(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2023.07.31
- (22) Дата подачи заявки 2018.11.29

(51) Int. Cl. A61K 47/50 (2017.01) C07K 1/10 (2006.01) C07K 19/00 (2006.01)

- (54) СПОСОБ ПОЛУЧЕНИЯ СОЕДИНЕНИЙ "ЛЕКАРСТВЕННОЕ СРЕДСТВО-ЛИНКЕР"
- (31) 62/593,104
- (32) 2017.11.30
- (33) US
- (62) 202091340; 2018.11.29
- **(71)** Заявитель:

СИДЖЕН ИНК. (US)

(72) Изобретатель:

Бланшар Софи, Коутс Джеймс (US)

(74) Представитель:

Медведев В.Н. (RU)

(57) Изобретение в целом относится к новым способам получения соединений "лекарственное средство-линкер" и к композициям, содержащим такие соединения "лекарственное средство-линкер". Раскрытые в настоящем документе способы для синтезирования Fmoc-Val-Cit-PABOH и родственных соединений, как также обнаружено, минимизируют образование диастереомерных примесей.

СПОСОБ ПОЛУЧЕНИЯ СОЕДИНЕНИЙ 'ЛЕКАРСТВЕННОЕ СРЕДСТВО-ЛИНКЕР'

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ

[0001] Настоящая заявка испрашивает приоритет на основании предварительной заявки США № 62/593104, поданной 30 ноября 2017 г., содержание которой включено в настоящий документ посредством ссылки во всей своей полноте.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0002] Это раскрытие в целом относится к новым способам получения соединений 'лекарственное средство-линкер' и к композициям, содержащим такие соединения 'лекарственное средство-линкер'.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[0003] Большой интерес приобрело применение моноклональных антител (mAbs) для направленной доставки цитотоксичных агентов к раковым клеткам. Разработка конъюгатов 'антитело-лекарственное средство' обычно включает прикрепление цитотоксичного агента к антителу через линкер.

[0004] Хотя и производится целый ряд различных линкерных соединений, тем не менее, промышленно производимые линкерные соединения часто имеют разнообразные примеси, которые являются трудноудаляемыми.

[0005] Таким образом, существует потребность в усовершенствованных способах получения таких линкерных соединений со сниженными количествами загрязняющих примесей.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[0006] В одном аспекте, в данном документе обеспечивают способ получения соединения Формулы (1A):

$$Z^1$$
N O NH O NH₂ (1A),

или его соли,

где Z^1 представляет собой защитную группу;

где способ включает в себя проведение реакции между соединением Формулы (1B) или его солью:

и пара-аминобензиловым спиртом (РАВОН) в присутствии конденсирующего реагента для образования пептидной связи, где конденсирующий реагент для образования

пептидной связи включает
$$OH$$
 (HOAt), Me_2N (COMU), или производное HOAt.

[0007] В некоторых вариантах осуществления, способ дополнительно включает в себя превращение соединения Формулы (1A) или его соли в соединение Формулы (1D) или его соль:

где D представляет собой фрагмент Формулы (D):

и \mathbb{R}^{11} , \mathbb{R}^{12} , \mathbb{R}^{13} , \mathbb{R}^{14} , \mathbb{R}^{15} , \mathbb{R}^{16} , \mathbb{R}^{17} , \mathbb{R}^{18} , и \mathbb{R}^{19} являются такими, как определено в данном документе.

[0008] В некоторых вариантах осуществления, способ дополнительно включает превращение соединения Формулы (1D) или его соли в соединение Формулы (5):

или его фармацевтически приемлемую соль, где Ab и р являются такими же, как определено в данном документе.

[0009] В другом аспекте, в данном документе обеспечивают соединение Формулы (4):

[0010] В еще одном аспекте, в данном документе обеспечивают композицию, содержащую соединение Формулы (3):

где композиция в значительной мере свободна от соединения Формулы (4).

[0011] В другом аспекте, в данном документе обеспечивают композицию, содержащую соединение Формулы (5), где композиция в значительной мере свободна от соединения Формулы (4) и любых аддуктов соединения Формулы (4) с антителом.

ФИГУРА

[0012] Фиг. 1 показывает результаты аналитической высокоэффективной жидкостной хроматографии (HPLC) для Fmoc-Val-Cit-PABOH, синтезированного с использованием способа, аналогичного тому, который описан в публикации Dubowchik et al. (*Bioconjugate Chem.* 2002, 13, 855-869) (сверху), и способа Примера 3, описанного в данном документе (снизу).

ПОДРОБНОЕ ОПИСАНИЕ

[0013] Соединение Формулы (3):

представляет собой важное исходное вещество для изготовления некоторых конъюгатов 'антитело-лекарственное средство'. Однако, известные способы для синтезирования соединения Формулы (3), как показано, приводят к образованию примесей, которые являются трудноудаляемыми. Одна такая примесь, которая отмечена при синтезе соединения Формулы (3), представляет собой соединение Формулы (4):

[0014] Примеси, такие как соединение Формулы (4), вносят вклад в образование примесей высокой молекулярной массы в нерасфасованной лекарственной субстанции конъюгатов 'антитело-лекарственное средство', полученных из соединения Формулы (3).

[0015] Соединение Формулы (4) может получаться из соединения-предшественника, образованного во время синтеза Fmoc-Val-Cit-PABOH, который представляет собой продукт, расположенный выше в технологической цепочке в синтезе соединения Формулы (3).

предшественник соединения Формулы (4)

[0016] Авторы настоящего изобретения разработали усовершенствованные способы синтезирования Fmoc-Val-Cit-PABOH и родственных соединений, где способы минимизируют или устраняют образование предшественника соединения Формулы (4), и посредством этого минимизируют или исключают присутствие соединения Формулы (4) в расположенном ниже в технологической цепочке продукте Формулы (3). Улучшенные способы также приводят к минимизированию или устранению соединения Формулы (4) и других примесей высокой молекулярной массы, таких как аддукты соединения Формулы (4) с антителом, в конъюгатах 'антитело-лекарственное средство', полученных из соединения Формулы (3). Раскрытые в настоящий момент способы синтезирования Fmoc-Val-Cit-PABOH и родственных соединений, как также обнаружено, минимизируют образование диастереомерных примесей.

Определения

[0017] В контексте данного документа, если не указано особо и не подразумевается иное из контекста, то термины, которые используются в данном документе, имеют значения, определенные ниже. Если не указано противоположное и не подразумевается иное, например, в результате включения взаимоисключающих элементов или опций, в тех определениях и на всем протяжении этого описания, термины в виде неопределенного артикля означают один или более, и термин «или» означает и/или там, где допускается контекстом. Таким образом, в контексте данного описания и прилагаемых пунктов формулы изобретения, формы неопределенного и определенного артикля, соответствующие единственному числу, включают объекты ссылки во множественном числе, если контекст не диктует однозначно иное.

[0018] В различных местах в настоящем раскрытии, например, в любых раскрываемых вариантах осуществления или в пунктах формулы изобретения, дается ссылка на соединения, композиции или способы, которые «содержат» один или более конкретных компонентов, элементов или стадий. Варианты осуществления также конкретно включают те соединения, композиции или способы, которые представляют собой, или состоят из, или, которые в основном состоят из тех конкретных компонентов,

элементов или стадий. Термин «составленный из» используют взаимозаменяемо с термином «содержащий», и их рассматривают в качестве эквивалентных терминов. Например, раскрываемые композиции, устройства, изделия или способы, которые «содержат» компонент или стадию, являются открытыми, и они включают или охватывают или способы плюс дополнительный(-ые) композиции компонент(-ы) дополнительную (-ые) стадию (-и). Однако эти термины не охватывают не перечисленные элементы, которые могли бы нарушить функциональность раскрываемых композиций, устройств, изделий или способов в отношении их предполагаемого назначения. Подобно тому, раскрываемые композиции, устройства, изделия или способы, которые «состоят из» компонента или стадии, являются закрытыми, и они не могли бы включать или охватывать те композиции или способы, имеющие заметные количества дополнительного(-ых) компонента(-ов) или дополнительной(-ых) стадии(-ий). Кроме того, термин «в основном состоящий из» допускает включение неперечисленных элементов, которые не имеют существенного влияния на функциональность раскрываемых композиций, устройств, изделий или способов в отношении их предполагаемого назначения, что дополнительно определено в данном документе. Заголовки разделов, используемые в данном документе, даны лишь с организационными целями и не должны считаться ограничивающими описываемый объект изобретения.

[0019] Термин «приблизительно» в контексте данного документа при использовании в связи с численным значением или диапазоном значений, обеспечиваемым для описания конкретного свойства соединения или композиции, указывает, что значение или диапазон значений может отклоняться в степени, которую средний специалист в данной области считает разумно обоснованной при описании опять же конкретного свойства. Разумно обоснованные отклонения включают отклонения, которые находятся в пределах погрешности или точности прибора(-ов), используемого(-ых) в измерении, установлении или определении конкретного свойства. В частности, термин «приблизительно» при использовании в данном контексте, указывает, что численное значение или диапазон сисел может варьироваться на 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0,9%, 0,8%, 0,7%, 0,6%, 0,5%, 0,4%, 0,3%, 0,2%, 0,1%, или 0,01% относительно приведенного значения или диапазона значений, как например, на 10% - 0,5% или на 5% - 1%, опять же при описании конкретного свойства.

[0020] Термин «в значительной мере» в контексте данного документа означает полностью или почти полностью; например, композиция, которая «в значительной мере свободна» от компонента, либо не содержит этот компонент, либо содержит не более приблизительно 1% по массе этого соединения, приблизительно 0,5% по массе соединения, приблизительно 0,05% по массе соединения, приблизительно 0,05% по массе соединения, приблизительно 0,005% по массе соединения, приблизительно 0,005% по массе соединения, приблизительно 0,0005% по массе соединения, приблизительно 0,0005% по массе соединения, или приблизительно 0,0001% по массе соединения.

[0021] Термин «фрагмент» в контексте данного документа означает заданный

сегмент, участок или функциональная группа молекулы или соединения. Химические фрагменты иногда указывают как химические структурные элементы, которые встраивают или прикрепляют к (то есть, заместитель или варьируемую группу) молекуле, соединению или химической Формуле.

[0022] Если не указано иное, в случае любой группы-заместителя или для любого фрагмента-заместителя, описываемых в данном документе с помощью заданного диапазона атомов углерода, обозначенный диапазон означает, что описывается любое отдельно взятое число атомов углерода. Так, упоминание, например, «необязательно замещенного C₁-C₄алкила» или «необязательно замещенного C_2 - C_6 -алкенила» конкретно означает, что, соответственно, присутствует 1-, 2-, 3- или 4-углеродный алкильный фрагмент, необязательно замещенный, который определен в данном документе, или присутствует 2-, 3-, 4-, 5- или 6-углеродный алкенильный фрагмент, необязательно замещенный, который определен в данном документе. Все такие численные обозначения определенно предназначены для раскрытия всех отдельно взятых групп с атомами углерода; и, таким образом, «необязательно замещенный С₁-С₄-алкил» включает метил, этил, 3-углеродные алкилы и 4-углеродные алкилы, в том числе все их позиционные изомеры, и замещенные и незамещенные. Так, в том случае, когда алкильный фрагмент замещен, численные обозначения относятся к незамещенному основному фрагменту и, как подразумевается, не включают атомы углерода, которые могут присутствовать в заместителях того основного фрагмента.

[0023] Органические заместители, фрагменты и группы, описываемые в данном документе, и, в ином случае, любые другие фрагменты, описываемые в данном документе, обычно будут исключать нестабильные фрагменты кроме тех случаев, где такие нестабильные фрагменты являются промежуточными короткоживущими частицами, которые можно использовать для изготовления соединения с достаточной химической стабильностью для одного или более применений, описываемых в данном документе. Заместители, фрагменты или группы, в силу определений, предоставляемых в данном документе, которые дают в результате заместители, фрагменты или группы, имеющие пятивалентный углерод, конкретно исключаются.

[0024] Термин «алкил» в контексте данного документа, сам по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, относится к насыщенной, линейной или разветвленной, нециклической углеводородной радикальной группе, где углеводородная радикальная группа представляет собой метил или имеет указанное число ковалентно связанных насыщенных атомов углерода, например, «С1-С6-алкил» или «С1-С6-алкил» означает насыщенный алкильный фрагмент или группу, содержащую 1 насыщенный атом углерода (то есть, представляет собой метил) или 2, 3, 4, 5 или 6 смежных, нециклических насыщенных атомов углерода, и «С1-С8-алкил» относится к насыщенному алкильному фрагменту или группе, имеющему(-ей) 1 насыщенный атом углерода или 2, 3, 4, 5, 6, 7 или 8 смежных насыщенных, нециклических атомов углерода. Число насыщенных атомов углерода в алкильном фрагменте или группе может

варьироваться и может составлять 1-50, 1-30 или 1-20, или 1-12 (например, 1-8, 1-6 или 1-4). В некоторых аспектах, алкил относится к насыщенному C_1 - C_{12} - или C_1 - C_8 -алкильному фрагменту, такому как насыщенный C_1 - C_6 - или C_1 - C_4 -алкильный фрагмент, где последний иногда называется низшим алкилом. В том случае, когда число атомов углерода не указано, алкильный фрагмент, группа или заместитель имеет от 1 до 8 насыщенных атомов углерода. Если не установлено иначе и не подразумевается другое из контекста, то алкильный фрагмент, группа или заместитель является необязательно замещенным(-ой). В том случае, когда алкильный заместитель является ненасыщенным, такие фрагменты могут представлять собой ненасыщенные C_3 - C_{12} -алкил или C_3 - C_8 -фрагменты, как например, ненасыщенные C_1 - C_6 -алкильные фрагменты.

[0025] Приводимые в качестве примера алкильные группы включают, без ограничения, метил, этил, 1-пропил (н-пропил), 2-пропил (изо-пропил, - $CH(CH_3)_2$), 1-бутил (н-бутил), 2-метил-1-пропил (изо-бутил, - $CH_2CH(CH_3)_2$), 2-бутил (втор-бутил, - $CH(CH_3)CH_2CH_3$), 2-метил-2-пропил (трет-бутил, - $C(CH_3)_3$), амил, изоамил, и втор-амил, и в других аспектах алкильный заместитель, фрагмент или группа являются или в качестве примера могут быть представлены другими алкильными фрагментами с линейной и разветвленной цепью.

[0026] Термин «карбоциклил» в контексте данного документа, сам по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, относится к радикальной группе, представляющей собой моноциклическую, бициклическую или трициклическую кольцевую систему, где каждый из атомов, образующих кольцевую систему, (то есть, атомы каркаса) является атомом углерода, и, где один или несколько из этих атомов углерода в каждом кольце циклической кольцевой системы является(-ются) насыщенным(-и) (то есть, состоит(-ят) из одного или более углеродов sp³). Таким образом, карбоциклил представляет собой циклическую группировку насыщенных углеродов, но также может содержать и ненасыщенный(-ые) атом(-ы) углерода и, следовательно, его карбоциклическое кольцо может быть насыщенным или частично ненасыщенным или может быть конденсированным с ароматической кольцевой системой, где точки сочленения карбоциклической и ароматической кольцевых систем соответствуют смежным углеродам каждой из этих кольцевых систем.

