

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2023.04.26

(21) Номер заявки

202090328

(22) Дата подачи заявки

2018.08.22

(51) Int. Cl. A61K 8/41 (2006.01) **A61K 8/42** (2006.01) **A61K 8/44** (2006.01) A61K 8/46 (2006.01) **A61Q 19/10** (2006.01)

WO-A2-2013150301 US-A1-2015157548

US-A1-2015157540

US-A1-2015238402

CN-A-104997661

US-B1-6218346

(54) МОЮЩАЯ КОМПОЗИЦИЯ ДЛЯ ЛИЧНОЙ ГИГИЕНЫ, СОДЕРЖАЩАЯ КАТИОННОЕ ПОВЕРХНОСТНО-АКТИВНОЕ ВЕЩЕСТВО, И СПОСОБ РЕГУЛИРОВАНИЯ ЕЕ

(56)

17187893.7 (31)

(32) 2017.08.25

(33)EP

(43) 2020.07.13

(86) PCT/EP2018/072600

(87) WO 2019/038309 2019.02.28

(71)(73) Заявитель и патентовладелец:

ЮНИЛЕВЕР ГЛОБАЛ АЙПИ ЛИМИТЕД (GB)

(72) Изобретатель:

Трентини Массимилиано (US), Томпсон Хелен Дайэн, Бентли Кристофер Дэвид, Коун Линси Джоан (GB)

(74) Представитель:

Нилова М.И. (RU)

Раскрыты моющие композиции для личной гигиены на водной основе, содержащие изотропную фазу поверхностно-активного вещества, причем указанные композиции содержат (а) от 0,05 до 1 мас.%. катионного поверхностно-активного вещества, которое включает четвертичное аммониевое соединение и/или амидоамин, при этом четвертичное аммониевое соединение представлено формулой $N^+R^1R^2R^3R^4X^-$, где R^1 представляет собой насыщенный C8-C22 алкил, R^2 , R^3 и R^4 представляют собой C1-C4 алкил и X представляет собой солюбилизирующий анион, и амидоамин представлен формулой R^5R^6N - $(CH_2)_x$ - $NHC(O)R^7$, где R^5 и R^6 независимо представляют собой метил или этил, х равен 2 или 3 и R⁷ представляет собой насыщенный C6-C24 алкил, (b) от 5 до 15 мас.% моющего поверхностно-активного вещества и (с) воду, причем указанное моющее поверхностно-активное вещество содержит комбинацию бетаинового поверхностно-активного вещества, представляющего собой амидобетаин, и тауратного поверхностно-активного вещества, представляющего собой ацилтаурат, в конкретных отношениях; кроме того, раскрыты способы загущения таких композиций путем добавления электролита.

Область техники

Изобретение относится к моющим композициям для личной гигиены, в частности к моющим композициям для личной гигиены на водной основе, включая, например, средства для мытья тела, средства для умывания лица и шампуни.

Уровень техники

Выбор, количество и относительное количество моющего поверхностно-активного вещества влияет на микроструктуру моющей композиции для личной гигиены. В свою очередь, микроструктура может оказывать влияние на реологические свойства, такие как вязкость и увеличивающие вязкость характеристики композиции, а также может влиять на стабильность композиции.

Достаточное содержание моющего поверхностно-активного вещества обычно необходимо для того, чтобы молекулы поверхностно-активного вещества могли собираться в мицеллы, и чтобы мицеллы агрегировали с образованием структуры. Доступные в продаже моющие композиции на водной основе часто содержат более 12 мас. % моющего поверхностно-активного вещества. Основным моющим поверхностно-активным компонентом таких композиций обычно является алкилсульфатное и/или алкилэфирсульфатное поверхностно-активное вещество, при этом лаурил- и лауретсульфаты, представляющие собой поверхностно-активные вещества, которые, как известно, обеспечивают хорошую моющую способность, входят в число обычно применяемых сульфатных поверхностно-активных веществ. Сульфатные поверхностно-активные вещества относятся к классу веществ, известных как анионные поверхностно-активные вещества. Сульфатные поверхностно-активные вещества часто применяют совместно с амфотерным дополнительным поверхностно-активным веществом, при этом бетаиновые поверхностно-активные вещества, такие как кокамидопропилбетаин и кокамидобетаин, входят в число обычно применяемых амфотерных поверхностно-активных веществ. Бетаиновые поверхностно-активные вещества способствуют усилению образования пены и в общем случае являются более мягкими, чем сульфатные поверхностноактивные вещества, хотя и не обладают моющей способностью сульфатных поверхностно-активных веществ. Предпочтительно моющие композиции для личной гигиены на основе сульфатного поверхностноактивного вещества обычно могут быть загущены путем добавления простых солей.

Несмотря на широкое применение сульфатных поверхностно-активных веществ в моющих композициях для личной гигиены, существует значительный интерес к более мягким альтернативам, включая композиции, в которых анионное поверхностно-активное вещество представляет собой или включает тауратное поверхностно-активное вещество.

В US 6569825 раскрыты водные моющие композиции, которые содержат (а) анионное поверхностно-активное вещество с короткой цепью, выбранное из C_6 - C_9 алкилэфирсульфатов, C_8 - C_{11} ациллактилатов, C_6 - C_9 ацилметилтауратов, C_6 - C_9 ацилизетионатов, мыл C_6 - C_9 жирных кислот, C_6 - C_9 алкилсульфатов, C_6 - C_9 ацилсаркозинатов, C_6 - C_9 алкилсульфосукцинатов, C_6 - C_9 алкилэфирсульфосукцинатов или их смесей; (b) анионное поверхностно-активное вещество с длинной цепью, выбранное из C_{13} - C_{18} алкилэфирсульфатов, C_{13} - C_{18} ациллактилатов, C_{13} - C_{16} ацилметилтауратов, C_{13} - C_{15} ацилизетионатов, C_{13} - C_{16} алкилсульфатов, C_{13} - C_{16} ацилсаркозинатов, C_{13} - C_{16} алкилсульфосукцинатов, C_{13} - C_{16} алкилэфирсульфосукцинатов или их смесей; (с) необязательно, анионное поверхностно-активное вещество с цепью средней длины, выбранное из C_{10} - C_{12} алкилэфирсульфатов, C_{12} ациллактилатов, C_{10} - C_{12} ацилметилтауратов, C_{10} - C_{12} ацилизетионатов, C_{10} - C_{12} алкилсульфатов, C_{12} ацилсаркозинатов, C_{10} - C_{12} алкилсульфосукцинатов, C_{10} - C_{12} алкилэфирсульфосукцинатов или их смесей, и (d) воду; при этом (i) по меньшей мере одно из поверхностно-активных веществ (а) и (b) выбрано из группы, состоящей из ациллактилатов, ацилсаркозинатов, или анионное поверхностно-активное вещество с короткой цепью (а) представляет собой мыло С₉-С₁₁ жирной кислоты; (ii) если присутствует поверхностно-активное вещество (c), то поверхностно-активные вещества (а), (b) и (c) присутствуют в таком количестве, чтобы массовое отношение (c):[(a)+(b)] составляло менее 1:1. В число примеров и сравнительных примеров, раскрытых в указанном документе, входят: сравнительный пример F, который, как утверждается, содержит 10% кокоэфирсульфата (cocoether sulphate) (3 EO) + 5% кокамидобетаина; сравнительный пример G, который, как утверждается, содержит 10% С8 таурата + 5% кокамидобетаина; и пример 3, который, как утверждается, содержит 7% кокоэфирсульфата (3 ЕО) + 3% С8 таурата + 5% кокамидобетаина. При комментировании данных испытаний пены и зеина (Zion test, zein test) для указанных композиций, причем в указанном документе утверждается, что данные испытания зеина служат показателем мягкости композиции, в указанном патенте сообщается, что добавление С8 таурата в смесь из примера 3 усиливало образование пены, не оказывая неблагоприятного влияния на мягкость. Сообщается, что сравнительный пример F, сравнительный пример G и пример 3 имели объемы пены, составлявшие 79 мл, 44 мл и 145 мл, соответственно.

В СN 104997661 раскрыты шампуни без силикона, которые, как утверждается в указанном документе, являются мягкими, содержащие ингредиенты, которые включают сополимер акрилатов/стеарет-20 метакрилата, кокамидопропилбетаин, поликватерниум-10, динатрий лауроамфоацетат, метилкокоилтаурат, бегенилтриметиламмония хлорид, стеариламидопропилдиметиламин, гликоль дистеарат, кватерниум-27 и катионные кондиционирующие агенты, в количествах, более конкретно описанных в указанном документе, включая композиции со следующими содержаниями ингредиентов: 1~6% сополимера акрилатов/стеарет-20 метакрилата, 20~40% кокамидопропилбетаина, 0,25~1,25% поликватерниума-10,

 $2,5\sim15\%$ динатрий лауроамфоацетата, $1,0\sim5\%$ метилкокоилтаурата, $0,5\sim3\%$ бегенилтриметиламмония хлорида, $0,5\sim3\%$ стеариламидопропилдиметиламина, $1\sim3\%$ гликоль дистеарата, $0,5\sim3\%$ кватерниума-27 и $1\sim4\%$ катионных кондиционирующих агентов. Утверждается, что указанная композиция не содержит сульфатных поверхностно-активных веществ.

В WO 99/32079 раскрыты композиции шампуня, которые содержат микроэмульсию силикона, по меньшей мере одно поверхностно-активное вещество, которое представляет собой катионное производное гуаровой камеди, и полимер, обеспечивающий осаждение. На стр. 9, строка 28 - стр. 10, строка 4 указанной патентной публикации утверждается, что "исключительные оптическая прозрачность и стабильность в широком диапазоне температур могут быть достигнуты с применением следующей комбинации моющих поверхностно-активных веществ в указанных количествах: от 4 до 8 мас.% ацилметилтаурата и/или полипептида, представляющего собой ацилированный коллаген, от общего количества композиции шампуня и до 8 мас.% кокамидопропилбетаина от общего количества композиции шампуня".

В US 2014/086864 раскрыты композиции шампуня, содержащие поверхностно-активное вещество, представляющее собой производное таурина, амфотерное поверхностно-активное вещество, которое представляет собой алкиламидный бетаин, катионный кондиционирующий полимер, бетаиновое поверхностно-активное вещество, содержащее четвертичные аммониевые группы, и силилированный уретановый полимер, содержащий четвертичные аммониевые группы. В указанном документе утверждается, что в отношении применения на окрашенных волосах указанные композиции обладают превосходным эффектом замедления снижения интенсивности цвета и, что называется, вызывают "приятные ощущения при применении". Примеры включают композиции, которые помимо других ингредиентов содержат метилтаурин жирной кислоты кокосового масла (сосопиt oil fatty acid methyltaurine) и пропилбетаиновый амид жирной кислоты кокосового масла в общем количестве, составляющем от 6 до 24 мас.%.

В JP 2001-220325 A2 раскрыты композиции шампуня для волос, содержащие комбинацию ацилтауратного и бетаинового поверхностно-активных веществ. Указанные композиции дополнительно содержат алкилбис(дигидроксипропил)амин, представленный формулой: $R^7N(CH_2CH(OH)CH_2OH)_2$, где R^7 представляет собой алкильную или алкенильную группу, содержащую от 8 до 22 атомов углерода.

