ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

Дата публикации заявки
2023.11.02

Дата подачи заявки
2022.01.25

ТРИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ И ИХ ПРИМЕНЕНИЕ

Ряд трициклических соединений и их применение. Конкретно раскрыты соединение, представленное формулой (II), и его фармацевтически приемлемая соль

\[
\text{Рис. формула (II)}
\]
ТРИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ И ИХ ПРИМЕНЕНИЕ

[0001] Настоящая заявка испрашивает приоритет следующих заявок:

CN202110134377.6, дата подачи: 29 января 2021 года;

CN202210020761.8, дата подачи: 07 января 2022 года.

ОБЛАСТЬ ТЕХНИКИ

[0002] Настоящее изобретение относится к ряду трицикллических соединений и их применению, и в нем конкретно раскрыто соединение формулы (II) и его фармацевтически приемлемая соль.

УРОВЕНЬ ТЕХНИКИ

[0003] Фосфатидилинозитол-3-киназа (PI3K) представляет собой разновидность липидкиназы, состоящую из регуляторной субъединицы p85 или p101 и каталитической субъединицы p110 (которая дополнительно подразделяется на четыре подтипы – p110a, p110b, p110g, p110d). PI3K активирует последующую Akt, и т. д., путем катализирования фосфорилирования 3'-ОН-группы инозитольного кольца фосфатидилинозитол-4,5-бисфосфата (PI(2)) до фосфатидилинозитол-3,4,5-трифосфата (PI(3)), таким образом играя ключевую роль в пролиферации, выживании и метаболизме клеток. В опухолевых клетках PI3K сверхэкспрессируется, что приводит к быстрой пролиферации и росту опухолевых клеток.

[0004] Существует четыре подтипы PI3K, при этом PI3Kα широко распространена в организме. Нарушенная активация PI3Kα также имеет место при различных солидных опухолях. Мутации в гене РIK3CA также присутствуют при разных солидных опухолях, что приводит к возникновению и развитию опухолей. PI3Kα в основном контролирует инсулиновый и другие взаимосвязанные пути регуляции содержания глюкозы в крови
при наличии нормальных физиологических функций. Следовательно, было клинически подтверждено, что ингибитирование Р13Кα дикого типа обуславливает побочные эффекты, такие как гипергликемия. Следовательно, ингибиторы, оказывающие целенаправленное воздействие на мутантную Р13Кα, играют важную роль в обеспечении клинической безопасности.

GDC-0077 представляет собой высокоселективный ингибитор Р13Кα, разработанный компанией Roche. В то же время, он обладает функцией разрушения мутантного белка Р13Кα, что дает новую надежду на клиническую разработку ингибиторов Р13К с более высоким уровнем безопасности.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем изобретении предусмотрено соединение формулы (II) или его фармацевтически приемлемая соль,

где

Т выбран из O и S;
L выбран из -C1-алкил- и -C1-алкилциклоопропил-;

R1 выбран из H и C1-алкила, и C1-алкил необязательно замечен 1, 2 или 3 R6;

R2 выбран из H, F, Cl, Br, I, OH и C1-алкила, и C1-алкил необязательно замечен 1, 2 или 3 R6;

каждый из X и Y независимо выбран из O и NR3, и X и Y одновременно не являются выбранными из O;

R3 независимо выбран из H, OH, CN, C1-алкила, C1-алкокси и -O-C3-5циклоалкила, и C1-алкил, C1-алкокси и -O-C3-5циклоалкил необязательно замещены 1, 2 или 3 R6;

R4 и R5 выбраны из H, F, Cl, Br, I, OH и C1-алкила;

R6 выбран из H и C1-алкила;

R7 выбран из C1-алкила, C1-алкокси и 3-5-членного гетероциклоалкила;

или R6, R7 вместе с их общим атомом углерода образуют 3-5-членный гетероциклоалкил;

или R1, R7 вместе с атомом, к которому они присоединены, образуют 3-5-членный гетероциклоалкил;

кольцо В выбрано из 4-8-членного гетероциклоалкила, и 4-8-членный гетероциклоалкил необязательно замечен 1, 2 или 3 R6;

каждый из Rα, Rβ, Rε и Rδ независимо выбран из F, Cl, Br и I.

В некоторых вариантах осуществления настоящего изобретения вышеуказанный R1 выбран из H и CH3, и CH3 необязательно замечен 1, 2 или 3 Rα, и другие переменные являются такими, как определено в настоящем изобретении.
В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₁ выбран из H, CH₃, CH₂F, CHF₂ и CF₃, и другие переменные являются такими, как определено в настоящем изобретении.

В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₂ выбран из H, F, Cl, Br, I, OH и CH₃, и CH₃ необязательно замещен 1, 2 или 3 R₆, и другие переменные являются такими, как определено в настоящем изобретении.

В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₃ независимо выбран из H, OH, CN, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, -OCH(CH₃)₂, -O-циклопропила и -O-циклобутила, и CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, -OCH(CH₃)₂, -O-циклопропил и -O-циклобутил необязательно замещены 1, 2 или 3 R₇, и другие переменные являются такими, как определено в настоящем изобретении.

В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₄ независимо выбран из H, OH, CN, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, -OCH(CH₃)₂, -O-циклопропила и -O-циклобутила, и другие переменные являются такими, как определено в настоящем изобретении.

В некоторых вариантах осуществления настоящего изобретения каждый из вышеуказанных X и Y независимо выбран из О, NH, NOH, NCN, N-CH₃, N-OCH₃, N-OCH₂CH₃, N-OCH(CH₃)₂, N-O-циклопропила и N-O-циклобутила, и другие переменные являются такими, как определено в настоящем изобретении.

В некоторых вариантах осуществления настоящего изобретения вышеуказанные R₄ и R₅ выбраны из H, F, Cl, Br, I, OH и CH₃, и другие переменные являются такими, как определено в настоящем изобретении.
[0029] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₄ выбран из H, F, Cl, Br, I, OH и CH₃, и другие переменные являются такими, как определено в настоящем изобретении.

[0030] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₅ выбран из H, F, Cl, Br, I, OH и CH₃, и другие переменные являются такими, как определено в настоящем изобретении.

[0031] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₇ выбран из CH₃, C(CH₃)₂, OCH₃ и оксетанила, и другие переменные являются такими, как определено в настоящем изобретении.

[0032] В некоторых вариантах осуществления настоящего изобретения вышеуказанные R₆, R₇ вместе с их общим атомом углерода образуют оксетанил, и другие переменные являются такими, как определено в настоящем изобретении.

[0033] В некоторых вариантах осуществления настоящего изобретения вышеуказанные R₅, R₇ вместе с атомом, к которому они присоединены, образуют азетидинил и пиперазинил, и другие переменные являются такими, как определено в настоящем изобретении.

[0034] В некоторых вариантах осуществления настоящего изобретения вышеуказанный L выбран из -CH₂CH₂-, -CH(CΗ₃)CH₂- и -CH₂-, и другие переменные являются такими, как определено в настоящем изобретении.

[0035] В некоторых вариантах осуществления настоящего изобретения вышеуказанное кольцо B выбрано из
необязательно замещены 1, 2 или 3 R_a, и другие переменные являются такими, как определено в настоящем изобретении.

[0036] В некоторых вариантах осуществления настоящего изобретения вышеуказанное кольцо В выбрано из

и другие переменные являются такими, как определено в настоящем изобретении.

[0037] В настоящем изобретении предусмотрено соединение формулы (I) или его фармацевтически приемлемая соль,

(1)

где

[0038] R_1 выбран из H и C_1-залилла, и C_1-залил необязательно замещен 1, 2 или 3 R_5;

[0039] R_2 выбран из H, F, Cl, Br, I, OH и C_1-залилла, и C_1-залил необязательно замещен 1, 2 или 3 R_6;

[0040] каждый из X и Y независимо выбран из O и NR_3, и X и Y одновременно не являются выбранными из O;
[0042] R₃ независимо выбран из H, OH, CN, C₁-залкила, C₁-валкокси и -O-C₃-5циклокалкила, и C₁-валкил, C₁-валкокси и -O-C₃-5циклокалкил необязательно замещены 1, 2 или 3 R₅;

[0043] каждый из R₆, R₇ и R₈ независимо выбран из F, Cl, Br и I.

[0044] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₁ выбран из H и CH₃, где CH₃ необязательно замечен 1, 2 или 3 R₅, и другие переменные являются такими, как определено в настоящем изобретении.

[0045] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₁ выбран из H, CH₃, CH₂F, CHF₂ и CF₃, и другие переменные являются такими, как определено в настоящем изобретении.

[0046] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₂ выбран из H, F, Cl, Br, I, OH и CH₃, где CH₃ необязательно замечен 1, 2 или 3 R₅, и другие переменные являются такими, как определено в настоящем изобретении.

[0047] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₂ выбран из H, F, Cl, Br, I, OH, CH₃, CH₂F, CHF₂ и CF₃, и другие переменные являются такими, как определено в настоящем изобретении.

[0048] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₃ независимо выбран из H, OH, CN, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, -OCH(CH₃)₂, -O-циклопропила и -O-циклобутила, и CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, -OCH(CH₃)₂, -O-циклопропил и -O-циклобутил необязательно замещены 1, 2 или 3 R₅, и другие переменные являются такими, как определено в настоящем изобретении.

[0049] В некоторых вариантах осуществления настоящего изобретения вышеуказанный R₃ независимо выбран из H, OH, CN, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, -OCH(CH₃)₂, -O-циклопропила и -O-циклобутила, и другие переменные являются такими, как определено в настоящем изобретении.
[0050] В некоторых вариантах осуществления настоящего изобретения каждый из вышеуказанных X и Y независимо выбран из O, NH, NOH, NCN, N-CH₃, N-OCH₃, N-OCH₂CH₃, N-OCH(CH₃)₂, N-O-циклопропила и N-O-циклобутила, и другие переменные являются такими, как определено в настоящем изобретении.

[0051] Существуют еще некоторые другие варианты осуществления настоящего изобретения, которые получают посредством любой комбинации вышеуказанных переменных.

[0052] В некоторых вариантах осуществления настоящего изобретения вышеуказанное соединение или его фармацевтически приемлемая соль выбраны из

![Diagram](image)

(1-1), (1-2), (II-1),

[0053] где

[0054] R₁, R₂ и R₃ являются такими, как определено в настоящем изобретении.

[0055] В некоторых вариантах осуществления настоящего изобретения вышеуказанное соединение или его фармацевтически приемлемая соль выбраны из
[0056] где

[0057] R₁, R₂ и R₃ являются такими, как определено в настоящем изобретении.

[0058] В настоящем изобретении предусмотрено соединение следующей формулы или его фармацевтически приемлемая соль,
[0059] В некоторых вариантах осуществления настоящего изобретения вышеуказанное соединение или его фармацевтически приемлемая соль выбраны из
[0060] Технический эффект

[0061] Соединения по настоящему изобретению могут эффективно ингибировать активность киназы Р13Кα и характеризуются высокой подтиповидной селективностью в отношении Р13Кβ/γ/δ. Кроме того, активность пролиферации клеток также может эффективно подавляться в клетках НСС1954 с мутацией Р1К3СА; соединения по настоящему изобретению обладают свойствами, представляющими собой высокую способность к проникновению и низкий уровень эффициенты; и соединения по настоящему изобретению обладают превосходными фармакокинетическими свойствами.

[0062] Определение и описание
[0063] Если не указано иное, следующие термины и выражения, применяемые в данном документе, имеют следующие значения. Конкретный термин или выражение при отсутствии точного определения не следует считать неопределенными или неясными, а следует понимать в соответствии с общепринятым значением. Если в данном документе встречается торговое название, то предполагается, что оно относится к соответствующему продукту или его активному ингредиенту.

[0064] Термин «фармацевтически приемлемый» используется в данном документе применительно к тем соединениям, материалам, композициям и/или лекарственным формам, которые в рамках тщательной медицинской оценки являются подходящими для применения в контакте с тканями человека и животного без чрезмерной токсичности, раздражения, анафилактической реакции или других проблем или осложнений в соответствии с обоснованным соотношением польза/риск.

[0065] Термин «фармацевтически приемлемая соль» относится к солям соединения по настоящему изобретению, которую получают путем осуществления реакции соединения, содержащего конкретный заместитель по настоящему изобретению, с относительно нетоксичными кислотой или основанием. Если соединение по настоящему изобретению содержит относительно кислотную функциональную группу, то соль присоединения основания может быть получена посредством приведения в контакт соединения с достаточным количеством основания в чистом растворе или подходящем инертном растворителе. Фармацевтически приемлемая соль присоединения основания включает соль натрия, калия, кальция, аммония, органического амина или магния или подобные соли. Если соединение по настоящему изобретению содержит относительно основную функциональную группу, то соль присоединения кислоты может быть получена посредством приведения соединения в контакт с достаточным количеством кислоты в чистом растворе или подходящем инертном растворителе. Примеры фармацевтически приемлемой соли присоединения кислоты включают соль неорганической кислоты, где неорганическая кислота включает, например, хлористоводородную кислоту, бромистоводородную кислоту, азотную кислоту, угольную кислоту, бикарбонат,
фосфорную кислоту, моногидрофосфат, дигидрофосфат, серную кислоту, гидросульфат, йодистоводородную кислоту, фосфористую кислоту и т. п.; и соль органической кислоты, где органическая кислота включает, например, уксусную кислоту, пропионовую кислоту, изомасляную кислоту, мальеньовую кислоту, малоновую кислоту, бензойную кислоту, янтарную кислоту, субериновую кислоту, фумаровую кислоту, молочную кислоту, миндальную кислоту, фталевую кислоту, бензолсульфоновую кислоту, п-толуолсульфоновую кислоту, лимонную кислоту, винную кислоту, метансульфоновую кислоту и т. п.; и соли аминокислоты (такой как аргинин и т. п.), и соль органической кислоты, такой как глиокуроновая кислота и т. п. Определенные конкретные соединения по настоящему изобретению содержат как основные, так и кислотные функциональные группы, поэтому могут быть превращены в любую соль присоединения основания или соль присоединения кислоты.

