(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- Дата публикации заявки (43) 2023.11.09
- (22) Дата подачи заявки 2022.03.22

- (51) Int. Cl. A61K 9/00 (2006.01) A61K 38/00 (2006.01) A61K 47/10 (2017.01) **A61K 47/26** (2006.01) **A61P 3/10** (2006.01)
- КОМПОЗИЦИИ, СОДЕРЖАЩИЕ АНАЛОГИ ИНКРЕТИНА, И ИХ ПРИМЕНЕНИЕ
- (31) 63/164,702
- (32)2021.03.23
- (33)US
- (86) PCT/US2022/021309
- (87) WO 2022/204117 2022.09.29
- (71) Заявитель: ЭЛИ ЛИЛЛИ ЭНД КОМПАНИ (US)
- (72) Изобретатель:

Гопалратхнам Ганапати, Майни Кристофер Сирс (US)

(74) Представитель:

Гизатуллина Е.М., Гизатуллин Ш.Ф., Угрюмов В.М., Строкова О.В., Джермакян Р.В., Костюшенкова М.Ю. (RU)

Предложена композиция, которая включает аналог инкретина, обладающий активностью в (57) отношении каждого из рецепторов глюкозозависимого инсулинотропного полипептида (GIP), глюкагоноподобного пептида-1 (GLP-1) и глюкагона (GCG) (т.е. агонист трех рецепторов), и один или более дополнительных агентов, таких как регулятор тоничности и консервант. Также предложены способы лечения заболеваний, таких как сахарный диабет 2 типа, дислипидемия, метаболический синдром, неалкогольная жировая дистрофия печени, неалкогольный стеатогепатит и ожирение, с помощью композиции.

КОМПОЗИЦИИ, СОДЕРЖАЩИЕ АНАЛОГИ ИНКРЕТИНА, И ИХ ПРИМЕНЕНИЕ

[0001] Описание относится к композициям, содержащим аналог инкретина, обладающим активностью в отношении каждого из рецептора глюкозозависимого инсулинотропного полипептида (GIP), рецептора глюкагоноподобного пептида-1 (GLP-1) и рецептора глюкагона (GCG). Композиции дополнительно включают в себя агенты, которые обеспечивают коммерчески приемлемую стабильность при хранении, стабильность при применении и приемлемые ощущения пациента в месте инъекции. Такие композиции, содержащие аналоги инкретина, могут применяться для лечения состояний, заболеваний и расстройств, включая сахарный диабет (в частности, сахарный диабет 2 типа (Т2DM)), дислипидемию, метаболический синдром, неалкогольную жировую дистрофию печени (NAFLD), неалкогольный стеатогепатит (NASH) и/или ожирение.

[0002] За последние несколько десятилетий продолжает расти заболеваемость сахарным диабетом, который представляет собой хроническое расстройство, характеризующееся гипергликемией, возникающей в результате нарушения секреции инсулина, действия инсулина или их обоих. Т2DM является наиболее распространенной формой диабета, составляющей примерно 90% всех форм диабета. В Т2DM комбинированные воздействия нарушения секреции инсулина и резистентности к инсулину связаны с повышенным уровнем глюкозы в крови.

[0003] Неконтролируемый диабет может привести к одному или более состояний, которые влияют на заболеваемость и смертность таких субъектов. Одним из основных факторов риска для T2DM является ожирение, и большинство субъектов с T2DM (~ 90%) имеют избыточный вес или ожирение. Задокументировано, что снижение степени содержания жира в организме приводит к уменьшению проявлений сопутствующих заболеваний, связанных с ожирением, включая гипергликемию и сердечно-сосудистые осложнения.

[0004] Существующая стандартная терапия T2DM включает диету и физические нагрузки, а также лечение пероральными лекарственными средствами и инъекционными препаратами, снижающими уровень глюкозы, включая препараты на основе инкретина, такие как агонисты рецептора GLP-1 и агонисты рецептора GIP/GLP-1 (GG). Несмотря на доступные варианты лечения, значительное число субъектов, получающих одобренные препараты, не достигают целей гликемического контроля (см., например, Casagrande et al. (2013) Diabetes Care 36:2271–2279).

[0005] В публикации международной заявки на патент № WO 2019/125929 и WO 2019/125938, а также в международной заявке на патент № PCT/US2020/064512 описаны

аналоги инкретина, которые действуют как агонисты трех рецепторов GCG, GLP-1 и GIP (GGG) и которые можно применять для лечения T2DM. Таким образом, существует потребность в композициях, включающих такие агонисты трех рецепторов GGG, имеющие приемлемую стабильность и приемлемые ощущения в месте инъекции для субъекта, получающего такое же средство, для эффективного контроля уровня глюкозы и снижения веса при лечении заболевания T2DM.

[0006] Для удовлетворения этой потребности в описании сначала описана фармацевтически приемлемая композиция, которая включает аналог инкретина или его фармацевтически приемлемую соль, регулятор тоничности и необязательно консервант.

[0007] В некоторых случаях аналог инкретина может представлять собой SEQ ID NO: 1 или его фармацевтически приемлемую соль. В некоторых случаях аналог инкретина может находиться в концентрации от примерно 1 мг/мл до примерно 30 мг/мл. В определенных случаях аналог инкретина может находиться в концентрации 1 мг/мл, 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 8 мг/мл, 9 мг/мл, 12 мг/мл, 18 мг/мл, 24 мг/мл или 30 мг/мл. В некоторых случаях фармацевтически приемлемые соли для применения, описанного в настоящем документе, могут быть выбраны из солей натрия, трифторацетатов, гидрохлоридов и/или ацетатов. В некоторых случаях фармацевтически приемлемая соль может представлять собой тетранатриевую соль.

[0008] В некоторых случаях регулятор тоничности может быть выбран из глицерина, маннита и пропиленгликоля. Если регулятор тоничности представляет собой глицерин, он может находиться в концентрации от примерно 5 мг/мл до примерно 50 мг/мл, в частности 20 мг/мл. Если регулятор тоничности представляет собой маннит, он может находиться в концентрации от примерно 10 мг/мл до примерно 100 мг/мл, в частности 46 мг/мл. Если регулятор тоничности представляет собой пропиленгликоль, он может находиться в концентрации от примерно 5 мг/мл до примерно 50 мг/мл, в частности 15 мг/мл. В определенных случаях регулятор тоничности представляет собой маннит при 46 мг/мл.

[0009] В некоторых случаях консервант может быть выбран из м-крезола и фенола. Если консервант представляет собой м-крезол, он может находиться в концентрации от примерно 1 мг/мл до примерно 10 мг/мл, в частности 3,15 мг/мл. Если консервант представляет собой фенол, он может находиться в концентрации от примерно 1 мг/мл до примерно 10 мг/мл, в частности 5 мг/мл. В определенных случаях консервант представляет собой м-крезол при 3,15 мг/мл.

[0010] В некоторых случаях композиция может иметь pH от примерно 7,0 до примерно 8,0, в частности примерно 7,5. В определенных случаях для поддержания pH можно применять

буферную систему, в частности буферную систему ТРИС в концентрации от примерно 10 мМ до примерно 100 мМ, в частности 10 мМ.

[0011] С учетом вышеизложенного и в определенных случаях композиция включает аналог инкретина в концентрации от примерно 2 мг/мл до примерно 30 мг/мл и регулятор тоничности в концентрации от 10 до 50 мг/мл в буферной системе ТРИС при рН примерно 7,5. В некоторых случаях аналог инкретина представляет собой SEQ ID NO: 1. В некоторых случаях регулятор тоничности представляет собой маннит в концентрации 46 мг/мл. В некоторых случаях композиция также включает консервант, такой как м-крезол в концентрации от 3,15 мг/мл. В других случаях композиция также включает консервант, такой как фенол в концентрации 5,0 мг/мл.

В описании также описаны способы лечения диабета, причем такие способы [0012] включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе. В некоторых случаях диабет представляет собой T2DM. Альтернативно в описании описаны способы лечения ожирения, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества композиции, описанной в настоящем документе. Альтернативно в описании описаны способы лечения дислипидемии, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе. Альтернативно в описании описаны способы лечения жировой дистрофии печени, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе. Альтернативно в описании также описаны способы лечения метаболического синдрома, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества/дозы композиции, описанной в настоящем документе. Альтернативно в описании описаны способы лечения NAFLD, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе. Альтернативно в описании описаны способы лечения NASH, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе. Альтернативно в описании описаны способы обеспечения терапевтической потери массы, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в

настоящем документе. Альтернативно в описании описаны способы обеспечения нетерапевтической потери массы, причем такие способы включают по меньшей мере этап введения нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе. Альтернативно в описании описаны способы лечения состояния, опосредованного активностью агониста трех рецепторов GGG, причем такие способы включают по меньшей мере этап введения эффективного количества композиции, описанной в настоящем документе, нуждающемуся в этом субъекту эффективного количества / эффективной дозы композиции, описанной в настоящем документе.

[0013] В некоторых случаях композицию вводят примерно один раз в неделю. В других случаях композицию вводят один раз каждые семь дней.

[0014] В описании дополнительно описана композиция согласно настоящему документу для применения в качестве лекарственного средства.

[0015] В описании дополнительно описана композиция согласно настоящему документу для применения в лечении диабета. Альтернативно в описании описана композиция согласно настоящему документу для применения в лечении ожирения. Альтернативно в описании описана композиция согласно настоящему документу для применения в обеспечении терапевтической потери массы. Альтернативно в описании описана композиция согласно настоящему документу для применения в обеспечении нетерапевтической потери массы.

[0016] В описании дополнительно описано промышленное изделие, включающее композицию согласно настоящему документу. В некоторых случаях промышленное изделие представляет собой многоразовый флакон. В некоторых случаях промышленное изделие представляет собой предварительно заполненный шприц. В некоторых случаях промышленное изделие представляет собой автоматическое устройство для инъекции («автоматический инжектор»; *см.*, например, патент США № 8,734,394). В некоторых случаях промышленное изделие представляет собой насос для непрерывной перфузии, в частности насос для подкожной инфузии.

[0017] Общее описание

[0018] GCG представляет собой гормон с двадцатью девятью аминокислотами, участвующий в метаболизме аминокислот, липидов и углеводов. GCG играет важную роль в регулировании уровня глюкозы в крови между приемами пищи и общем снижении массы тела. GLP-1 представляет собой гормон инкретин, который стимулирует секрецию инсулина и ингибирует секрецию глюкагона. GIP представляет собой желудочный ингибиторный пептид,

который демонстрирует сильное воздействие инкретина на глюкозозависимую секрецию инсулина и оказывает известное комплементарное воздействие с GLP-1 для улучшения контроля уровня глюкозы и потери массы. Предполагается, что синергетические воздействия агониста трех рецепторов GGG для этих трех рецепторов приводят к более действенной, эффективной терапии, чем текущая стандартная терапия. Аналог инкретина SEQ ID NO: 1 представляет собой ацилированный жирной кислотой агонист трех рецепторов GGG длительного действия.

[0019] Если не указано иное, все технические и научные термины, применяемые в настоящем документе, имеют те же значения, которые обычно использует специалист в области техники, к которой относится описание. Хотя любые способы и материалы, аналогичные или эквивалентные способам и материалам, описанным в настоящем документе, можно применять на практике или при тестировании аналогов инкретина, фармацевтических композиций и способов, предпочтительные способы и материалы описаны в настоящем документе.

[0020] Кроме того, упоминание элемента в единственном числе не исключает возможности присутствия более одного элемента, если контекст явно не требует наличия одного и только одного элемента. Соответственно, термины в единственном числе, как правило, означают «по меньшей мере один».

[0021] Определения

[0022] В контексте настоящего документа «примерно» означает в пределах статистически значимого диапазона значения или значений, таких как, например, заявленная концентрация, длина, молекулярная масса, рН, идентичность последовательностей, временные рамки, температура или объем. Такое значение или диапазон может быть в пределах одного порядка величины, как правило, в пределах 20%, более типично в пределах 10% и еще более типично в пределах 5%, от данного значения или диапазона. Допустимое отклонение, включенное в термин «примерно», будет зависеть от конкретной исследуемой системы и может быть легко оценено специалистом в данной области техники.

[0023] В контексте настоящего документа и в отношении одного или более из рецепторов GIP, GLP-1 или GCG «активность», «активировать», «активирующий» и т. п. означают способность соединения, такого как аналоги инкретина, описанные в настоящем документе, связываться с рецептором (-ами) и индуцировать ответ на рецептор (-ы), измеряемый с применением анализов, известных в данной области техники, таких как анализы *in vitro*, описанные ниже.

[0024] В контексте настоящего документа «аминокислота» означает молекулу, которая с химической точки зрения характеризуется содержанием одной или более аминогрупп и одной или более карбоксильно-кислотных групп и может содержать другие функциональные группы. Как известно в данной области техники, существует набор из двадцати аминокислот, которые называют стандартными аминокислотами и которые используют в качестве строительных блоков для большинства пептидов/полипептидов/белков, продуцируемых любым живым существом.

[0025] В контексте настоящего документа «аналог» означает соединение, такое как синтетический пептид или полипептид, которое активирует целевой рецептор и которое вызывает по меньшей мере одно воздействие *in vivo* или *in vitro*, вызываемое агонистом нативного рецептора.

[0026] В контексте настоящего документа «химическая стабильность» означает способность терапевтического агента, вещества или продукта сопротивляться потенциальным изменениям в композиции продукта из-за химических реакций, которые могут возникать, таких как изомеризация, агрегация, окисление, полимеризация, фрагментация и гидролиз.

В контексте настоящего документа «эффективное количество» означает количество, [0027] концентрацию или дозу одного или более аналогов инкретина, описанных в настоящем документе, или их фармацевтически приемлемой соли, которое при введении однократной или многократной дозы нуждающемуся в этом субъекту обеспечивает требуемый эффект у такого субъекта, подвергаемого диагностике или лечению (т. е. может вызывать клинически измеримые различия в состоянии субъекта, такие как, например, снижение уровня глюкозы в крови, снижение уровня HbA1c, снижение массы или жира в организме и/или изменение состава тканей организма). Эффективное количество может быть легко определено специалистом в данной области техники путем применения известных методов и путем анализа результатов, полученных при аналогичных обстоятельствах. При определении эффективного количества для субъекта учитывается ряд факторов, включая, без ограничений, вид млекопитающего, его размер, возраст и общее состояние здоровья, конкретное рассматриваемое заболевание или расстройство, степень, или поражение, или тяжесть заболевания или расстройства, ответ субъекта, конкретный введенный аналог инкретина, способ введения, характеристики биодоступности вводимого препарата, выбранную схему введения, применение сопутствующих лекарственных средств и другие соответствующие обстоятельства.

