
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2023.10.02
- (22) Дата подачи заявки 2021.12.17

- (51) Int. Cl. C07K 16/46 (2006.01) A61K 39/395 (2006.01) A61P 9/14 (2006.01) A61P 27/02 (2006.01) C07K 16/28 (2006.01)
- (54) СВЯЗЫВАЮЩИЕ FZD И КОРЕЦЕПТОР WNT МОЛЕКУЛЫ ЧЕТЫРЕХВАЛЕНТНОГО АНТИТЕЛА И ИХ ПРИМЕНЕНИЕ
- (31) 63/127,408
- (32) 2020.12.18
- (33) US
- (86) PCT/IB2021/061972
- (87) WO 2022/130342 2022.06.23
- (71) Заявитель: АНТЛЕРА ТЕРАПЬЮТИКС ИНК. (СА)
- (72) Изобретатель:
 Энгерс Стефани, Сидху Сачдев,
 Блэйзер Ливай, Адамс Джарретт,
 Сешагири Сомасекар (СА)
- (74) Представитель:
 Билык А.В., Поликарпов А.В.,
 Соколова М.В., Путинцев А.И.,
 Черкас Д.А., Игнатьев А.В., Дмитриев
 А.В., Бучака С.М., Бельтюкова М.В.
 (RU)
- (57) В данном документе описаны четырехвалентные молекулы связывающего антитела, содержащие домен, связывающий рецептор FZD, и домен, связывающий корецептор LRP5/6, на противоположных концах домена Fc, которые активируют сигнальный путь Wnt/бета-катенин, и способы их применения.

СВЯЗЫВАЮЩИЕ FZD И КОРЕЦЕПТОР WNT МОЛЕКУЛЫ ЧЕТЫРЕХВАЛЕНТНОГО АНТИТЕЛА И ИХ ПРИМЕНЕНИЕ

ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Данная заявка содержит перечень последовательностей, который был подан в электронной форме в формате ASCII и в полном объеме включен в данный документ посредством ссылки. Копия указанного перечня в формате ASCII, созданная 16 декабря 2021 г., называется 117946 PD606WO FINAL.txt и имеет размер 989432 байт.

УРОВЕНЬ ТЕХНИКИ

Сигнальные пути Wnt имеют решающее значение для эмбрионального развития и тканевого гомеостаза у взрослых. Сигналинг Wnt инициируется, когда рецептор Frizzled (FZD) на мембране клеточной поверхности связывается с лигандом Wnt. Лиганды Wnt представляют собой секретируемые факторы роста, которые регулируют различные клеточные процессы, такие как пролиферация, дифференцировка, выживание и миграция.

В организме человека обнаружено девятнадцать лигандов Wnt, которые взаимодействуют с сетью из десяти рецепторов клеточной поверхности Frizzled (FZD) и одним из более корецепторов, которые направляют селективное взаимодействие с различными внутриклеточными сигнальными ветвями (Wodarz, A. and Nusse, R. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998); Angers, S and Moon, R.T., transduction. Nat. Rev. Mol. Cell Biol. 10, 468-477 (2009)). FZD имеют консервативные структурные особенности, включая семь гидрофобных трансмембранных доменов и богатый цистеином лиганд-связывающий домен. Известно, что FZD функционируют в трех различных сигнальных путях, известных как путь планарной клеточной полярности (PCP) Wnt, канонический путь Wnt/β-катенин и ПУТЬ Wnt/кальций. Присутствие корецепторов Wnt также необходимо дифференцированного взаимодействия с внутриклеточными сигнальными каскадами, перечисленными выше. Например, лиганды Wnt связываются с рецептором Frizzled и членом семейства корецепторов белков 5 и 6, родственных рецепторам липопротеинов низкой плотности (LRP5/6), чтобы активировать путь Wnt/β-катенин, или с орфанными рецепторами типа рецепторной тирозинкиназы 1 и 2 (ROR1/2), родственными корецептору рецепторной тирозинкиназы (RYK) или протеинтирозинкиназе 7 (РТК7), для активации альтернативных β-катенин-независимых сигнальных путей.

Лиганды Wnt универсально важны для контроля самообновления тканевых стволовых

клеток и регуляции многих популяций клеток-предшественников, но гидрофобность и чувствительная третичная структура белков Wnt затрудняет их биохимическую очистку, а их применение *in vitro* и *in vivo* неэффективно. В данном документе описаны молекулы четырехвалентного связывающего антитела, которые активируют сигнальный путь Wnt, и способы их применения.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В данном документе описаны молекулы четырехвалентного связывающего антитела, которые активируют сигнальный путь Wnt, и способы их применения. Молекулы четырехвалентного связывающего антитела связываются с обоими рецепторами FZD, например, рецептором 1 класса Frizzled (FZD1), рецептором 2 класса Frizzled (FZD2), рецептором 3 класса Frizzled (FZD3), рецептором 4 класса Frizzled (FZD4), рецептором 5 класса Frizzled (FZD5), рецептором 6 класса Frizzled (FZD6), рецептором 7 класса Frizzled (FZD7), рецептором 8 класса Frizzled (FZD8), рецептором 9 класса Frizzled (FZD9) или рецептором 10 класса Frizzled (FZD10) и корецептором Wnt, например, LRP5 или LRP6 (LRP5/6), тем самым активируя сигнальный путь Wnt. В одном варианте осуществления молекулы четырехвалентного связывающего антитела связываются как с рецептором FZD4, так и с LRP5 и/или LRP6 и активируют сигнальный путь Wnt/β-катенин. Молекулы четырехвалентного связывающего антитела по данному изобретению также упоминаются в данном документе как «агонисты FZD», агонист Frizzled и LRP5/6 Ag (FLAg), а в некоторых вариантах осуществления - как «ANT».

Молекулы четырехвалентного связывающего антитела включают домен Fc, состоящий из доменов CH2 и CH3, или его фрагмент, содержащий домен CH3, и первый двухвалентный связывающий домен, который взаимодействует с одним или более рецепторами FZD, например, одним или более из FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9 и FZD10, и второй двухвалентный связывающий домен, который связывает корецептор WNT, например, LRP5 или LRP6, при этом FZD-связывающий домен связан с одним концом домена Fc и корецептор-связывающий домен связан с другим концом домена Fc. Таким образом, связывающий домен для рецептора FZD и связывающий домен для корецептора WNT не связаны напрямую, а разделены доменом Fc или его фрагментом, содержащим домен CH3.

Домен Fc агонистов FZD может представлять собой домен Fc иммуноглобулина с эффекторной функцией или без нее. Иммуноглобулин может представлять собой IgG,

например, IgG₁. В варианте осуществления данного изобретения молекула четырехвалентного связывающего антитела содержит два полипептида, содержащих область Fc, которые димеризуются за счет присущей области Fc в каждом полипептиде способности к димеризации или за счет конфигурации «выступ-во-впадину» в Fc. Таким образом, димер Fc может быть гетеродимером или гомодимером. Способы димеризации пептидов с использованием конфигурации «выступ-во-впадину» описаны в WO 2018/026942, авторы изобретения Van Dyk et al., Carter P. (2001) J. Immunol. Methods 248, 7–15; Ridgway et al. (1996) Protein Eng. 9, 617–621; Merchant, et al. (1998) Nat. Biotechnol. 16, 677–681, и; Atwell et al., (1997) J. Mol. Biol. 270, 26–35, которые включены в данный документ посредством ссылки.

В одном варианте осуществления каждый из связывающих доменов агонистов FZD, описанных в данном документе, является двухвалентным, и каждый может быть моноспецифическим, имеющим два сайта связывания для одного и того же эпитопа рецептора FZD, например, FZD4 или корецептора Wnt, например, LRP5/6, или биспецифическим, имеющим два сайта связывания, каждый из которых связывает другой эпитоп на FZD или корецепторе Wnt, например, сайт связывания Wnt1 (домены E1-E2 во внеклеточном домене LRP5/6) и сайт связывания Wnt3 (домен E3-E4 во внеклеточном домене LRP5/6) в корецепторе LRP5/6. В одном варианте осуществления LRP5/6-связывающий домен связывается с сайтом Wnt3A (домен E3-E4) на LRP5 и связывается с сайтом Wnt3A (домен E3-E4) на LRP5 и связывается с сайтом Wnt3A (домен E3-E4) на LRP5 и связывается с

В вариантах осуществления данном изобретения FZD-связывающий домен, связанный с доменом Fc агониста FZD, содержит один или более фрагментов вариабельного домена тяжелой цепи (VH) иммуноглобулина и/или один или более фрагментов вариабельного домена легкой цепи (VL) иммуноглобулина, которые связывают FZD, например, FZD4. В варианте осуществления данного изобретения FZD-связывающий домен может содержать Fab, диатело или одноцепочечные вариабельные фрагменты (scFv), фрагменты однодоменного антитела, например, V_HH, или их комбинации, которые связываются с одними и теми же или разными эпитопами на FZD.

В варианте осуществления данного изобретения VH и/или VL FZD-связывающего домена связывают FZD4 или FZD5 и содержат CDR легкой цепи и CDR тяжелой цепи FZD4- или FZD5-связывающего антитела из таблицы 1, таблицы 2 или таблицы 6, и/или содержат CDR легкой цепи и CDR тяжелой цепи, которые имеют 50%, 55%, 60%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентичности с CDR антитела к FZD4 из таблицы 1, таблицы

2 или таблицы 6, и все еще сохраняют связывание с рецептором FZD4 или FZD5. Например, в варианте осуществления изобретения FZD-связывающий домен может содержать первую тяжелую цепь (CDR-H1), вторую тяжелую цепь (CDR-H2) и/или третью тяжелую цепь (CDR-H3), где VH, который связывает FZD, может содержать CDR-H1 с SEQ ID NO: 24, SEQ ID NO: 365 или SEQ ID NO: 893, CDR-H2 с SEQ ID NO: 51, SEQ ID NO: 61, SEQ ID NO: 462 или SEQ ID NO: 894 и/или CDR-H3 с SEQ ID NO: 79, SEQ ID NO: 90, SEQ ID NO: 484 или SEQ ID NO: 895, и первую легкую цепь (CDR-L1), вторую легкую цепь (CDR-L2) и/или третью легкую цепь (CDR-L3), где VL, который связывает FZD, может содержать CDR-L1 с SEQ ID NO: 1, SEQ ID NO: 3 или SEQ ID NO: 12, CDR-L2 с SEQ ID NO: 2, SEQ ID NO: 3 или SEQ ID NO: 12 и/или CDR-L3 с SEQ ID NO: 3, SEQ ID NO: 12, SEQ ID NO: 285 или SEQ ID NO: 896.

В одном из вариантов осуществления данного изобретения корецептор-связывающий домен (LRP5/6), связанный с доменом Fc агониста FZD, содержит один или более фрагментов вариабельного домена тяжелой цепи (VH) иммуноглобулина и/или один или более фрагментов вариабельного домена легкой цепи иммуноглобулина (VL), которые связываются с корецептором Wnt, например, LRP5 и/или LRP6. Например, в варианте осуществления изобретения LRP-связывающий домен может содержать первую тяжелую цепь (CDR-H1), вторую тяжелую цепь (CDR-H2) и/или третью тяжелую цепь (CDR-H3), где VH, который связывает LRP, может содержать CDR-H1 с SEQ ID NO: 527, SEQ ID NO: 528, SEQ ID NO: 536, SEQ ID NO: 716 или SEQ ID NO: 720, CDR-H2 SEQ ID NO: 552, SEQ ID NO: 553 или SEQ ID NO: 566, SEQ ID NO: 785 или SEQ ID NO: 791 и/или CDR-H3 SEQ ID NO: 584, SEQ ID NO: 585, SEQ ID NO: 586 или SEQ ID NO: 603, SEQ ID NO: 856 или SEQ ID NO: 862 CDR-H3, и первую легкую цепь (CDR-L1), вторую легкую цепь (CDR-L2) и/или третью легкую цепь (CDR-L3), где VL, которая связывает LRP, может содержать CDR-L1 с SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 или SEQ ID NO: 491 и/или CDR-L3 SEQ ID NO: 130, SEQ ID NO: 492, SEQ ID NO: 493, SEQ ID NO: 510, SEQ ID NO: 623 или SEQ ID NO: 665.

В варианте осуществления данного изобретения домен, связывающий корецептор Wnt, является двухвалентным и может содержать диатело или может содержать Fab, одноцепочечный вариабельный фрагмент (scFv) или однодоменные фрагменты антитела (V_HH) или их комбинации для связывания с одними и теми же или разными эпитопами на корецепторе. В вариантах осуществления данного изобретения VH и VL домена, связывающего корецептор Wnt, содержат CDR легкой цепи и/или CDR тяжелой цепи LRP5-и/или LRP6-связывающего антитела из таблицы 3, таблицы 4 или таблицы 6, или содержат CDR легкой цепи и/или CDR тяжелой цепи, которые имеют 50%, 55%, 60%, 75%. 80%, 85%,

90%, 95%, 96%, 97%, 98% или 99% идентичности с CDR антитела к LRP5 и/или LRP6 из таблицы 3, таблицы 4 или таблицы 6, и все еще сохраняют связывание с корецептором LRP5 и/или LRP6.

В одном варианте осуществления данного изобретения домен, связывающий корецептор Wnt, связанный с доменом Fc агонистов FZD, описанных в данном документе, включает диатело, образованное двумя пептидами, каждый из которых содержит вариабельный домен тяжелой цепи (VH или домен VH), связанный с вариабельным доменом легкой цепи (VL или доменом VL), где VH и VL одного пептида сочетаются с VL и VH другого пептида, образуя диатело. В этой конфигурации связывающий домен имеет два сайта связывания, которые связываются с корецептором Wnt, например, LRP5 или LRP6. Диатело может быть моноспецифическим, связывающимся с одним и тем же сайтом на корецепторе, или может быть биспецифическим (бс), связывающим два разных сайта на корецепторе. При использовании конфигурации «выступы-во-впадины» Fc, пептиды, содержащие VH и VL, связанные с областями Fc, могут быть неидентичными, но все равно будут образовывать пары для образования биспецифического связывающего домена, способного связываться с двумя разными сайтами на корецепторе Wnt (например, LRP5 или LRP6).

Пептиды, образующие диатела, V_HH, scFv и Fab, которые образуют связывающие домены, могут быть получены из антитела, выбранного по его связыванию с желаемой мишенью, «исходного антитела». Для FZD-связывающего домена, «исходное антитело к FZD» может представлять собой антитело, которое связывается с одним или более рецепторами FZD, например, с одним или более из FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9 и FZD10 и антагонизирует сигналинг Wnt или ингибирует связывание Wnt с данным рецептором(-ами) FZD. Альтернативно, исходное антитело к FZD может представлять собой антитело, которое связывается с рецептором(-ами) FZD, не антагонизируя сигналинг Wnt или не ингибируя связывание Wnt с рецептором FZD. Аналогично, для корецепторсвязывающего домена, «исходное антитело к корецептору» может представлять собой антитело, которое связывается с корецептором Wnt, например, LRP5/6, и антагонизирует сигналинг Wnt или ингибирует связывание Wnt с корецептором Wnt. Альтернативно, исходное антитело к корецептору может представлять собой антитело, которое связывается с корецептором, например, LRP5/6, не антагонизируя сигналинг Wnt или не ингибируя связывания Wnt с корецептором.

В варианте осуществления данного изобретения FZD-связывающий домен агониста FZD может специфически связываться со специфическим FZD, например, FZD4, с более

высокой аффинностью, чем с другими FZD, т.е. FZD1, FZD2, FZD3, FZD5, FZD6, FZD7, FZD8, FZD9 и FZD10, или могут быть панспецифическими, связываясь с одним или более другими членами семейства рецепторов FZD. В одном варианте осуществления FZD-связывающий домен специфически связывается с одним FZD с аффинностью, более чем в 10 раз превышающей аффинность связывания с любым другим членом семейства Frizzled.

В варианте осуществления настоящего изобретения агонист FZD связывается с FZD4, «агонист FZD4». Связывающий домен FZD4 агониста FZD4 может специфически связываться с FZD4, связываясь с FZD4 с более высокой аффинностью по сравнению с другими FZD, или может быть панспецифическим, связываясь с FZD4 и одним или более другими членами семейства рецепторов FZD, например, рецептором 1 класса Frizzled (FZD1), рецептором 2 класса Frizzled (FZD2), рецептором 3 класса Frizzled (FZD3), рецептором 5 класса Frizzled (FZD5), рецептором 6 класса Frizzled (FZD6), рецептором 7 класса Frizzled (FZD7), рецептором 8 класса Frizzled (FZD8), рецептором 9 класса Frizzled (FZD9) или рецептором 10 класса Frizzled (FZD10). В одном варианте осуществления FZD-связывающий домен специфически связывается с FZD4 с аффинностью более чем в 10 раз по сравнению с любым другим членом семейства Frizzled, указанным выше.

В варианте осуществления данного изобретения агонист FZD связывается с FZD5, «агонист FZD5». FZD5-связывающий домен агониста FZD5 может специфически связываться с FZD5, связываясь с FZD5 с более высокой аффинностью по сравнению с другими FZD, или может быть панспецифическим, связываясь с FZD5 и одним или более другими членами семейства рецепторов FZD, например, FZD1, FZD2, FZD3, FZD4, FZD6, FZD7, FZD8, FZD9, или FZD10. В одном варианте осуществления FZD-связывающий домен специфически связывается с FZD5 с аффинностью более чем в 10 раз по сравнению с любым другим членом семейства Frizzled, указанным выше.

В одном варианте осуществления агонистов FZD по данному изобретению домен, связывающий корецептор Wnt, представляет собой моноспецифический двухвалентный домен, связывающий корецептор LRP5/6, и связывается с одним эпитопом на корецепторе LRP5 и/или LRP6, например, с эпитопом корецептора LRP5 и/или LRP6, который связывается с Wnt1 (домен E1-E2 LRP5 или LRP6) или связывается с Wnt3a (домен E3-E4 LRP5 или LRP6). В одном из вариантов осуществления данного изобретения корецепторсвязывающий домен представляет собой биспецифический двухвалентный LRP5/6-связывающий домен, который связывается с двумя эпитопами во внеклеточном домене корецептора LRP5 и/или LRP6, например, корецептор-связывающий домен

взаимодействует с эпитопами Wnt1 (E1-E2) и Wnt3 (E3-E4) корецептора LRP5 и/или LRP6. В одном из вариантов осуществления данного изобретения корецептор-связывающий домен представляет собой биспецифический двухвалентный связывающий домен, который связывается с внеклеточным доменом LRP5 и LPR6, например, домен взаимодействует с эпитопом Wnt1 (E1-E2) корецептора LRP6 и эпитопом Wnt1 (E1-E2) корецептора LRP6 LRP5, или домен взаимодействует с эпитопом Wnt3a (E3-E4) корецептора LRP5 и эпитопом Wnt3a (E3-E4) корецептора LRP6 или, альтернативно, домен взаимодействует с эпитопом Wnt1 (E1-E2) или корецептором LRP5 и эпитопом Wnt3a (E3-E4) корецептора LPR6 или наоборот.

Различные форматы молекул четырехвалентного связывающего антитела, описанные в данном документе, представлены на Фиг. 6. В конкретном формате, диатело-Fc-Fab, диатело, связывающее LRP5/6, связано с N-концом домена Fc, а два Fab связаны с C-концом домена Fc, где Fab связан с CH3 домена Fc через вариабельный домен тяжелой цепи (VH) Fab. Альтернативно, Fab связан с CH3 домена Fc через вариабельную область (VL) легкой цепи.

Ранее мы сообщали о поливалентных связывающих молекулах, содержащих домен Fc, FZD-связывающий домен и домен, связывающий корецептор Wnt (LRP5/6), на противоположных концах домена Fc, например, молекула, имеющая диатело FZD4, связанное с одним концом Fc. домен и LRP5/6-связывающее диатело, связанное с другим концом домена Fc, см. PCT/IB2019/051174, изобретатели Angers et al. и PCT/IB2020/055463, авторы изобретения Angers et al., которые полностью включены посредством ссылки.

Сообщалось, что сигналинг Wnt-β-катетин, особенно посредством активации FZD4, важна для развития сосудистой системы и для гомеостаза сосудистой системы взрослых. В частности, он имеет решающее значение для барьерной функции гематоретинального и гематоэнцефалического барьеров (ГРБ и ГЭБ). Дефекты в сигналинге FZD4 могут приводить к дефектам проницаемости эндотелиальных клеток, а генетические мутации в этом пути, как известно, приводят к сосудистым дефектам (например, болезнь Норри, FEVR). На гематоретинальном барьере внеклеточный лиганд норрин преимущественно активирует комплекс FZD4-TSPAN12-LRP5 для регуляции межклеточных взаимодействий эндотелия, барьерных функций и проницаемости (Wang et al. (2012) Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell. 151:1332–1344). На гематоэнцефалическом барьере секретируемый фактор роста Wnt7a/b главным образом активирует рецепторный комплекс FZD4-GPR124-LRP6 (Chang et al., (2017). GPR124

необходим для целостности гематоэнцефалического барьера при заболеваниях центральной нервной системы. (Nat. Med. 23: 450–460). Агонисты FZD4, описанные в данном документе, например, конфигурации, имеющие связывающий домен диатела для LRP5/6 и FZD4-связывающий домен, состоящий из двух фрагментов Fab, которые связывают FZD4, где связывающие домены находятся на противоположных концах домена Fc, продуцируют, в частности, стабильную и гомогенную молекулу с неожиданно высоким уровнем активации сигнального пути Wnt-β-катенин в эндотелиальных клетках, что приводит к усилению барьерной функции и снижению проницаемости сосудов (Фиг. 11). По существу, описанные в данном документе агонисты FZD4 функционируют как молекулы-миметики норрина и Wnt7a/b.

Это изобретение также включает способы применения описанных в данном документе агонистов FZD. В данном документе описаны способы активации сигнального пути Wnt, например, сигнального пути Wnt/β-катенина, с использованием молекул четырехвалентного связывающего антитела по настоящему изобретению, которые, как предполагается, способствуют сближению рецепторов FZD и корецепторов Wnt, например, одного или более из рецепторов FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9 и FZD10 и корецепторов LRP5 и/или LRP6 на клетке, где агонисты FZD связываются с обоими рецепторами FZD, а корецептор(-ы) LRP5 и/или LPR6 активирует сигнальный путь Wnt.

Для формирования гематоретинального барьера (ГРБ) и ангиогенеза сетчатки необходим сигналинг β-катенина, индуцированной лигандом норрином (NDP [белок болезни Норри]), рецептором FZD4, корецептором LRP5 и TSPAN12 (тетраспанином 12). Таким образом, аспектом данного изобретения является способ стимулирования и/или поддержания барьерной функции сосудов сетчатки и ангиогенеза путем обработки ткани глаза, например ткани сетчатки, эффективным количеством четырехвалентных агонистов FZD4 по настоящему изобретению.

Кроме того, аспектом данного изобретения является способ стимулирования, восстановления и/или поддержания функций ГРБ и ГЭБ путем обработки сосудистой сети ГРБ или ГЭБ эффективным количеством описанного в данном документе четырехвалентного агониста FZD4. Еще одним аспектом данного изобретения является способ лечения субъекта, имеющего нарушение или патологическое состояние, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга, характеризующимся снижением барьерной функции эндотелиальных клеток, которая приводит к диапедезу,

путем введения такому субъекту эффективного количества агонистов FZD4 по данному одним изобретения изобретению. Еще аспектом данного является четырехвалентного FZD4/LRP5-связывающего фармацевтическая антитела или композиция для применения в лечении или предотвращении нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или которое характеризуется снижением барьерной функции эндотелиальных клеток и/или диапедезом. Еще одним аспектом данного изобретения является способ лечения или предотвращения развития нарушения или патологического состояния, которое характеризуется нарушением ангиогенеза сетчатки или головного мозга и/или снижением барьерной функции эндотелиальных клеток, и/или диапедезом, включающий введение нуждающемуся в этом индивиду терапевтически эффективного количества молекула четырехвалентного FZD4/LRP5-связывающего антитела, описанной в данном документе. Еще одним аспектом изобретения является применение молекулы четырехвалентного FZD4/LRP5-связывающего антитела для производства лекарственного препарата для лечения или предотвращения развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или снижением барьерной функции эндотелиальных клеток и/или диапедезом. Такие нарушения или патологические состояния включают глазные нарушения, включая, но не ограничиваясь ими, нарушения в сетчатке или желтом пятне. Такие нарушения в сетчатке или желтом пятне включают, но не ограничиваются ими, диабетическую ретинопатию, ретинопатию недоношенных, болезнь Коутса, FEVR, болезнь Норри, макулярную дегенерацию, диабетический отек желтого пятна и витреоретинопатии у детей. Дополнительные нарушения или патологические состояния, включенные в варианты осуществления данного изобретения, включают, но не ограничиваются ими, болезнь Альцгеймера, эпилепсию, рассеянный склероз, ишемию и инсульт.

Вариант осуществления настоящего изобретения включает способы получения васкуляризированных церебральных органоидов путем стимулирования барьерной функции сосудистой сети во всех органоидах и, таким образом, имитации гематоэнцефалической барьерной функции с использованием эффективного количества четырехвалентного агониста FZD4, описанного в данном документе.

Кроме того, вариант осуществления данного изобретения представляет собой способ лечения субъекта, имеющего желудочно-кишечное заболевание, включая субъект, имеющий воспаление всего или части кишечника, также известное как воспалительное заболевание кишечника, путем введения такому субъекту эффективного количества

фармацевтической композиции по данному изобретению, например, композиции, содержащей агонист FZD5. Примеры воспалительного заболевания кишечника включают, помимо прочего, болезнь Крона и язвенный колит.

Кроме того, одним из вариантов осуществления данного изобретения являются способы направления дифференцировки iPS или других плюрипотентных стволовых клеток (PSC) в различные линии путем культивирования этих клеток в присутствии эффективного количества молекулы четырехвалентного связывающего антитела по настоящему изобретению.

В данном документе также описаны способы получения молекул четырехвалентного связывающего антитела по данному изобретению.

Модульные аспекты данного изобретения позволяют смешивать и сопоставлять связывающие домены, полученные из FZD-связывающих антител и LRP5/6-связывающих антител, противоположных концах домена Fc для создания четырехвалентного связывающего антитела, которая может взаимодействовать с комплексами FZD - корецептор LRP5/6 для селективной активации сигналинга Wnt. Модульность и эффективность молекул четырехвалентного связывающего антитела для активации сигнальных путей Wnt, описанных в данном документе, отличается от суррогатов Wnt, описанных в предшествующем уровне техники, которые состоят из лигандов, связывающих моновалентные корецепторы FZD и Wnt, или лигандов, связывающих FZD и корецептор Wnt, где связывающие лиганды не присоединены к противоположным концам домена Fc.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Фиг. 1А и Фиг. 1В. Одноточечные ELISA. FZD4-связывающие антитела, выделенные из библиотек с созревшей аффинностью известных FZD4-связывающих антител 5044 (Фиг. 1А) и 5027 (Фиг. 1В), связываются с сайтами FZD4, которые конкурируют с их исходным антителом. Реакцию останавливали добавлением 1М H₃PO₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов; белый = BSA; черно-белая полоса = Fc; серый = FZD4 + блокирующее антитело; и черный = FZD4.

Фиг. 2. Картирование эпитопов для антител к FZD4. FZD4 и 5027 и 5044 имеют перекрывающиеся эпитопы. Пан-FZD-связывающее соединение 5016 представляет собой положительный контроль, показывающий, что антигены являются функциональными, за

исключением «FZD4_Swap10». Оба специфичных к FZD4 антитела 5027 и 5044 неспособны связываться с «FZD4_Swap7», что позволяет предположить, что эти молекулы связываются с этой областью ВКД FZD.

Фиг. 3A. Эксклюзионная хроматография (ЭХ). Анализ антител к FZD4 по сравнению с трастузумабом. Элюирование белка контролировали по поглощению при 280 нМ.

Фиг. 3В. Специфичность по ELISA. Измерения антител к FZD4, определенных против FZD4 и против FZD1 и FZD10, двух членов семейства FZD, наиболее тесно связанных с FZD4. Реакцию останавливали добавлением 1М H3PO4 и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов.

Фиг. 4. ELISA фаговых клонов для синтетических антител, нацеленных на LRP5. Результаты демонстрируют, что синтетические антитела связывались с LRP5. Поглощение измеряли спектрофотометрически при 450 нм в ридере для титрационных микропланшетов; серый = BSA; светло-серый = His-Fc; темно-серый = LRP5

Фиг. 5A и 5B. ELISA фаговых клонов для синтетических антител, нацеленных на LRP6. Результаты демонстрируют синтетические антитела, связанные с LRP6. Поглощение измеряли спектрофотометрически при 450 нм в ридере для титрационных микропланшетов; черный = BSA; серый = Fc; светло-серый = LRP6-Fc.

Фиг. 6. Варианты молекул четырехвалентных связывающих антител. Проиллюстрированы: формат диатело-Fc-диатело, содержащий FZD-связывающее моноспецифическое диатело на N-конце домена Fc и LPR5/6-связывающее биспецифическое диатело на C-конце домена Fc; формат диатело-Fc-scFv, содержащий N-концевое LPR5/6-связывающее биспецифическое диатело и два С-концевых FZD-связывающих scFv; формат IgG-диатело, содержащий два FZD-связывающих Fab, образующих N-концевой связывающий домен, и биспецифическое LRP5/6-связывающее диатело, образующее С-концевой связывающий домен; формат IgG-scFv, содержащий два FZD-связывающих Fab, образующих N-концевой связывающий домен, и два LRP5/6-связывающих scFv, образующих С-концевой связывающий домен, и; формат диатело-Fc-Fab, имеющий биспецифическое LRP5/6связывающее диатело, образующее N-концевой связывающий домен, и два FZDсвязывающих Fab, образующих С-концевой связывающий домен, где Fab связаны с доменом CH3 Fc через вариабельную область тяжелой цепи Fab. В частности, предполагается, что в альтернативном формате диатело-Fc-Fab Fab связаны с CH3 домена Fc через вариабельную область легкой цепи Fab. Различные домены четырехвалентных

молекул, VL, VH, CH1, CH2, CH3, CL1 и Fc, соединяются с помощью линкеров, например, пептидных линкеров. Домен Fc образуется путем димеризации доменов CH2 и CH3 области Fc конструкции «впадина» и области Fc конструкции «впадина». Различные домены четырехвалентных молекул, VL, VH, CH1, CH2, CH3, CL1 и Fc, соединяются с помощью линкеров, например, пептидных линкеров.

Фиг. 7. Агонист FZD4, имеющий формат диатело-Fc-Fab. Формат диатело-Fc-Fab, содержащий LRP5-связывающее биспецифическое диатело, образующее бивалентный биспецифический N-концевой LRP5-связывающий домен, и два FZD4-связывающих Fab, образующих бивалентный моноспецифический C-концевой FZD4-связывающий домен, и область Fc с ослабленными эффекторными функциями за счет аминокислотных мутаций, например, вариантов N297G (NG) и D265A, (DANG). Различные домены четырехвалентных молекул, VL, VH, CH1, CH2, CH3, CL1 и Fc, соединяются с помощью линкеров, например, пептидных линкеров.

Фиг. 8. Агонисты FZD4, имеющие формат диатело-Fc-Fab (ANT), связывают FZD4 с высокой селективностью. На Фиг. 8А показана кажущаяся селективность агонистов FZD4 в отношении рекомбинантного внеклеточного домена (ВКД) 9 из 10 FZD, определенная с помощью биослойной интерферометрии (BLI). На Фиг. 8В показано, что агонисты FZD не распознают обычные неспецифические антигены. Агонисты FZD тестировали при 100 нМ на связывание с панелью антигенов, как описано в Mouquet et al. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature. 2010 Sep;467(7315):591-595. DOI: 10.1038/nature09385, PMC3699875, и Jain T. et al. Biophysical properties of the clinical-stage antibody landscape. Proceedings of the National Academy of Sciences of the United States of America. 2017 Jan;114(5):944-949. DOI: 10.1073/pnas.1616408114, PMC5293111.

Фиг. 9. Агонисты FZD4 (ANT), имеющие формат диатело-Fc-Fab (имеющие LRP-связывающее биспецифическое диатело и два FZD4-связывающих Fab), являются стабильными и мономерными в растворе. На Фиг. 9А представлены результаты анализа методом аналитической ЭХ агонистов FZD по сравнению с трастузумабом IgG. На Фиг. 9В представлены результаты дифференциальной сканирующей флуориметрии, демонстрирующие, что агонисты FZD4 в формате диатело-Fc-Fab имеют профили термической денатурации, аналогичные профилям трастузумаба, тогда как вариант диатело-Fc-диатело FZD4 первого поколения (СМ0199) менее оптимален.

Фиг. 10. FZD4-LRP5-специфические агонисты FZD4, имеющие формат диатело-Fc-Fab

(ANT). FZD4-LRP5-специфические агонисты FZD4 в этом формате стимулируют FZD4 в линии эндотелиальных клеток мыши (bEND3.1) и приводят к увеличению транскрипции гена Axin2 (ген-мишень бета-катенина) зависимым от концентрации образом.

На Фиг. 11A и Фиг. 11B изображен специфический агонист FZD4-LRP5, имеющий формат диатело-Fc-диатело, который стимулирует барьерные функции эндотелиальных клеток в механизме, противодействующем VEGF-индуцированной проницаемости. На Фиг. 11A показана иммунофлуоресцентная локализация ZO-1/CLDN3 и ZO-1/CLDN5 в местах соединения клеток bEnd.3. Клетки bEnd.3 обрабатывали или не обрабатывали 30 нМ F4L5.13 (он же CM0199) и норрина (NDP) в присутствии или в отсутствие VEGF (100 нг/мл) в течение 1 часа. Начиная с верхнего ряда и двигаясь вниз: NT (необработанные) не демонстрируют изменений в проницаемости; обработка VEGF клеток bEND3.1 приводит к разборке соединения, о чем свидетельствует потеря окрашивания плазматической мембраны на CLDN3, CLDN5 и ZO-1; совместная обработка клеток VEGF и агонистом FZD4 CM0199 (F4L5.13) приводит к почти полному восстановлению эффекта одного VEGF; в последнем ряду на Фиг. 11A показана совместная обработка клеток VEGF и NDP и аналогичным образом приводит к почти полному восстановлению эффекта одного VEGF, предполагая, что агонисты FZD4, описанные в данном документе, функционируют как молекулы-миметики норрина и Wnt7a/b. На Фиг. 11В показан анализ трансэндотелиальной проницаемости, количественно определяющий прохождение FITC-декстрана через монослой клеток bEnd.3. Прохождение FITC-декстрана измеряли после воздействия на клетки bEnd.3 100 нг/мл VEGF, 30 нМ F4L5.13 или обоих факторов, или предварительной обработки VEGF в течение 1 ч перед обработкой F4L5.13 в течение 1 ч. Данные представлены как среднее \pm стандартное отклонение, n = 5 независимых экспериментов. Значимость рассчитывали с помощью одностороннего дисперсионного анализа с тестом множественных сравнений с поправкой Бонферрони (*Р <0,05 по сравнению с обработкой VEGF).

Фиг. 12. Одноточечный ELISA. Антитела к FZD5, которые связывают внеклеточный домен FZD5 в месте, перекрывающемся с 2919, идентифицированным из библиотек созревания аффинности. Новые антитела к FZD5 связывают FZD5 в сайте, перекрывающемся с 2919, идентифицированным из библиотек созревания аффинности. Одноточечный ELISA проводили на 96-луночных планшетах Maxisorp, покрытых ВКД человеческого белка FZD5, в присутствии или в отсутствие насыщающей концентрации IgG 2919. Поглощение измеряли спектрофотометрически при 450 нм в ридере для титрационных микропланшетов; белый с черными полосами=BSA; черный с белыми полосами=Fc; серый = FZD5 +

блокирующее антитело; черный=FZD5.

Фиг. 13. Одноточечный ELISA демонстрирует, что новые антитела к FZD5 из библиотеки созревания аффинности 2928 селективно связывают FZD5. Новые антитела к FZD5 из библиотеки созревания аффинности 2928 селективно связывают FZD5. Одноточечный ELISA выполняли на 96-луночных планшетах Maxisorp, покрытых ВКД белка FZD2, FZD5 или FZD8 человека. Поглощение измеряли спектрофотометрически при 450 нм в ридере для титрационных микропланшетов; черный с белыми полосами=Fc; белый с черными полосами=FZD2; серый=FZD8; черный=FZD5.

Фиг. 14. Люциферазный анализ. Пан-FZD/LRP6 ANT9 и FZD5-специфический/LRP6 ANT59 активируют сигналинг Wnt в клетках. Клетки TOPFLASH обрабатывали в течение ночи различными концентрациями агониста FZD или нецелевой контрольной молекулой (СМ0156), и управляемую TCF/LEF экспрессию люциферазы измеряли с использованием стандартного люциферазного анализа. Обе молекулы способны активировать FZD-опосредованную экспрессию люциферазы в зависимости от концентрации. ANT9, который способен связываться с 7 из 10 подтипов рецепторов FZD, производит более высокий максимальный сигнал активации, чем FZD5-специфический ANT59.

Фиг. 15. Исходный формат ANT39 и инвертированный формат ANT39і. Агонист к FZD4 ANT39і, имеющий формат IgG-диатело (имеющий формат диатело-Fc-Fab, и агонист к FZD4 ANT39і, имеющий формат IgG-диатело (имеющий два FZD-связывающих Fab, образующих N-концевой связывающий домен, и LRP5/6-связывающее биспецифическое диатело, образующее С-концевой связывающий домен) и домен Fc. FZD-связывающий домен ANT39і содержит два фрагмента Fab, присоединенных к N-концу домена Fc, и каждый фрагмент Fab связывает FZD. Домен, связывающий корецептор LRP5/6, присоединен к С-концу домена Fc и состоит из диатела, которое связывает два разных сайта на корецепторе, например, сайт Wnt1 (E1-E2) и сайт Wnt3. сайт (E3-E4) на LRP5/6. Fab могут быть специфическими для конкретного FZD, т.е. FZD4 или может быть панспецифическим, связываясь с более чем одним FZD, например, с FZD4 и одним или более другими FZD. Область Fc может иметь ослабленные эффекторные функции за счет аминокислотных мутаций, например, вариантов N297G (NG) и D265A, (DANG). Различные домены четырехвалентных молекул, VL, VH, CH1, CH2, CH3, CL1 и Fc, соединяются с помощью линкеров, например, пептидных линкеров.

На Фиг. 16A показан агонист FZD4 ANT39, имеющий формат диатело-Fc-Fab (имеющий LRP5-связывающее биспецифическое диатело, образующее двухвалентный

биспецифический N-концевой LRP5-связывающий домен, и два FZD4-связывающих Fab, образующих двухвалентный моноспецифический С-концевой FZD4-связывающий домен) с областью Fc, имеющей ослабленные эффекторные функции за счет аминокислотных мутаций в варианты N297G и D265A (DANG) или варианты L234A, L235A, P331S (LALAPS), и с областью Fc, дополнительно содержащей варианты гетеродимеризации «выступ-во-впадину» Merrimack, Merchant или Merchant S:S (мутации CH3 Merrimack, как описано в WO 2018/026942A1, мутации CH3 Merchant, как описано в Merchant A.M. et al Nature Biothechnology 1998 vol 16 p677-681). На Фиг. 16A представлены SEQ ID NO: 886, 892, 891, 886, 892, 891, 886, 892, 891, 886, 892 и 891, соответственно, в порядке их представления. На Фиг. 16В показан агонист FZD4 ANT39i, имеющий формат IgG-Fcдиатело (имеющий два фрагмента Fab, прикрепленных к N-концу домена Fc, каждый фрагмент Fab связывается с FZD, и домен, связывающий корецептор LRP5/6, присоединенный к С-концу домена Fc, который состоит из диатела, связывающегося с двумя разными сайтами на корецепторе), и области Fc с ослабленными эффекторными функциями за счет вариантов DANG или LALAPS, а также вариантов гетеродимеризации Merrimack, Merchant или Merchant S.S. На Фиг. 16В представлены SEQ ID NO: 891, 886, 891, 886, 891, 886, 891 и 886, соответственно, в порядке их представления.

Фиг. 17. Термостабильность вариантов ANT39. На Фиг. 17 представлены результаты экспериментов по дифференциальной сканирующей флуориметрии, демонстрирующие, что вариант LALA агониста FZD4 ANT39 (ANT39 LALA) обладает улучшенной термостабильностью по сравнению с исходным ANT39 (содержащим мутации DANG в Fc).В частности, вариант LALA продемонстрировал улучшенную термостабильность, которая ближе к профилю варианта трастузумаба, который содержит те же мутации Fc типа «выступ»/«впадина», что и ANT.

Фиг. 18. Агонист FZD4 ANT42, имеющий формат диатело-Fc-Fab. Агонист FZD4 ANT42, имеющий LRP5-связывающее биспецифическое диатело, образующее двухвалентный биспецифический N-концевой LRP5-связывающий домен, и два FZD4-связывающих Fab, образующих двухвалентный моноспецифический C-концевой FZD4-связывающий домен, с областью Fc, имеющей ослабленные эффекторные функции за счет аминокислотных мутаций в варианты N297G и D265A (DANG) или варианты L234A, L235A, P331S (LALAPS), и с областью Fc, дополнительно содержащей варианты гетеродимеризации «выступ-во-впадину» Merrimack, Merchant или Merchant S:S (мутации CH3 Merrimack, как описано в WO 2018/026942A1, мутации CH3 Merchant, как описано в Merchant A.M. et al Nature Biothechnology 1998 vol 16 p677-681). И агонист FZD4 ANT42i, имеющий формат

IgG-Fc-диатело (имеющий два фрагмента Fab, прикрепленных к N-концу домена Fc, каждый фрагмент Fab связывается с FZD, и домен, связывающий корецептор LRP5/6, присоединенный к C-концу домена Fc, который состоит из диатела, связывающегося с двумя разными сайтами на корецепторе), и области Fc с ослабленными эффекторными функциями за счет вариантов DANG или LALAPS, а также вариантов гетеродимеризации Merrimack, Merchant или Merchant S:S. На Фиг. 18 представлены SEQ ID NO: 886, 892, 891, 891, 886, 886, 892, 891, 891, 886, 886, 892, 891, 891, 886, 886, 892, 891, 891, и 886, соответственно, в порядке их представления.

Фиг. 19. Варианты антител, протестированные на агонизм FZD. А) Диатело-Fc-диатело, VH и VL тестировали как FZD-, так и LRP-связывающие вариабельные домены; В) диатело-Fc-scFv; С) scFv-Fc-диатело; D) scFv-Fc-scFv; E) IgG-диатело; F) IgG-scFv; G) диатело-Fc-Fab; H) диатело-CH3-диатело; I) Fab-диатело. На Фиг. 19 молекулы В-F, H-I содержат N-концевые вариабельные домены, которые связывают LRP, а С-концевые вариабельные домены связывают FZD. На Фиг. 19 молекула G содержит вариабельный домен на N-конце, который связывает FZD, и вариабельный домен на С-конце, который связывает LRP. Эти форматы антител, отмеченные *, тестировали с использованием Fc с мутациями типа "выступы-во-впадины".

Фиг. 20. Различные архитектуры антител способны вызывать мощный агонизм FZD. Паратопы, нацеленные на пан-FZD и LRP6, были сконструированы в различных вариантах, как описано в таблице 14. Стимуляцию канонического пути Wnt каждым антителом определяли на клетках HEK дикого типа, экспрессирующих репортер TOPFLASH, слепым методом двумя разными учеными. Данные представлены в виде среднего значения \pm станд. откл. и являются репрезентативными для 4 различных экспериментов.

Фиг. 21. Уровни экспрессии различных вариантов агонистов FZD. Различные варианты агонистов FZD экспрессировали в клетках HEK, очищали с помощью хроматографии на основе белка A, и уровень экспрессии определяли на основе поглощения при 280 нм. EC50 для активации FZD определяли на клетках HEK дикого типа, экспрессирующих репортер TOPFLASH, слепым методом двумя разными учеными.

Фиг. 22. Анализ жизнеспособности органоидов. Органоиды тонкого кишечника мышей выращивали в присутствии 1 мкМ LGK-974 для блокирования эндогенной секреции Wnt и обрабатывали PBS, средой, кондиционированной Wnt3a, или молекулами FLAg, как указано. Слева репрезентативные изображения из n = 3 независимых экспериментов.

Справа: количественная оценка жизнеспособности органоидов с помощью люминесцентного анализа CellTiter-Glo. Столбцы представляют среднее значение +/- стандартную ошибку из 3 независимых экспериментов.

Фиг. 23. Гистология толстой кишки мыши. Гистологическая картина толстой кишки мыши после цикла лечения DSS (7 дней 2% DSS, 3 дня 0,5% DSS) с внутрибрюшинной инъекцией либо контрольного IgG, либо ANT59 (10 мг/кг) на 4 и 7 дни. (А) Изображения, полученные при 20-кратном увеличении, показывают общую архитектуру. (В) Изображения, полученные при 100-кратном увеличении, показывают восстановление целостности слизистой оболочки с помощью лечения ANT59.

Фиг. 24. (А) Изменения массы тела у мышей на протяжении цикла лечения DSS (7 дней 2% DSS, 3 дня 0,5% DSS) при внутрибрюшинной инъекции либо контрольного CM0156, агониста пан-FZD, либо ANT59 (10 мг/кг) на 4 и 7 дни. (В) Слева: репрезентативные изображения иссеченной толстой кишки от 6-8 мышей в группе лечения с сантиметровой шкалой для сопоставления. Справа: длина толстой кишки в каждой группе лечения со столбцом, представляющим среднюю длину толстой кишки +/- стандартное отклонение, и отображены отдельные точки данных. *** указывает на р < 0,0001 в однофакторном дисперсионном анализе, H2O указывает на нормальную воду (без DSS).

Фиг. 25. Характеристика ANT FZD5/LRP6. ANТ экспрессировали в клетках НЕК, очищали с помощью хроматографии на основе белка A, а уровень экспрессии определяли на основе поглощения при 280 нм. С помощью биослойной интерферометрии определяли кажущуюся аффинность (авидность) каждой молекулы к FZD5 человека, слитого с рекомбинантным Fc, и измеряли селективность в отношении других FZD человека. Кривые доза-ответ для активации репортерного гена LEF/TCF в FZD-нокаутных (1,2,4,5,7) клетках НЕК293, сверхэкспрессирующих FZD5. Клетки высевали в 96-луночные планшеты на 24 часа, затем обрабатывали, как указано, в течение 17 часов. Активацию репортера оценивали с использованием системы Dual-Luciferase Reporter Assay System (Promega). Данные представлены как среднее значение ± станд. откл. для двух технических повторностей и репрезентативны для n = 3 независимых экспериментов.

ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В данном документе описаны молекулы четырехвалентного связывающего антитела, содержащие Fc-домен с эффекторной функцией или без нее, двухвалентный FZD-связывающий домен и двухвалентный LRP-связывающий домен, где связывающие домены

присоединены к противоположным концам домена Fc. В одном варианте осуществления FZD-связывающий домен присоединен к C-концу области Fc, а домен, связывающий корецептор LRP, присоединен к N-концу домена Fc. Альтернативно, FZD-связывающий домен присоединен к N-концу области Fc, а корецептор-связывающий домен присоединен к C-концу домена Fc. Связывающие домены могут быть присоединены непосредственно к домену Fc или присоединены к домену Fc через линкер. FZD-связывающий домен может связываться с одним или более чем одним рецептором FZD, то есть с одним или более из FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9 и FZD10.

В варианте осуществления изобретения FZD-связывающий домен является двухвалентным и содержит диатело или содержит scFv, фрагмент V_HH или фрагмент Fab или их комбинации, которые связывают FZD, а корецептор-связывающий домен является двухвалентным и содержит диатело или фрагмент V_HH, Fab или scFv или их комбинации, которые связывают корецептор LRP5/6. В одном варианте осуществления данного изобретения FZD-связывающий домен присоединен к C-концу домена Fc и содержит два scFv, два фрагмента V_HH, два фрагмента Fab или диатело, которые связывают FZD, и корецептор-связывающий домен, присоединенный к FZD. N-конец домена Fc содержит диатело, два фрагмента V_HH или два scFv, которые связываются с корецептором LRP5/6. При присоединении к C-концу домена Fc FZD-связывающие Fab связываются с CH3 домена Fc через вариабельную область тяжелой цепи или вариабельную область легкой цепи Fab. В других вариантах осуществления FZD-связывающий домен присоединен к N-концу домена Fc и состоит из двух Fab, а домен, связывающий корецептор LRP5/6, присоединен к C-концу домена Fc и состоит из диатела или два scFv, которые связывают корецептор.

На Фиг. 6 показана молекула четырехвалентного связывающего антитела по данному изобретению в формате диатело-Fc-scFv, имеющая домен, связывающий корецептор LRP5/6, домен Fc и FZD-связывающий домен. Диатело-Fc-sFv содержит (i) домен Fc, (ii) биспецифическое диатело, присоединенное к N-концу домена Fc, которое связывает два разных сайта на корецепторе, например, сайт Wnt1 (E1-E2) на LRP5/6 и сайт Wnt3 (E3-E4) на LRP5/6, и (iii) FZD-связывающий домен, содержащий два FZD-связывающих фрагмента scFv, присоединенных к C-концу домена Fc. scFv может быть специфичным для конкретного FZD, например, FZD4 или может быть панспецифическим, связываясь более чем с одним FZD, например, с FZD4 и одним или более другими FZD.

Вариантом осуществления настоящего изобретения является молекула четырехвалентного связывающего антитела в формате диатело-Fc-scFv, имеющая (i) домен Fc, (ii) домен,

связывающий корецептор LRP5/6, который содержит биспецифическое диатело, которое связывает два разных сайта на корецепторе, например, сайт Wnt1 (E1-E2) на LRP5/6 и сайт Wnt3 (E3-E4) на LRP5/6, где диатело присоединено к N-концу домена Fc и (iii) FZD-связывающий домен, присоединенный к С-концу домена Fc, содержащий два фрагмента scFv, каждый из которых связывает FZD. scFv может быть специфическим в отношении FZD или может быть панспецифическим, связываясь с FZD и одним или более другими FZD.

На Фиг/ 6 также показана молекула четырехвалентного связывающего антитела по данному изобретению в формате IgG-диатело, имеющая (i) домен Fc, (ii) FZD-связывающий домен, который состоит из двух фрагментов Fab, присоединенных к N-концу домена Fc, каждый Fab связывается с FZD, и (iii) домен, связывающий корецептор LRP5/6, присоединенный к С-концу домена Fc, который состоит из диатела, которое связывает два разных сайта на корецепторе, например, сайт Wnt1 (E1-E2) и сайт Wnt3 (E3-E4) на LRP5/6. Fab могут быть специфическими в отношении конкретного FZD, т.е. FZD4 или может быть панспецифическим, связываясь с более чем одним FZD, например, с FZD4 и одним или более другими FZD.

Вариантом осуществления настоящего изобретения является молекула четырехвалентного связывающего антитела в формате IgG-диатело, содержащая (i) домен Fc, (ii) N-концевой связывающий домен для FZD, содержащий два FZD-связывающих Fab, и (ii) С-концевой связывающий домен для корецептора LRP5 и/или LRP6, содержащий диатело, связывающее корецептор LRP5/6. Этот агонист FZD в формате IgG-диатело содержит:

- (1) первый и второй мономер тяжелой цепи, где каждый мономер тяжелой цепи содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (a) вариабельный домен тяжелой цепи (VH), который связывает FZD, связанный с
 - (b) доменом 1 константной области тяжелой цепи (домен СН1), связанным с
 - (с) областью Fc (или ее фрагментом, содержащим константный домен тяжелой цепи 3 (домен СН3)), связанной с
 - (d) пептидом, содержащим VH, который связывает корецептор LRP5/6, связанный с вариабельным доменом легкой цепи (VL), который связывает

корецептор LRP5/6, и

(2) первый и второй мономер легкой цепи, причем каждый мономер легкой цепи содержит от N-конца к C-концу VL, который связывает FZD, связанный с константным доменом легкой цепи 1 (домен CL1).

Первый и второй мономеры тяжелой цепи димеризуются посредством их областей Fc или их фрагментов. Линкер между VH и VL, который связывает LRP5/6, имеет длину, которая способствует спариванию VH и VL первого мономера тяжелой цепи с VL и VH второго мономера тяжелой цепи, тем самым образуя диатело, связывающее корецептор LRP5/6. FZD-связывающие Fab образуются путем спаривания каждого мономера тяжелой цепи с мономером легкой цепи таким образом, что VH, который связывает FZD4, и CH1 каждого из мономеров тяжелой цепи, соединяется с VL, который связывает FZD4, и CL1 мономеров легкой цепи. В этом формате IgG-диатело Fab образуют FZD4-связывающий домен на N-конце домена Fc, а диатело образует корецептор-связывающий домен на С-конце домена Fc. Fab могут быть специфичными в отношении одного FZD, например, FZD4 или FZD5, или могут быть панспецифичными, связываясь более чем с одним FZD, например, с FZD4 и/или FZD5, и в некоторых случаях с несколькими FZD. Области Fc могут димеризоваться по конфигурации «выступ-во-впадину». Способы димеризации пептидов с использованием конфигурации «выступ-во-впадину» описаны в WO 2018/026942, авторы изобретения Van Dyk et al., Carter P. (2001) J. Immunol. Methods 248, 7–15; Ridgway et al. (1996) Protein Eng. 9, 617–621; Merchant, et al. (1998) Nat. Biotechnol. 16, 677-681, и; Atwell et al., (1997) J. Mol. Biol. 270, 26-35. Области Fc могут быть Merrimack (цепь с «выступами»: Q347M, Y349F, T350D, Т366W и L368M; цепь с «впадинами»: S354I, E357L, T366S, L368A и Y407V), Merchant (цепь с «выступами»: Т366W; цепь с «впадинами»: Т336S, L368A и Y407V). или Merchant S:S (мутации Merchant с дополнительным вариантом S354C в цепи с «выступами» и Y349C в цепи с «впадинами»). Области Fc также могут содержать мутации, которые изменяют их эффекторную функцию, например, иметь ослабленные эффекторные функции за счет аминокислотных мутаций, например, вариантов DANG и вариантов LALAPS.

