
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- Дата публикации заявки (43)2022.11.10
- Дата подачи заявки (22)2020.12.21

- **(51)** Int. Cl. *C12N 15/113* (2010.01) **C07K 14/54** (2006.01) A61K 31/7088 (2006.01) **C07K 14/65** (2006.01) C07K 14/005 (2006.01) A61K 31/713 (2006.01) **C07K 14/52** (2006.01) C07K 14/565 (2006.01)
- КОМПОЗИЦИИ И СПОСОБЫ ДЛЯ ОДНОВРЕМЕННОЙ МОДУЛЯЦИИ ЭКСПРЕССИИ (54)ГЕНОВ
- (31)19219276.3; 63/042,890
- (32) 2019.12.23; 2020.06.23
- EP; US (33)
- (86)PCT/IB2020/001091
- (87)WO 2021/130537 2021.07.01
- (88) 2021.08.12
- (71) Заявитель:

ВЕРСАМЕБ АГ (СН)

- (72) Изобретатель:
 - Селварадж Джастин Энтони, Мецгер Фридрих, Шаффхаузер Эрве, Хильман-Вюлльнер Петра (СН)
- (74) Представитель: Нилова М.И. (RU)
- В соответствии с изобретением предложены композиции конструкций рекомбинантной (57)полинуклеиновой кислоты, содержащих по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген. Также в изобретении предложено применение указанных композиций для лечения заболевания или состояния и одновременной модуляции экспрессии двух или более генов.

КОМПОЗИЦИИ И СПОСОБЫ ДЛЯ ОДНОВРЕМЕННОЙ МОДУЛЯЦИИ ЭКСПРЕССИИ ГЕНОВ

ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

5 [0001] Настоящая заявка испрашивает приоритет на основании предварительной заявки на европейский патент № ЕР19219276.3, поданной 23 декабря 2019 г., и предварительной заявки на патент США № 63/042890, поданной 23 июня 2020 г., содержание каждой из которых полностью включено в данную заявку посредством ссылки.

ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

10 **[0001.1]** Настоящая заявка содержит Перечень последовательностей, который был подан в электронном виде в формате ASCII и настоящим полностью включен в данную заявку посредством ссылки. Указанная копия ASCII, созданная 18 декабря 2020 г., названа 57623 701 601 SL.txt и имеет размер 326570 байт.

15

20

25

30

35

УРОВЕНЬ ТЕХНИКИ

[0002] Множество заболеваний и расстройств у человека вызваны комбинациями более высоких и/или более низких уровней экспрессии некоторых белков по сравнению с уровнями экспрессии данных белков у людей без указанного заболевания или расстройства. Комбинированные методы лечения для повышения экспрессии и/или секреции целевого белка и для снижения экспрессии другого, отличного целевого белка, могут оказывать терапевтическое действие. Например, необходимы методы лечения коронавирусной инфекции, например, COVID-19 - заболевания, вызванного инфицированием коронавирусом SARS-CoV-2, - которые эффективно и специфично снижают продукцию одного или более целевых продуктов генов и одновременно повышают продукцию других.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0003] В соответствии с настоящим изобретением предложена одновременная модуляция экспрессии двух или более белков или последовательностей нуклеиновых кислот с применением одной рекомбинантной полинуклеиновой кислоты или конструкции РНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением одновременно осуществляет повышающую и понижающую регуляцию экспрессии двух или более белков или последовательностей нуклеиновых кислот, предоставляя последовательность нуклеиновой кислоты, кодирующую одну или множество малых интерферирующих РНК (миРНК), способных связываться со специфическими мишенями, и последовательность нуклеиновой кислоты, кодирующую один или множество белков для сверхэкспрессии. В некоторых

вариантах реализации настоящее изобретение пригодно для лечения заболеваний и расстройств, при которых определенный физиологический механизм (например, катаболизм) можно контролировать с помощью миРНК, в то же время параллельно можно активировать другой физиологический механизм (например, анаболизм) путем сверхэкспрессии терапевтического белка.

5

10

15

20

25

30

35

[0004] В соответствии с настоящим изобретением также предложена рекомбинантная полинуклеиновая кислота или конструкция РНК, которая содержит полинуклеиновую кислоту или РНК, которая кодирует или содержит: одну или более малых интерферирующих РНК (миРНК), которые способны связываться с одной или более целевыми РНК коронавируса, и/или одну или более РНК, кодирующих белок хозяина, например, элемент проникновения вируса или провоспалительный цитокин; и последовательность нуклеиновой кислоты, которая кодирует один или более белков для сверхэкспрессии, например, противовоспалительный цитокин хозяина или белокприманку, например, растворимый ангиотензинпревращающий фермент-2 (АСЕ2). В некоторых вариантах реализации целевая РНК коронавируса представляет собой мРНК, кодирующую один или более белков коронавируса, или некодирующую РНК. Таким образом, в соответствии с настоящим изобретением предложены варианты реализации, в которых одна полинуклеотидная молекула как ингибирует вирус, так и модулирует воспалительный ответ хозяина.

[0005] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (например, мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном. В некоторых вариантах реализации целевая РНК представляет собой мРНК.

[0006] В некоторых вариантах реализации (i) и (ii) содержатся в направлении от 5' к 3'. В некоторых вариантах реализации (i) и (ii) не содержатся в направлении от 5' к 3'. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (i) и (ii). В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину по меньшей мере

6 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 80 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 80 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 15 остатков нуклеиновой кислоты.

5

10

15

20

25

30

35

[0007] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты кольцевая. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты линейная. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой ДНК. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой РНК.

[0008] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кодирующую или содержащую поли(А)-хвост. В некоторых вариантах реализации поли(A)-хвост содержит 1 - 220 пар оснований поли(A) (SEQ ID NO: 191). В некоторых реализации рекомбинантная конструкция полинуклеиновой вариантах дополнительно содержит 5'-кэп. В некоторых вариантах реализации 5'-кэп включает аналог кэп, встраивающийся в прямой ориентации, CleanCap, кэп 0, кэп 1, кэп 2 или кэп из запертой нуклеиновой кислоты (ЗНК-кэп). В некоторых вариантах реализации 5'-кэп включает $m_2^{7,3'-O}G(5')ppp(5')G$, m7G, m7G(5')G, m7GpppG или m7GpppGm. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой дополнительно содержит промотор. В некоторых вариантах реализации промотор выбран из группы, состоящей из Т3, Т7, SP6, P60, Syn5 и KP34. В некоторых вариантах реализации промотор представляет собой промотор Т7. В некоторых вариантах реализации промотор Т7 расположен против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей миРНК. В некоторых вариантах реализации промотор T7 содержит последовательность, TAATACGACTCACTATA (SEQ ID NO: 25). В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность Козак.

[0009] В некоторых вариантах реализации миРНК включает 1 - 10 копий миРНК. В некоторых вариантах реализации миРНК включает смысловую цепь миРНК. В некоторых вариантах реализации миРНК включает антисмысловую цепь миРНК. В некоторых

вариантах реализации миРНК включает смысловую и антисмысловую цепи миРНК. В некоторых вариантах реализации миРНК не влияет на экспрессию интересующего гена. В некоторых вариантах реализации миРНК не ингибирует экспрессию интересующего гена. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способных связываться с целевой мРНК. В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с отличной целевой мРНК. В некоторых вариантах реализации каждая из по меньшей мере двух из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же или с отличной целевой мРНК.

5

10

15

20

25

30

35

[0010] В некоторых вариантах реализации целевая РНК представляет собой мРНК. В некоторых вариантах реализации целевая мРНК кодирует белок, выбранный из группы, состоящей из фактора некроза опухоли-альфа (TNF-альфа), интерлейкина, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2. В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из фактора некроза опухоли-альфа (TNF-альфа), интерлейкина, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2, N SARS CoV-2, супероксиддисмутазы-1 (SOD1) и киназы 2, подобной рецептору активина (ALK2).

[0011] В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), интерлейкина 6 (IL-6), интерлейкина 6R (IL-6R), интерлейкина 6R-альфа (IL-6R-альфа), интерлейкина 6R-бета (IL-6R-бета), ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2. В некоторых вариантах

реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), интерлейкина 6 (IL-6), интерлейкина 6R (IL-6R), интерлейкина 6R-альфа (IL-6R-альфа), интерлейкина 6R-бета (IL-6R-бета), ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2, N SARS CoV-2, супероксиддисмутазы-1 (SOD1) и киназы 2, подобной рецептору активина (ALK2).

5

10

15

20

25

30

[0012] В некоторых вариантах реализации целевая мРНК кодирует белок, выбранный из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17) и фактора некроза опухоли-альфа (TNF-альфа).

[0013] В некоторых вариантах реализации целевая РНК представляет собой целевую РНК коронавируса или целевую РНК клетки-хозяина коронавируса. В некоторых вариантах реализации целевая РНК коронавируса представляет собой мРНК, которая кодирует белок коронавируса. В некоторых вариантах реализации целевая РНК коронавируса представляет собой некодирующую РНК коронавируса. В некоторых вариантах реализации белок коронавируса представляет собой шиповидный белок (S), нуклеокапсидный белок (N), неструктурный белок (NSP) или белок ORF1ab (полипротеин PP1ab), например, белок NSP1 SARS CoV-2. В некоторых вариантах реализации целевая РНК коронавируса представляет собой РНК, кодирующую NSP12 и 13 SARS CoV-2. В некоторых вариантах реализации мишень коронавируса в клетке-хозяине представляет собой белок клетки-хозяина. В некоторых вариантах реализации клетка-хозяин представляет собой клетку человека. В некоторых вариантах реализации белок клетки-хозяина представляет собой АСЕ2, IL-6, IL-6R-альфа или IL-6R-бета.

[0014] В некоторых вариантах реализации экспрессия целевой РНК модулируется посредством миРНК, способной связываться с целевой РНК. В некоторых вариантах реализации экспрессия целевой РНК понижающим образом регулируется посредством миРНК, способной связываться с целевой РНК. В некоторых вариантах реализации экспрессия целевой РНК модулируется посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации экспрессия целевой РНК понижающим образом регулируется посредством миРНК, способной связываться с целевой РНК. В некоторых вариантах реализации экспрессия целевой РНК модулируется посредством миРНК, способной специфически связываться с целевой РНК. В некоторых вариантах реализации экспрессия целевой РНК понижающим образом регулируется посредством миРНК, способной специфически связываться с целевой РНК.

[0015] В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует отличный интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую секреторный белок. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую внутриклеточный белок. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую белок, находящийся внутри органеллы. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую мембранный белок. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации линкер включает пептидный линкер 2А или тРНК-линкер. В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета), интерферона альфа (IFNальфа), растворимого рецептора АСЕ2, интерлейкина 37 (IL-37) и интерлейкина 38 (IL-38). В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета) и растворимого рецептора АСЕ2. В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета), растворимого рецептора АСЕ2 и эритропоэтина (ЕРО). В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1) и интерлейкина 4.

5

10

15

20

25

[0016] В некоторых вариантах реализации интересующий ген кодирует белок хозяина коронавируса. В некоторых вариантах реализации белок хозяина, кодируемый интересующим геном, выбран из: IFN- α , например, интерферона альфа-n3, интерферона альфа-2a или интерферона альфа-2b, IFN- β , IFN- δ , IFN- ϵ , IFN- ϵ , IFN- ν , IFN- τ , IFN- ω , IFN- γ , IFN- λ , IL-37, IL-38 и растворимого рецептора ACE2.

5

10

15

20

25

30

35

[0017] В некоторых вариантах реализации экспрессия интересующего гена модулируется посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии интересующего гена посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты является кодон-оптимизированной. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты не является кодон-оптимизированной.

[0018] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая нацеливающий функционально связана с по меньшей мере одной последовательностью нуклеиновой кодирующей интересующий ген. В некоторых вариантах реализации нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS). В некоторых вариантах реализации нацеливающий мотив выбран из группы, состоящей из (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации сигнальный пептид выбран из группы, сигнального пептида, гетерологичного белку, состоящей ИЗ (a) кодируемому интересующим геном; (b) сигнального пептида, гетерологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты, при условии, что указанный белок не является оксидоредуктазой; (с) сигнального пептида, гомологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции сигнального пептида, причем указанная встречающаяся природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации у аминокислот 1 - 9 N-конца сигнального пептида средний балл гидрофобности выше 2. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой вектор, подходящий для генотерапии. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), присутствуют последовательно. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по мере одной последовательности нуклеиновой кислоты, интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В

5

10

15

20

25

30

некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, способная связываться с целевой РНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых аспектах интересующий ген экспрессируется без сплайсинга РНК.

5

10

15

20

25

30

35

[0019] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (например, мРНК); и (ii) мРНК, кодирующую интересующий ген; причем указанная целевая РНК отличается от мРНК, кодирующей интересующий ген. В некоторых вариантах реализации целевая РНК представляет собой мРНК.

[0020] В некоторых вариантах реализации (i) и (ii) содержатся в направлении от 5' к 3'. В некоторых вариантах реализации (i) и (ii) не содержатся в направлении от 5' к 3'. В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно кодирует или содержит линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (i) и (ii). В некоторых вариантах реализации линкер включает тРНК-линкер.

[0021] В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно содержит поли(A)-хвост. В некоторых вариантах реализации поли(A)-хвост содержит 1 - 220 пар оснований поли(A) (SEQ ID NO: 191). В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно содержит 5'-кэп. В некоторых вариантах реализации 5'-кэп включает аналог кэп, встраивающийся в прямой ориентации, CleanCap, кэп 0, кэп 1, кэп 2 или кэп из запертой нуклеиновой кислоты (ЗНК-кэп). В некоторых вариантах реализации 5'-кэп включает m₂^{7,3'-O}G(5')ppp(5')G, m7G, m7G(5')G, m7GpppG или m7GpppGm. В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно содержит последовательность Козак.

[0022] В некоторых вариантах реализации миРНК включает 1 - 10 копий миРНК. В некоторых вариантах реализации миРНК включает смысловую цепь миРНК. В некоторых вариантах реализации миРНК включает антисмысловую цепь миРНК. В некоторых вариантах реализации миРНК включает смысловую и антисмысловую цепи миРНК. В

некоторых вариантах реализации миРНК не влияет на экспрессию интересующего гена. В некоторых вариантах реализации миРНК не ингибирует экспрессию интересующего гена. В некоторых вариантах реализации рекомбинантная конструкция РНК содержит две или более последовательностей нуклеиновых кислот, содержащих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно содержит линкер. В некоторых вариантах реализации линкер соединяет каждую из двух или более последовательностей нуклеиновых кислот, содержащих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот содержит миРНК, способную связываться с одной и той же целевой мРНК. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот содержит миРНК, способную связываться с отличной целевой мРНК. В некоторых вариантах реализации по меньшей мере две из двух или более последовательностей нуклеиновых кислот кодируют или содержат миРНК, способную связываться с одной и той же или с отличной целевой мРНК. [0023] В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из фактора некроза опухоли-альфа (TNF-альфа), интерлейкина, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2. В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из фактора некроза опухоли-альфа (TNF-альфа), интерлейкина, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2, N SARS CoV-2, супероксиддисмутазы-1 (SOD1) и киназы 2, подобной рецептору активина (ALK2). [0024] В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), интерлейкина 6 (IL-6), интерлейкина 6R (IL-6R), интерлейкина 6R-альфа (IL-6R-альфа), интерлейкина 6R-бета (IL-6R-бета), ангиотензинпревращающего фермента-2

5

10

15

20

25

30

(ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2. В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), интерлейкина 6 (IL-6), интерлейкина 6R (IL-6R), интерлейкина 6R-альфа (IL-6R-альфа), интерлейкина 6R-бета (IL-6R-бета), ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S

SARS CoV-2, N SARS CoV-2, супероксиддисмутазы-1 (SOD1) и киназы 2, подобной рецептору активина (ALK2).

[0025] В некоторых вариантах реализации целевая мРНК выбрана из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17) и фактора некроза опухоли-альфа (TNF-альфа).

5

10

15

20

25

30

35

[0026] В некоторых вариантах реализации целевая РНК представляет собой целевую РНК коронавируса или целевую РНК клетки-хозяина коронавируса. В некоторых вариантах реализации целевая РНК коронавируса представляет собой мРНК, которая кодирует белок коронавируса. В некоторых вариантах реализации целевая РНК коронавируса представляет собой некодирующую РНК коронавируса. В некоторых вариантах реализации белок коронавируса представляет собой шиповидный белок (S), нуклеокапсидный белок (N), неструктурный белок (NSP) или белок ORF1ab (полипротеин PP1ab), например, белок NSP1 SARS CoV-2. В некоторых вариантах реализации целевая РНК коронавируса представляет собой РНК, кодирующую NSP12 и 13 SARS CoV-2. В некоторых вариантах реализации мишень коронавируса в клетке-хозяине представляет собой белок клетки-хозяина. В некоторых вариантах реализации клетка-хозяин представляет собой клетку человека. В некоторых вариантах реализации белок клетки-хозяина представляет собой АСЕ2, IL-6, IL-6R-альфа или IL-6R-бета.

[0027] В некоторых вариантах реализации экспрессия целевой мРНК модулируется посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации осуществляется понижающая регуляция экспрессии целевой мРНК посредством миРНК, способной связываться с целевой мРНК.

[0028] В некоторых вариантах реализации рекомбинантная конструкция РНК содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует отличный интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую секреторный белок. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую внутриклеточный белок. В некоторых вариантах реализации каждая из двух или более последовательность нуклеиновых кислот, кодирующую внутриклеточный белок. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующую белок, находящийся

внутри органеллы. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую мембранный белок. В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно содержит линкер или последовательность нуклеиновой кислоты, кодирующую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации линкер включает пептидный линкер 2А, тРНК-линкер или гибкий линкер. В некоторых вариантах реализации интересующий ген выбран ИЗ группы, состоящей инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета), интерферона альфа (IFN-альфа), растворимого рецептора ACE2, интерлейкина 37 (IL-37) и интерлейкина 38 (IL-38). В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета) и растворимого рецептора АСЕ2. В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета), растворимого рецептора ACE2 и эритропоэтина (EPO). В некоторых вариантах реализации интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1) и IL-4.

5

10

15

20

25

30

35

[0029] В некоторых вариантах реализации интересующий ген кодирует белок хозяина коронавируса. В некоторых вариантах реализации белок хозяина выбран из: IFN- α , например, интерферона альфа-n3, интерферона альфа-2a или интерферона альфа-2b, IFN- β , IFN- ϵ , IFN-

[0030] В некоторых вариантах реализации экспрессия интересующего гена модулируется посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии интересующего гена посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации рекомбинантная конструкция РНК является кодоноптимизированной. В некоторых вариантах реализации рекомбинантная конструкция РНК не является кодон-оптимизированной.

[0031] В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив. В некоторых вариантах реализации последовательность

нуклеиновой кислоты, кодирующая нацеливающий мотив, функционально связана с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ЕR), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS). В некоторых вариантах реализации нацеливающий мотив выбран из группы, состоящей из (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся последовательность необязательно природе аминокислот модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.

5

10

15

20

25

30

35

[0032] В некоторых вариантах реализации сигнальный пептид выбран из группы, состоящей ИЗ (a) сигнального пептида, гетерологичного белку, интересующим геном; (b) сигнального пептида, гетерологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты, при условии, что указанный белок не является оксидоредуктазой; (с) сигнального пептида, гомологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции сигнального пептида, причем указанная необязательно встречающаяся природе последовательность аминокислот

модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации у аминокислот 1 - 9 N-конца сигнального пептида средний балл гидрофобности выше 2.

5

10

15

20

25

30

35

[0033] В некоторых аспектах, представленных в данной заявке, предложена клетка, содержащая композицию любой рекомбинантной полинуклеиновой кислоты или конструкции РНК, описанных в данной заявке. В некоторых аспектах, представленных в данной заявке, предложена фармацевтическая композиция, содержащая композицию любой рекомбинантной полинуклеиновой кислоты или конструкции РНК, описанных в данной заявке, и фармацевтически приемлемое вспомогательное вещество. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния у нуждающегося в этом субъекта, включающий введение указанному субъекту фармацевтической композиции, описанной в данной заявке. В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза. В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни (БМПД), остеоартрита, псориаза, межпозвоночных дисков прогрессирующей оссифицирующей фибродисплазии (ПОФ) и бокового амиотрофического склероза (БАС). В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита, псориаза, прогрессирующей оссифицирующей фибродисплазии (ПОФ), бокового амиотрофического склероза (БАС) и коронавирусной инфекции, или заболевания или состояния, возникшего в результате коронавирусной инфекции или связанное с ней. В некоторых вариантах реализации субъект представляет собой человека.

[0034] В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния у нуждающегося в этом субъекта, включающий введение указанному субъекту фармацевтической композиции, описанной в данной заявке. В некоторых вариантах реализации заболевание или состояние у субъекта представляет собой коронавирусную инфекцию или заболевание или состояние, возникшее в результате коронавирусной инфекции или связанное с ней. В некоторых вариантах реализации коронавирус представляет собой SARS-CoV, MERS-CoV или SARS-CoV-2. В некоторых вариантах реализации заболевание или расстройство представляет собой SARS, MERS или COVID-19.

[0035] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной экспрессии миРНК и мРНК с одного транскрипта РНК в клетке, включающий введение в клетку композиции с любой рекомбинантной полинуклеиновой

кислотой или конструкцией РНК, описанными в данной заявке. В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном, и причем экспрессия целевой мРНК и интересующего гена модулируется одновременно.

[0036] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном, и при этом осуществляется одновременная понижающая регуляция экспрессии целевой мРНК и повышающая регуляция экспрессии интересующего гена. В некоторых вариантах реализации осуществляется понижающая регуляция экспрессии целевой мРНК посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии интересующего гена посредством экспрессии мРНК или белка, кодируемых интересующим геном.

