(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2023.05.31
- (22) Дата подачи заявки 2018.10.15

(51) Int. Cl. *G01N 21/65* (2006.01) *C12M 1/00* (2006.01)

- (54) СИСТЕМЫ И СПОСОБЫ РАМАНОВСКОЙ СПЕКТРОСКОПИИ IN SITU ДЛЯ КОНТРОЛЯ ПЕРЕМЕННЫХ ПРОЦЕССА В КУЛЬТУРАХ КЛЕТОК
- (31) 62/572,828; 62/662,322
- (32) 2017.10.16; 2018.04.25
- (33) US
- (62) 202090783; 2018.10.15
- (71) Заявитель:
 РИДЖЕНЕРОН
 ФАРМАСЬЮТИКАЛЗ, ИНК. (US)
- (72) Изобретатель:
 Четерко Марк, Дибайэс Энтони, Пирс
 Уилльям, Конвэй Мэттью (US)
- (74) Представитель: Медведев В.Н. (RU)
- (57) Изобретение обеспечивает способы и системы рамановской спектроскопии in situ для мониторинга и контроля одной или нескольких переменных процесса в культуре клеток биореактора с целью улучшения качества и постоянства продукта. В раскрываемых способах и системах используются способы рамановской спектроскопии in situ и хемометрического моделирования для оценки культур клеток в режиме реального времени в комбинации со способами обработки сигналов для точной непрерывной обратной связи и смоделированного прогнозирующего контроля параметров переменных процесса культивирования клеток. Благодаря использованию данных рамановской спектроскопии в режиме реального времени, переменные процесса в пределах культуры клеток могут непрерывно или периодически контролироваться, а автоматизированные контроллеры с обратной связью поддерживают переменные процесса на предварительно определенных значениях или поддерживают специальный протокол подачи, который обеспечивает подачу переменных количеств агентов в биореактор для максимизации качества биопродуктов.

СИСТЕМЫ И СПОСОБЫ РАМАНОВСКОЙ СПЕКТРОСКОПИИ IN SITU ДЛЯ КОНТРОЛЯ ПЕРЕМЕННЫХ ПРОЦЕССА В КУЛЬТУРАХ КЛЕТОК

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Настоящая заявка испрашивает преимущество приоритета предварительной заявки на патент США 62/572828, поданной 16 октября 2018 года и 62/662322, поданной 25 апреля 2018 года, все из которых включены в качестве ссылки во всей их полноте, где это допустимо.

ОБЛАСТЬ ТЕХНИКИ

Изобретение в целом относится к биореакторным системам и способам, включая способы и системы рамановской спектроскопии *in situ* для мониторинга и контроля одной или нескольких переменных процесса в культуре клеток биореактора.

УРОВЕНЬ ТЕХНИКИ

Структура Процессно-Аналитической Технология (ПАТ) Управления по контролю за продуктами и лекарствами (FDA) поощряет добровольную разработку и внедрение инновационных решений по разработки процессов, анализа процессов и контроля процессов для лучшего понимания процессов и контроля качества продуктов. Параметры процесса мониторятся и контролируются в процессе производства. Например, подача питательных веществ к культуре клеток в биореакторе во время производства биопродуктов является важным параметром процесса. Современное производство биопродуктов включает стратегию кормления ежедневными болюсными подпитками. В соответствии с современными способами ежедневные болюсные подпитки увеличивают концентрацию питательных веществ в клеточных культурах по меньшей мере пять раз в день. Чтобы гарантировать, что культура не исчерпала питательные вещества между подпитками, ежедневные болюсные подпитки поддерживают концентрации питательных веществ на высоких уровнях. Действительно, каждая подпитка рассчитана на то, чтобы иметь все питательные вещества, необходимые культуре для поддержания ее до следующей подпитки. Тем не менее, большое количество питательных веществ в каждодневной болюсной подпитке может вызвать существенные колебания уровня питательных веществ в биореакторе, что приводит к несоответствиям в качестве продукта, производимого производственной культурой.

Кроме того, высокая концентрация питательных веществ в каждой ежедневной болюсной подпитке способствует увеличению посттрансляционных модификаций получаемого биопродукта. Например, высокие концентрации глюкозы в культуре клеток могут привести к увеличению гликирования конечного биопродукта. Гликация представляет собой неферментативное присоединение восстанавливающегося сахара к аминокислотному остатку белка, обычно встречающееся у N-терминального амина белков и положительно заряженной аминогруппы. Полученные продукты гликирования могут иметь желтую или коричневую окраску, что может привести к окрашиванию лекарственного продукта (Hodge JE (1953) J Agric Food Chem. 1:928-943). Гликация также

может приводить к вариациям заряда в одной производственной партии терапевтического моноклонального антитела (mAb) и приводить к ингибированию связывания (Haberger M et al. (2014) MAbs. 6:327-339).

Соответственно, в стремлении продвинуть инициативу ПАТ, остается потребность в способе или системе способной оптимизировать концентрации питательных веществ в культуре клеток, что приведет к получению более качественных продуктов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В данном документе раскрыты способы и системы рамановской спектроскопии *in situ* для мониторинга и контроля одной или нескольких переменных процесса в культуре клеток биореактора.

Один вариант реализации настоящего изобретения включает способ контроля условий среды для культивирования клеток, включающий количественное определение одного или нескольких аналитов в среде для культивирования клеток с использованием рамановской спектроскопии in situ; и корректировку одной или нескольких концентраций аналита в среде для культивирования клеток для соответствия предварительно определенными концентрациям аналита, которые поддерживают посттрансляционные модификации белков в среде для культивирования клеток до 1,0-30 процентов. В некоторых вариантах реализации посттрансляционная модификация гликирование. В других вариантах реализации белки в культуре клеток включают антитело, его антигенсвязывающий фрагмент или слитый белок. В других вариантах реализации среда для культивирования клеток включает клетки млекопитающего, например, клетки яичника китайского хомячка.

В некоторых вариантах реализации аналит представляет собой глюкозу. В этом аспекте предварительно определенная концентрация глюкозы составляет от 0,5 до 8,0 г/л. В другом варианте реализации предварительно определенная концентрация глюкозы составляет от 1,0 г/л до 3,0 г/л. В еще одном варианте реализации концентрация глюкозы составляет 2,0 г/л или 1,0 г/л. В других вариантах реализации предварительно определенные концентрации аналита поддерживают посттрансляционные модификации белков в среде для культивирования клеток до 1,0-20 процентов или от 5,0 до 10 процентов. В еще других вариантах реализации количественное определение аналитов проводится непрерывно, периодически или с интервалами. Например, количественное аналитов проводится с 5-минутными интервалами, интервалами или 15-минутными интервалами. В еще других вариантах реализации количественное определение аналитов проводится ежечасно или, по меньшей мере, ежедневно. В некоторых вариантах реализации регулирование концентраций аналита проводится автоматически. В еще других вариантах реализации количественно определяют, по меньшей мере, два, или, по меньшей мере, три, или, по меньшей мере, четыре разных аналита.

Другой вариант реализации настоящего изобретения включает способ уменьшения посттрансляционных модификаций секретируемого белка, включающий культивирование

клеток, секретирующих белок, в среде для культивирования клеток, включающей 0,5-8,0 г/л глюкозы; постепенное определение концентрации глюкозы в среде для культивирования клеток во время культивирования клеток с использованием рамановской спектроскопии *in situ*; и регулирование концентрации глюкозы для поддержания концентрации глюкозы на уровне от 0,5 до 8,0 г/л путем автоматической подачи нескольких доз глюкозы в час для поддержания посттрансляционных модификаций секретируемого белка до 1,0-30,0 процентов. В одном варианте реализации концентрация глюкозы составляет 1,0-3,0 г/л.

Еще один вариант реализации настоящего изобретения включает систему контроля условий среды для культивирования клеток, включающую один или несколько процессоров, взаимодействующих c машиночитаемым носителем, хранящим программный код для выполнения одним или несколькими процессорами, чтобы заставить систему принимать данные, включающие: концентрацию одного или нескольких аналитов в среде для культивирования клеток с помощью рамановского спектрометра in situ; и корректировать одну или несколько концентраций аналита в среде ДЛЯ культивирования клеток, чтобы соответствовать заранее определенным концентрациям аналита, которые поддерживают посттрансляционные модификации белков в среде для культивирования клеток до 1,0-30 процентов. В одном варианте реализации программный код дополнительно сконфигурирован для того, чтобы заставить систему выполнять хемометрический анализ, например, моделирование регрессии данных методом дробных наименьших квадратов. В других вариантах реализации программный код дополнительно сконфигурирован для того, чтобы заставить систему выполнять один или несколько способов обработки сигналов, например, способ шумоподавления данных.

настоящего изобретения Другой вариант реализации включает уменьшения посттрансляционных модификаций секретируемого белка, включающую один или несколько процессоров, взаимодействующих с машиночитаемым носителем, хранящим программный код для выполнения одним или несколькими процессорами, чтобы заставить систему постепенно наращивать получение спектральных данных, включая концентрацию глюкозы в среде для культивирования клеток во время культивирования клеток, секретирующих белок, из рамановского анализатора in situ; и регулирование концентрации глюкозы для того, чтобы поддерживать концентрацию глюкозы на уровне от 0,5 до 8,0 г/л, например, от 1,0 до 3,0 г/л, путем автоматической подачи нескольких доз глюкозы в час для поддержания посттрансляционных модификаций секретируемого белка до 1,0-30,0 процентов. В одном варианте реализации программный код дополнительно сконфигурирован, чтобы заставить коррелировать пики в спектральных данных с концентрациями глюкозы. В другом варианте реализации программный код дополнительно сконфигурирован для выполнения моделирования регрессии спектральных данных методом дробных наименьших квадратов. В еще одном варианте реализации программный код дополнительно сконфигурирован для выполнения способа шумоподавления спектральных данных. В других вариантах реализации регулирование концентрации глюкозы выполняется с помощью программного обеспечения автоматического контроля с обратной связью.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Дополнительные признаки и преимущества изобретения могут быть установлены из следующего подробного описания, которое предоставлено в связи с чертежами, описанными ниже:

- ФИГ. 1 представляет собой блок-схему последовательности операций способа контроля переменных процесса в культуре клеток в соответствии с одним вариантом реализации настоящего изобретения.
- ФИГ. 2 представляет собой принципиальную схему системы контроля переменных процесса в культуре клеток, связанной с ФИГ. 1, в соответствии с настоящим изобретением.
- ФИГ. 3 представляет собой график, показывающий прогнозируемые значения процесса подачи питательных веществ, подтвержденные автономными образцами питательных веществ.
- ФИГ. 4 представляет собой график, показывающий отфильтрованные конечные значения концентрации питательных веществ процесса подачи после обработки сигнала в соответствии с настоящим изобретением.
- ФИГ. 5 представляет собой график, показывающий прогнозируемые значения концентрации питательных веществ процесса и отфильтрованные конечные значения концентрации питательных веществ процесса после сдвига в предварительно определенном заданном значении концентрации питательных веществ.
- ФИГ. 6 представляет собой линейный график, показывающий влияние концентрации глюкозы на посттрансляционные модификации при непрерывной подпитке питательными веществами с контролируемой обратной связью в соответствии с настоящим изобретением и при болюсной подпитке питательными веществами.
- ФИГ. 7 представляет собой график, показывающий предсказанные Раманом значения концентрации глюкозы *in situ* при непрерывной подпитке питательными веществами с контролируемой обратной связью в соответствии с настоящим изобретением и при болюсной подпитке питательными веществами.
- ФИГ. 8 представляет собой линейный график, показывающий титр антитела при непрерывной подпитке питательными веществами с контролируемой обратной связью в соответствии с настоящим изобретением и при болюсной подпитке питательными веществами.
- ФИГ. 9 представляет собой гистограмму, показывающую нормализованный процент посттрансляционных модификаций как результат значения концентрации глюкозы.
- ФИГ. 10 представляет собой график, показывающий концентрации глюкозы при непрерывной подпитке питательными веществами с контролируемой обратной связью в соответствии с настоящим изобретением и при болюсной подпитке питательными

веществами.

ФИГ. 11 представляет собой график, показывающий, что культура клеток с обратной связью может снижать ПТМ вплоть до 50% по сравнению с культурой клеток со стратегией болюсной подпитки.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения

Используемые в данном документе формы единственного числа включают также формы множественного числа, если контекст явно не предписывает иное.

Перечисление диапазонов значений в данном документе просто предназначено для того, чтобы служить кратким способом индивидуальной ссылки на каждое отдельное значение, попадающее в этот диапазон, если в данном документе не указано иное, и каждое отдельное значение включается в описание, как если бы оно было отдельно указано в данном документе.

Использование термина «около» предназначено для описания значений выше или ниже заявленного значения в диапазоне приблизительно +/- 10%; в других вариантах реализации значения могут находиться в диапазоне либо выше, либо ниже заявленного значения в диапазоне приблизительно +/- 5%; в других вариантах реализации значения могут находиться в диапазоне либо выше, либо ниже заявленного значения в диапазоне приблизительно +/- 2%; в других вариантах реализации значения могут находиться в диапазоне либо выше, либо ниже заявленного значения в диапазоне приблизительно +/-1%. Предполагается, что предыдущие диапазоны будут понятны из контекста, и никаких дополнительных ограничений не предполагается. Все способы, описанные в данном документе, могут быть выполнены в любом подходящем порядке, если иное не указано в настоящем документе или иное явно не противоречит контексту. Использование любого и всех примеров или примерных формулировок (например, «таких как»), представленных в данном документе, предназначено просто для лучшего освещения изобретения и не налагает ограничения на объем изобретения, если не заявлено иное. Ни одна из формулировок в описании не должен быть истолкована как указывающая на любой не заявленный элемент как существенный для практического применения изобретения.

Термин «биопродукт» относится к любому антителу, фрагменту антитела, модифицированному антителу, белку, гликопротеину или слитому белку, а также к конечным лекарственным веществам, полученным в процессе биореактора.

Термины «контроль» и «контролирование» относятся к регулированию количества или уровня концентрации технологической переменной в культуре клеток до предварительно определенного заданного значения.

Термин «мониторинг» относится к регулярной проверке количества или уровня концентрации технологического параметра в культуре клеток или состояния процесса в культуре клеток.

Термин «устойчивое состояние» относится к поддержанию концентрации питательных веществ, параметров процесса или качественных признаков в культуре

клеток на неизменном, постоянном или стабильном уровне. Понятно, что неизменный, постоянный или стабильный уровень относится к уровню в пределах предварительно определенных заданных значений. Определенные значения и, следовательно, уровни установившегося состояния могут быть смещены оператором во время культивирования культуры клеток.

