(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2023.02.21

(21) Номер заявки

201991181

(22) Дата подачи заявки

2017.11.22

(51) Int. Cl. A61K 39/395 (2006.01) **A61P 35/00** (2006.01) **C07K 16/28** (2006.01) **C07K 16/46** (2006.01)

РЅМА-НАЦЕЛЕННЫЕ ТРИСПЕЦИФИЧЕСКИЕ БЕЛКИ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ

62/426,069; 62/426,077 (31)

(32) 2016.11.23

(33) US

(43) 2019.12.30

(86) PCT/US2017/063126

(87)WO 2018/098356 2018.05.31

(71)(73) Заявитель и патентовладелец:

ХАРПУН ТЕРАПЬЮТИКС, ИНК. (US)

(72) Изобретатель:

Бауэрле Патрик (DE), Гуно Жанмари, Веше Хольгер, Дабридж Роберт Б., Лемон Брайан Д., Остин Ричард Дж., Сето Пуи (US)

(74) Представитель:

Медведев В.Н. (RU)

WO-A2-03064606 (56)

WO-A1-2015150447

LIU, L. et al. MGD011, a CD19 × CD3 Dual Affinity Re-Targeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-cell Malignancies. Clinical Cancer Research. 15 March 2017, ePub 23 September 2016, Vol. 23, No. 6, pages 1506-1518; Figure 1B; DOI: 1031158/1078-0432

WO-A2-2012158818

HOLT, L.J. et al. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protien Engineering, Design & Selection. 2 April 2008, Vol. 21, No. 5, pages 283-288; abstract; page 287, 1st column, 2nd paragraph; page 288, 1st column, 2nd paragraph; DOI: 10.1093/protein/gzm067

NELSON, A.L. Antibody fragments Hope and Hype. mAbs. January 2010, vol. 2, No. 1, pages 77-83. Epub 27 January 2010, page 78, 3rd column, 2nd

paragraph

US-A1-20110262439 US-A1-20140004121 US-A1-20150274844 US-A1-20160251440 WO-A2-2014033304 WO-A1-2016187594 WO-A1-2016034044

В настоящем документе представлены нацеленные на простатический специфический мембранный (57) антиген (PSMA) триспецифические белки, содержащие домен, связывающийся с CD3, домен, обеспечивающий увеличение времени полужизни, и домен, связывающийся с PSMA. Также представлены фармацевтические композиции на их основе, а также нуклеиновые кислоты, рекомбинантные векторы экспрессии и клетки-хозяева для получения таких PSMA-нацеленных триспецифических белков. Также раскрыты способы применения раскрытых РЅМА-нацеленных триспецифических белков в предупреждении и/или лечении заболеваний, состояний и нарушений.

Перекрестные ссылки на родственные заявки

Заявка на данное изобретение испрашивает приоритет согласно предварительной заявке на патент США № 62/426069, поданной 23 ноября 2016 г., и 62/426077, поданной 23 ноября 2016 г., которые включены в настоящий документ посредством ссылки во всей их полноте.

Перечень последовательностей

Настоящий документ содержит перечень последовательностей, который был подан в электронном виде в формате ASCII, и он включен в настоящий документ посредством ссылки во всей своей полноте. Указанная копия ASCII, созданная 22 ноября 2017 г., имеет название 47517-708_601_SL.txt, и ее размер составляет 150 911 байт.

Предшествующий уровень техники настоящего изобретения

Зачастую в различных клинических условиях желательным является избирательное уничтожение отдельной клетки или конкретного типа клеток. Например, основной целью терапии рака является специфическое уничтожение опухолевых клеток, чтобы здоровые клетки и ткани оставались при этом интактными и неповрежденными. Одним из таких способов является индукция иммунного ответа в отношении опухоли с целью стимуляции иммунных эффекторных клеток, таких как естественные клеткикиллеры (NK) или цитотоксические Т-лимфоциты (CTL), к атаке и уничтожению опухолевых клеток.

Краткое раскрытие настоящего изобретения

В настоящем документе представлены триспецифический антигенсвязывающий белок, фармацевтические композиции на его основе, а также нуклеиновые кислоты, рекомбинантные векторы экспрессии и клетки-хозяева для получения таких триспецифических антигенсвязывающих белков и способы применения для лечения заболеваний, нарушений или состояний. Согласно одному аспекту в настоящем документе описаны нацеленные на простатический специфический мембранный антиген (PSMA) триспецифические белки, где указанные белки содержат (а) первый домен (А), который специфически связывается с СD3 человека; (b) второй домен (B), который представляет собой домен, обеспечивающий увеличение времени полужизни; и (с) третий домен (С), который специфически связывается с PSMA, причем домены соединены в порядке H₂N-(A)-(C)-(B)-COOH, H₂N-(B)-(A)-(C)-COOH, H₂N-(C)-(B)-(A)-СООН или посредством линкеров L1 и L2. Согласно некоторым вариантам осуществления первый домен предусматривает вариабельную легкую цепь и вариабельную тяжелую цепь, каждая из которых способна к специфическому связыванию с CD3 человека. Согласно некоторым вариантам осуществления первый домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 1-88. Согласно некоторым вариантам осуществления первый домен является гуманизированным или представляет собой домен человека. Согласно некоторым вариантам осуществления первый домен характеризуется КD связывания с CD3 на поверхности экспрессирующих CD3 клеток

150 нМ или менее. Согласно некоторым вариантам осуществления второй домен связывает сывороточный альбумин человека. Согласно некоторым вариантам осуществления второй домен содержит scFv, вариабельный домен тяжелой цепи (VH), вариабельный домен легкой цепи (VL), пептид, лиганд или малую молекулу. Согласно некоторым вариантам осуществления второй домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 89-112. Согласно некоторым вариантам осуществления третий домен содержит scFv, VH-домен, VL-домен, домен отличного от Ig типа, лиганд, ноттин или низкомолекулярное соединение, которые специфически связываются с PSMA. Согласно некоторым вариантам осуществления третий домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 113-140.

Согласно некоторым вариантам осуществления каждый из линкеров L1 и L2 независимо выбран из $(GS)_n$ (SEQ ID NO: 153), $(GGS)_n$ (SEQ ID NO: 154), $(GGGS)_n$ (SEQ ID NO: 155), $(GGSG)_n$ (SEQ ID NO: 156), $(GGSGG)_n$ (SEQ ID NO: 157) или $(GGGGS)_n$ (SEQ ID NO: 158), причем п равняется 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10. Согласно некоторым вариантам осуществления каждый из линкеров L1 и L2 независимо представляет собой $(GGGGS)_4$ (SEQ ID NO: 159) или $(GGGGS)_3$ (SEQ ID NO: 160). Согласно некоторым вариантам осуществления домены соединены в порядке H_2N -(A)-(C)-(B)-СООН. Согласно некоторым вариантам осуществления домены соединены в порядке H_2N -(B)-(C)-(A)-СООН.

Согласно некоторым вариантам осуществления размер белка составляет менее чем приблизительно 80 кДа. Согласно некоторым вариантам осуществления размер белка составляет от приблизительно 50 до приблизительно 75 кДа. Согласно некоторым вариантам осуществления размер белка составляет менее чем приблизительно 60 кДа.

Согласно некоторым вариантам осуществления белок характеризуется периодом полувыведения по меньшей мере приблизительно 50 ч. Согласно некоторым вариантам осуществления белок характеризуется периодом полувыведения по меньшей мере приблизительно 100 ч. Согласно некоторым вариантам осуществления белок характеризуется повышенной степенью проникновения в ткань по сравнению с IgG к одному и тому же PSMA.

Согласно некоторым вариантам осуществления белок содержит последовательность, выбранную из группы, состоящей из SEQ ID NO: 140-152.

Согласно другому аспекту в настоящем документе представлена фармацевтическая композиция,

содержащая (i) PSMA-нацеленный триспецифический белок в соответствии с любым из вышеупомянутых вариантов осуществления и (ii) фармацевтически приемлемый носитель.

Также в настоящем документе представлены способы лечения индивидуума, нуждающегося в лечении рака, причем способ включает введение эффективного количества фармацевтической композиции или PSMA-нацеленных триспецифических белков в соответствии с любым из вышеупомянутых вариантов осуществления. Согласно некоторым вариантам осуществления рак представляет собой рак предстательной железы или рак почки.

Один вариант осуществления относится к PSMA-нацеленному триспецифическому белку, где указанный белок содержит (а) первый домен (А), который специфически связывается с CD3 человека; (b) второй домен (В), который представляет собой домен, обеспечивающий увеличение времени полужизни; и (с) третий домен (С), который специфически связывается с PSMA, причем второй домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 113-140. Согласно некоторым вариантам осуществления домены соединены в порядке H₂N-(A)-(C)-(B)-СООН, H₂N-(B)-(A)-СООН, Или посредством линкеров L1 и L2. Согласно некоторым вариантам осуществления первый домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 1-88. Согласно некоторым вариантам осуществления второй домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 89-112.

Один вариант осуществления относится к PSMA-нацеленному триспецифическому белку, где указанный белок содержит последовательность, выбранную из группы, состоящей из SEQ ID NO: 140-152. Согласно некоторым вариантам осуществления указанный белок содержит последовательность, выбранную из группы, состоящей из SEQ ID NO: 150-152.

Один вариант осуществления относится к нацеленному на простатический специфический мембранный антиген (PSMA) триспецифическому белку, где указанный белок содержит (а) первый домен (A), который специфически связывается с CD3 человека; (b) второй домен (B), который представляет собой домен, обеспечивающий увеличение времени полужизни; и (c) третий домен (C), который специфически связывается с PSMA, причем домены соединены в порядке H_2N -(C)-(B)-(A)-СООН или посредством линкеров L1 и L2, и причем третий домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 113-140.

Один вариант осуществления относится к PSMA-нацеленному триспецифическому белку, где указанный белок содержит (а) первый домен (A), который специфически связывается с CD3 человека; (b) второй домен (B), который представляет собой домен, обеспечивающий увеличение времени полужизни; и (c) третий домен (C), который специфически связывается с PSMA, причем домены соединены в порядке H_2N -(C)-(B)-(A)-СООН или посредством линкеров L1 и L2, и причем первый домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 1-88.

Один вариант осуществления относится к способу лечения рака предстательной железы, причем способ включает введение эффективного количества PSMA-нацеленного триспецифического белка, причем указанный белок содержит (а) первый домен (А), который специфически связывается с CD3 человека; (b) второй домен (В), который представляет собой домен, обеспечивающий увеличение времени полужизни; и (c) третий домен (С), который специфически связывается с PSMA, причем домены соединены в порядке H₂N-(C)-(B)-(A)-СООН или посредством линкеров L1 и L2, и причем третий домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 113-140.

Один вариант осуществления относится к способу лечения рака предстательной железы, причем способ включает введение эффективного количества PSMA-нацеленного триспецифического белка, причем указанный белок содержит (а) первый домен (А), который специфически связывается с CD3 человека; (b) второй домен (В), который представляет собой домен, обеспечивающий увеличение времени полужизни; и (c) третий домен (С), который специфически связывается с PSMA, причем домены соединены в порядке H₂N-(C)-(B)-(A)-СООН или посредством линкеров L1 и L2, и причем первый домен содержит одну или более последовательностей, выбранных из группы, состоящей из SEQ ID NO: 1-88.

Включение посредством ссылки

Все публикации, патенты и заявки на патенты, упомянутые в настоящем описании, включены в настоящий документ посредством ссылки в той же степени, как если бы каждая отдельная публикация, патент или заявка на патент были конкретно и индивидуально указаны для включения посредством ссылки.

Краткое описание чертежей

Новые признаки настоящего изобретения подробно изложены в прилагаемой формуле изобретения. Лучшее понимание признаков и преимуществ настоящего изобретения будет обеспечено со ссылкой на следующее подробное описание, в котором изложены иллюстративные варианты осуществления, в которых используются принципы настоящего изобретения, и прилагаемые чертежи.

Фиг. 1 представляет собой схематическое представление иллюстративного PMSA-нацеленного триспецифического антигенсвязывающего белка, где белок содержит константный коровый элемент, предусматривающий CD3є-связывающий одноцепочечный вариабельный фрагмент (scFv) и HSA-связывающую вариабельную область тяжелой цепи; и PMSA-связывающий домен, который может представлять собой VH, scFv, связывающий домен отличного от Ig типа или лиганд.

На фиг. 2A-2C представлено сравнение способности иллюстративных PSMA-нацеленных триспецифических белков (PSMA-нацеленных молекул TriTAC) с разными показателями аффинности в отношении CD3 индуцировать Т-клетки к уничтожению клеток рака предстательной железы человека.

На фиг. 2A показаны результаты по уничтожению, обусловленному разными PMSA-нацеленными молекулами TriTAC в модели рака предстательной железы LNCaP.

На фиг. 2В показаны результаты по уничтожению, обусловленному разными PMSA-нацеленными молекулами TriTAC в модели рака предстательной железы 22Rv1.

На фиг. 2C показаны значения EC_{50} для PMSA-нацеленных TriTAC в моделях рака предстательной железы LNCaP и 22Rv1.

На фиг. 3 показана концентрация в сыворотке крови PSMA-нацеленной TriTAC C236 у яванских макаков после i.v. введения (100 мкг/кг) в течение трех недель.

На фиг. 4 показана концентрация в сыворотке крови PSMA-нацеленных молекул TriTAC с разными показателями аффинности в отношении CD3 у яванских макаков после i.v. введения (100 мкг/кг) в течение трех недель.

На фиг. 5A-5C показана способность PSMA-нацеленных молекул TriTAC с разными показателями аффинности в отношении PSMA индуцировать Т-клетки к уничтожению клеточной линии рака предстательной железы человека LNCaP.

На фиг. 5A показаны результаты эксперимента, осуществляемого в отсутствие сывороточного альбумина человека, с PSMA-нацеленной BiTE в качестве положительного контроля.

На фиг. 5В показаны результаты эксперимента, осуществляемого в присутствии сывороточного альбумина человека, с PSMA-нацеленной BiTE в качестве положительного контроля.

На фиг. 5C показаны значения EC_{50} для PMSA-нацеленной TriTAC в присутствии или в отсутствие HSA, с PSMA-нацеленной BiTE в качестве положительного контроля, в моделях рака предстательной железы LNCaP.

На фиг. 6 продемонстрирована способность PSMA-нацеленных молекул TriTAC ингибировать опухолевый рост клеток рака предстательной железы человека в эксперименте по ксенотрансплантации у мыши.

На фиг. 7A-7D проиллюстрирована специфичность молекул TriTAC в анализах уничтожения клеток с использованием линий клеток-мишеней, которые экспрессируют или не экспрессируют белок-мишень.

На фиг. 7A показаны результаты экспрессии EGFR и PSMA в клеточных линиях LNCaP, KMS12BM и OVCAR8.

На фиг. 7В показаны результаты по уничтожению опухолевых клеток LNCaP, обусловленному PSMA-нацеленными, EGFR-нацеленными TriTAC и TriTAC в качестве отрицательного контроля.

На фиг. 7С показаны результаты по уничтожению опухолевых клеток KMS12BM, обусловленному PSMA-нацеленными, EGFR-нацеленными TriTAC и TriTAC в качестве отрицательного контроля.

На фиг. 7D показаны результаты по уничтожению клеток OVCAR8, обусловленному PSMA-нацеленными, EGFR-нацеленными TriTAC и TriTAC в качестве отрицательного контроля.

На фиг. 8A-8D показано влияние предварительной инкубации при 37°C и циклов замерзанияоттаивания на активность TriTAC.

На фиг. 8A показана активность PSMA TriTAC C235 после предварительной инкубации при 37°C или циклов замерзания-оттаивания.

На фиг. 8В показана активность PSMA TriTAC C359 после предварительной инкубации при 37°C или циклов замерзания-оттаивания.

На фиг. 8C показана активность PSMA TriTAC C360 после предварительной инкубации при 37°C или циклов замерзания-оттаивания.

На фиг. 8D показана активность PSMA TriTAC C361 после предварительной инкубации при 37°C или циклов замерзания-оттаивания.

На фиг. 9A, 9B показана активность PSMA-нацеленной молекулы TriTAC по настоящему раскрытию в анализах уничтожения клеток перенаправленными Т-клетками посредством зависимой от Т-клеток клеточной цитотоксичности (TDCC).

На фиг. 9A показано влияние PSMA-нацеленной молекулы TriTAC на перенаправление мононуклеарных клеток периферической крови (PBMC) яванского макака, от донора-яванского макака G322, на уничтожение клеток LNCaP.

На фиг. 9В показано влияние PSMA-нацеленной молекулы TriTAC на перенаправление PBMC яванского макака, от донора-яванского макака D173, на уничтожение клеток MDAPCa2b.

На фиг. 10 показано влияние PSMA-нацеленной молекулы TriTAC по настоящему раскрытию на экспрессию маркеров активации Т-клеток CD25 и CD69.

На фиг. 11 показана способность PSMA-нацеленной молекулы TriTAC по настоящему раскрытию стимулировать пролиферацию Т-клеток в присутствии экспрессирующих PSMA клеток-мишеней.

На фиг. 12A, 12B показаны результаты по уничтожению перенаправленными Т-клетками клеток LnCaP, обусловленному PSMA-нацеленными молекулами TriTAC.

На фиг. 12A показаны результаты по уничтожению перенаправленными Т-клетками клеток LnCaP, обусловленному молекулами PSMA PH1T TriTAC (SEQ ID NO: 150) и PSMA PHI TriTAC (SEQ ID NO: 151).

На фиг. 12B показаны результаты по уничтожению перенаправленными Т-клетками клеток LnCaP, обусловленному молекулами PSMA Z2 TriTAC (SEQ ID NO: 152).

Подробное раскрытие настоящего изобретения

В настоящем документе описаны триспецифические белки, нацеленные на простатический специфический мембранный антиген (PSMA), фармацевтические композиции на их основе, а также нуклеиновые кислоты, рекомбинантные векторы экспрессии и клетки-хозяева для получения таких белков. Также представлены способы применения раскрытых PSMA-нацеленных триспецифических белков в предупреждении и/или лечении заболеваний, состояний и нарушений. PSMA-нацеленные триспецифические белки способны к специфическому связыванию с PSMA, а также CD3, и имеют домен, обеспечивающий увеличение времени полужизни, такой как домен, связывающийся с сывороточным альбумином человека (HSA). На фиг. 1 показан один неограничивающий пример триспецифического антигенсвязывающего белка

Согласно одному аспекту PSMA-нацеленные триспецифические белки содержат домен (A), который специфически связывается с CD3, домен (B), который специфически связывается с сывороточным альбумином человека (HSA), и домен (C), который специфически связывается с PSMA. Три домена в PSMA-нацеленных триспецифических белках расположены в любом порядке. Таким образом, предусматривается, что порядок доменов PSMA-нацеленных триспецифических белков является следующим:

 H_2N -(A)-(B)-(C)-СООН H_2N -(A)-(C)-(B)-СООН, H_2N -(B)-(A)-(C)-СООН, H_2N -(B)-(C)-(A)-СООН, H_2N -(C)-(B)-(A)-СООН или H_2N -(C)-(A)-СООН.

Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки имеют порядок доменов H_2N -(A)-(B)-(C)-COOH. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки имеют порядок доменов H_2N -(A)-(C)-(B)-COOH. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки имеют порядок доменов H_2N -(B)-(A)-(C)-COOH. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки имеют порядок доменов H_2N -(B)-(C)-(A)-COOH. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки имеют порядок доменов H_2N -(C)-(B)-(A)-COOH. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки имеют порядок доменов H_2N -(C)-(B)-COOH.

Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки содержат HSA-связывающий домен в виде среднего домена, так что порядок доменов является следующим H_2N -(A)-(B)-(C)-COOH или H_2N -(C)-(B)-(A)-COOH. Предусматривается, что согласно таким вариантам осуществления, в которых HSA-связывающий домен является средним доменом, CD3- и PSMA-связывающие домены характеризуются дополнительной гибкостью для связывания с их соответствующими мишенями.

Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки, описанные в настоящем документе, предусматривают полипептид с последовательностью, описанной в табл. 10 (SEQ ID NO: 140-152), и ее подпоследовательностями. Согласно некоторым вариантам осуществления триспецифический антигенсвязывающий белок содержит полипептид, характеризующийся по меньшей мере 70-95% или более гомологией с последовательностью, описанной в табл. 10 (SEQ ID NO: 140-152). Согласно некоторым вариантам осуществления триспецифический антигенсвязывающий белок содержит полипептид, характеризующийся по меньшей мере 70, 75, 80, 85, 90, 95% или более гомологией с последовательностью, описанной в табл. 10 (SEQ ID NO: 140-152). Согласно некоторым вариантам осуществления триспецифический антигенсвязывающий белок имеет последовательность, содержащую по меньшей мере участок последовательности, описанной в табл. 10 (SEQ ID NO: 140-152). Согласно некоторым вариантам осуществления PSMA-триспецифический антигенсвязывающий белок содержит полипептид, содержащий одну или более из последовательностей, описанных в табл. 10 (SEQ ID NO: 140-152). Согласно еще одним вариантам осуществления PSMA-триспецифический антигенсвязывающий белок содержит одну или более CDR, как описано в последовательностях в табл. 10 (SEQ ID NO: 140-152).

