патентное ведомство

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- Дата публикации заявки (43)2023.11.10
- (22) Дата подачи заявки 2021.12.16

- **(51)** Int. Cl. **A01C** 1/00 (2006.01) A01H 6/14 (2018.01) A01H 4/00 (2006.01) **A01H 5/10** (2018.01)
- СПОСОБ СПАСЕНИЯ ЗАРОДЫША И ГЕРБИЦИДНОЙ СЕЛЕКЦИИ IN VITRO (54) ПОДСОЛНЕЧНИКА
- 202110052428.0 (31)
- (32)2021.01.15
- (33)
- (86)PCT/CN2021/138762
- (87)WO 2022/151909 2022.07.21
- (88) 2022.10.27
- (71) Заявитель:

СИНГЕНТА КРОП ПРОТЕКШН АГ

(72) Изобретатель:

Дань Инхуэй (CN), Сайнс Мануэль Бенито (US), Цзинь Хуайбин, Цуй Жуйцзе (CN)

(74) Представитель:

Веселицкий М.Б., Кузенкова Н.В., Каксис Р.А., Белоусов Ю.В., Куликов А.В., Кузнецова Е.В., Соколов Р.А., Кузнецова Т.В. (RU)

Подсолнечник представляет собой важную масличную культуру. Обычно новые сорта с (57)улучшенными агрономическими признаками выводят с помощью стандартной программы селекции. В данном документе описан способ спасения зародыша подсолнечника для ускорения введения признака в растения. Кроме того, сорняки представляют собой серьезную угрозу для урожая подсолнечника. Однако существует незначительное количество селективных гербицидов для подсолнечника. В данном документе дополнительно представлены методики гербицидной селекции in vitro с применением методики спасения зародыша.

СПОСОБ СПАСЕНИЯ ЗАРОДЫША И ГЕРБИЦИДНОЙ СЕЛЕКЦИИ *IN VITRO* ПОДСОЛНЕЧНИКА

5

10

15

20

25

30

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к области спасения зародыша и методикам гербицидной селекции in vitro подсолнечника.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Подсолнечник (*Helianthus anmus*) представляет собой одну из важнейших масличных культур в мире. Стандартная селекция привела к созданию сортов с улучшенными агрономическими признаками. Современные коммерческие сорта с ценными агрономическими характеристиками обычно представляют собой гибриды инбредных линий мужских и женских растений.

Стандартная программа селекции подсолнечника включает несколько циклов селекции. Технология спасения зародыша (ER) может использоваться для ускорения введения признаков в коммерческие инбредные линии за счет сокращения жизненного цикла (LCS). В ранее опубликованных отчетах рассматривалась технологии ER главным образом в контексте широкого скрещивания с экзотическими видами Helianthus, которые являются источником многих агрономически полезных признаков подсолнечника. Компоненты среды, включая базальную среду, концентрации сахарозы, витамины и регуляторы роста растений (гормоны), являются основными факторами в разработке протоколов ER для различных видов (Lulsdorf et al. 2013).

Одной из проблем для подсолнечника являются сорняки и значительные потери урожая, которые могут быть вызваны конкуренцией. Конкуренция со стороны сорняков может уменьшать количество влаги, питательных веществ, света и/или пространства, которое получает подсолнечник. Потери урожая подсолнечника, обусловленные сорняками, достигают 70%. Например, заразиха (Orobanche) представляет собой облигатного паразита, паразитирующего на подсолнечнике. Заразиха питается корнями растения и проростками, образуя большое количество семян. Гербициды являются важным компонентом контроля заразихи с учетом того, что генетическая устойчивость к паразиту является неполной. Комбинация гербицидов в качестве предпочтительного способа контроля сорняков наряду с отсутствием доступных селективных гербицидов

для подсолнечника делает ключевым развитие признаков устойчивости у подсолнечника к гербицидам (Sala *et al.* 2012).

СУТЬ ИЗОБРЕТЕНИЯ

Были запланированы и проведены эксперименты по разработке надежной методики ER подсолнечника с целью сокращения жизненного цикла для собственного коммерческого процесса интрогрессии признаков подсолнечника (TI) до ≤ 85 дней, от зародыша к зародышу. Применение данной технологии позволяет получать 4 поколения вместо 3 в год, что дает возможность более быстрой доставки на рынок гибридов подсолнечника с определенными признаками. Кроме того, был разработан протокол селекции гербицидов *in vitro* в виде части способа ER, который способствует повышению эффективности собственного способа TI за счет уменьшения размеров популяции инбредных линий, которые подлежат превращению с приобретением признака толерантности к гербицидам.

В данном документе представлены следующие способы и составы: 1) способ сбора незрелых зародышей подсолнечника, который обеспечивает эффективное образование ростков, полученных в результате спасения зародыша (ER); 2) надежный и независимый от генотипа способ для ER*in vitro*; 3) надежная методика гербицидной селекции *in vitro* и 4) растения, полученные посредством описанных способов.

20

5

10

15

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На фигуре 1 показаны незрелые семена от наружного ряда 2 к внутреннему ряду 8 соцветия через 14 дней после опыления.

На фигуре 2 показаны незрелые зародыши, помещенные в среду после выделения.

На фигуре 3 показан пример здорового проростка, полученного в результате ER, с высотой побега $\geq 1,5$ см от корневой кроны до семядоли.

На фигуре 4 показан пример здоровых растений, полученных в результате ER, с 2-4 корнями с боковыми корнями и настоящими листьями.

30

25

ОПРЕДЕЛЕНИЯ

Используемый в данном документе термин "AIR" относится к одной из мутаций в гене *Ahasl1*, которая приводит к толерантности к гербициду, ингибирующему ацетолактат-синтазу (AHAS). Кроме того, термин "AIR" также относится к признаку, обеспечивающему устойчивость к указанным гербицидам.

Используемый в данном документе термин "рост здорового проростка, полученного в результате ER" относится к проросткам, характеризующимся высотой побега (между семядолей и областью кроны корня), составляющей $\geq 1,5\,$ см, при этом $\geq 85\%$ из них имеют здоровые корни.

Используемый в данном документе термин "здоровые корни" относится к растениям с 2-4 основными корнями, а также с боковыми корнями.

5

10

15

20

25

30

Используемый в данном документе термин "генотип" относится к генетической структуре клетки или организма. "Генотип с набором генетических маркеров" особи включает специфические аллели для одного или нескольких локусов генетических маркеров, присутствующих у особи. Как известно из уровня техники, генотип может относиться к одному локусу или к нескольким локусам, независимо от того, являются ли локусы связанными или несвязанными и/или сцепленными или несцепленными. В некоторых вариантах осуществления генотип особи относится к одному или нескольким генам, которые являются связанными в том плане, что один или несколько генов участвуют в экспрессии фенотипа, представляющего интерес (например, количественного признака, определенного в данном документе). Таким образом, в некоторых вариантах осуществления генотип содержит совокупность одного или нескольких аллелей, присутствующих у особи в одном или нескольких генетических локусах, определяющих количественный признак.

Используемый в данном документе термин "требуемые признак, аллель или фенотип" относится к представляющей интерес характеристике у дикорастущих видов Helianthus, которая необходима для культивируемых видов Helianthus. Такие "признак, аллель или фенотип" могут включать устойчивость к организмам, вызывающим заразиху, или к заболеваниям. В качестве альтернативы такие признак, аллель или фенотип могут включать повышенную урожайность, повышенное содержание белка, повышенное содержание и улучшенный состав масла, повышенную засухоустойчивость и увеличенное время цветения.

Используемый в данном документе термин "интрогрессированный" относится к введению признака, аллеля или фенотипа из генома одного растения, например из дикорастущего растения Helianthus в геном другого растения, например культивируемого Helianthus, у которого отсутствуют такие признак, аллель или фенотип.

Используемый в данном документе термин "хромосома" относится, как общепризнанный в данной области техники, к самовоспроизводящейся генетической

структуре в клеточном ядре, содержащей клеточную ДНК и несущей линейный набор генов.

Используемый в данном документе термин "самовоспроизводство" или "самовоспроизводящийся" относится к получению семян путем самооплодотворения или самоопыления; т. е. пыльца и семязачаток происходят из одного и того же растения.

5

10

15

20

25

30

Используемый в данном документе термин "F2" относится ко второму дочернему поколению.

Используемый в данном документе термин "виды двудольных растений" относится к видам растений, которые являются частью группы двудольных, поскольку семя растения имеет два зародышевых листа (семядоли).

Используемый в данном документе термин "растение" относится к любому растению на любой стадии развития, в частности к семенному растению.

Используемый в данном документе термин "часть растения" относится к части растения и означает его, в том числе отдельные клетки и клеточные ткани, такие как растительные клетки, которые являются интактными в растениях, скопления клеток и тканевые культуры, из которых можно регенерировать растения. Примеры частей растения включают без ограничения отдельные клетки и ткани из пыльцы, семязачатков, листьев, зародышей, корней, кончиков корней, пыльников, цветков, плодов, стеблей, побегов и семян; а также пыльцу, семязачатки, листья, зародыши, корни, кончики корней, пыльники, цветки, плоды, стебли, побеги, привои, подвои, семена, протопласты, каллюсы и т. п.

Используемый в данном документе термин "потомство" относится к потомку(потомкам), полученным в результате конкретного скрещивания. Как правило, потомство является результатом скрещивания двух индивидуумов, хотя некоторые виды (особенно некоторые растения и гермафродитные животные) могут подвергаться самовоспроизводству (т. е. одно растение выступает в качестве донора как мужских, так и женских гамет). Потомок(потомки) могут быть, например, из F1, F2 или любого последующего поколения.

Используемый в данном документе термин "гербицид" относится к веществу или соединению, которое является токсичным и применяется для контроля нежелательных растений (например, сорняков). Гербицид может быть селективным (видоспецифичным) или неселективным (широкого спектра действия).

Используемый в данном документе термин "толерантность к гербициду" относится к способности растения противостоять гербицидам и избегать повреждения.

Используемый в данном документе термин "возвратное скрещивание" относится к процессу, при котором гибридное потомство подвергают многократному возвратному скрещиванию с одним из родительских организмов.

