCfaUfgAf	
	cUfaCfaUfsusUf		aGfcsUfsu	
D-2114	{GalNAc3K2AhxC6}G	1357	{Фосфат}asUfsgUfa	1358
	fcUfuCfaUfgCfcCfUfuc		GfAfagGfgCfaUfgA	
	UfaCfaUfsusUf		faGfcsUfsu	
D-2115	{GalNAc3K2AhxC6}gc	1359	{Фосфат}asusguaGf	1360
	uucaUfgCfCfCfUfucuac		AfagggCfaUfgaagcs	
	aususu		usu	
D-2116	{GalNAc3K2AhxC6}gc	1361	{Фосфат}asusguaGf	1362
	uucaUfgCfCfCfUfucUf		AfagggCfaUfgaagcs	
	aCfaUfsusUf		usu	
D-2117	{GalNAc3K2AhxC6}G	1363	{Фосфат}asusguaGf	1364
	fcUfuCfaUfgCfCfCfUfu		AfagggCfaUfgaagcs	
	cuacaususu		usu	
D-2118	{GalNAc3K2AhxC6}gc	1365	{Фосфат}asusguaGf	1366
	uucaUfgCfCfCfUfucuac		AfagggCfaUfgAfaG	
	aususu		fcsUfsu	
D-2119	{GalNAc3K2AhxC6}gc	1367	{Фосфат}asUfsgUfa	1368
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgAf	
	aususu		aGfcsUfsu	
D-2120	{GalNAc3K2AhxC6}G	1369	{Фосфат}asusguaGf	1370
	fcUfuCfaUfgCfCfCfUfu		AfagggCfaUfgaagcs	
	cUfaCfaUfsusUf		usu	
D-2121	{GalNAc3K2AhxC6}G	1371	{Фосфат}asUfsgUfa	1372
	fcUfuCfaUfgCfCfCfUfu		GfAfagggCfaUfgaag	
	cuacaususu		csusu	
D-2122	{GalNAc3K2AhxC6}gc	1373	{Фосфат}asusguaGf	1374
	uucaUfgCfCfCfUfucUf		AfagggCfaUfgAfaG	
	aCfaUfsusUf		fcsUfsu	
D-2123	{GalNAc3K2AhxC6}gc	1375	{Фосфат}asUfsgUfa	1376
	uucaUfgCfCfCfUfucUf		GfAfagggCfaUfgaag	
	aCfaUfsusUf		csusu	

D-2124	{GalNAc3K2AhxC6}G	1377	{Фосфат}asusguaGf	1378
	fcUfuCfaUfgCfCfCfUfu		AfagggCfaUfgAfaG	
	cuacaususu		fcsUfsu	
D-2125	{GalNAc3K2AhxC6}G	1379	{Фосфат}asUfsgUfa	1380
	fcUfuCfaUfgCfCfCfUfu		GfAfagggCfaUfgAf	
	cuacaususu		aGfcsUfsu	
D-2126	{GalNAc3K2AhxC6}gc	1381	{Фосфат}asUfsgUfa	1382
	uucaUfgCfCfCfUfucUf		GfAfagggCfaUfgAf	
	aCfaUfsusUf		aGfcsUfsu	
D-2127	{GalNAc3K2AhxC6}G	1383	{Фосфат}asUfsgUfa	1384
	fcUfuCfaUfgCfCfCfUfu		GfAfagggCfaUfgaag	
	cUfaCfaUfsusUf		csusu	
D-2128	{GalNAc3K2AhxC6}G	1385	{Фосфат}asusguaGf	1386
	fcUfuCfaUfgCfCfCfUfu		AfagggCfaUfgAfaG	
	cUfaCfaUfsusUf		fcsUfsu	
D-2129	{GalNAc3K2AhxC6}gc	1387	{Фосфат}asUfsgUfa	1388
	uucaUfg[dC]CfCfuucua		GfAfagggCfaUfgaag	
	caususu		csusu	
D-2130	{GalNAc3K2AhxC6}gc	1389	{Фосфат}asUfsgUfa	1390
	uucaUfgCfCf[dC]Ufucu		GfAfagggCfaUfgaag	
	acaususu		csusu	
D-2131	{GalNAc3K2AhxC6}gc	1391	{Фосфат}asUfsgUfa	1392
	uucaUfgCf[dC]CfUfucu		GfAfagggCfaUfgaag	
	acaususu		csusu	
D-2132	{GalNAc3K2AhxC6}gc	1393	{Фосфат}asUfsgUfa	1394
	uucaUfgCfCfCfUfucuac		GfAfagGfgCfaUfgaa	
	aususu		gcsusu	
D-2133	{GalNAc3K2AhxC6}gc	1395	{Фосфат}asUfsgUfa	1396
	uucaUfgCfcCfUfucuaca		GfAfagggCfaUfgaag	
	ususu		csusu	
D-2134	{GalNAc3K2AhxC6}gc	1397	{Фосфат}asUfsgUfa	1398
	uucaUfgCfcCfUfucuaca		GfAfagGfgCfaUfgaa	
	ususu		gcsusu	
D-2135	{GalNAc3K2AhxC6}G	1399	{Фосфат}asUfsgUfa	1400

	fscsUfuCfaUfgCfcCfUf		GfAfagggCfaUfgAf	
	ucUfaCfaUfsusUf		aGfcsUfsu	
D-2136	{GalNAc3K2AhxC6}G	1401	{Фосфат}asUfsgUfa	1402
	fscsUfuCfaUfgCfCfCfU		GfAfagGfgCfaUfgA	
	fucUfaCfaUfsusUf		faGfcsUfsu	
D-2137	{GalNAc3K2AhxC6}gc	1403	{Фосфат}asAfscUfg	1404
	uucaUfgCfCfCfUfucuac		UfaGfAfagggCfaUf	
	agsusu		gaagcsusu	
D-2138	{GalNAc3K2AhxC6}cu	1405	{Фосфат}asUfsgUfa	1406
	gcuuCfaUfGfCfCfcuucu		GfaAfGfggcaUfgAf	
	acsasu		agcagsusu	
D-2139	{GalNAc3K2AhxC6}gc	1407	{Фосфат}asUfsgUfa	1408
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgaag	
	sasu		csusu	
D-2140	{GalNAc3K2AhxC6}gc	1409	{Фосфат}asUfsgUfa	1410
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgaag	
	aus{invAb}		csusu	
D-2141	{GalNAc3K2AhxC6}gc	1411	{Фосфат}asUfsgUfa	1412
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgaag	
	auuus{invAb}		csusu	
D-2142	{GalNAc3K2AhxC6}gc	1413	{Фосфат}AfsusGfu	1414
	uucaUfgCfCfCfUfucuac		AfgAfagggCfaUfgaa	
	aususu		gcsusu	
D-2143	{GalNAc3K2AhxC6}gc	1415	{Фосфат}AfsusGfu	1416
	uucaUfgCfCfCfUfuCfu		AfgAfagggCfaUfgaa	
	acaususu		gcsusu	
D-2144	{GalNAc3K2AhxC6}gc	1417	{Фосфат}asUfsgUfa	1418
	uucaugCfCfCfUfucuaca		GfAfagggCfaUfgaag	
	ususu		csusu	
D-2145	{GalNAc3K2AhxC6}gc	1419	{Фосфат}asUfsgUfa	1420
	uucaUfgCfCfCfUfucuac		GfAfagggCfaugaagc	
	aususu		susu	
D-2146	{GalNAc3K2AhxC6}gc	1421	{Фосфат}asusgUfa	1422
	uucaUfgCfCfCfUfucuac		GfAfagggCfaUfgaag	

	aususu		csusu	
D-2147	{GalNAc3K2AhxC6}gc	1423	{Фосфат}asUfsgUfa	1424
	uucaUfgCfCfCfUfucuac		gAfagggCfaUfgaagc	
	aususu		susu	
D-2148	{GalNAc3K2AhxC6}gc	1425	{Фосфат}asusgUfag	1426
	uucaUfgCfCfCfUfucuac		AfagggCfaUfgaagcs	
	aususu		usu	
D-2149	{GalNAc3K2AhxC6}gc	1427	{Фосфат}asUfsguag	1428
	uucaUfgCfCfCfUfucuac		AfagggCfaUfgaagcs	
	aususu		usu	
D-2150	{GalNAc3K2AhxC6}gc	1429	{Фосфат}asusguag	1430
	uucaUfgCfCfCfUfucuac		AfagggCfaUfgaagcs	
	aususu		usu	
D-2151	{GalNAc3K2AhxC6}g	1431	{Фосфат}gsCfsaUfg	1432
	uauguUfcCfUfGfCfuuc		AfAfgcagGfaAfcaua	
	augcuus{invAb}		csusu	
D-2152	{GalNAc3K2AhxC6}g	1433	{Фосфат}аAfsuGfa	1434
	guaugUfuCfCfUfGfcuu		AfGfcaggAfaCfauac	
	cauususu		csusu	
D-2153	{GalNAc3K2AhxC6}g	1435	{Фосфат}asCfsaUfg	1436
	uauguUfcCfUfGfCfuuc		AfAfgcagGfaAfcaua	
	augususu		csusu	
D-2154	{GalNAc3K2AhxC6}cg	1437	{Фосфат}asGfscUfg	1438
	gccaAfuGfUfCfCfaccag		GfUfggacAfuUfggcc	
	cususu		gsusu	
D-2155	{GalNAc3K2AhxC6}u	1439	{Фосфат}asCfscUfg	1440
	ggagcAfgAfCfUfCfugc		CfAfgaguCfuGfcucc	
	aggususu		asusu	
D-2156	{GalNAc3K2AhxC6}ac	1441	{Фосфат}аCfsaUfc	1442
	guacCfcUfUfCfAfuuga		AfAfugaaGfgGfuacg	
	ugususu		ususu	
D-2157	{GalNAc3K2AhxC6}cc	1443	{Фосфат}asCfsaUfg	1444
	agagAfcUfGfGfUfgaca		UfCfaccaGfuCfucug	
	ugususu		gsusu	
	1	I	l	

D-2158	{GalNAc3K2AhxC6}[i	1445	{Фосфат}asUfsgUfa	1446
	nvAb]gcuucaUfgCfCfU		GfAfaaggCfaUfgaag	
	fUfucuacaususu		csusu	
D-2159	{GalNAc3K2AhxC6}[i	1447	{Фосфат}asAfsaUfg	1448
	nvAb]gcuucaUfgCfCfU		UfaGfAfaaggCfaUfg	
	fUfucuacaususu		aagcsusu	
D-2160	{GalNAc3K2AhxC6}[i	1449	{Фосфат}asAfsaUfg	1450
	nvAb]gcuucaUfgCfcUf		UfAfgaaaGfgCfaUfg	
	UfUfCfuacaususu		aagcsusu	
D-2161	{GalNAc3K2AhxC6}u	1451	{Фосфат}usGfsuAf	1452
	gcuucAfuGfCfCfUfuuc		gAfAfaggcAfuGfaag	
	uacasusu		casusu	
D-2162	{GalNAc3K2AhxC6}ua	1453	{Фосфат}asGfscAfu	1454
	uguuCfcUfGfCfUfucau		GfAfagcaGfgAfacau	
	gcususu		asusu	
D-2163	{GalNAc3K2AhxC6}u	1455	{Фосфат}asAfsaAfg	1456
	uccugCfuUfCfAfUfgcc		GfCfaugaAfgCfagga	
	uuuususu		asusu	
D-2164	{GalNAc3K2AhxC6}uc	1457	{Фосфат}asCfsaCfu	1458
	augcCfuUfUfCfUfacagu		GfUfagaaAfgGfcaug	
	gususu		asusu	
D-2165	{GalNAc3K2AhxC6}ca	1459	{Фосфат}asCfscAfc	1460
	ugccUfuUfCfUfAfcagu		UfGfuagaAfaGfgcau	
	ggususu		gsusu	
D-2166	{GalNAc3K2AhxC6}au	1461	{Фосфат}asGfscCfa	1462
	gccuUfuCfUfAfCfagug		CfUfguagAfaAfggca	
	gcususu		ususu	
D-2167	{GalNAc3K2AhxC6}g	1463	{Фосфат}usAfsuGf	1464
	guaugUfuCfCfUfGfcuu		aAfGfcaggAfaCfaua	
	cauasusu		ccsusu	
D-2168	{GalNAc3K2AhxC6}g	1465	{Фосфат}usCfsaUfg	1466
	uauguUfcCfUfGfCfuuc		AfAfgcagGfaAfcaua	
	augasusu		csusu	
D-2169	{GalNAc3K2AhxC6}ua	1467	{Фосфат}usGfscAf	1468

D-2170 {GalNAc3K2AhxC6}u 1469 {Φocфaт}usAfsaAf 1470 uccugCfuUfCfAfUfgcc unuasusu 26dCfaugaAfgCfagg aasusu 27dCfaugaAfgCfagg aasusu 27dCfaugaAfgCfagg 27dCfaugaAfgCfagg 27dCfaugaAfgCfagg 27dCfaugaAfgCfagg 27dCfaugaAfgCfagg 27dCfaugaAfgCfagg 27dCfaugaAfgCfagga 27dCfaugaAfgCfagga 27dCfaugaAfgCfagga 27dCfaugaAfgCfaUfgAfgca 27dCfaugaAfgCfaUfgAfgca 27dCfaugaAfgCfaUfgaa 27dCfaugaAfgCfaUfuCfauga 27dCfaugaAfgCfaUfuCfauga 27dCfaugaAfgCfauga 27dCfaugaAfgCfauga 27dCfaugaAfgCfauga 27dCfaugaAfgCfauga 27dCfaugaAfgCfauga 27dCfaugaAfgCfauga 27dCfaugaAfgCfauga 27dCfaugaAfaGfgCfauga 27dCfaugaAfaGfgCfauga 27dCfaugaAfaGfgCfauga 27dCfaugaAfaGfgCfauga 27dCfaugaAfaGfgCfaugagausu 27dCfaugaAfaGfgCfaugagausu 27dCfaugaAfaGfgCfaugagausu 27dCfaugaAfaGfgCfaugagausu 27dCfaugaAfaGfgCfaugagausu 27dCfaugaAfaGfgCfaugagausu 27dCfaugaAfaAfggCfaugagausu 27dCfaugaAfaAfggCfaugaususu 27dCfaufaGaagafgGfaugagausu 27dCfaufaGaagagausu 27dCfaufaGaagagaagausu 27dCfaufaGaagagaagaagaagaagaagaagaagaagaagaagaag		uguuCfcUfGfCfUfucau		uGfAfagcaGfgAfaca	
uccugCfuUfCfAfUfgcc gGfCfaugaAfgCfagg uuuuasusu aasusu D-2171 {GalNAc3K2AhxC6}cu 1471 {Φocфar}usUfsaGfa 1472 gcuuCfaUfGfCfCfuuuc AfAfggcaUfgAfagca gsusu D-2172 {GalNAc3K2AhxC6}gc 1473 {Φocфar}usUfsgUf 1474 ucaufgCfcUfUfufcuac aasusu gcsusu D-2173 {GalNAc3K2AhxC6}u 1475 {Φocфar}usAfscUf 1476 ucaugCfcUfUfUfCfuaca guasusu aasusu D-2174 {GalNAc3K2AhxC6}u 1477 {Φocфar}usCfsaCfu 1478 augcCfuUfUfCfUfacagu gsusu GfUfagaaAfgGfcaug gasusu UfGfuagaAfaGfgcau gsusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocфar}usCfscAfc 1480 UfGfuagaAfaGfgcau gsusu gccuUfuCfUfAfCfagug CfUfguagAfaAfggca gcasusu ususu CfUfguagAfaAfggca D-2176 {GalNAc3K2AhxC6}ac 1481 {Φocфar}usCfsaUfc 1482 D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocфar}usCfsaUfc 1484 AfAfugaaGfgGfuacg ususu ususu <td></td> <td>gcasusu</td> <td></td> <td>uasusu</td> <td></td>		gcasusu		uasusu	
D-2171 {GalNAc3K2AhxC6}cu gcuuCfaUfGfCfCfuuuc uaasusu AfAfggcaUfgAfagca gsusu	D-2170	{GalNAc3K2AhxC6}u	1469	{Фосфат}usAfsaAf	1470
D-2171 {GalNAc3K2AhxC6}cu gcuuCfaUfGfCfCfuuuc uaasusu D-2172 {GalNAc3K2AhxC6}gc ucaasusu D-2173 {GalNAc3K2AhxC6}u ucauCfcUfUfUfucuac aasusu D-2174 {GalNAc3K2AhxC6}u ucauGfcUfUfUfCfuaca guasusu D-2175 {GalNAc3K2AhxC6}u daugCfcUfUfUfCfUfacagu gasusu D-2176 {GalNAc3K2AhxC6}ca ugcufuUfCfUfAfCfagug gcasusu D-2176 {GalNAc3K2AhxC6}ac dugcCUfUCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac dugcCUfuUfUfCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac dugcCUfuUfCfUfAfCfagug daugcCfcUfUfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfUfAfCfagug daugcCfcUfUfCfGfuagadfafCfgCfac daugcCfcUfUfCfAfCfagug daugcCfcUfUfCfCfCfCffCfAfCfagug daugcCfcUfUfCfCfCfCfCfCfCfCfCfCfCfCfCfCfCfCf		uccugCfuUfCfAfUfgcc		gGfCfaugaAfgCfagg	
gcuuCfaUfGfCfCfuuuc AfAfggcaUfgAfagca uaasusu gsusu D-2172 {GalNAc3K2AhxC6}gc 1473 {Φocфaт}usUfsgUf 1474 uucaUfgCfCfUfUfucuac aasusu gcsusu 1474 D-2173 {GalNAc3K2AhxC6}u 1475 {Φocфaт}usAfscUf 1476 ucaugCfcUfUfUfCfuaca guasusu 1477 {Φocфaт}usCfsaCfu 1478 D-2174 {GalNAc3K2AhxC6}u 1477 {Φocфaт}usCfsaCfu 1478 augcCfuUfUfCfUfacagu gasusu gususu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocфaт}usCfscAfc 1480 UfGfuagaAfaGfgcau gsusu gsusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocфaт}usCfscCfa 1482 CfUfguagAfaAfggca ususu Ususu 1484 D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocфar}usCfsaUfc 1484 AfAfugaaGfgGfuacg ususu ususu		uuuasusu		aasusu	
D-2172 {GalNAc3K2AhxC6}gc uucaUfgCfCfUfUfucuac aasusu D-2173 {GalNAc3K2AhxC6}u 1475 {Φocφar}usAfscUf gUfAfgaaagcsusu D-2174 {GalNAc3K2AhxC6}u 1477 {Φocφar}usAfscUf gUfAfgaaaGfgCfaug aasusu D-2175 {GalNAc3K2AhxC6}u 1477 {Φocφar}usCfsaCfu 1478 augcCfuUfUfCfUfacagu gasusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφar}usCfscAfc UfGfuagaAfaGfgcau gasusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφar}usCfscCfa 1482 CfUfguagAfaAfggca ususu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφar}usCfsaUfa 1482 CfUfguagAfaAfggca ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφar}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφar}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu UfAfugaaGfgGfuacg ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφar}usCfsaUfc 1484	D-2171	{GalNAc3K2AhxC6}cu	1471	{Фосфат}usUfsaGfa	1472
D-2172 {GalNAc3K2AhxC6}gc uucaUfgCfCfUfUfucuac aasusu gcsusu D-2173 {GalNAc3K2AhxC6}u 1475 {Φocφar}usAfscUf gUfAfgaaaGfgCfaug aasusu D-2174 {GalNAc3K2AhxC6}u 1477 {Φocφar}usAfscUf gUfAfgaaaAfgGfaug aasusu D-2174 {GalNAc3K2AhxC6}uc 1477 {Φocφar}usCfsaCfu 1478 GfUfagaaAfgGfcaug asusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφar}usCfscAfc 1480 UfGfuagaAfaGfgcau gsusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφar}usGfscCfa 1482 CfUfguagAfaAfggca gcasusu D-2177 {GalNAc3K2AhxC6}au 1481 {Φocφar}usGfscCfa 1482 CfUfguagAfaAfggca ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφar}usCfsaUfc 1484 ususu D-2177 {GalNAc3K2AhxC6}ac ususu ususu D-2177 {GalNAc3K2AhxC6}ac ususu ususu D-2177 {GalNAc3K2AhxC6}ac ususu usu		gcuuCfaUfGfCfCfuuuc		AfAfggcaUfgAfagca	
uuucaUfgCfCfUfUfucuac aasusu aGfAfaaggCfaUfgaa gcsusu D-2173 {GalNAc3K2AhxC6}u 1475 {Φocφaт}usAfscUf 1476 ucaugCfcUfUfUfCfuaca guasusu gufAfgaaaGfgCfaug aasusu D-2174 {GalNAc3K2AhxC6}uc 1477 {Φocφaт}usCfsaCfu 1478 augcCfuUfUfCfUfacagu gasusu asusu GfUfagaaAfgGfcaug asusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocфaт}usCfscAfc ufGfuagaAfaGfgcau gsusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocфaт}usGfscCfa usususu D-2177 {GalNAc3K2AhxC6}ac usususu CfUfguagAfaAfggca usususu D-2177 {GalNAc3K2AhxC6}ac usususu 4AfAfugaaGfgGfuacg usususu D-2177 {GalNAc3K2AhxC6}ac usususu 4AfAfugaaGfgGfuacg usususu		uaasusu		gsusu	
D-2173 {GalNAc3K2AhxC6}u 1475 {Φocφaт}usAfscUf 1476 gUfAfgaaaGfgCfaug aasusu D-2174 {GalNAc3K2AhxC6}uc 1477 {Φocφaт}usCfsaCfu 1478 GfUfagaaAfgGfcaug asusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφaт}usCfscAfc 1480 ugccUfuUfCfUfAfcagu ggasusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφaт}usCfscCfa 1482 gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugsusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc 1484 uguacCfcUfUfCfAfuuga ugsusu D-2177 {GalNAc3K2AhxC6}ac ususu D-2177 {GalNAc3K2AhxC6}ac ususu D-2177 {GalNAc3K2AhxC6}ac ususu D-2178 {GalNAc3K2AhxC6}ac ususu D-2179 {GalNAc3K2AhxC6}ac ususu	D-2172	{GalNAc3K2AhxC6}gc	1473	{Фосфат}usUfsgUf	1474
D-2173 {GalNAc3K2AhxC6}u ucaugCfcUfUfUfCfuaca guasusu D-2174 {GalNAc3K2AhxC6}uc augcCfuUfUfCfUfacagu gasusu D-2175 {GalNAc3K2AhxC6}ca ugcCfuUfUfCfUfAfcagu gasusu D-2176 {GalNAc3K2AhxC6}au guasusu D-2176 {GalNAc3K2AhxC6}au gasusu D-2177 {GalNAc3K2AhxC6}au gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac ugccUfuUfCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac ugccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac ugcasusu D-2177 {GalNAc3K2AhxC6}ac ugasusu D-2178 {GalNAc3K2AhxC6}ac ugasusu D-2179 {GalNAc3K2AhxC6}ac ugasusu D-2170 {GalNAc3K2AhxC6}ac ugasusu D-2171 {GalNAc3K2AhxC6}ac ugasusu D-2172 {GalNAc3K2AhxC6}ac ugasusu D-2173 {GalNAc3K2AhxC6}ac ugasusu D-2174 {GalNAc3K2AhxC6}ac ugasusu D-2175 {GalNAc3K2AhxC6}ac ugasusu D-2177 {D-2177 {D		uucaUfgCfCfUfUfucuac		aGfAfaaggCfaUfgaa	
ucaugCfcUfUfUfCfuaca guasusu gUfAfgaaaGfgCfaug aasusu D-2174 {GalNAc3K2AhxC6}uc augcCfuUfUfCfUfacagu gasusu 1477 {Φocφaт}usCfsaCfu 1478 D-2175 {GalNAc3K2AhxC6}ca ugasusu 1479 {Φocφaт}usCfscAfc 1480 UfGfuagaAfaGfgcau gasusu UfGfuagaAfaGfgcau gususu D-2176 {GalNAc3K2AhxC6}au gcuUfuCfUfAfcfagug gcuUfuCfUfAfCfagug gcasusu 1481 {Φocφaт}usCfscCfa 1482 D-2177 {GalNAc3K2AhxC6}ac guacCfcUfUfCfAfuuga ugasusu 1483 {Φocφaт}usCfsaUfc 1484 AfAfugaaGfgGfuacg ugasusu ususu		aasusu		gcsusu	
guasusuaasusuD-2174{GalNAc3K2AhxC6}uc1477{Φocφaτ}usCfsaCfu1478augcCfuUfUfCfUfacagu gasusuGfUfagaaAfgGfcaug asusu1480D-2175{GalNAc3K2AhxC6}ca1479{Φocφaτ}usCfscAfc1480ugccUfuUfCfUfAfcagu ggasusuUfGfuagaAfaGfgcau gsusuD-2176{GalNAc3K2AhxC6}au1481{Φocφaτ}usGfscCfa1482gccuUfuCfUfAfCfagug gcasusuCfUfguagAfaAfggca ususuD-2177{GalNAc3K2AhxC6}ac1483{Φocφaτ}usCfsaUfc1484guacCfcUfUfCfAfuuga ugasusuAfAfugaaGfgGfuacg ususu	D-2173	{GalNAc3K2AhxC6}u	1475	{Фосфат}usAfscUf	1476
D-2174 {GalNAc3K2AhxC6}uc augcCfuUfUfCfUfacagu gasusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφaт}usCfsaCfu 1480 ugccUfuUfCfUfAfcagu gasusu D-2176 {GalNAc3K2AhxC6}au ggasusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφaт}usCfscCfa 1482 gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc AfAfugaaGfgGfuacg ususu ugasusu D-2177 {GalNAc3K2AhxC6}ac 1483 ususu D-2177 {GalNAc3K2AhxC6}ac ususu D-		ucaugCfcUfUfUfCfuaca		gUfAfgaaaGfgCfaug	
augcCfuUfUfCfUfacagu gasusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφaт}usCfscAfc 1480 ugccUfuUfCfUfAfcagu ggasusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφaт}usGfscCfa 1482 gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc AfAfugaaGfgGfuacg ugasusu UfGfuagaAfaAfggca gcuufuCfUfAfCfagug gcasusu Ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc AfAfugaaGfgGfuacg ugasusu ususu UfGfuagaAfaGfgcau gsusu gsusu 1482 1484 460cфaт}usCfsaUfc AfAfugaaGfgGfuacg ususu Ususu		guasusu		aasusu	
gasusu asusu D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφaт}usCfscAfc 1480 ugccUfuUfCfUfAfcagu UfGfuagaAfaGfgcau gsusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφaт}usGfscCfa 1482 gccuUfuCfUfAfCfagug CfUfguagAfaAfggca ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocфaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga AfAfugaaGfgGfuacg ususu ususu	D-2174	{GalNAc3K2AhxC6}uc	1477	{Фосфат}usCfsaCfu	1478
D-2175 {GalNAc3K2AhxC6}ca 1479 {Φocφaт}usCfscAfc ugccUfuUfCfUfAfcagu ggasusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφaт}usGfscCfa gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc AfAfugaaGfgGfuacg ugasusu ugasusu ugasusu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca ususu UfGfuagaAfaGfgcau gsusu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca ususu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca ususu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca ususu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca usususu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca usususu UfGfuagaAfaGfgcau gsusu EfulfaguagAfaAfggca usususu UfGfuagaAfaGfgcau gsususu UfGfuagaAfaGfgcau gsususu EfulfaguagAfaAfggca usususu UfGfuagaAfaGfgcau gsusususususususususususususususususus		augcCfuUfUfCfUfacagu		GfUfagaaAfgGfcaug	
ugccUfuUfCfUfAfcagu UfGfuagaAfaGfgcau ggasusu gsusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocфaт}usGfscCfa 1482 gccuUfuCfUfAfCfagug CfUfguagAfaAfggca ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocфaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga AfAfugaaGfgGfuacg ususu ususu		gasusu		asusu	
ggasusu D-2176 {GalNAc3K2AhxC6}au 1481 {Φocφaт}usGfscCfa 1482 gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu ususu 1481 {Φocφaт}usGfscCfa 1482 CfUfguagAfaAfggca ususu 1484 {Φocφaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu ususu	D-2175	{GalNAc3K2AhxC6}ca	1479	{Фосфат}usCfscAfc	1480
D-2176 {GalNAc3K2AhxC6}au gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac gcasusu D-2177 {GalNAc3K2AhxC6}ac guacCfcUfUfCfAfuuga ugasusu D-2177 {GalNAc3K2AhxC6}ac ususu		ugccUfuUfCfUfAfcagu		UfGfuagaAfaGfgcau	
gccuUfuCfUfAfCfagug gcasusu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc guacCfcUfUfCfAfuuga ugasusu ususu 4AfAfugaaGfgGfuacg ususu ususu		ggasusu		gsusu	
gcasusu ususu D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu ususu ususu 4AfAfugaaGfgGfuacg ususu	D-2176	{GalNAc3K2AhxC6}au	1481	{Фосфат}usGfscCfa	1482
D-2177 {GalNAc3K2AhxC6}ac 1483 {Φocφaт}usCfsaUfc 1484 guacCfcUfUfCfAfuuga ugasusu ususu		gccuUfuCfUfAfCfagug		CfUfguagAfaAfggca	
guacCfcUfUfCfAfuuga AfAfugaaGfgGfuacg ugasusu ususu		gcasusu		ususu	
ugasusu ususu	D-2177	{GalNAc3K2AhxC6}ac	1483	{Фосфат}usCfsaUfc	1484
		guacCfcUfUfCfAfuuga		AfAfugaaGfgGfuacg	
D-2178 {GalNAc3K2AhxC6}cc 1485 {Фосфат}usCfsaUfg 1486		ugasusu		ususu	
	D-2178	{GalNAc3K2AhxC6}ec	1485	{Фосфат}usCfsaUfg	1486
agagAfcUfGfGfUfgaca UfCfaccaGfuCfucug		agagAfcUfGfGfUfgaca		UfCfaccaGfuCfucug	
ugasusu gsusu		ugasusu		gsusu	
D-2179 {GalNAc3K2AhxC6}au 1487 {Фосфат}usGfsgCfa 1488	D-2179	{GalNAc3K2AhxC6}au	1487	{Фосфат}usGfsgCfa	1488
ggcuUfcCfAfGfAfuaug UfAfucugGfaAfgcca		ggcuUfcCfAfGfAfuaug		UfAfucugGfaAfgcca	
ccasusu ususu		ccasusu		ususu	
D-2180 {GalNAc3K2AhxC6}g 1489 {Фосфат}asAfsaGfg 1490	D-2180	{GalNAc3K2AhxC6}g	1489	{Фосфат}asAfsaGfg	1490
uuccuGfcUfUfCfAfugc CfAfugaaGfcAfggaa		uuccuGfcUfUfCfAfugc		CfAfugaaGfcAfggaa	