PSMA-нацеленные триспецифические белки, описанные в настоящем документе, сконструированы с возможностью специфического нацеливания на экспрессирующие PSMA клетки за счет привлечения цитотоксических Т-клеток. Это улучшает эффективность по сравнению с ADCC (антителозависимой клеточно-опосредованной цитотоксичностью), при которой задействованы полноразмерные антитела, направленные на одиночный антиген, и при которой отсутствует возможность прямого привлечения ци-

тотоксических Т-клеток. В отличие от этого, путем вовлечения молекул СОЗ, специфически экспрессируемых на поверхности этих клеток, PSMA-нацеленные триспецифические белки могут перекрестно связывать цитотоксические Т-клетки с экспрессирующими PSMA клетками высокоспецифическим образом, направляя тем самым цитотоксический потенциал Т-клетки в отношении клетки-мишени. PSMA-нацеленные триспецифические белки, описанные в настоящем документе, обеспечивают вовлечение цитотоксических Т-клеток посредством связывания с экспрессируемыми на поверхности белками СD3, которые образуют часть ТСR. Одновременное связывание нескольких PSMA-триспецифических антигенсвязывающих белков с CD3 и с экспрессируемым на поверхности конкретных клеток PSMA обусловливает активацию Т-клеток и опосредует последующий лизис конкретной PSMA-экспрессирующей клетки. Таким образом, предусматривается, что PSMA-нацеленные триспецифические белки демонстрируют интенсивное, специфическое и эффективное уничтожение клетки-мишени. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки, описанные в настоящем документе, стимулируют уничтожение клетки-мишени за счет цитотоксических Т-клеток с целью устранения патогенных клеток (например, экспрессирующих PSMA опухолевых клеток). Согласно некоторым из таких вариантов осуществления клетки уничтожаются избирательно, за счет чего снижается вероятность токсичных побочных эффектов.

PSMA-нацеленные триспецифические белки, описанные в настоящем документе, обладают дополнительными терапевтическими преимуществами по сравнению с традиционными моноклональными антителами и другими биспецифическими молекулами меньшего размера. В целом, эффективность рекомбинантных белков в качестве фармацевтических средств в значительной степени зависит от естественных фармакокинетических параметров самого белка. Одно из таких преимуществ заключается в том, что PSMA-нацеленные триспецифические белки, описанные в настоящем документе, характеризуются увеличенным фармакокинетическим периодом полувыведения благодаря наличию домена с увеличенным временем полужизни, таким как специфический в отношении НSA домен. В этом отношении PSMA-нацеленные триспецифические белки, описанные в настоящем документе, характеризуются увеличенным периодом полувыведения из сыворотки крови, составляющим приблизительно 2, 3, приблизительно 5, приблизительно 7, приблизительно 10, приблизительно 12 или приблизительно 14 дней, согласно некоторым вариантам осуществления. Это отличает их от других связывающих белков, таких как молекулы BiTE или DART, которые характеризуются относительно значительно более коротким периодом полувыведения. Например, в случае слитой молекулы scFv-scFv в виде биспецифического антитела к CD19×CD3 формата BiTE требуется непрерывная внутривенная инфузионная (i.v.) доставка лекарственного средства из-за ее короткого периода полувыведения. Более продолжительный естественный период полувыведения PSMA-нацеленных триспецифических белков позволяет решить эту проблему, обеспечивая тем самым повышенный терапевтический потенциал, например, фармацевтические составы с низкими дозами, сокращенное периодическое введение и/или новые фармацевтические композиции. PSMA-нацеленные триспецифические белки, описанные в настоящем документе, также имеют оптимальный размер для усиленного проникновения в ткань и распределения в ткани. Более крупные размеры ограничивают или препятствуют проникновению или распределению белка в тканях-мишенях. PSMA-нацеленные триспецифические белки, описанные в настоящем документе, позволяют избежать этого благодаря маленькому размеру, который обеспечивает усиленное проникновение и распределение в ткани. Следовательно, согласно некоторым вариантам осуществления РЅМА-нацеленные триспецифические белки, описанные в настоящем документе, имеют размер от приблизительно 50 до приблизительно 80 кДа, от приблизительно 50 до приблизительно 75 кДа, от приблизительно 50 до приблизительно 70 кДа или от приблизительно 50 до приблизительно 65 кДа. Таким образом, размер PSMA-нацеленных триспецифических белков является преимущественным в сравнении с IgG-антителами, размер которых составляет приблизительно 150 кДа, и молекул диател BiTE и DART, размер которых составляет приблизительно 55 кДа, но время полужизни которых не увеличено, и, следовательно, они быстро выводятся почкой.

Согласно еще одним вариантам осуществления PSMA-нацеленные триспецифические белки, описанные в настоящем документе, имеют оптимальный размер для усиленного проникновения и распределения в ткани. Согласно таким вариантам осуществления PSMA-нацеленные триспецифические белки конструируют так, чтобы они были как можно меньшего размера, с сохранением при этом специфичности в отношении их мишеней. Следовательно, согласно таким вариантам осуществления PSMA-нацеленные триспецифические белки, описанные в настоящем документе, имеют размер от приблизительно 20 до приблизительно 40 кДа или от приблизительно 25 до приблизительно 35 кДа, до приблизительно 40 кДа, до приблизительно 50 кДа, до приблизительно 55 кДа, до приблизительно 65 кДа. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки, описанные в настоящем документе, имеют размер приблизительно 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, приблизительно 39, приблизительно 38, приблизительно 37, приблизительно 36, приблизительно 35, приблизительно 34, приблизительно 33, приблизительно 32, приблизительно 26, приблизительно 26, приблизительно 26, приблизительно 24, приблизительно 24, приблизительно 23,

приблизительно 22, приблизительно 21 или приблизительно 20 кДа. Иллюстративный подход к обеспечению маленького размера заключается в применении фрагментов однодоменных антител (sdAb) для каждого из доменов. Например, конкретный PSMA-триспецифический антигенсвязывающий белок содержит sdAb к CD3, sdAb к HSA и sdAb к PSMA. Это позволяет уменьшить размер иллюстративного РЅМА-триспецифического антигенсвязывающего белка до 40 кДа. Таким образом, согласно некоторым вариантам осуществления все домены PSMA-нацеленных триспецифических белков являются фрагментами однодоменных антител (sdAb). Согласно другим вариантам осуществления PSMA-нацеленные триспецифические белки, описанные в настоящем документе, содержат низкомолекулярные соединения (small molecule entity, SME), связывающие HSA и/или PSMA. Связывающие структуры SME являются малыми молекулами со средним размером от приблизительно 500 до 2000 Да, и их присоединяют к PSMA-нацеленным триспецифическим белкам с помощью известных способов, таких как лигирование с использованием сортазы или конъюгация. В таких случаях один из доменов PSMA-триспецифического антигенсвязывающего белка представляет собой последовательность распознавания для сортазы, например, LPETG (SEQ ID NO: 57). Для присоединения связывающей структуры SME к PSMAтриспецифическому антигенсвязывающему белку с последовательностью распознавания для сортазы белок инкубируют с сортазой и связывающей структурой SME, в результате чего сортаза обеспечивает присоединение связывающей структуры SME к последовательности распознавания. Известные связывающие структуры SME включают МІР-1072 и МІР-1095, которые связываются с простатическим специфическим мембранным антигеном (PSMA). Согласно еще одним вариантам осуществления домен PSMA-нацеленных триспецифических белков, описанных в настоящем документе, который связывается с PSMA, содержит пептид ноттин для связывания PSMA. Ноттины представляют собой стабилизированные дисульфидными связями пептиды со скэффолдом в виде цистеинового узла, и их средние размеры составляют приблизительно 3,5 кДа. Ноттины предусмотрены для связывания с определенными опухольассоциированными молекулами, такими как PSMA. Согласно еще одним вариантам осуществления домен PSMA-нацеленных триспецифических белков, описанных в настоящем документе, который связывается с PSMA, содержит естественный лиганд PSMA.

Другим признаком PSMA-нацеленных триспецифических белков, описанных в настоящем документе, является то, что они сконструированы в виде одного полипептида с гибкой связью между их доменами. Это позволяет легко получать и производить PSMA-нацеленные триспецифические белки, поскольку они могут кодироваться одной молекулой кДНК, без труда введенной в вектор. Кроме того, поскольку PSMA-нацеленные триспецифические белки, описанные в настоящем документе, являются мономерной одной полипептидной цепью, не возникает проблем со спариванием цепей или необходимости димеризации. Предусматривается, что PSMA-нацеленные триспецифические белки, описанные в настоящем документе, характеризуются сниженной склонностью к агрегации, в отличие от других известных молекул, таких как биспецифические белки с Fc-гамма иммуноглобулиновыми доменами.

В PSMA-нацеленных триспецифических белках, описанных в настоящем документе, домены соединены посредством внутренних линкеров L1 и L2, где L1 соединяет первый и второй домены PSMA-нацеленных триспецифических белков, а L2 соединяет второй и третий домены PSMA-нацеленных триспецифических белков, Линкеры L1 и L2 имеют оптимизированные длину и/или аминокислотный состав. Согласно некоторым вариантам осуществления линкеры L1 и L2 имеют одинаковые длину и аминокислотный состав. Согласно другим вариантам осуществления L1 и L2 отличаются. Согласно определенным вариантам осуществления внутренние линкеры L1 и/или L2 являются "короткими", т.е. состоят из 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 аминокислотных остатков. Таким образом, в определенных случаях внутренние линкеры состоят из приблизительно 12 или менее аминокислотных остатков. В случае 0 аминокислотных остатков, внутренним линкером является пептидная связь. Согласно определенным вариантам осуществления внутренние линкеры L1 и/или L2 являются "длинными", т.е. состоят из 15, 20 или 25 аминокислотных остатков. Согласно некоторым вариантам осуществления такие внутренние линкеры состоят из от приблизительно 3 до приблизительно 15, например 8, 9 или 10, смежных аминокислотных остатков. Что касается аминокислотного состава внутренних линкеров L1 и L2, выбирают пептиды со свойствами, которые придают гибкость PSMA-нацеленным триспецифическим белкам, не затрагивают связывающие домены, а также являются устойчивыми к расщеплению протеазами. Например, как правило, глициновые и сериновые остатки обеспечивают устойчивость к протеазам. Примеры внутренних линкеров, подходящих для соединения доменов в составе PSMA-нацеленных триспецифических белков, включают, без ограничения, (GS)_п (SEQ ID NO: 153), (GGS)_n (SEQ ID NO: 154), (GGGS)_n (SEQ ID NO: 155), (GGSG)_n (SEQ ID NO: 156), (GGSGG)_n (SEQ ID NO: 157) или (GGGGS)_n (SEQ ID NO: 158), причем п равняется 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10. Согласно одному варианту осуществления внутренний линкер L1 и/или L2 представляет собой (GGGGS)₄ (SEQ ID NO: 159) или (GGGGS)₃ (SEQ ID NO: 160).

CD3-связывающий домен.

Специфичность ответа Т-клеток опосредована распознаванием антигена (представленного в контексте главного комплекса гистосовместимости, МНС) ТСR. Как часть ТСR, CD3 представляет собой белковый комплекс, который включает цепь CD3 γ (гамма), цепь CD3 δ (дельта) и две цепи CD3 ϵ (эпси-

лон), которые присутствуют на клеточной поверхности. CD3 связывается с цепями α (альфа) и β (бета) TCR, а также CD3 ζ (зета), в совокупности образуя полный TCR. Кластеризация CD3 на поверхности Т-клеток, например, посредством иммобилизированных антител к CD3, приводит к активации Т-клетки, аналогично ситуации с вовлечением Т-клеточного рецептора, но не зависит от его клональной специфичности.

Согласно одному аспекту описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывается с CD3. Согласно одному аспекту описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывается с CD3 человека. Согласно некоторым вариантам осуществления описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывается с CD3 γ . Согласно некоторым вариантам осуществления описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывается с CD3 δ . Согласно некоторым вариантам осуществления описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывается с CD3 ϵ

Согласно еще одним вариантам осуществления описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывается с TCR. В определенных случаях описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывает α -цепь TCR. В определенных случаях описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, который специфически связывает β -цепь TCR.

Согласно определенным вариантам осуществления CD3-связывающий домен описанных в настоящем документе PSMA-нацеленных триспецифических белков характеризуется не только сильной аффинностью связывания CD3 в отношении CD3 человека, но также проявляет превосходную перекрестную реактивность с соответствующими белками CD3 яванского макака. В некоторых случаях CD3-связывающий домен PSMA-нацеленных триспецифических белков характеризуется перекрестной реактивностью с CD3 яванского макака. В определенных случаях соотношения K_D человека: K_D яванского макака для CD3 составляют от 5 до 0,2.

Согласно некоторым вариантам осуществления CD3-связывающий PSMA-триспецифического антигенсвязывающего белка может представлять собой любой домен, который связывается с СD3, включая, без ограничения, домены моноклонального антитела, поликлонального антитела, рекомбинантного антитела, антитела человека, гуманизированного антитела. В некоторых случаях предпочтительно, чтобы CD3-связывающий домен происходил из того же вида, у которого в конечном итоге будет применяться PSMA-триспецифический антигенсвязывающий белок. Например, для применения людей может быть предпочтительно, чтобы CD3-связывающий PSMA-триспецифического антигенсвязывающего белка содержал остатки человека или гуманизированные остатки антигенсвязывающего домена антитела или фрагмента антитела.

Таким образом, согласно одному аспекту антигенсвязывающий домен предусматривает гуманизированное антитело или антитело человека, или фрагмент антитела, или антитело мыши, или фрагмент антитела. Согласно одному варианту осуществления гуманизированный CD3-связывающий домен или CD3-связывающий белок человека содержит одну или более (например, все три) из определяющей комплементарность области 1 легкой цепи (CDR1 LC), определяющей комплементарность области 2 легкой цепи (CDR2 LC) и определяющей комплементарность области 3 легкой цепи (CDR3 LC) гуманизированного CD3-связывающего домена или CD3-связывающего домена человека, описанного в настоящем документе, и/или одну или более (например, все три) из определяющей комплементарность области 1 тяжелой цепи (CDR1 HC), определяющей комплементарность области 2 тяжелой цепи (CDR2 HC) и определяющей комплементарность области 3 тяжелой цепи (CDR3 HC) гуманизированного CD3-связывающего домена человека, описанного в настоящем документе, например гуманизированного CD3-связывающего домена человека, содержащего одну или более, например все три, CDR LC и одну или более, например все три, CDR HC.

Согласно некоторым вариантам осуществления гуманизированный CD3-связывающий домен или CD3-связывающий домен человека предусматривает гуманизированную вариабельную область легкой цепи или вариабельную область легкой цепи человека, специфическую в отношении CD3, где вариабельная область легкой цепи, специфическая в отношении CD3, предусматривает CDR легкой цепи человека или отличного от человека вида в каркасной области легкой цепи человека. В определенных случаях каркасная область легкой цепи представляет собой каркасную область легкой к-(каппа)-цепи.

Согласно некоторым вариантам осуществления гуманизированный CD3-связывающий домен или CD3-связывающий домен человека предусматривает гуманизированную вариабельную область тяжелой цепи или вариабельную область тяжелой цепи человека, специфическую в отношении CD3, где вариабельная область тяжелой цепи, специфическая в отношении CD3, предусматривает CDR тяжелой цепи

человека или отличного от человека вида в каркасной области тяжелой цепи человека.

В определенных случаях определяющие комплементарность области тяжелой цепи и/или легкой цепи происходят из известных антител к CD3, таких как, например, муромонаб-CD3 (ОКТ3), отеликсизумаб (TRX4), теплизумаб (MGA031), визилизумаб (Nuvion), SP34, TR-66 или X35-3, VIT3, BMA030 (BW264/56), CLB-T3/3, CRIS7, YTH12.5, F111-409, CLB-T3.4.2, TR-66, WT32, SPv-T3b, 11D8, XIII-141, XIII-46, XIII-87, 12F6, T3/RW2-8C8, T3/RW2-4B6, OKT3D, M-T301, SMC2, F101.01, UCHT-1 и WT-31.

Согласно одному варианту осуществления СD3-связывающий домен представляет собой одноцепочечный вариабельный фрагмент (scFv), содержащий легкую цепь и тяжелую цепь с аминокислотной последовательностью, представленной в настоящем документе. В контексте настоящего документа "одноцепочечный вариабельный фрагмент" или "scFv" относится к фрагменту антитела, содержащему вариабельную область легкой цепи и по меньшей мере один фрагмент антитела, содержащего вариабельную область тяжелой цепи, где вариабельные области легкой и тяжелой цепей непрерывно соединены посредством короткого гибкого полипептидного линкера, и способному экспрессироваться в виде единой полипептидной цепи, и при этом scFv сохраняет специфичность интактного антитела, из которого он происходит. Согласно одному варианту осуществления СD3-связывающий домен содержит вариабельную область легкой цепи, содержащую аминокислотную последовательность по меньшей мере с одной, двумя или тремя модификациями (например, заменами), но не более чем с 30, 20 или 10 модификациями (например, заменами), аминокислотной последовательности вариабельной области легкой цепи, представленной в настоящем документе, или последовательности, характеризующейся 95-99% идентичностью с аминокислотной последовательностью, представленной в настоящем документе; и/или вариабельную область тяжелой цепи, содержащую аминокислотную последовательность по меньшей мере с одной, двумя или тремя модификациями (например, заменами), но не более чем с 30, 20 или 10 модификациями (например, заменами), аминокислотной последовательности вариабельной области тяжелой цепи, представленной в настоящем документе, или последовательности, характеризующейся 95-99% идентичностью с аминокислотной последовательностью, представленной в настоящем документе.

Согласно одному варианту осуществления гуманизированный СD3-связывающий домен или CD3-связывающий домен человека представляет собой scFv, и вариабельная область легкой цепи, содержащая аминокислотную последовательность, описанную в настоящем документе, соединена с вариабельной областью тяжелой цепи, содержащей аминокислотную последовательность, описанную в настоящем документе, посредством scFv-линкера. Вариабельная область легкой цепи и вариабельная область тяжелой цепи scFv могут находиться, например, в любой из следующих ориентаций: вариабельная область легкой цепи-scFv-линкер-вариабельная область тяжелой цепи или вариабельная область тяжелой цепи-scFv-линкер-вариабельная область легкой цепи.

В некоторых случаях scFv, которые связываются с CD3, получают в соответствии с известными способами. Например, молекулы scFv могут быть получены путем соединения VH- и VL-областей вместе с применением гибких полипептидных линкеров. Молекулы scFv содержат scFv-линкер (например, линкер Ser-Gly) с оптимизированными длиной и/или аминокислотным составом. Следовательно, согласно некоторым вариантам осуществления длина scFv-линкера является такой, чтобы VH- или VL-домен был способен к межмолекулярной ассоциации с другим вариабельным доменом с образованием сайта связывания CD3. Согласно определенным вариантам осуществления такие scFv-линкеры являются "короткими", т.е. состоят из 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 аминокислотных остатков. Таким образом, в определенных случаях scFv-линкеры состоят приблизительно из 12 или менее аминокислотных остатков. В случае 0 аминокислотных остатков scFv-линкером является пептидная связь. Согласно некоторым вариантам осуществления такие scFv-линкеры состоят приблизительно из 3-15, например 8, 9 или 10 смежных аминокислотных остатков. Что касается аминокислотного состава scFv-линкеров, выбирают пептиды, которые придает гибкость, не затрагивают вариабельные домены, а также обеспечивают межцепочечное сворачивание для соединения двух вариабельных доменов вместе с образованием функционального сайта связывания CD3. Например, scFv-линкеры, содержащие глициновые и сериновые остатки, как правило, обеспечивают устойчивость к протеазам. Согласно некоторым вариантам осуществления линкеры в scFv содержат глициновые и сериновые остатки. Аминокислотная последовательность scFv-линкеров может быть оптимизирована, например, с помощью способов фагового дисплея, с целью улучшения связывания CD3 и выхода продукта в виде scFv. Примеры пептидных scFv-линкеров, подходящих для соединения вариабельного домена легкой цепи и вариабельного домена тяжелой цепи в scFv, включают, без ограничения, (GS)_n (SEQ ID NO: 153), (GGS)_n (SEQ ID NO: 154), (GGGS)_n (SEQ ID NO: 155), (GGSG)_n (SEQ ID NO: 156), (GGSGG)_n (SEQ ID NO: 157) или (GGGGS)_n (SEQ ID NO: 158), причем п равняется 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10. Согласно одному варианту осуществления scFv-линкер может представлять собой (GGGGS)4 (SEQ ID NO: 159) или (GGGGS)₃ (SEQ ID NO: 160). Изменение длины линкера может обеспечить сохранение или повышение активности, способствуя превосходной эффективности в исследованиях активности.

