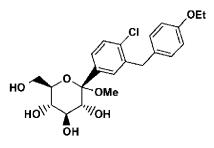
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2023.01.17

- (21) Номер заявки 202091391
- (22) Дата подачи заявки 2007.06.21

- (51) Int. Cl. A61K 31/351 (2006.01) **A61P 5/50** (2006.01) **C07D 309/10** (2006.01)
- КРИСТАЛЛИЧЕСКИЕ СОЛЬВАТЫ И КОМПЛЕКСЫ ПРОИЗВОДНЫХ (18)-1,5-АНГИДРО-1-С-(3-((ФЕНИЛ)МЕТИЛ)ФЕНИЛ)-D-ГЛЮЦИТОЛА С АМИНОКИСЛОТАМИ В КАЧЕСТВЕ ИНГИБИТОРОВ SGLT2 ДЛЯ ЛЕЧЕНИЯ ДИАБЕТА
- 60/817,118; 11/765,481
- (32)2006.06.28; 2007.06.20
- (33) US
- (43) 2020.10.30
- (62) 201791254; 2007.06.21
- (71)(73) Заявитель и патентовладелец: **ACTPA3EHEKA AБ (SE)**
- (72) Изобретатель:


Гугутас Джек З., Лобингер Хильдегард, Рамакришнан Шривидья, Дешпанде Прашант П., Бйн Джеффри Т., Лай Чиаджень, Ванг Ченьчи (US), Рибель Петер (DE), Гроссо Джон Энтони, Нёршль Александра А., Сингх Джанак, Димарко Джон Д. (US)

(74) Представитель:

Гизатуллин Ш.Ф., Глухарёва А.О., Угрюмов В.М. (RU)

RU-C2-2337916 US-B1-6414126 WO-A1-200127128 EP-B1-1791852

Изобретение относится к кристаллическим формам соединения формулы I, где R_1 , R_2 , R_2 , R_3 (57) и R4 являются такими, как определено в настоящей заявке, в частности к фармацевтическим композициям, содержащим кристаллические формы, к способам их получения, а также к способам лечения заболеваний, таких как диабет, с использованием указанных кристаллических форм.

Область изобретения

Настоящее изобретение относится к полиморфным кристаллическим структурам свободной кислоты ингибиторов SGLT2, их фармацевтическим композициям, способу для получения таких кристаллических структур и также способам лечения заболеваний, таких как диабет.

Уровень техники

Приблизительно 100 млн человек во всем мире страдают от диабета типа II (NIDDM), который характеризуется гипергликемией из-за чрезмерной продукции глюкозы в печени и периферической резистентности к инсулину, первопричины для которых являются пока еще неизвестными. Постоянный контроль уровней глюкозы в плазме у пациентов с диабетом может уменьшить развитие диабетических осложнений и декомпенсации бета-клеток, отмечаемых в данном заболевании.

Глюкоза плазмы обычно фильтруется в клубочках почек и активно реабсорбируется в проксимальном канальце. Девяносто процентов обратного захвата глюкозы в почке происходит в эпителиальных клетках начального сегмента SI ренальных кортикальных проксимальных канальцев. SGLT2, 672 аминокислот белка, содержащих 14 перекрывающих мембрану сегментов, которые преобладающе экспрессируются в начальном сегменте SI ренальных проксимальных канальцев, который, вероятно, будет главным транспортером, ответственным за этот обратный захват. Субстратная специфичность, зависимость от натрия и локализация SGLT2 находятся в соответствии со свойствами высокой емкости, низкого сродства, зависимого от натрия переносчика глюкозы, предварительно охарактеризованного в человеческих кортикальных почечных проксимальных канальцах. Кроме того, исследования гибридного истощения выявили SGLT2 в качестве преобладающего сотранспортера Na⁺/глюкозы в сегменте SI проксимального канальца, так как фактически вся активность переноса Na-зависимой глюкозы, закодированная в mRNA коры почки крысы, ингибируется антисмысловым олигонуклеотидом, характерным для крысы SGLT2. У людей мутации в SGLT2 были связаны с семейными формами почечной глюкозурии, обеспечивая дальнейшую очевидность первичной роли SGLT2 в почечной реабсорбции глюкозы. У таких пациентов морфология почек и функция почек отлична от нормальной. Ингибирование SGLT2 прогнозирует уменьшение уровней глюкозы в плазме посредством улучшенного выведения глюкозы из организма у пациентов с диабетом.

Селективное ингибирование SGLT2 у пациентов с диабетом могло бы нормализовать уровень глюкозы в плазме, увеличивая выделение глюкозы с мочой, таким образом улучшая чувствительность к инсулину и задерживая развитие диабетических осложнений, в отсутствии существенных побочных эффектов со стороны желудочнокишечного тракта.

Сущность изобретения

Один из аспектов изобретения относится к кристаллическим структурам соединения формулы I

фармацевтическим композициям, содержащим кристаллические структуры соединения I, включая (S)-пропиленгликоль ((S)-PG) структуры Ia, который является формой SC-3

Соединение Іа

(R)-пропиленгликоль ((R)-PG) структуры Ib, который является формой SD-3

Соединение Ib

дигидрат этанола или моноэтанола структуры Ic, который является формой SA-1 ,OEt

Соединение Іс

этиленгликоль структуры Id, который является формой SB-1

Этиленгликоль Id Форма SB-1

Соединение Id;

этиленгликоль структуры Ie, который является формой SB-2

Этиленгликоль Форма SB-2

Соединение Іе

способы получения таких кристаллических структур;

кристаллический 1:2 комплекс со структурой L-пролина Ih, который является формой 3

Соединение Ih

кристаллический 1:1 комплекс со структурой L-пролина Ii, который является формой 6

Соединение Ii

гемигидрат кристаллического 1:1 комплекса со структурой L-пролина Ij, который является формой H.5-2

Соединение Ii

кристаллический 1:1 комплекс со структурой L-фенилаланина Ik, который является формой 2

Соединение Ik;

Предложены также способы лечения диабета и соответствующих заболеваний с использованием кристаллических структур соединения I, соединения Ia, соединения Ib, соединения Ih, соединения Ii, соединения II, как определено далее.

Соединение формулы I в форме некристаллического твердого вещества раскрыто в US 6515117, содержание которого полностью включено в настоящую заявку в качестве ссылки.

Кроме того, другой аспект изобретения относится к кристаллическому соединению If, которое имеет структуру

If ;

; и

(также названную как "сольват 1,4-бутиндиола" или "сольват бутиндиола"); и

способу получения такой кристаллической структуры и применения ее для получения кристаллического соединения Ia (S)-PG.

В еще другом аспекте настоящего изобретения также предлагается кристаллическое соединение Ig, которое имеет структуру

Ιę

также названое как "сольват диметанола", и также предлагается способ получения сольвата диметанола Ig и применения Ig для получения кристаллического соединения Ia (S)-PG.

Сольват диметанола Ig и сольват 1,4-бутиндиола If могут использоваться как промежуточные соединения в получении кристаллического соединения формулы I настоящего изобретения.

В еще другом аспекте настоящего изобретения предлагается способ получения кристаллического соединения структуры (S)-РG структуры Ia (форма SC-3)

Соединение Іа

который включает стадии получения соединения А (полученного, как описано в US № 10/745075, поданной 23 декабря 2003 г., примеры 17-20), структуры

Соединение А

обработкой соединения А спиртовым растворителем, таким как метанол или этанол и водным основанием, таким как гидроксид натрия, и водой в случае необходимости в инертной атмосфере и при повышенной температуре, в случае необходимости с добавлением кислоты, такой как соляная кислота, для нейтрализации реакционной смеси для получения соединения I структуры

Соединение І

и обработкой реакционной смеси, содержащей соединение I, органическим растворителем, таким как метилтретбутиловый эфир, алкилацетат, такой как этилацетат, метилацетат, изопропилацетат, или бутилацетат и (S)-пропиленгликоль, необязательно с добавлением затравки (S)-PG соединения Ia (SC-3) к смеси, для получения (S)-PG соединения Ia (форма SC-3).

В другом аспекте настоящего изобретения предлагается способ получения кристаллического соединения (R)-PG структуры Ib (форма SD-3)

(R)-пропиленгликоль

который является аналогичным способу получения (S)-PG (форма SC-3) Ia, описанному выше, за исключением того что (R)-пропиленгликоль используется вместо (S)-пропиленгликоля.

В другом аспекте изобретения предлагается новый способ получения соединения Іа

Кристаллический Ia (S)-PG (SC-3)

который включает стадию восстановления соединения В структуры

для удаления метоксигруппы, посредством обработки соединения В (полученного, как описано в US № 10/745075, поданной 3 декабря 2003 г., пример 17), или кристаллического сольвата, такого как сольват диметанола Ig или сольват 1,4-бутиндиола (If), агентом восстановления, таким как триэтилсилилгидрид и активирующей группой, которая является кислотой Льюиса, такой как $BF_3 \cdot Et_2O$ или $BF_3 \cdot 2CH_3COOH$, предпочтительно $BF_3 \cdot 2CH_3COOH$, и органическим растворителем, таким как CH_3CN , и с добавлением воды, отделением соединения структуры I

и обработкой соединения I (S)-пропиленгликолем в присутствии растворителя, такого как метилтретбутиловый эфир, необязательно с затравкой соединения Ia ((S)-PG), чтобы получить кристаллическую суспензию соединения Ia ((S)-PG) и выделить соединение Ia ((S)-PG).

Вышеупомянутый способ по изобретению представляет собой однореакторную операцию, которая минимизирует получение промежуточных соединений, приводя к улучшенному выходу и свойству конечного кристаллического соединения Ia.

Кристаллическое соединение Ia, которое также упоминается как сольват (S)-пропиленгликоля соединения I, является новой кристаллической структурой и представляет собой объем объектов настоящего изобретения.

Соединение формулы В (аморфная форма) раскрыто в US №10/745075, поданной 23 декабря 2003 г., содержание которой полностью включено в настоящую заявку в качестве ссылки.

В другом аспекте настоящего изобретения предлагается способ получения моно-ЕtOH-дигидрата (структура этанола или EtOH) формы SA-1, имеющей структуру Ic

lo

который включает стадии растворения соединения I в этаноле и охлаждения раствора до температуры -20°C с получением кристаллов формулы Ic формы SA-1.

Соединение I может быть получено растворением соединения A в этаноле предпочтительно путем нагревания до кипения, чтобы получить продукт в виде масла, который является соединением I.

В еще другом воплощении изобретения предлагается способ получения структуры дигидрата этиленгликоля формулы Id

который включает стадии растворения соединения I в водном этиленгликоле предпочтительно при нагревании, необязательно последующего охлаждения, добавления к вышеупомянутому раствору затравки кристалла (S)-пропиленгликоля формы SC-3 (Ia) и выделения кристаллов дигидрата этиленглико-

ля формы SB-1 (Id).

В дополнительном воплощении изобретения предлагается способ получения структуры дигидрата этиленгликоля формы SB-2

который включает стадии

растворения соединения I в водном растворе этиленгликоля предпочтительно при нагревании; необязательно последующего охлаждения, добавления к вышеупомянутому раствору затравки кристалла моно-EtOH-дигидрата формы SA-1 (Ic); и

выделения кристаллов дигидрата этиленгликоля формы SB-2 (Ie).

В еще одном воплощении настоящего изобретения предлагается способ получения кристаллического сольвата 1,4-бутиндиола If

который включает стадии растворения основного соединения В

в алкилацетате, таком как этилацетат, пропилацетат или бутилацетат, или в спирте, таком как изопропиловый спирт или бутанол, или воде с добавлением 2-бутин-1,4-диола к раствору соединения В, нагревание полученной смеси до тех пор, пока диол не растворится, охлаждение смеси и выделение кристаллов сольвата 1,4-бутиндиола Іf. Толуол или гептан могут использоваться как антирастворители, когда сольват Іf кристаллизуется в алкилацетате.

Сольват 1,4-бутиндиола If может быть выделен и может использоваться для получения соединения I или соединения Iа в непрерывном процессе или периодическом процессе, как описано в дальнейшем.

Кроме того, в другом аспекте настоящего изобретения предлагается способ получения кристаллического сольвата диметанола Ig

в котором основное соединение В

обрабатывают метанолом с получением кристаллического сольвата диметанола Ig.

Затем в соответствии с изобретением предлагается способ получения кристаллического сольвата диметанола Ig, где основное соединение В растворяют в смеси метанол/толуол, или в смеси метанол/толуол/этилацетет, или другом алкилацетате с добавлением затравки сольвата диметанола Ig.

Сольват диметанола Ig и сольват 1,4-бутиндиола If может использоваться для получения кристаллического соединения Ia, как описано в настоящей заявке.

В еще другом аспекте настоящего изобретения предлагается способ получения кристаллического комплекса 1:2 с L-пролином структуры Ih (форма 3)

Соединение Ih

который включает стадии обеспечения соединения І структуры

Соединение I

получения раствора L-пролина в воде и в спиртовом растворителе, таком как метанол, этанол или изопропиловый спирт, нагретом до температуры в пределах диапазона от приблизительно 70°С до приблизительно 95°С, обработки соединения I в спиртовом растворителе, таком как метанол, этанол или изопропиловый спирт, горячим раствором L-пролина (содержащим двухкратное количество молей L-пролина на соединение I) и охлаждения полученного раствора приблизительно до комнатной температуры для получения соединения Ih.

В еще другом аспекте настоящего изобретения предлагается способ получения кристаллического соединения 1:1 комплекса с L-пролином структуры Ii (форма 6)

Соединение Ii

который включает стадии обеспечения соединения I, обработки раствора соединения I в спиртовом растворителе, таком как этанол или метанол, с кипящим раствором L-пролина в растворителе спирт/вода, таком как этанол/вода (с использованием приблизительно пятикратного избытока соединения I к L-пролину) и охлаждения получающейся смеси (например, в интервале от приблизительно -10°C до приблизительно -25°C), чтобы получить соединение Ii.

В другом аспекте настоящего изобретения предлагается способ получения кристаллического 1:1 комплекса гемигидрата с L-пролином структуры Ij (форма H.5-2), который имеет структуру

Соединение Іј

который включает стадии обеспечения кристаллов затравки 1:1 комплекса с L-пролином (структура Ii, форма 6), смешивания затравочных кристаллов, формы 6 с охлажденным раствором (в интервале от -10 до -25°C) L-пролина и соединения I в растворителе спирт/вода и охлаждения получающейся смеси при температуре в интервале от приблизительно -10 до -25°C, чтобы получить структуру гемигидрата Ij (форма Н.5-2).

В еще одном аспекте настоящего изобретения обеспечивается способ получения кристаллического комплекса с L-фенилаланином структуры Ik формы 2

Соединение Ik

который включает стадии получения раствора L-фенилаланина в воде, нагретой в интервале от приблизительно 75°C до приблизительно 85°C, смешивания раствора L-фенилаланина с соединением I, нагревания получающегося раствора в интервале от приблизительно 75°C до приблизительно 85°C и охлаждения получающегося раствора до комнатной температуры, чтобы получить соединение Ik.

Другой аспект изобретения относится к кристаллическим структурам соединения формулы II

$$R^{2a}$$
 R^{1}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 $R^{$

которое также упоминается как кристаллическая структура II (S)-пропиленгликоля ((S)-PG), где R^1 , R^2 и R^{2a} независимо являются водородом, OH, QR^5 , алкилом, $QCHF_2$, QCF_3 , QCF_3 , QCF_4 или гало-

геном;

 R^3 и R^4 независимо являются водородом, OH, OR 5b , алкилом, алкенилом, алкинилом, циклоалкилом, CF $_3$, -OCHF $_2$, -OCF $_3$, галогеном, -CONR $^6R^{6a}$, -CO $_2R^{5c}$, -CO $_2H$, -COR 6b , -CH(OH)R 6c , -CH(OR 5d)R 6d , -CN, -NHCOR 5e , -NHSO $_2R^{5f}$, -NHSO $_2$ -арилом, -SR 5g , -SOR 5h , -SO $_2R^{51}$, -SO $_2$ -арилом, или пяти-, шести- или семичленным гетероциклом, который может содержать от 1 до 4 гетероатома в кольце, которые представляют собой N, O, S, SO и/или SO₂, или R³ и R⁴ вместе с углеродами, к которым они присоединены, образуют аннелированный пяти-, шести- или семичленный карбоцикл или гетероцикл, который может содержать

1-4 гетероатома в кольце, которые представляют собой N, O, S, SO и/или SO_2 ; R^5 , R^{5a} , R^{5b} , R^{5c} , R^{5c} , R^{5c} , R^{5f} , R^{5g} , R^{5h} и R^{5i} независимо являются алкилом; и R^6 , R^{6a} , R^{6b} , R^{6c} и R^{5d} независимо являются водородом, алкилом, арилом, алкиларилом или циклоалкилом, или R⁶ и R^{6а} вместе с азотом, к которому они присоединены, образуют аннелированный пяти-, шести- или семичленный гетероцикл, который может содержать 1-4 гетероатома в кольце, которые представляют собой N, O, S, SO и/или SO₂.

Кроме того, в соответствии с изобретением также предлагаются фармацевтические композиции, содержащие кристаллическую структуру соединения ІІ, и способы получения такой кристаллической структуры II.

Еще один аспект изобретения относится к кристаллическим структурам соединения формулы III

$$R^{2a}$$
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 $R^{$

которое также упоминается как кристаллическая структура (R)-пропиленгликоля ((R)-PG) Ш, где R^1 , R^2 и R^{2a} независимо являются водородом, OH, QR^5 , алкилом, $QCHF_2$, QCF_3 , QCF_3 , QCF_4 геном;

 R^3 и R^4 независимо являются водородом, OH, OR 5b , алкилом, алкенилом, алкинилом, циклоалкилом, CF $_3$, -OCHF $_2$, -OCF $_3$, галогеном, -CONR 6 R 6a , -CO $_2$ R 5c , -CO $_2$ H, -COR 6b , -CH(OH)R 6c , -CH(OR 5d)R 6d , -CN, -NHCOR 5e , -NHSO $_2$ R 5f , -NHSO $_2$ -арилом, -SR 5g , -SOR 5h , -SO $_2$ R 51 , -SO $_2$ -арилом, или пяти-, шести- или семичленным гетероциклом, который может содержать от 1 до 4 гетероатома в кольце, которые представляют собой N, O, S, SO и/или SO₂, или R³ и R⁴ вместе с углеродами, к которым они присоединены, образуют аннелированный пяти-, шести- или семичленный карбоцикл или гетероцикл, который может содержать 1-4 гетероатома в кольце, которые представляют собой N, O, S, SO и/или SO₂;

 R^{5} , R^{5a} , R^{5b} , R^{5c} , R^{5d} , R^{5e} , R^{5f} , R^{5g} , R^{5h} и R^{5i} независимо являются алкилом; и R^{6} , R^{6a} , R^{6b} , R^{6c} и R^{5d} независимо являются водородом, алкилом, арилом, алкиларилом или циклоалкилом, или R⁶ и R^{6а} вместе с атомом азота, к которому они присоединены, образуют аннелированный пяти-, шести- или семичленный гетероцикл, который может содержать 1-4 гетероатома в кольце, которые представляют собой N, O, S, SO и/или SO₂.

Кроме того, в соответствии с изобретением предлагаются также фармацевтические композиции, содержащие кристаллическую структуру соединения III и способы получения такой кристаллической

В еще другом аспекте настоящего изобретения предлагается способ получения кристаллического соединения (S)-РG структуры II, который включает стадии

обеспечения соединения С (включая, где R³ или R⁴ - алкенил или алкинил, все из которых могут быть получены с использованием методики, как описано в US № 10/745075, поданной 23 декабря 2003 г., примеры 17-20), структуры

Соединение С

где R^1 , R^2 , R^{2a} , R^3 и R^4 являются такими, как описано выше;

обработки соединения С спиртовым растворителем, таким как метанол, и водным основанием, таким как гидроксид натрия, и водой в случае необходимости в инертной атмосфере и повышенной температуре, чтобы получить соединение D структуры

Соединение D

и обработки реакционной смеси, содержащей соединение D, органическим растворителем, таким как метилтретбутиловый эфир, алкилацетат, такой как этилцетат, метилацетат, изопропилацетат или бутилацетат и (S)-пропиленгликолем, необязательно с добавлением затравки (S)-PG соединения II к смеси, чтобы получить (S)-PG соединение II.

В другом аспекте настоящего изобретения предлагается способ получения кристаллического соединения (R)-РG структуры III

$$R^{2a}$$
 R^{1}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 $R^{$

(R)-пропиленгликоль Ш

который является аналогичным способу получения (S)-PG II, описанного выше, за исключением того, что (R)-пропиленгликоль используется вместо (S)-пропиленгликоля.

В другом аспекте изобретения предлагается новый способ получения соединения II

$$R^{2a}$$
 R^{2a}
 R^{2a}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R

который включает стадию восстановления соединения Е структуры

(который раскрыт в US № 10/745075, поданной 23 декабря 2003 г.) для удаления метоксигруппы обработкой соединения Е агентом восстановления, таким как триэтилсилилгидрид, и активирующей группой, которая является кислотой Льюиса, такой как BF3·Et₂O, и органическим растворителем, таким как СН₃СN и водой;

выделения соединения структуры D; и

обработки соединения D (S)-пропиленгликолем в присутствии растворителя, такого как метилтретбутиловый эфир, необязательно с затравкой соединения II ((S)-PG), чтобы получить кристаллическую суспензиию соединения II ((S)-PG); и

выделения соединения II ((S)-PG).

Вышеупомянутый способ представляет собой однореакторную операцию, которая минимизирует получение промежуточных соединений.

Краткое описание фигур

Изобретение проиллюстрировано ссылкой на прилагаемые фигуры, описанные ниже.

Фиг. 1 иллюстрирует вычисленную (модельную при температуре 25°C) и наблюдаемую (экспериментальную при комнатной температуре) порошковую рентгенограмму (S)-PG кристаллической структуры Ia, форма SC-3.

Фиг. 2 иллюстрирует наблюдаемую (экспериментальную при комнатной температуре) порошковую рентгенограмму (R)-PG кристаллической структуры Ib.

Фиг. 3 иллюстрирует ¹³С ЯМР спектр СРМАЅ для (S)-РG кристаллической структуры Ia формы SC-3. Фиг. 4 иллюстрирует ¹³С ЯМР спектр СРМАЅ для (R)-РG кристаллической структуры Ib.

Фиг. 5 иллюстрирует диаграмму термогравиметрического анализа (TGA) (S)-PG кристаллической структуры Ia формы SC-3.

Фиг. 6 иллюстрирует диаграмму термогравиметрического анализа (TGA) (R)-РG кристаллической структуры Ib формы SD-3.

Фиг. 7 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) (S)-PG кристаллической структуры соединения формы Ia, форма SC-3.

Фиг. 8 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) (R)-PG кристаллической структуры Ib.

Фиг. 9 иллюстрирует наблюдаемую (экспериментальную при комнатной температуре) порошковую

рентгенограмму кристаллической структуры сольвата 1,4-бутиндиола If.

- Фиг. 10 иллюстрирует наблюдаемую (экспериментальную при комнатной температуре) порошковую рентгенограмму кристаллической структуры сольвата диметанола Ig.
- Фиг. 11 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) кристаллической структуры сольвата 1,4-бутиндиола If.
- Фиг. 12 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) кристаллической структуры сольвата диметанола Ib.
- Фиг. 13 иллюстрирует вычисленную (модельную при температуре -40°C), гибрид (при комнатной температуре) и наблюдаемую (экспериментальную при комнатной температуре) порошковые рентгенограммы кристаллической структуры Ih комплекса L-пролина 1:2 формы 3,N-1.
- Фиг. 14 иллюстрирует вычисленную (модельную при температуре -40°C), гибрид (при комнатной температуре) и наблюдаемую (экспериментальную при комнатной температуре) порошковые рентгенограммы кристаллической структуры Ii комплекса L-пролина 1:1 формы 6,N-1.
- Фиг. 15 иллюстрирует вычисленную (модельную при температуре -40°C), гибрид (при комнатной температуре) и наблюдаемую (экспериментальную при комнатной температуре) порошковые рентгенограммы кристаллической структуры І гемигидрата L-пролина 1:1 формы H.5-2.
- Фиг. 16 иллюстрирует диаграмму термогравиметрического анализа (TGA) кристаллической структуры Ih комплекса L-пролина 1:2 формы 3,N-1.
- Фиг. 17 иллюстрирует диаграмму термогравиметрического анализа (TGA) кристаллической структуры Ii комплекса L-пролина 1:1 формы 6,N-1.
- Фиг. 18 иллюстрирует диаграмму термогравиметрического анализа (TGA) кристаллической структуры І гемигидрата L-пролина 1:1 формы H.5-2.
- Фиг. 19 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) кристаллической структуры Ih комплекса L-пролина 1:2 формы 3,N-1.
- Фиг. 20 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) кристаллической структуры Ii L-пролина 1:1 формы 6,N-1.
- Фиг. 21 иллюстрирует термограмму дифференциальной сканирующей калориметрии (DSC) кристаллической структуры Іј гемигидрата L-пролина 1:1 формы H.5-2.
 - Фиг. 22 является схематическим представлением непрерывного реакционного процесса.

Подробное описание изобретения

Настоящее изобретение обеспечивает, по крайней мере, в части кристаллические структуры соединения I в качестве новых веществ.

