

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2023.08.01
- (22) Дата подачи заявки 2021.12.22

- (51) Int. Cl. A01H 1/00 (2006.01) A01H 5/00 (2018.01) A01H 6/46 (2018.01) C12N 15/82 (2006.01)
- (54) СПОСОБЫ ИДЕНТИФИКАЦИИ И ОТБОРА РАСТЕНИЙ КУКУРУЗЫ С ГЕНОМ-ВОССТАНОВИТЕЛЕМ ЦИТОПЛАЗМАТИЧЕСКОЙ МУЖСКОЙ СТЕРИЛЬНОСТИ
- (31) 20216347.3
- (32) 2020.12.22
- (33) EP
- (86) PCT/EP2021/087187
- (87) WO 2022/136491 2022.06.30
- (71) Заявитель: КВС ЗААТ СЕ & КО. КГАА (DE)
- **(72)** Изобретатель:

Клоибер-Маитц Моника, Кнаак Карстен (DE), Далл'Оккио Хэрве, Кастелле Жан-Клод (FR)

(74) Представитель:Зуйков С.А. (RU)

(57) Настоящее изобретение относится к способу идентификации растения или части растения, такого как растение кукурузы или часть растения, содержащего новый восстановитель локуса фертильности, в частности восстановитель цитоплазматической мужской стерильности локуса фертильности. Настоящее изобретение также относится к молекулярным маркерам, ассоциированным с таким локусом, и к использованию таких маркеров при идентификации растений. Настоящее изобретение также относится к способам генерирования растений или частей растений, содержащих новый восстановитель локуса фертильности.

СПОСОБЫ ИДЕНТИФИКАЦИИ И ОТБОРА РАСТЕНИЙ КУКУРУЗЫ С ГЕНОМ-ВОССТАНОВИТЕЛЕМ ЦИТОПЛАЗМАТИЧЕСКОЙ МУЖСКОЙ СТЕРИЛЬНОСТИ

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способам идентификации растений или частей растений, в частности, растений кукурузы или частей растений, имеющих восстановитель генотипа или фенотипа фертильности, в частности, восстановитель цитоплазматической фертильности генотипа или фенотипа фертильности. Настоящее изобретение также относится к растениям, идентифицированным как таковые, а также к способам генерирования таких растений. Настоящее изобретение также относится к полинуклеиновым кислотам и полипептидам, подходящим для идентифицирования или генерирования таких растений.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

По всему миру в программах селекции растений применяется СМS (цитоплазматическая мужская стерильность) с целью ингибирования самоопыления женских линий при производстве гибридов. СМS характеризуется мутациями, унаследованными по материнской линии, которые приводят к тому, что растения не способны производить пыльцу. (Шнэбл, П.С., и Уайз, Р.П. (1998). Молекулярная основа цитоплазматической мужской стерильности и восстановления фертильности. Тенденции в растениеводстве, 3(5), 175-180.)

Чтобы гарантировать, что гибридное потомки будут полностью фертильным и способными давать семена, мужские родительские линии при производстве гибридов должны обладать так называемыми генами-восстановителями, которые охватывают и отменяют эффекты CMS.

Хорошо известно, что у CMSC-плазмы CMS-кукурузы имеется основной локусвосстановитель RF4 в начале 8 хромосомы (WO 2012/047595). Перед конверсией женской линии в CMSC, необходимо гарантировать, что RF4 не активен в этой линии. В противном случае, локус-закрепитель должен быть интрогрессирован, прежде чем станет возможной конверсия CMS. Определение генотипа-восстановителя осуществляется как путем применения маркера, так и путем фенотипических наблюдений.

Целью настоящего изобретения является идентификация новых генотиповвосстановителей для использования в программах селекции растений, в частности, в программах селекции растений кукурузы, включая использование CMS. Идентификация новых генотипов-восстановителей, в частности, отличающихся от генотиповвосстановителей, которые, как уже известно, находятся на 8 хромосоме кукурузы, расширяет их применимость в селекции растений, в частности, интрогрессию.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к растениям или частям растений, в частности, к растениям кукурузы или частям растений, имеющим генотип- или фенотип-восстановитель, и к их использованию. Генотип- или фенотип-восстановитель, в частности, относится к генотипу- или фенотипу-восстановителю цитоплазматической мужской стерильности (CMS), т.е., к генотипу или фенотипу, который восстанавливает мужскую фертильность.

Предпочтительно, генотип-восстановитель обусловлен, по меньшей мере, одним геном-восстановителем, который расположен на 3 хромосоме кукурузы, т.е., RF-03-01. Настоящее изобретение преимущественно позволяет идентифицировать линии кукурузы, имеющие фенотип-восстановитель CMS, который содержит хорошо известные гены- или локусы-восстановители, такие как RF4. Локализация локуса-восстановителя на разных хромосомах по настоящему изобретению, по сравнению с известными локусамивосстановителями, расширяет набор инструментов для генерирования, а также для закрепления линий-восстановителей или, в качестве альтернативы, для обеспечения того, чтобы нежелательный генотип-/фенотип-восстановитель отсутствовал или мог быть выбран другой, отличный от него.

Настоящее изобретение, в частности, охватывается любой одной или любой комбинацией, по меньшей мере, одного из приведенных ниже пронумерованных утверждений 1-96, которое может быть объединено с любыми другими утверждениями и/или вариантами осуществления настоящего изобретения.

- 1. Способ идентификации растения (кукурузы) или части растения, содержащий скрининг на присутствие, обнаружение или идентификацию (гаплотипа, ассоциированного с ним) локуса-восстанавителя цитоплазматической мужской стерильности (CMS) (фертильности) на 3 хромосоме (RF-03-01).
- 2. Способ по утверждению 1, при этом указанный локус содержит или содержится в области на 3 хромосоме, соответствующей положениям 195629901-198023573 AGPv4 B73 или ее фрагмента.
- 3. Способ по утверждению 1 или 2, при этом указанный локус содержит или содержится в области на 3 хромосоме, соответствующей положениям 197453646-197698278 AGPv4 B73 или ее фрагмента.

- 4. Способ по любому из утверждений 1-3, при этом указанный локус содержит, по меньшей мере, один молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5.
- 5. Способ по любому из утверждений 1-4, при этом указанный локус содержит, по меньшей мере, одну полинуклеиновую кислоту, содержащую, по меньшей мере, одну последовательность, представленную в SEQ ID NO: 17-200.
- 6. Способ по любому из утверждений 1-5, при этом указанный локус содержит, по меньшей мере, одну полинуклеиновую кислоту, содержащую, по меньшей мере, одну последовательность, представленную в SEQ ID NO: 68-140.
- 7. Способ по любому из утверждений 1-6, при этом указанный локус содержит, по меньшей мере, один из следующих: Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357.
- 8. Способ по любому из утверждений 1-7, при этом указанный локус содержит Zm00001d043358.
- 9. Способ по любому из утверждений 1-8, при этом указанный локус содержит полинуклеиновую кислоту, содержащую, по меньшей мере, одну последовательность, представленную в SEQ ID NO: 1, 5, 9 и 13, или, по меньшей мере, одну последовательность из SEQ ID NO: 2, 6, 10 и 14, или полинуклеиновую кислоту, содержащую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее меньшей 95% идентична последовательности, предпочтительно, ПО мере, на представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13 или SEQ ID NO: 2, 6, 10 и 14.
- 10. Способ по любому из утверждений 1- 9, при этом указанный локус содержит полинуклеиновую кислоту, содержащую последовательность из SEQ ID NO: 1 или 2, или полинуклеиновую кислоту, содержащую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1 или 2.
- 11. Способ по любому из утверждений 1-10, содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности из SEQ ID NO: 17-200.
- 12. Способ по любому из утверждений 1-11, содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности из SEQ ID NO: 68-140.

- 13. Способ по любому из утверждений 1-12, содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134.
- 14. Способ по любому из утверждений 1-13, содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности, представленной в SEQ ID NO: 1, 5, 9 и 13, или, по меньшей мере, последовательности, представленной в одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, или содержащий скрининг на присутствие полинуклеиновой кислоты, содержащей последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13 или, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента.
- 15. Способ по любому из утверждений 1-14, содержащий скрининг на присутствие последовательности, представленной в SEQ ID NO: 1 или 2, или ее (уникального) фрагмента, или содержащий скрининг на присутствие полинуклеиновой кислоты, содержащей последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 или 2, или ее (уникального) фрагмента.
- 16. Способ по любому из утверждений 1-14, содержащий скрининг на присутствие, по меньшей мере, одного из следующих: Zm00001d043358, Zm00001d043352, Zm00001d043356 и/или Zm00001d043357, или их фрагмента, при этом

Zm00001d043358,

имеет геномную последовательность, представленную в SEQ ID NO: 1 или 2, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 или 2;

имеет кодирующую последовательность, представленную в SEQ ID NO: 201 или 3, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 201 или 3; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 202 или 4, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 202 или 4;

Zm00001d043352,

имеет геномную последовательность, представленную в SEQ ID NO: 5 или 6, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 5 или 6;

имеет кодирующую последовательность, представленную в SEQ ID NO: 203 или 7, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 203 или 7; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 204 или 8, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 204 или 8;

Zm00001d043356,

имеет геномную последовательность, представленную в SEQ ID NO: 9 или 10, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 9 или 10;

имеет кодирующую последовательность, представленную в SEQ ID NO: 205 или 11, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 205 или 11; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 206 или 12, или белок, имеющий последовательность, которая, по меньшей мере, на 80%,

предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 206 или 12;

Zm00001d043357,

имеет геномную последовательность, представленную в SEQ ID NO: 13 или 14, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 13 или 14;

имеет кодирующую последовательность, представленную в SEQ ID NO: 207 или 15, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 207 или 15; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 208 или 16, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 208 или 16.

- 17. Способ по любому из утверждений 1-16, содержащий скрининг на присутствие любого, по меньшей мере, одного молекулярного маркера (аллеля) из Таблицы 4 или Таблицы 5.
- 18. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на присутствие любого, по меньшей мере, одного молекулярного маркера (аллеля) из Таблицы 4 или Таблицы 5.
- 19. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности из SEQ ID NO: 17-200.
- 20. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности из SEQ ID NO: 68-140.
- 21. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на

присутствие любой, по меньшей мере, одной последовательности из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134.

- 22. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности, представленной в одном из SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, или полинуклеиновой кислоты, содержащий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13; или, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, или полинуклеиновой кислоты, содержащей последовательность, которая, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента.
- 23. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на присутствие последовательности, представленной в SEQ ID NO: 1 или 2, или ее (уникального) фрагмента, или содержащий скрининг на присутствие полинуклеиновой кислоты, содержащей последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 или 2, или ее (уникального) фрагмента.
- 24. Способ идентификации растения (кукурузы) или части растения (имеющей восстановитель локуса фертильности на 3 хромосоме), содержащий скрининг на присутствие Zm00001d043358, Zm00001d043352, Zm00001d043356 и/или Zm00001d043357, или их фрагмента, при этом

Zm00001d043358,

имеет геномную последовательность, представленную в SEQ ID NO: 1 или 2, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 или 2;

имеет кодирующую последовательность, представленную в SEQ ID NO: 201 или 3, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 201 или 3; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 202 или 4, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 202 или 4;

Zm00001d043352,

имеет геномную последовательность, представленную в SEQ ID NO: 5 или 6, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 5 или 6;

имеет кодирующую последовательность, представленную в SEQ ID NO: 203 или 7, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 203 или 7; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 204 или 8, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 204 или 8;

Zm00001d043356,

имеет геномную последовательность, представленную в SEQ ID NO: 9 или 10, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 9 или 10;

имеет кодирующую последовательность, представленную в SEQ ID NO: 205 или 11, или кодирующую последовательность, которая, по меньшей мере, на 80%,

предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 205 или 11; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 206 или 12, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 206 или 12;

Zm00001d043357,

имеет геномную последовательность, представленную в SEQ ID NO: 13 или 14, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 13 или 14;

имеет кодирующую последовательность, представленную в SEQ ID NO: 207 или 15, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 207 или 15; и/или

кодирует белок, имеющий последовательность, представленную в SEQ ID NO: 208 или 16, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 208 или 16.

- 25. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, один молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5, или комплемент, или обратный комплемент указанной полинуклеиновой кислоты.
- 26. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, один нуклеотид, соответствующий SNP (однонуклеотидный полиморфизм) из Таблицы 4, или комплемент, или обратный комплемент указанной полинуклеиновой кислоты.
- 27. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, 15 смежных нуклеотидов, содержащихся в области, соответствующей области, фланкированной любым из указанных 5' и 3' положений из указанной ниже таблицы, и

содержащая нуклеотид, соответствующий положению указанного SNP, относящегося к 3 хромосоме кукурузы, AGPv4 B73

5' (-100	5' (-50	SNP	3' (+50	3' (+100
нуклеотидов)	нуклеотидов)		нуклеотидов)	нуклеотидов)
195629801	195629851	195629901	195629951	195630001
195639594	195639644	195639694	195639744	195639794
195677699	195677749	195677799	195677849	195677899
195678256	195678306	195678356	195678406	195678456
195680690	195680740	195680790	195680840	195680890
195732836	195732886	195732936	195732986	195733036
195733816	195733866	195733916	195733966	195734016
195783601	195783651	195783701	195783751	195783801
196069986	196070036	196070086	196070136	196070186
196198636	196198686	196198736	196198786	196198836
196244614	196244664	196244714	196244764	196244814
196653646	196653696	196653746	196653796	196653846
196693401	196693451	196693501	196693551	196693601
196702711	196702761	196702811	196702861	196702911
196703908	196703958	196704008	196704058	196704108
196703996	196704046	196704096	196704146	196704196
196704069	196704119	196704169	196704219	196704269
196704190	196704240	196704290	196704340	196704390
196705370	196705420	196705470	196705520	196705570
196706597	196706647	196706697	196706747	196706797
196706655	196706705	196706755	196706805	196706855
196707090	196707140	196707190	196707240	196707290
196707315	196707365	196707415	196707465	196707515
196707897	196707947	196707997	196708047	196708097
196773793	196773843	196773893	196773943	196773993
196774022	196774072	196774122	196774172	196774222
196774233	196774283	196774333	196774383	196774433
196774402	196774452	196774502	196774552	196774602
196774723	196774773	196774823	196774873	196774923
196774865	196774915	196774965	196775015	196775065
196775496	196775546	196775596	196775646	196775696
196776500	196776550	196776600	196776650	196776700
196776777	196776827	196776877	196776927	196776977
196839968	196840018	196840068	196840118	196840168
196840715	196840765	196840815	196840865	196840915
196841549	196841599	196841649	196841699	196841749
196841890	196841940	196841990	196842040	196842090
196842902	196842952	196843002	196843052	196843102
196843235	196843285	196843335	196843385	196843435
196843984	196844034	196844084	196844134	196844184
196851351	196851401	196851451	196851501	196851551
196853434	196853484	196853534	196853584	196853634
196853662	196853712	196853762	196853812	196853862
196880273	196880323	196880373	196880423	196880473

196985756	196985806	196985856	196985906	196985956
196985783	196985833	196985883	196985933	196985983
196987184	196987234	196987284	196987334	196987384
196988925	196988975	196989025	196989075	196989125
196989152	196989202	196989252	196989302	196989352
196989277	196989327	196989377	196989427	196989477
196989308	196989358	196989408	196989458	196989508
197453546	197453596	197453646	197453696	197453746
197453608	197453658	197453708	197453758	197453808
197454348	197454398	197454448	197454498	197454548
197454530	197454580	197454630	197454680	197454730
197454557	197454607	197454657	197454707	197454757
197454644	197454694	197454744	197454794	197454844
197454680	197454730	197454780	197454830	197454880
197454733	197454783	197454833	197454883	197454933
197454907	197454957	197455007	197455057	197455107
197454934	197454984	197455034	197455084	197455134
197456822	197456872	197456922	197456972	197457022
197457034	197457084	197457134	197457184	197457234
197457114	197457164	197457214	197457264	197457314
197457251	197457301	197457351	197457401	197457451
197457503	197457553	197457603	197457653	197457703
197459088	197459138	197459188	197459238	197459288
197487865	197487915	197487965	197488015	197488065
197488651	197488701	197488751	197488801	197488851
197488967	197489017	197489067	197489117	197489167
197524389	197524439	197524489	197524539	197524589
197524755	197524805	197524855	197524905	197524955
197525093	197525143	197525193	197525243	197525293
197525265	197525315	197525365	197525415	197525465
197525525	197525575	197525625	197525675	197525725
197525890	197525940	197525990	197526040	197526090
197526521	197526571	197526621	197526671	197526721
197526590	197526640	197526690	197526740	197526790
197527482	197527532	197527582	197527632	197527682
197527582	197527632	197527682	197527732	197527782
197528552	197528602	197528652	197528702	197528752
197556127	197556177	197556227	197556277	197556327
197609586	197609636	197609686	197609736	197609786
197609630	197609680	197609730	197609780	197609830
197611592	197611642	197611692	197611742	197611792
197611732	197611782	197611832	197611882	197611932
197611794	197611844	197611894	197611944	197611994
197613035	197613085	197613135	197613185	197613235
197613558	197613608	197613658	197613708	197613758
197614989	197615039	197615089	197615139	197615189
197615361	197615411	197615461	197615511	197615561
197631460	197631510	197631560	197631610	197631660

197631588	197631638	197631688	197631738	197631788
197632490	197632540	197632590	197632640	197632690
197632606	197632656	197632706	197632756	197632806
197633270	197633320	197633370	197633420	197633470
197633760	197633810	197633860	197633910	197633960
197638678	197638728	197638778	197638828	197638878
197638849	197638899	197638949	197638999	197639049
197639280	197639330	197639380	197639430	197639480
197651923	197651973	197652023	197652073	197652123
197652378	197652428	197652478	197652528	197652578
197653025	197653075	197653125	197653175	197653225
197654442	197654492	197654542	197654592	197654642
197687170	197687220	197687270	197687320	197687370
197687424	197687474	197687524	197687574	197687624
197688112	197688162	197688212	197688262	197688312
197688345	197688395	197688445	197688495	197688545
197688392	197688442	197688492	197688542	197688592
197692891	197692941	197692991	197693041	197693091
197692896	197692946	197692996	197693046	197693096
197694165	197694215	197694265	197694315	197694365
197695268	197695318	197695368	197695418	197695468
197695491	197695541	197695591	197695641	197695691
197695757	197695807	197695857	197695907	197695957
197696092	197696142	197696192	197696242	197696292
197696632	197696682	197696732	197696782	197696832
197696662	197696712	197696762	197696812	197696862
197697227	197697277	197697327	197697377	197697427
197697414	197697464	197697514	197697564	197697614
197698149	197698199	197698249	197698299	197698349
197698178	197698228	197698278	197698328	197698378
197708037	197708087	197708137	197708187	197708237
197708234	197708284	197708334	197708384	197708434
197757973	197758023	197758073	197758123	197758173
197760075	197760125	197760175	197760225	197760275
197761154	197761204	197761254	197761304	197761354
197761205	197761255	197761305	197761355	197761405
197776440	197776490	197776540	197776590	197776640
197777449	197777499	197777549	197777599	197777649
197777518	197777568	197777618	197777668	19777718
197778010	197778060	197778110	197778160	197778210
197781749	197781799	197781849	197781899	197781949
197781861	197781911	197781961	197782011	197782061
197784596	197784646	197784696	197784746	197784796
197785066	197785116	197785166	197785216	197785266
197785170	197785220	197785270	197785320	197785370
197786048	197786098	197786148	197786198	197786248
197786055	197786105	197786155	197786205	197786255
197787668	197787718	197787768	197787818	197787868

197805956	197806006	197806056	197806106	197806156
197806383	197806433	197806483	197806533	197806583
197812495	197812545	197812595	197812645	197812695
197813489	197813539	197813589	197813639	197813689
197813982	197814032	197814082	197814132	197814182
197840702	197840752	197840802	197840852	197840902
197840851	197840901	197840951	197841001	197841051
197855889	197855939	197855989	197856039	197856089
197859223	197859273	197859323	197859373	197859423
197860611	197860661	197860711	197860761	197860811
197861273	197861323	197861373	197861423	197861473
197895172	197895222	197895272	197895322	197895372
197902723	197902773	197902823	197902873	197902923
197902755	197902805	197902855	197902905	197902955
197902823	197902873	197902923	197902973	197903023
197903019	197903069	197903119	197903169	197903219
197903164	197903214	197903264	197903314	197903364
197903202	197903252	197903302	197903352	197903402
197903272	197903322	197903372	197903422	197903472
197903375	197903425	197903475	197903525	197903575
197903487	197903537	197903587	197903637	197903687
197903529	197903579	197903629	197903679	197903729
197903616	197903666	197903716	197903766	197903816
197903716	197903766	197903816	197903866	197903916
197903916	197903966	197904016	197904066	197904116
197904555	197904605	197904655	197904705	197904755
197906573	197906623	197906673	197906723	197906773
197907466	197907516	197907566	197907616	197907666
197907517	197907567	197907617	197907667	197907717
197907553	197907603	197907653	197907703	197907753
197907742	197907792	197907842	197907892	197907942
197909724	197909774	197909824	197909874	197909924
197948446	197948496	197948546	197948596	197948646
197948480	197948530	197948580	197948630	197948680
197948590	197948640	197948690	197948740	197948790
197948731	197948781	197948831	197948881	197948931
197948779	197948829	197948879	197948929	197948979
197973532	197973582	197973632	197973682	197973732
197974393	197974443	197974493	197974543	197974593
197994108	197994158	197994208	197994258	197994308
198023332	198023382	198023432	198023482	198023532
198023473	198023523	198023573	198023623	198023673

27. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, 15 смежных нуклеотидов, содержащихся в области, соответствующей области, фланкированной любым из указанных 5' и 3' положений из указанной ниже таблицы, и

содержащая нуклеотид, соответствующий положению указанного SNP, относящегося к 3 хромосоме кукурузы, AGPv4 B73

5' (-100	5' (-50	SNP	3' (+50	3' (+100
нуклеотидов)	нуклеотидов)		нуклеотидов)	нуклеотидов)
197453608	197453658	197453708	197453758	197453858
197454530	197454580	197454630	197454680	197454780
197454733	197454783	197454833	197454883	197454983
197456822	197456872	197456922	197456972	197457072
197488651	197488701	197488751	197488801	197488901
197524389	197524439	197524489	197524539	197524639
197525525	197525575	197525625	197525675	197525775
197525890	197525940	197525990	197526040	197526140
197556127	197556177	197556227	197556277	197556377
197611794	197611844	197611894	197611944	197612044
197613035	197613085	197613135	197613185	197613285
197613558	197613608	197613658	197613708	197613808
197614989	197615039	197615089	197615139	197615239
197615361	197615411	197615461	197615511	197615611
197633760	197633810	197633860	197633910	197634010
197696092	197696142	197696192	197696242	197696342

29. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, 15 смежных нуклеотидов, содержащихся в области, соответствующей области, фланкированной любым из указанных 5' и 3' положений из указанной ниже таблицы, и содержащая нуклеотид, соответствующий положению указанного SEQ ID NO

SEQ ID	5' (-100	5' (-50	полиморфизм	3' (+50	3' (+100
NO	нуклеотидов)	нуклеотидов)		нуклеотидов)	нуклеотидов)
1	-65	-15	35	85	135
1	304	354	404	454	504
1	344	394	444-452	502	552
1	363	413	463	513	563
1	437	487	537	587	637
1	635	685	735	785	835
1	648	698	748-759	809	859
1	661	711	761	811	861
1	697	747	797	847	897
1	948	998	1048	1098	1148
1	956	1006	1056	1106	1156
1	956	1015	1065-1066	1116	1166
1	972	1022	1072-1073	1123	1173
1	971	1021	1071	1121	1171
1	1088	1138	1188	1238	1288
1	1118	1168	1218	1268	1318
1	1665	1715	1765	1815	1865
1	1669	1719	1769	1819	1869

1	1744	1794	1844	1894	1944
1	1756	1806	1856	1906	1956
1	1976	2026	2076	2126	2176
1	1989	2039	2089	2139	2189
1	2046	2096	2146	2196	2246
1	2068	2118	2168-2169	2219	2269
1	2114	2164	2214	2264	2314
1	2270	2320	2370	2420	2470
1	2482	2532	2582	2632	2682
1	2532	2582	2632-2637	2687	2737
1	2541	2591	2641	2691	2741
1	2543	2593	2643-2644	2694	2744
1	2596	2646	2696	2746	2796
1	2638	2688	2738	2788	2838
1	2743	2793	2843	2893	2943
1	2749	2799	2849	2899	2949
1	2854	2904	2954-2955	3005	3055
1	2904	2954	3004	3054	3104
1	2947	2997	3047	3097	3147
1	2968	3018	3068	3118	3168
1	3118	3168	3218	3268	3318
5	386	436	486	536	586
5	511	561	611	661	711
5	538	588	638	688	738
5	589		689	739	
5	712	639 762	812		789 912
	765	815	865	862	965
5	801	851	901	915	1001
5	888	938	988	1038	
5	915	965			1088
5	985	1035	1015	1065	1115
5	1097	1147	1197	1247	1297
5	1245	1295	1345	1395	1445
	1361	1411	1461	1511	1561
5	1837	1887	1937	1987	2037
5	1899	1949	1999	2049	2099
5	2013	2063	2113-2115	2165	2215
	2186	2236	2286	2336	2386
5	2193	2243	2293-2297	2347	2397
5	2299	2349	2399	2449	2499
5	2348	2398	2448-2450	2500	2550
5	2722	2772	2822-2823	2873	2923
5	2756	2806	2856	2906	2956
5	2826	2876	2926	2976	3026
5	2898	2948	2998	3048	3098
5	2929	2979	3029	3079	3129
5	2985	3035	3085	3135	3185
5	3002	3052	3102	3152	3202

5	3012	3062	3112	3162	3212
5	3020	3070	3120	3170	3220
5	3068	3118	3168	3218	3268
9	292	342	392-393	443	493
9	450	500	550	600	650
9	491	541	591	641	691
9	786	836	886-887	937	987
9	834	884	934	984	1034
9	857	907	957	1007	1057
9	997	1047	1097	1147	1197
9	1030	1080	1130	1180	1230
9	1195	1245	1295	1345	1395
9	1362	1412	1462	1512	1562
9	1367	1417	1467	1517	1567
9	1441	1491	1541	1591	1641
9	1484	1534	1584	1634	1684
9	1514	1564	1614	1664	1714
9	1613	1663	1713	1763	1813
9	1674	1724	1774	1824	1874
9	1695	1745	1795-1796	1846	1896
9	1715	1765	1815	1865	1915
9	1794	1844	1894-1895	1945	1995
9	1810	1860	1910	1960	2010
9	1854	1904	1954-1955	2005	2055
9	1900	1950	2000	2050	2100
9	1960	2010	2060	2110	2160
9	2081	2131	2181	2231	2281
9	2254	2304	2354	2404	2454
9	2272	2322	2372	2422	2472
9	2294	2344	2394-2399	2449	2499
9	2328	2378	2428	2478	2528
9	2339	2389	2439-2440	2490	2540
13	551	601	651-652	702	752
13	707	757	807	857	907

30. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, 15 смежных нуклеотидов, содержащихся в области, соответствующей области, фланкированной любым из указанных 5' и 3' положений из указанной ниже таблицы, и содержащая нуклеотид, соответствующий положению указанного SEQ ID NO

SEQ ID	5' (-100	5' (-50	полиморфизм	3' (+50	3' (+100
NO	нуклеотидов)	нуклеотидов)		нуклеотидов)	нуклеотидов)
2	-65	-15	35	85	135
2	304	354	404	454	504
2	343	393	443-444	494	544
2	354	404	454	504	554
2	428	478	528	578	628

2	626	676	726	776	826
2	638	688	738-739	789	839
2	640	690	740	790	840
2	676	726	776	826	876
2	927	977	1027	1077	1127
2	935	985	1035	1085	1135
2	945	995	1045	1095	1145
2	953	1003	1053-1059	1109	1159
2	958	1008	1058	1108	1158
2	1075	1125	1175	1225	1275
2	1108	1158	1208	1258	1308
2	1657	1707	1757	1807	1857
2	1661	1711	1761	1811	1861
2	1736	1786	1836	1886	1936
2	1748	1798	1848	1898	1948
2	1968	2018	2068	2118	2168
2	1981	2031	2081	2131	2181
2	2038	2088	2138	2188	2238
2	2061	2111	2161	2211	2261
2	2107	2157	2207	2257	2307
2	2262	2312	2362-2363	2413	2463
2	2474	2524	2574	2624	2674
2	2524	2574	2624-2629	2679	2729
2	2533	2583	2633	2683	2733
2	2535	2585	2635-2636	2686	2736
2	2588	2638	2688	2738	2788
2	2630	2680	2730	2780	2830
2	2734	2784	2834-2835	2885	2935
2	2740	2790	2840	2890	2940
2	2846	2896	2946-2947	2997	3047
2	2897	2947	2997	3047	3097
2	2940	2990	3040	3090	3140
2	2961	3011	3061	3111	3161
2	3111	3161	3211	3261	3311
6	386	436	486	536	586
6	511	561	611	661	711
6	538	588	638	688	738
6	589	639	689	739	789
6	712	762	812	862	912
6	765	815	865	915	965
6	801	851	901	951	1001
6	888	938	988	1038	1088
6	915	965	1015	1065	1115
6	985	1035	1085	1135	1185
6	1097	1147	1197	1247	1297
6	1245	1295	1345	1395	1445
6	1361	1411	1461	1511	1561
6	1837	1887	1937	1987	2037

	1,000	10.10	1,000	20.10	2000
6	1899	1949	1999	2049	2099
6	2012	2062	2112-2113	2163	2213
6	2183	2233	2283	2333	2383
6	2189	2239	2289-2290	2340	2390
6	2291	2341	2391	2441	2491
6	2339	2389	2439-2440	2490	2540
6	2710	2760	2810-2811	2861	2911
6	2743	2793	2843	2893	2943
6	2813	2863	2913	2963	3013
6	2885	2935	2985	3035	3085
6	2916	2966	3016	3066	3116
6	2972	3022	3072	3122	3172
6	2989	3039	3089	3139	3189
6	2999	3049	3099	3149	3199
6	3007	3057	3107	3157	3207
6	3055	3105	3155	3205	3255
10	293	343	393-397	447	497
10	455	505	555	605	655
10	496	546	596	646	696
10	791	841	891-892	942	992
10	839	889	939	989	1039
10	862	912	962	1012	1062
10	1002	1052	1102	1152	1202
10	1035	1085	1135	1185	1235
10	1200	1250	1300	1350	1400
10	1367	1417	1467	1517	1567
10	1372	1422	1472	1522	1572
10	1446	1496	1546	1596	1646
10	1503	1553	1603	1653	1703
10	1533	1583	1633	1683	1733
10	1632	1682	1732	1782	1832
10	1693	1743	1793	1843	1893
10	1715	1765	1815-1823	1873	1923
10	1743	1793	1843	1893	1943
10	1823	1873	1923	1973	2023
10	1839	1889	1939	1989	2039
10	1884	1934	1984-1991	2041	2091
10	1937	1987	2037	2041	2137
10	1997	2047	2097	2147	2197
			2097		
10	2118	2168		2268	2318
10	2291	2341	2391	2441	2491
10	2309	2359	2409	2459	2509
10	2331	2381	2431-2434	2484	2534
10	2363	2413	2463	2513	2563
10	2375	2425	2475-2476	2526	2576
14	552	602	652-654	704	754
14	710	760	810	860	910

- 31. (Выделенная) полинуклеиновая кислота по любому из утверждений 25-30, содержащая максимально 500 нуклеотидов, предпочтительно, максимально 200 нуклеотидов, более предпочтительно, максимально 100 нуклеотидов, наиболее предпочтительно, максимально 50 нуклеотидов, например, максимально 35 нуклеотидов.
- 32. (Выделенная) полинуклеиновая кислота, специфически гибридизирующаяся с полинуклеиновой кислотой по любому из утверждений 25-31, или комплемент, или обратный комплемент указанной полинуклеиновой кислоты.
- 33. (Выделенная) полинуклеиновая кислота по любому из утверждений 25-32, которая представляет собой праймер или зонд.
- 34. (Выделенный) полинуклеотид по любому из утверждений 25-33, который представляет собой аллель-специфический праймер или зонд.
- 35. (Выделенная) полинуклеиновая кислота по любому из утверждений 25-34, которая представляет собой праймер KASP (аллель-специфической ПЦР).
- 36. Праймер или зонд, содержащий (выделенную) полинуклеиновую кислоту по любому из утверждений 25-35.
- 37. Праймер по утверждению 36, который представляет собой аллельспецифический праймер.
- 38. Праймер по утверждению 36 или 37, который представляет собой праймер KASP.
- 39. Праймер, специфически гибридизирующийся с молекулярным маркером (аллелем) из Таблицы 4 или Таблицы 5, или его комплементом, или обратным комплементом.
- 40. Праймер, способный специфически обнаруживать молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5.
- 41. Набор праймеров, способных специфически обнаруживать молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5.
- 42. Набор праймеров, способных амплифицировать полинуклеиновую кислоту, содержащую молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5.
- 43. Растение (кукурузы) или часть растения, содержащая, по меньшей мере, один молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5, локус, определенный в любом из утверждений 1-10, и/или полинуклеиновую кислоту, определенную в любом из утверждений 5, 6, 9, 10 или 25-30.

- 44. Способ генерирования растения (кукурузы) или части растения, содержащий введение в геном указанного растения или части растения локуса, определенного в любом из утверждений 1-10, или его (функционального) фрагмента.
 - 45. Способ по утверждению 44, при этом введение в геном содержит трансгенез.
- 44. Способ по утверждению 44 или 45, при этом введение в геном содержит интрогрессию.
- 47. Способ по любому из утверждений 44-46, содержащий трансформацию растительной предпочтительно более растения или части растения, клетки, предпочтительно протопласта, полинуклеиновой кислотой, кодирующей локус, определенный в любом из утверждений 1-10, и, необязательно, регенерацию растения из указанной растительной клетки, предпочтительно из протопласта.
- 48. Способ по утверждению 47, при этом вводимая указанная полинуклеиновая кислота имеет последовательность, отличную от соответствующей полинуклеиновой кислоты растения.
- 49. Способ генерирования растения (кукурузы) или части растения, содержащий (а) предоставление первого растения (кукурузы), идентифицированного по любому из утверждений 1-24 или сгенерированного по любому из утверждений 40-44, (b) скрещивание указанного первого растения (кукурузы) со вторым растением (кукурузы), имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков.
- 50. Способ по любому из утверждений 1-24 или 44-49, при этом указанная часть растения представляет собой клетку, ткань или орган.
- 51. Способ по любому из утверждений 1-24 или 44-50, при этом указанная часть растения представляет собой протопласт.
- 52. Способ по любому из утверждений 1-24 или 44-50, при этом указанная часть растения представляет собой семя.
- 53. Способ по любому из утверждений 1-24, при этом указанный локус, полинуклеиновая кислота или молекулярный маркер (аллель) является гомозиготным.
- 54. Способ по любому из утверждений 1-24, при этом указанный локус, полинуклеиновая кислота или молекулярный маркер (аллель) является гетерозиготным.
- 55. Использование полинуклеиновой кислоты, или праймера, или зонда, или набора праймеров по любому из утверждений 5, 6, 9, 10 или 25-42 для идентификации растения (кукурузы) или части растения.

- 56. Использование полинуклеиновой кислоты по любому из утверждений 5, 6, 9, 10 или 25-30, или локуса, определенного по любому из утверждений 1-10, для генерирования растения (кукурузы) или части растения.
- 57. Способ по любому из утверждений 9-17 или 22-24, при этом последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95%, идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (восстановитель) полиморфизм, указанный в Таблице 5.
- 58. Способ по любому из утверждений 9-17 или 22-24, при этом последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95%, идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (закрепитель) полиморфизм, указанный в Таблице 5.
- 59. Способ по любому из утверждений 1-24 или 57-58, который представляет собой способ различения растения кукурузы или части растения, имеющей указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), и растения кукурузы, не имеющего указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01).
- 60. Способ по любому из утверждений 1-17 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) обнаруживается на 3 хромосоме (RF-03-01).
- 61. Способ по любому из утверждений 1-17 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанного (гаплотипа, ассоциированного с ним) локуса-восстановителя цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если указанный

(гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01) не обнаруживается.