Согласно некоторым вариантам осуществления CD3-связывающий домен PSMA-триспецифического антигенсвязывающего белка характеризуется аффинностью в отношении CD3

на поверхности экспрессирующих CD3 клеток с K_D 1000 нМ или менее, 500 нМ или менее, 200 нМ или менее, 100 нМ или менее, 80 нМ или менее, 50 нМ или менее, 20 нМ или менее, 10 нМ или менее, 5 нМ или менее, 1 нМ или менее или 0,5 нМ или менее. Согласно некоторым вариантам осуществления CD3-связывающий домен PSMA-триспецифического антигенсвязывающего белка характеризуется аффинностью в отношении CD3 ϵ , γ или δ с K_D 1000 нМ или менее, 500 нМ или менее, 200 нМ или менее, 100 нМ или менее, 80 нМ или менее, 50 нМ или менее, 20 нМ или менее, 10 нМ или менее, 1 нМ или менее или 0,5 нМ или менее. Согласно еще одним вариантам осуществления CD3-связывающий домен PSMA-триспецифического антигенсвязывающего белка характеризуется низкой аффинностью в отношении CD3, т.е. приблизительно 100 нМ или более.

Аффинность связывания с CD3 можно определять, например, по способности самого PSMA-триспецифического антигенсвязывающего белка или его CD3-связывающего домена связываться с CD3, которым покрыт планшет для анализа; представленным на клеточной поверхности микроорганизма; в растворе и т.д. Активность связывания самого PSMA-триспецифического антигенсвязывающего белка или его CD3-связывающего домена по настоящему раскрытию с CD3 можно анализировать путем иммобилизации лиганда (например, CD3) или самого PSMA-триспецифического антигенсвязывающего белка или его CD3-связывающего домена на грануле, субстрате, поверхности клетки и т.д. В соответствующий буфер можно добавлять определенные средства, и партнеры по связыванию можно инкубировать в течение определенного периода времени при заданной температуре. После промывок с целью удаления несвязавшегося материала связанный белок может быть высвобожден с помощью, например, SDS, буферов с высоким рН и т.д. и подвержен анализу, например, с помощью метода поверхностного плазмонного резонанса (SPR).

Согласно некоторым вариантам осуществления CD3-связывающие домены, описанные в настоящем документе, предусматривают полипептид с последовательностью, описанной в табл. 7 (SEQ ID NO: 1-88), и ее подпоследовательностями. Согласно некоторым вариантам осуществления CD3-связывающий домен предусматривает полипептид, характеризующийся по меньшей мере 70-95% или более гомологией с последовательностью, описанной в табл. 7 (SEQ ID NO: 1-88). Согласно некоторым вариантам осуществления CD3-связывающий домен предусматривает полипептид, характеризующийся по меньшей мере 70, 75, 80, 85, 90, 95% или более гомологией с последовательностью, описанной в табл. 7 (SEQ ID NO: 1-88). Согласно некоторым вариантам осуществления CD3-связывающий домен имеет последовательность, содержащую по меньшей мере участок последовательности, описанной в табл. 7 (SEQ ID NO: 1-88). Согласно некоторым вариантам осуществления CD3-связывающий домен предусматривает полипептид, содержащий одну или более из последовательностей, описанных в табл. 7 (SEO ID NO: 1-88).

Согласно определенным вариантам осуществления CD3-связывающий домен предусматривает scFv с CDR1 тяжелой цепи, предусматривающей SEQ ID NO: 16 и 22-33. Согласно определенным вариантам осуществления CD3-связывающий домен предусматривает scFv с CDR2 тяжелой цепи, предусматривающей SEQ ID NO: 17 и 34-43. Согласно определенным вариантам осуществления CD3-связывающий домен предусматривает scFv с CDR3 тяжелой цепи, предусматривающей SEQ ID NO: 18 и 44-53. Согласно определенным вариантам осуществления CD3-связывающий домен предусматривает scFv с CDR1 легкой цепи, предусматривающей SEQ ID NO: 19 и 54-66. Согласно определенным вариантам осуществления CD3-связывающий домен предусматривает scFv с CDR2 легкой цепи, предусматривающей SEQ ID NO: 20 и 67-79. Согласно определенным вариантам осуществления CD3-связывающий домен предусматривает scFv с CDR3 легкой цепи, предусматривающей SEQ ID NO: 21 и 80-86.

Домен, обеспечивающий увеличение времени полужизни.

В настоящем документе предусмотрены домены, которые обеспечивают увеличение времени полужизни антигенсвязывающего домена. Предусматривается, что такие домены включают, без ограничения, НSA-связывающие домены, Fc-домены, малые молекулы и другие известные в данной области домены, обеспечивающие увеличение времени полужизни.

Сывороточный альбумин человека (HSA) (молекулярная масса \sim 67 кДа) является наиболее распространенным белком в плазме крови, присутствующим в количестве приблизительно 50 мг/мл (600 мкМ), и у людей характеризуется временем полужизни около 20 дней. HSA служит для поддержания рН плазмы крови, влияет на онкотическое кровяное давление, выполняет функции переносчика многих метаболитов и жирных кислот и служит основным белковым транспортером лекарственных средств в плазме крови.

Нековалентная связь с альбумином обеспечивает увеличение периода полувыведения короткоживущих белков. Например, рекомбинантное слияние альбумин-связывающего домена с Fab-фрагментом обеспечивает 25- и 58-кратное снижение клиренса и 26- и 37-кратное увеличение времени полужизни in vivo при внутривенном введении мышам и кроликам по сравнению с введением Fab-фрагмента отдельно. Согласно другому примеру, в случае ацилирования инсулина жирными кислотами для содействия связывания с альбумином, при подкожной инъекции кроликам и свиньям наблюдали продолжительный эффект. В совокупности эти исследования демонстрируют взаимосвязь между связыванием с альбумином и пролонгированным действием.

Согласно одному аспекту описанные в настоящем документе PSMA-нацеленные триспецифические белки содержат домен, обеспечивающий увеличение времени полужизни, например домен, который специфически связывается с HSA. Согласно некоторым вариантам осуществления HSA-связывающий домен PSMA-триспецифического антигенсвязывающего белка может представлять собой любой домен, который связывается с НSA, включая, без ограничения, домены моноклонального антитела, поликлонального антитела, рекомбинантного антитела, антитела человека, гуманизированного антитела. Согласно некоторым вариантам осуществления HSA-связывающий домен представляет собой одноцепочечный вариабельный фрагмент (scFv), однодоменное антитело, как, например, вариабельный домен тяжелой цепи (VH), вариабельный домен легкой цепи (VL) и вариабельный домен (VHH) однодоменного антитела, происходящего от представителя верблюдовых, пептид, лиганд, или низкомолекулярное соединение, специфические В отношении HSA. Согласно определенным вариантам HSA-связывающий домен представляет собой однодоменное антитело. Согласно другим вариантам осуществления HSA-связывающий домен представляет собой пептид. Согласно еще одним вариантам осуществления HSA-связывающий домен представляет собой малую молекулу. Предусматривается, что HSA-связывающий домен PSMA-триспецифического антигенсвязывающего белка является относительно небольшим и весит не более 25 кДа, не более 20 кДа, не более 15 кДа или не более 10 кДа согласно некоторым вариантам осуществления. В определенных случаях размер НSA-связывающего домена составляет 5 кДа или менее, если он представляет собой пептид или низкомолекулярное соединение.

Домен, обеспечивающий увеличение времени полужизни, PSMA-триспецифического антигенсвязывающего белка обеспечивает измененные фармакодинамические и фармакокинетические параметры самого PSMA-триспецифического антигенсвязывающего белка. Как упоминалось выше, домен, обеспечивающий увеличение времени полужизни, обеспечивает увеличение периода полувыведения. Домен, обеспечивающий увеличение времени полужизни, также обеспечивает изменение фармакодинамических свойств, включая изменение распределения, проникновения и диффузии триспецифического антигенсвязывающего белка в тканях. Согласно некоторым вариантам осуществления домен, обеспечивающий увеличение времени полужизни, обеспечивает улучшенное нацеливание на ткань (включая опухоль), распределение в ткани, проникновение в ткань, диффузию в пределах ткани, и повышенную эффективность в сравнении с белком без домена, обеспечивающего увеличение времени полужизни. Согласно одному варианту осуществления в терапевтических способах успешно и эффективно используется сниженное количество триспецифического антигенсвязывающего белка, что обусловливает сниженное проявление побочных эффектов, такое как сниженная цитотоксичность в отношении неопухолевых клеток.

Кроме того, аффинность связывания домена, обеспечивающего увеличение времени полужизни, может быть выбрана для управления специфическим периодом полувыведения конкретного триспецифического антигенсвязывающего белка. Таким образом, согласно некоторым вариантам осуществления домен, обеспечивающий увеличение времени полужизни, характеризуется высокой аффинностью связывания. Согласно другим вариантам осуществления домен, обеспечивающий увеличение времени полужизни, характеризуется средней аффинностью связывания. Согласно еще одним вариантам осуществления домен, обеспечивающий увеличение времени полужизни, характеризуется низкой или минимальной аффинностью связывания. Иллюстративные показатели аффинности связывания включают Кd при концентрациях 10 нМ или менее (высокая), от 10 до 100 нМ (средняя) и более 100 нМ (низкая). Как упоминалось выше, показатели аффинности связывания для HSA определяют с помощью известных способов, таких как метод поверхностного плазмонного резонанса (SPR).

Согласно некоторым вариантам осуществления HSA-связывающие домены, описанные в настоящем документе, предусматривают полипептид с последовательностью, описанной в табл. 8 (SEQ ID NO: 89-112), и ее подпоследовательностями. Согласно некоторым вариантам осуществления HSA-связывающий домен предусматривает полипептид, характеризующийся по меньшей мере 70-95% или более гомологией с последовательностью, описанной в табл. 8 (SEQ ID NO: 89-112). Согласно некоторым вариантам осуществления HSA-связывающий домен предусматривает полипептид, характеризующийся по меньшей мере 70, 75, 80, 85, 90, 95% или более гомологией с последовательностью, описанной в табл. 8 (SEQ ID NO: 89-112). Согласно некоторым вариантам осуществления HSA-связывающий домен имеет последовательность, содержащую по меньшей мере участок последовательности, описанной в табл. 8 (SEQ ID NO: 89-112). Согласно некоторым вариантам осуществления HSA-связывающий домен предусматривает полипептид, содержащий одну или более из последовательностей, описанных в табл. 8 (SEQ ID NO: 89-112).

Согласно некоторым вариантам осуществления HSA-связывающие домены, описанные в настоящем документе, предусматривают однодоменное антитело с CDR1, предусматривающей SEQ ID NO: 96 и 99-101. Согласно некоторым вариантам осуществления HSA-связывающие домены, описанные в настоящем документе, предусматривают однодоменное антитело с CDR1, предусматривающей SEQ ID NO: 97 и 102-107. Согласно некоторым вариантам осуществления HSA-связывающие домены, описанные в настоящем документе, предусматривают однодоменное антитело с CDR1, предусматривающей SEQ ID NO: 98, 108 и 109.

Домен, связывающий простатический специфический мембранный антиген (PSMA).

Простатический специфический мембранный антиген (PSMA) представляет собой мембранный гликопротеин типа II размером 100 кДа, экспрессируемый в тканях предстательной железы, характеризующийся идентичностью последовательности с рецептором трансферрина с NAALAD-азной активностью. PSMA экспрессируется в повышенных количествах при раке предстательной железы, и повышенные уровни PSMA также можно выявить в сыворотке крови таких пациентов. Уровень экспрессии PSMA повышается по мере прогрессирования заболевания, становясь наиболее высоким при метастатическом гормонально-рефрактерном заболевании, для которого в настоящее время не существует терапии.

Помимо описанных СD3-связывающего и обеспечивающего увеличение времени полужизни доменов, описанные в настоящем документе PSMA-нацеленные триспецифические белки также содержат домен, который связывается с PSMA. Конструкция описанных в настоящем документе PSMA-нацеленных триспецифических белков обеспечивает гибкость PSMA-связывающего домена, так что PSMA-связывающий домен может представлять собой связывающий домен любого типа, включая, без ограничения, домены моноклонального антитела, поликлонального антитела, рекомбинантного антитела, антитела человека, гуманизированного антитела. Согласно некоторым вариантам осуществления PSMA-связывающий домен представляет собой одноцепочечный вариабельный фрагмент (scFv), однодоменное антитело, как, например, вариабельный домен тяжелой цепи (VH), вариабельный домен легкой цепи (VL) и вариабельный домен (VHH) однодоменного антитела, происходящего от представителя верблюдовых. Согласно другим вариантам осуществления PSMA-связывающий домен представляет собой связывающий домен отличного от Ig типа, т.е. имитатор антитела, как, например, антикалины, аффилины, молекулы аффител, аффимеры, аффитины, альфатела, авимеры, DARP-ины, финомеры, пептиды домена Кунитца и монотела. Согласно еще одним вариантам осуществления PSMA-связывающий домен представляет собой лиганд или пептид, который связывается или ассоциируется с PSMA. Согласно еще одним вариантам осуществления PSMA-связывающий домен представляет собой ноттин. Согласно еще одним вариантам осуществления PSMA-связывающий домен представляет собой низкомолекулярное соединение.

Согласно некоторым вариантам осуществления PSMA-связывающий домен предусматривает нижеследующую формулу: f1-r1-f2-r2-f3-r3-f4, причем r1, r2 и r3 являются определяющими комплементарность областями CDR1, CDR2 и CDR3 соответственно, а f1, f2, f3 и f4 являются каркасными остатками, причем r1 предусматривает SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116 или SEQ ID NO: 125; r2 предусматривает SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123 или SEQ ID NO: 126 и r3 предусматривает SEO ID NO: 124 или SEO ID NO: 127.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, где (a) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX₁YX₂MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X₃INPAX₄X₅TDYAEX₆VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX₇YGY). Согласно некоторым вариантам осуществления аминокислотные остатки X_1 , X_2 , X_3 , X_4 , X_5 , X_6 и X_7 независимо выбраны из глутаминовой кислоты, пролина, серина, гистидина, треонина, аспарагиновой кислоты, глицина, лизина, треонина, глутамина и тирозина. Согласно некоторым вариантам осуществления X_1 представляет собой пролин. Согласно некоторым вариантам осуществления X_2 представляет собой гистидин. Согласно некоторым вариантам осуществления Х₃ представляет собой аспарагиновую кислоту. Согласно некоторым вариантам осуществления X_4 представляет собой лизин. Согласно некоторым вариантам осуществления X_5 представляет собой глутамин. Согласно некоторым вариантам осуществления X_6 представляет собой тирозин. Согласно некоторым вариантам осуществления Х₇ представляет собой серин. Согласно некоторым вариантам осуществления PSMA-связывающий белок по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой гистидин, X_3 представляет собой аспарагиновую кислоту, X_4 представляет собой глицин, X_5 представляет собой треонин, X_6 представляет собой серин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (a) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X $_3$ INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X $_1$ представляет собой пролин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (a) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X $_3$ INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X $_5$ представляет собой глутамин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (а) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X_3 INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X_6 представляет собой тирозин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (a) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX₁YX₂MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: $163 (X_3INPAX_4X_5TDYAEX_6VKG)$; и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (D X_7 YGY), причем X_4 представляет собой лизин и X_7 представляет собой серин. Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (a) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX₁YX₂MH); (b) аминокислотная CDR2 является представлено в SEQ последовательность такой, как $(X_3INPAX_4X_5TDYAEX_6VKG);$ и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX₇YGY), причем X₂ представляет собой гистидин, X₃ представляет собой аспарагиновую кислоту, X_4 представляет собой лизин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (а) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X $_3$ INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X $_1$ представляет собой пролин, X $_2$ представляет собой гистидин, X $_3$ представляет собой аспарагиновую кислоту и X $_7$ представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (а) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X $_3$ INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X $_2$ представляет собой гистидин, X $_3$ представляет собой аспарагиновую кислоту, X $_5$ представляет собой глутамин и X $_7$ представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (а) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X $_3$ INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X $_2$ представляет собой гистидин, X $_3$ представляет собой аспарагиновую кислоту, X $_6$ представляет собой тирозин и X $_7$ представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен содержит CDR1, CDR2 и CDR3, причем (a) аминокислотная последовательность CDR1 является такой, как представлено в SEQ ID NO: 162 (RFMISX $_1$ YX $_2$ MH); (b) аминокислотная последовательность CDR2 является такой, как представлено в SEQ ID NO: 163 (X $_3$ INPAX $_4$ X $_5$ TDYAEX $_6$ VKG); и (c) аминокислотная последовательность CDR3 является такой, как представлено в SEQ ID NO: 164 (DX $_7$ YGY), причем X $_2$ представляет собой гистидин, X $_3$ представляет собой аспарагиновую кислоту и X $_7$ представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой гистидин, X_3 представляет собой треонин, X_4 представляет собой серин и X_7 представляет собой серин. Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой гистидин, X_3 представляет собой треонин, X_4 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой серин, X_3 представляет собой треонин, X_4 представляет собой лизин, X_5 представляет собой серин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой пролин, X_2 представляет собой серин, X_3 представляет собой треонин, X_4 представляет собой глицин, X_5 представляет собой греонин, X_6 представляет собой серин и X_7 представляет собой глицин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскры-

тию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой серин, X_3 представляет собой треонин, X_4 представляет собой глицин, X_5 представляет собой глутамин, X_6 представляет собой серин и X_7 представляет собой глицин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой серин, X_3 представляет собой треонин, X_4 представляет собой глицин, X_5 представляет собой треонин, X_6 представляет собой тирозин и X_7 представляет собой глицин. Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой гистидин, X_3 представляет собой аспарагиновую кислоту, X_4 представляет собой лизин, X_5 представляет собой треонин, X_6 представляет собой серин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой пролин, X_2 представляет собой гистидин, X_3 представляет собой аспарагиновую кислоту, X_4 представляет собой глицин, X_5 представляет собой серин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой гистидин, X_3 представляет собой аспарагиновую кислоту, X_4 представляет собой глутамин, X_5 представляет собой треонин, X_6 представляет собой серин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_1 представляет собой глутаминовую кислоту, X_2 представляет собой гистидин, X_3 представляет собой аспарагиновую кислоту, X_4 представляет собой глицин, X_5 представляет собой треонин, X_6 представляет собой тирозин и X_7 представляет собой серин.

Согласно некоторым вариантам осуществления PSMA-связывающий домен по настоящему раскрытию может содержать последовательности CDR1, CDR2 и CDR3, причем X_2 представляет собой гистидин и X_7 представляет собой серин. Иллюстративные каркасные последовательности раскрыты как SEQ ID NO: 165-168.

Согласно некоторым вариантам осуществления PSMA-связывающие домены, описанные в настоящем документе, предусматривают полипептид с последовательностью, описанной в табл. 9 (SEQ ID NO: 113-140), и ее подпоследовательностями. Согласно некоторым вариантам осуществления HSA-связывающий домен предусматривает полипептид, характеризующийся по меньшей мере 70-95% или более гомологией с последовательностью, описанной в табл. 9 (SEQ ID NO: 113-140). Согласно некоторым вариантам осуществления HSA-связывающий домен предусматривает полипептид, характеризующийся по меньшей мере 70, 75, 80, 85, 90, 95% или более гомологией с последовательностью, описанной в табл. 9 (SEQ ID NO: 113-140).

Согласно некоторым вариантам осуществления HSA-связывающий домен имеет последовательность, содержащую по меньшей мере участок последовательности, описанной в табл. 9 (SEQ ID NO: 113-140). Согласно некоторым вариантам осуществления HSA-связывающий домен предусматривает полипептид, содержащий одну или более из последовательностей, описанных в табл. 9 (SEQ ID NO: 113-140).

Согласно некоторым вариантам осуществления PSMA-связывающие домены, описанные в настоящем документе, предусматривают однодоменное антитело с CDR1, предусматривающей SEQ ID NO: 114-116 и 125. Согласно некоторым вариантам осуществления PSMA-связывающие домены, описанные в настоящем документе, предусматривают однодоменное антитело с CDR1, предусматривающей SEQ ID NO: 117-123 и 126. Согласно некоторым вариантам осуществления PSMA-связывающие домены, описанные в настоящем документе, предусматривают однодоменное антитело с CDR1, предусматривающей SEQ ID NO: 124 и 127.