[0027] В случае использования карбоциклила в качестве заместителя, карбоциклил прикрепляют к другому органическому фрагменту, с которым его связывают через атом углерода, который включен в карбоциклическую кольцевую систему карбоциклильного фрагмента, при условии, что атом углерода не является ароматическим. Число атомов углерода в группе или заместителе на основе карбоциклильного фрагмента определяют по общему числу атомов каркаса его карбоциклической кольцевой системы. Это число может варьироваться и, в некоторых вариантах осуществления, находится в диапазоне от 3 до 50, от 3 до 30, от 3 до 20 или от 3 до 12, как например, от 3 до 8 или от 3 до 6 атомов углерода каркаса, если не задано иначе, например, С₃-С₈-карбоциклил означает карбоциклильный(-ую) заместитель, фрагмент или группу, содержащий(-ую) 3, 4, 5, 6, 7 или 8

карбоциклических атомов углерода, и C_3 - C_6 -карбоциклил означает карбоциклильный(-ую) заместитель, фрагмент или группу, содержащий(-ую) 3, 4, 5 или 6 карбоциклических атомов углерода. Приводимые в качестве примера C_3 - C_8 -карбоциклилы включают, без ограничения, циклопропил, циклобутил, циклопентил, циклопентадиенил, циклогексил, циклогексенил, 1,3-циклогексадиенил, 1,4-циклогексадиенил, циклогептил, 1,3-циклогептадиенил, 1,3,5-циклогептатриенил, циклооктил и циклооктадиенил.

[0028] Таким образом, карбоциклильные заместители, фрагменты или группы в некоторых вариантах осуществления имеют 3, 4, 5, 6, 7, 8 атомов углерода в своей карбоциклической кольцевой системе и могут содержать экзо-или эндо-циклические двойные связи или эндо-циклические тройные связи или комбинацию того и другого, где эндо-циклические двойные или тройные связи, или комбинация того и другого, не образуют циклическую сопряженную систему с 4n+2 электронами. Бициклическая кольцевая система может делить один (то есть, представляет собой спиро-кольцевую систему) или два атома углерода, а трициклическая кольцевая система может делить всего 2, 3 или 4 атома углерода, как например, 2 или 3. Если не установлено иначе и не подразумевается другое из контекста, карбоциклил является необязательно замещенным. В других аспектах, С₃-С₈циклоалкильный (-ая) фрагмент, группа или заместитель выбирается из группы, состоящей из циклопропила, циклопентила и циклогексила, или является включенной или дополнительно охваченной другими циклическими фрагментами, которые имеют не более 8 атомов углерода в своих циклических кольцевых системах. В том случае, когда число атомов углерода не указано, карбоциклильный (-ая) фрагмент, группа или заместитель имеет от 3 до 8 атомов углерода в своей карбоциклической кольцевой системе.

[0029] «Алкенил» в контексте данного документа, сам по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, относится к органическому(-ой) фрагменту, заместителю или группе, который(-ая) содержит одну или более функциональных групп с двойной связью (например, фрагмент -CH=CH-) или 1, 2, 3, 4, 5 или 6 или более, как например, 1, 2 или 3 такие функциональные группы, и в некоторых вариантах осуществления одну такую функциональную группу, и в некоторых аспектах может быть замещен(-а) (то есть, является необязательно замещенным(-ой)) арильным фрагментом, или связанными нормальными, вторичными, третичными или циклическими атомами углерода, то есть, линейными, разветвленными, или любой их комбинацией, если алкенильный (-ая) заместитель, фрагмент или группа не является винильным фрагментом (например, фрагментом -CH=CH₂). Алкенильный(-ая) фрагмент, группа или заместитель, имеющий(-ая) несколько двойных связей, может иметь двойные связи, расположенные смежно (то есть, 1,3-бутадиенильный фрагмент) или не-смежно с одним или более промежуточными насыщенными атомами углерода или в виде их комбинации, при условии, что циклическое, смежное расположение двойных связей не образует циклическую сопряженную систему из 4n+2 электронов (то есть, не является ароматическим).

[0030] «Алкинил» в контексте данного документа, сам по себе или как часть другого

термина, если не установлено иначе и не подразумевается другое из контекста, относится к органическому(-ой) фрагменту, заместителю или группе, который(-ая) содержит одну или более функциональных групп с тройной связью (например, фрагмент -C=C-) или 1, 2, 3, 4, 5 или 6 или более, как например, 1, 2 или 3 такие функциональные группы, и в некоторых вариантах осуществления одну такую функциональную группу, и в некоторых аспектах может быть замещен(-а) (то есть, является необязательно замещенным(-ой)) арильным фрагментом, таким как фенил, или алкенильным фрагментом или связанными нормальными, вторичными, третичными или циклическими атомами углерода, то есть, линейными, разветвленными, циклическими или любой их комбинацией. Алкинильный(-ая) фрагмент, группа или заместитель, имеющий(-ая) несколько тройных связей, может иметь тройные связи, расположенные смежно или не-смежно с одним или более промежуточными насыщенными или ненасыщенными атомами углерода или в виде их комбинации, при условии, что циклическое, смежное расположение тройных связей не образует циклическую сопряженную систему из 4n+2 электронов (то есть, не является ароматическим).

[0031] «Арил» в контексте данного документа, сам по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, относится к органическому(-ой) фрагменту, заместителю или группе, имеющему(ей) ароматическую или конденсированную ароматическую кольцевую систему без кольцевых гетероатомов, содержащую 1, 2, 3 или 4-6 ароматических колец, как например, 1-3 ароматических кольца или 1 или 2 ароматических кольца, где кольца состоят только из атомов углерода, которые участвуют в циклически сопряженной системе из 4n+2 электронов (правило Хюккеля), как например, 6, 10 или 14 электронов, некоторые из которых могут дополнительно участвовать в экзоциклическом сопряжении с гетероатомом (кросс-сопряжении, например, в случае хинона). Арильные заместители, фрагменты или группы могут быть образованы шестью, восемью, десятью или большим количеством ароматических атомов углерода вплоть до 24 с включением С₆-С₂₄-арила. Если не установлено иначе и не подразумевается другое из контекста, то арильные заместители, фрагменты или группы являются необязательно замещенными. Приводимые в качестве примера арилы включают С₆-С₁₀-арилы, такие как фенил и нафталенил и фенантрил. Поскольку ароматичность в нейтральном арильном фрагменте требует четное число электронов, будет понятно, что заданный диапазон для этого фрагмента не будет охватывать фрагменты с нечетным числом ароматических углеродов. В том случае, когда арил используют в качестве группы Маркуша (то есть, заместителя), арил прикрепляют к структуре Маркуша или другому органическому фрагменту, с которой(-ым) его связывают через ароматический углерод арильной группы.

[0032] «Арилалкил» или «гетероарилалкил», используемые как термины в данном документе, сами по себе или как часть другого термина, представляют собой арильный или гетероарильный фрагмент, присоединенный к алкильному фрагменту, то есть, (арил)-алкил-, где алкильные и арильные группы являются такими как описано выше. В некоторых вариантах осуществления, арилалкил представляет собой (C_6 - C_{24} -арил)- C_1 - C_{12} -алкильный(-

ую) фрагмент, группу или заместитель, и гетероарилалкил представляет собой (C_5 - C_{24} -гетероарил)- C_1 - C_{12} -алкильный(-ую) фрагмент, группу или заместитель. В том случае, когда (гетеро)арилалкил используют в качестве заместителя, алкильный фрагмент (гетеро)арилалкила прикрепляют к другому органическому фрагменту, с которым его связывают через углерод sp³ его алкильного фрагмента. В некоторых аспектах, арилалкил представляет собой (C_6 - C_{10} -арил)- C_1 - C_{12} -алкил, такой как (C_6 - C_{10} -арил)- C_1 - C_6 , в качестве примера которого можно привести, без ограничения, C_6 H₅-CH₂-, C_6 H₅-CH(CH₃)CH₂- и C_6 H₅-CH₂-CH(CH₂CH₃)-.

[0033] «Алкиларил» или «алкилгетероарил», в контексте данного документа, сами по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, представляют собой алкильный фрагмент, присоединенный к арильному или гетероарильному фрагменту, то есть, -(гетеро)арил-алкил, где (гетеро)арильные и алкильные группы являются такими как описано выше. В некоторых вариантах осуществления, алкиларил представляет собой (C₁-C₁₂-алкил)-C₆-C₂₄-арильный(-ую) фрагмент, группу или заместитель, и алкилгетероарил представляет собой (C₁-C₁₂-алкил)-C₅-C₂₄-гетероарильный(-ую) фрагмент, группу или заместитель. В том случае, когда алкил(гетеро)арил используют в качестве заместителя, (гетеро)арильный фрагмент алкил(гетеро)арила прикрепляют к другому органическому фрагменту, с которым его связывают через атом ароматического углерода или гетероатом его арильного или гетероарильного фрагмента. В некоторых аспектах, алкиларил представляет собой (C₁-C₁₂-алкил)-C₆-C₁₀-арил- или (C₁-C₆-алкил)-C₆-C₁₀-арил-, в качестве примера которых можно привести, без ограничения, например, -C₆H₄-CH₃ или -C₆H₄-CH₂CH(CH₃)₂.

[0034] Термин «гетероциклил» в контексте данного документа, сам по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, относится к карбоциклилу, в котором один или более, но не все каркасные атомы углерода с их прикрепленными атомами водорода в рамках карбоциклической кольцевой системы заменены независимо выбранными гетероатомами, необязательно замещенными там, где допустимо, включающими, без ограничения, N/NH, O, S, Se, B, Si и P, где два или более гетероатома могут быть расположены рядом или могут быть отделены друг от друга одним или более атомами углерода в пределах той же самой кольцевой системы, как например, 1-3 атомами. В некоторых вариантах осуществления, эти гетероатомы представляют собой N/NH, О и S. Гетероциклил в некоторых вариантах осуществления содержит всего один-десять гетероатомов в гетероциклической кольцевой системе, при условии, что не все каркасные атомы любого кольца в гетероциклической кольцевой системе являются гетероатомами, где каждый гетероатом в кольце(-ах), необязательно замещенный там, где допустимо, независимо выбирают из группы, состоящей из N/NH, O и S, с той оговоркой, что любое кольцо не содержит два смежных атома O или S. Приводимые в качестве примера гетероциклилы и гетероарилы в совокупности называются гетероциклами, и являются представленными в обзорах и публикациях Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W. A. Benjamin, New York, 1968), в частности,

Главы 1, 3, 4, 6, 7, и 9; "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley & Sons, New York, с 1950 по настоящее время), в частности, Тома 13, 14, 16, 19, и 28; и *J. Am. Chem. Soc.* 1960, 82:5545-5473, в частности, 5566-5573).

[0035] В случае использования гетероциклила в качестве заместителя, насыщенное или частично ненасыщенное гетероциклическое кольцо гетероциклила прикрепляют к другому органическому фрагменту, с которым его связывают через атом углерода или гетероатом этого гетероциклического кольца, где такое прикрепление не дает в результате нестабильное или формально неразрешенное состояние окисления того углерода или гетероатома. Гетероциклил в этом контексте представляет собой одновалентный фрагмент, в котором гетероциклическое кольцо гетероциклической кольцевой системы, определяющее ее как гетероциклил, является не-ароматическим, но может быть конденсировано с карбоциклическим, арильным или гетероарильным кольцом, и включает фенил-(то есть, бензо)конденсированные гетероциклические фрагменты.

[0036] В некоторых вариантах осуществления, гетероциклил представляет собой C_{3} - C_{20} -карбоциклил, где 1, 2 или 3 углерода его циклоалкильной кольцевой системы заменен(ы) вместе с их прикрепленными водородами на гетероатом, выбранный из группы, состоящей из необязательно замещенных N/NH, O и S, и, таким образом, представляет собой C_{3} - C_{20} -гетероциклил, как например, C_{3} - C_{12} -гетероциклил, или C_{5} - C_{12} -, C_{3} - C_{6} - или C_{5} -сетероциклил, в котором нижний индекс указывает общее число каркасных атомов (с учетом его атомов углерода и гетероатомов) гетероциклической системы гетероциклила. В некоторых аспектах, гетероциклил содержит 0-2 атома N, 0-2 атома O, или 0-1 атом S или некоторую их комбинацию, при условии, что, по меньшей мере, один из упомянутых гетероатомов присутствует в циклической кольцевой системе, которая может быть замещена в положении атома углерода оксо(=O)-фрагментом, как в пирролидин-2-оне, или в положении гетероатома одним или двумя оксо-фрагментами с возможностью получить окисленный гетероатом, в качестве примера которого приводятся, без ограничения, -N(=O), -S(=O)-, или -S(=O) $_{2}$ - В некоторых вариантах осуществления, гетероциклил выбирают из группы, состоящей из пирролидинила, пиперидинила, морфолинила и пиперазинила.

[0037] Термин «гетероарил» в контексте данного документа, сам по себе или как часть другого термина, если не установлено иначе и не подразумевается другое из контекста, относится к арильному(-ой) фрагменту, группе или заместителю, который(-ая) определен(-а) в данном документе, в котором(-ой) один или более, но не все из ароматических углеродов ароматической кольцевой системы арила заменен(-ы) гетероатомом. Гетероарил в некоторых вариантах осуществления содержит всего одинчетыре гетероатом(-а) в кольце(-ах) гетероарильной кольцевой системы, при условии, что не все каркасные атомы любой кольцевой системы в гетероариле являются гетероатомами, необязательно замещенными там, где допустимо, и имеет <u>0-3 атома N</u>, 1-3 атома N, или <u>0-3 атома N</u>, как например, 0-1 атом О и/или 0-1 атом S, при условии, что присутствует, по меньшей мере, один гетероатом. Гетероарил может быть моноциклическим, бициклическим или полициклическим. Моноциклический гетероарил в некоторых

вариантах осуществления представляет собой C_5 - C_{24} -гетероарил, как например, C_5 - C_{12} - или С5-С6-гетероарил, где нижний индекс указывает общее число каркасных атомов (с учетом его атомов углерода и гетероатомов) ароматической(-их) кольцевой(-ых) систем(-ы) гетероарила. В некоторых аспектах, гетероарил представляет собой арильный фрагмент, где один 1, 2 или 3 атома углерода ароматического(-их) кольца(-ец) и их прикрепленные атомы водорода исходного арильного фрагмента заменены гетероатомом, необязательно замещенным там, где допустимо, включающим N/NH, O и S, при условии, что не все атомы каркаса любой ароматической кольцевой системы в арильном фрагменте заменены гетероатомами, и в некоторых вариантах осуществления, заменены кислородом (-О-), серой (-S-), азотом (=N-) или -NR-, так что гетероатом азот является необязательно замещенным, где R представляет собой -H, защитную группу для азота или необязательно замещенный C_1 - C_{20} -алкил, либо представляет собой необязательно замещенный C_6 - C_{24} -арил или C_5 - C_{24} гетероарил с получением биарила. В других аспектах, один 1, 2 или 3 атома углерода ароматического(-их) кольца(-ец) и их прикрепленные атомы водорода исходного арильного фрагмента заменены азотом, замещенным другим органическим фрагментом, некоторым способом, который позволяет сохранять циклическую сопряженную систему. В аспектах, гетероатом азот, сера или кислород участвует в сопряженной системе либо через писвязывание с соседним атомом в кольцевой системе, либо через неподеленную пару электронов на гетероатоме. В еще одних аспектах, гетероарил имеет структуру гетероциклила, который определен в данном документе, где его кольцевая система ароматизирована.

[0038] осуществления, В некоторых вариантах гетероарил является моноциклическим, и в некоторых аспектах имеет 5-членную или 6-членную гетероароматическую кольцевую систему. 5-членный гетероарил представляет собой моноциклический С5-гетероарил, содержащий 1-4 ароматических атома углерода и требуемое число ароматических гетероатомов в пределах его гетероароматической кольцевой системы. 6-членный гетероарил представляет собой моноциклический С6гетероарил, содержащий 1-5 ароматических атома углерода и требуемое число ароматических гетероатомов в пределах его гетероароматической кольцевой системы. Гетероарилы, которые являются 5-членными, имеют четыре, три, два или один ароматический(их) гетероатом(-а), и гетероарилы, которые являются 6-членными, включают гетероарилы, имеющие пять, четыре, три, два или один ароматический(их) гетероатом(-а). Приводимые в качестве примера С5-гетероарилы включают, без фуранил, тиофенил, оксазолил, изоксазолил, ограничения, пирролил, изотиазолил, имидазолил, пиразолил, триазолил и тетразолил. Приводимые в качестве примера С6-гетероарилы включают, без ограничения, пиридинил, пиридазинил, пиримидинил и триазинил.