Достижение приемлемой вязкости композиции является важным фактором в обеспечении мягкой моющей композиции для личной гигиены, которую можно наносить контролируемым образом и легко распределять при применении. Вязкость композиции совместно с такими характеристиками, как вспениваемость, также может оказывать влияние на восприятие таких продуктов потребителем. Когда сульфатные поверхностно-активные вещества исключают или значительно уменьшают их содержание, создание микроструктуры, которая обеспечивает желаемые реологические свойства, может быть непростой задачей, в частности, в случае мягких композиций с низкими содержаниями моющих поверхностно-активных веществ; кроме того, увеличение вязкости таких композиций путем добавления простой соли может быть проблематичным. Уменьшение количества или исключение сульфатных поверхностно-активных веществ также может создавать сложности в отношении приготовления мягких моющих композиций, которые являются стабильными при кислых значениях рН.

Один из подходов к решению проблемы загущающих систем, которые не содержат или по существу не содержат сульфатных поверхностно-активных веществ, заключался в применении бессульфатных поверхностно-активных веществ совместно с полимерными загустителями. Полимерные загустители могут обладать эффектом гелеобразования, который преобразует продукт с обычной ньютоновской реологией в условиях низкого сдвига, такого как сдвиг, который проявляется, например, в процессе дозирования, нанесения и распределения при применении, в продукт с неньютоновской реологией. Применение таких загустителей помимо того, что потребитель может воспринимать его как нежелательное отклонение от обычных характеристик продукта, может дополнительно ограничивать возможность последующего регулирования вязкости композиции путем применения простых солей.

Применение несульфатного поверхностно-активного вещества при относительно высоком его содержании также может способствовать увеличению вязкости систем, которые не содержат или по существу не содержат сульфатных поверхностно-активных веществ. Однако необходимое содержание несульфатного поверхностно-активного вещества может быть выше традиционных количеств, а также может приводить к образованию неизотропных систем поверхностно-активных веществ, содержащих относительно нелабильные жидкокристаллические структуры или домены. В отличие от изотропных систем поверхностно-активных веществ, относительно лабильная микроструктура которых, в основном, способствует повышению эффективности пенообразования, жидкокристаллические микроструктуры, в основном, "запирают" ("trap") поверхностно-активное вещество и ухудшают вспениваемость. Кроме того, жидкокристаллические структуры или домены могут препятствовать прохождению света и могут придавать композиции мутный или непрозрачный внешний вид, что может быть нежелательным, когда требуется светопроницаемость.

Одним из аспектов настоящего изобретения является обеспечение мягких моющих композиций для личной гигиены, имеющих желаемые реологические свойства, включая композиции с относительно низким содержанием поверхностно-активных веществ. Другим аспектом настоящего изобретения является обеспечение мягких моющих композиций для личной гигиены, содержащих изотропную фазу поверхно-

стно-активного вещества, включая композиции, которые являются стабильными при кислых значениях рН. Еще одним аспектом настоящего изобретения является обеспечение мягких моющих композиций для личной гигиены, включая композиции с низким содержанием поверхностно-активных веществ, не содержащие или по существу не содержащие сульфатных поверхностно-активных веществ, при этом вязкость указанных композиций может быть увеличена путем добавления электролитов, таких как простые соли. Еще одним аспектом настоящего изобретения является обеспечение мягких моющих композиций для личной гигиены, имеющих светопроницаемый (полупрозрачный) или прозрачный внешний вид.

Один или более аспектов настоящего изобретения могут быть осуществлены с помощью композиций и способов, описанных ниже.

Краткое описание изобретения

Согласно настоящему изобретению было обнаружено, что включение катионного поверхностно-активного вещества в моющую композицию для личной гигиены, которая содержит комбинацию тауратного поверхностно-активного вещества, предпочтительно ацилтауратного поверхностно-активного вещества, и бетаинового поверхностно-активного вещества, может способствовать формированию и/или прочности фазы поверхностно-активного вещества даже при относительно низкой концентрации моющего поверхностно-активного вещества и может обеспечивать возможность дополнительного загущения указанных композиций путем добавления электролита, такого как простая соль.

В одном из вариантов реализации предложена моющая композиция для личной гигиены, содержащая:

- а) от 0,05 до 1 мас.%, катионного поверхностно-активного вещества, содержащего четвертичное аммониевое соединение и/или амидоамин, при этом четвертичное аммониевое соединение представлено формулой $N^{+}R^{1}R^{2}R^{3}R^{4}$ X^{-} , где R^{1} представляет собой насыщенный C8-C22 алкил, R^{2} , R^{3} и R^{4} представляют собой C1-C4 алкил, и X представляет собой солюбилизирующий анион, и амидоамин представлен формулой $R^{5}R^{6}N$ -(CH₂)_x-NHC(O) R^{7} , где R^{5} и R^{6} независимо представляют собой метил или этил, х равен 2 или 3, и R^{7} представляет собой насыщенный C6-C24 алкил,
 - b) от 5 до 15 мас.%, моющего поверхностно-активного вещества; и
 - с) воду.

причем указанное моющее поверхностно-активное вещество содержит комбинацию бетаинового поверхностно-активного вещества, представляющего собой амидобетаин, и тауратного поверхностно-активного вещества, представляющего собой ацилтаурат, и при этом

когда указанная композиция содержит от 5 до 6 мас. % моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 55:45 до 45:55;

когда указанная композиция содержит от более 6 до 10 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 40:60; и

когда указанная композиция содержит от более 10 до 15 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 20:80.

Предпочтительно указанная композиция содержит изотропную фазу поверхностно-активного вещества.

Согласно другому варианту реализации настоящего изобретения предложен способ регулирования вязкости композиции, включающий стадии:

- І) обеспечения моющей композиции для личной гигиены, содержащей:
- а) от 0,05 до 1 мас.% катионного поверхностно-активного вещества, содержащего четвертичное аммониевое соединение и/или амидоамин, при этом четвертичное аммониевое соединение представляно формулой $N^{\dagger}R^{1}R^{2}R^{3}R^{4}$ X^{-} , где R^{1} представляет собой насыщенный C8-C22 алкил, R^{2} , R^{3} и R^{4} представляют собой C1-C4 алкил, и X представляет собой солюбилизирующий анион, и амидоамин представлен формулой $R^{5}R^{6}N$ -(CH₂)_x-NHC(O) R^{7} , где R^{5} и R^{6} независимо представляют собой метил или этил, х равен 2 или 3, и R^{7} представляет собой насыщенный C6-C24 алкил,
 - b) от 5 до 15 мас. % моющего поверхностно-активного вещества; и
 - с) волу

причем указанное моющее поверхностно-активное вещество содержит комбинацию бетаинового поверхностно-активного вещества, представляющего собой амидобетаин, и тауратного поверхностно-активного вещества, представляющего собой ацилтаурат, и при этом

когда указанная композиция содержит от 5 до 6 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 55:45 до 45:55;

когда указанная композиция содержит от более 6 до 10 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 40:60; и

когда указанная композиция содержит от более 10 до 15 мас. % моющего поверхностно-активного

вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 20:80; и

II) добавления электролита к указанной композиции,

причем указанное добавление электролита обеспечивает повышение вязкости указанной композиции.

Краткое описание чертежей

На фиг. 1 представлен график, демонстрирующий сдвиг частоты перехода при динамических колебаниях, который происходит при добавлении стеарамидопропилдиметиламина к композиции, имеющей общее содержание тауратного поверхностно-активного вещества и бетаинового поверхностно-активного вещества, составляющее 8,25 мас.%, и массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу, составляющее 50:50;

на фиг. 2-7 представлены тернарные графики, на которые нанесены значения времени релаксации (T_r) для композиций, содержащих тауратное поверхностно-активное вещество, бетаиновое поверхностно-активное вещество и различные количества стеарамидопропилдиметиламина; указанные графики получали на основе измерений динамических колебаний, выполненных в условиях, описанных ниже, с применением реометра TA ARES-G2, настроенного, как описано ниже.

Подробное описание изобретения

Если не указано иное, в контексте настоящего описания "%" означает массовый %, в качестве альтернативы именуемый как мас.%. Все указания на массовое количество компонента настоящей композиции, если не указано иное, представлены из расчета на общую массу указанной композиции. Если не указано иное, все отношения приведены по массе. Если не указано иное, указание на количество компонента композиции относится к количеству компонента по активному веществу.

Все числовые диапазоны, используемые в настоящем описании, следует понимать как модифицированные словом "примерно". Подразумевается, что числовые диапазоны охватывают диапазоны, раскрытые явным образом, а также входящие в них диапазоны. Когда система или способ согласно настоящему изобретению описан как "включающий" или "содержащий" конкретные компоненты и/или признаки, также предполагаются более узкие варианты реализации, которые "по существу состоят из" или "состоят из" указанных компонентов и/или признаков.

Катионное поверхностно-активное вещество.

Катионные поверхностно-активные вещества, подходящие для применения в настоящем изобретении, включают четвертичные аммониевые соединения формулы:

$$N^{+}R^{1}R^{2}R^{3}R^{4}X^{-}(I)$$

где R^1 представляет собой насыщенный C8-C22 алкил, R^2 , R^3 и R^4 представляют собой C1-C4 алкил, и X представляет собой солюбилизирующий анион. Подходящие солюбилизирующие анионы включают галогениды. Соединения формулы I, в которых R^1 представляет собой длинноцепочечный алкил, а другие группы R^2 , R^3 и R^4 представляют собой низший алкил, в настоящем описании называются моноалкильными четвертичными аммониевыми соединениями. Длинноцепочечные алкильные группы четвертичных аммониевых соединений формулы I представляют собой C8-C22 алкильные группы.

Длинноцепочечные алкильные группы четвертичных аммонийных соединений формулы (I) являются насыщенными.

Примерами подходящих четвертичных аммониевых соединений являются цетилтриметиламмония хлорид, бегенилтриметиламмония хлорид, тетраметиламмония хлорид, октилтриметиламмония хлорид, додецилтриметиламмоний, децилдиметилбензиламмония хлорид, стеарилдиметилбензиламмония хлорид, дидодецилдиметиламмония хлорид, диоктадецилдиметиламмония хлорид, талловый триметиламмония хлорид, ди(гидрогенированный талловый)диметиламмония хлорид, кокотриметиламмония хлорид и пальмитоамидопропилтримония хлорид. Одним из особенно подходящих четвертичных аммониевых соединений является бегенилтриметиламмония хлорид, еще одним особенно предпочтительно подходящим четвертичным аммониевым соединением является пальмитоамидопропилтримония хлорид.

