(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

Дата публикации заявки (43)

2023.05.31

(22) Дата подачи заявки 2022.09.06

(51) Int. Cl. A61K 38/02 (2006.01) A61K 9/113 (2006.01)

A61K 45/06 (2006.01)

A61P 37/08 (2006.01)

A61P 11/06 (2006.01)

A61P 11/08 (2006.01)

- СПОСОБ ПОЛУЧЕНИЯ ВАКЦИНЫ ДЛЯ УЛЬТРАКОРОТКОГО РЕЖИМА ИММУНОТЕРАПИИ АЛЛЕРГИЧЕСКОГО РИНИТА И БРОНХИАЛЬНОЙ АСТМЫ, ВЫЗЫВАЕМЫЕ ПЫЛЬЦЕВЫМИ АЭРОАЛЛЕРГЕНАМИ
- (31) 2021/0686.1
- (32)2021.11.09
- (33)ΚZ
- KZ2022/048 (KZ) 2022.09.06 (96)

(71)(72) Заявитель и изобретатель:

ТАБЫНОВ КАЙСАР КАЗЫБАЕВИЧ;

ТАБЫНОВ КАЙРАТ КАЗЫБАЕВИЧ

(KZ)

Изобретение относится к области биотехнологии и медицинской аллергологии и представляет (57)собой способ получения новой вакцины для ультракороткого режима иммунотерапии аллергического ринита и бронхиальной астмы, вызываемые пыльцевыми аэроаллергенами. Сущность изобретения состоит в том, что для вакцины, подходящей для ультракороткого режима иммунотерапии аллергического ринита и бронхиальной астмы, вызываемые пыльцевыми аэроаллергенами, используется один или несколько наиболее иммунодоминантных рекомбинантных белков пыльцы растений в нативном виде, которые формулируются масляным адъювантом Montanide ISA-51 (Seppic, Франция) в соотношении 50:50 (по объему), смесь которых вводится подкожным способом субъектам четырехкратно с интервалом в одну неделю (общая продолжительность курса не более одного месяца). Полученная таким образом вакцина в ультракоротком режиме АСИТ с четырьмя иммунизациями с интервалом в неделю способна существенно снизить аллергизацию по данным кожного теста, а также обеспечить защиту от аллергических воспалительных реакций нижних и верхних дыхательных путей после провокации причинным аллергеном.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Тозаң аэроаллергендерінен туындаған аллергиялық ринит пен бронх демікпесінің ультра қысқаша иммунотерапиясы үшін вакцинаны алу әдісі

Способ получения вакцины для ультракороткого режима иммунотерапии аллергического ринита и бронхиальной астмы, вызываемые пыльцевыми аэроаллергенами

A method of obtaining a vaccine for ultra-short-term immunotherapy of allergic rhinitis and bronchial asthma caused by pollen aeroallergens

Изобретение относится к области биотехнологии и медицинской аллергологии, и представляет собой способ получения новой вакцины для ультракороткого режима иммунотерапии аллергического ринита и бронхиальной астмы, вызываемые пыльцевыми аэроаллергенами.

способ IgE-опосредованными Известен терапии субъектов расстройствами, например, аллергией, астмой, путем введения им первой композиции, включающей иммуногенный антиген, и второй композиции, ингибирующей активность IgE антител [WO2002092125(A1)]. Данный способ предназначен для терапии IgE-ассоциированных расстройств, например, сезонного аллергического ринита или аллергической астмы у пациента в возрасте 6-17 лет, а также может быть полезен для лечения крапивницы, аллергии на укус гименоптера, аллергии на лекарства и паразитарных заболеваний. Первая композиция метода включает антиген, который способен иммунный или модулировать ответ у человека. Антиген предпочтительно является аллергеном, в том числе пыльцой травы, и вводится для того, чтобы вызвать десентитизацию к аллергену. При использовании второй композиции (анти-IgE антител) средняя тяжесть симптомов снижается

на 10%, предпочтительно на 40%, количество дней с приемом любого лекарства от аллергии снижается по меньшей мере на 10%, предпочтительно на 60%, а средняя продолжительность использования спасательных средств снижается по меньшей мере на 10%, предпочтительно на 60%. Композиция, подавляющая активность IgE, включает анти-IgE антитело, предпочтительно гуманизированное мышиное антитело. Предлагаемый способ терапии был более эффективнее в сравнении с просто аллергической иммунотерапии (АСИТ), хорошо переносился и продемонстрировал отличный профиль безопасности в течение 24 недель лечения. Не было отмечено ни одного случая анафилаксии и крапивницы среди волонтеров. Существенным недостатком данного способа является слишком длительный курс терапии (не менее 24 недель), который нужно проводить за 6 месяцев до аллергического сезона. Следствие чего, этот способ крайне неудобен для пациентов, что может привести высокой комплаентности (не завершения полного курса лечения) среди них.