5

10

15

20

25

30

ПОДРОБНОЕ ОПИСАНИЕ

Настоящее изобретение включает способ спасения зародыша растения. Стадии данных способов включают а) сбор и стерилизацию незрелых семян через 20 дней или меньше после опыления ("DAP"); b) выделение незрелых зародышей из незрелых семян, полученных на стадии а; c) культивирование незрелых зародышей, полученных на стадии b, и d) выращивание проростков из культивируемых незрелых зародышей, полученных на стадии c, в подходящих ростовых средах и условиях. Ростовые среды согласно данному способу включают концентрацию сахарозы, фотопериод и температуру, оптимизированные для роста здоровых проростков, полученных в результате ER.

Растение согласно данному способу, описанному выше, представляет собой вид двудольного растения, и в другом варианте осуществления представляет собой подсолнечник. Возраст незрелых зародышей для ускоренного развития проростков в данном способе составляет от 10 до 18 дней после опыления. В одном варианте осуществления возраст незрелого зародыша составляет 12 дней после опыления. В другом варианте осуществления возраст незрелого зародыша составляет 14 дней после опыления. Зародыш находится в тканевой культуре в течение от 5 до 12 дней без субкультивирования. В одном варианте осуществления зародыш находится в тканевой культуре в течение 7 дней без субкультивирования. В другом варианте осуществления зародыш находится в тканевой культуре в течение 10 дней с субкультивированием. Концентрация сахарозы в способе спасения зародыша составляет от 15 г/л до 30 г/л. В другом варианте осуществления концентрация сахарозы составляет 20 г/л. Фотопериод в способе для обеспечения роста зародыша представляет собой один из следующих: (i) 16-часовой день/8-часовая ночь, (іі) 8-часовой день/16-часовая ночь, (ііі) 5 смен деньночь с 16-часовым днем/8-часовой ночью в течение 2 дней или (iv) 3 смены день-ночь с 16-часовым днем/8-часовой ночью в течение 4 дней. В одном варианте осуществления фотопериод для роста зародыша представляет собой 3 смены день-ночь с 16-часовым днем/8-часовой ночью в течение 4 дней. В другом варианте осуществления фотопериод для роста зародыша представляет собой 16-часовой день/8-часовую ночь. Температура для роста зародыша составляет от 20°C до 30°C. В другом варианте осуществления температура составляет 25°C. Настоящее изобретение включает растение, часть растения или его потомка, полученных посредством способа спасения зародыша.

5

10

15

20

25

30

В другом варианте осуществления настоящее изобретение включает способ отбора гербицидных признаков in vitro с применением ранее описанной методики спасения зародыша. Незрелые зародыши выращивают в культуральной среде, содержащей гербицид. Гербицид выбран ИЗ группы, состоящей ИЗ имидазолинонов, пиримидинилтиобензоатов, сульфониламинокарбонилтриазолинонов, сульфонилмочевин, триазолопиримидинов, производных аминокислот, изоксазолов, пиразолонов или трикетонов. Ген устойчивости к гербициду выбран из группы, состоящей из Ahasl1, EPSPS, PAT или гена устойчивости к ингибитору HPPD. В одном варианте осуществления признак представляет собой признак толерантности к гербицидам AIR. Гербицид, добавляемый в культуральную среду, в соответствии с настоящим способом включает бенсульфурон-метил (BSM) или метсульфурон-метил (MSM). Концентрация BSM составляет от 100 до 500 нМ, а в другом варианте осуществления концентрация BSM составляет 300 нМ. Концентрация MCM составляет от 1 нМ до 250 нМ, а в другом варианте осуществления концентрация МСМ составляет 5 нМ. В одном варианте осуществления незрелые зародыши по настоящему способу собирают через 10-18 дней после опыления. В одном варианте осуществления незрелые зародыши собирают через 12 дней после опыления. В другом варианте осуществления незрелые зародыши собирают через 14 дней после опыления. Незрелые зародыши находятся в тканевой культуре в течение от 7 до 10 дней без субкультивирования. В одном варианте осуществления незрелые зародыши находятся в тканевой культуре в дней без субкультивирования. Способ дополнительно выращивание выбранных проростков в растения и возвратное скрещивание с другим растением с получением другого поколения. В одном варианте осуществления зародыши собирают от вида двудольного растения, и в другом варианте осуществления данный вид представляет собой подсолнечник. И наконец, способ отбора гербицидных признаков по настоящему изобретению включает растение, часть растения или его потомка, где растение, часть растения или его потомок получены посредством способа по п. 23.

ПРИМЕРЫ

Пример №. Стандартизация методики извлечения незрелых зародышей

5

10

15

20

Для инбредной линии подсолнечника FS703RM1 длина незрелого зародыша составляла от 7,1 до 7,4 мм и от 7,7 до 8,1 мм из рядов 1-7 через 10 и 12 дней после опыления соответственно (таблица 1). Наблюдали различия в росте листьев, побегов и корней через 7 дней после культивирования тканей в случае незрелых зародышей из рядов 1-7 в соцветии через 10 и 12 дней после опыления (таблица 2). Был сделан вывод о том, что возраст незрелого зародыша необходимо определять путем определения паттерна последовательности цветения для данного генотипа с обеспечением стандартизации возраста незрелых зародышей и уменьшения наблюдаемых различий между зародышами из разных рядов в соцветии (см. Протокол спасения зародышей подсолнечника ниже для методики определения возраста и извлечения незрелых зародышей).

Таблица 1. Размер незрелых зародышей инбредной линии подсолнечника FS703RM1 из рядов 1-7, извлеченных через 10 и 12 дней после опыления

Положение незрелых зародышей в соцветии	Среднее значение ^х ± стандартное отклонение длины незрелого зародыша (мм), извлеченного через 10 дней после опыления	Среднее значение ^х ± стандартное отклонение длины незрелого зародыша (мм), извлеченного через 12 дней после опыления
Ряд 1	$7,1 \pm 0,3$	$7,7 \pm 0,2$
Ряд 2	$7,1 \pm 0,4$	$8,0 \pm 0,2$
Ряд 3	7.3 ± 0.4	$8,1 \pm 0,2$
Ряд 4	$7,4 \pm 0,3$	$7,9 \pm 0,2$
Ряд 5	$7,2 \pm 0,3$	$8,0 \pm 0,2$
Ряд 6	$7,4 \pm 0,2$	7.8 ± 0.2
Ряд 7	$7,1 \pm 0,2$	$7,9 \pm 0,2$

^хИзмеряли десять незрелых зародышей в ряду

Таблица 2. Влияние незрелых зародышей из рядов 1-7 через 10 и 12 дней после опыления на рост новых листьев, рост побегов и рост корней через 7 дней после культивирования ткани инбредной линии подсолнечника FS703RM1

Положение незрелых зародышей в соцветии	Средняя высота побегов, образованных незрельми зародышами, через 7 дн. после культивирования (см)		Частота (%) незрелых зародышей, образующих корни через 7 дн. после культивирования		Частота (%) незрелых зародышей, образующих новые листья, через 7 дн. после культивирования	
	10 дн. после	12 дн. после	10 дн. после	12 дн. после	10 дн. после	12 дн. после
	опыления	опыления	опыления	опыления	опыления	опыления
Ряд 1	1,1	0,6	50,0	60,0	70,0	100,0
Ряд 2	0,8	0,7	30,0	50,0	70,0	100,0
Ряд 3	0,7	0,8	40,0	30,0	100,0	100,0
Ряд 4	0,5	0,6	50,0	50,0	100,0	100,0
Ряд 5	0,7	0,7	60,0	40,0	100,0	100,0

Положение	Средняя высота побегов,		Частота (%) незрелых		Частота (%) незрелых	
незрелых	образованных незрелыми		зародьшей, образующих		зародышей, образующих	
зародышей в	зародышамі	1, чере з 7 дн.	корни через	з 7 дн. после	новые листь	я, через 7 дн.
соцветии	после культ	ивирования	культиві	ірования	после культ	ивирования
	(c	м)				
	10 дн. после	12 дн. после	10 дн. после	12 дн. после	10 дн. после	12 дн. после
	опыления	опыления	опыления	опыления	опыления	опыления
Ряд 6	0,8	0,6	40,0	30,0	100,0	100,0
Ряд 7	0,6	0,5	20,0	20,0	100,0	90,0

Измеряли десять незрелых зародышей в ряду

Пример 1. Влияние концентрации сахарозы, фотопериода, температуры и генотипа на рост незрелых зародышей

Для получения качественных проростков из тканевой культуры для спасения зародышей (ER) измеряли и оптимизировали четыре показателя: і) процентную долю незрелых зародышей, образующих листья; іі) процентную долю незрелых зародышей, образующих видимые корни; ііі) процентную долю незрелых зародышей, образующих здоровые корни (2-4 основных корня с боковыми корнями); и іv) высоту побега, измеренную от области корневой шейки до семядоли. Здоровые проростки ER определяли как имеющие высоту побегов ≥ 1,5 см, из которых ≥ 85% имели здоровые корни и нормальный рост через 10 дней после пересадки в теплицу. Для определения оптимальных условий роста с целью получения проростков, полученных в результате ER, оценивали 18 различных начальных обработок, в том числе:

15

10

5

- три разных концентрации сахарозы (10, 30 и 60 г/л),
- две разных температуры (25°C и 30°C),
- три разных фотопериода (16-часовой день/8-часовая ночь; 8-часовой день/16часовая ночь и 5 смен день-ночь + 16-часовой день/8-часовая ночь в течение 2 дней),

20

25

- два разных возраста зародыша (10 и 12 дней после опыления) и
- два генотипа (инбредные линии подсолнечника FS703RM1 и SF564).

Развитие листьев

В отношении развития листьев отмечали лишь несколько вариантов, которые приводили к ингибирующему эффекту: фотопериод 5 смен день-ночь + 16-часовой день/8-часовая ночь в течение 2 дней при обеих температурах (25°C и 30°C) для 10-дневных незрелых зародышей с использованием инбредной линии подсолнечника FS703RM1.

Рост побегов в длину

В случае обоих генотипов рост побега в длину ингибировали посредством 30 и 60 г/л сахарозы по сравнению с 10 г/л при любом фотопериоде, температуре и возрастных условиях. Рост побегов в длину увеличивался при более коротких периодах освещения (8-часовой день/16-часовая ночь и 5 смен день-ночь + 16-часовой день/8-часовая ночь в течение 2 дней) по сравнению с фотопериодом 16-часовой день/8-часовая ночь. В случае обоих генотипов незрелые зародыши более зрелого возраста (12-дневные) характеризовались повышенным ростом побегов в длину по сравнению с 10-дневными незрелыми зародышами в условиях применения 10 г/л сахарозы.