Модификации PSMA-триспецифических белков.

Описанные в настоящем документе PSMA-нацеленные триспецифические белки охватывают производные или аналоги, в которых (i) аминокислота заменена аминокислотным остатком, который не кодируется в соответствии с генетическим кодом, (ii) зрелый полипептид слит с другим соединением, таким как полиэтиленгликоль, или (iii) дополнительные аминокислоты слиты с белком, как, например, лидерная последовательность, или последовательность сигнала секреции, или последовательность для очистки белка.

Типичные модификации включают, без ограничения, ацетилирование, ацилирование, АДФ-рибозилирование, амидирование, ковалентное присоединение флавина, ковалентное присоединение гемового фрагмента, ковалентное присоединение нуклеотида или производного нуклеотида, ковалентное присоединение липида или производного липида, ковалентное присоединение фосфатидилинозитола, сшивание, циклизацию, образование дисульфидной связи, деметилирование, образование ковалентных сшивок, образование цистина, образование пироглутамата, формилирование, гаммакарбоксилирование, гликозилирование, образование GPI-якоря, гидроксилирование, иодирование, метилирование, миристоилирование, окисление, протеолитический процессинг, фосфорилирование, пренилирование, рацемизацию, селеноилирование, сульфатирование, опосредованное транспортной РНК добавление аминокислот к белкам, такое как аргинилирование, и убиквитинирование.

Модификации выполняют в любой части описанных в настоящем документе PSMA-нацеленных триспецифических белков, включая пептидный остов, боковые цепи аминокислот и амино- или карбокси-концы. Определенные распространенные модификации пептида, которые являются пригодными для модификации PSMA-нацеленных триспецифических белков, включают гликозилирование, присоединение липидов, сульфатирование, гамма-карбоксилирование остатков глутаминовой кислоты, гидроксилирование, блокировку амино- или карбоксильной группы в полипептиде, или обоих, посредством ковалентной модификации, и АДФ-рибозилирование.

Полинуклеотиды, кодирующие PSMA-нацеленные триспецифические белки.

Также согласно некоторым вариантам осуществления представлены молекулы полинуклеотидов, кодирующие описанный в настоящем документе PSMA-триспецифический антигенсвязывающий белок. Согласно некоторым вариантам осуществления молекулы полинуклеотидов представлены в виде ДНК-конструкции. Согласно другим вариантам осуществления молекулы полинуклеотидов представлены в виде транскрипта матричной РНК.

Молекулы полинуклеотидов конструируют с помощью известных способов, например, путем объединения генов, кодирующих три связывающих домена, либо в разделенном посредством пептидных линкеров виде, либо, согласно другим вариантам осуществления, непосредственно соединенных пептидной связью, в единой генетической конструкции, функционально связанной с подходящим промотором, и необязательно подходящим терминатором транскрипции, и экспрессии в клетках бактерий или другой соответствующей системе экспрессии, такой как, например, клетки СНО. Согласно вариантам осуществления, в которых PSMA-связывающий домен представляет собой малую молекулу, полинуклеотиды предусматривают гены, кодирующие СD3-связывающий домен и домен, обеспечивающий увеличение времени полужизни. Согласно вариантам осуществления, в которых домен, обеспечивающий увеличение времени полужизни, представляет собой малую молекулу, полинуклеотиды предусматривают гены, кодирующие домены, которые связываются с CD3 и PSMA. В зависимости от используемых векторной системы и хозяина можно применять любое число подходящих транскрипционных и трансляционных элементов, включая конститутивные и индуцируемые промоторы. Промотор выбирают так, чтобы он управлял экспрессией полинуклеотида в соответствующей клетке-хозяине.

Согласно некоторым вариантам осуществления полинуклеотид вставляют в вектор, предпочтительно вектор экспрессии, который является дополнительным вариантом осуществления. Такой рекомбинантный вектор может быть сконструирован в соответствии с известными способами. Представляющие особый интерес векторы включают плазмиды, фагмиды, производные фагов, вирусы (например, ретровирусы, аденовирусы, аденоассоциированные вирусы, вирусы герпеса, лентивирусы и т.д.) и космиды.

Ряд систем вектор экспрессии/хозяин можно использовать для содержания и экспрессии полинуклеотида, кодирующего полипептид описанного триспецифического антигенсвязывающего белка. Примерами векторов экспрессии для экспрессии в E.coli являются pSKK (Le Gall et al., J. Immunol. Methods. (2004), 285(1):111-27) или pcDNA5 (Invitrogen) для экспрессии в клетках млекопитающих.

Таким образом, PSMA-нацеленные триспецифические белки, как описано в настоящем документе, согласно некоторым вариантам осуществления получают путем введения в клетку-хозяин вектора, кодирующего белок, как описано выше, и культивирования указанной клетки-хозяина в условиях, в которых белковые домены экспрессируются, могут быть выделены и, необязательно, дополнительно очищены.

Фармацевтические композиции.

Согласно некоторым вариантам осуществления также представлены фармацевтические композиции, содержащие описанный в настоящем документе PSMA-триспецифический антигенсвязывающий белок, вектор, содержащий полинуклеотид, кодирующий полипептид PSMA-нацеленных триспецифических белков, или клетку-хозяина, трансформированную таким вектором, и по меньшей мере один фармацевтически приемлемый носитель.

Термин "фармацевтически приемлемый носитель" включает, без ограничения, любой носитель, который не воздействует негативным образом на эффективность биологической активности ингредиентов и который не токсичен для пациента, которому его вводят. Примеры подходящих фармацевтических носителей хорошо известны в данной области и включают забуференные фосфатом солевые растворы, воду, эмульсии, такие как эмульсии масло/вода, различные типы смачивающих веществ, стерильные растворы и т.д. Такие носители могут быть составлены с помощью традиционных способов и могут быть введены субъекту в подходящей дозе. Предпочтительно композиции являются стерильными. Такие композиции также могут содержать вспомогательные вещества, такие как консерванты, эмульгирующие вещества и диспергирующие вещества. Предотвращение действия микроорганизмов может быть обеспечено включением различных антибактериальных и противогрибковых средств.

Согласно некоторым вариантам осуществления фармацевтических композиций описанные в на-

стоящем документе PSMA-нацеленные триспецифические белки инкапсулированы в наночастицы. Согласно некоторым вариантам осуществления наночастицы представляют собой фуллерены, жидкие кристаллы, липосому, квантовые точки, суперпарамагнитные наночастицы, дендримеры или наностержни. Согласно другим вариантам осуществления фармацевтических композиций PSMA-триспецифический антигенсвязывающий белок присоединен к липосомам. В некоторых случаях PSMA-триспецифический антигенсвязывающий белок конъюгирован с поверхностью липосом. В некоторых случаях PSMA-триспецифический антигенсвязывающий белок инкапсулирован в оболочку липосомы. В некоторых случаях липосома представляет собой катионную липосому.

Описанные в настоящем документе PSMA-нацеленные триспецифические белки предусмотрены для применения в качестве лекарственного препарата. Введение выполняют различными путями, например путем внутривенного, внутрибрюшинного, подкожного, внутримышечного, местного или внутрикожного введения. Согласно некоторым вариантам осуществления путь введения зависит от типа терапии и типа соединения, содержащегося в фармацевтической композиции. Схема применения будет определена лечащим врачом и с учетом других клинических факторов. Дозировки для любого пациента зависят от многих факторов, включая размер пациента, площадь поверхности тела, возраст, пол, конкретное соединение, подлежащее введению, продолжительность и путь введения, тип терапии, общее состояние здоровья и другие вводимые одновременно лекарственные средства. "Эффективная доза" относится к количествам активного ингредиента, которые являются достаточными для воздействия на течение и тяжесть заболевания, что приводит к уменьшению интенсивности или ремиссии такой патологии, и они могут быть определены с применением известных способов.

Способы лечения.

Согласно некоторым вариантам осуществления также в настоящем документе представлены способы и варианты применения стимуляции иммунной системы у нуждающегося в этом индивидуума, предусматривающие введение описанного в настоящем документе PSMA-нацеленного триспецифического белка. В некоторых случаях введение описанного в настоящем документе PSMA-нацеленного триспецифического белка обеспечивает индукцию и/или поддержание цитотоксичности в отношении экспрессирующей PSMA клетки. В некоторых случаях экспрессирующая PSMA клетка представляет собой раковую клетку.

Также в настоящем документе представлены способы и варианты применения для лечения заболевания, нарушения или состояния, ассоциированных с PSMA, предусматривающие введение нуждающемуся в этом индивидууму описанного в настоящем документе PSMA-нацеленного триспецифического белка. Заболевания, нарушения или состояния, ассоциированные с PSMA, включают, без ограничения, пролиферативное заболевание или опухолевое заболевание. Согласно одному варианту осуществления заболевание, нарушение или состояние, ассоциированные с PSMA, представляют собой рак предстательной железы. Согласно другому варианту осуществления заболевание, нарушение или состояние, ассоциированные с PSMA, представляют собой рак почки.

Согласно некоторым вариантам осуществления рак предстательной железы представляет собой рак предстательной железы на поздней стадии. Согласно некоторым вариантам осуществления рак предстательной железы является резистентным к лекарственным средствам. Согласно некоторым вариантам осуществления рак предстательной железы является резистентным к антиандрогенным препаратам. Согласно некоторым вариантам осуществления рак предстательной железы является метастатическим. Согласно некоторым вариантам осуществления рак предстательной железы является метастатическим и резистентным к лекарственным средствам (например, резистентным к антиандрогенным препаратам). Согласно некоторым вариантам осуществления рак предстательной железы является кастрационнорезистентным. Согласно некоторым вариантам осуществления рак предстательной железы является метастатическим и кастрационно-резистентным. Согласно некоторым вариантам осуществления рак предстательной железы является резистентным к энзалутамиду. Согласно некоторым вариантам осуществления рак предстательной железы является резистентным к энзалутамиду и абиратерону. Согласно некоторым вариантам осуществления рак предстательной железы является резистентным к энзалутамиду, абиратерону и бикалутамиду. Согласно некоторым вариантам осуществления рак предстательной железы является резистентным к доцетакселу. Согласно некоторым из этих вариантов осуществления рак предстательной железы является резистентным к энзалутамиду, абиратерону, бикалутамиду и доцетакселу.

Согласно некоторым вариантам осуществления введение описанного в настоящем документе PSMA-нацеленного триспецифического белка обеспечивает ингибирование роста клеток рака предстательной железы; обеспечивает ингибирование миграции клеток рака предстательной железы; обеспечивает ингибирование инвазии клеток рака предстательной железы; обеспечивает уменьшение интенсивности симптомов рака предстательной железы; обеспечивает уменьшение размера раковой опухоли предстательной железы; обеспечивает уменьшение числа раковых опухолей предстательной железы; обеспечивает уменьшение числа клеток рака предстательной железы; индуцирует некроз, пироптоз, онкоз, апоптоз, аутофагию или другой механизм гибели клеток рака предстательной железы; или обеспечивает усиление терапевтических эффектов соединения, выбранного из группы, состоящей из энзалутамида, абиратерона, доцетаксела, бикалутамида и любых их комбинаций.

Согласно некоторым вариантам осуществления способ предусматривает ингибирование роста клеток рака предстательной железы за счет введения описанного в настоящем документе РЅМА-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает ингибирование миграции клеток рака предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает ингибирование инвазии клеток рака предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает уменьшение интенсивности симптомов рака предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает уменьшение размера раковой опухоли предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает уменьшение числа раковых опухолей предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает уменьшение числа клеток рака предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка. Согласно некоторым вариантам осуществления способ предусматривает индуцирование некроза, пироптоза, онкоза, апоптоза, аутофагии или другого механизма гибели клеток рака предстательной железы за счет введения описанного в настоящем документе PSMA-нацеленного триспецифического белка.

В контексте настоящего документа согласно некоторым вариантам осуществления "лечение", или "осуществление лечения", или "подвергнутый лечению" относится к терапевтическому лечению, при котором целью является замедление (облегчение) течения нежелательного физиологического состояния, нарушения или заболевания или получение благоприятных или требуемых клинических результатов. Для описанных в настоящем документе целей благоприятные или требуемые клинические результаты включают, без ограничения, ослабление симптомов; уменьшение степени выраженности состояния, нарушения или заболевания; стабилизацию (т.е. отсутствие ухудшения) течения состояния, нарушения или заболевания; задержку проявления или замедление прогрессирования состояния, нарушения или заболевания; облегчение течения состояния, нарушения или заболевания и ремиссию (частичную или полную), не зависимо от того, является она выявляемой или невыявляемой, или повышение положительных показателей или улучшение течения состояния, нарушения или заболевания. Лечение включает стимуляцию клинически значимого ответа без чрезмерных уровней побочных эффектов. Лечение также включает продление выживания по сравнению с ожидаемым выживанием в случае отсутствия получения лечения. Согласно другим вариантам осуществления "лечение", или "осуществление лечения", или "подвергнутый лечению" относится к профилактическим мерам, при которых целью является задержка проявления или снижение тяжести нежелательного физиологического состояния, нарушения или заболевания, например, у лица с предрасположенностью к заболеванию (например, индивидуума, который является носителем генетического маркера заболевания, такого как рак предстательной железы).

Согласно некоторым вариантам осуществления описанных в настоящем документе способов PSMA-нацеленные триспецифические белки вводят в комбинации со средством для лечения конкретного заболевания, нарушения или состояния. Средства включают, без ограничения, виды терапии с вовлечением антител, малых молекул (например, химиотерапевтических препаратов), гормонов (стероидных, пептидных и т.д.), виды лучевой терапии (у-излучение, рентгеновское излучение и/или направленная доставка радиоизотопов, микроволновое излучение, УФ-излучение и т.д.), виды генной терапии (например, антисмысловая, ретровирусная терапия и т.д.), а также виды иммунотерапии. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки вводят в комбинации с противодиарейными средствами, противорвотными средствами, анальгетиками, опиоидами и/или нестероидными противовоспалительными средствами. Согласно некоторым вариантам осуществления PSMA-нацеленные триспецифические белки вводят до, во время или после хирургического вмешательства.

Некоторые определения.

В контексте настоящего документа термин "период полувыведения" применяется в его обычном значении, как описано в Goodman and Gillman's The Pharmaceutical Basis of Therapeutics 21-25 (под ред. Alfred Goodman Gilman, Louis S. Goodman, and Alfred Gilman, 6-е изд., 1980). Вкратце, указанный термин охватывает количественное измерение времени выведения лекарственного средства. Выведение большинства лекарственных средств является экспоненциальным (т.е. соответствует кинетике первого порядка), поскольку концентрации лекарственного средства обычно не достигают таковых, требуемых для насыщения процесса выведения. Скорость экспоненциального процесса может быть выражена его константой скорости k, которая выражает относительное изменение за единицу времени, или его полупериодом t_{1/2}, промежутком времени, необходимым для 50% завершения процесса. Единицами этих двух констант являются время⁻¹ и время соответственно. Константа скорости первого порядка и полупериод реак-

ции связаны простым соотношением ($k \times t_{1/2} = 0.693$) и могут соответственно быть взаимозаменяемыми. Поскольку кинетика выведения первого порядка предусматривает, что постоянная доля лекарственного средства теряется за единицу времени, график зависимости логарифма концентрации лекарственного средства от времени является линейным во все моменты времени после начальной фазы распределения (т.е. после всасывания лекарственного средства и завершения распределения). Полупериод выведения лекарственного средства может быть точно определен из такого графика.

В контексте настоящего документа фраза "рак предстательной железы" или "рак предстательной железы на поздней стадии" включает класс форм рака предстательной железы, при котором происходит прогрессирование после ранних стадий заболевания. Как правило, формы рака предстательной железы на поздней стадии ассоциированы с неблагоприятным прогнозом. Типы рака предстательной железы на поздней стадии включают, без ограничения, метастатический рак предстательной железы, резистентный к лекарственным средствам рак предстательной железы, такой как резистентный к антиандрогенам рак предстательной железы (например, резистентный к энзалутамиду рак предстательной железы, резистентный к абиратерону рак предстательной железы, резистентный к бикалутамиду рак предстательной железы и т.д.), гормонально-рефрактерный рак предстательной железы, кастрационно-резистентный рак предстательной железы, метастатический кастрационно-резистентный рак предстательной железы, резистентный к доцетакселу рак предстательной железы, индуцированный сплайс-вариантом-7 андрогенового рецептора (AR-V7) резистентный к лекарственным средствам рак предстательной железы, такой как AR-V7-индуцированный резистентный к антиандрогенам рак предстательной железы (например, AR-V7индуцированный резистентный к энзалутамиду рак предстательной железы), индуцированный членом 3 альдокеторедуктаз семейства 1 (АКR1С3) резистентный к лекарственным средствам рак предстательной железы, такой как AKR1C3-индуцированный резистентный к антиандрогенам рак предстательной железы (например, АКR1С3-индуцированный резистентный к энзалутамиду рак предстательной железы), и их комбинации. В некоторых случаях для форм рака предстательной железы на поздней стадии вовсе не наблюдалось ответа, или они были резистентными к лечению одним или несколькими из следующих традиционных терапевтических препаратов против рака предстательной железы: энзалутамид, абиратерон, бикалутамид и доцетаксел. Представлены соединения, композиции и способы по настоящему раскрытию для лечения рака предстательной железы, такого как рак предстательной железы на поздней стадии, включая любой один или более (например, два, три, четыре, пять, шесть, семь, восемь, девять, десять или более) типов рака предстательной железы на поздней стадии, раскрытых в настоящем документе.

Примеры

Пример 1. Способы оценки связывания и цитотоксической активности триспецифических антигенсвязывающих молекул.

Получение белка.

Последовательности триспецифических молекул, которым предшествует лидерная последовательность и после которых следует 6х гистидиновая метка (SEQ ID NO: 161), клонировали в вектор экспрессии pcDNA 3.4 (Invitrogen) для экспрессии в клетках млекопитающих. Клетки Expi293F (Life Technologies A14527) поддерживали в суспензии в колбах Optimum Growth (Thomson) в количестве от 0,2 до 8×1е6 клеток/мл в среде Expi293. Клетки Expi293 трансфицировали очищенной плазмидной ДНК в соответствии с протоколами набора для системы экспрессии Expi293 (Life Technologies, A14635) и поддерживали в течение 4-6 дней после трансфекции. Кондиционированную среду частично очищали с помощью аффинной и высаливающей хроматографии. Триспецифические белки затем очищали с помощью ионообменного метода или, в качестве альтернативы, концентрировали с использованием фильтров для ультрацентрифугирования Атісоп (EMD Millipore), вносили в среду для эксклюзионной хроматографии Superdex 200 (GE Healthcare) и разделяли в нейтральном буфере, содержащем вспомогательные вещества. Фракции объединяли и конечную чистоту оценивали с помощью SDS-PAGE и аналитической SEC.

Измерения аффинности.

Показатели аффинности для всех молекул связывающих доменов измеряли с помощью интерферометрии биослоя с применением прибора Octet.

Показатели аффинности в отношении PSMA измеряли путем нагрузки белка PSMA-Fc человека (100 нМ) на биосенсоры с Fc к IgG человека в течение 120 с, с последующим 60-секундным измерением исходного уровня, после чего события связывания измеряли путем инкубирования кончика сенсора в сериях разведений триспецифических молекул в течение 180 с, с последующей диссоциацией в течение 50 с. Показатели аффинности в отношении EGFR и CD3 измеряли путем нагрузки белка EGFR-Fc человека или белка CD3-Flag-Fc человека соответственно (100 нМ) на биосенсоры с Fc к IgG человека в течение 120 с, с последующим 60-секундным измерением исходного уровня, после чего события связывания измеряли путем инкубирования кончика сенсора в сериях разведений триспецифических молекул в течение 180 с, с последующей диссоциацией в течение 300 с. Показатели аффинности в отношении сывороточного альбумина человека (НSA) измеряли путем нагрузки биотинилированного альбумина на стрептавидиновые биосенсоры, затем измеряли те же параметры кинетики, что и в случае измерений аффин-

ности в отношении CD3. Все стадии осуществляли при 30°C в 0,25% казеине в забуференном фосфатом солевом растворе.

Анализы цитотоксичности.