[0037] В некоторых аспектах, представленных в данной заявке, предложен способ получения конструкции РНК, содержащей малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК), и мРНК, кодирующую интересующий ген, причем целевая мРНК отличается от мРНК, кодирующей интересующий ген, указанный способ включает: (а) предоставление для реакции транскрипции *in vitro*: (i) конструкции полинуклеиновой кислоты, содержащей промотор, по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с целевой мРНК, по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, и последовательность нуклеиновой кислоты, кодирующую поли(А)-хвост; (ii) РНК-полимеразы; и (iii) смеси нуклеозидтрифосфатов (NTP); и (b) выделение и очистку транскрибированных молекул

РНК из реакционной смеси для транскрипции *in vitro*, таким образом получая конструкцию РНК. В некоторых вариантах реализации РНК-полимераза выбрана из группы, состоящей из РНК-полимеразы Т3, РНК-полимеразы Т7, РНК-полимеразы SP6, РНК-полимеразы P60, РНК-полимеразы Syn5 и РНК-полимеразы KP34. В некоторых вариантах реализации РНКполимераза представляет собой РНК-полимеразу Т7. В некоторых вариантах реализации смесь NTP содержит немодифицированные NTP. В некоторых вариантах реализации смесь содержит модифицированные NTP. В некоторых NTP вариантах реализации N^1 -метилпсевдоуридин, N^1 модифицированные **NTP** включают псевдоуридин, N^1 -метоксиметилпсевдоуридин, N^1 -пропилпсевдоуридин, этилпсевдоуридин, 2тиоуридин, 4-тиоуридин, 5-метоксиуридин, 5-метилуридин, 5-карбоксиметиловый эфир уридина, 5-формилуридин, 5-карбоксиуридин, 5-гидроксиуридин, 5-бромуридин, йодуридин, 5,6-дигидроуридин, 6-азауридин, тиеноуридин, 3-метилуридин, карбоксиметилпсевдоуридин, 4-тио-1-метилпсевдоуридин, 2-тио-1-метилпсевдоуридин, дигидроуридин, дигидропсевдоуридин, 2-метоксиуридин, 2-метокси-4-тиоуридин, метоксипсевдоуридин, 4-метокси-2-тиопсевдоуридин, 5-метилцитидин, 5метоксицитидин, 5-гидроксиметилцитидин, 5-формилцитидин, 5-карбоксицитидин, 5-5-бромцитидин, 2-тиоцитидин, гидроксицитидин, 5-йодцитидин, N^4 -ацетилцитидин, псевдоизоцитидин, 3-метилцитидин, 5-формилцитидин, N^4 4метилцитидин, 5-гидроксиметилцитидин, 1-метилпсевдоизоцитидин, метоксипсевдоизоцитидин и 4-метокси-1-метилпсевдоизоцитидин, N^1 -метиладенозин, N^6 - N^6, N^6 - N^6 -метил-2-аминоаденозин, N^6 -изопентениладенозин, метиладенозин, диметиладенозин, 7-метиладенин, 2-метилтиоаденин и 2-метоксиаденин.

5

10

15

20

25

30

35

миРНК.

[0038] В некоторых вариантах реализации этап (а) дополнительно включает предоставление кэпирующего фермента. В некоторых вариантах реализации выделение и очистка транскрибированных РНК включают очистку на колонке.

[0039] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 8 (IL-8); и (ii) мРНК, кодирующую инсулиноподобный фактор роста 1 (IGF-1). В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3

[0040] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 1-бета (IL-1-бета); и (ii) мРНК, кодирующую инсулиноподобный фактор

роста 1 (IGF-1). В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК.

[0041] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 17 (IL-17); и (ii) мРНК, кодирующую интерлейкин 4 (IL-4). В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК.

5

10

15

20

25

30

35

[0042] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) фактора некроза опухоли-альфа (TNF-альфа); и (ii) мРНК, кодирующую интерлейкин 4 (IL-4). В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК.

[0043] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) фактора некроза опухоли-альфа (TNF-альфа), и малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 17 (IL-17); и (ii) мРНК, кодирующую интерлейкин 4 (IL-4). В сходных аспектах композиция содержит или кодирует по меньшей мере 2, 3, 4, 5 или 6 миРНК.

[0044] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 1 - 8.

[0045] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6; и (ii) мРНК, кодирующую интерферон бета (IFN-бета). В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная

конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 29 или 30 (Соединение В1 или В2).

5

10

15

20

25

30

35

[0046] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 31 (Соединение В3).

[0047] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 32 (Соединение В4).

[0048] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах

композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6R-бета. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 33 (Соединение В5).

5

10

15

20

25

30

35

[0049] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 34 или 35 (Соединение В6 или В7).

[0050] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, например, композиция, содержащая Соединение В8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2, или обоих. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 36.

5

10

15

20

25

30

35

[0051] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 37 или 39 (Соединение В9 или В11).

[0052] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 38 (Соединение В10).

[0053] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор ACE2. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах композиция

содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS-CoV или обоими. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS рекомбинантная CoV-2 MERS-CoV. В и/или сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 40, 41 и 42 (Соединения B12, B13 и B14).

5

10

15

20

25

30

35

[0054] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6, по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2, и по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFNбета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид IFN-бета представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 43, 44 и 45 (Соединения В15, В16 и В17).

[0055] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну малую интерферирующую РНК, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную

связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 46 (Соединение В18). В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 190 (Соединение В18).

5

10

15

20

25

30

35

[0056] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 47 (Соединение В19).

[0057] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6; и (ii) мРНК, кодирующую интерферон бета (IFN-бета). В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 29 или 30.

[0058] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну

миРНК, способную связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 31.

5

10

15

20

25

30

35

[0059] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 1 миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 32.

[0060] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 1 миРНК, нацеленную на мРНК IL-6R-бета. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 33.

[0061] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах РНК рекомбинантная конструкция содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 34 или 35.

5

10

15

20

25

30

35

[0062] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, например, композиция, содержащая Соединение В8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 или обоими. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 36. [0063] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFNбета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК

содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 37 или 39.

5

10

15

20

25

30

35

[0064] B некоторых аспектах, представленных в данной заявке, предложена рекомбинантная конструкция РНК, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или растворимый рецептор АСЕ2. В дополнительно кодирует сходных рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 38.

[0065] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию PHK, содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор ACE2. В сходных аспектах рекомбинантная конструкция PHK содержит 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах рекомбинантная конструкция PHK содержит 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS или обоими. В некоторых аспектах такая композиция, включая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для

модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 и/или MERS. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в любой из SEQ ID NO: 40, 41 и 42.

5

10

15

20

25

30

35

[0066] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6, по меньшей мере одну миРНК, способную связываться с мРНК ACE2, и по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор ACE2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид IFN-бета представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в любой из SEQ ID NO: 43, 44 и 45.

[0067] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну малую интерферирующую РНК, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 46. [0068] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах рекомбинантная конструкция РНК содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах рекомбинантная

конструкция РНК содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах рекомбинантная конструкция РНК содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК.

5

10

15

20

25

30

35

[0069] B сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 47. [0070] В некоторых аспектах, в соответствии с настоящим изобретением предложена рекомбинантную конструкцию РНК, композиция, содержащая содержащую последовательность нуклеиновой кислоты, кодируемую последовательностью, выбранной из группы, состоящей из последовательностей SEQ ID NO: 29 - 47.

[0071] В некоторых вариантах реализации конструкция полинуклеиновой кислоты в соответствии с настоящим изобретением содержит: (і) миРНК, которая нацелена на РНК, выбранную из: мРНК IL-8, мРНК IL-1-бета, мРНК IL-17, мРНК TNF-альфа, РНК ORF1ab SARS CoV-2 (полипротеин PP1ab, например, в некодирующей области или когда он кодирует белок, который выбран из: неструктурного белка SARS CoV-2 (NSP), Nsp1, Nsp3 (Nsp3b, Nsp3c, PLpro и Nsp3e), комплекса Nsp7 Nsp8, Nsp9-Nsp10 и Nsp14-Nsp16, 3CLpro, Е-канала (белка E), ORF7a, C-концевого связывающего РНК домена (CRBD), N-концевого связывающего РНК домена (NRBD), геликазы и RdRp), мРНК шиповидного белка (S) SARS CoV-2, мРНК нуклеокапсидного белка (N) SARS CoV-2, мРНК фактора некроза опухоли-альфа (TNF-альфа), мРНК интерлейкина (включая, но не ограничиваясь интерлейкином (например, IL-1-альфа, IL-1-бета), интерлейкином 6 интерлейкином 6R (IL-6R), интерлейкином 6R альфа (IL-6R-альфа), интерлейкином 6R бета (IL-6R-бета), интерлейкином 18 (IL-18), интерлейкином 36 альфа (IL-36-альфа), 36 бета (IL-36-бета), интерлейкином 36 гамма (IL-36-гамма), интерлейкином интерлейкином 33 (IL-33)), мРНК ангиотензинпревращающего фермента-2 (ACE2), мРНК трансмембранной сериновой протеазы 2 (TMPRSS2) и РНК, кодирующей NSP12 и 13; и (ii) по меньшей мере один интересующий ген, который кодирует, или по меньшей мере одну мРНК, которая кодирует белок, сверхэкспрессию которого нужно осуществить, причем указанный белок выбран из: IGF-1, IL-4, IGF-1 (включая его производные, описанные в других местах в данной заявке), карбоксипептидаз (например, ACE, ACE2, CNDP1, CPA1, CPA2, CPA4, CPA5, CPA6, CPB1, CPB2, CPE, CPN1, CPQ, CPXM1, CPZ, SCPEP1); цитокинов (например, BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8A, BMP8B, C1QTNF4, CCL1, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL2, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3,

CCL3L1, CCL3L3, CCL4, CCL4L, CCL4L2, CCL5, CCL7, CCL8, CD40LG, CER1, CKLF, CLCF1, CNTF, CSF1, CSF2, CSF3, CTF1, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, CXCL2, CXCL3, CXCL5, CXCL8, CXCL9, DKK1, DKK2, DKK3, DKK4, EDA, EBI3, FAM3B, FAM3C, FASLG, FLT3LG, GDF1, GDF10, GDF11, GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GPI, GREM1, GREM2, GRN, IFNA1, IFNA13, IFNA10, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, IL10, IL11, IL12A, IL12B, IL13, IL15, IL16, IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL19, IL1A, IL1B, IL1F10, IL2, IL20, IL21, IL22, IL23A, IL24, IL25, IL26, IL27, IL3, IL31, IL32, IL33, IL34, IL36A, IL36B, IL36G, IL36RN, IL37, IL4, IL5, IL6, IL7, IL9, LEFTY1, LEFTY2, LIF, LTA, MIF, MSTN, NAMPT, NODAL, OSM, PF4, PF4V1, SCGB3A1, SECTM1, SLURP1, SPP1, THNSL2, THPO, TNF, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TSLP, VSTM1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1 и XCL2); внеклеточных лигандов и транспортеров (например, APCS, CHI3L1, CHI3L2, CLEC3B, DMBT1, DMKN, EDDM3A, EDDM3B, EFNA4, EMC10, ENAM, EPYC, ERVH48-1, F13B, FCN1, FCN2, GLDN, GPLD1, HEG1, ITFG1, KAZALD1, KCP, LACRT, LEG1, METRN, NOTCH2NL, NPNT, OLFM1, OLFML3, PRB2, PSAP, PSAPL1, PSG1, PSG6, PSG9, PTX3, PTX4, RBP4, RNASE10, RNASE12, RNASE13, RNASE9, RSPRY1, RTBDN, S100A12, S100A13, S100A7, S100A8, SAA2, SAA4, SCG1, SCG2, SCG3, SCGB1C1, SCGB1C2, SCGB1D1, SCGB1D2, SCGB1D4, SCGB2B2, SCGB3A2, SCGN, SCRG1, SCUBE1, SCUBE2, SCUBE3, SDCBP, SELENOP, SFTA2, SFTA3, SFTPA1, SFTPA2, SFTPC, SFTPD, SHBG, SLURP2, SMOC1, SMOC2, SMR3A, SMR3B, SNCA, SPATA20, SPATA6, SOGA1, SPARC, SPARCL1, SPATA20, SPATA6, SRPX2, SSC4D, STX1A, SUSD4, SVBP, TCN1, TCN2, TCTN1, TF, TULP3, TFF2, TFF3, THSD7A, TINAG, TINAGL1, TMEFF2, TMEM25, VWC2L); белков внеклеточного матрикса (например, ABI3BP, AGRN, CCBE1, CHL1, COL15A1, COL19A1, COLEC11, DMBT1, DRAXIN, EDIL3, ELN, EMID1, EMILIN1, EMILIN2, EMILIN3, EPDR1, FBLN1, FBLN2, FBLN5, FLRT1, FLRT2, FLRT3, FREM1, GLDN, IBSP, KERA, KIAA0100, KIRREL3, KRT10, LAMB2, MGP, RPTN, SBSPON, SDC1, SDC4, SEMA3A, SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G, SIGLEC1, SIGLEC10, SIGLEC6, SLIT1, SLIT2, SLIT3, SLITRK1, SNED1, SNORC, SPACA3, SPACA7, SPON1, SPON2, STATH, SVEP1, TECTA, TECTB, TNC, TNN, TNR, TNXB); глюкозидаз (AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, CEMIP, CHIA, CHIT1, FUCA2, GLB1L, GLB1L2, HPSE, HYAL1, HYAL3, KL, LYG1, LYG2, LYZL1, LYZL2, MAN2B2, SMPD1, SMPDL3B, SPACA5, SPACA5B);

5

10

15

20

25

30

гликозилтрансфераз (например, ART5, B4GALT1, EXTL2, GALNT1, GALNT2, GLT1D1, MGAT4A, ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST6GAL1, XYLT1); факторов роста (например, AMH, ARTN, BTC, CDNF, CFC1, CFC1B, CHRDL1, CHRDL2, CLEC11A, CNMD, EFEMP1, EGF, EGFL6, EGFL7, EGFL8, EPGN, EREG, EYS, FGF1, FGF10, FGF16, FGF17, FGF18, FGF19, FGF2, FGF20, FGF21, FGF22, FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FRZB, GDNF, GFER, GKN1, HBEGF, HGF, IGF-1, IGF2, INHA, INHBA, INHBB, INHBC, INHBE, INS, KITLG, MANF, MDK, MIA, NGF, NOV, NRG1, NRG2, NRG3, NRG4, NRTN, NTF3, NTF4, OGN, PDGFA, PDGFB, PDGFC, PDGFD, PGF, PROK1, PSPN, PTN, SDF1, SDF2, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5, TDGF1, TFF1, TGFA, TGFB1, TGFB2, TGFB3, THBS4, TIMP1, VEGFA, VEGFB, VEGFC, VEGFD, WISP3); белков, связывающих факторы роста (например, CHRD, CYR61, ESM1, FGFBP1, FGFBP2, FGFBP3, HTRA1, GHBP, IGFALS, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7, LTBP1, LTBP2, LTBP3, LTBP4, SOSTDC1, NOG, TWSG1 и WIF1); белков, связывающих гепарин (например, ADA2, ADAMTSL5, ANGPTL3, APOB, APOE, APOH, COL5A1, COMP, CTGF, FBLN7, FN1, FSTL1, HRG, LAMC2, LIPC, LIPG, LIPH, LIPI, LPL, PCOLCE2, POSTN, RSPO1, RSPO2, RSPO3, RSPO4, SAA1, SLIT2, SOST, THBS1, VTN); гормонов (например, ADCYAP1, ADIPOQ, ADM, ADM2, ANGPTL8, APELA, APLN, AVP, C1QTNF12, C1QTNF9, CALCA, CALCB, CCK, CGA, CGB1, CGB2, CGB3, CGB5, CGB8, COPA, CORT, CRH, CSH1, CSH2, CSHL1, ENHO, EPO, ERFE, FBN1, FNDC5, FSHB, GAL, GAST, GCG, GH, GH1, GH2, GHRH, GHRL, GIP, GNRH1, GNRH2, GPHA2, GPHB5, IAPP, INS, INSL3, INSL4, INSL5, INSL6, LHB, METRNL, MLN, NPPA, NPPB, NPPC, OSTN, OXT, PMCH, PPY, PRL, PRLH, PTH, PTHLH, PYY, RETN, RETNLB, RLN1, RLN2, RLN3, SCT, SPX, SST, STC1, STC2, TG, TOR2A, TRH, TSHB, TTR, UCN, UCN2, UCN3, UTS2, UTS2B и VIP); гидролаз (например, AADACL2, ABHD15, ACP7, ACPP, ADA2, ADAMTSL1, AOAH, ARSF, ARSI, ARSJ, ARSK, BTD, CHI3L2, ENPP1, ENPP2, ENPP3, ENPP5, ENTPD5, ENTPD6, GBP1, GGH, GPLD1, HPSE, LIPC, LIPF, LIPG, LIPH, LIPI, LIPK, LIPM, LIPN, LPL, PGLYRP2, PLA1A, PLA2G10, PLA2G12A, PLA2G1B, PLA2G2A, PLA2G2D, PLA2G2E, PLA2G2F, PLA2G3, PLA2G5, PLA2G7, PNLIP, PNLIPRP2, PNLIPRP3, PON1, PON3, PPT1, SMPDL3A, THEM6, THSD1 и THSD4); иммуноглобулинов (например, IGSF10, IGKV1-12, IGKV1-16, IGKV1-33, IGKV1-6, IGKV1D-12, IGKV1D-39, IGKV1D-8, IGKV2-30, IGKV2D-30, IGKV3-11, IGKV3D-20, IGKV5-2, IGLC1, IGLC2, IGLC3); изомераз (например, NAXE, PPIA, PTGDS); киназ (например, ADCK1, ADPGK, FAM20C, ICOS, PKDCC); лиаз (например, PM20D1, PAM, СА6); ингибиторов металлоферментов (например, FETUB, SPOCK3, TIMP2, TIMP3, TIMP4, WFIKKN1, WFIKKN2); металлопротеаз (например, ADAM12, ADAM28, ADAM9, ADAMDEC1, ADAMTS1, ADAMTS10, ADAMTS12, ADAMTS13, ADAMTS14,

5

10

15

20

25

30

ADAMTS15, ADAMTS16, ADAMTS17, ADAMTS18, ADAMTS19, ADAMTS2, ADAMTS20, ADAMTS3, ADAMTS4, ADAMTS5, ADAMTS6, ADAMTS7, ADAMTS8, ADAMTS9, CLCA1, CLCA2, CLCA4, IDE, MEP1B, MMEL1, MMP1, MMP10, MMP11, MMP12, MMP13, MMP16, MMP17, MMP19, MMP2, MMP20, MMP21, MMP24, MMP25, MMP26, MMP28, MMP3, 5 MMP7, MMP8, MMP9, PAPPA, PAPPA2, TLL1, TLL2); белков молока (например, CSN1S1, CSN2, CSN3, LALBA); нейроактивных белков (например, CARTPT, NMS, NMU, NPB, NPFF, NPS, NPVF, NPW, NPY, PCSK1N, PDYN, PENK, PNOC, POMC, PROK2, PTH2, PYY2, PYY3, QRFP, TAC1 и TAC3); протеаз (например, ADAMTS6, C1R, C1RL, C2, CASP4, CELA1, CELA2A, CELA2B, CFB, CFD, CFI, CMA1, CORIN, CTRB1, CTRB2, CTSB, CTSD, 10 DHH, F10, F11, F12, F2, F3, F7, F8, F9, FAP, FURIN, GZMA, GZMK, GZMM, HABP2, HGFAC, HTRA3, HTRA4, IHH, KLK10, KLK11, KLK12, KLK13, KLK14, KLK15, KLK3, KLK4, KLK5, KLK6, KLK7, KLK8, KLK9, KLKB1, MASP1, MASP2, MST1L, NAPSA, OVCH1, OVCH2, PCSK2, PCSK5, PCSK6, PCSK9, PGA3, PGA4, PGA5, PGC, PLAT, PLAU, PLG, PROC, PRSS1, PRSS12, PRSS2, PRSS22, PRSS23, PRSS27, PRSS29P, PRSS3, PRSS33, 15 PRSS36, PRSS38, PRSS3P2, PRSS42, PRSS44, PRSS47, PRSS48, PRSS53, PRSS57, PRSS58, PRSS8, PRTN3, RELN, REN, TMPRSS11D, TMPRSS11E, TMPRSS2, TPSAB1, TPSB2, TPSD1); ингибиторов протеаз (например, A2M, A2ML1, AMBP, ANOS1, COL28A1, COL6A3, COL7A1, CPAMD8, CST1, CST2, CST3, CST4, CST5, CST6, CST7, CST8, CST9, CST9L, CST9LP1, CSTL1, EPPIN, GPC3, HMSD, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, 20 KNG1, OPRPN, OVOS1, OVOS2, PAPLN, PI15, PI16, PI3, PZP, R3HDML, SERPINA1, SERPINA10, SERPINA11, SERPINA12, SERPINA13P, SERPINA3, SERPINA4, SERPINA5, SERPINA7, SERPINA9, SERPINB2, SERPINB5, SERPINC1, SERPINE1, SERPINE2, SERPINE3, SERPINF2, SERPING1, SERPINI1, SERPINI2, SPINK1, SPINK13, SPINK14, SPINK2, SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, SPINK9, SPINT1, SPINT3, SPINT4, SPOCK1, SPOCK2, SPP2, SSPO, TFPI, TFPI2, WFDC1, WFDC10A, WFDC13, WFDC2, 25 WFDC3, WFDC5, WFDC6, WFDC8); протеинфосфатаз (например, ACP7, ACPP, PTEN, PTPRZ1); эстераз (например, BCHE, CEL, CES4A, CES5A, NOTUM, SIAE); трансфераз (например, METTL24, FKRP, CHSY1, CHST9, B3GAT1); вазоактивных белков (например, AGGF1, AGT, ANGPT1, ANGPT2, ANGPTL4, ANGPTL6, EDN1, EDN2, EDN3, NTS), 30 интерферона I типа (например, IFN-α, включая, но не ограничиваясь интерфероном альфаn3, интерфероном альфа-2a и интерфероном альфа-2b, IFN-β, IFN-ε, IFN-κ, IFN-ν, IFN-τ и IFN-ω), интерферона II типа (например, IFN-γ), интерферона III типа (например, IFN-λ), интерлейкина, например, IL-37, IL-38, и растворимого рецептора ACE2.