	cuuususu		csusu	
D-2181	{GalNAc3K2AhxC6}cc	1491	{Фосфат}usAfsgAf	1492
	ugcuUfcAfUfGfCfcuuu		aAfGfgcauGfaAfgca	
	cuasusu		ggsusu	
D-2182	{GalNAc3K2AhxC6}gc	1493	{Фосфат}asUfsgUfa	1494
	uucaUfgCfCfUfUfucuac		GfAfaaggCfaUfgaag	
	aususu		csusu	
D-2183	{GalNAc3K2AhxC6}cu	1495	{Фосфат}asCfsuGfu	1496
	ucauGfcCfUfUfUfcuaca		AfGfaaagGfcAfugaa	
	gususu		gsusu	
D-2184	{GalNAc3K2AhxC6}u	1497	{Фосфат}asAfscUfg	1498
	ucaugCfcUfUfUfCfuaca		UfAfgaaaGfgCfauga	
	guususu		asusu	
D-2185	{GalNAc3K2AhxC6}gc	1499	{Фосфат}asUfsgUfa	1500
	uucaUfcCfCfUfUfucuac		GfAfaaggGfaUfgaag	
	aususu		csusu	
D-2186	{GalNAc3K2AhxC6}[i	1501	{Фосфат}asUfsgUfa	1502
	nvAb]gcuucaUfgCfCfC		GfAfagggCfaUfgaag	
	fUfucuacaususu		csusu	
D-2187	{GalNAc3K2AhxC6}[i	1503	{Фосфат}asAfsaUfg	1504
	nvAb]gcuucaUfgCfCfC		UfaGfAfagggCfaUf	
	fUfucuacaususu		gaagcsusu	
D-2188	{GalNAc3K2AhxC6}[i	1505	{Фосфат}asAfsaUfg	1506
	nvAb]gcuucaUfgCfcCf		UfAfgaagGfgCfaUf	
	UfUfCfuacaususu		gaagcsusu	
D-2189	{GalNAc3K2AhxC6}[i	1507	{Фосфат}usAfsgAf	1508
	nvAb]gcggcuUfcCfUfG		aGfCfccagGfaAfgcc	
	fGfgcuucuasusu		gcsusu	
D-2190	{GalNAc3K2AhxC6}[i	1509	{Фосфат}usAfsgAf	1510
	nvAb]CfuGfcGfgCfuUf		aGfCfccAfgGfaAfg	
	cCfuGfGfgcUfuCfsusAf		CfcGfcAfgsUfsu	
D-2191	{GalNAc3K2AhxC6}cu	1511	{Фосфат}usAfsgAf	1512
	gcggCfuUfCfCfUfgggc		aGfcCfCfaggaAfgCf	
	uucus{invAb}		cgcagsusu	

nvAb]cugcggCfuUfCfC fUfgggcuucsusa D-2193 {GalNAc3K2AhxC6}[i 1515 {Φocфaт}usAfsgAf 1516 nvAb]geggcuUfcCfUfG fGfgcUfuCfuAfsusUf D-2194 {GalNAc3K2AhxC6}cu gcsusu D-2194 {GalNAc3K2AhxC6}cu gcggCfuUfCfCfUfggGf cUfuCfus{invAb} cgcagsusu 1517 {Φocфaт}usAfsgAf 1518 aGfcCfCfaggaAfgCf cgcagsusu	
D-2193 {GalNAc3K2AhxC6}[i nvAb]gcggcuUfcCfUfG aGfCfccagGfaAfgcc gcsusu D-2194 {GalNAc3K2AhxC6}cu 1517 {Φocφaт}usAfsgAf 1518 aGfcCfCfaggaAfgCf	
nvAb]gcggcuUfcCfUfG aGfCfccagGfaAfgcc gcsusu D-2194 {GalNAc3K2AhxC6}cu 1517 {Φocφaт}usAfsgAf aGfcCfCfaggaAfgCf	
fGfgcUfuCfuAfsusUf gcsusu D-2194 {GalNAc3K2AhxC6}cu 1517 {Φocφaτ}usAfsgAf 1518 gcggCfuUfCfCfUfggGf aGfcCfCfaggaAfgCf	
D-2194 {GalNAc3K2AhxC6}cu 1517 {Φocφaт}usAfsgAf 1518 gcggCfuUfCfCfUfggGf aGfcCfCfaggaAfgCf	
gcggCfuUfCfCfUfggGf aGfcCfCfaggaAfgCf	
cHfuCfuelinvAh}	
cgcagsusu	
D-2195 {GalNAc3K2AhxC6}[i 1519 {Φοcφατ}usAfsgAf 1520	
nvAb]cugcggCfuUfCfC aGfcCfCfaggaAfgCf	
fUfggGfcUfuCfsusAf cgcagsusu	
D-2196 {GalNAc3K2AhxC6}[i 1521 {Фосфат}usAfsgAf 1522	
nvAb]GfcGfgCfuUfcCf aGfCfccAfgGfaAfg	
uGfGfgcUfuCfuAfsusU CfcGfcsUfsu	
f	
D-2197 {GalNAc3K2AhxC6}С 1523 {Фосфат}usAfsgAf 1524	
fuGfcGfgCfuUfcCfUfg aGfcCfCfagGfaAfg	
gGfcUfuCfus{invAb} CfcGfcAfgsUfsu	
D-2198 {GalNAc3K2AhxC6}[i 1525 {Фосфат}usAfsgAf 1526	
nvAb]CfuGfcGfgCfuUf aGfcCfCfagGfaAfg	
cCfUfggGfcUfuCfsusAf CfcGfcAfgsUfsu	
D-2199 {GalNAc3K2AhxC6}[i 1527 {Фосфат}usAfsgAf 1528	
nvAb]GfcGfgCfuUfcCf aGfCfccagGfaAfgCf	
UfGfGfgcuucuasusu cGfcsUfsu	
D-2200 {GalNAc3K2AhxC6}[i 1529 {Фосфат}usAfsgAf 1530	
nvAb]CfuGfcGfgCfuUf aGfcCfCfaggaAfgCf	
CfCfUfgggcuucsusa cGfcAfgsUfsu	
D-2201 [GalNAc3K2AhxC6][i 1531 {Фосфат}usAfsgAf 1532	
nvAb]cugcggcuUfcCfU aGfCfccagGfaAfgcc	
fGfGfgcUfuCfusAf gcagsusu	
D-2202 {GalNAc3K2AhxC6}[i 1533 {Фосфат}usAfsgAf 1534	
nvAb]CfuGfcGfgCfuUf aGfCfccagGfaAfgCf	
cCfUfGfGfgcuucsusa cGfcAfgsUfsu	

D-2203	{GalNAc3K2AhxC6}[i	1535	{Фосфат}asGfsgCfa	1536
	nvAb]auggcuUfcCfAfG		UfAfucugGfaAfgcca	
	fAfuaugccususu		ususu	
D-2204	{GalNAc3K2AhxC6}[i	1537	{Фосфат}asGfsgCfa	1538
	nvAb]AfcAfuGfgCfuUf		UfAfucUfgGfaAfgC	
	cCfaGfAfuaUfgCfscsUf		fcAfuGfusUfsu	
D-2205	{GalNAc3K2AhxC6}ac	1539	{Фосфат}asGfsgCfa	1540
	auggCfuUfCfCfAfgaua		UfaUfCfuggaAfgCfc	
	ugccs{invAb}	111	augususu	
D-2206	{GalNAc3K2AhxC6}[i	1541	{Фосфат}asGfsgCfa	1542
	nvAb]acauggCfuUfCfC		UfaUfCfuggaAfgCfc	
	fAfgauaugesesu		augususu	
D-2207	{GalNAc3K2AhxC6}[i	1543	{Фосфат}asGfsgCfa	1544
	nvAb]auggcuUfcCfAfG		UfAfucugGfaAfgcca	
	fAfuaUfgCfcUfsusUf		ususu	
D-2208	{GalNAc3K2AhxC6}ac	1545	{Фосфат}asGfsgCfa	1546
	auggCfuUfCfCfAfgaUf		UfaUfCfuggaAfgCfc	
	aUfgCfcs{invAb}		augususu	
D-2209	{GalNAc3K2AhxC6}[i	1547	{Фосфат}asGfsgCfa	1548
	nvAb]acauggCfuUfCfC		UfaUfCfuggaAfgCfc	
	fAfgaUfaUfgCfscsUf		augususu	
D-2210	{GalNAc3K2AhxC6}[i	1549	{Фосфат}asGfsgCfa	1550
	nvAb]AfuGfgCfuUfcCf		UfAfucUfgGfaAfgC	
	aGfAfuaUfgCfcUfsusUf		fcAfusUfsu	
D-2211	{GalNAc3K2AhxC6}A	1551	{Фосфат}asGfsgCfa	1552
	fcAfuGfgCfuUfcCfAfga		UfaUfCfugGfaAfgC	
	UfaUfgCfcs{invAb}		fcAfuGfusUfsu	
D-2212	{GalNAc3K2AhxC6}[i	1553	{Фосфат}asGfsgCfa	1554
	nvAb]AfcAfuGfgCfuUf		UfaUfCfugGfaAfgC	
	cCfAfgaUfaUfgCfscsUf		fcAfuGfusUfsu	
D-2213	{GalNAc3K2AhxC6}[i	1555	{Фосфат}asGfsgCfa	1556
	nvAb]AfuGfgCfuUfcCf		UfAfucugGfaAfgCf	
	AfGfAfuaugccususu		cAfusUfsu	
D-2214	{GalNAc3K2AhxC6}A	1557	{Фосфат}asGfsgCfa	1558

	fcAfuGfgCfuUfCfCfAf		UfaUfCfuggaAfgCfc	
	gauaugccs{invAb}		AfuGfusUfsu	
D-2215	{GalNAc3K2AhxC6}[i	1559	{Фосфат}asGfsgCfa	1560
	nvAb]AfcAfuGfgCfuUf		UfaUfCfuggaAfgCfc	
	CfCfAfgauaugcscsu		AfuGfusUfsu	
D-2216	{GalNAc3K2AhxC6}[i	1561	{Фосфат}asGfsgCfa	1562
	nvAb]acauggcuUfcCfAf		UfAfucugGfaAfgcca	
	GfAfuaugesesu		ugususu	
D-2217	{GalNAc3K2AhxC6}[i	1563	{Фосфат}asGfsgCfa	1564
	nvAb]acauggcuUfcCfAf		UfAfucugGfaAfgcca	
	GfAfuaUfgCfcsUf		ugususu	
D-2218	{GalNAc3K2AhxC6}[i	1565	{Фосфат}asGfsgCfa	1566
	nvAb]AfcAfuGfgCfuUf		UfAfucugGfaAfgCf	
	cCfAfGfAfuaugesesu		cAfuGfusUfsu	
D-2219	{GalNAc3K2AhxC6}[i	1567	{Фосфат}asCfsaUfc	1568
	nvAb]acguacCfcUfUfCf		AfAfugaaGfgGfuacg	
	Afuugaugususu		ususu	
D-2220	{GalNAc3K2AhxC6}[i	1569	{Фосфат}asCfsaUfc	1570
	nvAb]CfaAfcGfuAfcCf		AfAfugAfaGfgGfuA	
	cUfuCfAfuuGfaUfsgsU		fcGfuUfgsUfsu	
	f			
D-2221	{GalNAc3K2AhxC6}[i	1571	{Фосфат}asCfsaUfc	1572
	nvAb]caacguAfcCfCfUf		AfaUfGfaaggGfuAf	
	Ufcauugausgsu		cguugsusu	
D-2222	{GalNAc3K2AhxC6}[i	1573	{Фосфат}asCfsaUfc	1574
	nvAb]acguacCfcUfUfCf		AfAfugaaGfgGfuacg	
	AfuuGfaUfgUfsusUf		ususu	
D-2223	{GalNAc3K2AhxC6}ca	1575	{Фосфат}asCfsaUfc	1576
	acguAfcCfCfUfUfcaUf		AfaUfGfaaggGfuAf	
	uGfaUfgs{invAb}		cguugsusu	
D-2224	{GalNAc3K2AhxC6}[i	1577	{Фосфат}asCfsaUfc	1578
	nvAb]AfcGfuAfcCfcUf		AfAfugAfaGfgGfuA	
	uCfAfuuGfaUfgUfsusU		fcGfusUfsu	
	f			

D-2225	{GalNAc3K2AhxC6}C	1579	{Фосфат}asCfsaUfc	1580
	faAfcGfuAfcCfcUfUfca		AfaUfGfaaGfgGfuA	
	UfuGfaUfgs{invAb}		fcGfuUfgsUfsu	
D-2226	{GalNAc3K2AhxC6}[i	1581	{Фосфат}asCfsaUfc	1582
	nvAb]CfaAfcGfuAfcCf		AfaUfGfaaGfgGfuA	
	cUfUfcaUfuGfaUfsgsUf		fcGfuUfgsUfsu	
D-2227	{GalNAc3K2AhxC6}[i	1583	{Фосфат}asCfsaUfc	1584
	nvAb]AfcGfuAfcCfcUf		AfAfugaaGfgGfuAf	
	UfCfAfuugaugususu		cGfusUfsu	
D-2228	{GalNAc3K2AhxC6}C	1585	{Фосфат}asCfsaUfc	1586
	faAfcGfuAfcCfCfUfUfc		AfaUfGfaaggGfuAf	
	auugaugs{invAb}		cGfuUfgsUfsu	
D-2229	{GalNAc3K2AhxC6}[i	1587	{Фосфат}asCfsaUfc	1588
	nvAb]CfaAfcGfuAfcCf		AfaUfGfaaggGfuAf	
	CfUfUfcauugausgsu		cGfuUfgsUfsu	
D-2230	{GalNAc3K2AhxC6}[i	1589	{Фосфат}asCfsaUfc	1590
	nvAb]caacguacCfcUfUf		AfAfugaaGfgGfuacg	
	CfAfuugausgsu		uugsusu	
D-2231	{GalNAc3K2AhxC6}[i	1591	{Фосфат}asCfsaUfc	1592
	nvAb]caacguacCfcUfUf		AfAfugaaGfgGfuacg	
	CfAfuuGfaUfgsUf		uugsusu	
D-2232	{GalNAc3K2AhxC6}[i	1593	{Фосфат}asCfsaUfc	1594
	nvAb]CfaAfcGfuAfcCf		AfAfugaaGfgGfuAf	
	cUfUfCfAfuugausgsu		cGfuUfgsUfsu	
D-2233	{GalNAc3K2AhxC6}cu	1595	{Фосфат}asUfsgUfa	1596
	gcuucaUfgCfCfUfUfuc		GfAfaaggCfaUfgaag	
	uacsasu		cagsusu	
D-2234	{GalNAc3K2AhxC6}cu	1597	{Фосфат}asUfsgUfa	1598
	gcuucaUfgCfCfUfUfuc		GfAfaaggCfaUfgaag	
	UfaCfsasUf		cagsusu	
D-2235	{GalNAc3K2AhxC6}[i	1599	{Фосфат}asUfsgUfa	1600
	nvAb]GfcUfuCfaUfgCf		GfAfaaGfgCfaUfgA	
	cUfUfucUfaCfaUfsusUf		faGfcsUfsu	
D-2236	{GalNAc3K2AhxC6}[i	1601	{Фосфат}asUfsgUfa	1602

	nvAb]GfcUfuCfaUfgCf		GfAfaaggCfaUfgAfa	
	CfUfUfucuacaususu		GfcsUfsu	
D-2237	{GalNAc3K2AhxC6}C	1603	{Фосфат}asUfsgUfa	1604
	fuGfcUfuCfaUfgCfcUf		GfAfaaGfgCfaUfgA	
	UfucUfaCfsasUf		faGfcAfgsUfsu	
D-2238	{GalNAc3K2AhxC6}C	1605	{Фосфат}asUfsgUfa	1606
	fuGfcUfuCfaUfgCfCfU		GfAfaaggCfaUfgAfa	
	fUfucuacsasu		GfcAfgsUfsu	
D-2239	{GalNAc3K2AhxC6}[i	1607	{Фосфат}asUfsgUfa	1608
	nvAb]CfuGfcUfuCfaUf		GfAfaaggCfaUfgAfa	
	gCfCfUfUfucuacsasu		GfcAfgsUfsu	
D-2240	{GalNAc3K2AhxC6}C	1609	{Фосфат}asUfsgUfa	1610
	fuGfcUfuCfaUfgCfCfU		GfAfaaggCfaUfgaag	
	fUfucuacas{invAb}		cagsusu	
D-2241	{GalNAc3K2AhxC6}[i	1611	{Фосфат}asUfsgUfa	1612
	nvAb]CfuGfcUfuCfaUf		GfAfaaggCfaUfgaag	
	gCfCfUfUfucuacsasu		cagsusu	
D-2242	{GalNAc3K2AhxC6}[i	1613	{Фосфат}asUfsgUfa	1614
	nvAb]cugcuucaUfgCf[d		GfAfaaggCfaUfgaag	
	C]UfUfucuacsasu		cagsusu	
D-2243	{GalNAc3K2AhxC6}cu	1615	{Фосфат}asUfsgUfa	1616
	gcuucaUfgCfCfUfUfuc		GfAfaaGfgCfaUfgaa	
	uacsasu		gcagsusu	
D-2244	{GalNAc3K2AhxC6}[i	1617	{Фосфат}asUfsgUfa	1618
	nvAb]cugcuucaUfgCfCf		GfAfaaGfgCfaUfgaa	
	UfUfucuacsasu		gcagsusu	
D-2245	{GalNAc3K2AhxC6}cu	1619	{Фосфат}asUfsgUfa	1620
	gcuucaUfgCfcUfUfucua		GfAfaaggCfaUfgaag	
	csasu		cagsusu	
D-2246	{GalNAc3K2AhxC6}cu	1621	{Фосфат}asUfsgUfa	1622
	gcuucaUfgCfcUfUfucua		GfAfaaggCfaUfgaag	
	cas{invAb}		cagsusu	
D-2247	{GalNAc3K2AhxC6}[i	1623	{Фосфат}asUfsgUfa	1624
	nvAb]cugcuucaUfgCfc		GfAfaaggCfaUfgaag	

	UfUfucuacsasu		cagsusu	
D-2248	{GalNAc3K2AhxC6}cu	1625	{Фосфат}asUfsgUfa	1626
	gcuucaUfgCfCfUfUfuc		gAfaaggCfaUfgaagc	
	uacsasu		agsusu	
D-2249	{GalNAc3K2AhxC6}cu	1627	{Фосфат}asUfsgUfa	1628
	gcuucaUfgCfCfUfUfuc		gAfaaggCfaUfgaagc	
	uacas{invAb}		agsusu	
D-2250	{GalNAc3K2AhxC6}[i	1629	{Фосфат}asUfsgUfa	1630
	nvAb]cugcuucaUfgCfCf		gAfaaggCfaUfgaagc	
	UfUfucuacsasu		agsusu	
D-2251	{GalNAc3K2AhxC6}cu	1631	{Фосфат}asUfsguag	1632
	gcuucaUfgCfCfUfUfuc		AfaaggCfaUfgaagca	
	uacas{invAb}		gsusu	
D-2252	{GalNAc3K2AhxC6}[i	1633	{Фосфат}asUfsguag	1634
	nvAb]cugcuucaUfgCfCf		AfaaggCfaUfgaagca	
	UfUfucuacsasu		gsusu	
D-2253	{GalNAc3K2AhxC6}[i	1635	{Фосфат}asUfsgUfa	1636
	nvAb]GfcUfuCfaUfgCf		gAfaaGfgCfaUfgAfa	
	cUfUfucUfaCfaUfsusUf		GfcsUfsu	
D-2254	{GalNAc3K2AhxC6}[i	1637	{Фосфат}asUfsgUfa	1638
	nvAb]GfcUfuCfaUfgCf		gAfaaggCfaUfgAfa	
	CfUfUfucuacaususu		GfcsUfsu	
D-2255	{GalNAc3K2AhxC6}[i	1639	{Фосфат}asUfsgUfa	1640
	nvAb]GfcUfuCfaUfgCf		gAfaaggCfaUfgaagc	
	CfUfUfucuacaususu		susu	
D-2256	{GalNAc3K2AhxC6}[i	1641	{Фосфат}asUfsgUfa	1642
	nvAb]gcuucaUfgCfCfU		gAfaaGfgCfaUfgaag	
	fUfucuacaususu		csusu	
D-2257	{GalNAc3K2AhxC6}[i	1643	{Фосфат}asUfsgUfa	1644
	nvAb]gcuucaUfgCfcUf		gAfaaGfgCfaUfgaag	
	Ufucuacaususu		csusu	
D-2258	{GalNAc3K2AhxC6}cu	1645	{Фосфат}asUfsgUfa	1646
	gcuucaUfgCfCfCfUfucu		GfAfagggCfaUfgaag	
	acsasu		cagsusu	

D-2259	{GalNAc3K2AhxC6}[i	1647	{Фосфат}asUfsgUfa	1648
	nvAb]gcuucaUfgCfCfC		GfAfagggCfaUfgaag	
	fUfucUfaCfaUfsusUf		csusu	
D-2260	{GalNAc3K2AhxC6}[i	1649	{Фосфат}asUfsgUfa	1650
	nvAb]GfcUfuCfaUfgCf		GfAfagGfgCfaUfgA	
	cCfUfucUfaCfaUfsusUf		faGfcsUfsu	
D-2261	{GalNAc3K2AhxC6}[i	1651	{Фосфат}asUfsgUfa	1652
	nvAb]GfcUfuCfaUfgCf		GfAfagggCfaUfgAf	
	CfCfUfucuacaususu		aGfcsUfsu	
D-2262	{GalNAc3K2AhxC6}cu	1653	{Фосфат}asUfsgUfa	1654
	gcuucaUfgCfCfCfUfucu		GfAfagggCfaUfgaag	
	acas{invAb}		cagsusu	
D-2263	{GalNAc3K2AhxC6}[i	1655	{Фосфат}asUfsgUfa	1656
	nvAb]cugcuucaUfgCfCf		GfAfagggCfaUfgaag	
	CfUfucuacsasu		cagsusu	
D-2264	{GalNAc3K2AhxC6}[i	1657	{Фосфат}asUfsgUfa	1658
	nvAb]GfcUfuCfaUfgCf		GfAfagggCfaUfgaag	
	CfCfUfucuacaususu		csusu	
D-2265	{GalNAc3K2AhxC6}au	1659	{Фосфат}asGfsgCfa	1660
	guucCfuGfCfUfUfcaug		UfGfaagcAfgGfaaca	
	ccususu		ususu	
D-2266	{GalNAc3K2AhxC6}u	1661	{Фосфат}asAfsgGfc	1662
	guuccUfgCfUfUfCfaug		AfUfgaagCfaGfgaac	
	ccuususu		asusu	
D-2267	{GalNAc3K2AhxC6}u	1663	{Фосфат}asGfsgCfc	1664
	gccuuUfcUfAfCfAfgug		AfCfuguaGfaAfaggc	
	gccususu		asusu	
D-2268	cguacuUfcGfUfCfCfuu	1665	{Фосфат}csAfsuAfc	1666
	guaugsusu		AfAfggacGfaAfguac	
			gsusu	
D-2269	{GalNAc3K2AhxC6}[i	1667	{Фосфат}asUfsgUfa	1668
	nvAb]gcuucaUfgCf[dC]		GfAfagggCfaUfgaag	
	CfUfucuacaususu		csusu	
D-2270	{GalNAc3K2AhxC6}[i	1669	{Фосфат}asUfsgUfa	1670

	nvAb]gcuucaUfgCfCfC		GfAfagGfgCfaUfgaa	
	fUfucuacaususu		gcsusu	
D-2271	{GalNAc3K2AhxC6}[i	1671	{Фосфат}asUfsgUfa	1672
	nvAb]gcuucaUfgCfcCf		GfAfagggCfaUfgaag	
	Ufucuacaususu		csusu	
D-2272	{GalNAc3K2AhxC6}[i	1673	{Фосфат}asUfsgUfa	1674
	nvAb]gcuucaUfgCfCfC		gAfagggCfaUfgaagc	
	fUfucuacaususu		susu	
D-2273	{GalNAc3K2AhxC6}[i	1675	{Фосфат}asUfsguag	1676
	nvAb]gcuucaUfgCfCfC		AfagggCfaUfgaagcs	
	fUfucuacaususu		usu	
D-2274	{GalNAc3K2AhxC6}[i	1677	{Фосфат}asUfsgUfa	1678
	nvAb]GfcUfuCfaUfgCf		GfAfagggCfaUfgaag	
	cCfUfucuacaususu		csusu	
D-2275	{sGalNAc3K2AhxC6}[1679	{Фосфат}usAfsgAf	1680
	invAb]ccugcuUfcAfUf		aAfGfgcauGfaAfgca	
	GfCfcuUfuCfuAfsusUf		ggsusu	
D-2276	{sGalNAc3K2AhxC6}[1681	{Фосфат}usAfsgAf	1682
	invAb]CfcUfgCfuUfcAf		aAfGfgcAfuGfaAfg	
	uGfCfcuUfuCfuAfsusU		CfaGfgsUfsu	
	f			
D-2277	{sGalNAc3K2AhxC6}	1683	{Фосфат}usAfsgAf	1684
	UfuCfcUfgCfuUfcAfUf		aAfgGfCfauGfaAfg	
	gcCfuUfuCfus{invAb}		CfaGfgAfasUfsu	
D-2278	{sGalNAc3K2AhxC6}[1685	{Фосфат}usAfsgAf	1686
	invAb]CfcUfgCfuUfcAf		aAfGfgcauGfaAfgCf	
	UfGfCfcuuucuasusu		aGfgsUfsu	
D-2279	{sGalNAc3K2AhxC6}	1687	{Фосфат}usAfsgAf	1688
	UfuCfcUfgCfuUfCfAfU		aAfgGfCfaugaAfgCf	
	fgccuuucus{invAb}		aGfgAfasUfsu	
D-2280	{sGalNAc3K2AhxC6}[1689	{Фосфат}asGfscCfa	1690
	invAb]augccuUfuCfUf		CfUfguagAfaAfggca	
	AfCfaguggcususu		ususu	
D-2281	{sGalNAc3K2AhxC6}[1691	{Фосфат}asGfscCfa	1692

	invAb]augccuUfuCfUf		CfUfguagAfaAfggca	
	AfCfagUfgGfcUfsusUf		ususu	
D-2282	{sGalNAc3K2AhxC6}[1693	{Фосфат}asGfscCfa	1694
	invAb]AfuGfcCfuUfuC		CfUfguAfgAfaAfgG	
	fuAfCfagUfgGfcUfsus		fcAfusUfsu	
	Uf			
D-2283	{sGalNAc3K2AhxC6}	1695	{Фосфат}asGfscCfa	1696
	UfcAfuGfcCfuUfuCfUf		CfuGfUfagAfaAfgG	
	acAfgUfgGfcs{invAb}		fcAfuGfasUfsu	
D-2284	{sGalNAc3K2AhxC6}[1697	{Фосфат}asGfscCfa	1698
	invAb]AfuGfcCfuUfuC		CfUfguagAfaAfgGf	
	fUfAfCfaguggcususu		cAfusUfsu	
D-2285	{sGalNAc3K2AhxC6}[1699	{Фосфат}asGfscCfa	1700
	invAb]UfcAfuGfcCfuU		CfuGfUfagaaAfgGfc	
	fUfCfUfacaguggscsu		AfuGfasUfsu	
D-2286	{sGalNAc3K2AhxC6}[1701	{Фосфат}asCfsuGfu	1702
	invAb]ugcuucAfuGfCf		AfgAfAfaggcAfuGf	
	CfUfuucuacasgsu		aagcasusu	
D-2287	{sGalNAc3K2AhxC6}[1703	{Фосфат}asCfsuGfu	1704
	invAb]cuucauGfcCfUf		AfGfaaagGfcAfugaa	
	UfUfcuAfcAfgUfsusUf		gsusu	
D-2288	{sGalNAc3K2AhxC6}	1705	{Фосфат}asCfsuGfu	1706
	UfgCfuUfcAfuGfcCfUf		AfgAfAfagGfcAfuG	
	uuCfuAfcAfgs{invAb}		faAfgCfasUfsu	
D-2289	{sGalNAc3K2AhxC6}[1707	{Фосфат}asCfsuGfu	1708
	invAb]CfuUfcAfuGfcCf		AfGfaaagGfcAfuGfa	
	UfUfUfcuacagususu		AfgsUfsu	
D-2290	{sGalNAc3K2AhxC6}	1709	{Фосфат}asCfsuGfu	1710
	UfgCfuUfcAfuGfCfCfU		AfgAfAfaggcAfuGf	
	fuucuacags{invAb}		aAfgCfasUfsu	
D-2291	{sGalNAc3K2AhxC6}[1711	{Фосфат}asCfsuGfu	1712
	invAb]UfgCfuUfcAfuG		AfgAfAfaggcAfuGf	
	fCfCfUfuucuacasgsu		aAfgCfasUfsu	
D-2292	{sGalNAc3K2AhxC6}[1713	{Фосфат}asCfsuGfu	1714