[0066] Фармацевтически приемлемая соль по настоящему изобретению может быть получена из исходного соединения, которое содержит кислотный или основный фрагмент, с помощью общепринятого химического способа. Как правило, такая соль может быть получена путем осуществления реакции свободной кислотной или основной формы соединения со стехиометрическим количеством соответствующих основания или кислоты в воде, или в органическом растворителе, или в их смеси.

[0067] Если не указано иное, то предполагается, что термин «изомер» включает геометрический изомер, цис-транс-изомер, стереоизомер, энантиомер, оптический изомер, диастереоизомер и таутомерный изомер.

[0068] Соединения по настоящему изобретению могут находиться в формах конкретного геометрического изомера или стереоизомера. В настоящем изобретении рассматриваются все такие соединения, в том числе цис- и транс-изомеры, (-)- и (+)-энантиомеры, (R)- и (S)-энантиомеры, диастереоизомеры, (D)-изомеры, (L)-изомеры, а также рацемические и другие их смеси, такие как энантиомерно или диастереомерно обогащенные смеси, все из которых находятся в пределах объема настоящего изобретения. В заместителях, таких как алкил, могут присутствовать дополнительные
асимметрические атомы углерода. Все такие изомеры и их смеси охватываются объемом настоящего изобретения.

[0071] Если не указано иное, термин «дистероизомер» относится к стереоизомеру, в молекуле которого имеется два или более хиральных центров, при этом при взаимном расположении молекул они не являются зеркальными отражениями.

[0072] Если не указано иное, «(+)» относится к правостороннему вращению, «(-)» относится к левостороннему вращению и «(±)» относится к рацемической смеси.

[0073] Если не указано иное, абсолютная конфигурация стереогенного центра представлена клиновидной сплошной связью (), и клиновидной пунктирной связью (), а относительная конфигурация стереогенного центра представлена прямой сплошной связью (), и прямой пунктирной связью (), волнистую линию () применяют для представления клиновидной сплошной связи () или клиновидной пунктирной связи (), или волнистую линию () применяют для представления прямой сплошной связи () или прямой пунктирной связи ().

[0074] Если не указано иное, то в случае, если в соединении имеется структура двойной связи, такая как углерод-углеродная двойная связь, углерод-азотная двойная связь и азот-азотная двойная связь, и каждый из атомов при двойной связи присоединен к двум разным заместителям (включая условие, при котором в двойной связи содержится атом азота, и неподеленная пара электронов, присоединенная к атому азота, рассматривается в качестве присоединенного заместителя), если атом при двойной связи в соединении присоединен к его заместителю посредством волнистой линии (), то
речь идет о (Z)-изомере, (E)-изомере или смеси двух изомеров соединения. Например, следующая формула (A) означает, что соединение существует в виде отдельного изомера формулы (A-1) или формулы (A-2) или в виде смеси двух изомеров формулы (A-1) и формулы (A-2); следующая формула (B) означает, что соединение существует в форме отдельного изомера формулы (B-1) или формулы (B-2) или в форме смеси двух изомеров формулы (B-1) и формулы (B-2). Следующая формула (C) означает, что соединение существует в виде отдельного изомера формулы (C-1) или формулы (C-2) или в виде смеси двух изомеров формулы (C-1) и формулы (C-2).

[0075] Если не указано иное, термин «таутомер» или «таутомерная форма» означает, что при комнатной температуре изомеры разных функциональных групп находятся в состоянии динамического равновесия и могут быстро превращаться друг в друга. Если возможно наличие таутомеров (как, например, в растворе), то может быть достигнуто химическое равновесие таутомеров. Например, протонный таутомер (также называемый прототропным таутомером) предусматривает взаимопревращение посредством протонного переноса, например, кето-енольная изомеризация и имин-енаминовая изомеризация. Валентный таутомер предусматривает некоторую перестройку связывающих электронов со взаимным преобразованием. Конкретным примером кето-енольной таутомеризации является таутомерия между двумя таутомерами — пентан-2,4-дионом и 4-гидроксипент-3-ен-2-оном.
[0076] Если не указано иное, термины «обогащенный одним изомером», «обогащенный изомерами», «обогащенный одним энантиомером» или «обогащенный энантиомерами» относятся к содержанию одного из изомеров или энантиомеров, составляющему менее 100%, и содержанию изомера или энантиомера, большему или равному 60%, или большему или равному 70%, или большему или равному 80%, или большему или равному 90%, или большему или равному 95%, или большему или равному 96%, или большему или равному 97%, или большему или равному 98%, или большему или равному 99%, или большему или равному 99,5%, или большему или равному 99,6%, или большему или равному 99,7%, или большему или равному 99,8%, или большему или равному 99,9%.

[0077] Если не указано иное, термин «избыток изомера» или «энантиомерный избыток» относится к разности значений относительного процентного содержания двух изомеров или двух энантиомеров. Например, если содержание одного изомера или энантиомера составляет 90%, а содержание другого изомера или энантиомера составляет 10%, то избыток изомера или энантиомера (значение ee) составляет 80%.

[0078] Оптически активный (R)- и (S)-изomer или D- и L-изомер может быть получен с применением хирального синтеза, или хиральных реагентов, или других общепринятых методик. Если необходимо получить один тип энантиомера конкретного соединения по настоящему изобретению, то чистый желаемый энантиомер может быть получен путем асимметрического синтеза или дериватизации с помощью хирального вспомогательного вещества с последующим разделением полученной в результате диастереомерной смеси и отщеплением вспомогательной группы. В качестве альтернативы, если молекула содержит основную функциональную группу (такую как аминогруппа), кислотную функциональную группу (такую как карбоксильная), соединение вступает в реакцию с соответствующими оптически активными кислотой или основанием с образованием соли диастереомерного изомера, которую затем подвергают диастереомерному разделению посредством общепринятого способа, известного из уровня техники, с получением чистого энантиомера. Кроме того, энантиомер и диастереоизомер обычно
выделяют посредством хроматографии, в которой используется хиральная неподвижная фаза, и необязательно совместно со способом химической дериватизации (например, карбамат, полученный из амина).

[0079] Соединение по настоящему изобретению может содержать неприродное соотношение атомных изотопов при одном или более атомах, которые составляют соединение. Например, соединение может быть мечено радиоактивным изотопом, таким как тритий (\(^{3}\)H), йод-125 (\(^{125}\)I) или С-14 (\(^{14}\)C). В качестве другого примера дейтерированные лекарственные средства могут быть образованы путем замены водорода тяжелым водородом, при этом связь, образованная дейтерием и углеродом, сильнее, чем связь обычного водорода и углерода, при этом по сравнению с недейтерированными лекарственными средствами дейтерированные лекарственные средства обладают преимуществами, заключающимися в уменьшенных токсических и побочных эффектах, повышенной стабильности лекарственного средства, повышенной эффективности, продлении биологического периода полувыведения лекарственных средств и т. п. Все изотопные варианты соединения по настоящему изобретению, вне зависимости от того, радиоактивные они или нет, включены в объем настоящего изобретения.

[0080] Термин «необязательный» или «необязательно» означает, что описанное далее событие или обстоятельство может произойти, но не необязательно происходит, и что описание включает случаи, когда событие или обстоятельство происходит, и случаи, когда не происходит.

[0081] Термин «замещенный» означает, что один или более атомов водорода при конкретном атоме замещены заместителем, в том числе дейтерием и вариантами водорода, при условии, что валентность конкретного атома является нормальной, и замещенное соединение является стабильным. Если заместитель представляет собой атом кислорода (т. е. =O), то это означает, что два атома водорода являются замещенными. Положения в ароматическом кольце не могут быть замещены кетоным. Термин «необязательно замещенный» означает, что атом может быть замещен или не замещен
заместителем, если не указано иное, причем тип и число заместителей могут быть произвольными при условии, что это химически достижимо.

[0082] Если любая переменная (такая как R) встречается более одного раза в составе или структуре соединения, то определение переменной в каждом случае является независимым. Таким образом, например, если группа замещена 0-2 R-группами, и данная группа может быть необязательно замещена не более чем двумя R-группами, при этом определение R в каждом случае является независимым. Более того, комбинация заместителя и/или его варианта является допустимой, только если такая комбинация приводит к образованию стабильного соединения.

[0083] Если в перечисленной линкерной группе не указано направление связывания, то направление связывания является произвольным; например, если линкерная группа L, содержащаяся в , представляет собой –M-W, то –M-W- может связывать кольцо A и кольцо B с образованием в направлении, соответствующем порядку чтения слева направо, и с образованием в направлении, противоположном порядку чтения слева направо. Комбинация линкерных групп, заместителей и/или их переменных является допустимой, только если такая комбинация может приводить к образованию стабильного соединения.

[0084] Если не указано иное, при содержании в группе одного или более соединяемых сайтов любой один или более сайтов группы могут быть соединены с другими группами посредством химических связей. Если сайт присоединения химической связи не установлен, и в присоединяемом сайте присутствует атом H, то число атомов H в указанном сайте будет соответственно уменьшаться на число присоединяемых к нему
химических связей, чтобы соответствовать соответствующей валентности. Химическая связь между сайтом и другими группами может быть представлена прямой сплошной связью (\(\text{---}\)), прямой пунктирной связью (\(\cdot\cdot\cdot\)) или волнистой линией (\(\text{---}^\cdot\text{---}\)). Например, прямая сплошная связь в \(-\text{OCH}_3\) означает, что группа присоединяется к другим группам посредством атома кислорода в группе; прямая пунктирная связь в \(\text{---}^\cdot\text{H}\text{---}\) означает, что группа присоединяется к другим группам с двух концов от атома азота в группе; волнистые линии в означают, что фенильная группа присоединяется к другим группам посредством атомов углерода в положении 1 и положении 2; означает, что группа может присоединяться к другим группам посредством любых доступных для присоединения сайтов в пиперидиниле с помощью одной химической связи, включая по меньшей мере четыре типа соединения, в том числе

\[
\begin{align*}
\text{NH} & , \\
\text{NH} & , \\
\text{NH} & -
\end{align*}
\]

Несмотря на то, что атом H изображен при \(-\text{N}-\), все равно включает связь \(\text{---}^\cdot\text{N}^\cdot\text{---}\), исключительно в случае образования одной химической связи, количество атомов H данного сайта будет уменьшено на один до соответствующего одновалентного пиперидина.

[0085] Если не указано иное, число атомов в кольце обычно определяется как число членов кольца, например, «5-7-членное кольцо» относится к «кольцу», в котором 5-7 атомов расположены по кругу.

[0086] Если не указано иное, термин «С1-залил» относится к линейной или разветвленной насыщенной углеводородной группе, состоящей из 1-3 атомов углерода. С1-залил включает С1- и С2-залил, и т. п.; при этом он может быть одновалентным (таким как метил), двухвалентным (таким как метилен) или многовалентным (таким как
метин). Примеры C₁-залкила включают без ограничения метил (Me), этил (Et), пропил (включая n-пропил и изопропил) и т. д.

[0087] Если не указано иное, термин «C₁-залкокси» относится к алкильной группе, содержащей 1-3 атома углерода, присоединенные к остальной части молекулы посредством одного атома кислорода. C₁-залкокси включает C₁₂-1, C₂₃-3, C₃-3 и С₅-залкокси и т. д. Примеры C₁-залкокси включают без ограничения метокси, этокси, пропокси (включая n-пропокси и изопропокси) и т. д.

[0088] Если не указано иное, «C₃-5циклоалкил» относится к насыщенной циклической углеводородной группе, состоящей из 3-5 атомов углерода, которая представляет собой моноциклическую систему, и C₃-циклоалкил включает C₃₄-4 и C₄₅циклоалкил и т. д.; при этом он может быть одновалентным, двухвалентным или поливалентным. Примеры C₃₅циклоалкила включают без ограничения циклопропил, циклобутил, циклопентил и т. д.

[0089] Если не указано иное, термин «3-5-членный гетероциклоалкил» сам по себе или в комбинации с другими терминами относится к насыщенной моноциклической группе, состоящей из 3-5 атомов кольца, где 1, 2, 3 или 4 атома кольца представляют собой гетероатомы, независимо выбранные из O, S и N, а остальные представляют собой атомы углерода, где атомы азота необязательно квaternionизированы, и гетероатомы, представляющие собой азот и серу, могут быть необязательно окислены (т. е., NO и S(O)ᵢ, r равняется 1 или 2). Кроме того, в случае «3-5-членного гетероциклоалкила», гетероатом может занимать положение соединения гетероциклоалкила с остальной частью молекулы. 3-5-членный гетероциклоалкил включает 4-5-членный, 4-членный и 5-членный гетероциклоалкил и т. д. Примеры 3-5-членного гетероциклоалкила включают без ограничения азетидинил, оксетанил, тиетанил, пирролидинил, пиразолидинил, имидазолидинил, тетрагидротиофенил (включая тетрагидротиофен-2-ил и тетрагидротиофен-3-ил и т. д.) или тетрагидрофуран (включая тетрагидрофуран-2-ил и т. д.) и т. п.
Если не указано иное, термин «4-8-членный гетероциклоалкил» сам по себе или в комбинации с другими терминами относится к насыщенной циклической группе, состоящей из 4-8 атомов кольца, где 1, 2, 3 или 4 атома кольца представляют собой гетероатомы, независимо выбранные из O, S и N, а остальные представляют собой атомы углерода, где атомы азота необязательно квaternionизированы, и гетероатомы, представляющие собой азот и серу, могут быть необязательно окислены (т. е., NO и S(O)ₙ, n равно 1 или 2). Он включает моноциклическую и бициклическую системы, где бициклические системы включают спирокольцо, конденсированное кольцо или кольцо с мостиковой связью. Кроме того, в случае «4-8-членного гетероциклоалкила», гетероатом может занимать положение соединения гетероциклоалкила с остальной частью молекулы. 4-8-членный гетероциклоалкил включает 4-6-членный, 4-5-членный, 5-6-членный, 4-членный, 5-членный и 6-членный гетероциклоалкил и т. д. Примеры 4-8-членного гетероциклоалкила включают без ограничения азетидинил, оксетанил, тиетанил, пирролидинил, пиразолидинил, имидазолидинил, тетрагидротиенил (включая тетрагидротиофен-2-ил и тетрагидротиофен-3-ил и т. п.), тетрагидрофуранил (включая тетрагидрофуран-2-ил и т. п.), тетрагидропиридинил, пиперидинил (включая 1-пиперидинил, 2-пиперидинил и 3-пиперидинил и т. п.), пиперазинил (включая 1-пиперазинил и 2-пиперазинил и т. п.), морфолинил (включая 3-морфолинил и 4-морфолинил и т. п.), диоксинил, дитианил, изоксазолидинил, изотиазолидинил, 1,2-оксазинил, 1,2-тиазинил, гексагидропиридинил, гомопиперазинил, гомопипердинил или диоксациклогептил и т. д.