Термин "фармацевтически приемлемый", как используется в настоящей заявке, относится к тем соединениям, веществам, композициям и/или дозированным формам, которые находятся в области традиционной медицинской практики, которые являются пригодными для контакта с тканями людей и животных без чрезмерной токсичности, раздражения, аллергической реакции или других осложнений, соразмерных с разумным соотношением польза/риск. В определенных предпочтительных воплощениях кристаллические структуры соединения I изобретения находятся по существу в чистой форме. Термин "по существу чистый", как используется в настоящей заявке, означает соединение, имеющее чистоту, больше чем приблизительно 90%, включая, например, приблизительно 91%, приблизительно 92%, приблизительно 93%, приблизительно 94%, приблизительно 95%, приблизительно 96%, приблизительно 97%, приблизительно 98%, приблизительно 99% и приблизительно 100%.

Свойство соединения находится в виде различных кристаллических структур и известно как полиморфизм. Как используется в настоящей заявке термин "полиморф" относится к кристаллическим формам, имеющим тот же самый химический состав, но различные пространственные расположения молекул, атомов и/или ионов, формирующих кристалл. В то время как полиморфы имеют тот же самый химический состав, они отличаются по упаковке и геометрическому расположению и могут показывать различные физические свойства, такие как температура плавления, форма, цвет, плотность, твердость, деформируемость, стабильность, растворимость и т.п. В зависимости от соотношения температуры стабильности два полиморфа могут быть или монотропными или энантиотропными. Для монотропной системы относительная стабильность между двумя твердыми фазами остается неизменной, когда изменяется температура. Напротив, в энантиотропной системе существует температура перехода, при которой стабильность этих двух фаз полностью изменяется (Theory and Origin of Polymorphism in "Polymorphism in Pharmaceutical Solids" (1999), ISBN:)-8247-0237).

Образцам кристаллических структур по изобретению можно обеспечить по существу чистую фазовую однородность, идентифицируемую наличием доминирующего количества единственной кристаллической структуры и необязательно незначительных количеств одной или более других кристаллических структур. Присутствие больше чем одной кристаллической структуры по изобретению в образце может быть определено методами, такими как порошковая дифракции рентгеновских лучей (PXRD) или твердофазная ядерная магнитно-резонансная спектроскопия (SSNMR). Например, присутствие экстра-пиков при сравнении экспериментально измеренной рентгенограммы PXRD (наблюдаемой) с модельной рентгенограммой PXRD (вычисленной) может указывать на больше чем одну кристаллическую структуру в

образце. Модельная рентгенограмма PXRD может быть вычислена на основе данных рентгеновского анализа монокристалла (см. Smith, D.K., "A FORTRAN Program for Calculating X-Ray Powder Diffraction Patterns" Lawrence Radiation Laboratory, Livermore, California, UCRL-7196 (April 1963); см. также Yin. S., Scaringe, R.P., DiMarco, J., Galella, M. and Gougoutas, J.Z., American Pharmaceutical Review, 2003, 6, 2, 80). Предпочтительно кристаллическая структура имеет по существу чистую фазовую однородность, как обозначено посредством меньше чем 10%, предпочтительно меньше чем 5% и более предпочтительно меньше чем 2% общей площади пика в экспериментальной рентгенограмме PXRD, являющейся результатом дополнительных пиков, которые отсутствуют на модельной рентгенограмме PXRD. Наиболее предпочтительна кристаллическая структура по изобретению, имеющая по существу чистую фазовую однородность с меньше чем 1% от общей площади пика в экспериментальной рентгенограмме PXRD, являющейся результатом дополнительных пиков, которые отсутствуют на модельной рентгенограмме PXRD, являющейся результатом дополнительных пиков, которые отсутствуют на модельной рентгенограмме PXRD.

Различные кристаллические структуры по изобретению, описанному в настоящей заявке, могут быть различимы друг от друга с помощью различных аналитических методов, известных специалисту в данной области. Такие методы включают без ограничения твердофазную ядерную магнитно-резонансную спектроскопию (SSNMR), порошковую дифракцию рентгеновских лучей (PXRD), дифференциальную сканирующую калориметрию (DSC) и/или термогравиметрический анализ (TGA).

Получение кристаллических структур.

Кристаллические структуры по изобретению могут быть получены разнообразными методами, включая, например, кристаллизацию или перекристаллизацию из подходящего растворителя, сублимацию, рост из расплава, переход в твердую фазу из другой фазы, кристаллизацию из суперкритической жидкости и реактивное распыление. Методы для кристаллизации или перекристаллизации кристаллических форм из растворяющей смеси включают, например, выпаривание растворителя, уменьшение температуры растворяющей смеси, использование кристаллической затравки в пересыщенной растворяющей смеси молекулы и/или соли, замораживание, высушивающее растворяющую смесь и добавление антирастворителей (противорастворителей) к растворяющей смеси. Могут использоваться высокопроизводительные методы кристаллизации для получения кристаллических форм, включая полиморфы.

Кристаллические лекарства, включая полиморфы, способы получения и характеристики кристаллов лекарства обсуждаются в Solid-State Chemistry of Drugs, S.R. Byrn, R.R. Pfeiffer, J.G. Stowell, 2nd edition, SSCI, West Lafayette, Indiana, 1999.

Кристаллические затравки могут быть добавлены к любой смеси для кристаллизации для ускорения кристаллизации. Как будет понятно квалифицированному специалисту, применение затравки используется для управления ростом конкретной кристаллической структуры или для управления распределением размера частиц кристаллического продукта. Соответственно вычисление количества необходимых затравок зависит от размера доступной затравки и желательного размера средней частицы продукта, как описано, например, в "Programmed Cooling of Batch Crystallizers," J.W. Mullin, J. Nyvlt, Chemical Engineering Science, 1971, 26, 369-377. Вообще затравки небольшого размера необходимы для эффективного управления ростом кристаллов в партии. Затравка небольшого размера может быть получена просеиванием, помолом или тонким измельчением больших кристаллов или микрокристаллизацией растворов. Должна быть предпринята осторожность, чтобы размалывание или тонкое измельчение кристаллов не привели ни к какому изменению в кристалличности формы заданной кристаллической структуры (т.е. изменения на аморфную форму или на другой полиморф).

Как используется в настоящей заявке, термин "комнатная температура" или "RT" обозначает температуру окружающей среды от 20 до 25°C (68-77°F).

Вообще в получении кристаллического соединения Іа, как описано ниже, растворитель(и) будет использоваться для образования кристаллического соединения Іа, предпочтительно имеющего объемную плотность, как описано ниже.

Кристаллическое соединение структуры Ia (S-PG) SC-3 по изобретению получено согласно следующей сокращенной реакции, как показано на схеме I.

(Кристаллическое) соединение (Ia ((S)-PG) формы SC-3

Схема I

Как отмечено на схеме I, соединение B, или If, или Ig (все вместе относятся к соединению B), где соединение B в форме аморфного или кристаллического твердого вещества (If или Ig) обрабатывают агентом восстановления, таким как силилгидрид, предпочтительно алкилсилилгидрид, более предпочтительно триэтилсилан (или триэтилсилилгидрид), в присутствии активирующей группы, которая является кислотой Льюиса, такой как $BCI_3 \cdot Me_2S$, BBr_3 , BF_3OEt_2 , BCI или $BF_3 \cdot 2CH_3COOH$, предпочтительно BF_3OEt_2 или $BF_3 \cdot 2CH_3COOH$, и органического растворителя, такого как CH_3CN , CH_3CN /толуол или CH_3CN /дихлорметан, метиленхлорид или вода, при температуре в пределах диапазона от приблизительно -15°C до приблизительно 25°C, предпочтительно от приблизительно 5°C до приблизительно 10°C, для восстановления соединения B и образования соответствующего основного соединения I

которое отделяют от реакционной смеси и обрабатывают (S)-пропиленгликолем ((S)-PG) и органическим растворителем, таким как алкилацетат, как изложено выше, предпочтительно изопропилацетат или метилтретбутиловый эфир (МТВЕ), и необязательно затравкой соединения((S)-PG) Іа (молярное отношение затравка Іа:соединение В в пределах диапазона от приблизительно 0.1% приблизительно до 10%, предпочтительно приблизительно от 0.5% приблизительно до 3%) с образованием кристаллической суспензии соединения ((S)-PG) Іа и выделяют кристаллическое соединение ((S)-PG) Іа из кристаллической суспензии.

При выполнении вышеупомянутой сокращенной реакции схемы I, силильный восстанавливающий агент будет использоваться в молярном соотношении к соединению B в пределах диапазона от приблизительно 1.2:1 до приблизительно 4.5:1, предпочтительно от приблизительно 2:1 до приблизительно 4:1, в то время как активирующая группа (кислота Льюиса) будет использоваться в молярном соотношении к силильному восстанавливающему агенту в пределах диапазона от приблизительно 1.2:1 до приблизительно 4.5:1, предпочтительно от приблизительно 2:1 до приблизительно 4:1. (S)-пропиленгликоль ((S)-PG) будет использоваться в молярном соотношении к соединению B в пределах диапазона от приблизительно 0.9:1 до приблизительно 1.5:1, предпочтительно от приблизительно 0.98:1 до приблизительно 1.2:1; вода будет использоваться в молярном соотношении к (S)-PG в пределах диапазона от приблизительно 0.95:1 до приблизительно 5:1, предпочтительно от приблизительно 0.99:1 до приблизительно 2:1.

Кристаллическое соединение структуры Ia ((S)-PG) формы SC-3 по изобретению может также быть получено согласно реакционной схеме II, изложенной ниже.

Схема II

где соединение А обрабатывают спиртовым растворителем, таким как метанол, этанол или изопропиловый спирт, предпочтительно метанол, водой и водным основанием, таким как гидроксид щелочного металла, таким как NaOH, КОН или LiOH, предпочтительно NaOH, предпочтительно в инертной атмосфере, такой как азот, при повышенной температуре в пределах диапазона от приблизительно 50 до приблизительно 85°C, предпочтительно от приблизительно 60°C до приблизительно 80°C, чтобы получить соединение I.

Водное основание будет использоваться в молярном соотношении к соединению в пределах диапазона от приблизительно 3.5:1 до приблизительно 5.5:1, предпочтительно от приблизительно 3:1 до приблизительно 5:1.

Реакционную смесь, содержащую соединение I, обрабатывают органическим растворителем, таким как метилтретбутиловый эфир (МТВЕ) или алкилацетат, как описано выше, предпочтительно изопропилацетат или МТВЕ, выделяют соединение I, которое обрабатывают с (S)-пропиленгликолем, чтобы получить сгущенную суспензию, содержащую кристаллический продукт Ia (S)-PG, форма SC-3. Необязательно добавляют затравку соединения ((S)-PG) Iа к реакционной смеси. Кристаллическое соединение Ia отделяют от суспензии с использованием традиционных процедур, например, суспензию соединения Ia обрабатывают органическим растворителем, таким как циклогексан, изооктан или метилциклогексан, предпочтительно циклогексан, и выделяют кристаллическое соединение Ia.

В процессе образования соединения Ia (S)-PG используется в молярном соотношении к соединению I в диапазоне от приблизительно 0.9:1 до приблизительно 1.5:1, предпочтительно от приблизительно 0.98:1 до приблизительно 1.2:1.

Как отмечалось ранее в настоящей заявке, сольват (R)-пропиленгликоля Іb соединения I может быть получен методом, подобным методу получения сольвата(S)-пропиленгликоля Ia, за исключением того что (R)-пропиленгликоль используется вместо (S)-пропиленгликоля.

Способ согласно изобретению для получения моно-EtOH-дигидрата (этанол или EtOH/структура) формы SA-1 (соединение Ic) показан на схеме III, приведенной ниже.

моно-EtOH-дигидрат формы SA-1

Схема III

где соединение А растворяют в этаноле посредством нагревания до кипения, затем добавляют воду при объемном соотношении к этанолу в пределах диапазона от приблизительно 1:1 до приблизительно 3:1, предпочтительно от приблизительно 1.5:1 до приблизительно 2.5:1. Добавляют этанол и смесь охлаждают до температуры в диапазоне температур от приблизительно -10°C до приблизительно -30°C, предпочтительно от приблизительно -15°C до приблизительно -25°C. Соединение Іс выделяют в виде кристаллов моно-ЕtOH-дигидрата.

Способ согласно изобретению для получения структур формы SB-1 и формы SB-2 дигидрата этиленгликоля (соединений Id и Ie соответственно) осуществляют следующим образом.

Соединение Id формы SB-1 получают растворением соединения A в водном растворе этиленгликоля (вода:этиленгликоль от приблизительно 1:1 до приблизительно 0.4:1, предпочтительно от приблизительно 0.7:1 до приблизительно 0.5:1) посредством нагревания при температуре в пределах диапазона от приблизительно 35°C до приблизительно 55°C, предпочтительно от приблизительно 40°C до приблизительно 50°C, в течение приблизительно от 1.5 ч до приблизительно 2 ч, предпочтительно от приблизительно 0.30 мин приблизительно до 1 ч. Смесь охлаждают до температуры в пределах диапазона от приблизительно 10°C до приблизительно 22°C, предпочтительно от приблизительно 14°C до приблизительно 16°C, и добавляют затравку кристаллов Ic моно-ЕtOH-дигидрата или кристаллов дигидрата этиленгликоля формы SB-1 Id в молярном соотношении к соединению A в пределах диапазона от приблизительно 0.1% приблизительно до 3%, для получения кристалла дигидрата этиленгликоля формы SB-1 Id.

В соответствии с настоящим изобретением кристалл дигидрата этиленгликоля формы SB-2 Ie образуется посредством растворения соединения А в водном растворе этиленгликоля (вода: этиленгликоль от приблизительно 1:1 до приблизительно 0.4:1, предпочтительно от приблизительно 0.7:1 до приблизительно 0.5:1) нагреванием при температуре в пределах диапазона от приблизительно 35°C до приблизительно 55°C, предпочтительно от приблизительно 40°C до приблизительно 50°C, в течение приблизительно от 1.5 ч приблизительно до 2 ч, предпочтительно приблизительно от 0.30 мин приблизительно до 1 ч. Смесь охлаждают до температуры в пределах диапазона от приблизительно 10°C до приблизительно 30°C, предпочтительно от приблизительно 20°C до приблизительно 25°C, и добавляют затравку кристаллов дигидрата этиленгликоля формы SB-2 Ie при молярном соотношении к соединению А в пределах диапазона от приблизительно 0.1% приблизительно до 10%, предпочтительно от приблизительно 0.5% приблизительно до 3%, для получения кристалла дигидрата этиленгликоля формы SB-2 Ie.

Способ согласно изобретению для получения кристаллической формы соединения B, которая является формой If, осуществляют в соответствии со схемой IV, изложенной ниже.

Кристаллический сольват 1,4-бутиндиола If по изобретению получают согласно следующей реакционной схемы IV.

Соединение В

Кристаллический If

Схема IV

На схеме IV некристаллическое соединение В (которое может быть получено, как описано в US № 10/745075, поданной 23 декабря 2003 г., или в US 6515117) предпочтительно в по существу чистой форме (например, с чистотой от 50 до 100%) смешивают со смесью толуол/алкилацет (такой как этилацетат) и смесь нагревают до температуры в пределах диапазона от приблизительно 50°С до приблизительно 70°С, предпочтительно от приблизительно 55°С до приблизительно 65°С, добавляют 2-бутин-1,4 диол и нагревают, как указано выше, пока диол не растворится, добавляют затравку соединения If и смесь охлаждают до получения кристаллов соединения If.

В альтернативном способе получения кристаллического соединения If соединение В растворяют в алкилацетате (таком как бутилацетат) или в смеси алкилацетат/гептан (от 0.5:1 до 1.5:1) при повышенной температуре в пределах диапазона от приблизительно 50°С до приблизительно 70°С, предпочтительно от приблизительно 55°С до приблизительно 65°С, добавляют 1,4-бутиндиол и смесь охлаждают до комнатной температуры до образования кристаллов соединения If.

В предпочтительном воплощении соединение If кристаллизуют из смеси соединения В и толуол/алкилацета (предпочтительно этилацетата), содержащей объемное отношение толуола к алкилацетату в пределах диапазона от приблизительно 1:1 до приблизительно 19:1, предпочтительно от приблизительно 4:1 до приблизительно 9:1. Смесь толуол/алкилацетат будет включать достаточное количество толуола, чтобы получить молярное соотношению к соединению В в пределах диапазона от приблизительно 40:1 до приблизительно 90:1, предпочтительно от приблизительно 60:1 до приблизительно 80:1, до образования сольвата 1,4-бутиндиола If.

Кристаллизация для образования сольвата 1,4-бутиндиола If может быть более легко осуществлена с использованием кристаллов затравки соединения If в количестве от приблизительно 0.1% приблизительно до 10%, предпочтительно от приблизительно 0.5% приблизительно до 3% в расчете на вес исходного соединения В.

В другом предпочтительном воплощении соединение If (которое может быть или может не быть очищено) кристаллизуют из смеси соединения В и алкилацетат/гептан (предпочтительно бутилацетат/толуол) необязательно с использованием затравки кристаллического соединения If, использующегося от приблизительно 0.1% до приблизительно 10%, предпочтительно от приблизительно 0.5% приблизительно до 3%, затравки If в расчете на вес исходного соединения В. Алкилацетат будет использоваться при объемном соотношении с гептаном в пределах диапазона от приблизительно 0.5:1 до приблизительно 2:1, предпочтительно от приблизительно 1:1 до приблизительно 1:1.5.

Кристаллический сольват 1,4-бутиндиола If может также быть получен в непрерывном процессе, как показано на схеме IVA.

Синтез сольвата If включает две последовательные стадии с соединением E и соединением D:

- (1) литирование соединения Е, чтобы получить литированное промежуточное соединение G; и
- (2) связывание литированного промежуточного соединения G с соединением D.

Схема IVA

Со ссылкой на фиг. 22 показана блок-схема процесса (подобно раскрытого в US 7164015, который включен в настоящую заявку в качестве ссылки). В этом воплощении весь способ получения соединения If, как показано на схеме IVA, выполняют при некриогенных условиях. Ароматический реагент E, имеющий группу, подходящую для лития и галогенового обмена, хранят в первом сосуде 1 при комнатной температуре. Литиевый реактив Q подают во второй сосуд 2 также при комнатной температуре. Ароматический реагент E и литиевый реактив Q перемещают из сосудов 1 и 2 с помощью насосов 3 и 4 соответственно к первому накрытому кожухом статическому миксеру 5. Температура реакции для получения литированных анионных частиц регулируется в диапазоне от приблизительно -30°C до приблизительно 20°C в первом миксере 5 с помощью холодильника 6.

Литированные анионные частицы G, таким образом образованные, подаются непосредственно из первого миксера 5 во второй статический миксер 22 по обычной линии подачи 19. Карбонилом замещенный реагент D подается в третий сосуд 20 при комнатной температуре и перемещается насосом 21 через холодильник 26, где он охлаждается до температуры в пределах диапазона от приблизительно -10°C до приблизительно -30°C, а затем перемещается во второй покрытый кожухом статический миксер 22. Реакция для получения продукт гликозида H регулируется во втором миксере 22 с помощью второго холодильника 23.

Затем обработка в условиях гликозидирования происходит, где Н подается в обычный реактор 25, где его обрабатывают кислотой в спиртовом растворителе, предпочтительно MSA/MeOH или HCl/MeOH, с образованием Н' (десилилированного гемикеталя), который затем преобразовывают в гликозид В. Затем дополнительное выделение продукта и обратная экстракция и кристаллизация с 2-бутин-1,4-диолом (J) в смеси толуол/EtOAc позволяют получить кристаллический продукт If. Реактор 25 может поддерживаться при комнатной или другой некриогенной температуре в течение любых последующих реакций.

Используемый литиевый реагент представляет собой по желанию органолитиевый реагент. Подходящие органолитиевые реагенты включают n-BuLi, S-BuLi и t-BuLi. Другие будут очевидны квалифицированным в данной области специалистам.

После завершения реакции желаемый продукт If может быть выделен и очищен согласно методам, широко известным в данной области органической химии (например, осаждением, экстракцией растворителем, перекристаллизацией и хроматографией). Соединение If со снятием защитной группы само по себе может быть полезным в качестве промежуточного продукта или конечного продукта. Соединение If может реагировать далее с получением фармацевтически приемлемых кислотно-аддитивных или основных солей с использованием методов, которые будут известны квалифицированным в данной области специалистам.

Температура и время реакции - два важных параметра в непрерывном способе, показанном на схеме IVA: литированием можно управлять непрерывно от -30°C (или ниже) до 20°C (или выше), предпочтительно приблизительно от -17°C до приблизительно -10°C, от минут до секунд времени реакции. Для последующей реакции связывания поток литированного производного G затем смешивают с потоком

соединения D (третий поток подачи) в миксере. Смешанный поток можно затем направить в проточный реактор, если дополнительное время реакции необходимо для завершения. Реакцией связывания можно управлять непрерывно при более высоких температурах от -30°C до -10°C (или выше), предпочтительно приблизительно от -30°C до приблизительно -20°C, от минут до секунд времени реакции. Поток реакции связывания затем направляют в реактор периодического действия для дальнейших реакций, как описано в настоящей заявке. При непрерывном процессе и реакция литирования, и реакция связывания могут быть объединены и могут управляться при более высоких температурах, использующих меньшие проточные реакторы с эффективным температурным контролем по сравнению с криогенными периодическими реакторами в масштабе.

Рабочая температура непрерывного литирования в вышеупомянутом процессе может быть до 20° С (не ограничиваясь), предпочтительно от -17 до - 10° С, производя >95 RAP желательного литированного промежуточного продукта G.

В реакции связывания продукт связывания вышеупомянутого процесса при от -20 до -30°C предпочтительно находится в диапазоне 70-79 RAP.

Соединение If может использоваться для получения кристаллического промежуточного продукта, как показано на схеме IVB.

Получения промежуточного продукта А

Схема IVB

Со ссылкой на схему IVB соединение If, твердый DMAP, жидкий ацетонитрил и жидкий уксусный ангидрид нагревают до температуры в пределах диапазона от приблизительно 70°C до приблизительно 85°C и выдерживают до тех пор, пока реакция не завершится.

Загрузку охлаждают (например, 5°C). Триэтилсилан и комплекс трифторида бора с уксусной кислотой или другую кислоту Льюиса (как описано в отношении схемы I) добавляют к реакционной смеси. После того как реакция завершена, добавляют ацетон или другой растворитель. Загрузку нагревают (например, от приблизительно 20°C до приблизительно 30°C) и выдерживают до тех пор, пока не израсходован триэтилсилан. Добавляют водный раствор NH₄OAc, загрузку перемешивают и позволяют ей расслоиться на верхнюю и более нижнюю формы фаз. Восстанавливают загрузочный объем продукта в обогащенной верхней фазе, отгоняя ацетонитрил при минимальном перемешивании. SDA3A этанол добавляют при повышенной температуре (>60°C).

Продукт А кристаллизуют охлаждением или охлаждением с добавлением затравки (5 вес.% в расчете на соединение If влажного измельчения, измельченного в азотной струе, или предыдущую загрузку).

Продукт перекристаллизовывают в виде влажного или сухого осадка из этанола SDA3A.

Кристаллический сольват диметанола Ig по изобретению получают согласно следующей схеме реакции V.

Схема V

На схеме V некристаллическое соединение В (которое может быть получено как описано в US № 10/745075, поданной 23 декабря 2003 г., или в US 6515117) предпочтительно в по существу чистой форме (чистота от 50 до 100%) растворяют в метаноле, смеси метанол/толуол или смеси метанол/толуол/гептан, смеси метанол/метилтретбутиловый эфир (МТВЕ)/гептан или смеси метанол/толуол/этилацетат или другой алкилацетат при перемешивании с образованием белой суспензии, содержащей кристаллический сольват диметанола Ig. Кристаллический сольват диметанола Ig можно выделить из суспензии с использованием обычных методик, таких как фильтрация.

Вышеупомянутый процесс может быть выполнен при комнатной температуре, хотя могут использоваться повышенные температуры до приблизительно 20-25°C, чтобы усилить кристаллизацию.

В предпочтительном воплощении соединение Ig кристаллизуют из смеси метанол/толуол, содержащей объемное соотношение метанола к толуолу в пределах диапазона от приблизительно 6:1 до при-

близительно 1:1, предпочтительно от приблизительно 3:1 до приблизительно 5:1. Смесь метанол/толуол будет включать достаточное количество метанола, чтобы получить мольное соотношению к соединению В в пределах диапазона от приблизительно 80:1 до приблизительно 10:1, предпочтительно от приблизительно 40:1 до приблизительно 20:1, чтобы способствовать образованию сольвата диметанола Ig.

Кристаллизация для образования сольвата диметанола Ig может быть более легко выполнена с использованием затравочных кристаллов соединения Ig в количестве от приблизительно 0.1 до приблизительно 10%, предпочтительно от приблизительно 0.5 приблизительно до 3%, в расчете на вес исходного соединения В.

В другом предпочтительном воплощении соединение Ig (которое может быть или, возможно, может не быть очищено) кристаллизуют из смеси метанол/толуол/гептан с добавлением затравки кристаллического соединения Ig, использующего в диапазоне от приблизительно 0.1% приблизительно до 10%, предпочтительно от приблизительно 0.5% приблизительно до 3%, в расчете на вес исходного соединения В. Метанол будет использоваться при объемном соотношении к толуолу в пределах диапазона от приблизительно 1:0.5 до приблизительно 1:6, предпочтительно от приблизительно 1:1.5 до приблизительно 1:2.5, и при объемном соотношении гептан:толуол в пределах диапазона от приблизительно 2:1 до приблизительно 0.5:1, предпочтительно от приблизительно 1.3:1 до приблизительно 0.5:1.