Способы производства биопродуктов

Один из вариантов реализации обеспечивает способы мониторинга и контроля одной или нескольких переменных процесса в культуре клеток биореактора с целью улучшения качества и постоянства продукта. Переменные процесса включают, но не ограничиваются ими, концентрацию глюкозы, аминокислот, витаминов, факторов роста, белков, количества жизнеспособных клеток, кислорода, азота, рН, количества мертвых клеток, цитокинов, лактата, глютамина, других сахаров, таких как фруктоза и галактоза, аммония, осмоляльность и их комбинации. В раскрываемых способах и системах используются способы рамановской спектроскопии in situ и хемометрического моделирования для оценки культуры клеток в режиме реального времени в сочетании со способами обработки сигналов ДЛЯ точной непрерывной обратной прогнозирующего контроля параметров переменных процесса культивирования клеток. Рамановская спектроскопия in situ содержимого биореактора позволяет анализировать одну или несколько переменных процесса в биореакторе без физического извлечения образца, содержащегося в биореакторе, для тестирования. Благодаря использованию данных в реальном времени из рамановской спектроскопии, переменные процесса в культуре клеток могут непрерывно ИЛИ периодически контролироваться, автоматизированные контроллеры с обратной связью поддерживают переменные процесса на заданных значениях или поддерживают специальный протокол подпитки, который подает переменные количества агентов в биореактор для максимизации качества биопродуктов.

Раскрытые способы и системы контролируют одну или несколько переменных процесса в процессе культивирования клеток. Термины «культура клеток» и «среда для культивирования клеток» могут использоваться взаимозаменяемо и включают любое твердое, жидкое или полутвердое вещество, предназначенное для поддержки роста и поддержания микроорганизмов, клеток или клеточных линий. Такие компоненты, как полипептиды, сахара, соли, нуклеиновые кислоты, клеточный дебрис, кислоты, основания, буферы рН, кислород, азот, агенты для модуляции вязкости, аминокислоты, факторы роста, цитокины, витамины, кофакторы и питательные вещества могут присутствовать в среде для культивирования клеток. Один вариант реализации обеспечивает процесс культивирования клеток млекопитающих и включает клетки или линии клеток млекопитающих. Например, процесс культивирования клеток млекопитающих может использовать клеточную линию яичников китайского хомячка (СНО), выращенную в химически определенной базальной среде.

Процесс культивирования клеток можно проводить в биореакторе. Биореакторы

включают систему посевных ферментеров, подпиточные и непрерывные биореакторы. Биореакторы могут иметь объем от около 2 л до около 10000 л. В одном варианте реализации биореактор может представлять собой биореактор из нержавеющей стали на 60 л. В другом варианте реализации биореактор может представлять собой биореактор объемом 250 л. Каждый биореактор также должен поддерживать количество клеток в диапазоне от около 5×10^6 клеток/мл до примерно 100×10^6 клеток/мл. Например, биореактор должен поддерживать количество клеток от около 20×10^6 клеток/мл до около 80 клеток/мл.

Раскрытые способы и системы могут мониторить и контролировать любой аналит, который присутствует в культуре клеток и имеет детектируемый рамановский спектр. Например, способы настоящего изобретения могут использоваться для мониторинга и контроля любого компонента среды для культивирования клеток, включая компоненты, добавляемые в культуру клеток, вещества, выделяемые из клетки, и компоненты клетки, присутствующие при гибели клетки. Компоненты среды для культивирования клеток, которые могут мониториться и/или контролироваться раскрытыми системами и способами, включают, но не ограничиваются ими, питательные вещества, такие как аминокислоты и витамины, лактат, кофакторы, факторы роста, скорость роста клеток, рН, кислород, азот, количество жизнеспособных клеток, кислоты, основания, цитокины, антитела и метаболиты.

Один вариант реализации обеспечивает способы мониторинга и контроля концентраций питательных веществ в культуре клеток. Используемый в данном документе термин «питательное вещество» может относиться к любому соединению или веществу, которое обеспечивает питание, необходимое для роста и выживания. Примеры питательных веществ включают, но не ограничиваются ими, простые сахара, такие как глюкоза, галактоза, дактоза, фруктоза или мальтоза; аминокислоты; и витамины, такие как витамин А, витамины группы В и витамин Е. В другом варианте реализации способы настоящего изобретения могут включать мониторинг и контроль концентраций глюкозы в культуре клеток. Путем контроля концентрации питательных веществ, например, концентрации глюкозы в культуре клеток, было обнаружено, что биопродукты, такие как белки, могут продуцироваться в более низком диапазоне концентраций, чем это было возможно ранее с использованием стратегии ежедневной болюсной подпитки питательными веществами.

Кроме того, путем контроля концентрации питательных веществ и другие переменные процесса в культуре клеток, способы настоящего изобретения дополнительно обеспечивают модуляцию одной или нескольких посттрансляционных модификаций белка. Не будучи связанными какой-либо конкретной теорией, полагают, что обеспечивая более низкие концентрации питательных веществ в культуре клеток, могут быть уменьшены посттрансляционные модификации белков И антител. Примеры модификаций, могут посттрансляционных которые модулироваться настоящим изобретением, включают, но не ограничиваются ими, гликирование, гликозилирование, ацетилирование, фосфорилирование, амидирование, дериватизация известными защитными/блокирующими группами, протеолитическое расщепление и модификация не встречающимися в природе аминокислотами. В другом варианте реализации предложены способы и системы для модулирования гликирования белка. Например, обеспечивая более низкие диапазоны концентраций глюкозы в среде для культивирования клеток, уровни гликирования в секретируемом белке или антителе могут быть снижены в конечном биопродукте.

ФИГ. 1 представляет собой блок-схему последовательности операций примерного способа контроля одной или нескольких переменных процесса, например, концентрации питательных веществ, в культуре клеток биореактора. Предварительно определенные значения для каждой из переменных процесса, которые должны мониториться и контролироваться, могут быть запрограммированы в системе. Предустановленные заданные значения представляют количество переменных процесса в культуре клеток, которое должно поддерживаться или корректироваться в течение всего процесса. Концентрация глюкозы является одним из примеров питательного вещества, которую можно контролировать и модулировать. Как кратко обсуждалось выше, было обнаружено, что биопродукты (например, белки, антитела, слитые белки и лекарственные вещества) могут продуцироваться клетками в среде для культивирования культуры, которая содержит низкие уровни глюкозы по сравнению с концентрациями глюкозы в среде с использованием стратегии подачи суточной болюсной дозы питательных веществ. В одном варианте реализации определенное заданное значение для концентрации питательных веществ является самой низкой концентрацией питательного вещества, необходимой для роста и размножения линии клеток. Раскрытые способы и системы могут вводить множество небольших доз питательных веществ в среду для культивирования клеток в течение определенного периода времени или могут обеспечивать постоянный поток питательного вещества в среду для культивирования клеток. В некоторых вариантах реализации предварительно заданное значение может быть увеличено или уменьшено во время процесса, в зависимости от условий в среде для культивирования Например, предварительно клеток. если заданное концентрации питательных веществ приводит к гибели клеток или неоптимальным условиям роста в среде для культивирования клеток, предварительно заданное значение может быть увеличено. Тем не менее, концентрацию питательных веществ следует поддерживать на предварительно заданном значении от около 0,5 г/л до около 10 г/л. В другом варианте реализации концентрацию питательного вещества следует поддерживать на предварительно заданном значении от около 0,5 г/л до около 8 г/л. В еще одном варианте реализации концентрацию питательного вещества следует поддерживать на предварительно заданном значении от около 1 г/л до около 3 г/л. В еще одном варианте концентрацию питательного вещества следует реализации поддерживать предварительно заданном значении около 2 г/л. Эти предварительно заданные значения, по существу, обеспечивают базовый уровень, при котором концентрация питательных

веществ должна поддерживаться на протяжении всего процесса.

В одном варианте реализации мониторинг одной или нескольких переменных процесса, например, концентрации питательных веществ, в культуре клеток проводят посредством рамановской спектроскопии (стадия 101). Рамановская спектроскопия - это форма вибрационной спектроскопии, которая предоставляет информацию молекулярных колебаниях, которую можно использовать для идентификации и количественного определения образцов. В некоторых вариантах реализации мониторинг переменных процесса выполняется с использованием рамановской спектроскопии in situ. Рамановский анализ in situ - это способ анализа образца в его исходном местоположении без необходимости извлечения части образца для анализа в рамановском спектрометре. Рамановский анализ in situ выгоден тем, что спектрометры рамановской спектроскопии неинвазивны, что снижает риск загрязнения и не разрушителен, не влияет на жизнеспособность культуры клеток или качество белка.

Рамановский анализ *in situ* может обеспечить оценку в реальном времени одной или нескольких переменных процесса в культурах клеток. Например, необработанные спектральные данные, полученные с помощью рамановской спектроскопии *in situ*, можно использовать для получения и мониторинга текущего количества концентрации питательных веществ в культуре клеток. В этом аспекте, чтобы гарантировать, что необработанные спектральные данные постоянно обновляются, спектральные данные из рамановской спектроскопии должны сниматься примерно каждые от 10 минут до 2 часов. В другом варианте реализации спектральные данные должны сниматься примерно каждые от 15 минут до 1 часа. В еще одном варианте реализации спектральные данные должны сниматься примерно каждые от 20 минут до 30 минут.

В этом аспекте мониторинг одной или нескольких переменных процесса в культуре клеток можно анализировать с помощью любого коммерчески доступного рамановского спектроскопического анализатора, который позволяет проводить рамановский анализ *in situ*. Рамановский анализатор *in situ* должен быть способен получать необработанные спектральные данные в культуре клеток (например, рамановский анализатор должен быть снабжен зондом, который может быть вставлен в биореактор). Подходящие рамановские анализаторы включают, но не ограничиваются ими, анализаторы RamanRXN2 и RamanRXN4 (Kaiser Optical Systems, Inc.Ann Arbor, MI).

На стадии 102 необработанные спектральные данные, полученные с помощью рамановской спектроскопии *in situ*, можно сравнить с автономными измерениями конкретной переменной процесса, которая должна мониториться или контролироваться (например, измерения концентрации питательных веществ в автономном режиме), чтобы сопоставить пики в спектральных данных с переменной процесса. Например, если переменная процесса, которая должна мониториться или контролироваться, представляет собой концентрацию глюкозы, измерения концентрации глюкозы в автономном режиме могут использоваться для определения того, какие спектральные области показывают сигнал глюкозы. Данные измерений в автономном режиме могут быть собраны любым

подходящим аналитическим способом. Кроме того, любой тип пакета мультивариантного программного обеспечения, например, SIMCA 13 (MKS Data Analytic Solutions, Umea, Sweden), может использоваться для корреляции пиков в исходных спектральных данных с автономными измерениями конкретной переменной процесса, которая должна мониториться или контролироваться. Однако, в некоторых вариантах реализации может потребоваться предварительная обработка необработанных спектральных данных спектральными фильтрами для удаления любых изменяющихся базовых линий. Например, необработанные спектральные данные могут быть предварительно обработаны любым типом техники сглаживания точек или техникой нормализации. Нормализация может потребоваться для корректировки любого изменения мощности лазера и времени экспозиции с помощью рамановского анализатора. В одном варианте реализации необработанные спектральные данные могут обрабатываться точечным сглаживанием, таким как 1-я производная с точечным сглаживанием 21см⁻¹, и нормализацией, такой как случайной величины нормализация стандартного отклонения c нормальным распределением (SNV - англ. "Standard Normal Variate").

Хемометрическое моделирование также может быть выполнено на полученных спектральных данных. В этом аспекте один или несколько многовариантных способов, включая, но не ограничиваясь ими, дробные наименьшие квадраты (ДНК), анализ главных (ОДНК), компонент $(A\Gamma K)$, ортогональные дробные наименьшие квадраты мультивариантная регрессия, каноническая корреляция, факторный анализ, кластерный анализ, графические процедуры и т.п., могут быть использованы относительно спектральных данных. В одном варианте реализации полученные спектральные данные используются для создания модели регрессии методом ДНК. Модель регрессии ДНК может быть создана путем проецирования предсказанных переменных и наблюдаемых переменных в новое пространство. В этом аспекте модель регрессии ДНК может быть создана с использованием значений измерения, полученных из рамановского анализа и значений измерения в автономном режиме. Модель регрессии ДНК предоставляет прогнозируемые значения процесса, например, прогнозируемые значения концентрации питательных веществ.

После хемометрического моделирования способ обработки сигнала может быть применен к прогнозируемым значениям процесса (например, прогнозируемым значениям концентрации питательных веществ) (стадии 103). В одном варианте реализации методика обработки сигнала включает методику шумоподавления. В этом аспекте один или несколько методов шумоподавления могут применяться к прогнозируемым значениям процесса. Может быть использован любой способ шумоподавления, известный специалистам в данной области техники. Например, способ шумоподавления может включать сглаживание данных и/или подавление сигнала. Сглаживание достигается с помощью ряда алгоритмов сглаживания и фильтров, в то время как при подавлении сигнала используются характеристики сигнала для идентификации данных, которые не следует включать в анализируемые спектральные данные. В одном варианте реализации

прогнозируемые значения процесса являются шумом, уменьшенным шумоподавления. Фильтр шумоподавления предоставляет конечные отфильтрованные значения процесса (например, конечные отфильтрованные значения концентрации аспекте способ шумоподавления объединяет питательных веществ). В ЭТОМ необработанные измерения с оценкой на основе модели того, что измерение должно дать в соответствии с моделью. В одном варианте реализации способ шумоподавления объединяет текущее прогнозируемое значение процесса с его неопределенностями. Неопределенности могут быть определены повторяемостью предсказанных значений процесса и текущих условий процесса. После того, как будет получено следующее прогнозируемое значение процесса, оценка прогнозируемого значения процесса (например, прогнозируемого значения концентрации питательных веществ) обновляется с использованием взвешенного среднего, где больший вес придается оценкам с более высокой достоверностью. Используя итеративный подход, окончательные значения процесса могут обновляться на основе предыдущего измерения и текущих условий процесса. В этом аспекте алгоритм должен быть рекурсивным и способен работать в режиме реального времени, чтобы использовать текущее прогнозируемое значение процесса, предыдущее значение и экспериментально определенные константы. Способ шумоподавления повышает надежность измерений, полученных из рамановского анализа и прогнозов ДНК, за счет снижения шума, на который будет воздействовать автоматический контроллер обратной связи.

После получения окончательных отфильтрованных значений процесса (например, конечных отфильтрованных значений концентрации питательных веществ) конечные значения могут быть отправлены в автоматический контроллер обратной связи (стадия 104). Автоматический контроллер обратной связи может использоваться для контроля и поддержания переменной процесса (например, концентрации питательных веществ) на предварительно определенном заданном значении. Автоматический контроллер обратной связи может включать любой тип контроллера, который способен вычислять значение ошибки как разность между желаемым заданным значением (например, предварительно заданное значение) и измеренной переменной процесса и автоматически применять точную и отзывчивую коррекцию. Контроллер автоматической обратной связи также должен иметь элементы контроля, которые можно изменять в режиме реального времени из интерфейса платформы. Например, автоматический контроллер обратной связи должен иметь пользовательский интерфейс, который позволяет регулировать предварительно заданное значение. Контроллер автоматической обратной связи должен быть способен реагировать на изменение предварительно заданного значения.

