

# (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- Дата публикации заявки (43) 2022.12.09
- (22) Дата подачи заявки 2021.02.26

(51) Int. Cl. A61K 31/712 (2006.01) **A61K 31/7125** (2006.01) *C12N 15/113* (2010.01)

#### (54) СОЕДИНЕНИЯ И СПОСОБЫ МОДУЛИРОВАНИЯ SMN2

- (31) 62/983,545
- 2020.02.28 (32)
- (33)US
- (86) PCT/US2021/019934
- (87)WO 2021/174019 2021.09.02
- (71) Заявитель: АЙОНИС ФАРМАСЬЮТИКАЛЗ, ИНК. (US)
- (72) Изобретатель:

Риго Фрэнк, Пракаш Тхазха П., Линг Кар Юн Карен, Ван У. Брэд, Друри Уилльям Джон III. (US)

(74) Представитель: Медведев В.Н. (RU)

Предложены соединения, способы и фармацевтические композиции для модулирования РНК (57) и/или белка SMN2 в клетке или у субъекта. Такие соединения, способы и фармацевтические композиции применимы для облегчения по меньшей мере одного симптома нейродегенеративного расстройства. Такие симптомы включают в себя снижение мышечной силы; неспособность или сниженную способность сидеть прямо, стоять и/или ходить; сниженную нервно-мышечную активность; сниженную электрическую активность в одной или более мышцах; сниженное дыхание; неспособность или сниженную способность есть, пить и/или дышать без помощи; потерю веса или сниженный прирост массы тела и/или сниженную выживаемость.

#### ОПИСАНИЕ ИЗОБРЕТЕНИЯ

2420-575406EA/019

# СОЕДИНЕНИЯ И СПОСОБЫ МОДУЛИРОВАНИЯ SMN2

Перечень последовательностей

Настоящая заявка подается совместно с перечнем последовательностей в электронном формате. Перечень последовательностей предоставлен в виде файла под названием BIOL0367WOSEQ\_ST25.txt, созданного 26 февраля 2021 г., который имеет размер 44 КБ. Информация в электронном формате перечня последовательностей включена в данный документ посредством ссылки в полном объеме.

#### Область техники

Предложены соединения, способы и фармацевтические композиции модулирования РНК SMN2 в клетке или у субъекта. Такие соединения, способы и фармацевтические композиции применимы для облегчения по меньшей мере одного симптома нейродегенеративного расстройства. Такие симптомы включают в себя снижение мышечной силы; неспособность или сниженную способность сидеть прямо, стоять и/или ходить; сниженную нервно-мышечную активность; сниженную активность в одной или более мышцах; сниженное дыхание; электрическую неспособность или сниженную способность есть, пить и/или дышать без помощи; потерю веса или сниженный прирост массы тела и/или сниженную выживаемость.

# Уровень техники

Проксимальная спинальная мышечная атрофия (СМА) представляет собой генетическое нейродегенеративное расстройство, которое характеризуется потерей спинномозговых двигательных нейронов. СМА представляет собой раннее аутосомнорецессивное заболевание и является ведущей генетической причиной смерти среди младенцев. Степень тяжести СМА варьируется среди пациентов, поэтому было выделено четыре типа заболевания. СМА типа I является самой тяжелой формой с началом при рождении или в течении 6 месяцев, и обычно приводит к смерти в течение 2 лет. Дети со СМА типа І не способны сидеть или ходить. СМА типа ІІ является формой средней тяжести, пациенты способы сидеть, однако не могут стоять или ходить. У пациентов со СМА типа III, хронической формой заболевания, болезнь, как правило, развивается после 18 месяцев (Lefebvre et al., Hum. Mol. Genet., 1998, 7, 1531-1536). СМА типа IV является более легкой формой и обычно развивается после 18 лет, иногда после 10 лет; пациенты со СМА типа IV испытывают ограниченные легкие двигательные нарушения, способны ходить во взрослом возрасте и, как правило, не имеют проблем с дыханием или питанием (Farrar et al., Ann. Neurol., 2017, 81, 355-368; D'Amico et al., Orphanet J. of Rare Diseases, 2011, 6: 71).

Молекулярной основой СМА является потеря обеих копий гена выживания двигательных нейронов 1 (SMN1), который также известен как теломерный SMN и кодирует белок, который является частью мультибелкового комплекса, участвующего, как полагают, в биогенезе и рециркуляции мяРНП. Почти идентичный ген SMN2, который

также может быть известен как центромерный SMN, существует в дуплицированной области на хромосоме 5q13 и модулирует степень тяжести заболевания. Несмотря на то что SMN1 и SMN2 обладают потенциалом кодировать один и тот же белок, экспрессия нормального гена SMN1 приводит исключительно к экспрессии полноразмерного белка выживания двигательных нейронов (SMN), тогда как экспрессия гена SMN2 приводит к образованию двух различных форм белка: полноразмерного белка SMN2 и усеченного белка SMN2 (белка SMN $\Delta$ 7). SMN2 содержит трансляционно молчащую мутацию в положении +6 экзона 7, что приводит к неэффективному включению экзона 7 в транскрипты SMN2. Таким образом, преобладающей формой SMN2 является усеченная версия без экзона 7, которая является нестабильной и неактивной (Cartegni and Krainer, Nat. Genet., 2002, 30, 377-384). Экспрессия гена SMN2 приводит к образованию приблизительно 10-20% полноразмерного белка **SMN** нестабильного/нефункционального белка SMN $\Delta$ 7. Белок SMN играет хорошо известную роль в сборке сплайсосомы и может также опосредовать перенос мРНК в аксон и нервное окончание нейронов.

Целью данного документа является предоставление соединений, способов и фармацевтических композиций для лечения CMA.

# Сущность изобретения

В данном документе предложены соединения, способы и фармацевтические композиции для модулирования сплайсинга РНК SMN2 в клетке или у субъекта. В определенных вариантах осуществления соединения, применимые для модулирования сплайсинга РНК SMN2, представляют собой олигомерные соединения. В определенных вариантах осуществления олигомерные соединения увеличивают количество РНК SMN2, включая экзон 7. В определенных вариантах осуществления олигомерные соединения повышают экспрессию полноразмерного белка SMN2. В определенных вариантах осуществления изобретения олигомерное соединение содержит модифицированный определенных вариантах осуществления олигонуклеотид. В субъект нейродегенеративное заболевание. В определенных вариантах осуществления субъект имеет спинальную мышечную атрофию (СМА).

Также предложены способы, полезные для облегчения по меньшей мере одного симптома нейродегенеративного заболевания. В определенных вариантах осуществления нейродегенеративное заболевание представляет собой СМА. В определенных вариантах осуществления симптомы включают в себя снижение мышечной силы; неспособность или сниженную способность сидеть прямо, стоять и/или ходить; сниженную нервномышечную активность; сниженную электрическую активность в одной или более мышцах; сниженное дыхание; неспособность или сниженную способность есть, пить и/или дышать без помощи; потерю веса или сниженный прирост массы тела и/или сниженную выживаемость. В определенных вариантах осуществления в данном документе предложены модифицированные олигонуклеотиды для лечения СМА.

#### Подробное описание сущности изобретения

Следует понимать, что и предшествующее общее описание, и последующее подробное описание являются только иллюстративными и пояснительными и не являются ограничительными. В данном документе использование форма единственного числа подразумевает использование формы множественного числа, если конкретно не указано иное. В контексте данного документа использование «или» означает «и/или», если не указано иное. Кроме того, использование термина «включая», а также других форм, таких как «включает» и «включенный», не является ограничивающим. Кроме того, такие термины, как «элемент» или «компонент» охватывают как элементы, так и компоненты, содержащие одну единицу, и элементы и компоненты, которые содержат более одной субъединицы, если конкретно не указано иное.

Заголовки разделов, используемые в данном описании, предназначены только для организационных целей и не должны толковаться как ограничивающие описанный предмет. Все документы или части документов, процитированные в этой заявке, включая, но не ограничиваясь ими, патенты, заявки на патенты, статьи, книги, трактаты, и записи эталонных последовательностей GenBank и NCBI настоящим явным образом включены посредством ссылки для обсуждаемых частей документа, а также во всей своей полноте.

# **ОПРЕДЕЛЕНИЯ**

Если не даны конкретные определения, номенклатура, используемая в связи с описанными в данном документе процедурами и методами аналитической химии, синтетической органической химии, а также медицинской и фармацевтической химии, хорошо известна и широко используется в данной области техники. Там, где это разрешено, все патенты, заявки, опубликованные заявки и другие публикации и другие данные, упоминаемые во всем изобретении, включены в данный документ посредством ссылки в полном объеме.

Если не указано иное, приведенные ниже термины имеют следующие значения:

В контексте данного документа термин «2'-дезоксирибонуклеозид» означает нуклеозид, содержащий 2'-H(H) дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления 2'-дезоксирибонуклеозид представляет собой 2'-β-D-дезоксирибонуклеозид и содержит 2'-β-D-дезоксирибозильный сахарный фрагмент, который имеет конфигурацию β-D, как обнаружено во встречающихся в природе дезоксирибонуклеиновых кислотах (ДНК). В определенных вариантах осуществления 2'-дезоксирибонуклеозид может содержать модифицированное нуклеиновое основание или может содержать нуклеиновое основание РНК (урацил).

В контексте данного документа «2'-MOE» означает группу 2'-OCH $_2$ CH $_2$ OCH $_3$  вместо группы 2'-OH рибозильного сахарного фрагмента. «2'-MOE сахарный фрагмент» представляет собой сахарный фрагмент с группой 2'-OCH $_2$ CH $_2$ OCH $_3$  вместо группы 2'-OH рибозильного сахарного фрагмента. Если не указано иное, 2'-MOE сахарный фрагмент находится в конфигурации  $\beta$ -D. «МОЕ» означает О-метоксиэтил.

В контексте данного документа термин «2'-МОЕ нуклеозид» означает нуклеозид, содержащий 2'-МОЕ сахарный фрагмент.

В контексте данного документа «2'-NMA» означает группу -O-CH<sub>2</sub>-C(=O)-NH-CH<sub>3</sub> вместо группы 2'-OH рибозильного сахарного фрагмента. «2'-NMA сахарный фрагмент» представляет собой сахарный фрагмент с группой 2'-O-CH<sub>2</sub>-C(=O)-NH-CH<sub>3</sub> вместо группы 2'-OH рибозильного сахарного фрагмента. Если не указано иное, 2'-NMA сахарный фрагмент находится в конфигурации  $\beta$ -D. «NMA» означает O-N-метилацетамид.

В контексте данного документа термин «2'-NMA нуклеозид» означает нуклеозид, содержащий 2'-NMA сахарный фрагмент.

В контексте данного документа «2'-OMe» означает группу 2'-OCH<sub>3</sub> вместо группы 2'-OH рибозильного сахарного фрагмента. «2'-OMe сахарный фрагмент» представляет собой сахарный фрагмент с группой 2'-OCH<sub>3</sub> вместо группы 2'-OH рибозильного сахарного фрагмента. Если не указано иное, 2'-OMe сахарный фрагмент находится в конфигурации β-D. «ОМе» означает О-метил.

В контексте данного документа термин «2'-ОМе-нуклеозид» означает нуклеозид, содержащий 2'-ОМе сахарный фрагмент.

В контексте данного документа термин «2'-замещенный нуклеозид» означает нуклеозид, содержащий 2'-замещенный сахарный фрагмент. В контексте данного документа термин «2'-замещенный» по отношению к сахарному фрагменту означает сахарный фрагмент, содержащий по меньшей мере одну 2'-замещающую группу, отличную от Н или ОН.

В контексте данного документа термин «5-метилцитозин» означает цитозин, модифицированный метильной группой, присоединенной в положении 5. 5-метилцитозин представляет собой модифицированное нуклеиновое основание.

В контексте данного документа термин «введение» означает предоставление фармацевтического агента субъекту.

Используемый в данном документе термин «ослабление» применительно к лечению означает облегчение по меньшей мере одного симптома по сравнению с тем же симптомом в отсутствие лечения. В определенных вариантах осуществления ослабление представляет собой уменьшение тяжести или частоты симптома или задержки наступления или замедления прогрессирования тяжести или частоты симптома. В определенных вариантах осуществления симптом представляет собой снижение мышечной силы; неспособность или сниженную способность сидеть прямо, стоять и/или ходить; сниженную нервно-мышечную активность; сниженную электрическую активность в одной или более мышцах; сниженное дыхание; неспособность или сниженную способность есть, пить и/или дышать без помощи; потерю веса или сниженный прирост массы тела и/или сниженную выживаемость.

В контексте данного документа термин «антисмысловая активность» означает любое обнаруживаемое и/или измеримое изменение, связанное с гибридизацией антисмыслового соединения с его целевой нуклеиновой кислотой.

В контексте данного документа термин «антисмысловое соединение» означает олигомерное соединение или олигомерный дуплекс, способные обеспечить по меньшей

мере одну антисмысловую активность.

В контексте данного документа термин «бициклический нуклеозид» или «BNA» означает нуклеозид, содержащий бициклический сахарный фрагмент.

Используемый в данном документе термин «бициклический сахар» или «бициклический сахарный фрагмент» означает модифицированный сахарный фрагмент, содержащий два кольца, причем второе кольцо образовано через мостик, соединяющий два атома в первом кольце, тем самым образуя бициклическую структуру. В определенных вариантах осуществления первое кольцо бициклического сахарного фрагмента представляет собой фуранозильный фрагмент. В определенных вариантах осуществления фуранозильный фрагмент представляет собой рибозильный фрагмент. В определенных вариантах осуществления бициклический сахарный фрагмент не содержит фуранозильный фрагмент.

В контексте данного документа термин «спинномозговая жидкость» или «СМЖ» означает жидкость, заполняющую пространство вокруг головного мозга и спинного мозга. «Искусственная спинномозговая жидкость» или «иСМЖ» означает приготовленную или изготовленную жидкость, которая обладает определенными свойствами спинномозговой жидкости.

В контексте данного документа «сЕt» означает мостик от положения 4' к положению 2' вместо группы 2'ОН рибозильного сахарного фрагмента, причем мостик имеет формулу 4'-СH(CH<sub>3</sub>)-О-2', и при этом метильная группа мостика находится в конфигурации S. «сЕt сахарный фрагмент» представляет собой бициклический сахарный фрагмент с мостиком от положения 4' к положению 2' вместо группы 2'ОН рибозильного сахарного фрагмента, причем мостик имеет формулу 4'-CH(CH<sub>3</sub>)-О-2', и при этом метильная группа мостика находится в конфигурации S. «сЕt» означает ограниченный этил.

В контексте данного документа термин «cEt-нуклеозид» означает нуклеозид, содержащий cEt сахарный фрагмент.

В контексте данного документа термин «хирально обогащенная популяция» означает множество молекул с идентичной молекулярной формулой, в котором количество или процентное содержание молекул в популяции, которые имеют конкретную стереохимическую конфигурацию в конкретном хиральном центре, превышает количество или процент ожидаемых молекул, которые имеют ту же конкретную стереохимическую конфигурацию в том же конкретном хиральном центре в популяции, если конкретный хиральный центр был стереослучайным. Хирально обогащенные популяции молекул, имеющие несколько хиральных центров внутри каждой молекулы, могут содержать один или несколько стереослучайных хиральных центров. В собой определенных вариантах осуществления молекулы представляют модифицированные олигонуклеотиды. В определенных вариантах осуществления молекулы представляют собой соединения, содержащие модифицированные олигонуклеотиды.

В контексте данного документа термин «комплементарный» по отношению к олигонуклеотиду означает, что по меньшей мере 70% нуклеиновых оснований олигонуклеотида или одной или нескольких его частей и нуклеиновых оснований другой нуклеиновой кислоты или одной или нескольких ее частей могут образовывать водородные связи друг с другом, когда последовательность нуклеиновых оснований олигонуклеотида и другой нуклеиновой кислоты выровнены в противоположных направлениях. Комплементарные азотистые основания означают азотистые основания, которые способны образовывать водородные связи друг с другом. Комплементарные пары нуклеиновых оснований включают в себя аденин (А) и тимин (Т), аденин (А) и урацил (U), цитозин (C) и гуанин (G), а также 5-метилцитозин (mC) и гуанин (G). Комплементарные олигонуклеотиды и/или целевые нуклеиновые кислоты не должны иметь комплементарные нуклеиновые основания при каждом нуклеозиде. Скорее допускаются некоторые ошибочные спаривания. В контексте данного документа термин «полностью комплементарный» или «на 100% комплементарный» по отношению к олигонуклеотиду или его части означает, что олигонуклеотид или его часть комплементарны другому олигонуклеотиду или целевой нуклеиновой кислоте в каждом нуклеотидном основании более короткого из двух олигонуклеотидов или при каждом нуклеозиде, если олигонуклеотиды имеют одинаковую длину.

В контексте данного документа термин «смежный» в контексте олигонуклеотида относится к нуклеозидам, нуклеиновым основаниям, сахарным фрагментам или межнуклеозидным связям, которые непосредственно примыкают друг к другу. Например, «смежные нуклеиновые основания» означает нуклеиновые основания, расположенные непосредственно рядом друг с другом.

В контексте данного документа термин «гибридизация» означает спаривание или отжиг комплементарных олигонуклеотидов и/или нуклеиновых кислот. Не ограничиваясь конкретным механизмом, наиболее распространенный механизм гибридизации включает водородную связь, которая может быть водородной связью Уотсона - Крика, Хугстина или обратной водородной связью Хугстина, между комплементарными нуклеиновыми основаниями.

В контексте данного документа термин «межнуклеозидная связь» означает ковалентную связь между смежными нуклеозидами в олигонуклеотиде. В контексте данного документа термин «модифицированная межнуклеозидная связь» означает любую межнуклеозидную связь, отличную от фосфодиэфирной межнуклеозидной связи. «Фосфоротиоатная межнуклеозидная связь» представляет собой модифицированную межнуклеозидную связь, в которой один из немостиковых атомов кислорода фосфодиэфирной межнуклеозидной связи замещает атом серы.

В контексте данного документа термин «ошибочное спаривание» или «некомплементарный» означает нуклеиновое основание первого олигонуклеотида, которое не является комплементарным соответствующему основанию второго олигонуклеотида или целевой нуклеиновой кислоты, когда первый и второй

олигонуклеотид выровнены.

В контексте данного документа «мотив» означает паттерн немодифицированных и/или модифицированных сахарных фрагментов, нуклеиновых оснований и/или межнуклеозидных связей в олигонуклеотиде.

В контексте данного документа термин «небициклический модифицированный сахарный фрагмент» означает модифицированный сахарный фрагмент, который содержит модификацию, такую как заместитель, которая не образует мостик между двумя атомами сахара с образованием второго кольца.

В контексте данного документа термин «нуклеиновое основание» означает немодифицированное нуклеиновое основание или модифицированное нуклеиновое контексте данного документа «немодифицированное нуклеиновое основание» означает аденин (A), тимин (T), цитозин (C), урацил (U) или гуанин (G). В контексте данного документа термин «модифицированное нуклеиновое основание» означает группу атомов, отличных от немодифицированных A, T, C, U или G, способных образовывать пары по меньшей мере с одним немодифицированным нуклеиновым основанием. «5-метилцитозин» представляет собой модифицированное нуклеиновое собой Универсальное основание представляет модифицированное основание. нуклеиновое основание, которое может спариваться любым немодифицированных нуклеиновых оснований. В контексте данного документа термин «последовательность нуклеиновых оснований» означает порядок смежных нуклеиновых оснований в целевой нуклеиновой кислоте или олигонуклеотиде, не зависящий от какойлибо сахарной модификации или модификации межнуклеозидной связи.

В контексте данного документа термин «нуклеозид» означает соединение, содержащее нуклеиновое основание и сахарный фрагмент. Нуклеиновое основание и сахарный фрагмент, каждый независимо, являются немодифицированными или модифицированными. В контексте данного документа термин «модифицированный нуклеозид» означает нуклеозид, содержащий модифицированное нуклеиновое основание и/или модифицированный сахарный фрагмент. «Связанные нуклеозиды» представляют собой нуклеозиды, которые соединены в непрерывную последовательность (т.е. между связанными нуклеозидами отсутствуют дополнительные нуклеозиды).

В контексте данного документа термин «олигомерное соединение» означает олигонуклеотид и необязательно один или более дополнительных элементов, таких как коньюгатная группа или концевая группа. Олигомерное соединение может быть спарено со вторым олигомерным соединением, которое комплементарно первому олигомерному соединению или может быть не спарено. «Одноцепочечное олигомерное соединение» представляет собой неспаренное олигомерное соединение. Термин «олигомерный дуплекс» означает дуплекс, образованный двумя олигомерными соединениями, имеющими комплементарные последовательности нуклеиновых оснований. Каждое олигомерное соединение олигомерного дуплекса может называться «дуплексным олигомерным соединением».

В контексте данного документа термин «олигонуклеотид» означает нить связанных нуклеозидов, соединенных посредством межнуклеозидных связей, где каждый нуклеозид и межнуклеозидная связь могут быть модифицированными или немодифицированными. Если не указано иное, олигонуклеотиды состоят из 8-50 связанных нуклеозидов. Используемый в данном документе термин «модифицированный олигонуклеотид» означает олигонуклеотид, где по меньшей мере один нуклеозид или межнуклеозидная связь модифицированы. Используемый в данном документе термин «немодифицированный олигонуклеотид» означает олигонуклеотид, который не содержит каких-либо модификаций нуклеозидов или модификаций межнуклеозидных связей.

В контексте данного документа термин «фармацевтическая композиция» означает смесь веществ, подходящих для введения субъекту. Например, фармацевтическая композиция может содержать олигомерное соединение и стерильный водный раствор.

В контексте данного документа термин «фармацевтически приемлемый носитель или разбавитель» означает любое вещество, подходящее для применения при введении субъекту. Некоторые такие носители позволяют составлять фармацевтические композиции в виде, например, таблеток, пилюль, драже, капсул, жидкостей, гелей, сиропов, взвесей, суспензии и пастилки для перорального приема субъектом. В определенных вариантах осуществления фармацевтически приемлемый носитель или разбавитель представляет собой стерильную воду, стерильный физиологический раствор, стерильный буферный раствор или стерильную искусственную спинномозговую жидкость.

В контексте данного документа термин «фармацевтически приемлемые соли» означает физиологически и фармацевтически приемлемые соли соединений. Фармацевтически приемлемые соли сохраняют необходимую биологическую активность исходного соединения и не оказывают на него нежелательного токсического воздействия.

В контексте данного документа термин «РНК» означает транскрипт РНК, который включает в себя пре-мРНК и зрелую мРНК, если не указано иное.

В контексте данного документа термин «стереослучайный хиральный центр» в контексте совокупности молекул идентичной молекулярной формулы означает хиральный центр, имеющий случайную стереохимическую конфигурацию. Например, в популяции молекул, содержащих стереослучайный хиральный центр, число молекул, имеющих (S)конфигурацию стереослучайного хирального центра, может быть, но не обязательно, таким же, как число молекул, имеющих (R)-конфигурацию стереослучайного хирального центра. Стереохимическая конфигурация хирального центра считается случайной, если она является результатом способа синтеза, который не предназначен для контроля стереохимической конфигурации. В определенных вариантах осуществления собой стереослучайную стереослучайный хиральный центр представляет фосфоротиоатную межнуклеозидную связь.

В контексте данного документа термин «субъект» означает человека или отличное от человека животное.

В контексте данного документа термин «сахарный фрагмент» немодифицированный сахарный фрагмент или модифицированный сахарный фрагмент. В контексте данного документа термин «немодифицированный сахарный фрагмент» 2'-OH(H) β-D рибозильный фрагмент, встречающийся РНК означает («немодифицированный сахарный фрагмент РНК»), или 2'-H(H) β-D дезоксирибозильный фрагмент, встречающийся в ДНК («немодифицированный сахарный фрагмент ДНК»). Немодифицированные сахарные фрагменты имеют по одному водороду в каждом из положений 1', 3' и 4', кислород в положении 3' и два атома водорода в положении 5'. В контексте данного документа термин «модифицированный сахарный фрагмент» или «модифицированный сахар» означает модифицированный фуранозильный сахарный фрагмент или заменитель сахара.

В контексте данного документа термин «заменитель сахара» означает модифицированный сахарный фрагмент, отличающийся от фуранозильного фрагмента, который может связывать нуклеиновое основание с другой группой, такой как межнуклеозидная связь, группа конъюгата или концевая группа в олигонуклеотиде. Модифицированные нуклеозиды, содержащие заменители сахаров, могут быть включены в одном или более положениях внутри олигонуклеотида, и такие олигонуклеотиды способны гибридизироваться с комплементарными олигомерными соединениями или целевыми нуклеиновыми кислотами.

В контексте данного документа термин «стандартный анализ in vivo» означает анализ, описанный в примере 2, и его подходящие варианты.

В контексте данного документа «симптом» означает любую физическую особенность или результат теста, которые указывают на наличие или степень заболевания или нарушения. В определенных вариантах осуществления симптом очевиден для субъекта или для профессионального медицинского работника, осматривающего или исследующего этого субъекта.

В контексте данного документа термин «целевая нуклеиновая кислота» означает нуклеиновую кислоту, для которой сконструировано антисмысловое соединение.

В контексте данного документа термин «целевая область» означает часть целевой нуклеиновой кислоты, для которой олигомерное соединение сконструировано с целью гибридизации.

В контексте данного документа термин «концевая группа» означает химическую группу или группу атомов, которые ковалентно связаны с концом олигонуклеотида.

В контексте данного документа термин «терапевтически эффективное количество» означает количество фармацевтического агента, которое обеспечивает терапевтический эффект для субъекта. Например, терапевтически эффективное количество ослабляет симптом заболевания.

# ОПРЕДЕЛЕННЫЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ

В настоящем изобретении предложены следующие неограничивающие пронумерованные варианты осуществления:

Вариант осуществления 1. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16, 17, 18, 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

Вариант осуществления 2. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 17, 18, 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16 или по меньшей мере 17 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20-27, 29-30 или 32-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

Вариант осуществления 3. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 18, 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16, по меньшей мере 17 или по меньшей мере 18 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20-27, 30 или 33-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

Вариант осуществления 4. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18 или по меньше мере 19 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20, 22, 24-27, 30, 33-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

Вариант осуществления 5. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20, 22, 25, 27, 35, 39-46 или 49, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

Вариант осуществления 6. Олигомерное соединение по любому из вариантов осуществления 1-5, в котором модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, которая по меньшей мере на 80%, 85%, 87,5%, 88,2%, 89%, 89,4%, 90%, 93,7%, 94%, 94,7%, 95% или 100% комплементарна последовательности нуклеиновых оснований SEQ ID NO: 1 при измерении по всей последовательности нуклеиновых оснований модифицированного олигонуклеотида.

Вариант осуществления 7. Олигомерное соединение по любому из вариантов осуществления 1-6, в котором модифицированный олигонуклеотид имеет мотив межнуклеозидной связи (от 5' к 3'), выбранный из: sosossssssssss, ssossssssssssss, ssssssooossssss, SSOSSSSSSSSSSSSS, SSSSOSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, ssssssssssssss, SSSSSSSSSSSSSSSS, SOSSSSSSSSSSSSSS, SOSSSSSSSSSSSSSS, SOSSSSSSSSSSSSS, SOSSSSSSSSSSSSS, SOSSSOSSSSSSSSSS, SSSSOSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, ssssssssssssss, soosssssssssss, SSSOOSSSSSSSSSSS, sssssoossssssss, sssssssoosssssss, SSSSSSSSSOOSSSSSS, sssssssssoosss, sssssssssssooss, SSSSSSSOOOSSSSSS. SSOOOOSSSSSSSSSSS, SSSSOOOOSSSSSSSSS, SSSSSSSOOOOSSSS, SSSSSSSSSOOOOSSS, \$\$\$\$\$\$\$\$\$\$0000\$\$, \$\$\$\$\$00000\$\$\$\$\$\$, \$\$\$\$\$000000\$\$\$\$\$, \$0000\$\$\$\$\$000\$\$, \$\$\$\$000000\$\$\$\$, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSOOSS, SSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, sssssssssssssss, sssssssssssss, ssssssosssssss, ssssssoosssssss, SSSSSSSSSSSSSS, SSSOSSSSSSSSSSSS, SSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSSSS, SSSSSSSSOOSSSSSSSSS, SOSSSSSSSSSSSSSSS, sossssssssssssss, SOSSSSSSSSSSSSSSS, sosossssssssssss, soossssssssssss, SSSSSSSSSSSSSSSS, SOSOSSSSSSSSSSSSS, sssssssssoooss, ssssssssooossss, sssssssoosssss, ssssssooosssss, ssssssoooosssss, sssssooooosssss, sssssoooooossss, ssssooosssssss. SSOSSSSSSSSSSSSS, ssossssosssoss, ssosssossoss, ssossossossoss, ssosososososss, SSOOOOSSSSSSSSSS, soossssssssooss, sooosssssssooss, sooossssssoooss, sooossssssooss, ssssssssoooss, ssssssssooosss, ssssssooosssss, ssssssooosssss, SSSSOOOOOSSSSS sssssooooossss, ssssooossssss, ssssoooooossss, SSSOSSSOSSSOSSS, SSOSSSSSSSSSSSS, SSOSSOSSOSSS, ssossossososs, soosssssssooss, ssosososososs, SSOOOOSSSSSSSSS, sooossssssooss, sooosssssoooss и soooosssssoooss; где «s» представляет собой фосфоротиоатную межнуклеозидную связь, а «о» представляет собой фосфодиэфирную межнуклеозидную связь.

Вариант осуществления 8. Олигомерное соединение по любому из вариантов осуществления 1-6, в котором модифицированный олигонуклеотид имеет мотив межнуклеозидной связи, выбранный из: sssssssssssssss и sssssssssssssss, где «s» представляет собой фосфоротиоатную межнуклеозидную связь, «о» представляет собой

фосфодиэфирную межнуклеозидную связь, а «х» представляет собой метоксипропилфосфонатную межнуклеозидную связь.

Вариант осуществления 10. Олигомерное соединение по любому из вариантов осуществления 1-9, в котором модифицированный олигонуклеотид имеет сахарный мотив eeeeeeeeeeeee, nnnnnnnnnnnnnn, eeeeeeeeeeee, nnnnnnnnnnnnnn, nnnnnnnnnnnnnnn, nnnnnnnnnnnnnnnn, nnnnnnnnnnnnnnnnn, nnnnnnnnnnnnnnnnd. nnnnnnnnnnnnnnn, nnnnnnnnnnnnnnnndd, nnnnnnnnnnnnnnnnned, nnnnnnnnnnnnnnnde, nnnnnnnnnnnnnnnnee, keekeekeekeekeek. nnnnnnnnnnnnnnnne, eeeeeeeeeeeed, keeekeeekeeek. keeeeekeeeek, keeeeeekeeeeeek, keeeeeeeeeeek, eeekeekeekeekek, eeekeekeekeekee, eeeeekeekeekeekee, eeeeekeekeekeeee, eeeeekeeeekeeee. keekeekeekeeeeee, eeeeeeekeekeekeek, keekeekeeeeeeee, eeeeeeeeekeekeek. keekeeeeeeeeeee, eeeeeeeeeeekeek, keekeekeekeek, keeekeeekeeek, keeeekeeeek, keeeeeekeeeeek, keeeeeeeeeeek, eekeekeekeekek. eekeekeekeekee, eeeeekeekeekeekee, eeeeekeekeekeeee, eeeeekeeeeekeeeee. keekeekeekeeeee, eeeeeekeekeek, keekeekeeeeeeee, eeeeeeeeekeekeek. keekeeeeeeeeee, eeeeeeeeeekeek, keekeekeekeek, keeekeekeekeek. keecekeeceke, keececeekeeceek, keececeecek, kekeekeekeekeeke, eekeekeekeekeeke, keekeekeeeeeee, eeeeeeeekeekeek. keekeeeeeeeee, eeeeeeeeekeek. где «е» представляет собой 2'-МОЕ сахарный фрагмент, «п» представляет собой 2'-NMA сахарный фрагмент, «k» представляет собой сЕt сахарный фрагмент, «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а «у» представляет собой 2'-OMe сахарный фрагмент.

Вариант осуществления 12. Олигомерное соединение по любому из вариантов осуществления 1-9, в котором модифицированный олигонуклеотид имеет сахарный мотив (от 5' к 3') qqnqqqqqnqnnqnqqnn, где каждый «п» представляет собой 2'-NMA сахарный фрагмент, а каждый «q» независимо выбран из 2'-O-(N, N-диметил)ацетамидного сахарного фрагмента, 2'-O-(N-этил)ацетамидного сахарного фрагмента, 2'-O-(N-пропил)ацетамидного сахарного фрагмента и 2'-O-(N-циклопропил)ацетамидного сахарного фрагмента.

Вариант осуществления 13. Олигомерное соединение по любому из вариантов осуществления 1-9, в котором модифицированный олигонуклеотид содержит по меньшей мере один модифицированный сахарный фрагмент.

Вариант осуществления 14. Олигомерное соединение по варианту осуществления 13, в котором модифицированный олигонуклеотид содержит по меньшей мере один бициклический сахарный фрагмент.

Вариант осуществления 15. Олигомерное соединение по варианту осуществления 14, в котором бициклический сахарный фрагмент имеет мостик от положения 4' к положению 2', причем мостик от положения 4' к положению 2' выбран из - $CH_2$ -O- и - $CH(CH_3)$ -O-.

Вариант осуществления 16. Олигомерное соединение по варианту осуществления 13, в котором модифицированный олигонуклеотид содержит по меньшей мере один небициклический модифицированный сахарный фрагмент.

Вариант осуществления 17. Олигомерное соединение по варианту осуществления 16, в котором небициклический модифицированный сахарный фрагмент представляет собой любой из 2'-МОЕ сахарного фрагмента, 2'-NMA сахарного фрагмента, 2'-ОМе сахарного фрагмента или 2'-F сахарного фрагмента.

Вариант осуществления 18. Олигомерное соединение по варианту осуществления 13, в котором модифицированный олигонуклеотид содержит по меньшей мере один заменитель сахара.

Вариант осуществления 19. Олигомерное соединение по варианту осуществления 18, в котором заменитель сахара представляет собой любой из морфолино, модифицированного морфолино, ПНК, ТНР и F-HNA.

Вариант осуществления 20. Олигомерное соединение по любому из вариантов осуществления 1-6 и 10-19, в котором модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.

Вариант осуществления 21. Олигомерное соединение по варианту осуществления 20, при этом каждая межнуклеозидная связь модифицированного олигонуклеотида представляет собой модифицированную межнуклеозидную связь.

Вариант осуществления 22. Олигомерное соединение по варианту осуществления 20 или варианту осуществления 21, в котором модифицированная межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь.

Вариант осуществления 23. Олигомерное соединение по любому из вариантов

осуществления 1-20 или 22, в котором модифицированный олигонуклеотид содержит по меньшей мере одну фосфодиэфирную межнуклеозидную связь.

Вариант осуществления 24. Олигомерное соединение по любому из вариантов осуществления 20, 22 или 23, в котором каждая межнуклеозидная связь независимо выбрана из фосфодиэфирной межнуклеозидной связи и фосфоротиоатной межнуклеозидной связи.

Вариант осуществления 26. Олигомерное соединение по любому из вариантов осуществления 1-25, при этом модифицированный олигонуклеотид содержит модифицированное нуклеиновое основание.

Вариант осуществления 27. Олигомерное соединение по варианту осуществления 26, в котором модифицированное нуклеиновое основание представляет собой 5-метилцитозин.

Вариант осуществления 28. Олигомерное соединение по любому из вариантов осуществления 1-27, в котором модифицированный олигонуклеотид состоит из 16, 17, 18, 19 или 20 связанных нуклеозидов.

Вариант осуществления 29. Олигомерное соединение по любому из вариантов осуществления 1-28, в котором модифицированный олигонуклеотид содержит 1 или 2 некомплементарных нуклеиновых оснований.

Вариант осуществления 30. Олигомерное соединение по любому из вариантов осуществления 1-29, в котором модифицированный олигонуклеотид содержит 1 или 2 расщепляемых фрагментов.

Вариант осуществления 31. Олигомерное соединение по варианту осуществления 30, в котором расщепляемый фрагмент представляет собой фосфодиэфирную межнуклеозидную связь.

Вариант осуществления 32. Олигомерное соединение по любому из вариантов осуществления 1-31, состоящее из модифицированного олигонуклеотида.

Вариант осуществления 33. Олигомерное соединение по любому из вариантов осуществления 1-32, отличающееся тем, что олигомерное соединение представляет собой одноцепочечное олигомерное соединение.

Вариант осуществления 34. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  ${}^{m}C_{es}$   $A_{eo}$   ${}^{m}C_{es}$   $T_{es}$   $T_{e$ 

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

Вариант осуществления 35. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  $T_{eo} T_{es} ^m C_{es} A_{es} ^m C_{es} T_{es} ^m C_{es} A_{es} ^m C_{es} A_{es} ^m C_{es} A_{es} ^m C_{es} G_{es} ^m C_{es} G_{$ 

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

Вариант осуществления 36. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  $T_{eo} T_{ns} ^m C_{ns} A_{ns} ^m C_{ns} T_{ns} T_{ns} ^m C_{ns} A_{ns} T_{ns} A_{ns} A_{ns} T_{ns} G_{ns} ^m C_{ns} T_{ns} G_{ns} ^m C_{e}$  (SEQ ID NO: 22), где

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

n=2'-NMA сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

Вариант осуществления 37. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  ${}^{m}C_{ns}$   $A_{no}$   ${}^{m}C_{ns}$   $T_{no}$   $T_{ns}$   $T_{ns}$   ${}^{m}C_{ns}$   $A_{ns}$   $A_{ns}$ 

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

n=2'-NMA сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

Вариант осуществления 38. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21), или его соль.

Вариант осуществления 39. Модифицированный олигонуклеотид по варианту осуществления 38, который представляет собой натриевую соль или калиевую соль.

Вариант осуществления 40. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21).

Вариант осуществления 41. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22), или его соль.

Вариант осуществления 42. Модифицированный олигонуклеотид по варианту осуществления 41, который представляет собой натриевую соль или калиевую соль.

Вариант осуществления 43. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22).

Вариант осуществления 44. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22), или его соль.

Вариант осуществления 45. Модифицированный олигонуклеотид по варианту осуществления 44, который представляет собой натриевую соль или калиевую соль.

Вариант осуществления 46. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22).

Вариант осуществления 47. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21), или его соль.

Вариант осуществления 48. Модифицированный олигонуклеотид по варианту осуществления 47, который представляет собой натриевую соль или калиевую соль.

Вариант осуществления 49. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21).

Вариант осуществления 50. Фармацевтическая композиция, содержащая олигомерное соединение по любому из вариантов осуществления 1-36 или модифицированный олигонуклеотид по любому из вариантов осуществления 38-49 и фармацевтически приемлемый разбавитель или носитель.

Вариант осуществления 51. Фармацевтическая композиция по варианту осуществления 50, содержащая фармацевтически приемлемый разбавитель, причем фармацевтически приемлемый разбавитель представляет собой искусственную СМЖ (иСМЖ) или ФСБ.

Вариант осуществления 52. Фармацевтическая композиция по варианту осуществления 51, при этом фармацевтическая композиция состоит по существу из модифицированного олигонуклеотида и искусственной СМЖ (иСМЖ).

Вариант осуществления 53. Фармацевтическая композиция по варианту осуществления 51, при этом фармацевтическая композиция состоит по существу из модифицированного олигонуклеотида и ФСБ.

Вариант осуществления 54. Хирально обогащенная популяция модифицированных олигонуклеотидов по любому из вариантов осуществления 38-49, причем популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую конкретную стереохимическую конфигурацию.

Вариант осуществления 55. Хирально обогащенная популяция по варианту осуществления 54, отличающаяся тем, что популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую (Sp)-конфигурацию.

Вариант осуществления 56. Хирально обогащенная популяция по варианту осуществления 54, причем популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую конфигурацию (Rp).

Вариант осуществления 57. Хирально обогащенная популяция по варианту осуществления 54, отличающаяся тем, что популяцию обогащают модифицированными олигонуклеотидами, имеющими конкретную, независимо выбранную стереохимическую конфигурацию в каждой фосфоротиоатной межнуклеозидной связи.

Вариант осуществления 58. Хирально обогащенная популяция по варианту осуществления 57, причем популяция обогащена модифицированными олигонуклеотидами, имеющими конфигурацию (Sp) в каждой фосфоротиоатной межнуклеозидной связи, или модифицированными олигонуклеотидами, имеющими конфигурацию (Rp) в каждой фосфоротиоатной межнуклеозидной связи.

Вариант осуществления 59. Хирально обогащенная популяция по варианту осуществления 57, причем популяция обогащена модифицированными олигонуклеотидами, имеющими конфигурацию (Rp) в одной конкретной фосфоротиоатной межнуклеозидной связи и конфигурацию (Sp) в каждой из оставшихся фосфоротиоатных межнуклеозидных связей.

Вариант осуществления 60. Хирально обогащенная популяция по варианту осуществления 57, причем популяция обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере 3 смежные фосфоротиоатные межнуклеозидные связи в конфигурациях Sp, Sp и Rp, в направлении от 5' к 3'.

Вариант осуществления 61. Популяция модифицированных олигонуклеотидов по любому из вариантов осуществления 38-49, отличающаяся тем, что все фосфоротиоатные межнуклеозидные связи модифицированного олигонуклеотида являются стереослучайными.