Другим классом катионных поверхностно-активных веществ, подходящих для применения в настоящем изобретении, являются амидоамины. К подходящим амидоаминам относятся продукты конденсации жирных кислот и полифункциональных аминов, например, амидоамины, представленные формулой:

$R^5R^6N-(CH_2)_x-NHC(O)R^7$ (II),

где R^5 и R^6 независимо представляют собой метил или этил, х составляет 2 или 3, и R^7 представляет собой насыщенный C6-C24 алкил. В одном варианте реализации R^5 и R^6 представляют собой метил, и х составляет 3. Примерами таких амидоаминов являются стеарамидопропилдиметиламин, стеарамидо-этилдиэтиламин, стеарамидопропилдиэтиламин, пальмитамидопропилдиметиламин, пальмитамидоэтилдиметиламин, бегенамидопропилдиметиламин, бегенамидоэтилдиметиламин и арахиамидопропилдиметиламин. Одним из особенно подходящих для применения амидоаминов является стеарамидопропилдиметиламин.

Не ограничиваясь теорией, полагают, что в присутствии протонирующего агента, такого как, на-

пример, органическая или минеральная кислота, амидоамин может образовывать то, что по существу представляет собой неустойчивое четвертичное аммониевое или псевдочетвертичное (pseudo-quaternary) аммониевое катионное поверхностно-активное вещество. Примеры кислот, подходящих для применения в качестве протонирующих агентов, включают, например, хлористоводородную кислоту, уксусную кислоту, винную кислоту, молочную кислоту, яблочную кислоту и лимонную кислоту. Указание на амидоамин включает поверхностно-активное вещество в протонированной или непротонированной форме.

В одном варианте реализации катионное поверхностно-активное вещество включает смесь амидоамина формулы II и четвертичного аммониевого соединения формулы I. В одном варианте реализации катионное поверхностно-активное вещество содержит моноалкильное четвертичное аммониевое соединение и/или амидоамин.

В одном из вариантов реализации общее содержание катионного поверхностно-активного вещества в моющей композиции для личной гигиены согласно настоящему изобретению составляет от 0,05 до 1 мас.% катионного поверхностно-активного вещества из расчета на общую массу указанной композиции. Еще в одном варианте реализации указанная моющая композиция для личной гигиены содержит от 0,1 до 0,5 мас.% катионного поверхностно-активного вещества из расчета на общую массу указанной композиции. Еще в одном варианте реализации указанная моющая композиция для личной гигиены содержит от 0,1 до 0,3 мас.% катионного поверхностно-активного вещества из расчета на общую массу указанной композиции.

Моющее поверхностно-активное вещество.

В контексте настоящего описания термин "моющее поверхностно-активное вещество" относится к анионному и амфотерному/цвиттерионному поверхностно-активным веществам; катионное поверхностно-активное вещество и неионогенное поверхностно-активное вещество не считаются частью моющего поверхностно-активное вещество согласно настоящему изобретению содержит как тауратное поверхностно-активное вещество, так и бетаиновое поверхностно-активное вещество. В одном из вариантов реализации моющее поверхностно-активное вещество присутствует в количестве от 5 до 15 мас.% из расчета на общую массу моющей композиции для личной гигиены. В другом варианте реализации моющее поверхностно-активное вещество присутствует в количестве от 6 до 12 мас.% из расчета на общую массу моющей композиции для личной гигиены. Еще в одном варианте реализации моющее поверхностно-активное вещество присутствует в количестве от 6 до 10 мас.% из расчета на общую массу моющей композиции для личной гигиены. Еще в одном варианте реализации моющее поверхностно-активное вещество присутствует в количестве от 8 до 10 мас.% из расчета на общую массу моющей композиции для личной гигиены.

Тауратное поверхностно-активное вещество.

В число тауратных поверхностно-активных веществ, применяемых в настоящем изобретении, входят ациламиды таурина или N-метилтаурина и их соли, например ацилтаураты, представленные общей формулой

$$R^8C(O)N(R^9)(CH_2)_{\nu}SO_3M$$
 (IIIa)

и предпочтительно общей формулой

где R^8 представляет собой C6-C30 алкил, более конкретно C6-C24 алкил, у составляет 2 или 3, R^9 представляет собой водород или метил, и M представляет собой солюбилизирующий катион, такой как, например, водород, аммоний, катион щелочного металла, катион низшего, то есть C-C4, алканоламмония или катион основной аминокислоты. В одном из вариантов реализации R^8 представляет собой C8-C18 алкил. В одном из вариантов реализации по меньшей мере половина из групп R^8 представляет собой C8-C18 алкил. В другом варианте реализации по меньшей мере половина из групп R^8 представляет собой C10-C14 алкил. C

Подходящие ацилтаураты согласно формуле IIIа включают, например, таураты, обычно известные как метиллауроилтаурат натрия, метиллауроилтаурат калия, метиллаурат натрия, метилмиристоилтаурат калия, метилмиристоилтаурат аммония, метилкокоилтаурат натрия, метилкокоилтаурат калия, метилкокоилтаурат аммония, метилолеоилтаурат натрия, метилолеоилтаурат аммония, лауроилтаурат натрия, лауроилтаурат калия, миристоилтаурат аммония, кокоилтаурат натрия, олеоилтаурат калия и тому подобное. В одном из вариантов реализации особый интерес представляет соль N-метилтауринового амида кокосовой жирной кислоты (coconut fatty acid amide of N-methyltaurine).

Бетаиновое поверхностно-активное вещество.

В число бетаинов, подходящих для применения в настоящем описании, входят амидобетаины, представленные общей формулой:

 $R^{10}C(O)NH-(CH_2)_{v}-N^{+}(R^{11})(R^{12})CH_2CO_3^{-}(IV),$

где R^{10} представляет собой C6-C30 алкил, более конкретно C6-C24 алкил, R^{11} и R^{12} независимо представляют собой алкил, гидроксиалкил или карбоксиалкил, содержащий от 1 до 3 атомов углерода, и у составляет 2 или 3; и их соли. В одном из вариантов реализации половина из групп R^{10} представляет

собой C8-C18 алкил. В другом варианте реализации по меньшей мере половина из групп R^{10} представляет собой C10-C14 алкил. R^{10} может быть насыщенным или ненасыщенным. В одном из вариантов реализации R^{10} получен из кокосового масла или пальмоядрового масла. В одном из вариантов реализации R^{11} и R^{12} представляют собой метил.

В одном из вариантов реализации указанное бетаиновое поверхностно-активное вещество представляет собой кокамидопропилбетаин.

Несмотря на то что предполагается включение моющего поверхностно-активного вещества помимо тауратного поверхностно-активного вещества и бетаиновых поверхностно-активных веществ, такое дополнительное моющее поверхностно-активное вещество, когда оно присутствует, представляет собой минорный компонент моющего поверхностно-активного вещества в целом. В одном из вариантов реализации указанное моющее поверхностно-активное вещество содержит от 85 до 100 мас.% комбинации бетаинового поверхностно-активного вещества и тауратного поверхностно-активного вещества из расчета на общую массу моющей композиции для личной гигиены. В другом варианте реализации указанное моющее поверхностно-активное вещество содержит от 90 до 100 мас. % комбинации бетаинового поверхностно-активного вещества и тауратного поверхностно-активного вещества из расчета на общую массу моющей композиции для личной гигиены. В другом варианте реализации указанное моющее поверхностно-активное вещество содержит от 95 до 100 мас.% комбинации бетаинового поверхностноактивного вещества и тауратного поверхностно-активного вещества из расчета на общую массу моющей композиции для личной гигиены. Еще в одном варианте реализации указанное моющее поверхностноактивное вещество содержит от 99 до 100 мас.%, комбинации бетаинового поверхностно-активного вещества и тауратного поверхностно-активного вещества из расчета на общую массу моющей композиции для личной гигиены.

В одном варианте реализации моющая композиция для личной гигиены не содержит или по существу не содержит сульфатного поверхностно-активного вещества. "По существу не содержит сульфатного поверхностно-активного вещества, если оно присутствует, не превышает 0,5% от массы указанной композиции. В одном из вариантов реализации указанная композиция не содержит или по существу не содержит дополнительного анионного поверхностно-активного вещества. "По существу не содержит дополнительного поверхностно-активного вещества" означает, что количество анионного поверхностно-активного вещества помимо тауратного поверхностно-активного вещества не превышает 0,5% от массы указанной композиции.

В одном из вариантов реализации, когда моющая композиция для личной гигиены содержит от 5 до 6 мас.% или менее моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 55:45 до 45:55, предпочтительно от 50:50 до 45:55. В одном из вариантов реализации, когда указанная композиция содержит от более 6 до 10 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 40:60, предпочтительно от 75:25 до 50:50. В одном из вариантов реализации, когда указанная композиция содержит от более 10 до 15 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 20:80, предпочтительно от 75:25 до 25:75.

Вода.

Вода также входит в состав моющих композиций для личной гигиены согласно настоящему изобретению. Вода обычно присутствует в общем количестве, составляющем от 70 до 95 мас.%. В одном из вариантов реализации вода присутствует в общем количестве, составляющем от 75 до 95 мас.%. В другом варианте реализации вода присутствует в общем количестве, составляющем от 85 до 93 мас.%. Еще в одном варианте реализации вода присутствует в общем количестве, составляющем от 85 до 90 мас.%.

Электролит.

Моющие композиции для личной гигиены согласно настоящему изобретению могут дополнительно содержать электролит. Добавление электролита может способствовать регулированию вязкости композиции. Электролиты представляют собой вещества, которые растворяются в воде и подвергаются ионизации. Указанный термин исключает такие вещества, как моющее поверхностно-активное вещество, катионное поверхностно-активное вещество, а также другие вещества, которые подвергаются агрегации в растворе. В число электролитов, подходящих для применения в настоящем описании, входят простые соли органических или неорганических кислот. К числу подходящих солей относятся хлориды, нитраты, сульфаты и карбоксилаты. Примерами подходящих электролитов являются хлорид натрия, хлорид аммония, хлорид магния, сульфат натрия и цитрат натрия. Как правило, электролиты представляют собой относительно небольшие молекулы, которые часто имеют незначительные молекулярные массы, составляющие менее 600 г/моль.

Когда электролит присутствует, его общее содержание предпочтительно составляет менее 5 мас.%, более предпочтительно менее 4 мас.% из расчета на общую массу моющей композиции для личной гигиены. В одном из вариантов реализации электролит присутствует в количестве от 0,05 до 3 мас.% из

расчета на общую массу моющей композиции для личной гигиены. В другом варианте реализации электролит присутствует в количестве от 0,1 до 2 мас.% из расчета на общую массу моющей композиции для личной гигиены. Еще в одном варианте реализации электролит присутствует в количестве от 0,1 до 1,5 мас.%. Еще в одном варианте реализации электролит присутствует в количестве от 0,1 до 1 мас.% из расчета на общую массу моющей композиции для личной гигиены.

Несмотря на то что добавление электролита может способствовать увеличению вязкости композиции, при слишком высоком его содержании может наблюдаться ухудшение светопроницаемости указанной композиции. Когда необходима светопроницаемость или прозрачность, количество моющего поверхностно-активного вещества и количество бетаинового поверхностно-активного вещества по отношению к тауратному поверхностно-активному веществу следует выбирать таким образом, чтобы для повышения вязкости требовалось небольшое добавление электролита или не требовалось его добавления с сохранением при этом количества моющего поверхностно-активного вещества на уровне, при котором такое поверхностно-активное вещество не оказывает нежелательного влияния на пропускание света через указанную композицию. В связи с этим особый интерес может представлять общее содержание моющего поверхностно-активного вещества, составляющее от 6 до 10 мас.%.

