ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

Дата публикации заявки 2022.12.06
Дата подачи заявки 2021.03.03

ИНГИБИТОРЫ eIF4E И СПОСОБЫ ИХ ПРИМЕНЕНИЯ

В настоящем изобретении предложены соединения, ингибирующие активность eIF4E, а также композиции и способы их применения.

Рисунок 1

(19) Евразийское патентное ведомство
(21) 202292242 (13) A1
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

(43) Дата публикации заявки
2022.12.06
(22) Дата подачи заявки
2021.03.03

(51) Int. Cl. A61P 35/00 (2006.01)
C07D 277/42 (2006.01)
C07D 277/46 (2006.01)
C07D 277/54 (2006.01)
C07D 417/04 (2006.01)
C07D 417/06 (2006.01)
C07D 417/10 (2006.01)
C07D 417/12 (2006.01)
C07D 417/14 (2006.01)
A61K 31/426 (2006.01)
A61K 31/427 (2006.01)
A61K 31/439 (2006.01)
A61K 31/445 (2006.01)
A61K 31/496 (2006.01)

(31) 62/984,543
(32) 2020.03.03
(33) US
(86) PCT/US2021/020597
(87) WO 2021/178488 2021.09.10
(71) Заявитель: ПИК ТЕРАПЮТИКС, ИНК. (US)
(72) Изобретатель: Вандойсен Кристофер Л., Уолтс Алан Э., Ор Ят Сун (US)
(74) Представитель: Нилова М.И. (RU)

(57) В настоящем изобретении предложены соединения, ингибирующие активность eIF4E, а также композиции и способы их применения.
ИНГИБИТОРЫ eIF4E И СПОСОБЫ ИХ ПРИМЕНЕНИЯ

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[0001] Настоящее изобретение относится к соединениям и способам, применяемым для ингибитирования эукариотического фактора инициации 4E (eIF4E). В изобретении также предложены фармацевтически приемлемые композиции, содержащие соединения по настоящему изобретению, и способы применения указанных композиций для лечения различных нарушений.

УРОВЕНЬ ТЕХНИКИ

[0002] Эукариотический фактор инициации 4E (eIF4E) представляет собой белок с молекулярной массой 24 кDa, который играет ключевую роль в инициации трансляции некоторых мРНК. При инициации трансляции мРНК eIF4E связывается с кэпом 7-метилгуанозином на 5'-конце мРНК и образует комплекс (называемый eIF4F) с белками, включая каркасный белок eIF4G и геликазу eIF4A. Образование комплекса 4F необходимо для инициации кэп-зависимой трансляции и, следовательно, связывание eIF4E с его когитными партнерами является критическим событием в eIF4E-опосредованной трансляции.

[0003] Ряд исследований показал, что нарушение регуляции eIF4E важно для некоторых фенотипов рака, и поэтому eIF4E является потенциальной мишенью в области онкологии.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] В настоящее время установлено, что соединения по настоящему изобретению и их фармацевтически приемлемые композиции являются эффективными в качестве ингибиторов eIF4E. В одном аспекте в настоящем изобретении предложено соединение формулы (I):

$$\begin{align*}
R^3 &
\begin{array}{c}
\text{N} \\
\text{L}^1
\end{array} \\
\text{S} \\
\text{L}^2 \\
\text{R}^2
\end{align*}
$$

(1)

или его фармацевтически приемлемая соль, где переменные соответствуют определениям и описанию, представленным в данном документе.

[0005] Соединения по настоящему изобретению и их фармацевтически приемлемые композиции применимы для лечения различных заболеваний, нарушений или состояний,
ассоциированных с eIF4E. Такие заболевания, нарушения или состояния включают клеточные пролиферативные нарушения (например, рак), такие как описанные в настоящем документе.

5 ПОДРОБНОЕ ОПИСАНИЕ ОПРЕДЕЛЕННЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
1. Общее описание определенных вариантов осуществления изобретения
[0006] Соединения по настоящему изобретению и их фармацевтические композиции являются применимыми в качестве ингибиторов eIF4E. Не желая быть связанными какой-либо конкретной теорией, считается, что соединения по настоящему изобретению и их фармацевтические композиции могут ингибировать активность eIF4E и, таким образом, лечить определенные заболевания, такие как рак.
[0007] В настоящее время установлено, что соединения по данному изобретению и их фармацевтически приемлемые композиции являются эффективными в качестве ингибиторов eIF4E. В одном аспекте в настоящем изобретении предложено соединение формулы I:

\[
\begin{align*}
R^3 & - \text{L}^2 - S - N - \text{L}^1 - A \\
\end{align*}
\]

(1)

или его фармацевтически приемлемая соль, где:

кольцо A представляет собой необязательно замещенное кольцо, выбранное из фенила, 5–6-членного моноциклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 8–10-членного бициклического ароматического карбоциклического кольца или 8–10-членного бициклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы;

\[L^1\] представляет собой связь или необязательно замещенную С-8 двухвалентную линейную или развитленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на \(-\text{O}-, -\text{S}-, -\text{N}(\text{R})-, -\text{C}(\text{O})-\) или \(-\text{S}(\text{O})_2-\);

\[R^2\] представляет собой галоген, R, \(-\text{OR}-, -\text{SR}, -\text{C}(\text{O})\text{R}, -\text{C}(\text{O})\text{OR}, -\text{C}(\text{O})\text{N(R)2}, -\text{S(O)}_2\text{R}, -\text{S(O)}_2\text{OR} или -\text{S(O)}_2\text{N(R)2};

\[L^2\] представляет собой связь или необязательно замещенную С-8 двухвалентную линейную или развитленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена
углеводородной цепи необязательно и независимо заменены на \(-O-, -S-, -N(R)-, -C(O)-, -S(O)_{2}\) или \(-\text{Cy}^-\);

\(R^3\) представляет собой \(-\text{CN}, -\text{C(O)R}, -\text{C(O)OR}, -\text{C(O)N(R)}_{2}, -\text{N(R)-C(O)-R}, -\text{N(R)-C(O)-OR}, -\text{S(O)_{2}-N(R)}_{2}, -\text{S(O)_{2}-N(R)-C(O)R}, -\text{C(O)-N(R)-S(O)_{2}R}, -\text{C(=NR)-N(R)}_{2}, -\text{N(R)-C(=NR)-N(R)}_{2}\) или 5–6-членное моноциклическое гетероароматическое кольцо, независимо имеющего 1–4 гетероатома, выбранных из азота, кислорода и серы;

\(-\text{Cy}^-\) представляет собой необязательно замещенное двухвалентное кольцо, выбранное из фенилена, 5–6-членного моноциклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 3–6-членного моноциклического, насыщенного или частично ненасыщенного карбоциклического кольца, 3–6-членного моноциклического, насыщенного или частично ненасыщенного гетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 8–10-членного бициклического ароматического карбоциклического кольца или 8–10-членного бициклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы.

\(R\) представляет собой водород, необязательно замещенную \(-\text{C}_{1-6}\) алифатическую группу или необязательно замещенное кольцо, выбранное из фенилена, 5–6-членного моноциклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 3–6-членного моноциклического, насыщенного или частично ненасыщенного карбоциклического кольца или 3–6-членного моноциклического, насыщенного или частично ненасыщенного гетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы.

2. Соединения и определения

данный документ посредством ссылки.

[0009] В контексте данного документа термин «алифатический» или «алифатическая группа» означает линейную (т. е. неразветвленную) или разветвленную, замещенную или незамещенную углеводородную цепь, которая является полностью насыщенной или, которая содержит одно или более ненасыщенных звеньев, или моноциклический углеводород, или бициклический углеводород, который является полностью насыщенным или, который содержит одно или более ненасыщенных звеньев, но который не является ароматическим (также именуемым в настоящем документе «карбоциклом», «циклоаифатическим» или «циклоалкилом»), соединением, имеющим одну точку присоединения к оставшейся части молекулы. Если не указано иное, алифатические группы содержат 1–6 алифатических атомов углерода. В некоторых вариантах осуществления алифатические группы содержат 1–5 алифатических атомов углерода. В некоторых вариантах осуществления алифатические группы содержат 1–4 алифатических атома углерода. В других вариантах осуществления алифатические группы содержат 1–3 алифатических атомов углерода, а в еще других вариантах осуществления алифатические группы содержат 1–2 алифатических атома углерода. В некоторых вариантах осуществления «циклоаифатический» (или «карбоцикл» или «циклоалкил») относится к моноциклическому С₃–С₆ углеводороду, который является полностью насыщенным или, который содержит одно или более ненасыщенных звеньев, но который не является ароматическим, который имеет единственную точку присоединения к остальной части молекулы. Подходящие алифатические группы включают, включают, но не ограничиваются ими, линейные или разветвленные, замещенные или незамещенные алкильные, алкенильные, алкенильные группы и их гибриды, такие как (циклоалкил)алкил, (циклоалкиленалкил или (циклоалкил)алкил.

[0010] В контексте данного документа термин «бициклическое кольцо» или «бициклическая кольцевая система» относится к любой бициклической кольцевой системе, т. е. карбоциклической или гетероциклической, насыщенной или имеющей одно или более ненасыщенных звеньев, имеющей один или более общих атомов между двумя кольцами кольцевой системы. Таким образом, термин включает любую допустимую конденсацию колец, такие как orto-конденсированное или спироциклическое кольцо. В контексте данного документа термин «гетеробициклический» представляет собой подмножество термина «бициклический», для которого требуется, чтобы один или более гетероатомов присутствовали в одном или обоих кольцах бицикла. Такие гетероатомы могут присутствовать в кольцевых соединениях и необязательно замещены и могут быть выбраны из азота (включая N-оксиды), кислорода, серы (включая окисленные формы, такие как
сульфонаты), фосфора (включая окисленные формы, такие как фосфаты), бора и т.д. В некоторых вариантах осуществления бициклическая группа имеет 7–12 членов в кольце и 0–4 гетероатома, независимо выбранных из азота, кислорода или серы. В контексте данного документа термин «мостиковый бицикл» относится к любой бициклической кольцевой системе, т.е. карбоциклической или гетероциклической, насыщенной или частично ненасыщенной, имеющей по меньшей мере один мостик. Согласно определению IUPAC, «мостик» представляет собой неразветвлённую цепочку атомов или атом или валентную связь, соединяющую два мостика, где «голова мостика» — это любой скелетный атом кольцевой системы, который связан с тремя или более скелетными атомами (за исключением водорода). В некоторых вариантах осуществления мостиковая бициклическая группа имеет 7–12 членов в кольце и 0–4 гетероатома, независимо выбранных из азота, кислорода или серы. Такие мостиковые бициклические группы хорошо известны в данной области техники и включают указанные ниже группы, в которых каждая группа присоединена к остальной части молекулы на любом замещаемом атome углерода или азота. Если не указано иное, мостиковая бициклическая группа необязательно замещена одним или более заместителями, как указано для алифатических групп. Дополнительно или альтернативно любой замещаемый атом азота мостиковой бициклической группы является необязательно замещенным. Иллюстративные бициклические кольца включают:

Иллюстративные мостиковые бициклы включают:
Термин «низший алкил» относится к C_{1-4} линейной или разветвленной алкильной группе. Иллюстративными низшими алкильными группами являются метил, этил, пропил, изопропил, бутил, изобутил и проп-бутил.

Термин «низший галогеналкил» относится к C_{1-4} линейной или разветвленной алкильной группе, которая замещена одним или большим количеством атомов галогена.

Термин «гетероатом» означает один или более из кислорода, серы, азота, фосфора или кремния (включая любую окисленную форму азота, серы, фосфора или кремния; квaternionированную форму любого основного азота; замещаемый атом азота гетероциклического кольца, например N (как в 3,4-дигидро-2Н-пирролиле), NH (как в пирролидиниле) или NR^+ (как в N-замещенном пирролидиниле)).

В контексте данного документа термин «ненасыщенный» означает, что фрагмент имеет одно или более звеньев или одно или более ненасыщенных звеньев.

В контексте данного документа термин «двуходалентная C_{1-8} (или C_{1-6}) ненасыщенная или ненасыщенная, линейная или разветвленная углеводородная цепь» относится к двуходалентным алкиленовым, алкениленовым и алкениленовым цепям, которые являются линейными или разветвленными, как определено в данном документе.

Термин «алкилен» относится к двуходалентной алкильной группе. «Алкиленовая цепь» представляет собой полиметиленовую группу, т.е. \(-(\text{CH}_2)_n\)-, где n представляет собой положительное целое число, предпочитительно от 1 до 6, от 1 до 4, от 1 до 3, от 1 до 2 или от 2 до 3. Замещенная алкиленовая цепь представляет собой полиметиленовую группу, в которой один или более метиленовых атомов водорода заменены заместителем. Подходящие заместители включают те, которые описаны ниже для замещенной алифатической группы.

Термин «алкенилен» относится к двуходалентной алкенильной группе. Замещенная алкениленовая цепь представляет собой полиметиленовую группу,
содержащую по меньшей мере одну двойную связь, в которой один или более атомов водорода заменены заместителем. Подходящие заместители включают те, которые описаны ниже для замещенной алифатической группы.

[0019] Термин «галоген» означает F, Cl, Br или I.

[0020] Термин «арил», употребляемый отдельно или в качестве части более крупного фрагмента, такого как «аралкил», «аралкокси» или «арилоксиалкил» относится к моноциклическим или бициклическим кольцевым системам, имеющим в общей сложности от пяти до четырнадцати членов в кольце, где по меньшей мере одно кольцо в системе является ароматическим и, где каждое кольцо в системе содержит от 3 до 7 членов в кольце. Термин «арил» может применяться взаимозаменяемо с термином «арильное кольцо». В определенных вариантах осуществления настоящего изобретения «арил» относится к ароматической кольцевой системе, которая включает, помимо прочего, фенил, бифенил, нафтил, бинафтил, антрацена и т.п., которые могут иметь один или более заместителей. Также в объем термина «арил», как он применяется в данном документе, входит группа, в которой ароматическое кольцо конденсировано с одним или более не ароматических колец, например, инданил, фталамидил, нафтиамидил, фенантридинил или тетрагидрофенантридинил, и тому подобное.

[0021] Термины «гетероарил» и «гетероар—», употребляемые отдельно или в качестве части более крупного фрагмента, например, «гетероаралкил» или «гетероаралкокси», относятся к группам, имеющим от 5 до 10 атомов в кольце, предпочтительно 5, 6 или 9 атомов в кольце; имеющим 6, 10 или 14 электронов разделенных в циклической системе и имеющим помимо атомов углерода от одного до пяти гетероатомов. Термин «гетероатом» относится к азоту, кислороду или сере, и включает любую окисленную форму азота или серы, и любую квaternionизированную форму основного азота. Гетероарильные группы включают, помимо прочего, тиенил, фуранил, пирролид, имидазолил, пиразолил, триазолил, тетразолил, оксазолил, изоксазолил, оксадазолил, тиазолил, изотиазолил, тиадазолил, пиридил, пиридазинил, пиридинил, пиразинил, индолизинил, пиридинил, нафтидинил и птеридинил. В контексте данного документа термины «гетероарил» и «гетероар—» также включают группы, в которых гетероароматическое кольцо конденсировано с одним или большим количеством арильных, циклоалкифатических или гетероциклических колец, при этом радикал или место присоединения находится на
гетероарOMATICком колыце. Неограничивающие примеры включают индолил, изоиндолил, бензотиенил, бензофуранил, дифенилфуранил, индазил, бензимидазолил, бензтетразолил, хинолил, изохинолил, циннолинил, фталазинил, хиназолинил, хиноксалинил, 4Н-хинолizinил, карбазолил, акридил, феназил, фенотиазинил, феноксазинил, тетрагидрохинолинил, тетрагидроизохинолинил и пиридо[2,3-b]-1,4-оксазин-3(4H)-он. Гетероарильная группа может быть моно- или бициклической. Термин «гетероарил» может применяться взаимозаменяемо с терминами «гетероарильное кольцо», «гетероарильная группа» или «гетероароматическая группа», любой из которых включает кольца, которые являются необязательно замещенными. Термин «гетероарилал» относится к алкильной группе, замещенной гетероарилом, при этом алкильная и гетероарильная части независимо являются необязательно замещенными.

[0022] В контексте данного документа термины «гетероциклиз» или «гетероциклин», «гетероциклический радикал» и «гетероциклическое кольцо» используются взаимозаменяемо и относятся к стабильному 5–7-членному либо 7–10-членному бициклическому гетероциклическому фрагменту, который является либо насыщенным, либо частично ненасыщенным и имеет, помимо атомов углерода, один или более, предпочитительно от одного до четырех гетероатомов, как определено выше. При применении в отношении кольцевого атома гетерокида термин «азот» включает замещенный азот. Например, в насыщенном или частично ненасыщенном кольце, имеющем 0–3 гетероатома, выбранных из кислорода, серы или азота, азот может быть обозначен N (как в 3,4-дицидро-2Н-пириролил), NH (как в пириридилниле) или "NR (как в N-замещенном пириридилниле).

[0023] Гетероциклическое кольцо может быть присоединено к соседней группе через любой гетероатом или атом углерода с образованием стабильной структуры, и любой из атомов в кольце может быть необязательно замечен. Примеры таких насыщенных или частично ненасыщенных гетероциклических радикалов включают, помимо прочего, тетрагидрофуранил, тетрагидротиофенил, пириролинил, пиридинил, пиридинил, тетрагидрохинолинил, тетрагидроизохинолинил, декагидрохинолинил, оксазолидинил, пиперазинил, диоксиданил, диоксоланил, диазепинил, оксазепинил, тиазепинил, морфолинил и хинуллуридил. В контексте данного документа термины «гетероциклиз», «гетероциклин», «гетероциклическое кольцо», «гетероциклическая группа», «гетероциклический фрагмент» и «гетероциклический радикал» применяются взаимозаменяемо и также включают группы, в которых гетероциклическое кольцо конденсировано с одним или большим количеством арильных, гетероарильных или циклоалкифатических колец, таких как индолинил, 3Н-индолил, хроманил, фенантридинил или тетрагидрохинолинил. Гетероциклическая группа
может быть моно- или бициклической. Термин «гетероциклический» относится к алкильной группе, замещенной гетероциклическим, при этом алкильная и гетероциклическая части независимо являются необязательно замененными.

[0024] В контексте данного документа термин «частично ненасыщенный» относится к кольцевому фрагменту, который включает по меньшей мере одну двойную или тройную связь. Термин «частично ненасыщенный» предназначен для охвата колец, имеющих множество участков ненасыщенности, но не предназначен для включения арильных или гетероарильных фрагментов, как определено в данном документе.

[0025] В соответствии с описанием в данном документе, соединения согласно изобретению могут содержать «необязательно замещенные» фрагменты. В общем, термин «замещенный», которому предшествует или не предшествует термин «необязательно», означает, что один или более атомов обозначенного фрагмента заменены подходящим заместителем. Если не указано иное, «необязательно замененная» группа может иметь подходящий заместитель в каждой замещаемой позиции группы, а когда существует возможность замещения более одной позиции в любой данной структуре более чем одним заместителем, выбранным из указанной группы, заместители могут быть одинаковыми или разными в каждой позиции. Комбинации заместителей, предусмотренных в этом изобретении, предпочитительно представляют собой соединения, которые приводят к образованию стабильных или химически возможных соединений. В контексте данного документа термин «стабильный» относится к соединениям, которые по существу не изменяются при воздействии условий, обеспечивающих их получение, выявление и, в определенных вариантах осуществления, их выделение, очистку и применение для одной или более целей, описанных в данном документе.

[0026] Каждый необязательный заместитель на замещаемом углероде представляет собой одновалентный заместитель, независимо выбранный из галогена; −(CH₂)ₙ−₄R°; −(CH₂)ₙ−₄OR°; −O(CH₂)ₙ−₄R°; −O−(CH₂)ₙ−₄C(O)OR°; −(CH₂)ₙ−₄CH(OR°)₂; −(CH₂)ₙ−₄SR°; −(CH₂)ₙ−₄Ph, который может быть замещен R°; −(CH₂)ₙ−₄O(CH₂)ₙ−₁Ph, который может быть замещен R°; −CH=CHPh, который может быть замещен R°; −(CH₂)ₙ−₄O(CH₂)ₙ−₁-пиридил, который может быть замещен R°; −NO₂; −CN; −N₃; −(CH₂)ₙ−₄N(R°)₂; −(CH₂)ₙ−₄N(R°)C(O)R°; −N(R°)C(S)R°; −(CH₂)ₙ−₄N(R°)C(O)NR°₂; −N(R°)C(S)NR°₂; −(CH₂)ₙ−₄N(R°)C(O)OR°; −N(R°)N(R°)C(O)R°; −N(R°)N(R°)C(O)NR°₂; −N(R°)N(R°)C(O)OR°; −(CH₂)ₙ−₄C(O)R°; −C(S)R°; −(CH₂)ₙ−₄C(O)OR°; −(CH₂)ₙ−₄C(O)SR°; −(CH₂)ₙ−₄C(O)OSiR°₃; −(CH₂)ₙ−₄OC(O)R°; −OC(O)(CH₂)ₙ−₄SR°; −SC(S)SR°; −(CH₂)ₙ−₄SC(O)R°; −(CH₂)ₙ−₄C(O)NR°₂; −C(S)NR°₂; −C(S)SR°; −SC(S)SR°; −(CH₂)ₙ−₄OC(O)NR°₂; −C(O)N(OR°)R°; −C(O)C(O)R°; −C(O)CH₂C(O)R°; −
C(NOR²)R²; -(CH₃)₀₋₄SSR⁻; -(CH₃)₀₋₄S(O)₂R²; -(CH₃)₀₋₄S(O)₂OR⁻; -(CH₃)₀₋₄OS(O)₂R²; S(O)₂NR⁻²; S(O)(NR²)R²; S(O)₂N=C(NR²)₂; -(CH₃)₀₋₄S(O)₂R²; N(R⁻)S(O)₂NR⁻²; N(R⁻)S(O)₂R²; -C(NH)NR²; -P(O)₂R²; -P(O)R²; -OP(O)R²; -OP(O)(OR)²; SiR⁻³; -(C₁₋₄ линейный или разветвленный аликилен)O–N(R⁻)₂; или -(C₁₋₄ линейный или разветвленный аликилен)C(O)O–N(R⁻)₂.

[0027] Каждый R⁻ независимо представляет собой водород, C₁₋₆ алифатическую группу, -CH₂Ph, -O(CH₂)₀₋₃Ph, -CH₂-(5–6-членное гетероарильное кольцо) или 5–6-членное насыщенное, частично ненасыщенное или арильное кольцо, имеющее 0–4 гетероатома, независимо выбранных из азота, кислорода или серы, или, несмотря на приведенное выше определение, в двух независимых случаях R⁻, взятые вместе с промежуточными атомами, образуют 3–12-членное насыщенное, частично ненасыщенное или арильное моно- или бициклическое кольцо, имеющее 0–4 гетероатома, независимо выбранных из азота, кислорода или серы, которые могут быть замещены двухвалентным заместителем на насыщенном атоме углерода R⁻, выбранным из =O и =S; или каждый R⁻ необязательно замещен одновалентным заместителем, независимо выбранным из галогена, -(CH₂)₀₋₂R⁺, -(haloR⁺), -(CH₂)₀₋₂OH, -(CH₂)₀₋₂OR⁺, -(CH₂)₀₋₂CH(OR²)₂; -O(haloR⁺), -CN, -N₃, -(CH₂)₀₋₂C(O)R⁺, -(CH₂)₀₋₂C(O)OH, -(CH₂)₀₋₂C(O)OR⁺, -(CH₂)₀₋₂SR⁺, -(CH₂)₀₋₂SH, -(CH₂)₀₋₂NH₂, -(CH₂)₀₋₂NHR⁺, -(CH₂)₀₋₂NR², -NO², -SiR⁻³, -OSiR⁻³, -C(O)SR⁺, -(C₁₋₄ линейный или разветвленный аликилен)C(O)OR⁺ или -SSR⁺.

[0028] Каждый⁺ независимо выбран из C₁₋₄ алифатической группы, -CH₂Ph, -O(CH₂)₀₋₃Ph или 5–6-членного насыщенного, частично ненасыщенного или арильного кольца, имеющего 0–4 гетероатома, независимо выбранных из азота, кислорода, или сера, и где каждый R⁺ является незамещенным или, если ему предшествует галоген, замещен только одним или более галогенами; или причем необязательный заместитель на насыщенном атоме углерода представляет собой двухвалентный заместитель, независимо выбранный из =O, =S, =NNR², =NNH(C(O)R⁺, =NNH(C(O)OR⁺, =N[NH(S)(O)₃]⁺, =N⁺, =OR⁻, =O(C(R⁺)₂)₂₋₃O⁻ или =S(C(R⁺)₂)₂₋₃S⁻, или двухвалентный заместитель, связанный с вицинальными замещаемыми атомами углерода «необязательно замещенной» группы представляет собой =O(CR⁺)₂₋₃O⁻, где причем в каждом независимом случае R⁺ выбран из водорода, C₁₋₆ алифатической группы или незамеченного 5–6-членного насыщенного, частично ненасыщенного или арильного кольца, имеющего 0–4 гетероатома, независимо выбранных из азота, кислорода или серы.

[0029] Когда R⁺ представляет собой C₁₋₆ алифатическую группу, R⁺ необязательно замешен галогеном, -R⁺, -(галоген R⁺), -OH, -OR⁺, -O(галоген R⁺), -CN, -C(O)OH, -
С(O)OR•, -NH2, -NHR•, -NR2•, или -NO2, где каждый R• независимо выбран из C1-4 алифатической группы, -CH2Ph, -O(CH2)0-1Ph или 5-6-членного насыщенного, частично ненасыщенного или арильного кольца, имеющего 0-4 гетероатома, независимо выбранных из азота, кислорода или серы, и где каждый R• является незамещенным или, если ему предшествует галоген, замещен только одним или более галогенами.

Необязательный заместитель замещаемого азота независимо представляет собой -R1•, -NR2•, -C(O)OR•, -C(O)C(O)R•, -C(O)CH2C(O)R•, -S(O)2R•, -S(O)2NR2•, -C(S)NR2•, -C(NH)NR2• или -N(R+)S(O)2R•; где каждый R+ независимо представляет собой водород, C1-6 алифатическую группу, незамещенный -OPh или незамещенное 5-6-членное насыщенное, частично ненасыщенное или арильное кольцо, имеющее 0-4 гетероатома, независимо выбранных из азота, кислорода или серы, или в двух независимых случаях R+, взятые вместе с их промежуточными атомами образуют незамещенное 3-12-членное насыщенное, частично ненасыщенное или арильное моно- или бициклическое кольцо, имеющее 0-4 гетероатома, независимо выбранных из азота, кислорода или серы, где, когда R+ представляет собой C1-6 алифатическую группу, R+ необязательно замещен галогеном, -R•, -(галоген R•), -OH, -OR•, -O(галоген R•), -CN, -C(O)OH, -C(O)OR•, -NH2, -NHR•, -NR2• или -NO2, где каждый R• независимо выбран из C1-4 алифатических, -CH2Ph, -O(CH2)0-1Ph или 5-6-членного насыщенного, частично ненасыщенного или арильного кольца, имеющего 0-4 гетероатома, независимо выбранных из азота, кислорода или серы, и где каждый R• является незамещенным или, если ему предшествует галоген, замещен только одним или более галогенами.

Используемый в данном документе термин «фармацевтически приемлемая соль» относится к тем солям, которые, в рамках здравого медицинского заключения, подходят для использования в контакте с тканями людей и низших животных без чрезмерной токсичности, раздражения, аллергической реакции и т. п., и соизмеримы разумному соотношению польза/риск. Фармацевтически приемлемые соли хорошо известны в данной области техники. Например, S. M. Berge et al., подробно описывает фармацевтически приемлемые соли в публикации, представленной в J. Pharmaceutical Sciences, 1977, 66, 1-19, включенной в данный документ посредством ссылки. Фармацевтически приемлемые соли соединений по данному изобретению включают соли, полученные из подходящих неорганических и органических кислот и оснований. Примерами фармацевтически приемлемых нетоксичных солей добавления кислот являются соли аминогрупп, образованные с неорганическими кислотами, такими как хлористоводородная кислота, бромистоводородная кислота, фосфорная кислота, серная кислота и хлорная кислота, или с органическими кислотами, такими как уксусная кислота, щавелевая кислота, маленновая.
кислота, винная кислота, лимонная кислота, яблочная кислота или малоновая кислота, или с помощью других методов, используемых в данной области техники, таких как ионный обмен. Другие фармацевтически приемлемые соли включают адипат, алгинат, аскорбат, аспартат, бензенсульфонат, бензоат, бисульфат, борат, бутират, камфорат, камфорсульфонат, цитрат, циклопентанпропионат, диглюконат, додецилсульфат, этилсульфонат, формат, фумарат, глюкогептонат, гликерофосфат, глюконат, гемисульфат, гептаноат, гексаноат, гидроксид, 2-гидроксиэтансульфонат, лактонат, лактат, лаурат, лаурилсульфат, малат, малеат, малонат, метансульфонат, 2-нафталенсульфонат, никотинат, нитрат, олеат, оксалат, пальмитат, памоат, пектинат, персульфат, 3-фенилпропионат, фосфат, пивалат, пропионат, стеарат, сукинат, сульфат, тартрат, тициванат, п-толуолсульфонат, ундеканоат, валерат и т. д.

[0032] Соли, полученные из соответствующих оснований, включают соли щелочных металлов, щелочноземельных металлов, аммония и соли Н⁺(С₁₋₅-алкилов). Типовые соли щелочных или щелочноземельных металлов включают соли натрия, лития, калия, кальция, магния и тому подобные. Дополнительные фармацевтически приемлемые соли включают, в соответствующих случаях, нотоксичные катионы аммония, четвертичного аммония и аминов, образуемые с участием противоионов, такие как галат, гидроксид, карбоксилат, сульфат, фосфат, нитрат, низший алилсульфонат и арилсульфонат.

[0033] Если не указано иное, структуры, описанные в данном документе, также включают все изомерные (например, энантиомерные, диастереомерные и геометрические (или конформационные)) формы структуры; например, конфигурации R и S для каждого асимметричного центра, изомеры двойной связи Z и E и конформационные изомеры Z и E. Следовательно, одиночные стереохимические изомеры, а также энантиомерные, диастереомерные и геометрические (или конформационные) смеси представленных соединений входят в объем данного изобретения. Если не указано иное, все таутомерные формы соединений согласно изобретению входят в объем изобретения. Кроме того, если не указано иное, структуры, описанные в данном документе, также включают соединения, которые отличаются только наличием одного или большего количества изотопно обогащенных атомов. Например, соединения, имеющие данные структуры, включая замену водорода на дейтерий или тритий или замену углерода на \(^{13}\)С- или \(^{14}\)С-обогащенный углерод, входят в объем данного изобретения. Такие соединения являются применимыми, например, в качестве аналитических инструментов, в качестве зондов в методах биологического анализа или в качестве терапевтических средств в соответствии с данным изобретением. В определенных вариантах осуществления фрагмент с активной нагрузкой R^1 предложенного соединения содержит один или более атомов дейтерия.
В контексте данного документа термин «ингибитор» определяется как соединение, которое связывается с eIF4E и/или ингибирует его с измеримой аффинностью. В определенных вариантах осуществления ингибитор имеет IC_{50} и/или константу связывания менее чем около 100 μM, менее чем около 50 μM, менее чем около 22,5 мкM, менее чем около 15 мкM или менее чем около 7,5 мкM.

Термины «измеримая аффинность» и «измеримое ингибирование» в контексте данного документа означают измеримое изменение активности eIF4E между образцом, содержащим соединение по настоящему изобретению или его композицию, и eIF4E, и эквивалентным образцом, содержащим eIF4E, в отсутствие указанного соединения или его композиции.

3. Описание иллюстративных вариантов осуществления

В одном аспекте в настоящем изобретении предложено соединение формулы I:

![Chemical structure](image)

или его фармацевтически приемлемая соль, где:

кольцо A представляет собой необязательно замещенное кольцо, выбранное из фенила, 5-6-членного моноциклического гетероароматического кольца, имеющего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, 8-10-членного бициклического ароматического карбоциклического кольца или 8-10-членного бициклического гетероароматического кольца, имеющего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

L^1 представляет собой связь или необязательно замещенную C_{1-8} двухвалентную линейную или развитленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на -O-, -S-, -N(R)-, -C(O)- или -S(O)_{2}-;

R^2 представляет собой галоген, R, -OR, -SR, -C(O)R, -C(O)OR, -C(O)N(R)_{2}, -S(O)_{2}R, -S(O)_{2}OR или -S(O)_{2}N(R)_{2};

L^2 представляет собой связь или необязательно замещенную C_{1-8} двухвалентную линейную или развитленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на -O-, -S-, -N(R)-, -C(O)-, -S(O)_{2}- или -Cy-;
R³ представляет собой -CN, -C(O)R, -C(O)OR, -C(O)N(R)₂, -N(R)-C(O)-R, -N(R)-C(O)-OR, -
S(O)₂-N(R)₂, -S(O)₂-N(R)-C(O)R, -C(O)-N(R)-S(O)₂R, -C(=NR)-N(R)₂, -N(R)-C(=NR)-
N(R)₂ или 5–6-членное моноциклическое гетероароматическое кольцо, независимо
имеющее 1–4 гетероатома, выбранных из азота, кислорода и серы;

-Су- представляет собой необязательно замещенное двувахалентное кольцо, выбранное из
фенилена, 5–6-членного моноциклического гетероароматического кольца, имеющего 1–4
gетероатома, независимо выбранных из азота, кислорода и серы, 3–6-членного
моноциклического, насыщенного или частично ненасыщенного карбоциклического
кольца, 3–6-членного моноциклического, насыщенного или частично ненасыщенного
gетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из
азота, кислорода и серы, 8–10-членного бициклического ароматического
карбоциклического кольца или 8–10-членного бициклического гетероароматического
cольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы;
и

R представляет собой водород, необязательно замещенную -С₁₋₆ алiphатическую группу
или необязательно замещенное кольцо, выбранное из фенила, 5–6-членного
моноциклического гетероароматического кольца, имеющего 1–4 гетероатома,
независимо выбранных из азота, кислорода и серы, 3–6-членного моноциклического,
насыщенного или частично ненасыщенного карбоциклического кольца или 3–6-
членного моноциклического, насыщенного или частично ненасыщенного
gетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из
азота, кислорода и серы.

[0037] Как в целом определено выше, кольцо A представляет собой необязательно
замещенное кольцо, выбранное из фенила, 5–6-членного моноциклического
gетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота,
кислорода и серы, 8–10-членного бициклического ароматического карбоциклического
кольца или 8–10-членного бициклического гетероароматического кольца, имеющего 1–4
gетероатома, независимо выбранных из азота, кислорода и серы.

[0038] В некоторых вариантах осуществления кольцо A представляет собой
необязательно замещенный фенил.

[0039] В некоторых вариантах осуществления кольцо A представляет собой

, где каждый R¹ независимо представляет собой галоген, R, -N(R)₂, -OR, -SR,
-C(O)OR или -S(O)₂R; n равно 0, 1, 2, 3, 4 или 5; и каждый R независимо соответствует
описанию, представленному в данном документе.

В некоторых вариантах осуществления R^1 представляет собой галоген. В некоторых вариантах осуществления R^1 представляет собой -Cl, -F. В некоторых вариантах осуществления, R^1 представляет собой -F.

В некоторых вариантах осуществления R^1 представляет собой R, как описано в данном документе. В некоторых вариантах осуществления R^1 представляет собой -N(R)2, где каждый R независимо соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^1 представляет собой -OR, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^1 представляет собой -SR, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^1 представляет собой -C(O)OR, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^1 представляет собой -S(O)2R, где R соответствует описанию, представленному в данном документе.

В некоторых вариантах осуществления R^1 представляет собой водород, -Cl, -CH3, -F, -CF3, -OCH3, -O, -CH3, -OH, -SCH3, -SO, -SO2, -SO3, -SO2, -S, -S.

В некоторых вариантах осуществления настоящего изобретения R^1 представляет собой

В некоторых вариантах осуществления R^1 выбран из элементов, представленных в Таблице 1 ниже.

В некоторых вариантах осуществления n равно 0. В некоторых вариантах осуществления n равно 1. В некоторых вариантах осуществления n равно 2. В некоторых вариантах осуществления n равно 3. В некоторых вариантах осуществления n равно 4. В некоторых вариантах осуществления n равно 5.

В некоторых вариантах осуществления кольцо A представляет собой
, где каждый из R^{11} и R^{12} независимо представляет собой галоген, R, $-N(R)_{2}$, $-OR$, $-SR$, $-C(O)OR$ или $-S(O)_{2}R$, где каждый R независимо представляет собой R, независимо соответствует описанию R, представленному в данном документе.

[0047] В некоторых вариантах осуществления кольцо A представляет собой

, где каждый из R^{11} и R^{12} независимо представляет собой галоген, R, $-N(R)_{2}$, $-OR$, $-SR$, $-C(O)OR$ или $-S(O)_{2}R$, где каждый R независимо соответствует описанию, представленному в данном документе.

[0048] В некоторых вариантах осуществления R^{11} представляет собой галоген. В некоторых вариантах осуществления R^{11} представляет собой R, как описано в данном документе. В некоторых вариантах осуществления R^{11} представляет собой $-N(R)_{2}$, де каждый R независимо соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{11} представляет собой $-OR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{11} представляет собой $-SR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{11} представляет собой $-C(O)OR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{11} представляет собой $-S(O)_{2}R$, где R соответствует описанию, представленному в данном документе.

[0049] В некоторых вариантах осуществления R^{12} представляет собой галоген. В некоторых вариантах осуществления R^{12} представляет собой R, как описано в данном документе. В некоторых вариантах осуществления R^{12} представляет собой $-N(R)_{2}$, де каждый R независимо соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{12} представляет собой $-OR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{12} представляет собой $-SR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{12} представляет собой $-C(O)OR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{12} представляет собой $-S(O)_{2}R$, где R соответствует описанию, представленному в данном документе.

[0050] В некоторых вариантах осуществления R^{11} представляет собой водород, $-Cl$,
В некоторых вариантах осуществления \(R^{11} \) представляет собой -CF₃,

или

В некоторых вариантах осуществления по меньшей мере один из \(R^{12} \) не является водородом. В некоторых вариантах осуществления \(R^{12} \) представляет собой -Cl, -OCH₃, H, -CH₃, -F или -CF₃.

В некоторых вариантах осуществления кольцо A представляет собой необязательно замещенное 5-6-членное монокиклическое гетероароматическое кольцо, имеющее 1–4 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления кольцо A представляет собой необязательно замещенное 5-членное монокиклическое гетероциклическое кольцо, имеющее 1, 2 или 3 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления кольцо A представляет собой необязательно замещенный фенил. В некоторых вариантах осуществления кольцо A представляет собой необязательно замещенный
замещенный или

[0054] В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 8–10-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 8-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 9-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 10-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления кольцо А представляет собой необязательно

замещенный или

[0055] В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 8–10-членное бициклическое гетероароматическое кольцо, имеющее 1–4 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 8-членное бициклическое кольцо, имеющее 1, 2 или 3 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенное 9-членное бициклическое кольцо, имеющее 1, 2 или 3 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенный индол. В некоторых вариантах осуществления кольцо А представляет собой необязательно замещенный

представляет собой необязательно замещенный или

осуществления кольцо А представляет собой необязательно замещенный
В некоторых вариантах осуществления кольцо А выбрано из элементов, представленных в Таблице 1 ниже.

Как в целом определено выше, L¹ представляет собой связь или необязательно замещенную C₁₋₈ двухвалентную линейную или разветвленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на -O-, -S-, -N(R)², -C(O)- или -S(O)².

В некоторых вариантах осуществления L¹ представляет собой связь.

В некоторых вариантах осуществления L¹ представляет собой необязательно замещенную C₁₋₈ двухвалентную линейную или разветвленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на -O-, -S-, -N(R)², -C(O)- или -S(O)². В некоторых вариантах осуществления L¹ представляет собой незамещенную C₁₋₈ двухвалентную линейную или разветвленную углеводородную цепь. В некоторых вариантах осуществления L¹ представляет собой C₁₋₈ двухвалентную линейную или разветвленную углеводородную цепь, причем 1 метиленовое звено углеводородной цепи заменено на -O-, -S-, -N(R)², -C(O)- или -S(O)². В некоторых вариантах осуществления L¹ представляет собой C₁₋₈ двухвалентную линейную или разветвленную углеводородную цепь, причем 2 метиленовых звена углеводородной цепи независимо заменены на -O-, -S-, -N(R)², -C(O)- или -S(O)².

В некоторых вариантах осуществления изобретения L¹ представляет собой -CH₂-.

В некоторых вариантах L¹ выбран из элементов, представленных в Таблице 1 ниже.

Как в целом определено выше, R² представляет собой галоген, R, -OR, -SR, -C(O)R, -C(O)OR, -C(O)N(R)², -S(O)²R, -S(O)² OR -S(O)²N(R)².

В некоторых вариантах осуществления R² представляет собой галоген. В некоторых вариантах осуществления R² представляет собой R. В некоторых вариантах осуществления R² представляет собой -OR. В некоторых вариантах осуществления R² представляет собой -SR. В некоторых вариантах осуществления R² представляет собой -C(O)R. В некоторых вариантах осуществления R² представляет собой -C(O)OR. В некоторых вариантах осуществления R² представляет собой -C(O)N(R)². В некоторых вариантах осуществления R² представляет собой -S(O)²R. В некоторых вариантах осуществления R² представляет собой -S(O)²OR. В некоторых вариантах осуществления R²
представляет собой \(-S(O)_{2}N(R)_{2}\).

[0064] В некоторых вариантах осуществления \(R^{2}\) не является водородом.

[0065] В некоторых вариантах осуществления \(R^{2}\) представляет собой \(H,\)

5 \(\text{NH}_{2}\), \(\text{OH}\), \(\text{SCH}_{3}\) или \(\text{N}\).

[0066] В вариантах осуществления \(R^{2}\) представляет собой \(\) или \(\)

[0067] В некоторых вариантах осуществления \(R^{2}\) выбран из элементов, представленных в Таблице 1 ниже.

[0068] Как в целом определено выше, \(L^{2}\) представляет собой связь или необязательно замещенную \(C_{1-8}\) двухвалентную линейную или разветвленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необходимо и независимо заменены на \(-O-, -S-, -N(R)-, -C(O)-, -S(O)_{2}-\) или \(-C_{y}-\).

[0069] В некоторых вариантах осуществления \(L^{2}\) представляет собой связь.

[0070] В некоторых вариантах осуществления \(L^{2}\) представляет собой необязательно замещенную \(C_{1-8}\) двухвалентную линейную или разветвленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необходимо и независимо заменены на \(-O-, -S-, -N(R)-, -C(O)-, -S(O)_{2}-\) или \(-C_{y}-\). В некоторых вариантах осуществления \(L^{2}\) представляет собой незамещенную \(C_{1-8}\) двухвалентную линейную или разветвленную углеводородную цепь. В некоторых вариантах осуществления \(L^{2}\) представляет собой необязательно замещенную \(C_{1-8}\) двухвалентную линейную или разветвленную углеводородную цепь, причем 1 метиленовое звено углеводородной цепи заменено на \(-O-, -S-, -N(R)-, -C(O)-, -S(O)_{2}-\) или \(-C_{y}-\). В некоторых вариантах осуществления \(L^{2}\) представляет собой необязательно замещенную \(C_{1-8}\) двухвалентную линейную или
разветвленную углеводородную цепь, причем 2 метilenовых звена углеводородной цепи независимо заменены на –O–, –S–, –N(R)–, –C(O)–, –S(O)₂– или –Cy–. В некоторых вариантах осуществления L² представляет собой необязательно замещенную C₁₈ двуаналентную линейную или разветвленную углеводородную цепь, где 3 метilenовых звена углеводородной цепи независимо заменены на –O–, –S–, –N(R)–, –C(O)–, –S(O)₂–или –Cy–. В некоторых вариантах осуществления L² представляет собой необязательно замещенную C₁₈ двуаналентную линейную или разветвленную углеводородную цепь, причем 4 метilenовых звена углеводородной цепи независимо заменены на –O–, –S–, –N(R)–, –C(O)–, –S(O)₂– или –Cy–.

В некоторых вариантах осуществления L² не присоединяется к тиазольному фрагменту через карбоксамидный или сульфонамидный фрагмент.

В некоторых вариантах осуществления L² не присоединяется к тиазольному фрагменту через диазольный фрагмент.

В некоторых вариантах осуществления L² представляет собой необязательно замещенную C₁₈ двуаналентную линейную или разветвленную углеводородную цепь, причем 2 метilenовых звена углеводородной цепи независимо заменены на –N(R)– и –Cy–.

В некоторых вариантах осуществления L² представляет собой –Cy–N(R)–, где –Cy– и R независимо соответствуют описанию, представленному в данном документе.

В некоторых вариантах осуществления L² представляет собой , где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления L² представляет собой , где R соответствует описанию, представленному в данном документе.

В некоторых вариантах осуществления изобретения L² представляет собой
В некоторых вариантах осуществления L^2 выбран из следующего:
В некоторых вариантах L^3 выбран из элементов, представленных в Таблице 1 ниже.

Как в целом определено выше, R^3 представляет собой $-\text{CN}$, $-\text{C(O)R}$, $-\text{C(O)OR}$, $-\text{C(O)N(R)}_2$, $-\text{N(R)}$-C(O)-R, $-\text{N(R)}$-C(O)-OR, $-\text{S(O)}_2$-N(R)_2, $-\text{S(O)}_2$-N(R)-C(O)R, $-\text{C(O)}$-N(R)-S(O)_2-R, $-\text{C(=NR)}$-N(R)_2, $-\text{N(R)}$-C(=NR)-N(R)_2 или 5–6-членное моноциклическое гетероароматическое кольцо, независимо имеющее 1–4 гетероатома, выбранных из азота, кислорода и серы.

В некоторых вариантах осуществления R^3 представляет собой $-\text{CN}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{C(O)R}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{C(O)OR}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{N(R)}$-C(O)-R. В некоторых вариантах осуществления R^3 представляет собой $-\text{N(R)}$-C(O)-OR. В некоторых вариантах осуществления R^3 представляет собой $-\text{N(R)}$-C(O)-OR. В некоторых вариантах осуществления R^3 представляет собой $-\text{S(O)}_2$-N(R)_2. В некоторых вариантах осуществления R^3 представляет собой $-\text{S(O)}_2$-N(R)-C(O)R. В некоторых вариантах осуществления R^3 представляет собой $-\text{C(O)}$-N(R)-S(O)_2-R. В некоторых вариантах осуществления R^3 представляет собой $-\text{C(=NR)}$-N(R)_2. В некоторых вариантах осуществления R^3 представляет собой $-\text{N(R)}$-C(=NR)-N(R)_2. В некоторых вариантах осуществления R^3 представляет собой 5–6-членное моноциклическое гетероароматическое кольцо, имеющее 1, 2, 3 или 4 гетероатома, независимо выбранных из азота, кислорода и серы.

В некоторых вариантах осуществления R^3 представляет собой $-\text{COOH}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{CN}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{COOH}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{CN}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{COOH}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{CN}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{COOH}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{CN}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{COOH}$. В некоторых вариантах осуществления R^3 представляет собой $-\text{CN}$. В некоторых вариантах осуществления R^3 представ...
В некоторых вариантах осуществления \(R^3 \) выбран из элементов, представленных в Таблице 1 ниже.

Как в целом определено выше, \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное кольцо, выбранное из фенилена, 5–6-членного моноциклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 3–6-членного моноциклического, насыщенного или частично нenasыщенного карбоциклического кольца, 3–6-членного моноциклического, насыщенного или частично нenasыщенного гетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 8–10-члененного бициклического ароматического карбоциклического кольца или 8–10-члененного бициклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы.

В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенный фенилен.

В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное 5–6-членное моноциклическое гетероароматическое кольцо, имеющее 1, 2, 3 или 4 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное пиридиноновое кольцо. В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное пиридазиновое кольцо. В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное тиофеновое кольцо.

В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или частично нenasыщенное карбоциклическое кольцо.

В некоторых вариантах осуществления \(-\text{Су-}\) представляет собой необязательно замещенное двуэлектронное 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или
частично ненасыщенное гетероциклическое кольцо, имеющее 1, 2, 3 или 4 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления -Су- представляет собой необязательно замещенное двухвалентное морфолиновое кольцо. В некоторых вариантах осуществления -Су- представляет собой необязательно замещенное двухвалентное пиперазиновое кольцо.

[0089] В некоторых вариантах осуществления -Су- представляет собой необязательно замещенное двухвалентное 8-, 9- или 10-членное бициклическое гетероароматическое кольцо, имеющее 1, 2, 3 или 4 гетероатома, независимо выбранных из азота, кислорода и серы.

[0090] В некоторых вариантах осуществления изобретения, -Су- представляет собой

[0091] В некоторых вариантах -Су- выбран из элементов, представленных в Таблице 1 ниже.

[0092] Как в целом определено выше, R представляет собой водород, необязательно заменную -С1-6 алифатическую группу или необязательно замещенное кольцо, выбранное из фенила, 5-6-членного моноциклического гетероароматического кольца, имеющего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, 3-6-членного моноциклического, насыщенного или частично ненасыщенного карбоциклического кольца или 3-6-членного моноциклического, насыщенного или частично ненасыщенного гетероциклического кольца, имеющего 1-4 гетероатома,
независимо выбранных из азота, кислорода и серы.

[0093] В некоторых вариантах осуществления R представляет собой водород.

[0094] В некоторых вариантах осуществления R необязательно замечен \(-C_{1-6}\) алифатической группой. В некоторых вариантах осуществления R представляет собой необязательно замещенный \(-C_{1-6}\) алкил. В некоторых вариантах осуществления R представляет собой замещенный \(-C_{1-6}\) алкил. В некоторых вариантах осуществления R представляет собой \(-C_{1-6}\) алкил, замещенный 1, 2, 3, 4, 5 или 6 раз галогеном. В некоторых вариантах осуществления R представляет собой \(-C_{1-6}\) алкил, замещенный фенильной группой, причем фенильная группа необязательно замещена. В некоторых вариантах осуществления R представляет собой \(-C_{1-6}\) алкил, замещенный фенильной группой, причем фенильная группа замещена 1, 2, 3, 4 или 5 раз галогеном. В некоторых вариантах осуществления R представляет собой \(-CH_3\). В некоторых вариантах осуществления R представляет собой \(-CH_2CH_3\). В некоторых вариантах осуществления R представляет собой \(-CF_3\). В некоторых вариантах осуществления R представляет собой . В некоторых вариантах осуществления R представляет собой .

[0095] В некоторых вариантах осуществления R представляет собой необязательно замещенный фенил. В некоторых вариантах осуществления R представляет собой незамещенный фенил. В некоторых вариантах осуществления R представляет собой фенил, замещенный 1, 2, 3, 4 или 5 раз галогеном. В некоторых вариантах осуществления R представляет собой фенил, замещенный 1, 2, 3, 4 или 5 раз \(-C_{1-6}\) алкилом, причем \(-C_{1-6}\) алкил необязательно замечен 1, 2, 3, 4, 5 или 6 раз галогеном.

[0096] В некоторых вариантах осуществления R представляет собой необязательно замещенное 8–10-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления R представляет собой необязательно замещенное 8-
ченное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления R представляет собой необязательно замеченное 9-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления R представляет собой необязательно замеченное 10-членное бициклическое ароматическое карбоциклическое кольцо. В некоторых вариантах осуществления R представляет собой необязательно замеченный или .

В некоторых вариантах осуществления R представляет собой необязательно замеченное 5–6-членное моноциклическое гетероароматическое кольцо, имеющее 1–4 гетероатома, независимо выбранных из азота, кислорода или серы. В некоторых вариантах осуществления R представляет собой 5–6-членное моноциклическое гетероароматическое кольцо, имеющее 1, 2 или 3 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления R представляет собой 5–6-членное моноциклическое гетероароматическое кольцо, имеющее 1, 2 или 3 гетероатома, независимо выбранных из азота, кислорода и серы, которое необязательно замещено 1, 2, 3, 4, 5 или 6 раз галогеном. В некоторых вариантах осуществления R представляет собой необязательно замеченный . В некоторых вариантах осуществления R представляет собой необязательно замеченный . В некоторых вариантах осуществления R представляет собой необязательно замеченный . В некоторых вариантах осуществления R представляет собой необязательно замеченный .

В некоторых вариантах осуществления R представляет собой необязательно замеченное 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или частично нenasыщенное карбоциклическое кольцо. В некоторых вариантах осуществления R представляет собой 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или частично
ненасыщенное карбоциклическое кольцо, замещенное 1, 2, 3, 4, 5 или 6 раз галогеном. В некоторых вариантах осуществления R представляет собой 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или частично ненасыщенное карбоциклическое кольцо, замещенное 1, 2, 3, 4, 5 или 6 раз -C₁₋₆ алкилом, причем -C₁₋₆ алкил необязательно замещен 1, 2, 3, 4, 5 или 6 раз галогеном. В некоторых вариантах осуществления R представляет собой необязательно замещенный

[0099] В некоторых вариантах осуществления R представляет собой необязательно замещенное 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или частично ненасыщенное гетероциклическое кольцо, имеющее 1, 2, 3 или 4 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах осуществления R представляет собой 3-, 4-, 5- или 6-членное моноциклическое, насыщенное или частично ненасыщенное гетероциклическое кольцо, имеющее 1, 2, 3 или 4 гетероатома, независимо выбранных из азота, кислорода и серы, которое замещено 1, 2, 3, 4, 5 или 6 раз галогеном. В некоторых вариантах осуществления R представляет собой необязательно замещенный

В некоторых вариантах осуществления R представляет собой необязательно замещенный

В некоторых вариантах осуществления R представляет собой необязательно замещенный

В некоторых вариантах осуществления R представляет собой необязательно замещенный
замещенный. В некоторых вариантах осуществления R представляет собой

\[
\begin{align*}
\text{NO} & \quad \text{O} \\
\text{H} & \quad \text{N}
\end{align*}
\]

. В некоторых вариантах осуществления R представляет собой

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{S} & \quad \text{S}
\end{align*}
\]

. В некоторых вариантах осуществления R представляет собой

\[
\begin{align*}
\text{CF}_3 & \quad \text{O} \\
\text{S} & \quad \text{S}
\end{align*}
\]

. В некоторых вариантах осуществления R представляет собой -CF₃. В некоторых вариантах осуществления R представляет собой F. В некоторых вариантах осуществления R представляет собой Cl.

[00100] В некоторых вариантах осуществления R выбран из элементов, представленных в Таблице 1 ниже.

[00101] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы II:

\[
R^3 - L^2 - \text{N} - L^1 - (R^\prime)n
\]

(II)

или его фармацевтически приемлемая соль, где каждый из R¹, R², R³, L¹, L² и n соответствуешь описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и комбинации.

[00102] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формул II-a–II-d:

(II-a) (II-b) (II-c) (II-d)

или его фармацевтически приемлемая соль, где каждый из R¹¹, R¹², R³, R³ и L² соответствует
описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00103] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы III:

(III)

или его фармацевтически приемлемая соль, где каждый из \(R_1, R_3, L_1, L_2 \) и \(n \) соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00104] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формул III-a–III-d:

(III-a) (III-b) (III-c) (III-d)

или его фармацевтически приемлемая соль, где каждый из \(R_{11}, R_{12}, R_3, L_2 \) соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00105] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы IV:

(IV)

или его фармацевтически приемлемая соль, где каждый из \(R_1, R_3, L_1, L_2 \) и \(n \) соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00106] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формул IV-a–IV-d:
или его фармацевтически приемлемая соль, где каждый из R_{11}, R_{12}, R^3 и L^2 соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00107] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы V:

(V)

или его фармацевтически приемлемая соль, где каждый из R^1, R^2, R^3, R, L^1 и n соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00108] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формул V-a–V-d:

(V-a)

(V-b)

(V-c)

(V-d)

или его фармацевтически приемлемая соль, где каждый из R_{11}, R_{12}, R^2, R^3 и R соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00109] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы VI:
или его фармацевтически приемлемая соль, где каждый из R^1, R^2, R^3, R, L^1 и n соответствует
описанию, представленному выше, и описан в вариантах осуществления настоящего
dокумента, как по отдельности, так и в комбинации.

[00110] В некоторых вариантах осуществления в настоящем изобретении предложено
соединение формулы VI-a–VI-d:

(VI-a)

или его фармацевтически приемлемая соль, где каждый из R^{11}, R^{12}, R^2, R^3 и R соответствует
описанию, представленному выше, и описан в вариантах осуществления настоящего
dокумента, как по отдельности, так и в комбинации.

[00111] В некоторых вариантах осуществления в настоящем изобретении предложено
соединение формулы VII:

(VII)

или его фармацевтически приемлемая соль, где каждый из R^1, R^2, L^1, L^2 и n соответствует
описанию, представленному выше, и описан в вариантах осуществления настоящего
dокумента, как по отдельности, так и в комбинации.

[00112] В некоторых вариантах осуществления в настоящем изобретении предложено
соединение формулы VII-a–VII-d:

(VII-d)
или его фармацевтически приемлемая соль, где каждый из \(R^{11}, R^{12}, R^2 \) и \(L^2 \) соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00113] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы VIII:

![Diagram of VIII](image)

или его фармацевтически приемлемая соль, где каждый из \(R, R^2, L^1 \) и кольца \(A \) соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00114] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы VIII-a:

![Diagram of VIII-a](image)

или его фармацевтически приемлемая соль, где каждый из \(R, R^2, R^1 \) и п соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00115] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формул VIII-b или VIII-C:
или его фармацевтически приемлемая соль, где каждый из R^2, R^1 и p соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации.

[00116] В некоторых вариантах осуществления в настоящем изобретении предложено соединение формулы (VIII-d):

![Chemical structure](image)

или его фармацевтически приемлемая соль, где каждый из R^2, R^{11} и R^{12} соответствует описанию, представленному выше, и описан в вариантах осуществления настоящего документа, как по отдельности, так и в комбинации. В некоторых вариантах осуществления R^{11} представляет собой галоген. В некоторых вариантах осуществления R^{12} представляет собой $-OR$, где R соответствует описанию, представленному в данном документе. В некоторых вариантах осуществления R^{12} представляет собой $-OR$, где R обязательно замешен $-C_{1-6}$ алифатической группой. В некоторых вариантах осуществления R^{12} представляет собой $-OR$, где R представляет собой необязательно замещенный $-C_{1-6}$ алкил. В некоторых вариантах осуществления R^{12} представляет собой $-OR$, где R представляет собой незамешенный $-C_{1-6}$ алкил или $-C_{1-6}$ алкил, замещенный 1, 2, 3, 4, 5 или 6 раз галогеном. В некоторых вариантах осуществления R^{12} представляет собой $-OR$, где R представляет собой $-C_{1-6}$ алкил, где по меньшей мере одно метиленовое звено заменено на $-O-$.

[00117] Иллюстративные соединения по настоящему изобретению представлены в таблице 1 ниже.

[00118] В некоторых вариантах осуществления в настоящем изобретении предложено соединение из таблицы 1 или его фармацевтически приемлемая соль.

[00119] В некоторых вариантах осуществления в настоящем изобретении предложено соединение, выбранное из тех, которые указаны в разделе «Иллюстративные примеры», или его фармацевтически приемлемая соль.

Таблица 1. Иллюстративные соединения
4. Составление и введение

4.1 Фармацевтически приемлемые композиции

[00120] Согласно другому варианту осуществления в изобретении предложена композиция, содержащая соединение по данному изобретению или его фармацевтически приемлемое производное и фармацевтически приемлемый носитель, адъювант или несущую среду. Количество соединения в композициях по настоящему изобретению является таким, которое является эффективным для измеримого ингибирования eIF4E или его мутанта, в биологическом образце или у пациента. В некоторых вариантах
осуществления количество соединения в композициях по настоящему изобретению является таким, которое является эффективным для измеримого ингибирования eIF4E или его мутанта, в биологическом образце или у пациента. В определенных вариантах осуществления композиция по данному изобретению составлена для введения пациенту, нуждающемуся в такой композиции. В некоторых вариантах осуществления композиция по данному изобретению составлена для перорального введения пациенту.

[00121] В некоторых вариантах осуществления в изобретении предложена фармацевтическая композиция, содержащая соединение формулы (I) или его фармацевтически приемлемую соль и фармацевтически приемлемый носитель, адъюvant или несущую среду.

[00122] В некоторых вариантах осуществления в обретении предложена фармацевтическая композиция, содержащая соединение формулу (II)-(VII), (II-a)-(VII-a), (II-b)-(VII-b) или его фармацевтически приемлемую соль и фармацевтически приемлемый носитель, адъюvant или несущую среду.

[00123] В некоторых вариантах осуществления в изобретении предложена фармацевтическая композиция, содержащая соединение из таблицы 1 или его фармацевтически приемлемую соль и фармацевтически приемлемый носитель, адъюvant или несущую среду.

[00124] В некоторых вариантах осуществления соединение по изобретению или его фармацевтически приемлемое производное или композицию вводят в одной композиции в виде единичной дозированной лекарственной формы.

[00125] Термин «пациент» в контексте данного документа означает животное, предпочтительно млекопитающее, и наиболее предпочтительно человек.

[00126] Термин «фармацевтически приемлемый носитель, адъюvant или несущая среда» относится к негидратированному носителю, адъюванту или несущей среде, которые не нарушают фармакологическую активность соединения, с которым он составлен. Фармацевтически приемлемые носители, адъюванты или несущие среды, которые можно использовать в композициях по данному изобретению, включают, но не ограничиваются ими, ионообменники, оксид алюминия, стеарат алюминия, лецитин, сывороточные белки, такие как сывороточный альбумин человека, буферные вещества, такие как фосфаты, глицин, сорбиновая кислота, сорбат калия, частичные глицеридные смеси насыщенных растительных жирных кислот, вода, соли или электролиты, такие как протаминсульфат, динатрийгидрофосфат, гидрофосфат калия, хлорид натрия, соли цинка, коллоидный кремнезем, трициллиат магния, поливинилипирролидон, вещества на основе целлюлозы, полиэтиленгликоль, натрийкарбоксиметилцеллюлоза, полиакрилаты, воски, полиэтилен-
полиоксипропиленовые блок-полимеры, полиэтиленгликоль и ланолин.

[00127] «Фармацевтически приемлемое производное» означает любую нетоксичную соль, сложный эфир, соль сложного эфира или иное производное соединения данного изобретения, которые при введении рецептуру способны обеспечить прямо или косвенно, соединение по данному изобретению или ингибиторно активный метаболит или его остаток.

[00128] В контексте данного документа термин «метаболит или его остаток, обладающий ингибиторной активностью» означает, что метаболит или его остаток также является ингибитором eIF4E или его мутанта.

[00129] Композиции по данному изобретению можно вводить перорально, парентерально, с помощью ингаляционного спрея, местно, ректально, назально, букально, вагинально или через имплантированный резервуар. В контексте данного документа термин «парентеральный» включает подкожную, внутривенную, внутримышечную, внутрисуставную, интрасиновиальную, интратернальную, интраперitoneальную, внутривеночную, внутриочаговую и внутривенеренную инъекцию или инфузионные методики. Предпочтительно композиции вводят перорально, внутрибрюшинно или внутривенно. Стерильные инъекционные формы композиций настоящего изобретения могут представлять собой водную или масляную суспензию. Эти суспензии могут быть составлены согласно методикам, известным в данной области техники, с использованием подходящих диспергирующих или смачивающих веществ и суспенсирующих веществ. Стерильный препарат для инъекций может находиться в виде стерильного раствора для инъекций или суспензии в нетоксичном парентерально-приемлемом разбавителе или растворителе, например, в виде раствора в 1,3-бутандиоле. К приемлемым несуспензионным средам и растворителям, которые можно использовать, относятся вода, раствор Рингера и изотонический раствор хлорида натрия. Средам Кроме того, стерильные несмешивающиеся масла обычно используются в качестве растворителя или суспенсирующей среды.

[00130] Для этой цели можно использовать любое мягкое нелетучее масло, включая синтетические моно- или диgliциериды. Жирные кислоты, такие как олеиновая кислота и ее глицеридные производные подходят при приготовлении инъекционных растворов, также как и натуральные фармацевтически приемлемые масла, такие как оливковое масло или касторовое масло, особенно в форме их полиолефилированных производных. Эти масляные растворы или суспензии могут также содержать разбавитель на основе диметилфталата или диспергатор, такой как карбоксиметилцеллюлоза или аналогичные диспергирующие агенты, которые обычно используются в составлении фармацевтически приемлемых дозированных форм, включая эмульсии и суспензии.
Другие обычно используемые поверхностно-активные вещества, такие как Tweens, Spans и другие эмульгаторы или усилители биодоступности, которые обычно используются при производстве фармацевтически приемлемых твердых, жидких или других лекарственных форм, также могут быть использованы для целей подбора состава.

[00131] Фармацевтически приемлемые композиции по данному изобретению можно вводить перорально в любой приемлемой для перорального применения лекарственной форме, включая, но не ограничиваясь ими, капсулы, таблетки, водные суспензии или растворы. В случае таблеток для перорального применения обычно используемые носители включают лактозу и кукурузный крахмал. Также обычно добавляют смазывающие вещества, такие как стеарат магния. Для перорального введения в форме капсулы полезные разбавители включают лактозу и сухой кукурузный крахмал. Когда водные суспензии необходимы для перорального применения, активный ингредиент объединяют с эмульгирующими и суспендирующими веществами. Если желательно, могут быть добавлены определенные подсластывающие, ароматизирующие или красящие вещества.

[00132] Альтернативно, фармацевтически приемлемые композиции настоящего изобретения можно вводить в виде суппозиториев для ректального введения. Они могут быть получены путем смешивания данного агента с подходящим не раздражающим экскipientsом, который является твердым при комнатной температуре, но жидким при ректальной температуре и, следовательно, расплавится в прямой кишке, чтобы высвободить лекарственное средство. Такие материалы включают масло какао, пчелиный воск и полиэтиленгликоли.

[00133] Фармацевтически приемлемые композиции настоящего изобретения также можно вводить местно, особенно когда мишень лечения включает области или органы, легко доступные посредством местного применения, включая заболевания глаз, кожи или нижнего кишечного тракта. Подходящие составы для местного применения легко приготовить для каждой из этих областей или органов.

[00134] Местное применение для нижних отделов кишечного тракта может осуществляться в виде ректальных суппозиториев (см. выше) или подходящих составов для клизмы. Также могут использоваться трансдермальные пластыри для местного применения.

[00135] Для местного применения предложенные фармацевтически приемлемые композиции могут быть составлены в виде подходящей мази, содержащей активный компонент, суспендированный или растворенный в одном или более носителях. Носители для местного введения соединений по данному изобретению включают, но не...
ограничиваются ими, минеральное масло, жидкый вазелин, белый вазелин, пропиленгликоль, поликсиэтилен, соединение полиоксипропилена, воск неионный эмульгированный и воду. Альтернативно, предложенные фармацевтически приемлемые композиции могут быть составлены в виде подходящего лосьона или крема, содержащем активные компоненты, суспендированные или растворенные в одном или более фармацевтически приемлемых носителях. Подходящие носители включают, но не ограничиваются ими, минеральное масло, моностеарат сорбитана, полисорбат 60, воск цетиловых эфиров, цетаериловый спирт, 2-октилдодеканол, бензиловый спирт и воду.

[00136] Для офтальмологического применения предоставленные фармацевтически приемлемые композиции могут быть составлены в виде микронизированных суспензий в изотоническом стерильном физиологическом растворе с отрегулированным pH или, предпочтительно, в виде растворов в изотоническом стерильном физиологическом растворе с отрегулированным pH, как с так и без консерванта, такого как хлорид бензилалканиона. В альтернативном варианте для офтальмологического применения фармацевтически приемлемые композиции могут быть приготовлены в виде мази, такой как вазелин.

[00137] Фармацевтически приемлемые композиции по данному изобретению также можно вводить с помощью назального аэрозоля или ингаляции. Такие композиции готовят согласно методикам, хорошо известным в области фармацевтических препаратов, и могут быть приготовлены в виде растворов в физиологическом растворе с использованием бензилового спирта или других подходящих консервантов, промоторов абсорбции для повышения биодоступности, фторуглеродов и/или других обычных солубилизирующих или диспергирующих агентов.

[00138] Наиболее предпочтительно фармацевтически приемлемые композиции по данному изобретению составлены для перорального введения. Такие составы можно вводить с пищей или без нее. В некоторых вариантах осуществления фармацевтически приемлемые композиции по данному изобретению вводят без пищи. В других вариантах осуществления фармацевтически приемлемые композиции по данному изобретению вводят с пищей.

[00139] Количество соединений по настоящему изобретению, которые можно комбинировать с материалами-носителями для получения композиции в единичной дозированной лекарственной форме, будут варьироваться в зависимости от подвергаемого лечению хозяина и конкретного способа введения. Предпочтительно предложенные композиции составлены таким образом, что пациенту, получающему эти композиции, может вводиться доза соединений от 0,01 до 100 mg/kg массы тела/сутки.
Следует также понимать, что конкретная дозировка и схема лечения для любого конкретного пациента будут зависеть от множества факторов, включая активность конкретно применяемого соединения, возраст, массу тела, общее состояние здоровья, пол, дюитету, время введения, скорость выделения, комбинацию лекарственных средств и суждение лечащего врача и степень тяжести конкретного заболевания, которое подвергается лечению. Количество соединения по данному изобретению в композиции также будет зависеть от конкретного соединения в композиции.

4.2. Совместное введение с одним или более другими терапевтическими средствами

В зависимости от конкретного состояния или заболевания, подлежащего лечению, в композициях по настоящему изобретению также могут присутствовать дополнительные терапевтические средства, которые обычно вводят для лечения этого состояния. В контексте данного документа дополнительные терапевтические средства, которые обычно вводят для лечения конкретного заболевания или состояния, известны как «подходящие для заболевания или состояния, подвергаемого лечению».

В некоторых вариантах осуществления в настоящем изобретении предложен способ лечения описанного заболевания или состояния, включающий введение пациенту, нуждающемуся в этом, эффективного количества соединения, описанного в настоящем документе, или его фармацевтически приемлемой соли и совместное или последовательное введение эффективного количества одного или более дополнительных терапевтических средств, таких как описанные в данном документе. В некоторых вариантах осуществления способ включает совместное введение одного дополнительного терапевтического средства. В некоторых вариантах осуществления способ включает совместное введение двух дополнительных терапевтических средств. В некоторых вариантах осуществления комбинация описанного соединения и дополнительного терапевтического средства или средств действует синергетически.

Соединение по настоящему изобретению можно также использовать в комбинации с известными терапевтическими способами, например введением гормонов или облучением. В определенных вариантах осуществления предложенное соединение используется в качестве радиосенсибилизатора, особенно для лечения опухолей, которые демонстрируют плохую чувствительность к лучевой терапии.

Соединение по настоящему изобретению можно вводить отдельно или в комбинации с одним или более другими терапевтическими соединениями, причем возможная комбинированная терапия может принимать форму фиксированных комбинаций или введения соединения по изобретению и одного или более других
терапевтических соединений поэтапно или независимо друг от друга, или комбинированного введения фиксированных комбинаций и одного или более других терапевтических соединений. Соединение по настоящему изобретению можно помимо этого или в дополнение вводить, в частности, для лечения опухолей в сочетании с химиотерапией, радиотерапией, иммунотерапией, фототерапией, хирургическим вмешательством или их комбинацией. Длительная терапия в равной степени возможна, как и адъювантная терапия в контексте других стратегий лечения, как описано выше. Другими возможными видами лечения являются терапия для поддержания состояния пациента после регрессии опухоли или даже химиопрофилактическая терапия, например, у пациентов из группы риска.

[00145] Одно или более других терапевтических средств можно вводить отдельно от соединения или композиции по изобретению в качестве части режима многократного дозирования. Альтернативно, один или более других терапевтических средств могут входить в состав единичной дозированной лекарственной формы, которые смешиваются с соединением по настоящему изобретению в одной композиции. При введении в виде режима многократного дозирования одно или более других терапевтических средств и соединение или композицию по изобретению можно вводить одновременно, последовательно или с определенным интервалом, например, с интервалом в 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 20, 21, 22, 23 или 24 часа. В некоторых вариантах осуществления одно или более других терапевтических средств и соединение или композицию по изобретению вводят в виде режима многократного дозирования с интервалом более 24 часов.

[00146] В контексте данного документа термин «комбинация», «комбинированный» и родственные термины относятся к одновременному или последовательному введению терапевтических средств в соответствии с данным изобретением. Например, соединение по настоящему изобретению можно вводить с одним или более другими терапевтическими средствами одновременно или последовательно в отдельных стандартных дозированных формах или вместе в одной стандартной дозированной форме. Соответственно, в настоящем изобретении предложены стандартная дозированная форма, содержащая соединение по настоящему изобретению, одно или более других терапевтических средств и фармацевтически приемлемый носитель, адъювант или несущая среда.

[00147] Количество соединения по настоящему изобретению и одного или более других терапевтических средств (в тех композициях, которые содержат дополнительное терапевтическое средство, как описано выше), которые могут быть объединены с материалами носителей для получения единичной дозированной лекарственной формы,
будет варьироваться в зависимости от пациента, подлежащего лечению, и конкретного способа введения. Предпочтительно композиция по изобретению должна быть составлена таким образом, чтобы можно было вводить дозу соединения от 0,01 до 100 мг/кг массы тела/сутки согласно настоящему изобретению.

[00148] В тех композициях, которые содержат одно или более других терапевтических средств, одно или более других терапевтических средств и соединение по изобретению могут действовать синергически. Таким образом, количество одного или более других терапевтических средств в таких композициях может быть меньше, чем требуется при монотерапии с использованием только этого терапевтического средства. В таких композициях можно вводить дозу от 0,01 до 1000 μг/кг массы тела/сутки одного или более других терапевтических средств.

[00149] Количество одного или более других терапевтических средств, присутствующих в композициях по настоящему изобретению, может быть не больше, чем количество, которое обычно вводят в композиции, содержащей это терапевтическое средство в качестве единственного активного средства. Предпочтительно количество одного или более других терапевтических средств в композициях, раскрываемых в настоящем документе, будет находиться в диапазоне от около 50% до 100% от количества, обычно присутствующего в композиции, содержащей это средство в качестве единственного терапевтически активного средства. В некоторых вариантах осуществления одно или более других терапевтических средств вводят в дозе около 50%, около 55%, около 60%, около 65%, около 70%, около 75%, около 80%, около 85%, около 90% или около 95% от количества, обычно вводимого для этого средства. В контексте данного документа фраза «обычно вводимая доза» означает количество одобренного FDA терапевтического средства, одобренного для введения согласно инструкции по применению, утвержденной FDA.

[00150] Соединения по данному изобретению или их фармацевтические композиции также могут быть включены в композиции для покрытия имплантируемых медицинских устройств, таких как протезы, искусственные клапаны, сосудистые трансплантаты, стенты и катетеры. Сосудистые стенты, например, использовались для предотвращения рестеноза (повторного сужения стенки сосуда после повреждения). Однако у пациентов, использующих стенты или другие имплантируемые устройства, существует риск образования тромбов или активации тромбоцитов. Эти нежелательные эффекты можно предотвратить или ослабить путем предварительного покрытия устройства фармацевтически приемлемой композицией, содержащей ингибитор киназы. Имплантируемые устройства, покрытые соединением по настоящему изобретению, представляют еще один вариант осуществления настоящего изобретения.
4.2.1. Примеры других терапевтических средств

[00151] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор поли-АДФ-рибоза-полимеразы (PARP). В некоторых вариантах осуществления ингибитор PARP выбран из олапарива (Lynparza®, AstraZeneca); рукапарива (Rubraca®, Clovis Oncology); нирапарива (Zejula®, Tesaro); талазопарива (MDV3800/BMN 673/LT00673, Medivation/Pfizer/Biomarin); велипарива (ABT-888, AbbVie); и BGB-290 (BeiGene, Inc.).

[00152] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор гистондеактилизы (HDAC). В некоторых вариантах осуществления ингибитор HDAC выбран из вориностаты (Zolinza®, Merck); ронизолина (Istodax®, Celgene); панобростата (Farydak®, Novartis); белиностаты (Beleodaq®, Spectrum Pharmaceuticals); энтиностаты (SNDX-275, Syndax Pharmaceuticals) (NCT00866333), и хидамида (Epidaza®, HBI-8000, Chipscreen Biosciences, Китай).

[00153] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор CDK, такой как ингибитор CDK4/CDK6. В некоторых вариантах осуществления ингибитор CDK 4/6 выбран из палбоциклиба (Ibrance®, Pfizer); рибоксимиба (Kisqali®, Novartis); абемациклина (Ly2835219, Eli Lilly); и трилациклина (G1T28, G1 Therapeutics).

[00154] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор фосфатидиинозитол-3-киназы (PI3K). В некоторых вариантах осуществления ингибитор PI3K выбран из идеалаксина (Zydelig®, Gilead), апелаксина (BYL719, Novartis), газелинсурина (GDC-0032, Genentech/Roche); пикелилина (GDC-0941, Genentech/Roche); копеаксина (BAY806946, Bayer); дувелексина (ранее IPI-145, Infinity Pharmaceuticals); PQR309 (Piquor Therapeutics, Швейцария); и TGR1202 (ранее RP5230, TG Therapeutics).

[00155] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой терапевтическое средство на основе платины, также называемые препаратами платины. Препараты платины вызывают перекрестное сшивание ДНК, в результате чего они ингибируют репаразацию ДНК и/или синтез ДНК, преимущественно в быстро размножающихся клетках, таких как раковые клетки. В некоторых вариантах осуществления терапевтического средства на основе платины выбрано из цисплатина (Platinol®, Bristol-Myers Squibb); карбоплатина (Paraplatin®, Bristol-Myers Squibb); также, Teva; Pfizer); оксалиплатина (Eloxatin® Sanofi-Aventis); недаплатина (Aqapla®, Shionogi), никоплатина (Poniard Pharmaceuticals); и сатраплатина (JM-216,
Агеннакс).

[00156] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой соединение таксана, которое вызывает разрушение микротрубочек, необходимых для деления клеток. В некоторых вариантах осуществления соединение таксана выбрано из паклитаксела (Taxol®, Bristol-Myers Squibb), докетаксела (Taxotere®, Sanofi-Aventis; Docefréz®, Sun Pharmaceutical), паклитаксела, связанного с альбумином (Abraxane®, Abraxis/Celgene), кабазитаксела (Jevtana®, Sanofi-Aventis) и SID530 (SK Chemicals, Co.) (NCT00931008).

[00157] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор нуклеозидов или терапевтическое средство, которое препятствуют нормальному синтезу ДНК, синтезу белка, репликации клеток или иным образом ингибирует быстро пролиферирующие клетки.

[00158] В некоторых вариантах осуществления нуклеозидный ингибитор выбран из трабектедина (алкилирующий агент гуаниндины, Yondelis®, Janssen Oncology), меклорэтамина (алкилирующий агент, Valchlor®, Actelion Pharmaceuticals); винкрстинина (OOnccovin®, Eli Lilly; Vincasar®, Teva Pharmaceuticals; Marqibo®, Talon Therapeutics); темозоломида (пролекарство алкилирующего агента 5-(3-метилтриазен-1-ил)имидазол-4-карбоксамида (MTIC) Temodar®, Merck); инъекции цитарбинна (ara-C, аптиметаболический аналог цитидина, Pfizer); ломустинна (алкилирующий агент, CeeNU®, Bristol-Myers Squibb; Gleostine®, NextSource Biotechnology); азацитидина (нерастворимый нуклеозидный аналог цитидина, Vidaza®, Celgene); орацетаксина мепесукцината (сложный эфир цефалотаксина) (ингибитор синтеза белка, Synribo®; Teva Pharmaceuticals); аспарагиназы Erwinia chrysantheni (фермент для истощения запасов аспарагина, Elspar®, Lundbeck; Erwinaze®, EUSA Pharma); эрибулина мезилата (ингибитор микротрубочек, антимитотик на основе тубулина, Halaven®, Eisai); кабазитаксел (ингибитор микротрубочек, антимитотик на основе тубулина, Jevtana®, Sanofi-Aventis); капацитрина (ингибитор тимидилатсинтазы, Xeloda®, Genentech); бендалумстина (бифункциональное производное меклорэтамина, которое, как полагают, образует межпятвые сшивки ДНК, TTreanda®, Cephalon/Teva); иксбепилона (полусинтетический аналог эпобилона B, ингибитор микротрубочек, антимитотик на основе тубулина, Ixempra®, Bristol-Myers Squibb); неларабина (пролекарство аналога дезоксикутанозина, нуклеозидный ингибитор метаболизма, Artanon®, Novartis); клорафабина (пролекарство ингибитора рибонуклеотидредуктазы, конкурентный ингибитор дезоксицитидина, Clofar®; Sanofi-Aventis); а также трифлуридина и типравляла (аналог нуклеозида на основе тимидина и ингибитор тимидинфосфорилазы, Lonsurf®, Taiho Oncology).
В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор киназы или антагонист VEGF-R. Одобрённые ингибиторы VEGF и ингибиторы киназы, применимые в настоящем изобретении, включают: бевацизумаб (Avastin®, Genentech/Roche), моноклональное антитело к VEGF; рамцирилумаб (Cyramza®, Eli Lilly), антитело к VEGFR-2 и зив-афилиберецепт, также известный как ловушка VEGF (Zaltrap®, Regeneron/Sanoﬁ). Ингибиторы VEGFR, такие как регорефабин (Stivarga®, Bayer); вандетанibi (Caprelsa®, AstraZeneca); акситинibi (Inlyta®, Pfizer); и ленванитibi (Lenvima®, Eisai); ингибиторы Raf, такие как сорafenibi (Nexavar®, Bayer AG и Onyx); дабрабенibi (Tafinlar®, Novartis); и вемурафенibi (Zelboraf®, Genentech/Roche); ингибиторы MEK, такие как кобиметаниум (Cotellic®, Exelexis/Genentech/Roche); траметинibi (Mekinist®, Novartis); ингибиторы тирозинкиназы Bcr-Abl, такие как иматинibi (Gleevec®, Novartis); нилотинibi (Tasigna®, Novartis); дазатинibi (Sprycel®, Bristol-Myers Squibb); босутинibi (Bosulif®, Pfizer); и понатинibi (Inclusig®, Ariad Pharmaceuticals); ингибиторы Her2 и EGFR, такие как гефитинibi (Iressa®, AstraZeneca); эрлотинibi (Tarceva®, Genentech/Roche/Astellas); лапатинibi (Tykerb®, Novartis); афатинibi (Gilotrif®, Boehringer Ingelheim); осмертинibi (нацелинный на активированный EGFR, Tagrisso®, AstraZeneca); и брипратинibi (Alunbrig®, Ariad Pharmaceuticals); ингибиторы c-Met и VEGFR2, такие как кабозантинibi (Cometrig®, Exelexis); и мультикиназные ингибиторы, такие как сунитинibi (Sutent®, Pfizer); пазопаниби (Votrient®, Novartis); ингибиторы ALK, такие как кризотинibi (Xalkori®, Pfizer); церизолibi (Zykadia®, Novartis); и алетинibi (Alecenza®, Genentech/Roche); ингибиторы тирозинкиназы Брутона, такие как ибрутинibi (Imbruvica®, Pharmcyclics/Janssen); и ингибиторы рецепторов Fli3, такие как мидостаурин (Rydapt®, Novartis).