[0072] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую: (i) по

меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем указанная целевая РНК отличается от мРНК, кодируемой интересующим В некоторых аспектах рекомбинантная геном. конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, каждая из которых кодирует или содержит миРНК, способную связываться с целевой РНК, причем соответствующие целевые РНК одинаковы, отличны или представляют собой комбинацию одинаковых и отличных РНК. В некоторых вариантах реализации целевая РНК представляет собой мРНК. В некоторых вариантах реализации целевая РНК представляет собой некодирующую РНК. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), присутствуют последовательно. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (іі). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты,

5

10

15

20

25

30

кодирующей интересующий ген (іі). В некоторых аспектах миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых аспектах интересующий ген экспрессируется без сплайсинга РНК. В некоторых аспектах целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей ИЗ фактора некроза опухоли-альфа (TNF-альфа), интерлейкина, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2. В некоторых аспектах целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), интерлейкина 6 (IL-6), интерлейкина 6R (IL-6R), интерлейкина 6R-альфа (IL-6R-альфа), интерлейкина 6R-бета (IL-6R-бета), ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2. В некоторых аспектах целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17) и фактора некроза опухоли-альфа (TNF-альфа). В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген или отличный интересующий ген. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, каждая из которых кодирует интересующий ген, причем соответствующие интересующие гены одинаковы, отличны или представляют собой комбинацию одинаковых и отличных генов. В некоторых аспектах интересующий ген содержит последовательность нуклеиновой кислоты, кодирующую белок, выбранный из группы, состоящей из секреторного белка, внутриклеточного белка, белка, находящегося внутри органеллы, и мембранного белка. В некоторых аспектах интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1) и интерлейкина 4 (IL-4). В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив, функционально связанный с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген, причем нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS),

5

10

15

20

25

30

сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS). В некоторых аспектах, нацеливающий мотив выбран из группы, состоящей из: (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой содержащую кислоты, кодирующую или линкер. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по мере одну последовательность нуклеиновой кислоты, интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и/или (с) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых аспектах линкер включает тРНК-линкер,

5

10

15

20

25

30

пептидный линкер 2А или гибкий линкер. В некоторых аспектах длина линкера составляет меньшей мере 6 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 50 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 80 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 50 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 80 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 15 остатков нуклеиновой кислоты. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 1 - 8. В некоторых аспектах композиция содержит рекомбинантную конструкцию РНК, содержащую: (і) малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и (ii) мРНК, кодирующую интересующий ген; причем указанная целевая РНК отличается от мРНК, кодирующей интересующий ген. В некоторых аспектах композиция предназначена для применения для одновременной модуляции экспрессии двух или более генов в клетке. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно. В некоторых аспектах композиция предназначена для применения для одновременной модуляции экспрессии двух или более генов в клетке. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (іі), присутствуют последовательно. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную

5

10

15

20

25

30

связываться с целевой РНК (i), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых аспектах интересующий ген экспрессируется без сплайсинга РНК.

5

10

15

20

25

30

35

[0073] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения вирусного заболевания или состояния у субъекта, указанная конструкция содержит: (і) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и (іі) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую мРНК интересующего гена; причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном. В некоторых аспектах миРНК не влияет на экспрессию и/или не способна связываться с мРНК В рекомбинантная интересующего гена. некоторых аспектах конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем по меньшей мере две последовательности нуклеиновых кислот кодируют или содержат миРНК, способную связываться с одной и той же целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты кодирует или содержит миРНК, способную связываться с отличной целевой РНК. В некоторых вариантах реализации целевая РНК представляет собой мРНК. В некоторых вариантах реализации целевая РНК представляет собой некодирующую РНК. В некоторых вариантах реализации каждая из целевых РНК одинакова, или они отличны.

В некоторых вариантах реализации целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: интерлейкина, ангиотензинпревращающего фермента-2 (ACE2); ORF1ab SARS CoV-2; S SARS CoV-2 и N SARS CoV-2. В некоторых вариантах реализации интерлейкин выбран из группы, состоящей из: IL-1-альфа, IL-1-бета, IL-6, IL-6R, IL-6R-альфа, интерлейкина IL-6R-бета, IL-18, IL-36-альфа, IL-36-бета; IL-36гамма и IL-33. В некоторых вариантах реализации целевая мРНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: IL-6, IL-6R, IL-6R-альфа, IL-6R-бета, ангиотензинпревращающего фермента-2 (ACE2); ORF1ab SARS CoV-2; S SARS CoV-2 и N SARS CoV-2. В некоторых вариантах реализации композиция содержит в (ii) две или более последовательностей нуклеиновых кислот, каждая из которых кодирует интересующий ген. В некоторых вариантах реализации каждая мРНК одинакова или отлична. В некоторых вариантах реализации по меньшей мере две мРНК одинаковы и по меньшей мере одна мРНК отлична от указанных по меньшей мере двух одинаковых мРНК. В некоторых вариантах реализации интересующий ген из (ii) выбран из группы генов, кодирующих: IFN-альфа-n3, IFN-альфа-2a, IFN-альфа-2b, IFN-бета-1a, IFN-бета-1b, растворимый рецептор ACE2, IL-37 и IL-38. В некоторых вариантах реализации интересующий ген из (ii) выбран из группы генов, кодирующих: IFN-бета и растворимый рецептор АСЕ2. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив, функционально связанный с по меньшей нуклеиновой мере одной последовательностью кислоты, кодирующей мРНК интересующего гена, причем указанный нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ЕR), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS). В некоторых вариантах реализации нацеливающий мотив выбран из группы, состоящей из: (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, кодируемому

5

10

15

20

25

30

интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся последовательность аминокислот необязательно В природе модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак. В некоторых рекомбинантная конструкция полинуклеиновой вариантах реализации дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и/или (с) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации линкер включает тРНК-линкер, пептидный линкер 2А или гибкий линкер. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину по меньшей мере 6 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 50 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, длину до 80 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 50 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 80 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно

5

10

15

20

25

30

15 остатков нуклеиновой кислоты. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой вектор, подходящий для генотерапии. В некоторых вариантах реализации рекомбинантная полинуклеиновой содержит последовательность кислоты нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 29 - 47. В некоторых аспектах композиция содержит рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и (іі) мРНК, кодирующую интересующий ген; причем указанная целевая РНК отличается от мРНК, кодирующей интересующий ген. В некоторых вариантах реализации композиция предназначена для применения для одновременной модуляции экспрессии двух или более генов в клетке. В некоторых вариантах реализации композиция присутствует в количестве, достаточном для лечения или предотвращения вирусного заболевания или состояния у субъекта. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), присутствуют последовательно. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по меньшей одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК. В некоторых аспектах миРНК,

5

10

15

20

25

30

способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых аспектах интересующий ген экспрессируется без сплайсинга РНК.

5

10

15

20

25

30

35

[0074] В некоторых аспектах, представленных в данной заявке, предложена композиция, рекомбинантную конструкцию полинуклеиновой кислоты, указанная конструкция содержит: (і) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и (іі) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую мРНК интересующего гена; причем целевая РНК из (і) отлична от мРНК из (іі). В некоторых вариантах реализации миРНК не влияет на экспрессию и/или не способна связываться с мРНК интересующего гена. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем по меньшей мере две последовательности нуклеиновых кислот кодируют или содержат миРНК, способную связываться с одной и той же целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты кодирует или содержит миРНК, способную связываться с отличной целевой РНК. В некоторых вариантах реализации целевая РНК представляет собой мРНК. В некоторых вариантах реализации целевая РНК представляет собой некодирующую РНК. В некоторых вариантах реализации каждая из целевых РНК одинакова, или они отличны. В некоторых вариантах реализации мишень представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: мРНК IL-8, мРНК IL-1-бета, мРНК IL-17, мРНК TNF-альфа, РНК ORF1ab SARS CoV-2 (полипротеин PP1ab, например, в некодирующей области или когда он кодирует белок, который выбран из: неструктурного белка SARS CoV-2 (NSP), Nsp1, Nsp3 (Nsp3b, Nsp3c, PLpro и Nsp3e), комплекса Nsp7 Nsp8, Nsp9-Nsp10 и Nsp14-Nsp16, 3CLpro, Е-канала (белка Е), ORF7a, С-концевого связывающего РНК домена (CRBD), Nконцевого связывающего РНК домена (NRBD), геликазы и RdRp), мРНК шиповидного белка (S) SARS CoV-2, мРНК нуклеокапсидного белка (N) SARS CoV-2, мРНК фактора некроза опухоли-альфа (TNF-альфа), мРНК интерлейкина (включая, но не ограничиваясь интерлейкином 1 (например, IL-1-альфа, IL-1-бета), интерлейкином 6 (IL-6),

интерлейкином 6R (IL-6R), интерлейкином 6R альфа (IL-6R-альфа), интерлейкином 6R бета (IL-6R-бета), интерлейкином 18 (IL-18), интерлейкином 36 альфа (IL-36-альфа), интерлейкином 36 бета (IL-36-бета), интерлейкином 36 гамма (IL-36-гамма), интерлейкином 33 (IL-33)), мРНК ангиотензинпревращающего фермента-2 (ACE2), мРНК трансмембранной сериновой протеазы 2 (TMPRSS2) и РНК, кодирующей NSP12 и 13. В некоторых вариантах реализации композиция содержит в (ii) две или более последовательностей нуклеиновых кислот, каждая из которых кодирует мРНК интересующего гена. В некоторых вариантах реализации каждая мРНК одинакова или отлична. В некоторых вариантах реализации по меньшей мере две мРНК одинаковы и по меньшей мере одна мРНК отлична от указанных по меньшей мере двух одинаковых мРНК. В некоторых вариантах реализации интересующий ген из (іі) выбран из группы генов, кодирующих белок, выбранный из: IGF-1, IL-4, IGF-1 (включая его производные, описанные в других местах в данной заявке), карбоксипептидаз (например, АСЕ, АСЕ2, CNDP1, CPA1, CPA2, CPA4, CPA5, CPA6, CPB1, CPB2, CPE, CPN1, CPQ, CPXM1, CPZ, SCPEP1); цитокинов (например, BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8A, BMP8B, C1QTNF4, CCL1, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL2, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L, CCL4L2, CCL5, CCL7, CCL8, CD40LG, CER1, CKLF, CLCF1, CNTF, CSF1, CSF2, CSF3, CTF1, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, CXCL2, CXCL3, CXCL5, CXCL8, CXCL9, DKK1, DKK2, DKK3, DKK4, EDA, EBI3, FAM3B, FAM3C, FASLG, FLT3LG, GDF1, GDF10, GDF11, GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GPI, GREM1, GREM2, GRN, IFNA1, IFNA13, IFNA10, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, IL10, IL11, IL12A, IL12B, IL13, IL15, IL16, IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL19, IL1A, IL1B, IL1F10, IL2, IL20, IL21, IL22, IL23A, IL24, IL25, IL26, IL27, IL3, IL31, IL32, IL33, IL34, IL36A, IL36B, IL36G, IL36RN, IL37, IL4, IL5, IL6, IL7, IL9, LEFTY1, LEFTY2, LIF, LTA, MIF, MSTN, NAMPT, NODAL, OSM, PF4, PF4V1, SCGB3A1, SECTM1, SLURP1, SPP1, THNSL2, THPO, TNF, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TSLP, VSTM1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1 и XCL2); внеклеточных лигандов и транспортеров (например, APCS, CHI3L1, CHI3L2, CLEC3B, DMBT1, DMKN, EDDM3A, EDDM3B, EFNA4, EMC10, ENAM, EPYC, ERVH48-1, F13B, FCN1, FCN2, GLDN, GPLD1, HEG1, ITFG1, KAZALD1, KCP, LACRT, LEG1, METRN, NOTCH2NL, NPNT, OLFM1,

5

10

15

20

25

30

OLFML3, PRB2, PSAP, PSAPL1, PSG1, PSG6, PSG9, PTX3, PTX4, RBP4, RNASE10, RNASE12, RNASE13, RNASE9, RSPRY1, RTBDN, S100A12, S100A13, S100A7, S100A8, SAA2, SAA4, SCG1, SCG2, SCG3, SCGB1C1, SCGB1C2, SCGB1D1, SCGB1D2, SCGB1D4, SCGB2B2, SCGB3A2, SCGN, SCRG1, SCUBE1, SCUBE2, SCUBE3, SDCBP, SELENOP, SFTA2, SFTA3, SFTPA1, SFTPA2, SFTPC, SFTPD, SHBG, SLURP2, SMOC1, SMOC2, SMR3A, SMR3B, SNCA, SPATA20, SPATA6, SOGA1, SPARC, SPARCL1, SPATA20, SPATA6, SRPX2, SSC4D, STX1A, SUSD4, SVBP, TCN1, TCN2, TCTN1, TF, TULP3, TFF2, TFF3, THSD7A, TINAG, TINAGL1, TMEFF2, TMEM25, VWC2L); белков внеклеточного матрикса (например, ABI3BP, AGRN, CCBE1, CHL1, COL15A1, COL19A1, COLEC11, DMBT1, DRAXIN, EDIL3, ELN, EMID1, EMILIN1, EMILIN2, EMILIN3, EPDR1, FBLN1, FBLN2, FBLN5, FLRT1, FLRT2, FLRT3, FREM1, GLDN, IBSP, KERA, KIAA0100, KIRREL3, KRT10, LAMB2, MGP, RPTN, SBSPON, SDC1, SDC4, SEMA3A, SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G, SIGLEC1, SIGLEC10, SIGLEC6, SLIT1, SLIT2, SLIT3, SLITRK1, SNED1, SNORC, SPACA3, SPACA7, SPON1, SPON2, STATH, SVEP1, TECTA, TECTB, TNC, TNN, TNR, TNXB); глюкозидаз (AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, CEMIP, CHIA, CHIT1, FUCA2, GLB1L, GLB1L2, HPSE, HYAL1, HYAL3, KL, LYG1, LYG2, LYZL1, LYZL2, MAN2B2, SMPD1, SMPDL3B, SPACA5, SPACA5B); гликозилтрансфераз (например, ART5, B4GALT1, EXTL2, GALNT1, GALNT2, GLT1D1, MGAT4A, ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST6GAL1, XYLT1); факторов роста (например, AMH, ARTN, BTC, CDNF, CFC1, CFC1B, CHRDL1, CHRDL2, CLEC11A, CNMD, EFEMP1, EGF, EGFL6, EGFL7, EGFL8, EPGN, EREG, EYS, FGF1, FGF10, FGF16, FGF17, FGF18, FGF19, FGF2, FGF20, FGF21, FGF22, FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FRZB, GDNF, GFER, GKN1, HBEGF, HGF, IGF-1, IGF2, INHA, INHBA, INHBB, INHBC, INHBE, INS, KITLG, MANF, MDK, MIA, NGF, NOV, NRG1, NRG2, NRG3, NRG4, NRTN, NTF3, NTF4, OGN, PDGFA, PDGFB, PDGFC, PDGFD, PGF, PROK1, PSPN, PTN, SDF1, SDF2, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5, TDGF1, TFF1, TGFA, TGFB1, TGFB2, TGFB3, THBS4, TIMP1, VEGFA, VEGFB, VEGFC, VEGFD, WISP3); белков, связывающих факторы роста (например, CHRD, CYR61, ESM1, FGFBP1, FGFBP2, FGFBP3, HTRA1, GHBP, IGFALS, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7, LTBP1, LTBP2, LTBP3, LTBP4, SOSTDC1, NOG, TWSG1 и WIF1); белков, связывающих гепарин (например, ADA2, ADAMTSL5, ANGPTL3, APOB, APOE, APOH, COL5A1, COMP, CTGF, FBLN7, FN1, FSTL1, HRG, LAMC2, LIPC, LIPG, LIPH, LIPI, LPL, PCOLCE2, POSTN, RSPO1, RSPO2, RSPO3, RSPO4, SAA1, SLIT2, SOST, THBS1, VTN); гормонов (например, ADCYAP1, ADIPOQ, ADM, ADM2, ANGPTL8, APELA, APLN, AVP, C1QTNF12, C1QTNF9, CALCA, CALCB, CCK, CGA, CGB1, CGB2, CGB3, CGB5,

5

10

15

20

25

30

CGB8, COPA, CORT, CRH, CSH1, CSH2, CSHL1, ENHO, EPO, ERFE, FBN1, FNDC5, FSHB, GAL, GAST, GCG, GH, GH1, GH2, GHRH, GHRL, GIP, GNRH1, GNRH2, GPHA2, GPHB5, IAPP, INS, INSL3, INSL4, INSL5, INSL6, LHB, METRNL, MLN, NPPA, NPPB, NPPC, OSTN, OXT, PMCH, PPY, PRL, PRLH, PTH, PTHLH, PYY, RETN, RETNLB, RLN1, RLN2, RLN3, SCT, SPX, SST, STC1, STC2, TG, TOR2A, TRH, TSHB, TTR, UCN, UCN2, UCN3, UTS2, UTS2B и VIP); гидролаз (например, AADACL2, ABHD15, ACP7, ACPP, ADA2, ADAMTSL1, AOAH, ARSF, ARSI, ARSJ, ARSK, BTD, CHI3L2, ENPP1, ENPP2, ENPP3, ENPP5, ENTPD5, ENTPD6, GBP1, GGH, GPLD1, HPSE, LIPC, LIPF, LIPG, LIPH, LIPI, LIPK, LIPM, LIPN, LPL, PGLYRP2, PLA1A, PLA2G10, PLA2G12A, PLA2G1B, PLA2G2A, PLA2G2D, PLA2G2E, PLA2G2F, PLA2G3, PLA2G5, PLA2G7, PNLIP, PNLIPRP2, PNLIPRP3, PON1, PON3, PPT1, SMPDL3A, THEM6, THSD1 и THSD4); иммуноглобулинов (например, IGSF10, IGKV1-12, IGKV1-16, IGKV1-33, IGKV1-6, IGKV1D-12, IGKV1D-39, IGKV1D-8, IGKV2-30, IGKV2D-30, IGKV3-11, IGKV3D-20, IGKV5-2, IGLC1, IGLC2, IGLC3); изомераз (например, NAXE, PPIA, PTGDS); киназ (например, ADCK1, ADPGK, FAM20C, ICOS, PKDCC); лиаз (например, PM20D1, PAM, CA6); ингибиторов металлоферментов (например, FETUB, SPOCK3, TIMP2, TIMP3, TIMP4, WFIKKN1, WFIKKN2); металлопротеаз (например, ADAM12, ADAM28, ADAM9, ADAMDEC1, ADAMTS1. ADAMTS10, ADAMTS12, ADAMTS13, ADAMTS14, ADAMTS15. ADAMTS16, ADAMTS17, ADAMTS18, ADAMTS19, ADAMTS2, ADAMTS20, ADAMTS3, ADAMTS4, ADAMTS5, ADAMTS6, ADAMTS7, ADAMTS8, ADAMTS9, CLCA1, CLCA2, CLCA4, IDE, MEP1B, MMEL1, MMP1, MMP10, MMP11, MMP12, MMP13, MMP16, MMP17, MMP19, MMP2, MMP20, MMP21, MMP24, MMP25, MMP26, MMP28, MMP3, MMP7, MMP8, MMP9, PAPPA, PAPPA2, TLL1, TLL2); белков молока (например, CSN1S1, CSN2, CSN3, LALBA); нейроактивных белков (например, CARTPT, NMS, NMU, NPB, NPFF, NPS, NPVF, NPW, NPY, PCSK1N, PDYN, PENK, PNOC, POMC, PROK2, PTH2, PYY2, PYY3, QRFP, TAC1 и TAC3); протеаз (например, ADAMTS6, C1R, C1RL, C2, CASP4, CELA1, CELA2A, CELA2B, CFB, CFD, CFI, CMA1, CORIN, CTRB1, CTRB2, CTSB, CTSD, DHH, F10, F11, F12, F2, F3, F7, F8, F9, FAP, FURIN, GZMA, GZMK, GZMM, HABP2, HGFAC, HTRA3, HTRA4, IHH, KLK10, KLK11, KLK12, KLK13, KLK14, KLK15, KLK3, KLK4, KLK5, KLK6, KLK7, KLK8, KLK9, KLKB1, MASP1, MASP2, MST1L, NAPSA, OVCH1, OVCH2, PCSK2, PCSK5, PCSK6, PCSK9, PGA3, PGA4, PGA5, PGC, PLAT, PLAU, PLG, PROC, PRSS1, PRSS12, PRSS2, PRSS22, PRSS23, PRSS27, PRSS29P, PRSS3, PRSS33, PRSS36, PRSS38, PRSS3P2, PRSS42, PRSS44, PRSS47, PRSS48, PRSS53, PRSS57, PRSS58, PRSS8, PRTN3, RELN, REN, TMPRSS11D, TMPRSS11E, TMPRSS2, TPSAB1, TPSB2, TPSD1); ингибиторов протеаз (например, A2M, A2ML1, AMBP, ANOS1, COL28A1,

5

10

15

20

25

30

COL6A3, COL7A1, CPAMD8, CST1, CST2, CST3, CST4, CST5, CST6, CST7, CST8, CST9, CST9L, CST9LP1, CSTL1, EPPIN, GPC3, HMSD, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, KNG1, OPRPN, OVOS1, OVOS2, PAPLN, PI15, PI16, PI3, PZP, R3HDML, SERPINA1, SERPINA10, SERPINA11, SERPINA12, SERPINA13P, SERPINA3, SERPINA4, SERPINA5, SERPINA7, SERPINA9, SERPINB2, SERPINB5, SERPINC1, SERPINE1, SERPINE2, SERPINE3, SERPINF2, SERPING1, SERPINI1, SERPINI2, SPINK1, SPINK13, SPINK14, SPINK2, SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, SPINK9, SPINT1, SPINT3, SPINT4, SPOCK1, SPOCK2, SPP2, SSPO, TFPI, TFPI2, WFDC1, WFDC10A, WFDC13, WFDC2, WFDC3, WFDC5, WFDC6, WFDC8); протеинфосфатаз (например, ACP7, ACPP, PTEN, PTPRZ1); эстераз (например, BCHE, CEL, CES4A, CES5A, NOTUM, SIAE); трансфераз (например, METTL24, FKRP, CHSY1, CHST9, B3GAT1); вазоактивных белков (например, AGGF1, AGT, ANGPT1, ANGPT2, ANGPTL4, ANGPTL6, EDN1, EDN2, EDN3, NTS), интерферона I типа (например, IFN-α, включая, но не ограничиваясь интерфероном альфаn3, интерфероном альфа-2a и интерфероном альфа-2b, IFN-β, IFN-ε, IFN-κ, IFN-ν, IFN-τ и IFN-ω), интерферона II типа (например, IFN-γ), интерферона III типа (например, IFN-λ), интерлейкина, например, IL-37, IL-38, и растворимого рецептора ACE2. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую мотив, функционально связанный с по нацеливающий меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей мРНК интересующего гена, причем указанный нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS). В некоторых вариантах реализации нацеливающий мотив выбран из группы, состоящей из: (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку,

5

10

15

20

25

30

кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся последовательность природе аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации рекомбинантная полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и/или (с) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации линкер включает тРНК-линкер, пептидный линкер 2А или гибкий линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину по меньшей мере 6 остатков нуклеиновой кислоты. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 50 остатков нуклеиновой кислоты. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 80 остатков нуклеиновой кислоты. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину приблизительно 6 до приблизительно 50 остатков нуклеиновой кислоты. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 80 остатков нуклеиновой некоторых вариантах реализации последовательность кислоты. В кодирующая или содержащая линкер, имеет длину нуклеиновой кислоты,

5

10

15

20

25

30

приблизительно 6 до приблизительно 15 остатков нуклеиновой кислоты. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой вектор, подходящий для генотерапии. В некоторых вариантах реализации композиция пригодна для одновременной модуляции экспрессии двух или более генов в клетке.