- 62. Способ по любому из утверждений 18 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любой, по меньшей мере, один молекулярный маркерный аллель, ассоциированный с указанным локусомвосстановителем, представленным в Таблице 4 или 5, идентифицируется.
- 63. Способ по любому из утверждений 18 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любой, по меньшей мере, один молекулярный маркерный аллель, ассоциированный с указанным локусомвосстановителем, представленным в Таблице 4 или 5, не идентифицируется.
- 64. Способ по любому из утверждений 18 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любой, по меньшей мере, один молекулярный маркерный аллель, ассоциированный с локусом-закрепителем, представленным в Таблице 4 или 5, идентифицируется.
- 65. Способ по любому из утверждений 19 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 17-200, имеющая SNP-восстановитель, идентифицируется.
- 66. Способ по любому из утверждений 19 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 17-200, не имеющая SNP-восстановитель, идентифицируется.
- 67. Способ по любому из утверждений 19 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип,

- ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 17-200, имеющая SNP-закрепитель, идентифицируется.
- 68. Способ по любому из утверждений 20 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 68-140, имеющая SNP-восстановитель, идентифицируется.
- 69. Способ по любому из утверждений 20 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 68-140, не имеющая SNP-восстановитель, идентифицируется.
- 70. Способ по любому из утверждений 20 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 68-140, имеющая SNР-закрепитель, идентифицируется.
- 71. Способ по любому из утверждений 20 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, имеющая SNP-восстановитель, идентифицируется.
- 72. Способ по любому из утверждений 21 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, не имеющая SNP-восстановитель, идентифицируется.

- 73. Способ по любому из утверждений 21 или 59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, имеющая SNP-закрепитель, идентифицируется.
- 74. Способ по любому из утверждений 22, 24 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 1, 5, 9 или 13, или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мер, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, идентифицируется.
- 75. Способ по любому из утверждений 22, 24 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 1, 5, 9 или 13, или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мер, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, не идентифицируется.
- 76. Способ по любому из утверждений 22, 24 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если любая, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 2, 6, 10 или 14, или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична

последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14, идентифицируется.

- Способ по любому из утверждений 23 или 57-59, при этом указанное 77. растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если последовательность, представленная в SEQ ID NO: 1 или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее 95% предпочтительно, ПО меньшей мер, на идентична последовательности, представленной в SEQ ID NO: 1, идентифицируется.
- 78. Способ по любому из утверждений 23 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если последовательность, представленная в SEQ ID NO: 1 или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мер, на 95% идентична последовательности, представленной в SEQ ID NO: 1, не идентифицируется.
- 79. Способ по любому из утверждений 23 или 57-59, при этом указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если последовательность, представленная в SEQ ID NO: 2 или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 95%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мер, на 95% идентична последовательности, представленной в SEQ ID NO: 2, идентифицируется.
- 80. (Выделенная) полинуклеиновая кислота, имеющая последовательность, представленную в любом из SEQ ID NO: 1, 5, 9 или 13, или ее (уникальный) фрагмент, или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична

последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13; или, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникальный) фрагмент, или полинуклеиновая кислота, содержащая последовательность, которая, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникальный) фрагмент.

81. (Выделенная) полинуклеиновая кислота Zm00001d043358,

имеющая геномную последовательность, представленную в SEQ ID NO: 1 или 2, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 или 2;

имеющая кодирующую последовательность, представленную в SEQ ID NO: 201 или 3, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 201 или 3; и/или

кодирующая белок, имеющий последовательность, представленную в SEQ ID NO: 202 или 4, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 202 или 4;

Zm00001d043352,

имеющая геномную последовательность, представленную в SEQ ID NO: 5 или 6, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 5 или 6;

имеющая кодирующую последовательность, представленную в SEQ ID NO: 203 или 7, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на

90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 203 или 7; и/или

кодирующая белок, имеющий последовательность, представленную в SEQ ID NO: 204 или 8, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 204 или 8;

Zm00001d043356,

имеющая геномную последовательность, представленную в SEQ ID NO: 9 или 10, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 9 или 10;

имеющая кодирующую последовательность, представленную в SEQ ID NO: 205 или 11, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 205 или 11; и/или

кодирующая белок, имеющий последовательность, представленную в SEQ ID NO: 206 или 12, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 206 или 12;

Zm00001d043357,

имеющая геномную последовательность, представленную в SEQ ID NO: 13 или 14, или геномную последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 13 или 14;

имеющая кодирующую последовательность, представленную в SEQ ID NO: 207 или 15, или кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 207 или 15; и/или

кодирующая белок, имеющий последовательность, представленную в SEQ ID NO: 208 или 16, или белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 208 или 16.

- 82. Полинуклеиновая кислота по утверждению 80 или 81, при этом последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере на 95% идентична перечисленным последовательностям, представленным в SEQ ID NO, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (восстановитель) полиморфизм, указанный в Таблице 5.
- 83. Полинуклеиновая кислота по любому из утверждений 80 или 81, при этом последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична перечисленным последовательностям, представленным в SEQ ID NO, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (закрепитель) полиморфизм, указанный в Таблице 5.
- 84. Способ по утверждениям 44-54, содержащий введение в геном указанного растения или части растения локуса, как определено в любом из утверждений 1-17, или полинуклеиновой кислоты, как определено в любом из утверждений 80-83, или ее (функционального) фрагмента.
- 85. Способ по любому из утверждений 44-54 или 84, при этом указанная полинуклеиновая кислота представляет собой геномную полинуклеиновую кислоту, фланкированную молекулярными маркерами ma0016fm86 и ma0004tr23.
- 86. Способ по утверждениям 44-54 или 84, при этом указанная полинуклеиновая кислота представляет собой геномную полинуклеиновую кислоту, фланкированную молекулярными маркерами ma0000sa77 и ma0016fu05.
- 87. Способ по любому из утверждений 44-54 или 84-86, при этом указанный локус или полинуклеиновая кислота содержит полиморфизмы-закрепители, указанные в Таблице 5.
- 88. Способ по любому из утверждений 44-54 или 84-87, при этом указанный локус или полинуклеиновая кислота содержит полиморфизмы-закрепители, указанные в Таблице 4.

- 89. Способ по любому из утверждений 44-54 или 84-86, при этом указанный локус или полинуклеиновая кислота содержит полиморфизмы-восстановители, указанные в Таблице 5.
- 90. Способ по любому из утверждений 44-54 или 84-87, или 89, при этом указанный локус или полинуклеиновая кислота содержит полиморфизмы-восстановители, указанные в Таблице 4.
- 91. Способ по любому из утверждений 44-54 или 84-90, содержащий скрещивание первого растения кукурузы и второго растения кукурузы, и отбор потомства, содержащего локус или полинуклеиновую кислоту, как определено в любом из предыдущих утверждений.
- 92. Способ по утверждению 91, содержащий отбор потомства, не содержащего локус-восстановитель или полинуклеиновую кислоту, содержащую полиморфизмывосстановители или SNP, как определено в любом из утверждений.
- 93. Способ по утверждению 91 или 92, при этом указанное первое или второе растение кукурузы представляет собой цитоплазматическое мужское стерильное растение кукурузы.
- 94. Использование полинуклеиновой кислоты по любому из утверждений 25-42 или 80-83 для идентификации растения кукурузы или части растения, или для генерирования растения кукурузы или части растения.
- 95. Использование полинуклеиновой кислоты по любому из утверждений 25-42 или 80-83 для идентификации растения кукурузы или части растения.
- 96. Использование полинуклеиновой кислоты по любому из утверждений 80-83 для генерирования растения кукурузы или части растения.

КРАТКОЕ ОПИСАНИЕ ФИГУР

- **Фигура 1**: Анализ GWAS (общегеномное исследование ассоциаций) с использованием rf4-линий на основе данных на чипе Illumina (35K)
- **Фигура 2**: Выравнивание геномной последовательности Zm00001d043358 эталонного генома B73 (SEQ ID NO: 2) и Zm00001d043358 из варианта осуществления настоящего изобретения (SEQ ID NO: 1).
- **Фигура 3**: Выравнивание геномной последовательности Zm00001d043352 эталонного генома B73 (SEQ ID NO: 6) и Zm00001d043352 из варианта осуществления настоящего изобретения (SEQ ID NO: 5).

Фигура 2: Выравнивание геномной последовательности Zm00001d043356 эталонного генома B73 (SEQ ID NO: 10) и Zm00001d043356 из варианта осуществления настоящего изобретения (SEQ ID NO: 9).

Фигура 5: Выравнивание геномной последовательности Zm00001d043357 эталонного генома B73 (SEQ ID NO: 14) и Zm00001d043357 из варианта осуществления настоящего изобретения (SEQ ID NO: 13).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Прежде чем описывать настоящую систему и способ по настоящему изобретению, следует понимать, что это изобретение не ограничивается конкретными описанными системами и способами или комбинациями, поскольку такие системы, способы и комбинации могут, конечно, варьироваться. Также следует понимать, что терминология, используемая в настоящем документе, не является ограничивающей, поскольку объем настоящего изобретения будет ограничен только прилагаемой формулой изобретения.

В контексте настоящего документа, формы единственного числа "a", "an" и "the" включают как единственное, так и множественное число, если из контекста явно не следует иное.

Термины "содержащий", "содержит" и "состоящий из", в контексте настоящего документа, являются синонимами "включающий", "включает" или "содержащий", "содержит", и являются всеобъемлющими или неограничивающими и не исключают дополнительных, не перечисленных членов, элементов или этапов способа. Следует понимать, что термины "содержащий", "содержит" и "состоящий из", в контексте настоящего документа, содержат термины "состоящий из", "состоит" и "состоит из", а также термины "состоящий по существу из", "состоит по существу" и "состоит по существу из".

Перечисление числовых диапазонов по конечным точкам включает все числа и дроби, включенные в соответствующие диапазоны, а также перечисленные конечные точки.

Термин "примерно" или "приблизительно", в контексте настоящего документа, когда он относится к измеряемому значению, такому как параметр, величина, длительность по времени и тому подобное, предназначен для охвата вариаций +/-20% или менее, предпочтительно, +/-10% или менее, более предпочтительно, +/-5% или менее и еще более предпочтительно, +/-1% или менее от упомянутого значения, поскольку такие вариации уместны для осуществления в раскрытом изобретении. Следует понимать, что

значение, к которому относится модификатор "примерно" или "приблизительно", само по себе также конкретно и, предпочтительно, раскрыто.

Принимая во внимание, что термин "по меньшей мере, один", такой как, по меньшей мере, один член группы членов, понятен рег se, посредством дальнейшего пояснения, термин охватывает, среди прочего, ссылку на любой один из упомянутых членов, или на любые, по меньшей мере, два из упомянутых членов, таких как, например, любой ≥ 3 , ≥ 4 , ≥ 5 , ≥ 6 или ≥ 7 и так далее из упомянутых членов, и вплоть до всех упомянутых членов.

Все ссылки, приведенные в настоящем описании, настоящим включены посредством ссылки в полном объеме. В частности, идеи всех ссылок, на которые конкретно ссылаются в настоящем документе, включены посредством ссылки.

Если не определено иное, все термины, используемые при раскрытии настоящего изобретения, включая технические и научные термины, имеют значение, которое обычно понятно специалисту средней квалификации в данной области техники, к которой относится настоящее изобретение. В качестве дополнительных разъяснений, включены определения терминов для лучшего понимания сути настоящего изобретения.

Авторитетные справочники, излагающие общие принципы технологии ДНК, Молекулярное рекомбинантной включают клонирование: Лабораторное руководство, 2-е изд., т. 1-3, изд. Сэмбрук и соавт., Cold Spring Harbor Laboratory Press, Колд-Спринг-Харбор, Нью-Йорк, 1989; Текущие протоколы в молекулярной биологии, изд. Осубель и соавт., Greene Publishing and Wiley-Interscience, Нью-Йорк, 1992 (с периодическими обновлениями) ("Осубель и соавт. 1992"); серия "Методы в энзимологии" (Academic Press, Inc.); Иннис и соавт., Протоколы ПЦР: Руководство по методам и практическое руководство, Academic Press: Сан-Диего, 1990; ПЦР 2: Практический подход (под ред. М.Дж. Макферсона, Б.Д. Хеймса и Г.Р. Тейлора (1995); под ред. Харлоу и Лейна (1988) Антитела, Лабораторное руководство; и Культура клеток животных (Р.И. Фрешни, изд. (1987). Общие принципы микробиологии изложены, например, в работе Дэвис, Б.Д. и соавт., Microbiology, 3-е издание, Harper & Row, publishers, Филадельфия, Пенсильвания (1980).

В следующих отрывках различные аспекты настоящего изобретения определены более подробно. Каждый аспект, определенный таким образом, может быть объединен с любым другим аспектом или аспектами, если явно не указано обратное. В частности, любой признак, указанный как предпочтительный или имеющий преимущество, может

быть объединен с любым другим признаком или признаками, указанными как предпочтительные или имеющие преимущество.

Ссылка во всем этом описании на "один вариант осуществления настоящего изобретения" или "вариант осуществления настоящего изобретения" означает, что конкретный признак, структура или характеристика, описанные в связи с этим вариантом осуществления настоящего изобретения, включен, по меньшей мере, в один вариант осуществления настоящего изобретения. Таким образом, фразы "в одном варианте осуществления настоящего изобретения" или "в варианте осуществления настоящего изобретения" в различных местах всего этого описания необязательно все относятся к одному и тому же варианту осуществления настоящего изобретения, но могут относиться. Кроме того, конкретные признаки, структуры или характеристики могут быть объединены любым подходящим образом, как это было бы очевидно специалисту в данной области техники из настоящего изобретения, по меньшей мере, в одном варианте осуществления настоящего изобретения. Кроме того, в то время как некоторые варианты осуществления настоящего изобретения, описанные в настоящем документе, включают некоторые, но не другие признаки, включенные в другие варианты осуществления настоящего изобретения, подразумевается, что комбинации признаков различных вариантов осуществления настоящего изобретения входят в объем настоящего изобретения и образуют различные варианты его осуществления, как это было бы понятно специалистам в данной области техники. Например, в прилагаемой формуле изобретения любой из заявленных вариантов осуществления настоящего изобретения может быть использован в любой комбинации.

В следующем подробном описании настоящего изобретения приводится ссылка на сопроводительные чертежи, которые являются частью настоящего документа и на которых показаны в качестве иллюстрации только конкретные варианты осуществления, в которых настоящее изобретение может быть реализовано. Следует понимать, что могут быть использованы и другие варианты осуществления настоящего изобретения, и могут быть внесены структурные или логические изменения, не выходя за рамки объема настоящего изобретения. Следовательно, следующее подробное описание не следует воспринимать в ограничивающем смысле, и объем настоящего изобретения определяется прилагаемой формулой изобретения.

Предпочтительные утверждения (признаки) и варианты осуществления настоящего изобретения изложены в настоящем документе ниже. Каждое утверждение и варианты осуществления настоящего изобретения, определенные таким образом, могут быть объединены с любым другим утверждением и/или вариантами осуществления, если явно

не указано обратное. В частности, любой признак, указанный как предпочтительный или имеющий преимущество, может быть объединен с любым другим признаком или признаками, или утверждениями, указанными как предпочтительные или имеющие преимущество.

Термин "растение" включает целые растения, включая их потомство или потомков. В контексте настоящего документа, термин "растение", если явно не указано иное, означает растение на любой стадии развития. Термин "часть растения" включает любую часть или производное растения, включая конкретные растительные ткани или структуры, растительные клетки, протопласт растения, растительную клетку или культуру тканей, из которых могут быть регенерированы растения, каллусы растения, маточные корневища растения и растительные клетки, которые являются интактными в растениях или частях растений, такие как семена, ядра, початки, цветки, семядоли, листья, стебли, почки, корни, корневые кончики, стерня и тому подобное. Части растений могут включать обработанные части растений или производные, включая цветок, масла, экстракты и так далее. "Части растения" представляют собой, например, вегетативные органы/структуры побега, например, листья, стебли и клубни; корни, цветки и цветковые органы/структуры, например, прицветники, чашелистики, лепестки, тычинки, плодолистики, пыльники и семяпочки; семя, включая зародыш, эндосперм и семенную оболочку; плод и зрелую завязь; растительную ткань, например, сосудистую ткань, покровную ткань и тому подобное; и клетки, например, защитные клетки, яйцеклетки, пыльцу, трихомы и тому подобное; и их потомков. Части растений могут быть прикреплены к целому интактному растению или отделены от него. Такие части растения включают, но этим не ограничиваются, органы, ткани и клетки растения, и, предпочтительно, семена. "Растительная клетка" представляет собой структурную и физиологическую единицу растения, содержащую протопласт и клеточную стенку. Растительная клетка может быть в форме выделенной одиночной клетки или культивируемой клетки, или в виде части более высокоорганизованной единицы, такой как, например, растительная ткань, орган растения или целое растение. "Культура растительных клеток" означает культуры растительных единиц, таких как, например, протопласты, клетки в культуре клеток, клетки в растительных тканях, пыльца, пыльцевые трубки, семяпочки, зародышевые мешки, зиготы и зародыши на различных стадиях развития. "Растительный материал" относится к листьям, стеблям, корням, цветкам или частям цветков, плодам, пыльце, яйцеклеткам, зиготам, семенам, отводкам, клеткам или культурам тканей, или любой другой части, или

продукту растения, включая шрот. Сюда также относится каллус или каллусная ткань, а также экстракты (такие как экстракты из стрежневых корней) или образцы. "Орган растения" представляет собой отдельную и визуально структурированную, и дифференцированную часть растения, такую как корень, стебель, лист, бутон или зародыш. Термин "растительная ткань", в контексте настоящего документа, означает группу растительных клеток, организованных в структурную и функциональную единицу. Сюда относится любая ткань растения в planta или в культуре. Этот термин включает, но этим не ограничивается, целые растения, органы растений, семена растений, культуру тканей и любые группы растительных клеток, организованных в структурные и/или функциональные единицы. Использование этого термина в сочетании или в отсутствие какого-либо конкретного типа растительной ткани, как указано выше, или иным образом, охватываемого этим определением, не подразумевает исключения любого другого типа растительной ткани.

В определенных вариантах осуществления настоящего изобретения, часть или производное растения является или содержит (функциональный) материал для размножения, такой как зародышевая плазма, семя или зародыш растения, или другой материал, из которого растение может быть регенерировано. В определенных вариантах осуществления настоящего изобретения, часть или производное растения не является (функциональным) материалом для размножения, таким как зародышевая плазма, семя или зародыш растения, или другой материал, из которого растение может быть регенерировано. В определенных вариантах осуществления настоящего изобретения, часть или производное растения не содержит (функциональных) мужских и женских репродуктивных органов. В определенных вариантах осуществления настоящего изобретения, часть или производное растения является или содержит материал для размножения, но материал для размножения, который не используется или не может использоваться (больше) для производства или генерирования новых растений, такой как материал для размножения, который был химически, механически или иным образом приведен в нефункциональное состояние, например, путем термической обработки, кислотной обработки, уплотнения, измельчения, дробления и так далее.

В контексте настоящего документа, термины "потомок" и "растение-потомок" относятся к растению, сгенерированному в результате полового размножения, по меньшей мере, от одного родительского растения. Растение-потомок может быть получено путем самоопыления одного родительского растения или путем скрещивания двух родительских растений. Например, растение-потомок может быть получено путем самоопыления

родительского растения или путем скрещивания двух родительских растений, включая самоопыление, а также F1 или F2 или еще и последующие поколения. F1 представляет собой потомков первого поколения, полученных от родителей, по меньшей мере, один из которых впервые используется в качестве донора признака, в то время как потомки второго поколения (F2) или последующих поколений (F3, F4 и т.п.) представляют собой образцы, полученные в результате самоопыления, интеркроссов, обратных скрещиваний и/или других скрещиваний F1 s, F2 s и тому подобного. Таким образом, F1 может представлять собой (и в некоторых вариантах осуществления настоящего изобретения представляет собой) гибрид, полученный в результате скрещивания между двумя настоящими гомозиготными родителями (т.е., родителями, которые являются настоящими гомозиготными, и каждый является гомозиготным по интересующему признаку или его аллелю), в то время как F2 может представлять собой (и в некоторых вариантах осуществления настоящего изобретения представляет собой) потомка, полученного в результате самоопыления гибридов F1. Термин "потомки" может в определенных вариантах осуществления настоящего изобретения использоваться взаимозаменяемо с термином "потомство", в частности, когда растение или растительный материал получен в результате полового скрещивания родительских растений. В соответствии с настоящим изобретением, потомок, предпочтительно, относится к потомку F1.

В контексте настоящего документа, термины "скрещенный" или "скрещивание" означают слияние гамет посредством опыления для получения потомков (т.е., клеток, семян или растений). Этот термин охватывает как половые скрещивания (опыление одного растения другим), так и самооплодотворение (самооплодотворение, самоопыление, т.е., когда пыльца и семяпочка (или микроспоры и мегаспоры) происходят от одного и того же растения или генетически идентичных растений). Предпочтительно, скрещивание, как указано в настоящем документе, представляет собой оплодотворение одного растения другим растением, т.е., это не самоопыление.

В контексте настоящего документа, термин "численность популяции растений" может использоваться взаимозаменяемо с термином "популяция растений". Популяция растений, предпочтительно, включает множество отдельных растений, как, например, предпочтительно, по меньшей мере, 10, в частности, 20, 30, 40, 50, 60, 70, 80 или 90, более предпочтительно, по меньшей мере, 100, например, 200, 300, 400, 500, 600, 700, 800 или 900, еще более предпочтительно, по меньшей мере, 1000, например, по меньшей мере, 10000 или, по меньшей мере, 100000.

В контексте настоящего документа, термины "фенотип", "фенотипический признак" или "признак" относятся, по меньшей мере, к одному признаку растения или растительной клетки. Фенотип можно наблюдать невооруженным глазом или с помощью любых других средств оценки, известных в данной области техники, например, с помощью микроскопии, биохимического анализа или электромеханического количественного анализа. В некоторых случаях фенотип непосредственно контролируется одним геном или генетическим локусом (т.е., соответствует "одному генному признаку"). В случае индукции гаплоидов, использование цветных маркеров, таких как R Navajo, и других маркеров, включая трансгены, визуализируемые по присутствию или отсутствию цвета в семени, свидетельствует о том, что семя является индуцированным гаплоидным семенем. Использование R Navajo в качестве цветного маркера и использование трансгенов хорошо известно в данной области техники в качестве средств обнаружения индукции гаплоидного семени на женском растении. В других случаях, фенотип является результатом взаимодействий между несколькими генами, что в некоторых вариантах осуществления настоящего изобретения также является результатом взаимодействия растения и/или растительной клетки с окружающей средой, в которой они находятся.

В контексте настоящего документа, термин "кукуруза" относится к растению вида Zea mays (Кукуруза обыкновенная), предпочтительно, к Zea mays ssp mays (Кукуруза сахарная).

В контексте настоящего документа, термин "мужское стерильное" растение (линия, сорт или разновидность) имеет свое обычное значение в данной области техники. В качестве дополнительных разъяснений, и без ограничений, этот термин относится к растению, которое не способно производить потомство в качестве донора пыльцы и, как следствие, может быть не способно производить (функциональные) пыльники, пыльцу Цитоплазматические или гаметы. мужские стерильные растения имеют цитоплазматические гены, обычно в митохондриях, которые кодируют факторы, нарушающие или предотвращающие развитие пыльцы, что делает их мужскими стерильными, причем мужская стерильность наследуется по материнской линии. Чтобы использовать цитоплазматическую мужскую стерильность для производства гибридных семян, обычно требуются три отдельные линии растений: мужская стерильная линия, изогенная мужская фертильная линия для размножения ("линия-закрепитель") и линия для восстановления фертильности гибрида, чтобы он мог давать семена ("линиявосстановитель"). Линия мужской стерильности используется в качестве рецептивного родителя при гибридном скрещивании, линия-закрепитель генетически идентична линии

мужской стерильности, за исключением того, что в ней отсутствуют факторы цитоплазматической стерильности, а линия-восстановитель представляет собой любую которая маскирует фактор цитоплазматической стерильности. восстановитель очень важна для таких растений, как зерновое сорго или хлопчатник, полезной культурой которых являются сами семена или структуры, связанные с семенами. Генетическая мужская стерильность похожа на цитоплазматическую стерильность, но отличается тем, что факторы стерильности кодируются в ядерной ДНК. Как правило, генетическая мужская стерильность относится к изменению генетической структуры растения, что приводит к его способности производить и/или распространять жизнеспособную пыльцу. Генетические мужские стерильные линии растений могут быть природного происхождения. Также возможно создать мужскую стерильную линию растения с использованием рекомбинантных технологий. Независимо от того, встречаются ли они в природе или являются трансгенными, мужские стерильные линии также требуют использования сестринской линии-закрепителя для своего размножения, что неизбежно приводит к получению как минимум 50% растений с мужской фертильностью в размноженных семенах. Это результат генетики линий мужской стерильности и линий-закрепителей. Если фактор мужской стерильности является рецессивным, как это происходит в большинстве случаев, то мужское стерильное растение должно быть гомозиготным рецессивным, чтобы проявить этот признак. Предпочтительно, в соответствии с настоящим изобретением, мужская стерильность относится к генетической мужской стерильности. Предпочтительно, в соответствии с настоящим изобретением, мужская стерильность не является или не охватывает цитоплазматическую мужскую стерильность.

Предпочтительно, в соответствии с настоящим изобретением, CMS, упомянутая в настоящем документе, представляет собой CMS-C (или CMS типа C), хотя также предусмотрены и другие типы CMS, включая CMS-T и CMS-S.

В контексте настоящего документа, термин "восстановитель" или "восстановитель фертильности" означает ген (гены), который восстанавливает (восстанавливают) фертильность СМS растения. Термин "восстановитель" может также означать растение или линию, несущую ген-восстановитель. В более широком смысле, термин "восстановитель" может быть применен к локусу (аллелю), гаплотипу или генотипу, что означает локус (аллель), гаплотип или генотип, несущий ген-восстановитель или отвечающий за фенотип-восстановитель. В соответствии с настоящим изобретением, ген-, локус- (аллель-), гаплотип-, генотип- или фенотип-восстановитель ассоциирован/сцеплен

с полиморфизмами (аллелями), полинуклеиновыми кислотами или маркерами по настоящему изобретению, как описано в настоящем документе в другом месте. Соответственно, локус- (аллель-)восстановитель или локус- (аллель-)восстановитель фертильности относится к геномному интервалу, несущему ген- (гены-)восстановитель, и характеризуется присутствием, по меньшей мере, одного полиморфизма (аллеля), полинуклеиновой кислоты или молекулярного маркера, как описано в настоящем документе. В соответствии с настоящим изобретением, восстановитель не является (исключительно) или не содержит (исключительно) Rf4.

Комбинация любого, по меньшей мере, одного маркера (аллеля) по настоящему изобретению может упоминаться как маркерный гаплотип по настоящему изобретению.

В контексте настоящего документа, термин "закрепитель" может в равной степени использоваться как для мужских фертильных, так и для (изогенных) мужских стерильных линий и, следовательно, относится к растению (или линии), которое не имеет фенотипавосстановителя и/или содержит генотип-, гаплотип- или локус- (аллель-)восстановитель (все - либо гетерозиготные, либо гомозиготные), в отличие от термина "восстановитель", который действительно имеет фенотип-восстановитель и/или содержит генотип-, гаплотип- или (аллель-) (все - либо гетерозиготные, либо гомозиготные)восстановитель, предпочтительно, фенотип-, генотип-, гаплотип- или локус- (аллель-)восстановитель по настоящему изобретению. Соответственно, термин "закрепитель" может использоваться в равной степени как для линии-закрепителя в строгом смысле, т.е., для изогенного фертильного аналога CMS-линии для использования при "закреплении" CMS-линии, а также и для самой CMS-линии. В определенных вариантах осуществления настоящего изобретения, закрепитель не имеет фенотип-восстановитель и/или не содержит генотип-, гаплотип- или локус- (аллель-)восстановитель по настоящему изобретению, такой как любой, по меньшей мере, один молекулярный маркер (аллель) по настоящему изобретению, в частности, молекулярный маркер (аллель), ассоциированный/сцепленный с фенотипом-, генотипом-, гаплотипом- или локусом- (аллелем-)восстановителем по настоящему изобретению, который может быть гомозиготным или гетерозиготным. В определенных вариантах осуществления настоящего изобретения, закрепитель имеет другой фенотип-восстановитель и/или содержит генотип-, гаплотип- или локус- (аллель-)восстановитель, отличный от фенотипа-восстановителя, и/или содержит генотип-, гаплотип- или локус- (аллель-)восстановитель по настоящему изобретению, например, Rf4, который может быть гомозиготным или гетерозиготным.

Термин "локус" (во множественном числе - локусы) означает конкретное место или места, или участок на хромосоме, где, например, обнаружен QTL/гаплотип, ген или генетический маркер. В контексте настоящего документа, термин "локус количественного признака" или "QTL" имеет свое обычное значение, известное в данной области техники. Посредством дополнительных разъяснений, и без ограничений, QTL может относиться к области ДНК, которая ассоциирована с дифференциальной экспрессией количественного фенотипического признака, по меньшей мере, на одном генетическом фоне, например, по меньшей мере, в одной размножающейся популяции. Область QTL охватывает или тесно сцеплена с геном или генами, которые влияют на рассматриваемый признак.

В контексте настоящего документа, термин "аллель" или "аллели" относится, по меньшей мере, к одной альтернативной форме, то есть, к другой нуклеотидной последовательности, локуса.

"Аллель локуса может содержать множество генов или других генетических факторов в пределах смежной геномной области или группы сцепления, такой как гаплотип. Аллель локуса может обозначать гаплотип в пределах указанного окна, при этом указанное окно представляет собой смежную геномную область, которая может быть определена и отслежена с помощью набора, по меньшей мере, одного полиморфного маркера. Гаплотип может быть определен по уникальному отпечатку аллелей в каждом маркере в пределах указанного окна. Локус может кодировать, по меньшей мере, один аллель, который влияет на экспрессивность непрерывно распределенного (количественного) фенотипа. В определенных вариантах осуществления настоящего изобретения, локус, аллель, полинуклеиновая кислота или молекулярный маркер (аллель), как описано в настоящем документе, может быть гомозиготным. В определенных вариантах осуществления настоящего изобретения, локус, аллель, полинуклеиновая кислота или молекулярный маркер (аллель), как описано в настоящем документе, может быть гетерозиготным.

В контексте настоящего документа, термин "мутантные аллели" или "мутация" аллелей включает аллели, имеющие, по меньшей мере, одну мутацию, такую как инсерция, делеция, стоп-кодон, изменение основания (например, транзиция или трансверсия) или изменение границ сплайсинга, которая может приводить или не приводить к появлению измененных генных продуктов. Модификации аллелей могут возникать в кодирующих или некодирующих областях (например, в промоторных областях, экзонах, интронах или границах сплайсинга).

"Маркер" представляет собой (средство нахождения положения на генетической или физической карте) генетическую или физическую карту, или же сцепления между маркерами и локусами признаков (локусами, влияющими на признаки). Положение, которое обнаруживает маркер, может быть известно посредством обнаружения полиморфных аллелей и их генетического картирования, или же путем гибридизации, сопоставления последовательностей или амплификации последовательности, которая физически картирована. Маркер может представлять собой ДНК-маркер была (обнаруживает полиморфизмы ДНК), белок (обнаруживает вариацию в кодируемом полипептиде) или просто унаследованный фенотип (например, "восковой" фенотип). ДНК-маркер может быть получен из геномной нуклеотидной последовательности или из экспрессируемых нуклеотидных последовательностей (например, из сплайсированной РНК или кДНК). В зависимости от технологии ДНК-маркера, маркер может состоять из комплементарных праймеров, фланкирующих локус, и/или из комплементарных зондов, которые гибридизируются с полиморфными аллелями в локусе. Термин "маркерный последовательность обозначает локус (ген, или нуклеотид), обнаруживается маркером. "Маркер" или "молекулярный маркер", или "маркерный локус" также может использоваться для обозначения последовательности нуклеиновой кислоты или аминокислоты, которая является достаточно уникальной для характеристики конкретного локуса в геноме. Любой обнаруживаемый полиморфный признак может быть использован в качестве маркера при условии, что он наследуется дифференцированно и проявляет неравновесное сцепление с представляющим интерес фенотипическим признаком.

Маркеры, которые обнаруживают генетические полиморфизмы между членами популяции, хорошо известны в данной области техники. Маркеры могут быть определены по типу полиморфизма, который они обнаруживают, а также по технологии маркирования, используемой для обнаружения полиморфизма. Типы маркеров включают, но этим не ограничиваются, например, обнаружение полиморфизмов длин рестрикционных фрагментов (RFLP), обнаружение маркеров изоферментов, случайно амплифицированной полиморфной ДНК (RAPD), полиморфизмов длин амплифицированных фрагментов (AFLP), обнаружение простых повторяющихся последовательностей (SSR), обнаружение амплифицированных вариабельных последовательностей генома растений, обнаружение самоподдерживающейся репликации последовательностей или обнаружение однонуклеотидных полиморфизмов (SNP). SNP могут быть обнаружены, например, посредством секвенирования ДНК, методов специфической амплификации

последовательностей на основе ПЦР, обнаружения полинуклеотидных полиморфизмов с помощью аллель-специфической гибридизации (ASH), динамической аллель-специфической гибридизации (DASH), молекулярных маяков, гибридизации на микрочипах, количественных анализов олигонуклеотидной лигазы, флэп-эндонуклеаз, 5'-эндонуклеаз, удлинения праймера, одноцепочечного конформационного полиморфизма (SSCP) или геля-электрофореза с градиентом температуры (TGGE). Преимущество секвенирования ДНК, такого как технология пиросеквенирования, состоит в том, что оно позволяет обнаружить ряд сцепленных аллелей SNP, которые составляют гаплотип. Гаплотипы, как правило, более информативны (обнаруживают более высокий уровень полиморфизма), чем SNP.

"Маркерный аллель", в альтернативном варианте "аллель маркерного локуса", может относиться к одной из множества полиморфных нуклеотидных последовательностей, обнаруженных в маркерном локусе в популяции. Что касается маркера SNP, то аллель относится к специфическому нуклеотидному основанию, присутствующему в этом SNP локусе у этого отдельного растения.

"Тонкое картирование" относится к способам, с помощью которых положение геномной области (например, QTL) может быть определено более точно фрагмента (конкретизированно), и с помощью которого уменьшается размер интрогрессии, содержащего QTL. Например, могут быть получены Почти изогенные линии для QTL или гаплотипа (QTL/гаплотип NIL), которые содержат различные, перекрывающиеся фрагменты фрагмента интрогрессии в пределах однородного в остальном генетического фона рекуррентного родителя. Такие линии затем могут быть использованы для картирования того, на каком фрагменте расположен QTL/гаплотип, и для идентификации линии, имеющей более короткий фрагмент интрогрессии, содержащий QTL/гаплотип.

"Маркерная селекция" (MAS) представляет собой процесс, посредством которого отдельные растения отбираются на основе маркерных генотипов. "Маркерная контрселекция" представляет собой процесс, посредством которого маркерные генотипы используются для идентификации растений, которые не будут отобраны, что позволяет исключить их из программы скрещивания или посадки. Маркерная селекция использует присутствие молекулярных маркеров, которые генетически сцеплены с конкретным локусом или с конкретной областью хромосомы (например, фрагмент интрогрессии, трансген, полиморфизм, мутация и так далее) для отбора растений, у которых присутствует конкретный локус или область (фрагмент интрогрессии, трансген,

полиморфизм, мутация и так далее). Например, молекулярный маркер, генетически сцепленный с геномной областью (например, с гаплотипом) или геном (например, с аллелем RLK1, придающим устойчивость к патогену), как определено в настоящем документе, может быть использован для обнаружения и/или отбора растений, содержащих НТ2/НТ3 на 8 хромосоме. Чем ближе генетическое сцепление маркерного аллеля с локусом (например, примерно, 7 сМ, 6 сМ, 5 сМ, 4 сМ, 3 сМ, 2 сМ, 1 сМ, 0,5 сМ или менее), тем менее вероятно, что маркер диссоциируется от локуса посредством рекомбинации в мейозе. Аналогичным образом, чем ближе два маркера сцеплены друг с другом (например, в пределах 7 сМ или 5 сМ, 4 сМ, 3 сМ, 2 сМ, 1 сМ или менее), тем менее вероятно, что два маркера будут отделены друг от друга (и тем более вероятно, что они будут косегрегировать как единое целое). Маркер "в пределах 7 сМ, или в пределах 5 сМ, 3 сМ, 2 сМ или 1 сМ" другого маркера относится к маркеру, который генетически картируется в области, в пределах 7 сМ или 5 сМ, 3 сМ, 2 сМ, или 1 сМ области, фланкирующей маркер (то есть, по обе стороны от маркера). Аналогичным образом, маркер в пределах 5 Мб, 3 Мб, 2,5 Мб, 2 Мб, 1 Мб, 0,5 Мб, 0,4 Мб, 0,3 Мб, 0,2 Мб, 0,1 Мб, 50 кб, 20 кб, 10 кб, 5 кб, 2 кб, 1 кб или менее другого маркера относится к маркеру, который физически расположен в пределах 5 Мб, 3 Мб, 2,5 Мб, 2 Мб, 1 Мб, 0,5 Мб, 0,4 Мб, 0,3 Мб, 0,2 Мб, 0,1 Мб, 50 кб, 20 кб, 10 кб, 5 кб, 2 кб, 1 кб или менее области геномной ДНК, фланкирующей маркер (то есть, по обе стороны от маркера). "LOD-балл" (количественный показатель сцепления генов) (логарифм (основание 10) отношения шансов) относится к статистическому испытанию, зачастую используемому для анализа сцеплений в популяциях животных и растений. LOD-балл сравнивает вероятность получения данных испытания, если два локуса (локусы молекулярного маркера и/или локус фенотипического признака) действительно сцеплены, с вероятностью наблюдения тех же данных чисто случайно. Положительные LOD-баллы свидетельствуют о присутствии сцепления, а LOD-балл, превышающий 3,0, считается доказательством сцепления. LOD-балл +3 указывает на вероятность 1000 к 1, что наблюдаемое сцепление возникло не случайно.