В одном варианте реализации автоматический контроллер обратной связи может быть пропорционально-интегральным дифференциальным (ПИД) регулятором. В этом аспекте ПИД-регулятор работает для вычисления разности между предварительно определенным значением и измеренной переменной процесса (например, измеренной концентрацией питательных веществ) и автоматически применяет точную коррекцию.

Например, когда необходимо контролировать концентрацию питательных веществ в культуре клеток, ПИД-регулятор может быть в состоянии рассчитать разницу между отфильтрованным значением питательного вещества и предварительно заданным значением и обеспечить коррекцию в количестве питательных веществ. В этом аспекте ПИД-регулятор может быть оперативно подключен к питательному насосу на биореакторе, так что корректирующее количество питательного вещества может быть закачано в биореактор (стадия 105).

Посредством использования рамановского анализа в реальном времени и контроля с обратной связью способы настоящего изобретения способны обеспечить непрерывную и пониженную концентрацию питательных веществ для культуры клеток. Таким образом, способ настоящего изобретения способен обеспечить устойчивое добавление питательных веществ к культуре клеток. В одном варианте реализации для поддержания заданной концентрации питательных веществ, питательные вещества могут непрерывно закачиваться в клеточную культуру через питательный насос в течение определенного периода времени. В другом варианте реализации питательные вещества могут быть добавлены к клеточной культуре через питательный насос в рабочем цикле. Например, в этом аспекте добавление питательных веществ может осуществляться с перерывами или происходить периодически в течение некоторого периода времени.

Раскрытые способы и системы также позволяют производить биопродукты в культуральной среде, которая содержит более низкий диапазон концентраций питательных веществ, например, диапазон концентраций глюкозы, чем концентрации питательных веществ в кульутральной среде, с использованием стратегии ежедневной болюсной подпитки питательными веществами. В одном варианте реализации концентрации питательных веществ, например, концентрации глюкозы, по меньшей мере, на 3 г/л ниже, чем при болюсной подпитке. В другом варианте реализации концентрации питательных веществ, например, концентрации глюкозы, по меньшей мере, на 5 г/л ниже, чем концентрации питательных веществ в культуральной среде, полученных с использованием болюсной подпитки питательными веществами. В еще одном варианте реализации концентрации питательных веществ, например, концентрации глюкозы, по меньшей мере, на 6 г/л ниже, чем концентрации питательных веществ, полученные с использованием болюсной подпитки питательными веществами.

Кроме того, более низкие концентрации питательных веществ в культуральной среде и добавление в стационарном состоянии, достигаемые раскрытыми системами и способами, позволяют снизить посттрансляционную модификацию белков и моноклональных антител. В одном варианте реализации раскрытые способы и системы обеспечивают введение питательных веществ около или со скоростью, с которой питательные вещества поглощаются или потребляются клетками в культуре. Постоянное добавление малых доз питательных веществ с течением времени позволяет получать биопродукты, имеющие более низкие уровни посттрансляционных модификаций, например, более низкие уровни гликирования, по сравнению со стандартной болюсной

подпиткой. Важно, что постоянное добавление пониженных концентраций питательных веществ не влияет на выработку антител. В одном варианте реализации уменьшенные концентрации питательных веществ обеспечивают уменьшение посттрансляционной модификации на целых 30% по сравнению с посттрансляционными модификациями, наблюдаемыми при стандартной болюсной подпитке. В другом варианте реализации уменьшенные концентрации питательных веществ обеспечивают уменьшение посттрансляционной модификации на целых 40% по сравнению с посттрансляционными модификациями, наблюдаемыми при стандартной болюсной подпитке. В еще одном варианте реализации уменьшенные концентрации питательных веществ обеспечивают уменьшение посттрансляционной модификации на целых 50% по сравнению с посттрансляционными модификациями, наблюдаемыми при стандартной болюсной подпитке.

III. Биореакторные системы

Другой вариант реализации обеспечивает системы для мониторинга и контроля одной или нескольких переменных процесса в культуре клеток биореактора. Несколько компонентов интегрированы в единую систему с одним пользовательским интерфейсом. Ссылаясь на ФИГ. 2, рамановский анализатор 200 может быть функционально подключен к биореактору 300. В этом аспекте рамановский зонд может быть вставлен в биореактор 300 для получения необработанных спектральных данных одной или нескольких переменных процесса, например, концентрации питательных веществ, в культуре клеток. Рамановский анализатор 200 также может быть функционально подключен к компьютерной системе 500, так что полученные необработанные спектральные данные могут быть получены и обработаны.

Компьютерная система 500 обычно может быть реализована с использованием одной или нескольких программируемых компьютерных систем общего назначения, таких как встроенные процессоры, системы на чипе, персональные компьютеры, рабочие станции, серверные системы и мини-ЭВМ или мэйнфрейм-компьютеры или в распределенных сетевых вычислительных средах. Компьютерная система 500 может включать один или несколько процессоров (СРU) 502A-502N, схему 504 ввода/вывода, сетевой адаптер 506 и память 508. СРU 502A-502N выполняют программные инструкции для выполнения функций настоящих систем и способов. Как правило, процессоры СРU 502A-502N представляют собой один или несколько микропроцессоров, например, процессор INTEL CORE®.

Схема 504 ввода/вывода обеспечивает возможность ввода или вывода данных из компьютерной системы 500. Например, схема ввода/вывода может включать устройства ввода, такие как клавиатуры, мыши, сенсорные панели, трекболы, сканеры, аналогоцифровые преобразователи и т.д., устройства вывода, такие как видеоадаптеры, мониторы, принтеры и т.д., и устройства ввода/вывода, такие как модемы и т.д. Сетевой адаптер 506 связывает устройство 500 с сетью 510. Сеть 510 может быть любой общедоступной или проприетарной локальной или глобальной сетью, включая, но не

ограничиваясь этим, Интернет.

Память 508 хранит программные инструкции, которые выполняются и данные, которые используются и обрабатываются процессором 502 для выполнения функций компьютерной системы 500. Память 508 может включать, например, электронные запоминающие устройства, такие как оперативное запоминающее устройство (RAM), постоянное запоминающее устройство (ROM), программируемое постоянное устройство (PROM), электрически стираемое запоминающее программируемое запоминающее устройство (EEPROM), постоянное флэш-память электромеханическую память, такую как магнитные дисководы, ленточные накопители, оптические дисководы и т.д., которые могут использовать встроенные интерфейсные накопители (IDE) или их изменения или расширения, такие как расширенный IDE (EIDE) или ультра-прямой доступ к памяти (UDMA), или интерфейс на основе интерфейса небольшой компьютерной системы (SCSI), или ИΧ усовершенствование, такие как быстрый-SCSI, широкий-SCSI, быстрый и широкий-SCSI и т.д., или последовательный интерфейс обмена данными с накопителями информации (SATA), или их разновидность или усовершенствование, или интерфейс ответвления волоконно-оптического канала с арбитражной логикой (FC-AL).

Память 508 может включать контроллер регулярных операций 512, контроллер данных 514 и операционную систему 520. Контроллер регулярных операций 512 может включать программный продукт регулярных операций для обеспечения работы одного или нескольких контроллеров. Контроллер данных 514 может включать данные, необходимые контроллеру регулярных операций 512 для выполнения обработки. В одном варианте реализации контроллер регулярных операций 512 мультивариантное программное обеспечение для выполнения мультивариантного анализа, такого как модель регрессии ДНК. В этом аспекте контроллер регулярных операций 512 может включать SIMCA-QPp (MKS Data Analytic Solutions, Umea, Sweden) для выполнения хемометрического моделирования ДНК. В другом варианте реализации контроллер регулярных операций 512 также может включать программное обеспечение для выполнения шумоподавления для набора данных. В этом аспекте контроллер регулярных операций 512 может включать MATLAB Runtime (The Mathworks Inc., Natick, МА) для выполнения моделей фильтра шумоподавленния. Кроме того, контроллер регулярных операций 512 может включать программное обеспечение, такое как МАТLAB Runtime, для работы с автоматическим контроллером обратной связи, например, контроллером ПИД. Программное обеспечение для управления автоматическим контроллером обратной связи должно быть способно рассчитать разницу между предварительно заданным значением и измеренной переменной процесса (например, измеренной концентрацией питательных веществ) и автоматически применить точную коррекцию. Соответственно, компьютерная система 500 также может быть оперативно соединена с питательным насосом 400, так что корректирующее количество питательного вещества может быть закачано в биореактор 300.

Раскрытые системы могут контролировать и мониторить переменные процесса в одном биореакторе или множестве биореакторов. В одном варианте реализации система может контролировать и мониторить переменные процесса, по меньшей мере, в двух биореакторах. В другом варианте реализации система может контролировать и мониторить переменные процесса, по меньшей мере, в трех биореакторах или, по меньшей мере, в четырех биореакторах. Например, система может контролировать до четырех биореакторов в час.

Примеры

Следующие неограничивающие примеры демонстрируют способы контроля одной или нескольких переменных процесса в культуре клеток биореактора в соответствии с настоящим изобретением. Примеры являются просто иллюстрацией предпочтительных вариантов реализации настоящего изобретения и не должны рассматриваться как ограничивающие изобретение, объем которого определяется прилагаемой формулой изобретения.

Пример 1

Материалы и способы

В процессе культивирования клеток млекопитающих использовали клеточную линию яичника китайского хомячка (СНО), выращенную в химически определенной базальной среде. Производство осуществлялось в экспериментальном 60-литровом биореакторе из нержавеющей стали с программным обеспечением RSLogix 5000 (Rockwell Automation, Inc. Milwaukee, WI).

Сбор данных для модели включал спектральные данные с анализаторов Kaiser RamanRXN2 и RamanRXN4 (Kaiser Optical Systems, Inc.Ann Arbor, MI) с использованием оптики BIO-PRO (Kaiser Optical Systems, Inc.Ann Arbor, MI). Рабочие параметры анализаторов RamanRXN2 и RamanRXN4 были установлены на время сканирования 10 секунд для 75 накоплений. ОРС Reader/Writer для RSLinx OPC Server был использован для передачи данных.

SIMCA 13 (MKS Data Analytic Solutions, Umea, Sweden) использовали для корреляции пиков в спектральных данных с измерениями глюкозы в автономном режиме. Последующая спектральная фильтрация была выполнена на необработанных спектральных данных: 1-я производная со сглаживанием точки 21 см⁻¹ для удаления изменяющихся базовых линий и нормализации стандартной нормальной вариации (СНВ) для корректировки изменения мощности лазера и времени воздействия.

Регрессионная модель частичных наименьших квадратов была создана с соответствующими автономными измерениями, выполненными на Nova Bioprofile Flex (Nova Biomedical, Waltham, MA). В Таблице 1А ниже приведены детальные данные хемометрической модели регрессии методом дробных наименьших квадратов значений концентрации питательных веществ.

<u>Таблица 1A: Детальные данные хемометрической модели регрессии методом</u> дробных наименьших квадратов значений концентрации питательных веществ

Переменная концентрации питательных веществ модели ДНК	Значение
Наблюдения	223
Диапазон длин волн (см-1)	350-3100
Диапазон концентрации питательных веществ (г/л)	0,65-8,63
RMSEE (среднеквадратичная погрешность оценки)	0,430
RSMECV (среднеквадратичная погрешность перекрестной проверки)	0,662
R^2X	0,982
Q^2	0,869

Также были выполнены способы обработки сигналов, в частности, фильтрация шумоподавления. Техника шумоподавления объединила необработанное измерение с оценкой на основе модели того, что измерение должно дать в соответствии с моделью. Используя итеративный подход, он позволяет обновлять отфильтрованное измерение на основе предыдущего измерения и текущих условий процесса.

Использовали обратнодействующее пропорционально-интегрально-дифференциальное (ПИД) регулирование, имеющее алгоритм, запрограммированный отдельно в MATLAB Runtime (The Mathworks Inc., Natick, MA). Все переменные ПИД-регулятора, такие как константы настройки, могут изменяться в режиме реального времени из интерфейса платформы.

<u>Результаты</u>

ФИГ. 3 показывает прогонозируемое значения процесса питания, подтвержденные автономными образцами питательных веществ. Как видно из ФИГ. 3, рамановский анализатор и хемометрическая модель предсказывали значения концентрации питательных веществ в пределах изменчивости автономного аналитического способа. Это демонстрирует, что рамановская спектроскопия *in situ* и хемометрическое моделирование в соответствии со способами настоящего изобретения обеспечивают точные измерения значений концентрации питательных веществ.

ФИГ. 4 показывает отфильтрованные конечные значения процесса подачи питательных веществ после способа обработки сигнала. Как видно из ФИГ. 4, способ обработки сигнала уменьшает шум исходных прогнозированных значений процесса питания. Фильтрация прогнозируемых значений питательных веществ с помощью шумоподавления повышает надежность всей системы контроля с обратной связью.

ФИГ. 5 показывает прогнозируемые значения процесса подачи питательных веществ и отфильтрованные конечные значения процесса подачи питательных веществ после сдвига в предварительно определенном заданном значении концентрации питательных веществ в партии с непрерывной подпиткой с контролируемой обратной

связью. Как видно из корректировки значений отфильтрованного процесса подачи питательных веществ, успешный отклик от контроллера обратной связи наблюдается, когда происходит сдвиг в значении концентрации питательных веществ. Действительно, ПИД-регулятор был способен быстро реагировать на изменение заданного значения, оперируя отфильтрованным значением шума питательных веществ процесса.

На основании результатов, показанных на ФИГ. 3-5, способы настоящего изобретения предоставляют данные в реальном времени, которые обеспечивают автоматическое управление с обратной связью для непрерывного и постоянного добавления питательных веществ.

Пример 2

Материалы и способы

Производство осуществлялось в отдельных биореакторах объемом 250 л. Была создана модель регрессии методом дробных наименьших квадратов. В Таблице 1В ниже приведены детальные данные хемометрической модели регрессии методом дробных наименьших квадратов значений концентрации питательных веществ.

<u>Таблица 1В: Детальные данные хемометрической модели регрессии методом</u> дробных наименыших квадратов значений концентрации питательных веществ

Переменная концентрации питательных веществ модели	Значение
днк	
Наблюдения	147
Диапазон длин волн (см-1)	350-3100
Диапазон концентрации питательных веществ (г/л)	0,6-3,61
RMSEE (среднеквадратичная погрешность оценки)	0,352
RSMECV (среднеквадратичная погрешность перекрестной проверки)	0,520
R^2X	0,769
Q^2	0,617

Методы шумоподавления не использовались в этом примере.

Результаты

ФИГ. 6 показывает влияние концентрации глюкозы на посттрансляционные модификации. Как видно из ФИГ. 6, чем выше концентрация глюкозы, тем выше процент ПТМ. Данные на ФИГ. 6 для нормализованного % посттрансляционных модификаций (ПТМ) и концентрации глюкозы в день исследования серии показаны в Таблице 2 ниже.