5

10

15

20

25

30

35

[0075] В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно. В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), присутствуют последовательно. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий (ii). В ген некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК. В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых вариантах реализации интересующий ген экспрессируется без сплайсинга РНК. В некоторых вариантах реализации композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения вирусной инфекции, заболевания или состояния, или заболевания или состояния, выбранного из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза. В некоторых вариантах реализации композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения вирусной инфекции, заболевания или состояния, или заболевания или состояния, выбранного из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза, прогрессирующей оссифицирующей фибродисплазии (ПОФ) и бокового амиотрофического склероза (БАС). В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно. В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), присутствуют последовательно. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК. В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых вариантах реализации интересующий ген экспрессируется без сплайсинга РНК. [0076] В некоторых аспектах композиция в соответствии с настоящим изобретением содержит конструкцию полинуклеиновой кислоты, содержащую миРНК, содержащую последовательность смысловой цепи, кодируемую последовательностью, выбранной из

5

10

15

20

25

30

последовательностей SEQ ID NO: 80 - 109 и SEQ ID NO: 140 - 145. В некоторых вариантах реализации миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 - 109 и SEQ ID NO: 140 - 145, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 110 - 139 и SEQ ID NO: 146 - 151. В некоторых аспектах композиция в соответствии с настоящим изобретением содержит конструкцию полинуклеиновой кислоты, содержащую миРНК, содержащую последовательность смысловой цепи, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 - 92. В некоторых вариантах реализации миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 -92, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 110 - 122. В некоторых аспектах композиция в соответствии с настоящим изобретением содержит конструкцию полинуклеиновой кислоты, содержащую миРНК, содержащую последовательность смысловой цепи, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 93 - 109. В некоторых вариантах реализации миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 93 - 109, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 123 - 139. В некоторых аспектах композиция в соответствии с настоящим изобретением содержит конструкцию полинуклеиновой кислоты, содержащую миРНК, содержащую последовательность смысловой цепи, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 140 - 145. В некоторых вариантах реализации миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 140 - 145, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 146 - 151.

5

10

15

20

25

30

ВКЛЮЧЕНИЕ ПОСРЕДСТВОМ ССЫЛКИ

[0077] Все публикации, патенты и заявки на патент, упомянутые в настоящем описании, включены в данную заявку посредством ссылки в той же степени, как если бы каждая отдельная публикация, патент или заявка на патент была конкретно и отдельно указана как включенная посредством ссылки.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

- [0078] Особенности настоящего изобретения описаны в подробностях в прилагаемой формуле изобретения. Лучшего понимания особенностей и преимуществ настоящего изобретения можно добиться, обратившись к следующему подробному описанию, в котором предложены типичные варианты реализации, в которых используются принципы настоящего изобретения, и к сопроводительным чертежам, где:
- [0079] На Фиг. 1 изображено схематическое представление дизайна конструкции. Т7: промотор Т7, миРНК: малая интерферирующая РНК.

5

10

- [0080] На Фиг. 2A показано сравнение конструкции мРНК IGF-1 и Соединения А1 (Соед.
- 1) в отношении экспрессии IGF-1 в клетках НЕК-293, тогда как на **Фиг. 2В** показана одновременная РНК-интерференция с помощью Соединения A1, которое содержит нацеленную на IL-8 миРНК, в модели сверхэкспрессии IL-8 в клетках НЕК-293. Контроль: конструкция для сверхэкспрессии IL-8 отдельно.
 - [0081] На Фиг. 3 показана зависимая от дозы РНК-интерференция с помощью Соединения А1 (Соед. 1), которое содержит нацеленную на IL-8 миРНК, в модели сверхэкспрессии IL-8 в клетках НЕК-293.
 - [0082] На Фиг. 4А показана модуляция экспрессии IL-8 с помощью Соединения А2 (Соед. 2) в клетках ТНР-1. Контроль: конструкция для сверхэкспрессии IL-8 отдельно.
 - [0083] На Фиг. 4В показана экспрессия IGF-1 с Соединения А2 (Соед. 2) в клетках НЕК-293.
- 20 **[0084]** На **Фиг. 5A** показана модуляция экспрессии IL-8 с помощью Соединения А3 (Соед. 3) в клетках THP-1. Контроль: конструкция для сверхэкспрессии IL-8 отдельно.
 - [0085] На Фиг. 5В показана экспрессия IGF-1 с Соединения АЗ (Соед. 3) в клетках НЕК-293.
 - [0086] На Фиг. 6А показано сравнение Соединения А4 (Соед. 4) и Соединения А5 (Соед.
- 25 5) в отношении экспрессии IL-8 в клетках ТНР-1. Контроль: конструкция для сверхэкспрессии IL-8 отдельно.
 - [0087] На Фиг. 6В показано сравнение Соединения АЗ (Соед. 3) и Соединения А5 (Соед.
 - 5) в отношении экспрессии IL-8 в клетках THP1. Контроль: конструкция для сверхэкспрессии IL-8 отдельно.
- 30 **[0088]** На **Фиг.** 7 показано сравнение Соединения А4 (Соед. 4) и Соединения А5 (Соед. 5) в отношении экспрессии IL-8 в клетках НЕК-293. Контроль: конструкция для сверхэкспрессии IL-8 отдельно.
 - [0089] На Фиг. 8А показано действие Соединения А6 (Соед. 6) на эндогенную экспрессию IL-1-бета (IL1b) в клетках THP-1. Контроль: только ЛПС + дцДНК.

[0090] На Фиг. 8В показано действие Соединения А6 (Соед. 6) на эндогенную экспрессию IL-1-бета (IL1b) в клетках ТНР-1. Контроль: только ЛПС + дцДНК.

[0091] На Фиг. 8C показана экспрессия IGF-1 с Соединения А6 (Соед. 6) в клетках НЕК-293.

5 **[0092]** На **Фиг. 9A** показано действие Соединения А7 (Соед. 7) на эндогенную экспрессию IL-1-бета (IL1b) в клетках THP-1. Контроль: только ЛПС + дцДНК.

[0093] На Фиг. 9В показано действие Соединения А7 (Соед. 7) на эндогенную экспрессию IL-1-бета (IL1b) в клетках THP-1. Контроль: только ЛПС + дцДНК.

[0094] На Фиг. 9C показана экспрессия IGF-1 с Соединения A7 (Соед. 7) в клетках НЕК-293.

10

15

20

25

30

[0095] На Фиг. 10A показана РНК-интерференция с помощью Соединения A8 (Соед. 8), которое содержит нацеленную на TNF-а миРНК, в модели сверхэкспрессии TNF-а в клетках НЕК-293. Контроль: конструкция для сверхэкспрессии TNF-а отдельно.

[0096] На Фиг. 10В показана РНК-интерференция с помощью Соединения А8 (Соед. 8), которое содержит нацеленную на TNF-α миРНК, в модели эндогенной экспрессии TNF-α в клетках THP-1. Контроль: только ЛПС + R848.

[0097] На Фиг. 10С показана экспрессия IL-4 с Соединения А8 (Соед. 8) в той же культуре клеток (НЕК-293), что и на Фиг. 10А.

[0098] На Фиг. 10D показана экспрессия IL-4 с Соединения А8 (Соед. 8) в том же культуральном супернатанте (ТНР-1), что и на Фиг. 10В.

[0099] На Фиг. 11 изображен филогенетический анализ трех коронавирусов, которые приводили к вспышкам эпидемии у людей за последние два десятилетия: MERS-CoV (сверху), SARS-CoV-2 (посередине) и SARS-CoV (снизу). Геномные последовательности общедоступны (получены из базы данных NCBI Nucleotide) и проанализированы в Geneious Prime v.2019.2.3 с моделью генетических расстояний Тамуры–Нея; дерево создали с помощью алгоритма UPGMA.

[0100] На Фиг. 12А показана РНК-интерференция с помощью Соединения А9 (Соед. 9) и Соединения А10 (Соед. 10), которые содержат нацеленные на ТNF-α миРНК, в модели эндогенной экспрессии ТNF-α в клетках ТНР-1. Контроль: только ЛПС + R848, sc-миРНК: рандомизированная (scrambled) миРНК. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам. Значимость (*, <0,05) оценивали с помощью критерия Стьюдента для активности миРНК. Значимость (***, р <0,001) оценивали с помощью однофакторного дисперсионного анализа с последующим критерием множественных сравнений Даннета относительно контроля.

- [0101] На Фиг. 12В показана экспрессия IL-4 с Соединения А9 (Соед. 9) и Соединения А10 (Соед. 10) в клетках ТНР-1. Результаты представлены в виде средних значений \pm стандартная ошибка среднего по 4 повторам. Значимость (**, <0,01) оценивали с помощью критерия Стьюдента для экспрессии IL-4.
- [0102] На Фиг. 13А показана РНК-интерференция с помощью Соединения А9 (Соед. 9) и Соединения А10 (Соед. 10), которые содержат нацеленные на ТNF-α миРНК, в модели сверхэкспрессии ТNF-α в клетках НЕК-293. Контроль: конструкция для сверхэкспрессии ТNF-α отдельно. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам. Значимость (**, р <0,01) оценивали с помощью однофакторного дисперсионного анализа с последующим критерием множественных сравнений Даннета относительно контроля.
 - [0103] На Фиг. 13В показана экспрессия IL-4 с Соединения А9 (Соед. 9) и Соединения А10 (Соед. 10) в клетках НЕК-293. Результаты представлены в виде средних значений \pm стандартная ошибка среднего по 4 повторам. Значимость (***, <0,001) оценивали с помощью критерия Стьюдента.

15

20

30

- [0104] На Фиг. 14 показана зависимая от дозы РНК-интерференция с помощью Соединения A11 (Соед. 11), которое содержит нацеленную на ALK2 миРНК, в модели эндогенной экспрессии ALK2 в клетках A549, и экспрессия IGF-1 с Соединения A11 (Соед. 11) в клетках A549. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам.
- [0105] На Фиг. 15А показана зависимая от дозы РНК-интерференция с помощью Соединения A12 (Соед. 12) и Соединения 13 (Соед. 13), которые содержат нацеленную на SOD1 миРНК, в модели эндогенной экспрессии SOD1 в клетках IMR32. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 3 повторам.
- [0106] На Фиг. 15В показана зависимая от дозы экспрессия ЕРО с Соединения А13 (Соед.
 13) в клетках IMR32. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам.
 - [0107] На Фиг. 15С показана зависимая от дозы экспрессия IGF-1 с Соединения A12 (Соед. 12) в клетках IMR32. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам.
 - [0108] На Фиг. 16А показана РНК-интерференция с помощью Соединения А14 (Соед. 14) и Соединения А15 (Соед. 15), которые содержат нацеленные на IL-1-бета миРНК, в модели сверхэкспрессии IL-1-бета в клетках НЕК-293. Контроль: конструкция для сверхэкспрессии IL-1-бета отдельно. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам. Значимость (*, <0,05) оценивали с помощью

критерия Стьюдента. Значимость (***, р <0,001) оценивали с помощью однофакторного дисперсионного анализа с последующим критерием множественных сравнений Даннета относительно контроля.

[0109] На Фиг. 16В показана экспрессия IGF-1 с Соединения А14 (Соед. 14) и Соединения А15 (Соед. 15) в клетках НЕК-293. Результаты представлены в виде средних значений ± стандартная ошибка среднего по 4 повторам. Значимость (***, <0,001) оценивали с помощью критерия Стьюдента.

5

10

15

20

25

30

[0110] На **Фиг.** 17A показана экспрессия положительных по eGFP клеток A549, трансфицированных вектором pcDNA3⁺, содержащим последовательность, кодирующую нуклеокапсидный белок SARS CoV-2, меченый eGFP.

[0111] На Фиг. 17В показана экспрессия положительных по eGFP клеток A549 котрансфицированный вектором pcDNA3⁺, содержащим последовательность, кодирующую нуклеокапсидный белок SARS CoV-2, меченый eGFP, и Соединением B18 (Соед. B18), содержащим 3 миРНК, одна из которых нацелена на нуклеокапсидный белок SARS CoV-2.

[0112] На Фиг. 17С показана РНК-интерференция с помощью Соединения В18 (Соед. В18), которое содержит миРНК, нацеленные на нуклеокапсидный белок SARS CoV-2, в клетках А549, экспрессирующих нуклеокапсидный белок SARS CoV-2, меченый еGFP. Контроль: конструкция нуклеокапсидного белка SARS CoV-2-еGFP отдельно. Значимость (***, <0,001) оценивали с помощью критерия Стьюдента для Соединения В18 (Соед. В18) по сравнению с контролем.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0113] Некоторые конкретные подробности настоящего описания представлены, чтобы обеспечить полное понимание различных вариантов реализации. Тем не менее, специалист в данной области поймет, что настоящее изобретение можно осуществить без этих подробностей. В других случаях, хорошо известные структуры не были показаны или подробно описаны, чтобы избежать излишнего затруднения понимания описания вариантов реализации. Если контекст не требует иного, по всему тексту настоящего описания и в следующей за ним формуле изобретения термин «включать» и его варианты, такие как «включает» и «включающий», должны истолковываться в открытом, включительном смысле, то есть, как «включая, но не ограничиваясь». Кроме того, заголовки, предложенные в данной заявке, предназначены исключительно для удобства и не передают объем или значение заявленного изобретения.

[0114] Если не указано иное, все технические и научные термины, используемые в данной заявке, имеют те же значения, которые обычно понимает средний специалист в области техники, к которой относится настоящее изобретение. Хотя способы и материалы, сходные или эквивалентные описанным в данной заявке, можно применять для осуществления или тестирования настоящего изобретения, подходящие способы и материалы описаны ниже.

Определения

5

10

15

20

25

30

35

[0115] В настоящей заявке и прилагаемой формуле изобретения формы единственного числа включают ссылку на множественное число, если в содержании явно не указано иное. Также следует отметить, что термин «или», как правило, используется в своем смысле, включая «и/или», если в содержании явно не указано иное. Термины «и/или» и «любая их комбинация» и их грамматические эквиваленты, используемые в данной заявке, можно использовать взаимозаменяемо. Данные термины могут выражать, что любая комбинация конкретно предложена. Исключительно с целью иллюстрирования, следующие формулировки «А, В и/или С» или «А, В, С или любая их комбинация» могут означать «А отдельно; В отдельно; С отдельно; А и В; В и С; А и С; и А, В и С». Термин «или» можно применять конъюнктивно или дизъюнктивно, если контекст конкретно не относится к дизъюнктивному использованию.

[0116] Термин «около» или «приблизительно» может означать нахождение в пределах приемлемого диапазона ошибки для конкретного значения, что определяет средний специалист в данной области техники, который будет отчасти зависеть от того, как значение измеряют или определяют, т.е., от ограничений системы измерения. Например, «приблизительно» может означать в пределах 1 или более чем 1 стандартного отклонения, в соответствии с практикой в данной области техники. В качестве альтернативы «приблизительно» может означать диапазон до 20%, до 10%, до 5% или до 1% от данного значения. В качестве альтернативы, особенно в отношении биологических систем или процессов, указанный термин может означать в пределах порядка величины, в пределах 5-кратного и более предпочтительно в пределах 2-кратного значения. Когда в настоящей заявке и в формуле изобретения описаны конкретные значения, если не указано иное, следует полагать, что термин «приблизительно» означает в пределах приемлемого диапазона ошибки для данного конкретного значения.

[0117] Используемые в настоящем описании и формуле изобретения термины «включающий» (и любая форма термина «включающий», такая как «включают» и «включает»), «обладающий» (и любая форма термина «обладающий», такая как «обладают» и «обладает»), «заключающий в себе» (и любая форма термина «заключающий

в себе», такая как «заключает в себе» и «заключают в себе») или «содержащий» (и любая форма термина «содержащий», такая как «содержит» и «содержат») являются включительными или неограничивающими и не исключают дополнительные, неперечисленные элементы или этапы способа. Предполагается, что любой вариант реализации, обсуждаемый в настоящем описании, можно осуществить применительно к любому способу или композиции в соответствии с настоящим описанием, и наоборот. Более того, композиции в соответствии с настоящим описанием можно применять, чтобы осуществить способы в соответствии с настоящим описанием.

5

10

15

20

25

30

35

[0118] Упоминание в настоящем описании «вариантов реализации», «определенных вариантов реализации», «предпочтительных вариантов реализации», «конкретных вариантов реализации», «варианта реализации», «одного варианта реализации» или «других вариантов реализации» означает, что конкретная особенность, структура или свойство, описанные в связи с указанными вариантами реализации, включены по меньшей мере в некоторые варианты реализации, но не обязательно во все варианты реализации настоящего изобретения. Для того чтобы облегчить понимание настоящего изобретения, определения множества терминов и формулировок приведены ниже.

[0119] Термин заявке включает РНК. «РНК» В данной которая кодирует последовательность аминокислот (например, мРНК и т.д.), а также РНК, которая не кодирует последовательность аминокислот (например, миРНК, кшРНК и т.д.). РНК в данной заявке может представлять собой кодирующую РНК, т.е., РНК, которая кодирует последовательность аминокислот. Такие молекулы РНК также называют мРНК (информационной РНК), и они представляют собой одноцепочечные молекулы РНК. РНК в данной заявке может представлять собой некодирующую РНК, т.е., РНК, которая не кодирует последовательность аминокислот или не транслируется с образованием белка. Некодирующая РНК может включать, но не ограничена малой интерферирующей РНК (миРНК), короткой или малой шпилечной РНК (кшРНК), микроРНК (микроРНК), РНК, взаимодействующей с рімі (пиРНК), и длинной некодирующей РНК (днкРНК). МиРНК, используемые в данной заявке, могут содержать участок двухцепочечной РНК (дцРНК), структуру шпильки, структуру петли или их комбинацию. В некоторых вариантах реализации миРНК, используемые в данной заявке, могут содержать по меньшей мере одну кшРНК, по меньшей мере один участок дцРНК или по меньшей мере одну структуру петли. В некоторых вариантах реализации миРНК, используемые в данной заявке, могут быть получены в результате процессинга дцРНК или кшРНК. РНК может быть получена с помощью методики химического и ферментативного синтеза, известной среднему специалисту в данной области техники, или путем применения рекомбинантной технологии, или может быть выделена из природных источников, или с помощью комбинации перечисленных способов. РНК необязательно может содержать неприродные и встречающиеся в природе модификации нуклеозидов, известные в данной области техники, такие как, например, N^1 -метилпсевдоуридин, также называемый в данной заявке метилпсевдоуридином.

5

10

15

20

25

30

35

[0120] Термины «последовательность нуклеиновой кислоты», «последовательность полинуклеиновой кислоты», «последовательность нуклеотидов» и «последовательность нуклеотидных кислот» используют в данной заявке взаимозаменяемо, и они имеют одинаковое значение в данной заявке и предпочтительно относятся к ДНК или РНК. Термины «последовательность нуклеиновой кислоты», «последовательность нуклеотидов» и «последовательность нуклеотидных кислот» можно использовать синонимично с термином «полинуклеотидная последовательность». В некоторых вариантах реализации последовательность нуклеиновой кислоты представляет собой полимер, содержащий или состоящий из мономеров нуклеотидов, которые связаны ковалентной связью друг с другом посредством фосфодиэфирных связей сахарофосфатного остова. В объем термина модифицированные «последовательность нуклеиновой кислоты» также входят последовательности нуклеиновых кислот, такие как модифицированные по основанию, модифицированные по сахару или модифицированные по остову и т.д., ДНК или РНК.

[0121] Рекомбинантная полинуклеиновая кислота или конструкция РНК, описанные в данной заявке, могут содержать один или более вариантов нуклеотидов, включая нестандартный(-е) нуклеотид(ы), неприродный(-е) нуклеотид(ы), аналог(и) нуклеотида и/или модифицированные нуклеотиды. Примеры модифицированных нуклеотидов включают, но не ограничены перечисленными: диаминопурин, 5-фторурацил, 5бромурацил, 5-хлорурацил, 5-йодурацил, гипоксантин, ксантин, 4-ацетилцитозин, 5-(карбоксигидроксилметил) урацил, 5-карбоксиметиламинометил-2-тиоуридин, 5карбоксиметиламинометилурацил, дигидроурацил, бета-D-галактозилквеуозин, инозин, N6-изопентениладенин, 1-метилгуанин, 1-метилинозин, 2,2-диметилгуанин, метиладенин, 2-метилгуанин, 3-метилцитозин, 5-метилцитозин, N6-аденин, метилгуанин, 5-метиламинометилурацил, 5-метоксиаминометил-2-тиоурацил, бета-Dманнозилквеуозин, 5'-метоксикарбоксиметилурацил, 5-метоксиурацил, 2-метилтио-N6изопентениладенин, урацил-5-оксиуксусную кислоту (v), вибутоксозин, псевдоурацил, квеуозин, 2-тиоцитозин, 5-метил-2-тиоурацил, 2-тиоурацил, 4-тиоурацил, метилурацил, метиловый эфир урацил-5-оксиуксусной кислоты, 5-метил-2-тиоурацил, 3-(3-амино- 3- N-2-карбоксипропил)урацил, (аср3) у, 2,6-диаминопурин и тому подобные

нуклеотиды. В некоторых случаях нуклеотиды могут содержать модификации в своих фосфатных группах, включая модификации в трифосфатной группе. Неограничивающие примеры таких модификаций включают фосфатные цепи большей длины (например, фосфатную цепь, содержащую 4, 5, 6, 7, 8, 9, 10 или более фосфатных групп) и модификации тиольными группами (например, альфа-тиотрифосфат и бета-тиотрифосфаты).

5

10

15

20

25

30

35

[0122] Рекомбинантная полинуклеиновая кислота или конструкция РНК, описанная в данной заявке, может быть модифицирована по группе основания (например, по одному или более атомам, которые обычно доступны для образования водородной связи с комплементарным нуклеотидом, и/или по одному или более атомам, которые обычно не способны образовывать водородную связь с комплементарным нуклеотидом), группе сахара или фосфатному остову. В некоторых вариантах реализации модификации остова фосфоротиоатной, включают, ограничены фосфородитиоатной, НО не фосфороселеноатной, фосфородиселеноатной, фосфороанилотиоатной, фосфораниладатной, фосфорамидатной и фосфородиамидатной связью. Фосфоротиоатная связь заменяет атом серы на немостиковый кислород в фосфатном остове и замедляет деградацию олигонуклеотидов нуклеазами. Фосфородиамидатная связь (N3'→P5') позволяет предотвращать распознавание нуклеазой и деградацию. В некоторых вариантах реализации модификации каркаса включают присутствие пептидных связей вместо фосфорных в структуре остова (например, звенья N-(2-аминоэтил)-глицина, связанные пептидными связями в пептид-нуклеиновой кислоте), или связывающих групп, включая карбамат, амиды и линейные и циклические углеводородные группы. Олигонуклеотиды с модифицированными остовами рассмотрены в Micklefield, Backbone modification of nucleic acids: synthesis, structure and therapeutic applications, Curr. Med. Chem., 8 (10): 1157-79, 2001 и Lyer et al., Modified oligonucleotides-synthesis, properties and applications, Curr. Opin. Mol. Ther., 1 (3): 344-358, 1999.