[0028] В контексте настоящего документа «полумаксимальная эффективная концентрация» или «EC₅₀» означает концентрацию соединения, которая приводит к 50%

активации/стимуляции конечной точки анализа, такой как кривая доза-ответ (например, cAMP).

[0029] В контексте настоящего документа «аналог инкретина» означает соединение, имеющее структурные сходства с каждым из GIP, GLP-1 и GCG, в частности с GIP человека, GLP-1 человека и GCG человека, но при этом множество отличий от них. Описанные в настоящем документе аналоги инкретина включают аминокислотные последовательности, приводящие к соединениям, обладающим аффинностью и активностью в отношении каждого из рецепторов GIP, GLP-1 и GCG (т. е. обладающие агонистической активностью в отношении трех рецепторов). Иллюстративные аналоги инкретина и последовательности для GIP, GLP-1 и GCG человека для применения, описанного в настоящем документе, описаны в публикациях международных заявок на патент № WO 2019/125929 и WO 2019/125938, а также в международной заявке на патент № PCT/US2020/064512. В частности, в настоящем документе представлен пример 12 публикации международной заявки на патент № WO 2019/125938, который имеет следующую последовательность:

YX₂QGTFTSDYSIX₁₃LDKX₁₇AX₁₉X₂₀AFIEYLLX₂₈X₂₉GPSSX₃₄APPPS,

где X_2 представляет собой Aib, X_{13} представляет собой α MeL, X_{17} представляет собой K, X_{19} представляет собой Q, X_{20} представляет собой Aib, X_{28} представляет собой E, X_{29} представляет собой G и X_{34} представляет собой G, где K в положении X_{17} химически модифицирован путем конъюгации эпсилон-аминогруппой боковой цепи K с (2-[2-(2-аминоэтокси)-этокси]-ацетил)-(γ Glu)-CO-(CH₂)₁₈CO₂H, и где C-концевая аминокислота амидирована как C-концевой первичный амид (SEQ ID NO: 1).

[0030] Ниже приведено изображение структуры аналога инкретина SEQ ID NO: 1 с применением стандартных однобуквенных кодов аминокислот за исключением остатков Aib2, αMeL13, K17 и Aib20, где структуры этих аминокислотных остатков были расширены:

[0031] В контексте настоящего документа «субъект, нуждающийся в этом» означает млекопитающее, такое как человек, имеющее состояние, заболевание, расстройство или симптом, требующие лечения или терапии, включая, например, перечисленные в настоящем

документе. В частности, предпочтительным субъектом, подвергаемым лечению, является человек.

[0032] В контексте настоящего документа термин «длительного действия» означает, что аффинность связывания и активность аналога инкретина, описанного в настоящем документе, сохраняются в течение периода времени, превышающего период времени для референсного пептида, такого как нативный GIP человека (SEQ ID NO: 2), GLP-1 человека (SEQ ID NO: 3) и/или GCG человека (SEQ ID NO: 4), что позволяет вводить дозу по меньшей мере не так часто, например, один раз в день, три раза в неделю, два раза в неделю, один раз в неделю или даже ежемесячно. Временной профиль действия описанных в настоящем документе аналогов инкретина можно измерить с применением известных фармакокинетических способов, таких как способы, описанные в приведенных ниже примерах.

[0033] В контексте настоящего документа «микробиологическая стабильность» означает способность терапевтического агента, вещества или продукта сохранять свою стерильность при воздействии окружающей среды или других микроорганизмов.

[0034] В контексте настоящего документа «нестандартная аминокислота» означает аминокислоту, которая может естественным образом встречаться в клетках, но не участвует в синтезе пептидов. Нестандартные аминокислоты могут входить в состав пептида и могут продуцироваться путем модификации стандартных аминокислот в пептиде (т. е. посредством посттрансляционной модификации). Нестандартные аминокислоты могут включать D-аминокислоты, которые имеют противоположную абсолютную хиральность относительно описанных выше стандартных L-аминокислот.

[0035] В контексте настоящего документа термин «фармацевтически приемлемая соль» хорошо известен специалисту в данной области техники. Фармацевтически приемлемые соли и общие методы их получения известны в данной области техники (см., например, Stahl et al., Handbook of Pharmaceutical Salts: Properties, Selection and Use, 2nd Revised Edition (Wiley-VCH, 2011)). Фармацевтически приемлемые соли для применения, описанного в настоящем документе, включают соли натрия, трифторацетат, гидрохлорид и/или соли ацетата.

[0036] В контексте настоящего документа «физическая стабильность» означает способность терапевтического агента, вещества или продукта сохранять свои физические размеры и свойства при воздействии условий, обычно возникающих при его эксплуатации, таких как, например, перемешивание и сдвиг.

[0037] В контексте настоящего документа термин «пропиленгликоль» хорошо известен специалисту в данной области техники и представлен формулой: С₃H₈O₂.

[0038] В контексте настоящего документа «насыщенный» означает функциональную группу жирной кислоты, которая не содержит углерод-углеродных двойных или тройных связей.

[0039] В контексте настоящего документа «стабильность при хранении» означает время, необходимое терапевтическому агенту, такому как аналог инкретина, описанный в настоящем документе, для распада до примерно 90% от его исходной концентрации. Стабильность при хранении также означает время, в течение которого терапевтический агент т будет оставаться стабильным при хранении в рекомендованных условиях хранения, таких как, например, при измерении в контролируемых условиях при примерно 5 °C.

В контексте настоящего документа «стабильность терапевтического агента» [0040] означает степень удерживания терапевтического агента, или вещества, или продукта в установленных пределах и на протяжении периода его хранения и применения тех же свойств и характеристик, которые он имел на момент его производства. Иллюстративные свойства стабильности терапевтического агента, которые могут быть оценены, включают, без ограничений, его химические, физические, микробиологические, терапевтические и/или токсикологические свойства. Факторы, которые могут влиять на стабильность терапевтического агента, включают, без ограничений, концентрацию, дозированную форму, свет, влагу, кислород, рН и температуру.

[0041] В контексте настоящего документа «лечение», «лечащий», «лечить» и т. п. означает сдерживание, замедление, остановку или изменение вспять прогрессирования или тяжести существующего состояния, заболевания, расстройства или симптома.

[0042] В контексте настоящего документа и применительно к аналогу инкретина «агонистическая активность в отношении трех рецепторов» означает аналог инкретина, обладающий активностью в отношении каждого из рецепторов GIP, GLP-1 и GCG, в частности аналог, обладающий сбалансированной и достаточной активностью в отношении каждого рецептора, что обеспечивает преимущества агонизма такого рецептора при одновременном избежании нежелательных побочных эффектов, связанных со слишком высокой активностью данного рецептора. Кроме того, аналоги инкретина, обладающие агонистической активностью в отношении трех рецепторов, характеризуются увеличенной продолжительность действия на каждый из рецепторов GIP, GLP-1 и GCG, что позволяет вводить дозу не так часто, например, один раз в день, три раза в неделю, два раза в неделю или один раз в неделю, что является преимуществом.

[0043] Некоторые сокращения определены следующим образом: «Aib» означает а-аминоизомасляную кислоту; «аMeL» означает а-метиллейцин; «аMeK» означает а-

метиллизин; «αMeF» означает α-метилфенилаланин; «αMeF(2F)» означает α-метил-2фторфеинилаланин; «aMeY» означает α-метилтирозин; «EDTA» означает этилендиаминтетрауксусную кислоту; «НІАС» означает высокоточный подсчет частиц в жидкости посредством метода светоблокировки; «ч» означает час или часы; «в/в» означает внутривенный; «Iva» означает изовалин; «kDa» означает килодальтоны; «ЖХМС» означает жидкостную хроматографию с масс-спектрометрией; «MFI» означает визуализацию микропотока; «мин» означает минуту или минуты; «МС» означает масс-спектрометрию; «Orn» «O» означает орнитин; «ОФ-ВЭЖХ» означает обращенно-фазовую или высокоэффективную жидкостную хроматографию; «с» означает секунду или секунды; «станд. ош. среднего» означает стандартную ошибку среднего значения; «SPA» означает сцинтилляционный анализ сближения; «п/к» означает подкожный; «ТFA» означает трифторуксусную «tBu» трет-бутил; «ТРИС» кислоту; означает означает трис(гидроксиметил)аминометан; и «Trt» означает тритил.

[0044] Композиции

[0045] Композиции, описанные в настоящем документе, включают аналог инкретина, например SEQ ID NO: 1, или его фармацевтически приемлемую соль в концентрации от примерно 1 мг/мл до примерно 30 мг/мл. В некоторых случаях концентрация аналога инкретина может составлять от примерно 2 мг/мл до примерно 29 мг/мл, от примерно 3 мг/мл до примерно 28 мг/мл, от примерно 4 мг/мл до примерно 27 мг/мл, от примерно 5 мг/мл до примерно 26 мг/мл, от примерно 6 мг/мл до примерно 25 мг/мл, от примерно 7 мг/мл до примерно 24 мг/мл, от примерно 8 мг/мл до примерно 23 мг/мл, от примерно 9 мг/мл до примерно 22 мг/мл, от примерно 10 мг/мл до примерно 21 мг/мл, от примерно 11 мг/мл до примерно 20 мг/мл, от примерно 12 мг/мл до примерно 19 мг/мл, от примерно 13 мг/мл до примерно 18 мг/мл, от примерно 14 мг/мл до примерно 17 мг/мл или от примерно 15 мг/мл до примерно 16 мг/мл. В других случаях концентрация аналога инкретина может составлять примерно 1 мг/мл, примерно 2 мг/мл, примерно 3 мг/мл, примерно 4 мг/мл, примерно 5 мг/мл, примерно 6 мг/мл, примерно 7 мг/мл, примерно 8 мг/мл, примерно 9 мг/мл, примерно 10 мг/мл, примерно 11 мг/мл, примерно 12 мг/мл, примерно 13 мг/мл, примерно 14 мг/мл, примерно 15 мг/мл, примерно 16 мг/мл, примерно 17 мг/мл, примерно 18 мг/мл, примерно 19 мг/мл, примерно 20 мг/мл, примерно 21 мг/мл, примерно 22 мг/мл, примерно 23 мг/мл, примерно 24 мг/мл, примерно 25 мг/мл, примерно 26 мг/мл, примерно 27 мг/мл, примерно 28 мг/мл, примерно 29 мг/мл или примерно 30 мг/мл. В некоторых случаях концентрация аналога инкретина может составлять 1 мг/мл, 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 8 мг/мл, 9 мг/мл, 10 мг/мл, 12 мг/мл, 18 мг/мл, 24 мг/мл или 30 мг/мл.

[0046] В некоторых случаях диапазон доз может составлять от примерно 0,5 мг до примерно 15 мг. В других случаях диапазон доз может составлять от примерно 6 мг до примерно 24 мг.

[0047] Аналоги инкретина могут быть получены рекомбинантным способом или получены синтетическим путем (cм., например, публикацию международной заявки на патент № WO 2019/125929, WO 2019/125938, а также международную заявку на патент № PCT/US2020/064512).

[0048] Дополнительно к вышеперечисленному композиции, описанные в настоящем документе, также включают регулятор тоничности для получения изотонического состава, приемлемого для подкожного введения. Иллюстративные регуляторы тоничности включают, без ограничений, глицерин, маннит и пропиленгликоль или их комбинацию. В некоторых случаях регулятор тоничности представляет собой маннит.

[0049] Если регулятор тоничности представляет собой глицерин, он может находиться в концентрации от примерно 5 мг/мл до примерно 50 мг/мл, в частности 20 мг/мл.

[0050] Если регулятор тоничности представляет собой маннит, он может находиться в концентрации от примерно 10 мг/мл до примерно 100 мг/мл, в частности 46 мг/мл.

[0051] Если регулятор тоничности представляет собой пропиленгликоль, он может находиться в концентрации от примерно 5 мг/мл до примерно 50 мг/мл, в частности 15 мг/мл.

[0052] Буферная система

[0053] Дополнительно к вышеперечисленному композиции также могут включать буферную систему для поддержания надлежащего рН. Иллюстративные буферные системы включают, без ограничений, фосфатный (PO₄) буфер и буфер ТРИС, в частности ТРИС.

[0054] Если буферная система представляет собой ТРИС, он может находиться в концентрации от примерно 10 мМ до примерно 100 мМ, в частности 10 мМ.

[0055] Независимо от буферной системы рН композиции может составлять от примерно 7,0 до примерно 8,0, в частности, 7,5. В некоторых случаях рН составляет от примерно 7,1 до примерно 7,9, от примерно 7,2 до примерно 7,8, от примерно 7,3 до примерно 7,7, от примерно 7,4 до примерно 7,6 или примерно 7,5. В других случаях рН композиции составляет примерно 7,0, примерно 7,1, примерно 7,2, примерно 7,3, примерно 7,4, примерно 7,5, примерно 7,6, примерно 7,7, примерно 7,8, примерно 7,9 или примерно 8,0.

[0056] Консерванты

[0057] Композиции, описанные в настоящем документе, являются стерильными после производства. Таким образом, композиции необязательно могут включать консервант, который совместим с другими компонентами композиции и который может быть добавлен в достаточной концентрации для соответствия применимым регуляторным требованиям к противомикробным консервантам. Фармацевтически приемлемые консерванты известны специалистам в данной области техники (см, например, Remington: The Science and Practice of Pharmacy (Troy, Ed., 21st Edition, Lippincott, Williams & Wilkins, 2006).

[0058] С учетом вышеперечисленного композиции также могут включать консервант для поддержания стерильности. Иллюстративные консерванты включают, без ограничений, м-крезол и фенол, в частности м-крезол.

[0059] Если консервант представляет собой м-крезол, он может находиться в концентрации от примерно 1 мг/мл до примерно 10 мг/мл, в частности 3,15 мг/мл.

[0060] Если консервант представляет собой фенол, он может находиться в концентрации от примерно 1 мг/мл до примерно 10 мг/мл, в частности 5,0 мг/мл.

[0061] Упаковка / устройства для доставки

[0062] Композиции, описанные в настоящем документе, можно вводить внутривенно (в/в), внутримышечно (в/м) или подкожно (п/к). Композиции, как правило, вводят с применением предварительно заполненной одноразовой шприц-ручки, многоразовой шприц-ручки или автоматической шприц-ручки. Альтернативно композиции можно вводить с применением многоразового флакона или насосного устройства. В некоторых случаях устройство представляет собой автоматическое инъекционное устройство, как описано в патенте США № 8,734,394.