Наиболее близким к заявляемому изобретению по совокупности существенных признаков (прототипом) является способ подкожной АСИТ для иммунотерапии аллергического ринита с помощью коммерческого препарата Pollinex Quattro (Allergy Therapeutics, UK), который в составе содержит обработанные глутаровым экстракты альдегидом пыльцы растений, сорбированные на Л-тирозине и адъювантированные на MPL. Наиболее значимое преимущество этого способа заключается в удобстве его применения, посредством необходимости проведения всего 4 инъекций препарата с интервалом в неделю [Hum Vaccin Immunother. 2013;9(7):1523-31] (против 30 ежедневных инъекций со стандартными аллергенами или 13 инъекций с интервалом в неделю с вакцинами, адъювантированными гидроксидом или фосфатом алюминия). Эффективность указанного способа АСИТ ранее была продемонстрирована в отношении аллергического ринита, вызываемого пыльцой амброзии [J Allergy Clin Immunol. 2014;133(1):121-9.e1-2]. Но при этом его главным недостатком является высокая цена (около 800

Евро/курс), которая делает его недоступным для большинства развивающихся стран, в том числе для Казахстана, где средний ежемесячный доход населения составляет около 350 Евро. По этой причине, помимо эффективности, безопасности и удобства применения в предлагаемом изобретении мы также преследуем цель получение способа АСИТ с доступной ценой.

Сущность изобретения состоит в том, что для вакцины, подходящей для ультракороткого режима иммунотерапии аллергического ринита бронхиальной астмы, вызываемые пыльцевыми аэроаллергенами, используется наиболее один или несколько иммунодоминантных рекомбинантных белков пыльцы растений в нативном ввиде, которые формулируются масляным адъювантом Montanide ISA-51 в соотношении 50:50 (по объему), смесь которых вводится подкожным способом субъектам четырехкратно с интервалом в одну неделю (общая продолжительность курса не более одного месяца).

Распространенность IgE-опосредованных аллергических заболеваний среди населения промышленно развитых стран достигло 35% [Int Arch Allergy Immunol 2004; 135:83-92], и, по оценкам экспертов прогнозируется их дальнейшее увеличение уже в следующем десятилетии [Allergy 2008; 63 (Suppl. 86):8–160; Eur J Immunol 2011; 41:2802–2804]. специфическая иммунотерапия (АСИТ) впервые была выполнена Noon в 1911 году [Lancet 1911; 1:1572-1573], и до сих пор представляет собой золотой стандарт для терапии пациентов с аллергическим ринитом, конъюнктивитом, астмой и аллергией к яду перепончатокрылых (аллергии I типа) [J Allergy Clin Immunol 1998; 102 (4 Pt 1):558–562]. В отличии от симптоматических методов лечения аллергии, АСИТ оказывает реальный лечебный эффект путем перестройки нежелательных аллерген-специфических гуморальных и Тклеточных иммунных ответов от Th2 до смешанного Th1/T Reg [J Allergy Clin Immunol 2011;127:18-27]. АСИТ заключается в введении постепенно возрастающих количеств аллергена пациенту с IgE опосредованным аллергическим заболеванием с целью облегчения симптомов, возникающих

при последующем контакте с причинным аллергеном [J Allergy Clin Immunol 1998; 102 (4 Pt 1):558–562].

На протяжении многих лет АСИТ проводится методом подкожного введения с использованием растворимых аллергенов в Северной Америке, либо экстрактов аллергенов, адъювантированных на гидроокиси или фосфате алюминия в Европе [J Allergy Clin Immunol 2001; 108(Suppl):S147-334]. Подкожная АСИТ после полного курса обеспечивает длительный терапевтический эффект в отношении всех вышеуказанных видов аллергии [Allergy 2008; 63 (Suppl. 86):8–160]. Однако, данный способ иногда сопряжен с рядом нежелательных явлений местного или системного характера [Clin Allergy Immunol 2004; 18:711–727].