[0123] Термин «пептид» относится к ряду аминокислотных остатков, соединенных друг с другом, обычно пептидными связями между α-аминогруппой и карбоксильной группой соседних аминокислотных остатков.

[0124] Термин «нацеливающий мотив» или «направляющий мотив» в данной заявке может относиться к любому короткому пептиду, присутствующему во вновь синтезированных полипептидах или белках, которые предназначены для любых частей мембран клеток внеклеточных компартментов или внутриклеточных компартментов, за исключением цитоплазмы или цитозоля. Внутриклеточные компартменты включают, но не ограничены внутриклеточными органеллами, такими как ядро, ядрышко, эндосома, протеасома,

рибосома, хроматин, оболочка ядра, ядерная пора, экзосома, меланосома, аппарат Гольджи, пероксисома, эндоплазматический ретикулум (ER), лизосома, центросома, микротрубочка, микрофиламент, митохондрия, хлоропласт, промежуточный филамент, плазматической мембраной. Другие термины включают, но ограничены не перечисленными: сигнальную последовательность, нацеливающий сигнал, сигнал локализации, последовательность локализации, транзитный пептид, последовательность или лидерный пептид. Нацеливающий мотив может включать сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS).

5

10

15

20

25

30

35

[0125] Термин «сигнальный пептид», также называемый в данной заявке сигнальной последовательностью или предоменом, представляет собой короткий пептид (обычно длиной 16 - 40 аминокислот), присутствующий на N-конце вновь синтезированных белков, которые предназначены для секреторного пути. Сигнальный пептид в соответствии с настоящим изобретением имеет длину предпочтительно 10 - 50, более предпочтительно 11 - 45, еще более предпочтительно 12 - 45, наиболее предпочтительно 13 - 45, в частности, 14 - 45, более конкретно, 15 - 45, еще более конкретно 16 - 40 аминокислот. Сигнальный пептид в соответствии с настоящим изобретением расположен на N-конце интересующего белка или на N-конце пробелковой формы интересующего белка. Сигнальный пептид в соответствии с настоящим изобретением обычно имеет эукариотическое происхождение, например, сигнальный пептид эукариотического белка, предпочтительно происходящий из например, сигнальный пептид белка млекопитающего, млекопитающего, предпочтительно человеческого происхождения, например, сигнальный пептид белка млекопитающего. В некоторых вариантах реализации гетерологичный сигнальный пептид и/или гомологичный сигнальный пептид, который нужно модифицировать, представляет встречающийся в природе сигнальный пептид эукариотического белка, предпочтительно встречающийся в природе сигнальный пептид белка млекопитающего, более предпочтительно встречающийся в природе сигнальный пептид белка человека.

[0126] Термин «белок» в данной заявке относится к молекулам, обычно содержащим один или более пептидов или полипептидов. Пептид или полипептид обычно представляет собой цепь из аминокислотных остатков, связанных пептидными связями. Пептид обычно

содержит от 2 до 50 аминокислотных остатков. Полипептид обычно содержит более 50 аминокислотных остатков. Белок обычно свернут в 3-мерную форму, которая может быть необходима для осуществления белком его биологической функции. Термин «белок» в данной заявке включает фрагмент белка и слитые белки. В некоторых вариантах реализации белок принадлежит млекопитающему, например, белок человеческого происхождения, т.е., представляет собой белок человека. В некоторых вариантах реализации белок представляет собой белок, который обычно секретируется из клетки, т.е., белок, который секретируется из клетки в природе, или белок, продуцируемый вирусом. В некоторых вариантах реализации белки, упоминаемые в данной заявке, выбраны из группы, состоящей из: карбоксипептидаз; цитокинов; внеклеточных лигандов и транспортеров, включая рецепторы; белков внеклеточного матрикса; глюкозидаз; гликозилтрансфераз; факторов роста; белков, связывающих факторы роста; белков, связывающих гепарин; гормонов; гидролаз; иммуноглобулинов; изомераз; киназ; лиаз; ингибиторов металлоферментов; металлопротеаз; белков молока; нейроактивных белков; протеаз; ингибиторов протеаз; протеинфосфатаз; эстераз; трансфераз и вазоактивных белков. В некоторых вариантах реализации белок представляет собой вирусный белок, например, белок коронавируса, описанный в данной заявке.

5

10

15

20

25

30

35

[0127] Карбоксипептидазы представляют собой белки, которые являются ферментами протеазами, которые гидролизуют (расщепляют) пептидную связь на карбоксильном конце (С-конце) белка; цитокины представляют собой белки, которые секретируются и действуют либо местно, либо системно как модуляторы сигнализации целевых клеток посредством рецепторов на их поверхностях, часто вовлеченных в иммунологические реакции; внеклеточные лиганды и транспортеры представляют собой белки, которые секретируются и действуют посредством связывания с другими белками или переноса других белков или других молекул для осуществления некоторой биологической функции; белки внеклеточного матрикса представляют собой группу белков, секретируемых поддерживающими клетками, которые обеспечивают структурную и биохимическую поддержку окружающим клеткам; глюкозидазы представляют собой ферменты, участвующие в расщеплении сложных углеводов, таких как крахмал и гликоген, на их мономеры; гликозилтрансферазы представляют собой ферменты, которые создают природные гликозидные связи; факторы роста представляют собой секретируемые белки, способные стимулировать клеточный рост, пролиферацию, заживление и дифференцировку клеток, действуя либо местно, либо системно как модуляторы сигнализации целевых клеток посредством рецепторов на их поверхностях, часто вовлеченных в трофические реакции и выживаемость или сигнализацию клеточного гомеостаза; белки, связывающие

факторы роста, представляют собой секретируемые белки, связывающиеся с факторами роста и тем самым модулирующие их биологическую активность; белки, связывающие гепарин, представляют собой секретируемые белки, которые взаимодействуют с гепарином, чтобы модулировать их биологическую функцию, часто в сочетании с другим связыванием с фактором роста или гормоном; гормоны являются представителями класса сигнальных молекул, продуцируемых железами в многоклеточных организмах, которые секретируются и транспортируются системой кровообращения для нацеливания на отдаленные органы, чтобы регулировать физиологию и поведение посредством связывания со специфическими рецепторами на их целевых клетках; гидролазы представляют собой класс ферментов, которые биохимически катализируют расщепление молекул, используя воду для расщепления химических связей, что приводит к разделению больших молекул на меньшие молекулы; иммуноглобулины представляют собой большие секретируемые белки в форме Y, которые преимущественно продуцируются плазматическими клетками, которые используются иммунной системой, чтобы нейтрализовать патогены, такие как патогенные бактерии и вирусы; изомеразы представляют собой общий класс ферментов, которые превращают молекулу из одного изомера в другой, тем самым облегчая внутримолекулярные перестройки, при которых связи разрушаются и образуются; киназы представляют собой ферменты, катализирующие перенос фосфатных высокоэнергетических молекул-доноров фосфата на специфические субстраты; лиазы представляют собой ферменты, катализирующие разрушение различных химических связей способами, отличными от гидролиза и окисления, часто образуя новую двойную связь или новую циклическую структуру; ингибиторы металлоферментов представляют собой клеточные ингибиторы матриксных металлопротеаз (ММР); металлопротеазы представляют собой ферменты протеазы, в каталитический механизм которых вовлечен ион металла; белки молока представляют собой белки, секретируемые в молоко; нейроактивные белки представляют собой секретируемые белки, которые действуют либо местно, либо на расстояниях, чтобы поддержать нервную функцию, выживаемость и физиологию; протеазы (также называемые пептидазами или протеиназами) представляют собой ферменты, которые осуществляют протеолиз путем гидролиза пептидных связей; ингибиторы протеаз представляют собой белки, которые ингибируют функцию протеаз; протеинфосфатазы представляют собой ферменты, которые удаляют фосфатные группы с фосфорилированных аминокислотных остатков их субстратного белка; эстеразы представляют собой ферменты, которые расщепляют эфиры на кислоту и спирт в химической реакции с водой в аминокислотном остатке; трансферазы представляют собой класс ферментов, которые катализируют перенос специфических функциональных групп (например, метильной или

5

10

15

20

25

30

гликозильной группы) с одной молекулы (называемой донорной) на другую (называемую акцепторной); вазоактивные белки представляют собой секретируемые белки, которые биологически влияют на функцию кровеносных сосудов. Карбоксипептидазы; цитокины; внеклеточные лиганды и транспортеры; белки внеклеточного матрикса; глюкозидазы; гликозилтрансферазы; факторы роста; белки, связывающие факторы роста; белки, связывающие гепарин; гормоны; гидролазы; иммуноглобулины; изомеразы; киназы; лиазы; ингибиторы металлоферментов; металлопротеазы; белки молока; нейроактивные белки; протеазы; ингибиторы протеаз; протеинфосфатазы; эстеразы; трансферазы и вазоактивные белки, упоминаемые в данной заявке, можно найти в базе данных UniProt.

5

10

15

20

25

30

35

[0128] В некоторых вариантах реализации белки, упоминаемые в данной заявке, представляют собой, например, цитокины - белки, которые секретируются и действуют либо местно, либо системно как модуляторы сигнализации целевых клеток посредством рецепторов на их поверхностях, часто вовлеченные в иммунологические реакции, другие белки хозяев, вовлеченные в вирусную инфекцию, и белки вирусов. Последовательности нуклеотидов и аминокислот белков, пригодных в контексте настоящего изобретения, включая белки, которые кодируются интересующим геном, известны в данной области и доступны в литературе, например, в базе данных UniProt.

[0129] Термины «фрагмент» или «фрагмент последовательности», которые имеют одинаковое значение в данной заявке, представляют собой более короткую часть полноразмерной последовательности, например, молекулы нуклеиновой кислоты, такой как ДНК, или РНК, или белок. Соответственно, фрагмент, обычно, последовательности, которая идентична соответствующему участку в полноразмерной последовательности. Предпочтительный фрагмент последовательности в контексте настоящего изобретения состоит из непрерывного участка элементов, таких как нуклеотиды или аминокислоты, соответствующего непрерывному участку элементов в молекуле, из которой получен фрагмент, который представляет по меньшей мере 5%, обычно по меньшей мере 20%, предпочтительно по меньшей мере 30%, более предпочтительно по меньшей мере 40%, более предпочтительно по меньшей мере 50%, еще более предпочтительно по меньшей мере 60%, еще более предпочтительно по меньшей мере 70% и наиболее предпочтительно по меньшей мере 80% от всей (т.е., полноразмерной) молекулы, из которой происходит указанный фрагмент.

[0130] Термин «вектор» или «вектор экспрессии» в данной заявке относится к встречающимся в природе или полученным синтетическим путем конструкциям для внедрения, пролиферации, экспрессии или переноса нуклеиновых кислот в клетке, например, плазмидам, миникольцам, фагмидам, космидам, искусственным

хромосомам/минихромосомам, бактериофагам, вирусам, таким как бакуловирус, ретровирус, аденовирус, аденоассоциированный вирус, вирус простого герпеса, бактериофаги. Векторы могут либо встраиваться в геном клетки-хозяина, либо оставаться в виде автономно реплицирующейся конструкции внутри клетки-хозяина. Способы, применяемые для конструирования векторов, хорошо известны специалисту в данной области техники и описаны в различных публикациях. В частности, методики конструирования подходящих векторов, включая описание функциональных регуляторных компонентов, таких как промоторы, энхансеры, сигналы терминации и полиаденилирования, селективные маркеры, точки начала репликации и сигналы сплайсинга, известны специалисту в данной области техники. Эукариотические векторы экспрессии, как правило, будут содержать также прокариотические последовательности, которые способствуют размножению вектора в бактериях, такие как точка начала репликации и гены устойчивости к антибиотикам для селекции в бактериях, которые могут быть удалены перед трансфекцией эукариотических клеток. Различные эукариотические векторы экспрессии, содержащие сайт клонирования, в который можно функционально встроить полинуклеотид, хорошо известны в данной области техники и некоторые доступны для приобретения от компаний, таких как Agilent Technologies, Санта-Клара, Калифорния; Invitrogen, Карлсбад, Калифорния; Promega, Мэдисон, Висконсин, или Invivogen, Сан-Диего, Калифорния.

5

10

15

20

25

30

[0131] Термин «транскрипционная единица», «экспрессионная единица» или «кассета экспрессии» в данной заявке относится к участку в векторе, конструкции или полинуклеотидной последовательности, который содержит один или более генов, которые нужно транскрибировать, причем гены, содержащиеся внутри указанного фрагмента, функционально связаны друг с другом. Они транскрибируются с одного промотора, и транскрипция терминируется по меньшей мере одним сигналом полиаденилирования. В результате указанные различные гены по меньшей мере транскрипционно связаны. Более чем один белок или продукт может транскрибироваться и экспрессироваться с каждой транскрипционной единицы (мультицистронная транскрипционная единица). Каждая транскрипционная единица будет содержать регуляторные элементы, необходимые для транскрипции и трансляции любой из выбранных последовательностей, которые содержатся внутри указанной единицы. И каждая транскрипционная единица может содержать одинаковые или различные регуляторные элементы. Например, каждая транскрипционная единица может содержать один и тот же терминатор. Элемент IRES или интроны можно применять для функционального связывания генов в транскрипционной

единице. Вектор или полинуклеотидная последовательность может содержать более чем одну транскрипционную единицу.

[0132] Термин «повреждение скелетной мышцы» в данной заявке относится к любым повреждениям и разрывам скелетной мышцы, предпочтительно к разрывам скелетной мышцы, вызванным эксцентрическими сокращениями мышцы, удлинением и перенапряжением мышцы. В принципе любая скелетная мышца может быть поражена таким повреждением или разрывом. Предпочтительно повреждение скелетной мышцы представляет собой повреждения и разрывы скелетной мышцы, причем скелетные мышцы выбраны из групп мышц головы, шеи, грудной клетки, спины, живота, таза, рук, ног и бедра.

5

10

15

20

25

30

35

[0133] Более предпочтительно повреждение скелетной мышцы представляет собой повреждения и разрывы, причем скелетные мышцы выбраны из группы, состоящей из следующих мышц: подошвенная, височная, папиллярная, большая грудная мышца, задняя большеберцовая мышца, передняя большеберцовая мышца, икроножная, клювовидноплечевая, диафрагма, длинная ладонная мышца, прямая мышца живота, наружный анальный сфинктер, внутренний анальный сфинктер, подлопаточная мышца, бицепс, трицепс, квадрицепс, икроножная мышца, паховая мышца, задняя мышца бедра, дельтовидная мышца, большая круглая мышца, надостная мышца вращательной манжеты, подостная мышца вращательной манжеты, малая круглая мышца вращательной манжеты, подлопаточная мышца вращательной манжеты, прямая мышца бедра, прямая мышца живота, наружная косая мышца живота, жевательная мышца, трапециевидная мышца, широчайшая мышца, грудная мышца, мышца, выпрямляющая позвоночник, подвздошнореберная мышца, длиннейшая мышца, остистая мышца, широчайшая мышца спины, поперечно-остистая мышца, полуостистая мышца спины, полуостистая мышца шеи, полуостистая мышца головы, многораздельная мышца, мышца-вращатель, межостистые мышцы, межпоперечные мышцы, ременная мышца головы, ременная мышца шеи, межреберные мышцы, подреберные мышцы, поперечная мышца груди, мышцы, поднимающие ребра, задняя нижняя зубчатая мышца, задняя верхняя зубчатая мышца, поперечная мышца живота, прямая мышца живота, пирамидальная мышца, мышца, поднимающая яичко, квадратная мышца поясницы, наружная косая мышца, внутренняя косая мышца. Еще более предпочтительно повреждение скелетной мышцы представляет собой повреждения и разрывы, при которых скелетные мышцы выбраны из группы, состоящей из следующих мышц: подошвенная, височная, папиллярная, большая грудная мышца, задняя большеберцовая мышца, передняя большеберцовая мышца, икроножная, клювовидно-плечевая, диафрагма, длинная ладонная мышца, прямая мышца живота,

наружный анальный сфинктер, внутренний анальный сфинктер, подлопаточная мышца, бицепс, трицепс, квадрицепс, икроножная мышца, паховая мышца, задняя мышца бедра, дельтовидная мышца, большая круглая мышца, надостная мышца вращательной манжеты, подостная мышца вращательной манжеты, малая круглая мышца вращательной манжеты, подлопаточная мышца вращательной манжеты, прямая мышца бедра, прямая мышца живота, наружная косая мышца живота, жевательная мышца, трапециевидная мышца, широчайшая мышца, грудная мышца.

5

10

15

20

25

30

35

[0134] Предпочтительно любые повреждения и разрывы скелетной мышцы, предпочтительно разрывы скелетной мышцы, вызванные эксцентрическим сокращением мышцы, удлинением и перенапряжением мышц, лечат с помощью способа в соответствии с настоящим изобретением.

[0135] В объем термина «субъект» или «пациент» входят млекопитающие. Примеры млекопитающих включают, но не ограничены любым представителем класса млекопитающих: людей, не являющихся человеком приматов, таких как шимпанзе, и других видов человекообразных и других обезьян; сельскохозяйственных животных, таких как крупный рогатый скот, лошади, овцы, козы, свиньи; домашних животных, таких как кролики, собаки и кошки; лабораторных животных, включая грызунов, таких как крысы, мыши и морские свинки, и тому подобных млекопитающих. В одном аспекте млекопитающее представляет собой человека. Термин «животное» в данной заявке включает людей и не являющихся человеком животных. В одном варианте реализации «не являющееся человеком животное» представляет собой млекопитающего, например, грызуна, такого как крыса или мышь. В одном варианте реализации не являющееся человеком животное представляет собой мышь.

[0136] Термины «фармацевтическая композиция» и «фармацевтический состав» (или «состав») используют взаимозаменяемо, и они означают смесь или раствор, содержащий терапевтически эффективное количество активного фармацевтического ингредиента вместе с одним или более фармацевтически приемлемыми вспомогательными веществами, предназначенный для введения субъекту, например, нуждающемуся в этом человеку.

[0137] Термин «фармацевтически приемлемый» означает свойство материала, который пригоден для получения фармацевтической композиции, которая в целом безопасна, нетоксична и не является ни биологически, ни иным образом нежелательной и приемлема для ветеринарии, а также фармацевтического применения у человека. «Фармацевтически приемлемый» может относиться к материалу, такому как носитель или разбавитель, который не нарушает биологическую активность или свойства указанного соединения, и является относительно нетоксичным, т.е., указанный материал можно вводить индивиду,

не вызывая нежелательного биологического действия или не взаимодействуя вредным образом с любыми из компонентов композиции, в которой он содержится.

[0138] Термины «фармацевтически приемлемое вспомогательное вещество», «фармацевтически приемлемый носитель» и «терапевтически инертное вспомогательное вещество» можно использовать взаимозаменяемо, и они означают любой фармацевтически приемлемый ингредиент фармацевтической композиции, обладающий терапевтической активностью и нетоксичный для субъекта, которому его вводят, такой как разрыхлители, связующие вещества, наполнители, растворители, буферы, регулирующие тоничность агенты, стабилизаторы, антиоксиданты, поверхностно-активные вещества, носители, разбавители, вспомогательные вещества, консерванты или лубриканты, применяемые при получении фармацевтических продуктов.

5

10

15

20

25

30

35

[0139] Термин «рекомбинантная полинуклеиновая кислота» или «рекомбинантная РНК» может относиться к полинуклеиновой кислоте или РНК, которые не встречаются в природе и которые синтезируют или над которыми совершают манипуляции in vitro. Рекомбинантную полинуклеиновую кислоту или РНК можно синтезировать в лаборатории и можно получить, применяя технологию рекомбинантных ДНК или РНК, применяя ферментативную модификацию ДНК или РНК, такую как расщепление путем ферментативной лигирование И клонирование. Рекомбинантную рестрикции, полинуклеиновую онжом транскрибировать in vitro получением кислоту информационной РНК (мРНК), и рекомбинантную мРНК можно выделить, очистить и использовать для трансфекции. Рекомбинантная полинуклеиновая кислота или РНК, применяемые в данной заявке, могут кодировать белок, полипептид, нацеливающий мотив, сигнальный пептид и/или некодирующую РНК, такую как малая интерферирующая РНК (миРНК). При подходящих условиях, рекомбинантную полинуклеиновую кислоту или РНК можно внедрить в клетку и экспрессировать в клетке.

[0140] Термин «экспрессия» полинуклеиновой кислоты, гена, ДНК или РНК в данной заявке может относиться к транскрипции и/или трансляции полинуклеиновой кислоты, гена, ДНК или РНК. Термин «модулирование», «увеличение», «повышающая регуляция», «снижение» или «понижающая регуляция» экспрессии полинуклеиновой кислоты, гена, такого как интересующий ген, ДНК или РНК, такой как целевая мРНК, в данной заявке может относиться к модулированию, увеличению, повышающей регуляции, снижению, понижающей регуляции уровня белка, кодируемого полинуклеиновой кислотой, геном, таким как интересующий ген, ДНК или РНК, такой как целевая мРНК, путем влияния на транскрипцию и/или трансляцию полинуклеиновой кислоты, гена, такого как интересующий ген, ДНК или РНК, такой как целевая мРНК. Термин «ингибирование»

экспрессии полинуклеиновой кислоты, гена, такого как интересующий ген, ДНК или РНК, такой как целевая мРНК, может относиться к влиянию на транскрипцию и/или трансляцию полинуклеиновой кислоты, гена, такого как интересующий ген, ДНК или РНК, такой как целевая мРНК, так что уровень белка, кодируемого полинуклеиновой кислотой, геном, таким как интересующий ген, ДНК или РНК, такой как целевая мРНК, снижается или указанный белок исчезает.

[0141] Термин «функционально связаны» может относиться к функциональной взаимосвязи между двумя или более последовательностями нуклеиновых кислот, например, функциональной взаимосвязи регулирующей транскрипцию или сигнальной последовательности с транскрибируемой последовательностью. Например, нацеливающий мотив или нуклеиновая кислота, кодирующая нацеливающий мотив, функционально связаны с кодирующей последовательностью, если они экспрессируются в виде пребелка, который участвует в нацеливании полипептида, кодируемого указанной кодирующей последовательностью, на мембрану клетки, внутриклеточный или внеклеточный компартмент. Например, сигнальный пептид или нуклеиновая кислота, кодирующая сигнальный пептид, функционально связаны с кодирующей последовательностью, если они экспрессируются в виде пребелка, который участвует в секреции полипептида, кодируемого указанной кодирующей последовательностью. Например, промотор функционально связан, если он стимулирует или модулирует транскрипцию кодирующей последовательность.