10

15

20

25

30

5

Развитие корней

Незрелые зародыши линии FS703RM1 возрастом двенадцать дней демонстрировали усиленное развитие корней по сравнению с 10-дневными незрелыми зародышами при большинстве тестируемых условий. Развитие корней ингибировали при тестировании с использованием 60 г/л сахарозы в фотопериоде 16-часовой день/8-часовая ночь при 25°C. Сахароза в концентрации 60 г/л оказывала ингибирующий эффект в отношении развития корней по сравнению с сахарозой 10 и 30 г/л. Что касается SF564, то при этом генотипе у 12-дневных незрелых зародышей имела место меньшая степень развития корней при использовании более высоких (30 и 60 г/л) концентраций сахарозы, за исключением использования 30 г/л сахарозы в фотопериоде 5 смен день-ночь + 16-часовой день/8-часовая ночь в течение 2 дней при 30°C.

Заключение

В заключение можно отметить, что концентрация сахарозы, температура, фотопериод и возраст зародыша не оказывали влияния на развитие листьев проростков, полученных посредством ER, инбредных линий подсолнечника FS703RM1 и SF564. С другой стороны, концентрация сахарозы и возраст зародыша оказывали существенное воздействие как на рост побегов в длину, так и развитие корней проростков, полученных в результате ER. Фотопериод оказывал специфическое влияние на рост побегов в длину. Однако проводили дополнительные эксперименты по оптимизации этих показателей.

На основании приведенных выше результатов было принято решение дополнительно оценить концентрацию сахарозы, фотопериод, температуру и возраст зародыша в отношении роста незрелых зародышей для обеих линий (FS703RM1 и

SF564). В случае FS703RM1 пять наиболее эффективных комбинаций концентрации сахарозы, фотопериода и температуры выбирали из полученных ранее результатов экспериментов на основе высоты побега и процентной доли незрелых зародышей, образующих корни или имеющих здоровые корни, с использованием 10- и 12-дневных незрелых зародышей. Для FS564 выбирали четыре наиболее эффективные комбинации условий культивирования тканей: концентрацию сахарозы, фотопериод и температуру.

5

10

15

Применение сахарозы в концентрации 20 г/л приводило к образованию более длинных побегов (до 1,1 раза длиннее), чем при применении сахарозы в концентрации 10 г/л, при разных возрастах и генотипах зародышей (за исключением применения 10 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 25°С для генотипа FS703RM1). См. таблицы 3 и 4 ниже. Кроме того, применение сахарозы в концентрации 20 г/л приводило к образованию более высокой процентной доли (до двух раз больше по сравнению с 10 г/л) незрелых зародышей со здоровыми корнями для обоих возрастов и генотипов зародышей с применением линии FS703RM1 при фотопериоде 16-часовой день/8-часовая ночь при 25°С (таблицы 3 и 4).

Таблица 3. Влияние концентрации сахарозы на рост побегов и корней незрелых зародышей инбредной линии подсолнечника FS703RM1

Обработка	Средняя высота побегов, образованных незрельми зародышами, через 7 дней после культивирования (см)		образующих здоро	ьіх зародышей, вые корни, через 7 гивирования (%)
	10 дней после 12 дней после опыления опыления		10 дней после опыления	12 дней после опыления
10 г сахарозы + 16/8 + 25°C	1,3	1,7	80,0	100,0
20 г сахарозы + 16/8 + 25°C	1,4	1,6	90,0	95,0
10 г сахарозы + 5 смен темноты + 25°C	1,9	2,5	70,0	85,0
20 г сахарозы + 5 смен темноты + 25°C	1,9	2,1	75,0	90,0
10 г сахарозы + 8/16 + 25°C	1,5	1,3	65,0	90,0
20 г сахарозы + 8/16 + 25°C	1,2	1,3	79,0	95,0

Проводили от двух до четырех экспериментов с 39-80 эксплантатами на обработку.

Таблица 4. Влияние концентрации сахарозы на рост побегов и корней незрелых зародышей инбредной линии подсолнечника SF564

Обработка	Средняя высота побегов, образованных незрелыми зародышами, через 7 дней после культивирования (см)		образующих здоро дней после культ	ых зародышей, вые корни, через 7 гивирования (%)
	10 дней после	12 дней после	10 дней после	12 дней после
10	опыления	опыления	опыления	опыления
10 г сахарозы + 5 смен темноты + 30°С	1,4	2,5	5,0	42,0
20 г сахарозы + 5 смен темноты + 30°С	3,4	5,2	50,0	85,0
10 г сахарозы + 5 смен темноты + 25°C	1,2	1,9	15,0	50,0
20 г сахарозы + 5 смен темноты + 25°C	2,4	2,3	55,0	80,0
10 г сахарозы + 3 смен темноты + 25°C	1,1	1,4	22,0	45,0
20 г сахарозы + 3 смен темноты + 25°C	1,6	1,9	74,0	90,0
10 г сахарозы + 16/8 + 30°C	1,2	1,2	50,0	40,0
20 г сахарозы + 16/8 + 30°C	1,4	1,5	63,0	80,0
10 г сахарозы + 16/8 + 25°C	0,8	1,1	25,0	60,0
20 г сахарозы + 16/8 + 25°C	1,0	1,3	65,0	80,0
10 г сахарозы + 8/16 + 30°C	0,9	1,2	55,0	55,0
20 г сахарозы + 8/16 + 30°C	1,0	1,4	55,0	70,0
10 г сахарозы + 8/16 + 25°C	0,8	1,1	25,0	45,0
20 г сахарозы + 8/16 + 25°C	0,8	1,5	45,0	70,0

Проводили один эксперимент с 20 эксплантатами на обработку.

5

10

Что касается FS703RM1, то только одно условие культивирования ткани (12-дневные зародыши в среде с 20 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 25°C) соответствовало нашим критериям (высота побегов, составляющая по меньшей мере 1,5 см, при этом по меньшей мере 85% из них характеризовались здоровыми корнями) успеха. Что касается FS564, то три условия культивирования тканей с 12-дневными зародышами и 20 г/л сахарозы (25°C и 30°C при фотопериоде 16-часовой день/8-часовая ночь и 30°C при фотопериоде 8-часовой

день/16-часовая ночь) соответствовали нашим критериям успеха. 10-Дневные незрелые зародыши не давали проростки, полученные в результате ER, соответствующие нашим критериям эффективности, ни в одной из комбинаций. Поэтому для дальнейших экспериментов отбирали 12-дневные незрелые зародыши. См. таблицы 5, 6 и 7 ниже.

Таблица 5. Влияние комбинации условий культивирования тканей на рост побегов и корней незрелых зародышей через 10 и 12 дней после опыления инбредной линии подсолнечника FS703RM1

5

10

Обработка	Средняя высота побегов, образованных незрелыми зародышами, через 7 дней после культивирования (см)		образующих здоро	ых зародышей, вые корни, через 7 гивирования (%)
	10 дней после 12 дней после опыления опыления		10 дней после опыления	12 дней после опыления
10 г сахарозы + 16/8 + 25°C	1,3	1,6	80,0	82,5
10 г сахарозы + 8/16 + 25°C	1,0	1,1	75,0	65,0
10 г сахарозы + 5 смен темноты + 25°C	2,1	2,4	71,7	80,0
20 г сахарозы + 16/8 + 25°C	1,3	1,7	81,8	97,5
10 г сахарозы + 8/16 + 30°C	2,3	Не тестировали	80,0	Не тестировали

Проводили от двух до четырех экспериментов с 40-80 эксплантатами на обработку.

Таблица 6. Влияние комбинации условий культивирования тканей на рост побегов и корней незрелых зародышей через 10 дней после опыления инбредной линии подсолнечника FS564

Обработка	Средняя высота побегов, образованных незрельми зародышами, через 7 дней после культивирования (см)	Частота незрелых зародышей, образующих здоровые корни, через 7 дней после культивирования (%)
20 г сахарозы + 5 смен	2,3	63,9
темноты + 25°С		
10 г сахарозы + 16/8 + 30°C	1,4	66,2
20 г сахарозы + 16/8 + 30°C	1,4	61,0
20 г сахарозы + 16/8 + 25°C	1,5	65,8

Проводили от двух до четырех экспериментов с 40-80 эксплантатами на обработку.

Таблица 7. Влияние комбинации условий культивирования тканей на рост побегов и корней незрелых зародышей через 12 дней после опыления инбредной линии подсолнечника FS564

Обработка	Средняя высота побегов, образованных незрелыми зародышами, через 7 дней после культивирования (см)	Частота незрелых зародышей, образующих здоровые корни, через 7 дней после культивирования (%)
20 г сахарозы + 16/8 + 30°C	1,8	87,1
20 г сахарозы + 16/8 + 25°C	1,6	87,5
20 г сахарозы + 8/16 + 30°C	1,6	85,0
20 г сахарозы + $8/16 + 25$ °C	1,5	81,4

Проводили от двух до четырех экспериментов с 40-80 эксплантатами на обработку.

5

10

15

20

25

Пример 2. Оценка методики ER в дополнительных генотипах с цитоплазматической мужской стерильностью (CMS).

Оценивали методику ER в отношении более широкого разнообразия генотипов. Наиболее эффективные условия культивирования ткани, описанные для каждого из FS703RM1 и FS564, тестировали с дополнительными линиями с использованием 10- и 12-дневных незрелых зародышей. Тестировали наиболее эффективные условия культивирования тканей: (i) 20 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 25°C; (ii) 20 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 30°C; (iii) 10 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 25°C; (iv) 20 г/л сахарозы при фотопериоде 8-часовой день/16-часовая ночь при 25°C и (v) 20 г/л сахарозы в течение 5 дней темноты + фотопериод 16-часовой день/8-часовая ночь в течение 4 дней при 25°C.