Альтернативным и наиболее безопасным является сублингвальный способ АСИТ с использованием аллергенов в форме таблеток или экстрактов. Этот способ ACИТ относительно недавно был лицензирован в ряде стран [Ann Allergy Asthma Immunol 2013. 110:194 –197], и поэтому в последнее время все чаще начал использоваться практикующими аллергологами. Его достоинствами являются хорошая переносимость больными лечебных доз препаратов, а также низкая степень риска развития анафилактических реакций [Allergy 2009;64(Suppl 91):1–59; Eur Ann Allergy Clin Immunol 2009;41:163– 70]. В ряде исследований эффективность этого метода АСИТ оценивается высоко, однако все же ниже чем с подкожным способом [Immunol Allergy Clin North Am. 2016;36(1):13-24]. Данный метод АСИТ требуются высокие (50-100) раз выше по сравнению с подкожным способом) дозы аллергена, что существенно повышает ее стоимость [Allergy 2009;64(Suppl 91):1-59]. Общим существенным недостатком для подкожного и сублингвального способов АСИТ является слишком продолжительный курс терапии (от 3 до 5 лет) с многократными приемами аллергенов. Следствие чего, образуется те только проблема комплаентности (не завершение полного курса терапии), но и риска проявления нежелательных явлений от АСИТ [J Allergy Clin Immunol 2013;132:353–360].

На основании вышеизложенного, в основу настоящего изобретения задача получения новой вакцинной формуляции положена иммунотерапии ультракороткого режима аллергического ринита И бронхиальной астмы, вызываемыми аэроаллергенами, C минимально возможным количеством иммунизаций, которая должна обладать следующими свойствами:

- быть безопасной;
- обеспечивать при минимальной кратности иммунизации существенное снижание уровня общих и антиген-специфичных IgE антител;
- формировать антиген-специфичный Th1-опосредованный иммунный ответ;
 - обеспечивать снижение уровня аллергизации по данным кожного теста;
- обеспечивать защиту от аллергических воспалительных реакций органов верхних и нижних дыхательных путей после провокации причинным аллергеном.
 - иметь доступную цену для населения с низким уровнем дохода.

Данная задача может быть решена с помощью инъекционной вакцины на основе мажорного рекомбинантного белка (или белков) пыльцы растений, формулированной адъювантом.

К настоящему времени на стадии разработки находятся множество подходов по улучшению АСИТ, которые условно можно разделить на четыре категории: (1) изменение пути введения (внутрикожное внутрилимфатическое введение) [Allergy. 2015;70(6):707-10; Respir Res 2016. 17:10]; (2) модификация аллергена (химическая модификация аллергенов, получение рекомбинантных аллергенных белков или пептидов) [Allergy 2014. 69:1629 –1638; Allergy. 2013;68(6):724-31; Clin Exp Allergy. 2015;45(5):974-81]; (3) стимуляция врожденного иммунного ответа (использование СрС агонистов TLR-9, тирозина и монофосфорила липида A) [J Allergy Clin Immunol. 2013;131(3):866-74; J Allergy Clin Immunol 2014; 133:121–129]; (4) использование адъюванта и систем доставки (гидроксид или фосфат

алюминия, пробиотики, бактериальные продукты, витамин Д, липосомы, вирусоподобные частицы, иммуностимулирующий комплекс ISCOMs, полимерные наночастицы) [Immunol Allergy Clin North Am. 2016;36(1):125-45]. Среди них наиболее перспективным в плане создания ультракороткого режима АСИТ на наш взгляд является подход, основанный на использовании адъювантов. С помощью адъювантов можно существенно уменьшить дозы аллергенов, а также сократить количество их инъекций, что положительно отражается на безопасности данного способа АСИТ [Сит Opin Allergy Clin Immunol 2012;12:648–57].