Хотя на Фиг. 6 пептиды, образующие диатело в формате IgG-диатело, связаны с С-концом домена Fc через их домен VH в ориентации VH-VL (от N-конца к С-концу), в некоторых вариантах осуществления пептиды, образующие диатело, связаны с С-концом домена Fc

через свои домены VL в ориентации VL-VH (от N-конца к C-концу). И хотя тяжелые цепи, изображенные как содержащие домен VH и домен CH1, связанные с N-концом домена Fc, и легкими цепями, изображенными как содержащие домен VL и домен CL1, с образованием Fab, в некоторых вариантах осуществления (диатело-Fc-Fab на Фиг.6 и Фиг. 7A) диатела слиты с N-концом Fc, а Fab слиты с C-концом Fc. Для этого домен CH3 Fc сливают непосредственно с тяжелой цепью Fab через его домен VH (VH-CH1) или непосредственно с легкой цепью через его домен VL (VL-CL), и при этом легкая и тяжелая цепи по-прежнему ассоциируются, образуя Fab.

На Фиг. 6 показана молекула четырехвалентного связывающего антитела в конфигурации диатело-Fc-Fab, имеющая LRP5/6-связывающее биспецифическое двухвалентное диатело, образующее N-концевой связывающий домен, и два FZD-связывающих Fab, образующих C-концевой связывающий домен. Fab могут быть специфическими для конкретного FZD, т.е. FZD4 или могут быть панспецифическими, связываясь более чем с одним FZD, например. FZD4 и одним или более другими FZD. См. также Фиг. 7A, которая иллюстрирует молекулу четырехвалентного связывающего антитела в формате диатело-Fc-Fab, содержащую Fc в конфигурации «выступ-во-впадину» (КiH) и LRP5-связывающее биспецифическое двухвалентное диатело, образующее N-концевой связывающий домен, и два FZD4-связывающих Fab, образующих C-концевой связывающий домен. Хотя на Фиг. 6 и 7A показаны Fab, связанные с доменом CH3 Fc (на C-конце) через вариабельный домен тяжелой цепи (VH) Fab, конкретно предполагается, что в альтернативном формате диатело-Fc-Fab Fab связывается с CH3 домена Fc через вариабельный домен легкой цепи Fab (VL). Различные домены четырехвалентных молекул, VL, VH, CH1, CH2, CH3, CL1 и Fc, соединяются с помощью линкеров, например, пептидных линкеров.

Также вариантом осуществления данного изобретения является молекула четырехвалентного связывающего антитела в формате диатело-Fc-Fab, содержащая (i) домен Fc, (ii) N-концевой связывающий домен, содержащий диатело, которое связывается с корецептором, например, корецептором LRP5 и/или LRP6 и (ii) C-концевой связывающий домен, содержащий два Fab, которые связываются с одним или более FZD, например, FZD4 или FZD5. Этот агонист FZD в формате диатело-Fc-Fab содержит:

- (1) первый и второй мономер тяжелой цепи, где каждый мономер тяжелой цепи содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (a) пептид, содержащий вариабельный домен тяжелой цепи (VH), который

связывает корецептор LRP5/6, и вариабельный домен легкой цепи (VL), который связывает корецептор LRP5/6, связанный с

- (b) областью Fc (или ее фрагментом, содержащим константный домен тяжелой цепи 3 (домен CH3)), связанной с
- (c) доменом VH, который связывает FZD, связанным с
- (d) доменом СН1, и
- (2) первый и второй мономер легкой цепи, при этом каждый мономер легкой цепи содержит от N-конца к C-концу домен VL, который связывает FZD, и константный домен легкой цепи 1 (CL1).

Первый и второй мономеры тяжелой цепи димеризуются через области Fc или их фрагменты, и двухвалентное LRP5/6-связывающее диатело образуется путем спаривания домена VH и домена VL, которые связывают LRP5/6, первого мономера тяжелой цепи с доменом VL и доменом VH, которые связывают LRP5/6, второго мономера тяжелой цепи. Два FZD-связывающих Fab образуются путем спаривания каждого мономера тяжелой цепи с мономером легкой цепи таким образом, что VL, который связывает FZD, и CL1 мономера легкой цепи, соединяется с VH, который связывает FZD, и CH1 каждого из мономеров тяжелых цепей. В этом формате диатело-Fc-Fab образует домен, связывающий корецептор LRP5/6, на N-конце четырехвалентной молекулы, а два Fab образуют FZD-связывающий домен на C-конце молекулы четырехвалентного связывающего антитела. Области Fc могут димеризоваться по конфигурации «выступ-во-впадину».

Способы димеризации пептидов с использованием конфигурации «выступ-во-впадину» описаны в WO 2018/026942, авторы изобретения Van Dyk et al., Carter P. (2001) J. Immunol. Methods 248, 7–15; Ridgway et al. (1996) Protein Eng. 9, 617–621; Merchant, et al. (1998) Nat. Biotechnol. 16, 677–681, и; Atwell et al., (1997) J. Mol. Biol. 270, 26–35. Области Fc могут представлять собой Merrimack (цепь с «выступами»: Q347M, Y349F, T350D, T366W и L368M; цепь с «впадинами»: S354I, E357L, T366S, L368A и Y407V), Merchant (цепь с «выступом»: T366W; цепь с «впадинами»: T336S, L368A и Y407V) или Merchant S:S (мутации Merchant с дополнительным вариантом S354C в цепи с «выступами» и Y349C в цепи с «впадинами»). Области Fc также могут содержать мутации, которые изменяют их эффекторную функцию, например, область Fc может иметь ослабленные эффекторные функции за счет аминокислотных мутаций, например, вариантов DANG и вариантов

LALAPS.

Хотя на Фиг. 6 и 7А пептиды, образующие диатело в формате диатело-Fc-Fab, связаны с доменом Fc через свои домены VL, следовательно, в ориентации VH-VL (от N-конца к С-концу), в некоторых вариантах осуществления ориентация может быть изменена таким образом, что пептиды, образующие диатело, связаны с N-концом домена Fc через свои домены VH, следовательно, в ориентации VL-VH (от N-конца к С-концу). Кроме того, хотя тяжелые цепи в формате диатело-Fc-Fab изображены как содержащие домен VH и домен CH1, которые соединяются с легкой цепью, содержащей домены VL и CL1, с образованием Fab, также предполагается, что в некоторых вариантах осуществления вариабельный и константный домены меняют местами таким образом, что тяжелые цепи содержат домен VL и домен CL1, а легкие цепи содержат домен VH и домен CH1, а тяжелая и легкая цепи все еще соединяются с образованием Fab.

варианте осуществления данного изобретения связывающий фрагмент FZDсвязывающего домена получен из антитела или фрагмента антитела, которые специфически связываются с одним FZD, например, FZD4 или FZD5, или панспецифично взаимодействует с конкретным FZD, например, FZD4 или FZD5 и одним или более дополнительными рецепторами FZD (исходное антитело к FZD), а корецепторсвязывающий домен содержит связывающий фрагмент, которые получен из антитела или фрагмента антитела, которые связываются с LPR5 и/или LRP6 (исходного антитела к LRP5/6). В варианте осуществления данного изобретения FZD-связывающие антитела связываются с внеклеточным богатым цистеином доменом (CRD) рецептора FZD. Антитело, которое связывает FZD, может представлять собой антитело, которое связывает рецептор FZD и антагонизирует сигналинг Wnt или ингибирует связывание лиганда Wnt с рецептором FZD. Антитело, которое связывает FZD, может представлять собой антитело, которое связывает рецептор FZD, не антагонизируя или не ингибируя связывание лиганда Wnt с рецептором FZD. Антитело, которое связывает FZD, может представлять собой антитело, которое связывает FZD и усиливает сигналинг Wnt. Антитело, которое связывает корецептор LRP5/6, может представлять собой антитело, которое связывает корецептор LRP5/6 и антагонизирует сигналинг Wnt или ингибирует связывание лиганда Wnt с корецептором, или антитело, которое связывает корецептор LRP5/6, может представлять собой антитело, которое связывает корецептор, при этом не антагонизирует сигналинг Wnt или норрина или ингибирует связывание лиганда Wnt или норрина с корецептором.

В одном из вариантов осуществления данного изобретения домен, связывающий

корецептор LRP5/6, связывается с одним эпитопом на корецепторе, например, с эпитопом, который связывается с взаимодействующим с Wnt1 (E1-E2) или Wnt3 (E3-E4) доменом LRP5/6. В одном варианте осуществления данного изобретения домен, связывающий корецептор LRP5/6, связывается с двумя эпитопами в корецепторе, например, паратоп, который связывается с эпитопом, взаимодействующим с Wnt1 (E1-E2), и паратоп, который связывается с эпитопом Wnt3 (E3-E4) LRP5/6. В варианте осуществления данного изобретения поливалентная связывающая молекула содержит домен Fc, где домен Fc представляет собой домен Fc иммуноглобулина или его фрагмент, содержащий домен CH3. В варианте осуществления изобретения иммуноглобулин представляет собой IgG. В варианте осуществления данного изобретения IgG представляет собой IgG1.

В одном из вариантов осуществления данного изобретения LRP5/6-связывающий домен содержит диатело, содержащее два пептида, каждый из которых содержит вариабельный домен тяжелой цепи (VH), который связывается с LRP5/6, связанный с вариабельным доменом легкой цепи (VL), который связывает LRP5/6, при этом связывающий домен образован путем спаривания VH и VL одного пептида с VL и VH другого пептида, в результате чего образуется LRP5/6-связывающий домен.

В молекулах четырехвалентного связывающего антитела по данному изобретению оба связывающих домена являются двухвалентными, и один или оба двухвалентных связывающих домена могут быть биспецифическими в отношении соответствующего рецептора FZD, например, FZD4 или FZD5, или корецептора LRP5/6. Например, связывающая молекула может содержать FZD-связывающий домен, который является двухвалентным и моноспецифическим (каждый связывающий сайт связывается с одним и тем же эпитопом), а LRP5/6-связывающий домен является двухвалентным и биспецифическим, связывающимся с двумя разными эпитопами (сайтами Wnt1 (E1-E2) и Wnt3 (E3-E4) на эктодомене LRP5/6). В варианте осуществления данного изобретения оба связывающих домена являются двухвалентными и биспецифическими, причем каждый связывающих домен связывается с двумя разными эпитопами на соответствующем целевом рецепторе FZD или корецепторе LRP 5/6.

Домены VH и VL FZD-связывающего домена четырехвалентных молекул по данному изобретению могут содержать три CDR легкой цепи и три CDR тяжелой цепи исходного антитела к FZD, например, FZD4 или FZD5, связывающие антитела из таблицы 1, таблицы 2 или таблицы 6, или три CDR легкой цепи и три CDR тяжелой цепи, которые имеют по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 75, по

меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% идентичности с CDR исходного антитела к FZD, например, антитела к FZD4 из таблицы 1, таблицы 2 или таблицы 6, и все еще сохраняют связывание с рецептором FZD или FZD5, связанным с исходным антителом.

Домены VH и VL домена, связывающего корецептор LRP5/6, из четырехвалентных молекул по данному изобретению могут содержать три CDR легкой цепи и три CDR тяжелой цепи исходного антитела к корецептору LRP5/6, например, LRP5/6-связывающих антител из таблицы 3, таблицы 4 или таблицы 6, или три CDR легкой цепи и три CDR тяжелой цепи, которые имеют по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% идентичности с VH и VL исходного антитела к корецептору Wnt, например, LRP5/6-связывающих антител из таблицы 3, таблицы 4 или таблицы 6, и все еще связываются с корецептором LRP5/6.

В варианте осуществления настоящего изобретения FZD-связывающий домен четырехвалентной связывающей молекулы по данному изобретению связывает FZD4 (агонист FZD4) или FZD5 (агонист FZD5) или FZD4 и/или FZD5 и один или более других FZD (агонист пан-FZD) и содержит

СDR-H1, CDR-H2 и CDR-H3 и CDR-L1, CDR-L2 и CDR-L3 антител из таблицы 1, таблицы 2 или таблицы 6, или CDR, которые имеют по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% идентичности с CDR-H1, CDR-H2 и CDR-H3 и CDR-L1, CDR-L2 и CDR-L3 антител из таблицы 1, таблицы 2 или таблицы 6, и все еще связываются с FZD4 или FZD5,

и LRP5/6-связывающий домен агониста FZD4, или агониста FZD5, или агониста пан-FZD содержит

CDR-H1, CDR-H2 и CDR-H3 и CDR-L1, CDR-L2 и CDR-L3 антител из таблицы 3, таблицы 4 или таблицы 6, или CDR, которые имеют по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%,

по меньшей мере 98% или по меньшей мере 99% идентичности с CDR-H1, CDR-H2 и CDR-H3 и CDR-L1, CDR-L2 и CDR-L3 антител из таблицы 3, таблицы 4 или таблицы 6, и все еще связываются с LRP5 или LRP6.

В одном варианте осуществления FZD-связывающий домен молекулы четырехвалентного связывающего антитела не содержит диатело, scFv или Fab, содержащий три CDR тяжелой цепи или три CDR легкой цепи FZD4-связывающего антитела 5044 в комбинации с доменом, связывающим корецептор Wnt, содержащим диатело, scFv или Fab, который содержит три CDR тяжелой цепи и три CDR легкой цепи LRP6-связывающего антитела 2542 и/или антитела 2539. В одном варианте осуществления четырехвалентная связывающая молекула не содержит диатело, scFv или Fab, содержащую три CDR тяжелой цепи и три CDR легкой цепи FZD4-связывающего антитела 5027 в комбинации с доменом, связывающим корецептор Wnt, содержащим диатело, scFv или Fab, который содержит три CDR тяжелой цепи и три CDR легкой цепи LRP6-связывающего антитела 2542 и/или антитела 2539.

Также одним из вариантов осуществления данного изобретения являются молекулы нуклеиновой кислоты, кодирующие описанные в данном документе четырехвалентные связывающие молекулы. Вариантом осуществления данного изобретения являются кодирующие полипептиды молекулы нуклеиновой кислоты, четырехвалентных связывающих молекул, описанных в данном документе, содержащие CDR тяжелой цепи и легкой цепи, указанные в таблицах 1, 2, 3, 4, 6. Также одним из вариантов осуществления данного изобретения являются молекулы нуклеиновых кислот, которые кодируют полипептиды четырехвалентных связывающих молекул, например, агонисты FZD5 или агонисты FZD4, приведенные на Фиг. 7A и 7B, которые содержат CDR из таблицы 6. Кроме того, одним из вариантов осуществления данного изобретения являются молекулы нуклеиновой кислоты, которые кодируют домены VH и VL, содержащие, соответственно, CDR тяжелой цепи и легкой цепи, указанные в таблицах 1, 2, 3, 4 и 6. Молекулы нуклеиновой кислоты могут быть встроены в вектор и экспрессированы в подходящей клетке-хозяине, а затем молекулы четырехвалентного связывающего антитела могут быть выделены из клеток с использованием способов, хорошо известных в данной области техники. Таким образом, также аспектом данного изобретения являются кассеты и векторы экспрессии, содержащие молекулы нуклеиновых кислот, которые кодируют полипептиды четырехвалентных связывающих молекул, например, агонисты FZD4 или FZD5, описанные в данном документе, домены VL и VH, Fab и диатела. содержащие CDR, указанные в таблицах 1, 2, 3, 4 и 6, и домены Fc, описанные в данном документе. Аспектом данного изобретения являются клетки-хозяева, экспрессирующие эти кассеты и векторы экспрессии.

В контексте данного документа термин «вектор» относится к носителю доставки нуклеиновой кислоты или плазмиде, которая может быть сконструирована так, чтобы содержать молекулу нуклеиновой кислоты, например, последовательность нуклеиновой кислоты, кодирующую молекулы четырехвалентного связывающего антитела, описанные в данном документе. Вектор, который может экспрессировать белок при вставке полинуклеотида, называется вектором экспрессии. Векторы могут быть вставлены в клеткухозяина путем трансформации, трансдукции или трансфекции, так что переносимые генетические вещества могут экспрессироваться в клетке-хозяине. Векторы хорошо известны техническому персоналу в данной области техники, включая, но не ограничиваясь ими: плазмиды; фагемид; космида; искусственная хромосома, такая как искусственная хромосома дрожжей (YAC), бактериальная искусственная хромосома (BAC) или искусственная хромосома, полученная из Р1 (РАС); фаг, такой как фаг λ или фаг М13, и вирусы животных и т. д. Вирусы животных могут включать, помимо прочего, вирус с обратной транскриптазой (включая лентивирус), аденовирус, аденоассоциированный вирус, вирус герпеса (например, вирус простого герпеса), вирус ветряной оспы, бакуловирус, вирус папилломы и паповавирус (например, SV40). Вектор может содержать несколько компонентов, которые контролируют экспрессию молекул четырехвалентного связывающего антитела, описанных в данном документе, включая, но не ограничиваясь ими, промоторы, например, вирусные или эукариотические промоторы, например, промотор CMV, сигнальные пептиды, например, сигнальный пептид TRYP2, фактор инициации транскрипции, энхансер, селективный элемент и репортерный ген. Кроме того, вектор может также содержать сайт(-ы) инициации репликации.

В контексте данного документа термин «клетка-хозяин» относится к клеткам, которые могут импортировать кассеты и векторы экспрессии, включая, но не ограничиваясь ими, прокариотические клетки, такие как Escherichia coli и Bacillus subtilis, грибковые клетки, такие как дрожжи и Aspergillus, клетки насекомых, такие как клетки дрозофилы S2 и Sf9, или клетки животных, включая клетки человека, например, клетки фибробластов, клетки CHO, клетки COS, клетки NSO, клетки HeLa, клетки BHK или клетки HEK293.

Вариантом осуществления данного изобретения является фармацевтическая композиция, содержащая агонист FZD или молекулу нуклеиновой кислоты, кассету и вектор экспрессии, кодирующий описанный в данном документе агонист FZD, и фармацевтически

приемлемый носитель, разбавитель или эксципиент. Фармацевтическая композиция может дополнительно содержать дополнительный агент, например, второе терапевтическое антитело, например, антитело к VEGF (афлиберцепт, ранибизумаб и бевацизумаб), фактор роста, например, VEGF, или агент, который активирует путь Wnt, например, малая молекула CHIR99021, норрин или R-спондин, или молекула нуклеиновой кислоты, кассеты и векторы экспрессии, кодирующие агент. Фармацевтическая композиция может состоять или по существу состоять из агониста FZD или молекулы нуклеиновой кислоты, кассеты или вектора экспрессии, которые кодируют агонист FZD, описанный в данном документе, и фармацевтически приемлемого разбавителя, носителя или эксципиента. Подходящие носители, разбавители и эксципиенты, а также их составы описаны в Remington: The Science and Practice of Pharmacy (19th ed.) ed. A. R. Gennaro, Mack Publishing Company, Easton, Pa. 1995. Как правило, в композиции используется соответствующее количество фармацевтически приемлемой соли для придания композиции изотоничности. Примеры фармацевтически приемлемого носителя включают, но не ограничиваются ими, солевой раствор, раствор Рингера и раствор декстрозы. рН раствора может быть, например, от около 5 до около 8, от около 5 до 7,5 или от около 6 до 7. Другие носители включают препараты с замедленным высвобождением, такие как полупроницаемые матрицы из твердых гидрофобных полимеров, содержащие агонист, причем матрицы представлены в виде промышленных изделий определенных формы, например, пленок, липосом или микрочастиц. Для специалистов в данной области техники будет очевидно, что некоторые носители могут быть более предпочтительными в зависимости, например, от пути введения и концентрации вводимого агониста FZD.

Данное изобретение также включает способы применения агонистов FZD, описанных в Вариантом осуществления данного изобретения является способ данном документе. активации сигнального пути Wnt в клетке, включающий приведение в контакт клетки, имеющей рецептор FZD и корецептор LRP5/6, с молекулой четырехвалентного связывающего антитела по данному изобретению, которая связывает FZD, например, FZD4 и LRP5/6 в количестве, эффективном для активации сигналинга Wnt. Сообщалось, что путь норрин-FZD4 играет роль в ангиогенезе сетчатки (см. Wang et al. Cell. 2012;151(6):1332-1344.; Braunger BM, Tamm ER. Adv Exp Med Biol. 2012; 723:679–683; Ohlmann A, Tamm ER. Prog Retin Eye Res. 2012;31(3):243–257; и Ye et al. Trends Mol Med. 2010;16(9):417–425). Сигналинг через путь норрин-FZD4 необходим для развития и поддержания сосудистой сети сетчатки. Мутации, затрагивающие гены этого пути, могут привести к нескольким витреоретинопатиям, таким как болезнь Норри, семейная экссудативная

витреоретинопатия (FEVR) и синдром псевдоглиомы и остеопороза. Кроме того, ретинопатия недоношенных (PH) была связана с мутациями в пути норрин-FZD4, а мутации пути Wnt были зафиксированы при болезни Коутса и персистирующей фетальной сосудистой сети глаза (PFV). Сигналинг FZD4, активируемый путем норрин и/или WNT7A/B, также связан с развитием гематоэнцефалического барьера ЦНС и гомеостазом. Генетическая абляция норрина, FZD4, LRP5, LRP6 и корецептора тетраспанина-12 (Тspan-12) приводит к нарушению ангиогенеза и нарушению барьера в сосудах сетчатки и/или мозжечка (Cho et al. (2017) Neuron 95, 1056-1073; Zhou et al., (2014) J Clin Invest 124:3825—3846). Таким образом, функциональная сигнальная система Wnt играет ключевую фундаментальную роль в развитии полноценной сосудистой и нервной сети в глазах и сетчатке для поддержания зрения и в ЦНС для поддержания развития и гомеостаза ГЭБ.

Одним из аспектов данного изобретения является способ стимулирования и/или поддержания сосудистой сети сетчатки путем обработки ткани глаза, например, ткани сетчатки, эффективным количеством фармацевтической композиции, содержащей молекулы четырехвалентного антитела по настоящему изобретению, например, молекулы четырехвалентного антитела, которые связывают FZD4 и LRP5/6, агонисты FZD4, имеющие структуру, показанную на Фиг. 6, при местном или системном введении. Кроме того, аспектом данного изобретения является способ стимуляции и/или поддержания сосудистой системы ГЭБ путем лечения нуждающегося в этом субъекта эффективным количеством фармацевтических композиций по настоящему изобретению, например, композиции, содержащей агонисты FZD4, имеющие структуры, изображенные на Фиг. 6. ГЭБ формируется в процессе развития, и его целостность остается жизненно важной для гомеостаза и защиты нейронов на протяжении всей жизни. Субъект, нуждающийся в этом, включает субъекта, имеющего неврологическое состояние, связанное с дисфункцией ГЭБ, например, нейродегенеративные заболевания, такие как болезнь Альцгеймера, а также эпилепсию, рассеянный склероз и инсульт.

Еще одним аспектом данного изобретения является способ лечения субъекта, имеющего нарушение, характеризующимся диапедезом, в частности диапедезом в сетчатке и/или диапедезом в эндотелии, и нарушения, характеризующиеся снижением барьерных функций клеток сетчатки или эндотелия головного мозга или нарушением ГЭБ или ГРБ, например, диабетическую ретинопатию, ретинопатию недоношенных, болезнь Коутса, FEVR, болезнь Норри, макулярную дегенерацию, диабетический отек желтого пятна и витреоретинопатии у детей, путем введения такому субъекту эффективного количества фармацевтической композиции по данному изобретению, например, композиции, содержащей агонист FZD4,

имеющий структуру, показанную на Фиг. 6. Эффективное количество такой композиции представляет собой количество, достаточное, например, для усиления или восстановления барьерных функций эндотелиальных клеток и, таким образом, снижения диапедеза у такого субъекта. Субъектом может быть плод. Агонисты FZD4 по данному изобретению, в частности, агонист FZD4 в формате диатело-Fc-Fab, содержащие два фрагмента Fab, образующие FZD4-связывающий домен на С-конце Fc-рецептора, и связывающий домен для LRP5 и/или LRP6, состоящий из диатела на N-конце домена Fc, например, как показано на Фиг. 6, активирует сигналинг FZD4 и β-катенина в эндотелиальных клетках, способствует барьерным функциям и тем самым снижает проницаемость эндотелиальных клеток и значительно усиливает ангиогенез. В частности, обработка эндотелиальных клеток іп vivo, ех vivo или іп vitro этими агонистами FZD4, предпочтительно агонистами формата диатело-Fc-Fab, способствует развитию и поддержанию сосудистой сети сетчатки и/или ГРБ и ГЭБ гораздо более эффективно, чем другие молекулы, не имеющие такой структуры.

Еще одним аспектом данного изобретения является способ лечения субъекта, имеющего воспаление всего кишечника или его части, также известное как воспалительное заболевание кишечника, путем введения такому субъекту эффективного количества фармацевтической композиции по данному изобретению, например, композиции, содержащей агонист FZD5. Примеры воспалительного заболевания кишечника включают, помимо прочего, болезнь Крона и язвенный колит. Эффективное количество такой композиции представляет собой количество, достаточное для уменьшения, облегчения, устранения или лечения воспаления. Субъект, нуждающийся в этом, включает субъекта, имеющего воспаление слизистой оболочки желудочно-кишечного тракта.Описанные в данном документе способы можно применять для уменьшения воспаления (например, воспаления, связанного с ВЗК, или в ткани, пораженной ВЗК, такой как ткань желудочно-кишечного тракта, например, тонкой кишки, толстой кишки или ободочной кишки), активации сигналинга WNT или уменьшения любого гистологических симптомов ВЗК (например, описанных в данном документе).

Агонисты FZD по настоящему изобретению можно вводить системно или местно, например, путем инъекции (например, подкожной, внутривенной, внутрибрюшинной, интратекальной, итнтраокулярной, интравитреальной и т.д.), имплантации, местно или перорально. В зависимости от пути введения агонисты FZD могут быть покрыты материалом для защиты агонистов от условий, которые могут инактивировать агонисты. В контексте данного документа молекулы четырехвалентного связывающего антитела могут

быть растворены или суспендированы в фармацевтически приемлемом, предпочтительно водном носителе. Кроме того, композиция, содержащая агонисты FZD, может содержать эксципиенты, такие как буферы, связывающие агенты, взрывчатые вещества, разбавители, ароматизаторы, смазывающие материалы и т.д. Обширный перечень эксципиентов, которые могут быть использованы в такой композиции, можно найти, например, в А. Kibbe, Handbook of Pharmaceutical Excipients (Kibbe, 2000). Молекулы четырехвалентного связывающего антитела можно также вводить вместе с иммуностимулирующими веществами, такими как цитокины.

Вариант осуществления данного изобретения включает способ получения церебральных органоидов с сосудистой сетью, проявляющих барьерные функции, с использованием описанных в данном документе молекул четырехвалентного антитела. Предполагается, что молекулы четырехвалентного связывающего антитела, описанные в данном документе, которые активируют сигналинг FZD4, будут стимулировать барьерной функции в эндотелиальных клетках, культивируемых с церебральными органоидами, и тем самым стимулируя ангиогенез.

изобретения Вариант осуществления данного включает способ направленной дифференцировки мультипотентных или плюрипотентных стволовых клеток (PSC) или индуцированных плюрипотентных стволовых клеток (iPS), включающий культивирование клеток в условиях, подходящих для направленной дифференцировки, где указанные условия культивирования дополнительно включают эффективное количество молекулы четырехвалентного связывающего антитела, описанной в данном документе. Исследования PSC мыши и человека выявили специфические подходы к добавлению факторов роста, включая Wnt, которые могут индуцировать дифференцировку PSC в разные клоны. Способы направленной дифференцировки PSC, включающие активацию сигналинга Wnt, известны в данной области техники, см., например, Lam et al. (2014) Semin Nephol 34(4); 445-461; Yucer et al. (September 6, 2017) Scientific Reports 7, Article number 10741. Предполагается, что агонисты FZD, т.е. описанные в данном документе агонисты FZD4 можно использовать в количестве, достаточном для активации сигнальных путей Wnt для прямой дифференцировки PSC в определенные мезодермальные линии, такие как кардиомиоциты (цит. Yoon et al. FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. 2018 Jan; 10(1):87-100. Stem Cell Reports. DOI: 10.1016/j.stemcr.2017.11.008.PMID: 29249665).

Вариантом осуществления данного изобретения является способ усиления регенерации тканей у субъекта, нуждающегося в этом, путем активации сигналинга Wnt у такого субъекта путем введения нуждающемуся в этом субъекту эффективного количества агонистов FZD, описанных в данном документе.

Вариант осуществления данного изобретения включает способ стимулирования барьерных функций эндотелиальных клеток в ткани глаза, например, ткани сетчатки, у субъекта, нуждающегося в этом, путем введения эффективного количества четырехвалентной связывающей молекулы по данному изобретению, которая связывает FZD4 и LPR5/6, агонист FZD4. В конкретном варианте осуществления агонист FZD4 по данному изобретению, который связывается с FZD4, и связывающий домен, который связывается с LRP5 и/или LRP6, имеют структуру диатело-Fc-Fab, изображенную на Фиг. 6 и 7. В одном варианте осуществления данного изобретения агонисты FZD4 для усиления ангиогенеза сетчатки содержат CDR легкой цепи, т. е. CDR-L1, CDR-L2 и CDR-L3, и CDR тяжелой цепи, т. е. CDR-H1, CDR-H2 и CDR-H3 FZD4-связывающих антител, указанных в таблицах 1, 2 и 6, и LRP5/6-связывающих антител, указанных в таблицах 3, 4 и 6.

В контексте данного документа субъектом может быть любое животное (например, млекопитающее), включая, помимо прочего, людей, отличных от человека приматов, лошадей, коров, собак, кошек, грызунов и т.п. Субъектом может быть плод. Как правило, субъект представляет собой человека.

Эффективные дозировки и схемы введения агонистов FZD и нуклеиновых кислот, которые их кодируют, описанные в данном документе, могут быть определены эмпирически, и проведение таких определений находится в пределах компетенции специалистов в данной области техники. Специалистам в данной области техники будет понятно, что дозировка таких агонистов FZD, которая должна быть введена, будет варьироваться в зависимости, например, от субъекта, который будет получать антитело, пути введения, конкретного типа используемых агонистов FZD и других лекарственных средств, которые вводятся. Руководство по выбору соответствующих доз агонистов FZD можно найти в литературе по терапевтическому применению антител, например, в Handbook of Monoclonal Antibodies, Ferrone, eds., Noges Publications, Park Ridge, N.J., (1985) ch. 22 and pp. 303-357; Smith, Antibodies in Human Diagnosis and Therapy, Haber, eds., Raven Press, New York (1977) pp. 365-389. Диапазоны доз для введения композиций достаточно велики для получения желаемого эффекта, например, стимулирования барьерных функций эндотелиальных клеток, сосудистого гомеостаза или усиления сигналинга Wnt. Дозировка не должна быть

настолько большой, чтобы вызывать неблагоприятные побочные эффекты, такие как нежелательные перекрестные реакции, анафилактические реакции и т.п. Как правило, дозировка будет варьироваться в зависимости от возраста, состояния, пола и степени заболевания или нарушения у пациента и может быть определена специалистом в данной области техники. Дозировка может быть скорректирована врачом индивидуально при наличии противопоказаний. Дозировка может варьироваться и вводиться в виде введения одной или более доз в течение одних или нескольких суток. Хотя индивидуальные потребности различаются, определение оптимальных диапазонов эффективных количеств вектора находится в пределах компетенции специалистов в данной области техники.

Кроме того, аспектом данного изобретения является способ получения описанных в данном документе молекул четырехвалентного связывающего антитела. Аминокислотные последовательности рецепторов FZD, например, FZD4 и корецепторы Wnt LRP5/6, и нуклеотидные последовательности, кодирующие рецепторы FZD и корецепторы Wnt LRP5/6, а также антитела и библиотеки антител, которые связывают FZD, например, FZD4 или корецепторы Wnt LRP5/6, легко доступны или могут быть получены с использованием методов, хорошо известных в данной области техники (см., например, публикацию США № 2015/0232554, авторы изобретения Gurney et al. и публикацию США № 2016/0194394, авторы изобретения Sidhu et al. и US 20190040144, авторы изобретения Pan et al., публикацию США № 2017/0166636, авторы изобретения Wu et al., публикацию США № 2016/0208018, авторы изобретения Chen et al., публикацию США № 2016/0053022, авторы изобретения Macheda et al.; публикацию США № 2015/031293, авторы изобретения Damelin et al.). В данной области техники известны различные способы создания и скрининга таких библиотек фагового дисплея на наличие антител и фрагментов антител, scFv, Fab, VL и VH, обладающих желаемыми характеристиками связывания. Такие способы рассмотрены, например, в публикации Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., 2001) и дополнительно описаны, например, в статьях McCafferty et al., Nature 348:552-554; Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Marks and Bradbury, in Methods in Molecular Biology 248:161-175 (Lo, ed., Human Press, Totowa, N.J., 2003); Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004); Lee et al., J. Mol. Biol. 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101(34): 12467-12472 (2004); и Lee et al., J. Immunol. Methods 284(1-2): 119-132(2004), которые включены в данный документ посредством ссылки. В некоторых методах фагового дисплея репертуары генов VH и VL отдельно клонируют при помощи полимеразной цепной реакции (ПЦР) и повторно комбинируют случайным образом в

библиотеках, фаговых которые затем подвергнуть скринингу онжом на антигенсвязывающий фаг, как описано в Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). Фаг, как правило, представляет фрагменты антител, как одноцепочечные фрагменты Fv (scFv), так и фрагменты Fab. Библиотеки из иммунизированных источников позволяют получить антитела с высокой аффинностью к иммуногену без необходимости конструирования гибридом. В альтернативном варианте можно клонировать наивный репертуар (например, от человека), чтобы обеспечить единый источник человеческих антител к широкому диапазону несобственных, а также собственных антигенов без какойлибо иммунизации, как описано в публикации Griffiths et al., EMBO J, 12: 725-734 (1993). И наконец, наивные библиотеки также можно создавать синтетически, путем клонирования неперестроенных V-генных сегментов из стволовых клеток и применения PCR-праймеров, содержащих случайную последовательность, для кодирования высоковариабельных областей CDR3 и для осуществления перестройки in vitro, как описано, например, в публикации Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992). Патентные публикации, описывающие библиотеки фагов антител человека, включают, например: патент США 5 750 373 и публикации патентов США №№ 2005/0079574, 2005/0119455, 2005/0266000, 2007/0117126, 2007/0160598, 2007/0237764, 2007/0292936 и 2009/0002360, все из которых включены в данный документ посредством ссылки. Антитела или фрагменты антител, выделенные из библиотек антител человека, в данном изобретении считаются антителами человека или фрагментами антител человека.

В одном варианте осуществления данного изобретения молекулу четырехвалентного связывающего антитела в формате диатело-Fc-scFv, содержащую домен, связывающий корецептор LRP5/6, содержащий LRP5/6-связывающее диатело, и FZD-связывающий домен, содержащий два FZD-связывающих scFv, получают путем

- (а) выбора домена Fc, имеющего С-конец и N-конец
- (b) идентификации антитела, которое связывается с рецептором FZD («исходное антитело к FZD»), и
- (c) идентификации антитела, которое связывает корецептор LRP 5/6 («исходное антитело к корецептору» или «исходное антитело к LRP 5/6»),
- (d) создания молекулы нуклеиновой кислоты, содержащей нуклеотидную последовательность, кодирующую полипептидный мономер, содержащий

- (i) пептид, содержащий домен VL, связанный с доменом VH, домены, содержащие CDR тяжелой цепи и/или легкой цепи антитела, полученного на стадии b, которые связывают рецептор FZD, или содержащие CDR тяжелой цепи и/или легкой цепи, полученные из антитела, полученного на стадии b, которые все еще связывают FZD, связанные с
- (ii) доменом Fc, полученным на стадии а, связанным с
- (iii) пептидом, содержащим домен VL, связанный с доменом VH, содержащим CDR легкой цепи и/или тяжелой цепи антитела, полученного на стадии с, или содержащим CDR, полученными из антитела, полученного на стадии с, и которые все еще связывают корецептор LRP 5/6,
- (e) экспрессии молекулы нуклеиновой кислоты, полученной на стадии d, с получением мономера полипептида и затем димеризации полипептида,

причем VH и VL, которые связывают FZD каждого мономера, образуют scFv, который связывает FZD, а домены VH и VL, которые связывают корецептор LRP 5/6 одного мономера, связывают VL и VH, которые связывают корецептор Wnt другого мономера, образуя диатело, связывающее корецептор LRP5/6, и

при этом полипептидный мономер димеризуется через области Fc с образованием молекулы четырехвалентного связывающего антитела, содержащей домен Fc, FZD-связывающий домен, состоящий из двух FZD-связывающих scFv, и домен, связывающий корецептор LRP5/6, состоящий из диатела,

при этом FZD-связывающий домен и домен, связывающий корецептор LRP5/6, находятся на противоположных концах домена Fc. Предполагается, что пептиды, содержащие домены VL и VH, которые связывают FZD или LRP, могут быть связаны либо с N-, либо с C-концом домена Fc через домен VL или домен VH, при условии, что FZD-связывающий домен и LRP-связывающий домен находятся на противоположных концах домена Fc. FZD может быть одним или более из FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9 и FZD10.

В одном варианте осуществления данного изобретения молекула четырехвалентного связывающего антитела имеет два FZD-связывающих Fab, например, FZD4-связывающие Fab, связанные с одним концом домена Fc, и два LRP5/6-связывающих scFv или LRP5/6-

связывающее диатело, соединенное с другим концом домена Fc, и ее получают путем,

- (a) идентификации определяющих комплементарность областей легкой цепи (CDR-L1, CDR-L2 и CDR-L3) и/или определяющих комплементарность областей тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, которое связывается с FZD, например, FZD4 или FZD5 («исходное антитело к FZD») и
- (b) идентификации CDR-L1, CDR-L2 и CDR-L3 и/или CDR-H1, CDR-H2 и CDR-H3 одного или более антител, которые связываются с LRP5 или LRP6 («исходное антитело к LRP5/6»),
- (c) создания молекулы нуклеиновой кислоты, кодирующей полипептид «тяжелой цепи», содержащий
 - (i) пептид, содержащий константную область тяжелой цепи 1 иммуноглобулина (домен CH1), связанную с доменом VH, содержащим CDR-H1, H2 и H3 антитела, полученного на стадии а), или CDR-H1, CDR-H2 и CDR-H3, полученные из антитела, полученного на стадии а), которое все еще связывает FZD4, связанным с
 - (іі) областью Fc, связанной с
 - (iii) пептидом, содержащим домен VL, содержащим CDR-L1, CDR-L2 и CDR-L3 из антитела, полученного на стадии b), связанный с доменом VH, содержащим CDR-H1, CDR-H2 и CDR-H3 из антитела, полученного на стадии b), или CDR-H1, CDR-H2 и CDR-H3, полученные из антитела, полученного на стадии b), которое связывается с LRP5 или LRP6,
- (d) создания молекулы нуклеиновой кислоты, содержащей последовательность нуклеиновой кислоты, которая кодирует полипептид «легкой цепи», содержащий константную область легкой цепи 1 иммуноглобулина (CL1), связанную с доменом VL, где домен VL содержит CDR-L1 легкой цепи FZD, CDR-L2 и CDR-L3 из антитела, полученного на стадии а),
- (e) экспрессии молекул нуклеиновой кислоты из (c) и (d) с получением полипептида тяжелой цепи и полипептида легкой цепи,

при этом два полипептида тяжелой цепи димеризуются через свои области Fc и VH, который связывает FZD, и домены CH1 полипептида тяжелой цепи, образуют пару с VL,

который связывает FZD, и доменами CL1 полипептида легкой цепи, образуя два Fab к FZD, и

при этом VH и VL, которые связывают LRP5/6, в каждой паре полипептидов тяжелых цепей образуют scFv, который связывает LRP5/6, или VH и VL, которые связывают LRP5/6, одного полипептида тяжелой цепи в димерной паре с VL и VH, которые связывают LRP5/6, другого полипептида тяжелой цепи в димере с образованием диатела, тем самым образуя молекулу четырехвалентного связывающего антитела, содержащую домен Fc, два Fab к FZD, связанные либо с N-, либо с C-концом домена Fc, и двумя LRP5/6-связывающими scFv или LRP5/6-связывающим диателом, которые связаны с другим концом домена Fc.

Исходное антитело к FZD может представлять собой антитело, которое специфически связывается с одним FZD, например, FZD4, или представляет собой панспецифическое антитело, связывающее FZD, например, FZD4 или FZD5, и один или более других рецепторов FZD, и антагонизирует сигналинг Wnt или ингибирует связывание Wnt с рецептором. В качестве альтернативы, исходное антитело к FZD может представлять собой антитело, которое специфически связывается с одним FZD, например, FZD4 или FZD5, или представляет собой панспецифическое антитело, связывающее один FZD, например, FZD4 или FZD5, и один или более других рецепторов FZD, не антагонизируя сигналинг Wnt или не ингибируя связывание Wnt с рецептором. Исходное антитело к LRP может представлять собой антитело, которое специфически связывается с LRP5/6 или панспецифически связывается с LRP5/6 или панспецифически к или ингибирует связывание Wnt с корецептором. Альтернативно, исходное антитело к LRP5/6 может представлять собой антитело, которое связывается с корецептором LRP 5/6 или панспецифически связывается с корецептором LRP 5/6 или панспецифически связывается с LRP5/6 и с одним или более корецептором LRP 5/6 или панспецифически связывается с LRP5/6 и с одним или более корецептором LRP 5/6 или панспецифически связывается с LRP5/6 и с одним или более корецептором LRP 5/6.

Исходное антитело к FZD может представлять собой фрагмент антитела, который связывает рецептор FZD, например, Fab, VL или VH. CDR легкой и тяжелой цепей, VH и/или VL в FZD-связывающем домене агонистов FZD могут быть идентичны CDR, VH и/или VL исходного антитела к FZD или могут иметь по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 96%, по меньшей мере 96%, по меньшей мере 96%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 99% идентичности с CDR, VH или VL исходного антитела и все еще сохраняют связывание с рецептором FZD. CDR, VH и/или VL в FZD-связывающем домене агонистов FZD могут быть идентичны CDR, VH и/или VL

FZD4-связывающего или FZD5-связывающего антитела из таблицы 1, таблицы 2 или таблицы 6, или может иметь по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, 75%, по меньшей мере 80%, по меньшей мере 90%, по меньшей мере 90%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 98% или по меньшей мере 99% идентичности с CDR, VH или VL FZD4-связывающего или FZD5-связывающего антитела из таблицы 1, или таблицы 2, или таблицы 6, и все еще сохраняют связывание с рецептором FZD.

Аналогичным образом, исходное антитело к корецептору Wnt может представлять собой фрагмент антитела, например, Fab, VL или VH, который связывает корецептор LRP, например, LRP5/6. CDR легкой цепи и CDR тяжелой цепи, VH и/или VL в домене, связывающем корецептора Wnt, агонистов FZD4 могут быть идентичны CDR, VH и/или VL исходного антитела к корецептору Wnt или могут иметь по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% идентичности с CDR, VH или VL исходного антитела и все еще сохраняют связывание с корецептором LRP. CDR легкой цепи и CDR тяжелой цепи, VH и/или VL в LRP5/6-связывающем домене агонистов FZD могут быть идентичны CDR легкой цепи и CDR тяжелой цепи, VH и/или VL LRPсвязывающего антитела из таблицы 3, таблицы 4 или таблицы 6 или могут иметь по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 96%, по меньшей мере 97%, по меньшей мере 98% или по меньшей мере 99% идентичности с CDR легкой цепи и CDR тяжелой цепи, VH или VL LRP-связывающего антитела из таблицы 3, таблицы 4 или таблицы 6, и все еще сохраняют связывание с корецептором LRP.

В изобретения варианте осуществления данного два полипептида молекулы четырехвалентного связывающего антитела димеризуются по их последовательностям Fc в конфигурации «выступ-во-впадину». Молекулы четырехвалентного связывающего антитела по данному изобретению могут быть получены путем димеризации двух полипептидов в конфигурации «выступ-во-впадину». Конфигурация «выступ-во-впадину» повышает модульность данного изобретения, облегчая ассоциацию пептидов, содержащих связывающие фрагменты, которые связывают разные эпитопы на рецепторе FZD или корецепторе LRP5/6, или с эпитопами на разных членах семейства рецепторов или корецепторов FZD, см., например, Фиг. 6. Способы конструирования молекул Fc с

помощью технологии «выступы-во-впадины» хорошо известны в данной области техники, см., например, WO 2018/026942, авторы изобретения Van Dyk et al., Carter P. (2001) J. Immunol. Methods 248, 7–15; Ridgway et al. (1996) Protein Eng. 9, 617–621; Merchant, et al. (1998) Nat. Biotechnol. 16, 677–681, and; Atwell et al., (1997) J. Mol. Biol. 270, 26–35.

Не желая быть связанными теорией, предполагается, что молекулы четырехвалентного связывающего антитела по настоящему изобретению облегчают взаимодействие рецептора FZD и корецептора LRP5/6 на клетке, способствуя их сближению и стабилизируя конформации рецепторных белков, что позволяет активировать сигнальные пути Wnt. Еще одни вариант осуществления данного изобретения представляет собой способ облегчения взаимодействия рецептора FZD и корецептора LRP5/6 на клетке, посредством чего активируется сигнальный путь Wnt в клетке, включающий: а) выбор домена Fc или его фрагмента, содержащего домен СН3, имеющий С-конец и N-конец; b) связывание первого двухвалентного связывающего домена, который связывает рецептор FZD, с одним концом домена Fc и связывание второго двухвалентного связывающего домена, который связывается с корецептором Wnt на другом конце домена Fc, тем самым образуя четырехвалентную связывающую молекулу антитела; с) приведение в контакт указанной молекулы четырехвалентного связывающего антитела с клеткой, экспрессирующей указанные рецептор FZD и корецептор Wnt, в условиях, при которых и рецептор FZD, и корецептор связываются с молекулой четырехвалентного связывающего антитела, тем самым активируя сигнальный путь Wnt. Домен, связывающий корецептор Wnt, и FZDсвязывающий домен являются двухвалентными, и каждый из них содержит домен VL и/или VH, или V_HH, и один или оба связывающих домена могут быть моноспецифическими. В варианте осуществления изобретения один или оба домена, связывающих корецептор Wnt, и FZD-связывающий домен являются биспецифическими. В варианте осуществления изобретения домен, связывающий корецептор Wnt, является двухвалентным и биспецифическим. FZD-связывающий домен может содержать scFV, который связывает FZD, V_HH, который связывает FZD, или Fab, который связывает FZD, или их комбинации, или диатело, которое связывает FZD. Домен, связывающий корецептор Wnt, может содержать scFV, который связывает корецептор LRP5/6, V_HH, который связывает LRP5/6, Fab, который связывает корецептор LRP5/6, или их комбинации, или диатело, которое связывает корецептор LRP5/6. В варианте осуществления изобретения FZD-связывающий домен содержит два FZD-связывающих Fab, а домен, связывающий корецептор Wnt, содержит биспецифическое двухвалентное диатело, которое связывает LRP5/6 на двух разных эпитопах.

Молекулы четырехвалентного связывающего антитела по данному изобретению инициируют сигнальный путь (пути) Wnt, которые стимулируются комплексами FZD-корецептор, например, путь β-катенина, стимулируемый комплексами FZD-LRP5/6. Лиганды Wnt функционируют, способствуя кластеризации рецепторов FZD с корецепторами. Не желая быть связанными какой-либо теорией, предполагается, что описанные в данном документе агонисты FZD связывают как рецептор FZD, так и его корецептор LRP5/6, тем самым образуя комплекс, который имитирует связывание молекулы Wnt с рецептором FZD и корецептором(-ами)LRP 5/6, который, в свою очередь, активирует сигнальные пути Wnt, путь Wnt/β-катенина.

Вариантом осуществления данного изобретения является способ активации сигнального пути Wnt, включающий приведение в контакт клетки, экспрессирующей рецептор FZD и его корецептор LRP5/6, с эффективным количеством агонистов FZD по настоящему изобретению, содержащих FZD-связывающий домен и домен, связывающий LRP5/6.

Агонисты FZD по данному изобретению могут быть получены рекомбинантным путем, например, с помощью сборки по Гибсону (см. Gibson et al. (2009) Nature Methods 6 (5): 343—345 and Gibson DG. (2011) Methods in Enzymology 498: 349—361), или молекулы могут быть получены синтетическим путем, например, с использованием коммерческих устройств для синтеза, например, автоматических синтезаторов Applied Biosystems, Inc., Beckman, etc. С помощью синтезаторов природные аминокислоты могут быть заменены неприродными аминокислотами. Конкретную последовательность и способ приготовления определяют из соображений удобства, экономической целесообразности, необходимой чистоты и т. п. При необходимости, во время синтеза или во время экспрессии в пептид можно вносить различные группы, которые обеспечивают связывание с другими молекулами или с поверхностью.

Связывающие домены агонистов FZD могут быть связаны с доменом Fc через линкер. В некоторых вариантах осуществления соседние домены VH и VL могут быть присоединены друг к другу через пептидный линкер. В некоторых вариантах осуществления соседние константные домены и вариабельные домены присоединены через пептидный линкер. Линкер может быть, например, полипептидным линкером или непептидным линкером. В некоторых вариантах осуществления константные домены и вариабельные домены агонистов FZD присоединены к домену Fc через пептидный линкер. Подходящие линкеры хорошо известны в данной области техники, например, линкер XTEN (см. WO 2013120683, авторы изобретения Schellenberger et al.). В некоторых вариантах осуществления

пептидный линкер содержит по меньшей мере 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 или по меньшей мере 100 аминокислот. В некоторых вариантах осуществления пептидный линкер имеет длину от 1 до 100, от 5 до 75, от 1 до 50, от 5 до 50, от 1 до 30, от 1 до 25, от 5 до 25, от 5 до 20, от 5 до 15, от 5 до 10, 1-10 или 1-5 аминокислот. Модульные аспекты данного изобретения позволяют смешивать и сопоставлять связывающие домены, полученные из антител, которые связываются с рецептором FZD, или антител, которые связывают корецептор LRP5/6 на противоположных концах домена Fc, для создания молекулы четырехвалентного связывающего антитела, которая может взаимодействовать с комплексами рецептор FZD - корецептор LRP5/6 для активации сигналинга Wnt.

Домен Fc агонистов FZD, с линкером или без него, имеет длину и гибкость, которые позволяют молекуле четырехвалентного связывающего антитела по настоящему изобретению связываться как с рецептором FZD, так и с его корецептором LRP5/6, тем самым стабилизируя конформации рецептора, которые совместимы с активацией нисходящих сигнальных путей Wnt. В одном из вариантов осуществления данного изобретения домен Fc или его фрагмент, содержащий домен CH3, с линкером или без него, содержит более 100 аминокислот, охватывающих до 300 Å, более 125 аминокислот, охватывающих до 375 Å, более 150 аминокислот, охватывающих до 450 Å, более 175 аминокислот, охватывающих до 525 Å, или более 300 аминокислот, охватывающих до 900 Å. Предпочтительно домен Fc имеет длину от около 200 до около 300 аминокислот.

Использование в данном описании и в прилагаемой формуле изобретения форм единственного числа включает ссылку на множественное число, если в контексте явно не указано иное. Таким образом, например, ссылка на «клетку» включает множество таких клеток, а ссылка на «пептид» включает ссылку на один или более пептидов и их эквивалентов, например, полипептидов, известных специалистам в данной области техники, и так далее.

Антитело с созревшей аффинностью или «созревание антитела» относится к антителу с одним или более изменениями в одной или более гипервариабельных областях (HVR) по сравнению с родительским или исходным антителом, которое не имеет таких изменений, такие изменения приводят к улучшению аффинности антитела к антигену или к другим

желаемым свойствам молекулы.

Под термином «содержащий» подразумевается, что перечисленные элементы требуются для композиции/способа/набора, однако для образования композиции/способа/набора и тому подобного в рамках формулы изобретения могут быть включены и другие элементы. Например, композиция, содержащая молекулы четырехвалентного связывающего антитела, представляет собой композицию, которая может содержать другие элементы в дополнение к молекулам четырехвалентного связывающего антитела, например, функциональные фрагменты, такие как полипептиды, малые молекулы или связанные нуклеиновые кислоты, например, ковалентно связанные с молекулами четырехвалентного связывающего антитела; агенты, которые повышают стабильность композиции молекулы четырехвалентного связывающего антитела, агенты, которые повышают растворимость композиции молекулы четырехвалентного связывающего антитела, адъюванты и т. д., как легко понять в данной области техники, за исключением элементов, которые охватываются любыми отрицательными оговорками.