Кристаллический комплекс 1:2 L-пролина Ih по изобретению получают согласно следующей реакционной схеме VI.

Схема VI

На схеме VI раствор L-пролина в воде нагревают до температуры в пределах диапазона от приблизительно 70°С до приблизительно 90°С и добавляют спиртовой растворитель, такой как метанол, этанол или изопропиловый спирт, предпочтительно изопропиловый спирт. Раствор соединения I добавляют к вышеупомянутому раствору L-пролина (который размешивают), где соединение I используют при мольном соотношении к L-пролину приблизительно 0.5:1. Раствор медленно охлаждают до комнатной температуры, при которой образуются твердые частицы. Раствор отфильтровывают, чтобы удалить твердые частицы, которые промывают спиртовым растворителем. Твердые частицы сушат и выделяют в форме белого твердого вещества, которое является кристаллическим комплексом 1:2 L-пролина Ih формы 3,N-1.

Кристаллический комплекс 1:1 L-пролина Ii по изобретению получают согласно следующей реакционной схеме VII.

Схема VII

Раствор L-пролина в смеси этанол/вода нагревают до кипения и добавляют раствор соединения I в этаноле или другом спиртовом растворителе. Полученный раствор охлаждают в диапазоне температур от -10 до -25°C, при которой образуются твердые частицы, которые являются кристаллическим комплексом 1:1 L-пролина Ii, который выделяют, используя обычные методы. В выполнении вышеупомянутого способа получения комплекса 1:1 L-пролина Ii L-пролин используется в молярном соотношении к соединению I в пределах диапазона от приблизительно 1:4 до приблизительно 1:6.

Кристаллический комплекс гемигидрата L-пролина Ij по изобретению получают согласно следующей реакционной схеме VIII.

Схема VIII

На схеме VIII раствор L-пролина и соединения I ($4.34~\mathrm{r}$, $10~\mathrm{ммолей}$) в смеси этанол/вода нагревают до температуры $70^{\circ}\mathrm{C}$, чтобы получить прозрачный раствор. Полученный раствор охлаждают в диапазоне температур от - $20~\mathrm{c}$ до - $25^{\circ}\mathrm{C}$ и добавляют затравочные кристаллы комплекса 1:1, L-пролина Ii. Через 3 дня при температуре - $20^{\circ}\mathrm{C}$ твердые частицы собирают фильтрацией и отфильтрованный осадок промывают холодным (- $20^{\circ}\mathrm{C}$) этанолом.

Полученные твердые частицы суспендируют и выделяют в виде белого кристаллического твердого вещества I₁, H0.5-2, используя обычные методики.

Кристаллический комплекс L-фенилаланина Ik по изобретению получают согласно следующей реакционной схеме IX.

Схема IX

Кристаллический комплекс

L-фенилаланин растворяют в воде при нагревании. Полученный раствор отфильтровывают и добавляют к этанолу (или другому спирту) раствор, содержащий соединение І. Полученный раствор нагревают в диапазоне температур от 70 до 90°С и позволяют медленно охладиться до комнатной температуры (образование кристаллов наблюдается при температуре 55°С). Раствор подвергают обычным процедурам выделения. Комплексное соединение L-фенилаланина Ік регенерируют в виде белого твердого вещества, идентифицированного как комплекс 1:1 соединения І с L-Phe.

Следующие примеры обеспечиваются для описания изобретения в дальнейших деталях. Указанные примеры, которые формулируют лучший способ осуществления, рассматриваются для осуществления изобретения, предназначены для иллюстрации, а не для ограничения изобретения.

Получение соединений формулы I, главным образом, описано в US 6414126 и особенно раскрыто на схеме 1 и в примере 1 US 5515117. US 6414126 и US 5515117 полностью включены в настоящую заявку в качестве ссылки. Стабильные формы соединений формулы (I) могут быть кристаллизованы в виде сольватов (например, гидратов).

Примеры получение кристаллических структур

Пример 1. Получение (S)-Пропиленгликоля ((S)-PG) структуры - формы SC-3 - формулы Ia.

Соединение А может быть получено, как описано в примере 1, части E US 6515117.

Стеклянный реактор на 10 л, оборудованный термопарой и вводом для азота, промывают МеОН (1.25 л), деминерализованной водой (3.6 л) и затем 50%-ным водным раствором NaOH (205.9 мл, 3.899 моля). Остаточный раствор NaOH в градуированном цилиндре помещают с водой (94 мл) в реактор. Добавляют соединение А (503.11 г, 0.872 моля) и смесь размешивают и нагревают до температуры ~68°С в течение более чем 1.5 ч. Через 1 ч температуру бани с циркуляцией понижают от 80 до 70°С; внутренняя температура стала 65°С. После в общей сложности 3 ч ВЭЖХ¹ обозначает завершение реакции, соединение I АР ~99.5. После того как смесь была охлаждена до температуры 25°С, добавляют изопропилацетат (2.5 л). Смесь размешивают в течение 10 мин, затем водный слой отделяют (рН 12.5) и органический слой промывают водой (1 л). В течение этой промывки рН двухфазной системы регулируют до 6.0 конц. НС1 (5.0 мл) и затем водный слой отделяют². Органический слой собирают в отдельном сосуде. Реактор промывают водой (2 л), МеОН (2 л) и продувают азотом. Влажный раствор соединения В добавляют в реактор и вводят (S)-пропиленгликоль ((S)-PG) (67.03 г, 0.872 моля). Необязательно на данной стадии могут быть добавлены затравочные кристаллы (S)-PG Ia. Мгновенная кристаллизация позволяет получить сгущенную суспензию. После перемешивания в течение 1 ч быстро добавляют циклогек-

сан (2.5 л) в течение 10 мин и перемешивание продолжают в течение 21 ч. Продукт фильтруют через фильтровальную бумагу (Whatman #5, воронка Бюхнера с диаметром 24"). Фильтрация осуществляется быстро и занимает приблизительно 15 мин. Отфильтрованный осадок промывают смесью (1:1) МТВЕ/циклогексан $(2\times1~\text{п})$ и сушат под вакуумом в течение 0.5 ч. Твердое вещество помещают на тарелку из пирекса и сушат под вакуумом (25 мм рт.ст.) в сушильном шкафу при температуре 25-30°С в течение двух дней, пока водный анализ КF не будет соответствовать моногидрату (3.6 вес.%). Получают продукт (S)-PG Ia (0.425~kr,выход 97%) в виде белоснежного твердого вещества, ВЭЖХ³ AP 99.7.

Затравочные кристаллы могут быть получены растворением соединения I в растворителе, таком как MTBE, обработкой получающегося раствора c (S)-пропиленгликолем и осуществлением процесса, как описано выше, без использования затравки.

 1 ВЭЖХ. Колонка: YMC ODS-A (C-18) S3, 4.6×50 мм. Растворитель A: 0.2% вод. раствор $\rm H_{3}PO_{4}$. Растворитель B: 90% $\rm CH_{3}CN/10\%~H_{2}O$ Исходное %B=0, конечное %B=100 Градиент времени 8 мин; время удерживания 3 мин. Интегрированное время остановки 11.0 мин. Расход 2.5 мл/мин. Длина волны УФ 220 нм.

 2 Была осуществлена нейтрализация перед фазовым разделением, чтобы предотвратить загрязнение продукта с NaOH. (S)-PG структура, полученная без нейтрализации, была немного основной [pH 8.3 суспензии, диспергированной с помощью ультразвука в воде (\sim 20 мг/мл)].

 3 ВЭЖХ метод. Мобильная Фаза A: 0.05% TFA в $_2$ О. Мобильная Фаза B: TFA: 0.05% в CAN. Колонка: YMC Hydrosphere $_4.6\times150$ (3 мк). Градиент: 30-90% В в течение 45 мин, удерживание 5 мин; обратно к 30% В и повторное уравновешивание в течение 10 мин. Длина волны: 220 нм. Объем инъекции: 10 мкл. Температура: окружающей среды.

Пример 1A. (S)-Пропиленгликоль ((S)-PG) структура - форма SC-3 - формула Ia.

Процедура.

20 г Соединения А загружают в реактор при температуре и давлении окружающей среды. В реактор добавляют 30 мл метанола и 49.75 мл 3H NaOH и реакционную смесь нагревают до температуры 80° С или кипятят с обратным холодильником и выдерживают приблизительно 2-3 ч для завершения реакции <0.5 AP. Загрузку охлаждают до температуры 20° С и нейтрализуют до pH 6.0-7.5 с использованием конц. HCl или 1H уксусной кислоты (требуется \sim 1 мл/гм загрузки).

C, 57.31; H, 7.01; CI, 7.05; O, 28.63

Экстракция.

Продукт экстрагируют из реакционной смеси $100\,$ мл изопропилацетата, водную фазу отделяют и органическую фазу промывают водой до удельной электропроводности $<10\,$ мС ($\sim4\,$ мл/гм загрузки). Водную фазу отделяют. Кристаллизация $2.8\,$ г ($1.05\,$ экв.) (S)-(+)-1,2-Пропандиола добавляют к реакционной смеси. В загрузку добавляют затравочные кристаллы $0.1\,$ г соединения I. Добавляют $160\,$ мл циклогексана и загрузку охлаждают от комнатной температуры до температуры 5° С. Загрузку перемешивают от комнатной температуры до температуры 5° С по крайней мере в течение $1\,$ ч до выделения.

Выделение и сушка.

Каждый образец выделенного осадка промывают смесью 50/50 по объему изопропилацетат/циклогексан. Осадок сушат при температуре 30° С в вакуумном сушильном шкафу под глубоким вакуумом. Осадок высушен, когда KF=3.6-4.1%. Выход=84% (без учета погрешностей). Характерная чистота=99.81 AP. Характерное содержание PG=15.1-15.8% посредством Γ X.

Пример 2.

Получение структуры (R)-пропиленгликоля Ib.

(R)-пропиленгликоль Ib

Сруктура (R)-пропиленгликоля была получена с использованием аналогичного способа, описанного выше для структуры (S)-пропиленгликоля Ia (пример 1), за исключением того что (R)-пропиленгликоль используют вместо (S)-пропиленгликоля.

Пример 3. Получение Моно-ЕtOH-Дигидрата (структура этанола или EtOH) - форма SA-1 - формула Ic.

Соединение A (1.0~r) растворяют в EtOH (3.0~мл) нагреванием до кипения и раствор разбавляют водой (7~мл). Добавляют EtOH на 1 мл и смесь разделяют на три части для кристаллизации при температурах 20, 5 и -20°C. После охлаждения в интервале температур от -10 до -20°C образуются кристаллы, которые имеют Т.пл. 40-41°C.

Примеры 4 и 5. Получение структуры этиленгликоля формы SB-1 и SB-2-формул Id и Ie соответственно.

Этиленгликоль

Чтобы получить полиморфную форму кристалла дигидрата этиленгликоля формы SB-1 Id, соединение A (0.5 г) растворяют в водном растворе этиленгликоля (0.3 мл воды:0.5 мл этиленгликоля) нагреванием при температуре 45°C в течение 30 мин. После охлаждения до комнатной температуры добавляют затравку SB-1 (10 мг). Реакционную смесь размешивают в течение 16 ч, обеспечивая белое кристаллическое твердое вещество. Кристаллы отфильтровывают, промывают водой и сушат. Для получения полиморфной формы затравочных кристаллов дигидрата этиленгликоля SB-1 Id соединение А растворяют в водном растворе этиленгликоля, кристаллическую форму (S)-пропиленгликоля SC-3 Ia добавляют, чтобы получить кристаллическую форму дигидрата этиленгликоля SB-1 Id (пример 4). Указанные кристаллы отфильтровывают и промывают избытком воды.

Чтобы получить полиморфную форму дигидрата этиленгликоля кристаллической формы SB-2 Ie (пример 5), соединение А растворяют в водном растворе этиленгликоля нагреванием. После охлаждения добавляют затравку кристаллической формы моно-EtOH-дигидрата SA-1, Ic, чтобы получить кристаллическую форму дигидрата этиленгликоля SB-2 Ie (пример 5). Указанные кристаллы отфильтровывают и промывают избытком воды.

¹Н ЯМР для форм SB-1 и SB-2:

¹H ЯМР (400 МГц, DMSO) δ 1.29 (т, 3H, J=6.98 Гц, -CH₃), 3.15 (м, 4H,), 3.33 (уш. c, 6H, -CH₂), 3.42 (м, 3H), 3.6 (уш. дд, J=11.4 Гц, 1H), 3.9 (уш. м, 5H, H-I, -2CH₂), 4.43 (т, 1H, J=7.4 Гц, OH), 4.86 (д, 1H,

J=2.4, OH), 4.95 (к, 1H, -OH), 6.82 (д, 2H, J=11.47 Γ ц, Ar-H), 7.8 (д, 2H, J=11.4 Γ ц, Ar-H), 7.22 (дд, 1H, J=2.5 Γ ц, J=11.4 Γ ц, Ar-H), 7.35 (т, 2H, J=10.96, Ar-H;

¹³C ЯМР (400 МГц, DMSO) δ 12.49, 59.16, 60.61, 60.69, 68.10, 72.51, 76.11, 78.51, 79.02, 112.09, 125.16, 126.47, 127.38, 128.61, 129.02, 129.73, 135.62, 137.48, 154.70.

Пример 6. Получение сольвата (S)-РG формы SC-3 Ia.

Соединение В

К ацетонитрилу (12 мл) при температуре бани 8-10°С в атмосфере азота загружают диэтилэтерат трифторида бора (2.3 мл, 18.4 ммолей) и воду (0.82 мл, 4.6 ммолей). После выдерживания вышеупомянутой смеси в течение приблизительно 1 ч добавляют триэтилсилан (3 мл, 18.4 ммолей). Полученную смесь выдерживают в течение приблизительно 1 ч и затем добавляют соединение В (полученное, как описано в примере 17) в 10 мл ацетонитрила. Загрузку выдерживают при температуре 5-10°С. При завершении реакции, как определяется ВЭЖХ, реакционную смесь гасят водным ацетатом аммония (24 мл; 85 г) в 200 мл воды. Фазы разделяют и органическую фазу, обогащенную продуктом, сушат над сульфатом натрия. Органическую фазу, обогащенную продуктом, концентрируют при пониженном давлении.

Воду (13 мг, 0.7 ммолей, в расчете на 0.3 г сырого соединения В в загрузке), (S)-пропиленгликоль (56 мг, 0.7 ммолей), метил-трет-бутиловый эфир (5 мл, ~17 мл/г соединения В в загрузке), затравку соединения Іа (~20 мг) смешивают и выдерживают в течение 1 ч до образования суспензии кристаллов. Добавляют циклогексан (10 мл, 33 мл/г соединения В (загрузка)). Кристаллический продукт (Іа) выделяют фильтрацией (4-5%) и сушат в вакууме при температуре 20-25°С.

Пример 7. Получение кристаллического сольвата MeOH Ig.

Кристаллы метанольного сольвата Ig получают растворением чистого соединения В в метаноле и перемешиванием при комнатной температуре. Белая суспензия образуется после нескольких дней и как обнаруживают, является кристаллическим метанольным сольватом Ig.

Таким образом, полученный кристаллический di-MeOH сольват Ig может использоваться вместо соединения B в получении кристаллического соединения Ia, как описано в примере 6.

Пример 8. Получение кристаллического Di-MeOH сольвата Ig из неочищенного соединения B в смеси 80/20 метанол/толуол с использованием затравки.

6 г соединения В (ВЭЖХ АР приблизительно 80%) растворяют в 15 мл смеси 80/20 метанол/толуол. Добавляют затравочные кристаллы (приблизительно 1% от исходного соединения В) соединения Ід и смесь охлаждают, чтобы получить суспензию, содержащую кристаллы.

Суспензию размешивают в течение 6 ч перед выделением.

Влажный осадок, как было обнаружено, является кристаллическим метанольным сольватом If, но теряет кристалличность, если оставлен открытым в течение нескольких часов.

Пример 9. Получение кристаллического сольвата Di-MeOH Ig из неочищенного соединения В в смеси метанол/толуол/гептан с использованием затравки.

2.5 г соединения В (91.5%) добавляют в сцинтилляционный флакон с магнитной мешалкой.

Добавляют 4 мл толуола, чтобы растворить соединение Іа.

Добавляют 2 мл метанола. Затем добавляют затравочные кристаллы соединения Ig (приблизительно 1%).

Добавляют 4 мл гетана в течение 30 мин и смесь размешивают в течение 12 ч. Влажный осадок выделяют на воронке Бюхнера. Влажный осадок, как обнаруживают, является кристаллическим метанольным сольватом Ід. Его сушат под вакуумом при температуре 30°С. Полученный порошок теряет кристалличность.

Выход=1.7 г=74.5% (без учета погрешности).

Исследование рентгенограммы XRD кристаллов: фиг. 10.

Таким образом, образованный кристаллический сольват MeOH Ig может использоваться вместо соединения В в получении кристаллического соединения Ia, как описано в примере 6.

Пример 10. Получение кристаллического сольвата 1,4-бутиндиола If из соединения В в смеси толуол/этилацетат с использованием затравки.

Сольват 1,4-бутиндиола может быть кристаллизован в алкилацетате (например, этил-, пропил- или бутилацетате), спирте (например, изопропаноле, бутаноле) или даже в воде. Толуол и гептан действуют как антирастворители, когда кристаллизуются в алкилацетате.

50 г (90.3 вес.%) соединения В растворяют в 675 мл толуола. Раствор нагревают до температуры 60°С и добавляют 75 мл этилацетата. Добавляют 1.5 экв. 2-бутин-1,4-диола (=13.3 г) и смесь выдерживают при температуре 60°С до тех пор, пока бутиндиол не растворится. Раствор охлаждают до температуры 55°С и добавляют 0.1% затравки (50 мг) соединения 1,4-бутиндиола If. Смесь выдерживают в течение 1 ч при температуре 55°С. Соединение If начинает кристаллизоваться. Смесь охлаждают до температуры 25°С в течение 6 ч. Полученную суспензию размешивают в течение 3 ч перед выделением (концентрация маточного раствора составляет <3 мг/мл), отфильтровывают и промывают 180 мл толуола+20 мл этилацетата и сушат под вакуумом при температуре 45°С, чтобы получить кристаллы сольвата 1,4-бутиндиола If.

ВЭЖХ AP=99.5%. Активность=80.7 вес.% (рассчитанная активность=83.6% для сольвата 1:1). Выход=95%.

Пример 11. Получение кристаллического сольвата 1,4-бутиндиола If из соединения B в смеси бутилацетат/гептан.

0.5 г соединения В (91 вес.%) растворяют в 3.5 мл бутилацетата+3.5 мл гептана при температуре 60°С. Добавляют 1.5 экв. 2-бутин-1,4-диола и смесь охлаждают до комнатной температуры. Полученную суспензию размешивают в течение 12 ч, фильтруют, промывают 1 мл смеси 1:1 бутилацетат:гептан и сушат под вакуумом при температуре 50°С, чтобы получить кристаллы сольвата 1,4-бутиндиола If. Активность=85.1%. Выход=90%.

Сольват 1,4-бутиндиола If может использоваться вместо соединения B при использовании кислоты Льюиса $BF_3 \cdot 2CH_3 COOH$ вместо $BF_3 \cdot DEt_2$, чтобы получить кристаллическое соединение Ia.

Пример 12. Получение кристаллического комплекса 1:2 с L-пролином - структура Ih, форма 3.

кристаллический комплекс /h

Раствор L-пролина (11.5 г, 100 ммолей) в 10 мл воды нагревают до температуры 80°С и добавляют 100 мл изопропилового спирта. К быстро размешиваемому раствору L-пролина добавляют раствор соединения I при комнатной температуре (21.4 г, 50 ммолей) в 100 мл изопропанола. Образуются твердые частицы и раствор медленно охлаждают до комнатной температуры. Раствор отфильтровывают и полученные твердые частицы промывают изопропанолом, затем гексаном. Твердые частицы сушат в вакуумсушильном шкафу, чтобы получить 30.4 г белого твердого вещества, содержащего соединение I в виде кристаллического комплекса 1:2 с L-пролином (структура Ih, форма 3).

Пример 13. Получение кристаллического комплекса 1:1 с L-пролином - структура В, форма 6.

Кристаллический Комплекс 17

Раствор L-пролина (0.23 г, 0.2 ммолей) в 1.1 мл 90%-ной смеси этанол/вода быстро нагревают до температуры кипения и добавляют раствор соединения I (0.4 г, 1 ммолей) в 4 мл этанола. Полученный раствор охлаждают до температуры -20°С в течение 2 ч, в течение которых образуются твердые частицы. Раствор хранят при комнатной температуре в течение 2 дней. Сосуд центрифугируют и супернатант удаляют. Остающиеся твердые частицы промывают в 1 мл МТВЕ и твердые частицы сушат под вакуумом, чтобы получить 0.025 г белого твердого вещества, содержащего соединение I в кристаллическом комплексе 1:1 с L-пролином (структура Ii, форма 6).

Пример 14. Получение кристаллической формы H.5-2 L-пролина гемигидрата соединения I - структура Ij.

Кристаллический Комплекс 🕽

Раствор L-пролина (0.23 г, 2 ммолей) и соединение I (4.34 г, 10 ммолей) в 31 мл 97%-ной смеси этанол/вода быстро нагревают до температуры 70°С, чтобы получить прозрачный раствор. Полученный раствор охлаждают до температуры -20°С и добавляют затравочные кристаллы 1:1 комплекса соединения I с L-пролином структуры Ii формы 6. Через 3 дня при температуре -20°С твердые частицы собирают фильтрацией и отфильтрованный осадок промывают холодным (-20°С) этанолом. Полученные твердые частицы суспендируют в 5 мл гептана с последующей фильтрацией и промывкой гептаном, чтобы получить 0.3 г белого твердого вещества. Продукт (0.02 г) затем кристаллизуют из смеси 20/1 EtOH/H₂O с медленным испарением растворителя и легким нагреванием/охлаждением, чтобы вырастить большие кристаллы качества, определяемого рентгенографическим методом, содержащие отношение 4 молекулы соединения I, 4 молекулы L-пролина и 2 молекулы воды на элементарную ячейку, гемигидратного комплекса 1:1 с L-пролином (структура Ij форма H.5-2).

Пример 15. Получение кристаллического комплекса 1:1 с L-фенилаланином - структура Ік, форма 2.

Кристаллический Комплексік

L-фенилаланин (424 мг, 2.56 ммолей) растворяют в 6 мл воды при температуре 80°С. Полученный раствор отфильтровывают и добавляют к раствору этанола (6.5 мл), содержащему 1 г соединения I (2.36 ммолей). Полученный раствор нагревают до температуры 80°С и позволяют медленно охлаждаться до комнатной температуры (образование кристаллов сначала наблюдается при температуре 55°С). Раствор хранят при температуре 4°С. Раствор отфильтровывают и кристаллы промывают 20%-ной смесью вода/этанол, чтобы получить комплекс L-Phe:соединение I. Указанный продукт затем перекристаллизовывают из 10 мл 50%-ной смеси вода/этанол, как указано выше, чтобы получить 910 мг белого твердого вещества, идентифицированного как комплекс 1:1.3 соединения I с L-Phe (64%) структуры Ik, формы 2, как определено с помощью интегрирования ¹Н ЯМР.

Пример 16. Получение соединения If с помощью непрерывных реакций литирования и связывания.

Используется схема реакции, подобная той, которая показана на схеме IVA и фиг. 22.

Устанавливают холодильник (-30°C) для реактора литирования 5 (снабженный рубашкой статический смеситель 5).

Устанавливают холодильник (-30°C) для реактора связывания 22 (снабженный рубашкой статический смеситель 22) и теплообменник предварительного охлаждения (не показан на фиг. 22) для смеси подачи соединение D/толуол.

Непрерывное литирование.

Два потока подачи смесь Е/ТНГ/толуол (2.74 мл/мин) и Q, а именно n-BuLi в гексане (0.41 мл/мин), смешивают и объединяют с помощью снабженного рубашкой статического смесителя 5 (-30°C).

Перед перекачкой потока подачи D/толуол, толуол (2.96 мл/мин) направляют в систему в виде свежего потока для поддержания расхода общего потока постоянным при 6.1 мл/мин.

Образцы на выходе статического смесителя литирования 5 собирают для анализа ВЭЖХ. Образцы берут прежде (а) начала реакции связывания и (b) после сбора реакционной смеси в реакторе MSA-MeOH.

Непрерывная реакция связывания.

Поток подачи D/толуол (2.96 мл/мин) предварительно охлаждают с помощью теплообменника перед смешиванием с потоком литирования.

Эти два потока, а именно \hat{G} и D смешивают и объединяют в снабженном рубашкой статическом смесителе 22 (между -24 и -30°C).

Поток реакции является желтоватым по цвету.

Образцы собирают на выходе смесителя 22 для анализа ВЭЖХ.

Образцы берут до и после сбора в реакторе MSA-MeOH 25.

Метилгликозидирование.