"Маркерный гаплотип" относится к комбинации (маркерных) аллелей в (маркерном) локусе.

"Маркерный локус" представляет собой конкретное местоположение хромосомы в геноме вида, где может быть обнаружен конкретный маркер. Маркерный локус может быть использован для отслеживания присутствия второго сцепленного локуса, например, локуса, который влияет на экспрессию фенотипического признака. Например, маркерный

локус может использоваться для отслеживания сегрегации аллелей в генетически или физически сцепленном локусе.

"Маркерный зонд" представляет собой последовательность или молекулу нуклеиновой кислоты, которая может быть использована для идентификации присутствия маркерного локуса, например, зонд нуклеиновой кислоты, который комплементарен последовательности маркерного локуса, посредством гибридизации нуклеиновой кислоты. Маркерные зонды, содержащие, по меньшей мере, 30 смежных нуклеотидов маркерного локуса ("все или часть" последовательности маркерного локуса), могут быть использованы для гибридизации нуклеиновой кислоты. В альтернативном варианте осуществления настоящего изобретения, в некоторых аспектах, маркерный зонд относится к зонду любого типа, который способен различать (то есть, генотип) конкретный аллель, который присутствует в маркерном локусе.

"молекулярный маркер" может использоваться обозначения для генетического маркера или его кодируемого продукта (например, белка), используемого в качестве исходной точки при идентификации сцепленного локуса. Маркер может быть получен из геномных нуклеотидных последовательностей или из экспрессируемых нуклеотидных последовательностей (например, из сплайсированной РНК, кДНК и так или ИЗ кодируемого полипептида. Этот термин также относится последовательностям нуклеиновых кислот, комплементарным или фланкирующим маркерные последовательности, таким как нуклеиновые кислоты, используемые в качестве зондов или пар праймеров, способных амплифицировать маркерную последовательность. "Зонд молекулярного маркера" представляет собой последовательность или молекулу нуклеиновой кислоты, которая может использована для идентификации присутствия маркерного локуса, например, зонд нуклеиновой кислоты, который комплементарен последовательности маркерного локуса. В альтернативном варианте осуществления настоящего изобретения, в некоторых аспектах, маркерный зонд относится к зонду любого типа, который способен различать (то есть, генотип) конкретный аллель, который присутствует в маркерном локусе. Нуклеиновые кислоты "комплементарны", когда они специфически гибридизируются в растворе, например, в соответствии с правилами спаривания оснований по Уотсону-Крику. Некоторые из маркеров, описанных в настоящем документе, также упоминаются как гибридизационные маркеры, когда они расположены в области индела, такой как неколлинеарная область, описанная в настоящем документе. Это связано с тем, что область инсерции, по определению, является полиморфизмом по отношению к растению

без инсерции. Таким образом, маркер должен только указывать, присутствует или отсутствует область индела. Любая подходящая технология обнаружения маркера может быть использована для идентификации такого гибридизационного маркера, например, в приведенных в примерах настоящего документа используется технология SNP.

"Генетические маркеры" представляют собой нуклеиновые кислоты, которые являются полиморфными в популяции, и аллели которых могут быть обнаружены и распознаны, по меньшей мере, одним аналитическим способом, например, RFLP, AFLP, изоферментом, SNP, SSR и тому подобным. Термины "молекулярный маркер" и "генетический маркер" используются в настоящем документе взаимозаменяемо. Этот термин также относится к последовательностям нуклеиновых кислот, комплементарным геномным последовательностям, таким как нуклеиновые кислоты, используемые в качестве зондов. Маркеры, соответствующие генетическим полиморфизмам между членами популяции, МОГУТ быть обнаружены с помощью методов, зарекомендовавших себя в данной области техники. Они включают, например, методы специфической амплификации последовательностей на основе ПЦР, обнаружение полиморфизмов длин рестрикционных фрагментов (RFLP), обнаружение маркеров изоферментов, обнаружение полинуклеотидных полиморфизмов с помощью аллельспецифической гибридизации (ASH), обнаружение амплифицированных вариабельных последовательностей генома растения, обнаружение самоподдерживающейся репликации последовательностей, обнаружение простых повторяющихся последовательностей (SSR), обнаружение однонуклеотидных полиморфизмов (SNP) или обнаружение полиморфизмов длин амплифицированных фрагментов (AFLP). Известны также хорошо обнаружения экспрессирующихся зарекомендовавшие себя методы последовательностей (EST) и SSR-маркеров, полученных из последовательностей EST, и случайно амплифицированной полиморфной ДНК (RAPD).

Как указано в настоящем документе, полинуклеиновая кислота по настоящему изобретению, как описано в настоящем документе, считается фланкированной определенными молекулярными маркерами или аллелями молекулярных маркеров, если полинуклеиновая кислота содержится в полинуклеиновой кислоте, при этом, соответственно, первый маркер (аллель) расположен выше (то есть, на 5') упомянутой полинуклеиновой кислоты, а второй маркер (аллель) расположен ниже (то есть, на 3') упомянутой полинуклеиновой кислоты. Такие первый и второй маркеры (аллели) могут граничить с полинуклеиновой кислотой. Нуклеиновая кислота может в равной степени содержать такой первый и второй маркер (аллель), например, соответственно, на 5'- и 3'-

конце или вблизи них, например, соответственно, в пределах 50 кб от 5'- и 3'-конца, предпочтительно, в пределах 10 кб от 5'- и 3'-конца, например, в пределах 5 кб от 5'- и 3'-конца, в пределах 1 кб от 5'- и 3'-конца или менее.

"Полиморфизм" представляет собой вариацию в ДНК между, по меньшей мере, двумя индивидуумами в популяции. Полиморфизм, предпочтительно, имеет частоту, по меньшей мере, 1 % в популяции. Полезный полиморфизм может включать однонуклеотидный полиморфизм (SNP), простую повторяющуюся последовательность (SSR) или инсерционно-делеционный полиморфизм, также называемый в настоящем документе "инделом". Термин "индел" относится к инсерции или делеции, при этом, одна линия может упоминаться как имеющая вставленный нуклеотид или фрагмент ДНК относительно второй линии, или вторая линия может упоминаться как имеющая удаленный нуклеотид или фрагмент ДНК относительно первой линии.

"Физическое расстояние" между локусами (например, между молекулярными маркерами и/или между фенотипическими маркерами) на одной и той же хромосоме представляет собой фактическое физическое расстояние, выраженное в основаниях или парах оснований (п.о.), килобазах или килобазах пар оснований (кб) или мегабазах или мега пар оснований (Мб).

"Генетическое расстояние" между локусами (например, между молекулярными маркерами и/или между фенотипическими маркерами) на одной и той же хромосоме измеряется частотой кроссинговера или частотой рекомбинаций (RF) и указывается в сантиморганах (сМ). Один сМ соответствует частоте рекомбинации 1%. Если рекомбинанты нельзя найти, то RF равна нулю, и локусы находятся либо очень близко друг к другу физически, либо они идентичны. Чем дальше друг от друга находятся два локуса, тем выше RF.

"Физическая карта" генома представляет собой карту, показывающую линейный порядок идентифицируемых ориентиров (включая гены, маркеры и так далее) на хромосомной ДНК. Однако, в отличие от генетических карт, расстояния между ориентирами являются абсолютными (например, измеряются в парах оснований или выделенных и перекрывающихся смежных генетических фрагментах) и не основаны на генетической рекомбинации (которая может варьироваться в разных популяциях).

Аллель "отрицательно" коррелирует с признаком, когда он сцеплен с ним, и когда присутствие аллеля является показателем того, что желаемый признак или форма признака не проявится у растения, содержащего аллель. Аллель "положительно" коррелирует с признаком, когда он сцеплен с ним, и когда присутствие аллеля является

показателем того, что желаемый признак или форма признака проявится у растения, содержащего аллель.

Сантиморган ("cM") представляет собой единицу измерения частоты рекомбинации. Один cM равен 1 % вероятности того, что маркер в одном генетическом локусе будет отделен от маркера во втором локусе из-за скрещивания в одном поколении.

В контексте настоящего документа, термин "хромосомный интервал" обозначает непрерывный линейный интервал геномной ДНК, которая находится в planta на одной хромосоме. Генетические элементы или гены, расположенные на одном хромосомном интервале, физически сцеплены. Размер хромосомного интервала особо не ограничен. В некоторых аспектах, генетические элементы, расположенные в пределах одного хромосомного интервала, генетически сцеплены, обычно с расстоянием генетической рекомбинации, например, меньшим или равным 20 сМ, или, в альтернативном варианте, меньшим или равным 10 сМ. То есть, два генетических элемента в пределах одного хромосомного интервала подвергаются рекомбинации с частотой, меньшей или равной 20% или 10%.

Термин "тесно сцепленный" в настоящей заявке означает, что рекомбинация между двумя сцепленными локусами происходит с частотой, равной или меньшей примерно 10% (то есть, отделены на генетической карте не более чем на 10 сМ). Другими словами, тесно сцепленные локусы совместно косегрегируются, по меньшей мере, в 90% случаев. Маркерные локусы особенно полезны для объекта настоящего изобретения, когда они демонстрируют значительную вероятность косегрегации (сцепления) с желаемым признаком (например, с устойчивостью к серой пятнистости листьев). Тесно сцепленные локусы, такие как маркерный локус и второй локус, могут отображать частоту межлокусной рекомбинации, составляющую 10% или менее, предпочтительно, примерно 9% или менее, еще более предпочтительно, примерно 8% или менее, еще более предпочтительно, примерно 7% или менее, еще более предпочтительно, примерно 6% или менее, еще более предпочтительно, примерно 5% или менее, еще более предпочтительно, примерно 4% или менее, еще более предпочтительно, примерно 3% или менее и еще более предпочтительно, примерно, 2% или менее. В очень предпочтительных вариантах осуществления настоящего изобретения, соответствующие локусы отображают частоту рекомбинации примерно 1% или менее, например, примерно 0,75% или менее, более предпочтительно, примерно 0,5% или менее или еще более предпочтительно, примерно 0,25% или менее. Два локуса, которые локализованы в одной и той же хромосоме, и на таком расстоянии, что рекомбинация между двумя локусами происходит с частотой менее

10% (например, примерно 9 %, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1 %, 0,75%, 0,5%, 0,25% или менее), также называются "проксимальными" друг другу. В некоторых случаях, два разных маркера могут иметь одинаковые координаты генетической карты. В этом случае, два маркера настолько проксимальны друг другу, что рекомбинация происходит между ними с такой низкой частотой, что ее невозможно обнаружить.

"Сцепление" относится к тенденции аллелей сегрегировать вместе чаще, чем ожидалось, случайно, если их передача была независимой. Как правило, сцепление относится к аллелям на одной и той же хромосоме. Генетическая рекомбинация происходит с предполагаемой случайной частотой по всему геному. Генетические карты строятся путем измерения частоты рекомбинации между парами признаков или маркеров. Чем ближе признаки или маркеры расположены друг к другу на хромосоме, тем ниже частота рекомбинации и тем выше степень сцепления. Признаки или маркеры считаются в настоящем документе сцепленными, если они обычно косегрегируются. Вероятность рекомбинации 1/100 на поколение определяется как расстояние на генетической карте 1,0 сантиморган (1,0 сМ). Термин "неравновесное сцепление" относится к неслучайной сегрегации генетических локусов или признаков (или и того, и другого). В любом случае, неравновесное сцепление подразумевает, что соответствующие локусы достаточно физически проксимальны по длине хромосомы, так что они сегрегируются вместе с большей, чем случайная (то есть, неслучайная), частотой. Маркеры, которые показывают неравновесное сцепление, считаются сцепленными. Сцепленные локусы косегрегируются более чем в 50% случаев, например, примерно от 51% до примерно 100% случаев. Другими словами, два маркера, которые косегрегируются, имеют частоту рекомбинации менее 50% (и, по определению, отделены менее чем на 50 сМ в одной и той же группе сцепления). В контексте настоящего документа, сцепление может быть между двумя маркерами или, в альтернативном варианте, между маркером и локусом, влияющим на фенотип. Маркерный локус может быть "ассоциирован" (сцеплен) с признаком. Степень сцепления маркерного локуса и локуса, влияющего на фенотипический признак, измеряется, например, как статистическая вероятность косегрегации этого молекулярного маркера с фенотипом (например, F-статистика или LOD-балл).

Генетические элементы или гены, расположенные на одном сегменте хромосомы, физически сцеплены. В некоторых вариантах осуществления настоящего изобретения, два локуса расположены в непосредственной близости, так что рекомбинация между парами гомологичных хромосом не происходит между двумя локусами во время мейоза с высокой частотой, например, таким образом, что сцепленные локусы косегрегируются, по

меньшей мере, примерно в 90% случаев, например, в 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99,5%, 99,75% или более случаев. Генетические элементы, расположенные в пределах хромосомного сегмента, также "генетически сцеплены", обычно в пределах расстояния генетической рекомбинации, меньшего или равного 50 сМ, например, примерно 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,75, 0,5, 0,25 сМ или менее. То есть, два генетических элемента в пределах одного хромосомного сегмента подвергаются рекомбинации во время мейоза друг с другом с частотой, меньшей или равной примерно 50%, например, примерно 49%, 48%, 47%, 46%, 45%, 44%, 43%, 42%, 41%, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%, 29%, 28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0,75%, 0,5%, 0,25% или менее. "Тесно сцепленные" маркеры отображают частоту кроссовера с данным составляющую примерно 10% или менее, например, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0,75%, 0,5%, 0,25% или менее (данный маркерный локус находится в пределах примерно 10 сМ от тесно сцепленного маркерного локуса, например, в пределах 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,75, 0,5, 0,25 сМ или менее от тесно сцепленного маркерного локуса). Другими словами, тесно сцепленные маркерные локусы косегрегируются, по меньшей мере, примерно в 90% случаев, например, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99,5%, 99,75% или более случаев.

настоящего документа, термины "интрогрессированный", контексте "интрогрессирование" и "интрогрессия" относятся как к естественному, так и к искусственному процессу, посредством которого хромосомные фрагменты или гены одного вида или сорта перемещаются в геном другого вида или сорта путем скрещивания этих видов. Процесс необязательно может быть завершен обратным скрещиванием с рекуррентным родителем. Например, интрогрессия желаемого аллеля в указанном локусе может быть передана, по меньшей мере, одному потомству посредством полового скрещивания между двумя родителями одного и того же вида, где, по меньшей мере, один из родителей имеет желаемый аллель в своем геноме. В альтернативном варианте осуществления настоящего изобретения, например, передача аллеля может происходить путем рекомбинации между двумя донорскими геномами, например, в слитом протопласте, где, по меньшей мере, один из донорских протопластов имеет желаемый аллель в своем геноме. Желаемый аллель может быть обнаружен, например, с помощью маркера, который ассоциирован с фенотипом, гаплотипом, QTL, трансгеном или чем-

либо подобным. В любом случае, потомство, содержащее желаемый аллель, может быть неоднократно подвергнуто обратному скрещиванию с линией, имеющей желаемый генетический фон, и отобрано по желаемому аллелю, что приведет к закреплению аллеля в выбранном генетическом фоне. Процесс "интрогрессии" зачастую называют "обратным скрещиванием", когда процесс повторяется, по меньшей мере, два раза. "Фрагмент интрогрессии" или "сегмент интрогрессии", или "область интрогрессии" относится к хромосомному фрагменту (или части, или области хромосомы), который был введен в другое растение того же или родственного вида либо искусственным, либо естественным путем, например, путем скрещивания или традиционными методами скрещивания, например, обратным скрещиванием, то есть, интрогрессированный фрагмент является результатом способов скрещивания, обозначаемых глаголом "интрогрессировать" (например, обратное скрещивание). При этом понимается, что термин "фрагмент интрогрессии" никогда не включает целую хромосому, а только часть хромосомы. Фрагмент интрогрессии может быть большим, например, даже три четверти или половина хромосомы, но, предпочтительно, он меньше, например, примерно 15 Мб или менее, например, примерно 10 Мб или менее, примерно 9 Мб или менее, примерно 8 Мб или менее, примерно 7 Мб или менее, примерно 6 Мб или менее, примерно 5 Мб или менее, примерно 4 Мб или менее, примерно 3 Мб или менее, примерно 2,5 Мб или 2 Мб, или менее, примерно 1 Мб (равно 1000000 пар оснований) или менее, или примерно 0,5 Мб (равно 500000 пар оснований) или менее, например, примерно 200000 п.о. (равно 200 тысяч пар оснований) или менее, примерно 100000 п.о. (100 тысяч пар оснований (кб)) или менее, примерно 50000 п.о. (50 кб) или менее, примерно 25000 п.о. (25 кб) или менее.

Считается, что генетический элемент, фрагмент интрогрессии, или ген, или аллель, придающий признак "получают из", или он может быть "получен из", или "получаемый из", или "присутствующий в" или "обнаруженный в" растении или части растения, как описано в настоящем документе в другом месте, если его можно перенести из растения, в котором он присутствует, в другое растение, в котором он не присутствует (например, линия или сорт), используя традиционные методы скрещивания, не приводя к фенотипическому изменению растения-реципиента, за исключением добавления признака, придаваемого генетическим элементом, локусом, фрагментом интрогрессии, геном или аллелем. Термины используются взаимозаменяемо, и генетический элемент, локус, фрагмент интрогрессии, ген или аллель, таким образом, могут быть перенесены в любой другой генетический фон, в котором отсутствует признак. Могут быть использованы не только растения, содержащие генетический элемент, локус, фрагмент интрогрессии, ген

или аллель, но также и потомство/потомки от таких растений, которые были отобраны для сохранения генетического элемента, локуса, фрагмента интрогрессии, гена или аллеля, и которые охватываются настоящим документом. Содержит ли растение (или геномная ДНК, клетка или ткань растения) тот же генетический элемент, локус, фрагмент интрогрессии, ген или аллель, которые можно получить от такого растения, может быть определено специалистом в данной области техники с использованием, по меньшей мере, одного метода, известного в данной области техники, такого как фенотипические количественные анализы, полногеномное секвенирование, анализ молекулярных маркеров, картирование признака, "роспись" хромосомы, тесты на аллелизм и тому подобное или комбинации методов. Следует понимать, что трансгенные растения также могут быть охвачены.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновую кислоту вводят (и геномно интегрируют) рекомбинантно или трансгенно. Полинуклеиновая кислота может быть введена (и геномно интегрирована) в нативный локус, чтобы заменить эндогенную полинуклеиновую кислоту (такую как полинуклеиновая кислота, не придающая устойчивости к патогену), или может быть введена (и геномно интегрирована) в локус, отличный от эндогенного локуса (например, путем случайной интеграции в геном). В определенных вариантах осуществления настоящего изобретения, способ генерирования растения кукурузы или части растения содержит трансформацию растения или части растения, предпочтительно, растительной клетки, более предпочтительно протопласта, с помощью полинуклеиновой кислоты, которая может быть предоставлена на векторе, как описано в настоящем документе в другом месте. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота имеет последовательность, отличную OT эндогенной полинуклеиновой кислоты (такой как эндогенная полинуклеиновая кислота, придающая устойчивости к патогену).

В контексте настоящего документа, термины "генная инженерия", "трансформация" и "генетическая модификация", все используются в настоящем документе как синонимы переноса выделенных и клонированных генов в ДНК, обычно хромосомную ДНК или геном, другого организма.

"Трансгенные" или "генетически модифицированные организмы" (ГМО), в контексте настоящего документа, представляют собой организмы, генетический материал которых был изменен с использованием методов, обычно известных как "технология рекомбинантной ДНК". Технология рекомбинантной ДНК охватывает возможность

объединения молекул ДНК из разных источников в одну молекулу ех vivo (например, в пробирке). Термин "трансгенный" в настоящем документе означает генетически модифицированный путем введения неэндогенной последовательности нуклеиновой кислоты. Обычно видоспецифическую последовательность нуклеиновой кислоты вводят в клетку в форме, расположении или количестве в месте, где последовательность нуклеиновой кислоты не встречается в клетке естественным образом. Эта терминология обычно не охватывает организмы, генетический состав которых был изменен в результате обычного скрещивания или "мутагенеза", поскольку эти способы предшествовали открытию методов рекомбинантной ДНК. Термин "нетрансгенный", в контексте настоящего документа, относится к растениям и пищевым продуктам, полученным от растений, которые не являются "трансгенными" или "генетически модифицированными организмами", как определено выше.

"Трансген" или "химерный ген" относится к генетическому локусу, содержащему последовательность ДНК, такую как рекомбинантный ген, который был введен в геном растения путем трансформации, такой как трансформация, опосредованная Agrobacterium. Растение, содержащее трансген, стабильно интегрированный в его геном, именуется как "трансгенное растение".

"Редактирование генов" или "редактирование генома" относится к генной инженерии, при которой ДНК или РНК вставляются, удаляются, модифицируются или заменяются в геноме живого организма. Редактирование генов может содержать целенаправленный или нецеленаправленный (случайный) мутагенез. Целенаправленный мутагенез может быть осуществлен, например, с помощью дизайнерских нуклеаз, таких как, например, мегануклеазы, цинк-пальцевые нуклеазы (ZFN), нуклеазы на основе эффектора, подобного активатору транскрипции (TALEN), и система кластеризованных регулярных промежуточных коротких палиндромных повторов (CRISPR/Cas9). Эти нуклеазы создают сайт-специфичные двухцепочечные разрывы (DSB) в желаемых местах генома. Индуцированные двухцепочечные разрывы репарируются путем негомологичного соединения концов (NHEJ) или гомологичной рекомбинации (HR), что приводит к целенаправленным мутациям или модификациям нуклеиновой кислоты. Использование дизайнерских нуклеаз особенно подходит для генерации нокаутов или нокдаунов генов. В осуществления изобретения, определенных вариантах настоящего разработаны дизайнерские нуклеазы, которые специфически вводят, по меньшей мере, один молекулярный маркер (аллель) в соответствии с настоящим изобретением, как описано в

настоящем документе. Системы доставки и экспрессии систем дизайнерских нуклеаз хорошо известны в данной области техники.

В определенных вариантах осуществления настоящего изобретения, нуклеаза или целенаправленная/сайт-специфичная/хоминг-нуклеаза представляет собой, состоит по существу или состоит из (модифицированной) системы или комплекса CRISPR/Cas, (модифицированного) белка Cas, (модифицированного) цинкового пальца, (модифицированной) нуклеазы цинкового пальца (ZFN), (модифицированного) эффектора, подобного фактору транскрипции (TALE), (модифицированной) эффекторной нуклеазы, подобной фактору транскрипции (TALEN), или (модифицированной) мегануклеазы. В определенных вариантах осуществления настоящего изобретения, упомянутая (модифицированная) нуклеаза или целенаправленная/сайт-специфичная/хоминг-нуклеаза представляет собой, содержит, состоит по существу ИЗ или состоит (модифицированной) РНК-направляемой нуклеазы. Следует понимать, определенных вариантах осуществления настоящего изобретения, нуклеазы могут представлять собой кодоны, оптимизированные для экспрессии в растениях. В контексте настоящего документа, термин "целенаправленность" выбранной последовательности нуклеиновой кислоты означает, что нуклеаза или нуклеазный комплекс действует специфичным для нуклеотидной последовательности образом. Например, в контексте системы CRISPR/Cas направляющая РНК способна к гибридизации с выбранной последовательностью нуклеиновой кислоты. В контексте настоящего документа, термин "гибридизация" или "гибридизирование" относится к реакции, в которой, по меньшей мере, один полинуклеотид вступают в реакцию с образованием комплекса, который стабилизируется посредством водородной связи между основаниями нуклеотидных остатков, то есть, процесс, в котором одноцепочечная молекула нуклеиновой кислоты присоединяется к комплементарной цепи нуклеиновой кислоты, то есть, согласуется с этим спариванием оснований. Стандартные процедуры гибридизации описаны, например, в работе Сэмбрук и соавт. (Молекулярное клонирование. Лабораторное руководство, Cold Spring Harbor Laboratory Press, 3-е издание 2001 года). Водородная связь может осуществляться путем спаривания оснований по Уотсону Крику, связывания по Хугстину или любым другим специфичным для последовательности способом. Комплекс может содержать две нити, образующие дуплексную структуру, три или более нитей, образующих многоцепочечный комплекс, одиночную самогибридизирующуюся цепь или любую их комбинацию. Реакция гибридизации может представлять собой этап более обширного процесса, такого как инициация ПЦР или расщепление полинуклеотида

ферментом. Последовательность, способная к гибридизации с данной последовательностью, называется "комплементом" данной последовательности. Предпочтительно, это означает, что, по меньшей мере, 50%, более предпочтительно, по меньшей мере, 55%, 60%, 65%, 70%, 75%, 80% или 85%, более предпочтительно, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% оснований цепи нуклеиновой кислоты образуют пары оснований с комплементарной цепью нуклеиновой кислоты. Возможность такого связывания зависит от жесткости условий гибридизации.

Редактирование генов может включать транзиентную, индуцибельную или конститутивную экспрессию компонентов или систем редактирования генов. Редактирование генов может включать геномную интеграцию или эписомальное присутствие компонентов или систем редактирования генов. Компоненты или системы редактирования генов могут быть предложены на векторах, таких как плазмиды, которые могут быть доставлены соответствующими средствами доставки, как известно в данной области техники. Предпочтительными векторами являются векторы экспрессии.

Редактирование генов может содержать предложение рекомбинантных матриц для осуществления репарации, направляемой гомологией (HDR). Например, генетический элемент может быть заменен путем редактирования гена, при котором предложена рекомбинантная матрица. ДНК может быть разрезана выше и ниже последовательности, которую необходимо заменить. Таким образом, последовательность, подлежащую замене, вырезают из ДНК. С помощью HDR вырезанная последовательность затем заменяется матрицей. В определенных вариантах осуществления настоящего изобретения, маркер (аллель) по настоящему изобретению, как описано в настоящем документе, может быть предоставлен на/в качестве матрицы. При конструировании системы таким образом, что двухцепочечные разрывы вводятся выше и ниже соответствующей области в геноме растения, не содержащей маркер (аллель), эта область вырезается и может быть заменена матрицей, содержащей маркер (аллель) по настоящему изобретению. Таким образом, введение маркера (аллеля) по настоящему изобретению в растение необязательно должно включать многократное обратное скрещивание, в частности, в растении со специфичным генетическим фоном. Аналогичным образом, полинуклеиновая кислота по настоящему изобретению может быть предложена на/в качестве матрицы. Однако более предпочтительно, полинуклеиновая кислота по настоящему изобретению может быть сгенерирована без использования рекомбинационной матрицы, но исключительно за счет действия эндонуклеазы, приводящего к разрыву двухцепочечной ДНК, который репарируется NHEJ, что приводит к образованию инделов.

В определенных вариантах осуществления настоящего изобретения, модификация нуклеиновой кислоты осуществляется путем случайного мутагенеза. Клетки или организмы могут подвергаться воздействию мутагенов, таких как ультрафиолетовое излучение или мутагенные химические вещества (такие, этилметансульфонат (EMS)), и затем отбираются мутанты с желаемыми характеристиками. быть идентифицированы Мутанты могут, например, c помощью TILLING (Таргетирование индуцированных локальных поражений в геномах). Способ сочетает мутагенез, такой как мутагенез с использованием химического мутагена, такого как этилметансульфонат (EMS), с чувствительным методом скрининга ДНК, который идентифицирует одноосновные мутации/точечные мутации в гене-мишени. Метод TILLING основан на образовании гетеродуплексов ДНК, которые образуются, когда множественные аллели амплифицируются с помощью ПЦР, а затем нагреваются и медленно охлаждаются. При ошибочном спаривании двух цепей ДНК образуется "глазок", который затем расщепляется одноцепочечными нуклеазами. Затем продукты разделяют по например, с помощью ВЭЖХ. См. МакКаллум и также "Целенаправленный скрининг на индуцированные мутации"; Nat Biotechnol. 2000, апрель; 18(4):455-7 и МакКаллум и соавт. "Таргетирование индуцированных локальных поражений в геномах (TILLING) для функциональной геномики растений": Plant Physiol. 2000, июнь; 123(2): 439-42.

В контексте настоящего документа, термин "гомозигота" относится к отдельной клетке или растению, имеющему одинаковые аллели, по меньшей мере, в одном или во всех локусах. Когда этот термин используется применительно к конкретному локусу или гену, это означает, по меньшей мере, что локус или ген имеет одинаковые аллели. В контексте настоящего документа, термин "гомозиготный" означает генетическое состояние, существующее, когда идентичные аллели находятся в соответствующих локусах на гомологичных хромосомах. В контексте настоящего документа, термин "гетерозигота" относится к отдельной клетке или растению, имеющему различные аллели, по меньшей мере, в одном или во всех локусах. Когда этот термин используется применительно к конкретному локусу или гену, это означает, по меньшей мере, что локус или ген имеют разные аллели. В контексте настоящего документа, термин "гетерозиготный" означает генетическое состояние, существующее, когда различные аллели находятся в соответствующих локусах на гомологичных хромосомах. В определенных вариантах осуществления настоящего изобретения, гаплотип и/или, по меньшей мере, один маркер, как описано в настоящем документе, является гомозиготным.

В определенных вариантах осуществления настоящего изобретения, гаплотип и/или, по меньшей мере, один маркер, как описано в настоящем документе, является гетерозиготным. В определенных вариантах осуществления настоящего изобретения, аллель гаплотипа и/или, по меньшей мере, один маркерный аллель, как описано в настоящем документе, является гомозиготным. В определенных вариантах осуществления настоящего изобретения, аллель гаплотипа и/или, по меньшей мере, один маркерный аллель, как описано в настоящем документе, является гетерозиготным.

В контексте настоящего документа, термин "идентичность последовательности" относится к степени идентичности между любой данной последовательностью нуклеиновой кислоты и целенаправленной последовательностью нуклеиновой кислоты. Процент идентичности последовательности вычисляют путем определения количества совпадающих положений в выровненных последовательностях нуклеиновой кислоты, деления количества совпадающих положений на общее количество выровненных нуклеотидов и умножения на 100. Совпадающее положение относится к положению, в котором идентичные нуклеотиды встречаются в одном и том же положении в выровненных последовательностях нуклеиновой кислоты. Процент идентичности последовательности также может быть определен для любой аминокислотной последовательности. Для определения процента идентичности последовательности, целенаправленную последовательность нуклеиновой кислоты или аминокислоты сравнивают с идентифицированной последовательностью нуклеиновой кислотой или аминокислоты с использованием программы BLAST 2 Sequences (Bl2seq) из автономной версии BLASTZ, содержащей BLASTN и BLASTP. Эту автономную версию BLASTZ можно получить с веб-сайта Fish & Richardson (Всемирная паутина по адресу fr.com/blast) или с веб-сайта Национального центра биотехнологической информации правительства США (Всемирная паутина по адресу ncbi.nlm.nih.gov). Инструкции, объясняющие, как использовать программу Bl2seq, можно найти в файле readme, прилагаемом к BLASTZ. BI2seq выполняет сравнение между двумя последовательностями с использованием алгоритма BLASTN или BLASTP.

BLASTN используется для сравнения последовательностей нуклеиновых кислот, в то время как BLASTP используется для сравнения аминокислотных последовательностей. Для сравнения двух последовательностей нуклеиновой кислоты, параметры устанавливаются следующим образом: -і устанавливается в файл, содержащий первую сравниваемую последовательность нуклеиновой кислоты (например, C:\seq l.txt); -j устанавливается в файл, содержащий вторую последовательность нуклеиновой кислоты,

подлежащую сравнению (например, C:\seq2.txt); -р устанавливается на blastn; -о в файл с любым желаемым именем (например, C:\output.txt); -q устанавливается на - 1; -r устанавливается на 2; а для всех остальных параметров остаются их значения, установленные по умолчанию. Следующая команда будет генерировать выходной файл, содержащий сравнение двух последовательностей: C:\B12seq -i c:\seq1 .txt -j c:\seq2.txt -p blastn -o c:\output.txt -q - 1 -r 2. Если последовательность-мишень имеет гомологию с каким-либо участком идентифицированной последовательности, то специальный файл будет представлять те области гомологии как выходной выровненные последовательности. Если последовательность-мишень не имеет общей гомологии с какой-либо частью идентифицированной последовательности, то в специальном выходном файле не будут представлены выровненные последовательности. После выравнивания, определяют длину путем подсчета количества последовательных нуклеотидов из последовательности-мишени, представленной в выравнивании с последовательностью из идентифицированной последовательности, начиная с любого совпадающего положения и заканчивая любым другим совпадающим положением. Совпадающее положение представляет собой любое положение, в котором идентичный нуклеотид представлен как в последовательности-мишени, так и в идентифицированной последовательности. Гэпы, представленные В последовательности-мишени, учитываются, поскольку гэпы не являются нуклеотидами. Аналогичным образом, гэпы, представленные в идентифицированной последовательности, не учитываются, поскольку учитываются нуклеотиды последовательности-мишени, нуклеотиды не идентифицированной последовательности. Процент идентичности по конкретной длине определяют путем подсчета количества совпадающих положений по этой длине и деления этого количества на длину, а затем умножения полученного значения на 100. Например, если (і) последовательность-мишень нуклеиновой кислоты с 500 основаниями сравнивают с рассматриваемой последовательностью нуклеиновой кислоты, (ii) программа Bl2seq представляет 200 оснований из последовательности-мишени, выровненной с областью рассматриваемой последовательности, где первое и последнее основания этой области из 200 оснований совпадают, и (ііі) количество совпадений по этим 200 выровненным основаниям равно 180, то последовательность-мишень нуклеиновой кислоты с 500 основаниями имеет длину 200, а идентичность последовательности по этой длине составляет 90% (то есть, $180 / 200 \times 100 = 90$). Следует понимать, что различные области пределах одной последовательности-мишени нуклеиновой кислоты, выравнивается с идентифицированной последовательностью, каждая может иметь свой

собственный процент идентичности. Следует отметить, что значение процента идентичности округляют до ближайшей десятой доли. Например, 78,11, 78,12, 78,13 и 78,14 округляют до 78,1, а 78,15, 78,16, 78,17, 78,18 и 78,19 округляют до 78,2. Также следует отметить, что значение длины всегда будет целым числом.

Термин "последовательность", при использовании в настоящем документе, относится к нуклеотидной последовательности (последовательностям), полинуклеотиду (полинуклеотидам), последовательности (последовательностям) нуклеиновой кислоты, нуклеиновой (кислотам), кислоте молекуле нуклеиновой кислоты, пептидам, полипентидам и белкам, в зависимости от контекста, в котором используется термин "последовательность". Термины "нуклеотидная последовательность (последовательности)", "полинуклеотид (полинуклеотиды)", "последовательность кислоты", "нуклеиновая (последовательности) нуклеиновой кислота (кислоты)", "молекула нуклеиновой кислоты" используются в настоящем документе взаимозаменяемо и относятся к нуклеотидам, либо к рибонуклеотидам, либо к дезоксирибонуклеотидам, либо к их рибонуклеотидов и дезоксирибонуклеотидов, в полимерной неразветвленной форме любой длины. Последовательности нуклеиновой кислоты включают ДНК, кДНК, геномную ДНК, РНК, синтетические формы и смешанные полимеры, как смысловые, так и антисмысловые цепи, или они могут содержать ненатуральные или дериватизированные нуклеотидные основания, что будет вполне понятно специалистами в данной области техники.

"Выделенная последовательность нуклеиновой кислоты" или "выделенная ДНК" относится к последовательности нуклеиновой кислоты, которая больше не находится в естественной среде, из которой она была выделена, например, последовательность нуклеиновой кислоты в бактериальной клетке-хозяине или в ядерном, или пластидном геноме растения. При упоминании в настоящем документе "последовательности", подразумевается, что имеется в виду молекула, имеющая такую последовательность, например, молекула нуклеиновой кислоты. "Клетка-хозяин" или "рекомбинантная клетка-хозяин" или "трансформированная клетка" являются терминами, относящимися к новой отдельной клетке (или организму), возникающей в результате введения в указанную клетку, по меньшей мере, одной молекулы нуклеиновой кислоты. Клетка-хозяин, предпочтительно, представляет собой растительную клетку или бактериальную клетку. Клетка-хозяин может содержать нуклеиновую кислоту в виде внехромосомно (эписомально) реплицирующейся молекулы, или она содержит нуклеиновую кислоту,

интегрированную в ядерный или пластидный геном клетки-хозяина, или в виде введенной хромосомы, например, минихромосомы.