[0039] «Гетероалкил» в контексте данного документа, сам по себе или в комбинации с другим термином, если не установлено иначе и не подразумевается другое из контекста, относится к необязательно замещенному углеводороду с прямой или разветвленной цепью,

полностью насыщенному или имеющему степени ненасыщенности от 1 до 3, и состоящему из 1-12 атомов углерода и 1-6 гетероатомов, как например, 1-5 гетероатомов или одного или двух гетероатомов, выбранных из группы, состоящей из О, N, Si и S, необязательно замещенных там, где допустимо, и включает каждый атом азота и серы, независимо необязательно окисленный до N-оксида, сульфоксида или сульфона, или, где один из атомов азота является необязательно кватернизованным. Гетероатом(-ы) O, N, S и/или Si могут быть помещены в любом внутреннем местоположении в гетероалкильной группе или в концевом положении в необязательно замещенной алкильной группе гетероалкила. В некоторых аспектах, гетероалкил является полностью насыщенным или имеет степень ненасыщенности 1 и состоит из 1-6 атомов углерода и 1-2 гетероатомов, а в других аспектах этот гетероалкил является незамещенным. Неограничивающие примеры включают -СН2-CH2-O-CH3, -CH2-CH2-NH-CH3, -CH2-CH2-N(CH3)-CH3, -CH2-S-CH2-CH3, -CH2-CH2-S(O)-CH₃, -NH-CH₂-CH₂-NH-C(O)-CH₂-CH₃, -CH₂-CH₂-S(O)₂-CH₃, -CH=CH-O-CH₃, -Si(CH₃)₃, -CH2-CH=N-O-CH3, и -CH=CH-N(CH3)-CH3. Вплоть до двух гетероатомов могут идти подряд друг за другом, примером чего являются $-CH_2-NH-OCH_3$ и $-CH_2-O-Si(CH_3)_3$. Гетероалкил обычно помечают числом его смежных гетероатома(-ов) и не-ароматических атомов углерода в его алкильном фрагменте, если не указано иначе и не следует из контекста. Так, -СH₂-СH₂-О-СH₃ и -СH₂-СH₂-S(O)-СH₃ являются оба С₄-гетероалкилами, а -CH₂-CH=N-O-CH₃, и -CH=CH-N(CH₃)-CH₃ оба являются С₅-гетероалкилами.

[0040] «Необязательно замещенный алкил», «необязательно замещенный алкенил», «необязательно замещенный алкинил», «необязательно замещенный алкиларил», «необязательно замещенный арилалкил», «необязательно замещенный гетероцикл», «необязательно «необязательно замещенный арил», замещенный гетероарил», «необязательно алкилгетероарил», «необязательно замещенный замещенный гетероарилалкил» и подобные термины относятся к алкилу, алкенилу, алкинилу, алкиларилу, арилалкилу, гетероциклу, арилу, гетероарилу, алкилгетероарилу, гетероарилалкилу, или другому(ой) заместителю, фрагменту или группе, который(-ая) определен(-а) или раскрыт(-а) в данном документе, где атом(-ы) водорода этого фрагмента или группы необязательно заменены другим(-ой,-ими) заместителя, фрагментом(-ами) или группой(-ами), или, где алициклическая углеродная цепь, которая содержит один из этих заместителей, фрагмент или группу, прерывается ввиду замены атома(-ов) углерода этой цепи другим(-ой,-ими) фрагментом(-ами) или группой(-ами). В некоторых аспектах, алкеновая функциональная группа заменяет два смежных атома углерода sp³ алкильного заместителя, при условии, что углерод радикала алкильного фрагмента не заменяется, так что необязательно замещенный алкил становится ненасыщенным алкильным заместителем. Подразумевается, что там, где в данном документе используется термин «необязательно замещенный», раскрытие включает варианты осуществления, в которых заместитель, фрагмент или группа является замещенным (-ой), и варианты осуществления, в которых заместитель, фрагмент или группа является незамещенным(-ой).

[0041] Необязательный заместитель, заменяющий водород(-ы) в любом(-ой) из вышеприведенных заместителей, фрагментов или групп, независимо выбирают из группы, состоящей из C_6 - C_{24} -арила, C_5 - C_{24} -гетероарила, гидроксила, C_1 - C_{20} -алкоксигруппы, C_6 - C_{24} арилоксигруппы, цианогруппы, галогена, нитрогруппы, С1-С20-фторалкоксигруппы, и аминогруппы, которая охватывает -NH2-группу и моно-, ди-, и три-замещенные аминогруппы, и их защищенных производных, или выбирают из группы, состоящей из -X, -OR', -SR', $-NH_2$, $-N(R')(R^{op})$, $-N(R^{op})_3$, =NR', $-CX_3$, -CN, $-NO_2$, -NR'C(=O)H, $-NR'C(=O)R^{op}$, $-NR'C(=O)R^{op}$, -C(=O)R', $-C(=O)NH_2$, $-C(=O)N(R')R^{op}$, $-S(=O)_2R^{op}$, $-S(=O)_2NH_2$, $-S(=O)_2$ $S(=O)_2N(R')R^{op}$, $-S(=O)_2NH_2$, $-S(=O)_2N(R')R^{op}$, $-S(=O)_2OR'$, $-S(=O)R^{op}$, $-OP(=O)(OR')(OR^{op})$, $-OP(OH)_3$, $-P(=O)(OR')(OR^{op})$, $-PO_3H_2$, -C(=O)R', $-C(=S)R^{op}$, $-CO_2R'$, $-C(=S)OR^{op}$, -C(=O)SR', -C(=S)SR, $-C(=S)NH_2$, $-C(=S)N(R')(R^{op})_2$, $-C(=NR')NH_2$, $-C(=NR')N(R')R^{op}$, и их солей, где каждый X независимо выбирают из группы, состоящей из галогенов: -F, -Cl, -Br, и -I; и, где каждый R^{op} независимо выбирают из группы, состоящей из C_1 - C_{20} -алкила, C_2 - C_{20} -алкенила, C_2 - C_{20} -алкинила, C_6 - C_{24} -арила, C_3 - C_{24} -гетероциклила, C_5 - C_{24} -гетероарила, защитной группы, и фрагмента пролекарства, или два R^{op} вместе с гетероатомом, к которому они прикреплены, определяют C_3 - C_{24} -гетероциклил; и R' представляет собой водород или R^{op} , где R^{op} выбирают из группы, состоящей из C_1 - C_{20} -алкила, C_6 - C_{24} -арила, C_3 - C_{24} гетероциклила, С5-С24-гетероарила, и защитной группы.

[0042] В некоторых вариантах осуществления, необязательные заместители, которые присутствуют, выбирают из группы, состоящей из -X, -OH, -OR $^{\rm op}$, -SH, -SR $^{\rm op}$, -NH₂, -NH(R $^{\rm op}$), -NR'(R $^{\rm op}$)₂, -N(R $^{\rm op}$)₃, =NH, =NR $^{\rm op}$, -CX₃, -CN, -NO₂, -NR'C(=O)H, NR'C(=O)R $^{\rm op}$, -CO₂H, -C(=O)H, -C(=O)R $^{\rm op}$, -C(=O)NH₂, -C(=O)NR'R $^{\rm op}$, -S(=O)₂N(R')R $^{\rm op}$, -S(=O)₂NH₂, -S(=O)₂N(R')(R $^{\rm op}$), -S(=O)₂OR', -S(=O)R $^{\rm op}$, -C(=S)R $^{\rm op}$, -C(=S)NH₂, -C(=S)N(R')R $^{\rm op}$, -C(=NR')N(R $^{\rm op}$)₂, и их солей, где каждый X независимо выбирают из группы, состоящей из -F и -Cl, R $^{\rm op}$ в некоторых вариантах осуществления выбирают из группы, состоящей из C₁-C₆-алкила, C₆-C₁₀-арила, C₃-C₁₀-гетероциклила, C₅-C₁₀-гетероалила, и защитной группы; и R' независимо выбирают из группы, состоящей из водорода, C₁-C₆-алкила, C₆-C₁₀-арила, C₃-C₁₀-гетероарила, и защитной группы, независимо выбираемой из R $^{\rm op}$.

[0043] В некоторых вариантах осуществления, необязательные заместители, которые присутствуют, выбирают из группы, состоящей из -X, -R^{op}, -OH, -OR^{op}, -NH₂, -NH(R^{op}), -N(R^{op})₂, -N(R^{op})₃, -CX₃, -NO₂, -NHC(=O)H, -NHC(=O)R^{op}, -C(=O)NH₂, -C(=O)NHR^{op}, -C(=O)N(R^{op})₂, -CO₂H, -CO₂R^{op}, -C(=O)H, -C(=O)R^{op}, -C(=O)NH₂, -C(=O)NH(R^{op}), -C(=O)N(R^{op})₂, -C(=NR')NH₂, -C(=NR')NH(R^{op}), -C(=NR')N(R^{op})₂, защитной группы и их солей, где каждый X означает -F; R^{op} независимо выбирают из группы, состоящей из C_1 - C_6 -алкила, C_6 - C_{10} -арила, C_5 - C_{10} -гетероарила и защитной группы, независимо выбирают из группы, состоящей из водорода, C_1 - C_6 -алкила и защитной группы, независимо выбираемой из R^{op} .

[0044] «Галоген» в контексте данного документа, если не установлено иначе и не подразумевается другое из контекста, относится к фтору, хлору, брому или йоду и в

некоторых вариантах осуществления представляет собой -F или -Cl.

[0045] «Алкоксигруппа» в контексте данного документа, относится к -О-алкильной группе, где О является местом прикрепления к остальной части молекулы, и алкил является таким, как определено выше.

[0046] «Арилоксигруппа» в контексте данного документа, относится к -О-арильной группе, где О является точкой прикрепления к остальной части молекулы, и арил является таким, как определено выше.

[0047] «Защитная группа» в контексте данного документа, если не установлено иначе и не подразумевается другое из контекста, относится к фрагменту, который устраняет или значительно снижает способность атома или функциональной группы, с которым(-ой) он связан, участвовать в нежелательных реакциях. Обычно применяемые защитные группы для атомов или функциональных групп приведены в обзоре Greene (2014), "Protective groups in organic synthesis, 5th ed.", Wiley Interscience. Защитные группы для гетероатомов, таких как кислород, сера и азот, иногда используют для минимизирования или избежания их нежелательных реакций с электрофильными соединениями. В других случаях, защитную группу используют для снижения или устранения нуклеофильности и/или основности незащищенного гетероатома. Неограничивающие примеры защищенного кислорода даны посредством -ORPR, где RPR представляет собой защитную группу для гидроксила, где гидроксил в некоторых вариантах осуществления является защищенным в форме сложного эфира (например, ацетата, пропионата или бензоата). Другие защитные группы для гидроксила позволяют устранить его воздействие на нуклеофильность металлорганических реагентов или других высокоосновных реагентов, для чего гидроксил в некоторых вариантах осуществления является защищенным в форме простого эфира, включая без ограничения алкиловые или гетероциклиловые простые эфиры (например, метиловый или тетрагидропираниловый простые эфиры), алкоксиметиловые простые эфиры (например, метоксиметиловый или этоксиметиловый простые эфиры), необязательно замещенные ариловые простые эфиры, и силиловые простые эфиры (например, триметилсилил (TMS), триэтилсилил (TES), трет-бутилдифенилсилил (TBDPS), трет-бутилдиметилсилил (TBS/TBDMS), триизопропилсилил (TIPS) и [2-(триметилсилил)этокси]-метилсилил (SEM)). Защитные группы для азота включают защитные группы для первичных или вторичных аминов как в -NHR PR или -N(R^{PR})2, где, по меньшей мере, один из R^{PR} представляет собой защитную группу для атома азота, или оба R^{PR} совместно определяют защитную группу для атома азота.

[0048] Защитная группа является подходящей для защиты в том случае, когда она способна предотвращать или в значительной мере исключать нежелательные побочные реакции и/или преждевременную потерю защитной группы в реакционных условиях, требуемых для осуществления желательного(-ых) химического(-их) преобразования(-ий) в других участках молекулы и во время очистки свежеполученной молекулы, при необходимости, и может быть удалена в условиях, которые не оказывают отрицательного воздействия на структуру или стереохимическую целостность этой свежеполученной

молекулы. В некоторых аспектах, подходящие защитные группы представляют собой защитные группы, ранее описанные для защитных функциональных групп. В других аспектах, подходящая защитная группа представляет собой защитную группу, используемую в реакциях конденсации с образованием пептидной связи. Например, подходящая защитная группа для атома основного азота в ациклической или циклической основной группе представляет собой кислото-неустойчивую защитную группу для карбамата, такую как трет-бутилоксикарбонил (ВОС).

[0049] Термин «карбоксил-активирующая» группа или процедура, в контексте данного документа, относится к группе, заменяющей гидроксильную группу карбоксила с образованием молекулы, которая более легко вступает в реакции с нуклеофильными реагентами, такими как спирты и амины. Примером является ацилгалогенид, такой как хлорангидрид кислоты, который активируется для реакций, приводящих к образованию сложных эфиров и амидов. Другим примером является сложный N-гидрокси-эфир карбоновой кислоты, такой как сложный эфир N-гидроксисукцинимида, или сложный эфир N-гидроксибензотриазола. Еще одним примером является карбодиимид, который реагирует с гидроксильной группой карбоксильной группы с образованием О-ацилизомочевины, то есть, таким образом, активируется для последующей реакции с нуклеофилом.

[0050] «Фармацевтически приемлемая соль» в контексте данного документа, относится к фармацевтически приемлемым органическим или неорганическим солям соединения. Соединение может содержать, по меньшей мере, одну аминогруппу, и, соответственно, с этой аминогруппой могут быть получены соли присоединения кислоты. Приводимые в качестве примера соли включают сульфатные, цитратные, ацетатные, оксалатные, хлоридные, бромидные, йодидные, нитратные, бисульфатные, фосфатные, кислые фосфатные, изоникотинатные, лактатные, салицилатные, кислые цитратные, тартратные, таннатные, пантотенатные, битартратные, аскорбатные, олеатные, сукцинатные, малеатные, гентизинатные, фумаратные, глюконатные, глюкуронатные, сахаратные, формиатные, бензоатные, глутаматные, метансульфонатные, этансульфонатные, бензолсульфонатные, пара-толуолсульфонатные, и памоатные (то есть, 1,1'-метилен-бис-(2-гидрокси-3-нафтоат)) соли, но не ограничиваются этим.

[0051] Фармацевтически приемлемая соль может характеризоваться включением еще одной молекулы, такой как ацетатный ион, сукцинатный ион или другой противоион. Противоион может представлять собой любой органический или неорганический фрагмент, который стабилизирует заряд на исходном соединении. Кроме того, фармацевтически приемлемая соль может содержать в своей структуре более одного заряженного атома. В тех случаях, где многозарядные атомы являются частью фармацевтически приемлемой соли, может присутствовать несколько противоионов. Следовательно, фармацевтически приемлемая соль может содержать один или несколько заряженных атомов и/или один или несколько противоионов.

[0052] В некоторых вариантах осуществления, фармацевтически приемлемую соль выбирают из солей, описанных в справочнике Р. Н. Stahl and С. G. Wermuth, editors,

Handbook of Pharmaceutical Salts: Properties, Selection and Use, Weinheim/Zürich:Wiley-VCH/VHCA, 2002. Выбор соли зависит от свойств, которые должен проявлять лекарственный продукт, включающих в себя адекватную растворимость в воде при различных значениях рН, в зависимости от предполагаемого(-ых) пути(-ей) введения, кристалличность с характеристиками сыпучести и низкой гигроскопичностью (то есть, поглощением воды в зависимости от влажности), подходящую для манипулирования, и требуемый срок годности по результатам определения химической стабильности и стабильности в твердом состоянии в условиях ускоренного состаривания (то есть, в ходе определения деструкции или изменений твердого состояния при хранении при 40°С и 75%-ной относительной влажности).