Другие ингибиторы киназы и антагонисты VEGF-R, которые находятся на стадии разработки и могут быть использованы в настоящем изобретении, включают: тивозериби (Aveo Pharmaeuticals); ваталаници (Bayer/Novartis); луцитаниби (Clovis Oncology); довитинibi (TKI258, Novartis); Chiauanibi (Chipscreen Biosciences); CEP-11981 (Cephalon); лицифианиби (Abbott Laboratories); нератинibi (HKI-272, Puma Biotechnology); радотинibi (Supect®, IY5511, II-Yang Pharmaceuticals, Южная Корея); рукосинтаниби (Jakafi®, Incyte Corporation); PTC299 (PTC Therapeutics); CP-547,632 (Pfizer); форетинibi (Exelexis, GlaxoSmitKline); квиантинibi (Daiichi Sankyo) и мотесаниби (Amgen/Takeda).

В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор mTOR, который ингибитует пролиферацию клеток, ангиогенез и поглощение глюкозы. В некоторых вариантах осуществления ингибитор mTOR представляет собой эверолимус (Afinitor®, Novartis); темсиолимус (Torisel®,
Pfizer); и сиролимус (Rapamune®, Pfizer).

[00162] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибиторы протеасом. Одобренные ингибиторы протеасом, применимые в настоящем изобретении, включают бортэзомиб (Velcade®, Takeda); карфилзомиб (Kyprolis®, Amgen); и иксазомиб (Ninlaro®, Takeda).

[00163] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой антагонист фактора роста, такие как антагонист тромбоцитарного фактора роста (PDGF) или эпидермального фактора роста (EGF) или его рецептора (EGFR). Одобренные антагонисты PDGF, которые могут быть использованы в настоящем изобретении, включают оларатумаб (Lartruvo®, Eli Lilly). Одобренные антагонисты EGFR, которые можно использовать в настоящем изобретении, включают цетуксимаб (Erbitux®, Eli Lilly), нецитумаб (Portrazza®, Eli Lilly), панитумумаб (Vectibix®, Amgen); и осимертиниб (нацеленный на активированный EGFR, Tagrisso®, AstraZeneca).

[00164] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор ароматазы. В некоторых вариантах осуществления ингибитор ароматазы выбран из экземпелана (Aromasin®, Pfizer); анастазол (Arimidex®, AstraZeneca) и летрозол (Femara®, Novartis).

[00165] В некоторых вариантах осуществления одно или более других терапевтических средств являются антагонистом пути hedgehog. Одобренные ингибиторы пути hedgehog, которые можно использовать в настоящем изобретении, включают сонидегиб (Odomzo®, Sun Pharmaceuticals); и висмодегиб (Erivedge®, Genentech), оба для лечения базально-клеточной карциномы.

[00166] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор фолиевой кислоты. Одобренные ингибиторы фолиевой кислоты, применимые в настоящем изобретении, включают пеметрексед (Alimta®, Eli Lilly).

[00168] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор изоцитратдегидрогеназы (IDH). Исследуемые ингибиторы IDH, которые можно использовать в настоящем изобретении, включают AG120 (Celgene; NCT02677922); AG221 (Celgene, NCT02677922; NCT02577406);
BAY1436032 (Bayer, NCT02746081); IDH305 (Novartis, NCT02987010).

В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор аргиназы. Исследуемые ингибиторы аргиназы, которые могут быть использованы в настоящем изобретении, включают AEB1102 (пегилированная рекомбинантная аргиназа, Aeglea Biotherapeutics), которая проходит исследование в ходе клинических испытаний фазы I остого миелодного лейкоза и миелодиспластического синдрома (NCT02732184), а также солидных опухолей (NCT02561234); и CB-1158 (Calithera Biosciences).

В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор глутаминазы. Исследуемые ингибиторы глутаминазы, которые могут быть использованы в настоящем изобретении, включают CB-839 (Calithera Biosciences).

В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой антитело, которое связывается с опухолевыми антителами, то есть белками, экспрессируемые на клеточной поверхности опухолевых клеток. Одобренные антитела, которые связаны с опухолевыми антителами, которые можно использовать в настоящем изобретении, включают ритуксимаб (Rituxan®, Genentech/BiogenIdec); офатумумаб (антитело к CD20, Arzerra®, GlaxoSmithKline); обинутузумаб (антитело к CD20, Газива®, Genentech), ибритумомаб (антитело к CD20 и иттрий-90, Зевалин®, Spectrum Pharmaceuticals); дарatumумаб (антитело к CD38, Darzalex®, Janssen Biotech), динутуксимаб (антитело к ДГ2, Unituxin®, United Therapeutics); тразустамб (антитело к HER2, Herceptin®, Genentech); адо-тразустамб эмтанзин (антитело к HER2, слитое с эмтанзином, Kadcyla®, Genentech); и пентукусимб (антитело к HER2, Perjeta®, Genentech); и брентукусимб ведотин (конъюгат антитела к CD30-лекарственное средство, Adcetris®, Seattle Genetics).

В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор топоизомеразы. Одобренные ингибиторы топоизомеразы, применимые в настоящем изобретении, включают ингибитор (Onivyde®, Merrimack Pharmaceuticals); топотекан (Hyocin®, GlaxoSmithKline). Исследуемые ингибиторы топоизомеразы, которые могут быть использованы в настоящем изобретении, включают пикусантрон (Pixuvri®, CTI Biopharma).

В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор антиапоптотических белков, таких как BCL-2. Одобренные антиапоптотические средства, которые можно использовать в настоящем изобретении, включают венетокласк (Venclexta®, AbbVie/Genentech); и блинатумомаб
(Blincyto®, Amgen). Другие терапевтические средства, нацеленные на апоптотические белки, которые прошли клинические испытания и могут быть использованы в настоящем изобретении, включают навитокласк (ABT-263, Abbott), ингибитор BCL-2 (NCT02079740).

[00174] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой ингибитор андрогенных рецепторов. Одобрённые ингибиторы андрогенных рецепторов, применимые в настоящем изобретении, включают энзалутамид (Xtandi®, Astellas/Medivation); одобрённые ингибиторы синтеза андрогенов включают абиаратерон (Zytiga®, Centocor/Ortho); одобрённый антагонист рецептора гонадотропин-рилизинг-гормона (GnRH) (дегараликс, Firmagon®, Ferring Pharmaceuticals).

[00175] В некоторых вариантах осуществления одна или более других терапевтических средств представляют собой селективный модулятор эстрогеновых рецепторов (SERM), который препятствует синтезу или активности эстрогенов. Одобрённые SERM, применимые в настоящем изобретении, включают ралоксифен (Evista®, Eli Lilly).

[00176] В некоторых вариантах осуществления одна или более других терапевтических средств представляют собой ингибитор резорбции костной ткани. Одобрённым терапевтическим средством, которое ингибитирует резорбцию костной ткани, является деносумаб (Xgeva®, Amgen), антитело, которое связывается с RANKL, предотвращает связывание с его рецептором RANK, обнаруженным на поверхности остеокластов, их предшественников и остеокластоподобных гигантских клеток, которые опосредуют патологию костной ткани при солидных опухолях с костными метастазами. Другие одобрённые терапевтические средства, ингибирующие резорбцию костной ткани, включают бисфосфонаты, такие как золедроновая кислота (Zometa®, Novartis).

[00178] В некоторых вариантах осуществления одна или более других терапевтических средств представляют собой ингибитор трансформирующего фактора роста-бета (TGF-beta или TGFβ). Исследуемые ингибиторы белков TGF-beta, которые могут быть использованы в настоящем изобретении, включают NIS793 (Novartis), антитело к TGF-beta, которое
тестируется в клинических исследованиях для лечения различных видов рака, включая рак молочной железы, легких, гепатоцеллюлярный рак, колоректальный рак, рак поджелудочной железы, рак предстательной железы и рак почки (NCT 02947165). В некоторых вариантах осуществления ингибитор белков TGF-бета представляет собой фрезолимумаб (GC1008; Sanofi-Genzyme), который исследуют для лечения меланомы (NCT00923169); почечно-клеточной карциномы (NCT00356460); и немелкоклеточного рака легкого (NCT02581787). Кроме того, в некоторых вариантах осуществления дополнительное терапевтическое средство представляет собой ловушку TGF-бета, такую как описана в публикации Connolly et al. (2012) Int’l J. Biological Sciences 8:964-978. Одним
из терапевтических соединений, которые в настоящее время проходят клинические испытания для лечения солидных опухолей, является M7824 (Merck KgaA - ранее MSB0011459X), которое представляет собой биспецифическое соединение-ловушку против PD-L1/TGFβ (NCT02699515); и (NCT02517398). M7824 состоит из полностью человеческого антитела класса IgG1 к PD-L1, слизового с внеклеточным доменом рецептора II TGF-бета человека, который функционирует как «ловушка» TGFβ.

[00179] В некоторых вариантах осуществления одно или более других терапевтических средств выбраны из глюкобатумумаба, ведотин-монометилауристина Е (MMAE) (Cellidex), антитела к гликопротеину NMB (gpNMB) (CR011), связанного с цитотоксическим MMAE. gpNMB представляет собой белок, сверхэкспрессируемый несколькими типами опухолей, ассоциируемый со способностью раковых клеток к метастазированию.

[00180] В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой антипролиферативное соединение. Такие антипролиферативные соединения включают, но не ограничиваются ими, ингибиторы аромата, антагонисты; ингибиторы топоизомеразы I, ингибиторы топоизомеразы II, активные соединения на основе микротрубочек; аликирующие соединения; ингибиторы гистондеацетилазы; соединения, индуцирующие процессы дифференцировки клеток; ингибиторы циклооксигеназы; ингибиторы MMP, ингибиторы mTOR, противоопухолевые антиметаболиты; соединения платины; соединения, нацеленные на/снижающие активность белка или липидкиназы, и дополнительные антиангиогенные соединения; соединения, которые нацелены на, снижают или ингибируют активность белка или липидной фосфатазы; агонисты гонадореина; антиандрогены; ингибиторы метионинаминопептидазы; ингибиторы матричных металлопротеиназ; бисфосфонаты; модификаторы биологического ответа; антипролиферативные антитела; ингибиторы гепараназы; ингибиторы онкогенных изоформ Ras; ингибиторы теломеразы, ингибиторы протеасом; соединения, применяемые при лечении гематологических злокачественных
новообразований; соединения, которые нацелены на, снижают или ингибируют активность Flt-3; ингибиторы Hsp90, такие как такие как 17-AAG (17-аллиламиногельданамин, NSC330507), 17-DMAG (17-диметиламинозиламино-17-деметокси-гельданамин, NSC707545), IPI-504, CNF1010, CNF2024, CNF1010 от Conforma Therapeutics; темозоломид (Temodal®); ингибиторы киназного белка митотического веретена, такие как SB715992 или SB743921 от GlaxoSmithKline, или пентамидин/хлорпромазин от CombinatoRx; ингибиторы MEK, такие как ARRY142886 от Array BioPharma, AZd6244 от AstraZeneca, PD181461 от Pfizer и лейковорин.

[00181] В контексте данного документа термин «ингибитор ароматазы» относится к соединению, которое ингибирует выработку эстрогена, например, превращение субстратов андростендиона и тестостерона в эстрон и эстрadiол, соответственно. Термин включает, но не ограничивается ими, стероиды, особенно атаместан, экземестан и форместан, и, в частности, нестероидные средства, особенно аминоглютетимид, роглетимид, пироглютетимид, трилостан, тестостерон, кетоконазол, ворозол, фадrozол, анастрозол и летрозол. Экземестан продается под торговым наименованием Aromasin™. Форместан продается под торговым наименованием Lentaron™. Фадrozол продается под торговым наименованием Afema™. Анастрозол продается под торговым наименованием Arimidex™. Летрозол продается под торговым наименованием Femara™ или Femar™. Аминоглютетимид продается под торговым наименованием Orimetent™. Комбинация по изобретению, включающая химиотерапевтическое средство, которое представляет собой ингибитор ароматазы, применима, в частности для лечения опухолей, положительных по рецепторам гормонов, таких как опухоли молочной железы.

[00182] В контексте данного документа термин «антиэстроген» относится к соединению, которое противодействует эффекту эстрогенов на уровне рецептора эстрогена. Термин включает, но не ограничивается ими, тамоксиfen, фулвестрант, ралоксицен и гидрохлорид ралоксиценна. Тамоксиfen продается под торговым наименованием Nolvadex™. Ралоксицен гидрохлорид продается под торговым наименованием Evista™. Фулвестрант, подлежащий введению, продается под торговым наименованием Faslodex™. Комбинация по изобретению, включающая химиотерапевтическое средство, которое представляет собой антиэстроген, применима, в частности для лечения опухолей, положительных по рецептору эстрогена, таких как опухоли молочной железы.

[00183] В контексте данного документа термин «антиандроген» относится к любому веществу, которое способно ингибировать биологические эффекты андрогенных гормонов, и включает, но не ограничивается этим, бикалутамид (Casodex™). В контексте данного документа термин «агонист гонадорелина» включает, но не ограничивается ими, абареликс, 67
гозерелин и гозерелина ацетат. Гозерелин, подлежащий введению, продается под торговым наименованием Zoladex™.

Термин «ингибитор топоизомеразы I» в контексте данного документа включает, но не ограничивается ими, топотекан, гиматекан, иринотекан, камптотециан и его аналоги, 9-нитрокамптотецин и макромолекулярный конъюгат камптотецина PNU-166148. Иринотекан можно вводить, например, в той форме, в которой он продается, т.е. под торговым наименованием Camptosar™. Топотекан продается под торговым наименованием Hycamtin™.

Термин «ингибитор топоизомеразы II» в контексте данного документа включает, но не ограничивается ими, антрациклины, такие как доксорубицин (включая липосомальную форму, такую как Caelyx™), даунорубицин, эпирubicин, идарubicин и неморubicин, антрахионы митоксантрон и лосоксантрон, а также подофиllотоксины этопозид и тенипозид. Этопозид продается под торговым наименованием Etopophos™. Тенипозид продается под торговым наименованием VM 26-Bristol. Доксорубицин продается под торговым наименованием Acriblastin™ или Adriamycin™. Эпирubicин продается под торговым наименованием Farmorubicin™. Идарubicин продается под торговым наименованием Zavedos™. Митоксантрон продается под торговым наименованием Novantrон.

Термин «активный в отношении микротрубочек агент» относится к соединениям, стабилизирующим микротрубочки, дестабилизирующим микротрубочки, и ингибиторам полимеризации микротрубочек, включая, но не ограничиваясь ими, таксаны, такие как паклитаксел и доцетаксел; алкалоиды барвинка, такие как винblastин или винбластина сульфат, винкрustин или винкристина сульфат и винорелбин; дискодермолиды, кохицин и эпопилены, и их производные. Паклитаксел продается под торговым наименованием Taxol™. Доцетаксел продается под торговым наименованием Taxotere™. Винblastina сульфат продается под торговым наименованием Vinblastin R.Р™. Винкрустина сульфат продается под торговым наименованием Farmistin™.

В контексте данного документа термин «алкилирующий агент» включает, но не ограничивается ими, циклофосфамид, ифосфамид, мелфалан или нитрозомочевину (BCNU или Gliadel). Циклофосфамид продается под торговым наименованием Cyclostin™. Ифосфамид продается под торговым наименованием Holoxan™.

Термин «ингибиторы гистондеацетилазы» или «ингибиторы HDAC» относится к соединениям, которые ингибируют гистондеацетилазу и обладают антипролиферативной активностью. Это включает, но не ограничивается ими, суберииланилил гидроксамовой кислоты (SAHA).
Термин «противоопухолевый антиметаболит» включает, но не ограничивается ими, 5-фторурацил или 5-ФУ, капецитабин, гемцитабин, соединения, деметилирующие ДНК, такие как 5-азацитидин и децитабин, метотрексат и эдатрексат, и антагонисты фолевой кислоты, такие как пеметrexед. Капецитабин продается под торговым наименованием Xeloda™. Гемцитабин продается под торговым наименованием Gemzar™.

В контексте данного документа термин «соединение платины» включает, но не ограничивается ими, карбопlatin, цис-платин, цисплатин и оксалиплатин. Карбоплатин можно вводить, например, в той форме, в которой он продается, например, под торговым наименованием Carboplat™. Оксалиплатин можно вводить, например, в той форме, в которой он продается, например, под торговым наименованием Eloxatin™.

Термин «соединения, нацеленные на/снижающие активность белка или липидной киназы; или активность белка или липидной фосфатазы; или другие антиангиогенные соединения» в контексте данного документа включает, но не ограничивается этим, ингибиторы протеин-тирозинкиназы и/или сериновой и/или треониновой киназы или ингибиторы липидных киназ, такие как а) соединения, нацеленные на, снижающие или ингибитирующие активность рецепторов тромбоцитарного фактора роста (PDGFR), например, соединения, нацеленные на, снижающие или ингибитирующие активность PDGFR, особенно соединения, ингибитирующие рецептор PDGF, например, производные N-фенил-2-пиримидин-амина, такие как иматиниб, SU101, SU6668 и GFB-111; б) соединения, нацеленные на, снижающие или ингибитирующие активность рецепторов фактора роста фибробластов (FGFR); в) соединения, нацеленные на, снижающие или ингибирующие активность рецептора инсулинподобного фактора роста И (IGF-IR), например, соединения на, нацеленные на, снижая или ингибитирующие активность IGF-IR, особенно соединения, ингибитирующие киназную активность рецептора IGF-I, или антитела, нацеленные на внеклеточный домен рецептора IGF-I или его факторов роста; г) соединения, нацеленные на, снижающие или ингибитирующие активность семейства рецепторных тирозинкиназ Trk, или ингибиторы эфрины B4; д) соединения, нацеленные на, снижая или ингибирующие активность семейства рецепторных тирозинкиназ Axl; е) соединения, нацеленные на, снижая или ингибитирующие активность рецепторных тирозинкиназ Ret; ж) соединения, нацеленные на, снижая или ингибитирующие активность рецепторов тирозинкиназ Kit/SCFR, такие как иматиниб; з) соединения, нацеленные на, снижая или ингибитирующие активность рецепторных тирозинкиназ C-kit, входящего в семейство PDGFR, например, соединения, нацеленные на, снижая их или ингибитирующие активность рецепторных тирозинкиназ c-Kit, особенно соединения, ингибитирующие рецептор c-Kit, например, иматиниб; и) соединения, нацеленные на, снижая или ингибитирующие...
активность членов семейства c-Abl, продуктов сближения их генов (например, киназа BCR-Abl) и мутанты, например, соединения, нацеленные на, снижающие или ингибитирующие активность членов семейства c-Abl и продуктов сближения их генов, такие как производные N-фенил-2-пиримидин-амина, например, иматиниб или нилотиниб (AMN107); PD180970; AG957, NSC 680410; PD173955 от ParkeDavies; или дазатиниб (BMS-354825); j) соединения, нацеленные на, снижающие или ингибитирующие активность членов семейства серин/треониновых киназ протеинкиназы C (PKC) и Raf, членов семейств МЕK, SRC, JAK/pan-JAK, FAK, PDK1, PKB/Akt, Ras/MAPK, PI3K, SYK, TYK2, BTK и TEC, и/или членов семейства циклин-зависимых киназ (CDK), включая производные стаurosпорина, такие как мидостаурин; примеры дополнительных соединений включают UCN-01, сафингол, BAY 43-9006, Bryostatin 1, перифозин; Ilmofosine; RO 318220 и RO 320432; GO 6976; Isis 3521; LY333531/LY379196; изохинолиновые соединения; FTIs; PD184352 или QAN697 (ингибитор PI3K) или AT7519 (ингибитор CDK); k) соединения, нацеленные на, снижающие или ингибитирующие активность ингибиторов протеин-тирозинкиназы, например, соединения, нацеленные на, снижающие или ингибитирующие активность ингибиторов протеин-тирозинкиназы, включают иматиниб мезилат (Gleevec™) или тирфостин, например, Tyrophostin A23/RG-50810; AG 99; Tyrophostin AG 213; Tyrophostin AG 1748; Tyrophostin AG 490; Tyrophostin B44; энантиомер Tyrophostin B44 (+); Tyrophostin AG 555; AG 494; Tyrophostin AG 556, AG957 и адафостин (4-[[2,5-дигидроксиfenил]метил]амино]-бензойной кислоты адамантиловый эфир; NSC 680410, адафостин); l) соединения, нацеленные на, снижающие или ингибитирующие активность семейства рецепторных тирозинкиназ эпидермального фактора роста (EGFR, ErbB2, ErbB3, ErbB4 в виде гомо- или гетеродимеров) и их мутантов, такие как соединения, нацеленные, снижают или ингибитируют активность семейства рецепторов эпидермального фактора роста, особенно соединения, белки или антитела, которые ингибитируют членов семейства рецепторных тирозинкиназ EGF, таких как рецептор EGF, ErbB2, ErbB3 и ErbB4 или связываются с EGF или лигандами, связанными с EGF, CP 358774, ZD 1839, ZM 105180; трастузумаб (Herceptin™), цетуксимаб (Erbitux™), Iressa, Tarceva, OSI-774, CI-1033, EKB-569, GW-2016, E1.1, E2.4, E2.5, E6.2, E6.4, E2.11, E6.3 или E7.6.3, и производные 7Н-пирроло-[2,3-d]пirimidina; m) соединения, нацеленные на, снижающие или ингибитирующие активность рецептора c-Met, такие как соединения, нацеленные на, снижающие или ингибитирующие активность c-Met, особенно соединения, ингибитирующие киназную активность рецептора c-Met, или антитела, нацеленные на внеклеточный домен c-Met или связывающиеся с HGF, n) соединения, нацеленные на, снижающие или ингибитирующие киназную активность одного или более членов семейства JAK (JAK1/JAK2/JAK3/TYK2 и/или pan-JAK), включая,
но не ограничиваясь ими, PRT-062070, SB-1578, барицитиниб, пакритиниб, момелотиниб, VX-509, AZD-1480, TG-101348, тофацитиниб и руаксолитиниб; о) соединения, нацеленные на, снижающие или ингибирующие киназную активность P3K киназы (P3K), включающие, но не ограничивающиеся ими, ATU-027, SF-1126, DS-7423, PBI-05204, GSK-2126458, ZSTK-474, бупарлесиб, пикрелесиб, PF-4691502, BYL-719, дактолесиб, XL-147, XL-765 и идеалесиб; и) соединения, нацеленные на, снижающие или ингибирующие сигнальные эффекты пути белка hedgehog (Hh) или пути рецептора smoothened (SMO), включающие, но не ограничивающиеся ими, циклопамин, висмодегиб, играхоназол, эрисмодегиб и IPI-926 (сарицегиб).

В контексте данного документа термин «ингибитор Bcl-2» включает, помимо прочего, соединения, обладающие ингибирующей активностью в отношении белка Вклеточной лимфомы 2 (Bcl-2), включая, помимо прочего, ABT-199, ABT-731, ABT-737, апогосинпол, ингибиторы pan-Bcl-2 Ascenta, куркумин (и его аналоги), двойные ингибиторы Bcl-2/Bcl-xL (Infinity Pharmaceuticals/Novartis Pharmaceuticals), Genasense (G3139), HA14-1 (и их аналоги; см. WO2008118802), навитоклас (и его аналоги, см. US7390799), NH-1 (Шэнъянский фармацевтический университет), обатоклас (и его аналоги, см. WO2004106328), S-001 (Gloria Pharmaceuticals), соединения серии TW (Мичиганский университет) и венетоклас. В некоторых вариантах осуществления ингибитор Bcl-2 представляет собой низкомолекулярное терапевтическое средство. В некоторых вариантах осуществления ингибитор Bcl-2 представляет собой пептидомиметик.

В контексте данного документа термин «ингибитор BTK» включает, помимо прочего, соединения, обладающие ингибирующей активностью в отношении тирозинкиназы Брутона (BTK), включая, помимо прочего, AVL-292 и ибрутиниб.

В контексте данного документа термин «ингибитор SYK» включает, помимо прочего, соединения, обладающие ингибирующей активностью в отношении тирозинкиназы селезенки (SYK), включая, помимо прочего, PRT-062070, R-343, R-333, Excellair, PRT-062607 и фостаматиниб.
Дополнительные примеры соединений, ингибитирующих ВТК, и состояния, поддающиеся лечению такими соединениями в сочетании с соединениями по настоящему изобретению, можно найти в WO 2008039218 и WO 2011090760, которые полностью включены в данный документ посредством ссылки.

Дополнительные примеры соединений, ингибитирующих SYK, и состояния, поддающиеся лечению такими соединениями в комбинации с соединениями по настоящему изобретению, можно найти в WO 2003063794, WO 2005007623 и WO 2006078846, которые полностью включены в настоящий документ посредством ссылки.

Дополнительные примеры соединений, ингибитирующих JAK, и состояний, поддающихся лечению такими соединениями в комбинации с соединениями по настоящему изобретению, можно найти в WO 2009114512, WO 2008109943, WO 2007053452, WO 2000122424 и WO 2007070514, которые полностью включены в настоящее описание посредством ссылки.

Дополнительные антиангиогенные соединения включают соединения, имеющие другой механизм действия, например, не связанный с ингибирированием белков или липидкислаз, т.е. талидомид (Thalomid™) и TNP-470.

Примеры ингибиторов протеасом, применимых в комбинации с соединениями по изобретению, включают, но не ограничиваются ими, бортемозим, дисульфирам, эпигаллокатехин-3-галлат (EGCG), салинспорамид А, карфилзомиб, ONX-0912, CEP-18770 и MLN9708.

Соединения, которые нацелены на, снижают или ингибитируют активность белка или липидной фосфатазы, представляют собой, например, ингибиторы фосфатазы 1, фосфатазы 2А или CDC25, такие как окадаевая кислота или ее производное.

Соединения, которые индуцируют процессы дифференцировки клеток, включают, но не ограничиваются ими, ретиноевую кислоту, α-γ- и δ-токоферол или α-γ- или δ-токоферол.

В контексте данного документа термин ингибитор циклокохингеназы включает, но не ограничивается ими, ингибиторы ЦОГ-2, 5-алкилзамещенную 2-ариламинофенилуксусную кислоту и их производные, такие как целекоксиб (Celebrex™), рофекоксиб (Vioxx™), эторикоксиб, вальдекоксиб или 5-алкил-2-ариламинофенилуксусная
кислота, такая как 5-метил-2-(2'-хлор-6'-фторанилино)фенилуксусная кислота, лумироксис.

[00205] Термин «бисфосфонаты» в контексте данного документа включает, но не ограничивается ими, этридоновую, клодроновую, тилудроновую, памидроновую, алендроновую, юбандроновую, ризедроновую и золедроновую кислоты. Этролоновая кислота продается под торговым наименованием Didronel™. Клодроновая кислота продается под торговым наименованием Bonefos™. Тилудроновая кислота продается под торговым наименованием Skelid™. Памидроновая кислота продается под торговым наименованием Aredia™. Алендроновая кислота продается под торговым наименованием Fosamax™. Ибандроновая кислота продается под торговым наименованием Bondranat™. Ризедроновая кислота продается под торговым наименованием Actonel™. Золедроновая кислота продается под торговым наименованием Zometa™. Термин «ингибиторы mTOR» относится к соединениям, которые ингибитуют мишень рапамицина у млекопитающих (mTOR) и которые обладают антипролиферативной активностью, таким как сирилимус (Rapamune®), эверолимус (Certican™), CCI-779 и ABT578.

[00206] Термин «ингибитор гепараназы» в контексте данного документа относится к соединениям, которые нацелены на, снижают или ингибитируют расщепление сульфата гепарина. Термин включает, но не ограничивается им, PI-88. В контексте данного документа термин «модификатор биологического ответа» относится к лимфокину или интерферону.

[00207] Термин «ингибитор онкогенных изоформ Ras», таких как H-Ras, K-Ras или N-Ras, в контексте данного документа относится к соединениям, которые нацелены на, снижают или ингибитируют онкогенную активность Ras, например, «ингибитор фарнезилтрансферазы», такой как L-744832, DK8G557 или R115777 (Zarnestra™). Термин «ингибитор теломеразы» в контексте данного документа относится к соединениям, которые нацелены на, снижают или ингибитируют активность теломеразы. Соединения, которые нацелены на, снижают или ингибитируют активность теломеразы, представляют собой, в частности, соединения, которые ингибитируют рецептор теломеразы, такие как теломестатин.

[00208] Термин «ингибитор метионинаминопептидазы» в контексте данного документа относится к соединениям, которые нацелены на, снижают или ингибитируют активность метионинаминопептидазы. Соединения, которые нацелены на, снижают или ингибитируют активность метионинаминопептидазы, включают, но не ограничиваются ими, бенгами и его производное.

[00209] В контексте данного документа термин «ингибитор протеасомы» относится к соединениям, которые нацелены на, снижают или ингибитируют активность протеасомы.
Соединения, которые нацелены на, снижают или ингибируют активность протеасомы, включают, но не ограничиваются ими, бортеозомив (Velcade™) и MLN 341.

[00210] В контексте данного документа термин «ингибитор матрикской металлопротеиназы» или («ингибитор MMP») включает, но не ограничивается ими, пептидомиметические и непептидомиметические ингибиторы collagena, производные тетраглукозидов, например, гидроксазаматный пептидомиметический ингибитор батимастат и его перорально доступный аналог маримастат (BB-2516), приномастат (AG3340), метастат (NSC 683551) BMS-279251, BAY 12-9566, TAA211, MNI270В или AAJ996.

[00211] Термин «соединения, применяемые для лечения гематологических злокачественных новообразований» в контексте данного документа включает, но не ограничивается ими, ингибиторы FMS-подобной тирозинкиназы, которые представляют собой соединения, нацеленные на, снижающие или ингибирующие активность FMS-подобных рецепторов тирозинкиназы (Flt-3R); интерферон, 1-β-D-арабинофурансиллицитозин (ara-c) и бисульфантин; и ингибиторы ALK, которые представляют собой соединения, которые нацелены на, снижают или ингибируют киназу анапластической лимфомы.

[00212] Соединения, которые нацелены на, снижают или ингибируют активность FMS-подобных рецепторов тирозинкиназы (Flt-3R), представляют собой, в частности, соединения, белки или антитела, которые ингибируют членов семейства рецепторных киназ Flt-3R, такие как PKC412, мидостаурин, производное стауропринина, SU11248 и MLN518.

[00213] В контексте данного документа термин «ингибиторы HSP90» включает, но не ограничивается ими, соединения, нацеленные на, снижающие или ингибирующие внутренною ATФазную активности HSP90; деградирующие, нацеленные на, снижающие или ингибирующие белки-клиенты HSP90 через убиквитиновый протеосомный путь. Соединения, нацеленные на, снижающие или ингибирующие внутренною ATФазную активность HSP90, представляют собой, в частности, соединения, белки или антитела, которые ингибируют ATФазную активность HSP90, такие как 17-аллиламин, 17-деметоксигелланамицин (17AAG), производное гелланамицин; другие родственные гелланамицин соединения; ингибиторы радикала и HDAC.

[00214] Термин «антипролиферативные антитела» в контексте данного документа включает, но не ограничивается ими, трастузумаб (Herceptin™), Трастузумаб-DM1, эрбитукс, бехацумаб (Avastin™), ритуксимаб (Rituxan®), PRO64553 (антитело к CD40) и антитело к 2C4. Под антителами подразумеваются интактные моноклональные антитела, поликлональные антитела, мультиспецифические антитела, образованные по меньшей мере из 2 интактных антител, и фрагменты антител, если они проявляют желаемую
биологическую активность.

[00215] Для лечения острого миелоидного лейкоза (ОМЛ) соединения по настоящему изобретению можно использовать в комбинации со стандартной терапией лейкоза, особенно в комбинации с терапией, применяемой для лечения ОМЛ. В частности, соединения по настоящему изобретению можно вводить в комбинации, например, с ингибиторами фарнезилтрансферазы и/или другими лекарственными средствами, применяемыми для лечения ОМЛ, такими как даунорубинин, адриамцин, Ара-С, VP-16, тенипозид, митоксантрон, идарубинин, карбопlatin и РКС412.

[00216] Другие противолейкозные соединения включают, например, Ара-С, аналог пиримидина, который представляет собой производное 2-альфа-гидроксиробозы (арабинозида) дезоксицитидина. Также включены пуриновый аналог гипоксантина, 6-меркаптанурин (6-МР) и флуорадин фосфат. Соединения, которые нацелены на, снижают или ингибируют активность ингибиторов гистондеацетилазы (HDAC), такие как натрий бутират и субероиланилидгидроксамовая кислота (SAHA), ингибируют активность ферментов, известных как гистондеацетилазы. Конкретные ингибиторы HDAC включают MS275, SAHA, FK228 (ранее FR901228), трихостатин А и соединения, описанные в US 6 552 065, включая, но не ограничиваясь ими, N-гидрокси-3-{[2-(2-метил-1Н-индол-3-ил)этил]амино}метил]фенил]-2Е-2-пропенамид или его фармацевтически приемлемую соль и N-гидрокси-3-{[2-(гидроксиэтил)]2-(1Н-индол-3-ил)этил]амино}метил]фенил]-2Е-2-пропенамид или его фармацевтически приемлемую соль, особенно лактатную соль.

[00217] Также включены связующие EDG и ингибиторы рибонуклеотидредуктазы. В контексте данного документа термин «связующее EDG» относится к классу иммунодепрессантов, которые модулируют рециркуляцию лимфоцитов, таких как FTY720. Термин «ингибиторы рибонуклеотидредуктазы» относится к аналогам пиримидиновых или пуриновых нуклеозидов, включая, но не ограничиваясь ими, флуорадин и/или
цитозинарабинозид (ара-С), 6-тимогуанин, 5-фтормурал, кладрибин, 6-меркаптопурин (особенно в комбинации с ара-С против ОЛЖ) и/или пентостатин. Ингибиторами рибонуклеотидредуктазы являются, в частности, производные гидроксимочевины или 2-гидрокси-1Н-изоиндоль-1,3-диона.

Также включены, в частности, такие соединения, белки или моноклональные антитела VEGF, как 1-(4-хлоранилино)-4-(4-пирридилметил)фталазин или его фармацевтически приемлемая соль, 1-(4-хлоранилино)-4-(4-пирридилметил)фталазисукциннат; Angiostatin™; Endostatin™; амиды антрациловой кислоты; ZD4190; Zdof474; SU5416; SU6668; бевациумаб; или антитела к VEGF или антитела к рецептору VEGF, такие как rhuMAb и RHUFab, антамер VEGF, такой как Macugon; ингибиторы FLT-4, ингибиторы FLT-3, антитела класса IgG1 к VEGFR-2, ангиозим (RPI 4610) и бевациумаб (Avastin™).

Фотодинамическая терапия в контексте данного документа относится к терапии, в которой используются определенные химические вещества, известные как фотосенсибилизирующие соединения, для лечения или предотвращения рака. Примеры фотодинамической терапии включают лечение соединениями, такими как Visudyne™ и порфирин натрия.

Ангиостатические стероиды в контексте данного документа относятся к соединениям, которые блокируют или ингибируют ангиогенез, таким как, например, анекортав, триамцинолон, гидрокортизон, 11-α-эпигидрокотиозол, кортексолон, 17α-гидроксипрогестерон, кортисокстерон, дезоксикортисстерон, тестостерон, эстрон и дексаметазон.

Имплантаты, содержащие кортикостероиды, относятся к соединениям, такими как флуоцинолон и дексаметазон.

Другие химотерапевтические соединения включают, но не ограничиваются ими, растительные алкалоиды, гормональные соединения и антагонисты; модификаторы биологического ответа, предпочтительно лимфокины или интерфероны; антисмысловые олигонуклеотиды или производные олигонуклеотидов; кшРНК или кпРНК; или различные соединения или соединения с другим или неизвестным механизмом действия.

Структура активных соединений, идентифицированных кодовыми номерами, общими или торговыми наименованиями, может быть взята из актуального издания стандартного справочника «The Merck Index» или из баз данных, например, Patents International (например, IMS World Publications).

4.2.2. Примеры иммуноонкологических средств
В некоторых вариантах осуществления одно или более других терапевтических средств представляют собой иммуноонкологическое средство. В контексте данного документа термин «иммуноонкологическое средство» относится к средству, эффективно усиливающему, стимулирующему и/или активирующему иммунные ответы у субъекта. В некоторых вариантах осуществления введение иммуноонкологического средства с соединением по изобретению оказывает синергический эффект при лечении рака.

Иммуноонкологическое средство может быть, например, низкомолекулярным лекарственным средством, антителом или биологическим средством, или средством на основе мальых молекул. Примеры биологических иммуноонкологических средств включают, но не ограничиваются ими, противораковые вакцины, антитела и цитокины. В некоторых вариантах осуществления антитело представляет собой моноклональное антитело. В некоторых вариантах осуществления моноклональное антитело является гуманизированным или человеческим.

В некоторых вариантах осуществления иммуноонкологическое средство представляет собой (i) агонист стимулирующего (включая костимулирующий) рецептора или (ii) антагонист ингибирующего (включая конгибирующий) сигнала на Т-клетках, оба из которых приводят к усилению антигенспецифических Т-клеточных ответов.

Некоторые стимулирующие и ингибирующие молекулы являются членами суперсемейства иммуноглобулинов (IgSF). Одним важным семейством мембраносвязанных лигандов, которые связываются с костимулирующими или конгибирующими рецепторами, является семейство B7, которое включает B7-1, B7-2, B7-H1 (PD-L1), B7-DC (PD-L2), B7-H2 (ICOS-L), B7-H3, B7-H4, B7-H5 (VISTA) и B7-H6. Другим семейством мембраносвязанных лигандов, которые связаны с костимулирующими или конгибирующими рецепторами, является семейство молекул TNF, которые связаны с родственными членами семейства рецепторов TNF, которое включает CD40 и CD40L, OX-40, OX-40L, CD70, CD27L, CD30, CD30L, 4-1BB, CD137 (4-1BB), TRAIL/Apo2-L, TRAILR1/DR4, TRAILR2/DR5, TRAILR3, TRAILR4, OPG, RANK, RANKL, TWEAKR/Fn14, TWEAK, BAFFR, EDAR, XEDAR, TACI, APRIL, BCMA, LTβR, LIGHT, DcR3, HVEM, VEGF/TL1A, TRAMP/DR3, EDAR, EDA1, XEDAR, EDA2, TNFR1, лимфотоксин α/TNFβ, TNFR2, TNFα, LTβR, лимфотоксин α1β2, FAS, FASL, RELT, DR6, TROY, NGFR.

В некоторых вариантах осуществления иммуноонкологическое средство представляет собой цитокин, который ингибирует активацию Т-клеток (например, IL-6, IL-10, TGF-β, VEGF и другие иммуносупрессивные цитокины), или цитокин, который стимулирует активацию Т-клеток, для стимуляции иммунного ответа.
В некоторых вариантах осуществления комбинация соединения по изобретению и иммуноонкологического средства может стимулировать ответы T-клеток. В некоторых вариантах осуществления иммуноонкологическое средство представляет собой: (i) антагонист белка, который ингибирует активацию T-клеток (например, ингибиторы контрольных точек иммунного ответа), такого как CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, TIM-3, галектин 9, CEACAM-1, BTLA, CD69, галектин-1, TIGIT, CD113, GPR56, VISTA, 2B4, CD48, GARP, PD1H, LAIR1, TIM-1 и TIM-4; или (ii) агонист белка, который стимулирует активацию T-клеток, такой как B7-1, B7-2, CD28, 4-1BB (CD137), 4-1BBL, ICOS, ICOS-L, OX40, OX40L, GITR, GITRL, CD70, CD27, CD40, DR3 и CD28H.

В некоторых вариантах осуществления иммуноонкологическое средство представляет собой антагонист ингибитирующих рецепторов на NK-клетках или агонистов активирующих рецепторов на NK-клетках. В некоторых вариантах осуществления иммуноонкологическое средство представляет собой антагонисты KIR, такие как лирилумаб.

В некоторых вариантах осуществления иммуноонкологическое средство выбрано из агонистических средств, которые лигируют положительные костимулирующие рецепторы, блокирующих агентов, которые ослабляют передачу сигналов через ингибитирующие рецепторы, антагонистов и одного или более средств, которые системно повышают частоту противоопухолевых T-клеток, средств, которые преодолевают различные иммуносупрессивные пути в микроокружении опухоли (например, блокируют взаимодействие с ингибитирующими рецепторами (например, взаимодействие PD-L1/PD-1), истощают или ингибируют Treg (например, с помощью моноклонального антитела к CD25 (например, даклизумаба) или путем ex vivo истощения с применением микрогранул, покрытых антителом к CD25), ингибируют метаболические ферменты, такие как IDO, или обращают/предотвращают энергию или истощение T-клеток) и средств, которые вызывают активацию естественного иммунитета и/или воспаление в местах опухоли.

В некоторых вариантах осуществления иммуноонкологическое средство представляет собой антагонист CTLA-4. В некоторых вариантах осуществления антагонист CTLA-4 представляет собой антагонистическое антитело к CTLA-4. В некоторых вариантах осуществления антагонистическое антитело к CTLA-4 представляет собой
YERVOY (ипиллимумаб) или тремелимумаб.

В некоторых вариантах осуществления иммunoоnкологическое средства представляет собой антагонист PD-1. В некоторых вариантах осуществления антагонист PD-1 вводят путем инфузии. В некоторых вариантах осуществления иммunoоnкологическое средство представляет собой антитело или его антигенсвязывающую часть, которое специфически связывается с рецептором запрограммированной гибели-1 (PD-1) и ингибитирует активность PD-1. В некоторых вариантах осуществления антагонист PD-1 представляет собой антагонистическое антитело к PD-1. В некоторых вариантах осуществления антагонистическое антитело к PD-1 представляет собой OPDIVO (ниволумаб), KEYTRUDA (пембрулимумаб) или MEDI-0680 (AMP-514; WO2012/145493). В некоторых вариантах осуществления иммunoоnкологическое средство может представлять собой пидилумаб (CT-011). В некоторых вариантах осуществления иммunoоnкологическое средство представляет собой рекомбинантный белок, состоящий из внеклеточного домена PD-L2 (B7-DC), слитого с Fc-частью IgG1, называемый AMP-224.

В некоторых вариантах осуществления иммunoоnкологическое средство представляет собой агонист CD137 (4-1BB). В некоторых вариантах осуществления агонист CD137 (4-1BB) представляет собой агонистическое антитело к CD137. В некоторых вариантах осуществления антитело к CD137 представляет собой урелумаб или PF-05082566 (WO12/32433).

В некоторых вариантах осуществления иммunoоnкологическое средство представляет собой агонист GITR. В некоторых вариантах осуществления агонист GITR представляет собой агонистическое антитело к GITR. В некоторых вариантах осуществления антитело GITR представляет собой BMS-986153, BMS-986156, TRX-518.

[00239] В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой анагонист индоламин (2,3)-диоксигеназы (IDO). В некоторых вариантах осуществления анагонист IDO выбран из эпакадостата (INCB024360, Incyte); индоксимода (NLG-8189, NewLink Genetics Corporation); капманитиа (INC280, Novartis); GDC-0919 (Genentech/Roche); PF-06840003 (Pfizer); BMS: F001287 (Bristol-Myers Squibb); Phy906/KD108 (Phytoceutica); фермент, расщепляющий кинуренин (Kynase, Kyn Therapeutics); и NLG-919 (WO09/73620, WO009/1156652, WO11/56652, WO12/142237).

[00240] В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой агонист OX40. В некоторых вариантах осуществления агонист OX40 представляет собой агонистическое антитело к OX40. В некоторых вариантах осуществления антитело к OX40 представляет собой MEDI-6383 или MEDI-6469.

[00241] В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой анагонист OX40L. В некоторых вариантах осуществления антагонист OX40L представляет собой RG-7888 (WO06/029879).

[00242] В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой агонист CD40. В некоторых вариантах осуществления агонист CD40 представляет собой агонистическое антитело к CD40. В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой антагонист CD40. В некоторых вариантах осуществления антагонист CD40 представляет собой антагонистическое антитело к CD40. В некоторых вариантах осуществления антитело к CD40 представляет собой лукатумумаб или дацетузумаб.

[00243] В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой агонист CD27. В некоторых вариантах осуществления агонист CD27 представляет собой агонистическое антитело к CD27. В некоторых вариантах осуществления антитело к CD27 представляет собой варлиумаб.

[00245] В некоторых вариантах осуществления иммуноонкоологическое средство представляет собой абаговомаб, адекатумумаб, афтузумаб, алелтузумаб, анатумаб мафенатокс, аполизумаб, атезолимаб, авелумаб, блинатумомаб, BMS-936559, катумаксомаб, дурвалумаб, эпакадостат, эрратузумаб, индоксимод, инотузумаб озогамицин, интумумаб, инпиликумаб, изатуксимаб, ламбролизумаб, MED14736, MPDL3280A, ниволумаб, обинутузумаб, окаратузумаб, офатумумаб, олатумумаб,

В некоторых вариантах осуществления иммуномодулирующее терапевтическое средство специфически индуцирует апоптоз опухолевых клеток. Одобренные иммуномодулирующие терапевтические средства, которые можно использовать в настоящем изобретении, включают помалюдим (Pomalyst®, Celgene); леналидим (Revlimid®, Celgene); интенепа мебутат (Picato®, LEO Pharma).

В некоторых вариантах осуществления иммуноонкологическое средство представляет собой противораковую вакцину. В некоторых вариантах осуществления противораковая вакцина выбрана из сипулеузел-Т (Provenge®, Dendreon/Valeant Pharmaceuticals), которая была одобрена для лечения бессимптомного или минимально симптоматического метастатического кастрационно-резистентного (гормонально-рефрактерного) рака предстательной железы, и талимомен лагерпепспек (Imlygic®, BioVex/Amgene, ранее известный как T-VEC), генетически модифицированная онколитическая вирусная терапия, одобренная для лечения нерезектабельных кожных, подкожных и узловых поражений при меланоме. В некоторых вариантах осуществления иммуноонкологическое средство выбрано из онколитической вирусной терапии, такой как пексасимоген девациреппек (PexaVec/JX-594, SillaJen/ранее Jennerex Biotherapeutics), вирус осповакцины с дефицитом тимидиндиказы (TK-), сконструированный для экспрессии ГМ-КСФ для лечения гепатоцеллюлярной карциномы (NCT02562755) и меланомы (NCT00429312); пелареопреп (Reolysin®, Oncolytics Biotech), варианта респираторного кишечного орфанного вируса (реовируса), который не реплицируется в клетках, не активированных RAS, при многих видах рака, включая колоректальный рак (NCT01622543); рак предстательной железы (NCT01619813); плоскоклеточный рак головы.
и шеи (NCT01166542); аденоcáрциному поджелудочной железы (NCT00998322); и немелкоклеточный рак легкого (NSCLC) (NCT 00861627), эндодотицитов (NG-348, PsiOxus, ранее известный как ColoAd1), аденоовируса, сконструированного для экспрессии полноразмерного CD80 и фрагмента антитела, специфического для белка CD3 Т-клеточного рецептора, при раке яичников (NCT02028117); метастатических или распространенных эпителиальных опухолях, таких как колоректальный рак, рак мочевого пузыря, плоскоклеточный рак головы и шеи, и рак слюнных желез (NCT02636036); ONCOS-102 (Targovax/ранее Oncos), аденоовируса, сконструированного для экспрессии ГМ-КСФ, при меланоме (NCT03003676); и перитонеальном заболевании, колоректальном раке или раке яичников (NCT02963831); GL-ONC1 (GLV-1h68/GLV-1h153, Genelux GmbH), вирусы коровой оспы, сконструированные для экспрессии бета-галактозидазы (бета-гал)/бета-глюкозида или бета-гал/симпортера йодила натрия человека (hNIS), соответственно, были изучены при перитонеальном карциномуатозе (NCT01443260); раке фаллопиевых труб, раке яичников (NCT 02759588); или CG0070 (Cold Genesys), аденоовируса, сконструированного для экспрессии ГМ-КСФ, при раке мочевого пузыря (NCT02365818).

[00249] В некоторых вариантах осуществления иммунонекологическое средство выбрано из JX-929 (SillaJen/ранее Jennerex Biotherapeutics), вируса коровой оспы с дефицитом ТК и фактора роста оставки, сконструированного для экспрессии цитозинидезаминазы, который способен преобразовывать плакарство 5-фторцитозин в цитотоксическое средство 5-фторурацил; TG01 и TG02 (Targovax/ранее Oncos), иммунотерапевтических средство на основе пептидов, нацеленных на трудно поддающиеся лечению мутации RAS; и TILT-123 (TILT Biotherapeutics), сконструированного аденоовируса, обозначенного как Ad5/3-E2F-delta24-hTNFa-IRES-hIL20; и VSV-GP (ViraTherapeutics), вируса везикулярного стоматита (VSV), сконструированного для экспрессии гликопротеина (GP) вируса лимфоцитарного хориоменингита (LCMV), который может быть дополнительно сконструирован для экспрессии антигенов, предназначенных для повышения антиген-специфического ответа CD8+ Т-клеток.

[00250] В некоторых вариантах осуществления иммунонекологическое средство представляет собой Т-клетку, сконструированную для экспрессии химерного антигенного рецептора или CAR, T-клетки, сконструированные для экспрессии такого химерного антигенного рецептора, называются CAR-T-клетками.

[00251] Были сконструированы CAR, состоящие из связывающих доменов, которые могут быть получены из природных лигандов, одноцепочечных вариабельных фрагментов (scFv), полученных из моноклональных антител, специфичных к антигенам клеточной поверхности, специфичных для антигенов клеточной поверхности, слитых с эндодоменами,
которые являются функциональным концом T-клеточного рецептора (TCR), например, сигнальный домен CD3-дзета из TCR, который способен генерировать сигнал активации в T-лимфоцитах. После связывания антигена такие CAR связываются с эндогенными сигнальными путями в эффекторной клетке и генерируют активирующие сигналы, подобные тем, которые инициируются комплексом TCR.

[00252] Например, в некоторых вариантах осуществления CAR-T-клетка является одной из клеток, описанных в патенте США 8 906 682 (ионь, который полностью включен в настоящее описание посредством ссылки), в котором описаны CAR-T-клетки, сконструированные с возможностью включения внеклеточного домена, имеющего антигенсвязывающий домен (такой как домен, который связывается с CD19), слитый с внутриклеточным сигнальным доменом дзета-цепи комплекса T-клеточного антитела (такой как CD3 дзета). При экспрессии в T-клетке CAR способен перенаправлять распознавание антигена на основе специфичности связывания антигена. В случае CD19 антиген экспрессируется на злокачественных B-клетках. В настоящее время проводится более 200 клинических испытаний с использованием CAR-T по широкому спектру показаний. [https://clinicaltrials.gov/ct2/results?term=chimeric+antigen+receptors&pg=1].

[00253] В некоторых вариантах осуществления иммuno стимулирующее средство представляет собой активатор орфанный рецептор, родственного рецептору ретиноевой кислоты γ(RORγt). RORγt представляет собой фактор транскрипции, играющий ключевую роль в дифференцировке и поддержании эффекторных субпопуляций CD4+ (Th17) и CD8+ (Tc17) T-клеток типа 17, а также в дифференцировке субпопуляций врожденных иммунных клеток, экспрессирующих IL-17, таких как NK-клетки. В некоторых вариантах осуществления активатором RORγt является LYC-55716 (Lycera), который в настоящее время проходит клинические испытания для лечения солидных опухолей (NCT02929862).

[00255] Другие иммуноанкологические средства, которые можно использовать в настоящем изобретении, включают урелумаб (BMS-663513, Bristol-Myers Squibb), монооклональное антитело к CD137; варилумаб (CDX-1127, Celldex Therapeutics),
моноклональное.antитело к CD27; BMS-986178 (Bristol-Myers Squibb), моноклональное
антитело к OX40; лирилиумаб (IPH2102/BMS-986015, Innate Pharma, Bristol-Myers Squibb),
моноклональное антитело к KIR; монализамаб (IPH2201, Innate Pharma, AstraZeneca),
моноклональное антитело к NKG2A; андекалексимаб (GS-5745, Gilead Sciences), антитело
k MMP9; MK-4166 (Merck & Co.), моноклональное антитело к GITR.

[00256] В некоторых вариантах осуществления иммуностимулирующее средство
выбрано из элотовумаба, мифамуртида, агониста или активатора толл-подобного рецептора
и активатора RORγt.

[00257] В некоторых вариантах осуществления иммуностимулирующее терапевтическое
средство представляет собой рекомбинантный человеческий интерлейкин 15 (rhIL-15).
rhIL-15, который был изучен в клиническом исследовании в качестве средства для лечения
мelanомы и почечно-клеточного рака (NCT01021059 и NCT01369888) и лейкозов
(NCT02689453). В некоторых вариантах осуществления иммуностимулирующее средство
представляет собой рекомбинантный человеческий интерлейкин 12 (rhIL-12). В некоторых
вариантах осуществления иммунотерапевтическое средство на основе IL-15 представляет
собой гетеродимерный IL-15 (hetIL-15, Novartis/Admune), комплекс слияния, состоящий из
синтетической формы эндогенного IL-15 в комплексе с растворимым IL-15-связывающим
белком IL-15, альфа-цепь рецептора (IL15:siIL-15RA), который был изучен в клинических
исследованиях фазы 1 для лечения мelanомы, почечно-клеточного рака,
немелкоклеточного рака легкого и плоскоклеточного рака головы и шеи (NCT02452268). В
некоторых вариантах осуществления рекомбинантный человеческий интерлейкин 12 (rhIL-
12) представляет собой NM-IL-12 (Neumedicines, Inc.), NCT02544724 или NCT02542124.

[00258] В некоторых вариантах осуществления иммunoонкологическое средство
выбрано из средств, описанных в публикации Jerry L. Adams ET. AL., “Big opportunities for
small molecules in immuno-oncology,” Cancer Therapy 2015, Vol. 14, pages 603-622,
содержание которой полно стью включен в настоящее описание посредством ссылки. В
некоторых вариантах осуществления иммunoонкологическое средство выбрано из
примеров, описанных в таблице 1 в публикации Jerry L. Adams ET. AL. В некоторых
вариантах осуществления иммunoонкологическое средство представляет собой небольшую
молекулу, нацеленную на иммunoонкологическую мишень, выбранную из перечисленных
в таблице 2 в публикации Jerry L. Adams ET. AL. В некоторых вариантах осуществления
иммunoонкологическое средство представляет собой низкомолекулярное средство,
выбранное из перечисленных в таблице 2 в публикации Jerry L. Adams ET. AL.

[00259] В некоторых вариантах осуществления иммunoонкологическое средство
выбрано из низкомолекулярных иммunoонкологических средств, описанных в публикации
В некоторых вариантах осуществления иммуноонкологическое средство представляет собой антитело, которое блокирует ось PD-L1/PD1 и/или CTLA4. В некоторых вариантах осуществления иммуноонкологическое средство представляет собой размноженную ex vivo инфильтрирующую опухоль Т-клетку. В некоторых вариантах осуществления иммуноонкологическое средство представляет собой конструкцию биспецифического антитела или химерные антиенные рецепторы (CAR), которые непосредственно...
связывают T-клетки с опухолеассоциированными поверхностными антигенами (TAA).

Примеры ингибиторов контрольной точки иммунного ответа

[00261] В некоторых вариантах осуществления иммуноонкологическое средство представляет собой ингибитор контрольной точки иммунного ответа, как описано в настоящем документе.

[00263] PD-1 и кониогнибирующие рецепторы, такие как цитотоксический T-лимфоцитарный антиген 4 (CTLA-4, аттеноуор В- и T-лимфоцитов (BTLA; CD272), T-клеточный иммуноглобулин и домен мушена-3 (Tim-3), ген активации лимфоцитов-3 (Lag-3; CD223) и другие часто называют регуляторами контрольных точек. Они действуют как молекулярные «привратники», которые позволяют внеклеточной информации определять, должна ли происходить прогрессия клеточного цикла и другие внутриклеточные сигнальные процессы.

[00264] В некоторых вариантах осуществления ингибитор контрольной точки иммунного ответа представляет собой антитело к PD-1. PD-1 связывается с рецептором запрограммированной клеточной гибели 1 (PD-1), чтобы предотвратить связывание рецептора с ингибитирующим лиганом PDL-1, тем самым подавляя способность опухолей подавлять противоопухолевый иммунный ответ хозяина.

[00265] В одном аспекте ингибитор контрольной точки представляет собой биологическое терапевтическое средство или небольшую молекулу. В другом аспекте ингибитор контрольной точки представляет собой моноклональное антитело, гуманизированное антитело, полностью человеческое антитело, слитый белок или их комбинацию. В еще одном аспекте ингибитор контрольной точки ингибитирует белок контрольной точки, выбранный из CTLA-4, PDL1, PDL2, PDL1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160, CGEN-15049, CHK1, CHK2, A2aR, лигандов семейства B-7 или их комбинации. В дополнительном аспекте ингибитор контрольной точки взаимодействует с лиганом белка контрольной точки, выбранным из CTLA-4, PDL1, PDL2, PDL1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160,
CGEN-15049, CHK 1, CHK2, A2aR, лигандов семейства B-7 или их комбинации. В одном аспекте ингибитор контрольной точки представляет собой иммуностимулирующее средство, фактор роста T-клеток, интерлейкин, антитело, вакцину или их комбинацию. В дополнительном аспекте интерлейкин представляет собой IL-7 или IL-15. В конкретном аспекте интерлейкин представляет собой гликозилированный IL-7. В дополнительном аспекте вакцина представляет собой вакцину на основе дендритных клеток (ДК).

[00266] Ингибиторы контрольных точек включают любое средство, которое блокирует или ингибирует статистически значимым образом ингибирующие пути иммунной системы. Такие ингибиторы могут включать низкомолекулярные ингибиторы или могут включать антитела или их антигенсвязывающие фрагменты, которые связываются и блокируют или ингибируют рецепторы иммунных контрольных точек, или антитела, которые связываются и блокируют или ингибируют лиганды рецепторов иммунных контрольных точек. Иллюстративные молекулы контрольных точек, которые могут быть нацелены на блокирование или ингибирование, включают, но не ограничиваются ими, CTLA-4, PD1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, GAL9, LAG3, TIM3, VISTA, KIR, 2B4 (принадлежит к семейству молекул CD2 и экспрессируется на всех NK-, γδ- и CD8+ (αβ) T-клетках памяти), CD160 (также обозначаемый как BY55), CGEN-15049, киназы CHK 1 и CHK2, A2aR, и различные лиганды семейства B-7. Лиганды семейства B7 включают, но не ограничиваются ими, B7-1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6 и B7-H7. Ингибиторы контрольных точек включают антитела или их антигенсвязывающие фрагменты, другие связывающие белки, биологические терапевтические средства или малые молекулы, которые связываются и блокируют или ингибируют активность одного или более из CTLA-4, PD1, PDL2, PD1, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD 160 и CGEN-15049. Иллюстративные ингибиторы контрольных точек иммунного ответа включают тремелимиумаб (антитело, блокирующее CTLA-4), антитело к OX40, монооклональное антитело к PD-L1 (антитело к B7-H1; MEDI4736), MK-3475 (блокатор PD-1), ниволумаб (антитело к PD1), CT-011 (антитело к PD1), монооклональное антитело BY55, AMP224 (антитело к PDL1), BMS-936559 (антитело к PDL1), MPLDL3280A (антитело к PDL1), MSB0010718C (антитело к PDL1) и инпилимумаб (ингибитор контрольной точки антитела к CTLA-4). Лиганды белков контрольных точек включают, но не ограничиваются ими, PD-L1, PD-L2, B7-H3, B7-H4, CD28, CD86 и TIM-3.

[00267] В определенных вариантах осуществления ингибитор контрольной точки иммунного ответа выбран антагониста PD-1, антагониста PD-L1 и антагониста CTLA-4. В некоторых вариантах осуществления ингибитор контрольной точки выбран из группы, состоящей из ниволумаба (Opdivo®), инпилимумаба (Yervoy®) и пембролизумаба.
(Keytruda®). В некоторых вариантах осуществления ингибитор контрольной точки выбран из ниволумаба (антитело к PD-1, Opdivo®, Bristol-Myers Squibb); пембролизумаба (антитело к PD-1, Keytruda®, Merck); нипилимумаба (антитело к CTLA-4, Yervoy®, Bristol-Myers Squibb); дурвалумаба (антитело к PD-L1, Imfinzi®, AstraZeneca); и атезолизумаба (антитело к PD-L1, Tecentriq®, Genentech).

В некоторых вариантах осуществления ингибитор контрольной точки выбран из группы, состоящей из ламброклизумаба (MK-3475), ниволумаба (BMS-936558), пидилизумаба (CT-011), AMP-224, MDX-1105, MEDI4736, MPDL3280A, BMS-936559, и пидилимумаба, лирдимумаб, IPH2101, пембролизумаба (Keytruda®) и тремелимумаба.

В некоторых вариантах осуществления ингибитор контрольной точки иммунного ответа представляет собой REGN2810 (Regeneron), антитело к PD-1, протестированное на пациентах с базально-клеточной карциномой (NCT03132636); НМРЛ (NCT03088540); кожной плоскоклеточной карциномой (NCT02760948); лимфомой (NCT02651662); и меланомой (NCT03002376); пидилизумаб (CureTech), также известный как CT-011, антитело, которое связывается с PD-1, в клинических испытаниях при диффузной крупноклеточной B-клеточной лимфоме и множественной миеломе; авелумаб (Bavencio®, Pfizer/Merck KGaA), также известный как MSB0010718C), полностью человеческое антитело класса IgG1 к PD-L1, в клинических испытаниях при немелкоклеточном раке легкого, карциноме из клеток Меркеля, мезотелиоме, солидных опухолях, раке почки, раке яичников, раке мочевого пузыря, раке головы и шеи, а также раке желудка; или PDR001 (Novartis), ингибитирующее антитело, которое связывается с PD-1, в клинических испытаниях немелкоклеточного рака легкого, меланомы, трохды негативного рака молочной железы и распространенных или метастатических солидных опухолей. Тремелимумаб (CP-675,206; AstraZeneca) представляет собой полностью человеческое монооклональное антитело к CTLA-4, которое изучалось в клинических испытаниях по ряду показаний, включая: мезотелиому, колоректальный рак, рак почки, рак молочной железы, рак легких и немелкоклеточный рак легких, протоковую аденокарциному поджелудочной железы, рак поджелудочной железы, герминогенный рак, плоскоклеточный рак головы и шеи, гепатоцеллюлярную карциному, рак представательной железы, рак эндометрия, метастатический рак печени, рак печени, B-крупноклеточную лимфому, рак яичников, рак шейки матки, метастатический анаплазический рак щитовидной железы, уротелиальный рак, рак фаллопиевых труб, множественную миелому, рак мочевого пузыря, саркому мягких тканей и меланому. AGEN-1884 (Agenus) представляет собой антитело к CTLA4, которое изучается в рамках клинических испытаний фазы I солидных опухолей на поздних стадиях (NCT02694822).
В некоторых вариантах осуществления ингибитор контрольной точки представляет собой ингибитор мюцина Т-клеточного иммуноглобулина, содержащего белок-3 (TIM-3). Ингибиторы TIM-3, которые можно использовать в настоящем изобретении, включают TSR-022, LY3321367 и MBG453. TSR-022 (Tesaro) представляет собой антитело к TIM-3, которое изучается для применения при солидных опухолях (NCT02817633). LY3321367 (Eli Lilly) представляет собой антитело к TIM-3, которое изучается для применения при солидных опухолях (NCT03099109). MBG453 (Novartis) представляет собой антитело к TIM-3, которое изучается для применения на поздних стадиях злокачественных новообразований (NCT02608268).

В некоторых вариантах осуществления ингибитор контрольной точки представляет собой ингибитор Т-клеточного иммунорецептора с доменами Ig и ITIM или TIGIT, иммунного рецептора на определенных Т-клетках и NK-клетках. Ингибиторы TIGIT, которые можно использовать в настоящем изобретении, включают BMS-986207 (Bristol-Myers Squibb), моноклональное антитело к TIGIT (NCT02913313); OMP-313M32 (Oncomed); и моноклональное антитело к TIGIT (NCT03119428).

В некоторых вариантах осуществления ингибитор контрольной точки представляет собой ингибитор гена-3 активации лимфоцитов (LAG-3). Ингибиторы LAG-3, которые можно использовать в настоящем изобретении, включают BMS-986016, REGN3767 и IMP321. BMS-986016 (Bristol-Myers Squibb), антитело к LAG-3, изучается для применения при глиобластоме и глиосаркоме (NCT02658981). REGN3767 (Regeneron) также является антителом к LAG-3 и изучается для применения при злокачественных новообразованиях (NCT03005782). IMP321 (Immutep S.A.) представляет собой слитный белок LAG-3-Ig, который изучается для применения при меланоме (NCT02676869); аденокарцинома (NCT02614833); и метастатическим раке молочной железы (NCT00349934).

Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают агонисты OX40. Агонисты OX40, которые изучаются в клинических испытаниях, включают PF-04518600/PF-8600 (Pfizer), агонистическое антитело к OX40, при метастатическом раке почки (NCT03092856) и распространенном раке и новообразованиях (NCT02554812; NCT05082566); GSK3174998 (Merck), агонистическое антитело к OX40, в исследованиях рака фазы 1 (NCT02528357); MEDI0562 (Medimmune/AstraZeneca), агонистическое антитело к OX40, при солидных опухолях на поздних стадиях (NCT02318394 и NCT02705482); MEDI6469, агонистическое антитело к OX40 (Medimmune/AstraZeneca), у пациентов с колоректальным раком (NCT02559024), раком молочной железы (NCT01862900), раком головы и шеи (NCT02274155), и
метастатическим раком предстательной железы (NCT01303705); и BMS-986178 (Bristol-Myers Squibb), агонистическое антитело к OX40, при распространенном раке (NCT02737475).

[00274] Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают агонисты CD137 (также называемые 4-1BB). Агонисты CD137, которые изучаются в клинических испытаниях, включают угомилумаб (PF-05082566, Pfizer), агонистическое антитело к CD137, для применения при диффузной крупноклеточной В-клеточной лимфоме (NCT02951156) и при раке и новообразованиях на поздних стадиях (NCT02554812 и NCT05082566); урелумаб (BMS-663513, Bristol-Myers Squibb), агонистическое антитело к CD137, для применения при меланоме и раке кожи (NCT02652455), глиобластоме и глиосаркome (NCT02658981).

[00275] Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают агонисты CD27. Агонисты CD27, которые изучаются в клинических испытаниях, включают варилумаб (CDX-1127, Celldex Therapeutics), агонистическое антитело к CD27, при плоскоклеточном раке головы и шеи, карциноме яичников, колоректальном раке, почечно-клеточном раке и глиобластоме (NCT02335918); лимфоме (NCT01460134); а также глио и астроцитоме (NCT02924038).

[00276] Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают агонисты глюкокортикOID-индукцированного рецептора фактора некроза опухоли (GITR). Агонисты GITR, которые изучаются в клинических испытаниях, включают TRX518 (Leap Therapeutics), агонистическое антитело к GITR, при злокачественной меланоме и других злокачественных солидных опухолях (NCT01239134 и NCT02628574), GWN323 (Novartis), агонистическое антитело к GITR, при солидных опухолях и лимфоме (NCT02740270); INCAGN01876 (Incyte/Agenus), агонистическое антитело к GITR, при распространенном раке (NCT02697591 и NCT03126110); MK-4166 (Merck), агонистическое антитело к GITR, при солидных опухолях (NCT02132754) и MEDI1873 (Medimmune/AstraZeneca), молекула агонистического гексамерного GITR-лиганда с доменом Fc IgG1 человека, при солидных опухолях на поздних стадиях (NCT02583165).

[00277] Ингибиторы контрольных точек, которые могут быть использованы в настоящем изобретении, включают агонисты индуцибельного костимулятора Т-клеток (ICOS, также известного как CD278). Агонисты ICOS, которые изучаются в клинических испытаниях, включают MEDI-570 (Medimmune), агонистическое антитело к ICOS при лимфомах (NCT02520791); GSK3359609 (Merck), агонистическое антитело к ICOS, в фазе 1 (NCT02723955); JTX-2011 (Jounce Therapeutics), агонистическое антитело к ICOS, в фазе 1
Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают ингибиторы CD47 взаимодействия между CD47 и сигнальным регуляторным белком альфа (SIRPa). Ингибиторы CD47/SIRPa, которые изучаются в клинических испытаниях, включают ALX-148 (Alexo Therapeutics), антагонистический вариант (SIRPa), который связывается с CD47 и предотвращает опосредованную CD47/SIRPa передачу сигналов, в фазе 1 (NCT03013218); TTI-621 (SIRPa-Fc, Trillium Therapeutics), растворимый рекомбинантный слитный белок, созданный путем связывания N-концевого CD47-связывающего домена SIRPa с Fc-доменом IgG1 человека, действует путем связывания CD47 человека и предотвращения его доставки сигнала «не есть» макрофагам, изучается в клинических испытаниях фазы 1 (NCT02890368 и NCT02663518); CC-90002 (Celgene), антитело к CD47, при лейкозах (NCT02641002); и Hu5F9-G4 (Forty Seven, Inc.) при колоректальных новообразованиях и солидных опухолях (NCT02953782), острым миелоидном лейкозе (NCT02678338) и лимфоме (NCT02953509).

Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают ингибиторы CD73. Ингибиторы CD73, которые изучаются в клинических испытаниях, включают MEDI9447 (Medimmune), антитело к CD73 при солидных опухолях (NCT02503774); и BMS-986179 (Bristol-Myers Squibb), антитело к CD73, при солидных опухолях (NCT02754141).

Ингибиторы контрольных точек, которые могут быть использованы в настоящем изобретении, включают агонисты белка-стимулятора генов интерферона (STING, также известного как трансмембранный белок 173 или TMEM173). Агонисты STING, которые изучаются в клинических испытаниях, включают MK-1454 (Merck), агонистический синтетический циклический динуклеотид, при лимфоме (NCT03010176); и ADU-S100 (MIW815, Aduro Biotech/Novartis), агонистический синтетический циклический динуклеотид, в фазе 1 (NCT02675439 и NCT03172936).
Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают ингибиторы CSF1R. Ингибиторы CSF1R, которые изучаются в клинических испытаниях, включают пексидартиниб (PLX3397, Plexxikon), низкомолекулярный ингибитор CSF1R, при колоректальном раке, раке поджелудочной железы, метастатическом и распространенном раке (NCT02777710), а также меланоме, немелкоклеточном раке легкого, плоскоклеточном раке головы и шеи, стромальной опухоли желудочно-кишечного тракта (GIST) и раке яичников (NCT02452424); и IMC-CS4 (LY3022855, Lilly), антитело к CSF-1R, при раке поджелудочной железы (NCT03153410), меланоме (NCT03101254) и солидных опухолях (NCT02718911); и BLZ945 (метиламид 4-[2((1R,2R)-2-гидроксициклогексиламино)-bensотиазол-6-илокси]-пирдин-2-карбоновой кислоты, Novartis), пероральный ингибитор CSF1R, при солидных опухолях на поздних стадиях (NCT02829723).

Ингибиторы контрольных точек, которые можно использовать в настоящем изобретении, включают ингибиторы рецептора NKG2A. Ингибиторы рецептора NKG2A, которые изучаются в клинических испытаниях, включают монализумаб (IPH2201, Innate Pharma), антитело к NKG2A, при новообразованиях головы и шеи (NCT02643550) и хроническом лимфоцитарном лейкозе (NCT02557516).

В некоторых вариантах осуществления ингибитор контрольной точки иммунного ответа выбран из ниволумаба, пембролизумаба, инпилумаба, авелумаба, дурвалумаба, атезолизумаба или пидилизумаба.

5. Способы применения

Соединения и композиции, описанные в настоящем документе, как правило, применимы для ингибирования eIF4E или его мутанта.

Активность соединения, используемого в данном изобретении в качестве ингибитора eIF4E или его мутанта, можно анализировать in vitro, in vivo или в клеточной линии. Анализы in vitro включают анализы, определяющие ингибирование eIF4E или его мутанта. В альтернативных анализах in vitro осуществляется количественное определение способности ингибитора связываться с eIF4E. Подробные условия анализа соединения, применимого в данном изобретении в качестве ингибитора eIF4E, или его мутанта, изложены в приведенных ниже примерах.

Предложенные соединения являются ингибиторами eIF4E и, следовательно, применимы для лечения одного или более нарушений, связанных с активностью eIF4E. Таким образом, в определенных вариантах осуществления настоящее изобретение относится к способу лечения eIF4E-опосредованного нарушения, включающему стадию
введения нуждающемуся в этом пациенту соединения по настоящему изобретению или его фармацевтически приемлемой композиции. В определенных вариантах осуществления
eIF4E-опосредованное нарушение представляет собой eIF4E-опосредованный рак. В
некоторых вариантах осуществления eIF4E-опосредованный рак выбран из рака молочной
железы, колоректального рака, рака легкого, глиобластомы, саркомы, меланомы, рака
предстательной железы и лимфом. В некоторых вариантах осуществления eIF4E-
опосредованный рак представляет собой рак молочной железы.

[00288] В контексте данного документа термины «лечение», «лечить» и «процесс
лечения» означают обращение вспять, облегчение, задержку начала или подавление
progessования заболевания или нарушения или одного, или более симптомов
заболевания, как описано в настоящем документе. В некоторых вариантах осуществления
лечение можно применять после развития одного или более симптомов. В других
вариантах осуществления лечение можно применять в отсутствие симптомов. Например,
лечение можно применять в отношении пациента с предрасположенностью до начала
симптомов (напри мер, с учетом анамнеза симптомов и/или с учетом генетических или
других факторов предрасположенности). Лечение также можно продолжать после
устранения симптомов, например, для предотвращения или замедления их рецидива.

[00289] В контексте данного документа термины «eIF4E-опосредованные» нарушения,
заболевания и/или состояния, используемые в настоящем документе, означают любое
заболевание или другое патологическое состояние, в котором, как известно, eIF4E или его
мутант играет важную роль, включая, без ограничения, клеточное пролиферативное
нарушение. В некоторых вариантах осуществления клеточное пролиферативное
нарушение представляет собой рак, как описано в настоящем документе.

Злокачественное новообразование

[00290] В некоторых вариантах осуществления рак включает, без ограничения, лейкозы
(например, острый лейкоз, острый лимфоцитарный лейкоз, острый миелоцитарный лейкоз,
острый миелобластный лейкоз, острый промиелоцитарный лейкоз, острый
миеломоноцитарный лейкоз, острый моноцитарный лейкоз, острый эритромелоз,
хронический лейкоз, хронический миелоцитарный лейкоз, хронический лимфоцитарный
лейкоз), истинную полицитемию, лимфому (например, ходжкинская лимфома,
неходжкинская лимфома), макроглобулинемию Вальденстрема, множественную миелому,
болезнь тяжелых солей и солидные опухоли, такие как саркомы и карциномы (например,
фиброморха, миксоморха, липоморха, хондроморха, остеогенная саркома,
хордома, ангиоморха, эндотелиоморха, лимфангиморха,
лимфангнэоздотелиосаркома, синовиома, мезотелиома, саркома Юинга, лейомиосаркома, рабдомиосаркома, карцинома толстой кишки, рак поджелудочной железы, рак молочной железы, рак яичника, рак предстательной железы, плоскоклеточная карцинома, базальноклеточная карцинома, аденоакринома, карцинома потовых желез, карцинома сальных желез, папиллярная карцинома, папиллярная аденокарцинома, цистаденокарцинома, медуллярная карцинома, бронхогенная карцинома, почечно-клеточная карцинома, гепатома, карцинома желчного протока, хориокарцинома, семинома, эмбриональная карцинома, опухоль Вильсса, рак шейки матки, рак матки, рак яичка, карцинома легкого, мелкоклеточная карцинома легкого, карцинома мочевого пузыря,

эпителиальная карцинома, глиома, астроцитома, глиобластома мультиформная (GBM, также известная как глиобластома), медуллобластома, краинофарингиома, эпендимома, пинеалома, гемангиобластома, акустическая невринома, олигодендроглиома, шваннома, нейрофиброматоз, менингиома, меланома, нейробластома и ретинобластома).

В некоторых вариантах осуществления рак представляет собой глиому, астроцитому, мультиформную глиобластому (GBM, также известную как глиобластома), медуллобластому, краинофарингиому, эпендимому, пинеалому, гемангиобластому, акустическую невриному, олигодендроглиому, шванну, нейрофиброматоз, менингию, меланому, нейробластому или ретинобластому.

В некоторых вариантах осуществления рак представляет собой акустическую невриному, астроцитому (например, степень I — пилоцитарная астроцитома, степень II — астроцитома низкой степени злокачественности, степень III — анапластическая астроцитома или степень IV — глиобластома (GBM)), хордому, лимфому ЦНС, краинофарингиому, глиому ствола головного мозга, эпендимому, мешанную глиому, глиому зрительного нерва, субэпендимому, медуллобластому, менингию, метастатическую опухоль головного мозга, олигодендроглиому, опухоли гипофиза, примитивная нейроклеточная (PNET) опухоль или шванну. В некоторых вариантах осуществления рак представляет собой тип, чаще обнаруживаемый у детей, чем у взрослых, такой как глиома ствола головного мозга, краинофарингиома, эпендимома, ювенильная пилоцитарная астроцитома (JPA), медуллобластома, глиома зрительного нерва, опухоль шишковидного тела, примитивные нейроклеточные опухоли (PNET) или рабдомиома опухоль. В некоторых вариантах осуществления пациент представляет собой взрослого человека. В некоторых вариантах осуществления пациент представляет собой ребенка или педиатрического пациента.

Рак включает в другом варианте осуществления, без ограничения, мезотелиому, гепатобилиарный рак (печени и желчных протоков), рак костей, рак поджелудочной
железы, рак кожи, рак головы или шеи, кожную или внутриглазную меланому, рак яичников, рак толстой кишки, рак прямой кишки, рак анальной области, рак желудка, рак желудочно-кишечного тракта (рак желудка, колоректальный рак и рак двенадцатиперстной кишки), рак матки, рак фаллопиевых труб, рак эндометрия, рак шейки матки, рак влагалища, рак вульвы, болезнь Ходжкина рак пищевода, рак тонкой кишки, рак эндокринной системы, рак щитовидной железы, рак паращитовидной железы, рак надпочечников, саркому мягких тканей, рак уретры, рак полового члена, рак предстательной железы, рак яичка, хронический или острый лейкоз, хронический миелоидный лейкоз, лимфоцитарные лимфомы, рак мочевого пузыря, рак почки или мочеточника, почечно-клеточный рак, рак почки или уретры, неходжкинскую лимфому, опухоли оси позвоночника, глиому ствола головного мозга, аденоому гипофиза, рак коры надпочечников, рак желчного пузыря, множественную миелому, холангикарциному, фибросаркому, нейробластому, ретинобластому или комбинацию одного или более из вышеперечисленных видов рака.

[00294] В некоторых вариантах осуществления рак выбран из гепатоцеллюлярной карциномы, рака яичника, эпителиального рака яичника или рака фаллопиевой трубы; папиллярной серозной цистаденокарциномы или папиллярной серозной карциномы матки (UPSC); рака предстательной железы; рака яичек; рака желчного пузыря; гепатохолангиокарциномы; синовиальной саркомы мягких тканей и костей; рабдомиосаркомы; остеосаркомы; хондросаркомы; саркомы Юинга; анапластического рака щитовидной железы; адренокортикальной аденомы; рака поджелудочной железы; протоковой карциномы поджелудочной железы или аденокарциномы поджелудочной железы; рака желудочно-кишечного тракта/желудка (GIST); лимфомы; плоскоклеточного рака головы и шеи (SCCHN), рака слюнных желез; глиомы или рака головного мозга; злокачественных опухолей оболочек периферических нервов, ассоциированных с нейрофиброматозом-1 (MPNST); макроглобулемии Вальденстрема; или медулlobластомы.

[00295] В некоторых вариантах осуществления рак выбран из гепатоцеллюлярной карциномы (HCC), гепатобластомы, рака толстой кишки, рака прямой кишки, рака яичников, эпителиального рака яичников, рака фаллопиевой трубы, папиллярной серозной цистаденокарциномы, папиллярной серозной карциномы матки (UPSC), гепатохолангиокарциномы, синовиальной саркомы мягких тканей и костей, рабдомиосаркомы, остеосаркомы, анапластического рака щитовидной железы, адренокортикальной аденомы, рака поджелудочной железы, карциномы протоков поджелудочной железы, аденокарциномы поджелудочной железы, глиомы,
злокачественных опухолей оболочек периферических нервов, ассоциированных с нейрофиброматозом-I (MPNST), макроглобулинемии Вальденстрема или медуллобластомы.