[0142] Термин «последовательность Козак», «консенсусная последовательность Козак» или «консенсус Козак» может относиться к мотиву последовательности нуклеиновой кислоты, который функционирует как сайт инициации трансляции белка. Последовательности Козак всесторонне описаны в литературе, например, в Коzak, М., Gene 299(1-2):1-34, содержание которого полностью включено в данную заявку посредством ссылки.

Дизайн конструкции.

5

10

15

20

25

30

35

[0143] Настоящее изобретение, описанное в данной заявке, относится к композиции, содержащей полинуклеиновую кислоту или конструкцию РНК для экспрессии (i) миРНК, способных связываться с одной или более целевыми РНК (например, мРНК), и (ii) одного или более интересующих генов с одного транскрипта РНК. В соответствии с настоящим изобретением предложены средства для экспрессии (i) миРНК, способных связываться с одной или более целевыми мРНК, и (ii) одного или более интересующих белков одновременно с одного транскрипта РНК. В соответствии с настоящим изобретением

предложены средства одновременной модуляции экспрессии двух или более генов. В некоторых вариантах реализации миРНК, способная связываться с целевой мРНК в композиции, снижает экспрессию целевой мРНК, при этом одновременно интересующий ген экспрессируется или сверхэкспрессируется для повышения уровня белка, кодируемого интересующим В некоторых вариантах реализации рекомбинантная геном. полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением содержит (i) миРНК, которые могут быть нацелены на множество мРНК, и множество интересующих генов, (ii) множество копий миРНК, которые могут быть нацелены на одну мРНК, и множество копий одного интересующего гена, или (ііі) комбинацию (і) и (іі). В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением содержит миРНК, которые нацелены на множество мРНК, и множество копий одного интересующего гена. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением содержит множество копий миРНК, которые могут быть нацелены на одну мРНК, и множество интересующих генов. [0144] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном. В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с мишенью, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, разделены. В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с мишенью, и по нуклеиновой меньшей мере одна последовательность кислоты, кодирующая интересующий ген, разделены последовательностью нуклеиновой кислоты. В некоторых вариантах реализации разделяющая последовательность нуклеиновой кислоты кодирует или содержит линкер. В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с мишенью, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, расположены последовательно. Например, по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая

5

10

15

20

25

30

или содержащая миРНК, способную связываться с целевой РНК, не вставлена внутрь по меньшей мере одной последовательности нуклеиновой кислоты, интересующий ген. Например, по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, не последовательности вставлена внутрь интронной по меньшей мере последовательности нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации миРНК не влияет на экспрессию интересующего гена. В некоторых вариантах реализации миРНК не снижает экспрессию интересующего гена. В некоторых вариантах реализации композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, дополнительно содержит или кодирует линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (i) и (ii). В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК), и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген. В некоторых вариантах реализации линкер включает тРНК-линкер. Система тРНК эволюционно консервативна среди живых организмов и использует эндогенные РНКазы Р и Z для процессинга мультицистронных конструкций (Dong и др., 2016). В некоторых вариантах реализации тРНК-линкер может содержать последовательность нуклеиновой кислоты, содержащую AACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGG GTTCGATTCCCGGCTGGTGCA (SEQ ID NO: 24).

5

10

15

20

25

30

35

[0145] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) мРНК, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодирующей интересующий ген.

[0146] В некоторых вариантах реализации (i) и (ii) могут содержаться в направлении от 5' к 3'. В некоторых вариантах реализации (i) и (ii) могут не содержаться в направлении от 5' к 3'. В некоторых вариантах реализации (i) и (ii) могут содержаться в направлении от 3' к 5'. В некоторых вариантах реализации (i) и (ii) могут не содержаться или не присутствовать последовательно. В некоторых вариантах реализации (i) и (ii) могут содержаться или могут присутствовать последовательно. В некоторых аспектах указанная по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую

интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся или присутствуют последовательно. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (і), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii). В некоторых аспектах миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК. В некоторых аспектах миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее. В некоторых аспектах интересующий ген экспрессируется без сплайсинга РНК. В некоторых вариантах реализации (i) и (ii) могут быть разделены. В некоторых вариантах реализации (i) и (ii) могут быть расположены последовательно. В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, и мРНК, кодирующая интересующий ген, разделены. В некоторых вариантах реализации миРНК, способная связываться с целевой РНК, и мРНК, кодирующая интересующий ген, расположены последовательно. Например, в композиции миРНК, способная связываться с целевой РНК, расположена либо против хода транскрипции, либо по ходу транскрипции от мРНК, кодирующей интересующий ген. [0147] В некоторых вариантах реализации экспрессия интересующего гена повышается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК, по ходу транскрипции (или с 3'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с экспрессией интересующего гена с композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой РНК, против хода транскрипции (или с 5'-стороны) от последовательности нуклеиновой кислоты,

5

10

15

20

25

30

кодирующей интересующий ген. В некоторых вариантах реализации экспрессия интересующего гена повышается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 3' к 5', по сравнению с экспрессией интересующего гена с композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 5' к 3'.

5

10

15

20

25

30

35

[0148] Как описано в данной заявке, в некоторых вариантах реализации, в композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая по меньшей мере одну малую интерферирующую РНК (миРНК), способную связываться с целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, содержатся последовательно. В некоторых вариантах реализации в композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая по меньшей мере одну малую интерферирующую РНК (миРНК), способную связываться с целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, присутствуют последовательно. В некоторых вариантах реализации композиция содержит по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, малых интерферирующих РНК (миРНК), способных связываться с целевой РНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, последовательно. В некоторых вариантах реализации экспрессия интересующего гена снижается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 5' к 3', по сравнению с экспрессией интересующего гена с композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 3' к 5'. В некоторых вариантах реализации экспрессия интересующего гена снижается, когда композиция содержит последовательность

нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, способных связываться с целевой РНК, против хода транскрипции (или с 5'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с экспрессией интересующего гена с композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, по ходу транскрипции (или с 3'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации экспрессия интересующего гена снижается, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную по ходу транскрипции (с 3'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6 миРНК, по сравнению с экспрессией интересующего гена, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную против хода транскрипции (с 5'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более миРНК.

5

10

15

20

25

30

35

[0149] В некоторых вариантах реализации экспрессия интересующего гена повышается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 3' к 5', по сравнению с экспрессией интересующего гена с композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 5' к 3'. В некоторых вариантах реализации экспрессия интересующего гена повышается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, способных связываться с целевой РНК, по ходу транскрипции (или с 5'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с экспрессией интересующего гена с композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, против хода транскрипции (или с 3'-стороны) от последовательности нуклеиновой кислоты,

кодирующей интересующий ген. В некоторых вариантах реализации экспрессия интересующего гена повышается, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную против хода транскрипции (с 5'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, по сравнению с экспрессией интересующего гена, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную по ходу транскрипции (с 3'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более миРНК.

5

10

15

20

25

30

35

[0150] В некоторых вариантах реализации понижающая регуляция целевой РНК повышается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, малых интерферирующих РНК (миРНК), способных связываться с целевой РНК, по ходу транскрипции (или с 3'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с понижающей регуляцией целевой РНК из композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, против хода транскрипции (или с 5'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации понижающая регуляция целевой РНК повышается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 3' к 5', по сравнению с понижающей регуляцией целевой РНК из композиции, содержащей последовательности нуклеиновых кислот, кодирующие или содержащие две или более миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 5' к 3'. В некоторых вариантах реализации понижающая регуляция целевой РНК повышается, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, расположенных по ходу транскрипции (с 3'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с понижающей регуляцией целевой РНК, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, расположенные против хода транскрипции (с 5'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.

5

10

15

20

25

30

[0151] В некоторых вариантах реализации понижающая регуляция целевой РНК уменьшается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, малых интерферирующих РНК (миРНК), способных связываться с целевой РНК, против хода транскрипции (или с 5'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с понижающей регуляцией целевой РНК из композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, по ходу транскрипции (или с 3'-стороны) от последовательности нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации понижающая регуляция целевой РНК уменьшается, когда композиция содержит последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 5' к 3', по сравнению с понижающей регуляцией целевой РНК из композиции, содержащей последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, способных связываться с целевой РНК, и последовательность нуклеиновой кислоты, кодирующую интересующий ген, в направлении от 3' к 5'. В некоторых вариантах реализации понижающая регуляция целевой РНК уменьшается, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, расположенных против хода транскрипции (с 5'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген, по сравнению с понижающей регуляцией целевой РНК, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую две или более миРНК, расположенные по ходу транскрипции (с 3'стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.

[0152] В некоторых вариантах реализации экспрессия интересующего гена повышается, и понижающая регуляция целевой РНК повышается, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную против хода транскрипции (с 5'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более, предпочтительно от 2 до 10, более предпочтительно от 2 до 6, миРНК, по сравнению с экспрессией интересующего гена, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную по ходу транскрипции (с 3'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более миРНК.

5

10

15

20

25

30

35

[0153] В некоторых вариантах реализации относительное повышение экспрессии интересующего гена составляет от приблизительно 2 раз до приблизительно 30 раз. В некоторых вариантах реализации относительное повышение экспрессии интересующего гена составляет от приблизительно 2 раз до приблизительно 30 раз. В некоторых вариантах реализации относительное повышение экспрессии интересующего гена составляет от приблизительно 2 раз до приблизительно 5 раз, от приблизительно 2 раз до приблизительно 10 раз, от приблизительно 2 раз до приблизительно 15 раз, от приблизительно 2 раз до приблизительно 17 раз, от приблизительно 2 раз до приблизительно 18 раз, от приблизительно 2 раз до приблизительно 19 раз, от приблизительно 2 раз до приблизительно 20 раз, от приблизительно 2 раз до приблизительно 21 раз, от приблизительно 2 раз до приблизительно 22 раз, от приблизительно 2 раз до приблизительно 25 раз, от приблизительно 2 раз до приблизительно 30 раз, приблизительно 5 раз до приблизительно 10 раз, от приблизительно 5 раз до приблизительно 15 раз, от приблизительно 5 раз до приблизительно 17 раз, приблизительно 5 раз до приблизительно 18 раз, от приблизительно 5 раз до приблизительно 19 раз, от приблизительно 5 раз до приблизительно 20 раз, приблизительно 5 раз до приблизительно 21 раза, от приблизительно 5 раз до приблизительно 22 раз, от приблизительно 5 раз до приблизительно 25 раз, приблизительно 5 раз до приблизительно 30 раз, от приблизительно 10 раз до приблизительно 15 раз, от приблизительно 10 раз до приблизительно 17 раз, приблизительно 10 раз до приблизительно 18 раз, от приблизительно 10 раз до приблизительно 19 раз, от приблизительно 10 раз до приблизительно 20 раз, приблизительно 10 раз до приблизительно 21 раза, от приблизительно 10 раз до приблизительно 22 раз, от приблизительно 10 раз до приблизительно 25 раз, от

приблизительно 10 раз до приблизительно 30 раз, от приблизительно 15 раз до приблизительно 17 раз, от приблизительно 15 раз до приблизительно 18 раз, от приблизительно 15 раз до приблизительно 19 раз, от приблизительно 15 раз до приблизительно 20 раз, от приблизительно 15 раз до приблизительно 21 раза, приблизительно 15 раз до приблизительно 22 раз, от приблизительно 15 раз до приблизительно 25 раз, от приблизительно 15 раз до приблизительно 30 раз, от приблизительно 17 раз до приблизительно 18 раз, от приблизительно 17 раз до приблизительно 19 раз, от приблизительно 17 раз до приблизительно 20 раз, от приблизительно 17 раз до приблизительно 21 раза, от приблизительно 17 раз до приблизительно 22 раз, от приблизительно 17 раз до приблизительно 25 раз, от приблизительно 17 раз до приблизительно 30 раз, от приблизительно 18 раз до приблизительно 19 раз, от приблизительно 18 раз до приблизительно 20 раз, от приблизительно 18 раз до приблизительно 21 раза, от приблизительно 18 раз до приблизительно 22 раз, от приблизительно 18 раз до приблизительно 25 раз, от приблизительно 18 раз до приблизительно 30 раз, от приблизительно 19 раз до приблизительно 20 раз, от приблизительно 19 раз до приблизительно 21 раза, от приблизительно 19 раз до приблизительно 22 раз, от приблизительно 19 раз до приблизительно 25 раз, от приблизительно 19 раз до приблизительно 30 раз, приблизительно 20 раз до приблизительно 21 раза, приблизительно 20 раз до приблизительно 22 раз, от приблизительно 20 раз до приблизительно 25 раз, от приблизительно 20 раз до приблизительно 30 раз, от приблизительно 21 раза до приблизительно 22 раз, от приблизительно 21 раза до приблизительно 25 раз, от приблизительно 21 раза до приблизительно 30 раз, от приблизительно 22 раз до приблизительно 25 раз, от приблизительно 22 раз до приблизительно 30 раз, или от приблизительно 25 раз до приблизительно 30 раз. В некоторых вариантах реализации относительное повышение экспрессии интересующего гена составляет приблизительно 2 раза, приблизительно 5 раз, приблизительно 10 раз, приблизительно 15 раз, приблизительно 17 раз, приблизительно 18 раз, приблизительно 19 раз, приблизительно 20 раз, приблизительно 21 раз, приблизительно 22 раза, приблизительно 25 раз или приблизительно 30 раз. В некоторых вариантах реализации относительное повышение экспрессии интересующего гена составляет по меньшей мере приблизительно 2 раза, приблизительно 5 раз, приблизительно 10 раз, приблизительно 15 раз, приблизительно 17 раз, приблизительно 18 раз, приблизительно 19 раз, приблизительно 20 раз, приблизительно 21 раз, приблизительно 22 раза или приблизительно 25 раз. В некоторых вариантах реализации относительное повышение экспрессии интересующего гена

5

10

15

20

25

30

составляет не более чем приблизительно 5 раз, приблизительно 10 раз, приблизительно 15 раз, приблизительно 17 раз, приблизительно 18 раз, приблизительно 19 раз, приблизительно 20 раз, приблизительно 21 раз, приблизительно 22 раза, приблизительно 25 раз или приблизительно 30 раз.

5 [0154] В вариантах реализации относительное повышение понижающей регуляции целевой РНК составляет от приблизительно 1,1 раза до приблизительно 5 раз. В вариантах реализации относительное повышение понижающей регуляции целевой РНК составляет от приблизительно 1,1 раза до приблизительно 1,75 раз, от приблизительно 1,1 раза до приблизительно 2 раз, от приблизительно 1,1 раза до приблизительно 2,25 раз, от 10 приблизительно 1,1 раза до приблизительно 2,5 раз, от приблизительно 1,1 раза до приблизительно 3 раз, от приблизительно 1,1 раза до приблизительно 3,5 раз, от приблизительно 1,1 раза до приблизительно 4 раз, от приблизительно 1,1 раза до приблизительно 4,5 раз, от приблизительно 1,1 раза до приблизительно 5 раз, от приблизительно 1,5 раз до приблизительно 1,75 раз, от приблизительно 1,5 раз до 15 приблизительно 2 раз, от приблизительно 1,5 раз до приблизительно 2,25 раз, от приблизительно 1,5 раз до приблизительно 2,5 раз, от приблизительно 1,5 раз до приблизительно 3 раз, от приблизительно 1,5 раз до приблизительно 3,5 раз, от приблизительно 1,5 раз до приблизительно 4 раз, от приблизительно 1,5 раз до приблизительно 4,5 раз, от приблизительно 1,5 раз до приблизительно 5 раз, от 20 приблизительно 1,75 раз до приблизительно 2 раз, от приблизительно 1,75 раз до приблизительно 2,25 раз, от приблизительно 1,75 раз до приблизительно 2,5 раз, от приблизительно 1,75 раз до приблизительно 3 раз, от приблизительно 1,75 раз до приблизительно 3,5 раз, от приблизительно 1,75 раз до приблизительно 4 раз, от приблизительно 1,75 раз до приблизительно 4,5 раз, от приблизительно 1,75 раз до 25 приблизительно 5 раз, от приблизительно 2 раз до приблизительно 2,25 раз, от приблизительно 2 раз до приблизительно 2,5 раз, от приблизительно 2 раз до приблизительно 3 раз, от приблизительно 2 раз до приблизительно 3,5 раз, от приблизительно 2 раз до приблизительно 4 раз, от приблизительно 2 раз до приблизительно 4,5 раз, от приблизительно 2 раз до приблизительно 5 раз, от приблизительно 2,25 раз до 30 приблизительно 2,5 раз, от приблизительно 2,25 раз до приблизительно 3 раз, от приблизительно 2,25 раз до приблизительно 3,5 раз, от приблизительно 2,25 раз до приблизительно 4 раз, от приблизительно 2,25 раз до приблизительно 4,5 раз, от приблизительно 2,25 раз до приблизительно 5 раз, от приблизительно 2,5 раз до приблизительно 3 раз, от приблизительно 2,5 раз до приблизительно 3,5 раз, от 35 приблизительно 2,5 раз до приблизительно 4 раз, от приблизительно 2,5 раз до

приблизительно 4,5 раз, от приблизительно 2,5 раз до приблизительно 5 раз, от приблизительно 3 раз до приблизительно 3,5 раз, от приблизительно 3 раз до приблизительно 4 раз, от приблизительно 3 раз до приблизительно 4,5 раз, от приблизительно 3 раз до приблизительно 5 раз, от приблизительно 3,5 раз до приблизительно 4 раз, от приблизительно 3,5 раз до приблизительно 4,5 раз, приблизительно 3,5 раз до приблизительно 5 раз, от приблизительно 4 раз до приблизительно 4,5 раз, от приблизительно 4 раз до приблизительно 5 раз или от приблизительно 4,5 раз до приблизительно 5 раз. В вариантах реализации относительное повышение понижающей регуляции целевой РНК составляет приблизительно 1,5 раза, приблизительно 1,75 раз, приблизительно 2 раза, приблизительно 2,25 раз, приблизительно 2,5 раза, приблизительно 3 раза, приблизительно 3,5 раза, приблизительно 4 раза, приблизительно 4,5 раза или приблизительно 5 раз. В вариантах реализации относительное повышение понижающей регуляции целевой РНК составляет по меньшей мере приблизительно 1,5 раза, приблизительно 1,75 раз, приблизительно 2 раза, приблизительно 2,25 раз, приблизительно 2,5 раза, приблизительно 3 раза, приблизительно 3,5 раза, приблизительно 4 раза или приблизительно 4,5 раза. В вариантах реализации относительное повышение понижающей регуляции целевой РНК составляет не более чем приблизительно 1,75 раз, приблизительно 2 раза, приблизительно 2,25 раз, приблизительно 2,5 раза, приблизительно 3 раза, приблизительно 3,5 раза, приблизительно 4 раза, приблизительно 4,5 раза или приблизительно 5 раз.

5

10

15

20

25

30

35

[0155] В некоторых вариантах реализации экспрессия интересующего гена повышается в приблизительно от 2 раз до приблизительно 30 раз, и понижающая регуляция целевой РНК повышается в от приблизительно 1,1 раза до приблизительно 5 раз, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, расположенную против хода транскрипции (с 5'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более миРНК, по сравнению с экспрессией интересующего гена, когда последовательный вид включает по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий расположенную по ходу транскрипции (с 3'-стороны) от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей две или более миРНК.

[0156] В некоторых вариантах реализации композиция, содержащая рекомбинантную конструкцию РНК, дополнительно кодирует или содержит линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая

линкер, соединяет (i) и (ii). В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК), и мРНК, кодирующую интересующий ген. В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых вариантах реализации тРНК-линкер может содержать последовательность нуклеиновой кислоты, содержащую ААСАААGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGG GTTCGATTCCCGGCTGGTGCA (SEQ ID NO: 24).

5

10

15

20

25

30

35

[0157] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты кодирует линкер. В некоторых вариантах реализации кодируемый линкер представляет собой пептидный линкер 2А. В некоторых аспектах линкер, кодируемый или содержащийся в рекомбинантной конструкции нуклеиновой кислоты, имеет длину по меньшей мере 6 остатков нуклеиновой кислоты. В некоторых аспектах линкер, кодируемый или содержащийся в рекомбинантной конструкции полинуклеиновой кислоты, имеет длину по меньшей мере 7, по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 20, по меньшей мере 25, по меньшей мере 30, по меньшей мере 35, или по меньшей мере 40 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 50 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, 80 остатков нуклеиновой кислоты. В некоторых аспектах имеет длину до последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 10, до 15, до 20, до 25, до 30, до 35, до 40, до 45, до 50, до 55, до 60, до 65, до 70 или до 75 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты. В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 80 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 8 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 10 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до

приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 20 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 25 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 60 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 70 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 80 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 10 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 20 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 25 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 20 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 25 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 35 остатков

5

10

15

20

25

30

нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 20 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 25 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 20 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 25 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 15 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 20 остатков нуклеиновой кислоты до приблизительно 25 остатков нуклеиновой кислоты, от приблизительно 20 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 20 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от приблизительно 20 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 20 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 20 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 25 остатков нуклеиновой кислоты до приблизительно 30 остатков нуклеиновой кислоты, от приблизительно 25 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от

5

10

15

20

25

30

приблизительно 25 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 25 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 25 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 30 остатков нуклеиновой кислоты до приблизительно 35 остатков нуклеиновой кислоты, от приблизительно 30 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 30 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 30 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 35 остатков нуклеиновой кислоты до приблизительно 40 остатков нуклеиновой кислоты, от приблизительно 35 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 35 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты, от приблизительно 40 остатков нуклеиновой кислоты до приблизительно 45 остатков нуклеиновой кислоты, от приблизительно 40 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты или от приблизительно 45 остатков нуклеиновой кислоты до приблизительно 50 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину приблизительно 6 остатков нуклеиновой кислоты, приблизительно 8 остатков нуклеиновой кислоты, приблизительно 10 остатков нуклеиновой кислоты, приблизительно 12 остатков нуклеиновой кислоты, приблизительно 15 остатков нуклеиновой кислоты, приблизительно 20 остатков нуклеиновой кислоты, приблизительно 25 остатков нуклеиновой кислоты, приблизительно 30 остатков нуклеиновой кислоты, приблизительно 35 остатков нуклеиновой кислоты, приблизительно 40 остатков нуклеиновой кислоты, приблизительно 45 остатков нуклеиновой кислоты или приблизительно 50 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину по меньшей мере приблизительно 6 остатков нуклеиновой кислоты, приблизительно 8 остатков нуклеиновой кислоты, приблизительно 10 остатков нуклеиновой кислоты, приблизительно 12 остатков нуклеиновой кислоты, приблизительно 15 остатков нуклеиновой кислоты, приблизительно 20 остатков нуклеиновой кислоты, приблизительно 25 остатков нуклеиновой кислоты, приблизительно 30 остатков нуклеиновой кислоты, приблизительно 35 остатков нуклеиновой кислоты, приблизительно 40 остатков нуклеиновой кислоты или приблизительно 45 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину не более чем приблизительно 8 остатков нуклеиновой кислоты, приблизительно 10 остатков нуклеиновой кислоты, приблизительно 12 остатков нуклеиновой кислоты, приблизительно

5

10

15

20

25

30

15 остатков нуклеиновой кислоты, приблизительно 20 остатков нуклеиновой кислоты, приблизительно 25 остатков нуклеиновой кислоты, приблизительно 30 остатков нуклеиновой кислоты, приблизительно 35 остатков нуклеиновой кислоты, приблизительно 40 остатков нуклеиновой кислоты, приблизительно 45 остатков нуклеиновой кислоты или приблизительно 50 остатков нуклеиновой кислоты.