	invAb]ugcuucauGfcCfU		AfGfaaagGfcAfugaa	
	fUfUfcuacasgsu		gcasusu	
D-2293	{sGalNAc3K2AhxC6}[1715	{Фосфат}asCfsuGfu	1716
	invAb]ugcuucauGfcCfU		AfGfaaagGfcAfugaa	
	fUfUfcuAfcAfgsUf		gcasusu	
D-2294	{sGalNAc3K2AhxC6}[1717	{Фосфат}asCfsuGfu	1718
	invAb]UfgCfuUfcAfuG		AfGfaaagGfcAfuGfa	
	fcCfUfUfUfcuacasgsu		AfgCfasUfsu	
D-2295	{sGalNAc3K2AhxC6}[1719	{Фосфат}asAfsaGfg	1720
	invAb]guuccuGfcUfUf		CfAfugaaGfcAfggaa	
	CfAfugccuuususu		csusu	
D-2296	{sGalNAc3K2AhxC6}[1721	{Фосфат}usAfsgAf	1722
	invAb]ccugcuUfcAfUf		aAfGfgcauGfaAfgca	
	GfCfcuuucuasusu		ggsusu	
D-2297	{sGalNAc3K2AhxC6}[1723	{Фосфат}asCfsuGfu	1724
	invAb]cuucauGfcCfUf		AfGfaaagGfcAfugaa	
	UfUfcuacagususu		gsusu	
D-2298	{sGalNAc3K2AhxC6}[1725	{Фосфат}usAfsgAf	1726
	invAb]UfuCfcUfgCfuU		aAfGfgcAfuGfaAfg	
	fcAfuGfCfcuUfuCfsusA		CfaGfgAfasUfsu	
	f			
D-2299	{sGalNAc3K2AhxC6}u	1727	{Фосфат}usAfsgAf	1728
	uccugCfuUfCfAfUfgcc		aAfgGfCfaugaAfgCf	
	uuucus{invAb}		aggaasusu	
D-2300	{sGalNAc3K2AhxC6}[1729	{Фосфат}usAfsgAf	1730
	invAb]uuccugCfuUfCf		aAfgGfCfaugaAfgCf	
	AfUfgecuuucsusa		aggaasusu	
D-2301	{sGalNAc3K2AhxC6}u	1731	{Фосфат}usAfsgAf	1732
	uccugCfuUfCfAfUfgcC		aAfgGfCfaugaAfgCf	
	fuUfuCfus{invAb}		aggaasusu	
D-2302	{sGalNAc3K2AhxC6}[1733	{Фосфат}usAfsgAf	1734
	invAb]uuccugCfuUfCf		aAfgGfCfaugaAfgCf	
	AfUfgcCfuUfuCfsusAf		aggaasusu	
D-2303	{sGalNAc3K2AhxC6}[1735	{Фосфат}usAfsgAf	1736

	invAb]UfuCfcUfgCfuU		aAfgGfCfauGfaAfg	
	fcAfUfgcCfuUfuCfsusA		CfaGfgAfasUfsu	
	f			
D-2304	{sGalNAc3K2AhxC6}[1737	{Фосфат}usAfsgAf	1738
	invAb]UfuCfcUfgCfuU		aAfgGfCfaugaAfgCf	
	fCfAfUfgccuuucsusa		aGfgAfasUfsu	
D-2305	{sGalNAc3K2AhxC6}[1739	{Фосфат}usAfsgAf	1740
	invAb]uuccugcuUfcAf		aAfGfgcauGfaAfgca	
	UfGfCfcuuucsusa		ggaasusu	
D-2306	{sGalNAc3K2AhxC6}[1741	{Фосфат}usAfsgAf	1742
	invAb]uuccugcuUfcAf		aAfGfgcauGfaAfgca	
	UfGfCfcuUfuCfusAf		ggaasusu	
D-2307	{sGalNAc3K2AhxC6}[1743	{Фосфат}usAfsgAf	1744
	invAb]UfuCfcUfgCfuU		aAfGfgcauGfaAfgCf	
	fcAfUfGfCfcuuucsusa		aGfgAfasUfsu	
D-2308	{sGalNAc3K2AhxC6}[1745	{Фосфат}asGfscCfa	1746
	invAb]UfcAfuGfcCfuU		CfUfguAfgAfaAfgG	
	fuCfuAfCfagUfgGfscsU		fcAfuGfasUfsu	
	f			
D-2309	{sGalNAc3K2AhxC6}u	1747	{Фосфат}asGfscCfa	1748
	caugcCfuUfUfCfUfacag		CfuGfUfagaaAfgGfc	
	uggcs{invAb}		augasusu	
D-2310	{sGalNAc3K2AhxC6}[1749	{Фосфат}asGfscCfa	1750
	invAb]ucaugcCfuUfUf		CfuGfUfagaaAfgGfc	
	CfUfacaguggscsu		augasusu	
D-2311	{sGalNAc3K2AhxC6}u	1751	{Фосфат}asGfscCfa	1752
	caugcCfuUfUfCfUfacA		CfuGfUfagaaAfgGfc	
	fgUfgGfcs{invAb}		augasusu	
D-2312	{sGalNAc3K2AhxC6}[1753	{Фосфат}asGfscCfa	1754
	invAb]ucaugcCfuUfUf		CfuGfUfagaaAfgGfc	
	CfUfacAfgUfgGfscsUf		augasusu	
D-2313	{sGalNAc3K2AhxC6}[1755	{Фосфат}asGfscCfa	1756
	invAb]UfcAfuGfcCfuU		CfuGfUfagAfaAfgG	
	fuCfUfacAfgUfgGfscsU		fcAfuGfasUfsu	

	f			
D-2314	{sGalNAc3K2AhxC6}	1757	{Фосфат}asGfscCfa	1758
	UfcAfuGfcCfuUfUfCfU		CfuGfUfagaaAfgGfc	
	facaguggcs{invAb}		AfuGfasUfsu	
D-2315	{sGalNAc3K2AhxC6}[1759	{Фосфат}asGfscCfa	1760
·	invAb]ucaugccuUfuCfU		CfUfguagAfaAfggca	
	fAfCfaguggscsu		ugasusu	
D-2316	{sGalNAc3K2AhxC6}[1761	{Фосфат}asGfscCfa	1762
	invAb]ucaugccuUfuCfU		CfUfguagAfaAfggca	
	fAfCfagUfgGfcsUf		ugasusu	
D-2317	{sGalNAc3K2AhxC6}[1763	{Фосфат}asGfscCfa	1764
	invAb]UfcAfuGfcCfuU		CfUfguagAfaAfgGf	
	fuCfUfAfCfaguggscsu		cAfuGfasUfsu	
D-2318	{sGalNAc3K2AhxC6}[1765	{Фосфат}asCfsuGfu	1766
	invAb]UfgCfuUfcAfuG		AfGfaaAfgGfcAfuG	
	fcCfuUfUfcuAfcAfsgsU		faAfgCfasUfsu	
	f			
D-2319	{sGalNAc3K2AhxC6}u	1767	{Фосфат}asCfsuGfu	1768
	gcuucAfuGfCfCfUfuuc		AfgAfAfaggcAfuGf	
	uacags{invAb}		aagcasusu	
D-2320	{sGalNAc3K2AhxC6}u	1769	{Фосфат}asCfsuGfu	1770
	gcuucAfuGfCfCfUfuuC		AfgAfAfaggcAfuGf	
	fuAfcAfgs{invAb}		aagcasusu	
D-2321	{sGalNAc3K2AhxC6}[1771	{Фосфат}asCfsuGfu	1772
	invAb]ugcuucAfuGfCf		AfgAfAfaggcAfuGf	
	CfUfuuCfuAfcAfsgsUf		aagcasusu	
D-2322	{sGalNAc3K2AhxC6}[1773	{Фосфат}asCfsuGfu	1774
	invAb]CfuUfcAfuGfcCf		AfGfaaAfgGfcAfuG	
	uUfUfcuAfcAfgUfsusU		faAfgsUfsu	
	f			
D-2323	{sGalNAc3K2AhxC6}[1775	{Фосфат}asCfsuGfu	1776
	invAb]UfgCfuUfcAfuG		AfgAfAfagGfcAfuG	
	fcCfUfuuCfuAfcAfsgsU		faAfgCfasUfsu	
	f			

D-2324	{sGalNAc3K2AhxC6}[1777	{Фосфат}asUfsgUfa	1778
	invAb]gcuucaUfgCfCf		GfAfaaggCfaUfgaag	
	UfUfucuacaususu		csusu	
D-2325	{sGalNAc3K2AhxC6}[1779	{Фосфат}asCfscAfc	1780
	invAb]caugccUfuUfCf		UfGfuagaAfaGfgcau	
	UfAfcaguggususu		gsusu	
D-2326	{sGalNAc3K2AhxC6}[1781	{Фосфат}usUfsaGfa	1782
	invAb]cugcuuCfaUfGf		AfAfggcaUfgAfagca	
	CfCfuuucuaasusu		gsusu	
D-2327	{sGalNAc3K2AhxC6}[1783	{Фосфат}usUfsgUf	1784
	invAb]gcuucaUfgCfCf		aGfAfaaggCfaUfgaa	
	UfUfucuacaasusu		gcsusu	
D-2328	{sGalNAc3K2AhxC6}[1785	{Фосфат}usAfscUf	1786
	invAb]uucaugCfcUfUf		gUfAfgaaaGfgCfaug	
	UfCfuacaguasusu		aasusu	
D-2329	{sGalNAc3K2AhxC6}[1787	{Фосфат}asAfsaGfg	1788
	invAb]guuccuGfcUfUf		CfAfugaaGfcAfggaa	
	CfAfugCfcUfuUfsusUf		csusu	
D-2330	{sGalNAc3K2AhxC6}a	1789	{Фосфат}asAfsaGfg	1790
	uguucCfuGfCfUfUfcaU		CfaUfGfaagcAfgGfa	
	fgCfcUfus{invAb}		acaususu	
D-2331	{sGalNAc3K2AhxC6}[1791	{Фосфат}asAfsaGfg	1792
	invAb]auguucCfuGfCf		CfaUfGfaagcAfgGfa	
	UfUfcaUfgCfcUfsusUf		acaususu	
D-2332	{sGalNAc3K2AhxC6}[1793	{Фосфат}asAfsaGfg	1794
	invAb]GfuUfcCfuGfcU		CfAfugAfaGfcAfgG	
	fuCfAfugCfcUfuUfsus		faAfcsUfsu	
	Uf			
D-2333	{sGalNAc3K2AhxC6}	1795	{Фосфат}asAfsaGfg	1796
	AfuGfuUfcCfuGfcUfUf		CfaUfGfaaGfcAfgG	
	caUfgCfcUfus{invAb}		faAfcAfusUfsu	
D-2334	{sGalNAc3K2AhxC6}[1797	{Фосфат}asAfsaGfg	1798
	invAb]AfuGfuUfcCfuG		CfaUfGfaaGfcAfgG	
	fcUfUfcaUfgCfcUfsusU		faAfcAfusUfsu	

	f			
D-2335	{sGalNAc3K2AhxC6}[1799	{Фосфат}asAfsaGfg	1800
	invAb]GfuUfcCfuGfcU		CfAfugaaGfcAfgGfa	
	fUfCfAfugccuuususu		AfcsUfsu	
D-2336	{sGalNAc3K2AhxC6}	1801	{Фосфат}asAfsaGfg	1802
	AfuGfuUfcCfuGfCfUf		CfaUfGfaagcAfgGfa	
	Ufcaugccuus{invAb}		AfcAfusUfsu	
D-2337	{sGalNAc3K2AhxC6}[1803	{Фосфат}asAfsaGfg	1804
	invAb]AfuGfuUfcCfuG		CfaUfGfaagcAfgGfa	
	fCfUfUfcaugccususu		AfcAfusUfsu	
D-2338	{sGalNAc3K2AhxC6}[1805	{Фосфат}asAfsaGfg	1806
	invAb]auguuccuGfcUf		CfAfugaaGfcAfggaa	
	UfCfAfugccususu		caususu	
D-2339	{sGalNAc3K2AhxC6}[1807	{Фосфат}asAfsaGfg	1808
	invAb]auguuccuGfcUf		CfAfugaaGfcAfggaa	
	UfCfAfugCfcUfusUf		caususu	
D-2340	{sGalNAc3K2AhxC6}[1809	{Фосфат}usAfscUf	1810
	invAb]GfcUfuCfaUfgCf		gUfAfgaAfaGfgCfa	
	cUfuUfCfuaCfaGfsusAf		UfgAfaGfcsUfsu	
D-2341	{sGalNAc3K2AhxC6}[1811	{Фосфат}usAfscUf	1812
	invAb]gcuucaUfgCfCf		gUfaGfAfaaggCfaUf	
	UfUfucuacagsusa		gaagcsusu	
D-2342	{sGalNAc3K2AhxC6}[1813	{Фосфат}usAfscUf	1814
	invAb]uucaugCfcUfUf		gUfAfgaaaGfgCfaug	
	UfCfuaCfaGfuAfsusUf		aasusu	
D-2343	{sGalNAc3K2AhxC6}[1815	{Фосфат}usAfscUf	1816
	invAb]gcuucaUfgCfCf		gUfaGfAfaaggCfaUf	
	UfUfucUfaCfaGfsusAf		gaagcsusu	
D-2344	{sGalNAc3K2AhxC6}	1817	{Фосфат}usAfscUf	1818
	GfcUfuCfaUfgCfCfUfU		gUfaGfAfaaggCfaUf	
	fucuacagus{invAb}		gAfaGfcsUfsu	
D-2345	{sGalNAc3K2AhxC6}[1819	{Фосфат}usAfsgAf	1820
	invAb]GfcGfgCfuUfcCf		aGfCfccagGfaAfgCf	
	UfGfGfgcuucuasusu		cGfcsUfsu	

D-2346	{sGalNAc3K2AhxC6}[1821	{Фосфат}asGfsgCfa	1822
	invAb]auggcuUfcCfAf		UfAfucugGfaAfgcca	
	GfAfuaugccususu		ususu	
D-2347	{sGalNAc3K2AhxC6}[1823	{Фосфат}asGfsgCfa	1824
	invAb]acauggCfuUfCfC		UfaUfCfuggaAfgCfc	
	fAfgaUfaUfgCfscsUf		augususu	
D-2348	{sGalNAc3K2AhxC6}[1825	{Фосфат}asGfsgCfa	1826
	invAb]AfcAfuGfgCfuU		UfAfucugGfaAfgCf	
	fcCfAfGfAfuaugcscsu		cAfuGfusUfsu	
D-2349	{sGalNAc3K2AhxC6}[1827	{Фосфат}asCfsaUfc	1828
	invAb]caacguAfcCfCfU		AfaUfGfaaggGfuAf	
	fUfcauugausgsu		cguugsusu	
D-2350	{sGalNAc3K2AhxC6}[1829	{Фосфат}asCfsaUfc	1830
	invAb]caacguacCfcUfU		AfAfugaaGfgGfuacg	
	fCfAfuuGfaUfgsUf		uugsusu	
D-2351	{sGalNAc3K2AhxC6}[1831	{Фосфат}asCfsaUfc	1832
	invAb]acguacCfcUfUfC		AfAfugaaGfgGfuacg	
	fAfuugaugususu		ususu	
D-2352	{sGalNAc3K2AhxC6}c	1833	{Фосфат}asUfsgUfa	1834
	ugcuucaUfgCfCfUfUfu		GfAfaaggCfaUfgaag	
	cuacas{invAb}		cagsusu	
D-2353	{sGalNAc3K2AhxC6}[1835	{Фосфат}asUfsgUfa	1836
	invAb]cugcuucaUfgCfC		GfAfaaggCfaUfgaag	
	fUfUfucuacsasu		cagsusu	
D-2354	{sGalNAc3K2AhxC6}[1837	{Фосфат}asUfsgUfa	1838
	invAb]gcuucaUfgCfCf		GfAfaaggCfaUfgaag	
	UfUfucUfaCfaUfsusUf		csusu	
D-2355	{sGalNAc3K2AhxC6}c	1839	{Фосфат}asUfsgUfa	1840
	ugcuucaUfgCfCfUfUfu		GfAfaaggCfaUfgaag	
	cUfaCfas{invAb}		cagsusu	
D-2356	{sGalNAc3K2AhxC6}[1841	{Фосфат}asUfsgUfa	1842
	invAb]cugcuucaUfgCfC		GfAfaaggCfaUfgaag	
	fUfUfucUfaCfasUf		cagsusu	
D-2357	{sGalNAc3K2AhxC6}c	1843	{Фосфат}asUfsguag	1844

D-2358 [sGalNAc3K2AhxC6] 1845 {Φocφar}asUfsgUfa 1846 invAb]cugcuucaUfgCfC fUfUfucuacas{invAb} 1847 {Φocφar}asUfsgUfa 1848 D-2359 [sGalNAc3K2AhxC6] 1847 {Φocφar}asUfsgUfa 1848 invAb]gcuucaUfgCfCf UfUfucuacaususu gesusu D-2360 (sGalNAc3K2AhxC6) 1849 {Φocφar}asCfsuGfu 1850 invAb]CfuUfcAfuGfcCf UfUfucuacaususu gesusu D-2361 {sGalNAc3K2AhxC6} 1851 {Φocφar}asCfsuGfu 1852 deguucauffcCfUfUfUfe uacags{invAb} 1853 {Φocφar}asCfsuGfu 1854 invAb]cugcuucaUfgCfC fUfUfucuacaususu geasusu D-2362 {sGalNAc3K2AhxC6} 1853 {Φocφar}asUfsgUfa 1854 invAb]cugcuucaUfgCfC fUfUfucuacasas invAb} 1855 {Φocφar}asUfsgUfa 1856 GalNAc3K2AhxC6]c 1855 {Φocφar}asUfsgUfa 1856 ugcuucaUfgCfCtfUfUfu gassusu 264 acas{invAb} 1857 {Φocφar}asUfsgUfa 1858 GalNAc3K2AhxC6]c 1857 {Φocφar}asUfsgUfa 1858 ugcuucaUfgCfCtfUfUfu gassusu 264 cuacas{invAb} 1859 {Φocφar}asCfsuGfu 1860 invAb]cuucauCfcCfUfU 4fGfaaagGfgAfugaa gcassusu D-2364 {sGalNAc3K2AhxC6} 1859 {Φocφar}asCfsuGfu 1860 invAb]gcuucaUfgCfCfUfU 4fGfaaagGfgAfugaa gcassusu D-2366 {sGalNAc3K2AhxC6} 1861 {Φocφar}asCfsuGfu 1862 invAb]gcuucaUfcCfCfUfUficu 4fGfaaagGfgAfugaa gcassusu D-2367 {sGalNAc3K2AhxC6} 1863 {Φocφar}asCfsuGfu 1864 acags{invAb} 1863 {Φocφar}asCfsuGfu 1864 acags{invAb} 1863 {Φocφar}asCfsuGfu 1864 AfGfaaagGfgAfugaa gcassusu D-2368 {sGalNAc3K2AhxC6} 1865 {Φocφar}asUfsgUfa 1866 acags{invAb} 1865 {Φocφar}asUfsgUfa 1866 acags{invAb} 1865 {Φocφar}asUfsgUfa 1866 acags{invAb} 1866 {Φocфar}asUfsgUfa 1866 acags{invAb} 1865 {Φocфar}asUfsgUfa 1866 acags{invAb} 1866 {Φocфar}asUfsgUfa 1866		ugcuucaUfgCfCfUfUfu		AfaaggCfaUfgaagca	
invAb]cugcuucaUfgCfC fUfUfucuacas(invAb) D-2359 [sGalNAc3K2AhxC6][1847		cuacas{invAb}		gsusu	
FUIUfucuacas{invAb} Cagsusu	D-2358	{sGalNAc3K2AhxC6}[1845	{Фосфат}asUfsgUfa	1846
D-2359		invAb]cugcuucaUfgCfC		GfAfaaggCfaUfgaag	
invAb]geuucaUfgCfCf		fUfUfucuacas{invAb}		cagsusu	
UfUfucuacaususu	D-2359	{sGalNAc3K2AhxC6}[1847	{Фосфат}asUfsgUfa	1848
D-2360 {sGalNAc3K2AhxC6} 1849 {Φocφaт}asCfsuGfu 1850 invAb]CfuUfcAfuGfcCf UfUfUfcuacagususu gsusu D-2361 {sGalNAc3K2AhxC6}u 1851 {Φocφaт}asCfsuGfu 1852 gcuucauGfcCfUfUfUfc uacags{invAb} 1853 {Φocφaт}asCfsuGfu 1854 invAb]cugcuucaUfgCfC 1853 {Φocφaт}asUfsgUfa 1854 invAb]cugcuucaUfgCfC 1855 {Φocφaт}asUfsgUfa 1856 ugcuucaUfgCfcUfUfucu acas{invAb} 1857 {Φocφaт}asUfsgUfa 1856 ugcuucaUfgCfcUfUfucu acas{invAb} 1857 {Φocφaт}asUfsgUfa 1858 ugcuucaUfgCfcUfUfucu acas{invAb} 1859 {Φocφaт}asUfsgUfa 1858 D-2365 {sGalNAc3K2AhxC6} 1859 {Φocφaт}asCfsuGfu 1860 invAb]cuucaUfcCfCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6} 1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaagGfgAfugaa gsusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocфaт}asUfsgUfa 1866 D-2368 {sGalNAc3K2AhxC6}c 186		invAb]gcuucaUfgCfCf		GfAfaaGfgCfaUfgaa	
invAb]CfuUfcAfuGfcCf UfUfUfcuacagususu D-2361 {sGalNAc3K2AhxC6}u gcuucauGfcCfUfUfUfc uacags{invAb} D-2362 {sGalNAc3K2AhxC6}c fUfUfucuacasusu D-2363 {sGalNAc3K2AhxC6}c ugcuucaUfgCfC fUfUfucuacasusu D-2364 {sGalNAc3K2AhxC6}c ugcuucaUfgCfCfUfUfuc acas{invAb} D-2365 {sGalNAc3K2AhxC6}c invAb]cuucauCfcCfUfUfu cuacas{invAb} D-2366 {sGalNAc3K2AhxC6}c invAb]cuucauCfcCfUfU fUfcuacagususu D-2366 {sGalNAc3K2AhxC6}c invAb]gcuucaUfcCfCfUfU fUfcuacagususu D-2367 {sGalNAc3K2AhxC6}c gcagusu D-2368 {sGalNAc3K2AhxC6}c l863 {Φocфar}asUfsgUfa l864 AfGfaaagGfgAfugaa gcasusu D-2367 {sGalNAc3K2AhxC6}c gcagususu D-2368 {sGalNAc3K2AhxC6}c l863 {Φocфar}asUfsgUfa l864 AfGfaaagGfgAfugaa gcasusu D-2367 {sGalNAc3K2AhxC6}c gcagususu D-2368 {sGalNAc3K2AhxC6}c l865 {Φocфar}asUfsgUfa l866		UfUfucuacaususu		gcsusu	
UfUfUfcuacagususu gsusu gsusu	D-2360	{sGalNAc3K2AhxC6}[1849	{Фосфат}asCfsuGfu	1850
D-2361 {sGalNAc3K2AhxC6}u 1851 {Φocφar}asCfsuGfu 1852 D-2362 {sGalNAc3K2AhxC6}[1853 {Φocφar}asUfsgUfa 1854 D-2362 {sGalNAc3K2AhxC6}[1853 {Φocφar}asUfsgUfa 1854 InvAb]cugcuucaUfgCfC GfAfaaGfgCfaUfgaa gcagsusu 1856 D-2363 {sGalNAc3K2AhxC6}c 1855 {Φocφar}asUfsgUfa 1856 GfAfaaggcaUfgaagc agsusu 1858 1856 D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocφar}asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}c 1859 {Φocφar}asCfsuGfu 1860 MGfaaagGfgAfugaa gsusu 1860 AfGfaaagGfgAfugaa 1862 D-2366 {sGalNAc3K2AhxC6}c 1861 {Φocφar}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}c 1863 {Φocφar}asCfsuGfu 1864 AfGfaaagGfgAfugaa gcasusu 4AfGfaaagGfgAfugaa gcasusu		invAb]CfuUfcAfuGfcCf		AfGfaaagGfcAfugaa	
gcuucauGfcCfUfUfUfc AfGfaaagGfcAfugaa uacags{invAb} gcasusu D-2362 {sGalNAc3K2AhxC6}[1853 {Φocφar}asUfsgUfa 1854 invAb]cugcuucaUfgCfC GfAfaaGfgCfaUfgaa gcagsusu D-2363 {sGalNAc3K2AhxC6}c 1855 {Φocфar}asUfsgUfa 1856 ugcuucaUfgCfcUfUfucu GfAfaaggcaUfgaagc agsusu D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocфar}asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}[1859 {Φocфar}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocфar}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocфar}asCfsuGfu 1864 AfGfaaagGfgAfugaa gcaucauCfcCfUfUfUfucu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocфar}asUfsgUfa 1866		UfUfUfcuacagususu		gsusu	
D-2362 {sGalNAc3K2AhxC6} 1853 {Φocφar}asUfsgUfa 1854 invAb]cugcuucaUfgCfC GfAfaaGfgCfaUfgaa gcagsusu D-2363 {sGalNAc3K2AhxC6}c 1855 {Φocφar}asUfsgUfa 1856 ugcuucaUfgCfcUfUfucu acas{invAb} agsusu D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocφar}asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}c 1859 {Φocφar}asUfsgUfa 1860 invAb]cuucauCfcCfUfU fUfcuacagususu gsusu D-2366 {sGalNAc3K2AhxC6}c 1861 {Φocφar}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaagGfgAfugaa gsusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφar}asCfsuGfu 1864 gcuucauCfcCfUfUffufu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφar}asUfsgUfa 1866 D-2368 {sGalNAc3K2AhxC6}c 1865 {Docφar}asUfsgUfa 1866 D-2368 {Docφar	D-2361	{sGalNAc3K2AhxC6}u	1851	{Фосфат}asCfsuGfu	1852
D-2362 {sGalNAc3K2AhxC6}[1853 {Φοcφaτ}asUfsgUfa 1854 invAb]cugcuucaUfgCfC GfAfaaGfgCfaUfgaa gcagsusu D-2363 {sGalNAc3K2AhxC6}c 1855 {Φocφaτ}asUfsgUfa 1856 ugcuucaUfgCfcUfUfucu acas{invAb} GfAfaaggcaUfgaagc 1858 D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocφaτ}asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}[1859 {Φocφaτ}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaτ}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocфaт}asCfsuGfu 1864 gcagsusu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocфar}asUfsgUfa 1866		gcuucauGfcCfUfUfUfc		AfGfaaagGfcAfugaa	
invAb]cugcuucaUfgCfC fUfUfucuacsasu gcagsusu gcagsusu D-2363 {sGalNAc3K2AhxC6}c ugcuucaUfgCfcUfUfucu acas{invAb} agsusu D-2364 {sGalNAc3K2AhxC6}c ugcuucaUfgCfCfUfUfu acas{invAb} agsusu D-2365 {sGalNAc3K2AhxC6}c 1857 {Φocφaτ}asUfsgUfa 1858 D-2365 {sGalNAc3K2AhxC6}c 1859 {Φocφaτ}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}c 1861 {Φocφaτ}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaτ}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaτ}asUfsgUfa 1866 D-2368 {sGalNAc3K2AhxC6}c 1865 {Dacamacacacacacacacacacacacacacacacacaca		uacags{invAb}		gcasusu	
D-2363 (sGalNAc3K2AhxC6)c 1855 (Φοcφaτ)asUfsgUfa 1856 ugcuucaUfgCfcUfUfucu acas{invAb} agsusu D-2364 (sGalNAc3K2AhxC6)c 1857 (Φοcφaτ)asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 (sGalNAc3K2AhxC6)[1859 (Φοcφaτ)asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 (sGalNAc3K2AhxC6)[1861 (Φοcφaτ)asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 (sGalNAc3K2AhxC6)u 1863 (Φοcφaτ)asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 (sGalNAc3K2AhxC6)c 1865 (Φοcφaτ)asUfsgUfa 1866 D-2368 (σGalNAc3K2AhxC6)c 1865 (Φοcφaτ)asUfsgUfa 1866 D-2368 (D-2362	{sGalNAc3K2AhxC6}[1853	{Фосфат}asUfsgUfa	1854
D-2363 {sGalNAc3K2AhxC6}c 1855 {Φocφaτ}asUfsgUfa 1856 D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocφaτ}asUfsgUfa 1858 D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocφaτ}asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}[1859 {Φocφaτ}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaτ}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaτ}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaτ}asUfsgUfa 1866		invAb]cugcuucaUfgCfC		GfAfaaGfgCfaUfgaa	
ugcuucaUfgCfcUfUfucu acas{invAb}GfAfaaggcaUfgaagc agsusuD-2364{sGalNAc3K2AhxC6}c1857{Φocφaт}asUfsgUfa1858ugcuucaUfgCfCfUfUfu cuacas{invAb}GfAfaaGfgCfaUfgaa gcagsusuD-2365{sGalNAc3K2AhxC6}[1859{Φocφaт}asCfsuGfu1860invAb]cuucauCfcCfUfU fUfcuacagususuAfGfaaagGfgAfugaa gsusuD-2366{sGalNAc3K2AhxC6}[1861{Φocφaт}asUfsgUfa1862invAb]gcuucaUfcCfCfU fUfucuacaususuGfAfaaggGfaUfgaag csusuD-2367{sGalNAc3K2AhxC6}u1863{Φocφaт}asCfsuGfu1864gcuucauCfcCfUfUfUfcu acags{invAb}AfGfaaagGfgAfugaa gcasusuD-2368{sGalNAc3K2AhxC6}c1865{Φocφaт}asUfsgUfa1866		fUfUfucuacsasu		gcagsusu	
D-2364 {sGalNAc3K2AhxC6}c 1857 {Φocφaт}asUfsgUfa 1858 ugcuucaUfgCfCfUfUfu GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}[1859 {Φocφaт}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaт}asUfsgUfa 1866 D-2368 {Tocφat}asUfsgUfa 1866 D-2368	D-2363	{sGalNAc3K2AhxC6}c	1855	{Фосфат}asUfsgUfa	1856
D-2364 {sGalNAc3K2AhxC6}c ugcuucaUfgCfCfUfUfu cuacas{invAb} GfAfaaGfgCfaUfgaa gcagsusu D-2365 {sGalNAc3K2AhxC6}[1859 {Φocφaт}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfufcu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaт}asUfsgUfa 1866		ugcuucaUfgCfcUfUfucu		GfAfaaggcaUfgaagc	
ugcuucaUfgCfCfUfUfu cuacas{invAb}GfAfaaGfgCfaUfgaa gcagsusuD-2365{sGalNAc3K2AhxC6}[invAb]cuucauCfcCfUfU fUfcuacagususu1859 AfGfaaagGfgAfugaa gsusu4Φocφaτ}asCfsuGfu AfGfaaagGfgAfugaa gsusuD-2366{sGalNAc3K2AhxC6}[invAb]gcuucaUfcCfCfU fUfucuacaususu1861 GfAfaaggGfaUfgaag csusu4Φocφaτ}asUfsgUfa GfAfaaggGfaUfgaag csusuD-2367{sGalNAc3K2AhxC6}u gcuucauCfcCfUfUfUfcu acags{invAb}1863 AfGfaaagGfgAfugaa gcasusu4Φocφaτ}asCfsuGfu AfGfaaagGfgAfugaa gcasusuD-2368{sGalNAc3K2AhxC6}c18654Φocφaτ}asUfsgUfa1866		acas{invAb}		agsusu	
cuacas{invAb}gcagsusuD-2365{sGalNAc3K2AhxC6}[1859{Φocφaτ}asCfsuGfu1860invAb]cuucauCfcCfUfU fUfcuacagususuAfGfaaagGfgAfugaa gsusuD-2366{sGalNAc3K2AhxC6}[1861{Φocφaτ}asUfsgUfa1862invAb]gcuucaUfcCfCfU fUfucuacaususuGfAfaaggGfaUfgaag csusuD-2367{sGalNAc3K2AhxC6}u1863{Φocφaτ}asCfsuGfu1864gcuucauCfcCfUfUfUfcu acags{invAb}AfGfaaagGfgAfugaa gcasusuD-2368{sGalNAc3K2AhxC6}c1865{Φocφaτ}asUfsgUfa1866	D-2364	{sGalNAc3K2AhxC6}c	1857	{Фосфат}asUfsgUfa	1858
D-2365 {sGalNAc3K2AhxC6}[1859 {Φocφaт}asCfsuGfu 1860 invAb]cuucauCfcCfUfU AfGfaaagGfgAfugaa gsusu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucauCfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaт}asUfsgUfa 1866		ugcuucaUfgCfCfUfUfu		GfAfaaGfgCfaUfgaa	
invAb]cuucauCfcCfUfU fUfcuacagususu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfcu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaт}asUfsgUfa 1866		cuacas{invAb}		gcagsusu	
fUfcuacagususu D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaт}asUfsgUfa 1866	D-2365	{sGalNAc3K2AhxC6}[1859	{Фосфат}asCfsuGfu	1860
D-2366 {sGalNAc3K2AhxC6}[1861 {Φocφaт}asUfsgUfa 1862 invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φocφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φocφaт}asUfsgUfa 1866		invAb]cuucauCfcCfUfU		AfGfaaagGfgAfugaa	
invAb]gcuucaUfcCfCfU GfAfaaggGfaUfgaag csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Φοcφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φοcφaт}asUfsgUfa 1866		fUfcuacagususu		gsusu	
fUfucuacaususu csusu D-2367 {sGalNAc3K2AhxC6}u 1863 {Фосфат}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Фосфат}asUfsgUfa 1866	D-2366	{sGalNAc3K2AhxC6}[1861	{Фосфат}asUfsgUfa	1862
D-2367 {sGalNAc3K2AhxC6}u 1863 {Φοcφaт}asCfsuGfu 1864 gcuucauCfcCfUfUfUfcu acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Φοcφaт}asUfsgUfa 1866		invAb]gcuucaUfcCfCfU		GfAfaaggGfaUfgaag	
gcuucauCfcCfUfUfUfcu AfGfaaagGfgAfugaa gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Фосфат}asUfsgUfa 1866		fUfucuacaususu		csusu	
acags{invAb} gcasusu D-2368 {sGalNAc3K2AhxC6}c 1865 {Фосфат}asUfsgUfa 1866	D-2367	{sGalNAc3K2AhxC6}u	1863	{Фосфат}asCfsuGfu	1864
D-2368 {sGalNAc3K2AhxC6}с 1865 {Фосфат}asUfsgUfa 1866		gcuucauCfcCfUfUfUfcu		AfGfaaagGfgAfugaa	
		acags{invAb}		gcasusu	
ugcuucaUfcCfCfUfUfuc GfAfaaggGfaUfgaag	D-2368	{sGalNAc3K2AhxC6}c	1865	{Фосфат}asUfsgUfa	1866
		ugcuucaUfcCfCfUfUfuc		GfAfaaggGfaUfgaag	