Гидроксид или фосфат алюминия на сегодня являются наиболее широко используемыми (примерно в 75%-ных случаях) адъювантами при подкожной АСИТ. Инъекция адсорбированных была алюминием аллергенов эффективной И безопасной В различных АСИТ исследованиях использованием не только подкожного, но и других парентеральных способов введения [Allergy Asthma Clin Immunol 2014;10:4]. Сообщалось, что после продолжительной и повторной иммунизации аллергенов с алюминиевыми адъювантами происходило переключение иммунного ответа в сторону Treg/TH1 и уменьшение TH2 активации путем увеличения IgE-блокирующих IgG-антител. Несмотря на множество достоинств, тем не менее, алюминиевые адъюванты имеют некоторые серьезные недостатки. В первую очередь это связано с индукцией TH2 иммунного ответа (выработка IgE антител, эозинофилия И гранулематоз) в начале иммунотерапии, потенциальным влиянием на неврологические патологии. Кроме того, данный адъювант часто оказывает местные нежелательные реакции [Vaccine 2014;32:4140-8]. Следствие чего, поиск новых адъювантов, способных индуцировать толерантность, и при этом избегая индукции или усиления ТН2 ответов, является актуальной задачей в иммунотерапии аллергических заболеваний.

Среди большого разнообразия новых адъювантов мы выбрали тот, который ранее исследовался в составе профилактических и терапевтических

вакцин, и был способен индуцировать выраженный Th1-поляризованный иммунный ответ. Наш выбор остановился на масляном адъюванте Montanide ISA-51 (производитель Seppic, Франция) с типом эмульсии "вода в масле" (W/O), состоящий из минерального масла и поверхностно-активного вещества из семейства маннид моноолеата [J Pharm Sci 2009; 98:1278-316]. Этот адъювант был введен тысячам людей подкожно или внутримышечно в ходе испытаний вакцин, требующих индукцию клеточного иммунного ответа, болезней иммунодефицита против таких рак, вируса человека (ВИЧ)/синдрома приобретенного иммунодефицита (СПИД) и малярии [Expert Rev Vaccines 2002; 1:111-8]. Терапевтическая вакцина против рака легких, содержащая ISA-51 в качестве эмульсионного адъюванта, с четырехкратным режимом иммунизации с интервалом в неделю лицензирована на Кубе [Expert Rev Vaccines 2013; 12:747-58]. ISA-51 также была протестирована в испытаниях вакцины против гриппа [J Clin Immunol 2012; 32:595-603; Vaccine 2012; 30:4655-60]. Важно отметить, что этот адъювант ранее не использовался в составе вакцин для иммунотерапии аллергических заболеваний.

Использование в предлагаемом изобретении иммунодоминантных рекомбинантных (полученных синтетическим путем) белков пыльцы растений вместо традиционных пыльцевых экстрактов (аллергоиды) или натуральных белков, связано с их гипоаллергенностью (низкое связывание с IgE антителами в результате пострасляционных изменений) и возможностью образования Th1 клеточного иммунного ответа [Mol Immunol. 2009 Jan;46(3):416-21; J Allergy Clin Immunol. 2003;111(6):1328-36].

Техническим результатом является то, что полученная по предлагаемому способу вакцина на основе мажорного рекомбинантного белка пыльцы растения, формулированная масляным адъювантом Montanide ISA-51 (тип эмульсии «вода в масле»), в ультракоротком режиме АСИТ с четырьмя иммунизациями с интервалом в неделю, способна существенно снизить аллергизацию по данным кожного теста, а также обеспечить защиту от

аллергических воспалительных реакций нижних и верхних дыхательных после провокации причинным аллергеном.

С данной вакцинной формуляцией ожидается уменьшение нагрузки аллергенов в 10-50 раз в сравнении со стандартным протоколом АСИТ, и тем самым снизить частоту местных нежелательных явлений (которая в среднем отмечается у 50% пациентов). Мы также предполагаем, цена курса подкожной АСИТ против аллергического ринита или бронхиальной астмы с нашей вакцинной формуляцией будет значительно ниже чем коммерческие аналоги (в 30-50 раз), и, следовательно, доступной для населения Казахстана.

Признаками, характеризующими изобретение, совокупность которых обеспечивает получение технического результата, являются:

- 1) Используется рекомбинантный мажорный (главный) белок/белки пыльцы растения (причинного аллергена), полученный синтетическим путем на основе бакуловирусной технологии (на клетках Sf9 ткань яичек мотылька Spodoptera frugiperda), предпочтительно в бактериальной экспрессионной системе (E. coli)
- 2) Нативная форма рекомбинантного белка формулируется в соотношении 50:50 (по объему) с масляным адъювантом Montanide ISA-51 для получения препарата с типом эмульсии «вода в масле»;
- 3) Вакцина вводится подкожным способом четырехкратно с интервалом в неделю в оптимальной дозе, предпочтительно в двукратно нарастающей дозе антигена для каждой иммунизации.