В случае линии AS10277 при четырех условиях культивирования тканей получали проростки, образованные в результате ER, которые соответствовали нашим критериям эффективности для здоровых проростков ER (высота побегов ≥ 1,5 см и ≥ 85% со здоровыми корнями), с использованием 12-дневных незрелых зародышей. В случае линии FS73100 только одно комбинированное условие культивирования с использованием 12-дневных незрелых зародышей (20 г/л сахарозы в течение 3 дней темноты + фотопериод 16-часовой день/8-часовая ночь в течение 4 дней при 25°C) приводило к образованию проростков, полученных в результате ER, которые соответствовали нашим критериям эффективности. В случае линий FS75400, AD4071 и АЕ78079 ни одно из тестируемых условий культивирования тканей не приводило к образованию проростков, полученных в результате ER, которые соответствовали нашим критериям эффективности, хотя они приводили к образованию здоровых

проростков, полученных в результате ER, с частотой до 76%, 83% и 80%. См. таблицу 8 ниже для соответствующих приведенных выше данных.

Таблица 8. Влияние наиболее эффективных пяти комбинаций условий культивирования тканей на рост побегов и корней незрелых зародышей через 10 и 12 дней после опыления инбредных линий подсолнечника AS10277, FS73100, FS75400, AD4071 и AE78079

5

10

Обработка	Генотип	Средняя высота побега через 7 дн. после культивирования (см)		культивир	оровые корни, ин. после ования (%)
		10 дн. после	12 дн. после	10 дн. после	12 дн. после
		опыления	опыления	опыления	опыления
$20S + 16/8 + 25^{\circ}C$		0,8	1,7	49.	88
10S + 16/8 + 25°C		0,6	1,9	50	88
20S + 8/16 + 25°C		0,8	1,8	47	93
20S + 16/8 + 30°C		1,0	2,1	44	85
20S + 5 дней		0,9	2,3	26	77
темноты + 16/8 +	AS10277				
25°C					
$20S + 16/8 + 25^{\circ}C$		2,0	2,3	73	80
10S + 16/8 + 25°C		2,0	2,5	73	82
20S + 8/16 + 25°C		2,0	2,4	79	82
20S + 16/8 + 30°C		2,1	2,9	63	70
20S + 5 дней		2,3	1,9	60	85
темноты + 16/8 +	FS73100				
25°C					
20S + 16/8 + 25°C		1,5	1,9	39	76
10S + 16/8 + 25°C		1,6	1,9	38	70
20S + 8/16 + 25°C		1,5	2,3	34	61
$20S + 16/8 + 30^{\circ}C$		1,6	2,8	21	58
20S + 5 дней		1,7	2,4	24	54
темноты + 16/8 +	FS75400				
25°C					
$20S + 16/8 + 25^{\circ}C$		0,9	1,6	37	83
10S + 16/8 + 25°C		0,9	1,7	25	73
20S + 8/16 + 25°C		1,0	2,0	28	82
$20S + 16/8 + 30^{\circ}C$		0,8	2,0	27	58
20S + 5 дней		1,3	1,9	45	82
темноты + 16/8 +	AD40713	,	ĺ		
25°C					
20S + 16/8 + 25°C		1,5	1,2	78	75
10S + 16/8 + 25°C		1,5	1,4	70	50
20S + 8/16 + 25°C		1,8	1,7	80	73
20S + 16/8 + 30°C		1,7	1,6	58	75
20S + 5 дней		1,9	1,6	53	38
темноты + 16/8 +	AE78079	<u> </u>	<u> </u>		
25°C					

"20S" представляет собой 20 г/л сахарозы, а "10S" представляет собой 10 г/л сахарозы.

Проводили от трех до шести экспериментов с 60-120 эксплантатами на обработку.

Пример 3. Влияние возраста незрелых зародышей на усиление развития проростков, полученных в результате ER

В экспериментах с использованием описанных выше условий культивирования тканей с 10- и 12-дневными незрелыми зародышами три из пяти инбредных линий подсолнечника не соответствовали критериям эффективности для проростков, полученных в результате ER. Кроме того, среди четырех инбредных линий подсолнечника, образующих проростки, полученные в результате ER, которые соответствуют определенным критериям эффективности, три инбредные линии подсолнечника (FS703RM1, FS564, AS10277) образовывали здоровые проростки, полученные в результате ER, в одинаковых условиях: 20 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 25°C. Другая инбредная линия подсолнечника (FS73100) образовывала здоровые проростки, полученные в результате ER, в различных условиях (20 г/л сахарозы в течение 3 дней темноты + фотопериод 16-часовой день/8-часовая ночь в течение 4 дней при 25°C).

Для промышленного получения на основе интрогрессии признаков требуются одинаковые условия культивирования для разных линий. Поэтому условие (20 г/л сахарозы при фотопериоде 16-часовой день/8-часовая ночь при 25°С) выбирали для исследования влияния дополнительных возрастов незрелых зародышей (14, 16 и 18 дней после опыления) на ускорение развития проростков, полученных в результате ER, для 5 инбредных линий подсолнечника, которые ранее не соответствовали определенным критериям эффективности.

Инбредные линии подсолнечника (АЕ78079, FS73100, A531, FS75400 и AD40713) характеризовались показателем 88,3%, 98,4%, 87,8%, 95% и от 93,3% до 98,9% незрелых зародышей, дающих здоровые проростки, полученные в результате ER, при использовании незрелых зародышей через 14 или 16 дней после опыления соответственно (таблица 9). Все восемь тестируемых инбредных линий подсолнечника были способны образовывать здоровые проростки, полученные в результате ER, с показателями, соответствующими критериям эффективности, в диапазоне от 87,5% до 98,4% при однократной 7-дневной схеме культивирования тканей с использованием незрелых зародышей через 12, 14 или 16 дней после опыления. Кроме того, отсутствовали статистически значимые различия в показателях эффективности образования здоровых проростков, полученных в результате ER, между восемью тестируемыми инбредными линиями подсолнечника (таблица 10), что указывает на то, что данная методика ER не зависит от генотипа. Использование 14- или 16-дневных

незрелых зародышей способствовало преодолению зависимости от генотипа, наблюдаемой при использовании 12-дневных незрелых зародышей.

Таблица 9. Частота незрелых зародышей разного возраста, образующих здоровые побеги и здоровые побеги в случае инбредных линий подсолнечника АЕ78079, FS73100, FS75400, A531 и AD40713, при использовании одного условия культивирования, представляющего собой присутствие 20 г/л сахарозы при 25°С при фотопериоде 16-часовой день/8-часовая ночь

Возраст обработки	Генотип	Средняя высота побегов, образованных незрелыми зародышами, через 7 дней после культивирования (см)	Частота незрелых зародышей, образующих здоровые корни, через 7 дней после культивирования (%)
12 дней		1,4	81,7
14 дней	AE78079	1,9	88,3
16 дней		1,4	65,0
18 дней	1	0	0,0
12 дней		1,8	85,0
14 дней	FS73100	3,1	98,4
16 дней	1	2,7	75,0
18 дней	1	1,8	63,3
12 дней		2,0	74,2
14 дней	FS75400	2,4	84,2
16 дней	1	3,5	95,0
18 дней	1	0,6	50,5
12 дней		1,6	57,8
14 дней	A531	3,0	87,8
16 дней	1	1,0	34,4
18 дней		0,2	4,4
12 дней		1,5	83,3
14 дней	AD40713	2,2	93,3
16 дней]	3,1	98,9
18 дней]	0,1	4,4

Проводили от двух до четырех экспериментов с 60-120 эксплантатами на обработку.

Таблица 10. Частота незрелых зародышей, образующих здоровые побеги и здоровые проростки, при оптимальном возрасте зародыша для каждой из 8 тестируемых инбредных линий

Обработка	Генотип	Средняя высота побегов, образованных незрельими зародышами, через 7 дней после культивирования (см)	Частота ^х незрелых зародышей, образующих здоровые проростки, через 7 дней после культивирования (%)
	FS703RM1	1,6	97,5 A
12 дней после опыления	SF564	1,6	87,5 A
	AS10277	1,7	88,3 A
	FS73100	3,1	98,4 A
14	AE78079	1,9	88,3 A
14 дней после опыления	A531	3,0	87,8 A
	AD40713	2,2	93,3 A
16 дней после опыления	FS75400	3,5	95,0 A

 $^{\rm x}$ Числа с одной и той же буквой в каждой полосе статистически значимо не различаются (P > 0,05).

10

15

20

Проводили от двух до четырех экспериментов с 60-120 эксплантатами на обработку. Пример 4. Урожай семян из растений, полученных из культуры тканей, полученных в результате ER, в условиях теплицы.

Для оценки потенциальных эффектов в отношении растений, полученных из культуры ткани, полученной в результате ER, 5 растений, полученных в результате ER, и 5 растений, выращенных из семян (контрольных), для каждой из ранее тестируемых инбредных линий подсолнечника выращивали до зрелости параллельно. Растения выращивали в теплице и сравнивали урожай. Для данных линий не наблюдали статистически значимых различий в показателях урожайности между растениями, полученными в результате ER, и растениями, выращенными из семян (таблица 11), что указывает на то, что методика ER не оказывает отрицательного воздействия на урожай семян.

Методику ER можно определить как простую (простой эксплантат и среда, легкое извлечение зародышей), быструю (7-дневный цикл культивирования одной ткани, без субкультивирования), высокопроизводительную, независимую от генотипа (от 87,8% до 98,9% незрелых зародышей, дающих здоровые проростки, полученные в результате ER, выживали в теплице в случае восьми различных тестируемых инбредных линий подсолнечника) и дающую высококачественные проростки, полученные в результате

ER (т. е. с такой же урожайностью семян, что и у выращенных из семян растений; см. таблицу 11).

Таблица 11. Средняя урожайность семян для растений, полученных в результате ER, и растений, выращенных из семян, в качестве контроля (СК), выращенных в теплице, в случае различных тестируемых инбредных линий подсолнечника

5

10

15

Генотип	Обработка	Средняя урожайность ^х на растение (г)
	Растение СК	42,9 A
AS10277	Растение, полученное в результате ER / 12 дней	46,4 A
	Растение СК	46,9 B
FS703RM1	Растение, полученное в результате ER / 12 дней	50,1 B
	Растение СК	70,3 C
SF564	Растение, полученное в результате ER / 12 дней	78,0 C
	Растение СК	64,4 D
FS73100	Растение, полученное в результате ER / 14 дней	68,0 D
	Растение СК	87,5 E
FS75400	Растение, полученное в результате ER / 14 дней	92,3 E
	Растение СК	53,1 F
A531	Растение, полученное в результате ER / 14 дней	57,2 F
	Растение СК	21,7 G
AE78079	Растение, полученное в результате ER / 14 дней	34,1 G

 x Числа с одной и той же буквой статистически значимо не различаются (P > 0,05). Средняя урожайность из по меньшей мере пяти растений для каждой обработки.