	uacas{invAb}		cagsusu	
D-2369	{sGalNAc3K2AhxC6}[1867	{Фосфат}usCfsaGfg	1868
	invAb]acauugCfuCfUf		UfGfaaagAfgCfaaug	
	UfUfcaccugasusu		ususu	
D-2370	{sGalNAc3K2AhxC6}c	1869	asUfsgUfaGfAfaagg	1870
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcagsusu	
	cuacas{invAb}			
D-2371	{sGalNAc3K2AhxC6}c	1871	asUfsgUfaGfAfaagg	1872
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcasgsusu	
	cuacas{invAb}			
D-2372	{sGalNAc3K2AhxC6}c	1873	asUfsgsUfaGfAfaag	1874
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2373	{sGalNAc3K2AhxC6}c	1875	asUfsgUfaGfAfaagg	1876
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcagusu	
	cuacas{invAb}			
D-2374	{sGalNAc3K2AhxC6}c	1877	asUfsgsUfaGfAfaag	1878
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagusu	
	cuacas{invAb}			
D-2375	{sGalNAc3K2AhxC6}c	1879	asUfgUfaGfAfaagg	1880
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcagsusu	
	cuacas{invAb}			
D-2376	{sGalNAc3K2AhxC6}c	1881	asUfgUfaGfAfaagg	1882
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcasgsusu	
	cuacas{invAb}			
D-2377	{sGalNAc3K2AhxC6}c	1883	asUfsgUfaGfAfaagg	1884
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcagsusu	
	cuacsas{invAb}			
D-2378	{sGalNAc3K2AhxC6}c	1885	asUfsgUfaGfAfaagg	1886
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcagsusu	
	cuascsas{invAb}			
D-2379	{sGalNAc3K2AhxC6}c	1887	asUfsgUfaGfAfaagg	1888
	sugcuucaUfgCfCfUfUfu		CfaUfgaagcagsusu	
	cuacas{invAb}			
	1			l

D-2380	{sGalNAc3K2AhxC6}c	1889	asUfsgUfaGfAfaagg	1890
	susgcuucaUfgCfCfUfUf		CfaUfgaagcagsusu	
	ucuacas{invAb}			
D-2381	{sGalNAc3K2AhxC6}[1891	{Фосфат}asCfsuGfu	1892
	invAb]cuucauGfcCf[dT		AfGfaaagGfcAfugaa	
]UfUfcuacagususu		gsusu	
D-2382	{sGalNAc3K2AhxC6}[1893	{Фосфат}asCfsuGfu	1894
	invAb]cuucauGfcCfUf		AfGfaaAfgGfcAfug	
	UfUfcuacagususu		aagsusu	
D-2383	{sGalNAc3K2AhxC6}[1895	{Фосфат}asCfsuGfu	1896
	invAb]cuucauGfcCfuUf		AfGfaaagGfcAfugaa	
	Ufcuacagususu		gsusu	-
D-2384	{sGalNAc3K2AhxC6}[1897	{Фосфат}asCfsuGfu	1898
	invAb]cuucauGfcCfUf		aGfaaagGfcAfugaag	
	UfUfcuacagususu		susu	
D-2385	{sGalNAc3K2AhxC6}[1899	{Фосфат}asCfsugua	1900
	invAb]cuucauGfcCfUf		GfaaagGfcAfugaags	
	UfUfcuacagususu		usu	
D-2386	{sGalNAc3K2AhxC6}[1901	{Фосфат}asCfsuGfu	1902
	invAb]cuucauGfc[dC]U		AfGfaaagGfcAfugaa	
	fUfUfcuacagususu		gsusu	
D-2387	{sGalNAc3K2AhxC6}[1903	{Фосфат}asCfsuGfu	1904
	invAb]cuucauGfcCfUf[AfGfaaagGfcAfugaa	
	dT]Ufcuacagususu		gsusu	
D-2388	{sGalNAc3K2AhxC6}[1905	{Фосфат}asUfsgUfa	1906
	invAb]gcuucaUfgGfGf		GfAfauccCfaUfgaag	
	AfUfucuacaususu		csusu	
D-2389	{sGalNAc3K2AhxC6}[1907	{Фосфат}asCfsuGfu	1908
	invAb]cuucauGfcGfAf		AfGfauucGfcAfugaa	
	AfUfcuacagususu		gsusu	
D-2390	{sGalNAc3K2AhxC6}c	1909	{Фосфат}usUfsgUf	1910
	ugcuucaUfgCfCfUfUfu		aGfAfaaggCfaUfgaa	
	cuacas{invAb}		gcagsusu	
D-2391	{sGalNAc3K2AhxC6}[1911	{Фосфат}usUfsgUf	1912

	invAb]cugcuucaUfgCfC		aGfAfaaggCfaUfgaa	
	fUfUfucuacsasa		gcagsusu	
D 2202		1012		1014
D-2392	{sGalNAc3K2AhxC6}c	1913	{Фосфат}usUfsgUf	1914
	ugcuucaUfgCfCfUfUfu		aGfAfaaggCfaUfgaa	
	cuacas{invDA}		gcagsusu	
D-2393	{sGalNAc3K2AhxC6}c	1915	{Фосфат}asUfsgUfa	1916
	ugcuucaUfgGfGfAfUfu		GfAfauccCfaUfgaag	
	cuacas{invAb}		cagsusu	
D-2394	{sGalNAc3K2AhxC6}[1917	{Фосфат}asUfsgUfa	1918
	invAb]cugcuucaUfgGf		GfAfauccCfaUfgaag	
	GfAfUfucuacsasu		cagsusu	
D-2395	{sGalNAc3K2AhxC6}[1919	{Фосфат}asCfsuGfu	1920
	invAb]CfuUfcAfuGfcCf		AfGfaaagGfcAfugaa	
	UfUfUfcuAfcAfgUfsus		gsusu	
	Uf			
D-2396	{sGalNAc3K2AhxC6}[1921	{Фосфат}asCfsuGfu	1922
	invAb]cuucauGfcCfUf		AfGfaaagGfcAfuGfa	
	UfUfcuAfcAfgUfsusUf		AfgsUfsu	
D-2397	{sGalNAc3K2AhxC6}[1923	asUfsgUfaGfAfaagg	1924
	invAb]gcuucaUfgCfCf		CfaUfgaagcsusu	
	UfUfucuacaususu			
D-2398	{sGalNAc3K2AhxC6}[1925	asCfsuGfuAfGfaaag	1926
	invAb]ugcuucauGfcCfU		GfcAfugaagcasusu	
	fUfUfcuacags{invAb}			
D-2399	{sGalNAc3K2AhxC6}[1927	{Фосфат}asCfsuGfu	1928
	invAb]cuucauGfcCfUf		AfGfaaagGfcAfuGfa	
	UfUfcuacagususu		AfgsUfsu	
D-2400	{sGalNAc3K2AhxC6}u	1929	asCfsuGfuAfGfaaag	1930
	gcuucauGfcCfUfUfUfc		GfcAfugaagcasusu	
	uAfcAfgs{invAb}			
D-2401	{sGalNAc3K2AhxC6}u	1931	asCfsuGfuAfGfaaAf	1932
	gcuucauGfcCfUfUfUfc		gGfcAfugaagcasusu	
	uacags{invAb}		G s Gange nousu	
D-2402	{sGalNAc3K2AhxC6}u	1933	asCfsuguaGfaaagGf	1934
D-2402	[30an (AC)KZ/MIACO)u	1733	ascisuguaOiaaagOi	1707

	gcuucauGfcCfUfUfUfc		cAfugaagcasusu	
	uacags{invAb}			
D-2403	{sGalNAc3K2AhxC6}[1935	asCfsuGfuAfGfaaag	1936
	invAb]cuucauGfcCfUf		GfcAfugaagsusu	
	UfUfcuacagususu			
D-2404	{sGalNAc3K2AhxC6}u	1937	asCfsuGfuAfGfaaag	1938
	gcuucauGfcCfUfUfUfc		GfcAfugaagcasusu	
	uacags{invAb}			
D-2405	{GalNAc3K2AhxC6}au	1939	{Фосфат}asGfscCfa	1940
	gccuuuCfuAfCfAfGfug		CfUfguAfgAfaAfgG	
	gcusus{invAb}		fcAfuGfasUfsu	
D-2406	{sGalNAc3K2AhxC6}u	1941	asGfscCfaCfUfguag	1942
	caugecuUfuCfUfAfCfag		AfaAfggcaugasusu	
	uggcs{invAb}			
D-2407	{sGalNAc3K2AhxC6}[1943	asGfscCfaCfUfguag	1944
	invAb]augccuUfuCfUf		AfaAfggcaususu	
	AfCfaguggcususu			
D-2408	{sGalNAc3K2AhxC6}[1945	asGfscCfaCfUfguag	1946
	invAb]augccuUfuCfUf		AfaAfggcaususu	
	AfCfagUfgGfcUfsusUf			
D-2409	{sGalNAc3K2AhxC6}[1947	asGfscCfaCfUfguag	1948
	invAb]ucaugccuUfuCfU		AfaAfggcaugasusu	
	fAfCfaguggscsu		-	
D-2410	{sGalNAc3K2AhxC6}u	1949	asGfscCfaCfUfguag	1950
	caugccuUfuCfUfAfCfag		AfaAfggcaugasusu	
	UfgGfcs{invAb}			
D-2411	{sGalNAc3K2AhxC6}[1951	asGfscCfaCfUfguAf	1952
	invAb]augccuUfuCfUf		gAfaAfggcaususu	
	AfCfaguggcususu			
D-2412	{sGalNAc3K2AhxC6}u	1953	asGfscCfaCfUfguAf	1954
	caugccuUfuCfUfAfCfag		gAfaAfggcaugasusu	
	uggcs{invAb}			
D-2413	{sGalNAc3K2AhxC6}u	1955	asGfsccacUfguagAf	1956
	caugccuUfuCfUfAfCfag		aAfggcaugasusu	
	1	I .	i .	

	uggcs{invAb}			
D-2414	{sGalNAc3K2AhxC6}[1957	asGfscCfaCfUfguag	1958
	invAb]ucaugccuUfuCfU		AfaAfggcaugasusu	
	fAfCfaguggcs{invAb}			
D-2415	{sGalNAc3K2AhxC6}[1959	usGfscCfaCfUfguag	1960
	invAb]augccuUfuCfUf		AfaAfggcaususu	
	AfCfaguggcasusu			
D-2416	{sGalNAc3K2AhxC6}u	1961	usGfscCfaCfUfguag	1962
	caugccuUfuCfUfAfCfag		AfaAfggcaugasusu	
	uggcs{invAb}			
D-2417	{sGalNAc3K2AhxC6}[1963	usGfscCfaCfUfguag	1964
	invAb]ucaugccuUfuCfU		AfaAfggcaugasusu	
	fAfCfaguggscsa			
D-2418	{sGalNAc3K2AhxC6}u	1965	usGfscCfaCfUfguag	1966
	caugccuUfuCfUfAfCfag		AfaAfggcaugasusu	
	uggcs{invDA}			
D-2419	{sGalNAc3K2AhxC6}c	1967	asUfsguagAfaaggCf	1968
	ugcuucaUfgCfCfUfUfu		aUfgaagcagsusu	
	cuacas{invAb}			
D-2420	{sGalNAc3K2AhxC6}c	1969	usUfsguagAfaaggCf	1970
	ugcuucaUfgCfCfUfUfu		aUfgaagcagsusu	
	cuacas{invAb}			
D-2421	{sGalNAc3K2AhxC6}c	1971	usUfsguagAfaaggCf	1972
	ugcuucaUfgCfCfUfUfu		aUfgaagcagsusu	
	cuacas{invDA}			
D-2422	{sGalNAc3K2AhxC6}u	1973	usGfsccacUfguagAf	1974
	caugccuUfuCfUfAfCfag		aAfggcaugasusu	
	uggcs{invAb}			
D-2423	{sGalNAc3K2AhxC6}u	1975	usGfsccacUfguagAf	1976
	caugccuUfuCfUfAfCfag		aAfggcaugasusu	
	uggcs{invDA}			
D-2424	{sGalNAc3K2AhxC6}[1977	{Фосфат}asCfsuGfu	1978
	invAb]cuucauGfcCfuUf		AfGfaaAfgGfcAfug	
	Ufcuacagususu		aagsusu	

D-2425	{sGalNAc3K2AhxC6}c	1979	asUfsgUfa[Ab]Afaa	1980
	ugcuucaUfgCfCfUfUfu		ggCfaUfgaagcagsus	
	cuacas{invAb}		u	
D-2426	{sGalNAc3K2AhxC6}c	1981	asUfsgua[Ab]Afaag	1982
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2427	{sGalNAc3K2AhxC6}u	1983	asCfsuGfu[Ab]Gfaa	1984
	gcuucauGfcCfUfUfUfc		agGfcAfugaagcasus	
	uacags{invAb}		u	
D-2428	{sGalNAc3K2AhxC6}u	1985	asCfsugu[Ab]Gfaaag	1986
	gcuucauGfcCfUfUfUfc		GfcAfugaagcasusu	
	uacags{invAb}			
D-2429	{sGalNAc3K2AhxC6}u	1987	asGfscCfa[Ab]Ufgu	1988
	caugccuUfuCfUfAfCfag		agAfaAfggcaugasus	
	uggcs{invAb}		u	
D-2430	{sGalNAc3K2AhxC6}u	1989	asGfscca[Ab]Ufguag	1990
	caugccuUfuCfUfAfCfag		AfaAfggcaugasusu	
	uggcs{invAb}			
D-2431	{sGalNAc3K2AhxC6}c	1991	asUfs[GNA-	1992
	ugcuucaUfgCfCfUfUfu		G]uagAfaaggCfaUfg	
	cuacas{invAb}		aagcagsusu	
D-2432	{sGalNAc3K2AhxC6}c	1993	asUfsg[GNA-	1994
	ugcuucaUfgCfCfUfUfu		U]agAfaaggCfaUfga	
	cuacas{invAb}		agcagsusu	
D-2433	{sGalNAc3K2AhxC6}c	1995	asUfsgu[GNA-	1996
	ugcuucaUfgCfCfUfUfu		A]gAfaaggCfaUfgaa	
	cuacas{invAb}		gcagsusu	
D-2434	{sGalNAc3K2AhxC6}c	1997	asUfsgua[GNA-	1998
	ugcuucaUfgCfCfUfUfu		G]AfaaggCfaUfgaag	
	cuacas{invAb}		cagsusu	
D-2435	{sGalNAc3K2AhxC6}c	1999	asUfsguag[GNA-	2000
	ugcuucaUfgCfCfUfUfu		A]aaggCfaUfgaagca	
	cuacas{invAb}		gsusu	
D-2436	{sGalNAc3K2AhxC6}c	2001	asUfsguagAf[GNA-	2002

	ugcuucaUfgCfCfUfUfu		A]aggCfaUfgaagcag	
	cuacas{invAb}		susu	
D-2437	{sGalNAc3K2AhxC6}c	2003	asUfsgUfagAfaaggC	2004
	ugcuucaUfgCfCfUfUfu		faUfgaagcagsusu	
	cuacas{invAb}			
D-2438	{sGalNAc3K2AhxC6}[2005	asUfsguagAfaaggCf	2006
	invAb]cugcuucaUfgCfC		aUfgaagcagsusu	
	fUfUfucuacsasu			
D-2439	{sGalNAc3K2AhxC6}[2007	asUfsguagAfaaggCf	2008
	invAb]cugcuucaUfgCfC		aUfgaagcagsusu	
	fUfUfucuacas{invAb}			
D-2440	{sGalNAc3K2AhxC6}c	2009	asUfsguagAfaaGfgC	2010
	ugcuucaUfgCfCfUfUfu		faUfgaagcagsusu	
	cuacas{invAb}			
D-2441	{sGalNAc3K2AhxC6}c	2011	asUfsguagAfaaggCf	2012
	ugcuucaUfgCfCfUfUfu		aUfgaagcagsusu	
	cUfaCfas{invAb}			
D-2442	{sGalNAc3K2AhxC6}[2013	asUfsguagAfaaggCf	2014
	invAb]cugcuucaUfgCfC		aUfgaagcagsusu	
	fUfUfucUfaCfasUf			
D-2443	{sGalNAc3K2AhxC6}c	2015	asUfsguagAfaaGfgC	2016
	ugcuucaUfgCfCfUfUfu		faUfgaagcagsusu	
	cUfaCfas{invAb}			
D-2444	{sGalNAc3K2AhxC6}c	2017	asUfsgUfaGfAfaaGf	2018
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2445	{sGalNAc3K2AhxC6}[2019	asUfsgUfaGfAfaaGf	2020
	invAb]cugcuucaUfgCfC		gCfaUfgaagcagsusu	
	fUfUfucuacsasu			
D-2446	{sGalNAc3K2AhxC6}[2021	asUfsgUfaGfAfaagg	2022
	invAb]cugcuucaUfgCfC		CfaUfgaagcagsusu	
	fUfUfucuacas{invAb}			
D-2447	{sGalNAc3K2AhxC6}c	2023	as[Ab]guagAfaaggC	2024
	ugcuucaUfgCfCfUfUfu		faUfgaagcagsusu	
	1	1	1	

	cuacas{invAb}			
D-2448	{sGalNAc3K2AhxC6}c	2025	asUfs[Ab]uagAfaag	2026
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2449	{sGalNAc3K2AhxC6}c	2027	asUfsg[Ab]agAfaag	2028
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2450	{sGalNAc3K2AhxC6}c	2029	asUfsgu[Ab]gAfaag	2030
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2451	{sGalNAc3K2AhxC6}c	2031	asUfsguag[Ab]aagg	2032
	ugcuucaUfgCfCfUfUfu		CfaUfgaagcagsusu	•
	cuacas{invAb}			
D-2452	{sGalNAc3K2AhxC6}c	2033	asUfsguagAf[Ab]ag	2034
	ugcuucaUfgCfCfUfUfu		gCfaUfgaagcagsusu	
	cuacas{invAb}			
D-2453	{sGalNAc3K2AhxC6}c	2035	asCfsaucaAfugaaGf	2036
	aacguacCfcUfUfCfAfuu		gGfuacguugsusu	
	gaugs{invAb}			
D-2454	{sGalNAc3K2AhxC6}c	2037	asCfsaUfcAfAfugaa	2038
	aacguacCfcUfUfCfAfuu		GfgGfuacguugsusu	
	gaugs{invAb}			
D-2455	{sGalNAc3K2AhxC6}a	2039	asGfsgcauAfucugGf	2040
	cauggcuUfcCfAfGfAfu		aAfgccaugususu	
	augccs{invAb}			
D-2456	{sGalNAc3K2AhxC6}a	2041	asGfsgCfaUfAfucug	2042
	cauggcuUfcCfAfGfAfu		GfaAfgccaugususu	
	augccs{invAb}			
D-2457	{sGalNAc3K2AhxC6}c	2043	asUfsguaGfAfaaggC	2044
	ugcuucaUfgCfCfUfUfu		faUfgaagcagsusu	
	cuacas{invAb}			
D-2458	{sGalNAc3K2AhxC6}c	2045	asUfsguagAfaaggCf	2046
	ugcuucaUfgCfCfUfUfu		aUfgaagcagsusu	
	cUfacas{invAb}			

ugcuucaUfgCfCfUfUfu aUfgaagcagsusu cuaCfas{invAb} D-2460 {sGalNAc3K2AhxC6}c 2049 usAfsgAfaGfCfccag 2050 ugcggcuUfcCfUfGfGfg GfaAfgccgcagsusu cuucus{invAb}	
D-2460 {sGalNAc3K2AhxC6}c 2049 usAfsgAfaGfCfccag 2050 ugcggcuUfcCfUfGfGfg GfaAfgccgcagsusu	
ugcggcuUfcCfUfGfGfg GfaAfgccgcagsusu	
cuucus{invAb}	
D-2461 {sGalNAc3K2AhxC6}c 2051 usAfsgaagCfccagGf 2052	
ugcggcuUfcCfUfGfGfg aAfgccgcagsusu	
cuucus{invAb}	
D-2462 {sGalNAc3K2AhxC6}u 2053 asCfsuGfuaGfaaagG 2054	
gcuucauGfcCfUfUfUfc fcAfugaagcasusu	
uacags{invAb}	
D-2463 {sGalNAc3K2AhxC6}[2055 asCfsuGfuaGfaaagG 2056	
invAb]ugcuucauGfcCfU fcAfugaagcasusu	
fUfUfcuacasgsu	
D-2464 {sGalNAc3K2AhxC6}[2057 asCfsuGfuaGfaaagG 2058	
invAb]ugcuucauGfcCfU fcAfugaagcasusu	
fUfUfcuacags{invAb}	
D-2465 {sGalNAc3K2AhxC6}u 2059 asCfsuGfuaGfaaAfg 2060	
gcuucauGfcCfUfUfUfc GfcAfugaagcasusu	
uacags{invAb}	
D-2466 {sGalNAc3K2AhxC6}u 2061 asCfsuGfuaGfaaagG 2062	
gcuucauGfcCfUfUfUfc fcAfugaagcasusu	
uAfcAfgs{invAb}	
D-2467 {sGalNAc3K2AhxC6}u 2063 asCfsuGfuAfGfaaag 2064	
gcuucauGfcCfUfUfUfc GfcAfuGfaAfgCfas	
uAfcAfgs{invAb} Ufsu	
D-2468 {sGalNAc3K2AhxC6}c 2065 asUfsguaGfaaAfggc 2066	
ugcuuCfaUfGfCfcuuucu aUfgAfagcagsusu	
acsasu	
D-2469 {sGalNAc3K2AhxC6}c 2067 asUfsguaGfaaaggca 2068	
ugcuuCfaUfGfCfcuuucu UfgAfagcagsusu	
acsasu	
D-2470 {sGalNAc3K2AhxC6}c 2069 asUfsguaGfaAfAfgg 2070	

	ugcuuCfaUfGfCfcuuucu		caUfgAfagcagsusu	
	acsasu			
D-2471	{sGalNAc3K2AhxC6}u	2071	usCfsuguaGfaaagGf	2072
	gcuucauGfcCfUfUfUfc		cAfugaagcasusu	
	uacags{invAb}			
D-2472	{sGalNAc3K2AhxC6}u	2073	usCfsuguaGfaaagGf	2074
	gcuucauGfcCfUfUfUfc		cAfugaagcasusu	
	uacags{invDA}			
D-2473	{sGalNAc3K2AhxC6}c	2075	asUfsguagAfaaggCf	2076
	ugcuucaUfgCfCfUfUfu		aUfgaagcagsusu	
	cuacas{invDT}			
D-2474	{sGalNAc3K2AhxC6}c	2077	asUfsguagAf[sGNA-	2078
	ugcuucaUfgCfCfUfUfu		A]aggCfaUfgaagcag	
	cuacas{invAb}		susu	
D-2475	{sGalNAc3K2AhxC6}c	2079	asUfsguagAfs[GNA-	2080
	ugcuucaUfgCfCfUfUfu		A]aggCfaUfgaagcag	
	cuacas{invAb}		susu	
D-2476	{sGalNAc3K2AhxC6}c	2081	asUfsguagAfs[sGN	2082
	ugcuucaUfgCfCfUfUfu		A-	
	cuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2477	csusgcuucaUfgCfCfUfU	2083	asUfsguagAf[GNA-	2084
	fucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2478	csusgcuucaUfgCfCfUfU	2085	asUfsguagAf[GNA-	2086
	fucuacas{invAb}		A]AfggCfaUfgaagca	
			gsusu	
D-2479	csusgcuucaUfgCfCfUfU	2087	asUfsguaga[GNA-	2088
	fucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2480	csusgcuucaUfgCfCfUfu	2089	asUfsguagAf[GNA-	2090
	ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2481	csusgcuucaUfgCfCfUfu	2091	asUfsguaga[GNA-	2092

	ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2482	csusgcuucaUfgCfCfUfU	2093	asUfsguaga[GNA-	2094
	fucuacas{invAb}		A]AfggCfaUfgaagca	
			gsusu	
D-2483	csusgcuucaUfgCfCfUfu	2095	asUfsguagAf[GNA-	2096
	ucuacas{invAb}		A]AfggCfaUfgaagca	
			gsusu	
D-2484	csusgcuucaUfgCfCfUfu	2097	asUfsguaga[GNA-	2098
	ucuacas{invAb}		A]AfggCfaUfgaagca	
			gsusu	
D-2485	csusgcuucaUfgCfCfUfU	2099	asUfsgUfaGfAf[GN	2100
	fucuacas{invAb}		A-	
			A]aggCfaUfgaagcag	
			susu	
D-2486	csusgcuucaUfgCfCfUfU	2101	asUfsgUfagAf[GNA	2102
	fucuacas{invAb}		-	
			A]aGfgCfaUfgaagca	
			gsusu	
D-2487	csusgcuucaUfgCfCfUfU	2103	asUfsgUfagAf[GNA	2104
	fucuacas{invAb}		-	
			A]aggCfaUfgaagcag	
			susu	
D-2488	csusgcuucaUfgCfCfUfU	2105	asUfsgUfaGfAf[GN	2106
	fucuacas{invAb}		A-	
			A]aGfgCfaUfgaagca	
			gsusu	
D-2489	csusgcuucaUfgCfCfUfU	2107	asUfsguagAf[GNA-	2108
	fucuacas{invAb}		Λ]aGfgCfaUfgaagca	
			gsusu	
D-2490	csusgcuucaUfgCfCfUfU	2109	asUfsguagAf[GNA-	2110
	fucUfaCfas{invAb}		A]aGfgCfaUfgaagca	
			gsusu	
D-2491	csusgcuucaUfgCfCfUfU	2111	asUfsguagAf[GNA-	2112

	fucuacas{invAb}		A]a[dG]gCfaUfgaag	
			cagsusu	
D-2492	csusgcuucaUfgCfCfUfU	2113	asUfsguagAf[GNA-	2114
	fucuacas{invAb}		A][dA]ggCfaUfgaag	
			cagsusu	
D-2493	csusgcuucaUfgCfCfUfU	2115	asUfsguagAf[GNA-	2116
	fucuacas{invAb}		A]ag[dG]CfaUfgaag	
			cagsusu	
D-2494	csusgcuucaUfgCfCfUfU	2117	asUfsguaGfAf[GNA	2118
	fucuacas{invAb}		-	
			A]aggCfaUfgaagcag	
			susu	
D-2495	csusgcuucaUfgCfCfUfU	2119	asUfsguaGfa[GNA-	2120
	fucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2496	csusgcuucaUfgCfCfUfU	2121	asUfsguaGfa[GNA-	2122
	fucuacas{invAb}		A]AfggCfaUfgaagca	
			gsusu	
D-2497	csusgcuuCfaUfGfCfcuu	2123	asUfsguaGfa[GNA-	2124
	ucuacas{invAb}		A]aggcaUfgAfagcag	
			susu	
D-2498	csusgcuuCfaUfGfCfcuu	2125	asUfsguaGfa[GNA-	2126
	ucuacas{invAb}		A]AfggcaUfgAfagca	
			gsusu	
D-2499	csusgcuuCfaUfgCfcuuu	2127	asUfsguaga[GNA-	2128
	cuacas{invAb}		A]aggCfaUfgAfagca	
			gsusu	
D-2500	csusgcuuCfaUfgCfcuuu	2129	asUfsguagaaaggCfa	2130
	cuacas{invAb}		UfgAfagcagsusu	
D-2501	usgscuucauGfcCfUfUf	2131	us[sGNA-	2132
	Ufcuacags{invDA}		C]uguaGfaaagGfcAf	
			ugaagcasusu	
D-2502	usgscuucauGfcCfUfUf	2133	usCfs[GNA-	2134
	Ufcuacags{invDA}		U]guaGfaaagGfcAfu	

			gaagcasusu	
D-2503	usgscuucauGfcCfUfUf	2135	usCfsug[GNA-	2136
	Ufcuacags{invDA}		U]aGfaaagGfcAfuga	
			agcasusu	
D-2504	usgscuucauGfcCfUfUf	2137	usCfsugu[GNA-	2138
	Ufcuacags{invDA}		A]GfaaagGfcAfugaa	
			gcasusu	
D-2505	usgscuucauGfcCfUfUf	2139	usCfsuguaGf[GNA-	2140
	Ufcuacags{invDA}		A]aagGfcAfugaagca	
			susu	
D-2506	usgscuucauGfcCfUfUf	2141	us[Ab]uguaGfaaagG	2142
	Ufcuacags{invDA}		fcAfugaagcasusu	
D-2507	usgscuucauGfcCfUfUf	2143	usCfs[Ab]guaGfaaag	2144
	Ufcuacags{invDA}		GfcAfugaagcasusu	
D-2508	usgscuucauGfcCfUfUf	2145	usCfsu[Ab]uaGfaaag	2146
	Ufcuacags{invDA}		GfcAfugaagcasusu	
D-2509	usgscuucauGfcCfUfUf	2147	usCfsug[Ab]aGfaaag	2148
	Ufcuacags{invDA}		GfcAfugaagcasusu	
D-2510	usgscuucauGfcCfUfUf	2149	usCfsugu[Ab]Gfaaa	2150
	Ufcuacags{invDA}		gGfcAfugaagcasusu	
D-2511	usgscuucauGfcCfUfUf	2151	usCfsugua[Ab]aaag	2152
	Ufcuacags{invDA}		GfcAfugaagcasusu	
D-2512	usgscuucauGfcCfUfUf	2153	usCfsuguaGf[Ab]aa	2154
	Ufcuacags{invDA}		gGfcAfugaagcasusu	
D-2513	uscsaugccuUfuCfUfAfC	2155	asGfsccacUfguagAf	2156
	faguggcs{invDT}		aAfggcaugasusu	
D-2514	uscsaugccuUfuCfUfAfC	2157	usGfsccacUfguagAf	2158
	faguggcs{invAb}		aAfggcaugasusu	
D-2515	uscsaugccuUfuCfUfAfC	2159	usGfsccacUfguagAf	2160
	faguggcs{invDA}		aAfggcaugasusu	
D-2516	uscscugcuuCfaUfGfCfC	2161	asUfsagaaAfggcaUf	2162
	fuuucuas{invDT}		gAfagcaggasusu	
D-2517	uscscugcuuCfaUfGfCfC	2163	usUfsagaaAfggcaUf	2164
	fuuucuas{invAb}		gAfagcaggasusu	

D-2518	uscscugcuuCfaUfGfCfC	2165	usUfsagaaAfggcaUf	2166
	fuuucuas{invDA}		gAfagcaggasusu	
D-2519	usasuguuccUfgCfUfUf	2167	asAfsggcaUfgaagCf	2168
	Cfaugccus{invDT}		aGfgaacauasusu	
D-2520	usasuguuccUfgCfUfUf	2169	usAfsggcaUfgaagCf	2170
	Cfaugccus{invAb}		aGfgaacauasusu	
D-2521	usasuguuccUfgCfUfUf	2171	usAfsggcaUfgaagCf	2172
	Cfaugccus{invDA}		aGfgaacauasusu	
D-2522	{sGalNAc3K2AhxC6}u	2173	asUfsagaaAfggcaUf	2174
	ccugcuuCfaUfGfCfCfuu		gAfagcaggasusu	
	ucuas{invAb}			
D-2523	{sGalNAc3K2AhxC6}u	2175	asAfsggcaUfgaagCf	2176
	auguuccUfgCfUfUfCfa		aGfgaacauasusu	
	ugccus{invAb}			
D-2524	{sGalNAc3K2AhxC6}u	2177	asGfsccacUfguagAf	2178
	caugccuUfuCfUfAfCfag		aAfggcaugasusu	
	uggcs{invDT}			
D-2525	{sGalNAc3K2AhxC6}u	2179	asUfsagaaAfggcaUf	2180
	ccugcuuCfaUfGfCfCfuu		gAfagcaggasusu	
	ucuas{invDT}			
D-2526	{sGalNAc3K2AhxC6}u	2181	usUfsagaaAfggcaUf	2182
	ccugcuuCfaUfGfCfCfuu		gAfagcaggasusu	
	ucuas{invDA}			
D-2527	{sGalNAc3K2AhxC6}u	2183	usAfsggcaUfgaagCf	2184
	auguuccUfgCfUfUfCfa		aGfgaacauasusu	
	ugccus{invDA}			
D-2528	usgscuucauGfcCfUfUf	2185	usCfsugua[GNA-	2186
	Ufcuacags{invDA}		G]aaagGfcAfugaagc	
			asusu	
D-2529	cugcuucaUfgCfCfUfUfs	2187	asUfsguagAf[GNA-	2188
	ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2530	cugcuucaUfgCfCfUfsUf	2189	asUfsguagAf[GNA-	2190
	ucuacas{invAb}		A]aggCfaUfgaagcag	

			susu	
D 2521	TIC OCCUTICATE	2101		2102
D-2531	cugcuucaUfgCfCfUfsUf	2191	asUfsguagAf[GNA-	2192
	sucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2532	cugcuucaUfgCfCfUfsUf	2193	asUfsguagAfs[GNA-	2194
	ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2533	cugcuucaUfgCfCfUfsUf	2195	asUfsguagAfs[GNA-	2196
	sucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2534	cugcuucaUfgCfCfUfUfs	2197	asUfsguagAf[sGNA-	2198
	ucuacas{invAb}	-	A]aggCfaUfgaagcag	
	,		susu	
D-2535	cugcuucaUfgCfCfUfsUf	2199	asUfsguagAf[sGNA-	2200
D 2333	sucuacas{invAb}	2177	A]aggCfaUfgaagcag	2200
	sucuacas(mvAb)	,		
D 2526	THE CHARTETE	2201	susu	2202
D-2536	cugcuucaUfgCfCfUfUfs	2201	asUfsguagAfs[sGN	2202
	ucuacas{invAb}		A-	
			A]aggCfaUfgaagcag	
			susu	
D-2537	cugcuucaUfgCfCfUfsUf	2203	asUfsguagAfs[sGN	2204
	ucuacas{invAb}		A-	
			A]aggCfaUfgaagcag	
			susu	
D-2538	cugcuucaUfgCfCfUf[L	2205	asUfsguagAf[GNA-	2206
	NA-T]ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2539	cugcuucaUfgCfCf[LNA	2207	asUfsguagAf[GNA-	2208
	-T]Ufucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2540	cugcuucaUfgCfCfUfUf[2209	asUfsguagAf[GNA-	2210
	LNA-T]cuacas{invAb}		A]aggCfaUfgaagcag	
	La (12-1 jeuaeas (miv AU)		Susu	
D 0541	TIC OCCUTATO	2211		2212
D-2541	cugcuucaUfgCfCfUfUf	2211	asUfsgu[GNA-	2212

	uc[LNA-T]acas{invAb}		A]gAfaaggCfaUfgaa	
			gcagsusu	
D-2542	cugcuucaUfgCfCfUfUf	2213	asUfsg[GNA-	2214
	ucu[LNA-		U]agAfaaggCfaUfga	
	A]cas{invAb}		agcagsusu	
D-2543	cugcuucaUfgCfCfUfUf	2215	as[sGNA-	2216
	ucuac[sLNA-		U]guagAfaaggCfaUf	
	A]{invAb}		gaagcagsusu	
D-2544	cugcuucaUfgCfCfUfUf[2217	asUfsguag[Ab]aagg	2218
	LNA-T]cuacas{invAb}		CfaUfgaagcagsusu	
D-2545	cugcuucaUfgCfCfUfUf	2219	asUfsgu[Ab]gAfaag	2220
	uc[LNA-T]acas{invAb}		gCfaUfgaagcagsusu	
D-2546	cugcuucaUfgCfCfUfUf	2221	asUfsg[Ab]agAfaag	2222
	ucu[LNA-		gCfaUfgaagcagsusu	
	A]cas{invAb}			
D-2547	cugcuucaUfgCfCfUfUf	2223	asUfsgUfagAf[GNA	2224
	ucUfaCfas{invAb}		-	
			A]aggCfaUfgaagcag	
			susu	
D-2548	cugcuucaUfgCfCfUfUf	2225	asUfsguagAf[GNA-	2226
	ucUfaCfas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2549	cugcuucaUfgCfCfUfs[L	2227	asUfsguagAf[GNA-	2228
	NA-T]ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2550	cugcuucaUfgCfCfUfs[s	2229	asUfsguagAf[GNA-	2230
	LNA-		A]aggCfaUfgaagcag	
	T]ucuacas{invAb}		susu	
D-2551	cugcuucaUfgCfCfUf[L	2231	asUfsguagAf[sGNA-	2232
	NA-T]ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	
D-2552	cugcuucaUfgCfCfUf[L	2233	asUfsguagAfs[GNA-	2234
	NA-T]ucuacas{invAb}		A]aggCfaUfgaagcag	
			susu	

D-2553	usgscuucauGfcCfUfUf	2235	usCfsug[Ab]aGfaaag	2236
	Ufcu[LNA-		GfcAfugaagcasusu	
	A]cags{invDA}			
D-2554	usgscuucauGfcCfUfUf	2237	usCfsugu[Ab]Gfaaa	2238
	Ufc[LNA-		gGfcAfugaagcasusu	
	T]acags{invDA}			
D-2555	usgscuucauGfcCfUfUf[2239	usCfsuguaGf[Ab]aa	2240
	LNA-		gGfcAfugaagcasusu	
	T]cuacags{invDA}			
D-2556	usgscuucauGfcCfUfUf	2241	usCfs[GNA-	2242
	Ufcuac[LNA-		U]guaGfaaagGfcAfu	
	A]gs{invDA}		gaagcasusu	
D-2557	usgscuucauGfcCfUfUf	2243	usCfsug[GNA-	2244
	Ufcu[LNA-		U]aGfaaagGfcAfuga	
	A]cags{invDA}		agcasusu	
D-2558	usgscuucauGfcCfUfUf	2245	usCfsugu[GNA-	2246
	Ufc[LNA-		A]GfaaagGfcAfugaa	
	T]acags{invDA}		gcasusu	
D-2559	usgscuucauGfcCfUfUf	2247	us[Ab]uguaGfaaagG	2248
	Ufcuaca[sLNA-		fcAfugaagcasusu	
	G]{invDA}			
D-2560	usgscuucauGfcCfUfUf	2249	usCfs[Ab]guaGfaaag	2250
	Ufcuac[LNA-		GfcAfugaagcasusu	
	A]gs{invDA}			
D-2561	ucaugccuUfuCfUfAfCfa	2251	asGfscca[Ab]Ufguag	2252
	[LNA-G]uggcs{invAb}		AfaAfggcaugasusu	
D-2562	ucaugccuUfuCfUfAfCfa	2253	asGfscca[Ab]Ufguag	2254
	g[LNA-T]ggcs{invAb}		AfaAfggcaugasusu	
D-2563	ucaugccuUfuCfUfAfCfa	2255	asGfscca[Ab]Ufguag	2256
	sgsuggcs{invAb}		AfaAfggcaugasusu	
D-2564	{GalNAc3K2AhxC6}G	2349	{Фосфат}asAfsuGfa	2350
	fgUfaUfgUfuCfCfUfGf		AfGfcaggAfaCfaUfa	
	cuUfcAfuUfsusUf		CfcsUfsu	
D-2565	{GalNAc3K2AhxC6}G	2351	{Фосфат}usAfsuGf	2352

	fgUfaUfgUfuCfCfUfGf		aAfGfcaggAfaCfaUf	
	cuUfcAfuAfsusUf		aCfcsUfsu	
D-2566	{GalNAc3K2AhxC6}G	2353	{Фосфат}asCfsaUfg	2354
	fuAfuGfuUfcCfUfGfCf		AfAfgcagGfaAfcAf	
	uuCfaUfgUfsusUf		uAfcsUfsu	
D-2567	{GalNAc3K2AhxC6}U	2355	{Фосфат}usGfscAf	2356
	faUfgUfuCfcUfGfCfUf		uGfAfagcaGfgAfaCf	
	ucAfuGfcAfsusUf		aUfasUfsu	
D-2568	{GalNAc3K2AhxC6}A	2357	{Фосфат}asGfsgCfa	2358
	fuGfuUfcCfuGfCfUfUf		UfGfaagcAfgGfaAfc	
	caUfgCfcUfsusUf		AfusUfsu	
D-2569	{GalNAc3K2AhxC6}U	2359	{Фосфат}asAfsgGfc	2360
	fgUfuCfcUfgCfUfUfCf		AfUfgaagCfaGfgAfa	
	auGfcCfuUfsusUf		CfasUfsu	
D-2570	{GalNAc3K2AhxC6}G	2361	{Фосфат}asAfsaGfg	2362
	fuUfcCfuGfcUfUfCfAf		CfAfugaaGfcAfgGfa	
	ugCfcUfuUfsusUf		AfcsUfsu	
D-2571	{GalNAc3K2AhxC6}U	2363	{Фосфат}asAfsaAfg	2364
	fuCfcUfgCfuUfCfAfUf		GfCfaugaAfgCfaGfg	
	gcCfuUfuUfsusUf		AfasUfsu	
D-2572	{GalNAc3K2AhxC6}U	2365	{Фосфат}usAfsaAf	2366
	fuCfcUfgCfuUfCfAfUf		gGfCfaugaAfgCfaGf	
	gcCfuUfuAfsusUf		gAfasUfsu	
D-2573	{GalNAc3K2AhxC6}U	2367	{Фосфат}asGfsaAfa	2368
	fcCfuGfcUfuCfAfUfGf		GfGfcaugAfaGfcAf	
	ccUfuUfcUfsusUf		gGfasUfsu	
D-2574	{GalNAc3K2AhxC6}C	2369	{Фосфат}usAfsgAf	2370
	fcUfgCfuUfcAfUfGfCf		aAfGfgcauGfaAfgCf	
	cuUfuCfuAfsusUf		aGfgsUfsu	
D-2575	{GalNAc3K2AhxC6}C	2371	{Фосфат}asUfsaGfa	2372
	fuGfcUfuCfaUfGfCfCf		AfAfggcaUfgAfaGf	
	uuUfcUfaUfsusUf		cAfgsUfsu	
D-2576	{GalNAc3K2AhxC6}C	2373	{Фосфат}usUfsaGfa	2374
	fuGfcUfuCfaUfGfCfCf		AfAfggcaUfgAfaGf	

	uuUfcUfaAfsusUf		cAfgsUfsu	
D-2577	{GalNAc3K2AhxC6}U	2375	{Фосфат}usGfsuAf	2376
	fgCfuUfcAfuGfCfCfUf		gAfAfaggcAfuGfaA	
	uuCfuAfcAfsusUf		fgCfasUfsu	
D-2578	{GalNAc3K2AhxC6}G	2377	{Фосфат}asUfsgUfa	2378
	fcUfuCfaUfgCfCfUfUf		GfAfaaggCfaUfgAfa	
	ucUfaCfaUfsusUf		GfcsUfsu	
D-2579	{GalNAc3K2AhxC6}G	2379	{Фосфат}usUfsgUf	2380
	fcUfuCfaUfgCfCfUfUf		aGfAfaaggCfaUfgAf	
	ucUfaCfaAfsusUf		aGfcsUfsu	
D-2580	{GalNAc3K2AhxC6}C	2381	{Фосфат}asCfsuGfu	2382
	fuUfcAfuGfcCfUfUfUf		AfGfaaagGfcAfuGfa	
	cuAfcAfgUfsusUf		AfgsUfsu	
D-2581	{GalNAc3K2AhxC6}U	2383	{Фосфат}asAfscUfg	2384
	fuCfaUfgCfcUfUfUfCf		UfAfgaaaGfgCfaUfg	
	uaCfaGfuUfsusUf		AfasUfsu	
D-2582	{GalNAc3K2AhxC6}U	2385	{Фосфат}usAfscUf	2386
	fuCfaUfgCfcUfUfUfCf		gUfAfgaaaGfgCfaUf	
	uaCfaGfuAfsusUf		gAfasUfsu	
D-2583	{GalNAc3K2AhxC6}U	2387	{Фосфат}asCfsaCfu	2388
	fcAfuGfcCfuUfUfCfUf		GfUfagaaAfgGfcAf	
	acAfgUfgUfsusUf		uGfasUfsu	
D-2584	{GalNAc3K2AhxC6}U	2389	{Фосфат}usCfsaCfu	2390
	fcAfuGfcCfuUfUfCfUf		GfUfagaaAfgGfcAf	
	acAfgUfgAfsusUf		uGfasUfsu	
D-2585	{GalNAc3K2AhxC6}C	2391	{Фосфат}asCfscAfc	2392
	faUfgCfcUfuUfCfUfAf		UfGfuagaAfaGfgCfa	
	caGfuGfgUfsusUf		UfgsUfsu	
D-2586	{GalNAc3K2AhxC6}C	2393	{Фосфат}usCfscAfc	2394
	faUfgCfcUfuUfCfUfAf		UfGfuagaAfaGfgCfa	
	caGfuGfgAfsusUf		UfgsUfsu	
D-2587	{GalNAc3K2AhxC6}A	2395	{Фосфат}asGfscCfa	2396
	fuGfcCfuUfuCfUfAfCf		CfUfguagAfaAfgGf	
	agUfgGfcUfsusUf		cAfusUfsu	

D-2588	{GalNAc3K2AhxC6}A	2397	{Фосфат}usGfscCfa	2398
	fuGfcCfuUfuCfUfAfCf		CfUfguagAfaAfgGf	
	agUfgGfcAfsusUf		cAfusUfsu	
D-2589	{GalNAc3K2AhxC6}U	2399	{Фосфат}asGfsgCfc	2400
	fgCfcUfuUfcUfAfCfAf		AfCfuguaGfaAfaGf	
	guGfgCfcUfsusUf		gCfasUfsu	
D-2590	{GalNAc3K2AhxC6}G	2401	{Фосфат}asAfsgGfc	2402
	fcCfuUfuCfuAfCfAfGf		CfAfcuguAfgAfaAf	
	ugGfcCfuUfsusUf		gGfcsUfsu	
D-2591	{GalNAc3K2AhxC6}G	2403	{Фосфат}gsAfsuGf	2404
	fgUfaUfgUfuCfCfUfGf		aAfGfcaggAfaCfaUf	
	cuUfcAfuCfsusUf		aCfcsUfsu	
D-2592	{GalNAc3K2AhxC6}G	2405	{Фосфат}gsGfsaUf	2406
	fuAfuGfuUfcCfUfGfCf		gAfAfgcagGfaAfcA	
	uuCfaUfcCfsusUf		fuAfcsUfsu	
D-2593	{GalNAc3K2AhxC6}U	2407	{Фосфат}gsGfsgAf	2408
	faUfgUfuCfcUfGfCfUf		uGfAfagcaGfgAfaCf	
	ucAfuCfcCfsusUf		aUfasUfsu	
D-2594	{GalNAc3K2AhxC6}A	2409	{Фосфат}gsGfsgGf	2410
	fuGfuUfcCfuGfCfUfUf		aUfGfaagcAfgGfaAf	
	caUfcCfcCfsusUf		cAfusUfsu	
D-2595	{GalNAc3K2AhxC6}U	2411	{Фосфат}asGfsgGf	2412
	fgUfuCfcUfgCfUfUfCf		gAfUfgaagCfaGfgA	
	auCfcCfcUfsusUf		faCfasUfsu	
D-2596	{GalNAc3K2AhxC6}G	2413	{Фосфат}asAfsgGf	2414
	fuUfcCfuGfcUfUfCfAf		gGfAfugaaGfcAfgG	
	ucCfcCfuUfsusUf		faAfcsUfsu	
D-2597	{GalNAc3K2AhxC6}U	2415	{Фосфат}gsAfsaGf	2416
	fuCfcUfgCfuUfCfAfUf		gGfGfaugaAfgCfaG	
	ccCfcUfuCfsusUf		fgAfasUfsu	
D-2598	{GalNAc3K2AhxC6}U	2417	{Фосфат}asGfsaAfg	2418
	fcCfuGfcUfuCfAfUfCfc		GfGfgaugAfaGfcAf	
	cCfuUfcUfsusUf		gGfasUfsu	
D-2599	{GalNAc3K2AhxC6}C	2419	{Фосфат}usAfsgAf	2420
•	•			

	fcUfgCfuUfcAfUfCfCfc		aGfGfggauGfaAfgC	
	cUfuCfuAfsusUf		faGfgsUfsu	
D-2600	{GalNAc3K2AhxC6}C	2421	{Фосфат}gsUfsaGfa	2422
	fuGfcUfuCfaUfCfCfCfc		AfGfgggaUfgAfaGf	
	uUfcUfaCfsusUf		cAfgsUfsu	
D-2601	{GalNAc3K2AhxC6}U	2423	{Фосфат}usGfsuAf	2424
	fgCfuUfcAfuCfCfCfCfu		gAfAfggggAfuGfaA	
	uCfuAfcAfsusUf		fgCfasUfsu	
D-2602	{GalNAc3K2AhxC6}G	2425	{Фосфат}csUfsgUfa	2426
	fcUfuCfaUfcCfCfCfUfu		GfAfagggGfaUfgAf	
	cUfaCfaGfsusUf		aGfcsUfsu	
D-2603	{GalNAc3K2AhxC6}C	2427	{Фосфат}asCfsuGfu	2428
	fuUfcAfuCfcCfCfUfUfc		AfGfaaggGfgAfuGf	
	uAfcAfgUfsusUf		aAfgsUfsu	
D-2604	{GalNAc3K2AhxC6}U	2429	{Фосфат}csAfscUfg	2430
	fuCfaUfcCfcCfUfUfCfu		UfAfgaagGfgGfaUf	
	aCfaGfuGfsusUf		gAfasUfsu	
D-2605	{GalNAc3K2AhxC6}U	2431	{Фосфат}csCfsaCfu	2432
	fcAfuCfcCfcUfUfCfUfa		GfUfagaaGfgGfgAf	
	cAfgUfgGfsusUf		uGfasUfsu	
D-2606	{GalNAc3K2AhxC6}C	2433	{Фосфат}gsCfscAfc	2434
	faUfcCfcCfuUfCfUfAfc		UfGfuagaAfgGfgGf	
	aGfuGfgCfsusUf		aUfgsUfsu	
D-2607	{GalNAc3K2AhxC6}A	2435	{Фосфат}gsGfscCfa	2436
	fuCfcCfcUfuCfUfAfCfa		CfUfguagAfaGfgGf	
	gUfgGfcCfsusUf		gAfusUfsu	
D-2608	{GalNAc3K2AhxC6}U	2437	{Фосфат}asGfsgCfc	2438
	fcCfcCfuUfcUfAfCfAfg		AfCfuguaGfaAfgGf	
	uGfgCfcUfsusUf		gGfasUfsu	
D-2609	{GalNAc3K2AhxC6}C	2439	{Фосфат}asAfsgGfc	2440
	fcCfcUfuCfuAfCfAfGf		CfAfcuguAfgAfaGf	
	ugGfcCfuUfsusUf		gGfgsUfsu	

Пример 2. Эффективность отобранных молекул siRNA PNPLA3 в анализе RNA FISH

Получали панель полностью химически модифицированной siRNA, включая siRNA, охватывающую гs738409 и/или гs738408 SNP PNPLA3, и тестировали ее на активность и селективность нокдауна мРНК in vitro. Каждый дуплекс siRNA состоял из двух нитей: смысловой или 'пассажирской' нити и антисмысловой или 'направляющей' нити. Нити имели длину 21 или 23 нуклеотида с 19 комплементарными парами оснований. В некоторых случаях присутствовали 3'-липкие концы, состоящие из двух пар оснований. Получали siRNA с заменой природной группы 2'-ОН в рибозе каждого нуклеотида на 2'-ОМелибо 2'-F-группа. Сложные фосфодиэфирные межнуклеотидные связи в одной или обеих нитях необязательно были заменены фосфоротиоатами для уменьшения деградации молекулы экзонуклеазами.

Эффективность каждой из молекул siRNA в снижении экспрессии PNPLA3 оценивали с использованием анализа трансфекции siRNA in vitro в 384-луночном формате с последующей флуоресцентной гибридизацией in situ, нацеленной на молекулы рибонуклеиновой кислоты (RNA FISH), для определения значений IC₅₀ и максимальной активности. Данный анализ выполняли на линии клеток гепатоцеллюлярной карциномы человека Hep3B (ATCC HB-8064) и на клетках яичника китайского хомячка (СНО), экспрессирующих PNPLA3 I148I человека. Линию клеток гепатоцеллюлярной карциномы человека HepB3 поддерживали в среде EMEM (ATCC 30-2003), дополненной 10% эмбриональной телячьей сывороткой и 1% антибиотиком/антимикотиком, при 37°С и 5% CO₂. Клетки линии CHO, экспрессирующие PNPLA3 I148I человека, поддерживали в среде, содержащей 50% CD-CHO (Life Technologies), 50% Ex-Cell CHO 5 Medium (Sigma), 8 мМ L-глутамин, 1×HT, 1% антибиотик/антимикотик и 10 мкг/мл пуромицина, при

37°С и 5% СО₂.

Для анализов клеток Hep3B трансфекционные комплексы, состоящие из молекул siRNA и реагента для трансфекции Lipofectamine RNAiMAX (Life Technologies) в среде EMEM (ATCC 30-2003), вносили в 384-луночные планшеты (PerkinElmer) из расчета 10 мкг на лунку в соответствии с рекомендациями производителя. Для анализов с клетками CHO человека трансфекционные комплексы, состоящие из молекул siRNA и реагента для трансфекции Lipofectamine RNAiMAX в среде F12K (Mediatech), вносили в 384-луночные планшеты из расчета 10 мкг на лунку в соответствии с рекомендациями производителя. Клетки разбавляли до 67000 клеток/мл в среде без антибиотиков/антимикотиков и добавляли по 30 мкл в каждую лунку, доводя конечную плотность до 2000 клеток/лунка в 40 мкл среды. После 20-минутной инкубации при комнатной температуре планшеты переносили в инкубатор с условиями 37°С и 5% CO₂. Трансфекционные смеси с клетками Hep3B инкубировали в течение 72 ч, а трансфекционные смеси с клетками CHO с PNPLA3 I148I человека инкубировали в течение 48 ч.

При сборе клетки фиксировали в 8% фиксирующем растворе формальдегида (Thermo Scientific) в течение 15 мин при комнатной температуре. Затем планшеты подвергали дегидратации с последовательной промывкой 50%, 70% и 100% этанолом. Затем планшеты запечатывали и хранили при -20°C.

Анализ RNA FISH выполняли с использованием набора для скрининга Affymetrix QuantiGene® View RNA HC Screening Assay (QVP0011), набора для усиления сигнала Affymetrix View HC Signal Amplification Kit 3-plex (QVP0213) от Affymetrix и геноспецифических зондов от Affymetrix: 0,33 мл View RNA тип 6 (метка 650) VA6-20279-01 PNPLA3 человека и 0,44 мл View RNA тип 1 (метка 488) VA1-10148-01 PPIB человека.