[0063] Таким образом, композиции, описанные в настоящем документе, могут быть представлены в предварительно заполненном шприце / многоразовом флаконе. Такой предварительно заполненный шприц / многоразовый флакон может применяться для введения от примерно 0,5 мл до примерно 1 мл композиции на пациента на дозу. Дозу композиции можно вводить с применением схемы дозирования, определяемой клиническим специалистом, врачом или другим обученным медицинским работником.

[0064] Альтернативно композиция может быть получена для картриджа и, следовательно, будет отличаться от вышеуказанной композиции включением консерванта.

[0065] Альтернативно композиция может быть получена в виде части промышленного изделия, содержащего композицию, причем промышленное изделие может представлять собой многоразовый флакон, многоразовую шприц-ручку, предварительно заполненную одноразовую шприц-ручку, автоматический инжектор или насос.

[0066] С учетом вышеизложенного композиции, описанные в настоящем документе, обладают приемлемой стабильностью при хранении, стабильностью при применении и обеспечивают приемлемые ощущения в месте инъекции.

[0067] Способы

[0068] Аналоги инкретина, описанные в настоящем документе, можно применять для лечения различных состояний, расстройств, заболеваний или симптомов. Например, аналоги инкретина, описанные в настоящем документе, можно применять для лечения сахарного диабета (в частности, T2DM), дислипидемии, метаболического синдрома, NAFLD, NASH и/или ожирения. В частности, предлагаются способы лечения T2DM у субъекта, причем такие способы включают по меньшей мере этап введения субъекту, нуждающемуся в таком лечении, эффективного количества аналога инкретина, описанного в настоящем документе, или его фармацевтически приемлемой соли.

[0069] Дополнительно предлагаются способы лечения ожирения у субъекта, причем такие способы включают по меньшей мере этап введения субъекту, нуждающемуся в таком лечении, эффективного количества аналога инкретина, описанного в настоящем документе, или его фармацевтически приемлемой соли.

[0070] Дополнительно предлагаются способы индуцирования нетерапевтической потери массы у субъекта, причем такие способы включают по меньшей мере этап введения субъекту, нуждающемуся в таком лечении, эффективного количества аналога инкретина, описанного в настоящем документе, или его фармацевтически приемлемой соли.

[0071] Дополнительно предлагаются способы лечения метаболического синдрома у субъекта, причем такие способы включают по меньшей мере этап введения субъекту, нуждающемуся в таком лечении, эффективного количества аналога инкретина, описанного в настоящем документе, или его фармацевтически приемлемой соли.

[0072] Дополнительно предлагаются способы лечения NASH у субъекта, причем такие способы включают по меньшей мере этап введения субъекту, нуждающемуся в таком лечении, эффективного количества аналога инкретина, описанного в настоящем документе, или его фармацевтически приемлемой соли.

[0073] Дополнительно предлагаются способы лечения NAFLD у субъекта, причем такие способы включают по меньшей мере этап введения субъекту, нуждающемуся в таком лечении, эффективного количества аналога инкретина, описанного в настоящем документе, или его фармацевтически приемлемой соли.

[0074] В этих способах эффективность композиции можно оценить, например, посредством наблюдения значительного снижения уровня глюкозы в крови, наблюдения значительного повышения уровня инсулина, наблюдения значительного снижения HbA1c и/или наблюдения значительного снижения массы тела.

ПРИМЕРЫ

[0075] Следующие примеры, не имеющие ограничительного характера, приведены в целях иллюстрации, а не ограничения.

[0076] СОСТАВЫ

[0077] Пример 1. Композиции, содержащие аналог инкретина, регулятор тоничности и необязательный консервант

[0078] Композиции получали, по существу, как описано в настоящем документе. Такие композиции включают аналог инкретина SEQ ID NO: 1 при 2, 6 или 10 мг/мл и дополнительные ингредиенты, как указано в таблице 1. Воздействия консервантов и регуляторов тоничности изучали посредством изменения каждого типа при фиксированных концентрациях. Концентрации консервантов фиксировали при 3,15 мг/мл и 5 мг/мл м-крезола и фенола соответственно. Концентрации регуляторов тоничности выбирали так, чтобы получить изотонический состав, приемлемый для подкожного введения.

[0079] Растворы получали посредством добавления аналога инкретина SEQ ID NO: 1 в соответствующую матрицу, смешивания до достижения растворения в растворе, а затем раствор доводили до конечного объема с применением мерной колбы соответствующего размера. Каждый раствор состава асептически фильтровали с фильтрами из поливинилиденфторида (ПВДФ) 0,22 мкм и помещали в стеклянные флаконы вместимостью 5 мл при объеме заполнения 3 мл.

[0080] Таблица 1. Иллюстративные составы

No	pН	Буфер	Консервант	Регулятор	Регулятор	Аналог
состава		(10		тоничности	тоничности	инкретина
		мМ)			(мг/мл)	(мг/мл)
1			м-крезол	маннит	46	2
2			м-крезол	пропиленгликоль	15	6
3			м-крезол	глицерин	20	10
4			фенол	пропиленгликоль	15	2
5	7,5	Трис	м-крезол	пропиленгликоль	15	10
6			м-крезол	глицерин	20	2
7			м-крезол	пропиленгликоль	15	10
8			фенол	глицерин	20	10
9			м-крезол	маннит	46	10

10			фенол	маннит	46	2
11			фенол	маннит	46	10
12			м-крезол	пропиленгликоль	15	2
13			фенол	глицерин	20	2
14			фенол	пропиленгликоль	15	6
15	7	PO ₄	м-крезол	маннит	46	6
16	8	PO ₄	фенол			
17	8	PO ₄	м-крезол			
18	7	PO_4	фенол			
19	7,5	Трис				
20	7,5	Трис	-	маннит/EDTA	46/0,3	6
21	7,5	Трис	м-крезол	маннит/EDTA	46/0,3	6

[0081] Образцы хранили при 5 °C, 30 °C или 40 °C для дополнительных исследований, как описано в последующих примерах.

[0082] ДАННЫЕ *IN VITRO* (химическая и физическая стабильность)

[0083] Пример 2. Исследования стабильности при применении

[0084] Методы анализа и определения характеристик, указывающие на стабильность, выбранные для измерения химической и физической стабильности составов, включают эксклюзионную хроматографию размеров (SEC), обращенно-фазовую высокоэффективную жидкостную хроматографию (ОФ-ВЭЖХ) и визуальный анализ внешнего вида.

[0085] График отбора образцов приведен в таблице 2. Использовали модель для экстраполяции тенденций в течение 24 месяцев при номинальной температуре хранения 5 °C с дополнительным 1 месяцем при 30 °C для условий применения. Для SEC (мономер, агрегаты) и ОФ-ВЭЖХ (чистота) использовали уравнение Аррениуса нулевого порядка.

[0086] Таблица 2. График отбора образцов

Условия		Время (недели)	
хранения	0	2	4	8
(°C)				
5	X		X	X
30	X	X	X	X
40	X	X	X	X

Х = момент времени отбора образцов

[0087] SEC. Используется способ изократической эксклюзионной ВЭЖХ размеров с УФдетектированием при 214 нм, предназначенный для определения относительных количеств
мономера аналога инкретина и общего содержания агрегатов. Мономер и агрегаты
представлены в виде процента площади пика от общей площади. Процедура указывает на
стабильность за счет проведения измерений с помощью ее возможности удалять известные
примеси из аналога инкретина. Результаты исследования стабильности показаны в таблице 3,
в которой показаны значения процентной доли мономера выбранных составов из таблицы 1 в

условиях хранения при 5 °C, 30 °C и 40 °C. Данные по стабильности доступны для 8 недель хранения.

[0088] Таблица 3. Процентная доля мономера (% площади пика) иллюстративных составов, полученная посредством SEC

		Процентная доля мономера (%)					
№ состава	Темп. (°C)	Время (недели)					
		0	2	4	8		
1	5			98,8	98,9		
	30	98,7	98,9	98,6	96,1		
	40		98,7	97,9	97,5		
2	5			98,7	98,9		
	30	99,0	98,5	98,5	98,6		
	40		98,6	98,2	97,9		
3	5			98,8	99,0		
	30	98,8	98,9	98,6	98,6		
	40		98,8	98,2	97,6		
4	5		-	98,6	98,8		
	30	99,1	98,9	98,8	98,6		
	40	ŕ	98,7	98,4	97,9		
5	5			98,8	98,9		
	30	98,9	98,9	98,6	98,7		
	40		98,8	98,3	97,9		
6	5			98,7	98,9		
	30	99,0	98,7	98,5	98,5		
	40		98,7	98,0	97,8		
7	5			98,5	99,0		
	30	99,0	98,8	98,7	98,2		
	40	,	98,4	98,2	97,8		
8	5			98,7	99,0		
	30	99,0	98,9	98,6	98,8		
	40		98,6	98,2	97,9		
9	5			98,3	99,0		
	30	99,1	98,8	98,4	98,6		
	40		98,7	98,1	97,4		
10	5			98,4	99,0		
	30	98,9	98,7	98,7	98,5		
	40		98,5	98,3	97,8		
11	5			98,5	98,9		
	30	98,9	98,7	98,7	98,3		
	40		98,7	98,3	97,7		
12	5	98,8		98,5	98,9		

	30		98,9	98,7	98,6
	40		98,6	98,2	97,9
13	5			98,6	99,0
	30	99,0	98,9	98,6	98,6
	40		98,9	98,3	97,9
14	5			98,7	99,0
	30	99,1	98,6	98,7	98,8
	40		98,9	98,5	97,9
19	5			98,5	99,0
	30	99,1	99	98,6	98,8
	40		98,8	98,5	98,2

[0089] Увеличение температуры приводит к снижению чистоты мономера после 8 недель. Как показано в таблице 4, по существу, изменений чистоты мономера после 8 недель при 5 °C не наблюдается, при этом чистота мономера уменьшается в зависимости от температуры. Результаты SEC для состава 1 (м-крезол/маннит) в момент времени после 8 недель при 30 °C примерно на 1% ниже, чем результаты SEC в момент времени после 8 недель при 40 °C. Эти данные свидетельствуют об аномалии, и, следовательно, данные для хранения в течение 8 недель в условиях при 30 °C для состава 1 исключены из прогнозируемых показателей модели. Данные по всем другим условиям применяются для моделирования стабильности, предполагая кинетику Аррениуса.

[0090] Таблица 4. Прогнозируемые значения процентной доли мономера, полученные посредством SEC, после 24 месяцев при 5 °C плюс 1 месяц при 30 °C

№ состава	Процентная доля
	мономера (%)
1	98,2
2	98,4
3	98,4
4	98,6
5	98,5
6	98,4
7	98,4
8	98,5
9	98,4
10	98,4
11	98,3
12	98,4
13	98,6
14	98,7
19	98,7

[0091] Тенденции факторов состава для агрегатов в исследуемой расчетной области точно следуют тенденциям чистоты мономера. В таблице 5 показано увеличение общего содержания

агрегатов в зависимости от температуры. В таблице 6 показаны воздействия входных переменных на прогнозируемое изменение и прогнозируемые значения % общего содержания агрегатов в течение 24 месяцев при 5 °C плюс 1 месяц при 30 °C. Согласно SEC, входные переменные не оказывают значительного влияния на агрегаты.

[0092] Таблица 5. Общее содержание агрегатов (%) для иллюстративных составов, полученное посредством SEC

		Общее	содержан	ие агрега	тов (%)	
№ состава	Условия (°C)	Время (недели)				
		0	2	4	8	
1	30	0,7	0,5	0,8	2,9	
	40		0,4	1,1	0,6	
	5			0,7	0,5	
2	30	0,4	0,9	0,9	0,5	
	40		0,6	0,9	0,6	
	5			0,8	0,5	
3	30	0,6	0,4	0,8	0,6	
	40		0,4	0,8	0,6	
	5			0,7	0,4	
4	30	0,4	0,5	0,6	0,5	
	40		0,5	0,8	0,8	
	5			0,9	0,6	
5	30	0,6	0,4	0,8	0,6	
	40		0,4	0,8	0,6	
	5			0,8	0,5	
6	30	0,4	0,7	0,8	0,6	
	40		0,5	1	0,6	
	5			0,8	0,5	
7	30	0,4	0,5	0,7	0,5	
	40		0,8	0,9	0,6	
	5			0,9	0,4	
8	30	0,5	0,5	0,9	0,5	
	40		0,6	0,9	0,7	
	5			0,8	0,4	
9	30	0,4	0,5	1	0,5	
	40		0,5	0,9	0,6	
	5			1,2	0,5	
10	30	0,5	0,6	0,7	0,7	
	40		0,7	0,8	0,6	
ļ	5			1,1	0,5	
11	30	0,5	0,6	0,7	0,9	
ļ	40		0,5	0,8	0,7	
ļ	5			1	0,5	
12	30	0,6	0,4	0,7	0,6	
	40	1	0,6	0,9	0,6	

	5			1	0,5
13	30	0,4	0,4	0,8	0,6
	40		0,4	0,8	0,7
	5			0,9	0,5
14	30	0,4	0,8	0,7	0,5
	40		0,3	0,7	0,8
	5			0,8	0,5
19	30	0,3	0,4	0,9	0,5
	40		0,5	0,8	0,6
	5			1	0,4

[0093] Таблица 6. Прогнозируемые значения процентной доли общего содержания агрегатов, полученные посредством SEC, после 24 месяцев при 5 °C плюс 1 месяц при 30 °C

№ состава	Процентная доля общего
	содержания агрегатов (%)
1	0,8
2	0,8
3	0,8
4	0,7
5	0,7
6	0,8
7	0,8
8	0,7
9	0,8
10	0,7
11	0,7
12	0,8
13	0,7
14	0,7
19	0,6

[0094] ОФ-ВЭЖХ. В способе ОФ-ВЭЖХ используют неполярную неподвижную фазу и водную умеренно полярную подвижную фазу. ВЭЖХ оснащена УФ-детектированием при 214 нм.

[0095] Как показано в таблице 7, процентная чистота главного пика ОФ-ВЭЖХ значительно уменьшается в зависимости от температуры; однако факторы состава не оказывают значительного влияния на профиль стабильности. Дополнительно прогнозируемые значения чистоты приближаются к 95% после 2 лет хранения при 5 °C, что указывает на устойчивость в пространстве состава при номинальных условиях.