Пример 5. Минимальный период культивирования *in vitro* для выявления незрелых зародышей, несущих признак толерантности к гербицидам

Для определения минимального периода культивирования ткани *in vitro*, необходимого для надлежащей сегрегации признака толерантности к гербицидам AIR, 12-дневные незрелые зародыши первого поколения обратного скрещивания (BC1) конверсии признака AIR_3U культивировали в течение 7 и 10 дней в среде SF germ 5 (см. пример 12 ниже). В среду добавляли бенсульфурон-метил (BSM) в концентрациях 100 и 500 нМ и метсульфурон-метил (MSM) в концентрации 10 нМ.

Соотношения сегрегации положительных по признаку (образующих корни) и отрицательных по признаку (не образующих корни) проростков на основе визуальной оценки регистрировали и анализировали с помощью статистического критерия хи-

квадрат. Для обоих гербицидов при различных тестируемых концентрациях положительные по признаку и отрицательные по признаку проростки, полученные из незрелых зародышей, культивируемых в течение 10 дней, подвергали сегрегации, как и предполагалось (Р > 0,05, таблица 12). Однако положительные по признаку и проростки, через отрицательные ПО признаку полученные 7 дней культивирования ткани, не сегрегировали (P < 0.05, таблица 12). Поэтому для обоих гербицидов выбирали 10-дневный период селекции культуры ткани in vitro для обеспечения соответствия визуальной оценки ожидаемому коэффициенту сегрегации для признака гербицидной селекции.

5

10

15

20

Таблица 12. Сегрегация признаков AIR для поколения 1 обратного скрещивания (BC1) AIR RD506011KMZ (AIR_3U) с использованием бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) через 7 и 10 дней после культивирования.

Обработка	Признак AIR	Наблюдаемое количество	Ожидаемое количество	χ²	Значение Р
10 нМ MSM	Положительная	17	29,25		
7 дней	Отрицательная	22	9,75		
	Всего	39	39	20,521	<0,05
10 нМ MSM	Положительная	24	29,25		
10 дней	Отрицательная	15	9,75		
	Всего	39	39	3,769	>0,05
100 нМ BSM	Положительная	22	29,25		
7 дней	Отрицательная	17	9,75		
	Всего	39	39	7,188	<0,05
100 нМ BSM	Положительная	29	29,25		
10 дней	Отрицательная	10	9,75		
	Всего	39	39	0,009	>0,05
500 нМ BSM	Положительная	19	29,25		
7 дней	Отрицательная	20	9,75		
	Всего	39	39	14,368	<0,05
500 нМ BSM	Положительная	24	29,25		
10 дней	Отрицательная	15	9,75		
	Bcero	39	39	3,769	>0,05

Значения P составляют более 0,05; наблюдаемые соотношения соответствуют соотношению 3:1.

Пример 6. Кривые уничтожения и визуальная идентификация положительных по признаку проростков в гербицидной селекции *in vitro*

Оценивали три параметра для визуального скрининга положительных по признаку проростков: і) процентная доля незрелых зародышей, дающих новый рост (включая удлинение листьев и эпикотиля); іі) процентная доля незрелых зародышей, дающих небольшие корни (1-2 крошечных корня, длина которых составляет менее 0,5 см); и ііі) процентная доля незрелых зародышей, дающих здоровые корни (2-4 главных корня с

боковыми корнями). Для выявления оптимальных концентраций гербицидов для селекции, проводили первоначальные эксперименты с использованием BSM в концентрациях 500, 1000 и 5000 нМ и MSM в концентрациях 10, 50 и 250 нМ с незрелыми зародышами, собранными через 12 дней после опыления. Результаты продемонстрировали, что все тестируемые концентрации были слишком высокими, что приводило к гибели всех незрелых зародышей через 10 дней в культуре ткани (данные не показаны). Поэтому дальнейшие эксперименты проводили с использованием BSM в концентрациях 100, 300 и 500 нМ и MSM в концентрациях 1, 5 и 10 нМ в отношении незрелых зародышей, собранных через 12 дней после опыления шести генотипов ВС1 АІК (дикий тип без признака толерантности к гербицидам (подтверждено с помощью анализа ТаqMan).

Среди всех шести генотипов ни один из незрелых зародышей не образовывал здоровые корни при наиболее низкой концентрации 100 нМ с использованием BSM для селекции. Девяносто процентов зародышей AIR_67 давали новый рост, но ни один из них не образовывал небольшие корни при 500 нМ (таблица 13). AIR_3T характеризовался показателем 40% зародышей, которые дают новый рост, из которых 23% давали небольшие корни при 500 нМ (таблица 14). Только 4% зародышей AIR_3W давали новый рост, в то время как 12% давали небольшие корни при 500 нМ (таблица 15). AIR_3U характеризовался показателем 98% зародышей, которые дают новый рост, при этом 94% образуют небольшие корни при 500 нМ (таблица 16). AIR_3V характеризовался показателем 22% зародышей, которые дают новый рост и образуют небольшие корни при 500 нМ (таблица 17). Семьдесят три процента зародышей AIR_3X давали новый рост, при этом 45% образуют небольшие корни при 500 нМ (таблица 18).

Таблица 13. Влияние бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) на рост незрелых зародышей (IE) через 10 дней после культивирования FT11244ZB (AIR_67, дикий тип). Примечание: проводили три эксперимента с 30 эксплантатами на обработку

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	0	100	0	95
BSM	100	85	50	0
BSM	300	85	10	0
	500	90	0	0
	0	100	0	95
MSM	1	80	85	0
	5	40	20	0

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	10	0	0	0

Таблица 14. Влияние бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) на рост незрелых зародышей (IE) через 10 дней после культивирования RW666P3AIR (AIR_3T, дикий тип). Примечание: проводили пять экспериментов с 51 эксплантатом на обработку

5

10

15

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	0	100	2	85
BSM	100	66	43	0
	300	41	26	0
	500	40	23	0
	0	100	2	85
MSM	1	100	75	0
	5	96	9	0
	10	74	0	0

Таблица 15. Влияние бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) на рост незрелых зародышей (IE) через 10 дней после культивирования FT11183ZB (AIR_3W, дикий тип) Примечание: проводили три эксперимента с 50 эксплантатами на обработку

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	0	100	18	46
DCM	100	20	38	0
BSM	300	4	14	0
	500	4	12	0
	0	100	18	46
MSM	1	96	38	2
	5	76	8	0
	10	42	0	0

Таблица 16. Влияние бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) на рост незрелых зародышей (IE) через 10 дней после культивирования RD506011KMZ (AIR_3U, дикий тип). Примечание: проводили шесть экспериментов с 62 эксплантатами на обработку

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	0	99	25	61
BSM	100	98	98	0
	300	92	94	0

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	500	98	94	0
	0	99	25	61
MSM	1	100	61	0
	5	18	2	0
	10	0	0	0

Таблица 17. Влияние бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) на рост незрелых зародышей (IE) через 10 дней после культивирования RT13187Z (AIR_3V, дикий тип). Примечание: проводили три эксперимента с 37 эксплантатами на обработку

5

10

15

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	0	100	19	70
DCM	100	57	73	0
BSM	300	32	49	0
	500	22	30	0
	0	100	19	70
MSM	1	100	86	0
	5	100	14	0
	10	81	5	0

Таблица 18. Влияние бенсульфурон-метила (BSM) и метсульфурон-метила (MSM) на рост незрелых зародышей (IE) через 10 дней после культивирования 19ALL111E3X_MM (AIR_3X, дикий тип). Примечание: проводили два эксперимента с 40 эксплантатами на обработку

Гербицид	Концентрация (нМ)	% IE, дающих новый рост	% IE, образующих небольшие корни	% IE, дающих здоровые корни
	0	100	8	75
DCM	100	90	90	0
BSM	300	83	65	0
	500	71	45	0
	0	100	8	75
MSM	1	100	65	0
	5	100	40	0
	10	53	0	0

Аналогично, за одним исключением, для MSM при наиболее низкой концентрации 1 нМ ни один из незрелых зародышей данных генотипов не образовывал здоровые корни. Исключение составил AIR_3W, где 2% незрелых зародышей образовывали здоровые корни. При концентрации 10 нМ MSM генотипы давали новый рост в диапазоне от 0 до 81%. Ни один из зародышей AIR 67 или AIR 3U не давал новый

рост. Семьдесят четыре процента зародышей AIR_3T давали новый рост, в то время как 42% зародышей AIR_3W давали новый рост. 81% и 53% незрелых зародышей AIR_3V и AIR_3X соответственно давали новый рост. Выявляли 20%, 9%, 8%, 2%, 14% и 40% образование небольших корней в случае незрелых зародышей AIR_67, AIR_3T, AIR_3W, AIR_3U, AIR_3V и AIR_3X соответственно при 5 нМ. Соответственно, наблюдали 85%, 75%, 38%, 61%, 86% и 65% образование мелких корней при 1 нМ MSM (таблицы 13-18).

5

10

15

20

25

30

В конечном итоге, данные результаты показали, что использование параметров наблюдения за молодыми побегами и небольшими корнями было неэффективным для выявления положительных по признаку проростков. Высокие процентные доли незрелых зародышей демонстрировали новый рост и образование небольших корней даже в средах с высокими и средними концентрациями любого гербицида в случае тестируемых генотипов дикого типа. В отличие от этого, параметр наблюдения за образованием здоровых корней представлял собой эффективный визуальный маркер селекции в отношении толерантности к обоим гербицидам, поскольку незрелые зародыши не давали здоровых корней при наиболее низких концентрациях 100 нМ ВSM и 1 нМ МSM (за исключением AIR_3W с 2%), продолжая при этом давать новый рост побегов. Эти результаты также показали, что концентрации 100 нМ BSM и 1 нМ МSM были приемлемыми отправными точками для определения оптимальных концентраций гербицидов с целью селекции *in vitro* положительных в отношении признака проростков.