За исключением продуктов в предварительно разбавленной форме или продуктов, приготовленных в виде относительно невязких или "водянистых" ("water thin") продуктов для аппликаторов, таких как, например, помповые пенообразователи (pump foamers), моющие композиции для личной гигиены согласно настоящему изобретению имеют значения вязкости или доводятся до значений вязкости в диапазоне от 2500 до 10000 сП в зависимости от конкретной формы выпуска указанной композиции и ее желаемой густоты. В одном из вариантов реализации представляют интерес значения вязкости в диапазоне от 3000 до 9000 сП. Еще в одном варианте реализации представляют интерес значения вязкости в диапазоне 3500-8000 сП. Еще в одном варианте реализации представляют интерес значения вязкости в диапазоне 4000-6000 сП. Если не указано иное, указания на вязкость приведены в отношении измерений, полученных с применением реометра AR2000EX от ТА Instruments (30°C, зазор 1 мм, время установления равновесия 90 с, измерение 30 с, при 4 обратных секундах, стальной шпиндель с пластиной 40 мм).

Моющие композиции для личной гигиены согласно настоящему изобретению обычно готовят с обеспечением pH от 3,5 до 7,0. В одном варианте реализации представляют интерес композиции, приготовленные с обеспечением pH от 4 до 6. В другом варианте реализации представляют интерес композиции, приготовленные с обеспечением pH от 4 до 5. Еще в одном варианте реализации указанная композиция имеет pH от 4 до 5,5.

Дополнительные необязательные ингредиенты.

Моющие композиции для личной гигиены согласно настоящему изобретению могут содержать один или более дополнительных ингредиентов для улучшения характеристик и/или привлекательности для потребителей. Такие ингредиенты включают, например, отдушку, инкапсулированные отдушки, растительные экстракты, фруктовые экстракты и другие вещества, вызывающие эмоции (emotives), красители, пигменты, агенты, регулирующие рН, буферы, вещества, обеспечивающие перламутровый эффект (pearlescers), замутнители, консерванты, увлажняющие агенты, суспендирующие агенты, кондиционеры для кожи и/или волос, питательные вещества для кожи и/или волос, витамины, аминокислоты, консерванты и бактерицидные вещества и тому подобное. В одном из вариантов реализации общее содержание таких дополнительных необязательных ингредиентов составляет менее 15 мас.% от указанной моющей композиции для личной гигиены. В другом варианте реализации общее содержание таких дополнительных необязательных ингредиентов составляет менее 10 мас.% от указанной моющей композиции для личной гигиены. Еще в одном варианте реализации общее содержание таких дополнительных необязательных ингредиентов составляет от 0,01 до 5 мас.% от указанной моющей композиции для личной гигиены. Количество дополнительных необязательных ингредиентов отчасти будет зависеть от конкретного ингредиента, применения, для которого его используют, и желаемых свойств в результате его применения

В одном из вариантов реализации указанная моющая композиция для личной гигиены не содержит или по существу не содержит (мет)акрилатных полимеров и сополимеров. "По существу не содержит (мет)акрилатных полимеров или сополимеров" означает, что общее содержание таких полимеров и сополимеров, если они присутствуют, не превышает 0,0,01 мас.% от указанной моющей композиции для личной гигиены. В одном из вариантов реализации указанная моющая композиция для личной гигиены не содержит или по существу не содержит силилированного уретанового полимера, содержащего четвертичные аммониевые группы. "По существу не содержит силилированного уретанового полимера, содержащего четвертичные аммониевые группы" означает, что общее содержание такого полимера, если он присутствует, составляет менее 0,01 мас.% от указанной моющей композиции для личной гигиены. В одном из вариантов реализации указанная моющая композиция для личной гигиены не содержит или по существу не содержит катионного производного гуаровой камеди. "По существу не содержит катионного производного гуаровой камеди. "По существу не содержит катионного производного гуаровой камеди. "По существу не содержит катионного производного гуаровой камеди." означает, что, если оно присутствует, его общее содержание составляет менее 0,01 мас.% от указанной композиции.

Указанные моющие композиции для личной гигиены могут быть получены с помощью традицион-

ных методов, в которых указанное катионное поверхностно-активное вещество и указанное моющее поверхностно-активное вещество солюбилизируют в воде обычно при нагревании и перемешивании и при необходимости охлаждают до температуры, которая позволяет осуществить последующее добавление ингредиентов композиции. Охлаждение и последующее добавление ингредиентов могут быть разделены на несколько стадий, исходя из свойств добавляемых далее ингредиентов. Например, отдушку и другие летучие компоненты обычно добавляют, когда композиция находится при температуре ниже температуры, при которой они испаряются. Нагретые растворы поверхностно-активных веществ, в которых солюбилизировано катионное поверхностно-активное вещество, не следует охлаждать настолько быстро, чтобы произошло его осаждение.

Моющие композиции для личной гигиены согласно настоящему изобретению могут быть обеспечены в различных формах выпуска, включая, например, средства для мытья тела, средства для умывания лица и шампуни. В одном из вариантов реализации особый интерес представляют композиции в форме шампуней. Указанную моющую композицию для личной гигиены обычно разбавляют водой и вспенивают. Если явно не указано иное, процентные содержания ингредиентов композиции, указанные в настоящем описании, приведены в отношении композиции перед разбавлением при применении, то есть композиции в упакованном виде. Указанные моющие композиции для личной гигиены могут быть представлены в упаковке, которая содержит инструкции, сообщающие о том, что композицию следует наносить, вспенивать и смывать.

Примеры

В следующих примерах стеарамидопропилдиметиламин в качестве альтернативы обозначен как "TAS", кокамидопропилбетаин в качестве альтернативы обозначен как "CAPB" или "бетаин", и кокоилтаурат натрия в качестве альтернативы обозначен как "таурат". В следующих таблицах представленные мас.% перечисленных ингредиентов приведены в отношении таких ингредиентов как отдельно добавленных компонентов. Например, в представленных мас.% динатриевой соли этилендиаминтетрауксусной кислоты (динатриевой соли ЭДТА), хлорида натрия и бензоата натрия не учитываются такие вещества, если они есть, входящие в состав каких-либо ингредиентов, указанных в таблицах под товарным знаком. Композиции, описанные в табл. 1, 2A и 3 ниже, получали с помощью следующей общей методики.

Нагревают начальное количество воды (деионизированной) до целевой температуры 63-65°С; в случае применения добавляют катионное поверхностно-активное вещество (стеарамидопропилдиметиламин и/или бегенилтриметиламмония хлорид, бегенилтриметиламмония хлорид (ВТАС) в виде смеси с дипропиленгликолем) и перемешивают до растворения. Прекращают нагревание, добавляют кокоилтаурат натрия (Pureact WS Cone) и перемешивают до растворения; добавляют кокамидопропилбетаин (Тедо® Веtain СК КВ5) и перемешивают в течение примерно 5 мин. После охлаждения смеси до 40-43°С добавляют дополнительное количество воды (деионизированной), в которую при перемешивании добавляют поликватерниум-10. Затем добавляют динатриевую соль ЭДТА, бензоат натрия, отдушку и лимонную кислоту и перемешивают в течение 10 мин.

Пример 1.

Для получения серий образцов, описанных в табл. 1 (6 композиций на серию образцов; TAS присутствует в количестве 0 (отсутствие TAS), 0.1, 0.2, 0.3, 0.4 или 0.5 мас.%), применяли общую методику, описанную выше.

Таблица 1 Серии образцов В C F F Α ח Ингредиент, масс. % Начальное кол-во До 100 До 100 До 100 До 100 До 100 До 100 воды 12,0 12,0 12,0 12,0 12.0 12,0 Доп. кол-во воды Поликватерниум-10 0,2 0,2 0,2 0,2 0,2 0,2 10,00 13,75 Tego® Betain CK KB5 3,33 6,66 6,87 20,63 10,00 20,63 13,75 6,87 Pureact WS Conc.** 6,66 3,33 0-0,5 Стеарамидопропил-0-0,5 0-0,5 0-0,5 0-0.5 0-0.5 диметиламин (TAS) 0,9 0,9 Отдушка 0,9 0,9 0,9 0,9 Динатриевая соль 0,05 0,05 0,05 0,05 0,05 0,05 ЭДТА Бензоат натрия 0,45 0,47 0,45 0,47 0,43 0,40 Лимонная кислота (50 1.2 1.2 1.2 1.2 масс. % водный раствор) 8,25 8,25 8,25 Общее содержание 4 4 моющего поверхностноактивного вещества (Macc. %) 25.75 50.50 75:25 25.75 50.50 75:25 Масс. отношение бетаин:таурат

*Tego® Betain CK KB5 от Evonik Industries; ≈30% кокамидопропилбетаина.

**Pureact WS Conc от Innospec Performance Chemicals; \$30% метилкокоилтаурата натрия.

Вязкоупругие свойства указанных композиций при гармонических колебаниях определяли с применением реометра ТА ARES-G2 с геометрией параллельных пластин диаметром 50 мм (зазор 1 мм). Измерения проводили при 25°C. На указанные композиции воздействовали колебаниями с частотой в диапазоне от 0,01 до 100 Гц при деформации 1%, при этом модуль упругости (G') и модуль потерь (G") композиции измеряли как функцию частоты. Изотропная фаза поверхностно-активного вещества представляет собой фазу поверхностно-активного вещества, в которой преобладающими микроструктурами поверхностно-активного вещества являются мицеллы агрегированных молекул поверхностно-активного вещества. Предпочтительно фаза поверхностно-активного вещества представляет собой изотропную палочкообразную мицеллярную систему, то есть систему, в которой преобладающей микроструктурой поверхностно-активного вещества являются в целом палочкообразные мицеллы. Для изотропной палочкообразной мицеллярной системы отклик на колебания (oscillatory response) соответствует пружиннодемпферной модели Максвелла, где ниже частоты перехода (частоты перехода, представляющей частоту, при которой G'=G") отношение тангенса угла наклона G' к тангенсу угла наклона G" составляет примерно 2 к 1.

На фиг. 1 представлен график, на котором сравниваются модуль упругости (G') и модуль потерь при упругой деформации (G") композиций из серии образца Е (общее содержание таурата и бетаина составляет 8,25 мас.%; массовое отношение бетаинтаурат составляет 50:50) при содержании стеарамидопропилдиметиламина, составляющем 0 или 0,5 мас.%. На указанном графике представлен сдвиг частоты перехода, который происходит при добавлении стеарамидопропилдиметиламина, что свидетельствует о том, что добавление стеарамидопропилдиметиламина является эффективным для создания мицеллярной структуры указанной композиции. Отношение тангенса угла наклона G' к тангенсу угла наклона G" ниже пересечения G' и G" составляет примерно 2 к 1, что указывает на то, что указанная композиция содержит изотропную палочкообразную мицеллярную систему.