[0053] Термин «антитело» в контексте данного документа используется в самом широком смысле и конкретно охватывает интактные моноклональные антитела, поликлональные антитела, моноспецифические антитела, мультиспецифические антитела (например, биспецифические антитела), и фрагменты антитела, которые проявляют желательную биологическую активность, при условии, что фрагмент антитела имеет необходимое число сайтов прикрепления для лекарственного средства с линкером. Природная форма антитела представляет собой тетрамер и состоит из двух идентичных пар иммуноглобулиновых цепей, где каждая пара имеет одну легкую цепь и одну тяжелую цепь. В каждой паре, вариабельные области легкой и тяжелой цепей (VL и VH) совместно являются основными ответственными за связывание с антигеном. Вариабельные домены легкой цепи и тяжелой цепи состоят из каркасной области, прерываемой тремя гипервариабельными участками, так называемыми «определяющими комплементарность областями» или «CDRs». Константные области могут распознаваться иммунной системой и могут взаимодействовать с иммунной системой (см., например, Janeway et al., 2001, *Immunol. Biology, 5th Ed.*, Garland Publishing, New York). Антитело может быть любого типа (например, IgG, IgE, IgM, IgD, и IgA), класса (например, IgG1, IgG2, IgG3, IgG4, IgA1 и IgA2) или подкласса. Антитело может быть получено из любого подходящего вида. В некоторых вариантах осуществления, антитело имеет человеческое или мышиное происхождение.

[0054] В некоторых аспектах, антитело селективно и специфически связывается с эпитопом на поверхности гиперпролиферирующих клеток или гиперстимулированных клеток млекопитающих (то есть, аномальных клеток), где эпитоп преимущественно проявляется на поверхности или является более характерным для аномальных клеток, в отличие от нормальных клеток, или же преимущественно проявляется на поверхности или является более характерным для нормальных клеток вблизи аномальных клеток, в отличие от нормальных клеток, не локализованных рядом с аномальными клетками. В этих аспектах клетки млекопитающих могут представлять собой клетки человека.

[0055] «Моноклональное антитело» в контексте данного документа относится к антителу, полученному из совокупности в значительной мере гомогенных антител, то есть, отдельно взятые антитела, составляющие эту совокупность, являются идентичными за

исключением возможных естественных мутаций, которые могут присутствовать в незначительных количествах. Моноклональные антитела являются высокоспецифическими, направленными против одного антигенного сайта. Определение «моноклональное» указывает на характер антитела, получаемого по существу из гомогенной совокупности антител, и не должно рассматриваться как требование получения антитела каким-то конкретным способом.

[0056] «Антиген» представляет собой структурную единицу, которая способна селективно связываться с неконъюгированным антителом или его фрагментом или с конъюгатом 'антитело-лекарственное средство', содержащим Лигандный Участок антитела, соответствующий этому антителу или его фрагменту или включающий в себя это антитело или его фрагмент. В некоторых аспектах, антиген представляет собой внеклеточно доступный белок клеточной поверхности, гликопротеин, или углевод, преимущественно проявляющийся на поверхности аномальных или других нежелательных клеток, по сравнению с нормальными клетками. В некоторых случаях, нежелательные клетки, имеющие антиген, представляют собой гиперпролиферирующие клетки У млекопитающего. В других случаях, нежелательные клетки, имеющие антиген, представляют собой гиперактивированные иммунные клетки у млекопитающего. В других специфически связанный антиген присутствует в конкретной среде гиперпролиферирующих клеток или гиперактивированных иммунных млекопитающего, в отличие от среды, обычно имеющей место в случае нормальных клеток в отсутствии таких аномальных клеток. В дополнительных других аспектах, антиген клеточной поверхности способен к интернализации после селективного связывания с соединением конъюгата 'антитело-лекарственное средство' и ассоциируется с клетками, которые являются характерными ДЛЯ которой обнаружены среды, гиперпролиферирующие или гиперстимулированные иммунные клетки, в отсутствии таких аномальных клеток. Антиген представляет собой приводимый в качестве примера целевой фрагмент для конъюгата 'антитело-лекарственное средство', где нацеливающий Лигандный Участок антитела соответствует антителу к целевому антигену или включает его в свой состав и способен преимущественно распознавать этот антиген через селективное связывание.

[0057] Антигены, связанные с раковыми клетками, которые являются доступными на клеточной поверхности для конъюгата 'антитело-лекарственное средство', включают в качестве примера, а не для ограничения, CD19, CD70, CD30, CD33, CD48, NTB-A, ανβ6, и CD123.

[0058] Термин «терапевтически эффективное количество» относится к количеству лекарственного средства или конъюгата 'антитело-лекарственное средство', эффективного для лечения заболевания или нарушения у млекопитающего. В отношении рака, терапевтически эффективное количество лекарственного средства может уменьшать число раковых клеток; уменьшать размер опухоли; ингибировать (то есть, замедлять до некоторой степени или предпочтительно останавливать) инфильтрацию раковых клеток в

периферические органы; ингибировать (то есть, замедлять до некоторой степени или предпочтительно останавливать) метастазирование опухоли; ингибировать, до некоторой степени, рост опухоли; и/или ослаблять, до некоторой степени, один или нескольких симптомов, сопутствующих раку. В той мере, в которой лекарственное средство может ингибировать рост и/или уничтожать существующие раковые клетки, оно может быть цитостатическим и/или цитотоксическим. Для терапии рака, эффективность может быть измерена, например, в результате оценивания времени до прогрессирования заболевания (TTP) и/или определения частоты ответа (RR).

Способы

[0059] В некоторых вариантах осуществления, в данном документе предоставляют способ получения соединения Формулы (1А'):

$$Z^{1}$$
 $\stackrel{R^{1}}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{(1A')}{\longrightarrow}$

или его соли,

где Z^1 является защитной группой; и

 R^1 и R^2 представляют собой каждый независимо боковую цепь α -аминокислоты, где способ включает в себя проведение реакции между соединением Формулы (1B') или его солью:

и пара-аминобензиловым спиртом (РАВОН) в присутствии конденсирующего реагента для образования пептидной связи, где конденсирующий реагент для образования

пептидной связи включает
$$OH$$
 (HOAt), Me_2N (COMU), или производное HOAt.

[0060] В контексте данного документа, «а-аминокислота» представляет собой

н₂N — он соединение, имеющее следующую формулу — . α-аминокислота может быть природного происхождения или не природного происхождения. Кроме того, α-аминокислота может иметь стереохимическую L- или D-конфигурацию. В некоторых вариантах осуществления, α-аминокислота имеет D-конфигурацию. D-конфигурацию. Примеры α-аминокислот включают, без ограничения, глицин, аланин, валин, лейцин, изолейцин, пролин, триптофан, фенилаланин, метионин, цистеин, тирозин, серин, треонин,

аспарагин, глутамин, аспарагиновую кислоту, глутаминовую кислоту, лизин, аргинин, гистидин, селеноцистеин, гидроксипролин и цитруллин. В контексте данного документа, «боковая цепь α -аминокислоты» означает заместитель R на α -углероде α -аминокислоты.

[0061] В некоторых вариантах осуществления, R¹ представляет собой гидрофобную боковую цепь. Примеры гидрофобных боковых цепей включают, без ограничения, боковые цепи глицина, аланина, валина, лейцина, изолейцина, пролина, триптофана, фенилаланина, метионина, цистеина и тирозина. В некоторых вариантах осуществления, R¹ представляет собой гидрофильную боковую цепь. Примеры гидрофильных боковых цепей включают, без ограничения, боковые цепи серина, треонина, аспарагина, глутамина, аспарагиновой кислоты, глутаминовой кислоты, лизина, аргинина, гистидина, селеноцистеина, гидроксипролина и цитруллина. В некоторых вариантах осуществления, R¹ представляет собой боковую цепь α-аминокислоты, выбранной из группы, состоящей из глицина, аланина, валина, лейцина, изолейцина, пролина, триптофана, фенилаланина, метионина, цистеина и тирозина. В некоторых вариантах осуществления, R¹ представляет собой боковую цепь α-аминокислоты, выбранной из группы, состоящей из серина, треонина, аспарагина, глутамина, аспарагиновой кислоты, глутаминовой кислоты, лизина, аргинина, гистидина, селеноцистеина, гидроксипролина и цитруллина.

[0062] В некоторых вариантах осуществления, R^2 представляет собой гидрофобную боковую цепь. В некоторых вариантах осуществления, R^2 представляет собой гидрофильную боковую цепь. В некоторых вариантах осуществления, R^2 представляет собой боковую цепь α -аминокислоты, выбранной из группы, состоящей из глицина, аланина, валина, лейцина, изолейцина, пролина, триптофана, фенилаланина, метионина, цистеина и тирозина. В некоторых вариантах осуществления, R^2 представляет собой боковую цепь α -аминокислоты, выбранной из группы, состоящей из серина, треонина, аспарагина, глутамина, аспарагиновой кислоты, глутаминовой кислоты, лизина, аргинина, гистидина, селеноцистеина, гидроксипролина и цитруллина.

[0063] В некоторых вариантах осуществления, R^1 и R^2 оба представляют собой гидрофобные боковые цепи. В некоторых вариантах осуществления, R^1 представляет собой гидрофобную боковую цепь. В некоторых вариантах осуществления, R^1 представляет собой гидрофобную боковую цепь, и R^2 представляет собой гидрофобную боковую цепь, и R^2 представляет собой гидрофильные боковые цепи. В некоторых вариантах осуществления, R^1 и R^2 оба представляют собой гидрофильные боковые цепи. В некоторых вариантах осуществления, R^1 представляет собой боковую цепь α -аминокислоты, выбранной из группы, состоящей из глицина, аланина, валина, лейцина, изолейцина, пролина, триптофана, фенилаланина, метионина, цистеина и тирозина; и R^2 представляет собой боковую цепь α -аминокислоты, выбранной из группы, состоящей из серина, треонина, аспарагина, глутамина, аспарагиновой кислоты, глутаминовой кислоты, лизина, аргинина, гистидина, селеноцистеина, гидроксипролина и цитруллина.

[0064] В некоторых вариантах осуществления, в данном документе предоставляют способ получения соединения Формулы (1A):

$$Z^1$$
NHONH₂ OH (1A),

или его соли,

где Z^1 представляет собой защитную группу;

где способ включает в себя проведение реакции между соединением Формулы (1B) или его солью:

и пара-аминобензиловым спиртом (РАВОН) в присутствии конденсирующего реагента для образования пептидной связи, где конденсирующий реагент для образования

пептидной связи включает
$$OH$$
 (HOAt), Me_2N (COMU), или производное HOAt.

[0065] В некоторых вариантах осуществления любой разновидности соединения Формулы (1A) или (1A'), Z^1 представляет собой защитную группу. Примеры защитных групп включают, без ограничения, ацильные группы, такие как формил, ацетил, пропионил, пивалоил, трет-бутилацетил, 2-хлорацетил, 2-бромацетил, трифторацетил, трихлорацетил, орто-нитрофеноксиацетил, α-хлорбутирил, бензоил, 4-хлорбензоил, 4-бромбензоил, 4нитробензоил и тому подобное; сульфонильные группы, такие как бензолсульфонил, паратолуолсульфонил и тому подобное; алкокси- или арилокси-карбонильные группы (которые образуют уретаны с защищенным амином), такие как бензилоксикарбонил (Cbz), парахлорбензилоксикарбонил, пара-метоксибензилоксикарбонил, нитробензилоксикарбонил, 2-нитробензилоксикарбонил, пара-бромбензилоксикарбонил, 3,4-диметоксибензилоксикарбонил, 3,5-диметоксибензилоксикарбонил, 2,4-2-нитро-4,5диметоксибензилоксикарбонил, 4-метоксибензилоксикарбонил, диметоксибензилоксикарбонил, 3,4,5-триметоксибензилоксикарбонил, 1-(парабифенилил)-1-метилэтоксикарбонил, α,α-диметил-3,5-диметоксибензилоксикарбонил, бензгидрилоксикарбонил, изопропилоксикарбонил, этоксикарбонил, третметоксикарбонил, аллилоксикарбонил (Alloc), 2,2,2-трихлорэтоксикарбонил, 2триметилсилилэтилоксикарбонил (Теос), феноксикарбонил, 4-нитрофеноксикарбонил, флуоренилметилоксикарбонил (Fmoc), циклопентилоксикарбонил, адамантилоксикарбонил, циклогексилоксикарбонил, фенилтиокарбонил и тому подобное; арилалкильные группы, такие как бензил, трифенилметил, бензилоксиметил и тому подобное; и силильные группы, такие как триметилсилил и тому подобное. В некоторых вариантах осуществления, Z^1 представляет собой алкокси-карбонильную или арилокси-карбонильную группу. В некоторых вариантах осуществления, Z^1 выбирают из группы, состоящей из формила, ацетила, бензоила, пивалоила, трет-бутилацетил, фенилсульфонил, Alloc, Теос, бензил, Fmoc, Вос и Cbz. В некоторых вариантах осуществления, Z^1 представляет собой Fmoc.

[0066] В контексте данного документа, «производное HOAt» представляет собой

соединение, имеющее фрагмент , или его соль. В некоторых вариантах осуществления, производное HOAt представляет собой соединение, имеющее следующую структуру:

или его соль, где

R^{ах} выбирают из группы, состоящей из -S⁻ и -O⁻;

$$R^{bx}$$
 выбирают из группы, состоящей из

каждый R^{cx} представляет собой независимо алкил или берется вместе с геминальным R^{cx} и азотом, к которому он прикреплен, с получением гетероциклильной группы; и m равно 0, или 1;

где, когда m равно 1, азот, к которому прикреплен R^{ax} , является положительно заряженным.

[0067] В некоторых вариантах осуществления, каждый R^{cx} представляет собой алкил. В некоторых вариантах осуществления, каждый R^{cx} представляет собой метил. В некоторых вариантах осуществления, по меньшей мере, одна пара геминальных групп R^{cx} берется вместе с азотом, к которому они прикреплены, с получением пирролидинового кольца. В некоторых вариантах осуществления, каждая пара геминальных групп R^{cx} берется вместе с азотом, к которому они прикреплены, с получением пирролидинильного кольца. В

$$O-P_1-NMe_2$$
 некоторых вариантах осуществления, R^{bx} представляет собой NMe_2 . В некоторых

вариантах осуществления, R^{bx} представляет собой

$$O-P$$
 (N) . В некоторых вариантах

осуществления,
$$R^{bx}$$
 представляет собой Me_2N NMe2

[0068] В некоторых вариантах осуществления, производное НОАt представляет собой гексафторфосфатную соль или тетрафторборатную соль. В некоторых вариантах осуществления, производное НОАt представляет собой гексафторфосфатную соль. В некоторых вариантах осуществления, производное НОАt представляет собой тетрафторборатную соль. Примеры производных НОАt включают, без ограничения,

«производное HOBt» представляет собой соединение, имеющее фрагмент , или его соль. В некоторых вариантах осуществления, производное HOBt представляет собой соединение, имеющее следующую структуру:

или его соль, где

 $R^{ax'}$ выбирают из группы, состоящей из -S и -O ;

$$R^{bx'}$$
 выбирают из группы, состоящей из $(NR^{cx'}R^{cx'})_3$ и $(NR^{cx'}R^{cx'})_3$; каждый $(R^{cx'})_3$ представляет собой независимо алкил или берется вместе с

геминальным $R^{cx'}$ и азотом, к которому он прикреплен, с получением гетероциклильной группы; и

т' имеет значение 0, или 1;

где, когда m равно 1, азот, к которому прикреплен R^{ax^i} , является положительно заряженным.