5

10

15

20

25

30

35

[0158] В некоторых аспектах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 15 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 7 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 8 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 9 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 10 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 11 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 6 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 8 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 9 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 10 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 11 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 7 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 9 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 10 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 11 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до

приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 8 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 9 остатков нуклеиновой кислоты до приблизительно 10 остатков нуклеиновой кислоты, от приблизительно 9 остатков нуклеиновой кислоты до приблизительно 11 остатков нуклеиновой кислоты, от приблизительно 9 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 9 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 9 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 9 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 11 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 10 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 11 остатков нуклеиновой кислоты до приблизительно 12 остатков нуклеиновой кислоты, от приблизительно 11 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 11 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 11 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 13 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 12 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты, от приблизительно 13 остатков нуклеиновой кислоты до приблизительно 14 остатков нуклеиновой кислоты, от приблизительно 13 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты или от приблизительно 14 остатков нуклеиновой кислоты до приблизительно 15 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину приблизительно 6 остатков нуклеиновой кислоты, приблизительно 7 остатков нуклеиновой кислоты, приблизительно 8 остатков нуклеиновой кислоты, приблизительно

5

10

15

20

25

30

9 остатков нуклеиновой кислоты, приблизительно 10 остатков нуклеиновой кислоты, приблизительно 11 остатков нуклеиновой кислоты, приблизительно 12 остатков нуклеиновой кислоты, приблизительно 13 остатков нуклеиновой кислоты, приблизительно 14 остатков нуклеиновой кислоты или приблизительно 15 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину по меньшей мере приблизительно 6 остатков нуклеиновой кислоты, приблизительно 7 остатков нуклеиновой кислоты, приблизительно 8 остатков нуклеиновой кислоты, приблизительно 9 остатков нуклеиновой кислоты, приблизительно 10 остатков нуклеиновой кислоты, приблизительно 11 остатков нуклеиновой кислоты, приблизительно 12 остатков нуклеиновой кислоты, приблизительно 13 остатков нуклеиновой кислоты или приблизительно 14 остатков нуклеиновой кислоты. В некоторых аспектах линкер имеет длину не более чем приблизительно 7 остатков нуклеиновой кислоты, приблизительно 8 остатков нуклеиновой кислоты, приблизительно 9 остатков нуклеиновой кислоты, приблизительно 10 остатков нуклеиновой кислоты, приблизительно 11 остатков нуклеиновой кислоты, приблизительно 12 остатков нуклеиновой кислоты, приблизительно 13 остатков нуклеиновой кислоты, приблизительно 14 остатков нуклеиновой кислоты или приблизительно 15 остатков нуклеиновой кислоты. [0159] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты кольцевая. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты линейная. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота представляет собой ДНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота представляет собой РНК.

5

10

15

20

25

30

35

[0160] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит промотор. В некоторых вариантах реализации промотор расположен против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей миРНК. Неограничивающие примеры промоторов включают Т3, Т7, SP6, P60, Syn5 и KP34, и т.д. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит промотор Т3. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит промотор SP6. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит промотор Syn5. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит промотор Syn5. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит промотор T7. В некоторых вариантах реализации промотор T7 содержит последовательность, содержащую

ТААТАССЯАСТСАСТАТА (SEQ ID NO: 25). В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК дополнительно содержит последовательность Козак.

5

10

15

20

25

30

35

[0161] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может быть кодон-оптимизирована. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота, применяемая в настоящем изобретении для транскрипции рекомбинантной конструкции РНК в соответствии с настоящим изобретением, и указанная рекомбинантная конструкция РНК в соответствии с настоящим изобретением, кодон-оптимизирована. Обычно оптимизация кодонов относится к процессу модификации последовательности нуклеиновой кислоты для экспрессии в интересующей клетке-хозяине путем замены по меньшей мере одного кодона (например, более чем 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 или более кодонов) нативной последовательности на кодоны, которые чаще или наиболее часто используются в генах этой клетки-хозяина, при этом сохраняется нативная последовательность аминокислот. Таблицы использования кодонов легко доступны, например, в базе данных «Codon Usage Database», и эти таблицы можно приспособить множеством способов. Также доступны компьютерные алгоритмы оптимизации кодонов конкретной последовательности для экспрессии в конкретной клеткехозяине, такие как Gene Forge® (Aptagen, Пенсильвания) и GeneOptimizer® (ThermoFischer, Массачусетс). В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может не быть кодон-оптимизированной.

[0162] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную полинуклеиновую кислоту или конструкцию РНК, содержащую: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержащих малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК), и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК может содержать 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих миРНК, способную связываться с целевой мРНК. В этом варианте реализации

каждая из двух или более последовательностей нуклеиновых кислот может кодировать или содержать миРНК, способную связываться с одной и той же целевой мРНК или с отличной целевой мРНК. В одном варианте реализации каждая из двух или более последовательностей нуклеиновых кислот может кодировать или содержать миРНК, способную связываться с одной и той же целевой мРНК. В другом варианте реализации каждая из двух или более последовательностей нуклеиновых кислот может кодировать или содержать миРНК, способную связываться с отличной целевой мРНК. В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК может содержать 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В этом варианте реализации каждая из двух или более последовательностей нуклеиновых кислот может кодировать один и тот же интересующий ген или отличный интересующий ген, причем мРНК, кодируемая указанным одним и тем же или отличным интересующим геном, отлична от целевой мРНК для миРНК. В одном варианте реализации каждая из двух или более последовательностей нуклеиновых кислот может кодировать один и тот же интересующий ген, причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК. В другом варианте реализации каждая из двух или более последовательностей нуклеиновых кислот может кодировать отличный интересующий ген, причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

5

10

15

20

25

30

35

[0163] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0164] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК,

способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

5

10

15

20

25

30

35

[0165] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0166] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0167] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную

связываться с одной и той же целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0168] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна нуклеиновая кислота, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0169] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

20

25

30

[0170] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна нуклеиновая кислота, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК,

кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

[0171] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

5

10

15

20

25

30

35

[0172] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0173] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

[0174] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и

две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

5

10

15

20

25

[0175] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0176] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0177] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или

содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

5

10

15

20

25

30

35

[0178] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

[0179] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

[0180] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих

интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от целевой мРНК для миРНК.

5

10

15

20

25

30

35

[0181] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с одной и той же целевой мРНК, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

[0182] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с отличной целевой мРНК, причем каждая из 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует отличный интересующий ген, и причем мРНК, кодируемая указанным отличным интересующим геном, отлична от целевой мРНК для миРНК.

[0183] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, и одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться со второй целевой мРНК, причем указанные первая и вторая целевые мРНК отличны, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один

и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от указанных первой и второй целевых мРНК, с которыми способна связываться указанная миРНК. Например, рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать пять последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем три из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, а другие две из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться со второй целевой мРНК, причем указанные первая и вторая целевые мРНК отличны, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от указанных первой и второй целевых мРНК, с которыми способна связываться указанная миРНК.

5

10

15

20

25

30

35

[0184] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, другая одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться со второй целевой мРНК, и другая одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с третьей целевой мРНК, причем первая, вторая и третья целевые мРНК отличны, причем по меньшей мере одна последовательность нуклеиновой кислоты, интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от первой, второй и третьей целевых мРНК, с которыми способна связываться указанная миРНК. Например, рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать пять последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и

по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем две из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, одна из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодирует или содержит миРНК, способную связываться со второй целевой мРНК, и одна из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодирует или содержит миРНК, способную связываться с третьей целевой мРНК, причем указанные первая целевая мРНК, вторая целевая мРНК и третья целевая мРНК отличны, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, кодирует один и тот же интересующий ген, и причем мРНК, кодируемая указанным одним и тем же интересующим геном, отлична от первой, второй и третьей целевых мРНК, с которыми способна связываться указанная миРНК.

5

10

15

20

25

30

35

[0185] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и три или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует первый интересующий ген, и одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует второй интересующий ген, причем первый интересующий ген и второй интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном и вторым интересующим геном, отличны от целевой мРНК для миРНК. Например, рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и пять последовательностей нуклеиновых кодирующих интересующий ген, причем ПО меньшей последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем три из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодируют первый интересующий ген, и две из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодируют второй интересующий ген, причем первый интересующий ген и второй интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном и вторым интересующим геном, отличны от целевой мРНК для миРНК.

5

10

15

20

25

30

35

[0186] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и три или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует первый интересующий ген, одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует второй интересующий ген, и одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген кодирует третий интересующий ген, причем указанные первый интересующий ген, второй интересующий ген и третий интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном, вторым интересующим геном и третьим интересующим геном, отличны от целевой мРНК для миРНК. Например, рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и пять последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК, причем три из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодируют первый интересующий ген, одна из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует второй интересующий ген, и одна из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует третий интересующий ген, причем указанные первый интересующий ген, второй интересующий ген и третий интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном, вторым интересующим геном и третьим интересующим геном, отличны от целевой мРНК для миРНК.

[0187] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать три или более последовательностей нуклеиновых

кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и три или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, и одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться со второй целевой мРНК, причем указанные первая и вторая целевые мРНК отличны, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует первый интересующий ген, и одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует второй интересующий ген, причем первый интересующий ген и второй интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном и вторым интересующим геном, отличны от первой и второй целевых мРНК, с которыми способна связываться указанная миРНК. Например, рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать пять последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и пять последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем три из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, а другие две из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться со второй целевой мРНК, причем указанные первая и вторая целевые мРНК отличны, причем три из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодируют первый интересующий ген, и две из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодируют второй интересующий ген, причем первый интересующий ген и второй интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном и вторым интересующим геном, отличны от первой и второй целевых мРНК, с которыми способна связываться указанная миРНК.

5

10

15

20

25

30

35

[0188] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и три или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем одна или более из трех или более последовательностей нуклеиновых кислот,

кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, другая одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться со второй целевой мРНК, и другая одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с третьей целевой мРНК, причем первая, вторая и третья целевые мРНК отличны, причем одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует первый интересующий ген, одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует второй интересующий ген, и одна или более из трех или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует третий интересующий ген, причем указанные первый интересующий ген, второй интересующий ген и третий интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном, вторым интересующим геном и третьим интересующим геном, отличны от первой, второй и третьей целевых мРНК, с которыми способна связываться указанная миРНК. Например, рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать пять последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и пять последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем две из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодируют или содержат миРНК, способную связываться с первой целевой мРНК, одна из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодирует или содержит миРНК, способную связываться со второй целевой мРНК, и одна из пяти последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, кодирует или содержит миРНК, способную связываться с третьей целевой мРНК, причем указанные первая целевая мРНК, вторая целевая мРНК и третья целевая мРНК отличны, и причем три из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодируют первый интересующий ген, одна ПЯТИ последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует второй интересующий ген, и одна из пяти последовательностей нуклеиновых кислот, кодирующих интересующий ген, кодирует третий интересующий ген, причем указанные первый интересующий ген, второй интересующий ген и третий интересующий ген отличны, и причем мРНК, кодируемые первым интересующим геном, вторым

5

10

15

20

25

интересующим геном и третьим интересующим геном, отличны от первой, второй и третьей целевых мРНК, с которыми способна связываться указанная миРНК.

[0189] В некоторых вариантах реализации, в которых множество интересующих генов кодируется полинуклеотидной конструкцией, все интересующие гены кодируют один и тот же белок. В некоторых вариантах реализации все интересующие гены кодируют отличные белки. В некоторых вариантах реализации более чем один интересующий ген кодирует один и тот же белок и по меньшей мере один интересующий ген кодирует отличный белок. В некоторых вариантах реализации, в которых множество миРНК кодируются полинуклеотидной конструкцией или содержатся в ней, все миРНК, которые кодируются полинуклеотидной конструкцией или содержатся в ней, способны связываться с одной и той же РНК. В некоторых вариантах реализации все миРНК способны связываться с отличными целевыми РНК. В некоторых вариантах реализации более чем одна миРНК способна связываться с одной и той же целевой РНК и по меньшей мере одна миРНК способна связываться с отличной целевой РНК. В некоторых вариантах реализации целевая РНК представляет собой мРНК. В некоторых вариантах реализации целевая РНК представляет собой некодирующую РНК. В некоторых вариантах реализации, в которых множество миРНК, которые кодируются полинуклеотидной конструкцией или содержатся в ней, способны связываться с одной и той же целевой РНК, все или некоторые из миРНК способны связываться с одним и тем же или с отличными сайтами связывания целевой РНК.

Рекомбинантная конструкция РНК

5

10

15

20

25

30

[0190] В одном варианте реализации настоящего изобретения, рекомбинантная конструкция полинуклеиновой кислоты представляет собой рекомбинантную конструкцию РНК. В некоторых вариантах реализации рекомбинантная конструкция РНК представляет собой голую РНК. В предпочтительном варианте реализации рекомбинантная конструкция РНК содержит 5'-кэп (например, аналог кэп, встраивающийся в прямой ориентации, CleanCap, кэп 0, кэп 1, кэп 2 или кэп из запертой нуклеиновой кислоты (ЗНК-кэп), и т.д.), участок внутренней посадки рибосомы (IRES) и/или поли(А)-хвост на 3'-конце, в частности, чтобы улучшить трансляцию. В некоторых вариантах реализации рекомбинантная конструкция РНК содержит дополнительные области, стимулирующие трансляцию, известные любому квалифицированному специалисту. В некоторых вариантах реализации 5'-кэп включает аналог кэп, встраивающийся в прямой ориентации, CleanCap, кэп 0, кэп 1, кэп 2 или кэп из запертой нуклеиновой кислоты (ЗНК-кэп). В некоторых вариантах

реализации 5'-кэп включает $m_2^{7,3'-O}G(5')ppp(5')G$, m7G, m7G(5')G, m7GpppG или m7GpppGm.

[0191] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую поли(A)-хвост. В некоторых вариантах реализации рекомбинантная конструкция РНК содержит поли(A)-хвост.

5

10

15

20

25

30

35

[0192] В некоторых вариантах реализации поли(А)-хвост содержит 1, 3, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215 или 220 пар оснований поли(A) (SEQ ID NO: 192). В некоторых вариантах реализации поли(A)-хвост содержит от 1 до 220 пар оснований поли(A) (SEQ ID NO: 191). В некоторых вариантах реализации поли(А)-хвост содержит от 1 до 20, от 1 до 40, от 1 до 60, от 1 до 80, от 1 до 100, от 1 до 120, от 1 до 140, от 1 до 160, от 1 до 180, от 1 до 200, от 1 до 220, от 20 до 40, от 20 до 60, от 20 до 80, от 20 до 100, от 20 до 120, от 20 до 140, от 20 до 160, от 20 до 180, от 20 до 200, от 20 до 220, от 40 до 60, от 40 до 80, от 40 до 100, от 40 до 120, от 40 до 140, от 40 до 160, от 40 до 180, от 40 до 200, от 40 до 220, от 60 до 80, от 60 до 100, от 60 до 120, от 60 до 140, от 60 до 160, от 60 до 180, от 60 до 200, от 60 до 220, от 80 до 100, от 80 до 120, от 80 до 140, от 80 до 160, от 80 до 180, от 80 до 200, от 80 до 220, от 100 до 120, от 100 до 140, от 100 до 160, от 100 до 180, от 100 до 200, от 100 до 220, от 120 до 140, от 120 до 160, от 120 до 180, от 120 до 200, от 120 до 220, от 140 до 160, от 140 до 180, от 140 до 200, от 140 до 220, от 160 до 180, от 160 до 200, от 160 до 220, от 180 до 200, от 180 до 220 или от 200 до 220 пар оснований поли(A) (SEQ ID NO: 194). В некоторых вариантах реализации поли(A)хвост содержит 1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 или 220 пар оснований поли(А) (SEQ ID NO: 195). В некоторых вариантах реализации поли(А)-хвост содержит по меньшей мере 1, 20, 40, 60, 80, 100, 120, 140, 160, 180 или 200 пар оснований поли(A) (SEQ ID NO: 199). В некоторых вариантах реализации поли(А)-хвост содержит не более 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 или 220 пар оснований поли(A) (SEQ ID NO: 196). В предпочтительном варианте реализации поли(А)-хвост содержит 120 пар оснований поли(A) (SEQ ID NO: 193).

[0193] В одном варианте реализации настоящего изобретения рекомбинантная конструкция РНК может содержать комбинацию модифицированных и немодифицированных нуклеотидов. В предпочтительном варианте реализации в такой модифицированной рекомбинантной конструкции РНК от 1 до 100%, предпочтительно от 10 до 100%, более предпочтительно от 50 до 100%, еще более предпочтительно от 90 до 100%, наиболее предпочтительно 100% нуклеотидов уридина могут быть модифицированы. В некоторых

вариантах реализации рекомбинантные конструкции РНК, транскрибированные с любых конструкций ДНК, описанных в данной заявке, могут содержать модифицированные уридины. В предпочтительном варианте реализации 100% нуклеотидов уридина в рекомбинантных конструкциях РНК, транскрибированных с любых конструкций ДНК, описанных в данной заявке, модифицированы. В некоторых вариантах реализации, содержащие аденозин, гуанозин и цитидин нуклеотиды не модифицированы или частично модифицированы, и они предпочтительно присутствуют в немодифицированной форме. модифицированных Предпочтительно содержание нуклеотидов уридина рекомбинантной конструкции РНК может находиться в диапазоне от 5 до 25%. Неограничивающие примеры модифицированных нуклеотидов уридина могут включать псевдоуридины, N¹-метилпсевдоуридины или N1-метилпсевдо-UTP, и можно использовать любые модифицированные нуклеотиды уридина, известные в данной области техники. В некоторых вариантах реализации рекомбинантная конструкция РНК может содержать комбинацию модифицированных и немодифицированных нуклеотидов, причем в такой модифицированной рекомбинантной конструкции РНК от 1 до 100%, предпочтительно от 10 до 100%, более предпочтительно от 50 до 100%, еще более предпочтительно от 90 до наиболее предпочтительно 100% нуклеотидов уридина могут включать псевдоуридины, N^1 -метилпсевдоуридины, N^1 -метилпсевдо-UTP или любой другой модифицированный нуклеотид уридина, известный в данной области техники. В некоторых вариантах реализации рекомбинантная конструкция РНК может содержать комбинацию модифицированных и немодифицированных нуклеотидов, причем в такой модифицированной рекомбинантной конструкции РНК от 1 до 100%, предпочтительно от 10 до 100%, более предпочтительно от 50 до 100%, еще более предпочтительно от 90 до 100%, наиболее предпочтительно 100% нуклеотидов уридина могут включать N^1 метилпсевдоуридины. В некоторых вариантах реализации рекомбинантные конструкции РНК, транскрибированные с любых конструкций ДНК, описанных в данной заявке, могут включать N^1 -метилпсевдоуридины. В предпочтительном варианте реализации 100% нуклеотидов уридина в рекомбинантных конструкциях РНК, транскрибированных с любых N^{1} конструкций ДНК, описанных В данной заявке, модифицированы на метилпсевдоуридины.

5

10

15

20

25

30

35

[0194] В некоторых вариантах реализации рекомбинантная конструкция РНК может быть кодон-оптимизирована. Обычно оптимизация кодонов относится к процессу модификации последовательности нуклеиновой кислоты для экспрессии в интересующей клетке-хозяине путем замены по меньшей мере одного кодона (например, более чем 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 или более кодонов) нативной последовательности на кодоны, которые чаще или

наиболее часто используются в генах этой клетки-хозяина, при этом сохраняется нативная последовательность аминокислот. Таблицы использования кодонов легко доступны, например, в базе данных «Codon Usage Database», и эти таблицы можно приспособить множеством способов. Также доступны компьютерные алгоритмы оптимизации кодонов конкретной последовательности для экспрессии в конкретной клетке-хозяине, такие как Gene Forge® (Арtagen, Пенсильвания) и GeneOptimizer® (ThermoFischer, Maccaчусетс), которая предпочтительна. В некоторых вариантах реализации рекомбинантная конструкция РНК может не быть кодон-оптимизирована.

5

10

15

20

35

[0195] В предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 8 (IL-8); и (ii) мРНК, кодирующую инсулиноподобный фактор роста 1 (IGF-1).

[0196] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 1-бета (IL-1-бета); и (ii) мРНК, кодирующую инсулиноподобный фактор роста 1 (IGF-1).

[0197] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 17 (IL-17); и (ii) мРНК, кодирующую интерлейкин 4 (IL-4).

[0198] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую:

25 (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) фактора некроза опухоли-альфа (TNF-альфа или TNF-α); и (ii) мРНК, кодирующую интерлейкин 4 (IL-4).

[0199] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую:

(i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) фактора некроза опухоли-альфа (TNF-альфа), и малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) интерлейкина 17 (IL-17); и (ii) мРНК, кодирующую интерлейкин 4 (IL-4).

[0200] В другом предпочтительном варианте реализации настоящее изобретение представляет собой композицию, содержащую конструкцию полинуклеиновой кислоты,

содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 1 - 8.

[0201] В другом предпочтительном варианте реализации настоящее изобретение представляет собой композицию, содержащую конструкцию полинуклеиновой кислоты, например, рекомбинантную конструкцию РНК, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 29 - 47.

[0202] В другом предпочтительном варианте реализации настоящее изобретение представляет собой композицию, содержащую конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 1 - 8 и последовательностей SEQ ID NO: 29 - 47.