Структура соединений по настоящему изобретению может быть подтверждена общепринятыми способами, известными специалистам в данной области техники, и если настоящее изобретение включает абсолютную конфигурацию соединения, то абсолютная конфигурация может быть подтверждена с помощью средств общепринятых методик из данной области техники. Например, в случае рентгеновской дифракции монокристаллов (SXRD) абсолютная конфигурация может быть подтверждена путем сбора данных об интенсивности дифракции выращенного монокристалла с применением дифрактометра Bruker D8 Venture с источником излучения CuKα в...
какстве источника света и следующим режимом сканирования: сканирование ф/э, и после сбора соответствующих данных структура кристалла может быть дополнительно проанализирована прямым способом (Shelxs97).

[0092] Соединения по настоящему изобретению могут быть получены посредством различных способов синтеза, известных специалистам в данной области техники, в том числе посредством конкретных вариантов осуществления, перечисленных ниже, вариантов осуществления, образованных путем их объединения с другим способами химического синтеза, и эквивалентных альтернатив, известных специалистам в данной области техники. Предпочтительные варианты осуществления включают без ограничения примеры из настоящего изобретения.

[0093] Применяемые в настоящем изобретении растворители являются коммерчески доступными.

[0094] В настоящем изобретении используются следующие аббревиатуры: ац обозначает воду; экв. обозначает эквивалент; DCM обозначает дихлорметан; PE обозначает петролейный эфир; DMSO обозначает диметилсульфоксид; EtOAc обозначает этилацетат; EtOH обозначает этанол; MeOH обозначает метанол; DMF обозначает N,N-диметилформамид; Cbz обозначает бензилоксикарбонил, который представляет собой защитную группу для амина; Boc обозначает трет-бутороксикарбонил, который представляет собой защитную группу для амина; к.т. обозначает комнатную температуру; O/N обозначает в течение ночи; THF обозначает тетрагидрофуран; Вос:О обозначает ди-трет-бутилдиоксан; TFA обозначает трифторуксусную кислоту; HCl обозначает хлористоводородную кислоту; iPrOH обозначает 2-пропанол; mp обозначает точку плавления; Pd(PPh3)4 обозначает тетракис(трифенилфосфин)палладий; Pd(dppf)Cl2 обозначает [1,1'-бис(дифенилфосфин)ферроцен]дихлорпалладий(II); DIBAL-H обозначает гидрид дизобутилалюминия; NIS обозначает N-йодсукининимид; Dess-Martin обозначает реактив для реакции по Дессу-Мартину; BAST обозначает трифторид бис(2-метокси)этил-серы; HATU обозначает гексафторfosфат O-(7-азабензотриазол-1-ил)-N,N,N',N''-тетраметилурония; HOSu обозначает N-
гидроксисукцинimid; EDCI обозначает гидрохлорид N-(3-диметиламинопропил)-N'-этилкарбодимид.

[0095] Соединения по настоящему изобретению названы в соответствии с традиционными принципами номенклатуры в данной области техники или с помощью программного обеспечения ChemDraw®, а для коммерчески доступных соединений используют названия согласно каталогу поставщика.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТЕТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ

[0096] Настоящее изобретение описано более подробно с помощью примеров ниже, но это не означает, что существуют какие-либо противоречащие ограничения в отношении настоящего изобретения. В данном документе подробно описано настоящее изобретение, а также раскрыты его конкретные варианты осуществления; для специалистов в данной области техники очевидно, что осуществление модификаций и улучшений по отношению к вариантам осуществления настоящего изобретения происходит без отступления от сущности и объема настоящего изобретения.

[0097] Иллюстративный пример 1. Фрагмент BB-1

(Chemical structure image)

[0098] Путь синтеза:
[0099] Стадия 1. Синтез соединения BB-1-2

[0100] BB-1-1 (50 г, 321,38 ммоль, 1 экв., HCl) растворяли в дихлорметане (500 мл). К полученному добавляли триэтиламин (65,04 г, 642,76 ммоль, 89,46 мл, 2 экв.) В системе проводили замену атмосферы на азот, и затем смесь охлаждали до 0°C, и затем к полученному по каплям добавляли раствор трифенилхлорметана (89,59 г, 321,38 ммоль, 1 экв.) в дихлорметане (300 мл). Реакционную смесь медленно нагревали до 20°C и перемешивали в течение 10 часов. После завершения реакции реакционную смесь выливают в насыщенный раствор хлорида натрия (200 мл) и медленно гасили при 0°C, затем экстрагировали с помощью дихлорметана (200 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного раствора хлорида натрия (100 мл), затем высушивали над безводным сульфатом натрия, фильтровали и, наконец, выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением соединения BB-1-2, которое непосредственно применяли на следующей стадии реакции. 1H ЯМР (400 МГц, CDCl3) δ 7.41 (d, J = 7.5 Гц, 6Н), 7.22-7.17 (m, 6Н), 7.16-7.08 (m, 3Н), 3.62 (br d, J = 3.9 Гц, 1Н), 3.54-3.43 (m, 2Н), 3.22 (s, 3Н).

[0101] Стадия 2. Синтез соединения BB-1-3

[0102] Соединение BB-1-2 (55 г, 152,17 ммоль, 1 экв.), толуол (390 мл), триэтиламин (39,57 г, 391,08 ммоль, 54,43 мл, 2,57 экв.) добавляли в сухую реакционную колбу. После
замены атмосферы в системе на азот смесь охлаждали до 0°C и медленно добавляли к ней раствор трифосгена (76.77 г, 258.69 ммоль, 1.7 экв.) в толуоле (165 мл). После замены атмосферы в системе на азот смесь перемешивали при 25°C в течение 16 часов. После завершения реакции 600 мл насыщенного раствора карбоната натрия медленно добавляли к реакционной смеси при 0°C для обеспечения гашения. Смесь экстрагировали с помощью этилацетата (50 мл * 3). Органические фазы объединяли, последовательно промывали с помощью насыщенного солевого раствора (50 мл) и высушивали над безводным сульфатом натрия. Органические фазы фильтровали и выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением неочищенного продукта и затем неочищенный продукт суспендировали с помощью 400 мл смешанного раствора (петролейный эфир : этилацетат = 3:1) в течение 0,5 часа, фильтровали и осадок на фильтре выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением соединения BB-1-3. 1Н ЯМР (400 МГц, CDCl3) δ (ppm) 7,26-7,40 (m, 15Н), 4,51-4,63 (m, 1Н), 4,41-4,50 (m, 1Н), 4,21 (dd, J = 8,8, 3,2 Гц, 1Н), 3,49 (s, 3Н).

[0103] Стадия 3. Синтез соединения BB-1-4

[0104] BB-1-3 (45 г, 116,15 ммоль, 1 экв.) растворяли в тетрагидрофуране (450 мл). После замены атмосферы в системе на азот смесь охлаждали до -30°C и медленно добавляли к ней тетрагидридоалюминат лития (5,29 г, 139,38 ммоль, 1,2 экв.). Реакционную смесь перемешивали при -30°C в течение 2 часов. В два сосуда параллельно добавляли одинаковое количество реагирующих веществ. После завершения реакции реакционную смесь нагревали до температуры от -10 до 0°C и медленно гасили с помощью этилацетата (5,3 мл). Затем к полученному последовательно добавляли воду (5,3 мл), 20% раствор гидроксида натрия (5,3 мл) и воду (21,2 мл). После перемешивания смеси в течение 0,5 часа к ней добавляли безводный сульфат магния (10,6 г). Смесь перемешивали в течение 0,5 часа и фильтровали, а осадок на фильтре промывали с помощью этилацетата (500 мл). Фильтраты объединяли и концентрировали с получением соединения BB-1-4, которое непосредственно применяли на следующей
стадии реакции без очистки. ¹H ЯМР (400 МГц, CDCl₃) δ 7,39-7,28 (m, 15Н), 4,50-4,29 (m, 2Н), 3,89-3,77 (m, 1Н), 3,43-3,31 (m, 1Н), 3,30-3,18 (m, 1Н).

[0105] Стадия 4. Синтез соединения BB-1-5

[0106] Соединение BB-1-4 (30 г, 83,47 ммоль, 1 экв.), Dess-Martin (42,48 г, 100,16 ммоль, 31,01 мл, 1,2 экв.) и дихлорметан (600 мл) добавляли в сухую реакционную колбу. После замены атмосферы в системе на азот реакционную смесь перемешивали при 20°C в течение 16 часов. После завершения реакции в реакционную смесь добавляли насыщенный раствор тиосульфата натрия (300 мл), перемешивали в течение 1 часа и затем экстрагировали с помощью дихлорметана (300 мл * 2). Органические фазы объединяли, последовательно промывали с помощью насыщенного раствора карбоната натрия (300 мл * 2) и насыщенного солевого раствора (300 мл), высушивали над безводным сульфатом натрия и фильтровали. Неочищенный продукт суспендировали с помощью 500 мл петролейного эфира, фильтровали и осадок на фильтре выпаривали до сухого состояния посредством ротационного выпаривания с получением соединения BB-1-5. ¹H ЯМР (400 МГц, CDCl₃) δ (ppm) 9,24 (д, J=3,1 Гц, 1Н), 7,32-7,36 (m, 15Н), 4,49-4,55 (m, 1Н), 4,38 (dt, J = 9,6, 3,8 Гц, 1Н), 4,23 (dd, J = 9,3, 4,5 Гц, 1Н).

[0107] Стадия 5. Синтез соединения BB-1-6

[0108] BB-1-5 (17 г, 47,57 ммоль, 1 экв.) растворяли в дихлорметане (170 мл). После замены атмосферы в системе на азот смесь охлаждали до 0°C и медленно добавляли к ней BAST (26,31 г, 118,91 ммоль, 26,05 мл, 2,5 экв.). Реакционную смесь медленно нагревали до 20°C и перемешивали в течение 10 часов, затем нагревали до 35°C и перемешивали в течение 2 часов. В два сосуда параллельно добавляли одинаковое количество реагирующих веществ. После завершения реакции реакционные смеси объединяли и медленно гасили с помощью насыщенного раствора бикарбоната натрия (500 мл) при температуре от 0 до 10°C, затем экстрагировали с помощью дихлорметана (200 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного раствора хлорида натрия (100 мл) и высушивали над безводным сульфатом натрия.
Органическую фазу фильтровали и выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении и неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; петролейный эфир: этилацетат = 5:1-1:1) с получением соединения BB-1-6. \(^1\)H ЯМР (400 МГц, CDCl\(_3\)) \(\delta\) 7,42-7,34 (м, 9H), 7,33-7,28 (м, 6H), 4,91-4,56 (м, 2H), 4,46 (т, \(J = 9,2\ Гц, 1H\)), 4,21-4,06 (м, 1H).

[0109] Стадия 6. Синтез соединения BB-1

[0110] BB-1-6 (8 г, 21,09 ммоль, 1 экв.) растворяли в метанолгидрохлориде (4 М, 160,00 мл, 30,35 экв.) и метаноле (2 мл). Реакционную смесь нагревали до 50\(^\circ\)С и перемешивали в течение 10 часов после замены атмосферы в системе на азот. После завершения реакции реакционную смесь охлаждали до 20\(^\circ\)С и затем выпаривали до сухого состояния посредством ротационного выпаривания. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; дихлорметан : метанол = 100:0,1-100:2) с получением соединения BB-1. \(^1\)H ЯМР (400 МГц, CDCl\(_3\)) \(\delta\) 6,07 (br dd, \(J = 5,3, 6,7\ Гц, 1H\)), 5,94-5,60 (м, 1H), 4,59-4,51 (м, 1H), 4,43 (dd, \(J = 4,1, 9,5\ Гц, 1H\)), 4,12 (tt, \(J = 4,4, 8,9\ Гц, 1H\)).

[0111] Иллюстративный пример 2. Фрагмент BB-2

![BB-2](image)

[0112] Путь синтеза:
Стадия 1. Синтез соединения BB-2-3

Соединение BB-2-2 (23,52 г, 384,99 ммоль, 23,28 мл, 1,1 экв.) добавляли в сухую реакционную колбу. После добавления к нему тетрагидрофурана (70 мл) и его полного растворения к полученному добавляли трет-бутилацилаллия (47,13 г, 419,98 ммоль, 1,2 экв.) при 5°С. После замены атмосферы в системе на азот, и перемешивания реакционной смеси, и обеспечения прохождения реакции в ней в течение 40 минут к полученному добавляли раствор тетрагидрофурана (210 мл), содержащий соединение BB-2-1 (70 г, 349,99 ммоль, 1 экв.). После замены атмосферы в системе на азот реакционную смесь перемешивали при 5°С в течение 16 часов. После завершения реакции реакционную смесь гасили путем добавления 200 мл воды, экстрагировали с помощью этилацетата (250 мл * 2). Органические фазы объединяли, последовательно добавляли насыщенный солевой раствор (250 мл), высушивали над безводным сульфатом натрия и выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением неочищенного продукта. Неочищенный продукт растворяли в 280 мл тетрагидрофурана, затем к полученному добавляли 3 моль/л гидрохлорида пропанола (180 мл) (собственного изготовления). Смесь перемешивали при 70°С в течение 3 часов, естественным образом охлаждали до комнатной температуры, фильтровали и выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением гидрохлорида соединения BB-2-3. 1Н ЯМР (400 МГц, DMSO-д6) δ (ppm) 8,41 (br s, 3Н), 7,72 (d, J=8,3 Гц,
1Н), 7.60 (d, J=1.4 Гц, 1H), 7.36 (dd, J=8.3, 1.4 Гц, 1H), 4.44 (t, J=5.1 Гц, 2H), 3.22 (br d, J=4.5 Гц, 2H).