[0070] В некоторых вариантах осуществления, каждый $R^{cx'}$ представляет собой алкил. В некоторых вариантах осуществления, каждый $R^{cx'}$ представляет собой метил. В некоторых вариантах осуществления, по меньшей мере, одна пара геминальных групп $R^{cx'}$ берется вместе с азотом, к которому они прикреплены, с получением пирролидинильного кольца. В некоторых вариантах осуществления, каждая пара геминальных групп $R^{cx'}$ берется вместе с азотом, к которому они прикреплены, с получением пирролидинильного

кольца. В некоторых вариантах осуществления, $R^{bx'}$ представляет собой

O-P, NMe₂ NMe₂ NMe₂ B

некоторых вариантах осуществления, $R^{bx'}$ представляет собой

. В некоторых

вариантах осуществления, $R^{bx'}$ представляет собой Me_2N NMe2

[0071] В некоторых вариантах осуществления, производное НОВt представляет собой гексафторфосфатную соль или тетрафторборатную соль. В некоторых вариантах осуществления, производное НОВt представляет собой гексафторфосфатную соль. В некоторых вариантах осуществления, производное НОВt представляет собой тетрафторборатную соль. Примеры производных НОВt включают, без ограничения,

[0072] В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит соединение, выбранное из группы, состоящей из НОАt, НАТU, АОР, РуАОР, ТАТU, СОМU, и НАТТU. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит НОАt. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит производное НОАt. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит НАТU. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит СОМU. В некоторых вариантах осуществления, конденсирующий реагент для

образования пептидной связи содержит AOP. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит РуАОР. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит TATU. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит HATTU.

[0073] В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит НОАt и НОВt. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит НОАt и производное НОВt. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит НОАt и ТВТU. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит НОАt и Рувор. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит производное НОАt и НОВt. В некоторых вариантах осуществления, конденсирующий реагент для образования пептидной связи содержит производное НОАt и производное НОАt и производное НОВt.

[0074] В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят в присутствии основания. В некоторых вариантах осуществления, основание представляет собой неорганическое основание. Примеры неорганических оснований включают, без ограничения, карбонат калия, карбонат натрия, карбонат цезия, бикарбонат калия, бикарбонат натрия, гидроксид натрия, гидроксид калия, гидроксид магния и гидроксид лития. В некоторых вариантах осуществления, основание представляет собой органическое основание. Примеры органических оснований включают, без ограничения, N,N-диизопропилэтиламин (DIPEA), метиламин, пропиламин, N,N-диметилэтаноламин, триметиламин, диэтиламин, триэтиламин, трис(гидроксиметил)аминометан, этаноламин, пиридин, пиколин, дициклогексиламин, морфолин, бензиламин, прокаин, лизин, аргинин, гистидин и N-метилглюкамин. В некоторых вариантах осуществления, основание представляет собой любую смесь смешивающихся оснований, таких как основания, приведенные в качестве примеров в данном документе. В некоторых вариантах осуществления, основание представляет собой DIPEA. Использование DIPEA может приводить к сниженному образованию диастереомеров и примесей.

[0075] В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят в органическом растворителе. Примеры органических растворителей включают, без ограничения, гексан, пентан, циклопентан, циклогексан, бензол, толуол, 1,4-диоксан, хлороформ, этилацетат, тетрагидрофуран (ТНГ), дихлорметан, ацетон, ацетонитрил (MeCN), диметилформамид (DMF), диметилсульфоксид (DMSO), 1,3-диметил-2-имидазолидинон (DMI), уксусную кислоту, н-бутанол, изопропанол, н-пропанол, этанол, и метанол. В некоторых вариантах осуществления, органический растворитель представляет собой любую смесь смешиваемых растворителей, таких как растворители, приведенные в качестве примеров в данном документе. В

некоторых вариантах осуществления, органический растворитель свободен от воды. В некоторых вариантах осуществления, органический растворитель содержит воду.

[0076] В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят в органическом растворителе. В некоторых вариантах осуществления, органический растворитель содержит DMF. В некоторых вариантах осуществления, органический растворитель содержит DMF и этилацетат. В некоторых вариантах осуществления, объемное соотношение DMF к этилацетату составляет приблизительно 100:1, приблизительно 90:1, приблизительно 80:1, приблизительно 70:1, приблизительно 60:1, приблизительно 50:1, приблизительно 40:1, приблизительно 30:1, приблизительно 20:1, приблизительно 10:1, приблизительно 9:1, приблизительно 8:1, приблизительно 7:1, приблизительно 6:1, приблизительно 5:1, приблизительно 4,5:1, приблизительно 4:1, приблизительно 3,5:1, приблизительно 3:1, приблизительно 2,5:1, приблизительно 2:1, приблизительно 1,5:1, приблизительно 1:1, приблизительно 1:1,5, приблизительно 1:2, приблизительно 1:2,5, приблизительно 1:3, приблизительно 1:3,5, приблизительно 1:4, приблизительно 1:4,5, приблизительно 1:5, приблизительно 1:6, приблизительно 1:7, приблизительно 1:8, приблизительно 1:9, приблизительно 1:10, приблизительно 1:20, приблизительно 1:30, приблизительно 1:40, приблизительно 1:50, приблизительно 1:60, приблизительно 1:70, приблизительно 1:80, приблизительно 1:90, или приблизительно 1:100. В некоторых вариантах осуществления, объемное соотношение DMF к этилацетату составляет не более приблизительно 100:1, приблизительно 90:1, приблизительно 80:1, приблизительно 70:1, приблизительно 60:1, приблизительно 50:1, приблизительно 40:1, приблизительно 30:1, приблизительно 20:1, приблизительно 10:1, приблизительно 9:1, приблизительно 8:1, приблизительно 7:1, приблизительно 6:1, приблизительно 5:1, приблизительно 4,5:1, приблизительно 4:1, приблизительно 3,5:1, приблизительно 3:1, приблизительно 2,5:1, приблизительно 2:1, приблизительно 1,5:1, приблизительно 1:1, приблизительно 1:1,5, приблизительно 1:2, приблизительно 1:2,5, приблизительно 1:3, приблизительно 1:3,5, приблизительно 1:4, приблизительно 1:4,5, приблизительно 1:5, приблизительно 1:6, приблизительно 1:7, приблизительно 1:8, приблизительно 1:9, приблизительно 1:10, приблизительно 1:20, приблизительно 1:30, приблизительно 1:40, приблизительно 1:50, приблизительно 1:60, приблизительно 1:70, приблизительно 1:80, приблизительно 1:90, или приблизительно 1:100. В некоторых вариантах осуществления, объемное соотношение DMF к этилацетату составляет, по меньшей мере, приблизительно 100:1, приблизительно 90:1, приблизительно 80:1, приблизительно 70:1, приблизительно 60:1, приблизительно 50:1, приблизительно 40:1, приблизительно 30:1, приблизительно 20:1, приблизительно 10:1, приблизительно 9:1, приблизительно 8:1, приблизительно 7:1, приблизительно 6:1, приблизительно 5:1, приблизительно 4,5:1, приблизительно 4:1, приблизительно 3,5:1, приблизительно 3:1, приблизительно 2,5:1, приблизительно 2:1, приблизительно 1,5:1, приблизительно 1:1, приблизительно 1:1,5, приблизительно 1:2, приблизительно 1:2,5, приблизительно 1:3, приблизительно 1:3,5, приблизительно 1:4, приблизительно 1:5,

приблизительно 1:6, приблизительно 1:7, приблизительно 1:8, приблизительно 1:9, приблизительно 1:10, приблизительно 1:20, приблизительно 1:30, приблизительно 1:40, приблизительно 1:50, приблизительно 1:60, приблизительно 1:70, приблизительно 1:80, приблизительно 1:90, или приблизительно 1:100. В некоторых вариантах осуществления, объемное соотношение DMF к этилацетату находится в диапазоне от приблизительно 5:1 до приблизительно 1:5, от приблизительно 4:1 до приблизительно 1:4, от приблизительно 3:1 до приблизительно 1:3, от приблизительно 2:1 до приблизительно 1:2, или от приблизительно 1,5:1 до приблизительно 1:1,5. В некоторых вариантах осуществления, объемное соотношение DMF к этилацетату составляет приблизтельно 1:1.

[0077] В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят при температуре не выше приблизительно 50°C, приблизительно 45°C, приблизительно 40°C, приблизительно 35°C, приблизительно 30°C, приблизительно 25°C, приблизительно 20°C, приблизительно 15°C, приблизительно 10°C, приблизительно 5°C, приблизительно 0°C, приблизительно -10°C, приблизительно -15°C, приблизительно -20°C, приблизительно -25°C, или приблизительно -30°C. В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят при температуре, по меньшей мере, приблизительно 50°C, приблизительно 45°C, приблизительно 40°C, приблизительно 35°C, приблизительно 30°C, приблизительно 25°C, приблизительно 20°C, приблизительно 15°C, приблизительно 10°C, приблизительно 5°C, приблизительно 0°C, приблизительно -10°C, приблизительно -15°C, приблизительно -20°C, приблизительно -25°C, или приблизительно -30°C. В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят при температуре приблизительно 50°C, приблизительно 45°C, приблизительно 40°C, приблизительно 35°C, приблизительно 30°C, приблизительно 25°C, приблизительно 20°C, приблизительно 15°C, приблизительно 10°C, приблизительно 5°C, приблизительно 0°C, приблизительно -10°C, приблизительно -15°C, приблизительно -20°C, приблизительно -25°C, или приблизительно -30°C. В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят при температуре в диапазоне от приблизительно 20°C до приблизительно -20°C, от приблизительно $15^{\circ}\mathrm{C}$ до приблизительно $-20^{\circ}\mathrm{C}$, от приблизительно $10^{\circ}\mathrm{C}$ до приблизительно -20°C, от приблизительно 5°C до приблизительно -20°C, ОТ 20°С до приблизительно -10°С, от приблизительно 15°С приблизительно приблизительно -10°C, от приблизительно 10°C до приблизительно -10°C, приблизительно 5°C до приблизительно -10°C, от приблизительно 20°C до приблизительно -5°C, от приблизительно 15°C до приблизительно -5°C, от приблизительно 10°C до приблизительно -5°C, или от приблизительно 5°C до приблизительно -5°C. В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят при температуре приблизительно 0°C. В некоторых вариантах осуществления, реакцию соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН проводят при температуре не выше приблизительно 5°C.

[0078] В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с соединением Формулы (1В) или Формулы (1В') до добавления DIPEA. В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с DIPEA до добавления соединения Формулы (1В), (1В') или любой ее вариации. В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с DIPEA до добавления соединения Формулы (1В), (1В') или любой ее вариации.

[0079] В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с соединением Формулы (1В), (1В') или любой ее вариации, до добавления основания (например, DIPEA), и это DIPEA) добавляют основание (например, через приблизительно 0,1 приблизительно 0,5 минуты, приблизительно 1 минуту, приблизительно 2 минуты, приблизительно 3 минуты, приблизительно 4 минуты, приблизительно 5 минут, приблизительно 6 минут, приблизительно 7 минут, приблизительно минут, минут, приблизительно 10 минут, приблизительно 15 приблизительно 9 минут, приблизительно 20 минут, приблизительно 25 минут, приблизительно 30 минут, приблизительно 40 минут, приблизительно 50 минут, приблизительно 60 минут после смешения РАВОН с соединением Формулы (1В), (1В') или любой ее вариации. В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с соединением Формулы (1В), (1В') или любой ее вариации, до добавления основания (например, DIPEA), и это основание (например, DIPEA) добавляют не позже, чем через приблизительно 0,1 минуты, приблизительно 0,5 минуты, приблизительно 1 минуту, приблизительно 2 минуты, приблизительно 3 минуты, приблизительно 4 минуты, приблизительно 5 минут, приблизительно 6 приблизительно 7 минут, приблизительно 8 минут, приблизительно минут, приблизительно 10 минут, приблизительно 15 минут, приблизительно 20 минут, приблизительно 25 минут, приблизительно 30 минут, приблизительно 40 минут, приблизительно 50 минут, приблизительно 60 минут после смешения РАВОН с соединением Формулы (1В), (1В') или любой ее вариации. В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с соединением Формулы (1В), (1В') или любой ее вариации, до добавления основания (например, DIPEA), и это основание (например, DIPEA) добавляют в диапазоне от приблизительно 0,1 минуты до приблизительно 60 минут, от приблизительно 0,1 минуты до приблизительно 50 минут, от приблизительно 0,1 минуты до приблизительно 40 минут, от приблизительно 0,1 минуты до приблизительно 30 минут, от приблизительно 0,1 минуты до приблизительно 20 минут, от приблизительно 0,1 минуты до приблизительно 10 минут, от приблизительно 0,1 минуты до приблизительно 5 минут, от приблизительно 0,1 минуты до приблизительно 1 минуты, от приблизительно 0,5 минуты до приблизительно 60 минут, от приблизительно 0,5 минуты до приблизительно 50 минут, от приблизительно 0,5 минуты до приблизительно 40 минут, от приблизительно 0,5 минуты до приблизительно 30 минут, от приблизительно 0,5 минуты до приблизительно 20 минут, от приблизительно 0,5 минуты до приблизительно 10 минут, от приблизительно 0,5 минуты до приблизительно 5 минут, от приблизительно 0,5 минуты до приблизительно 1 минуты, от приблизительно 1 минуты до приблизительно 60 минут, от приблизительно 1 минуты до приблизительно 50 минут, от приблизительно 1 минуты до приблизительно 40 минут, от приблизительно 1 минуты до приблизительно 30 минут, от приблизительно 1 минуты до приблизительно 20 минут, от приблизительно 1 минуты до приблизительно 10 минут, от приблизительно 1 минуты до приблизительно 5 минут, от приблизительно 5 минут до приблизительно 60 минут, от приблизительно 5 минут до приблизительно 50 минут, от приблизительно 5 минут до приблизительно 40 минут, от приблизительно 5 минут до приблизительно 30 минут, от приблизительно 5 минут до приблизительно 20 минут, или от приблизительно 5 минут до приблизительно 10 минут, после смешения РАВОН с соединением Формулы (1В), (1В') или любой ее вариации. В некоторых вариантах осуществления, для реакции соединения Формулы (1В), (1В') или любой ее вариации, с РАВОН, РАВОН смешивают с соединением Формулы (1В), (1В') или любой ее вариации, до добавления основания (например, DIPEA), и это основание (например, DIPEA) добавляют не позже, чем через приблизительно 5 минут после смешения РАВОН с соединением Формулы (1В), (1В') или любой ее вариации.

[0080] В некоторых вариантах осуществления, соединение Формулы (1В') получают проведением реакционного взаимодействия соединения Формулы (1С') или его соли:

$$z^1 N X^1$$
(1C'),

где X^1 представляет собой карбоксил-активирующую группу; и Z^1 и R^1 являются такими, как определено в данном документе,

$$H_2N$$
 $\stackrel{\mathbb{R}^2}{\longrightarrow}$ OH

 H_2N ОН или его солью, где R^2 является таким, как определено в данном документе,

с получением соединения Формулы (1В') или его соли.

[0081] В некоторых вариантах осуществления, соединение Формулы (1В) получают проведением реакции между соединением Формулы (1С) или его солью:

где Z^1 является таким, как определено в данном документе, X^{1} представляет собой карбоксил-активирующую группу,

$$H_2N$$
 ОН или его солью,

с получением соединения Формулы (1В) или его соли.