Когда приводится ссылка на последовательность нуклеиновой кислоты (например, ДНК или геномную ДНК), имеющую "существенную идентичность последовательности" эталонной последовательности или имеющую идентичность последовательности, составляющую, по меньшей мере, 80% >, например, по меньшей мере, 85%, 90%, 95%, 98% > или 99% > идентичность последовательности нуклеиновой кислоты эталонной последовательности, в одном варианте осуществления настоящего изобретения, упомянутая нуклеотидная последовательность считается по существу идентичной данной нуклеотидной последовательности и может быть идентифицирована с использованием жестких условий гибридизации. В другом варианте осуществления настоящего изобретения, последовательность нуклеиновой кислоты содержит, по меньшей мере, одну мутацию, по сравнению с данной последовательностью нуклеотидов, но все же она может быть идентифицирована с использованием жестких условий гибридизации. "Жесткие условия гибридизации" могут быть использованы для идентификации нуклеотидных последовательностей, которые по существу идентичны данной нуклеотидной последовательности. Жесткие условия зависят от последовательности и будут отличаться в разных обстоятельствах. Как правило, жесткие условия выбирают примерно на 5°С ниже, чем термическая температура плавления (Тт) для конкретных последовательностей при определенной ионной силе и рН. Тт представляет собой температуру (при определенной ионной силе и рН), при которой 50% последовательности-мишени гибридизируется с идеально совпадающим зондом. Как правило, выбирают жесткие условия, при которых концентрация соли составляет примерно 0,02 моляра при рН 7, а температура составляет, по меньшей мере, 60°C. Снижение концентрации соли и/или повышение температуры повышает жесткость. Жесткими условиями гибридизации РНК-ДНК (Нозерн-блоты с использованием зонда из, например, 100 нуклеотидов) являются, например, условия, которые включают, по меньшей мере, одну промывку в 0,2 X SSC (додецилсульфат натрия) при температуре 63°C в течение 20 минут или эквивалентные условия. Жесткими условиями гибридизации ДНК-ДНК (Саузерн-блоты с использованием зонда из, например, 100 нуклеотидов) являются, например, условия, которые включают, по меньшей мере, одну промывку (обычно 2) в 0,2 X SSC при температуре, по меньшей мере, 50°C, обычно примерно 55°C, в течение 20 мин или эквивалентные условия. См. также Сэмбрук и соавт. (1989) и Сэмбрук and Расселл (2001).

При использовании в настоящем документе, термин "полипептид" или "белок" (оба термина используются в настоящем документе взаимозаменяемо) означает пептид, белок или полипептид, который охватывает аминокислотные цепи определенной длины, при этом, аминокислотные остатки сцеплены ковалентными пептидными связями. Однако пептидомиметики таких белков/полипептидов, при этом, аминокислота (аминокислоты) и/или пептидная связь (связи) были заменены функциональными аналогами, также охватываются настоящим изобретением, а также другие аминокислоты, отличные 20 аминокислот, кодируемых генами, такие как селеноцистеин. Пептиды, олигопептиды и белки могут быть названы полипептидами. Термин "полипептид" также относится, и не исключает, модификациям полипептида, например, К гликозилированию, К ацетилированию, фосфорилированию и тому подобному. Такие модификации хорошо описаны в основных документах и в более подробных монографиях, а также в исследовательской литературе.

Аминокислотные замещения охватывают изменения аминокислотного состава, при которых аминокислота заменяется другим встречающимся в природе аминокислотным остатком. Такие замещения могут быть классифицированы как "консервативные<1>, при которых аминокислотный остаток, содержащийся в белке дикого типа, заменен другой встречающейся в природе аминокислотой с аналогичным признаком, например Gly<->Ala, Val<->lle<->Leu, Asp<->Glu, Lys<->Arg, Asn<->Gln или Phe<->Trp<->Tyr. Замещения, охватываемые настоящим изобретением, также могут быть "неконсервативными", при которых аминокислотный остаток, который присутствует в белке дикого типа, замещен аминокислотой с другими свойствами, такой как встречающаяся в природе аминокислота из другой группы (например, замещение заряженной или гидрофобной аминокислоты кислоты аланином). Термин "сходные аминокислоты", в контексте настоящего документа, относится к аминокислотам, которые имеют сходные боковые цепи аминокислот, то есть, аминокислот, которые имеют полярные, неполярные или практически нейтральные боковые цепи. Термин "не сходные аминокислоты", в контексте настоящего документа, относится к аминокислотам, которые имеют разные боковые цепи аминокислот, например, аминокислота с полярной боковой цепью не сходна с аминокислотой с неполярной боковой цепью. Полярные боковые цепи обычно имеют тенденцию присутствовать на поверхности белка, где они могут взаимодействовать с водной средой, находящейся в клетках ("гидрофильные" аминокислоты). С другой стороны, "неполярные" аминокислоты, как правило, находятся в центре белка, где они могут взаимодействовать со сходными неполярными соседями ("гидрофобные" аминокислоты"). Примерами аминокислот,

имеющих полярные боковые цепи, являются аргинин, аспарагин, аспартат, цистеин, глутамин, глутамат, гистидин, лизин, серин и треонин (все гидрофильные, за исключением цистеина, который является гидрофобным). Примерами аминокислот, которые имеют неполярные боковые цепи, являются аланин, глицин, изолейцин, лейцин, метионин, фенилаланин, пролин и триптофан (все гидрофобные, за исключением глицина, который является нейтральным).

Термин "ген", в контексте настоящего документа, относится к полимерной форме нуклеотидов любой длины, либо рибонуклеотидов, либо дезоксирибонуклеотидов. Этот термин включает двух- и одноцепочечные ДНК и РНК. Он также включает известные типы модификаций, например, метилирование, "кэпы", замещения, по меньшей мере, одного из встречающихся в природе нуклеотидов аналогом. Предпочтительно, ген содержит кодирующую последовательность, кодирующую определенный в настоящем полипептид. "Кодирующая последовательность" представляет собой документе последовательность, которая транскрибируется В мРНК нуклеотидную и/или транслируется в полипептид при размещении или под контролем соответствующих регуляторных последовательностей. Границы кодирующей последовательности определяются стартовым кодоном трансляции на 5'-конце и стоп-кодоном трансляции на 3'-конце. Кодирующая последовательность может включать, но этим не ограничивается, мРНК, кДНК, последовательности рекомбинантных нуклеиновых кислот или геномную ДНК, в то время как интроны также могут присутствовать при определенных обстоятельствах.

В контексте настоящего документа, термин "эндогенный" относится к гену или аллелю, который присутствует в его естественном местоположении в геноме. Термин "эндогенный" может использоваться взаимозаменяемо с термином "нативный". Это, однако, не исключает присутствия, по меньшей мере, одного отличия нуклеиновой кислоты от аллеля дикого типа. В конкретных вариантах осуществления настоящего изобретения, отличие от аллеля дикого типа может быть ограничено до менее 9, предпочтительно, до менее 6, более конкретно, до менее 3 отличий по нуклеотидам, например, отличием в 0 нуклеотидов. Более конкретно, отличие от последовательности дикого типа может заключаться только в одном нуклеотиде. Предпочтительно, кодирует модифицированный белок, эндогенный аллель имеющий предпочтительно, менее 6, более конкретно, менее 3 и даже, более предпочтительно, только одно отличие или отсутствие отличия аминокислоты от белка дикого типа.

В контексте настоящего документа, термин "экзогенный полинуклеотид" относится к полинуклеотиду, такому как ген (или кДНК) или аллель, который введен или был рекомбинантно введен в клетку (или растение). Экзогенный полинуклеотид может быть эписомально или геномно интегрированным. Интеграция может быть случайной или сайтнаправленной. Интеграция может включать замену соответствующего эндогенного полинуклеотида. Следует понимать, что экзогенный полинуклеотид естественным образом не присутствует в клетке или растении.

В контексте настоящего документа, AGPv4 (или AGPv04) эталонного генома B73 относится к сборке B73 RefGen_v4 (также известной как AGPv4, B73 RefGen_v4), как указано в Базе данных генетики и геномики кукурузы (https://www.maizegdb.org/genome/genome_assembly/Zm-B73-REFERENCE-GRAMENE-4.0).

Способы скрининга на присутствие полинуклеиновой кислоты по настоящему изобретению или (молекулярного) маркера (маркеров) (аллелей), как описано в настоящем документе, известны в данной области техники. Без ограничений, скрининг может охватывать или содержать секвенирование, методы на основе гибридизации (такие как (динамическая) аллель-специфическая гибридизация, молекулярные маяки, SNP на микрочипах), методы на основе ферментов (такие как ПЦР, KASP (конкурентная аллельспецифическая ПЦР), RFLP, ALFP, RAPD, флэп-эндонуклеаза, удлинение праймера, 5'нуклеаза, количественный анализ олигонуклеотидной лигазы), методы постамплификации на основе физических свойствах ДНК (таких как одноцепочечный конформационный полиморфизм, гель-электрофорез c градиентом температуры, денатурирующая высокоэффективная жидкостная хроматография, плавление с высоким разрешением всего ампликона, использование белков, связывающих ошибочно спаренные ДНК, SNPlex (платформа для генотипирования SNP), сюрвейерский количественный анализ нуклеазы) и так далее.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию локуса-восстанавителя цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на отсутствие локуса-восстанавителя

цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию локуса-закрепителя цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на отсутствие локуса-закрепителя цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию (гаплотипа, ассоциированного/сцепленного) с локусом-восстанавителем цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на отсутствие (гаплотипа, ассоциированного/сцепленного) с локусом-восстанавителем цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию (гаплотипа, ассоциированного/сцепленного) с локусом-закрепителем цитоплазматической мужской стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на отсутствие (гаплотипа, ассоциированного/сцепленного) с локусом-закрепителем цитоплазматической мужской

стерильности на 3 хромосоме, в частности, RF-03-01, как описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера из Таблицы 4 или Таблицы 5. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух молекулярных маркеров из Таблицы 4 или Таблицы 5. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех молекулярных маркеров из Таблицы 4 или Таблицы 5. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локус-восстанавитель цитоплазматической мужской стерильности. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локус-закрепитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркерного аллеля из Таблицы 4 или Таблицы 5 (и имеющего полиморфизм, соответствующий или содержащийся в локусе-восстановителе цитоплазматической мужской стерильности). В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух молекулярных маркерных аллелей из Таблицы 4 или Таблицы 5 (и имеющих полиморфизм, соответствующий содержащийся локусе-восстановителе или В цитоплазматической мужской стерильности). В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех молекулярных маркерных аллелей из

Таблицы 4 или Таблицы 5 (и имеющих полиморфизм, соответствующий или содержащийся в локусе-восстановителе цитоплазматической мужской стерильности).

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркерного аллеля из Таблицы 4 или Таблицы 5 (и имеющего полиморфизм, соответствующий или содержащийся в локусе-закрепителе цитоплазматической мужской стерильности). В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух молекулярных маркерных аллелей из Таблицы 4 или Таблицы 5 (и имеющих полиморфизм, соответствующий или содержащийся В локусе-закрепителе цитоплазматической мужской стерильности). В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех молекулярных маркерных аллелей из Таблицы 4 или Таблицы 5 (и имеющих полиморфизм, соответствующий или содержащийся в локусе-закрепителе цитоплазматической мужской стерильности).

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одной последовательности полинуклеиновой кислоты, имеющей последовательность, представленную в любом из SEQ ID NO: 1, 5, 9, 13, 2, 6, 10 или 14, или имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9, 13, 2, 6, 10 или 14. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 1, 5, 9, 13, 2, 6, 10 или 14, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно,

по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9, 13, 2, 6, 10 или 14. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 1, 5, 9, 13, 2, 6, 10 или 14, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, ПО меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEO ID NO: 1, 5, 9, 13, 2, 6, 10 или 14. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локус-восстанавитель цитоплазматической мужской стерильности. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локус-закрепитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одной последовательности полинуклеиновой кислоты, имеющей последовательность, представленную в любом из SEQ ID NO: 1, 5, 9 или 13, или имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух последовательностей полинуклеиновой кислоты, имеюших последовательность, представленную в любом из SEQ ID NO: 1, 5, 9 или 13, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере,

на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 1, 5, 9 или 13, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, 95% идентична последовательности, на представленной в любом, по меньшей мере, одном из SEO ID NO: 1, 5, 9 или 13. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локусвосстанавитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одной последовательности полинуклеиновой кислоты, имеющей последовательность, представленную в любом из SEQ ID NO: 2, 6, 10 или 14, или имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух последовательностей полинуклеиновой кислоты, имеюших последовательность, представленную в любом из SEQ ID NO: 2, 6, 10 или 14, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения в частности, растения кукурузы или части растения, содержащему скрининг на обнаружение, или идентификацию, по меньшей мере, присутствие или трех

полинуклеиновой последовательностей кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 2, 6, 10 или 14, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее меньшей мере, предпочтительно, ПО на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локусзакрепитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного гена, выбранного из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющего, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205, 207, 3, 7, 11 или 15, или имеющего кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205, 207, 3, 7, 11 или 15. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющих, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205, 207, 3, 7, 11 или 15, или имеющих кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205, 207, 3, 7, 11 или 15. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющих, соответственно,

кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205, 207, 3, 7, 11 или 15, или имеющих кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205, 207, 3, 7, 11 или 15. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растениях вариантах осуществления настоящего изобретениях вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения, способ представляет собой способ идентификации растения, способ представляет собой способ идентификации растения или части растения, содержащей локусзакрепитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного гена, выбранного из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющего, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205 или 207, или имеющего кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205 или 207. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 Zm00001d043357, имеющих, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205 или 207, или имеющих кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205 или 207. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех

Zm00001d043358, Zm00001d043352, Zm00001d043356 генов, выбранных ИЗ Zm00001d043357. имеющих, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205 или 207, или имеющих кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205 или 207. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локусвосстанавитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного гена, выбранного из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющего, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 3, 7, 11 или 15, или имеющего кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 3, 7, 11 или 15. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющих, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 3, 7, 11 или 15, или имеющих кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 3, 7, 11 или 15. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющих, соответственно,

кодирующую последовательность, представленную в любом из SEQ ID NO: 3, 7, 11 или 15, или имеющих кодирующую последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 3, 7, 11 или 15. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локусзакрепитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного гена, выбранного из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, кодирующего, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204, 206, 208, 4, 8, 12 или 16, или имеющего последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206, 208, 4, 8, 12 или 16. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, кодирующих, соответственно, полипентид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204, 206, 208, 4, 8, 12 или 16, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206, 208, 4, 8, 12 или 16. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех генов, выбранных из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, кодирующих, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202,

204, 206, 208, 4, 8, 12 или 16, или имеющего последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206, 208, 4, 8, 12 или 16. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локус-восстанавитель цитоплазматической мужской стерильности. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения, сособ представляет собой способ идентификации растения или части растения, содержащей локус-закрепитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного гена, выбранного из Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, кодирующего, соответственно, полипентид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204, 206 или 208, или имеющего последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206 или 208, предпочтительно, выбранного из Zm00001d043358, Zm00001d043352 и Zm00001d043357, кодирующего, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204 или 208, или имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204 или 208. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух выбранных Zm00001d043358. Zm00001d043352. Zm00001d043356 Zm00001d043357, кодирующих, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204, 206 или 208, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по

меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206 или 208, предпочтительно, выбранных из Zm00001d043358, Zm00001d043352 и Zm00001d043357, кодирующих, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204 или 208, или имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEO ID NO: 202, 204 или 208. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех генов, выбранных ИЗ Zm00001d043358, Zm00001d043352, Zm00001d043356 Zm00001d043357, кодирующих, соответственно, полипептид, последовательность, представленную в любом из SEQ ID NO: 202, 204, 206 или 208, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее 95% предпочтительно, по меньшей мере, на идентична последовательности. представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206 или 208, предпочтительно, выбранных из Zm00001d043358, Zm00001d043352 и Zm00001d043357, кодирующих, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204 или 208, или имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204 или 208. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локусвосстанавитель цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного гена, выбранного из Zm00001d043358,

Zm00001d043352 и Zm00001d043357, кодирующего, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 4, 8 или 16, или имеющего последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8 или 16. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух генов, выбранных из Zm00001d043358, Zm00001d043352 и Zm00001d043357, кодирующих, соответственно, полипептид, имеющий последовательность, представленную в любом из SEO ID NO: 4, 8 или 16, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8 или 16. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех генов, выбранных из Zm00001d043358, Zm00001d043352 и Zm00001d043357, кодирующих, соответственно, полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 4, 8 или 16, или имеющих последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8 или 16. В определенных вариантах осуществления настоящего изобретения, способ представляет собой способ идентификации растения или части растения, содержащей локусзакрепитель цитоплазматической мужской стерильности.

В определенных предпочтительных вариантах осуществления настоящего изобретения, когда в настоящем документе приводится ссылка на последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в конкретном SEQ ID NO, то такая последовательность содержит, по меньшей мере, один, предпочтительно все,

полиморфизм (например, SNP, инсерцию или делецию), ассоциированный с локусом-/аллелем- закрепителем или восстановителем (и который содержится в этом SEQ ID NO), как описано в настоящем документе в другом месте, в частности полиморфизм, как описано в Таблице 5. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%. наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1, может содержать, по меньшей мере, один, предпочтительно полиморфизм-восстановитель (или ассоциированный все, восстановителем), имеющий идентификатор 1-39 в Таблице 5, например, "g" в положении, соответствующем положению 35 в SEO ID NO: 1. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 2, может содержать, по меньшей мере, один, предпочтительно все, полиморфизм-закрепитель (или ассоциированный с закрепителем), имеющий идентификатор 1-39 в Таблице 5, например, "t" в положении, соответствующем положению 35 в SEQ ID NO: 2. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее 95% предпочтительно, по меньшей мере, на идентична последовательности, представленной в SEO ID NO: 5, может содержать, по меньшей мере, один, предпочтительно все. полиморфизм-восстановитель (или ассоциированный восстановителем), имеющий идентификатор 40-69 в Таблице 5, например, "а" в положении, соответствующем положению 486 в SEQ ID NO: 5. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 6, может содержать, по меньшей мере, один, предпочтительно все, полиморфизм-закрепитель (или ассоциированный с закрепителем), имеющий идентификатор 40-69 в Таблице 5, например, "t" в положении, соответствующем положению 486 SEQ ID NO: 6. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 9, может содержать, по меньшей мере, один, предпочтительно все, полиморфизм-восстановитель (или

ассоциированный с восстановителем), имеющий идентификатор 70-98 в Таблице 5, например, "tg" в положении, соответствующем положению 392-393 в SEQ ID NO: 9. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 10, может содержать, по меньшей мере, один, предпочтительно все, полиморфизм-закрепитель (или ассоциированный с закрепителем), имеющий идентификатор 70-98 в Таблице 5, например, "gtggt" в положении, соответствующем положению 393-397 в SEQ ID NO: 10. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 13, может содержать, по меньшей мере, один, предпочтительно все, полиморфизм-восстановитель (или ассоциированный с восстановителем), имеющий идентификатор 99-100 в Таблице 5, например, "cc" в положении, соответствующем положению 651-652 в SEQ ID NO: 13. Например, последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее мере, на предпочтительно, по меньшей 95% идентична последовательности, представленной в SEQ ID NO: 14, может содержать, по меньшей мере, один, предпочтительно все, полиморфизм-закрепитель (или ассоциированный с закрепителем), имеющий идентификатор 99-100 в Таблице 5, например, "cgc" в положении, соответствующем положению 652-654 в SEQ ID NO: 14. Хотя приведенные выше SEQ ID NO представляют собой геномные последовательности, специалисту в данной области техники будет понятно, что также подразумеваются и соответствующие полиморфизмы в SEQ ID NO кодирующих последовательностей.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одной последовательности полинуклеиновой кислоты, имеющей последовательность, представленную в любом из SEQ ID NO: 17-200. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух последовательностей полинуклеиновой кислоты, имеющих последовательность,

представленную в любом из SEQ ID NO: 17-200. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 17-200.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одной последовательности полинуклеиновой кислоты, имеющей последовательность, представленную в любом из SEQ ID NO: 17-200, и имеющей полиморфизм, соответствующий локусу-восстановителю цитоплазматической мужской стерильности. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 17-200, и имеющих полиморфизм, соответствующий локусу-восстановителю цитоплазматической мужской стерильности. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 17-200, и имеющих полиморфизм, соответствующий локусу-восстановителю цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одной последовательности полинуклеиновой кислоты, имеющей последовательность, представленную в любом из SEQ ID NO: 17-200, и имеющей полиморфизм, не соответствующий локусу-закрепителю цитоплазматической мужской стерильности. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, двух последовательностей полинуклеиновой кислоты, имеющих

последовательность, представленную в любом из SEQ ID NO: 17-200, и имеющих полиморфизм, не соответствующий локусу-закрепителю цитоплазматической мужской стерильности. В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, трех последовательностей полинуклеиновой кислоты, имеющих последовательность, представленную в любом из SEQ ID NO: 17-200, и имеющих полиморфизм, не соответствующий локусу-закрепителю цитоплазматической мужской стерильности.

В одном аспекте, настоящее изобретение относится к способу идентификации растения, части растения или растительного материала, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного, по меньшей мере, двух или, про меньшей мере, трех из следующих полиморфизмов (положения соответствуют положению 3 хромосомы эталонного AGPv4 B73 кукурузы):

Положение	полиморфизм			
AGPv4	закрепитель	восстановитель		
195629901	ade	gua		
195639694	thy	cyt		
195677799	gua	ade		
195678356	cyt	gua		
195680790	gua	ade		
195732936	gua	ade		
195733916	cyt	ade		
195783701	cyt	thy		
196070086	cyt	thy		
196198736	ade	gua		
196244714	thy	cyt		
196653746	cyt	thy		
196693501	cyt	ade		
196702811	ade	gua		
196704008	ade	gua		
196704096	thy	cyt		
196704169	thy	cyt		
196704290	thy	cyt		
196705470	thy	ade		
196706697	gua	ade		
196706755	cyt	ade		
196707190	ade	gua		
196707415	thy	ade		
196707997	gua	gua		
196773893	cyt	thy		

196774122	cyt	thy
196774333	gua	ade
196774502	gua	ade
196774823	cyt	thy
196774965	cyt	gua
196775596	gua	ade
196776600	ade	gua
196776877	cyt	thy
196840068	cyt	ade
196840815	gua	cyt
196841649	gua	cyt
196841990	cyt	ade
196843002	cyt	gua
196843335	cyt	gua
196844084	cyt	thy
196851451	thy	cyt
196853534	gua	cyt
196853762	cyt	thy
196880373	cyt	thy
196985856	cyt	ade
196985883	cyt	thy
196987284	cyt	thy
196989025	gua	thy
196989252	gua	ade
196989377	gua	ade
196989408	ade	gua
197453646	ade	gua
197453708	ade	gua
197453708	thy	cyt
197454448	gua	ade
197454630	thy	cyt
197454657	thy	cyt
197454744	thy	gua
197454780	cyt	gua
197454833	ade	gua
197455007	cyt	thy
197455034	thy	cyt
197456922	thy	cyt
197457134	ade	gua
197457214	cyt	thy
197457351	gua	ade
197457603	gua	ade
197459188	thy	cyt
197487965	gua	ade
197487303	cyt	thy
197489731	gua	ade
197489007	gua	thy
197524855	cyt	thy
171347033	Lyt	Lury

197525193	gua	ade
197525365	gua	thy
197525625	thy	cyt
197525990	cyt	thy
197526621	ade	gua
197526690	gua	ade
197527582	gua	ade
197527682	cyt	gua
197528652	cyt	thy
197556227	gua	ade
197609686	gua	thy
197609730	ade	gua
197611692	ade	gua
197611832	gua	ade
197611894	gua	ade
197613135	ade	cyt
197613658	ade	cyt
197613658	thy	gua
197615089	gua	ade
197615461	cyt	thy
197631560	ade	gua
197631688	gua	ade
197632590	gua	ade
197632706	ade	gua
197633370	thy	cyt
197633860	gua	ade
197638778	thy	cyt
197638949	thy	cyt
197639380	gua	ade
197652023	cyt	thy
197652478	ade	gua
197653125	gua	thy
197654542	cyt	gua
197687270	cyt	thy
197687524	cyt	thy
197688212	gua	cyt
197688445	thy	cyt
197688492	thy	cyt
197692991	ade	gua
197692996	thy	cyt
197694265	thy	cyt
197695368	cyt	thy
197695591	ade	gua
197695857	thy	cyt
197696192	thy	ade
197696732	gua	thy
197696762	gua	ade
197697327	gua	ade
<u> </u>		L

197697514	cyt	thy
197698249	gua	ade
197698278	gua	ade
197708137	thy	cyt
197708334	thy	ade
197758073	thy	gua
197760175	gua	ade
197761254	cyt	ade
197761305	ade	cyt
197776540	thy	cyt
197777549	ade	gua
197777618	thy	ade
197778110	ade	gua
197781849	cyt	ade
197781961	gua	ade
197784696	ade	gua
197785166	cyt	thy
197785270	cyt	gua
197786148	gua	ade
197786155	cyt	gua
197787768	cyt	thy
197806056	gua	ade
197806483	cyt	thy
197812595	gua	ade
197813589	thy	cyt
197814082	gua	ade
197840802	thy	cyt
197840951	gua	ade
197855989	cyt	thy
197859323	gua	cyt
197860711	ade	cyt
197861373	gua	ade
197895272	ade	gua
197902823	gua	ade
197902855	cyt	thy
197902923	cyt	thy
197903119	cyt	ade
197903264	thy	cyt
197903302	gua	cyt
197903302	cyt	thy
197903475	cyt	thy
197903473	gua	thy
197903387	gua	ade
197903029	thy	cyt
197903716	thy	gua
197903810	thy	thy
197904616	cyt	ade
197904633	ade	gua
17/7000/3	auc	gua

197907566	gua	ade
197907617	ade	cyt
197907653	thy	cyt
197907842	thy	cyt
197909824	ade	ade
197948546	ade	gua
197948580	cyt	thy
197948690	cyt	ade
197948831	gua	gua
197948879	ade	gua
197973632	cyt	cyt
197974493	ade	gua
197994208	thy	gua
198023432	thy	cyt
198023573	cyt	gua

Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию полиморфизма в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 В73 кукурузы. Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию SNP в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 В73 кукурузы. Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию SNP в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 В73 кукурузы, при этом, если обнаружен нуклеотид G, то указанное растение кукурузы или часть растения является восстановителем или содержит восстановитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, восстановитель по настоящему изобретению. Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию SNP в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 В73 кукурузы, при этом, если обнаружен нуклеотид, отличный от G, то указанное растение кукурузы или часть растения не является восстановителем или не содержит восстановитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, восстановитель по настоящему изобретению. Например, настоящее изобретение

относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию SNP в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 B73 кукурузы, при этом, если обнаружен нуклеотид G, то указанное растение кукурузы или часть растения является закрепителем или содержит закрепитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, закрепитель по настоящему изобретению. Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию SNP в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 B73 кукурузы, при этом, если обнаружен нуклеотид A, то указанное растение кукурузы или часть растения не является восстановителем или не содержит восстановитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, восстановитель по настоящему изобретению. Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию SNP в положении, соответствующем положению 195629901 3 хромосомы эталонного AGPv4 B73 кукурузы, при этом, если обнаружен нуклеотид A, то указанное растение кукурузы или часть растения является закрепителем или содержит закрепитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, закрепитель по настоящему изобретению.

Соответствующие варианты осуществления настоящего изобретения, применимы к каждому из других полиморфизмов/SNP.

Следует понимать, что указанные положения нуклеотидов являются положениями нуклеотидов указанных положений 3 хромосомы AGPv04 B73, и что положения маркеров в растениях кукурузы по настоящему изобретению соответствуют указанным положениям маркеров, но не обязательно являются или содержат идентичные положения в другом геноме (например, у другой расы или линии). Специалисту в данной области техники будет понятно, что соответствующие положения нуклеотидов могут быть определены путем подходящего выравнивания, как это известно в данной области техники.

Нуклеотиды (SNP) в положениях, указанных для аллеля-восстановителя, позволяют проводить скрининг или идентификацию фенотипа-восстановителя по настоящему изобретению. Нуклеотиды (SNP) в положениях, указанных для аллеля-закрепителя, позволяют проводить скрининг или идентификацию фенотипа, не

являющегося восстановителем (т.е., локус-восстановитель в хромосоме кукурузы не присутствует). Следует понимать, что для идентификации аллеля, не являющегося восстановителем, указанные SNP-нуклеотиды могут отличаться от указанных в Таблице (при условии, что они отличаются от SNP-нуклеотидов, указанных для аллелявосстановителя).

В одном аспекте, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного, по меньшей мере, двух или, про меньшей мере, трех из следующих полиморфизмов (положения соответствуют указанным положениям соответствующих SEQ ID NO):

SEQ Положение		SEQ Положение B73		полиморфизм	
ID NO:	восстановителя	ID NO:	(AGPv4) = закрепитель	восстановитель	закрепитель
1	35	2	35	g	t
1	404	2	404	5 t	c
1	444-452	$\frac{2}{2}$	443-444	gggactttc	cg
1	463	2	454	C	t
1	537	2	528	g	c
1	735	2	726	g	a
1	748-759	2	738-739	tactttgtaaca	at
1	761	2	740	t	a
- 1	797	2	776	a	g
1	1048	2	1027	g	t
1	1056	2	1035	a	c
<u> </u>	1065-1066	2	1045	tc	a
1	1072-1073	2	1053-1059	cc	cttctcc
1	1071	2	1058	g	С
1	1188	2	1175	c	t
1	1218	2	1208	t	С
1	1765	2	1757	a	g
1	1769	2	1761	g	a
1	1844	2	1836	t	g
1	1856	2	1848	t	a
1	2076	2	2068	С	t
1	2089	2	2081	g	a
1	2146	2	2138	t	С
1	2168-2169	2	2161	tt	t
1	2214	2	2207	g	t
1	2370	2	2362-2363	c	ct
1	2582	2	2574	С	g
1	2632-2637	2	2624-2629	tactgt	ccactg
1	2641	2	2633	a	t
1	2643-2644	2	2635-2636	cg	ac

1	2696	2	2688	t	С
1	2738	2	2730	c	a
1	2843	2	2834-2835	g	gt
1	2849	2	2840	t	c
1	2954-2955	2	2946-2947	tt	tt
1	3004	2	2997	g	a
1	3047	2	3040	a	t
1	3068	2	3061	c	a
1	3218	2	3211	a	g
5	486	6	486	a	t
5	611	6	611	g	a
5	638	6	638	a	g
5	689	6	689	g	a
5	812	6	812	c	t
5	865	6	865	c	g
5	901	6	901	c	a
5	988	6	988	g	a
5	1015	6	1015	c	t
5	1085	6	1085	c	t
5	1197	6	1197	t	c
5	1345	6	1345	c	t
5	1461	6	1461	c	t
5	1937	6	1937	С	t
5	1999	6	1999	С	t
5	2113-2115	6	2112-2113	gca	gt
5	2286	6	2283	С	t
5	2293-2297	6	2289-2290	ctacg	gt
5	2399	6	2391	С	g
5	2448-2450	6	2439-2440	ctc	сс
5	2822-2823	6	2810-2811	tt	tt
5	2856	6	2843	g	a
5	2926	6	2913	a	g
5	2998	6	2985	t	С
5	3029	6	3016	t	С
5	3085	6	3072	t	С
5	3102	6	3089	t	С
5	3112	6	3099	С	a
5	3120	6	3107	t	g
5	3168	6	3155	t	a
9	392-393	10	393-397	tg	gtggt
9	550	10	555	g	a
9	591	10	596	t	g
9	886-887	10	891-892	ct	tc
9	934	10	939	a	g
9	957	10	962	t	c
9	1097	10	1102	c	t
9	1130	10	1135	c	t
9	1295	10	1300	a	g

9	1462	10	1467	t	С
9	1467	10	1472	t	g
9	1541	10	1546	g	a
9	1584	10	1603	g	t
9	1614	10	1633	c	t
9	1713	10	1732	С	t
9	1774	10	1793	a	g
9	1795-1796	10	1815-1823	tt	tttttgttt
9	1815	10	1843	a	С
9	1894-1895	10	1923	tt	t
9	1910	10	1939	a	t
9	1954-1955	10	1984-1991	gt	tttgacac
9	2000	10	2037	t	С
9	2060	10	2097	t	С
9	2181	10	2218	С	t
9	2354	10	2391	a	g
9	2372	10	2409	a	t
9	2394-2399	10	2431-2434	ctgttt	aaca
9	2428	10	2463	a	g
9	2439-2440	10	2475-2476	ct	tt
13	651-652	14	652-654	сс	cgc
13	807	14	810	t	С

Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию полиморфизма в положении, соответствующем положению 35 в SEQ ID NO: 1, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 (и содержащей полиморфизм). Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию полиморфизма в положении, соответствующем положению 35 в SEQ ID NO: 2, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее мере, 95% предпочтительно, по меньшей на идентична последовательности, представленной в SEQ ID NO: 2 (и содержащей полиморфизм).

Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию полиморфизма в

положении, соответствующем положению 35 в SEQ ID NO: 1, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 1 (и содержащей полиморфизм), при этом, если обнаружен нуклеотид G, то указанное растение кукурузы или часть растения является закрепителем и не является восстановителем, или содержит закрепитель (ген (гены), локус, гаплотип, геном или фенотип), или не содержит восстановитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, закрепитель/восстановитель по настоящему изобретению. Например, настоящее изобретение относится к способу идентификации растения или части растения, в частности, растения кукурузы или части растения, содержащему скрининг на присутствие или обнаружение, или идентификацию полиморфизма в положении, соответствующем положению 35 в SEQ ID NO: 2, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в SEQ ID NO: 2 (и содержащей полиморфизм), при этом, если обнаружен нуклеотид Т, то указанное растение кукурузы или часть растения является восстановителем и не является восстановителем, или содержит восстановитель (ген (гены), локус, гаплотип, геном или фенотип), в частности, восстановитель по настоящему изобретению.

Соответствующие варианты осуществления настоящего изобретения применимы ко всем другим полиморфизмам, SNP, инсерциям, делециям и замещениям.

Скрининг на соответствующие полиморфизмы может быть осуществлен средствами, известными в данной области техники, такими как, например, KASP, как описано в настоящем документе в другом месте. Праймеры KASP могут, например, быть разработаны для того, чтобы различать полиморфизмы-восстановители, и полиморфизмыне восстановители/закрепители.

Способы идентификации растения (кукурузы) или части растения, описанные в настоящем документе, могут содержать скрининг образца, полученного из растения (кукурузы) или части растения, в частности, образца, содержащего геномную ДНК растения (кукурузы) или части растения. Соответственно, способ может содержать этап получения образца (содержащего геномную ДНК) из растения (кукурузы) или части растения или предоставления образца (содержащего геномную ДНК), полученного из растения (кукурузы) или части растения. Способы скрининга или идентификации

маркеров хорошо известны в данной области техники, как также описано в настоящем документе в другом месте.

Следует понимать, что способы идентификации растения (кукурузы) или части растения, описанные в настоящем документе, позволяют различать растения или части растений, имеющие генотип-, гаплотипи/или фенотип-восстановитель цитоплазматической мужской стерильности или генотип-, гаплотип- и/или фенотипзакрепитель цитоплазматической мужской стерильности, основанный на идентичности полиморфизмов или полиморфных аллелей, описанных в настоящем документе. Соответственно, молекулярный маркер (маркеры) (аллель (аллели)) по настоящему изобретению может быть преимущественно использован для идентификации растений кукурузы, являющихся восстановителем или имеющих ген-, локус- (аллель-), гаплотип-, генотип- или фенотип-восстановитель, или не являющихся восстановителем или не имеющих ген-, локус- (аллель-), гаплотип-, генотип- или фенотип-восстановитель, в частности, восстановитель по настоящему изобретению. Как также описано в настоящем документе в другом месте, такие растения или части растений, тем не менее, могут содержать другие гены- или локусы-восстановители.

В одном аспекте, способы идентификации растения (кукурузы) или части растения, как описано в настоящем документе, являются способами различения растения (кукурузы) или части растения, имеющей восстановитель цитоплазматической мужской стерильности по настоящему изобретению, как описано в настоящем документе в другом месте, и растения (кукурузы) или части имеющей восстановитель растения, не цитоплазматической мужской стерильности по настоящему изобретению, как описано в настоящем документе в другом месте. В одном аспекте, способы идентификации растения (кукурузы) или части растения, как описано в настоящем документе, являются способами идентификации растения (кукурузы) или части растения, имеющей восстановитель цитоплазматический мужской стерильности по настоящему изобретению, как описано в настоящем документе в другом месте. В одном аспекте, способы идентификации растения (кукурузы) или части растения, как описано в настоящем документе, являются способами идентификации растения (кукурузы) или части растения, у которой отсутствует восстановитель цитоплазматический мужской стерильности по настоящему изобретению, как описано в настоящем документе в другом месте.