[0115] Стадия 2. Синтез соединения BB-2-4

[0116] Соединение BB-2-3 (80 г, 288,24 ммоль, 1 экв., HCl), метanol (280 мл), диэтилдиметиламйн (79,16 г, 691,78 ммоль, 2,4 экв.) и 2-метилтетрагидрофuran (640 мл) добавляли в сухую реакционную колбу. В системе проводили замену атмосферы на азот и затем реакционную смесь перемешивали при 70°C в течение 60 часов. После завершения реакции, когда реакционная смесь охлаждалась до комнатной температуры, приблизительно 300 мл жидкости из реакционной смеси выпаривали посредством ротационного выпаривания при пониженном давлении при 40°C. Затем к остающейся реакционной смеси добавляли 2-метилтетрагидрофuran (700 мл) и 3 моль/л раствора гидрохлорида пропанола (560 мл). Реакционную смесь перемешивали при комнатной температуре в течение 3 часов и затем фильтровали. Осадок на фильтре промывали с помощью (100 мл) 2-метилтетрагидрофурана и промытый осадок на фильтре выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением гидрохлорида соединения BB-2-4. 1Н ЯМР (400 МГц, DMSO-d6) δ (ppm) 10,49 (br s, 1H), 9.49-9.71 (m, 2H), 7.59-7.68 (m, 2H), 7.50 (d, J=1.5 Гц, 1H), 4.45 (t, J=5.3 Гц, 2H), 3.52 (q, J=4.9 Гц, 2H).

[0118] Соединение BB-2-4 (50 г, 180,15 ммоль, 1 экв., HCl), 2-метилтетрагидрофuran (400 мл), хлорцетальдегид (45,96 г, 234,20 ммоль, 37,67 мл, чистота 40%, 1,3 экв.) и воду (25 мл) добавляли в сухую реакционную колбу. После замены атмосферы в системе на азот смесь нагревали до 40°C и добавляли насыщенный раствор бикарбоната калия (3,37 М, 267,29 мл, 5 экв.). Реакционную смесь нагревали до 45°C после замены атмосферы в системе на азот и реакционную смесь перемешивали в течение 16 часов. После завершения реакции, когда реакционная смесь охлаждалась до комнатной температуры, реакционную смесь промывали путем добавления насыщенного раствора
бисульфита натрия, затем добавляли насыщенный раствор карбоната натрия для
регулирования рН до значения 9-10, экстрагировали с помощью этилацетата (400 мл * 3).
Органические фазы объединяли, последовательно промывали с помощью насыщенного
солевого раствора (500 мл), высушивали над безводным сульфатом натрия и вышармали
do сухого состояния посредством ротационного выпаривания при пониженном давлении
с получением соединения BB-2-5. \(^{1}H\) ЯМР (400 МГц, DMSO-\(d_6\)) \(\delta\) (ppm) 8.32 (d, \(J=8.6\) Гц, 1H), 7.33 (s, 1H), 7.22-7.28 (m, 2H), 7.06 (d, \(J = 0.9\) Гц, 1H), 4.42-4.46 (m, 4H).

[0119] Стадия 4. Синтез соединения BB-2-6

[0120] Соединение BB-2-5 (50 г, 188,60 ммоль, 1 экв.), DMF (250 мл) и NIS (91,23 г,
405,50 ммоль, 2,15 экв.) добавляли в сухую реакционную колбу. После замены
атмосферы в системе на азот реакционную смесь нагревали до 70\(^\circ\)C и перемешивали в
tечение 16 часов. После завершения реакции реакционную смесь газили путем
медленного добавления (200 мл) 5% раствора ледяной уксусной кислоты. К погашенной
реакционной смеси добавляли диоксирометан (250 мл * 3). Органические фазы
объединяли и затем последовательно промывали с помощью насыщенного солевого
раствора (250 мл) и высушивали над безводным сульфатом натрия. Органические фазы
фильтровали и фильтрат выпаривали до сухого состояния посредством ротационного
выпаривания при пониженном давлении с получением неочищенного продукта.
Неочищенный продукт суспендировали с помощью метил-трет-бутилового эфира
(500 мл) в течение 0,5 часа и фильтровали. Осадок на фильтре промывали с помощью
метил-трет-бутилового эфира (300 мл) и выпаривали до сухого состояния посредством
ротационного выпаривания при пониженном давлении с получением соединения BB-2-
6. \(^{1}H\) ЯМР (400 МГц, DMSO-\(d_6\)) \(\delta\) (ppm) 8.20 (d, \(J = 8.6\) Гц, 1H), 7.16-7.36 (m, 2H), 4.42-
4.54 (m, 2H), 4.31-4.40 (m, 2H).

[0121] Стадия 5. Синтез соединения BB-2

[0122] Соединение BB-2-6 (52 г, 100,60 ммоль, 1 экв.) и тетрагидрофуран (25 мл)
dобавляли в сухую реакционную колбу. После замены атмосферы в системе на азот
смесь охлаждали до 10°C, медленно добавляли этилмагнийбромид (3 М, 40,24 мл, 1,2 экв.). После того как в системе снова осуществили замену атмосферы на азот реакционную смесь перемешивали при 10°C в течение 2 часов. После завершения реакции реакционную смесь гасили путем медленного добавления 5% раствора ледяной уксусной кислоты (200 мл). Затем к огашенной реакционной смеси добавляли этилацетат (250 мл * 3). Органические фазы объединяли, последовательно промывали с помощью насыщенного солевого раствора (250 мл), высушивали над безводным сульфатом натрия и фильтровали. Фильтрат выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении с получением неочищенного продукта. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (петролейный эфир : этилацетат = 1:0-3:1) посредством градиентного элюирования с получением соединения ВВ-2. 1Н ЯМР (400 МГц, DMSO-d6) δ (ppm) 8,21 (d, J=8,6 Гц, 1H), 7,54 (s, 1H), 7,23-7,30 (m, 2H), 4,40-4,46 (m, 4H).

[0123] Пример 1

![Chemical structures](image)

001 или 002 002 или 001

[0124] Путь синтеза:
[0125] Стадия 1. Синтез соединения 001-2

[0126] BB-1 (1,6 г, 11,67 ммоль, 1 экв.), гидрат ацетата меди (2,10 г, 10,50 ммоль, 2,10 мл, 0,9 экв.), BB-2 (4,56 г, 11,67 ммоль, 1 экв.), карбонат цезия (7,23 г, 22,18 ммоль, 1,9 экв.), 001-1 (664,08 мг; 4,67 ммоль, 0,4 экв.) и диоксан (40 мл) добавляли в сухую реакционную колбу. После замены атмосферы в системе на азот реакционную смесь перемешивали при 110°C в течение 5 часов. После завершения реакции реакционную смесь охлаждали до 20°C и выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; петролейный эфир: этилацетат = 10:1-5:1) с получением соединения 001-2. ¹H ЯМР (400 МГц, CDCl₃) δ 8,21 (d, J = 9,2 Гц, 1H), 7,30 (s, 1H), 7,25-7,16 (m, 2H), 6,86-6,48 (m, 1H), 4,97-4,82 (m, 1H), 4,74 (dd, J = 4,0, 9,4 Гц, 1H), 4,61-4,51 (m, 1H), 4,49-4,42 (m, 2H), 4,39-4,31 (m, 2H).
[0127] Стадия 2. Синтез соединения 001-3

[0128] 001-2 (1 г, 2,50 ммоль, 1 экв.), реагент Лавесона (5,05 г, 12,49 ммоль, 5 кв.) и толуол (50 мл) добавляли в сухую реакционную колбу. После замены атмосферы в системе на азот реакционную смесь перемешивали при 130°С в течение 10 часов. После завершения реакции реакционную смесь охлаждали и выпаривали посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; подвижная фаза нелегирующий эфир: подвижная фаза этилацетат = 100:1-20:1) с получением соединения 001-3. 1Н ЯМР (400 МГц, CDCl₃) δ 7,33 (d, J = 9,2 Гц, 1Н), 6,61-6,26 (m, 3Н), 5,94-5,57 (m, 1Н), 4,44-4,30 (m, 1Н), 4,09 (dd, J = 3,9, 9,7 Гц, 1Н), 3,84 (t, J = 9,6 Гц, 1Н), 3,68-3,59 (m, 2Н), 3,55 (br dd, J = 3,0, 4,9 Гц, 2Н).

[0129] Стадия 3. Синтез соединения 001-4

[0130] 001-3 (2,8 г, 6,73 ммоль, 1 экв.), гидрохлорид O-метилгидроксиламин (1,80 г, 21,53 ммоль, 3,2 экв.), триэтиламин (4,08 г, 40,36 ммоль, 5,62 мл, 6 экв.) и оксид ртути (14,57 г, 67,27 ммоль, 10 экв.) добавляли в сухую реакционную колбу. Затем к полученному добавили DMF (56 мл). Смесь нагревали до 60°С и перемешивали в течение 10 часов после замены атмосферы в системе на азот. После завершения реакции реакционную смесь разбавляли с помощью дихлорметана (100 мл) и фильтровали. Фильтрат экстрагировали с помощью этилацетата (100 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного раствора хлорида натрия (10 мл), затем высушили над безводным сульфатом натрия, фильтровали и, наконец, выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; нелегирующий эфир : этилацетат = 5:1-3:1) с получением соединения 001-4. 1Н ЯМР (400 МГц, CDCl₃) δ 8,41-7,96 (m, 1Н), 7,47-7,38 (m, 1Н), 7,25-7,16 (m, 2Н), 6,80-6,38 (m, 1Н), 5,03-4,87 (m, 1Н), 4,82 (dd, J = 3,5, 9,2 Гц, 1Н), 4,64-4,54 (m, 1Н), 4,50-4,41 (m, 2Н), 4,39-4,32 (m, 2Н), 3,82 (s, 3Н).
[0131] Стадия 4. Синтез соединения 001-6

[0132] 001-4 (0,5 г, 1,16 ммоль, 1 экв.), 001-5 (415,14 мг, 4,66 ммоль, 4 экв.) и фосфат калия (1,24 г, 5,82 ммоль, 5 экв.) растворяли в DMSO (11 мл). После замены атмосферы в системе на азот к полученному добавляли йодид меди (66,56 мг, 349,47 ммоль, 0,3 экв.). Реакционную сместь нагревали до 120°С под воздействием микроволнового излучения и перемешивали в течение 1,5 часа. После завершения реакции реакционную сместь охлаждали до 20°С и фильтровали и фильтрат разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Waters Xbridge Prep OBD C18 150*40 мм*10 мкм; подвижная фаза: [вода (10 мМ NH₄HCO₃)-ACN]; ацетонитрил: от 8% до 38%, 8 мин.) с получением соединения 001-6.

1H ЯМР (400 МГц, CDC13) δ 8,13 (br d, J = 8,6 Гц, 1H), 7,15-6,95 (m, 1H), 6,82-6,04 (m, 3H), 5,08-4,84 (m, 1H), 4,80 (dd, J = 3,2, 9,4 Гц, 1H), 4,65-4,51 (m, 1H), 4,41 (br s, 3H), 4,31 (br s, 3H), 3,81 (s, 3H), 1,64-1,59 (m, 3H).

[0133] Стадия 5. Синтез соединения 001

[0134] 001-6 (0,02 г, 45,73 ммоль, 1 экв.) растворяли в DMSO (2 мл). Затем к полученному добавляли триэтиламин (69,40 мг, 685,88 ммоль, 95,47 мкл, 15 экв.), HATU (156,47 мг, 411,53 ммоль, 9 экв.) и хлорид аммония (36,69 мг, 685,88 ммоль, 15 экв.). Смесь перемешивали при 25°С в течение 2 часов после замены атмосферы в системе на азот. Параллельно проводили три реакции. После завершения реакции реакционные смеся объединяли и медленно гасили с помощью насыщенного раствора карбоната натрия (50 мл), а затем экстрагировали с помощью этилацетата (50 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного раствора хлорида натрия (30 мл), затем высушивали над безводным сульфатом натрия, фильтровали и, наконец, выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Gemini-NX 80*40 мм*3 мкм; подвижная фаза: [вода (10 мМ NH₄HCO₃)-ACN]; ацетонитрил: от 15% до 45%, 8 мин.) с получением соединения 001-7, которое
выявляли в виде рацемата. Соединение 001-7 разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: REGIS (s,s) WHELK-O1 (250 мм * 30 мм, 5 мкм); подвижная фаза: A представляла собой CO₂, В представляла собой [0,1% NH₃:H₂O EtOH]; В%: от 45% до 45%, 15 мин.) с получением соединений 001 (Rt = 1,663 мин.) и 002 (Rt = 1,861 мин.).

[0135] Соединение 001: ¹H ЯМР (400 МГц, CD₃OD) δ 8,05 (d, J = 8,8 Гц, 1H), 7,16 (s, 1H), 6,81-6,39 (m, 2H), 6,18 (d, J = 2,4 Гц, 1H), 4,76-4,52 (m, 3H), 4,43-4,38 (m, 2H), 4,34 (br s, 2H), 3,82 (q, J = 7,0 Гц, 1H), 3,31 (s, 3H), 1,46 (d, J = 7,1 Гц, 3H); MS: масса/заряд = 437 [M+1]⁺; ee% = 98,8%.

[0136] Соединение 002: ¹H ЯМР (400 МГц, CD₃OD) δ 8,04 (d, J = 8,8 Гц, 1H), 7,06 (s, 1H), 6,62-6,34 (m, 2H), 6,17 (d, J = 2,4 Гц, 1H), 5,01-4,91 (m, 1H), 4,71 (dd, J = 3,3, 9,3 Гц, 1H), 4,65-4,56 (m, 1H), 4,42-4,36 (m, 2H), 4,31 (dt, J = 1,8, 4,0 Гц, 2H), 3,84-3,79 (m, 1H), 3,68 (s, 3H), 1,46 (d, J = 7,1 Гц, 3H); MS: масса/заряд = 437 [M+1]⁺; ee% = 98,7%.