Вариант осуществления 62. Способ лечения заболевания, связанного с SMN1 или SMN2, включающий введение субъекту, имеющему заболевание, связанное с SMN1 или SMN2, или имеющему риск развития такого заболевания, терапевтически эффективного количества фармацевтической композиции по любому из вариантов осуществления 50-53; и тем самым лечение заболевания, связанного с SMN1 или SMN2.

Вариант осуществления 63. Способ по варианту осуществления 62, в котором заболевание, связанное с SMN1 или SMN2, представляет собой нейродегенеративное заболевание.

Вариант осуществления 64. Способ по варианту осуществления 63, в котором нейродегенеративное заболевание представляет собой спинальную мышечную атрофию (CMA).

Вариант осуществления 65. Способ по варианту осуществления 64, в котором СМА представляет собой любую из СМА типа I, СМА типа II, СМА типа III или СМА типа IV.

Вариант осуществления 66. Способ по варианту осуществления 64 или варианту осуществления 65, в котором по меньшей мере один симптом СМА облегчается.

Вариант осуществления 67. Способ по варианту осуществления 66, в котором симптом представляет собой любой из снижения мышечной силы; неспособности или сниженной способности сидеть прямо, стоять и/или ходить; сниженной нервно-мышечной активности; сниженной электрической активности в одной или более мышцах; сниженного дыхания; неспособности или сниженной способности есть, пить и/или дышать без помощи; потери веса или сниженного прироста массы тела и/или сниженной выживаемости.

Вариант осуществления 68. Способ по любому из вариантов осуществления 62-67, в котором фармацевтическую композицию вводят в центральную нервную систему или в системный кровоток.

Вариант осуществления 69. Способ по варианту осуществления 68, в котором фармацевтическую композицию вводят в центральную нервную систему и в системный кровоток.

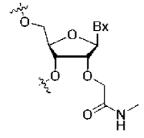
Вариант осуществления 70. Способ по любому из вариантов осуществления 62-67, в котором фармацевтическую композицию вводят интратекально, в системный кровоток, подкожно или внутримышечно.

Вариант осуществления 71. Способ увеличения количества РНК SMN2, включая экзон 7, включающий приведение в контакт клетки, ткани или органа с олигомерным соединением по любому из вариантов осуществления 1-37, модифицированным олигонуклеотидом по любому из вариантов осуществления 38-49 или фармацевтической композицией по любому из вариантов осуществления 50-53.

#### Определенные олигонуклеотиды

В определенных вариантах осуществления в данном документе предложены олигомерные соединения, содержащие олигонуклеотиды, которые состоят из связанных нуклеозидов. Олигонуклеотиды могут представлять собой немодифицированные олигонуклеотиды (РНК или ДНК) или могут представлять собой модифицированные олигонуклеотиды. Модифицированные олигонуклеотиды содержат по меньшей мере одну модификацию относительно немодифицированной РНК или ДНК. Иными словами, модифицированные олигонуклеотиды содержат по меньшей мере один модифицированный нуклеозид (содержащий модифицированный сахарный фрагмент

и/или модифицированное нуклеиновое основание) и/или по меньшей мере одну модифицированную межнуклеозидную связь.


#### Определенные модифицированные нуклеозиды

Модифицированные нуклеозиды содержат модифицированный сахарный фрагмент или модифицированное нуклеиновое основание, или как модифицированный сахарный фрагмент, так и модифицированное нуклеиновое основание.

#### Определенные сахарные фрагменты

В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой небициклические модифицированные сахарные фрагменты. В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой бициклические или трициклические сахарные фрагменты. В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой заменители сахара. Такие заменители сахара могут содержать одну или несколько замен, соответствующих заменам других типов модифицированных сахарных фрагментов.

определенных вариантах осуществления модифицированные сахарные представляют собой небициклические модифицированные фрагменты сахарные фрагменты, содержащие фуранозильное кольцо с одной или несколькими группами заместителей, ни одна из которых не связывает два атома фуранозильного кольца с образованием бициклической структуры. Такие немостиковые заместители могут находиться в любом положении фуранозила, включая, но не ограничиваясь ими, заместители в положениях 2', 4' и/или 5'. В определенных вариантах осуществления один или несколько немостиковых заместителей небициклических модифицированных сахарных фрагментов являются разветвленными. Примеры групп 2'-заместителей, подходящих для небициклических модифицированных сахарных фрагментов, включают в себя, помимо прочего: 2'-F, 2'-OCH<sub>3</sub> («ОМе» или «О-метил») и 2'-O(CH<sub>2</sub>)<sub>2</sub>OCH<sub>3</sub> («МОЕ» или «О-метоксиэтил») и 2'-О-N-алкилацетамид, например, 2'-О-N-метилацетамид («NMA»), 2'-О-N-диметилацетамид, 2'-О-N-этилацетамид или 2'-О-N-пропилацетамид. См., например, U.S. 6147200, Prakash et al., 2003, Org. Lett., 5, 403-6. «2'-O-Nметилацетамид нуклеозид» или «2'-NMA нуклеозид» показан ниже:



В некоторых вариантах осуществления, 2'-замещающие группы выбраны из: галогена, аллила, амино, азидо, SH, CN, OCN, CF<sub>3</sub>, OCF<sub>3</sub>, O-C<sub>1</sub>-C<sub>10</sub> алкокси, O-C<sub>1</sub>-C<sub>10</sub> замещенного алкокси, O-C<sub>1</sub>-C<sub>10</sub> алкила, O-C<sub>1</sub>-C<sub>10</sub> замещенного алкила, S-алкила, N( $R_{\rm m}$ )-алкила, O-алкинила, S-алкинила, N( $R_{\rm m}$ )-алкенила, O-алкинила, S-алкинила, N( $R_{\rm m}$ )-

алкинила, О-алкиленил-О-алкила, алкинила, алкарила, аралкила, О-алкарила, О-аралкила,  $O(CH_2)_2SCH_3$ ,  $O(CH_2)_2ON(R_m)(R_n)$  или  $OCH_2C(=O)-N(R_m)(R_n)$ , где каждый  $R_m$  и  $R_n$ независимо представляет собой Н, аминозащитную группу или замещенный или незамещенный  $C_1$ - $C_{10}$  алкил, и 2'-замещающие группы, описанные в Cook et al., США 6531584; Cook et al., США 5859221; и Cook et al., патент США 6005087. Некоторые варианты осуществления этих групп 2'-заместителей могут быть дополнительно замещены одной или несколькими группами заместителей, независимо выбранными из: гидроксила, амино, алкокси, карбокси, бензила, фенила, нитро (NO<sub>2</sub>), тиола, тиоалкокси, тиоалкила, галогена, алкила, арила, алкенила и алкинила. Примеры групп 4'-заместителей, подходящих для небициклических модифицированных сахарных фрагментов, включают, но не ограничиваясь ими, алкокси (например, метокси), алкил и группы, описанные в Manoharan et al., WO 2015/106128. Примеры групп 5'-заместителей, подходящих для небициклических модифицированных сахарных фрагментов, ограничиваясь ими: 5'-метил (R или S), 5'-винил и 5'-метокси. В определенных вариантах осуществления небициклические модифицированные сахарные фрагменты содержат более одного немостикового сахарного заместителя, например, 2'-F-5'-метиловые сахарные фрагменты и модифицированные сахарные фрагменты и модифицированные нуклеозиды, описанные в Migawa et al., WO 2008/101157, и Rajeev et al., US2013/0203836.

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид содержит сахарный фрагмент, содержащий немостиковую группу 2'-заместителя, выбранную из: F, NH<sub>2</sub>, N<sub>3</sub>, OCF<sub>3</sub>, OCH<sub>3</sub>, O(CH<sub>2</sub>)<sub>3</sub>NH<sub>2</sub>, CH<sub>2</sub>CH=CH<sub>2</sub>, OCH<sub>2</sub>CH=CH<sub>2</sub>, OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, O(CH<sub>2</sub>)<sub>2</sub>SCH<sub>3</sub>, O(CH<sub>2</sub>)<sub>2</sub>ON(R<sub>m</sub>)(R<sub>n</sub>), O(CH<sub>2</sub>), ON(CH<sub>3</sub>)<sub>2</sub>, O(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub> и N-замещенного ацетамида (OCH<sub>2</sub>C(=O)-N(R<sub>m</sub>)(R<sub>n</sub>)), где каждый  $R_m$  и  $R_n$  независимо представляет собой H, аминозащитную группу или замещенный или незамещенный  $C_1$ - $C_{10}$  алкил, например, OCH<sub>2</sub>C(=O)-N(H)CH<sub>3</sub> («NMA»).

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид содержит сахарный фрагмент, содержащий немостиковую группу 2'-заместителя, выбранную из: F, OCF<sub>3</sub>, OCH<sub>3</sub>, OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, O(CH<sub>2</sub>)<sub>2</sub>SCH<sub>3</sub>, O(CH<sub>2</sub>)<sub>2</sub>ON(CH<sub>3</sub>)<sub>2</sub>, O(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub> и OCH<sub>2</sub>C(=O)-N(H)CH<sub>3</sub> («NMA»).

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид содержит сахарный фрагмент, содержащий немостиковую группу 2'-заместителя, выбранную из: F, OCH<sub>3</sub>, OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> и OCH<sub>2</sub>C(=O)-N(H)CH<sub>3</sub>.

Некоторые модифицированные сахарные фрагменты содержат заместитель, который связывает два атома фуранозильного кольца с образованием второго кольца, что приводит к образованию бициклического сахарного фрагмента. В определенных таких вариантах осуществления бициклический сахарный фрагмент содержит мостик между атомами фуранозного кольца в положении 4' и 2'. Примеры таких мостиковых заместителей сахара от положения 4' к положению 2' включают, но не ограничиваясь ими: 4'-CH<sub>2</sub>-2', 4'-(CH<sub>2</sub>)<sub>2</sub>-2', 4'-(CH<sub>2</sub>)<sub>3</sub>-2', 4'-CH<sub>2</sub>-O-2' («LNA»), 4'-CH<sub>2</sub>-S-2', 4'-(CH<sub>2</sub>)<sub>2</sub>-O-2' («ENA»), 4'-CH(CH<sub>3</sub>)-O-2' (обозначаемый как «ограниченный этил» или «cEt»), 4'-CH<sub>2</sub>-O-

CH<sub>2</sub>-2', 4'-CH<sub>2</sub>-N(R)-2', 4'-CH(CH<sub>2</sub>OCH<sub>3</sub>)-O-2' («ограниченный МОЕ» или «сМОЕ») и его аналоги (см., например, Seth et al., U.S. 7399845, Bhat et al., U.S. 7569686, Swayze et al., U.S. 7741457 и Swayze et al., U.S. 8022193), 4'-C(CH<sub>3</sub>)(CH<sub>3</sub>)-O-2' и его аналоги (см., например, Seth et al., U.S. 8278283), 4'-CH<sub>2</sub>-N(OCH<sub>3</sub>)-2' и его аналоги (см., например, Prakash et al., U.S. 8278425), 4'-CH<sub>2</sub>-O-N(CH<sub>3</sub>)-2' (см., например, Allerson et al., U.S. 7696345, и Allerson et al., U.S. 8124745), 4'-CH<sub>2</sub>-C(H)(CH<sub>3</sub>)-2' (см., например, Zhou, et al., J. Org. Chem.,2009, 74, 118-134), 4'-CH<sub>2</sub>-C(=CH<sub>2</sub>)-2' и его аналоги (см., например, Seth et al., U.S. 8278426), 4'-C(R<sub>a</sub>R<sub>b</sub>)-N(R)-O-2', 4'-C(R<sub>a</sub>R<sub>b</sub>)-O-N(R)-2', 4'-CH<sub>2</sub>-O-N(R)-2' и 4'-CH<sub>2</sub>-N(R)-O-2', где каждый из R, R<sub>a</sub> и R<sub>b</sub> представляет собой независимо H, защитную группу или C<sub>1</sub>-C<sub>12</sub> алкил (см., например, Imanishi et al., U.S. 7427672).

В определенных вариантах осуществления такие мостики от положения 4' к положению 2' независимо содержат от 1 до 4 связанных групп, независимо выбранных из:  $-[C(R_a)(R_b)]_{n^-}, -[C(R_a)(R_b)]_{n^-}O-, -C(R_a)=C(R_b)-, -C(R_a)=N-, -C(=NR_a)-, -C(=O)-, -C(=S)-, -O-, -Si(R_a)_{2^-}, -S(=O)_{x^-}$  и  $-N(R_a)-$ ;

где:

х равен 0, 1 или 2;

п равен 1, 2, 3 или 4

каждый из  $R_a$  и  $R_b$  независимо представляет собой H, защитную группу, гидроксил,  $C_1$ - $C_{12}$  алкил, замещенный  $C_1$ - $C_{12}$  алкил,  $C_2$ - $C_{12}$  алкинил, замещенный  $C_2$ - $C_{12}$  алкинил,  $C_5$ - $C_{20}$  арил, замещенный  $C_5$ - $C_{20}$  арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил,  $C_5$ - $C_7$  алициклический радикал, замещенный  $C_5$ - $C_7$  алициклический радикал, замещенный  $C_5$ - $C_7$  алициклический радикал, замещенный ацил,  $C_5$ - $C_7$ 0, сульфонил ( $C_5$ - $C_7$ 1), или сульфоксил ( $C_5$ - $C_7$ 1); и

каждый из  $J_1$  и  $J_2$  независимо представляет собой H,  $C_1$ - $C_{12}$  алкил, замещенный  $C_1$ - $C_{12}$  алкил,  $C_2$ - $C_{12}$  алкенил, замещенный  $C_2$ - $C_{12}$  алкинил,  $C_5$ - $C_{20}$  арил, замещенный  $C_5$ - $C_{20}$  арил, ацил (C(=O)-H), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал,  $C_1$ - $C_{12}$  аминоалкил, замещенный  $C_1$ - $C_{12}$  аминоалкил, или защитную группу.

Дополнительные бициклические caxapные фрагменты известны уз уровня техники, см., например: Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Wengel et a., U.S. 7053207; Imanishi et al., U.S. 6268490; Imanishi et al., U.S. 6770748; Imanishi et al., U.S. RE44779; Wengel et al., U.S. 6794499; Wengel et al., U.S. 6670461; Wengel et al., U.S. 7034133; Wengel et al., U.S. 8080644; Wengel et al., U.S. 8034909; Wengel et al., U.S. 8153365; Wengel et al., U.S. 7572582; и Ramasamy et al., U.S. 6525191; Torsten et al., WO 2004/106356; Wengel et al., WO 1999/014226; Seth et al., WO 2007/134181; Seth et al., U.S. 7547684; Seth et al., U.S. 7666854; Seth et al., U.S. 8088746;

Seth et al., U.S. 7750131; Seth et al., U.S. 8030467; Seth et al., U.S. 8268980; Seth et al., U.S. 8546556; Seth et al., U.S. 8530640; Migawa et al., U.S. 9012421; Seth et al., U.S. 8501805; и патентные публикации США № Allerson et al., US2008/0039618 и Migawa et al., US2015/0191727.

В определенных вариантах осуществления бициклические сахарные фрагменты и нуклеозиды, включающие такие бициклические сахарные фрагменты, дополнительно определяются изомерной конфигурацией. Например, нуклеозид LNA (описанный в данном документе) может находиться в α-L-конфигурации или в β-D-конфигурации.



LNA ( $\beta$ -D-конфигурация)  $\alpha$  L I.NA ( $\alpha$  L конфигурация) мостик = 4'-CH $_2$ -O-2'

Бициклические нуклеозиды  $\alpha$ -L-метиленокси (4'-CH<sub>2</sub>-O-2') или  $\alpha$ -L-LNA были включены в олигонуклеотиды, которые демонстрировали антисмысловую активность (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372). В данном документе общие описания бициклических нуклеозидов включают обе изомерные конфигурации. Когда в приведенных в данном документе примерах вариантов осуществления идентифицируют положения конкретных бициклических нуклеозидов (например, 3HK или cEt), то они находятся в  $\beta$ -D-конфигурации, если не указано иное.

В определенных вариантах осуществления модифицированные сахарные фрагменты содержат один или несколько мостиковых сахарных заместителей и один или несколько мостиковых сахарных заместителей (например, 5'-замещенные и 4'-2'-мостиковые сахара).

В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой заменители сахара. В определенных вариантах осуществления атом кислорода сахарного фрагмента заменен, *например*, атомом серы, углерода или азота. В определенных вариантах осуществления такие модифицированные сахарные фрагменты также содержат мостиковые и/или немостиковые заместители, как описано в данном документе. Например, некоторые заменители сахара содержат атом серы в 4'-положении и замещение в 2'-положении (*см.*, *например*, Bhat et al., US 7875733, и Bhat et al., US 7939677) и/или в 5'-положении.

В определенных вариантах осуществления заменители сахаров содержат кольца, имеющие отличное от 5 атомов количество. Например, в определенных вариантах осуществления заменитель сахара содержит шестичленный тетрагидропиран («ТНР»). Такие тетрагидропираны могут быть дополнительно модифицированы или замещены. Нуклеозиды, содержащие такие модифицированные тетрагидропираны, включают, но не ограничиваясь ими, гекситоловую нуклеиновую кислоту («НNА»), анитоловую

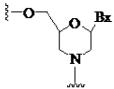
нуклеиновую кислоту («ANA»), манитоловую нуклеиновую кислоту («MNA») (см., например, Leumann, CJ. Bioorg. & Med. Chem. 2002, 10, 841-854), фтор-HNA:

$$T_3$$
-O  $q_2$ 
 $q_4$ 
 $q_6$ 
 $R_1R_2$   $q_5$ 
 $T_4$ 
 $q_5$ 
 $q_5$ 
 $q_5$ 
 $q_7$ 
 $q_8$ 
 $q_8$ 

(«F-HNA», см., например Swayze et al., U.S. 8088904; Swayze et al., U.S. 8440803; Swayze et al., U.S. 8796437; и Swayze et al., U.S. 9005906; F-HNA может также упоминаться как F-THP или 3'-фтортетрагидропиран), и нуклеозиды, содержащие дополнительные модифицированные соединения THP, имеющие формулу:

где, независимо, для каждого указанного модифицированного нуклеозида ТНР: Вх представляет собой фрагмент нуклеинового основания;

Каждый из  $T_3$  и  $T_4$  независимо представляют собой межнуклеозидную связывающую группу, связывающую модифицированный нуклеозид THP с остатком олигонуклеотида, или один из  $T_3$  и  $T_4$  представляет собой межнуклеозидную связывающую группу, связывающую модифицированный нуклеозид THP с остатком олигонуклеотида, а другой из  $T_3$  и  $T_4$  представляет собой H, гидроксильную защитную группу, связанную группу конъюгата или 5'- или 3'-концевую группу;


каждый из  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_4$ ,  $q_5$ ,  $q_6$  и  $q_7$  независимо представляет собой H,  $C_1$ - $C_6$  алкил, замещенный  $C_2$ - $C_6$  алкинил, или замещенный  $C_2$ - $C_6$  алкинил; и

каждый из  $R_1$  и  $R_2$  независимо выбран из: водорода, галогена, замещенного или незамещенного алкокси,  $NJ_1J_2$ ,  $SJ_1$ ,  $N_3$ ,  $OC(=X)J_1$ ,  $OC(=X)NJ_1J_2$ ,  $NJ_3C(=X)NJ_1J_2$  и CN, где X представляет собой O, S или  $NJ_1$ , и каждый из  $J_1$ ,  $J_2$  и  $J_3$  представляет собой независимо H или  $C_1$ - $C_6$  алкил.

В определенных вариантах осуществления предложены модифицированные нуклеозиды ТНР, где каждый из  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_4$ ,  $q_5$ ,  $q_6$  и  $q_7$  представляет собой Н. В определенных вариантах осуществления по меньшей мере один  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_4$ ,  $q_5$ ,  $q_6$  и  $q_7$  отличается от Н. В определенных вариантах осуществления по меньшей мере один  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_4$ ,  $q_5$ ,  $q_6$  и  $q_7$  представляет собой метил. В определенных вариантах осуществления предложены модифицированные нуклеозиды ТНР, где один из  $R_1$  и  $R_2$  представляет собой F. В определенных вариантах осуществления,  $R_1$  представляет собой F и  $R_2$  представляет собой H, и в определенных вариантах осуществления,  $R_1$  представляет собой метокси и  $R_2$ 

представляет собой H, и в определенных вариантах осуществления,  $R_1$  представляет собой метоксиэтокси и  $R_2$  представляет собой H.

В определенных вариантах осуществления, заменители сахара содержат кольца, имеющие более 5 атомов и более одного гетероатома. Например, описаны нуклеозиды, содержащие морфолиносахарные фрагменты, и их применение в олигомерных соединениях (см., *например*: Braasch et al., Biochemistry, 2002, 41, 4503-4510 и Summerton et al., U.S. 5698685; Summerton et al., U.S. 5166315; Summerton et al., U.S. 5185444; и Summerton et al., U.S. 5034506). В контексте данного документа термин «морфолино» означает заменитель сахара, имеющий следующую структуру:



В определенных вариантах осуществления морфолино могут быть модифицированными, например, добавлением или изменением различных групп заместителей относительно представленной выше структуры морфолино. Такие заменители сахара упоминаются в данном документе как «модифицированные морфолино».

В определенных вариантах осуществления заменители сахара содержат ациклические фрагменты. Примеры нуклеозидов и олигонуклеотидов, содержащих такие заменители ациклических сахаров, включают, но не ограничиваясь ими: пептидную нуклеиновую кислоту («ПНК»), ациклическую бутилнуклеиновую кислоту (см., например, Kumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865) и нуклеозиды и олигонуклеотиды, описанные в Manoharan et al., WO2011/133876.

Из уровня техники известно много других бициклических и трициклических сахарных кольцевых систем и кольцевых систем с заменителем сахара, которые можно использовать в модифицированных нуклеозидах.

#### Определенные модифицированные нуклеиновые основания

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, содержащих немодифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, в которых отсутствует нуклеиновое основание, называемые нуклеозидом с удаленным нуклеиновым основанием.

В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из: 5-замещенных пиримидинов, 6-азапиримидинов, алкила или алкинилзамещенных пиримидинов, алкилзамещенных пуринов и N-2, N-6 и O-6 замещенных пуринов. В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из: 2-аминопропиладенина, 5-гидроксиметилцитозина,

ксантина, гипоксантина, 2-аминоаденина, 6-N-метилгуанина, 6-N-метиладенина, пропиладенина, 2-тиоурацила, 2-тиотимина и 2-тиоцитозина, 5-пропинил (-С≡С-СН<sub>3</sub>)урацила, 5-пропинилцитозина, 6-азоурацила, 6-азоцитозина, 6-азотимина, рибозилурацила (псевдоурацила), 4-тиоурацила, 8-галогена, 8-амино, 8-тиола, тиоалкила, 8-гидроксила, 8-аза и других 8-замещенных пуринов, 5-галогена, в частности 5-брома, 5-трифторметила, 5-галоурацила и 5-галоцитозина, 7-метилгуанина, 7 метиладенина, 2-F-аденина, 2-аминоаденина, 7-деазагуанина, 7-деазааденина, 3деазагуанина, 3-деазааденина, 6-N-бензоладенина, 2-N-изобутирилгуанина, 4-Nбензоилцитозина, 4-N-бензоилурацила, 5-метил 4-N-бензоилцитозина, 5-метил 4-Nбензоилурацила, универсальных оснований, гидрофобных оснований, смешанных оснований, увеличенных в размере оснований и фторсодержащих оснований. Другие модифицированные азотистые основания включают трициклические пиримидины, такие 1,3-диазафеноксазин-2-он, 1,3-диазафенотиазин-2-он и 9-(2-аминоэтокси)-1,3диазафеноксазин-2-он (G-фиксирующее основание). Пуриновые или пиримидиновые основания модифицированных нуклеиновых оснований могут быть заменены другими гетероциклами, например 7-дезазааденином, 7-дезазагуанозином, 2-аминопиридином и 2пиридоном. Дополнительные нуклеиновые основания включают в себя основания, раскрытые в Merigan et al., U.S. 3687808, раскрытые в The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J.I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, Crooke, S.T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; и основания, раскрытые в главах 6 и 15, Antisense Drug Technology, Crooke S.T., Ed., CRC Press, 2008, 163-166 и 442-443.

Публикации, в которых описано получение некоторых из указанных выше модифицированных нуклеиновых оснований, а также других модифицированных нуклеиновых оснований, включают, но не ограничиваясь ими, Manoharan et al., US2003/0158403; Manoharan et al., US2003/0175906; Dinh et al., U.S. 4845205; Spielvogel et al., U.S. 5130302; Rogers et al., U.S. 5134066; Bischofberger et al., U.S. 5175273; Urdea et al., U.S. 5367066; Benner et al., U.S. 5432272; Matteucci et al., U.S. 5434257; Gmeiner et al., U.S. 5457187; Cook et al., U.S. 5459255; Froehler et al., U.S. 5484908; Matteucci et al., U.S. 5502177; Hawkins et al., U.S. 5525711; Haralambidis et al., U.S. 5552540; Cook et al., U.S. 5587469; Froehler et al., U.S. 5594121; Switzer et al., U.S. 5596091; Cook et al., U.S. 5614617; Froehler et al., U.S. 5645985; Cook et al., U.S. 5681941; Cook et al., U.S. 5811534; Cook et al., U.S. 5750692; Cook et al., U.S. 5948903; Cook et al., U.S. 5587470; Cook et al., U.S. 5457191; Matteucci et al., U.S. 5763588; Froehler et al., U.S. 5830653; Cook et al., U.S. 5808027; Cook et al., 6166199; и Matteucci et al., U.S. 6005096.

# Определенные модифицированные межнуклеозидные связи

В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов могут быть связаны вместе с использованием любой межнуклеозидной связи. Два основных класса межнуклеозидных связывающих групп определяют по

наличию или отсутствию атома фосфора. Типичные фосфорсодержащие межнуклеозидные связи включают в себя, помимо прочего, сложные фосфодиэфиры, которые содержат фосфодиэфирную связь  $P(O_2)=O$ (также называемые немодифицированными или встречающимися в природе связями); фосфотриэфиры; метилфосфонаты; метоксипропилфосфонаты  $(\ll MOP \gg);$ фосфорамидаты; мезилфосфорамидаты; фосфоротиоаты  $(P(O_2)=S)$  и фосфородитиоаты (HS-P=S). Типичные нефосфоросодержащие межнуклеозидные связывающие группы, включают, но не ограничиваясь ими, метиленметилимино (-СН<sub>2</sub>-N(СН<sub>3</sub>)-О-СН<sub>2</sub>-), сложный тиодиэфир, тионокарбамат (-O-C(=O)(NH)-S-); силоксан (-O-Si $H_2$ -O-); и N, N'-диметилгидразин (-C $H_2$ -N(CH<sub>3</sub>)-N(CH<sub>3</sub>)-). Модифицированные межнуклеозидные связи по сравнению с встречающимися в природе фосфатными связями можно использовать для изменения, как правило, повышения устойчивости олигонуклеотида к нуклеазам. В определенных вариантах осуществления межнуклеозидные связи, имеющие хиральный атом, могут быть получены в виде рацемической смеси или в виде отдельных энантиомеров. Способы получения фосфорсодержащих и нефосфорсодержащих межнуклеозидных связей хорошо известны специалистам в данной области техники.

Типичные межнуклеозидные связи, имеющие хиральный центр, включают, но не алкилфосфонаты фосфоротиоаты. ограничиваются ими, И Модифицированные олигонуклеотиды, содержащие межнуклеозидные связи, имеющие хиральный центр, могут быть получены в виде популяций модифицированных олигонуклеотидов, содержащих стереослучайные межнуклеозидные связи, или в качестве популяций модифицированных олигонуклеотидов, содержащих фосфоротиоатные межнуклеозидные связи в определенных стереохимических конфигурациях. В определенных вариантах осуществления популяции модифицированных олигонуклеотидов содержат фосфоротиоатные межнуклеозидные связи, где все фосфоротиоатные межнуклеозидные связи являются стереослучайными. Такие модифицированные олигонуклеотиды могут быть получены с использованием синтетических способов, которые приводят к случайной селекции стереохимической конфигурации каждой фосфоротиоатной межнуклеозидной связи. Тем не менее, как хорошо известно специалистам в данной области техники, каждый отдельный фосфоротиоат каждой отдельной молекулы олигонуклеотида имеет определенную стереоконфигурацию. В определенных вариантах осуществления популяции модифицированных олигонуклеотидов обогащены модифицированными олигонуклеотидами, содержащими одну или несколько определенных фосфоротиоатных межнуклеозидных связей в определенной, независимо выбранной стереохимической конфигурации. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной межнуклеозидной связи присутствует в по меньшей мере 65% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной межнуклеозидной связи присутствует в по меньшей мере 70% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной межнуклеозидной связи

присутствует в по меньшей мере 80% молекул в популяции. В определенных вариантах конфигурация осуществления определенная определенной фосфоротиоатной межнуклеозидной связи присутствует в по меньшей мере 90% молекул в популяции. В определенных вариантах осуществления определенная конфигурация определенной фосфоротиоатной межнуклеозидной связи присутствует в по меньшей мере 99% молекул популяции. хирально обогащенные популяции модифицированных олигонуклеотидов могут быть получены с использованием способов синтеза, известных в данной области техники, например, способов, описанных в Oka et al., JACS, 2003, 125, 8307, Wan et al. Nuc. Acid. Res., 2014, 42, 13456, и WO 2017/015555. В определенных вариантах осуществления популяция модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один указанный фосфоротиоат в (Sp)-конфигурации. В определенных вариантах осуществления популяция модифицированных обогащена модифицированными олигонуклеотидов олигонуклеотидами, имеющими по меньшей мере один фосфоротиоат в (Rp)конфигурации. модифицированные В определенных вариантах осуществления олигонуклеотиды, содержащие (Rp)- и/или (Sp)-фосфоротиоаты, содержат одну или более из следующих формул соответственно, где «В» обозначает нуклеиновое основание:

$$O = P - SH$$

$$O =$$

Если не указано иное, хиральные межнуклеозидные связи модифицированных олигонуклеотидов, описанные в данном документе, могут быть стереослучайными или могут быть в определенной стереохимической конфигурации.

Нейтральные межнуклеозидные связи включают, без ограничения, фосфотриэфиры, метилфосфонаты, ММІ (3'-CH<sub>2</sub>-N(CH<sub>3</sub>)-O-5'), амид-3 (3'-CH<sub>2</sub>-C(=O)-N(H)-5'), амид-4 (3'-CH<sub>2</sub>-N(H)-C(=O)-5'), формацеталь (3'-O-CH<sub>2</sub>-O-5'), метоксипропил, и

тиоформацеталь (3'-S-CH<sub>2</sub>-O-5'). Другие нейтральные межнуклеозидные связи включают в себя неионные связи, содержащие силоксан (диалкилсилоксан), карбоксилатный эфир, карбоксамид, сульфид, эфир сульфокислоты и амиды (*см.*, *например*, *Carbohydrate* Modifications in Antisense Research; Y.S. Sanghvi and P.D. Cook, Eds., ACS Symposium Series 580; Chapters 3 and 4, 40-65). Другие нейтральные межнуклеозидные связи включают неионные связи, содержащие смешанные N, O, S и CH<sub>2</sub> составляющие.

В определенных вариантах осуществления модифицированная межнуклеозидная связь представляет собой любую из связей, описанных в WO 2021/030778, включенной в данный документ посредством ссылки.

# Определенные мотивы

В определенных вариантах осуществления модифицированные олигонуклеотиды более модифицированных содержат или нуклеозидов, содержащих модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более модифицированных нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат одну или более модифицированных межнуклеозидных связей. В таких вариантах осуществления модифицированные, немодифицированные и различным образом модифицированные сахарные фрагменты, нуклеиновые основания и/или межнуклеозидные модифицированного олигонуклеотида определяют паттерн или мотив. В определенных вариантах осуществления каждая структура сахарных фрагментов, нуклеиновых оснований и межнуклеозидных связей не зависит друг от друга. Таким образом, модифицированный олигонуклеотид может быть описан его сахарным мотивом, мотивом нуклеиновых оснований и/или мотивом межнуклеозидной связи (в контексте данного документа мотив нуклеиновых оснований описывает модификации нуклеиновых оснований независимо от последовательности нуклеиновых оснований).

# Определенные сахарные мотивы

В определенных вариантах осуществления олигонуклеотиды содержат один или более типов модифицированных сахарных фрагментов и/или немодифицированных сахарных фрагментов, расположенных вдоль олигонуклеотида или его участка в виде определенного паттерна или сахарного мотива. В определенных случаях, такие мотивы могут содержать, но не ограничиваясь ими, любые сахарные модификации, рассмотренные в данном документе и/или другие известные модификации сахара.

В определенных вариантах осуществления модифицированные олигонуклеотиды имеют гэпмерный мотив, который определяется двумя внешними областями или «крыльями» и центральную или внутреннюю область, или «гэп». Эти три области гэпмерного мотива (5'-крыло, гэп и 3'-крыло) образуют непрерывную последовательность нуклеиновых оснований, в которой по меньшей мере некоторые из сахарных фрагментов нуклеозидов в каждом крыле отличаются по меньшей мере от некоторых сахарных фрагментов нуклеозидов в гэпе. В частности, по меньшей мере те сахарные фрагменты

нуклеозидов каждого крыла, которые расположены ближе всего к гэпу (крайний 3'-концевой нуклеозид 5'-крыла и крайний 5'-концевой нуклеозид 3'-крыла), отличаются от сахарного фрагмента соседних нуклеозидов в гэпе, определяя таким образом границу между крыльями и гэпом (т.е. соединение крыло/гэп). В определенных вариантах осуществления сахарные фрагменты в гэпе являются одинаковыми по отношению друг к другу. В определенных вариантах осуществления гэп содержит один или более нуклеозидов, имеющих сахарный фрагмент, который отличается от сахарного фрагмента одного или более других нуклеозидов в гэпе. В определенных вариантах осуществления сахарные мотивы двух крыльев являются одинаковыми по отношению друг к другу (симметричный гэпмер). В определенных вариантах осуществления сахарные мотивы 5'-крыла отличаются от сахарного мотива 3'-крыла (асимметричный сахарный гэпмер).

В определенных вариантах осуществления крылья гэпмера содержат 1- 6 нуклеозидов. В определенных вариантах осуществления каждый нуклеозид каждого крыла гэпмера содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере один, по меньшей мере два, по меньшей мере три, по меньшей мере четыре, по меньшей мере пять или по меньшей мере шесть нуклеозидов каждого крыла гэпмера содержат модифицированный сахарный фрагмент.

В определенных вариантах осуществления гэп гэпмера содержит 7-12 связанных нуклеозидов. В определенных вариантах осуществления каждый нуклеозид в гэпе гэпмера содержит 2'-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления по меньшей мере один нуклеозид в гэпе гэпмера содержит модифицированный сахарный фрагмент, а каждый оставшийся нуклеозид содержит 2'-дезоксирибозильный сахарный фрагмент.

В данном документе длины (число нуклеозидов) трех областей гэпмера могут быть указаны с использованием обозначения [число нуклеозидов в 5'-крыле] - [число нуклеозидов в 7'-крыле]. Таким образом, 5-10-5 гэпмер состоит из 5 связанных нуклеозидов в каждом крыле и 10 связанных нуклеозидов в гэпе. Если за такой номенклатурой следует конкретная модификация, эта модификация представляет собой модификацию в каждом сахарном фрагменте каждого крыла, и нуклеозиды гэпа содержат 2'-дезоксирибозильный сахарный фрагмент. Таким образом, 5-10-5 МОЕ гэпмер состоит из 5 связанных 2'-МОЕ нуклеозидов в 5'-крыле, 10 связанных 2'-дезоксирибонуклеозидов в 7'-крыле.

В определенных вариантах осуществления каждый нуклеозид модифицированного олигонуклеотида или его части содержат 2'-замещенный сахарный фрагмент, бициклический сахарный фрагмент, заменитель сахара или 2'-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления 2'-замещенный сахарный фрагмент выбран из 2'-МОЕ сахарного фрагмента, 2'-NMA сахарного фрагмента, 2'-ОМе сахарного фрагмента и 2'-F сахарного фрагмента. В определенных вариантах осуществления бициклический сахарный фрагмент выбран из сЕt сахарного фрагмента и LNA сахарного фрагмента. В определенных вариантах осуществления заменитель сахара

выбран из морфолино, модифицированного морфолино, ПНК, ТНР и F-HNA.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 нуклеозидов, содержащих модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированный сахарный фрагмент независимо выбран из 2'-замещенного сахарного фрагмента, бициклического сахарного фрагмента или заместителя сахара. В определенных вариантах осуществления 2'-замещенный сахарный фрагмент выбран из 2'-МОЕ сахарного фрагмента, 2'-NMA сахарного фрагмента, 2'-ОМе сахарного фрагмента и 2'-F сахарного фрагмента. В определенных вариантах осуществления бициклический сахарный фрагмент выбран из сЕt сахарного фрагмента и LNA сахарного фрагмента. В определенных вариантах осуществления заменитель сахара выбран из морфолино, модифицированного морфолино, ТНР и F-HNA.

В определенных вариантах осуществления каждый нуклеозид модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент («полностью модифицированный олигонуклеотид»). В определенных вариантах осуществления каждый нуклеозид полностью модифицированного олигонуклеотида содержит 2'замещенный сахарный фрагмент, бициклический сахарный фрагмент или заместитель сахара. В определенных вариантах осуществления 2'-замещенный сахарный фрагмент выбран из 2'-МОЕ сахарного фрагмента, 2'-NMA сахарного фрагмента, 2'-ОМе сахарного фрагмента и 2'-F сахарного фрагмента. В определенных вариантах осуществления бициклический сахарный фрагмент выбран из cEt сахарного фрагмента и LNA сахарного фрагмента. В определенных вариантах осуществления заменитель сахара выбран из морфолино, модифицированного морфолино, THP и F-HNA. В определенных вариантах осуществления каждый нуклеозид полностью модифицированного олигонуклеотида содержит один и тот же модифицированный сахарный фрагмент («равномерно модифицированный сахарный мотив»). В определенных вариантах осуществления длина равномерно модифицированного сахарного мотива составляет от 7 до 20 нуклеозидов. В определенных вариантах осуществления каждый нуклеозид равномерно модифицированного сахарного мотива содержит 2'-замещенный сахарный фрагмент, бициклический сахарный фрагмент или заместитель сахара. В определенных вариантах осуществления 2'-замещенный сахарный фрагмент выбран из 2'-МОЕ сахарного фрагмента, 2'-NMA сахарного фрагмента, 2'-OMe сахарного фрагмента и 2'-F сахарного фрагмента. В определенных вариантах осуществления бициклический сахарный фрагмент выбран из cEt сахарного фрагмента и LNA сахарного фрагмента. В определенных вариантах осуществления заменитель сахара выбран из морфолино, модифицированного морфолино, THP и F-HNA. В определенных вариантах осуществления модифицированные олигонуклеотиды, имеющие по меньшей мере один полностью модифицированный сахарный мотив, могут также содержать по меньшей мере 1, по меньшей мере 2, по

меньшей мере 3 или по меньшей мере 4 2'-дезоксирибонуклеозида.

#### Определенные мотивы нуклеиновых оснований

определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные нуклеиновые основания, расположенные вдоль олигонуклеотида или его участка в виде определенного паттерна или мотива. В определенных вариантах осуществления каждое нуклеиновое основание является модифицированным. В определенных вариантах осуществления ни одно из нуклеиновых оснований не является модифицированным. В определенных вариантах осуществления каждый пурин или каждый пиримидин является модифицированным. В определенных вариантах осуществления каждый аденин является модифицированным. В определенных вариантах осуществления каждый гуанин является модифицированным. В определенных вариантах осуществления каждый тимин является модифицированным. В определенных вариантах осуществления каждый урацил является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных вариантах осуществления некоторые или все цитозиновые нуклеиновые основания в модифицированном олигонуклеотиде представляют собой 5-метилцитозины. В некоторых вариантах осуществления все цитозиновые нуклеиновые основания представляют собой 5-метилцитозины, все другие нуклеиновые основания модифицированного олигонуклеотида представляют собой немодифицированные нуклеиновые основания.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат блок модифицированных нуклеиновых оснований. В определенных вариантах осуществления блок находится на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок находится в пределах 3 нуклеозидов 3'-конца олигонуклеотида. В определенных вариантах осуществления блок находится на 5'-конце олигонуклеотида. В определенных вариантах осуществления блок находится в пределах 3 нуклеотидов 5'-конца олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный мотив, содержат нуклеозид, содержащий модифицированное нуклеиновое основание. В определенных осуществления содержащий таких вариантах один нуклеозид, модифицированное нуклеиновое основание, находится центральном гэпе олигонуклеотида, имеющего гэпмерный мотив. В определенных вариантах осуществления сахарный фрагмент нуклеозида представляет собой 2'-дезоксирибозильный сахарный фрагмент. В определенных вариантах осуществления модифицированное нуклеиновое основание выбрано из 2-тиопиримидина и 5-пропинепиримидина.