В определенных вариантах осуществления настоящего изобретения, растение (кукурузы) или часть растения идентифицирована как имеющая восстановитель цитоплазматический мужской стерильности по настоящему изобретению, как описано в

настоящем документе в другом месте, если локус-, гаплотип- маркер- (маркеры-) (аллель-(аллели-)), SNP-восстановители и т.д. обнаружены (в геноме растения или части растения), например, как указано в Таблицах 4 или 5, SEQ ID NO: 1, 5, 9 или 13 и т.д.. В определенных вариантах осуществления настоящего изобретения, растение (кукурузы) или часть растения идентифицирована как не имеющая восстановителя цитоплазматической мужской стерильности по настоящему изобретению, как описано в настоящем документе в другом месте, если локус-, гаплотип- маркер- (маркеры-) (аллель-(аллели-)), SNP-восстановители и т.д. не обнаружены (в геноме растения или части растения), например, как указано в Таблицах 4 или 5, SEQ ID NO: 1, 5, 9 или 13 и т.д.. В определенных вариантах осуществления настоящего изобретения, растение (кукурузы) идентифицирована как не имеющая или часть растения восстановитель цитоплазматический мужской стерильности по настоящему изобретению, как описано в настоящем документе в другом месте, если локус-, гаплотип- маркер- (маркеры-) (аллель-(аллели-)), SNP-закрепители и т.д. обнаружены (в геноме растения или части растения), например, как указано в Таблицах 4 или 5, SEQ ID NO: 2, 6, 10 или 14 и т.д..

В основе настоящего изобретения лежит идентификация локуса- восстановителя CMS (цитоплазматической мужской стерильности), в частности, расположенного на 3 хромосоме кукурузы. Соответственно, способы идентификации растений или частей растений, описанные в настоящем документе, могут быть способами идентификации растений или частей растений, содержащих указанный локус-восстановитель CMS, или, в качестве альтернативного варианта, способами идентификации растений или частей растений, не содержащих указанный локус-восстановитель CMS. Такая идентификация может быть основана на полиморфизмах, описанных в настоящем документе, в частности, на полиморфных аллелях, ассоциированных/сцепленных с локусом-восстановителем или, альтернативного варианта, полиморфных В качестве на аллелях, ассоциированных/сцепленных с локусом-закрепителем. Соответственно, способы идентификации растений или частей растений, описанные в настоящем документе, могут быть способами идентификации растений или частей растений, содержащих локусзакрепитель CMS, или, в качестве альтернативного варианта, способами идентификации растений или частей растений, не содержащих локус-закрепитель CMS.

В определенных вариантах осуществления настоящего изобретения, локусвосстановитель по настоящему изобретению содержится на 3 хромосоме кукурузы в геномном интервале, соответствующем положению (нуклеиновой кислоты) с 195629901 по 198023573 AGPv4 эталонного генома кукурузы B73 или ее фрагмента. В определенных

вариантах осуществления настоящего изобретения, локус-восстановитель содержит на 3 хромосоме кукурузы геномный интервал, соответствующий положению (нуклеиновой кислоты) с 195629901 по 198023573 АGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локусвосстановитель фланкирован на 3 хромосоме кукурузы положениями (нуклеиновой кислоты), соответствующими положениям 195629901 и 198023573 АGPv4 эталонного генома кукурузы В73 или ее фрагмента.

В определенных вариантах осуществления настоящего изобретения, локусвосстановитель по настоящему изобретению содержится на 3 хромосоме кукурузы в геномном интервале, соответствующем положению (нуклеиновой кислоты) с 197453646 по 197698278 АGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локус-восстановитель содержит на 3 хромосоме кукурузы геномный интервал, соответствующий положению (нуклеиновой кислоты) с 197453646 по 197698278 AGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локусвосстановитель фланкирован на 3 хромосоме кукурузы положениями (нуклеиновой кислоты), соответствующими положениям 197453646 и 197698278 AGPv4 эталонного генома кукурузы В73 или ее фрагмента.

В определенных вариантах осуществления настоящего изобретения, локусвосстановитель по настоящему изобретению содержится на 3 хромосоме кукурузы в геномном интервале, соответствующем положению (нуклеиновой кислоты) с 195629901 по 197698278 АGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локус-восстановитель содержит на 3 хромосоме кукурузы геномный интервал, соответствующий положению (нуклеиновой кислоты) с 195629901 по 197698278 AGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локусвосстановитель фланкирован на 3 хромосоме кукурузы положениями (нуклеиновой кислоты), соответствующими положениям 195629901 и 197698278 AGPv4 эталонного генома кукурузы В73 или ее фрагмента.

В определенных вариантах осуществления настоящего изобретения, локусвосстановитель по настоящему изобретению содержится на 3 хромосоме кукурузы в геномном интервале, соответствующем положению (нуклеиновой кислоты) с 197453646 по 198023573 AGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локус-восстановитель содержит на 3

хромосоме кукурузы геномный интервал, соответствующий положению (нуклеиновой кислоты) с 198023573 по 198023573 АGPv4 эталонного генома кукурузы В73 или ее фрагмента. В определенных вариантах осуществления настоящего изобретения, локусвосстановитель фланкирован на 3 хромосоме кукурузы положениями (нуклеиновой кислоты), соответствующими положениям 197453646 и 198023573 AGPv4 эталонного генома кукурузы В73 или ее фрагмента.

В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (маркеры) (аллель (аллели)) выбраны из Таблицы 4 или 5. Как указано в Таблицах 4 и 5, все маркеры полиморфны и способны различить восстановителя и не восстановителя (или закрепителя). Соответственно, идентификация восстановителя влечет собой идентификацию, по меньшей мере, одного полиморфизма, за ассоциированного/сцепленного с восстановителем, как указано в Таблицах 4 и 5, тогда как идентификация не восстановителя/закрепителя влечет за собой идентификацию, по меньшей мере, одного полиморфизма, ассоциированного/сцепленного с не является восстановителем/закрепителем, как указано в Таблицах 4 и 5.

Как указано в настоящем документе, полинуклеиновая кислота или локус по изобретению, настоящем настоящему как описано в документе, считается фланкированным определенными молекулярными маркерами или аллелями молекулярных маркеров, полинуклеиновая кислота/локус если содержится полинуклеиновой кислоте, при этом, соответственно, первый маркер (аллель) расположен выше (то есть, на 5') упомянутой полинуклеиновой кислоты, а второй маркер (аллель) расположен ниже (то есть, на 3') упомянутой полинуклеиновой кислоты. Такие первый и второй маркеры (аллели) могут граничить с полинуклеиновой кислотой. Нуклеиновая кислота может в равной степени содержать такой первый и второй маркер (аллель), например, соответственно, на 5'- и 3'-конце или вблизи них, например, соответственно, в пределах 50 кб от 5'- и 3'-конца, предпочтительно, в пределах 10 кб от 5'- и 3'-конца, например, в пределах 5 кб от 5'- и 3'-конца, в пределах 1 кб от 5'- и 3'-конца или менее.

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 17-200, при этом п представляет собой соответствующий нуклеотид для полиморфизма-восстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 17-200, при этом п представляет собой соответствующий нуклеотид для полиморфизма-невосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на отсутствие, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 17-200, при этом п представляет собой соответствующий нуклеотид для полиморфизмавосстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на отсутствие, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 17-200, при этом п представляет собой соответствующий нуклеотид для полиморфизманевосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 68-140, при этом п представляет собой соответствующий нуклеотид для полиморфизма-восстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 68-140, при этом п представляет собой соответствующий нуклеотид для полиморфизма-невосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на отсутствие, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 68-140, при этом п представляет собой соответствующий нуклеотид для полиморфизмавосстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на отсутствие, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 68-140, при этом п представляет собой соответствующий нуклеотид для полиморфизманевосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, при этом п представляет собой соответствующий нуклеотид для полиморфизма-восстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие или обнаружение, или идентификацию, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, при этом п представляет собой соответствующий нуклеотид для полиморфизма-невосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на отсутствие, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, при этом п представляет собой соответствующий нуклеотид для полиморфизма-восстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на отсутствие, по меньшей мере, одного молекулярного маркера (аллеля), выбранного из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и 134, при этом п представляет собой соответствующий нуклеотид для полиморфизма-невосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей

мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, 95% идентична на последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, или, по меньшей мере, в одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, или последовательности, которая, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента. В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из в SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, или последовательности, которая, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, при этом присутствие указывает что растение или часть растения является восстановителем или содержит восстановитель (ген (гены), локус (аллель), гаплотип, геном или фенотип). В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из в SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, при этом отсутствие указывает на то, что растение или часть растения не является восстановителем или не содержит восстановитель (ген (гены), локус (аллель), гаплотип, геном или фенотип). В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из в SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, или последовательности, которая, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на

90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13, или ее (уникального) фрагмента, при этом отсутствие указывает на то, что растение или часть растения является закрепителем или содержит закрепитель (ген (гены), локус (аллель), гаплотип, геном или фенотип).

В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из в SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, 95% на идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, при этом присутствие указывает на то, что растение или часть растения не является восстановителем или не содержит восстановитель (ген (гены), локус (аллель), гаплотип, геном или фенотип). В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из в SEQ ID NO: 2, 6, 10 и 14, фрагмента, или последовательности, которая, на 80%, (уникального) предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, при этом присутствие указывает на то, что растение или часть растения является закрепителем или содержит закрепитель (ген (гены), локус (аллель), гаплотип, геном или фенотип). В определенных вариантах осуществления настоящего изобретения, способы идентификации растения кукурузы или части растения содержат скрининг на присутствие, обнаружение или идентификацию любой, по меньшей мере, одной последовательности, представленной в одном из в SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее (уникального) фрагмента, при этом отсутствие указывает на то, что растение или часть

растения является восстановителем или содержит восстановитель (ген (гены), локус (аллель), гаплотип, геном или фенотип).

В одном аспекте, настоящее изобретение относится к (выделенной) полинуклеиновой кислоте, содержащей или состоящей из любой, по меньшей мере, одной последовательности, молекулярного маркера или аллеля молекулярного маркера, как описано в настоящем документе в другом месте, или к ее фрагменту, и/или к ее комплементу, или к ее обратному комплементу.

В определенных вариантах осуществления настоящего изобретения, полинуклеотид или полинуклеиновая кислота по настоящему изобретению, как описано в настоящем документе, представляет собой выделенный полинуклеотид или полинуклеиновую кислоту.

В аспекте, настоящее изобретение относится (выделенной) одном полинуклеиновой кислоте, содержащей или состоящей из (уникального) фрагмента любой из последовательностей, молекулярных маркеров или молекулярных маркерных аллелей, как описано в настоящем документе в другом месте, или их комплемента, или их обратного комплемента. Предпочтительно, указанная полинуклеиновая кислота состоит, по меньшей мере, из 15 нуклеотидов, более предпочтительно, по меньшей мере, из 20 нуклеотидов, например, по меньшей мере, из 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200 или более нуклеотидов. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота состоит максимально из 500 нуклеотидов, предпочтительно, максимально из 250 нуклеотидов, например, максимально из 200, 150, 100 или 50 нуклеотидов. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота состоит из 15-500 нуклеотидов, например, из 20-250 нуклеотидов или из 20-100 нуклеотидов, например, из 20-50 нуклеотидов.

В настоящее изобретение (выделенной) одном аспекте, относится полинуклеиновой кислоте, (специфически) гибридизирующейся любой последовательностей, молекулярных маркеров или молекулярных маркерных аллелей, как описано в настоящем документе в другом месте, или с их комплементом, или их обратным комплементом. Предпочтительно, указанная полинуклеиновая кислота состоит, по меньшей мере, из 15 нуклеотидов, более предпочтительно, по меньшей мере, из 20 нуклеотидов, например, по меньшей мере, из 25, 30, 35, 40, 45, 50, 75, 100, 125, 150, 175, 200 или более нуклеотидов. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота состоит максимально из 500 нуклеотидов, предпочтительно, максимально из 250 нуклеотидов, например, максимально из 200, 150,

100 или 50 нуклеотидов. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота состоит из 15-500 нуклеотидов, например, из 20-250 нуклеотидов или из 20-100 нуклеотидов, например, из 20-50 нуклеотидов.

В одном аспекте, настоящее изобретение относится к полинуклеиновой кислоте, содержащей молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5, или его (уникальный) фрагмент, и/или его комплемент или обратный комплемент. В одном аспекте, настоящее изобретение относится к полинуклеиновой кислоте, содержащей молекулярный маркер- (аллель-)восстановитель из Таблицы 4 или Таблицы 5, или его (уникальный) фрагмент, и/или его комплемент или обратный комплемент. В одном аспекте, настоящее изобретение относится к полинуклеиновой кислоте, содержащей молекулярный маркер- (аллель-)не восстановитель/закрепитель из Таблицы 4 или Таблицы 5, или его (уникальный) фрагмент, и/или его комплемент или обратный комплемент.

Согласно определенным вариантам осуществления настоящего изобретения, когда приводится ссылка на фрагмент полинуклеиновой кислоты или белка, то такой фрагмент содержит, соответственно, по меньшей мере, 15 нуклеотидов или аминокислот, предпочтительно, по меньшей мере, 20 нуклеотидов или аминокислот.

Следует понимать, что полинуклеиновые кислоты по настоящему изобретению содержат или специфически гибридизируются, по меньшей мере, с одним молекулярным маркером (аллелем) и дополнительными 5' и/или 3' смежными нуклеотидами, (естественным образом) фланкирующими соответствующий маркер (аллель) (или его комплемент, или обратный комплемент). В этом контексте, количество фланкирующих элементов, в определенных вариантах осуществления настоящего изобретения, может составлять, по меньшей мере, 14 или 15 нуклеотидов (которые могут или не могут быть полностью 5' или полностью 3' фланкирующими нуклеотидами, такими как, например, 5 3' фланкирующих нуклеотидов плюс 10 5' фланкирующих нуклеотидов. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) по настоящему изобретению (или его комплемент) представляет собой самый большой 5' нуклеотид полинуклеиновой кислоты. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) по настоящему изобретению (или его комплемент) представляет собой второй по величине 5' нуклеотид полинуклеиновой кислоты. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) по настоящему изобретению (или его комплемент) представляет собой третий по величине 5' нуклеотид полинуклеиновой кислоты. В

определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) по настоящему изобретению (или его комплемент) представляет собой самый большой 3' нуклеотид полинуклеиновой кислоты. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) по настоящему изобретению (или его комплемент) представляет собой второй по величине 3' нуклеотид полинуклеиновой кислоты. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) по настоящему изобретению (или его комплемент) представляет собой третий по величине 3' нуклеотид полинуклеиновой кислоты. Такие терминально расположенные маркеры (например, SNP) преимущественно позволяют разрабатывать аллель-специфические праймеры, например, для использования в KASP.

В одном аспекте, настоящее изобретение относится к полинуклеиновой кислоте, содержащей или содержащейся в любом из SEQ ID NO: 1-208, или к ее (уникальному) фрагменту, и/или ее комплементу, или обратному комплементу. В одном аспекте, настоящее изобретение относится к полинуклеиновой кислоте, специфически гибридизирующейся с полинуклеиновой кислотой, содержащей или содержащейся в любом из SEQ ID NO: 1-208, или к ее (уникальному) фрагменту, и/или ее комплементу, или обратному комплементу. Следует понимать, что такие полинуклеиновые кислоты содержат, по меньшей мере, один полиморфный нуклеотид, инсерцию, делецию или замещение по настоящему изобретению, как указано в настоящем документе в другом месте, и смежные 5' и/или 3" фланкирующие последовательности, как описано в настоящем документе в другом месте.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 17-200, при этом п представляет собой соответствующий нуклеотид для полиморфизмавосстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 17-200, при этом п представляет собой соответствующий нуклеотид для полиморфизма-не восстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 68-140, при этом п представляет собой соответствующий нуклеотид для полиморфизмавосстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 68-140, при этом п представляет собой соответствующий нуклеотид для полиморфизма-невосстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115, и 134, при этом п представляет собой соответствующий нуклеотид для полиморфизма восстановителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115, и 134, при этом п представляет собой соответствующий нуклеотид для полиморфизма-не восстановителя/закрепителя (SNP) (как указано в Таблице 4).

В определенных вариантах осуществления полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 1-3, 5-7, 9-11, 13-15, 201, 203, 205, или 207, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте, или содержит, или содержится в последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1-3, 5-7, 9-11, 13-15, 201, 203, 205 или 207, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в полинуклеиновой кислоте, кодирующей белок из SEQ ID NO: 4, 8, 12, 16, 202, 204, 206, 208, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте, или содержит, или содержится в полинуклеиновой кислоте, кодирующей белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12, 16, 202, 204, 206, 208, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 1-3, 5-7, 9-11, 13-15, 201, 203, 205, или 207, предпочтительно, из SEQ ID NO: 1 или 201, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте, или содержит, или содержится в последовательности, которая, по меньшей

мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 11, 5, 9, 13, 201, 203, 205 или 207, предпочтительно, из SEQ ID NO: 1 или 201, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в полинуклеиновой кислоте, кодирующей белок из SEQ ID NO: 202, 204, 206, 208, предпочтительно, из SEQ ID NO: 202, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте, или содержит, или содержится в полинуклеиновой кислоте, кодирующей белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206, 208, предпочтительно, SEQ ID NO: 202, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в любом из SEQ ID NO: 2-3, 6-7, 10-11, 14-15, предпочтительно, из SEQ ID NO: 2, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте, или содержит, или содержится в последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2-3, 6-7, 10-11, 14-15, предпочтительно, из SEQ ID NO: 2, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или содержится в полинуклеиновой кислоте, кодирующей белок из SEQ ID NO: 4, 8, 12, 16, предпочтительно, из SEQ ID NO: 4, или ее комплементе, или обратном комплементе, или ее (уникальном) фрагменте, или содержит, или содержится в полинуклеиновой кислоте, кодирующей белок, имеющий последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее 95% предпочтительно, меньшей мере, идентична последовательности. ПО на представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12, 16, предпочтительно, из SEQ ID NO: 4, или ее комплементе, или обратном комплементе, или (уникальном) фрагменте. Такие полинуклеиновые кислоты подходят для

идентификации растений или частей растений, а также для генерирования растений, как описано в настоящем документе в другом месте.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или состоит, по меньшей мере, из 15 нуклеотидов, например, из 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 нуклеотидов, например, по меньшей мере, из 30, 35, 40, 45 или 50 нуклеотидов, например, по меньшей мере, из 100, 200, 300 или 500 нуклеотидов.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или состоит из полинуклеиновой кислоты, как определено в пронумерованных утверждения 27-30, упомянутых в настоящем документе в другом месте.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или состоит максимально из 1500 нуклеотидов, например, из 1200, 1000, 800, 600, 400, 200 нуклеотидов, например, по меньшей мере, из 100, 80, 60, 50, 40, или 30 нуклеотидов.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота содержит или состоит, по меньшей мере, из 15 нуклеотидов, например, из 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 нуклеотидов, например, по меньшей мере, из 30, 35, 40, 45 или 50 нуклеотидов, например, по меньшей мере, из 100, 200, 300 или 500 нуклеотидов, и полинуклеиновая кислота содержит максимально 1500 нуклеотидов, например, 1200, 1000, 800, 600, 400, 200 нуклеотидов, например, максимально 100, 80, 60, 50, 40 или 30 нуклеотидов.

В определенных вариантах осуществления (выделенный) полинуклеотид имеет длину в диапазоне от 15 до 500 нуклеотидов, предпочтительно, от 15 до 100 нуклеотидов, предпочтительно, от 15 до 50 нуклеотидов, более предпочтительно, от 15 до 35 нуклеотидов.

В определенных вариантах осуществления настоящего изобретения, (выделенный) полинуклеотид представляет собой праймер или зонд.

В определенных вариантах осуществления настоящего изобретения, (выделенная) полинуклеиновая кислота представляет собой аллель-специфический праймер или зонд.

В определенных вариантах осуществления настоящего изобретения, выделенным является праймер KASP (конкурентная аллель-специфическая ПЦР). Праймеры, включая праймеры KASP, хорошо известны в данной области техники и могут быть сконструированы специалистом в данной области техники в соответствии с известными

критериями. Посредством дополнительных разъяснений и без ограничений, КАЅР проводят с двумя (или более) аллель-специфическими праймерами (которые могут быть прямыми праймерами) и, как правило, с одним общим праймером (который может быть обратным праймером). Аллель-специфические праймеры обычно удлиняются хвостовыми последовательностями (причем для каждого аллель-специфического праймера предоставляется разная хвостовая последовательность). Хвостовые последовательности позволяют встраивать флуоресцентно меченную комплементарную последовательность, чтобы таким образом флуоресцентным образом различать разные аллели.

В определенных вариантах осуществления настоящего изобретения, длина хвостовой последовательности включена в общую длину праймера. В определенных вариантах осуществления настоящего изобретения, длина хвостовой последовательности не включена в общую длину праймера.

В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота представляет собой (ПЦР) праймер или (гибридизационный) зонд. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота представляет собой аллель-специфический праймер или зонд. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота представляет собой праймер КАSP.

аспекте, настоящее изобретение (выделенной) одном относится полинуклеиновой кислоте, содержащей (молекулярный) маркер (аллель) по настоящему изобретению, или комплемент, или обратный комплемент (молекулярного) маркера (аллеля) по настоящему изобретению. В определенных вариантах осуществления, настоящее изобретение относится к полинуклеиновой кислоте, содержащей, по меньшей мере, 10 смежных нуклеотидов, предпочтительно, по меньшей мере, 15 смежных нуклеотидов или, по меньшей мере, 20 смежных нуклеотидов (молекулярного) маркера (аллеля) по настоящему изобретению, или комплемент, или обратный комплемент (молекулярного) маркера (аллеля) по настоящему изобретению. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота способна (молекулярный) (аллель) ПО настоящему изобретению различать маркер немолекулярный маркерный аллель, например, специфически гибридизироваться с (молекулярным) маркерным аллелем по настоящему изобретению. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота или ее комплемент, или обратный комплемент (по существу) не гибридизируется с (геномной) ДНК, происходящей из инбредной линии кукурузы В73, или не связывается с ней. В

определенных вариантах осуществления настоящего изобретения, последовательность полинуклеиновой кислоты или ее комплемент, или обратный комплемент не встречается или не присутствует в инбредной линии кукурузы B73.

В одном аспекте, настоящее изобретение относится к набору, содержащему, по меньшей мере, один полинуклеотид, как описано в настоящем документе, такой как, по меньшей мере, один праймер или зонд, как описано в настоящем документе. Специалисту в данной области техники будет понятно, что полинуклеотиды могут содержаться, например, в одном сосуде, таком как один флакон, или в отдельных сосудах, таких как отдельные флаконы.

Следует понимать, что "специфическая гибридизация" означает, что полинуклеиновая кислота гибридизируется с (молекулярным) маркерным аллелем (например, в жестких условиях гибридизации, как определено в другом месте настоящего документа), но (по существу) не гибридизируется с полинуклеиновой кислотой, не содержащей маркерный аллель, или (по существу) не способна использоваться в качестве праймера ПЦР. Например, в подходящем считывании, сигнал гибридизации с маркерным аллелем или ПЦР-амплификацией маркерного аллеля, по меньшей мере, в 5 раз, предпочтительно, по меньшей мере, в 10 раз сильнее или больше, чем сигнал гибридизации с немаркерным аллелем или с любой другой последовательностью.

В одном аспекте, настоящее изобретение относится к набору праймеров или зондов, как описано выше, такому как набор аллель-специфических праймеров или зондов. В определенных вариантах осуществления настоящего изобретения, набор может дополнительно содержать (общий) прямой или обратный праймер (в зависимости от того, являются ли аллель-специфические праймеры обратными или прямыми праймерами).

В одном аспекте, настоящее изобретение относится к набору, содержащему такие полинуклеиновые кислоты, например, праймеры (содержащие прямые (такие как, по меньшей мере, один аллель-специфический или, в качестве альтернативы, общий праймер) и/или обратные праймеры (такие как общий или, в качестве альтернативы, по меньшей мере, один аллель-специфический праймер)), и/или зонды (такой как, по меньшей мере, один аллель-специфический зонд). Набор может дополнительно содержать инструкции по использованию.

Следует понимать, что в вариантах осуществления настоящего изобретения, относящихся к набору прямых и обратных праймеров, может потребоваться, чтобы только один из обоих праймеров (прямой или обратный) был способен различать (молекулярный) маркерный аллель по настоящему изобретению и немаркерный аллель, и, следовательно,

он может быть уникальным. Другой праймер может быть способен или не способен различать (молекулярный) маркерный аллель по настоящему изобретению и немаркерный аллель и, следовательно, он может или не может быть уникальным.

В одном аспекте, настоящее изобретение относится к вектору, содержащему (выделенную) полинуклеиновую кислоту по настоящему изобретению, как описано в настоящем документе. В определенных вариантах осуществления настоящего изобретения, вектор представляет собой вектор экспрессии (растения). В определенных вариантах осуществления настоящего изобретения, вектор представляет собой индуцируемый вектор экспрессии (растения). В определенных вариантах осуществления настоящего изобретения, экспрессия является тканеспецифичной или органоспецифичной. В определенных вариантах осуществления настоящего изобретения, экспрессия является специфичной для развития. В определенных вариантах осуществления настоящего изобретения, экспрессия является тканеспецифичной или органоспецифичной и специфичной для развития.

В определенных вариантах осуществления настоящего изобретения, вектор содержит любой из SEQ ID NO: 1-3, 5-7, 9-11, 13-15, 201, 203, 205 или 207, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее 95% предпочтительно, ПО меньшей мере, на идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1-3, 5-7, 9-11, 13-15, 201, 203, 205 или 207, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент. В определенных вариантах осуществления настоящего изобретения, вектор содержит полинуклеиновую кислоту, кодирующую белок из SEQ ID NO: 4, 8, 12, 16, 202, 204, 206 или 208, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12, 16, 202, 204, 206 или 208, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент. В определенных вариантах осуществления настоящего изобретения, вектор содержит любой из SEQ ID NO: 1, 5, 9, 13, 201, 203, 205 или 207, предпочтительно, из SEQ ID NO: 1 или 201, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент, или последовательность, которая, по меньшей мере, на 80%, предпочтительно,

по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9, 13, 201, 203, 205 или 207, предпочтительно, из SEQ ID NO: 1 или 201, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент. В определенных вариантах осуществления настоящего изобретения, вектор содержит полинуклеиновую кислоту, кодирующую белок из SEQ ID NO: 202, 204, 206, 208, предпочтительно, из SEQ ID NO: 202, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее мере, на предпочтительно, по меньшей 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEO ID NO: 202, 204, 206, 208, предпочтительно, из SEQ ID NO: 202, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент. В определенных вариантах осуществления настоящего изобретения, вектор содержит любой из SEQ ID NO: 2-3, 6-7, 10-11, 14-15, предпочтительно, из SEQ ID NO: 2, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2-3, 6-7, 10-11, 14-15, предпочтительно, из SEQ ID NO: 2, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент. В определенных вариантах осуществления настоящего изобретения, вектор содержит полинуклеиновую кислоту, кодирующую белок из SEQ ID NO: 4, 8, 12, 16, предпочтительно, из SEQ ID NO: 4, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12, 16, предпочтительно, из SEQ ID NO: 4, или ее комплемент, или обратный комплемент, или ее (уникальный) фрагмент. Такие полинуклеиновые кислоты подходят для идентификации растений или частей растений, а также для генерирования растений, как описано в настоящем документе в другом месте.

В контексте настоящего документа, термин "вектор" имеет свое обычное значение в данной области техники и может, например, представлять собой плазмиду, космиду,

бактериофаг или вектор экспрессии, трансформирующий вектор, челночный вектор или клонирующий вектор; он может быть двух- или одноцепочечным, линейным или кольцевым; или он может трансформировать прокариотического или эукариотического хозяина, либо путем интеграции в его геном, либо внехромосомно. Нуклеиновая кислота по настоящему изобретению, предпочтительно, функционально сцеплена в векторе, по меньшей мере, с одной регуляторной последовательностью, которая обеспечивает транскрипцию и, необязательно, экспрессию в прокариотической или эукариотической клетке-хозяине. Регуляторная последовательность — предпочтительно, ДНК — может быть гомологичной или гетерологичной по отношению к нуклеиновой кислоте по настоящему изобретению. Например, нуклеиновая кислота находится под контролем подходящего промотора или терминатора. Подходящими промоторами могут быть промоторы, которые индуцированы конститутивно (пример: промотор 35S из "Вируса мозаики цветной капусты" (Оделл и соавт., 1985); особенно подходят те промоторы, которые являются тканеспецифичными (пример: Пыльцеспецифичные промоторы, Чен и соавт. (2010), Чжао и соавт. (2006) или Твелл и соавт. (1991)), или являются специфичными для развития (пример: промоторы, специфичные для цветения). Подходящие промоторы также могут быть синтетическими или химерными промоторами, которые не встречаются в природе, состоят из множества элементов и содержат минимальный промотор, а также — выше минимального промотора — по меньшей мере, один цис-регуляторный элемент, который служит местом связывания для специальных факторов транскрипции. Химерные промоторы могут быть сконструированы в соответствии с желаемой спецификой, и они могут быть индуцированы или репрессированы различными факторами. Примеры таких промоторов можно найти в работе Гурра и Раштона (2005) или Вентера (2007). Например, подходящим терминатором является терминатор нопалин-синтазы (Депикер и соавт., 1982). Вектор может быть введен путем конъюгации, мобилизации, биолистической трансформации, трансформации, опосредованной агробактериями, трансфекции, трансдукции, вакуумной инфильтрации или электропорации. Вектор может представлять собой плазмиду, космиду, фаг или вектор экспрессии, вектор трансформации, челночный вектор или вектор клонирования; он может быть двухцепочечным или одноцепочечным, линейным или кольцевым. Вектор может трансформировать прокариотического или эукариотического хозяина либо путем интеграции в его геном, либо внехромосомно.

В контексте настоящего документа, термин "функционально сцепленные" означает соединенные в общей молекуле нуклеиновой кислоты таким образом, что соединенные

элементы располагаются и ориентированы относительно друг друга таким образом, что может произойти транскрипция молекулы нуклеиновой кислоты. ДНК, которая функционально сцеплена с промотором, находится под транскрипционным контролем этого промотора.

В одном аспекте, настоящее изобретение относится к использованию полинуклеиновой кислоты или вектора по настоящему изобретению, как описано в настоящем документе, для генерирования растения кукурузы или части растения.

В определенных вариантах осуществления настоящего изобретения, вектор представляет собой вектор экспрессии. Нуклеиновая кислота, предпочтительно, функционально сцеплена в векторе, по меньшей мере, с одной регуляторной последовательностью, которая обеспечивает транскрипцию и, необязательно, экспрессию, эукариотической прокариотической клетке-хозяине. Регуляторная или последовательность может быть гомологичной или гетерологичной по отношению к нуклеиновой кислоте. Например, нуклеиновая кислота находится под контролем подходящего промотора или терминатора. Подходящими промоторами могут быть промоторы, которые конститутивно индуцированы, например, промотор 35S из "Вируса мозаики цветной капусты" (Оделл и соавт., 1985. Идентификация последовательностей ДНК, требуемых для активности промотора 35S вируса мозаики цветной капусты.) Тканеспецифичные промоторы, например, пыльцеспецифичные промоторы, как описано в работе в Чен и соавт. (2010. Molecular Biology Reports 37(2):737-744), Чжао и соавт. (2006. Planta 224(2):405-412), или Твелл и соавт. (1991. Genes & Development 5(3):496-507), особенно подходят, как и промоторы, специфичные для развития, например, промоторы, специфичные для цветения. Подходящие промоторы также могут быть синтетическими или химерными промоторами, которые не встречаются в природе, и которые состоят из множества элементов. Такой синтетический или химерный промотор может содержать минимальный промотор, а также, по меньшей мере, один цис-регуляторный элемент, который служит местом связывания для специальных факторов транскрипции. Химерные промоторы могут быть сконструированы в соответствии с желаемой спецификой, и они могут быть индуцированы или репрессированы различными факторами. Примеры таких промоторов можно найти в работе Гурра и Раштона (2005. Тенденции в биотехнологии 23(6):275-282) или Вентера (2007. Тенденции в растениеводстве: 12(3):, 118-124). Например, подходящим терминатором является терминатор нопалин-синтазы (Депикер и COABT., 1982. Journal of Molecular and Applied Genetics 1(6):561-573).

В определенных вариантах осуществления настоящего изобретения, вектор условной экспрессии. представляет собой вектор В определенных вариантах осуществления настоящего изобретения, вектор представляет собой вектор конститутивной экспрессии. В определенных вариантах осуществления настоящего изобретения, вектор представляет собой вектор тканеспецифичной экспрессии, такой как, вектор пыльцеспецифичной экспрессии. В определенных вариантах осуществления настоящего изобретения, вектор представляет собой вектор индуцируемой экспрессии. Все такие векторы хорошо известны в данной области техники. Способы получения описанных векторов являются обычными для специалиста в данной области техники (Сэмбрук и соавт., 2001).

Также в настоящем документе предусмотрена клетка-хозяин, такая как, растительная клетка, которая содержит нуклеиновую кислоту, как описано в настоящем документе, предпочтительно, стимулирующая индукцию нуклеиновая кислота или нуклеиновая кислота, кодирующая двухцепочечную РНК, как описано в настоящем документе, или вектор, как описано в настоящем документе. Клетка-хозяин может содержать нуклеиновую кислоту в виде внехромосомно (эписомально) реплицирующейся молекулы, или она содержит нуклеиновую кислоту, интегрированную в ядерный или пластидный геном клетки-хозяина, или в виде введенной хромосомы, например, минихромосомы.

Клетка-хозяин может быть прокариотической (например, бактериальной) или эукариотической клеткой (например, растительной клеткой или дрожжевой клеткой). Например, клеткой-хозяином может быть агробактерия, такая как Agrobacterium tumefaciens или Agrobacterium rhizogenes. Предпочтительно, клетка-хозяин представляет собой растительную клетку.

В одном аспекте, настоящее изобретение относится к использованию полинуклеиновой кислоты или вектора по настоящему изобретению, как описано в настоящем документе, для идентификации растения кукурузы или части растения.

Описанная в настоящем документе нуклеиновая кислота или описанный в настоящем документе вектор могут быть введены в клетку-хозяина с помощью хорошо известных способов, которые могут зависеть от выбранной клетки-хозяина, включая, например, конъюгацию, мобилизацию, биолистическую трансформацию, трансформацию, опосредованную агробактериями, трансфекцию, трансдукцию, вакуумную инфильтрацию или электропорацию. В частности, способы введения нуклеиновой кислоты или вектора в клетку агробактерии хорошо известны специалисту в данной области техники и могут

включать способы конъюгации или электропорации. Также известны способы введения нуклеиновой кислоты или вектора в растительную клетку (Сэмбрук и соавт., 2001), и они могут включать различные способы трансформации, такие как биологическая трансформация и трансформация, опосредованная агробактериями.

В конкретных вариантах осуществления, настоящее изобретение относится к трансгенной растительной клетке, которая содержит нуклеиновую кислоту, как описано в настоящем документе, в частности, стимулирующую индукцию нуклеиновую кислоту или нуклеиновую кислоту, кодирующую двухцепочечную РНК, как описано в настоящем документе, в качестве трансгена или вектора, как описано в настоящем документе. В других вариантах осуществления, настоящее изобретение относится к трансгенному растению или его части, которое содержит трансгенную растительную клетку.

Например, такая трансгенная растительная клетка или трансгенное растение представляет собой растительную клетку или растение, которое, предпочтительно, стабильно трансформируется нуклеиновой кислотой, как описано в настоящем документе, в частности, стимулирующей индукцию нуклеиновой кислотой или нуклеиновой кислотой, кодирующей двухцепочечную РНК, как описано в настоящем документе, или вектором, как описано в настоящем документе.

Предпочтительно, нуклеиновая кислота в трансгенной растительной клетке функционально сцеплена, по меньшей мере, с одной регуляторной последовательностью, которая обеспечивает транскрипцию и, необязательно, экспрессию в растительной клетке. Регуляторная последовательность может быть гомологичной или гетерологичной по отношению к нуклеиновой кислоте. Общая структура, состоящая из нуклеиновой кислоты по настоящему изобретению и регуляторной последовательности (последовательностей), может, в свою очередь, представлять собой трансген.

В одном аспекте, настоящее изобретение относится к использованию, по меньшей мере, одного (молекулярного) маркера (аллеля), описанного в настоящем документе, для идентификации растения или части растения, имеющего восстановитель фертильности (ген, локус, гаплотип, генотип или фенотип). В одном аспекте, настоящее изобретение относится к использованию, по меньшей мере, одного (молекулярного) маркера (аллеля), описанного в настоящем документе, который способен обнаруживать, по меньшей мере, один диагностический маркерный аллель для идентификации растения или части растения, такого, которое имеет восстановитель фертильности (ген, локус, гаплотип, генотип или фенотип). В одном аспекте, настоящее изобретение относится к использованию, по меньшей мере, одного (молекулярного) маркера (аллеля), описанного в настоящем

документе, для идентификации растения или части растения, имеющего восстановитель фертильности (ген, локус, гаплотип, генотип или фенотип).

В одном аспекте, настоящее изобретение относится к растению кукурузы или части растения, идентифицированного способами по настоящему изобретению, как описано в настоящем документе. В конкретных вариантах осуществления настоящего изобретения, сюда относится растительный материал, полученный из указанного растения или части растения.

В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, один (молекулярный) маркер (аллель), полинуклеиновую кислоту, локус или вектор по настоящему изобретению, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, один (молекулярный) маркер (аллель) из Таблицы 4 или 5.