Величина, обратная частоте на пересечении G' и G'', где G'=G'', представляет собой характеристическое время релаксации, в качестве альтернативы именуемое как "время релаксации" или T_r . Значения времени релаксации композиций из серий A-F представлены на тернарных графиках фиг. 2-7; значения времени релаксации приведены в миллисекундах (мс).

На фиг. 2 представлен график, на который нанесены значения времени релаксации серии композиций образца А. Нанесенные на график значения времени релаксации были очень небольшими и составляли от 21,1 мс до 54,2 мс; для композиций, содержавших от 0,1 до 0,3 мас.% стеарамидопропилдиметиламина, частота перехода не была отмечена, что указывает на то, что в указанных композициях не создавалась мицеллярная структура, достаточная для обеспечения поддающегося измерению времени релаксации.

На фиг. 3 представлен график, на который нанесены значения времени релаксации серии композиций образца В. Нанесенные на график значения времени релаксации составляли от 31,4 до 267,8 мс. Было продемонстрировано, что значения времени релаксации увеличивались с 31,4 мс для композиции, не содержавшей стеарамидопропилдиметиламина, до 267,8 мс для композиции, содержавшей 0,2 мас.% стеарамидопропилдиметиламина. Для композиций, содержавших от 0,3 до 0,5 мас.% стеарамидопропилдиметиламина, значения времени релаксации уменьшались с 185,0 до 84,9 мс, но все еще были значительно больше, чем время релаксации для композиции, не содержавшей стеарамидопропилдиметиламина.

На фиг. 4 представлен график, на который нанесены значения времени релаксации серии композиций образца С. Было продемонстрировано, что значения времени релаксации увеличивались с 67,6 мс для композиции, не содержавшей стеарамидопропилдиметиламина, до 83,6 мс для композиции, содержавшей 0,1 мас.% стеарамидопропилдиметиламина. Для композиций, содержавших от 0,2 до 0,5 мас.% стеарамидопропиламина, значения времени релаксации уменьшались с 48,2 до 14,0 мс. Представленные значения времени релаксации в общем случае соответствуют композициям, которые имеют относительно непрочную мицеллярную структуру.

На фиг. 5 представлен график, на который нанесены значения времени релаксации серии композиций образца D. Нанесенные на график значения времени релаксации были относительно небольшими и составляли от 33,1 до 41,2 мс. Представленные значения времени релаксации в общем случае соответствуют композициям, которые имеют относительно непрочную мицеллярную структуру.

На фиг. 6 представлен график, на который нанесены значения времени релаксации серии композиций образца Е. Нанесенные на график значения времени релаксации составляли от 101,0 до 666,7 мс. Было продемонстрировано, что значения времени релаксации увеличивались с увеличением содержания стеарамидопропилдиметиламина.

На фиг. 7 представлен график, на который нанесены значения времени релаксации серии композиций образца F. Нанесенные на график значения времени релаксации составляли от 303,0 до 454,5 мс при увеличении значений времени релаксации с увеличением содержания стеарамидопропилдиметиламина до 0,4 мас.% от указанной композиции. Время релаксации композиции, содержавшей 0,4 мас.% стеара-

мидопропилдиметиламина, и композиции, содержавшей 0,5 мас.% стеарамидопропилдиметиламина, было по существу одинаковым.

Графики на фиг. 2-7 демонстрируют, что как содержание моющего поверхностно-активного вещества, так и количество бетаинового поверхностно-активного вещества по отношению к тауратному поверхностно-активному веществу могут оказывать значительное влияние на способность стеарамидопропилдиметиламина способствовать созданию мицеллярной структуры.

Пример 2.

Композиции, описанные в табл. 2А, получали согласно общей методике, представленной выше. рН указанных композиций составлял от 4,0 до 4,7. Измеряли начальную вязкость каждой из полученных композиций. Далее к первоначально полученным TAS-содержащим композициям добавляли агент, регулирующий вязкость, как указано: хлорид натрия для корректировки вязкости в сторону увеличения или полипропиленгликоль-9 (ППГ-9) для корректировки вязкости в сторону уменьшения. Далее агент, регулирующий вязкость, добавляли до получения отрегулированного значения в пределах целевой вязкости, составлявшей от 4000 до 8000 сП, или добавленное количество агента, регулирующего вязкость, не достигало максимального общего количества. Далее агент, регулирующий вязкость, добавляли с шагом 0,05 мас. % вплоть до общего количества, составлявшего 0,2 мас. %, а затем с шагом 0,1 мас. % вплоть до максимального общего количества, составлявшего 2,0 мас. % из расчета на общую массу первоначально полученной композиции. Далее к не содержащим ТАЅ композициям С1 и С2 добавляли хлорид натрия с шагом 0.2, 0.3 и 0.5 мас.% вплоть до общего количества, составлявшего 1,0 мас.% из расчета на общую массу первоначально полученной композиции. В случае общего содержания позднее добавленной соли, составлявшего 0,2, 0,5 и 1,0 мас.%, отрегулированное значение вязкости композиции С1 составляло 2656, 2508 и 2706 соответственно. В случае общего содержания позднее добавленной соли, составлявшего 0,2, 0,5 и 1,0 мас.%, отрегулированные значения вязкости композиции С2 составляли 6197, 6443 и 7093 сП соответственно. Измерения вязкости проводили с применением реометра AR2000EX от TA Instruments (30°C, зазор 1 мм, время установления равновесия 90 с, измерение 30 с, A-4 1/c, стальной шпиндель с пластиной 40 мм).

Таблица 2А

	Образец									
	C1	C2	C3	C4	C5	C 6				
Ингредиент, масс. %										
Начальное кол-во воды	До 100									
Доп. кол-во воды	12	12	12	12	12	12				
Поликватерниум- 10	0,2	0,2	0,2	0,2	0,2	0,2				
Tego® Betain CK KB5*	20,63	31,25	3,33	6,66	10,0	6,87				
Pureact WS Conc.	6,87	10,41	10,0	6,66	3,333	20,63				
Стеарамидопропил- диметиламин (TAS)		-	0,10	0,10	0,10	0,10				
Отдушка	0,7	0,9	0,9	0,9	0,9	0,9				
Динатриевая соль ЭДТА	0,05	0,05	0,05	0,05	0,05	0,05				
Бензоат натрия	0,41	0,34	0,45	0,47	0,45	0,47				
Лимонная кислота (50 масс. % водный раствор)	1,2	1,2	1,2	1,2	1,2	1,2				
Общее содержание моющего поверхностно-активного вещества (масс. %)	8,25	12,5	4	4	4	8,25				
Массовое отношение бетаин:таурат	75:25	75:25	25:75	50:50	75:25	25:75				
Начальная вязкость (сП)	3240	6128	3	339	691	59				
Мутный (Да/Нет)	Нет	Да	Нет	Нет	Нет	Нет				
Агент, регулирующий вязкость (масс. %)	NaCl (1,0)	NaCl (1,0)	NaCl (2,0)	NaCl (2,0)	NaCl (2,0)	NaCl (2,0)				
(Масос. 70) Отрегулированная вязкость (сП) Мутный (Да/Нет)	2706 Да	7093 Да	238 Да	180 Да	176 Да	638 Да				

	Образец									
	1	2	3	4	5	6				
Ингредиент, масс. %										
Начальное кол-во воды	До 100	До 100	До 100	До 100	До 100	До 100				
Доп. кол-во воды	12	12	12	12	12	12				
Поликватерниум-10	0,2	0,2	0,2	0,2	0,2	0,2				
Tego® Betain CK KB5*	13,75	13,75	20,63	31,25	20,83	10,41				
Pureact WS Conc.	13,75	13,75	6,87	10,41	20,83	31,25				
Стеарамидопропил- диметиламин (TAS)	0,10	0,10	0,10	0,10	0,10	0,10				
Отдушка	0,9	0,9	0,9	0,9	0,9	0,9				
Динатриевая соль ЭДТА	0,05	0,05	0,05	0,05	0,05	0,05				
Бензоат натрия	0,43	0,43	0,40	0,34	0,40	0,45				
Лимонная кислота (50 масс. % водный раствор)	1,2	1,2	1,2	1,2	1,2	1,2				
0.5	0.05	0.05	0.05	10.5	40.5	10.5				
Общее содержание моющего поверхностно-активного вещества (масс. %)	8,25	8,25	8,25	12,5	12,5	12,5				
Массовое отношение бетаин:таурат	50:50	50:50	75:25	75:25	50:50	25:75				
Начальная вязкость (сП)	2327	2580	4741	10280	13990	259				
Мутный (Да/Нет)	Нет	Нет	Нет	Да	Да	Да				
Агент, регулирующий	NaCl	NaCl (0.7)	 	ППГ-9	ППГ-9	NaCl (2.0)				
вязкость (масс. %)	(0,7)	(0,7)	+	(0,1)	(0,15)	(2,0)				
Отрегулированная вязкость (сП) Мутный (Да/Нет)	4683 Да	4876 Да	-	6210 Да	6704 Да	4765 Да				

^{*}Tego Betain CK KB5 от Evonik Industries; ≈30% кокамидопропилбетаина.

Образцы 1-6 и сравнительные образцы С3-С6 содержали 0,1 мас.% стеарамидопропилдиметиламина. Начальные значения вязкости образцов 4 и 5 (содержание моющего поверхностно-активного вещества составляло 12,5 мас.%; массовое отношение бетаинтаурат составляло 75:25 и 50:50 соответственно) были выше целевого диапазона и должны были быть скорректированы в сторону уменьшения. Вязкость образца 6 (содержание моющего поверхностно-активного вещества составляло 12,5 мас.%; массовое отношение бетаинтаурат составляло 25:75) доводили до значения в целевом диапазоне путем добавления 2,0 мас.% хлорида натрия. Вязкость образца С6 (содержание моющего поверхностно-активного вещества составляло 8,25 мас.%; массовое отношение бетаинтаурат составляло 25:75) не была приведена к значению в целевом диапазоне путем добавления хлорида натрия при наиболее высоком рассматриваемом содержании (2,0 мас.%). Начальное значение вязкости образца 3 находилось в целевом диапазоне вязкости и не требовало корректировки.

Вязкости сравнительных образцов С3, С4 и С5 (общее содержание поверхностно-активного вещества составляло 4 мас.%; отношения бетаинтаурат составляли 25:75, 50:50 и 75:25 соответственно) не были приведены к значениям в целевом диапазоне путем добавления хлорида натрия при наиболее высоком рассматриваемом содержании (2,0 мас.%). Вязкости образцов 1 и 2 (содержание моющего поверхностно-активного вещества составляло 8,25 мас.%, отношение бетаинтаурат натрия составляло 50:50) доводили до значений в целевом диапазоне путем добавления 0,7 мас.% хлорида натрия. Начальное значение вязкости образца 3 (содержание моющего поверхностно-активного вещества составляло 8,25 мас.%, отношение бетаинтаурат составляло 75:25) находилось в целевом диапазоне и не требовало корректировки.