Поток реакции связывания 24 направляют в реактор 25 на 500 мл, содержащий MSA и метанол или смесь HCl/MeOH при температуре <-10°C при перемешивании.

После окончания сбора реакционную смесь хранят при температуре <-10°C при перемешивании в течение следующего часа.

Реакционную смесь нагревают до температуры 35° C. Реакцию считают завершенной (приблизительно 6 ч) тогда, когда анализ ВЭЖХ покажет, что RAP десилилированного гемикеталя H'<0.3%. Реакционную смесь охлаждают до комнатной температуры (20° C) и реакционную смесь выдерживают в течение 16 ч, чтобы получить соединение B.

Образование кристаллов If.

Соединение В кристаллизуют с 2-бутин-1,4-диолом (J) в смеси толуол/EtOAc, чтобы получить кристаллы If.

Пример 17. Получение промежуточного продукта А.

Твердое соединение If (50.0 г), твердый DMAP (1.2 г), жидкий ацетонитрил (450 мл) и жидкий уксусный ангидрид (63 мл) загружают в реактор в виде сосуда на 250 мл.

Загрузку (77°C) нагревают и выдерживают до завершения реакции.

Загрузку охлаждают (5°С).

Триэтилсилан (72 мл) и комплекс уксусной кислоты и трифторида бора (63 мл) загружают в реактор.

После завершения реакции добавляют ацетон (36 мл).

Загрузку (21°C) нагревают и выдерживают, пока не израсходуется триэтилсилан.

Водный раствор NH_4OAc (33 вес.%, 450 мл) добавляют и загрузку перемешивают, позволяя расслоиться на верхнюю и нижнюю фазы, которые образуются.

Загрузочный объем продукта в богатой верхней фазе восстанавливают отгонкой ацетонитрила при минимальном перемешивании. Этанол SDA3A (1 л) загружают при повышенной температуре (>60°C).

Продукт кристаллизуют охлаждением или охлаждением с добавлением затравки (5 вес.%, в расчете на соединение If влажного измельчения, измельчения в струе азота или предыдущей загрузки). Продукт обычно выделяют с выходом >75%.

Продукт перекристаллизовывают в виде влажного или сухого осадка из этанола SDA3A.

Исследование кристаллических структур.

Кристаллические структуры, эквивалентные кристаллическим структурам, описанным ниже и заявленным в настоящей заявке, могут демонстрировать подобные, но все же неидентичные, аналитические характеристики в пределах приемлемого диапазона погрешности в зависимости от испытательных условий, чистоты, оборудования и других обычных переменных, известных квалифицированным в данной области специалистам.

Соответственно будет очевидно квалифицированным в данной технологии специалистам, что могут быть сделаны различные модификации и изменения в настоящем изобретении, не отступая от объема и сущности изобретения. Другие воплощения изобретения будут очевидны квалифицированным в технологии специалистам из соображения описания и практики изобретения, раскрытого в настоящей заявке. Указано, что описание и примеры необходимо рассматривать в качестве образца, но не ограничивая объем изобретения. Дифракция рентгеновских лучей на порошке

Квалифицированный в данной области специалист оценит, что дифракционная рентгенограмма может быть получена с погрешностью измерения, которая зависит от используемых условий измерения. В частности, общеизвестно, что интенсивность на дифракционной рентгенограмме на порошке может колебаться в зависимости от используемых условий измерения. Должно далее быть понятно, что относительные интенсивности могут также изменяться в зависимости от экспериментальных условий и, соответственно, точный порядок интенсивности не должен быть принят во внимание. Дополнительно погрешность измерения угла дифракции для обычной дифракционной рентгенограммы на порошке составляет обычно приблизительно 5% или меньше и такая степень погрешности измерения должна быть принята во внимание, как имеющая отношение к вышеупомянутым углам дифракции. Следовательно, должно быть понятно, что кристаллические структуры настоящего изобретения не ограничиваются кристаллическими структурами, которые обеспечиваются дифракционными рентгенограммами на порошке, полностью идентичными дифракционным рентгенограммам на порошке, изображенным в приложенных фигурах, раскрытых в настоящей заявке. Любые кристаллические структуры, которые обеспечиваются дифракционными рентгенограммами на порошке, в основном идентичными раскрытым в приложенных фигурах, находятся в объеме настоящего изобретения. Способность устанавливать реальные тождества дифракционных рентгенограмм на порошке находится в пределах навыков квалифицированных в данной области специалистов.

(S)-PG (форма SC-3), Ia, (R)-PG Ib, сольват 1,4-бутиндиола If и сольват диметанола Ig, гемигидрат комплекса 1:1 L-пролина Ij (H.5-2), комплекс 1:2 L-пролина Ih и комплекс 1:1 L-пролина структуры В.

Приблизительно 200 мг помещают в образцедержатель прибора Philips для рентгеновского анализа (PXRD). Образец был перемещен в ячейку Philips MPD (45 KB, 40 мA, Cu Kα1). Данные собирают при комнатной температуре при 2-32 2-тета (способ непрерывного сканирования, частота сканирования 0.03 градус/с, щели автодивергенции и антирассеяния, приемная получая щель: 0.2 мм, вращатель образна: ON).

Рентгенограммы на порошке для структур (S)-PG (Ia), (R)-PG (Ib) проиллюстрированы на фиг. 1 и 2

соответственно. Рентгенограммы на порошке для сольвата 1,4-бутиндиола If и сольвата диметанола Ig проиллюстрированы на фиг. 9 и 10 соответственно. Рентгенограммы на порошке для структур комплекса 1:2 L-пролина Ih, комплекса 1:1 L-пролина Ii и комплекса 1:1 гемигидрата L-пролина Ij проиллюстрированы на фиг. 13, 14 и 15 соответственно. Выбранные положения дифракционных пиков (градусы 20 ± 0.2) для (S)-PG (Ia), (R)-PG (Ib), комплекса 1:1 гемигидрата L-пролина Ij (H.5-2), комплекса 1:2 L-пролина Ih и комплекса 1:1 L-пролина Ii показаны в табл. 1, приведенной ниже. Характерные положения дифракционного пика (градусы 20 ± 0.1) при КТ являются основанными на рентгенограмме высокого качества, снятой с помощью дифрактометра (CuK α) с вращающимся капилляром с 20, калиброванным Национальным Институтом Стандартов и Методологии Технологии и других пригодных стандартов, известных квалифицированным в данной области специалистам. Относительные интенсивности, однако, могут изменяться в зависимости от размера и морфологии кристалла.

Таблица 1 Выбранные пики РХRD (20+0 2°)

(S)-PG (Ia)	(R)-PG (Ib)	H.5-2,	N-1,	N-1
		1:1 L-пролин	:1 L-пролин 1:2 L-пролин	
		(гемигидрат)	(Ih)	(Ii)
		(Ij)		
3.8	3.9	3.9	3.3	3.9
7.6	8.0	8.8	6.5	9.5
8.1	8.7	15.5	8.6	15.4
8.7	15.3	15.8	15.7	15.7
15.2	15.6	16.5	16.4	15.9
15.7	17.2	17.8	17.2	17.5
17.1	19.2	19.4	18.9	18.7
18.9	19.9	19.7	19.8	19.7
20.1	20.3	20.8	20.2	20.3

Ядерный магнитный резонанс в твердой фазе.

Структуры (S)-PG (Ia), (R)-PG (Ib), сольвата 1,4-бутиндиола If и сольвата диметанола Ig охарактеризованы методами ЯМР в твердой фазе.

Все измерения ЯМР С-13 в твердой фазе были сделаны на приборе Bruker DSX-400 спектрометром ЯМР 400 МГц. Спектры с высоким разрешением получают, используя мощное протонное расщепление, импульсного режима ТРРМ и поперечную поляризацию линейно нарастающей амплитуды (RAMP-CP) с магическим углом вращения (MAS) при приблизительно 12 кГц ((A.E. Bennett et al., J. Chem. Phys., 1995, 103, 6951; G. Metz, X. Wu, S.O. Smith, J. Magn. Reson. A., 1994, 110, 219-227). Приблизительно 70 мг образца, помещенного в контейнер с ротором из двуокиси циркония, использовалось для каждого эксперимента. Химические сдвиги (δ) были отнесены к внешнему адамантану с высокочастотным резонансом, установленным до 38.56 част. на млн (W.L. Earl, D.L. VanderHart, J. Magn. Reson., 1982, 48, 35-54).

Полученный 13 С ЯМР CPMAS спектр для структуры (S)-PG и (R)-PG показан на фиг. 3 и 4 соответственно.

Основные резонансные пики для спектра углерода в твердой фазе (S)-PG и (R)-PG упомянуты ниже в табл. 1А и 2 и для сольвата 1,4-бутиндиола If и сольвата диметанола Ig упомянуты ниже в табл. 2А и 2В соответственно. Кристаллические структуры, демонстрирующие в основном аналогичные положения пиков ¹³С ЯМР, где "в основном аналогичный" означает от 10 до 15% безразмерного значения, как считается, находятся в рамках настоящего изобретения (т.е. эквиваленты к структурам, проиллюстрированным ниже).

Таблица 1А

Положения пика протонного ЯМР для сольвата (S)-Пропиленгликоля Ia

 1 Н ЯМР (400 М Гц, d₆-DMSO) δ 1.00 (д, 3H, J=6.25 Гц, PG-CH₃), 1.29 (т, 3H, J=6.98 Гц, -CH₂CH₃), 3.0-3.30 (м, 4H, H2, H3, H4, H-5), 3.43 (м, 1H, H-6a), 3.53 (м, 1H), 3.69 (уш. дд, H, J=4.4 Гц, H-6b), 3.9-4.1 (м, 5H, H-I, -CH₂, -CH₂), 4.38 (д, 1H, J=4.5 Гц, OH), 4.44 (дт, 2H, J=2.2 Гц, J=5.7 Гц), 4.82 (д, 1H, J=5.7 Гц, -OH), 4.94 и 4.95 (2д, 2H, 2-OH), 6.82 (д, 2H, J=8.6 Гц, Ar-H), 7.09 (д, 2H, J=8.6 Гц, Ar-H), 7.22 (дд, 1H, J=1.97 Гц, 8.25 Гц, Ar-H), 7.31 (уш. д, 1H, 1.9 Гц, Ar-H), 7.36 (д, 1H, J=8.2 Гц, Ar-H).

Таблица 2 Положения пика SSNMR/ δ (в част. на млн) относительно TMS (тетраметилсилан)

(S)-PG	(R)-PG
δ/част.	δ/част.
на млн	на млн
16.2	15.8
17.6	17.6
39.3	39.0
60.9	60.9
63.3	63.2
69.8	67.4
76.9	69.7
78.7	77.3
79.4	79.2
113.8	79.8
123.6	113.3
129.3	123.6
130.5	129.0
132.0	130.4
135.7	132.0
139.1	135.6
158.0	139.2
	157.9

Указанные данные точно действительны для спектрофотометра на 400 М Гц.

Таблица 2А

Положения пика протонного ЯМР для сольвата 1,4-бутиндиола If

 1 Н ЯМР (400 М Гц, CDCl₃) δ 1.33 (т, 3H, J=7.1 Гц, -CH₃), 2.90 (c, 2H, -CH₂), 3.39 (c, 9H, -OCH₃), 3.4-3.65 (м, 3H), 3.81 (уш. м, 2H), 3.91 (q, 2H, J = 7.1 Гц, -CH₂), 3.97 (м, 1H), 6.73 (д, 1H, J=8.6 Гц, Ar-H), 7.02 (д, 2H, J=8.4 Гц, Ar-H), 7.25 (c, 2H, Ar-H), 7.34 (c, 1H, Ar-H);

¹³C (CDCl₃) δ 14,78, 38.43, 49.14, 50.57, 61.84, 63.34, 69.98, 72.53, 74.63, 100.95, 114.36, (2), 126.64, 129.19, 129.59, 129.71, 131.38, 134.30, 136.61, 138.50, 157.27. Т.Пл. 103.08°C.

Таблица 2В

Положения пика протонного ЯМР для сольвата диметанола Ід

 1 H ЯМР (400 МГц, DMSO-D₆) δ 1.26 (т, 3H, J=7.1 Гц, -CH₃), 2.38-2.54 (м, 1H), 2.5 (с, 2H, -CH₂), 3.2 (м, 1H), 3.35 (м, 3H, -OCH₃), 3.16-3.39 (м, 1H, H-6), 3.41-3.42 (м, 1H, H-6), 3.9 (кв, 2H, J=7.2 Гц, CH₂), 4.05 (д, 4H, -CH₂), 4.52 (т, 1H), 4.75 (м, 2H), 4.95 (д, 2H), 5.23 (т, 2H), 6.82 (д, 2H, J=8.6 Гц, Ar-H), 7.07 (д, 2H, J=8.6 Гц, Ar-H) 7.4 (с, 2H, Ar-H), 7.50 (с, 1H, Ar-H);

¹³C (CDCl₃) δ 14.69, 48.28, 49.02, 60.81, 62.84, 70.05, 74.02, 76.81, 83.97, 100.64, 114.23, 127.40, 128.2, 129.44, 131.2, 131.4, 132.45, 137.38, 138.57, 156.84.

Элементный анализ.

Расчетный для C₂₆H₃₃ClO₉: Расч. С 59.48, H6.34, Cl 6.75; найдено С 59.35, H5.97, Cl 6.19.

Термогравиметрический анализ.

Эксперименты термогравиметрического анализа (TGA) были выполнены на приборе TA Instruments $^{\text{TM}}$ модели Q500. Образец (приблизительно 10-30 мг) помещают в платиновый резервуар, предварительно измеренный. Вес образца измеряют точно и регистрируют до тысячной миллиграмма с помощью прибора. Печь продувают азотом при 100 мл/мин. Данные собирают между комнатной температурой и 300°C при скорости нагревания 10° C/мин.

Диаграммы TGA для структур (S)-PG Ia и (R)-PG Ib показаны на фиг. 5 и 6 соответственно. Потери веса соответствуют одному молю воды и одному молю пропиленгликоля на моль проанализированной структуры.

Диаграммы TGA для структур комплекса 1:2 L-пролина Ih, комплекса 1:1 L-пролина Ii и комплекса 1:1 гемигидрата L-пролина Ij показаны на фиг. 16, 17 и 18 соответственно. Потери веса соответствуют одному молю воды и одному молю L-пролина на моль проанализированной структуры.

Дифференциальная сканирующая калориметрия.

Температурный режим твердого состояния структур (S)-PG Ia, (R)-PG Ib, сольвата 1,4-бутиндиола If, сольвата диметанола Ig, комплекса 1:2 L-пролина Ih, комплекса 1:1 L-пролина Ii и комплекса 1:1 гемигидрата L-пролина Ij был исследован с помощью дифференциальной сканирующей калориметрии (DSC). Диаграммы DSC для структур (S)-PG Ia и (R)-PG Ib показаны на фиг. 7 и 8 соответственно. Диаграммы DSC для структур сольвата 1,4-бутиндиола If и сольвата диметанола Ig показаны на фиг. 11 и 12 соответственно. Кривые DSC для структур комплекса 1:2 L-пролина Ih, комлекса 1:1 L-пролина Ii и комплекса 1:1 гемигидрата L-пролина Ij показаны на фиг. 19, 20 и 21 соответственно.

Эксперименты дифференциальной сканирующей калориметрии (DSC) были выполнены на приборе

ТА Instruments[™] модели Q1000. Образец (приблизительно 2-6 мг) взвешивают в алюминиевом резервуаре и взвешивают точно до одной сотой миллиграмма и направляют на DSC. Прибор продувают азотом при 50 мл/мин. Данные собирают между комнатной температурой и 300°С при скорости нагревания 10°С/мин. График сделан с эндотермическими пиками, направленными вниз.

Специалисту, квалифицированному в данной области, будет понятно, что при измерении DSC есть определенная термодинамическая степень изменчивости в фактическом действительном масштабе измерений и пиковых температурах в зависимости от скорости нагревания, кристаллической формы и чистоты и других параметров измерения.

Рентгенографический анализ монокристалла.

Монокристалл для структуры (S)-PG Ia и для структур сольвата 1,4-бутиндиола If, сольвата диметанола Ig, комплекса 1:2 L-пролина Ih, комплекса 1:1 L-пролина Ii и комплекса 1:1 гемигидрата L-пролина Ij получают и исследуют посредством дифракции рентгеновских лучей.

Данные собирают на дифрактометре серии Bruker-Nonius CAD4 (BRUKER AXS, Inc., 5465 East Cheryl Parkway Madison, WI 53711 USA). Параметры элементарной ячейки получают посредством анализа методом наименьших квадратов экспериментальных значений параметров дифрактометра при 25 отражениях под большими углами. Интенсивности были измерены с использованием СиК α излучения (λ =1.5418 Å) при постоянной температуре с θ -2 θ различными методиками сканирования и были скорректированы только для факторов поляризации Лоренца. Фоновые индексы собирают при крайних наблюдаемых значениях в течение половины времени сканирования. Поочередно данные монокристалла собирают на приборе Bruker-Nonius Kappa CCD 2000 system используя СиК α излучение (λ =1.5418Å). Индексирование и проведение измерений данных интенсивности были выполнены с программным обеспечением HKL2000 (Otwinowski, Z. & Minor, W. (1997) в Macromolecular Crystallography, eds. Carter, W.C. Jr & Sweet, R.M. (Academic, NY), vol. 276, p. 307-326) с пакетом программ (Collect Data collection and processing user interface: Collect: Data collection software, R. Hooft, Nonius B.V., 1998).

Если указано, то кристаллы охлаждают в холодном потоке криосистемы Oxford cryo system во время сбора данных. (Oxford Cryosystems Cryostream cooler: J. Cosier и A.M. Glazer, J. Appl. Cryst, 1986, 19, 105).

Структуры решены прямыми методами и уточнялись на основе наблюдаемых отражений с использованием или пакета программ SDP (SDP, Structure Determination Package, Enraf-Nonius, Bohemia NY 11716 Scattering factors, including/and/", in the SDP software were taken from the" International Tables for Crystallography", Kynoch Press, Birmingham, England, 1974; vol. IV, tables 2.2A and 2.3.1) с незначительными изменениями, или пакета программ по кристаллографии MAXUS (maXus solution and refinement software suite: S. Mackay, CJ. Gilmore, C Edwards, M. Tremayne, N. Stewart, K. Shankland. maXus: a computer program for the solution and refinement of crystal structures from diffraction data).

Полученные атомные параметры (координаты и температурные коэффициенты) уточнены с помощью метода наименьших квадратов с полной матрицей. Функция, минимизированная при уточнении, была

$$\Sigma_{\rm W}(|{\rm F}_0| - |{\rm F}_{\rm C}|)^2 \, {\rm f},$$

R определен как

$$\Sigma||F_0|$$
 - $|F_C||/\Sigma|F_0|$,

где

$$R_{\rm w} = [\Sigma_{\rm w}(|F_0| - |F_C|)^2/\Sigma_{\rm w}|F_0|^2]^{1/2},$$

где w - соответствующая весовая функция, основанная на погрешностях в наблюдаемых интенсивностях.

Различные диаграммы исследованы на всех стадиях уточнения. Водороды введены в теоретических положениях с изотропными температурными коэффициентами, но водородные параметры не были изменены.

Параметры элементарной ячейки для структуры (S)-PG формы Ia, SC-3 упомянуты ниже в табл. 3. Как используется в настоящей заявке, параметр элементарной ячейки "молекулы/на ячейку" относится к количеству молекул соединения в элементарной ячейке.