Сначала содержимое планшетов регидратировали с последовательными промывками 100%, 70% и 50% этанолом. Затем клетки промывали PBS, а затем подвергали пермеабилизации и расщеплению протеазой в соответствии с инструкциями к набору. Целевые наборы рабочих зондов готовили в соответствии с протоколом производителя, вносили в лунки и инкубировали в течение 3 ч при 40°С. Протокол производителя использовали для последовательных гибридизаций с наборами рабочих зондов, рабочими предварительными усилителями, рабочими усилителями и рабочими LP. В завершении проводили контрокрашивание ядер (Hoechst 33342 и Cell Mask Blue; Molecular Probes). Планшеты инкубировали в течение 30 мин при комнатной температуре, промывали PBS, вносили 80 мкл PBS, а затем планшеты запечатывали для визуализации.

Все планшеты подвергали визуализации с помощью системы скрининга высокого разрешения pera Phenix High Content Screening System (PerkinElmer) с использованием УФ-канала для Hoechst 33342 и Cell Mask Blue, канала с длиной волны 488 нм для зондов типа 1, а также канала с длиной волны 647 нм для зондов типа 6.

Данные RNA FISH анализировали с использованием программного обеспечения Columbus, и изображения были получены с помощью Genedata Screener. Результаты анализа для клеток CHO, трансфицированных PNPLA3 I148I, показаны в табл. 3. Результаты анализа для клеток CHO, трансфицированных PNPLA3 I148M, показаны в табл. 4. Нокдаун PNPLA3 приведен в виде процента нокдауна по сравнению с контролем. Отрицательные значения указывают на снижение уровней PNPLA3.

Таблица 3. Анализ RNA FISH клеток CHO, трансфицированных PNPLA3 I148I

Дуплекс №	IC50 (мкM)	Нокдаун PNPLA3 (%)
D-2001	,0589	-33,9
D-2002	,0158	-67,2
D-2003	,0427	-43,4
D-2004	,00835	-63,5
D-2006	,0177	-77,8
D-2008	,125	-10,7
D-2009	,00769	-45,5
D-2010	,00558	-80

D-2011	,035	-3
D-2012	> 0,5	-3,7
D-2013	,036	-6,4
D-2014	,0122	-58,2
D-2015	> 0,5	8
D-2016	> 0,5	8
D-2017	,0153	-73,2
D-2018	,00386	-31,5
D-2019	,125	
D-2020	> 0,5	
D-2021	> 0,5	8
D-2022	> 0,167	-6,8
D-2023	,0257	-36,9
D-2024	> 0,5	4
D-2025	> 0,5	-2,5
D-2026	,022	-35,1
D-2027	,00172	-16,5
D-2028	> 0,5	10
D-2029	,0106	-56,2
D-2032	,00205	-52,9
D-2033	,0107	-61,7
D-2034	> 0,5	6
D-2035	> 0,5	-3,8
D-2036	,00665	-55,9
D-2037	> 0,5	4
D-2038	> 0,5	10
D-2039	,0116	-23,9
D-2040	> 0,5	-25,4
D-2041	> 0,5	9
D-2042	,00959	-25,5
D-2043	> 0,5	9
D-2044	,00552	-29
D-2045	> 0,5	9
D-2046	> 0,5	9

D-2047	> 0,5	-5,9
D-2048	,00618	-56,3
D-2049	> 0,5	12
D-2050	> 0,5	10
D-2051	> 0,5	-17,2
D-2052	> 0,5	-8,3
D-2053	> 0,5	11
D-2054	> 0,5	-14,9
D-2055	> 0,5	-10,6
D-2056	> 0,5	10
D-2057	,00485	-59,2
D-2058	,014	-53
D-2059	> 0,5	-4,9
D-2060	> 0,5	18
D-2061	,00795	-44,8
D-2062	,000668	-74,6
D-2063	> 0,5	-21,8
D-2064	> 0,5	9
D-2065	> 0,5	-10,5
D-2066	,0412	-42,2
D-2067	>0,5	10

Таблица 4. Анализ RNA FISH клеток CHO, трансфицированных PNPLA3 I148M

Дуплекс №	IC50 (мкM)	Нокдаун PNPLA3 (%)
D-2000	,0316	-29,2
D-2001	,0131	-81,8
D-2002	,00216	-90,5
D-2003	,022	-50,4
D-2004	,00429	-88
D-2005	> 0,5	15
D-2006	,00301	-89,2
D-2007	> 0,5	6
D-2009	,00274	-86,9
D-2010	,00203	-93,3
D-2011	,000694	-11,9

D-2012	> 0,5	-18
D-2013	,011	-66,4
D-2014	,0057	-84,3
D-2015	> 0,5	-13,5
D-2016	> 0,5	-12,4
D-2017	,00448	-89,4
D-2018	,0104	-36,2
D-2019	,0302	-7,7
D-2020	,01	-78,9
D-2021	,00435	-83,5
D-2022	,00628	-88,6
D-2023	,0143	-44,3
D-2024	> 0,5	11
D-2025	,00355	-58,2
D-2026	,000867	-39,4
D-2027	> 0,5	32
D-2028	,00205	-89,9
D-2029	,0019	-94
D-2030	> 0,5	-9,4
D-2031	> 0,5	4

RNA FISH также проводили на линии клеток печени, содержащей двойную мутацию PNPLA3rs738408-rs738409, а также на контрольной линии клеток Hep3B дикого типа. Клетки Hep3B и HepG2 (приобретенные у ATCC) культивировали в минимальной поддерживающей среде (MEM от Corning для клеток НерЗВ и ЕМЕМ от АТСС для клеток НерG2), дополненной 10% эмбриональной телячьей сывороткой (FBS, Sigma) и 1% раствором пенициллина-стрептомицина (P-S, Corning). Трансфекцию siRNA проводили следующим образом: 1 мкл тестируемых siRNA и 4 мкл простой MEM или EMEM, в зависимости от клеточной линии, добавляли в планшеты для анализа CellCarrier-384 Ultra, покрытые PDL (PerkinElmer), от BioMek FX (Beckman Coulter). 5 мкл Lipofectamine RNAiMAX (Thermo Fisher Scientific), предварительно разбавленного в простой MEM или EMEM (а именно, 0,035 мкл RNAiMAX в 5 мкл МЕМ для клеток Hep3B и 0,06 мкл RNAiMAX в 5 мкл EMEM для клеток HepG2), затем дозировали в планшеты для анализа с помощью дозатора для реагентов Multidrop Combi Reagent Dispenser (Thermo Fisher Scientific). После 20 мин инкубации смеси siRNA/RNAiMAX при комнатной температуре (RT) в трансфекционный комплекс с помощью дозатора для pearentros Multidrop Combi добавляли 30 мкл клеток Нер3В либо клеток НерG2 (2000 клеток на лунку) в МЕМ или ЕМЕМ, дополненной 10% FBS и 1% Р-S. Планшеты для анализа инкубировали в течение 20 мин при RT до помещения в инкубатор. Затем клетки инкубировали в течение 72 ч при 37°C и 5% CO₂. Анализ клеток ViewRNA ISH проводили в соответствии с протоколом производителя (Thermo Fisher Scientific) с использованием самостоятельно собранной автоматизированной платформы для анализа FISH, предназначенной для работы с жидкостями. Вкратце клетки фиксировали в 4% формальдегиде (Thermo Fisher Scientific) в течение 15 мин при RT, пермеабилизировали при помощи детергента в течение 3 мин при RT, а затем обрабатывали раствором протеазы в течение 10 мин при RT. Инкубацию мишень-специфических пар зондов (Thermo Fisher Scientific) проводили в течение 3 ч, в то время как для предусилителей, усилителей и зондов с метками (Thermo Fisher Scientific) ее проводили по 1 ч. Все стадии гибридизации выполняли при 40°С в автоматизированном инкубаторе Cytomat 2 C-LIN (Thermo Fisher Scientific). После реакций гибридизации проводили окрашивание клеток Hoechst и CellMask Blue (Thermo Fisher Scientific) в течение 30 мин, а затем проводили визуализацию с помощью Opera Phenix (PerkinElmer). Изображения анализировали с использованием системы для хранения и анализа данных Columbus Image (PerkinElmer) с получением среднего значения числа пятен на клетку. Подсчет пятен нормализовали с использованием контрольных лунок с высоким значением (содержащих фосфатно-буферный солевой раствор от Corning) и с низким значением (без пар целевых зондов). Нормализованные значения по отношению к концентрациям общей siRNA наносили на график и данные сопоставляли с четырехпараметрической сигмоидальной моделью в Genedata Screener (Genedata) для получения значений IC₅₀ и максимальной активности. Результаты анализов для клеток HepG2 показаны в табл. 5, а результаты анализов для клеток Hep3B показаны в табл. 6. Нокдаун PNPLA3 приведен в виде процента нокдауна по сравнению с контролем. Отрицательные значения ука-

зывают на снижение уровней PNPLA3. В тех случаях, когда дуплекс проходил анализ более одного раза, со стандартным отклонением показано среднее значение IC_{50} .

Таблица 5. Анализ RNA FISH гепатоцитов HepG2

Дуплекс №	IC50 (мкM)	Нокдаун PNPLA3 (%)
D-2001	,0132	-70,5
D-2003	,0458	-46,9
D-2004	,0049	-74,2
D-2006	,00283	-69,6
D-2009	,00448	-62,2
D-2010	,00206	-52
D-2013	,00319	-71,7
D-2014	,00164	-67,4
D-2017	,00222	-60,9

D-2018	,00717	-52,7
D-2020	,00664	-68,3
D-2021	,00559	-61,5
D-2022	,004	-30,5
D-2023	> 0,5	-18
D-2025	,0041	-61,9
D-2026	,00937	-34,6
D-2564	0,009	-64,021
D-2565	0,00609	-70,965
D-2566	0,00255	-52,65
D-2567	0,00584	-56,603
D-2568	0,0157	-63,002
D-2569	0,00327	-64,898
D-2570	0,00144	-55,424
D-2571	> 0,1	-18,661
D-2572	0,00557	-25,668
D-2573	0,0115	-55,329
D-2574	0,00289	-69,84
D-2575	0,00378	-69,491
D-2576	0,00527	-64,841
D-2577	0,00511	-46,449
D-2578	0,0026	-67,821
D-2579	0,00402	-67,057
D-2580	0,00119	-64,422
D-2581	0,00915	-73,008
D-2582	0,000823	-77,053
D-2583	0,00851	-66,555
D-2584	0,00513	-54,442

D-2585	0,0154	-67,707
D-2586	0,00701	-69,624
D-2587	0,00732	-66,627
D-2588	0,00226	-70,854
D-2589	0,00837	-31,221
D-2590	0,0249	-41,857
D-2591	0,009	-64,021
D-2592	0,00609	-70,965
D-2593	0,00255	-52,65
D-2594	0,00584	-56,603
D-2595	0,0157	-63,002
D-2596	0,00327	-64,898
D-2597	0,00144	-55,424
D-2598	> 0,1	-18,661
D-2599	0,00557	-25,668
D-2600	0,0115	-55,329
D-2601	0,00289	-69,84
D-2602	0,00378	-69,491
D-2603	0,00527	-64,841
D-2604	0,00511	-46,449
D-2605	0,0026	-67,821
D-2606	0,00402	-67,057
D-2607	0,00119	-64,422
D-2608	0,00915	-73,008
D-2609	0,000823	-77,053
D-2591	0,00851	-66,555
-		

D-2592	0,00513	-54,442
D-2593	0,0154	-67,707
D-2594	0,00701	-69,624
D-2595	0,00732	-66,627
D-2596	0,00226	-70,854
D-2597	0,00837	-31,221
D-2598	0,0249	-41,857
D-2426	85,098	-14,902
D-2444	31,575 +/- 6,79	-68,425 +/- 6,79
D-2454	53,215	-46,785
D-2473	29,35	-70,65

Таблица 6. Анализ RNA FISH гепатоцитов Нер3В

Дуплекс №	IC50 (мкM)	Нокдаун PNPLA3 (%)
D-2001	,00842	-37
D-2003	,0158	-32,1
D-2004	,00266	-32,4
D-2006	,00948	-54,1
D-2009	,00228	-29,5
D-2010	,00219	-37,2
D-2013	,00524	-31,5
D-2014	,00148	-37,6
D-2017	,00333	-37,6
D-2018	,00315	-21,3
D-2020	> 0,5	6
D-2021	> 0,5	-1,6
D-2022	,00272	-30,9
D-2023	> 0,5	24
D-2025	,0101	-30,3
D-2026	,00551	-23
D-2564	0,01	-63,199
D-2565	0,00938	-58,392

D-2566	0,00343	-61,484
D-2567	0,0175	-53,489
D-2568	> 0,1	-18,367
D-2569	0,0195	-62,568
D-2570	0,0127	-77,141
D-2571	> 0,1	-15,922
D-2572	> 0,1	-12,434
D-2573	> 0,1	-14,649
D-2574	0,0215	-52,515
D-2575	0,0203	-53,175
D-2576	0,018	-48,137
D-2577	> 0,1	-16,105
D-2578	> 0,1	-21,309
D-2579	> 0,1	-17,510
D-2580	> 0,1	-24,616
D-2581	> 0,1	-13,987
D-2582	0,0574	-30,543
D-2583	> 0,1	-23,990
D-2584	> 0,1	-6,715
D-2585	> 0,1	-17,518
D-2586	> 0,1	-24,518
D-2587	0,0391	-58,478
D-2588	0,0218	-56,609
D-2589	> 0,1	-17,418
D-2590	> 0,1	-21,161
D-2591	0,0167	-59,366
D-2592	0,0104	-61,548
D-2593	Не определено	-61,879
D-2594	0,0211	-43,856
D-2595	0,0272	-63,020
D-2596	> 0,1	-10,278
D-2597	0,0546	-31,743
D-2598	Не определено	-47,517
D-2599	0,00489	-70,825

D-2600	> 0,1	-8,522
D-2601	0,0364	-31,836
D-2602	0,00577	-65,062
D-2603	0,01	-58,287
D-2604	0,00353	-40,649
D-2605	0,0113	-50,691
D-2606	> 0,1	-5,097
D-2607	0,0261	-49,898
D-2608	> 0,1	-23,747
D-2609	> 0,1	-23,804
D-2426	> 0,1	-15,207
D-2454	0,00187	-51,735
D-2473	> 0,1	-21,333

Пример 3. Анализ с помощью капельной цифровой ПЦР siRNA для PNPLA3-rs738409 и PNPLA3-rs738409-rs738408

Следуя протоколу производителя, размороженные первичные гепатоциты (Xenotech/донорская партия Sekisui HC3-38) в среде OptiThaw (№ по кат. K8000 Xenotech) центрифугировали и после аспирации среды ресуспендировали в среде для гепатоцитов OptiPlate (№ по кат. К8200 Xenotech), после чего вносили в 96-луночные планшеты с коллагеновым покрытием (№ по кат. Greiner 655950). После 2-4-часового периода инкубации среду удаляли и заменяли средой для гепатоцитов ОрtiCulture (№ по кат. K8300 Xenotech). Через 2-4 ч после добавления среды OptiCulture в клетки поступали siRNA, конъюгированные с GalNAc, путем свободного захвата клетками (без реагента для трансфекции). Клетки инкубировали в течение 24-72 ч при 37°C и 5% CO₂. Затем клетки лизировали буфером Qiagen RLT (79216) +1% 2-меркаптоэтанол (Sigma, M-3148), и лизаты хранили при -20°C. Очистку РНК проводили с использованием прибора Qiagen QIACube HT (9001793) и набора Qiagen RNeasy 96 QIACube HT Kit (74171) в соответствии с инструкциями производителя. Образцы анализировали с использованием системы QIAxpert (9002340). к ДНК синтезировали из образцов РНК с использованием набора для высокопроизводительной обратной транскрипции кДНК Applied Biosystems (4368813), при этом реакции проводили в соответствии с инструкциями производителя, а концентрация вносимой РНК зависела от образца. Обратную транскрипцию проводили на термоциклере BioRad tetrad (модель № PTC-0240G) в следующих условиях: 25°C 10 мин, 37°C 120 мин, 85°C 5 мин с последующим (необязательно) неограниченным по времени выдерживанием при 4°C.

Капельную цифровую ПНР (ddPCR) проводили с использованием системы для капельной цифровой ПЦР AutoDG QX200 от BioRad в соответствии с инструкциями производителя. Реакционные смеси составляли в прозрачном 96-луночном планшете для ПЦР от Eppendorf (951020303) с использованием Bio-Rad ddPCR Supermix для зондов (1863010), и флуоресцентно меченных смесей для анализов qPCR для PNPLA3 (IDT Hs.PT.58.21464637, соотношение праймера и зонда 3.6:1 и ТВР (ГОТ Hs.PT.53a.20105486, соотношение праймера и зонда 3.6:1) и воды, не содержащей РНКаз (Ambion, AM9937). Конечная концентрация праймера/зонда составляла 900 нМ/250 нМ соответственно, начальная концентрация кДНК отличалась для разных лунок. Капли формировали с использованием генератора капель BioRad Auto DG (1864101), настроенного с учетом рекомендуемых производителем расходных материалов (картриджи BioRad DG32 1864108, наконечники BioRad 1864121, 96-луночный планшет для ПЦР Eppendorf blue 951020362, масло для генерации капель для зондов BioRad 1864110 и собранная панель для капель Віо-Rad). Капли подвергали амплификации на термоциклере BioRad C1000 touch (1851197), используя следующие условия: активация фермента при 95°C в течение 10 мин, денатурация при 94°C в течение 30 с с последующим отжигом/элонгацией при 60°C в течение одной минуты, 40 циклов со скоростью нагрева/охлаждения 2°С/с, инактивация фермента при 98°С в течение 10 мин с последующим (необязательно) неограниченным по времени выдерживанием при 4°С. Затем образцы считывали на устройстве для считывания BioRad QX200 Droplet Reader, измеряющем сигнал FAM/HEX, который коррелирует с концентрацией PNPLA3 или TBP. Анализ данных проводили с использованием программного пакета BioRad QuantaSoft. Образцы гейтировали по каналу (флуоресцентная метка) для определения концентрации на образец. Каждый образец затем выражали как соотношение концентрации гена, представляющего интерес (PNPLA3), и концентрации конститутивного гена (ТВР) для контроля разницы в загрузке образца. Затем данные импортировали в Genedata Screener, где каждая тестируемая siRNA нормализуется по медианным значениям нейтральных контрольных лунок (содержащих только буфер). Значения ІС50 представлены в табл. 7.

Таблица 7. Анализ ddPCR, выполненный на первичных гепатоцитах

Дуплекс №	IC50 (мкM)	% нокдауна PNPLA3
D-2068	,0339	-49,628
D-2069	,00408	-52,997
D-2070	,00433	-42,193
D-2072	,00884	-53,16
D-2073	> 2,0	-7,435
D-2078	,0044	-43,123
D-2084	0,00499	-38,791
D-2085	0,00539	-64,312
D-2086	> 2,0	-14,938
D-2087	> 2,0	-25,465

D-2088	0,207	-34,944
D-2089	0,0107	-38,791
D-2090	0,0218	-38,977
D-2091	0,0508	-41,209
D-2092	0,00192	-44
D-2093	0,00634	-30,233
D-2094	> 2,0	4,93
D-2095	0,00181	-59,814
D-2096	0,0181	-52,807
D-2099	0,00549	-39,296
D-2100	0,0142	-55,281
D-2158	0,0681	-48,649
D-2159	0,0325	-36,036
D-2160	> 0,667	-13,514
D-2161	> 2,0	-24,229
D-2162	0,0726	-28,634
D-2163	> 0,667	-16,3
D-2164	> 2,0	-15,418
D-2165	0,00644	-26,872
D-2166	0,00192	-30,045
D-2167	> 0,667	-6,726
D-2168	> 2,0	-15,418
D-2169	> 2,0	-13,004
D-2170	> 2,0	-9,417
D-2171	0,00505	-44,395
D-2172	0,003	-55,336
D-2173	0,00598	-46,188
D-2174	> 2,0	-9,009
D-2175	0,017	-27,928
D-2176	0,00452	-35,426
D-2177	> 2,0	4,5
D-2178	> 2,0	1,8
D-2179	> 2,0	-6,306
D-2180	0,00546	-40,969

D-2181	0,00152	-43,119
D-2182	0,00317	-54,128
D-2183	0,00948	-58,079
D-2184	0,0109	-50,459
D-2185	> 2,0	-7,339
D-2186	0,0021	-48,624
D-2187	> 2,0	-11,009
D-2188	> 2,0	1,32
D-2191	0,0984	-66,923
D-2192	0,124	-64,231
D-2193	0,138	-60,606
D-2194	0,0478	-54,182
D-2195	0,0801	-47,515
D-2199	0,0517	-62,973
D-2201	0,0517	-62,973
D-2202	0,0165	-72,404
D-2203	0,00946	-49,459
D-2204	0,0241	-58,545
D-2205	0,0382	-45,576
D-2206	0,0222	-50,946
D-2209	0,0867	-46,622
D-2212	0,358	-60
D-2216	0,0826	-58,942
D-2218	0,0242	-63,462
D-2220	0,0113	-69,333
D-2221	0,138	-55,541
D-2224	0,0198	-66,486
D-2225	0,245	-68,077
D-2228	0,155	-44,606
D-2229	0,0651	-38,909
D-2231	0,0512	-56,892
D-2232	0,0678	-67,981
D-2233	0,00802	-57,182
D-2234	0,00473	-55,947

D-2235	0,00816	-62,115
D-2236	0,00245	-51,542
D-2237	0,00495	-60
D-2238	0,00561	-63,017
D-2239	0,00453	-55,537
D-2240	0,00584	-56,116
D-2241	0,00755	-54,76
D-2242	0,0137	-56,332
D-2243	0,00329	-57,118
D-2244	0,0127	-56,909
D-2245	0,00697	-58,364
D-2246	0,00713	-56,828
D-2247	0,00875	-57,797
D-2248	0,0098	-58,59
D-2249	0,00603	-57,759
D-2250	0,0105	-62,155
D-2251	0,00521	-59,914
D-2252	0,00988	-58,678
D-2253	0,00481	-57,118
D-2254	0,00721	-56,332
D-2255	0,00788	-52,838
D-2256	0,00831	-55,455
D-2257	0,00503	-54,545
D-2258	0,00626	-54,545
D-2259	0,00401	-55,947
D-2260	0,00379	-52,423
D-2261	0,00151	-54,31
D-2262	0,00292	-53,448
D-2263	0,00607	-59,483
D-2264	0,00703	-59,504
D-2265	> 4,0	-20,524
D-2266	0,0129	-32,727
D-2267	0,107	-27,273
D-2275	0,00359	-45,701

D-2276	0,00416	-43,891
D-2277	0,00218	-49,14
D-2278	0,00743	-42,986
D-2279	0,0116	-53,846
D-2280	0,00347	-36,652
D-2281	0,00449	-43,891
D-2282	0,0134	-37,557
D-2283	0,00864	-34,842
D-2284	0,00738	-49,558
D-2285	0,0202	-38,053
D-2286	0,00543	-45,487
D-2287	0,00934	-47,611
D-2288	0,00652	-55,575
D-2289	0,0259	-61,593
D-2290	0,00549	-53,805
D-2291	0,00476	-51,062
D-2292	0,0105	-42,584
D-2293	0,0059	-45,455
D-2294	0,0117	-45,646
D-2295	0,0109	-52,823
D-2296	0,01246 +/- 0,015	-59,847 +/- 15,2
D-2297	0,00828	-44,444
D-2298	0,0279	-41,346
D-2299	0,00529	-55,926
D-2300	0,0195	-50,423
D-2301	0,00838	-35,577
D-2302	0,00832	-40,865
D-2303	0,00371	-40,096
D-2304	0,00563	-38,365
D-2305	0,00639	-40,385
D-2306	0,00669	-41,25
D-2307	0,00212	-38,462
D-2308	0,00573	-37,736
D-2309	0,0645	-33,962

D-2310	0,00232	-33,019
D-2311	0,00181	-31,132
D-2312	0,0447	-45,283
D-2313	0,00655	-42,453
D-2314	0,00613	-41,509
D-2315	0,00941	-50
D-2316	0,0218	-41,784
D-2317	0,0142	-42,723
D-2318	0,0182	-31,455
D-2319	> 4,0	-23,005
D-2320	0,0228	-37,089
D-2321	0,00809	-45,352
D-2322	0,0165	-44,601
D-2323	0,0184	-38,373
D-2324	0,00766	-41,627
D-2325	0,00815	-46,507
D-2326	0,0168	-48,325
D-2327	0,00663	-62,254
D-2328	0,00716	-39,367
D-2329	0,044	-52,036
D-2330	0,00282	-65,701
D-2331	0,00411	-53,991
D-2332	0,0127	-51,222
D-2333	0,012	-48,357
D-2334	0,019	-42,593
D-2335	0,00448	-47,418
D-2336	0,00944	-37,327
D-2337	0,00514	-37,327
D-2338	0,154	-38,249
D-2339	0,0089	-40,092
D-2340	0,0169	-48,148
D-2341	0,00274	-46,296
D-2342	0,0225	-42,723
D-2343	0,00222 +/- 0,00136	-43,218 +/- 4,81
D-2344	0,0136	-56,561
D-2345	0,0222	-50,226
D-2346	0,0273	-55,385
D-2347	0,0164	-41,784
D-2348	0,0314	-60,282
D-2349	0,0103	-65,1
D-2350	0,0427	-63,9

Пример 4. Скрининг эффективности выбранных молекул siRNA PNPLA3 на модели гуманизированной мыши

Аденоассоциированный вирус (AAV; серотип AAV8 или AAV7; свободный от эндотоксинов, получаемый в лаборатории компании Amgen), разведенный в фосфатно-буферном солевом растворе (Thermo

Fisher Scientific, 14190-136) до уровня, не превышающего 4e11-1e12 вирусных частиц на животное, вводили внутривенно в хвостовую вену самцам мышей C57BL/6NCrl (Charles River Laboratories Inc.) для стимуляции экспрессии либо PNPLA3^{WT} (PNPLA3-WT), PNPLA3^{rs738409} (PNPLA3-I148M) человека, либо PNPLA3^{тs738409-тs738408} (PNPLA3-I148M DM) в печени. Возраст мышей в среднем составлял 10-12 недель и в группу включали n=4-6 животных. Каждая стадия скрининга включала как минимум две контрольные группы, которым вводили среду-носитель: Пустой вектор на основе AAV и AAV-PNPLA 3^{WT} или PNPLA $3^{rs738409}$ и PNPLA $3^{rs738409}$ и PNPLA $3^{rs738409}$, обработанный средой-носителем. Все siRNA проверяли на функциональность в отношении AAV-PNPLA3^{WT}, PNPLA3^{rs738409} и/или PNPLA3^{rs738409}. Через две недели после инъекции AAV мышей обрабатывали путем введения однократной дозы siRNA D-2324 (0,5 мМ) посредством подкожной инъекции в дозе 0,5, 1,0, 3,0 или 5,0 мг на килограмм животного, разведенной в фосфатно-буферном солевом растворе (Thermo Fisher Scientific, 14190-136). В дни 8, 15, 22, 28 или 42 после инъекции siRNA у животных отбирали ткани печени, быстро замораживали их в жидком азоте, обрабатывали для выделения очищенной РНК с использованием прибора QIACube HT (Qiagen, 9001793) и набора RNeasy 96 QIACube HT (Qiagen, 74171) в соответствии с инструкциями производителя. Образцы анализировали с использованием системы QIAxpert (Qiagen, 9002340). РНК обрабатывали ДНКазой RQ1, свободной от PHKa3 (Promega, M6101), и подготавливали для Real-Time qPCR (количественной Π ЦР в режиме реального времени) с использованием набора RNA-to- C_T^{TM} 1-Step kit TaqManTM (Applied Biosystems, 4392653). Real-Time qPCR проводили на приборе QuantStudio Real-Time PCR. Результаты вычисляли, исходя из экспрессии PNPLA3 человека, нормализованной к Gapdh мыши (наборы TaqManTM от Invitrogen, hs00228747 m1 и 4352932E соответственно), и их представляли в виде относительного нокдауна экспрессии мРНК PNPLA3 человека по сравнению с контрольными животными, которым вводили среду-носитель. Для сравнения определяли эндогенную экспрессию гена Pnpla3 мыши (Invitrogen,

Для анализа содержания триглицеридов в печени гомогенизировали примерно 0,05-0,1 мг замороженной печени, отобранной у животного, в одном миллилитре изопропанола. После 1 ч инкубации на льду образцы центрифугировали при 10000 об/мин в микроцентрифуге и супернатанты переносили в чистый 96-луночный планшет с глубокими лунками. Содержание триглицеридов определяли с использованием колориметрического реагента Infinity Triglyceride Reagent (Thermo Fisher Scientific, TR22421) и Triglyceride Standard (Pointe Scientific, T7531-STD) в соответствии с инструкциями производителя. Результаты представлены в виде миллиграммов триглицеридов на миллиграммы ткани.

Все описанные в данном документе эксперименты на животных были одобрены Институциональным комитетом по уходу и использованию животных (IACUC) компании Amgen и были проведены в соответствии с Guide for the Care and Use of Laboratory Animals, 8th Edition (National Research Council (U.S.), Committee for the Update Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.) u National Academies Press (U.S.) (2011) Guide for the care and use of laboratory animals. 8th Ed., National Academies Press, Washington, D.C. Мышей содержали в одном помещении в комнате с кондиционированным воздухом с температурой 22±2°С и циклом света-темноты с двенадцатичасовым освещением и двенадцатью часами тьмы (0600-1800 ч). Животные имели свободный доступ к стандартному корму (Envigo, 2920X) и к воде (очищенной обратным осмосом) через автоматическую поилку, если не указано иное. По окончании установленного периода кровь собирали посредством пункции сердца под глубоким наркозом, а затем, следуя рекомендациям Ассоциации по оценке и аккредитации лабораторных животных (AAALAC), животных подвергали эвтаназии вторичным физическим методом (фиг. 1A-D). Пример пяти молекул siRNA, которые подвергали скринингу в отношении как дозозависимого нокдауна мРНК, так и функциональной стабильности in vivo. Мышей, экспрессирующих $PNPLA3^{rs738409-rs738408}$ человека, обрабатывали siRNA через две недели после внутривенных инъекций AAV. N=6 мышей на группу; данные представлены в виде среднего значения и стандартной погрешности среднего. (A) siRNA вводили в дозе 0,5, 1,0, 3,0 или 5,0 мг на килограмм веса тела подкожно в область живота мыши. Через четыре недели после обработки с помощью siRNA мышей умерщвляли, а ткани печени отбирали и подвергали обработке для анализа экспрессии генов. Данные представляют усредненный относительный нокдаун PNPLA3^{rs738409-rs738408} человека в каждой группе мышей по сравнению с контрольной группой, обработанной средой-носителем. (В) Ткани печени, отобранные из той же группы, получавшей лечение в течение четырех недель, также подвергали обработке для определения содержания триглицеридов с целью оценки функциональной эффективности средства. Данные представляют усредненное содержание триглицеридов, выраженное в миллиграммах на грамм ткани, подвергнутой обработке. (C) siRNA вводили в дозе 1,0 и 3,0 мг на килограмм веса тела подкожно в области живота животным из параллельной когорты. У мышей отбирали ткани через шесть недель после введения siRNA для сравнения стабильности молекул siRNA in vivo. Печень собирали и подвергали обработке для анализа экспрессии генов. Данные представляют усредненный относительный нокдаун PNPLA3^{rs/38409-rs/38408} человека в каждой группе мышей по сравнению с контрольной группой, обработанной средойносителем. (D) Ткани печени, выделенные из той же группы, получавшей лечение в течение шести недель, также подвергали обработке для определения содержания триглицеридов с целью оценки функциональной эффективности средства с течением времени. Данные представляют усредненное содержание триглицеридов, выраженное в миллиграммах на грамм ткани, подвергнутой обработке.