[0137] Пример 2

[0138] Путь синтеза:
[0139] Стадия 1. Синтез соединения 003-1

[0140] 001-3 (0,2 г, 480,49 мкмоль, 1 экв.), 001-5 (171,23 мг, 1,92 ммоль, 4 экв.) и фосфатная сместь (815,95 мг, 3,84 ммоль, 8 экв.) растворяли в DMSO (10 мл). После замены атмосферы в системе на азот к полученному добавляли йодид меди (118,96 мг, 624,64 мкмоль, 1,3 экв.) и реакционную сместь нагревали до 90°C под воздействием микроволнового излучения и перемешивали в течение 0,5 часа. Параллельно проводили десять реакций. После завершения реакции 10 реакционных смесей объединяли и затем выливали в 200 мл ледяной воды на бане с ледяной водой для разбавления, фильтровали и затем фильтрат экстрагировали с помощью этилацетата (100 мл). После разделения фаз водную фазу собирали, и pH водной фазы регулировали до значения приблизительно 6 с помощью 10% раствора бисульфата натрия, и водную фазу экстрагировали с помощью этилацетата (200 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного солевого раствора (100 мл), высушивали над безводным сульфатом натрия и концентрировали при пониженном давлении с получением соединения 003-1, которое непосредственно применяли на следующей стадии реакции.

[0141] Стадия 2. Синтез соединения 003-2
[0142] 003-1 (1,2 г; 2,83 ммоль; 1 экв.) растворяли в тетрагидрофuranе (120 мл), затем к полученному добавляли HOSu (1,95 г; 16,96 ммоль; 6 экв.). После перемешивания смеси при 25°C в течение 0,5 часа к ней последовательно добавляли EDCI (5,42 г; 28,27 ммоль; 10 экв.) и NH₄OH/MeOH (7 М, 6,06 мл; 15 экв.). Смесь перемешивали при 25°C в течение 9,5 часа после замены атмосферы в системе на азот. После завершения реакции к реакционной системе добавляли 100 мл воды/100 мл этилацетата для разбавления. Органическую fazu собирали после разделения фаз. Водную fazu экстрагировали с помощью этилацетата (50 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного солевого раствора (100 мл), высушивали над безводным сульфатом натрия и концентрировали при пониженном давлении. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; дихлорметан: метанол=100:0-100:3) с получением соединения 003-2. ¹Н ЯМР (400 МГц, CDCl₃) δ 8,17-8,10 (m, 1H), 8,00 (s, 1H), 6,85-6,45 (m, 2H), 6,30-6,20 (m, 1H), 5,28-5,16 (m, 1H), 4,93 (dd, J = 3,9, 9,7 Гц, 1H), 4,74-4,66 (m, 1H), 4,48-4,43 (m, 2H), 4,38-4,34 (m, 2H), 3,94-3,84 (m, 1H), 1,57 (d, J = 7,0 Гц, 3H).

[0143] Стадия 3. Синтез соединения 003

[0144] 003-2 (0,1 г; 236,16 мкмоль; 1 экв.), ацетат серебра (78,84 мг; 472,33 мкмоль, 24,18 мкл, 2 экв.) и раствор (7 М, 4,00 мл, 118,56 экв.) аммиака в метаноле добавляли в сухую реакционную колбу. Реакционную смесь перемешивали при 60°C в течение 2 часов. После завершения реакции реакционную смесь фильтровали и, наконец, выпаривали посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Luna C18 100 * 40 мм * 5 мкм; подвижная фаза: вода (0,1%TFA)-ACN); ацетонитрил: от 1% до 20%, 8 мин.) с получением соединения 003. ¹Н ЯМР (400 МГц, CD₃OD) δ 8,08 (d, J = 8,8 Гц, 1H), 7,31 (s, 1H), 6,67-6,24 (m, 2H), 6,20 (d, J = 2,3 Гц, 1H), 5,14-4,95 (m, 3H), 4,51-4,34 (m, 4H), 3,84 (d, J = 7,0 Гц, 1H), 1,47 (d, J = 7,0 Гц, 3H); MS: масса/заряд = 407 [M+1]⁺; ee%=95,5% (SFC Rt = 1,142 мин.).
[0145] Пример 3

005 или 006 006 или 005

[0146] Путь синтеза:

003-2 005-1 005 или 006 006 или 005

[0147] Стадия 1. Синтез соединения 006

[0148] 003-2 (0,2 г, 472,33 мкмоль, 1 экв.) и ацетат серебра (157,67 мг, 944,65 мкмоль, 48,37 мкл, 2 экв.) добавляли в сухую реакционную колбу. Затем к полученному добавляли DMF (5 мл). После замены атмосферы в системе на азот к полученному добавляли гидрохлорид метиламина (63,78 мг, 944,65 мкмоль, 2 экв.) и триэтиламин (191,18 мг, 1,89 ммоль, 262,97 мл, 4 экв.). Реакционную смесь перемешивали при 25°C в течение 10 часов. После завершения реакции реакционную смесь фильтровали и, наконец, выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Luna CN 5 мкм 100*30 мм; подвижная фаза: [n-гептан-EtOH]; этанол: от 40% до 95%, 10 мин.) с получением соединения 005-1 и затем разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: REGIS (S, S) WHELK-O1 (250 мм * 25 мм, 10 мкм); подвижная фаза: A
представляла собой CO₂. В представляла собой [нейтральный-IPA]; В%: от 50% до 50%, 15 мин.) с получением соединения 005 (Rt = 1,646 мин.) или 006 (Rt = 1,844 мин.).

[0149] Соединение 006: ¹H ЯМР (400 МГц, CD₂OD) δ 8,01 (d, J = 8,8 Гц, 1H), 7,10 (s, 1H), 6,57-6,22 (м, 2H), 6,18 (d, J = 2,1 Гц, 1H), 4,74-4,55 (m, 3H), 4,43-4,37 (m, 2H), 4,33-4,28 (m, 2H), 3,82 (q, J = 7,0 Гц, 1H), 2,88 (s, 3H), 1,46 (d, J = 6,9 Гц, 3H); LCMS масса/заряд = 421 [M+1]*.

[0150] Пример 4

[0151] Путь синтеза:

[0152] Стадия 1. Синтез соединения 007-2

[0153] 007-1 (250 мг, 613,69 мкмоль, 1 экв.) и реагент Лавессона (744,66 мг, 1,84 ммоль, 3 экв.) добавляли в предварительно высушенну реакционную колбу с последующим добавлением растворителя, представляющего собой тетрагидрофуран (1 мл). Реакционную смесь перемешивали при 20°C в течение 1 часа. После завершения реакции реакционную смесь непосредственно выпаривали до сухого состояния посредством ротационного выпаривания с получением неочищенного продукта. Неочищенный продукт разделяли с помощью колоночной хроматографии на силикагеле (число меш силикагеля: 100-200 меш; элюировали с помощью петролейного эфира;
этилацетата = 20:1 в течение 30 мин. и элюент заменяли на дихлорметан : метанол = 1:0-50:1) с получением соединения 007-2. 1Н ЯМР (400 МГц, CDCl3) δ 8.18 (d, J = 8.77 Гц, 1Н), 8.10 (br s, 1Н), 7.43 (br s, 1Н), 7.18 (s, 1Н), 6.48-6.79 (m, 1Н), 6.44 (dd, J = 2.41, 8.77 Гц, 1Н), 6.23 (d, J = 2.41 Гц, 1Н), 4.94 (br d, J = 13.59 Гц, 1Н), 4.71 (dd, J = 3.84, 9.32 Гц, 1Н), 4.51-4.59 (m, 1Н), 4.42 (br d, J=7.02 Гц, 2Н), 4.23-4.33 (m, 4Н), 1.68 (s, 3Н).

[0154] Стадия 2. Синтез соединений 007 и 008

[0155] 007-2 (30,00 мг, 70,85 мкмоль, 1 экв.) и растворитель, представляющий собой дихлорметан (2 мл), добавляли в предварительно высушенную реакционную колбу. Смесь охлаждали до 0°C, добавляли метилтрифторметансульфонат (69,76 мг, 425,09 мкмоль, 46,51 мкл, 6 экв.), нагревали до 20°C и перемешивали в течение 2 часов. Реакционную систему охлаждали до 0°C и к полученному добавляли гидрохлорид O-метилгидроксиламина (16,67 мг, 199,59 мкмоль, 3,97 мкл, 2,82 экв.) и DIEA (54,94 мг, 425,09 мкмоль, 74,04 мкл, 6 экв.). Реакционную смесь перемешивали при 20°C в течение 10 часов. После завершения реакции реакционную смесь выпаривали до сухого состояния посредством ротационного выпаривания и неочищенный продукт разделяли с помощью высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Gemini-NX 150 * 30 мм * 5 мкм; подвижная фаза: [вода (0,1% TFA)-ACN]; ацетонитрил: от 5% до 35%, 9 мин.), а затем разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: DAICEL CHIRALCEL OJ (250 мм * 30 мм, 10 мкм); подвижная фаза: A представляла собой CO2, B представляла собой [0,1% NH3H2O MeOH]; B%: от 45% до 45%, 10 мин.) с получением соединения 007 (Rt = 1,231 мин.) и соединения 008 (Rt = 1,428 мин.).

[0156] Соединение 007: 1Н ЯМР (400 МГц, CDCl3) δ 8.14 (d, J = 8.78 Гц, 1Н), 7.17 (s, 1Н), 6.53-6.84 (m, 1Н), 6.48 (dd, J = 2.32, 8.85 Гц, 1Н), 6.34 (d, J = 2.26 Гц, 1Н), 4.82-4.93 (m, 1Н), 4.72 (dd, J = 3.95, 9.35 Гц, 1Н), 4.67 (s, 2Н), 4.49-4.55 (m, 1Н), 4.42 (br d, J = 4.89 Гц, 2Н), 4.30 (br d, J = 5.40 Гц, 2Н), 3.98 (br dd, J = 3.14, 6.65 Гц, 1Н), 3.92 (br s, 1Н), 3.84 (s, 3Н), 1.54 (d, J = 6.78 Гц, 3Н); MS: масса/заряд = 437,2 [M+1] +; ee% = 99,24%.
Соединение 008: 1H ЯМР (400 МГц, CDCl$_3$) δ 8,13 (d, $J = 8,78$ Гц, 1Н), 7,16 (s, 1Н), 6,53-6,87 (m, 1Н), 6,48 (dd, $J = 2,20$, 8,72 Гц, 1Н), 6,34 (d, $J = 2,26$ Гц, 1Н), 4,79-4,95 (m, 1Н), 4,72 (dd, $J = 4,02$, 9,41 Гц, 1Н), 4,68 (s, 2Н), 4,48-4,56 (m, 1Н), 4,38-4,45 (m, 2Н), 4,26-4,32 (m, 2Н), 3,95-4,04 (m, 1Н), 3,93 (br d, $J = 3,64$ Гц, 1Н), 3,83 (s, 3Н), 1,53 (d, $J = 6,65$ Гц, 3Н); MS: масса/заряд = 437,2 [M+1]$^+$; ee% = 100%.

Способ обнаружения и анализа при сверхkritической флюидной хроматографии для значения ee% вышеуказанных соединений 007 и 008 являлся следующим: (хроматографическая колонка: DAICEL CHIRALCEL OJ (150 мм * 4,6 мм, 5 мкм); подвижная фаза: А представляла собой CO$_2$, В представляла собой [0,05% DEA EtOH]; B%: от 5% до 40%, 10 мин.).

Пример 5

Путь синтеза:
[0161] Стадия 1. Синтез соединений 009-1 и 010-1

[0162] 007-2 (100 мг, 236,16 мкмоль, 1 экв.) разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: DAICEL CHIRALPAK AS (250 мм * 30 мм, 10 мкм); подвижная фаза: A представляла собой CO2, B представляла собой [0,1% NH3 H2O EtOH]; B%: от 50% до 50%, 8 мин.) с получением соединений 009-1 (RT = 1,425 мин.) и 010-1 (RT = 1,584 мин.).

[0163] Стадия 2. Синтез соединения 009

[0164] 009-1 (50 мг, 118,08 мкмоль, 1 экв.) и дихлорметан (2 мл) добавляли в предварительно высушенную реакционную колбу. Смесь охлаждали до 0°C, добавляли метилтрифторметансульфонат (38,75 мг, 236,16 мкмоль, 25,84 мл, 2 экв.), нагревали до 20°C и перемешивали в течение 2 часов. Реакционную систему охлаждали до 0°C. К полученному добавляли 004-1 (24,82 мг, 590,41 мкмоль, 24,82 мл, 5 экв.) и DIEA (30,52 мг, 236,16 мкмоль, 41,13 мл, 2 экв.). Реакционную смесь перемешивали при 20°C в течение 10 часов. После завершения реакции реакционную смесь непосредственно выпаривали до сухого состояния посредством ротационного выпаривания и разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Gemini-NX 150 * 30 мм * 5 мкм; подвижная фаза: [вода (0,1% TFA)-ACN]; ацетонитрил: от 12% до 27%, 9 мин.) с получением трифторацилата соединения 009. 1H ЯМР (400 МГц, CD3OD) δ 8,54 (d, J = 8,50 Гц, 1Н), 7,37 (s, 1Н), 7,10-7,21 (m, 2Н), 6,49-6,85 (m, 1Н), 5,19 (q, J = 7,00 Гц, 1Н), 4,94-5,05 (m, 1Н), 4,68-4,75 (m, 1Н), 4,61-4,67 (m, 1Н), 4,53-4,58 (m, 2Н), 4,46-4,52 (m, 2Н), 1,48 (d, J = 7,00 Гц, 3Н). MS (1,5 мин.); масса/заряд = 432,2 [M+1] +; SFC Rt = 1,254 min.; ee% = 100%.

[0165] Стадия 3. Синтез соединения 010

[0166] 010-1 (20,00 мг, 47,23 мкмоль, 1 экв.) и растворитель, представляющий собой дихлорметан (2 мл), добавляли в предварительно высушенную реакционную колбу. Смесь охлаждали до 0°C, добавляли метилтрифторметансульфонат (15,50 мг,
94,47 мкмоль, 10,33 мл, 2 экв.), нагревали до 20°С и перемешивали в течение 2 часов. Реакционную систему охлаждали до 0°С. К полученному добавляли 004-1 (9,93 мг, 236,16 мкмоль, 9,93 мл, 5 экв.) и DIEA (12,21 мг, 94,47 мкмоль, 16,45 мл, 2 экв.). Реакционную смесь перемешивали при 20°С в течение 10 часов. После завершения реакции реакционную смесь непосредственно выпаривали до сухого состояния посредством ротационного выпаривания. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Gemini-NX 150 * 30 мм * 5 мкм; подвижная фаза: [вода (0,1% TFA)-ACN]; ацетонитрил: от 12% до 27%, 9 мин.) с получением трифторацетата соединения 010. 1Н ЯМР (400 МГц, CD3OD) δ 8,52 (d, J = 8,60 Гц, 1H), 7,35 (s, 1H), 7,06-7,18 (m, 2H), 6,48-6,81 (m, 1H), 5,15 (q, J = 6,91 Гц, 1H), 4,99 (br d, J = 9,26 Гц, 1H), 4,66-4,70 (m, 1H), 4,59-4,64 (m, 1H), 4,51-4,57 (m, 2H), 4,45-4,49 (m, 2H), 1,45 (d, J = 7,06 Гц, 3H); масса/заряд = 432,0 [M+1]+; SFC Rt = 1,197 мин.