Таблица 3

Данные элементарной ячейки для (S)-PG (Ia)

		~~~~	510 5110101	Trup Troit 7				(2)		(14)		
Структура	1 -	a(Å)	b(Å)						Z'		<b>D</b> расч.	1.
Ia	25	11.2688(8)	4.8093(3)	46.723(3)	90	90	90	633	1	P2 ₁ 2 ₁ 2 ₁	1.319	.069
(S)-PG												

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>2сигма(I)).

D расч =вычисленная плотность кристалла.

SG=пространственная группа.

Табл. 4, приведенная ниже, формулирует позиционные параметры для структуры (S)-PG Ia при температуре  $25^{\circ}$ C.

Таблица 4 Позиционные параметры для (S)-PG при T=25°C

Атом	X	ΙΥ	)-РG при Z
CL	0.7313	0.4674	-0.2101
O5	0.8119	0.5766	-0.0701
04	0.7202	0.5458	0.0056
03	0.5115	0.3666	-0.0246
06	0.9646	0.2671	-0.0316
02	0.4895	0.5889	-0.0811
C2	0.6024	0.5045	-0.0697
C12	0.7946	0.4228	-0.1261
C5	0.8198	0.6301	-0.0398
O17	0.1633	0.2154	-0.2179
C8	0.6391	0.7665	-0.1320
C6	0.9425	0.5628	-0.0299
C3	0.5984	0.5441	-0.0373
C1	0.7059	0.6639	-0.0829
C7	0.7147	0.6097	-0.1148
C4	0.7190	0.4796	-0.0240
C10	0.7203	0.5412	-0.1732
C17	0.2586	0.3689	-0.2079
C19	0.4171	0.6835	-0.2198
C11	0.7959	0.3822	-0.1562
<b>C</b> 9	0.6397	0.7259	-0.1622
C13	0.5535	0.8771	-0.1822
C14	0.4508	0.6852	-0.1907
C15	0.3841	0.5376	-0.1712
C16	0.2861	0.3765	-0.1788
C20	0.1012	0.0595	-0.1979
C18	0.3232	0.5239	-0.2279
C21	0.0030	-0.0944	-0.2137
O89	0.3708	0.0977	-0.0854
O88	0.1294	0.2019	-0.0742
C88	0.1652	-0.0245	-0.0920
C89	0.2791	0.0335	-0.1051
C87	0.0645	-0.1005	-0.1124
<b>O</b> 99	0.2722	0.4482	-0.0319
H21	0.6171	0.2877	-0.0753
H121	0.8544	0.3092	-0.1123

H51	0.7993	0.8404	-0.0347
H81	0.5805	0.9176	-0.1225
H61	0.9563	0.6296	-0.0070
H62	1.0096	0.6774	-0.0422
H31	0.5776	0.7529	-0.0321
H11	0.6920	0.8863	-0.0793
H41	0.7271	0.2607	-0.0265
H191	0.4656	0.8069	-0.2353
H111	0.8552	0.2316	-0.1658
H131	0.5284	1.0619	-0.1717
H132	0.6093	0.9308	-0.2010
H151	0.4086	0.5437	-0.1488
H161	0.2335	0.2640	-0.1632
H201	0.1483	-0.1065	-0.1854
H202	0.0535	0.1811	-0.1804
H181	0.2987	0.5193	-0.2503
H211	-0.0606	-0.2245	-0.2014
H212	-0.0562	0.0572	-0.2256
H213	0.0387	-0.2305	-0.2306
H2	0.4362	0.4237	-0.0836
H3	0.4297	0.4310	-0.0299
H4	0.7387	0.3750	0.0172
H6	0.9827	0.1877	-0.0122
H881	0.1809	-0.2154	-0.0792
H891	0.2662	0.2151	-0.1200
H892	0.3059	-0.1396	-0.1196
H871	0.0875	-0.2595	-0.1270
H872	-0.0137	-0.1453	-0.1008
H873	0.0462	0.0938	-0.1255
H89	0.4203	-0.0719	-0.0817
H88	0.0653	0.1382	-0.0608
H991	0.2473	0.6301	-0.0234
H992	0.2108	0.3906	-0.0463

Параметры элементарной ячейки для дигидрата моноэтанола (структура этанола или EtOH) формы SA-1, формулы Ic, упомянуты ниже в табл. 5.

Таблица 5

											1 a	олица 5
Данные элементарной ячейки для этанола SA-1 (Ic)												
Форма	$T^0$	a(Å)	b(Å)	c(Å)	$\alpha^0$	$\beta^0$	γ°	Z'	SG	$V_{\rm m}$	R	<b>D</b> расч.
Ic SA-I	-50	11.519(1)	4.799(1)	22.648(1)		94.58(1)	ı	1	P2 ₁	624	1.307	0.05

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекулы препарата на ячейку).

R=остаточный индекс (I>3 сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В Табл. 6, приведенной ниже, представлены позиционные параметры для формы SA-1 (дигидрат моноэтанола), Іс при температуре -50°C.

Таблица 6 Фракционные атомные координаты для формы SA-1 при Т =-50°C

Атом	X	Y	Z
CL	0.7673	0.0854	-0.4142
O2	0.8652	0.6413	-0.1468
O5	0.8652	0.6413	-0.1468
O6	1.0613	0.9910	-0.0876
C2	0.6634	0.5087	-0.1420
O3	0.5964	0.4528	-0.0442
C1	0.7531	0.6504	-0.1782
O17	0.1965	-0.2110	-0.3797
04	0.7928	0.7549	0.0061
C7	0.7605	0.5175	-0.2375
C3	0.6679	0.6209	-0.2373
	1		
C14	0.4816	0.3213	-0.3866
C10	0.7629	0.2551	-0.3461
C13	0.5827	0.5268	-0.3868
C8	0.6801	0.5902	-0.2843
C9	0.6770	0.4593	-0.3397
C6	0.9968	0.7646	-0.0652
C12	0.8423	0.3089	-0.2459
C4	0.7906	0.6184	-0.0498
C5	0.8704	0.7698	-0.0896
C15	0.4335	0.2531	-0.3337
C11	0.8449	0.1815	-0.3008
C17	0.2911	-0.0396	-0.3851
C20	0.141	-0.3384	-0.4319
	0.4321	0.2052	-0.4377
C19 C18	0.4321	0.0255	
			-0.4384
C16	0.3405	0.0751	-0.3330
C21	0.0431	-0.5128	-0.4132
O98	0.3643	0.6071	-0.0516
O88	0.2324	-0.2097	-0.1501
C89	0.1155	-0.3014	-0.2376
C88	0.2065	-0.4150	-0.1969
<b>O</b> 99	0.4409	0.0604	-0.1784
H21	0.6816	0.2833	-0.1387
H11	0.7283	0.8620	-01.864
H31	0.6356	0.8307	-0.0805
H131	0.6184	0.5131	-0.4303
H132	0.5505	0.7308	-0.3806
H81	0.6182	0.7524	-0.2770
H61	1.0365	0.5668	-0.0787
H62	1.0037	0.7711	-0.0175
	0.9040	0.7/11	-0.0173
H121			
H41	0.8196	0.4009	-0.0436
H51	0.8385	0.9826	-0.0936
H151	0.4692	0.3444	-0.2915
H111	0.9111	0.0214	-0.3081
H201	0.1146	-0.1875	-0.4650
H202	0.2075	-0.4764	-0.4514
H191	0.4703	0.2491	-0.4794
H181	0.3000	-0.0606	-0.4802
H161	0.3071	0.0128	-0.2910
Н3	0.5153	0.5297	-0.0473
H2	0.5091	0.3623	-0.1752
H211	-0.0028	-0.6153	-0.4507
H212	0.0724	-0.6675	-0.3807
H213	-0.0204	-0.3772	-0.3928
H6	1.1241	0.9168	-0.3928
	<del>                                     </del>		
H4	0.8466	0.6527	0.0359

H981	0.3836	0.7445	-0.0185
H982	0.3063	0.4696	-0.0382
H891	0.0626	-0.4601	-0.2593
H892	0.0592	-0.1642	-0.2133
H893	0.1534	-0.1727	-0.2709
H881	0.2834	-0.4603	-0.2200
H882	0.1765	-0.6100	-0.1783
H88	0.2806	-0.2965	-0.1158
H991	0.3630	-0.0141	-0.1685
H992	0.4889	-0.1137	-0.1762

Параметры элементарной ячейки для этиленгликоля формы  $\overline{SB}$ -1 формулы  $\overline{Id}$  упомянуты ниже в табл. 7.

Таблица 7

Данные элементарной ячейки для EG-SB-1 (Id)

Форма	T ⁰	a(Å)	b(Å)	c(Å)	$\alpha^{\circ}$	β°	γ°	Z'	SG	$V_{\rm m}$	R	<b>D</b> расч.
Id SB-1	-50	11.593(8)	4.766(5)	22.78(3)	-	93.38(9)	-	1	P2 ₁	628	.19	1.340

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>3 сигма (I)).

D расч =вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 8, приведенной ниже, указаны позиционные параметры для формы SB-1 (этиленгликоля) Id при температуре - $50^{\circ}$ C.

Таблица 8 Фракционные атомные координаты для формы SB-1 при  $T=-50^{\circ}C$ 

T *I			I_
Атом	X	Y	Z
CL	0.7590	0.0820	-0.4198
O5	0.8631	0.5990	-0.1537
O17	0.1901	-0.1911	-0.3791
C13	0.5791	0.5319	-03885
O3	0.5941	0.4849	-0.0439
C11	0.8381	0.1410	-0.3059
O4	0.7851	0.8250	-0.0026
C10	0.7531	0.2610	-0.3514
O2	0.5470	0.4971	-0.1739
C18	0.3341	0.0390	-0.4399
C14	0.4851	0.3559	-0.3849
C1	0.7451	0.6551	-0.1789
C12	0.8281	0.2849	-0.2539
C5	0.8711	0.7820	-0.0959
C19	0.4311	0.2230	-0.4349
C17	0.2810	-0.0380	-0.3919
C4	0.7791	0.6341	-0.0569
C7	0.7530	0.4769	-0.2399
C8	0.6751	0.5781	-0.2889
C9	0.6671	0.4150	-0.3429
C2	0.6601	0.4859	-0.1429
C15	0.4250	0.2791	-0.3379

000	In 1201	102101	10.4200
C20	0.1391	-0.3181	-0.4309
C21	0.0331	-0.4761	-0.4109
C3	0.6660	0.6460	-0.0839
C16	0.3341	0.1049	-0.3399
O6	1.0280	0.4331	-0.0685
O98	0.3689	0.6530	-0.0551
O99	0.4310	0.0080	-0.1639
C6	0.9880	0.6960	-0.0759
O88	0.1661	-0.7610	-0.1669
O89	0.0461	-0.2291	-0.2249
C88	0.1970	-0.5606	-0.1946
C89	0.1423	-0.4698	-0.2450
H89	-0.0093	-0.1368	-0.2011
H88	0.0999	-0.9161	-0.1930
H2	0.5081	0.3212	-0.1695
Н3	0.5158	0.5512	-0.0479
Н6	1.0592	0.3693	-0.1043
H981	0.3142	0.5218	-0.0410
H982	0.3908	0.7860	-0.0248
H991	0.4708	-0.1672	-0.1673
H992	0.3887	0.0065	-0.1290
H41	0.8040	0.4214	-0.0458
H31	0.6366	0.8606	-0.0878
H51	0.8478	0.9977	-0.1052
H21	0.6886	0.2707	-0.1389
H11	0.7300	0.8758	-0.1869
H61	1.0435	0.7903	-0.1069
H62	1.0031	0.7943	-0.0335
H81	0.6253	0.7679	-0.2848
H111	0.8971	-0.0296	-0.3127
H121	0.8920	0.2316	-0.2193
H151	0.4529	0.3653	-0.2956
H161	0.2954	0.0652	-0.2987
H181	0.3033	-0.0383	-0.4826
H191	0.4696	0.2685	-0.4759
H201	0.1135	-0.1601	-0.4631
H202	0.1990	-0.4618	-0.4495
H211	-0.0104	-0.5787	-0.4482
H212	0.0603	-0.6313	-0.3784
H213	-0.0253	-0.3295	-0.3920
H891	0.0233	-0.6418	-0.3920
H892	0.2033	-0.3761	-0.2733
н892 H881	0.2033	-0.3858	-0.2733
H882	1		1
H882 H131	0.2762	-0.6665	-0.2039
	0.6119	0.5248	-0.4319
H132	0.5566	0.7453	-0.3781

Параметры элементарной ячейки для этиленгликоля формы  $\overline{SB}$ -2 формулы  $\overline{Ie}$  упомянуты ниже в табл. 9.

Таблица 9

Данные элементарной ячейки для EG-SB-2 (Ie)

Форма	Τ°	a(Å)	b(Å)	c(Å)	$\alpha^{\circ}$	β°	$\gamma^{\circ}$	Z'	SG	$V_{\rm m}$	R	D расч.
Ie SB-2	-50	11.4950(1)	4.7443(1)	44.4154(5)	-	-	-	1	P2 ₁ 2 ₁ 2 ₁	606	.050	1.390

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>3 сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 10, представленной ниже, приведены позиционные параметры для формы SB-2 (этиленгликоля) Id при температуре -50°C.

Таблица 10 Фракционные атомные координаты для формы SB-2 при T=-50°C

Атом	X	Y	Z
CL	0.7374	0.5149	-0.2111
01	0.8133	0.9822	-0.0746
O2	0.5013	0.9285	-0.0845
O4	0.7289	1.0601	0.0035
O3	0.5256	0.8247	-0.0225
C13	0.5550	0.9627	-0.1935
-			
06	0.9728	0.7735	-0.0353
C4	0.7265	0.9455	-0.0262
C3	0.6074	0.9836	-0.0396
C8	0.6428	0.9915	-0.1422
C5	0.8145	1.0938	-0.0449
C2	0.6104	0.8706	-0.0710
C1	0.7042	1.0158	-0.0896
017	0.1616	0.2406	-0.1894
C10	0.7254	0.6663	-0.1761
C14	0.4505	0.7632	0.1926
C12	0.7921	0.6786	-0.1254
C7	0.7155	0.8961	-0.1199
C17	0.2595	0.4115	-0.1199
C17			
	0.6431	0.8746	-0.1706
C11	0.7977	0.5663	-0.1538
C18	0.3043	0.4904	-0.2191
C6	0.9384	1.0646	-0.0348
C21	0.0106	-0.0544	-0.2044
C15	0.4002	0.6700	-0.1674
C16	0.3062	0.5028	-0.1664
C19	0.4048	0.6705	-0.2196
C20	0.1094	0.1211	-0.2133
O89	0.1914	0.1344	-0.0851
O88	0.0643	-0.3997	-0.0870
C88	0.0717	-0.2076	-0.1097
C89	0.1793	-0.0404	-0.1104
O98	0.2861	-0.0622	-0.0315
O99	0.3991	0.4406	-0.0313
H131	0.5987	0.9339	-0.2163
H132	0.5342	1.1796	-0.1916
H41	0.7470	0.7230	-0.0250
H31	0.5865	1.2077	-0.0378
H81	0.5800	1.1634	-0.1366
H51	0.7979	1.3174	-0.0455
H21	0.6051		0.040=
	0.6251	0.6488	-0.0697
H11	0.6844	1.2377	-0.0920
H121	0.8481	0.5958	-0.1080
H111	0.8591	0.3889	-0.1576
H181	0.2593	0.4179	-0.2399
H151	0.4420	0.7303	-0.1453
H161	0.2700	0.4433	-0.1446
H191	0.4500	0.7270	-0.2410
H61	0.9486	1.1532	-0.0124
H62	0.9940	1.1868	-0.0502
H201	0.0802	0.2769	-0.2296
H202	0.1742	-0.0142	-0.2253
H211	-0.0281	-0.1580	-0.2236
H212	0.0418	-0.2183	-0.1889
H213	-0.0522	0.0728	-0.1931
H2	0.4568	0.7450	-0.0867
H3	0.4455	0.9047	-00257
H6	0.9900	0.7115	-0.0140
H4	0.7487	0.9051	0.0180
H891	0.1791	0.0911	-0.1307
H892	0.2524	-0.1815	-0.1307
11072	U.4J4	0.1013	0.1307

H881	0.0688	-0.3227	-0.1317
H882	-0.0006	-0.0646	-0.1095
H89	0.1389	0.3052	-0.0871
H88	0.0278	-0.3039	-0.0685
H981	0.2546	-0.0138	-0.0523
H991	0.3186	0.3564	-0.0924
H992	0.4542	0.2696	-0.0893

Параметры элементарной ячейки для сольвата 1,4-бутиндиола If упомянуты ниже в табл. 11.

Таблица 11

Данные элементарной ячейки для сольвата 1,4-бутиндиола If

Форма	T	a(Å)	b(Å)	c(Å)	$\alpha^{\circ}$	β°	γ°	Z'	SG	$V_{\rm m}$	R	D расч.
YD-1(If)	25	21.576(7)	6.755(1)	18.335(5)	-	102.96(1)	-	1	C2	651	.055	1.339
YD-1(If)	-50	21.537(4)	6.7273(6)	18.267(3)	-	102.924(7)	-	1	C2	645	.054	1.352

Т=темп. (°C) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>2сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 12, приведенной ниже, представлены позиционные параметры для сольвата 1,4-бутиндиола If при температуре  $25^{\circ}$ C.

Таблица 12 Фракционные атомные координаты для сольвата 1,4-бутиндиола If при T=25°C

Атом	X	Y	Z
CL1	0.4766	0.0404	0.0954
O1	0.4009	0.0489	0.4240
O2	0.2487	0.0360	0.2866
O3	0.3361	0.3116	0.3700
O4	0.2980	-0.0335	0.5564
C1	0.4341	-0.0386	0.2933
C2	0.2694	-0.0045	0.4212
C3	0.3808	0.0618	0.4929
O5	0.2184	-0.1421	0.4159
<b>O</b> 6	0.1438	0.7685	0.0893
C4	0.3553	0.1186	0.3597
C5	0.4405	0.0690	0.1713
C6	0.4608	-0.0547	0.2314
C7	0.2958	-0.0113	0.3508
C8	0.3662	0.2182	0.2312
C9	0.3737	0.3483	0.1029
O7	0.4545	-0.2052	0.5425
C10	0.3205	-0.0595	0.4899
C11	0.1993	0.4901	0.0635
C12	0.3137	0.4646	0.1010
C13	0.3863	0.0987	0.2935
C14	0.3927	0.2100	0.1692
C15	0.4368	-0.0055	0.5534
C16	0.2546	0.3872	0.0663
C17	0.2011	0.6771	0.0960
C18	0.3867	0.4541	0.3863
C19	0.3147	0.6507	0.1327
C20	0.2589	0.7579	0.1310
C21	0.0758	1.0412	0.0907
C22	0.1428	0.9704	0.1110
O8	0.1617	0.3320	0.3009

-			
C23	0.0884	0.7849	0.2826
C24	0.1613	0.4969	0.2531
C25	0.1208	0.6569	0.2679
C26	0.0508	0.9415	0.3041
O9?*	0.0699	1.0883	0.3388
O10*	0.0921	0.9885	0.3889
Hl	0.4482	-0.1199	0.3347
H2	0.2539	0.1293	0.4275
H3	0.3717	0.2007	0.5020
H4	0.4923	-0.1485	0.2306
H5	0.3090	-0.1481	0.3449
H6	0.3335	0.3078	0.2311
H7	0.4083	0.4406	0.1034
H8	03681	0.2711	0.0573
H9	0.3310	-0.1996	0.4860
H10	0.1605	0.4349	0.0399
H11	0.4728	0.0808	0.5536
H12	0.4259	0.0056	0.6018
H13	0.2525	0.2624	0.0444
H14	0.4194	0.4073	0.4272
H15	0.3705	0.5779	0.3998
H16	0.4041	0.4724	0.3430
H17	0.3536	0.7062	0.1557
H18	0.2607	0.8821	0.1533
H19	0.0586	1.0179	0.0384
H20	0.0746	1.1804	0.1009
H21	0.0510	0.9710	0.1197
H22	0.1691	1.0491	0.0855
H23	0.1594	0.9831	0.1645
H24	0.2242	0.1281	0.2970
H25	0.1826	-0.0801	0.4013
H26	0.2934	0.0916	0.5641
H27	0.4478	-0.2782	0.5791
H28	0.1742	0.3703	0.3468
H30	0.0208	0.9935	0.2512
H31	0.0199	0.8683	0.3354
H32	0.2091	0.5518	0.2594
H33	0.1436	0.4493	0.1953

^{*} Атомный фактор заполнения обусловлен неупорядоченностью растворителя 2-бутин-1,4-диола в кристаллической структуре.

В табл. 13, приведенной ниже, представлены параметры элементарной ячейки для сольвата диметанола Ig.

Таблица 13

	Данные элементарной ячейки для сольвата диметанола Ig												
	Форма	Τ	a(Å)	b(Å)	c(Å)	α°	β°	γ°	Z'	SG	Vm	R	D расч.
	•		. ,	\			,	<b>'</b>					1
Ī	M2-1	-50	20.948(3)	6.794(2)	18.333(2)	-	102.91(2)	-	1	C2	636	.038	1.314
			. ,	\									
	(Ig)												
L													

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>2сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 14, приведенной ниже, представлены позиционные параметры для сольвата диметанола Ig при температуре - $50^{\circ}$ C.

Таблица 14 Фракционные атомные координаты для сольвата диметанола Іg при T=-50°C

	1 441101144 17	5p z	
Атом	X	Y	Z
CL1	0.4845	0.0519	0.0975
O1	0.3999	0.0334	0.4222
O2	0.2438	0.0327	0.2837
О3	0.2919	-0.0365	0.5534
O4	0.2111	-0.1509	0.4115
O5	0.1409	0.7749	0.0877
O6	0.3348	0.2998	0.3692
C1	0.3785	0.0495	0.4912
O7	0.4528	-0.2193	0.5428
C2	0.4372	-0.0463	0.2932
C3	0.3958	0.2046	0.1690
C4	0.3540	0.1054	0.3588
C5	0.2917	-0.0207	0.3471
C6	0.2638	-0.0141	0.4180
C7	0.4666	-0.0556	0.2324
C8	0.4348	-0.0197	0.5521
<b>C</b> 9	0.3871	0.0889	0.2923
C10	0.3148	0.4622	0.1014
C11	0.3669	0.2102	0.2310
C12	0.1971	0.4955	0.0616
C13	0.3756	0.3437	0.1035
C14	0.3159	-0.0680	0.4873
C15	0.2003	0.6811	0.0949
C16	0.2533	0.3883	0.0643
C17	0.4459	0.0675	0.1722
C18	0.3162	0.6471	0.1342

C19	0.2592	0.7551	0.1318
C20	03858	0.4414	0.3857
C21	0.0747	1.0555	0.0906
C22	0.1419	0.9708	0.1140
O8	0.1606	0.3410	0.3030
C23	0.1681	0.4908	0.2528
09?*	0.0905	1.0537	0.3488
C24	0.0506	0.9411	0.3047
O10*	0.0871	0.9637	0.3888
Hl	0.3698	0.1882	0.5000
H2	0.4508	-0.1297	0.3339
Н3	0.3403	-0.1573	0.3401
H4	0.2477	0.1190	0.4240
H5	0.5002	-0.1450	0.2324
H6	0.4724	0.0642	0.5527
H7	0.4230	-0.0062	0.6000
H8	0.3330	0.2987	0.2309
H9	0.1568	0.4439	0.0375
H10	0.4115	0.4344	0.1041
H11	0.3694	0.2681	0.0576
H12	0.3262	-0.2083	0.4845
H13	0.2507	0.2654	0.0414
H14	0.3563	0.7000	0.1585
H15	0.2614	0.8773	0.1551
H16	0.4247	0.3814	0.4147
H17	0.3726	0.5474	0.4136
H18	0.3943	0.4912	0.3398
H19	0.0589	1.0375	0.0377
H20	0.0760	1.1934	0.1022
H21	0.0460	0.9899	0.1168
H22	0.1725	1.0486	0.0933
	l	1	<u> </u>

H23	0.1560	0.9729	0.1681
H24	0.2910	0.0922	0.5653
H25	0.1707	-0.0975	0.3970
H26	0.4393	-0.3086	0.5727
H27	0.2166	0.1321	0.2895
H28	0.1613	0.6164	0.2738
H29	0.1368	0.4726	0.2064
H30	0.2119	0.4855	0.2441
H31	0.1761	0.3807	0.3503
H32*	0.1139	1.1530	0.3322
H33*	0.0293	0.8376	0.3371
H34*	0.0122	1.0286	0.2705
H35*	0.0765	0.8620	0.2691
H36?*	0.0718	0.8698	0.4154
H37?*	0.0679	1.0520	0.2715
H38?*	0.0601	0.7968	0.2848
H39?*	-0.0015	0.9590	0.2996

^{*} Атомный фактор заполнения обусловлен неупорядоченностью метанольного растворителя в кристаллической структуре.

Параметры элементарной ячейки для комплекса 1:2 L-пролина формы 3 формулы Ih упомянуты ниже в табл. 15.

Таблица 15 Ланные элементарной ячейки для комплекса 1:2 L-пролина (Ih)

	данные элементарион и тенки дли комплекса 1:2 В пролина (т)											
Форма	Τ°	a(Å)	b(Å)	c(Å)	$\alpha^{\circ}$	β°	γ°	Z'	SG	Vm	R	<b>Драсч</b> .
N-1	-60	10.311(1)	11.334(1)	27.497(1)	95.94	99.22	90	4	$\mathbf{P}_{1}$	789	0.1	1.343
(Ih)												

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>3 сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 15A, приведенной ниже, представлены позиционные параметры для комплекса 1:2 L-пролина (Ih) беспримесной формы N-1 при T=-60°C.

Таблица 15A Фракционные атомные координаты для соединения Іћ комплекса 1:2 с L-пролином (форма N-1)

Атом	X	Y	Z Z
Cl1	0.8511	0.3142	0.4683
O2	0.1890	0.4635	0.4796
O3	0.7564	0.4104	0.2284
O4	0.4729	0.5010	0.2885
O5	0.4376	0.6313	0.2067
O6	0.8989	0.3300	0.1500
C7	0.2926	0.3792	0.4153
C8	0.6818	0.2711	0.3799
C9	0.5724	0.5066	0.2584
C10	0.7120	0.3675	0.3085
C11	0.6191	0.5325	0.1740
O12	0.5675	0.5324	0.1226
C13	0.8659	0.4113	0.3834
C14	0.6573	0.3919	0.2567
C15	0.7888	0.3318	0.4049
C16	0.3975	0.3524	0.4995
C17	0.5114	0.5240	0.2053
C18	0.7053	0.4187	0.1784
C19	0.2907	0.3910	0.4630
C20	0.4894	0.2664	0.4264
C21	0.4996	0.2842	0.4793
C22	0.8273	0.4301	0.3341
C23	0.2056	0.4854	0.5344
C24	0.8279	0.4316	0.1519
C25	0.3898	0.3142	0.3967
C26	0.5990	0.1967	0.4055
C27	0.6395	0.2861	0.3305
C28	0.0776	0.5599	0.5411
C129	0.8615	0.7651	0.4622
O30	0.4735	1.0020	0.2917

O31	0.4387	1.1337	0.2094
O32	0.7479	0.9028	0.2288
O33	0.8902	0.8251	0.1497
C34	0.8261	0.9016	0.3336
C35	0.6485	0.8878	0.2580
O36	0.5610	1.0347	0.1249
C37	0.6759	0.7507	0.3797
C38	0.5079	1.0262	0.2062