## Определенные мотивы межнуклеозидных связей

В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его участка в виде определенного паттерна или мотива. В определенных вариантах осуществления каждая межнуклеозидная связывающая группа представляет собой фосфодиэфирную межнуклеозидную связь. В определенных

вариантах осуществления межнуклеозидная связывающая группа каждая модифицированного представляет собой фосфоротиоатную олигонуклеотида межнуклеозидную связь. В определенных осуществления вариантах каждая межнуклеозидная связь модифицированного олигонуклеотида независимо выбрана из фосфоротиоатной межнуклеозидной связи и фосфодиэфирной межнуклеозидной связи. В определенных вариантах осуществления каждая тиофосфатная межнуклеозидная связь независимо выбрана из стереослучайного тиофосфата, (Sp) тиофосфата и (Rp) тиофосфата. определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, и все межнуклеозидные связи внутри гэпа являются модифицированными. В определенных таких вариантах осуществления некоторые или все межнуклеозидные связи В крыльях представляют немодифицированные фосфодиэфирные межнуклеозидные связи. В определенных осуществления концевые межнуклеозидные связи являются модифицированными. В определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, мотив межнуклеозидных связей содержит по меньшей мере одну фосфодиэфирную межнуклеозидную связь в по меньшей мере одном крыле, где по меньшей мере одна фосфодиэфирная межнуклеозидная связь не представляет собой концевую межнуклеозидную связь, а остальные межнуклеозидные связи представляют собой фосфоротиоатные межнуклеозидные В определенных связи. таких вариантах осуществления все фосфоротиоатные межнуклеозидные связи являются стереослучайными. В определенных вариантах осуществления все фосфоротиоатные межнуклеозидные связи в крыльях представляют собой фосфоротиоаты (Sp), а гэп содержит по меньшей мере один мотив Sp, Sp, Rp. В определенных вариантах осуществления популяции модифицированных олигонуклеотидов обогащают модифицированными олигонуклеотидами, содержащими такие мотивы межнуклеозидных связей. В определенных вариантах осуществления одна или более межнуклеозидных связей представляют собой мезилфосфорамидатную межнуклеозидную определенных вариантах осуществления каждая межнуклеозидная связь независимо выбрана фосфодиэфирной межнуклеозидной связи, фосфоротиоатной межнуклеозидной связи И мезилфосфорамидатной межнуклеозидной связи. В определенных вариантах осуществления каждая межнуклеозидная связь независимо фосфоротиоатной межнуклеозидной связи и мезилфосфорамидатной межнуклеозидной связи. В определенных вариантах осуществления одна или более метоксипропилфосфонатную межнуклеозидных связей представляют собой межнуклеозидную связь. В определенных вариантах осуществления каждая межнуклеозидная связь независимо выбрана из фосфодиэфирной межнуклеозидной связи, фосфоротиоатной межнуклеозидной связи И метоксипропилфосфонатной В межнуклеозидной связи. определенных вариантах осуществления межнуклеозидная связь независимо выбрана из фосфоротиоатной межнуклеозидной связи и метоксипропилфосфонатной межнуклеозидной связи.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат по меньшей мере 1, по меньшей мере 2, по меньшей мере 3, по меньшей мере 4, по меньшей мере 5, по меньшей мере 6, по меньшей мере 7, по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18 или по меньшей мере 19 фосфодиэфирных межнуклеозидных связей. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат по меньшей мере 1, по меньшей мере 2, по меньшей мере 3, по меньшей мере 4, по меньшей мере 5, по меньшей мере 6, по меньшей мере 7, по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18 или по меньшей мере 19 фосфоротиоатных межнуклеозидных связей. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат по меньшей мере 1, по меньшей мере 2, по меньшей мере 3, по меньшей мере 4 или по меньшей мере 5 фосфодиэфирных межнуклеозидных связей, а представляют собой фосфоротиоатные оставшиеся межнуклеозидные связи межнуклеозидные связи.

#### Определенные длины

Существует возможность увеличивать или уменьшать длину олигонуклеотида без устранения активности. Например, в Woolf et al., Proc. Natl. Acad. Sci. USA, 1992, 89, 7305-7309, 1992), ряд олигонуклеотидов длиной 13-25 нуклеиновых оснований исследовали в отношении их способности индуцировать расшепление целевой нуклеиновой кислоты в модели инъекции в ооцит. Олигонуклеотиды длиной 25 нуклеиновых оснований с 8 или 11 ошибочно спаренными основаниями вблизи концов олигонуклеотидов оказались способны направлять специфическое расшепление целевой нуклеиновой кислоты, хотя и в меньшей степени, чем олигонуклеотиды, которые не содержали ошибочных спариваний. Аналогично, целевое специфическое расшепление было достигнуто при помощи олигонуклеотидов из 13 нуклеиновых оснований, включая те, которые содержали 1 или 3 ошибочные спаривания.

В определенных вариантах осуществления олигонуклеотиды (включая модифицированные олигонуклеотиды) могут иметь любую длину из множества диапазонов. В определенных вариантах осуществления олигонуклеотиды состоят из X-Y связанных нуклеозидов, где X представляет наименьшее количество нуклеозидов в диапазоне, а Y представляет наибольшее количество нуклеозидов в диапазоне. В определенных таких вариантах осуществления каждый из X и Y независимо выбран из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, и 50; при условии, что  $X \le Y$ . Например, в определенных вариантах осуществления олигонуклеотиды состоят из 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20, 12-21, 12-22, 12-23, 12-24, 12-25, 12-26, 12-

27, 12-28, 12-29, 12-30, 13-14, 13-15, 13-16, 13-17, 13-18, 13-19, 13-20, 13-21, 13-22, 13-23, 13-24, 13-25, 13-26, 13-27, 13-28, 13-29, 13-30, 14-15, 14-16, 14-17, 14-18, 14-19, 14-20, 14-21, 14-22, 14-23, 14-24, 14-25, 14-26, 14-27, 14-28, 14-29, 14-30, 15-16, 15-17, 15-18, 15-19, 15-20, 15-21, 15-22, 15-23, 15-24, 15-25, 15-26, 15-27, 15-28, 15-29, 15-30, 16-17, 16-18, 16-19, 16-20, 16-21, 16-22, 16-23, 16-24, 16-25, 16-26, 16-27, 16-28, 16-29, 16-30, 17-18, 17-19, 17-20, 17-21, 17-22, 17-23, 17-24, 17-25, 17-26, 17-27, 17-28, 17-29, 17-30, 18-19, 18-20, 18-21, 18-22, 18-23, 18-24, 18-25, 18-26, 18-27, 18-28, 18-29, 18-30, 19-20, 19-21, 19-22, 19-23, 19-24, 19-25, 19-26, 19-29, 19-28, 19-29, 19-30, 20-21, 20-22, 20-23, 20-24, 20-25, 20-26, 20-27, 20-28, 20-29, 20-30, 21-22, 21-23, 21-24, 21-25, 21-26, 21-27, 21-28, 21-29, 21-30, 22-23, 20-24, 22-25, 22-26, 22-27, 22-28, 22-29, 22-30, 23-24, 23-25, 23-26, 23-27, 23-28, 23-29, 23-30, 24-25, 24-26, 24-27, 24-28, 24-29, 24-30, 25-26, 25-27, 25-28, 25-29, 25-30, 26-27, 26-28, 26-29, 26-30, 27-28, 27-29, 27-30, 28-29, 28-30, или 29-30 связанных нуклеозидов

В определенных вариантах осуществления олигонуклеотиды состоят из 16 связанных нуклеозидов. В определенных вариантах осуществления олигонуклеотиды состоят из 17 связанных нуклеозидов. В определенных вариантах осуществления олигонуклеотиды состоят из 18 связанных нуклеозидов. В определенных вариантах осуществления олигонуклеотиды состоят из 19 связанных нуклеозидов. В определенных вариантах осуществления олигонуклеотиды состоят из 20 связанных нуклеозидов.

## Определенные модифицированные олигонуклеотиды

В определенных вариантах осуществления вышеуказанные модификации (сахар, нуклеиновое основание, межнуклеозидная связь) включены в модифицированный В определенных вариантах осуществления модифицированные олигонуклеотид. олигонуклеотиды характеризуются по их мотивам модификаций и общей длине. В определенных вариантах осуществления такие параметры не зависят друг от друга. Таким образом, если не указано иное, каждая межнуклеозидная связь олигонуклеотида, имеющего гэпмерный сахарный мотив, может быть модифицирована немодифицирована и может или не может следовать паттерну модификаций сахара. Например, межнуклеозидные связи в областях крыла сахарного гэпмера могут быть одинаковыми или отличаться друг от друга, и могут быть такими же, или отличаться от межнуклеозидных связей в области гэпа сахарного мотива. Аналогичным образом, такие гэпмерные олигонуклеотиды caxapa могут содержать одно или несколько модифицированных нуклеиновых оснований независимо от гэпмерной структуры модификаций сахара. Если не указано иное, все модификации не зависят от последовательности нуклеиновых оснований.

## Определенные популяции модифицированных олигонуклеотидов

Популяции модифицированных олигонуклеотидов, в которых все модифицированные олигонуклеотиды популяции имеют одинаковую молекулярную формулу, могут быть стереослучайными или хирально обогащенными популяциями. Все хиральные центры всех модифицированных олигонуклеотидов являются стереослучайными в стереослучайной популяции. В хирально обогащенной популяции по

меньшей мере один определенный хиральный центр не является стереослучайным в популяции. В модифицированных олигонуклеотидах определенных осуществления модифицированные олигонуклеотиды хирально обогащенной популяции обогащены в отношении β-D-рибозильных сахарных фрагментов, фосфоротиоатных межнуклеозидных связей стереослучайными. В являются определенных вариантах осуществления модифицированные олигонуклеотиды хирально обогащенной популяции обогащены как в отношении β-D-рибозил сахарных фрагментов, так и по меньшей мере в отношении одной определенной фосфоротиоатной межнуклеозидной связи в конкретной стереохимической конфигурации.

#### Последовательность нуклеиновых оснований

определенных вариантах осуществления олигонуклеотиды (немодифицированные или модифицированные олигонуклеотиды) дополнительно описываются их последовательностями нуклеиновых оснований. В определенных вариантах осуществления олигонуклеотиды имеют последовательность нуклеиновых оснований, которая комплементарна второму олигонуклеотиду или идентифицированной эталонной нуклеиновой кислоте, такой как целевая нуклеиновая кислота. В определенных таких вариантах осуществления участок олигонуклеотида имеет последовательность нуклеиновых оснований, которая комплементарна второму олигонуклеотиду или идентифицированной эталонной нуклеиновой кислоте, такой как целевая нуклеиновая кислота. В определенных вариантах осуществления последовательность нуклеиновых оснований участка или всего олигонуклеотида на по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарны второму олигонуклеотиду или нуклеиновой кислоте, такой как целевая нуклеиновая кислота.

## Определенные олигомерные соединения

В определенных вариантах осуществления в данном документе предложены олигомерные соединения, которые состоят из олигонуклеотида (модифицированного или немодифицированного) и необязательно одной или нескольких групп конъюгата и/или концевых групп. Группы конъюгата состоят из одного или нескольких фрагментов конъюгата и линкера конъюгата, который связывает фрагмент олигонуклеотидом. Группы конъюгата могут быть присоединены к одному или обоим концам олигонуклеотида и/или в любом внутреннем положении. В определенных вариантах осуществления группы конъюгата присоединены к 2'-положению нуклеозида модифицированного олигонуклеотида. В определенных вариантах осуществления группы конъюгата, которые присоединены к одному или обоим концам олигонуклеотида, представляют собой концевые группы. В определенных таких вариантах осуществления группы конъюгата или концевые группы присоединены на 3'- и/или 5'-конце олигонуклеотидов. В определенных таких вариантах осуществления группы конъюгата (или концевые группы) присоединены на 3'-конце олигонуклеотидов. В определенных вариантах осуществления группы конъюгата присоединены на 3'-конце

олигонуклеотидов. В определенных вариантах осуществления группы конъюгата (или концевые группы) присоединены на 5'-конце олигонуклеотидов. В определенных вариантах осуществления группы конъюгата присоединены на 5'-конце олигонуклеотидов.

Примеры концевых групп включают в себя, помимо прочего, группы конъюгата, кэп-группы, фосфатные фрагменты, защитные группы, нуклеозиды, в которых отсутствует нуклеиновое основание, модифицированные или немодифицированные нуклеозиды и два или более нуклеозидов, которые независимо модифицированы или немодифицированы.

#### Определенные группы конъюгата

В определенных вариантах осуществления олигонуклеотиды ковалентно связаны с одной или несколькими группами конъюгата. В определенных вариантах осуществления модифицируют одно или более свойств группы конъюгата присоединенного олигонуклеотида, включая, но не ограничиваясь ими, фармакодинамику, фармакокинетику, стабильность, связывание, абсорбцию, клеточное распределение в тканях, распределение в клетках, клеточное поглощение, заряд и клиренс. В определенных вариантах осуществления группы конъюгата придают новое свойство присоединенному олигонуклеотиду, например, флуорофоры или репортерные группы, которые способствуют обнаружению олигонуклеотида. Определенные группы конъюгата и фрагменты конъюгата были описаны ранее, например: фрагмент холестерина (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), холевая кислота (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), тиоэфир, например, гексил-S-тритилтиол (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Lett., 1993, 3, 2765-2770), тиохолестерин (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), алифатическая цепь, например, остатки додекандиола или ундецила (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), фосфолипид, например, дигексадецилили триэтиламмоний 1,2-ди-О-гексадецил-рац-глицеро-3-Н-фосфонат (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), цепь полиамина или полиэтиленгликоля (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973) или адамантан-уксусная кислота, пальмитиловый фрагмент (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), октадециламиновый или гексиламинокарбонил-оксихолестериновый фрагмент (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937), группа токоферола (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; и Nishina et al., Molecular Therapy, 2008, 16, 734-740) или кластер GalNAc (например, WO2014/179620).

## Фрагменты коньюгата

Фрагменты конъюгата включают в себя, помимо прочего, интеркаляторы, репортерные молекулы, полиамины, полиамиды, пептиды, углеводы, фрагменты витаминов, полиэтиленгликоли, сложные тиоэфиры, полиэфиры, холестерины,

тиохолестерины, фрагменты холевой кислоты, фолат, липиды, липофильные группы, фосфолипиды, биотин, феназин, фенантридин, антрахинон, адамантан, акридин, флуоресцеины, родамины, кумарины, флуорофоры и красители.

В определенных вариантах осуществления фрагмент конъюгата содержит активную лекарственную субстанцию, например, аспирин, варфарин, фенилбутазон, ибупрофен, супрофен, фенбуфен, кетопрофен, (S)-(+)-пранопрофен, дансилсаркозин, 2,3,5-трийодбензойную кислоту, финголимод, флуфенамовую кислоту, фолиновую кислоту, бензотиадиазид, хлоротиазид, диазепин, индометицин, барбитурат, противодиабетическое, цефалоспорин, сульфамидное лекарственное средство, антибактериальное или антибиотическое средство.

#### Линкеры конъюгата

Фрагменты конъюгата присоединены к олигонуклеотидам посредством линкеров конъюгата. В определенных олигомерных соединениях линкер конъюгата представляет собой одинарную химическую связь (т.е. фрагмент конъюгата присоединен непосредственно к олигонуклеотиду посредством одинарной связи). В определенных олигомерных соединениях фрагмент конъюгата присоединен к олигонуклеотиду посредством более сложного линкера конъюгата, содержащего один или более фрагментов линкера конъюгата, которые представляют собой составляющие линкер конъюгата. В определенных вариантах осуществления линкер конъюгата содержит цепочечную структуру, такую как гидрокарбильная цепь, или олигомер из повторяющихся единиц, таких как этиленгликоль, нуклеозиды или аминокислотные единицы.

В определенных вариантах осуществления линкер конъюгата содержит одну или выбранных несколько ИЗ алкила, амино, дисульфида, групп, оксо, амида, полиэтиленгликоля, эфира, тиоэфира и гидроксиламино. В определенных таких вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных, амино, оксо, амидных и эфирных групп. В определенных вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных и амидных групп. В определенных вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных и эфирных групп. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере один фосфорный фрагмент. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере одну фосфатную группу. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере одну нейтральную связывающую группу.

В определенных вариантах осуществления линкеры конъюгата, включая линкеры конъюгата, описанные выше, представляют собой бифункциональные связывающие фрагменты, *например*, фрагменты, которые известны из уровня техники, как пригодные для присоединения групп конъюгата к исходным соединениям, таким как олигонуклеотиды, предложенные в данном документе. Как правило, бифункциональный связывающий фрагмент содержит по меньшей мере две функциональные группы. Одна из

функциональных групп выбрана для связывания с определенным сайтом на исходном соединении, а другая выбрана для связывания с группой конъюгата. Примеры функциональных групп, используемых в бифункциональном связывающем фрагменте, включают, но без ограничения ими, электрофилы для взаимодействия с нуклеофильными группами и нуклеофилы для взаимодействия с электрофильными группами. В определенных вариантах осуществления бифункциональные связывающие фрагменты содержат одну или несколько групп, выбранных из амино, гидроксила, карбоновой кислоты, тиола, алкила, алкенила и алкинила.

Примеры линкеров конъюгата включают, но без ограничения ими, пирролидин, 8-амино-3,6-диоксаоктановую кислоту (ADO), сукцинимидил-4-(N-малеимидометил) циклогексан-1-карбоксилат (SMCC) и 6-аминогексановую кислоту (AHEX или AHA). Другие линкеры конъюгата включают, но без ограничения ими, замещенный или незамещенный  $C_1$ - $C_{10}$  алкил, замещенный или незамещенный  $C_2$ - $C_{10}$  алкинил, при этом неограничивающий перечень предпочтительных групп заместителей включает гидроксил, амино, алкокси, карбокси, бензил, фенил, нитро, тиол, тиоалкокси, галоген, алкил, арил, алкенил и алкинил.

В определенных вариантах осуществления линкеры конъюгата содержат 1-10 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат 2-5 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат в точности 3 линкер-нуклеозида. В определенных вариантах осуществления линкеры конъюгата содержат мотив ТСА. В определенных вариантах осуществления такие линкер-нуклеозиды представляют собой модифицированные нуклеозиды. В определенных вариантах осуществления такие линкер-нуклеозиды модифицированный сахарный фрагмент. В содержат определенных осуществления линкер-нуклеозиды являются немодифицированными. В определенных вариантах осуществления линкер-нуклеозиды содержат необязательно защищенное гетероциклическое основание, выбранное из пурина, замещенного пурина, пиримидина или замещенного пиримидина. В определенных вариантах осуществления расщепляемый фрагмент представляет собой нуклеозид, выбранный из урацила, тимина, цитозина, 4-Nбензоилцитозина, 5-метилцитозина, 4-N-бензоил-5-метилцитозина, 6-Nаденина, бензоладенина, гуанина и 2-N-изобутирилгуанина. Обычно желательно, чтобы линкернуклеозиды отщеплялись от олигомерного соединения после того, как оно достигнет целевой ткани. Соответственно, линкер-нуклеозиды обычно связаны друг с другом и с остальной частью олигомерного соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые связи представляют собой фосфодиэфирные связи.

В данном документе линкер-нуклеозиды не считаются частью олигонуклеотида. Соответственно, в вариантах осуществления, в которых олигомерное соединение содержит олигонуклеотид, состоящий из определенного количества или диапазона связанных нуклеозидов и/или определенного процента комплементарности с эталонной

нуклеиновой кислотой, и олигомерное соединение также содержит группу конъюгата, содержащую линкер конъюгата, содержащий линкер-нуклеозиды, при этом эти линкернуклеозиды не учитываются в длине олигонуклеотида и не используются при определении процента комплементарности олигонуклеотида для эталонной нуклеиновой кислоты. Например, олигомерное соединение может содержать (1) модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и (2) группу конъюгата, содержащую 1-10 линкер-нуклеозидов, которые являются смежными c нуклеозидами модифицированного олигонуклеотида. Общее количество смежных связанных нуклеозидов в таком олигомерном соединении составляет более 30. В качестве альтернативы олигомерное соединение может содержать модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и не содержать группы конъюгата. Общее количество смежных связанных нуклеозидов в таком олигомерном соединении составляет не более 30. Если не указано иное, линкеры конъюгата содержат не более 10 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 5 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 3 линкер-нуклеозида. В определенных вариантах осуществления линкеры конъюгата содержат не более 2 линкер-нуклеозида. В определенных вариантах осуществления линкеры конъюгата содержат не более 1 линкернуклеозида.

В определенных вариантах осуществления желательно, чтобы группа конъюгата была отщеплена от олигонуклеотида. Например, в определенных обстоятельствах олигомерные соединения, содержащие определенный фрагмент конъюгата, лучше поглощаются определенным типом клеток, но после поглощения олигомерного соединения желательно, чтобы группа конъюгата была расщеплена для высвобождения неконъюгированного или исходного олигонуклеотида. Таким образом, определенные линкеры конъюгата могут содержать один или несколько расщепляемых фрагментов. В определенных вариантах осуществления расщепляемый фрагмент представляет собой расщепляемую связь. В определенных вариантах осуществления расщепляемый фрагмент представляет собой группу атомов, содержащую по меньшей мере одну расщепляемую связь. В определенных вариантах осуществления расщепляемый фрагмент содержит группу атомов, имеющих одну, две, три, четыре или более четырех расщепляемых связей. В определенных вариантах осуществления расщепляемый фрагмент избирательно расщепляется внутри клетки или субклеточного компартмента, такого как лизосома. В вариантах осуществления расщепляемый фрагмент определенных селективно расщепляется эндогенными ферментами, такими как нуклеазы.

В определенных вариантах осуществления расщепляемая связь выбрана из амида, сложного эфира, эфира, одного или обоих сложных эфиров фосфодиэфира, сложного фосфатного эфира, карбамата или дисульфида. В определенных вариантах осуществления расщепляемая связь представляет собой один или оба сложных эфира фосфодиэфира. В определенных вариантах осуществления расщепляемый фрагмент содержит фосфат или

фосфодиэфир. В определенных вариантах осуществления расщепляемый фрагмент представляет собой фосфатную связь между олигонуклеотидом и фрагментом конъюгата или группой конъюгата.

В определенных вариантах осуществления расщепляемый фрагмент содержит один или несколько линкер-нуклеозидов или состоит из них. В определенных таких вариантах осуществления один или несколько линкер-нуклеозидов связаны друг с другом и/или с остатком олигомерного соединения посредством расщепляемых связей. В определенных осуществления такие расщепляемые связи вариантах представляют немодифицированные фосфодиэфирные связи. В определенных вариантах осуществления фрагмент представляет собой 2'-дезоксирибонуклеозид, расщепляемый присоединен к 3'- или 5'-концевому нуклеозиду олигонуклеотида посредством фосфатной межнуклеозидной связи и ковалентно присоединен к остатку линкера конъюгата или фрагмента конъюгата с помощью фосфатной или фосфоротиоатной межнуклеозидной связи. В определенных таких вариантах осуществления расщепляемый фрагмент представляет собой 2'-дезоксиаденозин.

### Определенные концевые группы

В определенных вариантах осуществления олигомерные соединения содержат одну или несколько концевых групп. В определенных таких вариантах осуществления олигомерные соединения содержат стабилизированный 5'-фосфат. Стабилизированные 5'-фосфаты включают, но не ограничиваясь ими, 5'-фосфанаты, включая, но не ограничиваясь ими, 5'-винилфосфонаты. В определенных вариантах осуществления концевые группы содержат один или несколько нуклеозидов, в которых отсутствует нуклеиновое основание, и/или инвертированных нуклеозидов. В определенных вариантах осуществления концевые группы содержат один или несколько 2'-связанных нуклеозидов. В определенных таких вариантах осуществления 2'-связанный нуклеозид представляет собой нуклеозид, в котором отсутствует нуклеиновое основание.

## Олигомерные дуплексы

В определенных вариантах осуществления олигомерные соединения, описанные в данном документе, содержат олигонуклеотид, имеющий последовательность нуклеиновых оснований, комплементарную последовательности целевой нуклеиновой кислоты. В определенных вариантах осуществления олигомерное связано со вторым олигомерным соединением с образованием олигомерного дуплекса. Такие олигомерные дуплексы содержат первое олигомерное соединение, имеющее участок, комплементарный целевой нуклеиновой кислоте, и второе олигомерное соединение, имеющее участок, комплементарный первому олигомерному соединению. В определенных вариантах осуществления первое олигомерное соединение олигомерного дуплекса содержит (1) модифицированный или немодифицированный олигонуклеотид и необязательно группу конъюгата и (2) второй модифицированный или немодифицированный олигонуклеотид и необязательно группу конъюгата, или состоит из них. Одно или оба олигомерных соединения олигомерного дуплекса могут содержать группу конъюгата. Олигонуклеотиды

каждого олигомерного соединения олигомерного дуплекса могут содержать некомплементарные выступающие нуклеозиды.

#### Антисмысловая активность

В определенных вариантах осуществления олигомерные соединения олигомерные дуплексы способны гибридизоваться с целевой нуклеиновой кислотой, что приводит к по меньшей мере одной антисмысловой активности; такие олигомерные соединения и олигомерные дуплексы представляют собой антисмысловые соединения. В вариантах осуществления антисмысловые соединения определенных антисмысловой активностью, когда они снижают, модулируют или увеличивают количество или активность целевой нуклеиновой кислоты на 25% или более в стандартном клеточном анализе. В определенных вариантах осуществления антисмысловые соединения избирательно влияют на одну или несколько целевых нуклеиновых кислот. Такие антисмысловые соединения содержат последовательность нуклеиновых оснований, которая гибридизуется с одной или несколькими целевыми нуклеиновыми кислотами, что приводит к одной или нескольким необходимым антисмысловым активностям, и не гибридизуется с одной или несколькими нецелевыми нуклеиновыми кислотами, или не гибридизуется с одной или несколькими нецелевыми нуклеиновыми кислотами таким образом, что приводит к значительной нежелательной антисмысловой активности.

При определенных антисмысловых активностях гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к рекрутингу белка, который расщепляет целевую нуклеиновую кислоту. Например, определенные антисмысловые соединения приводят к опосредованному РНКазой Н расщеплению целевой молекулы нуклеиновой кислоты. РНКаза Н представляет собой клеточную эндонуклеазу, которая катализирует расщепление нити РНК в составе дуплекса РНК:ДНК. ДНК в таком дуплексе РНК:ДНК необязательно должна быть немодифицированной ДНК. В определенных вариантах осуществления в данном документе предложены антисмысловые соединения, которые являются достаточно «ДНК-подобными», чтобы вызывать активность РНКазы Н. В определенных вариантах осуществления допускается наличие одного или более не ДНК-подобных нуклеозидов в гэпе гэпмера.

При определенных антисмысловых активностях антисмысловое соединение или участок антисмыслового соединения включаются в РНК-индуцированный комплекс сайленсинга (RISC), что в конечном итоге приводит к расщеплению целевой нуклеиновой кислоты. Например, определенные антисмысловые соединения приводят к расщеплению целевой нуклеиновой кислоты с помощью Argonaute. Антисмысловые соединения, которые загружаются в RISC, представляют собой соединения для RNAi. Соединения для RNAi могут быть двухнитевыми (siRNA) или однонитевыми (ssRNA).

В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой не приводит к рекрутингу белка, который расщепляет эту целевую нуклеиновую кислоту. В определенных вариантах осуществления

гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к изменению сплайсинга целевой нуклеиновой кислоты. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к ингибированию связывающего взаимодействия между целевой нуклеиновой кислотой и белком или другой нуклеиновой кислотой. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к изменению трансляции целевой нуклеиновой кислоты. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к включению экзона. В определенных вариантах осуществления гибридизация антисмыслового соединения с целевой нуклеиновой кислотой приводит к увеличению количества или активности целевой нуклеиновой кислоты. В определенных вариантах осуществления гибридизация антисмыслового соединения, комплементарного целевой нуклеиновой кислоте, приводит к изменению сплайсинга, что приводит к включению экзона в мРНК.

Антисмысловые активности могут наблюдаться прямо или косвенно. В определенных вариантах осуществления наблюдение или обнаружение антисмысловой активности включает наблюдение или обнаружение изменения количества целевой нуклеиновой кислоты или белка, кодируемого такой целевой нуклеиновой кислотой, изменение соотношения вариантов сплайсинга нуклеиновой кислоты или белка и/или фенотипическое изменение в клетке или в организме субъекта.

#### Определенные целевые нуклеиновые кислоты

В определенных вариантах осуществления олигомерные соединения содержат олигонуклеотид, содержащий участок, который является комплементарным целевой нуклеиновой кислоте, или состоят из него. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой эндогенную молекулу РНК. В определенных вариантах осуществления целевая нуклеиновая кислота кодирует белок. В некоторых таких вариантах осуществления целевая нуклеиновая кислота выбрана из: зрелой мРНК и пре-мРНК, включая интронные, экзонные и нетранслируемые области. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой зрелую мРНК. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой пре-мРНК. В определенных вариантах осуществления целевая область полностью находится внутри интрона. В определенных вариантах осуществления целевая область охватывает соединение интрон/экзон. В определенных вариантах осуществления целевая область составляет по меньшей мере 50% внутри интрона.

## Комплементарность/ошибочные спаривания с целевой нуклеиновой кислотой

Можно вводить ошибочно спаренные основания без устранения активности. Например, Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) продемонстрировали способность олигонуклеотида, имеющего 100% комплементарность к mRNA bcl-2 и имеющего 3 ошибочные спаривания с mRNA bcl-xL, к снижению экспрессии как bcl-2, так и bcl-xL in vitro и in vivo. Кроме того, этот олигонуклеотид продемонстрировал

значительную противоопухолевую активность in vivo. Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) исследовали серию тандемных олигонуклеотидов из 14 нуклеиновых оснований и олигонуклеотидов из 28 и 42 нуклеиновых оснований, состоящих из последовательности двух или трех тандемных олигонуклеотидов соответственно, в отношении их способности прекращать трансляцию DHFR человека в анализе ретикулоцитов кролика. Каждый из трех олигонуклеотидов из 14 нуклеиновых оснований по отдельности был способен ингибировать трансляцию, хотя и на более умеренном уровне, чем олигонуклеотиды из 28 или 42 нуклеиновых оснований.

В определенных вариантах осуществления олигонуклеотиды комплементарны целевой нуклеиновой кислоте по всей длине олигонуклеотида. В определенных вариантах осуществления олигонуклеотиды на 99%, 95%, 90%, 85% или 80% комплементарны целевой нуклеиновой кислоте. В определенных вариантах осуществления олигонуклеотиды комплементарны целевой нуклеиновой кислоте на по меньшей мере 80% по всей длине олигонуклеотида и содержат участок, который на 100% или полностью комплементарен целевой нуклеиновой кислоте. В определенных вариантах осуществления длина участка полной комплементарности составляет 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 нуклеиновых оснований.

В определенных вариантах осуществления олигонуклеотиды содержат одно или более ошибочно спаренных нуклеиновых оснований относительно целевой нуклеиновой кислоты. В определенных вариантах осуществления ошибочное спаривание находится в положении 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 от 5'-конца олигонуклеотида.

#### SMN2

В определенных вариантах осуществления олигомерные соединения содержат или состоят из модифицированного олигонуклеотида, комплементарного целевой нуклеиновой кислоте, кодирующей SMN2, или его часть. В некоторых вариантах осуществления SMN2 имеет последовательность, приведенную в SEQ ID NO: 1 (номер доступа GENBANK NT 006713.14, усечена с 19939708 до 19967777 нуклеотида).

В определенных вариантах осуществления приведение в контакт клетки с олигомерным соединением, комплементарным SEQ ID NO: 1, модулирует сплайсинг РНК SMN2 в клетке. В определенных вариантах осуществления приведение в контакт клетки с олигомерным соединением, комплементарным SEQ ID NO: 1, увеличивает количество РНК SMN2, включая экзон 7. В определенных вариантах осуществления приведение в контакт клетки с олигомерным соединением, комплементарным SEQ ID NO: 1, повышает экспрессию полноразмерного белка SMN2. В определенных вариантах осуществления олигомерное соединение состоит из модифицированного олигонуклеотида.

В определенных вариантах осуществления приведение в контакт клетки у субъекта с олигомерным соединением, комплементарным SEQ ID NO: 1, облегчает один или более симптомов нейродегенеративного заболевания. В определенных вариантах осуществления нейродегенеративное заболевание представляет собой СМА, включая СМА типа I, СМА

типа II, СМА типа III и СМА типа IV. В определенных вариантах осуществления симптом представляет собой любой из снижения мышечной силы; неспособности или сниженной способности сидеть прямо, стоять и/или ходить; сниженной нервно-мышечной активности; сниженной электрической активности в одной или более мышцах; сниженного дыхания; неспособности или сниженной способности есть, пить и/или дышать без помощи; потери веса или сниженного прироста массы тела и/или сниженной выживаемости.

В определенных вариантах осуществления олигомерное соединение, комплементарное SEQ ID NO: 1, способно увеличивать количество PHK SMN2, включая экзон 7, in vivo в по меньшей мере 1 раз, 2 раза или 3 раза при введении в соответствии со стандартным анализом in vivo. В определенных вариантах осуществления олигомерное соединение, комплементарное SEQ ID NO: 1, способно увеличивать количество полноразмерного белка SMN2 in vivo в по меньшей мере 1 раз, 2 раза или 3 раза при введении в соответствии со стандартным анализом in vivo.

## Определенные целевые нуклеиновые кислоты в определенных тканях

В определенных вариантах осуществления олигомерные соединения содержат олигонуклеотид, содержащий участок, комплементарный целевой нуклеиновой кислоте, или состоят из него, при этом целевая нуклеиновая кислота экспрессируется в фармакологически релевантной ткани. В определенных вариантах осуществления фармакологически релевантными тканями являются клетки и ткани, которые составляют центральную нервную систему (ЦНС). Такие ткани включают в себя ткани головного мозга, такие как ткань спинного мозга, коры головного мозга и лобной доли головного мозга.

## Определенные фармацевтические композиции

В определенных вариантах осуществления в данном документе описаны фармацевтические композиции, содержащие одно или несколько олигомерных соединений. В определенных вариантах осуществления каждое из одного или нескольких соединений состоит из модифицированного олигонуклеотида. олигомерных определенных вариантах осуществления фармацевтическая композиция содержит фармацевтически приемлемый разбавитель или носитель. В определенных вариантах осуществления фармацевтическая композиция содержит стерильный солевой раствор и одно или несколько олигомерных соединений, или состоит из них. В определенных вариантах осуществления стерильный солевой раствор представляет собой солевой раствор фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько олигомерных соединений и стерильную воду, или состоит из них. В определенных вариантах осуществления стерильная вода представляет собой воду фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько олигомерных соединений и фосфатно-солевой буферный раствор (PBS). В определенных вариантах осуществления стерильный PBS представляет собой PBS

фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит или состоит из одного или более олигомерных соединений и искусственной спинномозговой жидкости («искусственная СМЖ» или «иСМЖ»). В определенных вариантах осуществления искусственная спинномозговая жидкость имеет фармацевтическую степень чистоты.

В определенных вариантах осуществления фармацевтическая композиция содержит модифицированный олигонуклеотид и искусственную спинномозговую жидкость. В определенных вариантах осуществления фармацевтическая композиция состоит из модифицированного олигонуклеотида и искусственной спинномозговой жидкости. В определенных вариантах осуществления фармацевтическая композиция состоит по сути из модифицированного олигонуклеотида и искусственной спинномозговой жидкости. В определенных вариантах осуществления искусственная спинномозговая жидкость имеет фармацевтическую степень чистоты.

В определенных вариантах осуществления фармацевтические композиции содержат одно или несколько олигомерных соединений и один или несколько наполнителей. В определенных вариантах осуществления наполнители выбраны из воды, солевых растворов, спирта, полиэтиленгликолей, желатина, лактозы, амилазы, стеарата магния, талька, кремниевой кислоты, вязкого парафина, гидроксиметилцеллюлозы и поливинилпирролидона.

В определенных вариантах осуществления олигомерные соединения могут быть смешаны с фармацевтически приемлемыми активными и/или инертными веществами для приготовления фармацевтических композиций или составов. Композиции и способы составления фармацевтических композиций зависят от ряда критериев, включая, но не ограничиваясь ими, способ введения, степень тяжести заболевания или дозу, которую необходимо ввести.

В определенных вариантах осуществления фармацевтические композиции, содержащие олигомерное соединение, охватывают любые фармацевтически приемлемые соли олигомерного соединения, сложные эфиры олигомерного соединения или соли таких эфиров. В определенных вариантах осуществления фармацевтические композиции, содержащие олигомерные соединения, содержащие один или несколько олигонуклеотидов, при введении субъекту, включая человека, способны обеспечивать получение (прямо или косвенно) биологически активного метаболита или его остатка. Соответственно, например, настоящее изобретение также относится к фармацевтически олигомерных соединений, пролекарствам, приемлемым солям фармацевтически приемлемым солям таких пролекарств и другим биоэквивалентам. Подходящие фармацевтически приемлемые соли включают, но не ограничиваясь ими, соли натрия и калия. В определенных вариантах осуществления пролекарства содержат одну или несколько групп конъюгата, присоединенных к олигонуклеотиду, при этом группа конъюгата расщепляется эндогенными нуклеазами в организме. В определенных вариантах осуществления пролекарства содержат одну или несколько групп конъюгата,

присоединенных к олигонуклеотиду, при этом группа конъюгата расщепляется эндогенными нуклеазами в организме.

Липидные фрагменты применяли в видах терапии нуклеиновыми кислотами различными способами. В определенных таких способах нуклеиновая кислота, такая как олигомерное соединение, вводится в предварительно образованные липосомы или липоплексы, состоящие из смесей катионных липидов и нейтральных липидов. В определенных способах комплексы ДНК с моно- или поликатионными липидами образуются без присутствия нейтрального липида. В определенных осуществления липидный фрагмент выбран для увеличения распределения фармацевтического агента в определенной клетке или ткани. В определенных вариантах осуществления липидный фрагмент выбран для vвеличения распределения фармацевтического агента в жировой ткани. В определенных вариантах осуществления липидный фрагмент выбран для увеличения распределения фармацевтического агента в мышечной ткани.

В определенных вариантах осуществления фармацевтические композиции содержат систему доставки. Примеры систем доставки включают, но не ограничиваясь ими, липосомы и эмульсии. Определенные системы доставки применимы для приготовления определенных фармацевтических композиций, включая композиции, содержащие гидрофобные соединения. В определенных вариантах осуществления используются определенные органические растворители, такие как диметилсульфоксид.

В определенных вариантах осуществления фармацевтические композиции содержат одну или более тканеспецифичных молекул для доставки, предназначенных для доставки одного или более фармацевтических агентов, содержащих олигомерное соединение, предложенное в данном документе, к конкретным тканям или типам клеток. Например, в определенных вариантах осуществления фармацевтические композиции включают липосомы, покрытые тканеспецифическим антителом.

В определенных вариантах осуществления фармацевтические композиции содержат систему сорастворителей. Определенные из таких систем сорастворителей включают, например, бензиловый спирт, неполярное поверхностно-активное вещество, смешивающийся с водой органический полимер и водную фазу. В определенных вариантах осуществления такие системы сорастворителей используются для гидрофобных соединений. Неограничивающим примером такой системы сорастворителей является система сорастворителей VPD, которая представляет собой раствор абсолютного этанола, содержащий 3% масс./об. бензилового спирта, 8% масс./об. неполярного поверхностно-активного вещества Polysorbate 80<sup>TM</sup> и 65% масс./об. полиэтиленгликоля 300. Пропорции таких систем сорастворителей можно значительно варьировать без значительного изменения их характеристик растворимости и токсичности. Кроме того, идентичность компонентов сорастворителей может варьироваться: например, вместо Polysorbate 80<sup>TM</sup> можно использовать другие поверхностно-активные вещества; фракционный размер полиэтиленгликоля может варьироваться; другие биосовместимые полимеры могут

заменять полиэтиленгликоль, например, поливинилпирролидон; и другие сахара или полисахариды могут заменять декстрозу.

В определенных вариантах осуществления фармацевтические композиции готовят для перорального введения. В определенных вариантах осуществления фармацевтические композиции готовят для буккального введения. В определенных вариантах осуществления фармацевтическую композицию готовят для введения путем инъекции (например, внутримышечной, (IT), внутривенной, подкожной, интратекальной интрацеребровентрикулярной (ICV) и т.д.). В определенных из таких вариантов осуществления фармацевтическая композиция содержит носитель и приготовлена в водном растворе, таком как вода, или физиологически совместимых буферах, таких как раствор Хэнкса, раствор Рингера или физиологический солевой буфер. В определенных вариантах осуществления включены другие ингредиенты (например, ингредиенты, которые способствуют растворимости или служат в качестве консервантов). В некоторых вариантах осуществления суспензии для инъекций готовят с использованием подходящих жидких носителей, суспендирующих агентов и т. п. Определенные фармацевтические композиции для инъекций представлены в стандартной лекарственной форме, например, в ампулах или в контейнерах для нескольких доз. Определенные фармацевтические композиции для инъекций представляют собой суспензии, растворы или эмульсии в масляных или водных носителях и могут содержать составные агенты, такие как суспендирующие, стабилизирующие и/или диспергирующие агенты. Определенные растворители, подходящие для использования в фармацевтических композициях для инъекций, включают в себя, помимо прочего, липофильные растворители и жирные масла, такие как кунжутное масло, синтетические сложные эфиры жирных кислот, такие как этилолеат, или триглицериды, и липосомы.