Под термином «состоящий по существу из» подразумевается ограничение рамок описанной композиции или способа указанными материалами или поэтапными действиями, не оказывающими существенного влияния на основную и новую характеристику(-и) объекта изобретения. Например, молекула четырехвалентного связывающего антитела, «состоящая основном из» описанной последовательности, аминокислотную имеет последовательность описанной последовательности плюс или минус около аминокислотных остатков на границах последовательности на основе последовательности, из которой она была получена, например, на около 5 остатков, 4 остатка, 3 остатка, 2 остатка или около 1 остаток меньше, чем указанный связанный аминокислотный остаток, или на около 1 остаток, 2 остатка, 3 остатка, 4 остатка или 5 остатков больше, чем указанный связанный аминокислотный остаток.

Под термином «состоящий из» подразумевается исключение любого элемента, поэтапного действия или ингредиента, не указанного в формуле изобретения, из композиции, способа или набора. Например, молекула четырехвалентного связывающего антитела, «состоящая» из описанной последовательности, состоит только из описанной аминокислотной последовательности.

Если представлен диапазон значений, подразумевается, что каждое промежуточное значение с точностью до десятой доли единицы нижнего предела, если контекст явно не

указано. Каждый меньший диапазон между любым установленным значением или промежуточным значением в указанном диапазоне и любым другим установленным или промежуточным значением в указанном диапазоне охватывается изобретением. Верхний и нижний предел этих меньших диапазонов могут независимо быть включены или исключены в диапазоне, и каждый диапазон, в котором либо один, либо оба предела включены в меньшие диапазоны, также охватываются настоящим изобретением, причем субъект имеет любой конкретный исключенный предел в указанном диапазоне. Если указанный диапазон включает один или оба предела, диапазоны, исключающие один или оба этих включенных предела, также включены в данное изобретение.

Известно, что основная структурная единица антитела включает тетрамер. Каждый тетрамер состоит из двух идентичных пар полипептидных цепей, каждая из которых имеет одну «легкую» (около 25 кДа) и одну «тяжелую» цепь (около 50-70 кДа). N-концевая часть каждой цепи включает вариабельную область из около 100-110 или более аминокислот, которая в первую очередь отвечает за распознавание антигена. С-концевая часть каждой цепи определяет константную область, в первую очередь отвечающую за эффекторные функции, например, за связывание Fc-рецепторов и активацию антителозависимой клеточной цитотоксичности (ADCC) и комплементзависимой цитотоксичности (CDC). Способы димеризации пептидов с использованием конфигурации «выступ-во-впадину» описаны в WO 2018/026942, авторы изобретения Van Dyk et al., Carter P. (2001) J. Immunol. Methods 248, 7–15; Ridgway et al. (1996) Protein Eng. 9, 617–621; Merchant, et al. (1998) Nat. Biotechnol. 16, 677-681, and; Atwell et al., (1997) J. Mol. Biol. 270, 26-35. Области Fc могут представлять собой Merrimack (цепь с «выступами»: Q347M, Y349F, T350D, T366W и L368M; цепь с «впадинами»: S354I, E357L, T366S, L368A и Y407V), Merchant (цепь с «выступом»: Т366W; цепь с «впадинами»: Т336S, L368A и Y407V) или Merchant S:S (мутации Merchant с дополнительным вариантом S354C в цепи с «выступами» и Y349C в цепи с «впадинами»). Области Fc также могут содержать мутации, которые изменяют их эффекторную функцию, например, область Fc может иметь ослабленные эффекторные функции за счет аминокислотных мутаций, например, вариантов DANG и вариантов LALAPS. Способы ослабления эффекторной функции антител хорошо известны в данной области техники, включая, например, аминокислотные замены в областях Fc, например, варианты N297G и D265A, N297G (DANG), варианты L234A, L235A, P331S (LALAPS), LALAPS Merchant, LALAPS Merchant S-S (Merchant A.M. et al Nature Biothechnol 1998 vol 16 p677-681) или замены L234A, L235A, P329G (LALA-PG), см., например, Lo et al. "Effector

Attenuating Substitutions that Maintain Antibody Stability and Reduce Toxicity in Mice. The Journal of Biological Chemistry Vol. 292, No. 9, pp. 3900 -3908, March 3, 2017, которая включена в данный документ посредством ссылки. В общем, молекулы антител, полученные от человека, относятся к любому из классов IgG, IgM, IgA, IgE и IgD, которые отличаются друг от друга по природе тяжелой цепи, присутствующей в молекуле. Некоторые классы также имеют подклассы, такие как IgG₁, IgG₂, и другие. Кроме того, у людей легкая цепь может быть каппа-цепью или лямбда-цепью.

Три сильно отличающиеся участка внутри каждого из вариабельного домена тяжелой цепи, домена VH или VH, и вариабельного домена легкой цепи, домена VL или VL, называемые определяющими комплементарность областями (CDR), расположены между более консервативными фланкирующими участками, известными как «каркасные области», или «FR». Таким образом, термин «FR» относится к аминокислотным последовательностям, которые в естественных условиях расположены между и рядом с CDR в иммуноглобулинах. Домен VH, как правило, имеет четыре FR, называемых в данном документе каркасной областью 1 VH (FR1), каркасной областью 2 VH (FR2), каркасной областью 3 VH (FR3) и каркасной областью 4 VH (FR4). Аналогично, домен VL, как правило, имеет четыре FR, называемых в данном документе каркасной областью 1 VL (FR1), каркасной областью 2 VL (FR2), каркасной областью 3 VL (FR3) и каркасной областью 4 VL (FR4). В молекуле антитела три CDR домена VL (CDR-L1, CDR-L2 и CDR-L3) и три CDR домена VH (CDR-H1, CDR-H2 и CDR-H3) расположены относительно друг друга в трехмерном пространстве с образованием антигенсвязывающего сайта в вариабельной области антитела. Поверхность антигенсвязывающего сайта комплементарна трехмерной поверхности связанного антигена. Аминокислотные последовательности доменов VL и VH могут быть пронумерованы, а CDR и FR в них идентифицированы/определены в соответствии с системой нумерации Kabat (Kabat et al., 1991, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.) или Международной информационной системой по иммуногенетике (системой нумерации IMGT; Lefranc et al., 2003, Development and Comparative Immunology 27:55-77), обе включены в данный документ посредством ссылки. Специалист в данной области техники должен обладать знаниями для нумерации аминокислотных остатков домена VL и домена VH и идентификации в них CDR и FR в соответствии с обычно используемой системой нумерации, такой как система нумерации IMGT, система нумерации Kabat и т. п.

Употребляемый в данном документе термин «антитело» включает цельные антитела и любые их антиген связывающие фрагменты (т. е. «антигенсвязывающие части») или

одиночные цепи. «Полное антитело» или полноразмерное относится к гликопротеину, содержащему по меньшей мере две тяжелые (Н) цепи и две легкие (L) цепи, соединенные между собой дисульфидными связями, или к его антигенсвязывающей части. Каждая тяжелая цепь состоит из вариабельной области или домена тяжелой цепи (обозначаемой в данном документе VH) и константной области тяжелой цепи. Константная область тяжелой цепи состоит из трех доменов - СН1, СН2 и СН3. Каждая легкая цепь состоит из вариабельной области или домена легкой цепи (обозначаемого в данном документе сокращенно как VL) и константной области легкой цепи. Константная область легкой цепи состоит из одного домена, CL или CL1. Области VH и VL могут быть дополнительно поделены на области гипервариабельности, называемые определяющими комплементарность областями (CDR), перемежающиеся более консервативными областями, называемыми каркасными областями (FR). Каждая VH и VL состоит из трех CDR и четырех FR, расположенных от N-конца к C-концу в следующем порядке: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Вариабельные области тяжелой и легкой цепей содержат связывающий домен, который взаимодействует с антигеном. Константные области антител могут опосредовать связывание иммуноглобулина с тканями или факторами организма-хозяина, включая различные клетки иммунной системы (например, эффекторные клетки) и первый компонент (Clq) классической системы комплемента.

Термин «антигенсвязывающая часть» или «антигенсвязывающий фрагмент» антитела (или просто «часть антитела» или «фрагмент антитела») в данном контексте относится к одному или нескольким фрагментам, частям или доменам антитела, которые сохраняют способность специфически связываться с антигеном. Показано, что фрагменты полноразмерного антитела могут выполнять антигенсвязывающую функцию антитела. Примеры связывающих фрагментов, охватываемых термином «антигенсвязывающая часть» антитела, включают (i) фрагмент Fab, моновалентный фрагмент, состоящий из доменов VL, VH, CL1 и CH1; (ii) фрагмент F(ab')₂, двухвалентный фрагмент, содержащий два фрагмента F(ab')', связанные дисульфидным мостиком в шарнирной области; (iii) фрагмент Fd, состоящий из доменов VH и CH1; (iv) фрагмент Fv, состоящий из доменов VL и VH одного плеча антитела; (v) фрагмент dAb (Ward et al. (1989) Nature 241:544-546), который состоит из домена VH; и (vi) выделенную определяющую комплементарность область (CDR). Кроме того, хотя два домена фрагмента Fv, VL и VH, кодируются отдельными генами, они могут быть соединены с помощью рекомбинантных способов синтетическим линкером, который обеспечивает возможность создания ими одной белковой цепи, в которой пара областей VL и VH образуют моновалентные молекулы

(известные как одноцепочечные Fv (scFv); см., например, Bird et al. (1988) Science 242:423-426; и Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Подразумевается, что такие одноцепочечные антитела также охватываются термином «антигенсвязывающая часть» антитела. Также охватываются другие формы одноцепочечных антител, такие как диатела (см., например, Holliger et al. (1993) PNAS. USA 90:6444-6448).

В контексте данного документа «диатела» или иногда называемые в данном документе «диа» представляют собой димерные фрагменты антител. В каждом полипептиде диатела вариабельный домен тяжелой цепи (VH) связан с вариабельным доменом легкой цепи (VL), но в отличие от одноцепочечных Fv-фрагментов линкер между VL и VH слишком короткий для внутримолекулярного спаривания, поэтому каждый антигенсвязывающий сайт образуется путем спаривания VH и VL одного полипептида с VH и VL другого полипептида. Таким образом, диатела имеют два антигенсвязывающих сайта и могут быть моноспецифическими или биспецифическими (см., например, Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123; Kontermann and Dubel eds., Antibody Engineering (2001) Springer-Verlag. New York. 790 pp. (ISBN 3-540-41354-5), которая включена в данный документ посредством ссылки.

В контексте данного документа термин «эффективное количество» агента, например, молекул четырехвалентного связывающего антитела или фармацевтической композиции, содержащей эти молекулы, относится к количеству, эффективному в дозах и в течение периодов времени, необходимых для достижения желаемого результата. В некоторых вариантах осуществления терапевтически эффективное количество представляет собой такое количество, которое снижает частоту и/или степень тяжести, стабилизирует одну или более характеристик и/или задерживает дебют одного или более симптомов заболевания, нарушения и/или патологического состояния. В некоторых вариантах осуществления количество агонистов FZD, вводимых субъекту, находится в диапазоне от около 0,001 мг/кг до 10 мг/кг, от 0,5 мг/кг до около 10 мг/кг или от около 0,5 мг/кг до около 1 мг/кг массы тела субъекта. Например, в некоторых вариантах осуществления агонист FZD4 можно наносить на глаз в количестве, например, около 0,02-1,5 мг, около 0,05-1,0 мг или около 0,1-0,5 мг на глаз.

В контексте данного документа термин «эпитоп» включает любую белковую детерминанту, способную специфически связываться с иммуноглобулином или его фрагментом, или с Т-клеточным рецептором. Термин «эпитоп» включает любую белковую детерминанту, способную специфически связываться с иммуноглобулином или Т-клеточным рецептором.

Эпитопные детерминанты, как правило, состоят из химически активных поверхностных групп молекул, таких как аминокислоты или боковые цепи сахара и, как правило, имеют специфические трехмерные структурные характеристики, а также специфические зарядовые характеристики. Считается, что антитело специфически связывает антиген, если константа диссоциации составляет ≤ 10 мкМ; например, ≤ 100 нМ, предпочтительно ≤ 1 нМ. и более предпочтительно ≤ 1 нМ.

Константная область молекул иммуноглобулина также называется кристаллизующимся фрагментом иммуноглобулина, «областью Fc» или «доменом Fc». Домен Fc состоит из двух идентичных белковых фрагментов, полученных из второго и третьего константных доменов двух тяжелых цепей антитела, а домены Fc IgG несут высококонсервативный сайт N-гликозилирования. Гликозилирование фрагмента Fc необходимо для активности, опосредованной Fc-рецептором. В варианте осуществления изобретения домен Fc молекулы четырехвалентного связывающего антитела сконструирован таким образом, что он не нацелен на клетку, которая связывает молекулу четырехвалентного связывающего антитела для ADCC или CDC-зависимой гибели. В варианте осуществления изобретения домен Fc молекулы четырехвалентного связывающего антитела представляет собой пептидный димер в конфигурации «выступ-во-впадину». Пептидный димер может быть гетеродимером.

Термины «индивид», «субъект», «хозяин» и «пациент» используются в настоящем документе взаимозаменяемо и относятся к любому субъекту-млекопитающему, в частности к людям, которым требуется проведение диагностики, лечения или терапии.

«LRP», «белки LRP» и «рецепторы LRP» используются в данном документе для обозначения членов семейства белков, родственных рецепторам липопротеинов низкой плотности. Эти рецепторы представляют собой однопроходные трансмембранные белки, которые связывают и интернализуют лиганды в процессе рецептор-опосредованного эндоцитоза. Белки LRP LRP5 (например, LRP5: NP_002326.2) и LRP6 (например, LRP6: NP_002327.2) включены в рецепторный комплекс Wnt, необходимый для активации сигнального пути Wnt-β-катенин. См. также, информацию о LRP5 и LRP6 человека/мыши: https:// www.uniprot. org/uniprot/O75581, https:// www.uniprot.org/uniprot/O88572.

В контексте данного документа термин «фрагмент полипептида» относится к полипептиду, который имеет N-концевую и/или C-ксиконцевую делецию, но где оставшаяся

аминокислотная последовательность идентична соответствующим положениям в природной последовательности, которая выведена, например, из полноразмерной последовательности кДНК.

В контексте данного документа термин «паратоп» включает антигенсвязывающий сайт в вариабельной области антитела, который связывается с эпитопом.

Фрагменты антител «одноцепочечные Fv» или «scFv» содержат домены VH и VL антитела, где эти домены присутствуют в одной полипептидной цепи. В целом, полипептид Fv дополнительно содержит полипептидный линкер между доменами VH и VL, дающий возможность sFv образовываться требуемой структуре для связывания антигена. Обзор scFv и других фрагментов антител см. в James D. Marks, Antibody Engineering, Chapter 2, Oxford University Press (1995) (Carl K. Borrebaeck, Ed.).

«Однодоменное антитело» (sdAb) или «наноантитело» представляет собой фрагмент антитела, состоящий из одного мономерного вариабельного домена антитела. В контексте данного документа «VHH» или «фрагмент VHH» относится к VH человека, который был сконструирован таким образом, чтобы быть независимым от легкой цепи (Nilvebrant et al. Curr Pharm Des. (2016) 22(43):6527-6537; Barthelemy et al., Journal of Biological Chemistry (2007) 283:3639-3654).

Термины «лечение», «лечить» и тому подобное используются в данном документе для обозначения достижения желаемого фармакологического и/или физиологического эффекта. Эффект может быть профилактическим с точки зрения полного или частичного предотвращения заболевания или его симптомов и/или может быть терапевтическим с точки зрения частичного или полного излечения заболевания и/или неблагоприятного явления, связанного с этим заболеванием. Используемый в данном документе термин «лечение» охватывает любое лечение заболевания у млекопитающего и включает: (а) предотвращение появления заболевания у субъекта, который может быть предрасположен к заболеванию, но у которого это заболевание еще не диагностировано; (b) подавление заболевания, то есть замедление или прекращение его развития; или (c) облегчение заболевания, т.е. вызывание регресса заболевания. Терапевтический агент может быть введен до, во время или после начала заболевания или травмы. Лечение текущего заболевания, при котором лечение стабилизирует или уменьшает нежелательные клинические симптомы пациента, представляет особый интерес. Такое лечение желательно проводить до полной потери функции в пораженных тканях. Терапия у субъекта может

быть проведена во время симптоматической стадии заболевания, и в некоторых случаях после симптоматической стадии заболевания.

Способность молекул четырехвалентного связывающего антитела по настоящему изобретению активировать сигналинг Wnt может быть подтверждена рядом анализов. Молекулы четырехвалентного связывающего антитела по настоящему изобретению, как правило, инициируют реакцию или активность, аналогичную или такую же, как инициируемая естественным лигандом рецептора FZD. Молекулы четырехвалентного связывающего антитела по настоящему изобретению активируют сигнальные пути Wnt, например, канонический сигнальный путь Wnt-β-катенин. В контексте данного документа термин «активирует» относится к измеримому увеличению внутриклеточного уровня сигнального пути Wnt, например, сигнального пути Wnt-β-катенин, по сравнению с уровнем в отсутствие агониста FZD по изобретению.

В данной области техники известны различные способы измерения уровня активации Wntβ-катенина. Они включают, но не ограничиваются анализами, которые измеряют: экспрессию гена-мишени Wnt-β-катенин; экспрессию репортерного гена LEF/TCF superTopFLASH, pBAR); стабилизацию (например, TopFLASH, В-катенина; фосфорилирование LRP5/6; фосфорилирование Dishevelled; транслокацию аксина из цитоплазмы на клеточную мембрану и связывание с LRP5/6. Канонический сигнальный путь Wnt-β-катенин в конечном итоге приводит к изменениям в экспрессии генов через факторы транскрипции TCF1, TCF7L1, TCF7L2 и LEF1. Транскрипционный ответ на активацию Wnt был охарактеризован для ряда клеток и тканей. Таким образом, глобальное профилирование транскрипции с использованием способов, хорошо известных в данной области техники, можно использовать для оценки активации сигналинга Wnt-β-катенин.

Изменения экспрессии Wnt-чувствительных генов обычно опосредованы транскрипционными факторами ТСF и LEF. Репортерный анализ ТСF оценивает изменения в транскрипции генов, контролируемых TCF/LEF, для определения уровня сигналинга Wntβ-катенин. Репортерный анализ ТСF был впервые описан Korinek, V. et al., 1997. Этот способ, также известный как ТОР/FOP, включает использование трех копий оптимального мотива TCF CCTTTGATC или трех копий мутантного мотива CCTTTGGCC перед минимальным промотором c-Fos, управляющим экспрессией люциферазы (pTOPFLASH и pFOPFLASH, соответственно), для определения трансактивационной активности эндогенного β-катенина/ТСГ. Более высокое соотношение этих двух репортерных активностей (ТОР/FОР) указывает на более высокую активность β-катенин/ТСГ.Более новая и более чувствительная версия этого репортера называется pBAR и содержит 12 повторов мотивов TCF (Biechele and Moon, Methods Mol Biol. 2008;468:99-110, PMID: 19099249).

Общие методы молекулярной и клеточной биохимии можно найти в таких стандартных руководствах как Molecular Cloning: A Laboratory Manual, 3rd Ed. (Sambrook et al., CSH Laboratory Press 2001); Short Protocols in Molecular Biology, 4th Ed. (Ausubel et al. eds., John Wiley & Sons 1999); Protein Methods (Bollag et al., John Wiley & Sons 1996); Nonviral Vectors for Gene Therapy (Wagner et al. eds., Academic Press 1999); Viral Vectors (Kaplift & Loewy eds., Academic Press 1995); Immunology Methods Manual (I. Lefkovits ed., Academic Press 1997); and Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle & Griffiths, John Wiley & Sons 1998).

Если не указано иное, научные и технические термины, используемые в данном изобретении, должны иметь значения, которые обычно понимаются специалистами в данной области техники. Кроме того, если контекст не требует иного, термины в единственном числе включают множественное число, а термины в множественном числе включают единственное число. Как правило, номенклатуры, используемые в связи с методиками и методами культивирования клеток и тканей, молекулярной биологии, а также химии белков и олиго- или полинуклеотидов, и гибридизации, описанных в данном документе, хорошо известны и широко используются в данной области техники. Стандартные методики используются рекомбинантной ДНК, для олигонуклеотидов, культивирования и трансформации тканей (например, электропорация, липофекция). Методики ферментативных реакций и очищения осуществляют в соответствии с указаниями производителя или осуществляют как обычно в данной области техники, или как описано в данном документе. Приведенные выше методики и процедуры, как правило, осуществляют в соответствии с обычными способами, хорошо известными в данной области техники, и как описано в различных общих и более конкретных справочных материалах, которые указаны и обсуждены в данном описании. См., например, Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Номенклатура, используемая в связи с лабораторными процедурами и методами аналитической химии, синтетической органической химии, а также медицинской и фармацевтической химии, описанных в данном документе, хорошо известна и широко используется в данной области техники. Для химического синтеза, химического анализа, фармацевтического приготовления, составления и доставки, а также лечения пациентов используются стандартные методы.

ПРИМЕРЫ

ПРИМЕР I Идентификация и характеристика FZD4-связывания или FZD5-связывания Fab-фага.

А. Антитела к FZD4 из библиотек FZD4-связывающих антител 5027 и 5044 с созревшей аффинностью; антитела к FZD5 из библиотек FZD5-связывающих антител 2919 и 2928 с созревшей аффинностью.

Библиотеки известных FZD4-связывающих антител 5027 и 5044 и известных FZD5-связывающих антител 2919 и 2928 с созревшей аффинностью были получены с использованием обычных способов, по существу, как описано в публикации США № 2016/0194394, авторы изобретения Sidhu et al., см. также Persson et al. J. Mol. Biol., 2013 Feb 22; 425(4):803-11 https://pubmed. ncbi.nlm.nih. gov/23219464/, обе полностью включены в данный документ посредством ссылки.

6 CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) и легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антител 5044, 5027, 2919 и 2928, выделенных из библиотеки с созревшей аффинностью представлены в таблице 1 и таблице 2.

Одноточечные ELISA проводили на 96-луночных планшетах Махізогр, покрытых внеклеточными доменами (ВКД) белка FZD4 человека, в присутствии или в отсутствие насыщающей концентрации диатело 5027 - Fc (диатело, содержащее VL и VH 5027, связанное с доменом Fc). Планшеты инкубировали с моноклональным Fab-фагом с последующей инкубацией с конъюгированным с пероксидазой хрена (HRP) антителом к М13. Затем лунки промывали 8 раз с последующей инкубацией с субстратом 3,3,'5,5'-тетраметилбензидином/H₂O₂-пероксидазой (TMB) в течение 5-10 мин. Реакцию останавливали добавлением 1М H₃PO₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов. Результаты анализа представлены на Фиг. 1 и Фиг. 2 и демонстрируют, что недавно идентифицированные антитела к FZD4 связывают FZD4 в сайте, перекрывающемся с сайтом, распознаваемым антителом 5027. FZD4-связывающие антитела 5027 и 5044 описаны в предварительной заявке США № 62/885781, включенной в данный документ посредством ссылки.

В. Картирование эпитопов перспективных антител к FZD4.

Анализы на основе ELISA проводили в 384-луночных планшетах Maxisorp, покрытых ВКД FZD4 дикого типа (FZD4) или мутантных белков FZD4 (FZD swap1-18), в которых заменены сегменты ВКД FZD4 соответствующими областями из FZD5. инкубировали с 10 нМ IgG, который, как известно, специфически связывается с FZD4, т. е. 5044 и 5027, или является панспецифическим, т. е. 5016 (связывает FZD4, FZD5 и другие рецепторы FZD), с последующей инкубацией с конъюгированное с пероксидазой хрена (HRP) антителом к легкой каппа-цепи. Фосфатно-солевой буфер (PBS) и IgG 4275, который не связывает FZD4 или FZD5, использовали в качестве контроля. Лунки промывали 6 раз с последующей инкубацией с субстратом 3,3,'5,5'-тетраметилбензидином/Н2О2-пероксидазы (ТМВ) в течение 3-5 мин. Реакцию останавливали добавлением 1М Н₃РО₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов, см. Фиг. 2. Связывающее вещество пан-FZD 5016 представляет собой положительный контроль, демонстрирующий, что антигены функциональны, за исключением «FZD4 Swap10». Оба специфичных к FZD4 антитела 5027 и 5044 неспособны связываться с «FZD4 Swap7», что позволяет предположить, что эти молекулы связываются с этой областью ВКД FZD.

C. Характеристика IgG к FZD4.

FZD4-связывающие полноразмерные IgG экспрессировали посредством транзиентной трансфекции в системе культивирования клеток Ехрі293, по существу, как описано Тао et al., Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. Elife. 2019 Aug 27;8:e46134. doi: 10.7554/eLife.46134; PMID: 31452509. и очищали с помощью аффинной хроматографии на основе белка А. Вкратце, клетки выращивали до плотности около 2,5 x 10⁶ клеток/мл в среде для экспрессии Expi293 (Gibco) в колбах с перегородками для клеточных культур и трансфицировали соответствующими векторами с использованием реагента для трансфекции FectoPRO (Polyplus-transfection) с использованием стандартных производственных протоколов (ThermoFisher). Экспрессию продолжали в течение 5 дней при 37°C и 8% CO₂ при встряхивании со скоростью 125 об/мин. После экспрессии клетки удаляли путем центрифугирования и белок очищали из кондиционированной среды с использованием rProtein A Sepharose (GE Healthcare). Очищенный белок заменяли буфером либо на PBS, либо на стабилизирующий буфер (36,8 мМ лимонной кислоты, 63,2 мМ Na₂HPO₄, 10% трегалозы, 0,2 M L-аргинина, 0,01% Tween-80, pH 6,0) для хранения. Концентрации белков определяли по поглощению при 280 нм, а чистоту подтверждали анализом методом ДСН-ΠΑΑΓ.

Уровни экспрессии определяли как мг очищенного белка на литр культуры клеток млекопитающих. Результаты эксклюзионной хроматографии (ЭХ) в таблице А ниже обозначены как «-»: свидетельство множественных пиков на кривой ЭХ, <50% мономерных частиц; «+»: >50% мономеров, замедленное время удерживания (>14 мин.); «++»: >90% основного пика при ожидаемом времени удерживания мономерного IgG или близко к нему. Стандартное время удерживания определяли путем сравнения с трастузумабом.

Таблица А

Иденти- фикатор	Уровень экспрессии (мг/л)	Результат ЭХ
13980	58	-
13981	40	NO.
13982	43	-
13983	65	++
13984	52	-
13985	61	++
13956	47	+
13957	52	+
13958	58	-
13959	46	÷
13962	38	
13963	56	es.
13964	47	
13965	74	++
13966	86	
13967	87	en-
13968	89	÷
13969	72	-
13970	36	
13971	46	++
13972	27	+
13973	41	+
13974	41	+
13975	41	++
13979	49	

Идентификатор соответствует номеру антитела в таблице 1 и таблице 2.

D. Анализ на основе эксклюзионной хроматографии и измерения специфичности по ELISA $\lg G \ \kappa \ FZD4$.

Двадцать микрограммов IgG, связывающих FZD4, разделяли на колонке AdvanceBio SEC, 300Å, 2,7 мкм, 4,6 х 300 мм в подвижной фазе PBS с использованием ВЭЖХ Agilent Bio-Inert. Элюирование белка контролировали по поглощению при 280 нМ. Результаты проиллюстрированы на Фиг. 3A.

Специфичность антител к FZD4 в ELISA была определена против FZD1 и FZD10, двух членов семейства FZD, наиболее близких к FZD4. Анализы на основе ELISA проводили в 384-луночных планшетах Maxisorp, покрытых ВКД FZD дикого типа или мутантных белков в концентрации 1 мкг/мл, а избыточные сайты связывания блокировали 0,5% ВЅА. Планшеты инкубировали с 10 нМ FZD4-связывающих IgG с последующей инкубацией с конъюгированным с пероксидазой хрена (HRP) антителом к легкой каппа-цепи. Лунки последующей инкубацией 3,3,'5,5'промывали раз С c субстратом тетраметилбензидином/Н2О2-пероксидазой (ТМВ) в течение 3-5 мин. Реакцию останавливали добавлением 1М Н₃РО₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов. Результаты приведены на Фиг. 3В.

E. Идентификация CDR FZD4- или FZD5-связывающих антител.

Аминокислотные последовательности CDR FZD4-связывающего и FZD5-связывающего иммуноглобулинов представлены в таблицах 1 и 2. CDR идентифицировали в соответствии с Международной информационной системой по иммуногенетике (система нумерации IMGT; Lefranc et al., 2003, Development и Comparative Immunology 27:55-77) и аннотированы, как описано в публикации Persson et al. J Mol Biol. 2013 Feb 22;425(4):803-11, обе включены в данный документ посредством ссылки.

Идентификатор антитела	Библиотека	L1	SEQ ID NO:	L2	SEQ ID NO:	L3	SEQ ID NO:	H1	SEQ ID NO:	Н2	SEQ ID NO:	Н3	SEQ ID NO:
5044	F	SVSS A	1	SASSL YS	2	WYYA PI	3	LSSYS M	24	YISSYY GYTY	51	PAPGH WGF	79
13953	5044AM	SVSS A	1	SASSL YS	2	GNYG PI	4	IAFYSI		YISPFS GITH	52	PAVGH LAM	80
13954	5044AM	SVSS A	1	SASSL YS	2	GYYA PI	5	IYSYSI		YISSYY GYTY	51	STVGH GGM	81
13955	5044AM	SVSS A	1	SASSL YS	2	WYYA PI	3	ISSYSI	27	YISPYY SYTY	53	PAPAH WGF	82
13956	5044AM	SVSS A	1	SASSL YS	2	GYYA LI	6	LSSYS M	24	YISSYA GYTS	54	PALGH AGM	83
13957	5044AM	SVSS A	1	SASSL YS	2	WYFA PI	7	ISAYSI	28	YISPYF GLTG	55	PAPGH WGM	84
13958	5044AM	SVSS A	1	SASSL YS	2	WYYA PI	3	LSSYSI		YISSYY GYTY	51	PVAGH GGM	85
13959	5044AM	SVSS A	1	SASSL YS	2	GYNA PI	8	LYSYS M	30	FISSFY GYTD	56	PAVGH LAL	86
13960	5044AM	SVSS	1	SASSL	2	WYYA	3	LTSYS	31	YISSYY	57	PAPGH	84

4AM 4AM 4AM 4AM 4AM		1 1 1 1	SASSL YS SASSL YS SASSL YS SASSL YS SASSL YS SASSL YS	2 2 2 2 2 2	PI SFYAP I GYRA PI WHRA PI SFYAP I	17 18 19 20	I LSSFS M IASYSI IHSNS M LSTNS M LHSFS M	44 45 46 47	GSTY YISSFN GSTF YISSYY GSTY YISPYY SFTS YISPYY SFTY FISSYY GYTY	70 57 71 72	AF PTWAH GAF PVLAH SAF QTPGH SGM QAPGP WGM PAPGH GAF	99 100 101 102 103 104
4AM 4AM 4AM 4AM 4AM	SVSS A SVSS A SVSS A SVSS A SVSS A	1 1 1	SASSL YS SASSL YS SASSL YS SASSL YS SASSL YS SASSL SASSL	2 2 2 2	PI GHYA PI SFYAP I GYRA PI WHRA	17 18 19 20	I LSSFS M IASYSI IHSNS M LSTNS M LHSFS	44 45 46 47	GSTY YISSFN GSTF YISSYY GSTY YISPYY SFTS YISPYY FISSYY	70 57 71 72	AF PTWAH GAF PVLAH SAF QTPGH SGM QAPGP WGM PAPGH	100 101 102 103
4AM 4AM 4AM 4AM	SVSS A SVSS A SVSS A SVSS A	1 1 1	SASSL YS SASSL YS SASSL YS SASSL YS	2 2 2 2	PI GHYA PI SFYAP I GYRA PI WHRA	17 18 19 20	I LSSFS M IASYSI IHSNS M LSTNS	44 45 46 47	GSTY YISSFN GSTF YISSYY GSTY YISPYY SFTS YISPYY SFTY	70 57 71 72	AF PTWAH GAF PVLAH SAF QTPGH SGM QAPGP WGM	100 101 102
4AM 4AM 4AM	SVSS A SVSS A SVSS A SVSS	1	SASSL YS SASSL YS SASSL YS SASSL YS	2 2 2	PI GHYA PI SFYAP I GYRA PI	17 18	I LSSFS M IASYSI IHSNS M	44 45 46	GSTY YISSFN GSTF YISSYY GSTY YISPYY	70 	AF PTWAH GAF PVLAH SAF QTPGH	100
4AM 4AM 4AM	SVSS A SVSS A SVSS A	1	SASSL YS SASSL YS SASSL YS	2 2	PI GHYA PI SFYAP I	17	I LSSFS M IASYSI	44 45	GSTY YISSFN GSTF YISSYY	69 70 57	AF PTWAH GAF PVLAH SAF	100
4AM	SVSS A SVSS	1	SASSL YS SASSL YS	2	PI GHYA	5 17	I LSSFS	44	GSTY YISSFN	69 70	AF PTWAH GAF	
4AM	SVSS	1	SASSL	2		5	LYSYS I	43		69		99
ŀ	A		1.5					\vdash		\vdash	PIPGHL	_
4AM	SVSS	1	SASSL YS	2	GFSSPI	16	LTSYA M	42	YISPYY GYTY	65	PAAGH LAL	98
4AM		1	SASSL YS	2		15		41	SISSYY GFTS	68	LAPGH PAL	97
4AM		1		2	GFY AP I	13	ISNYSI	40	IISSNFG YTS	67		96
4AM		1		2	GFYAP I	13	ISGYSI	39		66	TAPGH GAF	95
4AM		1		2	WYFA PI	7		38	YISPYY GYTY	65	PAPGH WGL	94
4AM		1		2	GYSAP I	14		37	YISPHY GFTS	64		93
4AM		1		2		3		36	YISPYY GYTF	63	PAPGH GGM	92
4AM		1		2	GFY AP I	13		24	YISSYY SYTA	62	PTPGH GGL	91
4AM		1		2		12	LSSYS M	24		61	PAVGH MAF	90
4AM		1		2	SNYAP I	11		35		60		89
4AM		1		2		10	LSAYS M	34	YISSYY GYTY	51	PAPGH WGF	79
4AM		1		2	GYFAP I	9			YISPYY GYTN	59	QTAGH AGM	88
4AM		1		2	WYYA PI	3		32	YISSYY SYTY	58	PAPGY GAL	87
	4AM 4AM 4AM 4AM 4AM 4AM 4AM 4AM	A SVSS AAM A SVSS AAM A SVSS A A A A A A A A A A A A A A A A	4AM	4AM SVSS 1 SASSL 4AM A I SSASSL 4AM SSSS 1 SASSL 4AM A I SSASSL 4AM SSSS 1 SASSL	4AM SVSS A SASSL YS 2 4AM SVSS A SASSL YS 2	SVSS 1 SASSL 2 WYYA PI 4AM A I YS 2 II 4AM SVSS I SASSL 2 WYFA PI 4AM A I YS 2 II 4AM SVSS I SASSL 2 GFYAP II	4AM SVSS A SSS	4AM SVSS A 1 SASSL 2 WYYA 3 ISSYS M 4AM SVSS A 1 SASSL 2 GYFAP B 1 LFSYP M 4AM SVSS A 1 SASSL 2 WFNA D 10 LSAYS D 4AM SVSS A 1 SASSL 2 SNYAP D 11 ISSHS D 4AM SVSS A 1 SASSL 2 WYNA D 12 LSSYS D 4AM SVSS A 1 SASSL 2 WYYA D 13 LSSYS D 4AM SVSS A 1 SASSL 2 WYYA D 13 ISAYA D 4AM SVSS A 1 SASSL 2 WYYA D 14 ISTYS D 4AM A 1 YS 2 GYSAP D 14 ISTYS D 4AM A 1 YS 2 WYFA D 14 ISTYS D 4AM A 1 YS 2 GFYAP D 13 ISGYSI 4AM A 1 YS 2 GFYAP D 13 ISSYSI 4AM A 1	4AM SVSS A 1 SASSL A 2 WYYA A 3 ISSYS A 32 4AM SVSS A 1 SASSL A 2 GYFAP A 9 LFSYP A 33 4AM A 1 SASSL A 2 WFNA A 10 LSAYS A 34 4AM A 1 SASSL A 2 WYNA A 11 ISSHS A 35 4AM A 1 SASSL A 2 WYNA A 12 LSSYS A 24 4AM A 1 SASSL A 2 WYYA A 3 ISAYA A 36 4AM A 1 SASSL A 2 WYYA A 3 ISAYA A 36 4AM A 1 SASSL A 2 WYYA A 3 ISAYA A 36 4AM A 1 SASSL A 2 WYFA A 3 37 4AM A 1 SASSL A 2 WYFA A 3 37 4AM A 1 SASSL A 3 3 3	SVSS	4AM SVSS A 1 SASSL A 2 WYYA B 3 ISSYS B 32 YISSYY S8 58 58 44AM 32 YISSYY S8 58 58 44AM 4	4AM SVSS A I SASSL YS WYYA A SYTY SYTY 58 PAPGY GAL 4AM SVSS A I SASSL YS 2 PI WYYA A M SYTY 32 YISSYY SYTY 58 PAPGY GAL 4AM SVSS A I SASSL YS 2 PI WFNA HAW A YISSYY SYTY 59 QTAGH AGM 4AM A I SASSL YS 2 WFNA HAW A I SASSL YS YISSYY STY 51 PAPGH AGM 4AM A I YS 2 WFNA HAW A I SASSL YS YISSYY STY 51 PAPGH AGM 4AM A I YS I SASSL YS YISSYY STY 60 QAPGV SGI 4AM A I YS I SASSL YS 24 YISSYY STY 61 PAPGH AGM 4AM A I YS I SASSL YS I SASSL YS 24 YISSYY STYA 62 PTPGH AGM 4AM A I YS I SASSL YS I SASSL YS YISSYY AMA 62 PTPGH AMA 4AM A I YS I SASSL YS I SASSL YS YISPYY AMA 63 PAPGH AMA 4AM A I YS I SASSL YS I SASSL YS <t< td=""></t<>

13980	5044AM	SVSS A	1	SASSL YS	2	GYYA PI	5	LTSYS M	31	SISPYY SYTN	74	PTTAH MAL	105
13981	5044AM	SVSS A	1	SASSL YS	2	WYYA PI	3	ISSFSI	49	FINPYY SYTY	75	PAPGH WGM	84
13982	5044AM	SVSS A	1	SASSL YS	2	GYYA PI	5	ISSYS M	32	YISSYY DYTY	76	PTPGHS GF	106
13983	5044AM	SVSS A	1	SASSL YS	2	GDFAP F	21	LPYYS M	50	IISSYFG FTY	77	PAVGH GAL	107
13984	5044AM	SVSS A	1	SASSL YS	2	GYSSP I	22	ISSHS M	35	YISPYY SYTY	53	TAPGH PAM	108
13985	5044AM	SVSS A	1	SASSL YS	2	WFYA PI	23	ISSYSI	27	YISSNF GSTY	78	PVPAH GAF	109

Таблица 2А		CDR	FZD4	-связын	зающі	их антит	ЭЛ						
			SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
Идентификатор			ID		ID		ID		ID		ID		ID
антитела	Библиотека	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
		SVSS		SASSL				SSFY		TVYPYLD		AFPGS	
5027	F	A	1	YS	2	SSYSLI	130	FM	148	YTY	985	YHPM	199
		SVSS		SASSL				STYF		TIYPYLNS		AYPGS	
13986	5027AM	Α	1	YS	2	ASYYLI	110	FI	139	TY	166	YHPL	198
		SVSS		SASSL				TSFY		SVYPYLD		AFPGS	
13987	5027AM	Α	1	YS	2	SNYALI	111	FM	140	NTY	167	YHPM	199
		SVSS		SASSL				SSFY		TVYSYIDI		AFPFS	
13988	5027AM	Α	1	YS	2	SSSFLI	112	FI	141	TY	168	YHPM	200
		SVSS		SASSL				SAYY		TVYPYRG		GYPLA	
13989	5027AM	Α	1	YS	2	SSDSLI	113	FI	142	YTY	169	YTPL	201
		SVSS		SASSL				SYFY		SVYPYLS		AFPGS	
13990	5027AM	A	1	YS	2	STHFLI	114	FM	143	YTY	170	YHPM	199
												ALQG	
		SVSS		SASSL				SSFY		SVYPYLD		HYHP	
13991	5027AM	A	1	YS	2	ASYSLI	115	FI	141	FTY	171	M	202
		SVSS		SASSL				TSFY		AIYPYLD		AFPGS	
13992	5027AM	Α	1	YS	2	SAYTLI	116	ΥM	144	YTY	172	YLPM	203
		SVSS		SASSL				FTFY		SIYPYLN		AFPGS	
13993	5027AM	Α	1	YS	2	SSVSLI	117	FM	145	YTF	173	YHPM	199
		SVSS		SASSL				SSYY		TIYPYSD		GFPGR	
13994	5027AM	A	1	YS	2	SYYSLI	118	FI	146	NTY	174	YHPL	204
		SVSS		SASSL				SSFY		SIYSYGNI		AFPLS	
13995	5027AM	A	1	YS	2	SSYYLI	119	VM	147	TY	175	YHPM	205
		SVSS		SASSL				SSFY		AIYPYLS		AFPGR	
13996	5027AM	A	1	YS	2	ASYYLI	110	FM	148	YTY	176	YHGM	206
13997	5027AM	SVSS	1	SASSL	2	AYYFLI	120	SSFY	149	TVFPYLG	177	AFPFS	207

		А		YS				ΥI		RTY		YTPL	
Таблица 2А,								I			!	ı	
продолжение		CDR	FZD4	-связы	зающ	их антит	भा						
			SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
Идентификатор			ID		ID		ID		ID		ID		ID
антитела	Библиотека	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
		SVSS		SASSL				STFY		SVYPYLN		AFPGA	
13998	5027AM	Α	1	YS	2	SSFSLI	121	FM	150	YTY	178	YSPM	208
		SVSS		SASSL				SAFY		TVYPYLS		AFPGA	
13999	5027AM	A	1	YS	2	SAYSLI	122	YM	151	YTY	179	YHPM	209
		SVSS		SASSL				ASFY		TVYPYLN		AFPGA	
14000	5027AM	A	1	YS	2	SSYALI	123	FM	152	HTY	180	YHPF	210
		SVSS		SASSL				SAFY		SIYPYLSY		AFPGA	1
14001	5027AM	A	1	YS	2	SYFSLI	124	FI	153	TY	181	YHPM	
		SVSS		SASSL				FPFY		SVYPYLN		AYPGF	
14002	5027AM	Α	1	YS	2	SRFTLI	125	FM	154	DTY	182		211
		SVSS		SASSL				SAFY		SVYSSLS		AYPLS	
14003	5027AM	A	1	YS	2	SSNTLI	126	FM	155	HTY	183	YHPM	212
		SVSS		SASSL				ASYY		SVYPYLD	l	ALPGF	
14004	5027AM	A	1	YS	2	SSFSLI	121	FM	156	FTY	171		213
14005	5007434	SVSS		SASSL		CCEALL	127	SVFY	1.57	SVYPYND	104	GFPGT	
14005	5027AM	A	1	YS	2	SSFALI	127	FM	157	ITY	184		214
14006	5027 434	SVSS		SASSL		ANIXZATI	1120	SSLY	150	SVYPYLD	105	AIPGF	215
14006	5027AM	A	1	YS	2	ANYALI	128	YM	158	NTH	185	YHPI	215
14008	5027AM	SVSS A],	SASSL YS	2	ASYSLI	115	SNFY LM	159	SIYSYLN YTF	186	AFPGS YHPM	199
14008	JUZ/AIVI	SVSS	1	SASSL		ASTSLI	113	FSFY	139	SIYPYLDF	100	AFPGS	199
14009	5027AM			YS	2	SSASLI	129	1	160		187	I	216
11009	302771111	SVSS		SASSL		SSTISEI	127	SAFY	100	AIYPYIGY		PFPAS	210
14010	5027AM	A],	YS	2	SSYSLI	130	FM	155	TY	188		217
	002/12/1	SVSS		SASSL	\vdash	551521	150	SSLY	-	TIYPFRGT		AYPG	
14011	5027AM	A]]		2	SSYSLI	130	FM	161	TY	189	RYHPL	218
		SVSS		SASSL				YYFY		AIYPYLG		AFPGS	
14012	5027AM	Α	1	YS	2	SAFYLI	131	YM	162	YTY	190	I	216
		SVSS		SASSL				SSFY		SVYPYLG		AFPGF	
14013	5027AM	A	1	YS	2	SAYFLI	132	FI	141	DTY	191	YHPF	219
		SVSS		SASSL				TSYY		SVYSYLG		AFPGS	
14015	5027AM	Α	1	YS	2	ASSSLI	133	FI	163	YTF	192	YHPL	216
		SVSS		SASSL				SYFY		AIYPYLS		AFPGS	
14016	5027AM	Α	1	YS	2	SIYSLI	134	FM	143	YTY	176	YHPM	199
		SVSS		SASSL				FSFY		TVYPYLS		AFPGS	
14018	5027AM	Α	1	YS	2	ASYYLI	110	FI	160	HTY	193	YHPM	199
		SVSS		SASSL				SDFY		TIYPFIGN		AFPGS	
14019	5027AM	Α	1	YS	2	STGSLI	135	FI	164	TY	194	YHPF	220

		SVSS		SASSL				SSFY		SVYPYVD		AFPGF	
14020	5027AM	A	1	YS	2	SSHSLI	136	FM	148	YTY	195	YHPM	221
		SVSS		SASSL				SSFY		TVYPYLS		ALPGS	
14021	5027AM	A	1	YS	2	SSYTLI	137	YM	165	FTY	196	YHPF	222
		SVSS		SASSL				STFY		SVYPYLD		AYPGS	
14022	5027AM	A	1	YS	2	SYHYLI	138	FM	150	DTY	197	YHPL	198

Табли														
ца 2В	CDR E	'ZD5-свя:	зывающі	их антиз	гел									
	02111	Идент			T				Т			<u> </u>		
	Назв	ифика												
Анти	ание	тор		CEO		CEO		CEO		CEO		CEO		CEO
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	H3	NO:
							WYS				TIYP			
		2919A	SVSS		SASS		GVH		LIY		ASS		GA	
14023	FZD5	M	A	1	LYS	2	GLI	223	TYI	308	STS	381	M	
							WFS		ITY		TIFS			
		2919A	SVSS		SASS		SAH		PG		SHG		FG	
14024	FZD5	M	A	1	LYS	2	VPF	224	M	309	STS	382	M	
							WYS		ISY		SIYS			
		2919A	SVSS		SASS		YGH		SY		SSSS		GA	
14025	FZD5	M	A	1	LYS	2	HLI	225	M	310	TS	383	L	
							WYT		ISF		TIDS			
		2919A	SVSS		SASS		SGH		FY		STG		GA	
14026	FZD5	M	A	1	LYS	2	VLI	226	M	311	STT	384	L	
							WY							
							ASD		IPY		SIYS			
14025		2919A	SVSS		SASS		HGL	225	FY	2.10	SSG	205	GA	
14027	FZD5	M	A	1	LYS	2	I	227	M	312	STS	385	M	
		20104	CATCC		CACC		WFS		TCX		SIYP			
14028	FZD5	2919A M	SVSS A	1	SASS LYS	2	PGN VLI	228	ISY YYI	313	SSSS	386	AA F	
14020	T-ZD3	IVI	A	1	LIS	2	WYS	220	ISY	313	SIYP	360	1	
		2919A	SVSS		SASS		TRN		AY		SSSS		YA	
14029	FZD5	M	A	1	LYS	2	ILI	229	M	314	TA	387	F	
11027	1203	171		1	B15	-	WYF	227	ITY	311	SIYP	307		
		2919A	SVSS		SASS		SDH		FY		SFG		GG	
14030	FZD5	M	A	1	LYS	2	DLF	230	M	315	STS	388	M	
							WYS		+		SIYS			
		2919A	SVSS		SASS		SGD		IYY		SNG		GA	
14031	FZD5	M	A	1	LYS	2	VLI	231	SYI	316	GTS	389	M	
		2919A	SVSS		SASS		WYS		ILN		SIYP		GG	
14032	FZD5	M	A	1	LYS	2	SAD	232	TY	317	SSSS	387	L	
		2919A	SVSS		SASS		WYS		ILN		SIYP		GG	

Табли														
ца 2В	CDR F	ZD5-с вя:	зывающи	их антиз	гел									
·		Идент	,											
	Назв	ифика												
Анти	ание	тор		CEO		CEO		CEO		CEO		CEO		CEO
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	H1	NO:	H ₂	NO:	H3	NO:
			21	110.		110.	VLF	110.	M	110.	TA	110.	113	110.
							WYS		1		SIYP			
		2919A	SVSS		SASS		SGH		ISF		ASS			
14033	FZD5	M	A	1	LYS	2	GLI	233	YYI	318	STS	390	GGI	
11033	1203	111	11		215	-	WYS	233	LA	310	SIYP	370	001	
		2919A	SVSS		SASS		SGH		YS		SSG		GA	
14034	FZD5	M	A	1	LYS	2	ALI	234	YM	319	DTS	391	M	
14054	1203	141	71	-	LIS	-	WYS	234	1171	317	AIY	371	141	
		2919A	SVSS		SASS		SNH		IRY		SSSS		GA	
14035	FZD5	M	A	1	LYS	2	IPI	235	SYI	320	STS	392	M	
17033	1203	IVI	A	1	LIS		WYS	233	ITY	320	TIYP	372	101	
		2919A	SVSS		SASS		SSN		SY		SSG		FA	
14036	FZD5	M	A	1	LYS	2	VLI	236	M	321	STA	393	M	
14030	12D3	IVI	Α	1	LIS	1	WYF	230	IIN	321	SIYS	373	101	
		2919A	SVSS		SASS		SDR		TY		APS			
14037	FZD5	M	A	1	LYS	2	VLI	237	M	322	STA	394	GAI	
14037	rzD3	IVI	A	1	LIS		WYP	237	ISY	322	TIYP	394	GAI	
		2919A	SVSS		SASS		SSH		SY		SSG		GG	
14038	FZD5	M	A	1	LYS	2	VLI	238	M	310	STA	393	M	
14030	TZD3	IVI	Α	1	LIS	2	WYS	236	LA	310	TIYS	373	101	
		2919A	SVSS		SASS		SRH		NS		SSG		GA	
14039	FZD5	M	A	1	LYS	2	HLI	239	YM	323	STS	395	M	
14037	TZD3	IVI	Α	1	LIS	2	WYS	237	LS	323	SIDP	373	101	
		2919A	SVSS		SASS		TGR		YT		SSG		FG	
14040	FZD5	M	A	1	LYS	2	VLF	240	YM	324	STS	396	M	
17070	1203	IVI	A	1	LIS		WFP	240	1 1/1	324	TIYP	370	101	
		2919A	SVSS		SASS		TGH		ISY		SSG		FG	
14041	FZD5	M M	A	1	LYS	2	VLF	241	SYI	325	STG	397	M	
14041	TZD3	IVI	Α	1	LIS	2	WY	241	311	323	510	371	101	
							APR				SIYS			
		2919A	SVSS		SASS		HVL		ISY		SSSS		GA	
14042	FZD5	M	A	1	LYS	2	I	242	SYI	325	TS	383	M	
17074	1203	141	А	1	113	-	WFT	272	LS	323	SIYP	563	141	
		2919A	SVSS		SASS		SGL		YL		SSSS		GG	
14043	FZD5	M	A	1	LYS	2	VLF	243	YI	326	TS	398	M	
17073	1200	141	11	1	1110	-	WYS	273	11	520	SIYS	370	141	
		2919A	SVSS		SASS		SGH		ISY		SPSS		GA	
14044	FZD5	M M	A	1	LYS	2	VLF	244	AYI	327	TS	399	M	
14044	FZD5	M 2919A	SVSS	1	SASS	2	WYP	244	IAY	328	SIYP	399	GA	
14043		2717A	Sev S	1	BASS		AA I L	2 + 3	IAI	520	SIIL	570	UA	