[0167] Пример 6

[0168] Путь синтеза:
[0169] Стадия 1. Синтез соединения 011-2

[0170] Брали три пробирки для проведения реакции под воздействием микроволнового излучения объемом 20 мл и параллельно проводили три реакции следующим образом. 001-3 (0,2 г, 480,49 ммоль, 1 экв.), 011-1 (198,19 мг, 1,92 ммоль, 4 экв.) и фосфат калия (815,95 мг, 3,84 ммоль, 8 экв.) растворяли в DMSO (10 мл). После замены атмосферы в системе на азот к полученному добавляли йодид меди (118,96 мг, 624,64 ммоль, 1,3 экв.) и реакционную смесь нагревали до 90°С под воздействием микроволнового излучения и перемешивали в течение 80 минут. После завершения реакции три реакционные смеси объединяли для обработки. Реакционную смесь выливали в 20 мл ледяной воды на бане с ледяной водой для разбавления и фильтровали. Фильтрат экстрагировали с помощью этилацетата (100 мл). После разделения фаз водную фазу собирали, и pH водной фазы регулировали до значения приблизительно 6 с помощью 10% раствора бисульфата натрия, и водную фазу экстрагировали с помощью этилацетата (200 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного солевого раствора (100 мл), высушивали над безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении с получением соединения 011-2, которое непосредственно применяли на следующей стадии реакции.
[0171] Стадия 2. Синтез соединения 011-3

[0172] 011-2 (0,6 г, 1,37 ммоль, 1 экв.) растворили в тетрагидрофуране (10 мл) и затем к полученному добавляли HOSu (944,96 мг, 8,21 ммоль, 6 экв.). После перемешивания при 25°C в течение 0,5 часа к полученному последовательно добавляли EDCI (2,62 г, 13,68 ммоль, 10 экв.) и раствор (7 М, 2,93 мл, 15 экв.) аммиака в метаноле. После замены атмосферы в системе на азот смесь перемешивали при 25°C в течение 9,5 часа. После завершения реакции реакционную смесь гасили путем добавления воды (5 мл), затем экстрагировали с помощью этилацетата (100 мл * 2). Органические фазы собирали, объединяли и выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Gemini-NX 80 * 40 мм * 3 мкм; подвижная фаза: [вода (0,05% NH₃·H₂O)-ACN]; ацетонитрил: от 32% до 62%, 8 мин.) с получением соединения 011-3. ¹Н ЯМР (400 МГц, CD₃OD) δ ppm: 1,41 (d, J = 7,03 Гц, 3 H), 2,91 (s, 3 H), 4,45-4,40 (m, 2 H), 4,41-4,45 (m, 2 H), 4,49 (q, J = 7,03 Гц, 1 H), 4,69-4,79 (m, 1 H), 4,85 (d, J=3,76 Гц, 1 H), 5,21-5,35 (m, 1 H), 6,42 (d, J = 2,51 Гц, 1 H), 6,45-6,78 (m, 2 H), 7,89 (s, 1 H), 8,15 (d, J = 9,03 Гц, 1 H).

[0173] Стадия 3. Синтез соединения 011

[0174] В сухую реакционную колбу добавляли 011-3 (0,2 г, 457,18 мкмоль, 1 экв.), ацетат серебра (152,62 мг, 914,36 мкмоль, 46,82 мкл, 2 экв.) и раствор (10 мл) аммиака в метаноле. Смесь нагревали до 60°C и обеспечивали прохождение реакции в ней в течение 2 часов. После завершения реакции реакционную смесь фильтровали и фильтрат собирали. Осадок на фильтре промывали с помощью метанола (10 мл). Органические фазы объединяли и выпаривали до сухого состояния путем ротационного выпаривания. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Phenomenex Gemini-NX C18 75 * 30 мм * 3 мкм; подвижная фаза: [вода (0,225% FA)-ACN]; ацетонитрил: от 5% до 35%, 7 мин.) с получением соединения 011-4 и затем разделяли с помощью
препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: DAICEL CHIRALCEL OJ (250 мм * 30 мм, 10 мкм); подвижная фаза: A представляла собой CO₂, В представляла собой [0,1% NH₃H₂O EtOH]; B%: от 35% до 35%, 8 мин.) с получением соединения 011 (Rt = 3,405 мин.). ¹H ЯМР (400 МГц, CD₃OD) δ ppm 1,40 (d, J = 7,03 Гц, 3 H), 2,91 (s, 3 H), 4,32-4,39 (m, 2 H), 4,40-4,45 (m, 2 H), 4,48 (q, J = 7,03 Гц, 1 H), 4,52-4,62 (m, 2 H), 4,67-4,79 (m, 1 H), 6,19-6,52 (m, 2 H), 6,65 (dd, J = 9,03, 2,51 Гц, 1 H), 7,06-7,20 (m, 1 H), 8,11 (d, J = 9,03 Гц, 1 H); MS: massa/заряд = 421,0 [M+1] +; ee% = 100%.

[0175] Пример 7

[0176] Путь синтеза:

[0177] Стадия 1. Синтез соединения 013

[0178] 003-2 (50 мг, 118,08 мкмоль, 1 экв.) и растворитель, представляющий собой DMF (3 мл), добавляли в предварительно высушеннную реакционную колбу. Затем к полученному добавляли 004-2 (15,36 мг, 236,16 мкмоль, 9,93e-1 млк, 2 экв.), 004-1 (9,93 мл, 236,16 мкмоль, 9,93 млк, 2 экв.) и ацетат серебра (39,42 мл, 236,16 мкмоль, 12,09 млк, 2 экв.). Реакционную смесь перемешивали при 20°C в течение 1 часа.
завершения реакции реакционную смесь фильтровали и фильтрат разбавляли с помощью 10 мл воды/10 мл этилацетат. После разделения фаз органическую фазу собирали и водную фазу экстрагировали с помощью этилацетат (5 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного солевого раствора (20 мл), высушили над безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении с получением неочищенного продукта. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Waters Xbridge BEH C18 100 * 30 мм * 10 мкм; подвижная фаза: [вода (10 мМ NH₄HCO₃)-ACN]; ацетонитрил: от 10% до 40%, 8 мин.) и затем разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: DAICEL CHIRALCEL OD (250 мм * 30 мм, 10 мкм); подвижная фаза: А представляла собой CO₂, B представляла собой нейтральный MeOH; В%: от 50% до 50%, 10 мин.) с получением соединения 013 (Rt = 1,598 мин.). 1H ЯМР (400 МГц, DMSO-d₆) δ 7,94 (d, J = 8,82 Гц, 1H), 7,33 (s, 1H), 7,20 (s, 1H), 6,95 (s, 1H), 6,51-6,84 (m, 1H), 6,35 (dd, J = 2,43, 8,82 Гц, 1H), 6,15 (d, J = 7,06 Гц, 1H), 6,03 (d, J = 2,43 Гц, 1H), 5,12-5,25 (m, 1H), 4,83-4,90 (m, 2H), 4,30 (s, 4H), 3,71 (квинт., J = 6,84 Гц, 1H), 1,25 (d, J = 6,84 Гц, 3H); MS: масса/заряд = 432,1 [M+1] +.

[0179] Пример 8

Формула: [diagram]

[0180] Путь синтеза:
Стадия 1. Синтез соединения 015

Соединение 009-1 (30,00 мг; 70,85 мкмоль, 1 экв.) добавляли в предварительно высушенную реакционную колбу. К полученному добавляли растворитель, представляющий собой дихлорметан (3,5 мл). Смесь охлаждали до 0°С и добавляли метилтрифторметансульфонат (58,13 мг; 354,25 мкмоль, 38,75 мл, 5 экв.). Смесь нагревали до 20°С и перемешивали в течение 2 часов. Реакционную систему охлаждали до 0°С и добавляли к ней 015-1 (HCl, 14,89 мл, 5 экв.) и DIEA (45,78 мг; 354,25 мкмоль, 61,70 мл, 5 экв.). Реакционную смесь перемешивали при 20°С в течение 10 часов. После завершения реакции реакционную смесь гасили с помощью метанола и выпаривали до сухого состояния посредством ротационного выпаривания с получением неочищенного продукта. Неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка:
Phenomenex Luna C18 150 * 30 мм * 5 мкм; подвижная фаза: [вода (0,1% TFA)-ACN]; B (ацитонитрил)%: от 1% до 35%; 9 мин.), затем разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: DAICEL CHIRALPAK IC (250 мм * 30 мм, 10 мкм); подвижная фаза: [0,1% NH3H2O MeOH]; B%: от 50% до 50%; 10 мин.) с получением соединения 015 (Rt = 1,375 мин.). 1Н ЯМР (400 МГц, CD3OD) δ ppm 1,22-1,30 (m, 3 H) 1,49 (d, J = 6,88 Гц, 3 H) 3,83-3,93 (m, 1 H) 3,94-4,04 (m, 2 H) 4,30-4,36 (m, 2 H) 4,38-4,46 (m, 2 H) 4,59-4,64 (m, 1 H) 4,66-4,73 (m, 1 H) 4,93-5,01 (m, 1 H) 5,47-5,48 (m, 1 H) 6,34 (d, J = 2,38 Гц, 1 H) 6,43-6,79 (m, 2 H) 7,17 (s, 1 H) 8,04 (d, J = 8,75 Гц, 1 H); MS: масса/заряд = 451,1 [M+1] +.

[0183] Пример 9

[0184] Более ранний путь синтеза:

[0185] Стадия 1. Синтез соединения 016-1

[0186] Соединение 003-1 (0,13 г; 306,30 мкмоль, 1 экв.) растворяли в тетрагидрофуране (5 мл). HATU (1,75 г; 4,59 ммоль, 15 экв.), триэтиламин (619,88 мг; 6,13 ммоль, 852,66 мкл, 20 экв.) и хлорид аммония (245,77 мг; 4,59 ммоль, 15 экв.) добавляли при 0°C и смесь перемешивали при 15°C в течение 16 часов. После завершения реакции к

[0187] Стадия 2. Синтез соединения 016

[0188] Соединение 016-1 (130,00 мг, 307,01 мкмоль, 1 экв.) растворяли в метаноле (10 мл). Триэтиламин (155,33 мг, 1,54 ммоль, 213,66 мкл, 5 экв.) и гидрохлорид гидроксиламина (50,70 мг, 1,54 ммоль, 5 экв.) добавляли при 20°C. Смесь нагревали до 80°C и обеспечивали прохождение реакции в течение 22 часов. После завершения реакции к реакционной смеси добавляли воду (20 мл). Реакционную смесь экстрагировали три раза с помощью дихлорметана (3 × 10 мл). Органические фазы объединяли, высушивали над безводным сульфатом натрия, фильтровали и концентрировали. Затем неочищенный продукт разделяли с помощью препаративной высокоэффективной жидкостной хроматографии (хроматографическая колонка: Boston Prime C18 150 * 30 мм * 5 мкм; подвижная фаза: [вода (NH₄H₂O + NH₄HCO₃)-ACN]; от 15% до 45%, 7 мин.) с получением соединения 016. ¹H ЯМР (400 МГц, CD₃OD) δ = 8,06 (d, J = 9,0 Гц, 1Н), 6,65-6,31 (m, 2Н), 6,19 (d, J = 2,3 Гц, 1Н), 4,73 (dd, J = 3,1, 9,2 Гц, 1Н), 4,67-4,57 (m, 2Н), 4,40 (br d, J = 2,8 Гц, 2Н), 4,32 (br d, J = 3,3 Гц, 2Н), 3,84 (q, J = 6,8 Гц, 1Н), 1,48 (d, J = 7,0 Гц, 3Н); MS: масса/заряд = 423 [M+1]+.

[0189] Пример 10
Путь синтеза:

Стадия 1. Синтез соединения 017

В атмосфере азота в реакционную колбу, содержащую соединение 009-1 (80 мг, 188,93 мкмоль, 1 экв.), TEA (98,15 мг, 969,92 мкмоль, 135 мкл, 5,13 экв.) и метанол (5 мл), добавляли гидрохлорид гидроксиаминова (66 мг, 949,76 мкмоль, 5,03 экв.). Смесь нагревали до 80°C и перемешивали в течение 10 часов. После завершения реакции реакционную смесь выпаривали до сухого состояния посредством ротационного
выпаривания при пониженном давлении, добавляли 20 мл воды, экстрагировали три раза с помощью дихлорметана (20 мл х 3). Органическую фазу собирали, промывали с помощью насыщенного солевого раствора (20 мл) и высушивали над безводным сульфатом натрия. Реакционную смесь разделяли с помощью препаративной тонкослойной хроматографии (дихлорметан: метанол = 20:1), затем разделяли с помощью препаративной сверхкритической флюидной хроматографии (хроматографическая колонка: DAICEL CHIRALPAK IC (250 мм * 30 мм, 10 мкм); подвижная фаза: [0,1% NH₃H₂O MEOH]; В%: от 50% до 50%, 10 мин.) с получением соединения 017. ¹H ЯМР (400 МГц, CDCl₃) δ ppm 1,53 (br d, J = 6,53 Гц, 3 Н) 3,87-4,06 (m, 2 Н) 4,29 (br d, J = 4,52 Гц, 2 Н) 4,40 (br s, 2 Н) 4,47-4,60 (m, 1 Н) 4,68-4,77 (m, 3 Н) 4,79-4,92 (m, 1 Н) 6,33 (s, 1Н) 6,47 (br d, J = 8,78 Гц, 1 Н) 6,52-6,87 (m, 1 Н) 7,17 (s, 1 Н) 8,13 (d, J = 8,78 Гц, 1 Н). MS: масса/заряд = 423 [M+1]+.