При определенных условиях определенные соединения, описанные в данном документе, выступают в качестве кислот. Хотя такие соединения могут быть изображены или описаны в протонированной (свободной кислотной) форме или ионизированной и в ассоциации с катионной (солевой) формой, водные растворы таких соединений существуют в равновесии между такими формами. Например, фосфатная связь олигонуклеотида в водном растворе находится в равновесии между формами свободной кислоты, аниона и соли. Если не указано иное, подразумевается, что соединения, описанные в данном документе, включают все такие формы. Более того, определенные олигонуклеотиды имеют несколько таких связей, каждая из которых находится в равновесии. Таким образом, олигонуклеотиды в растворе существуют в виде ансамбля форм во многих положениях, все из которых находятся в равновесии. Термин «олигонуклеотид» включает все такие формы. Изображенные конструкции обязательно представляют единую форму. Тем не менее, если не указано иное, такие изображения также предназначены для включения соответствующих форм. В данном документе структура, изображающая свободную кислоту соединения, за которым следует термин «или его соль», явно включает все такие формы, которые могут быть полностью или частично протонированы/депротонированы/в ассоциации с катионом. В определенных случаях идентифицируется один или несколько конкретных катионов.

В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в водном растворе с натрием. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в водном растворе с калием. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в PBS. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в воде. В определенных таких вариантах осуществления рН раствора регулируют с помощью NaOH и/или HCl для достижения необходимого значения рН.

В данном документе описаны определенные конкретные дозы. Доза может находиться в форме единицы дозировки. Для ясности, доза (или единица дозировки) модифицированного олигонуклеотида или олигомерного соединения в миллиграммах указывает массу свободной кислотной формы модифицированного олигонуклеотида или олигомерного соединения. Как описано выше, в водном растворе свободная кислота находится в равновесии с анионной и солевой формами. Однако с целью расчета дозы предполагается, что модифицированный олигонуклеотид или олигомерное соединение существует в виде безводной свободной кислоты, не содержащей растворителя и ацетата натрия. Например, когда модифицированный олигонуклеотид или олигомерное соединение находится в растворе, содержащем натрий (например, физиологический раствор), модифицированный олигонуклеотид или олигомерное соединение может быть частично или полностью депротонировано и связано с ионами Na+. Однако масса протонов, тем не менее, учитывается при расчете массы дозы, а масса ионов Na+ не учитывается при расчете массы дозы. Таким образом, например, доза или стандартная дозировка 10 мг соединения № 1263789, соединения № 1287717, соединения № 1287745 и соединения № 1358996 равна количеству полностью протонированных молекул, которое весит 10 мг. Это было бы эквивалентно 10,53 мг безводного натриевого соединения № 1263789, не содержащего растворителя, ацетата натрия; 10,53 мг безводного натриевого соединения № 1287717, не содержащего растворителя, ацетата натрия; 10,52 мг безводного натриевого соединения № 1287745, не содержащего растворителя, ацетата натрия; и 10,51 мг безводного натриевого соединения № 1358996, не содержащего растворителя, ацетата натрия. Когда олигомерное соединение содержит группу конъюгата, масса группы конъюгата включается в расчет дозы такого олигомерного соединения. Если группа конъюгата также содержит кислоту, группа конъюгата также считается полностью протонированной для целей расчета дозы.

## Определенные композиции

## Соединение № 1263789

В определенных вариантах осуществления соединение № 1263789 характеризуется как модифицированный олигонуклеотид, имеющий последовательность (от 5' к 3')

САСТТТСАТААТССТССС (SEQ ID NO: 21), где каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент, причем межнуклеозидные связи между нуклеозидами 2-3 и 4-5 представляют собой фосфодиэфирные межнуклеозидные связи, а межнуклеозидные связи между нуклеозидами 1-2, 3-4, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17 и 17-18 представляют собой фосфоротиоатные межнуклеозидные связи, и при этом каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления соединение № 1263789 представлено следующим химическим обозначением (от 5' к 3'):  $^{m}C_{es}$   $A_{eo}$   $^{m}C_{es}$   $T_{eo}$   $T_{es}$   $^{m}C_{es}$   $A_{es}$   $T_{es}$   $A_{es}$   $A_{es}$  A

где

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

В определенных вариантах осуществления соединение № 1263789 представлено следующей химической структурой:

(SEQ ID NO: 21).

## Структура 1. Соединение № 1263789

В определенных вариантах осуществления натриевая соль соединения № 1263789 представлена следующей химической

структурой:

(SEQ ID NO: 21).

## Структура 2. Натриевая соль соединения № 1263789

## Соединение № 1287717

В определенных вариантах осуществления соединение № 1287717 характеризуется как модифицированный олигонуклеотид, имеющий последовательность (от 5' к 3') TTCACTTTCATAATGCTGGC (SEQ ID NO: 22), где каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент, причем межнуклеозидные связи между нуклеозидами 1-2 и 19-20 представляют собой фосфодиэфирные межнуклеозидные связи, а межнуклеозидные связи между нуклеозидами 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18 и 18-19 представляют собой фосфоротиоатные межнуклеозидные связи, и при этом каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления соединение № 1287717 представлено следующим химическим обозначением (5'-3'):

 $T_{eo} T_{es} \ ^m\!C_{es} \ A_{es} \ ^m\!C_{es} \ T_{es} \ T_{es} \ ^m\!C_{es} \ A_{es} \ T_{es} \ A_{es} \ A_{es} \ T_{es} \ G_{es} \ ^m\!C_{es} \ T_{es} \ G_{es} \ ^m\!C_{e} \ (SEQ \ ID \ NO: 22)$ 

А=адениновое нуклеиновое основание,

 ${}^{\mathrm{m}}\mathrm{C}{=}5$ -метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

В определенных вариантах осуществления соединение № 1287717 представлено следующей химической структурой:

(SEQ ID NO: 22).

## Структура 3. Соединение № 1287717

В определенных вариантах осуществления натриевая соль соединения № 1287717 представлено следующей химической структурой:

(SEQ ID NO: 22).

## Структура 4. Натриевая соль соединения № 1287717

## Соединение № 1287745

В определенных вариантах осуществления соединение № 1287745 характеризуется как модифицированный олигонуклеотид, имеющий последовательность (от 5' к 3') ТТСАСТТТСАТААТССТССС (SEQ ID NO: 22), где каждый из нуклеозидов 1 и 20 содержит 2'-МОЕ сахарный фрагмент, каждый из нуклеозидов 2-19 содержит 2'-NMA сахарный фрагмент, причем межнуклеозидные связи между нуклеозидами 1-2 и 19-20 представляют собой фосфодиэфирные межнуклеозидные связи, а межнуклеозидные связи между нуклеозидами 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18 и 18-19 представляют собой фосфоротиоатные межнуклеозидные связи, и при этом каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления соединение № 1287745 представлено следующим химическим обозначением (от 5' к 3'):

 $T_{eo}\,T_{ns}\,^m\!C_{ns}\,A_{ns}\,^m\!C_{ns}\,T_{ns}\,T_{ns}\,T_{ns}\,^m\!C_{ns}\,A_{ns}\,T_{ns}\,A_{ns}\,A_{ns}\,T_{ns}\,G_{ns}\,^m\!C_{ns}\,T_{ns}\,G_{ns}\,G_{no}\,^m\!C_{e}\,(SEQ\;ID\;NO:\;22)$ 

где

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

n=2'-NMA сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

В определенных вариантах осуществления соединение № 1287745 представлено следующей химической структурой:

(SEQ ID NO: 22).

## Структура 5. Соединение № 1287745

В определенных вариантах осуществления натриевая соль соединения № 1287745 представлена следующей химической структурой:

(SEQ ID NO: 22).

## Структура 6. Натриевая соль соединения № 1287745

## Соединение № 1358996

В определенных вариантах осуществления соединение № 1358996 характеризуется как модифицированный олигонуклеотид, имеющий последовательность (от 5' к 3') САСТТТСАТААТССТСЯС (SEQ ID NO: 21), где каждый нуклеозид содержит 2'-NMA сахарный фрагмент, причем межнуклеозидные связи между нуклеозидами 2-3 и 4-5 представляют собой фосфодиэфирные межнуклеозидные связи, а межнуклеозидные связи между нуклеозидами 1-2, 3-4, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17 и 17-18 представляют собой фосфоротиоатные межнуклеозидные связи, и при этом каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления соединение № 1358996 представлено следующим химическим обозначением (от 5' к 3'):

 $^{m}C_{ns}\ A_{no}\ ^{m}C_{ns}\ T_{no}\ T_{ns}\ T_{ns}\ ^{m}C_{ns}\ A_{ns}\ T_{ns}\ A_{ns}\ T_{ns}\ G_{ns}\ ^{m}C_{ns}\ T_{ns}\ G_{ns}\ ^{m}C_{n}\ (SEQ\ ID\ NO:\ 21)$ 

А=адениновое нуклеиновое основание,

 ${}^{\mathrm{m}}\mathrm{C}{=}5$ -метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

n=2'-NMA сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

В определенных вариантах осуществления соединение № 1358996 представлено следующей химической структурой:

(SEQ ID NO: 21).

## Структура 7. Соединение № 1358996

В определенных вариантах осуществления натриевая соль соединения N = 1358996 представлена следующей химической

структурой:

(SEQ ID NO: 21).

## Структура 8. Натриевая соль соединения № 1358996

### Определенные композиции сравнения

В определенных вариантах осуществления препарат Spinraza® (общее название нусинерсен; соединение № 396443), одобренный для лечения СМА, является соединением сравнения (см., например, Chiroboga, et al., Neurology, 86(10): 890-897, 2016; Finkel, et al., Lancet, 338(10063): 3017-3026, 2016; Finkel, et al., N. Engl. J. Med., 377(18):1723-1732 2017; Mercuri, et al., N. Engl. J. Med., 378(7):625-635, 2018; Montes, et al., Muscle Nerve. 60(4): 409-414, 2019; Darras, et al., Neurology, 92(21):e2492-e2506, 2019). Spinraza® был ранее описан в WO2010120820, включенной в данный документ посредством ссылки, и имеет последовательность (от 5' к 3') TCACTTTCATAATGCTGG (SEQ ID NO: 23), где каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент, каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, а каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления другие ранее описанные соединение,

включая соединения №№ 387954, 396442, 443305 и 819735, являются соединениями сравнения, хотя они и не были одобрены для лечения человека.

Соединение № 387954 было ранее описано в WO 2014/179620, включенной в данный документ посредством ссылки. Соединение № 387954 имеет последовательность (5'-3') ATTCACTTTCATAATGCTGG (SEQ ID NO: 20), где каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент, каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, а каждый цитозин представляет собой 5-метилцитозин.

Соединение № 396442 было ранее описано в WO 2010/120820, включенной в данный документ посредством ссылки. Соединение № 396442 имеет последовательность (от 5' к 3') CACTTTCATAATGCTGGC (SEQ ID NO: 21), где каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент, каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, а каждый цитозин представляет собой 5-метилцитозин.

Соединение № 443305 было ранее описано в WO 2018/014041, включенной в данный документ посредством ссылки. Соединение № 443305 имеет последовательность (от 5' к 3') TCACTTCATAATGCTGG (SEQ ID NO: 23), где каждый нуклеозид содержит 2'-NMA сахарный фрагмент, каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, а каждый цитозин представляет собой 5-метилцитозин.

Соединение № 819735 было ранее описано в WO 2018/014041, включенной в данный документ посредством ссылки. Соединение № 819735 имеет последовательность (от 5' к 3') CACTTTCATAATGCTGGC (SEQ ID NO: 21), где каждый нуклеозид содержит 2'-NMA сахарный фрагмент, каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, а каждый цитозин представляет собой 5-метилцитозин.

Таблица 1 Определенные композиции сравнения

| Соедине<br>ние<br>Число | Последовательность<br>нуклеиновых<br>оснований<br>(5'-3') | Сахарный<br>мотив         | Мотив<br>межнуклеоз<br>идной связи | SEQ<br>ID NO: | Ссылочн<br>ый номер   |
|-------------------------|-----------------------------------------------------------|---------------------------|------------------------------------|---------------|-----------------------|
| 396443                  | TCACTTTCATAATG<br>CTGG                                    | Полноразмер<br>ный 2'-МОЕ | Полноразме<br>рная PS              | 23            | WO<br>2010/1208<br>20 |
| 387954                  | ATTCACTTTCATAA<br>TGCTGG                                  | Полноразмер<br>ный 2'-МОЕ | Полноразме<br>рная PS              | 20            | WO<br>2014/1796<br>20 |

| 396442 | CACTTTCATAATGC<br>TGGC | Полноразмер<br>ный 2'-МОЕ | Полноразме<br>рная PS | 21 | WO<br>2010/1208<br>20 |
|--------|------------------------|---------------------------|-----------------------|----|-----------------------|
| 443305 | TCACTTTCATAATG<br>CTGG | Полноразмер<br>ный 2'-NMA | Полноразме<br>рная PS | 23 | WO<br>2018/0140<br>41 |
| 819735 | CACTTTCATAATGC<br>TGGC | Полноразмер<br>ный 2'-NMA | Полноразме<br>рная PS | 21 | WO<br>2018/0140<br>41 |

В определенных вариантах осуществления соединения, описанные в данном документе, превосходят соединения, описанные в WO 2007/002390, WO2010/120820, WO 2015/161170 и WO 2018/014041, поскольку они демонстрируют одно или несколько улучшенных свойств, таких как активность, эффективность и переносимость.

Например, соединение № 1263789, соединение № 1287745 и соединение № 1358996 каждое продемонстрировало улучшенную активность in vivo по сравнению с соединением № 396443. Как показано в примере 5, соединение № 1263789, соединение № 1287745 и соединение № 1358996 достигали  $ED_{50}$  в спинном мозге 13,3, 8,8 и 7,4, соответственно. Для сравнения, соединение № 396443 достигало  $ED_{50}$  в спинном мозге 22,0. Таким образом, каждое из соединения № 1263789, соединения № 1287745 и соединения № 1358996 является более активным, чем соединение № 396443 в данном анализе.

Например, соединение № 1263789, соединение № 1287717, соединение № 1287745 и соединение № 1358996 каждое продемонстрировало улучшенные показатели КФТ за 3 часа по сравнению с соединением № 396443, соединением № 387954 и соединением № 443305. Как показано в примере 6, при дозе 700 мкг соединение № 1263789, соединение № 1287717, соединение № 1287745 и соединение № 1358996 достигали показателей КФТ за 3 часа 0, 3,25, 1 и 0, соответственно. Для сравнения, при половинной дозе (350 мкг) соединение № 396443 достигало показателя КФТ за 3 часа 4,0; а при такой же дозе (700 мкг) соединение № 387954 и соединение № 443305 достигали показателей КФТ за 3 часа 4,0 и 4,75, соответственно. Таким образом, каждое из соединения № 1263789, соединения № 1287717, соединения № 1287745 и соединения № 1358996 является более переносимым, чем соединение № 396443, соединение № 387954 и соединение № 443305 в данном анализе.

Например, соединение № 1263789, соединение № 1287717, соединение № 1287745 и соединение № 1358996 каждое продемонстрировало улучшенную долгосрочную переносимость по сравнению с соединением № 396442 и соединением № 819735. Как показано в примере 7, соединение № 1263789, соединение № 1287717, соединение № 1287745 и соединение № 1358996 продемонстрировали отсутствие нежелательных явлений, отсутствие потери клеток Пуркинье и количество мРНК GFAP коры более чем в

2 раза ниже по сравнению с контролем. Для сравнения, 396442 и 819735 каждое продемонстрировало наличие нежелательных явлений, наличие потери клеток Пуркинье и количество мРНК GFAP коры более чем в 2 раза выше по сравнению с контролем у определенных животных, получавших лечение. Таким образом, каждое из соединения № 1263789, соединения № 1287717, соединения № 1287745 и соединения № 1358996 является более переносимым, чем соединение № 396442 и соединение № 819735 в данном анализе.

## Неограничивающее раскрытие и включение посредством ссылки

Каждая из литературных и патентных публикаций, перечисленных в данном документе, включена в данный документ посредством ссылки в полном объеме. Несмотря на то, что определенные соединения, композиции и способы, описанные в данном документе, были подробно описаны в соответствии с определенными вариантами осуществления изобретения, следующие примеры служат лишь для иллюстрации соединений, описанных в данном документе, и не предназначены для ограничения данного изобретения. Каждая из ссылок, номеров доступа в GenBank и т. п., цитируемых в настоящей заявке, включены в данный документ посредством ссылки в полном объеме.

Хотя перечень последовательностей, прилагаемый к этой заявке, идентифицирует каждую последовательность как «РНК» или «ДНК», как требуется, в действительности эти последовательности могут быть модифицированы с помощью любой комбинации химических модификаций. Специалист в данной области техники легко поймет, что такое обозначение как «РНК» или «ДНК» для описания модифицированных олигонуклеотидов в определенных случаях является произвольным. Например, олигонуклеотид, содержащий нуклеозид, содержащий 2'-ОН сахарный фрагмент и тиминовое основание, может быть описан как ДНК, имеющая модифицированный сахарный фрагмент (2'-ОН вместо одного 2'-H ДНК) РНК, имеющая модифицированное или как основание (метилированный урацил) вместо урацила РНК). Соответственно, последовательности нуклеиновых кислот, предложенные в данном документе, включая, но не ограничиваясь ими, последовательности в перечне последовательностей, предназначены для охвата нуклеиновых содержащих любую комбинацию кислот, природных или модифицированных РНК и/или ДНК, включая, но не ограничиваясь ими, такие нуклеиновые кислоты, имеющие модифицированные нуклеиновые основания. В качестве дополнительного примера и без ограничения олигомерное соединение, имеющее оснований «ATCGATCG», последовательность нуклеиновых охватывает олигомерные соединения, имеющие такую последовательность нуклеиновых оснований, модифицированные или немодифицированные, включая, но не ограничиваясь ими, такие соединения, содержащие основания РНК, такие как соединения, имеющие последовательность «AUCGAUCG» и соединения, имеющие некоторые основания ДНК и некоторые основания РНК, такие как «AUCGATCG», и олигомерные соединения, имеющие другие модифицированные нуклеиновые основания, такие как «AT<sup>m</sup>CGAUCG», где <sup>m</sup>C обозначает цитозиновое основание, содержащее метильную группу в 5-положении.

Определенные соединения, описанные в данном документе модифицированные олигонуклеотиды), имеют один или несколько асимметричных центров и, таким образом, приводят к образованию энантиомеров, диастереомеров и других стереоизомерных конфигураций, которые могут быть определены с точки зрения абсолютной стереохимии как (R) или (S), как α или β, например, для аномеров сахара, или как (D) или (L), например, для аминокислот и т.д. Соединения, предложенные в данном которые изображены или описаны как имеющие определенные стереоизомерные конфигурации, включают только указанные соединения. Соединения, предложенные в данном документе, которые изображены или описаны с неопределенной стереохимией, включают все такие возможные изомеры, включая их стереослучайные и оптически чистые формы, если не указано иное. Аналогичным образом, если не указано иное, в данный документ также включены все цис- и транс-изомеры и таутомерные формы соединений. Олигомерные соединения, описанные в данном документе, включают в себя хирально чистые или обогащенные смеси, а также рацемические смеси. Например, олигомерные соединения, имеющие множество фосфоротиоатных межнуклеозидных связей, включают в себя такие соединения, в которых хиральность фосфоротиоатных межнуклеозидных связей является контролируемой или случайной. Если не указано иное, подразумевается, что соединения, описанные в данном документе, соответствующие солевые формы.

Соединения, описанные в данном документе, включают варианты, в которых один или несколько атомов заменены нерадиоактивным изотопом или радиоактивным изотопом указанного элемента. Например, соединения данного документе, которые содержат атомы водорода, охватывают все возможные замещения дейтерием для каждого из атомов водорода <sup>1</sup>Н. Изотопные замены, охватываемые соединениями данного документа, включают, но не ограничиваясь ими: <sup>2</sup>Н или <sup>3</sup>Н вместо <sup>1</sup>Н, <sup>13</sup>С или <sup>14</sup>С вместо <sup>12</sup>С, <sup>15</sup>N вместо <sup>14</sup>N, <sup>17</sup>О или <sup>18</sup>О вместо <sup>16</sup>О и <sup>33</sup>S, <sup>34</sup>S, <sup>35</sup>S или <sup>36</sup>S вместо <sup>32</sup>S. В определенных вариантах осуществления нерадиоактивные изотопные замены могут придавать олигомерному соединению новые свойства, которые полезны для применения в качестве терапевтического или исследовательского инструмента. В определенных вариантах осуществления радиоактивные изотопные замены могут сделать соединение подходящим для исследовательских или диагностических целей, таких как визуализация.

#### ПРИМЕРЫ

Следующие примеры иллюстрируют определенные варианты осуществления настоящего изобретения и не являются ограничивающими. Более того, если предложены конкретные варианты осуществления, авторы настоящего изобретения предусмотрели общее применение этих конкретных вариантов осуществления.

## Пример 1. Конструирование модифицированных олигонуклеотидов, комплементарных нуклеиновой кислоте SMN2 человека

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте SMN2 человека, были сконструированы и синтезированы, как указано в таблицах ниже.

Длина модифицированных олигонуклеотидов в таблицах ниже составляет 16, 17, 18, 19 или 20 нуклеозидов, как указано. Модифицированные олигонуклеотиды содержат 2'-МОЕ сахарные фрагменты, 2'-NMA сахарные фрагменты, сЕt сахарные фрагменты, 2'-ОМе сахарные фрагменты и/или 2'-β-D-дезоксирибозильные сахарные фрагменты, как указано. Каждая межнуклеозидная связь по всей длине модифицированного олигонуклеотида представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь, как указано. Цитозины представляют собой неметилированные цитозины или 5-метилцитозины, как указано.

Каждый модифицированный олигонуклеотид, приведенный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT 006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные «Последовательность нуклеиновые основания указаны В колонке нуклеиновых подчеркнутым, оснований» шрифтом. жирным или курсивным модифицированный олигонуклеотид, приведенный в таблицах ниже, нацелен на активный сайт на транскрипте SMN2 для включения экзона 7. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению К которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

## Таблица 2

Длина модифицированных олигонуклеотидов в таблице 2 ниже составляет 16, 17, 18, 19 или 20 нуклеозидов. Каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для модифицированного каждого олигонуклеотида приведен колонке «Мотив межнуклеозидной связи», где каждый «s» представляет собой фосфоротиоатную межнуклеозидную каждый **«O»** представляет собой фосфодиэфирную связь, a межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждый модифицированный олигонуклеотид, приведенный в таблице 2 ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные нуклеиновые основания указаны в колонке «Последовательность нуклеиновых оснований» подчеркнутым, эсирным или курсивным ирифтом. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

#### Таблица 2

# 2'-МОЕ модифицированные олигонуклеотиды с PS или смешанными PS/PO межнуклеозидными связями

| <u>,</u>  | Последовательн |            | DAI-                                    |                            | Стоп-  |     |
|-----------|----------------|------------|-----------------------------------------|----------------------------|--------|-----|
| Номер     | ость           | Сахарный   | Мотив                                   | Старт-                     | сайт   | SEQ |
| соединени | нуклеиновых    | мотив      | межнуклеозид                            | сайт SEQ                   | SEQ    | ID  |
| Я         | оснований      | (5'-3')    | ной связи (от                           | ID NO: 1                   | ID NO: | NO: |
|           | (5'-3')        |            | 5' к 3')                                |                            | 1      |     |
| 1287063   | ACTTTCATAAT    | eeeeeeeeee | sssssssssssss                           | 27059                      | 27077  | 24  |
| 1207003   | GCTGGCAG       | eeeeee     | s                                       |                            |        |     |
| 1287048   | CACTTTCATAA    | eeeeeeeeee | sssssssssssss                           | 27059                      | 27078  | 25  |
|           | TGCTGGCAG      | eeeeeee    | ss                                      | 27039                      | 27078  | 23  |
| 1287064   | CACTTTCATAA    | eeeeeeeeee | sssssssssssss                           | 27060                      | 27078  | 26  |
| 1287064   | TGCTGGCA       | eeeeee     | s                                       | 27000                      |        |     |
| 1287049   | TCACTTTCATA    | eeeeeeeeee | sssssssssssss                           | 27060                      | 27079  | 27  |
| 1207047   | ATGCTGGCA      | eeeeeee    | ss                                      | 27000                      |        |     |
| 1210340   | CTTTCATAATG    | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061                      | 27076  | 28  |
| 1210340   | CTGGC          | eee        | 3333333333333                           |                            |        |     |
| 1212868   | CTTTCATAATG    | eeeeeeeeee | ssssssssoooss                           | 27061                      | 27076  | 28  |
| 1212000   | CTGGC          | eee        |                                         |                            |        |     |
| 1212867   | CTTTCATAATG    | eeeeeeeeee | SSSSSSSSOOOSSS                          | 27061                      | 27076  | 28  |
| 1212867   | CTGGC          | eee        | 33333330000333                          |                            |        |     |
| 1212863   | CTTTCATAATG    | eeeeeeeeee | SSSSSSOOOSSSSSS                         | 27061 27076<br>27061 27076 | 28     |     |
| 1212003   | CTGGC          | eee        | 33333000333333                          |                            | 27070  |     |
| 1212866   | CTTTCATAATG    | eeeeeeeeee | SSSSSSOOOSSSSS                          | 27061                      | 27076  | 28  |
| 1212866   | CTGGC          | eee        | 33333000033333                          | 2,001                      | 2,0,0  | 20  |
| 1212861   | CTTTCATAATG    | eeeeeeeeee | sssssoooosssss                          | 27061                      | 27076  | 28  |
| 1212861   | CTGGC          | eee        | 33333000033333                          |                            |        | 20  |
| 1212860   | CTTTCATAATG    | eeeeeeeeee | sssssooooossss                          | 27061                      | 27076  | 28  |
| 1212000   | CTGGC          | eee        | 35555000005555                          |                            | 27070  |     |
| 1212865   | CTTTCATAATG    | eeeeeeeeee | SSSSOOOOSSSSSSS                         | 27061                      | 27076  | 28  |
|           | CTGGC          | eee        | 220000000000000000000000000000000000000 |                            |        |     |
| 1212859   | CTTTCATAATG    | eeeeeeeeee | ssssoooooossss                          | 27061                      | 27076  | 28  |
|           | CTGGC          | eee        | 555500000005555                         |                            |        |     |
| 1212851   | CTTTCATAATG    | eeeeeeeeee | SSSOSSSOSSS                             | 27061                      | 27076  | 28  |
| 1212031   | CTGGC          | eee        | 666066906990999                         |                            | 2,0,0  |     |

| 1010050 | CTTTCATAATG | eeeeeeeeee |                                         | 2=0.64 | 25056 |    |
|---------|-------------|------------|-----------------------------------------|--------|-------|----|
| 1212850 | CTGGC       | eee        | ssossssssssss                           | 27061  | 27076 | 28 |
| 1010070 | CTTTCATAATG | eeeeeeeeee |                                         | 27061  | 27076 | 28 |
| 1212852 | CTGGC       | eee        | ssossossosss                            |        |       |    |
| 1212853 | CTTTCATAATG | eeeeeeeeee | 2202022022022                           | 27061  | 27076 | 28 |
| 1212033 | CTGGC       | eee        | ssossossososs                           | 27001  | 27076 | 28 |
| 1212854 | CTTTCATAATG | eeeeeeeeee | 2222222222222                           | 27061  | 27076 | 28 |
| 1212034 | CTGGC       | eee        | ssosososososs                           |        |       |    |
| 1212864 | CTTTCATAATG | eeeeeeeeee | ssooossssssss                           | 27061  | 27076 | 28 |
| 1212004 | CTGGC       | eee        | 350000358585585                         | 27001  |       |    |
| 1212855 | CTTTCATAATG | eeeeeeeeee | soosssssssooss                          | 27061  | 27076 | 28 |
|         | CTGGC       | eee        | 3003333330033                           | 27001  | 27076 |    |
| 1212856 | CTTTCATAATG | eeeeeeeeee | sooossssssooss                          | 27061  | 27076 | 28 |
| 1212856 | CTGGC       | eee        | 30003333330033                          |        |       |    |
| 1212857 | CTTTCATAATG | eeeeeeeeee | sooossssssoooss                         | 27061  | 27076 | 28 |
| 1212837 | CTGGC       | eee        |                                         |        |       |    |
| 1212858 | CTTTCATAATG | eeeeeeeeee | sooosssssooss                           | 27061  | 27076 | 28 |
| 1212838 | CTGGC       | eee        | 30000333300033                          | 2.001  |       |    |
| 1210339 | ACTTTCATAAT | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061  | 27077 | 29 |
|         | GCTGGC      | eeee       |                                         | 27001  | 27077 |    |
| 1212849 | ACTTTCATAAT | eeeeeeeeee | ssssssssoooss                           | 27061  | 27077 | 29 |
| 1212019 | GCTGGC      | eeee       | 355555555555555555555555555555555555555 |        | 27077 |    |
| 1212848 | ACTTTCATAAT | ececececec | sssssssooossss                          | 27061  | 27077 | 29 |
| 1212010 | GCTGGC      | eeee       |                                         | 27001  |       |    |
| 1212845 | ACTTTCATAAT | eeeeeeeeee | ssssssooossssss                         | 27061  | 27077 | 29 |
| 1212010 | GCTGGC      | eeee       |                                         |        |       |    |
| 1212844 | ACTTTCATAAT | eeeeeeeeee | ssssssooossssss                         | 27061  | 27077 | 29 |
| 1212044 | GCTGGC      | eeee       |                                         | 2,001  | 27077 |    |
| 1212843 | ACTTTCATAAT | eeeeeeeeee | ssssssoooosssss                         | 27061  | 27077 | 29 |
|         | GCTGGC      | eeee       |                                         |        |       |    |
| 1212842 | ACTTTCATAAT | eeeeeeeeee | sssssooooossss                          | 27061  | 27077 | 29 |
|         | GCTGGC      | eeee       | s                                       |        |       |    |
| 1212841 | ACTTTCATAAT | eeeeeeeeee | sssssoooooosss                          | 27061  | 27077 | 29 |
| 1212041 | GCTGGC      | eeee       | s                                       | _,,,,, |       |    |

| 1212847 | ACTTTCATAAT | eeeeeeeeee | ssssooosssssss                          | 27061 | 27077 | 29                                 |
|---------|-------------|------------|-----------------------------------------|-------|-------|------------------------------------|
|         | GCTGGC      | eeee       |                                         |       |       |                                    |
| 1212832 | ACTTTCATAAT | eeeeeeeeee | ssosssssssssss                          | 27061 | 27077 | 29                                 |
|         | GCTGGC      | eeee       |                                         |       |       |                                    |
| 1212833 | ACTTTCATAAT | eeeeeeeeee | ssossssosssoss                          | 27061 | 27077 | 29                                 |
| 1212033 | GCTGGC      | eeee       | 330333330333033                         | 27001 | 27077 |                                    |
| 1212834 | ACTTTCATAAT | eeeeeeeeee | 000000000000000000000000000000000000000 | 27061 | 27077 | 29                                 |
| 1212034 | GCTGGC      | eeee       | ssosssossoss                            | 27001 | 2/0// | 29                                 |
| 1212835 | ACTTTCATAAT | eeeeeeeeee |                                         | 27061 | 27077 | 20                                 |
| 1212833 | GCTGGC      | eeee       | ssossossoss                             | 27001 | 27077 | 29                                 |
| 1010026 | ACTTTCATAAT | eeeeeeeeee | ssosososososs                           | 27071 | 27077 | 20                                 |
| 1212836 | GCTGGC      | eeee       | s                                       | 27061 | 27077 | 29                                 |
| 1010046 | ACTTTCATAAT | eeeeeeeeee |                                         | 27061 | 27077 | 20                                 |
| 1212846 | GCTGGC      | eeee       | ssooosssssssss                          | 27061 | 27077 | 29                                 |
| 1212837 | ACTTTCATAAT | eeeeeeeeee | 2002222222000                           | 27061 | 27077 | 20                                 |
| 1212837 | GCTGGC      | eeee       | soossssssssooss                         | 27061 | 27077 | 29                                 |
| 1212838 | ACTTTCATAAT | eeeeeeeeee |                                         | 27061 | 27077 | 20                                 |
|         | GCTGGC      | eeee       | sooosssssssooss                         | 27001 | 27077 | 29                                 |
| 1212020 | ACTTTCATAAT | eeeeeeeeee |                                         | 27061 | 27077 | 20                                 |
| 1212839 | GCTGGC      | eeee       |                                         | 27061 | 27077 | 29                                 |
| 1212040 | ACTTTCATAAT | eeeeeeeeee | sooossssssooos                          | 27061 | 27077 | 20                                 |
| 1212840 | GCTGGC      | eeee       | s                                       | 27061 | 27077 | 29                                 |
| 1262014 | CACTTTCATAA | eeeeeeeeee |                                         | 27061 | 27070 | 21                                 |
| 1263814 | TGCTGGC     | eeeee      | SSOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | 21                                 |
| 1262016 | CACTTTCATAA | eeeeeeeeee |                                         | 27061 | 27070 | 21                                 |
| 1263816 | TGCTGGC     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | $\begin{vmatrix} 21 \end{vmatrix}$ |
| 10/0010 | CACTTTCATAA | eeeeeeeeee |                                         | 27061 | 27070 | 21                                 |
| 1263818 | TGCTGGC     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | 21                                 |
| 126222  | CACTTTCATAA | eeeeeeeeee |                                         | 27074 | 25050 |                                    |
| 1263820 | TGCTGGC     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | $\begin{vmatrix} 21 \end{vmatrix}$ |
| 10/0000 | CACTTTCATAA | eeeeeeeeee |                                         | 27071 | 27070 | 21                                 |
| 1263822 | TGCTGGC     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | $\begin{vmatrix} 21 \end{vmatrix}$ |
| 10/000/ | CACTTTCATAA | eeeeeeeeee |                                         | 27071 | 27070 |                                    |
| 1263824 | TGCTGGC     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | $\begin{vmatrix} 21 \end{vmatrix}$ |
|         |             |            |                                         |       |       |                                    |

|         |             | 1          |                    |       | 1     |    |
|---------|-------------|------------|--------------------|-------|-------|----|
| 1263826 | CACTTTCATAA | eeeeeeeeee | sssssssssssssss    | 27061 | 27078 | 21 |
|         | TGCTGGC     | eeeee      |                    |       |       |    |
| 1210342 | CACTTTCATAA | eeeeeeeeee | ssossssssssss      | 27061 | 27078 | 21 |
| 1210342 | TGCTGGC     | eeeee      | s                  | 27001 | 27070 |    |
| 1263778 | CACTTTCATAA | eeeeeeeeee | sossssssssssss     | 27061 | 27078 | 21 |
| 1203776 | TGCTGGC     | eeeee      | s                  | 27001 | 27078 | 21 |
| 1263781 | CACTTTCATAA | eeeeeeeeee | sosssssssssssss    | 27061 | 27078 | 21 |
| 1203761 | TGCTGGC     | eeeee      | s                  | 27001 | 27078 |    |
| 1263783 | CACTTTCATAA | eeeeeeeeee | sosssssssssssss    | 27061 | 27078 | 21 |
| 1203763 | TGCTGGC     | eeeee      | s                  | 27001 | 27076 |    |
| 1263785 | CACTTTCATAA | eeeeeeeeee | sossssssssss       | 27061 | 27078 | 21 |
| 1203763 | TGCTGGC     | eeeee      | s                  | 27001 | 27078 |    |
| 1263787 | CACTTTCATAA | eeeeeeeeee | sosssossssssss     | 27061 | 27078 | 21 |
| 1203767 | TGCTGGC     | eeeee      | s                  | 27001 |       |    |
| 1263789 | CACTTTCATAA | eeeeeeeeee | sosossssssssss     | 27061 | 27078 | 21 |
|         | TGCTGGC     | eeeee      | s                  | 27001 | 27076 |    |
| 1263791 | CACTTTCATAA | eeeeeeeeee | sssssssssssssss    | 27061 | 27078 | 21 |
| 1203771 | TGCTGGC     | eeeee      | s                  | 27001 |       |    |
| 1263793 | CACTTTCATAA | eeeeeeeeee | sssssssssssss      | 27061 | 27078 | 21 |
| 1203793 | TGCTGGC     | eeeee      | s                  | 27001 | 27076 |    |
| 1263795 | CACTTTCATAA | eeeeeeeeee | ssssssssssssss     | 27061 | 27078 | 21 |
| 1203773 | TGCTGGC     | eeeee      | s                  | 27001 | 27070 |    |
| 1263797 | CACTTTCATAA | eeeeeeeeee | ssssssssssssssssss | 27061 | 27078 | 21 |
| 1203797 | TGCTGGC     | eeeee      | s                  | 27001 | 27076 |    |
| 1263799 | CACTTTCATAA | eeeeeeeeee | ssssssssssosos     | 27061 | 27078 | 21 |
| 1203777 | TGCTGGC     | eeeee      | s                  | 27001 | 27070 |    |
| 1263800 | CACTTTCATAA | eeeeeeeeee | soosssssssssss     | 27061 | 27078 | 21 |
| 1203800 | TGCTGGC     | eeeee      | s                  | 27001 | 27078 |    |
| 1263802 | CACTTTCATAA | eeeeeeeeee | sssoosssssssss     | 27061 | 27078 | 21 |
| 1203002 | TGCTGGC     | eeeee      | s                  | 2/001 | 21018 |    |
| 1263804 | CACTTTCATAA | eeeeeeeeee | sssssoossssssss    | 27061 | 27079 | 21 |
| 1203004 | TGCTGGC     | eeeee      | s                  | 27001 | 27078 | 21 |
| 1262906 | CACTTTCATAA | eeeeeeeeee | ssssssoossssss     | 27061 | 27079 | 21 |
| 1263806 | TGCTGGC     | eeeee      | s                  | 27061 | 27078 | 21 |
|         | 1           | 1          | L                  | l     | 1     |    |

|               | CACTTTCATAA | eeeeeeeeee | ssssssssoosssss                         |       |       |                                    |
|---------------|-------------|------------|-----------------------------------------|-------|-------|------------------------------------|
| 1263808       | TGCTGGC     | eeeee      | S                                       | 27061 | 27078 | 21                                 |
|               | CACTTTCATAA |            |                                         |       |       |                                    |
| 1263810       |             | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27061 | 27078 | 21                                 |
|               | TGCTGGC     | eeeee      | S                                       |       |       |                                    |
| 1263812       | CACTTTCATAA | eeeeeeeeee | ssssssssssoos                           | 27061 | 27078 | 21                                 |
|               | TGCTGGC     | eeeee      | S                                       |       |       |                                    |
| 1210343       | CACTTTCATAA | eeeeeeeeee | ssosssssssss                            | 27061 | 27078 | $\begin{vmatrix} 21 \end{vmatrix}$ |
|               | TGCTGGC     | eeeee      | s                                       | 27001 | 27070 |                                    |
| 1212825       | CACTTTCATAA | eeeeeeeeee | sssssssooossssss                        | 27061 | 27078 | 21                                 |
| 1212623       | TGCTGGC     | eeeee      | s                                       | 27001 | 27078 |                                    |
| 1010017       | CACTTTCATAA | eeeeeeeeee | soosssssssssoos                         | 27061 | 27079 | 21                                 |
| 1212817       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1.5.1.5.0.5.1 | CACTTTCATAA | eeeeeeeeee | sssssssooosssss                         |       |       |                                    |
| 1212824       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1010006       | CACTTTCATAA | eeeeeeeeee | ssooosssssssss                          | 27061 | 27070 | 21                                 |
| 1212826       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1010007       | CACTTTCATAA | eeeeeeeeee | ssssoooosssssss                         | 27061 | 27078 | 21                                 |
| 1212827       | TGCTGGC     | eeeee      | s                                       | 27061 |       | <u></u>                            |
| 1010000       | CACTTTCATAA | eeeeeeeeee | ssssssooossssss                         | 27061 | 27078 | 21                                 |
| 1212828       | TGCTGGC     | eeeee      | s                                       | 27061 |       | 21                                 |
| 1010000       | CACTTTCATAA | eeeeeeeeee | sssssssooossss                          | 27071 | 27070 |                                    |
| 1212829       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1212020       | CACTTTCATAA | eeeeeeeeee | sssssssssoooss                          | 27061 | 27070 | 21                                 |
| 1212830       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1010021       | CACTTTCATAA | eeeeeeeeee | sssssssssooos                           | 27061 | 27070 | 21                                 |
| 1212831       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1010010       | CACTTTCATAA | eeeeeeeeee | sooossssssssoos                         | 27061 | 27070 | 21                                 |
| 1212818       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1010000       | CACTTTCATAA | eeeeeeeeee | ssssssoooosssss                         | 27061 | 27070 | 21                                 |
| 1212823       | TGCTGGC     | eeeee      | s                                       | 27061 | 27078 | 21                                 |
| 1010010       | CACTTTCATAA | eeeeeeeeee | sooossssssssooo                         | 27071 | 27070 | 21                                 |
| 1212819       | TGCTGGC     | eeeee      | ss                                      | 27061 | 27078 | 21                                 |
| 1010000       | CACTTTCATAA | eeeeeeeeee | ssssssooooosss                          | 27061 | 27070 | 21                                 |
| 1212822       | TGCTGGC     | eeeee      | ss                                      | 27061 | 27078 | 21                                 |
|               | 1           | l .        | <u>I</u>                                | I     | I     | <u> </u>                           |