Сведения, подтверждающие возможность осуществления изобретения Далее описаны предпочтительные варианты осуществления настоящего изобретения. Представленные ниже варианты осуществления описаны в интересах лучшего понимания изобретения, и понятно, что объем настоящего изобретения не ограничивается следующим описанием. Поэтому очевидно, что специалисты в данной области могут модифицировать любой способ осуществления, который целесообразен в пределах объема настоящего изобретения, при рассмотрении представленного здесь описания.

Для лучшего понимания сущности изобретения ниже приводятся примеры его конкретного выполнения.

Пример 1

Приготовление вакцинной формуляции

На основе коммерческого мажорного рекомбинантного белка Art V1 (AtaGenix laboratories, China; Expressed Host - *E.coli*, Purity - > 85% as determined by SDS-PAGE; ArtV1 - 129AAs, 13KDa, концентрация белка – 1 мг/флакон) пыльцы полыни и использованием адъюванта Montanide ISA-51 VG (ISA-51; тип эмульсии «вода-масло», Seppic) была приготовлена вакцинная формуляция. Формулирование проводилось двукратно возрастающими концентрациями белка Art V1 (с 2 до 16 мкг/доза) и адъювантов в соотношении 50:50 (по объему). Эмульгирование антигена с адъювантом ISA-51 проводили согласно инструкции производителя путем последовательных шприцевых циклов перемешивания через і-коннектор (20 медленных и 40 быстрых циклов перемешивания).

Пример 2

Сентитизация мышей

8-12 недельным свободным от патогенной флоры (SPF) самцам BALB/с мышей (n=6/группа, всего 18 шт.) внутрибрюшинно вводили два раза с интервалом в 14 суток экстракт пыльцы обыкновенной в концентрации 1000 PNU/200 мкл (Бурли, Алматы, Казахстан), сорбированного на гидроокиси алюминия (InvivoGen; 1 мг/мышь) или только PBS (200 мкл). На 21 день всех мышей подвергали трехкратной провокации с интервалом через день (на 21, 23, 25 дни) путем интраназального введения экстракта пыльцы полыни под

кетаминово-ксилазиновой анестезией в дозе 200 PNU/20 мкл или такого же объема PBS (негативная контрольная группа). На 28 день у мышей брали образцы крови для проверки уровня аллергических антиген-специфичных (анти- Art V1) и общих IgE антител. Полученные результаты показали успешность выполненной сентитизации мышей к пыльце обыкновенной полыни, так как у 83.3-100% животных по сравнению с таковыми негативной контрольной группы были отмечены существенное (P=0.0082 - <0.0001) накопление как общих, так и антиген-специфичных аллергических IgE антител.

Пример 3

Десентитизация мышей

Для десентитизации мышей в отношении пыльцы полыни их иммунизировали четырехкратно с интервалом в 7 дней полученной вакцинной формуляцией подкожным способом. Мышам из позитивной и негативной контрольной групп внутримышечно аналогичным образом вводили PBS. На 0, 7, 14, 21 и 28 дни АСИТ у всех мышей брали образцы сыворотки крови для оценки уровня антиген-специфичных и общих IgE антител (n=6/группа). На 28 день АСИТ уровень десентитизации мышей также оценивали по ушному тесту (n=6/группа). Дополнительно проверяли антиген-специфический гуморальный (n=6/группа) и Т-клеточный (n=3/группа) иммунные ответы, которые характеризуют перестройку Th2-опосредованого иммунитета в сторону Th1/Treg.