Табли														
ца 2В	CDR F	'ZD5-связ	зывающи	іх антиз	гел									
		Идент												
	Назв	ифика												
Анти	ание	тор		SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
тело	антиг	селек		ID		ID		ID		ID		ID		ID
ID	ена	ции	L1	NO:	L2	NO:	L3	NO:	Hl	NO:	H2	NO:	H3	NO:
		M	A		LYS		GAP		SY		SSSS		M	
							VLI		M		TS			
									FI					
							WYS		WE		TIYP			
		2919A	SVSS		SASS		SSN		SLL		SSG		FA	
14046	FZD5	M	A	1	LYS	2	VLI	236	VS	329	STA	393	M	
							WYS		ISH		SIDS			
		2919A	SVSS		SASS		SAN		SY		SSG		GA	
14047	FZD5	М	A	1	LYS	2	ALF	246	M	330	STS	400	L	
							WYS		LR		TIYS			
		2919A	SVSS		SASS		SGD		YS		ASG		GA	
14048	FZD5	M	A	1	LYS	2	VLI	231	YI	331	STT	401	L	
							WYS		ISY		SISP			
		2919A	SVSS		SASS		SNH		AY		SDS		GA	
14049	FZD5	M	A	1	LYS	2	VLI	247	M	314	STS	402	L	
							WYS		ISY		SIDP			
		2919A	SVSS		SASS		ААН		SY		SSG		GA	
14050	FZD5	M	A	1	LYS	2	ILF	248	M	310	LTS	403	L	
							WFA		IRY		TIDS			
		2919A	SVSS		SASS		SGH		AY		FSG		YA	
14051	FZD5	M	A	1	LYS	2	VLI	249	M	332	STS	404	M	
							WFS		ITH		SIYP			
		2919A	SVSS		SASS		SGD		LY		SSG		AA	
14052	FZD5	M	A	1	LYS	2	SLI	250	M	333	STS	405	L	
							WY							
							ASG		LSI		TIYP			
		2919A	SVSS		SASS		NVL		FY		SSSS		GA	
14053	FZD5	М	A	1	LYS	2	I	251	M	334	TS	406	F	
							WFS		LS		AIY			
		2919A	SVSS		SASS		PGH		YS		PSPS		GA	
14054	FZD5	M	A	1	LYS	2	LLI	252	YI	335	STS	407	М	
		20101	OX 100				WYP		ISY		SIYS			
14055	EGD	2919A	SVSS	,	SASS		SGH	252	SF	226	TSG	400	GG	
14055	FZD5	M	A	1	LYS	2	VLF	253	M	336	STS	408	L	<u> </u>
		20104	67.00		CACC		WFA		1 4 37		AITP		EC	
14056	EZD 5	2919A	SVSS		SASS		AGH	254	IAY	227	SSS	400	FG	
14056	FZD5	M	A	1	LYS	2	VLI	254	VGI	337	NTS	409	F	
14057	FZD5	2919A M	SVSS	1	SASS LYS	2	WFR SAH	255	LS YS	338	SIDP	410	FG F	
1403/	LTDO	101	A	1	LIS		эАП	233	13	330	مددد	410	1,	

Табли														
ца 2В	CDR F	'ZD5-свя	зывающі	их антит	гел									
		Идент												
	Назв	ифика												
Анти	ание	тор		SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
тело	антиг	селек		ID		ID		ID		ID		ID		ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
							VLI		YM		TA			
							WFA		ISY		SIYS			
		2919A	SVSS		SASS		SGH		SF		RSG		GA	
14058	FZD5	M	A	1	LYS	2	ILI	256	M	336	STA	411	M	
							WFS				TIDP			
		2919A	SVSS		SASS		GGH		IAY		SSG		GG	
14059	FZD5	M	A	1	LYS	2	ALI	257	FYI	339	STS	412	L	
							WFA		LSS		SIGP			
		2919A	SVSS		SASS		SAH		SY		SSG		FG	
14060	FZD5	M	A	1	LYS	2	VLF	258	M	340	STS	413	F	
							WYS		LS		SIYP			
		2919A	SVSS		SASS		PGH		YS		SSSS			
14061	FZD5	M	A	1	LYS	2	VLI	259	YM	338	TS	398	GGI	
							WY		IYY		SIDP			
		2919A	SVSS		SASS		ASG		SY		SSSS		GG	
14062	FZD5	M	A	1	LYS	2	LVLI	260	M	341	TS	414	M	
							WYT		ITY		SIYP			
		2919A	SVSS		SASS		SGH		SY		SPSS		GG	
14063	FZD5	M	A	1	LYS	2	VLF	261	M	321	TS	415	M	
							WFS		LH		SISS			
		2919A	SVSS		SASS		FPH		YG		SFSS		FG	
14064	FZD5	M	A	1	LYS	2	ALI	262	GI	342	TS	416	F	
							WY		ISY		TIYS			
14066		2919A	SVSS		SASS		ASG	262	SY	210	SSSS		GG	
14066	FZD5	M	A	1	LYS	2	TDLI	263	M	310	TA	417	M	
		20104	67/66		SASS		WYS		IGY		SIYS		GA	
14067	FZD5	2919A M	SVSS A	1	LYS	2	SGR LLI	264	AY M	343	SPG STA	418	GA L	
1400/	1.5703	101	A	1	LID		WFS	204	LS	343	SICP	+10	L	
		2919A	SVSS		SASS		SPH		YS		FCS		FG	
14068	FZD5	M	A	1	LYS	2	VLF	265	SI	344	STS	419	F	
11000		171	**	1	1110	-	WFA	203	LS	717	TIYS	'1'	1	-
		2919A	SVSS		SASS		SAS		YD		SSG		FG	
14069	FZD5	M	A	1	LYS	2	SLF	266	GI	345	STS	395	L	
					<u> </u>		WYP		LS		SIHP			
		2919A	SVSS		SASS		SSH		YA		FDG		GA	
14070	FZD5	M	A	1	LYS	2	VLF	267	YM	346	STS	420	L	
		2919A	SVSS		SASS	-	WFP		ISY		SISS		FG	
14071	FZD5	M	A	1	LYS	2	АНН	268	SGI	347	SSG	421	M	
170/1		141	11			<u> </u>	7 11 11 1	200	501	J 7 7		721	171	

Табли	1													
ца 2В	CDR F	ZD5-с вяз	зывающі	их антит	гел									
·		Идент	<u> </u>											
	Назв	ифика												
Анти	ание	тор		CEO		CEO		CEO		CEO		CEO		CEO
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	H3	NO:
						1	VLF				STA			1
							WFP		ISS		TIDP			
		2919A	SVSS		SASS		SGN		SY		YAG		FA	
14072	FZD5	M	A	1	LYS	2	VLF	269	M	348	STS	422	M	
							WYS		LS		SIYP			
		2919A	SVSS		SASS		SNN		YS		SSG		GG	
14073	FZD5	M	A	1	LYS	2	VLI	270	YM	338	STA	423	M	
11075	125			<u> </u>	215	-	WFS	2,0	LS	330	TIYP	123		
		2919A	SVSS		SASS		SRH		YS		SSSS		FG	
14074	FZD5	M	A	1	LYS	2	VLF	271	GM	349	TS	406	M	
1.07.	1220	111		-	1212	-	, 21		GF	2.,	10			
							WYF		TIS		SIYP			
		2919A	SVSS		SASS		SDH		YF		SDS		GA	
14075	FZD5	M	A	1	LYS	2	DLI	272	FM	350	STS	424	M	
11072	1220	111		-	1212	-	WYS		1	550	SIYP			
		2919A	SVSS		SASS		SGG		ISY		SSG		GA	
14076	FZD5	M	A	1	LYS	2	VLI	273	SFI	351	HTS	425	L	
						-	WFP		ISY	-	SIDP			
		2919A	SVSS		SASS		SGH		SY		SSG		FG	
14077	FZD5	M	A	1	LYS	2	VLF	274	M	310	STS	396	M	
					1	-	WYS		LS		SIYS			
		2919A	SVSS		SASS		STH		YT		SPG		GG	
14078	FZD5	M	A	1	LYS	2	VLF	275	YM	324	STS	426	M	
							WYS		ISH		SIYS			
		2919A	SVSS		SASS		SGS		AY		SPG		FA	
14079	FZD5	M	A	1	LYS	2	ALI	276	M	352	STA	418	L	
							WFS		LLF		SIDP			
		2919A	SVSS		SASS		PGS		FY		SSG		GA	
14080	FZD5	M	A	1	LYS	2	VLI	277	M	353	FTS	427	M	
							WYP		IAY		SIYP			
		2919A	SVSS		SASS		SAH		SY		ASS		GG	
14081	FZD5	M	A	1	LYS	2	ILF	278	M	328	STS	390	M	
				 			WY		LS		SIFS			
		2919A	SVSS		SASS		GSG		YF		SSSS		GA	
14082	FZD5	M	A	1	LYS	2	GILI	279	YM	354	TS	428	M	
				 					GF					
							WFT		TLI		SIYP			
		2919A	SVSS		SASS		SGR		SSS		APS		GG	
14083	FZD5	M	A	1	LYS	2	DLF	280	I	355	STP	429	M	
	<u> </u>	<u></u>	<u></u>								<u> </u>		<u> </u>	<u></u>

Табли														
ца 2В	CDR F	ZD5-с вя:	зывающи	іх антиз	гел									
		Идент												
	Назв	ифика												
Анти	ание	тор		CEO		CEO		CEO		CEO		GEO		CEO
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	H3	NO:
		,		1,0.		110.	WYL	110.	LS	1101	SIYS	1101		110.
		2919A	SVSS		SASS		SRNI		YS		SSSS		GA	
14084	FZD5	M	A	1	LYS	2	LI	281	YI	335	TS	383	M	
						-	WFS		ITN		SIYS			
		2919A	SVSS		SASS		GRD		SY		SPSS		GG	
14085	FZD5	M	A	1	LYS	2	ALF	282	M	356	TS	399	L	
11005	1203	141	11	1	215	-	7 KEI	202	171	350	SIYP	3,,,		
		2928A	SVSS		SASS		AFF		ISF		SYG		YY	
14369	FZD5	M	A	1	LYS	2	YPI	283	SSI	357	SSF	430	AF	483
14307	1203	IVI	A	1	LIS		111	203	ISY	337	TIYP	730	Air	703
		2928A	SVSS		SASS		AFY		SS		YYS		YY	
14370	FZD5	M	A	1	LYS	2	FPI	284	M	358	STL	431	AF	483
14370	TZD3	IVI	Α	1	LIS		111	204	ISY	330	SIYS	431	Ai'	+65
		2928A	SVSS		SASS		AHY		SS		SYS		YY	
14271	FZD5	M		,	LYS	,	FPI	205		358	STY	432	AM	484
14371	rZD3	IVI	A	1	LIS	2	rrı	285	M	338		432	AIVI	404
		20284	CVCC		CACC		AEX		ISY SS		SIYP		YY	
14272	EZD 5	2928A	SVSS	,	SASS		AFY	204		250	SYS	422		405
14372	FZD5	M	A	1	LYS	2	FPI	284	M	358	VTY	433	GM	485
		2020.4	GT 1GG		G 4 G G		CLIN		LSF		SIYP		3737	
1.4272	EZD 5	2928A	SVSS	,	SASS		SHY	206	SS	250	YYG	424	YY	404
14373	FZD5	M	A	1	LYS	2	YPI	286	M	359	STF	434	AM	484
		20201	GY YGG		g . g g		4 777 7		ISY		SIYS			
		2928A	SVSS		SASS		AFY	•	SS		SYS		YY	10.5
14374	FZD5	M	A	1	LYS	2	FPI	284	M	358	STY	432	GF	486
			ar raa				GT.				SIYP			
1.1255		2928A	SVSS		SASS		GFY	205	ISF	2.00	SYS		YY	101
14375	FZD5	M	A	1	LYS	2	YPI	287	GSI	360	STF	435	AM	484
											SIYP			
		2928A	SVSS		SASS		AFY		ITY		AYS		YY	
14376	FZD5	M	A	1	LYS	2	YPI	288	SSI	361	STY	436	AF	483
											SIYS			
		2928A	SVSS		SASS		SFY		ISY		SYS		YY	
14377	FZD5	M	A	1	LYS	2	FPI	289	SAI	362	STF	437	AM	484
									ISY		SIYS			
		2928A	SVSS		SASS		AFY		SS		SYG		YY	
14378	FZD5	M	A	1	LYS	2	FPI	284	M	358	STY	438	AM	484
									ISY		SIYP			
		2928A	SVSS		SASS		ADY		SS		SYS		YY	
14379	FZD5	M	A	1	LYS	2	FPI	290	M	358	STY	439	GM	485

Табли														
ца 2В	CDR F	ZD5-связ	зывающі	іх антиз	гел									
	'	Идент												
	Назв	ифика												
Анти	ание	тор		CEO		CEO		SEO		CEO		CEO		CEO
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	HI	NO:	H2	NO:	H3	NO:
											SIYS			
	ļ	2928A	SVSS		SASS		AFY		ISY		YYG		YY	
14380	FZD5	M	A	1	LYS	2	YPI	288	SSI	363	STY	440	AM	484
											TIYS			
		2928A	SVSS		SASS		AFY		ISF		LFG		$_{ m YY}$	
14381	FZD5	M	A	1	LYS	2	FPI	284	SSI	357	ATF	441	GF	486
1,001	1 - 2 - 1				-12	-			ISY		SIYP			
		2928A	SVSS		SASS		SFY		SS		SYS		YY	
14382	FZD5	M	A	1	LYS	2	FPI	289	M	358	STY	439	AF	483
14302	1203	141	71	1	LIS	-	111	207	171	330	SIYP	137	7 11	105
		2928A	SVSS		SASS		AFH		ISF		SYS		YY	
14383	FZD5	M	A	1	LYS	2	YPI	291	SSI	357	STY	439	AM	484
14303	1203	141		1	LIS	-		271	551	337	SIYP	737	7 11 1	
	ļ	2928A	SVSS		SASS		AFY		ISF		AYG		YY	
14384	FZD5	M	A	1	LYS	2	YPI	288	SSI	357	ATF	442	GM	485
14364	1ZD3	101	Α	1	LIS		111	200	331	337	SIYS	442	GIVI	405
	ļ	2928A	SVSS		SASS		AYY		ISY		SYS		YY	
14385	FZD5	M M	A	1	LYS	2	YPI	292	SSI	363	STF	437	AF	483
14363	1 ZD3	101	A	1	LIS	2	111	292	ISY	303	SIYS	437	Air	+63
	ļ	2928A	SVSS		SASS		VFY		SS		SYS		YY	
14386	FZD5	M	A	1	LYS	2	YPI	293	M	358	STY	432	AF	483
14360	rZD3	IVI	A	1	LIS	²	IFI	293		330	SIYP	432	АГ	403
		2928A	SVSS		SASS		SFY		ISY SS		YYS		YY	
14387	FZD5	M M	A	1	LYS	2	FPI	289	M	358	STY	443	AM	484
14307	rzD3	IVI	A	1	LIS	<u> </u>	TTI	209	LS	330	SIYP	443	Alvi	+04
		2928A	SVSS		SASS		AFY		YS				YY	
14388	FZD5	M 1926A	A	1	LYS	2	FPI	284	SM	364	AYS STY	436	GM	485
14300	rZD3	IVI	A	1	LIS	2	rrı	204	SIVI	304		430	Givi	403
	ļ	20284	CVCC		CACC		ANIN		ICE		SIYS		VV	
14290	EZDS	2928A	SVSS	1	SASS	,	ANY	204	ISF GSI	260	SYS	422	YY	101
14389	FZD5	M	A	1	LYS	2	FPI	294	GSI	360	STY	432	AM	484
		2928A	SVSS		CACC		CEV		ISY		SIYP SFG		YY	
14390	EZD5			1	SASS	,	GFY	205	1	363		444		484
14390	FZD5	M	A	1	LYS	2	FPI	295	SSI	303	STY	+++	AM	+04
		20204	67/66		6466		AEV		ISY SS		SIYP		YY	
1/201	Eade	2928A	SVSS	1	SASS]	AFY	201		250	SFSP	115		105
14391	FZD5	M	A	1	LYS	2	FPI	284	M	358	TY	445	GM	485
		20204	CYTCC		CACC		AFSZ		IAY		SIYS		3/3/	
14202	EZD	2928A	SVSS	1	SASS		AFY	204	SS	265	SYG	146	YY	492
14392	FZD5	M	A	1	LYS	2	FPI	284	M	365	STF	446	AF	483

Табли														
ца 2В	CDR F	ZD5-связ	зывающі	их антиз	гел									
		Идент												
	Назв	ифика												
Анти	ание	тор		SEO		CEO		CEO		CEO		CEO		CEO
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	HI	NO:	H2	NO:	H3	NO:
											SIYP			
		2928A	SVSS		SASS		AYY		ISY		AYS		YY	
14393	FZD5	M	A	1	LYS	2	FPI	296	SSI	363	PTY	447	AF	483
									ISY		SIYP			
		2928A	SVSS		SASS		AFIF		SA		SYS		$ _{\rm YY}$	
14394	FZD5	M	A	1	LYS	2	PI	297	M	366	STY	439	AL	487
	1221				1-1-	-			1		SIYS			107
		2928A	SVSS		SASS		AYY		ISY		AYS		YY	
14395	FZD5	M	A	1	LYS	2	YPI	292	GVI	367	STF	448	AF	483
11373	1203	111	11	<u> </u>	1215	-	111	272	0,1	50,	TIYP	110		105
		2928A	SVSS		SASS		SFY		ISY		YYD		$ _{YY}$	
14396	FZD5	M	A	1	LYS	2	FPI	289	SSI	363	PTY	449	AF	483
14370	1203		71		LIS	-	111	207	LS	303	SIYS	117	711	103
		2928A	SVSS		SASS		AFY		YS		SYG		YY	
14397	FZD5	M	A	1	LYS	2	FPI	284	SM	364	STY	438	AM	484
14377	TZD3	IVI	A		LIS		111	204	SIVI	304	SIYP	430	AIVI	+0+
		2928A	SVSS		SASS		AFY		ISY		SYG		YY	
14398	FZD5	M	A	1	LYS	2	YPI	288	SSI	363	STY	450	GM	485
14376	TZD3	IVI	A	1	LIS		111	200	ISY	303	SIYP	450	GIVI	465
		2928A	SVSS		SASS		AFY		SS		HYG		$ _{\rm YY}$	
14200	EZDS	2926A M		1		,	FPI	204	M	358		451	GM	485
14399	FZD5	IVI	A	1	LYS	2	LLI	284	IVI	330	ATF	431	Givi	463
		20284	SVSS		SASS		AFY		ISY		SIYP		3/3/	
14400	FZD5	2928A M	A A	1	LYS	2	YPI	288	SSI	363	SYG	452	YY AM	484
14400	rZD3	IVI	A	1	LIS	²	IFI	200	331	303	STF	432	Alvi	404
		20284	CVCC		SASS		AFF		ICM		SIYS		$ _{\rm YY}$	
14401	EZDS	2928A M	SVSS	1		,	FPI	298	ISY SSI	363	SYS	453		484
14401	FZD5	IVI	A	1	LYS	2	rri	298		303	ATY	433	AM	404
		20204	GT 1GG		0.400		CENT		ISY		SIYP		3737	
14402	F7D 5	2928A	SVSS		SASS		SFY	200	SS	250	SYS	420	YY	402
14402	FZD5	M	A	1	LYS	2	YPI	299	M	358	STY	439	AF	483
		20201	GY YGG						IPY		SIYP			
1.4.402	EZD 5	2928A	SVSS		SASS		AFY	20.4	GS	260	SYG	4.50	YY	40.4
14403	FZD5	M	A	1	LYS	2	FPI	284	M	368	STF	452	AM	484
		2020:	GT 7GC		0.400				ISY		SIYP		,,,,,	
1,,,,,,,,		2928A	SVSS		SASS		ALY	200	SS	2.50	SYS		YY	40:
14404	FZD5	M	A	1	LYS	2	YPI	300	M	358	STF	435	AM	484
									ISY		SIYP			
		2928A	SVSS		SASS		AFY		SA		YYG		YY	
14405	FZD5	M	A	1	LYS	2	FPI	284	M	366	PTY	454	AF	483

Табли														
ца 2В	CDR F	ZD5-с вя:	зывающі	их антиз	гел									
,		Идент												
	Назв	ифика												
Анти	ание	тор		aro.		GEO.		aro		ar.o		areo.		areo.
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	HI	NO:	H2	NO:	H3	NO:
		`				1					SIYP			
		2928A	SVSS		SASS		VFY		ISY		FYG		FY	
14406	FZD5	M	A	1	LYS	2	YPI	293	SSI	363	STF	455	AF	488
											AIY			
											PSY			
		2928A	SVSS		SASS		RFY		ISY		SST		YY	
14407	FZD5	M	A	1	LYS	2	FPI	301	SSI	363	N	456	AM	484
											SIYP			
		2928A	SVSS		SASS		AFY		ISY		YYS		YY	
14408	FZD5	M	A	1	LYS	2	YPI	288	SSI	363	STH	457	AM	484
									IAY		SIYP			
		2928A	SVSS		SASS		LYY		SA		SYS		YY	
14409	FZD5	M	A	1	LYS	2	FPI	302	M	369	TTY	458	AM	484
						-					SIYP			
		2928A	SVSS		SASS		AFY		LSF		SYS		YY	
14410	FZD5	M	A	1	LYS	2	FPI	284	SSI	370	STF	435	AF	483
11111					1 - 1 - 2	-			ISY		SIYS	100		
		2928A	SVSS		SASS		AYY		SS		SYG		$ _{\rm YY}$	
14411	FZD5	M	A	1	LYS	2	FPI	296	M	358	STY	438	GM	485
						-			ISY		SIYS			
		2928A	SVSS		SASS		SSY		SS		NYS		YY	
14412	FZD5	M	A	1	LYS	2	FPI	303	M	358	SSY	459	AM	484
						-			LT		TIYP			
		2928A	SVSS		SASS		AFY		YS		SYG		YY	
14413	FZD5	M	A	1	LYS	2	FPI	284	SI	371	STY	460	AM	484
11112					1212	-			ISY	0,1	SIYP			
		2928A	SVSS		SASS		AFY		SS		SFG		YY	
14414	FZD5	M	A	1	LYS	2	FPI	284	M	358	STF	461	AI	489
						-			LS		SIYP			
		2928A	SVSS		SASS		AHY		YG		SYG		YY	
14415	FZD5	M	A	1	LYS	2	FPI	285	SI	372	STY	450	GM	485
				-		-			ISY		TIYP			
		2928A	SVSS		SASS		ASY		SS		SYS		YY	
14416	FZD5	M	A	1	LYS	2	FPI	304	M	358	STY	462	AM	484
						<u> </u>	 		IAY		TIYS		-	
		2928A	SVSS		SASS		AFY		SS		SYG		YY	
14417	FZD5	M	A	1	LYS	2	FPI	284	M	365	ATS	463	AF	483
		2928A	SVSS	<u> </u>	SASS	-	AHY	+	ISY		SIYP		YY	- 55
14418	FZD5	M	A	1	LYS	2	YPI	305	SSI	363	SYS	464	AM	484
17710	1200		**		1213	<u> </u>	111	505	551	505	""	101	1 27.41	

Табли														
ца 2В	CDR F	ZD5-с вя:	зывающі	их антиз	гел									
		Идент	<u>'</u>											
	Назв	ифика												
Анти	ание	тор		aro		area.		aro		ar.o		aeo.		aro.
тело	антиг	селек		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ
ID	ена	ции	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H ₂	NO:	H3	NO:
				110.		110.		110.	***	110.	STI	110.	115	110.
											TIYP			
		2928A	SVSS		SASS		AGF		ISY		YYG		YY	
14419	FZD5	M	A	1	LYS	2	FPI	306	SSI	363	ATY	465	GF	486
11115	1203	141	11		215	-		300	551	505	SIYS	103	U.	
		2928A	SVSS		SASS		SSY		ISY		GYS		YY	
14420	FZD5	M	A	1	LYS	2	YPI	307	SSI	363	ATY	466	AM	484
14420	1 LD 3	141	7 1	-	LIS	-	111	307	ITY	303	SIYP	100	7 11 1	101
		2928A	SVSS		SASS		AFY		SS		SYG		YY	
14421	FZD5	M 2928A	A	1	LYS	2	FPI	284	M	373	STY	450	GF	486
14421	TZD3	IVI	A	1	LIS	2	111	204	IVI	313	TIYP	430	OI.	+60
		2928A	SVSS		SASS		AFY		ISY		SYS		YY	
14422	FZD5	M	A	1	LYS	2	FPI	284	SSI	363	STY	462	AM	484
14422	rZD3	IVI	A	1	LIS		TTI	204	LG	303		402	Alvi	+04
		2028 4	CATCC		CACC		AESZ				SIYP		3/3/	
14422	EZDS	2928A	SVSS	1	SASS	_	AFY	204	YG	374	SYG	450	YY	101
14423	FZD5	M	A	1	LYS	2	FPI	284	SM	3/4	STY	430	AM	484
		2928A	GNGG		GAGG		A ESZ		ISY		SIYP		3/15	
14424	EZDS		SVSS	1	SASS		AFY	204	SS	250	SYS	467	YF	400
14424	FZD5	M	A	1	LYS	2	FPI	284	M	358	ATF	467	AL	490
		2020 4	GT 7GG		G A G G		A 1737		ICM		TIYP		3737	
1.1.10.7	EZD 5	2928A	SVSS		SASS		AFY	200	IGY	255	SYS	460	YY	402
14425	FZD5	M	A	1	LYS	2	YPI	288	SSI	375	STF	468	AF	483
											AIY			
		2020.4	GT 7GG		G A G G		A 1757		TTTX Z		SSY		3737	
14426	EZD 5	2928A	SVSS	,	SASS		AFY	200	ITY	276	GST	460	YY	402
14426	FZD5	M	A	1	LYS	2	YPI	288	GSI	376	Y	469	AF	483
		20204	GY YOU		0.400		4 777 7		ISY		SIFP		3737	
14407	EZD 5	2928A	SVSS	,	SASS		AFY	200	SS	250	YYG	470	YY	106
14427	FZD5	M	A	1	LYS	2	YPI	288	M	358	STY	470	GF	486
			a						ISY		SIYP			
		2928A	SVSS		SASS		AFY		SS		FYS		YY	
14428	FZD5	M	A	1	LYS	2	FPI	284	M	358	TTF	471	AM	484
		2025					0.07		ISY		SIYP			
14460	par :	2928A	SVSS		SASS		SSY	205	GS	255	SYS	4.55	YY	10.5
14429	FZD5	M	A	1	LYS	2	YPI	307	M	377	ATF	467	GM	485
		2626							ISY		SIYP			
14450		2928A	SVSS		SASS		AFY	200	SS	2.50	SYG		YY	46.5
14430	FZD5	M	A	1	LYS	2	YPI	288	M	358	STS	472	GM	485
14431	FZD5	2928A	SVSS	1	SASS	2	AFY	284	IYY	378	SIYP	473	YY	485

Табли														
ца 2В	CDR F	ZD5-связ	зывающі	их анти	гел									
		Идент												
	Назв	ифика												
Анти	ание	тор		SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
тело	антиг	селек		ID		ID		ID		ID		ID		ID
ID	ена	ции	Ll	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	H3	NO:
		M	A		LYS		FPI		SS		TYG		GM	
									M		STV			
											TIYP			
		2928A	SVSS		SASS		AFY		ISY		NYS		YY	
14432	FZD5	M	A	1	LYS	2	FPI	284	SSI	363	STY	474	AM	484
									IFY		SIYP			
		2928A	SVSS		SASS		AFY		SS		SYS		YY	
14433	FZD5	M	A	1	LYS	2	FPI	284	M	379	ATY	475	AM	484
									ISY		SIYP			
		2928A	SVSS		SASS		AFY		SS		GYS		YY	
14434	FZD5	M	A	1	LYS	2	YPI	288	M	358	STY	476	AM	484
									IAY		TIYP			
		2928A	SVSS		SASS		AHY		SS		SYS		YY	
14435	FZD5	M	A	1	LYS	2	FPI	285	M	365	STY	462	AM	484
											SIYP			
		2928A	SVSS		SASS		AFY		ISY		SYS		YY	
14436	FZD5	M	A	1	LYS	2	YPI	288	SSI	363	STS	477	GM	485
									ISY		SIYS			
		2928A	SVSS		SASS		AFY		SS		GYG		YY	
14437	FZD5	M	A	1	LYS	2	FPI	284	M	358	STY	478	GM	485
									ISY		SIYP			
		2928A	SVSS		SASS		AFY		SS		SYG		YY	
14438	FZD5	M	A	1	LYS	2	FPI	284	M	358	STY	450	GM	485
									LSF		SIYS			
		2928A	SVSS		SASS		AFY		SS	2.50	GYS		YY	
14439	FZD5	М	A	1	LYS	2	FPI	284	M	359	ATY	466	AL	487
		20204	GY YOU		G 4 G G		43737		ISY		SIYP		3737	
14440	EZD 5	2928A	SVSS	١.	SASS		AYY	206	SS	250	SYG	470	YY	402
14440	FZD5	M	A	1	LYS	2	FPI	296	M	358	STN	479	AF	483
		2928A	SVSS		SASS		AFY		LS YS		SIYP TYG		$ _{ m YY}$	
14441	FZD5	M M	A	1	LYS	2	FPI	284	SI	344	SAY	480	GM	485
14441	rZD3	IVI	A	1	LIS	2	FFI	204	ITY	344	TIYS	400	Givi	+63
		2928A	SVSS		SASS		AFY		SS		SYG		YY	
14442	FZD5	M	A	1	LYS	2	FPI	284	M	373	STY	481	AM	484
14774	1200	141	11	1	113	 	111	207	141	313	AIY	701	731VI	707
									ISF		PYY			
		2928A	SVSS		SASS		AFY		SS		GST		YY	
14443	FZD5	M	A	1	LYS	2	FPI	284	M	380	Y	482	GF	486
1117		171		1		<u> </u>	111		1,11	500		102	<u></u>	100

Табли														
ца 2В	CDR F	ZD5-свя:	вывающи	іх антит	ел									
		Идент												
	Назв	ифика												
Анти	ание	тор		SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
тело	антиг	селек		ID		ID		ID		ID		ID		ID
ID	ена	ции	L1	NO:	L2	NO:	L3	NO:	Hl	NO:	H2	NO:	H3	NO:
									ISY		SIYS			
		2928A	SVSS		SASS		AHY		SS		SYG		YY	
14444	FZD5	M	A	1	LYS	2	FPI	285	М	358	STY	438	GM	485
									LS		SIYP			
		2928A	SVSS		SASS		ASY		YS		SYS		YY	
14445	FZD5	M	A	1	LYS	2	FPI	304	SM	364	STF	435	AM	484
									ISY		SIYP			
		2928A	SVSS		SASS		AFY		GS		SYG		YY	
14446	FZD5	M	A	1	LYS	2	YPI	288	М	377	STY	450	GM	485

ПРИМЕР 2. Идентификация и характеристика LRP-связывающих синтетических антител A. ELISA фаговых клонов для синтетических антител, нацеленных на LRP5 и LRP6.

Одноточечный ELISA выполняли на 96-луночных планшетах Maxisorp, покрытых ВКД белка LRP5 мыши - His или Fc человека и блокированных BSA (0,5%). инкубировали с моноклональным Fab-фагом или VH-фагом и титрами >109 фагов/мл с последующей инкубацией с конъюгированным с пероксидазой хрена (HRP) антителом к M13.Лунки промывали 8 раз с последующей инкубацией с субстратом 3,3,'5,5'тетраметилбензидином/Н2О2-пероксидазой (ТМВ) в течение 5-10 мин. Реакцию останавливали добавлением 1М Н₃РО₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов. Результаты представлены на Фиг. 4. Результаты демонстрируют, что синтетические антитела связывались с LRP5. Связывающие LRP5 антитела, 2459, 2460 и 8716, описаны в предварительной заявке США № 62/886913, включенной в данный документ посредством ссылки.

Одноточечные ELISA выполняли на 96-луночных планшетах Maxisorp, покрытых ВКД химерного белка LRP6 человека - Fc. Планшеты инкубировали с моноклональным Fabфагом или VH-фагом и титрами >109 фагов/мл с последующей инкубацией с коньюгированным с пероксидазой хрена (HRP) антителом к М13. Лунки промывали 8 раз с последующей инкубацией с субстратом 3,3,'5,5'-тетраметилбензидином/H₂O₂-пероксидазой (TMB) в течение 5-10 мин. Реакцию останавливали добавлением 1М H₃PO₄

и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов. Результаты показаны на Фиг. 5A и 5B. Результаты демонстрируют синтетические антитела, связанные с LRP6. LRP6-связывающие антитела 2539, 2540 и 2542 описаны в предварительной заявке США №. 62/886918, включенной в данный документ посредством ссылки.

В. Идентификация CDR синтетических антител, нацеленных на LRP5 и LRP6.

CDR LRP5-связывающего и LRP6-связывающего иммуноглобулинов, представленные в таблицах 3 и 4, идентифицировали в соответствии с Международной информационной системой по иммуногенетике (система нумерации IMGT; Lefranc et al., 2003, Development and Comparative Immunology 27:55-77). и аннотированы, как описано в Persson et al. J Mol Biol. 2013 Feb 22;425(4):803-11, both incorporated herein by reference.

Таблиц	Антит	ело к												
a 3	LRI	P5					CDR L	RP5-	связыва	ющих	антител			
Антите	:			SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
ло	Библио	Анти		ID		ID		ID		ID		ID		ID
ID	тека	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
		mLRP	SVS		SASSL		ASYA		LSYYY		SIYSSY		WSHVSGH	
2459	F	5-his	SA	1	YS	2	PΙ	492	M	527	GYTY	552	YSGM	584
													GGSGVSH	
		mLRP	SVS		SASSL		SSYSL				SISSSY		YGSVYYS	
2460	F	5-his	SA	1	YS	2	I	130	FSSSSI	528	GYTY	553	WWAL	585
		mLRP	SVS		SASSL		YWA				SISSSY			
8716	F	5-his	SA	1	YS	2	YYSPI	493	FSSSSI	528	GYTY	553	SWAM	586
		mLRP	SVS		SASSL		SSSG		LYYYS		YISSY		WSHVVGA	
9931	F	5-his	SA	1	YS	2	HLI	494	M	529	YSYTS	554	HYGWAI	587
		mLRP	SVS		SASSL		PYGY		IYYYS		SISSYY		SWWYWS	
9932	F	5-his	SA	1	YS	2	PΙ	495	M	530	GYTS	555	YHGYAAM	588
													GYSYVWY	
		mLRP	SVS		SASSL				ISSSY		SIYSYS		GVYYHGY	
9933	F	5-his	SA	1	YS	2	FHGLI	496	M	348	SYTS	556	GAM	589
		mLRP	SVS		SASSL		YWFL		LYYY		SISPYY		SGYGWYA	
9934	F	5-his	SA	1	YS	2	I	497	ΥI	531	GYTS	557	М	590
		mLRP	SVS		SASSL		HSYG		ISYSY		SISSSY		SYYWGY	
9935	F	5-his	SA	1	YS	2	YPI	498	M	310	GYTY	553	WAAL	591
													GGVYYYP	
		mLRP	SVS		SASSL		YYA		ISYYS		SIYSSY		SYAGWPY	
9936	F	5-his	SA	1	YS	2	WYLI	499	M	532	GYTY	552	GM	592

Таблиц а 3	Aнтит LR						CDR L	RP5-	связыва	юших .	антител			
и э Антите				SEQ		SEQ		SEO	1	SEQ		SEQ		SEC
ло	Библио	A		ID		ID		ID		ID		ID		ID
ID			L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO
עו	тека	ген		NU:		NO:		NU:		NU:				NU
9937	F	mLRP 5-his	SVS SA	1	SASSL YS	2	AAYS PI	500	ISSSY M	348	SIYPSY GYTY	558	HYAWWV GAF	593
773/	1							300		340		336		
0000		mLRP			SASSL		YYSW	701	ISYSY	210	SIYSY		GGGAHGW	
9938	F	5-his	SA	1	YS	2	YPPF	501	M	310	YSYTS	559	GYSL	594
													SGPVYASY	
		mLRP			SASSL						SIYPY		SWAWYY	
9939	F		SA	1	YS	2	SFYPI		LSSYSI	29	YGYTS	560	YGAL	595
		mLRP	SVS		SASSL		YYW		LSYYY		SIYSY		YSWGAYG	
9940	F	5-his	SA	1	YS	2	YPF	503	I	533	YSSTY	561	YGAM	596
		mLRP	SVS		SASSL		WGSP				SIYPSS		YYYHYSV	
9941	F	5-his	SA	1	YS	2	I	504	FSSSSI	528	GSTY	562	PVYAAL	597
													SPYYGFYY	
		mLRP	SVS		SASSL		YSSW		LYYYS		SIYPSS		SGFYHWV	
9942	F	5-his	SA	1	YS	2	YLI	505	М	529	GSTY	562	FYGF	598
											YIYSY			
		mLRP	SVS		SASSL		GAYL		LYYSS		YGYT		AAWGWH	
9943	F	5-his	SA	1	YS	2	I	506	M	534	Y	563	PAF	599
													GGGFYYA	
		mLRP	SVS		SASSL		HFYY				YISSY		GGWPYAS	
9944		5-his						507	IYSSYI	535	YGSTY	57		600
		mLRP			SASSL		AFHS		LYYSS		YIYPY		AWYSYYV	
9945	F	5-his				2				534	YGYTS		GL	601
JJ T J		J-1115)A		15		1	500	1) J T	10115	304	GVYYGGG	001
		mLRP	CVC		SASSL		AWYP		ISYSS		SIYPY		YWAGGYY	
9946	F	5-his						509		358	YGSTY	565	PAAL	602
9940	Г					2							PAAL	002
1000		mLRP			SASD		YAGA		FTAYA		SIYPSG		D 01 17 15 1 1	
12600	H	5-his	SA	1	LYS	491	GLI	510	M	536	GYTA	566	RSYYFAL	603
											GIYPS			
		mLRP			SASD		SYSY		LGGY		GGYT		SSTYSSYY	
12601	Н	5-his	SA	1	LYS	491	ΡΙ	511	GI	537	A	567	YHFYAL	604
													STRWHSA	
		mLRP	SVS		SASD		YYRS		FASA		RISPSG		YAYYYSH	
12602	Н	5-his	SA	1	LYS	491	RLI	512	WM	538	GYTA	568	АМ	605
		mLRP	SVS		SASD		SYFY		IGGAA		GISAS		SRPSWYW	
12603	Н	5-his	SA	1	LYS	491	ΡΙ	513	М	539	GGAT	569	SYHYFAL	606

Таблиц а 3	Антит LRI						CDR L	RP5-	связыва	ющих	антител			
Антите ло	Библио	Анти		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID
ID	тека	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
											A			
											GISTS			
		mLRP	SVS		SASD						GGAT		SYYGYSR	
12604	H	5-his	SA	1	LYS	491	GFFPI	514	FSSSSI	528	A	570	GF	607
													SYSFHYA	
		mLRP	SVS		SASD		SHSY		FASYG		SIYPSG		WPRYHYG	
12605	H	5-his	SA	1	LYS	491	PΙ	515	M	540	GYTA	566	AL	608
		<u> </u> 			<u> </u> 		<u> </u> 				GISAS		YDSGYYA	
		mLRP	SVS		SASD		SHYY				GGYT		 WYYHDRA	
12606			SA			491		286	IAGSSI	541		571	M	609
											GIYPS			
		mLRP	SVS		SASD		RGSG		LTGD		GGAT		FGSPHYG	
12607	H		SA			491				542		572	M	610
		mLRP			SASD		RYSG		FTSYS		GIYPS		PRYYAYY	
12608	H		SA							543	GGSTA	573	SGGF	611
12000		mLRP			SASD	771	SARY		LNAA	343	GISAS	373	SHSSGSRS	011
12609	H		S V S			491				544	RGATA	574	RGL	612
12009	П					491				344				012
12610		mLRP			SASD	401	SSYSL		LAGA	5.4.5	RISTSG		YSFRYPSY	(12
12610	H	5-his	SA	1	LYS	491	1	130	GM	545	GYTA	575	AM	613
			~~		~ . ~=		a				GIYAS			
		mLRP			SASD		SYRG		IGGAA		GGAT			
12611	H									539		576		614
		mLRP			SASSL		FSWG		ISYYP		YISPYS		HYYFRWS	
13218			SA	1				520	M	546		577	RGM	615
		mLRP			SASSL		YSWL				HIAPY		VNFIRRFR	
13219	M	5-his	SA	1	YS	2	PΙ	521	IVFGSI	547	YGFTY	578	GM	616
	2542A	mLRP	SVS		SASSL						SINPSY			
13378	M	5-his	SA	1	YS	2	FFRPI	522	ISSNYI	548	SYTF	579	AVRRSQGI	617
	2539A	mLRP	SVS		SASSL		YSRR		LTYTS		SISPFH		FPYFAWV	
13379	М	5-his	SA	1	YS	2	LF	523	М	549	GHTF	580	GGM	618
											SITSY			
	2539A	mLRP	SVS		SASSL		FIRVP		ITYYS		YGNT		SHYFPWT	
13380	М	5-his	SA	1	YS	2	I	524	М	550	D	581	VAL	619
	2540A	mLRP	SVS		SASSL		FYVP				SIYPY		ASYHASFD	
13558	M	5-his	SA	1	YS	2	F	525	N.D.		YGFTD	582	GL	620

Таблиц	Антит	ело к												
a 3	LR	P5					CDR L	RP5-	связыва	ющих а	антител			
Антите	:			SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
ло	Библио	Анти		ID		ID		ID		ID		ID		ID
ID	тека	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
	2540A	mLRP	SVS		SASSL		GYSF				SISPYF		TSIFKRFA	
13559	M	5-his	SA	1	YS	2	GQ	526	IADSSI	551	SYTR	583	GM	621

Таблица -	4													
LRP6 – aı	нтитело		CDR	LRP	б-связі	ываю	ощих а	нтител	I					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
икатор	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
											YISSY		AHYFP	
		LRP6	SVS		SASS		YSW		ISYSS		YGYT		WAGA	
2539	F	-Fc	SA	1	LYS	2	GPF	622	I	363	Y	51	M	813
				1									TVRGS	
													KKPYF	
		LRP6	SVS		SASS		YYW		ISSYY		SIYSSY		SGWA	
2542	F	-Fc	SA		LYS	2	ΡΙ	623	I	683	GYTS	741	M	814
				1									SSYFP	
		LRP6	SVS		SASS		YYF		ISYSS		SISPYY		WFSA	
2540	F	-Fc	SA		LYS	2	LI	624	I	363	GYTY	742	M	815
				1	SAS		YRY						ASYYS	
		LRP6	SVS		DLY		YWR		FSGD		RISSSG		NYYY	
12612	Н	-Fc	SA		S	491	ΡΙ	625	AM	684	GYTA	743	GPAM	816
				1									GWFSF	
					SAS								RSYYR	
		LRP6	SVS		DLY		GPW		ISGA		RIYPS		SYYYY	
12613	Н	-Fc	SA		S	491	GLI	626	WM	685	GGTTD	744	SAL	817
				1									SGHPR	
					SAS						GISTS		YYSRR	
		LRP6	SVS		DLY		RYSS		FTTY		GGYT		HSYG	
12614	Н	-Fc	SA		S	491	ΡΙ	627	SI	686	D	745	M	818
					SAS		YRY						SYYSN	
		LRP6	SVS		DLY		WYG		FAAS		YISPSG		YYYY	
12615	H	-Fc	SA	1	S	491	ΡΙ	628	GI	687	GYTD	746	YDAM	819
		<u> </u>	~ .	<u> </u>	<u> </u>	· ´ `			<u> </u>	<u> </u>				

Таблица 4	4													
LRP6 – ан	нтитело		CDR	LRP	б-связ і	ываю	щих а	нтител	ı					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
икатор	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
													AHYFP	
		LRP6	SVS		SASS		YSW		IFFSS		GISSY		WAGA	
12979	2539AM	-Fc	SA	1	LYS	2	ALF	629	M	688	YGFTY	747	L	820
		LRP6	SVS		SASS		ISW		IRYSS		GIFSN		AHYFR	
12980	2539AM	-Fc	SA	1	LYS	2	GLI	630	I	689	YGPTT	748	RARGL	821
													SHYFP	
		LRP6	SVS		SASS		YFS		LSYSS		FISSYY		WAGA	
12981	2539AM	-Fc	SA	1	LYS	2	YPI	631	I	344	SFTH	749	M	822
													AHYFP	
		LRP6	SVS		SASS		YRW		LAYS		SISSYY		WAGG	
12982	2539AM	-Fc	SA	1	LYS	2	ALF	632	SI	690	GFTY	750	M	823
											YIASF		SYYYP	
		LRP6	SVS		SASS		YSRI		LRYA		YGDT		RSRG	
12983	2539AM	-Fc	SA	1	LYS	2	LF	633	SM	691	Y	751	M	824
											HISPY		SHYFP	
		LRP6	SVS		SASS		YSL		LSFSS		YGYT		WAVA	
12984	2539AM	-Fc	SA	1	LYS	2	RPI	634	I	370	Н	752	M	825
													SHYFP	
		LRP6	SVS		SASS		YSR		IFYSS		YISSY		WAVA	
12985	2539AM	-Fc	SA	1	LYS	2	GLI	635	I	692	YSYTY	58	M	825
													SHYFP	
		LRP6	SVS		SASS		YFW		LSYSS		NITPY		WFAA	
12986	2539AM	-Fc	SA	1	LYS	2	GLI	636	M	364	YGYTS	753	M	826
													ANYFP	
		LRP6	SVS		SASS		YSW		INYSS		GISSY		WAYA	
12987	2539AM	-Fc	SA	1	LYS	2	GLI	637	I	693	YSYTY	754	M	827
													AHYFP	
		LRP6	SVS		SASS		DSW		ISYSS		LITSY		WVVG	
12988	2539AM	-Fc	SA	1	LYS	2	GLF	638	M	358	YGYTT	755	M	828
													SHYFP	
		LRP6	SVS		SASS		YYW		LSYSS		FISSYY		WAGA	
12989	2539AM	-Fc	SA	1	LYS	2	GLI	639	I	344	GYTY	73	L	829
		LRP6	SVS		SASS		YYY		IAFSS		SISSYY		SSYFP	
13002	2540AM	-Fc	SA	l ₁	LYS	2	LI	640	I	694	GYTS	555	WFSAL	830

Таблица 4					_									
LRP6 – af	титело		CDR		о-связі			нтител	[
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
_	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
													SSYFP	
		LRP6	SVS		SASS		YYIL		LFYSS		FISPYY		WLSD	
13003	2540AM	-Fc	SA	1	LYS	2	I	641	M	695	SFTN	756	M	831
													SSYFP	
		LRP6	SVS		SASS		HSFP		ISYSS		NITSY		WVSG	
13004	2540AM	-Fc	SA	1	LYS	2	I	642	M	358	YGYTT	757	M	832
													SSYFP	
		LRP6	SVS		SASS		ҮНН		ISFAS		SISPYY		WFSA	
13005	2540AM	-Fc	SA	1	LYS	2	LI	643	М	696	SYTS	758	M	815
		LRP6	SVS		SASS		YYS		IFYSS		SISPYY		SSYLP	
13006	2540AM	-Fc	SA	1	LYS	2	ΡΙ	644	I	692	GYTD	759	WFSAL	833
		LRP6	SVS		SASS		YYY		ISFYS		SISSYY		SSYFP	
13007	2540AM		SA				ΡΙ	645	I	697		760	 WFTAL	834
													SSYFP	
		LRP6	SVS		SASS		YHF		ISYSS		AIYSY		WVGG	
13008	2540AM		SA					646	1	363		761		835
	20 101 2112	- •									10111		SSRFP	
		LRP6	SVS		SASS		YYF		LSYSS		SISPYY		WFYG	
13009	2540AM							647	1	344		758		836
13007		LRP6			SASS		YDF	047	ISYSS	J 1 1	SISSYY		SSYFP	030
13010	2540AM							648	1	358		555	WFSAL	920
13010	2340AWI	-rc	SA	1	LIS		LI	048	IVI	336	0115	333		030
		I DD(G T 7G		G A GG		X / X / II		T ESZ A		CICCX/X/		SSYFP	
12204		LRP6			SASS		YYIL		LFYA	600	SISSYY	555	WFSA	01.5
13394	2540AM	-Fc	SA	1	LYS	2	I	641	SM	698	GYTS	555		815
							L						SSYFP	
		LRP6			SASS		YYY		ISYSS		SISPYY		WFSA	
13395	2540AM	-Fc	SA	1	LYS	2	LI	640	I	363	GFTL	762		815
													SSYFP	
		LRP6			SASS		YYF		IAYA		SISSYY		WFSA	
13396	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	SI	699	SYTY	763		815
													SSYFP	
		LRP6			SASS		YYF		ITYSS		SISSYY		WSSA	
13397	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	Ι	361	GYTA	764	M	837
		LRP6	SVS		SASS		NSFL				GISSY		SHYFP	
13398	2540AM	-Fc	SA	1	LYS	2	I	649	ISRSSI	700	YGYTR	765	WLSAL	838

Таблица 4			~~~		_									
LRP6 – ai			CDR		о-связ			нтител	I •					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
_	Библиоте			ID		ID	l	ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
													ASYYP	
		LRP6			SASS		YYN		ISYAS		SISPYY		WFSA	
13399	2540AM					2		650		701		766		839
			SVS		SASS		YGF		LDYS		SISPYY		SSYIP	
13400	2540AM	-Fc	SA	1	LYS	2	LI	651	SI	702	SYTT	767	WRYAI	840
		LRP6	SVS		SASS		YYF		ISYSS		SISPYY		SSYFP	
13401	2540AM	-Fc	SA	1	LYS	2	LI	624	I	363	SYTN	74	WISAM	841
		LRP6	SVS		SASS		YYF		IYYY		GISSY		SSYFP	
13402	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	SM	530	YSYTS	768	WISAL	842
		LRP6	SVS		SASS		YYF		ISYSS		SISPYY		SSRFP	
13403	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	М	358	SFTS	769	WISGM	843
		LRP6	SVS		SASS		YNF		ISYSS		SISSYY		SSYFP	
13404	2540AM	-Fc	SA	1	LYS	2	LI	652	I	363	GFTS	68	WFSAL	830
		LRP6	SVS		SASS		YYF		ISYSS		SISSYY		SPYFP	
13405	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	I	363	GFTS	68	WSSAL	844
											YISPY		ASYLP	
		LRP6	SVS		SASS		YYF		LSYS		YGYT		WFSA	
13406	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	ΑI	703	Y	65	M	845
													SSYLP	
		LRP6	SVS		SASS		SSFL		LSGF		FISSYY		WITA	
13407	2540AM	-Fc	SA			2	I	653		704		770		846
													SAYFP	
		LRP6	SVS		SASS		YVF		LSFAS		SISSYY		WFAA	
13408	2540AM		SA					654	M	705		771		847
						-		-	-				SSYFP	
		LRP6	SVS		SASS		YYF		LAYN		SIFSYY		WFSA	
13409	2540AM		SA					647		706		772		815
								-					SSYFP	-
		LRP6	SVS		SASS		FYG				SISSYY		WFFA	
13410	2540AM							655	ISFSSI	357		773		848
		LRP6			SASS		YFFL		LYYS		YISSY		SSYFP	
13411	2540AM		SA			2		656		707	YGYTS	774	WFSAL	830
			~			<u> </u>							SSYFP	
		LRP6	SVS		SASS		YYG		IHYY		SISPYY		WFSA	
13412	2540AM		SA		L			657		708		775		815
13714	23TUAIVI	-1 C	SA.		LIS	Ĺ	1	05/	131	/ 00	ענינו	113	μ ν 1	013

Таблица <i>-</i> LRP6 – ан			CDR	LRP	-craa	LIBSIG	ппих я	нтител	T					
Идентиф икатор	Библиоте	Анти		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEQ ID		SEC ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
													SSHFP	
		LRP6	SVS		SASS		YDF		ISFAS		SIYSY		WVSA	
13413	2540AM	-Fc	SA	1	LYS	2	LI	648	I	709	YSFTN	776	L	849
													SSYFP	
		LRP6	SVS		SASS		YYS		IYYSS		SISPYY		WVSA	
13414	2540AM	-Fc	SA	1	LYS	2	ΡΙ	644	М	378	GYTS	557	M	850
													SSHFP	
		LRP6	SVS		SASS		YYF		LSYFS		SIYSY		WFSA	
13415	2540AM	-Fc	SA	1	LYS	2	LI	624	M	710	YGFTN	777	M	851
		LRP6	SVS		SASS		FYG		LFYSS		TISPY		SSYFP	
13422	2540AM		SA				ΡΙ	655	M	695	YGYTS	778	 WFSAL	830
		LRP6			SASS	_	YTLP		ISFSS		HISSY		SSYFP	
13428	2540AM		SA			2					YGFTS	779	WFSAL	830
13 120	23 107 1111	LRP6			SASS		YRFP		ISYFS	500	SISPYY	, , ,	SSYFP	050
13430	2540AM		S V S S A			2				711		74	WFSAI	052
13430	2340AIVI	-1°C	SA	1	LIS		1	039	1	/11	311N	/ 4		0.52
		I DD(ar ra		G 4 GG		X 27 11		1 3/3/3/1		ATTIDAZ		SSRFP	
12421		LRP6			SASS		YHL	660	LYYN	710	AIHPY	700	WFPA	0.50
13431	2540AM	-Fc	SA	1	LYS	2	LI	660	SI	712	YGYTS	/80		853
													SSYFP	
		LRP6			SASS		YSFP		LSYA		SISSYY		WFSA	
13432	2540AM					2		661		713		781		815
		LRP6	SVS		SASS		YFLP		LSYSS		SISPYY		SSYFP	
13435	2540AM	-Fc	SA	1	LYS	2	I	662	M	364	GFTY	782	WFSAL	830
													SSYVP	
		LRP6	SVS		SASS		YYF		ISYAS		SISSYY		WFYA	
13436	2540AM	-Fc	SA	1	LYS	2	ΡΙ	647	М	714	GYTD	783	L	854
				1		2		663		361		68	SSYFP	815
		LRP6	SVS		SASS		YDN		ITYSS		SISSYY		WFSA	
13437	2540AM	-Fc	SA		LYS		LI		I		GFTS		M	
													ASYFP	
		LRP6	SVS		SASS		YLFP		ISYYS		SIYSY		WFPA	
13438	2540AM	-Fc	SA	1	LYS	2	I	664	I	715	YGYTT	784	M	855
		LRP6			SASS		YFFP		LSHSS		SISSHY		SSYFP	
13439	2540AM					2				716		785	WFFAL	856
			~ 1	<u> </u>							J	<u> </u>	[,,,,,,,,,	