|         | CACTTTCATAA | eeeeeeeeee | sooosssssssooo                          |        |       |                                       |
|---------|-------------|------------|-----------------------------------------|--------|-------|---------------------------------------|
| 1212820 | TGCTGGC     | eeeee      | SS                                      | 27061  | 27078 | 21                                    |
|         | CACTTTCATAA | eeeeeeeeee | sssssooooosss                           |        |       |                                       |
| 1212821 | TGCTGGC     |            |                                         | 27061  | 27078 | 21                                    |
|         |             | eeeee      | SS                                      |        |       |                                       |
| 1287065 | TCACTTTCATA | eeeeeeeeee | ssssssssssss                            | 27061  | 27079 | 30                                    |
|         | ATGCTGGC    | eeeeee     | S                                       |        |       |                                       |
| 1210341 | ACTTTCATAAT | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062  | 27077 | $\begin{vmatrix} 1 & 1 \end{vmatrix}$ |
|         | GCTGG       | eee        |                                         |        |       |                                       |
| 524403  | CACTTTCATAA | eeeeeeeeee | ssssssssssss                            | 27062  | 27078 | 32                                    |
| 321103  | TGCTGG      | eeee       | 333333333333333                         | 27002  | 27070 |                                       |
| 1287121 | TCACTTTCATA | eeeeeeeeee | 000000000000000000000000000000000000000 | 27062  | 27079 | 23                                    |
| 120/121 | ATGCTGG     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27002  | 27079 |                                       |
| 1007100 | TCACTTTCATA | eeeeeeeeee |                                         | 27072  | 27070 | 22                                    |
| 1287120 | ATGCTGG     | eeeee      | ssssssssssssss                          | 27062  | 27079 | 23                                    |
| 1007110 | TCACTTTCATA | eeeeeeeeee | ssssssssssoos                           | 270.62 | 25050 |                                       |
| 1287113 | ATGCTGG     | eeeee      | s                                       | 27062  | 27079 | 23                                    |
| 1287110 | TCACTTTCATA | eeeeeeeeee | sssssssssosos                           | 27062  | 27070 | 22                                    |
|         | ATGCTGG     | eeeee      | s                                       | 27062  | 27079 | 23                                    |
| 1287119 | TCACTTTCATA | eeeeeeeeee | 000000000000000000000000000000000000000 | 27062  | 27070 | 23                                    |
| 120/119 | ATGCTGG     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27002  | 27079 | 23                                    |
| 1364782 | TCACTTTCATA | eeeeeeeeee | sssssssssososs                          | 27062  | 27079 | 22                                    |
| 1304762 | ATGCTGG     | eeeee      | s                                       | 27002  | 27079 | 23                                    |
| 1064777 | TCACTTTCATA | eeeeeeeeee | ssssssssssssss                          | 27062  | 27070 | 22                                    |
| 1364777 | ATGCTGG     | eeeee      | s                                       | 27062  | 27079 | 23                                    |
| 1287118 | TCACTTTCATA | eeeeeeeeee |                                         | 27062  | 27070 | 22                                    |
| 128/118 | ATGCTGG     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062  | 27079 | 23                                    |
| 1264792 | TCACTTTCATA | eeeeeeeeee | ssssssssssssss                          | 27062  | 27070 | 22                                    |
| 1364783 | ATGCTGG     | eeeee      | s                                       | 27062  | 27079 | 23                                    |
| 1007100 | TCACTTTCATA | eeeeeeeeee | ssssssssssss                            | 270/2  | 07070 |                                       |
| 1287109 | ATGCTGG     | eeeee      | s                                       | 27062  | 27079 | 23                                    |
| 1264794 | TCACTTTCATA | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062  | 27070 | 22                                    |
| 1364784 | ATGCTGG     | eeeee      | s                                       | 27062  | 27079 | 23                                    |
| 1207117 | TCACTTTCATA | eeeeeeeeee | 000000000000000000000000000000000000000 | 27062  | 27070 | 22                                    |
| 1287117 | ATGCTGG     | eeeee      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062  | 27079 | 23                                    |
|         | 1           | 1          | l                                       | I      | 1     |                                       |

|         | TCACTTTCATA | eeeeeeeeee | ssssssoossssss                          |       |       |     |
|---------|-------------|------------|-----------------------------------------|-------|-------|-----|
| 1287112 |             |            |                                         | 27062 | 27079 | 23  |
|         | ATGCTGG     | eeeee      | S                                       |       |       |     |
| 1287116 | TCACTTTCATA | eeeeeeeeee | ssssossssssss                           | 27062 | 27079 | 23  |
|         | ATGCTGG     | eeeee      |                                         |       |       |     |
| 1287115 | TCACTTTCATA | eeeeeeeeee | sssossssssssss                          | 27062 | 27079 | 23  |
| 1207110 | ATGCTGG     | eeeee      |                                         |       |       |     |
| 1287114 | TCACTTTCATA | eeeeeeeeee | SOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27079 | 23  |
| 1207111 | ATGCTGG     | eeeee      | 303333333333333                         | 27002 | 27079 |     |
| 1287106 | TCACTTTCATA | eeeeeeeeee | sossssssssssss                          | 27062 | 27079 | 23  |
| 1207100 | ATGCTGG     | eeeee      | s                                       | 27002 | 27079 |     |
| 1207107 | TCACTTTCATA | eeeeeeeeee | sosssssssssss                           | 27062 | 27079 | 23  |
| 1287107 | ATGCTGG     | eeeee      | s                                       | 27002 | 27079 | 23  |
| 1207100 | TCACTTTCATA | eeeeeeeeee | sosossssssssss                          | 27072 | 27070 | 22  |
| 1287108 | ATGCTGG     | eeeee      | s                                       | 27062 | 27079 | 23  |
| 1287111 | TCACTTTCATA | eeeeeeeeee | soosssssssssss                          | 27062 | 27070 | 22  |
|         | ATGCTGG     | eeeee      | s                                       | 27062 | 27079 | 23  |
| 1207066 | TTCACTTTCAT | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27080 | 33  |
| 1287066 | AATGCTGG    | eeeeee     | s                                       |       |       |     |
| 1287074 | TTCACTTTCAT | eeeeeeeeee | ssssssssssssss                          | 27062 | 27080 | 33  |
| 128/0/4 | AATGCTGG    | eeeeee     | s                                       | 27062 |       |     |
| 1207071 | TTCACTTTCAT | eeeeeeeeee | ssssssssssoso                           | 27062 | 27090 | 122 |
| 1287071 | AATGCTGG    | eeeeee     | ss                                      | 27062 | 27080 | 33  |
| 1007072 | TTCACTTTCAT | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27000 | 22  |
| 1287073 | AATGCTGG    | eeeeee     | s                                       | 27062 | 27080 | 33  |
| 1007070 | TTCACTTTCAT | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27000 | 22  |
| 1287070 | AATGCTGG    | eeeeee     | ss                                      | 27062 | 27080 | 33  |
| 1007070 | TTCACTTTCAT | eeeeeeeeee | SOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27000 | 22  |
| 1287072 | AATGCTGG    | eeeeee     | s                                       | 27062 | 27080 | 33  |
| 1005075 | TTCACTTTCAT | eeeeeeeeee | sosssssssssss                           | 270/2 | 27000 |     |
| 1287067 | AATGCTGG    | eeeeee     | ss                                      | 27062 | 27080 | 33  |
| 1005060 | TTCACTTTCAT | eeeeeeeeee | SOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 270/2 | 27000 |     |
| 1287068 | AATGCTGG    | eeeeee     | ss                                      | 27062 | 27080 | 33  |
| 1007070 | TTCACTTTCAT | eeeeeeeeee | sosossssssssss                          | 270/2 | 27000 |     |
| 1287069 | AATGCTGG    | eeeeee     | ss                                      | 27062 | 27080 | 33  |
|         |             |            |                                         |       |       |     |

|         | ATTCACTTTCA      | eeeeeeeeee | sssssssssssss                           |       |       |                                    |
|---------|------------------|------------|-----------------------------------------|-------|-------|------------------------------------|
| 1287060 | TAATGCTGG        | eeeeeee    | SS                                      | 27062 | 27081 | 20                                 |
|         | ATTCACTTTCA      |            |                                         |       |       |                                    |
| 1287057 |                  | eeeeeeeeee | SSSSSSSSSSSSSS                          | 27062 | 27081 | 20                                 |
|         | TAATGCTGG        | eeeeeee    | OSS                                     |       |       |                                    |
| 1287054 | ATTCACTTTCA      | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27081 | 20                                 |
|         | TAATGCTGG        | eceecee    | oss                                     |       |       |                                    |
| 1287059 | ATTCACTTTCA      | eeeeeeeeee | ssssssssssssss                          | 27062 | 27081 | $ _{20}$                           |
|         | TAATGCTGG        | eeeeeee    | ss                                      |       |       |                                    |
| 1287053 | ATTCACTTTCA      | eeeeeeeeee | ssssssssssssss                          | 27062 | 27081 | 20                                 |
| 1207033 | TAATGCTGG        | eeeeeee    | oss                                     | 27002 | 27001 |                                    |
| 1287056 | ATTCACTTTCA      | eeeeeeeeee | sssssssoossssss                         | 27062 | 27081 | 20                                 |
| 120/030 | TAATGCTGG        | eeeeeee    | sss                                     | 27002 | 27001 |                                    |
| 1007050 | ATTCACTTTCA      | eeeeeeeeee | sossssssssssss                          | 27062 | 27001 | 20                                 |
| 1287058 | TAATGCTGG        | eeeeeee    | ss                                      | 27062 | 27081 | $\begin{vmatrix} 20 \end{vmatrix}$ |
| 1287050 | ATTCACTTTCA      | eeeeeeeeee | SOSSSSSSSSSSSSS                         | 27062 | 27091 | 20                                 |
|         | TAATGCTGG        | eeeeeee    | oss                                     | 27062 | 27081 | 20                                 |
| 1007051 | ATTCACTTTCA      | eeeeeeeeee | sosssssssssssss                         | 27062 | 27081 | 20                                 |
| 1287051 | TAATGCTGG        | eeeeeee    | sss                                     |       |       |                                    |
| 1287052 | ATTCACTTTCA      | eeeeeeeeee | sosossssssssss                          | 27062 | 27081 | 20                                 |
| 128/032 | TAATGCTGG        | eeeeeee    | sss                                     |       |       |                                    |
| 1287055 | ATTCACTTTCA      | eeeeeeeeee | soosssssssssss                          | 27062 | 27081 | 20                                 |
| 1207033 | TAATGCTGG        | eeeeeee    | sss                                     | 27002 | 27001 |                                    |
| 1207075 | ATTCACTTTCA      | eeeeeeeeee | ssssssssssss                            | 27062 | 27091 | 24                                 |
| 1287075 | TAATGCTG         | eeeeee     | s                                       | 27063 | 27081 | 34                                 |
| 1287062 | AGATTCACTTT      | eeeeeeeeee | ssssssssssss                            | 27064 | 27092 | 35                                 |
| 128/002 | CATAATGCT        | eeeeeee    | ss                                      | 27004 | 27083 |                                    |
| 1207061 | GATTCACTTTC      | eeeeeeeeee | ssssssssssss                            | 27062 | 27092 | 40                                 |
| 1287061 | ATAATGCTG        | eeeeeee    | ss                                      | 27063 | 27082 | 49                                 |
| 1007076 | GATTCACTTTC      | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27064 | 27002 | 7.0                                |
| 1287076 | ATAATGCT         | eeeeee     | s                                       | 27064 | 27082 | 50                                 |
| 1207701 | TCACTTTCATA      | eeeeeeeeee | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27070 | 26                                 |
| 1287701 | ATGCTGG <u>T</u> | eeeeee     | s                                       | 27062 | 27079 | 36                                 |
| 1207702 | TCACTTTCATA      | eeeeeeeeee | ssssssssssss                            | 27062 | 27070 | 27                                 |
| 1287702 | ATGCTGG <u>A</u> | eeeeee     | s                                       | 27062 | 27079 | 37                                 |
|         | 1                |            | l                                       | I .   | 1     |                                    |

Длина модифицированных олигонуклеотидов в таблице 3 ниже составляет 16, 17, 18, 19 или 20 нуклеозидов. Каждый нуклеозид содержит 2'-NMA сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «n» представляет собой 2'-NMA сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для модифицированного олигонуклеотида приведен колонке межнуклеозидной связи», где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь, каждый «O» представляет собой фосфодиэфирную a межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждый модифицированный олигонуклеотид, приведенный в таблице 3 ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида). «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

Таблица 3
2'-NMA модифицированные олигонуклеотиды с PS или смешанными PS/PO межнуклеозидными связями

| Номер<br>соединен<br>ия | Последовательно сть нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3')            | Мотив<br>межнуклеоз<br>идной связи<br>(от 5' к 3')                           | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт<br>SEQ ID<br>NO: 1 | SE<br>Q<br>ID<br>NO: |
|-------------------------|---------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------|
| 1287127                 | CACTTTCATAAT<br>GCTGGCA                           | nnnnnnnnn                               | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                       | 27060                             | 27078                            | 26                   |
| 1287122                 | TCACTTTCATAA<br>TGCTGGCA                          | nnnnnnnnn                               | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27060                             | 27079                            | 27                   |
| 1212871                 | CTTTCATAATGC<br>TGGC                              | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27076                            | 28                   |
| 1212869                 | ACTTTCATAATG<br>CTGGC                             | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27077                            | 29                   |
| 1358996                 | CACTTTCATAAT<br>GCTGGC                            | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | sosossssssss<br>ssss                                                         | 27061                             | 27078                            | 21                   |
| 1212873                 | CACTTTCATAAT<br>GCTGGC                            | nnnnnnnnnnnnnnnnn                       | ssossssssssss<br>oss                                                         | 27061                             | 27078                            | 21                   |

|         | CACTTTCATAAT | nnnnnnnnn  | ssossssossss                            |       |       |    |
|---------|--------------|------------|-----------------------------------------|-------|-------|----|
| 1212874 | GCTGGC       | nnnnnn     | soss                                    | 27061 | 27078 | 21 |
|         | CACTTTCATAAT | nnnnnnnnnn | ssosssoss                               |       |       |    |
| 1212875 | GCTGGC       | nnnnnn     | soss                                    | 27061 | 27078 | 21 |
| 1010070 | CACTTTCATAAT | nnnnnnnnnn | SOOSSSSSSSSS                            | 25061 | 27070 | 21 |
| 1212879 | GCTGGC       | nnnnnn     | ooss                                    | 27061 | 27078 | 21 |
| 1212000 | CACTTTCATAAT | nnnnnnnnnn | sooossssssss                            | 27061 | 27078 | 21 |
| 1212880 | GCTGGC       | nnnnnn     | ooss                                    | 27001 | 27078 |    |
| 1212881 | CACTTTCATAAT | nnnnnnnnnn | sooossssssso                            | 27061 | 27078 | 21 |
| 1212001 | GCTGGC       | nnnnnn     | ooss                                    | 27001 | 27078 |    |
| 1212885 | CACTTTCATAAT | nnnnnnnnnn | sssssooooss                             | 27061 | 27078 | 21 |
| 1212003 | GCTGGC       | nnnnnn     | ssss                                    | 27001 | 27078 |    |
| 1212887 | CACTTTCATAAT | nnnnnnnnnn | ssssssooosss                            | 27061 | 27078 | 21 |
|         | GCTGGC       | nnnnnn     | ssss                                    | 27001 | 27078 |    |
| 1287128 | TCACTTTCATAA | nnnnnnnnnn | sssssssssss                             | 27061 | 27079 | 30 |
|         | TGCTGGC      | nnnnnnn    | ssss                                    | 27001 | 27079 |    |
| 1212870 | CACTTTCATAAT | nnnnnnnnnn | sssssssssss                             | 27062 | 27078 | 32 |
| 1212070 | GCTGG        | nnnnn      | ss                                      | 27002 | 27076 |    |
| 1287132 | TCACTTTCATAA | nnnnnnnnnn | sossssssssss                            | 27062 | 27079 | 23 |
| 1207132 | TGCTGG       | nnnnnn     | oss                                     | 27002 | 21019 | 23 |
| 1287133 | TCACTTTCATAA | nnnnnnnnnn | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27079 | 23 |
| 1207133 | TGCTGG       | nnnnnn     | SSS                                     | 27002 | 27079 |    |
| 1332246 | TCACTTTCATAA | nnnnnnnnnn | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 27062 | 27079 | 23 |
| 1332240 | TGCTGG       | nnnnnn     | oss                                     | 27002 | 27079 |    |
| 1332265 | TCACTTTCATAA | nnnnnnnnnn | sssssssssss                             | 27062 | 27079 | 23 |
| 1332203 | TGCTGG       | nnnnnn     | oss                                     | 27002 | 27079 |    |
| 1364778 | TCACTTTCATAA | nnnnnnnnnn | sssssssssss                             | 27062 | 27079 | 23 |
| 1304770 | TGCTGG       | nnnnnn     | osss                                    | 27002 | 27079 |    |
| 1364779 | TCACTTTCATAA | nnnnnnnnnn | sssssssssss                             | 27062 | 27079 | 23 |
|         | TGCTGG       | nnnnnn     | osss                                    | 27002 | 2/0/9 |    |
| 1364780 | TCACTTTCATAA | nnnnnnnnnn | ssssssssssss                            | 27062 | 27079 | 23 |
|         | TGCTGG       | nnnnnn     | osss                                    | 2,302 | 2/0/9 | 23 |
| 1364781 | TCACTTTCATAA | nnnnnnnnnn | ssssssssssss                            | 27062 | 27079 | 23 |
| 1364781 | TGCTGG       | nnnnnn     | osss                                    | 27002 | 21019 |    |

|         | TTCACTTTCATA | nnnnnnnnn  | 0000000000000 |       |       |                                    |
|---------|--------------|------------|---------------|-------|-------|------------------------------------|
| 1287129 |              | nnnnnnnnnn | SSSSSSSSSSSS  | 27062 | 27080 | 33                                 |
|         | ATGCTGG      | nnnnnnn    | SSSS          |       |       |                                    |
| 1287130 | TTCACTTTCATA | nnnnnnnnnn | sosssssssss   | 27062 | 27080 | 33                                 |
| 120,150 | ATGCTGG      | nnnnnnn    | soss          | 2,002 | 2,000 |                                    |
| 1287131 | TTCACTTTCATA | nnnnnnnnn  | ssssssssssss  | 27062 | 27080 | 33                                 |
| 120/131 | ATGCTGG      | nnnnnnn    | ssss          | 27002 |       |                                    |
| 1222262 | TTCACTTTCATA | nnnnnnnnnn | ssssssssssss  | 27062 | 27090 | 33                                 |
| 1332263 | ATGCTGG      | nnnnnnn    | soss          | 27062 | 27080 |                                    |
| 1222264 | TTCACTTTCATA | nnnnnnnnnn | SSSSSSSSSSSS  | 27062 | 27080 | 33                                 |
| 1332264 | ATGCTGG      | nnnnnnn    | soss          | 27002 | 27080 | 33                                 |
| 1222266 | TTCACTTTCATA | nnnnnnnnnn | sssssssssso   | 27062 | 27000 | 22                                 |
| 1332266 | ATGCTGG      | nnnnnnn    | soss          | 27062 | 27080 | 33                                 |
| 1332270 | TTCACTTTCATA | nnnnnnnnnn | ssssssssss    | 27062 | 27080 | 22                                 |
|         | ATGCTGG      | nnnnnnn    | ooss          | 27062 | 27080 | 33                                 |
| 1287124 | ATTCACTTTCAT | nnnnnnnnnn | SSSSSSSSSSSS  | 27062 | 27081 | 20                                 |
| 128/124 | AATGCTGG     | nnnnnnnn   | sssss         | 27062 |       |                                    |
| 1287125 | ATTCACTTTCAT | nnnnnnnnnn | sossssssssss  | 27062 | 27081 | 20                                 |
| 120/123 | AATGCTGG     | nnnnnnnn   | ssoss         | 27002 |       |                                    |
| 1287126 | ATTCACTTTCAT | nnnnnnnnnn | ssssssssssss  | 27062 | 27081 | 20                                 |
| 126/120 | AATGCTGG     | nnnnnnnn   | sssss         | 27002 | 27001 | $\begin{vmatrix} 20 \end{vmatrix}$ |
| 1222267 | ATTCACTTTCAT | nnnnnnnnnn | SSSSSSSSSSSS  | 27062 | 27091 | 20                                 |
| 1332267 | AATGCTGG     | nnnnnnnn   | ssoss         | 27062 | 27081 | $\begin{vmatrix} 20 \end{vmatrix}$ |
| 1332268 | ATTCACTTTCAT | nnnnnnnnnn | sssssssssss   | 27062 | 27081 | 20                                 |
| 1332206 | AATGCTGG     | nnnnnnnn   | sooss         | 27002 | 27001 |                                    |
| 1222260 | ATTCACTTTCAT | nnnnnnnnnn | ssssssssss    | 27062 | 27091 | 20                                 |
| 1332269 | AATGCTGG     | nnnnnnnn   | ososs         | 27062 | 27081 | 20                                 |
| 1222271 | ATTCACTTTCAT | nnnnnnnnnn | ssssssssssss  | 27062 | 27091 | 20                                 |
| 1332271 | AATGCTGG     | nnnnnnnn   | ssoss         | 27062 | 27081 | 20                                 |
| 1007102 | TTCACTTTCATA | nnnnnnnnnn | ssssssssss    | 27061 | 27090 | 22                                 |
| 1287123 | ATGCTGGC     | nnnnnnnn   | sssss         | 27061 | 27080 | 22                                 |

Длина модифицированных олигонуклеотидов в таблице 4 ниже составляет 18 или 19 нуклеозидов. Каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент или 2'-NMA сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ

сахарный фрагмент, а каждый «п» представляет собой 2'-NMA сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида приведен в колонке «Мотив межнуклеозидной связи», где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждый модифицированный олигонуклеотид, приведенный в таблице 4 ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные нуклеиновые основания указаны в колонке «Последовательность нуклеиновых оснований» подчеркнутым, эсирным или курсивным шрифтом. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

| Номер<br>соединен<br>ия | Последовательность нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3')            | Мотив<br>межнукле<br>озидной<br>связи<br>(5'-3')                             | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт<br>SEQ ID<br>NO: 1 | SE<br>Q<br>ID<br>NO: |
|-------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------|
| 1212931                 | CACTTTCATAATGCT<br>GGC                           | nennnnnenee                             | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                   |
| 1212936                 | CACTTTCATAATGCT<br>GGC                           | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                   |
| 1212941                 | CACTTTCATAATGCT<br>GGC                           | nennnnnenee<br>nenneen                  | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                   |
| 1287728                 | TCACTTTCATAATGC<br>TGGC                          | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27079                            | 30                   |
| 1287729                 | TCACTTTCATAATGC<br>TGG <u>T</u>                  | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27062                             | 27079                            | 36                   |
| 1287730                 | TCACTTTCATAATGC<br>TGG <u>A</u>                  | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27062                             | 27079                            | 37                   |

#### Таблица 5

Длина модифицированных олигонуклеотидов в таблице 5 ниже составляет 16, 17

или 18 нуклеозидов. Каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент или сЕt сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, а каждый «к» представляет собой сЕt сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида приведен в колонке «Мотив межнуклеозидной связи», где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждый модифицированный олигонуклеотид, приведенный в таблице 5 ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида). «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

Таблица 5 Смешанные 2'-MOE/cEt модифицированные олигонуклеотиды с PS межнуклеозидными связями

| Номер<br>соединен<br>ия | Последовательность нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3') | Мотив<br>межнукле<br>озидной<br>связи (от<br>5' к 3')                        | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт<br>SEQ ID<br>NO: 1 | SE<br>Q<br>ID<br>NO<br>: |
|-------------------------|--------------------------------------------------|------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------|--------------------------|
| 1212961                 | CACTTTCATAATGC<br>TGGC                           | keekeekeekee<br>keeeek       | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                       |
| 1212962                 | CACTTTCATAATGC<br>TGGC                           | keeekeeekeee<br>keeeek       | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                       |
| 1212963                 | CACTTTCATAATGC<br>TGGC                           | keeeekeeeee<br>keeeek        | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                       |
| 1212964                 | CACTTTCATAATGC<br>TGGC                           | keeeeeekeee<br>eeeeek        | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                       |
| 1212965                 | CACTTTCATAATGC<br>TGGC                           | keeeeeeeee<br>eeeek          | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27061                             | 27078                            | 21                       |
| 1212966                 | CACTTTCATAATGC<br>TGGC                           | eeekeekeekee<br>keekek       | sssssssss<br>sssss                                                           | 27061                             | 27078                            | 21                       |
| 1212967                 | CACTTTCATAATGC                                   | eeekeekeekee                 | sssssssss                                                                    | 27061                             | 27078                            | 21                       |

|           | TGGC           | keekee       | SSSSSS     |       |       |    |
|-----------|----------------|--------------|------------|-------|-------|----|
| 1212968   | CACTTTCATAATGC | eeeeeekeekee | sssssssss  | 27061 | 27078 | 21 |
| 1212900   | TGGC           | keekee       | ssssss     | 27001 | 27078 |    |
| 1212969   | CACTTTCATAATGC | eeeeekeekee  | sssssssss  | 27061 | 27078 | 21 |
| 1212909   | TGGC           | keeeee       | ssssss     | 27001 | 27078 |    |
| 1212970   | CACTTTCATAATGC | eeeeekeeeee  | sssssssss  | 27061 | 27078 | 21 |
|           | TGGC           | keeeee       | ssssss     | 27001 | 27076 |    |
| 1212971   | CACTTTCATAATGC | keekeekee    | SSSSSSSSSS | 27061 | 27078 | 21 |
| 1212971   | TGGC           | eeeeee       | ssssss     | 27001 | 27070 |    |
| 1212972   | CACTTTCATAATGC | eeeeeeekeek  | sssssssss  | 27061 | 27078 | 21 |
| 1212712   | TGGC           | eekeek       | SSSSSS     | 27001 | 27070 |    |
| 1212973   | CACTTTCATAATGC | keekeekeeeee | sssssssss  | 27061 | 27078 | 21 |
| 1212713   | TGGC           | eeeeee       | ssssss     | 27001 | 27070 |    |
| 1212974   | CACTTTCATAATGC | eeeeeeeeek   | sssssssss  | 27061 | 27078 | 21 |
|           | TGGC           | eekeek       | SSSSSS     | 27001 | 27070 |    |
| 1212975   | CACTTTCATAATGC | keekeeeeeee  | sssssssss  | 27061 | 27078 | 21 |
| 1212973   | TGGC           | eeeeee       | ssssss     | 27001 | 27070 |    |
| 1212976   | CACTTTCATAATGC | eeeeeeeeee   | sssssssss  | 27061 | 27078 | 21 |
| 1212570   | TGGC           | eekeek       | SSSSSS     | 27001 | 27070 |    |
| 1212977   | ACTTTCATAATGCT | keekeekee    | sssssssss  | 27061 | 27077 | 29 |
| 1212) / / | GGC            | keeek        | sssss      | 27001 | 27077 | 29 |
| 1212978   | ACTTTCATAATGCT | keeekeeekeee | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212570   | GGC            | keeek        | sssss      | 27001 | 27077 |    |
| 1212979   | ACTTTCATAATGCT | keeeekeeeeek | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212919   | GGC            | eeeek        | sssss      | 27001 | 27077 |    |
| 1212980   | ACTTTCATAATGCT | keeeeeekeee  | sssssssss  | 27061 | 27077 | 29 |
| 1212700   | GGC            | eeeek        | sssss      | 27001 | 27077 |    |
| 1212981   | ACTTTCATAATGCT | keeeeeeeee   | sssssssss  | 27061 | 27077 | 29 |
| 1212701   | GGC            | eeeek        | sssss      | 2,001 | 2,077 |    |
| 1212982   | ACTTTCATAATGCT | eekeekeek    | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212702   | GGC            | eekek        | SSSSS      | 2,001 | 2/0// | 29 |
| 1212983   | ACTTTCATAATGCT | eekeekeek    | SSSSSSSSSS | 27061 | 27077 | 29 |
|           | GGC            | eekee        | SSSSS      | 27001 | 2/0// | 29 |
| 1212984   | ACTTTCATAATGCT | eeeeekeekeek | SSSSSSSSSS | 27061 | 27077 | 29 |

|         | GGC            | eekee        | sssss      |       |       |    |
|---------|----------------|--------------|------------|-------|-------|----|
| 1212985 | ACTTTCATAATGCT | eeeeekeekeek | sssssssss  | 27061 | 27077 | 29 |
| 1212903 | GGC            | eeeee        | sssss      | 27001 | 27077 | 29 |
| 1212986 | ACTTTCATAATGCT | eeeeekeeeeek | sssssssss  | 27061 | 27077 | 29 |
| 1212700 | GGC            | eeeee        | sssss      | 27001 | 27077 |    |
| 1212987 | ACTTTCATAATGCT | keekeekeekee | sssssssss  | 27061 | 27077 | 29 |
| 1212707 | GGC            | eeeee        | sssss      | 27001 | 27077 |    |
| 1212988 | ACTTTCATAATGCT | eeeeeekeeke  | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212900 | GGC            | ekeek        | sssss      | 27001 | 27077 | 2) |
| 1212989 | ACTTTCATAATGCT | keekeekeeeee | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212707 | GGC            | eeeee        | SSSSS      | 27001 | 27077 |    |
| 1212990 | ACTTTCATAATGCT | eeeeeeeeke   | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212)   | GGC            | ekeek        | sssss      | 27001 | 27077 |    |
| 1212991 | ACTTTCATAATGCT | keekeeeeeee  | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212))1 | GGC            | eeeee        | sssss      | 27001 | 27077 |    |
| 1212992 | ACTTTCATAATGCT | eeeeeeeeee   | SSSSSSSSSS | 27061 | 27077 | 29 |
| 1212772 | GGC            | ekeek        | sssss      | 27001 | 27077 |    |
| 1212993 | CTTTCATAATGCTG | keekeekee    | SSSSSSSSS  | 27061 | 27076 | 28 |
| 1212//0 | GC             | keek         | SSSS       | 2,001 |       |    |
| 1212994 | CTTTCATAATGCTG | keeekeeekeee | sssssssss  | 27061 | 27076 | 28 |
| 1212/   | GC             | keek         | SSSS       | 2,001 |       |    |
| 1212995 | CTTTCATAATGCTG | keeeekeeeke  | sssssssss  | 27061 | 27076 | 28 |
|         | GC             | eeek         | SSSS       |       |       |    |
| 1212996 | CTTTCATAATGCTG | keeeeeekeee  | sssssssss  | 27061 | 27076 | 28 |
|         | GC             | eeek         | SSSS       |       |       |    |
| 1212997 | CTTTCATAATGCTG | keeeeeeeee   | sssssssss  | 27061 | 27076 | 28 |
|         | GC             | eeek         | SSSS       |       |       |    |
| 1212998 | CTTTCATAATGCTG | kekeekeekee  | sssssssss  | 27061 | 27076 | 28 |
|         | GC             | keeke        | SSSS       |       |       |    |
| 1212999 | CTTTCATAATGCTG | eekeekeek    | sssssssss  | 27061 | 27076 | 28 |
|         | GC             | eeke ssss    | SSSS       |       |       |    |
| 1213000 | CTTTCATAATGCTG | eeeeekeekeek | sssssssss  | 27061 | 27076 | 28 |
|         | GC             | eeke         | SSSS       |       |       |    |
| 1213001 | CTTTCATAATGCTG | eeeeekeekeek | sssssssss  | 27061 | 27076 | 28 |

|         | GC             | eeee         | SSSS       |       |       |    |
|---------|----------------|--------------|------------|-------|-------|----|
| 1213002 | CTTTCATAATGCTG | eeeeekeeeeek | SSSSSSSSSS | 27061 | 27076 | 28 |
| 1213002 | GC             | eeee         | SSSS       | 27001 | 27070 |    |
| 1213003 | CTTTCATAATGCTG | keekeekee    | SSSSSSSSSS | 27061 | 27076 | 28 |
| 1213003 | GC             | eeee         | SSSS       | 27001 | 27070 |    |
| 1213004 | CTTTCATAATGCTG | eeeeekeekee  | sssssssss  | 27061 | 27076 | 28 |
| 1213004 | GC             | keek         | SSSS       | 27001 | 27070 |    |
| 1213005 | CTTTCATAATGCTG | keekeekeeeee | SSSSSSSSSS | 27061 | 27076 | 28 |
| 1213003 | GC             | eeee         | SSSS       | 27001 | 27070 |    |
| 1213006 | CTTTCATAATGCTG | eeeeeeekee   | SSSSSSSSSS | 27061 | 27076 | 28 |
| 1213000 | GC             | keek         | SSSS       | 27001 | 27070 |    |
| 1213007 | CTTTCATAATGCTG | keekeeeeeee  | SSSSSSSSSS | 27061 | 27076 | 28 |
| 1213007 | GC             | eeee         | SSSS       | 27001 | 27070 | 20 |
| 1213008 | CTTTCATAATGCTG | eeeeeeeeee   | sssssssss  | 27061 | 27076 | 28 |
| 1213008 | GC             | keek         | SSSS       | 27001 | 27070 | 20 |

Длина модифицированных олигонуклеотидов в таблице 6 ниже составляет 19 или 20 нуклеозидов. Каждый нуклеозид содержит 2'-MOE сахарный фрагмент, 2'-NMA сахарный фрагмент, 2'-ОМе сахарный фрагмент или 2'-β-D-дезоксирибозильный сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «n» представляет собой 2'-NMA сахарный фрагмент, каждый «у» представляет собой 2'-ОМе сахарный фрагмент, а каждый «d» представляет собой 2'β-D-дезоксирибозильный сахарный фрагмент, Каждая межнуклеозидная представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида, приведенный в колонке «Мотив межнуклеозидной связи», представляет собой (от 5' к 3'): ssssssssssssss; где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь, а каждый «о» представляет собой фосфодиэфирную межнуклеозидную связь. Цитозины представляют собой неметилированные цитозины или 5-метилцитозины, где каждая строчная «с» в колонке «Последовательность нуклеинового основания» представляет собой неметилированный цитозин, а каждая прописная «С» в колонке «Последовательность нуклеинового основания» представляет собой 5метилцитозин.

Каждое нуклеиновое основание в модифицированных олигонуклеотидах, приведенных в таблице 6 ниже, комплементарно SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно

не указано иное. Некомплементарные нуклеиновые основания указаны в колонке «Последовательность нуклеиновых оснований» *подчеркнутым*, *жирным или курсивным шрифтом*. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

Таблица 6 Модифицированные олигонуклеотиды со смешанными PS/PO межнуклеозидными связями

|          | Последователь     |            | Morro               |          |          |     |  |
|----------|-------------------|------------|---------------------|----------|----------|-----|--|
| Номер    | ность             | Сахарный   | Мотив<br>межнуклеоз | Старт-   | Стоп-    | SEQ |  |
| соединен | нуклеиновых       | мотив      | идной связи         | сайт SEQ | сайт SEQ | ID  |  |
| ия       | оснований         | (5'-3')    | (5'-3')             | ID NO: 1 | ID NO: 1 | NO: |  |
|          | (5'-3')           |            | (5 6)               |          |          |     |  |
| 1287707  | TCACTTTCAT        | eeeeeeeeee | sssssssssss         | 27061    | 27079    | 30  |  |
| 128//0/  | AATGCTGGC         | eeeeed     | ssso                | 27001    | 21019    | 30  |  |
| 1287708  | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS        | 27061    | 27079    | 30  |  |
| 1207700  | AATGCTGGc         | eeeeed     | ssso                | 27001    | 27079    | 30  |  |
| 1287709  | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS        | 27062    | 27079    | 36  |  |
| 1207709  | AATGCTGG <u>T</u> | eeeeed     | ssso                | 27002    | 21019    | 30  |  |
| 1287710  | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS        | 27062    | 27079    | 37  |  |
| 128//10  | AATGCTGG <u>A</u> | eeeeed     | ssso                | 27062    | 27079    | 37  |  |
| 1287711  | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS        | 27061    | 27079    | 30  |  |
| 120//11  | AATGCTGGc         | eeeeey     | SSSO                | 27001    |          | 30  |  |
| 1287712  | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS        | 27062    | 27079    | 38  |  |
| 1207712  | AATGCTGG <u>U</u> | eeeeey     | ssso                | 27002    | 21017    | 30  |  |
| 1287713  | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS        | 27062    | 27079    | 37  |  |
| 1207713  | AATGCTGG <u>A</u> | eeeeey     | ssso                | 27002    | 21019    | 37  |  |
| 1287731  | TCACTTTCAT        | nnnnnnnnnn | SSSSSSSSSSSS        | 27061    | 27079    | 30  |  |
| 1207731  | AATGCTGGC         | nnnnnne    | ssso                | 27001    | 21019    | 30  |  |
| 1287732  | TCACTTTCAT        | nnnnnnnnnn | SSSSSSSSSSSS        | 27061    | 27079    | 30  |  |
| 1207732  | AATGCTGGc         | nnnnnne    | ssso                | 27001    | 21019    | 30  |  |
| 1287733  | TCACTTTCAT        | nnnnnnnnnn | SSSSSSSSSSSS        | 27062    | 27079    | 36  |  |
| 1207733  | AATGCTGG <u>T</u> | nnnnnne    | SSSO                | 27002    | 21019    | 30  |  |
| 1287734  | TCACTTTCAT        | nnnnnnnnnn | SSSSSSSSSSSS        | 27062    | 27079    | 37  |  |

|         | AATGCTGG <u>A</u> | nnnnnne    | ssso         |       |       |    |
|---------|-------------------|------------|--------------|-------|-------|----|
| 1287735 | TCACTTTCAT        | nnnnnnnnnn | sssssssssss  | 27061 | 27079 | 30 |
| 1207733 | AATGCTGGC         | nnnnnnd    | ssso         | 27001 | 21019 | 30 |
| 1287736 | TCACTTTCAT        | nnnnnnnnnn | sssssssssss  | 27061 | 27079 | 30 |
| 1207730 | AATGCTGGc         | nnnnnnd    | ssso         | 27001 | 21019 | 30 |
| 1287737 | TCACTTTCAT        | nnnnnnnnnn | sssssssssss  | 27062 | 27079 | 36 |
| 1207737 | AATGCTGG <u>T</u> | nnnnnnd    | ssso         | 27002 | 21019 | 30 |
| 1287738 | TCACTTTCAT        | nnnnnnnnnn | SSSSSSSSSSSS | 27062 | 27079 | 37 |
| 1207730 | AATGCTGG <u>A</u> | nnnnnnd    | ssso         | 27002 | 21019 |    |
| 1287739 | TCACTTTCAT        | nnnnnnnnnn | sssssssssss  | 27061 | 27079 | 30 |
| 1207737 | AATGCTGGc         | nnnnnnny   | ssso         | 27001 | 21019 | 30 |
| 1287740 | TCACTTTCAT        | nnnnnnnnnn | SSSSSSSSSSSS | 27062 | 27079 | 38 |
| 1207740 | AATGCTGG <u>U</u> | nnnnnnny   | ssso         | 27002 | 27079 | 36 |
| 1287741 | TCACTTTCAT        | nnnnnnnnnn | sssssssssss  | 27062 | 27079 | 37 |
| 1207741 | AATGCTGG <u>A</u> | nnnnnnny   | ssso         | 27002 | 21017 |    |
| 1287705 | TCACTTTCAT        | eeeeeeeeee | SSSSSSSSSSSS | 27062 | 27079 | 36 |
| 1207703 | AATGCTGG <u>T</u> | eeeeee     | ssso         | 27002 | 21017 | 30 |
| 1287706 | TCACTTTCAT        | eeeeeeeeee | sssssssssss  | 27062 | 27079 | 37 |
| 1207700 | AATGCTGG <u>A</u> | eeeeee     | ssso         | 27002 | 21019 |    |
| 1287704 | TCACTTTCAT        | eeeeeeeeee | sssssssssss  | 27061 | 27079 | 30 |
| 1287/04 | AATGCTGGc         | eeeeee     | ssso         | 27001 | 21019 | 30 |
| 1287703 | TCACTTTCAT        | eeeeeeeeee | sssssssssss  | 27061 | 27079 | 30 |
| 1207703 | AATGCTGGC         | eeeeee     | ssso         | 27001 | 21019 |    |

Длина модифицированных олигонуклеотидов в таблице 7 ниже составляет 19 или 20 нуклеозидов. Каждый нуклеозид содержит 2'-MOE сахарный фрагмент, 2'-NMA сахарный фрагмент или 2'-β-D-дезоксирибозильный сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «п» представляет собой 2'-NMA сахарный фрагмент, а каждый «d» представляет собой 2'-β-Dдезоксирибозильный сахарный фрагмент, Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида, приведенный в колонке «Мотив межнуклеозидной связи», представляет собой (от 5' к 3'): ssssssssssssssss, где каждый представляет собой **«s»** фосфоротиоатную межнуклеозидную собой связь, каждый **«O»** представляет

фосфодиэфирную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждое нуклеиновое основание В модифицированном олигонуклеотиде, приведенном в таблице 6 ниже, комплементарно SEQ ID NO: 1 (номер доступа GENBANK NT 006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные нуклеиновые основания указаны колонке «Последовательность нуклеиновых оснований» *подчеркнутым, жирным или курсивным шрифтом*. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к модифицированный олигонуклеотид которому комплементарен целевой последовательности нуклеиновой кислоты.