Пример 4

Уровень снижения общих и антиген-специфичных IgE антител у сентитизированных мышей

Исследования показали, что на 14 день АСИТ практически во всех группах, включая позитивную контрольную (без АСИТ), отмечалась общая тенденция к снижению уровня IgE антител. Однако лишь в группе мышей, где АСИТ проводилась вакцинной формуляцией уровень снижения общих IgE антител был существенным по сравнение с таковыми до сентитизации (14 день vs 0 день). Последующие АСИТ иммунизации позволили немного снизить или сохранить уже сниженный уровень общих IgE антител вплоть до 28 дня эксперимента. Более наглядным в результате АСИТ было снижение антигенспецифичных IgE антител. Количество серопозитивных специфичным IgE антителам мышей в ISA-51-основанной вакцинной группе с каждой АСИТ иммунизацией уменьшались, и в целом за весь период наблюдения было существенно ниже чем в позитивной контрольной группе. Несмотря на то, что ISA-51 группе 33.3% (2/6) животных так и остались позитивными к антиген-специфичным IgE антителам в течение срока наблюдения, значения этих антител были существенно ниже чем в позитивной контрольной группе.

Последующая трехкратная провокация экстрактом полыни незначительно (vs. 28 день АСИТ) повысила уровень общих и антигенспецифических IgE антител во всех группах, однако значение последних в группе с ISA-51 вакцинной формуляцией было существенно ниже чем в позитивной контрольной группе.

Пример 5

Анализ антительного ответа после АСИТ и провокации

Проведенный курс ACИТ с ISA-51 вакцинной формуляцией индуцировал образование существенных титров анти-Art V1 IgG антител и его изотипов IgG1 и IgG2а в сравнении таковыми позитивной контрольной группы. Причем в группе позитивного контроля ввиду превалирования IgG1 антител над IgG2а отмечалась выраженная поляризация в сторону Th2 иммунного ответа,

которая существенно превышала таковые вакцинированной группы. Проведенная провокация не привнесла отличительные изменения по IgG, IgG1 и IgG2a антительным ответам. Интересным является то, что в позитивной контрольной группе за счет существенного роста титра IgG2a антител уровень соотношения между IgG1 и IgG2a антител после провокации снизился и стал сопоставим с негативной контрольной группой. Напротив, в ISA-51 группе, где в результате существенного роста титра IgG1 антител по сравнению с таковыми позитивной контрольной группы, соотношение IgG1 и IgG2a изотипов антител возросло.

Пример 6

Анализ цитокинового профиля после АСИТ

У сентитизированных мышей ISA-51 группы после АСИТ преимущественно продуцировались Th1-опосредованные цитокины как IFN- γ, IL-2, а также IL-17A, IL-9. Что касается позитивной контрольной группы, то здесь лишь продукция цитокина TNF-α была существенной по сравнению с негативной контрольной группой.

Пример 7

Оценка эффективности АСИТ

Эффективность проведенной АСИТ в группах мышей оценивали по результатам ушного теста, а также гистологическому анализу патологическим изменений в легких. Установлено, что в результате АСИТ только лишь у мышей ISA-51 группы отмечалось существенно меньшее утолщения ушной раковины в ответ на введение аллергена в сравнении с таковым позитивной контрольной группы. После провокации значительное уменьшение уровня аллергизации также наблюдалось в ISA-51 группе.

Дальнейший гистологический анализ образцов легких после провокации проводился по бальной шкале, который строился на основе уровней периваскулярного и перибронхиального воспаления (с наличием эозинофилов и нейтрофилов или без них в очагах воспаления), а также метаплазии бокаловидных клеток в бронхах. У изученных особей не было обнаружено классических признаков бронхиальной астмы (гиперплазия и гипертрофия гладких мышц, воспалительные инфильтраты в перибронхиальной и периваскулярной областях, содержащие эозинофилы) по типу 2 (Туре 2), за исключением метаплазии бокаловидных клеток и выработки слизи в бронхиолах. В инфильтратах вместо эозинофилов преобладали нейтрофилы, что указывало на преимущественно воспаление не второго типа (non-Type 2). В следствие чего оценка уровня воспаления легких проводилась по совокупности всех патологических изменений (Non-Type 2), а также без учета нейтрофилов (Туре 2). Результаты исследований показали, что во всех группах мышей после провокации были обнаружены легочные патологические изменения обоих типов, однако только лишь в ISA-51 группе уровень этих изменений был существенно ниже чем в позитивной контрольной группе. Наибольший уровень патологических изменений по обоим типам воспаления был отмечен в легких мышей позитивной контрольной группы. У них было перибронхиальное умеренное воспаление небольшим обнаружено количеством нейтрофилов (менее 5 на поле зрение при увеличении х 1000 в очаге воспаления). В очагах воспаления присутствовали единичные большей эозинофилы. В части бронхиол отмечалась метаплазия бокаловидных клеток. Отмечалось выраженное периваскулярное воспаление. В очагах воспаления присутствовало большое количество нейтрофилов (более 5 на поле зрение при увеличении х 1000 в очаге воспаления) и эозинофилов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения новой вакцины для ультракороткого режима иммунотерапии (4 подкожные иммунизации с интервалом в неделю, продолжительность общего курса не более месяца) аллергического ринита и бронхиальной астмы, вызываемые пыльцевыми аэроаллергенами, включающий использование адъювантированной формуляции аллергена, отличающийся тем, что используется один или несколько иммунодоминантных синтетически полученных рекомбинантных белков пыльцы растений в нативном ввиде, которые формулируются с масляным адъювантом Montanide ISA-51 (Seppic, Франция) в соотношении 50:50 (по объему) для получения препарата с типом эмульсии «вода в масле».