Образец С1 имел значительно более низкое начальное значение вязкости (3240 сП), чем образец 3 (начальное значение вязкости 4741 сП), который перед регулированием вязкости с помощью соли содержал такое же количество моющего поверхностно-активного вещества (8,25%) и имел такое же отношение бетаинтаурат (75:25); что свидетельствует о том, что включение ТАЅ в образец 3 способствует увеличению вязкости композиции. Добавление соли не приводило отрегулированное значение вязкости образца С1 в пределы целевого диапазона; при 1,0 мас.% добавленной соли отрегулированное значение вязкости композиции С1 было меньше начального значения вязкости. Образец С2 имел значительно более низкое начальное значение вязкости (6128 сП), чем образец 4 (начальное значение вязкости 10280 сП), который содержал такое же количество моющего поверхностно-активного вещества и имел такое же отношение бетаинтаурат (75:25); что свидетельствует о том, что включение ТАЅ в образец 4 способствует увеличению вязкости композиции.

Свойства пены образца 3 и композиций с отрегулированной вязкостью образцов 1-2, 4-6 и С3-С6 приведены в табл. 2В. Свойства пены определяли с помощью следующих общих методик.

Измерения объема пены проводили с применением прибора для определения характеристик пены Sitafoam R-2000 Foam Tester от SITA Lab Solutions (программное обеспечение Sita Foam Software D/DAC; версия 1.0.11.549). Емкость для воды указанного прибора заполняли водой при температуре 40-42°C.

^{**}Pureact WS Conc. от Innospec Performance Chemicals; ≈30% метилкокоилтаурата натрия.

Настройки для испытания были установлены на 40 циклов перемешивания, 20 с на цикл при 1000 об/мин с применением 250 мл воды. 1 г образца композиции, подлежащей испытанию, вносили в указанный прибор, и объем пены измеряли при описанных настройках. Объем пены, создаваемой образцом, приведен в мл.

Плотность и стабильность пены измеряли с помощью следующей методики.

Тарируют 100 мл мерный цилиндр на весах.

Отмеряют в кухонный блендер Braun 200 мл водопроводной воды при 45°C и добавляют 2 мл композиции, подлежащей испытанию.

Используя таймер, удерживают переключатель импульсного режима (режима "pulse") в течение 10 с и, не останавливая таймер, отпускают переключатель, прерывая работу в импульсном режиме на 10 с.

Повторяют циклы 10 с импульсного режима/10 с паузы до истечения 70 с (всего три с половиной цикла).

Перемещают полученную пену в мерный цилиндр до тех пор, пока уровень не достигнет отметки 100 мл.

Фиксируют массу пены, показанную на весах (плотность).

Запускают таймер на 5 мин и фиксируют объем жидкости на дне мерного цилиндра (стабильность).

Таблица 2В

Образец	Объем пены	Плотность пены	Стабильность пены
	(мл)	(г/100 мл)	(мл)
1	427	8,7	6,5
2	411	8,1	8,0
3	450	15,0	13,0
4	446	8,7	7,5
5	441	9,5	8,0
6	424	10,3	9,0
C3	391	8,08	6,5
C4	399	9,92	7,0
C5	321	11,82	9,0
C6	409	9,97	8,0

В результате все испытываемые образцы обладали приемлемыми свойствами пены, при этом образцы 3-5 обеспечивали наибольшие объемы пены.

Испытание в парикмахерском салоне (salon testing) (50 квалифицированных участников) проводили с применением композиции образца 3. В результате данного испытания было установлено, что указанная композиция образца 3 обладает хорошими моющими свойствами.

Пример 3.

Композиции, описанные в табл. 3, получали с помощью вышеописанной общей методики и измеряли их начальную вязкость. Далее к таким исходным композициям добавляли агент, регулирующий вязкость, в указанных количествах и измеряли вязкости конечных композиций. Конечные композиции хранили в течение 2 месяцев при 45°C и их вязкость повторно измеряли. Вязкости измеряли с применением оборудования и условий, описанных выше.

Таблина 3

	Образец									
	C7	7	8	9	10	11	12			
Ингредиент, масс. %										
Начальное кол-во воды	До 100	До 100	До 100	До 100	До 100	До 100	До 100			
Доп. кол-во воды	12	12	12	12	12	12	12			
Поликватерниум-10	0,2	0,2	0,2	0,2	0,2	0,2	0,2			
Tego® Betain CK KB5*	15,83	15,83	15,83	15,83	15,83	15,83	15,83			
Pureact WS Conc.**		11,33	11,33	11,33	11,33	11,33	11,33			
Стеарамидопропилдиметиламин	0,1			0,10	0,1	0,25	0,5			
ВТАС/дипропиленгликоль (в виде смеси 70/30 по массе)	0,1	0,1	0,5	0,10		0,25	0,5			
Отдушка	0,6	0,6	0,6	0,6	0,6	0,6	0,6			
Динатриевая соль ЭДТА	0,05	0,05	0,05	0,05	0,05	0,05	0,05			
Бензоат натрия	0,4208	0,42	0,42	0,42	0,42	0,42	0,42			
Лимонная кислота (50 масс. % водный раствор)	1,2	1,2	1,2	1,2	1,2	1,2	1,2			
Общее содержание моющего поверхностно-активного вещества (масс. %)	4,75	8,15	8,15	8,15	8,15	8,15	8,15			
Массовое отношение бетаин:таурат		58:42	58:42	58:42	58:42	58:42	58:42			
Начальная вязкость (сП)	Слишком низкая вязкость для измерения	5016	8038	6736	5773	11100	21800			
Агент, регулирующий	NaCl	NaCl		NaCl	NaCl	ППГ-9	ППГ-9			
вязкость (масс. %)	(1,0)	(0.1)		(0.1)	(0.1)	(0.05)	(0.20)			
Вязкость свежей конечной композиции (сП)	Сохранялась слишком низкая вязкость для измерения	6175	8038	8023	7259	7918	7990			
Вязкость конечной компо- зиции после хранения (сП)		6589	9189	7955	7292	7857	7130			

^{*}Tego Betain CK KB5 от Evonik Industries; ≈30% кокамидопропилбетаина.

Через 2 месяца при 45°C вязкость конечных композиций образцов 7-12 отличалась в пределах 15% от значений для композиций в свежеприготовленном виде, а для конечных компзиций образцов 9, 10 и 11 вязкость отличалась в пределах 1% от значений для композиций в свежеприготовленном виде.

Пример 4.

Композиции, описанные в табл. 4, 5 и 6 ниже, получали с помощью следующей методики, являющейся вариантом общей методики, описанной выше.

Примерно 10-15% от начального количества воды отделяют и сохраняют. К оставшейся части первоначального количества воды добавляют поликватерниум-10 и начинают нагревание до целевой температуры, составляющей от 60 до 65°C (70°C, если необходимо добавить стеарамидопропилдиметиламин). Как только поликватерниум-10 полностью растворился, добавляют кокоилтаурат натрия (Pureact WS Conc.) и перемешивают до растворения; добавляют стеарамидопропилдиметиламин (в случае необходимости его применения) и перемешивают до растворения. Начинают охлаждение до 30°C. Во время фазы охлаждения добавляют кокамидопропилбетаин (Tego® Betain CK KB5) и перемешивают до растворения. Добавляют динатриевую соль ЭДТА и бензоат натрия, предварительно диспергированные в отделенной сохраненной части воды (нагретой до 40-60°C). В случае необходимости его наличия в составе добавляют пальмитоамидопропилтримония хлорид (Varisoft® PATC) и перемешивают до полного диспергирования. Когда смесь охладилась до температуры ниже 35°С, добавляют отдушку и доводят рН до 4.2-4.8 путем добавления лимонной кислоты, после чего добавляют хлорид натрия, как указано. Значения вязкости полученных композиций измеряют с применением peometpa Discovery Hybrid Rheometer (модели DHR-2) от TA Instruments (30°C при 4 обратных секундах, пластина, подвергнутая пескоструйной обработке). Значения вязкости композиций приведены в табл. 4 и 6 ниже. Образцы С8, С9, С10, 12, 13, 14, 15, 16, 17, 18, C11, 19, C12, 20 и 21 из табл. 4 соответствуют образцам A(1), B(1), B(2), K(1), K(4), O(1), Q(1), X(1), X(2), X(4), Y(1), Z(1), Y(5), BB(3) и BB(4) из табл. 6.

Пропускание света через указанные композиции измеряли с применением прибора Formulaction Turbiscan LAB, в котором используется метод статического многократного рассеяния света. В настоящем описании считается, что $\Delta T > -20\%$ (по сравнению с образцом дистиллированной воды) соответствует "прозрачности".

^{**}Pureact WS Conc. от Innospec Performance Chemicals; ≈30% метилкокоилтаурата натрия.

Таблица 4

								С	бразец			
		28		C9		C1	0	12		13	14	15
Ингредиент, масс. %												
Начальное кол-во вод	ы І	lo 1	00	До	100	Дс	100	Дс	100	До 100	До 100	До 100
(деионизированной)	-	٠.		" "		· · ·		' '		Д		H
Поликватерниум-10		0,2	0,2			0,2		0.2		0,2	0.2	0,2
Pureact WS Conc.**	6	3,66		6,6	6,66		36	6,0	36	6,66	13,33	13,33
Стеарамидопропил-	<u> </u>	-		0,3		0,3	3				0,15	0,15
диметиламин												
Tego® Betain CK KB5*	. 6	3.66		6,6	6 6	6,6	36	20		20	13.33	13,33
Динатриевая соль ЭД		0,05		0,0		0,0		0.		0.05	0.05	0.05
Бензоат натрия),5		0,5		0,		0,		0,5	0,5	0,5
Varisoft® PATC***		-						1		1	0,5	1
Отдушка		0,7		0,7		0,7	7	0,	7	0,7	0,7	0,7
Лимонная кислота		1,2		1,2		1,2		1,:		1,2	1,2	1,2
(50 масс.% водный								ľ				
раствор)												
Хлорид натрия	-	-				0,5	5			1,5		
Общее содержание	4	1		4		4		8		8	8	8
моющего поверхностн	10-											
активного вещества												
(масс. %) Массовое отношение		50:50		E0:	50:50 50:50		·E0	75:25		75:25	50:50	50:50
бетаин:таурат	5	00.50		50.	50	50	.50	15	.25	75.25	50.50	50.50
Вязкость (сП)		51		676		58	8	1.8	97	2879	3015	8480
DASKOCIB (CIT)	'	, ,		0,0	,	30	J	'	31	2073	3013	0400
ΔT (%)	<u> </u>	5,34		-2,9	96	-2,	53	-7	.72	-86,59	-4.05	-2,67
*							Образец					
	16		17		18		C11		19	C12	20	21
Ингредиент, масс. %	10		17		10		CII		19	C12	20	21
Начальное кол-во воды	До 10	00	До 10	10	До 10	10	До 10	<u> </u>	До 100	До 100	До 100	До 100
(деионизированной)	HO 11	"	дото	10	дотс	10	до то	,	Д0 100	Д0 100	Д0 100	Д0 100
Поликватерниум-10	0,2		0,2		0,2		0,2		0,2	0,2	0,2	0,2
Pureact WS Conc.**	20		20		20		20		20	20	20	20
Стеарамидопропил-	0,15		0,15		0,15				0,3		0,3	0,3
диметиламин												
Tego® Betain CK KB5* Динатриевая соль ЭДТА	13,33 0,05		13,33 0,05		13,33 0.05		20 0,05		20 0.05	20 0.05	20 0.05	0.05
Бензоат натрия	0,03		0,05		0,03		0,03		0,03	0,03	0,03	0,05
Varisoft® PATC***	0,5		0,5		0,5						1	1
Отдушка	0,7		0,7		0,7		0,7		0,7	0,7	0,7	0,7
Лимонная кислота	1,2		1,2		1,2		1,2		1,2	1,2	1,2	1,2
(50 масс. % водный раствор)												
Хлорид натрия			0,5		1,5		-			2	1	1,5
			,									
Общее содержание	10		10		10		12		12	12	12	12
моющего поверхностно-												
активного вещества (масс. %)												
Массовое отношение	40:60		40:60		40:60		50:50		50:50	50:50	50:50	50:50
бетаин:таурат												
Вязкость (сП)	2466		5000		9031		11168		17632	23074	27959	26020
ΔΤ (%)	-4,42		-86,82		-87,00	2.0	-86,56		-86,84	-87,03	-86,94	-86,93

^{*}Tego® Betain CK KB5 от Evonik Industries; ≈30% кокамидопропилбетаина.