Таблица 7 Модифицированные олигонуклеотиды со смешанными PS/PO межнуклеозидными связями

| Номер<br>соедине<br>ния | Последовательн ость нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3')            | Мотив<br>межнукле<br>озидной<br>связи<br>(5'-3')                             | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт SEQ<br>ID NO: 1 | SEQ ID<br>NO: |
|-------------------------|---------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|-----------------------------------|-------------------------------|---------------|
| 1318749                 | TCACTTTCATA<br>ATGCTGG <u>A</u> A                 | nnnnnnnnnn<br>nnnnnndd                  | sssssssss<br>sssssoo                                                         | 27062                             | 27079                         | 39            |
| 1318750                 | TCACTTTCATA<br>ATGCTGGCA                          | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | sssssssss<br>sssssoo                                                         | 27060                             | 27079                         | 27            |
| 1318751                 | TCACTTTCATA<br>ATGCTGGCA                          | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | sssssssssssssssssssssssssssssss                                              | 27060                             | 27079                         | 27            |
| 1318752                 | TCACTTTCATA<br>ATGCTGG <u>A</u> A                 | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27062                             | 27079                         | 39            |
| 1318753                 | TCACTTTCATA<br>ATGCTGG <u>A</u> A                 | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27062                             | 27079                         | 39            |
| 1318754                 | TCACTTTCATA<br>ATGCTGGCA                          | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27060                             | 27079                         | 27            |
| 1318755                 | TCACTTTCATA<br>ATGCTGG <u>A</u> A                 | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27062                             | 27079                         | 39            |
| 1318756                 | TCACTTTCATA<br>ATGCTGGCA                          | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 27060                             | 27079                         | 27            |

| 131875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1210757 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 10  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|------------|------------|-------|-------|-----|
| 1318758   ATGCTGGAC   cecedd   ssssssoo   27062   27079   41     1318759   TCACTTTCATA   ceceecececece   sssssssssss   27062   27079   42     1318760   ATGCTGGAA   cecedd   ssssssoo   27062   27079   39     1318761   ATGCTGGTT   ceceedd   ssssssoo   27062   27079   39     1318762   TCACTTTCATA   ATGCTGGTA   ceceedd   ssssssoo   27062   27079   43     1318763   TCACTTCATA   ATGCTGGA   ceceedd   sssssssoo   27062   27079   44     1318764   TCACTTTCATA   ATGCTGGAA   ceceecececece   sssssssssssssssssssss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1318757 | ATGCTGG <u>AT</u>  | eeeeedd    | ssssssoo   | 27062 | 27079 | 40  |
| TCACTTTCATA   Ceceecececece   SSSSSSSSSS   Ceceedd   SSSSSSSSSSS   Ceceedd   SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1219759 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 41  |
| 1318759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1310736 | ATGCTGG <u>AC</u>  | eeeeedd    | ssssssoo   | 27002 | 27079 | 41  |
| ATGCTGGTC   cecedd   ssssssoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1318750 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 12  |
| 1318760   ATGCTGGAA   eeeeedd   sssssssoo   27062   27079   39     1318761   TCACTTCATA   eeeeeeeeeeeee   ssssssssss   27062   27079   43     1318762   TCACTTCATA   eeeeeeeeeeeee   sssssssss   27062   27079   44     1318763   ATGCTGGTA   eeeeeeeeeeee   ssssssssss   27062   27079   44     1318763   ATGCTGGCC   eeeedd   sssssssoo   27061   27079   45     1318764   ATGCTGGAA   eeeeeeeeeee   ssssssssss   27062   27079   39     1318765   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   39     1318765   ATGCTGGAC   eeeedd   ssssssoo   27062   27079   39     1318766   ATGCTGGAC   eeeeede   ssssssssss   27062   27079   41     1318767   ATGCTGGTT   eeeeeedeeeee   ssssssssss   27062   27079   43     1318768   ATGCTGGTT   eeeeeeeeeeee   ssssssssss   27062   27079   43     1318769   TCACTTCATA   eeeeeeeeeeeee   ssssssssss   27060   27079   27     1318770   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   40     1318771   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   40     1318772   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   40     1318773   TCACTTCATA   eeeeeeeeeee   ssssssssss   27062   27079   40     1318773   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   40     1318773   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   39     1318773   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   39     1318773   TCACTTCATA   eeeeeeeeeeee   ssssssssss   27062   27079   39     1318773   TCACTTCATA   eeeeeeeeeee   ssssssssss   27062   27079   39     1318773   TCACTTCATA   eeeeeeeeeeee   sssssssssss   27062   27079   39     1318773   TCACTTCATA   eeeeeeeeeeee   sssssssssss   27062   27079   39     1318773   TCACTTCATA   eeeeeeeeeeee   sssssssssss   27062   27079   42 | 1310739 | ATGCTGG <u>TC</u>  | eeeeedd    | ssssssoo   | 27002 | 27079 | 42  |
| ATGCTGGA   cecedd   ssssssoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1219760 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 30  |
| 1318761   ATGCTGGTT   cecedd   ssssssoo   27062   27079   43       1318762   TCACTTTCATA   cecececececececececececececececececec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1318700 | ATGCTGG <u>A</u> A | eeeeedd    | ssssssoo   | 27002 | 21019 | 39  |
| ATGCTGGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1219761 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 12  |
| 1318762         ATGCTGGTA         eeeeedd         ssssssoo         27062         27079         44           1318763         TCACTTTCATA<br>ATGCTGGCC         eeeeeedd         ssssssssssssssssssssssssssssssssssss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1318701 | ATGCTGG <u>TT</u>  | eeeeedd    | ssssssoo   | 27002 | 27079 | 43  |
| ATGCTGGTA   eeeeedd   ssssssoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1219762 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 14  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1518/02 | ATGCTGG <u>T</u> A | eeeeedd    | ssssssoo   | 27062 | 27079 | 44  |
| ATGCTGGCC   cecedd   ssssssoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1210762 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27061 | 27070 | 15  |
| 1318764       ATGCTGGAA       eeeeeed       ssssssoo       27062       27079       39         1318765       TCACTTTCATA ATGCTGGAC       eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1318/03 | ATGCTGGC <u>C</u>  | eeeeedd    | ssssssoo   | 2/061 | 21019 | 45  |
| ATGCTGGAA   eeeceed   ssssssoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1210764 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 20  |
| 1318765         ATGCTGGAC         eeeeede         ssssssoo         27062         27079         41           1318766         TCACTTTCATA<br>ATGCTGGCT         eeeeedd         ssssssssssssssssssssssssssssssssssss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1318704 | ATGCTGG <u>A</u> A | eeeeeed    | ssssssoo   | 27002 | 21019 | 39  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1219765 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 41  |
| 1318766         ATGCTGGCT         eeeeedd         ssssssoo         27061         27079         46           1318767         TCACTTTCATA ATGCTGGTT         eeeeeedeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1318703 | ATGCTGG <u>AC</u>  | eeeeede    | ssssssoo   | 27062 | 27079 | 41  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1319766 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27061 | 27070 | 16  |
| 1318767         ATGCTGG <u>TT</u> eeeeede         ssssssoo         27062         27079         43           1318768         TCACTTTCATA         eeeeeedeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1318700 | ATGCTGGC <u>T</u>  | eeeeedd    | ssssssoo   | 27001 | 27079 | 46  |
| ATGCTGGTT         eeeeede         ssssssoo         27060         27079         27           1318768         TCACTTTCATA ATGCTGGCA         eeeeedd         sssssssoo         27060         27079         27           1318769         TCACTTTCATA ATGCTGGCA         eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1219767 | TCACTTTCATA        | eeeeeeeeee | SSSSSSSSSS | 27062 | 27070 | 13  |
| 1318768       ATGCTGGCA       eeeeedd       ssssssoo       27060       27079       27         1318769       TCACTTTCATA       eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1318707 | ATGCTGG <u>TT</u>  | eeeede     | ssssssoo   | 27002 | 27079 | 43  |
| ATGCTGGCA       eeeeedd       ssssssoo       27060       27079       27         1318769       TCACTTTCATA       eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1210760 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27060 | 27070 | 27  |
| 1318769       ATGCTGGCA       eeeeeed       ssssssoo       27060       27079       27         1318770       TCACTTTCATA       eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1310/00 | ATGCTGGCA          | eeeeedd    | ssssssoo   | 27000 | 27079 |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1219760 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27060 | 27070 | 27  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1318709 | ATGCTGGCA          | eeeeeed    | ssssssoo   | 27000 | 27079 |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1219770 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 40  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1318//0 | ATGCTGG <u>AT</u>  | eeeeede    | ssssssoo   | 27002 | 27079 | 40  |
| ATGCTGGTA eeeeede ssssssoo 27062 27079 39  TCACTTTCATA eeeeeede sssssssoo 27062 27079 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1210771 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 144 |
| 1318772         ATGCTGGAA         eeeeede         ssssssoo         27062         27079         39           1318773         TCACTTTCATA         eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1318//1 | ATGCTGG <u>T</u> A | eeeeede    | ssssssoo   | 27062 | 27079 | 44  |
| ATGCTGGAA eeeeede ssssssoo TCACTTTCATA eeeeeeeeeee sssssssssss 27062 27079 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1210770 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 20  |
| 1318773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1318//2 | ATGCTGG <u>A</u> A | eeeeede    | ssssssoo   |       | 27079 | 39  |
| $ \begin{vmatrix} 13167/3 \\ ATGCTGG\underline{TC} \end{vmatrix}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1210772 | TCACTTTCATA        | eeeeeeeeee | sssssssss  | 27062 | 27070 | 42  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1318//3 | ATGCTGG <u>TC</u>  | eeeeede    | ssssssoo   | 27062 | 2/0/9 |     |

| 1318774 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27061 | 27079 | 45 |
|---------|--------------------------|------------|-----------|-------|-------|----|
| 1310774 | ATGCTGGC <u>C</u>        | eeeeede    | ssssssoo  | 27001 | 21019 | 73 |
| 1318775 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27061 | 27079 | 46 |
| 1316773 | ATGCTGGC <u>T</u>        | eeeeede    | ssssssoo  | 27001 | 21019 | 40 |
| 1318776 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27060 | 27079 | 27 |
| 1310770 | ATGCTGGCA                | eeeeede    | ssssssoo  | 27000 | 27077 | 21 |
| 1333508 | TCACTTTCATA              | nnnnnnnnnn | sssssssss | 27061 | 27079 | 46 |
| 1333300 | ATGCTGGC <u>T</u>        | nnnnnnee   | ssssssoo  | 27001 | 21019 | 40 |
| 1318777 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27062 | 27079 | 41 |
| 1310777 | ATGCTGG <u>AC</u>        | eeeeeee    | ssssssoo  | 27002 | 2,0,9 | 41 |
| 1318778 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27062 | 27079 | 43 |
| 1310776 | ATGCTGG <u><b>TT</b></u> | eeeeeee    | ssssssoo  | 27002 |       | 43 |
| 1318779 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27062 | 27079 | 39 |
| 1310/19 | ATGCTGG <u>A</u> A       | eeeeeee    | ssssssoo  | 27002 |       |    |
| 1318780 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27062 | 27079 | 42 |
| 1310700 | ATGCTGG <u>TC</u>        | eeeeeee    | ssssssoo  | 27002 | 27079 |    |
| 1318781 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27062 | 27079 | 40 |
| 1310701 | ATGCTGG <u>AT</u>        | eeeeeee    | ssssssoo  | 27002 | 21019 | 40 |
| 1318782 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27061 | 27079 | 46 |
| 1310702 | ATGCTGGC <u>T</u>        | eeeeeee    | ssssssoo  | 27001 | 27079 |    |
| 1318783 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27062 | 27079 | 44 |
| 1310703 | ATGCTGG <u>T</u> A       | eeeeeee    | ssssssoo  | 2,002 | 2,0,7 |    |
| 1318784 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27061 | 27079 | 45 |
| 1310704 | ATGCTGGC <u>C</u>        | eeeeeee    | ssssssoo  |       | 2/0/9 | 45 |
| 1318748 | TCACTTTCATA              | eeeeeeeeee | sssssssss | 27060 | 27079 | 27 |
| 1310/70 | ATGCTGGCA                | eeeeeee    | ssssssoo  | 27000 | 41019 |    |
|         |                          |            |           |       |       |    |

Длина каждого модифицированного олигонуклеотида в таблице 8 ниже составляет 19 нуклеозидов. Каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент, 2'-NMA сахарный фрагмент или 2'-β-D-дезоксирибозильный сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «п» представляет собой 2'-NMA сахарный фрагмент, а каждый «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного

олигонуклеотида, приведенный в колонке «Мотив межнуклеозидной связи», представляет собой (от 5' к 3'): ssssssssssssssssssssssssssssssssss где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь, а каждый «о» представляет собой фосфодиэфирную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждое нуклеиновое основание В модифицированном олигонуклеотиде, приведенном в таблице 8 ниже, комплементарно SEQ ID NO: 1 (номер доступа GENBANK NT 006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные нуклеиновые основания указаны «Последовательность нуклеиновых оснований» *подчеркнутым, жирным или курсивным шрифтом*. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к модифицированный олигонуклеотид комплементарен последовательности нуклеиновой кислоты.

Таблица 8 Модифицированные олигонуклеотиды со смешанными PS/PO межнуклеозидными связями

| Номер<br>соедине<br>ния | Последовательн ость нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3')            | Мотив<br>межнуклеоз<br>идной связи<br>(5'-3') | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт<br>SEQ ID<br>NO: 1 | SEQ<br>ID<br>NO: |
|-------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------|------------------|
| 1332247                 | TCACTTTCATA<br>ATGCTGGC                           | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | ssssssssssss<br>osso                          | 27061                             | 27079                            | 30               |
| 1332248                 | TCACTTTCATA<br>ATGCTGG <u>A</u>                   | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | ssssssssssssssssssssssssssss                  | 27062                             | 27079                            | 37               |
| 1332249                 | TCACTTTCATA<br>ATGCTGG <u>A</u>                   | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | ssssssssssss<br>osso                          | 27062                             | 27079                            | 37               |
| 1332251                 | TCACTTTCATA<br>ATGCTGGC                           | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | ssssssssssss<br>osso                          | 27061                             | 27079                            | 30               |
| 1332255                 | TCACTTTCATA<br>ATGCTGGC                           | eeeeeeeeeeeeeeeeeeeeee                  | ssssssssssss<br>osso                          | 27061                             | 27079                            | 30               |
| 1332257                 | TCACTTTCATA<br>ATGCTGG <u>A</u>                   | eeeeeeeeeeeeeeeeeeeeee                  | ssssssssssss<br>osso                          | 27062                             | 27079                            | 37               |
| 1332256                 | TCACTTTCATA<br>ATGCTGG <u>A</u>                   | eccecececece                            | ssssssssssssssssssssssssssss                  | 27062                             | 27079                            | 37               |
| 1332258                 | TCACTTTCATA                                       | eeeeeeeeeeee                            | ssssssssssss                                  | 27061                             | 27079                            | 30               |

| ATGCTGGC | eeee | osso |  |  |
|----------|------|------|--|--|
|          |      |      |  |  |

Длина каждого модифицированного олигонуклеотида в таблице 9 ниже составляет 19 нуклеозидов. Каждый нуклеозид содержит 2'-MOE сахарный фрагмент, 2'-NMA сахарный фрагмент или 2'-β-D-дезоксирибозильный сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, каждый «п» представляет собой 2'-NMA сахарный фрагмент, а каждый «d» представляет собой 2'-β-Dдезоксирибозильный сахарный фрагмент, Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида, приведенный в колонке «Мотив межнуклеозидной связи», представляет собой (от 5' к 3'): sssssssssssssssssss; где каждый «s» представляет собой фосфоротиоатную а каждый «о» представляет собой фосфодиэфирную межнуклеозидную связь, межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждое нуклеиновое основание В модифицированном олигонуклеотиде, приведенном в таблице 9 ниже, комплементарно SEQ ID NO: 1 (номер доступа GENBANK NT 006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные нуклеиновые основания указаны «Последовательность нуклеиновых оснований» подчеркнутым, жирным или курсивным *шрифтом*. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к модифицированный олигонуклеотид комплементарен целевой последовательности нуклеиновой кислоты.

Таблица 9 Модифицированные олигонуклеотиды со смешанными PS/PO межнуклеозидными связями

| Номер<br>соединен<br>ия | Последовательно сть нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3') | Мотив<br>межнуклеоз<br>идной связи<br>(5'-3') | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт<br>SEQ ID<br>NO: 1 | SEQ<br>ID<br>NO: |
|-------------------------|---------------------------------------------------|------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------|------------------|
| 1332250                 | TCACTTTCATAA                                      | nnnnnnnnnn                   | sssssssssss                                   | 27062                             | 27079                            | 37               |
|                         | TGCTGG <u>A</u>                                   | nnnnnd                       | osso                                          |                                   |                                  |                  |
| 1332252                 | TCACTTTCATAA                                      | nnnnnnnnnn                   | sssssssssss                                   | 27061                             | 27079                            | 30               |
| 1002202                 | TGCTGGC                                           | nnnnnnd                      | osso                                          |                                   |                                  |                  |
| 1332253                 | TCACTTTCATAA                                      | nnnnnnnnnn                   | SSSSSSSSSSSS                                  | 27062                             | 27079                            | 37               |
| 1332233                 | TGCTGG <u>A</u>                                   | nnnnne                       | osso                                          | 27002                             | 2101)                            |                  |

| 1332254 | TCACTTTCATAA    | nnnnnnnnnn  | SSSSSSSSSSSS | 27061 | 27079 | 30 |
|---------|-----------------|-------------|--------------|-------|-------|----|
| 1332234 | TGCTGGC         | nnnnne      | osso         | 27001 | 21019 |    |
| 1332259 | TCACTTTCATAA    | eeeeeeeeeee | SSSSSSSSSSSS | 27062 | 27079 | 37 |
| 1332239 | TGCTGG <u>A</u> | eeeed       | osso         | 27002 | 21019 | 37 |
| 1332260 | TCACTTTCATAA    | eeeeeeeeeee | SSSSSSSSSSSS | 27061 | 27079 | 30 |
| 1332200 | TGCTGGC         | eeeed       | osso         | 27001 | 2101) |    |
| 1332261 | TCACTTTCATAA    | eeeeeeeeeee | SSSSSSSSSSSS | 27062 | 27079 | 37 |
| 1332201 | TGCTGG <u>A</u> | eeeee       | osso         | 27002 | 21019 |    |
| 1332262 | TCACTTTCATAA    | eeeeeeeeeee | SSSSSSSSSSSS | 27061 | 27079 | 30 |
| 1332202 | TGCTGGC         | eeeee       | osso         | 27001 | 21019 | 30 |

Длина каждого модифицированного олигонуклеотида в таблице 10 ниже составляет 19 нуклеозидов. Каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент или 2'-NMA сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-MOE сахарный фрагмент, а каждый «n» представляет собой 2'-NMA сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. межнуклеозидной связи для каждого модифицированного олигонуклеотида, приведенный в колонке «Мотив межнуклеозидной связи», представляет собой (от 5' к 3'): OSSSSSSSSSSSSSSSS где каждый **((S)**> представляет собой фосфоротиоатную межнуклеозидную связь, a каждый «o» представляет собой фосфодиэфирную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

нуклеиновое основание В модифицированном олигонуклеотиде, приведенном в таблице 10 ниже, комплементарно SEQ ID NO: 1 (номер доступа GENBANK NT 006713.14, усечена с 19939708 до 19967777 нуклеотида), если конкретно не указано иное. Некомплементарные нуклеиновые основания указаны в колонке «Последовательность нуклеиновых оснований» *подчеркнутым*, жирным или курсивным *шрифтом*. «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к модифицированный олигонуклеотид которому комплементарен целевой последовательности нуклеиновой кислоты.

Таблица 10 Модифицированные олигонуклеотиды со смешанными PS/PO межнуклеозидными связями

| _ | - J     | /1            |          |           |          |       |     |
|---|---------|---------------|----------|-----------|----------|-------|-----|
|   | Номер   | Последователь | Сахарный | Мотив     | Старт-   | Стоп- | SEQ |
|   | соедине | ность         | мотив    | межнуклео | сайт SEQ | сайт  | ID  |

| ния     | нуклеиновых        | (5'-3')     | зидной      | ID NO: 1 | SEQ ID | NO: |
|---------|--------------------|-------------|-------------|----------|--------|-----|
|         | оснований          |             | связи       |          | NO: 1  |     |
|         | (5'-3')            |             | (5'-3')     |          |        |     |
| 1287742 | <b>C</b> TCACTTTCA | ennnnnnnnnn | ossssssssss | 27062    | 27079  | 47  |
| 1207742 | TAATGCTGG          | nnnnnn      | sssss       | 27002    | 21019  | 47  |
| 1287743 | TTCACTTTCAT        | ennnnnnnnnn | ossssssssss | 27062    | 27080  | 33  |
| 1207743 | AATGCTGG           | nnnnnn      | sssss       | 27002    | 27000  | 33  |
| 1287744 | <u>A</u> TCACTTTCA | ennnnnnnnnn | ossssssssss | 27062    | 27079  | 48  |
| 1207744 | TAATGCTGG          | nnnnnn      | sssss       | 27002    | 21019  | 40  |
| 1287714 | <b>C</b> TCACTTTCA | eeeeeeeeee  | ossssssssss | 27062    | 27079  | 47  |
| 1207714 | TAATGCTGG          | eeeee       | sssss       | 27002    | 2101)  | 7 / |
| 1287716 | <u>A</u> TCACTTTCA | eeeeeeeeee  | ossssssssss | 27062    | 27079  | 48  |
| 1207710 | TAATGCTGG          | eeeee       | sssss       | 27002    | 21017  | 40  |
| 1287715 | TTCACTTTCAT        | eeeeeeeeeee | ossssssssss | 27062    | 27080  | 33  |
| 120//13 | AATGCTGG           | eeeee       | SSSSS       | 27002    | 27000  |     |

Длина каждого модифицированного олигонуклеотида в таблице 11 ниже составляет 20 нуклеозидов. Каждый нуклеозид содержит 2'-МОЕ сахарный фрагмент или 2'-NMA сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-MOE сахарный фрагмент, а каждый «n» представляет собой 2'-NMA сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь или фосфодиэфирную межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида, приведенный в колонке «Мотив межнуклеозидной связи», представляет собой (от 5' к 3'): OSSSSSSSSSSSSSSS; где каждый **((S)**> представляет собой фосфоротиоатную связь, а каждый «о» представляет собой фосфодиэфирную межнуклеозидную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин.

Каждый модифицированный олигонуклеотид, приведенный в таблице 11 ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида). «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

#### Таблица 11

Модифицированные олигонуклеотиды со смешанными PS/PO межнуклеозидными связями

| Номер<br>соединен<br>ия | Последователь ность нуклеиновых оснований (5'-3') | Сахарный<br>мотив<br>(5'-3') | Мотив<br>межнуклеоз<br>идной связи<br>(5'-3') | Старт-<br>сайт SEQ<br>ID NO: 1 | Стоп-сайт<br>SEQ ID<br>NO: 1 | SEQ ID<br>NO: |
|-------------------------|---------------------------------------------------|------------------------------|-----------------------------------------------|--------------------------------|------------------------------|---------------|
| 1287745                 | TTCACTTTCA<br>TAATGCTGGC                          | ennnnnnnnnnn<br>nnnnnnne     | OSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS        | 27061                          | 27080                        | 22            |
| 1287717                 | TTCACTTTCA<br>TAATGCTGGC                          | eeeeeeeeeeeeeeeee            | OSSSSSSSSSSSSS<br>SSSO                        | 27061                          | 27080                        | 22            |

Пример 2. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, однократная доза (35 мкг)

Активность выбранных модифицированных олигонуклеотидов, описанных выше, была протестирована на трансгенных в отношении SMN2 человека мышах. Тайваньская линия мышей со CMA типа III была получена от The Jackson Laboratory (Бар-Харбор, штат Мэн). У этих мышей отсутствует SMN мыши и они являются гомозиготными по SMN2 человека (mSMN -/-; hSMN2 +/+; FVB.Cg-Tg(SMN2)2HungSMN1tm1Hung/J, исходный номер 005058; Бар-Харбор, штат Мэн), либо они являются гетерозиготными по SMN мыши и гетерозиготными по SMN2 человека (mSMN +/-; hSMN2 +/-; FVB.Cg-Tg(SMN2)2HungSMN1tm1Hung/J), получены путем скрещивания HOM/HOM (исходный номер 00005058) с FVB/NJ (исходный номер 001800).

## Лечение

Гомозиготных или гетерозиготных трансгенных мышей разделяли на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс 35 мкг модифицированного олигонуклеотида. В данном анализе также были протестированы соединения сравнения №№ 387954, 396442 и 396443. Группа из 4 мышей получала PBS в качестве отрицательного контроля.

## Анализ РНК

Через две недели после лечения мышей умерщвляли и из кортикальной ткани головного мозга и спинного мозга экстрагировали РНК для проведения кПЦР-анализа в реальном времени РНК SMN2. Набор праймеров и зондов hSMN2vd#4 LTS00216 MGB (прямая последовательность: GCTGATGCTTTGGGAAGTATGTTA (SEQ ID NO: 11); обратная последовательность CACCTTCCTTCTTTTGATTTTGTC, обозначенная **SEQ** IDNO: 12; как последовательность данном документе зонда TACATGAGTGGCTATCATACT (SEQ ID NO: 13)) использовали для определения количества РНК SMN2, включая экзон 7 (экзон 7<sup>+</sup>). Набор праймеров и зондов hSMN2 Sumner68 PPS50481 (прямая последовательность: CATGGTACATGAGTGGCTATCATACTG (SEQ ID NO: 14); обратная TGGTGTCATTTAGTGCTGCTCTATG (SEQ ID NO: 15); последовательность: CCAGCATTTCCATATAATAGC (SEQ ID NO: 16) последовательность зонда

использовали для определения количества PHK SMN2, включая экзон 7 (экзон 7<sup>-</sup>). Общие уровни PHK SMN2 измеряли с помощью набора праймеров и зондов hSMN2\_LTS00935 (прямая последовательность: CAGGAGGATTCCGTGCTGTT (SEQ ID NO: 17); обратная последовательность CAGTGCTGTATCATCCCAAATGTC, (SEQ ID NO: 18); последовательность зонда: ACAGGCCAGAGCGAT (SEQ ID NO: 19)).

Результаты представлены в виде кратного изменения уровней РНК по отношению к контролю ФСБ, нормализованных к общим уровням SMN2. В каждой из таблиц 12-18 представлен разный эксперимент.

Таблица 12 Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2 человека у гомозиготных трансгенных мышей

| Caaruuanna Na | Поро (ракот) | Кора голон           | вного мозга | Спинн                | ой мозг |
|---------------|--------------|----------------------|-------------|----------------------|---------|
| Соединение №  | Доза (мкг)   | экзон 7 <sup>+</sup> | экзон 7     | экзон 7 <sup>+</sup> | экзон 7 |
| PBS           | -            | 1                    | 1           | 1                    | 1       |
| 396442        | 35           | 3,3                  | 0,3         | 3,4                  | 0,3     |
| 396443        | 35           | 3,0                  | 0,5         | 2,3                  | 0,5     |
| 524403        | 35           | 3,3                  | 0,4         | 2,5                  | 0,5     |
| 1210339       | 35           | 2,5                  | 0,5         | 3,0                  | 0,3     |
| 1210340       | 35           | 2,1                  | 0,6         | 2,6                  | 0,4     |
| 1210341       | 35           | 1,8                  | 0,7         | 2,0                  | 0,6     |
| 1210342       | 35           | 2,5                  | 0,5         | 2,9                  | 0,3     |
| 1210343       | 35           | 3,0                  | 0,4         | 2,4                  | 0,5     |
| 1212817       | 35           | 2,4                  | 0,6         | 2,2                  | 0,6     |
| 1212818       | 35           | 2,4                  | 0,5         | 2,1                  | 0,6     |
| 1212823       | 35           | 2,0                  | 0,6         | 2,0                  | 0,6     |
| 1212824       | 35           | 2,1                  | 0,6         | 2,1                  | 0,6     |
| 1212825       | 35           | 2,9                  | 0,4         | 2,5                  | 0,5     |
| 1212826       | 35           | 2,5                  | 0,6         | 2,2                  | 0,7     |
| 1212827       | 35           | 2,5                  | 0,6         | 2,6                  | 0,5     |
| 1212828       | 35           | 2,9                  | 0,5         | 2,4                  | 0,6     |
| 1212830       | 35           | 2,8                  | 0,7         | 2,1                  | 0,8     |
| 1212831       | 35           | 2,5                  | 0,7         | 2,3                  | 0,7     |
| 1212832       | 35           | 2,9                  | 0,6         | 2,9                  | 0,5     |
| 1212833       | 35           | 2,4                  | 0,7         | 2,7                  | 0,5     |
| 1212837       | 35           | 2,5                  | 0,6         | 2,7                  | 0,5     |
| 1212838       | 35           | 2,1                  | 0,7         | 2,5                  | 0,6     |

| 1212844 | 35 | 2,6 | 0,6 | 2,4 | 0,7 |
|---------|----|-----|-----|-----|-----|
| 1212845 | 35 | 2,3 | 0,7 | 2,5 | 0,7 |
| 1212846 | 35 | 2,8 | 0,6 | 2,6 | 0,6 |
| 1212849 | 35 | 2,1 | 0,7 | 2,3 | 0,6 |
| 1212850 | 35 | 1,8 | 0,8 | 2,2 | 0,7 |
| 1212855 | 35 | 2,0 | 0,7 | 2,1 | 0,8 |

| Соединение №   | Доза (мкг) | Кора голон           | вного мозга | Спинн                | ой мозг |
|----------------|------------|----------------------|-------------|----------------------|---------|
| Соединение в ч | доза (мкг) | экзон 7 <sup>+</sup> | экзон 7     | экзон 7 <sup>+</sup> | экзон 7 |
| PBS            | -          | 1,0                  | 1,0         | 1,0                  | 1,0     |
| 396443         | 35         | 2,7                  | 0,3         | 1,9                  | 0,5     |
| 1210342        | 35         | 2,4                  | 0,5         | 2,5                  | 0,4     |
| 1212961        | 35         | 1,8                  | 0,7         | 1,7                  | 0,6     |
| 1212962        | 35         | 2,0                  | 0,6         | 1,9                  | 0,5     |
| 1212963        | 35         | 2,3                  | 0,5         | 2,5                  | 0,3     |
| 1212966        | 35         | 1,6                  | 0,8         | 2,0                  | 0,5     |
| 1212967        | 35         | 1,9                  | 0,6         | 1,9                  | 0,4     |
| 1212971        | 35         | 1,6                  | 0,5         | 2,0                  | 0,4     |
| 1212972        | 35         | 1,8                  | 0,6         | 2,2                  | 0,5     |
| 1212977        | 35         | 2,1                  | 0,5         | 2,2                  | 0,4     |
| 1212978        | 35         | 2,1                  | 0,6         | 2,2                  | 0,4     |
| 1212979        | 35         | 2,1                  | 0,5         | 2,6                  | 0,3     |
| 1212982        | 35         | 2,0                  | 0,7         | 1,8                  | 0,6     |
| 1212983        | 35         | 1,9                  | 0,6         | 1,7                  | 0,5     |
| 1212984        | 35         | 1,9                  | 0,6         | 1,9                  | 0,5     |
| 1212987        | 35         | 2,4                  | 0,4         | 2,5                  | 0,4     |
| 1212988        | 35         | 1,8                  | 0,7         | 1,8                  | 0,5     |
| 1212995        | 35         | 2,5                  | 0,5         | 2,5                  | 0,4     |
| 1212998        | 35         | 1,8                  | 0,6         | 1,8                  | 0,7     |
| 1212999        | 35         | 2,0                  | 0,6         | 2,0                  | 0,5     |
| 1213003        | 35         | 1,9                  | 0,7         | 2,3                  | 0,5     |
| 1213004        | 35         | 1,8                  | 0,7         | 2,3                  | 0,6     |
|                |            |                      | 1           | 1                    | 1       |

| Соединение № | Доза (мкг) | Кора голов           | вного мозга | Спинной мозг         |         |  |
|--------------|------------|----------------------|-------------|----------------------|---------|--|
| Соединение л | доза (мкг) | экзон 7 <sup>+</sup> | экзон 7     | экзон 7 <sup>+</sup> | экзон 7 |  |
| PBS          | -          | 1,0                  | 1,0         | 1,0                  | 1,0     |  |
| 396443       | 35         | 2,6                  | 0,5         | 3,1                  | 0,5     |  |
| 1212964      | 35         | 2,5                  | 0,6         | 3,6                  | 0,4     |  |
| 1212965      | 35         | 2,9                  | 0,5         | 3,3                  | 0,4     |  |
| 1212968      | 35         | 2,2                  | 0,6         | 2,3                  | 0,6     |  |
| 1212973      | 35         | 2,6                  | 0,5         | 3,2                  | 0,4     |  |
| 1212974      | 35         | 2,3                  | 0,6         | 2,8                  | 0,5     |  |
| 1212975      | 35         | 2,9                  | 0,3         | 3,1                  | 0,4     |  |
| 1212976      | 35         | 2,5                  | 0,5         | 2,8                  | 0,5     |  |
| 1212980      | 35         | 2,6                  | 0,5         | 3,2                  | 0,4     |  |
| 1212981      | 35         | 2,9                  | 0,4         | 3,6                  | 0,3     |  |
| 1212985      | 35         | 2,4                  | 0,6         | 2,9                  | 0,5     |  |
| 1212986      | 35         | 2,8                  | 0,4         | 3,3                  | 0,4     |  |
| 1212989      | 35         | 3,3                  | 0,3         | 3,6                  | 0,2     |  |
| 1212990      | 35         | 1,8                  | 0,8         | 2,1                  | 0,7     |  |
| 1212991      | 35         | 3,2                  | 0,3         | 3,8                  | 0,3     |  |
| 1212992      | 35         | 2,4                  | 0,5         | 2,2                  | 0,6     |  |
| 1212996      | 35         | 2,2                  | 0,6         | 3,2                  | 0,5     |  |
| 1212997      | 35         | 2,9                  | 0,4         | 3,9                  | 0,4     |  |
| 1213001      | 35         | 2,1                  | 0,5         | 2,8                  | 0,6     |  |
| 1213002      | 35         | 2,0                  | 0,6         | 2,9                  | 0,6     |  |
| 1213005      | 35         | 2,8                  | 0,5         | 3,2                  | 0,3     |  |
| 1213006      | 35         | 1,9                  | 0,9         | 2,0                  | 0,8     |  |
| 1213007      | 35         | 3,3                  | 0,2         | 2,9                  | 0,5     |  |
| 1213008      | 35         | 2,3                  | 0,7         | 2,2                  | 0,7     |  |

Таблица 15

Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2 человека у гетерозиготных трансгенных мышей

| Соединение № | Доза (мкг) | Кора голов | ного мозга | Спинно               | ой мозг              |
|--------------|------------|------------|------------|----------------------|----------------------|
|              | Ασα ()     | экзон 7+   | экзон 7    | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> |

| PBS     | -  | 1,0 | 1,0 | 1,0 | 1,0 |
|---------|----|-----|-----|-----|-----|
| 387954  | 35 | 2,3 | 0,6 | 2,2 | 0,5 |
| 396443  | 35 | 2,5 | 0,5 | 2,4 | 0,5 |
| 1287048 | 35 | 2,2 | 0,5 | 2,2 | 0,5 |
| 1287049 | 35 | 2,3 | 0,6 | 2,5 | 0,4 |
| 1287061 | 35 | 2,4 | 0,5 | 2,2 | 0,4 |
| 1287062 | 35 | 3,0 | 0,3 | 2,3 | 0,4 |
| 1287050 | 35 | 2,8 | 0,5 | 2,3 | 0,4 |
| 1287054 | 35 | 2,2 | 0,5 | 2,3 | 0,4 |
| 1287063 | 35 | 1,8 | 0,7 | 1,7 | 0,6 |
| 1287064 | 35 | 2,6 | 0,3 | 2,4 | 0,4 |
| 1287065 | 35 | 2,5 | 0,4 | 2,3 | 0,4 |
| 1287066 | 35 | 2,2 | 0,5 | 2   | 0,5 |
| 1287075 | 35 | 2,3 | 0,6 | 1,8 | 0,7 |
| 1287076 | 35 | 2,6 | 0,4 | 1,9 | 0,6 |
| 1287067 | 35 | 2,7 | 0,4 | 1,9 | 0,6 |
| 1287070 | 35 | 2,5 | 0,5 | 1,8 | 0,7 |
| 1287071 | 35 | 2,6 | 0,4 | 1,8 | 0,7 |
| 1287074 | 35 | 2,6 | 0,5 | 2   | 0,6 |
| 1287109 | 35 | 2,7 | 0,6 | 2,4 | 0,5 |
| 1287110 | 35 | 2,6 | 0,5 | 2,3 | 0,5 |
| 1287701 | 35 | 2,6 | 0,6 | 2,8 | 0,3 |
| 1287702 | 35 | 3   | 0,5 | 2,8 | 0,4 |
| 1287703 | 35 | 2,3 | 0,6 | 2,4 | 0,4 |
| 1287704 | 35 | 2,7 | 0,5 | 2,3 | 0,4 |
| 1287717 | 35 | 3,3 | 0,3 | 2,4 | 0,6 |

Таблица 16
 Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2
 человека у гетерозиготных трансгенных мышей

| Соединение № | Доза (мкг) | Кора голов           | Кора головного мозга |                      | ой мозг              |
|--------------|------------|----------------------|----------------------|----------------------|----------------------|
|              | доза (мкг) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> |
| PBS          | -          | 1                    | 1                    | 1                    | 1                    |
| 396442       | 35         | 2,5                  | 0,6                  | 3,2                  | 0,3                  |
| 396443       | 35         | 3                    | 0,5                  | 2,8                  | 0,5                  |

| 1263783 | 35 | 3   | 0,3 | 2,6 | 0,5 |
|---------|----|-----|-----|-----|-----|
| 1263785 | 35 | 3,1 | 0,4 | 2,9 | 0,5 |
| 1263787 | 35 | 2,4 | 0,6 | 2,9 | 0,4 |
| 1263789 | 35 | 3,8 | 0,2 | 2,6 | 0,5 |
| 1263800 | 35 | 3,6 | 0,2 | 2,6 | 0,5 |
| 1263802 | 35 | 3,4 | 0,3 | 2,9 | 0,4 |
| 1263806 | 35 | 3,5 | 0,2 | 2,7 | 0,5 |
| 1263808 | 35 | 3,2 | 0,4 | 2,7 | 0,5 |
| 1263810 | 35 | 2,8 | 0,5 | 2,4 | 0,5 |

Таблица 17
Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2
человека у гетерозиготных трансгенных мышей

| Соединение № | Доза (мкг) | Кора голов           | ного мозга           | Спинно               | ой мозг              |
|--------------|------------|----------------------|----------------------|----------------------|----------------------|
|              | доза (мкг) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> |
| PBS          | -          | 1                    | 1                    | 1                    | 1                    |
| 396443       | 35         | 2,5                  | 0,6                  | 2,9                  | 0,4                  |
| 1364784      | 35         | 2,3                  | 0,7                  | 2,8                  | 0,5                  |
| 1364783      | 35         | 2,9                  | 0,5                  | 2,4                  | 0,5                  |
| 1364777      | 35         | 2,7                  | 0,6                  | 2,3                  | 0,5                  |
| 1364782      | 35         | 2,7                  | 0,6                  | 2,6                  | 0,5                  |

| Соединение № | Доза (мкг) | Кора голов           | ного мозга           | Спинно               | ой мозг |
|--------------|------------|----------------------|----------------------|----------------------|---------|
|              | доза (мкг) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 |
| PBS          | -          | 1                    | 1                    | 1                    | 1       |
| 396443       | 35         | 2                    | 0,7                  | 2,7                  | 0,5     |
| 1318748      | 35         | 2,1                  | 0,7                  | 2,5                  | 0,6     |
| 1318782      | 35         | 2,2                  | 0,8                  | 2,5                  | 0,6     |
| 1332262      | 35         | 3,3                  | 0,4                  | 2,9                  | 0,5     |
| 1332258      | 35         | 2,4                  | 0,7                  | 2,3                  | 0,6     |

Пример 3. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, однократная доза (15 мкг)

Активность выбранных модифицированных олигонуклеотидов, описанных выше, была протестирована на трансгенных в отношении SMN2 человека мышах, по существу

как описано выше в примере 2. В данном анализе также были протестированы соединения сравнения №№ 396443 и 819735. Трансгенные мыши были разделены на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс 15 мкг модифицированного олигонуклеотида. Группа из 4 мышей получала PBS в качестве отрицательного контроля. Через две недели после лечения мышей умерщвляли и из кортикальной ткани головного мозга и спинного мозга экстрагировали РНК для проведения кПЦР-анализа в реальном времени РНК SMN2. Результаты представлены в виде кратного изменения уровней РНК по отношению к контролю ФСБ, нормализованных к общим уровням SMN2. В каждой из таблиц 19-23 представлен разный эксперимент.