Анализ зависимой от Т-клеток человека клеточной цитотоксичности (TDCC) применяли для измерения способности привлекающих Т-клетки активаторов, включая триспецифические молекулы, направлять Т-клетки на уничтожение опухолевых клеток (Nazarian et al. 2015. J. Biomol. Screen. 20:519-27). В этом анализе Т-клетки и клетки-мишени раковой клеточной линии смешивали вместе в соотношении 10:1 в 384-луночном планшете, и добавляли различные количества привлекающего Т-клетки активатора. Спустя 48 ч Т-клетки вымывали, оставляя прикрепленные к планшету клетки-мишени, которые не были уничтожены Т-клетками. Для количественного определения оставшихся живых клеток применяли люминесцентный анализ жизнеспособности клеток CellTiter-Glo® (Promega). В некоторых случаях клетки-мишени были сконструированы для экспрессии люциферазы. В таких случаях жизнеспособность клеток-мишеней оценивали путем осуществления люминесцентного люциферазного анализа с использованием реагента STEADYGLO® (Promega), в котором жизнеспособность прямо пропорциональна уровню активности люциферазы.

Анализы стабильности.

Стабильность триспецифических связывающих белков оценивали при низких концентрациях в присутствии сыворотки крови отличного от человека примата. TriTAC разводили до 33 мкг/мл в сыворотке крови яванского макака (BioReclamationIVT) и либо инкубировали в течение 2 дней при 37°C, либо подвергали пяти циклам замерзания-оттаивания. После обработки образцы оценивали в анализах цитотоксичности (TDCC) и их остаточную активность сравнивали с необработанными исходными растворами.

Анализы ксенотрансплантатов.

Эффективность триспецифических связывающих белков in vivo оценивали в экспериментах с ксенотрансплантатами (Crown Bioscience, Тайцан). Мышам NOD/SCID, дефицитным по общей гамма-цепи (NCG, Центр исследований на модельных животных Нанкинского университета, (Model Animal Research Center of Nanjing University)) в день 0 инокулировали смесь 5е6 клеток рака предстательной железы человека 22Rv1 и 5е6 покоящихся Т-клеток человека, которые были выделены из организма здорового донора-человека. Мышей рандомизировали в три группы и обрабатывали средой-носителем, 0,5 мг/кг PSMA TriTAC C324 или 0,5 мг/кг PSMA BiTE. Препараты вводили ежесуточно в течение 10 дней посредством і.v. болюсной инъекции. Животных ежесуточно проверяли в отношении заболеваемости и смертности. Показатели объема опухоли определяли два раза в неделю с помощью штангенциркуля. Исследование завершали спустя 30 дней.

Анализы РК.

Целью этого исследования была оценка фармакокинетических параметров однократной дозы триспецифических связывающих белков после внутривенной инъекции. Ранее не участвующим в экспериментах двум яванским макакам на группу (1 самец и 1 самка) давали соединение посредством медленной IV болюсной инъекции, вводимой в течение примерно 1 мин. После введения дозы один раз в сутки проводили наблюдения у клетки и каждую неделю регистрировали показатели веса тела. Собирали образцы крови и обрабатывали их с получением сыворотки крови для фармакокинетического анализа в течение 21 дня после введения дозы.

Концентрации тестируемых препаратов определяли в сыворотке крови обезьяны путем электролюминесцентного считывания (Meso Scale Diagnostics, Роквилл). Для захвата анализируемого вещества применяли 96-луночные планшеты с иммобилизированным рекомбинантным CD3. Выявление осуществляли с использованием меченного SULFO-TAG рекомбинантного PSMA на MSD-ридере в соответствии с инструкциями производителя.

Пример 2. Оценка влияния аффинности в отношении CD3 на свойства триспецифических молекул PSMA-нацеленные триспецифические молекулы с отличающимися CD3-связывающими доменами изучали для того, чтобы показать эффекты изменения аффинности в отношении CD3.

Иллюстративная PSMA-нацеленная триспецифическая молекула показана на фиг. 1. В табл. 1 приведена аффинность каждой молекулы для трех партнеров по связыванию (PSMA, CD3, HSA). Показатели аффинности измеряли с помощью интерферометрии биослоя с применением прибора Octet (Pall Forte Bio). Сниженная аффинность в отношении CD3 приводит к потере эффективности в контексте опосредованной Т-клетками клеточной цитотоксичности (фиг. 2A-2C). Фармакокинетические свойства таких триспецифических молекул оценивали у яванских макаков. Молекулы с высокой аффинностью в отношении CD3, как и TriTAC C236, характеризовались периодом полувыведения в конечной фазе примерно 90 ч (фиг. 3). Несмотря на измененную способность к связыванию CD3 на поверхности Т-клеток, период полувыведения в конечной фазе двух молекул с разными показателями аффинности в отношении CD3, показанными на фиг. 4, является очень похожим. Однако сниженная аффинность в отношении CD3, повидимому, обусловливает больший объем распределения, что согласуется с уменьшением секвестрации триспецифической молекулы Т-клетками. В течение периода исследования не было отмечено неблагоприятных клинических наблюдений или изменений веса тела.

Таблица 1 Показатели аффинности связывания в отношении антигенов человека и яванского макака.

	Значение KD антитела к PSMA (нМ)			Значение KD антитела к альбумину (нМ)						
				льоуми	ну (нг	V1)	(нМ)			
ява	нскийс	оотношені	ие		соотн	ошение		яв	анский с	оотношение
человек ма	акак	значений у	y pHSA	CSA	значе	ний у	чело	овек п	макак	значений у
	1	T 1.	яванского			яванск	ого		1	яванского
			макака/			макак	ca/			макака/
			человека			челове				человека
TriTAC,			10110201111			101102	- 1.00			1011020144
высокая										
афф., в										
качестве										
инструмента	ı									
- C236	16,3	0	0	22,7	25,4	1,1		6,0	4,7	0,8
TriTAC										
CD3,										
высокая										
афф С324	17,9	0	0	9,8	9,7	1		7,4	5,8	0,8
TriTAC										
CD3,										
средняя										
афф С339	13,6	0	0	8,8	8,3	0,9		40,6	33,6	0,8
TriTAC										
CD3, низкая										
афф С325	15,3	0	0	10,1	9,7	1		217	160	0,7

Пример 3. Оценка влияния аффинности в отношении PSMA на свойства триспецифических молекул.

PSMA-нацеленные триспецифические молекулы с отличающимися PSMA-связывающими доменами изучали для того, чтобы показать эффекты изменения аффинности в отношении PSMA. В табл. 2 приведена аффинность каждой молекулы для трех партнеров по связыванию (PSMA, CD3, HSA). Сниженная аффинность в отношении PSMA приводит к потере эффективности в контексте опосредованной Т-клетками клеточной цитотоксичности (фиг. 5A-5C).

Таблица 2 Показатели аффинности связывания в отношении антигенов человека и яванского макака

	Значение KD антитела к PSMA (нМ)			Значение KD антитела к альбумину (нМ)			Значение KD антитела к CD3e (нМ)				
—		соотноше	ние		•		ошение		яванский соотношение		
человек ма	акак	значени	йу	pHSA	CSA	значений у		челове	K M	акак	значений у
			Ма	нского акака/ ловека			яванско макак челове	a/			яванского макака/ человека
PSMA- TriTAC (p8)- C362	22,0	0		н.д.	6,6	6,6	1,0		1,3	4,3	0,52
PSMA TriTAC (HDS) – C363	3,7	540		146	7,6	8,4	1,1		5,0	5,2	0,65
PSMA TriTAC (HTS)- C364	0,15	663	4	4423	8,4	8,6	1,0		,,7	3,8	0,49

Пример 4. Эффективность PSMA-нацеленных триспецифических молекул in vivo.

PSMA-нацеленную триспецифическую молекулу C324 оценивали в отношении ее способности ингибировать рост опухолей у мышей. Для этого эксперимента иммунодефицитным мышам, реконструированным с Т-клетками человека, подкожно инокулировали экспрессирующие PSMA клетки опухоли предстательной железы человека (22Rv1) и обрабатывали ежесуточно в течение 10 дней 0,5 мг/кг i.v. либо молекул PSMA-нацеленных BiTE, либо TriTAC. Рост опухоли измеряли в течение 30 дней. На протяжении эксперимента триспецифическая молекула была способна ингибировать рост опухоли с эффективностью, сравнимой с таковой в случае молекулы BiTE (фиг. 6).

Пример 5. Специфичность триспецифических молекул.

С целью оценки специфичности PSMA-нацеленных молекул TriTAC тестировали их способность индуцировать Т-клетки к уничтожению опухолевых клеток, с использованием опухолевых клеток, кото-

рые являются негативными по PSMA (фиг. 7A). EGFR-нацеленная молекула TriTAC служила в качестве положительного контроля, GFP-нацеленная молекула TriTAC служила в качестве отрицательного контроля. Для всех трех TriTAC с отличающимися PSMA-связывающими доменами наблюдали ожидаемую активность в отношении PSMA-положительной клеточной линии LNCaP (фиг. 7B), но не достигались EC_{50} в PSMA-отрицательных опухолевых клеточных линиях KMS12BM и OVCAR8 (фиг. 7C и 7D). EC_{50} приведены в табл. 3. При очень высоких концентрациях TriTAC (>1 нM) могло наблюдаться некоторое ограниченное нецелевое уничтожение клеток в случае TriTAC C362 и C363, тогда как в случае C364 не наблюдали значимого уничтожения клеток ни в одном из тестируемых условий.

Таблица 3 Обеспечивающая уничтожение клеток активность молекул TriTAC в антиген-положительных и антиген-отрицательных опухолевых клеточных линиях (EC_{50} [пM])

TriTAC	LNCaP	KMS12BM	OVCAR8
PSMA p8 TriTAC C362	13,0	>10000	>10000
PSMA HDS TriTAC C363	6,2	>10000	>10000
PSMA HTS TriTAC C364	0,8	>10000	>10000
EGFR TriTAC C131	9,4	>10000	6
GFP TriTAC C	>10000	>10000	>10000

Пример 6. Стресс-тесты и стабильность белка.

Четыре PSMA-нацеленных триспецифических молекулы либо инкубировали в течение 48 ч в сыворотке крови яванского макака при низких концентрациях (33,3 мкг/мл), либо подвергали пяти циклам замерзания-оттаивания в сыворотке крови яванского макака. После обработки оценивали биологическую активность молекул TriTAC в анализах уничтожения клеток и сравнивали с образцами, не подвергавшимися стрессу ("положительный контроль", фиг. 8A-8D). У всех молекул сохранялась большая часть их обеспечивающей уничтожение клеток активности. TriTAC C362 была наиболее устойчивой к стрессу, и, по-видимому, вовсе не теряла активность в условиях, тестируемых в данном случае.

Пример 7. Ксенотрансплантатная модель опухоли PSMA-нацеленные триспецифические белки из предыдущих примеров оценивали в ксенотрансплантатной модели.

Самцам иммунодефицитных мышей NCG в их дорзальную часть правого бока подкожно инокулировали 5×10^6 клеток 22 Rv1. Если размер опухолей достигал 100-200 мм³, животных распределяли в 3 группы обработки. Группам 2 и 3 (по 8 животных в каждой) путем внутрибрюшинной инъекции вводили 1.5×10^7 активированных Т-клеток человека. Через три дня животных из группы 3 обрабатывали в общей сложности 9 внутривенными дозами 50 мкг PSMA-триспецифического антигенсвязывающего белка из примера 1 (qdx9d). Группы 1 и 2 обрабатывали только средой-носителем. Вес тела и объем опухоли определяли в течение 30 дней.

Ожидается, что рост опухоли у мышей, обработанных PSMA-триспецифическим антигенсвязывающим белком, значительно уменьшается в сравнении с ростом опухоли в соответствующей контрольной группе, обработанной средой-носителем.

Пример 8. Протокол клинического исследования для подтверждения концепции для введения PSMA-триспецифического антигенсвязывающего белка из примера 1 пациентам с раком предстательной железы.

Речь идет о клиническом исследовании фазы I/II для изучения PSMA-триспецифического антигенсвязывающего белка из примера 1 в качестве лечения рака предстательной железы.

Исходы исследования:

Первичные: Максимальная переносимая доза PSMA-нацеленных триспецифических белков из предыдущих примеров

Вторичные: Определение того, ассоциирован ли in vitro ответ на PSMA-нацеленные триспецифические белки из предыдущих примеров с клиническим ответом

Фаза I.

Максимальная переносимая доза (MTD) будет определяться в фазе I исследования.

- 1.1. Максимальная переносимая доза (МТD) будет определяться в фазе I исследования.
- 1.2. Пациенты, соответствующие критериям пригодности к участию, будут включены в исследование PSMA-нацеленных триспецифических белков из предыдущих примеров.
- 1.3. Целью является идентификация наиболее высокой дозы PSMA-нацеленных триспецифических белков из предыдущих примеров, которую можно вводить безопасно без серьезных или неконтролируемых побочных эффектов у участников. Вводимая доза будет зависеть от числа участников, ранее включенных в исследование, и от того, насколько хорошо доза переносилась. Не все участники будут получать одинаковую дозу.

Фаза II.

2.1. В последующей второй фазе II участники будут получать лечение при МТD, при этом целью является определение того, обеспечивает ли терапия PSMA-нацеленными триспецифическими белками из предыдущих примеров по меньшей мере 20% частоту ответа.

Первичный исход для фазы II - определение того, обеспечивает ли терапия PSMA-нацеленными триспецифическими белками из предыдущих примеров достижение клинического ответа по меньшей мере у 20% пациентов (взрывной ответ, минимальный ответ, частичный ответ или полный ответ)

Пригодность к участию:

Гистологически подтвержденный недавно диагностированный агрессивный рак предстательной железы в соответствии с действующей классификацией Всемирной организации здравоохранения, с 2001 по 2007 гг.

Любая стадия заболевания.

Лечение доцетакселом и преднизоном (± хирургическое вмешательство).

Возраст ≥18 лет.

Индекс общего состояния пациента по Карновскому ≥50% или показатель общего состояния пациента по шкале ECOG 0-2.

Ожидаемая продолжительность жизни ≥6 недель.

Пример 9. Активность иллюстративного PSMA-нацеленного антигенсвязывающего белка (PSMA-нацеленной молекулы TriTAC) в анализах уничтожения клеток перенаправленными Т-клетками с применением панели экспрессирующих PSMA клеточных линий и Т-клеток от разных доноров.

Это исследование осуществляли для того, чтобы продемонстрировать, что активность иллюстративного PSMA-триспецифического антигенсвязывающего белка не ограничивается клетками LNCaP или одним донором клеток.

Анализы уничтожения клеток перенаправленными Т-клетками осуществляли с применением Т-клеток от четырех разных доноров и экспрессирующих PSMA человека клеточных линий рака предстательной железы VCaP, LNCaP, MDAPCa2b и 22Rv1. За одним исключением PSMA-триспецифический антигенсвязывающий белок был способен направлять уничтожение этих раковых клеточных линий с участием Т-клеток от всех доноров со значениями EC_{50} от 0,2 до 1,5 пМ, как показано в табл. 4. В случае клеточной линии рака предстательной железы 22 Rv1 и донора 24 наблюдали уничтожение от незначительного вплоть до его отсутствия (данные не показаны). Также у донора 24 обеспечивалось только примерно 50% уничтожение клеточной линии MDAPCa2b, тогда как Т-клетки от других 3 доноров обеспечивали почти полное уничтожение этой клеточной линии (данные не показаны). В контрольных анализах было продемонстрировано, что уничтожение с помощью PSMA-триспецифического антигенсвязывающего белка было PSMA-специфическим. В случае, когда экспрессирующие PSMA клетки обрабатывали контрольным триспецифическим белком, нацеленным на зеленый флуоресцентный белок (GFP), а не на уничтожение не наблюдали (данные не показаны). Аналогичным PSMA-триспецифический антигенсвязывающий белок был неактивным в случае клеточных линий, у которых отсутствовала экспрессия PSMA, NCI-1563 и HCT116, также показано в табл. 4.

Таблица 4 Значения EC₅₀ из анализов TDCC с шестью раковыми клеточными линиями человека и четырьмя разными донорами Т-клеток

Клеточная	Значения ECso (M) для TDCC					
линия	Донор 24	Донор 8144	Донор 72	Донор 41		
LNCaP	1,5E-12	2,2E-13	3,6E-13	4,3E-13		
MDAPCa2b	4,8E-12	4,1E-13	4,9E-13	6,5E-13		
VCaP	6,4E-13	1,6E-13	2,0E-13	3,5E-13		
22Rv1	н.д.	7,2E-13	1,4E-12	1,3E-12		
HCT116	>1,0E-8	>1,0E-8	>1,0E-8	>1,0E-8		
NCI-1563	>1,0E-8	>1,0E-8	>1,0E-8	>1,0E-8		

Пример 10. Стимуляция экспрессии цитокинов иллюстративным PSMA-триспецифическим антигенсвязывающим белком (PSMA-нацеленной молекулой TriTAC) в анализах уничтожения клеток перенаправленными Т-клетками.

Это исследование осуществляли для того, чтобы продемонстрировать активацию Т-клеток иллюстративным PSMA-триспецифическим антигенсвязывающим белком в ходе анализов уничтожения клеток перенаправленными Т-клетками путем измерения секреции цитокина в среду для анализа активированными Т-клетками.

Кондиционированную среду, собранную после анализов уничтожения клеток перенаправленными T-клетками, как описано выше в примере 9, анализировали в отношении экспрессии цитокинов $TNF\alpha$ и

IFN γ . Уровень цитокинов измеряли с применением анализов AlphaLISA (Perkin-Elmer). Добавление титра PSMA-нацеленного антигенсвязывающего белка к Т-клеткам от четырех разных доноров и четырем экспрессирующим PSMA клеточным линиям, LNCaP, VCaP, MDAPCa2b и 22Rv1, обеспечивало повышение уровней TNF α . Результаты по уровням экспрессии TNF α и экспрессии IFN γ в кондиционированной среде показаны в табл. 5 и 6 соответственно. Значения EC $_{50}$ для индуцированной PSMA-нацеленным антигенсвязывающим белком экспрессии этих цитокинов находились в диапазоне от 3 до 15 пМ. В случае контрольного триспецифического GFP-нацеленного белка повышенные уровни цитокинов не наблюдали. Аналогичным образом, в случае, когда анализы осуществляли с использованием двух клеточных линий, у которых отсутствовала экспрессия PSMA, HCT116 и NCI-H1563, PSMA HTS TriTAC также не приводила к повышению уровней экспрессии TNF α или IFN γ .

Таблица 5 Значения EC₅₀ для экспрессии TNFα в среду из анализов индуцированной PSMA-триспецифическим антигенсвязывающим белком TDCC с шестью раковыми клеточными линиями человека и Т-клетками от четырех разных доноров

Клеточная	Донор 24	Донор 8144	Донор 41	Донор 72
линия				
LNCaP	4,9E-12	2,8E-12	4,0E-12	3,2E-12
VCaP	3,2E-12	2,9E-12	2,9E-12	2,9E-12
MDAPCa2b	2,1E-11	4,0E-12	5,5E-12	3,6E-12
22Rv1	8,9E-12	2,5E-12	4,0E-12	3,3E-12
HCT116	>1E-8	>1E-8	>1E-8	>1E-8
NCI-H1563	>1E-8	>1E-8	>1E-8	>1E-8

Таблица 6

Значения EC_{50} для экспрессии $IFN\gamma$ в среду из анализов индуцированной PSMA-триспецифическим антигенсвязывающим белком TDCC с шестью раковыми клеточными линиями человека и T-клетками от четырех разных доноров

Клеточная	Донор 24	Донор 8144	Донор 41	Донор 72
линия				
LNCaP	4,2E-12	4,2E-12	4,2E-12	2,8E-12
VCaP	5,1E-12	1,5E-11	3,4E-12	4,9E-12
MDAPCa2b	1,5E-11	5,8E-12	9,7E-12	3,5E-12
22Rv1	7,8E-12	3,0E-12	9,1E-12	3,0E-12
HCT116	>1E-8	>1E-8	>1E-8	>1E-8
NCI-H1563	>1E-8	>1E-8	>1E-8	>1E-8

Пример 11. Активность иллюстративного PSMA-триспецифического антигенсвязывающего белка (PSMA-нацеленной TriTAC) в анализе уничтожения клеток перенаправленными Т-клетками (TDCC) с применением Т-клеток от яванских макаков.

Это исследование осуществляли для тестирования способности иллюстративного PSMAтриспецифического антигенсвязывающего белка направлять Т-клетки от яванских макаков на уничтожение экспрессирующих PSMA клеточных линий.