[0193] Пример 11

[0194] Путь синтеза:
[0195] Стадия 1. Синтез соединения 018-1

[0196] Соединение 001-3 (0,87 г, 1,88 ммоль, 1 экв.) растворяли в толуоле (10 мл). Добавляли димер дихлор(п-цимол)рутения(II) (345,94 мг, 564,90 ммоль, 3,01 е-1 экв.) и 2-дициклогексилфосфино-2',6'-диметоксибифенил (233,62 мг, 569,07 ммоль, 3,03 е-1 экв.). Смесь нагревали до 110°C в атмосфере азота и перемешивали в течение 12 часов. После завершения реакции реакционную смесь охлаждали до комнатной температуры (25°C), добавляли 10 мл этилацетата и 10 мл насыщенного содового раствора. Органическую фазу собирали, высушивали над безводным сульфатом натрия, выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении и затем разделяли с помощью колоночной хроматографии (петролейный эфир : этилацетат = 1:0-21:4) с получением соединения 018-1. 1H ЯМР (400 МГц, CDCl3) δ ppm 3,59 (br д, J = 11,80 Гц, 1 Н), 3,69-3,80 (м, 1 Н) 4,33-4,54 (м, 6 Н) 5,18-5,34 (м, 1 Н) 6,26-6,63 (м, 1 Н) 7,38-7,50 (м, 3 Н) 8,06-8,15 (м, 1 Н).

[0197] Стадия 2. Синтез соединения 018-2

[0198] Соединение 018-1 (670 мг, 1,45 ммоль, 1 экв.), 001-5 (520 мг, 5,84 ммоль, 4,04 экв.) и фосфат калия (1,58 г, 7,46 ммоль, 5,16 экв.) растворяли в DMSO (20 мл). К полученному в атмосфере азота добавляли йодид меди (365,45 мг, 1,92 ммоль, 1,33 экв.). Смесь нагревали до 125°C и перемешивали в течение 2 часов. После завершения реакции реакционную смесь фильтровали. Осадок на фильтре промывали с помощью 10 мл DMSO. Фильтрат собирали с получением раствора неочищенного соединения 018-2 в DMSO. Реакционную смесь непосредственно применяли на следующей стадии без дополнительной очистки.

[0199] Стадия 3. Синтез соединения 018-3

[0200] Соединение 018-2 (600 мг, 1,41 ммоль, 1 экв.) добавляли в предварительно высушенну реакционную колбу. Затем к полученному добавляли растворитель, представляющий собой DMSO (30 мл), и тетрагидрофуран (15 мл). Смесь охлаждали до 0°C, добавляли HATU (3,25 г, 8,55 ммоль, 6,05 экв.) и затем добавляли раствор (7 М,
4.5 мл, 22.28 экв.) аммиака в метаноле. Реакционную смесь перемешивали при 20°C в течение 12 часов. После завершения реакции реакционную смесь перегоняли при пониженном давлении. В реакционную смесь добавляли 100 мл воды, экстрагировали три раза с помощью дихлорметана (50 мл * 3). Органическую фазу собирали, промывали четыре раза с помощью воды (100 мл * 4) и высушивали над безводным сульфатом натрия. Органическую фазу затем разделяли с помощью колоночной хроматографии (дихлорметан : метанол=1:0-9:1) с получением соединения 018-3. Предполагается, что в ходе реакции происходит рацемизация. ¹H ЯМР (400 МГц, CD₃OD) δ ppm 2.12 (d, J = 7.03 Гц, 3 H) 4.22 (dd, J = 12.05, 2.26 Гц, 1 H) 4.38-4.51 (m, 2 H) 4.92-5.08 (m, 4 H) 5.24 (s, 3 H) 5.73-5.86 (m, 1 H) 6.82 (d, J = 2.26 Гц, 1 H) 6.94-7.27 (m, 2 H) 7.92 (s, 1 H) 8.69 (d, J=9.03 Гц, 1 H).

[0201] Стадия 4. Синтез соединения 018-4

[0202] Соединение 018-3 (100 мг, 236,16 мкмоль, 1 экв.) и реагент Лавессона (190 мг, 469,75 мкмоль, 1,99 экв.) добавляли в предварительно высушеннную реакционную колбу с последующим добавлением растворителя, представляющего собой тетрагидрофуран (4 мл). Реакционную смесь перемешивали при 20°C в течение 2 часов. После завершения реакции реакционную смесь выпаривали до сухого состояния посредством ротационного выпаривания при пониженном давлении. Неочищенный продукт разделяли с помощью препаративной тонкослойной хроматографии (дихлорметан : метанол = 20:1) с получением соединения 018-4. ¹H ЯМР (400 МГц, CDCl₃) δ ppm 1.67 (br d, J = 6.53 Гц, 3 H) 3.06 (q, J = 7.19 Гц, 1 H) 3.54-3.73 (m, 2 H) 4.26-4.31 (m, 3 H) 4.39-4.46 (m, 2 H) 5.06-5.23 (m, 1 H) 6.23 (d, J = 2.51 Гц, 1 H) 6.34-6.66 (m, 2 H) 7.32 (s, 1 H) 7.44 (br s, 1 H) 8.11 (br s, 1 H) 8.17 (d, J = 8.53 Гц, 1 H).

[0203] Стадия 5. Синтез соединения 018

[0204] Соединение 018-4 (60 мг, 136,52 мкмоль, 1 экв.) добавляли в предварительно высушеннную реакционную колбу. К полученному добавляли дихлорметан (3 мл) и смесь охлаждали до 0°C. К полученному добавляли метилтрифторметансульфонат (50,58 мг,
308,22 мкмоль, 33,72 мл, 2,26 экв.) и смесь нагревали до 20°С и перемешивали в течение 2 часов. Реакционную систему охлаждали до 0°С. К полученному добавляли гидрохлорид O-метилгидроксиламина (120,40 мг, 1,44 ммоль, 109,46 мл, 10,56 экв.) и DIEA (221,61 мл, 1,71 ммоль, 298,66 мл, 12,56 экв.). Перемешивание реакционной смеси продолжали при 20°С в течение 10 часов. После завершения реакции к реакционной системе добавляли 50 мл воды. Органическую фазу собирали и водную фазу экстрагировали с помощью дихлорметана (50 мл * 3). Органические фазы объединяли, промывали с помощью насыщенного солевого раствора (50 мл), высушили над безводным сульфатом натрия, выливают, концентрировали при пониженном давлении, разделяли с помощью препаративной тонкослойной хроматографии (дихлорметан: метанол = 20:1) и затем разделяли с помощью препаративной сверхкритической флuidoной хроматографии (хроматографическая колонка: DAICEL CHIRALPAK AS (250 мм * 30 мм, 10 мкм); подвижная фаза: [0,1% NH₃H₂O EtOH]; B%: CO₂, от 35% до 35%, 10 мин.) с получением соединения 018 (Rt = 2,041 мин.). ¹H ЯМР (400 МГц, CDCI₃) δ ppm 1,53 (d, J = 6,78 Гц, 3 H) 3,58-3,71 (m, 2 H) 3,83 (s, 3 H) 3,90-4,01 (m, 2 H) 4,30 (br d, J = 4,27 Гц, 2 H) 4,38-4,45 (m, 2 H) 4,68 (s, 2 H) 5,10-5,21 (m, 1 H) 6,33 (d, J = 2,26 Гц, 1 H) 6,37-6,66 (m, 2 H) 7,31 (s, 1 H) 8,14 (d, J = 8,78 Гц, 1 H); MS: масса/заряд = 453,1 [M+1]⁺.

[0205] Экспериментальный пример 1. Оценка in vitro

[0206] 1. Испытание на ферментативную активность in vitro

[0207] Реакцию с липидкиназой проводили в условиях наличия подходящего субстрата и ATP. Затем киназную активность испытывали с использованием набора ADP-Glo™ в две стадии. Стадия 1. Киназная реакция завершалась, при этом остаточный ATP полностью удалялся и оставался только ADP; Стадия 2. Добавляли испытуемый реагент для определения киназной активности для превращения ADP в ATP, сопровождающегося реакцией люцифера/люциферазы. Наконец, числовое значение флуоресценции на выходе преобразовывали в киназную активность. Условия для испытания ферментативной активности P13K показаны в таблице 1.
Таблица 1. Условия для испытания ферментативной активности Р13К

<table>
<thead>
<tr>
<th>Подтип</th>
<th>Конечная концентрация фермента (нМ)</th>
<th>ATP (мкМ)</th>
<th>PIP2:3PS (мкМ)</th>
<th>Время реакции (мин.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Р13Кα</td>
<td>0,2 нМ</td>
<td>40</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>Р13Кβ</td>
<td>0,6 нМ</td>
<td>40</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>Р13Кδ</td>
<td>0,25 нМ</td>
<td>40</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>Р13Кγ</td>
<td>0,4 нМ</td>
<td>25</td>
<td>50</td>
<td>120</td>
</tr>
</tbody>
</table>

Материалы и оборудование для проведения эксперимента:

а) фермент: Р13Кα Millipore № 14-602-K;

Р13Кβ Promega № V1751;

Р13Кδ Millipore № 14-604-K;

Р13К γ Millipore № 14-558-K;

б) набор: липидкиназа ADP-Glo™ и набор PIP2:3PS (Promega № V1792);

набор содержит: 1 мМ PIP2:3PS, 10 × буфера для разбавления липидов, 1 М хлорида магния, 10 мМ ATP, 10 мМ ADP, реагент ADP-Glo, буфер для проведения анализа и субстрат для проведения анализа;

в) люминесцентный планшет для проведения реакции: OptiPlate-384, белый прозрачный (PerkinElmer № 6007299).

Получение реагента:

а) 10 × буфера для проведения реакции: 500 мМ HEPES, рН 7,5, 500 мМ NaCl, 9 мМ MgCl₂; BSA: 10% исходный раствор, полученный на месте;
b) конечные условия для тест-системы: 1 × реакционная система: 50 мМ HEPES, 50 мМ NaCl, 3 мМ MgCl₂, 0,01% BSA (свежеприготовленный в день проведения эксперимента), 1% DMSO (об./об.) + /-соединение;

c) реакционная система: 3 мл смеси фермента и субстрата (1:1) + 2 мл смеси ATP/MgCl₂ + 5 мл реагента ADP-Glo + 10 мл реагента для проведения анализа.

Конкретные операции в составе эксперимента являются следующими:

a) разбавление соединения: 50 нл 100× соединения/DMSO переносили в луночный планшет для проведения испытания с помощью Echo;

- в случае P13Kα соединения разбавляли трех-кратно от наивысшей концентрации, составляющей 0,111 мМ, с получением всего 10 концентраций;

- в случае P13Kβ/P13Kδ/P13Kγ соединения разбавляли трех-кратно от наивысшей концентрации, составляющей 1,11 мМ, с получением всего 10 концентраций;

b) киназная реакция:

(1) получали соединение, подлежащее испытанию: 50 нл раствора соединения 100 плюс или DMSO добавляли в соответствующий луночный планшет;

(2) получали 3,33× буфер для проведения реакции;

(3) получали 3,33× PIP2:3PS; PIP2:3PS размораживали путем перемешивания на вортекс-мешалке в течение по меньшей мере 1 минуты перед применением;

(4) получали раствор ATP, содержащий 5,25 мМ MgCl₂;

(5) получали раствор 3,33× P13Kα/P13Kβ/P13Kδ/P13Kγ;

(6) смешивали раствор липидкиназы и раствор PIP2:3PS в объемном соотношении 1:1;
[0229] (7) 3,33х буфер для липидкиназы и раствор PIP2:3PS смешивали в объемном соотношении 1:1;

[0230] (8) 3 мл смешанного раствора буфера и PIP2:3PS добавляли в столбец 1 и столбец 2 луночного планшета;

[0231] (9) 3 мл смешанного раствора фермента и PIP2:3PS добавляли в лунки луночного планшета, за исключением столбца 1 и столбца 2, и планшет центрифугировали в течение 10 секунд (1000 об./мин.); планшет инкубировали при 23°С в течение 20 мин.;

[0232] (10) к полученному добавляли 2 мл раствора ATP, равномерно встряхивали при 1000 об./мин.;

[0233] (11) луночный планшет накрывали и равномерно встряхивали в течение приблизительно 30 секунд; затем луночный планшет инкубировали при 23°С в течение 2 часов;

[0234] (12) к полученному добавляли 5 мл реагента ADP-Glo, содержащего 10 мМ MgCl₂;

[0235] (13) луночный планшет центрифугировали при 1000 об./мин. в течение 10 секунд, накрывали, встряхивали в течение приблизительно 30 секунд и инкубировали при 23°С в течение 60 мин.;

[0236] (14) добавляли 10 мл реагента для проведения анализа на киназу;

[0237] (15) луночный планшет центрифугировали при 1000 об./мин. в течение 10 секунд и инкубировали при 23°С в течение 60 мин.;

[0238] (16) значения флуоресценции измеряли на приборе Envision.

[0239] 2. Испытание на активность клеток in vitro
[0240] При осуществлении способа с использованием CTG эффект соединения, подлежащего испытанию, в отношении антимитотической активности клеток определяли в двух линиях клеток, – HCC1954 и HDQ-P1.

[0241] Среда для культивирования клеток: полная среда для культивирования клеток (RPMI 1640 + 10% сыворотка + 1% L-глутамин + 1% двойное антитело).

[0242] Конкретные стадии операции являются следующими:

[0243] (1) клетки HCC1954 и HDQ-P1 (ATCC® HTB-22™) инкубировали в 96-луночные планшеты, соответственно, с 100 млкл полной среды для клеток на лунку (4000 клеток/HDQ-P1 на лунку, 3500 клеток/HCC1954 на лунку); клетки культивировали при 37°C, 5% CO₂ в течение 24 часов;

[0244] (2) полную среду для клеток заменяли с помощью 100 млкл бессывороточной среды; клетки оставляли без питания на ночь;

[0245] (3) получали соединения (исходная концентрация соединения составляла 10 мкМ) и разбавляли 3-кратно с получением 8 концентраций; затем каждую концентрацию соединения разбавляли 100-кратно с помощью бессывороточной среды и 25 млкл разбавленного соединения добавляли в планшет, содержащий клетки;

[0246] (4) луночный планшет инкубировали при 37°C, 5% CO₂ в течение 72 часов (HCC1954) или 120 часов (HDQ-P1);

[0247] (5) последующие операции проводили в соответствии с инструкцией к набору CTG от Promega.