[00296] В некоторых вариантах осуществления рак представляет собой солидную опухоль, такую как саркома, карцинома или лимфома. Солидные опухоли обычно состоят из аномальной массы ткани, которая, как правило, не включает кисты или жидкые участки.

В некоторых вариантах осуществления рак выбран из почечно-клеточной карциномы или рака почки, гепатоцеллюлярной карциномы (HCC) или гепатобластомы, или рака печени; меланомы, рака молочной железы; колоректальной карциномы или колоректального рака; рака толстой кишки; рака прямой кишки; рака артериальной области; рака легкого, такого как немелкоклеточный рак легкого (NSCLC) или мелкоклеточный рак легкого (SCLC); рака яичника, эпителиального рака яичника, карциномы яичника или рака фаллопиевой трубы; папиллярной серозной цистаденокарциномы или папиллярной серозной карциномы матки (UPSC); рака предстательной железы; рака яичек; рака желчного пузыря; гепатохолангиокарциномы; синовиальной саркомы мягких тканей и костей; рабдомиосаркомы; остеосаркомы; хондросаркомы; саркомы Юинга; анапластического рака щитовидной железы; адренокортикальной карциномы; рака поджелудочной железы; протоковой карциномы поджелудочной железы или аденокарциномы поджелудочной железы; рака желудочно-кишечного тракта/желудка (GIST); лимфомы; плоскоклеточного рака головы и шеи (SCCHN); рака слюнных желез; глиомы или рака головного мозга; злокачественных опухолей оболочек периферических нервов, ассоциированных с нейрофиброматозом-I (MPNST), макроглобулинемии Вальденстрема; или медуллобластомы.

[00297] В некоторых вариантах осуществления рак выбран из почечно-клеточной карциномы, гепатоцеллюлярной карциномы (HCC), гепатобластомы, колоректальной карциномы, колоректального рака, рака толстой кишки, рака прямой кишки, рака артериальной области, рака яичников, эпителиального рака яичников, карциномы яичников, рака фаллопиевых труб, папиллярно-серозной цистаденокарциномы, папиллярно-серозной карциномы матки (UPSC), гепатохолангиокарциномы, синовиальной саркомы мягких тканей и костей, рабдомиосаркомы, остеосаркомы, хондросаркомы, анапластического рака щитовидной железы, адренокортикального рака, рака поджелудочной железы, протоковой карциномы поджелудочной железы, аденокарциномы поджелудочной железы, глиомы, рака головного мозга, злокачественных опухолей оболочек периферических нервов, ассоциированных с нейрофиброматозом-I (MPNST), макроглобулинемии Вальденстрема или медуллобластомы.
В некоторых вариантах осуществления рак выбран из гепатоцеллюлярной карcinомы (HCC), гепатобластомы, рака толстой кишки, рака прямой кишки, рака яичников, эпителиального рака яичников, карциномы яичников, рака фаллопиевой трубы, папиллярной серозной цистаденокарциномы, папиллярной серозной карциному матки (UPSC), гепатохолангинокарциномы, синовиальной саркомы мягких тканей и костей, рабдомиосаркомы, остеосаркомы, анапластического рака щитовидной железы, адренокортikalной карциномы, рака поджелудочной железы, карциному протоков поджелудочной железы, аденоакарциному поджелудочной железы, глиому, злокачественных опухолей оболочек периферических нервов, ассоциированных с нейрофиброматозом-1 (MPNST), макроглобулиномии Вальденстрема или медуллобластомы.

В одном варианте осуществления рак представляет собой гепатоцеллюлярную карциному (HCC). В некоторых вариантах рак представляет собой гепатобластому. В некоторых вариантах осуществления рак представляет собой рак толстой кишки. В некоторых вариантах осуществления рак представляет собой рак прямой кишки. В некоторых вариантах осуществления рак представляет собой рак яичников или карциному яичников. В некоторых вариантах осуществления рак представляет собой эпителиальный рак яичников. В некоторых вариантах осуществления рак представляет собой рак фаллопиевой трубы. В некоторых вариантах осуществления рак представляет собой рак папиллярную серозную цистаденокарциному. В некоторых вариантах осуществления рак представляет собой папиллярную серозную карциному матки (UPSC). В некоторых вариантах рак представляет собой гепатохолангинокарциному. В некоторых вариантах осуществления рак представляет собой синовиальную саркому мягких тканей и костей. В некоторых вариантах рак представляет собой рабдомиосаркому. В некоторых вариантах осуществления рак представляет собой остеосаркому. В некоторых вариантах осуществления рак представляет собой анапластический рак щитовидной железы. В некоторых вариантах осуществления рак представляет собой рак адренокортikalную карциному. В некоторых вариантах осуществления рак представляет собой рак поджелудочной железы или карциному протоков поджелудочной железы. В некоторых вариантах осуществления рак представляет собой аденоакарциному поджелудочной железы. В некоторых вариантах рак представляет собой глиому. В некоторых вариантах рак представляет собой злокачественные опухоли оболочек периферических нервов (MPNST). В некоторых вариантах осуществления рак представляет собой MPNST, ассоциированные с нейрофиброматозом-1. В некоторых вариантах осуществления рак представляет собой макроглобулиномию Вальденстрема. В некоторых вариантах осуществления рак
представляет собой медулlobластому.

[00300] В некоторых вариантах осуществления рак представляет собой острый лимфобластный лейкоз (ОЛЛ), острый миелоидный лейкоз (ОМЛ), адренокортикальную карциному, рак анальной области, рак аппендикса, атипичную тератоидную/рабдоидную опухоль, базальномеклеточную карциному, рак желчных протоков, рак мочевого пузыря, рак кости, опухоль мозга, астроцитому, опухоль головного и спинного мозга, глиому ствола головного мозга, атипичную тератоидную/рабдоидную опухоль центральной нервной системы, эмбриональные опухоли центральной нервной системы, рак молочной железы, бронхиальные опухоли, лимфому Беркитта, карциноидную опухоль, карциному неизвестной первичной локализации, рак центральной нервной системы, рак шейки матки, рак детского возраста, хордому, хронический лимфоцитарный лейкоз (ХЛЛ), хронический миелогенный лейкоз (ХМЛ), хронические миелопролиферативные нарушения, рак толстой кишки, колоректальный рак, краниофарингиому, кожную T-клеточную лимфому, протоковую карциному In Situ (DCIS), эмбриональные опухоли, рак эндометрия, эпидимобластому, эпидимому, рак пищевода, эстезионейробластому, саркому Юнгга, экстракраниальную опухоль из зародышевых клеток, экстрагонадальную опухоль из зародышевых клеток, рак внепеченочных желчных протоков, рак глаза, фибросную гистиоцитому кости, рак желчного пузыря, рак желудка, карциноидную опухоль ЖКТ, стромальную опухоль ЖКТ (GIST), опухоль из зародышевых клеток, опухоль из зародышевых клеток яичников, гестационную трофобластическую опухоль, глиому, волосатоклеточный лейкоз, рак головы и шеи, рак сердца, гепатоцеллюлярный рак, гистиоцитоз, рак из клеток Лангерганса, лимфому Ходжкина, рак гипофарингеальной области, внутриглазную меланому, опухоли из островков клеток, саркому Капоши, рак почки, гистиоцитоз из клеток Лангерганса, рак гортани, лейкоз, рак губы и ротовой полости, рак печени, лобулярную карциному in situ (LCIS), рак легкого, лимфому, СПИД-ассоциированную лимфому, макроглобулинемию, рак груди у мужчин, медулlobластому, медуллоэпителиум, меланому, карциному из клеток Меркеля, злокачественную мезотелиум, метастатический плоскоклеточный рак шеи с оккульной первичной опухолью, карциному средостения с вовлечением гена NUT, рак ротовой полости, синдром множественной эндокринной неоплазии, множественную миелому/плазмоклеточное новообразование, грибовидный миокоз, миелодиспластический синдром, миелодиспластическое/миелопролиферативное новообразование, хронический миелогенный лейкоз (ХМЛ), острый миелоидный лейкоз (ОМЛ), миелому, множественную миелому, хроническое миелопролиферативное нарушение, рак полости носа, рак околоносовых пазух, рак носоглотки, нейробластому, неходжкинскую лимфому,
немелкоклеточный рак легкого, рак рта, рак ротовой полости, рак губы, рак ротоглотки, остеосаркому, рак яичников, рак поджелудочной железы, папилломатоз, параганглиому, рак околоносовых пазух, рак полости носа, рак паращитовидной железы, рак полового члена, рак глотки, феохромоцитому, опухоли паренхимы щитовидной железы промежуточной дифференцировки, пиоэластому, опухоль гипофиза, плазмоклеточное новообразование, плевропульмональную бластому, рак молочной железы, первичную лимфому центральной нервной системы (ЦНС), рак предстательной железы, рак прямой кишки, почечно-клеточный рак, почечно-клеточная карцинома, рак почечной лоханки, рак мочеточника, переходноклеточный рак, ретибластому, рабдомиосаркому, рак слюнных желез, саркому, синдром Сезари, рак кожи, мелкоклеточный рак легких, рак тонкой кишки, саркому мягких тканей, плоскоклеточную карциному, плоскоклеточный рак шеи с оккульной первичной опухолью, плоскоклеточную карциному головы и шеи (HNSCC), рак желудка, супратенториальные примитивные нейроэктодермальные опухоли, T-клеточную лимфому, рак яичек, рак горла, тимому, карциному тимуса, рак щитовидной железы, переходноклеточный рак почечной лоханки и мочеточника, трижды негативный рак молочной железы (TNBC), гестационную трофобластическую опухоль, первичную опухоль неизвестной локализации, необычный рак детского возраста, рак уретры, рак матки, саркому матки, макрогобулиномию Вальденстрема или опухоль Вильмса.

[00301] В некоторых вариантах осуществления рак выбран из рака мочевого пузыря, рака молочной железы (включая TNBC), рака шейки матки, колоректального рака, хронического лимфоцитарного лейкоза (ХЛЛ), диффузной крупноклеточной Б-лимфомы (DLBCL), аденоаршиномы пищевода, глиобластомы, рака головы и шеи, лейкоза (острого и хронического), низкодифференцированной глиомы, рака легкого (включая аденоаршиному, немелкоклеточный рак легкого и плоскоклеточную карциному), лимфомы Ходжкина, неходжкинской лимфомы (NHL), меланомы, множественной миеломы (MM), рака яичников, рака поджелудочной железы, рака предстательной железы, рака почек (включая светлоказеточную карциному почки и папиллярно-клеточную карциному почки) и рака желудка.

[00302] В некоторых вариантах осуществления рак представляет собой мелкоклеточный рак легкого, немелкоклеточный рак легкого, колоректальный рак, множественную миелому, острый миелоидный лейкоз (ОМЛ), острый лимфобластный лейкоз (ОЛЛ), рак поджелудочной железы, рак печени, гепатоцеллюлярный рак, нейробластому, другие солидные опухоли или другие гематологические раковые заболевания.

[00303] В некоторых вариантах осуществления рак представляет собой мелкоклеточный рак легкого, немелкоклеточный рак легкого, колоректальный рак, множественную миелому
или ОМЛ.

[00305] В некоторых вариантах осуществления в настоящем изобретении предложен способ лечения опухоли у нуждающегося в этом пациенту, включающий введение пациенту соединения II или его фармацевтической соли, или композиции, и иммуноонкологического средства, как описано в настоящем документе. В некоторых вариантах осуществления опухоль включает любой из видов рака, описанных в настоящем документе. В некоторых вариантах осуществления опухоль включает меланому. В некоторых вариантах осуществления опухоль включает рак мочевой железы. В некоторых вариантах осуществления опухоль включает рак легкого. В некоторых вариантах осуществления опухоль включает мелкоклеточный рак легкого (SCLC). В некоторых вариантах осуществления опухоль включает немелкоклеточный рак легкого (NSCLC).

[00306] В некоторых вариантах осуществления опухоль лечат путем остановки дальнейшего роста опухоли. В некоторых вариантах осуществления опухоль лечат путем уменьшения размера (например, объема или массы) опухоли по меньшей мере на 5%, 10%, 25%, 50%, 75%, 90% или 99% относительно размера опухоли до лечения. В некоторых вариантах осуществления опухоли лечат путем уменьшения количества опухолей у пациента по меньшей мере на 5%, 10%, 25%, 50%, 75%, 90% или 99% по отношению к количеству опухолей до лечения.

[00307] Соединения и композиции в соответствии со способом по настоящему изобретению можно вводить с использованием любого количества и пути введения, эффективного для лечения или уменьшения тяжести рака. Точное необходимое количество будет варьироваться от субъекта к субъекту, в зависимости от вида, возраста и общего
состояния субъекта, тяжести заболевания или состояния, конкретного средства, способа его введения и т. п. Соединения и композиции в соответствии со способом по настоящему изобретению предпочтительно изготавливают в виде стандартной лекарственной формы для простоты введения и однородности дозировки. Выражение «стандартная лекарственная форма» в контексте данного документа относится к физически дискретной единице средства, подходящей для пациента, подлежащего лечению. Однако следует понимать, что решение об общем суточном применении соединений и композиций будет приниматься лечащим врачом в рамках обоснованного медицинского заключения. Конкретный эффективный уровень дозы для любого конкретного пациента будет зависеть от множества факторов, включая расстройство, подлежащее лечению, и тяжесть расстройства; активность конкретного применяемого соединения; конкретный применяемый состав; возраст, массу тела, общее состояние здоровья, пол и рацион пациента; время введения, способ введения и скорость выведения конкретного применяемого соединения; продолжительность лечения; лекарственные средства, применяемые в комбинации или одновременно с конкретным применяемым соединением; и подобные факторы, хорошо известные в медицине. Термин «пациент» в контексте данного документа обозначает животное, предпочтительно млекопитающее и наиболее предпочтительно человека.

[00308] Фармацевтически приемлемые композиции по данному изобретению можно вводить людям и другим животным перорально, ректально, парентерально, интраинтестинально, интравагинально, внутрибрюшно, местно (в виде порошков, мазей или капель), буквально, в виде орального или назального спрея и т. п., в зависимости от тяжести заболевания или нарушения, подлежащего лечению. В определенных вариантах осуществления соединения по изобретению можно вводить перорально или парентерально в дозах от около 0,01 мг/кг до около 50 мг/кг и предпочтительно от около 1 мг/кг до около 25 мг/кг массы тела субъекта в сутки, один или более раз в сутки, до достижения желаемого терапевтического эффекта.

[00309] Жидкие лекарственные формы для перорального введения включают, но не ограничиваются ими, фармацевтически приемлемые эмульсии, микрэмульсии, растворы, суспензии, сиропы и эликсиры. В дополнение к активным соединениям жидкые лекарственные формы могут содержать инертные разбавители, обычно применяемые в настоящем уровне техники, например, такие как вода или другие растворители, солюбилизирующие агенты и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый спирт, бензилбензоат, пропиленгликоль, 1,3-бутиленгликоль, диметилформамид, масла (в частности, хлопковое, арахисовое,
кукурузное, масло зародышей пшеницы, оливковое, касторовое и кунжутное масло), глицерин, тетрагидрофуриловый спирт, полиэтиленгликоли и сложные эфиры жирных кислот и сорбитана, а также их смеси. Помимо инертных разбавителей пероральные композиции могут также включать адьюванты, такие как смачивающие агенты, эмульгирующие и суспендирующие агенты, подсластители, ароматизаторы и отдушки.

[00310] Инъекционные формы, например, стерильные инъецируемые водные или масляные суспензии, могут быть приготовлены в соответствии с известным уровнем техники с использованием подходящих диспергирующих или смачивающих средств и суспендирующих средств. Стерильный препарат для инъекций может также представлять собой стерильный раствор для инъекций, суспензию или эмульсию в нетоксичном парентерально приемлемом разбавителе или растворителе, например, в виде раствора в 1,3-бутандиоле. Среди приемлемых носителей и растворителей, которые могут быть использованы, — вода, раствор Рингера, U.S.P. (Фармакопея США) и изотонический раствор хлорида натрия. Кроме того, стерильные нелетучие масла обычно используются в качестве растворителя или суспендирующей среды. Для данной цели можно использовать любое нелетучее масло со слабовыраженным вкусом, включая синтетические моно- или диглицериды. Кроме того, в препарате инъекционных лекарственных форм используются жирные кислоты, такие как олеиновая кислота.

[00311] Инъекционные составы можно стерилизовать, например, путем фильтрации через задерживающий бактерии фильтр или путем включения стерилизующих агентов в форму стерильных твердых композиций, которые можно растворять или диспергировать в стерильной воде или другой стерильной инъекционной среде непосредственно перед применением.

[00312] Для продления действия соединения, описанного в данном документе, часто желательно замедлять абсорбцию соединения после подкожной или внутримышечной инъекции. Это может быть достигнуто за счет использования жидкой суспензии кристаллического или аморфного материала с плохой растворимостью в воде. Скорость абсорбции соединения зависит от скорости его растворения, которая, в свою очередь, может зависеть от размера кристалла и кристаллической формы. Альтернативно, замедленное впрыскивание парентерально вводимого соединения осуществляют путем растворения или суспендирования соединения в масляной несущей среде. Формы депо для инъекций получают путем образования матриц микрокапсул соединения в биоразлагаемых полимерах, таких как полилактид-полигликолид. В зависимости от соотношения соединения к полимеру и природы конкретного используемого полимера скорость высвобождения соединения можно контролировать. Примеры других биоразлагаемых
полимеров включают поли(ортоэфиры) и поли(ангиридцы). Инъекционные составы пролонгированного действия также получают путем включения соединения в липосомы или микроомулы, совместимые с тканями организма.

[00313] Композиции для ректального или вагинального введения предпочтительно представляют собой суппозитории, которые можно приготовить путем смешивания соединений по настоящему изобретению с подходящими нераздражающими наполнителями или носителями, такими как масло какао, полиэтilenгликоль или воск для суппозиториев, которые являются твердыми при температуре окружающей среды, но жидкими при температуре тела, и поэтому тают в прямой кишке или полости влагалища и высвобождают активное соединение.

[00314] Твердые лекарственные формы для перорального введения включают капсулы, таблетки, пиллоли, порошки и гранулы. В таких твердых дозированных формах активное соединение смешано по меньшей мере с одним инертным фармацевтически приемлемым вспомогательным веществом или носителем, таким как цитрат натрия или диальпизациямопат, и/или а) наполнителями или разбавителями, такими как крахмалы, лактоза, сахароза, глюкоза, маннит и креминевая кислота b) связующие, такие как, например, карбоксиметилцеллюлоза, альгинаты, желатин, поливинилпирrolидон, сахароза и гуммиарабик, c) увлажнители, такие как глицерин, d) дезинтегрирующие агенты, такие как агар-агар, карбонат кальция, картофельный или тапиковый крахмал, альгиновая кислота, некоторые силикагет и карбонат натрия, e) агенты, замедляющие растворение, такие как парафин, f) ускорители абсорбции, такие как соединения четвертичного аммония, g) смачивающие агенты, такие как, например, цетиловый спирт и моностеарат глицерина, h) абсорбенты, такие как каолин и бентонитовая глина, и i) смазывающие вещества, такие как тальк, стеарат кальция, стеарат магния, твердые полиэтиленгликоли, лаурилсульфат натрия и их смеси. В случае капсул, таблеток и пиллолей лекарственная форма также может содержать буферные агенты.

[00315] Твердые композиции подобного типа также могут применяться в качестве наполнителей в мягких и твердых желатиновых капсулах с применением таких наполнителей как лактоза или молочные сахара, а также высокомолекулярные полиэтиленгликоли и тому подобное. Твердые лекарственные формы таблеток, драже, капсул, пиллолей и гранулы могут быть приготовлены с покрытиями и оболочками, такими как энтеросолюбильные покрытия и другие покрытия, хорошо известные в области фармацевтических препаратов. Они могут необязательно содержать замутнительные агенты, а также могут быть в составе, в котором они высвобождают активный ингредиент (ингредиенты) только или предпочтительно в определенной части кишечного тракта,
необходимо, замедленным образом. Примеры заливочных композиций, которые можно использовать, включают полимерные вещества и воски. Твердые композиции аналогичного типа также могут быть использованы в качестве наполнителей в мягких и твердых желатинообразных капсулах с использованием таких экскipients, как лактоза или молочный сахар, а также полиэтиленгликоли с высокой молекулярной массой и т.п.

[00316] Активные соединения также могут быть в микрокапсулированной форме с одним или более наполнителями, как указано выше. Твердые лекарственные формы таблеток, драже, капсул, пиллоў и гранул могут быть приготовлены с покрытиями и оболочками, такими как энтеросольбильные покрытия, покрытия, контролирующие высвобождение, и другие покрытия, хорошо известные в области фармацевтических препаратов. В таких твердых лекарственных формах активное соединение может быть смешано с по меньшей мере одним инертным разбавителем, таким как сахароза, лактоза или крахмал. Такие лекарственные формы могут также содержать, как это принято на практике, дополнительные вещества, отличные от инертных разбавителей, например, смазывающие вещества для таблетирования и другие вспомогательные вещества для таблетирования, такие как стеарат магния и микрокристаллическая целлюлоза. В случае капсул, таблеток и пиллоў лекарственные формы могут также содержать буферные агенты. Они могут необязательно содержать замутнительные агенты, а также могут быть в составе, в котором они высвобождают активный ингредиент (ингредиенты) только или преимущественно в определенной части кишечного тракта, необязательно, замедленным образом. Примеры заливочных композиций, которые можно использовать, включают полимерные вещества и воски.

[00317] Лекарственные формы для местного или трансдермального применения соединения по изобретению включают мази, пасты, кремы, лосьоны, гели, порошки, растворы, спреи, средства для ингаляции или пластыри. Активный компонент смешивают в стерильных условиях с фармацевтически приемлемым носителем и любыми необходимыми консервантами или буферами, которые могут потребоваться. Офтальмологический состав, ушные капли и глазные капли также входит в объем данного изобретения. Кроме того, настоящее изобретение предусматривает применение чрезкожных пластырей, которые имеют дополнительное преимущество, заключающееся в обеспечении контролируемой доставки соединения в организм. Такие лекарственные формы могут быть получены путем растворения или распределения соединения в подходящей среде. Усилители абсорбции также могут быть использованы для увеличения потока соединения через кожу. Скорость может контролироваться либо предоставлением регулирующей скоростью мембраны, либо диспергированием соединения в полимерной
матрице или геле.

[00318] Следующие ниже примеры представлены только для иллюстративных целей и
ником образом не должны рассматриваться как ограничивающие объем изобретения.

ИЛЛЮСТРАТИВНЫЕ ПРИМЕРЫ

[00319] Как продемонстрировано в приведенных ниже примерах, в определенных
иллюстративных вариантах осуществления соединения получают в соответствии со
следующими общими методиками. Следует понимать, что, хотя общие способы описывают
синтез определенных соединений, агентов по настоящему изобретению, следующие общие
способы и другие способы, известные специалистам в данной области, могут быть
применены в соответствии с настоящим изобретением для обеспечения технологий
изобретению.

Пример 1. Синтез соединений 1-1 – 1-48

Схема 1: Путь для a, b, c, e, f

![Схема 1: Путь для а, b, c, e, f](image)

Тот же способ синтеза использовали для других соединений b-f.

Схема 2: Путь для 1, 2, 3, 4, 5

![Схема 2: Путь для 1, 2, 3, 4, 5](image)

Тот же способ синтеза использовали для других соединений 2-5.

Схема 3: Путь для соединения 6

![Схема 3: Путь для соединения 6](image)
Схема 4: Путь для 7, 8, 9, 10

Общая информация. Все испарения проводились в вакууме на роторном испарителе. Аналитические образцы сушили в вакууме (1–5 мм рт. ст.) при комнатной температуре. Тонкослойную хроматографию (ТСХ) проводили на планшетах с силикагелем, пятна визуализировали с применением УФ-света (214 и 254 нм). Очистку с помощью колоночной и фляш-хроматографии проводили с использованием силикагеля (200–300 меш). Системы растворителей представлены в виде смесей по объему. Все спектры ЯМР были записаны на спектрометре Bruker 400 (400 МГц). Химические сдвиги 1Н указаны в значениях δ в миллионных долях с дейтерированным растворителем в качестве внутреннего стандарта. Данные представлены следующим образом: химический сдвиг, мультиплетность (с = синглет, д = дублет, т = трiplет, кв = квартет, уш. = уширенный, м = мультиплет), константа взаимодействия (Гц), интегрирование.

Спектры ЖХ-МС были получены на масс-спектрометре Agilent 1200 серий 6110 или 6120 с ионизацией электрораспылением, и, если не указано иное, общие условия ЖХ-МС были следующими:

Способ А (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 3,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 0,8 мин, затем в этих условиях в течение 0,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,01 мин).

Способ Б (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40°C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 0,05 % ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,05 мин и в этих условиях в течение 0,7 мин.)

Способ С (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] до 0% [вода + 10 мМ NH₄HCO₃] и 100% [CH₃CN] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] за 0,1 мин и в этих условиях за 0,7 мин.)

Синтез 1-(3,4-дихлорфенил)-3-метилбутан-1-она (a-1)
[00322] К раствору с-1 (10,0 г, 58,1 ммоль) в ТГФ (100 мл) добавляли изобутилмагний бромид (1,0 М в ТГФ, 87,1 мл, 87,1 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливают в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (100 мл х 3). Органическую фазу объединяют и промывают H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрируют и очищают колонной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением a-1 (7,50 г, выход 55.8%) в виде масла желтого цвета.

Синтез 2-бром-1-(3,4-дихлорфенил)-3-метилбутан-1-она (a-2)

[00323] Смесь a-1 (7,50 г, 32,5 ммоль) и RTAT (18,3 г, 48,7 ммоль) в ТГФ (150 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрируют, остаток растворяют в H₂O (100 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяют и промывают H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрируют с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением a-2 (10,1 г, выход 100%) в виде масла коричневого цвета.

Синтез 1-(3,4-дихлорфенил)-3-метил-2-тиоцианатобутан-1-она (a)

[00324] Смесь a-2 (10,1 г, 32,5 ммоль) и NaSCN (5,26 г, 64,9 ммоль) в EtOH (100,0 мл)
перемешивали при 100°C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением а (5,32 г, выход 57,0%) в виде твердого вещества белого цвета.

Таблица 1-1: Данные по характеристикам соединений a-f

<table>
<thead>
<tr>
<th>Соединения</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>Способ B, чистота составляет 81,7%, ВУ = 2,283 мин; МС рассчит.: 287,0; МС найдено: 288,0 [M + H]⁺.</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 2,053 мин; МС рассчит.: 284,98; МС не найдено.</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Способ B, чистота составляет 75,2%, ВУ = 2,480 мин; МС рассчит.: 301,0; МС найдено: 324,1 [M + Na]⁺.</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>Способ B, чистота составляет 90,1%, ВУ = 1,947 мин; МС рассчит.: 249,1; МС найдено: 250,2 [M + H]⁺.</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>Способ B, чистота составляет 97,7%, ВУ = 2,296 мин; МС рассчит.: 253,03; МС не найдено.</td>
</tr>
</tbody>
</table>

Синтез (Z)-метил 2-циано-3-фенилакрилата (1-2)

![Chemical Reaction](image)

[00325] К смеси 1-1 (5,00 г, 47,2 ммоль) и метил-2-цианоацетата (5,61 г, 56,6 ммоль) в MeOH (100 мл) добавляли пиперидин (5 капель). Реакционную смесь перемешивали при
комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь фильтровали и остаток промывали MeOH (2,0 мл x 2), сушили с получением 1-2 (6,50 г, выход 73,7%) в виде твердого вещества белого цвета.

Синтез метил 3-амино-2-бензилпропаноата (1)

\[\text{O} \quad \text{CN} \quad \text{Ni Ренея, H}_2 \quad \text{MeOH, кт, в течение ночи} \]

5

[00326] Смесь 1-2 (6,50 г, 34,7 ммоль) и Ni Ренея (2,00 г) в MeOH (800 мл) перемешивали в атмосфере H\(_2\) при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH\(_2\)Cl\(_2\)/CH\(_3\)OH = 50/1) с получением 1 (550 мг, выход 7,5%) в виде бесцветного масла.

Синтез метил 2-циано-4-фенилбутаноата (6-2)

\[\text{NC} \quad \text{O} \quad \text{MeCN, K}_2\text{CO}_3, 70^\circ\text{C, в течение ночи} \]

10

[00327] Смесь 6-1 (4,00 г, 21,6 ммоль), метил 2-цианоацетата (10,7 г, 108,1 ммоль) и K\(_2\)CO\(_3\) (8,95 г, 64,8 ммоль) в MeCN (200 мл) перемешивали при 70°C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 30/1) с получением 6-2 (3,20 г, выход 72,8%) в виде масла желтого цвета.

Синтез метил 2-(аминометил)-4-фенилбутаноата (6)
Смесь 6-2 (3,20 г, 34,7 ммоль) и Ni Ренея (2,00 г) в MeOH (1000 мл) перемешивали в атмосфере H2 при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH2Cl2/CH3OH = 30/1) с получением 6 (2,00 г, выход 61,3%) в виде бесцветного масла.

Синтез *tren*-бутил 7-формил-1H-индол-1-карбоксилата (7-2)

К смеси 7-1 (4,00 г, 27,6 ммоль) и DMAP (5,05 г, 41,3 ммоль) в MeCN (150 мл) добавили Boc₂O (6,61 г, 30,3 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь фильтровали и остаток промывали MeCN (2,0 мл x 2), сушили с получением 7-2 (3,60 г, выход 53,3%) в виде твердого вещества белого цвета.

Синтез (Z)-*tren*-бутил 7-(2-циано-3-метокси-3-оксопроп-1-енил)-1H-индол-1-карбоксилата (7-3)

К смеси 7-2 (3,60 г, 14,7 ммоль) и метил 2-цианоацетата (1,75 г, 17,6 ммоль) в MeOH (80 мл) добавили пиридин (3 капли). Реакционную смесь перемешивали при 111
комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь фильтровали и остаток промывали MeOH (2,0 мл х 2), сушили с получением 7-3 (4,00 г, выход 83,5%) в виде твердого вещества белого цвета.

Синтез tert-бутил 7-(2-(аминометил)-3-метокси-3-оксопропил)-1Н-индоль-1-карбоксилата (7)

[00331] Смесь 7-3 (4,00 г, 12,3 ммоль) и Ni Ренея (2,00 г) в MeOH (1000 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 30/1) с получением 7 (1,40 г, выход 34,4%) в виде бесцветного масла.

Таблица 1-2: Данные по характеристикам соединений 1–10

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Химическая структура</th>
<th>ЖКХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Способ В, чистота составляет 41,3%, ВУ = 1,285 мин, МС рассчит.: 193,1; МС найдено: 194,3 [М + H]^+</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Способ В, чистота составляет 55,4%, ВУ = 1,251 мин, МС рассчит.: 237,1; МС найдено: 238,3 [М + H]^+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Способ В, чистота составляет 98,7%, ВУ = 1,316 мин, МС рассчит.: 223,1; МС найдено: 224,3 [М + H]^+</td>
</tr>
<tr>
<td>Соединение</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Способ В, чистота составляет 39,0%, ВУ = 1,144 мин; МС рассчит.: 209,1; МС найдено: 210,3 [M + H]⁺.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Способ В, чистота составляет 42,8%, ВУ = 1,254 мин; МС рассчит.: 211,1; МС найдено: 212,2 [M + H]⁺.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Способ В, чистота составляет 88,0%, ВУ = 1,421 мин; МС рассчит.: 207,1; МС найдено: 208,3 [M + H]⁺.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Способ В, чистота составляет 55,6%, ВУ = 1,602 мин; МС рассчит.: 332,2; МС найдено: 333,3 [M + H]⁺.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Способ В, чистота составляет 97,0%, ВУ = 1,590 мин; МС рассчит.: 332,2; МС найдено: 333,3 [M + H]⁺.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Способ А, чистота составляет 69,5%, ВУ = 0,648 мин; МС рассчит.: 332,2; МС найдено: 333,0 [M + H]⁺.</td>
</tr>
</tbody>
</table>
Соединение | Химическая структура | ЖХ-МС
--- | --- | ---
10 | ![Chemical Structure](image) | Способ В, чистота составляет 93,3%, ВУ = 1,580 мин; МС рассчит.: 332,2; МС найдено: 333,3 [M + H]

Синтез метил 2-бензил-3-(4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламино)пропаноата (1а)

[00332] Смесь а (100 мг, 0,347 ммоль) и 1 (80,5 мг, 0,416 ммоль) в EtOH (4,00 мл) перемешивали при 60 °С в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH₂Cl₂/CH₃OH = 120/1) с получением 1а (80,0 мг, выход 49,8%) в виде твердого вещества желтого цвета.

Синтез 2-бензил-3-(4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламино)пропановой кислоты (I-1)

[00333] К раствору 1а (80,0 мг, 0,173 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10 мл) добавляли LiOH (2,0 М в H₂O, 0,22 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 M). Смесь экстрагировали EtOAc (40 мл х 2), объединенную органическую фазу промывали сольевым раствором (30 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-1 (30,0 мг, ...)
выход 38,7%) в виде твердого вещества белого цвета.

Таблица 1–3: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖК-МС</th>
<th>(^1)Н ЯМР (400 МГц, ДМСО-(d_6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Способ С, чистота составляет 95,6%, ВУ = 2,055 мин; МС рассчит.: 448,1; МС найдено: 449,2 [M + H]⁺.</td>
<td>δ: 1,21 (6Н, дд, (J=6,8, 3,6) Гц), 2,79-2,90 (2Н, м), 2,98-3,02 (1Н, м), 3,25 (1Н, т, (J=6,8) Гц), 3,36-3,40 (2Н, м), 7,18-7,30 (5Н, м), 7,45 (1Н, дд, (J=8,4, 2,0) Гц), 7,65-7,73 (3Н, м), 12,34 (1Н, уш.).</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Способ С, чистота составляет 94,1%, ВУ = 2,049 мин; МС рассчит.: 492,1; МС найдено: 493,0 [M + H]⁺.</td>
<td>δ: 1,20 (6Н, дд, (J=6,4, 4,4) Гц), 2,75-2,80 (2Н, м), 3,05-3,08 (1Н, м), 3,25 (1Н, т, (J=6,8) Гц), 3,37-3,42 (2Н, м), 5,94 (2Н, д, (J=12,8) Гц), 6,71-6,80 (3Н, м), 7,44 (1Н, дд, (J=8,4, 2,0) Гц), 7,65-7,71 (3Н, м), 12,36 (1Н, с).</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Способ С, чистота составляет 93,8%, ВУ = 2,082 мин; МС рассчит.: 478,1; МС найдено: 479,0 [M + H]⁺.</td>
<td>δ: 1,20 (6Н, дд, (J=6,8, 2,4) Гц), 2,78 (2Н, д, (J=7,6) Гц), 3,03-3,07 (1Н, м), 3,23-3,29 (2Н, м), 3,36-3,40 (1Н, м), 3,73 (3Н, с), 6,84 (1Н, т, (J=7,6) Гц), 6,95 (1Н, д, (J=8,0) Гц), 7,14-7,22 (2Н, м), 7,44 (1Н, дд, (J=8,4, 2,0) Гц), 7,66-7,70 (2Н, м), 12,22 (1Н, с).</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,857 мин; МС рассчит.: 464,1; МС найдено: 465,2 [M + H]⁺.</td>
<td>δ: 1,19 (6Н, дд, (J=6,8, 3,2) Гц), 2,64-2,68 (2Н, м), 2,74-2,84 (2Н, м), 3,20-3,26 (2Н, м), 3,31-3,33 (1Н, м), 6,55-6,62 (3Н, м), 7,02 (1Н, т, (J=8,0) Гц), 7,43 (1Н, дд, (J=8,4, 2,0) Гц), 7,62-7,66 (3Н, м), 9,26 (1Н, уш.).</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Способ С, чистота составляет 94,2%, ВУ = 2,076 мин; МС рассчит.: 466,1; МС найдено: 467,2 [M + H]⁺.</td>
<td>δ: 1,21 (6Н, дд, (J=6,8, 2,8) Гц), 2,85-2,89 (2Н, м), 3,00-3,01 (1Н, м), 3,23 (1Н, т, (J=6,8) Гц), 3,36-3,42 (2Н, м), 7,03-7,09 (3Н, м), 7,29-7,33 (1Н, м), 12,36 (1Н, с).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>^1H ЯМР (400 МГц, ДМСО-d6)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Способ С, чистота составляет 94,9%, ВУ = 2,801 мин; МС рассчит.: 462,1; МС найдено: 463,0 [М + H]^+</td>
<td>δ: 1,21 (6Н, д, J = 6,8 Гц), 1,81-1,82 (2Н, м), 2,58-2,67 (3Н, м), 3,24 (1Н, т, J = 6,8 Гц), 3,38-3,40 (1Н, м), 3,45-3,47 (1Н, м), 7,16-7,26 (5H, м), 7,44 (1Н, дд, J = 8,4, 2,0 Гц), 7,65-7,69 (3Н, м), 12,41 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Способ С, чистота составляет 97,0%, ВУ = 1,981 мин; МС рассчит.: 446,1; МС найдено: 447,2 [М + H]^+</td>
<td>δ: 2,80-2,91 (2Н, м), 3,00-3,03 (1Н, м), 3,33-3,42 (2Н, м), 3,49 (2Н, д, J = 6,0 Гц), 5,10-5,14 (2Н, м), 5,94-6,00 (1Н, м), 7,19-7,31 (5Н, м), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,66 (1Н, д, J =8,4 Гц), 7,73-7,76 (2Н, м), 12,34 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Способ С, чистота составляет 95,3%, ВУ = 1,997 мин; МС рассчит.: 476,1; МС найдено: 477,2 [М + H]^+</td>
<td>δ: 2,77 (2Н, д, J = 6,8 Гц), 3,04 (1Н, т, J=5,8 Гц), 3,34-3,47 (4Н, м), 3,72 (3Н, с), 5,10 (2Н, д, J = 12,8 Гц), 5,90-5,98 (1Н, м), 6,81-6,94 (2Н, м), 7,12-7,20 (2Н, м), 7,46 (1Н, д, J = 8,0 Гц), 7,63-7,70 (3Н, м), 12,22 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Способ С, чистота составляет 93,6%, ВУ = 1,849 мин; МС рассчит.: 462,1; МС найдено: 463,2 [М + H]^+</td>
<td>δ: 2,68-2,78 (2Н, м), 2,91-2,94 (1Н, м), 3,34-3,40 (2Н, м), 3,46 (2Н, д, J = 6,0 Гц), 5,10 (2Н, дд, J = 13,2, 1,6 Гц), 5,92-5,98 (1Н, м), 6,57-6,62 (3Н, м), 7,04 (1Н, т, J=8,0 Гц), 7,48 (1Н, дд, J = 8,4, 2,0 Гц), 7,63 (1Н, д, J=8,4 Гц), 7,71-7,73 (2Н, м), 9,26 (1Н, с), 12,27 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>(^1)Н ЯМР (400 МГц, ДМСО-д6)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Способ С, чистота составляет 96,4%, БУ = 2,103 мин; МС рассчит.: 464,0; МС найдено: 465,0 [M + Н]⁺.</td>
<td>δ: 2,81-2,91 (2Н, м), 2,98-3,01 (1Н, м), 3,36-3,41 (2Н, м), 3,46 (2Н, д, J = 6,0 Гц), 5,10 (2Н, дд, J = 13,2, 1,6 Гц), 5,91-5,98 (1Н, м), 6,99-7,07 (3Н, м), 7,30 (1Н, д, J = 8,0 Гц), 7,47 (1Н, лд, J = 8,8, 2,0 Гц), 7,63 (1Н, д, J = 8,4 Гц), 7,70-7,73 (2Н, м), 12,38 (1Н, уш.).</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Способ С, чистота составляет 97,1%, БУ = 2,028 мин; МС рассчит.: 460,1; МС найдено: 461,2 [M + Н]⁺.</td>
<td>δ: 1,71-1,86 (2Н, м), 2,52-2,68 (3Н, м), 3,35-3,46 (4Н, м), 5,10 (2Н, дд, J = 13,2, 1,6 Гц), 5,90-6,00 (1Н, м), 7,12-7,24 (5Н, м), 7,46 (1Н, лд, J = 8,4, 2,0 Гц), 7,62 (1Н, д, J = 8,4 Гц), 7,70-7,71 (2Н, м), 12,45 (1Н, уш.).</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Способ С, чистота составляет 97,5%, БУ = 1,994 мин; МС рассчит.: 485,1; МС найдено: 486,2 [M + Н]⁺.</td>
<td>δ: 2,99-3,17 (3Н, м), 3,41-3,47 (4Н, м), 5,09 (1Н, лд, J = 6,0, 1,2 Гц), 5,12 (1Н, с), 5,90-6,00 (1Н, м), 6,44 (1Н, с), 6,82 (1Н, д, J = 6,8 Гц), 6,97 (1Н, т, J = 7,6 Гц), 7,23 (1Н, д, J = 8,0 Гц), 7,27 (1Н, т, J = 2,8 Гц), 7,41 (1Н, лд, J = 8,4, 2,0 Гц), 7,63 (1Н, д, J = 8,4 Гц), 7,71 (1Н, д, J = 2,0 Гц), 7,77(1Н, уш.), 11,06(1Н, с).</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Способ С, чистота составляет 100%, БУ = 1,804 мин; МС рассчит.: 485,1; МС найдено: 486,1 [M + Н]⁺.</td>
<td>δ: 2,82 (1Н, кв, J = 6,8 Гц), 2,90-3,01 (2Н, м), 3,35-3,41 (2Н, м), 3,46 (2Н, д, J = 6,0 Гц), 5,10 (2Н, лд, J = 13,2, 2,0 Гц), 5,90-5,99 (1Н, м), 6,30 (1Н, с), 6,93 (1Н, лд, J = 8,4, 1,6 Гц), 7,26-7,29 (2Н, м), 7,33 (1Н, с), 7,45 (1Н, лд, J = 8,4, 2,0 Гц), 7,60 (1Н, д, J = 8,4 Гц), 7,71-7,72 (2Н, м), 10,96 (1Н, с).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, ДМСО-d_6)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Способ C, чистота составляет 95,6%, ВУ = 2,055 мин; МС рассчит.: 448,1; МС найдено: 449,2 [M + H] $^+$.</td>
<td>δ: 1,21 (6Н, дд, $J = 6,8$, 3,6 Гц), 2,79-2,90 (2Н, м), 2,98-3,02 (1Н, м), 3,25 (1Н, т, $J = 6,8$ Гц), 3,36-3,40 (2Н, м), 7,18-7,30 (5Н, м), 7,45 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,65-7,73 (3Н, м), 12,34 (1Н, уш.).</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 2,803 мин; МС рассчит.: 506,1; МС найдено: 507,1 [М + Н] $^+$.</td>
<td>δ: 0,88 (6Н, д, $J = 6,8$ Гц), 1,67-1,80 (1Н, м), 2,58-2,60 (2Н, д, $J = 6,8$ Гц), 2,70-2,86 (2Н, м), 3,00-3,11 (1Н, м), 3,35-3,47 (2Н, м), 5,92-5,96 (2Н, дд, $J = 13,2$, 0,8 Гц), 6,69-6,81 (3Н, м), 7,47 (1Н, дд, $J = 8,4$, 2,8 Гц), 7,63-7,73 (3Н, м), 12,36 (1Н, уш.).</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 3,076 мин; МС рассчит.: 492,1; МС найдено: 493,1 [М + Н] $^+$.</td>
<td>δ: 0,88 (6Н, д, $J = 6,8$ Гц), 1,70-1,77 (1Н, м), 2,58-2,60 (2Н, д, $J = 6,8$ Гц), 2,77-2,79 (2Н, д, $J = 7,6$ Гц), 3,01-3,08 (1Н, м), 3,39-3,43 (2Н, м), 3,74 (3Н, с), 6,82-6,86 (1Н, т, $J = 7,2$ Гц), 6,93-6,95 (1Н, д, $J = 8$ Гц), 7,13-7,22 (2Н, м), 7,48 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,65-7,70 (3Н, м), 12,22 (1Н, уш.).</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,946 мин; МС рассчит.: 478,1; МС найдено: 479,2 [М + Н] $^+$.</td>
<td>δ: 0,86 (6Н, д, $J = 6,4$ Гц), 1,69-1,74 (1Н, м), 2,57 (2Н, д, $J = 7,2$ Гц), 2,66-2,78 (2Н, м), 2,89-2,93 (1Н, м), 3,32-3,38 (2Н, м), 6,55-6,62 (3Н, м), 7,03 (1Н, т, $J = 8,0$ Гц), 7,47 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,62-7,69 (3Н, м), 9,24 (1Н, с), 12,26 (1Н, уш.).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, DMSO-d6)</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Способ В, чистота составляет 100%, ВУ = 2,043 мин; МС рассчит.: 480,2; МС найдено: 481,1 [M + H]⁺.</td>
<td>δ: 0,88 (6Н, д, J = 6,8 Гц), 1,71-1,77 (1Н, м), 2,59 (2Н, д, J = 6,8 Гц), 2,81-2,92 (2Н, м), 2,97-3,03 (1Н, м), 3,38-3,44 (2Н, м), 7,01-7,08 (3Н, м), 7,32 (1Н, кв, J = 8,0 Гц), 7,48 (1Н, дд, J = 8,4, 2,0 Гц), 7,64-7,72 (3Н, м), 12,42 (1Н, уш.).</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Способ С, чистота составляет 99,6%, ВУ = 2,017 мин; МС рассчит.: 476,0; МС найдено: 477,0 [M + H]⁺.</td>
<td>δ: 0,88 (6Н, д, J = 6,8 Гц), 1,72-1,84 (3Н, м), 2,54-2,68 (5Н, м), 3,39-3,50 (2Н, м), 7,13-7,26 (5Н, м), 7,47 (1Н, дд, J = 8,4, 1,6 Гц), 7,68 (2Н, д, J = 18,0 Гц), 7,71 (1Н, с), 12,28 (1Н, уш.).</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,710 мин; МС рассчит.: 410,2; МС найдено: 411,1 [M + H]⁺.</td>
<td>δ: 1,21 (6Н, дд, J = 6,8, 3,2 Гц), 2,50-2,51 (2Н, м), 3,23-3,32 (2Н, м), 3,39-3,44 (2Н, м), 3,78 (1Н, с), 8,90 (1Н, дд, J = 8,0, 2,4 Гц), 7,02-7,06 (2Н, м), 7,18-7,29 (4Н, м), 7,33 (1Н, т, J = 8,0 Гц), 7,63 (1Н, т, J = 5,2 Гц), 12,34 (1Н, уш.).</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,699 мин; МС рассчит.: 454,2; МС найдено: 455,2 [M + H]⁺.</td>
<td>δ: 1,21 (6Н, дд, J = 6,8, 4,8 Гц), 2,73-2,84 (2Н, м), 3,08 (1Н, дд, J = 8,4, 5,6 Гц), 3,25-3,30 (2Н, м), 3,38-3,44 (2Н, м), 3,77 (3Н, с), 5,94 (2Н, д, J = 15,2 Гц), 6,71-6,80 (3Н, м), 6,90 (1Н, дд, J = 8,0, 2,4 Гц), 7,01-7,05 (2Н, м), 7,32 (1Н, т, J = 8,0 Гц), 7,60 (1Н, т, J = 5,6 Гц), 12,37 (1Н, уш.).</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,787 мин; МС рассчит.: 440,2; МС</td>
<td>δ: 1,20 (6Н, дд, J = 6,8, 3,2 Гц), 2,73-2,83 (2Н, м), 3,03-3,10 (1Н, м), 3,25-3,32 (2Н, м), 3,36-3,43 (1Н, м), 3,73 (3Н, с), 3,77 (3Н, с), 6,83 (1Н, т, J =</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹H ЯМР (400 МГц, ДМСО-д6)</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>найдено: 441,1 [M + H]^+</td>
<td>δ: 1,21 (6H, dd, J = 6,8, 3,2 Гц), 2,74 (2H, d, J = 6,8 Гц), 2,91-2,98 (1H, m), 3,24-3,32 (2H, m), 3,37-3,44 (1H, m), 3,77 (3H, с), 6,57-6,64 (3H, m), 6,89 (1H, dd, J = 8,0, 2,4 Гц), 7,02-7,07 (3H, m), 7,32 (1H, t, J = 8,0 Гц), 7,58-7,61 (1H, m), 9,27 (1H, с), 12,28 (1H, уш.).</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,593 мин; МС рассчит.: 426,2; МС найдено: 427,1 [M + H]^+</td>
<td>δ: 1,20 (6H, dd, J = 6,8, 3,6 Гц), 2,82-2,97 (3H, m), 3,24-3,29 (2H, m), 3,36-3,40 (2H, m), 3,77 (3H, с), 6,89 (1H, dd, J = 8,0, 2,4 Гц), 6,99-7,08 (5H, m), 7,27-7,33 (2H, m), 7,61 (1H, уш.).</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,757 мин; МС рассчит.: 424,2; МС найдено: 425,2 [M + H]^+</td>
<td>δ: 1,17 (6H, d, J = 6,8 Гц), 1,70-1,85 (2H, m), 2,54-2,69 (3H, m), 3,20-3,30 (2H, m), 3,39-3,47 (2H, m), 3,75 (3H, с), 6,88 (1H, dd, J = 8,0, 2,0 Гц), 7,00-7,04 (2H, m), 7,12-7,25 (5H, m), 7,30 (1H, t, J = 8,0 Гц), 7,48 (1H, уш.).</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>Способ С, чистота составляет 97,1%, ВУ = 1,903 мин; МС рассчит.: 414,1; МС найдено: 415,2 [M + H]^+</td>
<td>δ: 1,20 (6H, dd, J = 6,4, 2,0 Гц), 2,78-2,89 (2H, m), 2,95-3,02 (1H, m), 3,21-3,28 (1H, m), 3,37-3,43 (2H, m), 7,18-7,30 (5H, m), 7,45-7,50 (4H, m), 7,65 (1H, уш.), 12,35 (1H, с).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, ДМСО-d6)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>Способ C, чистота составляет 94,1%, ВУ = 1,898 мин; МС рассчит.: 458,1; МС найдено: 459,0 [M + H] $^+$</td>
<td>δ: 1,20 (6Н, т, $J = 6,0$ Гц), 2,67-2,84 (2Н, м), 3,02-3,09 (1Н, м), 3,21-3,28 (1Н, м), 3,36-3,44 (2Н, м), 5,95 (2Н, д, $J = 11,2$ Гц), 6,71-6,80 (3Н, м), 7,44-7,50 (4Н, м), 7,64 (1Н, т, $J = 4,8$ Гц), 12,36 (1Н, с).</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>Способ C, чистота составляет 91,4%, ВУ = 1,921 мин; МС рассчит.: 444,1; МС найдено: 445,0 [M + H] $^+$</td>
<td>δ: 1,20 (6Н, дд, $J = 6,0, 4,0$ Гц), 2,77 (2Н, д, $J = 7,2$ Гц), 3,01-3,07 (1Н, м), 3,19-3,30 (3Н, м), 3,73 (3Н, с), 6,84 (1Н, т, $J = 7,2$ Гц), 6,95 (1Н, д, $J = 8,4$ Гц), 7,14 (1Н, д, $J = 6,8$ Гц), 7,20 (1Н, т, $J = 7,2$ Гц), 7,45-7,50 (4Н, м), 7,63 (1Н, т, $J = 4,8$ Гц), 12,23 (1Н, с).</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>Способ C, чистота составляет 98,6%, ВУ = 1,822 мин; МС рассчит.: 430,1; МС найдено: 431,2 [M + H] $^+$</td>
<td>δ: 1,19 (6Н, кв, $J = 3,2$ Гц), 2,65-2,77 (2Н, м), 2,88-2,95 (1Н, м), 3,19-3,26 (1Н, м), 3,32-3,40 (2Н, м), 6,57-6,62 (3Н, м), 7,03 (1Н, т, $J = 7,6$ Гц), 7,45 (4Н, кв, $J = 8,8$ Гц), 7,60 (1Н, т, $J = 5,6$ Гц), 9,26 (1Н, с), 12,26 (1Н, уш.).</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>Способ C, чистота составляет 95,5%, ВУ = 1,912 мин; МС рассчит.: 432,1; МС найдено: 433,0 [M + H] $^+$</td>
<td>δ: 1,20 (6Н, дд, $J = 6,8, 2,8$ Гц), 2,81-2,91 (2Н, м), 2,97-3,04 (1Н, м), 3,21-3,28 (1Н, м), 3,36-3,44 (2Н, м), 7,01-7,08 (3Н, м), 7,29-7,35 (1Н, м), 7,47 (4Н, кв, $J = 8,8$ Гц), 7,65 (1Н, т, $J = 5,6$ Гц), 12,41 (1Н, с).</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>Способ B, чистота составляет 94,8%, ВУ = 1,850 мин; МС рассчит.: 428,1; МС найдено: 429,2 [M + H] $^+$</td>
<td>δ: 1,20 (6Н, д, $J = 6,4$ Гц), 1,76-1,85 (2Н, м), 2,53-2,71 (3Н, м), 3,19-3,26 (1Н, м), 3,35-3,49 (2Н, м), 7,15-7,26 (5Н, м), 7,46 (4Н, кв, $J = 4,8$ Гц), 7,62 (1Н, т, $J = 4,4$ Гц), 12,40 (1Н, уш.).</td>
</tr>
</tbody>
</table>
Синтез *трет*-бутил 7-((4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламинометил)-3-метокси-3-оксопропил)-1*H*-индол-1-карбоксилата (7а-1)

<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>1H ЯМР (400 МГц, ДМСО-d₆)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Н]⁷⁺.</td>
<td>уш.).</td>
</tr>
</tbody>
</table>

Смесь *трет*-бутил 7-((4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламинометил)-3-метокси-3-оксопропил)-1*H*-индол-1-карбоксилата (7а-1) и 7 (138 мг, 0,416 ммоль) в EtOH (4,00 мл) перемешивали при 60 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH₂Cl₂/CH₃OH = 120/1) с получением 7а-1 (100,0 мг, выход 47,8%) в виде твердого вещества желтого цвета.

Синтез 3-((1-(*трет*-бутоксикарбонил)-1*H*-индол-7-ил)-2-((4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламинометил)пропановой кислоты (7а-2)

К раствору 7а-1 (100,0 мг, 0,166 ммоль) в ТГФ/MeOH/H₂O (об./об./об = 4/1/1, 10 мл) добавляли LiOH (2,0 М в H₂O, 0,21 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали сольевым раствором (30,0 мл), сушили безводным Na₂SO₄ и концентрировали с получением 7а-2 (80,0 мг, выход 81,9%) в виде твердого вещества белого цвета.
Синтез 2-((1H-индол-7-ил)метил)-3-(4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламино)пропановой кислоты (I-7)

[00336] Смесь 7а-2 (80,0 мг, 0,136 ммоль) в HCl (4,0 М в диноксане, 5,00 мл) перемешивали при 40 °C в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ c получением I-7 (15,0 мг, выход 22,6%) в виде белого твердого вещества.

Таблица 1–4: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>1Н ЯМР (400 МГц, ДМСО-d6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Способ С, чистота составляет 99,1%, ВУ = 2,082 мин; МС рассчит.: 487,1; МС найдено: 488,2 [М + H]^+</td>
<td>δ: 1,18 (6Н, dd, J = 6,8, 2,8 Гц), 3,08-3,12 (3Н, m), 3,20-3,23 (1Н, m), 3,40-3,41 (2Н, m), 6,39-6,40 (1Н, m), 6,86-6,90 (1Н, m), 6,94-6,96 (1Н, m), 7,29 (1Н, т, J = 2,4 Гц), 7,36-7,41 (2Н, m), 7,62-7,66 (3Н, m), 11,14 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Способ С, чистота составляет 99,3%, ВУ = 1,936 мин; МС рассчит.: 487,1; МС найдено: 488,2 [М + H]^+</td>
<td>δ: 1,20 (6Н, т, J = 6,4 Гц), 2,99-3,02 (1Н, m), 3,06-3,14 (2Н, m), 3,22-3,26 (2Н, m), 3,41-3,42 (1Н, m), 6,45 (1Н, c), 6,83 (1Н, d, J = 7,2 Гц), 6,94-6,96 (1Н, m), 7,23-7,28 (2Н, m), 7,40 (1Н, дд, J = 4,4, 2,0 Гц), 7,65-7,68 (2Н, m), 7,76 (1Н, уш.), 11,07 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Способ С, чистота составляет 95,7%, ВУ = 1,991 мин; МС рассчит.: 487,1; МС найдено: 488,2 [М + H]^+</td>
<td>δ: 1,20 (6Н, dd, J = 6,8, 3,2 Гц), 2,90-2,98 (2Н, m), 3,05-3,08 (1Н, m), 3,21-3,28 (1Н, m), 3,40-3,45 (2Н, m), 6,92 (1Н, т, J = 7,2 Гц), 7,05 (1Н, т, J = 7,6 Гц), 7,13 (1Н, d, J = 1,2 Гц), 7,32 (1Н, d, J = 8,0 Гц), 7,42-7,44 (1Н, m), 7,49</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹Н ЯМР (400 МГц, ДМСО-д₆)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>10</td>
<td>Способ С, чистота составляет 99,4%, БУ = 1,916 мин; МС рассчит.: 487,1; МС найдено: 488,2 [M + H]^+.</td>
<td>δ: 1,18 (6Н, т, J = 6,4 Гц), 2,80-2,83 (1Н, м), 2,89-2,96 (2Н, м), 3,20-3,24 (1Н, м), 3,32-3,35 (2Н, м), 6,29 (1Н, т, J = 2,0 Гц), 6,93 (1Н, дд, J = 8,4, 1,2 Гц), 7,26-7,28 (2Н, м), 7,33 (1Н, с), 7,41 (1Н, дд, J = 8,4, 2,0 Гц), 7,60-7,63 (1Н, м), 7,66-7,67 (2Н, м), 10,96 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Способ С, чистота составляет 97,5%, БУ = 1,994 мин; МС рассчит.: 485,1; МС найдено: 486,2 [M + H]^+.</td>
<td>δ: 2,99-3,17 (ЗН, м), 3,41-3,47 (4Н, м), 5,09 (1Н, дд, J = 6,0, 1,2 Гц), 5,12 (1Н, с), 5,90-6,00 (1Н, м), 6,44 (1Н, с), 6,82 (1Н, д, J = 6,8 Гц), 6,97 (1Н, т, J = 7,6 Гц), 7,23 (1Н, д, J = 8,0 Гц), 7,27 (1Н, т, J = 2,8 Гц), 7,41 (1Н, дд, J = 8,4, 2,0 Гц), 7,63 (1Н, д, J = 8,4 Гц), 7,71 (1Н, д, J = 2,0 Гц), 7,77 (1Н, уш.), 11,06 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Способ С, чистота составляет 100%, БУ = 1,804 мин; МС рассчит.: 485,1; МС найдено: 486,1 [M + H]^+.</td>
<td>δ: 2,82 (1Н, кв, J = 6,8 Гц), 2,90-3,01 (2Н, м), 3,35-3,41 (2Н, м), 3,46 (2Н, д, J = 6,0 Гц), 5,10 (2Н, дд, J = 13,2, 2,0 Гц), 5,90-5,99 (1Н, м), 6,30 (1Н, с), 6,93 (1Н, дд, J = 8,4, 1,6 Гц), 7,26-7,29 (2Н, м), 7,33 (1Н, с), 7,45 (1Н, дд, J = 8,4, 2,0 Гц), 7,60 (1Н, д, J = 8,4 Гц), 7,71-7,72 (2Н, м), 10,96 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Способ С, чистота составляет 99,1%, БУ = 2,166 мин; МС рассчит.: 501,1; МС найдено: 502,2 [M + H]^+.</td>
<td>δ: 0,85 (6Н, д, J = 6,4 Гц), 1,69-1,73 (1Н, м), 2,56 (2Н, д, J = 6,8 Гц), 3,08-3,13 (3Н, м), 3,42 (2Н, с), 6,39 (1Н, кв, J = 1,7 Гц), 6,88 (1Н, т, J = 7,2 Гц), 6,94 (1Н, д, J = 6,8 Гц), 7,29 (1Н, т, J</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1Н ЯМР (400 МГц, ДМСО-д6)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Н^+</td>
<td>δ: 0,86 (6Н, d, $J = 6,8$ Гц), 1,69-1,73 (1Н, $м$), 2,57 (2Н, d, $J = 7,2$ Гц), 2,99-3,15 (3Н, $м$), 3,36-3,44 (2Н, $м$), 6,41 (1Н, $с$), 6,80 (1Н, d, $J = 7,2$ Гц), 6,95 (1Н, $т$, $J = 8,0$ Гц), 7,23 (2Н, $дд$, $J = 17,2, 7,2$ Гц), 7,41 (1Н, $дд$, $J = 8,6, 2,0$ Гц), 7,62 (1Н, $дд$, $J = 8,4$ Гц), 7,68-7,72 (2Н, $м$), 11,05 (1Н, уш.)</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>М + Н^+</td>
<td>δ: 0,88 (6Н, d, $J = 6,4$ Гц), 1,72-1,75 (1Н, $м$), 2,59 (2Н, d, $J = 7,2$ Гц), 2,93-2,97 (2Н, $м$), 3,07-3,09 (2Н, $м$), 3,42-3,47 (2Н, $м$), 6,91 (1Н, $д$, $J = 7,2$ Гц), 7,05 (1Н, $д$, $J = 7,2$ Гц), 7,13 (1Н, $д$, $J = 2,0$ Гц), 7,30 (1Н, $д$, $J = 8,0$ Гц), 7,45-7,49 (2Н, $м$), 7,64 (1Н, $дд$, $J = 8,4$ Гц), 7,71-7,74 (2Н, $м$), 10,82 (1Н, $с$), 12,24 (1Н, уш.)</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>М + Н^+</td>
<td>δ: 0,85 (6Н, d, $J = 6,4$ Гц), 1,69-1,73 (1Н, $м$), 2,56 (2Н, d, $J = 7,2$ Гц), 2,75-2,80 (1Н, $м$), 2,87-2,95 (2Н, $м$), 3,28-3,32 (2Н, $м$), 6,28 (1Н, $с$), 6,92 (1Н, $дд$, $J = 8,4, 1,2$ Гц), 7,25-7,27 (2Н, $м$), 7,32 (1Н, $с$), 7,44 (1Н, $дд$, $J = 8,6, 1,6$ Гц), 7,60 (1Н, $д$, $J = 8,4$ Гц), 7,68 (1Н, $д$, $J = 2,0$ Гц), 10,95 (1Н, уш.)</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>М + Н^+</td>
<td>δ: 1,17 (6Н, $дд$, $J = 6,8, 2,4$ Гц), 2,95-3,02 (2Н, $м$), 3,08-3,15 (1Н, $м$), 3,21-3,26 (2Н, $м$), 3,37-3,42 (2Н, $м$), 3,74</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, DMSO-d_6)</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>рассчит.: 449,2; МС найдено: 450,1 [M + H]$^+$</td>
<td>δ: 1,19 (6Н, dd, J = 6,8, 4,0 Гц), 2,98-3,02 (1Н, м), 3,08-3,13 (2Н, м), 3,23-3,30 (2Н, м), 3,38-3,51 (2Н, м), 3,76 (3Н, с), 6,45 (1Н, уш.), 6,83 (1Н, д, J = 6,8 Гц), 6,86-6,90 (1Н, м), 6,96 (1Н, т, J = 7,6 Гц), 7,00-7,03 (2Н, м), 7,23 (1Н, д, J = 8,4 Гц), 7,26 (1Н, т, J = 2,8 Гц), 7,31 (1Н, т, J = 8,4 Гц), 7,64 (1Н, уш.), 12,37 (1Н, уш.).</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>рассчит.: 449,2; МС найдено: 450,3 [M + H]$^+$</td>
<td>δ: 1,20 (6Н, dd, J = 6,8, 4,0 Гц), 2,91-2,97 (2Н, м), 3,08-3,12 (1Н, м), 3,24-3,29 (2Н, м), 3,42-3,45 (2Н, м), 3,76 (3Н, с), 6,88-6,94 (2Н, м), 7,02-7,07 (3Н, м), 7,13 (1Н, д, J = 2,4 Гц), 7,29-7,33 (2Н, м), 7,49 (1Н, д, J = 8,0 Гц), 7,64 (1Н, уш.), 10,81 (1Н, уш.).</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>рассчит.: 449,2; МС найдено: 450,3 [M + H]$^+$</td>
<td>δ: 1,17 (6Н, т, J = 6,8 Гц), 2,82-2,96 (3Н, м), 3,21-3,27 (2Н, м), 3,35-3,39 (2Н, м), 3,74 (3Н, с), 6,29 (1Н, уш.), 6,86 (1Н, dd, J = 8,0, 2,0 Гц), 6,92 (1Н, д, J = 8,4 Гц), 7,00-7,02 (2Н, м), 7,24-7,33 (4Н, м), 7,58 (1Н, уш.), 10,95 (1Н, уш.).</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>рассчит.: 449,2; МС найдено: 450,3 [M + H]$^+$</td>
<td>δ: 1,19 (6Н, т, J = 6,8 Гц), 2,94-3,00 (1Н, м), 3,08-3,12 (2Н, м), 3,20-3,26 (2Н, м), 3,38-3,43 (1Н, м), 6,45 (1Н, уш.).</td>
</tr>
</tbody>
</table>

126
<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>(^1)Н ЯМР (400 МГц, ДМСО-д6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>рассчит: 453,1; МС найдено: 454,3 [M + H]⁺.</td>
<td>уш., 6,82 (1Н, д, (J = 7,2) Гц), 6,97 (1Н, т, (J = 6,0) Гц), 7,24 (1Н, д, (J = 8,0) Гц), 7,28 (1Н, т, (J = 2,8) Гц), 7,41-7,46 (4Н, м), 7,69 (1Н, уш.), 11,08 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Способ С, чистота составляет 96,7%, БУ = 1,909 мин; МС рассчит.: 453,1; МС найдено: 454,3 [М + Н]⁺.</td>
<td>δ: 1,19 (6Н, дд, (J = 6,8), 4,4 Гц), 2,87-3,08 (3Н, м), 3,20-3,27 (1Н, м), 3,37-3,40 (2Н, м), 6,93 (1Н, т, (J = 7,6) Гц), 7,06 (1Н, т, (J = 7,2) Гц), 7,14 (1Н, д, (J = 1,6) Гц), 7,33 (1Н, д, (J = 8,0) Гц), 7,43-7,50 (5Н, м), 7,67 (1Н, уш.), 10,81 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Способ С, чистота составляет 97,0%, БУ = 1,874 мин; МС рассчит.: 453,1; МС найдено: 454,2 [М + Н]⁺.</td>
<td>δ: 1,17 (6Н, дд, (J = 6,8), 5,6 Гц), 2,79-2,84 (1Н, м), 2,88-2,98 (2Н, м), 3,18-3,25 (1Н, м), 3,34-3,38 (2Н, м), 6,30 (1Н, уш.), 6,92 (1Н, д, (J = 8,0) Гц), 7,27 (2Н, т, (J = 2,8) Гц), 7,33 (1Н, с), 7,43 (4Н, кв, (J = 8,8) Гц), 7,60 (1Н, уш.), 10,96 (1Н, с), 12,21 (1Н, уш.).</td>
<td></td>
</tr>
</tbody>
</table>

Пример 2. Синтез соединений 1-49 – 1-118

Схема 1: Путь для соединений a, b, c, 100-107, 115, 119, 128
Схема 2: Путь для соединения 108, 109

Схема 3: Путь для соединения 110

Схема 4: Путь для соединения 129

Схема 5: Путь для соединения 137

Схема 6: Путь для соединения 144
Схема 7: Путь для соединений b-1~b-5, b-7~b-11, b-16~b-18, b-23, b-37~b-40

Схема 8: Путь для соединений b-6, b-12, b-14, b-15, b-22, b-26, b-29, b-31, b-32, b-35
Схема 9: Путь для соединения b-19, b-20

Схема 10: Путь для соединения b-21, b-24

Схема 10: Путь для соединений b-27, b-36
Схема 11: Путь для соединений b-28

Схема 12: Путь для соединений b-30

Схема 13: Путь для соединений b-33

Схема 13: Путь для соединений b-34

Схема 15: Путь для I-53 - I-55, I-110

Тот же способ синтеза использовали для других соединений I-54, I-55, I-110

Схема 16: Путь для I-58, I-118

Тот же способ синтеза использовали для других соединений I-118

Схема 17: Путь для I-85
Схема 18: Путь для I-89 – I-92

Тот же способ синтеза использовали для других соединений I-90 – I-92

Схема 19: Путь для I-97

Схема 20: Путь для I-99
Схема 20: Путь для I-101

Схема 21: Путь для I-104

Общая информация. Все испарения проводились в вакууме на роторном испарителе. Аналитические образцы сушили в вакууме (1–5 мм рт.ст.) при комнатной температуре. Тонкослойную хроматографию (ТСХ) проводили на планшетах с силикагелем, пятна визуализировали с применением УФ-света (214 и 254 нм). Очистку с помощью колоночной и флэш-хроматографии проводили с использованием силикагеля (200–300 меш). Системы растворителей представлены в виде смесей по объему. Все спектры ЯМР были записаны на спектrometerе Bruker 400 (400 МГц). Химические сдвиги 1Н указаны в значениях δ в миллионах долях с дейтерированным растворителем в качестве внутреннего стандарта. Данные представлены следующим образом: химический сдвиг, мультиплетность (c = синглет, d = дублет, t = триплет, kv = квартет, уш. = уширенный, m = мультиплет), константа взаимодействия (Гц), интегрирование.

Спектры ЖЖ-МС были получены на масс-спектрометре Agilent 1200 серии 6110 или 6120 с ионизацией электрораспылением, и, если не указано иное, общие условия ЖЖ-МС были следующими:

Способ A (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 3,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH3CN + 0,05% ТФУ] за 0,8 мин, затем в этих условиях в течение 0,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] за 0,01 мин).

Способ B (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40°C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 0,05 % ТФУ] и 5% [CH3CN + 0,05 % ТФУ] до 0% [вода + 0,05 % ТФУ] и 100% [CH3CN + 0,05 % ТФУ] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] за 0,05 мин и в этих условиях в течение 0,7 мин.)

Способ C (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 10 мМ NH4HCO3] и 5% [CH3CN] до 0% [вода + 10 мМ NH4HCO3] и 100% [CH3CN] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 10 мМ NH4HCO3] и 5% [CH3CN] за 0,1 мин и в этих условиях за 0,7 мин.)

Синтез 1-(3,4-дихлорфенил)-3-метилбутан-1-она (а-1)
К раствору s-1 (10,0 г, 58,1 ммоль) в ТГФ (100 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 87,1 мл, 87,1 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (100 мл х 3). Органическую fazu объединаяли и промывали H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением a-1 (7,50 г, выход 56%) в виде масла желтого цвета.

Синтез 2-бром-1-(3,4-дихлорфенил)-3-метилбутан-1-она (a-2)

Смесь a-1 (7,50 г, 32,5 ммоль) и РТАТ (18,3 г, 48,7 ммоль) в ТГФ (150 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (100 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединаяли и промывали H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением a-2 (10,1 г, выход 100%) в виде масла коричневого цвета.

Синтез 1-(3,4-дихлорфенил)-3-метил-2-тиоцианатобутан-1-она (a)

136
Смесь a-2 (10,1 г, 32,5 ммоль) и NaSCN (5,26 г, 64,9 ммоль) в EtOH (100,0 мл) перемешивали при 100°С в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением a (5,32 г, выход 57%) в виде твердого вещества белого цвета.

Синтез 4-метил-1-(пиридин-3-ил)пентан-1-ола (108-1)

К раствору 108-s (2,14 г, 20,0 ммоль) в ТГФ (50 мл) добавляли изобутилмагний бромид (1,0 М в ТГФ, 40,0 мл, 40,0 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливают в воду. NH₄Cl (насыщ., 200 мл) и экстрагировали EtOAc (100 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали с получением 108-1 (2,10 г, выход 59%) в виде масла желтого цвета, которое использовали непосредственно на следующей стадии без дальнейшей очистки.

Синтез 4-метил-1-(пиридин-3-ил)пентан-1-она (108-2)

К раствору 108-1 (2,10 г, 11,7 ммоль) в CH₂Cl₂ (150 мл) добавляли PCC (3,79 г, 17,6 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 300/1) с
Получением 108-2 (800 мг, выход 39%) в виде масла желтого цвета.

Синтез 2-бром-4-метил-1-(пиридин-3-ил)пентан-1-она (108-3)

[00344] К раствору 108-2 (800 мг, 4,52 ммоль) в CHCl₃ (150 мл) добавляли Br₂ (867 мг, 5,42 ммоль). Реакционную смесь перемешивали при 80 °C в течение ночи. По завершении реакции ее реакционную смесь концентрировали и промывали H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали с получением 108-3 (1,0 г, выход 100%) в виде масла коричневого цвета, которое использовали непосредственно на следующей стадии без дальнейшей очистки.

Синтез 4-метил-1-(пиридин-3-ил)-2-тиоцианатопентан-1-она (108)

[00345] Смесь 108-3 (1,0 г, 3,91 ммоль) и NaSCN (633 мг, 7,81 ммоль) в TГФ (100,0 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 108 (400 мг 44%) в виде масла коричневого цвета.

Синтез 1-тозил-1H-индол-5-карбонитрила (110-1)

[00346] К смеси 110-s (5,0 г, 35,2 ммоль), TEBA (800 мг, 3,52 ммоль) и NaOH (2,54 г, 63,4 ммоль) в CH₂Cl₂ (100,0 мл) добавляли TsCl (8,0 г, 42,3 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на
силикагеле (петролейный эфир/этилацетат = 80/1) с получением 110-1 (2,50 г, выход 71%) в виде твердого вещества белого цвета.

Синтез 4-метил-1-(1-тозил-1H-индоль-5-ил)пентан-1-она (110-2)

![Chemical structure of 110-2](image)

1. К раствору 110-1 (4,0 г, 13,5 ммоль) в ТГФ (30 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 27 мл, 27,0 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 8 часов. По завершении реакции реакционную смесь выливают в водн. НН₄Cl (насыщ., 500 мл) и экстрагировали ЕtOAc (100 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колонной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 110-2 (1,0 г, выход 37%) в виде твердого вещества белого цвета.

Синтез 2-бром-4-метил-1-(1-тозил-1H-индоль-5-ил)пентан-1-она (110-3)

![Chemical structure of 110-3](image)

1. Смесь 110-2 (0,60 г, 1,52 ммоль) и РТАТ (682 мг, 1,82 ммоль) в ТГФ (50 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (100 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 110-3 (677 мг, выход 100%) в виде масла желтого цвета.

Синтез 4-метил-2-тиоцианато-1-(1-тозил-1H-индоль-5-ил)пентан-1-она (110)
Смесь 110-3 (677 мг, 1,52 ммоль) и NaSCN (245 мг, 3,03 ммоль) в EtOH (50,0 мл) перемешивали при 100 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 30/1) с получением 110 (320 мг, выход 47%) в виде твердого вещества белого цвета.

Синтез 3-хлор-4-феноксибензонитрила (129-1)

Смесь 129-s (5,0 г, 32,3 ммоль), фенола (3,34 г, 35,5 ммоль) и K₂CO₃ (5,30 г, 38,7 ммоль) в ДМСО (50,0 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 129-1 (1,80 г, выход 45%) в виде масла желтого цвета.

Синтез 1-(3-хлор-4-феноксифенил)-4-метилпентан-1-она (129-2)

К раствору 129-1 (2,50 г, 10,9 ммоль) в ТГФ (30 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 21,8 мл, 21,8 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (100 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной...
хроматографией на силикаиде (петролейный эфир/этилацетат = 20/1) с получением 129-2 (0,70 г, выход 47%) в виде масла желтого цвета.

Синтез 2-бром-1-(3-хлор-4-феноксифенил)-4-метилпентан-1-она (129-3)

Смесь 129-2 (1,10 г, 3,64 ммоль) и RTAT (1,64 г, 4,37 ммоль) в ТГФ (50 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H2O (100 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H2O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na2SO4. Рассол концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 129-3 (1,40 г, выход 100%) в виде масла коричневого цвета.

Синтез 1-(3-хлор-4-феноксифенил)-4-метил-2-тиоцианатопентан-1-она (129)

Смесь 129-3 (1,40 г, 3,64 ммоль) и NaSCN (590 мг, 7,28 ммоль) в EtOH (20,0 мл) перемешивали при 90 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикаиде (петролейный эфир/этилацетат = 10/1) с получением 129 (1,30 г, выход 78%) в виде твердого вещества желтого цвета.

Синтез 4-метил-1-(3,4,5-трихлорфенил)пентан-1-ола (137-1)
К раствору 137-s (750 мг, 3,60 ммоль) в ТГФ (10 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 7,2 мл, 7,20 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 50 мл) и экстрагировали EtOAc (20 мл х 3). Органическую фазу объединяли и промывали H₂O (20 мл) и солевым раствором (20 мл), затем сушили безводным Na₂SO₄, и концентрировали с получением 137-1 (800 мг, выход 100%) в виде масла желтого цвета, которое использовали непосредственно на следующей стадии без дальнейшей очистки.

Синтез 4-метил-1-(3,4,5-трихлорфенил)пентан-1-она (137-2)

К раствору 137-1 (800 мг, 3,60 ммоль) в CH₂Cl₂ (30 мл) добавляли PCC (930 мг, 4,30 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очистили колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 137-2 (190 мг, выход 23%) в виде масла желтого цвета.

Синтез 2-брому-4-метил-1-(3,4,5-трихлорфенил)пентан-1-она (137-3)
Смесь 137-2 (190 мг, 0,68 ммоль) и РТАГ (310 мг, 0,82 ммоль) в ТГФ (20 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (20 мл), а затем экстрагировали EtOAc (30 мл х 2). Органический слой объединяли и промывали H₂O (20 мл х 2) и солевым раствором (20 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 137-3 (241 мг, выход 100%) в виде твердого вещества желтого цвета.

Синтез 4-метил-2-тиоцианат-1-(3,4,5-трихлорфенил)пентан-1-она (137)

\\[
\begin{align*}
\text{Br} & \quad \text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} & \quad \text{Cl}
\end{align*}
\]

\[\text{NaSCN, EtOH, 100 °C, 6 ч} \rightarrow \]

\[
\begin{align*}
\text{Cl} & \quad \text{Br} \\
\text{Cl} & \quad \text{Cl} & \quad \text{Cl}
\end{align*}
\]

Смесь 137-3 (241 мг, 0,68 ммоль) и NaSCN (110 мг, 1,36 ммоль) в EtOH (10,0 мл) перемешивали при 100 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 137 (130 мг, выход 28%) в виде твердого вещества белого цвета.

Синтез 4-(бензилокси)бензонитрила (144-1)

\\[
\begin{align*}
\text{HO} & \quad \text{CN} \\
\text{CN}
\end{align*}
\]

\[\text{K₂CO₃, DMФ, 90 °C} \rightarrow \]

\[
\begin{align*}
\text{CN} & \quad \text{CN} \\
\text{CN}
\end{align*}
\]

Смесь 144-s (10,0 г, 9,50 ммоль), (бромметил)бензола (13,0 г, 12,0 ммоль) и K₂CO₃ (11,0 г, 18,0 ммоль) в ДМСО (50,0 мл) перемешивали при 90 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 144-1 (8,0 г, выход 67%) в виде твердого вещества белого цвета.

Синтез 1-(4-(бензилокси)фенил)-4-метилпентан-1-она (144-2)
[00359] К раствору 144-1 (5,0 г, 17,8 ммоль) в ТГФ (50 мл) добавляли изобутилмагний бромид (1,0 М в ТГФ, 26,0 мл, 26,0 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливают в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (100 мл х 3). Органическую фазу объединяют и промывают H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 60/1) с получением 144-2 (4,0 г, выход 46%) в виде бесцветного масла.

Синтез 1-(4-гидроксифенил)-4-метилпентан-1-она (144-3)

[00360] Смесь 144-2 (2,0 г, 7,08 ммоль) и Pd/C (200 мг) в MeOH (100 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 144-3 (400 мг 29%) в виде бесцветного масла.

Синтез 2-бром-1-(4-гидроксифенил)-4-метилпентан-1-она (144-4)

[00361] Смесь 144-3 (400 мг, 2,08 ммоль) и РТAT (1,17 г, 3,12 ммоль) в ТГФ (50 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (50 мл), а затем
экстрагировали EtOAc (50 мл х 2). Органический слой объединяли и промывали H₂O (30 мл х 2) и соляным раствором (30 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 144-4 (600 мг, выход 100%) в виде масла коричневого цвета.

Синтез 1-(4-гидроксифенил)-4-метил-2-тиоцианатопентан-1-она (144)

[00362] Смесь 144-4 (600 мг, 2,21 ммоль) и NaSCN (359 мг, 4,43 ммоль) в EtOH (20,0 мл) перемешивали при 100 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 144 (200 мг, выход 36%) в виде твердого вещества белого цвета.