[0096] Таблица 7. Чистота главного пика (%), полученная посредством ОФ-ВЭЖХ

№ состава	Условия (°C)	Чистота пика (%) Время (недели)
-----------	--------------	------------------------------------

		0	2	4	8
1	30		95,5	94,7	93,1
	40	95,1	94,0	90,6	87,4
	5			96,1	96,2
2	30		95,9	94,8	93,9
	40	95,3	94,4	90,9	87,9
	5			95,9	96,1
3	30		95,7	94,7	94,1
5	40	95,5	94,8	90,8	87,6
	5] '		96,0	96,4
4	30		95,6	94,6	94,1
	40	95,6	94,8	91,4	88,5
	5			96,2	96,3
5	30		95,5	94,6	93,8
	40	95,3	94,3	91,1	88,2
	5			96,5	96,3
6	30	94,4	95,3	94,5	93,8
	40		94,1	90,6	87,3
	5			95,8	96,0
7	30		95,9	94,7	94,3
	40	95,4	94,1	90,8	87,9
	5			96,0	96,3
8	30		95,5	94,4	94,1
	40	95,1	94,4	91,1	88,2
	5	1 ′		95,8	96,3
9	30		95,6	94,4	93,5
	40	95,5	94,1	90,7	87,5
	5			95,7	96,1
10	30		95,7	94,9	94,0
	40	94,5	94,8	91,3	87,7
	5			96,4	96,4
11	30		95,6	94,7	94,0
	40	94,7	94,2	91,0	87,7
	5			95,7	96,0
12	30		95,5	94,6	93,8
	40	93,6	94,3	90,7	87,5
	5			95,9	96,2
13	30		95,5	94,7	93,9
	40	94,3	94,4	91,2	88,2
	5			96,3	95,3
14	30		95,5	95,0	94,0
	40	94,2	94,6	91,4	88,7
	5			95,9	96,6
19	30		95,5	94,6	94,1
	40	95,2	94,2	91,6	88,5
	5			96,2	96,0

[0097] Воздействия факторов состава на прогнозируемые значения ОФ-ВЭЖХ в условиях при 5 °С после 24 месяцев плюс 1 месяц при 30 °С представлены в таблице 8, которая показывает, что ни одна из исследуемых переменных не оказывает значительного влияния на чистоту главного пика.

[0098] Таблица 8. Прогнозы процентной доли чистоты главного пика (5%), полученные посредством ОФ-ВЭЖХ, после 24 месяцев хранения при 5 °C плюс 1 месяц при 30 °C

№ состава	Чистота главного
	пика (%)
1	94,6
3	94,9
3	95,1
4	95,2
5	94,9
6	93,9
7	95,0
8	94,6
9	94,6
10	94,6
11	94,3
12	93,5
13	94,0
14	94,2
19	94,8

[0099] В таблице 9 показано, что общее содержание примесей, полученное посредством ОФ-ВЭЖХ, увеличивается при увеличении температур, что приводит к более быстрой скорости разложения.

[0100] Таблица 9. Общее содержание примесей, полученное посредством ОФ-ВЭЖХ

№ состава	Условия	Время (недели)					
Nº COCTUBU	(°C)	0	2	4	8		
1	30		4,5	5,3	6,9		
	40	4,9	6	9,4	12,6		
	5			3,9	3,8		
2	30		4,1	5,2	6,1		
	40	4,7	5,6	9,1	12,1		
	5			4,1	3,9		
3	30		4,3	5,3	5,9		
	40	4,5	5,2	9,2	12,4		
	5			4,0	3,6		
4	30	4,4	4,4	5,4	5,9		
	40	¬,¬	5,2	8,6	11,5		

	5			3,8	3,7
5	30		4,5	5,4	6,2
	40	4,7	5,7	8,9	11,8
	5			3,5	3,7
6	30		4,7	5,5	6,2
	40	5,6	5,9	9,4	12,7
	5			4,2	4,0
7	30		4,1	5,3	5,7
	40	4,6	5,9	9,2	12,1
	5			4,0	3,7
8	30		4,5	5,6	5,9
	40	4,9	5,6	8,9	11,8
	5			4,2	3,7
9	30		4,4	5,6	6,5
	40	4,5	5,9	9,3	12,5
	5			4,3	3,9
10	30	5,5	4,3	5,1	6,0
	40		5,2	8,7	12,3
	5			3,6	3,6
11	30	5,3	4,4	5,3	6,0
	40		5,8	9,0	12,3
	5			4,3	4,0
12	30		4,5	5,4	6,2
	40	6,4	5,7	9,3	12,5
	5			4,1	3,8
13	30		4,5	5,3	6,1
	40	5,7	5,6	8,8	11,8
	5			3,7	4,7
14	30		4,5	5,0	6,0
	40	5,8	5,4	8,6	11,3
	5			4,1	3,4
19	30		4,5	5,4	5,9
	40	4,8	5,8	8,4	11,5
	5			3,8	4,0

[0101] Воздействия факторов состава на прогнозируемые значения общего содержания примесей, полученные посредством ОФ-ВЭЖХ, через 24 месяца при хранении при 5 °С плюс 1 месяц при 30 °С представлены в таблице 10, которая показывает, что общее влияние переменных исследования не является значительным.

[0102] Таблица 10. Прогнозируемые значения процентной доли общего содержания примесей, полученные посредством ОФ-ВЭЖХ, после 24 месяцев

№ состава	Процентная доля				
	общего содержания				
	примесей (%)				
_	-				
1	5,4				
3	5,1				
3	4,9				
4	4,8				
5	5,1				
6	6,1				
7	5,0				
8	5,4				
9	5,4				
10	5,4				
11	5,7				
12	6,5				
13	6,0				
14	5,8				
19	5,2				

[0103] Физическая стабильность и ЖХМС. Физический внешний вид и данные по видимым частицам определяют посредством визуального осмотра. Для любого момента времени / любых условий хранения зарегистрировано отсутствие видимых частиц. Дополнительно растворы остаются прозрачными и бесцветными до момента времени 8 недель в условиях при 40 °C. Составы 3, 8, 9, 15, 16 и 17 выглядят немного янтарными по сравнению с контрольным флаконом (вода для инъекций (ВДИ)). Составы 9 и 17 подвергаются анализу ЖХМС, а состав 19 дополнительно подвергается анализу в качестве сравнения, поскольку он является прозрачным и бесцветным. Матрицы составов, которые продемонстрировали изменение цвета, представлены в таблице 11.

[0104] Таблица 11. Матрицы составов, которые изменили цвет

№ состава	Буфер	pН	Аналог	Консервант	Регулятор
			инкретина		тоничност
			(мг/мл)		И
3	Трис	7,5	10	м-крезол	глицерин
8	Трис	7,5	10	фенол	глицерин
9	Трис	7,5	10	м-крезол	маннит
15	PO ₄	7	6	м-крезол	маннит
17	PO ₄	8	6	фенол	маннит
16	PO ₄	8	6	м-крезол	маннит

[0105] Составы 9 и 19 сравнивали дополнительно, поскольку они имели одинаковый рН, буфер и модификатор тоничности; однако состав 9 включал м-крезол, а состав 19 не включал консерванта. После 8 недель хранения при 40 °С между составами не было выявлено значительных различий в видах полных ионных хроматограмм (ТІС). Анализ ЖХМС показывает отсечение в S8, изомеризацию и/или отсечение в S32, отсечение в Aib2 и

модификацию Y1. Хотя пути разложения в двух составах выглядят аналогичными, состав 9 демонстрирует относительно более высокие уровни этих модификаций. Учитывая, что разница между этими составами заключается в наличии м-крезола в составе 9, изменение цвета в составе 9 может быть результатом разложения консерванта.

[0106] Вывод: все составы демонстрируют аналогичные профили стабильности. Статистический анализ показывает отсутствие значительного влияния переменных исследования на химическую стабильность. Таким образом, взаимодействия между эксципиентами, консервантами и концентрациями аналога инкретина отсутствуют. Фактически концентрации аналога инкретина от 2 мг/мл до 10 мг/мл не влияют на стабильность. Эти данные указывают на то, что м-крезол и фенол являются консервантами для аналога инкретина. Профиль стабильности состава 19 (без консерванта) аналогичен всем остальным. Прогнозируемый срок хранения для основных исследуемых групп и группы без консерванта демонстрирует химическую стабильность до 24 месяцев при 5 °C плюс 1 месяц при 30 °C. Различия в физической стабильности, отмеченные для некоторых из составов с консервантами, по-видимому, связаны со стабильностью консерванта, нежели чем с конкретным путем разложения аналога инкретина. Данные, описанные в настоящем документе, показывают, что состав раствора без консерванта или с консервантом, содержащий аналог инкретина от 2 до 10 мг/мл, является осуществимым с использованием либо пропиленгликоля, глицерина, либо маннита. Более того, данные не демонстрируют значительного преимущества выбора регулятора тоничности или консерванта в отношении срока хранения.

[0107] Пример 3. Исследования стабильности при применении в оптимизированных прототипных составах

[0108] Оптимизация. В исследованиях оптимизации определяют химическую и физическую стабильность с течением времени при номинальных, ускоренных и стрессовых условиях. В данном случае буфер и рН оптимизированы на основе приведенных выше примеров, при этом выбраны буфер ТРИС при 10 мМ и рН 7,5. Как и в приведенных выше примерах, оптимизация в данном случае включает три модификатора тоничности: пропиленгликоль, глицерин и маннит. Форму флакона выбирают для оптимизации, а шприцевая форма включена для изучения совместимости аналога инкретина с предварительно заполненным шприцем. В таблице 12 описаны параметры оптимизации прототипного состава с аналогом инкретина SEQ ID NO: 1 или его фармацевтически приемлемой солью.

[0109] Таблица 12. Параметры оптимизации прототипного состава

No	Модификатор	Концентрация	Первичная	Концентрация
прототипного	тоничности	модификатора	упаковка	аналога
состава		тоничности		инкретина
		(мг/мл)		(мг/мл)
P 1	пропиленгликоль	20,1	флакон	6
P2	маннит	48,1	флакон	6
P3	глицерин	24,3	флакон	6
P4	глицерин	24,3	шприц	6

ПРИМЕЧАНИЕ: все образцы получали в 10 мМ буфере ТРИС при рН 7,5 при 25 °C.

[0110] Тестирование на стабильность прототипного состава. Образцы помещают на хранение для испытания на стабильность до 6 месяцев и тестируют в соответствии с таблицей 13. Основные аналитические анализы представляют собой ОФ-ВЭЖХ и SEC. В качестве независимого тестирования характеристик также применяют способ анионообменной хроматографии (AEX).

[0111] Таблица 13. Схема тестирования на стабильность прототипного состава

Способ	Хранен	Исх.	1	2	3	6
	ие	уровен				
		Ь				
Визуальны	5°C	X	X	X	X	О
й	25 °C			X	X	О
	30 °C		X			
	35 °C		X	X	X	
НІАС и	5 °C	X	X	X	X	О
MFI*	25 °C			X	X	О
	30 °C		X			
	35 °C		X	X	X	
ОФ-	5 °C	X	X	X	X	О
ВЭЖХ	25 °C			X	X	О
	30 °C		X			
	35 °C		X	X	X	
SEC	5 °C	X	X	X	X	О
	25 °C			X	X	О
	30 °C		X			
	35 °C		X	X	X	
AEX	5 °C	X	X	X	X	О
	25 °C			X	X	0
	30 °C		X			
	35 °C		X	X	X	
Измерител	5 °C	X	X	X	X	О
ьрН	25 °C			X	X	О
	30 °C		X			
	35 °C		X	X	X	
Клеточны	5 °C	X				X
й	25 °C					
	 НІАС и МБІ* ОФ-ВЭЖХ SEC АЕХ Измерител ь рН Клеточны 	Визуальны 5 °C 30 °C 35 °C 30 °C 35 °C МГІАС и 5 °C 30 °C 35 °C ОФ- 5 °C ВЭЖХ 25 °C 30 °C 35 °C ОФ- 5 °C 25 °C 30 °C 35 °C ОФ- 5	Визуальны 5 °C X 25 °C 30 °C X 30 °C 35 °C X НІАС и 5 °C X МБІ* 25 °C X 30 °C 35 °C X ВЭЖХ 25 °C X 30 °C X 30 °C X 30 °C X 35 °C X 25 °C X 30 °C X 25 °C X 25 °C X 30 °C X 25 °C X 25 °C X 30 °C X 35 °C X Клеточны 5 °C X	Визуальны 5 °C X X X й 25 °C X 30 °C X 35 °C X HIAC и 5 °C X MFI* 25 °C X ОФ- ВЭЖХ 25 °C X 30 °C X 35 °C X ОФ- ВЭЖХ 25 °C X SEC 5 °C X 25 °C X AEX 5 °C X AEX 5 °C X M30 °C X 35 °C X X X X X X X X X X X X X	Визуальный й 5 °C X X X 30 °C 35 °C X X 35 °C X X X MFI* 25 °C X X 30 °C 35 °C X X 35 °C X X X BЭЖХ 25 °C X X 30 °C X X X 35 °C X X X SEC 5 °C X X X AEX 5 °C X X X AEX 5 °C X X X Измерител 5 °C X X X В рН 25 °C X X X 30 °C 35 °C X X Х X X X Измерител 5 °C X X Б рН 25 °C X X 30 °C X X 35 °C X X X X X X X X X X X X X X X X X X </td <td>Визуальны 5 °C X X X X й 25 °C X X X X 30 °C 35 °C X X X X HIAC и 5 °C X X X X MFI* 25 °C X X X X X 30 °C 35 °C X X X X X BЭЖХ 25 °C X X X X X X SEC 5 °C X</td>	Визуальны 5 °C X X X X й 25 °C X X X X 30 °C 35 °C X X X X HIAC и 5 °C X X X X MFI* 25 °C X X X X X 30 °C 35 °C X X X X X BЭЖХ 25 °C X X X X X X SEC 5 °C X

		30 °C					
		35 °C					
Усилие	Инстрон	5 °C					
начального		25 °C	X	X	X	X	О
движения /		30 °C					
усилие		35 °C					
скольжения							

^{*} Тестирование MFI проводили только для шприцевой формы.

[0112] CSD, ISTA 3A и тестирование фотодеградации. Применяют матрицу растворов, которую определяют на основе приведенных выше примеров. Иллюстративный состав единицы дозирования лекарственного препарата, описанный в настоящем документе, представлен в таблице 14.