Данные для относительного нокдауна приведены в табл. 8-12 и показывают относительный нокдаун в дни 8, 15, 22, 28 и 42 соответственно и разные дозы. Нокдаун PNPLA3 выражен в процентной доле с отрицательными значениями, указывающими на снижение уровней PNPLA3.

Таблица 8. День 8, анализ нокдауна PNPLA3

Номер	Вектор на основе ААУ	Частицы	Вводимая	Нокдаун
дуплекса		AAV/животное	доза (мг/кг)	PNPLA3 (%)
D-2092	PNPLA3-I148M	1,00E+12	3	-91,51
D-2092	PNPLA3-I148M	1,00E+12	5	-92,64
D-2095	PNPLA3-I148M	1,00E+12	3	-79,21
D-2095	PNPLA3-I148M	1,00E+12	5	-86,38
D-2068	PNPLA3-I148M	4,00E+11	5	-34,15
D-2069	PNPLA3-I148M	4,00E+11	5	-82,74
D-2070	PNPLA3-I148M	4,00E+11	5	-79,64
D-2071	PNPLA3-I148M	4,00E+11	5	-48,80
D-2071	PNPLA3-WT	4,00E+11	5	-59,43
D-2075	PNPLA3-I148M	4,00E+11	5	-79,10
D-2075	PNPLA3-WT	4,00E+11	5	-60,60
D-2079	PNPLA3-I148M	4,00E+11	5	-50,08
D-2072	PNPLA3-I148M	4,00E+11	5	-44,40
D-2072	PNPLA3-WT	4,00E+11	5	-43,75
D-2077	PNPLA3-I148M	4,00E+11	5	-28,46
D-2076	PNPLA3-I148M	4,00E+11	5	-83,25
D-2078	PNPLA3-I148M	4,00E+11	5	-49,10
D-2078	PNPLA3-WT	4,00E+11	5	-3,45
D-2073	PNPLA3-I148M	4,00E+11	5	-39,42
D-2074	PNPLA3-I148M	4,00E+11	5	-46,68

D-2074	PNPLA3-WT	4,00E+11	5	-5,11
D-2084	PNPLA3-I148M	4,00E+11	5	-87,49
D-2084	PNPLA3-I148M	8,00E+11	5	-88,75
D-2084	PNPLA3-I148M	8,00E+11	1	-16,49
D-2084	PNPLA3-WT	8,00E+11	1	-15,42
D-2085	PNPLA3-I148M	4,00E+11	5	-77,14
D-2085	PNPLA3-I148M	8,00E+11	5	-84,42
D-2085	PNPLA3-I148M	8,00E+11	1	-25,19
D-2085	PNPLA3-WT	8,00E+11	1	-21,14
D-2086	PNPLA3-I148M	4,00E+11	5	-64,54
D-2086	PNPLA3-I148M	4,00E+11	5	-52,95
D-2087	PNPLA3-I148M	4,00E+11	5	-20,15
D-2088	PNPLA3-I148M	4,00E+11	5	-47,18
D-2088	PNPLA3-I148M	8,00E+11	5	-66,96
D-2089	PNPLA3-I148M	8,00E+11	5	-85,47
D-2089	PNPLA3-WT	8,00E+11	1	-21,01
D-2089	PNPLA3-I148M	8,00E+11	1	-34,21
D-2089	PNPLA3-I148M	1,00E+12	5	-90,55
D-2090	PNPLA3-I148M	8,00E+11	5	-89,58
D-2090	PNPLA3-I148M	8,00E+11	1	-50,13
D-2090	PNPLA3-WT	8,00E+11	1	8,76
D-2091	PNPLA3-WT	8,00E+11	5	-35,70
D-2092	PNPLA3-I148M	8,00E+11	5	-92,34
D-2092	PNPLA3-I148M	8,00E+11	1	-51,35
D-2092	PNPLA3-WT	8,00E+11	1	-42,88
D-2093	PNPLA3-I148M	8,00E+11	5	-83,87
D-2094	PNPLA3-I148M	8,00E+11	5	-70,12
D-2095	PNPLA3-I148M	8,00E+11	1	-29,95
D-2095	PNPLA3-WT	8,00E+11	1	67,40
D-2095	PNPLA3-I148M	8,00E+11	5	-85,42
D-2096	PNPLA3-WT	8,00E+11	5	-90,44
D-2081	PNPLA3-I148M	8,00E+11	5	6,25
D-2081	PNPLA3-I148M	8,00E+11	5	-11,81
D-2097	PNPLA3-I148M	8,00E+11	5	-87,61

D-2098	PNPLA3-I148M	8,00E+11	5	-79,84
D-2099	PNPLA3-I148M	8,00E+11	5	-84,36
D-2100	PNPLA3-I148M	8,00E+11	5	-79,67
D-2101	PNPLA3-I148M	8,00E+11	5	-89,64
D-2102	PNPLA3-I148M	8,00E+11	5	-61,49
D-2103	PNPLA3-I148M	8,00E+11	5	-19,65
D-2104	PNPLA3-I148M	8,00E+11	5	-79,70
D-2104	PNPLA3-I148M	1,00E+12	5	-82,87
D-2105	PNPLA3-I148M	8,00E+11	5	-84,49
D-2105	PNPLA3-I148M	1,00E+12	5	-87,71
D-2152	PNPLA3-I148M	1,00E+12	5	-39,35
D-2153	PNPLA3-I148M	1,00E+12	5	-79,04
D-2154	PNPLA3-I148M	1,00E+12	5	-66,72
D-2155	PNPLA3-I148M	1,00E+12	5	-44,68
D-2156	PNPLA3-I148M	1,00E+12	5	-84,72
D-2157	PNPLA3-I148M	1,00E+12	5	-17,25
D-2280	PNPLA3-I148M DM	1,00E+12	5	-99,70
D-2280	PNPLA3 WT	1,00E+12	5	-51,13
D-2295	PNPLA3-WT	1,00E+12	5	-35,90
D-2295	PNPLA3-I148M DM	1,00E+12	5	-94,68
D-2296	PNPLA3-WT	1,00E+12	5	-23,24
D-2296	PNPLA3-I148M DM	1,00E+12	5	-92,78
D-2297	PNPLA3-WT	1,00E+12	5	43,71
D-2297	PNPLA3-I148M DM	1,00E+12	5	-94,59
D-2324	PNPLA3-WT	1,00E+12	5	6,53
D-2324	PNPLA3-I148M DM	1,00E+12	5	-97,39
D-2326	PNPLA3-WT	1,00E+12	5	-8,25
D-2326	PNPLA3-I148M DM	1,00E+12	5	-77,82
D-2328	PNPLA3-WT	1,00E+12	5	-2,12
D-2328	PNPLA3-I148M DM	1,00E+12	5	-92,49

Таблица 9. День 15, анализ нокдауна PNPLA3

Номер дуплекса	Вектор на основе	Частицы	Вводимая	Нокдаун
	AAV	AAV/животное	доза (мг/кг)	PNPLA3 (%)
D-2092	PNPLA3-I148M	1,00E+12	3	-87,58
D-2092	PNPLA3-I148M	1,00E+12	5	-93,96
D-2095	PNPLA3-I148M	1,00E+12	3	-81,73
D-2095	PNPLA3-I148M	1,00E+12	5	-72,99
D-2131	PNPLA3-I148M	1,00E+12	5	-66,02
D-2186	PNPLA3-I148M	1,00E+12	5	-87,67
D-2089	PNPLA3-I148M	1,00E+12	5	-95,01
D-2104	PNPLA3-I148M	1,00E+12	5	-76,01
D-2105	PNPLA3-I148M	1,00E+12	5	-72,67
D-2123	PNPLA3-I148M	1,00E+12	5	-56,93
D-2128	PNPLA3-I148M	1,00E+12	5	-37,26
D-2138	PNPLA3-I148M	1,00E+12	5	-62,16
D-2149	PNPLA3-I148M	1,00E+12	5	-72,34
D-2156	PNPLA3-I148M	1,00E+12	5	-75,81
D-2259	PNPLA3-I148M	1,00E+12	5	-79,15
D-2260	PNPLA3-I148M	1,00E+12	5	-69,97
D-2261	PNPLA3-I148M	1,00E+12	5	-50,40
D-2262	PNPLA3-I148M	1,00E+12	5	-84,36
D-2263	PNPLA3-I148M	1,00E+12	5	-77,08
D-2264	PNPLA3-I148M	1,00E+12	5	-40,86
D-2269	PNPLA3-I148M	1,00E+12	5	-37,55
D-2270	PNPLA3-I148M	1,00E+12	5	-77,42
D-2271	PNPLA3-I148M	1,00E+12	5	-26,87
D-2272	PNPLA3-I148M	1,00E+12	5	-56,05
	PNPLA3-I148M			
D-2280	DM	1,00E+12	3	-86,30
	PNPLA3-I148M			
D-2287	DM	1,00E+12	3	-94,73
	PNPLA3-I148M			
D-2289	DM	1,00E+12	3	-93,48
	PNPLA3-I148M			
D-2292	DM	1,00E+12	3	-82,48
	PNPLA3-I148M			
D-2297	DM	1,00E+12	3	-72,61
D-2322	PNPLA3-I148M	1,00E+12	3	-32,92

	DM			
	PNPLA3-I148M			
D-2324	DM	1,00E+12	3	-87,56
	PNPLA3-I148M			
D-2327	DM	1,00E+12	3	-86,70
D-2345	PNPLA3-WT	1,00E+12	5	-83,48
D-2346	PNPLA3-WT	1,00E+12	5	-75,93
D-2347	PNPLA3-WT	1,00E+12	5	-22,83
D-2348	PNPLA3-WT	1,00E+12	5	-20,09
D-2349	PNPLA3-WT	1,00E+12	5	-67,70
D-2350	PNPLA3-WT	1,00E+12	5	-57,51
D-2351	PNPLA3-WT	1,00E+12	5	-56,11
	PNPLA3-I148M			
D-2352	DM	1,00E+12	3	-92,21
	PNPLA3-I148M			
D-2353	DM	1,00E+12	3	-89,55
	PNPLA3-I148M			
D-2354	DM	1,00E+12	3	-90,21
	PNPLA3-I148M			
D-2358	DM	1,00E+12	3	-95,10
	PNPLA3-I148M			
D-2359	DM	1,00E+12	3	-91,17
	PNPLA3-I148M			
D-2360	DM	1,00E+12	3	-63,98
	PNPLA3-I148M			
D-2361	DM	1,00E+12	3	-92,47
	PNPLA3-I148M			
D-2362	DM	1,00E+12	3	-95,10
	PNPLA3-I148M			
D-2364	DM	1,00E+12	3	-95,31
	PNPLA3-I148M			
D-2370	DM	1,00E+12	3	-95,99
D-2370	PNPLA3 WT	1,00E+12	3	11,88
D-2371	PNPLA3-I148M	1,00E+12	3	-91,14

	DM			
D-2372	PNPLA3-I148M			
D-2372	DM	1,00E+12	3	-93,71
D-2373	PNPLA3-I148M			
D-2373	DM	1,00E+12	3	-73,80
D-2374	PNPLA3-I148M			
D-2374	DM	1,00E+12	3	-75,98
D-2375	PNPLA3-I148M			
D-2313	DM	1,00E+12	3	-96,68
D-2376	PNPLA3-I148M			
D-2370	DM	1,00E+12	3	-96,78
D-2377	PNPLA3-I148M			
D-2377	DM	1,00E+12	3	-96,88
D-2378	PNPLA3-I148M			
D-2376	DM	1,00E+12	3	-97,60
D-2379	PNPLA3-I148M			
D-2379	DM	1,00E+12	3	-94,73
D-2380	PNPLA3-I148M			
D-2300	DM	1,00E+12	3	-94,73
D-2381	PNPLA3-I148M			
D-2361	DM	1,00E+12	3	-76,24
D-2382	PNPLA3-I148M			
D-2302	DM	1,00E+12	3	-80,33
D-2383	PNPLA3-I148M			
D-2303	DM	1,00E+12	3	-71,98
D-2384	PNPLA3-I148M			
D 2304	DM	1,00E+12	3	-87,24
D-2385	PNPLA3-I148M			
D-2303	DM	1,00E+12	3	-78,77
D-2386	PNPLA3-I148M			
2300	DM	1,00E+12	3	-70,58
D-2387	PNPLA3-I148M			
D-2301	DM	1,00E+12	3	-67,09
D-2390	PNPLA3-I148M	1,00E+12	3	-92,97

	DM			
D-2391	PNPLA3-I148M			
D-2391	DM	1,00E+12	3	-94,10
D-2392	PNPLA3-I148M			
D-2392	DM	1,00E+12	3	-92,14
D-2395	PNPLA3-I148M			
D-2393	DM	1,00E+12	3	-85,63
D-2396	PNPLA3-I148M			
D-2390	DM	1,00E+12	3	-94,63
D-2397	PNPLA3-I148M			
D-2397	DM	1,00E+12	3	-92,90
D-2398	PNPLA3-I148M			
D-2398	DM	1,00E+12	3	-95,48
D-2399	PNPLA3-I148M			
D-2399	DM	1,00E+12	3	-93,40
D-2400	PNPLA3-I148M			
D-2400	DM	1,00E+12	3	-97,55
D-2401	PNPLA3-I148M			
D-2401	DM	1,00E+12	3	-96,98
D-2402	PNPLA3-I148M			
D-2402	DM	1,00E+12	3	-97,25
D-2403	PNPLA3 WT	1,00E+12	3	36,90
D-2404	PNPLA3-I148M			
D-2404	DM	1,00E+12	3	-95,08
D-2405	PNPLA3-I148M			
D-2403	DM	1,00E+12	3	-96,93
D-2406	PNPLA3 WT	1,00E+12	3	28,80
D-2395	PNPLA3-I148M			
D-2393	DM	1,00E+12	3	-17,25
D-2396	PNPLA3-I148M			
D-2390	DM	1,00E+12	3	-93,70
	PNPLA3-I148M			
D-2413	DM	1,00E+12	3	-94,80
D-2415	PNPLA3-I148M	1,00E+12	3	-90,95
	DM			
D-2418	PNPLA3-I148M			
D-2410	DM	1,00E+12	3	-88,45
D-2419	PNPLA3 WT	1,00E+12	3	43,72
D-2453	PNPLA3 WT	1,00E+12	3	-81,33
D-2454	PNPLA3 WT	1,00E+12	3	-83,38
D-2455	PNPLA3 WT	1,00E+12	3	-68,85
D-2456	PNPLA3 WT	1,00E+12	3	-89,03
D-2460	PNPLA3 WT	1,00E+12	3	-68,65
D-2461	PNPLA3 WT	1,00E+12	3	-47,85

Таблица 10. День 22, анализ нокдауна PNPLA3

Номер дуплекса	Вектор на	нь 22, анализ нок Частицы	Вводимая	Нокдаун
	основе AAV	AAV/животное	доза (мг/кг)	PNPLA3 (%)
	PNPLA3-			
D-2092	I148M	1,00E+12	3	-74,61
	PNPLA3-			
D-2092	I148M	1,00E+12	5	-85,78
	PNPLA3-			
D-2095	I148M	1,00E+12	3	-27,78
	PNPLA3-			
D-2095	I148M	1,00E+12	5	-33,60
	PNPLA3-			
D-2324	I148M DM	1,00E+12	3	-56,68
	PNPLA3-			
D-2324	I148M DM	1,00E+12	5	-88,02
	PNPLA3-			
D-2089	I148M	1,00E+12	5	-80,86
	PNPLA3-			
D-2104	I148M	1,00E+12	5	-65,61
	PNPLA3-			
D-2105	I148M	1,00E+12	5	-39,67
	PNPLA3-			
D-2280	1148M DM	1,00E+12	5	-84,12
D-2297	PNPLA3-	1,00E+12	3	-58,01
	I148M DM			
	PNPLA3-			
D-2297	I148M DM	1,00E+12	5	-76,43
	PNPLA3-			
D-2352	I148M DM	1,00E+12	5	-92,74
D-2353	PNPLA3-			
	I148M DM	1,00E+12	5	-84,54
D-2354	PNPLA3-			
	I148M DM	1,00E+12	5	-89,06
D-2355	PNPLA3-			
	I148M DM	1,00E+12	5	-95,53
D-2356	PNPLA3-			
	I148M DM	1,00E+12	5	-94,99
D-2357	PNPLA3-			
	I148M DM	1,00E+12	5	-97,37

Таблица 11. День 28, анализ нокдауна PNPLA3

Номер дуплекса	Вектор на основе	Частицы	Вводимая	Нокдаун
	AAV	AAV/животное	доза (мг/кг)	PNPLA3 (%)
D-2092	PNPLA3-I148M	1,00E+12	3	-72,57
D-2092	PNPLA3-I148M	1,00E+12	5	-82,74
D-2095	PNPLA3-I148M	1,00E+12	3	-32,93
D-2095	PNPLA3-I148M	1,00E+12	5	-55,31
D-2089	PNPLA3-I148M	1,00E+12	5	-63,49
D-2104	PNPLA3-I148M	1,00E+12	5	-44,39
D-2105	PNPLA3-I148M	1,00E+12	5	-39,80
	PNPLA3-I148M			
D-2370	DM	1,00E+12	3	-89,28
D-2400	PNPLA3-I148M			
D-2400	DM	1,00E+12	3	-88,23
D-2401	PNPLA3-I148M			
D-2401	DM	1,00E+12	3	-91,95
D-2402	PNPLA3-I148M			
	DM	1,00E+12	0,5	-50,65
D-2402	PNPLA3-I148M	1,00E+12	1	-69,37

	DM			
D-2402	PNPLA3-I148M			
	DM	1,00E+12	3	-96,43
D-2402	PNPLA3-I148M			
	DM	1,00E+12	3	-85,44
D-2402	PNPLA3-I148M			
	DM	1,00E+12	3	-90,52
	PNPLA3-I148M			
D-2404	DM	1,00E+12	3	-95,67
D-2419	PNPLA3-I148M			
D-2419	DM	1,00E+12	0,5	-68,83
D-2419	PNPLA3-I148M	-		
D-2419	DM	1,00E+12	1	-76,88
D-2419	PNPLA3-I148M			
D-2419	DM	1,00E+12	3	-97,53
D-2419	PNPLA3-I148M			
D-241)	DM	1,00E+12	3	-93,95
D-2419	PNPLA3-I148M			
D 2419	DM	1,00E+12	3	-89,66
D-2419	PNPLA3-I148M			
D 2419	DM	1,00E+12	3	-93,25
	PNPLA3-I148M			
D-2420	DM	1,00E+12	3	-95,93
D-2421	PNPLA3-I148M			
2 121	DM	1,00E+12	0,5	-50,01
D-2421	PNPLA3-I148M			
D 2 121	DM	1,00E+12	1	-66,30
D-2421	PNPLA3-I148M			
	DM	1,00E+12	3	-94,99
D-2421	PNPLA3-I148M			
	DM	1,00E+12	3	-80,05
D-2421	PNPLA3 WT	1,00E+12	3	-36,65
D-2421	PNPLA3-I148M			
	DM	1,00E+12	3	-91,08

	PNPLA3-I148M			
D-2425	DM	1,00E+12	3	-16,07
D-2426	PNPLA3-I148M			
D-2426	DM	1,00E+12	3	-37,54
D-2427	PNPLA3-I148M			
D-2427	DM	1,00E+12	3	-25,19
D-2428	PNPLA3-I148M			
D 2420	DM	1,00E+12	3	-16,71
D-2437	PNPLA3-I148M			
D 2437	DM	1,00E+12	3	-93,78
D-2438	PNPLA3-I148M			
D-2436	DM	1,00E+12	3	-90,63
D-2439	PNPLA3-I148M			
D-2439	DM	1,00E+12	3	-88,10
D-2440	PNPLA3-I148M			
D-2440	DM	1,00E+12	3	-95,25
D-2441	PNPLA3-I148M			
D-2441	DM	1,00E+12	3	-90,13
D-2442	PNPLA3-I148M			
D 2442	DM	1,00E+12	3	-57,24
D-2443	PNPLA3-I148M			
D-2443	DM	1,00E+12	3	-95,43
D-2444	PNPLA3-I148M			
D-2444	DM	1,00E+12	3	-90,58
D-2445	PNPLA3-I148M			
D 2113	DM	1,00E+12	3	-84,55
D-2446	PNPLA3-I148M			
D-2440	DM	1,00E+12	3	-81,50
	PNPLA3-I148M			
D-2427	DM	1,00E+12	3	-90,09
D-2462	PNPLA3-I148M			
	DM	1,00E+12	3	-89,20
D-2463	PNPLA3-I148M	1,00E+12	3	-41,25
2 2 100	DM			

D-2464	PNPLA3-I148M	1,00E+12	3	-60,53
D-2404	DM			
D-2465	PNPLA3-I148M	1,00E+12	3	-91,35
D-2403	DM			
D-2466	PNPLA3-I148M	1,00E+12	3	-93,68
D-2400	DM			
D-2467	PNPLA3-I148M	1,00E+12	3	-85,15
D-2407	DM			
D-2472	PNPLA3-I148M	1,00E+12	0,5	-46,58
D-2472	DM			
D-2472	PNPLA3-I148M	1,00E+12	1	-74,47
D-24/2	DM			
D-2472	PNPLA3-I148M	1,00E+12	3	-88,79
D-2472	DM			
D-2472	PNPLA3 WT	1,00E+12	3	-23,16
D-2472	PNPLA3-I148M	1,00E+12	3	-90,54
D-2472	DM			
D-2473	PNPLA3-I148M	1,00E+12	0,5	-57,95
D-2473	DM			
D-2473	PNPLA3-I148M	1,00E+12	1	-71,96
D-2473	DM			
D-2473	PNPLA3-I148M	1,00E+12	3	-91,70
D-2473	DM			
D-2473	PNPLA3-I148M	1,00E+12	3	-85,94
D 2413	DM			
D-2473	PNPLA3 WT	1,00E+12	3	-18,70

Таблица 12. День 42, анализ нокдауна PNPLA3

Номер дуплекса	Вектор на	Частицы	Вводимая	Нокдаун
	основе AAV	AAV/животное	доза (мг/кг)	PNPLA3 (%)
D-2402	PNPLA3-			
D-2402	I148M DM	1,00E+12	1	-57,74
D-2402	PNPLA3-			
D-2402	I148M DM	1,00E+12	3	-83,75
D-2419	PNPLA3-	1,00E+12	1	-71,07

	I148M DM			
D-2419	PNPLA3-			
D-2419	I148M DM	1,00E+12	3	-70,8
D-2421	PNPLA3-			
D-2421	I148M DM	1,00E+12	1	-62,21
D-2421	PNPLA3-			
D-2421	I148M DM	1,00E+12	3	-80,12
D-2472	PNPLA3-			
D-2472	I148M DM	1,00E+12	1	-60,54
D-2472	PNPLA3-			
D-2472	I148M DM	1,00E+12	3	-74,77
D-2473	PNPLA3-			
D-2473	I148M DM	1,00E+12	1	-54,55
D-2473	PNPLA3-			
D-24/3	I148M DM	1,00E+12	3	-81,13

Пример 5. Предотвращение возникновения и спасение от NAFLD путем применения молекул siR-NA в гуманизированной модели мыши с $PNPLA3^{rs738409-rs738408}$

Модель NAFLD/NASH 'Американский синдром ожирения, вызванный образом жизни', или модель ALIOS была разработана путем скармливания мышам рациона с высоким содержанием транс-жиров (45% от общего количества жира) и сахара (Tetri 2008). Для этих исследований самцам мышей линии C57BL/6NCrl (Charles River Laboratories Inc.) возрастом от восьми до десяти недель вводили пустой вектор AAV или вектор AAV8-PNPLA3^{rs738409-rs738408}, как описано ранее. Во время инъекции AAV мышей либо содержали на нормальном корме, либо им скармливали рацион ALIOS (Envigo, TD.06303) в сочетании с питьевой водой, дополненной смесью из 55% фруктозы и 45% глюкозы (Sigma, F0127 и G7021 соответственно), до отбора тканей. В предыдущих экспериментах было установлено, что сверхэкспрессия PNPLA3^{rs738409-rs738408} в данном контексте как ускоряет, так и ухудшает фенотипы NAFLD (данные не по-казаны).

Через две недели после инъекции AAV и начала скармливания указанного рациона мышей обрабатывали путем подкожной инъекции однократной дозы siRNA D-2324 (0,5 мМ), разведенной в фосфатнобуферном солевом растворе (Thermo Fisher Scientific, 14190-136), в дозе 5,0 мг на килограмм животного, либо среды-носителя в качестве контроля. Введение дозы повторяли каждые две недели до отбора тканей. К моменту отбора тканей регистрировали вес тела, затем собирали сыворотку крови путем пункции сердца под анестезией изофлураном, после чего регистрировали показатели веса печени. Срединную долю фиксировали с помощью 10% нейтрального забуференного формалина с последующей обработкой и заливкой парафином. Остаток печени быстро замораживали для анализа содержимого и экспрессии генов, как было описано ранее.

Быстрозамороженную ткань печени обрабатывали для анализа экспрессии РНК и генов, как это было описано ранее. Результаты представлены как для необработанного значения Сt, так и для относительной экспрессии мРНК указанного гена, нормализованной по отношению к Gapdh мыши, (анализы Taq-Man $^{\text{TM}}$ от Invitrogen: PNPLA3 человека, hs00228747_m1; Pnpla3 мыши, Mm00504420_m1; Gapdh мыши, 4352932E).

Фиксированные в формалине ткани обрабатывали для окрашивания гематоксилином и эозином (Dako, CS70030-2, CS70130-2 соответственно) в соответствии с инструкциями производителя. Балльную оценку стеатоза и воспаления проводил сертифицированный патолог.

Анализ сыворотки крови включал анализ содержания TIMP1, биомаркера, ассоциированного с NASH, и фиброза, связанного с NASH (Youssani 2011). ELISA TIMP1 (R&D Systems, MTM100) проводили в соответствии с инструкциями производителя.

Фиг. 2A-G. Для оценки способности молекулы siRNA D-2324, специфичной к PNPLA3^{rs738408}, предотвращать развитие фенотипов, ассоциированных с NAFLD и сверхэкспрессией PNPLA3^{rs738409}, или средуноситель, и их содержали на стандартном корме или переводили на рацион ALIOS. Через две недели после инъекций AAV мышей обрабатывали siRNA или средой-носителем раз в две недели в течение шести недель; в общей сложности проводили три цикла инъекций. У мышей отбирали ткани в момент времени восемь недель. Результаты представлены в виде усредненного значения по группе и стандартной погрешности, при N=8 на группу. Звездочки означают статистическую значимость для когорты AAV8-PNPLA3^{rs738409}-rs738408, которую рассчитали с помощью одностороннего дисперсионного анализа с использованием критерия множественных сравнений Даннетта. (A) Соотношение веса печени (грамм) и веса

тела (грамм) на момент отбора тканей. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, **=0,0018, AAV-PNPLA3^{rs738409-rs738408}+siRNA, **** < 0,0001. (В) Подтверждение экспрессии и сайленсинга мРНК PNPLA3 человека в печени с помощью qPCR. (слева) Необработанное значение Сt и (справа) относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши; сравнение групп, которым скармливали рацион ALIOS, а именно PNPLA3^{rs738409-rs738408}+среда-носитель и PNPLA3^{rs738409-rs738408}+siRNA. (C) Анализ экспрессии мРНК Pnpla3 мыши в печени с помощью qPCR указывает на то, что уровень экспрессии эндогенного Pnpla3 существенно не изменяется при сверхэкспрессии, опосредованной ААV, или при сайленсинге, индуцированном siRNA. (слева) Необработанное значение Ct и (справа) относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши: сравнение группы со стандартным рационом без AAV с группами, которым скармливали рацион ALIOS, а именно PNPLA3^{тs/38409-тs/38408}+среда-носитель и PNPLA3^{rs738409-rs738408}+siRNA. (D) Содержание триглицеридов в печени представлено в миллиграммах триглицеридов на грамм ткани печени. Скорректированные Р-значения: группа без AAV+среда-AAV-PNPLA3^{rs738409-rs738408}+siRNA. ****<0,0001, AAV-EV+среда-носитель, *=0,0393, **=0,0063. (E) Уровни TIMP1 в сыворотке крови представлены в пикограммах на миллилитр сыворотки крови. Скорректированные P-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, ****<0,0001, AAV-PNPLA3 $^{rs738409-rs738408}$ +siRNA, ****<0,0001. (F) Гистологический признак стеатоза по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Рзначения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, не значимо, AAV-PNPLA3 $^{rs738409-rs738408}$ +siRNA, **=0,0012. (F) Гистологический признак воспаления по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Р-значения: группа без AAV+среда-носитель. ****<0.0001. AAV-EV+среда-носитель. ****<0.0001. AAV-PNPLA3^{rs738409}rs738408+siRNA, ****<0,0001.