Таблица 2-1: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Способ B, чистота составляет 81,7%, ВУ = 2,283 мин; МС рассчит.: 287,0; МС найдено: 288,0 [M + H]⁺.</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 2,053 мин; МС рассчит.: 284,98; МС не найдено.</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Способ B, чистота составляет 75,2%, ВУ = 2,480 мин; МС рассчит.: 301,0; МС найдено: 324,1 [M + Na]⁺.</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>Способ B, чистота составляет 71,4%, ВУ = 2,043 мин; МС рассчит.: 247,1; МС найдено: 248,3 [M + H]⁺.</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>Способ C, чистота составляет 64,8%, ВУ = 2,153 мин; МС рассчит.: 249,1; МС найдено: 250,4 [M + H]⁺.</td>
</tr>
<tr>
<td>Соединени</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>Способ В, чистота составляет 72,0%, (\text{BU} = 2,038 \text{ мин}); МС рассчит.:271,0; МС найдено: 272,0 ([M + H]^+).</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>Способ Б, чистота составляет 94,0%, (\text{BU} = 2,070 \text{ мин}); МС рассчит.:267,1; МС не найдено.</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>Способ Б, чистота составляет 93,8%, (\text{BU} = 2,038 \text{ мин}); МС рассчит.:297,1; МС найдено: 298,1 ([M + H]^+).</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>Способ Б, чистота составляет 86,5%, (\text{BU} = 2,060 \text{ мин}); МС рассчит.:287,1; МС найдено: 288,2 ([M + H]^+).</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>Способ Б, чистота составляет 75,0%, (\text{BU} = 1,998 \text{ мин}); МС рассчит.:251,1; МС найдено: 252,3 ([M + H]^+).</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td>Способ Б, чистота составляет 43,8%, (\text{BU} = 1,668 \text{ мин}); МС рассчит.:234,1; МС найдено: 235,1 ([M + H]^+).</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>Способ Б, чистота составляет 50,3%, (\text{BU} = 1,648 \text{ мин}); МС рассчит.:234,1; МС найдено: 235,1 ([M + H]^+).</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>Способ Б, чистота составляет 88,0%, (\text{BU} = 2,149 \text{ мин}); МС рассчит.:426,1; МС найдено: 427,1 ([M + H]^+).</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>Способ Б, чистота составляет 89,5%, (\text{BU} = 2,072 \text{ мин}); МС рассчит.:267,1; МС не найдено.</td>
</tr>
<tr>
<td>Соединение</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>Способ В, чистота составляет 98,0%, BV = 2,157 мин; МС рассчит.:325,1; МС найдено: 326,2 [M + H]^+.</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>Способ В, чистота составляет 39,8%, BV = 2,211 мин; МС рассчит.:359,1; МС найдено: 360,1 [M + H]^+.</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>Способ В, чистота составляет 78,5%, BV = 2,232 мин; МС рассчит.:335,0; МС не найдено.</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>Способ В, чистота составляет 39,8%, BV = 1,799 мин; МС рассчит.:249,1; МС найдено: 250,1 [M + H]^+.</td>
</tr>
</tbody>
</table>

Синтез этил 3-(бензиламино)пропаноата (b-1)

![Synthesis Diagram](image5)

[00363] К смеси соединения 1-1 (3,0 г, 28,3 ммоль) и гидрохлорида этил 3-аминопропаноата (4,50 г, 31,0 ммоль) в CH₂Cl₂ (100 ml) добавляли DIPEA (4,50 г, 33 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь фильтровали, остаток концентрировали и раствоарили в EtOH (100 ml). К реакционной смеси добавляли NaBH₄ (1,10 г, 28,3 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 50/1) с получением b-1 (1,20 г, выход 61%) в виде бесцветного масла.

Синтез этил 3-(фениламино)пропаноата (b-6)
Смесь 6-1 (1,0 г, 5,40 ммоль), гидрохлорида этил 3-аминопропаноата (1,60 г, 10,8 ммоль) и K₂CO₃ (2,20 г, 16,2 ммоль) в ДМФ (10 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (100 мл), и экстрагировали EtOAc (100 мл x 2). Органический слой объединяли и промывали H₂O (60 мл x 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH =50/1) с получением b-6 (800 мг, выход 63%) в виде бесцветного масла.

Синтез метил 3-(2-гидроксиэтиламино)пропаноата (b-19)

Смесь 19-1 (1,0 г, 16,4 ммоль) и метилакрилата (1,96 г, 19,6 ммоль) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 8/1) с получением b-19 (600 мг, выход 25%) в виде бесцветного масла.

Синтез этил 3-(3-гидроксипропиламино)пропаноата (b-21)

Смесь 21-1 (1,0 г, 5,50 ммоль), 3-аминопропан-1-ола (830 мг, 11,0 ммоль) и K₂CO₃ (2,30 г, 16,5 ммоль) в ДМФ (20 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (100 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной
хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 5/1) с получением b-21 (320 мг, выход 33%) в виде бесцветного масла.

Синтез 3,5-диметилфенетилметансульфоната (27-2)

[00367] К смеси 27-1 (1,50 г, 10,0 ммоль) и TEA (2,0 г, 20,0 ммоль) в CH₂Cl₂ (150 мл) добавляли MsCl (1,70 г, 15,0 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали с получением 27-2 (2,20 г, выход 96%) в виде твердого вещества белого цвета, которое использовали непосредственно на следующей стадии без дополнительной очистки.

Синтез этил 3-(3,5-диметилфенетиламино)пропаноата (b-27)

[00368] Смесь 27-2 (2,20 г, 9,60 ммоль), гидрохлорида этил-3-аминопропаноата (2,90 г, 19,2 ммоль) и K₂CO₃ (3,90 г, 28,2 ммоль) в DMF (30 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (50 мл), и экстрагировали EtOAc (50 мл х 2). Органический слой объединяли и промывали H₂O (30 мл х 2) и соляным раствором (20 мл), затем сушки безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 50/1) с получением b-27 (1,50 г, выход 63%) в виде бесцветного масла.

Синтез 1-tret-бутил-3-метил-4-метилпиперазин-1,3-дикарбоксилата (28-2)
К смеси 28-1 (1,0 г, 4,30 ммоль) и K₂CO₃ (1,80 г, 12,9 ммоль) в DMF (15 мл) добавляли йодметан (1,50 г, 10,8 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь выливают в H₂O (100 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 50/1) с получением 28-2 (500 мг, выход 61%) в виде бесцветного масла.

Синтез метил-1-метилипiperазин-2-карбоксилата (b-28)

Смесь 28-2 (500 мг, 1,94 ммоль) в HCl (4,0 М в диоксане, 3,00 мл) перемешивали при комнатной температуре в течение 3 часов. По завершении завершения реакции ее концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 20/1) с получением b-28 (100 мг, выход 33%) в виде желтого масла.

Синтез метил 3-((1-метилипиперидин-4-il)метиламино)пропаноата (b-30)

Смесь 30-1 (1,0 г, 7,80 ммоль), метил 3-бромпропаноата (644 мг, 3,90 ммоль) и K₂CO₃ (2,20 г, 15,6 ммоль) в DMF (10 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь выливают в H₂O (100 мл), и экстрагировали EtOAc
(80 мл х 2). Органический слой объединяли и промывали H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 20/1) с получением b-30 (600 мг, выход 51%) в виде масла желтого цвета.

Синтез 2-(бензиламино)этансульфонамида (b-33)

![Diagram](image)

Смесь 33-1 (2,0 г, 18,8 ммоль), 2-аминоэтансульфонамида (2,5 г, 20 ммоль) и NaBH₃CN (2,3 г, 37,6 ммоль) в EtOH (25 мл) перемешивали при 90 °C в течение 2 часов. По завершении реакции ее концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 30/1) с получением b-33 (1,40 г, выход 34%) в виде бесцветного масла.

Синтез N-бензил-2-(1H-тетразол-5-ил)етанамина (b-34)

Смесь 34-1 (150 мг, 1,10 ммоль), фенилметанамина (243 мг, 2,20 ммоль) и K₂CO₃ (379 мг, 2,70 ммоль) в ДМФ (30 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (50 мл), и экстрагировали EtOAc (50 мл х 2). Органический слой объединяли и промывали H₂O (30 мл х 2) и соляным раствором (20 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/CH₃OH = 5/1) с получением b-34 (100 мг, выход 49%) в виде твердого вещества белого цвета.

Схема 2: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-1</td>
<td></td>
<td>Способ B, чистота составляет 70,1%, ВУ = 1,210 мин; МС рассчит.: 249,1; МС найдено: 194,3 [М + H]⁺.</td>
</tr>
<tr>
<td>Соединение</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>b-2</td>
<td></td>
<td>Способ B, чистота составляет 79,7%, ВУ = 1,307 мин; МС рассчит.:249,1; МС найдено: 252,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-3</td>
<td></td>
<td>Способ B, чистота составляет 69,5%, ВУ = 1,383 мин; МС рассчит.:249,1; МС найдено: 238,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-4</td>
<td></td>
<td>Способ B, чистота составляет 81,2%, ВУ = 1,296 мин; МС рассчит.:249,1; МС найдено: 224,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-5</td>
<td></td>
<td>Способ B, чистота составляет 50,2%, ВУ = 1,357 мин; МС рассчит.:249,1; МС найдено: 226,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-6</td>
<td></td>
<td>Способ С, чистота составляет 86,5%, ВУ = 1,644 мин; МС рассчит.:249,1; МС найдено: 222,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-7</td>
<td></td>
<td>Способ B, чистота составляет 88,2%, ВУ = 2,131 мин; МС рассчит.:249,1; МС найдено: 347,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-8</td>
<td></td>
<td>Способ B, чистота составляет 94,6%, ВУ = 1,648 мин; МС рассчит.:249,1; МС найдено: 347,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-9</td>
<td></td>
<td>Способ B, чистота составляет 85,7%, ВУ = 1,625 мин; МС рассчит.:249,1; МС найдено: 347,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-10</td>
<td></td>
<td>Способ C, чистота составляет 80,8%, ВУ = 2,340 мин; МС рассчит.:249,1; МС найдено: 347,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-11</td>
<td></td>
<td>Способ С, чистота составляет 60,4%, ВУ = 1,802 мин; МС рассчит.:249,1; МС найдено: 194,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-12</td>
<td></td>
<td>Способ С, чистота составляет 92,9%, ВУ = 1,761 мин; МС рассчит.:249,1; МС найдено: 208,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-14</td>
<td></td>
<td>Способ С, значение чистоты не определено, значение ВУ не определено; МС рассчит.:249,1; МС найдено: 189,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-15</td>
<td></td>
<td>Способ С, значение чистоты не определено, значение ВУ не определено; МС рассчит.:249,1; МС найдено: 175,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-16</td>
<td></td>
<td>Способ С, чистота составляет 63,0%, ВУ = 1,334 мин; МС рассчит.:249,1; МС найдено: 209,4 [M + H]^+.</td>
</tr>
<tr>
<td>Соединение</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>b-17</td>
<td></td>
<td>Способ С, чистота составляет 43,6%, ВУ = 1,331 мин; МС рассчит.: 249,1; МС найдено: 209,4 [M + H]^+.</td>
</tr>
<tr>
<td>b-18</td>
<td></td>
<td>Способ С, чистота составляет 93,8%, ВУ = 1,807 мин; МС рассчит.: 249,1; МС найдено: 214,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-19</td>
<td></td>
<td>Способ С, чистота составляет 78,4%, ВУ = 1,303 мин; МС рассчит.: 249,1; МС найдено: 234,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-20</td>
<td></td>
<td>Способ С, чистота составляет 54,8%, ВУ = 1,570 мин; МС рассчит.: 249,1; МС найдено: 248,4 [M + H]^+.</td>
</tr>
<tr>
<td>b-21</td>
<td></td>
<td>Способ B, чистота составляет 64,0%, ВУ = 1,683 мин; МС рассчит.: 249,1; МС найдено: 281,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-22</td>
<td></td>
<td>Способ B, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 249,1; МС найдено: 202,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-23</td>
<td></td>
<td>Способ B, чистота составляет 66,4%, ВУ = 1,079 мин; МС рассчит.: 249,1; МС найдено: 224,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-24</td>
<td></td>
<td>Способ B, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 249,1; МС найдено: 175,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-26</td>
<td></td>
<td>Способ С, чистота составляет 21,0%, ВУ = 1,132 мин; МС рассчит.: 249,1; МС найдено: 200,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-27</td>
<td></td>
<td>Способ B, чистота составляет 60,6%, ВУ = 1,476 мин; МС рассчит.: 249,1; МС найдено: 250,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-28</td>
<td></td>
<td>Способ С, чистота составляет 91,9%, ВУ = 0,979 мин; МС рассчит.: 249,1; МС найдено: 159,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-29</td>
<td></td>
<td>Способ B, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 249,1; МС найдено: 214,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-30</td>
<td></td>
<td>Способ B, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 249,1; МС найдено: 215,3 [M + H]^+.</td>
</tr>
<tr>
<td>Соеединение</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>b-31</td>
<td></td>
<td>Способ В, значение чистоты не определено, ВУ = 1,423 мин; МС рассчит.: 249,1; МС найдено: 242,2 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-32</td>
<td></td>
<td>Способ А, чистота составляет 66,3%, ВУ = 0,505 мин; МС рассчит.: 249,1; МС найдено: 236,2 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-33</td>
<td></td>
<td>Способ С, чистота составляет 82,6%, ВУ = 1,406 мин; МС рассчит.: 249,1; МС найдено: 215,1 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-34</td>
<td></td>
<td>Способ С, чистота составляет 39,6%, ВУ = 1,043 мин; МС рассчит.: 249,1; МС найдено: 204,2 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-35</td>
<td></td>
<td>Способ С, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 249,1; МС найдено: 172,1 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-36</td>
<td></td>
<td>Способ В, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 249,1; МС найдено: 186,3 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-37</td>
<td></td>
<td>Способ В, чистота составляет 95,1%, ВУ = 1,250 мин; МС рассчит.: 249,1; МС найдено: 242,2 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-38</td>
<td></td>
<td>Способ В, чистота составляет 100%, ВУ = 1,286 мин; МС рассчит.: 249,1; МС найдено: 242,2 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-39</td>
<td></td>
<td>Способ В, чистота составляет 59,2%, ВУ = 1,358 мин; МС рассчит.: 249,1; МС найдено: 242,2 [М + Н]⁺.</td>
</tr>
<tr>
<td>b-40</td>
<td></td>
<td>Способ В, чистота составляет 96,5%, ВУ = 1,489 мин; МС рассчит.: 249,1; МС найдено: 297,3 [М + Н]⁺.</td>
</tr>
</tbody>
</table>

Синтез этил 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропаноата (061-1)
Смесь c (150 мг, 0,50 ммоль), b-1 (144 мг, 0,75 ммоль) и AcOH (60 мг, 1,0 ммоль) в i-PrOH (3,00 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH₂Cl₂/CH₃OH = 120/1) с получением 061-1 (80,0 мг, выход 33%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (I-47)

К раствору 061-1 (80,0 мг, 0,163 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 8 мл) добавляли LiOH (2,0 М в H₂O, 0,22 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40 мл х 2), объединенную органическую фазу промывали солевым раствором (30 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-47 (30,0 мг, выход 40%) в виде твердого вещества белого цвета.

Синтез трет-бутил 4-(((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)(3-этокси-3-оксопропил)амино)метил)-1H-индол-1-карбоксилата (068-1)
Смесь с (100 мг, 0,33 ммоль), b-8 (138 мг, 0,39 ммоль) и AcOH (40 мг, 0,66 ммоль) в i-PrOH (4,00 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH2Cl2/CH3OH = 120/1) с получением 068-1 (95,0 мг, выход 45%) в виде твердого вещества желтого цвета.

Синтез 3-((((1-трет-бутилксикарбонил)-1H-индол-4-ил)метил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (068-2)

К раствору 068-1 (95,0 мг, 0,151 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 8 мл) добавляли LiOH (2,0 М в H2O, 0,21 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили безводным Na2SO4 и концентрировали с получением 068-2 (60,0 мг, выход 66%) в виде твердого вещества белого цвета.

Синтез 3-((((1H-индол-4-ил)метил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (I-53)
Смесь 068-2 (60,0 мг, 0,10 ммоль) в HCl (4,0 M в диоксане, 5,00 мл) перемешивали при 40 °C в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-53 (13,0 мг, выход 26%) в виде твердого вещества белого цвета.

Синтез 3,3’-(4- (3,4-дихлорфенил)-5-изобутилтиазол-2-илазанедил)дипропановой кислоты (I-58)

Смесь с (120 мг, 0,399 ммоль), b-13 (77,2 мг, 0,479 ммоль) и AcOH (47,9 мг, 0,798 ммоль) в i-PrOH (2,00 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ВЭЖХ с получением I-58 (10,0 мг, выход 5,6%) в виде твердого вещества белого цвета.

Синтез этил 3-(бензил(5-изобутил-4-(1-тозил-1H-индоль-5-ил)тиазол-2-ил)амино)пропаноата (110-1)
Смесь 110 (200 мг, 0,44 ммоль), b-1 (110 мг, 0,53 ммоль) и AcOH (53,0 мг, 0,88 ммоль) в i-PrOH (3,00 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH₂Cl₂/CH₃OH = 120/1) с получением 110-1 (110 мг, выход 49%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(5-изобутил-4-(1-тозил-1H-индоль-5-ил)тиазол-2-ил)амино)пропановой кислоты (110-2)

К раствору 110-1 (110 мг, 0,179 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10 мл) добавляли LiOH (2,0 М в H₂O, 0,21 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили безводным Na₂SO₄ и концентрировали с получением 110-2 (90,0 мг, выход 86%) в виде твердого вещества белого цвета.

Синтез 3-((4-1H-индоль-5-ил)-5-изобутилтиазол-2-ил)(бензил)амино)пропановой кислоты (1-85)
Смесь 110-2 (90,0 мг, 0,153 ммоль) и K₂CO₃ (42,3 мг 0,306 ммоль) в MeOH (10 мл) перемешивали при 80 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-85 (20,0 мг, выход 30%) в виде твердого вещества белого цвета.

Синтез этил 3-(бензил(4-(3,4-дихлорфенил)тиазол-2-ил)амино)пропаноата (115-1)

Смесь 115 (500 мг, 2,03 ммоль), b-1 (505 мг, 2,44 ммоль) и AcOH (244 мг, 4,06 ммоль) в i-PrOH (10,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 15/1) с получением 115-1 (190 мг, выход 22%) в виде твердого вещества желтого цвета.

Синтез этил 3-(бензил(4-(3,4-дихлорфенил)-5-формилтиазол-2-ил)амино)пропаноата (115-2)
[00384] Смесь 115-1 (200 мг, 0,46 ммоль) и POCl₃ (177 мг, 1,16 ммоль) в DMF (15 мл) перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь очищали препарративной TCX (CH₂Cl₂/CH₃OH = 100/1) с получением 115-2 (120 мг, выход 62%) в виде твердого вещества желтого цвета.

Синтез этил 3-(бензил(4-(3,4-дибромфенил)-5-(гидроксиметил)тиазол-2-ил)аминометил)пропаноата (115-3)

[00385] Смесь 115-2 (1,0 г, 0,45 ммоль) и NaBH₄ (380 мг, 0,88 ммоль) в THF (30 мл) перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь очищали препаративной TCX (CH₂Cl₂/CH₃OH = 60/1) с получением 115-3 (700 мг, выход 87%) в виде масла желтого цвета.

Синтез этил 3-(бензил(4-(3,4-дибромфенил)-5-((диметиламино)метил)тиазол-2-ил)аминометил)пропаноата (115-4)
Смесь 115-3 (200 мг, 0,43 ммоль), MsCl (100 мг, 0,86 ммоль) и Et3N (109 мг, 1,08 ммоль) в CH2Cl2 (5 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и растворяли в ТГФ (10 мл). К реакционной смеси добавляли диметиламин (1,0 М в ТГФ, 0,65 мл, 0,65 ммоль) и K2CO3 (119 мг, 0,86 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH2Cl2/CH3OH = 100/1) с получением 115-4 (130 мг, выход 61%) в виде твердого вещества белого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-((диметиламинометил)тиазол-2-ил)амино)пропановой кислоты (I-89)

К раствору 115-4 (130 мг, 0,263 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 10 мл) добавляли LiOH (2,0 М в H2O, 0,25 мл). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na2SO4, концентрировали и очищали препаративной ВЭЖХ с
получением I-89 (80,0 мг, выход 65%) в виде твердого вещества белого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-il)амино)-N-(метилсульфонил)пропанамида (I-97)

\[
\begin{array}{c}
\text{OH} \\
\text{N} \\
\text{S} \\
\text{Cl}
\end{array}
\xrightarrow{\text{HATU, DIPEA, DMФ, кт, в}}
\begin{array}{c}
\text{SO}_2 \\
\text{NH} \\
\text{Cl}
\end{array}
\]

I-47 I-97

Смесь I-47 (25,0 мг, 0,054 ммоль), метансульфонамида (6,18 мг, 0,065 ммоль), HATU (41,1 мг, 0,108 ммоль) и DIPEA (20,9 мг, 0,162 ммоль) в DMФ (2,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливают в H₂O (100 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяют и промывают H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-97 (5,0 мг, выход 16%) в виде твердого вещества желтого цвета.

Синтез N-(2-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-il)амино)этилсульфонил)ациетамида (I-99)

\[
\begin{array}{c}
\text{SO}_2 \\
\text{NH}_2 \\
\text{N} \\
\text{S} \\
\text{Cl}
\end{array}
\xrightarrow{\text{CH}_2\text{Cl}_2, \text{пиридин, кт, в}}
\begin{array}{c}
\text{SO}_2 \\
\text{NH} \\
\text{Cl}
\end{array}
\]

I-98 I-99

К смеси I-98 (60,0 мг, 0,120 ммоль) и пиридина (0,2 мл) в CH₂Cl₂ (1,0 мл) добавляют уксусный ангидрид (36,0 мг, 0,360 ммоль). Реакционную смесь перемешивают при комнатной температуре в течение ночи. По завершении реакции реакционную смесь очищают препаративной ВЭЖХ с получением I-99 (15,0 мг, выход 36%) в виде твердого вещества белого цвета.

Синтез этил 3-(бензил(4-(4'-фторбифенил-4-il)-5-изобутилтиазол-2-il)амино)пропаноата (127-4)
Смесь 119-4 (350 мг, 0,76 ммоль), 4-фторферилбороновой кислоты (160 мг, 1,14 ммоль), Pd(OAc)$_2$ (17 мг, 0,076 ммоль), PCy$_3$ (43 мг, 0,152 ммоль) и K$_3$PO$_4$ (484 мг, 2,28 ммоль) в толуоле/H$_2$O (об./об. = 10/1, 22,0 мл) перемешивали в атмосфере N$_2$ при 120 °C в течение 3 часов. По завершении реакции реакционную смесь очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 127-4 (160 мг, выход 53%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(4-(4'-фторбифенил-4-ил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (I-101)

К раствору 127-4 (160 мг, 0,310 ммоль) в TГФ/MeOH/H$_2$O (об./об./об. = 4/1/1, 10 мл) добавляли LiOH (2,0 М в H$_2$O, 0,30 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H$_2$O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0
мл х 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄, концентрировали и очищали препаративной ВЭЖХ с получением I-101 (34,0 мг, выход 28%) в виде твердого вещества белого цвета.

Синтез смеси 3-(bensил(4-(2-хлор-4'-фторбиfenил-4-ил)-5-изобутилтиазол-2-ил)аминопропановой кислоты и 3-(bensил(4-(6-хлор-4'-фторбиfenил-3-ил)-5-изобутилтиазол-2-ил)аминопропановой кислоты (I-104)

[00392] Смесь I-47 (200 мг, 0,432 ммоль), 4-фторфенилбороновой кислоты (121 мг, 0,866 ммоль), Pd(OAc)₂ (9,7 мг, 0,0433 ммоль), Pcy₃ (25,2 мг, 0,0866 ммоль) и K₃PO₄ (184 мг, 0,866 ммоль) в толуоле/H₂O (об./об. = 10/1, 2,20 мл) перемешивали в атмосфере N₂ при 120 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ВЭЖХ с получением I-104 (60,0 мг, выход 27%) в виде твердого вещества белого цвета.

Синтез 2-(trpip-бутоксикарбониламино)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропановой кислоты (142-1)

[00393] Смесь с (600 мг, 1,99 ммоль), 3-амино-2-(trpip-бутоксикарбониламино)пропановой кислоты (448 мг, 2,19 ммоль) и AcOH (239 мг, 3,99 ммоль) в i-PrOH (5,0 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали с получением 142-1 (800 мг, выход 82%) в виде масла желтого цвета, которое использовали непосредственно на следующей стадии без дополнительной очистки.
Синтез 2-амино-3-(4-(3,4-ди halkorfenil)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-115)

[00394] Смесь 142-1 (800 мг, 1,64 ммоль) в HCl (4,0 М в диоксане, 10,0 мл) перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-115 (600 мг, выход 94%) в виде твердого вещества белого цвета.

Синтез 2-(бензиламино)-3-(4-(3,4-ди halkorfenil)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-113)

[00395] Смесь I-115 (100 мг, 0,26 ммоль), бензальдегида (30,2 мг, 0,28 ммоль) и NaBH₄ (9,82 мг, 0,26 ммоль) в EtOH (5,0 мл) перемешивали при комнатной температуре в течение 48 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-113 (30 мг, выход 24%) в виде твердого вещества белого цвета.

Синтез 2-(бензил(метил)амино)-3-(4-(3,4-ди halkorfenil)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-114)
Смесь I-113 (180 мг, 0,377 ммоль), формальдегида (37% в H2O, 34 мг, 0,414 ммоль) и NaBH₄ (14,3 мг, 0,377 ммоль) в EtOH (5,0 мл) перемешивали при комнатной температуре в течение 12 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-114 (20 мг, выход 11%) в виде твердого вещества белого цвета.

Синтез 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-2-(диметиламинопропановой кислоты (I-116)

Смесь I-115 (200 мг, 0,517 ммоль), формальдегида (37% в H2O, 105 мг, 1,29 ммоль) и NaBH₄ (39,3 мг, 1,03 ммоль) в EtOH (15,0 мл) перемешивали при комнатной температуре в течение 24 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-116 (110 мг, выход 51%) в виде твердого вещества белого цвета.

Таблица 2-3: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖКХ-МС</th>
<th>¹H ЯМР (400 МГц, DMSO-d₆)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td></td>
<td>Способ С, чистота составляет 98.9%, ВУ = 2,132 мин; МС рассчит.: 462,1; МС</td>
<td>δ: 0,86 (6Н, д, J = 6,4 Гц), 1,70-1,72 (1Н, м), 2,58-2,62 (4 Н, м), 3,64 (2 Н, т, J = 7,2 Гц), 4,65 (2Н, с), 7,26-7,36 (5 Н, м), 7,50 (1 Н, дд, J = 8,4, 2,0 Гц),</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, DMSO-d_6)</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>найдено: 463,2 [M + H]$^+$.</td>
<td>δ: 0,88 (6Н, д, $J = 6,4$ Гц), 1,73-1,77 (1Н, м), 2,62 (4Н, д, $J = 7,2$ Гц), 4,61 (2Н, с), 6,04 (2Н, с), 6,78-6,87 (3Н, м), 7,52 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,67 (1Н, д, $J = 8,4$ Гц), 7,73 (1Н, д, $J = 2,0$ Гц), 12,41-12,48 (1Н, уш.)</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 2,030 мин; МС рассчит.: 506,1; МС найдено: 507,0 [M + H]$^+$.</td>
<td>δ: 0,87 (6Н, д, $J = 6,8$ Гц), 1,73-1,77 (1Н, м), 2,60-2,67 (4Н, м), 3,68 (2Н, т, $J = 6,8$ Гц), 3,82 (3Н, с), 4,58 (2Н, с), 6,92 (1Н, т, $J = 7,2$ Гц), 6,82 (1Н, д, $J = 8,0$ Гц), 7,12 (1Н, д, $J = 7,2$ Гц), 7,25-7,30 (1Н, м), 7,50-7,53 (1Н, м), 7,66 (1Н, д, $J = 8,4$ Гц), 7,73 (1Н, с), 12,17-12,48 (1Н, уш.)</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>Способ С, чистота составляет 98,3%, ВУ = 1,995 мин; МС рассчит.: 478,1; МС найдено: 479,0 [M + H]$^+$.</td>
<td>δ: 0,87 (6Н, д, $J = 6,8$ Гц), 1,73-1,77 (1Н, м), 2,61-2,67 (4Н, м), 3,65 (2Н, т, $J = 7,6$ Гц), 4,58 (2Н, с), 6,76 (1Н, т, $J = 6,8$ Гц), 6,82 (1Н, д, $J = 8,0$ Гц), 7,08-7,13 (2Н, м), 7,52 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,68 (1Н, д, $J = 8,0$ Гц), 7,74 (1Н, с).</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 2,060 мин; МС рассчит.: 480,1; МС найдено: 481,0 [M + H]$^+$.</td>
<td>δ: 0,88 (6Н, д, $J = 6,4$ Гц), 1,73-1,77 (1Н, м), 2,57-2,63 (4Н, м), 3,65 (2Н, т, $J = 7,2$ Гц), 4,70 (2Н, с), 7,08-7,15 (3Н, м), 7,39 (1Н, т, $J = 7,6$ Гц), 7,51 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,66 (1Н, т, $J = 8,4$ Гц), 7,72 (2Н, д, $J = 2,0$ Гц).</td>
</tr>
</tbody>
</table>

167
<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>¹Н ЯМР (400 МГц, ДМСО-д₆)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td></td>
<td>Способ С, чистота составляет 95,1%, ВУ = 2,139 мин; МС рассчит.: 476,1; МС найдено: 477,1 [М + H]⁺.</td>
<td>δ: 0,87 (6Н, d, J = 8,8 Гц), 1,74-1,76 (1Н, m), 2,56-2,62 (4Н, m), 2,90 (2Н, t, J = 7,2 Гц), 3,55-3,60 (4Н, m), 7,19-7,31 (5Н, m), 7,51 (1Н, dd, J = 8,4, 2,0 Гц), 7,66 (1Н, d, J = 8,4 Гц), 7,73 (1Н, d, J = 2,0 Гц), 12,33 (1Н, уш.).</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>Способ В, чистота составляет 96,4%, ВУ = 2,090 мин; МС рассчит.: 502,1; МС найдено: 502,3 [М + H]⁺.</td>
<td>δ: 0,86 (6Н, d, J = 6,8 Гц), 1,72-1,76 (1Н, m), 2,51-2,53 (2Н, m), 2,61 (2Н, d, J = 6,8 Гц), 3,57 (2Н, t, J = 7,2 Гц), 4,89 (2Н, t), 6,46 (1Н, s), 6,88 (1Н, t, J = 6,8 Гц), 7,03 (1Н, t, J = 7,6 Гц), 7,30-7,33 (2Н, m), 7,53 (1Н, dd, J = 8,4, 2,0 Гц), 7,65 (1Н, d, J = 8,4 Гц), 7,75 (1Н, d), 11,18 (1Н, уш.).</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>Способ С, чистота составляет 94,8%, ВУ = 2,126 мин; МС рассчит.: 501,1; МС найдено: 502,2 [М + H]⁺.</td>
<td>δ: 0,88 (6Н, d, J = 6,8 Гц), 1,73-1,80 (1Н, m), 2,48-2,54 (2Н, m), 2,63 (2Н, d, J = 7,2 Гц), 3,55 (2Н, t, J = 7,2 Гц), 4,74 (1Н, t), 6,95 (1Н, d, J = 6,8 Гц), 7,09 (1Н, t, J = 1,2 Гц), 7,37 (1Н, dd, J = 8,0, 2,4 Гц), 7,53-7,56 (2Н, m), 7,66 (1Н, d, J = 8,4 Гц), 7,77 (1Н, s), 11,04 (1Н, уш.).</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>Способ С, чистота составляет 98,4%, ВУ = 2,086 мин; МС рассчит.: 501,1; МС найдено: 502,2 [М + H]⁺.</td>
<td>δ: 0,86 (6Н, d, J = 6,4 Гц), 1,69-1,71 (1Н, m), 2,56-2,62 (4Н, m), 3,62 (2Н, t, J = 7,2 Гц), 4,67 (2Н, s), 6,38 (1Н, t, J = 6,0Гц), 7,03 (1Н, dd, J = 8,4, 1,2 Гц), 7,30-7,36 (2Н, m), 7,47 (1Н, s), 7,54 (1Н, dd, J = 8,4, 2,0 Гц), 7,65 (1Н, d, J = 8,4 Гц), 7,74 (1Н, d, J = 2,0 Гц), 11,08 (1Н, уш.), 12,30 (1Н, уш.).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>$^1\text{H ЯМР (400 МГц, DMSO-}d_6) $</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>56</td>
<td>Способ C, чистота составляет 99,4%, BY = 2,025 мин; МС рассчит.: 446,1; МС найдено: 447,2 [M + H]$^+$</td>
<td>δ: 2,54 (2H, t, $J = 7,2$ Гц), 3,62 (2H, t, $J = 7,2$ Гц), 4,67 (2H, c), 5,08-5,15 (2H, m), 5,91-6,01 (1H, m), 7,24-7,29 (3H, m), 7,32-7,36 (2H, m), 7,53 (1H, dd, $J = 8,4, 2,0$ Гц), 7,65 (1H, d, $J = 8,4$ Гц), 7,74 (1H, d, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Способ C, чистота составляет 98,7%, BY = 2,090 мин; МС рассчит.: 460,1; МС найдено: 461,3 [M + H]$^+$</td>
<td>δ: 2,51-2,53 (2H, m), 2,90 (2H, t, $J = 7,6$ Гц), 3,51 (2H, d, $J = 6,0$ Гц), 3,53-3,61 (4H, m), 5,11 (1H, c), 5,15 (1H, dd, $J = 6,8, 1,6$ Гц), 5,93-6,01 (1H, m), 7,20 (1H, t, $J = 6,8$ Гц), 7,24-7,31 (4H, m), 7,54 (1H, dd, $J = 8,4, 2,0$ Гц), 7,67 (1H, d, $J = 8,4$ Гц).</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Способ C, чистота составляет 97,6%, BY = 1,563 мин; МС рассчит.: 444,1; МС найдено: 445,2 [M + H]$^+$</td>
<td>δ: 0,87 (6H, d, $J = 6,4$ Гц), 1,71-1,78 (1H, m), 2,43-2,45 (4H, m), 2,59 (2H, d, $J = 6,8$ Гц), 3,57 (4H, t, $J = 7,2$ Гц), 7,49 (1H, dd, $J = 8,4, 2,0$ Гц), 7,64 (1H, d, $J = 8,4$ Гц), 7,69 (1H, d, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Способ C, чистота составляет 100%, BY = 2,055 мин; МС рассчит.: 448,1; МС найдено: 449,2 [M + H]$^+$</td>
<td>δ: 0,88 (6H, d, $J = 6,8$ Гц), 1,71-1,76 (1H, m), 2,62 (2H, d, $J = 7,2$ Гц), 3,97 (2H, уш.), 4,67 (2H, c), 7,28 (1H, dd, $J = 8,8, 4,0$ Гц), 7,33-7,35 (4H, m), 7,52 (1H, dd, $J = 8,4, 2,0$ Гц), 7,66 (1H, d, $J = 8,4$ Гц), 7,72 (1H, d, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Способ C, чистота составляет 100%, BY = 2,128 мин; МС рассчит.: 462,1; МС найдено: 463,2 [M + H]$^+$</td>
<td>δ: 0,89 (6H, d, $J = 6,4$ Гц), 1,74-1,78 (1H, m), 2,62 (2H, d, $J = 7,2$ Гц), 2,93 (2H, t, $J = 7,2$ Гц), 3,62 (2H, t, $J = 8,0$ Гц), 3,96 (2H, c), 7,18-7,32 (5H, m), 7,52 (1H, dd, $J = 8,4, 2,0$ Гц), 7,66 (1H, d, $J = 8,4$ Гц), 7,73 (1H, d, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹H ЯМР (400 МГц, ДМСО-д6)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>61</td>
<td> Способ С, чистота составляет 100%, BY = 1,764 мин; МС рассчит.: 443,1; МС найдено: 444,2 [M + H]⁺.</td>
<td>δ: 0,90 (6Н, d, J = 6,8 Гц), 1,74-1,81 (1Н, м), 2,43 (2Н, t, J = 6,8 Гц), 2,62 (2Н, d, J = 6,8 Гц), 3,56-3,62 (4Н, м), 6,88 (1Н, уш.), 7,42 (1Н, уш.), 7,52 (1Н, dd, J = 8,0, 2,0 Гц), 7,67 (1Н, d, J = 8,0 Гц), 7,73 (1Н, d, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td> Способ С, чистота составляет 99,3%, BY = 1,941 мин; МС рассчит.: 463,1; МС найдено: 464,2 [M + H]⁺.</td>
<td>δ: 0,86 (6Н, d, J = 6,8 Гц), 1,70-1,77 (1Н, м), 2,59-2,63 (4Н, м), 3,63-3,67 (2Н, м), 4,69 (2Н, с), 7,35 (1Н, dd, J = 7,6, 4,8 Гц), 7,50 (1Н, dd, J = 8,4, 2,0 Гц), 7,65 (1Н, d, J = 8,4 Гц), 7,69-7,71 (2Н, м), 8,47 (1Н, dd, J = 8,8, 1,6 Гц), 8,53 (1Н, d, J = 1,6 Гц).</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td> Способ С, чистота составляет 99,6%, BY = 1,887 мин; МС рассчит.: 463,1; МС найдено: 464,2 [M + H]⁺.</td>
<td>δ: 0,88 (6Н, d, J = 6,8 Гц), 1,73-1,77 (1Н, м), 2,61-2,64 (1Н, м), 3,66-3,70 (2Н, м), 4,73 (2Н, с), 7,28 (21Н, d, J = 6,0 Гц), 7,50 (1Н, dd, J = 8,4, 2,0 Гц), 7,66 (1Н, d, J = 8,4 Гц), 7,69 (1Н, d, J = 2,0 Гц), 8,52 (1Н, dd, J = 4,4, 1,6 Гц).</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td> Способ С, чистота составляет 99,4%, BY = 1,754 мин; МС рассчит.: 429,1; МС найдено: 430,2 [M + H]⁺.</td>
<td>δ: 0,87 (6Н, d, J = 6,8 Гц), 1,72-1,76 (1Н, м), 2,60 (2Н, d, J = 6,8 Гц), 3,57 (2Н, t, J = 6,8 Гц), 4,01 (2Н, с), 7,05 (1Н, уш.), 7,48 (1Н, dd, J = 8,4, 1,6 Гц), 7,54 (1Н, уш.), 7,64 (1Н, d, J = 8,4 Гц), 7,69 (1Н, d, J = 1,6 Гц).</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td> Способ С, чистота составляет 98,6%, BY = 2,028 мин; МС рассчит.: 468,1; МС найдено: 469,1 [M + H]⁺.</td>
<td>δ: 0,87 (6Н, d, J = 6,8 Гц), 1,72-1,77 (1Н, м), 2,58-2,64 (4Н, м), 3,57 (2Н, t, J = 7,2 Гц), 4,81 (2Н, с), 6,97 (1Н, dd, J = 5,2, 3,6 Гц), 7,11 (1Н, d, J = 2,4 Гц), 7,42 (1Н, dd, J = 4,8, 1,2 Гц), 7,54 (1Н, dd, J = 8,4, 2,0 Гц), 7,66 (1Н, d, J</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, ДМСО-d_6)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>Способ С, чистота составляет 98,2%, ВУ = 1,847 мин; МС рассчит.: 416,1; МС найдено: 417,2 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,8$ Гц), 1,73-1,75 (1Н, м), 2,53-2,60 (4Н, м), 3,44 (3Н, т, $J = 5,6$ Гц), 3,57-3,64 (4Н, м), 7,49 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,69 (1Н, д, $J = 1,6$ Гц).</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>Способ С, чистота составляет 99,4%, ВУ = 1,964 мин; МС рассчит.: 430,1; МС найдено: 431,2 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,73-1,76 (1Н, м), 2,43-2,46 (2Н, м), 2,59 (2Н, д, $J = 6,8$ Гц), 3,24 (3Н, с), 3,51-3,58 (6Н, м), 7,48 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,70 (1Н, д, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>Способ С, чистота составляет 99,5%, ВУ = 1,951 мин; МС рассчит.: 469,1; МС найдено: 469,2 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,73-1,77 (1Н, м), 2,30 (3Н, с), 2,60-2,63 (4Н, м), 3,69 (2Н, т, $J = 6,8$ Гц), 4,98 (2Н, с), 7,44 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,61 (1Н, д, $J = 2,0$ Гц), 7,63 (1Н, д, $J = 8,4$ Гц).</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>Способ С, чистота составляет 99,5%, ВУ = 2,011 мин; МС рассчит.: 456,1; МС найдено: 457,2 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,8$ Гц), 1,47-1,54 (1Н, м), 1,73-1,95 (4Н, м), 2,52-2,60 (4Н, м), 3,48-3,53 (2Н, м), 3,58-3,66 (3Н, м), 3,76 (1Н, дд, $J = 14,8, 6,8$ Гц), 4,06-4,13 (1Н, м), 7,49 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,69 (1Н, д, $J = 1,6$ Гц).</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>Способ С, чистота составляет 97,6%, ВУ =1,846 мин; МС рассчит.: 430,1; МС найдено: 431,2 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,69-1,78 (3Н, м), 2,48-2,54 (2Н, м), 2,59 (2Н, д, $J = 6,8$ Гц), 3,40-3,43 (5Н, м), 3,58 (2Н, т, $J = 7,2$ Гц), 7,49(1Н, дд, $J = 8,4, 2,0$ Гц), 7,64 (1Н, д, $J = 8,4$ Гц),</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1Н ЯМР (400 МГц, ДМСО-d_6)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>$^\circledast$.</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 2,13 (6Н, с), 2,23 (2Н, т, $J = 6,8$ Гц), 2,56-2,61 (4Н, м), 3,37 (2Н, т, $J = 7,2$ Гц), 7,49 (1Н, дд, $J = 8,4$ Гц, 2,0 Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,71 (1Н, д, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>$^\circledast$.</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,72-1,78 (1Н, м), 2,18 (6Н, с), 2,57-2,61 (4Н, м), 3,47 (3Н, т, $J = 6,8$ Гц), 3,60 (3Н, т, $J = 7,2$ Гц), 7,49 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,65 (1Н, д, $J = 8,4$ Гц), 7,70 (1Н, д, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>$^\circledast$.</td>
<td>δ: 0,86 (6Н, д, $J = 6,4$ Гц), 1,70-1,77 (1Н, м), 2,60 (2Н, д, $J = 7,2$ Гц), 3,10-3,12 (2Н, м), 3,47 (2Н, т, $J = 6,4$ Гц), 4,50 (2Н, с), 6,70 (2Н, д, $J = 8,4$ Гц), 7,09 (1Н, д, $J = 8,4$ Гц), 7,51 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,72 (1Н, д, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>$^\circledast$.</td>
<td>δ: 1,20 (6Н, д, $J = 6,8$ Гц), 2,60 (2Н, т, $J = 7,2$ Гц), 3,23-3,28 (1Н, м), 3,63 (2Н, т, $J = 7,2$ Гц), 4,65 (2Н, с), 7,25-7,36 (5Н, м), 7,47 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,64-7,69 (2Н, м), 12,34 (1Н, уш.).</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>$^\circledast$.</td>
<td>δ: 1,20 (6Н, д, $J = 3,2$ Гц), 2,24 (6Н, д, $J = 2,2$ Гц), 2,62 (2Н, т, $J = 7,2$ Гц), 3,23-3,28 (1Н, м), 3,63 (2Н, т, $J = 7,2$ Гц), 4,66 (2Н, с), 7,15-7,21,(2Н, м), 7,27-7,38 (6Н, м), 12,33 (1Н, с).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1Н ЯМР (400 МГц, DMSO-d_6)</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>Способ C, чистота составляет 99,5%, ВУ = 1,824 мин; МС рассчит.: 410,2; МС найдено: 411,3 [M + H]$^+$</td>
<td>δ: 1,18 (6Н, $d = 6,8 \ Гц$), 2,60 (2H, т, $J = 7,2 \ Гц$), 3,19-3,26 (1H, м), 3,60 (2H, т, $J = 7,2 \ Гц$), 3,75 (3H, с), 4,63 (2H, с), 6,95 (2H, $d = 8,8 \ Гц$), 7,24-7,36 (5H, м), 7,41 (1H, $d = 8,8 \ Гц$), 12,31 (1H, уш.).</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>Способ C, чистота составляет 95,9%, ВУ = 1,916 мин; МС рассчит.: 416,2; МС найдено: 417,3 [M + H]$^+$</td>
<td>δ: 1,19 (6Н, $d = 6,8 \ Гц$), 2,60 (2H, т, $J = 7,2 \ Гц$), 3,24-3,30 (1H, м), 3,62 (2H, т, $J = 7,6 \ Гц$), 4,64 (2H, с), 7,26-7,36 (6H, м), 7,41-7,50 (2H, м), 12,31 (1H, уш.).</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>Способ C, чистота составляет 99,2%, ВУ = 1,975 мин; МС рассчит.: 432,1; МС найдено: 433,2 [M + H]$^+$</td>
<td>δ: 1,19 (6Н, $d = 6,8 \ Гц$), 2,59 (2H, т, $J = 7,6 \ Гц$), 3,19-3,24 (1H, м), 3,62 (2H, т, $J = 7,2 \ Гц$), 4,64 (2H, с), 7,26-7,36 (5H, м), 7,43-7,48 (2H, м), 7,62 (1H, $d = 7,6 \ Гц$), 7,62 (2,0 Гц), 12,08-12,32 (1H, м).</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>Способ C, чистота составляет 99,3%, ВУ = 2,039 мин; МС рассчит.: 428,1; МС найдено: 429,3 [M + H]$^+$</td>
<td>δ: 0,85 (6Н, $d = 3,4 \ Гц$), 1,70-1,16 (1H, м), 2,48 (2H, уш.), 2,59 (2H, $d = 3,6 \ Гц$), 3,57 (2H, $d = 6,8 \ Гц$), 4,65 (2H, с), 7,24-7,35 (6H, м), 7,41 (1H, т, $d = 7,6 \ Гц$), 7,47 (1H, $d = 3,8 \ Гц$), 7,52 (1H, с).</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 1,988 мин; МС рассчит.: 458,1; МС найдено: 459,2 [M + H]$^+$</td>
<td>δ: 0,86 (6Н, $d = 3,2 \ Гц$), 1,69-1,76 (1H, м), 2,55-2,58 (4H, м), 3,61 (2H, т, $d = 7,2 \ Гц$), 3,85 (3H, с), 4,64 (2H, с), 4,76 (1H, $d = 4,4 \ Гц$), 7,23-7,35 (5H, м), 7,44 (1H, $d = 8,4 \ Гц$), 2,0 Гц), 7,52 (1H, $d = 1,0 \ Гц$)</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹H ЯМР (400 МГц, ДМСО-д₆)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>Способ С, чистота составляет 87,7%, ВУ = 2,043 мин; МС рассчит.: 448,1; МС найдено: 449,2 [М + H]⁺.</td>
<td>δ: 0,85 (6Н, д, J = 3,2 Гц), 1,69-1,75 (1Н, м), 2,55-2,63 (4Н, м), 3,62 (2Н, т, J = 6,8 Гц), 4,65 (2Н, с), 7,26-7,42 (7Н, м).</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>Способ С, чистота составляет 98,5%, ВУ = 1,942 мин; МС рассчит.: 412,2; МС найдено: 413,4 [М + H]⁺.</td>
<td>δ: 0,86 (6Н, д, J = 6,8 Гц), 1,71-1,75 (1Н, м), 2,52 (2Н, т, J = 7,2 Гц), 2,61 (2Н, д, J = 7,2 Гц), 3,59 (2Н, т, J = 7,2 Гц), 4,65 (2Н, с), 7,12 (1Н, тд, J = 8,4, 2,4 Гц), 7,23-7,36 (7Н, м), 7,41 (1Н, дд, J = 8,0, 6,4 Гц).</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>Способ С, чистота составляет 99,4%, ВУ = 1,876 мин; МС рассчит.: 395,2; МС найдено: 396,4 [М + H]⁺.</td>
<td>δ: 0,85 (6Н, д, J = 6,4 Гц), 1,70-1,75 (1Н, м), 2,58-2,62 (4Н, м), 3,63 (2Н, т, J = 7,2 Гц), 4,66 (2Н, с), 7,24-7,36 (5Н, м), 7,42 (1Н, дд, J = 7,6, 4,8 Гц), 7,88-7,91 (4Н, м), 8,49 (1Н, дд, J = 8,8, 1,6 Гц), 8,72 (1Н, д, J = 1,6 Гц).</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,666 мин; МС рассчит.: 395,2; МС найдено: 396,4 [М + H]⁺.</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,72-1,79 (1Н, м), 2,60 (2Н, т, J = 7,2 Гц), 2,68 (2Н, д, J = 7,2 Гц), 3,64 (2Н, т, J = 7,2 Гц), 4,66 (2Н, с), 7,24-7,36 (5Н, м), 7,52 (2Н, дд, J = 4,8, 1,6 Гц), 8,57 (2Н, дд, J = 4,8, 1,6 Гц).</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>Способ С, чистота составляет 100%, ВУ = 1,858 мин; МС рассчит.: 433,1; МС найдено: 434,4 [М + H]⁺.</td>
<td>δ: 0,85 (6Н, д, J = 6,4 Гц), 1,73-1,77 (1Н, м), 2,61 (2Н, д, J = 6,8 Гц), 3,60 (2Н, т, J = 7,2 Гц), 4,66 (2Н, с), 6,43 (1Н, д, J = 2,0 Гц), 7,24-7,38 (8Н, м), 7,63 (1Н, с), 11,10 (1Н, уш.).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>¹H ЯМР (400 МГц, DMSO-d₆)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>86</td>
<td>Способ С, чистота составляет 100%, ВУ = 1,886 мин; МС рассчит.: 427,1; МС найдено: 428,0 [M + H]^+</td>
<td>δ: 0,86 (6Н, д, J = 6,4 Гц), 1,73-1,76 (1Н, м), 2,39 (3Н, с), 2,62 (2Н, д, J = 7,2 Гц), 3,00-3,05 (2Н, м), 3,29-3,36 (2Н, м), 3,52-3,55 (2Н, м), 3,70-3,74 (1Н, м), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,64 (1Н, д, J = 8,4 Гц), 7,71 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Способ С, чистота составляет 99,5%, ВУ = 2,294 мин; МС рассчит.: 468,1; МС найдено: 469,3 [M + H]^+</td>
<td>δ: 0,86 (6Н, д, J = 6,4 Гц), 0,91-0,93 (2Н, м), 1,12-1,19 (3Н, м), 1,61-1,67 (5Н, м), 1,73 (2Н, дд, J = 9,2, 6,8 Гц), 2,55-2,60 (4Н, м), 3,18 (2Н, д, J = 7,2 Гц), 3,60 (2Н, т, J = 7,2 Гц), 7,48 (1Н, дд, J = 8,4, 2,0 Гц), 7,64 (1Н, д, J = 8,4 Гц), 7,71 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Способ С, чистота составляет 100%, ВУ = 1,821 мин; МС рассчит.: 483,1; МС найдено: 484,1 [M + H]^+</td>
<td>δ: 0,86 (6Н, д, J = 6,4 Гц), 1,96-1,22 (2Н, м), 1,54-1,56 (2Н, м), 1,71-1,74 (2Н, м), 1,84-1,86 (2Н, м), 2,15 (3Н, с), 2,57-2,61 (4Н, м), 2,75-2,78 (2Н, м), 3,61 (3Н, т, J = 7,2 Гц), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,65 (1Н, д, J = 8,4 Гц), 7,70 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Способ B, чистота составляет 96,9%, ВУ = 1,688 мин; МС рассчит.: 463,1; МС найдено: 464,0 [M + H]^+</td>
<td>δ: 2,17 (6Н, с), 2,60 (1Н, д, J = 7,2 Гц), 3,45 (2Н, с), 3,65 (2Н, т, J = 7,2 Гц), 4,66 (2Н, с), 7,26-7,36 (5Н, м), 7,58-7,66 (2Н, м), 7,87 (1Н, т, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Способ C, чистота составляет 100%, ВУ = 2,107 мин; МС рассчит.: 418,1; МС найдено: 419,2 [M + H]^+</td>
<td>δ: 1,37-1,38 (2Н, м), 1,47-1,50 (3Н, м), 2,32-2,38 (4Н, м), 2,62 (2Н, т, J = 7,2 Гц), 3,48 (2Н, с), 3,66 (2Н, т, J = 7,2 Гц), 4,68 (2Н, с), 7,28-7,38 (5Н, м), 7,61-7,68 (2Н, м), 7,99 (1Н, т, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, ДМСО-d_6)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>$^+$</td>
<td>δ: 1,81-1,91 (4Н, м), 2,67 (2Н, т, $J = 4,0$ Гц), 2,89-2,92 (2Н, м), 3,63-3,72 (4Н, м), 4,46-4,48 (2Н, м), 4,73 (2Н, с), 7,28-7,40(5Н, м), 7,57-7,61 (1Н, м), 7,71-7,73 (1Н, м), 7,83 (1Н, с).</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>$^+$</td>
<td>δ: 2,13 (3Н, с), 2,24-2,34 (8Н, м), 2,60 (2Н, т, $J = 7,2$ Гц), 3,50 (2Н, с), 3,64 (2Н, т, $J = 7,2$ Гц), 4,66 (2Н, с), 7,24-7,36 (5Н, м), 7,59-7,66 (2Н, м), 7,96 (1Н, т, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>$^+$</td>
<td>δ: 0,85 (6Н, д, $J = 3,4$ Гц), 1,68-1,78 (1Н, м), 2,41-2,45 (2Н, м), 2,58 (2Н, д, $J = 3,6$ Гц), 3,55 (2Н, т, $J = 7,6$ Гц), 4,66 (2Н, с), 7,24-7,34 (5Н, м), 7,43 (2Н, д, $J = 4,2$ Гц), 7,53 (2Н, д, $J = 4,2$ Гц).</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>$^+$</td>
<td>δ: 0,89 (6Н, д, $J = 3,2$ Гц), 1,72-1,82 (1Н, м), 2,58 (2Н, т, $J = 7,2$ Гц), 2,62 (2Н, д, $J = 3,6$ Гц), 2,93 (2Н, т, $J = 7,2$ Гц), 4,57-3,64 (4Н, м), 7,22-7,36 (4Н, м), 7,52 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,67 (1Н, д, $J = 4,2$ Гц), 7,74 (1Н, д, $J = 1,0$ Гц).</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,74-1,77 (1Н, м), 2,20 (6Н, с), 2,60 (2Н, д, $J = 7,2$ Гц), 2,77-2,81 (2Н, м), 3,29-3,31 (2Н, м), 3,53-3,56 (4Н, м), 6,80-6,84 (3Н, м), 7,50 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,65 (1Н, д, $J = 8,4$ Гц), 7,74 (1Н, д, $J = 8,4$ Гц).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, ДМСО-d_6)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>96</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,265 мин; МС рассчит.: 490,1; МС найдено: 491,1 [М + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,72-1,75 (1Н, м), 1,88-1,92 (2Н, м), 2,56-2,60 (6Н, м), 3,35-3,39 (2Н, м), 3,60 (2Н, т, $J = 7,2$ Гц), 7,16-7,28 (5Н, м), 7,48 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,70 (1Н, д, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,165 мин; МС рассчит.: 539,1; МС найдено: 540,2 [М + H]$^+$</td>
<td>δ: 0,86 (6Н, д, $J = 6,4$ Гц), 1,70-1,75 (1Н, м), 2,59-2,67 (4Н, м), 3,11 (3Н, с), 3,66 (2Н, т, $J = 6,8$ Гц), 4,63 (2Н, с), 7,26-7,36 (5Н, м), 7,51 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,65 (1Н, д, $J = 8,4$ Гц), 7,72 (1Н, д, $J = 2,0$ Гц), 11,80 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,235 мин; МС рассчит.: 407,1; МС найдено: 408,1 [М + H]$^+$</td>
<td>δ: 0,86 (6Н, д, $J = 6,4$ Гц), 1,72-1,75 (1Н, м), 2,61 (2Н, д, $J = 7,2$ Гц), 3,34 (2Н, т, $J = 7,2$ Гц), 3,80-3,84 (2Н, м), 4,65 (2Н, с), 6,97 (2Н, с), 7,26-7,38 (5Н, м), 7,52 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,65 (1Н, д, $J = 8,4$ Гц), 7,74 (1Н, д, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,273 мин; МС рассчит.: 539,1; МС найдено: 540,0 [М + H]$^+$</td>
<td>δ: 0,85 (6Н, д, $J = 6,4$ Гц), 1,70-1,74 (1Н, м), 1,89 (3Н, с), 2,61 (2Н, д, $J = 6,8$ Гц), 3,76-3,80 (4Н, м), 4,63 (2Н, с), 7,27-7,38 (5Н, м), 7,51 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,65 (1Н, д, $J = 8,4$ Гц), 7,74 (1Н, д, $J = 2,0$ Гц), 11,73 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Способ С, чистота составляет 98,5%, ВУ = 2,132 мин; МС рассчит.: 486,1; МС</td>
<td>δ: 0,86 (6Н, д, $J = 6,8$ Гц), 1,71-1,75 (1Н, м), 2,61 (2Н, д, $J = 6,8$ Гц), 3,28 (2Н, т, $J = 7,2$ Гц), 3,88 (2Н, т, $J = 6,8$ Гц), 4,62 (2Н, с), 7,26-7,37 (5Н, м),</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1Н ЯМР (400 МГц, DMSO-d6)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>101</td>
<td>Способ С, чистота составляет 99,6%, BV = 2,139 мин; МС рассчит.: 488,2; МС найдено: 489,3 [M + H]^+</td>
<td>δ: 0,90 (6Н, д, J = 3,2 Гц), 1,74-1,84 (1Н, м), 2,61-2,68 (4Н, м), 3,65 (2Н, т, J = 7,2 Гц), 4,68 (2Н, с), 7,28-7,38 (7Н, м), 7,62-7,77 (6Н, м), 12,32 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Способ С, чистота составляет 90,0 %, BV = 2,129 мин; МС рассчит.: 486,1; МС найдено: 487,4 [M + H]^+</td>
<td>δ: 0,86 (3 Н, д, J = 6,4 Гц), 1,72-1,75 (1Н, м), 2,60 (4Н, т, J = 7,2 Гц), 3,62 (2Н, т, J = 7,2 Гц), 4,64 (2Н, с), 7,00-7,03 (1Н, м), 7,14 (1Н, т, J = 7,2 Гц), 7,26-7,41 (7Н, м), 7,52 (1Н, д, J = 8,4 Гц), 12,33 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Способ С, чистота составляет 99,8 %, BV = 2,174 мин; МС рассчит.: 520,1; МС найдено: 521,3 [M + H]^+</td>
<td>δ: 0,87 (3Н, д, J = 6,4 Гц), 1,73-1,76 (1Н, м), 2,60 (4Н, т, J = 7,2 Гц), 3,62 (2Н, т, J = 7,2 Гц), 4,65 (2Н, с), 6,98 (1Н, д, J = 7,6 Гц), 7,07-7,15 (2Н, м), 77,24-7,40 (7Н, м), 7,49 (1Н, дд, J = 8,4, 2,4 Гц), 7,68 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Способ С, чистота составляет 97,2%, BV = 2,288 мин; МС рассчит.: 522,2; МС найдено: 523,2 [M + H]^+</td>
<td>δ: 0,85-0,90 (6Н, м), 1,71-1,81 (1Н, м), 2,57-2,66 (4Н, м), 3,60-3,66 (2Н, м), 4,64-4,66 (2Н, м), 7,23-7,36 (7Н, м), 7,42-7,67 (5Н, м), 12,38 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Способ С, чистота составляет 100%, BV = 2,068 мин; МС рассчит.: 427,1; МС найдено: 427,2 [M + H]^+</td>
<td>δ: 0,27-0,31 (2Н, м), 0,47-0,50 (2Н, м), 0,89 (6Н, д, J = 6,8 Гц), 1,01-1,11 (1Н, м), 1,75-1,79 (1Н, м), 2,53-2,57 (2Н, м), 2,61 (2Н, д, J = 6,8 Гц), 3,26-3,28 (2Н, м), 3,66 (2Н, т, J = 6,8 Гц), 7,51 (1Н, дд, J = 8,4, 2,0 Гц), 7,66 (1Н, д, J</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, ДМСО-д6)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>106</td>
<td>Способ C, чистота составляет 98,1%, BV = 2,074 мин; МС рассчит.: 440,1; МС найдено: 441,1 [M + H]$^+$</td>
<td>δ: 0,03-0,07 (2Н, м), 0,37-0,42 (2Н, м), 0,63-0,66 (1Н, м), 0,87 (6Н, д, J = 6,8 Гц), 1,45-1,50 (2Н, м), 1,73-1,77 (1Н, м), 2,55 (2Н, т, J = 6,8 Гц), 2,60 (2Н, д, J = 6,8 Гц), 3,42 (2Н, т, J = 7,2 Гц), 3,60 (2Н, т, J = 6,8 Гц), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,64 (1Н, д, J = 8,4 Гц), 7,70 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Способ C, чистота составляет 99,4 %, BV = 2,162 мин; МС рассчит.: 496,1; МС найдено: 497,2 [M + H]$^+$</td>
<td>δ: 0,86 (6 Н, д, J = 6,8 Гц), 1,70-1,77 (1Н, м), 2,60-2,66 (4Н, м), 3,69 (2Н, т, J = 7,2 Гц), 4,73 (2Н, с), 7,24-7,34 (3Н, м), 7,46-7,50 (2Н, м), 7,64 (1Н, д, J = 8,4 Гц), 7,69 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Способ C, чистота составляет 100 %, BV = 2,177 мин; МС рассчит.: 496,1; МС найдено: 497,2 [M + H]$^+$</td>
<td>δ: 0,85 (6Н, д, J = 6,8 Гц), 1,71-1,74 (1Н, м), 2,59-2,65 (4Н, м), 3,69 (2Н, т, J = 6,8 Гц), 4,72 (2Н, с), 7,23-7,32 (3Н, м), 7,45-7,50 (2Н, м), 7,64 (1Н, д, J = 8,4 Гц), 7,69 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Способ C, чистота составляет 93,2%, BV = 2,199 мин; МС рассчит.: 496,1; МС найдено: 497,2 [M + H]$^+$</td>
<td>δ: 0,86 (6Н, д, J = 6,4 Гц), 1,69-1,76 (1Н, м), 2,59-2,62 (4Н, м), 3,63 (2Н, т, J = 6,8 Гц), 4,65 (2Н, с), 7,31 (2Н, д, J = 8,4 Гц), 7,40 (2Н, д, J = 8,4 Гц), 7,50 (1Н, дд, J = 8,4, 2,0 Гц), 7,65 (1Н, д, J = 8,4 Гц), 7,70 (1Н, д, J = 2,0 Гц), 12,34 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Способ C, чистота составляет 98,9%, BV = 2,031 мин; МС рассчит.: 451,1; МС</td>
<td>δ: 0,89 (6Н, д, J = 7,2 Гц), 1,73-1,80 (1Н, м), 2,43-2,50 (2Н, м), 2,62 (2Н, д, J = 7,2 Гц), 3,58 (2Н, т, J = 7,2 Гц), 4,52 (2Н, с), 5,94 (1Н, дд, J = 5,6, 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹H ЯМР (400 МГц, ДМСО-д₆)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>111</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,219 мин; МС рассчит.: 496,1; МС найдено: 497,2 [M + H]^+</td>
<td>δ: 0,87 (6Н, д, J = 3,2 Гц), 1,69-1,77 (1Н, м), 2,56-2,65 (4Н, м), 3,63 (2Н, т, J = 7,2 Гц), 4,65 (2Н, с), 7,24-7,36 (5Н, м), 7,71 (2Н, с).</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Способ С, чистота составляет 100 %, ВУ = 2,060 мин; МС рассчит.: 462,1; МС найдено: 463,2 [M + H]^+</td>
<td>δ: 0,85 (6Н, кв, J = 4,8 Гц), 1,70-1,73 (1Н, м), 2,39-2,47 (2Н, м), 2,56 (2Н, т, J = 6,8 Гц), 2,77-2,91 (2Н, м), 4,10-4,13 (1Н, м), 7,15-7,28 (5Н, м), 7,47 (1Н, д, J = 8,4, 2,4 Гц), 7,59-7,65 (2Н, м), 7,69 (1Н, д, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,116 мин; МС рассчит.: 477,1; МС найдено: 478,1 [M + H]^+</td>
<td>δ: 0,85 (6Н, дд, J = 6,4, 4,8 Гц), 1,68-1,75 (1Н, м), 2,57 (2Н, д, J = 7,2 Гц), 3,46-3,55 (3Н, м), 3,82 (2Н, д, J = 13,2 Гц), 3,95 (1Н, д, J = 13,2 Гц), 7,21-7,29 (5Н, м), 7,44 (1Н, дд, J = 8,4, 1,6 Гц), 7,60 (1Н, д, J = 8,4 Гц), 7,66 (1Н, д, J = 1,6 Гц).</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Способ С, чистота составляет 99,7%, ВУ = 2,159 мин; МС рассчит.: 491,1; МС найдено: 492,2 [M + H]^+</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,71-1,74 (1Н, м), 2,23 (3Н, с), 2,57 (2Н, д, J = 7,2 Гц), 3,43-3,66 (5Н, м), 3,77 (1Н, д, J = 13,6 Гц), 7,15-7,22 (3Н, м), 7,27 (2Н, д, J = 6,8 Гц), 7,42 (1Н, дд, J = 8,4, 2,0 Гц), 7,48-7,50 (1Н, м), 7,60-7,62 (2Н, м).</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹Н ЯМР (400 МГц, ДМСО-д₆)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>Способ C, чистота составляет 91,1%, ВУ = 1,889 мин; МС рассчит.: 387,1; МС найдено: 388,3 [M + H]⁺.</td>
<td>δ: 0,86 (6Н, дд, J = 6,4, 1,6 Гц), 1,71-1,74 (1Н, м), 2,58 (2Н, д, J = 6,8 Гц), 3,41-3,45 (2Н, м), 3,61-3,66 (1Н, м), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,64 (2Н, д, J = 8,4 Гц), 7,72 (1Н, д, J = 2,0 Гц).</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>Способ C, чистота составляет 96,6%, ВУ = 2,048 мин; МС рассчит.: 415,1; МС найдено: 416,2 [M + H]⁺.</td>
<td>δ: 0,87 (6Н, д, J = 6,8 Гц), 1,70-1,77 (1Н, м), 2,46 (6Н, с), 2,59 (2Н, д, J = 7,2 Гц), 3,45-3,52 (2Н, м), 3,59-3,66 (1Н, м), 7,50 (2Н, дд, J = 8,4, 4,4 Гц), 7,64 (1Н, д, J = 8,4 Гц), 7,72 (1Н, д, J = 2,0 Гц).</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>Способ C, чистота составляет 91,7%, ВУ = 1,765 мин; МС рассчит.: 410,2; МС найдено: 411,4 [M + H]⁺.</td>
<td>δ: 0,87 (6Н, д, J = 6,8 Гц), 1,72-1,75 (1Н, м), 2,53-2,57 (2Н, м), 3,55-3,59 (4Н, м), 4,66 (2Н, с), 6,77 (2Н, д, J = 8,4 Гц), 7,26-7,36 (7Н, м).</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 1,903 мин; МС рассчит.: 415,2; МС найдено: 416,0 [M + H]⁺.</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,71-1,81 (1Н, м), 2,64 (2Н, д, J = 7,2 Гц), 3,09-3,15 (2Н, м), 3,48-3,58 (2Н, м), 3,76 (1Н, дд, J = 12,4, 6,4 Гц), 3,92-3,95 (2Н, м), 7,50 (1Н, дд, J = 8,4, 2,8 Гц), 7,65 (1Н, д, J = 8,4 Гц), 7,72 (1Н, д, J = 2,0 Гц).</td>
</tr>
</tbody>
</table>

Пример 3. Синтез соединений I-119 – I-198

Схема 1: Путь для соединений с, 115, 159, 161, 217, 218, 220

181
Схема 2: Путь для соединения 219

Схема 3: Путь для соединений b-157

Схема 4: Путь для соединений b-184--b-187
Схема 5: Путь для соединений 1, b-188–b-196, b-198–b-201, b-203–b-205, b-211, b-212, b-214, b-215, s-1

Схема 6: Путь для соединения b-208
Схема 7: Путь для соединений b-213, b-216

Схема 8: Путь для соединений b-229

Схема 9: Путь для соединения b-233

Схема 10: Путь для соединения b-235
Схема 11: Путь для соединения b-242

Схема 12: Путь для соединения b-243

Схема 13: Путь для соединений 152-s, 227-s

Схема 14: Путь для соединения 178-s
Схема 15: Путь для соединения 224-s

Схема 16: Путь для соединения I-119

Схема 17: Путь для соединений I-120 – I-122, I-130

Тот же способ синтеза использовали для других соединений I-121, I-122, I-130

Схема 18: Путь для соединения I-123
Схема 19: Путь для соединения I-124

Схема 20: Путь для соединения I-125

Схема 22: Путь для соединения I-128
Схема 23: Путь для соединения I-129

Схема 26: Путь для соединений I-136, I-140
Схема 27: Путь для соединения I-137, I-190

Тот же способ синтеза использовали для других соединений I-190.

Схема 28: Путь для соединения I-138

Схема 29: Путь для соединения I-139

Схема 30: Путь для соединения I-141

Схема 31: Путь для соединения I-142
Схема 32: Путь для соединений I-143, I-144

Тот же способ синтеза использовали для других соединений I-144

Схема 33: Путь для соединения I-145

Схема 34: Путь для соединений I-146, I-148

Тот же способ синтеза использовали для других соединений I-148.

Схема 35: Путь для соединений I-147, I-149
Схема 36: Путь для соединений I-159, I-162, I-164

Схема 37: Путь для соединений I-166 – I-167

Схема 38: Путь для соединений I-168 – I-169

Схема 39: Путь для соединения I-181
Схема 40: Путь для соединений I-182, I-183

Схема 41: Путь для соединения I-184

Схема 42: Путь для соединения I-185

Схема 43: Путь для соединения I-186
Схема 44: Путь для соединений I-187, I-188

Тот же способ синтеза использовали для других соединений I-188

Схема 45: Путь для соединения I-190

Схема 46: Путь для соединения I-191

Схема 47: Путь для соединения I-196
Схема 48: Путь для соединений I-197 – I-198

Тот же способ синтеза использовали для других соединений I-198

[00398] Общая информация. Все испарения проводились в вакууме на роторном испарителе. Аналитические образцы сушили в вакууме (1–5 мм рт.ст.) при комнатной температуре. Тонкослойную хроматографию (ТСХ) проводили на планшетах с силикагелем, пятна визуализировали с применением УФ-света (214 и 254 нм). Очистку с помощью колоночной и флэш-хроматографии проводили с использованием силикагеля (200–300 меш). Системы растворителей представлены в виде смесей по объему. Все спектры ЯМР были записаны на спектрометре Bruker 400 (400 МГц). Химические сдвиги 1H указаны в значениях δ в миллионных долях с дейтерированным растворителем в качестве внутреннего стандарта. Данные представлены следующим образом: химический сдвиг, мультиплетность (с = синглет, д = дублет, т = триплет, кв = квартет, уш. = уширенный, м = мультиплет), константа взаимодействия (Гц), интегрирование.

[00399] Спектры ЖХ-МС были получены на масс-спектрометре Agilent 1200 серий 6110 или 6120 с ионизацией электронраспылением, и, если не указано иное, общие условия ЖХ-МС были следующими:

Способ A (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °С; скорость потока: 3,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 0,8 мин, затем в этих условиях в течение 0,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,01 мин).
Способ В (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 0,05 % TФУ] и 5% [CH₃CN + 0,05% TФУ] до 0% [вода + 0,05% TФУ] и 100% [CH₃CN + 0,05% TФУ] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 0,05% TФУ] и 5% [CH₃CN + 0,05% TФУ] за 0,05 мин и в этих условиях в течение 0,7 мин.).

Способ C (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 10 mM NH₄HCO₃] и 5% [CH₃CN] до 0% [вода + 10 mM NH₄HCO₃] и 100% [CH₃CN] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 10 mM NH₄HCO₃] и 5% [CH₃CN] за 0,1 мин и в этих условиях за 0,7 мин.)

Синтез 1-(3,4-дихлорфенил)-4-метилpentан-1-она (c-1)

![Chemical structure of 1-(3,4-dichlorophenyl)-4-methylpentan-1-one (c-1)]

[00400] К раствору а (25,0 г, 145 ммоль) в TГФ (200 мл) добавляли изобутилмагний бромид (1,0 М в TГФ, 218 мл, 218 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (200 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и соляным раствором (80,0 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением c-1 (15,0 г, выход 42%) в виде масла желтого цвета.

Синтез 2-бром-1-(3,4-дихлорфенил)-4-метилpentан-1-она (c-2)

![Chemical structure of 2-bromo-1-(3,4-dichlorophenyl)-4-methylpentan-1-one (c-2)]

[00401] Смесь c-1 (15,0 г, 61,2 ммоль) и РТАТ (34,4 г, 91,8 ммоль) в TГФ (300 мл)
перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (300 мл), а затем экстрагировали EtOAc (200 мл х 3). Органический слой объединяли и промывали H₂O (100 мл х 2) и солевым раствором (100 мл), затем сушили безводным Na₂SO₄. Рассол концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением c-2 (20,0 г, выход 100%) в виде масла коричневого цвета.

Синтез 1-(3,4-дихлорфенил)-4-метил-2-тиоцианатопентан-1-она (c)

Смесь c-2 (20,0 г, 61,7 ммоль) и NaSCN (10,0 г, 123 ммоль) в EtOH (200 мл) перемешивали при 100 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением c (6,90 г, выход 37%) в виде твердого вещества белого цвета.

Синтез (E)-3-циклопропил-1-(3,4-дихлорфенил)проп-2-ен-1-она (219-2)

Смесь 219-1 (1,00 г, 5,29 ммоль), циклопропанкарбальдегида (370 мг, 5,29 ммоль) и пиридин (5,0 мл) в ТГФ (100 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 219-2 (800 мг, выход 63%) в виде твердого вещества желтого цвета.

Синтез 3-циклопропил-1-(3,4-дихлорфенил)пропан-1-ола (219-3)
К раствору 219-2 (800 мг, 3,32 ммоль) в MeOH (50,0 мл) добавляли NaBH₄ (1,26 г, 33,2 ммоль) при 0 °С. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (100 мл), а затем экстрагировали EtOAc (50,0 мл х 3). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Рассмотр концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 219-3 (814 мг, выход 100%) в виде бесцветного масла.

Синтез 3-циклюпропил-1-(3,4-дихлорфенил)пропан-1-она (219-4)

К раствору 219-3 (814 мг, 3,32 ммоль) в CH₂Cl₂ (100 мл) добавляли PCC (1,07 г, 4,98 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 300/1) с получением 219-4 (400 мг, выход 46%) в виде твердого вещества желтого цвета.

Синтез 2-бром-3-циклюпропил-1-(3,4-дихлорфенил)пропан-1-она (219-5)

К раствору 219-4 (400 мг, 1,65 ммоль) в CH₂Cl₂ (100 мл) добавляли Br₂ (320 мг, 3,20 моль) при 0 °С. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (100 мл), а затем экстрагировали EtOAc (50,0 мл х 3). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Рассмотр концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 219-5 (814 мг, выход 100%) в виде бесцветного масла.
1,97 ммоль. Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь промывали H₂O (100 мл х 2) и солевым раствором (100 мл), а затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 219-5 (530 мг, выход 100%) в виде масла желтого цвета.

Синтез 3-циклопропил-1-(3,4-дихлорфенил)-2-тиоцианатопропан-1-она (219)

[00407] Смесь 219-5 (530 мг, 1,65 ммоль) и NaSCN (266 мг, 3,29 ммоль) в EtOH (20,0 мл) перемешивали при 90 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (Петролейный эфир/этилацетат = 20/1) с получением 219 (160 мг, выход 32%) в виде твердого вещества желтого цвета.

Таблица 3-1: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
<td>Способ B, чистота составляет 75,2%, ВУ = 2,480 мин; МС рассчит.:301,0; МС найдено: 324,1 [M + Na]⁺.</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>Способ A, чистота составляет 94,4%, ВУ = 0,837 мин; МС рассчит.:279,1; МС найдено: 280,0 [M + H]⁺.</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td>Способ B, чистота составляет 67,3%, ВУ = 2,176 мин; МС рассчит.:313,0; МС не найдено.</td>
</tr>
<tr>
<td>218</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
</tbody>
</table>
Синтез 2-(4-бромбутил)изондолин-1,3-диона (157-2)

Смесь 157-1 (1,00 г, 6,54 ммоль), изондолин-1,3-диона (1,44 г, 9,80 ммоль), PPh₃ (2,57 г, 9,80 ммоль) и DEAD (1,71 г, 9,80 ммоль) в ТГФ (100 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/етилицетат = 50/1) с получением 157-2 (700 мг, выход 63%) в виде твердого вещества белого цвета.

Синтез метил 2-циано-6-(1,3-диоксоизондолин-2-ил)гексаноата (157-3)

Смесь 157-2 (500 мг, 1,78 ммоль), метил 2-цианоацетата (351 мг, 3,55 ммоль) и K₂CO₃ (368 мг, 2,67 ммоль) в ДМФ (10,0 мл) перемешивали при 75 °C в течение 2 часов. По завершении реакции реакционную смесь выливали в H₂O (100 мл), и экстрагировали EtOAc (50,0 мл х 2). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и солевым
раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилacetат = 20/1) с получением 157-3 (400 мг 51%) в виде твердого вещества желтого цвета.

Синтез метил 2-(аминометил)-6-(1,3-диоксоизоиндолин-2-ил)гексаноата (b-157)

5

[00410] Смесь 157-3 (400 мг, 1,32 ммоль) и Ni Ренея (200 мг) в MeOH (50,0 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 50/1) с получением b-157 (250 мг, выход 49%) в виде масла желтого цвета.

Синтез этил 3-(4-(трет-бутоксикарбониламино)бутиламино)пропаноата (b-184)

10

[00411] Смесь 184-1 (1,00 г, 5,31 ммоль), этил 3-бромпропаноата (1,15 г, 6,37 ммоль) и Et₃N (1,07 г, 10,6 ммоль) в CH₂Cl₂ (100 мл) перемешивали при комнатной температуре в течение 8 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилacetат = 1/1) с получением b-184 (310 мг 20%) в виде бесцветного масла.

Синтез (Z)-метил 2-циано-3-фенилакрилата (1-2)

15

200
К смеси 1-2 (5,00 г, 47,2 ммоль) и метил-2-цианоacetата (5,61 г, 56,6 ммоль) в MeOH (100 мл) добавляли пиридин (5 капель). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь фильтровали и остаток промывали MeOH (2,0 мл x 2), сушили с получением 1-2 (6,50 г, выход 74%) в виде твердого вещества белого цвета.

Синтез метил 3-амино-2-бензилпропаноата (1)

Смесь 1-2 (6,50 г, 34,7 ммоль) и Ni Ренея (2,00 г) в MeOH (800 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 50/1) с получением 1 (550 мг, выход 7,5%) в виде бесцветного масла.

Синтез 1-трет-бутил 3-метил 4-фенилпириразин-1,3-дикарбоксилата (208-2)

Смесь 208-1 (1,00 г, 4,09 ммоль), фенилбороноевой кислоты (749 мг, 6,14 ммоль) и Cu(AcO)₂ (74,5 мг, 0,41 ммоль) в CH₂Cl₂ (50,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 208-2 (100 мг, выход 7,6%) в виде масла желтого цвета.

Синтез метил 1-фенилпириразин-2-карбоксилата (b-208)
Смесь **208-2** (100 мг, 0,31 ммоль) в HCl (4,0 М в диоксане, 10,0 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали, остаток растворили в H2O (20,0 мл), а затем промывали с применением MTBE (20,0 мл х 3). Водный слой доводили до pH = 8 с помощью водн. NaHCO3, затем экстрагировали EtOAc (20,0 мл х 3). Органический слой объединяли и сушили безводным Na2SO4, затем концентрировали с получением **b-208** (600 мг, выход 94%) в виде желтого масла.

Синтез 3-цианобензолсульфонамида (213-2)

К раствору **213-1** (2,00 г, 9,92 ммоль) в ТГФ (20,0 мл) добавляли NH3OH (20,0 мл). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением **213-2** (2,00 г, выход 100%) в виде твердого вещества белого цвета.

Синтез 3-формилбензолсульфонамида (213-3)

Смесь **213-2** (2,00 г, 10,9 ммоль) и Ni Ренея (2,00 г) в HCOOH (800 мл) кипятили с обратным холодильником в атмосфере H2 в течение 1 часа. По завершении реакции реакционную смесь охлаждали до комнатной температуры и фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением **213-3**
(1,70 г, выход 76%) в виде твердого вещества белого цвета.

Синтез (E)-метил 2-циано-3-(3-сульфамоилфенил)акрилата (213-4)

\[
\begin{align*}
\text{213-3} & \xrightarrow{\text{пиридин, MeOH, кт. в течение ночи}} \text{213-4} \\
\end{align*}
\]

[00418] К смеси 213-3 (880 мг, 4,75 ммоль) и метил 2-цианоацетата (471 мг, 4,75 ммоль) в MeOH (50 мл) добавляли пиридин (0,3 мл). Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали и остаток промывали MeOH (2,0 мл х 2), сушили с получением 213-4 (1,20 г, выход 95%) в виде твердого вещества желтого цвета.

Синтез метил 3-амино-2-(3-сульфамоилбензил)пропаноата (b-213)

\[
\begin{align*}
\text{213-4} & \xrightarrow{\text{Ra-Ni, H}_2, \text{MeOH, кт. 24 ч}} \text{b-213} \\
\end{align*}
\]

[00419] Смесь 213-4 (1,20 г, 4,51 ммоль) и Ni Ренея (1,20 г) в MeOH (400 мл) перемешивали в атмосфере H₃ при комнатной температуре в течение 24 часов. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колонной хроматографией на силикагеле (CH₂Cl₂/MeOH = 50/1) с получением b-213 (260 мг, выход 21%) в виде масла желтого цвета.