Пример 7. Оптимальные концентрации гербицидов для селекции in vitro

С использованием данных, полученных в примере 6, оценивали оптимальные концентрации гербицидов для селекции *in vitro* проростков, положительных по признаку. Далее исследовали концентрации 1 и 5 нМ МЅМ и 100 и 300 нМ ВЅМ для пяти генотипов ВС1 AIR. Положительные по признаку растения подвергали самоопылению с образованием популяций F2. Незрелые зародыши собирали из популяций F2 через 12 дней после опыления.

При концентрации 1 и 5 нМ MSM AIR_67 продуцировал по 30 толерантных проростков для каждой концентрации. При концентрации 1 нМ 27 из 30 проростков были подтверждены как положительные по признаку, что подтверждали посредством анализа TaqMan, и 30 из 30 были положительными по признаку при концентрации 5 нМ (таблица 19). Другие четыре генотипа AIR также давали проростки, толерантные к MSM в концентрации 5 нМ, и все они были подтверждены как положительные по

гербицидному признаку, что подтверждено посредством ТаqMan (таблицы 20, 21, 22 и 23). На основании полученных результатов определили, что концентрация 5 нМ МЅМ является оптимальной концентрацией для селекции *in vitro*. Ни один из генотипов AIR не приводил к "ускользаниям", т.е. проросткам, очевидно толерантным к гербицидам, которые фактически были отрицательными по признаку согласно ТаqMan при этой концентрации. AIR_67 давал 10% "ускользаний" при концентрации 1 нМ МЅМ.

5

10

15

20

При использовании BSM AIR_3U давал 10 проростков, толерантных к BSM, при концентрации 100 нМ, но только 7 из этих 10 были положительными по гербицидному признаку, что подтверждено посредством анализа TaqMan (таблица 20). Другие четыре тестируемых генотипа AIR давали проростки, толерантные к BSM при 300 нМ, и все проростки были положительными по признаку, что подтверждено посредством анализа TaqMan (таблицы 19, 20, 21, 22, 23). Эти результаты показали, что концентрация 300 нМ BSM была оптимальной концентрацией для селекции *in vitro*, поскольку при 100 нМ BSM AIR 3U давал 30% ускользаний.

Таблица 19. Анализ ТаqМап толерантных к гербицидам растений FT11244ZB (AIR_67), полученных в результате селекции *in vitro* с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 12 дней после опыления

Обработка	Количество устойчивых к гербицидам тестируемых растений	Количество устойчивых к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan	% растений, устойчивых к гербицидам, подтвержденных посредством анализа ТаqMan
1 нМ MSM	30	27	90%
5 нМ MSM	30	30	100%
100 нМ BSM	30	30	100%
300 нМ BSM	30	30	100%

Таблица 20. Анализ ТаqМап толерантных к гербицидам растений RD506011KMZ (AIR_3U), полученных в результате селекции in vitro с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 12 дней после опыления

Обработка	Количество устойчивых к гербицидам тестируемых растений	Количество устойчивых к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan	% растений, устойчивых к гербицидам, подтвержденных посредством анализа ТаqMan
1 нМ MSM	8	8	100%
5 HM MSM	7	7	100%
100 нМ BSM	10	7	70%

Обработка	Количество устойчивых к гербицидам тестируемых растений	Количество устойчивых к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan	% растений, устойчивых к гербицидам, подтвержденных посредством анализа ТаqMan
300 нМ BSM	5	5	100%

Таблица 21. Анализ ТаqМап толерантных к гербицидам растений RW666P3AIR (AIR_3T), полученных в результате селекции in vitro с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 12 дней после опыления

5

10

Обработка	Количество устойчивых к гербицидам тестируемых растений	Количество устойчивых к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan	% растений, устойчивых к гербицидам, подтвержденных посредством анализа ТаqMan
1 нМ MSM	30	30	100%
5 нМ MSM	30	30	100%
100 нМ BSM	30	30	100%
300 нМ BSM	30	30	100%

Таблица 22. Анализ ТаqМап толерантных к гербицидам растений FT11183ZB (AIR_3W), полученных в результате селекции in vitro с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 12 дней после опыления

Обработка	Количество устойчивых к гербицидам тестируемых растений	Количество устойчивых к гербицидам растений, подтвержденных положительными посредством анализа ТаqМап	% растений, устойчивых к гербицидам, подтвержденных посредством анализа ТаqMan
1 HM MSM	30	30	100%
5 HM MSM	35	35	100%
100 нМ BSM	30	30	100%
300 нМ BSM	30	30	100%

Таблица 23. Анализ ТаqМап толерантных к гербицидам растений RT13187Z (AIR_3V), полученных в результате селекции in vitro с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 12 дней после опыления

Обработка	Количество устойчивых к гербицидам тестируемых растений	Количество устойчивых к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan	% растений, устойчивых к гербицидам, подтвержденных посредством анализа ТаqМап
5 HM MSM	26	26	100%

Пример 8. Рост незрелых зародышей через 14 и 16 дней после опыления для улучшения идентификации толерантных к гербицидам проростков, положительных по признаку

5

10

15

20

25

Сегрегация 12-дневных положительных по признаку незрелых зародышей AIR 3W при концентрации 300 нМ BSM оказалась аномальной: 17,8% положительных по признаку проростков были не способны к росту или образованию здоровых корней (таблица 24). Однако наблюдали, что 46% незрелых зародышей образовывали здоровые корни в среде без добавления BSM (таблица 15), поэтому были сделан вывод о том, что толерантные к гербицидам проростки, положительные по признаку, были не способны давать здоровые корни при селекции. Поэтому более старые незрелые зародыши (через 14 и 16 дней после опыления) тестировали с целью улучшения роста в случае трех генотипов AIR BC1 (AIR 3W, AIR 3U, AIR 3V), которые демонстрировали аномальную сегрегацию признака толерантности к гербицидам при использовании 12дневных незрелых зародышей. Для AIR 3W при использовании 14-дневных незрелых зародышей процентная доля мертвых или аномальных положительных по признаку проростков снижалась с 17,8% для 12-дневных незрелых зародышей и 16,7% для 16дневных незрелых зародышей до 5% при концентрации BSM 300 нМ (таблица 24). Кроме того, 14-дневные незрелые зародыши, отобранные при концентрации 300 нМ BSM и 5 нМ MSM, давали, соответственно, 100% и 98% положительных по признаку растений, что определено посредством анализа ТадМап, по сравнению с 98% и 94% соответственно для 16-дневных незрелых зародышей (таблица 25).

Таблица 24. Сегрегация гербицидного признака для BC1 AIR, FT11183ZB (AIR_3W), с применением бенсульфурон-метила (BSM) через 10 дней после культивирования с использованием незрелых зародышей через 12, 14 и 16 дней после опыления

Обработка	Признак AIR	Наблюдаемое	Ожидаемое	% потери
		количество	количество	положительных по
				признаку незрелых
				зародышей
300 нМ BSM, 12-	Устойчивый	37 (из 60)	45	17,8%
дневные зародыши				
300 нМ BSM, 14-	Устойчивый	57 (из 80)	60	5,0%
дневные зародыши				
300 нМ BSM, 16-	Устойчивый	50 (из 80)	60	16,7%
дневные зародыши				

Таблица 25. Анализ ТаqМап толерантных к гербицидам растений FT11183ZB (AIR_3W), полученных в результате селекции *in vitro* с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 14 и 16 дней после опыления

Обработка	ı	Количество толерантных к гербицидам тестируемых растений	Количество толерантных к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan	% толерантных к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan
5 нМ MSM;	14-	50	49	98%
дневные зародыц	ши			
5 нМ MSM;	16-	53	50	94%
дневные зародыц	ши			
300 нМ BSM;	14-	50	50	100%
дневные зародыц	ши			
300 нМ BSM;	16-	49	48	98%
дневные зародыц	ши			

10

15

5

14-Дневные незрелые зародыши AIR_3V, отобранные при концентрации 300 нМ BSM и 5 нМ MSM, давали, соответственно, 100% и 98% положительных по признаку растений, что определено посредством анализа ТаqMan, по сравнению с 93% и 90% соответственно для 16-дневных незрелых зародышей (таблица 26). В случае AIR_3U 14-дневные незрелые зародыши, отобранные при концентрации 300 нМ BSM и 5 нМ MSM, давали, соответственно, 100% и 98% положительных по признаку растений, что определено посредством анализа ТаqMan, по сравнению с 100% и 97% соответственно, положительных по признаку растений для 16-дневных незрелых зародышей (таблица 27). Эти результаты указывают на то, что 14-дневные незрелые зародыши были

оптимальными в отношении возраста для гербицидной селекции в случае указанных трех генотипов.

Таблица 26. Анализ ТаqМап толерантных к гербицидам растений RT13187Z (AIR_3V), полученных в результате селекции in vitro с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 14 и 16 дней после опыления

5

10

15

Обр	работка		Количество толерантных к гербицидам тестируемых растений	Количество толерантных к гербицидам растений, подтвержденных положительными с посредством анализа ТаqMan	% толерантных к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan
5 нМ	MSM;	14-	45	44	98%
дневные з	зародыши				
5 нМ	MSM;	16-	51	46	90%
дневные з	зародыши				
300 нМ	BSM;	14-	49	49	100%
дневные з	зародыши				
300 нМ	BSM;	16-	44	41	93%
дневные з	зародыши				

Таблица 27. Анализ ТаqМап толерантных к гербицидам растений RD506011KMZ (AIR_3U), полученных в результате селекции *in vitro* с использованием метсульфуронметила (MSM) и бенсульфурон-метила (BSM), через 10 дней после культивирования с использованием незрелых зародышей через 14 и 16 дней после опыления

Обработка	Количество толерантных к гербицидам тестируемых растений	Количество толерантных к гербицидам растений, подтвержденных положительными с посредством анализа ТафМап	% толерантных к гербицидам растений, подтвержденных положительными посредством анализа ТаqMan
5 нМ MSM; 14- дневные зародыши	44	44	100%
5 нМ MSM; 16- дневные зародыши	31	30	97%
300 нМ BSM; 14- дневные зародыши	38	38	100%
300 нМ BSM; 16- дневные зародыши	37	37	100%

Таким образом, в системе гербицидной селекции *in vitro* для признака толерантности к гербицидам AIR используют незрелые зародыши, собранные через 12 или 14 дней после опыления, в зависимости от генотипа, культивируемые при

концентрации 5 нМ метсульфурон-метила или 300 нМ бенсульфурон-метила и в течение 10 дней в культуре тканей без субкультивирования. С помощью этой системы, описанной ниже в протоколе гербицидной селекции признака AIR подсолнечника *in vitro* (пример 11), от 98% до 100% положительных по признаку растений, идентифицированных посредством визуального скрининга с использованием селекции *in vitro*, были положительными по признаку, что подтверждено посредством анализа ТаqМап, среди 6 генотипов с признаком AIR (таблица 28).