Таблица 2: Нормализованный % ПТМ и данные концентрации глюкозы для Φ ИГ. 6

Время	%	Концентрация	Нормализованный %	Концентрация
(часы)	ПТМ	глюкозы	ПТМ	глюкозы (г/л)
192	18,7	4,83	0,623333333	4,83
192	20,4	9,75	0,68	9,75
195	20,6	8,4	0,686666667	8,4
198	20,2	8,3	0,673333333	8,3
200	16,2	7,68	0,54	7,68
214	16,6	3,96	0,553333333	3,96
214	17,7	9,34	0,59	9,34
220	17,4	9,09	0,58	9,09
223	17,5	8,03	0,583333333	8,03
225	20,9	7,68	0,696666667	7,68
238	21,5	4,56	0,716666667	4,56
238	22,3	8,22	0,743333333	8,22
243	21,8	7,78	0,726666667	7,78
246	23,1	7,19	0,77	7,19
248	18,6	7,08	0,62	7,08
267	17	4,11	0,566666667	4,11
291	19,1	3,3	0,636666667	3,3
310	19,4	4,62	0,64666667	4,62
315	19	4,55	0,633333333	4,55
318	24	4,23	0,8	4,23
320	24,7	4	0,823333333	4
334	26	2,53	0,866666667	2,53
340	25,3	2,15	0,843333333	2,15
343	25,9	1,86	0,863333333	1,86
345	20,7	1,67	0,69	1,67
357	19,7	0,59	0,656666667	0,59
358	20,2	11,18	0,673333333	11,18
362	20,6	10,34	0,686666667	10,34
366	20,5	10,31	0,683333333	10,31
381	25,9	7,74	0,863333333	7,74

ФИГ. 7 представляет собой график, показывающий предсказанные рамановской спектроскопией *in situ* значения концентрации глюкозы при непрерывной подпитке

питательными веществами с контролируемой обратной связью в соответствии с настоящим изобретением и при болюсной подпитке питательными веществами. Черная жирная линия на ФИГ. 7 представляет предварительно определенное заданное значение. Предварительно определенное заданное значение (331) первоначально было установлено на уровне 3 г/л (331) и было увеличено до 5 г/л (332). Как видно из ФИГ. 7, предсказанные рамановской спектроскопиейконцентрации глюкозы, точно скорректированы во время сдвига в заранее заданных значениях. Данные наблюдений на ФИГ. 7 для рамановских значений концентрации глюкозы в день исследования серии показаны в Таблице 3 ниже.

<u>Таблица 3: Данные концентрации глюкозы, прогнозируемые раманом для</u> ФИГ. 7

Время (контроль с	Рамановская	Время (болюсная	Рамановская
обратной связью по	концентрация	подпитка глюкозой)	концентрация
глюкозе) (прошедшие	глюкозы с обратной	(прошедшие дни)	при болюсной
дни)	связью (г/л)		подпитке (г/л)
2	5,27449	2	#н/д
2,023263889	6,057528	2,023263889	#н/д
2,044097222	6,093102	2,044097222	#н/д
2,064930556	6,030814	2,064930556	#н/д
2,085763889	5,928053	2,085763889	#н/д
2,106597222	6,112341	2,106597222	#н/д
2,127430556	5,877689	2,127430556	#н/д
2,148263889	5,881066	2,148263889	#н/д
2,169097222	5,929256	2,169097222	#н/д
2,189930556	5,928593	2,189930556	#н/д
2,210763889	5,929407	2,210763889	#н/д
2,231597222	5,672209	2,231597222	#н/д
2,252430556	5,796999	2,252430556	#н/д
2,273263889	5,572541	2,273263889	#н/д
2,294097222	5,771776	2,294097222	#н/д
2,31494213	5,521614	2,31494213	#н/д
2,335775463	5,630873	2,335775463	#н/д
2,356608796	5,53435	2,356608796	#н/д
2,37744213	5,628556	2,37744213	#н/д
2,398275463	5,575116	2,398275463	#н/д
2,419108796	5,675688	2,419108796	#н/д

2,43994213	5,356216	2,43994213	#н/д
2,460775463	5,019809	2,460775463	#н/д
2,481608796	5,571718	2,481608796	#н/д
2,50244213	5,424471	2,50244213	#н/д
2,523275463	4,974746	2,523275463	#н/д
2,544108796	5,105621	2,544108796	#н/д
2,56494213	4,882367	2,56494213	#н/д
2,585775463	5,156937	2,585775463	#н/д
2,606608796	4,882068	2,606608796	#н/д
2,62744213	5,054303	2,62744213	#н/д
2,648275463	5,034556	2,648275463	6,109157
2,669108796	4,835382	2,669108796	5,83853
2,689953704	5,057273	2,689953704	6,071649
2,710787037	4,504433	2,710787037	6,257731
2,73162037	4,725886	2,73162037	5,978051
2,752453704	4,707865	2,752453704	5,687498
2,773275463	4,474821	2,773275463	5,510823
2,794108796	4,595435	2,794108796	5,745687
2,814953704	4,846455	2,814953704	5,493782
2,835787037	4,349487	2,835787037	5,420269
2,85662037	4,623514	2,85662037	5,677184
2,877453704	4,35981	2,877453704	5,499728
2,898287037	4,580013	2,898287037	5,273839
2,91912037	4,233418	2,91912037	5,523314
2,939953704	4,033472	2,939953704	5,601781
2,960787037	3,875247	2,960787037	5,556786
3,0009375	4,083802	3,0009375	5,661055
3,023287037	3,564172	3,023287037	5,20255
3,04412037	3,788096	3,04412037	5,251106
3,064953704	3,721753	3,064953704	5,24757
3,12525463	3,615655	3,12525463	5,073968
3,166898148	3,759606	3,166898148	5,125836
3,208564815	3,402011	3,208564815	5,700113
3,250231481	3,312303	3,250231481	5,346854

3,291898148	3,384652	3,291898148	5,366998
3,333553241	2,754262	3,333553241	5,469024
3,416898148	2,657981	3,416898148	4,906005
3,458564815	2,661131	3,458564815	4,953602
3,500231481	2,683549	3,500231481	5,018805
3,541909722	2,315241	3,541909722	5,040889
3,583564815	2,470533	3,583564815	4,669607
3,625243056	2,895316	3,625243056	4,677879
3,666909722	3,167133	3,666909722	4,748203
3,708564815	2,959319	3,708564815	4,306628
3,750243056	3,334286	3,750243056	4,003834
3,791898148	3,10766	3,791898148	4,363513
3,833587963	3,058263	3,833587963	4,014596
3,875243056	2,723771	3,875243056	4,028898
3,916909722	2,612081	3,916909722	4,080404
3,958576389	2,666911	3,958576389	3,442322
4,00025463	2,121485	4,00025463	3,755342
4,040208333	2,498356	4,040208333	3,691836
4,063460648	2,796938	4,063460648	3,801793
4,084293981	3,222628	4,084293981	3,397573
4,105127315	3,059871	4,105127315	3,198539
4,125960648	3,144483	4,125960648	6,444279
4,146793981	2,912629	4,146793981	6,634366
4,167627315	2,798553	4,167627315	6,147713
4,188460648	2,657885	4,188460648	6,247666
4,209305556	2,724152	4,209305556	6,187882
4,230127315	2,72257	4,230127315	6,114422
4,250960648	2,797554	4,250960648	5,93613
4,271793981	3,035758	4,271793981	5,516821
4,332094907	2,726879	4,332094907	5,486897
4,373726852	2,984358	4,373726852	5,457622
4,415405093	2,487146	4,415405093	5,381355
4,457060185	2,364557	4,457060185	5,195489
4,498738426	2,894607	4,498738426	4,731695

4,540393519	3,171245	4,540393519	4,725901
4,623738426	3,579278	4,623738426	4,398326
4,665405093	3,227408	4,665405093	4,601714
4,707071759	2,769516	4,707071759	3,739007
4,74875	3,303736	4,74875	4,125107
4,810706019	2,604359	4,810706019	3,918031
4,833958333	2,666446	4,833958333	3,87917
4,854791667	2,436089	4,854791667	3,812785
4,875625	2,365274	4,875625	#н/д
4,896458333	3,052339	4,896458333	#н/д
4,917291667	3,356655	4,917291667	#н/д
4,938125	3,536857	4,938125	#н/д
4,958958333	3,254377	4,958958333	8,184118
4,979803241	2,647855	4,979803241	7,679708
5,000625	2,479576	5,000625	7,4381
5,021458333	3,108576	5,021458333	6,956085
5,042291667	2,733165	5,042291667	6,785896
5,063136574	2,161332	5,063136574	6,765765
5,083958333	2,115124	5,083958333	6,793903
5,104803241	2,617033	5,104803241	6,765692
5,125636574	2,554023	5,125636574	6,222265
5,146458333	2,480167	5,146458333	6,749342
5,167291667	2,715101	5,167291667	5,725123
5,188136574	2,735876	5,188136574	5,549073
5,208969907	2,725627	5,208969907	5,06423
5,229803241	2,575811	5,229803241	5,338056
5,250636574	2,212894	5,250636574	5,471513
5,271458333	2,233998	5,271458333	5,151946
5,292303241	2,213399	5,292303241	5,546629
5,313136574	2,766555	5,313136574	5,259173
5,333969907	2,52938	5,333969907	4,601235
5,354803241	2,933614	5,354803241	4,772757
5,375636574	3,028033	5,375636574	4,52338
5,396469907	3,41555	5,396469907	4,513873

5,417303241	3,193063	5,417303241	4,173473
5,438136574	3,138092	5,438136574	3,831865
5,458981481	2,893515	5,458981481	3,9247
5,479814815	3,43812	5,479814815	3,336164
5,500636574	3,013834	5,500636574	3,628655
5,521469907	3,132246	5,521469907	3,92468
5,542314815	3,046817	5,542314815	7,176596
5,563148148	3,078321	5,563148148	6,633468
5,583981481	2,615919	5,583981481	6,08785
5,604803241	2,751108	5,604803241	6,244726
5,625636574	2,824868	5,625636574	5,927638
5,646469907	2,517154	5,646469907	7,42588
5,667314815	1,988747	5,667314815	6,687646
5,688148148	2,344756	5,688148148	7,307424
5,708969907	3,218347	5,708969907	6,437283
5,729814815	2,85646	5,729814815	5,960429
5,750648148	2,43488	5,750648148	6,032461
5,771493056	2,792278	5,771493056	6,137525
5,811608796	2,982295	5,811608796	6,469258
5,833981481	2,991141	5,833981481	6,484286
5,854814815	3,201134	5,854814815	5,838443
5,875659722	2,563264	5,875659722	5,693282
5,896481481	2,42295	5,896481481	6,134384
5,917314815	2,673206	5,917314815	5,663696
5,938148148	2,654685	5,938148148	5,459308
5,958981481	2,747516	5,958981481	5,10138
5,979814815	2,548837	5,979814815	5,754516
6,019282407	2,525679	6,019282407	4,844961
6,060914352	2,808173	6,060914352	5,415936
6,102592593	2,547346	6,102592593	5,179432
6,144259259	2,485466	6,144259259	4,849273
6,185925926	2,707999	6,185925926	4,904904
6,227592593	3,150225	6,227592593	4,450798
6,269259259	2,60164	6,269259259	4,495592

6,310925926	2,741736	6,310925926	3,395906
6,352592593	2,407971	6,352592593	4,206471
6,394259259	1,757518	6,394259259	3,473652
6,435925926	2,549188	6,435925926	3,669552
6,477604167	3,543268	6,477604167	8,226236
6,519270833	3,739929	6,519270833	8,798409
6,5609375	3,384398	6,5609375	8,077047
6,602604167	3,33986	6,602604167	7,873461
6,644270833	2,969001	6,644270833	7,76911
6,6859375	2,726888	6,6859375	7,415218
6,727604167	2,846601	6,727604167	6,526413
6,769270833	2,275316	6,769270833	6,82022
6,8109375	2,198233	6,8109375	6,822738
6,852615741	3,320418	6,852615741	6,629892
6,894282407	3,746778	6,894282407	6,207532
6,935949074	3,943445	6,935949074	6,731417
6,977615741	3,363937	6,977615741	5,485258
7,019282407	2,890475	7,019282407	6,309702
7,060949074	3,262214	7,060949074	5,860365
7,102615741	2,954454	7,102615741	5,880978
7,144282407	2,153391	7,144282407	5,84526
7,185960648	2,378666	7,185960648	5,735903
7,227662037	2,9512	7,227662037	5,541218
7,269293981	3,551366	7,269293981	5,192567
7,310960648	3,218829	7,310960648	9,177272
7,352627315	3,12968	7,352627315	8,703374
7,394293981	2,593928	7,394293981	8,983128
7,435960648	2,394028	7,435960648	8,965026
7,477627315	2,21824	7,477627315	8,120359
7,519293981	3,134434	7,519293981	8,137175
7,560960648	2,766007	7,560960648	8,314145
7,602627315	2,512249	7,602627315	8,698809
7,644305556	2,630357	7,644305556	8,641541
7,685972222	2,416168	7,685972222	8,071362

7,727638889	2,661644	7,727638889	8,489848
7,769305556	2,79807	7,769305556	8,062885
7,810960648	2,972875	7,810960648	7,448528
7,852638889	2,41065	7,852638889	8,106278
7,894305556	2,495323	7,894305556	7,770178
7,935972222	2,934737	7,935972222	8,291804
7,977638889	2,847816	7,977638889	7,42387
8,01931713	3,15902	8,01931713	8,205845
8,060983796	3,667069	8,060983796	7,910364
8,102638889	3,282952	8,102638889	7,724277
8,14431713	2,793275	8,14431713	7,616001
8,185983796	2,452958	8,185983796	7,379514
8,227650463	2,630365	8,227650463	7,477386
8,26931713	2,729709	8,26931713	6,807137
8,310983796	2,807003	8,310983796	6,842168
8,352650463	2,620657	8,352650463	9,308379
8,39431713	3,13093	8,39431713	8,968605
8,436030093	2,627208	8,436030093	9,14572
8,477662037	2,251114	8,477662037	8,747909
8,51931713	2,646687	8,51931713	8,726134
8,56099537	3,079137	8,56099537	8,391006
8,602662037	2,563705	8,602662037	8,450653
8,644328704	3,087527	8,644328704	7,990832
8,68599537	2,590317	8,68599537	8,18066
8,727662037	2,968817	8,727662037	7,942457
8,769340278	3,12238	8,769340278	7,713663
8,811006944	3,547524	8,811006944	8,415674
8,852673611	4,297379	8,852673611	7,626019
8,894340278	4,161104	8,894340278	8,069413
8,936018519	5,030762	8,936018519	8,045293
8,977673611	5,637126	8,977673611	8,527124
9,019351852	5,298599	9,019351852	7,610373
9,061006944	4,932112	9,061006944	7,099549
9,102685185	5,059932	9,102685185	7,573514