Синтез 3-(1,3-диоксоизоиндолин-2-ил)пропан-1-сульфонамида (b-229)

\[
\begin{align*}
\text{229-1} & \xrightarrow{\text{K₂CO₃, ДМФ, кт. в течение ночи}} \text{b-229} \\
\end{align*}
\]

[00420] Смесь 229-1 (400 мг, 2,54 ммоль), изоиндолин-1,3-диона (411 мг, 2,79 ммоль) и K₂CO₃ (701 мг, 5,08 ммоль) в ДМФ (10,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливают в H₂O (100 мл), и экстрагировали EtOAc (50,0 мл х 2). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колонной хроматографией на силикагеле (CH₂Cl₂/MeOH = 203
50/1) с получением b-229 (700 мг, выход 63%) в виде твердого вещества белого цвета.

Синтез метил 3-амино-2-гидроксипропаноата (233-2)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{OH} \\
\text{OH} & \quad \text{MeOH, кт, 12 ч} \\
\text{SOCl}_2 & \\
\text{233-1} & \quad \text{233-2}
\end{align*}
\]

[00421] К раствору 233-1 (1,00 г, 9,52 ммоль) в MeOH (5,00 мл) добавляли SOCl₂ (2,0 мл) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 12 часов. По завершении реакции реакционную смесь концентрировали с получением соединения 233-2 (1,20 г, выход 100%) в виде бесцветного масла.

Синтез 3-((бензиламино)-2-гидроксипропановой кислоты (b-233)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{OH} \\
\text{OH} & \quad \text{MeOH, кт, в течение ночи} \\
\text{NaBH}_4, \text{Et}_3\text{N} & \\
\text{233-2} & \quad \text{b-233}
\end{align*}
\]

[00422] К раствору 233-2 (1,20 г, 10,1 ммоль), бензальдегида (1,07 г, 10,1 ммоль) и Et₃N (2,03 г, 20,1 ммоль) в MeOH (50,0 мл) добавляли NaBH₄ (1,91 г, 50,4 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикате (CH₂Cl₂/MeOH = 5/1) с получением 219-3 (1,00 г, выход 60%) в виде твердого вещества белого цвета.

Синтез трет-бутил 3-((бензиламино)пропилкарбамата (b-235)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{H} \\
\text{Boc} & \quad \text{MeOH кт, в течение ночи} \\
\text{NaBH}_4, \text{EtOH} & \\
\text{235-1} & \quad \text{b-235}
\end{align*}
\]

[00423] К раствору 235-1 (1,00 г, 9,43 ммоль) и трет-бутил 3-аминопропилкарбамата (1,81 г, 10,4 ммоль) в EtOH (50,0 мл) добавляли NaBH₄ (358 мг, 9,43 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикате (CH₂Cl₂/MeOH = 50/1) с получением b-235 (300 мг, выход 12%) в виде твердого вещества желтого цвета.

Синтез трет-бутил (2-аминоэтиламино)(трет-бутоксикарбониламино)метиленкарбамата (b-242)
Смесь 242-1 (60,0 мг, 1,00 ммоль) и а (319 мг, 1,10 ммоль) в СН₂Сl₂ (30,0 мл) перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь фильтровали и остаток промывали СН₂Сl₂ (2,0 мл х 2), сушили с получением b-242 (300 мг, выход 90%) в виде твердого вещества желтого цвета.

Синтез трет-бутил 2-сульфамоилэтилкарбамата (b-243)

Смесь 243-1 (200 мг, 1,61 ммоль), (Boc)₂O (387 мг, 1,77 ммоль) и Et₃N (325 мг, 3,22 ммоль) в ТГФ (10,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением b-243 (300 мг, выход 83%) в виде твердого вещества желтого цвета.

Синтез трет-бутил 3-(3-бензоилтиоуреи)-2-бензилпропаноата (152-2)

Смесь s-2 (5,00 г, 21,2 ммоль) и бензойно-цианового тиоангирида (4,19 г, 25,5 ммоль) в ТГФ (100 мл) перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь фильтровали и остаток промывали СН₂Сl₂ (3,0 мл х 2), сушили с получением 152-2 (6,00 г, выход 71%) в виде твердого вещества белого цвета.

Синтез трет-бутил 2-бензил-3-тиоуреидпропаноата (152-s)

Смесь 152-2 (6,00 г, 15,1 ммоль) и Na₂CO₃ (3,19 г, 30,1 ммоль) в MeOH (100 мл) перемешивали при комнатной температуре в течение 4 часов. По завершении реакции
реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 152-s (1,00 г, выход 23%) в виде твердого вещества белого цвета.

Синтез 4-(3,4-дихлорфенил)-5-изобутилтиазол-2-амина (178-s)

[00428] Смесь c-2 (2,00 г, 6,17 ммоль) и тиомочевины (564 мг, 7,41 ммоль) в EtOH (50,0 мл) перемешивали при 90 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 178-s (1,20 г, выход 65%) в виде твердого вещества белого цвета.

Синтез метил 2-бензил-3-(4-(3,4-дихлорфенил)тиазол-2-иламино)пропаноата (224-4)

[00429] Смесь 115 (1,00 г, 3,47 ммоль) и 1 (805 мг, 4,16 ммоль) в EtOH (50,0 мл) перемешивали при 60 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 224-4 (800 мг 47%) в виде масла желтого цвета.

Синтез метил 2-бензил-3-((5-бром-4-(3,4-дихлорфенил)тиазол-2-иламино)пропаноата (224-s)

[00430] Смесь 224-4 (800 мг, 1,90 ммоль) и NBS (338 мг, 1,90 ммоль) в AcOH (10,0 мл)
перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением **224-s** (600 мг 63%) в виде бесцветного масла.

<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖК-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Способ В, чистота составляет 70,1%, BY = 1,210 мин; МС рассчит.: 249,1; МС найдено: 194,3 [M + H]^+.</td>
</tr>
<tr>
<td>s-1</td>
<td></td>
<td>Способ В, чистота составляет 63,4%, BY = 1,314 мин; МС рассчит.: 235,2; МС найдено: 236,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-157</td>
<td></td>
<td>Способ В, чистота составляет 68,2%, BY = 1,346 мин; МС рассчит.: 304,1; МС найдено: 305,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-184</td>
<td></td>
<td>Способ В, чистота составляет 75,8%, BY = 1,302 мин; МС рассчит.: 288,2; МС найдено: 289,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-185</td>
<td></td>
<td>Способ В, чистота составляет 72,4%, BY = 0,597 мин; МС рассчит.: 216,2; МС найдено: 217,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-186</td>
<td></td>
<td>Способ А, чистота составляет 81,1%, BY = 1,357 мин; МС рассчит.: 316,2; МС найдено: 317,0 [M + H]^+.</td>
</tr>
<tr>
<td>b-187</td>
<td></td>
<td>Способ В, чистота составляет 47,9%, BY = 0,976 мин; МС рассчит.: 230,2; МС найдено: 231,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-188</td>
<td></td>
<td>Способ С, чистота составляет 13,9%, BY = 1,244 мин; МС рассчит.: 222,1; МС найдено: 223,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-189</td>
<td></td>
<td>Способ С, чистота составляет 20,9%, BY = 1,334 мин; МС рассчит.: 208,1; МС найдено: 209,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-190</td>
<td></td>
<td>Способ С, чистота составляет 58,9%, BY = 1,079 мин; МС рассчит.: 194,1; МС найдено: 195,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-191</td>
<td></td>
<td>Способ С, чистота составляет 24,1%, BY = 1,007 мин; МС рассчит.: 209,1; МС найдено: 210,3 [M + H]^+.</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>b-192</td>
<td>Способ С, чистота составляет 71,5%, BY = 1,370 мин; МС рассчит.: 237,1; МС найдено: 238,4 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-193</td>
<td>Способ С, чистота составляет 61,1%, BY = 1,094 мин; МС рассчит.: 194,1; МС найдено: 195,2 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-194</td>
<td>Способ С, чистота составляет 67,9%, BY = 1,180 мин; МС рассчит.: 208,1; МС найдено: 209,3 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-195</td>
<td>Способ С, чистота составляет 40,7%, BY = 1,221 мин; МС рассчит.: 222,1; МС найдено: 223,3 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-196</td>
<td>Способ А, чистота составляет 93,3%, BY = 0,557 мин; МС рассчит.: 194,1; МС не найдено.</td>
<td></td>
</tr>
<tr>
<td>b-198</td>
<td>Способ С, чистота составляет 69,2%, BY = 1,119 мин; МС рассчит.: 225,1; МС найдено: 226,3 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-199</td>
<td>Способ С, чистота составляет 40,4%, BY = 0,826 мин; МС рассчит.: 195,1; МС найдено: 196,3 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-201</td>
<td>Способ С, чистота составляет 48,4%, BY = 1,381 мин; МС рассчит.: 224,1; МС найдено: 225,3 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-203</td>
<td>Способ С, чистота составляет 43,1%, BY = 1,332 мин; МС рассчит.: 224,1; МС найдено: 225,2 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-204</td>
<td>Способ А, чистота составляет 97,1%, BY = 0,606 мин; МС рассчит.: 293,2; МС найдено: 294,1 [M + H]^+.</td>
<td></td>
</tr>
<tr>
<td>b-205</td>
<td>Способ С, чистота составляет 70,2%, BY = 1,928 мин; МС рассчит.: 293,2; МС не найдено.</td>
<td></td>
</tr>
<tr>
<td>b-208</td>
<td>Данные МС отсутствуют.</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>b-211</td>
<td></td>
<td>Способ A, чистота составляет 36,2%, ВУ = 0,456 мин; МС рассчит.: 239,1; МС найдено: 240,0 [M + H]^+.</td>
</tr>
<tr>
<td>b-212</td>
<td></td>
<td>Способ C, чистота составляет 48,4%, ВУ = 1,381 мин; МС рассчит.: 271,1; МС не найдено.</td>
</tr>
<tr>
<td>b-213</td>
<td></td>
<td>Способ C, чистота составляет 51,7%, ВУ = 1,151 мин; МС рассчит.: 272,1; МС найдено: 273,1 [M + H]^+.</td>
</tr>
<tr>
<td>b-214</td>
<td></td>
<td>Способ A, чистота составляет 95,6%, ВУ = 0,510 мин; МС рассчит.: 239,1; МС найдено: 240,0 [M + H]^+.</td>
</tr>
<tr>
<td>b-215</td>
<td></td>
<td>Способ A, чистота составляет 63,9%, ВУ = 0,375 мин; МС рассчит.: 271,1; МС найдено: 272,0 [M + H]^+.</td>
</tr>
<tr>
<td>b-216</td>
<td></td>
<td>Способ B, чистота составляет 43,3%, ВУ = 1,016 мин; МС рассчит.: 272,1; МС найдено: 273,1 [M + H]^+.</td>
</tr>
<tr>
<td>b-229</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 1,327 мин; МС рассчит.: 268,1; МС найдено: 269,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-233</td>
<td></td>
<td>Способ B, чистота составляет 96,0%, ВУ = 0,973 мин; МС рассчит.: 195,1; МС найдено: 196,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-235</td>
<td></td>
<td>Способ B, чистота составляет 80,5%, ВУ = 1,107 мин; МС рассчит.: 264,2; МС найдено: 265,1 [M + H]^+.</td>
</tr>
<tr>
<td>b-242</td>
<td></td>
<td>Способ C, чистота составляет 73,9%, ВУ = 1,965 мин; МС рассчит.: 302,2; МС найдено: 303,5 [M + H]^+.</td>
</tr>
<tr>
<td>b-243</td>
<td></td>
<td>Способ A, значение чистоты не определено, значение ВУ не определено; МС рассчит.: 224,1; МС найдено: 247,1 [M + Na]^+.</td>
</tr>
<tr>
<td>152-s</td>
<td></td>
<td>Способ B, чистота составляет 94,7%, ВУ = 1,813 мин; МС рассчит.: 294,1; МС найдено: 295,2 [M + H]^+.</td>
</tr>
<tr>
<td>#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>178-s</td>
<td></td>
<td>Способ B, чистота составляет 79,8%, BV = 1,761 мин; МС рассчит.:300,0; МС найдено: 301,1 [M + H]⁺.</td>
</tr>
<tr>
<td>224-s</td>
<td></td>
<td>Способ B, чистота составляет 84,5%, BV = 2,380 мин; МС рассчит.:498,0; МС найдено: 501,0 [M + H]⁺.</td>
</tr>
<tr>
<td>227-s</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
</tbody>
</table>

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-формилтиазол-2-ил)амино)пропановой кислоты (I-119)

![Chemical Reaction](image4)

[00431] К раствору 115-2 (80,0 мг, 0,173 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в H₂O, 0,22 мл). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл x 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-119 (30,0 мг, выход 40%) в виде твердого вещества белого цвета.

Синтез этил 3-(бензил(4-(3,4-дихлорфенил)-5-(метоксисетил)тиазол-2-ил)амино)пропаноата (149-1)
[00432] К раствору 115-3 (250 мг, 0,54 ммоль) и Et₃N (109 мг, 1,07 ммоль) в CH₂Cl₂ (10,0 мл) добавляли MsCl (123 мг, 1,07 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали. Остаток растворяли с помощью MeOH (10,0 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 149-1 (75,0 мг 29%) в виде масла желтого цвета.

Синтез 3-(benzил4-(3,4-дихлорфенил)-5-(метоксиметил)тиазол-2-ил)амино)пропановой кислоты (I-120)

[00433] К раствору 149-1 (75,0 мг, 0,156 ммоль) в TГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в H₂O, 0,20 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-120 (15,0 мг, выход 21%) в виде твердого вещества белого цвета.

Синтез этил 3-(3,4-дихлорфенил)-3-оксопропаноата (152-2)
К смеси 152-1 (5,00 г, 26,4 ммоль) и т-БuOK (1,0 М в THF, 52,9 мл, 52,9 ммоль) в THF (50,0 мл) добавляли диэтилокарбонат (4,69 г, 39,7 ммоль) при комнатной температуре. Реакционную смесь перемешивали при 60 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 152-2 (3,50 г, выход 51%) в виде масла желтого цвета.

Синтез этил 2-бром-3-(3,4-дихлорфенил)-3-оксопропаноата (152-3)

Смесь 152-2 (1,00 г, 3,83 ммоль) и РТАТ (2,15 г, 5,74 ммоль) в THF (100 мл) перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали, остаток растворили в H₂O (100 мл), а затем экстрагировали EtOAc (100 мл х 3). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 152-3 (850 мг 65%) масла желтого цвета.

Синтез этил 2-(бензил(3-трет-бутил-3-оксопропил)амино)-4-(3,4-дихлорфенил)тиазол-5-карбоксилата (152-4)
Смесь 152-3 (500 мг, 1,47 ммоль) и 152-s (433 мг, 1,47 ммоль) в t-BuOH (20,0 мл) перемешивали при 90 °C в течение 1 часа. По завершении реакции реакционную смесь очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 152-4 (430 мг, выход 55%) масла желтого цвета.

Синтез 2-(бензил(2-карбоксиэтил)аминоп)-4-(3,4-дихлорфенил)тиазол-5-карбоновой кислоты (152-5)

К раствору 152-4 (80,0 мг, 0,149 ммоль) в ТГФ/MeOH (об./об./об. = 4/1, 5,0 мл) добавляли NaOH (2,0 М в H2O, 0,37 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение pH до 4-5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили безводным Na2SO4 и концентрировали с получением 152-5 (45,0 мг, выход 67%) в масле желтого цвета.

Синтез 2-(бензил(3-(метиламино)-3-оксопропил)амино)-4-(3,4-дихлорфенил)-N-метилтиазол-5-карбоксамида (I-123)
Смесь 152-5 (10,0 мг, 0,022 ммоль), метиламина (1,03 мг, 0,033 ммоль), HATU (16,7 мг, 0,044 ммоль) и DIPEA (8,51 мг, 0,066 ммоль) в ДМФ (1,00 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в H2O (10,0 мл), а затем экстрагировали EtOAc (20,0 мл х 2). Органический слой объединяли и промывали H2O (10,0 мл х 2) и соляным раствором (10,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-123 (3,5 мг, выход 26%) в виде твердого вещества белого цвета.

Синтез *tert*-бутил 3-(бензил(5-карбамоил-4-(3,4-дихлорфенил)тиазол-2-ил)амино)пропаноата (154-1)

Смесь 152-4 (70,0 мг, 0,131 ммоль) и NH3 (7,0 М в MeOH, 1,00 мл) в MeOH (1,00 мл) перемешивали в герметично закрытом сосуде при 80 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ с получением 154-1 (23,0 мг, выход 38%) в виде масла желтого цвета.

Синтез 3-(бензил(5-карбамоил-4-(3,4-дихлорфенил)тиазол-2-ил)амино)пропановой кислоты (I-124)
К раствору 154-1 (23,0 мг, 0,050 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H2O, 0,062 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали препаративной ВЭЖХ с получением 1-124 (9,0 мг, выход 40%) в виде твердого вещества белого цвета.

Синтез метил 2-((4-(3,4-дихлорфенил)-5-изобутилтиiazол-2-иламино)метил)-6-(1,3-диксоизоиндолин-2-ил)гексаноата (157-1)

Смесь b-157 (300 мг, 0,985 ммоль), с (326 мг, 1,08 ммоль) и AcOH (118 мг, 1,97 ммоль) в i-PrOH (10,0 мл) перемешивали при 90 °C в течение 3 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 157-1 (250 мг, выход 43%) в виде твердого вещества желтого цвета.

Синтез метил 6-амино-2-((4-(3,4-дихлорфенил)-5-изобутилтиiazол-2-иламино)метил)гексаноата (157-2)
Смесь 157-1 (250 мг, 0,425 ммоль) и гидразингидрата (106 мг, 2,12 ммоль) в MeOH (10,0 мл) перемешивали при 60 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали промывкой H2O (2,00 мл x 3) с получением 157-2 (120 мг, 62% выход) в виде масла желтого цвета.

Синтез 6-амино-2-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)метил)гексановой кислоты (I-125)

К раствору 157-2 (120 мг, 0,050 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 M в H2O, 0,33 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл x 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-125 (30,0 мг, выход 26%) в виде твердого вещества белого цвета.

Синтез этил 3-(bensили(5-изобутил-4-(4-(тиофен-3-ил)фенил)тиазол-2-иламино)пропаноата (159-1)
Смесь b-1 (98,6 мг, 0,476 ммоль), 159 (150 мг, 0,476 ммоль) и AcOH (57,1 мг, 0,951 ммоль) в i-PrOH (2,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат 8/1) с получением 159-1 (100 мг, выход 42%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(5-изобутил-4-(4-(тиофен-3-ил)фенил)тиазол-2-ил)амино)пропановой кислоты (I-126)

К раствору 159-1 (100 мг, 0,198 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H2O, 0,25 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-126 (16,0 мг, выход 17%) в виде твердого вещества белого цвета.

Синтез этил 3-(бензил(5-изобутил-4-(4-(метилсульфонил)фенил)тиазол-2-ил)амино)пропаноата (162-1)
К раствору 161-1 (500 мг, 1,07 ммоль) в СН₂Сｌ₂ (15,0 мл) добавляли м-СРВА (552 мг, 3,20 ммоль) при 0 °С. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ (СН₂Сл₂/МеОН = 100/1) с получением 162-1 (200 мг, выход 37%) в виде твердого вещества белого цвета.

Синтез 3-(бензил(5-изобутил-4-(4-метилсульфонил)фенил)тиазол-2-ил)амино)пропановой кислоты (I-128)

К раствору 162-1 (200 мг, 0,399 ммоль) в ТГФ/МеОН/Н₂О (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в Н₂О, 0,50 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением Н₂О (10,0 мл) и доводили значение рН до 4–5 с помощью воды. НСl (1,0 М). Смесь экстрагировали ЕтОАс (40,0 мл х 2), объединенную органическую fazу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄, концентрировали и очищали препаративной ВЭЖХ с получением I-128 (50,0 мг, выход 26%) в виде твердого вещества белого цвета.

Синтез этил 3-(бензил(4-(3,4-дихлорфенил)-5-(1-гидроксиэтил)тиазол-2-ил)амино)пропаноата (163-1)
[00448] К раствору 115-2 (350 мг, 0,755 ммоль) в ТГФ (20,0 мл) добавляли метилмагния бромид (1,0 М в ТГФ, 1,13 мл, 1,13 ммоль) при -40 °C. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь гасили водн. NH₄Cl (20,0 мл), а затем экстрагировали EtOAc (100 мл x 2). Органический слой объединяли и промывали H₂O (60,0 мл x 2) и соляным раствором (80,0 мл), затем сушили безводным Na₂SO₄. Реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 163-1 (80,0 мг, выход 22%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-винилтиазол-2-ил)амино)пропановой кислоты (I-129)

[00449] К раствору 163-1 (80,0 мг, 0,167 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H₂O, 0,21 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение рН до 4-5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл x 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na₂SO₄, концентрировали и очищали препаративной ВЭЖХ с получением I-129 (12,0 мг, выход 17%) в виде твердого вещества белого цвета.

Синтез прет-бутил 2-(3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-
ил)амино)пропанамило)этилкарбамата (168-1)

[00450] Смесь I-47 (250 мг, 0,539 ммоль), трет-бутил 2-аминоэтилкарбамата (130 мг, 0,809 ммоль), HATU (410 мг, 1,08 ммоль) и DIPEA (209 мг, 1,62 ммоль) в ДМФ (5,00 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (100 мл), а затем экстрагировали EtOAc (200 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и соляным раствором (100 мл), затем сушили безводным Na₂SO₄. Растор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 168-1 (200 мг, выход 61%) в виде твердого вещества желтого цвета.

Синтез N-(2-аминоэтил)-3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропанамида (I-131)

[00451] Смесь 168-1 (200 мг, 0,330 ммоль) в HCl (4,0 М в диоксане, 5,00 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-131 (60,0 мг, выход 36%) в виде твердого вещества белого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-1-4-
метилпиперазин-1-ил)пропан-1-она (I-133)

[00452] Смесь I-47 (150 мг, 0,324 ммоль), 1-метилпиперазина (48,6 мг, 0,486 ммоль), HATU (246 мг, 0,648 ммоль) и DIPEA (125 мг, 0,972 ммоль) в ДМФ (5,00 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь вылили в H₂O (100 мл), и экстрагировали EtOAc (200 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и соляным раствором (100 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-133 (75 мг, выход 42%) в виде твердого вещества белого цвета.

Синтез 2-бензамидо-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-136)

[00453] К смеси I-115 (200 мг, 0,515 ммоль) и Et₃N (156 мг, 1,55 ммоль) в ТГФ (10,0 мл) добавляли бензойлхлорид (145 мг, 1,03 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-136 (25 мг, выход 9,9%) в виде твердого вещества белого цвета.

Синтез 2-(tmp-бутоксикарбониламино)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-137)
Смесь с (500 мг, 1,66 ммоль), 3-амино-2-(трет-бутоксикарбониламино)пропановой кислоты (407 мг, 1,99 ммоль) и AcOH (199 мг, 3,32 ммоль) в i-PrOH (20,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ВЭЖХ с получением I-137 (96,0 мг, выход 12%) в виде твердого вещества белого цвета.

Синтез 2-(бензилоксикарбониламино)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-138)

К смеси I-115 (200 мг, 0,515 ммоль) и K₂CO₃ (214 мг, 1,55 ммоль) в ТГФ/H₂O (об./об. = 4/1, 10,0 мл) добавляли бензил 2,5-диоксопирролидин-1-ил карбонат (257 мг, 1,03 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-138 (65,0 мг, выход 24%) в виде твердого вещества белого цвета.

Синтез этил 1-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-2-оксозетидин-3-илкарбамата (I-139)
К смеси I-115 (300 мг, 0,773 ммоль) и Et₃N (234 мг, 2,32 ммоль) в ТГФ (10,0 мл) добавляли этилкарбоноксидат (168 мг, 1,55 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-139 (50,0 мг, выход 15%) в виде твердого вещества белого цвета.

Синтез 2-(4-(3,4-диарилфенил)-5-изобутилтимазол-2-иламино)бензонитрила (178-1)

Смесь 178-s (500 мг, 1,66 ммоль), 2-фторбензонитрила (241 мг, 1,99 ммоль) и Cs₂CO₃ (1,08 г, 3,32 ммоль) в ДМФ (10,0 мл) перемешивали при 150 °C в микроволновом реакторе в течение 1 часа. По завершении реакции реакционную смесь выливали в H₂O (100 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 178-1 (220 мг, выход 33%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(3,4-диарилфенил)-5-изобутилтимазол-2-иламино)бензойной кислоты (I-141)
Смесь 178-1 (100 мг, 0,25 ммоль) и NaOH (5,0 М в H2O, 0,25 мл, 1,24 ммоль) в EtOH/H2O (2,00 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ВЭЖХ с получением I-141 (15,0 мг, выход 14%) в виде твердого вещества желтого цвета.

Синтез метил 3-([3,4-диоксифенил]-5-изобутилтиазол-2-иламино)бензоата (179-1)

Смесь 178-s (300 мг, 0,996 ммоль), метил 3-изобутилбензоата (313 мг, 1,20 ммоль), катализатора Pd (CAS: 1310584-14-5, 15,7 мг, 0,199 ммоль) и Cs2CO3 (649 мг, 1,99 ммоль) в DMФ (5,0 мл) перемешивали при 90 °C в микроволновом реакторе в течение 3 часов. По завершении реакции реакционную смесь вылили в H2O (80,0 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H2O (50,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 179-1 (58,0 мг, выход 13%) в виде твердого вещества желтого цвета.

Синтез 3-([3,4-диоксифенил]-5-изобутилтимазол-2-иламино)бензойной кислоты (1-142)
[00460] К раствору 179-1 (58,0 мг, 0,133 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H₂O, 0,17 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение рН до 4–5 с помощью водн. HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄, концентрировали и очищали препаративной ВЭЖХ с получением I-142 (10,0 мг, выход 18%) в виде твердого вещества белого цвета.

10 Синтез N-бензил-4-(3,4-дихлорфенил)-5-изобутилтиазол-2-амина (180-1)

[00461] Смесь c (500 мг, 1,66 ммоль) и фенилметанамина (214 мг, 1,99 ммоль) в i-PrOH (20,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 180-1 (200 мг, выход 31%) в виде твердого вещества желтого цвета.

Синтез тет-бутил 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-3-оксопропаноата (180-2)

225
К смеси 180-1 (200 мг, 0,511 ммоль) и Et₃N (103 мг, 1,02 ммоль) в CH₂Cl₂ (10,0 мл) добавляли tert-бутил 3-хлор-3-оксопропаноат (137 мг, 0,767 ммоль) при 0 °C. Реакционную смесь кипятили с обратным холодильником в течение 5 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 180-2 (100 мг, выход 37%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-3-оксопропаноиновой кислоты (I-143)

Смесь 180-2 (100 мг, 0,187 ммоль) в HCl (4,0 М в диоксane, 3,00 мл) перемешивали при комнатной температуре в течение 5 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-143 (32,0 мг, выход 36%) в виде твердого вещества белого цвета.

Синтез метил 2-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)метил)-6-(диметиламино)гексаноата (183-1)
К раствору 157-2 (200 мг, 0,436 ммоль) и формальдегида (37% в H₂O, 74,4 мг, 0,916 ммоль) в MeOH (50,0 мл) добавляли NaBH₄ (33,1 мг, 0,872 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 183-1 (100 мг, выход 47%) в виде твердого вещества желтого цвета.

Синтез 2-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)метил)-6-(диметиламино)гексановой кислоты (I-145)

К раствору 183-1 (100 мг, 0,206 ммоль) в TГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в H₂O, 0,26 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-145 (20,0 мг, выход 21%) в виде твердого вещества белого цвета.

Синтез этил 3-((4-(трет-бутоксикарбониламино)бутил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропаноата (184-2)
Смесь с (324 мг, 1,07 ммоль) и б-184 (310 мг, 1,07 ммоль) в i-PrOH (10,0 мл) перемешивали при 70 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 184-2 (180 мг, выход 29%) в виде твердого вещества желтого цвета.

Синтез 3-((4-(трет-бутоксикарбониламино)бутил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (184-3)

К раствору 184-2 (180 мг, 0,314 ммоль) в TГФ/MeOH/H2O (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в H2O, 0,39 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбивали с применением H2O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 M). Смесь экстрагировали EtOAc (40,0 мл x 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na2SO4 и концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 184-3 (180 мг, выход 100%) в виде твердого вещества белого цвета.

Синтез 3-((4-аминобутил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (1-146)
Смесь **184-3** (180 мг, 0,331 ммоль) и HCl (4,0 М в диоксане, 5,00 мл) в CH₂Cl₂ (10,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаратаивной ВЭЖХ с получением **I-146** (20,0 мг, выход 14%) в виде твердого вещества белого цвета.

Синтез **3-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)(4-(диметиламино)бутил)амино) пропановой кислоты (185-1)**

Смесь **c** (181 мг, 0,601 ммоль) и **b-185** (130 мг, 0,601 ммоль) в i-PrOH (5,0 мл) перемешивали при 70 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH₂Cl₂/MeOH = 80/1) с получением **185-1** (30,0 мг, выход 10%) в виде твердого вещества желтого цвета.

Синтез **3-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)(4-(диметиламино)бутил)амино) пропановой кислоты (I-147)**
К раствору 185-1 (30,0 мг, 0,0599 ммоль) в ТГФ/МeOH/H2O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H2O, 0,07 мл). Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (5,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (20,0 мл х 2), объединенную органическую фазу промывали сольевым раствором (10,0 мл), сушили над безводным Na2SO4 и концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением 1-147 (3,20 мг, выход 11%) в виде твердого вещества белого цвета.

Синтез метил 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-2-((2-гидроксирипиримидин-5-ил)метил)пропаноата (197-1)

Смесь 198-1 (150 мг, 0,294 ммоль), ТсOH (254 мг, 1,47 ммоль) и LiCl (62,3 мг, 1,47 ммоль) в ДМФ (5,0 мл) перемешивали при 120 °С в течение 2 часов. По завершении реакции реакционную смесь выливали в H2O (80,0 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H2O (50,0 мл х 2) и сольевым раствором (50,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 197-1 (150 мг, выход 100%) в виде масла желтого цвета.

Синтез 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-2-((2-гидроксирипиримидин-5-ил)метил)пропановой кислоты (1-159)
[00472] К раствору 197-1 (150 mg, 0,303 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 M в H2O, 0,38 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (20,0 мл x 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na2SO4 и концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-159 (70,0 mg, выход 48%) в виде твердого вещества белого цвета.

Синтез метил 4-(3-трет-бутокси-2-((4-(3,4-дицифенил)-5-изобутилтиазол-2-иламино)метил)-3-оксопропил)бензоата (204-1)

[00473] Смесь c (462 mg, 1,53 ммоль) и b-204 (450 mg, 1,53 ммоль) в EtOH (15 мл) перемешивали при 90 °C в течение 16 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 2/1) с получением 204-1 (400 mg, выход 45%) в виде твердого вещества желтого цвета.

Синтез 4-(3-трет-бутокси-2-((4-(3,4-дицифенил)-5-изобутилтиазол-2-иламино)метил)-3-оксопропил)бензойной кислоты (204-2)
[00474] К раствору 204-1 (400 мг, 0,0599 ммоль) в MeOH/H$_2$O (об./об. = 1/1, 20,0 мл) добавляли LiOH (2,0 М в H$_2$O, 0,07 мл). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H$_2$O (20,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (30,0 мл х 2), объединенную органическую фазу промывали солевым раствором (20,0 мл), сушили над безводным Na$_2$SO$_4$ и концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 204-2 (300 мг, выход 77%) в виде твердого вещества желтого цвета.

Синтез trim-бутил 2-(4-карбамоилбензил)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропаноата (204-3)

[00475] Смесь 204-2 (130 мг, 0,231 ммоль), NH$_4$Cl (18,5 мг, 0,346 ммоль), HATU (176 мг, 0,462 ммоль) и DIPEA (89,4 мг, 0,693 ммоль) в DMF (3,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в H$_2$O (50,0 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H$_2$O (50,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na$_2$SO$_4$. Реакционную смесь концентрировали с получением неочищенного продукта,
который очищали препаративной ТСХ (петролейный эфир/этилацетат = 1/1) с получением 204-3 (70,0 мг, выход 54%) в виде твердого вещества белого цвета.

Синтез 2-(4-карбамоилбензил)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-166)

5

[00476] Смесь 204-3 (70,0 мг, 0,124 ммоль) в HCl (4,0 M в диоксане, 3,00 мл) перемешивали при комнатной температуре в течение 5 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-166 (20,0 мг, выход 32%) в виде твердого вещества белого цвета.

Синтез тетр-бутил 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-2-(3-(диметилкарбамоил)бензил)пропаноата (206-1)

10

[00477] Смесь 205-2 (200 мг, 0,355 ммоль), диметиламин (24,0 мг, 0,533 ммоль), HATU (270 мг, 0,710 ммоль) и DIPEA (137 мг, 1,07 ммоль) в DMФ (5,00 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь вылили в H2O (100 мл), и экстрагировали EtOAc (200 мл х 2). Органический слой объединяли и промывали H2O (80,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки
с получением 206-1 (200 мг, выход 95%) в виде твердого вещества желтого цвета.

Синтез 3-(4-(3,4-дихлорfenил)-5-изобутилтиазол-2-иламино)-2-(3-(диметилкарбамоил)бензил)пропановой кислоты (I-168)

[00478] Смесь 206-1 (200 мг, 0,339 ммоль) в HCl (4,0 М в диоксане, 5,0 мл) перемешивали при комнатной температуре в течение 5 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-168 (30,0 мг, выход 17%) в виде твердого вещества белого цвета.

Синтез метил 2-бензил-3-((5-бром-4-(3,4-дихлорfenил)тиазол-2-ил)(трет-бутоксикарбонил)амино)пропаноата (224-6)

[00479] Смесь 224-s (1,0 г, 2,00 ммоль), (Boc)2O (458 мг, 2,10 ммоль) и DMAP (366 мг, 3,00 ммоль) в ТГФ (20,0 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ТСХ (петролейный эфир/этилацетат = 6/1) с получением 224-6 (700 мг, выход 58%) в виде твердого желтого цвета.

Синтез метил 2-бензил-3-(трет-бутоксикарбонил)(4-(3,4-дихлорfenил)-5-(метилтио)тиазол-2-иламино)пропаноата (221-1)
Смесь 224-6 (200 мг, 0,333 ммоль) и NaSMe (28,0 мг, 0,400 ммоль) в ДМФ (2,0 мл) перемешивали при 60 °C в течение 1 часа. По завершении реакции реакционную смесь выливали в H₂O (100 мл), и экстрагировали EtOAc (200 мл x 2). Органический слой объединяли и промывали H₂O (80,0 мл x 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 5/1) с получением 221-1 (100 мг, выход 53%) в виде масла желтого цвета.

Синтез метил 2-бензил-3-(4-(3,4-дихлорфенил)-5-(метилтю)тиазол-2-иламино)пропаноата (221-2)

Смесь 221-1 (100 мг, 0,176 ммоль) в HCl (4,0 М в диоксане, 3,0 мл) перемешивали при комнатной температуре в течение 5 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 221-2 (90,0 мг, выход 100%) в виде твердого вещества белого цвета.

Синтез метил 2-бензил-3-(4-(3,4-дихлорфенил)-5-(метилсульфонил)тиазол-2-иламино)пропаноата (221-3)
К раствору 221-2 (90,0 мг, 0,193 ммоль) в CH₂Cl₂ (10,0 мл) добавляли mCPBA (83,1 мг, 0,481 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной TCX (CH₂Cl₂/MеOH = 80/1) с получением 221-3 (60,0 мг, выход 62%) в виде твердого вещества белого цвета.

Синтез 2-bensил-3-(4-(3,4-дихлорфенил)-5-(метилсульфонил)тиазол-2-иламино)пропановой кислоты (I-181)

К раствору 221-3 (60,0 мг, 0,120 ммоль) в ТГФ/МеOH/H₂O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H₂O, 0,15 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 M). Смесь экстрагировали EtOAc (40,0 мл × 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-181 (7,00 мг, выход 12%) в виде твердого вещества белого цвета.

Синтез 2-bensил-3-(4-(3,4-дихлорфенил)-5-(этоксикарбонил)тиазол-2-иламино)пропановой кислоты (I-182)
Смесь 152-4 (250 мг, 0,467 ммоль) и HCl (4,0 М в диоксане, 2,0 мл) в CH₂Cl₂ (10,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-182 (125 мг, выход 56%) в виде твердого вещества белого цвета.

Синтез 2-(2-карбокси-3-фенилпропиламино)-4-(3,4-дихлорфенил)тиазол-5-карбоновой кислоты (I-183)

К раствору I-182 (50,0 мг, 0,104 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли NaOH (2,0 М в H₂O, 0,13 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали столовым раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали колоночной хроматографией на силикателе (EtOAc) с получением I-183 (38,0 мг, выход 81%) в виде твердого вещества белого цвета.

Синтез 1-(3,4-дихлорфенил)-4,4,4-трифтор-3-гидроксибутан-1-она (227-2)
К смеси 227-1 (2,60 г, 13,8 ммоль) и пирролидина (687 мг, 9,66 ммоль) в ТГФ (50,0 мл) добавляли 1-этокси-2,2-трифторэтанол (1,99 г, 13,8 ммоль). Реакционную смесь кипятили с обратным холодильником в течение 48 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 30/1) с получением 227-2 (2,50 г 63%) в виде бесцветного масла.

Синтез (E)-1-(3,4-дихлорфенил)-4,4,4-трифторбут-2-ен-1-она (227-3)

К смеси 227-2 (2,40 г, 8,36 ммоль) в CH2Cl2 (50,0 мл) добавляли TFAA (3,51 г, 16,7 ммоль) и Et3N (2,53 г, 25,1 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 227-3 (2,00 г, выход 63%) в виде масла желтого цвета.

Синтез 1-(3,4-дихлорфенил)-4,4,4-трифторбутан-1-ола (227-4)
Смесь 227-3 (2,00 г, 7,43 ммоль) и NaBH₄ (2,82 г, 74,3 ммоль) в EtOH (50,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в EtOAc (100 мл), который промывали H₂O (50,0 мл х 2) и солевым раствором (30,0 мл). Органический слой сушили безводным Na₂SO₄ и концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 227-4 (2,00 г, выход 99%) в виде бесцветного масла.

Синтез 1-(3,4-диалюмината)-4,4,4-трифторбутан-1-она (227-5)

К раствору 227-4 (2,00 г, 7,32 ммоль) в CH₂Cl₂ (150 мл) добавляли PCC (2,37 г, 11,0 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колонной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 227-5 (1,30 г, выход 65%) в виде масла желтого цвета.

Синтез 2-бром-1-(3,4-диалюмината)-4,4,4-трифторбутан-1-она (227-6)
Смесь 227-5 (1,00 г, 3,69 ммоль) и Br₂ (619 мг, 3,87 ммоль) в AcOH (10,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в EtOAc (150 мл), который промывали H₂O (80,0 мл х 2) и соляным раствором (50,0 мл). Органический слой сушили безводным Na₂SO₄ и концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 227-6 (720 мг, выход 56%) в виде масла желтого цвета.

Синтез трет-бутил 2-bensил-3-(5-(3,4-дихлорфенил)-4-(2,2,2-трифторэтил)тиазол-2-иламино)пропаноата (227-7)

Смесь 227-6 (250 мг, 0,713 ммоль) и 152-s (210 мг, 0,713 ммоль) в EtOH (2,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 227-7 (300 мг, выход 77%) в виде масла желтого цвета.

Синтез 2-bensил-3-(4-(3,4-дихлорфенил)-5-(2,2,2-трифторэтил)тиазол-2-иламино)пропановой кислоты (I-184)
Смесь 227-7 (300 мг, 0,550 ммоль) и HCl (4,0 М в диоксане, 5,0 мл) в CH2Cl2 (10,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением 1-184 (55,0 мг, выход 20%) в виде твердого вещества белого цвета.

Синтез метил 2-бензил-3-(4-(3,4-дихлорфенил)-5-(проп-1-ен-2-ил)тиазол-2-иламино)пропаноата (228-1)

Смесь 224-s (200 мг, 0,400 ммоль), трибутил(проп-1-ен-2-ил)станинана (199 мг, 0,600 ммоль), катализатор Pd (CAS: 1310584-14-5, 62,9 мг, 0,080 ммоль) и CsF (122 мг, 0,800 ммоль) в DME (5,0 мл) перемешивали при 120 °C в микроволновом реакторе в течение 2 часов. По завершении реакции реакционную смесь выливали в H2O (80 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H2O (50,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 228-1 (55,0 мг, выход 30%) в виде твердого вещества желтого цвета.

Синтез 2-бензил-3-(4-(3,4-дихлорфенил)-5-(проп-1-ен-2-ил)тиазол-2-иламино)пропановой кислоты (I-185)
К раствору 228-1 (55,0 мг, 0,119 ммоль) в ТГФ/МеOH/H2O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H2O, 0,15 мл). Реакционную смесь перемешивали при комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл х 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали препаративной ВЭЖХ с использованием I-185 (10,0 мг, выход 19%) в виде твердого вещества белого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-N-(3-(1,3-диксоизоизидолин-2-ил)пропилсульфонил)пропанамида (229-1)

Смесь I-47 (294 мг, 0,634 ммоль), b-229 (170 мг, 0,634 ммоль), HATU (482 мг, 1,27 ммоль) и DIPEA (245 мг, 1,90 ммоль) в DМФ (5,00 мл) перемешивали при комнатной температуре в течение 48 часов. По завершении реакции реакционную смесь выливали в H2O (100 мл), и экстрагировали EtOAc (200 мл х 2). Органический слой объединяли и промывали H2O (80,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na2SO4. Растор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH2Cl2/MeOH = 100/1) с получением 229-1 (45,0 мг, выход 10%) в виде твердого вещества желтого цвета.

Синтез N-(3-аминопропилсульфонил)-3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропанамида (I-186)
Смесь 229-1 (45,0 мг, 0,063 ммоль) и гидразингидрата (6,31 мг, 0,126 ммоль) в EtOH (2,0 мл) перемешивали при 90 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-186 (4,0 мг, выход 11%) в виде твердого вещества белого цвета.

Синтез трет-бутил 2-(2-(бензил(4-(3,4-диокситиазол-5-ил)-амино)этилсульфонамило)-2-оксоэтокситриазолама (230-1)

Смесь I-98 (200 мг, 0,401 ммоль), 2-(трет-бутоксикарбониламино)уксусной кислоты (84,3 мг, 0,481 ммоль), HATU (305 мг, 0,802 ммоль) и DIPEA (155 мг, 1,20 ммоль) в DMF (5,00 мл) перемешивали при комнатной температуре в течение 48 часов. По завершении реакции реакционную смесь выливали в Н₂О (100 мл), и экстрагировали EtOAc (200 мл х 2). Органический слой объединяли и промывали Н₂О (80,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 230-1 (200 мг, выход 76%) в виде твердого вещества желтого цвета.

Синтез 2-амино-N-(2-(бензил(4-(3,4-диокситиазол-5-ил)-амино)этилсульфонамило)-азетамиды (I-187)
Смесь 230-1 (200 мг, 0,305 ммоль) в HCl (4,0 М в диоксане, 3,0 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-187 (100 мг, выход 59%) в виде твердого вещества белого цвета.

Синтез 3-(bensил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-2-гидроксипропановой кислоты (I-190)

Смесь с (771 мг, 2,56 ммоль) и b-233 (500 мг, 2,56 ммоль) в i-ПрOH (15,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ВЭЖХ с получением I-190 (200 мг, выход 16%) в виде твердого вещества белого цвета.

Синтез tert-бутил 3-(bensил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропилкарbamата (235-2)
Смесь с (228 мг, 0,757 ммоль) и b-235 (200 мг, 0,757 ммоль) в i-PrOH (5,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (CH₂Cl₂/MeOH = 100/1) с получением 235-2 (80,0 мг, выход 19%) в виде твердого вещества белого цвета.

Синтез \(^N^1\)-бензил-\(^N^1\)-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пропан-1,3-диамина (I-191)

Смесь 235-2 (80,0 мг, 0,146 ммоль) в HCl (4,0 М в диоксане, 3,0 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-191 (10,0 мг, выход 15%) в виде твердого вещества белого цвета.

Синтез этил 3-(3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропанамидо)пропаноата (241-1)
Смесь I-47 (150 мг, 0,324 ммоль), гидрохлорида этил-3-аминопропаноата (59,8 мг, 0,389 ммоль), HATU (246 мг, 0,648 ммоль) и DIPEA (125 мг, 0,972 ммоль) в ДМФ (2,00 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (50,0 мл), и экстрагировали EtOAc (80,0 мл х 2). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Рассол концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 241-1 (30,0 мг, выход 16%) в виде твердого вещества желтого цвета.

Синтез 3-(3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропанамино)пропанова кислоты (I-196)

К раствору 241-1 (30,0 мг, 0,0533 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,067 мл). Реакционную смесь перемешивали при
комнатной температуре в течение 6 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 M). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-196 (10,0 мг, выход 35%) в виде твердого вещества белого цвета.

Синтез трет-бутил 2-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-14,14-диметил-5,12-диоксо-1-фенил-13-окса-2,6,9,11-тетраазапентадекан-10-илденкарбамата (242-1)

![Chemical structure](image)

[00504] Смесь I-47 (230 мг, 0,496 ммоль), b-242 (150 мг, 0,496 ммоль), HATU (377 мг, 0,992 ммоль) и DIPEA (192 мг, 1,49 ммоль) в DMF (10,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливают в H₂O (150 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и соляным раствором (50 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 241-1 (300 мг, выход 81%) в виде твердого вещества желтого цвета.

Синтез 3-((бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-N-(2-гванилиноэтил)пропанамида (I-197)
Смесь 242-1 (300 мг, 0,401 ммоль) в HCl (4,0 М в диоксане, 10,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-197 (100 мг, выход 46%) в виде твердого вещества белого цвета.

Таблица 3-3: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>£Н ЯМР (400 МГц, dо-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td></td>
<td>Способ С, чистота составляет 97,0%, ВУ = 1,806 мин; МС рассчит.: 434,1; МС найдено: 435,2 [М + H] +.</td>
<td>δ: 2,65-2,68 (2Н, м), 3,77-3,85 (2Н, м), 4,78-4,86 (2Н, м), 7,28-7,38 (5Н, м), 7,73-7,77 (2Н, м), 8,00 (1Н, с), 9,62 (1Н, с), 12,44 (1Н, уш.).</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>Способ С, чистота составляет 97,6%, ВУ = 1,905 мин; МС рассчит.: 450,1; МС найдено: 451,2 [М + H] +.</td>
<td>δ: 2,53 (2Н, т, J = 7,6 Гц), 3,28 (3Н, с), 3,64 (2Н, т, J = 7,6 Гц), 4,41 (2Н, с), 4,69 (2Н, с), 7,23-7,35 (5Н, м), 7,56 (1Н, лд, J = 8,4, 2,0 Гц), 7,67 (1Н, дd, J = 8,4 Гц), 7,78 (1Н, д, J = 2,0 Гц).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>(^1)Н ЯМР (400 МГц, \textit{d}_{6}-\text{ДМСО})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>Способ B, чистота составляет 97,4%, ВУ = 2,138 мин; МС рассчит.: 466,1; МС найдено: 467,0 [M + H] (^+).</td>
<td>δ: 2,05 (3Н, c), 2,61 (2Н, т, (J = 7,2) Гц), 3,66 (2Н, т, (J = 7,2) Гц), 3,89 (2Н, с), 4,67 (2Н, с), 7,27-7,36 (5Н, м), 7,59 (1Н, дд, (J = 8,4, 2,0) Гц), 7,68 (1Н, д, (J = 8,0) Гц), 7,81 (1Н, д, (J = 2,0) Гц), 12,38 (1Н, уш.).</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>Способ C, чистота составляет 99,3%, ВУ = 1,748 мин; МС рассчит.: 486,1; МС найдено: 419,2 [M –C(_3)H(_5)N(_2)] (^+).</td>
<td>δ: 2,56 (2Н, т, (J = 6,8) Гц), 3,62 (3Н, т, (J = 6,8) Гц), 4,65 (2Н, с), 5,34 (2Н, с), 6,87 (1Н, с), 7,07 (1Н, с), 7,25-7,35 (5Н, м), 7,54 (1Н, дд, (J = 8,4, 2,0) Гц), 7,62 (1Н, с), 7,66-7,70 (1Н, м), 7,74 (1Н, д, (J = 2,0) Гц).</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 2,110 мин; МС рассчит.: 476,1; МС найдено: 477,2 [M + H] (^+).</td>
<td>δ: 2,54 (3Н, т, (J = 4,8) Гц), 2,60 (3Н, т, (J = 4,4) Гц), 3,30-3,32 (2Н, м), 3,69 (2Н, т, (J = 6,8) Гц), 4,67 (2Н, с), 7,27-7,29 (3Н, м), 7,33-7,37 (2Н, м), 7,57-7,64 (2Н, м), 7,83-7,90 (2Н, м), 8,51 (1Н, с).</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 2,624 мин; МС рассчит.: 505,1; МС найдено: 506,2 [M + H] (^+).</td>
<td>δ: 2,42-2,45 (2Н, м), 3,61 (2Н, т, (J = 7,2) Гц), 4,64 (2Н, с), 6,88 (1Н, с), 7,25-7,30 (5Н, м), 7,44 (1Н, с), 7,50 (1Н, д, (J = 8,4) Гц), 8,18-8,21 (1Н, м), 8,72 (1Н, с).</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>Способ C, чистота составляет 98,1%, ВУ = 1,860 мин; МС рассчит.:</td>
<td>δ: 0,85 (6Н, д, (J = 6,4) Гц), 1,33-1,45 (6Н, м), 1,70-1,74 (1Н, м), 2,27 (1Н, с), 2,56 (2Н, д, (J = 7,2) Гц), 2,65-2,87 (2Н, м), 3,13-3,16 (2Н, м), 3,23-3,25</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>^1Н ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>126</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,087 мин; МС рассчит.: 476,2; МС найдено: 477,3 [М + Н]^+</td>
<td>δ: 0,87 (6Н, д, J = 3,4 Гц), 1,73-1,80 (1Н, м), 2,44 (2Н, уш.), 2,62 (2Н, д, J = 6,4 Гц), 3,56 (2Н, т, J = 5,6 Гц), 4,67 (2Н, с), 7,24-7,34 (5Н, м), 7,54-7,56 (3Н, м), 7,61-7,63 (1Н, м), 7,72 (2Н, д, J = 6,8 Гц), 7,86 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,034 мин; МС рассчит.: 440,1; МС найдено: 441,4 [М + Н]^+</td>
<td>δ: 0,86 (6Н, д, J = 6,8 Гц), 1,67-1,76 (1Н, м), 2,49 (3Н, с), 2,57-2,62 (4Н, м), 3,62 (2Н, т, J = 7,2 Гц), 4,63 (2Н, с), 7,23-7,35 (7Н, м), 7,46 (2Н, дд, J = 6,8, 2,0 Гц), 12,33 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Способ С, чистота составляет 99,9%, ВУ = 1,771 мин; МС рассчит.: 472,2; МС найдено: 473,4 [М + Н]^+</td>
<td>δ: 0,86 (6Н, д, J = 6,8 Гц), 1,73-1,77 (1Н, м), 2,56 (2Н, т, J = 7,2 Гц), 2,65 (2Н, д, J = 7,2 Гц), 3,21 (3Н, с), 3,62 (2Н, т, J = 7,2 Гц), 4,66 (2Н, с), 7,24-7,36 (5Н, м), 7,78 (2Н, д, J = 8,8 Гц), 7,93 (2Н, д, J = 8,4 Гц).</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Способ С, чистота составляет 81,2%, ВУ = 2,008 мин; МС рассчит.: 432,1; МС найдено: 433,3 [М + Н]^+</td>
<td>δ: 2,56-2,67 (2Н, м), 3,68 (2Н, дд, J = 14,4, 6,8 Гц), 4,74 (2Н, уш.), 5,09-5,23 (1Н, м), 7,28-7,39 (5Н, м), 7,52 (1Н, т, J = 6,0 Гц), 7,69-7,74 (2Н, м).</td>
<td></td>
</tr>
<tr>
<td>№ 130</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1H ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Способ С, чистота составляет 97,8%, ВУ = 1885 мин; МС рассчит.: 475,1; МС найдено: 419,2 $[M - \text{C}_6\text{H}_5\text{N}]^+$</td>
<td>δ: 1,95 (2H, т, $J = 7,2$ Гц), 2,60 (2H, т, $J = 7,2$ Гц), 3,14 (4H, т, $J = 7,2$ Гц), 3,63-3,67 (4H, м), 4,68 (2H, с), 7,28-7,37 (5H, м), 7,59 (1H, лл, $J = 8,4$, 2,0 Гц), 7,67 (1H, д, $J = 8,4$ Гц), 7,83 (1H, д, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>№ 131</td>
<td>Способ В, чистота составляет 93,8%, ВУ = 1926 мин; МС рассчит.: 504,2; МС найдено: 505,1 $[M + \text{H}]^+$</td>
<td>d_6-MeOD; δ: 0,90 (6H, д, $J = 6,4$ Гц), 1,77-1,81 (1H, м), 2,59-2,62 (4H, м), 2,70 (2H, т, $J = 6,4$ Гц), 3,22 (2H, т, $J = 6,4$ Гц), 3,78 (2H, т, $J = 7,2$ Гц), 4,67 (2H, с), 7,26-7,35 (5H, м), 7,45 (1H, д, $J = 1,0$ Гц), 7,47-7,69 (1H, м), 7,70 (1H, с).</td>
<td></td>
</tr>
<tr>
<td>№ 132</td>
<td>Способ В, чистота составляет 98,6%, ВУ = 2003 мин; МС рассчит.: 518,2; МС найдено: 519,2 $[M + \text{H}]^+$</td>
<td>d_6-MeOD; δ: 0,90 (6H, д, $J = 6,4$ Гц), 1,77-1,81 (1H, м), 2,62 (2H, д, $J = 7,2$ Гц), 2,72-2,80 (4H, м), 2,88 (1H, с), 3,01 (2H, с), 3,37-3,43 (2H, м), 3,78 (2H, т, $J = 6,8$ Гц), 4,68 (2H, уш.), 7,27-7,34 (5H, м), 7,47 (1H, лл, $J = 3,6$, 1,6 Гц), 7,54 (1H, лл, $J = 8,4$, 2,4 Гц), 7,69 (1H, с).</td>
<td></td>
</tr>
<tr>
<td>№ 133</td>
<td>чистота составляет 100%, ВУ = 1956 мин; МС рассчит.: 544,1; МС найдено: 545,2 $[M + \text{H}]^+$</td>
<td>δ: 0,85 (6H, д, $J = 6,8$ Гц), 1,69-1,74 (1H, м), 1,69 (3H, м), 2,17-2,21 (4H, м), 2,60 (2H, лл, $J = 7,2$ Гц), 2,64-2,69 (2H, кв, $J = 5,2$ Гц), 3,38 (4H, т, $J = 5,2$ Гц), 3,62 (1H, т, $J = 7,2$ Гц), 4,64 (2H, с), 7,24-7,36 (5H, м), 7,49 (1H, лл, $J = 6,8$, 2,0 Гц), 7,64 (1H, д, $J = 8,4$ Гц), 7,71 (1H, д, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, d_{6}-ДМСО)</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------</td>
<td>--------------------------------</td>
</tr>
</tbody>
</table>
| 134 | ![Image](image1) | Способ B, чистота составляет 99,2%c,
BY = 1920 min;
MC рассчит.: 530,1;
MC найдено: 531,2 [M + H] \(^{+}\). | δ: 0,85 (6H, d, \(J = 6,4 \) Гц), 1,69-1,76 (1H, m), 2,54-2,61 (6H, m), 2,64-2,68 (2H, m), 3,30 (4H, c), 3,62 (2H, t, \(J = 7,6 \) Гц), 4,64 (2H, c), 7,23-7,35 (5H, m), 7,50 (1H, dd, \(J = 6,8, 2,0 \) Гц), 7,64 (1H, d, \(J = 8,4 \) Гц), 7,71 (1H, d, \(J = 2,0 \) Гц). |
| 135 | ![Image](image2) | Способ B, чистота составляет 98,8%,
BY = 1881 min;
MC рассчит.: 558,2;
MC найдено: 559,1 [M + H] \(^{+}\). | δ: 0,86 (6H, d, \(J = 6,4 \) Гц), 0,90-1,01 (2H, m), 1,65-1,75 (4H, m), 2,57-2,61 (4H, m), 2,64-2,70 (2H, m), 2,90 (1H, t, \(J = 12,8 \) Гц), 3,60-3,62 (2H, m), 3,85 (1H, d, \(J = 13,2 \) Гц), 4,32 (1H, d, \(J = 12,8 \) Гц), 4,65 (2H, c), 7,24-7,36 (5H, m), 7,50 (1H, dd, \(J = 8,4, 2,0 \) Гц), 7,65 (1H, d, \(J = 8,4 \) Гц), 7,71 (1H, d, \(J = 2,0 \) Гц), 8,38 (1H, уш.). |
| 136 | ![Image](image3) | Способ B, чистота составляет 93,1%,
BY = 1972 min;
MC рассчит.: 491,1;
MC найдено: 492,1 [M + H] \(^{+}\). | δ: 0,84 (6H, d, \(J = 6,4 \) Гц), 1,68-1,73 (1H, m), 2,57 (2H, d, \(J = 7,2 \) Гц), 3,65-3,72 (1H, m), 3,81-3,84 (1H, m), 4,62-4,67 (1H, m), 7,29 (2H, t, \(J = 6,8 \) Гц), 7,45-7,51 (2H, m), 7,64-7,66 (1H, m), 7,73 (3H, dd, \(J = 5,2, 2,8 \) Гц), 7,80 (1H, уш.), 8,85 (1H, d, \(J = 7,2 \) Гц). |
| 137 | ![Image](image4) | Способ C, чистота составляет 99,8%,
BY = 2049 min;
MC рассчит.: 487,1;
MC найдено: 488,2 [M + H] \(^{+}\). | δ: 0,86 (6H, dd, \(J = 6,4, 2,4 \) Гц), 1,33 (9H, c), 1,68-1,76 (1H, m), 2,58 (2H, d, \(J = 7,2 \) Гц), 3,53-3,59 (3H, m), 4,09-4,12 (1H, m), 7,04 (1H, d, \(J = 6,4 \) Гц), 7,49 (1H, dd, \(J = 8,4, 2,0 \) Гц), 7,63 (2H, d, \(J = 8,4 \) Гц), 7,71 (1H, d, \(J = 2,0 \) Гц). |

252
<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>^1H ЯМР (400 МГц, d_6-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>Способ C, чистота составляет 98,8%, ВУ = 2,067 мин; МС рассчит.: 521,1; МС найдено: 522,2 [M + H]⁺.</td>
<td>δ: 0,88 (6Н, d, J = 6,4 Гц), 1,72-1,76 (1Н, м), 2,59 (2Н, d, J = 7,2 Гц), 3,51-3,61 (3Н, м), 4,13-4,15 (1Н, м), 5,02 (2Н, с), 7,26-7,37 (5Н, м), 7,44-7,51 (2Н, м), 7,58 (1Н, d, J = 8,4 Гц), 7,65 (1Н, уш.), 7,73 (1Н, d, J = 1,6 Гц).</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Способ C, чистота составляет 92,6%, ВУ = 2,354 мин; МС рассчит.: 441,1; МС найдено: 442,3 [M + H]⁺.</td>
<td>δ: 0,81 (6Н, dd, J = 14,8, 6,8 Гц), 1,13 (3Н, t, J = 7,2 Гц), 1,64-1,71 (1Н, м), 2,11 (2Н, d, J = 7,2 Гц), 3,53 (1Н, dd, J = 14,8, 13,6 Гц), 3,63-3,69 (1Н, м), 3,97 (2Н, kv, J = 7,2 Гц), 4,32-4,40 (1Н, м), 7,27 (1Н, dd, J = 8,0, 2,0 Гц), 7,41 (1Н, d, J = 8,4 Гц), 7,57 (1Н, d, J = 2,0 Гц), 7,66 (1Н, d, J = 8,4 Гц).</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Способ C, чистота составляет 98,3%, ВУ = 1,821 мин; МС рассчит.: 429,1; МС найдено: 430,2 [M + H]⁺.</td>
<td>δ: 0,87-0,89 (6Н, м), 1,71-1,83 (1Н, м), 1,83 (3Н, с), 2,60 (2Н, d, J = 6,8 Гц), 3,50-3,54 (3Н, м), 4,23-4,28 (1Н, м), 7,49-7,56 (2Н, м), 7,65 (1Н, d, J = 8,4 Гц), 7,73 (1Н, d, J = 2,0 Гц), 7,96 (1Н, d, J = 7,2 Гц).</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Способ C, чистота составляет 98,7%, ВУ = 2,104 мин; МС рассчит.: 420,0; МС найдено: 421,2 [M + H]⁺.</td>
<td>δ: 0,89 (6Н, d, J = 6,4 Гц), 1,76-1,83 (1Н, м), 2,68 (2Н, d, J = 7,2 Гц), 6,87 (1Н, т, J = 7,2 Гц), 7,37 (1Н, т, J = 8,0 Гц), 7,58 (1Н, dd, J = 8,0, 2,0 Гц), 7,70 (1Н, d, J = 8,4 Гц), 7,78 (1Н, d, J = 2,0 Гц), 7,95 (1Н, dd, J = 8,0, 1,6 Гц), 8,26 (1Н, d, J = 8,4 Гц), 13,99 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Способ C, чистота составляет 97,4%, ВУ = 2,138 мин;</td>
<td>δ: 0,89 (6Н, d, J = 6,8 Гц), 1,76-1,83 (1Н, м), 2,70 (2Н, d, J = 7,2 Гц), 7,39 (1Н, т, J = 7,2 Гц), 7,47-7,50 (1Н, м),</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>$^1\text{Н ЯМР (400 МГц, d}_6\text{-ДМСО)}$</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>МС рассчит.: 466,1; МС найдено: 467,0 [M + H]$^+$</td>
<td>7,59 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,69 (1Н, д, $J = 8,4$ Гц), 7,81-7,84 (2Н, м), 8,28 (1Н, с), 10,34 (1Н, с), 12,90 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Способ Б, чистота составляет 100%, ВУ = 2,287 мин; МС рассчит.: 476,1; МС найдено: 477,1 [M + H]$^+$</td>
<td>δ: 0,86 (6Н, д, $J = 10,4$ Гц), 1,82-1,97 (1Н, м), 2,75 (2Н, д, $J = 6,8$ Гц), 3,63 (2Н, с), 5,47 (2Н, с), 7,22-7,35 (5Н, м), 7,50 (1Н, дд, $J = 8,4$, 2,0Гц), 7,67 (2Н, дд, $J = 9,2$, 5,2 Гц), 13,02 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Способ С, чистота составляет 96,5%, ВУ = 1,953 мин; МС рассчит.: 476,1; МС найдено: 477,2 [M + H]$^+$</td>
<td>δ: 0,91 (6Н, д, $J = 6,4$ Гц), 1,85-1,91 (1Н, м), 2,74-2,81 (4Н, м), 4,22 (2Н, т, $J = 7,2$ Гц), 7,53-7,63 (5Н, м), 7,73 (2Н, д, $J = 8,4$ Гц), 7,83 (1Н, с), 12,34 (1Н,уц.).</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Способ С, чистота составляет 99,0%, ВУ = 1,931 мин; МС рассчит.: 471,2; МС найдено: 472,3 [M + H]$^+$</td>
<td>δ: 0,88 (6Н, д, $J = 6,4$ Гц), 1,26-1,39 (4Н, м), 1,46-1,51 (2Н, м), 1,72-1,76 (1Н, м), 2,08 (6Н, с), 2,14-2,17 (2Н, м), 2,54-2,60 (3Н, м), 3,25-3,29 (1Н, м), 3,33-3,38 (1Н, м), 7,50 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,64 (1Н, д, $J = 8,4$ Гц), 7,72 (1Н, д, $J = 1,6$ Гц).</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Способ Б, чистота составляет 100%, ВУ = 1,734 мин; МС рассчит.: 443,1; МС найдено: 444,1 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, $J = 6,8$ Гц), 1,48-1,53 (2Н, м), 1,67-1,76 (3Н, м), 2,34 (2Н, с), 2,58-2,60 (2Н, м), 2,74-2,76 (2Н, м), 3,34-3,39 (2Н, м), 3,56-3,58 (2Н, м), 7,48 (1Н, д, $J = 8,0$ Гц), 7,63 (1Н, д, $J = 8,4$ Гц), 7,69 (1Н, с), 8,41 (2Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, d_{6}-ДМСО)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>147</td>
<td>Способ С, чистота составляет 100%, BY = 1,945 мин; МС рассчит.: 471,2; МС найдено: 472,2 [M + H]$^+$</td>
<td>δ: 0,85 (6Н, dd, $J = 8,4$, 6,4 Гц), 1,34-1,38 (2Н, m), 1,54-1,58 (2Н, m), 1,73-1,75 (1Н, m), 1,95-1,98 (1Н, m), 2,09 (6Н, с), 2,19 (3Н, t, $J = 7,2$ Гц), 2,58 (2Н, d, $J = 7,2$ Гц), 3,37-3,42 (4Н, м), 7,48 (1Н, dd, $J = 8,4$, 2,0 Гц), 7,63 (1Н, d, $J = 8,4$ Гц), 7,70 (1Н, d, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Способ С, чистота составляет 99,0%, BY = 1,993 мин; МС рассчит.: 471,1; МС найдено: 472,3 [M + H]$^+$</td>
<td>δ: 0,88 (6Н, d, $J = 6,4$ Гц), 1,30-1,34 (4Н, m), 1,56-1,58 (4Н, m), 1,72-1,79 (1Н, m), 2,54-2,76 (6Н, m), 3,58-3,68 (4Н, m), 7,51 (1Н, dd, $J = 8,4$, 1,2 Гц), 7,67 (1Н, d, $J = 8,4$ Гц), 7,72 (1Н, с), 8,12 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Способ С, чистота составляет 95,5%, BY = 1,828 мин; МС рассчит.: 485,1; МС найдено: 486,4 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, d, $J = 6,4$ Гц), 1,19-1,27 (2Н, m), 1,45-1,58 (4Н, m), 1,71-1,76 (1Н, m), 2,02 (2Н, t, $J = 7,2$ Гц), 2,21 (2Н, t, $J = 7,2$ Гц), 2,57-2,75 (4Н, m), 3,48 (2Н, t, $J = 7,2$ Гц), 4,14 (1Н, t, $J = 6,8$ Гц), 6,64 (1Н, с), 7,36 (1Н, с), 7,49 (1Н, dd, $J = 8,4$, 1,6 Гц), 7,63 (1Н, d, $J = 8,4$ Гц), 7,68 (1Н, d, $J = 1,6$ Гц).</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Способ С, чистота составляет 98,0%, BY = 1,894 мин; МС рассчит.: 491,1; МС найдено: 492,2 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, d, $J = 6,8$ Гц), 1,68-1,78 (1Н, m), 2,31 (6Н, c), 2,42-2,55 (2Н, m), 2,57-2,59 (2Н, d, $J = 7,2$ Гц), 2,86-2,91 (1Н, m), 3,09-3,19 (2Н, m), 6,85 (2Н, с), 7,45-7,47 (1Н, dd, $J = 8,4$, 2,0 Гц), 7,60 (1Н, с), 7,63 (1Н, d, $J = 8,4$ Гц), 7,68 (1Н, d, $J = 1,6$ Гц).</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Способ С, чистота составляет 100%, BY = 1,995 мин;</td>
<td>δ: 0,85 (6Н, d, $J = 6,8$ Гц), 1,68-1,73 (1Н, m), 2,47 (3Н, c), 2,56-2,65(4Н, m), 2,84-2,88 (1Н, m), 3,18-3,23 (2Н, m),</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>152</td>
<td>Способ С, чистота составляет 100%, BU = 1,94 мин; МС рассчит.: 464,4; МС найдено: 465,2 [M + H]$^+$</td>
<td>δ: 0,85 (6Н, d, $J = 6,4$ Гц), 1,68-1,74 (1Н, m), 2,56 (2Н, d, $J = 7,2$ Гц), 2,69-2,92 (3Н, m), 3,20-3,30 (2Н, m), 7,22 (2Н, $J = 6,0$ Гц), 7,44-7,46 (2Н, m), 7,61-7,68 (3Н, m), 8,38 (2Н, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Способ С, чистота составляет 96,2%, BU = 1,932 мин; МС рассчит.: 478,1; МС найдено: 479,0 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, d, $J = 6,4$ Гц), 1,70-1,79 (1Н, m), 2,44-2,47 (2Н, m), 2,58 (2Н, d, $J = 7,2$ Гц), 2,70-2,75 (1Н, m), 3,08-3,16 (2Н, m), 5,60 (2Н, с), 6,33 (1Н, d, $J = 8,4$ Гц), 7,23 (1Н, dd, $J = 8,4, 2,4$ Гц), 7,48 (1Н, dd, $J = 8,4, 2,0$ Гц), 7,63-7,70 (4Н, m).</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Способ С, чистота составляет 97,2%, BU = 1,973 мин; МС рассчит.: 506,1; МС найдено: 507,2 [M + H]$^+$</td>
<td>δ: 0,85 (6Н, d, $J = 6,8$ Гц), 1,66-1,76 (1Н, m), 2,47-2,53 (2Н, m), 2,55-2,57 (2Н, d, $J = 7,2$ Гц), 2,71-2,77 (1Н, m), 2,93 (6Н, c), 3,09-3,19 (2Н, m), 6,49 (1Н, d, $J = 8,4$ Гц), 7,34 (1Н, dd, $J = 8,8, 2,4$ Гц), 7,45 (1Н, dd, $J = 8,4, 2,0$ Гц), 7,60-7,67 (3Н, m), 7,86-7,87 (1Н, d, $J = 2,4$ Гц).</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Способ С, чистота составляет 100%, BU = 1,977 мин; МС рассчит.: 464,4; МС найдено: 465,2 [M + H]$^+$.</td>
<td>δ: 0,87 (6Н, d, $J = 6,4$ Гц), 1,70-1,77 (1Н, m), 1,68-1,75 (1Н, m), 1,97-2,02 (1Н, m), 2,58-2,67 (2Н, m), 2,90-3,16 (4Н, m), 7,18-7,20 (2Н, m), 7,22-7,25 (1Н, m), 7,46-7,49 (1Н, m), 7,62-7,68 (4Н, m), 8,33-8,39 (2Н, m).</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>№Х-МС</td>
<td>¹H ЯМР (400 МГц, d₆-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>Способ С, чистота составляет 98,5%, ВУ = 1,847 мин; МС рассчит.: 477,1; МС найдено: 478,2 [М + H]⁺.</td>
<td>δ: 0,85 (6Н, д, J = 6,8 Гц), 1,70-1,73 (1Н, м), 2,42 (3Н, с), 2,57 (2Н, д, J = 6,8 Гц), 2,73-2,87 (3Н, м), 3,36 (2Н, с), 7,08 (1Н, дд, J = 4,8, 4,6 Гц), 7,45 (1Н, дд, J = 8,4, 2,0 Гц), 7,50-7,52 (1Н, м), 7,62-7,76 (3Н, м), 8,23 (1Н, д, J = 3,6 Гц).</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>Способ С, чистота составляет 97,5%, ВУ = 2,069 мин; МС рассчит.: 491,1; МС найдено: 492,2 [М + H]⁺.</td>
<td>δ: 0,87 (6Н, д, J = 6,8 Гц), 1,70-1,76 (1Н, м), 2,36 (6Н, д, J = 16,8 Гц), 2,58 (2Н, д, J = 4,2 Гц), 2,66-2,69 (1Н, м), 2,76-2,87 (2Н, м), 3,24-3,28 (2Н, м), 6,91-6,93 (1Н, д, J = 8,0 Гц), 7,39-7,41 (1Н, д, J = 7,6 Гц), 7,46 (1Н, дд, J = 8,4, 2,0 Гц), 7,64 (1Н, д, J = 8,4 Гц), 7,70 (1Н, д, J = 2,0 Гц).</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>Способ С, чистота составляет 97,3%, ВУ = 1,841 мин; МС рассчит.: 463,1; МС найдено: 464,1 [М + H]⁺.</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,71-1,74 (1Н, м), 2,58 (2Н, д, J = 6,8 Гц), 2,85-2,88 (1Н, м), 3,03-3,08 (2Н, м), 3,29-3,30 (2Н, м), 7,16-7,19 (1Н, м), 7,45 (1Н, дд, J = 8,4, 2,0 Гц), 7,50-7,52 (1Н, м), 7,62-7,76 (3Н, м), 8,23 (1Н, д, J = 3,6 Гц).</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>Способ С, чистота составляет 99,4%, ВУ = 1,761 мин; МС рассчит.: 480,1; МС найдено: 481,3 [М + H]⁺.</td>
<td>δ: 0,88 (6Н, д, J = 6,4 Гц), 1,69-1,77 (1Н, м), 2,52-2,60 (4Н, м), 3,19-3,33 (2Н, м), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,63-7,70 (3Н, м), 8,07 (1Н, с).</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>Способ С, чистота составляет 99,7%, ВУ = 1,896 мин;</td>
<td>δ: 0,85 (6Н, д, J = 6,4 Гц), 1,66-1,75 (1Н, м), 2,56 (2Н, д, J = 7,2 Гц), 2,67-2,80 (3Н, м), 3,20-3,33 (2Н, м), 3,83</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1Н ЯМР (400 МГц, d_6 ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>161</td>
<td>Способ C, чистота составляет 98,0%
ВУ = 1,906 мин;
МС рассчит.: 494,1; МС найдено: 495,2 [М + Н]$^+$</td>
<td>δ: 0,85 (6Н, д, $J = 6,8$ Гц), 1,67-1,74 (1Н, м), 2,55 (2Н, д, $J = 7,2$ Гц), 2,71-2,83 (2Н, м), 3,04-3,07 (1Н, м), 3,20-3,31 (2Н, м), 7,38-7,45 (2Н, м), 7,60-7,66 (3Н, м), 8,56 (1Н, д, $J = 5,2$ Гц), 8,99 (1Н, д, $J = 1,2$ Гц).</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Способ C, чистота составляет 99,5%
ВУ = 1,839 мин;
МС рассчит.: 464,1; МС найдено: 465,0 [М + Н]$^+$</td>
<td>δ: 0,85 (6Н, д, $J = 6,4$ Гц), 1,66-1,77 (1Н, м), 2,45-2,51 (2Н, м), 2,55-2,60 (3Н, м), 2,63-2,70 (1Н, м), 3,20-3,33 (2Н, м), 6,21 (1Н, д, $J = 9,2$ Гц), 7,12 (1Н, д, $J = 1,6$ Гц), 7,31 (1Н, дд, $J = 9,2$, 2,4 Гц), 7,46 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,62 (2Н, д, $J = 8,4$ Гц), 7,69 (1Н, д, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Способ C, чистота составляет 99,3%
ВУ = 1,969 мин;
МС рассчит.: 493,1; МС найдено: 494,2 [М + Н]$^+$</td>
<td>δ: 0,88 (6Н, д, $J = 6,8$ Гц), 1,70-1,77 (1Н, м), 2,59 (2Н, д, $J = 7,2$ Гц), 2,70-2,75 (1Н, м), 2,78-2,82 (2Н, м), 3,24-3,33 (2Н, м), 3,79 (3Н, с), 6,71 (1Н, д, $J = 8,4$ Гц), 7,48 (1Н, дд, $J = 8,4$, 2,0 Гц), 7,56 (1Н, дд, $J = 8,4$, 2,4 Гц), 7,65 (1Н, д, $J = 8,4$ Гц), 7,70 (2Н, д, $J = 2,0$ Гц), 7,98 (1Н, д, $J = 2,0$ Гц).</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Способ C, чистота составляет 96,3%
ВУ = 1,765 мин;
МС рассчит.: 479,1; МС</td>
<td>δ: 0,85 (6Н, д, $J = 6,8$ Гц), 1,66-1,75 (1Н, м), 2,47-2,52 (1Н, м), 2,56 (2Н, д, $J = 7,2$ Гц), 2,67-2,73 (2Н, м), 3,20-3,31 (2Н, м), 6,04 (1Н, дд, $J = 6,8$, 1,6 Гц), 6,11 (1Н, с), 7,19 (1Н, д, $J = 6,8$ Гц).</td>
<td></td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹H ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>165</td>
<td>[Image 0x0 to 595x842]</td>
<td>найдено: 480,2 [M + H]^+†.</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,68-1,78 (1Н, м), 2,58 (2Н, д, J = 7,2 Гц), 2,66-2,71 (1Н, м), 2,74-2,81 (1Н, м), 2,84-2,89 (1Н, м), 3,21-3,33 (2Н, м), 3,78 (3Н, с), 6,64 (1Н, с), 6,84 (1Н, дд, J = 5,2, 1,2 Гц), 7,47 (1Н, дд, J = 8,4, 2,0 Гц), 7,62-7,69 (3Н, м).00 (1Н, д, J = 5,2 Гц).</td>
</tr>
<tr>
<td>166</td>
<td>[Image 0x0 to 595x842]</td>
<td>Способ С, чистота составляет 99,1%, ВУ = 1,945 мин; МС рассчит.: 493,1; МС найдено: 494,2 [M + H]^+†.</td>
<td>δ: 0,87 (6Н, д, J = 6,4Гц), 1,70-1,74 (1Н, м), 2,58 (2Н, д, J = 7,2 Гц), 2,77-2,93 (3Н, м), 3,25-3,38 (2Н, м), 5,60 (2Н, с), 7,25 (3Н, м), 7,43 (1Н, дд, J = 2,4, 2,0 Гц), 7,62-7,87 (5Н, м), 8,39 (1Н, с).</td>
</tr>
<tr>
<td>167</td>
<td>[Image 0x0 to 595x842]</td>
<td>Способ С, чистота составляет 100%, ВУ = 1,953 мин; МС рассчит.: 505,1; МС найдено: 506,2 [M + H]^+†.</td>
<td>δ: 0,85 (6Н, д, J = 6,4 Гц), 1,68-1,75 (1Н, м), 2,57 (2Н, д, J = 7,2 Гц), 2,80-2,83 (4Н, м), 3,25-3,50 (2Н, м), 7,31-7,46 (4Н, м), 7,61-7,95 (6Н, м).</td>
</tr>
<tr>
<td>168</td>
<td>[Image 0x0 to 595x842]</td>
<td>Способ С, чистота составляет 100%, ВУ = 1,865 мин; МС рассчит.: 534,5; МС найдено: 535,2 [M + H]^+†.</td>
<td>δ: 0,85 (6Н, д, J = 6,4 Гц), 1,68-1,75 (1Н, м), 2,50 (2Н, д, J = 3,2 Гц), 2,82-2,92 (8Н, м), 3,25-3,50 (2Н, м), 7,18-7,20 (2Н, м), 7,27-7,31 (2Н, м), 7,46 (1Н, с), 7,62-7,68 (3Н, м).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹Н ЯМР (400 МГц, dо-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>169</td>
<td>Способ B, чистота составляет 100%, БУ = 1,837 мин; МС рассчит.: 520,5; МС найдено: 521,1 [М + Н]⁺.</td>
<td>δ: 0,86 (6Н, d, J = 6,4 Гц), 1,67-1,75 (1Н, м), 2,49 (2Н, d, J = 3,2 Гц), 2,73 (3Н, d, J = 4,4 Гц), 2,80-2,99 (8Н, м), 3,38-3,42 (2Н, м), 7,18-7,20 (2Н, м), 7,32-7,33 (2Н, м), 7,34-7,43 (1Н, м), 7,61-7,67 (5Н, м), 8,36-8,37 (1Н, м).</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Способ B, чистота составляет 100%, БУ = 2,205 мин; МС рассчит.: 489,1; МС найдено: 490,1 [М + Н]⁺.</td>
<td>δ: 0,90 (6Н, t, J = 6,2 Гц), 1,73-1,81 (1Н, м), 2,63-2,68 (2Н, м), 3,08-3,14 (1Н, м), 3,24-3,28 (2Н, м), 3,52-3,70 (2Н, м), 3,92 (2Н, d, J = 12,8 Гц), 4,26 (1Н, d, J = 12,4 Гц), 6,57 (1Н, t, J = 7,2 Гц), 6,74 (2Н, d, J = 8,4 Гц), 7,10 (1Н, t, J = 8,0 Гц), 7,53 (1Н, dd, J = 8,4, 2,0 Гц), 7,66 (1Н, d, J = 8,4 Гц), 7,75 (1Н, d, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Способ C, чистота составляет 100%, БУ = 2,117 мин; МС рассчит.: 508,1; МС найдено: 509,2 [М + Н]⁺.</td>
<td>δ: 0,86 (6Н, d, J = 6,4 Гц), 1,69-1,74 (1Н, м), 2,37 (3Н, d, J = 7,6 Гц), 2,70 (2Н, d, J = 4,8 Гц), 2,72-2,74 (1Н, м), 2,84-2,88 (2Н, м), 3,27-3,30 (2Н, м), 6,96 (1Н, d, J = 7,6 Гц), 7,04 (1Н, s), 7,06 (1Н, s), 7,18 (1Н, t, J = 8,0, 7,6 Гц), 7,45 (1Н, dd, J = 6,0, 2,0 Гц), 7,62-7,68 (4Н, м).</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Способ B, чистота составляет 100%, БУ = 1,880 мин; МС рассчит.: 540,1; МС найдено: 541,2 [М + Н]⁺.</td>
<td>δ: 0,86 (6Н, d, J = 6,4 Гц), 1,69-1,76 (1Н, м), 2,58 (2Н, d, J = 7,2 Гц), 2,94-3,02 (3Н, м), 3,15 (3Н, с), 3,37-3,46 (2Н, м), 7,45-7,76 (8Н, м), 12,49 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>ЯМР (400 МГц, d_{6}-ДМСО)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>Способ B, чистота составляет 97,0%, BY = 1,835 мин; MC рассчит.: 541,1; MC найдено: 542,1 [M + H]^+.</td>
<td>δ: 0,87 (6Н, d, J = 6,4 Гц), 1,68-1,78 (1Н, m), 2,31-2,38 (1Н, m), 2,58 (2Н, d, J = 6,8 Гц), 2,65-2,70 (1Н, m), 3,01-3,06 (1Н, m), 3,14 (2Н, c), 7,26 (2Н, c), 7,38-7,49 (3Н, m), 7,60-7,64 (2Н, m), 7,68-7,69 (2Н, m), 7,75 (1Н, c).</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td>Способ С, чистота составляет 100%, BY = 2,221 мин; MC рассчит.: 508,1; MC найдено: 509,0 [M + H]^+.</td>
<td>δ: 0,88 (6Н, d, J = 6,8 Гц), 1,69-1,78 (1Н, m), 2,43 (3Н, с), 2,60 (2Н, d, J = 7,2 Гц), 2,72-2,74 (1Н, m), 2,82-2,89 (2Н, m), 3,27-3,33 (2Н, m), 7,16 (4Н, с), 7,18 (1Н, т, J = 8,0, 7,6 Гц), 7,45 (1Н, дд, J = 6,0, 2,0 Гц), 7,64-7,71 (3Н, m).</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td>Способ С, чистота составляет 98,5%, BY = 2,026 мин; MC рассчит.: 540,1; MC найдено: 541,1 [M + H]^+.</td>
<td>δ: 0,88 (6Н, d, J = 6,4 Гц), 1,70-1,77 (1Н, m), 2,48-2,49 (1Н, m), 2,43 (3Н, c), 2,58 (2Н, d, J = 7,2 Гц), 2,71-2,76 (1Н, m), 303-3,06 (1Н, m), 3,08-3,17 (5Н, m), 7,46-7,50 (3Н, m), 7,76 (2Н, d, J = 8,4 Гц).</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td>Способ B, чистота составляет 94,6%, BY = 1,817 мин; MC рассчит.: 541,1; MC найдено: 542,1 [M + H]^+.</td>
<td>δ: 0,88 (6Н, d, J = 6,4 Гц), 0,92 (1Н, т, J = 7,2 Гц), 1,68-1,77 (1Н, m), 1,96-2,02 (1Н, m), 2,39-2,44 (1Н, m), 2,59 (2Н, d, J = 7,2 Гц), 2,70-2,77 (1Н, m), 2,76-3,02 (1Н, m), 7,25 (2Н, c), 7,39 (2Н, d, J = 8,4 Гц), 7,48 (1Н, дд, J = 8,4, 2,0 Гц), 7,63-7,71 (5Н, m).</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>Способ C, чистота составляет 98,9%, BY = 2,091 мин; MC рассчит.:</td>
<td>δ: 1,45 (2Н, уш.), 1,60 (2Н, уш.), 1,71 (2Н, уш.), 2,04 (2Н, уш.), 2,83 (2Н, дд, J = 8,4, 7,6 Гц), 3,00 (1Н, д, J = 2,4 Гц), 3,24 (1Н, d, J = 8,0 Гц), 3,34-3,40</td>
</tr>
</tbody>
</table>