В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, одну полинуклеиновую кислоту из SEQ ID NO: 1-208. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, одну полинуклеиновую кислоту из SEQ ID NO: 17-200. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота из SEQ ID NO: 17-200 соответствует полинуклеиновой кислоте восстановителя по настоящему изобретению. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота из SEQ ID NO: 17-200 соответствует полинуклеиновой кислоте не восстановителя/закрепителя по настоящему изобретению. Специалисту в данной области техники будет понятно, что можно различать восстановитель и не восстановитель/закрепитель, исходя из идентичности "n" в SEQ ID NO: 17-200, как также описано в настоящем документе в другом месте (например, исходя из данных Таблицы 4). В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, одну полинуклеиновую кислоту из SEQ ID NO: 68-140. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, одну полинуклеиновую кислоту из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и/или 134. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, одну полинуклеиновую кислоту из SEQ ID NO: 1, 5, 9 или 13, или последовательность, которая, по меньшей мере,

на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной, по меньшей мере, в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, или, по меньшей мере, в одном из SEQ ID NO: 2, 6, 10 и 14, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, ПО меньшей мере, 95% последовательности, на идентична представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, одну полинуклеиновую кислоту, кодирующую Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющую, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205 и 207, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205 и 207, или имеющую, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 3, 7, 11 и 15, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 3, 7, 11 и 15. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего, по меньшей мере, один полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204, 206 или 208, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206 или 208, или имеющий последовательность, представленную в любом из SEQ ID NO: 4, 8, 12 или 16, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12 или 16. Предпочтительно, растение или часть растения содержит полинуклеиновую

кислоту, кодирующую полипептид, которая может быть предоставлена на векторе или может быть геномно интегрирована.

В определенных вариантах осуществления настоящего изобретения, маркеры (аллели), полинуклеиновые кислоты или локусы, как определено в настоящем документе, являются гомозиготными. Соответственно, у диплоидных растений два аллеля идентичны (по меньшей мере, по отношению к конкретному маркеру (аллелю), полинуклеиновой кислоте или локусу), у тетраплоидных растений четыре аллеля идентичны, а у гексаплоидных растений шесть аллелей идентичны по отношению к маркеру (аллелю), полинуклеиновой кислоте или локусу. В определенных вариантах осуществления настоящего изобретения, маркер (аллель), полинуклеиновая кислота или локус, как определено в настоящем документе, является гетерозиготным. Соответственно, у диплоидных растений два аллеля не идентичны, у тетраплоидных растений четыре аллеля не идентичны (например, только один, два или три аллеля содержат специфический маркер (аллель), полинуклеиновую кислоту или локус), а у гексаплоидных растений шесть аллелей не идентичны по отношению к мутации или маркеру (например, только один, два, три, четыре или пять аллелей содержат специфический маркер (аллель), полинуклеиновую соображения кислоту ИЛИ локус). Аналогичные применимы случае псевдополиплоидных растений.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения полипептида, полинуклеиновой кислоты, локуса (аллеля) или (молекулярного) маркера (аллеля) по настоящему изобретению, как определено в настоящем документе, или его (функционального) фрагмента. Предпочтительно, введение в растение или часть растения представляет собой геномное введение. Однако в определенных вариантах осуществления настоящего изобретения, введение представляет собой негеномное введение, такое как эписомальное введение. В определенных вариантах осуществления настоящего изобретения, введение достигается с помощью вектора, как известно в данной области техники, и как также описано в настоящем документе в другом месте.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты из SEQ ID NO: 1-208. В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащего введение в (геном)

указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты из SEQ ID NO: 17-200. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота из SEQ ID NO: 17-200 соответствует полинуклеиновой кислоте восстановителя по настоящему изобретению. В определенных вариантах осуществления настоящего изобретения, полинуклеиновая кислота из SEQ ID NO: 17-200 соответствует полинуклеиновой кислоте не восстановителя/закрепителя по настоящему изобретению. Специалисту в данной области техники будет понятно, что различать восстановитель и не восстановитель/закрепитель, исходя онжом идентичности "n" в SEQ ID NO: 17-200, как также описано в настоящем документе в другом месте (например, исходя из данных Таблицы 4). В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты из SEQ ID NO: 68-140. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты из SEQ ID NO: 70, 72, 76, 79, 86, 88, 92, 93, 99, 104, 105, 107, 108, 109, 115 и/или 134. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты из SEQ ID NO: 1, 5, 9 или 13, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, или, по меньшей мере, в одном из SEQ ID NO: 2, 6, 10 и 14, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты, кодирующей Zm00001d043358, Zm00001d043352, Zm00001d043356 и Zm00001d043357, имеющей, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 201, 203, 205 и 207, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей

мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 201, 203, 205 и 207, или имеющей, соответственно, кодирующую последовательность, представленную в любом из SEQ ID NO: 3, 7, 11 и 15, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 3, 7, 11 и 15. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего введение в указанное растение или часть растения, по меньшей мере, одного полипептида, имеющего последовательность, представленную в любом из SEQ ID NO: 202, 204, 206 или 208, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206 или 208, или имеющего последовательность, представленную в любом из SEQ ID NO: 4, 8, 12 или 16, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12 или 16. Предпочтительно, растение или часть растения содержит полинуклеиновую кислоту, кодирующую полипептид, которая может быть предоставлена на векторе или может быть геномно интегрирована. В одном аспекте, настоящее изобретение относится к растению (кукурузы) или части растения, содержащего введение в (геном) указанного растения или части растения, по меньшей мере, одной полинуклеиновой кислоты, кодирующей полипептид, имеющий последовательность, представленную в любом из SEQ ID NO: 202, 204, 206 или 208, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 202, 204, 206 или 208, или имеющий последовательность, представленную в любом из SEQ ID NO: 4, 8, 12 или 16, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 4, 8, 12 или 16.

Специалисту в данной области техники будет понятно, что, предпочтительно, вводятся геномные последовательности.

В определенных вариантах осуществления настоящего изобретения, введение (в геном), как указано в настоящем документе, содержит трансгенез.

В определенных вариантах осуществления настоящего изобретения, введение (в геном), как указано в настоящем документе, содержит трансформацию.

В определенных вариантах осуществления настоящего изобретения, введение (в геном), как указано в настоящем документе, содержит рекомбинацию, такую как гомологичная рекомбинация.

В определенных вариантах осуществления настоящего изобретения, введение (в геном), как указано в настоящем документе, содержит мутагенез.

В определенных вариантах осуществления настоящего изобретения, введение (в геном), как указано в настоящем документе, содержит интрогрессию. В определенных вариантах осуществления настоящего изобретения, введение в геном, как указано в настоящем документе, содержит интрогрессию.

В определенных вариантах осуществления настоящего изобретения, введение в геном, как указано в настоящем документе, содержит введение в геном в части растения. В определенных вариантах осуществления настоящего изобретения, часть растения представляет собой орган растения. В определенных вариантах осуществления настоящего изобретения, часть растения представляет собой растительную ткань. В определенных вариантах осуществления настоящего изобретения, часть растения представляет собой растительную клетку. В определенных вариантах осуществления настоящего изобретения, часть растения представляет собой протопласт.

В определенных вариантах осуществления настоящего изобретения, введение в геном, как указано в настоящем документе, содержит введение в геном in vitro. В определенных вариантах осуществления настоящего изобретения, введение в геном, как указано в настоящем документе, содержит введение в геном in vivo.

В определенных вариантах осуществления настоящего изобретения, способ генерирования растения кукурузы или части растения содержит трансформацию растения или части растения, предпочтительно, растительной клетки, более предпочтительно, протопласта, с помощью полинуклеиновой кислоты, как описано в настоящем документе в другом месте, и, необязательно, регенерацию растения из указанной растительной клетки, предпочтительно, из протопласта.

В определенных вариантах осуществления настоящего изобретения, трансформированное растение или часть растения не содержит эндогенным образом полинуклеиновую кислоту по настоящему изобретению, как описано в настоящем документе.

В определенных вариантах осуществления настоящего изобретения, трансформированное растение или часть растения не содержит эндогенным образом, по меньшей мере, один молекулярный маркер (маркерный аллель) по настоящему изобретению, как описано в настоящем документе.

В определенных вариантах осуществления настоящего изобретения, способы получения или генерирования растений, или частей растений, как описано в настоящем документе, включают или содержат трансгенез и/или редактирование генов, например, CRISPR/Cas (кластеризованные регулярные промежуточные короткие палиндромные повторы), TALEN (нуклеазы на основе эффектора, подобного активатору транскрипции), ZFN (цинкпальцевые нуклеазы), мегануклеазы;(индуцированный) мутагенез, который может или не может быть случайным мутагенезом, например, TILLING (Таргетирование индуцированных локальных поражений в геномах).

В определенных вариантах осуществления настоящего изобретения, способы получения растений или частей растений, описанные в настоящем документе, не включают или не содержат трансгенез, редактирование генов и/или мутагенез.

В определенных вариантах осуществления настоящего изобретения, способы получения растений или частей растений, описанные в настоящем документе, включают, содержат или состоят из селекции и отбора.

В определенных вариантах осуществления настоящего изобретения, способы получения растений или частей растений, описанные в настоящем документе, не включают, не содержат или не состоят из селекции и отбора.

В одном аспекте, настоящее изобретение относится к растению кукурузы или части растения, полученного или получаемого способами по настоящему изобретению, как описано в настоящем документе, такими как способы идентификации растения кукурузы или части растения, или способы генерирования растения кукурузы или части растения. Настоящее изобретение также относится к потомкам таких растений.

В одном аспекте, настоящее изобретение относится к растению кукурузы или части растения, содержащего полинуклеиновую кислоту по настоящему изобретению, как описано в настоящем документе. В определенных вариантах осуществления настоящего изобретения, аллель полинуклеиновой кислоты является гомозиготным. В определенных

вариантах осуществления настоящего изобретения, аллель полинуклеиновой кислоты является гетерозиготным.

В одном аспекте, настоящее изобретение относится к растению кукурузы или части растения, содержащего любой, по меньшей мере, один молекулярный маркер (аллель) по настоящему изобретению, как описано в настоящем документе. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) является гомозиготным. В определенных вариантах осуществления настоящего изобретения, молекулярный маркер (аллель) является гетерозиготным.

В определенных вариантах осуществления настоящего изобретения, растение кукурузы не является сортом кукурузы. В определенных вариантах осуществления настоящего изобретения, растение получают не только с помощью по существу биологического процесса. В определенных вариантах осуществления настоящего изобретения, растение получают способом, который содержит, по меньшей мере, один этап, отличный от скрещивания, т.е., скрининг на присутствие полинуклеотида, как описано в настоящем документе.

Как описано в настоящем документе в другом месте, в определенных вариантах осуществления настоящего изобретения, такое растение (кукурузы) или часть растения не содержит эндогенным образом указанные полинуклеиновые кислоты.

В определенных вариантах осуществления настоящего изобретения, растение кукурузы или часть растения является трансгенным, имеющим редактированные гены или мутагенным. В определенных вариантах осуществления настоящего изобретения, растение кукурузы или часть растения является трансгенным, имеющим редактированные гены или мутагенным для того, чтобы содержать, по меньшей мере, один молекулярный маркер (аллель) или, по меньшей мере, одну полинуклеиновую кислоту по настоящему изобретению, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого

растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков, при этом указанное первое растение является восстановителем (предпочтительно, восстановителем по настоящему изобретению).

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков, при этом указанное второе растение является восстановителем (предпочтительно, восстановителем по настоящему изобретению).

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков, при этом указанное первое растение не является восстановителем (предпочтительно, не является восстановителем по настоящему изобретению).

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков, при этом указанное второе растение не является восстановителем (предпочтительно, не является восстановителем по настоящему изобретению).

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков, и при этом указанное первое растение является восстановителем (предпочтительно, восстановителем по настоящему изобретению), и при этом указанное второе растение не является восстановителем (предпочтительно, не является восстановителем по настоящему изобретению).

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему (а) предоставление первого растения (кукурузы) по настоящему изобретению или идентифицированного по настоящему изобретению, или сгенерированного по настоящему изобретению, (b) скрещивание указанного первого растения (кукурузы) со вторым растением кукурузы, имеющим цитоплазматическую мужскую стерильность; и, необязательно, (d) сбор указанной части растения (кукурузы) от потомков, при этом указанное первое растение не является восстановителем (предпочтительно, не является восстановителем по настоящему изобретению), и при этом указанное второе растение является восстановителем (предпочтительно, восстановителем по настоящему изобретению).

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему скрещивание первого растения (кукурузы) со вторым растением кукурузы и отбор потомства, содержащего любой, по меньшей мере, один локус, гаплотип, полинуклеиновую кислоту, маркера (аллель), полиморфизм или SNP, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему скрещивание первого растения (кукурузы) со вторым растением кукурузы и отбор потомства, у которого отсутствует любой, по меньшей мере, один локус, гаплотип, полинуклеиновая кислота, маркер (аллель), полиморфизм или SNP, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему скрещивание первого растения (кукурузы) со вторым растением кукурузы и отбор потомства, содержащего любой, по

меньшей мере, один локус, гаплотип, полинуклеиновую кислоту, маркера (аллель), полиморфизм или SNP, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему скрещивание первого растения (кукурузы) со вторым растением кукурузы и отбор потомства, у которого отсутствует любой, по меньшей мере, один (ассоциированный с восстановителем) локус-, гаплотип-, полинуклеиновая кислота-, маркер- (аллель-), полиморфизм- или SNP-восстановитель, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему скрещивание первого растения (кукурузы) со вторым растением кукурузы и отбор потомства, содержащего любой, по меньшей мере, один (ассоциированный с закрепителем) локус-, гаплотип-, полинуклеиновую кислоту-, маркер- (аллель-), полиморфизм- или SNP-закрепитель, как описано в настоящем документе.

В одном аспекте, настоящее изобретение относится к способу генерирования растения (кукурузы) или части растения, содержащему скрещивание первого растения (кукурузы) со вторым растением кукурузы и отбор потомства, у которого отсутствует любой, по меньшей мере, один (ассоциированный с закрепителем) локус-, гаплотип-, полинуклеиновая кислота-, маркер- (аллель-), полиморфизм- или SNP-закрепитель, как описано в настоящем документе.

Предпочтительно, первое или второе растение представляет собой цитоплазматическое мужское стерильное растение.

Локусы-, гаплотипы-, полинуклеиновые кислоты-, маркер- (маркеры-) (аллель- (аллели-)), полиморфизмы- или SNP-восстановители/закрепители могут содержать соответствующие маркеры, полиморфизмы или SNP, перечисленные в Таблицах 4 или 5.

В определенных вариантах осуществления настоящего изобретения, выбраны растения или части растений, которые не содержат локус-восстановитель по настоящему изобретению.

В определенных вариантах осуществления настоящего изобретения, выбраны растения или части растений, которые содержат локус-восстановитель по настоящему изобретению.

Аспекты и варианты осуществления настоящего изобретения дополнительно подтверждаются следующими неограничивающими примерами. Следующие примеры,

включая проведенные эксперименты и достигнутые результаты, приведены только в иллюстративных целях и не предназначены для ограничения настоящего изобретения.

ПРИМЕРЫ

ПРИМЕР 1: Идентификация генотипа-восстановителя кукурузы на 3 хромосоме

В последние годы у CMSC наблюдалась более высокая доля восстанавливающих линий в женском селекционном пуле 4, но только часть этих линий несет восстановитель RF4.

Авторы настоящего изобретения испытали 374 линии кукурузы с фенотипом пула 4 на предмет присутствия RF4 и соответствующего фенотипа-восстановителя (Таблица 1). Данные показывают, что в пуле, по-видимому, присутствует, по меньшей мере, один другой восстановитель. Анализ GWAS с использованием всех линий пула 4, не несущих RF4, подтвердил это предположение и показал явное попадание на хромосому 3 (Фигура 1). Новый восстановитель получил название RF-03-01.

Таблица 1: Анализ присутствия/отсутствия восстановителя RF4 (RF4+/rf4-)

Гаплотип	Закрепитель	Восстановитель
RF4+	1	45
rf4-	174	93

Анализ 600 тыс. данных из 143 восстанавливающих и не восстанавливающих линий пула 4 (все без RF4) показал, что геномная область размером 0,25 Мб сцеплена с восстановителем. В проанализированном материале присутствовали только два гаплотипа, один из которых объясняет восстановление. Гаплотипы содержат 64 полиморфных маркера количеством 600 тыс. (Таблица 4: идентификаторы 52, 53, 55, 57-71, 73-75, 78-88, 90, 94-124), которые находятся в состоянии неравновесного сцепления (LD) высокого уровня. 14% всех линий пула 4 (включая носителей RF4) несут гаплотип-восстановитель RF-03-01.

Таблица 2: Анализ гаплотипов

Гаплотип	Закрепитель	Восстановитель
A	100	22
В	0	21

Доля восстановления у гаплотипа A может быть объяснена только дальнейшими незначительными восстановителями, которые до сих пор не могли быть идентифицированы.

Область на 3 хромосоме содержит 6 генов в соответствии с аннотацией по AGPv4 https://www.maizegdb.org/genome/assembly/Zm-B73-REFERENCE-GRAMENE-4.0), 4 из

них экспрессируются в пыльце, один участвует в митохондриальной организации и, таким образом, представляет наиболее известный ген-кандидат (Zm00001d043358). Все четыре гена полиморфны между двумя гаплотипами.

Таблица 3: Список генов-кандидатов

Ген	Функция	SEQ ID NO:						
		Гаплотип-в	восстанові	итель	Эта.	лонный В	73	
		геномная	кДНК	белок	геномная	кДНК	белок	
		днк			днк			
Zm00001d	митохондриаль	1	201	202	2	3	4	
043358,	ная							
	организация							
Zm00001d	Процессинг	5	203	204	6	7	8	
043352,	рРНК							
Zm00001d	процесс	9	205	206	10	11	12	
043356,	биосинтеза							
	семейства							
	ароматических							
	аминокислот							
Zm00001d	Переносчик	13	207	208	14	15	16	
043357,	электронов,							
	подобный							
	пластоцианину							

Были разработаны 16 маркеров KASP (Таблица 4: идентификатор 54, 56, 60, 63, 70, 72, 76, 77, 83, 88, 89, 91, 92, 93, 99, и 118), которые могут быть использованы для определения гаплотипа, частично путем конверсии 600 тыс. маркеров, частично путем использования новых SNP в генах-кандидатах.

Используя эти маркеры в сочетании с известными маркерами RF4, можно обнаружить наиболее важные восстановители в пуле 4 и принять решение о наиболее разумной стратегии конверсии для данной линии в процессе разработки гибридных линий кукурузы. Как правило, для этой цели можно использовать все маркеры, перечисленные в Таблице 4. Далее, на Фигурах 2-5 показаны выравнивания последовательностей геномной ДНК генов-кандидатов, полученных из генотипа-восстановителя RF-03-01 и из эталонного генотипа (В73). Черным с белыми буквами выделены полиморфизмы, которые дополнительно подходят для обнаружения нежелательного генотипа-восстановителя. Что

касается списка маркеров в соответствии с Таблицей 4, то оказалось, что маркеры с идентификаторами 52-124 на 100% ассоциированы с локусом-восстановителем на 3 хромосоме. Следовательно, область положений 197453646-197698278, относящаяся к АGPv4 В73, является наиболее подходящей в качестве сайта-мишени для ассоциированной с маркерами идентификации генотипа-восстановителя RF-03-01. Маркеры с идентификаторами 1-51 и 125-184, соответствующие областям положений 195629901-196989408 и 197708137-198023573, также могут быть использованы для идентификации, поскольку лежащие в основе полиморфизмы можно обнаружить в большинстве генотипов (основные аллели), однако они не сцеплены на 100%.

RF-03-01 также присутствует в пуле кремнистой кукурузы, используемом в качестве мужского, хотя его влияние на восстановление слабее, чем в пуле 4. Во всяком случае, этот пул также должен помочь приобрести удовлетворительную информацию о генах-восстановителях, потому что восстановление мужских линий важно для применимости cms. В случае, если присутствует только RF-03-01, но не RF4, восстановление может быть слишком слабым или может завершиться неудачей в некоторых средах, поскольку этот восстановитель не так стабилен, как RF4. Таким образом, хороший подход к генотипированию в дополнение к фенотипированию важен для обеспечения безопасности производства.

Таблица 4: Список маркеров; маркерные последовательности можно найти в списке последовательностей под соответствующим SEQ ID NO, как указано в последнем столбце. Далее, в списке последовательностей под идентификатором <223> определяется, где в маркерной последовательности находится полиморфизм (число, следующее за @, положение в последовательности). Положение "n", указывает таким образом, соответствует полиморфизму, способному различать восстановитель не восстановитель/закрепитель.

Идентификатор	Название	Положение	поли	морфизм	SEQ ID
идентификатор	маркера	AGPv4	закрепитель	восстановитель	NO:
1	ma0016fm86	195629901	ade	gua	17
2	ma0016fn05	195639694	thy	cyt	18
3	ma0016fn29	195677799	gua	ade	19
4	ma0016fn27	195678356	cyt	gua	20
5	ma0016fn16	195680790	gua	ade	21
6	ma0004tk22	195732936	gua	ade	22
7	ma0004tk05	195733916	cyt	ade	23
8	ma0016fn55	195783701	cyt	thy	24
9	ma0016fp29	196070086	cyt	thy	25
10	ma0004tm29	196198736	ade	gua	26

11	ma0004tm38	196244714	thy	cyt	27
12	ma0016fq46	196653746	cyt	thy	28
13	ma0000ba98	196693501	cyt	ade	29
14	ma0000ba98	196702811	ade	gua	30
15	ma0001gr36	196704008	ade	gua	31
16	ma0000kr37	196704096	thy	cyt	32
17	ma0001gr37	196704169	thy	cyt	33
18	ma0001gr41	196704290	thy	cyt	34
19	ma0016fq61	196705470	thy	ade	35
20	ma0022xj91	196706697	gua	ade	36
21	ma0016fq64	196706755	cyt	ade	37
22	ma0001jh28	196707190	ade	gua	38
23	ma0004tn40	196707415	thy	ade	39
24	ma0004tn32	196707997	gua	gua	40
25	ma0016fq88	196773893	cyt	thy	41
26	ma0004tn60	196774122	cyt	thy	42
27	ma0016fq93	196774333	gua	ade	43
28	ma0016fq89	196774502	gua	ade	44
29	ma0016fq94	196774823	cyt	thy	45
30	ma0004tn62	196774965	cyt	gua	46
31	ma0004tn31	196775596	gua	ade	47
32	ma0016fq50	196776600	ade	gua	48
33	ma0004tn30	196776877	cyt	thy	49
34	ma0000xk01	196840068	cyt	ade	50
35	ma0011cv03	196840815	gua	cyt	51
36	ma0016fq79	196841649	gua	cyt	52
37	ma0004tn51	196841990	cyt	ade	53
38	ma0004tn53	196843002	cyt	gua	54
39	ma0000cm74	196843335	cyt	gua	55
40	ma0000jt04	196844084	cyt	thy	56
41	ma0016fq81	196851451	thy	cyt	57
42	ma0016fq76	196853534	gua	cyt	58
43	ma0016fq97	196853762	cyt	thy	59
44	ma0004tn72	196880373	cyt	thy	60
45	ma0004tn96	196985856	cyt	ade	61
46	ma0016fr46	196985883	cyt	thy	62
47	ma0011rt36	196987284	cyt	thy	63
48	ma0022vg84	196989025	gua	thy	64
49	ma0001hr21	196989252	gua	ade	65
50	ma0012wu17	196989377	gua	ade	66
51	ma0001hr20	196989408	ade	gua	67
52	ma0000sa77	197453646	ade	gua	68
53	ma0004tp73	197453708	ade	gua	69
54	ma61758s03	197453708	thy	cyt	70
55	ma0000qw65	197454448	gua	ade	71
56	ma61758s02	197454630	thy	cyt	72
57	ma0016ft38	197454657	thy	cyt	73
58	ma0016ft37	197454744	thy	gua	74
	IIIuooToito/	1 277 13 17 17	1111	1544	' '

50	T0000 70	107454700	1 - 4		75
59	ma0000wv70	197454780	cyt	gua	75
60	ma0004tp85	197454833	ade	gua	76
61	ma0012sk12	197455007	cyt	thy	77
62	ma0022mm17	197455034	thy	cyt	78
63	ma0004tp78	197456922	thy	cyt	79
64	ma0022mm15	197457134	ade	gua	80
65	ma0004tp79	197457214	cyt	thy	81
66	ma0004tp82	197457351	gua	ade	82
67	ma0016ft40	197457603	gua	ade	83
68	ma0016ft28	197459188	thy	cyt	84
69	ma0004tq11	197487965	gua	ade	85
70	ma0004tq10	197488751	cyt	thy	86
71	ma0012aq25	197489067	gua	ade	87
72	ma61757s01	197524489	gua	thy	88
73	ma0016ft65	197524855	cyt	thy	89
74	ma0004tq05	197525193	gua	ade	90
75	ma0004tq06	197525365	gua	thy	91
76	ma61757s03	197525625	thy	cyt	92
77	ma61757s04	197525990	cyt	thy	93
78	ma0004tq13	197526621	ade	gua	94
79	ma0016ft76	197526690	gua	ade	95
80	ma0016ft75	197527582	gua	ade	96
81	ma0022xj97	197527682	cyt	gua	97
82	ma0004tq07	197528652	cyt	thy	98
83	ma0016ft73	197556227	gua	ade	99
84	ma0004tq16	197609686	gua	thy	100
85	ma0016ft77	197609730	ade	gua	101
86	ma0016ft86	197611692	ade	gua	102
87	ma0010yr95	197611832	gua	ade	103
88	ma0011dy20	197611894	gua	ade	104
89	ma61755s04	197613135	ade	cyt	105
90	ma0016ft80	197613658	ade	cyt	106
91	ma61755s03	197613658	thy	gua	107
92	ma61755s02	197615089	gua	ade	108
93	ma61755s01	197615461	cyt	thy	109
94	ma0016ft81	197631560	ade	gua	110
95	ma0016ft78	197631688	gua	ade	111
96	ma0016ft83	197632590	gua	ade	112
97	ma0004tq35	197632706	ade	gua	113
98	ma0004tq36	197633370	thy	cyt	114
99	ma0004tq32	197633860	gua	ade	115
100	ma0022xj98	197638778	thy	cyt	116
101	ma0004tq24	197638949	thy	cyt	117
102	ma0004tq26	197639380	gua	ade	118
103	ma0004tq20	197652023	cyt	thy	119
104	ma0016ft97	197652478	ade	gua	120
105	ma0004tq33	197653125	gua	thy	121
106	ma0016ft92	197654542	cyt	gua	122
100	11111100101172	17/037372	1 ~ y t	15 ^{ua}	144

107	108	
109	109	
110	110	
110	110 ma0010yr98 197688445 thy cyt 126 111 ma0022mm25 197688492 thy cyt 127 112 ma0016ft98 197692991 ade gua 128 113 ma0004tq38 197692996 thy cyt 129 114 ma0004tq54 197694265 thy cyt 130 115 ma0016fu20 197695368 cyt thy 131 116 ma0016fu17 197695587 thy cyt 133 117 ma0016fu11 1976965857 thy cyt 133 118 ma0016fu10 197696782 gua ade 134 119 ma0016fu00 197696732 gua ade 136 120 ma0016fu00 197696752 gua ade 137 122 ma0016fu01 197697327 gua ade 137 122 ma0016fu01 197698278 gua ade 140	
111	111	
112	112	
113	113 ma0004tq38 197692996 thy cyt 129 114 ma0004tq54 197694265 thy cyt 130 115 ma0016fu20 197695368 cyt thy 131 116 ma0016fu17 197695591 ade gua 132 117 ma0004tq57 197695857 thy cyt 133 118 ma0016fu10 197696192 thy ade 134 119 ma0016fu10 197696732 gua ade 136 120 ma0016fu09 197696762 gua ade 136 121 ma0016fu09 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 123 ma0016fu01 197698249 gua ade 140 124 ma0016fu07 19778334 thy cyt 141	
114	114 ma0004tq54 197694265 thy cyt 130 115 ma0016fu20 197695368 cyt thy 131 116 ma0016fu17 197695591 ade gua 132 117 ma0004tq57 197695857 thy cyt 133 118 ma0016fu10 197696732 gua thy 135 120 ma0016fu09 197696762 gua ade 136 121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu9 197708137 thy cyt 141 126 ma0016fu9 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143	
115	115	-
116	116 ma0016fu17 197695591 ade gua 132 117 ma0004tq57 197695857 thy cyt 133 118 ma0016fu11 197696192 thy ade 134 119 ma0016fu10 197696732 gua thy 135 120 ma0016fu09 197696762 gua ade 136 121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0016fu01 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma016fu99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0016fu07 19778073 thy gua 144	
117	117 ma0004tq57 197695857 thy cyt 133 118 ma0016fu11 197696192 thy ade 134 119 ma0016fu10 197696732 gua thy 135 120 ma0016fu09 197696762 gua ade 136 121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu95 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145	
118	118 ma0016fu11 197696192 thy ade 134 119 ma0016fu10 197696732 gua thy 135 120 ma0016fu09 197696762 gua ade 136 121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0016fu01 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu07 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010y02 197758073 thy gua 143 128 ma0010y02 197758073 thy gua 144 129 ma52981s01 197761254 cyt ade 144 129 ma52981s01 197761254 cyt ade 145	
119	119 ma0016fu10 197696732 gua thy 135 120 ma0016fu09 197696762 gua ade 136 121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147	
120	120 ma0016fu09 197696762 gua ade 136 121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua ade 144 128 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197777549 ade gua	
121	121 ma0004tq43 197697327 gua ade 137 122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 197778110 ade gua 150	
122	122 ma0016fu01 197697514 cyt thy 138 123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016fu99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua ade 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fgu32 197777618 thy ade 149 134 ma001tgk10 19778110 ade gua 150	
123	123 ma0004tq42 197698249 gua ade 139 124 ma0016fu05 197698278 gua ade 140 125 ma0016ft99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 197777618 thy ade 149 134 ma001tzk10 197778149 ade gua 150 135 ma004tq62 197781849 cyt ade 151	
124	124 ma0016fu05 197698278 gua ade 140 125 ma0016ft99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fgu32 197777618 thy ade 149 134 ma001tk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152	
125	125 ma0016ft99 197708137 thy cyt 141 126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197785166 cyt thy 154	
126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981802 197761254 cyt ade 145 130 ma52981801 1977761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fgu2 197778110 ade gua 150 134 ma001fgu2 197781849 cyt ade 151 136 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq68 19778466 ade gua 153 138 ma004tq59 197785166 cyt thy 154	126 ma0016fu07 197708334 thy ade 142 127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 19777618 thy ade 149 134 ma001tzk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq68 197785166 cyt thy 154 139 ma002mm29 197785166 cyt thy 155	
127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 197778110 ade gua 150 134 ma001tk10 19778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq62 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0022mm29 197785166 cyt thy 154 139 ma0022mm29 1977851648 gua ade 155	127 ma0010yt02 197758073 thy gua 143 128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fgu32 197777618 thy ade 149 134 ma001tzk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq68 197785166 cyt thy 153 138 ma0004tq59 197785166 cyt thy 154 139 ma002zmm29 197785166 cyt gua 155	
128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 197777618 thy ade 149 134 ma001tzk10 197778110 ade gua 150 135 ma0004tq62 197781961 gua ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma016fu31 197787768 cyt thy 158	128 ma0000gu42 197760175 gua ade 144 129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma001fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt thy 158	
129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 1977814961 gua ade 152 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157	129 ma52981s02 197761254 cyt ade 145 130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 19777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma002zmm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197787768 cyt thy 157	
130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781961 gua ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq59 197784696 ade gua 153 138 ma0002m29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu45 19787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159	130 ma52981s01 197761305 ade cyt 146 131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781961 gua ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0002m29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0016fu28 197812595 gua ade 161	131 ma0004tq83 197776540 thy cyt 147 132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197787768 cyt thy 158 142 ma0016fu35 197787768 cyt thy 158	
132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 19787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0016fu28 197812595 gua ade 161	132 ma0004tq66 197777549 ade gua 148 133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0016fu36 197812595 gua ade 161 145 ma0016fu28 197813589 thy cyt 162	133 ma0016fu32 197777618 thy ade 149 134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162	134 ma0011zk10 197778110 ade gua 150 135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0016fu36 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu28 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163	135 ma0004tq62 197781849 cyt ade 151 136 ma0004tq68 197781961 gua ade 152 137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0022mm28 197840802 thy cyt 164 149 ma0022mm28 197855989 cyt thy 166	137 ma0004tq78 197784696 ade gua 153 138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166	138 ma0004tq59 197785166 cyt thy 154 139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167	139 ma0022mm29 197785270 cyt gua 155 140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 19787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168	140 ma53009s01 197786148 gua ade 156 141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xij99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	141 ma0016fu41 197786155 cyt gua 157 142 ma0016fu35 197787768 cyt thy 158	
142 ma0016fu35 197787768 cyt thy 158 143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	142 ma0016fu35 197787768 cyt thy 158	
143 ma0016fu36 197806056 gua ade 159 144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169		
144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	143 ma0016fu36 197806056 gua ade 159	
144 ma0004tq69 197806483 cyt thy 160 145 ma0016fu28 197812595 gua ade 161 146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	-	
146 ma0016fu26 197813589 thy cyt 162 147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	144 ma0004tq69 197806483 cyt thy 160	
147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	145 ma0016fu28 197812595 gua ade 161	
147 ma0010yt03 197814082 gua ade 163 148 ma0016fu45 197840802 thy cyt 164 149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	146 ma0016fu26 197813589 thy cyt 162	
149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	147 ma0010yt03 197814082 gua ade 163	
149 ma0022mm28 197840951 gua ade 165 150 ma0022xj99 197855989 cyt thy 166 151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169		_
151 ma0016fu43 197859323 gua cyt 167 152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169		
152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	150 ma0022xj99 197855989 cyt thy 166	
152 ma0004tq81 197860711 ade cyt 168 153 ma0016fu29 197861373 gua ade 169	151 ma0016fu43 197859323 gua cyt 167	
153 ma0016fu29 197861373 gua ade 169		
	153 ma0016fu29 197861373 gua ade 169	
154 ma0022mm31 197895272 ade gua 170	154 ma0022mm31 197895272 ade gua 170	

155	0010 .04	10700000		,	171
155	ma0010yt04	197902823	gua	ade	171
156	ma0004tr07	197902855	cyt	thy	172
157	ma0012fz92	197902923	cyt	thy	173
158	ma0001ac17	197903119	cyt	ade	174
159	ma0012pg35	197903264	thy	cyt	175
160	ma0000en22	197903302	gua	cyt	176
161	ma0000en21	197903372	cyt	thy	177
162	ma0016fu62	197903475	cyt	thy	178
163	ma0004tq90	197903587	gua	thy	179
164	ma08364s01	197903629	gua	ade	180
165	ma0011zt60	197903716	thy	cyt	181
166	ma0004tq98	197903816	thy	gua	182
167	ma0016fu52	197904016	thy	thy	183
168	ma0016fu55	197904655	cyt	ade	184
169	ma0011dy21	197906673	ade	gua	185
170	ma0004tq88	197907566	gua	ade	186
171	ma0022xk01	197907617	ade	cyt	187
172	ma0016fu57	197907653	thy	cyt	188
173	ma0010yt06	197907842	thy	cyt	189
174	ma0001dg29	197909824	ade	ade	190
175	ma0016fu59	197948546	ade	gua	191
176	ma0016fu58	197948580	cyt	thy	192
177	ma0004tr05	197948690	cyt	ade	193
178	ma0004tr10	197948831	gua	gua	194
179	ma0004tr03	197948879	ade	gua	195
180	ma0004tq84	197973632	cyt	cyt	196
181	ma0016fu56	197974493	ade	gua	197
182	ma0011jn34	197994208	thy	gua	198
183	ma0016fu80	198023432	thy	cyt	199
184	ma0004tr23	198023573	cyt	gua	200
Тоб 4			у 2 5 Пот		

Таблица 5: Список маркеров на основе Фигур 2-5. Положения нуклеотидов указаны для соответствующего SEQ ID NO.