Таблица -	4													
LRP6 – aı	нтитело		CDR	LRP	б-связі	ываю	ощих а	нтител	1					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
икатор	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
		LRP6	SVS		SASS		YYIP		IAYN		SISSYY		SSYFP	
13440	2540AM	-Fc	SA	1	LYS	2	I	666	SM	717	SYTD	760	WFSAL	830
											YISSY			
		LRP6	SVS		SASS		FNFL		LSYSS		YGYT		SSYYP	
13441	2540AM	-Fc	SA	1	LYS	2	I	667	I	344	A	786	WFSAL	857
													SSYLP	
		LRP6	SVS		SASS		YNY		LAYS		SISSYY		WVSA	
13442	2540AM	-Fc	SA	1	LYS	2	LI	668	SI	690	GYTY	787	L	858
													SFNGA	
													KKPYF	
		LRP6	SVS		SASS		YYW		ISLFF		SIYSSY		SGWA	
12990	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	M	718	SYTS	788	M	859
													NVVVS	
		LRP6	SVS		SASS		YYW		IPSYF		SIYSSY		RKPYF	
12991	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	M	719	SYTA	789	FRSAM	860
													TVPGS	
		LRP6	SVS		SASS		YYW		ISSSY		SIYSSY		KRPYF	
12992	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	M	348	SYTG	790	ASLAI	861
													NVRGF	
													RKPYF	
		LRP6			SASS		YYW		ISSYF		SIYPSY		SRWA	
12993	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	I	720	SYTS	791	M	862
													NVPGI	
													KRPYF	
		LRP6			SASS		YYW		LSSY		SIYSRF		TAWA	
12994	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	YM	721	SYTA	792	M	863
													TIRGS	
		LRP6			SASS		SYW		LHSY		NIYSS		KRPYF	
12995	2542AM	-Fc	SA	1	LYS	2	ΡΙ	669	ΥI	722	YGYTS	793	AASGL	864
													TAREN	
													KKPYF	
		LRP6			SASS		YYW		LSSY		SIYSSY		SGWA	
12996	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	YM	721	SYTS	788	M	865

Таблица -	4													
LRP6 – aı	нтитело		CDR	LRP	б-связі	ываю	ощих а	нтител	1					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
икатор	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
													TLPLS	
		LRP6	SVS		SASS		YYR		IGSY		AIYSP		KKPYF	
12997	2542AM	-Fc	SA	1	LYS	2	ΡΙ	670	YM	723	YGYTS	794	SLWAF	866
													TFHGS	
													KKPYF	
		LRP6	SVS		SASS		YYW		LGSY		TIYSY		SGRA	
12998	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	ΥI	724	YSYTS	795	M	867
													SIRGS	
		LRP6	SVS		SASS		YYW		LTSY		SIYPSY		KKPYF	
12999	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	ΥI	725	SYTS	791	SRLAL	868
													SVRGS	
													KKPYF	
		LRP6	SVS		SASS		YYW		ISTYY		SIYPSY		SHWA	
13000	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	M	726	SYTS	791	M	869
													NVRTS	
													KKPYF	
		LRP6	SVS		SASS		YYW		ISSNY		SIYSSF		PLWA	
13001	2542AM	-Fc	SA	1	LYS	2	ΡΙ	623	I	548	GYTS	796	M	870
													GVSGG	
													SNYISI	
		LRP6			SASS		ASN		IPLYT		SISPSY		FRNSS	
13011	2460AM	-Fc	SA	1	LYS	2	NLI	671	I	727	SYTY	797	GM	871
													GGLSV	
													SHYNY	
		LRP6			SASS		SSYS				SITSA		VHSFK	
13012	2460AM	-Fc	SA	1	LYS	2	LI	130	IFSTSI	728	YSYTY	798	WGL	872
													SCSSF	
													CNYVS	
		LRP6			SASS		SAIT		ISYST		SIVSSY		NYNA	
13013	2460AM	-Fc	SA	1	LYS	2	ΡΙ	672	M	729	SRTY	799	RRAL	873
													GNAR	
											AIYPF		VSNYI	
	[LRP6			SASS		FSYS		LSSSG		DGYT		SSYYA	
13014	2460AM	-Fc	SA	1	LYS	2	PF	673	M	730	Y	800	WRAM	874

Таблица	4													
LRP6 – aı	нтитело		CDR	LRP	б-связі	ываю	ощих а	нтител	1					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
икатор	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	H2	NO:	Н3	NO:
													GGYGF	
													SYYNS	
		LRP6	SVS		SASS		SSY		FSSSS		GIFSYF		VTFYR	
13015	2460AM	-Fc	SA	1	LYS	2	NLI	674	I	528	SYTY	801	WAF	875
													VGSGV	
													CNSLH	
		LRP6	SVS		SASS		SYN		IRGPS		SISPFC		NYFYK	
13016	2460AM	-Fc	SA	1	LYS	2	FPF	675	I	731	GFTY	802	RGM	876
													SSSDIS	
													IDNSIR	
		LRP6	SVS		SASS		SSTV		FSSTY		SITPSY		YTWG	
13017	2460AM	-Fc	SA	1	LYS	2	PF	676	M	732	GYTN	803	AM	877
				1									GHSGV	
													TNFISF	
		LRP6	SVS		SASS		SSYS		INSSF		SISPSY		YYRR	
13018	2460AM	-Fc	SA		LYS	2	LI	130	М	733	GYTY	804	RAM	878
				1									GVSGL	
													DNNRT	
		LRP6	SVS		SASS		SNY		IFGYS		SIFPCC		ASYSR	
13019	2460AM	-Fc	SA		LYS	2	SLF	677	М	734	SNTY	805	MGM	879
				1									GAASV	
													NHIGS	
		LRP6	SVS		SASS		STYS		FSSST		SIAPSF		LYVS	
13020	2460AM	-Fc	SA		LYS	2	LI	678	I	735	GHTY	806	WRGL	880
				1									HGSGL	
													SHNAT	
		LRP6	SVS		SASS		SAFS		LSSST		SISPYY		TSYYR	
13021	2460AM	-Fc	SA		LYS	2	LI	679	M	736	SYTR	807	SAI	881
				1									SSSAV	
													SRNSI	
		LRP6	SVS		SASS		SSYS		ISYTS		SIFSTY		VYYSR	
13022	2460AM	-Fc	SA		LYS	2	LI	130	I	737	SYTY	808	TAM	882

Таблица <i>-</i> LRP6 – ан			CDR	LRP	б-связі	ываю	ощих а	нтител	I					
Идентиф				SEQ		SEQ		SEQ		SEQ		SEQ		SEQ
икатор	Библиоте	Анти		ID		ID		ID		ID		ID		ID
антитела	ка	ген	L1	NO:	L2	NO:	L3	NO:	H1	NO:	Н2	NO:	Н3	NO:
				1									GVCR	
													VSNYS	
		LRP6	SVS		SASS		SSYT		FSSSV		SIAPSY		SYFYS	
13023	2460AM	-Fc	SA		LYS	2	ΡΙ	680	M	738	SFTY	809	RGAM	883
				1									AISHV	
													AHYD	
		LRP6	SVS		SASS		YSN		ISYST		SITPY		NVIYS	
13024	2460AM	-Fc	SA		LYS	2	SLI	681	М	729	YSTTS	810	KWGI	884
				1									GHSVL	
													SNYVS	
		LRP6	SVS		SASS		SSYS		IASYS		FISPYH	-	IHYYW	
13025	2460AM	-Fc	SA		LYS	2	LI	130	М	739	SYTD	811	AGF	885
				1			YWA							
		LRP6	SVS		SASS		YFSP		FSYSS		SISSRY			
13026	8716AM	-Fc	SA		LYS	2	I	682	M	740	GYTY	812	SWAM	586

ПРИМЕР 3: Форматы молекулы четырехвалентного связывающего антитела

A. Мы создали различные форматы молекул четырехвалентного связывающего антитела, содержащие фрагменты антител к пан-FZD и LRP5/6, например, scFv, диатела и Fab, на каждом конце домена Fc, см. таблицу 5 и Фиг. 6, и проанализировали их агонистическую активность Wnt. Фрагменты ДНК, кодирующие вариабельные домены антител, либо амплифицировали с помощью ПЦР с матрицы фагемидной ДНК, либо конструировали с помощью химического синтеза (Twist Biosciences). Фрагменты ДНК клонировали в векторы экспрессии млекопитающих (pSCSTa). Биспецифические диатела и IgG содержали оптимизированную версию гетеродимерного Fc с конфигурацией «выступы-во-впадины» (Ridgway et al. Protein Eng. 9, 617-621 (1996)). Домены диатела были расположены в ориентации VH-VL с вариабельными доменами, разделенными коротким линкером GGGGS (SEQ ID NO: 886), что способствует межмолекулярной ассоциации между доменами VH и VL и, таким образом, способствует образованию диатела. Для получения слитых конструкций диатела цепи диатела сливали с Fc IgG1 человека. Белки диатело-Fc-диатело конструировали как VH-x-VL-y-[Fc IgG1 человека]-z-VH-x-VL, где линкеры представляют собой x= GGGGS (SEQ ID NO: 886), y=

LEDKTHTK VEPKSS (SEQ ID NO: 887) и z = SGSETPGTSESATPESGGG (SEQ ID NO: 888). В этом формате фрагменты Fc IgG1 человека или фрагменты Fc IgG1 в конфигурации «выступ-в-отверстии» охватывают положения 234-478 (нумерация Kabat). Для слитых белков scFv-Fc вариабельные домены были расположены в ориентации VL-VH и были соединены длинным линкером GTTAASGSSGGSSSGA (SEQ ID NO: 889), который способствует внутримолекулярной ассоциации между доменами VH и VL и, таким образом, способствует образованию scFv. Варианты с доменом Fab, слитым с C-концом Fc, были созданы с помощью химического синтеза (Twist Biosciences). Для всех конструкций всю кодирующую область клонировали в вектор экспрессии млекопитающих в рамке считывания с сигнальным пептидом секреции.

Эти различные молекулы четырехвалентного связывающего антитела, содержащие панспецифические фрагменты антител к FZD и LRP5/6, тестировали в анализе TOPFLASH для мониторинга активности репортерного гена, опосредованного бета-катенином. Белки сравнивали с нативным лигандом Wnt3a. Анализы проводили путем посева клеток TOPFLASH до ~70% слияния в 96-луночный планшет, обработанный тканевой культурой. Агонисты разводили в DMEM для обеспечения конечной концентрации анализа 0,046 нМ -100 нМ, и клетки обрабатывали в течение ночи при 37° С в атмосфере 5% CO₂. Экспрессию люциферазы количественно определяли с использованием системы анализа репортерной системы Dual-Luciferase (Promega) в 96-луночных черных планшетах в соответствии с инструкциями производителя. Вкратце, клетки НЕК293Т трансдуцировали лентивирусом, кодирующим репортер pBAR1s (Biechele and Moon in Wnt Signaling: Pathway Methods and Mammalian Models, E. Vincan, Ed. (Humana Press, Totowa, NJ, 2008), стр. 99-110), и с люциферазой Renilla в качестве контроля для получения линии клеток передачи с репортером сигналинга Wnt-β-катенин. 1-2 x 10³ клеток в 120 мкл высевали в каждую лунку 96-луночного планшета на 24 часа перед трансфекцией или стимуляцией. На следующий день добавляли агонисты FZD или белок Ат и после 15-20 часов стимуляции клетки лизировали и измеряли люминесценцию в соответствии с протоколом системы анализа репортерной системы Dual-Luciferase (Promega) с использованием планшетного ридера Envision (PerkinElmer). Для анализа агониста FZD4 кДНК FZD4 трансфицировали в течение 6 часов перед добавлением агониста FZD. Для анализов ингибирования Wnt Wnt1 вводили путем трансфекции кДНК или применяли белок WNT3A в течение 6 часов перед добавлением белка Ат. Все анализы повторяли не менее трех раз. Результаты представлены в таблице 5. Как показано в таблице 5, каждый из четырехвалентных форматов активирует сигналинг FZD в разной степени при кластеризации FZD4 и LRP5. Эти форматы также

оценивали на стабильность, однородность и выход продукции из Expi293 (Фиг. 3 и 9). По результатам этих анализов формат диатело-Fc-Fab обеспечивает наилучший баланс активности, экспрессии и стабильности. Наконец, мы применили ту же схему модулей для FZD5 и LRP6 и наблюдали мощную агонистическую активность. Результаты в таблице 5 демонстрируют, что различные четырехвалентные варианты вызывают агонизм WNT и что взаимодействие с 2 эпитопам LRP5/6 приводит к более высокой сигнальной активности WNT (максимумы), чем взаимодействие с 1 эпитопом LRP5/6.

Таблица 5

				Top	flash	% макс	имума
			Специфичность	1	(нМ)	W	-
			связывания		днее	Cpe,	
Молекула	Вариант	Паратопы	(паратопная	_	ение	знач	
			стехиометрия)		ициент		
			стехнометрия)	1	дента	Стью	
	Рекомбинантно			Стыс	Т	СТВЮ	дента
Wnt3a	полученный	н/д	FZD/LRP	6	3	100%	H/O
Willia		н/д	rzd/lkr	"	3	10076	п/О
	лиганд		FZD1/2/4/5/7/8,				
C) (0011	Диатело к FZD -	5019 (диатело к FZD); 2539,	·		0.1	(20/	100/
CM0011	Fc-Диатело к	2542 (диатело к LRP)	LRP6 ¹ , LRP6 ³	0,3	0,1	63%	10%
	LRP		(2:1:1)				
	Диатело к FZD -	5016(диатело к FZD);	FZD1/2/4/5/7/8,				
ANT-4	Fc- Fab к LRP	2540,2542 (Fab к LRP)	LRP6 ¹ , LRP6 ³	0,5	0,1	63%	6%
		, (,	(2:1:1)				
	H EZD	501((FZD1/2/4/5/7/8,				
ANT-5	Диатело к FZD -	5016(диатело к FZD);	LRP6 ¹ , LRP6 ³	0,5	0,1	59%	8%
	Fc- Fab к LRP	2540,2542 (Fab к LRP)	(2:1:1)				
	IgG к		FZD1/2/4/5/7/8,				
CT0001	FZD- диатело к	5016(IgG к FZD); 2539,2542	LRP6 ¹ , LRP6 ³	0,3	0,1	57%	17%
	LRP	(диатело к LRP)	(2:1:1)				
	Диатело к LRP -		FZD1/2/4/5/7/8,				
CT0002	Fc-scFv k FZD	2539, 2542 (диатело к LRP);	LRP6 ¹ , LRP6 ³	0,5	0,1	55%	22%
010002	(VL-VH)	5016 (scFv к FZD)	(2:1:1)	0,5	0,1	3370	2270
CN 10126	Диатело к FZD -	5016(Диатело к FZD); 2539,	FZD1/2/4/5/7/8,			500/	10/
CM0126	Fc-Диатело к	2542 (диатело к LRP)	LRP6 ¹ , LRP6 ³	0,3	0,2	52%	1%
	LRP		(2:1:1)				
ANT-1	Диатело к LRP -	2540, 2542 (диатело к LRP);	FZD1/2/4/5/7/8,	0,7	0,5	49%	22%
71111	Fc- Fab к FZD	5016 (Fab к FZD)	LRP6 ¹ , LRP6 ³	",	0,5	1270	22/0
		(v)					

			(2:1:1)				
CT0003	Диатело к FZD - Fc- scFv к LRP	5016 (Диатело к FZD); 2539, 2542 (scFv к LRP)	FZD1/2/4/5/7/8, LRP6 ¹ , LRP6 ³ (2:1:1)	0,4	0,1	42%	16%
ANT-2	Диатело к LRP - Fc- Fab к FZD	2540, 2542(диатело к LRP); 5016(Fab к FZD)	FZD1/2/4/5/7/8, LRP6 ¹ , LRP6 ³ (2:1:1)	0,3	0,1	38%	25%
CM0042	Диатело к FZD - Fc-Диатело к LRP	5019(диатело к FZD); 2539 (диатело к LRP)	FZD1/2/4/5/7/8, LRP6 ³ (2:2)	0,9	0,8	33%	22%
CM0302	IgG к FZD- диатело к LRP	5056(IgG к FZD)- 2539(диатело к LRP)	FZD1/2/4/5/7/8/10, LRP6 ³ (2:2)	0,3	0,2	18%	8%
CM0303	FZD IgG-LRP scFv	5056(FZD IgG); 2539(LRP scFv)	FZD1/2/4/5/7/8/10, LRP6 ³ (2:2)	3,7	2,1	17%	13%
CM0299	IgG к FZD- диатело к LRP	5016(IgG к FZD)-, 2539(диатело к LRP)	FZD1/2/4/5/7/8, LRP6 ³ (2:2)	0,1	0,1	14%	5%

Таблица 5, продолж.

Молекула	Вариант	Паратопы	Специфичность связывания (паратопная стехиометрия)	Topflash		% максимума Wnt Среднее значение коэффициент Стьюдента	
Wnt3a	Рекомбинантно полученный лиганд	н/д	FZD/LRP	6	3	100%	Н/О
CM0300	FZD IgG-LRP scFv	5016(FZD IgG)-, 2539(LRP scFv)	FZD1/2/4/5/7/8, LRP6 ³ (2:2)	0,3	0,2	5%	2%
CM0301	FZD IgG-LRP scFv	5016(FZD IgG)-, 2542(LRP scFv)	FZD1/2/4/5/7/8, LRP6 ¹ (2:2)	0,2	0,2	1%	1%
CM0156	Диатело-Fc- диатело	4275	отсутствие связывания FZD/LRP	н/д	н/д	н/д	н/д
4275	IgG	4275	отсутствие связывания FZD/LRP	н/д	н/д	н/д	н/д

В. Агонисты FZD4 формата диатело-Fc-Fab.

Агонисты FZD, имеющие биспецифическое LRP5-связывающее диатело и FZD4связывающий домен, содержащий FZD4-связывающие Fab (агонисты FZD4), FZD5связывающий домен, содержащий FZD5-связывающие Fab (агонисты FZD5), или FZDсвязывающий домен, который связывает несколько FZD (пан-FZD агонист), были созданы с использованием системы «выступ-во-впадину». Вкратце, конструкции были созданы путем химического синтеза (Twist Biosciences) или стандартными методами молекулярной биологии в векторе экспрессии млекопитающих (pSCSTa). Конструкции диатела располагали в виде VH-VL с коротким (GGGGS (SEQ ID NO: 886)) линкером, связывающим VH и VL, чтобы способствовать межмолекулярному спариванию. При создании биспецифических диател вариабельные домены для паратопов А и В, соответственно, были расположены как VH(A) – VL(B) на цепи Fc с «впадиной» и VH(B)-VL(A) на цепи Fc с «выступом» для облегчения корректного образования паратопов. Диатела сливали с Nконцом оптимизированного гетеродимерного Fc в конформации «выступ-во-впадину» (Ridgway et al. Protein Eng. 9, 617-621 (1996) с помощью линкера GGGGSGGGSEPKSS (SEQ ID NO: 890). Область Fc также содержит мутации, которые приводят к устранению эффекторной функции, D278A и N314G (нумерация Kabat), соответствующие D655A/N297G (нумерация EU). Домены Fab сливали с С-концом гетеродимерного Fc через линкером был слит N-конец домена Fab VH, за которым следовал CH1, оканчивающийся на T238 (нумерация Kabat). Этот Fab спаривается со стандартной легкой каппа-цепью, которую клонировали, как описано выше. Для всех конструкций всю кодирующую область клонировали в вектор экспрессии млекопитающих в рамке считывания с сигнальным пептидом секреции.

 вариантов L234A, L235A, P331S (LALAPS), а также с областью Fc, дополнительно содержащей варианты гетеродимеризации «выступ-во-впадину» Merrimack, Merchant или Merchant S:S.

На Фиг. 7 представлена иллюстрация агонистов FZD4 формата диатело-Fc-Fab, имеющих LRP5-связывающий домен, состоящий из диатела, которое является двухвалентным и биспецифическим для LRP5, и FZD4-связывающий домен, состоящий из двух FZD4-связывающих фрагментов Fab, образованных VL и CL1 из конструкции легкой цепи, спаренных с VH и CH1 каждой из конструкций тяжелой цепи с «впадинами» и тяжелой цепи «выступами». В таблице 12 представлены аминокислотные последовательности тяжелых цепей и легких цепей агонистов FZD4 ANT (формат диатело-Fc-Fab): конструкция тяжелой цепи с выступами (выступ ANT16), конструкция тяжелой цепи с впадинами (впадина ANT) и конструкция легкой цепи. CDR вариабельных последовательностей легкой цепи и тяжелой цепи выделены полужирным курсивом с подчеркиванием.

На Фиг. 16A показаны агонисты FZD4 формата диатело-Fc-Fab, имеющие области Fc с ослабленными эффекторными функциями за счет аминокислотных мутаций, например, вариантов N297G (NG) и D265A, (DANG) и/или вариантов LALAPS, и с областью Fc дополнительно включая варианты гетеродимеризации «выступ-во-впадину» Merrimack, Merchant uли Merchant S:S

В. Агонисты FZD4 формата IgG-диатело.

На Фиг. 15 представлена иллюстрация агонистов FZD4 формата IgG-диатело, имеющих FZD-связывающий домен, содержащий два фрагмента Fab, присоединенных к N-концу домена Fc, причем каждый Fab связывает FZD. Домен, связывающий корецептор LRP5/6, присоединен к C-концу домена Fc и состоит из диатела, которое связывает два разных сайта на корецепторе, например, сайт Wnt1 (E1-E2) и сайт Wnt3 (E3-E4) на LRP5/6. Fab могут быть специфическими для конкретного FZD, т.е. FZD4 или могут быть панспецифическими, связываясь более чем с одним FZD, например, FZD4 и одним или

более другими FZD.

На Фиг. 16В показаны агонисты FZD4 в формате IgG-диатело, имеющие области Fc с ослабленными эффекторными функциями за счет аминокислотных мутаций, например, вариантов N297G (NG) и D265A, (DANG) и/или вариантов LALAPS, и с областью Fc, дополнительно содержащей варианты гетеродимеризации «выступ-во-впадину» Merrimack, Merchant или Merchant S:S. В таблице 13 представлены аминокислотные последовательности тяжелых цепей и легких цепей агониста FZD4, ANT39 диатело-Fc-Fab) и ANT39wi (формат IgG-диатело): конструкция тяжелой цепи с выступами (выступ ANT39 и ANT39i), конструкция тяжелой цепи с впадинами (впадина ANT39 и ANT39i) и конструкция легкой цепи. В таблицу 13 также включены аминокислотные последовательности тяжелых цепей и легких цепей агониста FZD4, вариантов ANT39 и ANT39i DANG, LALAPS, LALAPS Merchant и LALAPS Merchant S-S. CDR вариабельных последовательностей легкой цепи и тяжелой цепи выделены полужирным курсивом с подчеркиванием.

Таблица 6А	Сайт	1 диатела к	: LRP5				Сайт 2 диатела к LRP5					
Молеку ла	[1]		SEQ ID NO	[3]	SEQ ID NO	[4]	SEQ ID NO		SEQ ID NO	[6]	SEQ ID NO	
		CDR- H1		CDR-H2		CDR- H3		CDR -L2		CDR -L3		
ANT16- впадина	D	FSSSSI	528	SISSSY GYTY	553	SWA M	586	SAS DLY S	491	YA GA GLI	510	
ANT16- выступ	D	FTAYA M	536	SIYPSG GYTA	566	RSYY FAL	603	SAS SLY S	2	YW AY YSP I	493	
ANT18- впадина	N	LSYYY M	527	SIYSSY GYTY	552	WSHV SGHY SGM	584	SAS SLY S	2	SSY SLI	130	
АNТ18- выступ	N	FSSSSI	528	SISSSY GYTY	553	GGSG VSHY	585	SAS SLY	2	ASY API	492	

	Г		т —		T	T	Τ	Γ.	т —	Г	
						GSVY		S			
						YSW					
						WAL					
						WSHV		SAS		YA	
ANT20-		LSYYY		SIYSSY		SGHY		DLY		GA	
впадина	N	M	527	GYTY	552	SGM	584	S	491	GLI	510
			<u> </u>								
								SAS			
ANT20-		FTAYA		SIYPSG		RSYY		SLY		ASY	
выступ	D	M	536	GYTA	566	FAL	603	S	2	API	492
								SAS			
ANT21-				SISSSY		SWA		SLY		SSY	
впадина	N	FSSSSI	528	GYTY	553	M	586	S	2	SLI	130
						0000					
						GGSG				37337	
						VSHY		G A G		YW	
4.3.4TTQ.1				araaar.		GSVY		SAS		AY	
ANT21-		Baaaar	200	SISSSY		YSW		SLY		YSP	
выступ	N	FSSSSI	528	GYTY	553	WAL	585	S	2	I	493
						WSHV		SAS			
ANT36-		LSYYY		SIYSSY		SGHY		SLY		SSY	
впадина	N	M	527	GYTY	552	SGM	584	S	2	SLI	130
						GGSG					
						VSHY					
						GSVY		SAS			
ANT36-				SISSSY		YSW		SLY		ASY	
выступ	N	FSSSSI	528	GYTY	553	WAL	585	S	2	API	492
выступ	11	1 33331	526	UIII	555	WAL	565	3		ALI	772
								SAS		YA	
ANT39-				SISSSY		SWA		DLY		GA	
впадина	D	FSSSSI	528	GYTY	553	M	586	S	491	GLI	510
						1				YW	
								SAS		AY	
ANT39-		FTAYA		SIYPSG		RSYY		SLY		YSP	
выступ	D	M	536	GYTA	566	FAL	603	S	2	I	493
,	ļ										1
								SAS		YA	
ANT42-				SISSSY		SWA		DLY		GA	
впадина	D	FSSSSI	528	GYTY	553	M	586	S	491	GLI	510
ANT42-	D	FTAYA	536	SIYPSG	566	RSYY	603	SAS	2	YW	493

выступ	M	GYTA	FAL	SLY	AY	
				S	YSP	
					I	

Во всех молекулах CDR-L1 сайт 2 диатела к LRP5 представляет собой SVSSA (SEQ ID NO: 1)

Таблица 6В		FZD4 FAb										
Молекула	[7]	[8]	SEQ ID NO:	[9]	SEQ ID NO:	[10]	SEQ ID NO:	[11]	SEQ ID NO:			
		CDR-H1		CDR-H2		CDR-H3		CDR-L3				
ANT16- впадина	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT16- выступ	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT18- впадина	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT18- выступ	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT20- впадина	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT20- выступ	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT21- впадина	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT21- выступ	Т	LSSYSM	24	YISSYYGYTY	51	PAPGHW GF	79	WYYAPI	3			
ANT36- впадина	Т	LSSYSM	24	YISSYDSITD	61	PAVGHM AF	90	WYNAPI	12			
ANT36- выступ	Т	LSSYSM	24	YISSYDSITD	61	PAVGHM AF	90	WYNAPI	12			
ANT39-	Т	LSSYSM	24	YISSYDSITD	61	PAVGHM	90	WYNAPI	12			

впадина						AF			
ANT39-						PAVGHM		WYNAPI	12
выступ	Т	LSSYSM	24	YISSYDSITD	61	AF	90		
ANT42-						AFPGSY		STGSLI	135
впадина	Т	SDFYFI	164	TIYPFIGNTY	194	HPF	220		
ANT42-						AFPGSY		STGSLI	135
выступ	Т	SDFYFI	164	TIYPFIGNTY	194	HPF	220		

Bo всех молекулах FAB к FZD CDR-L1 и CDR-L2 представляют собой, соответственно, SVSSA (SEQ ID NO: 1) и SASSLYS (SEQ ID NO: 2)

Таблица 6С	Сай	т 1 диател	ıа к LRP	6			Сайт 2 диатела к LRP6					
			SEQ		SEQ		SEQ		SEQ		SEQ	
Молекула	[1]	[2]	ID	[3]	ID	[4]	ID	[5]	ID	[6]	ID	
			NO		NO		NO		NO		NO	
		CDR-		CDR-				CDR-		CDR		
		H1		H2		CDR-H3		L2		-L3		
						NVRGFRK						
ANT59-		ISSYF		SIYPS		PYFSRWA		SASS		YFF		
впадина	D	I	720	YSYTS	791	M	862	LYS	2	PΙ	665	
				SISSH								
ANT59-		LSHS		YGYT		SSYFPWFF		SASS		YY		
выступ	D	SI	716	Н	785	AL	856	LYS	2	WPI	623	
						NVRGFRK						
ANT9-		ISSYF		SIYPS		PYFSRWA		SASS		YFF		
впадина	D	I	720	YSYTS	791	M	862	LYS	2	PI	665	
				SISSH								
ANT9-		LSHS		YGYT		SSYFPWFF		SASS		YY		
выступ	D	SI	716	Н	785	AL	856	LYS	2	WPI	623	

Во всех молекулах CDR-L1 всех антител к LRP представляет собой SVSSA (SEQ ID NO: 1)

Таблица 6 D	Паратоп к	Паратоп к FZD									
	Специфи										
	чность в			SEQ						SEQ	
	отношен			ID		SEQ		SEQ		ID	
Молекула	ии FZD	7	H1 (8)	NO	H2 (9)	ID NO	H3 (10)	ID NO	L3 (11)	NO	

									CDR-	
			CDR-H1		CDR-H2		CDR-H3		L3	
ANT59-					TIYPSY				AHYF	
впадина	5	N	IAYSSM	365	SSTY	462	YYAM	484	PI	285
ANT59-					TIYPSY				AHYF	
выступ	5	N	IAYSSM	365	SSTY	462	YYAM	484	PI	285
ANT9-	1,2,4,5,7,				ATYSSF		YHHPF		GVYL	
впадина	8	N	IHSSSI	893	GSIT	894	GYAL	895	F	896
ANT9-	1,2,4,5,7,				ATYSSF		YHHPF		GVYL	
выступ	8	N	IHSSSI	893	GSIT	894	GYAL	895	F	896

Bo всех молекулах CDR-L1 для FAB к FZD представляет собой SVSSA (SEQ ID NO: 1), а CDR-L2 представляет собой SASSLYS (SEQ ID NO: 2)

С. Агонисты FZD обладают высокой специфичностью в отношении FZD4, связываются с высокой специфичностью и стабильны в растворе.

Используя биослойную интерферометрию (BLI), мы обнаружили, что агонисты FZD4, описанные в данном документе, обладают высокой специфичностью в отношении FZD4 по сравнению с другими рецепторами FZD. Рекомбинантные белки ВКД FZD иммобилизовали на сенсорах BLI. Агонисты FZD4 в формате диатело-Fc-Fab, имеющие связывающий домен LRP5, состоящий из двухвалентного и биспецифического для LRP5 диатела, и FZD4-связывающий домен, состоящий из двух FZD4-связывающих фрагментов Fab, тестировали в концентрации 100 нМ в буфер PBS + 0,05% Tween-20 и 1% BSA в отношении связывания с белками ВКД. Результаты проиллюстрированы на Фиг. 8А. Контроли в анализе включали СМ0199, агонист FZD формата диатело-Fc-диатело, который распознает FZD4 и LRP5, и иммуноглобулин 4275, который представляет собой IgG, который не связывает FZD или LRP.

Агонисты FZD4 также не распознавали общие неспецифические антигены. Агонисты FZD4 тестировали при 100 нМ на связывание с панелью антигенов, по существу, как описано в Monquet et al. "Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation" Nature 2010 Sep 30;467(7315):591-5(PMC3699875), и Jain et al., "Biophysical properties of the clinical-stage antibody landscape" Proc Natl Acad Sci 2017 Jan 31;114(5):944-949. (PMC5293111). Контроли в анализе включали СМ0199, агонист FZD формата диатело-Гс-диатело, который распознает FZD4 и LRP5, и иммуноглобулин 6606, который представляет собой IgG, который особенно склонен к неспецифическому связыванию в этом анализе. Результаты представлены на Фиг. 8В.

Агонисты FZD4, содержащие связывающие домены для FZD4 и LRP5, связывают как FZD4, так и LRP5 с высокой аффинностью. Очевидную аффинность агонистов FZD4 к рекомбинантному BKД FZD4 определяли с помощью биослойной интерферометрии, по существу, как описано в Elife. 2019 Aug 27; 8: e46134. Вкратце, анализы BLI проводили с использованием прибора Octet HTX (ForteBio). Для измерения связывания с антигеном белки FZD-Fc были захвачены сенсорами для BLI AHQ (18–5001, ForteBio) для достижения ответа BLI 0,6–1 нм, а оставшиеся сайты связывания Fc были насыщены человеческим Fc (009-000-008, Jackson ImmunoResearch). Покрытые FZD или контрольные (покрытые Fc) сенсоры переносили в 100-0,1 нМ четырехвалентного агониста FZD в буфере для анализа (PBS, 1% BSA, 0,05% Tween20) и ассоциацию отслеживали в течение 300 с. Затем сенсоры переносили в буфер для анализа и диссоциацию контролировали в течение дополнительных 300 с. Скорость встряхивания составляла 1000 об/мин, а температура составляла 25°C. Результаты представлены в таблице 7.

Таблица 7.		
Молекула	FZD4 KD (нM)	LRP5 EC50 (HM)
CM0199	0,7	7,5
ANT16	0,6	1,4
ANT18	2,6	H/O
ANT20	0,7	H/O
ANT21	2,2	H/O
ANT36	<0,1%	H/O
ANT39	0,3	H/O

Агонисты FZD4 также анализировали с помощью ЭX относительно трастузумаба IgG. Результаты представлены на Фиг. 9A и демонстрируют, что агонисты формата диатело-Fc-Fab являются стабильными и гомогенными в растворе.

Агонисты FZD4 также стабильны в растворе. Очищенные агонисты FZD4, ANT16, ANT18, ANT20, ANT21 и ANT36 ресуспендировали до 1 мг/мл (за исключением ANT18, который ресуспендировали до 0,34 мг/мл) в 10 мМ гистидина, 140 мМ NaCl, 0,9% сахарозы, рН 6. и хранили при 4°C или 40°C в течение 6 дней. Образцы удаляли в различные моменты времени, центрифугировали для удаления осажденного белка и измеряли концентрацию остаточного белка. Результаты представлены в таблицах 8 и 9.

Таблица 8.				
	Остато	ок раст	воримо	го белка
	(%)			
Время при	40			
градусах (дни)	0	1	2	6
CM0199	100%	60%	64%	40%
ANT-16	100%	102%	104%	104%
ANT-18	100%	92%	83%	105%
ANT-20	100%	97%	67%	104%
ANT-21	100%	102%	75%	102%
ANT-36	100%	100%	149%	106%

Таблица 9.					
	Остаток активного белка (%)				
Время при	40				
градусах (дни)	0	6			
CM0199	100%	42%			
ANT-16	100%	34%			
ANT-18	100%	42%			
ANT-20	100%	30%			
ANT-21	100%	25%			

На 6-й день количество FZD4-специфических сайтов связывания, оставшихся в образцах, определяли количественно с помощью BLI. Анализ методом дифференциальной сканирующей флуориметрии продемонстрировал, что агонисты FZD4, имеющие формат диатело-Fc-Fab с LRP-связывающим диателом на N-конце домена Fc и двумя FZD4-связывающими Fab на C-конце домена Fc, имеют профили термической денатурации аналогичные профилям термической денатурации трастузумаба. IgG, как правило, демонстрируют два пика в анализе термостабильности, первый соответствует CH2, второй - домену Fab и CH3, см. Фиг. 9В.

Агонисты FZD4 также исследовали на индукцию гена-мишени бета-катенина AXIN2 в

линии эндотелиальных клеток мыши (bEND3.1), и было показано, что они индуцируют транскрипцию зависимым от концентрации образом. Результаты представлены на Фиг. 10.

Таблица 10		
Антитело,		Распознава емый
№	Распознаваемый FZD	корецептор
5019	FZD1, FZD2, FZD4, FZD5, FZD7, FZD8	
5027	FZD4	
5044	FZD4	
5016	FZD1, FZD2, FZD4, FZD5, FZD7, FZD8	
5056	FZD1, FZD 2, FZD 4, FZD5, FZD7, FZD8,	
5056	FZD10	
2459		LRP5-W3
2460		LRP5-W1
8716		LRP5-W3
12600		LRP5-W1
12608		LPR5-W1
2539		LRP6-W3
2540		LRP6-W3
2542		LRP6-W1
CM0199	FZD4	LRP5
6066	Н/П Положительный контроль для анализа неспецифичности	
4275	отсутствие связывания FZD/LRP	

ПРИМЕР 4. Агонист FZD4 исследовали на его способность противодействовать эффекту разрушения клеточных контактов и увеличению проницаемости, опосредованному VEGF, цитокином, высвобождаемым во время тканевой гипоксии. Обработка VEGF клеток bEND3.1 приводит к разборке контакта, о чем свидетельствует потеря окрашивания плазматической мембраны на CLDN3, CLDN5 и ZO-1. Совместная обработка клеток VEGF

и агонистом FZD4 приводит к почти полному исчезновению этого эффекта (Фиг. 11). Это снижение стабильности межклеточного контакта, опосредованное обработкой VEGF, приводит к увеличению проницаемости эндотелиальных клеток как показано в анализе трансэндотелиальной проницаемости, измеряющем прохождение 40-кДа FITC-декстрана через сливающийся эндотелиальный монослой bEnd.3, выращенный на фильтрах Transwell. Совместная обработка клеток VEGF и агонистом FZD4 полностью устраняет это VEGF-опосредованное увеличение проницаемости клеток. Эти результаты показывают, что агонист FZD4 стимулирует барьерные функции эндотелиальных клеток по механизму, независимому от VEGF.

А) Иммунофлуоресцентная локализация ZO-1 (зеленый)/CLDN3 (красный) и ZO-1 (зеленый)/CLDN5 (красный) в контактах клеток bEnd.3. Клетки bEnd.3 обрабатывали или не обрабатывали 30 нМ F4L5.13 (он же CM0199) и норрином в присутствии или в отсутствие VEGF (100 нг/мл) в течение 1 часа. DAPI (синий) окрашивает ядро. В) Трансэндотелиальную проницаемость определяли путем измерения прохождения FITC-декстрана через монослой bEnd.3. Прохождение FITC-декстрана измеряли после обработки bEnd.3 VEGF (100 нг/мл) и F4L5.13 (30 нМ) отдельно или одновременно или после предварительной обработки VEGF в течение 1 часа с последующей обработкой F4L5.13 в течение 1 часа. Планки погрешностей отражают SEM, n = 5. Результаты представлены на Фиг. 11.

ПРИМЕР 5. Новые антитела к FZD5 связывают FZD5 в сайте, перекрывающемся с 2919, идентифицированным из библиотек созревания аффинности.

Одноточечный ELISA проводили на 96-луночных планшетах Maxisorp, покрытых ВКД человеческого белка FZD5, в присутствии или в отсутствие насыщающей концентрации IgG 2919. Планшеты инкубировали с моноклональным Fab-фагом с последующей инкубацией с конъюгированным с пероксидазой хрена (HRP) антителом к M13. Затем лунки промывали 8 раз с последующей инкубацией с субстратом 3,3,'5,5'-тетраметилбензидином/H₂O₂-пероксидазой (TMB) в течение 5-10 мин. Реакцию останавливали добавлением 1М H₃PO₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов. Результаты представлены на Фиг. 12.

ПРИМЕР 6. Новые антитела к FZD5 из библиотеки созревания аффинности 2928 селективно связывают FZD5.

Одноточечный ELISA выполняли на 96-луночных планшетах Maxisorp, покрытых ВКД

белка FZD2, FZD5 или FZD8 человека. Планшеты инкубировали с моноклональным Fab-фагом с последующей инкубацией с конъюгированным с пероксидазой хрена (HRP) антителом к M13. Затем лунки промывали 8 раз с последующей инкубацией с субстратом 3,3,'5,5'-тетраметилбензидином/H₂O₂-пероксидазой (TMB) в течение 5-10 мин. Реакцию останавливали добавлением 1М H₃PO₄ и спектрофотометрически измеряли оптическую плотность при 450 нм в ридере для титрационных микропланшетов. Результаты представлены на Фиг. 13.

ПРИМЕР 7. Пан-FZD/LRP6 ANT9 и FZD5-специфический/LRP6 ANT9 активируют сигналинг Wnt в клетках.

Клетки TOPFLASH HEK293 обрабатывали в течение ночи различными концентрациями агониста FZD или нецелевой контрольной молекулой (CM0156), и управляемую TCF/LEF экспрессию люциферазы измеряли с использованием стандартного люциферазного анализа. Обе молекулы способны активировать FZD-опосредованную экспрессию люциферазы в зависимости от концентрации. ANT9, который способен связываться с 7 из 10 подтипов рецепторов FZD, производит более высокий максимальный сигнал активации, чем FZD5-специфический ANT59.

Эксперимент in vivo

Модель колита, индуцированного DSS

На Фиг. 24 мышам C57/BL6 давали 2% DSS в питьевой воде в течение 7 дней и 0,5% DSS в течение дополнительных 3 дней, чтобы вызвать колит. Контроль-FLAg, пан-FLAG и ANT59 вводили внутрибрюшинно на 4-й и 7-й дни в дозе 10 мг/кг. Мышей взвешивали ежедневно. На 10-й день мышей подвергали эвтаназии и собирали ткани для измерения длины толстой кишки и гистологии.

Гистология

Для гистологического анализа собранные ткани фиксировали в 4% параформальдегиде и заливали в парафин. Срезы размером 5 мкм окрашивали гематоксилином и эозином (H&E). Изображения получали с помощью микроскопа Nikon Eclipse (Фиг. 23).

Культура органоидов и определение жизнеспособности

Крипты тонкой кишки собирали у 8-недельных самок мышей C57BL/6 и культивировали, как описано ранее (O'Rourke et al., 2016). Культуры органоидов пассировали и заключали в

25 мкл матригеля с пониженным содержанием фактора роста (Corning, 356231) и высевали в трех повторностях на 48-луночный планшет. Культуры органоидов обрабатывали ДМСО, 1 мкМ LGK974, 1 мкМ LGK974 +50% кондиционированной среды WNT3A, 1 мкМ LGK974 +30 нМ пан-FLAg, 1 мкМ LGK974 +30 нМ FZD2-FLAG, 1 мкМ LGK974 +30 нМ FZD4-FLAg, 1 мкМ LGK974 +30 нМ FZD5-FLAG, 1 мкМ LGK974 +30 нМ FZD7-FLAg. Обработки готовили в 250 мкл полных сред, добавляли в каждую лунку в день пассирования и меняли каждые 2–3 дня. В конце (7 дней) к 150 мкл среды в каждую лунку добавляли 150 мкл Cell Titer-Glo3D (Promega). Органоиды лизировали на качающейся платформе в течение 30 мин при комнатной температуре. Значения люминесценции измеряли в двух повторностях для 20 мкл лизата из каждой лунки на планшет-ридере Multilabel Plate Reader от Envision. Среднее значение люминесценции для каждого условия нормализовали к контрольному условию для расчета относительной жизнеспособности (Фиг. 22).

ПРИМЕР 8. Транзиентная экспрессия 8 вариантов ANT39. Ряд из восьми вариантов ANT39 (Фиг. 16A и 16B) транзиентно экспрессировали в клетках CHO с использованием стандартных производственных протоколов на основе липидов (ThermoFisher). Вкратце, клетки выращивали до плотности приблизительно 2,0×106 клеток/мл в ростовой среде и соответствующие ДНК трансфицировали соответствующим реагентом для трансфекции. Для каждого варианта тестировали два альтернативных соотношения входных плазмид, либо 1:1:2, либо 2:1:3 (тяжелая цепь с выступами: тяжелая цепь с впадинами: легкая цепь). Кондиционированные среды собирали через 7 дней, очищали с помощью белка А-сефарозы и измеряли титр.

Таблица 11.

Молекула	Соотношение ДНК (выступ:впадина:LC)	Титр (мг/л)
	1:1:2	390
ANT39	2:1:3	290
AN ITTO O	1:1:2	260
ANT39i	2:1:3	250

ANTEGRALAN	1:1:2	330
ANT39 LALAPS	2:1:3	250
	1:1:2	300
ANT39i LALAPS	2:1:3	270
ANT39 LALAPS	1:1:2	340
Merchant	2:1:3	280
ANT39i LALAPS	1:1:2	240
Merchant	2:1:3	280
ANT39 LALAPS	1:1:2	320
Merchant S:S	2:1:3	190
ANT39i LALAPS	1:1:2	300
Merchant S:S	2:1:3	250
ANT42*	1:1:2	107
ANT42 LALA*	1:1:2	287
ANT42 LALAPS*	1:1:2	95
ANT42i LALAPS*	1:1:2	49

^{*}Варианты транзиентно экспрессировались в клетках НЕК293

Специалистам в данной области техники будет понятно или они смогут установить, используя не более чем рутинные эксперименты, многочисленные эквиваленты конкретных процедур, описанных в данном документе. Считается, что такие эквиваленты входят в объем изобретения. В изобретение могут быть внесены различные замены, изменения и модификации без отклонения от сущности и объема изобретения. Другие аспекты, преимущества и модификации находятся в рамках объема следующей формулы изобретения.

Содержание всех ссылок, выданных патентов и опубликованных патентных заявок, цитируемых в этой заявке, включено в данный документ посредством ссылки. Соответствующий компонент, процесс и способы этих патентов, заявок и других документов могут быть выбраны для изобретения и его вариантов осуществления.

В тексте описания и в нижеприведенной формуле изобретения, если иное не следует из контекста, слово «содержать» и его вариации, такие как «содержит» и «содержащий» следует понимать как подразумевающие включение указанного целого числа, этапа или группы целых чисел или группы этапов, но не исключение любого другого целого числа, этапа или группы целых чисел или групп этапов.

Таблица 12.

Аминокислотные последовательности диатело-Fc-Fab конструкции «тяжелой цепи» с впадинами, конструкции «тяжелой цепи» с выступами и конструкции «легкой цепи»

агонистов FZD4, ANT16, ANT18, ANT20, ANT21, ANT39 и ANT42.

CDR цепей подчеркнуты, выделены курсивом. CDR могут быть заменены CDR другого антитела для изменения специфичности связывания, например, специфичность может быть изменена для связывания с другим сайтом на FZD или LPR5/6 или с другим FZD или LPR.

Агонист FZD4 ANT16

YPSGGYTAYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRSYYF
ALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAV
AWYQQKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYY
CQQYWAYYSPITFGQGTKVEIKGGGGSGGGGSEPKTSDKTHTCPPCPAPELLG
GPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAK
TKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK
GQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL
SPGKGGGSGGGSGGGSGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGFI
LSSYSMHWVRQAPGKGLEWVAYISSYYGYTYYADSVKGRFTISADTSKNTAY
LQMNSLRAEDTAVYYCARPAPGHWGF
DYWGQGTLVTVSSASTKGPSVFPLA
PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 897)

EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SI*

Конструкция Нс с впадинами

Конструкция Нс с выступами

EVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISS*SYGYTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSWAMDY
WGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWY
QQKPGKAPKLLIYSASDLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ
YAGAGLI
TFGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPELLGGPSVF
LFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVL
DSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG
GSGGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGFTLSSYSM
HWVRQAPGKGLEWVAYISSYYGYTYYADSVKGRFTISADTSKNTAYLQMNSL
RAEDTAVYYCARPAPGHWGFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS

GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV PSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 898)

Тегкая цепь

DIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSASSL YSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQWYYAPITFGQGTKVEIKRT VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 899)

Агонист FZD4 ANT18

MNLLLILTFVAAAVAEVQLVESGGGMVQPGGSLRLSCAASGF*NFSSSSI*HWVR QAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDT AVYYCAR*GGSGVSHYGSVYYSWWAL*DYWGQGTLVTVSSGGGGSDIQMTQSPS SLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSG SRSGTDFTLTISSLQPEDFATYYCQQ*ASYAPI*TFGQGTKVEIKGGGGSGGGSEP KTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSGTGEVQLVESGGGLVQ PGGSLRLSCAASGF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKG RFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*PAPGHWGF*DYWGQGTLVTVS SASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH T (SEQ ID NO: 900)

Конструкция Нс сКонструкция Нс с выступами

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*NLSYYYM*HWVR QAPGKGLEWVA*SIYSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDT AVYYCAR*WSHVSGHYSGM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVG DRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDF TLTISSLQPEDFATYYCQQ*SSYSLI*TFGQGTKVEIKGGGGSGGGSEPKSSDKTH

егкая цепь

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRAS QSVSSAVAWYQQK PGKAPKLLIY SASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQWYYAP ITFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLS SPVTKSFNRGEC (SEQ ID NO: 902)

Агонист FZD4 ANT20

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HW
VRQAPGKGLEWVA*SIYPSGGYTA*YADSVKGRFTISADTSKNTAYLQMNSLRA
EDTAVYYCAR*RSYYFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGD
RVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDF
TLTISSLQPEDFATYYCQQ*ASYAPI*TFGQGTKVEIKGGGGSGGGSEPKTSDKT
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNW
YVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVE
WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL
HNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSTGEVQLVESGGGLVQPGGS
LRLSCAASGF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTI
SADTSKNTAYLQMNSLRAEDTAVYYCAR*PAPGHWGF*DYWGQGTLVTVSSA
STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP
AVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH
T (SEQ ID NO: 903)

Конструкция Нс с выступами

Конструкция Нс с впадинами

Легкая цепь

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*NLSYYYM*HWV RQAPGKGLEWVA*SIYSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAE DTAVYYCAR*WSHVSGM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSA SVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASDLYS*GVPSRFSGSRS GTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGGSEPK SSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDI AVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVM HEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGGGGGGGGGTGEVQLVESGGGLVQ PGGSLRLSCAASGF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVK GRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*PAPGHWGF*DYWGQGTLVT VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC DKTHT (SEQ ID NO: 904)

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQ KPGKAPKLLIY*SASSLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*WYY API*TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ GLSSPVTKSFNRGEC (SEQ ID NO: 902)

Агонист FZD4 ANT21

Конструкция Нс с выступами

MNLLLILTFVAAAAVAEVQLVESGGGLVQPGGSLRLSCAASGFNFSSSSIH
WVRQAPGKGLEWVASISSSYGYTYYADSVKGRFTISADTSKNTAYLQMN
SLRAEDTAVYYCARGGSGVSHYGSVYYSWWALDYWGQGTLVTVSSGGG
GSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLI
YSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPITF
GQGTKVEIKGGGGSGGGSEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKP
KDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGST
YRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLP
PSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD
GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGG
SGGGSGGGSGGGGGGGGGVQLVESGGGLVQPGGSLRLSCAASGFTLSSYS
MHWVRQAPGKGLEWVAYISSYYGYTYYADSVKGRFTISADTSKNTAYLQ

MNSLRAEDTAVYYCAR*PAPGHWGF*DYWGQGTLVTVSSASTKGPSVFPL APSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 905) MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*NFSSSSI*H WVRQAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMN SLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLS ASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFS GSRSGTDFTLTISSLQPEDFATYYCQQ*SSYSLI*TFGQGTKVEIKGGGGSGG GGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVV VAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQ DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSN Конструкция Нс с впадинами OVSLSCAVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLVSKLT VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGS ${\tt GGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF} \underline{\textit{TLSSYSM}} {\tt HWVRQAP}$ GKGLEWVA YISSYYGYTY YADSVKGRFTISADTSKNTAYLQMNSLRAEDT AVYYCAR*PAPGHWGF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGG TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV PSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 906) MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAW YQQKPGKAPKLLIY*SASSLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYY **Тегкая** цепь CQQ*WYYAPI*TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN FYPREAKVOWKVDNALOSGNSQESVTEODSKDSTYSLSSTLTLSKADYE KHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 902)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVR QAPGKGLEWVA*SIYPSGGYTA*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTA VYYCAR*RSYYFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITC Конструкция Нс с выступами RAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASSLY*SGVPSRFSGSRSGTDFTLTISSLQ PEDFATYYCQQ*YWAYYSPI*TFGQGTKVEIKGGGGSGGGSEPKTSDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEV HNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK AKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP <u>SM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNS LRAEDTAVYYCAR*PAVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 907) MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQ APGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAV YYCAR*SWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS *QSVSSA*VAWYQQKPGKAPKLLIY*SASDLY*SGVPSRFSGSRSGTDFTLTISSLQPED FATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPEL LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNA KTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKG Конструкция Нс с впадинами QPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG GSGGGSGGGSGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*H WVRQAPGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAE DTAVYYCAR*PAVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGT QTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 908) MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQK PGKAPKLLIY*SASSLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*WYNAPI* **Тегкая** цепь TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKV DNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP VTKSFNRGEC (SEQ ID NO: 909)

Агонист FZD4 ANT42

Конструкция Нс с выступами

Конструкция Нс с впадинами

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*H WVRQAPGKGLEWVA*SIYPSGGYTA*YADSVKGRFTISADTSKNTAYLQMN SLRAEDTAVYYCAR*RSYYFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSL SASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASSLY*SGVPSRFS GSRSGTDFTLTISSLQPEDFATYYCQQ*YWAYYSPI*TFGQGTKVEIKGGGGSG GGGSEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVV VAVSHEDPEVKFNWYVDGVEVHNAKTKPREEOYGSTYRVVSVLTVLHO DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKN QVSLWCMVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGSG GGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF*TSDFYFI*HWVRQAPGK GLEWVA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAV YYCAR*AFPGSYHPF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 910) MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HW VROAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLOMNSL RAEDTAVYYCAR. SWAM DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASV GDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASDLYS*GVPSRFSGSR SGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGGG SEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWL NGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLS CAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGGGGGGGGGGG TGEVQLVESGGGLVQPGGSLRLSCAASGF*TSDFYFI*HWVRQAPGKGLEW VA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCA R*AFPGSYHPF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCL VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 911) MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRASQ*SVSSAVA*WY QQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQ Q*STGSLI*TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP

REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK VYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 912)

EVQLVESGGGLVQPGGSLRLSCAASGF*DLSHSSI*HWVRQAPGKGLEWVA*SI*

FZD5-LRP6 ANT 59

SSHYGYTH
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSSYF
PWFFAL
DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ
SVSSAVAWYQQKPGKAPKLLIYSASSLYS
GVPSRFSGSRSGTDFTLTISSLQPE
DFATYYCQQYYWPI
TFGQGTKVEIKGGGGSGGGSEPKTSDKTHTCPPCPAP
ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVE
VHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESN
GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN
HYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSL
RLSCAASGFNIAYSSM
HWVRQAPGKGLEWVATIYPSYSSTY
YADSVKGRFTI
SADTSKNTAYLQMNSLRAEDTAVYYCARYYAM
DYWGQGTLVTVSSASTK
GPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT
(SEQ ID NO: 913)

Конструкция Нс с выступами

YPSYSYTSYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARNVRG
FRKPYFSRWAM
DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTIT
CRASQSVSSAVAWYQQKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTI
SSLQPEDFATYYCQQYFFPI
TFGQGTKVEIKGGGGSGGGSEPKSSDKTHTC
PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVE
WESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGTGEVQLVESGGGLVQ
PGGSLRLSCAASGFNIAYSSMHWVRQAPGKGLEWVATIYPSYSSTYYADSV
KGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARYYAM
DYWGQGTLVTVS
SASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH
TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
DKTHT (SEQ ID NO: 914)

EVQLVESGGGLVQPGGSLRLSCAASGF*DISSYFI*HWVRQAPGKGLEWVA*SI*

онструкция Нс с впадинами

Гегкая пепь

DIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>
<u>SLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>AHYFPI</u>TFGQGTKVEI
KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG
NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF
NRGEC (SEQ ID NO: 915)

pFZD-LRP6 ANT9

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DLSHSSI</u>HWVRQAPGKGLEWVA

<u>SISSHYGYTH</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR.S

<u>SYFPWFFAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITC

RASQ.SVSSAVAWYQQKPGKAPKLLIY.SASSLYS.GVPSRFSGSRSGTDFTLTI

SSLQPEDFATYYCQQ.YYWPI.TFGQGTKVEIKGGGGSGGGSEPKTSDKTH

TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFN

WYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVS

NKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYP

SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS

CSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGSTGEVQLVE

SGGGLVQPGGSLRLSCAASGF.NIHSSSI.HWVRQAPGKGLEWVA.ATYSSFG

SITYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR.YHHPFGYA

LDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP

VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH

KPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 916)

Конструкция Нс с выступами

Конструкция Нс с впадинами

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DISSYFI</u>HWVRQAPGKGLEWVA<u>S</u>
IYPSYSYTS
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARNV
RGFRKPYFSRWAM
DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDR
VTITCRASQSVSSA
VAWYQQKPGKAPKLLIYSASSLYS
GVPSRFSGSRSGTD
FTLTISSLQPEDFATYYCQQYFFPI
TFGQGTKVEIKGGGGSGGGSEPKSSD
KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEV
KFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKC
KVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGF
YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNV
FSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGGGGGSGTGEVQL

VESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKGLEWVA<u>ATYSS</u>
<u>FGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHPF</u>
<u>GYAL</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF
PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICN
VNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 917)

DIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SA</u> <u>SSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u>TFGQGTKV EIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNAL Q

Легкая цепь

SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV TKSFNRGEC (SEQ ID NO: 918)

диатело-Fc-диатело FZD4 CM0199

EFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NSSFYFM</u>HWVRQAPGKGLEWVA<u>T</u>

<u>VYPYLDYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGS</u>

<u>YHPM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>

VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYY

CQQ<u>SSYSLI</u>TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVF

LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE

QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPM

VFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS

DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETP

GTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>NFSSSSI</u>HWVRQAP

GKGLEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY

YCAR<u>GGSGVSHYGSVYYSWWAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSA

SVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSG

TDFTLTISSLQPEDFATYYCQQASYAPITFGQGTKVEIK (SEQ ID NO: 919)

Конструкция Нс с выступами

Конструкция Нс с впадинами

EFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NSSFYFM</u>HWVRQAPGKGLEWV<u>AT VYPYLDYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGS</u>

YHPMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>
VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYY
CQQ<u>SSYSLI</u>TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVF
LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE
QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ
VYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD
GSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPG
TSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>NLSYYYM</u>HWVRQAP
GKGLEWVA<u>SIYSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVY
YCAR<u>WSHVSGHYSGM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRV
TITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTI

Таблица 13.