Анализы TDCC проводили с применением мононуклеарных клеток периферической крови (PBMC) от яванских макаков. PBMC яванского макака добавляли к клеткам LNCaP в соотношении 10:1. Было показано, что PSMA-триспецифический антигенсвязывающий белок обеспечивал перенаправление уничтожения LNCaP PBMC яванского макака со значением EC_{50} 11 пМ. Результат показан на фиг. 9А. Для подтверждения этих результатов применяли вторую клеточную линию, MDAPCa2b, и тестировали PBMC от второго донора-яванского макака. Перенаправленное уничтожение клеток-мишеней наблюдали со значением EC_{50} 2,2 пМ. Результат показан на фиг. 9В. Уничтожение было специфическим для PMSA-связывающего плеча PSMA-триспецифического антигенсвязывающего белка, так как уничтожение в случае триспецифического GFP-нацеленного белка в качестве отрицательного контроля не наблюдали. Из этих данных видно, что PSMA-нацеленный антигенсвязывающий триспецифический белок может направлять Т-клетки яванского макака на уничтожение клеток-мишеней, экспрессирующих PSMA человека.

Пример 12. Экспрессия маркеров активации Т-клеток в анализах уничтожения клеток перенаправленными Т-клетками с использованием иллюстративного PSMA-триспецифического антигенсвязывающего белка (PSMA-нацеленной молекулы TriTAC).

Это исследование осуществляли для оценки того, активировались ли Т-клетки в случае, когда иллюстративный PSMA-триспецифический антигенсвязывающий белок направлял Т-клетки на уничтожение клеток-мишеней.

Анализы проводили с применением условий для анализов уничтожения клеток перенаправленными Т-клетками, описанных в примере выше. Активацию Т-клеток оценивали путем измерения уровней экспрессии CD25 и CD69 на поверхности Т-клеток с применением проточной цитометрии. PSMA-триспецифический антигенсвязывающий белок добавляли к смеси очищенных Т-клеток человека и клеточной линии рака предстательной железы VCaP 10:1. После добавления возрастающих количеств PSMA-триспецифического антигенсвязывающего белка наблюдали повышенный уровень экспрессии CD69 и экспрессии CD25, как показано на фиг. 10. Значение EC50 составляло 0,3 пМ для CD69 и 0,2 пМ для CD25. Триспецифический GFP-нацеленный белок был включен в эти анализы в качестве отрицательного контроля, и в случае GFP-нацеленного триспецифического белка наблюдали повышение уровня экспрессии CD69 или CD25 от незначительного вплоть до его отсутствия, также показано на фиг. 10.

Пример 13. Стимуляция пролиферации Т-клеток иллюстративным PSMA-триспецифическим антигенсвязывающим белком (PSMA-нацеленной молекулой TriTAC) в присутствии экспрессирующих PSMA клеток-мишеней.

Это исследование применяли в качестве дополнительного способа для демонстрации того, что иллюстративный PSMA-триспецифический антигенсвязывающий белок был способен активировать Т-клетки при перенаправлении их на уничтожение клеток-мишеней.

Анализы пролиферации Т-клеток проводили с применением условий для анализа уничтожения клеток перенаправленными Т-клетками с применением клеток-мишеней LNCaP, как описано выше, и измерения числа Т-клеток, присутствующих через 72 ч. Иллюстративный PSMA-триспецифический антигенсвязывающий белок обеспечивал стимуляцию пролиферации со значением EC_{50} 0,5 пМ. Триспецифический GFP-нацеленный белок был включен в анализ в качестве отрицательного контроля, и в случае этого белка повышение степени пролиферации не наблюдали. Результаты анализа пролиферации Т-клеток показаны на фиг. 11.

Пример 14. Уничтожение перенаправленными Т-клетками клеток LNCaP, обусловленное тремя иллюстративными PSMA-триспецифическими антигенсвязывающими белками (PSMA-нацеленными молекулами TriTAC PH1T, PH и Z2).

Это исследование осуществляли для тестирования способности трех иллюстративных PSMA-триспецифических антигенсвязывающих белков с последовательностями, представленными в SEQ ID NO: 150, 151 и 152, перенаправлять Т-клетки на уничтожение клеточной линии LNCaP.

В анализах ТDCC, проведенных как описано в примерах выше, белки PSMAPH1T TriTAC (SEQ ID NO: 150) и PSMAPH1 TriTAC (SEQ ID NO: 151) обеспечивали перенаправление уничтожения со значениями EC_{50} 25 и 20 пМ соответственно, как показано на фиг. 12A; и белок PSMA Z2 TriTAC (SEQ ID NO: 152) обеспечивал перенаправление уничтожения со значением EC_{50} 0,8 пМ, как показано на фиг. 12B.

Таблица 7 Последовательности CD3-связывающего домена

SEQ	Описание	Аминокислотная последовательность
<u>ID</u>		
<u>NO:</u>		
1	СD3-связывающая, клон	
	2B2	EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAINWV RQAPGKGLEWVARIRSKYNNYATYYADQVKDRFTISR DDSKNTAYLQMNNLKTEDTAVYYCVRHANFGNSYISY WAYWGQGTLVTVSSGGGSGGGSGGGGSQTVVTQE PSLTVSPGGTVTLTCASSTGAVTSGNYPNWVQQKPGQ APRGLIGGTKFLVPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCTLWYSNRWVFGGGTKLTVL
2	CD3-связывающая, клон	
	9F2	EVQLVESGGGLVQPGGSLKLSCAASGFEFNKYAMNW VRQAPGKGLEWVARIRSKYNKYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYIS YWAYWGQGTLVTVSSGGGGSGGGSGGGSQTVVTQ EPSLTVSPGGTVTLTCGSSFGAVTSGNYPNWVQQKPGQ APRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYDNRWVFGGGTKLTVL
3	CD3-связывающая, клон	
	5A2	EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSHIS YWAYWGQGTLVTVSSGGGGSGGGSGGGSQTVVTQ EPSLTVSPGGTVTLTCGSSTGYVTSGNYPNWVQQKPG QAPRGLIGGTSFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWIFGGGTKLTVL
4	CD3-связывающая, клон	
	6A2	EVQLVESGGGLVQPGGSLKLSCAASGFMFNKYAMNW VRQAPGKGLEWVARIRSKSNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYIS YWATWGQGTLVTVSSGGGGSGGGSGGGGGGGQTVVTQ EPSLTVSPGGTVTLTCGSSFGAVTSGNYPNWVQQKPGQ APRGLIGGTKLLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNSWVFGGGTKLTVL
5	СD3-связывающая, клон	
	2D2	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWV RQAPGKGLEWVARIRSKYNNYATYYKDSVKDRFTISR DDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSPISY WAYWGQGTLVTVSSGGGSGGGGGGGGGGGTVVTQE PSLTVSPGGTVTLTCGSSTGAVVSGNYPNWVQQKPGQ APRGLIGGTEFLAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVL
6	СD3-связывающая, клон	
	3F2	

	·	
		EVQLVESGGGLVQPGGSLKLSCAASGFTYNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADEVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSPIS YWAYWGQGTLVTVSSGGGGSGGGSGGGSQTVVTQ EPSLTVSPGGTVTLTCGSSKGAVTSGNYPNWVQQKPG QAPRGLIGGTKELAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCTLWYSNRWVFGGGTKLTVL
7	СD3-связывающая, клон	
	1A2	EVQLVESGGGLVQPGGSLKLSCAASGNTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYETYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHTNFGNSYIS YWAYWGQGTLVTVSSGGGGSGGGSGGGSQTVVTQ EPSLTVSPGGTVTLTCGSSTGAVTSGYYPNWVQQKPG QAPRGLIGGTYFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
8	СD3-связывающая, клон	
	1C2	EVQLVESGGGLVQPGGSLKLSCAASGFTFNNYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADAVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSQIS YWAYWGQGTLVTVSSGGGGSGGGGSGGGSQTVVTQ EPSLTVSPGGTVTLTCGSSTGAVTDGNYPNWVQQKPG QAPRGLIGGIKFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
9	СD3-связывающая, клон	
	2E4	EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAVNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISR DDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYISY WAYWGQGTLVTVSSGGGSGGGGSGGGGGGVTVVTQE PSLTVSPGGTVTLTCGESTGAVTSGNYPNWVQQKPGQ APRGLIGGTKILAPGTPARFSGSLLGGKAALTLSGVQPE DEAEYYCVLWYSNRWVFGGGTKLTVL
10	СD3-связывающая, клон	
	10E4	EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYPMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISR DDSKNTAYLQMNNLKNEDTAVYYCVRHGNFNNSYIS YWAYWGQGTLVTVSSGGGGSGGGGGGGGGGGGGTVVTQ EPSLTVSPGGTVTLTCGSSTGAVTKGNYPNWVQQKPG QAPRGLIGGTKMLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCALWYSNRWVFGGGTKLTVL
11	СD3-связывающая, клон	
	2H2	EVQLVESGGGLVQPGGSLKLSCAASGFTFNGYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADEVKDRFTIS

		RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSPIS YWAYWGQGTLVTVSSGGGGSGGGGGGGGGGQTVVTQ EPSLTVSPGGTVTLTCGSSTGAVVSGNYPNWVQQKPG QAPRGLIGGTEFLAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
12	СD3-связывающая, клон 2A4	EVQLVESGGGLVQPGGSLKLSCAASGNTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGDSYIS YWAYWGQGTLVTVSSGGGSGGGGSGGGSQTVVTQ EPSLTVSPGGTVTLTCGSSTGAVTHGNYPNWVQKPG QAPRGLIGGTKVLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
13	СD3-связывающая, клон 10B2	EVQLVESGGGLVQPGGSLKLSCAASGFTFNNYAMNW VRQAPGKGLEWVARIRSGYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYIS YWAYWGQGTLVTVSSGGGGSGGGGGGGGGGGTUVVTQ EPSLTVSPGGTVTLTCGSYTGAVTSGNYPNWVQKPG QAPRGLIGGTKFNAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYANRWVFGGGTKLTVL
14	СD3-связывающая, клон 1G4	EVQLVESGGGLVQPGGSLKLSCAASGFEFNKYAMNW VRQAPGKGLEWVARIRSKYNNYETYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSLIS YWAYWGQGTLVTVSSGGGGSGGGGGGGGGGGGGTVVTQ EPSLTVSPGGTVTLTCGSSSGAVTSGNYPNWVQQKPGQ APRGLIGGTKFGAPGTPARFSGSLLGGKAALTLSGVQP EDEAEYYCVLWYSNRWVFGGGTKLTVL
15	CD3-связывающая wt	EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTIS RDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYIS YWAYWGQGTLVTVSSGGGGSGGGGGGGGGGGGGGGGTVVTQ EPSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPG QAPRGLIGGTKFLAPGTPARFSGSLLGGKAALTLSGVQ PEDEAEYYCVLWYSNRWVFGGGTKLTVL
16	CD3-связывающая CDR1 HC wt	GFTFNKYAMN

HC wt	17	СD3-связывающая CDR2	RIRSKYNNYATYYADSVK
HC wt 19 CD3-связывающая CDR1 GSSTGAVTSGNYPN LC wt 20 CD3-связывающая CDR2 GTKFLAP 21 CD3-связывающая CDR3 VLWYSNRWV LC wt 22 Bариант 1 CDR1 HC GNTFNKYAMN 23 Bариант 2 CDR1 HC GFENKYAMN 24 Bариант 3 CDR1 HC GFTNKYAMN 25 Bариант 4 CDR1 HC GFTNNYAMN 26 Bариант 5 CDR1 HC GFTNNYAMN 27 Bариант 6 CDR1 HC GFTNYAMN 28 Bариант 7 CDR1 HC GFTNYAMN 29 Bариант 8 CDR1 HC GFTNYAMN 30 Bариант 9 CDR1 HC GFTNKYAMN 31 Bариант 10 CDR1 HC GFTNKYANN 32 Bариант 11 CDR1 HC GFTNKYANN 33 Bариант 12 CDR1 HC GFTNKYANN 34 Bариант 1 CDR2 HC GFTNKYALN 35 Bариант 1 CDR2 HC RIRSKYNNYATYYADSVK 36 Bариант 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Bариант 4 CDR2 HC RIRSKYNNYATYYADSVK 38 Bариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Bариант 6 CDR2 HC RIRSKYNNYATYYADSVK 40 Bариант 7 CDR2 HC RIRSKYNNYATYYADSVK 41 Bариант 8 CDR2 HC RIRSKYNNYATYYADVK 42 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 43 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 44 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 45 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 46 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 47 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 48 Bариант 1 CDR2 HC RIRSKYNNYATYYADVK 49 Bариант 1 CDR2 HC RIRSKYNNYATYYADVK 40 Bариант 9 CDR2 HC RIRSKYNNYATYYADVK 41 Bариант 1 CDR3 HC RIRSKYNNYATYYADVK		HC wt	
19 CD3-связывающая CDR1 LC wt	18	CD3-связывающая CDR3	HGNFGNSYISYWAY
LC wt 20 CD3-связывающая CDR2 LC wt 21 CD3-связывающая CDR3 VLWYSNRWV LC wt 22 Вариант 1 CDR1 HC GNTFNKYAMN 23 Вариант 2 CDR1 HC GFFNKYAMN 24 Вариант 3 CDR1 HC GFTFNKYAMN 25 Вариант 5 CDR1 HC GFTFNNYAMN 26 Вариант 5 CDR1 HC GFTFNYAMN 27 Вариант 6 CDR1 HC GFTFNYAMN 28 Вариант 7 CDR1 HC GFTFNYAMN 29 Вариант 8 CDR1 HC GFTFNYAMN 30 Вариант 9 CDR1 HC GFTFNKYAMN 31 Вариант 10 CDR1 HC GFTFNKYANN 32 Вариант 10 CDR1 HC GFTFNKYANN 33 Вариант 10 CDR1 HC GFTFNKYANN 34 Вариант 10 CDR1 HC GFTFNKYALN 35 Вариант 1 CDR2 HC GFTFNKYALN 36 Вариант 2 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 4 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADSVK 41 Вариант 7 CDR2 HC RIRSKYNNYATYYADVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 43 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 44 Вариант 1 CDR2 HC RIRSKYNNYATYYADVK 45 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 46 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 47 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 48 Вариант 10 CDR2 HC RIRSKYNNYATYYADVK 49 Вариант 10 CDR2 HC RIRSKYNNYATYYADVK 40 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 41 Вариант 10 CDR2 HC RIRSKYNNYATYYADVK 42 Вариант 1 CDR3 HC HANFGNSYISYWAY		HC wt	
20 CD3-связывающая CDR2 GTKFLAP 21 CD3-связывающая CDR3 VLWYSNRWV 22 Вариант 1 CDR1 HC GNTFNKYAMN 23 Вариант 2 CDR1 HC GFEFNKYAMN 24 Вариант 3 CDR1 HC GFMFNKYAMN 25 Вариант 4 CDR1 HC GFTYNKYAMN 26 Вариант 5 CDR1 HC GFTFNYAMN 27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNEYAMN 29 Вариант 8 CDR1 HC GFTFNKYAMN 30 Вариант 9 CDR1 HC GFTFNKYANN 31 Вариант 10 CDR1 HC GFTFNKYAIN 32 Вариант 12 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 2 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKYNNYATYYADSVK 36 Вариант 2 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 7 CDR2 HC <td>19</td> <td>CD3-связывающая CDR1</td> <td>GSSTGAVTSGNYPN</td>	19	CD3-связывающая CDR1	GSSTGAVTSGNYPN
LC wt 21 CD3-cb835bBaiougas CDR3 VLWYSNRWV LC wt 22 Bapuahr 1 CDR1 HC GNTFNKYAMN 23 Bapuahr 2 CDR1 HC GFENKYAMN 24 Bapuahr 3 CDR1 HC GFMFNKYAMN 25 Bapuahr 4 CDR1 HC GFTYNKYAMN 26 Bapuahr 5 CDR1 HC GFTFNYAMN 27 Bapuahr 6 CDR1 HC GFTFNYAMN 28 Bapuahr 7 CDR1 HC GFTFNYAMN 29 Bapuahr 8 CDR1 HC GFTFNYAMN 30 Bapuahr 9 CDR1 HC GFTFNKYANN 31 Bapuahr 10 CDR1 HC GFTFNKYAVN 32 Bapuahr 11 CDR1 HC GFTFNKYAVN 33 Bapuahr 12 CDR1 HC GFTFNKYALN 34 Bapuahr 12 CDR1 HC GFTFNKYALN 35 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADSVK 36 Bapuahr 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Bapuahr 5 CDR2 HC RIRSKYNNYATYYADSVK 38 Bapuahr 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Bapuahr 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Bapuahr 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Bapuahr 8 CDR2 HC RIRSKYNNYATYYADVK 42 Bapuahr 9 CDR2 HC RIRSKYNNYATYYADVK 43 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 44 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 45 Bapuahr 9 CDR2 HC RIRSKYNNYATYYADVK 46 Bapuahr 9 CDR2 HC RIRSKYNNYATYYADVK 47 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 48 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 49 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 40 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 41 Bapuahr 1 CDR2 HC RIRSKYNNYATYYADVK 42 Bapuahr 1 CDR3 HC RIRSKYNNYATYYADVK 43 Bapuahr 1 CDR3 HC RIRSKYNNYATYYADVK 44 Bapuahr 1 CDR3 HC HANFGNSYISYWAY		LC wt	
21 CD3-связывающая CDR3 VLWYSNRWV LC wt 22 Вариант 1 CDR1 HC GNTFNKYAMN 23 Вариант 2 CDR1 HC GFENKYAMN 24 Вариант 3 CDR1 HC GFMFNKYAMN 25 Вариант 5 CDR1 HC GFTNKYAMN 26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNYAMN 28 Вариант 7 CDR1 HC GFTFNYAMN 29 Вариант 8 CDR1 HC GFTFNYAMN 30 Вариант 9 CDR1 HC GFTFNKYAMN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYAVN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 12 CDR1 HC GFTFNKYALN 35 Вариант 2 CDR2 HC RIRSGYNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADVK 43 Вариант 1 CDR2 HC RIRSKYNNYATYYADVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	20	CD3-связывающая CDR2	GTKFLAP
LC wt 22 Вариант 1 CDR1 HC GNTFNKYAMN 23 Вариант 2 CDR1 HC GFEFNKYAMN 24 Вариант 3 CDR1 HC GFMFNKYAMN 25 Вариант 4 CDR1 HC GFTYNKYAMN 26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNYAMN 28 Вариант 7 CDR1 HC GFTFNYAMN 29 Вариант 8 CDR1 HC GFTFNKYAMN 30 Вариант 9 CDR1 HC GFTFNKYAWN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYALN 33 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADAVK 41 Вариант 7 CDR2 HC RIRSKYNNYATYYADAVK <		LC wt	
22 Вариант 1 CDR1 HC GNTFNKYAMN 23 Вариант 2 CDR1 HC GFEFNKYAMN 24 Вариант 3 CDR1 HC GFMFNKYAMN 25 Вариант 4 CDR1 HC GFTYNKYAMN 26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNYAMN 29 Вариант 8 CDR1 HC GFTFNKYPMN 30 Вариант 9 CDR1 HC GFTFNKYAVN 31 Вариант 1 CDR1 HC GFTFNKYAIN 32 Вариант 1 CDR1 HC GFTFNKYAIN 33 Вариант 1 CDR1 HC GFTFNKYAIN 34 Вариант 2 CDR1 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADAVK 41 Вариант 9	21	CD3-связывающая CDR3	VLWYSNRWV
23 Вариант 2 CDR1 HC GFEFNKYAMN 24 Вариант 3 CDR1 HC GFMFNKYAMN 25 Вариант 4 CDR1 HC GFTYNKYAMN 26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNEYAMN 30 Вариант 8 CDR1 HC GFTFNKYPMN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYALN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKYNKYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 9 CDR2 HC RIRSKYNNYATYYADEVK 42 Вариант 1 CDR3 HC RIRSKYNNYATYYADDVK 44		LC wt	
24 Вариант 3 CDR1 HC GFMFNKYAMN 25 Вариант 4 CDR1 HC GFTYNKYAMN 26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNTYAMN 29 Вариант 8 CDR1 HC GFTFNKYAMN 30 Вариант 9 CDR1 HC GFTFNKYAVN 31 Вариант 10 CDR1 HC GFTFNKYAIN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 34 Вариант 1 CDR2 HC RIRSKSNNYATYYADSVK 35 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYETYYADSVK 37 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADOVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADOVK 43 Вариант 1 CDR3 HC RIRSKYNNYATYYADOVK 44	22	Вариант 1 CDR1 HC	GNTFNKYAMN
25 Вариант 4 CDR1 HC GFTYNKYAMN 26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNYAMN 29 Вариант 8 CDR1 HC GFTFNEYAMN 30 Вариант 9 CDR1 HC GFTFNKYPMN 31 Вариант 10 CDR1 HC GFTFNKYAIN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 34 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYETYYADSVK 37 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADQVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 1 CDR3 HC RIRSKYNNYATYYADDVK	23	Вариант 2 CDR1 HC	GFEFNKYAMN
26 Вариант 5 CDR1 HC GFTFNNYAMN 27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNTYAMN 29 Вариант 8 CDR1 HC GFTFNEYAMN 30 Вариант 9 CDR1 HC GFTFNKYPMN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKYNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYATYYADSVK 37 Вариант 6 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADQVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 1 CDR3 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC RIRSKYNNYATYYADDVK	24	Вариант 3 CDR1 HC	GFMFNKYAMN
27 Вариант 6 CDR1 HC GFTFNGYAMN 28 Вариант 7 CDR1 HC GFTFNTYAMN 29 Вариант 8 CDR1 HC GFTFNEYAMN 30 Вариант 9 CDR1 HC GFTFNKYPMN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKYNKYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYETYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYATYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATYYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADAVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADQVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 1 CDR3 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	25	Вариант 4 CDR1 HC	GFTYNKYAMN
28 Вариант 7 CDR1 HC GFTFNTYAMN 29 Вариант 8 CDR1 HC GFTFNEYAMN 30 Вариант 9 CDR1 HC GFTFNKYPMN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKYNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYETYYADSVK 37 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADQVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADQVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	26	Вариант 5 CDR1 HC	GFTFNNYAMN
29 Вариант 8 CDR1 HC GFTFNEYAMN 30 Вариант 9 CDR1 HC GFTFNKYPMN 31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKYNKYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYETYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYATEYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	27	Вариант 6 CDR1 HC	GFTFNGYAMN
30 Bapuaht 9 CDR1 HC GFTFNKYPMN 31 Bapuaht 10 CDR1 HC GFTFNKYAVN 32 Bapuaht 11 CDR1 HC GFTFNKYAIN 33 Bapuaht 12 CDR1 HC GFTFNKYALN 34 Bapuaht 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Bapuaht 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Bapuaht 3 CDR2 HC RIRSKYNKYATYYADSVK 37 Bapuaht 4 CDR2 HC RIRSKYNNYETYYADSVK 38 Bapuaht 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Bapuaht 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Bapuaht 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Bapuaht 8 CDR2 HC RIRSKYNNYATYYADEVK 42 Bapuaht 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Bapuaht 10 CDR2 HC RIRSKYNNYATYYADQVK 44 Bapuaht 1 CDR3 HC RIRSKYNNYATYYADDVK	28	Вариант 7 CDR1 HC	GFTFNTYAMN
31 Вариант 10 CDR1 HC GFTFNKYAVN 32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNNYETYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYATEYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADQVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	29	Вариант 8 CDR1 HC	GFTFNEYAMN
32 Вариант 11 CDR1 HC GFTFNKYAIN 33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNKYATYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYETYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYADEVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	30	Вариант 9 CDR1 HC	GFTFNKYPMN
33 Вариант 12 CDR1 HC GFTFNKYALN 34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNKYATYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYETYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	31	Вариант 10 CDR1 HC	GFTFNKYAVN
34 Вариант 1 CDR2 HC RIRSGYNNYATYYADSVK 35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNKYATYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYETYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	32	Вариант 11 CDR1 HC	GFTFNKYAIN
35 Вариант 2 CDR2 HC RIRSKSNNYATYYADSVK 36 Вариант 3 CDR2 HC RIRSKYNKYATYYADSVK 37 Вариант 4 CDR2 HC RIRSKYNNYETYYADSVK 38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	33	Вариант 12 CDR1 HC	GFTFNKYALN
36Вариант 3 CDR2 HCRIRSKYNKYATYYADSVK37Вариант 4 CDR2 HCRIRSKYNNYETYYADSVK38Вариант 5 CDR2 HCRIRSKYNNYATEYADSVK39Вариант 6 CDR2 HCRIRSKYNNYATYYKDSVK40Вариант 7 CDR2 HCRIRSKYNNYATYYADEVK41Вариант 8 CDR2 HCRIRSKYNNYATYYADAVK42Вариант 9 CDR2 HCRIRSKYNNYATYYADQVK43Вариант 10 CDR2 HCRIRSKYNNYATYYADDVK44Вариант 1 CDR3 HCHANFGNSYISYWAY	34	Вариант 1 CDR2 HC	RIRSGYNNYATYYADSVK
37 Bapuaht 4 CDR2 HC RIRSKYNNYETYYADSVK 38 Bapuaht 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Bapuaht 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Bapuaht 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Bapuaht 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Bapuaht 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Bapuaht 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Bapuaht 1 CDR3 HC HANFGNSYISYWAY	35	Вариант 2 CDR2 HC	RIRSKSNNYATYYADSVK
38 Вариант 5 CDR2 HC RIRSKYNNYATEYADSVK 39 Вариант 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	36	Вариант 3 CDR2 HC	RIRSKYNKYATYYADSVK
39 Вариант 6 CDR2 HC RIRSKYNNYATYYKDSVK 40 Вариант 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	37	Вариант 4 CDR2 HC	RIRSKYNNYETYYADSVK
40 Bapuaht 7 CDR2 HC RIRSKYNNYATYYADEVK 41 Bapuaht 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Bapuaht 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Bapuaht 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Bapuaht 1 CDR3 HC HANFGNSYISYWAY	38	Вариант 5 CDR2 HC	RIRSKYNNYATEYADSVK
41 Вариант 8 CDR2 HC RIRSKYNNYATYYADAVK 42 Вариант 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	39	Вариант 6 CDR2 HC	RIRSKYNNYATYYKDSVK
42 Bapuaht 9 CDR2 HC RIRSKYNNYATYYADQVK 43 Bapuaht 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Bapuaht 1 CDR3 HC HANFGNSYISYWAY	40	Вариант 7 CDR2 HC	RIRSKYNNYATYYADEVK
43 Вариант 10 CDR2 HC RIRSKYNNYATYYADDVK 44 Вариант 1 CDR3 HC HANFGNSYISYWAY	41	Вариант 8 CDR2 HC	RIRSKYNNYATYYADAVK
44 Bapuaht 1 CDR3 HC HANFGNSYISYWAY	42	Вариант 9 CDR2 HC	RIRSKYNNYATYYADQVK
	43	Вариант 10 CDR2 HC	RIRSKYNNYATYYADDVK
45 Bapuaht 2 CDR3 HC HTNFGNSYISYWAY	44	Вариант 1 CDR3 HC	HANFGNSYISYWAY
	45	Вариант 2 CDR3 HC	HTNFGNSYISYWAY