[0082] В некоторых вариантах осуществления,
$$X^1$$
 представляет собой

[0083] В некоторых вариантах осуществления, соединение Формулы (1A') или его соль дополнительно превращают в соединение Формулы (1D') или его соль:

где ${R^1}$ и ${R^2}$ являются такими, как определено в данном документе; и

D представляет собой фрагмент Формулы (D):

$$\{ -N \}_{R^{11}}^{R^{12}} \cap R^{13} \cap R^{14} \cap R^{15} \cap R^{17} \cap R^{17} \cap R^{18} \cap R^{19} \cap R^{17} \cap R^{19} \cap R$$

где волнистая линия указывает связывание D с остальной частью соединения посредством ковалентной связи;

 R^{11} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{12} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -гетероциклил)а; C_3 - C_8 -гетероциклил)а;

 R^{13} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -карбоциклил)а, C_3 - C_8 -гетероциклил)а;

 ${R}^{14}$ выбирают из группы, состоящей из H и метила;

или R^{13} и R^{14} совместно образуют карбоциклическое кольцо и имеют формулу - $(CR^aR^b)_n$, где R^a и R^b независимо выбирают из группы, состоящей из H, C_1 - C_8 -алкила и C_3 - C_8 -карбоциклила, и n выбирают из группы, состоящей из 2, 3, 4, 5 и 6;

 R^{15} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{16} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -гетероциклил)а; C_3 - C_8 -гетероциклил)а;

каждый R^{17} независимо выбирают из группы, состоящей из H, OH, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, и -O-(C_1 - C_8 -алкил)а;

 R^{18} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{19} выбирают из группы, состоящей из — $C(R^{17})_2$ — $C(R^{17})_2$ —арила, — $C(R^{17})_2$ — $C(R^$

 R^{20} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, необязательно замещенного C_6 - C_{10} -арила, необязательно замещенного C_5 - C_{10} -гетероарила и C_3 - C_8 -гетероциклила; и

Z представляет собой -O-, или -NH-, или

Z- представляет собой -O- и R^{20} представляет собой C_1 - C_4 -алкил, или Z представляет собой -NH- и R^{20} представляет собой необязательно замещенный фенил или необязательно замещенный C_5 - C_6 -гетероарил.

[0084] В некоторых вариантах осуществления, соединение Формулы (1A) или его соль дополнительно превращают в соединение Формулы (1D) или его соль:

где D представляет собой фрагмент Формулы (D):

$$\{ -N \}_{R^{11}}^{R^{12}} \cap \{ R^{13} \cap R^{14} \cap R^{15} \cap R_{17} \cap R^{17} \cap R^{17} \cap R^{18} \cap R^{19} \}$$
(D),

где волнистая линия указывает связывание D с остальной частью соединения посредством ковалентной связи;

 R^{11} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{12} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -гетероциклил)а; C_3 - C_8 -гетероциклил)а;

 R^{13} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -карбоциклил)а, C_3 - C_8 -гетероциклил)а;

 ${R}^{14}$ выбирают из группы, состоящей из H и метила;

или R^{13} и R^{14} совместно образуют карбоциклическое кольцо и имеют формулу - $(CR^aR^b)_n$, где R^a и R^b независимо выбирают из группы, состоящей из H, C_1 - C_8 -алкила и C_3 - C_8 -карбоциклила, и n выбирают из группы, состоящей из 2, 3, 4, 5 и 6;

 R^{15} выбирают из группы, состоящей из H и $C_1\text{-}C_8\text{-}$ алкила;

 ${R^{16}}$ выбирают из группы, состоящей из H, C1-C8-алкила, C3-C8-карбоциклила, арила,

 C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -карбоциклил)а, C_3 - C_8 -гетероциклила и C_1 - C_8 -алкил-(C_3 - C_8 -гетероциклил)а;

каждый R^{17} независимо выбирают из группы, состоящей из H, OH, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, и -O-(C_1 - C_8 -алкил)а;

 R^{18} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{19} выбирают из группы, состоящей из — $C(R^{17})_2$ — $C(R^{17})_2$ —арила, — $C(R^{17})_2$ — $C(R^$

 R^{20} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, необязательно замещенного C_6 - C_{10} -арила, необязательно замещенного C_5 - C_{10} -гетероарила и C_3 - C_8 -гетероциклила; и

Z представляет собой -O-, или -NH-, или

Z- представляет собой -O- и R^{20} представляет собой C_1 - C_4 -алкил, или Z представляет собой -NH- и R^{20} представляет собой необязательно замещенный фенил или необязательно замещенный C_5 - C_6 -гетероарил.

[0085] В некоторых вариантах осуществления соединения Формулы (1D), (1D') или любой ее вариации, D представляет собой фрагмент любой из Формул D_{E-1} , D_{E-2} , D_{F-1} и $D_{F/E-3}$:

где волнистая линия указывает связывание D с остальной частью соединения посредством ковалентной связи;

 R^{11} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{13} представляет собой изопропил или -CH₂-CH(CH₃)₂;

 ${\bf R}^{17}$ выбирают из группы, состоящей из H, OH, C1-C8-алкила, С3-С8-карбоциклила, и

-O-(C₁-C₈-алкил)а;

 R^{19B} представляет собой -CH(CH₃)-CH(OH)Ph, -CH(CO₂H)CH₂Ph, -CH(CH₂Ph)-2-тиазол, -CH(CH₂Ph)-2-пиридил, -CH(CH₂-пара-Cl-Ph), -CH(CO₂Me)-CH₂Ph, -CH(CO₂Me)-CH₂CH₂SCH₃, CH(CH₂CH₂SCH₃)C(=O)NH-3-хинолил, или -CH(CH₂Ph)C(=O)NH-пара-Cl-Ph;

 R^{20} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, необязательно замещенного C_6 - C_{10} -арила, необязательно замещенного C_5 - C_{10} -гетероарила и C_3 - C_8 -гетероциклила; и

Аг представляет собой необязательно замещенный C_6 - C_{10} -арил или необязательно замещенный C_3 - C_8 -гетероциклил.

[0086] В некоторых вариантах осуществления соединения Формулы (1D), (1D') или любой ее вариации, D представляет собой фрагмент Формулы (D1):

где волнистая линия указывает связывание D с остальной частью соединения посредством ковалентной связи.

[0087] В некоторых вариантах осуществления, превращение соединения Формулы (1A') или его соли в соединение Формулы (1D') или его соль включает превращение соединения Формулы (1A') или его соли в соединение Формулы (1E') или его соль:

где ${\bf R}^1$ и ${\bf R}^2$ являются такими, как определено в данном документе,

и превращение соединения Формулы (1E') или его соли в соединение Формулы (1D') или его соль.

[0088] В некоторых вариантах осуществления, превращение соединения Формулы (1A) или его соли в соединение Формулы (1D) или его соль включает превращение соединения Формулы (1A) или его соли в соединение Формулы (1E) или его соль:

и превращение соединения Формулы (1E) или его соли в соединение Формулы (1D) или его соль.

[0089] В некоторых вариантах осуществления, превращение соединения Формулы (1А') или его соли в соединение Формулы (1D') или его соль включает проведение реакции

между соединением Формулы (1E') или его солью и соединением Формулы (1F):

с получением соединения Формулы (1G') или его соли:

где ${\bf R}^1$ и ${\bf R}^2$ являются такими, как определено в данном документе,

и превращение соединения Формулы (1G') или его соли в соединение Формулы (1D') или его соль.

[0090] В некоторых вариантах осуществления, превращение соединения Формулы (1A) или его соли в соединение Формулы (1D) или его соль включает проведение реакции между соединением Формулы (1E) или его солью и соединением Формулы (1F):

с получением соединения Формулы (1G) или его соли:

и превращение соединения Формулы (1G) или его соли в соединение Формулы (1D) или его соль.

[0091] В некоторых вариантах осуществления, превращение соединения Формулы (1A') или его соли в соединение Формулы (1D') или его соль дополнительно включает проведение реакции между соединением Формулы (1G') или его солью и соединением Формулы (1H):

с получением соединения Формулы (11') или его соли:

где R^1 и R^2 являются такими, как определено в данном документе,

и превращение соединения Формулы (1I') или его соли в соединение Формулы (1D') или его соль.

[0092] В некоторых вариантах осуществления, превращение соединения Формулы (1A) или его соли в соединение Формулы (1D) или его соль дополнительно включает проведение реакции между соединением Формулы (1G) или его солью и соединением Формулы (1H):

$$O_2N$$
 O_2 O_2 O_2 O_3 O_4 O_4 O_4 O_4 O_4 O_4 O_4 O_5 O_4 O_5 O_5

с получением соединения Формулы (11) или его соли:

и превращение соединения Формулы (1I) или его соли в соединение Формулы (1D) или его соль.

[0093] В некоторых вариантах осуществления, превращение соединения Формулы (1A'), (1A) или его соли в соединение Формулы (1D'), (1D) или его соль дополнительно включает проведение реакции между соединением Формулы (1I'), (1I) или его солью и соединением Формулы (1J):

где

 R^{11} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{12} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -карбоциклил)а, C_3 - C_8 -гетероциклил)а;

 R^{13} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -карбоциклил)а, C_3 - C_8 -гетероциклила и C_1 - C_8 -алкил-

 $(C_3-C_8$ -гетероциклил)а;

 R^{14} выбирают из группы, состоящей из H и метила;

или R^{13} и R^{14} совместно образуют карбоциклическое кольцо и имеют формулу - $(CR^aR^b)_n$, где R^a и R^b независимо выбирают из группы, состоящей из H, C_1 - C_8 -алкила и C_3 - C_8 -карбоциклила, и n выбирают из группы, состоящей из 2, 3, 4, 5 и 6;

 R^{15} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{16} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, арила, C_1 - C_8 -алкил-арила, C_1 - C_8 -алкил-(C_3 - C_8 -гетероциклил)а; C_3 - C_8 -гетероциклил)а;

каждый R^{17} независимо выбирают из группы, состоящей из H, OH, C_1 - C_8 -алкила, C_3 - C_8 -карбоциклила, и -O-(C_1 - C_8 -алкил)а;

 R^{18} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{19} выбирают из группы, состоящей из — $C(R^{17})_2$ — $C(R^{17})_2$ —арила, — $C(R^{17})_2$ — $C(R^$

 R^{20} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, необязательно замещенного C_6 - C_{10} -арила, необязательно замещенного C_5 - C_{10} -гетероарила и C_3 - C_8 -гетероциклила; и

Z представляет собой -O-, или -NH-, или

Z- представляет собой -O- и R^{20} представляет собой C_1 - C_4 -алкил, или Z представляет собой -NH- и R^{20} представляет собой необязательно замещенный фенил или необязательно замещенный C_5 - C_6 -гетероарил,

с получением соединения Формулы (1D'), (1D) или его соли.

[0094] В некоторых вариантах осуществления, соединение Формулы (1J) имеет любую из Формул 1 J_{E-1} , 1 J_{E-2} , 1 J_{F-1} , и 1 $J_{F/E-3}$:

$$\begin{array}{c|c} & & & \\ & & &$$

где

 R^{11} выбирают из группы, состоящей из H и C_1 - C_8 -алкила;

 R^{13} представляет собой изопропил или -CH₂-CH(CH₃)₂;

 R^{17} выбирают из группы, состоящей из H, OH, C₁-C₈-алкила, C₃-C₈-карбоциклила, и -O-(C₁-C₈-алкил)а;

 R^{19B} представляет собой -CH(CH₃)-CH(OH)Ph, -CH(CO₂H)CH₂Ph, -CH(CH₂Ph)-2-тиазол, -CH(CH₂Ph)-2-пиридил, -CH(CH₂-пара-Cl-Ph), -CH(CO₂Me)-CH₂Ph, -CH(CO₂Me)-CH₂CH₂SCH₃, CH(CH₂CH₂SCH₃)C(=O)NH-3-хинолил, или -CH(CH₂Ph)C(=O)NH-пара-Cl-Ph;

 R^{20} выбирают из группы, состоящей из H, C_1 - C_8 -алкила, необязательно замещенного C_6 - C_{10} -арила, необязательно замещенного C_5 - C_{10} -гетероарила и C_3 - C_8 -гетероциклила; и

Ar представляет собой необязательно замещенный C_6 - C_{10} -арил или необязательно замещенный C_3 - C_8 -гетероциклил.

[0095] В некоторых вариантах осуществления, соединение Формулы (1D') дополнительно подвергают реакции с антителом с получением соединения Формулы (5'):

или его фармацевтически примемлемой соли, где

 R^{1} и R^{2} являются такими, как определено в данном документе;

Ав представляет собой антитело;

S означает атом серы от антитела; и

р означает целое число от 1 до 16, включительно.

[0096] В некоторых вариантах осуществления, соединение Формулы (1D) дополнительно подвергают реакции с антителом с получением соединения Формулы (5):

или его фармацевтически примемлемой соли, где

Аb представляет собой антитело;

S означает атом серы от антитела; и

р означает целое число от 1 до 16, включительно.

[0097] В некоторых вариантах осуществления соединения Формулы (5), (5') или любой ее вариации, Ab означает антитело против CD19, антитело против CD70, антитело против CD30, антитело против CD33, антитело против CD48, антитело против NTB-A, антитело против ανβ6, антитело против Нектина-4, антитело против SLITRK6, антитело против LIV1, или антитело против CD123. В некоторых вариантах осуществления, Аb представляет собой антитело против СD30. В некоторых вариантах осуществления, Аь представляет собой моноклональное антитело BU12 против CD19. В некоторых вариантах осуществления, Ав представляет собой гуманизированное моноклональное антитело hBU12 против CD19. В некоторых вариантах осуществления, Аb представляет собой антитело AGS-22C3 против Нектина-4. В некоторых вариантах осуществления, Аb представляет собой антитело AGS15C против SLITRK6. В некоторых вариантах осуществления, Аb представляет собой моноклональное антитело LIV22 против LIV1. В вариантах осуществления, Ав представляет собой гуманизированное моноклональное антитело hLIV22 против LIV1. В некоторых вариантах осуществления, Аb представляет собой моноклональное антитело BU12 против CD19. В некоторых вариантах осуществления, Ав представляет собой гуманизированное моноклональное антитело hBU12 против CD19. В некоторых вариантах осуществления, Аb представляет собой моноклональное антитело АС10 против СD30. В некоторых вариантах осуществления, Аь представляет собой химерное моноклональное антитело сAC10 против CD30.

[0098] В некоторых вариантах осуществления соединения Формулы (5), (5') или любой ее вариации, р имеет значение 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или 16. В некоторых вариантах осуществления, р равно, по меньшей мере, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 или 15. В некоторых вариантах осуществления, р имеет значение не более 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или 16. В некоторых вариантах осуществления, р находится в диапазоне от 1 до 16, от 1 до 10, от 1 до 5, от 5 до 16, от 5 до 10, или от 10 до 16. Значение р может варьироваться в рамках композиции образца.

Композиции

[0099] В другом аспекте, в данном документе предоставляют соединение Формулы (4), или его соль:

(4).

[0100] В другом аспекте, в данном документе предоставляют композицию, содержащую соединение Формулы (3), или его соль:

(3),

и соединение Формулы (4), или его соль:

где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 10%, приблизительно 9%, приблизительно 8%, приблизительно 7%, приблизительно 6%, приблизительно 5%, приблизительно 4%,

приблизительно 3%, приблизительно 2%, приблизительно 1%, приблизительно 0,5%, приблизительно 0,1%, приблизительно 0,05%, приблизительно 0,01%, приблизительно 0,005%, приблизительно 0,001%, приблизительно 0,0005%, или приблизительно 0,0001%. В некоторых вариантах осуществления, молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,1%.

[0101] В еще одном аспекте, в данном документе предоставляют композицию, содержащую соединение Формулы (3), или его соль:

(3),

где композиция в значительной мере свободна от соединения Формулы (4):

[0102] В другом аспекте, в данном документе обеспечивают композицию, содержащую соединение Формулы (5):

или его фармацевтически приемлемую соль, где

Аb представляет собой антитело;

S означает атом серы от антитела;

D представляет собой фрагмент формулы:

р означает целое число от 1 до 16, включительно,

где композиция в значительно мере свободна от соединения Формулы (4) или аддукта соединения Формулы (4) с антителом.