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(статья 15(3) ЕАПК и правило 42 Патентной инструкции к ЕАПК)

Номер евразийской заявки:

202292594

A.	КЛАССИФИКАL	ИЯ ПРЕДМЕТА	ИЗОБРЕТЕНИЯ:

См. дополнительный лист

Согласно Международной патентной классификации (МПК)

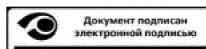
Б. ОБЛАСТЬ ПОИСКА:

Просмотренная документация (система классификации и индексы МПК) A61K 38/02, 9/10, 9/113, 45/06, A61P 37/08, 11/06, 11/08

Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, используемые поисковые термины) Espacenet, ЕАПАТИС, EPOQUE Net, Reaxys, Google

В. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ

Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №
A	WO 2007/073907 A1 (LO-FARMA S.P.A.) 05.07,2007	1
A	CN 109061184 B (HANGZHOU AILEJI BIOLOGY TECHNOLOGY) 20.07,2021	1
A	KR 10-1919575 B1 (YONSEI UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION) 31.10.2018	1
A	KR 10-2021-0033775 A (YONSEI UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION) 29.03.21	1
A	LAURA HESSE и др. Animal Models of Allergic Disease, Methods and Protocols [онлайн] MIMB, том 2223, Humana Press, ноябрь 2020 [найдено 2022-12-13]. Найдено в: <doi:10.1007 978-1-0716-1001-5=""> с. 295-308, ISBN 978-1-0716-1001-5</doi:10.1007>	1
A	JEROME AUCOUTURIER и др. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Review of Vaccines, том 1, выпуск 1, 2002г., с. 111-118 [онлайн] [найдено в 2022-12-13]. Найдено в <doi:10.1586 14760584.1.1.111=""></doi:10.1586>	1


□ последующие документы указаны в продолжении

- * Особые категории ссылочных документов:
- «А» документ, определяющий общий уровень техники
- «D» документ, приведенный в евразийской заявке
 «E» более ранний документ, но опубликованный на дату пода
- «Е» более ранний документ, но опубликованный на дату подачи евразийской заявки или после нее
- «О» документ, относящийся к устному раскрытию, экспонированию и т л
- "Р" документ, опубликованный до даты подачи евразийской заявки, но после даты испрашиваемого приоритета"
- «Т» более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения
- «Х» документ, имеющий наиболее близкое отношение к предмету поиска, порочащий новизну или изобретательский уровень, взятый в отдельности
- «Y» документ, имеющий наиболее близкое отношение к предмету поиска, порочащий изобретательский уровень в сочетании с другими документами той же категории
- «&» документ, являющийся патентом-аналогом
- «L» документ, приведенный в других целях

Дата проведения патентного поиска: 01 февраля 2023 (01.02.2023)

Уполномоченное лицо:

Начальник Управления экспертизы

Сертификат: 1653480328483 Владелец: СN=Аверкиев С. Действителек: 25.05.2022-25.05.2023 С.Е. Аверкиев

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(дополнительный лист)

Номер евразийской заявки:

202292594

КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ (продолжение графы А)
A61K 38/02 (2006.01) A61K 9/113 (2006.01) A61K 45/06 (2006.01) A61P 37/08 (2006.01) A61P 11/06 (2006.01) A61P 11/08 (2006.01)