5

10

15

20

Таблица 28. Процентная доля положительных по признаку AIR растений, отобранных из культуры *in vitro* с использованием 300 нМ бенсульфурон-метила (BSM) и 5 нМ метсульфурон-метила (MSM), что подтверждено посредством анализа ТарМап

Гербицид	Обработка*	% положительных по признаку AIR растений, полученных в результате селекции <i>in vitro</i> , что подтверждено посредством анализа TaqMan
	67/300 нМ/12 дней	100
	3Т/300 нМ/12 дней	100
BSM	3W/300 нМ/12 и 14 дней	100
	3V/300 нМ/14 дней	100
	3U/300 нM/14 дней	100
	67/5 нМ/12 дней	100
	3Т/5 нМ/12 дней	100
MSM	3W/5 нМ/12 и 14 дней	98
	3V/5 нМ/14 дней	98
	3U/5 нМ/14 дней	100

^{*} Формат перечисленных видов обработки представлен далее: Название зародыша с признаком AIR/концентрация BSM или MSM/возраст зародыша (например, 67/300 нM/12 дней)

Пример 9. Протокол спасения зародышей подсолнечника

Возраст незрелых зародышей определяли для стандартизации параметров незрелых зародышей и снижения наблюдаемой изменчивости зародышей из разных рядов в цветках.

Стадия 1. Сбор незрелых семян подсолнечника

Собирают незрелые семена подсолнечника из самоопыленных или скрещенных соцветий (см. способ сбора незрелых зародышей подсолнечника в примере 10) через 12 или 14 дней после опыления (см. фигуру 1) в зависимости от генотипа, от здоровых растений в теплице, удаляя семена из головки. Примечание: качество незрелых

зародышей оказывает большое влияние на рост и выживание проростков, образованных посредством спасения зародышей (ER).

Стадия 2. Стерилизуют незрелые семена в ламинарном боксе с использованием надлежащей методики стерильного культивирования тканей растений.

- 1). Промывают незрелые семена 75% этанолом, встряхивая вручную в течение 1 минуты.
- 2). Замачивают семена в стерилизующем растворе (10% раствор гипохлорита натрия, каталожный № 239305 в Sigma, 500 мл; хлор 4–4,99%) с 1 каплей Tween 20 на 50 мл стерилизующего раствора в течение 15 минут при встряхивании со скоростью 140-150 об/мин.
- 3). Промывают семена стерильной водой 6 раз с удалением остатков стерилизующего раствора.

Стадия 3. Выделяют незрелые зародыши в ламинарном боксе с использованием надлежащей методики стерильного культивирования тканей растений.

- 1). Наносят на новые нитриловые перчатки (Micro-Touch, NitraTex) 75% этанол и дают им высохнуть на воздухе в ламинарном боксе, прежде чем надевать.
- 2). Вручную удаляют верхнюю или нижнюю часть семенного околоплодника. Затем выдавливают незрелые зародыши и помещают их в чашки Петри размером 90 х 15 мм с 30 мл среды SF Germ 2 (см. фигуру 14 и пример 12) на чашку для избежания высыхания зародышей во время экстракции.
- 3). Оставляют незрелые зародыши в планшете на примерно 30 мин для облегчения открытия 2 семядолей после завершения экстракции. Это позволяет упростить размещение на среде на следующей стадии. Примечание: важно обеспечить удаление оболочки зародыша для прорастания зародыша.
- Стадия 4. Культивируют незрелые зародыши в ламинарном боксе с использованием надлежащей методики стерильного культивирования тканей растений.
 - 1). Помещают 10 выделенных незрелых зародышей в прозрачные пластиковые контейнеры для культивирования диаметром 88 мм и высотой 76 мм со 100 мл среды SF Germ 2 (пример 12). Примечание: примерно 1/3 незрелого зародыша следует помещать в среду корнем вперед.
 - 2). Помещают контейнеры для культивирования с незрелыми зародышами в ростовую камеру при температуре 25°C +/- 1°C с фотопериодом 16/8 свет/темнота и освещением 7 тыс. 8 тыс. люкс (лампы холодного света Philips Lifemax) на 7 дней.

15

10

5

20

25

3). Через 7 дней отбирают все здоровые проростки, полученные в результате ER, для пересадки в теплицу. Здоровые растения, полученные в результате ER, определяют как характеризующиеся высотой побега ≥ 1,5 см (от корневой коронки до семядолей; см. фиг. 15) с 2-4 главными корнями и боковыми корнями, а также настоящими листьями (см. фиг. 16).

Стадия 5. Выращивают полученные in vitro растения, образованные в результате ER, в теплице.

5

10

15

20

25

- 1). Пересаживают все здоровые растения, полученные в результате ER, в поддоны для размножения на 32 ячейки (7 х 7 см на ячейку) через 7 дней после культивирования ткани и помещают в ростовую камеру на 2 недели. Накрывают поддоны прозрачным пластиковым куполом непосредственно после пересадки. Поддерживают температуру в ростовой камере на уровне 25°С (днем) и 15°С (ночью) при интенсивности света 300 мкмоль/м²/с при фотопериоде 16-часов/8-часов (свет/темнота) и относительной влажности 40-60%. Используют стандартную почвенную смесь для рассады, дополненную 10 г удобрения Оѕтосоте на поддон. Для освещения в ростовой камере используют светодиодные лампы Philips с соотношением красного и синего света 4,59:1 (4 лампы с красным, синим и дальним красным светом и 5 ламп с красным и белым светом). Примечание: обеспечивают чистоту поддонов, куполов и почвенной смеси для предупреждения контаминации микроорганизмами; пересаживают только здоровые растения, полученные в результате ER, и накрывают куполами непосредственно после пересадки для обеспечения выживания.
- 2). Удаляют купола через 3-4 дня после пересадки в зависимости от генотипа (т. е. после роста новых листьев).
- 3). Поливают растения, полученные в результате ER, вручную по мере необходимости (как правило, через день) со 2-й недели после удаления куполов.
- 4). Пересаживают растения, полученные в результате ER, из поддонов для размножения в 5-галлонные пластиковые горшки с почвой в теплице через примерно 2 недели после роста в камере. Выращивают растения, полученные в результате ER, в теплице при температурах 26°C (днем) и 16°C (ночью) с интенсивностью света примерно 15 тыс. люкс и относительной влажностью 30-50% при фотопериоде 14-часовой свет/10-часовая темнота. Используют стандартную почвенную смесь, внося в нее добавки по мере необходимости.
- 5). Удобряют растения, полученные в результате ER, непосредственно после

пересадки в 5-галлонные горшки, распределяя 45 г Osmocote по поверхности почвенной смеси (растения обычно удобряют только однократно в теплице до сбора урожая).

6). Режим полива:

- а. Поливают вручную растения, полученные в результате ER, непосредственно после пересадки в 5-галлонные горшки. Примечание: убедитесь в обильном поливе для обеспечения высокой влажности почвы.
- b. Поливают растения, полученные в результате ER, через день (600 мл воды на горшок) до стадии R1.
- с. Поливают растения, полученные в результате ER, через день $(1-2 \pi)$ воды на горшок) на стадиях R1-R7.
- d. Поливают растения, полученные в результате ER, через день (600 мл воды на горшок) на стадиях R7 R8.
- е. Прекращают полив в конце стадии R8 и до зрелости.

Примечание: не забудьте обеспечить достаточный полив растений, полученных в результате ER, до стадий цветения и молочной спелости, контролируя эти растения, полученные в результате ER, и ухаживая за ними через день.

Пример 10. Сбор незрелых зародышей подсолнечника

В случае линий СМS собирают незрелые семена через 14 дней после ручного опыления. Некоторые генотипы позволяют собирать урожай через 12 дней после опыления. Для самоопыленных или скрещенных линий день 1 самоопыления наступает, когда наблюдается цветение некоторых дисковых соцветий в первом наружном ряду. День 2 для самоопыления наступает на следующий день при цветении большинства дисковых соцветий из наружных рядов 2-4 (~3 ряда). Таким же образом определяют день 3 и последующие дни. Собирают незрелые семена каждые 3 ряда через 14 дней после каждого дня 1, дня 2 и так далее.

Примечание: для получения незрелых зародышей относительно однородного возраста, что имеет решающее значение для успешного спасения зародыша (ER; т. е. $\geq 85\%$ незрелых зародышей, дающих здоровые корни), сначала определяли характер цветения для 6 различных генотипов с целью определения дня самоопыления. Обычно наблюдали цветение некоторых дисковых соцветий 1-го крайнего ряда (= день 1).

20

15

5

10

30

Цветение большинства дисковых соцветий в следующих 2-3 рядах (наружные ряды 2-4) происходит одновременно на следующий день после дня 1 (= день 2) и так далее в течение дня 3 и последующих дней до дня 7 или дня 8 в зависимости от генотипа. Обычно дисковые соцветия цветут рано утром, а самоопыление происходит поздно утром или рано днем. Это указывает на то, что дисковые соцветия цветут и самоопыляются последовательно, 2-3 ряда каждый день после дня 1 и последующих дней. Не убирают незрелые семена в наружном ряду 1 вследствие их неравномерности. Таким образом, незрелые семена 3 наружных рядов можно собирать через 14 дней после дня 1, следующих 2-3 рядов через 14 дней после дня 2 и так далее.

10

15

20

5

Пример 11. Протокол гербицидной селекции подсолнечника в отношении признака AIR *in vitro*

Стадии 1-3: см. протокол спасения зародышей подсолнечника (пример 9) и сбор незрелых зародышей подсолнечника выше (пример 10).