C39	0.4780	0.7554	0.4220
C40	0.6312	0.7804	0.3315
O41	0.1584	0.9450	0.4656
C42	0.7041	0.8583	0.3076
C43	0.3624	0.6994	0.4359
C44	0.8678	0.8769	0.3809
C45	0.5696	1.0064	0.2602
C46	0.6975	0.9154	0.1787
C47	0.3635	0.9472	0.4341
C48	0.6156	1.0330	0.1758
C49	0.2666	0.7602	0.4513
C50	0.2689	0.8865	0.4494
C51	0.4642	0.8736	0.4176
C52	0.8214	0.9316	0.1526
C53	0.5864	0.6836	0.4051
C54	0.7948	0.8027	0.4039
C55	0.1465	1.0758	0.4752
C56	0.2078	1.0792	0.5264
C73	0.7131	0.5906	0.5918
C74	0.6549	0.5814	0.5389
C175	0.0092	0.3008	0.6072
O76	0.1209	0.5563	0.8403
O77	0.3970	0.6243	0.7788
C78	0.2253	0.5273	0.8121
C79	0.3613	0.6922	0.8623
C80	0.1934	0.3303	0.6884
C81	0.1674	0.4723	0.7614
C82	0.2412	0.3835	0.7390
C83	-0.0019	0.4492	0.6892
O84	0.4278	0.7982	0.8605
O85	-0.0213	0.5180	0.9192
C86	0.0441	0.5055	0.7380
O87	0.7087	0.4793	0.6025
C88	0.1729	0.5956	0.8909
C89	0.4982	0.4992	0.6339
C90	0.5097	0.2528	0.6324
C91	0.3008	0.6402	0.8083

C92	0.3983	0.4301	0.6518
O93	0.3078	0.7393	0.9449
C94	0.2809	0.2490	0.6650
C95	0.3930	0.3137	0.6470
C96	0.0746	0.3688	0.6663
C97	0.6122	0.3067	0.6180
C98	0.2545	0.7117	0.8934
C99	0.6095	0.4314	0.6189
C100	0.0478	0.6254	0.9173
C110	0.0184	0.8459	0.6019
O102	0.3952	1.1247	0.7804
O103	0.1147	1.0661	0.8415
O104	0.6781	0.9872	0.5898
O105	0.4317	1.2935	0.8633
C106	0.5806	0.9279	0.6059
C107	0.4768	0.8827	0.6738
C108	0.1859	0.8490	0.6890
C109	0.5840	0.9396	0.6532
C110	0.3778	0.8134	0.5924
C111	0.2988	1.1454	0.8102
O112	0.3053	1.2394	0.9473
O113	-0.0298	1.0236	0.9198
C114	0.1616	0.9797	0.7616
C115	0.4712	0.8729	0.5711
C116	0.1655	1.0994	0.8923
C117	0.2173	1.0311	0.8129
C118	0.2502	1.2127	0.8951
C119	0.3763	0.8179	0.6434
C120	0.0002	0.9826	0.6866
C121	0.6693	0.9881	0.5388
C122	0.2312	0.8864	0.7377
C123	0.3605	1.1913	0.8637
C124	0.0428	1.0292	0.7357
C125	0.7936	1.0536	0.5306
C126	0.0458	1.1266	0.9182
C127	0.0732	0.8975	0.6629
C128	0.2697	0.7610	0.6655
O129	0.1176	0.8835	0.2145
N130	0.2152	0.6016	0.2596
C131	0.1172	0.6843	0.2345
O132	0.2914	0.8241	0.2651
C133	0.1853	0.8095	0.2384
C134	0.1980	0.6021	0.3121
C135	0.0814	0.6857	0.3187
C136	0.0075	0.6839	0.2657

O137	0.5811	0.9560	0.8015
O138	0.7490	1.0434	0.8543
C139	0.7527	0.8332	0.8327
C140	0.6889	0.9523	0.8297
N141	0.6668	0.7335	0.8097
C142	0.6961	0.7064	0.7572
C143	0.8711	0.8236	0.8064
C144	0.8046	0.7903	0.7522
O145	0.2901	0.3199	0.2689
N146	0.2077	0.0992	0.2607
C147	0.1849	0.3081	0.2401
O148	0.1224	0.3825	0.2158
C149	0.1134	0.1822	0.2345
C150	-0.0001	0.1822	0.2639
C151	0.1765	0.0951	0.3122
C152	0.0624	0.1788	0.3149
C153	0.7503	0.3375	0.8345
O154	0.7509	0.5453	0.8549
O155	0.5797	0.4581	0.8039
N156	0.6576	0.2389	0.8101
C157	0.6884	0.4556	0.8306
C158	0.8656	0.3215	0.8057
C159	0.7926	0.2957	0.7527
C160	0.6813	0.2179	0.7580
O57	0.2706	0.6596	0.1242
O58	0.4116	0.7306	0.0823
N59	0.2962	0.9340	0.0695
C60	0.3243	0.7268	0.1018
C61	0.2366	0.8510	0.0985
C62	0.2021	0.9562	0.0266
C63	0.0946	0.8269	0.0685
C64	0.0736	0.9268	0.0393
O65	0.2708	0.1591	0.1241
O66	0.4177	0.2319	0.0834
N67	0.2949	0.4330	0.0684
C68	0.2341	0.3504	0.0971
C69	0.3311	0.2307	0.1033
C70	0.0690	0.4256	0.0394
C71	0.1944	0.4576	0.0266
C72	0.0916	0.3239	0.0659
C161	0.5540	0.4526	0.9706
O162	0.4543	0.4603	0.9840
O163	0.6026	0.3671	0.9467
N164	0.5722	0.6674	0.9975
C165	0.7962	0.6796	1.0284
		•	

C166	0.7705	0.5623	1.0029
C167	0.6633	0.7048	1.0426
C168	0.6369	0.5668	0.9718
N169	0.5736	1.1664	0.9988
C170	0.6413	1.0706	0.9734
C171	0.6566	1.2036	1.0440
C172	0.7913	1.1762	1.0303
C173	0.7728	1.0572	1.0049
O174	0.5984	0.8670	0.9446
O175	0.4528	0.9612	0.9826
C176	0.5532	0.9542	0.9687
H104	0.4098	0.4245	0.2757
H1	0.5933	0.3154	0.2391
H11	0.6757	0.6123	0.1863
H25	0.3866	0.3009	0.3571
H7	0.2181	0.4202	0.3906
H16	0.4003	0.3732	0.5389
H21	0.5801	0.2482	0.5031
H231	0.2065	0.4036	0.5514
H230	0.2944	0.5361	0.5495
H260	0.5550	0.1248	0.3793
H261	0.6617	0.1611	0.4357
H22	0.8817	0.4891	0.3161
H27	0.5549	0.2379	0.3095
H13	0.9521	0.4556	0.4051
H24B	0.8905	0.5029	0.1720
H24A	0.7945	0.4527	0.1146
H18	0.6455	0.3409	0.1637
H9	0.6364	0.5818	0.2730
H17	0.4471	0.4497	0.1897
H6O	0.9902	0.3430	0.1754
H5O	0.3733	0.6344	0.1718
H12	0.5145	0.6132	0.1167
H730	0.4058	0.9277	0.2777
H35	0.5824	0.8169	0.2387
H34	0.8870	0.9544	0.3141
H48	0.6718	1.1140	0.1882
H43	0.3564	0.6038	0.4332
H49	0.1884	0.7171	0.4650
H51	0.5357	0.9155	0.4000
H47	0.3640	1.0426	0.4342
H550	0.2010	1.1248	0.4533
H551	0.0459	1.1049	0.4708
H53A	0.5434	0.6098	0.3796
H53B	0.6443	0.6506	0.4370
	•		

H44	0.9590	0.9156	0.4010
H40	0.5387	0.7432	0.3119
H46	0.6347	0.8402	0.1631
H45	0.6370	1.0795	0.2743
H52B	0.8851	1.0006	0.1739
H52A	0.7895	0.9562	0.1157
H38	0.4415	0.9538	0.1901
H33O	0.9838	0.8359	0.1739
H36	0.5133	1.1183	0.1197
H31	0.3740	1.1406	0.1748
H78	0.2893	0.4626	0.8307
H91	0.2300	0.7037	0.7933
H79	0.4290	0.6296	0.8786
H73A	0.8131	0.6240	0.5975
H73B	0.6558	0.6475	0.6139
H97	0.6926	0.2563	0.6062
H90	0.5135	0.1579	0.6334
H92	0.3254	0.4776	0.6699
H89	0.4904	0.5936	0.6319
H94B	0.3235	0.1904	0.6915
H94A	0.2237	0.1976	0.6335
H83	-0.0976	0.4703	0.6701
H86	-0.0138	0.5707	0.7560
H82	0.3324	0.3549	0.7591
H98	0.1908	0.7806	0.8796
H88	0.2352	0.5280	0.9067
H100	-0.0156	0.6845	0.8964
H101	0.0795	0.6672	0.9544
H77O	0.4635	0.5569	0.7921
H84O	0.4937	0.8202	0.8949
H93O	0.3569	0.8249	0.9503
H85O	-0.1149	0.5173	0.8950
H117	0.2800	0.9658	0.8316
H123	0.4233	1.1238	0.8797
H111	0.2317	1.2108	0.7948
H228	0.3143	0.7048	0.6931
H128	0.2074	0.7050	0.6363
H12A	0.6658	0.8985	0.5209
H12B	0.5824	1.0343	0.5241
H915	0.4621	0.8772	0.5316
H909	0.6624	0.9895	0.6775
H107	0.4780	0.8924	0.7134
H910	0.3024	0.7608	0.5678
H124	-0.0101	1.0987	0.7537
H120	-0.0905	1.0129	0.6667

H122	0.3164	0.8472	0.7576
H116	0.2250	1.0292	0.9073
H926	-0.0153	1.1891	0.8983
H826	0.0798	1.1653	0.9557
H118	0.1903	1.2849	0.8822
H902	0.4593	1.0560	0.7941
H105	0.4954	1.3127	0.8984
H112	0.3566	1.3240	0.9528
H113	-0.1207	1.0256	0.8942
H130	0.0880	0.6513	0.1960
H930	0.1989	0.5128	0.2411
H131	0.3065	0.6289	0.2579
H936	-0.0527	0.7614	0.2616
H137	-0.0535	0.6049	0.2555
H136	0.0202	0.6522	0.3427
H935	0.1160	0.7743	0.3334
H134	0.1753	0.5137	0.3200
H135	0.2861	0.6352	0.3365
H944	0.9296	0.9035	0.8114
H143	0.9361	0.7508	0.8190
H244	0.8750	0.7504	0.7303
H144	0.7682	0.8708	0.7360
H139	0.7802	0.8212	0.8719
H742	0.7271	0.6158	0.7513
H842	0.6099	0.7203	0.7306
H541	0.6871	0.6572	0.8300
H641	0.5726	0.7555	0.8089
H952	0.0994	0.2669	0.3315
H252	-0.0039	0.1476	0.3381
H150	-0.0603	0.2607	0.2596
H250	-0.0651	0.1042	0.2518
H151	0.1486	0.0063	0.3177
H152	0.2600	0.1251	0.3397
H460	0.1968	0.0115	0.2409
H461	0.3000	0.1287	0.2626
H149	0.0881	0.1498	0.1958
H161	0.7059	0.1256	0.7481
H160	0.5948	0.2388	0.7319
H159	0.7564	0.3753	0.7372
H259	0.8547	0.2500	0.7286
H153	0.7784	0.3252	0.8732
H958	0.9256	0.4012	0.8101
H959	0.9261	0.2481	0.8168
H957	0.6775	0.1597	0.8286
H956	0.5646	0.2627	0.8110

H62	0.2205		
TTC 40	0.2203	0.9003	-0.0057
H640	0.0377	1.0016	0.0607
H64	0.0037	0.9030	0.0061
H63	0.0897	0.7441	0.0449
H630	0.0231	0.8249	0.0931
H61	0.2352	0.8932	0.1354
H590	0.3226	1.0165	0.0923
H59	0.3766	0.8979	0.0586
H68	0.2264	0.3961	0.1333
H710	0.1967	0.5506	0.0213
H71	0.2110	0.4051	-0.0068
H700	0.0336	0.4977	0.0623
H70	-0.0021	0.4046	0.0062
H72	0.0901	0.2437	0.0409
H720	0.0195	0.3163	0.0900
H670	0.3256	0.5143	0.0915
H67	0.3726	0.3954	0.0559
H666	0.8439	0.5395	0.9797
H766	0.7706	0.4978	1.0292
H665	0.8720	0.6797	1.0604
H765	0.8229	0.7417	1.0042
H767	0.6538	0.7982	1.0537
H667	0.6468	0.6543	1.0723
H168	0.6429	0.5849	0.9344
H664	0.4798	0.6384	1.0063
H764	0.5568	0.7339	0.9761
H170	0.6545	1.0931	0.9372
H673	0.7695	0.9914	1.0304
H773	0.8485	1.0349	0.9826
H672	0.8184	1.2380	1.0061
H772	0.8655	1.1783	1.0629
H671	0.6469	1.2971	1.0548
H771	0.6369	1.1536	1.0734
H669	0.5570	1.2393	0.9763
H769	0.4876	1.1366	1.0054

Параметры элементарной ячейки для комплекса 1:1 L-пролина беспримесной формы N-1 (форма 6), формулы Ii упомянуты ниже в табл. 16.

Таблица 16

Данные элементарной ячейки для компле	1.1 I (D)	
данные эпементарной ячейки для комплет	кса г т г-прошина (в)	

										(	,	
Форма	Τ°	a(Å)	b(Å)	c(Å)	$\alpha^{\circ}$	β°	$\gamma^{\circ}$	Z'	SG	V _m	R	Dрасч
N-1 (Ii)	-40	11.441(1)	10.235(1)	45.358(1)	90	90	90	2	P2 ₁ 2 ₁ 2 ₁	664	0.08	1.311

Т=темп. (°С) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (Ш>3 сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 16A, приведенной ниже, представлены позиционные параметры для комплекса 1:1, L-пролина (Ii) беспримесной формы N-1 при T=-40°C.

Таблица 16А Фракционные атомные координаты для соединения Ii комплекса 1:1 с L-пролином

Атом	X	Y	Z
C11	0.4598	-0.1973	0.4564
C1	0.5901	-0.2370	0.3766
C2	0.4455	-0.0618	0.3755
C3	0.4764	-0.1649	0.4212
C4	0.5631	-0.2563	0.4083
C5	0.5270	-0.1401	0.3597
C6	0.4236	-0.0847	0.4052
C7	0.3350	0.0181	0.4193
C8	0.4043	0.1572	0.4619
C9	0.4038	0.1366	0.4305
C10	0.4700	0.2275	0.4154
O1	0.5531	-0.2303	0.3104
C11	0.6684	-0.0473	0.3232
C12	0.6871	-0.1530	0.2745
02	0.6765	0.0755	0.3403
C13	0.5634	-0.2137	0.2780
C14	0.5532	-0.1047	0.3260
C15	0.6982	-0.0231	0.2901
C16	0.5401	-0.3394	0.2628
O3	0.7021	-0.1304	0.2442
04	0.8064	0.0378	0.2896
05	0.5831	0.4559	0.4668
C17	0.5134	0.4333	0.4583
C17	0.6039	0.5020	0.4977
C19	0.6740	0.6076	0.4977
06	0.6178	-0.4307	0.4990
C20	0.4646	0.2450	0.4744
C20	0.5212	0.3364	0.4744
C12	-0.1014	-0.2193	0.4270
07	0.0403	-0.2193	0.4331
C22	0.0403	-0.2090	0.3120
C23	-0.0026	-0.0977	0.3614
		-0.1191	
C24	0.1707 0.0641	-0.0312	0.3288
C25	0.1903	-0.1348	0.2832
C26 C27	0.1903	-0.1171	0.4010
C27	0.0139	-0.3076	0.4010
08	0.0413	0.0766	0.3473
C29	0.1732	-0.2262	0.3473
C30	-0.0488		0.3719
O9	0.2066	-0.1911 -0.1046	0.4174
C31			
C32	-0.1057 -0.0805	-0.0845	0.4057
C32	-0.0803	-0.0464	
C34		0.0315	0.4210
C35	-0.0962	0.3657	0.4497
	0.0119	0.1514	0.4289
C36	-0.1670	0.2596	0.4419
O10	0.0892	0.4864	0.4561
C37	0.0235	0.3777	0.4487
C38	0.0796	0.2657	0.4373
C39	0.2088	0.4743	0.4694
C40	0.2378	0.6027	0.4670

C41	-0.1056	0.1472	0.4292
011	0.3103	0.0473	0.2955
C42	0.1927	-0.0117	0.2972
012	0.1209	-0.4060	
			0.2699
C43	-0.1355	0.5267	0.3371
C44	-0.1317	0.4102	0.3168
N1	-0.2217	0.3229	0.3311
C45	-0.1578	0.4809	0.3661
C46	-0.2328	0.3526	0.3628
O13	0.0687	0.4002	0.3090
014	-0.0027	0.2411	0.3344
C47	-0.0235	0.3422	0.3215
C48	0.3738	0.4173	0.3220
C49	0.3666	0.5397	0.3405
C50	0.3232	0.5141	0.3706
O15			
	0.5678	0.3983	0.3126
016	0.4793	0.2316	0.3356
N2	0.2751	0.3408	0.3341
C51	0.2568	0.3858	0.3637
C52	0.4900	0.3392	0.3227
C53	0.1894	0.5037	0.4979
HI			
	0.2977	-0.0348	0.4380
H2	0.5158	0.5126	0.5088
H3	0.6427	0.4151	0.5106
H4	0.4640	0.2425	0.4980
H5	0.3557	0.0952	0.4743
H6	0.4028	0.0143	0.3656
H7	0.4846	-0.0412	0.3172
H8	0.7354	-0.1139	0.3309
H9	0.6383	0.0438	0.2803
H10	0.7509	-0.2206	0.2829
H11	0.4937	-0.1547	0.2692
H12	0.4535	-0.3750	0.2689
H13	0.5440	-0.3256	0.2395
	0.5987		0.2393
H14		0.1273	
H15	0.5850	-0.4862	0.2863
H16	0.2740	0.0426	0.4038
H17	0.7825	-0.0885	0 2 400
		0.000	0.2400
	0.8274	0.0552	0.2400
H18	0.8274	0.0552	0.2680
H18 H19	0.8274 0.4902	0.0552 0.2088	0.2680 0.3946
H18 H19 H20	0.8274 0.4902 0.5540	0.0552 0.2088 0.4072	0.2680 0.3946 0.4143
H18 H19 H20 H21	0.8274 0.4902 0.5540 0.6504	0.0552 0.2088 0.4072 -0.2925	0.2680 0.3946 0.4143 0.3665
H18 H19 H20 H21 H22	0.8274 0.4902 0.5540 0.6504 0.6030	0.0552 0.2088 0.4072 -0.2925 -0.3278	0.2680 0.3946 0.4143 0.3665 0.4194
H18 H19 H20 H21 H22 H23	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863
H18 H19 H20 H21 H22	0.8274 0.4902 0.5540 0.6504 0.6030	0.0552 0.2088 0.4072 -0.2925 -0.3278	0.2680 0.3946 0.4143 0.3665 0.4194
H18 H19 H20 H21 H22 H23 H24	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892
H18 H19 H20 H21 H22 H23 H24 H25	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377
H18 H19 H20 H21 H22 H23 H24 H25 H26	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942 -0.2782	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942 -0.2782 0.0351	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942 -0.2782 0.0351 -0.3485	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.2942 -0.2782 0.0351 -0.3485 0.2691	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096 0.4432
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543 -0.1353	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.2942 -0.2782 0.0351 -0.3485 0.2691 0.4445	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096 0.4432 0.4589
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34 H35	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543 -0.1353 0.0544	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.2942 -0.2782 0.0351 -0.3485 0.2691 0.4445 0.0664	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096 0.4432 0.4589 0.4241
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34 H35 H36	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543 -0.1353 0.0544 0.1640	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942 -0.2782 0.0351 -0.3485 0.2691 0.4445 0.0664 0.2598	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096 0.4432 0.4589 0.4241 0.4365
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34 H35 H36 H37	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543 -0.1353 0.0544 0.1640 -0.2417	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.2942 -0.2782 0.0351 -0.3485 0.2691 0.4445 0.0664	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096 0.4432 0.4589 0.4241
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34 H35 H36	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543 -0.1353 0.0544 0.1640	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942 -0.2782 0.0351 -0.3485 0.2691 0.4445 0.0664 0.2598	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.3696 0.4096 0.4432 0.4589 0.4241 0.4365
H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 H30 H31 H32 H33 H34 H35 H36 H37	0.8274 0.4902 0.5540 0.6504 0.6030 0.2586 0.1267 0.2335 0.0060 -0.0022 -0.0459 0.0431 0.1118 -0.1170 0.0467 -0.2543 -0.1353 0.0544 0.1640 -0.2417	0.0552 0.2088 0.4072 -0.2925 -0.3278 -0.1789 0.0606 -0.1001 -0.0175 -0.1194 -0.3511 -0.2942 -0.2782 0.0351 -0.3485 0.2691 0.4445 0.0664 0.2598 0.0673	0.2680 0.3946 0.4143 0.3665 0.4194 0.2863 0.2892 0.3377 0.3198 0.2737 0.2701 0.2411 0.3606 0.4096 0.4432 0.4589 0.4241 0.4365 0.4058

H40	0.3320	0.0534	0.2734
H41	0.1058	0.1381	0.3420
H42	0.0874	-0.4719	0.2852
H43	-0.1506	0.4388	0.2950
H44	-0.0541	0.5810	0.3377
H45	-0.2055	0.5941	0.3310
H46	-0.0797	0.4553	0.3782
H47	-0.2106	0.5460	0.3796
H48	-0.3210	0.3680	0.3662
H49	-0.1958	0.2728	0.3734
H50	-0.2972	0.3381	0.3195
H51	-0.1983	0.2279	0.3269
H52	0.3544	0.4339	0.2980
H53	0.2791	0.3273	0.3822
H54	0.1634	0.4233	0.3683
H55	0.4032	0.5053	0.3835
H56	0.2799	0.6038	0.3764
H57	0.4555	0.5795	0.3393
H58	0.3097	0.6065	0.3283
H59	0.2013	0.3456	0.3219
H60	0.2977	0.2420	0.3345

Параметры элементарной ячейки для комплекса 1:1 гемигидрата L-пролина, H.5-2 Ij, упомянуты ниже в табл. 17.

Таблица 17 Данные элементарной ячейки для соединения I комплекса с L-пролином гемигидрата формы H.5-2

				1 011111	тидраг	и фор	TIDI II.C					
Форма	T °C	a(Å)	b(Å)	c(Å)	α°	β°	γ°	Z'	SG	V _m	R	D расч.
H.5-2	-40	11.539	10.199	23.183	103.96	97.16	90.25	4	$\mathbf{P}_1$	656	.06	1.349

Т=темп. (°C) для кристаллографических данных.

Z'=количество молекул препарата на асимметричную ячейку.

 $V_m = V$  (элементарная ячейка)/(Z молекул препарата на ячейку).

R=остаточный индекс (I>2сигма (I)).

D расч.=вычисленная плотность кристалла.

SG=пространственная группа.

В табл. 18, приведенной ниже, представлены позиционные параметры для гемигидрата L-пролина 1:1 формы H. 5-2 Ij.

Таблица 18 Фракционные атомные координаты для соединения Іј комплекса гемигидрата 1:1 с L-пролином формы H.5-2 при T=-40°C

Атом	X	Y	Z
Cl1	-0.3207	0.2999	0.1007
O2	-0.0812	0.4445	0.3860
O3	0.1266	0.3986	0.5119
04	0.0226	0.1123	0.3131
O5	0.1988	0.2024	0.4116
C6	-0.0400	0.4518	0.4471
C7	0.0829	0.3978	0.4505
C8	0.0836	0.2539	0.4134
09	0.0185	0.6897	0.4693
C10	0.0320	0.2460	0.3495
C11	-0.1475	0.3075	0.2867
C12	-0.0536	0.5937	0.4833
C13	-0.2858	0.1976	0.1996
O14	-0.1314	-0.4139	0.0970
C15	-0.0913	0.3083	0.3494
C16	-0.2316	0.2099	0.2582
C17	-0.1691	0.4011	0.2002
C18	-0.1786	-0.0508	0.1507
C19	-0.3006	-0.0480	0.1494
C20	-0.3629	-0.1768	0.1287
C21	-0.1830	-0.2916	0.1133
C22	-0.1179	0.4052	0.2576
C23	-0.1249	-0.1696	0.1325
C24	-0.2541	0.3000	0.1727
C25	-0.3658	0.0787	0.1687
C26	-0.3038	-0.2938	0.1114
C27	-0.0150	-0.4216	0.0824
C28	-0.0248	-0.4143	0.0214
CL29	0.6985	0.3144	0.9332
O30	0.9914	0.4113	0.6104
O31	0.7834	0.1123	0.6447
O32	0.8541	0.4766	0.7040
C33	0.7408	0.2570	0.7376
O34	0.9142	0.1720	0.5162
O35	0.7084	-0.1271	0.5485
C36	0.7611	0.2500	0.6736

O37	0.8359	0.9717	0.9453
C38	0.7967	0.0998	0.5824
C39	0.8661	0.3408	0.6732
C40	0.8113	-0.0517	0.5552
C41	0.6608	0.3487	0.7637
C42	0.8842	0.3295	0.6081
C43	0.7928	0.2013	0.8324
C44	0.6478	0.3693	0.8244
C45	0.9041	0.1825	0.5787
C46	0.7116	0.2945	0.8580
C47	0.7693	0.8565	0.9247
C48	0.6523	0.6699	0.9393
C49	0.6372	0.6130	0.8784
C50	0.6886	0.6798	0.8418
C51	0.8079	0.1861	0.7731
C52	0.7539	0.8018	0.8657
C53	0.7171	0.7906	0.9638
C54	0.8594	1.0293	1.0095
C55	0.5690	0.4784	0.8512
C56	0.9344	1.1572	1.0187
CL57	0.1318	0.2860	0.9213
O58	0.2325	0.1474	0.6392
O59	0.3774	0.4788	0.7078
O60	0.3769	0.1826	0.5107
O61	0.5074	0.3673	0.6076
C62	0.2155	0.2845	0.7366
C63	0.2440	0.2856	0.6735