Иденти	SEQ ID	Положен	SEQ ID	Положен	полим	орфизм
фикатор	NO:	ие	NO:	ие В73	восстанови	закрепител
		восстанов		(AGPv4)	тель	Ь
		ителя		=		
				закрепите		
				ль		
1	1	35	2	35	g	t
2	1	404	2	404	t	c
3	1	444-452	2	443-444	Инсерция	cg
					gggactttc	
					между сд	
4	1	463	2	454	С	t
5	1	537	2	528	g	С
6	1	735	2	726	g	a
7	1	748-759	2	738-739	Инсерция	at
					tactttgtaaca	

					между at	
8	1	761	2	740	t	a
9	1	797	2	776	a	g
10	1	1048	2	1027	g	t
11	1	1056	2	1035	a	С
12	1	1065-1066	2	1045	Делеция а	
					между tc	a
13	1	1072-1073	2	1053-1059	Делеция	cttctcc
					cttctcc	
					между сс	
14	1	1071	2	1058	g	С
15	1	1188	2	1175	С	t
16	1	1218	2	1208	t	С
17	1	1765	2	1757	a	g
18	1	1769	2	1761	g	a
19	1	1844	2	1836	t	g
20	1	1856	2	1848	t	a
21	1	2076	2	2068	С	t
22	1	2089	2	2081	g	a
23	1	2146	2	2138	t	С
24	1	2168-2169	2	2161	Делеция t	
					между tt	t
25	1	2214	2	2207	g	t
26	1	2370	2	2362-2363	Инсерция с	ct
					между ct	
27	1	2582	2	2574	С	g
28	1	2632-2637	2	2624-2629	tactgt	ccactg
29	1	2641	2	2633	a	t
30	1	2643-2644	2	2635-2636	cg	ac
31	1	2696	2	2688	t	С
32	1	2738	2	2730	С	a
33	1	2843	2	2834-2835	Инсерция д	gt
					между gt	
34	1	2849	2	2840	t	С
35	1	2954-2955	2	2946-2947	Делеция tt	tt
		1 -1 2.2			между tt	
36	1	3004	2	2997	g	a
37	1	3047	2	3040	a	t
38	1	3068	2	3061	С	a
39	1	3218	2	3211	a	g
40	5	486	6	486	a	t
41	5	611	6	611	g	a
42	5	638	6	638	a	g
43	5	689	6	689	g	a
44	5	812	6	812	c	t
45	5	865	6	865	С	g
46	5	901	6	901	С	a
47	5	988	6	988	g	a
	1 2	1 700	l V	1 700	15	լ ա

49	5	1085	6	1085	С	t
50	5	1197	6	1197	t	С
51	5	1345	6	1345	С	t
52	5	1461	6	1461	С	t
53	5	1937	6	1937	С	t
54	5	1999	6	1999	С	t
55	5	2113-2115	6	2112-2113	Инсерция	gt
					дса между	
					gt	
56	5	2286	6	2283	c	t
57	5	2293-2297	6	2289-2290	Инсерция	gt
					ctacg	
					между gt	
58	5	2399	6	2391	С	g
59	5	2448-2450	6	2439-2440	Инсерция	сс
					ctc между	
					cc	
60	5	2822-2823	6	2810-2811	Инсерция tt	tt
					между tt	
61	5	2856	6	2843	g	a
62	5	2926	6	2913	a	g
63	5	2998	6	2985	t	С
64	5	3029	6	3016	t	С
65	5	3085	6	3072	t	С
66	5	3102	6	3089	t	С
67	5	3112	6	3099	С	a
68	5	3120	6	3107	t	g
69	5	3168	6	3155	t	a
70	9	392-393	10	393-397	Делеция	
					gtggt	gtggt
					между tg	
71	9	550	10	555	g	a
72	9	591	10	596	t	g
73	9	886-887	10	891-892	ct	tc
74	9	934	10	939	a	g
75	9	957	10	962	t	c
76	9	1097	10	1102	С	t
77	9	1130	10	1135	С	t
78	9	1295	10	1300	a	g
79	9	1462	10	1467	t	c
80	9	1467	10	1472	t	g
81	9	1541	10	1546	g	a
82	9	1584	10	1603	g	t
83	9	1614	10	1633	c	t
84	9	1713	10	1732	c	t
85	9	1774	10	1793	a	g
86	9	1795-1796	10	1815-1823	Делеция	tttttgttt
50	_	1775 1770	10	1010 1020	tttttgttt	lingin
	1				1 1111122111	

87	9	1815	10	1843	a	С
88	9	1894-1895	10	1923	Делеция t	
					между tt	t
89	9	1910	10	1939	a	t
90	9	1954-1955	10	1984-1991	Делеция	tttgacac
					tttgacac	
					между gt	
91	9	2000	10	2037	t	c
92	9	2060	10	2097	t	c
93	9	2181	10	2218	С	t
94	9	2354	10	2391	a	g
95	9	2372	10	2409	a	t
96	9	2394-2399	10	2431-2434	Замещение	aaca
					/инсерция	
					ctgttt	
97	9	2428	10	2463	a	g
98	9	2439-2440	10	2475-2476	Делеция tt	
					между ct	tt
99	13	651-652	14	652-654	Делеция	cgc
					сдс между	
					cc	
100	13	807	14	810	t	С

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Способ идентификации растения (кукурузы) или части растения, содержащий скрининг на присутствие (гаплотипа, ассоциированного с ним) локуса-восстановителя цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01).
- 2. Способ по пункту 1, отличающийся тем, что указанный локус содержит или содержится в области на 3 хромосоме, соответствующей положениям 195629901-198023573 AGPv4 B73, предпочтительно, соответствующей положениям 197453646-197698278 AGPv4 B73 или ее фрагмента.
- 3. Способ по любому из пунктов 1-2, отличающийся тем, что указанный локус содержит, по меньшей мере, один молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5.
- 4. Способ по любому из пунктов 1-3, отличающийся тем, что указанный локус полинуклеиновую кислоту, содержащую, меньшей содержит ПО мере, одну последовательность, представленную в SEQ ID NO: 1, 5, 9 или 13, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEO ID NO: 1, 5, 9 или 13, или, по меньшей мере, в одном из SEO ID NO: 2, 6, 10 и 14, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14.
- 5. Способ по любому из пунктов 1-4, содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности, представленной в одном из SEQ ID NO: 17-200.
- 6. Способ по любому из пунктов 1-5, содержащий скрининг на присутствие любой, по меньшей мере, одной последовательности, представленной в одном из SEQ ID NO: 1, 5, 9 или 13, или последовательности, которая, по меньшей мере, на 80%, предпочтительно,

по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, или, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14.

- 7. Способ по любому из пунктов 4-6, отличающийся тем, что последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95%, идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (восстановитель) полиморфизм, указанный в Таблице 5.
- 8. Способ по любому из пунктов 4-6, отличающийся тем, что последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95%, идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (закрепитель) полиморфизм, указанный в Таблице 5.
- 9. Способ по любому из пунктов 1-8, который представляет собой способ различения растения кукурузы или части растения, имеющего указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), и растения кукурузы, не имеющего указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01).

- 10. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный локус-восстановитель мужской c ним) цитоплазматической стерильности (фертильности) на 3 хромосоме (RF-03-01), если указанный (гаплотип, ассоциированный ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) обнаруживается на 3 хромосоме (RF-03-01).
- 11. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как не имеющая указанный (гаплотип, локус-восстановитель ассоциированный ним) цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если указанный (гаплотип, локус-восстановитель цитоплазматической ассоциированный С ним) мужской стерильности (фертильности) не обнаруживается на 3 хромосоме (RF-03-01).
- 12. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если обнаруживается, по меньшей мере, один молекулярный маркерный аллель-восстановитель из Таблицы 4 или 5.
- 13. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если не обнаруживается, по меньшей мере, один молекулярный маркерный аллель-восстановитель из Таблицы 4 или Таблицы 5, или если обнаруживается, по меньшей мере, один молекулярный маркерный аллель-закрепитель из Таблицы 4 или Таблицы 5.
- 14. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если обнаруживается, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 1, 5, 9 или 13, или

последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мер, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13.

- 15. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный c ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если не обнаруживается, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 1, 5, 9 или 13, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее 95% предпочтительно, ПО меньшей мер, на идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, или если обнаруживается последовательность, представленная, по меньшей мере, одном из SEO ID NO: 2, 6, 10 или 14, или последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мер, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14, обнаружена.
- 16. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если обнаруживается, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 17-200, имеющая SNP-восстановитель.
- 17. Способ по любому из пунктов 1-9, отличающийся тем, что указанное растение кукурузы или часть растения идентифицируется как имеющая указанный (гаплотип, ассоциированный с ним) локус-восстановитель цитоплазматической мужской стерильности (фертильности) на 3 хромосоме (RF-03-01), если не обнаруживается, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 17-200, имеющая

SNP-восстановитель, или если обнаруживается, по меньшей мере, одна последовательность, представленная в SEQ ID NO: 17-200, имеющая SNP-восстановитель.

- 18. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, один молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5, или комплемент, или обратный комплемент указанной полинуклеиновой кислоты.
- 19. (Выделенная) полинуклеиновая кислота, содержащая или состоящая, по меньшей мере, из одной последовательности, представленной в одном из SEQ ID NO: 1, 5, 9 и 13, или ее фрагмента, или последовательности, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 и 13, или ее фрагмента, или, по меньшей мере, в одном из SEQ ID NO: 2, 6, 10 и 14, или ее фрагмента, или последовательности, которая, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95% идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 и 14, или ее фрагмента.
- 20. Способ по пункту 19, отличающийся тем, что последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95%, идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 1, 5, 9 или 13, содержит, по меньшей мере, один, предпочтительно все, соответствующий ассоциированный (восстановитель) полиморфизм, указанный в Таблице 5.
- 21. Способ по пункту 19, отличающийся тем, что последовательность, которая, по меньшей мере, на 80%, предпочтительно, по меньшей мере, на 85%, более предпочтительно, по меньшей мере, на 90%, наиболее предпочтительно, по меньшей мере, на 95%, идентична последовательности, представленной в любом, по меньшей мере, одном из SEQ ID NO: 2, 6, 10 или 14, содержит, по меньшей мере, один, предпочтительно

все, соответствующий ассоциированный (закрепитель) полиморфизм, указанный в Таблице 5.

22. (Выделенная) полинуклеиновая кислота, содержащая, по меньшей мере, 15 смежных нуклеотидов, содержащихся в области, соответствующей области, фланкированной любым из указанных 5' и 3' положений из указанной ниже таблицы, и содержащая нуклеотид, соответствующий положению указанного SNP, относящегося к 3 хромосоме кукурузы, AGPv4 B73

5' (-100	5' (-50	SNP	3' (+50	3' (+100
нуклеотидов)	нуклеотидов)		нуклеотидов)	нуклеотидов)
195629801	195629851	195629901	195629951	195630001
195639594	195639644	195639694	195639744	195639794
195677699	195677749	195677799	195677849	195677899
195678256	195678306	195678356	195678406	195678456
195680690	195680740	195680790	195680840	195680890
195732836	195732886	195732936	195732986	195733036
195733816	195733866	195733916	195733966	195734016
195783601	195783651	195783701	195783751	195783801
196069986	196070036	196070086	196070136	196070186
196198636	196198686	196198736	196198786	196198836
196244614	196244664	196244714	196244764	196244814
196653646	196653696	196653746	196653796	196653846
196693401	196693451	196693501	196693551	196693601
196702711	196702761	196702811	196702861	196702911
196703908	196703958	196704008	196704058	196704108
196703996	196704046	196704096	196704146	196704196
196704069	196704119	196704169	196704219	196704269
196704190	196704240	196704290	196704340	196704390
196705370	196705420	196705470	196705520	196705570
196706597	196706647	196706697	196706747	196706797
196706655	196706705	196706755	196706805	196706855
196707090	196707140	196707190	196707240	196707290
196707315	196707365	196707415	196707465	196707515
196707897	196707947	196707997	196708047	196708097
196773793	196773843	196773893	196773943	196773993
196774022	196774072	196774122	196774172	196774222
196774233	196774283	196774333	196774383	196774433
196774402	196774452	196774502	196774552	196774602
196774723	196774773	196774823	196774873	196774923
196774865	196774915	196774965	196775015	196775065
196775496	196775546	196775596	196775646	196775696
196776500	196776550	196776600	196776650	196776700
196776777	196776827	196776877	196776927	196776977
196839968	196840018	196840068	196840118	196840168

		Ψ <i>0p</i> .	мула изооретени	іх изначально пооц
196840715	196840765	196840815	196840865	196840915
196841549	196841599	196841649	196841699	196841749
196841890	196841940	196841990	196842040	196842090
196842902	196842952	196843002	196843052	196843102
196843235	196843285	196843335	196843385	196843435
196843984	196844034	196844084	196844134	196844184
196851351	196851401	196851451	196851501	196851551
196853434	196853484	196853534	196853584	196853634
196853662	196853712	196853762	196853812	196853862
196880273	196880323	196880373	196880423	196880473
196985756	196985806	196985856	196985906	196985956
196985783	196985833	196985883	196985933	196985983
196987184	196987234	196987284	196987334	196987384
196988925	196988975	196989025	196989075	196989125
196989152	196989202	196989252	196989302	196989352
196989277	196989327	196989377	196989427	196989477
196989308	196989358	196989408	196989458	196989508
197453546	197453596	197453646	197453696	197453746
197453608	197453658	197453708	197453758	197453808
197454348	197454398	197454448	197454498	197454548
197454530	197454580	197454630	197454680	197454730
197454557	197454607	197454657	197454707	197454757
197454644	197454694	197454744	197454794	197454844
197454680	197454730	197454780	197454830	197454880
197454733	197454783	197454833	197454883	197454933
197454907	197454957	197455007	197455057	197455107
197454934	197454984	197455034	197455084	197455134
197456822	197456872	197456922	197456972	197457022
197457034	197457084	197457134	197457184	197457234
197457114	197457164	197457214	197457264	197457314
197457251	197457301	197457351	197457401	197457451
197457503	197457553	197457603	197457653	197457703
197459088	197459138	197459188	197459238	197459288
197487865	197487915	197487965	197488015	197488065
197488651	197488701	197488751	197488801	197488851
197488967	197489017	197489067	197489117	197489167
197524389	197524439	197524489	197524539	197524589
197524755	197524805	197524855	197524905	197524955
197525093	197525143	197525193	197525243	197525293
197525265	197525315	197525365	197525415	197525465
197525525	197525575	197525625	197525675	197525725
197525890	197525940	197525990	197526040	197526090
197526521	197526571	197526621	197526671	197526721
197526590	197526640	197526690	197526740	197526790
197527482	197527532	197527582	197527632	197527682
197527582	197527632	197527682	197527732	197527782
197528552	107500600	107520652	107529702	107520752
	197528602	197528652	197528702	197528752

197609586	197609636	197609686	197609736	197609786
197609630	197609680	197609730	197609780	197609830
197611592	197611642	197611692	197611742	197611792
197611732	197611782	197611832	197611882	197611932
197611794	197611844	197611894	197611944	197611994
197613035	197613085	197613135	197613185	197613235
197613558	197613608	197613658	197613708	197613758
197614989	197615039	197615089	197615139	197615189
197615361	197615411	197615461	197615511	197615561
197631460	197631510	197631560	197631610	197631660
197631588	197631638	197631688	197631738	197631788
197632490	197632540	197632590	197632640	197632690
197632606	197632656	197632706	197632756	197632806
197633270	197633320	197633370	197633420	197633470
197633760	197633810	197633860	197633910	197633960
197638678	197638728	197638778	197638828	197638878
197638849	197638899	197638949	197638999	197639049
197639280	197639330	197639380	197639430	197639480
197651923	197651973	197652023	197652073	197652123
197652378	197652428	197652478	197652528	197652578
197653025	197653075	197653125	197653175	197653225
197654442	197654492	197654542	197654592	197654642
197687170	197687220	197687270	197687320	197634042
197687170	197687474	197687270	197687574	197687624
197688112	197688162	197688212	197688262	197688312
197688345	197688395	197688212	197688202	197688545
197688392	197688442	197688492	197688542	197688592
197692891	197692941	197692991	197693041	197693091
197692891	197692946	197692991	197693041	197693091
197692890	197694215	197694265	197694315	197694365
197695268	197695318	197695368	197695418	197695468
197695208	197695541	197695591	197695418	197695408
197695757	197695807	197695857	197695907	197695957
197696092	197696142	197696192	197696242	197696292
197696632	197696682	197696732	197696782	197696832
197696662	197696712	197696762	197696812	197696862
197697227	19769712	197697702	197697377	197697427
197697227	197697464	197697527	197697577	197697614
197698149	197698199	197698249	197698299	197698349
197698149	197698199	197698249	197698299	197698378
197708037	197708087	197708137	197708187	197708237
197708037	197708284	197708137	197708384	197708434
197757973	197758023	197758073	197758123	197758173
197760075	197760125	197760175	197760225	197760275
197761154	197761204	197761254	197761304	197761354
197761205	197761255	197761234	197761355	197761334
197761203	197776490	19776540	19776590	19776640
197777449	197777499	197777549	197777599	197777649
17///449	17///499	17///349	17///399	17///049

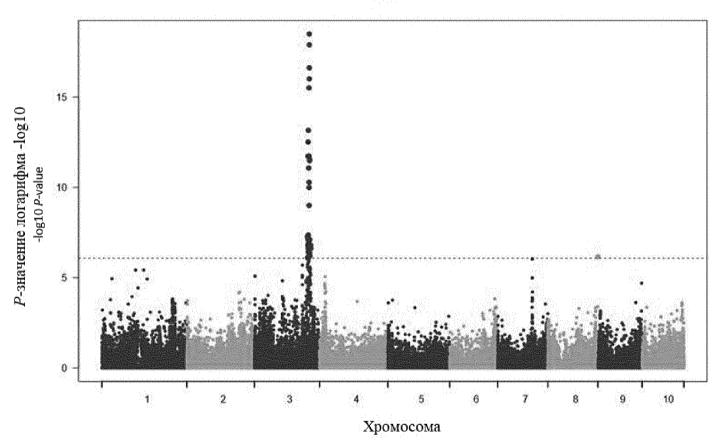
197777518 197777568 197777618 197777668 197777718 197778010 197778060 197778110 197778160 197778210 197781749 197781799 197781849 197781899 197781949 197781861 197781911 197782061 197782011 197782061 197784596 197784646 197784696 197785216 1977857266 197785170 197785220 197785166 197785320 197785370 197786048 197786098 197786148 197786198 197786248 197787668 197787718 197787668 197787868 1977878868 197805956 197806006 197806056 197806106 197806156 197813489 197813539 197812645 197812645 197812645 197813489 197814032 197814082 197814132 197840902 197840702 197840752 197840802 197840852 197840902 197840851 197855939 197855989 197856039 197856089 197859223
197781749 197781799 197781849 197781899 197781949 197781861 197781911 197781961 197782011 197782061 197784596 197784646 197784696 197784746 197784796 197785066 197785116 197785166 197785216 197785266 197785170 197785220 197785270 197785320 197785370 197786048 197786098 197786148 197786198 197786248 197786055 197786105 197786155 197786205 197786255 19787668 197787718 197787768 197886106 197806156 197806383 197806006 197806056 197806106 197806156 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197814082 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 19785089 197859223
197781861 197781911 197781961 197782011 197782061 197784596 197784646 197784696 197784746 197784796 197785066 197785116 197785166 197785216 197785266 197785170 197785220 197785270 197785320 197785370 197786048 197786098 197786148 197786198 197786248 197786055 197786105 197786155 197786205 197786255 197787668 197787718 197787768 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 19785089 19785289 19785923 197859393 197859333 19785089 197860611 <t< td=""></t<>
197784596 197784646 197784696 197784746 197784796 197785066 197785116 197785166 197785216 197785266 197785170 197785220 197785270 197785320 197785370 197786048 197786098 197786148 197786198 197786248 197786055 197786105 197786155 197786205 197786255 197875668 197787718 197787768 197787818 197787868 197805956 197806006 197806056 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 19785089 19785289 197859393 197859393 197856039 197856089 197860611
197785066 197785116 197785166 197785216 197785266 197785170 197785220 197785270 197785320 197785370 197786048 197786098 197786148 197786198 197786248 197786055 197786105 197786155 197786205 197786255 19787668 197787718 197787768 197787818 1977877868 197805956 197806006 197806056 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841051 197855889 197855039 197855089 19785223 197859273 197859323 197859373 197859423 19780611 197860661 19780711 197860761 197860811
197785170 197785220 197785270 197785320 197785370 197786048 197786098 197786148 197786198 197786248 197786055 197786105 197786155 197786205 197786255 197787668 197787718 197787768 197787818 197787868 197805956 197806006 197806056 197806133 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 19784001 197840902 197855889 197855939 197859323 197856039 197856089 197860611 197860661 197860761 197860811 197895172 197895222 197895222 197895322 197895322 197902723 197902773 197902823 197902873 197902905 197902823 197902875
197786048 197786098 197786148 197786198 197786248 197786055 197786105 197786155 197786205 197786255 197787668 197787718 197787768 197787818 197787868 197805956 197806006 197806056 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 19784051 197855889 197855939 197855989 197856039 197856089 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902925 197902823
197786055 197786105 197786155 197786205 197786255 197787668 197787718 197787768 197787818 197787868 197805956 197806006 197806056 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197840802 197856039 197856089 197855889 197855939 197859323 197856039 197856089 197860611 197860661 197860711 197860761 197860811 19785172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902973 197902905
197787668 197787718 197787768 197787818 197787868 197805956 197806006 197806056 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902905 197902923 197902823 197902873 197902923 197902973 197903023
197805956 197806006 197806056 197806106 197806156 197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902905 197902923 197902823 197902873 197902905 197903023 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197806383 197806433 197806483 197806533 197806583 197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 197841051 197855889 197855939 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902905 197902955 197902823 197902873 197902873 197902973 197903023 197903164 197903264 197903314 197903364
197812495 197812545 197812595 197812645 197812695 197813489 197813539 197813589 197813639 197813689 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 197841051 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902905 197902955 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903314 197903364 197903164 197903214 197903264 197903314 197903364
197813489 197813539 197813589 197813639 197813689 197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 197841051 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902905 197902923 197902823 197902873 197902923 197902973 197903029 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197813982 197814032 197814082 197814132 197814182 197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 197841051 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902823 197902873 197902905 197902955 197903019 197903069 197903119 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197840702 197840752 197840802 197840852 197840902 197840851 197840901 197840951 197841001 197841051 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903314 197903364 197903164 197903214 197903264 197903314 197903364
197840851 197840901 197840951 197841001 197841051 197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197861273 197861323 197861373 197861423 197861473 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903314 197903364 197903164 197903214 197903264 197903314 197903364
197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197861273 197861323 197861373 197861423 197861473 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902823 197902805 197902855 197902905 197903023 197903019 197903069 197903119 197903314 197903364 197903164 197903214 197903264 197903314 197903364
197855889 197855939 197855989 197856039 197856089 197859223 197859273 197859323 197859373 197859423 197860611 197860661 197860711 197860761 197860811 197861273 197861323 197861373 197861423 197861473 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902823 197902805 197902855 197902905 197903023 197903019 197903069 197903119 197903314 197903364 197903164 197903214 197903264 197903314 197903364
197860611 197860661 197860711 197860761 197860811 197861273 197861323 197861373 197861423 197861473 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902755 197902805 197902855 197902905 197902955 197903823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903169 197903214 197903164 197903214 197903264 197903314 197903364
197861273 197861323 197861373 197861423 197861473 197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902755 197902805 197902855 197902905 197902955 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197895172 197895222 197895272 197895322 197895372 197902723 197902773 197902823 197902873 197902923 197902755 197902805 197902855 197902905 197902955 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903169 197903214 197903164 197903214 197903264 197903314 197903364
197902723 197902773 197902823 197902873 197902923 197902755 197902805 197902855 197902905 197902955 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197902755 197902805 197902855 197902905 197902955 197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197902823 197902873 197902923 197902973 197903023 197903019 197903069 197903119 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197903019 197903069 197903119 197903169 197903219 197903164 197903214 197903264 197903314 197903364
197903164 197903214 197903264 197903314 197903364
107002202 107002252 107002202 107002252 107002402
197903202 197903252 197903302 197903352 197903402
197903272 197903322 197903372 197903422 197903472
197903375 197903425 197903475 197903525 197903575
197903487 197903537 197903587 197903637 197903687
197903529 197903579 197903629 197903679 197903729
197903616 197903666 197903716 197903766 197903816
197903716 197903766 197903816 197903866 197903916
197903916 197903966 197904016 197904066 197904116
197904555 197904605 197904655 197904705 197904755
197906573 197906623 197906673 197906723 197906773
197907466 197907516 197907566 197907616 197907666
197907517 197907567 197907617 197907667 197907717
197907553 197907603 197907653 197907703 197907753
197907742 197907792 197907842 197907892 197907942
197909724 197909774 197909824 197909874 197909924
197948446 197948496 197948546 197948596 197948646
197948480 197948530 197948580 197948630 197948680
197948590 197948640 197948690 197948740 197948790
197948731 197948781 197948831 197948881 197948931
197948779 197948829 197948879 197948929 197948979
197973532 197973582 197973632 197973682 197973732

Формула изобретения изначально поданная

197974393	197974443	197974493	197974543	197974593	
197994108	197994158	197994208	197994258	197994308	
198023332	198023382	198023432	198023482	198023532	
198023473	198023523	198023573	198023623	198023673	

или комплемент, или обратный комплемент указанной полинуклеиновой кислоты.

- 23. (Выделенная) полинуклеиновая кислота по пунктам 18 или 22, содержащая молекулярный маркерный аллель-, полиморфизм- или SNP-восстановитель.
- 24. (Выделенная) полинуклеиновая кислота по пунктам 18 или 22, содержащая молекулярный маркерный аллель-, полиморфизм- или SNP-закрепитель.
- 25. (Выделенная) полинуклеиновая кислота по любому из пунктов 18-24, содержащая максимально 500 нуклеотидов, предпочтительно, максимально 200 нуклеотидов, более предпочтительно максимально 100 нуклеотидов, наиболее предпочтительно, максимально 50 нуклеотидов, например, максимально 35 нуклеотидов.
- 26. (Выделенная) полинуклеиновая кислота по любому из пунктов 18-25, которая представляет собой праймер или зонд.
- 27. (Выделенный) полинуклеотид по любому из пунктов 18-26, который представляет собой аллель-специфический праймер или зонд, предпочтительно, праймер КАSP.
- 28. Растение кукурузы или часть растения, содержащая, по меньшей мере, один молекулярный маркер (аллель) из Таблицы 4 или Таблицы 5, локус, определенный по любому из пунктов 1-17, и/или полинуклеиновую кислоту, определенную по любому из пунктов 18-27.
- 29. Способ генерирования растения кукурузы или части растения, содержащий введение в геном указанного растения или части растения локуса, определенного по любому из пунктов 1-17, или полинуклеиновой кислоты, определенной по любому из пунктов 18-27, или ее (функционального) фрагмента.


- 30. Способ по пункту 29, содержащий введение в геном указанного растения или части растения локуса, определенного по любому из пунктов 1-17, или полинуклеиновой кислоты, определенной по любому из пунктов 19-21 или 23-24, или ее (функционального) фрагмента.
- 31. Способ по пункту 29 или 30, отличающийся тем, что указанная полинуклеиновая кислота представляет собой геномную полинуклеиновую кислоту, фланкированную молекулярными маркерами ma0016fm86 и ma0004tr23.
- 32. Способ по пункту 29 или 30, отличающийся тем, что указанная полинуклеиновая кислота представляет собой геномную полинуклеиновую кислоту, фланкированную молекулярными маркерами ma0000sa77 и ma0016fu05.
- 33. Способ по любому из пунктов 29-32, отличающийся тем, что указанный локус или полинуклеиновая кислота содержит полиморфизмы-закрепители из Таблицы 5.
- 34. Способ по любому из пунктов 29-33, отличающийся тем, что указанный локус или полинуклеиновая кислота содержит полиморфизмы-закрепители из Таблицы 4.
- 35. Способ по любому из пунктов 29-32, отличающийся тем, что указанный локус или полинуклеиновая кислота содержит полиморфизмы-восстановители из Таблицы 5.
- 36. Способ по любому из пунктов 29-32 или 35, отличающийся тем, что указанный локус или полинуклеиновая кислота содержит полиморфизмы-восстановители из Таблицы 4.
- 37. Способ по любому из пунктов 29-36, содержащий скрещивание первого растения кукурузы и второго растения кукурузы, и отбор потомства, содержащего локус, определенный по любому из пунктов 1-17, или полинуклеиновую кислоту, определенную по любому из пунктов 18-27.
- 38. Способ по пункту 37, содержащий отбор потомства, не содержащего локусвосстановитель, определенный по любому из пунктов 1-17 или 33-36, и/или не

Формула изобретения изначально поданная

содержащего полинуклеиновую кислоту, содержащую полиморфизмы-восстановители или SNP, определенные по любому из пунктов 18-27 или 30-36.

- 39. Способ по пункту 37 или 38, отличающийся тем, что указанное первое или второе растение кукурузы представляет собой цитоплазматическое мужское стерильное растение кукурузы.
- 40. Использование полинуклеиновой кислоты по любому из пунктов 18-27 для идентификации растения кукурузы или части растения, или для генерирования растения кукурузы или части растения.
- 41. Использование полинуклеиновой кислоты по любому из пунктов 18-27 для идентификации растения кукурузы или части растения.
- 42. Использование полинуклеиновой кислоты по любому из пунктов 19-21 или 23-24 для генерирования растения кукурузы или части растения.

Фиг. 1

SEQ_ID_NO:1 SEQ_ID_NO:2	agtggtacggtggggtcgcggagcttgccagcttgtggctgcaactcgccagcctgatg agtggtacggtggggtcgcggagcttgccagcttgtgtggctgcaactcgccagcctgatg **********************************	60 60
SEQ_ID_NO:1 SEQ_ID_NO:2	gggeggettegegegtgetgeegteteeaeegetteetegegeegeegeeggeaeaagtg gggeggettegegegtgetgeegteteeaeegetteetegegeegeegeeggeaeaagtg **********************************	120 120
SEQ_ID_NO:1 SEQ_ID_NO:2	ccatcaccgggacaatctctggcccgcgggtccaacaccgctaccgctcacgtagcgcct ccatcaccgggacaatctctggcccgcgggtccaacaccgctaccgctcacgtagcgcct *********************************	180 180
SEQ_ID_NO:1 SEQ_ID_NO:2	ttetegaggettetetegteggeegeggeegttgegeeceaegaeaeaegegaeteggge ttetegaggettetetegteggeegeggeegttgegeeceaegaeaeaegegaeteggge ********************************	240 240
SEQ_ID_NO:1	ctcggcggttcggcgtactgggcctggattcgcgcggcgaccgagtcggccccggctcct	300
SEQ_ID_NO:2	ctcggcggttcggcgtactgggcctggattcgcgcggcgaccgagtcggccccggctcct	300
SEQ_ID_NO:1	tegecgeceaggaggaggaggaggagggecageaegetacateceegteaaageetae	360
SEQ_ID_NO:2	tegecgececaggaggaggaggaegagggeceageaegetacateceegteaaageetae	360
SEQ_ID_NO:1	tteeteteeaeeaggtaageaegeagegeegeteeegegettgetegataggtgtttgat	420
SEQ_ID_NO:2	tteeteteeaeeaggtaageaegeagegeegeteeegegettgetegataggtgtttgat	420
SEQ_ID_NO:1	gatttatcatcgaggaaacattc <mark>gggacttt=</mark> gggtgctacc <mark>e</mark> tactattctaaaaatgt	480
SEQ_ID_NO:2	gatttatcatcgaggaaacattc	471
SEQ_ID_NO:1	ccatgccaattggcactgcgaactaaaacgacgtgttttcaatttttcctcctcgc <mark>g</mark> gtg	540
SEQ_ID_NO:2	ccatgccaattggcactgcgaactaaaacgacgtgttttcaatttttcctcctcgc <mark>e</mark> gtg	531
SEQ_ID_NO:1 SEQ_ID_NO:2	acagcattgatctgaagagcatgcaagcggagcacgggaatgatattgtacctccgtcga acagcattgatctgaagagcatgcaagcggagcacgggaatgatattgtacctccgtcga ************************************	600 591
SEQ_ID_NO:1	cccgtttgcttaactacattgcgcttcggtactccgagttcccacctgagattatggtta	660
SEQ_ID_NO:2	cccgtttgcttaactacattgcgcttcggtactccgagttcccacctgagattatggtta	651
SEQ_ID_NO:1 SEQ_ID_NO:2	gttattacagtttagcgtcacttcttttttgacctgaaattcatatcaaaatgaacaaat gttattacagtttagcgtcacttcttttttgacctgaaattcatatcaaaatgaacaaat ********************************	720 711
SEQ_ID_NO:1	ctcagtcagctttggaccagttgcaca <mark>tactttgtaaca</mark> ttgacctatgctacgaattga	780
SEQ_ID_NO:2	ctcagtcagctttgaccagttgcaca	759
SEQ_ID_NO:1	tttccttgtgattttg <mark>a</mark> ttgatatttatgcagaacattggagtgaaggataacagatttt	840
SEQ_ID_NO:2	tttccttgtgattttg <mark>a</mark> ttgatatttatgcagaacattggagtgaaggataacagatttt	819
SEQ_ID_NO:1	gctatcgctatgtggttgttttccagtatggttctgctgtgcttttcaacattgctgatc	900
SEQ_ID_NO:2	gctatcgctatgtggttgttttccagtatggttctgctgtgcttttcaacattgctgatc	879
SEQ_ID_NO:1	atgaagccgagtactatcttgatataattaggaagcatgcttcaggatggcttccagaga	960
SEQ_ID_NO:2	atgaagccgagtactatcttgatataattaggaagcatgcttcaggatggcttccagaga	939
SEQ_ID_NO:1 SEQ_ID_NO:2	tgagaaaagatggtatgeteactgetaaactgegteetgtttactgetttttactggeet tgagaaaagatggtatgeteactgetaaactgegteetgtttactgetttttactggeet *********************************	1020 999
SEQ_ID_NO:1 SEQ_ID_NO:2	ccatttttgtgttccttaataatattt <mark>c</mark> catggacagaaaacagt cagt tgc ccatttttgtgttccttaataatattt <mark>c</mark> catggacagaaacagt acagttgccttc tac ************************************	1072 1059
SEQ_ID_NO:1 SEQ_ID_NO:2	cttctgttatattcaaagatgctatttgttaactgtgatagaactcaacttaaagagaat ttctgttatattcaaagatgctatttgttaactgtgatagaactcaacttaaagagaat	1132 1119

SEQ_ID_NO:1 SEQ_ID_NO:2	tgttgcatgcctagactgtgtgttttgtgcatttttgtttagcagaaataagttgctact tgttgcatgcctagactgtgtgttttgtgcatttttgtttagcagaaataagttgctact	1192 1179
SEQ_ID_NO:1 SEQ_ID_NO:2	gcttttcgtccactgtgacaaagca atgccccctggaattgaactgtttgactctttgt gcttttcgtccactgtgacaaagca atgccccctggaattgaactgtttgactctttgt *******************************	1252 1239
SEQ_ID_NO:1 SEQ_ID_NO:2	aaagatgcaggtttagagtaagaccaacatcagctgatgccatttattt	1312 1299
SEQ_ID_NO:1 SEQ_ID_NO:2	attatgcagtggttgagaaaccatccttgacaacatggatgaaaggaggacttgattata attatgcagtggttgagaaaccatccttgacaacatggatgaaaggaggacttgattata ******************************	1372 1359
SEQ_ID_NO:1 SEQ_ID_NO:2	tagttettaaaagtttagataeagaegggattegeataattteaagegttettggteaaa tagttettaaaagtttagataeagaegggattegeataattteaagegttettggteaaa **********************************	1432 1419
SEQ_ID_NO:1 SEQ_ID_NO:2	gtatcgcccttgatcactatattcggcaggtactgaaactcaaagttaatgaacttatgt gtatcgcccttgatcactatattcggcaggtactgaaactcaaagttaatgaacttatgt *********************************	1492 1479
SEQ_ID_NO:1 SEQ_ID_NO:2	gttgtcacagtatcattaaagctttgtctaaaagttctgaacttcaaaattatcnnnnnn gttgtcacagtatcattaaagctttgtctaaaagttctgaacttcaaaattatcaatttt ******************	1552 1539
SEQ_ID_NO:1 SEQ_ID_NO:2	nnnnnnnnnnnnnnnnnnnnnttcactgaaattaatcgtgtcatggagaaaaccg gataggtcgatgatatggttgaggaattcactgaaattaatcgtgtcatggagaaaaccg ****************************	1607 1599
SEQ_ID_NO:1 SEQ_ID_NO:2	gtaactttaccatgcaaagaaaaaactctttcaacttgtgggtaaggccaattctaatc gtaactttaccatgcaaagaaaaaactctttcaacttgtgggtaaggccaattctaatc ***************************	1667 1659
SEQ_ID_NO:1 SEQ_ID_NO:2	ttgeggatgttateatcagacttggtettttttgacaggtatgtetactacactcaagtac ttgeggatgttateatcagacttggtetttttgacaggtatgtetactacactcaagtac	1727 1719
SEQ_ID_NO:1 SEQ_ID_NO:2	tatacttcctatttaggatggttccatttcttgtacaEcatetgtgaagttaaatatttt tatacttcctatttaggatggttccatttcttgtacaEcatetgtgaagttaaatatttt	1787 1779
SEQ_ID_NO:1 SEQ_ID_NO:2	atggatcaaagaatgtgtcaatcccatgtggaggattgtgaaggtgtgtgattcaagttg atggatcaaagaatgtgtcaatcccatgtggaggattgtgaaggtgtgtgattcaagttg	1847 1839
SEQ_ID_NO:1 SEQ_ID_NO:2	ctagacattgcacgtctataagccactgttatgcgtacatttgatattcccttttggggt ctagacatagcacgtctataagccactgttatgcgtacatttgatattccctttttggggt ******* *********************	1907 1899
SEQ_ID_NO:1 SEQ_ID_NO:2	tcacatgtgggttttgctgtttgtttggaaattcttccaatactttgaaaaaatattgat tcacatgtgggttttgctgtttgtttggaaattcttccaatactttgaaaaaatattgat **********************	1967 1959
SEQ_ID_NO:1 SEQ_ID_NO:2	gattttgatcattgtacttagaaattagacatcactctatcactatatcacaatattaac gattttgatcattgtacttagaaattagacatcactctatcactatatcacaatattaac **********	2027 2019
SEQ_ID_NO:1 SEQ_ID_NO:2	tatttttataagtattgtgtttgctatccttggagtatatcatattctcgttggcttggc tatttttataagtattgtgtttgctatccttggagtatatcatattctcgttggcttggc	2087 2079
SEQ_ID_NO:1 SEQ_ID_NO:2	tocatgcatccccatgtttctgctttgactgtcttgttgcttttatagtgcaatttta tocatgcatccccatgtttctgctttgactgtcttgttgcttttatagtgcaatttta + ************************************	2147 2139
SEQ_ID_NO:1 SEQ_ID_NO:2	tettgatteetgeetattttt teettttettttttgettetegataeatteaeetaetg tettgatteetgeetattttttteettttetttt	2206 2199
SEQ_ID_NO:1 SEQ_ID_NO:2	tcatttggccatgttttttgctaggtcagaaattgcttggaaaaatgcaaattatgcaca tcatttggccatgttttttgctaggtcagaaattgcttggaaaaatgcaaattatgcaca	2266 2259