[0113] Таблица 14. Состав единицы дозирования лекарственного препарата

Ингредиент	Количество на флакон (мг)	Количество на мл (мг)
Аналог инкретина (SEQ ID	12	6 6
NO: 1)		
Трис-основание	2,42	1,21
Маннит	96	48
Вода для инъекции	доведение до 2,0	доведение до 1,0
	МЛ	МЛ
Раствор хлористоводородной	регулирование рН	регулирование рН
кислоты		

[0114] Тетранатриевую соль аналога инкретина (SEQ ID NO: 1) тестируют на сдвиг и вибрационную чувствительность с применением капиллярного устройства для определения сдвига и способа тестирования ISTA 3A. На этой стадии также тестируют фотостабильность для поддержки операций производства и упаковки. Капиллярное устройство для определения сдвига разработано для моделирования сдвига, аналогичного тому, который может быть вызван операциями производства изделия (смешивание, перекачивание, заполнение и т. д.). Тестирование ISTA 3A представляет собой исследование смоделированной транспортировки, предназначенное для имитации вибрационного стресса во время транспортировки. Оба способа считаются наихудшими случаями для любого типа физического стресса, который они должны смоделировать. Оба способа исследования соответствуют стандартным протоколам тестирования. Тестирование фотостабильности проводят следующим образом: образцы загружают в камеру тестирования фотостабильности и подвергают воздействию одного из трех уровней интенсивности и типа (как УФ, так и видимого излучения) в соответствии с руководствами Международной конференции по гармонизации (ICH): 0%, 20% и 100%

интенсивности, рекомендуемой ICH. В таблице 15 приведены схема и план тестирования для этих исследований.

[0115] Таблица 15. Схема исследований фотостабильности, CSD и ISTA 3A

Образцы	Описание	Аналитические	Способы
		свойства	
CSD контроль	нестрессовый CSD	внешний вид и	визуальный
	контроль	видимые частицы	
нержавеющая	закачивается через		
сталь	капиллярную трубку из	невидимые частицы	HIAC
	нержавеющей стали		
нержавеющая	закачивается через	чистота мономера	SEC
сталь / воздух	капиллярную трубку из		
	нержавеющей стали с	чистота главного	ОФ-ВЭЖХ
	воздушным зазором	пика	
транспортировка,	нестрессовая		AEX
контроль	транспортировка,	гетерогенность	
	контроль	заряда	USP
ISTA 3A	стрессовое воздействие		
	при транспортировке	pH	
фотостабильность,	неэкспонированный		
темный контроль	контроль		
	фотостабильности		
фотостабильность,	воздействие УФ /		
20% ICH	видимого света		
фотостабильность,	воздействие УФ /		
100% ICH	видимого света		

[0116] В этих исследованиях биологический анализ (данные не показаны) проводят на прототипах Р1 и Р2 в момент времени 0, а также проводят на Р2 только в момент времени через 6 месяцев. Результаты биоанализа не демонстрируют значительного различия между тестируемыми образцами. В целом исследования демонстрируют устойчивый химический и физический профиль стабильности, при этом температура играет наибольшую роль в разложении.

[0117] Результаты ОФ-ВЭЖХ. По существу, изменения при 5 °C отсутствуют, при этом чистота главного пика уменьшается в зависимости от температуры. Различия между составами в стрессовых и ускоренных условиях находятся в пределах вариативности способа.

[0118] Таблица 16. Результаты для главного пика, полученные посредством ОФ-ВЭЖХ, исследование прототипа

№ состава	Темп.		В	ремя (недел	и)	
	(°C)	0	1	2	3	6
P1	5	95,9	95,9	96,1	95,7	96,0
	25	95,9		95,1	93,5	91,9
	30	95,9	94,7			

	35	95,9	93,1	91,3	87,6	
P2	5	95,9	95,9	96,1	95,8	96,1
	25	95,9		94,9	93,3	90,6
	30	95,9	94,6			
	35	95,9	93,0	89,7	87,2	
P3	5	95,9	95,7	96,2	95,5	96,0
	25	95,9		95,1	93,3	92,2
	30	95,9	94,3			
	35	95,9	93,3	91,4	87,7	
P4	5	96,0	95,7	96,3	95,5	96,2
	25	96,0		94,8	93,4	92,0
	30	96,0	94,6			
	35	96,0	93,5	91,4	87,7	

[0119] Таблица 17. Результаты для общего содержания примесей, полученные посредством ОФ-ВЭЖХ, исследование прототипа

№ состава	Темп.	Время (месяцы)					
л⊻ состава	(°C)	0	1	2	3	6	
P1	5	4,1	4,1	3,9	4,3	4,0	
	25	4,1		4,9	6,5	8,1	
	30	4,1	5,3				
	35	4,1	6,9	8,7	12,4		
P2	5	4,1	4,1	3,9	4,2	3,9	
	25	4,1		5,1	6,7	9,4	
	30	4,1	5,4				
	35	4,1	7,0	10,3	12,8		
P3	5	4,1	4,3	3,8	4,5	4,0	
	25	4,1		4,9	6,7	7,8	
	30	4,1	5,7				
	35	4,1	6,7	8,6	12,3		
P4	5	4,0	4,3	3,7	4,5	3,8	
	25	4,0		5,2	6,6	8,0	
	30	4,0	5,4				
	35	4,0	6,5	8,6	12,3		

[0120] Результаты SEC. Результаты SEC в условиях при 5 °C не демонстрируют значительных различий или четко выраженных тенденций при этих условиях. Результаты чистоты мономера в ускоренных и стрессовых условиях снижаются в момент времени через 2 и 3 месяца. Аналогичным образом общее содержание агрегатов значительно увеличивается в ускоренных и стрессовых условиях. Результаты чистоты мономера для всех условий в ускоренных и стрессовых условиях находятся в пределах 1% друг от друга, что близко к вариативности способа.

[0121] Таблица 18. Результаты для % мономера, полученные посредством SEC, исследование прототипа

№ состава	Темп.		Время (недели)				
712 COCT aba	(°C)	0	1	2	3	6	
P1	5	98,8	98,4	98,7	98,1	98,1	
	25	98,8		98,5	98,1	97,7	
	30	98,8	98,1				
	35	98,8	98,5	95,8	94,5		
P2	5	98,7	98,4	98,5	98,1	98,1	
	25	98,7		98,4	98,0	97,3	
	30	98,7	98,4				
	35	98,7	98,4	95,8	93,9		
P3	5	98,7	98,3	98,4	98,2	98,2	
	25	98,7		98,3	98,1	97,8	
	30	98,7	98,5				
	35	98,7	98,6	96,2	94,7		
P4	5	98,6	98,4	98,7	98,2	98,2	
	25	98,6		98,6	98,0	97,7	
	30	98,6	98,4				
	35	98,6	98,2	96,0	94,6		

[0122] Таблица 19. Результаты для % общего содержания агрегатов, полученные посредством SEC, исследование прототипа

№ состава	Темп.	Время (месяцы)						
Nº COCTABA	(°C)	0	1	2	3	6		
P1	5	0,6	0,7	0,6	0,7	0,7		
	25	0,6		0,7	0,8	1,0		
	30	0,6	0,8					
	35	0,6	0,8	3,3	4,4			
P2	5	0,6	0,7	0,6	0,7	0,8		
	25	0,6		0,7	0,9	1,5		
	30	0,6	0,8					
	35	0,6	0,8	3,3	4,9			
P3	5	0,6	0,7	0,6	0,7	0,7		
	25	0,6		0,8	0,8	1,0		
	30	0,6	0,7					
	35	0,6	0,8	2,9	4,1			
P4	5	0,6	0,7	0,6	0,7	0,7		
	25	0,6		0,7	0,9	1,0		
	30	0,6	0,7					
	35	0,6	0,8	3,0	4,1			

[0123] Результаты АЕХ. Результаты АЕХ в условиях при 5 °С демонстрируют увеличение кислотных вариантов примерно на 2% после 6 месяцев, хотя в данных присутствуют некоторые свойственные им изменения. Кислотные варианты в целом увеличиваются в зависимости от температуры, выравниваясь, по-видимому, примерно на уровне 7%.

[0124] Таблица 20. Результаты для % главного пика, полученные посредством АЕХ, исследование прототипа

№ состава	Темп. (°C)	Время (недели)						
		0	1	2	3	6		
P1	5	97,6	96,4	96,6	97,2	95,6		
	25	97,6		94,7	95,5	91,2		
	30	97,6	94,4					
	35	97,6	93,7	91,8	92,7			
P2	5	97,7	96,7	96,3	97,0	95,5		
	25	97,7		94,4	95,8	90,7		
	30	97,7	94,2					
	35	97,7	93,3	91,1	91,5			
P3	5	97,6	96,3	96,6	97,2	95,4		
	25	97,6		94,8	95,5	91,3		
	30	97,6	94,6					
	35	97,6	93,7	91,7	92,6			
P4	5	97,5	96,6	96,5	97,2	95,5		
	25	97,5		94,6	95,5	91,3		
	30	97,5	94,9					
	35	97,5	93,9	91,7	92,7			

[0125] Таблица 21. Общее содержание кислотных вариантов в %, полученное посредством АЕХ, исследование прототипа

№ состава	Темп.		В	ремя (недел	и)	
712 00014154	(°C)	0	1	2	3	6
P1	5	1,2	2,4	2,3	1,6	3,2
	25	1,2		4,2	3,4	7,5
	30	1,2	4,3			
	35	1,2	5,1	7,0	6,1	
P2	5	1,2	2,2	2,5	1,7	3,3
	25	1,2		4,4	3,1	8,0
	30	1,2	4,5			
	35	1,2	5,4	7,5	7,2	
P3	5	1,2	2,4	2,2	1,6	3,3
	25	1,2		4,0	3,3	7,4
	30	1,2	4,1			
	35	1,2	5,0	7,0	6,1	

P4	5	1,3	2,2	2,3	1,6	3,3
	25	1,3		4,2	3,4	7,4
	30	1,3	3,9			
	35	1,3	4,9	7,0	6,1	

[0126] Результаты для невидимых твердых частиц. Данные о твердых частицах по всему исследованию не показывают значительных различий в зависимости от модификатора тоничности. Твердые частицы ≥ 10 мкм и ≥ 25 мкм находятся ниже пределов спецификации. В таблице 22 показаны данные для твердых частиц ≥ 2 мкм, полученные посредством НІАС. Совокупные количества на мл являются низкими при всех условиях, но они естественным образом выше в шприцевой форме из-за присутствия силиконового масла, не присутствующего в форме флаконов. Данные о твердых частицах, полученные посредством МГІ, собранные для шприцевой формы (данные не показаны), сильно варьировались и не демонстрировали четких тенденций. Однако количества в целом не демонстрировали взаимосвязи от увеличенного количества силиконового масла, присутствующего в шприцевой форме.

[0127] Таблица 22. Невидимые твердые частицы ≥ 2 мкм согласно способу светоблокировки, исследование прототипа

№ состава	Темп.	Время (месяцы)						
	(°C)	0	1	2	3	6		
P1	5	330	664	254	207	115		
	25	330		162	80	57		
	30	330	181					
	35	330	200	44	183			
P2	5	256	1062	74	138	432		
	25	256		96	125	151		
	30	256	169					
	35	256	419	42	72			
P3	5	103	1369	66	106	308		
	25	103		50	114	68		
	30	103	443					
	35	103	157	39	23			
P4	5	983	2156	1211	1483	1801		
	25	983		1281	1643	1937		
	30	983	1287					
	35	983	1638	1856	1397			

[0128] Результаты для внешнего вида, рН и видимых частиц. Результаты для внешнего вида (данные не показаны) во всех условиях — прозрачный и бесцветный. На протяжении всего

исследования не зарегистрировано наличие видимых частиц. Результаты для pH обобщены в таблице 23 и демонстрируют вариативные результаты и отсутствие четких тенденций. Все значения pH находятся в пределах 0,2 pH от целевого значения.

[0129] Таблица 23. Результаты рН, исследование прототипа

	Темп.		B _l	ремя (месяц	ы)	
№ состава	(°C)	0	1	2	3	6
P1	5	7,48	7,36	7,42	7,44	7,43
	25	7,48		7,45	7,41	7,46
	30	7,48	7,35			
	35	7,48	7,45	7,45	7,41	
P2	5	7,47	7,38	7,40	7,40	7,48
	25	7,47		7,44	7,40	7,45
	30	7,47	7,43			
	35	7,47	7,44	7,40	7,42	
P3	5	7,40	7,30	7,33	7,31	7,37
	25	7,40		7,33	7,33	7,38
	30	7,40	7,36			
	35	7,40	7,32	7,35	7,33	
P4	5	7,46	7,38	7,37	7,30	7,35
	25	7,46		7,40	7,29	7,36
	30	7,46	7,33			
	35	7,46	7,39	7,40	7,30	

[0130] Результаты испытания на усилие начального движения и усилие скольжения (BLGF). Прототипный состав Р4 тестировали на BLGF. Данные собирали только в условиях при 25 °C. В таблице 24 показано, что данные BLGF остаются значительно ниже их соответствующих пределов функциональности, что указывает на хорошую совместимость с этой системой. В качестве пределов функциональности установлены максимальные рабочие пределы по усилию начального движения и усилию скольжения для автоматического инжектора Irma, составляющие 13,6 H и 9,5 H соответственно.

[0131] Таблица 24. Результаты BLGF, исследование прототипа

Тестирование усилия]	Время (месяі	де)	
шприца	0	1	2	3	6
Зарегистрированное усилие начального движения (H)	3,9	3,8	3,6	3,7	4,1
Зарегистрированное пиковое усилие скольжения (Н)	2,5	3,1	2,7	2,5	3,0

[0132] Результаты химической стабильности. Результаты ОФ-ВЭЖХ и SEC демонстрируют небольшое различие между образцом, подвергнутым стрессовому тестированию на фотостабильность (100%), и контрольным образцом. Изменение чистоты составляет примерно 0,8%. Другие условия находятся в пределах вариативности способа. В таблице 26 показано, что результаты SEC демонстрируют более высокий уровень агрегатов для образца, подвергнутого стрессовому тестированию на фотостабильность (100%), но, помимо этого, результаты для агрегатов в целом являются низкими. Результаты АЕХ не демонстрируют значительного изменения в стрессовых условиях.