9,144351852	4,555223	9,144351852	7,538042
9,186018519	4,263374	9,186018519	7,441958
9,227685185	4,428963	9,227685185	7,639114
9,269351852	4,978399	9,269351852	6,761559
9,311018519	5,80515	9,311018519	7,284119
9,352685185	5,421699	9,352685185	7,794689
9,394351852	5,041867	9,394351852	9,245949
9,436018519	4,245652	9,436018519	10,85137
9,477685185	4,627719	9,477685185	10,59078
9,519363426	5,043918	9,519363426	10,01031
9,561030093	5,134606	9,561030093	9,805758
9,602696759	4,84806	9,602696759	10,12079
9,644398148	3,838338	9,644398148	10,16871
9,686030093	4,53542	9,686030093	9,679668
9,727696759	4,92595	9,727696759	9,62599
9,769351852	4,769973	9,769351852	9,378336
9,811030093	5,17225	9,811030093	10,05829
9,852696759	4,80986	9,852696759	8,640112
9,894363426	5,148977	9,894363426	9,457369
9,936030093	4,672589	9,936030093	9,403243
9,977708333	4,188494	9,977708333	9,422581
10,019375	4,707168	10,019375	9,496971
10,06104167	4,721385	10,06104167	8,947212
10,10269676	4,783384	10,10269676	8,878696
10,144375	4,512029	10,144375	9,005632
10,18604167	4,258463	10,18604167	8,788143
10,22770833	4,029292	10,22770833	8,814812
10,269375	4,322887	10,269375	8,966389
10,31104167	4,08165	10,31104167	8,892519
10,35265046	4,958148	10,35265046	9,361223
10,394375	5,847916	10,394375	8,628824
10,43604167	6,32333	10,43604167	8,199861
10,47770833	6,265306	10,47770833	7,797361
10,51938657	5,801625	10,51938657	8,34846

10,56104167	5,735916	10,56104167	9,992476
10,60271991	5,45328	10,60271991	10,55201
10,64438657	5,33565	10,64438657	10,78163
10,68605324	5,542859	10,68605324	10,40103
10,72771991	5,033404	10,72771991	9,900923
10,76938657	4,913043	10,76938657	9,858058
10,81105324	5,076824	10,81105324	10,93733
10,85275463	4,666098	10,85275463	10,56453
10,89439815	4,554989	10,89439815	10,63292
10,93605324	4,729548	10,93605324	10,1317
10,97771991	4,089445	10,97771991	10,15173
11,01938657	3,973743	11,01938657	10,03745
11,06105324	4,564354	11,06105324	9,908442
11,10273148	4,511001	11,10273148	9,87036
11,14439815	5,108614	11,14439815	10,1959
11,18606481	4,441917	11,18606481	9,519185
11,22773148	4,69673	11,22773148	9,621466
11,26939815	4,755281	11,26939815	10,03958
11,31106481	4,227083	11,31106481	8,765776
11,35273148	4,190309		
11,39439815	4,416976		
11,43606481	4,467027		
11,47773148	5,739811		
11,51939815	5,667678		
11,56107639	5,399963		
11,60273148	5,114323		
11,64440972	5,493369		
11,68607639	4,566129		
11,72774306	4,238223		
11,76940972	4,256388		
11,81107639	3,624721		
11,85274306	4,105767		
11,89440972	5,08095		
11,93607639	5,102737		

11,97775463	5,012239		
-------------	----------	--	--

ФИГ. 8 показывает титр антитела при непрерывной подпитке питательными веществами с контролируемой обратной связью и при болюсной подпитке питательными веществами. Как видно на ФИГ. 8, на выработку антитела не влияет ни один из способов. В приведенных ниже Таблицах 4 и 5 показаны данные титра антитела при болюсной подпитке и контрольного титра антитела с обратной связью, соответсвенно, для ФИГ. 8.

Таблица 4: Данные титра антитела при болюсной подпитке для ФИГ. 8

ТАБЛИЦА 4: ДАННЫЕ ТИТРА АНТИТЕЛА ПРИ БОЛЮСНОИ ПОДПИТКЕ ДЛЯ ФИТ. 8				
Время болюсной подпитки	Титр Ab при	Титр нормализованного Ab при		
(прошедшие дни)	болюсной подпитке	болюсной подпитке		
	(мг/л)			
0	0,866	0,000721667		
0,831180556	2,362	0,001968333		
1,668321759	#н/д	#н/д		
2,614583333	32,606	0,027171667		
3,625787037	89,425	0,074520833		
4,531863426	148,02	0,12335		
5,726122685	301,873	0,251560833		
6,67775463	421,186	0,350988333		
7,65849537	519,165	0,4326375		
8,641284722	670,959	0,5591325		
9,714537037	#н/д	#н/д		
10,66090278	#н/д	#н/д		
11,64418981	#н/д	#н/д		
12,62819444	1158,82	0,965683333		

ТАБЛИЦА 5: ДАННЫЕ ТИТРА АНТИТЕЛА ПРИ ПОДПИТКЕ С ОБРАТНОЙ СВЯЗЬЮ ДЛЯ ФИГ. 8

Время подпитки при	Титр Ab при	Титр нормализованного Ab при
регуляции с обратной	подпитке с обратной	
связью	связью (мг/л)	подпитке с обратной связью
0	#н/д	#н/д
0,753171296	2,556	0,00213
1,749884259	15,36	0,0128
2,757048611	48,048	0,04004
3,710439815	105,017	0,087514167
4,757465278	205,669	0,171390833
5,814016204	#н/д	#н/д

6,735243056	423,018	0,352515
7,729918981	543,108	0,45259
8,767893519	683,645	0,569704167
9,742418981	795,66	0,66305
10,70917824	913,834	0,761528333
11,73123843	1034,809	0,862340833
12,79594907	1134,383	0,945319167

ФИГ. 9 показывает нормализованный процент ПТМ как результат концентрации глюкозы. Как видно из ФИГ. 9, наблюдается снижение ПТМ при снижении концентрации глюкозы от примерно 6 г/л - 8 г/л (заданное значение (33) для сбора при болюсной подпитке) до 5 г/л (заданное значение 2) до 3 г/л (заданное значение 1). Другими словами, снижение воздействия питательных веществ приводит к снижению ПТМ. Данные на ФИГ. 9 для нормированного процента ПТМ показаны в Таблице 6 ниже.

ТАБЛИЦА 6: ДАННЫЕ НОРМАЛИЗОВАННОГО % ПТМ ДЛЯ ФИГ. 9

Условие	% Посттрансляционных модификаций	Нормализованный % посттрансляционных модификаций
День -1 Увеличения 33	12,03	0,401
День 0 Увеличения 33	11,79	0,393
День 1 Увеличения 33	14,88	0,496
День 2 Увеличения 33	16,48	0,549333333
День 3 Увеличения 33	17,58	0,586
День 4 Увеличения 33	20,63	0,687666667
Сбор при болюсной подпитке	27,2	0,906666667

ФИГ. 10 представляет собой график, показывающий концентрации глюкозы при непрерывной подпитке питательными веществами с контролируемой обратной связью в соответствии с настоящим изобретением и при болюсной подпитке питательными веществами. Как видно из ФИГ. 10, способы настоящего изобретения способны обеспечить пониженные, устойчивые концентрации глюкозы. Данные на ФИГ. 10 для концентраций глюкозы показаны в Таблице 7 ниже.

Таблица 7: Данные концентрации глюкозы для ФИГ. 10

Время (час)	Контроль с обратной	Время (ч)	Концентрация
Контроль с	связью концентрации	Болюсная	глюкозы при
обратной связью	глюкозы (г/л)	подпитка	болюсной подпитке

			(г/л)
0	5,29985	0	3,9606
0,443888889	3,95717	0,443888889	3,92564
0,888055556	3,87786	0,888055556	3,82241
1,331944444	3,94245	1,554444444	3,84826
1,554444444	3,88536	1,998333333	3,78432
1,998333333	3,88327	2,442222222	3,81402
2,442222222	3,84436	4,382222222	3,83029
2,886111111	3,7485	5,33444444	3,75084
3,589444444	6,98909	6,226666667	3,80185
4,157777778	3,83584	7,119166667	3,72134
5,11	3,78798	8,011388889	3,68723
6,0025	3,7856	8,900833333	3,71741
6,894722222	3,73533	20,45444444	3,40678
7,787222222	3,68673	30,1175	4,74804
8,679444444	3,66978	31,01027778	4,80446
20,23388889	3,40307	31,90277778	4,76064
21,12222222	3,40884	32,79527778	4,69968
21,56944444	3,37754	33,68777778	4,7881
29,72194444	3,11293	43,51138889	4,50823
30,78583333	3,15921	44,40333333	4,44888
31,67833333	3,08833	45,295	4,56108
32,57111111	2,95089	46,18777778	4,44496
33,46333333	3,04687	47,07722222	4,43893
34,35305556	2,90941	56,46	4,27974
43,2875	2,92864	57,35194444	4,30659
44,17888889	2,81226	58,2444444	4,29294
45,07138889	2,85354	59,13638889	4,18843
45,96333333	2,83553	60,02611111	4,13743
46,85583333	2,79272	69,4075	4,95997
56,2355556	2,67934	71,02194444	4,9194
57,12805556	2,67136	71,46583333	4,41552
58,02	2,57063	71,90972222	4,38365
58,91194444	2,54624	72,35361111	4,42239

59,80472222	2,50303	73,02027778	4,31899
69,18361111	2,97555	73,46416667	4,37885
70,07583333	3,77294	73,90805556	4,3449
70,80111111	4,34847	74,35194444	4,23448
71,46583333	4,08935	75,01861111	4,24824
71,90972222	4,00212	75,4625	4,14202
72,35361111	3,99123	75,90638889	4,14761
72,7975	4,01331	76,35027778	4,07654
73,02027778	3,99191	77,01694444	4,04303
73,46416667	3,91424	77,46083333	4,10848
73,90805556	3,85688	77,90472222	4,02519
74,35194444	3,84475	78,34861111	3,97673
74,79583333	3,67941	79,01527778	3,97045
75,01861111	3,64752	79,45916667	3,99019
75,4625	3,66484	79,90305556	3,90772
75,90638889	3,6525	80,34694444	4,13212
76,35027778	3,55085	81,01361111	3,94071
76,79416667	3,45215	81,4575	3,93964
77,01694444	3,42771	81,90138889	3,93305
77,46083333	3,5292	82,34527778	3,90002
77,90472222	3,47243	83,01194444	3,78135
78,34861111	3,48275	83,45583333	3,80974
78,7925	3,44748	83,89972222	3,72092
79,01527778	3,51503	84,34361111	3,54584
79,45916667	3,40908	85,01055556	3,79766
79,90305556	3,4091	85,45472222	3,73607
80,34694444	3,40949	85,89861111	3,6327
80,79083333	3,37424	86,34277778	3,60241
81,01361111	3,66927	87,01	3,64506
81,4575	3,40708	87,45416667	3,4821
81,90138889	3,29053	87,89805556	3,49399
82,34527778	3,33054	88,34194444	3,50496
82,78916667	3,3244	89,00888889	3,53164
83,01194444	3,2331	89,45305556	3,31505

83,45583333	3,24332	89,89722222	3,27601
83,89972222	3,39759	90,34111111	3,33213
84,34361111	3,15861	91,00805556	3,43951
84,78777778	3,22317	91,45222222	3,38503
85,01055556	3,24632	91,89611111	3,1468
85,45472222	3,31019	92,34027778	3,4265
85,89861111	3,17534	93,00694444	3,24971
86,34277778	3,14291	93,45083333	3,19635
86,78694444	3,11793	93,895	3,27543
87,01	3,16349	94,33888889	3,09075
87,45388889	3,0751	95,24694444	2,49991
87,89805556	2,9869	95,69111111	2,57693
88,34194444	3,00619	96,135	2,5465
88,78583333	2,95103	96,57916667	4,02104
89,00888889	3,05399	97,02305556	3,98664
89,45305556	2,81784	97,46722222	3,95544
89,89694444	2,94564	97,91138889	3,86852
90,34111111	2,82913	98,35527778	3,66631
90,785	2,83378	99,0225	3,62051
91,00805556	2,91134	99,46638889	3,76868
91,45222222	3,09505	99,91027778	3,69577
91,89611111	2,86231	100,3544444	3,74638
92,34027778	2,95479	101,0216667	3,61072
92,78416667	2,84231	101,4655556	3,65232
93,00694444	2,81938	101,9094444	3,65673
93,45083333	2,79815	102,3536111	3,50981
93,895	2,83839	103,0205556	3,59905
94,33888889	2,93334	103,4647222	3,50056
95,02611111	2,94485	103,9086111	3,58028
95,69083333	3,01962	104,3525	3,51239
96,135	3,08518	105,0194444	3,35906
96,57888889	2,90996	105,4636111	3,46452
97,02305556	2,822	105,9077778	3,4217
97,46722222	2,60949	106,3516667	3,52777

97,91111111	2,98458	107,0186111	3,37968
98,35527778	2,99921	107,4627778	3,24786
98,79944444	2,89195	107,9066667	3,17432
99,02222222	2,88476	108,3508333	3,26832
99,46638889	2,80296	109,0180556	3,09402
99,91027778	2,81875	109,4619444	3,19621
100,3544444	2,88799	109,9061111	3,15208
		·	·
100,7986111	2,7446	110,3502778	3,08408
101,0213889	2,71513	111,0169444	3,12704
101,4655556	2,62124	111,4611111	3,09169
101,9094444	2,7469	111,905	3,13017
102,3536111	2,6358	112,3488889	3,10825
102,7977778	2,64662	113,0161111	3,05118
103,0205556	2,64383	113,4602778	2,96148
103,4644444	2,48012	113,9041667	3,13752
103,9086111	2,56149	114,3483333	3,07076
104,3525	2,61773	115,0152778	2,97416
104,7966667	2,58291	115,4594444	3,11854
105,0194444	2,49816	115,9033333	3,01764
105,4636111	2,46984	117,2877778	6,00949
105,9075	2,5008	117,7316667	5,96736
106,3516667	2,47808	118,1758333	5,92612
106,7955556	2,24744	118,6194444	5,64293
107,0186111	2,57076	119,2863889	5,49402
107,4625	2,47027	119,7302778	5,43498
107,9066667	2,43396	120,1741667	5,47254
108,3508333	2,43259	120,6180556	5,28723
108,7947222	2,4977	121,2847222	5,26741
109,0177778	2,38829	121,7286111	5,17114
109,4619444	2,34725	122,1725	5,22748
109,9058333	2,22657	122,6163889	5,18455
110,35	2,27469	123,2830556	5,05853
110,7941667	2,3519	123,7269444	5,09368
111,0169444	2,28667	124,1708333	5,06618