261
<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>¹H ЯМР (400 МГц, d<sub>6</sub>-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>Способ C, чистота составляет 99,7%, ВУ = 2,047 мин; МС рассчит.: 460,2; МС найдено: 461,3 [M + H]<sup>+</sup>.</td>
<td>δ: 1,75-1,77 (1H, м), 1,86-1,99 (3H, м), 2,31-2,35 (2H, м), 2,72-2,74 (1H, м), 2,87-2,89 (2H, м), 3,25-3,28 (2H, м), 3,66-3,70 (1H, м), 7,16-7,27 (5H, м), 7,38 (1H, dd, J = 8,4, 2,0 Гц), 7,63 (2H, dd, J = 4,8, 2,8 Гц), 7,75 (1H, уш.).</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Способ C, чистота составляет 99,6%, ВУ = 2,011 мин; МС рассчит.: 460,1; МС найдено: 461,3 [M + H]<sup>+</sup>.</td>
<td>δ: 0,16 (2H, dd, J = 10,0, 5,2 Гц), 0,46-0,50 (2H, м), 0,92 (1H, т, J = 6,8 Гц), 2,62-2,69 (4H, м), 2,91 (1H, т, J = 6,4 Гц), 3,21-3,24 (2H, м), 7,12-7,25 (5H, м), 7,46 (1H, dd, J = 8,4, 2,0 Гц), 7,61 (1H, d, J = 8,4 Гц), 7,70 (1H, d, J = 2,0 Гц).</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Способ C, чистота составляет 100%, ВУ = 2,132 мин; МС рассчит.: 476,1; МС найдено: 477,2 [M + H]<sup>+</sup>.</td>
<td>δ: 0,85 (6H, d, J = 6,4 Гц), 1,40-1,46 (2H, м), 1,53-1,60 (1H, м), 2,69-2,78 (3H, м), 2,86-2,91 (2H, м), 3,24-3,38 (2H, м), 7,16-7,28 (5H, м), 7,48 (1H, dd, J = 8,4, 2,0 Гц), 7,64-7,71 (3H, м).</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Способ C, чистота составляет 99,1%, ВУ = 1,721 мин; МС рассчит.: 484,0; МС найдено: 485,2 [M + H]<sup>+</sup>.</td>
<td>δ: 2,64-2,66 (2H, м), 2,94-2,96 (1H, м), 3,11 (3H, с), 3,27-3,29 (2H, м), 7,15-7,24 (5H, м), 7,65-7,71 (2H, м), 7,89 (1H, d, J = 2,0 Гц).</td>
<td></td>
</tr>
</tbody>
</table>

262
<table>
<thead>
<tr>
<th>1-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>¹H ЯМР (400 МГц, d<sub>6</sub>-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 2,096 мин; МС рассчит.: 477,1; МС найдено: 478,8 [M + H]^+.</td>
<td>δ: 1,15 (3Н, т, J = 6.8 Гц), 2,75-2.98 (3Н, м), 3,41-3,45 (2Н, м), 4,10 (2Н, кв, J = 7,2 Гц), 7,16-7,28 (5Н, м), 7,61-7,66 (2Н, м), 7,91 (1Н, д, J = 1,6 Гц), 8,64 (1Н, м), 12,43 (1Н, уш.).</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td>Способ B, чистота составляет 95,7%, ВУ = 1,831 мин; МС рассчит.: 450,1; МС найдено: 451,2 [M + H]^+.</td>
<td>δ: 2,48-3,00 (3Н, м), 3,37-3,48 (2Н, м), 7,16-7,28 (5Н, м), 7,61-7,67 (2Н, м), 7,91 (1Н, д, J = 1,2 Гц), 8,53 (1Н, м), 12,44-12,50 (2Н, уш.).</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 1,933 мин; МС рассчит.: 488,0; МС найдено: 489,2 [M + H]^+.</td>
<td>δ: 2,77-2,98 (3Н, м), 3,38-3,39 (2Н, м), 3,80 (2Н, кв, J = 10,4 Гц), 7,18-7,30 (5Н, м), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,71 (2Н, дд, J = 5,6, 2,0 Гц), 7,99 (1Н, уш.).</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>Способ C, чистота составляет 98,5%, ВУ = 1,990 мин; МС рассчит.: 446,1; МС найдено: 447,2 [M + H]^+.</td>
<td>δ: 1,87 (3Н, с), 2,76-2,99 (3Н, м), 3,36-3,43 (2Н, м), 5,05 (1Н, с), 5,15 (1Н, т, J = 1,2 Гц), 7,18-7,30 (5Н, м), 7,49 (1Н, дд, J = 8,4, 2,0 Гц), 7,63 (1Н, д, J = 8,4 Гц), 7,74 (1Н, д, J = 2,0 Гц), 7,88 (1Н, уш.).</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td>Способ C, чистота составляет 99,0%, ВУ = 2,255 мин; МС рассчит.:</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,74-1,78 (3Н, м), 2,25-2,31 (2Н, м), 2,56-2,65 (2Н, м), 2,77 (2Н, т, J = 7,2 Гц), 2,99 (2Н, т, J = 7,2 Гц), 3,50-3,53 (2Н, м), 8,00-8,21 (2Н, дд, J = 18,0 Гц), 11,95 (2Н, уш.).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, d_2ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>187</td>
<td>Способ С, чистота составляет 90,8%, ВУ = 2,286 мин; МС рассчит.: 554,1; МС найдено: 555,2 [М + Н]$^+$</td>
<td>583,0; МС найдено: 584,2 [М + Н]$^+$.</td>
<td>δ: 0,87 (6Н, д, $J = 6,4$ Гц), 1,73-1,76 (1Н, м), 2,62 (2Н, д, $J = 7,2$ Гц), 3,22 (2Н, т, $J = 6,8$ Гц), 4,66 (2Н, с), 7,27-7,37 (5Н, м), 7,51-7,58 (3Н, м), 7,65 (1Н, д, $J = 8,4$ Гц), 7,73 (1Н, д, $J = 1,6$ Гц).</td>
</tr>
<tr>
<td>188</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,300 мин; МС рассчит.: 568,1; МС найдено: 569,2 [М + Н]$^+$</td>
<td>583,0; МС найдено: 584,2 [М + Н]$^+$.</td>
<td>δ: 0,88 (6Н, д, $J = 6,8$ Гц), 1,73-1,76 (1Н, м), 2,25 (2Н, т, $J = 6,4$ Гц), 2,62 (2Н, д, $J = 6,8$ Гц), 2,85 (2Н, т, $J = 6,8$ Гц), 3,31-3,35 (2Н, м), 3,62-3,66 (2Н, м), 4,65 (2Н, с), 7,25-7,37 (5Н, м), 7,51-7,56 (4Н, м), 7,66 (1Н, д, $J = 8,4$ Гц), 7,73 (1Н, д, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>189</td>
<td>Способ С, чистота составляет 98,0%, ВУ = 2,704 мин; МС рассчит.: 461,1; МС найдено: 462,2 [М + Н]$^+$</td>
<td>d_2-MeOD; δ: 0,93 (6Н, д, $J = 6,8$ Гц), 1,80-1,84 (1Н, м), 2,62-2,65 (4Н, м), 3,79 (2Н, т, $J = 7,2$ Гц), 4,72 (2Н, с), 7,29-7,36 (5Н, м), 7,48 (1Н, дд, $J = 8,4, 1,6$ Гц), 7,55 (1Н, д, $J = 8,4$ Гц), 7,71 (1Н, д, $J = 2,0$ Гц).</td>
<td>δ: 0,88 (6Н, дд, $J = 6,4, 2,0$ Гц), 1,73-1,76 (1Н, м), 2,61-2,67 (2Н, м), 3,51 (1Н, дд, $J = 14,4, 8,4$ Гц), 3,82 (1Н, дд, $J = 14,4, 4,0$ Гц), 4,45 (1Н, кв, $J = 4,0$ Гц), 4,75 (2Н, с), 7,27-7,37 (5Н, м), 7,52 (1Н, дд, $J = 8,4, 2,4$ Гц), 7,66 (1Н, д, $J = 8,4$ Гц), 7,73 (1Н, д, $J = 2,0$ Гц), 12,68 (1Н, уш.).</td>
</tr>
</tbody>
</table>

264
<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>1Н ЯМР (400 МГц, д6-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td></td>
<td>Способ B, чистота составляет 100%, BY = 2,098 мин; МС рассчит.: 447,1; МС найдено: 448,2 [M + H]⁺.</td>
<td>δ: 0,86 (6H, d, J = 6,4 Гц), 1,71-1,75 (1H, m), 1,82 (2H, t, J = 6,4 Гц), 2,60 (2H, d, J = 7,2 Гц), 2,69 (2H, t, J = 6,8 Гц), 3,50 (2H, t, J = 6,8 Гц), 4,63 (2H, c), 7,24-7,36 (5H, m), 7,51 (1H, dd, J = 8,4, 2,0 Гц), 7,64 (1H, d, J = 8,4 Гц), 7,72 (1H, d, J = 2,0 Гц), 8,41 (1H, c).</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td>Способ B, чистота составляет 100%, BY = 1,697 мин; МС рассчит.: 518,1; МС найдено: 519,2 [M + H]⁺.</td>
<td>δ: 0,86 (6H, d, J = 6,4 Гц), 1,71-1,75 (1H, m), 1,21-1,23 (2H, m), 1,46 (2H, dd, J = 13,6, 6,8 Гц), 1,72-1,75 (1H, m), 2,53 (2H, t, J = 6,8 Гц), 2,60 (2H, d, J = 6,8 Гц), 3,06 (2H, dd, J = 8,4, 6,8 Гц), 3,63 (2H, t, J = 6,8 Гц), 4,62 (2H, c), 7,26-7,35 (5H, m), 7,51 (1H, dd, J = 8,4, 2,0 Гц), 7,65 (1H, d, J = 8,4 Гц), 7,72 (1H, d, J = 1,6 Гц), 7,95-7,96 (1H, m).</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td>Способ C, чистота составляет 100%, BY = 2,549 мин; МС рассчит.: 518,1; МС найдено: 519,2 [M + H]⁺.</td>
<td>δ: 0,86 (6H, d, J = 6,4 Гц), 1,72-1,75 (1H, m), 2,55 (2H, t, J = 6,8 Гц), 2,60 (2H, d, J = 7,2 Гц), 3,60-3,65 (2H, m), 4,64 (2H, c), 7,00 (1H, c), 7,23-7,35 (6H, m), 7,51 (1H, dd, J = 8,4, 2,0 Гц), 7,64 (1H, d, J = 8,4 Гц), 7,72 (1H, d, J = 2,0 Гц), 8,16 (1H, t, J = 6,0 Гц).</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td>Способ C, чистота составляет 100%, BY = 1,564 мин; МС рассчит.: 450,0; МС найдено: 449,2 [M + H]⁺.</td>
<td>δ: 0,88 (6H, d, J = 6,4 Гц), 1,72-1,79 (1H, m), 2,50-2,51 (2H, m), 2,62 (2H, d, J = 7,2 Гц), 3,07-3,12 (2H, m), 3,35-3,38 (2H, m), 3,64 (2H, t, J = 6,8 Гц), 4,65 (3H, c), 7,25-7,30 (3 H, m), 7,33-7,37 (2H, m), 7,52 (1H, dd, J = 8,4, 2,4 Гц), 7,66 (1H, d, J = 8,4 Гц), 7,74 (1H, d, J = 2,0 Гц), 7,79-8,00 (1H, m).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>(^1)Н ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>Способ С, чистота составляет 99,8%, BY = 2,599 мин; МС рассчит.: 541,2; МС найдено: 542,3 [М + H] (^+).</td>
<td>(\delta): 0,86 (6Н, д, (J = 6,4 \text{ Гц}), 1,71-1,75 (1Н, м), 2,54-2,61 (4Н, м), 3,65 (2Н, т, (J = 6,8 \text{ Гц})), 4,23 (2Н, д, (J = 5,6 \text{ Гц})), 4,61 (2Н, с), 6,78 (1Н, с), 6,98 (1Н, с), 7,23-7,27 (3Н, м), 7,31-7,35 (2Н, м), 7,50 (1Н, дд, (J = 8,4, 2,0 \text{ Гц})), 7,63-7,66 (1Н, м), 7,72 (1Н, д, (J = 2,0 \text{ Гц})), 8,42-8,45 (1Н, м), 11,76 (1Н, уш.).</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td>Способ С, чистота составляет 97,2%, BY = 2,070 мин; МС рассчит.: 519,1; МС найдено: 520,2 [М + H] (^+).</td>
<td>(\delta): 0,86 (6Н, д, (J = 6,4 \text{ Гц})), 1,71-1,75 (1Н, м), 2,48-2,54 (2Н, м), 2,60 (2Н, д, (J = 7,2 \text{ Гц})), 3,45-3,47 (2Н, м), 3,60 (2Н, т, (J = 6,8 \text{ Гц})), 4,64 (2Н, с), 7,22-7,34 (5Н, м), 7,51 (1Н, дд, (J = 8,4, 2,0 \text{ Гц})), 7,64 (1Н, д, (J = 8,4 \text{ Гц})), 7,71 (1Н, д, (J = 2,0 \text{ Гц})), 7,77 (1Н, уш.).</td>
</tr>
<tr>
<td>197</td>
<td></td>
<td>Способ В, чистота составляет 91,8%, BY = 1,970 мин; МС рассчит.: 546,2; МС найдено: 547,3 [М + H] (^+).</td>
<td>(\delta): 0,86 (6Н, д, (J = 6,8 \text{ Гц})), 1,69-1,75 (1Н, м), 2,48-2,52 (2Н, м), 2,61 (2Н, д, (J = 6,8 \text{ Гц})), 3,14 (4Н, с), 3,65 (2Н, т, (J = 6,8 \text{ Гц})), 4,63 (2Н, с), 7,24-7,28 (2Н, м), 7,27-7,36 (6Н, м), 7,49-7,52 (2Н, м), 7,65 (1Н, д, (J = 8,4 \text{ Гц})), 7,72 (1Н, д, (J = 2,0 \text{ Гц})), 8,14 (1Н, уш.).</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td>Способ С, чистота составляет 94,4%, BY = 2,260 мин; МС рассчит.: 568,1; МС найдено: 569,2 [М + H] (^+).</td>
<td>(\delta): 0,87 (6Н, д, (J = 6,4 \text{ Гц})), 1,73-1,77 (1Н, м), 2,34 (2Н, т, (J = 7,2 \text{ Гц})), 2,61 (2Н, д, (J = 7,2 \text{ Гц})), 3,02 (2Н, т, (J = 6,8 \text{ Гц})), 3,20 (2Н, т, (J = 6,8 \text{ Гц})), 3,53 (2Н, т, (J = 7,2 \text{ Гц})), 4,69 (2Н, с), 7,22-7,35 (5Н, м), 7,51 (1Н, дд, (J = 8,4, 2,0 \text{ Гц})), 7,64 (1Н, д, (J = 8,4 \text{ Гц})), 7,70 (1Н, д, (J = 2,0 \text{ Гц})), 7,75 (1Н, уш.).</td>
</tr>
</tbody>
</table>
Схема 2: Путь для соединения 346

Схема 3: Путь для соединений b-244

Схема 4: Путь для соединения b-250

Схема 5: Путь для соединения b-257
Схема 6: Путь для соединения b-260

Схема 7: Путь для соединения b-263

Схема 8: Путь для соединения b-264

Схема 9: Путь для соединений b-268, b-269, b-299, b-309, b-348, b-349, b-357, b-358, b-380
Схема 10: Путь для соединения b-270

Схема 11: Путь для соединений b-288, b-289

Схема 12: Путь для соединений b-290
Схема 13: Путь для соединения b-291

Схема 14: Путь для соединения b-292

Схема 15: Путь для соединения b-294

Схема 16: Путь для соединения b-295
Схема 17: Путь для соединения b-300

Схема 18: Путь для соединения b-301

Схема 19: Путь для соединения b-287

Схема 20: Путь для соединений b-302, b-306

Схема 21: Путь для соединения b-310
Схема 22: Путь для соединения b-313

Схема 23: Путь для соединения b-332

Схема 24: Путь для соединения b-361

Схема 25: Путь для соединения b-372
Схема 26: Путь для соединения b-378

\[
\begin{align*}
\text{O} & \quad \text{Br} \\
\text{O} & \quad \text{H}_2\text{N} \\
378\text{-}1
\end{align*}
\]

\[
\text{Cs}_2\text{CO}_3, \text{Pd(dppf)Cl}_2, \text{ТГФ}/\text{H}_2\text{O}, 80^\circ\text{C}, 2 \text{ ч}
\]

\[
\begin{align*}
\triangle K^+ & \quad \text{BF}_2 \\
\text{F} & \quad \text{F} \\
b\text{-}378
\end{align*}
\]

Схема 27: Путь для соединений 253-s, 343-s

Схема 28: Путь для соединения 316-s

Схема 29: Путь для соединений 344-s, 356-s, 366-s

Тот же способ синтеза использовали для других соединений б-378.
Схема 30: Путь для соединения I-199

Схема 31: Путь для соединения I-200

Схема 32: Путь для соединений I-201, I-202

Тот же способ синтеза использовали для другого соединения I-202

Схема 34: Путь для соединения I-204

Схема 35: Путь для соединения I-205

Схема 36: Путь для соединения I-206

Схема 38: Путь для соединений I-215, I-216

Схема 39: Путь для соединения I-218

Схема 40: Путь для соединений I-221, I-229, I-239, I-242
Схема 41: Путь для соединения I-223

Схема 42: Путь для соединений I-224, I-238, I-240

Тот же способ синтеза использовали для других соединений I-238, I-240.

Схема 43: Путь для соединений I-228, I-229

Тот же способ синтеза использовали для другого соединения I-229.

Схема 44: Путь для соединения I-230

Схема 45: Путь для соединения I-231
Схема 46: Путь для соединения I-232

Схема 47: Путь для соединений I-234, I-235

Тот же способ синтеза использовали для другого соединения I-235

Схема 48: Путь для соединения I-244

Схема 49: Путь для соединения I-245

Схема 50: Путь для соединений I-246 – I-250
Схема 51: Путь для соединений I-251, I-252

Схема 52: Путь для соединения I-253

Схема 53: Путь для соединения I-257

Схема 54: Путь для соединений I-259, I-260
Схема 55: Путь для соединения I-262

Схема 56: Путь для соединений I-269, I-271, I-272, I-275

Тот же способ синтеза использовали для других соединений I-271, I-272, I-275.

Схема 57: Путь для соединений I-276, I-277

Тот же способ синтеза использовали для другого соединения I-277

Схема 58: Путь для соединения I-279
Схема 59: Путь для соединения I-282

Схема 60: Путь для соединений I-284, I-285

Тот же способ синтеза использовали для другого соединения I-285

[00506] Общая информация. Все испарения проводились в вакууме на роторном испарителе. Аналитические образцы сушили в вакууме (1–5 мм рт.ст.) при комнатной температуре. Тонкослойную хроматографию (ТСХ) проводили на планшетках с силикагелем, пятна визуализировали с применением УФ-света (214 и 254 нм). Очистку с помощью колоночной и флэш-хроматографии проводили с использованием силикагеля (200–300 меш). Системы растворителей представлены в виде смесей по объему. Все спектры ЯМР были записаны на спектромetre Bruker 400 (400 МГц). Химические сдвиги 1H указаны в значениях δ в миллионных долях с дейтерированным растворителем в качестве внутреннего стандарта. Данные представлены следующим образом: химический
сдвиг, мультиплетность (с = синглет, д = дублет, т = триплет, кв = квартет, уш. = уширенный, м = мультиплет), константа взаимодействия (Гц), интегрирование.

[00507] Спектры ЖХ-МС были получены на масс-спектрометре Agilent 1200 серий 6110 или 6120 с ионизацией электрораспылением, и, если не указано иное, общие условия ЖХ-МС были следующими:

Способ A (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 3,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 0,8 мин, затем в этих условиях в течение 0,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,01 мин).

Способ B (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,05 мин и в этих условиях в течение 0,7 мин.).

Способ C (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] до 0% [вода + 10 мМ NH₄HCO₃] и 100% [CH₃CN] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] за 0,1 мин и в этих условиях за 0,7 мин.)

Синтез 1-(3,4-дихлорфенил)-4-метилпентан-1-она (c-1)

[00508] К раствору а (25,0 г, 145 ммоль) в ТГФ (200 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 218 мл, 218 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (200 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и соляным раствором (80,0 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной
хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением с-1 (15,0 г, выход 42%) в виде масла желтого цвета.

Синтез 2-бром-1-(3,4-диоксиенил)-4-метилпентан-1-она (c-2)

Смесь с-1 (15,0 г, 61,2 ммоль) и РТАТ (34,4 г, 91,8 ммоль) в ТГФ (300 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (300 мл), а затем экстрагировали EtOAc (200 мл x 3). Органический слой объединяли и промывали H₂O (100 мл х 2) и соляным раствором (100 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением c-2 (20,0 г, выход 100%) в виде масла коричневого цвета.

Синтез 1-(3,4-диоксиенил)-4-метил-2-тиоцианатопентан-1-она (с)

Смесь с-2 (20,0 г, 61,7 ммоль) и NaSCN (10,0 г, 123 ммоль) в EtOH (200 мл) перемешивали при 100 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением с (6,90 г, выход 37%) в виде твердого вещества белого цвета.

Синтез 1-(4-хлор-3-(трифторметил)фенил)-3-метилбутан-1-ола (346-2)
К раствору 346-1 (14,0 г, 67,1 ммоль) в ТГФ (200 мл) добавляли изобутилмагний бромид (1,0 М в ТГФ, 101 мл, 101 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. НН₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (200 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и солевым раствором (80,0 мл), затем сушили безводным Na₂SO₄, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 346-2 (15,0 г, выход 84%) в виде масла желтого цвета.

Синтез 1-(4-хлор-3-(трифторметил)фенил)-3-метилбутан-1-она (346-3)

К раствору 346-2 (15,0 г, 56,2 ммоль) в CH₂Cl₂ (200 мл) добавляли PCC (18,2 г, 84,4 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 0,5 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 346-3 (4,00 г, выход 27%) в виде твердого вещества желтого цвета.

Синтез 2-бром-1-(4-хлор-3-(трифторметил)фенил)-3-метилбутан-1-она (346-4)
Смесь 346-3 (4,00 г, 15,1 ммоль) и РТАТ (8,50 г, 22,7 ммоль) в ТГФ (100 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H2O (200 мл), а затем экстрагировали EtOAc (100 мл х 3). Органический слой объединяли и промывали H2O (100 мл х 2) и солевым раствором (100 мл), затем сушили безводным Na₂SO₄. Растров концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 346-4 (5,00 г, выход 96%) в виде масла коричневого цвета.

Синтез 1-(4-хлор-3-(трифторметил)фенил)-3-метил-2-тиоцианатобутан-1-она (346)

Таблица 4-1: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>с</td>
<td></td>
<td>Способ Б, чистота составляет 75,2%, ВУ = 2,480 мин; МС рассчит.:301,0; МС найдено: 324,1 [M + Na]⁺.</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>343</td>
<td></td>
<td>Способ А, чистота составляет 87,1%, ВУ = 0,865 мин; МС рассчит.:287,0; МС найдено: 288,1 [M + Н]⁺.</td>
</tr>
<tr>
<td>346</td>
<td></td>
<td>Способ Б, чистота составляет 31,3%, ВУ = 1,699 мин; МС рассчит.:321,0; МС найдено: 322,1 [M + Н]⁺.</td>
</tr>
</tbody>
</table>

Синтез 1-трет-бутил 3-метил 4-(3-(1,3-диоксоизонидолин-2-il)пропанолил)пиперазин-1,3-ди карбоксилата (244-2)
Смесь 244-1 (178 мг, 0,729 ммоль), 3-(1,3-диоксоизоиндолин-2-ил)пропановой кислоты (192 мг, 0,874 ммоль), HATU (554 мг, 1,46 ммоль) и DIPEA (188 мг, 1,46 ммоль) в ДМФ (10,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливают в H₂O (150 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяют и промывают H₂O (100 мл х 2) и солевым раствором (50 мл), затем сушили безводным Na₂SO₄. Раствор концентрируют и очищают колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 1/1) с получением 244-2 (270 мг 83%) в виде твердого вещества белого цвета.

Синтез метил 1-(3-(1,3-диоксоизоиндолин-2-ил)пропаноил)пиперазин-2-карбоксилата (b-244)

Смесь 244-2 (270 мг, 0,606 ммоль) в HCl (4,0 М в диоксане, 5,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтруют и твердое вещество сушили с получением b-244 (160 мг, выход 76%) в виде твердого вещества желтого цвета.
Синтез 3-(аминометил)пиридин-2(3H)-она (b-250)

\[
\begin{align*}
\text{N} & \quad \text{CN} \\
\text{250-1} & \quad \text{Ra-Ni, H}_2\text{, NH}_3\text{.H}_2\text{O, MeOH, кт, 18 ч} \\
\text{250-1} & \quad \text{NH}_2 \\
\text{b-250} & \\
\end{align*}
\]

Смесь 250-1 (1,00 г, 8,33 ммоль), NH₃·H₂O (W/W = 28%, 1,04 г) и Ni Ренея (1,00 г) в MeOH (200 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение 18 часов. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 80/1) с получением b-250 (470 мг, выход 45%) в виде масла желтого цвета.

Синтез трет-бутил 2-(3-формилбензамидо)этилкарбамата (257-2)

\[
\begin{align*}
\text{HO} & \quad \text{CON} \\
\text{257-1} & \quad \text{H₂N} \quad \text{NH} \quad \text{Boc} \\
\text{H₂N} \quad \text{NH} \quad \text{Boc} & \quad \text{HATU, DIPEA, ДМФ, кт, 16 ч} \\
\text{257-2} & \quad \text{CON} \\
\end{align*}
\]

Смесь 257-1 (1,00 г, 6,66 ммоль), трет-бутил 2-аминоэтилкарбамата (1,28 г, 7,99 ммоль), HATU (5,06 г, 13,3 ммоль) и DIPEA (2,58 г, 20,0 ммоль) в ДМФ (20,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в H₂O (250 мл), и экстрагировали ЕtOАс (200 мл х 2). Органический слой объединяли и промывали H₂O (150 мл х 2) и соляным раствором (100 мл), затем сушили безводным Na₂SO₄. Растор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 1/1) с получением 257-2 (2,00 г 100%) в виде масла коричневого цвета.

Синтез этил 3-(3-(2-(трет-бутоксиокарбониламино)этилкарбамоил)бензиламино)пропаноата (b-257)
К раствору 257-2 (2,00 г, 6,84 ммоль) и этил 3-аминопропаноата (962 мг, 8,21 ммоль) в EtOH (50,0 мл) добавляли NaBH₄ (517 мг, 13,7 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 100/1) с получением b-257 (2,40 г, выход 89%) в виде твердого вещества желтого цвета.

Синтез метил 5-амино-2-гидроксибензоата (b-260)

Смесь 260-1 (300 мг, 1,52 ммоль) и Pd(OH)₂ (200 мг) в MeOH (50 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 20/1) с получением b-260 (200 мг, выход 79%) в виде масла желтого цвета.

Синтез метил 2-метокси-5-нитробензоата (263-1)

Смесь 260-1 (500 мг, 2,54 ммоль), MeI (432 мг, 3,04 ммоль) и K₂CO₃ (700 мг, 5,07 ммоль) в ДМФ (10 мл) перемешивали при комнатной температуре в течение 5 часов. По
завершении реакции реакционную смесь вылили в H₂O (150 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (80 мл х 2) и соляным раствором (50 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 263-1 (400 мг 75%) масла желтого цвета.

Синтез метил 5-амино-2-метоксибензоата (b-263)

![Chemical structure of 263-1 and b-263]

[00522] Смесь 263-1 (400 мг, 1,89 ммоль) и Pd(OH)₂ (200 мг) в MeOH (50 мл) перемешивали в атмосфере Н₂ при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 50/1) с получением b-263 (350 мг, выход 100%) в виде масла желтого цвета.

Синтез метил 5-амино-2-морфолинобензоата (b-264)

![Chemical structure of 264-1 and b-264]

[00523] Смесь 264-1 (250 мг, 1,48 ммоль), морфолина (155 мг, 1,77 ммоль) и Cs₂CO₃ (964 мг, 2,96 ммоль) в DMSO (10,0 мл) перемешивали при 100 °C в течение 1 часа. По завершении реакции реакционную смесь вылили в H₂O (100 мл), и экстрагировали EtOAc (50,0 мл х 2). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 50/1) с получением b-264 (150 мг, выход 43%) масла желтого цвета.

Синтез метил 5-аминофенил-3-карбоксилата (b-268)
Смесь 268-1 (150 мг, 0,652 ммоль), фенилбороновой кислоты (119 мг, 0,978 ммоль), Pd(PPPh3)4 (15,1 мг, 0,0131 ммоль) и K2CO3 (180 мг, 1,30 ммоль) в диоксане/H2O (об./об. = 5/1, 10,0 мл) перемешивали в атмосфере N2 при 80 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (CH2Cl2/MeOH = 80/1) с получением b-268 (145 мг, выход 98%) в виде твердого вещества желтого цвета.

Синтез метил 3-амино-5-бензамидобензозата (b-270)

Смесь 270-1 (500 мг, 3,01 ммоль), бензоилхлорида (508 мг, 3,61 ммоль) и Et3N (607 мг, 6,01 ммоль) в CH2Cl2 (50 мл) перемешивали при 0 °C в течение 10 мин. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (CH2Cl2/MeOH = 80/1) с получением b-270 (300 мг, выход 37%) в виде твердого вещества желтого цвета.

Синтез метил 4-бромбифенил-2-карбоксилата (288-2)

Смесь 288-1 (1,00 г, 2,93 ммоль), фенилбороновой кислоты (536 мг, 4,40 ммоль),
Pd(dpff)Cl₂ (107 мг, 0,147 ммоль) и Na₂CO₃ (622 мг, 5,87 ммоль) в диоксане/H₂O (об./об. = 5/1, 20,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением 288-2 (400 мг, выход 47%) в виде твердого вещества желтого цвета.

Синтез 2-(метоксикарбонил)бифенил-4-илбороновой кислоты (b-288)

Смесь 288-2 (200 мг, 0,687 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолана) (262 мг, 1,03 ммоль), Pd(dpff)Cl₂ (100 мг, 0,137 ммоль) и KOAc (135 мг, 1,37 ммоль) в диоксане (10,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением b-288 (100 мг, выход 57%) в виде масла желтого цвета.

Синтез метил 5-(4,4,5,5-тетраметил-1,3,2-диоксаборан-2-ил)-2-(трифторметил)бензоата (b-290)

Смесь 290-1 (100 мг, 0,353 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолана) (135 мг, 0,530 ммоль), Pd(dpff)Cl₂ (12,9 мг, 0,018 ммоль) и KOAc (69,3 мг, 0,706 ммоль) в диоксане (5,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение 5 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением b-290 (100 мг, выход 86%) в виде масла желтого цвета.

Синтез метил 6-(трибутилстаннил)николината (b-291)
Смесь 291-1 (1,00 г, 4,63 ммоль), 1,1,1,2,2,2-гексабутилдистанана (4,03 г, 6,94 ммоль), Pd(dppf)Cl₂ (169 мг, 0,231 ммоль) и KOAc (90,9 мг, 0,926 ммоль) в NMP (20,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение ночи. По завершении реакции реакционную смесь выливали в H₂O (250 мл), и экстрагировали EtOAc (150 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и соляным раствором (100 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 100/1) с получением b-291 (500 мг 25%) в виде масла желтого цвета.

Синтез этил 5-(трибутилстанил)тиофен-2-карбоксилата (b-292)

К раствору 292-1 (1,00 г, 6,40 ммоль) в TГФ (50,0 мл) добавляли LDA (1,0 М в TГФ, 9,60 мл, 9,60 ммоль) при -78 °C. Реакционную смесь перемешивали при -78 °C в течение 0,5 часа, а затем в реакционную смесь добавляли трибутилхлорстанинн (2,50 г, 7,68 ммоль). Реакционную смесь перемешивали при -78 °C в течение 4 часов. По завершении реакции реакционную смесь гасили водн. NH₄Cl (50,0 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (50 мл х 2) и соляным раствором (50 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир) с получением b-292 (1,30 г 46%) в виде бесцветного масла.

Синтез 2-(бензиламино)ациetonитрила (b-294)
Смесь 294-1 (1,00 г, 8,34 ммоль), фенилметанамина (983 мг, 9,17 ммоль) и DIPEA (2,15 г, 16,7 ммоль) в MeCN (100 мл) перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (CH₂Cl₂/MeOH = 100/1) с получением b-294 (1,10 г, выход 90%) в виде масла коричневого цвета.

Синтез трет-бутил 2-(бензиламино)этилкарбамата (b-295)

К раствору 295-1 (500 мг, 3,12 ммоль) и бензальдегида (331 мг, 3,12 ммоль) в EtOH (50,0 мл) добавляли NaBH₄ (177 мг, 4,68 ммоль) при 0 °C. Реакционную смесь перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 1/1) с получением b-295 (550 мг 70%) в виде бесцветного масла.

Синтез метил 2-амино-6-(трифторметил)бензоата (b-300)

Смесь 300-1 (500 мг, 2,44 ммоль), Mel (415 мг, 2,92 ммоль) и K₂CO₃ (673 мг, 4,87 ммоль) в DMF (20 мл) перемешивали при 70 °C в течение 2 часов. По завершении реакции реакционную смесь выливают в H₂O (250 мл), и экстрагировали EtOAc (150 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и солевым раствором (100 мл), затем сушили безводным Na₂SO₄. Рассол концентрировали и очищали колоночной
хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением b-300 (450 мг 84%) в виде твердого вещества желтого цвета.

Синтез метил 2-бензамидо-5-бромбензоата (301-2)

5 Смесь 301-1 (1,00 г, 4,35 ммоль), бензоилхлорида (733 мг, 5,22 ммоль) и NaHCO₃ (921 мг, 8,69 ммоль) в CH₂Cl₂ (100 мл) перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 301-2 (1,36 г, выход 94%) в виде твердого вещества серого цвета.

10 Синтез метил 2-бензамидо-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)бензоата (b-301)

[00535] Смесь 301-2 (1,16 г, 3,47 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолана) (1,32 г, 5,21 ммоль), Pd(dppf)Cl₂ (127 мг, 0,174 ммоль) и KOAc (681 мг, 6,94 ммоль) в диоксане (20,0 мл) перемешивали в атмосфере N₂ при 90 °C в течении 5 часов.

15 По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением b-301 (1,36 г, выход 100%) в виде твердого вещества желтого цвета.

Синтез метил 2-бром-5-карбамотиоилбензоата (b-287)
Смесь 287-1 (200 мг, 0,833 ммоль) и P₂S₅ (222 мг, 1,00 ммоль) в EtOH (10,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением b-287 (200 мг, выход 88%) в виде твердого вещества желтого цвета.

Синтез метил 2-цианоизоникотината (302-2)

Смесь 302-1 (1,70 г, 7,87 ммоль), Zn(CN)₂ (462 мг, 3,93 ммоль) и Pd(PPH₅)₄ (182 мг, 0,157 ммоль) в толуоле (100 мл) перемешивали в атмосфере N₂ при 120 °С в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 302-2 (1,00 г, выход 78%) в виде твердого вещества желтого цвета.

Синтез метил 2-карбамотиоизоникотината (b-302)

Смесь 302-2 (1,00 г, 6,17 ммоль) и P₂S₅ (1,64 г, 7,400 ммоль) в EtOH (100 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1)
с получением б-302 (400 мг, выход 33%) в виде твердого вещества желтого цвета.

Синтез трет-бутил 4-хлорпиридин-2-илкарбамата (310-2)

\[
\begin{array}{c}
\text{Cl} \quad \text{N} \\ \\
\text{H}_2\text{N} \quad \text{LiHDMS, 0 °C, 0,5 ч} \\
\text{Cl} \quad \text{N} \\ \\
\text{Boc}_2\text{O} \quad \text{310-1} \\
\text{Cl} \quad \text{N} \\ \\
\text{BocHN} \quad \text{310-2}
\end{array}
\]

[00539] К раствору 310-1 (5,00 г, 38,9 ммоль) в ТГФ (100 мл) добавляли LiHDMS (1,0 М в гексане, 92,7 мл, 92,7 ммоль) при 0 °C. Реакционную смесь перемешивали при 0 °C в течение 10 мин, а затем в реакционную смесь добавляли (Boc)₂O (10,2 г, 46,7 ммоль) добавляли. Реакционную смесь перемешивали при 0 °C в течение 0,5 часа. По завершении реакции реакционную смесь гасили водой NH₄Cl (200 мл), а затем экстрагировали EtOAc (200 мл x 2). Органический слой объединяли и промывали H₂O (100 мл x 2) и солевым раствором (100 мл), затем сушили безводным Na₂SO₄. Растор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/етилacetат = 20/1) с получением 310-2 (6,20 г 70%) в виде твердого вещества серого цвета.

Синтез этил 2-(трет-бутоксикарбониламино)-4-хлорниотината (310-3)

\[
\begin{array}{c}
\text{Cl} \quad \text{N} \\ \\
\text{BocHN} \quad \text{n-BuLi, -78 °C, 1 ч} \\
\text{O} \quad \text{310-2} \\
\text{Cl} \quad \text{N} \\ \\
\text{EtOOC} \quad \text{310-3}
\end{array}
\]

[00540] К раствору 310-2 (3,00 г, 13,1 ммоль) в ТГФ (100 мл) добавляли n-BuLi (2,0 М в ТГФ, 16,4 мл, 32,8 ммоль) при -78 °C. Реакционную смесь перемешивали при -78 °C в течение 30 мин, а затем в реакционную смесь добавляли этилкарбонилхлорид (2,14 г, 19,7 ммоль). Реакционную смесь перемешивали при -78 °C в течение 1 часа. По завершении реакции реакционную смесь гасили водой NH₄Cl (100 мл), а затем экстрагировали EtOAc (200 мл x 2). Органический слой объединяли и промывали H₂O (100 мл x 2) и солевым раствором (100 мл), затем сушили безводным Na₂SO₄. Растор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/етилacetат = 20/1) с получением 310-3 (2,10 г 53%) в виде твердого вещества оранжевого цвета.

Синтез 2-(трет-бутоксикарбониламино)-4-хлорниотиновой кислоты (310-4)

296
К раствору 310-3 (200 мг, 0,665 ммоль) в ТГФ/H₂O (об./об. = 4/1, 5,00 мл) добавляли LiOH (2,0 М в H₂O, 0,83 мл). Реакционную смесь перемешивали при комнатной температуре в течение 48 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл x 2), объединенную органическую фазу промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 310-4 (100 мг, выход 55%) в виде твердого вещества белого цвета.

Синтез 2-амино-4-хлорникотиновой кислоты (b-310)

Смесь 310-4 (100 мг, 0,366 ммоль) в HCl (4,0 М в дихлорметане, 2,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением b-310 (80,0 мг, выход 100%) в виде твердого вещества белого цвета.

Синтез этил 2-амино-4-метоксиникотината (b-313)
Смесь 310-3 (200 мг, 0,665 ммоль) и конц. HCl (2,0 мл) в MeOH (5,0 мл) кипятили с обратным холодильником в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением b-313 (160 мг, выход 100%) в виде твердого вещества желтого цвета.

Синтез метил 3-амино-4-бромбензоата (332-2)

Смесь 332-1 (1,00 г, 4,63 ммоль), Mel (788 мг, 5,55 ммоль) и K₂CO₃ (1,28 г, 9,26 ммоль) в DМФ (20 мл) перемешивали при 70 °C в течение 2 часов. По завершении реакции реакционную смесь выливают в H₂O (250 мл), и экстрагировали EtOAc (150 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и соляным раствором (100 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 332-2 (800 мг 75%) в виде твердого вещества желтого цвета.

Синтез 2-(бензил(2-карбоксиэтил)амино)-4-(3,4-дихлорфенил)тиазол-5-карбоновой кислоты (b-332)

Смесь 332-2 (800 мг, 3,48 ммоль), фенилбензойной кислоты (636 мг, 5,22 ммоль), Pd(dppf)Cl₂ (127 мг, 0,174 ммоль) и Na₂CO₃ (738 мг, 6,96 ммоль) в диоксан/Н₂O (об./об. = 5/1, 20,0 мл) перемешивали в атмосфере N₂ при 80 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением b-332 (700 мг, выход 89%) в виде твердого вещества желтого цвета.
Синтез метил 3-амино-5-бром-4-метилтиофен-2-карбоксилата (361-2)

К раствору 361-1 (2,00 г, 11,7 ммоль) и AcOH (20 мл) в CH₂Cl₂ (100 мл) добавляли Br₂ (1,96 г, 12,3 ммоль). Реакционную смесь перемешивали при 50 °C в течение 16 часов. По завершении реакции реакционную смесь промывали H₂O (100 мл х 2) и соляным раствором (100 мл), а затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 361-2 (600 мг 21%) в виде масла желтого цвета.

Синтез метил 3-амино-4-метил-5-фенилтиофен-2-карбоксилата (b-361)

Смесь 361-2 (600 мг, 2,40 ммоль), фенилборовой кислоты (439 мг, 3,60 ммоль), Pd(dppf)Cl₂ (87,7 мг, 0,120 ммоль) и Na₂CO₃ (509 мг, 4,80 ммоль) в диоксана/H₂O (об./об. = 5/1, 20,0 мл) перемешивали в атмосфере N₂ при 80 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением b-361 (200 мг, выход 34%) в виде твердого вещества желтого цвета.

Синтез метил 3-амиnobензо[b]тиофен-2-карбоксилата (b-372)

299
Смесь 372-1 (1,00 г, 8,26 ммоль), метил 2-меркаптоацетата (1,05 г, 9,91 ммоль) и 5-BuOK (1,85 г, 16,5 ммоль) в ДМФ (10,0 мл) перемешивали при 100 °C в течение 2 часов. По завершении реакции реакционную смесь выливают в H2O (100 мл), и экстрагировали EtOAc (50,0 мл x 2). Органический слой объединяли и промывали H2O (50,0 мл x 2) и солевым раствором (50,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (CH2Cl2/MEOH = 150/1) c получением b-372 (1,20 г, выход 70%) в виде твердого вещества желтого цвета.

Синтез метил 2-амино-5-циклопропилнитритината (b-378)

Смесь 378-1 (1,00 г, 4,33 ммоль), калия циклопропилтрифторбората (961 мг, 6,49 ммоль), Pd(dppf)Cl2 (158 мг, 0,216 ммоль) и Cs2CO3 (2,82 г, 8,66 ммоль) в ТГФ/H2O (об./об. = 5/1, 50,0 мл) перемешивали в атмосфере N2 при 80 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) c получением b-378 (190 мг, выход 23%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-(3,4-дихлорфенил)-5-изобутилтиазола (253-s)

Смесь с (3,10 г, 10,3 ммоль) в НВρ (2,0 М в AcOH, 20,0 мл) перемешивали при 60 °C в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле -s(петролейный эфир/этилацетат = 10/1) c получением 253-s (3,30 г, выход 88%) в виде твердого вещества желтого цвета.

Синтез 1-трет-бутил 2-метил 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-
ил)пиперазин-1,2-дикарбоксилата (316-2)

316-1

[00551] Смесь 316-1 (1,00 г, 4,09 ммоль), AcOH (491 мг, 8,19 ммоль) и с (1,24 г, 4,09 ммоль) в i-PrOH (10,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 316-2 (2,00 г, выход 92%) в виде твердого вещества желтого цвета.

Синтез метил 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоксилата (316-s)

316-2

[00552] Смесь 316-2 (2,00 г, 0,401 ммоль) в HCl (4,0 M в диоксане, 30,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали и твердое вещество сушили с получением 316-s (1,20 г, выход 74%) в виде твердого вещества белого цвета.

Синтез метил 5-бром-2-(4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламино)никотината (344-s)
Смесь 344-1 (500 мг, 2,16 ммоль), 343-s (760 мг, 2,16 ммоль), Pd2(dbu)3 (40,3 мг, 0,0432 ммоль), X-phos (31,3 мг, 0,0541 ммоль) и Cs2CO3 (1,41 г, 4,33 ммоль) в толуоле (20,0 мл) перемешивали в атмосфере N2 при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 344-s (420 мг, выход 39%) в виде твердого вещества желтого цвета.

Схема 2: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-244</td>
<td></td>
<td>Способ C, чистота составляет 84,1%, БУ = 1,474 мин; МС рассчит.:345,1; МС найдено: 346,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-250</td>
<td></td>
<td>Способ C, чистота составляет 85,9%, БУ = 0,387 мин; МС рассчит.:124,1; МС найдено: 125,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-257</td>
<td></td>
<td>Способ C, чистота составляет 73,9%, БУ = 1,843 мин; МС рассчит.:393,2; МС найдено: 394,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-260</td>
<td></td>
<td>Способ A, чистота составляет 98,5%, БУ = 0,340 мин; МС рассчит.:167,1; МС найдено: 168,4 [M + H]^+.</td>
</tr>
<tr>
<td>b-263</td>
<td></td>
<td>Способ A, чистота составляет 98,5%, БУ = 0,303 мин; МС рассчит.:181,1; МС найдено: 182,4 [M + H]^+.</td>
</tr>
<tr>
<td>b-264</td>
<td></td>
<td>Способ A, чистота составляет 81,3%, БУ = 0,430 мин; МС рассчит.:236,1; МС найдено: 237,4 [M + H]^+.</td>
</tr>
<tr>
<td>b-268</td>
<td></td>
<td>Способ A, чистота составляет 99,3%, БУ = 0,641 мин; МС рассчит.:227,1; МС найдено: 228,4 [M + H]^+.</td>
</tr>
<tr>
<td>#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>b-269</td>
<td></td>
<td>Способ C, чистота составляет 98,0%, ВУ = 1,752 мин; МС рассчит.: 227,1; МС найдено: 228,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-270</td>
<td></td>
<td>Способ A, чистота составляет 51,5%, ВУ = 0,525 мин; МС рассчит.: 270,1; МС найдено: 271,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-287</td>
<td></td>
<td>Способ B, чистота составляет 98,5%, ВУ = 1,612 мин; МС рассчит.: 273,0; МС найдено: 274,0 [M + H]^+.</td>
</tr>
<tr>
<td>b-288</td>
<td></td>
<td>Способ B, чистота составляет 79,3%, ВУ = 1,646 мин; МС рассчит.: 256,1; МС найдено: 257,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-289</td>
<td></td>
<td>Способ B, чистота составляет 35,8%, ВУ = 1,618 мин; МС рассчит.: 339,2; МС найдено: 340,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-290</td>
<td></td>
<td>Способ C, чистота составляет 69,4%, ВУ = 2,407 мин; МС рассчит.: 330,1; МС не найдено.</td>
</tr>
<tr>
<td>b-291</td>
<td></td>
<td>Способ B, чистота составляет 90,8%, ВУ = 2,128 мин; МС рассчит.: 427,2; МС найдено: 428,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-292</td>
<td></td>
<td>1H NMR (400 МГц, CDCl3) δ: 0,86-0,91 (9Н, м), 1,10-1,15 (5Н, м), 1,30-1,39 (10Н, м), 1,51-1,59 (6Н, м), 4,34 (2Н, кв, J = 7,6 Гц), 7,14 (1Н, д, J = 3,2 Гц), 7,87 (1Н, д, J = 3,2 Гц).</td>
</tr>
<tr>
<td>b-294</td>
<td></td>
<td>Способ B, чистота составляет 54,6%, ВУ = 0,985 мин; МС рассчит.: 146,1; МС найдено: 147,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-295</td>
<td></td>
<td>Способ B, чистота составляет 48,1%, ВУ = 1,512 мин; МС рассчит.: 250,2; МС найдено: 251,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-299</td>
<td></td>
<td>Способ C, чистота составляет 97,8%, ВУ = 2,245 мин; МС рассчит.: 222,1; МС не найдено.</td>
</tr>
<tr>
<td>b-300</td>
<td></td>
<td>Способ B, чистота составляет 90,1%, ВУ = 1,768 мин; МС рассчит.: 219,1; МС найдено: 220,1 [M + H]^+.</td>
</tr>
<tr>
<td>#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>b-301</td>
<td></td>
<td>Способ С, чистота составляет 80,6%, BV = 2,302 мин; МС рассчит.: 381,2; МС найдено: 382,2 [M + H]^+.</td>
</tr>
<tr>
<td>b-302</td>
<td></td>
<td>Способ В, чистота составляет 88,7%, BV = 1,488 мин; МС рассчит.: 196,0; МС найдено: 197,1 [M + H]^+.</td>
</tr>
<tr>
<td>b-306</td>
<td></td>
<td>Способ В, чистота составляет 72,2%, BV = 1,523 мин; МС рассчит.: 214,0; МС найдено: 215,1 [M + H]^+.</td>
</tr>
<tr>
<td>b-309</td>
<td></td>
<td>Способ В, чистота составляет 92,1%, BV = 1,459 мин; МС рассчит.: 242,1; МС найдено: 243,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-310</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>b-313</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
<tr>
<td>b-332</td>
<td></td>
<td>Способ А, чистота составляет 99,5%, BV = 0,707 мин; МС рассчит.: 227,1; МС найдено: 228,4 [M + H]^+.</td>
</tr>
<tr>
<td>b-348</td>
<td></td>
<td>Способ С, чистота составляет 81,1%, BV = 2,308 мин; МС рассчит.: 234,1; МС найдено: 235,0 [M + H]^+.</td>
</tr>
<tr>
<td>b-349</td>
<td></td>
<td>Способ В, чистота составляет 69,9%, BV = 1,475 мин; МС рассчит.: 242,1; МС найдено: 243,3 [M + H]^+.</td>
</tr>
<tr>
<td>b-357</td>
<td></td>
<td>Способ С, чистота составляет 51,7%, BV = 1,151 мин; МС рассчит.: 272,1; МС найдено: 273,1 [M + H]^+.</td>
</tr>
<tr>
<td>b-358</td>
<td></td>
<td>Способ А, чистота составляет 95,6%, BV = 0,510 мин; МС рассчит.: 239,1; МС найдено: 240,0 [M + H]^+.</td>
</tr>
<tr>
<td>#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>b-361</td>
<td>[image of chemical structure]</td>
<td>Способ B, чистота составляет 75,1%, ВУ = 2,559 мин; МС рассчит.:247,1; МС найдено: 248,2 [M + H]⁺.</td>
</tr>
<tr>
<td>b-372</td>
<td>[image of chemical structure]</td>
<td>Способ A, чистота составляет 100%, ВУ = 0,696 мин; МС рассчит.:207,0; МС найдено: 208,3 [M + H]⁺.</td>
</tr>
<tr>
<td>b-378</td>
<td>[image of chemical structure]</td>
<td>Способ A, чистота составляет 82,4%, ВУ = 0,426 мин; МС рассчит.:192,1; МС найдено: 193,4 [M + H]⁺.</td>
</tr>
<tr>
<td>b-380</td>
<td>[image of chemical structure]</td>
<td>Способ A, чистота составляет 85,8%, ВУ = 0,595 мин; МС рассчит.:195,1; МС найдено: 196,3 [M + H]⁺.</td>
</tr>
<tr>
<td>253-s</td>
<td>[image of chemical structure]</td>
<td>Способ B, чистота составляет 96,3%, ВУ = 2,508 мин; МС рассчит.:363,0; МС найдено: 364,0 [M + H]⁺.</td>
</tr>
<tr>
<td>316-s</td>
<td>[image of chemical structure]</td>
<td>Способ B, чистота составляет 93,4%, ВУ = 1,951 мин; МС рассчит.:427,1; МС найдено: 428,1 [M + H]⁺.</td>
</tr>
<tr>
<td>343-s</td>
<td>[image of chemical structure]</td>
<td>Способ A, чистота составляет 91,2%, ВУ = 1,055 мин; МС рассчит.:349,0; МС найдено: 350,0 [M + H]⁺.</td>
</tr>
<tr>
<td>344-s</td>
<td>[image of chemical structure]</td>
<td>Способ B, чистота составляет 83,8%, ВУ = 2,577 мин; МС рассчит.:499,0; МС найдено: 500,0 [M + H]⁺.</td>
</tr>
<tr>
<td>346-s</td>
<td>[image of chemical structure]</td>
<td>Способ B, чистота составляет 94,3%, ВУ = 2,406 мин; МС рассчит.:383,0; МС найдено: 384,0 [M + H]⁺.</td>
</tr>
<tr>
<td>356-s</td>
<td>[image of chemical structure]</td>
<td>Способ B, чистота составляет 84,8%, ВУ = 2,916 мин; МС рассчит.:498,0; МС не найдено.</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>366-s</td>
<td></td>
<td>Данные МС отсутствуют.</td>
</tr>
</tbody>
</table>

Синтез метил 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-1-(3-(1,3-диксоизоиндолин-2-ил)пропаноил)пиперазин-2-карбоксилата (244-3)

![Synthesis Diagram](image)
244-3

5 [00554] Смесь b-244 (160 мг, 0,463 ммоль) и с (140 мг, 0,463 ммоль) в EtOH (5,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 244-3 (200 мг, выход 69%) в виде масла желтого цвета.

Синтез метил 1-(3-аминопропаноил)-4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоксилата (244-4)

![Synthesis Diagram](image)
244-3

[00555] Смесь 244-3 (200 мг, 0,318 ммоль) и гидразингидрата (31,8 мг, 0,635 ммоль) в EtOH (5,0 мл) перемешивали при 90 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с
получением 244-4 (150 мг, выход 95%) в виде масла желтого цвета.

Синтез 1-(3-аминопропаноил)-4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоновой кислоты (I-199)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O}\text{C} \\
\text{N} & \quad \text{S} \\
\text{N} & \quad \text{S} \\
\text{MeOH} / \text{TГФ} / \text{H}_2\text{O} & \rightarrow \text{LiOH} \\
\text{MeOH} / \text{TГФ} / \text{H}_2\text{O}, \text{кт}, 16 \text{ ч} & \rightarrow \\
244-4 & \rightarrow I-199
\end{align*}
\]

5 К раствору 244-4 (150 мг, 0,300 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H₂O, 0,375 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение рН до 4–5 с помощью НСl (1,0 М). Смесь экстрагировали EtOAc (30,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-199 (10,0 мг, выход 6,9%) в виде твердого вещества желтого цвета.

Синтез 3-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)-N-метилпропанамида (I-200)

\[
\begin{align*}
\text{OH} & \quad \text{O}\text{N} \\
\text{N} & \quad \text{S} \\
\text{N} & \quad \text{S} \\
\text{MeNH}_2 & \rightarrow \\
\text{NATU, DIPEA, DМФ, кт, 16 ч} & \rightarrow \\
I-47 & \rightarrow I-200
\end{align*}
\]

5 Смесь I-47 (100 мг, 0,216 ммоль), метиламина (8,04 мг, 0,259 ммоль), NATU (164 мг, 0,432 ммоль) и DIPEA (83,5 мг, 0,647 ммоль) в DМФ (2,00 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в H₂O (20,0 мл), по завершении реакции реакционную смесь выливали EtOAc (30,0 мл х 2). Органический слой объединяли и промывали H₂O (20,0 мл х 2) и соляным раствором (20,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с
получением I-200 (10,0 мг, выход 9,7%) в виде твердого вещества белого цвета.

Синтез 6-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)метил)пирдин-2-ола (I-201)

5 [00558] Смесь 249-1 (28,0 мг, 0,226 ммоль) и с (68,2 мг, 0,226 ммоль) в EtOH (2,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ВЭКХ с получением I-201 (15,0 мг, выход 16%) в виде твердого вещества белого цвета.

Синтез метил 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)бензоата (253-3)

10 [00559] Смесь 253-2 (100 мг, 0,382 ммоль), 253-s (139 мг, 0,382 ммоль), Pd(dppf)Cl₂ (13,9 мг, 0,0191 ммоль) и Na₂CO₃ (80,9 мг, 0,763 ммоль) в диоксане/H₂O (об./об. = 5/1, 2,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 253-3 (80 мг, выход 50%) в виде твердого вещества желтого цвета.

Синтез 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)бензойной кислоты (I-203)
К раствору 253-3 (80,0 мг, 0,190 ммоль) в ТГФ/МеOH/H2O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H2O, 0,238 мл). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали путем перекристаллизации с получением I-203 (30,0 мг, выход 39%) в виде твердого вещества белого цвета.

Синтез метил 3-(3-tрет-бутокси-2-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)метил)-3-оксопропил)бензоата (256-2)

Смесь 256-1 (1,00 г, 3,41 ммоль) и с (1,03 г, 3,41 ммоль) в EtOH (20,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 256-2 (900 мг, выход 46%) в виде твердого вещества белого цвета.

Синтез 3-(3-tрет-бутокси-2-((4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)метил)-3-оксопропил)бензойной кислоты (256-3)
К раствору 256-2 (900 мг, 1,56 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в H₂O, 1,95 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (30,0 мл) и доводили значение рН до 4–5 с помощью НСl (1,0 М). Смесь экстрагировали EtOAc (50,0 мл × 2), объединенную органическую фазу промывали сольевым раствором (30,0 мл), сушили безводным Na₂SO₄ и концентрировали с получением 256-3 (700 мг, выход 80%) твердого вещества желтого цвета.

Синтез 256-3 (100 мг, 0,177 ммоль), t-бутил 2-аминоэтоксискарбониламинобензил)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропаноата (256-4)

Смесью 256-3 (100 мг, 0,177 ммоль), t-бутил 2-аминоэтоксискарбамата (34,1 мг, 0,213 ммоль), HATU (135 мг, 0,355 ммоль) и DIPEA (68,7 мг, 0,532 ммоль) в DMF (2,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь вылили в H₂O (30 мл), и экстрагировали EtOAc (50 мл × 2). Органический слой объединяли и промывали H₂O (30 мл × 2) и сольевым раствором (50 мл), затем сушили безводным Na₂SO₄. Растор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 256-4 (100 мг, выход 80%) в виде твердого вещества желтого цвета.

Синтез 256-4 (100 мг) 2-(3-(2-аминоэтоксискарbamил)бензил)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пропановой кислоты (I-204)
Смесь 256-4 (100 мг, 0,142 ммоль) в HCl (4,0 М в диоксане, 5,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-204 (20,0 мг, выход 26%) в виде твердого вещества белого цвета.

Синтез этил 3-((3-(2-трет-бутилкарбониламино)этилкарбамоил)бензил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропаноата (257-3)

Смесь b-257 (400 мг, 1,02 ммоль) и c (307 мг, 1,02 ммоль) в EtOH (10,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ВЭЖХ с получением 257-3 (180 мг, выход 26%) в виде масла желтого цвета.

Синтез этил 3-((3-(2-аминоэтилкарбамоил)бензил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропаноата (257-4)
Смесь 257-3 (180 мг, 0,401 ммоль) в HCl (4,0 М в диоксане, 10,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали и твердое вещество сушили с получением 257-4 (60,0 мг, выход 39%) в виде твердого вещества белого цвета.

Синтез 3-((3-(2-аминоэтилкарбамоил)бензил)(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)пропановой кислоты (I-205)

К раствору 241-1 (60,0 мг, 0,104 ммоль) в TГФ/MeOH/H2O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H2O, 0,130 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-205 (20,0 мг, выход 35%) в виде твердого вещества белого цвета.

Синтез 2-бензил-3-((3-(3,4-дихлорфенил)-5-(метилтио)тиазол-2-иламино)пропановой кислоты (I-206)

К раствору 221-2 (100 мг, 0,214 ммоль) в TГФ/MeOH/H2O (об./об./об. = 4/1/1, 3,0 мл) добавляли LiOH (2,0 М в H2O, 0,267 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0
мл х 2), объединенную органическую fazu промывали солевым раствором (30,0 мл), сушили над безводным Na₂SO₄, концентрировали и очищали preparативной ВЭЖХ с получением 1-206 (20,0 мг, выход 21%) в виде твердого вещества белого цвета.

Синтез метил 5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-2-гидроксибензоата (260-2)

[00569] Смесь b-260 (200 мг, 1,20 ммоль), 253-s (437 мг, 1,20 ммоль), Pd₂(dba)₃ (22,3 мг, 0,0239 ммоль), X-phos (17,3 мг, 0,0299 ммоль) и Cs₂CO₃ (780 мг, 2,39 ммоль) в толуоле (20,0 мл) перемешивали в атмосфере N₂ при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 260-2 (220 мг, выход 41%) в виде твердого вещества желтого цвета.

Синтез 5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-2-гидроксибензойной кислоты (I-207)

[00570] К раствору 260-2 (220 мг, 0,487 ммоль) в ТГФ/МeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H₂O, 0,609 мл). Реакционную смесь перемешивали при комнатной температуре в течение 5 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (30,0 мл х 2), объединенную органическую fazu промывали солевым раствором (10,0 мл),
сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением 1-207 (5,00 мг, выход 2,3%) в виде твердого вещества белого цвета.

Синтез метил 5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)бифенил-3-карбоксилата (268-2)

Смесь b-268 (145 мг, 0,638 ммоль) и c (193 мг, 0,638 ммоль) в EtOH (2,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 10/1) с получением 268-2 (200 мг, выход 61%) в виде твердого вещества желтого цвета.

Синтез 5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)бифенил-3-карбоновой кислоты (I-215)

К раствору 268-2 (200 мг, 0,391 ммоль) в TGФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,489 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (20,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали путем перекристаллизации с получением I-215 (110 мг, выход 57%) в виде твердого вещества.
Синтез 3-(4-(3,4-диоксифенил)-5-изобутилтиазол-2-иламинобензоевой кислоты (271-2)

\[
\begin{align*}
271-1 & \quad \overset{253-s}{\xrightarrow{\text{Pd}_{2}(\text{dba})_{3}, \text{X-phos, Cs}_{2}\text{CO}_{3}}, \text{толуол, } 100 \, ^{\circ}\text{C, в течение ночи}} \quad 271-2 \\
\end{align*}
\]

5 Смесь 271-1 (200 мг, 1,46 ммоль), 253-s (532 мг, 1,46 ммоль), \text{Pd}_{2}(\text{dba})_{3} (27,1 мг, 0,0291 ммоль), X-phos (21,1 мг, 0,0364 ммоль) и Cs_{2}\text{CO}_{3} (949 мг, 2,91 ммоль) в толуоле (30,0 мл) перемешивали в атмосфере N\textsubscript{2} при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (CH\textsubscript{2}Cl\textsubscript{2}/MeOH = 50/1) с получением 271-2 (150 мг, выход 24%) в виде твердого вещества желтого цвета.

Синтез t-pent-бутил 2-(3-(4-(3,4-диоксифенил)-5-изобутилтиазол-2-иламинобензамидо)этанкарбамата (271-3)

\[
\begin{align*}
271-2 & \quad \overset{\text{H}_{2}\text{N-NNBoc}}{\xrightarrow{\text{HATU, DIPEA, DMF, кт, 16 ч}} \text{271-3}} \\
\end{align*}
\]

5 Смесь 271-2 (150 мг, 0,356 ммоль), t-pent-бутил-2-аминоэтанкарбамата (68,4 мг, 0,427 ммоль), HATU (271 мг, 0,712 ммоль) и DIPEA (138 мг, 1,07 ммоль) в DMF (2,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь вылили в H\textsubscript{2}O (50 мл), и экстрагировали EtOAc (50 мл х 2). Органический слой объединяли и промывали H\textsubscript{2}O (30 мл х 2) и соляным раствором (30 мл), затем сушили безводным Na\textsubscript{2}SO\textsubscript{4}. Раствор концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 5/1) с получением 271-3 (80,0 мг, выход 40%) в виде

315
твердого вещества желтого цвета.

Синтез \(N\)-(2-аминэтил)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)бензамида (I-218)

\[\text{HCl/диоксан} \]

Смесь 271-3 (80,0 мг, 0,142 ммоль) в HCl (4,0 М в диоксане, 5,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-218 (10,0 мг, выход 15%) в виде твердого вещества белого цвета.

Синтез 5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)никотиновой кислоты (I-221)

Смесь 276-1 (41,6 мг, 0,301 ммоль), 253-s (100 мг, 0,274 ммоль), Pd\(_2\)(dba)\(_3\) (51,2 мг, 0,0548 ммоль), X-phos (39,6 мг, 0,0685 ммоль) и Cs\(_2\)CO\(_3\) (179 мг, 0,548 ммоль) в толуоле (2,0 мл) перемешивали в атмосфере N\(_2\) при 100 °С в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-221 (8,00 мг, выход 6,9%) в виде твердого вещества белого цвета.

Синтез метил 3-(4-(бромметил)тиазол-2-ил)бензоата (283-2)
Смесь b-283 (550 мг, 2,56 ммоль) и 1,3-дибромпропан-2-она (10 мл) перемешивали без растворителя при 80 °C в течение 2 часов. По завершении реакции реакционную смесь растворяли с помощью EtOAc (150 мл), затем промывали H2O (50 мл х 2) и соляным раствором (50 мл), а затем сушили безводным Na2SO4. Органический слой концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 283-2 (680 мг, выход 77%) в виде твердого вещества желтого цвета.

Синтез метил 3-(4-(3,4-дихлорбензил)тиазол-2-ил)бензоата (283-3)

Смесь 283-2 (680 мг, 2,18 ммоль), 3,4-дихлорфенилборновой кислоты (623 мг, 3,27 ммоль), Pd(PPh3)4 (50,4 мг, 0,0436 ммоль) и K2CO3 (601 мг, 4,36 ммоль) в DMF/H2O (об.об. = 10/1, 22,0 мл) перемешивали в атmosфере N2 при 100 °C в течение 2 часов. По завершении реакции реакционную смесь выливали в H2O (200 мл), и экстрагировали EtOAc (150 мл х 2). Органический слой объединяли и промывали H2O (80 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na2SO4. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 283-3 (255 мг 31%) масла желтого цвета.

Синтез 3-(4-(3,4-дихлорбензил)тиазол-2-ил)бензойной кислоты (I-223)
К раствору 283-3 (55,0 мг, 0,145 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H2O, 0,182 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл x 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-223 (26,0 мг, выход 49%) в виде твердого вещества белого цвета.

Синтез метил 2-бром-5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)бензоата (287-2)

Смесь b-287 (200 мг, 0,730 ммоль) и c-2 (248 мг, 0,766 ммоль) в EtOH (5,0 мл) перемешивали при 70 °C в течение 2 часов. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 287-2 (100 мг, выход 27%) в виде бесцветного масла.

Синтез 2-бром-5-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)бензойной кислоты (I-224)

К раствору 287-2 (100 мг, 0,200 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 2,0
мл) добавляли LiOH (2,0 М в H₂O, 0,250 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-224 (60,0 мг, выход 62%) в виде твердого вещества белого цвета.

Синтез метил 6-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиколината (291-2)

Смесь b-291 (390 мг, 0,915 ммоль), 253-s (400 мг, 1,10 ммоль) и Pd(PPh₃)₄ (21,2 мг, 0,0183 ммоль) в NMP (5,0 мл) перемешивали в атмосфере N₂ при 100 °C в микроволновом реакторе в течение 1 часа. По завершении реакции реакционную смесь выливали в H₂O (80 мл), и экстрагировали EtOAc (80 мл х 2). Органический слой объединяли и промывали H₂O (50 мл х 2) и солевым раствором (50 мл), затем сушили безводным Na₂SO₄. Растров концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 291-2 (300 мг 65%) масла желтого цвета.

Синтез 6-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиколиновой кислоты (I-228)

К раствору 291-2 (300 мг, 0,712 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 5,0
мл) добавляли LiOH (2,0 М в H_2O, 0,890 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H_2O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na_2SO_4 и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-228 (50,0 мг, выход 17%) в виде твердого вещества белого цвета.

Синтез 3-(bensил(4-(3,4-дихлорfenил)-5-изобутилтиазол-2-ил)амино)пропаннитрила (293-1)

К раствору I-189 (120 мг, 0,259 ммоль) в ДМФ (1,0 мл) добавляли POCl_3 (0,20 мл). Реакционную смесь перемешивали при 100 °C в течение 5 часов. По завершении реакции реакционную смесь выливают в H_2O (30 мл), и экстрагировали EtOAc (50 мл х 2). Органический слой объединяли и промывали H_2O (30 мл х 2) и соляным раствором (30 мл), затем сушили безводным Na_2SO_4. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 293-1 (40,0 мг, выход 35%) в виде твердого вещества желтого цвета.

Синтез 3-(bensил(4-(3,4-дихлорfenил)-5-изобутилтиазол-2-ил)амино)пропанимидамида (I-230)

К раствору 293-1 (40,0 мг, 0,090 ммоль) и NH_4Cl (9,63 мг, 0,180 ммоль) в толуоле (1,0 мл) добавляли AlMe_3 (1,0 М в толуоле, 0,45 мл, 0,450 ммоль). Реакционную смесь
перемешивали при 90 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-230 (10,0 мг, выход 24%) в виде твердого вещества белого цвета.

Синтез 2-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)ацетонитрила (294-2)

\[
\text{b-294} \xrightarrow{\text{t-BuOH, AcOH, 90 °C, в течение ночи}} 294-2
\]

[00586] Смесь b-294 (600 мг, 4,10 ммоль), c (1,24 г, 4,10 ммоль) и AcOH (492 мг, 8,20 ммоль) в t-BuOH (5,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь очищали препаративной ТСХ (петролейный эфир/этилацетат = 10/1) с получением 294-2 (1,10 г, выход 62%) в виде твердого вещества желтого цвета.

Синтез 2-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)ацетимидамида (I-231)

\[
\text{294-2} \xrightarrow{\text{NH₃/MeOH, герметично закрыт, 50 °C, 2 ч}} \text{I-231}
\]

[00587] Смесь 294-2 (50,0 мг, 0,116 ммоль) в NH₃ (7,0 М в MeOH, 3,0 мл) перемешивали в герметично закрытом сосуде при 50 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ВЭЖХ с получением I-231 (18,0 мг, выход 35%) в виде не совсем белого твердого вещества.

Синтез трет-бутил 2-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)этилкарбамата (295-2)
[00588] Смесь b-295 (550 мг, 2,20 ммоль), c (664 мг, 2,20 ммоль) и AcOH (264 мг, 4,39 ммоль) в i-PrOH (5,0 мл) перемешивали при 80 °C в течение ночи. По завершении реакции реакционную смесь очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 295-2 (350 мг, выход 30%) в виде твердого вещества желтого цвета.

Синтез N1-бензил-N1-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)этан-1,2-диамина (295-3)

[00589] Смесь 295-2 (350 мг, 0,655 ммоль) в HCl (4,0 M в диоксане, 5,0 мл) перемешивали при комнатной температуре в течение 4 часов. По завершении реакции реакционную смесь фильтровали и твердое вещество сушили с получением 295-3 (270 мг, выход 95%) в виде твердого вещества белого цвета.

Синтез tert-бутил 2-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-10,10-диметил-8-оксо-1-фенил-9-окса-2,5,7-тиазаундекан-6-илиденикарбамата (295-4)
Смесь 295-3 (270 мг, 0,622 ммоль) и s (199 мг, 0,684 ммоль) в CH₂Cl₂ (10,0 мл) перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь фильтровали и остаток промывали CH₂Cl₂ (2,0 мл х 2), сушили с получением 295-4 (310 мг, выход 74%) в виде твердого вещества желтого цвета.

Синтез 2-(2-(бензил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)этил)гуанидина (I-232)

Смесь 295-4 (310 мг, 0,655 ммоль) и HCl (4,0 М в диоксане, 2,0 мл) в CH₂Cl₂ (5,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь фильтровали и твердое вещество очищали путем промывки EtOAc (2,0 мл х 3) с получением I-232 (120 мг, выход 55%) в виде твердого вещества белого цвета.

Синтез 3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)пиколинонитрила (297-3)
Смесь 297-1 (300 мг, 2,46 ммоль), 178-s (617 мг, 2,05 ммоль) и Cs₂CO₃ (1,33 г, 4,10 ммоль) в DMФ (8,0 мл) перемешивали при 120 °C в течение 1 часа. По завершении реакции реакционную смесь выливал в H₂O (100 мл), и экстрагировали EtOAc (100 мл × 2). Органический слой объединили и промывали H₂O (50,0 мл × 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Рассол концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 297-3 (100 мг, выход 12%) в виде твердого вещества желтого цвета.

Синтез 3-(4-(3,4-диалорфенил)-5-изобутилтитазол-2-иламино)пиколиновой кислоты (I-234)

К раствору 297-3 (100 мг, 0,248 ммоль) в H₂O (1,0 мл) добавляли NaOH (5,0 М в H₂O, 0,248 мл). Реакционную смесь перемешивали при 90 °C в течение 1 часа. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (10,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (40,0 мл × 2), объединенную органическую фазу промывали соляным раствором (30,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-234 (30,0 мг, выход 29%) в виде твердого вещества.
белого цвета.

Синтез 1-бензил 2-метил 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-1,2-дикарбоксилата (316-3)

К смеси 316-s (180 мг, 0,420 ммоль) и K₂CO₃ (116 мг, 0,840 ммоль) в ТГФ/H₂O (об./об. =5/1, 10,0 мл) добавляли бензилкарбонондорсат (86,0 мг, 0,504 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 10/1) с получением 316-3 (120 мг, выход 51%) в виде масла желтого цвета.

Синтез 1-(бензилоксикарбонил)-4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоновой кислоты (1-244)

К раствору 316-3 (120 мг, 0,213 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,267 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением 1-244 (40,0 мг, выход 34%) в виде твердого вещества белого цвета.

Синтез 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоновой кислоты (317-1)
[00596] К раствору 316-s (200 мг, 0,467 ммоль) в ТГФ/MeOH/H2O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H2O, 0,584 мл). Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H2O (5,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл x 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na2SO4 и концентрировали, остаток очищали путем перекристаллизации с получением 317-1 (150 мг, выход 78%) в виде твердого вещества желтого цвета.

Синтез 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-1-(этилкарбонил)пиперазин-2-карбоновой кислоты (I-245)

[00597] К смеси 317-1 (150 мг, 0,362 ммоль) и Et3N (73,1 мг, 0,724 ммоль) в CH2Cl2 (5,0 мл) добавляли этилкарбонохлорид (47,1 мг, 0,434 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-245 (25,0 мг, выход 14%) в виде твердого вещества белого цвета.

Синтез метил 1-бензоил-4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоксилата (318-1)
Смесь 316-s (200 мг, 0,467 ммоль), бензойной кислоты (68,4 мг, 0,560 ммоль), HATU (355 мг, 0,934 ммоль) и DIPEA (181 мг, 1,40 ммоль) в ДМФ (5,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в H₂O (100 мл), и экстрагировали EtOAc (100 мл x 2). Органический слой объединяли и промывали H₂O (80 мл x 2) и соляным раствором (50 мл), затем сушили безводным Na₂SO₄. Реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ТСХ (петролейный эфир/этилацетат = 10/1) с получением 318-1 (70,0 мг, выход 28%) в виде твердого вещества желтого цвета.

Синтез I-bensolf-4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-2-карбоновой кислоты (I-246)

К раствору 318-1 (70,0 мг, 0,131 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,164 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл x 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-246 (30,0 мг, выход 44%) в виде твердого вещества белого цвета.

Синтез метил 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-1-(метилкарбамоил)пиперазин-2-карбоксилата (324-1)

327
Смесь 316-s (80,0 мг, 0,187 ммоль), метанамина (8,70 мг, 0,280 ммоль), трифосгена (66,6 мг, 0,224 ммоль) и пиридина (44,3 мг, 0,561 ммоль) в
CH₂Cl₂ (5,0 мл) перемешивали при комнатной температуре в течение 3 часов. По завершении реакции
реакционную смесь промывали H₂O (10 мл х 2) и соляным раствором (10 мл), а затем сушали безводным Na₂SO₄. Реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной TСХ (петролейный эфир/этилацетат = 8/1) с получением 324-1 (40,0 мг, выход 44%) в виде масла желтого цвета.
Синтез 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-1-(метилкарбамоил)пиперазин-2-карбоновой кислоты (I-251)

К раствору 324-1 (40,0 мг, 0,0824 ммоль) в TГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,103 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение рН до 6–7 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-251 (25,0 мг, выход 64%) в виде твердого вещества белого цвета.
Синтез 1-изопропил 2-метил 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)пиперазин-1,2-дикарбоксилата (326-1)

328
К смеси 316-8 (50,0 мг, 0,117 ммоль) и Et₃N (23,6 мг, 0,234 ммоль) в CH₂Cl₂ (5,0 мл) добавляли изопропилкарбонохлоридат (17,2 мг, 0,140 ммоль). Реакционную сместь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную сместь концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 326-1 (50,0 мг, выход 83%) в виде твердого вещества желтого цвета.

Синтез 4-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)-1-(изопропоксикарбонил)пиразин-2-карбоновой кислоты (I-253)

К раствору 326-1 (50,0 мг, 0,0972 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,121 мл). Реакционную сместь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции полученную реакционную сместь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-253 (30,0 мг, выход 62%) в виде твердого вещества белого цвета.

Синтез 2-амино-4-(3,4-дихлорфенил)тиазол-5-карбонитрила (341-2)
Смесь 341-1 (1,00 г, 4,67 ммоль) и тиомочевины (427 мг, 5,61 ммоль) в EtOH (50,0 мл) перемешивали при 90 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 341-2 (1,10 г, выход 87%) в виде твердого вещества белого цвета.

Синтез 2-бром-4-(3,4-дихлорфенил)тиазол-5-карбонитрила (341-3)

Смесь 341-2 (900 мг, 3,33 ммоль), trpem-бутилнитрита (412 мг, 4,00 ммоль) и CuBr2 (446 мг, 2,00 ммоль) в MeCN (20,0 мл) перемешивали при 80 °C в течение 2 часов. По завершении реакции реакционную смесь выливали в H2O (100 мл), и экстрагировали EtOAc (200 мл х 2). Органический слой объединяли и промывали H2O (80,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na2SO4. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 341-3 (950 мг, выход 85%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-(3,4-дихлорфенил)-5-(1H-тетразол-5-ил)тиазола (341-4)
[00606] Смесь 341-3 (1,00 г, 2,99 ммоль), TMSN₃ (1,72 г, 15,0 ммоль) и AlCl₃ (397 мг, 2,99 ммоль) в ТГФ (100 мл) перемешивали при 70 °C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 341-4 (1,00 г, выход 89%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-(3,4-дихлорфенил)-5-(1-метил-1H-тетразол-5-ил)тиазола (341-5)

[00607] Смесь 341-4 (600 мг, 1,59 ммоль), MeI (271 мг, 1,91 ммоль) и K₂CO₃ (439 мг, 3,18 ммоль) в ДМФ (5 мл) перемешивали при 70 °C в течение 2 часов. По завершении реакции реакционную смесь вылили в H₂O (100 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (80 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Рассо концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 341-5 (500 мг, выход 80%) в виде не совсем белого твердого вещества.