C64	0.2590	0.1866	0.7641
C65	0.3642	0.3439	0.6737
C66	0.1310	0.6369	0.8752
C67	0.3659	0.1865	0.5718
C68	0.2203	-0.0149	0.5444
C69	0.2495	0.6414	0.8737
C70	0.2339	0.1891	0.8206
C71	0.2440	0.1366	0.5760
C72	0.2691	0.8826	0.9099
C73	0.3878	0.3310	0.6097
C74	0.0797	0.7646	0.8952
C75	0.1225	0.3883	0.8232
O76	0.0935	-0.0372	0.5272
C77	0.1466	0.3834	0.7646
C78	0.1643	0.2886	0.8500
C79	0.3160	0.7598	0.8907
O80	0.3243	1.0074	0.9263
C81	0.0564	0.5089	0.8537
C82	0.1501	0.8831	0.9123

C83	0.4517	1.0168	0.9429
C84	0.4736	1.0085	1.0039
CL85	0.2353	0.2852	0.0943
O86	0.4643	0.4578	0.3847
O87	0.6924	0.1640	0.4142
C88	0.4307	0.3235	0.3510
O89	0.6471	0.3804	0.5135
C90	0.5401	0.2370	0.3503
<b>O</b> 91	0.4314	0.6909	0.4760
C92	0.5025	0.4655	0.4471
C93	0.3782	0.3234	0.2879
O94	0.3688	-0.3850	0.0770
C95	0.2412	0.2163	0.2011
O96	0.5177	0.1054	0.3143
C97	0.5871	0.2380	0.4145
C98	0.5309	0.6092	0.4771
C99	0.6100	0.3805	0.4525
C100	0.3806	0.3946	0.1963
C101	0.2856	0.2342	0.2611
C102	0.3122	-0.2671	0.0968
C103	0.1491	0.1041	0.1716
C104	0.2436	-0.2032	0.0581
C105	0.2886	0.3016	0.1694
C106	0.3259	-0.2129	0.1566
C107	0.4243	0.4052	0.2556
C108	0.1916	-0.0835	0.0830
C109	0.3595	-0.4411	0.0145
C110	0.2039	-0.0262	0.1455
C111	0.2741	-0.0939	0.1807
C112	0.4263	-0.5693	0.0039
O113	0.6465	0.6039	0.6797
O114	0.7349	0.7473	0.6386
N115	0.4575	0.7439	0.6955
C116	0.6529	0.7073	0.6592
C117	0.5581	0.9376	0.6856
C118	0.4708	0.8468	0.7558
C119	0.5406	0.7887	0.6584
C120	0.5558	0.9548	0.7523
O121	0.1830	0.6331	0.6898
O122	0.2453	0.7852	0.6450
N123	-0.0372	0.6985	0.6789
C124	0.0468	0.7797	0.6565
C125	0.0382	0.9228	0.6945
C126	0.1683	0.7269	0.6638
C127	0.0337	0.8955	0.7569
C128	-0.0365	0.7591	0.7436
	•		

N129	-0.3701	-0.1217	0.3442
C130	-0.1562	-0.1273	0.3652
O131	-0.1554	-0.0439	0.3345
O132	-0.0663	-0.1700	0.3912
C133	-0.2876	-0.3360	0.3362
C134	-0.2710	-0.1891	0.3727
C135	-0.3924	-0.1926	0.2793
C136	-0.3216	-0.3192	0.2720
O137	0.4232	-0.1933	0.3831
O138	0.3366	-0.0501	0.3332
C139	0.2187	-0.2024	0.3678
N140	0.1226	-0.1310	0.3394
C141	0.3337	-0.1410	0.3604
C142	0.1992	-0.3502	0.3341
C143	0.1599	-0.3386	0.2693
C144	0.0885	-0.2109	0.2771
O145	0.2926	0.5997	0.5452
O146	0.5342	-0.0128	0.4878
H150	-0.0975	0.3899	0.4641
H151	0.1418	0.4590	0.4337
H152	0.0313	0.1936	0.4337
H154	0.0862	0.3044	0.3298
H155	-0.1430	0.6195	0.4745
H156	-0.0310	0.5943	0.5295
H157	-0.1495	0.2477	0.3663
H158	-0.2539	0.1367	0.2824
H159	-0.1435	0.4768	0.1772
H160	-0.1255	0.0440	0.1660
H161	-0.4573	-0.1862	0.1271
H162	-0.0551	0.4859	0.2809
H163	-0.0294	-0.1642	0.1321
H164	-0.4249	0.0580	0.1988
H165	-0.4172	0.0974	0.1293
H166	-0.3545	-0.3888	0.0944
H167	0.0443	-0.3425	0.1127
H168	0.0247	-0.5195	0.0867
H169	0.0584	-0.4150	0.0027
H170	-0.0829	-0.4910	-0.0091
H171	-0.0634	-0.3139	0.0169
H176	0.6840	0.2850	0.6494
H177	0.7179	0.1342	0.5591
H178	0.9431	0.3006	0.6953
H179	0.8770	-0.0884	0.5846
H180	0.8408	-0.0648	0.5117
H181	0.6098	0.4044	0.7359
H182	0.8091	0.3693	0.5861
	•		

H183	0.8427	0.1385	0.8583
H184	0.9803	0.1446	0.6000
H185	0.6091	0.6187	0.9683
H186	0.6794	0.6399	0.7942
H187	0.8728	0.1192	0.7530
H188	0.7902	0.8541	0.8361
H189	0.7271	0.8353	1.0122
H190	0.7735	1.0569	1.0277
H191	0.8986	0.9597	1.0334
H192	0.5005	0.4927	0.8176
H193	0.5288	0.4505	0.8873
H194	0.9545	1.2094	1.0658
H195	1.0166	1.1315	1.0008
H196	0.8915	1.2288	0.9952
H200	0.1797	0.3464	0.6531
H201	0.3128	0.1093	0.7423
H202	0.4283	0.2823	0.6914
H203	0.4309	0.1186	0.5873
H204	0.2676	-0.0437	0.5075
H205	0.2503	-0.0734	0.5778
H206	0.2938	0.5478	0.8573
H207	0.2667	0.1115	0.8435
H208	0.1813	0.2008	0.5579
H209	0.3311	0.3978	0.5902
H210	-0.0167	0.7728	0.8951
H212	0.1131	0.4619	0.7424
H213	0.4107	0.7527	0.8914
H214	0.0235	0.4869	0.8923
H215	-0.0164	0.5268	0.8227
H216	0.1131	0.9807	0.9295
H217	0.5000	0.9375	0.9142
H218	0.4930	1.1146	0.9386
H219	0.5658	1.0153	1.0225
H220	0.4299	1.0899	1.0326
H221	0.4370	0.9127	1.0082
H223	0.3659	0.2811	0.3724
H225	0.6059	0.2835	0.3311
H227	0.4295	0.4306	0.4673
H229	0.5247	0.1893	0.4346
H230	0.5953	0.6489	0.4536
H231	0.5686	0.6221	0.5232
H232	0.6812	0.4246	0.4357
H233	0.4161	0.4554	0.1692
H234	0.2450	0.1769	0.2870
H235	0.0958	0.0890	0.2045

H236	0.0943	0.1338	0.1355
H237	0.2331	-0.2409	0.0101
H238	0.3791	-0.2651	0.1858
H239	0.4960	0.4787	0.2767
H240	0.1390	-0.0325	0.0529
H241	0.2692	-0.4672	-0.0046
H242	0.3958	-0.3734	-0.0080
H243	0.2899	-0.0523	0.2290
H244	0.4221	-0.6177	-0.0443
H245	0.5184	-0.5490	0.0216
H246	0.3917	-0.6427	0.0251
H248	0.4793	0.6449	0.7024
H249	0.6424	0.9714	0.6756
H250	0.4899	0.9910	0.6668
H251	0.3871	0.8958	0.7636
H252	0.4974	0.8010	0.7924
H253	0.4998	0.7712	0.6119
H254	0.6437	0.9322	0.7755
H255	0.5346	1.0526	0.7757
H257	-0.1244	0.7021	0.6547
H258	0.0245	0.7713	0.6086
H259	0.1125	0.9882	0.6931
H260	-0.0412	0.9702	0.6791
H261	0.1221	0.8814	0.7786
H262	-0.0061	0.9737	0.7872
H263	-0.1266	0.7806	0.7533
H264	0.0003	0.6937	0.7698
H265	-0.4482	-0.1282	0.3648
H267	-0.2055	-0.3921	0.3406
H268	-0.3541	-0.3919	0.3515
H269	-0.2776	-0.1726	0.4197
H270	-0.4835	-0.2219	0.2664
H271	-0.3651	-0.1301	0.2520
H272	-0.2450	-0.3036	0.2505
H273	-0.3737	-0.4037	0.2429
H275	0.2126	-0.1876	0.4150
H276	0.0471	-0.1254	0.3631
H277	0.2819	-0.4071	0.3370
H278	0.1354	-0.4038	0.3515
H279	0.2344	-0.3225	0.2459
H280	0.1069	-0.4219	0.2420
H281	-0.0019	-0.2405	0.2681
H282	0.1098	-0.1545	0.2449
H4O	-0.0494	0.0591	0.3246
H5O	0.2411	0.2106	0.4570
НЗО	0.1948	0.4772	0.5288
	•		•

***			
H9O	-0.0304	0.7367	0.4370
H91 <b>O</b>	0.4288	0.7378	0.4387
H89O	0.5701	0.3737	0.5359
H87O	0.7447	0.1972	0.4579
H96O	0.4441	0.0598	0.3281
H32O	0.7685	0.5088	0.6888
H30	1.0223	0.3832	0.5666
H34	0.9788	0.0971	0.5019
H35O	0.7109	-0.1813	0.5836
H60O	0.4380	0.1072	0.4941
H61	0.5322	0.4602	0.6402
H59O	0.2991	0.5325	0.6984
H76	0.0757	-0.1438	0.5063
H29N	-0.3483	-0.0232	0.3484
H40N	0.1520	-0.0373	0.3393
H15N	0.3746	0.7405	0.6748
H23N	-0.0113	0.6018	0.6728
H946	0.4919	-0.0828	0.4471
H1W	0.2742	0.6734	0.5848
H846	0.6016	-0.0665	0.5089
H2W	0.3486	0.6479	0.5212

Полезность и комбинации.

#### А. Полезность.

Соединение настоящего изобретения обладает активностью ингибиторов натрийзависимых переносчиков глюкозы, найденных в кишечнике и почке млекопитающих. Предпочтительно соединение по изобретению является селективным ингибитором ренальной активности SGLT2 и поэтому может использоваться при лечении заболеваний или расстройств, связанных с активностью SGLT2.

Соответственно соединение настоящего изобретения можно вводить млекопитающим, предпочтительно людям, для лечения разновидности состояний и расстройств, включая, но не ограничиваясь, лечение или задержку прогрессирования или начала диабета (включая тип I и тип II, сниженную толерантность к глюкозе, инсулинрезистентность и осложнения диабета, такие как нефропатия, ретинопатия, невропатия и катаракта), гипергликемию, гиперинсулинемию, гиперхолестеринемию, дислипидемию, повышенные уровни жирных кислот ли глицерина в крови, гиперлипидемию, гипертриглицеридемию, ожирение, лечение ран, ишемию тканей, атеросклероз и гипертонию. Соединение настоящего изобретения может также использоваться, чтобы увеличить в крови уровни липопротеина высокой плотности (HDL).

Кроме того, состояния, заболевания и расстройства все вместе, на которые ссылаются как на "Синдром X" или Метаболический Синдром, как детально описано в Johannsson, J. Clin. Endocrinol. Metab., 82, 727-34 (1997), можно лечить, используя соединение настоящего изобретения.

Кристаллические соединения (S)-PG (SC-3) (Ia), (R)-PG (SD-3) (Ib), SA-1 (Ic), SB-1 (Id), SB-2 (Ie) комплекс 1:2 L-пролина формы 3 (Ih), комплекс 1:1 L-пролина формы 6 (Ii), комплекс 1:1 L-пролина гемигидрата формы H.5-2 (Ij) и комплекс 1:1.3 L-фенилаланина формы 2 (Ik) можно вводить в дозированных формах и в дозировках, как раскрыто в US 6515117, раскрытие которого полностью включено в настоящую заявку в качестве ссылки.

### В. Комбинации.

Настоящее изобретение включает в пределах его объема фармацевтические композиции, включающие активный компонент, терапевтически эффективное количество соединения формулы I, включая (S)-PG (форма SC-3, Ia), (R)-PG (форма SD-3, Ib), SA-1 (Ic), SB-1 (Id), SB-2 (Ie), комплекс 1:2 L-пролина формы 3 (Ih), комплекс 1:1 L-пролина формы 6 (Ii), комплекс 1:1 L-пролина гемигидрата формы H.5-2 (Ij) и комплекс 1:1.3 L-фенилаланина формы 2 (Ik), одно или в комбинации с фармацевтическим носителем или разбавителем. Необязательно соединение настоящего изобретения может использоваться в виде индивидуального лечения или использоваться в комбинации с одним или несколькими другими терапевтическими агентом(ами).

Другие "терапевтические агент(ы)" подходящие для комбинации с соединением настоящего изобретения, включают, но не ограничиваясь, известные терапевтические агенты, полезные в лечении вышеупомянутых расстройств, включая антидиабетические агенты; антигиперглицемические агенты; гиполипидемические/липидпонижающие агенты; агенты против ожирения; противогипертонические агенты и супрессивные средства аппетита.

Примеры подходящих антидиабетических агентов для использования в комбинации с соединением настоящего изобретения включают бигуаниды (например, метформин или фенформин), ингибиторы глюкозидазы (например, акарбоза или миглитол), инсулины (включая средства, усиливающие секрецию инсулина, или сенсибилизаторы инсулина), меглитинид (например, репаглинид), сульфонилмочевины

(например, глимепирид, глибурид, гликлазид, хлорпропамид и глипизид), комбинации бигуанид/глибурид (например, Glucovance® (Глюкованс)), тиазолидиндионы (например, троглитазон, росиглитазон и пиоглитазон), агонисты PPAR-альфа, агонисты PPAR-гамма, двойные агонисты PPAR альфа/гамма, ингибиторы гликогенфосфорилазы, ингибиторы связывающего белка жирной кислоты (aP2), глюкагонподобного пептида-1 (GLP-1) или другие агонисты рецептора GLP-1 и ингибиторы дипептидилпептидазы IV (DPP4).

Полагается, что использование соединения формулы I в комбинации по крайней мере с одним или несколькими другими антидиабетическими агентом(ами) обеспечивает антигиперглицемический эффект, больше, чем это возможно от каждого в отдельности из этих лекарств, одних и больше, чем объединенные аддитивные антигиперглицемические эффекты, произведенные этими лекарствами.

Другие подходящие тиазолидиндионы включают Mitsubishi's MCC-555 (раскрытый в US 5594016), фараглитазар фирмы Glaxo-Wellcome (GI-262570), энглитазон (CP-68722, фирмы Pfizer) или дарглитазон (CP-86325, фирмы Pfizer, изаглитазон (MIT/J&J), реглитазар (JTT-501) (JPNT/P&U), ривоглитазон (R-119702) (фирмы Sankyo/WL), лираглутид (NN-2344) (фирмы Dr. Reddy/NN) или (Z)-1,4-бис-4-[(3,5-диоксо-1,2,4-оксадиазолидин-2-илметил)]феноксибут-2-ен (YM-440, фирмы Yamanouchi)).

Примеры агонистов PPAR-альфа, агонистов PPAR-гамма и двойных агонистов PPAR-альфа/гамма включают мураглитазар, пелиглитазар, тесаглитазар AR-H039242 фирмы Astra/Zeneca, GW-501516 (фирмы Glaxo-Wellcome), KRP297 (фирмы Kyorin Merck), а также раскрытые в Murakami et al., "A Novel Insulin Sensitizer Acts As a Coligand for Peroxisome Proliferation - Activated Receptor Alpha (PPAR alpha) and PPAR gamma. Effect on PPAR alpha Activation on Abnormal Lipid Metabolism in Liver of Zucker Fatty Rats", Diabetes, 47, 1841-1847 (1998), WO 01/21602 и US 6 653 314, раскрытие которых полностью включено в настоящую заявку в качестве ссылки с использованием доз, таких же, как там изложено, где соединения, определяемые как предпочтительные, предпочтительны для использования в настоящей заявке.

Подходящие ингибиторы aP2 включают раскрытые в американской заявке № 09/391053, поданной 7 сентября 1999 г. и в американской заявке № 09/519079, поданной 6 марта 2000 г. с использованием дозы, как в них указано.

Подходящие ингибиторы DPP4 включают раскрытые в WO 99/38501, WO 99/46272, WO 99/67279 (PROBIODRUG), WO 99/67278 (PROBIODRUG), WO 99/61431 (PROBIODRUG), NVP-DPP728A (1-[[[2-[(5-цианопиридин-2-ил)амино]этил]амино]ацетил]-2-циано-(S)-пирролидин) (Novartis), как раскрыто (триптофил-1,2,3,4-Biochemistry, 38(36), 11597-11603, 1999, TSL-225 Hughes et al., тетрагидроизохинолин-3-карбоновая кислота (раскрытая Yamada et al., Bioorg. & Med. Chem. Lett, 8 (1998), 1537-1540), 2-цианопирролидиды и 4-цианопирролидиды, как раскрыто Ashworth et al., Bioorg. & Med. Chem. Lett, vol. 6, № 22, p. 1163-1166 and 2745-2748 (1996), соединения, раскрытые в US № 10/899641, WO 01/68603 и US 6 395 767 с использованием дозировок, как изложено в вышеупомянутых ссылках.

Другие подходящие меглитиниды включают натеглинид (Novartis) или KAD1229 (PF/Kissei).

Примеры подходящих антигиперглицемических агентов для использования в комбинации с соединением настоящего изобретения включают глюкагонподобный пептид-1 (GLP-1), такой как GLP-1(1-36)амид, GLP-1(7-36)амид, GLP-1(7-37) (как раскрыто в US 5614492), а также такой как эксенатид (Amylin/Lilly), LY-315902 (Lilly), MK-0431 (Merck), лираглутид (NovoNordisk), ZP-10 (Zealand Pharmaceuticals A/S), CJC-1131 (Conjuchem Inc) и соединения, раскрытые в WO 03/033671.

Примеры подходящих гиполипидемических/липидпонижающих агентов для использования в комбинации с соединением настоящего изобретения включают один или более ингибиторов МТР, ингибиторов редуктазы НМС СоА, ингибиторов скваленсинтазы, производных фиброевой кислоты, ингибиторов АСАТ, ингибиторов липоксигеназы, ингибиторов абсорбции холестерина, ингибиторов сотранспортера Na[†]/желчная кислота, активаторов активности рецептора LDL, секвестрантов желчных кислот, белковпереносчиков эфиров холестерина (например, ингибиторы СЕТР, такие как торцетрапиб (CP-529414, Pfizer) и JTT-705 (Akros Pharma)), агонистов PPAR (как описано выше) и/или никотиновой кислоты и ее производных.

Ингибиторы МТР, которые могут использоваться, как описано выше, включают раскрытые в US 5595872, US 5739135, US 5712279, US 5760246, US 5827875, US 5885983 и US 5962440.

Ингибиторы НМС СоА редуктазы, которые могут использоваться в комбинации с одним или более соединениями формулы I, включают мевастатин и соответствующие соединения, как раскрыто в US 3983140, ловастатин (мевинолин) и соответствующие соединения, как раскрыто в US 4231938, правастатин и соответствующие соединения, такие как раскрытые в US 4346227, симвастатин и соответствующие соединения, как раскрыто в US 4448784 и 4450171. Другие ингибиторы НМС СоА редуктазы, которые могут использоваться в настоящей заявке, включают, но не ограничиваясь, флувастатин, раскрыты в US 5354772, церивастатин, как раскрыто в US 5006530 и 5177080, аторвастатин, как раскрыто в US 4681893, 5273995, 5385929 и 5686104, атавастатин (нисвастатин фирмы Nissan/Sankyo (NK-104)), как раскрыто в US 5011930, висастатин (фирмы Shionogi-Astra/Zeneca (ZD-4522)), как раскрыто в US 5260440 и соответствующие соединения статина, раскрытые в US 5753675, аналоги пиразола производных мевалонолактона, как раскрыто в US 4613610, аналоги индена производных мевалонолактона, как раскрыто в Заявке WO 86/03488, 6-[2-(замещенный пиррол-1-ил)алкил)пиран-2-оны и их производные, как раскрыто

в US 4647576, SC-45355 фирмы Searle (производное 3-замещенной пентандиовой кислоты) дихлорацетат, аналоги имидазола мевалонолактона, как раскрыто в заявке WO 86/07054, производные 3-карбокси-2-гидроксипропанфосфоновой кислоты, как раскрыто во французском патенте FR 2596393, 2,3-дизамещенные производные пиррола, фурана и тиофена, как раскрыто в EP 0221025, нафтильные аналоги мевалонолактона, как раскрыто в US 4686237, октагидронафталины, такие как раскрыты в US 4499289, кетоаналоги мевинолина (ловастатин), как раскрыто в EP 0142146 A2, и хинолиновые и пиридиновые производные, как раскрыто в US 5506219 и 5691322.

Предпочтительные гиполипидемические агенты представляют собой правастатин, ловастатин, симвастатин, аторвастатин, флувастатин, церивастатин, атавастатин и ZD-4522.

Кроме того, соединения фосфиновой кислоты, полезные в ингибировании HMG CoA редуктазы, такие, как раскрыты в GB 2205837, являются подходящими для использования в комбинации с соединением настоящего изобретения.

Ингибиторы скваленсинтазы, подходящие для использования в настоящей заявке, включают, но не ограничиваясь, α-фосфоносульфонаты, раскрытые в US 5712396, раскрытые в Biller et al., J. Med. Chem., 1988, vol. 31, № 10, р. 1869-1871, включая изопреноид (фосфинилметил)фосфонаты, а также другие известные ингибиторы скваленсинтазы, например, как раскрыто в US 4871721 и 4924024; и в Biller, S.A., Neuenschwander, К., Ponpipom, М.М., и Poulter, CD., Current Pharmaceutical Design, 2, 1-40 (1996).

Кроме того, другие ингибиторы скваленсинтазы, подходящие для использования в настоящей заявке, включают терпеноидпирофосфаты, раскрытые в Ortiz de Montellano et al., J. Med. Chem., 1977, 20, 243-249, фарнезилдифосфатный аналог A и прескваленпирофосфатные аналоги (PSQ-PP), как раскрыто в Corey and Volante, J. Am. Chem. Soc., 1976, 98, 1291-1293, фосфинилфосфонаты, раскрытые в McClard, R.W. et al., J.A.C.S., 1987, 109, 5544 и циклопропаны, раскрытые в Capson, T.L., PhD dissertation, June, 1987, Dept. Med. Chem. U of Utah, Abstract, Table of Contents, p. 16, 17, 40-43, 48-51, Summary.