[0103] В некоторых вариантах осуществления, Ав означает антитело против СD19, антитело против CD70, антитело против CD30, антитело против CD33, антитело против CD48, антитело против NTB-A, антитело против ανβ6, антитело против Нектина-4, антитело против SLITRK6, антитело против LIV1, или антитело против CD123. В некоторых вариантах осуществления, Ав представляет собой моноклональное антитело BU12 против CD19. В некоторых вариантах осуществления, Ав представляет собой гуманизированное моноклональное антитело hBU12 против CD19. В некоторых вариантах осуществления, Ab представляет собой антитело AGS-22C3 против Нектина-4. В некоторых вариантах осуществления, Аb представляет собой антитело AGS15C против SLITRK6. В некоторых вариантах осуществления, Аb представляет собой моноклональное антитело LIV22 против LIV1. В некоторых вариантах осуществления, Аb представляет собой гуманизированное моноклональное антитело hLIV22 против LIV1. В некоторых вариантах осуществления, Аb представляет собой моноклональное антитело BU12 против СD19. В некоторых вариантах осуществления, Ав представляет собой гуманизированное моноклональное антитело hBU12 против CD19. В некоторых вариантах осуществления, Аb представляет собой антитело против СD30. В некоторых вариантах осуществления, Ав представляет собой моноклональное антитело АС10 против СD30. В некоторых вариантах осуществления, Ав представляет собой химерное моноклональное антитело сАС10 против CD30.

[0104] В некоторых вариантах осуществления, р имеет значение 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или 16. В некоторых вариантах осуществления, р равно, по меньшей мере, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 или 15. В некоторых вариантах осуществления, р имеет значение не более 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или 16. В некоторых вариантах осуществления, р находится в диапазоне от 1 до 16, от 1 до 10, от 1 до 5, от 5 до 16, от 5 до 10, или от 10 до 16. В рамках композиции образца, значение р может варьироваться для соединений Формулы (5).

[0105] В некоторых вариантах осуществления, композиция в значительной мере свободна от соединения Формулы (4). В некоторых вариантах осуществления, композиция в значительной мере свободна от любого аддукта соединения Формулы (4) с антителом.

[0106] В некоторых вариантах осуществления любой из композиций, предоставляемых в данном документе, композиция дополнительно содержит фармацевтически приемлемый носитель или эксципиент. Фармацевтически приемлемый

носитель может представлять собой твердое, полутвердое и жидкое вещество, которое действует в качестве несущей основы, или среды для соединений, раскрываемых в данном документе. Примеры фармацевтически приемлемых носителей включают, без ограничения, воду, солевые растворы, спирты, полиэтиленгликоли, полигидроксиэтоксилированное касторовое масло, арахисовое масло, оливковое масло, желатин, лактозу, магнезию (каолин), сахарозу, декстрин, карбонат магния, сахар, циклодекстрин, амилозу, стеарат магния, тальк, желатин, агар, пектин, аравийскую камедь, стеариновую кислоту или низшие алкиловые простые эфиры целлюлозы, кремниевую кислоту, жирные кислоты, амины жирных кислот, моноглицериды и диглицериды жирных кислот, сложные эфиры полиоксиэтилен, пентаэритрита и жирных кислот, гидроксиметилцеллюлозу и поливинилпирролидон. Подобно тому, фармацевтически приемлемые носители могут включать любое известное в данной области вещество с замедленным высвобождением, такое как моностеарат глицерина или дистеарат глицерина, как таковое или смешанное с воском. Фармацевтически приемлемый эксципиент может представлять собой инертное или неактивное вещество, которое может быть использовано в получении лекарственной или фармацевтической формы, такой как таблетка, содержащая соединение или композицию, обеспечиваемое(-ую) в данном документе, в качестве активного ингредиента. Примеры фармацевтически приемлемых эксципиентов включают, без ограничения, любое вещество, используемое в качестве связующего, разрыхлителя, покрытия, вспомогательной добавки для прессования/инкапсулирования, крема или лосьона, смазывающего агента, растворов для парентерального введения, материалов для жевательных таблеток, подсластителя или ароматизатора, суспендирующего/желирующего агента или агента для влажной грануляции. Связующие вещества включают, без ограничения, карбомеры, повидон, ксантановую камедь и так далее; покрытия включают, например, ацетат-фталат целлюлозы, этилцеллюлозу, геллановую камедь, мальтодекстрин, кишечнорастворимые покрытия и так далее; вспомогательные добавки для прессования/инкапсулирования включают, например, карбонат кальция, декстрозу, фруктозу dc (dc= прямого прессования), мед dc, лактозу (безводную или моногидрат, необязательно в комбинации с аспартамом, целлюлозой, или микрокристаллической целлюлозой), крахмал dc, caxaposy и так далее; разрыхлители включают, например, кроскармеллозу натрия, геллановую камедь, крахмалгликолят натрия и так далее; кремы и лосьоны включают, например, мальтодекстрин, каррагинаны и так далее; смазывающие агенты включают, например, стеарат магния, стеариновую кислоту, стеарилфумарат натрия и так далее; материалы для жевательных таблеток включают, например, декстрозу, фруктозу dc, лактозу (моногидрат, необязательно комбинации с аспартамом или целлюлозой) и так далее; суспендирующие/желирующие агенты включают, например, каррагинан, крахмалгликолят натрия, ксантановую камедь и так далее; подсластители включают, например, аспартам, декстрозу, фруктозу dc, сорбит, сахарозу dc, и так далее; и агенты для влажной грануляции включают, например, карбонат кальция, мальтодекстрин, микрокристаллическую целлюлозу и так далее.

Схемы Синтеза

[0107] Некоторые способы, обеспечиваемые в данном документе, описаны со ссылкой на иллюстративную схему синтеза для соединения Формулы (3), приведенную ниже, и на последующие конкретные примеры. Некоторые реакции и превращения, описываемые в данном документе, могут быть проведены с использованием известных в данной области способов. Например, Han et al. (Tetrahedron 2004, 60, 2447-2467) и Dubowchik et al. (Bioconjugate Chem. 2002, 13, 855-869) описывают способы и реагенты, которые могут быть использованы для синтезирования некоторых соединений, раскрываемых в данном документе. Специалистам будет ясно, что для получения различных соединений в данном случае, исходные вещества могут быть подходяще выбраны таким образом, что принципиально желательные заместители будут проведены через реакционную схему, по мере необходимости, с защитой или без нее, с получением желательного продукта. Альтернативно, может быть необходимо или желательно применение, вместо принципиально желательного заместителя, подходящей группы, которая может быть проведена через реакционную схему и заменена, при необходимости, на желательный заместитель. Кроме того, специалисту в данной области будет ясно, что защитные группы могут быть использованы для защиты некоторых функциональных групп (аминогрупп, карбоксигрупп или групп боковой цепи) от реакционных условий, и, что такие группы удаляются в стандартных условиях, при необходимости.

[0108] В том случае, когда желательно получить конкретный энантиомер соединения, это можно осуществить из соответствующей смеси энантиомеров с использованием любой подходящей обычно применяемой методики для разделения или выделения энантиомеров. Так, например, диастереомерные производные могут быть получены проведением реакции смеси энантиомеров, например, рацемата, и соответствующего хирального соединения. Диастереомеры затем могут быть разделены с применением любого удобного средства, например, с применением кристаллизации, и желательный энантиомер извлечен. В другом способе разделения, рацемат может быть разделен с использованием хиральной высокоэффективной жидкостной хроматографии. Альтернативно, при желании, конкретный энантиомер может быть получен в результате использования соответствующего хирального промежуточного соединения в одном из описываемых способов.

[0109] Хроматография, перекристаллизация и другие обычно применяемые методы разделения также могут быть использованы в отношении промежуточных соединений или конечных продуктов в том случае, когда желательно получить конкретный изомер соединения или иным образом очистить продукт реакции.

[0110] Сокращения, используемые в данном документе, разъяснены в следующей таблице.

Сокращения

Аббревиатура	Значение
DIPEA	N,N -диизопропил- N -этил ${f a}$ мин

DMF	<i>N,N-</i> диметилформамид		
Fmoc	флуоренилметилоксикарбонил		
Val	Валин		
HOSu	N-гидроксисукцинимид		
Cit	Цитруллин		
ACN	Ацетонитрил		
EtOAc	Этилацетат		
PABOH	<i>пара-</i> аминобензиловый спирт		
PNP	пара-нитрофенил		
DMA	Диметилацетамид		
THF	Тетрагидрофуран		
EDC	1-этил-3-(3-диметиламинопропил)карбодиимид		
NHS	N-гидроксисукцинимид		
MS	масс-спектрометрия		
Mc	Малеимидокапроил		
HPLC	высокоэффективная жидкостная хроматография		
EEDQ	2-этокси-1-этоксикарбонил-1,2-дигидрохинолин;		
МеОН	Метанол		
T3P	пропилфосфоновый ангидрид		
CDI	1,1'-карбонилдиимидазол		
LCMS	жидкостная хроматомасс-спектрометрия		

mc-Val-Cit-PABC-PNP

Примеры

Пример 1. Синтез Fmoc-Val-OSu

[0111] Fmoc-Val-OSu коммерчески доступен для приобретения или может быть получен по методике, приведенной ниже.

[0112] Fmoc-Val-OH (1,0 экв.), N-гидроксисукцинимид (1,3 экв.) растворяют в смеси DCM (6 объем.) и THF (2 объем.). Отдельно, EDC.HCl (1,2 экв.) солюбилизируют в DCM (10 объем.), и раствор охлаждают до 0-5°C. Раствор Fmoc-Val-OSu/NHS затем добавляют в раствор EDC до нагревания реакционной смеси до 20-25°C. Реакционную смесь перемешивают при 20-25°C до завершения реакции. Реакционную смесь затем

концентрируют при пониженном давлении при $40\text{-}60^{\circ}\text{C}$ и дважды подвергают азеотропной перегонке с ТНГ. Концентрированный остаток растворяют в ТНГ и фильтруют для удаления EDU. Фильтрат концентрируют при пониженном давлении при $40\text{-}60^{\circ}\text{C}$ и повторно суспендируют в н-гептане при $5\text{-}10^{\circ}\text{C}$ в течение 12 часов. Твердые вещества отфильтровывают, промывают и сушат под вакуумом (выход 96%). MS: m/e 437 (MH) $^+$, 459 (M+Na) $^+$.

Пример 2. Синтез Fmoc-Val-Cit

[0113] Fmoc-Val-OSu (1 экв.) растворяют в ацетонитриле (5 объем.) при 20°С. Отдельно, карбонат натрия (1,1 экв.) солюбилизируют в воде (5 объем.) при 20°C, и затем добавляют L-цитруллин (1,1 экв.), что дает гомогенный прозрачный раствор. В раствор Fmoc-Val-OSu добавляют воду (0,5 объем.), и реакционную смесь нагревают до 35°C перед добавлением по каплям приготовленного раствора цитруллина в течение 10 мин. Реакционную смесь перемешивают при 35°C в течение 3-4 часов до тех пор, пока реакция не завершится, прежде, чем охлаждать до 20°C. Затем добавляют ацетонитрил (20 объем.) в течение 2-3 часов при 20°C. Получающуюся в результате суспензию перемешивают в течение 1-3 часов перед охлаждением до 0-5°C в течение 1-4 часов и перемешивают при той температуре в течение 2-3 часов. Твердые вещества отфильтровывают, промывают и сушат под вакуумом перед повторным растворением в смеси N,N-диметилформамида (3,9 объем.), водного раствора NaCl (35,9 г/л, 3,9 объем.), 10% изопропанола в этилацетате (19,5 объем.) при 20°С. Затем добавляют ледяную уксусную кислоту (1,3 объем.), и рН раствора доводят до <2 с помощью концентрированной соляной кислоты (0,78 объем.). После перемешивания при 20°C в течение 30 минут, фазы разделяют, и водный слой повторно экстрагируют этилацетатом (6,5 объем.). Объединенные органические слои промывают три раза смесью водного раствора NaCl (179,5 г/л, 6,5 объем.) и безводного N,Nдиметилформамида (0,72 объем.). Получающуюся в результате органическую смесь концентрируют до пасты белого цвета и разбавляют метанолом (19,5 объем.). Получающуюся в результате суспензию перемешивают при 20°C в течение 10-14 часов перед повторным концентрированием до пасты белого цвета. Затем добавляют метилтретбутиловый простой эфир (19,5 объем.), и получающуюся в результате суспензию перемешивают при 40°C в течение 1-2 часов. После охлаждения до 20°C и перемешивания с последующим охлаждением до 0-5°C и перемешивания, твердые вещества отфильтровывают, промывают и сушат под вакуумом. Твердые вещества повторно суспендируют дважды в смеси метанола (1,3 объем.) и метил-трет-бутилового простого эфира (19,5 объем.) и сушат под вакуумом (выход 74%). MS: m/e 497 (MH)⁺, 519 (M+Na)⁺.

Пример 3. Синтез Fmoc-Val-Cit-PABOH

[0114] Fmoc-Val-Cit (1 экв.), HATU (1,4 экв.) солюбилизируют в смеси безводного N,N-диметилформамида (9,5 объем.) и этилацетата (5 объем.) при 20° C. Затем реакционную смесь охлаждают до $0-5^{\circ}$ C. Отдельно, приготавливают раствор 4-аминобензилового спирта (1,5 экв.) в этилацетате (2 объем.) и безводном N,N-диметилформамиде (0,5 объем.). Также приготавливают раствор N,N-диизопропилэтиламина (1,4 экв.) в этилацетате (2 объем.).

Добавляют воду (1 объем.) в охлажденный раствор Fmoc-Val-Cit/HATU перед быстрым добавлением раствора 4-аминобензилового спирта. Сразу же после этого, раствор DIPEA добавляют в течение 25-35 минут. Реакционную смесь перемешивают при 0-5°С в течение 1-2 часов до завершения реакции. Затем предварительно охлажденный метил-трет-бутиловый простой эфир (20 объем.) добавляют в течение 10 минут, и получающуюся в результате смесь перемешивают в течение 1-3 часов. Тврдые вещества отфильтровывают, промывают и сушат под вакуумом. Твердые вещества повторно суспендируют в ацетонитриле (20 объем.), фильтруют, промывают и сушат под вакуумом (выход 80%). MS: m/e 602 (MH) $^+$, 624 (M+Na) $^+$.

Пример 4. Синтез Val-Cit-PABOH

[0115] Fmoc-Val-Cit-PABOH (1 экв.) суспендируют в безводном N.Nдиметилформамиде (5 объем.), и получающуюся в результате суспензию перемешивают при 20°C до тех пор, пока не образуется гомогенная суспензия. Затем добавляют диэтиламин (2 экв.) при 20°C, и реакционную смесь перемешивают при 20°C в течение 2-3 часов до завершения реакции. Затем добавляют ацетонитрил (2 объем.) и отгоняют три раза для удаления основания. Реакционную смесь нагревают до 35°C и добавляют этилацетат (5 объем.) в течение 60 минут при 35°С. Затем добавляют метил-трет-бутиловый простой эфир (10 объем.) в течение 60 минут при 35°С. Получающуюся в результате смесь перемешивают при 40°C в течение 2-4 часов до получения гомогенной суспензии, и затем охлаждают до 20°C в течение 90 минут. Затем суспензию перемешивают при 20°C в течение 1 часа прежде, чем охлаждать до 0-5°C в течение 90 минут. Суспензию продукта перемешивают при 0-5°C в течение 2-3 часов перед тем, как ее отфильтровывают, промывают и сушат под вакуумом. Твердые вещества повторно суспендируют в метил-трет-бутиловом простом эфире (15 объем.), и получающуюся в результате смесь нагревают до 40°C и перемешивают при той температуре в течение 1-2 часов до получения гомогенной суспензии. Получающуюся в результате смесь охлаждают до 20°C и перемешивают при той температуре в течение 2-4 часов перед тем, как ее отфильтровывают, промывают и сушат под вакуумом (выход 90%). MS: m/e 380 (MH)⁺, 402 (M+Na)⁺.