111,4608333	2,29553	124,6147222	4,92785
111,905	2,30401	125,2813889	4,95126
112,3488889	2,1131	125,7252778	5,12272
112,7930556	2,05542	126,1694444	5,04657
113,0158333	2,15201	126,6133333	4,89878
113,46	2,15773	127,28	4,89227
113,9041667	2,1462	127,7236111	4,83168
114,3480556	2,0095	128,1675	4,73809
114,7922222	2,00685	128,6113889	4,62723
115,015	2,08611	129,2783333	4,56662
115,4591667	2,23016	129,7222222	4,5413
115,9033333	1,89489	130,1661111	4,39996
116,3475	2,03546	130,61	4,36069
117,0672222	2,11907	131,2766667	4,47573
117,7316667	2,10383	131,7205556	4,19303
118,1755556	1,91726	132,1644444	4,17655
118,6194444	1,93228	132,6083333	4,24852
119,0636111	1,78201	133,275	4,07631
119,2863889	1,90199	133,7188889	4,01898
119,7302778	1,76972	134,1627778	3,97811
120,1741667	1,81882	134,6066667	3,7236
120,6180556	1,90338	135,2736111	3,78111
121,0619444	1,86254	135,7177778	3,82847
121,2847222	1,89595	136,1613889	3,56015
121,7286111	1,95022	136,6052778	3,56488
122,1725	2,03028	137,2722222	3,59907
122,6163889	2,02368	137,7158333	3,53736
123,0602778	1,80358	138,1597222	3,51143
123,2830556	1,86305	138,6036111	3,48144
123,7269444	1,68852	139,2705556	3,69714
124,1708333	2,16485	139,7144444	3,53598
124,6147222	2,68219	140,1583333	3,56975
125,0586111	3,84445	140,6022222	3,46682
125,2813889	3,75849	141,5097222	3,27107

125,7252778	3,05046	141,9536111	3,37317
126,1691667	1,60889	142,3975	3,19992
126,6133333	1,55251	142,8413889	3,29018
127,0569444	1,49635	143,285	5,29681
127,28	1,4625	143,7288889	5,42912
127,7238889	1,5599	144,1730556	5,31815
128,1675	1,411	144,6169444	5,49514
128,6113889	1,59737	145,2836111	5,31922
129,0555556	1,49927	145,7275	5,50698
129,2783333	1,55528	146,1713889	5,40168
129,7222222	1,68831	146,6152778	5,21572
130,1661111	1,65586	147,2819444	5,22277
130,61	1,69803	147,7258333	5,32597
131,0538889	1,51503	148,1697222	5,25509
131,2766667	1,62337	148,6133333	5,18307
131,7205556	1,56305	149,0683333	5,08164
132,1644444	1,53581	149,3183333	4,88397
132,6083333	1,39492	149,5683333	5,06794
133,0522222	1,35263	149,8183333	5,01549
133,275	1,2922	150,0686111	4,91031
133,7188889	1,21502	150,3186111	4,92284
134,1627778	1,38027	150,5686111	4,88071
134,6066667	1,30947	150,8186111	4,90576
135,0505556	1,3538	151,0686111	4,7337
135,2736111	1,36581	151,3186111	4,98071
135,7175	1,19768	151,5686111	4,66753
136,1613889	1,41395	151,8186111	4,73602
136,6052778	1,08014	152,2625	4,67663
137,0494444	1,32496	152,7066667	4,66436
137,2719444	1,34268	153,1505556	4,79716
137,7158333	1,45098	153,5947222	4,70976
138,16	1,3088	154,0388889	4,68658
138,6038889	1,39873	154,4827778	4,45627
139,0475	1,36488	154,9269444	4,69575

139,2705556	1,19001	155,3711111	4,61841
139,7144444	1,40293	156,0380556	4,58039
140,1583333	1,41103	156,4822222	4,6775
140,6022222	1,5462	156,9263889	4,4771
141,2888889	2,01927	157,3702778	4,35384
141,9536111	2,42777	158,0372222	4,4401
142,3975	2,63074	158,4811111	4,56737
142,8413889	2,83209	158,9252778	4,42704
143,285	2,72224	159,3691667	4,07445
143,7288889	2,63608	160,0361111	4,36575
144,1730556	2,69195	160,4802778	4,13995
144,6169444	2,71345	160,9241667	4,22379
145,0608333	2,50984	161,3680556	4,17469
145,2836111	2,6369	162,035	4,28975
145,7275	2,60541	162,4788889	4,13539
146,1713889	2,67274	162,9230556	3,87281
146,6152778	2,69351	163,3672222	4,87836
147,0591667	2,50699	164,0338889	5,2242
147,2819444	2,68272	164,4780556	5,24807
147,7258333	2,80848	165,165	5,03418
148,1697222	2,71963	165,8297222	4,81739
148,6133333	3,27574	166,2736111	4,73886
152,2625	1,84522	166,7177778	4,87246
152,7066667	2,02054	167,1616667	4,77461
153,1505556	1,89572	167,6058333	4,68469
153,5947222	1,7493	168,2725	4,5802
154,0386111	1,82994	168,7166667	4,5102
154,4827778	2,03299	169,1608333	4,70917
154,9269444	1,84201	169,6047222	4,54906
155,3708333	2,33961	170,2716667	4,58545
155,815	2,17287	170,7155556	4,46504
156,0380556	2,09251	171,1597222	4,47254
156,4822222	2,00326	171,6036111	4,42642
156,9263889	2,00972	172,2705556	4,48492

157,3702778	1,95632	172,7147222	4,27087
157,8144444	1,85693	173,1586111	4,16092
158,0372222	1,87511	173,6027778	4,23464
158,4811111	2,25587	174,2697222	4,18793
158,9252778	2,41394	174,7138889	4,17626
159,3691667	2,27275	175,1580556	4,12183
159,8133333	2,33431	175,6022222	4,31591
160,0361111	2,11631	176,2691667	3,96654
160,48	2,15315	176,7130556	3,86951
160,9241667	2,21482	177,1572222	4,05681
161,3680556	2,10691	177,6013889	3,80757
161,8119444	1,9879	178,2683333	3,88444
162,0347222	2,07513	178,7122222	3,7184
162,4788889	2,09918	179,1563889	3,76801
162,9230556	2,045	179,6002778	3,65193
163,3669444	2,0579	180,2672222	3,8665
163,8111111	1,9786	180,7113889	3,60753
164,0338889	2,04415	181,1552778	3,56228
164,4780556	2,11519	181,5994444	3,51562
164,9219444	2,04256	182,2663889	3,53538
165,8297222	1,92716	182,7105556	3,58554
166,2736111	1,74054	183,1544444	3,52299
166,7177778	2,17775	183,5986111	3,50055
167,1616667	2,21902	184,2655556	3,35449
167,6055556	2,23581	184,7097222	3,15678
168,0497222	2,1295	185,1536111	3,49221
168,2725	2,06408	185,5977778	3,31856
168,7166667	1,95822	186,2644444	3,1794
169,1608333	1,87785	186,7086111	3,261
169,6047222	2,38464	187,1525	3,26585
170,0486111	2,52549	187,5963889	3,11678
170,2716667	2,48755	188,0405556	3,29677
170,715556	2,39386	188,4847222	3,13789
171,1594444	2,26082	188,9288889	3,04174

171,6036111	2,10124	189,8586111	2,84437
172,0477778	2,04631	190,7886111	2,97215
172,2705556	1,96783	191,7183333	2,74657
172,7144444	2,03789	192,6480556	2,85061
173,1586111	1,96485	193,5780556	2,71859
173,6025	1,75977	194,5077778	2,64369
174,0466667	2,13635	195,4377778	2,23807
174,2697222	2,35361	196,3675	2,16861
174,7138889	2,19967	197,2975	2,18502
175,1577778	2,2276	198,2275	2,02487
175,6019444	2,26713	199,1572222	2,00279
176,0461111	2,27076	200,0861111	2,05927
176,2688889	2,08234	201,0158333	1,77877
176,7130556	2,05613	201,9455556	3,21063
177,1569444	1,98094	202,8752778	5,70505
177,6011111	2,09971	203,8047222	5,55309
178,0452778	2,13739	204,7341667	5,62934
178,2683333	1,81014	205,6636111	5,40796
178,7122222	2,33795	206,5933333	5,26706
179,1561111	2,27909	207,5230556	5,24844
179,6002778	2,13411	208,4522222	5,04861
180,0441667	2,28842	208,8961111	4,9106
180,2672222	2,3228	209,3402778	4,83827
180,7113889	2,20826	209,7844444	5,05838
181,1552778	2,1662	210,2286111	4,83412
181,5991667	1,97546	210,6725	4,76257
182,0433333	2,11621	211,1166667	4,64707
182,2661111	2,07917	211,7836111	4,80408
182,7102778	1,95	212,2275	4,53231
183,1544444	2,00555	212,6716667	4,68255
183,5983333	2,1972	213,1155556	4,661
184,0425	1,99805	213,7827778	4,53894
184,2652778	1,90735	214,2266667	4,38914
184,7094444	2,07147	214,6705556	4,51892

185,1536111	2,30457	215,1147222	4,35161
185,5975	1,94533	215,7816667	4,2933
186,0416667	2,04383	216,2255556	4,2022
186,2644444	2,02201	216,6697222	4,14232
186,7086111	2,00486	217,1136111	4,19824
187,1525	1,87491	217,7808333	3,98641
187,5963889	1,71041	218,225	4,17967
188,0405556	2,27353	218,6688889	4,12755
188,4844444	2,27361	219,1130556	3,98162
188,9286111	2,21939	219,7797222	4,18885
189,6158333	2,32112	220,2238889	3,99614
190,5455556	2,23684	220,6680556	3,88445
191,4752778	2,00438	221,1122222	4,00875
192,4052778	2,08773	221,7794444	4,02466
193,335	1,98721	222,2233333	4,92433
194,2647222	2,34499	222,6675	5,31792
195,1947222	2,07045	223,1116667	5,10258
196,1247222	1,87379	223,7786111	5,18651
197,9844444	2,44455	224,2227778	5,33129
198,9144444	1,43529	224,6669444	5,31647
199,8438889	2,10835	225,1111111	5,22186
200,7730556	2,16165	225,7780556	5,09756
201,7027778	2,03911	226,2219444	5,0919
202,6325	2,02224	226,6661111	5,09598
203,5619444	2,04709	227,1102778	5,20148
204,4916667	1,74866	227,7775	5,27139
205,4205556	2,42807	228,2213889	5,17647
206,3502778	2,3646	228,6655556	4,97104
207,28	2,29919	229,1097222	4,95102
208,2313889	2,37703	229,7766667	5,02617
208,8961111	2,39499	230,2208333	4,89217
209,3402778	1,97051	230,6647222	5,06075
209,7841667	2,24512	231,1088889	4,91127
210,2283333	2,25347	231,7758333	4,75924

210,6725	2,08371	232,6836111	4,86344
211,1166667	2,15365	233,1275	4,66869
211,5605556	2,29691	233,5713889	4,77352
211,7833333	2,03092	234,0155556	4,63601
212,2275	1,97129	234,4597222	4,71014
212,6716667	1,9721	234,9038889	4,69685
213,1155556	2,07924	235,3477778	4,83778
213,5597222	1,93054	235,7919444	4,73268
213,7825	2,09871	236,2358333	4,72232
214,2266667	2,01653	236,6797222	4,70191
214,6705556	1,97157	237,1238889	4,61924
215,1147222	2,08205	237,7908333	5,82279
215,5586111	2,20945	238,2347222	5,95289
215,7816667	1,90401	238,6788889	5,7376
216,2255556	2,25764	239,1227778	5,39835
216,6697222	2,20062	239,7897222	5,55047
217,1136111	2,38191	240,2336111	5,45566
217,5577778	2,30704	240,6777778	5,56575
217,7808333	2,3666	241,1219444	5,37954
218,225	2,21814	241,7888889	5,28663
218,6688889	2,22546	242,2330556	5,22091
219,1130556	2,29399	242,6769444	5,31419
219,5569444	2,35247	243,1211111	5,269
219,7797222	2,36244	243,7880556	5,33359
220,2238889	2,42202	244,2322222	5,20919
220,6677778	3,90842	244,6763889	5,16646
221,1119444	3,226	245,1202778	4,87647
221,5561111	3,24104	245,7872222	5,19865
221,7791667	3,44121	246,2313889	5,26332
222,2233333	2,10021	246,6755556	5,27455
222,6675	1,65588	247,1194444	4,9051
223,1116667	2,00054	247,7863889	4,96193
223,5555556	2,2584	248,2302778	4,95473
223,7786111	2,18337	248,6744444	4,87265

224,2227778	2,22002	249,1186111	4,88933
224,6666667	2,02996	249,7855556	4,95339
225,1108333	2,11005	250,2297222	4,91535
225,555	1,98403	250,6738889	4,8415
225,7780556	1,97535	251,1180556	4,73406
226,2219444	2,1047	251,785	4,75863
226,6661111	2,14528	252,2291667	4,83177
227,1102778	2,11167	252,6733333	4,73776
227,5541667	1,96546	253,1175	4,80804
227,7772222	2,1583	253,7841667	4,47607
228,2213889	2,09114	254,2283333	4,44379
228,6655556	2,03119	254,6722222	4,61578
229,1097222	2,03169	255,1163889	4,35294
229,5536111	1,805	255,7833333	4,35565
229,7766667	1,75306	256,4702778	4,63822
230,2208333	2,03753	257,4	4,1795
230,6647222	1,98862	258,3291667	4,3277
231,1088889	1,85836	259,2588889	4,10085
231,5530556	1,81241	260,1886111	4,15495
231,7758333	1,83977	261,1183333	3,90911
232,4627778	1,76471	262,0477778	3,81073
233,1275	1,63967	262,9772222	3,87842
233,5713889	1,79819	263,9061111	5,04643
234,0155556	1,74429	264,8347222	4,97527
234,4594444	1,77757	265,7641667	4,93942
234,9036111	1,82093	266,6936111	4,81825
235,3477778	1,75825	267,6225	4,80283
235,7919444	1,71644	268,2875	4,75164
236,2358333	1,64919	268,7313889	4,93642
236,6797222	1,65067	269,1755556	4,75401
237,1238889	1,59211	269,6197222	4,51092
237,5677778	2,09602	270,2866667	4,5984
237,7905556	2,0281	270,7308333	4,54899
238,2347222	2,0728	271,1747222	4,70999