^{**}Pureact WS Conc. от Innospec Performance Chemicals; ≈30% метилкокоилтаурата натрия.

^{***} Varisoft® PATC от Evonik Industries; ≈60% пальмитоамидопропилтримония хлорид.

Таблица 5

	Общий состав образцов из таблицы 6
Ингредиент, масс. %	
Начальное кол-во воды (деионизированной)	До 100
Поликватерниум-10	0,2
Pureact WS Conc.**	Как указано в таблице 6
Стеарамидопропилдим етиламин	Как указано в таблице 6
Tego® Betain CK KB5*	Как указано в таблице 6
Динатриевая соль ЭДТА	0,05
Бензоат натрия	0,5
Varisoft® PATC***	Как указано в таблице 6
Отдушка	0,7
Лимонная кислота	1,2
(50 масс. водный	
раствор)	
Хлорид натрия	Как указано в таблице 6

^{*}Tego®Betain CK KB5 от Evonik Industries; ≈30% кокамидопропилбетаина.

Таблица 6

		Образец											
	A(1)	A(2)	A(3)	A(4)	A(5)	B(1)	B(2)	B(3)	B(4)	B(5)			
Pureact WS Conc. (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66			
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3	0,3			
Tego® Betain CK KB5 (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66			
Varisoft® PATC (масс. %)													
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2			
Общее содержание моющего поверхностно-активного вещества (масс. %)	4	4	4	4	4	4	4	4	4	4			
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50			
Вязкость (сП)	51	120	310	501	581	676	588	181	136	114			
ΔΤ (%)	-5,34	-2,07	-3,83	-74,46	-82,84	-2,96	-2,53	-85,63	-86,84	-86,76			
	C(1)	C(2)	C(3)	C(4)	C(5)	D(1)	D(2)	D(3)	D(4)	D(5)			
Pureact WS Conc. (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66			
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3	0,3			
Tego® Betain CK KB5 (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66			
Varisoft® PATC (масс. %)	1	1	1	1	1	1	1	1	1	1			
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2			
Общее содержание моющего поверхностно-активного вещества (масс. %)	4	4	4	4	4	4	4	4	4	4			
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50			
Вязкость (сП)	729	189	142	110	94	217	111	95	92	86			
ΔΤ (%)	-5,77	-79,70	-83,07	-87,04	-87,05	-87,07	-87,15	-87,12	-87,11	-87,14			

^{**}Pureact WS Conc. от Innospec Performance Chemicals; ≈30% метилкокоилтаурата натрия.

^{***} Varisoft® PATC от Evonik Industries; ≈60% пальмитоамидопропилтримония.

						Образец				
	E(1)	E(2)	E(3)	E(4)	E(5)	F(1)	F(2)	F(3)	F(4)	F(5)
Pureact WS Conc. (масс. %)	9,99	9,99	9,99	9,99	9,99	9,99	9,99	9,99	9,99	9,99
Стеарамидопропил- диметиламин (масс. %)						0,15	0,15	0,15	0,15	0,15
Tego® Betain CK KB5 (масс. %)	9,99	9,99	9,99	9,99	9,99	9,99	9,99	9,99	9,99	9,99
Varisoft® PATC (масс. %)										
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2
Общее содержание моющего поверхностно-активного вещества (масс. %)	6	6	6	6	6	6	6	6	6	6
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50
Вязкость (сП)	114	299	651	1129	1802	222	553	1144	1872	2626
ΔΤ (%)										
	G(1)	G(2)	G(3)	G(4)	G(5)	H(1)	H(2)	H(3)	H(4)	H(5)
Pureact WS Conc. (масс. %)	13,33	13,33	13,33	13,33	13,33	6,66	6,66	6,66	6,66	6,66
Стеарамидопропил- диметиламин (масс. %)	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Tego® Betain CK KB5 (масс. %)	6,66	6,66	6,66	6,66	6,66	13,33	13,33	13,33	13,33	13,33
Varisoft® PATC (масс. %)	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2
Общее содержание моющего поверхностно-активного вещества (масс. %)	6	6	6	6	6	6	6	6	6	6
Массовое отношение бетаин:таурат	33:67	33:67	33:67	33:67	33:67	67:33	67:33	67:33	67:33	67:33
Вязкость (сП)	93	320	882	1542	1550	3510	3935	3913	3805	3725
ΔΤ (%)	-2,65	-3,36	-5,92	-83,81	-85,44	-3,42	-8,19	-86,59	-86,64	-86,32
						Образец				
	I(1)	I(2)	I(3)	I(4)	1(5)	J(1)	J(2)	J(3)	J(4)	J(5)
Pureact WS Conc. (масс. %)	6,66	6,66	6,66	6,66	6,66	20	20	20	20	20
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3	0,3
Tego® Betain CK KB5 (масс. %)	20	20	20	20	20	6,66	6,66	6,66	6,66	6,66
Varisoft® PATC (масс. %)										
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2
Общее содержание моющего поверхностно-активного вещества (масс. %)	8	8	8	8	8	8	8	8	8	8
Массовое отношение бетаин:таурат	75:25	75:25	75:25	75:25	75:25	25:75	25:75	25:75	25:75	25:75
Вязкость (сП)	1084	1292	1386	1615	1858	1304	1526	1747	2145	2057
ΔΤ (%)	-4,60	-85,86	-85,14	-85,96	-86,10	-2,83	-86,61	-86,84	-86,87	-86,90
	K(1)	K(2)	K(3)	K(4)	K(5)	L(1)	L(2)	L(3)	L(4)	L(5)
Pureact WS Conc. (масс. %)	20	20	20	20	20	20	20	20	20	20
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3	0,3
Tego® Betain CK KB5 (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66
Varisoft® PATC (масс. %)	1	0,5	1	1,5	2	1	0,5	1	1 5	2
Хлорид натрия		0,5	1	1,5	2		υ,5	1	1,5	- -
Общее содержание моющего поверхностно- активного вещества (масс. %)	8	8	8	8	8	8	. 8	8	8	8
Массовое отношение бетаин:таурат	75:25	75:25	75:25	75:25	75:25	75:25	75:25	75:25	75:25	75:25
Вязкость (сП)	1897	2166	2393	2879	2792	3066	3456	3649	4082	3985
ΔT (%)	-7,72	-85,97	-86,43	-86,59	-86,62	-77,32	-86,76	-86,78	-86,79	-86,85

						Образец				
	M(1)	M(2)	M(3)	M(4)	M(5)	N(1)	N(2)	N(3)	N(4)	N(5)
Pureact WS Conc. (масс. %)	13,33	13,33	13.33	13.33	13,33	13,33	13,33	13,33	13.33	13,33
Стеарамидопропил-	0,15	0,15	0,15	0,15	0,15		13,33			
диметиламин (масс. %) Тедо® Betain CK KB5 (масс. %)	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33
Varisoft® PATC (Macc. %)	13,33	13,33		13,33		0,5	0,5	0,5	0,5	0,5
Хлорид натрия	 	0,5	1	1,5	2		0,5	1	1,5	2
усторид патрия		0,0	<u> </u>	1,0	-		0,0	<u>'</u>	1,0	+
Общее содержание поверхностно-активного вещества (масс. %)	8	8	8	8	8	8	8	8	8	8
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50
Вязкость (сП) ΔТ (%)	1069	2416	3978 -86,55	5125 -86,87	5671 -86,90	1554 -3,20	3067 -46,47	4679 -86,72	5893 -86,9	6689 -86,92
Δ1 (%)										
- 1117	O(1)	O(2)	O(3)	O(4)	O(5)	P(1)	P(2)	P(3)	P(4)	P(5)
Pureact WS Conc. (масс. %)	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33
Стеарамидопропил-	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Tego® Betain CK KB5 (масс. %)	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33
Varisoft® PATC (масс. %)	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2
05	-	1	-	1		-	1	-	1	
Общее содержание моющего поверхностно-активного вещества (масс.%)	8	8	8	8	8	8	8	8	8	8
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50
Вязкость (сП)	3015	5032	7104	7905	7867	5238	7271	8727	8443	6988
ΔΤ (%)	-4,05	-78,82	-86,84	-86,84	-86,92	-3,96	-85,41	-86,83	-86,91	-86,79
						Образец				
	Q(1)	Q(2)	Q(3)	Q(4)	Q(5)	R(1)	R(2)	R(3)	R(4)	R(5)
Pureact WS Conc. (масс. %)	13,33	13,33	13,33	13,33	13,33	13.33	13.33	13.33	13,33	13,33
Стеарамидопропил- диметиламин (масс. %)	0,15	0,15	0,15	0,15	0,15	0,3	0,3	0,3	0,3	0,3
Tego® Betain CK KB5 (масс. %)	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33
Varisoft® PATC (масс. %)	1	1	1	1	1	0,5	0,5	0,5	0,5	0,5
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2
Общее содержание моющего поверхностно-активного вещества (масс. %)	8	8	8	8	8	8	8	8	8	8
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50
Вязкость (сП)	8480	9812	8444	6467	4725	6525	7979	8514	7932	6797
ΔT (%)	-2,67	-86,60	-86,79	-86,82	-86,79	-2,56	-84,57	-86,99	-87,02	-86,97
						Образец				
	S(1)	S(2)	S(3)	S(4)	S(5)	T(1)	T(2)	T(3)	T(4)	T(5)
D ((()										
Pureact WS Conc. (масс. %) Стеарамидопропил-	20	20	20	20	20	20 0,3	20 0.3	20 0,3	20 0.3-	20 0.3
диметиламин (масс. %)							,			
Tego® Betain CK KB5 (масс. %) Varisoft® PATC (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2
06										
Общее содержание моющего поверхностно-активного вещества (масс. %)	8	8	8	8	8	8	8	8	8	8
Массовое отношение бетаин:таурат	25:75	25:75	25:75	25:75	25:75	25:75	25:75	25:75	25:75	25:75
Вязкость (сП)	12	19	41	79	248	39	94	231	495	1245
ΔΤ (%)	-3,37	-3,14	-6,19	-81,82	-84,47	-2,56	-3,71	-71,23	-83,69	-85,82
	U(1)	U(2)	U(3)	U(4)	U(5)	V(1)	V(2)	V(3)	V(4)	V(5)
Pureact WS Conc. (масс. %)	20	20	20	20	20	20	20	20	20	20
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3	0,3
Tego® Betain CK KB5 (масс. %)	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66	6,66
Varisoft® PATC (масс. %) Хлорид натрия	1	1 0,5	1	1,5	1 2	1	1 0,5	1	1 1,5	1 2
		1,5	<u> </u>	1.,5	+		1,5	<u> </u>	1.,5	
Общее содержание моющего поверхностно-активного вещества (масс. %)	8	8	8	8	8	8	8	8	8	8
Массовое отношение бетаин:таурат	25:75	25:75	25:75	25:75	25:75	25:75	25:75	25:75	25:75	25:75
Viscosity (cP)	44	135	424	1013	1945	183	682	1670	2896	3272
ΔT (%)	-3,41	-3,96	-75,06	-84,66	-86,18	-2,92	-4,73	-85,72	-86,67	-86,41
• /				,				,		