Фиг. 2 (продолжение)

SEQ_ID_NO:1 SEQ_ID_NO:2	aattetagaatatettegggaggaatatgaactgaateagegttttggaageettgaett aattetagaatatettegggaggaatatgaactgaateagegttttggaageettgaett	2326 2319
SEQ_ID_NO:1 SEQ_ID_NO:2	caeactgaeatttgtggaggtagtgctttgtgtattcattctctatagtgcaeaegttg caeactgaeatttgtggaggtagtgctttgtgtattcattctctatagtgcaeaegttg	2386 2378
SEQ_ID_NO:1 SEQ_ID_NO:2	ggttctttatctttcaagttctcatttgcgcttacgatttattattgtaacagcataaca ggttctttatctttcaagttctcatttgcgcttacgatttattattgtaacagcataaca	2446 2438
SEQ_ID_NO:1 SEQ_ID_NO:2	ttcactttcttcaagaggtcctccaaaacagacggtctgatctgctggaatggggtgtca ttcactttcttcaagaggtcctccaaaacagacggtctgatctgctgggaatggggtgtca	2506 2498
SEQ_ID_NO:1 SEQ_ID_NO:2	taatactgctgattattgagattgctatctcattatatgaaattgccaaggactccatga taatactgctgattattgagattgctatctcattatatgaaattgccaaggactccatga	2566 2558
SEQ_ID_NO:1 SEQ_ID_NO:2	tegattgagageteteaseaeaeetetatteateetegateateeeattatgetaaete tegattgagageteteaeaeaeetetatteateetegateateeeattatgetaaete	2626 2618
SEQ_ID_NO:1 SEQ_ID_NO:2	cagat <mark>tactgi</mark> ttt <mark>acg</mark> aaaaaaaggaaaagaatgaccccagcttccatattttctgac cagat <mark>ccactg</mark> ttt <mark>aac</mark> aaaaaaaggaaaagaatgaccccagcttccatattttctgac *****	2686 2678
SEQ_ID_NO:1 SEQ_ID_NO:2	tatecatet <mark>t</mark> caccetttggatttetaacettagatgaaaggaagttggga <mark>e</mark> tggegtte tatecatet <mark>e</mark> caccetttggatttetaacettagatgaaaggaagttggga <mark>a</mark> tggegtte ******** ***************************	2746 2738
SEQ_ID_NO:1 SEQ_ID_NO:2	tggettgagtttatttaeateetttaattetaeaaeteeaaaegaaagaagtttggeea tggettgagtttatttaeateetttaattetaeaaeteeaaaegaaaagaagtttggeea **********************************	2806 2798
SEQ_ID_NO:1 SEQ_ID_NO:2	atttteetatgteeaatgagtteeegggeageeagggtttteeaatttgagtagaateta atttteetatgteeaatgagtteeegggeageeagg tttteeaatttgagtagaateta	2866 2857
SEQ_ID_NO:1 SEQ_ID_NO:2	gttttcctttcaatattcatgccaggtgttcttgatacatgttcttggtgccacttttta gttttcctttcaatattcatgccaggtgttcttgatacatgttcttggtgccacttttta	2926 2917
SEQ_ID_NO:1 SEQ_ID_NO:2	gtatettgataggaetgteagetetttt tttgggggeaaggetgaegeeaggeagetg gtatettgataggaetgteagetetttttttttt	2984 2977
SEQ_ID_NO:1 SEQ_ID_NO:2	caactggacctgatggaaagatcatgaaagtttttatcaaatggctttgtaatttgtaca caactggacctgatggaaagatcatgaaagtttttatcaaatggctttgtaatttgtaca	3044 3037
SEQ_ID_NO:1 SEQ_ID_NO:2	asaacttagcgtgggaaggttccattttggtttaaccatactgaattgctcgttccatttt aadacttagcgtgggaaggttccattttggtttaaccatactgaattgctcgttccatttt ** *******************************	3104 3097
SEQ_ID_NO:1 SEQ_ID_NO:2	gcgtggtaattaaccatgcatactgtaagtatgtgtagtacacttgatgcctatgagtga gcgtggtaattaaccatgcatactgtaagtatgtgtagtacacttgatgcctatgagtga ******************************	3164 3157
SEQ_ID_NO:1 SEQ_ID_NO:2	gagtgaattagatatttettetagteaaaatetatgeaataaata	

Фиг. 2 (продолжение)

SEQ_ID_NO:5 SEQ_ID_NO:6	<pre>caaateggtagtttcagttcettcacttgtctgcatcccccttcccctaactccgccgcc caaateggtagtttcagttccttcacttgtctgcatcccccttcccctaactccgccgcc *****************************</pre>	60 60
SEQ_ID_NO:5 SEQ_ID_NO:6	actgccgtccgcgctcgccgtcgccccgaacctatcgcccactgcatttttccggcggag actgccgtccgcgctcgccgtcgccccgaacctatcgcccactgcatttttccggcggag	120 120
SEQ_ID_NO:5 SEQ_ID_NO:6	gtatgcgatgaggctgctgcaagcggaggagctatttcggaaggttctggaggtcgggtc gtatgcgatgaggctgctgcaagcggaggagctatttcggaaggttctggaggtcgggtc	180 180
SEQ_ID_NO:5 SEQ_ID_NO:6	gaagaataaggcggeteggetgetggggetegacgteggcagcaagtacgteggggtgge gaagaataaggcggeteggetgetggggetegacgteggcagcaagtacgteggggtgge ****************************	240 240
SEQ_ID_NO:5 SEQ_ID_NO:6	catetecgatgagaagaacagggtegetatgeetetgaggtaageacetecaacaactge catetecgatgagaagaacagggtegetatgeetetgaggtaageacetecaacaactge ************************************	300 300
SEQ_ID_NO:5 SEQ_ID_NO:6	tgcccgcggcacactgtgctcgctgcgataagtgctatgtttagaggatttgattttctt tgcccgcggcacactgtgctcgctgcgataagtgctatgtttagaggatttgattttctt	360 360
SEQ_ID_NO:5 SEQ_ID_NO:6	cctatgttaacttgtgtactcactgtggtaatccaacataagctcatatgtgccatctca cctatgttaacttgtgtactcactgtggtaatccaacataagctcatatgtgccatctca	420 420
SEQ_ID_NO:5 SEQ_ID_NO:6	agatgcagatgcaggttgaaatatgaatgtgtgtgcaaaaacgttttttggccaattggc agatgcagatgcaggttgaaatatgaatgtgtgtgcaaaaacgttttttggccaattggc **********************************	480 480
SEQ_ID_NO:5 SEQ_ID_NO:6	ctcctaaaattatttcagtccaaatttttttttggcccgcttaaattgcagtggtaccaat ctcctaaaattatttcagtccaaatttttttttggcccgcttaaattgcagtggtaccaat	540 540
SEQ_ID_NO:5 SEQ_ID_NO:6	tcatatgtaaacttagtcaagatagtattcaatgattggatcgaggtgttttatttgtat tcatatgtaaacttagtcaagatagtattcaatgattggatcgaggtgttttatttgtat	600 600
SEQ_ID_NO:5 SEQ_ID_NO:6	tctgcatattgaagcgacagaaatggtgtgaattgtcaggtggtagatgtggtgctatcc tctgcatattaaagcgacagaaatggtgtgaattgtcagggtggtagatgtggtgctatcc	660 660
SEQ_ID_NO:5 SEQ_ID_NO:6	tattatgatcttcttttggatattgtgtgtgcacctctgaattggtggggaaaggatatg tattatgatcttcttttggatattgtgtatgcacctctgaattggtggggaaaggatatg	720 720
SEQ_ID_NO:5 SEQ_ID_NO:6	caacaacatcctatggaatgcatttggtctactcaaccactttatttgcatcaattgttt caacaacatcctatggaatgcatttggtctactcaaccactttatttgcatcaattgttt *******************************	780 780
SEQ_ID_NO:5 SEQ_ID_NO:6	aaaactgcatgaataataaaaatgaaaagta <mark>.</mark> aaattatcatattggttgggtaaatgga aaaactgcatgaataataaaaatgaaaagta <mark>.</mark> aaattatcatattggttgggtaaatgga *******************	840 840
SEQ_ID_NO:5 SEQ_ID_NO:6	agactccaatattctgtggaatttatttctttacatatatat	900 900
SEQ_ID_NO:5 SEQ_ID_NO:6	egtgtactcatccctatgtgtagtagattagaaatagagatgcaggtactcagaaaacac agtgtactcatccctatgtgtagtagattagaaatagagatgcaggtactcagaaaacac	960 960
SEQ_ID_NO:5 SEQ_ID_NO:6	tgctagacatttaacagtacaagataa catggctactgatccatctgtgtatt gtttt tgctagacatttaacagtacaagataa catggctactgatccatctgtgtatt gtttt *******************************	1020 1020
SEQ_ID_NO:5 SEQ_ID_NO:6	ttctcatgtataacatagatttggtaaactgtgcgagtetgttacacccgaccttcatcc ttctcatgtataacatagatttggtaaactgtgcgagtetgttacacccgaccttcatcc	1080 1080

Фиг. 3

SEQ_ID_NO:5 SEQ_ID_NO:6	gttt ccctttgctcaatcaggctgggtcaagcaggtcagactatatatctgatagggtg gttt ccctttgctcaatcaggctgggtcaagcaggtcagactatatatctgatagggtg	1140 1140
SEQ_ID_NO:5 SEQ_ID_NO:6	ttttagtctaaaccttttttctcttatcccttgtgtacttctctggagttttgtaaraat ttttagtctaaaccttttttctcttatcccttgtgtacttctctggagttttgtaaraat	1200 1200
SEQ_ID_NO:5 SEQ_ID_NO:6	tteetetgttgetgteacacagttaagtetgagaagattegaatatetteettteet	1260 1260
SEQ_ID_NO:5 SEQ_ID_NO:6	<pre>cccttgtgtacttgcctggagttttgcaataattgcctctgttgctgtcacaaagttaag cccttgtgtacttgcctggagttttgcaataattgcctctgttgctgtcacaaagttaag ******************************</pre>	1320 1320
SEQ_ID_NO:5 SEQ_ID_NO:6	tctgagaagattcagattacaagcacaacaagataatttgttgttttatggatattggct tctgagaagattcagattacaagcacaagataatttgttgttttatggatattggct	1380 1380
SEQ_ID_NO:5 SEQ_ID_NO:6	atatteetaaaatetaettagtttetttatageeaaatetatatettgtgaaaaaaatgt atatteetaaaatetaettagtttetttatageeaaatetatatettgtgaaaaaaatgt ************************	1440 1440
SEQ_ID_NO:5 SEQ_ID_NO:6	aacaactgcaattcagacga agtttacattcatgtacttgttagaaaaggacatgtatc aacaactgcaattcagacga agtttacattcatgtacttgttagaaaaggacatgtatc ***********************************	1500 1500
SEQ_ID_NO:5 SEQ_ID_NO:6	attatctgtggctaagatccttattgaatgaatcttgcagtgttttgtgtcggacaaaaa attatctgtggctaagatccttattgaatgaatcttgcagtgttttgtgtcggacaaaaa *****************************	1560 1560
SEQ_ID_NO:5 SEQ_ID_NO:6	casacatcaacttgatggcagatgatttcaaaacattggtatgttgaasatacctgttca casacatcaacttgatggcagatgatttcaasacattggtatgttgaasatacctgttca ***********************************	1620 1620
SEQ_ID_NO:5 SEQ_ID_NO:6	gtttctggtatcatataaattttggatatatcaaaagtcggtccttagattgagtactca gtttctggtatcatataaattttggatatatcaaaagtcggtccttagattgagtactca *********************************	1680 1680
SEQ_ID_NO:5 SEQ_ID_NO:6	atatgetatacageatetttteataaegaatggttgtgcateacaecateattetetttt atatgetatacageatetttteataaegaatggttgtgcateacaecateattetetttt **************************	1740 1740
SEQ_ID_NO:5 SEQ_ID_NO:6	attaaattcattttggtttcatttattgccccgaaatatttaggtttggcagttggcact attaaattcatttttggtttcatttattgccccgaaatatttaggtttggcagttggcact ***********************************	1800 1800
SEQ_ID_NO:5 SEQ_ID_NO:6	gcaatttatttgtagtaatgctaagttctatacgtagatcagcatttttaactgattggt gcaatttatttgtagtaatgctaagttctatacgtagatcagcatttttaactgattggt *******************************	1860 1860
SEQ_ID_NO:5 SEQ_ID_NO:6	tgcagctctatagttgttgctttagtttatgtttaattggaatgaaagatgtaatcacca tgcagctctatagttgttgctttagtttatgtttaattggaatgaaagatgtaatcacca ******************************	1920 1920
SEQ_ID_NO:5 SEQ_ID_NO:6	atgccaactttgttta <mark>t</mark> tgggataggtttcgatgtattccatagctgggttcgttgtggg atgccaactttgttta <mark>t</mark> tgggataggtttcgatgtattccatagctgggttcgttgtggg **********************	1980 1980
SEQ_ID_NO:5 SEQ_ID_NO:6	ctatccattcaaaatctaeggtcaaccttgtgcaagtgtaaagtgcccatgctcatgtac ctatccattcaaaatctaeggtcaaccttgtgcaagtgtaaagtgcccatgctcatgtac ************************************	2040 2040
SEQ_ID_NO:5 SEQ_ID_NO:6	aatteeegtttgttetaettaatetttttttttaatgttetetttttgtetgtaaateagge aatteeegtttgttetaettaatetttttttttaatgttetettttgtetgtaaateagge **********************************	2100 2100
SEQ_ID_NO:5 SEQ_ID_NO:6	aatccaagtaag <mark>gcat</mark> cttgctggggaactttgtaaaacagggaaacttgatgatctgcc aatccaagtaag t cttgctggggaactttgtaaaacagggaaacttgatgatctgcc	2160 2157

Фиг. 3 (продолжение)

SEQ_ID_NO:5 SEQ_ID_NO:6	ctacgcatattgggatgaaaatttcacctcaaaggtgaactctgttttcttctcggaaat ctacgcatattgggatgaaaatttcacctcaaaggtgaactctgttttcttctctcggaaat	2220 2217
SEQ_ID_NO:5 SEQ_ID_NO:6	ttettgetgatacatgagaaacaggattaataggtggaaagtgeattttttetgetgaat ttettgetgatacatgagaaacaggattaataggtggaaagtgeattttttetgetgaat **********************************	2280 2277
SEQ_ID_NO:5 SEQ_ID_NO:6	gtgga <mark>g</mark> ctacg <mark>etacg</mark> ttacattacattgttgtaacatgctataggcatggtatcagat gtgga <mark>g</mark> ctacgttacattacattgttgtaacatgctataggcatggtatcagat ***** ****** ************************	2340 2332
SEQ_ID_NO:5 SEQ_ID_NO:6	tegttaatagtgetgeteettetatgeacaegtttttaeteteeteeatetetettt <mark>e</mark> a tegttaatagtgetgeteettetatgeacaegtttttaeteteeteeteetetettt <mark>g</mark> a	2400 2392
SEQ_ID_NO:5 SEQ_ID_NO:6	agttetteattteattagtggagetetttgattgateatttgateteetteet	2460 2449
SEQ_ID_NO:5 SEQ_ID_NO:6	tccgcagtgtgtagaagccctettgcatcccctgaatctaaaagacttggacgatgccaa tccgcagtgtgtagaagccctettgcatcccctgaatctaaaagacttggacgatgccaa **********************************	2520 2509
SEQ_ID_NO:5 SEQ_ID_NO:6	aacaatgacagacaaatttgctgcagtctgtatactccaggtgcgtactcctaagtacca aacaatgacagacaaatttgctgcagtctgtatactccaggtgcgtactcctaagtacca **********************************	2580 2569
SEQ_ID_NO:5 SEQ_ID_NO:6	gggtgactttgcgttactgctgcagatttcatgtttttcaactcttcgtgacagatggta gggtgactttgcgttactgctgcagatttcatgtttttcaactcttcgtgacagatggta *******************************	2640 2629
SEQ_ID_NO:5 SEQ_ID_NO:6	catagtttattcagttaaagtcatctgaagctgctttagtgacactgacgacgatccatt catagtttattcagttaaagtcatctgaagctgctttagtgacactgacgacgatccatt ********************************	2700 2689
SEQ_ID_NO:5 SEQ_ID_NO:6	actgaacagggttatcttgacaacatgaacagaaaactgagatccacagataagtctgaa actgaacagggttatcttgacaacatgaacagaaaactgagatccacagataagtctgaa ***********************************	2760 2749
SEQ_ID_NO:5 SEQ_ID_NO:6	gcataaaggtggcacctaagattccagtttgaactaaaccaaagagcaagggaacctttt gcataaaggtggcacctaagattccagtttgaactaaaccaaagagcaagggaacctttt *******************************	2820 2809
SEQ_ID_NO:5 SEQ_ID_NO:6	tttttgatagaacaggagggagggccctactgaaaattttattta	2880 2867
SEQ_ID_NO:5 SEQ_ID_NO:6	aaaacaaagtttagaacaaacaagaagacaaattacagggggttagggagagtttgtact aaaacaaagtttagaacaaacaagaagacaaattacagggggttagggagagtttgtact ***********************************	2940 2927
SEQ_ID_NO:5 SEQ_ID_NO:6	gccattgttttctactgccattgttgaagccaagtcgggatggcagaatcaaatcta <mark>t</mark> cc gccattgttttctactgccattgttgaagccaagtcgggatggcagaatcaaatcta <mark>c</mark> cc	3000 2987
SEQ_ID_NO:5 SEQ_ID_NO:6	aaagetetgtgaatgacaaggageaatt <mark>t</mark> atttgeaaacteetgettgeaatgttgeace aaagetetgtgaatgacaaggageaatt <mark>e</mark> atttgeaaacteetgettgeaatgttgeace ***********************************	3060 3047
SEQ_ID_NO:5 SEQ_ID_NO:6	gttggatctttgttttgaaaaagcaagcatttggggcacttcaaatgctcaagtcattgttggatctttgttttgaaaaagcaagc	3120 3107
SEQ_ID_NO:5 SEQ_ID_NO:6	tgaataataacctccatagagaatgggacattgagttgctgttttagg 3168 agaataataacctccatagagaatgggacattgagttgctgttttagg 3155	

Фиг. 3 (продолжение)

SEQ_ID_NO:9	aacacgctctcagtctcactcccacggtcccactcctcaggagcgtccagagtttaggtg	60
SEQ_ID_NO:10	aacacgctctcagtctcactcccacggtcccactcctcaggagcgtccagagtttaggtg	60
SEQ_ID_NO:9	ctcgtggagtcgtggtggaggtggtaggtgtcgatggccttcaagctggccaccaaggcc	120
SEQ_ID_NO:10	ctcgtggagtcgtggtggaggtggtaggtgtcgatggccttcaagctggccaccaaggcc	120
SEQ_ID_NO:9	geggeggegtegeeegetgetgeteaeegegggggtetegeeeggggggeeggagggtaeg	180
SEQ_ID_NO:10	geggeggegtegeeegetgetgeteaeegegggggtetegeeegggggeeggagggtaeg	180
SEQ_ID_NO:9	agccgcgttgccttcggaccagcgcctagaaacaaggggctccgcgcggccaacaactcc	240
SEQ_ID_NO:10	agccgcgttgccttcggaccagcgcctagaaacaaggggctccgcgggccaacaactcc	240
SEQ_ID_NO:9	gcgacgcccgtggctaagtacgaacgctccttctcctggttagaaattgtttaatttgat	300
SEQ_ID_NO:10	gcgacgcccgtggctaagtacgaacgctccttctcctggttagaaattgtttaatttgat	300
SEQ_ID_NO:9 SEQ_ID_NO:10	asacgactatgaccettggttccgcgtasggtatggggggttggccetacatcagsettt asacgactatgaccettggttccgcgtasggtatggggggggtggccetacatcagsettt **********************************	360 360
SEQ_ID_NO:9 SEQ_ID_NO:10	gtgtttgtgcgtggtcgtgatcgtggtgtggtggtgtggtgggtaactcttatctaa gtgtttgtgcgtggtcgtgatcgtggtgtggt	415 420
SEQ_ID_NO:9	agagatttaggattgggtcggttctcagttggggatctgtttggtgcgcttgagcccttc	475
SEQ_ID_NO:10	agagatttaggattgggtcggttctcagttggggatctgtttggtgcgcttgagcccttc	480
SEQ_ID_NO:9 SEQ_ID_NO:10	tgaacttgatcatccatgtttttgatacttaaggcatccaatttgtagctactgctctag tgaacttgatcatccatgtttttgatacttaaggcatccaatttgtagctactgctctag	535 540
SEQ_ID_NO:9	ttctaggatttggagaacteettgtegaattgteecacagagetaatgattgtgegaaca	595
SEQ_ID_NO:10	ttctaggatttggagaacteettgtegaattgteecacagagetaatgattgtgegaaca	600
SEQ_ID_NO:9 SEQ_ID_NO:10	aaatgacatgatgctgattgttctacgcctcttgcttaataccctgtgaagtttaattat aaatgacatgatgctgattgttctacgcctcttgcttaataccctgtgaagtttaattat ***********************	655 660
SEQ_ID_NO:9	ttggtggtacacttgaccttggaagtcatgacctcccaaaagcatggtgtagcatgtagg	715
SEQ_ID_NO:10	ttggtggtacacttgaccttggaagtcatgacctcccaaaagcatggtgtagcatgtagg	720
SEQ_ID_NO:9	tactatatatctaggttgttgcaactaaattgtggaaatttccacacctctgatggctca	775
SEQ_ID_NO:10	tactatatatctaggttgttgcaactaaattgtggaaatttccacacctctgatggctca	780
SEQ_ID_NO:9	tatgttgtcattcctttgtgacgaagtcttcttgatttttgtgaatatattccagatacg	835
SEQ_ID_NO:10	tatgttgtcattcctttgtgacgaagtcttcttgatttttgtgaatatattccagatacg	840
SEQ_ID_NO:9 SEQ_ID_NO:10	aaagtggaaccgtggggaggaaattgacatggatggctatatata	895 900
SEQ_ID_NO:9 SEQ_ID_NO:10	tttgcacaaaggcttactgtcttatgtgatgctggattactttgtttttacgaaacccgc tttgcacaaaggcttactgtcttatgtgatgctggattgctttgtttttacgaaacccgc	955 960
SEQ_ID_NO:9	ttagttatactgaaggaactgatcatttctttatcttaatggtgcacttttattaggga	1015
SEQ_ID_NO:10	tetagttatactgaaggaactgatcatttctttatcttaatggtgcacttttattaggga	1020
SEQ_ID_NO:9	agagagggttgatcgaagtgaaatattgacattggatagcattagacaagttttgattag	1075
SEQ_ID_NO:10	agagagggttgatcgaagtgaaatattgacattggatagcattagacaagttttgattag	1080

Фиг. 4

SEQ_ID_NO:9	actagaagacagcatcatatt ggccttttggagagagcacagttttgttacaa gctga	1135
SEQ_ID_NO:10	actagaagacagcatcatatt ggccttttggagagagcacagttttgttacaa gctga	1140
SEQ_ID_NO:9 SEQ_ID_NO:10	tacatatgatagcaatgctttccacatggatggttttggcggctctttggttgaatatat tacatatgatagcaatgctttccacatggatggttttggcggctctttggttgaatatat ************************	1195 1200
SEQ_ID_NO:9 SEQ_ID_NO:10	ggttagagaaactgaaaagctccatgcacaggtggaattcatttggacattttttaagaa ggttagagaaactgaaaagctccatgcacaggtggaattcattttggacattttttaagaa ***************************	1255 1260
SEQ_ID_NO:9 SEQ_ID_NO:10	casaaacagttgatcatggcatgcasaagaataacatacectattgtttttaacataggt casaaacagttgatcatggcatgcasaagaataacatacectattgttttttaacataggt	1315 1320
SEQ_ID_NO:9 SEQ_ID_NO:10	tgggagatacaagagcccagatgagcaccctttctttcctgaggatctgcctgagccccg tgggagatacaagagcccagatgagcaccctttctttcctgaggatctgcctgagccccg	1375 1380
SEQ_ID_NO:9	gttgccacctatgcagtacccaagggtaatgcatgttcttggttctcaaatgcttctcat	1435
SEQ_ID_NO:10	gttgccacctatgcagtacccaagggtaatgcatgttcttggttctcaaatgcttctcat	1440
SEQ_ID_NO:9 SEQ_ID_NO:10	gatgactgcttttgtttctttgtcactgtaatagatataaaccatcatttgcaatctaat gatgactgcttttgtttctttgtcactgtaagagatataaaccatcatttgcaatctaat	1495 1500
SEQ_ID_NO:9	gtaccattttetteatggaggtagataaaagaaaatgtgettttgattag	1555
SEQ_ID_NO:10	gtaccattttetteatggaggtagataaaagaaaatgtgettttgaataeagttgtttag	1560
SEQ_ID_NO:9 SEQ_ID_NO:10	catccgnnnnnncaatatattgagcaatactcagttagtgaacaacccatccgaattaaaaaggcttgtacagccaatatattgagcaatactcagttagtgaacaac	1601 1620
SEQ_ID_NO:9	atataggtagtgetctgtgacttgcagaatgtactatcattattgcaaatgccacatccc	1661
SEQ_ID_NO:10	atataggtagtgetctgtgacttgcagaatgtactatcattattgcaaatgccacatccc	1680
SEQ_ID_NO:9	acagaccttagatacaagtgacggaaagttetgtgtttactactatatatt tactttet	1721
SEQ_ID_NO:10	acagaccttagatacaagtgacggaaagttetgtgtttactactatatatt tactttet	1740
SEQ_ID_NO:9 SEQ_ID_NO:10	ccaatatattttggaacaagctgtacagctctttattgtattgcgttgagtcaaaataag ccaatatattttggaacaagctgtacagctctttattgtattgcgttgagtcgaataag ********************************	1781 1800
SEQ_ID_NO:9 SEQ_ID_NO:10	tgatggggttattt tttattacaacatatgctatttttgactttgagtaaa tgatggggttattt ttttattacaacatatgctatttttgactttgagtaaa *****************************	1832 1860
SEQ_ID_NO:9	tccaaaagctcctattgaaccttaggtggagcagaggtgaaagtaacattatttgcattt	1892
SEQ_ID_NO:10	tccaaaagctcctattgaaccttaggtggagcagaggtgaaagtaacattatttgcattt	1920
SEQ_ID_NO:9	tt <mark>t</mark> tcaaggggatatcca <mark>a</mark> ttgatgatgatttactgctttgcttcaatttaatcgttgga	1951
SEQ_ID_NO:10	tt <mark>t</mark> tcaaggggatatcca <mark>t</mark> ttgatgatgatttactgctttgcttcaattttaatcgttgga	1980
SEQ_ID_NO:9	tgg=======tttgacctgcatgaatcttgtcatattctacaagcgctaacatagtgcc	2003
SEQ_ID_NO:10	tgg <mark>tttgacac</mark> tttgacctgcatgaatcttgtcatattctacaagcgctaacatagtgcc	2040
SEQ_ID_NO:9	atectaatecatgtgcaacatgaaatatttgtttatgetgcatttggaetateatgtgtt	2063
SEQ_ID_NO:10	atectaatecatgtgcaacatgaaatatttgtttatgetgcatttggaetateatgtgtt	2100
SEQ_ID_NO:9	gcaagattcataaatcataatgccaacaagttgtcctggtattatgactatgttagtaca	2123
SEQ_ID_NO:10	gcaagattcataaatcataatgccaacaagttgtcctggtattatgactatgttagtaca	2160

Фиг. 4 (продолжение)

SEQ_ID_NO:9 SEQ_ID_NO:10	ttttagatggattcatacttcgctcttgtcctttgcataggttttgcatcccattgc ga ttttagatggattcatacttcgctcttgtcctttgcataggttttgcatcccattgc ga ************************************	2183 2220
SEQ_ID_NO:9 SEQ_ID_NO:10	ttctatcaatatcaacaaagagatttggaaaatgtattttgatgaacttcttccaagatt ttctatcaatatcaacaaagagatttggaaaatgtattttgatgaacttcttccaagatt	2243 2280
SEQ_ID_NO:9 SEQ_ID_NO:10	ggtgaaaaaggaagtgatggtaatgctggatccagtgctctttgtgacacgacctgctt ggtgaaaaaaggaagtgatggtaatgctggatccagtgctctttgtgacacgacctgctt	2303 2340
SEQ_ID_NO:9 SEQ_ID_NO:10	gcaggtacagatgatattcatgttaaatcctacactcagttttatggtctatttggttcc gcaggtacagatgatattcatgttaaatcctacactcagttttatggtctgttttggttcc **********************	2363 2400
SEQ_ID_NO:9 SEQ_ID_NO:10	tttagtcc <mark>a</mark> gggactaaagttgtccctacc <mark>atgttt</mark> ggttccaaggactaaaagtattca tttagtcc <mark>t</mark> gggactaaagttgtccctacc <mark>aca</mark> ggttccaaggactaaaagtattca ******* *****************************	2423 2458
SEQ_ID_NO:9 SEQ_ID_NO:10	asacacattaaatgacattataagaataccgaaatgccccttaccgttctaccgtcttta asacacacattaaatgacattataagaataccgaaatgccccttaccgttctaccgtcttta	2481 2518
SEQ_ID_NO:9 SEQ_ID_NO:10	gttcaactgaaataaatgatggacaaaaggtagaattaatatgttttagtcctttttagt gttcaactgaaataaatgatggacaaaaggtagaattaatatgttttagtcctttttagt	2541 2578
SEQ_ID_NO:2 SEQ_ID_NO:10	cacccettgaggggetagggactaaaacacccettgaggggetagggactaaaataatttagtetttgttttagtteeaetgtttgt	2568 2638
SEQ_ID_NO:9 SEQ_ID_NO:10	caatttagggactaaatgtgattaaaatagaaggactaatctttaatccctggaaccaaa	2568 2698
SEQ_ID_NO:9 SEQ_ID_NO:10	cagacccttagttctttgggtgcacatccacttttgttccagacttccagtcaactaggt	2568 2758
SEQ_ID_NO:9 SEQ_ID_NO:10	gtccaggttataaaactccttttgctctgtctgccacagttttcattca	2568 2818
SEQ_ID_NO:9 SEQ_ID_NO:10	atatttgagcaaacaaagccagatcaaatttgcatgaatcaatc	2568 2878
SEQ_ID_NO:9 SEQ_ID_NO:10	catagtactggcctgatcattgctggtaacttgtgcaatttttgcatttttataattccct	2568 2938
SEQ_ID_NO:9 SEQ_ID_NO:10	ttctctgtttttcttgttccatactccaggcgctctccaaaaggatccactatgggaagt	2568 2998
SEQ_ID_NO:9 SEQ_ID_NO:10	ttgtggcagaggctaagtttcaggagtccccggaagcttacatgccagcca	2568 3058
SEQ_ID_NO:9 SEQ_ID_NO:10	aggtetgtgettttgttteaactetagtatttetagtacaactatttttcatttttttgt	2568 3118
SEQ_ID_NO:9 SEQ_ID_NO:10	tttatttcagagtttcataacaaaaatcatatttcgattcatttgaataaaaaactgtc	2568 3178
SEQ_ID_NO:9 SEQ_ID_NO:10	gatttettgtcacgttttgcaaaatccaggaccgtgatcaactcatgcaccttetcacat	2568 3238
SEQ_ID_NO:9 SEQ_ID_NO:10	atgaaacggtggagcgtgctatcgaacatagggtggaagccaaagccaagatcttcgggc	2568 3298

Фиг. 4 (продолжение)

SEQ_ID_NO:9 SEQ_ID_NO:10	aagaggtgaacatcggtgtggaggacaacggcagcccaccggtgtacaagatcgtt		2568 3358
SEQ_ID_NO:9 SEQ_ID_NO:10	gettggtegecgagetgtacagetacagaatcatgecgetaaccaaagaggttcaaa		2568 3418
SEQ_ID_NO:9 SEQ_ID_NO:10	cgtatttgcttaggaggctggattgagtatgtttatgtagatgtaaattgccagat		2568 3478
SEQ_ID_NO:9 SEQ_ID_NO:10	actcctggcgttaagccagaacattggtaaataccggttttggtgtcaggatg	2568 3531	

Фиг. 4 (продолжение)

SEQ_ID_NO:13	agcacaaaaatcaattgaacgtttt	gagaacgaaaataacacccgccgatactataccat	60
SEQ_ID_NO:14		gagaacgaaaataacacccgccgatactataccat	60
SEQ_ID_NO:13	asatasagtteaagasateeacee	etgeeegeegeetetteetteeggeeggtette	120
SEQ_ID_NO:14		etgeeegeegeegetetteette	120
SEQ_ID_NO:13	gtttcgacatccaggaaatggctac	egeggegegeeteeteetegtegtggtgettetet	180
SEQ_ID_NO:14		egegggegeeteeteetegtegtggtgettetet	180
SEQ_ID_NO:13	cegeggegatacegatecegteett	cgcgacaagcttcgtcgtcggcgacaagaggcatc	240
SEQ_ID_NO:14		cgcgacaagcttcgtcgtcggcgacaagaggcatc	240
SEQ_ID_NO:13	getgggeteecaaegteaaetatae	eagactgggcggaccgtcaccagttccacgtcggcg	300
SEQ_ID_NO:14		eagactgggcggaccgtcaccagttccacgtcggcg	300
SEQ_ID_NO:13	actggctcggtatcattctcctcc	ctatatctatctacctttacatactcatcaacatc	360
SEQ_ID_NO:14		ctatatctatc	360
SEQ_ID_NO:13	asacagecegtgtgatggagatets	agctttcggcaaaagaattgatctaagggtgggaag	420
SEQ_ID_NO:14		agctttcggcaaaagaattgatctaagggtgggaag	420
SEQ_ID_NO:13	acgcgttaatttgcacgcatgcags	eattcaggtacgagagggacaggttcgatgtggtgc	480
SEQ_ID_NO:14		eattcaggtacgagagggacaggttcgatgtggtgc	480
SEQ_ID_NO:13 SEQ_ID_NO:14	aggtgaacgagacggcatacgcggc	egtgegaegeeageageeceateeteagetaeagee egtgegaegeeageageeceateeteagetaeagee *********************************	540 540
SEQ_ID_NO:13	geggeeacaacttegtetteegget	caaccacacgggccggttctacttcatctgcagcc	600
SEQ_ID_NO:14		caaccacacgggccggttctacttcatctgcagcc	600
SEQ_ID_NO:13	geggetactgetggagtggcatgas	aggteteegtgetegteeageegeege <mark></mark> egeeee	657
SEQ_ID_NO:14		aggteteegtgetegteeageegege <mark>age</mark> egeeee	660
SEQ_ID_NO:13	egtegetgeegeeggegteeeaeto	eccacgcgtcaagcgccagtgcgcgtgtgcggccgg	717
SEQ_ID_NO:14		eccacgcgtcaagcgccagtgcgcgtgtgcggccgg	720
SEQ_ID_NO:13	eggeegggetttggtgtgeggetet	ctctaccttgctgggctgggcggtgctcacgccgc	777
SEQ_ID_NO:14		ctctaccttgctgggctgg	780
SEQ_ID_NO:13 SEQ_ID_NO:14		etgga <mark>t</mark> gtccaetgga <mark>t</mark> gtccaetgga <mark>c</mark> gtccaggcgcgcacacgagtctaaactcta	812 840
SEQ_ID_NO:13 SEQ_ID_NO:14	aagctgtttgctaatgtactaccca	atttettetttttttagtatggaaataagagtteeg	812 900
SEQ_ID_NO:13 SEQ_ID_NO:14	gctttagcataaaga	812 915	

Фиг. 5