238,6786111	1,96003	271,6188889	4,4307
239,1227778	2,13435	272,2858333	4,3134
239,5666667	2,14529	272,7297222	4,46242
239,7897222	2,12039	273,1738889	4,44403
240,2336111	2,1226	273,6177778	4,31874
240,6777778	2,17822	274,2847222	4,43482
241,1216667	2,09458	274,7286111	4,22428
241,5658333	1,93963	275,1727778	4,50794
241,7888889	1,78058	275,6166667	4,37905
242,2327778	1,92457	276,2836111	4,28183
242,6769444	2,54728	276,7277778	4,36293
243,1208333	2,7696	277,1716667	4,06209
243,565	2,96879	277,6155556	4,27271
243,7880556	3,0983	278,2825	4,05231
244,2322222	2,44977	278,7266667	4,19835
244,6761111	3,0513	279,1705556	4,10201
245,1202778	4,46037	279,6147222	4,0479
245,5641667	3,64992	280,2816667	4,14879
245,7872222	2,63717	280,7258333	4,01384
246,2311111	2,23246	281,1697222	3,94503
246,6752778	1,96177	281,6138889	3,82963
247,1194444	1,9733	282,2808333	4,01967
247,5633333	,	282,725	4,08182
	1,92291	-	·
247,7863889	1,9421	283,1688889	3,83589
248,2302778	2,29655	283,6130556	3,8807
248,6744444	2,15675	284,28	3,60671
249,1186111	2,06017	284,7238889	3,74206
249,5625	1,83718	285,1680556	3,61191
249,7855556	2,26354	285,6119444	3,64284
250,2297222	2,15135	286,2788889	3,49373
250,6736111	2,13613	286,7227778	3,75384
251,1177778	2,01012	287,1666667	5,50193
251,5619444	1,91997	287,6108333	5,36619
251,785	2,04497	288,2777778	5,44722

1,76215	288,7219444	5,23718
,	<u> </u>	5,48611
*		5,29237
		5,09807
2,31233	290,7211111	5,27902
2,25077	291,165	5,21127
2,41304	291,8522222	4,93468
2,32947	292,5169444	5,3445
2,27885	292,9611111	4,9385
1,94173	293,4052778	5,0282
2,39855	293,8491667	4,92491
1,97358	294,2933333	4,94234
2,13599	294,7375	5,14301
2,20439	295,1813889	5,09006
2,07312	295,6252778	4,97926
2,35689	296,2922222	4,79825
2,16814	296,7363889	4,98856
2,00509	297,1802778	4,64638
2,06753	297,6241667	4,83557
1,85036	298,2913889	4,66544
2,46909	298,7352778	4,46933
2,44871	299,1794444	4,42644
2,44656	299,6233333	4,40905
2,48505	300,2902778	4,48562
2,63435	300,7344444	4,29635
3,24711	301,1786111	4,21742
2,23888	301,6227778	4,5645
2,07904	302,2894444	4,37116
2,21563	302,7333333	4,30076
1,91896	303,1775	4,357
2,09629	303,6216667	4,19275
2,04491	304,2888889	4,3476
1,96894	304,7327778	4,12702
2,10447	305,1766667	4,22847
	1,91976 2,17963 2,49015 2,31233 2,25077 2,41304 2,32947 2,27885 1,94173 2,39855 1,97358 2,13599 2,20439 2,07312 2,35689 2,16814 2,00509 2,06753 1,85036 2,46909 2,44871 2,44656 2,48505 2,63435 3,24711 2,23888 2,07904 2,21563 1,91896 2,09629 2,04491 1,96894	1,91976 289,1661111 2,17963 289,61 2,49015 290,2769444 2,31233 290,7211111 2,25077 291,165 2,41304 291,8522222 2,32947 292,5169444 2,27885 292,9611111 1,94173 293,4052778 2,39855 293,8491667 1,97358 294,2933333 2,13599 294,7375 2,20439 295,1813889 2,07312 295,6252778 2,35689 296,2922222 2,16814 296,7363889 2,00509 297,1802778 2,06753 297,6241667 1,85036 298,2913889 2,46909 298,7352778 2,44871 299,1794444 2,44656 299,6233333 2,48505 300,2902778 2,63435 300,7344444 3,24711 301,1786111 2,23888 301,6227778 2,09629 303,6216667 2,09629 303,6216667 2,04491 304,2888889 1,96894 304

272,7297222	1,98481	305,6208333	4,14018
273,1736111	1,88517	306,2877778	3,91622
273,6177778	2,02339	306,7319444	4,0101
274,0616667	2,1536	307,1758333	4,08905
274,2844444	1,94488	307,62	3,69736
274,7286111	2,09537	308,2866667	3,89877
275,1725	1,94546	308,7308333	3,91969
275,6166667	1,97124	309,1747222	3,95032
276,0605556	2,10351	309,6188889	3,83547
276,2833333	2,15169	310,2858333	5,15943
276,7275	2,06851	310,73	4,85061
277,1713889	1,95511	311,1738889	4,90129
277,6155556	2,17411	311,6177778	4,69627
278,0594444	1,91116	312,2847222	4,98669
278,2825	1,89503	312,7286111	4,99629
278,7263889	2,13133	313,1727778	4,92192
279,1705556	2,23375	313,6166667	4,91592
279,6147222	2,07922	314,2838889	4,79179
280,0588889	2,15941	314,7277778	4,82191
280,2816667	2,10306	315,1719444	4,62895
280,7258333	2,09977	315,6158333	4,68028
281,1697222	1,90922	316,5236111	4,39498
281,6138889	1,97935	316,9675	4,51145
282,0577778	1,98323	317,4116667	4,64399
282,2808333	2,13178	317,8558333	4,35246
282,725	2,05535	318,5230556	4,39085
283,1688889	2,17687	318,9669444	4,51255
283,6130556	2,10914	319,4111111	4,26767
284,0569444	1,88863	319,855	4,41338
284,28	1,90439	320,5225	4,04934
284,7238889	2,27687	320,9663889	4,54584
285,1680556	2,27819	321,4105556	4,21321
285,6119444	1,97363	321,8547222	4,26114
286,0561111	2,474	322,5219444	4,16462

286,2788889	2,08995	322,9658333	4,03369
286,7227778	2,25392	323,41	4,07753
287,1666667	2,16887	323,8541667	4,06638
287,6108333	2,53164	324,5213889	4,03094
288,0547222	2,19634	324,9652778	4,01644
288,2777778	2,18478	325,4094444	4,21972
288,7219444	2,05544	325,8536111	4,08692
289,1661111	2,28481	326,5205556	3,84686
289,61	2,18665	326,9644444	4,04213
290,0538889	2,44092	327,4086111	3,77223
290,2769444	2,30768	327,8527778	3,9225
290,7208333	2,09997	328,52	3,99757
291,165	2,13653	328,9638889	3,76221
291,6091667	2,29461	329,4080556	3,68814
292,5166667	1,89174	329,8522222	3,89506
293,405	3,35168	330,5194444	3,79475
293,8491667	3,81949	330,9636111	3,69956
294,2933333	1,83112	331,4075	3,64703
294,7372222	1,8642	331,8516667	3,57235
295,1813889	2,16381		
295,6252778	2,17022		
296,0691667	1,98928		
296,2919444	1,90433		
296,7361111	2,24558		
297,1802778	2,07294		
297,6241667	2,00742		
298,0680556	2,04407		
298,2911111	1,82856		
298,7352778	2,18444		
299,1791667	2,38328		
299,6233333	1,94764		
300,0675	2,35273		
300,2902778	2,10771		
300,7344444	2,18582		

301,1783333	2,28062	
301,6225	2,18726	
302,0666667	2,01366	
302,2894444	2,08052	
302,7333333	2,115	
303,1775	2,1862	
303,6213889	2,23513	
304,0655556	1,88516	
304,2886111	2,01393	
304,7327778	2,13416	
305,1766667	1,95372	
305,6205556	2,34303	
306,0647222	2,20315	
306,2877778	2,26925	
306,7316667	2,10713	
307,1758333	2,12814	
307,62	2,36701	
308,0636111	2,16943	
308,2866667	1,82948	
308,7308333	2,26683	
309,1747222	2,1141	
309,6188889	2,49	
310,0630556	2,27842	
310,2858333	2,20096	
310,73	2,17509	
311,1738889	2,15439	
311,6177778	2,33172	
312,0616667	2,19789	
312,2847222	2,15463	
312,7286111	2,27852	
313,1725	1,99785	
313,6166667	1,96589	
314,0608333	2,49224	
314,2836111	2,40053	

314,7277778	2,37773	
315,1716667	2,46324	
315,6158333	2,55963	
316,3027778	2,42319	
317,4113889	3,20763	
317,8558333	4,52655	
318,2997222	2,16813	
318,5227778	1,901	
318,9669444	1,79215	
319,4111111	2,46673	
319,855	2,19232	
320,2991667	2,22674	
320,5222222	2,16041	
320,9663889	2,30146	
321,4102778	2,35759	
321,8544444	2,06147	
322,2986111	2,2465	
322,5216667	1,90065	
322,9658333	2,42279	
323,41	2,29138	
323,8541667	2,21841	
324,2980556	2,42145	
324,5211111	2,35336	
324,9652778	2,25286	
325,4094444	2,25769	
325,8536111	2,31652	
326,2975	2,24343	
326,5205556	2,28121	
326,9644444	2,32713	
327,4086111	2,38217	
327,8527778	2,14074	
328,2966667	2,30334	
328,5197222	2,2444	
328,9638889	2,10546	
,/	<i>)</i>	

329,4080556	2,16617	
329,8522222	2,30982	
330,2961111	2,12672	
330,5191667	2,19646	
330,9633333	1,81375	
331,4075	2,20783	

Пример 2: Сравнение контроля с обратной связью и стратегии болюсной подпитки

Материалы и способы

Клетки культивировали под контролем обратной связи и с использованием стратегии болюсной подпитки, как описано выше.

Результаты

На фигуре 11 показаны различия ПТМ в клетках, культивируемых с использованием обратной связи и стратегии болюсной подпитки. Каждая пара колонок соответствует дню исследования серии. В каждой паре колонок левая колонка соответствует данным контроля с обратной связью, а правая колонка соответствует данным болюсной подпитки. Подтверждали, что стратегия контроля с обратной связью (левая колонка в каждой паре колонок) снижала уровень % ПТМ в последующем эксперименте по сравнению со стратегией болюсной подпитки (правая колонка в каждой паре колонок). Контролируя заданное значение концентрации питательных веществ на постоянном уровне, надежно поддерживали % ПТМ в течение производства. % ПТМ также снижался относительно стратегии болюсной подпитки, что, таким образом, демонстрирует возможность контроля качества антитела благодаря контролю с обратной связью посредством рамановской спектроскопии.

Описанные контролируемые обратной связью системы культивирования и способы обеспечивают многокомпонентный анализ без удаления образца. Данные, полученные в реальном времени, делают возможным автоматический контроль с обратной связью для непрерывного добавления питательных веществ. Сниженные установившиеся концентрации активных питательных веществ в биореакторе приводят к уровню ПТМ антитела, на 50% более низкому, чем при стандартной болюсной подпитке, что, таким образом, улучшает качество и постоянство продукта.

Хотя в изложенном выше описании настоящее изобретение описано со ссылкой на некоторые варианты его осуществления, и множество деталей использовано в иллюстративных целях, специалисту в этой области будет очевидно, что изобретение предусматривает дополнительные варианты осуществления, и что некоторые из деталей, представленных в настоящем описании, могут значительно варьироваться без отклонения от основных принципов настоящего изобретения.

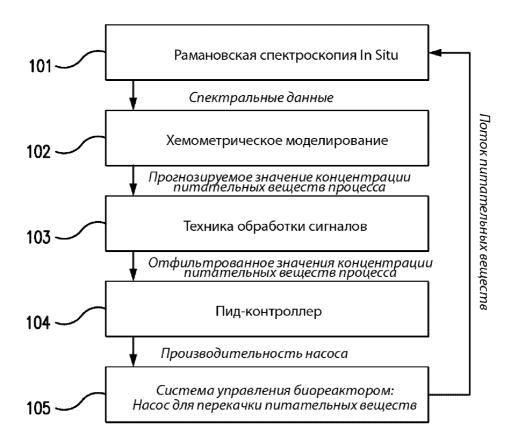
Все ссылки, процитированные в настоящем описании, включены в него в полном объеме. Настоящее изобретение может быть воплощено в других конкретных формах без

отклонения от его сущности или существенных признаков, и, соответственно, следует ссылаться на прилагаемую формулу изобретения, а не на предшествующее описание, как на указание объема изобретения.

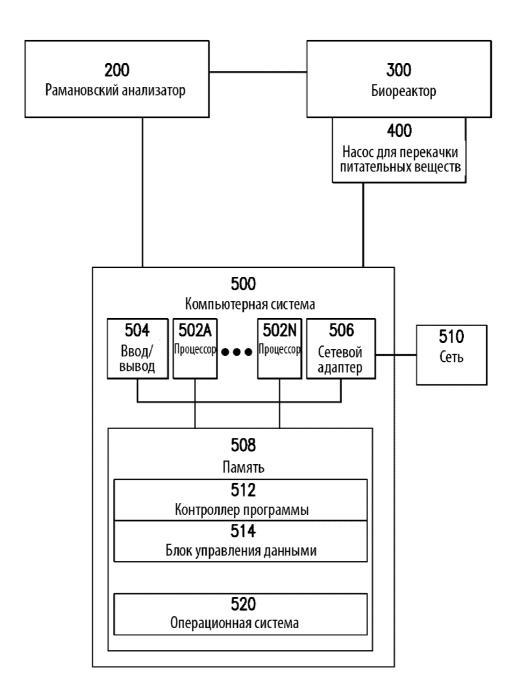
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ контроля условий среды для культивирования клеток в процессе производства биопродкута, включающий:

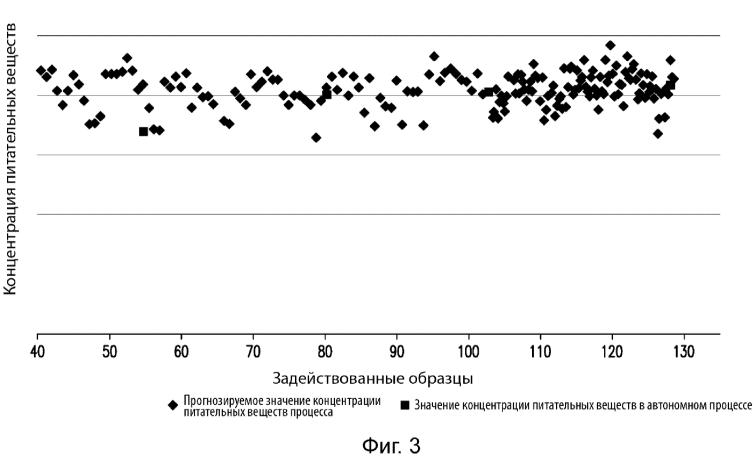
обеспечение среды для культивирования клеток, содержащей клетку, способную культивировать биопродукт;

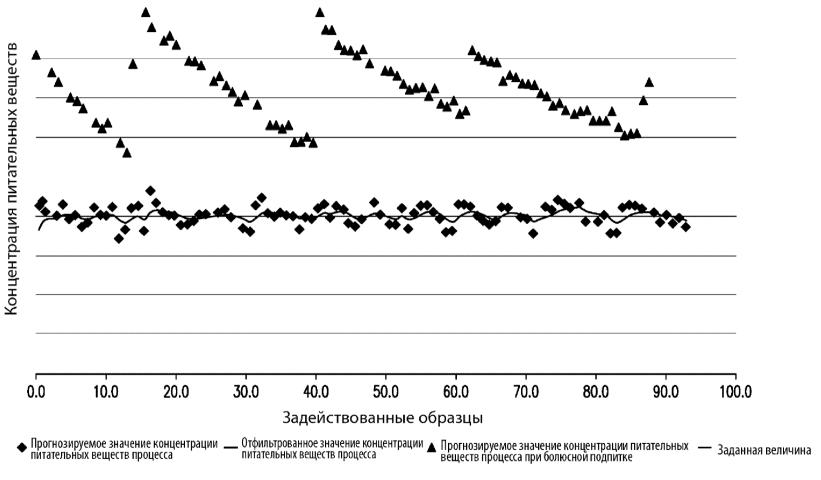

количественную оценку количества или уровня концентрации одного или более переменных процесса в среды для культивирования клеток с использованием рамановской спектроскопии in situ в процессе получения биопродкута; и

регулирование количества или уровня концентрации одного или более переменных процесса в среды для культивирования клеток в соответствии с предварительно определенном заданном значении в процессе получения биопродкута для модулирования посттрансляционных модификаций биопродукта.