46	Вариант 3 CDR3 HC	HGNFNNSYISYWAY
47	Вариант 4 CDR3 HC	HGNFGDSYISYWAY
48	Вариант 5 CDR3 HC	HGNFGNSHISYWAY
49	Вариант 6 CDR3 HC	HGNFGNSPISYWAY
50	Вариант 7 CDR3 HC	HGNFGNSQISYWAY
51	Вариант 8 CDR3 HC	HGNFGNSLISYWAY
52	Вариант 9 CDR3 HC	HGNFGNSGISYWAY
53	Вариант 10 CDR3 HC	HGNFGNSYISYWAT
54	Вариант 1 CDR1 LC	ASSTGAVTSGNYPN
55	Вариант 2 CDR1 LC	GESTGAVTSGNYPN
56	Вариант 3 CDR1 LC	GSYTGAVTSGNYPN
57	Вариант 4 CDR1 LC	GSSFGAVTSGNYPN
58	Вариант 5 CDR1 LC	GSSKGAVTSGNYPN
59	Вариант 6 CDR1 LC	GSSSGAVTSGNYPN
60	Вариант 7 CDR1 LC	GSSTGYVTSGNYPN
61	Вариант 8 CDR1 LC	GSSTGAVVSGNYPN
62	Вариант 9 CDR1 LC	GSSTGAVTDGNYPN
63	Вариант 10 CDR1 LC	GSSTGAVTKGNYPN
64	Вариант 11 CDR1 LC	GSSTGAVTHGNYPN
65	Вариант 12 CDR1 LC	GSSTGAVTVGNYPN
66	Вариант 13 CDR1 LC	GSSTGAVTSGYYPN
67	Вариант 1 CDR2 LC	GIKFLAP
68	Вариант 2 CDR2 LC	GTEFLAP
69	Вариант 3 CDR2 LC	GTYFLAP
70	Вариант 4 CDR2 LC	GTSFLAP
71	Вариант 5 CDR2 LC	GTNFLAP
72	Вариант 6 CDR2 LC	GTKLLAP
73	Вариант 7 CDR2 LC	GTKELAP
74	Вариант 8 CDR2 LC	GTKILAP
75	Вариант 9 CDR2 LC	GTKMLAP
76	Вариант 10 CDR2 LC	GTKVLAP
77	Вариант 11 CDR2 LC	GTKFNAP
78	Вариант 12 CDR2 LC	GTKFGAP
79	Вариант 13 CDR2 LC	GTKFLVP

80	Вариант 1 CDR3 LC	TLWYSNRWV
81	Вариант 2 CDR3 LC	ALWYSNRWV
82	Вариант 3 CDR3 LC	VLWYDNRWV
83	Вариант 4 CDR3 LC	VLWYANRWV
84	Вариант 5 CDR3 LC	VLWYSNSWV
85	Вариант 6 CDR3 LC	VLWYSNRWI
86	Вариант 7 CDR3 LC	VLWYSNRWA
87	CD3-связывающая, клон	EVQLVESGGGLVQPGGSLKLSCAASGFTFNKYALNWV
	2G5	RQAPGKGLEWVARIRSKYNNYATEYADSVKDRFTISR
		DDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSPISY
		WAYWGQGTLVTVSSGGGGSGGGGGGGGGGGGTVVTQE
		PSLTVSPGGTVTLTCGSSTGAVTSGNYPNWVQQKPGQ
		APRGLIGGTNFLAPGTPERFSGSLLGGKAALTLSGVQPE
		DEAEYYCVLWYSNRWAFGGGTKLTVL
88	CD3-связывающая, клон	EVQLVESGGGLVQPGGSLKLSCAASGFTFNEYAMNWV
	8A5	RQAPGKGLEWVARIRSKYNNYATYYADDVKDRFTISR
		DDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSGISY
		WAYWGQGTLVTVSSGGGGSGGGGGGGGGGGGTVVTQE
		PSLTVSPGGTVTLTCGSSTGAVTVGNYPNWVQQKPGQ
		APRGLIGGTEFLAPGTPARFSGSLLGGKAALTLSGVQPE
		DEAEYYCVLWYSNRWVFGGGTKLTVL

Таблица 8 Последовательности HSA-связывающего домена.

SEQ	<u>Описание</u>	Аминокислотная последовательность
<u>ID</u>		
<u>NO:</u>		
89	sdAb к HSA, клон 6C	EVQLVESGGGLVQPGNSLRLSCAASGFTFSRFGMSWV
		RQAPGKGLEWVSSISGSGSDTLYADSVKGRFTISRDNA
		KTTLYLQMNSLRPEDTAVYYCTIGGSLSRSSQGTLVTV
		SS
90	sdAb к HSA, клон 7A	EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV
		RQAPGKGLEWVSSISGSGADTLYADSLKGRFTISRDNA
		KTTLYLQMNSLRPEDTAVYYCTIGGSLSKSSQGTLVTV
		SS

91 sdAb к HSA, клон 7G EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADSY KTTLYLQMNSLRPEDTAVYYCTIGGS: SS 92 sdAb к HSA, клон 8H EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGTDTLYADSY KTTLYLQMNSLRPEDTAVYYCTIGGS: SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADSY KTTLYLQMNSLRPEDTAVYYCTIGGS: SS 84 SdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADSY KTTLYLQMNSLRPEDTAVYYCTIGGS: SS	VKGRFTISRDNA LSKSSQGTLVTV FTFSKFGMSWV VKGRFTISRDNA LSRSSQGTLVTV
SS 92 sdAb к HSA, клон 8H EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGTDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS: SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS:	LSKSSQGTLVTV FTFSKFGMSWV VKGRFTISRDNA LSRSSQGTLVTV
SS 92 sdAb к HSA, клон 8H EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGTDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS. SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS	FTFSKFGMSWV VKGRFTISRDNA LSRSSQGTLVTV
92 sdAb к HSA, клон 8H EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGTDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS: SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS:	VKGRFTISRDNA LSRSSQGTLVTV
RQAPGKGLEWVSSISGSGTDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS. SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS.	VKGRFTISRDNA LSRSSQGTLVTV
KTTLYLQMNSLRPEDTAVYYCTIGGS: SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS:	LSRSSQGTLVTV
SS 93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS' KTTLYLQMNSLRPEDTAVYYCTIGGS	
93 sdAb к HSA, клон 9A EVQLVESGGGLVQPGNSLRLSCAASG RQAPGKGLEWVSSISGSGSDTLYADS KTTLYLQMNSLRPEDTAVYYCTIGGS	FTFSRFGMSWV
RQAPGKGLEWVSSISGSGSDTLYADSV KTTLYLQMNSLRPEDTAVYYCTIGGS	FTFSRFGMSWV
KTTLYLQMNSLRPEDTAVYYCTIGGS	
	VKGRFTISRDNA
SS	LSKSSQGTLVTV
94 sdAb к HSA, клон 10G EVQLVESGGGLVQPGNSLRLSCAASG	FTFSKFGMSWV
RQAPGKGLEWVSSISGSGRDTLYADS	VKGRFTISRDNA
KTTLYLQMNSLRPEDTAVYYCTIGGS.	LSVSSQGTLVTV
SS	
95 HSA-связывающая, wt EVQLVESGGGLVQPGNSLRLSCAASG	FTFSSFGMSWVR
QAPGKGLEWVSSISGSGSDTLYADSV	
TTLYLQMNSLRPEDTAVYYCTIGGSLS	SRSSQGTLVTVS
S	-
96 HSA-связывающая CDR1 GFTFSSFGMS	
wt	
97 HSA-связывающая CDR2 SISGSGSDTLYADSVK	
wt	
98 HSACDR3-связывающая GGSLSR	
wt	
99 Bapuart 1 CDR1 GFTFSRFGMS	
100 Bapuart 2 CDR1 GFTFSKFGMS	
101 Bapuart 3 CDR1 GFTYSSFGMS	
102 Bapuart 1 CDR2 SISGSGADTLYADSLK	
103 Bapuart 2 CDR2 SISGSGTDTLYADSVK	
104 Bapuart 3 CDR2 SISGSGRDTLYADSVK	
105 Вариант 4 CDR2 SISGSGSDTLYAESVK	
106 Вариант 5 CDR2 SISGSGTDTLYAESVK	
107 Вариант 6 CDR2 SISGSGRDTLYAESVK	
T. T	
109 Bapuart 2 CDR3 GGSLSV	ETECDECMONNY
110 sdAb к HSA, клон 6CE EVQLVESGGGLVQPGNSLRLSCAASG	
RQAPGKGLEWVSSISGSGSDTLYAESV	
KTTLYLQMNSLRPEDTAVYYCTIGGS.	LSKSSQUILVIV
SS SYSTEM OF THE STATE OF THE S	ETECKEO (CTTT
sdAb к HSA, клон 8HE EVQLVESGGGLVQPGNSLRLSCAASG	
RQAPGKGLEWVSSISGSGTDTLYAES	
KTTLYLQMNSLRPEDTAVYYCTIGGS:	LSRSSQGTLVTV
SS	
sdAb к HSA, клон 10GE EVQLVESGGGLVQPGNSLRLSCAASG	
RQAPGKGLEWVSSISGSGRDTLYAES	
KTTLYLQMNSLRPEDTAVYYCTIGGS:	LSVSSQGTLVTV
SS	

Таблица 9 Последовательности PSMA-связывающего домена

SEQ	<u>Описание</u>	Аминокислотная последовательность
<u>ID</u>		
<u>NO:</u>		
113	PSMA-связывающая, wt	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYSMHWV
		RQAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLKPEDTAVYYCDGYGYRGQGTQVTVSS
114	Вариант 1 CDR1	RFMISEYHMH
115	Вариант 2 CDR1	RFMISPYSMH
116	Вариант 3 CDR1	RFMISPYHMH
117	Вариант 1 CDR2	DINPAGTTDYAESVKG
118	Вариант 2 CDR2	TINPAKTTDYAESVKG
119	Вариант 3 CDR2	TINPAGQTDYAESVKG
120	Вариант 4 CDR2	TINPAGTTDYAEYVKG
121	Вариант 5 CDR2	DINPAKTTDYAESVKG
122	Вариант 6 CDR2	DINPAGQTDYAESVKG
123	Вариант 7 CDR2	DINPAGTTDYAEYVKG
124	Вариант 1 CDR3	DSYGY

125	Вариант 4 CDR1	RFMISEYSMH
126	Вариант 8 CDR2	TINPAGTTDYAESVKG
127	Вариант 2 CDR3	DGYGY
128	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYSMHWV
	1	RQAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDGYGYRGQGTLVTVSS
129	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYHMHWV
	2	RQAPGKGLEWVSDINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
130	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYHMHWV
	3	RQAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
131	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYSMHWV
	4	RQAPGKGLEWVSTINPAKTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
132	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISPYSMHWV
	5	RQAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDGYGYRGQGTLVTVSS
133	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYSMHWV
	6	RQAPGKGLEWVSTINPAGQTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDGYGYRGQGTLVTVSS
134	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYSMHWV
	7	RQAPGKGLEWVSTINPAGTTDYAEYVKGRFTISRDNA
		KNTLYLQMNSLRAEDTAVYYCDGYGYRGQGTLVTVS
		S
135	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYHMHWV
	8	RQAPGKGLEWVSDINPAKTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
136	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISPYHMHWV
	9	RQAPGKGLEWVSDINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
137	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYHMHWV
	10	RQAPGKGLEWVSDINPAGQTDYAESVKGRFTISRDNA
		KNTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
138	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLRLSCAASRFMISEYHMHWV
	11	RQAPGKGLEWVSDINPAGTTDYAEYVKGRFTISRDNA
		KNTLYLQMNSLRAEDTAVYYCDSYGYRGQGTLVTVSS
139	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYHMHWV
	12	RQAPGKGLEWVSDINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLKPEDTAVYYCDSYGYRGQGTQVTVSS
140	PSMA-связывающая, клон	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYHMHWV
	13	RQAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAK
		NTLYLQMNSLKPEDTAVYYCDSYGYRGQGTQVTVSS
	1	

Таблица 10 Последовательности PSMA-нацеленного триспецифического белка

		ı	
SEO ID	C-		
NO:	номер	Конструкция	Последовательность
110.	помер	Конструкция	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYSMHWVR
			QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
			TLYLQMNSLKPEDTAVYYCDGYGYRGQGTQVTVSSGG
			GGSGGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
			FGMSWVRQAPGKGLEWVSSISGSGRDTLYADSVKGRF
			TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ
			GTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLS
			CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY
			ATYYADQVKDRFTISRDDSKNTAYLQMNNLKTEDTAV
			YYCVRHANFGNSYISYWAYWGQGTLVTVSSGGGGSGG
			GGSGGGGSQTVVTQEPSLTVSPGGTVTLTCASSTGAVTS
		PSMA TriTAC	GNYPNWVQQKPGQAPRGLIGGTKFLVPGTPARFSGSLL
		CD3, высокая	GGKAALTLSGVQPEDEAEYYCTLWYSNRWVFGGGTKL
141	C00324	афф.	TVLHHHHHH
			EVQLVESGGGLVQPGGSLTLSCAASRFMISEYSMHWVR
			QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
			TLYLQMNSLKPEDTAVYYCDGYGYRGQGTQVTVSSGG
			GGSGGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
			FGMSWVRQAPGKGLEWVSSISGSGRDTLYADSVKGRF
			TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ
			GTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLS
			CAASGFTFNNYAMNWVRQAPGKGLEWVARIRSGYNN
			YATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTA
			VYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSG
			GGGSGGGSQTVVTQEPSLTVSPGGTVTLTCGSYTGAV
		PSMA TriTAC	TSGNYPNWVQQKPGQAPRGLIGGTKFNAPGTPARFSGS
		СДЗ, средняя	LLGGKAALTLSGVQPEDEAEYYCVLWYANRWVFGGG
142	C00220	/ X ' '	TKLTVLHHHHHH
142	C00339	афф.	INLIVLOODHII