Аминокислотные последовательности диатело-Fc-Fab и IgG-диатело конструкции «тяжелой цепи» с впадинами, конструкции «тяжелой цепи» с выступом и конструкции «легкая цепь» агонистов FZD4, ANT39 и ANT42, ANT39 и ANT42, и ANT39і и ANT42і, имеющие аминокислотные мутации домена Fc DANG, LALAPS, LALAPS и Merchant или LALAPS и Merchant S-S. Зрелые последовательности не включают 5'-лидерный пептид. CDR V-области цепей подчеркнуты, выделены курсивом и выделены жирным шрифтом, мутации, которые приводят к устранению эффекторной функции Fc, выделены курсивом, мутации гетеродимеризации CH3 подчеркнуты и выделены курсивом, цис-дисульфидные мостики CH3 выделены жирным шрифтом, а линкеры подчеркнуты.

ANT39i HC впадина DANG

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF $\underline{\mathit{TLSSYSM}}$ HWVRQAPGK GLEWVA $\underline{\mathit{YISSYDSITD}}$ YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR $\underline{\mathit{PAVG}}$ $\underline{\mathit{HMAF}}$ DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV $\underline{\mathit{A}}$ VSHEDPEVKFNWY VDGVEVHNAKTKPREEQY $\underline{\mathit{G}}$ STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI SKAKGQPREPQVYTLPP $\underline{\mathit{I}}$ RE $\underline{\mathit{L}}$ MT $\underline{\mathit{S}}$ NQVSL $\underline{\mathit{SCA}}$ VKGFYPSDIAVEWESNGQPENNYKTTPP

VLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGSGGG</u>
<u>SGGGSGGGSGTG</u>EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLE
WVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DY
WGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGK
APKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGT
KVEIK* (SEQ ID NO: 921)

ANT39i HC впадина LALAPS

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGK
GLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVG</u>
<u>HMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTI
SKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPP
VLDSDGSFFLISKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGG
SGGGSGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLE
WVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DY
WGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGK
APKLLIYSASDLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLI</u>TFGQGT
KVEIK* (SEQ ID NO: 922)

ANT39i HC впадина LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQAPGK
GLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*PAVG HMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTI
SKAKGQPREPQVYTLPPSREEMTKNQVSL*SCA*VKGFYPSDIAVEWESNGQPENNYKTTP
PVLDSDGSFFL*Y*SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK*G*GGSGG
GSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGL
EWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*D
YWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPG
KAPKLLIY*SASDLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQG
TKVEIK* (SEQ ID NO: 923)

ANT39i HC впадина LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQAPGK
GLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*PAVG HMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTI
SKAKGQPREPQVCTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENNYKTTP
PVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGSGG</u>
GSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGL
EWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>D
YWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPG
KAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQG
TKVEIK* (SEQ ID NO: 924)

Зрелый ANT39i HC впадина DANG

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVT
VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEL
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP
PIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV
DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEV
QLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLEWVA<u>SISSSYGYTY</u>YA
DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSWAMDYWGQGTLVTVSSGGG
GSDIQMTQSPSSLSASVGDRVTITCRASQSVSSA</u>VAWYQQKPGKAPKLLIYSASDLYSGV
PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLI

Зрелый ANT39i HC впадина LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVT VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEA AGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLP PIREIMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLISKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSGTGEV QLVESGGGLVQPGGSLRLSCAASGFDFSSSSIHWVRQAPGKGLEWVASISSSYGYTYYA DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSWAMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWYQQKPGKAPKLLIYSASDLYSGV PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLITFGQGTKVEIK* (SEQ ID NO: 926)

Зрелый ANT39i HC впадина LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVT
VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEA
AGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLP
PSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL<u>V</u>SKLTV
DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGSGGGSGGGSGGSGGSGTGEV</u>
QLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLEWVA<u>SISSSYGYTY</u>YA
DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DYWGQGTLVTVSSGGG
GSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASDLY</u>SGV
PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGTKVEIK* (SEQ ID NO:
927)

Зрелый ANT39i HC впадина LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVT
VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEA
AGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVCTLP
PSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL<u>V</u>SKLTV
DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGSGGGSGGGSGGSGSGSTG</u>EV
QLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISSSYGYTY*YA

DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DYWGQGTLVTVSS<u>GGG</u> <u>GS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>QSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASDLY</u>SGV PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGTKVEIK* (SEQ ID NO: 928)

ANT39i HC выступ DANG

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGK
GLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVG</u>
HMAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI
SKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNYKTT
PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSG
GGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAASGFDFTAYAMHWVRQAPG
KGLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRS
YYFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWY
QQKPGKAPKLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPI

ANT39i HC выступ LALAPS

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGK
GLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVG</u>
HMAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTI
SKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNYKTT
PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSG
GGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAASGFDFTAYAMHWVRQAPG
KGLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRS
YYFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWY
QQKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPI
TFGQGTKVEIK* (SEQ ID NO: 930)

ANT39i HC выступ LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGK
GLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVG</u>
<u>HMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTI
SKAKGQPREPQVYTLPPSREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNGQPENNYKTTP
PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGSGG</u>
GSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGK
GLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYY</u>
FALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSA</u>VAWYQ
QKPGKAPKLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>T
FGOGTKVEIK* (SEO ID NO: 931)

ANT39i HC выступ LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGK
GLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVG</u>
HMAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTI
SKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTT
PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSG
GGSGGGSGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPG
KGLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RS</u>
YYFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWY
QQKPGKAPKLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPI

Зрелый ANT39i HC выступ DANG

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVT VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEL
LGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDL
PPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL
TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGTG
EVQLVESGGGLVQPGGSLRLSCAASGFDFTAYAMHWVRQAPGKGLEWVASIYPSGGYT
AYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRSYYFALDYWGQGTLVT
VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWYQQKPGKAPKLLIYSAS
SLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPITFGQGTKVEIK* (SEQ
ID NO: 933)

Зрелый ANT39i HC выступ LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*PAVGHMAF*DYWGQGTLVT
VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE*A A*GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREP*M*V*FD*L
PPSREEMTKNQVSL*WCM*VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL
TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGSGTG
EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYT A*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*RSYYFAL*DYWGQGTLVT
VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SAS SLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YWAYYSPI*TFGQGTKVEIK* (SEQ ID NO: 934)

Зрелый ANT39i HC выступ LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVT VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEA AGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGSGGGSGGGSGGSGGSGGSGG</u>E VQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGKGLEWVA<u>SIYPSGGYTA</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVTVS S<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>QSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSL</u> <u>Y</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIK* (SEQ ID NO: 935)

Зрелый ANT39i HC выступ LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*PAVGHMAF*DYWGQGTLVT
VSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE*A A*GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPRE
EQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLP
PCREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT
VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGSGTGE
VQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYTA*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*RSYYFAL*DYWGQGTLVTVS
SGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASSL*<u>Y</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIK* (SEQ ID
NO: 936)

ANT39 Нс впадина DANG

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKG
LEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>
DYWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKP
GKAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQ
GTKVEIK<u>GGGGSGGGSEPKSSDKTHT</u>CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV
TCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLLSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAA
SGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI

ANT39 Нс впадина LALAPS

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKG
LEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKP
GKAPKLLIY*SASDLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQ
GTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEV
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPP*I*RE*L*MT*S*NQVSL*SCA*VKGFYPSD
IAVEWESNGQPENNYKTTPPVLDSDGSFFL*Y*SKLTVDKSRWQQGNVFSCSVMHEALHN
HYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSTGEVQLVESGGGLVQPGGSLRLSCAAS
GF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMN
SLRAEDTAVYYCAR*PAVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC
NVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 937)

ANT39 Hc впадина LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKG
LEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKP
GKAPKLLIY*SASDLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQ
GTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEV
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL*SCA*VKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFL*Y*SKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAA
SGF*TLSSYSM*HWVRQAPGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR*PAVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI
CNVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 938)

ANT39 Hc впадина LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKG LEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u> DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKP
GKAPKLLIYSASDLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLITFGQ
GTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPASIEKTISKAKGQPREPQVCTLPPSREEMTKNQVSLSCAVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAA
SGFTLSSYSMHWVRQAPGKGLEWVAYISSYDSITDYADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCARPAVGHMAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI
CNVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 939)

Зрелый ANT39 Hc впадина DANG

EVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSG
GGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASDLY*S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGG
GSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
PIEKTISKAKGQPREPQVYTLPP*I*RE*L*MT*S*NQVSL*SCA*VKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFL*I*/SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG
GSGGGSGGGSGGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQA
PGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*P AVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT
VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK
VEPKSCDKTHT* (SEQ ID NO: 940)

Зрелый ANT39 Hc впадина LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLEWVA<u>SISSSYGYTY</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DYWGQGTLVTVSS<u>G</u>
GGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASDLY</u>S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGTKVEIK<u>GGGGSGGG</u>
GSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
SIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNY

KTTPPVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GG</u>
GSGGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>HWVRQA
PGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>P</u>
<u>AVGHMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT
VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK
VEPKSCDKTHT* (SEQ ID NO: 941)

Зрелый ANT39 Hc впадина LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSG
GGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASDLY*S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGG
GSEPKSSDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
SIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL*SCA*VKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFL*Y*SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK*G*GGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQ
APGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR *PAVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT
VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK
VEPKSCDKTHT* (SEQ ID NO: 942)

Зрелый ANT39 Hc впадина LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSG
GGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASDLY*S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGG
GSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
SIEKTISKAKGQPREPQVCTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>G</u>
GGSGGGSGGGGGGGGGGTGEVQLVESGGGLVQPGGSLRLSCAASGF*TLSSYSM*HWVRQ
APGKGLEWVA*YISSYDSITD*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR *PAVGHMAF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT
VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK

VEPKSCDKTHT* (SEQ ID NO: 943)

ANT39 Hc выступ DANG

ANT39 Hc выступ LALAPS

ANT39 Hc выступ LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF $\underline{\mathit{DFTAYAM}}$ HWVRQAPGK GLEWVA $\underline{\mathit{SIYPSGGYTA}}$ YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR $\underline{\mathit{RSYY}}$

FALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQ
QKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPIT
FGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGF
YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLS
CAASGFTLSSYSMHWVRQAPGKGLEWVAYISSYDSITDYADSVKGRFTISADTSKNTAY
LQMNSLRAEDTAVYYCARPAVGHMAFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS
GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGT
QTYICNVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 946)

ANT39 Hc выступ LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGK
GLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYY</u>
FALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQ
QKPGKAPKLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>T
FGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSLWCLVKGF
YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGGSGTGEVQLVESGGGLVQPGGSLRLS
CAASGF<u>TLSSYSM</u>HWVRQAPGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAY
LQMNSLRAEDTAVYYCAR<u>PAVGHMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS
GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGT
QTYICNVNHKPSNTKVDKKVEPKSCDKTHT*(SEQ ID NO: 947)

Зрелый ANT39 Hc выступ DANG

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGKGLEWVA<u>SIYPSGGYT</u>

<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>QSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIK<u>GGGG</u>

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHED

PEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNK

ALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNG

Зрелый ANT39 Hc выступ LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYT*<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIKGGGG

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE

DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPASIEKTISKAKGQPREP<u>M</u>V<u>FD</u>LPPSREEMTKNQVSL<u>WCM</u>VKGFYPSDIAVEWESN

GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS

LSPGKGGGSGGGSGGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>

HWVRQAPGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTA

VYYCAR<u>PAVGHMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD

YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN

TKVDKKVEPKSCDKTHT* (SEQ ID NO: 949)

Зрелый ANT39 Hc выступ LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYT*<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIK<u>GGGG</u>

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE

DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPASIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNG

QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL

SPGK<u>GGGSGGGSGGGSGGGSGGSTG</u>EVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>H

WVRQAPGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAV

YYCAR<u>PAVGHMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDY

FPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTOTYICNVNHKPSNT

KVDKKVEPKSCDKTHT* (SEQ ID NO: 950)

Зрелый ANT39 Hc выступ LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGKGLEWVA<u>SIYPSGGYT</u>

<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPT</u>TFGQGTKVEIKGGGG

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE

DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPASIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESN

GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS

LSPGKGGGSGGGSGGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSSYSM</u>

HWVRQAPGKGLEWVA<u>YISSYDSITD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTA

VYYCAR<u>PAVGHMAF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD

YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN

TKVDKKVEPKSCDKTHT* (SEQ ID NO: 951)

ANT39 LC

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRAS <u>OSVSSA</u>VAWYQQKPGKAP KLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>WYNAPI</u>TFGQGTKVEI KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTE QDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC* (SEQ ID NO: 909)

LC зрелого ANT39

DIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASSLY*SGVPS RFSGSRSGTDFTLTISSLQPEDFATYYCQQ*WYNAPI*TFGQGTKVEIKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 952)

ANT42i HC впадина DANG

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u> <u>GSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKT
TPPVLDSDGSFFLISKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGS
GGGSGGGSGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGFDFSSSSIHWVRQAPG
KGLEWVASISSSYGYTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSW
AMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWYQQ
KPGKAPKLLIYSASDLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLITFG
QGTKVEIK* (SEQ ID NO: 953)

ANT42i HC впадина LALAPS

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK
GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u>
GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE
PKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIE
KTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKT
TPPVLDSDGSFFLISKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGS
GGGSGGGSGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGFDFSSSSI</u>HWVRQAPG
KGLEWVASISSSYGYTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSW
AMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWYQQ
KPGKAPKLLIYSASDLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLI

ANT42i HC впадина LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u> GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE PKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENNYK TTPPVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGS</u> GGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPG KGLEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SW</u>
<u>AM</u>DYWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>QSVSSA</u>VAWYQQ
KPGKAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFG
QGTKVEIK* (SEQ ID NO: 955)

ANT42i HC впадина LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK
GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u>
GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE
PKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIE
KTISKAKGQPREPQVCTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGGS</u>
GGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPG
KGLEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SW</u>
AMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSA</u>VAWYQQ
KPGKAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFG
QGTKVEIK* (SEQ ID NO: 956)

Зрелый ANT42i HC впадина DANG

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLV
TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE
LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT
LPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLT
VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGSGGTGE
VQLVESGGGLVQPGGSLRLSCAASGFDFSSSSIHWVRQAPGKGLEWVASISSSYGYTTY
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSWAMDYWGQGTLVTVSSGG
GGSDIQMTQSPSSLSASVGDRVTITCRASOSVSSAVAWYQQKPGKAPKLLIYSASDLY</u>SG
VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLI

Зрелый ANT42i HC впадина LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF*TSDFYFI*HWVRQAPGKGLEWVA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*AFPGSYHPF*DYWGQGTLV
TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE
AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTL
PPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLISKLTV
DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEV
QLVESGGGLVQPGGSLRLSCAASGFDFSSSSIHWVRQAPGKGLEWVASISSSYGYTYYA
DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSWAMDYWGQGTLVTVSSGGG
GSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSASDLYSGV
PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLITFGQGTKVEIK* (SEQ ID NO: 958)

Зрелый ANT42i HC впадина LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLV
TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE
AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTL
PPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL<u>V</u>SKLT
VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGTGE
VQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLEWVA<u>SISSSYGYTY</u>Y
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DYWGQGTLVTVSSGG
GGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASDLY</u>SG
VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGTKVEIK* (SEQ ID NO: 959)

Зрелый ANT42i HC впадина LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLV TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVCTL
PPSREEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLT
VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSGGTGE
VQLVESGGGLVQPGGSLRLSCAASGFDFSSSSIHWVRQAPGKGLEWVASISSSYGYTYY
ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARSWAMDYWGQGTLVTVSSGG
GGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSASDLYSG
VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYAGAGLITFGQGTKVEIK* (SEQ ID NO: 960)

ANT42i HC выступ DANG

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK
GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u>
GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE
PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG
GSGGGSGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGFDFTAYAMHWVRQ
APGKGLEWVASIYPSGGYTAYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCA
RRSYYFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAV
AWYQQKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPITFGQGTKVEIK* (SEQ ID NO: 961)

ANT42i HC выступ LALAPS

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u> GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE PKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIE KTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG GSGGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGFDFTAYAMHWVRQ APGKGLEWVASIYPSGGYTAYADSVKGRFTISADTSKNTAYLOMNSLRAEDTAVYYCA R*RSYYFAL*DYWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*V AWYQQKPGKAPKLLIY*SASSLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YWA YYSPI*TFGQGTKVEIK* (SEQ ID NO: 962)

ANT42i HC выступ LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK
GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u>
GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE
PKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIE
KTISKAKGQPREPQVYTLPPSREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNGQPENNYK
TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GGG</u>
SGGGSGGGSGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAP
GKGLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>R</u>
SYYFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSA</u>VAW
YQQKPGKAPKLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYS</u>
PTTFGQGTKVEIK* (SEQ ID NO: 963)

ANT42i HC выступ LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGK
GLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFP</u>
GSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE
PKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIE
KTISKAKGQPREPQVYTLPPCREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>GG</u>
GSGGGSGGGSGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQ
APGKGLEWVA<u>SIYPSGGYTA</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCA
R<u>RSYYFAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAV
AWYQQKPGKAPKLLIY<u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWA</u>
YYSPITFGQGTKVEIK* (SEQ ID NO: 964)

Зрелый ANT42i HC выступ DANG

EVQLVESGGGLVQPGGSLRLSCAASGF*TSDFYFI*HWVRQAPGKGLEWVA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*AFPGSYHPF*DYWGQGTLV
TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE
LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREP*M*V*FD*LPPSREEMTKNQVSL*WCM*VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK
LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGST
GEVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGY TA*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*RSYYFAL*DYWGQGTLVT
VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SAS SLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YWAYYSPI*TFGQGTKVEIK* (SEQ ID NO: 965)

Зрелый ANT42i HC выступ LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLV
TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE
AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREP<u>M</u>V<u>FD</u>
LPPSREEMTKNQVSL<u>WCM</u>VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK
LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGSGST
GEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGKGLEWVA<u>SIYPSGGY</u>
TAYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRSYYFALDYWGQGTLVT
VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSA</u>VAWYQKPGKAPKLLIY<u>SAS</u>
SLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPI</u>TFGQGTKVEIK* (SEQ ID NO: 966)

Зрелый ANT42i HC выступ LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLV TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTL
PPSREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL
TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSGGTG
EVQLVESGGGLVQPGGSLRLSCAASGFDFTAYAMHWVRQAPGKGLEWVASIYPSGGYT
AYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRSYYFALDYWGQGTLVT
VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSAS
SLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQYWAYYSPITFGQGTKVEIK* (SEQ
ID NO: 967)

Зрелый ANT42i HC выступ LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF*TSDFYFI*HWVRQAPGKGLEWVA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*AFPGSYHPF*DYWGQGTLV
TVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV
LQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPE

AAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR
EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTL
PPCREEMTKNQVSL
CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL
TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGTG
EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYT*## AYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR**RSYYFAL*DYWGQGTLVT
VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS**OSVSSA*VAWYQQKPGKAPKLLIY*SAS*
SILY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ**YWAYYSPI**TFGQGTKVEIK** (SEQ ID NO: 968)

ANT42 Нс впадина DANG

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKG
LEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>
DYWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKP
GKAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQ
GTKVEIK<u>GGGGSGGGGSEPKSSDKTHT</u>CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV
TCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFLLSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAA
SGFTSDFYFIHWVRQAPGKGLEWVATIYPFIGNTYYADSVKGRFTISADTSKNTAYLQM

NSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI CNVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 911)

ANT42 Нс впадина LALAPS

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKG
LEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>
DYWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKP
GKAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQ
GTKVEIK<u>GGGGSGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSD
IAVEWESNGQPENNYKTTPPVLDSDGSFFLISKLTVDKSRWQQGNVFSCSVMHEALHN
HYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGSTGEVQLVESGGGLVQPGGSLRLSCAAS
GF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMN
SLRAEDTAVYYCARAFPGSYHPF
DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC
NVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 969)

ANT42 Hc впадина LALAPS Merchant

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKG
LEWVA<u>SISSSYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>
DYWGQGTLVTVSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKP
GKAPKLLIY<u>SASDLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQ
GTKVEIK<u>GGGGSGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGK<u>GGGSGGGSGGGSGGGSGGSGGTG</u>EVQLVESGGGLVQPGGSLRLSCAA
SGF<u>TSDFYFI</u>HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI
CNVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 970)

ANT42 Hc впадина LALAPS Merchant S-S

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKG
LEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKP
GKAPKLLIY*SASDLY*SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQ
GTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEV
TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN
GKEYKCKVSNKALPASIEKTISKAKGQPREPQVCTLPPSREEMTKNQVSL*SCA*VKGFYPS
DIAVEWESNGQPENNYKTTPPVLDSDGSFFL*Y*SKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAA
SGF*TSDFYFI*HWVRQAPGKGLEWVA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR*AFPGSYHPF*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI
CNVNHKPSNTKVDKKVEPKSCDKTHT* (SEQ ID NO: 971)

Зрелый ANT42 Hc впадина DANG

EVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSSG
GGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASDLY*S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGG
GSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
PIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLISKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG
GSGGGSGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGFTSDFYFIHWVRQA
PGKGLEWVATIYPFIGNTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR
AFPGSYHPF
DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK
KVEPKSCDKTHT* (SEQ ID NO: 972)

Зрелый ANT42 Hc впадина LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLEWVA<u>SISSSYGYTY</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DYWGQGTLVTVSS<u>G</u>
GGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASDLY</u>S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGTKVEIK<u>GGGGSGGG</u>
GSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK

FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
SIEKTISKAKGQPREPQVYTLPP/RELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNY
KTTPPVLDSDGSFFLLSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGG
GSGGGSGGGSGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGFTSDFYFIHWVRQA
PGKGLEWVATIYPFIGNTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR
AFPGSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK
KVEPKSCDKTHT* (SEQ ID NO: 973)

Зрелый ANT42 Hc впадина LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF*DFSSSSI*HWVRQAPGKGLEWVA*SISSSYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SWAM*DYWGQGTLVTVSS<u>G</u>
GGGSDIQMTQSPSSLSASVGDRVTITCRAS*QSVSSA*VAWYQQKPGKAPKLLIY*SASDLY*S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YAGAGLI*TFGQGTKVEIKGGGGSGGG
GSEPKSSDKTHTCPPCPAPE*AA*GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
SIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFL<u>I'</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>G</u>
GGSGGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQ
APGKGLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCA
R<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP
VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD
KKVEPKSCDKTHT* (SEQ ID NO: 974)

Зрелый ANT42 Hc впадина LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFSSSSI</u>HWVRQAPGKGLEWVA<u>SISSSYGYTY</u>
YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SWAM</u>DYWGQGTLVTVSSG
GGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SASDLY</u>S
GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YAGAGLI</u>TFGQGTKVEIK<u>GGGGSGGG</u>
GSEPKSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK
FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA
SIEKTISKAKGQPREPQVCTLPPSREEMTKNQVSL<u>SCA</u>VKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFL<u>V</u>SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK<u>G</u>
GGSGGGSGGGSGGGSGSTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>HWVRQ
APGKGLEWVATIYPFIGNTYYADSVKGRFTISADTSKNTAYLOMNSLRAEDTAVYYCA

R<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEP VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD KKVEPKSCDKTHT* (SEQ ID NO: 975)

ANT42 Hc выступ DANG

ANT42 Hc выступ LALAPS

ANT42 Hc выступ LALAPS Merchant

ANT42 Hc выступ LALAPS Merchant S-S

Зрелый ANT42 Hc выступ DANG

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGKGLEWVA<u>SIYPSGGYT</u>

<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>QSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIK<u>GGGG</u>

SGGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVAVSHED

PEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL SPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAASGFTSDFYFIH WVRQAPGKGLEWVATIYPFIGNTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAV YYCARAFPGSYHPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN TKVDKKVEPKSCDKTHT* (SEQ ID NO: 980)

Зрелый ANT42 Hc выступ LALAPS

EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYT*<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIKGGGG

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE

DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPASIEKTISKAKGQPREP<u>M</u>V<u>FD</u>LPPSREEMTKNQVSL<u>WCM</u>VKGFYPSDIAVEWESN

GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS

LSPGKGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>

HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTA

VYYCAR<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK

DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS

NTKVDKKVEPKSCDKTHT* (SEQ ID NO: 981)

Зрелый ANT42 Hc выступ LALAPS Merchant

EVQLVESGGGLVQPGGSLRLSCAASGF<u>DFTAYAM</u>HWVRQAPGKGLEWVA<u>SIYPSGGYT</u>

<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSS<u>GGGGS</u>DIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIK<u>GGGG</u>

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPE<u>AA</u>GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE

DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPASIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESNG

QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL

SPGK<u>GGGSGGGSGGGSGGGSGGSGTG</u>EVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>H

WVRQAPGKGLEWVA*TIYPFIGNTY*YADSVKGRFTISADTSKNTAYLOMNSLRAEDTAV

YYCAR<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKD YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSN TKVDKKVEPKSCDKTHT* (SEQ ID NO: 982)

Зрелый ANT42 Hc выступ LALAPS Merchant S-S

EVQLVESGGGLVQPGGSLRLSCAASGF*DFTAYAM*HWVRQAPGKGLEWVA*SIYPSGGYT*<u>A</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>RSYYFAL</u>DYWGQGTLVT

VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRAS<u>OSVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u>

<u>SLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YWAYYSPI</u>TFGQGTKVEIKGGGG

<u>SGGGGSEPKSSDKTHT</u>CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHE

DPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN

KALPASIEKTISKAKGQPREPQVYTLPPCREEMTKNQVSL<u>W</u>CLVKGFYPSDIAVEWESN

GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS

LSPGKGGGSGGGSGGGSGGGSGTGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TSDFYFI</u>

HWVRQAPGKGLEWVA<u>TIYPFIGNTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTA

VYYCAR<u>AFPGSYHPF</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK

DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS

NTKVDKKVEPKSCDKTHT* (SEQ ID NO: 983)

ANT42 LC

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRAS <u>OSVSSA</u>VAWYQQKPGKAP KLLIY <u>SASSLY</u>SGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>STGSLI</u>TFGQGTKVEI KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTE QDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC* (SEQ ID NO: 912)

LC зрелого ANT42

DIQMTQSPSSLSASVGDRVTITCRAS <u>OSVSSA</u>VAWYQQKPGKAPKLLIY <u>SASSLY</u>SGVPS RFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>STGSLI</u>TFGQGTKVEIKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 984)

ANT80-1 впадина

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSYSYI</u>HWVRQAPGKG LEWVA<u>SIYSYTGATD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YWST</u> NRILSYGGMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u> VAWYQQKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YF</u>

<u>DPIT</u>FGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL

MISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVL

HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCA

VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSV

MHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSL

RLSCAASGF<u>NIAYSSM</u>HWVRQAPGKGLEWVA<u>TIYPSYSSTY</u>YADSVKGRFTISADTSKN

TAYLQMNSLRAEDTAVYYCAR<u>YYAM</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG

GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ

TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 986)

ANT80-2 выступ

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF*DLSHSSI*HWVRQAPGK
GLEWVA*SISSHYGYTH*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SSY FPWFFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*DVSTA*VA
WYQQKPGKAPKLLIY*SASFLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*HYTTP P*TFGQGTKVEIKGGGGSGGGSEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS
RTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMV
KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV
MHEALHNHYTQKSLSLSPGKGGGSGGGSGGGGGGGGGGGGGTGEVQLVESGGGLVQPGGSL
RLSCAASGF*NIAYSSM*HWVRQAPGKGLEWVA*TIYPSYSSTY*YADSVKGRFTISADTSKN
TAYLQMNSLRAEDTAVYYCAR*YYAM*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG
GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ
TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 987)

ANT98-1 впадина

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSYSYI</u>HWVRQAPGKG LEWVA<u>SIYSYTGATD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YWST</u> NRILSYGGMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u> VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YF</u> DPI</u>TFGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL MISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCA VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGKGGGSGGGSGGGGGGGGGGGGGGGGGGGGGGCVQPGGSL RLSCAASGF*NIAYSSM*HWVRQAPGKGLEWVA*TIYPSYSSTY*YADSVKGRFTISADTSKN TAYLQMNSLRAEDTAVYYCAR*DYAM*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 988)

<u>ANТ98-2 выст</u>уп

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DLSHSSI</u>HWVRQAPGK
GLEWVA<u>SISSHYGYTH</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SSY</u>
FPWFFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>DVSTA</u>VA
WYQQKPGKAPKLLIY<u>SASFLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTP
PTFGQGTKVEIKGGGGSGGGSEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS
RTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMV
KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV
MHEALHNHYTQKSLSLSPGKGGGSGGGSGGGGGGGGGGGGTGEVQLVESGGGLVQPGGSL
RLSCAASGF<u>NIAYSSM</u>HWVRQAPGKGLEWVATIYPSYSSTY</u>YADSVKGRFTISADTSKN
TAYLQMNSLRAEDTAVYYCAR<u>DYAM</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG
GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ
TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 989)

ANТ99-1 впадина

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>TLSYSYI</u>HWVRQAPGKG
LEWVA<u>SIYSYTGATD</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YWST</u>
NRILSYGGMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>
VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YF</u>
DPI</u>TFGQGTKVEIKGGGGSGGGSEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCA
VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSV
MHEALHNHYTQKSLSLSPGKGGGSGGGSGGGSGGGSGGTGEVQLVESGGGLVQPGGSL
RLSCAASGF<u>NIAYSSM</u>HWVRQAPGKGLEWVA<u>TIYPSYSSTY</u>YADSVKGRFTISADTSKN
TAYLQMNSLRAEDTAVYYCAR<u>YYDM</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG
GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ

TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 990)

ANТ99-2 выступ

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>DLSHSSI</u>HWVRQAPGK
GLEWVA<u>SISSHYGYTH</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SSY</u>
<u>FPWFFAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>DVSTA</u>VA
WYQQKPGKAPKLLIY<u>SASFLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>HYTTP</u>
<u>P</u>TFGQGTKVEIKGGGGSGGGSEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS
RTPEVTCVVVAVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYGSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMV
KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV
MHEALHNHYTQKSLSLSPGKGGGSGGGSGGGGGGGGGGGGGGGGGGGVQLVESGGGLVQPGGSL
RLSCAASGF<u>NIAYSSM</u>HWVRQAPGKGLEWVA<u>TIYPSYSSTY</u>YADSVKGRFTISADTSKN
TAYLQMNSLRAEDTAVYYCAR<u>YYDM</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG
GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ
TYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 991)

LC ANT80 ANT98 ANT99

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAP KLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>AHYFPI</u>TFGQGTKVEI KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTE QDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 992)

СМ0042 (Диа-Гс-Диа)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u> <u>FPFGFAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u> TFGQGTKVEIKLEDKTHTKVEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAA

SGF<u>NISYSSI</u>HWVRQAPGKGLEWVA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNTAYLQM NSLRAEDTAVYYCAR<u>AHYFPWAGAM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSAS VGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTI SSLQPEDFATYYCQQ<u>YSWGPF</u>TFGQGTKVEIK (SEQ ID NO: 993)

СМ0011 впадина (Диа-Fc-Диа)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG
KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u>
FPFGFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA
WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQGVYLF
TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAAS
GF<u>NISSYYI</u>HWVRQAPGKGLEWVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQMNS
LRAEDTAVYYCAR<u>TVRGSKKPYFSGWAM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLS
ASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFT
LTISSLQPEDFATYYCOQYSWGPFTFGQGTKVEIK (SEQ ID NO: 994)

СМ0011 выступ (Диа-Fс-Диа)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAPG
KGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH FPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAA
SGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSAS
VGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTI
SSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK (SEQ ID NO: 995)

СМ0126 впадина (Диа-Fc-Диа)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIHSSSI*HWVRQAPG
KGLEWVA*ATYSSFGSIT*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH HPFGYAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAAS
GF*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAYLQMNS
LRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLS
ASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFT
LTISSLQPEDFATYYCQQ*YSWGPF*TFGQGTKVEIK (SEQ ID NO: 996)

СМ0126 выступ (Диа-Fc-Диа)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIHSSSI*HWVRQAPG
KGLEWVA*ATYSSFGSIT*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH HPFGYAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAA
SGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSAS
VGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTI
SSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK (SEQ ID NO: 997)

СМ0107 впадина (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u> <u>FPFGFAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u>
TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRAS
Q<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYY
CQQ<u>YSWGPF</u>TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCA
ASGF<u>NISYSSI</u>HWVRQAPGKGLEWVA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNTAYLQ
MNSLRAEDTAVYYCARAHYFPWAGAMDYWGQGTLVTVSS (SEQ ID NO: 998)

СМ0107 Выступ (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAPG
KGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH FPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRA
SQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATY
YCQQ*YSWGPF*TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSC
AASGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTAYLQ
MNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSS (SEQ ID NO: 999)

СМ0108 впадина (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u> <u>FPFGFAL</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u> TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTLMISRT PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRAS
Q<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYY
CQQ<u>YYWPI</u>TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAA
SGF<u>NISSYYI</u>HWVRQAPGKGLEWVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQMN
SLRAEDTAVYYCAR<u>TVRGSKKPYFSGWAM</u>DYWGQGTLVTVSS (SEQ ID NO: 1000)

СМ0108 выступ (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAPG
KGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH FPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRA
SQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATY
YCQQ*YYWPI*TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCA
ASGF*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSS (SEQ ID NO: 1001)

СМ0108 впадина (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u>
FPFGFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA
WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u>
TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRAS
Q<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYY
CQQ<u>YYWPI</u>TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAA

SGF<u>NISSYYI</u>HWVRQAPGKGLEWVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQMN SLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSS (SEQ ID NO: 1000)

СМ0108 выступ (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG
KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u>
FPFGFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA
WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQGVYLF
TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRA
SQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATY
YCQQ<u>YYWPI</u>TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCA
ASGF<u>NISSYYI</u>HWVRQAPGKGLEWVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCARTVRGSKKPYFSGWAMDYWGQGTLVTVSS (SEQ ID NO: 1001)

СМ0109 впадина (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAPG
KGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH FPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFY
PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRAS
Q*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYY
CQQ*YYWPI*TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAA
SGF*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAYLQMN
SLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSS (SEQ ID NO: 1000)

СМ0109 выступ (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAPG
KGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*YH FPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRA
SQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATY
YCQQ*YSWGPF*TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSC
AASGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTAYLQ
MNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSS (SEQ ID NO: 999)

СТ003 впадина (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISSYYI</u>HWVRQAPG
KGLEWVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>TVR</u>
GSKKPYFSGWAMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SV</u>
SSAVAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ
YSWGPF
TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKD
TLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT
VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLS
CAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFS
CSVMHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGS
LRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKGLEWVAATYSSFGSIT</u>YADSVKGRFTISADTSKN
TAYLQMNSLRAEDTAVYYCAR<u>YHHPFGYAL</u>DYWGQGTLVTVSSGTTAASGSSGGSSS
GADIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GV
PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQGVYLFTFGQGTKVEIK (SEQ ID NO: 1002)

СТ003 выступ (Диа-Fc-scFv)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISYSSI*HWVRQAPG KGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*AH YFPWAGAM*DYWGQGTLVTVSSGGGGDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*V AWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YYW* PITFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS
RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMV
KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV
MHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRL
SCAASGF<u>NIHSSSI</u>HWVRQAPGKGLEWVAATYSSFGSIT</u>YADSVKGRFTISADTSKNTAY
LQMNSLRAEDTAVYYCARYHHPFGYALDYWGQGTLVTVSSGTTAASGSSGGSSSGADI
QMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSASSLYSGVPSRF
SGSRSGTDFTLTISSLQPEDFATYYCQQGVYLFTFGQGTKVEIK (SEQ ID NO: 1003)

СМ0112 впадина (scFv-Fc-Диа)

MNLLLILTFVAAAVAEFDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGK
APKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKV
EIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAP
GKGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*Y HFPFGFAL*DYWGQGTLVTVSSLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFP
PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSN
QVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQG
NVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQ
PGGSLRLSCAASGF*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISAD
TSKNTAYLQMNSLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSSGGG
GSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GV
PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YSWGPF*TFGQGTKVEIK (SEQ ID NO: 1004)

СМ0112 выступ (scFv-Fc-Диа)

MNLLLILTFVAAAVAEFDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGK
APKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKV
EIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWVRQAP
GKGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*Y HFPFGFAL*DYWGQGTLVTVSSLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFP
PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKN

QVSLWCMVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ GNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLV QPGGSLRLSCAASGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISA DTSKNTAYLQMNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRF SGSRSGTDFTLTISSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK (SEQ ID NO: 1005)

СМ0110 впадина (scFv-Fc-scFv)

MNLLLILTFVAAAVAEFDIQMTQSPSSLSASVGDRVTITCRASQSVSSAVAWYQQKPGK
APKLLIYSASSLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQGVYLFTFGQGTKV
EIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGFNIGSSSIHWVRQAP
GKGLEWVASIYSAFASTSYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARY
HFPFGFALDYWGQGTLVTVSSLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFP
PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSN
QVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQG
NVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSAS
VGDRVTITCRASQSVSSAVAWYQQKPGKAPKLLIYSASSLYSGVPSRFSGSRSGTDFTLTI
SSLQPEDFATYYCQQYYWPITFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGLV
QPGGSLRLSCAASGFNISSYYIHWVRQAPGKGLEWVASIYSSYGYTSYADSVKGRFTISA
DTSKNTAYLQMNSLRAEDTAVYYCARTVRGSKKPYFSGWAMDYWGQGTLVTVSS
(SEQ ID NO: 1006)

CM0110 выступ (scFv-Fc-scFv)

MNLLLILTFVAAAVAEFDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGK
APKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u>TFGQGTKV
EIKGTTAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAP
GKGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>Y</u>
<u>HFPFGFAL</u>DYWGQGTLVTVSSLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFP
PKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV
VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKN
QVSLWCMVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ
GNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGDIQMTQSPSSLSA
SVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLT

ISSLQPEDFATYYCQQ*YSWGPF*TFGQGTKVEIKGTTAASGSSGGSSSGAEVQLVESGGGL VQPGGSLRLSCAASGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTIS ADTSKNTAYLQMNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSS (SEQ ID NO: 1007)

LC CT001 CM0299 CM0300 CM0301 ANT1

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAP KLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u>TFGQGTKVEIK RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 1008)

СТ001 впадина (bsIgG-Диа)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKG
LEWVA<u>ATYSSFGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHP</u>
FGYAL
DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI
SKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPP
VLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPGT
SESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISSYYI</u>HWVRQAPGKGLEWV
A<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>TVRGSKKPY</u>
FSGWAMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA
WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YSWG</u>
PFTFGQGTKVEIK (SEQ ID NO: 1009)

СТ001 выступ (bsIgG-Диа)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKG LEWVA<u>ATYSSFGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHP</u> <u>FGYAL</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI SKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNGQPENNYKTT
PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETP
GTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYSSI</u>HWVRQAPGKGLE
WVA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AHYFPW</u>
<u>AGAM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWY
QQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YYWPI</u>TFG
QGTKVEIK (SEQ ID NO: 1010)

Hc CM0299 (IgG-Диа)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKG
LEWVA<u>ATYSSFGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHP</u>
<u>FGYAL</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI
SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP
PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPG
TSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYSSI</u>HWVRQAPGKGLEW
VA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AHYFPWA</u>
GAMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQ
QKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YSWGPF</u>TF
GQGTKVEIK (SEQ ID NO: 1011)

Hc CM0300 (IgG-scFv)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKG LEWVA<u>ATYSSFGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHP</u> <u>FGYAL</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPG TSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLI Y<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YSWGPF</u>TFGQGTKVEIKGT TAASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYSSI</u>HWVRQAPGKGLE WVA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>AHYFPW</u> AGAMDYWGQGTLVTVSS (SEQ ID NO: 1012)

Hc CM0301 (IgG-scFv)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKG
LEWVA<u>ATYSSFGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHP</u>
<u>FGYAL</u>DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI
SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP
PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKSGSETPG
TSESATPESGGGDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLI
Y<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YYWPI</u>TFGQGTKVEIKGTT
AASGSSGGSSSGAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISSYYI</u>HWVRQAPGKGLE
WVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>TVRGSKK</u>
PYFSGWAMDYWGQGTLVTVSS (SEQ ID NO: 1013)

ANT1 впадина (Диа-Fc-Fab)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISSYYI*HWVRQAPG
KGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*TVR GSKKPYFSGWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SV SSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ *YYFLI*TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPPCPAPELLGGPSVFLFPPKPKDTL
MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCA
VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSV
MHEALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRL
SCAASGF*NIHSSSI*HWVRQAPGKGLEWVA*ATYSSFGSIT*YADSVKGRFTISADTSKNTAY
LQMNSLRAEDTAVYYCAR*YHHPFGYAL*DYWGQGTLVTVSSASTKGPSVFPLAPSSKST
SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGT
QTYICNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 1014)

ANT1 выступ (Диа-Fc-Fab)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISYSSI*HWVRQAPG
KGLEWVA*SISPYYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR*SSY FPWFSAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VA
WYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRT
PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAA
SGF*NIHSSSI*HWVRQAPGKGLEWVA*ATYSSFGSIT*YADSVKGRFTISADTSKNTAYLQM
NSLRAEDTAVYYCA*RYHHPFGYAL*DYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT
AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI
CNVNHKPSNTKVDKKVEPKSCDKTHT (SEQ ID NO: 1015)

Нс Fab-Диа (Fab-Диа)

MNLLLILTFVAAAVAEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIHSSSI</u>HWVRQAPGKG LEWVA<u>ATYSSFGSIT</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YHHP</u> FGYALDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK SCDKTHTGGSGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>TISYSSI</u>HWVRQAPGKGLEW VA<u>SISPYYGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>SSYFPWFS</u> AMDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQ KPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YYWPI</u>TFGQG TKVEIK (SEQ ID NO: 1016)

LC Fab-Dia (Fab-Диа)

MNLLLILTFVAAAVADIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAP KLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u>TFGQGTKVEIK RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGGSEVQLVE SGGGLVQPGGSLRLSCAASGF<u>TISSYYI</u>HWVRQAPGKGLEWVA<u>SIYSSYGYTS</u>YADSVKG RFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>TVRGSKKPYFSGWAM</u>DYWGQGTLVT VSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SAS</u> SLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YYFLI</u>TFGQGTKVEIK (SEQ ID

СН3 (Dia-CH3-Диа)

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NIGSSSI</u>HWVRQAPG KGLEWVA<u>SIYSAFASTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>YH</u> FPFGFALDYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VA WYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>GVYLF</u> TFGQGTKVEIKDKTHTKVEPKTSDKTHTCPPCPGQPREPQVYTLPPSREEMTKNQVSLTC LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPGKGTTAASGSSGGSSSGAGRTEVQLVESGGGLVQPGGSL RLSCAASGF<u>NISYSSI</u>HWVRQAPGKGLEWVA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNT AYLQMNSLRAEDTAVYYCAR<u>AHYFPWAGAM</u>DYWGQGTLVTVSSGGGGSDIQMTQSP SSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGT DFTLTISSLQPEDFATYYCQQ<u>YSWGPF</u>TFGQGTKVEIK (SEQ ID NO: 1018)

CM0156

EVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYSYM</u>HWVRQAPGKGLEWVA<u>SISPYYSYTS</u> YADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAR<u>PSAWSHYYPSSSSSAF</u>DYW GQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAP KLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>SSYSLI</u>TFGQGTKVEIK LEDKTHTKVEPKSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK VSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYSYM</u> HWVRQAPGKGLEWVA<u>SISPYYSYTS</u>YADSVKGRFTISADTSKNTAYLQMNSLRAEDTA VYYCAR<u>PSAWSHYYPSSSSSSAF</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRV TITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTISSLQPE DFATYYCQQSSYSLITFGQGTKVEIK (SEQ ID NO: 1019)

Таблица 14.

Сравнение уровней экспрессии и монодисперсности агонистов FZD после очистки белком A. См. соответствующую Фиг. 21.

Молекула	Формат	Паратоп с N- конц.	Паратоп с С- конц.	Уровень эксп. мг/л	% мономера	Выход мономера (мг/л)
CM0042	Dia – Fc – Dia	5019	2539	8±4	43	3
CM0011	Dia – Fc – Dia	5019	2539/2542	12±3	81±5	10
CM0126	Dia – Fc – Dia	5016	2539/2542	8±0,7	н/д	н/д
CM0107	Dia – Fc - scFv	5019	2539	90	87	80
CM0108	Dia – Fc - scFv	5019	2542	47	89	40
CM0109	Dia – Fc - scFv	5019	2539/2542	79	86	70
CT003	Dia – Fc - scFv	2539/2542	5016	47	67	30
CM0112	scFv – Fc – Dia	5019	2539/2542	1 5	79	10
CM0110	scFv - Fc - scFv	5019	2539/2542	82	81	70
CT001	bsIgG-dia	5016	2539/2542	47±21	44±11	30
CM0299	lgG-día	5016	2539	20±8	н/д	н/д
CM0300	IgG – scFv	5016	2539	134±38	66±7	100
CM0301	igG – scFv	5016	2542	134±27	71±8	90
ANT1	Dia-Fc-Fab	5016	2539/2542	294±75	53±9	150
СНЗ	Dia-CH3-Dia	5019	2539	<1	н/д	н/д
Fab-Dia	FAb-Dia	5016	2540/2542	1	н/д	н/д

Таблица 15.

Функциональное сравнение агонистов FZD. Кривые концентрация-ответ для каждого агониста FZD были построены с использованием анализа TOPFLASH. На Фиг. 20 показаны репрезентативные кривые форматов A) диатело-Fc-диатело и B) диатело-Fc-Fab, наложенные на Wnt3a для сравнения. Рассчитанные EC50 и максимальная эффективность относительно рекомбинантного контроля Wnt3a были получены и представлены как среднее значение ± стандартное отклонение.

Имя	Формат	Паратоп с N-конц.	Паратоп с С- конц.	EC ₅₀ (HM)	Максимальный сигнал (макс. % Wnt3a)
Wnt3a	Рекомбинантный белок	н/д	н/д	6±3	100
CM0042	Dia – Fc – Dia	5019	2539	0,9±0,8	33±22
CM0011	Dia – Fc – Dia	5019	2539/2542	0,3±0,1	63±10
CM0126	Dia – Fc –Dia	5016	2539/2542	0,3±0,2	52±1
CM0107	Dia-Fc-scFv	5019	2539	н/д	н/д
CM0108	Dia-Fc-scFv	5019	2542	н/д	н/д
CM0109	Dia-Fc-scFv	5019	2539/2542	н/д	н/д
CT003	Dia-Fc-scFv	2539/2542	5016	0,4±0,1	42±16
CM0112	scFv-Fc-Dia	5019	2539/2542	н/д	н/д
CM0110	scFv-Fc-scFv	5019	2539/2542	н/д	н/д
CT001	bsIgG-dia	5016	2539/2542	0,3±0,1	57±17
CM0299	IgG-dia	5016	2539	0,1±0,1	14± 5
CM0300	lgG-scFv	5016	2539	0,3±0,2	5±2
CM0301	lgG-scFv	5016	2542	0,2±0,2	1±1
ANT1	Dia-Fc-Fab	5016	2539/2542	0,7±0,5	50±18
CH3	Dia-CH3-Dia	5019	2539	н/д	22±10
FAb-Dia	Fab-Dia	5016	2540/2542	0,4±0,2	42±16

Таблица 16.