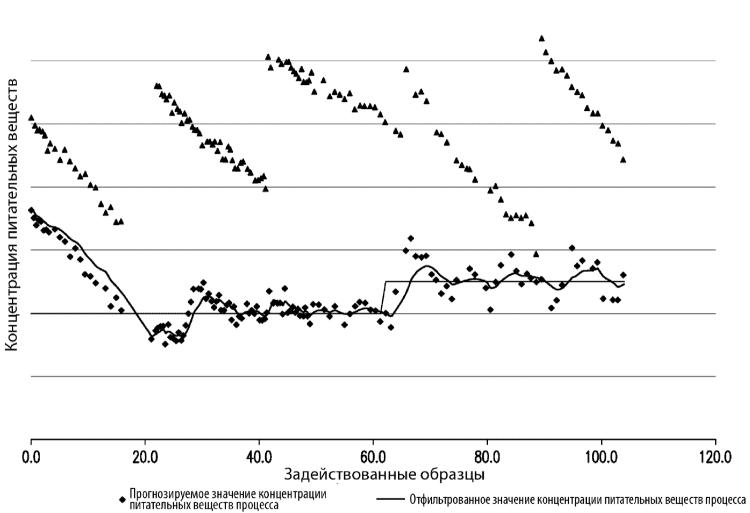

- 2. Способ по п. 1, где посттрансляционные модификации включают более одной посттрансляционной модификации.
- 3. Способ по любому из предыдущих пунктов, где по меньшей мере одну посттрансляционную модификацию выбирают из группы, состоящей из гликирования, гликозилирования, ацетилирования, фосфорилирования, амидирования, дериватизации известными защитными/блокирующими группами, протеолитического расщепления, модификации не встречающимися в природе аминокислотами и их комбинаций.
- 4. Способ по любому из предыдущих пунктов, где одна или более переменных процесса включают компонент среды для культивирования клеток, выбранный из группы, состоящей из компонента, добавленного в среду для культивирования клеток, субстанции, выбранной из клетки, клеточного компонента, присутствующего после гибели клетки и их комбинаций.
- 5. Способ по любому из предыдущих пунктов, где одна или более переменных процесса включают аналит, выбранный из группы, состоящей из кислоты, агентов для модуляции вязкости, минокислоты, аммония, антитела, основания, фактора роста клетки, клеточного дебриса, кофактора, цитокина, количества мертвых клеток, фруктозы, галактозы, глюкозы, глутамина, фактора роста, лактата, лактозы, мальтозы, метаболита, азота, нуклеиновой кислоты, а питательного вещества, осмоляльности, кислорода, рН, буфера рН,полипептида, белка, соли, сахара, количества жизнеспособных клеток, витамина, витамина А, витамина В, витамина Е и их комбинаций.
 - 6. Способ по п. 5, где сахар включает фруктозу, галактозу и/или глюкозу.
- 7. Способ по п. 6, где предварительно определенное заданное значение включает концентрацию глюкозы от примерно 0,5 г/л до примерно 10 г/л.
 - 8. Способ по любому из предыдущих пунктов, где биопродукт включает белок.
- 9. Способ по любому из предыдущих пунктов, где биопродукт включает гликопротеин.
- 10. Способ по любому из предыдущих пунктов, где биопродукт включает слитый белок.

- 11. Способ по любому из предыдущих пунктов, где биопродукт включает антитело или его антигенсвязывающий фрагмент.
- 12. Способ по любому из предыдущих пунктов, где биопродукт включает модифицированное антитело.
- 13. Способ по любому из предыдущих пунктов, где клетка включает клетку млекопитающего.
- 14. Способ по п. 13, где клетка млекопитающего включает клетку яичника китайского хомячка.
- 15. Способ по любому из предыдущих пунктов, который поддерживает посттрансляционнии модификации биопродкута до 1,0-20 процентов.
- 16. Способ по любому из предыдущих пунктов, где количественное определение одного или более аналитов проводят непрерывно или периодически.
- 17. Способ по любому из предыдущих пунктов, где количественное определение количества или уровня концентрации одного или более переменных процесса проводят с интервалами.
- 18. Способ по любому из предыдущих пунктов, где количественное определение количества или уровня концентрации одного или более переменных процесса проводят с 5 минутными, 10 минутными или 15 минутными интервалами.
- 19. Способ по любому из предыдущих пунктов, где количественное определение количества или уровня концентрации одного или более переменных процесса проводят ежечасно.
- 20. Способ по любому из предыдущих пунктов, где количественное определение количества или уровня концентрации одного или более переменных процесса проводят по меньшей мере ежедневно.
- 21. Способ по любому из предыдущих пунктов, где количественное определение количества или уровня концентрации одного или более переменных процесса проводят автоматически.
- 22. Способ по любому из предыдущих пунктов, где проводят количественное определение по меньшей мере двух, по меньшей мере трех или по меньшей мере четырех разных переменных процесса.
- 23. Способ по любому из предыдущих пунктов, который осуществляют в биореакторе, необязательно где биореактор имеет объем от примерно 2 л до примерно 10,000 л.


По доверенности



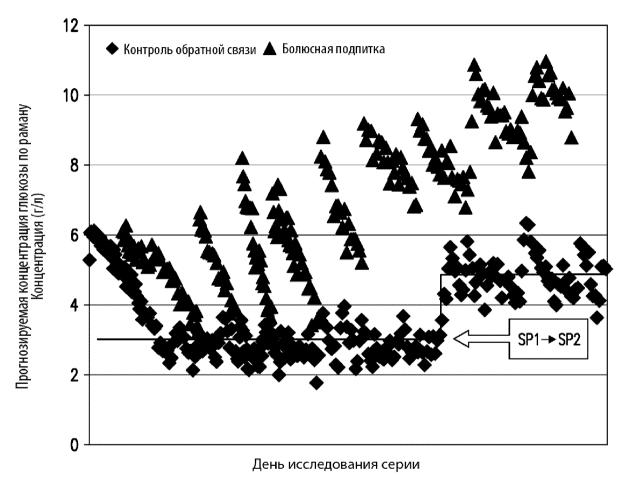
Фиг. 1



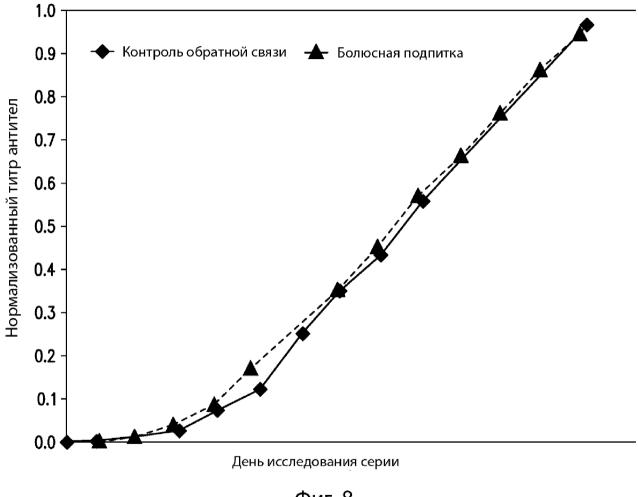
Фиг. 2

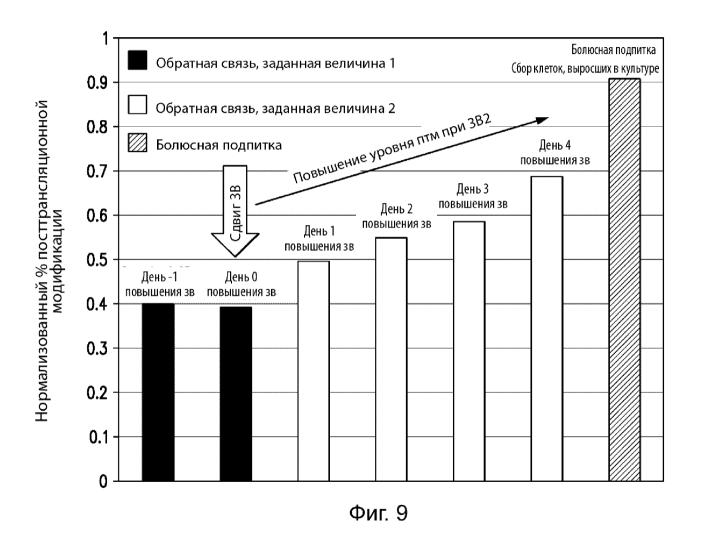


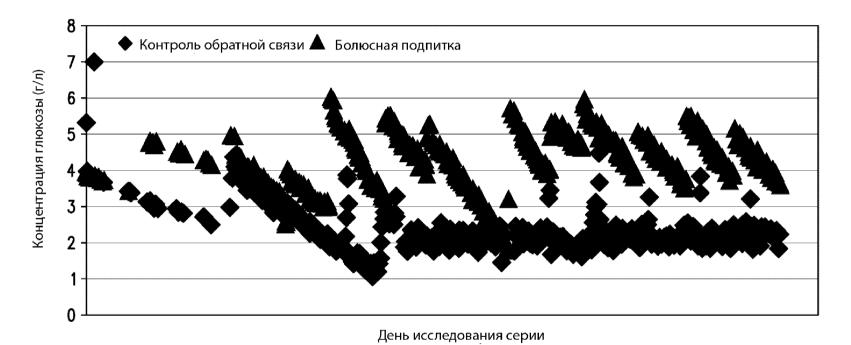
Фиг. 4



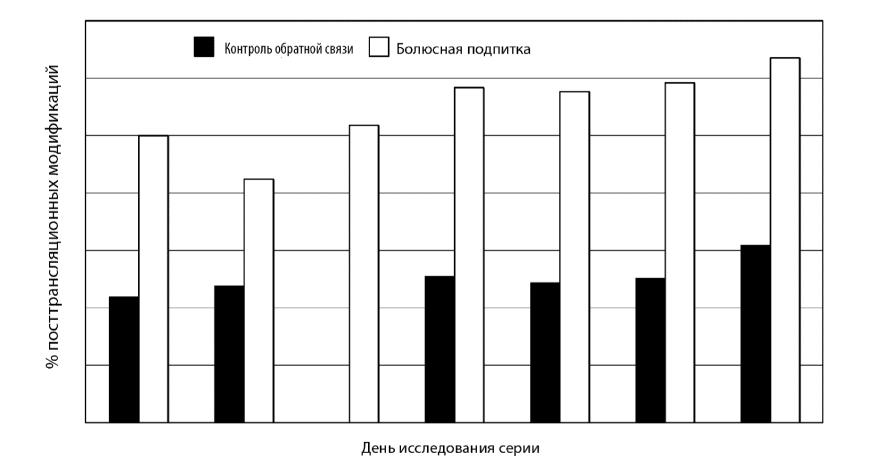
▲ Прогнозируемое значение концентрации питательных — Заданная величина веществ процесса при болюсной подпитке


[™] Фиг. 5


Фиг. 6



Фиг. 7



Фиг. 8

Фиг. 10

Фиг. 11

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(статья 15(3) ЕАПК и правило 42 Патентной инструкции к ЕАПК)

	Номер	евраз	зийско	рй з	заявк	и:
--	-------	-------	--------	------	-------	----

202390190

	Α.	КЛАС	СИФИКАЦИЯ	ПРЕДМЕТА	изобретения:
i	1	COIN	21/65 (2006 01)	1	

C12M 1/00 (2006.01)

Согласно Международной патентной классификации (МПК)

Б. ОБЛАСТЬ ПОИСКА:

Просмотренная документация (система классификации и индексы МПК) G01N 21/65, 21/00, C12M 1/00

Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, используемые поисковые термины) EAPATIS, Espacenet, Patentscope, USPTO, PubMed, Google

В. ДОКУМЕНТЫ, СЧИТАЮШИЕСЯ РЕЛЕВАНТНЫМИ

Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №
Категория	Ссылки на документы с указанием, где это возможно, релевантных частей	OTHOCATCA K HYHKTY ME
x	WO 2016196315 A2 (BIOGEN MA INC) 2016-12-08	1-23
	с. 1-13, 16-18, 23-27, 30-42, примеры 1-5, формула	
Y	WO 2014144999A1 (MORETTO JUSTIN) 2014-09-18,	1-23
	реферат, с. 1, 3, 5, 7, 17-19, примеры 1-6, формула	
Y	WO 2016004322 (BIOGEN MA INC) A3, 2016-03-17	1-23
	реферат, с. 1-6, 8-16, 25, 26-36, примеры, формула	
Y	JESSICA WHELAN et al, "In situ Raman spectroscopy for simultaneous	1-23
1	monitoring of multiple process parameters in mammalian cell culture bioreactors", BIOTECHNOLOGY PROGRESS., US, 2012-07-20, Vol. 28, no. 5,	
1	doi:10.1002/btpr.1590, с. 2, абзац 5 – с. 3, абзац 1, с. 5, абзац 1, с. 7, абзац 2,	
	фиг. 2	
1		

 последующие	документы	указаны в	продолжении

^{*} Особые категории ссылочных документов:

Дата проведения патентного поиска: 13/04/2023

Уполномоченное лицо:

Заместитель начальника Управления экспертизы

Начальник отдела химии и медицины

A R Venau

[«]А» - документ, определяющий общий уровень техники

[«]D» - документ, приведенный в евразийской заявке

[«]Е» - более ранний документ, но опубликованный на дату подачи евразийской заявки или после нее

[«]О» - документ, относящийся к устному раскрытию, экспонированию и т. л.

[&]quot;Р" - документ, опубликованный до даты подачи евразийской заявки, но после даты испрашиваемого приоритета"

[«]Т» - более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения

[«]Х» - документ, имеющий наиболее близкое отношение к предмету поиска, порочащий новизну или изобретательский уровень, взятый в отдельности

 [«]Y» - документ, имеющий наиболее близкое отношение к предмету поиска, порочащий изобретательский уровень в сочетании с другими документами той же категории

^{«&}amp;» - документ, являющийся патентом-аналогом

[«]L» - документ, приведенный в других целях