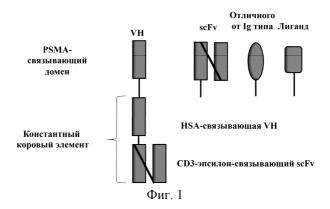
	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYSMHWVR
	QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
	FLYLQMNSLKPEDTAVYYCDGYGYRGQGTQVTVSSGG
	GGSGGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
	FGMSWVRQAPGKGLEWVSSISGSGRDTLYADSVKGRF
	FISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ
	GTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLS
	CAASGFEFNKYAMNWVRQAPGKGLEWVARIRSKYNN
	YETYYADSVKDRFTISRDDSKNTAYLOMNNLKTEDTA
	VYYCVRHGNFGNSLISYWAYWGQGTLVTVSSGGGGSG
	GGGSGGGSQTVVTQEPSLTVSPGGTVTLTCGSSSGAV
	CSGNYPNWVQQKPGQAPRGLIGGTKFGAPGTPARFSGS
	LLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGT
	KLTVLHHHHHH
	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYSMHWVR
	QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
	TLYLOMNSLKPEDTAVYYCDGYGYRGOGTOVTVSSGG
	GGSGGSEVOLVESGGGLVOPGNSLRLSCAASGFTFSSF
	GMSWVRQAPGKGLEWVSSISGSGSDTLYADSVKGRFTI
	SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSRSSQG
	TLVTVSSGGGSGGGSEVQLVESGGGLVQPGGSLKLSC
	` ` `
	AASGFTFNKYAMNWVRQAPGKGLEWVARIRSKYNNY
	ATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAV
	YYCVRHGNFGNSYISYWAYWGQGTLVTVSSGGGGSGG
	GGSGGGGSQTVVTQEPSLTVSPGGTVTLTCGSSTGAVTS
	GNYPNWVQQKPGQAPRGLIGGTKFLAPGTPARFSGSLL
	GGKAALTLSGVQPEDEAEYYCVLWYSNRWVFGGGTKL
13	FVLHHHHHH EVOLVESGGGLVOPGGSLRLSCAASRFMISEYSMHWVR
	QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
	TLYLQMNSLRAEDTAVYYCDGYGYRGQGTLVTVSSGG
	GGSGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
	FGMSWVRQAPGKGLEWVSSISGSGRDTLYADSVKGRF
	FISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ
	GTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLS
	CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY
	ATYYADQVKDRFTISRDDSKNTAYLQMNNLKTEDTAV
	YYCVRHANFGNSYISYWAYWGQGTLVTVSSGGGGSGG
	GGSGGGGSQTVVTQEPSLTVSPGGTVTLTCASSTGAVTS
	GNYPNWVQQKPGQAPRGLIGGTKFLVPGTPARFSGSLL
	GGKAALTLSGVQPEDEAEYYCTLWYSNRWVFGGGTKL
	ГУГНИННН
	EVQLVESGGGLVQPGGSLTLSCAASRFMISEYHMHWVR
	QAPGKGLEWVSDINPAGTTDYAESVKGRFTISRDNAKN
	FLYLQMNSLKPEDTAVYYCDSYGYRGQGTQVTVSSGG
	GGSGGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
	FGMSWVRQAPGKGLEWVSSISGSGRDTLYADSVKGRF
	FISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ
	GTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLS
	CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY
	CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY ATYYADQVKDRFTISRDDSKNTAYLQMNNLKTEDTAV
	CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY
PSMA HDS C	CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY ATYYADQVKDRFTISRDDSKNTAYLQMNNLKTEDTAV

			GGKAALTLSGVQPEDEAEYYCTLWYSNRWVFGGGTKL TVLHHHHHH
			EVOLVESGGGLVOPGGSLTLSCAASRFMISEYHMHWVR
			QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
			TLYLQMNSLKPEDTAVYYCDSYGYRGQGTQVTVSSGG
			GGSGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
			FGMSWVRQAPGKGLEWVSSISGSGRDTLYADSVKGRF TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ
			GTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGGSLKLS
			CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY
			ATYYADQVKDRFTISRDDSKNTAYLQMNNLKTEDTAV
			YYCVRHANFGNSYISYWAYWGQGTLVTVSSGGGGSGG
			GGSGGGGSQTVVTQEPSLTVSPGGTVTLTCASSTGAVTS
		PSMA HTS	GNYPNWVQQKPGQAPRGLIGGTKFLVPGTPARFSGSLL GGKAALTLSGVQPEDEAEYYCTLWYSNRWVFGGGTKL
147	C00364	TriTAC C364	TVLHHHHHH
			QVQLVESGGGLVKPGESLRLSCAASGFTFSDYYMYWV
			RQAPGKGLEWVAIISDGGYYTYYSDIIKGRFTISRDNAK
			NSLYLQMNSLKAEDTAVYYCARGFPLLRHGAMDYWG
			QGTLVTVSSGGGGSGGGGGGGGGGGGGGGGGGGGGGGGGGG
			VGDRVTITCKASQNVDTNVAWYQQKPGQAPKSLIYSAS
			YRYSDVPSRFSGSASGTDFTLTISSVQSEDFATYYCQQY DSYPYTFGGGTKLEIKSGGGGSEVQLVESGGGLVQPGG
			SLKLSCAASGFTFNKYAMNWVRQAPGKGLEWVARIRS
			KYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKT
			EDTAVYYCVRHGNFGNSYISYWAYWGQGTLVTVSSGG
			GGSGGGGGGGGGTVVVTQEPSLTVSPGGTVTLTCGSS
			TGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLAPGTPAR
140	G00200	DCM A D'TE	FSGSLLGGKAALTLSGVQPEDEAEYYCVLWYSNRWVF
148	C00298	PSMA BiTE	GGGTKLTVLHHHHHH OVKLEESGGGSVOTGGSLRLTCAASGRTSRSYGMGWF
			RQAPGKEREFVSGISWRGDSTGYADSVKGRFTISRDNA
			KNTVDLQMNSLKPEDTAIYYCAAAAGSAWYGTLYEYD
			YWGQGTQVTVSSGGGGSGGGSEVQLVESGGGLVQPGN
			SLRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSG
			SDTLYADSVKGRFTISRDNAKTTLYLQMNSLRPEDTAV
			YYCTIGGSLSRSSQGTLVTVSSGGGGSGGGSEVQLVESG GGLVOPGGSLKLSCAASGFTFNKYAMNWVROAPGKGL
			EWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYL
			QMNNLKTEDTAVYYCVRHGNFGNSYISYWAYWGQGT
			LVTVSSGGGGGGGGGGGGGGTVVTQEPSLTVSPGGT
			VTLTCGSSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKF
			LAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCVLW
149	C00131	EGFR TriTAC	YSNRWVFGGGTKLTVLHHHHHH

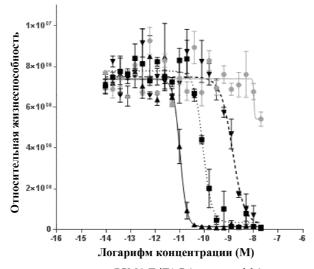
			and the second s
			QVQLVESGGGVVQAGRSLTLSCAYSGVTVNVYRMGW
			FRQAPGKEREFVANINWSGNNRDYADSVRGRFTISRDN
			SKNTLYLQMNSLRAEDTAVYYCASEKPGRLGEYDYGS
			QGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGNSLRL
			SCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDT
			LYADSVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYC
			TIGGSLSVSSQGTLVTVSSGGGGSGGGSEVQLVESGGGL
			VQPGGSLKLSCAASGFTFNKYAINWVRQAPGKGLEWV
			ARIRSKYNNYATYYADQVKDRFTISRDDSKNTAYLQM
			NNLKTEDTAVYYCVRHANFGNSYISYWAYWGQGTLVT
			VSSGGGGGGGGGGGGGTVVTQEPSLTVSPGGTVTL
			TCASSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLVP
		PSMA PHIT	GTPARFSGSLLGGKAALTLSGVQPEDEAEYYCTLWYSN
150	C00457	TriTAC	RWVFGGGTKLTVLHHHHHH
			QVQLVESGGGVVQAGRSLRLSCAYSGVTVNVYRMGW
			FROAPGKEREFVANINWSGNNRDYADSVRGRFTISRDN
			SKNTLYLQMNSLRAEDTAVYYCASEKPGRLGEYDYGS
İ			QGTLVTVSSGGGGSGGGSEVQLVESGGGLVQPGNSLRL
			SCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDT
			LYADSVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYC
			TIGGSLSVSSQGTLVTVSSGGGGSGGGSEVQLVESGGGL
			VQPGGSLKLSCAASGFTFNKYAINWVRQAPGKGLEWV
			ARIRSKYNNYATYYADQVKDRFTISRDDSKNTAYLQM
			NNLKTEDTAVYYCVRHANFGNSYISYWAYWGQGTLVT
			VSSGGGSGGGSGGGSGTVVTQEPSLTVSPGGTVTL
			TCASSTGAVTSGNYPNWVQQKPGQAPRGLIGGTKFLVP
		PSMA PH1	GTPARFSGSLLGGKAALTLSGVQPEDEAEYYCTLWYSN
151	C00404	TriTAC	RWVFGGGTKLTVLHHHHHH
			EVQLVESGGGLVQPGGSLTLSCAASRFMISEYHMHWVR
			QAPGKGLEWVSTINPAGTTDYAESVKGRFTISRDNAKN
			TLYLOMNSLRAEDTAVYYCDSYGYRGQGTLVTVSSGG
			GGSGGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSK
			FGMSWVROAPGKGLEWVSSISGSGRDTLYADSVKGRF
			TISRDNAKTTLYLOMNSLRPEDTAVYYCTIGGSLSVSSO
İ			GTLVTVSSGGGGSGGSEVQLVESGGGLVQPGGSLKLS
			CAASGFTFNKYAINWVRQAPGKGLEWVARIRSKYNNY
			ATYYADQVKDRFTISRDDSKNTAYLQMNNLKTEDTAV
			YYCVRHANFGNSYISYWAYWGQGTLVTVSSGGGGSGG
			GGSGGGSQTVVTQEPSLTVSPGGTVTLTCASSTGAVTS
			GNYPNWVQQKPGQAPRGLIGGTKFLVPGTPARFSGSLL
		PSMA Z2	GGKAALTLSGVQPEDEAEYYCTLWYSNRWVFGGGTKL
152	C00410	TriTAC	TVLHHHHHH
102	1 000410	1111111	1 TEMBER IN

Таблица 11 Последовательности CDR PSMA-связывающего домена.

SEQ ID No.	<u>Последовательность</u>
SEQ ID No. 162	RFMISX ₁ YX ₂ MH
SEQ ID No. 163	X ₃ INPAX ₄ X ₅ TDYAEX ₆ VKG
SEQ ID No. 164	DX ₇ YGY

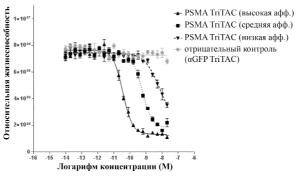

Таблица 12 Иллюстративные каркасные последовательности

SEQ ID NO:	Описание	Последовательность					
165	Каркас (f1)	EVQLVESGGGLVQPGGSLTLSCAAS					
166	Каркас (f2)	WVRQAPGKGLEWVS					
167	Каркас (f3)	RFTISRDNAKNTLYLQMNSLRAEDTAVYYC					
168	Каркас (f4)	DGYGYRGQGTLVTVSS					


Хотя в настоящем документе были показаны и описаны предпочтительные варианты осуществления настоящего изобретения, для специалистов в данной области будет очевидно, что такие варианты осуществления приведены исключительно в качестве примера. Многочисленные вариации, изменения и замены будут приходить на ум специалистам в данной области без отступления от настоящего изобретения. Следует понимать, что при применении настоящего изобретения на практике можно использовать различные альтернативы описанным в настоящем документе вариантам осуществления настоящего изобретения. Подразумевается, что нижеследующая формула изобретения определяет объем настоящего изобретения и что способы и структуры в пределах объема этой формулы изобретения и их эквиваленты также охватываются ею.

ФОРМУЛА ИЗОБРЕТЕНИЯ

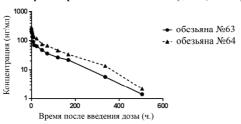
- 1. Нацеленный на простатический специфический мембранный антиген (PSMA) триспецифический белок, содержащий аминокислотную последовательность SEQ ID NO: 147.
- 2. PSMA-нацеленный триспецифический белок по п.1, где размер PSMA-нацеленного триспецифического белка составляет менее чем 80 кДа.
- 3. PSMA-нацеленный триспецифический белок по п.1, где размер PSMA-нацеленного триспецифического белка составляет от 50 до 75 кДа.
- 4. PSMA-нацеленный триспецифический белок по п.1, где PSMA-нацеленный триспецифический белок характеризуется периодом полувыведения по меньшей мере 50 ч.
- 5. Фармацевтическая композиция, содержащая (i) PSMA-нацеленный триспецифический белок по любому из пп.1-4 и (ii) фармацевтически приемлемый носитель.
- 6. Применение фармацевтической композиции по п.5 для изготовления лекарственного средства для лечения рака.


Активность TriTAC в модели рака предстательной железы LNCaP

- → PSMA TriTAC (высокая афф.)
- PSMA TriTAC (средняя афф.)
- -▼· PSMA TriTAC (низкая афф.)
- отрицательный контроль (αGFP TriTAC)

Фиг. 2А

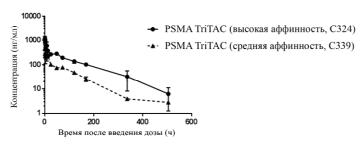
Активность TriTAC в модели рака предстательной железы 22Rv1



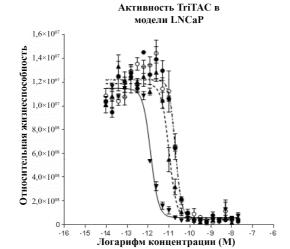
Фиг. 2В

ЕС50 [пМ]	LNCaP	22Rv1
TriTAC CD3, высокая афф C324	10	35
TriTAC CD3, средняя афф C339	87	561
TriTAC CD3, низкая афф C325	1.389	7,460

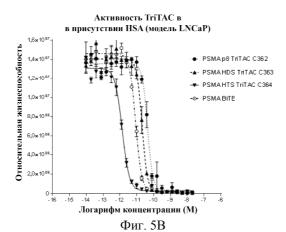
Фиг. 2С


Уровни PSMA-нацеленной TriTAC C236 в сыворотке крови яванских макаков (доза $0,1~{\rm Mr/kr})$

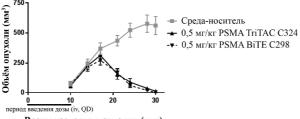
Уровень дозы	ID животного	Число точек для лямбда_z	t1/2 в конечной фазе (ч)	Стах (нг/мл)	СО (нг/мл)	AUC, 0-последн. (ч×нг/мл)	AUC, 0-inf (ч×нг/мл)	AUC, % экстраполированной (%)	Клиренс (мл/ч/кг)	Vss (л/кг)
0,1 мг/кг	63	6	91,6	245	253	10100	10300	1,8	9,68	1,15
	64	6	93,7	287	298	17500	17800	1,7	5,61	0,71
	Среднее	6	92,6	266	276	13800	14100	1,8	7,64	0,93


Фиг. 3

Уровни PSMA-нацеленных TriTAC в сыворотке крови яванских макаков (доза 0,1 мг/кг)


Уровень дозы	ID животного	для	t1/2 в конечной фазе (ч.)	Стах (нг/мл)	СО (нг/мл)	AUC, 0-последн. (ч×нг/мл)	AUC, 0-inf (ч×нг/мл)	АUС, % экстраполированной (%)	Клиренс (мл/ч/кг)	Vss (л/кг)
С324 0,1 мг/кг	2389M	5	70,3	1360	1390	47800	48100	0,568	2,08	0,192
	71F	5	101	918	941	56100	57500	2,46	1,74	0,244
	Среднее	5	85,8	1140	1170	51900	52800	1,52	1,91	0,218
С339 0,1 мг/кг	2390M	6	85,3	497	533	17800	18100	1,79	5,53	0,530
	70F	6	86,5	456	523	15600	16000	2,32	6,25	0,621
	Среднее	6	85,9	477	528	16700	17000	2,05	5,89	0,575

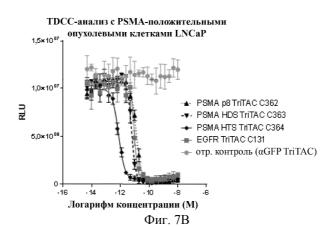
Фиг. 4


- PSMA p8 TriTAC C362
- -▲- PSMAHDS TriTAC C363
- -O- PSMABITE

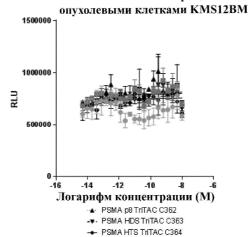
Фиг. 5А

ЕС50 [пМ]	LNCaP	LNCaP c HSA	сдвиг HSA 2x	
PSMA p8 TriTAC C362	20	43		
PSMA HDS TriTAC C363	10	21	2x	
PSMA HTS TriTAC C364	1,3	1,3	1x	
PSMA BITE	20	9	0,5x	

Фиг. 5С

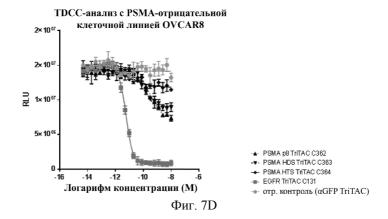

Время после имплантации (дни)

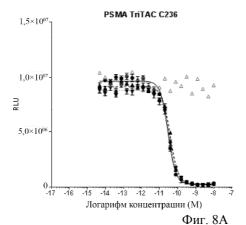
Фиг. 6


Исследование с ксенотрансплантатами опухоли предстательной железы человека 22Rv1 у мышей NOD/SCID/гамма, которым инокулировали покоящиеся первичные Т-клетки человека, смешанные с опухолевыми клетками в соотношении 1:1

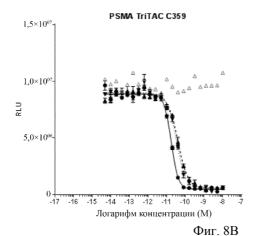
Клеточная линия	Экспрессия EGFR	Экспрессия PSMA
LNCaP	Да	Да
KMS12BM	Нет	Нет
OVCAR8	Да	Нет

Фиг. 7А

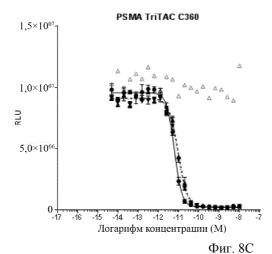

TDCC-анализ с PSMA-отрицательными опухолевыми клетками KMS12BM

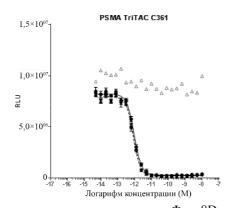


■ EGFR TriTAC C131

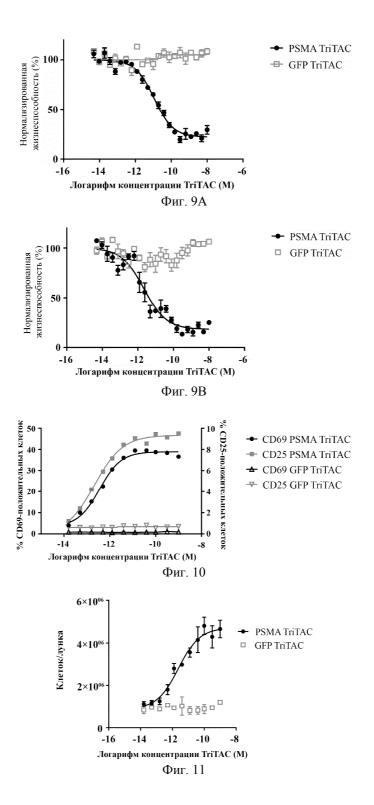

отр. контроль (αGFP TriTAC)

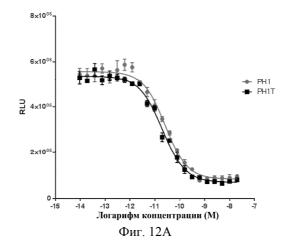
Фиг. 7С

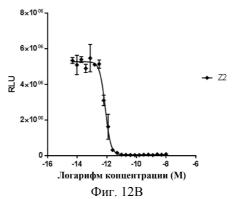



- Положительный контроль
- **±*33,3 мкг/мл при 37°C в течение 48 ч
- **₹**-33,3 мкг/мл F/T
- △ Буфер для ВіТЕ

- Положительный контроль
- ** 33,3 мкг/мл при 37°C в течение 48 ч
- **▼** 33,3 мкг/мл F/T
- △ Буфер для ВіТЕ




- ◆Положительный контроль
- •**▲** 33,3 мкг/мл при 37°С в течение 48 ч
- **▼** 33,3 мкг/мл F/T
- \vartriangle Буфер для ВіТЕ



- ◆Положительный контроль
- •**▲**·33,3 мкг/мл при 37°С в течение 48 ч
- **▼** 33,3 мкг/мл F/Т
- △ Буфер для ВіТЕ

Фиг. 8D

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2