Производные фиброевой кислоты, которые могут использоваться в комбинации с соединением формулы I, включают фенофибрат, гемфиброзил, клофибрат, безафибрат, ципрофибрат, клинофибрат и т.п., пробукол и соответствующие соединения, как раскрыто в US 3674836, пробукол и гемфиброзил предпочтительны, секвестранты желчной кислоты, такие как холестирамин, холестипол и DEAE-Sephadex (Secholex®, Policexide®), а также липостабил (Rhone-Poulenc), Eisai E-5050 (производное N-замещенного этаноламина), иманиксил (HOE-402), тетрагидролипстатин (THL), истигмастанилфосфорилхолин (SPC, Roche), аминоциклодекстрин (Tanabe Seiyoku), Ajinomoto AJ-814 (производное азулена), мелинамид (Sumitomo), Sandoz 58-035, American Cyanamid CL-277,082 и CL-283,546 (дизамещенные производные мочевины), никотиновая кислота, аципимокс, ацифран, неомицин, п-аминосалициловая кислота, аспирин, производные поли(диаллилметиламина) такие, как раскрыто в US 4759923, четвертичный амин поли(диаллилдиметиламмония хлорид) и ионены, такие как раскрыты в US 4027009, и другие известные понижающие сывороточный холестерин агенты.

Ингибитор ACAT, который может использоваться в комбинации с соединением формулы I, включает раскрытые в Drugs of the Future 24, 9-15 (1999), (Avasimibe); "The ACAT inhibitor, Cl-1011 is effective in the prevention and regression of aortic fatty streak area in hamsters", Nicolosi et al., Atherosclerosis (Shannon, Irel). (1998), 137(1), 77-85; "The pharmacological profile of FCE 27677: a novel ACAT inhibitor with potent hypolipidemic activity mediated by selective suppression of the hepatic secretion of ApoB100-containing lipoprotein", Ghiselli, Giancarlo, Cardiovasc. Drug Rev. (1998), 16(1), 16-30; "RP 73163: a bioavailable alkyl-sulfinyl-diphenylimidazole ACAT inhibitor", Smith, C. et al., Bioorg. Med. Chem. Lett. (1996), 6(1), 47-50; "ACAT inhibitors: physiologic mechanisms for hypolipidemic and anti-atherosclerotic activities in experimental animals", Krause et al., Editor(s): Ruffolo, Robert R, Jr.; Hollinger, Mannfred A., Inflammation: Mediators Pathways (1995), 173-98, Publisher: CRC, Boca Raton, Fla.; "ACAT inhibitors: potential anti-atherosclerotic agents", Sliskovic et al., Curr. Med. Chem. (1994), 1(3), 204-25; "Inhibitors of acyl-CoA:cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. 6. The first water-soluble ACAT inhibitor with lipid-regulating activity. Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). 7. Development of a series of substituted N-phenyl-N'-[(1-phenylcyclopentyl)methyl]ureas with enhanced hypocholesterolemic activity", Stout etal, Chemtracts: Org. Chem. (1995), 8(6), 359-62, или TS-962 (Taisho Pharmaceutical Co. Ltd).

Гиполипидемический агент может быть активатором активности рецептора LD2, такой как 1(3H)-изобензофуранон, 3-(13-гидрокси-10-оксотетрадецил)-5,7-диметокси-(MD-700, Taisho Pharmaceutical Co. Ltd) и холестан-3-ол, 4-(2-пропенил)-(3a,4a,5a)-(LY295427, Eli Lilly).

Примеры подходящего ингибитора абсорбции холестерина для использования в комбинации с соединением изобретения включают SCH48461 (Schering-Plough), а также раскрытые в Atherosclerosis 115, 45-63 (1995); и J. Med. Chem. 41, 973 (1998).

Примеры подходящих ингибиторов сотранспортера  $Na^+/желч$ ная кислота для использования в комбинации с соединением изобретения включают соединения, как раскрыто в Drugs of the Future, 24, 425-430 (1999).

Ингибиторы липоксигеназы, которые могут использоваться в комбинации с соединением формулы I, включают ингибиторы 15-липоксигеназы (15-LO), такие как производные бензимидазола, как раскрыто в

WO 97/12615, ингибиторы 15-LO, как раскрыто в WO 97/12613, изотиазолоны, как раскрыто в WO 96/38144 и ингибиторы 15-LO, как раскрыто Sendobry et al., "Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties", Brit. J. Pharmacology (1997), 120, 1199-1206; и Cornicelli et al., "15-Lipoxygenase and its Inhibition: A Novel Therapeutic Target for Vascular Disease", Current Pharmaceutical Design, 1999, 5, 11-20.

Примеры подходящих противогипертонических агентов для использования в комбинации с соединением настоящего изобретения включают бета-адренергические блокаторы, блокаторы кальциевых каналов (L-тип и T-тип; например дилтиазем, верапамил, нифедипин, амлодипин и мибефрадил), мочегонные средства (например, хлоротиазид, гидрохлоротиазид, флуметиазид, гидрофлуметиазид, бендрофлуметиазид, метилхлоротиазид, трихлорометиазид, политиазид, бензтиазид, этакриновая кислота, трикринафен, хлорталидон, фуросемид, мусолимин, буметанид, триамтрен, амилорид, спиронолактон), ингибиторы ренина, ингибиторы АСЕ (например, каптоприл, зофеноприл, фозиноприл, эналаприл, цераноприл, цилазоприл, делаприл, пентоприл, хинаприл, рамиприл, лизиноприл), антагонисты рецептора АТ-1 (например, лозартан, ирбезартан, валзартан), антагонисты рецептора ЕТ (например, ситакссентан, атрсентан и соединения, раскрытые в US 5612359 и 6043265), двойной антагонист ET/AII (например, соединения, раскрытые в WO 00/01389), ингибиторы нейтральной эндопептидазы (NEP), ингибиторы вазопептидазы, (двойные ингибиторы NEP-ACE) (например, омапатрилат и гемопатрилат) и нитраты.

Примеры подходящих агентов против ожирения для использования в комбинации с соединением настоящего изобретения включают бета-3 адренергический агонист, ингибитор липазы, ингибитор обратного захвата серотонина (и допамина), бета-препарат тироидного рецептора, агонисты 5HT2C (такие как Arena APD-356); антагонисты МСНR₁, такие как Synaptic SNAP-7941 и Takeda T-226926, агонисты рецептора меланокортина (МС4R), антагонисты рецептора меланинконцентрирующего гормона (МСНR) (такого как Synaptic SNAP-7941 and Takeda T-226926), модуляторы рецептора галанина, антагонисты орексина, агонисты ССК, антагонист NPY1 или NPY5, модуляторы NPY2 и NPY4, агонисты фактора высвобождения кортикотропина, модуляторы гистаминового рецептора-3 (Н3), ингибиторы 11-бета-HSD-1, модуляторы рецептора адинопектина, ингибиторы обратного захвата моноамина или агенты высвобождения, модуляторы цилиарного нейротрофического фактора (CNTF, такой как AXOKINE® Regeneron), BDNF (нейротрофический фактор головного мозга), модуляторы лептина и рецептора лептина, антагонисты рецептора каннабиноида-1 (такой как SR-141716 (Sanofi) или SLV-319 (Solvay)) и/или аноректический агент.

Бета-3 адренергические агонисты, которые могут необязательно использоваться в комбинации с соединением настоящего изобретения, включают АЈ9677 (Takeda/Dainippon), L750355 (Merck), или CP331648 (Pfizer), или другие известные бета-3 адренергические агонисты, как раскрыто в US 5541204, 5770615, 5491134, 5776983 и 5488064.

Примеры ингибиторов липазы, которые могут необязательно использоваться в комбинации с соединением настоящего изобретения, включают орлистат или ATL-962 (Alizyme).

Ингибитор обратного захвата серотонина (и допамина) (или агонисты рецептора серотонина), который может необязательно использоваться в комбинации с соединением настоящего изобретения, может быть BVT-933 (Biovitrum), сибутрамин, топирамат (Johnson & Johnson) или аксокин (Regeneron).

Примеры соединений бета тироидных рецепторов, которые могут необязательно использоваться в комбинации с соединением настоящего изобретения, включают лиганды тироидного рецептора, такие как раскрытые в WO 97/21993 (U. CaI SF), WO 99/00353 (KaroBio) и WO 00/039077 (KaroBio).

Ингибиторы обратного захвата моноамина, которые могут необязательно использоваться в комбинации с соединением настоящего изобретения, включают фенфлурамин, дексфенфлурамин, флувоксамин, флуоксетин, пароксетин, сертралин, хлорфентермин, клофорекс, клортермин, пицилорекс, сибутрамин, дексамфетамин, фентермин, фенилпропаноламин или мазиндол.

Аноректический агент, который может необязательно использоваться в комбинации с соединением настоящего изобретения, включает топирамат (Johnson & Johnson), дексамфетамин, фентермин, фенилпропаноламин или мазиндол.

Вышеупомянутые патенты и патентные заявки включены в настоящую заявку в качестве ссылки.

Вышеуказанные другие терапевтические агенты, когда используются в комбинации с соединением настоящего изобретения, могут использоваться, например, в тех количествах, указанных в Physicians' Desk Reference, а также в патентах, приведенных выше, или как определено специалистом в данной области.

#### ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Применение фармацевтической композиции, содержащей терапевтически эффективное количество кристаллического сольвата (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Ia

Соединение Іа

где указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется порошковой рентгенограммой, включающей следующие значения  $2\theta$  (CuK $\alpha$   $\lambda$ =1,5418 Å): 3,8±0,1, 7,6±0,1, 8,1±0,1, 8,7±0,1, 15,2±0,1, 15,7±0,1, 17,1±0,1, 18,9±0,1 и 20,1±0,1, измеренные при комнатной температуре,

для лечения диабета, диабетической ретинопатии, диабетической нейропатии, диабетической нефропатии, замедленного заживления ран, инсулинорезистентности, гипергликемии, гиперинсулинемии, повышенных уровней жирных кислот или глицерина в крови, гиперлипидемии, дислипидемии, ожирения, гипертриглицеридемии, синдрома X, диабетических осложнений, атеросклероза или гипертензии, или для повышения уровней липопротеинов высокой плотности у млекопитающего.

2. Применение по п.1, отличающееся тем, что указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется параметрами элементарной ячейки, равными следующим:

размеры ячейки: a=11,2688(8) Å, b=4,8093(3) Å, c=46,723(3) Å,  $\alpha=90^{\circ}$ ,  $\beta=90^{\circ}$ ,  $\lambda=90^{\circ}$ .

пространственная группа= $P2_12_12_1$ ,

количество молекул на асимметричную ячейку=1,

причем измерение указанной кристаллической структуры выполнено при комнатной температуре.

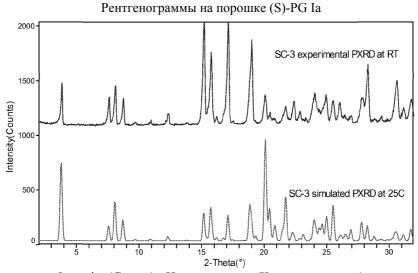
- 3. Применение по п.1, отличающееся тем, что указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется ¹³С ЯМР спектром в твердой фазе, имеющим схожие положения пика при 16,2, 17,6, 39,3, 60,9, 63,3, 69,8, 76,9, 78,7, 79,4, 113,8, 123,6, 129,3, 130,5, 132,0, 135,7, 139,1 и 158,0 част. на млн, как определено на спектрометре на 400 МГц относительно ТМS на нуле.
- 4. Применение по п.1, отличающееся тем, что указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется термограммой дифференциальной сканирующей калориметрии, имеющей эндотерму в диапазоне от приблизительно 50 до 78°C или как показано на фиг. 7.
- 5. Применение фармацевтической композиции, содержащей терапевтически эффективное количество кристаллического сольвата (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Ia

Соединение Іа

где указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется порошковой рентгенограммой, включающей следующие значения  $2\theta$  (CuK $\alpha$   $\lambda$ =1,5418 Å): 3,8±0,1, 7,6±0,1, 8,1±0,1, 8,7±0,1, 15,2±0,1, 15,7±0,1, 17,1±0,1, 18,9±0,1 и 20,1±0,1, измеренные при комнатной температуре,

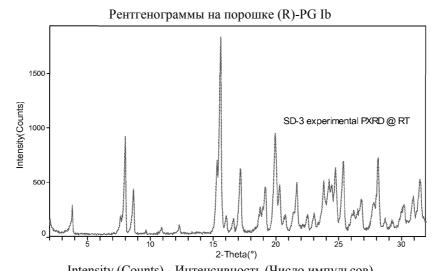
для лечения диабета типа II у млекопитающего.

6. Применение по п.5, отличающееся тем, что указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется параметрами элементарной ячейки, равными следующим:


размеры ячейки: a=11,2688(8) Å, b=4,8093(3) Å, c=46,723(3) Å,  $\alpha=90^{\circ}$ ,  $\beta=90^{\circ}$ ,  $\lambda=90^{\circ}$ 

пространственная группа = $P2_12_12_1$ ,

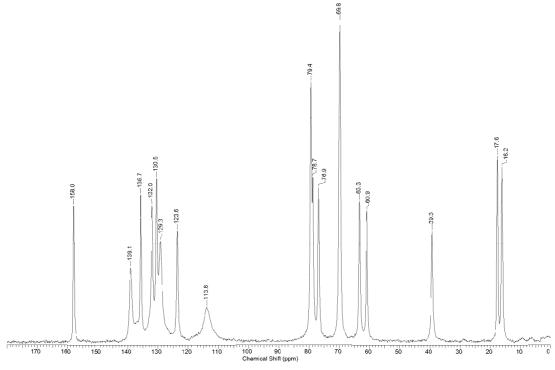
количество молекул на асимметричную ячейку=1,


причем измерение указанной кристаллической структуры выполнено при комнатной температуре.

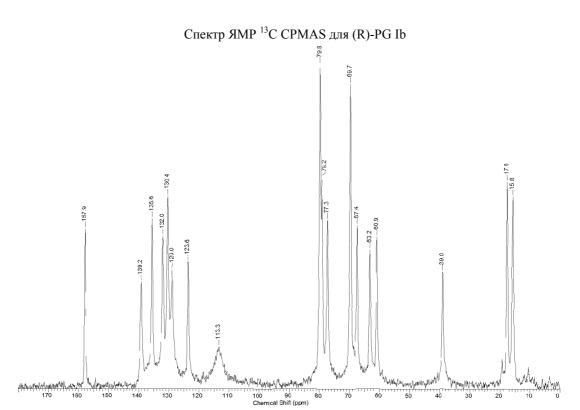
- 7. Применение по п.5, отличающееся тем, что указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется ¹³С ЯМР спектром в твердой фазе, имеющим схожие положения пика при 16,2, 17,6, 39,3, 60,9, 63,3, 69,8, 76,9, 78,7, 79,4, 113,8, 123,6, 129,3, 130,5, 132,0, 135,7, 139,1 и 158,0 част. на млн, как определено на спектрометре на 400 МГц относительно ТМS на нуле.
- 8. Применение по п.1, отличающееся тем, что указанный кристаллический сольват (S)-пропиленгликоля ((S)-PG) структуры (формы SC-3) Іа характеризуется термограммой дифференциальной сканирующей калориметрии, имеющей эндотерму в диапазоне от приблизительно 50 до 78°C или как показано на фиг. 7.



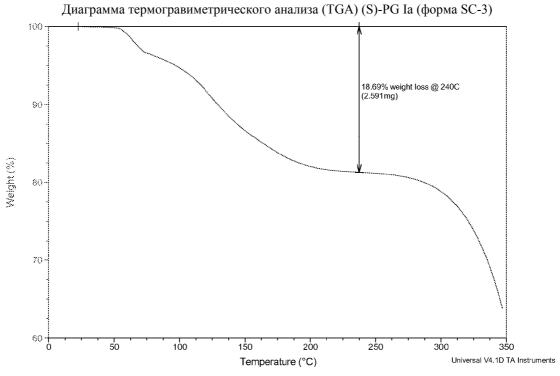
Intensity (Counts) - Интенсивность (Число импульсов) 2-Theta (°) - 2-Тетта (°)


SC-3 experimental PXRD at RT - Экспериментальная порошковая рентгенограмма PXRD SC-3 при КТ SC-3 simulated PXRD at 25C - Модельная порошковая рентгенограмма PXRD SC-3 при 25°C Фиг. 1



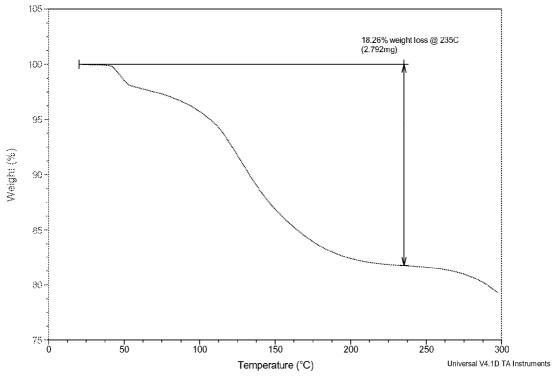

Intensity (Counts) - Интенсивность (Число импульсов) 2-Theta (°) - 2-Тетта (°)

SC-3 experimental PXRD @ RT - Экспериментальная порошковая рентгенограмма PXRD SC-3 при КТ Фиг. 2



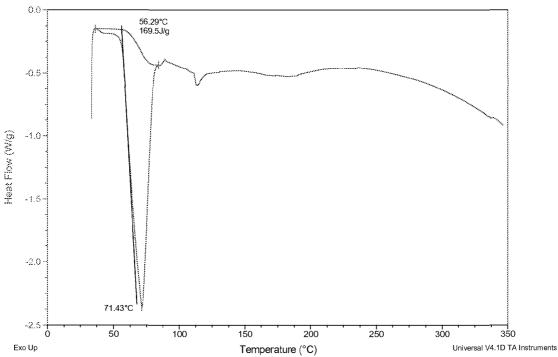



Chemical Shift (ppm) - Химический сдвиг (част. на млн) Фиг 3

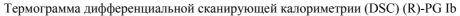


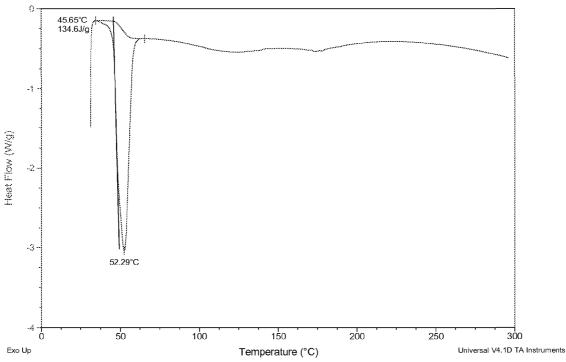

Chemical Shift (ppm) - Химический сдвиг (част. на млн) Фиг. 4



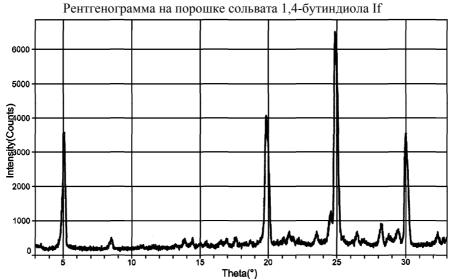

Weight (%) - Macca (%) Тетрегаture (°C) - Температура (°C) weight loss @ 240C - потеря массы при 235°C mg - мг Фиг. 5

## Диаграмма термогравиметрического анализа (TGA) (R)-PG Ib





Weight (%) - Macca (%) Тетрегаture (°C) - Температура (°C) weight loss @ 235C - потеря массы при 235°C mg - мг Фиг. 6

# Термограмма дифференциальной сканирующей калориметрии (DSC) (S)-PG Ia (форма SC-3)

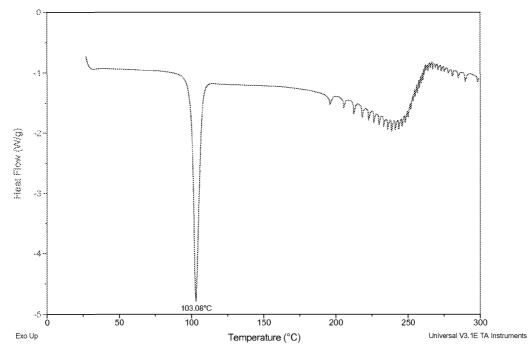



Heat Flow (W/g) - Тепловой поток (Вт/г) Темрегаture (°C) - Температура (°C) J/g - Дж/г Фиг. 7



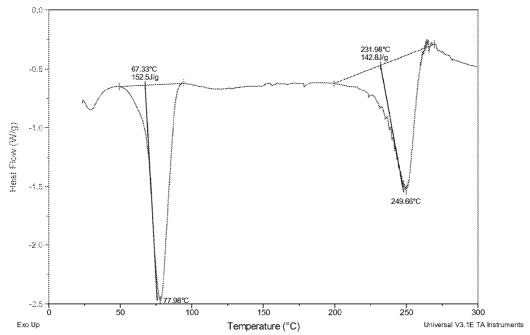



Heat Flow (W/g) - Тепловой поток (Вт/г) Temperature (°C) - Температура (°C) J/g - Дж/г Фиг. 8



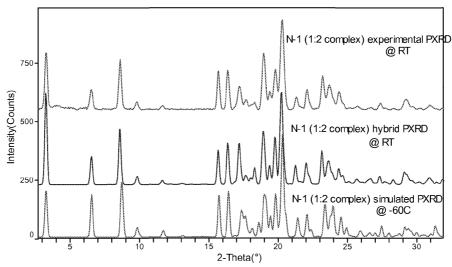






Температура плавления кристаллов по DSC: 77.5°C. Вторая эндотерма при 250°C наблюдается из-за разложения соединения. Intensity (Counts) - Интенсивность (Число импульсов) Theta (°) - Тетта (°) Фиг. 10

Термограмма дифференциальной сканирующей калориметрии (DSC) сольвата 1,4-бутиндиола If




Heat Flow (W/g) - Тепловой поток (Вт/г) Темрегаture (°C) - Температура (°C) Фиг. 11

Термограмма дифференциальной сканирующей калориметрии (DSC) сольвата диметанола Ig

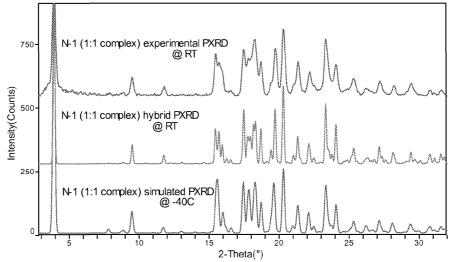


Heat Flow (W/g) - Тепловой поток (Вт/г) Темрегаture (°C) - Температура (°C) J/g - Дж/г Фиг. 12

# Рентгенограммы на порошке PXRD комплекса 1:2 N-1 Ih



Intensity (Counts) - Интенсивность (Число импульсов) 2-Theta (°) - 2-Тетта (°)


N-1 (1:2 complex) experimental PXRD @ RT - Экспериментальная порошковая рентгенограмма PXRD комплекса 1:2 N-1 при КТ

N-1 (1:2 complex) hybrid PXRD @ RT -

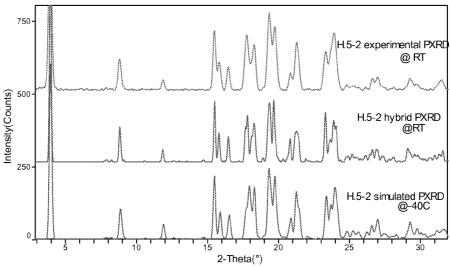
Гибридная порошковая рентгенограмма PXRD комплекса 1:2 N-1 при КТ N-1 (1:2 complex) simulated PXRD @ -60C -

Модельная порошковая рентгенограмма PXRD комплекса 1:2 N-1 при -60°C Фиг. 13

Рентгенограммы на порошке PXRD комплекса 1:1 L-пролина N-1 Ii



Intensity (Counts) - Интенсивность (Число импульсов) 2-Theta (°) - 2-Тетта (°)


N-1 (1:1 complex) experimental PXRD @ RT -

Экспериментальная порошковая рентгенограмма PXRD комплекса 1:1 N-1 при КТ N-1 (1:1 complex) hybrid PXRD @ RT -

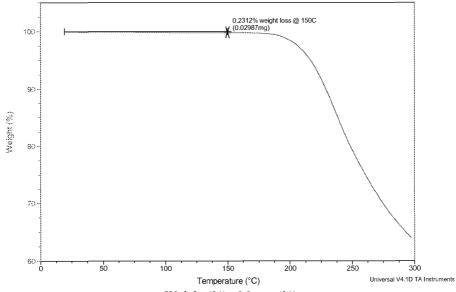
Гибридная порошковая рентгенограмма PXRD комплекса 1:1 N-1 при КТ N-1 (1:1 complex) simulated PXRD @ -40C -

Модельная порошковая рентгенограмма PXRD комплекса 1:1 N-1 при -40°C Фиг. 14

### Рентгенограмма на порошке PXRD H.5-2 Ij



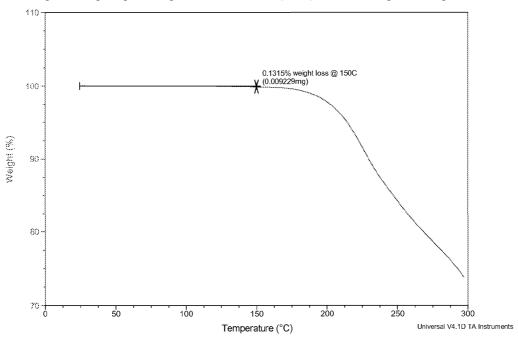
Intensity (Counts) - Интенсивность (Число импульсов) 2-Theta (°) - 2-Teтта (°)


H.5-2 experimental PXRD @ RT -

Экспериментальная порошковая рентгенограмма PXRD H.5-2 при КТ H.5-2 hybrid PXRD @ RT -

Гибридная порошковая рентгенограмма PXRD H.5-2 при КТ H.5-2 simulated PXRD @ -40C -

Модельная порошковая рентгенограмма PXRD H.5-2 при -40°C Фиг. 15

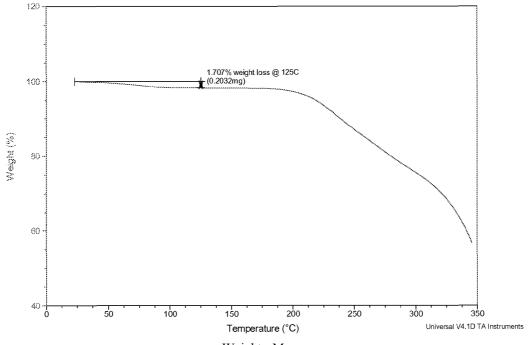

Диаграмма термогравиметрического анализа (TGA) N-1 1:2 лекарство:L-пролин Ih



Weight (%) - Macca (%) Тетрегаture (°C) - Температура (°C) weight loss @ 150C - потеря массы при 150°C

mg - мг Фиг. 16

## Диаграмма термогравиметрического анализа (TGA) N-1 1:1 лекарство:L-пролин Ii




Weight - Macca Тетрегаture (°C) - Температура (°C)

weight loss @ 150С - потеря массы при 150°С

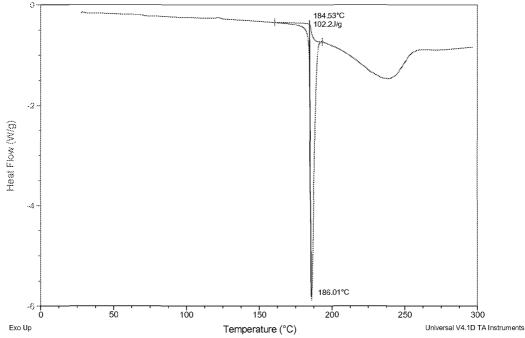
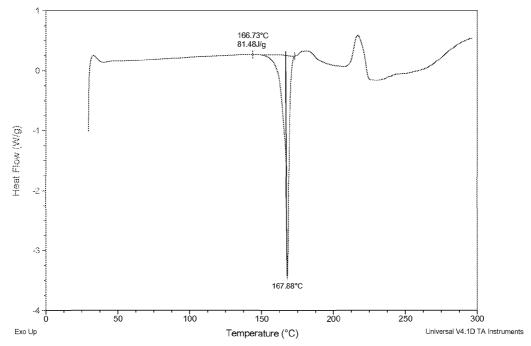

mg - мг Фиг. 17

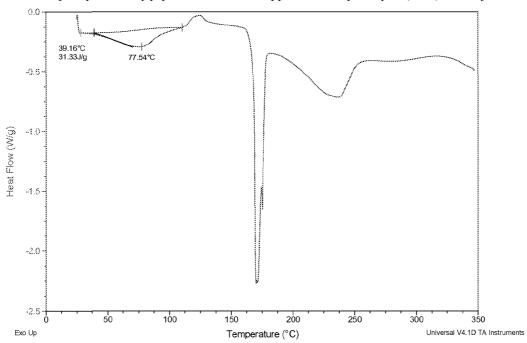
Диаграмма термогравиметрического анализа (TGA) комплекса гемигидрата 1:1 L-пролина H.5-2 Ij



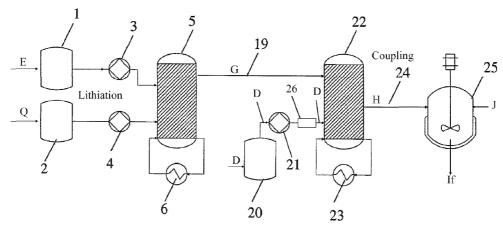

Weight - Macca Температура (°C) - Температура (°C) weight loss @ 125C - потеря массы при 125°C mg - мг Фиг. 18

Термограмма дифференциальной сканирующей калориметрии (DSC) N-1 1:2 лекарство:L-пролин Ih




Heat Flow (W/g) - Тепловой поток (Вт/г) Темрегаture (°C) - Температура (°C) J/g - Дж/г Фиг. 19

Термограмма дифференциальной сканирующей калориметрии (DSC) N-1 1:1 лекарство:L-пролин Ii




Heat Flow (W/g) - Тепловой поток (Вт/г) Темрегаture (°C) - Температура (°C) J/g - Дж/г Фиг. 20

# Термограмма дифференциальной сканирующей калориметрии (DSC) H.5-2 Ij



Heat Flow (W/g) - Тепловой поток (Вт/г) Темрегаture (°C) - Температура (°C) J/g - Дж/г Фиг. 21



Lithiation - Литирование Coupling - Связывание Фиг. 22