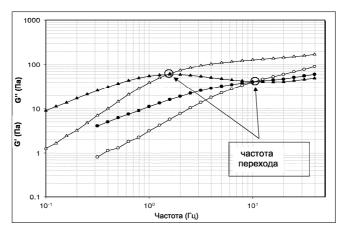
						Образец							
	W(1)	W(2)	W(3)	W(4)	W(5)	X(1)	X(2)	X(3)	X(4)	X(5)			
Pureact WS Conc. (масс. %)	13,33	13,33	13,33	13,33	13,33	20	20	20	20	20			
Стеарамидопропил- диметиламин (масс. %)	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15			
Tego® Betain CK KB5 (масс. %)	20	20	20	20	20	13,33	13,33	13,33	13,33	13,33			
Varisoft® PATC (масс. %)	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5			
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2			
Общее содержание моющего поверхностно-активного вещества (масс. %)	10	10	10	10	10	10	10	10	10	10			
Массовое отношение бетаин:таурат	60:40	60:40	60:40	60:40	60:40	40:60	40:60	40:60	40:60	40:60			
Вязкость (сР)	11524	14553	15357	15286	15881	2466	5000	7498	9031	9345			
ΔΤ (%)	-86,61	-86,97	-87,01	-87,04	-87,02	-4,42	-86,82	-86,96	-87,00	-87,04			
	Образец												
	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Z(1)	Z(2)	Z(3)	Z(4)	Z(5)			
Pureact WS Conc. (масс. %)	20	20	20	20	20	20	20	20	20	20			
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3	0,3			
Tego® Betain CK KB5 (масс. %)	20	20	20	20	20	20	20	20	20	20			
Varisoft® PATC (масс. %)													
Хлорид натрия		0,5	1	1,5	2		0,5	1	1,5	2			
Общее содержание моющего поверхностно-активного вещества (масс. %)	12	12	12	12	12	12	12	12	12	12			
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50			
Вязкость (сП)	11168	16161	19251	22904	23074	17632	23055	24150	26050	25917			
ΔT (%)	-86,56	-86,68	-86,89	-86,96	-87,03	-86,84	-86,90	-86,96	-86,95	-86,92			
	AA(1)	AA(2)	AA(3)	AA(4)	AA(5)	BB(1)	BB(2)	BB(3)	BB(4)	BB(5)			
Pureact WS Conc. (масс. %)	20	20	20	20	20	20	20	0,3	0,3-	0,3			
Стеарамидопропил- диметиламин (масс. %)						0,3	0,3	0,3	0,3-	0,3			
диметиламин (масс. %) Tego® Betain CK KB5 (масс. %) %)	20	20	20	20	20	20	20	20	20	20			
Varisoft® PATC (масс. %)	1	1	1	1	1	1	1	1	1	1			
Хлорид натрия	-	0,5	1	1,5	2		0,5	1	1,5	2			
Общее содержание моющего поверхностно-активного вещества (масс. %)	12	12	12	12	12	12	12	12	12	12			
Массовое отношение бетаин:таурат	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50	50:50			
Вязкость (сП)	18529	21713	22528	22867	22833	29363	28650	27959	26020	22803			
ΔT (%)	-87,00	-87,07	-87,16	-87,11	-87,13	-86,88	-86,91	-86,94	-86,93	-86,88			

Данные из табл. 4 и 6 демонстрируют влияние состава на формирование прозрачности и вязкости. Образцы С8, С9 и С10 все представляли собой прозрачные композиции, но их вязкости были неподходящими. Образцы 12, 14 и 15 (общее содержание моющего поверхностно-активного вещества составляло от 8 до 10 мас.%) все представляли собой прозрачные композиции, и их вязкости находились в диапазоне от 1897 до 8480 сП. Все образцы с содержанием поверхностно-активного вещества 12 мас.% были мутными, а не прозрачными.

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Моющая композиция для личной гигиены, содержащая:
- а) от 0,05 до 1 мас.% катионного поверхностно-активного вещества, содержащего четвертичное аммониевое соединение и/или амидоамин, при этом четвертичное аммониевое соединение представлено формулой $N^+R^1R^2R^3R^4$ X^- , где R^1 представляет собой насыщенный C8-C22 алкил, R^2 , R^3 и R^4 представляют собой C1-C4 алкил и X представляет собой солюбилизирующий анион, и амидоамин представлен формулой R^5R^6N -(CH₂)_x-NHC(O) R^7 , где R^5 и R^6 независимо представляют собой метил или этил, х равен 2 или 3 и R^7 представляет собой насыщенный C6-C24 алкил,
 - b) от 5 до 15 мас.% моющего поверхностно-активного вещества; и
 - с) воду.

причем указанное моющее поверхностно-активное вещество содержит комбинацию бетаинового поверхностно-активного вещества, представляющего собой амидобетаин, и тауратного поверхностно-активного вещества, представляющего собой ацилтаурат, и при этом

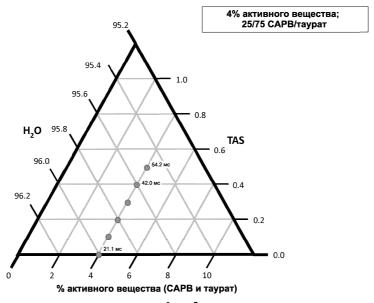

когда указанная композиция содержит от 5 до 6 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 55:45 до 45:55;

когда указанная композиция содержит от более 6 до 10 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 40:60; и

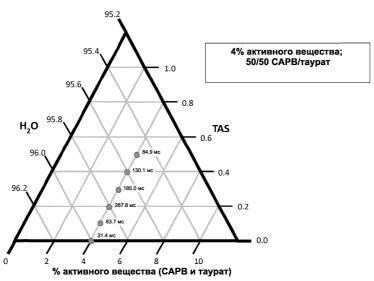
когда указанная композиция содержит от более 10 до 15 мас.% моющего поверхностно-активного вещества, массовое отношение бетаинового поверхностно-активного вещества к тауратному поверхностно-активному веществу составляет от 80:20 до 20:80.

- 2. Моющая композиция для личной гигиены по π .1, в которой R^1 в указанном четвертичном аммониевом соединении включает амидную связь между цепями.
- 3. Моющая композиция для личной гигиены по любому из предшествующих пунктов, в которой указанное бетаиновое поверхностно-активное вещество включает кокамидопропилбетаин и указанное тауратное поверхностно-активное вещество включает метилкокоилтаурат натрия.
- 4. Моющая композиция для личной гигиены по любому из предшествующих пунктов, причем указанная композиция содержит от 6 до 12 мас.% моющего поверхностно-активного вещества из расчета на общую массу указанной композиции.
- 5. Моющая композиция для личной гигиены по любому из предшествующих пунктов, причем указанная композиция содержит изотропную фазу поверхностно-активного вещества.
- 6. Моющая композиция для личной гигиены по любому из предшествующих пунктов, причем указанная композиция по существу не содержит сульфатного поверхностно-активного вещества.
- 7. Моющая композиция для личной гигиены по любому из предшествующих пунктов, которая является прозрачной.
- 8. Моющая композиция для личной гигиены по любому из предшествующих пунктов, которая имеет pH от 4 до 6.
- 9. Моющая композиция для личной гигиены по любому из предшествующих пунктов, которая по существу не содержит (мет)акрилатных полимеров и сополимеров.
- 10. Моющая композиция для личной гигиены по любому из предшествующих пунктов, которая дополнительно содержит электролит.
 - 11. Способ регулирования вязкости композиции, включающий стадии:
 - I) обеспечения композиции по любому из пп.1-9; и
 - II) добавления электролита к указанной композиции,

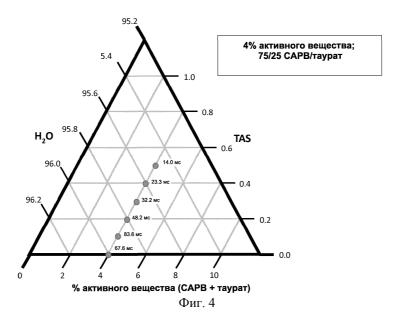
при этом указанное добавление электролита обеспечивает повышение вязкости полученной композиции.

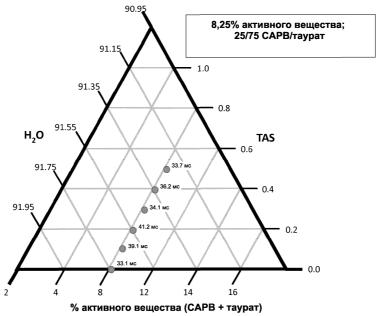


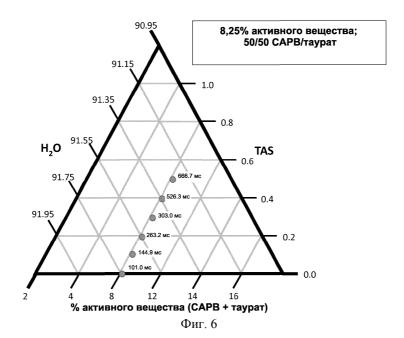
G'' (Па) – 0,5 масс. % TAS, 50/50 CAPB/таурат

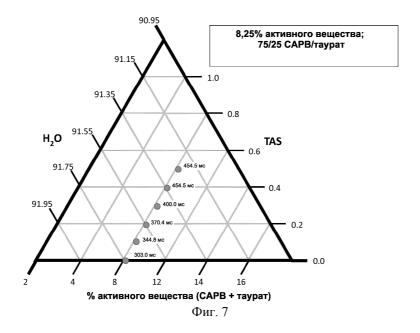

—O— G' (Па) – 0,0 % TAS, 50/50 CAPB/таурат

____ G'' (Па) – 0,0 % TAS, 50/50 CAPB/таурат


Фиг. 1






Фиг. 3

Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2