[0133] Таблица 26. Исследования CSD/транспортировки/фотостабильности, % чистоты, полученный посредством SEC

Идентификатор	SEC,	SEC,	SEC,	ОΦ,	ОΦ,	ОΦ,	ОΦ,	AEX,	AEX,	AEX,	рН
образца	%	%	%	кол-	%	%	%	%	%	%	
	мон.	агр.	PM	во	MP	LUR	TRS	AV	BV	MP	
				(мг/м		S					
				л)							
CSD нерж.	97,4	0,5	2,1	6,3	96,0	0,9	4,0	2,7	1,3	96,1	НО
сталь / воздух											
CSD нерж.	97,4	0,5	2,1	6,2	96,2	0,9	3,8	2,6	1,2	96,2	НО
сталь											
CSD контроль	97,4	0,5	2,1	6,2	96,2	0,9	3,8	2,6	1,2	96,2	НО
Фотостабильно	98,5	0,6	0,9	6,1	95,9	1,2	4,1	2,2	1,3	96,5	7,2
сть, темный	ŕ		,	,		ŕ				,	2
контроль											
Фотостабильно	97,7	1,2	1,1	6,0	95,4	1,2	4,6	2,2	1,1	96,7	7,1
сть,											5
воздействие											
100%											
Фотостабильно	98,5	0,7	0,9	6,1	95,9	1,2	4,1	1,4	1,2	97,4	7,1
сть,											8
воздействие											
20%											
Трансп.,	98,6	0,6	0,8	6,1	96,0	1,2	4,0	1,8	1,3	97,0	7,1
контроль											4
Трансп.,	98,4	0,6	1,0	6,1	96,2	1,0	3,8	1,9	1,3	96,8	7,1
подвергнут											5
воздействию											

[0134] Результаты физической стабильности. Содержание твердых частиц в результатах НІАС обобщено в таблицах 27 и 28. Эти данные не демонстрируют значительных различий между контрольными образцами и образцами, подвергнутыми стрессовому тестированию. Видимые частицы (данные не показаны) зарегистрированы в образах, подвергнутых стрессовому тестированию на транспортировку и фотостабильность; однако показано, что эти результаты являются ложноположительными.

[0135] Таблица 27. Исследования CSD/транспортировки/фотостабильности, содержание твердых частиц, полученное посредством способа светоблокировки

Идентификатор	≥ 2 мкм	≥ 5 мкм	≥ 10	≥ 25
образца			МКМ	МКМ
Транспортировк	102	7	1	0
а, контроль				
Транспортировк	158	11	0	0
а, подвергнут				
воздействию				
Фотостабильнос	129	10	1	0
ть, темный				
контроль				
Фотостабильнос	152	9	0	0
ть, воздействие				
20%				
Фотостабильнос	259	27	3	1
ть, воздействие				
100%				
Нерж.	326	29	3	0
сталь / воздух				
Нерж. сталь	266	25	1	0
CSD контроль	31	10	3	0

[0136] Исследования в настоящем документе показывают приемлемую физическую и химическую стабильность составов с аналогами инкретина до 6 месяцев при номинальных, ускоренных и стрессовых условиях. Разложение аналога инкретина в первую очередь зависит от температуры. Между любыми из 3 прототипов отсутствуют значительные различия (примечание: Р3 и Р4 являются идентичными композициями, за исключением того, что Р4 заполняют в шприцы вместо флаконов). Шприцевая форма также демонстрирует приемлемые результаты BLGF, что указывает на совместимость со шприцевой системой третьего поколения. С учетом этого Р2 является ведущим составом для клинических исследований.

[0137] После воздействия сдвигового и вибрационного стресса в исследованиях CSD и транспортировки P2 не демонстрирует значительных различий между образцами, подвергнутыми стрессовому тестированию, и образцами, не подвергнутыми стрессовому тестированию (контрольными образцами). Дополнительно исследование фотостабильности при условиях 20% ICH не демонстрирует значительной разницы по сравнению с темным контрольным образцом. Однако после воздействия 100% условий ICH наблюдаются небольшие различия по сравнению с темным контрольным образцом.

[0138] Состав раствора выбирают на основе этих данных, которые включают 4,8% маннита и 10 мМ буфера трис при рН 7,5. Концентрация аналога инкретина зафиксирована при 6 мг/мл с объемом заполнения 2 мл для покрытия предлагаемого диапазона доз (например, от

примерно 0,5 мг до примерно 12 мг). Размер контейнера / закупоривающего устройства для клинических исследований представляет собой флакон фирмы «Schott» вместимостью 2 мл с соответствующей инъекционной пробкой и предохранительным колпачком (BT5973/VS5558/AZ5450). Статистический анализ P2 прогнозирует устойчивую стабильность после 2 лет хранения, включая период применения 30 дней при 30 °C.

[0139] Пример 4. Исследования стабильности прототипного состава Р2 при различных уровнях концентрации пептида аналога инкретина и рН

[0140] Целью этого исследования плана эксперимента (DOE) является определение и подтверждение устойчивости прототипного состава P2 при различных уровнях концентрации пептида аналога инкретина и условиях рН.

[0141] Компоненты матрицы раствора являются следующими: 10 мМ трис, 4,8% маннита. Концентрацию пептида оценивали при трех уровнях концентрации: 1, 18 и 30 мг/мл SEQ ID NO: 1 (тетранатриевая соль). Воздействие рН изучали при 3 уровнях рН: 7, 7,5 и 8. Для получения растворов пептид растворяли в известном количестве буферной матрицы, концентрацию измеряли с применением спектрофотометра в УФ и видимой областях спектра, оснащенного регулируемой длиной оптического пути, целевую массу рассчитывали на основе результата анализа и плотности целевого состава и добавляли требуемое количество буфера для достижения конечной целевой массы. Применяемые первичные упаковочные материалы представляли собой предварительно заполненный цилиндр шприца для коммерческого использования (поколение II) в паре с неламинированной пробкой (поколение II). Шприцы заполняли до номинального объема 0,5 мл. Составы показаны ниже в таблице 28.

[0142] Таблица 28. Составы

№ состава	Матрица	Аналог инкретина (SEQ ID NO: 1) Концентрация (мг/мл)	pН
1		18	7,5
2		30	7,5
3	10 мМ трис 4,8%	30	7
4	маннита	30	7
5		18	8
6		1	7

7	30	8
8	1	8
9	1	7,5
10	18	7,5

[0143] Методы анализа и определения характеристик, указывающие на стабильность, выбранные для измерения химической и физической стабильности составов, включают эксклюзионную хроматографию размеров (SEC), обращенно-фазовую высокоэффективную жидкостную хроматографию (ОФ-ВЭЖХ), анионообменную хроматографию (AEX), HIAC, метод визуализации микропотока (MFI) и визуальный анализ внешнего вида. Образцы хранили при двух температурных условиях (5 °C и 30 °C). График отбора образцов приведен в таблице 29, а данные показаны в таблицах 30–32. Графики прогнозирования в течение 23 месяцев при 5 °C + 30 дней при 30 °C созданы на основе статистического анализа, чтобы прогнозировать уровни разложения в конце срока хранения.

[0144] Таблица 29. Плановый график отбора образцов

Условия		Время (месяцы)								
хранения	0	0,5	1	2	3	6				
(°C)										
5	X	-	X	X	X	X				
30	X	X	X	X	X	X				

[0145] Таблица 30. Внешний вид, рН и содержание

Соста	Момент		Видимы	Цве			_	
В	времени (месяцы	я (°С)	е частицы	T	ь на белом фоне	ь на черном фоне	, мг/мл	. pH
)		тастицы		фонс	φοπε		
1	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,47
			ь					
10	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,51
			ь					
2	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,45
			ь					
3	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,37
			ь					
4	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,36
			Ь					
5	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,83
			ь					
6	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,17
			Ь					

Соста в	Момент времени (месяцы	Услови я (°С)	Видимы е частицы	T	ь на белом фоне	ь на черном фоне	, мг/мл	. рН
7	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,76
8	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,03
9	0	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,49
1	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,47
10	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,51
2	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,45
3	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,37
4	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,36
5	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,83
6	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,17
7	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,76
8	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,03
9	0	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,49
1	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,68
10	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,61
2	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,59
3	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,47
4	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,46
5	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,88
6	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный Прозрачный		7,02
7	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный Прозрачный		7,87
8	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный Прозрачны		7,88
9	0,5	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,35

Соста в	Момент времени (месяцы	Услови я (°С)	Видимы е частицы	Цве т	Прозрачност ь на белом фоне	Прозрачност ь на черном фоне	Содержание , мг/мл	Средн . рН
1	1	30	Жидкост ь	Нет	Бесцветный	Прозрачный	Прозрачный	7,60
2	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,70
3	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,57
4	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,56
5	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,07
6	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,18
7	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,89
8	1	30	ь Жидкост ь	Нет	Бесцветный	Прозрачный	Прозрачный	8,01
9	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,47
10	1	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,74
1	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,60
2	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,53
3	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,49
4	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,50
5	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,89
6	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,19
7	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,81
8	1	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,09
9	1	5	ь Жидкост ь	Нет	Бесцветный	Прозрачный	Прозрачный	7,57
10	1	5	Жидкост	Нет	Бесцветный	Прозрачный Прозрачный		7,63
1	2	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный Прозрачный	
2	2	30	Жидкост	Нет	Бесцветный	Прозрачный Прозрачный		7,71
3	2	30	ь Жидкост ь	Нет	Бесцветный	Прозрачный	Ірозрачный Прозрачный	

Соста	Момент времени (месяцы	Услови я (°С)	Видимы е частицы	Цве т	ь на белом фоне	Прозрачност ь на черном фоне	Содержание , мг/мл	. рН
4	2	30	Жидкост ь	Нет	Бесцветный	Прозрачный	Прозрачный	7,55
5	2	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,01
6	2	30	Жидкост ь	Нет	Бесцветный	Прозрачный	Прозрачный	7,19
7	2	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,95
8	2	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,09
9	2	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,47
10	2	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,69
1	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,56
2	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,53
3	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,49
4	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,46
5	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,86
6	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,17
7	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,77
8	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,04
9	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,52
10	2	5	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,54
1	3	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,71
2	3	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,67
3	3	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,58
4	3	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,55
5	3	30	Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	8,00
6	3	30	ь Жидкост ь	Нет	Бесцветный	Прозрачный	Прозрачный	7,22

Соста	Момент	Услови	Видимы	Цве	Прозрачност	Прозрачност	Содержание	Средн
В	времени	времени я (°С)		T	ь на белом	ь на черном	, мг/мл	. pH
	(месяцы		частицы		фоне	фоне		
)							
7	3 30		Жидкост	Нет	Бесцветный	Прозрачный	Прозрачный	7,95
			ь					

[0146] Таблица 31. Результаты ОФ-ВЭЖХ, SEC и AEX

Состав	Момент времени (месяцы)	Условия (°С)	ОФ- ВЭЖХ главный пик, %	ОФ- ВЭЖХ LURS, %	ОФ-ВЭЖХ общее содержание примесей,		Общее содержание SEC- агрегатов,	Общее содержание SEC- фрагментов, %	AEX TAV, %	AEX TBV, %	Главный пик AEX, %
1	0	5	97,0075	0,8071	2,9925	98,0555	0,3007	1,6438	0,9431	0,8726	98,1843
10	0	5	97,0222	0,7906	2,9778	98,1322	0,2946	1,5732	0,8602	0,8681	98,2718
2	0	5	97,0579	0,7927	2,9421	98,0652	0,3017	1,6331	0,9873	0,8763	98,1364
3	0	5	97,0086	0,8149	2,9914	98,0938	0,3004	1,6057	0,9251	0,8708	98,2040
4	0	5	97,0791	0,8085	2,9209	98,0894	0,2921	1,6185	0,8721	0,8753	98,2527
5	0	5	96,9528	0,7925	3,0472	98,1136	0,2960	1,5904	0,8359	0,8624	98,3017
6	0	5	97,0366	0,8108	2,9634	98,1143	0,2984	1,5873	0,7836	0,8730	98,3434
7	0	5	96,9816	0,7856	3,0184	98,1764	0,2726	1,5510	0,8663	0,8751	98,2586
8	0	5	96,8139	0,7921	3,1861	98,1565	0,3033	1,5402	0,8450	0,8630	98,2920
9	0	5	97,0271	0,7890	2,9729	98,0997	0,3187	1,5815	0,8139	0,8742	98,3119
1	0	30	97,0075	0,8071	2,9925	98,0555	0,3007	1,6438	0,9431	0,8726	98,1843
10	0	30	97,0222	0,7906	2,9778	98,1322	0,2946	1,5732	0,8602	0,8681	98,2718
2	0	30	97,0579	0,7927	2,9421	98,0652	0,3017	1,6331	0,9873	0,8763	98,1364
3	0	30	97,0086	0,8149	2,9914	98,0938	0,3004	1,6057	0,9251	0,8708	98,204
4	0	30	97,0791	0,8085	2,9209	98,0894	0,2921	1,6185	0,8721	0,8753	98,2527
5	0	30	96,9528	0,7925	3,0472	98,1136	0,2960	1,5904	0,8359	0,8624	98,3017
6	0	30	97,0366	0,8108	2,9634	98,1143	0,2984	1,5873	0,7836	0,8730	98,3434
7	0	30	96,9816	0,7856	3,0184	98,1764	0,2726	1,5510	0,8663	0,8751	98,2586
8	0	30	96,8139	0,7921	3,1861	98,1565	0,3033	1,5402	0,8450	0,8630	98,2920
9	0	30	97,0271	0,7890	2,9729	98,0997	0,3187	1,5815	0,8139	0,8742	98,3119
1	0,5	30	96,2315	0,8252	3,7685	97,9119	0,3962	1,6919	1,6780	0,8866	97,4355