Пример 5. Синтез mc-Val-Cit-PABOH

[0116] К mc-OSu (1,7 экв.) добавляют безводный N,N-диметилформамид (3 объем.), и получающуюся в результате смесь перемешивают при 20°C до тех пор, пока не образуется прозрачный бесцветный раствор. Затем добавляют раствор Val-Cit-PABOH (1 экв.) в безводном N,N-диметилформамиде (7 объем.) в течение 30 минут при одновременном поддерживании температуры ниже 30°C. Реакционную смесь перемешивают при 30°C в течение 5-6 часов до полного завешения реакции. Затем добавляют этилацетат (30 объем.) за 30 минут при 30°C. Получающуюся в результате суспензию перемешивают при той температуре в течение 10-20 минут перед тем, как ее охлаждают до 20°C и перемешивают при 20°C в течение 2-4 часов. Отфильтрованные твердые вещества солюбилизируют в N,N-диметилформамиде (10 объем.), и получающуюся в результате смесь перемешивают при 30°C в течение 30-60 минут. Этилацетат (30 объем.) добавляют за 30 минут при 30°C.

Получающуюся в результате суспензию перемешивают при той температуре в течение 10-20 минут перед охлаждением до 20° С и перемешивают при 20° С в течение 2-4 часов. Получающиеся в результате твердые вещества собирают фильтрацией, промывают и сушат под вакуумом (выход 97%). MS: m/e 573 (MH)⁺, 595 (M+Na)⁺.

Пример 6. Синтез mc-Val-Cit-PABC-PNP

[0117] mc-Val-Cit-PABOH (1 экв.) смешивают с бис(4-нитрофенил)карбонатом (1,87 экв.) в N,N-диметилформамидом (8 объем.) при 20°C. N,N-диизопропилэтиламин (1,75 экв.) добавляют при 25°C. Реакционную смесь перемешивают при 25°C в течение 2-6 часов до полного завершения реакции. Продукт осаждают из реакционной смеси в результате добавления безводного этилацетата (12,5 объем.) при 25°C и метил-трет-бутилового простого эфира (12,5 объем.). Получающуюся в результате суспензию перемешивают, затем охлаждают до 0°C и перемешивают в течение 10-30 минут. Твердые вещества выделяют фильтрацией, промывают и сушат под вакуумом перед тем, как их повторно суспендируют в этилацетате (12,5 объем.) при 20°C, фильтруют и сушат еще раз (выход 95%). MS: *m/e* 738 (MH)⁺, 760 (M+Na)⁺.

Пример 7. Синтез соединения Формулы (3)

[0117] Соединение следующей формулы (1 экв.):

и mc-Val-Cit-PABC-PNP (1,18 экв.) солюбилизируют в N,N-диметилацетамиде (7,87 объем.). Затем добавляют гидрат 1-гидроксибензотриазола (HOBt) (8,95% масс.) и 2,6-лутидин (2,315 объем.), и реакционную смесь перемешивают при 40°С в течение 12-16 часов до полного завершения реакции. Реакционную смесь охлаждают до 20°С и добавляют в метил-трет-бутиловый простой эфир (168 объем.). Получающуюся в результате суспензию перемешивают в течение 3-5 часов и фильтруют, промывают и сушат под вакуумом. Сырой продукт очищают с использованием очистки на колонке, и продукт-содержащие фракции концентрируют досуха и суспензируют в этилацетате (20 объем.) перед тем, как его выделяют фильтрацией, промывают и сушат (выход 65%). МЅ: *m/e* 1317 (МН)⁺, 1339 (М+Nа)⁺.

Пример 9. Уровни примеси в mc-Val-Cit-PABOH, синтезированном с использованием различных реакционных условий

[0119] mc-Val-Cit-PABOH синтезируют через получение Fmoc-Val-Cit-PABOH с использованием различных наборов реакционных условий, приведенных в Таблице 1. Анализ методом HPLC используют для определения количества соединения-предшественника соединения Формулы (4). Процентные доли площади для соединения-предшественника соединения Формулы (4) относительно mc-Val-Cit-PABOH для каждого набора реакционных условий приведены в Таблице 1. Как указано в Таблице 1 и равно как

показано на Фигуре, mc-Val-Cit-PABOH, синтезированный согласно способу, описанному в Примере 3, не содержит какое-либо обнаруживаемое количество соединения-предшественника соединения Формулы (4).

Таблица 1

в mc-Val-Cit-PABOH
N.T. = Не испытано
N.1. – HE HUIBITAHO
0,34%
0,5470
0,47%
0,14%
0,28%
0,15%
0,17%
0,18%
0,23%
0,25%
N.D. = не обнаружено

N.T=Не испытано

N.D. = Не обнаружено

Пример 10. Оптимизация реакционных условий для получения Fmoc-Val-Cit-PABOH [0120] Различные конденсирующие реагенты для образования пептидной связи подвергают скринингу (проверяют) и анализируют в отношении образования диастереомера и скорости образования Fmoc-Val-Cit-PABOH. Результаты сведены в Таблицу 2.

Таблица 2

Конденсирующий	% доля площади	% доля площади	% доля площади
реагент для образования	Fmoc-Val-Cit	Fmoc-Val-Cit-	диастереомера
пептидной связи		РАВОН	
EEDQ (базовая линия)	2,88	58,6	6,91
T3P	64,3	29,2	6,4
CDI	24,38	N.D.	N.D.
TBTU/HOAt	1,9	73,7	4,5

PyBOP/HOAt	5,2	54,2	3,9
HATU	0,15	77,9	1,4
PyAOP	7,9	69,7	11,4
COMU	3,4	75,6	3,0
TBTU	3,8	36,0	33,2
PyBOP	3,5	38,2	42,0
HBTU	7,7	26,9	28,6

N.D. = Не обнаружено

[0121] Реакционные условия при использовании НАТИ дополнительно оптимизируют путем проведения скрининга различных оснований для депротонирования Fmoc-Val-Cit. Слабые основания, такие как 2,6-лутидин (рКа сопряженной кислоты составляет 6,6), приводят к более низким скоростям реакции и повышенным количествам примеси, тогда как сильное основание Хунига DIPEA (рКа сопряженной кислоты составляет 11,0) показывает наилучшие результаты при ограниченном образовании диастереомера и соединения-предшественника соединения Формулы (4).

[0122] Различные смеси N,N-диметилформамида (DMF) с другими органическими растворителями подвергают скринингу в качестве реакционного растворителя. Использование DMF позволяет получать хорошую растворимость исходного материала для равномерного протекания реакции. Применение этилацетата в качестве со-растворителя в смеси (1:1) с DMF, как оказалось, предоставляет наилучшую систему растворителей для поддержания высокой скорости реакции и ограниченной эпимеризации, а также облегчения исходного выделения продукта Fmoc-Val-Cit-PABOH, который осаждается из раствора.

[0123] Различные реакционные температуры подвергают скринингу. Реакционная температура 0° С позволяет снижать образование примеси без помех в отношении быстрого протекания реакции.

[0124] Подвергают скринингу порядок выбор момента времени И продолжительности добавления Конкретно, реагентов. после введения парааминобензилового спирта в раствор Fmoc-Val-Cit и HATU, отмечают инициирование образования Fmoc-Val-Cit-PABOH, поскольку пара-аминобензиловый спирт также может действовать в качестве слабого основания (оцененное значение рКа для сопряженной кислоты составляет 4,6-5,1) в депротонировании Fmoc-Val-Cit. Добавление сильного основания DIPEA непосредственно сразу после загрузки пара-аминобензилового спирта, как отмечают, предотвращает образование соединения-предшественника соединения Формулы (4), которое обычно образуется в присутствии слабого основания.

[0125] В результате повторного суспендирования исходно выделенного продукта в ацетонитриле с удалением побочных продуктов и избыточных реагентов, вырабатываемых во время реакции, Fmoc-Val-Cit-PABOH дополнительно очищают.

[0126] Различные основания подвергают скринингу с HATU в качестве конденсирующего реагента (для образования пептидной связи), и результаты

предоставляют ниже в Таблице 3.

Таблица 3

0	П	Соотношение
Основание	Превращение	Fmoc-Val-Cit-PABOH /диастереомер
DIPEA	100%	13:1
Пиридин	93%	49:1
2,6-лутидин	93%	65:1

[0127] Различные системы растворителей подвергают скринингу с НАТИ в качестве конденсирующего реагента (для образования пептидной связи), и результаты приводят ниже в Таблице 4.

Таблица 4

Растропитали	% доля площади	% доля площади	% доля площади
Растворитель	Fmoc-Val-Cit-PABOH	Диастереомера	Fmoc-Val-Cit
DMF:THF (1:1)	75,8	1,7	1,1
DMF:EtOAc (1:1)	77,9	1,7	1,3
DMF	79,5	3,8	1,3

Пример 11. Выделение и получение характеристик для соединения Формулы (4)

[0128] Соединение (4) выделяют с применением обращено-фазовой препаративной хроматографии нечистого соединения (5), содержащего низкие уровни соединения (4), с использованием градиентного элюирования посредством 0,05% уксусной кислоты в воде и 0,05% уксусной кислоты в смеси растворителей ацетонитрил/метанол (65:35). Соответственные фракции объединяют на основе анализа LCMS. Приблизительно 400 мг нечистого соединения (5) очищают за 4 прогона, что дает 15 мг соединения (4). МS: *m/e* 1976 (МН)⁺.

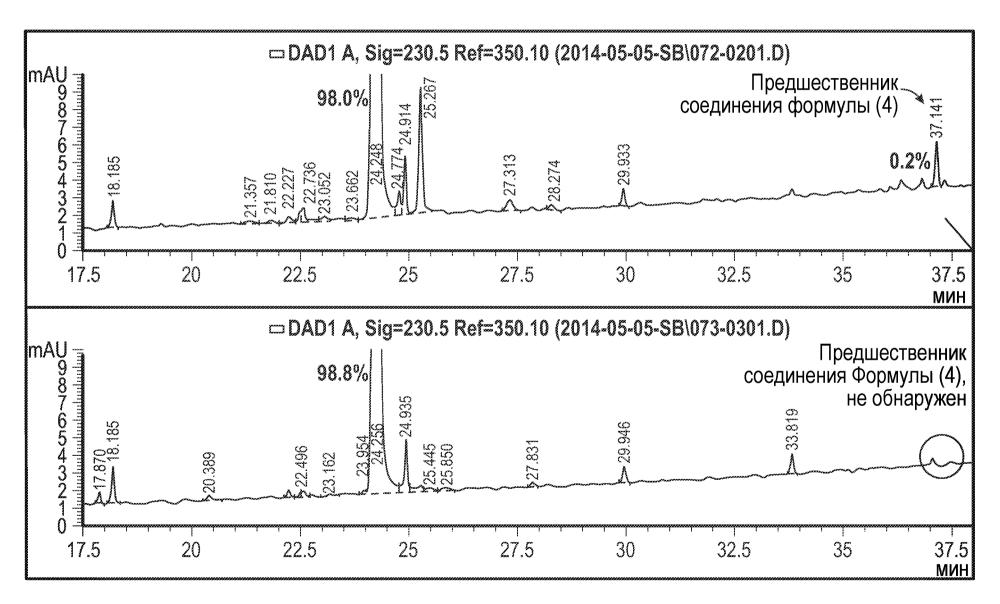
[0129] Хотя вышеприведенное текстовое описание способов, соединений и композиций, описываемых в данном документе, дает возможность среднему специалисту изготавливать и использовать способы, соединения и композиции, описываемые в данном документе, средним специалистам будет очевидно и ясно, что существуют вариации, комбинации и эквиваленты конкретных вариантов осуществления, способов и примеров, приведенных в данном документе. Способы, соединения и композиции, обеспечиваемые в данном документе, таким образом, не должны ограничиваться вышеописанными вариантами осуществления, способами или примерами, а скорее они охватывают все варианты осуществления и способы в пределах объема и сущности способов, соединений и композиций, предоставляемых в данном документе.

[0130] Все ссылочные материалы, раскрытые в данном документе, включены в данный документ посредством ссылки в полном их объеме.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение формулы (4):

- (4).
- 2. Соединение по п.1, где соединение является выделенным.
- 3. Композиция, содержащая соединение Формулы (3),


(3),

и соединение Формулы (4):

(4),

где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более 0,1%.

- 4. Композиция по п.3, дополнительно содержащая фармацевтически приемлемый носитель или эксципиент.
- 5. Композиция по п.3, где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,05%.
- 6. Композиция по п.3, где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,01%.
- 7. Композиция по п.3, где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,005%.
- 8. Композиция по п.3, где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,001%.
- 9. Композиция по п.3, где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,0005%.
- 10. Композиция по п.3, где молярное отношение соединения Формулы (4) к соединению Формулы (3) составляет не более приблизительно 0,0001%.

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference 761682000240	FOR FURTHER ACTION	as well	see Form PCT/ISA/220 as, where applicable, item 5 below.		
International application No. PCT/US2018/063070	International filing date <i>(da)</i> 29 November 2018	/month/year)	(Earliest) Priority Date (day/month/year) 30 November 2017		
Applicant SEATTLE GENETICS, INC.					
	This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau. This international search report consists of a total of A sheets.				
i —	copy of each prior art docume		report.		
a translation of the in a translation furnished b. This international search reauthorized by or notified to c. With regard to any nucleous Certain claims were foun Unity of invention is lack With regard to the title,	lication in the language in whinternational application into _ed for the purposes of international application into _ed for the purposes of international application and the purposes of international application into _ed for the purposes of international application internation internati	onal search (Ruking into accou (Rule 43.6bis(ance disclosed in	which is the language of sles 12.3(a) and 23.1(b)). Int the rectification of an obvious mistake		
within one month from the 6. With regard to the drawings, a. the figure of the drawings to be as suggested by the a as selected by this A as selected by this A	d, according to Rule 38.2, by the date of mailing of this internal published with the abstract is	Figure No. 1	est a figure.		

Form PCT/ISA/210 (first sheet) (January 2015)

PCT/US2018/063070 11.02.2019

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2018/063070

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)			
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
Claims Nos.: 4-29 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
1: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.			

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

PCT/US2018/063070 11.02.2019

INTERNATIONAL SEARCH REPORT

International application No. PCT/US2018/063070

Box No. IV	Text of the abstract (Continuation of item 5 of the first sheet)
linker compound	generally relates to novel processes for the preparation of drug linker compounds and compositions comprising such drug ds. The presently disclosed methods for synthesizing Fmoc-Val-Cit-PABOH and related compounds have also been found nation of diastereomeric impurities.
is .	
	• •
	•
	•
i .	

Form PCT/ISA/210 (continuation of first sheet (3)) (January 2015)

PCT/US2018/063070 11.02.2019

INTERNATIONAL SEARCH REPORT

International application No. PCT/US2018/063070

A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - A61K 47/50; C07K 1/10; C07K 19/00 (2018.01) CPC - C07K 1/10; A61K 47/50; C07K 19/00 (2019.01)			
in the fields searched			
rch terms used)			
Relevant to claim No.			
1-3, 30-34			
ire 1-3, 30-34			
1-3, 30-34			
e 1-3, 30-34			
•			
,			
·			
e international filing date or priority application but cited to understand g the invention			
e; the claimed invention cannot be considered to involve an inventive			
alone e; the claimed invention cannot be			
such documents, such combination			
natent family			
l search report			
19			
nheaver ·			

Form PCT/ISA/210 (second sheet) (January 2015)