Таблица 19
Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2
человека у гомозиготных трансгенных мышей

| Соединение № | Доза (мкг) | Кора голов | вного мозга | Спинной мозг         |         |  |
|--------------|------------|------------|-------------|----------------------|---------|--|
| Соединение № | доза (мкг) | экзон 7+   | экзон 7     | экзон 7 <sup>+</sup> | экзон 7 |  |
| PBS          | -          | 1,0        | 1,0         | 1,0                  | 1,0     |  |
| 819735       | 15         | 2,4        | 0,4         | 3,3                  | 0,3     |  |
| 1212869      | 15         | 2,4        | 0,4         | 3,2                  | 0,4     |  |
| 1212870      | 15         | 2,1        | 0,5         | 2,8                  | 0,4     |  |
| 1212873      | 15         | 2,2        | 0,4         | 2,0                  | 0,6     |  |
| 1212874      | 15         | 2,1        | 0,5         | 2,4                  | 0,6     |  |
| 1212875      | 15         | 2,1        | 0,5         | 2,3                  | 0,5     |  |
| 1212880      | 15         | 1,7        | 0,6         | 2,0                  | 0,6     |  |
| 1212881      | 15         | 1,8        | 0,6         | 2,3                  | 0,6     |  |
| 1212885      | 15         | 2,3        | 0,4         | 2,4                  | 0,5     |  |
| 1212887      | 15         | 2,0        | 0,5         | 2,2                  | 0,5     |  |
| 1212931      | 15         | 2,9        | 0,2         | 2,9                  | 0,3     |  |
| 1212936      | 15         | 2,9        | 0,3         | 3,3                  |         |  |
| 1212941      | 15         | 3,0        | 0,1         | 3,4                  | 0,2     |  |

Таблица 20 Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2 человека у гетерозиготных трансгенных мышей

| Соединение №  | Доза (мкг) | Кора голов           | вного мозга          | Спинной мозг         |         |  |
|---------------|------------|----------------------|----------------------|----------------------|---------|--|
| Соединение за | ZOSA (MKI) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 |  |
| PBS           | -          | 1,0                  | 1,0                  | 1,0                  | 1,0     |  |
| 396443        | 15         | 2,2                  | 0,5                  | 2,2                  | 0,7     |  |
| 819735        | 15         | 2,7                  | 0,5                  | 3,1                  | 0,5     |  |

| 1287122 | 15 | 2,9 | 0,5 | 2,3 | 0,6 |
|---------|----|-----|-----|-----|-----|
| 1287123 | 15 | 3,0 | 0,4 | 3,0 | 0,4 |
| 1287124 | 15 | 3,0 | 0,4 | 3,2 | 0,3 |
| 1287125 | 15 | 3,0 | 0,4 | 3,0 | 0,4 |
| 1287126 | 15 | 2,8 | 0,4 | 2,8 | 0,4 |
| 1287127 | 15 | 2,7 | 0,5 | 3,0 | 0,5 |
| 1287128 | 15 | 2,6 | 0,5 | 3,2 | 0,5 |
| 1287129 | 15 | 2,9 | 0,4 | 2,9 | 0,5 |
| 1287130 | 15 | 3,7 | 0,1 | 3,1 | 0,5 |
| 1287131 | 15 | 2,2 | 0,6 | 2,7 | 0,4 |
| 1287132 | 15 | 3,2 | 0,3 | 2,2 | 0,6 |
| 1287133 | 15 | 2,9 | 0,4 | 2,8 | 0,4 |
| 1287728 | 15 | 2,8 | 0,6 | 3,4 | 0,3 |
| 1287729 | 15 | 3,1 | 0,4 | 3,0 | 0,3 |
| 1287730 | 15 | 3,1 | 0,3 | 2,7 | 0,4 |
| 1287731 | 15 | 3,3 | 0,3 | 2,8 | 0,5 |
| 1287735 | 15 | 2,9 | 0,5 | 2,6 | 0,5 |
| 1287738 | 15 | 3,7 | 0,2 | 3,2 | 0,3 |
| 1287739 | 15 | 3,3 | 0,4 | 3,2 | 0,4 |
| 1287743 | 15 | 3,6 | 0,4 | 3,8 | 0,4 |
| 1287745 | 15 | 3,1 | 0,5 | 3,8 | 0,5 |

Таблица 21 Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2 человека у гетерозиготных трансгенных мышей

| Соединение №   | Доза (мкг) | Кора головного мозга |                      | Спинной мозг         |                      |
|----------------|------------|----------------------|----------------------|----------------------|----------------------|
| Соединение 312 | доза (мкг) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> |
| PBS            | -          | 1                    | 1                    | 1                    | 1,0                  |
| 396443         | 15         | 1,9                  | 0,6                  | 1,7                  | 0,7                  |
| 819735         | 15         | 2,3                  | 0,5                  | 1,9                  | 0,6                  |

Таблица 22 Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2 человека у гетерозиготных трансгенных мышей

| Соединение № | Доза (мкг)  | Кора голов           | ного мозга           | Спинной мозг         |                      |
|--------------|-------------|----------------------|----------------------|----------------------|----------------------|
| Соединение и | μοσα (ΜΙΚΙ) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> |
| PBS          | -           | 1                    | 1                    | 1                    | 1                    |

| 1364781 | 15 | 2,5 | 0,6 | 2,7 | 0,4 |
|---------|----|-----|-----|-----|-----|
| 1364780 | 15 | 2,8 | 0,5 | 2,6 | 0,5 |
| 1364779 | 15 | 2,7 | 0,5 | 2,6 | 0,5 |
| 1364778 | 15 | 3   | 0,5 | 2,7 | 0,4 |

Таблица 23
 Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2
 человека у гетерозиготных трансгенных мышей

| Caaruuanna Na | Hono (sees) | Кора голов           | вного мозга | Спинной мозг         |         |
|---------------|-------------|----------------------|-------------|----------------------|---------|
| Соединение №  | Доза (мкг)  | экзон 7 <sup>+</sup> | экзон 7     | экзон 7 <sup>+</sup> | экзон 7 |
| PBS           | -           | 1                    | 1           | 1                    | 1       |
| 819735        | 15          | 2,8                  | 0,5         | 2,4                  | 0,6     |
| 1332265       | 15          | 2,1                  | 0,7         | 2,6                  | 0,6     |
| 1332269       | 15          | 2,5                  | 0,6         | 2,7                  | 0,5     |
| 1332268       | 15          | 2,9                  | 0,5         | 2,3                  | 0,6     |
| 1318756       | 15          | 2,2                  | 0,7         | 2,4                  | 0,6     |
| 1333508       | 15          | 2                    | 0,6         | 2,2                  | 0,6     |
| 1332251       | 15          | 2,9                  | 0,5         | 1,9                  | 0,7     |
| 1332249       | 15          | 2,3                  | 0,7         | 2,3                  | 0,7     |

# Пример 4. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, однократная доза (70 мкг)

Активность модифицированных олигонуклеотидов была протестирована на трансгенных в отношении SMN2 человека мышах, по существу как описано выше в примере 2. Трансгенные мыши были разделены на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс 70 мкг модифицированного олигонуклеотида. Группа из 4 мышей получала PBS в качестве отрицательного контроля. Через две недели после лечения мышей умерщвляли и из кортикальной ткани головного мозга и спинного мозга экстрагировали PHK для проведения кПЦР-анализа в реальном времени PHK SMN2. Результаты представлены в виде кратного изменения уровней PHK по отношению к контролю ФСБ, нормализованных к общим уровням SMN2.

| Соединение №  | Доза (мкг)         | Кора голов           | ного мозга           | Спинной мозг         |                      |  |
|---------------|--------------------|----------------------|----------------------|----------------------|----------------------|--|
| Соединение уч | доза (мкт <i>)</i> | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> |  |
| PBS           | -                  | 1                    | 1                    | 1                    | 1                    |  |
| 1212969       | 70                 | 2,5                  | 0,4                  | 2,4                  | 0,3                  |  |

| 1212970 70 2,7 0,3 2,6 | 0,3 |
|------------------------|-----|
|------------------------|-----|

## Пример 5. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, многократная доза

Активность выбранных модифицированных олигонуклеотидов, описанных выше, была протестирована на трансгенных в отношении SMN2 человека мышах, по существу как описано выше в примере 2. В данном анализе также было протестировано соединение сравнения № 396443. Трансгенные мыши были разделены на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс модифицированного олигонуклеотида в виде многократных доз, как указано в таблицах ниже. Группа из 4 мышей получала PBS в качестве отрицательного контроля. Через две недели после лечения мышей умерщвляли и из лобной доли головного мозга и спинного мозга экстрагировали PHK для проведения кПЦР-анализа в реальном времени PHK SMN2. Результаты представлены в виде кратного изменения уровней PHK по отношению к контролю ФСБ, нормализованных к общим уровням SMN2. ED<sub>50</sub> для включения экзона (экзон 7<sup>+</sup>) рассчитывали в GraphPad Prism 7, используя нелинейную регрессионную 4-параметрическую кривую доза-ответ [ Y=низ + (верх-низ)/(1+ (10^logEC50 /X)^угл. коэф. Хилла)].

Таблица 25
Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2
человека у гомозиготных трансгенных мышей

| Соединение<br>№ | Доза<br>(мкг) | Лобная доля головного мозга |         | ED50 Спинной мозг (мкг) |                      |         | ED50<br>(мкг) |
|-----------------|---------------|-----------------------------|---------|-------------------------|----------------------|---------|---------------|
| 242             | (MKI)         | экзон 7 <sup>+</sup>        | экзон 7 | (MKI)                   | экзон 7 <sup>+</sup> | экзон 7 | (MKI)         |
| PBS             | -             | 1,0                         | 1,0     |                         | 1,0                  | 1,0     |               |
|                 | 3             | 1,4                         | 0,9     |                         | 1,3                  | 0,9     |               |
|                 | 10            | 1,8                         | 0,8     |                         | 2,0                  | 0,7     |               |
| 396443          | 30            | 2,6                         | 0,5     | 32,5                    | 2,6                  | 0,4     | 22,1          |
|                 | 100           | 3,5                         | 0,4     |                         | 3,2                  | 0,3     |               |
|                 | 300           | 4,2                         | 0,1     |                         | 3,6                  | 0,2     |               |
|                 | 3             | 1,5                         | 0,9     |                         | 1,5                  | 0,8     |               |
|                 | 10            | 2,0                         | 0,7     |                         | 2,2                  | 0,6     | 13,3          |
| 1263789         | 30            | 2,3                         | 0,6     | 38,3                    | 3,0                  | 0,4     |               |
|                 | 100           | 3,4                         | 0,3     |                         | 3,4                  | 0,3     |               |
|                 | 300           | 3,9                         | 0,1     |                         | 3,7                  | 0,2     |               |
|                 | 3             | 1,3                         | 0,8     |                         | 1,3                  | 0,9     |               |
| 1287717         | 10            | 1,8                         | 0,7     | 38,7                    | 1,9                  | 0,7     | 20,5          |
| 120//1/         | 30            | 2,4                         | 0,7     |                         | 2,7                  | 0,5     |               |
|                 | 100           | 3,5                         | 0,4     |                         | 3,3                  | 0,3     |               |

|         | 300 | 4,1 | 0,1 |      | 3,8 | 0,2 |     |
|---------|-----|-----|-----|------|-----|-----|-----|
|         | 3   | 1,6 | 0,9 |      | 1,7 | 0,8 |     |
|         | 10  | 2,5 | 0,6 |      | 2,6 | 0,5 |     |
| 1358996 | 30  | 3,0 | 0,4 | 16,6 | 3,5 | 0,2 | 7,4 |
|         | 100 | 4,0 | 0,2 |      | 3,6 | 0,2 |     |
|         | 300 | 4,0 | 0,1 |      | 3,9 | 0,1 |     |
|         | 3   | 1,5 | 0,8 |      | 1,7 | 0,7 |     |
|         | 10  | 2,1 | 0,6 |      | 2,4 | 0,5 |     |
| 1287745 | 30  | 3,0 | 0,3 | 22,8 | 3,3 | 0,3 | 8,8 |
|         | 100 | 3,6 | 0,1 |      | 3,5 | 0,2 |     |
|         | 300 | 4,2 | 0,1 |      | 3,8 | 0,1 |     |

Пример 6. Переносимость модифицированных олигонуклеотидов, комплементарных SMN2, у мышей дикого типа, 3-часовое исследование

Модифицированные олигонуклеотиды, описанные выше, исследовали у самок мышей C57/B16 дикого типа для оценки переносимости. Каждая самка мыши C57/B16 дикого типа получала однократную ICV дозу 700 МКГ модифицированного олигонуклеотида, указанную в таблицах ниже. В данном анализе также было протестировано соединение сравнения № 396443 в дозе 350 мкг. В данном анализе также были протестированы соединения сравнения №№ 387954, 396442, 443305 и 819735 в дозе 700 мкг. Каждая группа обработки состояла из 4 мышей. Группе из 4 мышей вводили PBS в качестве отрицательного контроля для каждого эксперимента (указаны в отдельных таблицах ниже). Через 3 часа после инъекции мышей оценивали в отношении семи различных критериев. Критерии: (1) мышь была активной, бдительной и восприимчивой; (2) мышь стояла или горбилась без действия раздражителей; (3) мышь демонстрировала любое движение без раздражителей; (4) мышь демонстрировала движение вперед после того, как ее поднимали; (5) мышь демонстрировала любое движение после того, как ее поднимали; (6) мышь отвечала в ответ на защемление хвоста; (7) регулярное дыхание. Для каждого из 7 критериев мыши получали балл подшкалы 0, если она соответствовала критериям, и 1, если она не соответствовала (балл по шкале батареи клиникофункциональных тестов или FOB). После оценки всех 7 критериев баллы суммировали и усредняли в каждой группе лечения. Результаты представлены в таблицах ниже. В каждой из таблиц 26-49 представлен разный эксперимент.

Таблица 26 Показатели переносимости у мышей в дозе 350 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0             |
| 396443           | 4,0           |

Таблица 27 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 443305           | 4,75          |

Таблица 28 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0             |
| 396442           | 2,5           |
| 524403           | 3,25          |
| 1210339          | 1,25          |
| 1210340          | 2,25          |
| 1210341          | 3,75          |
| 1210342          | 0             |
| 1210343          | 0             |
| 1212817          | 0             |
| 1212818          | 0             |
| 1212819          | 0             |
| 1212820          | 0             |
| 1212821          | 0             |
| 1212822          | 0             |
| 1212823          | 0             |
| 1212824          | 0             |
| 1212825          | 1             |
| 1212826          | 0             |
| 1212827          | 0             |
| 1212828          | 0             |
| 1212829          | 0             |
| 1212830          | 0             |
| 1212831          | 0             |

Таблица 29

Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB</b> за 3 часа |
|------------------|----------------------|

| PBS     | 0,00 |
|---------|------|
| 396442  | 2,50 |
| 1210340 | 3,50 |
| 1212850 | 0,50 |
| 1212851 | 0,75 |
| 1212852 | 0,00 |
| 1212853 | 0,00 |
| 1212854 | 0,25 |
| 1212855 | 0,25 |
| 1212856 | 0,00 |
| 1212857 | 0,00 |
| 1212858 | 0,00 |
| 1212859 | 0,00 |
| 1212860 | 0,75 |
| 1212861 | 1,00 |
| 1212863 | 2,00 |
| 1212864 | 0,00 |
| 1212866 | 0,75 |
| 1212867 | 0,00 |
| 1212868 | 0,00 |

Таблица 30 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB за 3 часа</b> |
|------------------|----------------------|
| PBS              | 0,00                 |
| 396442           | 3,25                 |
| 1212961          | 0,00                 |
| 1212963          | 1,00                 |
| 1212964          | 2,00                 |
| 1212965          | 1,25                 |
| 1212966          | 1,25                 |
| 1212968          | 0,00                 |
| 1212971          | 1,00                 |
| 1212972          | 3,25                 |
| 1212973          | 0,50                 |

| 1212974 | 2,00 |
|---------|------|
| 1212975 | 0,50 |
| 1212976 | 1,75 |

 Таблица 31

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1212977          | 0,75          |
| 1212978          | 0,00          |
| 1212979          | 1,75          |
| 1212980          | 1,50          |
| 1212981          | 0,00          |
| 1212982          | 0,50          |
| 1212983          | 0,75          |
| 1212984          | 2,75          |
| 1212985          | 0,00          |
| 1212986          | 1,00          |
| 1212987          | 1,75          |
| 1212988          | 4,50          |
| 1212989          | 1,75          |
| 1212990          | 4,50          |
| 1212991          | 1,25          |
| 1212992          | 3,75          |

Таблица 32 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB</b> 3а 3 часа |
|------------------|----------------------|
| PBS              | 0,00                 |
| 1212993          | 7,00                 |
| 1212994          | 6,50                 |
| 1212995          | 4,25                 |
| 1212996          | 3,25                 |
| 1212997          | 4,00                 |
| 1212998          | 2,00                 |
| 1212999          | 1,00                 |

| 1213000 | 1,25 |
|---------|------|
| 1213001 | 3,00 |
| 1213002 | 2,00 |
| 1213003 | 4,00 |
| 1213004 | 3,00 |
| 1213005 | 3,75 |
| 1213006 | 4,00 |
| 1213007 | 4,00 |
| 1213008 | 3,50 |

 Таблица 33

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB</b> за 3 часа |
|------------------|----------------------|
| PBS              | 0,00                 |
| 1212832          | 0,00                 |
| 1212833          | 0,00                 |
| 1212834          | 0,00                 |
| 1212835          | 0,00                 |
| 1212836          | 0,00                 |
| 1212837          | 0,00                 |
| 1212838          | 0,00                 |
| 1212839          | 0,00                 |
| 1212840          | 0,00                 |
| 1212841          | 0,00                 |
| 1212842          | 0,00                 |
| 1212843          | 0,00                 |
| 1212844          | 0,25                 |
| 1212845          | 1,00                 |
| 1212846          | 0,00                 |
| 1212847          | 0,00                 |
| 1212848          | 0,00                 |
| 1212849          | 0,00                 |

 Таблица 34

 Показатели переносимости у мышей в дозе 700 мкг

| PBS     | 0,00 |
|---------|------|
| 396442  | 1,75 |
| 1210339 | 1,00 |
| 1212865 | 1,00 |
| 1212962 | 0,00 |
| 1212967 | 0,50 |
| 1212969 | 0,50 |
| 1212970 | 1,25 |

Таблица 35 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 819735           | 2,00          |
| 1212869          | 2,00          |
| 1212870          | 4,75          |
| 1212871          | 1,00          |
| 1212873          | 0,00          |
| 1212874          | 0,00          |
| 1212875          | 0,00          |
| 1212879          | 3,00          |
| 1212880          | 0,00          |
| 1212881          | 4,00          |
| 1212885          | 1,00          |
| 1212887          | 2,25          |
| 1212931          | 2,00          |
| 1212936          | 2,00          |
| 1212941          | 1,25          |

 Таблица 36

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB</b> за 3 часа |
|------------------|----------------------|
| PBS              | 0,00                 |
| 1263778          | 0,00                 |
| 1263781          | 0,00                 |
| 1263783          | 0,00                 |

| 1263785 | 1,00 |
|---------|------|
| 1263787 | 0,00 |
| 1263789 | 0,00 |
| 1263791 | 0,00 |
| 1263793 | 0,00 |
| 1263795 | 0,00 |
| 1263797 | 0,00 |
| 1263799 | 0,00 |
| 1263800 | 0,00 |
| 1263802 | 0,00 |
| 1263804 | 0,00 |
| 1263806 | 0,00 |
| 1263808 | 1,00 |
| 1263810 | 0,00 |
| 1263812 | 0,00 |
| 1263814 | 1,00 |
| 1263816 | 0,50 |
| 1263818 | 0,00 |
| 1263820 | 0,00 |
| 1263822 | 0,25 |
| 1263824 | 0,00 |

Таблица 37 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1263826          | 0,00          |

 Таблица 38

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB</b> за 3 часа |
|------------------|----------------------|
| PBS              | 0,00                 |
| 387954           | 4,00                 |
| 1287048          | 0,00                 |
| 1287049          | 0,00                 |
| 1287050          | 2,00                 |

| 1287051 | 3,25 |
|---------|------|
| 1287052 | 3,50 |
| 1287053 | 2,75 |
| 1287054 | 2,00 |
| 1287055 | 3,25 |
| 1287056 | 4,00 |
| 1287057 | 3,00 |
| 1287058 | 4,00 |
| 1287059 | 4,00 |
| 1287060 | 4,00 |
| 1287061 | 4,00 |
| 1287062 | 3,50 |

 Таблица 39

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1287106          | 3,50          |
| 1287107          | 4,00          |
| 1287108          | 3,75          |
| 1287109          | 3,25          |
| 1287110          | 3,00          |
| 1287111          | 4,75          |
| 1287112          | 4,00          |
| 1287113          | 3,50          |
| 1287114          | 3,25          |
| 1287115          | 3,50          |
| 1287116          | 4,00          |
| 1287117          | 4,25          |
| 1287118          | 3,00          |
| 1287119          | 3,50          |
| 1287120          | 3,75          |
| 1287121          | 2,75          |

Таблица 40 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1287063          | 0,00          |
| 1287064          | 0,00          |
| 1287065          | 1,00          |
| 1287066          | 3,75          |
| 1287067          | 1,00          |
| 1287068          | 2,50          |
| 1287069          | 2,25          |
| 1287071          | 1,00          |
| 1287072          | 3,00          |
| 1287073          | 3,75          |
| 1287074          | 1,75          |
| 1287075          | 3,50          |
| 1287076          | 2,00          |

Таблица 41 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1287070          | 2,00          |
| 1287701          | 2,50          |
| 1287702          | 3,75          |
| 1287703          | 3,75          |
| 1287705          | 4,00          |
| 1287706          | 4,00          |
| 1287707          | 4,00          |
| 1287709          | 4,75          |
| 1287710          | 4,00          |
| 1287711          | 4,75          |
| 1287712          | 4,00          |
| 1287713          | 4,00          |
| 1287714          | 3,50          |
| 1287715          | 4,00          |
| 1287716          | 4,00          |

| 1287717 | 3,25 |
|---------|------|
|         |      |

 Таблица 42

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB 3a 3 часа</b> |
|------------------|----------------------|
| PBS              | 0,00                 |
| 1287728          | 1,00                 |
| 1287729          | 1,25                 |
| 1287730          | 2,00                 |
| 1287731          | 2,50                 |
| 1287732          | 3,00                 |
| 1287733          | 3,25                 |
| 1287734          | 3,00                 |
| 1287735          | 0,50                 |
| 1287736          | 2,50                 |
| 1287737          | 4,00                 |
| 1287738          | 3,00                 |
| 1287739          | 2,50                 |
| 1287740          | 2,75                 |
| 1287741          | 3,75                 |
| 1287742          | 3,00                 |
| 1287743          | 2,75                 |
| 1287744          | 2,25                 |
| 1287745          | 1,00                 |

 Таблица 43

 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1287122          | 0,00          |
| 1287123          | 0,00          |
| 1287124          | 3,50          |
| 1287125          | 3,00          |
| 1287126          | 3,00          |
| 1287127          | 0,00          |
| 1287128          | 0,00          |

| 1287129 | 4,00 |
|---------|------|
| 1287130 | 2,75 |
| 1287131 | 2,50 |
| 1287132 | 2,75 |
| 1287133 | 3,25 |
| 1287704 | 3,50 |
| 1287708 | 3,50 |

Таблица 44 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1318748          | 2,00          |
| 1318765          | 4,00          |
| 1318767          | 4,25          |
| 1318770          | 3,75          |
| 1318771          | 4,50          |
| 1318772          | 4,25          |
| 1318773          | 4,25          |
| 1318774          | 3,50          |
| 1318775          | 3,75          |
| 1318776          | 3,75          |
| 1318777          | 4,00          |
| 1318778          | 4,00          |
| 1318779          | 4,00          |
| 1318780          | 4,00          |
| 1318781          | 4,00          |
| 1318782          | 1,00          |
| 1318783          | 4,00          |
| 1318784          | 2,00          |

Таблица 45 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1318757          | 4,00          |

| 1318758 | 4,25 |
|---------|------|
| 1318759 | 3,75 |
| 1318760 | 3,75 |
| 1318761 | 4,00 |
| 1318762 | 4,00 |
| 1318763 | 4,00 |
| 1318764 | 3,75 |
| 1318766 | 3,75 |
| 1318768 | 4,00 |
| 1318769 | 4,00 |

Таблица 46 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1318749          | 4,25          |
| 1318750          | 2,25          |
| 1318751          | 4,00          |
| 1318752          | 3,75          |
| 1318753          | 2,25          |
| 1318754          | 3,00          |
| 1318755          | 3,75          |
| 1318756          | 0,00          |

Таблица 47 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1332247          | 1,75          |
| 1332248          | 0,25          |
| 1332249          | 0,00          |
| 1332250          | 3,75          |
| 1332251          | 0,00          |
| 1332252          | 3,00          |
| 1332263          | 2,00          |
| 1332265          | 1,50          |

| 1332266 | 1,00 |
|---------|------|
| 1332267 | 3,75 |
| 1332268 | 2,75 |
| 1332269 | 1,25 |
| 1332270 | 2,25 |
| 1332271 | 2,50 |
| 1333508 | 0,00 |

Таблица 48 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | FOB за 3 часа |
|------------------|---------------|
| PBS              | 0,00          |
| 1332255          | 1,00          |
| 1332256          | 2,00          |
| 1332257          | 1,25          |
| 1332258          | 1,25          |
| 1332259          | 2,25          |
| 1332260          | 2,25          |
| 1332261          | 2,50          |
| 1332262          | 2,00          |

Таблица 49 Показатели переносимости у мышей в дозе 700 мкг

| Hokasaresin nependenmoern y mbimen b gose 700 mkr |  |  |  |  |
|---------------------------------------------------|--|--|--|--|
| FOB за 3 часа                                     |  |  |  |  |
| 0,00                                              |  |  |  |  |
| 0,00                                              |  |  |  |  |
| 2,00                                              |  |  |  |  |
| 3,00                                              |  |  |  |  |
| 3,50                                              |  |  |  |  |
| 3,50                                              |  |  |  |  |
| 5,25                                              |  |  |  |  |
| 2,50                                              |  |  |  |  |
| 3,50                                              |  |  |  |  |
| 3,50                                              |  |  |  |  |
|                                                   |  |  |  |  |

Пример 7. Переносимость модифицированных олигонуклеотидов, комплементарных SMN2 человека, у крыс, долгосрочная оценка

В отдельных исследованиях, проведенных в одинаковых условиях, выбранные модифицированные олигонуклеотиды, описанные выше, были протестированы на крысах Спрег-Доули для оценки долгосрочной переносимости. В данном анализе также были протестированы соединения сравнения №№ 396442 и 819735. Крысы Спрег-Доули получали однократную интратекальную (IT) доставляемую дозу 3 мг олигонуклеотида или ФСБ. Начиная через 1 неделю после лечения, квалифицированный наблюдатель еженедельно взвешивал и оценивал каждое животное на предмет нежелательных явлений. Нежелательные явления определяли как неврологическую дисфункцию, не типичную для контрольных животных, получавших ФСБ, включая, помимо прочего: аномально раскинутые конечности, нарушение походки, тремор, нарушение дыхания, паралич и спастичность. Наступление нежелательного явления определяется как неделя после введения дозы, когда дисфункция была впервые зарегистрирована. Если нежелательное явление отсутствовало, то его наступления не было (-). Наступление нежелательного явления обычно коррелирует с недостаточным развитием, которое определяется отсутствием прибавки/поддержания массы тела аналогично животным, получавшим ФСБ. Аналогичные оценки переносимости были описаны в Oestergaard et al., Nucleic Acids Res., 2013 Nov, 41(21), 9634-9650 и Southwell et al., Mol Ther., 2014 Dec, 22(12), 2093-2106.

В конце исследования крыс умерщвляли и собирали ткани. Проводили гистопатологию срезов мозжечка, используя краситель кальбиндин. Потерю клеток Пуркинье наблюдали в окрашенных кальбиндином срезах мозжечка, как указано в таблице ниже. Мозжечок и спинной мозг также оценивали с помощью антитела, специфичного к модифицированным олигонуклеотидам. Животные, демонстрирующие отсутствие поглощения олигонуклеотидов, были исключены из гистопатологического анализа. Гистологию не проводили для животных, преждевременно умерщвленных из-за нежелательных явлений. Кроме того, измеряли кортикальный GFAP, маркер астроглиоза (Abdelhak, et al., Scientific Reports, 2018, 8, 14798), с помощью ОТ-ПЦР, средние оценки > чем в 2 раза указаны ниже.

Таблица 50 Долгосрочная переносимость у крыс при дозе 3 мг

|            | cpo mun nepemoenmoerb | J mpare mpm good a mm  |                  |
|------------|-----------------------|------------------------|------------------|
|            | Наступление           | Потеря клеток Пуркинье | мРНК GFAP коры > |
| Номер      | нежелательного        | (кол-во животных с     | чем в 2 раза по  |
| соединения | явления, недель после | потерей/кол-во         | сравнению с      |
|            | лечения, отдельные    | протестированных       | контролем ФСБ    |
|            | животные              | животных)              | 1                |
| PBS        | Отсутствует           | Не наблюдалось         | Н/Д              |
| 396442     | 6, 6, 2               | 2/3                    | Есть             |
| 819735     | 4,6,6,-               | 1/4                    | Есть             |
| 1263789    | -,-,-                 | 0/3                    | Отсутствует      |

| 1287717 | -,-,-,-,-,- | 0/8 | Отсутствует |
|---------|-------------|-----|-------------|
| 1287745 | -,-,-,-,-   | 0/7 | Отсутствует |
| 1358996 | -,-,-       | 0/4 | Отсутствует |
| 1263783 | -,-,-,-     | 0/4 | Отсутствует |
| 1263785 | -,-,-       | 0/3 | Отсутствует |
| 1263787 | -,-,-,-     | 0/4 | Отсутствует |
| 1263800 | -,-         | 0/2 | Отсутствует |
| 1263802 | -,-,-       | 0/3 | Отсутствует |
| 1263806 | -,-,-       | 0/3 | Отсутствует |
| 1263808 | -,-,-       | 0/3 | Отсутствует |
| 1263810 | -,-,-       | 0/3 | Отсутствует |

Пример 8. Переносимость и фармакокинетика модифицированных олигонуклеотидов у отличных от человека приматов, однократное или многократное введение

Яванским макакам вводили модифицированные олигонуклеотиды с целью определить местную и системную переносимость, а также фармакокинетику модифицированных олигонуклеотидов. Каждая группа получала искусственную СМЖ или модифицированный олигонуклеотид в виде однократной интратекальной люмбарной инъекции болюсной дозы (ІТ), или в группе многократного введения - ІТ болюсную дозу в 1 день исследования с последующими ІТ болюсными дозами в более поздние моменты времени. Ткани собирали через 1 неделю после последней инъекции.

В исследовании однократной дозы обезьянам вводили однократную дозу модифицированного олигонуклеотида и оценивали переносимость. Репрезентативные дозы в исследованиях однократной дозы на взрослых яванских макаках включают в себя 1 мг, 3 мг, 7 мг и 35 мг.

В исследовании многократного введения обезьянам вводили IT болюсную дозу в 1 день исследования с последующим введением IT болюсной дозы еженедельно (например, в дни 8, 15 и 22 за период четырехнедельного исследования) или ежемесячно (например, в дни 29, 57 и 84 за период 13-недельного исследования). Репрезентативные дозы в исследованиях многократного введения на взрослых яванских макаках включают в себя 1 мг, 3 мг, 7 мг и 35 мг.

Оценка переносимости основана на клинических наблюдениях, измерениях массы тела, потреблении пищи, физических и неврологических обследованиях, включая сенсомоторные рефлексы, церебральные рефлексы и спинальные рефлексы, коагуляцию, гематологию, клиническую биохимию (кровь и спинномозговая жидкость (СМЖ)), количество клеток и оценки патологической анатомии. Полные вскрытия проводили с регистрацией всех макроскопических нарушений. Записывали массу органов и проводили микроскопические исследования. Кровь собирали для анализа комплемента. Кроме того,

кровь, СМЖ и ткани (при вскрытии) собирали для проведения токсикокинетических оценок.

Переносимость модифицированных олигонуклеотидов анализировали в тканях головного и спинного мозга путем измерения уровней Aif1 и Gfap у яванских макак, получавших лечение модифицированным олигонуклеотидом или контролем. Образцы головного и спинного мозга собирали, быстро замораживали в жидком азоте и хранили замороженными (при от -60°C до -90°C). На момент взятия образцов использовали 2-мм иглы для биопсии для сбора образцов из замороженных тканей для проведения анализа РНК. Образцы были взяты из различных участков головного и спинного мозга.

### Пример 9. Клиническое исследование фазы Ia на людях соединения № 1263789, 1287717, 1287745 или 1358996

Безопасность, переносимость, фармакокинетику, фармакодинамику и эффективность модифицированного олигонуклеотида, комплементарного SMN2 человека, оценивают в условиях клинического исследования. Однократные и/или многократные дозы модифицированного олигонуклеотида оценивают у пациентов с подтвержденной СМА, такой как СМА типа I, СМА типа II, СМА типа III или СМА типа IV.

Безопасность пациентов тщательно контролируют в ходе исследования. Оценки безопасности и переносимости включают в себя: физикальное обследование и стандартную неврологическую оценку (включая глазное дно), основные показатели жизнедеятельности (ЧСС, АД, ортостатические изменения, масса тела), ЭКГ, НЯ и сопутствующие лекарственные средства, Шкалу Колумбийского университета для оценки степени тяжести суицидальных проявлений (C-SSRS), лабораторные параметры для анализа безопасности СМЖ (количество клеток, белок, глюкоза), лабораторные тесты плазмы (клиническая биохимия, гематология) и анализ мочи.

Оценки эффективности выбираются в зависимости от возраста и типа заболевания и включают в себя, например, расширенную шкалу оценки двигательной функции Хаммерсмита (HFMSE), которая является надежным и подтвержденным инструментом, применяемым для оценки двигательной функции у детей со CMA; общую базовую шкалу опросника для оценки качества жизни детей ( $PedsQL^{TM}$ ) Measurement 4.0; нейромышечные модули опросника для оценки качества жизни детей 3.0; суммарный потенциал действия мышцы (CMAP); оценку количества двигательных единиц (MUNE); модуль для верхней конечности (ULM) и тест 6-минутной ходьбы (6MWT) (Darras, et al., Neurology, 2019, 92: e2492-e2506).

## Пример 10. Конструирование модифицированных олигонуклеотидов, комплементарных нуклеиновой кислоте SMN2 человека

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте SMN2 человека, были сконструированы и синтезированы, как указано в таблицах ниже.

Каждый модифицированный олигонуклеотид, приведенный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (номер доступа GENBANK NT\_006713.14, усечена с 19939708 до 19967777 нуклеотида). «Старт-сайт» указывает на 5'-крайний нуклеозид, по

отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

Длина модифицированных олигонуклеотидов в таблице ниже составляет 18 нуклеозидов. Каждый нуклеозид содержит 2'-MOE сахарный фрагмент или 2'-NMA сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, а каждый «п» представляет собой 2'-NMA сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, фосфодиэфирную межнуклеозидную связь, метоксипропилфосфонатную межнуклеозидную связь или мезилфосфорамидатную (MsP) межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида приведен в колонке «Мотив межнуклеозидной связи», где каждый «s» представляет собой фосфоротиоатную межнуклеозидную каждый связь, **«o»** представляет собой собой фосфодиэфирную межнуклеозидную связь, каждый **«x»** представляет метоксипропилфосфонатную межнуклеозидную связь, а каждый «z» представляет собой мезилфосфорамидатную (MsP) межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин. Модифицированный олигонуклеотид 449320 был ранее описан в WO2015/161170 A2.

Таблица 51 MOE и NMA модифицированные олигонуклеотиды со смешанными PO/PS, PO/MsP, однородной MsP или PS/MOP межнуклеозидными связями

| Номер<br>соединения | Последовательно<br>сть (от 5' к 3') | Сахарный<br>мотив<br>(5'-3')     | Мотив<br>межнуклеозидно<br>й связи<br>(5'-3') | Старт-<br>сайт<br>SEQ ID<br>NO: 1 | Стоп-<br>сайт<br>SEQ ID<br>NO: 1 | SEQ<br>ID NO: |
|---------------------|-------------------------------------|----------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------|---------------|
| 449320              | TCACTTTCATAA<br>TGCTGG              | ececececee                       | ssoooooooooo                                  | 27062                             | 27079                            | 23            |
| 1287723             | TCACTTTCATAA<br>TGCTGG              | nnnnnnnnn<br>nnnnnenn            | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS       | 27062                             | 27079                            | 23            |
| 1287724             | TCACTTTCATAA<br>TGCTGG              | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS       | 27062                             | 27079                            | 23            |
| 1287727             | CACTTTCATAAT<br>GCTGGC              | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn  | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS       | 27061                             | 27078                            | 21            |
| 1405549             | TCACTTTCATAA<br>TGCTGG              | eeeeee                           | ZZZZZZZZZZZZZZZZZZ                            | 27062                             | 27079                            | 23            |

| 1405552 | TCACTTTCATAA                        | eeeeeeeeee | SSSSSSSSSZZZZZZ  | 27062 | 27079 | 23 |
|---------|-------------------------------------|------------|------------------|-------|-------|----|
|         | TGCTGG                              | eeeeee     | 3333333333ELLELL | 27002 | 21017 |    |
| 1405553 | TCACTTTCATAA                        | eeeeeeeeee | SSSSZZZZZZSSSSS  | 27062 | 27079 | 23 |
| 110000  | TGCTGG                              | eeeeee     | 6655682828285555 | 27002 | 2.075 |    |
| 1545359 | TCACTTCATAA nnnnnnnnn ssooooooooooo | 27062      | 27079            | 23    |       |    |
|         | TGCTGG                              | nnnnnnn    | ss               |       |       |    |
| 1547773 | TCACTTTCATAA                        | eeeeeeeeee | zz0000000000000  | 27062 | 27079 | 23 |
|         | TGCTGG                              | eeeeee     | ZZ               |       |       |    |
| 1549028 | TCACTTTCATAA                        | eeeeeeeeee | zzzz000000000000 | 27062 | 27079 | 23 |
|         | TGCTGG                              | eeeeee     | ZZ               |       |       |    |
| 1549029 | TCACTTTCATAA                        | eeeeeeeeee | zzzzzzooooooooz  | 27062 | 27079 | 23 |
|         |                                     | eeeeee     | z                |       |       |    |
| 1549030 | TCACTTTCATAA                        | eeeeeeeeee | zzzzzzzzooooooz  | 27062 | 27079 | 23 |
|         | TGCTGG                              | eeeeee     | z                |       |       |    |

Все модифицированные олигонуклеотиды в таблице ниже состоят из последовательности (от 5' к 3'): TCACTTTCATAATGCTGG (SEQ ID NO: 23). Каждый модифицированный олигонуклеотид, приведенный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (описана в данном документе выше). «Старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты. «Стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

Длина модифицированных олигонуклеотидов в таблице ниже составляет 18 нуклеозидов. Каждый нуклеозид содержит 2'-MOE сахарный фрагмент или 2'-NMA сахарный фрагмент. Сахарный мотив для каждого модифицированного олигонуклеотида приведен в колонке «Сахарный мотив», где каждый «е» представляет собой 2'-МОЕ сахарный фрагмент, а каждый «п» представляет собой 2'-NMA сахарный фрагмент. Каждая межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь, фосфодиэфирную межнуклеозидную связь или мезилфосфорамидатную (MsP) межнуклеозидную связь. Мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида приведен в колонке «Мотив межнуклеозидной связи», где каждый «s» представляет собой фосфоротиоатную межнуклеозидную связь, каждый «о» представляет собой фосфодиэфирную межнуклеозидную связь, а каждый «z» представляет собой мезилфосфорамидатную (MsP) межнуклеозидную связь. Каждый цитозин представляет 5-метилцитозин. Модифицированные олигонуклеотиды в таблице собой конъюгированы с группой конъюгата 6-пальмитамидогексилфосфата, присоединенной к

5'-ОН олигонуклеотида. Группа конъюгата имеет следующую структуру:

Таблица 52.

МОЕ- и NMA-модифицированные олигонуклеотиды, конъюгированные с 6пальмитамидогексилом, со смешанными PO/PS, PO/MsP или однородными MsP
межнуклеозидными связями

|       | Но   |                    | Мотив            | Ста     | C        | S         |
|-------|------|--------------------|------------------|---------|----------|-----------|
| мер   |      | Сахарный           | межнуклеозидно   | рт-сайт | топ-сайт |           |
| соеди | нени | мотив (от 5' к 3') | й связи (от 5' к | SEQ ID  | SEQ ID   | EQ ID NO: |
| Я     |      |                    | 3')              | NO: 1   | NO: 1    | NO:       |
|       | 154  | eeeeeeeee          | ss00000000       | 2706    | 27       | 2         |
| 5361  |      | eeeeeee            | 0000088          | 2       | 079      | 3         |
|       | 154  | nnnnnnnnn          | ss00000000       | 2706    | 27       | 2         |
| 5362  |      | nnnnnnn            | 0000088          | 2       | 079      | 3         |
|       | 154  | eeeeeeeee          | ZZZZZZZZZZZ      | 2706    | 27       | 2         |
| 7772  |      | eeeeeee            | ZZZZZZ           | 2       | 079      | 3         |
|       | 154  | eeeeeeeee          | zz00000000       | 2706    | 27       | 2         |
| 7774  |      | eeeeeee            | 00000ZZ          | 2       | 079      | 3         |
|       | 154  | eeeeeeeee          | ZZZZ000000       | 2706    | 27       | 2         |
| 9031  |      | eeeeeee            | 00000ZZ          | 2       | 079      | 3         |
|       | 154  | eeeeeeeee          | ZZZZZZOOOO       | 2706    | 27       | 2         |
| 9032  |      | eeeeeee            | 00000ZZ          | 2       | 079      | 3         |
|       | 154  | eeeeeeeee          | ZZZZZZZZOO       | 2706    | 27       | 2         |
| 9033  |      | eeeeeee            | 00000ZZ          | 2       | 079      | 3         |

Все модифицированные олигонуклеотиды в таблице ниже состоят из последовательности (от 5' к 3'): TCACTTTCATAATGCTGG (SEQ ID NO: 23), со стартсайтом 27062 и стоп-сайтом 27079 на SEQ ID No: 1 (описана в данном документе выше), где «старт-сайт» указывает на 5'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты, и где «стоп-сайт» указывает на 3'-крайний нуклеозид, по отношению к которому модифицированный олигонуклеотид комплементарен в целевой последовательности нуклеиновой кислоты.