Состав	Момент времени (месяцы)	Условия (°С)	ОФ- ВЭЖХ главный пик, %	ОФ- ВЭЖХ LURS, %	ОФ-ВЭЖХ общее содержание примесей,	SEC- мономеры, %	Общее содержание SEC- агрегатов,	Общее содержание SEC-фрагментов,	AEX TAV, %	AEX TBV, %	Главный пик AEX, %
10	0,5	30	96,049	0,7959	3,951	97,9683	0,3986	1,6331	1,8062	0,8945	97,2993
2	0,5	30	96,2847	0,8290	3,7153	97,9632	0,3987	1,6382	1,8285	0,8848	97,2868
3	0,5	30	96,3518	0,8252	3,6482	97,9067	0,4127	1,6806	1,6921	0,9035	97,4045
4	0,5	30	96,3188	0,8282	3,6812	97,9198	0,3943	1,6859	1,6482	0,9074	97,4444
5	0,5	30	96,3204	0,8357	3,6796	97,8766	0,4198	1,7036	1,8506	0,8597	97,2897
6	0,5	30	96,287	0,8553	3,7130	97,9892	0,3589	1,6519	1,3118	0,9730	97,7152
7	0,5	30	96,1451	1,0269	3,8549	97,9354	0,4002	1,6644	2,3537	1,0161	96,6302
8	0,5	30	95,8405	0,8434	4,1595	98,0232	0,3438	1,6330	2,1094	0,8776	97,0130
9	0,5	30	96,2186	0,8169	3,7814	97,9392	0,3752	1,6856	1,8306	0,9038	97,2656
1	1	30	95,3235	1,0856	4,6765	97,6375	0,5011	1,8614	2,2566	0,9130	96,8304
2	1	30	95,3958	1,0749	4,6042	97,6628	0,5084	1,8288	2,2871	0,8910	96,8219
3	1	30	95,3970	1,0675	4,6030	97,6658	0,4975	1,8367	2,2306	0,9212	96,8482
4	1	30	95,4132	1,0703	4,5868	97,7577	0,4800	1,7623	2,1778	0,9172	96,9050
5	1	30	94,5836	1,1350	5,4164	97,6903	0,5176	1,7921	2,5329	0,8675	96,5997
6	1	30	95,2597	0,8775	4,7403	97,8162	0,4250	1,7589	1,9577	1,0294	97,0128
7	1	30	95,3225	1,1025	4,6775	97,6593	0,5144	1,8264	2,3890	0,8685	96,7426
8	1	30	93,9675	1,2007	6,0325	97,7444	0,4220	1,8335	2,6017	0,9102	96,4881
9	1	30	95,1285	0,8441	4,8715	97,7774	0,4279	1,7947	2,1630	0,9140	96,9230
10	1	30	95,3148	1,0760	4,6852	97,6399	0,5092	1,8509	2,2527	0,8837	96,8636
1	1	5	96,6494	0,7934	3,3506	98,0703	0,3194	1,6103	1,0544	0,8740	98,0716
2	1	5	96,6817	0,7972	3,3183	98,0919	0,3207	1,5874	1,0349	0,8858	98,0793
3	1	5	96,6297	0,7941	3,3703	98,1229	0,3138	1,5633	1,0521	0,8917	98,0561
4	1	5	96,7693	0,7812	3,2307	98,1862	0,3016	1,5122	1,0107	0,8948	98,0945
5	1	5	96,5000	0,7975	3,5000	98,0984	0,3303	1,5713	1,1433	0,889	97,9677

Состав	Момент времени	Условия (°С)	-ФО ХЖЄВ	-ФО ХЖЄВ	ОФ-ВЭЖХ общее		Общее содержание	_	AEX TAV, %	AEX TBV, %	Главный пик
	(месяцы)		главный	LURS, %	содержание	%	SEC-	SEC-			AEX, %
			пик, %		примесей, %		агрегатов, %	фрагментов, %			
6	1	5	96,7569	0,7964	3,2431	98,1742	0,3018	1,524	0,902	0,9036	98,1944
7	1	5	96,6277	0,797	3,3723	98,1321	0,3249	1,543	1,0877	0,8701	98,0422
8	1	5	96,7298	0,805	3,2702	98,1508	0,3104	1,5388	1,1318	0,8599	98,0083
9	1	5	96,6083	0,7974	3,3917	98,1532	0,3318	1,515	0,9621	0,876	98,1619
10	1	5	96,1705	0,8012	3,8295	98,1094	0,3209	1,5697	1,0447	0,8813	98,074
1	2	30	93,3779	1,0833	6,6221	97,1541	0,8639	1,9821	4,1438	0,9143	94,9418
2	2	30	93,3437	1,0659	6,6563	97,2536	0,845	1,9014	4,1228	0,9188	94,9583
3	2	30	93,8092	1,0446	6,1908	97,3284	0,816	1,8556	4,0451	0,9112	95,0437
4	2	30	93,8144	1,0654	6,1856	97,4325	0,7471	1,8204	3,8913	0,9243	95,1844
5	2	30	92,3537	1,9436	7,6463	97,2475	0,866	1,8866	4,4245	0,847	94,7286
6	2	30	94,2372	1,1781	5,7628	97,6187	0,5873	1,794	3,3332	1,0857	95,581
7	2	30	92,6763	1,8782	7,3237	97,3474	0,7921	1,8606	4,2778	0,8471	94,8751
8	2	30	91,3556	2,0808	8,6444	97,4875	0,5916	1,9209	4,4336	0,9409	94,6254
9	2	30	93,286	1,1269	6,714	97,3741	0,5655	2,0604	3,862	1,0084	95,1296
10	2	30	93,3924	1,0613	6,6076	97,1784	0,8142	2,0074	4,1756	0,8949	94,9295
1	2	5	96,8953	0,7234	3,1047	98,1709	0,347	1,4821	1,307	0,8542	97,8388
2	2	5	96,9896	0,7324	3,0204	98,1537	0,3519	1,4944	1,2109	0,8567	97,9324
3	2	5	96,9962	0,728	3,0038	98,1516	0,3528	1,4955	1,275	0,8716	97,8535
4	2	5	96,9633	0,7258	3,0367	98,2226	0,3289	1,4485	1,3099	0,8625	97,8276
5	2	5	96,8466	0,7346	3,1534	98,1578	0,3438	1,4985	1,4457	0,8503	97,704
6	2	5	97,0824	0,7363	2,9176	98,1757	0,3219	1,5024	1,1531	0,866	97,9809
7	2	5	96,8699	0,7350	3,1301	98,2028	0,3354	1,4619	1,4767	0,8591	97,6642
8	2	5	96,9530	0,7498	3,0470	98,1819	0,3481	1,47	1,4784	0,8475	97,6742
9	2	5	96,827	0,7422	3,1730	98,1345	0,3437	1,5219	1,2891	0,8539	97,857

Состав	Момент времени (месяцы)	Условия (°С)	ОФ- ВЭЖХ главный пик, %	ОФ- ВЭЖХ LURS, %	ОФ-ВЭЖХ общее содержание примесей, %	SEC- мономеры, %	SEC-	Общее содержание SEC- фрагментов, %	AEX TAV, %	AEX TBV, %	Главный пик AEX, %
10	2	5	96,8821	0,7329	3,1179	98,1899	0,351	1,4591	1,2979	0,8611	97,841
1	3	30	90,5893	1,8609	9,4107	95,4619	1,3565	3,1816	6,4557	1,2244	92,3199
2	3	30	90,6977	1,8311	9,3023	95,8192	1,2081	2,9727	6,0495	1,029	92,9215
3	3	30	91,0457	1,8134	8,9543	95,8828	1,2027	2,9144	5,8713	1,0455	93,0832
4	3	30	91,2988	1,826	8,7012	96,0930	1,0589	2,8480	5,5009	1,1993	93,2997
5	3	30	89,0961	2,3881	10,9039	95,9943	1,2520	2,7537	6,7889	1,1934	92,0177
6	3	30	92,1509	1,7257	7,8491	96,6058	0,7486	2,6456	4,5793	1,448	93,9727
7	3	30	89,6819	2,3004	10,3181	96,0146	1,1406	2,8448	6,2754	1,0358	92,6888

[0147] Таблица 32. Результаты НІАС и МГІ

				HL	AC			MFI				
Партия	Момент времени (месяцы)	Условия (°С)	>= 10 мкм, среднее	>= 2 мкм, среднее	>= 25 мкм, среднее	>= 5 мкм, среднее	>= 2 MKM	>= 5 MKM	>= 5 мкм и соотношение сторон < 0,85	>= 5 мкм и соотношение сторон >= 0,85	Фракция круглых частиц	
		Исх.										
1	0	уровень	658	19 194	3	4457	119 589	10 862	653	10 208	0,94	
1	0,5	30 °C	526	17 306	18	4747	53 219	6938	506	6432	0,93	
1	1	30 °C	628	14 690	7	3454	61 573	5657	288	5369	0,95	
1	1	5 °C	507	18 542	3	3604	40 115	2930	95	2835	0,97	
1	2	30 °C	936	16 779	9	5833	53 636	9445	434	9011	0,95	
1	2	5 °C	373	18 423	5	3274	52 554	4445	167	4278	0,96	

1	3	30 °C	998	38 010	12	11 198	154 448	22 579	1201	21 378	0,95
1	3	5 °C	1032	25 229	9	7037	130 370	10 606	693	9914	0,93
1	6	30 °C	402	5548	9	1617	23 095	3271	197	3074	0,94
1	6	5 °C	280	2952	6	668	12 064	866	33	834	0,96
		Исх.									
10	0	уровень	966	30 483	1	7831	152 248	11 754	801	10 954	0,93
10	0,5	30 °C	484	13 688	0	3540	69 285	5868	287	5582	0,95
10	1	30 °C	466	18 668	1	3990	102 674	7717	549	7169	0,93
10	1	5 °C	333	17 050	0	2598	54 008	2496	116	2380	0,95
10	2	30 °C	907	25 473	8	6343	102 279	9139	596	8543	0,93
10	2	5 °C	446	15 169	1	3428	52 478	3880	152	3728	0,96
10	3	30 °C	1186	26 805	6	7964	283 698	29 431	2717	26 714	0,91
10	3	5 °C	958	22 482	3	5821	122 596	9753	627	9126	0,94
10	6	30 °C	235	2217	14	651	21 960	1818	85	1733	0,95
10	6	5 °C	407	6249	4	1700	22 916	1015	59	956	0,94
		Исх.									
2	0	уровень	1279	31128	18	8912	100 703	11 889	645	11 243	0,95
2	0,5	30 °C	562	20 072	1	4511	113 899	11 810	516	11 294	0,96
2	1	30 °C	1444	30 151	14	9981	87 398	12 510	352	12 157	0,97
2	1	5 °C	375	11 149	2	2109	59 462	4940	328	4612	0,93
2	2	30 °C	777	27 703	7	6225	79 060	11 881	393	11 488	0,97
2	2	5 °C	380	12 409	3	2672	90 130	11 751	478	11 273	0,96
2	3	30 °C	717	24 912	15	6222	84 309	10 657	486	10 171	0,95
2	3	5 °C	259	10 171	5	2074	36 328	1893	129	1764	0,93

		Условия		AC		MFI					
Партия	Момент		>=	>=	>=	>=	>= 2	>= 5	>= 5 мкм и	>= 5 мкм и	Фракция
	времени (месяцы)	(°C)	10 мкм,	2 мкм,	25 мкм,	5 мкм,	мкм		соотношение		1 0
	(среднее	среднее	среднее	среднее			сторон < 0,85		частиц

										сторон >= 0,85	
2	6	30 °C	1036	6689	46	2763	20 081	4722	167	4555	0,96
2	6	5 °C	630	4861	28	1400	21 316	2331	66	2265	0,97
		Исх.									
3	0	уровень	890	26 046	0	7153	85 996	3806	269	3538	0,93
3	0,5	30 °C	387	16 646	4	3470	61 773	5177	198	4979	0,96
3	1	30 °C	500	17 237	4	4229	73 123	7088	267	6821	0,96
3	1	5 °C	309	11 407	2	2177	48 051	3269	149	3120	0,95
3	2	30 °C	1660	37 369	8	11 411	123 708	21 658	803	20 856	0,96
3	2	5 °C	360	11 941	2	2583	50 274	3868	170	3698	0,96
3	3	30 °C	777	26 716	9	7071	96 666	9727	568	9159	0,94
3	3	5 °C	581	19 011	5	4454	85 885	10 156	477	9679	0,95
3	6	30 °C	80	1503	3	328	19 015	2905	296	2609	0,9
3	6	5 °C	311	3771	1	1012	21 087	3403	92	3312	0,97
		Исх.									
4	0	уровень	707	26 858	1	6921	72 345	4827	257	4569	0,95
4	0,5	30 °C	429	12 156	1	2754	78 855	6743	310	6433	0,95
4	1	30 °C	965	26 942	3	7338	67 856	7043	306	6736	0,96
4	1	5 °C	159	7921	4	1353	46 186	3792	179	3613	0,95
4	2	30 °C	1235	29 861	6	8803	102 443	10 579	613	9966	0,94
4	2	5 °C	433	13 617	4	2828	72 762	7090	385	6705	0,95
4	3	30 °C	295	15 993	7	3605	61 532	7203	341	6862	0,95
4	3	5 °C	605	17 368	5	4010	85 539	7439	434	7005	0,94
4	6	30 °C	359	3022	21	1074	14 162	2244	87	2157	0,96
4	6	5 °C	482	4325	14	1458	13 378	2275	146	2129	0,94
		Исх.									
5	0	уровень	206	22 708	0	3856	86 515	6397	314	6083	0,95
5	0,5	30 °C	370	13 693	2	3312	79 019	6043	395	5649	0,93
5	1	30 °C	460	17 267	2	3645	71 144	5423	313	5110	0,94

						47					
5	1	5 °C	195	15 720	1	2092	45 940	2815	136	2679	0,95
5	2	30 °C	473	16 801	2	3401	76 115	4625	373	4252	0,92
5	2	5 °C	492	14 044	1	2992	49 784	4818	231	4587	0,95
5	3	30 °C	584	17 953	3	5094	123 626	11 343	727	10 616	0,94
5	3	5 °C	303	12 220	0	2632	88 227	4990	395	4596	0,92
5	6	30 °C	236	2099	13	573	11 591	1212	129	1083	0,89
5	6	5 °C	105	1621	8	261	12 808	483	28	455	0,94

				HL	AC				MFI		
Партия	Момент времени (месяцы)	Условия (°С)	>= 10 мкм, среднее	>= 2 мкм, среднее	>= 25 мкм, среднее	>= 5 мкм, среднее	>= 2 MKM	>= 5 MKM	>= 5 мкм и соотношение сторон < 0,85	>= 5 мкм и соотношение сторон >= 0,85	Фракция круглых частиц
		Исх.					103				
6	0	уровень	1267	36 318	1	11 017	484	6047	477	5570	0,92
					_		111				
6	0,5	30 °C	1282	23 890	2	6644	839	8988	916	8073	0,9
6	1	30 °C	1167	24 307	4	6011	98 953	8844	657	8187	0,93
							14				
6	1	5 °C	616	28 416	4	5086	4570	8608	763	7845	0,91
6	2	30 °C	608	22 938	5	4250	75 806	8641	447	8194	0,95
6	2	5 °C	339	20 314	2	3061	98 897	5269	398	4871	0,92
							171				
6	3	30 °C	970	35 147	4	9310	661	10 028	961	9067	0,9
							124				,
6	3	5 °C	370	16 967	1	2709	366	5166	519	4646	0,9
6	6	30 °C	773	6147	28	2232	26 143	4751	347	4404	0,93
6	6	5 °C	532	4068	20	1446	26 129	3605	185	3420	0,95
		Исх.									,
7	0	уровень	708	22 673	1	5399	68 537	6702	336	6366	0,95