[0248] Результаты показаны в таблице 2.

[0249] Таблица 2. Результаты скринингового испытания in vitro для соединений по настоящему изобретению
<table>
<thead>
<tr>
<th>Соединение</th>
<th>PI3Kα IC₅₀ (пМ)</th>
<th>PI3Kβ IC₅₀ (пМ)</th>
<th>PI3Kδ IC₅₀ (пМ)</th>
<th>PI3Kγ IC₅₀ (пМ)</th>
<th>IC₅₀ для клеток HCC1954 (пМ)</th>
<th>IC₅₀ для клеток HDQ-P1 (пМ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDC-0077</td>
<td>0,75</td>
<td>852</td>
<td>133</td>
<td>72</td>
<td>101</td>
<td>NA</td>
</tr>
<tr>
<td>003</td>
<td>5,52</td>
<td>>10000</td>
<td>>10000</td>
<td>>10000</td>
<td>244</td>
<td>NA</td>
</tr>
<tr>
<td>008</td>
<td>18,9</td>
<td>>10000</td>
<td>>10000</td>
<td>>10000</td>
<td>187</td>
<td>NA</td>
</tr>
<tr>
<td>008</td>
<td>1,22</td>
<td>705</td>
<td>16,9</td>
<td>35,9</td>
<td>207</td>
<td>NA</td>
</tr>
</tbody>
</table>

[0250] «NA» обозначает, что значение IC₅₀ не может быть рассчитано.

[0251] Вывод: соединение по настоящему изобретению может эффективно ингибировать активность киназы PI3Kα и характеризуется высокой подтиповой селективностью в отношении PI3Kβ/γ/δ. Кроме того, в клетках HCC1954 с мутацией PIK3CA также может эффективно ингибироваться пролиферация клеток.

[0252] Экспериментальный пример 2. Испытание на способность к проникновению

[0253] Способность соединений по настоящему изобретению к проникновению определяли с помощью мембраны из клеток MDCK с высоким уровнем экспрессии MDR1.

[0254] Конкретные стадии операции являются следующими.

[0255] Соединения в исходном растворе DMSO разбавляли до 2 мкМ (DMSO < 1%) с помощью буфера для переноса (HBSS с 10 мМ Hepes, pH 7,4) и наносили на апикальную сторону или базолатеральную сторону монослоя клеток. Проникновение соединений в направлении от A к B или в направлении от B к A определяли в двух повторностях. Планшет инкубировали в течение 2,5 часа в инкубаторе с CO₂ при температуре 37±1°C в условиях насыщенной влажности с содержанием 5% CO₂ без встраивания. Кроме того, также определяли уровень эфлюкса каждого соединения. Количественное определение
соединений осуществляли с помощью анализа LC-MS/MS на основе соотношения площадей пиков аналита и внутреннего стандарта.

[0256] После анализа переноса определяли целостность монослоя клеток с применением испытания с исключением флуоресцена. Буфер удаляли из апикальной и базолатеральной камер. Затем 75 мкл буфера для переноса с флуоресценом с концентрацией, составляющей 100 мкМ, и 250 мкл буфера для переноса добавляли в апикальную и базолатеральную камеры соответственно. Планшет инкубировали при 37°C, 5% CO₂ и насыщенной влажности в течение 30 мин. без встряхивания. После 30 мин. инкубации с апикальной стороны отбирали 20 мкл образца с флуоресценом и добавляли 60 мкл буфера для переноса. Затем собирали 80 мкл образца с флуоресценом на базолатеральной стороне. Относительные единицы флуоресценции (RFU) для флуоресценна измеряли при 425/528 нм (возбуждение/испускание) с помощью микропланшет-ридера Envision. Результаты испытания показаны в таблице 3.

[0257] Таблица 3. Результаты исследования соединений по настоящему изобретению в отношении способности к проникновению

<table>
<thead>
<tr>
<th>Параметры оценки</th>
<th>GDC-0077</th>
<th>008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Способность к проникновению, MDCK-MDR1, 10⁴см/c (от А к В, от В к А, соотношение значений эффициентов)</td>
<td>1,99, 16,0, 8,04</td>
<td>16,9, 32,8, 1,94</td>
</tr>
</tbody>
</table>

[0258] Вывод: соединение по настоящему изобретению демонстрирует такие свойства, как высокая способность к проникновению и низкий эффициент в испытании на способность к проникновению с использованием MDCK-MDR1.

[0259] Экспериментальный пример 3. Исследование in vivo

[0260] 1. Исследования метabolизма и фармакокинетики лекарственного средства in vivo
Цель эксперимента: самцов мышей CD-1 использовали в качестве подопытных животных для определения концентраций соединений в плазме крови после однократного введения и оценки фармакокинетических характеристик.

Ход эксперимента. Отбирали 8 здоровых взрослых самцов мышей CD-1 – 4 для группы внутривенной инъекции и 4 для группы перорального введения. Соединение, подлежащее испытанию, смешивали с подходящим количеством растворителя (DMSO/растворитель/вода (10:10:80 об./об./об.)) для группы внутривенной инъекции. Раствор смеси перемешивали на вортеке-мешалке и подвергали воздействию ультразвука для получения 1,0 мг/мл прозрачного раствора, который фильтровали через микропористую мембрану для последующего применения. Для группы перорального введения растворитель представлял собой смесь DMSO/растворитель/вода (10:10:80 об./об./об.). После смешивания соединения, подлежащего испытанию, с растворителем раствор смеси перемешивали на вортеке-мешалке и подвергали воздействию ультразвука для получения 1,0 мг/мл гомогенной суспензии для последующего применения. После внутривенного введения из расчета 1 мг/кг или перорального введения из расчета 3 мг/кг мышам в течение некоторого периода времени собирали цельную кровь для получения плазмы крови и проводили анализ для определения концентрации лекарственного средства с помощью способа LC-MS/MS, затем рассчитывали фармакокинетические параметры с применением программного обеспечения Phoenix WinNonlin (Pharsight, США). Результаты показаны в таблице 4.

Таблица 4. Результаты определения фармакокинетических свойств соединений по настоящему изобретению у мышей

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Пероральное</th>
<th>Внутривенная инъекция</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C<sub>max</sub> (nM)</td>
<td>DNAUC (нМ·ч./мл/кг)</td>
</tr>
<tr>
<td>GDC-0077</td>
<td>1765</td>
<td>778</td>
</tr>
<tr>
<td>008</td>
<td>9345</td>
<td>6441</td>
</tr>
</tbody>
</table>
Вывод: соединение по настоящему изобретению демонстрирует высокую концентрацию, низкую скорость выводения и хорошую биодоступность при пероральном введении у мышей.

2. Исследование распределения в плазме крови/ткани головного мозга in vivo

Цель эксперимента: самцов крыс SD использовали в качестве подопытных животных для определения концентраций соединений в плазме крови и концентраций лекарственного средства в ткани головного мозга и спинномозговой жидкости после однократного введения, а также для оценки проникновения соединения по настоящему изобретению в головной мозг.

Ход эксперимента. Отбирали 12 здоровых взрослых самцов крыс SD. Соединение, подлежащее испытанию, смешивали с подходящим количеством растворителя (DMSO/растворитель/вода (10:10:80 об./об./об.)) для группы перорального введения. Смесь перемешивали на вортек-мешалке и подвергали воздействию ультразвука для получения 1,0 мг/мл прозрачного раствора для последующего применения. После перорального введения крысам из расчета 10 мг/кг в течение некоторого периода времени собирали цельную кровь, ткань головного мозга и спинномозговую жидкость для получения плазмы крови, гомогената ткани головного мозга и спинномозговой жидкости. Концентрацию лекарственного средства анализировали с помощью LC-MS/MS-способа и фармакокинетические параметры рассчитывали с помощью программного обеспечения Phoenix WinNonlin (Pharsight, США). Результаты показаны в таблице 5.

<table>
<thead>
<tr>
<th>Пероральное введение из расчета 10 мг/кг крысам</th>
<th>GDC-0077</th>
<th>008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax(нМ), Tmax(ч.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ткань головного мозга</td>
<td>147, 1,00, ND, 342</td>
<td>1043, 0,25, 1,45, 2082</td>
</tr>
<tr>
<td>Спинномозовая жидкость</td>
<td>Т₈/₂(ч), AUC(нМ * ч.)</td>
<td>Плазма крови</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>60,4, 1,00, ND, 128</td>
<td>552, 0,25, 1,38, 1077</td>
</tr>
<tr>
<td></td>
<td>1525, 0,25, 1,32, 3117</td>
<td>10295, 0,25, 1,72, 21717</td>
</tr>
</tbody>
</table>

Связывание с белками плазмы крови крысы, % несвязанного соединения

<table>
<thead>
<tr>
<th>Соотношение свободного лекарственного средства в спинномозовой жидкости/плазме крови</th>
</tr>
</thead>
<tbody>
<tr>
<td>51,5%</td>
</tr>
<tr>
<td>0,080</td>
</tr>
</tbody>
</table>

[0269] Примечание: ND означает, что значение не может быть рассчитано.

[0270] Вывод: соединение по настоящему изобретению демонстрирует более высокие уровни концентрации лекарственного средства в головном мозге у крыс.
Формула изобретения

1. Соединение формулы (II) или его фармацевтически приемлемая соль,

![Chemical structure](image)

где

Т выбран из О и S;

L выбран из -C1-алкил- и -C1-алкилцикlopропил-;

R₁ выбран из H и C1-алкила, и C1-алкил необязательно замещен 1, 2 или 3 R₆;

R₂ выбран из H, F, Cl, Br, I, OH и C1-алкила, и C1-алкил необязательно замещен 1, 2 или 3 R₆;

каждый из X и Y независимо выбран из O и NR₃, и X и Y одновременно не являются выбранными из O;

R₃ независимо выбран из H, OH, CN, C1-алкила, C1-алкокси и -O-C₃-циклоалкила, и C1-алкил, C1-алкокси и -O-C₃-циклоалкил необязательно замещены 1, 2 или 3 R₆;

R₄ и R₅ выбраны из H, F, Cl, Br, I, OH и C1-алкила;

R₆ выбран из H и C1-алкила;

R₇ выбран из C1-алкила, C1-алкокси и 3-5-членного гетероциклоалкила;

или R₆, R₇ вместе с их общим атомом углерода образуют 3-5-членный гетероциклоалкил;
или R₁, R₇ вместе с атомом, к которому они присоединены, образуют 3-5-членный гетероциклоалкил;

кольцо B выбрано из 4-8-членного гетероциклоалкила, и 4-8-членный гетероциклоалкил необязательно замещен 1, 2 или 3 R₄;

каждый из Rₐ, Rₐ, Rₐ и R₄ независимо выбран из F, Cl, Br и I.

2. Соединение или его фармацевтически приемлемая соль по п. 1, где R₁ выбран из H и CH₃, и CH₃ необязательно замещен 1, 2 или 3 R₄.

3. Соединение или его фармацевтически приемлемая соль по п. 2, где R₁ выбран из H, CH₃, CH₂F, CHF₂ и CF₃.

4. Соединение или его фармацевтически приемлемая соль по п. 1, где R₂ выбран из H, F, Cl, Br, I, OH и CH₃, и CH₃ необязательно замещен 1, 2 или 3 R₂.

5. Соединение или его фармацевтически приемлемая соль по п. 4, где R₂ выбран из H, F, Cl, Br, I, OH, CH₃, CH₂F, CHF₂ и CF₃.

6. Соединение или его фармацевтически приемлемая соль по п. 1, где R₃ независимо выбран из H, OH, CN, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH(CH₃)₂, O-циклогексил и 1-оксо-циклогексил, и CH₃, CH₂CH₂, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH(CH₃)₂, O-циклогексил и 1-оксо-циклогексил необязательно замещены 1, 2 или 3 R₃.

7. Соединение или его фармацевтически приемлемая соль по п. 6, где R₃ независимо выбран из H, OH, CN, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, OCH(CH₃)₂, OCH₂CH(CH₃)₂, O-циклогексил и 1-оксо-циклогексил.

8. Соединение или его фармацевтически приемлемая соль по п. 1 или п. 7, где каждый из X и Y независимо выбран из O, NH, NOH, NCN, N-CH₃, N-OCH₃, N-OCH₂CH₃, N-OCH(CH₃)₂, N-O-циклогексил и N-O-циклогексил.

9. Соединение или его фармацевтически приемлемая соль по п. 1, где R₄ и R₅ выбраны
из H, F, Cl, Br, I, OH и CH₃.

10. Соединение или его фармацевтически приемлемая соль по п. 1, где R₇ выбран из CH₃, CH(CH₃)₂, OCH₃ и оксетания.

11. Соединение или его фармацевтически приемлемая соль по п. 1, где R₆, R₇ вместе с их общим атомом углерода образуют оксетанил.

12. Соединение или его фармацевтически приемлемая соль по п. 1, где R₇ вместе с атомом, к которому они присоединены, образуют азетидинил и пирилпидинил.

13. Соединение или его фармацевтически приемлемая соль по п. 1, где L выбран из -CH₂CH₂-, -CH(CH₃)CH₂- и

14. Соединение или его фармацевтически приемлемая соль по п. 1, где кольцо В выбрано из

необязательно замещены 1, 2 или 3 R₆.

15. Соединение или его фармацевтически приемлемая соль по п. 14, где кольцо В выбрано из

16. Соединение или его фармацевтически приемлемая соль по любому из пп. 1-7, выбранные из
где

R_1 является таким, как определено в любом из пп. 1-3;

R_2 является таким, как определено в любом из п. 1, п. 4 или п. 5;

R_3 является таким, как определено в любом из п. 1, п. 6 или п. 7.

17. Соединение или его фармацевтически приемлемая соль по п. 16, выбранные из

gде

R_1, R_2 и R_3 являются такими, как определено в п. 16.
18. Соединение следующей формулы или его фармацевтически приемлемая соль,
19. Соединение или его фармацевтически приемлемая соль по п. 18, выбранные из