Синтез метил 2-(4-(3,4-дихлорфенил)-5-(1-метил-1H-тетразол-5-ил)тиазол-2-иламино)никотината (341-6)
Смесь 341-5 (100 мг, 0,256 ммоль), метил 2-аминоникотината (46,7 мг, 0,307 ммоль), Pd(dba)$_2$ (47,6 мг, 0,0511 ммоль), X-phos (36,9 мг, 0,0639 ммоль) и Cs$_2$CO$_3$ (167 мг, 0,511 ммоль) в толуоле (20,0 мл) перемешивали в атмосфере N$_2$ при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали путем промывания EtOAc (3,0 мл х 3) с получением 341-6 (60,0 мг, выход 51%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(3,4-дихлорфенил)-5-(1-метил-1H-тетразол-5-ил)тиазол-2-иламино)никотиновой кислоты (I-257)

К раствору 341-6 (60,0 мг, 0,130 ммоль) в H$_2$O (1,0 мл) добавляли NaOH (5,0 M в H$_2$O, 0,130 мл). Реакционную смесь перемешивали при 90 °C в течение 1 часа. По завершении реакции, полученную реакционную смесь доводили до pH 4–5 с помощью HCl (1,0 M). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na$_2$SO$_4$ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-257 (30,0 мг, выход 52%) в виде твердого вещества белого цвета.

Синтез 2-(4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламино)-5-фенилникотиновой кислоты (I-259)
Смесь 344-s (200 мг, 0,399 ммоль), фенилбороновой кислоты (73,0 мг, 0,599 ммоль), Pd(dppf)Cl₂ (58,3 мг, 0,0798 ммоль) и Na₂CO₃ (84,6 мг, 0,798 ммоль) в диоксане/H₂O (об./об. = 5/1, 20,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-259 (20,0 мг, выход 10%) в виде твердого вещества белого цвета.

Синтез метил 5-бром-2-(4-(4-хлор-3-(трифторметил)фенил)-5-изопропилтиазол-2-иламино)никотината (347-2)

Смесь 347-1 (200 мг, 0,866 ммоль), 346-s (333 мг, 0,866 ммоль), Pd₂(dba)₃ (16,1 мг, 0,0173 ммоль), X-phos (12,5 мг, 0,0217 ммоль) и Cs₂CO₃ (564 мг, 1,73 ммоль) в толуоле (10,0 мл) перемешивали в атмосфере N₂ при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 347-2 (200 мг, выход 43%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(4-хлор-3-(трифторметил)фенил)-5-изопропилтиазол-2-иламино)-5-фенилникотиновой кислоты (I-262)
Смесь 347-2 (100 мг, 0,187 ммоль), фенилбороновой кислоты (34,2 мг, 0,280 ммоль), Pd(dppf)Cl2 (27,3 мг, 0,0374 ммоль) и Na2CO3 (39,6 мг, 0,374 ммоль) в диоксане/H2O (об./об. = 5/1, 5,0 мл) перемешивали в атмосфере N2 при 90 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-262 (20,0 мг, выход 21%) в виде твердого вещества белого цвета.

Синтез метил 3-(4-(3,4-дихлорфенил)-5-(1-метил-1H-тетразол-5-ил)тиазол-2-иламино)тиофен-2-карбоксилата (355-2)

Смесь 355-1 (48,2 мг, 0,307 ммоль), 341-5 (100 мг, 0,256 ммоль), Pd2(dba)3 (47,6 мг, 0,0511 ммоль), X-phos (36,9 мг, 0,0639 ммоль) и Cs2CO3 (167 мг, 0,511 ммоль) в толуоле (10,0 мл) перемешивали в атмосфере N2 при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали путем промывания EtOAc (3,0 мл x 3) с получением 355-2 (100 мг, выход 84%) в виде твердого вещества желтого цвета.

Синтез 3-(4-(3,4-дихлорфенил)-5-(1-метил-1H-тетразол-5-ил)тиазол-2-иламино)тиофен-2-карбоксиловой кислоты (I-269)
[00614] К раствору 355-2 (100 мг, 0,214 ммоль) в H₂O (1,0 мл) добавляли NaOH (5,0 М в H₂O, 0,267 мл). Реакционную смесь перемешивали при 60 °C в течение 1 часа. По завершении реакции, полученную реакционную смесь доводили до рН 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл × 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-269 (20,0 мг, выход 21%) в виде твердого вещества белого цвета.

Синтез метил 3-(трет-бутилсиликарбоил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)тиофен-2-карбоксилата (363-1)

[00615] Смесь 333-2 (1,30 г, 2,95 ммоль), (Boc)₂O (669 мг, 3,09 ммоль) и DMAP (378 мг, 3,09 ммоль) в ТГФ (50,0 мл) перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 363-1 (1,10 г, выход 69%) в виде твердого вещества белого цвета.

Синтез 3-(трет-бутилсиликарбоил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)амино)тиофен-2-карбоновой кислоты (363-2)
[00616] К раствору 363-1 (1,10 г, 2,03 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 10,0 мл) добавляли LiOH (2,0 М в H₂O, 2,54 мл). Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (50,0 мл) и доводили значение pH до 6–7 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (100,0 мл х 2), объединенную органическую фазу промывали солевым раствором (50,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением 363-2 (800 мг, выход 75%) в виде твердого вещества белого цвета.

Синтез трет-бутил 2-(2-(3-трет-бутилуреидо)этилкарбамоил)тиофиен-3-ил(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-ил)карбамата (363-3)

[00617] Смесь 363-2 (200 мг, 0,379 ммоль), трет-бутил 2-аминоэтилкарбамата (72,9 мг, 0,455 ммоль), HATU (288 мг, 0,758 ммоль) и DIPEA (147 мг, 1,14 ммоль) в DMF (5,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выпиливали в H₂O (100 мл), и экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (100 мл х 2) и солевым раствором (50 мл), затем сушили безводным Na₂SO₄. Реакционную смесь концентрировали с получением неочищенного продукта, который очищали препаративной ТСХ (CH₂Cl₂/MeOH = 100/1) с получением 363-3 (140 мг, выход 55%) в виде твердого вещества желтого цвета.

Синтез N-(2-аминоэтил)-3-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)тиофиен-2-карбоксамида (1-276)
Смесь 363-3 (140 мг, 0,209 ммоль) в HCl (4,0 М в диоксане, 5,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали путем перекристаллизации с получением I-276 (70,0 мг, выход 71%) в виде твердого вещества желтого цвета.

Синтез метил 5-бром-3-(4-(4-хлор-3-(трифторметил)фенил)-5-изопропилтиазол-2-иламино)тиофен-2-карбоксилата (367-2)

Смесь 367-1 (368 мг, 1,56 ммоль), 346-s (500 мг, 1,30 ммоль), Pd₂(dba)₃ (242 мг, 0,260 ммоль), X-phos (188 мг, 0,325 ммоль) и Cs₂CO₃ (847 мг, 2,60 ммоль) в толуоле (50,0 мл) перемешивали в атмосфере N₂ при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 367-2 (300 мг, выход 43%) в виде твердого вещества желтого цвета.

Синтез метил 3-(4-(4-хлор-3-(трифторметил)фенил)-5-изопропилтиазол-2-иламино)-5-фенилтиофен-2-карбоксилата (367-3)
Смесь 367-2 (100 мг, 0,185 ммоль), фенилбороновой кислоты (33,9 мг, 0,278 ммоль), Pd(dppf)Cl₂ (27,0 мг, 0,037 ммоль) и Na₂CO₃ (39,2 мг, 0,371 ммоль) в диоксане/H₂O (об./об. = 5/1, 2,0 мл) перемешивали в атмосфере N₂ при 90 °C в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ (петролейный эфир/этилацетат = 8/1) с получением 367-3 (80,0 мг, выход 80%) в виде твердого вещества желтого цвета.

Синтез 3-(4-(4-хлор-3-(трифторметил)фенил)-5-изопропилтиазол-2-иламино)-5-фенилтиофен-2-карбоновой кислоты (I-279)

К раствору 367-3 (80,0 мг, 0,149 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,186 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-279 (5,0 мг, выход 6,4%) в виде твердого вещества желтого цвета.

Синтез метил 6’-(4-(3,4-дихлорфенил)-5-изопропилтиазол-2-иламино)-2,3’-бипиридина.
5'-карбоксилата (377-1)

Смесь 344-s (100 мг, 0,200 ммоль), 2-(трибутилстанил)пиролина (110 мг, 0,299 ммоль), Pd(PPh₃)₂Cl₂ (28,0 мг, 0,0399 ммоль) и Et₃N (40,3 мг, 0,399 ммоль) в толуоле (10,0 мл) перемешивали в атмосфере N₂ при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали препаративной ТСХ (CH₂Cl₂/MeOH = 100/1) с получением 377-1 (50,0 мг, выход 50%) в виде твердого вещества желтого цвета.

Синтез 6'-{(4-(3,4-дихлорфенил)-5-изопропилтiazол-2-иламино)-2,3'-бипирдин-5'-карбоновой кислоты (I-282)

К раствору 377-1 (50,0 мг, 0,100 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 1,0 мл) добавляли LiOH (2,0 М в H₂O, 0,125 мл). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (5,0 мл) и доводили значение pH до 4-5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-282 (20,0 мг, выход 41%) в виде твердого вещества белого цвета.

Синтез 2-(4-(3,4-дихлорфенил)-5-изопропилтiazол-2-иламино)ниотионитрила (379-339)
Смесь 379-1 (61,1 мг, 0,513 ммоль), 343-s (150 мг, 0,427 ммоль), Pd\(_2\)dba\(_3\) (79,5 мг, 0,0854 ммоль), X-phos (61,7 мг, 0,107 ммоль) и Cs\(_2\)CO\(_3\) (278 мг, 0,854 ммоль) в толуоле (5,0 мл) перемешивали в атмосфере N\(_2\) при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 8/1) с получением 379-2 (120 мг, выход 72%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(3,4-дихлорфенил)-5-изопропилпиразол-2-иламино)никотинимидамина (I-284)

Смесь 379-2 (120 мг, 0,131 ммоль) и NH\(_3\) (7,0 М в MeOH, 1,00 мл) перемешивали в герметично закрытом сосуде при 60 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-284 (70,0 мг, выход 56%) в виде твердого вещества белого цвета.
<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
<td>Способ С, чистота составляет 95.5%, BV = 2,002 мин; MC рассчит.: 484,1; MC найдено: 485,1 [M + H]$^+$</td>
<td>δ: 0,79-0,86 (6Н, м), 1,70-1,77 (1Н, м), 2,60-2,62 (4Н, д, J = 7,2 Гц), 2,77-3,17 (5Н, м), 3,74-3,89 (2Н, м), 4,15-4,28 (2Н, м), 7,47-7,49 (1Н, д, J = 8,4 Гц), 7,63-7,65 (1Н, д, J = 8,4 Гц), 7,70 (1Н, с).</td>
</tr>
<tr>
<td>200</td>
<td>Способ С, чистота составляет 100%, BV = 2,906 мин; MC рассчит.: 475,1; MC найдено: 476,0 [M + H]$^+$</td>
<td>δ: 0,88 (6Н, д, J = 6,4 Гц), 1,72-1,75 (1Н, м), 2,44-2,61 (7Н, м), 2,43 (3Н, с), 3,62 (2Н, т, J = 6,4, 6,4 Гц), 2,71-2,76 (1Н, м), 4,6 (1Н, с), 7,26-7,35 (5Н, м), 7,51 (1Н, д, J = 8,8 Гц), 7,62-7,73 (2Н, м), 7,88 (1Н, д, J = 10,8 Гц).</td>
</tr>
<tr>
<td>201</td>
<td>Способ С, чистота составляет 100%, BV = 2,443 мин; MC рассчит.: 407,1; MC найдено: 408,0 [M + H]$^+$</td>
<td>δ: 0,88 (6Н, д, J = 6,4 Гц), 1,71-1,79 (1Н, м), 2,62-2,67 (2Н, м), 4,30 (2Н, уш.), 5,95-6,20 (2Н, м), 3,29-3,30 (2Н, м), 7,29-7,39 (1Н, м), 7,44-7,46 (1Н, дд, J = 2,0, 2,0 Гц), 7,48-7,53 (1Н, м), 7,63-7,76 (2Н, м), 11,74 (1Н, уш.).</td>
</tr>
<tr>
<td>202</td>
<td>Способ С, чистота составляет 100%, BV = 2,298 мин; MC рассчит.: 407,1; MC найдено: 408,0 [M + H]$^+$</td>
<td>δ: 0,87 (6Н, д, J = 6,4 Гц), 1,71-1,77 (1Н, м), 2,59 (2Н, д, J = 6,8 Гц), 4,20 (2Н, д, J = 5,6 Гц), 6,17 (1Н, т, J = 6,8 Гц), 7,30 (1Н, дд, J = 2,0, 2,0 Гц), 7,38 (1Н, дд, J = 1,2, 0,8 Гц), 7,48 (1Н, д, J = 2,0 Гц), 7,50 (1Н, д, J = 2,0 Гц), 7,64-7,66 (1Н, м), 7,83 (1Н, т, J = 5,6 Гц).</td>
</tr>
<tr>
<td>203</td>
<td>Способ В, чистота составляет 97,1%, BV = 2,363 мин; MC рассчит.: 405,1; MC найдено: 406,1</td>
<td>δ: 0,90 (6Н, д, J = 6,4 Гц), 1,85-1,92 (1Н, м), 2,86 (2Н, д, J = 7,2 Гц), 7,61-7,67 (2Н, м), 7,74 (1Н, д, J = 8,4 Гц), 7,89 (1Н, д, J = 2,0 Гц), 8,01-8,03 (1Н, м), 8,16 (1Н, д, J = 8,0 Гц), 8,44 (1Н,</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>204</td>
<td>Способ C, чистота составляет 100%, BV = 2.035 мин; МС рассчит.: 549,5; МС найдено: 550,2</td>
<td>$[M + H]^+$</td>
</tr>
<tr>
<td>205</td>
<td>Способ C, чистота составляет 100%, BV = 2,157 мин; МС рассчит.: 548,1; МС найдено: 549,2</td>
<td>$[M + H]^+$</td>
</tr>
<tr>
<td>206</td>
<td>Способ C, чистота составляет 100%, BV = 2,051 мин; МС рассчит.: 453,4; МС найдено: 454,0</td>
<td>$[M + H]^+$</td>
</tr>
<tr>
<td>207</td>
<td>Способ B, чистота составляет 98,7%, BV = 2,206 мин; МС рассчит.: 436,0; МС найдено: 437,0</td>
<td>$[M + H]^+$</td>
</tr>
<tr>
<td>208</td>
<td>Способ C, чистота составляет 100%, BV = 2,033 мин; МС рассчит.: 454,0; МС найдено: 455,0</td>
<td>$[M + H]^+$</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>209</td>
<td></td>
<td>Способ С, чистота составляет 100%, BU = 2,028 мин; МС рассчит.: 438,0; МС найдено: 439,0 [M + H] $^+$</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>Способ В, чистота составляет 100%, BU = 2,186 мин; МС рассчит.: 450,0; МС найдено: 451,0 [M + H] $^+$</td>
</tr>
<tr>
<td>211</td>
<td></td>
<td>Способ В, чистота составляет 100%, BU = 2,171 мин; МС рассчит.: 505,1; МС найдено: 506,0 [M + H] $^+$</td>
</tr>
<tr>
<td>212</td>
<td></td>
<td>Способ С, чистота составляет 97,8%, BU = 2,060 мин; МС рассчит.: 438,0; МС найдено: 439,2 [M + H] $^+$</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td>Способ С, чистота составляет 97,7%, BU = 1,875 мин; МС рассчит.: 488,0; МС найдено: 489,2 [M + H] $^+$</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>214</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,161 мин; МС рассчит.: 434,0; МС найдено: 435,0 [M + H]$^+$</td>
<td>δ: 0,89 (6Н, д, J = 6,4 Гц), 1,76-1,82 (1Н, м), 2,31 (1Н, с), 2,69 (2Н, д, J = 7,2 Гц), 7,32 (1Н, с), 7,59 (2Н, д, J = 7,2 Гц), 7,69 (2Н, д, J = 8,4 Гц), 7,84 (1Н, с), 8,07 (1Н, с), 10,26 (1Н, с).</td>
</tr>
<tr>
<td>215</td>
<td>Способ С, чистота составляет 98,9%, ВУ = 2,216 мин; МС рассчит.: 496,0; МС найдено: 497,0 [M + H]$^+$</td>
<td>δ: 0,90 (6Н, д, J = 6,8 Гц), 1,77-1,84 (1Н, м), 2,73 (2Н, д, J = 6,8 Гц), 7,39 (1Н, дд, J = 14,8, 7,2 Гц), 7,49 (2Н, дд, J = 15,2, 8,0 Гц), 7,60 (1Н, дд, J = 8,4, 2,0 Гц), 7,68 (1Н, дд, J = 14,8, 6,8 Гц), 7,75 (1Н, с), 7,93 (1Н, д, J = 2,0 Гц), 7,83 (1Н, с), 8,12 (1Н, с), 8,45-8,45 (1Н, м), 10,49 (1Н, с), 13,05 (1Н, с).</td>
</tr>
<tr>
<td>216</td>
<td>Способ С, чистота составляет 96,8%, ВУ = 1,839 мин; МС рассчит.: 496,0; МС найдено: 497,0 [M + H]$^+$</td>
<td>δ: 0,92 (6Н, д, J = 6,4 Гц), 1,79-1,85 (1Н, м), 2,72 (2Н, д, J = 7,2 Гц), 7,28-7,39 (6Н, м), 7,61 (1Н, д, J = 8,4 Гц), 7,71 (1Н, д, J = 8,4 Гц), 7,80 (1Н, д, J = 8,4 Гц), 7,83 (1Н, с), 8,00 (1Н, с), 10,42 (1Н, с).</td>
</tr>
<tr>
<td>217</td>
<td>Способ B, чистота составляет 96,9%, ВУ = 2,230 мин; МС рассчит.: 539,1; МС найдено: 540,2 [M + H]$^+$</td>
<td>δ: 0,93 (6Н, д, J = 6,4 Гц), 1,82-1,85 (1Н, м), 2,75 (2Н, д, J = 6,8 Гц), 7,53-7,63 (3Н, м), 7,66-7,71 (2Н, м), 7,88 (1Н, с), 8,01-8,05 (4Н, м), 8,67 (1Н, с), 10,41 (2Н, д, J = 10,8 Гц), 12,94 (1Н, уш.).</td>
</tr>
<tr>
<td>218</td>
<td>Способ С, чистота составляет 97,9%, ВУ = 2,319 мин; МС рассчит.: 462,1; МС найдено: 463,0 [M + H]$^+$</td>
<td>δ: 0,91 (6Н, д, J = 6,4 Гц), 1,79-1,83 (1Н, м), 2,65-2,72 (4Н, м), 3,22-3,24 (2Н, м), 7,37-7,39 (2Н, м), 7,61 (1Н, дд, J = 8,4, 2,0 Гц), 7,71 (1Н, д, J = 8,4 Гц), 7,79-7,84 (2Н, м), 8,06 (1Н, с), 8,36 (1Н, с), 10,32 (1Н, уш.).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>219</td>
<td>Способ С, чистота составляет 97,8%, ВУ = 2,007 мин; МС рассчит.: 421,0; МС найдено: 422,2 [M + Н]⁺.</td>
<td>δ: 0,92 (6Н, d, J = 6,4 Гц), 1,84-1,91 (1Н, м), 2,74 (2Н, d, J = 6,8 Гц), 7,22-7,24 (2Н, м), 7,41 (1Н, с), 7,59 (1Н, d, J = 8,4 Гц), 7,70 (1Н, d, J = 3,8 Гц), 7,83 (1Н, с), 8,23 (1Н, d, J = 9,2 Гц).</td>
</tr>
<tr>
<td>220</td>
<td>Способ В, чистота составляет 99,0%, ВУ = 1,886 мин; МС рассчит.: 421,0; МС найдено: 422,0 [M + Н]⁺.</td>
<td>δ: 0,91 (6Н, d, J = 6,4 Гц), 1,84 (1Н, т, J = 6,8 Гц), 2,79 (2Н, d, J = 6,8 Гц), 7,63 (1Н, d, J = 8,4 Гц), 7,75 (1Н, d, J = 8,4 Гц), 7,86 (1Н, с), 8,01 (1Н, d, J = 5,2 Гц), 8,36 (1Н, уш.), 8,50 (1Н, d, J = 5,2 Гц), 11,63 (1Н, уш.).</td>
</tr>
<tr>
<td>221</td>
<td>Способ С, чистота составляет 99,6%, ВУ = 1,903 мин; МС рассчит.: 421,0; МС найдено: 422,2 [M + Н]⁺.</td>
<td>δ: 0,92 (6Н, d, J = 6,4 Гц), 1,81-1,84 (1Н, м), 2,74 (2Н, d, J = 7,2 Гц), 7,61 (1Н, d, J = 8,4 Гц), 7,73 (1Н, d, J = 8,4 Гц), 7,86 (1Н, d, J = 2,0 Гц), 8,63 (1Н, d, J = 1,6 Гц), 8,67 (1Н, уш.), 8,95 (1Н, d, J = 2,8 Гц), 10,59 (1Н, уш.).</td>
</tr>
<tr>
<td>222</td>
<td>Способ С, чистота составляет 95,7%, ВУ = 1,863 мин; МС рассчит.: 421,0; МС найдено: 422,2 [M + Н]⁺.</td>
<td>δ: 0,90 (6Н, d, J = 6,4 Гц), 1,80-1,85 (1Н, м), 2,74 (2Н, d, J = 7,2 Гц), 7,19-7,20 (1Н, м), 7,53-7,59 (2Н, м), 7,69 (1Н, d, J = 8,4 Гц), 7,78-7,81 (2Н, м), 11,46 (1Н, уш.).</td>
</tr>
<tr>
<td>223</td>
<td>Способ В, чистота составляет 97,8%, ВУ = 2,059 мин; МС рассчит.: 362,9; МС найдено: 364,1 [M + Н]⁺.</td>
<td>δ: 4,15 (2Н, c), 7,31 (1Н, d, J = 8,0, 2,0 Гц), 7,47 (1Н, с), 7,55-7,62 (3Н, м), 7,98-8,01 (1Н, м), 8,09-8,12 (1Н, м), 8,41 (1Н, t, J = 1,8 Гц), 13,22 (1Н, уш.).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td>Способ В, чистота составляет 100%, ВУ = 2,392 мин; МС рассчит.: 485,2; МС найдено: 486,0 [M + H]$^+$</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 2,141 мин; МС рассчит.: 481,1; МС найдено: 482,3 [M + H]$^+$</td>
</tr>
<tr>
<td>226</td>
<td></td>
<td>Способ C, чистота составляет 99,9%, ВУ = 2,023 мин; МС рассчит.: 482,1; МС найдено: 483,2 [M + H]$^+$</td>
</tr>
<tr>
<td>227</td>
<td></td>
<td>Способ B, чистота составляет 97,6%, ВУ = 2,367 мин; МС рассчит.: 474,1; МС найдено: 475,0 [M + H]$^+$</td>
</tr>
<tr>
<td>228</td>
<td></td>
<td>Способ B, чистота составляет 93,3%, ВУ = 2,290 мин; МС рассчит.: 406,0; МС найдено: 407,1</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M + H]^+</td>
</tr>
<tr>
<td>229</td>
<td>Способ B, чистота составляет 98,6%, ВУ = 2,235 мин; МС рассчит.: 411,2; МС найдено: 412,1 [M+H]^+</td>
<td>δ: 0,89 (6Н, d, J = 6,4 Гц), 1,81-1,89 (1Н, м), 2,84 (2Н, d, J = 7,2 Гц), 7,60 (1Н, dd, J = 7,2, 2,0 Гц), 7,66 (1Н, d, J = 4,0 Гц), 7,70 (1Н, d, J = 4,0 Гц), 7,74 (1Н, d, J = 8,4 Гц), 7,83 (1Н, d, J = 2,0 Гц), 13,37 (1Н, уш.).</td>
</tr>
<tr>
<td>230</td>
<td>Способ B, чистота составляет 94,8%, ВУ = 2,243 мин; МС рассчит.: 460,1; МС найдено: 461,2 [M + H]^+</td>
<td>δ: 0,87 (6Н, d, J = 6,4 Гц), 1,79-1,83 (1Н, m), 2,62 (2Н, d, J = 6,8 Гц), 2,75-2,78 (2Н, m) 3,84 (2Н, t, J = 6,4 Гц), 4,65 (1Н, c), 7,29-7,37 (5Н, m), 7,54-7,57 (1Н, m), 7,66 (1Н, d, J = 8,4 Гц), 7,77 (1Н, d, J = 2,0 Гц), 8,41-8,82 (2Н, m), 10,51 (1Н, уш.).</td>
</tr>
<tr>
<td>231</td>
<td>Способ B, чистота составляет 98,1%, ВУ = 2,081 мин; МС рассчит.: 446,1; МС найдено: 447,1 [M + H]^+</td>
<td>δ: 0,88 (6Н, d, J = 6,4 Гц), 1,72-1,79 (1Н, m), 2,66 (2Н, d, J = 7,2 Гц), 4,47 (2Н, c), 4,68 (2Н, c), 7,30-7,33 (3Н, m), 7,37-7,40 (2Н, m), 7,52 (1Н, dd, J = 8,4, 2,0 Гц), 7,68 (1Н, d, J = 8,4 Гц), 7,75 (1Н, d, J = 2,0 Гц), 8,84-8,94 (3Н, m).</td>
</tr>
<tr>
<td>232</td>
<td>Способ B, чистота составляет 100%, ВУ = 2,190 мин; МС рассчит.: 475,2; МС найдено: 476,2 [M + H]^+</td>
<td>δ: 0,84 (6Н, d, J = 6,8 Гц), 1,70-1,73 (1Н, m), 2,58 (2Н, d, J = 7,2 Гц), 3,43-3,46 (2Н, m), 3,56-3,60 (2Н, m), 4,69 (2Н, c), 5,16 (4Н, уш.), 7,25-7,30 (3Н, m), 7,33-7,37 (2Н, m), 7,51 (1Н, dd, J = 8,4, 2,0 Гц), 7,66 (1Н, d, J = 8,4 Гц), 7,73 (1Н, d, J = 2,0 Гц), 7,82-7,86 (1Н, m).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>233</td>
<td></td>
<td>Способ B, чистота составляет 98,2%, BV = 2,287 мин; МС рассчит.: 421,1; МС найдено: 422,0 [M + H]^+</td>
</tr>
<tr>
<td>234</td>
<td></td>
<td>Способ B, чистота составляет 100%, BV = 2,122 мин; МС рассчит.: 421,0; МС найдено: 422,1 [M + H]^+</td>
</tr>
<tr>
<td>235</td>
<td></td>
<td>Способ C, чистота составляет 96,9%, BV = 2,344 мин; МС рассчит.: 496,0; МС найдено: 497,2 [M + H]^+</td>
</tr>
<tr>
<td>236</td>
<td></td>
<td>Способ B, чистота составляет 99,96%, BV = 2,326 мин; МС рассчит.: 488,0; МС найдено: 489,1 [M + H]^+</td>
</tr>
<tr>
<td>237</td>
<td></td>
<td>Способ C, чистота составляет 100%, BV = 2,225 мин; МС рассчит.: 524,0; МС найдено: 495,0 [M + H]^+</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>238</td>
<td>Способ B, частота составляет 97,9%, ВУ = 2,315 мин; МС рассчит.: 406,0; МС найдено: 407,0 [М + Н]$^+$</td>
<td>δ: 0,90 (6Н, д, $J = 6,8$ Гц), 1,80-1,89 (1Н, м), 2,88 (2Н, д, $J = 6,8$ Гц), 7,68 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,75 (1Н, д, $J = 8,4$ Гц), 7,87-7,91 (2Н, м), 8,49 (1Н, с), 8,80 (1Н, д, $J = 4,8$ Гц), 13,45 (1Н, уш.).</td>
</tr>
<tr>
<td>239</td>
<td>Способ B, частота составляет 97,8%, ВУ = 2,148 мин; МС рассчит.: 422,0; МС найдено: 423,1 [М + Н]$^+$</td>
<td>δ: 0,92 (6Н, д, $J = 6,4$ Гц), 1,88-1,91 (1Н, м), 2,79 (2Н, д, $J = 6,8$ Гц), 7,61 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,71 (1Н, д, $J = 8,4$ Гц), 7,84 (1Н, д, $J = 2,0$ Гц), 8,02 (1Н, д, $J = 5,2$ Гц), 9,03 (1Н, д, $J = 4,8$ Гц), 11,86 (1Н, уш.).</td>
</tr>
<tr>
<td>240</td>
<td>Способ C, частота составляет 95,8%, ВУ = 1,997 мин; МС рассчит.: 424,0; МС найдено: 425,0 [М + Н]$^+$</td>
<td>δ: 0,89 (6Н, д, $J = 6,8$ Гц), 1,84-1,91 (1Н, м), 2,87 (2Н, д, $J = 7,2$ Гц), 7,66 (1Н, дд, $J = 8,4, 2,0$ Гц), 7,74 (1Н, д, $J = 8,4$ Гц), 7,89 (1Н, д, $J = 2,0$ Гц), 8,41 (1Н, д, $J = 1,6$ Гц), 8,78 (1Н, д, $J = 2,0$ Гц).</td>
</tr>
<tr>
<td>241</td>
<td>Способ B, частота составляет 100%, ВУ = 2,456 мин; МС рассчит.: 497,2; МС найдено: 498,2 [М + Н]$^+$</td>
<td>δ: 0,92 (6Н, д, $J = 6,4$ Гц), 1,85-1,92 (1Н, м), 2,77 (2Н, д, $J = 6,8$ Гц), 6,99 (1Н, д, $J = 5,2$ Гц), 7,37-7,48 (5Н, м), 7,59-7,62 (1Н, м), 7,70 (1Н, д, $J = 8,4$ Гц), 7,83 (1Н, д, $J = 2,0$ Гц), 8,49 (1Н, д, $J = 5,2$ Гц), 10,92 (1Н, м), 13,67 (1Н, уш.).</td>
</tr>
<tr>
<td>242</td>
<td>Способ B, частота составляет 97,8%, ВУ = 2,393 мин; МС рассчит.: 455,0; МС найдено: 456,0 [М + Н]$^+$</td>
<td>δ: 0,89 (6Н, д, $J = 6,4$ Гц), 1,83-1,86 (1Н, м), 2,72 (2Н, д, $J = 6,8$ Гц), 7,15 (1Н, д, $J = 5,2$ Гц), 7,57 (1Н, д, $J = 8,4$ Гц), 7,69 (1Н, д, $J = 8,4$ Гц), 7,80 (1Н, д, $J = 1,2$ Гц), 8,36 (1Н, д, $J = 5,6$ Гц).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>243</td>
<td>[Image] Способ B, чистота составляет 100%, БУ = 2,227 мин; МС рассчит.: 451,1; МС найдено: 452,0</td>
<td>(\delta: 0,89 (6\text{Н}, \text{д}, J = 6,8 \text{ Гц}), 1,81-1,87 (1\text{Н}, \text{м}), 2,65 (2\text{Н}, \text{д}, J = 7,2 \text{ Гц}), 3,90 (3\text{Н}, \text{с}), 6,82 (1\text{Н}, \text{м}), 7,55-7,78 (3\text{Н}, \text{м}), 8,33 (1\text{Н}, \text{д}, J = 6,0 \text{ Гц}).)</td>
</tr>
<tr>
<td>244</td>
<td>[Image] Способ C, чистота составляет 98,1%, БУ = 2,174 мин; МС рассчит.: 547,1; МС найдено: 548,2</td>
<td>(\delta: 0,86 (6\text{Н}, \text{дд}, J = 6,4, 3,2 \text{ Гц}), 1,72-1,76 (1\text{Н}, \text{м}), 2,61 (2\text{Н}, \text{д}, J = 7,2 \text{ Гц}), 2,92-2,95 (1\text{Н}, \text{м}), 3,18 (2\text{Н}, \text{дд}, J = 12,4, 4,4 \text{ Гц}), 3,84-3,89 (2\text{Н}, \text{м}), 4,26 (1\text{Н}, \text{т}, J = 13,6 \text{ Гц}), 4,56 (1\text{Н}, \text{с}), 5,09 (2\text{Н}, \text{д}, J = 12,8 \text{ Гц}), 7,28-7,37 (5\text{Н}, \text{м}), 7,48 (1\text{Н}, \text{дд}, J = 8,4, 2,0 \text{ Гц}), 7,64 (1\text{Н}, \text{д}, J = 8,4 \text{ Гц}), 7,70 (1\text{Н}, \text{д}, J = 2,0 \text{ Гц}).)</td>
</tr>
<tr>
<td>245</td>
<td>[Image] Способ C, чистота составляет 100%, БУ = 1,972 мин; МС рассчит.: 485,1; МС найдено: 486,1</td>
<td>(\delta: 0,86-0,89 (6\text{Н}, \text{м}), 1,18 (3\text{Н}, \text{дт}, J = 21,2, 7,2 \text{ Гц}), 1,73-1,79 (1\text{Н}, \text{м}), 2,64 (2\text{Н}, \text{д}, J = 7,2 \text{ Гц}), 2,90-2,96 (1\text{Н}, \text{м}), 3,17 (2\text{Н}, \text{дд}, J = 12,4, 4,4 \text{ Гц}), 3,84 (2\text{Н}, \text{д}, J = 12,4 \text{ Гц}), 4,01-4,09 (1\text{Н}, \text{м}), 4,26 (1\text{Н}, \text{т}, J = 11,2 \text{ Гц}), 4,52 (1\text{Н}, \text{д}, J = 28,4 \text{ Гц}), 7,50 (1\text{Н}, \text{дд}, J = 8,4, 2,0 \text{ Гц}), 7,66 (1\text{Н}, \text{д}, J = 8,4 \text{ Гц}), 7,72 (1\text{Н}, \text{д}, J = 2,0 \text{ Гц}).)</td>
</tr>
<tr>
<td>246</td>
<td>[Image] Способ B, чистота составляет 100%, БУ = 2,164 мин; МС рассчит.: 517,0; МС найдено: 518,1</td>
<td>(\delta: 0,86 (6\text{Н}, \text{д}, J = 6,4 \text{ Гц}), 1,71-1,78 (1\text{Н}, \text{м}), 2,60-2,65 (2\text{Н}, \text{м}), 2,96-3,01 (1\text{Н}, \text{м}), 3,13-3,20 (1\text{Н}, \text{м}), 3,43-3,50 (1\text{Н}, \text{м}), 3,74-5,11 (4\text{Н}, \text{м}), 7,23 (1\text{Н}, \text{т}, J = 8,4 \text{ Гц}), 7,39-7,40 (3\text{Н}, \text{м}), 7,46-7,50 (2\text{Н}, \text{м}), 7,65 (1\text{Н}, \text{д}, J = 8,4 \text{ Гц}), 7,71 (1\text{Н}, \text{д}, J = 1,6 \text{ Гц}).)</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>247</td>
<td></td>
<td>Способ C, чистота составляет 97,8%, BVU = 2,007 мин; MS рассчит.: 421,0; MS найдено: 422,2 [М + H]$^+$</td>
</tr>
<tr>
<td>248</td>
<td></td>
<td>Способ C, чистота составляет 95,0%, BVU = 2,039 мин; MS рассчит.: 523,1; MS найдено: 524,2 [М + H]$^+$</td>
</tr>
<tr>
<td>249</td>
<td></td>
<td>Способ C, чистота составляет 100%, BVU = 1,886 мин; MS рассчит.: 519,0; MS найдено: 520,2 [М + H]$^+$</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>Способ C, чистота составляет 100%, BVU = 1,911 мин; MS рассчит.: 518,0; MS найдено: 519,2 [М + H]$^+$</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>Способ C, чистота составляет 94,4%, BVU = 1,898 мин;</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>252</td>
<td></td>
<td>МС рассчит.: 470,1; МС найдено: 471,2 $[M + H]^+$</td>
</tr>
<tr>
<td>253</td>
<td></td>
<td>Способ С, чистота составляет 94,3%, $\text{BV} = 2,053$ мин; МС рассчит.: 532,1; МС найдено: 533,2 $[M + H]^+$</td>
</tr>
<tr>
<td>254</td>
<td></td>
<td>Способ С, чистота составляет 100%, $\text{BV} = 2,021$ мин; МС рассчит.: 499,1; МС найдено: 500,0 $[M + H]^+$</td>
</tr>
<tr>
<td>255</td>
<td></td>
<td>Способ С, чистота составляет 100%, $\text{BV} = 2,134$ мин; МС рассчит.: 496,1; МС найдено: 497,0 $[M + H]^+$</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>256</td>
<td>[Chemical Structure Image]</td>
<td>Способ С, чистота составляет 96,6%, ВУ = 2,137 мин; МС рассчит.: 427,1; МС найдено: 427,2 [M + H]⁺.</td>
</tr>
<tr>
<td>257</td>
<td>[Chemical Structure Image]</td>
<td>Способ С, чистота составляет 100%, ВУ = 1,789 мин; МС рассчит.: 447,1; МС найдено: 448,0 [M + H]⁺.</td>
</tr>
<tr>
<td>258</td>
<td>[Chemical Structure Image]</td>
<td>Способ B, чистота составляет 97,3%, ВУ = 2,218 мин; МС рассчит.: 407,0; МС найдено: 408,1 [M + H]⁺.</td>
</tr>
<tr>
<td>259</td>
<td>[Chemical Structure Image]</td>
<td>Способ С, чистота составляет 100%, ВУ = 2,253 мин; МС рассчит.: 483,0; МС найдено: 483,8 [M + H]⁺.</td>
</tr>
<tr>
<td>260</td>
<td>[Chemical Structure Image]</td>
<td>Способ С, чистота составляет 90,0%, ВУ = 2,262 мин; МС рассчит.: 489,0; МС найдено: 489,7 [M + H]⁺.</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>261</td>
<td></td>
<td>Способ В, чистота составляет 91,2%, ВУ = 2,236 мин; МС рассчит.: 441,0; МС найдено: 442,1 [M + H]$^+$</td>
</tr>
<tr>
<td>262</td>
<td></td>
<td>Способ В, чистота составляет 94,3%, ВУ = 2,394 мин; МС рассчит.: 517,1; МС найдено: 518,2 [M + H]$^+$</td>
</tr>
<tr>
<td>263</td>
<td></td>
<td>Способ В, чистота составляет 100%, ВУ = 2,421 мин; МС рассчит.: 523,0; МС найдено: 524,0 [M + H]$^+$</td>
</tr>
<tr>
<td>264</td>
<td></td>
<td>Способ С, чистота составляет 95,3%, ВУ = 2,272 мин; МС рассчит.: 497,2; МС найдено: 498,2 [M + H]$^+$</td>
</tr>
<tr>
<td>265</td>
<td></td>
<td>Способ С, чистота составляет 98,8%, ВУ = 2,249 мин; МС рассчит.: 531,1; МС найдено: 532,2 [M + H]$^+$</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>266</td>
<td></td>
<td>Способ С, чистота составляет 96,7%, ВУ = 2,261 мин; МС рассчит.: 501,1; МС найдено: 502,0 [M + H]$^+$</td>
</tr>
<tr>
<td>267</td>
<td></td>
<td>Способ С, чистота составляет 99,4%, ВУ = 2,242 мин; МС рассчит.: 513,1; МС найдено: 514,0 [M + H]$^+$</td>
</tr>
<tr>
<td>268</td>
<td></td>
<td>Способ B, чистота составляет 100%, ВУ = 2,300 мин; МС рассчит.: 514,1; МС найдено: 515,2 [M + H]$^+$</td>
</tr>
<tr>
<td>269</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 1,846 мин; МС рассчит.: 452,0; МС найдено: 453,0 [M + H]$^+$</td>
</tr>
<tr>
<td>270</td>
<td></td>
<td>Способ C, чистота составляет 98,7%, ВУ = 2,410 мин; МС рассчит.: 502,1; МС найдено: 503,2 [M + H]$^+$</td>
</tr>
</tbody>
</table>

355
<table>
<thead>
<tr>
<th>I-#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>1Н ЯМР (400 МГц, d_6-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td></td>
<td>Способ С, чистота составляет 100%, BY = 2,266 мин; МС рассчит.: 520,1; МС найдено: 521,2 [M + H]⁺.</td>
<td>δ: 0,92 (6Н, d, $J = 6,4$ Гц), 1,81-1,83 (1Н, м), 2,73 (2Н, d, $J = 7,2$ Гц), 7,07-7,09 (2Н, м), 7,30 (1Н, т, $J = 8,4$ Гц), 7,63 (1Н, d, $J = 8,4$ Гц), 7,69-7,74 (3Н, м), 7,89 (1Н, с), 8,20 (1Н, с).</td>
</tr>
<tr>
<td>272</td>
<td></td>
<td>Способ С, чистота составляет 100%, BY = 2,363 мин; МС рассчит.: 536,1; МС найдено: 537,1 [M + H]⁺.</td>
<td>δ: 0,93 (6Н, d, $J = 6,4$ Гц), 1,80-1,87 (1Н, м), 2,76 (2Н, d, $J = 7,2$ Гц), 7,50-7,54 (2Н, м), 7,63 (1Н, dд, $J = 8,6, 1,6$ Гц), 7,67-7,69 (1Н, м), 7,71 (1Н, d, $J = 8,4$ Гц), 7,77 (1Н, с), 7,94 (1Н, dд, $J = 1,6$ Гц), 8,49 (1Н, с), 10,36 (1Н, с), 13,35 (1Н, уш.).</td>
</tr>
<tr>
<td>273</td>
<td></td>
<td>Способ С, чистота составляет 95,8%, BY = 2,068 мин; МС рассчит.: 503,2; МС найдено: 504,0 [M + H]⁺.</td>
<td>δ: 0,90 (6Н, d, $J = 6,8$ Гц), 1,78-1,83 (1Н, м), 2,72 (2Н, d, $J = 7,2$ Гц), 7,47-7,50 (1Н, м), 7,62-7,65 (1Н, м), 7,71-7,73 (1Н, м), 7,89 (1Н, с), 8,04-8,07 (1Н, м), 8,35 (1Н, с), 8,55-8,57 (1Н, м), 8,90 (1Н, с), 11,52 (1Н, уш.).</td>
</tr>
<tr>
<td>274</td>
<td></td>
<td>Способ С, чистота составляет 99,6%, BY = 2,302 мин; МС рассчит.: 482,1; МС найдено: 483,2 [M + H]⁺.</td>
<td>δ: 0,90 (6Н, d, $J = 6,8$ Гц), 1,34 (9Н, с), 1,78-1,82 (1Н, м), 2,73 (2Н, d $J = 6,8$ Гц), 7,11 (1Н, уш.), 7,58 (1Н, dд, $J = 8,4, 2,0$ Гц), 7,69 (1Н, d, $J = 8,4$ Гц), 7,86 (1Н, d, $J = 2,0$ Гц), 7,90 (1Н, с), 10,63 (1Н, уш.).</td>
</tr>
<tr>
<td>275</td>
<td></td>
<td>Способ С, чистота составляет 97,5%, BY = 2,273 мин; МС рассчит.: 516,0; МС найдено: 517,1 [M + H]⁺.</td>
<td>δ: 0,88 (6Н, d, $J = 6,8$ Гц), 1,76-1,79 (1Н, м), 2,12 (3Н, с), 2,66 (2Н, d, $J = 7,2$ Гц), 6,07 (1Н, c), 7,34 (1Н, dд, $J = 6,0$, 3,6 Гц), 7,42-7,45 (4Н, m), 7,53 (1Н, dд, $J = 8,0, 2,0$ Гц), 7,66 (1Н, d, $J = 8,0$ Гц), 7,72 (1Н, d, $J = 2,0$ Гц), 11,23 (1Н, уш.).</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>(^1)Н ЯМР (400 МГц, (d_6)-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>276</td>
<td></td>
<td>Способ В, чистота составляет 98,9%, (\text{ВУ} = 2,252 \text{ мин;})
MC рассчит.: 468,1;
MC найдено: 469,1 [M + H]<sup>+</sup>.</td>
<td>(\delta: 0,91 (6\text{Н, } d = 6,4 \text{ Гц}), 1,77-1,84 (1\text{Н, } m), 2,72 (2\text{Н, } d J = 7,2 \text{ Гц}), 2,98 (2\text{Н, } \text{дд, } J = 12,4, 5,6 \text{ Гц}), 3,08-3,10 (1\text{Н, } m), 3,51 (2\text{Н, } \text{дд, } J = 11,6, 5,6 \text{ Гц}), 7,59 (1\text{Н, } \text{дд, } J = 8,0, 2,0 \text{ Гц}), 7,72 (1\text{Н, } d, J = 8,4 \text{ Гц}), 7,79-7,81 (2\text{Н, } m), 7,98 (1\text{Н, } d, J = 5,6 \text{ Гц}), 8,06 (2\text{Н, } \text{уш.}), 8,42 (1\text{Н, } t, J = 5,2 \text{ Гц}).)</td>
</tr>
<tr>
<td>277</td>
<td></td>
<td>Способ С, чистота составляет 97,5%, (\text{ВУ} = 2,106 \text{ мин;})
MC рассчит.: 454,1;
MC найдено: 455,0 [M + H]<sup>+</sup>.</td>
<td>(\delta: 1,28 (6\text{Н, } d, J = 6,8 \text{ Гц}), 2,98 (2\text{Н, } \text{дд, } J = 11,6, 5,6 \text{ Гц}), 3,31-3,38 (1\text{Н, } m), 3,50 (2\text{Н, } \text{дд, } J = 11,6, 6,0 \text{ Гц}), 7,56 (1\text{Н, } \text{дд, } J = 8,4, 2,0 \text{ Гц}), 7,73 (1\text{Н, } d, J = 8,4 \text{ Гц}), 7,78 (2\text{Н, } \text{дд, } J = 8,4, 2,0 \text{ Гц}), 7,96 (1\text{Н, } d, J = 5,2 \text{ Гц}), 8,03 (2\text{Н, } \text{уш.}), 8,41 (1\text{Н, } t, J = 5,2 \text{ Гц}).)</td>
</tr>
<tr>
<td>278</td>
<td></td>
<td>Способ С, чистота составляет 88,8%, (\text{ВУ} = 2,241 \text{ мин;})
MC рассчит.: 488,1;
MC найдено: 489,2 [M + H]<sup>+</sup>.</td>
<td>(\delta: 1,31 (6\text{Н, } d, J = 6,4 \text{ Гц}), 3,40-3,42 (1\text{Н, } m), 7,42-7,51 (3\text{Н, } m), 7,59 (1\text{Н, } \text{дд, } J = 8,0, 1,6 \text{ Гц}), 7,70-7,74 (3\text{Н, } m), 7,88 (1\text{Н, } d, J = 2,0 \text{ Гц}), 8,42 (1\text{Н, } c), 10,29 (1\text{Н, } c), 13,30 (1\text{Н, } \text{уш.}).)</td>
</tr>
<tr>
<td>279</td>
<td></td>
<td>Способ С, чистота составляет 98,1%, (\text{ВУ} = 2,204 \text{ мин;})
MC рассчит.: 522,0;
MC найдено: 523,1 [M + H]<sup>+</sup>.</td>
<td>(\delta: 1,31 (6\text{Н, } d, J = 6,8 \text{ Гц}), 3,38-3,41 (1\text{Н, } m), 7,12 (2\text{Н, } \text{уш.}), 7,35 (1\text{Н, } d, J = 7,6 \text{ Гц}), 7,42 (2\text{Н, } t, J = 7,6 \text{ Гц}), 7,62 (2\text{Н, } d, J = 7,2 \text{ Гц}), 7,82 (1\text{Н, } d, J = 8,4 \text{ Гц}), 7,91 (1\text{Н, } \text{дд, } J = 8,4, 2,0 \text{ Гц}), 8,13 (1\text{Н, } d, J = 1,6 \text{ Гц}), 8,20 (1\text{Н, } c).)</td>
</tr>
<tr>
<td>280</td>
<td></td>
<td>Способ В, чистота составляет 96,1%, (\text{ВУ} = 2,299 \text{ мин;})
MC рассчит.: 462,0;
MC найдено: 463,0</td>
<td>(\delta: 1,25 (6\text{Н, } d, J = 6,8 \text{ Гц}), 3,27-3,34 (1\text{Н, } m), 7,40-7,47 (2\text{Н, } m), 7,53-7,57 (1\text{Н, } m), 7,61-7,66 (2\text{Н, } m), 7,84 (1\text{Н, } d, J = 8,0 \text{ Гц}), 8,01 (1\text{Н, } d, J = 8,0 \text{ Гц}).)</td>
</tr>
<tr>
<td>I-#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>(^{1}H) ЯМР (400 МГц, d<sub>6</sub>-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>([M + H]^{+}).</td>
<td>δ: 1,27 (6Н, d, J = 6,4 Гц), 3,27-3,33 (1Н, м), 7,41-7,45 (1Н, м), 7,52-7,56 (1Н, м), 7,73 (2Н, с), 7,84 (2Н, d, J = 8,8 Гц), 8,00 (1Н, d, J = 8,0 Гц), 10,09 (1Н, с), 13,46 (1Н, уш.).</td>
</tr>
<tr>
<td>281</td>
<td></td>
<td>Способ B, чистота составляет 99,1%, БУ = 2,286 мин; МС рассчит.: 496,0; МС найдено: 497,1 [M + H] (^{+}).</td>
<td>δ: 1,34 (6Н, d, J = 6,4 Гц), 3,46 (1Н, м), 7,35-7,90 (5Н, м), 8,06-8,08 (1Н, м), 8,67 (1Н, с), 9,00-9,16 (2Н, м).</td>
</tr>
<tr>
<td>282</td>
<td></td>
<td>Способ C, чистота составляет 100%, БУ = 2,086 мин; МС рассчит.: 484,1; МС найдено: 484,8 [M + H] (^{+}).</td>
<td>δ: 0,74-0,78 (2Н, м), 0,95-1,00 (2Н, м), 1,33 (6Н, d, J = 6,8 Гц), 1,97-2,08 (1Н, м), 3,35-3,41 (1Н, м), 7,56 (1Н, d, d, J = 8,0, 1,6 Гц), 7,71 (1Н, d, J = 8,4 Гц), 7,78 (1Н, d, J = 2,0 Гц), 8,01 (1Н, d, J = 2,4 Гц), 8,42 (1Н, d, J = 2,4 Гц), 11,41 (1Н, с), 14,09 (1Н, уш.).</td>
</tr>
<tr>
<td>283</td>
<td></td>
<td>Способ B, чистота составляет 100%, БУ = 2,306 мин; МС рассчит.: 447,1; МС найдено: 448,1 [M + H] (^{+}).</td>
<td>δ: 1,28 (6Н, d, J = 6,8 Гц), 3,31-3,34 (1Н, м), 6,80-6,83 (1Н, м), 7,49-7,51 (1Н, м), 7,65 (1Н, d, J = 8,4 Гц), 7,73 (1Н, d, J = 1,6 Гц), 8,15-8,17 (1Н, м), 8,37-8,38 (1Н, м), 9,31 (3Н, уш.).</td>
</tr>
<tr>
<td>284</td>
<td></td>
<td>Способ C, чистота составляет 98,5%, БУ = 2,880 мин; МС рассчит.: 405,1; МС найдено: 406,2 [M + H] (^{+}).</td>
<td>δ: 1,29-1,33 (6Н, м), 3,33-3,37 (1Н, м), 7,34-7,36 (1Н, м), 7,46-7,54 (3Н, м), 7,67-7,69 (1Н, м), 7,76-7,81 (3Н, м), 8,51 (1Н, d, J = 2,4 Гц), 8,77 (1Н, d, J = 2,4 Гц), 9,31 (3Н, уш.).</td>
</tr>
<tr>
<td>285</td>
<td></td>
<td>Способ C, чистота составляет 92,3%, БУ = 2,492 мин; МС рассчит.: 481,1; МС найдено: 482,0 [M + H] (^{+}).</td>
<td>δ: 1,29-1,33 (6Н, м), 3,33-3,37 (1Н, м), 7,34-7,36 (1Н, м), 7,46-7,54 (3Н, м), 7,67-7,69 (1Н, м), 7,76-7,81 (3Н, м), 8,51 (1Н, d, J = 2,4 Гц), 8,77 (1Н, d, J = 2,4 Гц), 9,31 (3Н, уш.).</td>
</tr>
</tbody>
</table>
Пример 5. Тестирование соединения в анализе связывания eIF4E/4G2 человека

[00626] eIF4E человека (а.к. 28-217) с C-концевой His-меткой экспрессировался в E. coli в тельцах включения. Белок солюбилизовали 8 М мочевиной и очищали в денатурирующих условиях с использованием колонок HisTrap HP с никелевым зарядом (GE Healthcare). Затем очищенный белок подвергали рефолдингу путем разведения в 20 мМ Hapes pH 7,0, 0,5 М NaCl, 1 мМ DTT, 1 мМ EDTA, 0,5 М аргинина плюс 6 М мочевины, а затем подвергали диализу в течение ночи в том же буфере без мочевины. Затем белок подвергали диализу в 20 мМ Hapes, pH 6,5, 50 мМ NaCl, 1 мМ EDTA, 1 мМ DTT и концентрировали с использованием колонок Hitrap SP с сефарозой FF (GE Healthcare). Концентрированный белок диализовали в 20 мМ Hapes, pH 7,0, 0,5 М NaCl, 5 мМ DTT и 10% глицерина, и хранили при -80°С до использования.

[00627] Испытываемые соединения (3,43 мМ исходного раствора в DMCO) последовательно разбавляли в 2 раза в DMCO (10 точек концентрации). Растворы соединений (1,2 мкг/лунка) добавляли в черные 384-луночные полипропиленовые микропланшеты (Matrix, Thermal Scientific). Добавляли двадцать два микролитра на лунку аналитического буфера (50 мМ NaPi, pH 6,5, 50 мМ KCl, 1 мМ DTT и 0,5 мг/мл гамма-глобулина) и восемь микролитров на лунку 82,5 нМ очищенного eIF4E в аналитическом буфере. Образцы инкубировали при комнатной температуре (20-23°С) в течение 4 часов.

Меченый биотином пептид 4G2 (Ac-Lys-Gln-Tyr-Asp-Arg-Glu-Phe-Leu-Leu-Asp-Phe-Gln-Phe-Met-Pro-Lys(Aha-Bio)-NH2, 1,75 мкМ исходного в DMCO) разбавляли до 0,14 мкМ в аналитическом буфере (без DTT) и добавляли 5 мкг/лунку. Образцы инкубировали при комнатной температуре в течение 20 мин. Затем добавляли по пять микролитров на лунку 6,4 нМ Eu-стручептивидина (Eu-SA, Perkin Elmer) и 80 нМ аллюфосфацинана (APC)-антитела к His (Columbia Biosciences) в аналитическом буфере (без DTT), и образцы инкубировали при комнатной температуре в течение 20 мин.

[00628] Сигналы, полученные в ходе анализа, контролировали путем считывания возбуждения при 340 нм и эмиссионной флуоресценции при 615 нм и 665 нм на считающем устройстве Envision (Perkin Elmer). Нормализованный сигнал анализа TR-FRET (резонансный перенос энергии флуоресценции с временным разрешением) (Rn) рассчитывали по формуле:

\[Rn = \frac{(A-Ba-C \times D-Dd)}{(Dc- Bd)} \]

Где A представляет собой интенсивность флуоресценции образца при 665 нм,
D представляет собой интенсивность флуоресценции образца при 615 нм,
Ba и Bd представляют собой фоны планшета при 665 нм и 615 нм, соответственно.
Дс представляет собой интенсивность флуоресценции 0,78 нМ Eu-SA в аналитическом буфере при 615 нм.
Коэффициент перекрестных помех (С) определяется по следующей формуле:
\[C = (A_c - B_a)/(D_c - B_d) \]
Где \(A_c \) представляет собой интенсивность флуоресценции 0,78 нМ Eu-SA в аналитическом буфере при 665 нм.

Значения IC50 рассчитывали с использованием программы xLFit (IDBS). В таблице 2 ниже приведены значения EC50 некоторых соединений, где A представляет собой EC50 ≤ 1 мкМ; B представляет собой 1 мкМ < EC50 ≤ 10 мкМ; и C представляет собой EC50 > 10 мкМ.

Таблица 2. Значения IC50 некоторых иллюстративных соединений.

<table>
<thead>
<tr>
<th>Соед. №</th>
<th>IC50</th>
<th>Соед. №</th>
<th>IC50</th>
<th>Соед. №</th>
<th>IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>A</td>
<td>I-97</td>
<td>B</td>
<td>I-195</td>
<td>C</td>
</tr>
<tr>
<td>I-2</td>
<td>A</td>
<td>I-98</td>
<td>C</td>
<td>I-196</td>
<td>B</td>
</tr>
<tr>
<td>I-3</td>
<td>A</td>
<td>I-99</td>
<td>B</td>
<td>I-197</td>
<td>B</td>
</tr>
<tr>
<td>I-4</td>
<td>B</td>
<td>I-100</td>
<td>A</td>
<td>I-198</td>
<td>C</td>
</tr>
<tr>
<td>I-5</td>
<td>B</td>
<td>I-101</td>
<td>A</td>
<td>I-199</td>
<td>C</td>
</tr>
<tr>
<td>I-6</td>
<td>A</td>
<td>I-103</td>
<td>A</td>
<td>I-200</td>
<td>C</td>
</tr>
<tr>
<td>I-7</td>
<td>A</td>
<td>I-104</td>
<td>A</td>
<td>I-201</td>
<td>C</td>
</tr>
<tr>
<td>I-8</td>
<td>B</td>
<td>I-105</td>
<td>B</td>
<td>I-202</td>
<td>C</td>
</tr>
<tr>
<td>I-9</td>
<td>B</td>
<td>I-106</td>
<td>B</td>
<td>I-203</td>
<td>B</td>
</tr>
<tr>
<td>I-10</td>
<td>B</td>
<td>I-107</td>
<td>A</td>
<td>I-204</td>
<td>C</td>
</tr>
<tr>
<td>I-11</td>
<td>B</td>
<td>I-108</td>
<td>A</td>
<td>I-205</td>
<td>C</td>
</tr>
<tr>
<td>I-12</td>
<td>B</td>
<td>I-109</td>
<td>B</td>
<td>I-206</td>
<td>B</td>
</tr>
<tr>
<td>I-13</td>
<td>B</td>
<td>I-110</td>
<td>B</td>
<td>I-207</td>
<td>B</td>
</tr>
<tr>
<td>I-14</td>
<td>B</td>
<td>I-111</td>
<td>A</td>
<td>I-208</td>
<td>A</td>
</tr>
<tr>
<td>I-15</td>
<td>B</td>
<td>I-114</td>
<td>B</td>
<td>I-209</td>
<td>A</td>
</tr>
<tr>
<td>I-16</td>
<td>B</td>
<td>I-115</td>
<td>C</td>
<td>I-210</td>
<td>A</td>
</tr>
<tr>
<td>I-17</td>
<td>A</td>
<td>I-116</td>
<td>C</td>
<td>I-211</td>
<td>C</td>
</tr>
<tr>
<td>I-18</td>
<td>A</td>
<td>I-117</td>
<td>B</td>
<td>I-212</td>
<td>A</td>
</tr>
<tr>
<td>I-19</td>
<td>A</td>
<td>I-119</td>
<td>B</td>
<td>I-213</td>
<td>A</td>
</tr>
<tr>
<td>I-20</td>
<td>A</td>
<td>I-120</td>
<td>B</td>
<td>I-214</td>
<td>B</td>
</tr>
<tr>
<td>I-21</td>
<td>B</td>
<td>I-121</td>
<td>B</td>
<td>I-215</td>
<td>A</td>
</tr>
<tr>
<td>I-22</td>
<td>A</td>
<td>I-122</td>
<td>B</td>
<td>I-216</td>
<td>A</td>
</tr>
</tbody>
</table>

360
<p>| I-23 | A | I-124 | C | I-217 | A |
| I-24 | B | I-125 | C | I-218 | C |
| I-25 | A | I-126 | A | I-219 | B |
| I-26 | B | I-127 | B | I-220 | B |
| I-27 | A | I-128 | C | I-221 | B |
| I-28 | C | I-129 | B | I-222 | B |
| I-29 | B | I-130 | C | I-223 | B |
| I-30 | B | I-131 | B | I-224 | B |
| I-31 | C | I-132 | B | I-225 | A |
| I-32 | B | I-133 | C | I-226 | A |
| I-33 | B | I-134 | B | I-227 | B |
| I-34 | B | I-135 | B | I-228 | B |
| I-35 | B | I-136 | B | I-229 | A |
| I-36 | B | I-137 | B | I-230 | C |
| I-37 | B | I-138 | A | I-231 | C |
| I-38 | B | I-139 | B | I-232 | B |
| I-39 | B | I-140 | C | I-233 | A |
| I-40 | B | I-141 | B | I-234 | B |
| I-41 | B | I-142 | A | I-235 | A |
| I-42 | B | I-143 | C | I-236 | A |
| I-43 | B | I-144 | B | I-237 | A |
| I-44 | B | I-145 | C | I-238 | B |
| I-45 | B | I-146 | C | I-239 | B |
| I-46 | B | I-147 | B | I-240 | B |
| I-47 | A | I-148 | C | I-241 | A |
| I-48 | A | I-149 | C | I-242 | A |
| I-49 | A | I-150 | B | I-243 | A |
| I-50 | B | I-151 | B | I-244 | A |
| I-51 | A | I-152 | B | I-245 | B |
| I-52 | A | I-153 | C | I-246 | B |
| I-53 | B | I-154 | B | I-247 | A |
| I-54 | B | I-155 | B | I-248 | A |
| I-55 | A | I-156 | B | I-249 | B |</p>
<table>
<thead>
<tr>
<th>I-56</th>
<th>B</th>
<th>I-157</th>
<th>B</th>
<th>I-250</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-57</td>
<td>A</td>
<td>I-158</td>
<td>B</td>
<td>I-251</td>
<td>B</td>
</tr>
<tr>
<td>I-58</td>
<td>C</td>
<td>I-159</td>
<td>B</td>
<td>I-252</td>
<td>A</td>
</tr>
<tr>
<td>I-59</td>
<td>A</td>
<td>I-160</td>
<td>C</td>
<td>I-253</td>
<td>B</td>
</tr>
<tr>
<td>I-60</td>
<td>A</td>
<td>I-161</td>
<td>B</td>
<td>I-254</td>
<td>B</td>
</tr>
<tr>
<td>I-61</td>
<td>C</td>
<td>I-162</td>
<td>B</td>
<td>I-255</td>
<td>B</td>
</tr>
<tr>
<td>I-62</td>
<td>B</td>
<td>I-163</td>
<td>B</td>
<td>I-256</td>
<td>A</td>
</tr>
<tr>
<td>I-63</td>
<td>B</td>
<td>I-164</td>
<td>B</td>
<td>I-257</td>
<td>A</td>
</tr>
<tr>
<td>I-64</td>
<td>B</td>
<td>I-165</td>
<td>B</td>
<td>I-258</td>
<td>A</td>
</tr>
<tr>
<td>I-65</td>
<td>A</td>
<td>I-166</td>
<td>B</td>
<td>I-259</td>
<td>A</td>
</tr>
<tr>
<td>I-66</td>
<td>B</td>
<td>I-167</td>
<td>B</td>
<td>I-260</td>
<td>A</td>
</tr>
<tr>
<td>I-67</td>
<td>B</td>
<td>I-168</td>
<td>B</td>
<td>I-261</td>
<td>A</td>
</tr>
<tr>
<td>I-68</td>
<td>B</td>
<td>I-169</td>
<td>B</td>
<td>I-262</td>
<td>A</td>
</tr>
<tr>
<td>I-69</td>
<td>B</td>
<td>I-170</td>
<td>B</td>
<td>I-263</td>
<td>A</td>
</tr>
<tr>
<td>I-70</td>
<td>B</td>
<td>I-171</td>
<td>A</td>
<td>I-264</td>
<td>A</td>
</tr>
<tr>
<td>I-71</td>
<td>C</td>
<td>I-172</td>
<td>B</td>
<td>I-265</td>
<td>A</td>
</tr>
<tr>
<td>I-72</td>
<td>C</td>
<td>I-173</td>
<td>B</td>
<td>I-266</td>
<td>A</td>
</tr>
<tr>
<td>I-73</td>
<td>B</td>
<td>I-174</td>
<td>A</td>
<td>I-267</td>
<td>A</td>
</tr>
<tr>
<td>I-74</td>
<td>A</td>
<td>I-175</td>
<td>B</td>
<td>I-268</td>
<td>A</td>
</tr>
<tr>
<td>I-75</td>
<td>B</td>
<td>I-176</td>
<td>B</td>
<td>I-269</td>
<td>B</td>
</tr>
<tr>
<td>I-76</td>
<td>C</td>
<td>I-177</td>
<td>A</td>
<td>I-270</td>
<td>A</td>
</tr>
<tr>
<td>I-77</td>
<td>B</td>
<td>I-178</td>
<td>B</td>
<td>I-271</td>
<td>A</td>
</tr>
<tr>
<td>I-78</td>
<td>B</td>
<td>I-179</td>
<td>B</td>
<td>I-272</td>
<td>A</td>
</tr>
<tr>
<td>I-79</td>
<td>B</td>
<td>I-180</td>
<td>A</td>
<td>I-273</td>
<td>A</td>
</tr>
<tr>
<td>I-80</td>
<td>B</td>
<td>I-181</td>
<td>C</td>
<td>I-274</td>
<td>A</td>
</tr>
<tr>
<td>I-81</td>
<td>B</td>
<td>I-182</td>
<td>B</td>
<td>I-275</td>
<td>A</td>
</tr>
<tr>
<td>I-82</td>
<td>B</td>
<td>I-183</td>
<td>C</td>
<td>I-276</td>
<td>B</td>
</tr>
<tr>
<td>I-83</td>
<td>C</td>
<td>I-184</td>
<td>B</td>
<td>I-277</td>
<td>B</td>
</tr>
<tr>
<td>I-84</td>
<td>C</td>
<td>I-185</td>
<td>B</td>
<td>I-278</td>
<td>A</td>
</tr>
<tr>
<td>I-85</td>
<td>B</td>
<td>I-186</td>
<td>C</td>
<td>I-279</td>
<td>A</td>
</tr>
<tr>
<td>I-86</td>
<td>C</td>
<td>I-187</td>
<td>C</td>
<td>I-280</td>
<td>A</td>
</tr>
<tr>
<td>I-87</td>
<td>A</td>
<td>I-188</td>
<td>C</td>
<td>I-281</td>
<td>A</td>
</tr>
<tr>
<td>I-88</td>
<td>C</td>
<td>I-189</td>
<td>C</td>
<td>I-282</td>
<td>A</td>
</tr>
<tr>
<td>I-89</td>
<td>C</td>
<td>I-190</td>
<td>A</td>
<td>I-283</td>
<td>A</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>I-90</td>
<td>C</td>
<td>I-191</td>
<td>B</td>
<td>I-284</td>
<td>C</td>
</tr>
<tr>
<td>I-93</td>
<td>B</td>
<td>I-192</td>
<td>B</td>
<td>I-285</td>
<td>C</td>
</tr>
<tr>
<td>I-94</td>
<td>A</td>
<td>I-193</td>
<td>C</td>
<td>I-286</td>
<td>C</td>
</tr>
<tr>
<td>I-96</td>
<td>A</td>
<td>I-194</td>
<td>C</td>
<td>I-287</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I-288</td>
<td>C</td>
</tr>
<tr>
<td>I-309</td>
<td>A</td>
<td>I-310</td>
<td>A</td>
<td>I-320</td>
<td>A</td>
</tr>
<tr>
<td>I-321</td>
<td>A</td>
<td>I-322</td>
<td>A</td>
<td>I-323</td>
<td>A</td>
</tr>
<tr>
<td>I-324</td>
<td>A</td>
<td>I-325</td>
<td>A</td>
<td>I-326</td>
<td>A</td>
</tr>
<tr>
<td>I-327</td>
<td>A</td>
<td>I-329</td>
<td>A</td>
<td>I-330</td>
<td>A</td>
</tr>
<tr>
<td>I-331</td>
<td>A</td>
<td>I-332</td>
<td>A</td>
<td>I-333</td>
<td>A</td>
</tr>
</tbody>
</table>

Пример 6. Синтез соединений I-289 – I-319

Схема 1: Путь для соединений a, b, c, 530

![Chemical Structure](image)

Тот же способ синтеза использовали для других соединений b, c, 530.

5 Схема 2: Путь для соединения 595

![Chemical Structure](image)

Схема 3: Путь для соединений 604, 661, 664, 667, 671, 672
Схема 4: Путь для соединения 611

Схема 5: Путь для соединения 639

Схема 6: Путь для соединения 634

Схема 7: Путь для соединения 640
Схема 8: Путь для соединений 662, 669, 675, 596

Схема 9: Путь для соединения 663

Схема 10: Путь для соединения 613

Схема 11: Путь для соединения 614

Схема 12: Путь для соединений 595-s, 596-s, 604-s, 634-s, 661-s, 664-s, 667-s, 671-s, 672-s
Схема 13: Путь для соединения 611-s

Схема 14: Путь для соединений 596-s, 663-s, 669-s
Схема 15: Путь для соединения 624-s

Схема 17: Путь для соединений I-290, I-299
Схема 18: Путь для соединения I-291

Схема 19: Путь для соединений I-295, I-296

Схема 20: Путь для соединения I-297

Схема 21: Путь для соединения 300
Схема 22: Путь для соединения I-312

Схема 23: Путь для соединений I-309, I-310, I-319

Тот же способ синтеза использовали для других соединений I-309, I-310

Тот же способ синтеза использовали для других соединений I-306, I-307, I-313, I-316

[00630] Общая информация. Все испарения проводились в вакууме на роторном испарителе. Аналитические образцы сушили в вакууме (1–5 мм рт.ст.) при комнатной температуре. Тонкослойную хроматографию (ТСХ) проводили на планшетах с силикагелем, пятна визуализировали с применением УФ-света (214 и 254 нм). Очистку с помощью колоночной и флэш-хроматографии проводили с использованием силикагеля
(200–300 меш). Системы растворителей представлены в виде смесей по объему. Все спектры ЯМР были записаны на спектрометре Bruker 400 (400 МГц). Химические сдвиги 1Н указаны в значениях δ в миллионах долях с дейтерированным растворителем в качестве внутреннего стандарта. Данные представлены следующим образом: химический сдвиг, мультиплетность (с = синглет, д = дублет, т = трiplет, кв = квартет, уш. = уширенный, м = мультиплет), константа взаимодействия (Гц), интегрирование.

[00631] Спектры ЖХ-МС были получены на масс-спектрометре Agilent 1200 серий 6110 или 6120 с ионизацией электрораспылением, и, если не указано иное, общие условия ЖХ-МС были следующими:

[00632] Способ A (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм x 4,6 мм x 3,5 мкм); температура колонки: 40 °C; скорость потока: 3,0 мл/мин, подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 0,8 мин, затем в этих условиях в течение 0,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,01 мин).

[00633] Способ B (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм x 4,6 мм x 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH₃CN + 0,05% ТФУ] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH₃CN + 0,05% ТФУ] за 0,05 мин и в этих условиях в течение 0,7 мин).

[00634] Способ C (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм x 4,6 мм x 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин, подвижная фаза: от 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] до 0% [вода + 10 мМ NH₄HCO₃] и 100% [CH₃CN] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] за 0,1 мин и в этих условиях за 0,7 мин.)

[00635] Способ D (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм x 4,6 мм x 3,5 мкм); температура колонки: 45 °C; скорость потока: 2,3 мл/мин, подвижная фаза: от 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] до 0% [вода + 10 мМ NH₄HCO₃] и 100% [CH₃CN] за 1,75 мин, затем в этих условиях в течение 0,8 мин, окончательное изменение на 95% [вода + 10 мМ NH₄HCO₃] и 5% [CH₃CN] за 0,1 мин и в этих условиях за 0,1 мин.)

Синтез 1-(3,4-дихлорфенил)-3-метилбутан-1-она (а-1)
К раствору s-1 (10,0 г, 58,1 ммоль) в ТГФ (100 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 87,1 мл, 87,1 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 500 мл) и экстрагировали EtOAc (100 мл х 3). Органическую фазу объединяли и промывали H₂O (100 мл) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением a-1 (7,50 г, выход 55,8%) в виде масла желтого цвета.

Синтез 2-бром-1-(3,4-дихлорфенил)-3-метилбутан-1-она (a-2)

Смесь a-1 (7,50 г, 32,5 ммоль) и РТАТ (18,3 г, 48,7 ммоль) в ТГФ (150 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (100 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (60 мл х 2) и соляным раствором (80 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением a-2 (10,1 г, выход 100%) в виде масла коричневого цвета.

Синтез 1-(3,4-дихлорфенил)-3-метил-2-тиоцианатобутан-1-она (a)
Смесь a-2 (10,1 г, 32,5 ммоль) и NaSCN (5,26 г, 64,9 ммоль) в EtOH (100,0 мл) перемешивали при 100°C в течение 6 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением a (5,32 г, выход 57,0%) в виде твердого вещества белого цвета.

Синтез 4-(тиофен-2-ил)бензальдегида (595-2)

Смесь 595-1 (1,50 г, 8,11 ммоль), 4,4,5,5-тетраметил-2-(тиофен-2-ил)-1,3,2-диоксаборолана (2,04 г, 9,73 ммоль), Pd(dppf)Cl₂ (593 мг, 0,811 ммоль) и Na₂CO₃ (1,72 г, 16,2 ммоль) в диоксане/H₂O (об./об. = 10/1, 22,0 мл) перемешивали в атмосфере N₂ при 90°C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 595-2 (1,70 г, выход 100%) в виде твердого вещества белого цвета.

Синтез 2-циклонпропил-1-(4-(тиофен-2-ил)фенил)этанола (595-3)

К раствору 595-2 (1,70 г, 9,03 ммоль) в ТГФ (20,0 мл) добавляли
(цилпропилметил)магния бромид (1,0 М в ТГФ, 13,5 мл, 13,5 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в воду. NH₄Cl (насыщ., 50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H₂O (50,0 мл) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 595-3 (1,50 г, выход 68,0%) в виде масла желтого цвета.

Синтез 2-цилпропил-1-(4-(тиофен-2-ил)фенил)этанона (595-4)

![Diagram](image)

[00641] К раствору 595-3 (1,50 г, 6,14 ммоль) в CH₂Cl₂ (20,0 мл) добавляли PCC (2,65 г, 12,3 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 595-4 (1,35 г, выход 90,7%) в виде твердого вещества белого цвета.

Синтез 2-бром-2-цилпропил-1-(4-(тиофен-2-ил)фенил)этанона (595-5)

![Diagram](image)

[00642] Смесь 595-4 (1,35 г, 5,57 ммоль) и PTAT (3,13 г, 8,36 ммоль) в TГФ (20,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (30,0 мл), а затем экстрагировали EtOAc (50,0 мл х 2). Органический слой объединяли и промывали H₂O (30,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Рассмотр концентрировали с получением неочищенного продукта, который использовали.
непосредственно на следующей стадии без дополнительной очистки с получением 595-5 (1,90 г, выход 100%) в виде масла желтого цвета.

Синтез 2-циклопропил-2-тиоцианато-1-(4-(тиофе-2-ил)фенил)этанона (595)

\[
\begin{array}{c}
\text{595-5} \quad \text{NaSCN} \quad \text{EtOH, 80 °C, 3 ч} \quad \text{595}
\end{array}
\]

5 [00643] Смесь 595-5 (1,90 г, 5,91 ммоль) и NaSCN (959 мг, 11,8 ммоль) в EtOH (20,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 595 (1,50 г, выход 84,7%) в виде твердого вещества желтого цвета.

10 Синтез 4-метил-1-(4-(фенилтио)фенил)пентан-1-ола (604-2)

\[
\begin{array}{c}
\text{604-1} \quad \text{BrMg} \quad \text{ТГФ, кт, 16 ч} \quad \text{604-2}
\end{array}
\]

[00644] К раствору 604-1 (5,0 г, 23,3 ммоль) в ТГФ (30,0 мл) добавляли изопентилмагния бромид (1,0 М в ТГФ, 35,0 мл, 35,0 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливают в водн. NH₄Cl (насыщ., 50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую fazu объединяли и промывали H₂O (50,0 мл) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 604-2 (3,80 г, выход 56,9%) в виде бесцветного масла.

20 Синтез 4-метил-1-(4-(фенилтио)фенил)пентан-1-она (604-3)
К раствору 604-2 (3,80 г, 13,3 ммоль) в CH₂Cl₂ (10,0 мл) добавляли РСС (5,72 г, 26,5 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 604-3 (2,50 г, выход 66,3%) в виде масла желтого цвета.

Синтез 2-бром-4-метил-1-(4-(фенилтио)фенил)пентан-1-она (604-4)

Смесь 604-3 (2,50 г, 8,79 ммоль) и РТАТ (4,94 г, 13,2 ммоль) в ТГФ (30,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (30,0 мл), а затем экстрагировали EtOAc (50,0 мл x 2). Органический слой объединяли и промывали H₂O (30,0 мл x 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 604-4 (2,20 г, выход 68,9%) в виде масла желтого цвета.

Синтез 4-метил-1-(4-(фенилтио)фенил)-2-тиоцианатопентан-1-она (604)

Смесь 604-4 (2,20 г, 6,06 ммоль) и NaSCN (982 мг, 12,1 ммоль) в EtOH (15,0 мл) перемешивали при 80 °C в течение 16 часов. По завершении реакции реакционную смесь
концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 604 (1,40 г, выход 67,7%) в виде твердого вещества желтого цвета.

Sинтез 1-(3,4-дихлорфенил)-5-метилгексан-2-она (611-2)

\[
\begin{align*}
\text{611-1} & \quad \text{1). (COCl)}_2, \text{ДМФ, CH}_2\text{Cl}_2, \text{кт, 2 ч} \\
\text{611-2} & \quad \text{2). Cul, THF, -78 ^\circ\text{C} - \text{кт, о/n}}
\end{align*}
\]

К раствору 611-1 (5,0 г, 24,4 ммоль) и (COCl)_2 (3,40 г, 26,8 ммоль) в CH_2Cl_2 (20,0 мл) добавляли ДМФ (2 капли). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и растворяли в THF (20,0 мл). Раствор добавляли к смеси изопентилмагнийбромида (1,0 М в THF, 36,6 мл, 36,6 ммоль) и CuI (697 мг, 3,66 ммоль) в THF (10,0 мл) при -78 °C. Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливают в водн. NH_4Cl (насыщ., 80,0 мл) и экстрагируют EtOAc (100 мл х 3). Органическую фазу объединяют и промывают H_2O (50,0 мл) и солевым раствором (80,0 мл), затем сушили безводным Na_2SO_4, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 611-2 (2,70 г, выход 42,7%) в виде масла желтого цвета.

Sинтез 5-(3,4-дихлорфенил)-4-изопентилтиазол-2-амина (611)

\[
\begin{align*}
\text{611-2} & \quad \text{CBrCl}_3, \text{KHCO}_3, \text{CH}_3\text{CN}, 80 ^\circ\text{C}, 3 \text{ ч} \\
\text{611} &
\end{align*}
\]

Смесь 611-2 (2,70 г, 10,4 ммоль), тиомочевины (1,59 г, 20,8 ммоль), CBrCl_3 (2,0 мл) и KHCO_3 (2,09 г, 20,8 ммоль) в CH_3CN (15,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 611 (1,70 г, выход 51,8%) в виде твердого вещества желтого цвета.
Синтез 1-(3,4-дихлорфенил)-3-метилбутан-2-она (615-1)

![Chemical structure](image)

[00650] К раствору 611-1 (1,30 г, 6,34 ммоль) и метилизобутират (648 мг, 6,34 ммоль) в ДМФ (12,0 мл) добавляли KHDMS (1,0 М в ТГФ, 25,0 мл) при -10 °C. Реакционную смесь перемешивали при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь гасили водн. NH₄Cl (насыщ., 80,0 мл) и экстрагировали EtOAc (100 мл х 2), и объединенную органическую фазу промывали солевым раствором (100 мл), сушили над безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 615-1 (900 мг, выход 61,4%) в виде масла желтого цвета.

Синтез (E)-5-метил-1-(4-феноксифенил)гекс-2-ен-1-она (634-2)

![Chemical structure](image)

[00651] Смесь 634-1 (5,0 г, 26,5 ммоль), 3-метилбутанола(5,0 мл) и пиперидина (0,5 мл) в MeOH (20,0 мл) перемешивали при 70 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 634-2 (1,20 г 18,2%) в виде масла желтого цвета.

Синтез 5-метил-1-(4-феноксифенил)гексан-1-она (634-3)

![Chemical structure](image)
Смесь **634-2** (1,20 г, 4,28 ммоль) и Pt/C (120 мг) в MeOH (30,0 мл) перемешивали в атмосфере H₂ при комнатной температуре в течение 3 часов. По завершении реакции реакционную смесь фильтровали, а фильтрат концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением **634-3** (0,85 г, выход 70,3%) в виде бесцветного масла.

Синтез 2-бром-5-метил-1-(4-феноксифенил)гексан-1-она (634-4)

![Image](image_url)

Смесь **634-3** (0,85 г, 3,01 ммоль) и PTAT (1,69 г, 4,52 ммоль) в ТГФ (20,0 мл) перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (50,0 мл), а затем экстрагировали EtOAc (80,0 мл х 2). Органический слой объединяли и промывали H₂O (30,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением **634-4** (1,20 г, выход 100%) в виде масла желтого цвета.

Синтез 5-метил-1-(4-феноксифенил)-2-тиоцанинатогексан-1-она (634)

![Image](image_url)

Смесь **634-4** (1,20 г, 3,32 ммоль) и NaSCN (539 мг, 6,64 ммоль) в EtOH (20,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением **634** (800 мг, выход 71,0%) в виде твердого вещества желтого цвета.