Длина модифицированных олигонуклеотидов в таблице ниже составляет 18 нуклеозидов. Сахарный мотив и мотив межнуклеозидной связи для каждого модифицированного олигонуклеотида приведены в колонке «Последовательность и

химическое обозначение», где каждый нижний индекс «п» представляет собой 2'-NMA сахарный мотив, каждый нижний индекс «[DMA]» представляет собой 2'-O-(N, N-диметил)ацетамидный фрагмент, каждый нижний индекс «[NEA]» представляет собой 2'-O-(N-этил)ацетамидный фрагмент, каждый нижний индекс «[NPA]» представляет собой 2'-O-(N-пропил)ацетамидный фрагмент, каждый нижний индекс «[NcPA]» представляет собой 2'O-(N-циклопропил)ацетамидный фрагмент, каждый нижний индекс «[McPA]» представляет собой 2'-O-(N-циклопропилметил)ацетамидный фрагмент, а каждый нижний индекс «s» представляет собой фосфоротиоатную межнуклеозидную связь. Каждый цитозин представляет собой 5-метилцитозин, где верхний индекс «m» перед цитозиновым остатком (<sup>m</sup>C) представляет собой 5-метилцитозин. Каждый сахар, приведенный в таблице ниже, имеет следующую структуру:

Таблица 53.

Модифицированные олигонуклеотиды с NMA или аналогами NMA с однородными PS межнуклеозидными связями

| Номер      | Последовательность и химическое обозначение (от 5' к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SEQ ID |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| соединения | 3')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO:    |
| 1355763    | $ T_{[DMA]s}{}^m C_{[DMA]s} A_{ns}{}^m C_{[DMA]s} T_{[DMA]s} T_{[DMA]s} T_{[DMA]s} T_{[DMA]s} {}^m C_{[DMA]s} A_{ns} T_{[D} $ $_{MA]s} A_{ns} A_{ns} T_{[DMA]s} G_{ns}{}^m C_{[DMA]s} T_{[DMA]s} G_{ns} G_{n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23     |
| 1359463    | $T_{[NEA]s}{}^mC_{[NEA]s}A_{ns}{}^mC_{[NEA]s}T_{[NEA]s}T_{[NEA]s}T_{[NEA]s}{}^mC_{[NEA]s}A_{ns}T_{[NEA]s}$ $A_{ns}A_{ns}T_{[NEA]s}G_{ns}{}^mC_{[NEA]s}T_{[NEA]s}G_{ns}G_{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23     |
| 1358995    | $T_{[NPA]s}{}^mC_{[NPA]s}A_{ns}{}^mC_{[NPA]s}T_{[NPA]s}T_{[NPA]s}T_{[NPA]s}{}^mC_{[NPA]s}A_{ns}T_{[NPA]s}$ $A_{ns}A_{ns}T_{[NPA]s}G_{ns}{}^mC_{[NPA]s}T_{[NPA]s}G_{ns}G_{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23     |
| 1355776    | $ T_{[NcPA]s}{}^m C_{[NcPA]s} A_{ns}{}^m C_{[NcPA]s} T_{[NcPA]s} T_{[NcPA]s} T_{[NcPA]s}{}^m C_{[NcPA]s} A_{ns} T_{[NcPA]s} A_{ns} T_{[NcPA]s} A_{ns} T_{[NcPA]s} G_{ns} $ | 23     |
| 1355777    | $T_{[McPA]s}{}^m C_{[McPA]s} A_{ns}{}^m C_{[McPA]s} T_{[McPA]s} T_{[McPA]s} T_{[McPA]s} T_{[McPA]s} A_{ns}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23     |

| $T_{[McPA]s}A_{ns}A_{ns}T_{[McPA]s}G_{ns}^{\ m}C_{[McPA]s}T_{[McPA]s}G_{ns}G_{n}$ |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

## Пример 11. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, однократная доза (35 мкг)

Активность выбранных модифицированных олигонуклеотидов, описанных выше, была протестирована на трансгенных в отношении SMN2 человека мышах, по существу как описано выше в примере 2.

Лечение

Трансгенные мыши были разделены на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс модифицированного олигонуклеотида в дозах, как указано в таблицах ниже. Группа из 4 мышей получала PBS в качестве отрицательного контроля. Через две недели после лечения мышей умерщвляли и из лобной доли головного мозга и спинного мозга экстрагировали PHK для проведения кПЦР-анализа в реальном времени PHK SMN2. Результаты представлены в виде кратного изменения уровней PHK по отношению к контролю  $\Phi$ CБ, нормализованных к общим уровням SMN2.  $ED_{50}$  для включения экзона (экзон  $7^+$ ) рассчитывали в GraphPad Prism 7, используя нелинейную регрессионную 4-параметрическую кривую доза-ответ [Y=низ + (верх-низ)/(1+  $(10^{\circ}\log EC_{50}/X)^{\circ}$ угл. коэф. Хилла)].

#### Анализ РНК

Через две недели после лечения мышей умерщвляли и из кортикальной ткани головного мозга и спинного мозга экстрагировали РНК для проведения кПЦР-анализа в реальном времени РНК SMN2. Набор праймеров и зондов hSMN2vd#4\_LTS00216\_MGB использовали для определения количества РНК SMN2, включая экзон 7 (экзон 7<sup>+</sup>). Набор праймеров и зондов hSMN2\_Sumner68\_PPS50481 использовали для определения количества РНК SMN2, включая экзон 7 (экзон 7<sup>-</sup>). Общие уровни РНК SMN2 измеряли с помощью набора праймеров и зондов hSMN2\_LTS00935. Результаты представлены в виде кратного изменения уровней РНК по отношению к контролю ФСБ, нормализованных к общим уровням SMN2.

Таблица 54.

Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2 человека у гетерозиготных трансгенных мышей

| Соединение № | Доза (мкг) | Кора головного мозга |                      | Спинной мозг         |         |
|--------------|------------|----------------------|----------------------|----------------------|---------|
|              | μοσι (Μπ.) | экзон 7 <sup>+</sup> | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 |
| PBS          | -          | 1                    | 1                    | 1                    | 1       |
| 396443       | 35         | 3                    | 0,6                  | 3                    | 0,5     |
| 1405549      | 35         | 1,6                  | 0,9                  | 1,2                  | 0,9     |
| 1405552      | 35         | 3,2                  | 0,6                  | 2,1                  | 0,7     |
| 1405553      | 35         | 2,4                  | 0,7                  | 1,7                  | 0,8     |

Таблица 55

Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2 человека у гетерозиготных трансгенных мышей

| Соединение № | Лоза (мкг) | Доза (мкг)           |                               |                      | ой мозг |
|--------------|------------|----------------------|-------------------------------|----------------------|---------|
|              | Ασσι ()    | экзон 7 <sup>+</sup> | эк <b>зо</b> н 7 <sup>-</sup> | экзон 7 <sup>+</sup> | экзон 7 |
| PBS          | -          | 1                    | 1                             | 1                    | Н/Д     |
| 396443       | 35         | 2,7                  | 0,5                           | 3                    | Н/Д     |
| 1405549      | 35         | 1,5                  | 0,8                           | 1,9                  | Н/Д     |
| 1547772      | 35         | 1,8                  | 0,8                           | 1,8                  | Н/Д     |
| 1547773      | 35         | 1,6                  | 0,9                           | 1,9                  | Н/Д     |
| 1547774      | 35         | 1,6                  | 1                             | 1,6                  | Н/Д     |
| 1549028      | 35         | 1,5                  | 1                             | 1,5                  | Н/Д     |
| 1549029      | 35         | 1,4                  | 1                             | 1,7                  | Н/Д     |
| 1549030      | 35         | 1,4                  | 1                             | 1,4                  | Н/Д     |
| 1549031      | 35         | 1,7                  | 0,8                           | 1,6                  | Н/Д     |
| 1549032      | 35         | 1,4†                 | 0,9†                          | 1,7†                 | Н/Д     |
| 1549033      | 35         | 1,4                  | 1                             | 1,3                  | Н/Д     |

<sup>†</sup> указывает, что доступно менее четырех образцов

# Пример 12. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, однократная доза (15 мкг)

Активность выбранных модифицированных олигонуклеотидов, описанных выше, была протестирована на трансгенных в отношении SMN2 человека мышах, по существу как описано выше в примере 2.

Лечение

Трансгенные мыши были разделены на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс модифицированного олигонуклеотида в дозах, как указано в таблицах ниже. Группа из 4 мышей получала PBS в качестве отрицательного контроля. Через две недели после лечения мышей умерщвляли и из лобной доли головного мозга и спинного мозга экстрагировали PHK для проведения кПЦР-анализа в реальном времени PHK SMN2. Результаты представлены в виде кратного изменения уровней PHK по отношению к контролю  $\Phi$ CБ, нормализованных к общим уровням SMN2.  $ED_{50}$  для включения экзона (экзон  $7^+$ ) рассчитывали в GraphPad Prism 7, используя нелинейную регрессионную 4-параметрическую кривую доза-ответ [ Y=низ + (верх-низ)/(1+ ( $10^{\circ}$ logEC50 /X) $^{\circ}$ угл. коэф. Хилла)].

Анализ РНК

Через две недели после лечения мышей умерщвляли и из кортикальной ткани головного мозга и спинного мозга экстрагировали РНК для проведения кПЦР-анализа в реальном времени РНК SMN2. Набор праймеров и зондов hSMN2vd#4\_LTS00216\_MGB

использовали для определения количества PHK SMN2, включая экзон 7 (экзон 7<sup>+</sup>). Набор праймеров и зондов hSMN2\_Sumner68\_PPS50481 использовали для определения количества PHK SMN2, включая экзон 7 (экзон 7<sup>-</sup>). Общие уровни PHK SMN2 измеряли с помощью набора праймеров и зондов hSMN2\_LTS00935. Результаты представлены в виде кратного изменения уровней PHK по отношению к контролю ФСБ, нормализованных к общим уровням SMN2.

Таблица 56
Эффект модифицированных олигонуклеотидов на сплайсинг РНК SMN2
человека у гетерозиготных трансгенных мышей

| Соединение №   | Лоза (мкг) | Доза (мкг) Кора головного мозга |                      | Спинной мозг         |                               |
|----------------|------------|---------------------------------|----------------------|----------------------|-------------------------------|
| Соединение з ч | доза (мит) | экзон 7 <sup>+</sup>            | экзон 7 <sup>-</sup> | экзон 7 <sup>+</sup> | эк <b>зо</b> н 7 <sup>-</sup> |
| PBS            | -          | 1                               | 1                    | 1                    | 1                             |
| 443305         | 15         | 3,4                             | 0,4                  | 3,3                  | 0,3                           |
| 1287723        | 15         | 3,9                             | 0,3                  | 3,3                  | 0,3                           |
| 1287724        | 15         | 4,2                             | 0,2                  | 3,7                  | 0,2                           |
| 1287727        | 15         | 4,5                             | 0,2                  | 3,4                  | 0,2                           |

Пример 13. Активность модифицированных олигонуклеотидов, комплементарных SMN2 человека, у трансгенных мышей, многократная доза

Активность выбранных модифицированных олигонуклеотидов, описанных выше, была протестирована на трансгенных в отношении SMN2 человека мышах, по существу как описано выше в примере 2.

Лечение

Трансгенные мыши были разделены на группы по 4 мыши в каждой. Каждой мыши вводили один ICV болюс модифицированного олигонуклеотида в виде многократных доз, как указано в таблицах ниже. Группа из 4 мышей получала PBS в качестве отрицательного контроля. Через две недели после лечения мышей умерщвляли и из лобной доли головного мозга и спинного мозга экстрагировали PHK для проведения кПЦР-анализа в реальном времени PHK SMN2. Результаты представлены в виде кратного изменения уровней PHK по отношению к контролю  $\Phi$ CБ, нормализованных к общим уровням SMN2. ED<sub>50</sub> для включения экзона (экзон 7<sup>+</sup>) рассчитывали в GraphPad Prism 7, используя нелинейную регрессионную 4-параметрическую кривую доза-ответ [Y=низ + (верхниз)/(1+ (10^logEC50 /X)^угл. коэф. Хилла)].

Анализ РНК

Через две недели после лечения мышей умерщвляли и из кортикальной ткани головного мозга и спинного мозга экстрагировали РНК для проведения кПЦР-анализа в реальном времени РНК SMN2. Набор праймеров и зондов hSMN2vd#4\_LTS00216\_MGB использовали для определения количества РНК SMN2, включая экзон 7 (экзон 7<sup>+</sup>). Набор праймеров и зондов hSMN2 Sumner68 PPS50481 использовали для определения

количества РНК SMN2, включая экзон 7 (экзон  $7^-$ ). Общие уровни РНК SMN2 измеряли с помощью набора праймеров и зондов hSMN2\_LTS00935. Результаты представлены в виде кратного изменения уровней РНК по отношению к контролю  $\Phi$ CБ, нормализованных к общим уровням SMN2.

Таблица 57
 Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2
 человека у гетерозиготных трансгенных мышей

| Соедине | Доза  | Кора го  | ловного  | ED50 | Спинн    | ED50     |       |
|---------|-------|----------|----------|------|----------|----------|-------|
| ние №   | (мкг) | мо       | мозга    |      |          |          | (мкг) |
|         |       | экзон 7+ | экзон 7- |      | экзон 7+ | экзон 7- |       |
| PBS     | -     | 1        | 1        | -    | 1        | 1        | -     |
| 396443  | 10    | 2,1      | 0,7      |      | 1,9      | 0,8      |       |
|         | 30    | 2,8      | 0,5      | 26   | 2,6      | 0,7      | 22    |
|         | 100   | 3,2      | 0,3      |      | 2,8      | 0,4      |       |
| 449320  | 10    | 1,2      | 1,0      |      | 1,2      | 1,2      |       |
|         | 30    | 1,5      | 1,0      | >100 | 1,3      | 1,2      | >100  |
|         | 100   | 1,5      | 0,9      |      | 1,3      | 0,9      |       |
| 1545361 | 10    | 1,4      | 1,0      |      | 1,2      | 1,1      |       |
|         | 30    | 1,8      | 1,1      | >100 | 1,6      | 1,3      | >100  |
|         | 100   | 1,3      | 0,9      |      | 1,4      | 0,9      |       |
| 443305  | 10    | 2,4      | 0,6      |      | 2,6      | 0,5      |       |
|         | 30    | 3,5      | 0,3      | 14   | 3,0      | 0,4      | 9     |
|         | 100   | 3,7      | 0,1      |      | 3,3      | 0,1      |       |
| 1545359 | 10    | 1,4      | 1,0      |      | 1,4      | 1,1      |       |
|         | 30    | 2,0      | 0,9      | >100 | 1,7      | 1,1      | >100  |
| ļ       | 100   | 2,3      | 0,6      |      | 1,7      | 0,8      |       |
| 1545362 | 10    | 1,4      | 0,9      |      | 1,3      | 1,1      |       |
| ļ       | 30    | 1,9      | 0,8      | 95   | 2,4      | 1,0      | 51    |
|         | 100   | 2,7      | 0,5      |      | 2,6      | 0,6      |       |

Таблица 58
 Эффект модифицированных олигонуклеотидов на сплайсинг PHK SMN2
человека у гетерозиготных трансгенных мышей

| Соедине<br>ние № | Доза<br>(мкг) | Кора гол<br>мозі |          | ED50  | Спинно   | ой мозг  | ED50<br>(мкг) |
|------------------|---------------|------------------|----------|-------|----------|----------|---------------|
| 11116 5 (2       | (WKI)         | экзон 7+         | экзон 7- | (MKI) | экзон 7+ | экзон 7- | (MKI)         |

| PBS     | -          | 1   | 1   | -   | 1    | 1    | -  |
|---------|------------|-----|-----|-----|------|------|----|
|         | 3          | 1,5 | 0,9 |     | 1,6  | 0,8  |    |
|         | 10         | 1,9 | 0,8 |     | 2,2  | 0,6  |    |
| 1263789 | 30         | 2,7 | 0,6 | 35  | 2,9  | 0,5  | 16 |
|         | 100        | 3,8 | 0,3 |     | 3,5  | 0,3  |    |
|         | 300        | 4,3 | 0,2 |     | 3,9  | 0,2  |    |
|         | 3          | 1,5 | 0,7 |     | 1,5  | 0,8  |    |
|         | 10         | 1,6 | 0,7 | -   | 2,0  | 0,7  |    |
| 1287703 | 30         | 2,7 | 0,5 | 43  | 2,6  | 0,5  | 28 |
|         | 100        | 3,7 | 0,3 |     | 3,2  | 0,4  |    |
|         | 300        | 4,0 | 0,2 |     | 3,5  | 0,2  | -  |
|         | 3          | 1,4 | 0,8 |     | 1,4  | 0,9  |    |
|         | 10         | 1,7 | 0,7 | -   | 1,8  | 0,7  | -  |
| 1287717 | 30         | 3,1 | 0,4 | 31  | 2,4† | 0,5† | 30 |
|         | 100        | 3,8 | 0,3 | -   | 3,3  | 0,3  |    |
|         | 300        | 4,3 | 0,2 |     | 3,8  | 0,2  |    |
|         | 3          | 1,3 | 0,8 |     | 1,2  | 0,8  |    |
|         | 10         | 1,8 | 0,7 |     | 1,8  | 0,8  | -  |
| 1318768 | 30         | 2,4 | 0,6 | 49  | 2,4  | 0,6  | 32 |
|         | 100        | 3,5 | 0,3 |     | 3,3  | 0,4  | -  |
|         | 300        | 4,1 | 0,2 |     | 3,9  | 0,2  | -  |
|         | 3          | 1,5 | 0,8 |     | 1,5  | 1,0  |    |
|         | 10         | 2,0 | 0,6 |     | 2,4  | 0,6  |    |
| 1287731 | 30         | 2,7 | 0,4 | 29  | 3,2  | 0,4  | 13 |
|         | 100        | 4,3 | 0,2 |     | 3,8  | 0,2  | 1  |
|         | 300        | 4,2 | 0,1 | -   | 3,7  | 0,1  | -  |
|         | 3          | 1,7 | 0,7 |     | 1,5  | 0,8  |    |
|         | 10         | 2,4 | 0,6 | -   | 2,2  | 0,6  | -  |
| 1287735 | 735 30 3,0 | 0,3 | 22  | 3,1 | 0,3  | 15   |    |
|         | 100        | 4,0 | 0,2 | 1   | 3,5  | 0,2  |    |
|         | 300        | 4,2 | 0,1 | 1   | 3,9  | 0,1  |    |
|         | 3          | 1,5 | 0,7 |     | 1,4  | 0,8  |    |
| 1287745 | 10         | 2,0 | 0,6 | 35  | 2,4  | 0,6  | 13 |
|         | 30         | 2,9 | 0,4 |     | 3,2  | 0,4  |    |

|        | 100 | 3,7 | 0,2 |    | 3,6 | 0,2 |    |
|--------|-----|-----|-----|----|-----|-----|----|
|        | 300 | 3,7 | 0,2 |    | 3,8 | 0,2 |    |
|        | 3   | 1,7 | 0,7 |    | 1,5 | 0,9 |    |
|        | 10  | 1,4 | 0,7 |    | 1,6 | 0,8 |    |
| 396443 | 30  | 2,8 | 0,5 | 47 | 3,1 | 0,4 | 22 |
|        | 100 | 3,3 | 0,4 |    | 3,3 | 0,5 |    |
|        | 300 | 4,3 | 0,2 |    | 4,0 | 0,2 |    |

<sup>†</sup> указывает, что доступно менее четырех образцов

| Соедине | Доза  | <del>-</del> | вного мозга | ED50  | Спинн    | ой мозг  | ED50  |
|---------|-------|--------------|-------------|-------|----------|----------|-------|
| ние №   | (мкг) | экзон 7+     | экзон 7-    | (мкг) | экзон 7+ | экзон 7- | (мкг) |
| PBS     | -     | 1            | 1           | _     | 1        | 1        | -     |
|         | 3     | 1,1          | 0,9         |       | 1,2      | 0,9      |       |
| 396443  | 30    | 2,0          | 0,6         | 39    | 2,3      | 0,5      | 33    |
|         | 100   | 2,3          | 0,4         |       | 2,7      | 0,3      |       |
|         | 3     | 1,4          | 0,7         |       | 1,6      | 0,7      |       |
| 443305  | 30    | 2,4          | 0,3         | 13    | 3,0      | 0,2      | 10    |
|         | 100   | 2,9          | 0,2         |       | 3,1      | 0,2      |       |
|         | 3     | 1,1          | 0,8         |       | 1,1      | 0,8      |       |
| 1355763 | 30    | 1,7          | 0,6         | 54    | 2,1      | 0,5      | 45    |
|         | 100   | 2,4          | 0,4         |       | 2,6      | 0,3      |       |
|         | 3     | 1,3          | 0,8         |       | 1,3      | 0,7      |       |
| 1359463 | 30    | 2,3          | 0,3         | 18    | 2,7      | 0,3      | 19    |
|         | 100   | 2,9          | 0,2         |       | 2,7      | 0,2      |       |
|         | 3     | 1,2          | 0,8         |       | 1,0      | 0,8      |       |
| 1358995 | 30    | 2,0          | 0,4         | 45    | 1,8      | 0,4      | 59    |
|         | 100   | 2,2          | 0,4         |       | 2,6      | 0,3      |       |
|         | 3     | 1,1          | 0,8         |       | 1,3      | 0,7      |       |
| 1355776 | 30    | 2,2          | 0,4         | 25    | 2,4      | 0,4      | 24    |
|         | 100   | 2,6          | 0,3         |       | 2,9      | 0,3      |       |
| 1355777 | 3     | 1,0          | 0,9         | 107   | 0,9      | 0,9      | 72    |
| 1333777 | 30    | 1,6          | 0,7         | 107   | 1,8      | 0,6      | 12    |

| 100 1,7 0,5 | 2,2 | 0,6 |  |
|-------------|-----|-----|--|
|-------------|-----|-----|--|

### Пример 15. Переносимость модифицированных олигонуклеотидов, комплементарных SMN2, у мышей дикого типа

Модифицированные олигонуклеотиды, описанные выше, исследовали у самок мышей С57/В16 дикого типа для оценки переносимости олигонуклеотидов. Каждая самка мыши C57/B16 дикого типа получала однократную ICV дозу 700 мкг модифицированного олигонуклеотида, указанную в таблице ниже. Каждая группа обработки состояла из 4 мышей. Группе из 4 мышей вводили PBS в качестве отрицательного контроля для каждого эксперимента (указаны в отдельных таблицах ниже). Через 3 часа после инъекции мышей оценивали в отношении семи различных критериев. Критерии: (1) мышь была активной, бдительной и восприимчивой; (2) мышь стояла или горбилась без действия раздражителей; (3) мышь демонстрировала любое движение без раздражителей; (4) мышь демонстрировала движение вперед после того, как ее поднимали; (5) мышь демонстрировала любое движение после того, как ее поднимали; (6) мышь отвечала в ответ на защемление хвоста; (7) регулярное дыхание. Для каждого из 7 критериев мыши получали балл подшкалы 0, если она соответствовала критериям, и 1, если она не соответствовала (балл по шкале батареи клинико-функциональных тестов или FOB). После оценки всех 7 критериев баллы суммировали для каждой мыши и усредняли в каждой группе обработки. Результаты представлены в таблицах ниже.

Таблица 60 Показатели переносимости у мышей в дозе 700 мкг

| Номер соединения | <b>FOB</b> 3а 3 часа |
|------------------|----------------------|
| PBS              | 0,00                 |
| 1287723          | 2,00                 |
| 1287724          | 1,00                 |
| 1287727          | 2,00                 |

#### ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 16, 17, 18, 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15 или по меньшей мере 16 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.
- 2. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 17, 18, 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16 или по меньшей мере 17 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20-27, 29-30 или 32-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.
- 3. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 18, 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16, по меньшей мере 17 или по меньшей мере 18 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20-27, 30 или 33-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.
- 4. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 19 или 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18 или по меньше мере 19 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20, 22, 24-27, 30, 33-50, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.
- 5. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов и имеющий любую последовательность нуклеиновых оснований, содержащую по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 смежных нуклеиновых оснований, из последовательностей нуклеиновых оснований SEQ ID NO: 20, 22, 25, 27, 35, 39-46 или 49, причем модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную из модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

- 6. Олигомерное соединение по любому из пп. 1-5, в котором модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, которая на по меньшей мере 80%, 85%, 87,5%, 88,2%, 89%, 89,4%, 90%, 93,7%, 94%, 94,7%, 95% или 100% комплементарна последовательности нуклеиновых оснований SEQ ID NO: 1 при измерении по всей последовательности нуклеиновых оснований модифицированного олигонуклеотида.
- 7. Олигомерное соединение по любому из пп. 1-6, в котором модифицированный олигонуклеотид имеет мотив межнуклеозидной связи (от 5' к 3'), выбранный из: sosossssssssss, sooossssssssooss, SSSSSOSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SOSSSSSSSSSSSSSS, SOSSSSSSSSSSSSSSS, SOSSSSSSSSSSSSSS, SOSSSSSSSSSSSSS, SOSSSOSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSSS, soosssssssssss, SSSOOSSSSSSSSSSSS, SSSSSOOSSSSSSSSSS, ssssssoosssssss, SSSSSSSSSOOSSSSSS, sssssssssoosss, SSSSSSSSSSSSSOOSS, SSSSSSSOOOSSSSSS, SSOOOOSSSSSSSSSSS, ssssooosssssss, \$\$\$\$\$\$\$\$0000\$\$\$\$\$, \$\$\$\$\$\$\$\$0000\$\$\$, \$\$\$\$\$\$\$0000\$\$, \$\$\$\$\$00000\$\$\$\$\$, \$\$\$\$\$00000\$\$\$\$\$, sooosssssssooss, sssssssssssooss, SSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSOOSSSSSSSS, SSSSOSSSSSSSSSS, SSSOSSSSSSSSSSSSS, sosssssssssss, sosssssssssss, soosssssssssss, OSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSOO, SSSSSSSSSSSSSSSSSS, SSSSSSSSSSSSSSSSSSS, SSSSSSSSOOSSSSSSSSS, SOSSSSSSSSSSSSSS. SOSSSSSSSSSSSSSSSS, SOSSSSSSSSSSSSSS, SOSOSSSSSSSSSSSSSS, SOOSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, SSSSSSSSSSSSSSS, OSSSSSSSSSSSSSSS, SSSSSSSSOOOSSSS, sssssssooosssss, ssssssooosssss, ssssssoooosssss, sssssooooosssss, sssssoooooossss, SSSSOOOSSSSSSSS, SSOSSSSSSSSSSSSS, SSOSSSSSSSSSSSS, SSOSSSOSSOSSOSS, ssossossossoss, ssosososososss, SSOOOOSSSSSSSSSS, soossssssssooss, sooosssssssooss, sooossssssoooss, sooossssssooss, ssssssssoooss, sssssssooosss, SSSSSSOOOSSSSSS, ssssssooosssss, SSSSOOOOOSSSSS sssssooooossss, ssssooossssss, ssssoooooossss, SSSOSSSOSSS, SSOSSSSSSSSSSSS, SSOSSOSSOSSS, ssossossososs, ssosososososs, SSOOOOSSSSSSSS, SOOSSSSSSSSSOOSS, SOOOSSSSSSSOOSS, SOOOSSSSSSOOOSS И SOOOOSSSSSSOOOSS; ГДЕ «S» представляет собой фосфоротиоатную межнуклеозидную связь, а «о» представляет собой фосфодиэфирную межнуклеозидную связь.
- 8. Олигомерное соединение по любому из пп. 1-6, в котором модифицированный олигонуклеотид имеет мотив межнуклеозидной связи, выбранный из: sssssssssssss и sssssssssssssss, где «s» представляет собой фосфоротиоатную межнуклеозидную связь, «о» представляет собой фосфодиэфирную межнуклеозидную связь, а «х» представляет собой метоксипропилфосфонатную межнуклеозидную связь.

- 10. Олигомерное соединение по любому из пп. 1-9, в котором модифицированный олигонуклеотид имеет сахарный мотив (от 5' к 3'), выбранный из: еееееееееееееееее, eeeeeeeeeeeeee, eeeeeeeeeeeee, eeeeeeeeeeeee, eeeeeeeeeeee. nnnnnnnnnnnnnnnne. nnnnnnnnnnnnnnnnd, nnnnnnnnnnnnnnn, nnnnnnnnnnnnnnndd, nnnnnnnnnnnnnnnnned, nnnnnnnnnnnnnnnnde, keeekeeekeeek, keeeeekeeeek, keeeeeekeeeeeek, keeeeeeeeeeek, eeekeekeekeekek, eeekeekeekeekee. eeeeeekeekeekeekee, eeeeekeekeekeeee. eeeeekeeeekeeeee. eeeeeeekeekeek, keekeekeekeeeeee. keekeekeeeeeeee, eeeeeeeeekeekeek, keekeeeeeeeeee, eeeeeeeeeeekeek, keekeekeekeek, keeekeeekeeek, keeeekeeeek, keeeeeekeeeeek, keeeeeeeeeeek. eekeekeekeekek. eekeekeekeekee, eeeeekeekeekeekee, eeeeekeekeekeeee. eeeeekeeeeekeeeee, keekeekeekeeeeee, eeeeeekeekeekeek, keekeekeeeeeeee. eeeeeeeekeekeek, keekeeeeeeeeee, eeeeeeeeeekeek, keekeekeekeek. где «е» представляет собой 2'-MOE сахарный фрагмент, «п» представляет собой 2'-NMA сахарный фрагмент, «k» представляет собой сЕt сахарный фрагмент, «d» представляет собой 2'-β-D-дезоксирибозильный сахарный фрагмент, а «у» представляет собой 2'-ОМе сахарный фрагмент.
- 12. Олигомерное соединение по любому из пп. 1-9, в котором модифицированный олигонуклеотид имеет сахарный мотив (от 5' к 3') qqnqqqqqnqnnqnqqnn, где каждый «n» представляет собой 2'-NMA сахарный фрагмент, а каждый «q» независимо выбран из 2'-O-(N, N-диметил)ацетамидного сахарного фрагмента, 2'-O-(N-этил)ацетамидного

- сахарного фрагмента, 2'-O-(N-пропил)ацетамидного сахарного фрагмента, 2'O-(Nциклопропил)ацетамидного сахарного фрагмента и 2'-O-(Nциклопропилметил)ацетамидного сахарного фрагмента.
- 13. Олигомерное соединение по любому из пп. 1-9, в котором модифицированный олигонуклеотид содержит по меньшей мере один модифицированный сахарный фрагмент.
- 14. Олигомерное соединение по п. 13, в котором модифицированный олигонуклеотид содержит по меньшей мере один бициклический сахарный фрагмент.
- 15. Олигомерное соединение по п. 14, в котором бициклический сахарный фрагмент имеет мостик от положения 4' к положению 2', причем мостик от положения 4' к положению 2' выбран из -CH<sub>2</sub>-O- и -CH(CH<sub>3</sub>)-O-.
- 16. Олигомерное соединение по п. 13, в котором модифицированный олигонуклеотид содержит по меньшей мере один небициклический модифицированный сахарный фрагмент.
- 17. Олигомерное соединение по п. 16, в котором небициклический модифицированный сахарный фрагмент представляет собой любой из 2'-МОЕ сахарного фрагмента, 2'-NMA сахарного фрагмента, 2'-ОМе сахарного фрагмента или 2'-F сахарного фрагмента.
- 18. Олигомерное соединение по п. 13, в котором модифицированный олигонуклеотид содержит по меньшей мере один заменитель сахара.
- 19. Олигомерное соединение по п. 18, в котором заменитель сахара представляет собой любой из морфолино, модифицированного морфолино, ПНК, ТНР и F-HNA.
- 20. Олигомерное соединение по любому из пп. 1-6 и 10-16, в котором модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.
- 21. Олигомерное соединение по п. 20, в котором каждая межнуклеозидная связь модифицированного олигонуклеотида представляет собой модифицированную межнуклеозидную связь.
- 22. Олигомерное соединение по п. 20 или п. 21, в котором модифицированная межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь.
- 23. Олигомерное соединение по любому из пп. 1-20 или 22, в котором модифицированный олигонуклеотид содержит по меньшей мере одну фосфородиэфирную межнуклеозидную связь.
- 24. Олигомерное соединение по любому из пп. 20, 22 или 23, в котором каждая межнуклеозидная связь независимо выбрана из фосфодиэфирной межнуклеозидной связи и фосфоротиоатной межнуклеозидной связи.

собой фосфодиэфирную межнуклеозидную связь.

- 26. Олигомерное соединение по любому из пп. 1-25, в котором модифицированный олигонуклеотид содержит модифицированное нуклеиновое основание.
- 27. Олигомерное соединение по п. 26, в котором модифицированное нуклеиновое основание представляет собой 5-метилцитозин.
- 28. Олигомерное соединение по любому из пп. 1-27, в котором модифицированный олигонуклеотид состоит из 16, 17, 18, 19 или 20 связанных нуклеозидов.
- 29. Олигомерное соединение по любому из пп. 1-28, в котором модифицированный олигонуклеотид содержит 1 или 2 некомплементарных нуклеиновых оснований.
- 30. Олигомерное соединение по любому из пп. 1-29, в котором модифицированный олигонуклеотид содержит 1 или 2 расщепляемых фрагмента.
- 31. Олигомерное соединение по п. 30, в котором расщепляемый фрагмент представляет собой фосфодиэфирную межнуклеозидную связь.
- 32. Олигомерное соединение по любому из пп. 1-31, состоящее из модифицированного олигонуклеотида.
- 33. Олигомерное соединение по любому из пп. 1-32, в котором олигомерное соединение представляет собой одноцепочечное олигомерное соединение.
- 34. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  ${}^{m}C_{es}$   $A_{eo}$   ${}^{m}C_{es}$   $T_{eo}$   $T_{es}$   $T_{es}$

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

35. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  $T_{eo}$   $T_{es}$   $^mC_{es}$   $A_{es}$   $^mC_{es}$   $T_{es}$   $^mC_{es}$   $T_{es}$   $^mC_{es}$   $T_{es}$   $T_{$ 

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

36. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  $T_{eo}$   $T_{ns}$   $^mC_{ns}$   $A_{ns}$   $^mC_{ns}$   $T_{ns}$   $^mC_{ns}$   $T_{ns}$   $^mC_{ns}$   $T_{ns}$   $^mC_{ns}$   $T_{ns}$   $T_{ns}$ 

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

е=2'-МОЕ сахарный фрагмент,

n=2'-NMA сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

37. Олигомерное соединение, содержащее модифицированный олигонуклеотид в соответствии со следующим химическим обозначением:  ${}^{m}C_{ns}$   $A_{no}$   ${}^{m}C_{ns}$   $T_{no}$   $T_{ns}$   $T_{ns}$ 

А=адениновое нуклеиновое основание,

<sup>т</sup>C=5-метилцитозиновое нуклеиновое основание,

G=гуаниновое нуклеиновое основание,

Т=тиминовое нуклеиновое основание,

n=2'-NMA сахарный фрагмент,

s=фосфоротиоатная межнуклеозидная связь, и

о=фосфодиэфирная межнуклеозидная связь.

38. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21), или его соль.

- 39. Модифицированный олигонуклеотид по п. 38, который представляет собой натриевую соль или калиевую соль.
- 40. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21).

41. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22), или его соль.

- 42. Модифицированный олигонуклеотид по п. 41, который представляет собой натриевую соль или калиевую соль.
- 43. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22).

44. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22), или его соль.

- 45. Модифицированный олигонуклеотид по п. 44, который представляет собой натриевую соль или калиевую соль.
- 46. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 22).

47. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21), или его соль.

- 48. Модифицированный олигонуклеотид по п. 47, который представляет собой натриевую соль или калиевую соль.
- 49. Модифицированный олигонуклеотид в соответствии со следующей химической структурой:

(SEQ ID NO: 21).

- 50. Фармацевтическая композиция, содержащая олигомерное соединение по любому из пп. 1-37 или модифицированный олигонуклеотид по любому из пп. 38-49 и фармацевтически приемлемый разбавитель или носитель.
- 51. Фармацевтическая композиция по п. 50, содержащая фармацевтически приемлемый разбавитель, причем фармацевтически приемлемый разбавитель представляет собой искусственную СМЖ (иСМЖ) или ФСБ.
- 52. Фармацевтическая композиция по п. 51, причем фармацевтическая композиция состоит по существу из модифицированного олигонуклеотида и искусственной СМЖ (иСМЖ).
- 53. Фармацевтическая композиция по п. 52, причем фармацевтическая композиция состоит по существу из модифицированного олигонуклеотида и ФСБ.
- 54. Хирально обогащенная популяция модифицированных олигонуклеотидов по любому из пп. 38-49, причем популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную

межнуклеозидную связь, имеющую конкретную стереохимическую конфигурацию.

- 55. Хирально обогащенная популяция по п. 54, причем популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую (Sp)-конфигурацию.
- 56. Хирально обогащенная популяция по п. 54, причем популяция обогащена модифицированными олигонуклеотидами, содержащими по меньшей мере одну конкретную фосфоротиоатную межнуклеозидную связь, имеющую конфигурацию (Rp).
- 57. Хирально обогащенная популяция по п. 54, причем популяция обогащена модифицированными олигонуклеотидами, имеющими определенную, независимо выбранную стереохимическую конфигурацию в каждой фосфоротиоатной межнуклеозидной связи.
- 58. Хирально обогащенная популяция по п. 57, причем популяция обогащена модифицированными олигонуклеотидами, имеющими конфигурацию (Sp) в каждой фосфоротиоатной межнуклеозидной связи, или модифицированными олигонуклеотидами, имеющими конфигурацию (Rp) в каждой фосфоротиоатной межнуклеозидной связи.
- 59. Хирально обогащенная популяция по п. 57, причем популяция обогащена модифицированными олигонуклеотидами, имеющими конфигурацию (Rp) в одной конкретной фосфоротиоатной межнуклеозидной связи и конфигурацию (Sp) в каждой из оставшихся фосфоротиоатных межнуклеозидных связей.
- 60. Хирально обогащенная популяция по п. 57, причем популяция обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере 3 смежные фосфоротиоатные межнуклеозидные связи в конфигурациях Sp, Sp и Rp, в направлении от 5' к 3'.
- 61. Популяция модифицированных олигонуклеотидов по любому из пп. 38-49, отличающаяся тем, что все фосфоротиоатные межнуклеозидные связи модифицированного олигонуклеотида являются стереослучайными.
- 62. Способ лечения заболевания, связанного с SMN1 или SMN2, включающий введение субъекту, имеющему заболевание, связанное с SMN1 или SMN2, или имеющему риск развития такого заболевания, терапевтически эффективного количества фармацевтической композиции по любому из пп. 50-53; и тем самым лечение заболевания, связанного с SMN1 или SMN2.
- 63. Способ по п. 62, в котором заболевание, связанное с SMN1 или SMN2, представляет собой нейродегенеративное заболевание.
- 64. Способ по п. 63, в котором нейродегенеративное заболевание представляет собой спинальную мышечную атрофию (СМА).
- 65. Способ по п. 64, в котором СМА представляет собой любую из СМА типа I, СМА типа III или СМА типа IV.
- 66. Способ по п. 64 или п. 65, в котором по меньшей мере один симптом СМА облегчается.
  - 67. Способ по п. 66, в котором симптом представляет собой любое из снижения

мышечной силы; неспособности или сниженной способности сидеть прямо, стоять и/или ходить; сниженной нервно-мышечной активности; сниженной электрической активности в одной или более мышцах; сниженного дыхания; неспособности или сниженной способности есть, пить и/или дышать без помощи; потери веса или сниженного прироста массы тела и/или сниженной выживаемости.

- 68. Способ по любому из пп. 62-67, в котором фармацевтическую композицию вводят в центральную нервную систему или в системный кровоток.
- 69. Способ по п. 68, в котором фармацевтическую композицию вводят в центральную нервную систему и в системный кровоток.
- 70. Способ по любому из пп. 62-67, в котором фармацевтическую композицию вводят интратекально, в системный кровоток, подкожно или внутримышечно.
- 71. Способ увеличения количества РНК SMN2, включая экзон 7, включающий приведение в контакт клетки, ткани или органа с олигомерным соединением по любому из пп. 1-37, модифицированным олигонуклеотидом по любому из пп. 38-49 или фармацевтической композицией по любому из пп. 50-53.

По доверенности