Фиг. 3А-G. Для оценки способности молекулы siRNA, специфичной к PNPLA3^{rs738409-rs738408}, предотвращать дальнейшее прогрессирование заболевания, опосредованного PNPLA3^{rs738409-rs738408}, после начала заболевания мышам вводили пустой вектор (EV) AAV8, или вектор AAV8-PNPLA3^{rs738409-rs738408}, или среду-носитель, и их содержали на стандартном корме или переводили на рацион ALIOS. Через восемь недель после инъекций AAV и изменений рациона мышей обрабатывали siRNA или средой-носителем, раз в две недели в течение дополнительных восьми недель; в общей сложности проводили четыре цикла инъекций. У мышей отбирали ткани в момент времени шестнадцать недель. Хотя не наблюдали какихлибо изменений в стеатозе, если обработку с использованием siRNA начинали после индукции заболевания, некоторые другие конечные эффекты, ассоциированные с заболеванием, были значительно снижены. Результаты представлены в виде усредненных значений и стандартной погрешности, при N=8 на группу. Звездочки означают статистическую значимость для когорты ÂAV8-PNPLA3^{rs738409}-rs^{†38408}, которую рассчитали с помощью одностороннего дисперсионного анализа с использованием критерия множественных сравнений Даннетта. (А) Соотношение веса печени (грамм) и веса тела (грамм) на момент отбора тканей. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, не значимо, AAV-PNPLA3^{rs738409}-rs738408+siRNA, ***=0,0006. (В) Подтверждение экспрессии и сайленсинга мРНК PNPLA3 человека в печени с помощью qPCR. (слева) Необработанное значение Сt и (справа) относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши; сравнение групп, которым скармливали рацион ALIOS, а именно PNPLA3^{тs738409-тs738408}+среданоситель и PNPLA3^{тs/38409-тs/38408}+siRNA. (C) Анализ экспрессии мРНК Pnpla3 мыши в печени с помощью qPCR указывает на то, что уровень экспрессии эндогенного Pnpla3 существенно не изменяется при сверхэкспрессии, опосредованной AAV, или при сайленсинге, индуцированном siRNA. (слева) Необработанное значение Сt и (справа) относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши; сравнение группы со стандартным рационом без AAV с группами, которым скармливали рацион ALIOS, а именно PNPLA3^{rs738409}-гs738408+среда-носитель и PNPLA3^{rs738409}rs738408+siRNA. (D) Содержание триглицеридов в печени представлено в миллиграммах триглицеридов на грамм ткани печени. Скорректированные Р-значения: ААV-ЕV+среда-носитель, не значимо, ААV-PNPLA3^{rs738409-rs738408}+siRNA, *=0,0403. (E) Уровни ТІМР1 в сыворотке крови представлены в пикограммах на миллилитр сыворотки крови. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, **=0,0027, AAV-PNPLA3^{rs738409-rs738408}+siRNA, **=0,002. (F) Гистологический признак стеатоза по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, не значимо, AAV-PNPLA3^{rs738409}+siRNA, не значимо. (F) Гистологический признак воспаления по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Рзначения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, незначимо, AAV-

PNPLA3^{rs738409-rs738408}+siRNA, **=0,0068.

Фиг. 4А-D. Для оценки способности молекулы siRNA, специфичной к PNPLA3^{тs738409-тs738408}, спасать ассоциированные с заболеванием фенотипы, обусловленные сверхэкспрессией PNPLA3^{rs738409-rs738408}, проводили сравнение печени и сыворотки крови, полученные от мышей, которым скармливали рацион ALI-OS, которых в течение восьми недель обрабатывали AAV8-PNPLA3^{тs738409}-гs738408 со средой-носителем, с образцами печени и сыворотки крови мышей с AAV8-PNPLA3^{rs738408}, которым скармливали рацион ALIOS, которым в течение шестнадцати недель вводили siRNA. Хотя к данному моменту времени обработки с использованием siRNA не наблюдали каких-либо изменений в стеатозе, уровни триглицеридов в печени, TIMP1 в сыворотке крови и воспаление были статистически ниже на момент времени шестнадцать недель по сравнению с контрольными группами на момент времени восемь недель, которым вводили среду-носитель. Результаты представлены в виде усредненных значений и стандартной погрешности, при N=8 на группу. Звездочки означают статистическую значимость для когорты, которой в течение восьми недель вводили AAV8-PNPLA3^{гs738409}-гs738408 со средой-носителем, которую рассчитали с помощью одностороннего дисперсионного анализа с использованием критерия множественных сравнений Даннетта. (А) Содержание триглицеридов в печени представлено в миллиграммах триглицеридов на грамм ткани печени. Скорректированные Р-значения: 16 нед. AAV-PNPLA3^{rs/38409-rs/38408}+среда-носитель, незначимо; 16 нед. AAV-PNPLA3^{rs738409-rs738408}+siRNA, **=0,0011. (В) Уровни Тітр1 в сыворотке крови представлены в пикограммах на миллилитр сыворотки крови. Скорректированные Р-значения: 16 нед. AAV-PNPLA3^{rs738409-rs738408}+среда-носитель, не значимо; 16 нед. AAV-PNPLA3^{rs738409-rs738408}+siRNA, *=0,0134. (С) Гистологический признак стеатоза по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Р-значения: 16 нед. AAV-PNPLA3^{rs/38409}-rs⁷³⁸⁴⁰⁹+среданоситель, не достоверно; 16 нед. AAV-PNPLA3^{rs738409}-rs⁷³⁸⁴⁰⁸+siRNA, не значимо. (D) Гистологический признак воспаления по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Р-значения: 16 нед. AAV- PNPLA3^{rs738409-rs738408}+среда-носитель, не значимо; 16 нед. AAV-PNPLA3^{rs738409-rs738408}+siRNA, *=0,0112.

Пример 6. Предотвращение возникновения фиброза печени путем применения молекул siRNA в гуманизированной модели мыши с $PNPLA3^{rs738409-rs738408}$

Рацион "AMLN", разработанный Amylin Pharmaceuticals (Clapper 2013), представляет собой модифицированный вариант рациона ALIOS. Такая пища предусматривает уровень холестерина, повышенный в десять раз (2%), и дополнительную сахарозу. У мышей, находящихся на рационе "AMLN", через 20-30 недель развивался фиброз со степенью от легкой или умеренной (публикации Clapper, Mells and Kristiansen). Для этих исследований самцам мышей линии C57BL/6NCrl (Charles River Laboratories Inc.) возрастом от восьми до десяти недель вводили пустой вектор AAV или вектор AAV-PNPLA3^{гь738409-гь738408}, как было описано ранее, для ускорения начала заболевания. Во время инъекции AAV мышей продолжали содержать на стандартном корме или им скармливали рацион Envigo TD.170748 в сочетании с питьевой водой, дополненной смесью из 55% фруктозы и 45% глюкозы (Sigma, F0127 и G7021 соответственно), до умершвления.

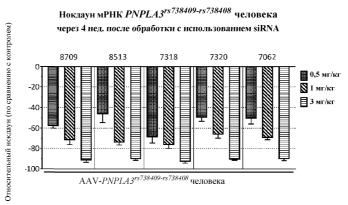
Через две недели после инъекции AAV и начала скармливания указанного рациона мышей обрабатывали путем подкожной инъекции однократной дозы siRNA D-2324 (0,5 мМ), разведенной в фосфатнобуферном солевом растворе (Thermo Fisher Scientific, 14190-136), в дозе 5,0 мг на килограмм животного, либо среды-носителя в качестве контроля. Введение дозы повторяли каждые две недели до отбора тканей. К моменту отбора тканей регистрировали вес тела, затем собирали сыворотку крови путем пункции сердца под анестезией изофлураном, после чего регистрировали показатели веса печени. Срединную долю фиксировали с помощью 10% нейтрального забуференного формалина с последующей обработкой и заливкой парафином. Остаток печени быстро замораживали для анализа экспрессии генов.

Быстрозамороженную ткань печени обрабатывали для анализа экспрессии РНК и генов, как это было описано ранее. Результаты представлены как для необработанного значения Сt, так и для относительной экспрессии мРНК указанного гена, нормализованной по отношению к Gapdh мыши, (анализы Таq-Мап™ от Invitrogen: PNPLA3 человека, hs00228747_m1; Pnpla3 мыши, Mm00504420_m1; Col1a1 мыши, Mm00801666_g1; Col3al мыши, Mm01254471_g1; Col4a1, Mm01210125_m1; Gapdh мыши, 4352932E). Col1a1, Col3a1 и Col4a1 представляют собой маркеры внеклеточного матрикса, связанные с активацией звездчатых клеток печени и фиброзом печени (Baiocchini 2016).

Фиксированные в формалине ткани обрабатывали для окрашивания гематоксилином, эозином и трихромом Массона (Dako, CS70030-2, CS70130-2, AR17311-2 соответственно) в соответствии с инструкциями производителя. Окрашивание актина гладких мышц выполняли без демаскировки антигена и с использованием устройства для автоматического окрашивания DAKO. Срезы обрабатывали с использованием пероксидазы-1 и Sniper (Biocare, PX968 и BS966 соответственно) и окрашивали моноклональными антителами к альфа-актину гладких мышц (Sigma, F3777), затем кроличьим антителом к FITC (Invitrogen, 711900), полимером Envision-Rabbit HRP (Dako, K4003), DAB⁺ (Dako, K3468) и гематоксилином. Оценку степени стеатоза, воспаления, гиперплазии овальных клеток/желчных протоков и количества

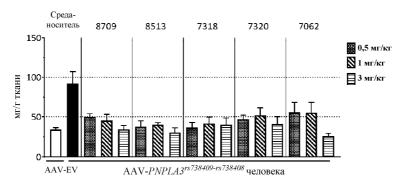
αSMA-положительных клеток проводил сертифицированный патолог.

Проводили анализ сыворотки крови на содержание TIMP1 мыши (R&D Systems, MTM100) и мышиного цитокератина 18-M30 (Cusabio, CSB-E14265m) в соответствии с инструкциями производителя. В дополнение к TIMP1, цитокин 18-M30 был идентифицирован как потенциальный биомаркер NAFLD/NASH, в том числе раннего фиброза (Neuman 2014 и Yang 2015).

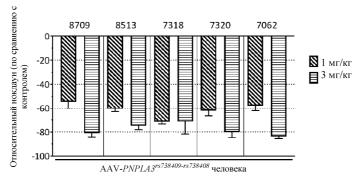

Фиг. 5А-L. Для оценки способности молекулы siRNA, специфичной к PNPLA3^{rs738409-rs738408}, предотвращать развитие раннего фиброза, мышам вводили пустой вектор (EV) AAV8, или вектор AAV8-98, или среду-носитель, и их содержали на стандартном корме или переводили на рацион AMLN. Через две недели после инъекций AAV мышей обрабатывали siRNA D-2324 или средойносителем раз в две недели в течение шести недель; в общей сложности проводили шесть циклов инъекций. У мышей отбирали ткани в момент времени десять недель. Результаты представлены в виде усредненных значений и стандартной погрешности, стандартный корм без AAV+среда-носитель и корм AMLN с вектором AAV8-PNPLA3^{rs738409-rs738408}+среда-носитель, N=8 на группу; рацион AMLN с вектором AAV8-PNPLA3^{rs738409-rs738408}+среда-носитель и с вектором AAV8-PNPLA3^{rs738409-rs738408}+siRNA, N=12 на группу. Звездочки означают статистическую значимость для когорты, которую обрабатывали AAV8-PNPLA3^{rs738409-rs738408} со средой-носителем, которую рассчитали с помощью одностороннего дисперсионного анализа с использованием критерия множественных сравнений Даннетта. (А) Соотношение веса печени (грамм) и веса тела (грамм) на момент отбора тканей. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, не значимо, AAV-PNPLA3^{тs/38409}rs738408+siRNA, ****<0,0001. (В) Подтверждение экспрессии и сайленсинга мРНК PNPLA3 человека в печени с помощью qPCR. (слева) Необработанное значение Сt и (справа) относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши; сравнение групп PNPLA3^{rs/38409-rs/38408}+среданоситель и PNPLA3^{rs738409-rs738408}+siRNA. (C) Анализ экспрессии мРНК Pnpla3 мыши в печени с помощью qPCR указывает на то, что уровень экспрессии эндогенного Pnpla3 существенно не изменяется при сверхэкспрессии, опосредованной AAV, или при сайленсинге, индуцированном siRNA. (слева) Необработанное значение Сt и (справа) относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши; сравнение группы со стандартным рационом без AAV с группами, которым скармливали рацион AMLN, а именно PNPLA3^{rs738409}+среда-носитель и PNPLA3^{rs738409}rs738408+siRNA. (D) Уровни Timp1 в сыворотке крови представлены в пикограммах на миллилитр сыворотки крови. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, ****<0,0001, AAV-PNPLA3^{rs/38409-rs/38408}+siRNA, ****<0,0001. (E) Уровни СК18m30 в сыворотке крови представлены в пикограммах на миллилитр сыворотки крови. Скорректированные Рзначения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, ****<0,0001, AAV-PNPLA3^{rs738409-rs738409}+siRNA, ****<0,0001. (D) Гистологический признак воспаления по результатам окрашивания гематоксилином и эозином, выражаемый в баллах как: в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Р-значения: группа без ****<0,0001, AAV-PNPLA3rs738409-AAV+среда-носитель, AAV-EV+среда-носитель, *=0.0108. ^{тs738408}+siRNA, ****<0,0001. (G) Гистологический признак гиперплазии овальных клеток/желчных протоков по результатам окрашивания гематоксилином и эозином, оцениваемый как; в пределах нормы (0), минимальный (1), легкий (2), умеренный (3) и сильно выраженный (4). Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, не значимо, AAV-PNPLA3^{rs738409-rs738408}+siRNA, **=0,0081. (H) Иммуногистохимическое окрашивание антителом к актину гладких мышц, оцениваемое как: в пределах нормы (0), минимальное (1), легкое (2), умеренное (3) и сильно выраженное (4). Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, *=0,0101, AAV-PNPLA3 $^{rs738409-rs738408}$ +siRNA, ***=0,0002. (I) Окрашивание трихромом Массона на фиброз, оцениваемое как: в пределах нормы (0), минимальное (1), легкое (2), умеренное (3) и сильно выраженное (4). Скорректированные Р-значения: группа без AAV+среданоситель, ****<0,0001, AAV-EV+среда-носитель, не значимо, AAV-PNPLA3^{rs738409}-rs⁷³⁸⁴⁰⁸+siRNA, не значимо. (J) Экспрессия мРНК Col1a1 мыши в печени, оцениваемая с помощью qPCR. Относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши. Скорректированные Рзначения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среда-носитель, ****<0,0001, AAV-PNPLA3^{rs738409-rs738408}+siRNA, ****<0,0001. (К) Экспрессия мРНК Col3a1 мыши в печени, оцениваемая с помощью qPCR. Относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0,0001, AAV-EV+среданоситель, ****<0,0001, AAV-PNPLA3^{rs738409}-rs738408+siRNA, ****<0,0001. (L) Экспрессия мРНК Col4a мыши в печени, оцениваемая с помощью qPCR. Относительная кратность экспрессии мРНК, нормализованная по отношению к Gapdh мыши. Скорректированные Р-значения: группа без AAV+среда-носитель, ****<0.0001. AAV-EV+среда-носитель. ***<0.0005. AAV-PNPLA3^{rs738409}-rs⁷³⁸⁴⁰⁸+siRNA. **<0.0041.

ФОРМУЛА ИЗОБРЕТЕНИЯ

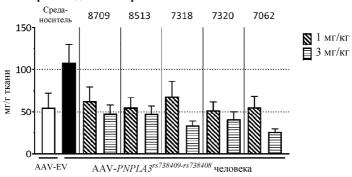
- 1. Конструкция для RNAi, содержащая смысловую нить и антисмысловую нить, где антисмысловая нить содержит антисмысловую последовательность, представленную в табл. 1 или 2, и где конструкция для RNAi подавляет экспрессию пататин-подобного фосфолипазного домена 3 (PNPLA3).
- 2. Конструкция для RNAi по п.1, где антисмысловая нить содержит участок, который комплементарен последовательности мРНК PNPLA3.
- 3. Конструкция для RNAi по любому из предыдущих пунктов, где смысловая нить содержит участок, имеющий смысловую последовательность, представленную в табл. 1 или 2.
- 4. Конструкция для RNAi по любому из предыдущих пунктов, где конструкция предпочтительно подавляет минорный аллель PNPLA3-rs738409.
- 5. Конструкция для RNAi по п.4, где конструкция по меньшей мере на 10% сильнее подавляет минорный аллель PNPLA3-rs738409, чем основной аллель.
- 6. Конструкция для RNAi по любому из предыдущих пунктов, где конструкция предпочтительно подавляет минорный аллель PNPLA3-rs738408.
- 7. Конструкция для RNAi по п.6, где конструкция по меньшей мере на 10% сильнее подавляет два минорных аллеля PNPLA3-rs738409-rs738408, чем основной аллель.
- 8. Конструкция для RNAi по любому из предыдущих пунктов, где смысловая нить содержит последовательность, которая в достаточной степени комплементарна последовательности антисмысловой нити, чтобы образовать дуплексный участок длиной от приблизительно 19 до приблизительно 21 пар оснований.
 - 9. Конструкция для RNAi по п.8, где длина дуплексного участка составляет 19 пар оснований.
- 10. Конструкция для RNAi по любому из пп.8-11, где длина каждой из смысловой нити и антисмысловой нити составляет от приблизительно 21 до приблизительно 23 нуклеотидов.
- 11. Конструкция для RNAi по любому из пп.1-10, где конструкция для RNAi содержит по меньшей мере один тупой конец.
- 12. Конструкция для RNAi по любому из пп.1-10, где конструкция для RNAi содержит по меньшей мере один нуклеотидный липкий конец из 1-4 неспаренных нуклеотидов.
- 13. Конструкция для RNAi по п.12, где нуклеотидный липкий конец имеет 2 неспаренных нуклеотила.
- 14. Конструкция для RNAi по п.12 или 13, где конструкция для RNAi содержит нуклеотидный липкий конец на 3'-конце смысловой нити, 3'-конце антисмысловой нити или 3'-конце как смысловой нити, так и антисмысловой нити.
- 15. Конструкция для RNAi по любому из пп.12-14, где нуклеотидный липкий конец содержит динуклеотид 5'-UU-3' или динуклеотид 5'-dTdT-3'.
- 16. Конструкция для RNAi по любому из пп.1-15, где конструкция для RNAi содержит по меньшей мере один модифицированный нуклеотид.
- 17. Конструкция для RNAi по п.16, где модифицированный нуклеотид представляет собой 2'-фтормодифицированный нуклеотид, 2'-О-метил-модифицированный нуклеотид, 2'-О-метоксиэтил-модифицированный нуклеотид, 2'-О-аллил-модифицированный нуклеотид, бициклическую нуклеиновую кислоту (BNA), гликолевую нуклеиновую кислоту, инвертированное основание или их комбинации.
- 18. Конструкция для RNAi по п.17, где модифицированный нуклеотид представляет собой 2'-О-метил-модифицированный нуклеотид, 2'-О-метоксиэтил-модифицированный нуклеотид, 2'-фтор-модифицированный нуклеотид или их комбинации.
- 19. Конструкция для RNAi по п.18, где модифицированные нуклеотиды представляют собой 2'-Ометил-модифицированные нуклеотиды, 2'-фтор-модифицированные нуклеотиды или их комбинации.
- 20. Конструкция для RNAi по любому из пп.1-19, где конструкция для RNAi содержит по меньшей мере одну фосфоротиоатную межнуклеотидную связь.
- 21. Конструкция для RNAi по п.20, где конструкция для RNAi содержит две последовательные фосфоротиоатные межнуклеотидные связи на 3'-конце антисмысловой нити.
- 22. Конструкция для RNAi по п.20, где конструкция для RNAi содержит две последовательные фосфоротиоатные межнуклеотидные связи как на 3'-, так и на 5'-конце антисмысловой нити и две последовательные фосфоротиоатные межнуклеотидные связи на 5'-конце смысловой нити.
- 23. Конструкция для RNAi по любому из пп.1-22, где антисмысловая нить содержит последовательность, выбранную из антисмысловых последовательностей, представленных в табл. 1 или 2.
- 24. Конструкция для RNAi по п.23, где смысловая нить содержит последовательность, выбранную из смысловых последовательностей, представленных в табл. 1 или 2.
- 25. Конструкция для RNAi по любому из пп.1-24, где конструкция для RNAi представляет собой любое из дуплексных соединений, представленных в любой из табл. 1, 2.
- 26. Конструкция для RNAi по любому из пп.1-25, где конструкция для RNAi обеспечивает снижение уровня экспрессии PNPLA3 в клетках печени после инкубации с конструкцией для RNAi по сравнению с уровнем экспрессии PNPLA3 в клетках печени, которые инкубировали с контрольной конструкци-


ей для RNAi.

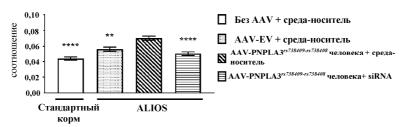
- 27. Конструкция для RNAi по п.26, где клетки печени представляют собой клетки Hep3B или HepG2.
- 28. Конструкция для RNAi по любому из пп.1-27, где конструкция для RNAi по меньшей мере на 10% подавляет экспрессию PNPLA3 при 5 нМ в клетках Hep3B in vitro.
- 29. Конструкция для RNAi по любому из пп.1-27, где конструкция для RNAi по меньшей мере на 10% подавляет экспрессию PNPLA3 при 5 нМ в клетках HepG2 in vitro.
- 30. Конструкция для RNAi по любому из пп.1-27, где конструкция для RNAi подавляет экспрессию PNPLA3 в клетках Hep3B со значением IC_{50} , составляющим менее приблизительно 1 нМ.
- 31. Конструкция для RNAi по любому из пп.1-27, где конструкция для RNAi подавляет экспрессию PNPLA3 в клетках HepG2 со значением IC_{50} , составляющим менее приблизительно 1 HM.
- 32. Фармацевтическая композиция, содержащая конструкцию для RNAi по любому из пп.1-31 и фармацевтически приемлемые носитель, наполнитель или разбавитель.
- 33. Способ снижения экспрессии PNPLA3 у нуждающегося в этом пациента, предусматривающий введение пациенту конструкции для RNAi по любому из пп.1-31.
- 34. Способ по п.33, где уровень экспрессии PNPLA3 в гепатоцитах снижается у пациента после введения конструкции для RNAi по сравнению с уровнем экспрессии PNPLA3 у пациента, не получающего конструкцию для RNAi.


Фиг. 1А

Содержание триглицеридов в печени через 4 нед. после обработки с использованием siRNA

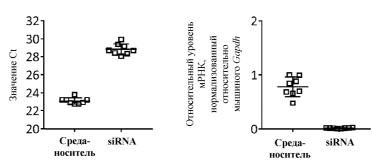

Фиг. 1В

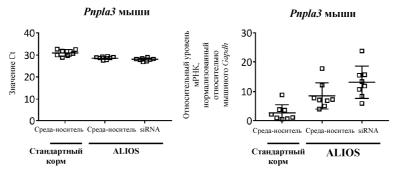
Нокдаун мРНК $PNPLA3^{rs738409\text{-}rs738408}$ человека через 6 нед. после обработки с использованием siRNA


Фиг. 1С

Содержание триглицеридов в печени через 6 нед. после обработки с использованием siRNA

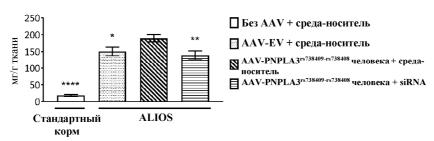
Фиг. 1D


Вес печени/вес тела

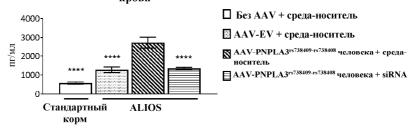

Фиг. 2А

PNPLA3 человека

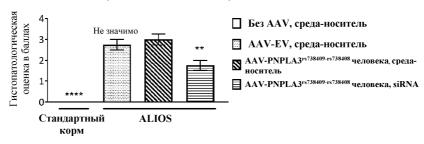
PNPLA3 человека



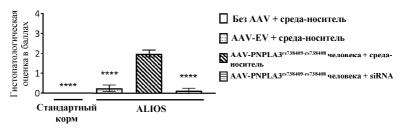
Фиг. 2В


Фиг. 2С

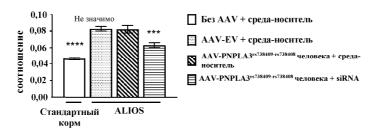
TG в печени


Фиг. 2D

ТІМР1 в сыворотке крови

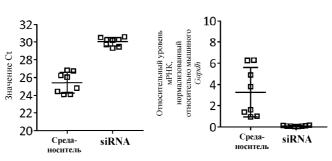

Фиг. 2Е

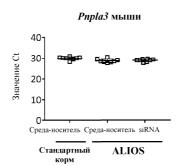
Стеатоз (гематоксилин и эозин)


Фиг. 2F

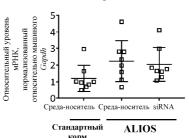
Воспаление (гематоксилин и эозин)

Фиг. 2G

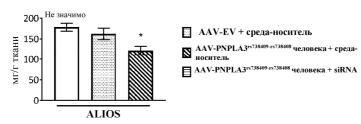

Вес печени/вес тела


Фиг. 3А

PNPLA3 человека


PNPLA3 человека

Фиг. 3В

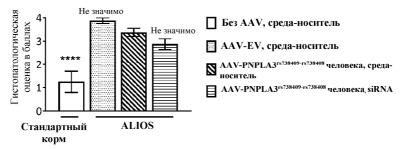


Pnpla3 мыши

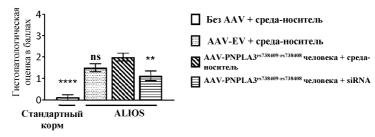


Фиг. 3С

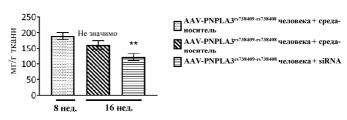
TG в печени



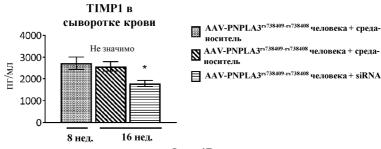
Фиг. 3D


Фиг. 3Е

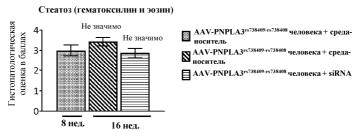
Стеатоз (гематоксилин и эозин)


Фиг. 3F

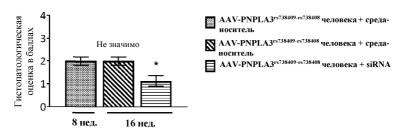
Воспаление (гематоксилин и эозин)



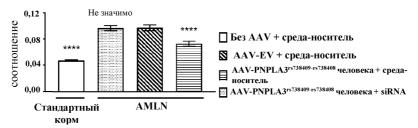
Фиг. 3G


TG в печени

Фиг. 4А

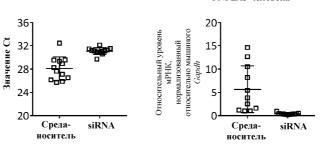


Фиг. 4В


Фиг. 4С

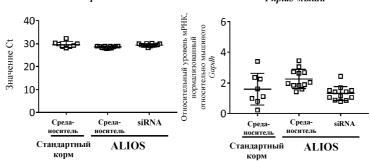
Воспаление (гематоксилин и эозин)

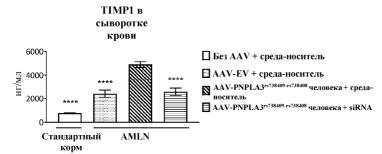
Фиг. 4D

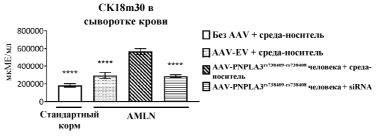

Вес печени/вес тела

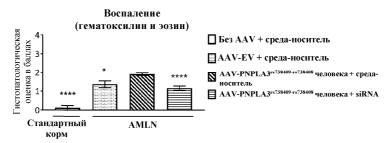
Фиг. 5А

PNPLA3 человека

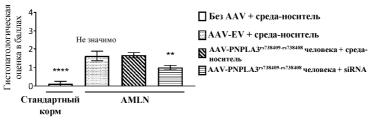

PNPLA3 человека


Фиг. 5В

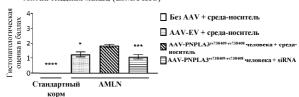

Pnpla3 мыши


Фиг. 5С

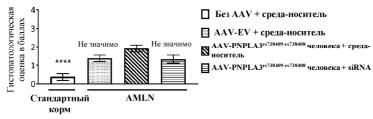
Фиг. 5D



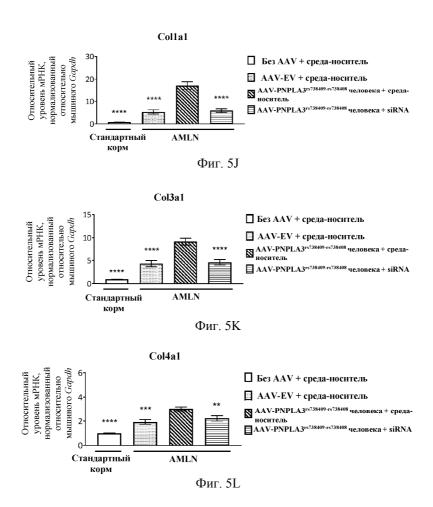
Фиг. 5Е


Фиг. 5F

Гиперплазия овальных клеток печени/жёлчных протоков (гематоксилин и эозин)


Фиг. 5G

Актин гладких мышц (αSMA IHC)



Фиг. 5Н

Фиброз (трихром Массона)

Фиг. 5І