							149				
7	0,5	30 °C	838	31 506	1	6672	040	24 077	1096	22 982	0,95
							157				
7	1	30 °C	595	26 083	6	6542	117	17 747	984	16 763	0,94
7	1	5 °C	413	11 560	5	2953	52 583	3975	133	3842	0,97
7	2	30 °C	448	21 403	1	4622	82 936	6699	472	6227	0,93
7	2	5 °C	802	21 887	2	4941	50 231	4678	177	4501	0,96
							121				
7	3	30 °C	461	24 766	3	5601	862	10 551	668	9882	0,94
7	3	5 °C	301	14 200	1	2470	85 613	5591	277	5315	0,95
7	6	30 °C	254	2452	11	608	18 859	1192	75	1117	0,94
7	6	5 °C	292	2774	10	590	22 873	1150	44	1106	0,96
		Исх.									
8	0	уровень	470	25 128	1	4415	77 574	5215	357	4858	0,93
8	0,5	30 °C	1373	27 710	3	6793	86 291	6651	575	6076	0,91
8	1	30 °C	979	18 816	5	5662	45 202	4943	224	4719	0,95
8	1	5 °C	458	14 278	0	2192	53 161	1988	118	1870	0,94
8	2	30 °C	794	16 325	1	4426	84 938	8600	560	8040	0,93
8	2	5 °C	728	17 815	3	4277	55 084	4147	539	3608	0,87
							125				
8	3	30 °C	870	25 530	0	6413	958	10 770	667	10 104	0,94
8	3	5 °C	295	10 722	2	2139	72 289	4799	300	4499	0,94
8	6	30 °C	381	5416	12	1373	20 780	1756	151	1605	0,91
8	6	5 °C	528	6736	5	1660	43 199	2476	146	2331	0,94
		Исх.									
9	0	уровень	850	28 077	10	6845	6077	7103	249	6854	0,96
9	0,5	30 °C	175	5265	0	815	50 944	3217	172	3045	0,95

	\	Усповия	HIAC				MFI					
Партия		(°С)										

	Момент времени (месяцы)		>= 10 мкм, среднее	>= 2 мкм, среднее	>= 25 мкм, среднее	>= 5 мкм, среднее	>= 2 MKM	>= 5 MKM	>= 5 мкм и соотношение сторон < 0,85	сторон >=	Фракция круглых частиц
9	1	30 °C	593	12 558	4	3520	59 544	3872	278	3593	0,93
9	1	5 °C	285	7625	2	1503	56 249	4596	185	4411	0,96
9	2	30 °C	377	16 774	2	2607	99 134	8746	390	8356	0,96
9	2	5 °C	475	12 070	3	2748	125 986	10 721	572	10 149	0,95
9	3	30 °C	503	16 033	1	3664	164 713	13 990	922	13 068	0,93
9	3	5 °C	189	11 184	1	1891	70 900	3690	198	3492	0,95
9	6	30 °C	792	5204	30	1892	21 123	1803	98	1705	0,95
9	6	30 °C	479	6561	8	2192	34 598	4135	144	3991	0,97

- [0148] Физическая стабильность
- [0149] Данные для физического внешнего вида и видимых частиц согласуются со всеми составами, условиями и моментами времени. Зарегистрировано отсутствие видимых частиц. Растворы остаются прозрачными и бесцветными. Данные представлены в таблице 30.
- [0150] Эксклюзионная хроматография размеров (SEC)
- [0151] Значения процентной доли мономеров и общего содержания агрегатов всех исследуемых составов, полученные посредством SEC, представлены в таблице 31 при условиях хранения 5 °C и 30 °C. Данные по стабильности доступны для 6 месяцев хранения. Данные показывают, что потеря мономера в основном обусловлена фрагментацией. Значения общего содержания фрагментов всех исследуемых составов, полученные посредством SEC, представлены в таблице 31 при условиях хранения 5 °C и 30 °C.
- [0152] Анионообменная хроматография (АЕХ)
- [0153] Значения главного пика, значения TAV и значения TBV всех исследуемых составов, полученные посредством AEX, представлены в таблице 31 при условиях хранения 5 $^{\circ}$ C и 30 $^{\circ}$ C.
- [0154] ОФ-ВЭЖХ
- [0155] Результаты ОФ-ВЭЖХ демонстрируют, что рН оказывает наибольшее влияние на стабильность, при этом высокий рН приводит к более высоким уровням разложения. Значения главного пика и общее содержание примесей для всех исследуемых составов, полученные посредством ОФ-ВЭЖХ, представлены в таблице 31 при условиях хранения 5 °C и 30 °C.
- [0156] Твердые частицы
- [0157] Данные о твердых частицах, измеренные посредством светоблокировки HIAC и MFI в каждый момент времени и при каждых условиях для всех составов, показаны в таблице 32 и демонстрируют различия, связанные с вариативностью способа. Конкретных тенденций относительно факторов составов не наблюдается. МFI применяют для дополнительного определения характеристик твердых частиц в каждом составе для определения морфологии частиц. В таблице 32 показано сравнение среднего значения твердых частиц всех составов для данных о твердых частицах ≥ 5 мкм по сравнению с данными о твердых частицах ≥ 5 мкм с соотношением сторон (AR) < 0,85. Твердые частицы с AR < 0,85 считаются несферическими и являются более вероятными агрегатами, связанными с белком. Результаты показывают значительное различие между необработанными данными о твердых частицах ≥ 5 мкм и данными о твердых частицах ≥ 5 мкм с учетом AR. Эти данные подразумевают, что многие твердые частицы в растворе являются сферическими, что, вероятно, связано с каплями силиконового масла, распространенным явлением в предварительно заполненной шприцевой

системе. Результаты для фракции круглых частиц подтверждают это заключение, учитывая, что доля фракции круглых частиц для всех составов составляла > 90%.

[0158] Выводы: Данные из всех исследованных составов демонстрировали аналогичные профили стабильности в ходе исследования. Исследование демонстрирует, что состав является стабильным при рН в диапазоне от 7 до 8 и концентрациях в диапазоне от 1 до 30 мг/мл.

ПОСЛЕДОВАТЕЛЬНОСТИ

[0159] В описании упоминаются следующие аминокислотные последовательности, которые представлены ниже для информации.

[0160] SEQ ID NO: 1 — аналог инкретина / агонист трех рецепторов GGG Y-Aib-QGTFTSDYSI-αMeL-LDKK((2-[2-(2-амино-этокси)-этокси]-ацетил)-(γGlu)-CO-(CH₂)₁₈-CO₂H)AQ-Aib-AFIEYLLEGGPSSGAPPPS-NH₂

[0161] SEQ ID NO: 2 — GIP человека YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ

[0162] SEQ ID NO: 3 — амид GLP-1₇₋₃₆ человека HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH₂

[0163] SEQ ID NO: 4 — GCG человека HSQGTFTSDYSKYLDSRRAQDFVQWLMNT

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Фармацевтическая композиция, содержащая:

аналог инкретина или его фармацевтически приемлемую соль;

по меньшей мере один регулятор тоничности, выбранный из группы, состоящей из глицерина, маннита и пропиленгликоля; и

необязательный консервант, выбранный из группы, состоящей из м-крезола и фенола.

- 2. Фармацевтическая композиция по п. 1, в которой аналог инкретина или его фармацевтически приемлемая соль находится в концентрации от примерно $1 \, \text{мг/мл}$ до примерно $30 \, \text{мг/мл}$.
- 3. Фармацевтическая композиция по п. 1 или 2, в которой регулятор тоничности представляет собой глицерин и находится в концентрации от примерно 5 мг/мл до примерно 50 мг/мл.
- 4. Фармацевтическая композиция по п. 3, в которой глицерин находится в концентрации 20 мг/мл.
- 5. Фармацевтическая композиция по п. 1 или 2, в которой регулятор тоничности представляет собой маннит и находится в концентрации от примерно 10 мг/мл. до примерно 100 мг/мл.
- 6. Фармацевтическая композиция по п. 5, в которой маннит находится в концентрации 48 мг/мл.
- 7. Фармацевтическая композиция по п. 1 или 2, в которой регулятор тоничности представляет собой пропиленгликоль и находится в концентрации от примерно 5 мг/мл до примерно 50 мг/мл.
- 8. Фармацевтическая композиция по п. 7, в которой пропиленгликоль находится в концентрации 15 мг/мл.

- 9. Фармацевтическая композиция по любому из пп. 1–8, в которой необязательный консервант представляет собой м-крезол и находится в концентрации от примерно 1 мг/мл до примерно 10 мг/мл.
- 10. Фармацевтическая композиция по п. 9, в которой м-крезол находится в концентрации 3,15 мг/мл.
- 11. Фармацевтическая композиция по любому из пп. 1–8, в которой необязательный консервант представляет собой фенол и находится в концентрации от примерно 1 мг/мл до примерно 10 мг/мл.
- 12. Фармацевтическая композиция по п. 11, в которой фенол находится в концентрации 5 мг/мл.
- 13. Фармацевтическая композиция по любому из пп. 1–12, в которой аналог инкретина содержит SEQ ID NO: 1.
- 14. Фармацевтическая композиция по п. 13, в которой аналог инкретина находится в концентрации, выбранной из группы, состоящей из 1 мг/мл, 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 8 мг/мл, 9 мг/мл, 12 мг/мл, 18 мг/мл, 24 мг/мл и 30 мг/мл.
- 15. Фармацевтическая композиция по любому из пп. 1–14, дополнительно содержащая буфер, выбранный из группы, состоящей из фосфатного буфера (PO₄) и буфера трис(гидроксиметил)аминометана (ТРИС).
- 16. Фармацевтическая композиция по п. 15, в которой буфер представляет собой буфер ТРИС и находится в концентрации 10 мМ.
- 17. Фармацевтическая композиция по любому из пп. 1–15, дополнительно содержащая этилендиаминтетрауксусную кислоту (EDTA) в концентрации 0,3 мг/мл.
- 18. Фармацевтическая композиция по п. 1, содержащая:

аналог инкретина или его фармацевтически приемлемую соль, содержащий SEQ ID NO: 1, причем аналог инкретина или его фармацевтически приемлемая соль находится в концентрации от примерно 1 мг/мл до примерно 30 мг/мл;

маннит в концентрации от примерно 10 мг/мл до примерно 100 мг/мл; и

буфер трис(гидроксиметил) аминометана (ТРИС) в концентрации от примерно $10~{\rm MM}$ до примерно $100~{\rm MM}$.

- 19. Фармацевтическая композиция по п. 18, имеющая рН от примерно 6,5 до примерно 7,5.
- 20. Фармацевтическая композиция по п. 18 или 19, в которой маннит находится в концентрации 48 мг/мл.
- 21. Фармацевтическая композиция по любому из пп. 18–20, в которой аналог инкретина или его фармацевтически приемлемая соль находится в концентрации, выбранной из группы, состоящей из 1 мг/мл, 2 мг/мл, 3 мг/мл, 4 мг/мл, 5 мг/мл, 6 мг/мл, 8 мг/мл, 9 мг/мл, 12 мг/мл, 18 мг/мл, 24 мг/мл и 30 мг/мл.
- 22. Фармацевтическая композиция по любому из пп. 18–21, дополнительно содержащая консервант, выбранный из группы, состоящей из м-крезола и фенола, причем консервант находится в концентрации от примерно 1 мг/мл до примерно 10 мг/мл.
- 23. Фармацевтическая композиция по любому из пп. 1–22, дополнительно содержащая фармацевтически приемлемый носитель, разбавитель или эксципиент.
- 24. Фармацевтическая композиция по любому из пп. 1–23, в которой объем дозы композиции составляет примерно 0,5 мл.
- 25. Фармацевтическая композиция по п. 24, приемлемая для введения с применением автоматического устройства для инъекций.
- 26. Фармацевтическая композиция по любому из пп. 1–25, в которой фармацевтически приемлемая соль выбрана из солей натрия, трифторацетата, гидрохлорида и ацетата.

- 27. Фармацевтическая композиция по любому из пп. 1–26, в которой фармацевтически приемлемая соль представляет собой тетранатриевую соль.
- 28. Способ лечения диабета, включающий этап:

введения нуждающемуся в этом субъекту эффективной дозы фармацевтической композиции по любому из пп. 1–27.

- 29. Способ по п. 28, в котором эффективную дозу вводят с применением автоматического устройства для инъекций.
- 30. Способ по п. 28 или 29, в котором эффективную дозу вводят один раз в неделю.
- 31. Способ лечения ожирения, включающий этап:

введения нуждающемуся в этом субъекту эффективной дозы фармацевтической композиции по любому из пп. 1–27.

- 32. Способ по п. 31, в котором эффективную дозу вводят с применением автоматического устройства для инъекций.
- 33. Способ по п. 31 или 32, в котором эффективную дозу вводят один раз в неделю.
- 34. Фармацевтическая композиция по любому из пп. 1–27 для применения в лечении заболевания, выбранного из группы, состоящей из сахарного диабета, дислипидемии, жировой дистрофии печени, метаболического синдрома, неалкогольного стеатогепатита и ожирения.
- 35. Фармацевтическая композиция по любому из пп. 1–27 для применения в лечении сахарного диабета II типа.
- 36. Фармацевтическая композиция по любому из пп. 1–27 для применения в лечении ожирения.
- 37. Применение фармацевтической композиции по любому из пп. 1–27 в производстве лекарственного средства для лечения заболевания, выбранного из группы, состоящей из

сахарного диабета, дислипидемии, жировой дистрофии печени, метаболического синдрома, неалкогольного стеатогепатита и ожирения.

- 38. Применение фармацевтической композиции по любому из пп. 1–27 в производстве лекарственного средства для лечения сахарного диабета II типа.
- 39. Применение фармацевтической композиции по любому из пп. 1–27 в производстве лекарственного средства для лечения ожирения.
- 40. Промышленное изделие, содержащее фармацевтическую композицию по любому из пп. 1–27, причем промышленное изделие выбрано из многоразового флакона, многоразовой шприц-ручки, предварительно заполненной одноразовой шприц-ручки, автоматического инжектора и насоса.