FZD2-LRP6 CM0072

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIYYSSI*HWV RQAPGKGLEWVA*SIYPYYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCAR YYHYGL DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTI TCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTIS SLQPEDFATYYCQQ*SYWHSYLI*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY TQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAA SGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNT AYLQMNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS* GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK (SEQ ID NO: 1020)

онструкция выступа

сонструкция с впадинами

Конструкция выступа

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIYYSSI*HWV
RQAPGKGLEWVA*SIYPYYGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAED
TAVYYCAR*YYHYGL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTI
TCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTIS
SLQPEDFATYYCQQ*SYWHSYLI*TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCP
PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD
GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI
EKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQ
PENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
KSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASG
F*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAY
LQMNSLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSSGGGGS
DIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSL*<u>YS</u>GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YSWGPF</u>TFGQGTKVEIK
(SEQ ID NO: 1021)

FZD5-LRP6 CM0024

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISYSSI*HW
VRQAPGKGLEWVA*SIYPSYSSTY*YADSVKGRFTISADTSKNTAYLQMNSLRAE
DTAVYYCAR*YYAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTI
TCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTIS
SLQPEDFATYYCQQ*AFYYPI*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCPPC
PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV
EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE
KTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNG
QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT
QKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAAS
GF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTA
YLQMNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGGSDIQM
TQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GV
PSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK (SEQ ID
NO: 1022)

Конструкция с впадинами

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYSSI</u>HW VRQAPGKGLEWVA<u>SIYPSYSSTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAE DTAVYYCAR<u>YYAM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRVTI TCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTIS SLQPEDFATYYCQQ<u>AFYYPI</u>TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAAS GF<u>NISSYYI</u>HWVRQAPGKGLEWVA<u>SIYSSYGYTS</u>YADSVKGRFTISADTSKNTA YLQMNSLRAEDTAVYYCAR<u>TVRGSKKPYFSGWAM</u>DYWGQGTLVTVSSGGGG SDIQMTQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASS</u> LYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YSWGPF</u>TFGQGTKVEIK (SEQ ID NO: 1023)

FZD7-LRP6 CM0172

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISSSSM*HW
VRQAPGKGLEWVA*SIYSYYGSTY*YADSVKGRFTISADTSKNTAYLQMNSLRA
EDTAVYYCAR*WYGM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRV
TITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLT
ISSLQPEDFATYYCQQ*PGSWYFPPI*TFGQGTKVEIKLEDKTHTKVEPKTSDKTH
TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWY
VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL
PAPIEKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEW
ESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLS
CAASGF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTS
KNTAYLQMNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGG
SDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASS LYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK
(SEQ ID NO: 1024)

Конструкция выступа

Конструкция с впадинами

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISSSSM*HW
VRQAPGKGLEWVA*SIYSYYGSTY*YADSVKGRFTISADTSKNTAYLQMNSLRA
EDTAVYYCAR*WYGM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRV
TITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLT
ISSLQPEDFATYYCQQ*PGSWYFPPI*TFGQGTKVEIKLEDKTHTKVEPKSSDKTH
NCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW
YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA
LPAPIEKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEW
ESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLS
CAASGF*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTS
KNTAYLQMNSLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSS
GGGGSDIQMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLI
Y*SASSLYS*GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YSWGPF*TFGQGT
KVEIK (SEQ ID NO: 1025)

PanFZD-LRP6 CM0011

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWV RQAPGKGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCAR*YHFPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGD RVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFT LTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTC PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAAS GF*NISYSSI*HWVRQAPGKGLEWVA*YISSYYGYTY*YADSVKGRFTISADTSKNTA YLQMNSLRAEDTAVYYCAR*AHYFPWAGAM*DYWGQGTLVTVSSGGGGSDIQM TQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVP SRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YYWPI*TFGQGTKVEIK (SEQ ID NO: 1026)

Конструкция выступа

Конструкция с впадинами

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NIGSSSI*HWV RQAPGKGLEWVA*SIYSAFASTS*YADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCAR*YHFPFGFAL*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGD RVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFT LTISSLQPEDFATYYCQQ*GVYLF*TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNC PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ KSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASG F*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAYL QMNSLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSSGGGGSDI QMTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS* GVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YSWGPF*TFGQGTKVEIK (SEQ ID NO: 1027)

FZD4-LRP6 CM0016

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF*NISYYYI*HWV RQAPGKGLEWVA*SIYPSSGYTY*YADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCAR*SSFYWAM*DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRV TITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*GVPSRFSGSRSGTDFTLTI SSLQPEDFATYYCQQ*SYAAYLF*TFGQGTKVEIKLEDKTHTKVEPKSSDKTHNCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPIRELMTSNQVSLSCAVKGFYPSDIAVEWESNGQP ENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK SLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAASGF*NISSYYI*HWVRQAPGKGLEWVA*SIYSSYGYTS*YADSVKGRFTISADTSKNTAYLQ MNSLRAEDTAVYYCAR*TVRGSKKPYFSGWAM*DYWGQGTLVTVSSGGGGSDIQ MTQSPSSLSASVGDRVTITCRASQ*SVSSA*VAWYQQKPGKAPKLLIY*SASSLYS*G VPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQ*YSWGPF*TFGQGTKVEIK (SEQ ID NO: 1028)

Конструкция выступа

MNLLLILTFVAAAVAEFEVQLVESGGGLVQPGGSLRLSCAASGF<u>NISYYYI</u>HWV RQAPGKGLEWVA<u>SIYPSSGYTY</u>YADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCAR<u>SSFYWAM</u>DYWGQGTLVTVSSGGGGSDIQMTQSPSSLSASVGDRV TITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVPSRFSGSRSGTDFTLTI SSLQPEDFATYYCQQ<u>SYAAYLF</u>TFGQGTKVEIKLEDKTHTKVEPKTSDKTHTCP PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPMVFDLPPSREEMTKNQVSLWCMVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGKSGSETPGTSESATPESGGGEVQLVESGGGLVQPGGSLRLSCAAS GF<u>NISYSSI</u>HWVRQAPGKGLEWVA<u>YISSYYGYTY</u>YADSVKGRFTISADTSKNTA YLQMNSLRAEDTAVYYCAR<u>AHYFPWAGAM</u>DYWGQGTLVTVSSGGGGSDIQM TQSPSSLSASVGDRVTITCRASQ<u>SVSSA</u>VAWYQQKPGKAPKLLIY<u>SASSLYS</u>GVP SRFSGSRSGTDFTLTISSLQPEDFATYYCQQ<u>YYWPI</u>TFGQGTKVEIK (SEQ ID NO: 1029)

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Молекула четырехвалентного связывающего антитела, содержащая:
- (a) домен Fc или его фрагмент, содержащий константный домен тяжелой цепи 3 (CH3),
- (b) двухвалентный домен, связывающий белок 5, родственный рецепторам липопротеинов низкой плотности (LRP5), и
 - (c) двухвалентный домен, связывающий Frizzled (FZD),

причем LRP5-связывающий домен присоединен к одному концу домена Fc, а FZD-связывающий домен присоединен к другому концу домена Fc,

причем LRP5-связывающий домен содержит диатело, которое связывает LRP5, а FZD-связывающий домен содержит два scFv или два Fab, которые связывают FZD4.

- 2. Молекула четырехвалентного связывающего антитела по п. 1, отличающаяся тем, что
 - (a) диатело LRP5-связывающего домена присоединено к N-концу домена Fc, и
 - (b) FZD4-связывающий домен присоединен к С-концу домена Fc.
- 3. Молекула четырехвалентного связывающего антитела по п. 2, отличающаяся тем, что
 - (a) диатело LRP5-связывающего домена присоединено к N-концу домена Fc через VL или VH диатела, и
 - (b) FZD-связывающий домен содержит два FZD-связывающих Fab, слитых с С-концом Fc, при этом каждый Fab присоединен к домену Fc через вариабельный домен тяжелой или легкой цепи (VH или VL) Fab, связанного с доменом CH3 домена Fc.
- 4. Молекула четырехвалентного связывающего антитела, содержащая N-концевое LRP5связывающее диатело и С-концевой домен, содержащий два FZD4-связывающих scFv, причем молекула четырехвалентного связывающего антитела содержит

димер первого и второго мономера, при этом каждый мономер содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:

(а) первый пептид, при этом указанный первый пептид содержит первый

- вариабельный домен тяжелой цепи (VH) и первый вариабельный домен легкой цепи (VL), которые связывают LRP5,
- (b) область Fc или ее фрагмент, которые содержат константный домен тяжелой цепи 3 (CH3), и
- (c) второй пептид, при этом указанный второй пептид содержит второй VL и второй VH, которые связывают FZD4, и

первый и второй мономер легкой цепи, причем каждый мономер легкой цепи содержит от N-конца к C-концу VL, который связывает FZD4, связанный с константным доменом легкой цепи 1 (домен CL1),

при этом первый и второй мономеры димеризуются через области Fc или их фрагменты, первые VH и VL каждого мономера образуют пару с первыми VH и VL другого мономера, образуя диатело, которое связывает LRP5, и вторые VL и VH каждого мономера образуют пару с образованием scFv, которые связывают FZD4, и

при этом LRP5-связывающее диатело образует N-концевой LRP5-связывающий домен молекулы четырехвалентного связывающего антитела, а два FZD4-связывающих scFv образуют С-концевой FZD-связывающий домен молекулы четырехвалентного связывающего антитела.

- 5. Молекула четырехвалентного связывающего антитела по п. 1, отличающаяся тем, что FZD-связывающий домен присоединен к N-концу домена Fc, а LRP5-связывающий домен присоединен к C-концу домена Fc.
- 6. Молекула четырехвалентного связывающего антитела по п. 5, отличающаяся тем, что
 - (a) FZD-связывающий домен содержит два Fab, которые связывают FZD4, при этом каждый Fab присоединен к N-концу домена Fc через вариабельный домен тяжелой или легкой цепи (VH или VL) Fab, связанного с доменом CH2 домена Fc и
 - (b) LRP5-связывающий домен содержит диатело или два scFv, которые связывают LRP5, при этом диатело или два scFv присоединены к C-концу домена Fc через VL или VH диатела, или scFv, связанного с CH3 домена Fc.
- 7. Молекула четырехвалентного связывающего антитела, содержащая домен Fc или его

фрагмент, содержащий константный домен тяжелой цепи 3 (СН3), N-концевой FZD4-связывающий домен, содержащий два FZD4-связывающих Fab, и С-концевой LRP5-связывающий домен, содержащий LRP5-связывающее диатело, при этом молекула четырехвалентного связывающего антитела содержит

- (а) первый и второй мономер тяжелой цепи, при этом каждый мономер тяжелой цепи содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (i) вариабельный домен тяжелой цепи (VH), который связывает FZD4, связанный с
 - (ii) доменом 1 константной области тяжелой цепи (домен CH1), связанным с
 - (ііі) доменом СН2 области Fc, связанным с
 - (iv) пептидом, содержащим VH, который связывает корецептор LRP5, который связан с вариабельным доменом легкой цепи (VL), который связывает корецептор LRP5, и
- (b) первый и второй мономер легкой цепи, при этом каждый мономер легкой цепи содержит от N-конца к C-концу VL, который связывает FZD4, связанный с константным доменом легкой цепи 1 (домен CL1),

при этом первый и второй мономеры тяжелой цепи димеризуются посредством их областей Fc или их фрагментов,

при этом линкер между VH и VL, которые связывают LRP5, имеет длину, которая способствует спариванию VH и VL первого мономера тяжелой цепи с VL и VH второго мономера тяжелой цепи, тем самым образуя диатело, связывающее корецептор LRP5, а FZD-связывающие Fab образуются путем спаривания каждого мономера тяжелой цепи с мономером легкой цепи таким образом, что VH, который связывает FZD4, и CH1 каждого из мономеров тяжелой цепи, соединяются с VL, который связывает FZD4, и CL1 мономера легкой цепи, и

при этом Fab образуют FZD4-связывающий домен на N-конце домена Fc, а диатело образует домен, связывающий корецептор LRP5, на C-конце домена Fc.

8. Молекула четырехвалентного связывающего антитела по любому из пп. 1–7, отличающаяся тем, что LRP5-связывающее диатело представляет собой биспецифический

двухвалентный LRP5-связывающий домен, который связывается с двумя эпитопами во внеклеточном домене корецептора LRP5.

- 9. Молекула четырехвалентного связывающего антитела по п. 8, отличающаяся тем, что LPR5-связывающий домен взаимодействует с эпитопами Wnt1 и Wnt3 корецептора LRP5.
- 10. Молекула четырехвалентного связывающего антитела по любому из пп. 1–9, отличающаяся тем, что FZD-связывающий домен является моноспецифическим.
- 11. Молекула четырехвалентного связывающего антитела по любому из пп. 1–10, отличающаяся тем, что
 - диатело LRP5-связывающего домена с LRP5 и содержит определяющие комплементарность области тяжелой цепи CDR-H1, CDR-H2 и CDR-H3 и определяющие комплементарность области легкой цепи CDR-L1, CDR-L2 и CDR-L3 антитела, представленные последовательностями в таблице 3 или таблице 6A.
- 12. Молекула четырехвалентного связывающего антитела по любому из пп. 1–11, отличающаяся тем, что домен Fc или его фрагмент димеризуются посредством конфигурации «выступ-во-впадину» областей Fc или их фрагментов.
- 13. Молекула четырехвалентного связывающего антитела по п. 12, отличающаяся тем, что область Fc первого мономера тяжелой цепи содержит мутации T366S, L368A и Y407V, а область Fc второго мономера тяжелой цепи содержит мутацию T366W в соответствии с нумерацией EU.
- 14. Молекула четырехвалентного связывающего антитела по п. 13, отличающаяся тем, что область Fc первого мономера тяжелой цепи дополнительно содержит мутации S354I и E357L, а область Fc второго мономера тяжелой цепи дополнительно содержит мутации Q347M, Y349F, T350D и L368M в соответствии с нумерацией EU.
- 15. Молекула четырехвалентного связывающего антитела по п. 13, отличающаяся тем, что между областью Fc первого мономера тяжелой цепи и второго мономера тяжелой цепи введена дополнительная дисульфидная связь, предпочтительно при этом первый мономер тяжелой цепи содержит мутацию Y349C, а второй мономер тяжелой цепи содержит мутацию S354C в соответствии с нумерацией EU.
- 16. Молекула четырехвалентного связывающего антитела по любому из пп. 1-15,

отличающаяся тем, что в домене Fc отсутствует одна или более эффекторных функций.

- 17. Молекула четырехвалентного связывающего антитела по п. 16, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций, вариантов N297G (NG) и/или D265A (DA) в соответствии с нумерацией EU.
- 18. Молекула четырехвалентного связывающего антитела по п. 16, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций L234A, L235A и/или P331S в соответствии с нумерацией EU.
- 19. Молекула четырехвалентного связывающего антитела по п. 18, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций L234A и L235A (LALA).
- 20. Молекула четырехвалентного связывающего антитела по п. 19, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций L234A, L235A и P331S (LALAPS).
- 21. Молекула четырехвалентного связывающего антитела по любому из пп. 1–20, отличающаяся тем, что каждый из LRP5-связывающего домена и FZD-связывающего домена присоединены к домену Fc с помощью линкера.
- 22. Молекула четырехвалентного связывающего антитела по п. 21, отличающаяся тем, что линкер содержит от 1 до 100, от 1 до 50, 1–30, 1–25, 1–10, 1–6 аминокислот, 1–5 аминокислот или 2–4 аминокислоты.
- 23. Молекула четырехвалентного связывающего антитела по п. 21 или 22, отличающаяся тем, что диатела, образующие домен, связывающий корецептор LRP5, были слиты с доменом Fc через линкер GGGGSGGGSEPKSSDKTHT (SEQ ID NO: 892).
- 25. Молекула четырехвалентного связывающего антитела по любому из пп. 1–24, отличающаяся тем, что VH, которая связывает корецептор LRP5, связана с VL, которая связывает корецептор LRP5, через короткий линкер GGGS (SEQ ID NO: 886).

- 26. Молекула четырехвалентного связывающего антитела по любому из пп. 1–25, отличающаяся тем, что FZD-связывающий домен содержит два Fab, которые связывают FZD4.
- 27. Молекула четырехвалентного связывающего антитела по п. 26, отличающаяся тем, что FZD-связывающий Fab содержит определяющие комплементарность области легкой цепи CDR-L1, CDR-L2 и CDR-L3 и CDR тяжелой цепи, CDR-H1, CDR-H2 и CDR-H3 антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6.
- 28. Молекула четырехвалентного связывающего антитела по любому из пп. 1–4 и 8–27, содержащая,
 - (a) димер первого и второго мономера тяжелой цепи, при этом каждый мономер содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (1) пептид, содержащий вариабельный домен тяжелой цепи (VH), который связывает LRP5, и вариабельный домен легкой цепи (VL), который связывает LRP5,
 - (2) область Fc или ее фрагмент, содержащие СН3,
 - (3) VH, который связывает FZD4, и
 - (4) константный домен тяжелой цепи 1 (CH1), при этом
 - (5) VH, который связывает LRP5, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 3 или таблице 6, и
 - (b) VL, который связывает LRP5, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 3 или таблице 6,
 - (c) VH, который связывает FZD4, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

(d) третий и четвертый мономер легкой цепи, каждый из которых содержит VL, который связывает FZD4, и константный домен легкой цепи 1 (CL1), при этом VL, который связывает FZD4, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

при этом первый и второй мономеры тяжелой цепи димеризуются через свои области Fc, а VL и VH, которые связывают LRP5, первого мономера образуют пару с VH и VL, которые связывают LRP5, второго мономера, образуя двухвалентное диатело, которое связывает LRP5, и

CL1 и VL, которые связывают FZD4, третьего и четвертого мономеров легкой цепи, спариваются с CH1 и VH, которые связывают FZD4, первого и второго мономеров тяжелой цепи, образуя два Fab, которые связывают FZD4, при этом диатело образует N-концевый двухвалентный LRP5-связывающий домен и два Fab образуют C-концевой двухвалентный FZD4-связывающий домен.

- 29. Молекула четырехвалентного связывающего антитела по любому из пп. 5–7, содержащая,
 - (a) димер первого и второго мономера тяжелой цепи, при этом каждый мономер содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (1) VH, который связывает FZD4
 - (2) область Fc или ее фрагмент, содержащие СН3,
 - (3), пептид, содержащий VH, который связывает LRP5, и VL, который связывает LRP5, и
 - (4) константный домен тяжелой цепи 1 (CH1), при этом
 - (5) VH, который связывает LRP5, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 3 или таблице 6, и
 - (b) VL, который связывает LRP5, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 3 или

таблице 6,

(c) VH, который связывает FZD4, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

И

(d) третий и четвертый мономер легкой цепи, каждый из которых содержит от N-конца к C-концу VL, который связывает FZD4, и константный домен легкой цепи 1 (CL1), при этом VL, который связывает FZD4, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

при этом первый и второй мономеры тяжелой цепи димеризуются через свои области Fc, а VL и VH, которые связывают LRP5, первого мономера образуют пару с VH и VL, которые связывают LRP5, второго мономера, образуя двухвалентное диатело, которое связывает LRP5, и

CL1 и VL, которые связывают FZD4, третьего и четвертого мономеров легкой цепи, спариваются с CH1 и VH, которые связывают FZD4, первого и второго мономеров тяжелой цепи, образуя два Fab, которые связывают FZD4, при этом диатело образует С-концевый двухвалентный LRP5-связывающий домен и два Fab образуют N-концевой двухвалентный FZD4-связывающий домен.

30. Молекула четырехвалентного связывающего антитела по п. 28 или п. 29, отличающаяся тем, что LRP5-связывающее диатело является биспецифическим, при этом

CDR VH, которые связывают LRP5 первого мономера тяжелой цепи, и CDR VH, которые связывают LRP5 второго мономера тяжелой цепи, не являются идентичными, и

CDR VL, которые связывают LRP5 первого мономера тяжелой цепи, и CDR VL, которые связывают LRP5 второго мономера тяжелой цепи, не являются идентичными.

31. Молекула четырехвалентного связывающего антитела по п. 30, отличающаяся тем, что в первом мономере тяжелой цепи

- (a) CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, FSSSSI (SEQ ID NO: 528) и SISSSYGYTY (SEQ ID NO: 553), или CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, LSYYYM (SEQ ID NO: 527) и SIYSSYGYTY (SEQ ID NO: 552), и
- (b) CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASDLYS (SEQ ID NO: 491) и YAGAGLI (SEQ ID NO: 510), или CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASSLYS (SEQ ID NO: 2) и SSYSLI (SEQ ID NO: 130), и

во втором мономере тяжелой цепи

- (c) CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, FTAYAM (SEQ ID NO: 536) и SIYPSGGYTA (SEQ ID NO: 566), или CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, FSSSSI (SEQ ID NO: 528) и SISSSYGYTY (SEQ ID NO: 553) и
- (d) CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASSLYS (SEQ ID NO: 2) и YWAYYSPI, или CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASSLYS (SEQ ID NO: 2) и ASYAPI.
- 32. Молекула четырехвалентного связывающего антитела по любому из пп. 28–31, отличающаяся тем, что в первом и втором мономерах тяжелой цепи CDR-H1 и CDR-H2 из VH, который связывает FZD4, включают, соответственно, LSSYSM (SEQ ID NO: 24) и YISSYYGYTY (SEQ ID NO: 51), или CDR-H1 и CDR-H2 из VH, который связывает FZD4, включают, соответственно, LSSYSM (SEQ ID NO: 24) и YISSYDSITD (SEQ ID NO: 61).
- 33. Молекула четырехвалентного связывающего антитела по любому из пп. 28–32, отличающаяся тем, что в третьем и четвертом мономерах легкой цепи CDR-L1 и CDR-L2 из VL, который связывает FZD4, включают, соответственно, SVSSA (SEQ ID NO: 1) и SASSLYS (SEQ ID NO: 2), а CDR-L3 из VL, который связывает FZD4, включают WYYAPI (SEQ ID NO: 3) или WYNAPI (SEQ ID NO: 12).
- 34. Молекула четырехвалентного связывающего антитела по любому из пп. 28, 29, 30, 32 и 33, содержащая двухвалентный биспецифический LRP5-связывающий домен, причем
 - (a) в первом мономере тяжелой цепи, VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2

SEQ ID NO: 553 и CDR-H3 SEQ ID NO: 586, a VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 491 и CDR-L3 SEQ ID NO: 510 из ANT16-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 527, CDR-H2 SEQ ID NO: 552 CDR-H3 SEQ ID NO: 584, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 130 из ANT18-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 527, CDR-H2 SEQ ID NO: 552 CDR-H3 SEQ ID NO: 584, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 491 CDR-L3 SEQ ID NO: 510 из ANT20-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 586, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 130 из ANT21-впадина из таблица 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 527, CDR-H2 SEQ ID NO: 552 CDR-H3 SEQ ID NO: 584, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 130 из ANT36-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 586, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 491 CDR-L3 SEQ ID NO: 510 из ANT39-впадина из таблицы 6A,

И

VH, который связывает FZD4, содержит CDR VH r FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT16-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT18-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT20-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT21-впадина из таблица 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 из ANT36-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 из ANT39-впадина из таблицы 6В,

при этом CDR-L1 и CDR-L2 FZD представляют собой, соответственно, SVSSA (SEQ ID NO: 1) и SASSLYS (SEQ ID NO: 2), и

(b) во втором мономере

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 536, CDR-H2 SEQ ID NO: 566 CDR-H3 SEQ ID NO: 603, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 493 из ANT16-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 585, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 492 из ANT18-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 536, CDR-H2 SEQ ID NO: 566 CDR-H3 SEQ ID NO: 603, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 492 из ANT20-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 585, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO:

493 из ANT21-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 и CDR-H3 SEQ ID NO: 585, а VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 и CDR-L3 SEQ ID NO: 492 из ANT36-выступ из таблицы 6A, или VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 536, CDR-H2 SEQ ID NO: 566 и CDR-H3 SEQ ID NO: 603, а VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 и CDR-L3 SEQ ID NO: 493 из ANT39-выступ из таблицы 6A,

и VH, который связывает FZD4, содержит,

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT16-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT18-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT20-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT21-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 Fab к FZD4 из ANT36-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 Fab к FZD4 из ANT39-выступ из таблицы 6B, или

И

(с) в каждом из третьего и четвертого мономеров

VL содержат CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT16-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT18-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT20-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT21-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 12 Fab к FZD4 из ANT36-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 12 Fab к FZD4 из ANT39-выступ из таблицы 6B, или

при этом в Fab к FZD4 CDR-L1 включает SVSSA (SEQ ID NO: 1), a CDR-L2 включает SASSLYS (SEQ ID NO: 2).

- 35. Молекула четырехвалентного связывающего антитела по любому из пп. 1–34, отличающаяся тем, что молекула четырехвалентного связывающего антитела не содержит FZD-связывающий домен, содержащий CDR FZD-связывающего антитела 5044, в сочетании с доменом, связывающим корецептор Wnt, содержащим CDR LRP6-связывающее антитело 2542 и/или антитело 2539.
- 36. Молекула четырехвалентного связывающего антитела по любому из пп. 1–35, отличающаяся тем, что молекула четырехвалентного связывающего антитела содержит
 - (а) первую тяжелую цепь, содержащую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 898, вторую тяжелую цепь, содержащую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 897, и легкую цепь, содержащую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 899, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT16; или
 - (b) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 901, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 900, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 902, при этом аминокислотная последовательность CDR представляет собой аминокислотную

- (c) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 904, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 903, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 902, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT20; или
- (d) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 906, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 905, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 902, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT21; или
- (е) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 908, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 907, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT39; или
- (f) первую тяжелую цепь, содержащую аминокислотную последовательность конструкции тяжелой цепи с впадинами, выбранную из группы, состоящей из SEQ ID NO: 921; SEQ ID NO: 922; SEQ ID NO: 923; SEQ ID NO: 924; SEQ ID NO: 925; SEQ ID NO: 926; SEQ ID NO: 927; и SEQ ID NO: 928; вторую тяжелую цепь, содержащую аминокислотную последовательность конструкции тяжелой цепи с выступами, выбранную из группы, состоящей из SEQ ID NO: 929; SEQ ID NO: 930; SEQ ID NO: 931; SEQ ID NO: 932; SEQ ID NO: 933; SEQ ID NO: 934; SEQ ID NO: 935; и SEQ ID NO: 936; и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи, выбранную из группы, состоящей из SEQ ID NO: 909 и SEQ ID NO: 952.

- 37. Молекула четырехвалентного связывающего антитела по любому из пп. 1–35, отличающаяся тем, что молекула четырехвалентного связывающего антитела содержит
 - (а) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 921 или SEQ ID NO: 925, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 929 или SEQ ID NO: 933, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
 - b) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 922 или SEQ ID NO: 926, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 930 или SEQ ID NO: 934, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
 - с) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 923 или SEQ ID NO: 927, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 931 или SEQ ID NO: 935, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
 - d) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 924 или SEQ ID NO: 928, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 932 или SEQ ID NO: 936, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
 - е) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 908 или SEQ ID NO: 940, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 944 или SEQ ID NO: 948, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или

- f) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 937 или SEQ ID NO: 941, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 945 или SEQ ID NO: 949, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
- g) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 938 или SEQ ID NO: 942, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 946 или SEQ ID NO: 950, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
- h) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 939 или SEQ ID NO: 943, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 947 или SEQ ID NO: 951, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952.
- 38. Фармацевтическая композиция, содержащая молекулу четырехвалентного связывающего антитела по любому из пп. 1–37 и фармацевтически приемлемый носитель.
- 39. Способ стимулирования барьерных функций эндотелиальных клеток в ткани, включающий введение в ткань эффективного количества молекулы четырехвалентного связывающего антитела по любому из пп. 1–37.
- 40. Способ по п. 39, отличающийся тем, что ткань представляет собой ткань головного мозга, почки или глаза.
- 41. Способ по п. 40, отличающийся тем, что молекулу четырехвалентного связывающего антитела вводят в ткань глаза путем интравитреальной инъекции.
- 42. Способ повышения барьерных функций эндотелиальных клеток сетчатки или головного мозга, снижения проницаемости эндотелиальных клеток, улучшения или восстановления поддержания гематоэнцефалического барьера и гематоэнцефалического барьера у субъекта, нуждающегося в этом, включающий приведение в контакт

эндотелиальной клетки, содержащей рецептор FZD4 и LRP5, у нуждающегося в этом субъекта с эффективным количеством молекулы четырехвалентного связывающего антитела по любому из пп. 1–37.

- 43. Способ по п. 42, отличающийся тем, что молекулу четырехвалентного связывающего антитела вводят субъекту, нуждающемуся в этом, путем инъекции, местного нанесения или перорального приема.
- 44. Способ по п. 42, отличающийся тем, что молекулу четырехвалентного связывающего антитела вводят подкожно, внутривенно, внутрибрюшинно, интратекально, интравитреально или интраокулярно.
- 45. Молекула четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтическая композиция по п. 38 для применения в качестве лекарственного препарата.
- 46. Молекула четырехвалентного связывающего антитела или фармацевтическая композиция по п. 45 для применения в лечении или предупреждении развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или которое характеризуется снижением барьерной функции эндотелиальных клеток и/или диапедезом.
- 47. Способ лечения или предупреждения развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или снижением барьерной функции эндотелиальных клеток и/или диапедезом, включающий введение нуждающемуся в этом индивиду терапевтически эффективного количества молекулы четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтической композиции по п. 38.
- 48. Применение молекулы четырехвалентного связывающего антитела по пп. 1–37 или фармацевтической композиции по п. 38 для производства лекарственного препарата для лечения или предупреждения развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или снижением барьерной функции эндотелиальных клеток и/или диапедезом.
- 49. Молекула четырехвалентного связывающего антитела или фармацевтическая композиция для применения, способ или применение по любому из пп. 46–48, отличающиеся тем, что нарушение выбрано из диабетической ретинопатии, ретинопатии

недоношенных, болезни Коутса, FEVR, болезни Норри, макулярной дегенерации, диабетического отека желтого пятна, витреоретинопатий у детей, болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии.

- 50. Молекула четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтическая композиция по п. 37 для применения в лечении или предупреждении развития глазного нарушения, например, нарушения в сетчатке или желтом пятне, например, выбранного из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, мякулярной дегенерации, диабетического отека желтого пятна и витреоретинопатий у детей, или в лечении или предупреждении развития нарушения, выбранного из болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии.
- 51. Способ лечения или предупреждения развития глазного нарушения, например, нарушения в сетчатке или желтом пятне, например, выбранного из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, макулярной дегенерации, диабетического отека желтого пятна и витреоретинопатий у детей, или в лечении или предупреждении развития заболевания, выбранного из болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии, включающих введение нуждающемуся в этом индивиду терапевтически эффективного количества молекулы четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтической композиции по п. 38.
- 52. Применение молекулы четырехвалентного связывающего антитела по пп. 1–36 или фармацевтической композиции по п. 38 для производства лекарственного препарата для лечения или предупреждения развития глазного нарушения, например, нарушения в сетчатке или желтом пятне, например, выбранного из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, макулярной дегенерации, диабетического отека желтого пятна и витреоретинопатий у детей, или в лечении или предупреждении нарушения, выбранного из болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

измененная на международной стадии

- 1. Молекула четырехвалентного связывающего антитела, содержащая:
- (a) домен Fc или его фрагмент, содержащий константный домен тяжелой цепи 3 (CH3),
- (b) двухвалентный домен, связывающий белок 5, родственный рецепторам липопротеинов низкой плотности (LRP5), и
 - (c) двухвалентный домен, связывающий Frizzled (FZD),

причем LRP5-связывающий домен присоединен к одному концу домена Fc, а FZD-связывающий домен присоединен к другому концу домена Fc,

причем LRP5-связывающий домен содержит диатело, которое связывает LRP5, а FZD-связывающий домен содержит два scFv или два Fab, которые связывают FZD4.

- 2. Молекула четырехвалентного связывающего антитела по п. 1, отличающаяся тем, что
 - (a) диатело LRP5-связывающего домена присоединено к N-концу домена Fc, и
 - (b) FZD4-связывающий домен присоединен к С-концу домена Fc.
- 3. Молекула четырехвалентного связывающего антитела по п. 2, отличающаяся тем, что
 - (a) диатело LRP5-связывающего домена присоединено к N-концу домена Fc через VL или VH диатела, и
 - (b) FZD-связывающий домен содержит два FZD-связывающих Fab, слитых с С-концом Fc, при этом каждый Fab присоединен к домену Fc через вариабельный

домен тяжелой или легкой цепи (VH или VL) Fab, связанного с доменом CH3 домена Fc.

4. Молекула четырехвалентного связывающего антитела, содержащая N-концевое LRP5связывающее диатело и С-концевой домен, содержащий два FZD4-связывающих scFv, причем молекула четырехвалентного связывающего антитела содержит

димер первого и второго мономера, при этом каждый мономер содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:

- (а) первый пептид, при этом указанный первый пептид содержит первый вариабельный домен тяжелой цепи (VH) и первый вариабельный домен легкой цепи (VL), которые связывают LRP5,
- (b) область Fc или ее фрагмент, которые содержат константный домен тяжелой цепи 3 (CH3), и
- (c) второй пептид, при этом указанный второй пептид содержит второй VL и второй VH, которые связывают FZD4, и

первый и второй мономер легкой цепи, причем каждый мономер легкой цепи содержит от N-конца к C-концу VL, который связывает FZD4, связанный с константным доменом легкой цепи 1 (домен CL1),

при этом первый и второй мономеры димеризуются через области Fc или их фрагменты, первые VH и VL каждого мономера образуют пару с первыми VH и VL другого мономера, образуя диатело, которое связывает LRP5, и вторые VL и VH каждого мономера образуют пару с образованием scFv, которые связывают FZD4, и

при этом LRP5-связывающее диатело образует N-концевой LRP5-связывающий домен молекулы четырехвалентного связывающего антитела, а два FZD4-связывающих scFv образуют С-концевой FZD-связывающий домен молекулы четырехвалентного связывающего антитела.

- 5. Молекула четырехвалентного связывающего антитела по п. 1, отличающаяся тем, что FZD-связывающий домен присоединен к N-концу домена Fc, а LRP5-связывающий домен присоединен к C-концу домена Fc.
- 6. Молекула четырехвалентного связывающего антитела по п. 5, отличающаяся тем, что
 - (a) FZD-связывающий домен содержит два Fab, которые связывают FZD4, при этом каждый Fab присоединен к N-концу домена Fc через вариабельный домен тяжелой или легкой цепи (VH или VL) Fab, связанного с доменом CH2 домена Fc и
 - (b) LRP5-связывающий домен содержит диатело или два scFv, которые связывают LRP5, при этом диатело или два scFv присоединены к C-концу домена Fc через VL или VH диатела, или scFv, связанного с CH3 домена Fc.
- 7. Молекула четырехвалентного связывающего антитела, содержащая домен Fc или его фрагмент, содержащий константный домен тяжелой цепи 3 (CH3), N-концевой FZD4-связывающий домен, содержащий два FZD4-связывающих Fab, и C-концевой LRP5-связывающий домен, содержащий LRP5-связывающее диатело, при этом молекула четырехвалентного связывающего антитела содержит
 - (а) первый и второй мономер тяжелой цепи, при этом каждый мономер тяжелой цепи содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (i) вариабельный домен тяжелой цепи (VH), который связывает FZD4, связанный с
 - (ii) доменом 1 константной области тяжелой цепи (домен CH1), связанным с
 - (iii) доменом CH2 области Fc, связанным с

- (iv) пептидом, содержащим VH, который связывает корецептор LRP5, который связан с вариабельным доменом легкой цепи (VL), который связывает корецептор LRP5, и
- (b) первый и второй мономер легкой цепи, при этом каждый мономер легкой цепи содержит от N-конца к C-концу VL, который связывает FZD4, связанный с константным доменом легкой цепи 1 (домен CL1),

при этом первый и второй мономеры тяжелой цепи димеризуются посредством их областей Fc или их фрагментов,

при этом линкер между VH и VL, которые связывают LRP5, имеет длину, которая способствует спариванию VH и VL первого мономера тяжелой цепи с VL и VH второго мономера тяжелой цепи, тем самым образуя диатело, связывающее корецептор LRP5, а FZD-связывающие Fab образуются путем спаривания каждого мономера тяжелой цепи с мономером легкой цепи таким образом, что VH, который связывает FZD4, и CH1 каждого из мономеров тяжелой цепи, соединяются с VL, который связывает FZD4, и CL1 мономера легкой цепи, и

при этом Fab образуют FZD4-связывающий домен на N-конце домена Fc, а диатело образует домен, связывающий корецептор LRP5, на C-конце домена Fc.

- 8. Молекула четырехвалентного связывающего антитела по любому из пп. 1–7, отличающаяся тем, что LRP5-связывающее диатело представляет собой биспецифический двухвалентный LRP5-связывающий домен, который связывается с двумя эпитопами во внеклеточном домене корецептора LRP5.
- 9. Молекула четырехвалентного связывающего антитела по п. 8, отличающаяся тем, что LPR5-связывающий домен взаимодействует с эпитопами Wnt1 и Wnt3 корецептора LRP5.
- 10. Молекула четырехвалентного связывающего антитела по любому из пп. 1–9, отличающаяся тем, что FZD-связывающий домен является моноспецифическим.

- 11. Молекула четырехвалентного связывающего антитела по любому из пп. 1–10, отличающаяся тем, что
 - диатело LRP5-связывающего домена с LRP5 и содержит определяющие комплементарность области тяжелой цепи CDR-H1, CDR-H2 и CDR-H3 и определяющие комплементарность области легкой цепи CDR-L1, CDR-L2 и CDR-L3 антитела, представленные последовательностями в таблице 3 или таблице 6A.
- 12. Молекула четырехвалентного связывающего антитела по любому из пп. 1–11, отличающаяся тем, что домен Fc или его фрагмент димеризуются посредством конфигурации «выступ-во-впадину» областей Fc или их фрагментов.
- 13. Молекула четырехвалентного связывающего антитела по п. 12, отличающаяся тем, что область Fc первого мономера тяжелой цепи содержит мутации T366S, L368A и Y407V, а область Fc второго мономера тяжелой цепи содержит мутацию T366W в соответствии с нумерацией EU.
- 14. Молекула четырехвалентного связывающего антитела по п. 13, отличающаяся тем, что область Fc первого мономера тяжелой цепи дополнительно содержит мутации S354I и E357L, а область Fc второго мономера тяжелой цепи дополнительно содержит мутации Q347M, Y349F, T350D и L368M в соответствии с нумерацией EU.
- 15. Молекула четырехвалентного связывающего антитела по п. 13, отличающаяся тем, что между областью Fc первого мономера тяжелой цепи и второго мономера тяжелой цепи введена дополнительная дисульфидная связь, предпочтительно при этом первый мономер тяжелой цепи содержит мутацию Y349C, а второй мономер тяжелой цепи содержит мутацию S354C в соответствии с нумерацией EU.
- 16. Молекула четырехвалентного связывающего антитела по любому из пп. 1–15, отличающаяся тем, что в домене Fc отсутствует одна или более эффекторных функций.

- 17. Молекула четырехвалентного связывающего антитела по п. 16, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций, вариантов N297G (NG) и/или D265A (DA) в соответствии с нумерацией EU.
- 18. Молекула четырехвалентного связывающего антитела по п. 16, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций L234A, L235A и/или P331S в соответствии с нумерацией EU.
- 19. Молекула четырехвалентного связывающего антитела по п. 18, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций L234A и L235A (LALA).
- 20. Молекула четырехвалентного связывающего антитела по п. 19, отличающаяся тем, что области Fc содержат мутации, которые изменяют их эффекторную функцию за счет аминокислотных мутаций L234A, L235A и P331S (LALAPS).
- 21. Молекула четырехвалентного связывающего антитела по любому из пп. 1–20, отличающаяся тем, что каждый из LRP5-связывающего домена и FZD-связывающего домена присоединены к домену Fc с помощью линкера.
- 22. Молекула четырехвалентного связывающего антитела по п. 21, отличающаяся тем, что линкер содержит от 1 до 100, от 1 до 50, 1–30, 1–25, 1–10, 1–6 аминокислот, 1–5 аминокислот или 2–4 аминокислоты.
- 23. Молекула четырехвалентного связывающего антитела по п. 21 или 22, отличающаяся тем, что диатела, образующие домен, связывающий корецептор LRP5, были слиты с доменом Fc через линкер GGGGGGGSEPKSSDKTHT (SEQ ID NO: 892).

- 25. Молекула четырехвалентного связывающего антитела по любому из пп. 1–24, отличающаяся тем, что VH, которая связывает корецептор LRP5, связана с VL, которая связывает корецептор LRP5, через короткий линкер GGGGS (SEQ ID NO: 886).
- 26. Молекула четырехвалентного связывающего антитела по любому из пп. 1–25, отличающаяся тем, что FZD-связывающий домен содержит два Fab, которые связывают FZD4.
- 27. Молекула четырехвалентного связывающего антитела по п. 26, отличающаяся тем, что FZD-связывающий Fab содержит определяющие комплементарность области легкой цепи CDR-L1, CDR-L2 и CDR-L3 и CDR тяжелой цепи, CDR-H1, CDR-H2 и CDR-H3 антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6.
- 28. Молекула четырехвалентного связывающего антитела по любому из пп. 1–4 и 8–27, содержащая,
 - (a) димер первого и второго мономера тяжелой цепи, при этом каждый мономер содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (1) пептид, содержащий вариабельный домен тяжелой цепи (VH), который связывает LRP5, и вариабельный домен легкой цепи (VL), который связывает LRP5,
 - (2) область Fc или ее фрагмент, содержащие СН3,
 - (3) VH, который связывает FZD4, и
 - (4) константный домен тяжелой цепи 1 (СН1),

при этом

- (5) VH, который связывает LRP5, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 3 или таблице 6, и
- (b) VL, который связывает LRP5, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 3 или таблице 6,
- (c) VH, который связывает FZD4, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

И

(d) третий и четвертый мономер легкой цепи, каждый из которых содержит VL, который связывает FZD4, и константный домен легкой цепи 1 (CL1), при этом VL, который связывает FZD4, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

при этом первый и второй мономеры тяжелой цепи димеризуются через свои области Fc, а VL и VH, которые связывают LRP5, первого мономера образуют пару с VH и VL, которые связывают LRP5, второго мономера, образуя двухвалентное диатело, которое связывает LRP5, и

CL1 и VL, которые связывают FZD4, третьего и четвертого мономеров легкой цепи, спариваются с CH1 и VH, которые связывают FZD4, первого и второго мономеров тяжелой цепи, образуя два Fab, которые связывают FZD4, при этом диатело образует N-концевый двухвалентный LRP5-связывающий домен и два Fab образуют C-концевой двухвалентный FZD4-связывающий домен.

29. Молекула четырехвалентного связывающего антитела по любому из пп. 5-7, содержащая,

- (a) димер первого и второго мономера тяжелой цепи, при этом каждый мономер содержит одноцепочечный полипептид, содержащий от N-конца к C-концу:
 - (1) VH, который связывает FZD4
 - (2) область Fc или ее фрагмент, содержащие СН3,
 - (3), пептид, содержащий VH, который связывает LRP5, и VL, который связывает LRP5, и
 - (4) константный домен тяжелой цепи 1 (СН1),

при этом

- (5) VH, который связывает LRP5, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 3 или таблице 6, и
- (b) VL, который связывает LRP5, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 3 или таблице 6,
- (c) VH, который связывает FZD4, содержит CDR тяжелой цепи (CDR-H1, CDR-H2 и CDR-H3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

И

(d) третий и четвертый мономер легкой цепи, каждый из которых содержит от N-конца к C-концу VL, который связывает FZD4, и константный домен легкой цепи 1 (CL1), при этом VL, который связывает FZD4, содержит CDR легкой цепи (CDR-L1, CDR-L2 и CDR-L3) антитела, представленные последовательностями в таблице 1, таблице 2 или таблице 6,

при этом первый и второй мономеры тяжелой цепи димеризуются через свои области Fc, а VL и VH, которые связывают LRP5, первого мономера образуют пару с VH и VL, которые связывают LRP5, второго мономера, образуя двухвалентное диатело, которое связывает LRP5, и

CL1 и VL, которые связывают FZD4, третьего и четвертого мономеров легкой цепи, спариваются с CH1 и VH, которые связывают FZD4, первого и второго мономеров тяжелой цепи, образуя два Fab, которые связывают FZD4, при этом диатело образует С-концевый двухвалентный LRP5-связывающий домен и два Fab образуют N-концевой двухвалентный FZD4-связывающий домен.

30. Молекула четырех валентного связывающего антитела по п. 28 или п. 29, отличающаяся тем, что LRP5-связывающее диатело является биспецифическим, при этом

CDR VH, которые связывают LRP5 первого мономера тяжелой цепи, и CDR VH, которые связывают LRP5 второго мономера тяжелой цепи, не являются идентичными, и

CDR VL, которые связывают LRP5 первого мономера тяжелой цепи, и CDR VL, которые связывают LRP5 второго мономера тяжелой цепи, не являются идентичными.

- 31. Молекула четырехвалентного связывающего антитела по п. 30, отличающаяся тем, что в первом мономере тяжелой цепи
 - (a) CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, FSSSSI (SEQ ID NO: 528) и SISSSYGYTY (SEQ ID NO: 553), или CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, LSYYYM (SEQ ID NO: 527) и SIYSSYGYTY (SEQ ID NO: 552), и
 - (b) CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASDLYS (SEQ ID NO: 491) и YAGAGLI (SEQ ID NO: 510), или CDR-L2 и CDR-

L3 из VL, который связывает LRP5, включают, соответственно, SASSLYS (SEQ ID NO: 2) и SSYSLI (SEQ ID NO: 130), и

во втором мономере тяжелой цепи

- (c) CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, FTAYAM (SEQ ID NO: 536) и SIYPSGGYTA (SEQ ID NO: 566), или CDR-H1 и CDR-H2 из VH, который связывает LRP5, включают, соответственно, FSSSI (SEQ ID NO: 528) и SISSSYGYTY (SEQ ID NO: 553) и
- (d) CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASSLYS (SEQ ID NO: 2) и YWAYYSPI (SEQ ID NO: 493), или CDR-L2 и CDR-L3 из VL, который связывает LRP5, включают, соответственно, SASSLYS (SEQ ID NO: 2) и ASYAPI (SEQ ID NO: 492).
- 32. Молекула четырехвалентного связывающего антитела по любому из пп. 28–31, отличающаяся тем, что в первом и втором мономерах тяжелой цепи CDR-H1 и CDR-H2 из VH, который связывает FZD4, включают, соответственно, LSSYSM (SEQ ID NO: 24) и YISSYYGYTY (SEQ ID NO: 51), или CDR-H1 и CDR-H2 из VH, который связывает FZD4, включают, соответственно, LSSYSM (SEQ ID NO: 24) и YISSYDSITD (SEQ ID NO: 61).
- 33. Молекула четырехвалентного связывающего антитела по любому из пп. 28–32, отличающаяся тем, что в третьем и четвертом мономерах легкой цепи CDR-L1 и CDR-L2 из VL, который связывает FZD4, включают, соответственно, SVSSA (SEQ ID NO: 1) и SASSLYS (SEQ ID NO: 2), а CDR-L3 из VL, который связывает FZD4, включают WYYAPI (SEQ ID NO: 3) или WYNAPI (SEQ ID NO: 12).
- 34. Молекула четырехвалентного связывающего антитела по любому из пп. 28, 29, 30, 32 и 33, содержащая двухвалентный биспецифический LRP5-связывающий домен, причем
 - (а) в первом мономере тяжелой цепи,

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 и CDR-H3 SEQ ID NO: 586, а VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 491 и CDR-L3 SEQ ID NO: 510 из ANT16-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 527, CDR-H2 SEQ ID NO: 552 CDR-H3 SEQ ID NO: 584, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 130 из ANT18-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 527, CDR-H2 SEQ ID NO: 552 CDR-H3 SEQ ID NO: 584, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 491 CDR-L3 SEQ ID NO: 510 из ANT20-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 586, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 130 из ANT21-впадина из таблица 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 527, CDR-H2 SEQ ID NO: 552 CDR-H3 SEQ ID NO: 584, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 130 из ANT36-впадина из таблицы 6A, или

VH, который связывает LRP-5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 586, и VL, который связывает LRP-5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 491 CDR-L3 SEQ ID NO: 510 из ANT39-впадина из таблицы 6A,

И

VH, который связывает FZD4, содержит CDR VH r FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT16-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT18-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT20-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 из ANT21-впадина из таблица 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 из ANT36-впадина из таблицы 6В, или

VH, который связывает FZD4, содержит CDR VH к FZD4 CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 из ANT39-впадина из таблицы 6В,

при этом CDR-L1 и CDR-L2 FZD представляют собой, соответственно, SVSSA (SEQ ID NO: 1) и SASSLYS (SEQ ID NO: 2), и

(b) во втором мономере

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 536, CDR-H2 SEQ ID NO: 566 CDR-H3 SEQ ID NO: 603, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 493 из ANT16-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 585, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 492 из ANT18-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 536, CDR-H2 SEQ ID NO: 566 CDR-H3 SEQ ID NO: 603, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 492 из ANT20-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 CDR-H3 SEQ ID NO: 585, и VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 CDR-L3 SEQ ID NO: 493 из ANT21-выступ из таблицы 6A, или

VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 528, CDR-H2 SEQ ID NO: 553 и CDR-H3 SEQ ID NO: 585, а VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 и CDR-L3 SEQ ID NO: 492 из ANT36-выступ из таблицы 6A, или VH, который связывает LRP5, содержит CDR-H1 SEQ ID NO: 536, CDR-H2 SEQ ID NO: 566 и CDR-H3 SEQ ID NO: 603, а VL, который связывает LRP5, содержит CDR-L1 SEQ ID NO: 1, CDR-L2 SEQ ID NO: 2 и CDR-L3 SEQ ID NO: 493 из ANT39-выступ из таблицы 6A,

и VH, который связывает FZD4, содержит,

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT16-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT18-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT20-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 51 и CDR-H3 SEQ ID NO: 79 Fab к FZD4 из ANT21-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 Fab к FZD4 из ANT36-выступ из таблицы 6B, или

CDR-H1 SEQ ID NO: 24, CDR-H2 SEQ ID NO: 61 и CDR-H3 SEQ ID NO: 90 Fab к FZD4 из ANT39-выступ из таблицы 6B, или

И

(с) в каждом из третьего и четвертого мономеров

VL содержат CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT16-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT18-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT20-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 3 Fab к FZD4 из ANT21-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 12 Fab к FZD4 из ANT36-выступ из таблицы 6B, или

VL содержит CDR-L1, CDR-L2 и CDR-L3 SEQ ID NO: 12 Fab к FZD4 из ANT39-выступ из таблицы 6B, или

при этом в Fab к FZD4 CDR-L1 включает SVSSA (SEQ ID NO: 1), a CDR-L2 включает SASSLYS (SEQ ID NO: 2).