Синтез 4-бензил-5-фенилтиазол-2-амина (640)

378
Смесь 640-1 (900 мг, 3,89 ммоль), тиомочевины (593 мг, 7,79 ммоль), СBrCl3 (1,50 мл) и KHCO3 (780 мг, 7,79 ммоль) в CH3CN (10,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 640 (500 мг, выход 44,7%) в виде твердого вещества желтого цвета.

Синтез 1-(бензо[b]тиофен-2-ил)-3-метилбутан-1-ола (662-2)

К раствору 662-1 (2,0 г, 12,3 ммоль) в ТГФ (20,0 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 18,5 мл, 18,5 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливают в воду, NH4Cl (насыщ., 50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H2O (50,0 мл) и солевым раствором (80,0 мл), затем сушили безводным Na2SO4, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 662-2 (1,60 г, выход 58,9%) в твердого вещества желтого цвета.

Синтез 1-(бензо[b]тиофен-2-ил)-3-метилбутан-1-она (662-3)

К раствору 662-2 (1,60 г, 7,26 ммоль) в CH2Cl2 (50,0 мл) добавляли PCC (3,13 г,
14,5 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 662-3 (1,40 г, выход 88,3%) в виде масла желтого цвета.

Синтез 1-(бензо[b]тиофен-2-ил)-2-бром-3-метилбутан-1-она (662-4)

Смесь 662-3 (1,40 г, 6,41 ммоль) и Br₂ (1,13 г, 7,05 ммоль) в CH₂Cl₂ (50,0 мл) перемешивали при 40 ºC в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (50,0 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (60,0 мл х 2) и соляным раствором (80,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 662-4 (1,50 г, выход 78,7%) в виде масла коричневого цвета.

Синтез 4-(бензо[b]тиофен-2-ил)-5-изопропилтиазол-2-амина (662)

Смесь 662-4 (1,50 г, 5,05 ммоль) и тиомочевины (768 мг, 10,1 ммоль) в EtOH (20,0 мл) перемешивали при 80 ºC в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 662 (500 мг, выход 36,1%) в виде твердого вещества желтого цвета.

Синтез 1-(4-бромфенил)-3-метилбутан-1-она (663-2)
К раствору 663-1 (5,0 г, 27,5 ммоль) в ТГФ (20,0 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 41,2 мл, 41,2 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 80,0 мл) и экстрагировали EtOAc (100 мл х 3). Органическую фазу объединяли и промывали H₂O (50,0 мл) и соляным раствором (80,0 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 663-2 (2,0 г, выход 30,2%) в виде масла желтого цвета.

Синтез 2-бром-1-(4-бромфенил)-3-метилбутан-1-она (663-3)

Смесь 663-2 (2,0 г, 8,29 ммоль) и Br₂ (1,64 г, 9,12 ммоль) в CH₂Cl₂ (100 мл) перемешивали при 40 °С в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (50,0 мл), а затем экстрагировали EtOAc (100 мл х 2). Органический слой объединяли и промывали H₂O (60,0 мл х 2) и соляным раствором (80,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 663-3 (2,0 г, выход 75,3%) в виде масла коричневого цвета.

Синтез 4-(4-бромфенил)-5-изопропилтиазол-2-амина (663)
Смесь 663-3 (2,0 г, 6,25 ммоль) и тиомочевины (951 мг, 12,5 ммоль) в EtOH (50,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 663 (1,50 г, выход 80,8%) в виде твердого вещества желтого цвета.

Синтез метил 2-хлор-5-фторникотината (613-2)

Смесь 613-1 (500 мг, 2,85 ммоль), CH₃I (606 мг, 4,27 ммоль) и K₂CO₃ (788 мг, 5,71 ммоль) в CH₃CN (10,0 мл) перемешивали при 60 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 613-2 (450 мг 83,3%) в виде бесцветного масла.

Синтез метил 5-фтор-2-(4-метоксифениламино)никотината (613-3)
Смесь 613-2 (400 мг, 2,11 ммоль), (4-метоксифенил)метанамина (347 мг, 2,53 ммоль) и Et₃N (426 мг, 4,22 ммоль) в MeCN (30,0 мл) перемешивали при 70 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и оцищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 613-3 (100 мг, выход 16,3%) в виде твердого вещества белого цвета. Синтез метил 2-амино-5-фторникотината (613)

Смесь 613-3 (100 мг, 0,344 ммоль) и TFA (2,0 мл) в CH₂Cl₂ (2,0 мл) перемешивали при 50 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и оцищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 613 (75,0 мг, выход 100%) в виде твердого вещества белого цвета. Синтез метил 2-амино-5-хлорникотината (614)
Смесь 614-1 (300 мг, 1,97 ммоль) и NCS (316 мг, 2,37 ммоль) в MeCN (10,0 мл) перемешивали при 60 °С в течение 2 часов. По завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 614 (200 мг 54,4%) в виде бесцветного масла.

Синтез 2-бром-5-цикlopропил-4-(4-(тиофен-2-ил)фенил)тиазола (595-s)

Смесь 595-4 (1,50 г, 5,00 ммоль) и HBr (2,0 М в AcOH, 5,0 мл) в AcOH (2,0 мл) перемешивали при 60 °С в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 595-s (600 мг 33,1%) в виде желтого масла.

Синтез 2-бром-5-(3,4-дихлорфенил)-4-изопентилтиазола (611-s)

Смесь 611 (1,10 г, 3,49 ммоль), t-BuONO (720 мг, 6,98 ммоль) и CuBr (1,00 г, 6,98 ммоль) в CH3CN (20,0 мл) перемешивали при комнатной температуре в течение ночи. По
завершении реакции реакционную смесь концентрировали с получением неочищенного продукта, который очищали колоночной хроматографией на силикагеле (петролейный эфир/этилacetат = 10/1) с получением 611-s (1,10 г, выход 83,2%) в виде твердого вещества желтого цвета.

Синтез метил 2-(4-(4-бромфенил)-5-циклюпропилинтиазол-2-иламино)-5-(трифторметил)нитритамата (596-s)

Смесь 596 (2,0 г, 6,78 ммоль), метил 2-хлор-5-(трифторметил)нитритамата (1,95 г, 8,13 ммоль), Pd2(dba)3 (315 мг, 0,339 ммоль), X-phos (294 мг, 0,509 ммоль) и Cs2CO3 (4,42 г, 13,6 ммоль) в толуоле (50,0 мл) перемешивали в атмосфере N2 при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилacetат = 50/1) с получением 596-s (1,30 г, выход 38,5%) в виде твердого вещества желтого цвета.

Синтез метил 5-бром-2-(4-(3,4-дихлорфенил)-5-изопентилтиазол-2-иламино)нитритамата (624-s)

Смесь 530-s (500 мг, 1,32 ммоль), метил 2-амино-5-бромнитритамата (366 мг, 1,58 ммоль), Pd2(dba)3 (61,4 мг, 0,066 ммоль), X-phos (57,2 мг, 0,099 ммоль) и Cs2CO3 (860 мг, 2,64 ммоль) в толуоле (10,0 мл) перемешивали в атмосфере N2 при 100 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилacetат = 50/1) с получением 624-s
(200 мг, выход 28,7%) в виде твердого вещества желтого цвета.

Таблица 6-1: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>Способ А, чистота составляет 87,1%, БУ = 0,865 мин; МС рассчит.: 287,0; МС найдено: 288,1 [M + H]⁺.</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>Способ В, чистота составляет 100%, БУ = 2,053 мин; МС рассчит.: 284,98; МС не найдено.</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Способ В, чистота составляет 75,2%, БУ = 2,480 мин; МС рассчит.: 301,0; МС найдено: 324,1 [M + Na]⁺.</td>
</tr>
<tr>
<td>530</td>
<td></td>
<td>¹Н NMR (400 МГц, δ-DMSO) δ: 0,88 (6Н, дд, J = 8,4, 6,8 Гц), 1,28-1,35 (2Н, м), 1,59 (1Н, дт, J = 13,2, 6,8 Гц), 1,83-1,93 (1Н, м), 2,03-2,13 (1Н, м), 5,22 (1Н, дд, J = 8,4, 5,2 Гц), 7,87 (1Н, д, J = 8,4 Гц), 8,03 (1Н, дд, J = 8,4, 2,0 Гц), 8,35 (1Н, д, J = 2,0 Гц).</td>
</tr>
<tr>
<td>595</td>
<td></td>
<td>Способ А, чистота составляет 53,3%, БУ = 0,835 мин; МС рассчит.: 299,0; МС найдено: 300,2 [M + H]⁺.</td>
</tr>
<tr>
<td>604</td>
<td></td>
<td>Способ В, чистота составляет 89,0%, БУ = 2,218 мин; МС рассчит.: 341,1; МС найдено: 342,0 [M + H]⁺.</td>
</tr>
<tr>
<td>661</td>
<td></td>
<td>Способ А, чистота составляет 80,9%, БУ = 0,882 мин; МС рассчит.: 269,0; МС найдено: 292,0 [M + Na]⁺.</td>
</tr>
<tr>
<td>664</td>
<td></td>
<td>Способ В, чистота составляет 88,2%, БУ = 1,812 мин; МС рассчит.: 225,0; МС найдено: 226,1 [M + H]⁺.</td>
</tr>
<tr>
<td>667</td>
<td></td>
<td>Способ В, чистота составляет 89,2%, БУ = 1,838 мин; МС рассчит.: 225,0; МС найдено: 226,1 [M + H]⁺.</td>
</tr>
<tr>
<td>672</td>
<td></td>
<td>Способ А, чистота составляет 97,8%, БУ = 0,818 мин; МС рассчит.: 287,1; МС найдено: 288,1 [M + H]⁺.</td>
</tr>
<tr>
<td>#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>611</td>
<td></td>
<td>Способ A, чистота составляет 100%, ВУ = 0,744 мин; МС рассчит.:314,0; МС найдено: 315,2 [M + H]⁺.</td>
</tr>
<tr>
<td>615</td>
<td></td>
<td>Способ C, чистота составляет 85,4%, ВУ = 2,085 мин; МС рассчит.:286,0; МС найдено: 287,0 [M + H]⁺.</td>
</tr>
<tr>
<td>639</td>
<td></td>
<td>Способ C, чистота составляет 92,2%, ВУ = 2,156 мин; МС рассчит.:348,0; МС найдено: 349,0 [M + H]⁺.</td>
</tr>
<tr>
<td>640</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 1,888 мин; МС рассчит.:266,1; МС найдено: 267,0 [M + H]⁺.</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>Способ C, чистота составляет 92,0%, ВУ = 1,860 мин; МС рассчит.:287,1; МС найдено: 288,2 [M + H]⁺.</td>
</tr>
<tr>
<td>595-s</td>
<td></td>
<td>Способ A, чистота составляет 59,1%, ВУ = 0,999 мин; МС рассчит.:361,0; МС найдено: 362,0 [M + H]⁺.</td>
</tr>
<tr>
<td>604-s</td>
<td></td>
<td>¹H NMR (400 МГц, CDCl₃) δ: 0,97 (6H, д, J = 6,4 Гц), 2,77 (2H, д, J = 7,2 Гц), 4,00 (3Н, с), 7,10 (1Н, д, J = 16,0 Гц), 7,31 (2Н, дт, J = 8,4, 1,6 Гц), 7,36-7,43 (6Н, м), 7,57 (2H, дд, J = 6,4, 2,0 Гц), 7,61-7,64 (1H, м), 7,75 (1H, д, J = 16,0 Гц), 8,51 (1H, д, J = 2,4 Гц), 8,77 (1H, д, J = 2,4 Гц), 11,43 (1Н, с).</td>
</tr>
<tr>
<td>611-s</td>
<td></td>
<td>Способ A, чистота составляет 91,3%, ВУ = 1,103 мин; МС рассчит.:376,9; МС найдено: 378,0 [M + H]⁺.</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>634-s</td>
<td></td>
<td>Способ В, чистота составляет 93,2%, ВУ = 2,499 мин; МС рассчит.: 401,0; МС найдено: 402,0 [M + H]^+.</td>
</tr>
<tr>
<td>661-s</td>
<td></td>
<td>Способ В, чистота составляет 74,0%, ВУ = 2,293 мин; МС рассчит.: 331,0; МС найдено: 331,9 [M + H]^+.</td>
</tr>
<tr>
<td>664-s</td>
<td></td>
<td>Способ С, чистота составляет 93,1%, ВУ = 2,322 мин; МС рассчит.: 286,9; МС найдено: 288,0 [M + H]^+.</td>
</tr>
<tr>
<td>667-s</td>
<td></td>
<td>Способ В, чистота составляет 86,4%, ВУ = 2,212 мин; МС рассчит.: 286,9; МС найдено: 288,0 [M + H]^+.</td>
</tr>
<tr>
<td>671-s</td>
<td></td>
<td>¹H NMR (400 МГц, CDCl₃) δ: 0,95 (6Н, d, J = 6,8 Гц), 1,85-1,89 (1Н, м), 2,78 (2Н, d, J = 7,2 Гц), 7,69 (4Н, с).</td>
</tr>
<tr>
<td>613</td>
<td></td>
<td>Способ А, чистота составляет 100%, ВУ = 0,452 мин; МС рассчит.: 170,1; МС найдено: 171,3 [M + H]^+.</td>
</tr>
<tr>
<td>614</td>
<td></td>
<td>Способ В, чистота составляет 90,0%, ВУ = 1,544 мин; МС рассчит.: 186,0; МС найдено: 187,1 [M + H]^+.</td>
</tr>
<tr>
<td>625-s</td>
<td></td>
<td>Способ D, чистота составляет 93,1%, ВУ = 2,647 мин; МС рассчит.: 527,0; МС найдено: 527,7 [M + H]^+.</td>
</tr>
<tr>
<td>669-s</td>
<td></td>
<td>Способ А, чистота составляет 92,1%, ВУ = 1,079 мин; МС рассчит.: 513,0; МС найдено: 514,0 [M + H]^+.</td>
</tr>
</tbody>
</table>

Синтез метиля 2-(5-циклюпропил-4-(4-(тиофен-2-ил)фенил)тиазол-2-иламино)-5-(трифторметиля)никотината (595-5)
Смесь 595-s (200 мг, 0,552 ммоль), метил 2-амино-5-(трифторметил)нитрозимата (146 мг, 0,662 ммоль), Pd₂(dba)₃ (51,3 мг, 0,0552 ммоль), X-phos (47,9 мг, 0,0828 ммоль) и Cs₂CO₃ (360 мг, 1,10 ммоль) в толуоле (3,0 мл) перемешивали в атмосфере N₂ при 100 °С в течение 5 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилэфир = 20/1) с получением 595-6 (150 мг, выход 54,2%) в виде твердого вещества желтого цвета.

Синтез 2-(5-циклогептил-4-(4-(тиофен-2-ил)фенил)тиазол-2-иламино)-5-(трифторметил)нитроглукосовой кислоты (I-289)

К раствору 595-6 (150 мг, 0,299 ммоль) в TГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H₂O, 1,0 мл). Реакционную смесь перемешивали при 40 °С в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-289 (5,0 мг, выход 3,43%) в виде твердого вещества желтого цвета.

Синтез метил 2-(5-циклогептил-4-(4-(тиофен-2-ил)фенил)тиазол-2-иламино)-5-(трифторметил)нитрозитимата (596-5)
Смесь 596-s (200 мг, 0,401 ммоль), 2-(трибутилстанил)тиазола (300 мг, 0,803 ммоль) и Pd(PPh₃)₄ (46,3 мг, 0,0401 ммоль) в толуоле (3,0 мл) перемешивали в атмосфере N₂ при 110 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 596-5 (90,0 мг, выход 44,6%) в виде твердого вещества желтого цвета.

Синтез 2-(5-циклопропил-4-(4-(тиазол-2-ил)фенил)тиазол-2-иламино)-5-(трифторметил)никотиновой кислоты (I-290)

К раствору 596-5 (90,0 мг, 0,179 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H₂O, 0,50 мл). Реакционную смесь перемешивали при 40 °C в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали preparативной ВЭЖХ с получением I-290 (12,0 мг, выход 13,7%) в виде твердого вещества желтого цвета.

Синтез метил 2-(5-циклопропил-4-(4,4,5,5-тетраметил-1,3,2-диоксборолан-2-ил)фенил)тиазол-2-иламино)-5-(трифторметил)никотината (598-1)
Смесь 596-s (500 мг, 1,00 ммоль), B2(Pin)2 (382 мг, 1,51 ммоль), Pd(PPH3)4 (116 мг, 0,10 ммоль) и K2CO3 (277 мг, 2,01 ммоль) в дихлорэтане (10,0 мл) перемешивали в атмосфере N2 при 110 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 20/1) с получением 598-1 (250 мг, выход 45,7%) в виде твердого вещества желтого цвета.

Синтез метил 2-(5-циклопропил-4-(4-(2,5-диоксопируролидин-1-ил)фенил)тиазол-2-иламино)-5-(трифторметил)нитрифата (598-2)

Смесь 598-1 (250 мг, 0,458 ммоль), пируровидина-2,5-диона (68,1 мг, 0,688 ммоль), Cu(OAc)2 (167 мг, 0,917 ммоль) и Et3N (92,6 мг, 0,917 ммоль) в CH2Cl2 (10,0 мл) перемешивали в атмосфере O2 при 40 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 598-2 (50,0 мг, выход 21,1%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(4-(3-карбоксипропанамидо)фенил)-5-циклопропилидиазол-2-иламино)-5-(трифторметил)нитрифата (I-291)
К раствору 598-2 (50,0 мг, 0,0968 ммоль) в TГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H₂O, 0,50 мл). Реакционную смесь перемешивали при 40 °C в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл x 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-291 (30,0 мг, выход 59,5%) в виде твердого вещества желтого цвета.

Синтез метил 2-(5-изобутил-4-(4-(фенилсульфринил)фенил)тиазол-2-иламино)-5-(трифторметил)никотината (605-1)

К раствору 604-5 (200 мг, 0,368 ммоль) в CH₂Cl₂ (30,0 мл) добавляли m-CPBA (76,2 мг, 0,441 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь промывали H₂O (15,0 мл х 2), а органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄, и концентрировали, остаток очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 605-1 (100 мг, выход 48,6%) в виде
твердого вещества желтого цвета.
Синтез 2-(5-изобутил-4-(4-(фенилсульфинил)фенил)тиазол-2-иламино)-5-(трифторметил)никотиновой кислоты (I-295)

5 [00679] К раствору 605-1 (100 мг, 0,179 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H₂O, 0,50 мл). Реакционную смесь перемешивали при 40 °С в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-295 (35,0 мг, выход 35,9%) в виде твердого вещества белого цвета.
Синтез 1-(4-(2-амино-5-циклопропилтиазол-4-ил)фенил)пиридин-2(1H)-она (607-1)

15 [00680] Смесь 596 (300 мг, 1,02 ммоль), пиридин-2(1H)-она (116 мг, 1,22 ммоль), N1, N2 - диметилэтан-1,2-диамина (13,4 мг, 0,152 ммоль), CuI (19,4 мг, 0,102 ммоль) и K₃PO₄ (433 мг, 2,04 ммоль) в диоксане (10,0 мл) перемешивали в атмосфере N₂ при 110 °С в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 1/1) с получением 607-1 (70,0 мг, выход 22,2%) в виде твердого вещества желтого цвета.
Синтез 2-(5-циклопропил-4-(4-(2-оксопиридин-1(2H)-ил)фенил)тиазол-2-иламино)-5-
(трифторометил)никотиновой кислоты (I-297)

![Chemical structure of compound I-297]

[00681] Смесь 607-1 (70,0 мг, 0,226 ммоль), 2-хлор-5-(трифторометил)никотиновой кислоты (61,2 мг, 0,272 ммоль), Pd2(dba)3 (21,0 мг, 0,0226 ммоль), X-phos (19,6 мг, 0,0339 ммоль) и Cs2CO3 (147 мг, 0,452 ммоль) в толуоле (2,0 мл) перемешивали в атмосфере N2 при 110 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-297 (5,0 мг, выход 4,43%) в виде твердого вещества желтого цвета.

Синтез метил 2-(5-циклопропил-4-(4-(пиримидин-2-ил)фенил)тиазол-2-иламино)-5-(трифторометил)никотината (610-2)

![Chemical structure of compound 610-2]

[00682] Смесь 596-s (180 мг, 0,361 ммоль), 2-(трибутилстаниянил)пиримидина (200 мг, 0,542 ммоль) и Pd(PPh3)2Cl2 (25,3 мг, 0,0361 ммоль) в толуоле (3,0 мл) перемешивали в атмосфере N2 при 140 °C в микроволновом реакторе в течение 1,5 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 610-2 (70,0 мг, выход 39,0%) в виде твердого вещества желтого цвета.

Синтез 2-(5-циклопропил-4-(4-(пиримидин-2-ил)фенил)тиазол-2-иламино)-5-(трифторометил)никотиновой кислоты (I-300)
К раствору 610-2 (70,0 мг, 0,141 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 M в H₂O, 0,50 мл). Реакционную смесь перемешивали при 40 °C в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавили с применением H₂O (15,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 M). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-300 (9,0 мг, выход 13,2%) в виде твердого вещества желтого цвета.

Синтез метил 2-(4-(3,4-дихлорфенил)-5-изопентилтiazол-2-иламино)-5-(2-оксо-1,2-дигидропирдин-3-ил)никотината (624-5)

Смесь 624-s (50,0 мг, 0,0945 ммоль), 2-оксо-1,2-дигидропирдин-3-илбороновой кислоты (19,7 мг, 0,142 ммоль), Pd(dpff)Cl₂ (6,92 мг, 0,00945 ммоль) и Na₂CO₃ (20,0 мг, 0,189 ммоль) в диоксане/H₂O (об./об. = 5/1, 2,0 мл) перемешивали в атмосфере N₂ при 80 °C в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 5/1) с получением 624-5 (20,0 мг, выход 39,0%) в виде твердого вещества коричневого цвета.

Синтез 2-(4-(3,4-дихлорфенил)-5-изопентилтiazол-2-иламино)-5-(2-оксо-1,2-дигидропирдин-3-ил)никотиновой кислоты (I-305)
К раствору 624-5 (20,0 мг, 0,0368 ммоль) в ТГФ/MeOH/H₂O (об./об./об. = 4/1/1, 2,0 мл) добавляли LiOH (2,0 М в H₂O, 0,50 мл). Реакционную смесь перемешивали при 40 °C в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-305 (10,0 мг, выход 51,3%) в виде твердого вещества желтого цвета.

Таблица 6-2. Данные по характеристикам дополнительных иллюстративных соединений

<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>JäH ЯМР (400 МГц, d6-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>289</td>
<td></td>
<td>Способ С, чистота составляет 96,0%, ВУ = 2,103 мин; МС рассчит.: 487,0; МС найдено: 487,8 [M + H]^+.</td>
<td>δ: 3,69 (2Н, d, J = 6,0 Гц), 5,17-5,22 (2Н, m), 6,04-6,14 (1Н, m), 7,15-7,18 (1Н, m), 7,58 (2Н, d, J = 4,4 Гц), 7,68-7,76 (4Н, m), 8,48 (1Н, d, J = 2,0 Гц), 8,89 (1Н, d, J = 1,2 Гц).</td>
</tr>
<tr>
<td>290</td>
<td></td>
<td>Способ С, чистота составляет 92,9%, ВУ = 1,840 мин; МС рассчит.: 488,0; МС найдено: 489,0 [M + H]^+.</td>
<td>δ: 1,89 (3Н, кв, J = 1,2 Гц), 6,06-6,12 (1Н, m), 6,70 (1Н, dd, J = 15,6, 2,0 Гц), 7,76 (2Н, d, J = 8,4 Гц), 7,83 (1Н, d, J = 2,4 Гц), 7,97 (1Н, d, J = 2,4 Гц), 8,06 (2Н, d, J = 8,4 Гц), 8,51 (1Н, d, J = 2,4 Гц), 8,95 (1Н, с), 12,33 (1Н, уш.).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1H ЯМР (400 МГц, d_{6}-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>291</td>
<td></td>
<td>Способ С, чистота составляет 96,1%, ВУ = 1,424 мин; МС рассчит.: 520,0; МС найдено: 521,0 [М + H]†.</td>
<td>δ: 2,56 (4Н, дд, $J = 14,0$, 5,2 Гц), 3,63 (2Н, д, $J = 6,0$ Гц), 5,15-5,20 (2Н, м), 6,03-6,08 (1Н, м), 7,55 (2Н, д, $J = 8,4$ Гц), 7,66 (2Н, д, $J = 8,8$ Гц), 8,45 (1Н, д, $J = 1,6$ Гц), 8,72 (1Н, с), 10,08 (1Н, с), 12,04 (1Н, уш.), 14,10 (1Н, уш.).</td>
</tr>
<tr>
<td>294</td>
<td></td>
<td>Способ С, чистота составляет 96,6%, ВУ = 2,229 мин; МС рассчит.: 529,1; МС найдено: 529,8 [М + H]†.</td>
<td>δ: 0,91 (6Н, д, $J = 6,8$), 1,84-1,92 (1Н, м), 2,77 (2Н, д, $J = 7,2$ Гц), 7,33-7,44 (7Н, м), 7,62 (2Н, д, $J = 8,4$ Гц), 8,50 (1Н, д, $J = 2,4$ Гц), 8,95 (1Н, д, $J = 1,2$ Гц), 11,88 (1Н, уш.).</td>
</tr>
<tr>
<td>295</td>
<td></td>
<td>Способ С, чистота составляет 97,6%, ВУ = 1,169 мин; МС рассчит.: 545,1; МС найдено: 546,0 [М + H]†.</td>
<td>δ: 0,90 (6Н, д, $J = 6,4$ Гц), 1,85-1,88 (1Н, м), 2,78 (2Н, д, $J = 7,2$ Гц), 7,53-7,59 (3Н, м), 7,74-7,81 (6Н, м), 8,50 (1Н, д, $J = 2,4$ Гц), 8,95 (1Н, д, $J = 1,6$ Гц), 11,85 (1Н, уш.).</td>
</tr>
<tr>
<td>296</td>
<td></td>
<td>Способ С, чистота составляет 93,8%, ВУ = 2,062 мин; МС рассчит.: 561,1; МС найдено: 561,7 [М + H]†.</td>
<td>δ: 0,90 (6Н, д, $J = 6,4$ Гц), 1,85-1,90 (1Н, м), 2,80 (2Н, д, $J = 7,2$ Гц), 7,63-7,74 (3Н, м), 7,87 (2Н, д, $J = 8,4$ Гц), 7,98-8,04 (4Н, м), 8,50 (1Н, д, $J = 2,0$ Гц), 8,95 (1Н, д, $J = 1,6$ Гц), 11,97 (1Н, уш.).</td>
</tr>
<tr>
<td>297</td>
<td></td>
<td>Способ С, чистота составляет 98,1%, ВУ = 1,685 мин; МС рассчит.: 498,1; МС найдено: 499,0 [М + H]†.</td>
<td>δ: 3,70 (2Н, д, $J = 6,0$ Гц), 5,18-5,23 (2Н, м), 6,07-6,14 (1Н, м), 6,34 (1Н, т, $J = 6,8$ Гц), 6,51 (1Н, д, $J = 8,4$ Гц), 7,47-7,55 (4Н, м), 7,71 (1Н, дд, $J = 11,2$, 6,8 Гц), 7,77 (2Н, д, $J = 8,4$ Гц), 8,43 (1Н, уш.), 8,75 (1Н, уш.).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>298</td>
<td></td>
<td>Способ В, чистота составляет 98,1%, BV = 1,685 мин; МС рассчит.: 473,0; МС найдено: 473,9 [M + H]$^+$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ: 3,68 (2Н, $d, J = 6,0$ Гц), 5,15-5,21 (2Н, m), 6,01-6,12 (1Н, m), 7,61 (1Н, $dd, J = 8,4, 2,0$ Гц), 7,70 (1Н, $d, J = 8,4$ Гц), 7,82 (1Н, $d, J = 1,6$ Гц), 8,49 (1Н, $d, J = 2,4$ Гц), 8,94 (1Н, $d, J = 1,6$ Гц), 11,87 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td></td>
<td>Способ C, чистота составляет 83,0%, BV = 1,771 мин; МС рассчит.: 482,1; МС найдено: 483,1 [M + H]$^+$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ: 3,73 (2Н, $d, J = 6,4$ Гц), 5,26-5,16 (2Н, m), 6,16-6,04 (1Н, m), 7,43-7,34 (1Н, m), 7,78 (2Н, $d, J = 8,4$ Гц), 7,95-7,87 (1Н, m), 8,11 (1Н, $d, J = 7,6$ Гц), 8,19 (2Н, $d, J = 8,4$ Гц), 8,51 (1Н, $d, J = 2,0$ Гц), 8,70 (1Н, $d, J = 4,0$ Гц), 8,95 (1Н, с).</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>Способ C, чистота составляет 94,8%, BV = 1,931 мин; МС рассчит.: 483,1; МС найдено: 483,8 [M + H]$^+$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ: 3,74 (2Н, $d, J = 6,4$ Гц), 5,27-5,17 (2Н, m), 6,16-6,04 (1Н, m), 7,47 (1Н, $t, J = 5,0$ Гц), 7,82 (2Н, $d, J = 8,4$ Гц), 8,54-8,45 (3Н, m), 8,99-8,91 (3Н, m).</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>Способ C, чистота составляет 98,5%, BV = 2,243 мин; МС рассчит.: 503,0; МС найдено: 503,7 [M + H]$^+$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ: 0,90 (6Н, $d, J = 6,4$ Гц), 1,52-1,56 (3Н, m), 2,90 (2Н, $t, J = 7,6$ Гц), 7,61 (1Н, $dd, J = 8,4, 2,0$ Гц), 7,72 (1Н, $d, J = 8,4$ Гц), 7,82 (1Н, $d, J = 1,6$ Гц), 8,50 (1Н, $d, J = 1,6$ Гц), 8,95 (1Н, $d, J = 1,2$ Гц), 11,86 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td></td>
<td>Способ C, чистота составляет 92,1%, BV = 2,195 мин; МС рассчит.: 513,0; МС найдено: 513,8 [M + H]$^+$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ: 0,92 (6Н, $d, J = 6,8$ Гц), 1,85-1,92 (1Н, m), 2,77 (2Н, $d, J = 7,2$ Гц), 7,06-7,07 (4Н, m), 7,18 (1Н, $t, J = 7,2$ Гц), 7,43 (2Н, $kv, J = 8,0$ Гц), 7,62 (2Н, $t, J = 8,8$ Гц), 8,50 (1Н, $d, J = 2,4$ Гц), 8,96 (1Н, $d, J = 1,2$ Гц),</td>
<td></td>
</tr>
<tr>
<td>И#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>¹H ЯМР (400 МГц, d₆-ДМСО)</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>303</td>
<td></td>
<td>Способ С, чистота составляет 100%, BY = 2,150 мин; МС рассчит.: 453,1; МС найдено: 453,7 [M + H]^⁺.</td>
<td>δ: 0,89 (2Н, д, J = 6,4 Гц), 1,54-1,65 (3Н, м), 2,86-2,90 (2Н, м), 7,59-7,62 (1Н, м), 7,70-7,72 (1Н, м), 7,81 (1Н, м), 8,19-8,22 (1Н, м), 8,62 (1Н, с), 11,77 (1Н, уш.).</td>
</tr>
<tr>
<td>304</td>
<td></td>
<td>Способ С, чистота составляет 97,3%, BY = 2,201 мин; МС рассчит.: 469,0; МС найдено: 469,8 [M + H]^⁺.</td>
<td>δ: 0,89 (2Н, д, J = 6,4 Гц), 1,52-1,65 (3Н, м), 2,86-2,90 (2Н, м), 7,60-7,62 (1Н, м), 7,70-7,72 (1Н, м), 7,81 (1Н, с), 8,28 (1Н, м), 8,57 (1Н, м), 12,20 (1Н, уш.).</td>
</tr>
<tr>
<td>305</td>
<td></td>
<td>Способ С, чистота составляет 93,2%, BY = 2,064 мин; МС рассчит.: 528,1; МС найдено: 529,1 [M + H]^⁺.</td>
<td>δ: 0,90 (6Н, д, J = 6,4 Гц), 1,55-1,63 (3Н, м), 2,90 (2Н, т, J = 8,0 Гц), 6,34 (1Н, т, J = 6,4 Гц), 7,44 (1Н, д, J = 4,0 Гц), 7,62 (1Н, дд, J = 8,4, 2,0 Гц), 7,71 (1Н, д, J = 8,4 Гц), 7,83-7,86 (2Н, м), 8,80 (1Н, д, J = 2,4 Гц), 8,92 (1Н, д, J = 2,0 Гц), 11,95 (1Н, уш.).</td>
</tr>
<tr>
<td>306</td>
<td></td>
<td>Способ С, чистота составляет 88,0%, BY = 2,012 мин; МС рассчит.: 528,1; МС найдено: 529,0 [M + H]^⁺.</td>
<td>δ: 0,90 (3Н, с), 0,92 (3Н, с), 1,68-1,52 (3Н, м), 2,89 (2Н, т, J = 8,2 Гц), 6,62-6,53 (2Н, м), 7,45 (1Н, д, J = 6,4 Гц), 7,62 (1Н, дд, J = 8,4, 2,0 Гц), 7,70 (1Н, д, J = 8,4 Гц), 7,83 (1Н, д, J = 2,0 Гц), 8,47 (1Н, д, J = 2,4 Гц), 8,69 (1Н, д, J = 2,0 Гц), 11,57 (1Н, уш.).</td>
</tr>
</tbody>
</table>

399
<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>¹H ЯМР (400 МГц, d₆-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>307</td>
<td></td>
<td>Способ С, чистота составляет 92,1%, ВУ = 1,933 мин; МС рассчит.: 617,1; МС найдено: 618,0 [M + H]^+.</td>
<td>δ: 0,90 (3Н, с), 0,92 (3Н, с), 1,55 (9Н, с), 1,68-1,56 (3Н, м), 2,90 (2Н, т, J = 7,8 Гц), 7,62 (1Н, дд, J = 8,4, 2,0 Гц), 7,75-7,67 (3Н, м), 7,83 (1Н, д, J = 2,0 Гц), 8,52 (1Н, д, J = 2,4 Гц), 8,99 (1Н, д, J = 2,4 Гц), 11,74 (1Н, уш.).</td>
</tr>
<tr>
<td>308</td>
<td></td>
<td>Способ С, чистота составляет 95,2%, ВУ = 2,297 мин; МС рассчит.: 541,1; МС найдено: 542,3 [M + H]^+.</td>
<td>δ: 0,89 (6Н, д, J = 6,4 Гц), 1,53-1,62 (3Н, м), 2,87 (2Н, т, J = 8,0 Гц), 7,06-7,09 (4Н, м), 7,16-7,20 (2Н, м), 7,41-7,45 (2Н, м), 7,60-7,64 (4Н, м), 8,45 (1Н, д, J = 2,4 Гц), 8,93 (1Н, д, J = 2,8 Гц), 11,50 (1Н, уш.), 14,45 (0,5 Н, уш.).</td>
</tr>
<tr>
<td>309</td>
<td></td>
<td>Способ С, чистота составляет 85,3%, ВУ = 1,987 мин; МС рассчит.: 542,1; МС найдено: 543,0 [M + H]^+.</td>
<td>δ: 1,56-1,66 (4Н, м), 1,73-1,76 (2Н, м), 2,04-2,07 (2Н, м), 2,49-2,51 (3Н, м), 2,84-2,87 (2Н, м), 3,03 (1Н, т, J = 7,6 Гц), 7,14-7,31 (7Н, м), 7,54 (1Н, с), 7,59 (1Н, д, J = 8,4 Гц), 12,72 (1Н, с).</td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>Способ С, чистота составляет 90,1%, ВУ = 1,817 мин; МС рассчит.: 460,1; МС найдено: 461,0 [M + H]^+.</td>
<td>δ: 1,50-1,66 (6Н, м), 2,01-2,04 (2Н, м), 3,13 (1Н, т, J = 8,4 Гц), 3,96 (2Н, с), 7,20-7,35 (6Н, м), 7,42-7,46 (5Н, м), 12,52 (1Н, с).</td>
</tr>
<tr>
<td>311</td>
<td></td>
<td>Способ С, чистота составляет 97,5%, ВУ = 1,913 мин; МС рассчит.: 457,1; МС найдено: 457,9 [M + H]^+.</td>
<td>δ: 1,21 (6Н, д, J = 6,8 Гц), 2,90-2,94 (1Н, м), 7,50-7,68 (5Н, м), 8,01 (2Н, д, J = 8,0 Гц), 8,50 (1Н, д, J = 2,4 Гц), 8,97 (1Н, с), 12,51 (1Н, уш.).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖК-МС</td>
<td>1Н ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>312</td>
<td></td>
<td>Способ С, чистота составляет 92,8%, δ: 1,41 (6Н, $d, J = 6,8 \text{ Гц}$), 3,71-3,75 (1Н, $м$), 7,34-7,40 (2Н, $м$), 7,68 (1Н, $с$), 7,92 (1Н, $дд, J = 25,2, 7,2 \text{ Гц}$), 8,40 (1Н, $д, J = 2,4 \text{ Гц}$), 8,66 (1Н, $д, J = 1,2 \text{ Гц}$), 15,07 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
<td>Способ С, чистота составляет 90,9%, δ: 1,35 (6Н, $d, J = 6,8 \text{ Гц}$), 3,43-3,47 (1Н, $м$), 7,17 (1Н, $т, J = 4,4 \text{ Гц}$), 7,58 (2Н, $д, J = 4,4 \text{ Гц}$), 7,63 (2Н, $д, J = 8,4 \text{ Гц}$), 7,74 (2Н, $д, J = 8,4 \text{ Гц}$), 8,38 (1Н, $д, J = 2,4 \text{ Гц}$), 8,65 (1Н, $д, J = 1,6 \text{ Гц}$), 15,00 (1Н, $с$).</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td></td>
<td>Способ С, чистота составляет 97,1%, δ: 1,36 (3Н, $с$), 1,37 (3Н, $с$), 3,65-3,55 (1Н, $м$), 7,15 (1Н, $дд, J = 5,0, 3,8 \text{ Гц}$), 7,37 (1Н, $д, J = 2,8 \text{ Гц}$), 7,57 (1Н, $д, J = 4,8 \text{ Гц}$), 8,50 (1Н, $д, J = 2,4 \text{ Гц}$), 8,97 (1Н, $д, J = 1,2 \text{ Гц}$), 11,95 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
<td>Способ С, чистота составляет 95,8%, δ: 1,32 (6Н, $д, J = 6,8 \text{ Гц}$), 3,47-3,51 (1Н, $м$), 7,42 (1Н, $дд, J = 4,8, 1,2 \text{ Гц}$), 7,61 (1Н, $дд, J = 4,8, 2,8 \text{ Гц}$), 7,66 (1Н, $д, J = 2,0 \text{ Гц}$), 8,39 (1Н, $д, J = 2,0 \text{ Гц}$), 8,65 (1Н, $с$), 14,78 (1Н, уш.).</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td></td>
<td>Способ С, чистота составляет 97,6%, δ: 0,94 (6Н, $д, J = 6,4 \text{ Гц}$), 1,89-1,92 (1Н, $м$), 2,83 (2Н, $д, J = 7,2 \text{ Гц}$), 7,171 (1Н, $т, J = 4,4 \text{ Гц}$), 7,584 (2Н, $д, J = 4,0 \text{ Гц}$), 7,67 (2Н, $д, J = 8,0 \text{ Гц}$), 7,75 (2Н, $д, J = 8,4 \text{ Гц}$), 8,50 (1Н, $с$), 8,92 (1Н, $с$), 12,35 (1Н, $с$).</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>ЯМР (400 МГц, d6-ДМСО)</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>317</td>
<td></td>
<td>Способ C, чистота составляет 96,3%, ВУ = 2,166 мин; МС рассчит.: 489,0; МС найдено: 489,8 [M + H]⁺.</td>
<td>δ: 0,92 (6H, d, J = 6,4 Гц), 1,87-1,90 (1H, m), 2,82 (2H, d, J = 6,8 Гц), 7,83 (4H, qv, J = 8,4 Гц), 8,51 (1H, d, J = 2,0 Гц), 8,97 (1H, d, J = 1,6 Гц), 11,89 (0,5Н, уш.).</td>
</tr>
<tr>
<td>318</td>
<td></td>
<td>Способ C, чистота составляет 100%, ВУ = 1,920 мин; МС рассчит.: 475,1; МС найдено: 475,9 [M + H]⁺.</td>
<td>δ: 1,35 (6H, d, J = 6,8 Гц), 3,41-3,48 (1H, m), 7,82 (4H, c), 8,52 (1H, c), 8,99 (1H, c), 11,85 (1H, уш.).</td>
</tr>
<tr>
<td>319</td>
<td></td>
<td>Способ C, чистота составляет 99,2%, ВУ = 2,015 мин; МС рассчит.: 476,1; МС найдено: 476,9 [M + H]⁺.</td>
<td>δ: 1,36 (3H, c), 1,37 (3H, c), 3,48-3,40 (1H, m), 8,00 (1H, d, J = 8,0 Гц), 8,27 (1H, dd, J = 8,2, 1,8 Гц), 8,52 (1H, d, J = 2,4 Гц), 9,03-9,94 (2H, m), 11,93 (1H, уш.).</td>
</tr>
</tbody>
</table>

Пример 7. Синтез соединений I-320 – I-333

Схема 1: Путь для соединения 683-s

![Chemical Diagram 1](image)

Схема 2: Путь для соединения 685-s
Схема 3: Путь для соединения 689-s

Схема 4: Путь для соединения 709-s

Схема 5: Путь для соединения 711-s
Схема 6: Путь для соединений 714-s~719-s

Схема 7: Путь для соединения 720-s

Схема 8: Путь для соединений 1-321, 1-325

Схема 9: Путь для соединения 1-320
Схема 10: Путь для соединения I-322

Схема 12: Путь для соединения I-329

[00686] Общая информация. Все испарения проводились в вакууме на роторном
испарителе. Аналитические образцы сушили в вакууме (1–5 мм рт.ст.) при комнатной температуре. Тонкослойную хроматографию (ТСХ) проводили на планшетах с силикагелем, пятна визуализировали с применением УФ-света (214 и 254 нм). Очистку с помощью колоночной и флеш-хроматографии проводили с использованием силикагеля (200–300 меш). Системы растворителей представлены в виде смесей по объёму. Все спектры ЯМР были записаны на спектрометре Bruker 400 (400 МГц). Химические сдвиги 1Н указаны в значениях δ в миллионных долях с дейтерированным растворителем в качестве внутреннего стандарта. Данные представлены следующим образом: химический сдвиг, мультиплетность (c = синглет, д = дублет, т = триплет, кв = квартет, уш. = уширенный, м = мультиплет), константа взаимодействия (Гц), интегрирование.

[00687] Спектры ЖХ-МС были получены на масс-спектрометре Agilent 1200 серий 6110 или 6120 с ионизацией электрораспылением, и, если не указано иное, общие условия ЖХ-МС были следующими:

Способ А (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 3,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH3CN + 0,05% ТФУ] за 0,8 мин, затем в этих условиях в течение 0,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] за 0,01 мин).

Способ В (Agilent LCMS 1200-6110, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40°C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] до 0% [вода + 0,05% ТФУ] и 100% [CH3CN + 0,05% ТФУ] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 0,05% ТФУ] и 5% [CH3CN + 0,05% ТФУ] за 0,05 мин и в этих условиях в течение 0,7 мин.).

Способ С (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 40 °C; скорость потока: 2,0 мл/мин; подвижная фаза: от 95% [вода + 10 мМ NH4HCO3] и 5% [CH3CN] до 0% [вода + 10 мМ NH4HCO3] и 100% [CH3CN] за 1,6 мин, затем в этих условиях в течение 1,4 мин, окончательное изменение на 95% [вода + 10 мМ NH4HCO3] и 5% [CH3CN] за 0,1 мин и в этих условиях за 0,7 мин.)

Способ D (Agilent LCMS 1200-6120, колонка: Waters X-Bridge C18 (50 мм х 4,6 мм х 3,5 мкм); температура колонки: 45 °C; скорость потока: 2,3 мл/мин; подвижная фаза: от 95% [вода + 10 мМ NH4HCO3] и 5% [CH3CN] до 0% [вода + 10 мМ NH4HCO3] и 100% [CH3CN] за 1,75 мин, затем в этих условиях в течение 0,8 мин, окончательное изменение на 95% [вода + 10 мМ NH4HCO3] и 5% [CH3CN] за 0,1 мин и в этих условиях за 0,1 мин.)

Синтез 1-(бензо[d]тиазол-2-ил)-3-метилбутан-1-ола (683-2)
[00688] К раствору 683-1 (2,0 г, 12,3 ммоль) в ТГФ (20,0 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 18,4 мл, 18,4 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 100 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H₂O (50,0 мл) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 1/1) с получением 683-2 (930 мг, выход 34,3%) в виде масла желтого цвета.

[00689] Синтез 1-(бензол[d]тиазол-2-ил)-3-метилбутан-1-она (683-3)

[00690] К раствору 683-2 (800 мг, 3,62 ммоль) в CH₂Cl₂ (20,0 мл) добавляли периодинан Десса — Мартин (3,07 г, 7,24 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 0,5 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 683-3 (630 мг, выход 79,5%) в виде твердого вещества желтого цвета.

Синтез 1-(бензол[d]тиазол-2-ил)-2-бром-3-метилбутан-1-она (683-4)

[00691] Смесь 683-3 (600 мг, 2,74 ммоль) и RTAT (1,54 г, 4,11 ммоль) в ТГФ (20,0 мл)
перемешивали при 70 °C в течение 24 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (50,0 мл), а затем экстрагировали EtOAc (80,0 мл х 2). Органический слой объединяли и промывали H₂O (30,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Рассстро концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 683-4 (800 мг, выход 98,3%) в виде масла коричневого цвета.

Синтез 4-(benzo[d]тиазол-2-ил)-5-изопропилтиазол-2-амина (683-s)

[00692] Смесь 683-4 (800 мг, 2,69 ммоль) и тиомочевины (409 мг, 5,39 ммоль) в EtOH (10,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилacetат = 3/1) с получением 683-s (50,0 мг, выход 6,75%) в виде твердого вещества желтого цвета.

[00693] Синтез 4-метил-1-(нафталин-2-ил)пентан-1-ола (685-2)

[00694] К раствору 685-1 (2,0 г, 12,8 ммоль) в ТГФ (20,0 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 19,2 мл, 19,2 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в водн. NH₄Cl (насыщ., 50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H₂O (50,0 мл) и солевым раствором (80,0 мл), затем сушили безводным Na₂SO₄, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 685-2 (2,50 г, выход 85,5%) в виде масла желтого цвета.

408
Синтез 4-метил-1-(нафталин-2-ил)пентан-1-она (685-3)

[00695] К раствору 685-2 (2,50 г, 11,0 ммоль) в CH₂Cl₂ (100 мл) добавляли РСС (4,73 г, 21,9 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилцетат = 50/1) с получением 685-3 (2,20 г, выход 88,8%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-метил-1-(нафталин-2-ил)пентан-1-она (685-4)

[00696] Смесь 685-3 (2,20 г, 9,73 ммоль) и РТАТ (5,48 г, 14,6 ммоль) в ТГФ (100 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь концентрировали, остаток растирали в H₂O (50,0 мл), а затем экстрагировали EtOAc (80,0 мл х 2). Органический слой объединяли и промывали H₂O (30,0 мл х 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 685-4 (2,90 г, выход 98,0%) в виде масла желтого цвета.

Синтез 5-изобутил-4-(нафталин-2-ил)тиазол-2-амина (685-s)
Смесь 685-4 (2,90 г, 9,54 ммоль) и тиомочевины (1,45 г, 19,1 ммоль) в EtOH (50,0 мл) перемешивали при 85 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилцетат = 3/1) с получением 685-s (1,0 г, выход 37,2%) в виде твердого вещества желтого цвета.

Синтез 1-(2,4-дихлорфенил)-3-метилбутан-1-она (689-2)

Смесь 689-1 (10,0 мл), 3-метилбутаноилхлорида (2,0 г, 16,6 ммоль) и AlCl₃ (2,65 г, 19,9 ммоль) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь растворяли с помощью EtOAc (200 мл). Органическую фазу объединяли и промывали H₂O (80,0 мл) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилцетат = 20/1) с получением 689-2 (1,50 г, выход 39,3%) в виде масла желтого цвета.

Синтез 2-бром-1-(2,4-дихлорфенил)-3-метилбутан-1-она (689-3)

Смесь 689-2 (1,50 г, 6,52 ммоль) и РТАТ (3,67 г, 9,78 ммоль) в ТГФ (80,0 мл)
перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (50,0 мл), а затем экстрагировали EtOAc (80,0 мл × 2). Органический слой объединяли и промывали H₂O (30,0 мл × 2) и соляным раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 689-3 (2,0 г, выход 100%) в виде масла желтого цвета.

Синтез 1-(2,4-дихлорфенил)-3-метил-2-тиоцианатобутан-1 она(689-4)

Смесь 689-3 (2,0 г, 6,49 ммоль) и NaSCN (1,05 г, 13,0 ммоль) в EtOH (50,0 мл) перемешивали при 90 °C в течение ночи. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 689-4 (1,40 г, выход 75,1%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-(2,4-дихлорфенил)-5-изопропилтiazола (689-s)

Смесь 689-4 (1,40 г, 4,88 ммоль) и HBr (2,0 M в AcOH, 5,0 мл) в AcOH (10,0 мл) перемешивали при 60 °C в течение 1 часа. По завершении реакции реакционную смесь выливают в H₂O (100 мл) и экстрагируют EtOAc (100 мл × 3). Органическую фазу объединяют и промывают H₂O (80,0 мл) и соляным раствором (80,0 мл), затем сушили безводными Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 689-s (1,20 г, выход 70,5%) в виде масла желтого цвета.
Синтез 1-(3-хлор-4-метоксифенил)-3-метилбутан-1-ола (709-1)

\[
\begin{align*}
568-2 & \quad \text{BrMg} \quad \text{ТГФ, кт, в течение ночи} \quad \text{709-1}
\end{align*}
\]

[00702] К раствору 568-2 (4,40 г, 25,9 ммоль) в ТГФ (30,0 мл) добавляли изобутилмагния бромид (1,0 М в ТГФ, 38,8 мл, 38,8 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливали в водн. NH\textsubscript{4}Cl (насыщ., 100 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H\textsubscript{2}O (50,0 мл) и соляным раствором (80,0 мл), затем сушили безводным Na\textsubscript{2}SO\textsubscript{4}, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 709-1 (5,0 г, выход 84,7%) в виде масла желтого цвета.

Синтез 1-(3-хлор-4-метоксифенил)-3-метилбутан-1-она (709-2)

\[
\begin{align*}
\text{709-1} & \quad \text{PCC} \quad \text{CH\textsubscript{2}Cl\textsubscript{2}, кт, 2 ч} \quad \text{709-2}
\end{align*}
\]

[00703] К раствору 709-1 (5,0 г, 21,9 ммоль) в CH\textsubscript{2}Cl\textsubscript{2} (200 мл) добавляли PCC (9,45 г, 43,9 ммоль). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов.

По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 709-2 (4,20 г 84,7%) в виде масла желтого цвета.

Синтез 5-бром-4-изопропилтиазол-2-амина (709-3)

\[
\begin{align*}
\text{709-2} & \quad \text{RTAT} \quad \text{ТГФ, кт, 16 ч} \quad \text{709-3}
\end{align*}
\]

[00704] Смесь 709-2 (4,20 г, 18,6 ммоль) и RTAT (10,5 г, 27,9 ммоль) в ТГФ (100 мл)
перемешивали при комнатной температуре в течение 16 часов. По завершении реакции реакционную смесь концентрировали, остаток растворяли в H₂O (80,0 мл), а затем экстрагировали EtOAc (80,0 мл х 2). Органический слой объединяли и промывали H₂O (50,0 мл х 2) и солевым раствором (50,0 мл), затем сушили безводным Na₂SO₄. Раствор концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 50/1) с получением 709-3 (4,0 г 70,8%) масла желтого цвета.

Синтез 1-(3-хлор-4-метоксифенил)-3-метил-2-тиоцианатобутан-1-она (709-4)

![Chemical Structure](image)

[00705] Смесь 709-3 (4,0 г, 13,2 ммоль) и NaSCN (2,13 г, 26,3 ммоль) в EtOH (80,0 мл) перемешивали при 80 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 3/1) с получением 709-4 (3,0 г, выход 80,6%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-(3-хлор-4-метоксифенил)-5-изопропилтиазола (709-s)

![Chemical Structure](image)

[00706] Смесь 709-4 (1,50 г, 5,30 ммоль) и HBr (2,0 М в AcOH, 5,0 мл) в AcOH (10,0 мл) перемешивали при 60 °C в течение 1 часа. По завершении реакции реакционную смесь выливают в H₂O (100 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H₂O (50,0 мл) и солевым раствором (80,0 мл), затем сушили безводным Na₂SO₄, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 10/1) с получением 709-s (600 мг, выход 32,8%) в виде масла желтого цвета.

Синтез 4-(3-хлор-4-метоксифенил)-5-изобутилтиазол-2-амина (711-s)
Смесь 568-5 (1,0 г, 3,14 ммоль) и тиомочевины (478 мг, 6,29 ммоль) в EtOH (20,0 мл) перемешивали при 80 °C в течение 2 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилцетат = 3/1) с получением 711-s (700 мг, выход 75,2%) в виде твердого вещества желтого цвета.

Синтез 2-бром-4-(3-хлор-4-(2-метоксизэтокси)фенил)-5-изобутилтиазола (714-s)

Смесь 568-8 (250 мг, 0,725 ммоль), 1-бром-2-метоксиэтана (201 мг, 1,45 ммоль) и K2CO3 (138 мг, 1,45 ммоль) в DMF (3,0 мл) перемешивали при комнатной температуре в течение ночи. По завершении реакции реакционную смесь выливают в H2O (50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяют и промывают H2O (50,0 мл) и соляным раствором (50,0 мл), затем сушили безводным Na2SO4, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 714-s (300 мг, выход 100%) в виде бесцветного масла.

Синтез 4-(2-бром-5-изобутилтиазол-4-ил)фенола (720-2)
[00709] Смесь 720-1 (350 мг, 1,03 ммоль) и HBr (2,0 M в AcOH, 2,0 мл) в AcOH (3,0 мл) перемешивали при комнатной температуре в течение 1 часа. По завершении реакции реакционную смесь выливали в H2O (50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H2O (50,0 мл) и соляным раствором (50,0 мл), затем сушили безводным Na2SO4, концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 1/1) с получением 720-2 (170 мг, выход 52,9%) в виде масла желтого цвета.
Синтез 2-бром-5-изобутил-4-(4-метоксифенил)тиазола (720-s)

[00710] Смесь 720-2 (170 мг, 0,547 ммоль), CH3I (116 мг, 0,820 ммоль) и K2CO3 (151 мг, 1,09 ммоль) в DMSO (3,0 мл) перемешивали при комнатной температуре в течение 2 часов. По завершении реакции реакционную смесь выливали в H2O (50,0 мл) и экстрагировали EtOAc (80,0 мл х 3). Органическую фазу объединяли и промывали H2O (50,0 мл) и соляным раствором (80,0 мл), затем сушили безводным Na2SO4, концентрировали с получением неочищенного продукта, который использовали непосредственно на следующей стадии без дополнительной очистки с получением 720-s (150 мг, выход 84,4%) в виде бесцветного масла.
Таблица 7-1: Данные по характеристикам соединений

<table>
<thead>
<tr>
<th>#</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
</tr>
</thead>
<tbody>
<tr>
<td>685-s</td>
<td></td>
<td>Способ А, чистота составляет 86,6%, ВУ = 0,659 мин; МС рассчит.:282,1; МС найдено: 283,1 [M + H]⁺.</td>
</tr>
<tr>
<td>709-s</td>
<td></td>
<td>Способ В, чистота составляет 39,7%, ВУ = 2,286 мин; МС рассчит.:345,0; МС найдено: 345,9 [M + H]⁺.</td>
</tr>
<tr>
<td>711-s</td>
<td></td>
<td>Способ А, чистота составляет 84,6%, ВУ = 0,642 мин; МС рассчит.:296,1; МС найдено: 297,0 [M + Na]⁻.</td>
</tr>
<tr>
<td>714-s</td>
<td></td>
<td>Способ А, чистота составляет 90,1%, ВУ = 0,968 мин; МС рассчит.:403,0; МС найдено: 403,8 [M + H]⁺.</td>
</tr>
<tr>
<td>715-s</td>
<td></td>
<td>Способ А, чистота составляет 86,8%, ВУ = 0,703 мин; МС рассчит.:416,0; МС найдено: 416,8 [M + H]⁺.</td>
</tr>
<tr>
<td>716-s</td>
<td></td>
<td>Способ В, чистота составляет 92,0%, ВУ = 2,046 мин; МС рассчит.:402,0; МС найдено: 402,9 [M + H]⁺.</td>
</tr>
<tr>
<td>718-s</td>
<td></td>
<td>Способ В, чистота составляет 100%, ВУ = 2,135 мин; МС рассчит.:389,0; МС найдено: 389,8 [M + H]⁺.</td>
</tr>
<tr>
<td>719-s</td>
<td></td>
<td>Способ А, чистота составляет 95,3%, ВУ = 1,034 мин; МС рассчит.:399,0; МС найдено: 400,0 [M + H]⁺.</td>
</tr>
<tr>
<td>#</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>720-s</td>
<td></td>
<td>Способ А, чистота составляет 94,5%, ВУ = 0,949 мин; МС рассчит.: 325,0; МС найдено: 326,0 [M + H]⁺.</td>
</tr>
</tbody>
</table>

Синтез 2-(4-(бензо[d]тиазол-2-ил)-5-изопропилтиазол-2-иламино)-5-(трифторметил)никотиновой кислоты (I-320)

![Схема синтеза](image)

5 [00711] Смесь 683-s (50,0 мг, 0,182 ммоль), 2-хлор-5-(трифторметил)никотиновой кислоты (49,2 мг, 0,218 ммоль), Pd₃(dba): (16,9 мг, 0,0182 ммоль), X-phos (158 мг, 0,0273 ммоль) и Cs₂CO₃ (88,9 мг, 0,273 ммоль) в толуоле (3,0 мл) перемешивали в атмосфере N₂ при 110 °C в течение 3 часов. По завершении реакции реакционную смесь концентрировали и оцищали препаративной ВЭЖХ с получением I-320 (10,0 мг, выход 11,9%) в виде твердого вещества желтого цвета.

Синтез метил 2-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-5-(нафталин-2-ил)никотината (686-1)

![Схема синтеза](image)

5 [00712] Смесь 496-s (150 мг, 0,292 ммоль), 4,4,5,5-тетраметил-2-(нафталин-2-ил)-1,3,2-
диксаборолана (111 мг, 0,439 ммоль), Pd(dppf)Cl₂ (21,3 мг, 0,0292 ммоль) и Na₂CO₃ (61,9 мг, 0,584 ммоль) в диоксане/H₂O (об./об. = 5/1, 5,0 мл) перемешивали в атмосфере N₂ при 85 °C в течение 4 часов. По завершении реакции реакционную смеь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 8/1) с получением 686-1 (80,0 мг, выход 48,9%) в виде твердого вещества желтого цвета.
Синтез 2-(4-(3,4-дихлорфенил)-5-изобутилтиазол-2-иламино)-5-(нафталин-2-il)нитокиновой кислоты (I-322)

[00713] К раствору 686-1 (80,0 мг, 0,142 ммоль) в ТГФ/MeOH (об./об. = 4/1, 5,0 мл) добавляли NaOH (2,0 М в H₂O, 1,0 мл). Реакционную смеь перемешивали при 50 °C в течение 1 часа. По завершении реакции полученную реакционную смеь концентрировали, затем разбавляли с применением H₂O (15,0 мл) и доводили значение рН до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали соляным раствором (10,0 мл), сушили над безводным Na₂SO₄ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-322 (30,0 мг, выход 38,5%) в виде твердого вещества желтого цвета.
Синтез метил 2-(4-(2,4-дихлорфенил)-5-изопропилтиазол-2-иламино)-5-(трифторметил)нитокината (689-5)
Смесь 689-s (200 мг, 0,573 ммоль), 532 (151 мг, 0,688 ммоль), Pd$_2$(dba)$_3$ (53,3 мг, 0,0573 ммоль), X-phos (49,7 мг, 0,0860 ммоль) и Cs$_2$CO$_3$ (280 мг, 0,860 ммоль) в толуоле (5,0 мл) перемешивали в атмосфере N$_2$ при 110 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали колоночной хроматографией на силикагеле (петролейный эфир/этилацетат = 8/1) с получением 689-5 (120 мг, выход 42,8%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(2,4-дихлорфенил)-5-изопропилтиазол-2-иламино)-5-(трифторметил)никотиновой кислоты (I-323)

К раствору 689-5 (120 мг, 0,245 ммоль) в TГФ/MeOH/H$_2$O (об./об./об. = 4/1/1, 5,0 мл) добавляли LiOH (2,0 М в H$_2$O, 2,0 мл). Реакционную смесь перемешивали при 40 °C в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали, затем разбавляли с применением H$_2$O (15,0 мл) и доводили значение pH до 4–5 с помощью HCl (1,0 М). Смесь экстрагировали EtOAc (10,0 мл х 2), объединенную органическую фазу промывали солевым раствором (10,0 мл), сушили над безводным Na$_2$SO$_4$ и концентрировали, остаток очищали препаративной ВЭЖХ с получением I-323 (30,0 мг, выход 25,7%) в виде твердого вещества желтого цвета.

Синтез 2-амино-5-(тиофен-2-ил)никотиновой кислоты (716-2)
К раствору 716-1 (200 мг, 0,854 ммоль) в EtOH (5,0 мл) добавляли NaOH (2,0 М в H2O, 1,0 мл). Реакционную смесь перемешивали при комнатной температуре в течение 2 часов. По завершении реакции полученную реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением 716-2 (160 мг, выход 85,1%) в виде твердого вещества желтого цвета.

Синтез 2-(4-(4-(2-амино-2-оксоэтокси)-3-хлорфенил)-5-изобутилтиазол-2-иламино)-5-(тиофен-2-ил)никотиновой кислоты (I-329)

Смесь 716-2 (137 мг, 0,622 ммоль), 716-s (250 мг, 0,622 ммоль), Pd2(dba)3 (57,8 мг, 0,0622 ммоль), X-phos (53,9 мг, 0,0933 ммоль) и Cs2CO3 (304 мг, 0,933 ммоль) в толуоле (5,0 мл) перемешивали в атмосфере N2 при 110 °C в течение 16 часов. По завершении реакции реакционную смесь концентрировали и очищали препаративной ВЭЖХ с получением I-329 (40,0 мг, выход 11,9%) в виде твердого вещества желтого цвета.
Данные по характеристикам дополнительных иллюстративных соединений

<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖК-МС</th>
<th>¹H ЯМР (400 МГц, d6-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td></td>
<td>Способ С, чистота составляет 88,0%, BV = 2,144 мин; MC рассчит.: 464,1; МС найдено: 464,9 [M + H]⁺.</td>
<td>δ: 1,40 (6Н, д, J = 6,8 Гц), 4,55 (1Н, т, J = 6,8 Гц), 5,16-5,28 (4Н, м), 7,41-7,46 (1Н, м), 7,50-7,54 (1Н, м), 8,20 (1Н, д, J = 8,0 Гц), 8,12 (1Н, д, J = 8,0 Гц), 8,39 (1Н, д, J = 2,4 Гц), 8,67-8,68 (1Н, м), 15,38 (1Н, уш.).</td>
</tr>
<tr>
<td>321</td>
<td></td>
<td>Способ С, чистота составляет 95,2%, BV = 2,169 мин; MC рассчит.: 471,1; МС найдено: 471,9 [M + H]⁺.</td>
<td>δ: 0,98 (3Н, с), 0,99 (3Н, с), 1,92-2,04 (1Н, м), 2,94 (2Н, д, J = 7,2 Гц), 7,58-7,64 (2Н, м), 7,84 (1Н, лд, J = 8,8, 1,6 Гц), 7,99-8,11 (3Н, м), 8,20 (1Н, с), 8,58 (1Н, д, J = 2,4 Гц), 9,04 (1Н, д, J = 1,6 Гц), 11,93 (1Н, уш.).</td>
</tr>
<tr>
<td>322</td>
<td></td>
<td>Способ С, чистота составляет 93,2%, BV = 2,086 мин; MC рассчит.: 547,1; МС найдено: 548,3 [M + H]⁺.</td>
<td>δ: 0,94 (3Н, с), 0,95 (3Н, с), 1,87-1,94 (1Н, м), 2,80 (2Н, д, J = 7,2 Гц), 7,52-7,60 (2Н, м), 7,63 (1Н, лд, J = 8,4, 2,0 Гц), 7,72 (1Н, д, J = 8,4 Гц), 7,84 (1Н, д, J = 2,0 Гц), 7,92-7,99 (2Н, м), 8,00-8,07 (2Н, м), 8,35 (1Н, с), 8,72 (1Н, д, J = 2,4 Гц), 9,05 (1Н, д, J = 2,0 Гц).</td>
</tr>
<tr>
<td>323</td>
<td></td>
<td>Способ С, чистота составляет 99,0%, BV = 1,963 мин; MC рассчит.: 475,0; МС найдено: 475,9 [M + H]⁺.</td>
<td>δ: 1,22 (6Н, д, J = 7,2 Гц), 2,85-2,89 (1Н, м), 7,44-7,53 (2Н, м), 7,76 (1Н, д, J = 2,0 Гц), 8,45 (1Н, д, J = 2,4 Гц), 8,81 (1Н, с), 13,64 (1Н, с).</td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>(^1)Н ЯМР (400 МГц, (d_6)-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>324</td>
<td>Способ С, чистота составляет 100%, BV = 1,920 мин; МС рассчит.: 485,1; МС найдено: 486,0 [M + H]^+.</td>
<td>δ: 1,33 (6H, d, (J = 6,4 \text{ Гц})), 3,26-3,29 (1H, m), 3,91 (3H, c), 7,19-7,25 (2H, m), 7,50 (1H, d, (J = 8,0 \text{ Гц})), 7,60-7,65 (3H, m), 8,47 (1H, c), 8,97 (1H, c), 11,54 (1H, уш.).</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>Способ С, чистота составляет 97,4%, BV = 2,117 мин; МС рассчит.: 485,1; МС найдено: 486,0 [M + H]^+.</td>
<td>δ: 0,91 (3H, c), 0,93 (3H, c), 1,81-1,92 (1H, m), 2,75 (2H, d, (J = 7,2 \text{ Гц})), 3,91 (3H, c), 7,23 (1H, d, (J = 8,8 \text{ Гц})), 7,54 (1H, dd, (J = 8,6, 2,0 \text{ Гц})), 7,63 (1H, d, (J = 2,0 \text{ Гц})), 8,50 (1H, d, (J = 2,4 \text{ Гц})), 8,96 (1H, d, (J = 1,6 \text{ Гц})), 11,84 (1H, уш.).</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>Способ С, чистота составляет 100%, BV = 1,911 мин; МС рассчит.: 471,1; МС найдено: 472,0 [M + H]^+.</td>
<td>δ: 1,32 (6H, d, (J = 6,4 \text{ Гц})), 3,36-3,39 (1H, m), 3,91 (3H, c), 7,23 (2H, d, (J = 8,8 \text{ Гц})), 7,51 (1H, d, (J = 8,4 \text{ Гц})), 7,59 (1H, c), 8,50 (1H, c), 8,98 (1H, c), 11,85 (1H, уш.).</td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>Способ С, чистота составляет 96,9%, BV = 1,963 мин; МС рассчит.: 543,0; МС найдено: 544,0 [M + H]^+.</td>
<td>δ: 0,93 (6H, d, (J = 6,4 \text{ Гц})), 1,86-1,89 (1H, m), 2,73 (2H, d, (J = 7,2 \text{ Гц})), 3,35 (3H, c), 3,72 (2H, t, (J = 4,4 \text{ Гц})), 4,23 (2H, t, (J = 4,4 \text{ Гц})), 7,17-7,24 (2H, m), 7,49-7,52 (1H, m), 7,60-7,63 (3H, m), 8,45 (1H, d, (J = 2,4 \text{ Гц})), 8,92 (1H, d, (J = 2,4 \text{ Гц})), 11,53 (1H, c), 14,29 (1H, c).</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>Способ С, чистота составляет 97,6%, BV = 1,918 мин; МС рассчит.: 556,1; МС найдено:</td>
<td>δ: 0,91 (6H, d, (J = 6,4 \text{ Гц})), 1,85-1,88 (1H, m), 2,71 (2H, d, (J = 6,8 \text{ Гц})), 2,92 (6H, c), 3,58 (2H, d, (J = 4,0 \text{ Гц})), 4,49 (2H, t, (J = 4,0 \text{ Гц})), 7,16 (1H, t, (J = 4,4 \text{ Гц})), 7,28 (1H, t, (J = 4,4 \text{ Гц})).</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Химическая структура</td>
<td>ЖХ-МС</td>
<td>1Н ЯМР (400 МГц, d_6-ДМСО)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>329</td>
<td> BV = 1,790 мин; MC рассчит.: 542,1; МС найдено: 542,9 [M + H]$^+$</td>
<td>δ: 0,93 (6Н, J = 6,4 Гц), 1,87-1,90 (1Н, м), 2,72 (2Н, d, J = 6,8 Гц), 4,61 (2Н, с), 7,07-7,16 (2Н, м), 7,41 (1Н, d, J = 11,2 Гц), 7,50-7,54 (4Н, м), 7,65 (1Н, d, J = 2,0 Гц), 8,63 (1Н, d, J = 2,8 Гц), 14,68 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td> BV = 2,190 мин; MC рассчит.: 513,0; МС найдено: 513,8 [M + H]$^+$</td>
<td>δ: 0,93 (6Н, d, J = 6,8 Гц), 1,39 (3Н, т, J = 6,8 Гц), 1,86-1,91 (1Н, м), 2,73 (2Н, d, J = 6,8 Гц), 4,16 (2Н, кв, J = 6,8 Гц), 7,17-7,22 (2Н, м), 7,51 (1Н, дкв, J = 8,4, 2,0 Гц), 7,60-7,64 (3Н, м), 8,45 (1Н, d, J = 2,4 Гц), 8,92 (1Н, d, J = 2,4 Гц), 11,65 (1Н, уш.), 14,35 (1Н, уш.)</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td> BV = 1,997 мин; MC рассчит.: 529,0; МС найдено: 529,8 [M + H]$^+$</td>
<td>δ: 0,93 (6Н, d, J = 6,8 Гц), 1,92-1,95 (1Н, м), 2,74 (2Н, d, J = 6,8 Гц), 3,77 (2Н, т, J = 4,8 Гц), 4,13 (2Н, т, J = 4,8 Гц), 7,17-7,25 (2Н, м), 7,51 (1Н, дкв, J = 8,6, 2,0 Гц), 7,60-7,65 (3Н, м), 8,46 (1Н, d, J = 2,4 Гц), 8,93 (1Н, d, J = 2,0 Гц), 11,56 (1Н, уш.), 14,33 (1Н, уш.)</td>
<td></td>
</tr>
</tbody>
</table>
| 332 | ![Способ С, чистота составляет 100%](image) BV = 2,237 мин; MC рассчит.: 539,1; МС найдено: 539,8 [M + H]$^+$ | δ: 0,36-0,40 (2Н, м), 0,58-0,63 (2Н, м), 0,93 (6Н, d, J = 6,4 Гц), 1,26-1,30 (1Н, м), 1,84-1,91 (1Н, м), 2,72 (2Н, d, J = 6,8 Гц), 3,96 (2Н, d, J = 7,2 Гц), 7,13-7,19 (2Н, м), 7,49-7,53 (3Н, м), 7,62 (1Н, d, J = 2,0 | | 423
<table>
<thead>
<tr>
<th>№</th>
<th>Химическая структура</th>
<th>ЖХ-МС</th>
<th>¹Н ЯМР (400 МГц, d₆-ДМСО)</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>[Image of molecule]</td>
<td>Способ С, чистота составляет 100%, ВУ = 1,915 мин; МС рассчит.: 465,1; МС найдено: 466,0 [М + Н]⁺.</td>
<td>δ: 0,92 (6Н, д, J = 6,8 Гц), 1,84-1,90 (1Н, м), 2,73 (2Н, д, J = 6,8 Гц), 3,80 (3Н, с), 7,01 (2Н, д, J = 8,8 Гц), 7,17 (1Н, дд, J = 4,8, 4,0 Гц), 7,53 (2Н, д, J = 8,8 Гц), 7,57-7,60 (2Н, м), 8,44 (1Н, д, J = 2,4 Гц), 8,83 (1Н, уш.).</td>
</tr>
</tbody>
</table>

[00718] Несмотря на то, что в данном документе описан ряд вариантов осуществления данного изобретения, очевидно, что основные примеры могут быть изменены для предоставления других вариантов осуществления, в которых применяются соединения и способы по данному изобретению. Поэтому следует понимать, что объем данного изобретения должен определяться спецификацией и прилагаемой формулой изобретения, а не конкретными вариантами осуществления, которые были представлены в качестве примера.
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение формулы I:

![Chemical Structure](image)

5 (I),
или его фармацевтически приемлемая соль, где:
кольцо А представляет собой необязательно замещенное кольцо, выбранное из фенилена, 5-6-члененного моноциклического гетероароматического кольца, имеющего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, 8-10-членного бициклического ароматического карбоциклического кольца или 8-10-членного бициклического гетероароматического кольца, имеющего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
L1 представляет собой связь или необязательно замененную C1-8 двухвалентную линейную или разветвленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на –O-, –S-, –N(R)-, –C(O)- или –S(O)2–;
R2 представляет собой галоген, R, -OR, -SR, -C(O)R, -C(O)OR, -C(O)N(R)2, -S(O)2R, -S(O)2OR или -S(O)2N(R)2;
L2 представляет собой связь или необязательно замененную C1-8 двухвалентную линейную или разветвленную углеводородную цепь, где 1, 2, 3 или 4 метиленовых звена углеводородной цепи необязательно и независимо заменены на –O-, –S-, –N(R)-, –C(O)-, –S(O)2- или –Cy–;
R3 представляет собой –CN, –C(O)R, –C(O)OR, –C(O)N(R)2, –N(R)-C(O)-R, –N(R)-C(O)-OR, –S(O)2-N(R)2, –S(O)2-N(R)-C(O)R, –C(O)-N(R)-S(O)2R, –C(=NR)-N(R)2, –N(R)-C(=NR)-N(R)2 или 5–6-членное моноциклическое гетероароматическое кольцо, независимо имеющее 1–4 гетероатома, выбранных из азота, кислорода и серы;
-Cy- представляет собой необязательно замещенное двухвалентное кольцо, выбранное из фенилена, 5–6-члененного моноциклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 3–6-членного моноциклического, насыщенного или частично ненасыщенного карбоциклического кольца, 3–6-членного моноциклического, насыщенного или частично ненасыщенного гетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из

425
азота, кислорода и серы, 8–10-членного бициклического ароматического карбоциклического кольца или 8–10-членного бициклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы; и

5 R представляет собой водород, необязательно замещенную –С1-4 алифатическую группу или необязательно замещенное кольцо, выбранное из фенила, 5–6-членного моноциклического гетероароматического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы, 3–6-членного моноциклического, насыщенного или частично ненасыщенного карбоциклического кольца или 3–6-членного моноциклического, насыщенного или частично ненасыщенного гетероциклического кольца, имеющего 1–4 гетероатома, независимо выбранных из азота, кислорода и серы.

2. Соединение по п. 1, в котором кольцо A представляет собой необязательно замещенный фенил.

3. Соединение по п. 2, в котором кольцо A представляет собой , где каждый R1 независимо представляет собой галоген, R, -N(R)2, -OR, -SR, -C(O)OR или -S(O)2R; n равно 0, 1, 2, 3, 4 или 5.

4. Соединение по п. 2, в котором кольцо A представляет собой или , где каждый из R11 и R12 независимо представляет собой галоген, R, -N(R)2, -OR, -SR, -C(O)OR или -S(O)2R.

5. Соединение по п. 4, в котором по меньшей мере один из R12 не является водородом.

6. Соединение по любому из предшествующих пунктов, где L1 представляет собой связь.

7. Соединение по любому из предшествующих пунктов, где R2 не является водородом.
8. Соединение по п. 7, где R² представляет собой необязательно замещенную -C₁₋₆ алифатическую группу.

9. Соединение по любому из предшествующих пунктов, где R² представляет собой H,

10. Соединение по любому из предшествующих пунктов, где L² не присоединяется к тиазольному фрагменту через карбоксамидный, сульфонамидный или диазольный фрагмент.

11. Соединение по п. 10, где L² представляет собой

12. Соединение по любому из предшествующих пунктов, где R³ представляет собой –

COOH, -CN,
13. Соединение по любому из предшествующих пунктов, где R представляет собой водород или необязательно замеченную −С₃₋₆ алифатическую группу.

14. Соединение по п. 1, причем соединение представляет собой соединение формулы (II):

\[R^3-L^2\overbrace{\text{S}}^{L^1}_{\text{N}}(R')_n \]

(II)

или его фармацевтически приемлемую соль, где R₁ независимо представляет собой галоген, R, -N(R)₂, -OR, -SR, -C(O)OR или -S(O)₂R, а n равно 0, 1, 2, 3, 4 или 5.

15. Соединение по п. 1, причем соединение представляет собой соединение формул II-a – II-d:

(II-a) (II-b) (II-c) (II-d)

или его фармацевтически приемлемую соль, где каждый из R¹¹ и R¹² независимо представляет собой галоген, R, -N(R)₂, -OR, -SR, -C(O)OR или -S(O)₂R.

16. Соединение по п. 1, причем соединение представляет собой соединение формулы (III):
или его фармацевтически приемлемую соль, где R\(^1\) независимо представляет собой галоген, R, -N(R)\(_2\), -OR, -SR, -C(O)OR или -S(O)\(_2\)R, а n равно 0, 1, 2, 3, 4 или 5.

17. Соединение по п. 1, причем соединение представляет собой соединение формулы III-a – III-d:

(III-a) (III-b) (III-c) (III-d)

или его фармацевтически приемлемую соль, где каждый из R\(^{11}\) и R\(^{12}\) независимо представляет собой галоген, R, -N(R)\(_2\), -OR, -SR, -C(O)OR или -S(O)\(_2\)R.

18. Соединение по п. 1, причем соединение представляет собой соединение формулы IV:

(IV)

или его фармацевтически приемлемую соль, где R\(^1\) независимо представляет собой галоген, R, -N(R)\(_2\), -OR, -SR, -C(O)OR или -S(O)\(_2\)R, а n равно 0, 1, 2, 3, 4 или 5.

19. Соединение по п. 1, причем соединение представляет собой соединение формулы IV-a – IV-d:

(IV-a) (IV-b) (IV-c) (IV-d)
или его фармацевтически приемлемую соль, где каждый из R^{11} и R^{12} независимо представляет собой галоген, R, -N(R), -OR, -SR, -C(O)OR или -S(O)_{2}R.

20. Соединение по п. 1, причем соединение представляет собой соединение формулы V:

![Image of structure V](image)

(V)

или его фармацевтически приемлемую соль, где R^{1} независимо представляет собой галоген, R, -N(R), -OR, -SR, -C(O)OR или -S(O)_{2}R, а n равно 0, 1, 2, 3, 4 или 5.

21. Соединение по п. 1, причем соединение представляет собой соединение формулы V-a – V-d:

![Images of structures V-a, V-b, V-c, V-d](images)

(V-a) (V-b) (V-c) (V-d)

или его фармацевтически приемлемую соль, где каждый из R^{11} и R^{12} независимо представляет собой галоген, R, -N(R), -OR, -SR, -C(O)OR или -S(O)_{2}R.

22. Соединение по п. 1, причем соединение представляет собой соединение формулы VI:

![Image of structure VI](image)

(VI)

или его фармацевтически приемлемую соль, где R^{1} независимо представляет собой галоген, R, -N(R), -OR, -SR, -C(O)OR или -S(O)_{2}R, а n равно 0, 1, 2, 3, 4 или 5.

23. Соединение по п. 1, причем соединение представляет собой соединение формулы VI-a –
или его фармацевтически приемлемую соль, где каждый из \(R^{11} \) и \(R^{12} \) независимо представляет собой галоген, \(R, -N(R)_2, -OR, -SR, -C(O)OR \) или \(-S(O)_2R\).

24. Соединение по п. 1, причем соединение представляет собой соединение формулы VII:

\[
\text{HOOC}\quad \text{L}^2 \quad \text{S} \quad \text{N} \quad \text{L}^1 \quad \text{(R')}_n
\]

(VII)

или его фармацевтически приемлемую соль, где \(R^1 \) независимо представляет собой галоген, \(R, -N(R)_2, -OR, -SR, -C(O)OR \) или \(-S(O)_2R\), а \(n \) равно 0, 1, 2, 3, 4 или 5.

25. Соединение по п. 1, причем соединение представляет собой соединение формул VII-a – VII-d:

(VII-a)

или его фармацевтически приемлемую соль, где каждый из \(R^{11} \) и \(R^{12} \) независимо представляет собой галоген, \(R, -N(R)_2, -OR, -SR, -C(O)OR \) или \(-S(O)_2R\).

26. Соединение по п. 1 или его фармацевтически приемлемая соль, выбранные из таблицы 1.

27. Фармацевтическая композиция, содержащая соединение по любому из пп. 1–26 или его фармацевтически приемлемую соль и фармацевтически приемлемый носитель, адъювант носитель или несущую среду.
28. Способ лечения рака у пациента, включающий введение пациенту соединения по любому из пп. 1–27 или его фармацевтически приемлемой соли.