Стадия 4. Культивируют незрелые зародыши в ламинарном боксе с использованием надлежащей методики стерильного культивирования тканей растений.

1) Для гербицидной селекции в отношении признака AIR *in vitro* используют бенсульфурон-метил в концентрации 300 нМ (среда BSM5) или метсульфуронметил в концентрации 5 нМ (среда MSM5). Среду SF germ 5 используют в качестве контрольной среды для гербицидов. Все составы сред приведены в примере 12 ниже. Исходный раствор бенсульфурон-метила готовят посредством растворения 50 мг бенсульфурон-метила в 10 мл DMSO (5 мг/мл) в стерильной пробирке. Исходный раствор метсульфурон-метила готовят посредством растворения 1 мг метсульфурон-метила в 10 мл DMSO (0,1 мг/мл) в стерильной пробирке. В обоих случаях аликвоты по 1 мл маточного раствора помещают в стерильные пробирки объемом 2 мл и хранят при -20°С.

25

Помещают 10 выделенных незрелых зародышей в прозрачные пластиковые контейнеры для культивирования диаметром 88 мм и высотой 76 мм со 100 мл соответствующей среды, как уже описано (пример 12; фиг. 14). Примечание: примерно 1/3 незрелого зародыша следует помещать в среду корнем вперед.

30

2) Помещают контейнеры для культивирования с незрелыми зародышами в ростовую камеру при температуре 25°C +/- 1°C с фотопериодом 16/8 свет/темнота и освещением 7 тыс. - 8 тыс. люкс (лампы холодного света Philips Lifemax) на 10 дней.

3) Через 10 дней отбирают все здоровые устойчивые к гербицидам проростки для пересадки в теплицу. Здоровые растения определяли как характеризующиеся высотой побега $\geq 2,5$ см от корня до кончика побега и с 1-3 основными корнями (длина корня ≥ 1 см), а также боковыми корнями.

5 Стадия 5. См. протокол спасения зародышей подсолнечника выше.

Пример 12. Рецепты сред.

1. Среда SF Germ 2:

к примерно 500-600 мл чистой воды Millipore добавляют (при перемешивании) 2,15 г основных солей MS и 20 г сахарозы. Доводят до 1 л водой Nano-pure и доводят рН до 5,7 посредством КОН. Добавляют 8 г агара и автоклавируют в течение 20 минут. Остужают ее до 48-50°С в стерильном ламинарном боксе перед заливкой в контейнер для культивирования с использованием стерильной методики.

2. Среда SF Germ 5:

представляет собой среду SF Germ 2 с добавлением 0,5 г/л MES (C6H13NO4S) перед автоклавированием.

3. Среда BSM5:

представляет собой среду SF Germ 5 с добавлением 25 мкл стерильного раствора бенсульфурон-метила 5 мг/мл после автоклавирования.

20 4. Среда MSM5:

10

15

представляет собой среду SF Germ 5 с добавлением 19 мкл стерильного 0,1 мг/мл раствора метасульфурон-метила после автоклавирования.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ спасения зародыша растения, включающий стадии:

5

10

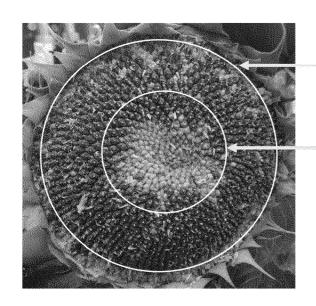
- а. получения незрелых семян через 20 дней или меньше после опыления ("DAP");
- b. выделения незрелых зародышей из незрелых семян, полученных на стадии а.;
- с. культивирования незрелых зародышей, полученных на стадии b., и
- d. выращивания проростков из культивируемых незрелых зародышей, полученных на стадии с., в подходящих ростовых средах и условиях;
- где подходящая ростовая среда предусматривает концентрацию сахарозы, фотопериод и температуру.
- 2. Способ по п. 1, где незрелые семена, полученные на стадии а., стерилизуют этанолом или стерилизующим раствором, содержащим гипохлорит и/или отбеливатель.
 - 3. Способ по п. 1, где незрелые семена получают от вида двудольного растения.
 - 4. Способ по п. 3, где вид двудольного растения представляет собой подсолнечник.
 - 5. Способ по п. 1, где возраст незрелого зародыша для ускоренного развития проростков составляет от 10 до 18 дней после опыления.
- 6. Способ по п. 5, где возраст незрелого зародыша составляет 12 дней после опыления.
 - 7. Способ по п. 5, где возраст незрелого зародыша составляет 14 дней после опыления.
- 30 8. Способ по п. 1, где концентрация сахарозы для роста зародыша составляет от 15 г/л до 30 г/л.

9. Способ по п. 8, где концентрация сахарозы составляет 20 г/л.

5

10

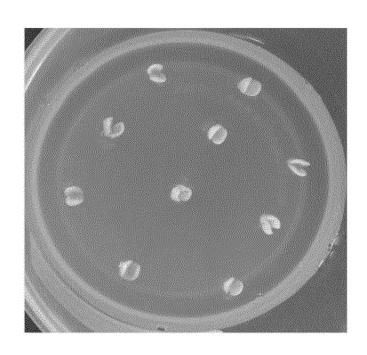
15

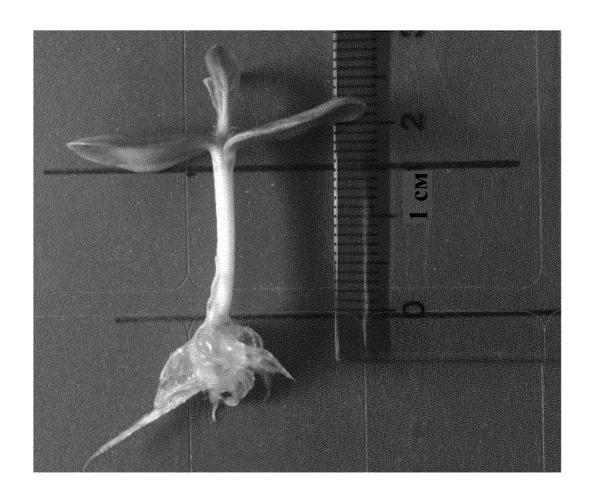

- 10. Способ по п. 1, где фотопериод для роста зародыша представляет собой (i) 16-часовой день/8-часовую ночь, (ii) 8-часовой день/16-часовую ночь, (iii) 5 смен деньночь с 16-часовым днем/8-часовой ночью в течение 2 дней или (iv) 3 смены деньночь с 16-часовым днем/8-часовой ночью в течение 4 дней.
- 11. Способ по п. 10, где фотопериод для роста зародыша представляет собой 3 смены день-ночь с 16-часовым днем/8-часовой ночью в течение 4 дней.
- 12. Способ по п. 10, где фотопериод для роста зародыша представляет собой 16-часовой день/8-часовую ночь.
 - 13. Способ по п. 1, где температура для роста зародыша составляет от 20°C до 30°C.
 - 14. Способ по п. 13, где температура составляет 25°C.
- 15. Растение, часть растения или его потомок, где растение, часть растения или его потомок получены посредством способа по п. 1.
- 16. Способ отбора признаков устойчивости к гербицидам in vitro с применением способа спасения зародыша по п. 1, где незрелые зародыши выращивают в культуральной среде, содержащей гербицид.
- 25 17. Способ по п. 16, где гербицид выбран из группы, состоящей из имидазолинонов, пиримидинилтиобензоатов, сульфониламинокарбонилтриазолинонов, сульфонилмочеви н, триазолопиримидинов, производных аминокислот, изоксазолов, пиразолонов или трикетонов.
- 30 18. Способ по п. 16, где признак выбран из группы, состоящей из Ahasl1, ESPS, PAT или гена устойчивости к ингибитору HPPD.
 - 19. Способ по п. 18, где признак представляет собой признак толерантности к гербицидам AIR.

- 20. Способ по п. 16, где культуральная среда содержит бенсульфурон-метил (BSM) или метсульфурон-метил (MSM).
- 5 21. Способ по п. 16, где незрелые зародыши собирают через 10-18 дней после опыления.
 - 22. Способ по п. 21, где незрелые зародыши собирают через 12 дней после опыления.
 - 23. Способ по п. 22, где незрелые зародыши собирают через 14 дней после опыления.
- 24. Способ по п. 16, где незрелые зародыши находятся в тканевой культуре в течение от 5 до 10 дней без субкультивирования.

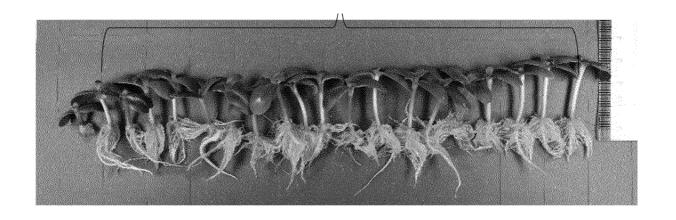
10

- 25. Способ по п. 16, где незрелые зародыши находятся в тканевой культуре в течение 7 дней без субкультивирования.
- 26. Способ по п. 16, где незрелые зародыши находятся в тканевой культуре в течение 10 дней без субкультивирования.
 - 27. Способ по п. 16, где способ дополнительно включает выращивание выбранных проростков в растения и возвратное скрещивание с другим растением с получением другого поколения.
 - 28. Способ по п. 16, где незрелые зародыши собирают от вида двудольного растения.
- 30 29. Способ по п. 28, где вид двудольного растения представляет собой подсолнечник.
 - 30. Способ по п. 20, где концентрация BSM в культуральной среде составляет от 100 нМ до 500 нМ.


- 31. Способ по п. 30, где концентрация BSM составляет 300 нМ.
- 32. Способ по п. 20, где концентрация MSM в культуральной среде составляет от 1 нМ до 10 нМ.
 - 33. Способ по п. 32, где концентрация MSM составляет 5 нМ.
- 34. Растение, часть растения или его потомок, полученные от растения, части
 растения или его потомка, которые получены посредством способа по пп. 15-33.


Наружный ряд 2

Внутренний ряд 8


ФИГ. 1

ФИГ. 2

ФИГ. 3

ФИГ. 4