- 35. Молекула четырехвалентного связывающего антитела по любому из пп. 1–34, отличающаяся тем, что молекула четырехвалентного связывающего антитела не содержит FZD-связывающий домен, содержащий CDR FZD-связывающего антитела 5044, в сочетании с доменом, связывающим корецептор Wnt, содержащим CDR LRP6-связывающее антитело 2542 и/или антитело 2539.
- 36. Молекула четырехвалентного связывающего антитела по любому из пп. 1–35, отличающаяся тем, что молекула четырехвалентного связывающего антитела содержит

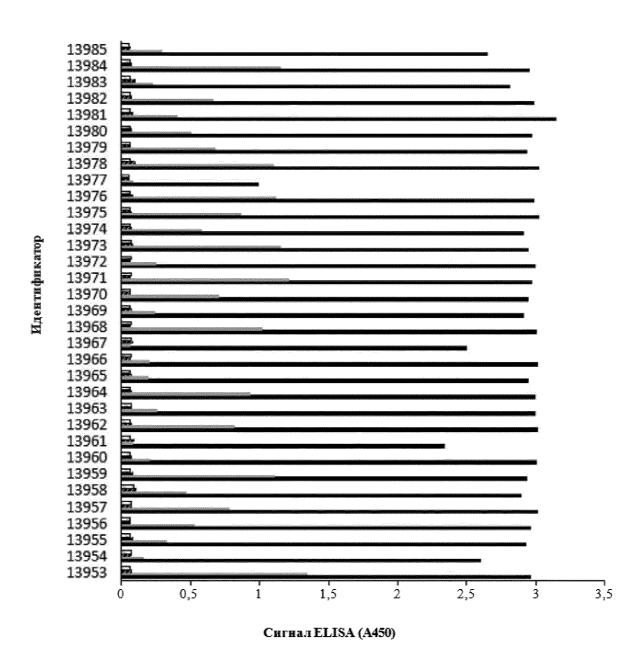
- (а) первую тяжелую цепь, содержащую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 898, вторую тяжелую цепь, содержащую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 897, и легкую цепь, содержащую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 899, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT16; или
- (b) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 901, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 900, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 902, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT 18; или
- (c) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 904, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 903, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 902, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT20; или
- (d) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 906, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 905, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 902, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT21; или

- (е) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 908, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 907, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909, при этом аминокислотная последовательность CDR представляет собой аминокислотную последовательность CDR ANT39; или
- (f) первую тяжелую цепь, содержащую аминокислотную последовательность конструкции тяжелой цепи с впадинами, выбранную из группы, состоящей из SEQ ID NO: 921; SEQ ID NO: 922; SEQ ID NO: 923; SEQ ID NO: 924; SEQ ID NO: 925; SEQ ID NO: 926; SEQ ID NO: 927; и SEQ ID NO: 928; вторую тяжелую цепь, содержащую аминокислотную последовательность конструкции тяжелой цепи с выступами, выбранную из группы, состоящей из SEQ ID NO: 929; SEQ ID NO: 930; SEQ ID NO: 931; SEQ ID NO: 932; SEQ ID NO: 933; SEQ ID NO: 934; SEQ ID NO: 935; и SEQ ID NO: 936; и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи, выбранную из группы, состоящей из SEQ ID NO: 909 и SEQ ID NO: 952.
- 37. Молекула четырехвалентного связывающего антитела по любому из пп. 1–35, отличающаяся тем, что молекула четырехвалентного связывающего антитела содержит
 - (а) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 921 или SEQ ID NO: 925, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 929 или SEQ ID NO: 933, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
 - b) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 922 или SEQ ID NO: 926, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с

выступами SEQ ID NO: 930 или SEQ ID NO: 934, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или

- с) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 923 или SEQ ID NO: 927, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 931 или SEQ ID NO: 935, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
- d) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 924 или SEQ ID NO: 928, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 932 или SEQ ID NO: 936, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
- е) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 908 или SEQ ID NO: 940, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 944 или SEQ ID NO: 948, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
- f) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 937 или SEQ ID NO: 941, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 945 или SEQ ID NO: 949, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или

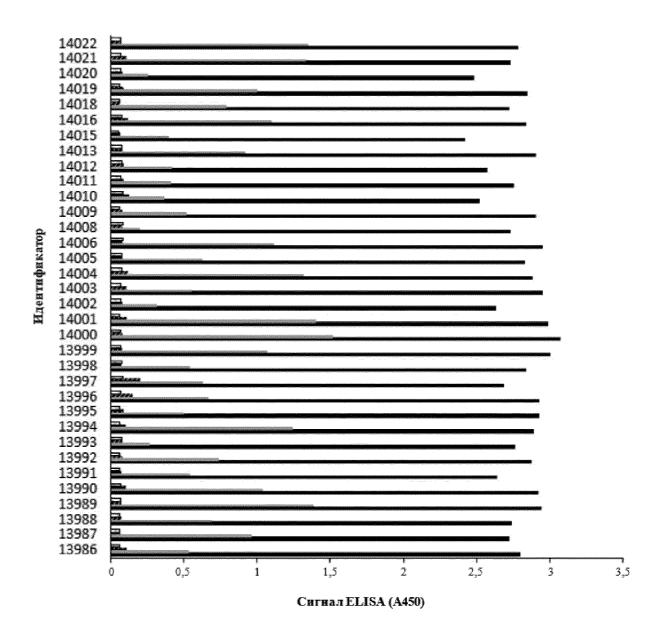
- g) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 938 или SEQ ID NO: 942, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 946 или SEQ ID NO: 950, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952; или
- h) первую тяжелую цепь, включающую аминокислотную последовательность конструкции тяжелой цепи с впадинами SEQ ID NO: 939 или SEQ ID NO: 943, вторую тяжелую цепь, включающую аминокислотную конструкцию тяжелой цепи с выступами SEQ ID NO: 947 или SEQ ID NO: 951, и легкую цепь, включающую аминокислотную последовательность конструкции легкой цепи SEQ ID NO: 909 или SEQ ID NO: 952.
- 38. Фармацевтическая композиция, содержащая молекулу четырехвалентного связывающего антитела по любому из пп. 1–37 и фармацевтически приемлемый носитель.
- 39. Способ стимулирования барьерных функций эндотелиальных клеток в ткани, включающий введение в ткань эффективного количества молекулы четырехвалентного связывающего антитела по любому из пп. 1–37.
- 40. Способ по п. 39, отличающийся тем, что ткань представляет собой ткань головного мозга, почки или глаза.
- 41. Способ по п. 40, отличающийся тем, что молекулу четырехвалентного связывающего антитела вводят в ткань глаза путем интравитреальной инъекции.
- 42. Способ повышения барьерных функций эндотелиальных клеток сетчатки или головного мозга, снижения проницаемости эндотелиальных клеток, улучшения или восстановления поддержания гематоэнцефалического барьера и гематоэнцефалического барьера у субъекта, нуждающегося в этом, включающий приведение в контакт эндотелиальной клетки, содержащей рецептор FZD4 и LRP5, у нуждающегося в этом субъекта с


эффективным количеством молекулы четырехвалентного связывающего антитела по любому из пп. 1–37.

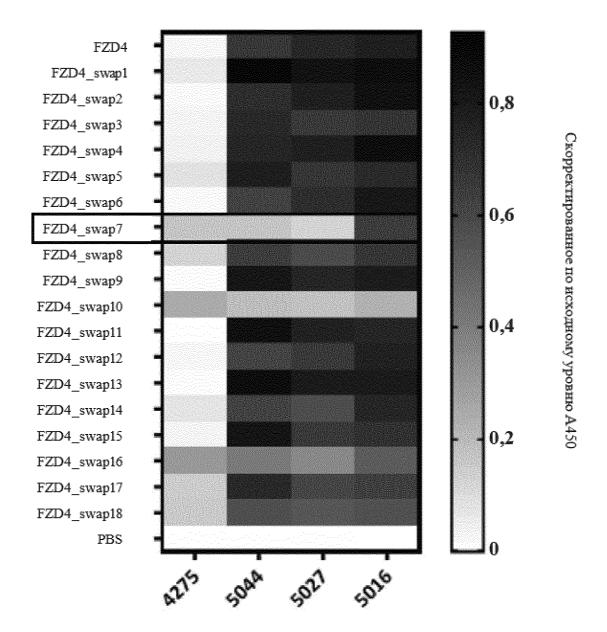
- 43. Способ по п. 42, отличающийся тем, что молекулу четырехвалентного связывающего антитела вводят субъекту, нуждающемуся в этом, путем инъекции, местного нанесения или перорального приема.
- 44. Способ по п. 42, отличающийся тем, что молекулу четырехвалентного связывающего антитела вводят подкожно, внутривенно, внутрибрюшинно, интратекально, интравитреально или интраокулярно.
- 45. Молекула четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтическая композиция по п. 38 для применения в качестве лекарственного препарата.
- 46. Молекула четырехвалентного связывающего антитела или фармацевтическая композиция по п. 45 для применения в лечении или предупреждении развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или которое характеризуется снижением барьерной функции эндотелиальных клеток и/или диапедезом.
- 47. Способ лечения или предупреждения развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или снижением барьерной функции эндотелиальных клеток и/или диапедезом, включающий введение нуждающемуся в этом индивиду терапевтически эффективного количества молекулы четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтической композиции по п. 38.
- 48. Применение молекулы четырехвалентного связывающего антитела по пп. 1–37 или фармацевтической композиции по п. 38 для производства лекарственного препарата для лечения или предупреждения развития нарушения или патологического состояния, которое характеризуется дефектом ангиогенеза сетчатки или головного мозга и/или снижением барьерной функции эндотелиальных клеток и/или диапедезом.

- 49. Молекула четырехвалентного связывающего антитела или фармацевтическая композиция для применения, способ или применение по любому из пп. 46–48, отличающиеся тем, что нарушение выбрано из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, макулярной дегенерации, диабетического отека желтого пятна, витреоретинопатий у детей, болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии.
- 50. Молекула четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтическая композиция по п. 37 для применения в лечении или предупреждении развития глазного нарушения, например, нарушения в сетчатке или желтом пятне, например, выбранного из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, мякулярной дегенерации, диабетического отека желтого пятна и витреоретинопатий у детей, или в лечении или предупреждении развития нарушения, выбранного из болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии.
- 51. Способ лечения или предупреждения развития глазного нарушения, например, нарушения в сетчатке или желтом пятне, например, выбранного из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, макулярной дегенерации, диабетического отека желтого пятна и витреоретинопатий у детей, или в лечении или предупреждении развития заболевания, выбранного из болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии, включающих введение нуждающемуся в этом индивиду терапевтически эффективного количества молекулы четырехвалентного связывающего антитела по любому из пп. 1–37 или фармацевтической композиции по п. 38.
- 52. Применение молекулы четырехвалентного связывающего антитела по пп. 1–36 или фармацевтической композиции по п. 38 для производства лекарственного препарата для лечения или предупреждения развития глазного нарушения, например, нарушения в сетчатке или желтом пятне, например, выбранного из диабетической ретинопатии, ретинопатии недоношенных, болезни Коутса, FEVR, болезни Норри, макулярной дегенерации, диабетического отека желтого пятна и витреоретинопатий у детей, или в

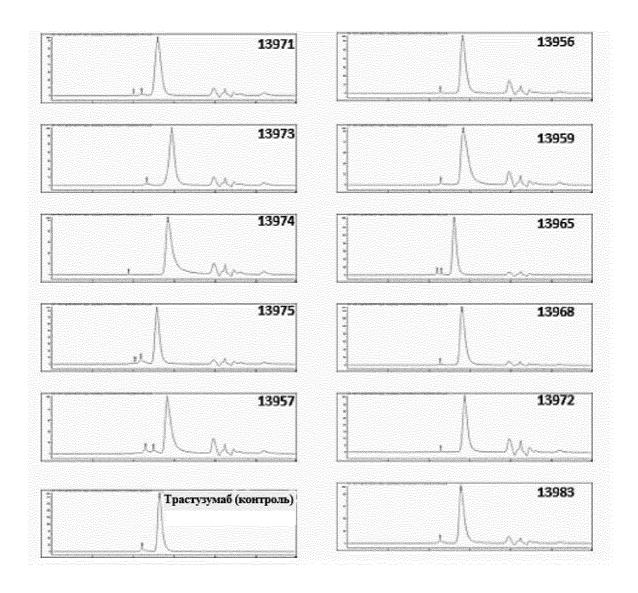
лечении или предупреждении нарушения, выбранного из болезни Альцгеймера, эпилепсии, рассеянного склероза, инсульта и ишемии.


- 53. Молекула нуклеиновой кислоты, кодирующая полипептид молекул четырехвалентного связывающего антитела по любому из пп. 1–37.
- 54. Вектор, содержащий молекулу нуклеиновой кислоты по п. 53.
- 55. Вектор по п. 54, причем указанный вектор представляет собой вирус животного, такой как вирус, выбранный из вируса обратной транскриптазы (включая лентивирус), аденовируса, аденоассоциированного вируса, вируса герпеса, вируса ветряной оспы, бакуловируса, вируса папилломы и паповавируса.
- 56. Клетка-хозяин, экспрессирующая вектор по п. 54 или п. 55.
- 57. Фармацевтическая композиция, содержащая молекулу нуклеиновой кислоты по п. 53 или вектор по п. 54 или п. 55, и фармацевтично приемлемый носитель, разбавитель или эксципиент.

☐ BSA

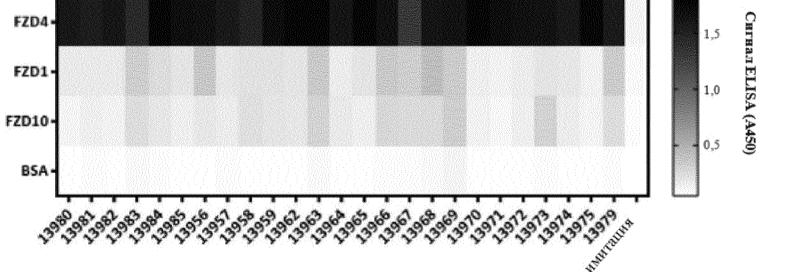

Fc Fzd4+блокирующее Aт. Fzd4

ФИГ. 1А

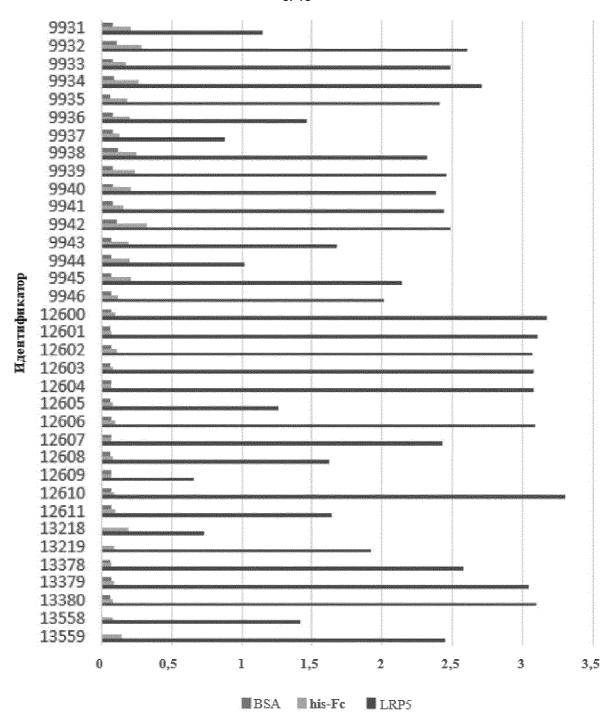


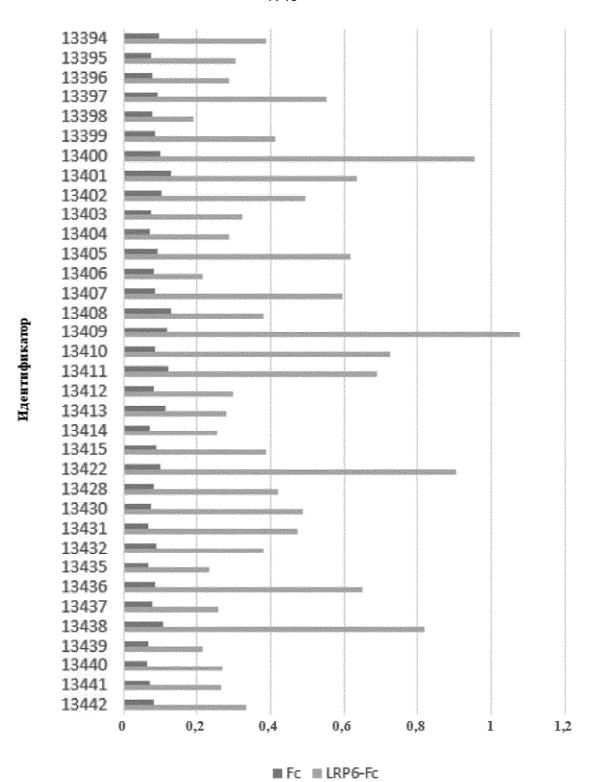
☐ BSA Fc Fzd4+блокирующее Aт. Fzd4

ФИГ. 1В

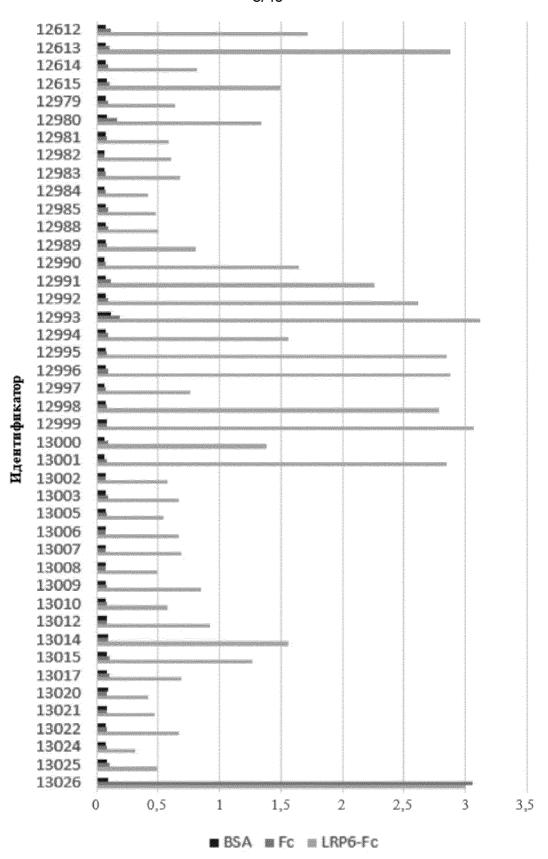


ФИГ. 2

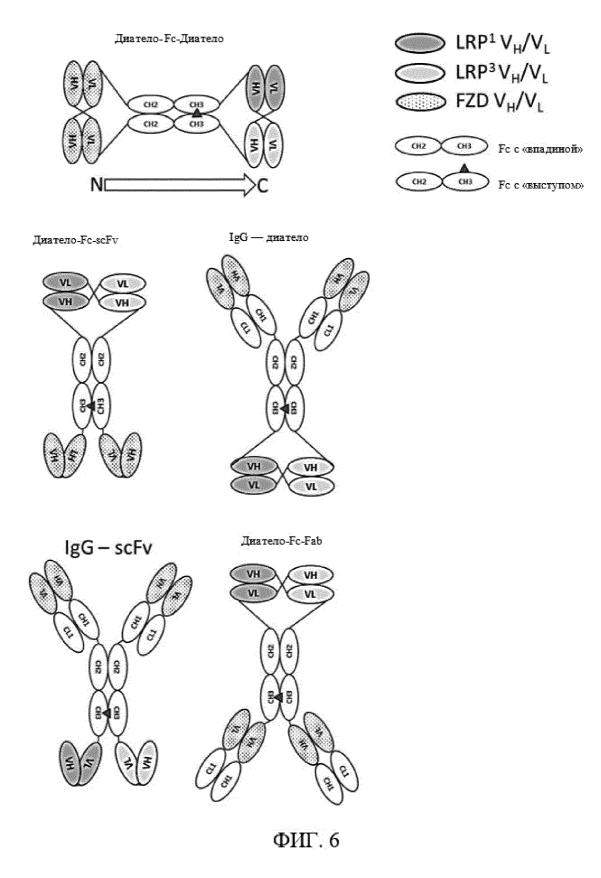

ФИГ. ЗА


ФИГ. 3В

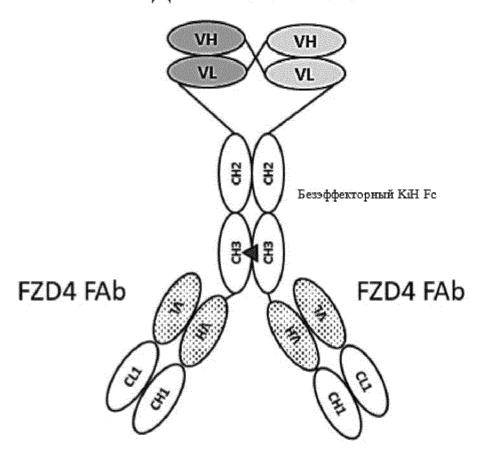
Сигнал ELISA (A450)


ФИГ. 4

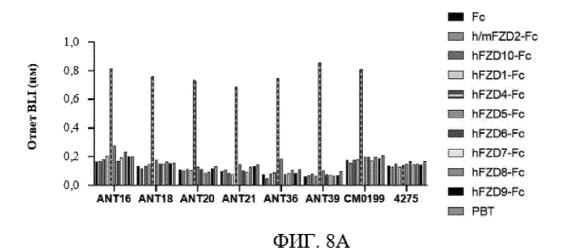
Сигнал ELISA (A450)

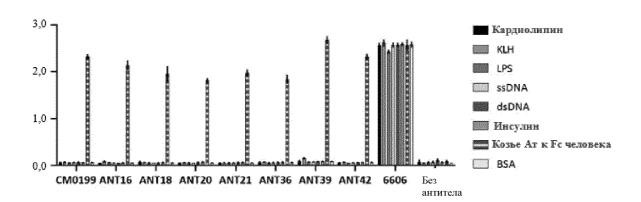

ФИГ. 5А

8/40

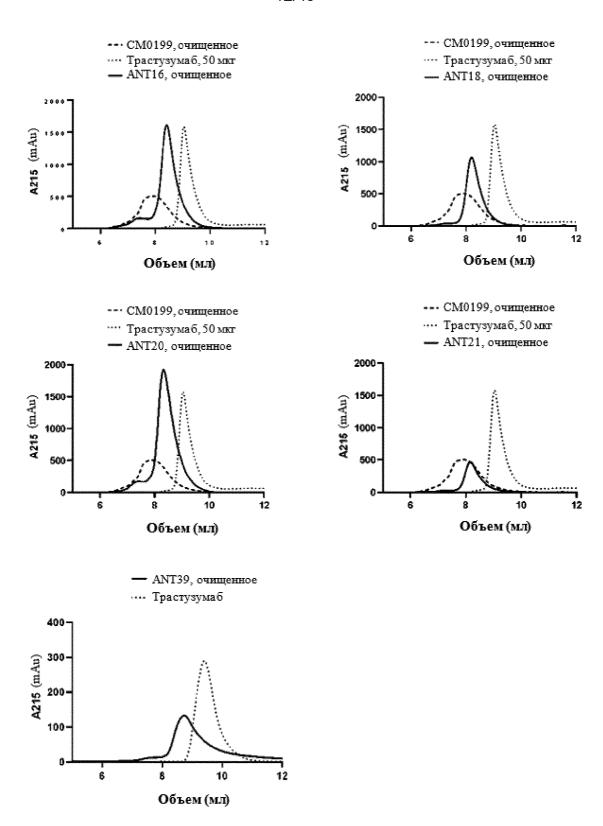


Сигнал ELISA (A450)

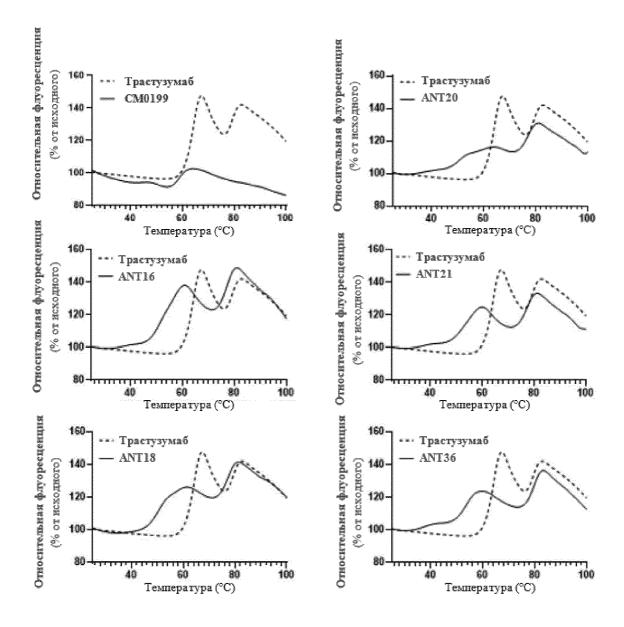

ФИГ. 5В

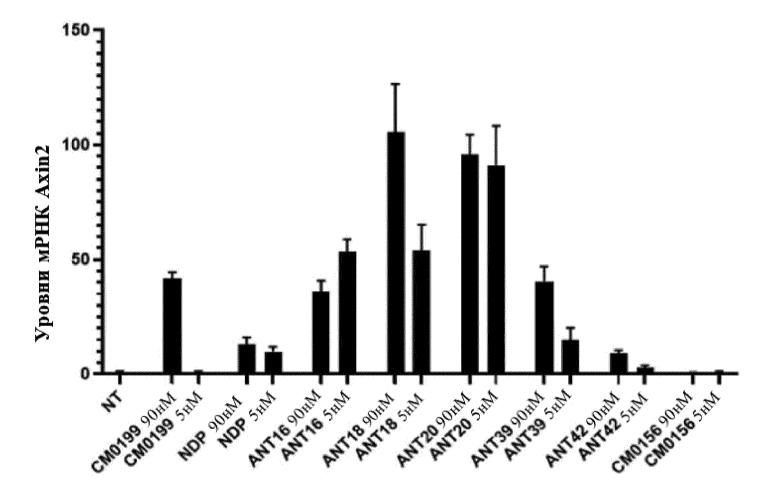


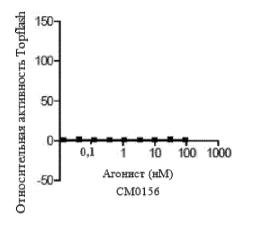
Диатело к LRP5/6

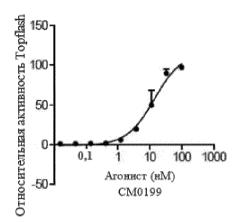


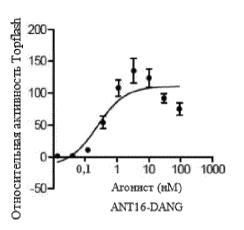
ФИГ. 7

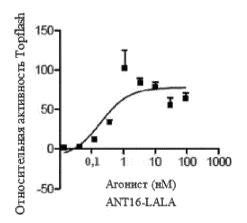


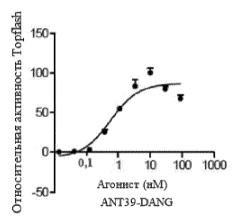

ФИГ. 8В

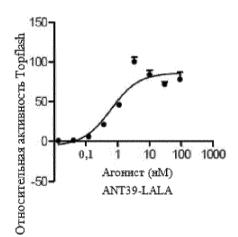

ФИГ. 9А

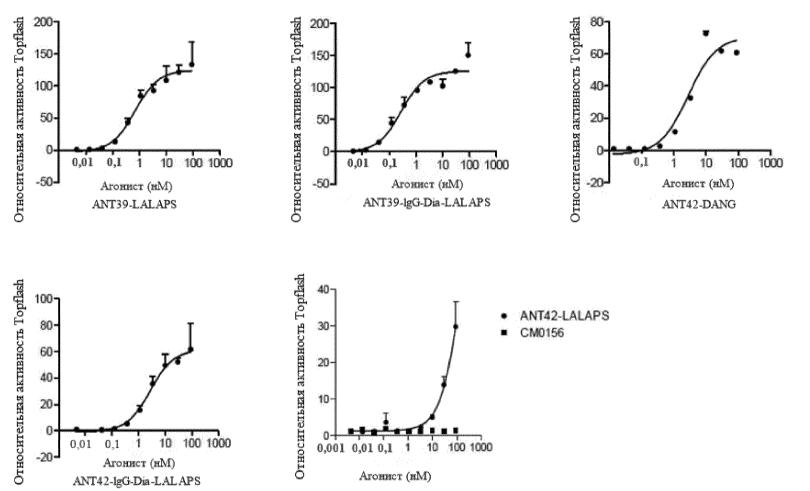


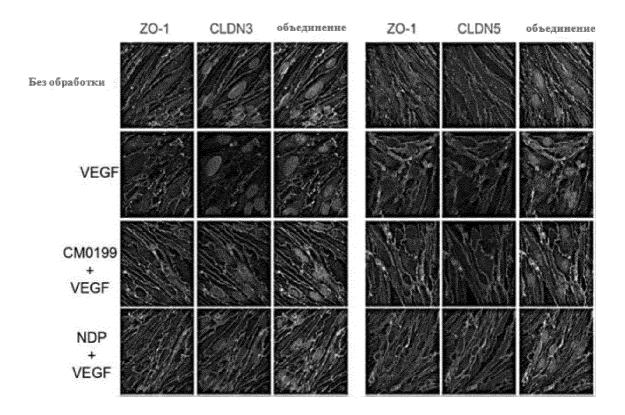

ФИГ. 9В

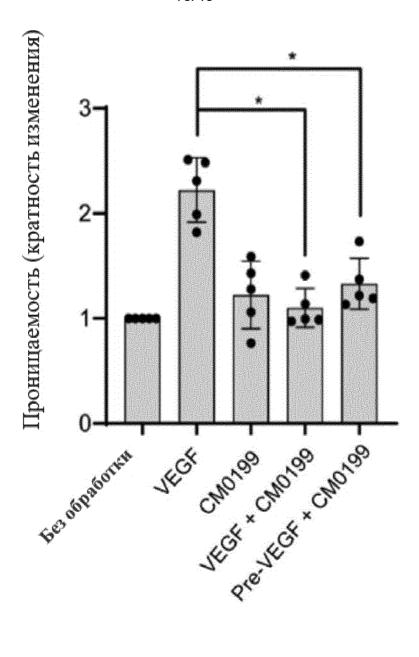


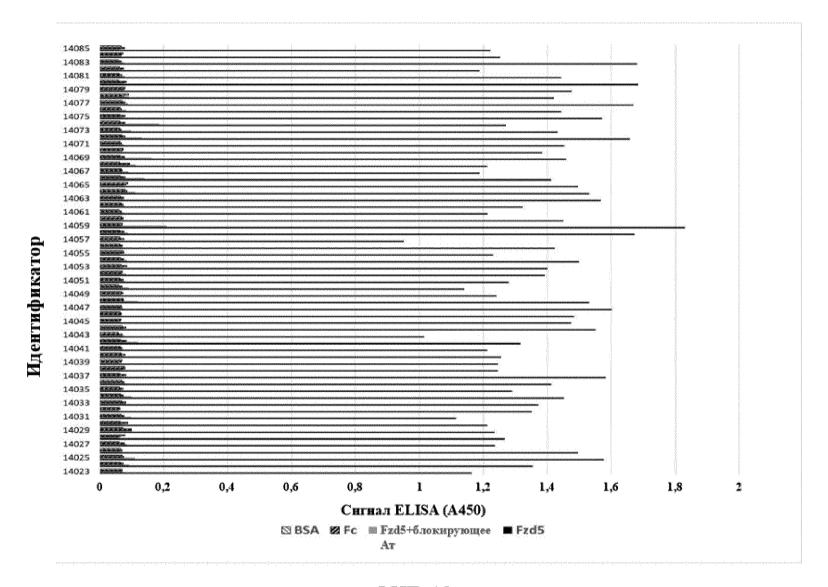

ФИГ. 10

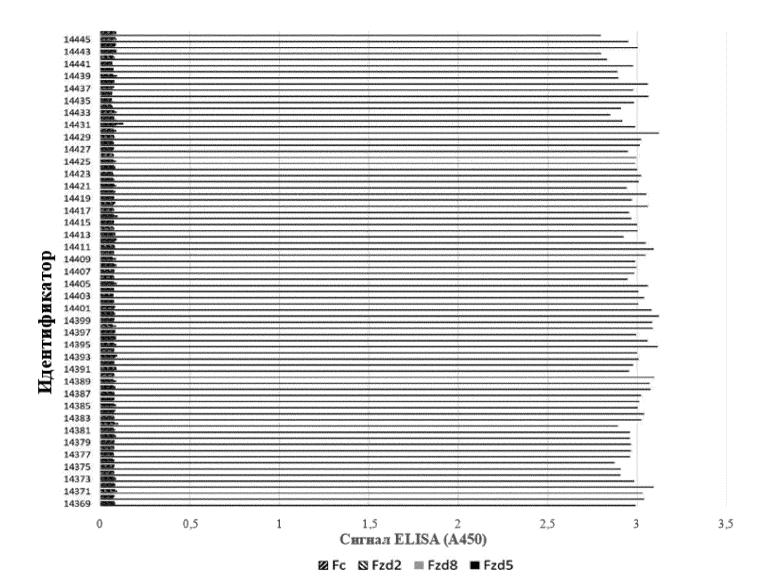




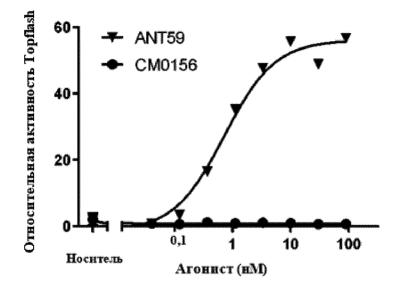


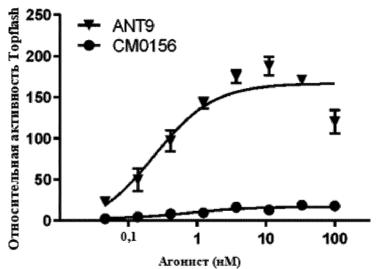

ФИГ. 10, продолжение

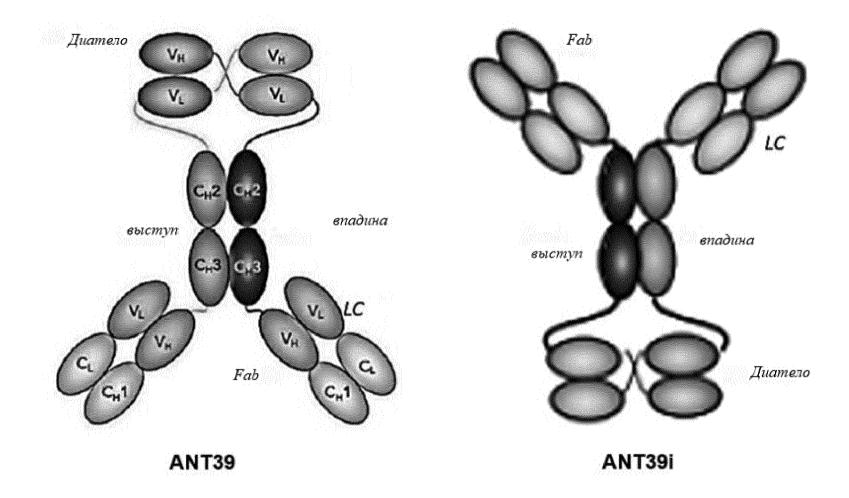

ФИГ. 10, продолжение


ФИГ. 11А

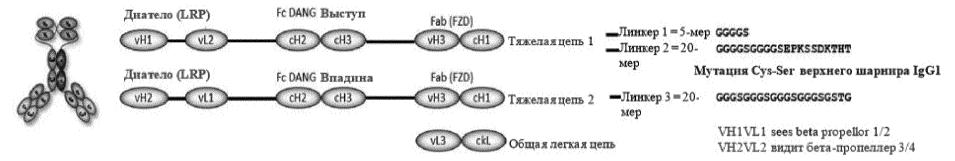
ФИГ. 11В

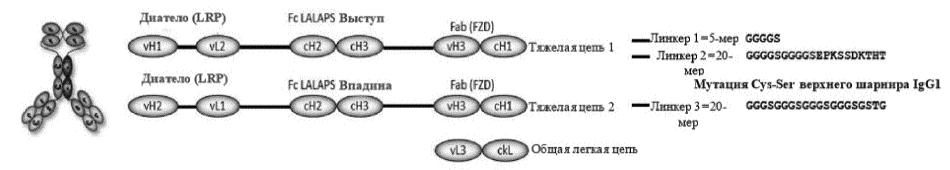



ФИГ. 12

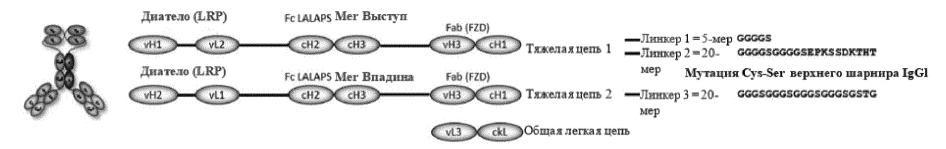


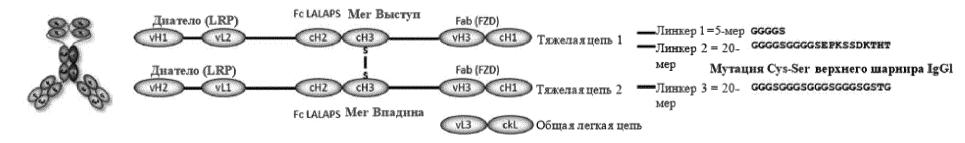
ФИГ. 13

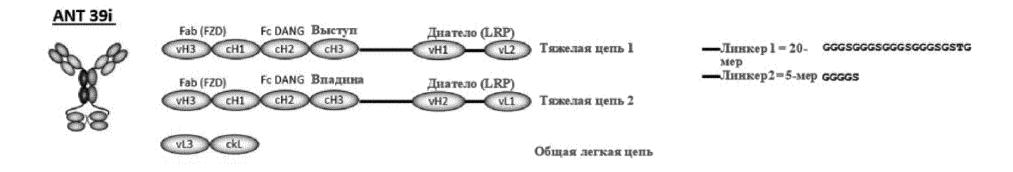


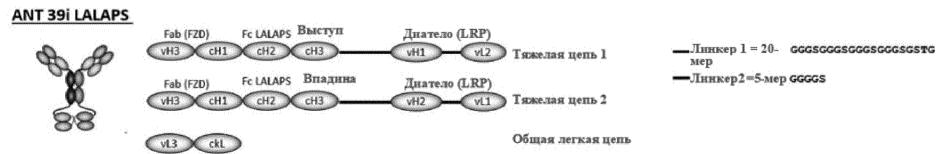


ФИГ. 15

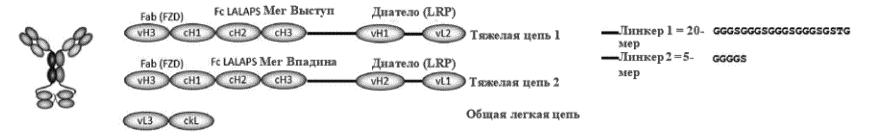

ANT 39

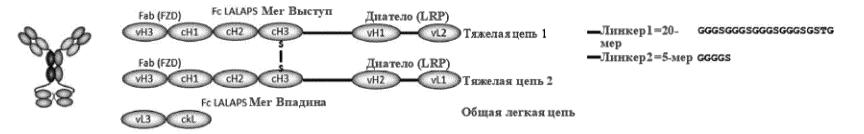

ANT 39 LALAPS


ANT 39 LALAPS Merchant

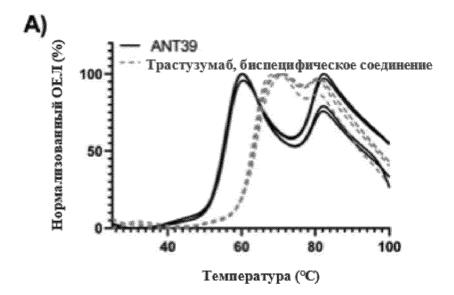


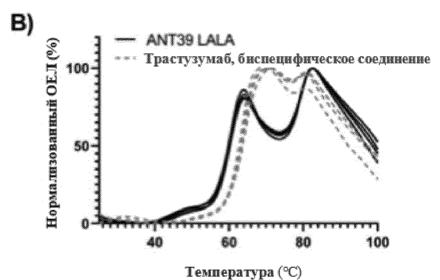
ANT 39 LALAPS Merchant S-S

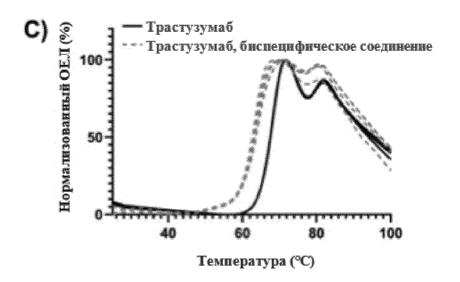

ФИГ. 16А, продолжение

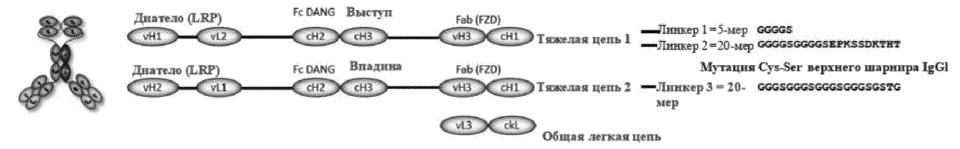


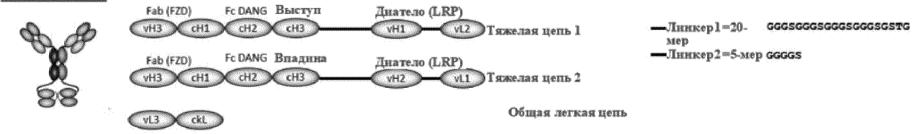
ФИГ. 16В

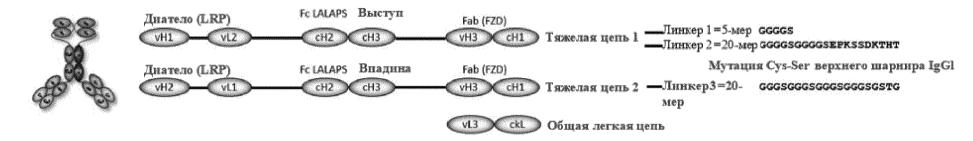

ANT 39i LALAPS Merchant

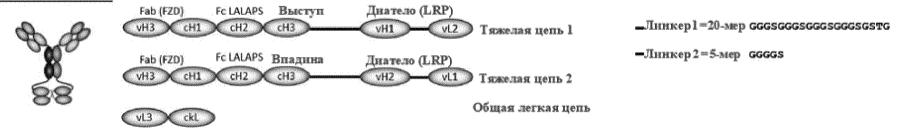


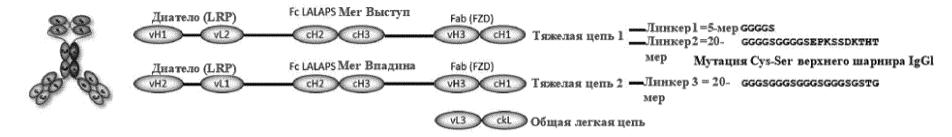

ANT 39i LALAPS Merchant S-S

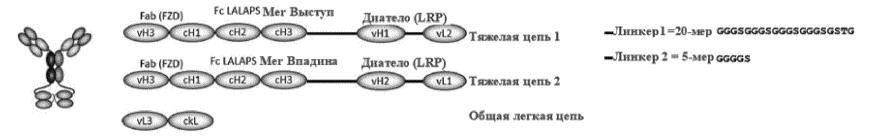

ФИГ. 16В, продолжение

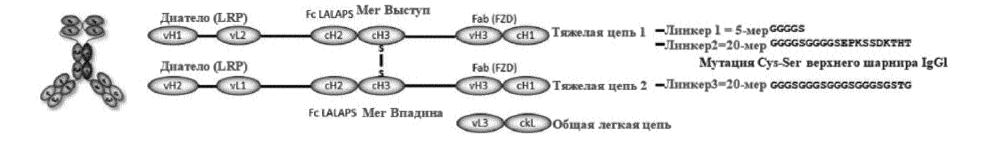


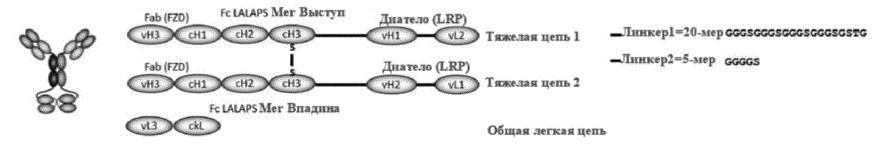

ANT 42 DANG

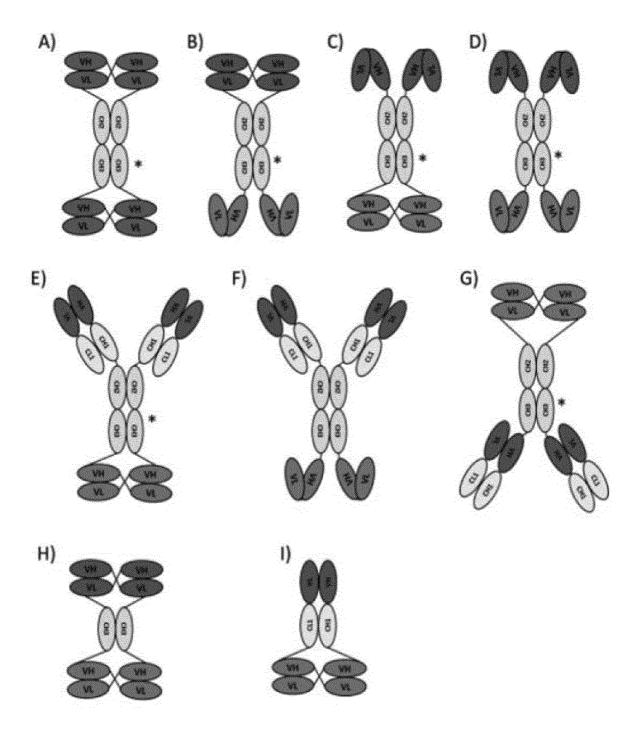

ANT 42i DANG


ANT 42 LALAPS

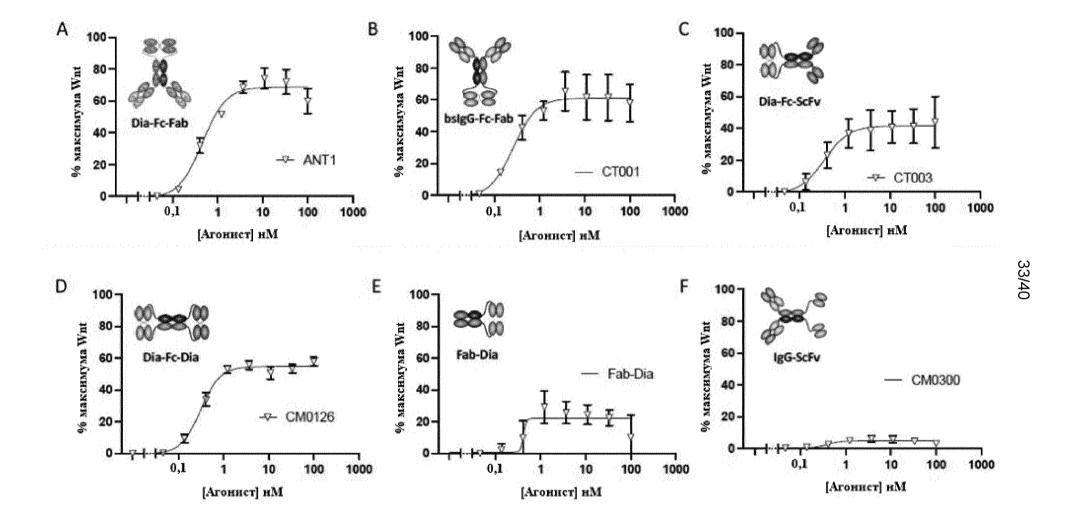

ANT 42i LALAPS


ANT 42 LALAPS Merchant

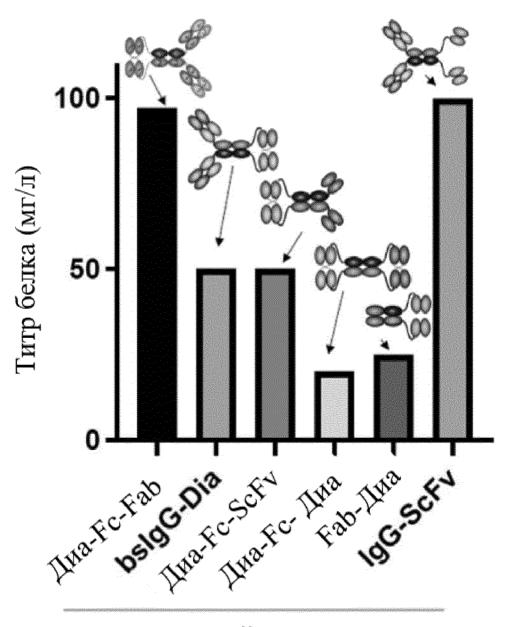

ANT 42i LALAPS Merchant



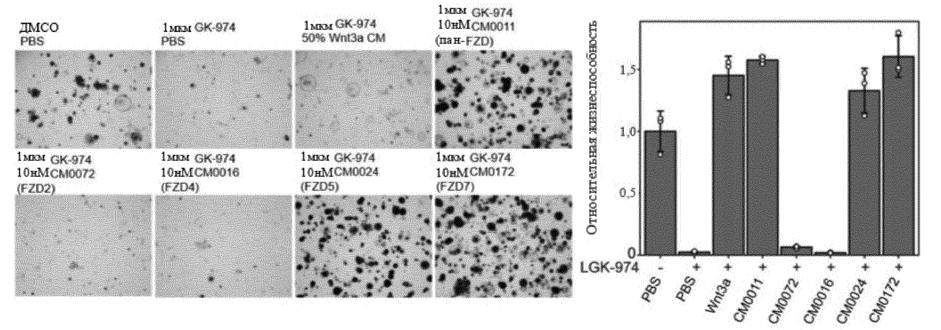
ANT 42 LALAPS Merchant S-S



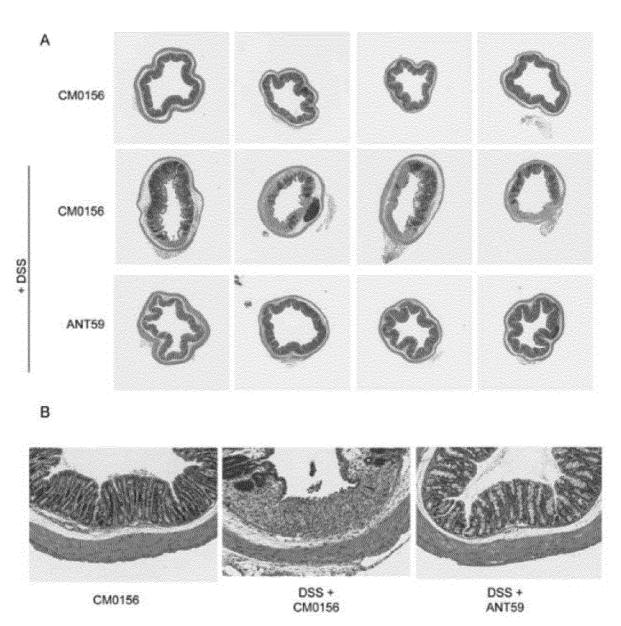
ANT 42i LALAPS Merchant S-S


ФИГ. 19

ФИГ. 20

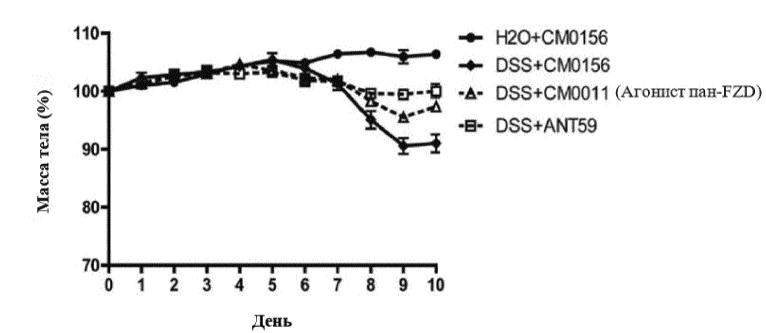

#	Формат		Экспрессия [Мономер] (мг/л)*	ЕС50 (нМ)	Альтернативные названия/альтернативные варианты названий
1	Диа-Fc-Fab	**	97	0,45	ANT#, Ant#, ANT #, Ant #, Диатело-Fc-Fab, ANT#LALAPS, ANT# LALAPS, ANT# LALALPS Merchant, ANT# LALALPS Merchant_S:S, ANT#LALA, ANT# LALA, ANT#DANG, ANT# DANG,
2	bsIgG-Диа		50	0,26	ANT#i, Ant#i, IgG-Диатело, IgG-Диа, bs/gG-Диа, CT#, CM#, ANT#iLALAPS, ANT#i LALAPS, ANT#i LALALPS Merchant, ANT#i LALALPS Merchant_S:S
3	Диа-Fc-ScFv		50	0,60	Диатело-Fc-ScFv, СМ#, СТ#
4	Диа-Ес-Диа	144	20	0,31	FLAg, СМ#, Диатело-Fc-Диатело, СМ#
5	Fab-Диа		25	0,42	Fab-Диатело, СМ#
6	$IgG ext{-}ScFv$		100	Н/Д	CM#

- номер; Диа = Диатело

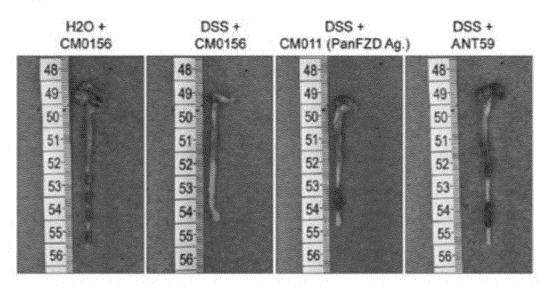


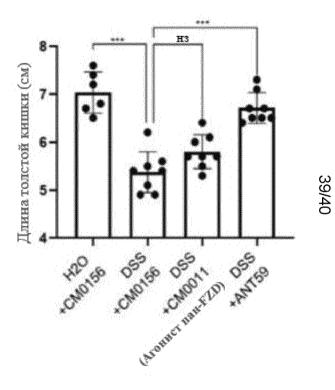
активный - агонист

ФИГ. 21, продолжение

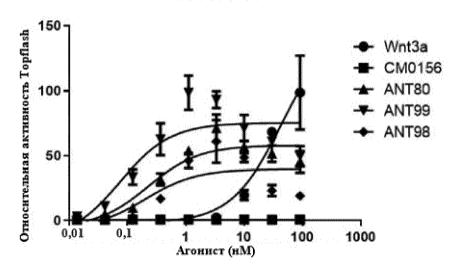


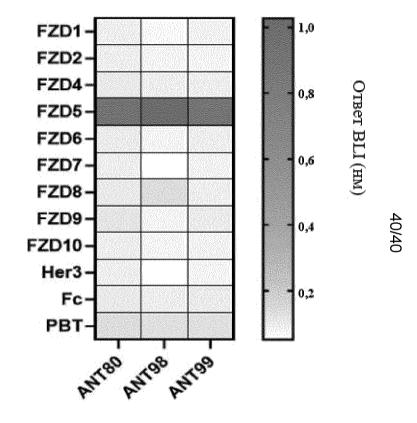
ФИГ. 22


ФИГ. 23



ФИГ. 24





ФИГ. 24, продолжение

ANT	Эксп. Титр (мг/л)	Авидность FZD5 (нМ)
80	121	0,05
98	81	2
99	234	0,4

FZD5-TopFlash

ФИГ. 25