[0203] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) киназы 2, подобной рецептору активина (ALK2); и (ii) мРНК, кодирующую

инсулиноподобный фактор роста 1 (IGF-1).

[0204] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) супероксиддисмутазы-1 (SOD1); и (ii) мРНК, кодирующую

инсулиноподобный фактор роста 1 (IGF-1).

5

10

15

20

25

30

35

[0205] В другом предпочтительном варианте реализации настоящего изобретения предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК (миРНК), способную связываться с информационной РНК (мРНК) супероксиддисмутазы-1 (SOD1); и (ii) мРНК, кодирующую эритропоэтин (EPO).

[0206] В другом предпочтительном варианте реализации настоящее изобретение представляет собой композицию, содержащую конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 152 - 158.

[0207] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты, описанная в данной заявке, содержит последовательность, по меньшей мере на 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% или по меньшей мере на 99% идентичную любой из последовательностей SEQ ID NO: 177 - 189. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты, описанная в данной

заявке, содержит последовательность, по меньшей мере на 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% или по меньшей мере на 99% идентичную SEQ ID NO: 190.

[0208] В другом предпочтительном варианте реализации настоящее изобретение представляет собой композицию, содержащую конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 177 - 189.

5

10

15

20

25

30

35

[0209] В другом предпочтительном варианте реализации настоящее изобретение представляет собой композицию, содержащую конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты SEQ ID NO: 190.

[0210] В некоторых аспектах, представленных в данной заявке, предложен способ получения конструкции РНК, содержащей миРНК, способную связываться с целевой мРНК, и мРНК, кодирующую интересующий ген. В некоторых вариантах реализации конструкцию РНК получают путем транскрипции in vitro. В этом варианте реализации предложена (і) конструкция полинуклеиновой кислоты, содержащая промотор, по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с целевой мРНК, по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, и последовательность нуклеиновой кислоты, кодирующую поли(А)-хвост; (іі) РНК-полимераза; и (ііі) смесь нуклеозидтрифосфатов (NTP) для транскрипции in vitro («бесклеточной»). Подробности относительно получения РНК с применением транскрипции in vitro, а также выделения и очистки транскрибированных РНК хорошо известны в данной области техники, и их можно найти, например, в Beckert & Masquida ((2011) Synthesis of RNA by In vitro Transcription. RNA. Methods in Molecular Biology (Methods and Protocols), vol 703. Humana Press). Неограничивающий перечень наборов для транскрипции in vitro включает MEGAscript™ T3 Transcription Kit, MEGAscript T7 Kit, MEGAscript™ SP6 Transcription Kit, MAXIscript™ T3 Transcription Kit, MAXIscriptTM T7 Transcription Kit, MAXIscriptTM SP6 Transcription Kit, MAXIscript[™] T7/T3 Transcription Kit, MAXIscript[™] SP6/T7 Transcription Kit, mMESSAGE mMACHINETM T3 Transcription Kit, mMESSAGE mMACHINETM T7 Transcription Kit, mMESSAGE mMACHINE™ SP6 Transcription Kit, MEGAshortscript™ T7 Transcription Kit, HiScribe™ T7 High Yield RNA Synthesis Kit, HiScribe™ T7 In Vitro Transcription Kit, AmpliScribe™ T7-Flash™ Transcription Kit, AmpliScribe™ T7 High Yield Transcription Kit, AmpliScribe™ T7-Flash™ Biotin-RNA Transcription Kit, T7 Transcription Kit, HighYield T7 RNA Synthesis Kit, DuraScribe® T7 Transcription Kit и т.д.

[0211] В некоторых вариантах реализации конструкция полинуклеиновой кислоты может быть линейной. Реакция транскрипции *in vitro* может дополнительно содержать систему

буфера для транскрипции, нуклеозидтрифосфаты (NTP) и ингибитор РНКазы. В некоторых вариантах реализации система буфера для транскрипции может содержать дитиотреитол (DTT) и ионы магния. NTP могут представлять собой встречающиеся в природе или не встречающиеся в природе (модифицированные) NTP. Неограничивающие примеры не встречающихся в природе (модифицированных) NTP включают N¹-метилпсевдоуридин, N^{1} - N^1 -этилпсевдоуридин, N^1 -метоксиметилпсевдоуридин, псевдоуридин, пропилпсевдоуридин, 2-тиоуридин, 4-тиоуридин, 5-метоксиуридин, 5-метилуридин, 5карбоксиметиловый 5-формилуридин, 5-карбоксиуридин, 5эфир уридина, 5-йодуридин, гидроксиуридин, 5-бромуридин, 5,6-дигидроуридин, 6-азауридин, тиеноуридин, 3-метилуридин, 1-карбоксиметилпсевдоуридин, 4-тио-1метилпсевдоуридин, 2-тио-1-метилпсевдоуридин, дигидроуридин, дигидропсевдоуридин, 2-метоксиуридин, 2-метокси-4-тиоуридин, 4-метоксипсевдоуридин, 4-метокси-2тиопсевдоуридин, 5-метилцитидин, 5-метоксицитидин, 5-гидроксиметилцитидин, 5формилцитидин, 5-карбоксицитидин, 5-гидроксицитидин, 5-йодцитидин, 5-бромцитидин, 2-тиоцитидин, 5-азацитидин, псевдоизоцитидин, 3-метилцитидин, N⁴-ацетилцитидин, 5формилцитидин, N⁴-метилцитидин, 5-гидроксиметилцитидин, 1-метилпсевдоизоцитидин, 4-метоксипсевдоизоцитидин и 4-метокси-1-метилпсевдоизоцитидин, N^1 -метиладенозин, N^6 -изопентениладенозин, N^6 -метил-2-аминоаденозин, N^6 -метиладенозин, $N^6 \cdot N^6$ диметиладенозин, 7-метиладенин, 2-метилтиоаденин 2-метоксиаденин. Неограничивающие примеры ДНК-зависимых РНК-полимераза включают РНКполимеразы Т3, Т7, SP6, P60, Syn5 и KP34. В некоторых вариантах реализации РНКполимераза выбрана из группы, состоящей из РНК-полимеразы Т3, РНК-полимеразы Т7, РНК-полимеразы SP6, РНК-полимеразы P60, РНК-полимеразы Syn5 и РНК-полимеразы КРЗ4. В некоторых вариантах реализации РНК-полимераза представляет собой РНКполимеразу Т3. В некоторых вариантах реализации РНК-полимераза представляет собой РНК-полимераза SP6. В некоторых вариантах реализации РНК-полимераза представляет собой РНК-полимеразу Р60. В некоторых вариантах реализации РНК-полимераза представляет собой РНК-полимеразу Syn5. В некоторых вариантах реализации РНКполимераза представляет собой РНК-полимеразу КР34. В предпочтительном варианте реализации РНК-полимераза представляет собой РНК-полимеразу Т7.

5

10

15

20

25

30

35

[0212] В дополнительных вариантах реализации транскрибированные молекулы РНК можно выделить и очистить из реакционной смеси для транскрипции *in vitro*. В этих вариантах реализации транскрибированные молекулы РНК можно выделить и очистить, применяя очистку на колонке. Подробности выделения и очистки транскрибированных РНК из реакционной смеси для транскрипции *in vitro* хорошо известны в данной области

техники, и можно применять любые доступные для приобретения наборы. Неограничивающий перечень наборов для очистки РНК включает MEGAclear Kit, Monarch® RNA Cleanup Kit, EasyPure® RNA Purification Kit, NucleoSpin® RNA Clean-up и т.д.

5

10

15

20

25

30

<u>Рекомбинантная конструкция полинуклеиновой кислоты для лечения вирусного</u> <u>заболевания или состояния.</u>

[0213] Рекомбинантная конструкция полинуклеиновой кислоты в соответствии с настоящим изобретением может быть предназначена для лечения заболеваний и состояний, связанных с вирусной инфекцией. В данных вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты может одновременно снижать экспрессию одного или более белков, предоставляя последовательность нуклеиновой кислоты, кодирующую или содержащую одну или множество видов малых интерферирующих РНК (миРНК), способных связываться со специфической(-ими) мишенью(-ями), и последовательность нуклеиновой кислоты, кодирующую один или множество белков для сверхэкспрессии. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота представляет собой ДНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота представляет собой РНК.

[0214] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную полинуклеиновую кислоту или конструкцию РНК, содержащую: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную специфически связываться с целевой РНК (например, мРНК или некодирующей РНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

[0215] В некоторых вариантах реализации (i) и (ii) ориентированы в направлении от 5' к 3' (элементы (i) расположены против хода транскрипции от элементов (ii)). В некоторых вариантах реализации (i) и (ii) не ориентированы в направлении от 5' к 3' (например, элемент(ы) (ii) расположены против хода транскрипции от элементов (i)). В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную специфически связываться с целевой РНК (например, мРНК или некодирующей РНК), расположена против хода транскрипции от по меньшей мере одной последовательности

нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную специфически связываться с целевой РНК (например, мРНК или некодирующей РНК), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (i) и (ii). В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную специфически связываться с целевой РНК (например, мРНК или некодирующей РНК), и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген. В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты кольцевая. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты линейная. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой ДНК. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты представляет собой РНК. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит нуклеиновой представленную В одной последовательность кислоты, ИЗ последовательностей SEQ ID NO: 1 - 8 или 29 - 47. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность нуклеиновой кислоты, представленную в одной из последовательностей SEQ ID NO: 152 -158. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность нуклеиновой кислоты, представленную в одной из последовательностей SEQ ID NO: 177 - 190.

5

10

15

20

25

30

35

[0216] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост. В некоторых вариантах реализации поли(А)-хвост содержит 1 - 220 остатков А (SEQ ID NO: 191). В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит 5'-кэп. В некоторых вариантах реализации 5'-кэп включает аналог кэп,

встраивающийся в прямой ориентации, CleanCap, кэп 0, кэп 1, кэп 2 или кэп из запертой нуклеиновой кислоты (ЗНК-кэп). В некоторых вариантах реализации 5'-кэп включает $m_2^{7,3'}$ - ${}^{O}G(5')$ ррр(5')G, m7G, m7G(5')G, m7GрррG или m7GрррGm. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит промотор. В некоторых вариантах реализации промотор выбран из группы, состоящей из Т3, Т7, SP6, P60, Syn5 и KP34. В некоторых вариантах реализации промотор представляет собой промотор Т7. В некоторых вариантах реализации промотор Т7 расположен против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей миРНК. В некоторых вариантах реализации промотор Т7 расположен против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей или содержащей интересующий ген. В некоторых вариантах реализации промотор Т7 содержит последовательность TAATACGACTCACTATA (SEQ ID NO: 25). В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность Козак. В некоторых вариантах реализации последовательность Козак представляет собой GCCACC (SEQ ID NO: 26).

5

10

15

20

25

30

35

[0217] В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты кодирует или содержит 1 - 10 видов миРНК. В некоторых вариантах реализации виды миРНК одинаковы. В некоторых вариантах реализации виды миРНК отличны. В некоторых вариантах реализации некоторые виды миРНК одинаковы и некоторые отличны. В некоторых вариантах реализации миРНК содержит смысловую цепь миРНК. В некоторых вариантах реализации миРНК содержит антисмысловую цепь миРНК. В некоторых вариантах реализации миРНК содержит смысловую и антисмысловую цепи миРНК. В некоторых вариантах реализации миРНК не влияет на экспрессию интересующего гена. В некоторых вариантах реализации миРНК не ингибирует экспрессию интересующего гена. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способных связываться с целевой мРНК. В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой мРНК. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с отличной целевой мРНК.

5

10

15

20

25

30

35

[0218] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК IL-6; и (ii) мРНК, кодирующую интерферон бета (IFN-бета). В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 29 или 30 (Соединение В1 или В2).

[0219] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 31 (Соединение В3).

[0220] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В

сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 32 (Соединение В4).

[0221] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК IL-6R-бета. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEO ID NO: 33 (Соединение В5).

[0222] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК АСЕ2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 34 или 35 (Соединение В6 или В7).

[0223] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (і) по меньшей мере одну малую интерферирующую РНК (миРНК), способную специфически связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную специфически связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, например, композиция, содержащая Соединение В8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 или обоими. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 36.

5

10

15

20

25

30

35

[0224] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 37 или 39 (Соединение В9 или В11). [0225] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 38 (Соединение В10).

5

10

15

20

25

30

35

[0226] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS-CoV или обоими. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 и/или MERS-CoV. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 40, 41 и 42 (Соединения B12, B13 и B14).

[0227] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК IL-6, по меньшей мере одну миРНК, способную специфически связываться с мРНК ACE2, и по меньшей мере одну миРНК, способную специфически связываться с мРНК S

SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты в (ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид IFN-бета представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 43, 44 и 45 (Соединения B15, B16 и B17).

[0228] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну малую интерферирующую РНК, способную специфически связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную специфически связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 46 (Соединение В18). В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 190 (Соединение В18).

[0229] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах композиция содержит или кодирует по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит или кодирует 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах композиция содержит или кодирует 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или

отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 47 (Соединение В19).

5

10

15

20

25

30

35

[0230] В некоторых аспектах конструкция IFN-бета содержит модифицированный сигнальный пептид, описанный в данной заявке. В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 29 - 47. В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, представленную в SEQ ID NO: 190. В некоторых аспектах. композиция. содержащая рекомбинантную конструкцию полинуклеиновой кислоты, пригодна для лечения вирусной инфекции, заболевания или состояния. В некоторых аспектах композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения вирусной инфекции, заболевания или состояния.

[0231] В некоторых вариантах реализации в соответствии с настоящим изобретением предложена композиция и связанные с ней способы, причем указанная композиция содержит рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую: по меньшей мере одну миРНК, способную связываться с целевой РНК; и мРНК, кодирующую интересующий ген; причем указанная миРНК нацелена на РНК, выбранную из: мРНК IL-8, мРНК IL-1-бета, мРНК IL-17, мРНК TNF-альфа, РНК ORF1ab SARS CoV-2 (полипротеина PP1ab, например, в некодирующей области или когда он кодирует белок, который выбран из: неструктурного белка SARS CoV-2 (NSP), Nsp1, Nsp3 (Nsp3b, Nsp3c, PLpro и Nsp3e), комплекса Nsp7 Nsp8, Nsp9-Nsp10 и Nsp14-Nsp16, 3CLpro, Е-канала (белка E), ORF7a, C-концевого связывающего РНК домена (CRBD), N-концевого связывающего РНК домена (NRBD), геликазы и RdRp), мРНК шиповидного белка (S) SARS CoV-2, мРНК нуклеокапсидного белка (N) SARS CoV-2, мРНК фактора некроза опухоли-альфа (TNF-альфа), мРНК интерлейкина (включая, но не ограничиваясь (например, IL-1-альфа, IL-1-бета), интерлейкином 6 интерлейкином 6R (IL-6R), интерлейкином 6R альфа (IL-6R-альфа), интерлейкином 6R бета (IL-6R-бета), интерлейкином 18 (IL-18), интерлейкином 36 альфа (IL-36-альфа), 36 бета (IL-36-бета), интерлейкином 36 гамма (IL-36-гамма), интерлейкином интерлейкином 33 (IL-33)), мРНК ангиотензинпревращающего фермента-2 (ACE2), мРНК трансмембранной сериновой протеазы 2 (TMPRSS2) и РНК, кодирующей NSP12 и 13; и

интересующий ген кодирует белок, выбранный из: IGF-1, IL-4, IGF-1 (включая его производные, описанные в других местах в данной заявке), карбоксипептидаз (например, ACE, ACE2, CNDP1, CPA1, CPA2, CPA4, CPA5, CPA6, CPB1, CPB2, CPE, CPN1, CPQ, CPXM1, CPZ, SCPEP1); цитокинов (например, BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8A, BMP8B, C1QTNF4, CCL1, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL2, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L, CCL4L2, CCL5, CCL7, CCL8, CD40LG, CER1, CKLF, CLCF1, CNTF, CSF1, CSF2, CSF3, CTF1, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, CXCL2, CXCL3, CXCL5, CXCL8, CXCL9, DKK1, DKK2, DKK3, DKK4, EDA, EBI3, FAM3B, FAM3C, FASLG, FLT3LG, GDF1, GDF10, GDF11, GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GPI, GREM1, GREM2, GRN, IFNA1, IFNA13, IFNA10, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, IL10, IL11, IL12A, IL12B, IL13, IL15, IL16, IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL19, IL1A, IL1B, IL1F10, IL2, IL20, IL21, IL22, IL23A, IL24, IL25, IL26, IL27, IL3, IL31, IL32, IL33, IL34, IL36A, IL36B, IL36G, IL36RN, IL37, IL4, IL5, IL6, IL7, IL9, LEFTY1, LEFTY2, LIF, LTA, MIF, MSTN, NAMPT, NODAL, OSM, PF4, PF4V1, SCGB3A1, SECTM1, SLURP1, SPP1, THNSL2, THPO, TNF, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TSLP, VSTM1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1 и XCL2); внеклеточных лигандов и транспортеров (например, APCS, CHI3L1, CHI3L2, CLEC3B, DMBT1, DMKN, EDDM3A, EDDM3B, EFNA4, EMC10, ENAM, EPYC, ERVH48-1, F13B, FCN1, FCN2, GLDN, GPLD1, HEG1, ITFG1, KAZALD1, KCP, LACRT, LEG1, METRN, NOTCH2NL, NPNT, OLFM1, OLFML3, PRB2, PSAP, PSAPL1, PSG1, PSG6, PSG9, PTX3, PTX4, RBP4, RNASE10, RNASE12, RNASE13, RNASE9, RSPRY1, RTBDN, S100A12, S100A13, S100A7, S100A8, SAA2, SAA4, SCG1, SCG2, SCG3, SCGB1C1, SCGB1C2, SCGB1D1, SCGB1D2, SCGB1D4, SCGB2B2, SCGB3A2, SCGN, SCRG1, SCUBE1, SCUBE2, SCUBE3, SDCBP, SELENOP, SFTA2, SFTA3, SFTPA1, SFTPA2, SFTPC, SFTPD, SHBG, SLURP2, SMOC1, SMOC2, SMR3A, SMR3B, SNCA, SPATA20, SPATA6, SOGA1, SPARC, SPARCL1, SPATA20, SPATA6, SRPX2, SSC4D, STX1A, SUSD4, SVBP, TCN1, TCN2, TCTN1, TF, TULP3, TFF2, TFF3, THSD7A, TINAG, TINAGL1, TMEFF2, TMEM25, VWC2L); белков внеклеточного матрикса (например, ABI3BP, AGRN, CCBE1, CHL1, COL15A1, COL19A1, COLEC11, DMBT1, DRAXIN, EDIL3, ELN, EMID1, EMILIN1, EMILIN2, EMILIN3, EPDR1, FBLN1, FBLN2, FBLN5, FLRT1, FLRT2, FLRT3, FREM1, GLDN, IBSP, KERA, KIAA0100,

5

10

15

20

25

30

KIRREL3, KRT10, LAMB2, MGP, RPTN, SBSPON, SDC1, SDC4, SEMA3A, SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G, SIGLEC1, SIGLEC10, SIGLEC6, SLIT1, SLIT2, SLIT3, SLITRK1, SNED1, SNORC, SPACA3, SPACA7, SPON1, SPON2, STATH, SVEP1, TECTA, TECTB, TNC, TNN, TNR, TNXB); глюкозидаз (AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, CEMIP, CHIA, CHIT1, FUCA2, GLB1L, GLB1L2, HPSE, HYAL1, HYAL3, KL, LYG1, LYG2, LYZL1, LYZL2, MAN2B2, SMPD1, SMPDL3B, SPACA5, SPACA5B); гликозилтрансфераз (например, ART5, B4GALT1, EXTL2, GALNT1, GALNT2, GLT1D1, MGAT4A, ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST6GAL1, XYLT1); факторов роста (например, AMH, ARTN, BTC, CDNF, CFC1, CFC1B, CHRDL1, CHRDL2, CLEC11A, CNMD, EFEMP1, EGF, EGFL6, EGFL7, EGFL8, EPGN, EREG, EYS, FGF1, FGF10, FGF16, FGF17, FGF18, FGF19, FGF2, FGF20, FGF21, FGF22, FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FRZB, GDNF, GFER, GKN1, HBEGF, HGF, IGF-1, IGF2, INHA, INHBA, INHBB, INHBC, INHBE, INS, KITLG, MANF, MDK, MIA, NGF, NOV, NRG1, NRG2, NRG3, NRG4, NRTN, NTF3, NTF4, OGN, PDGFA, PDGFB, PDGFC, PDGFD, PGF, PROK1, PSPN, PTN, SDF1, SDF2, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5, TDGF1, TFF1, TGFA, TGFB1, TGFB2, TGFB3, THBS4, TIMP1, VEGFA, VEGFB, VEGFC, VEGFD, WISP3); белков, связывающих факторы роста (например, CHRD, CYR61, ESM1, FGFBP1, FGFBP2, FGFBP3, HTRA1, GHBP, IGFALS, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7, LTBP1, LTBP2, LTBP3, LTBP4, SOSTDC1, NOG, TWSG1 и WIF1); белков, связывающих гепарин (например, ADA2, ADAMTSL5, ANGPTL3, APOB, APOE, APOH, COL5A1, COMP, CTGF, FBLN7, FN1, FSTL1, HRG, LAMC2, LIPC, LIPG, LIPH, LIPI, LPL, PCOLCE2, POSTN, RSPO1, RSPO2, RSPO3, RSPO4, SAA1, SLIT2, SOST, THBS1, VTN); гормонов (например, ADCYAP1, ADIPOQ, ADM, ADM2, ANGPTL8, APELA, APLN, AVP, C1QTNF12, C1QTNF9, CALCA, CALCB, CCK, CGA, CGB1, CGB2, CGB3, CGB5, CGB8, COPA, CORT, CRH, CSH1, CSH2, CSHL1, ENHO, EPO, ERFE, FBN1, FNDC5, FSHB, GAL, GAST, GCG, GH, GH1, GH2, GHRH, GHRL, GIP, GNRH1, GNRH2, GPHA2, GPHB5, IAPP, INS, INSL3, INSL4, INSL5, INSL6, LHB, METRNL, MLN, NPPA, NPPB, NPPC, OSTN, OXT, PMCH, PPY, PRL, PRLH, PTH, PTHLH, PYY, RETN, RETNLB, RLN1, RLN2, RLN3, SCT, SPX, SST, STC1, STC2, TG, TOR2A, TRH, TSHB, TTR, UCN, UCN2, UCN3, UTS2, UTS2B и VIP); гидролаз (например, AADACL2, ABHD15, ACP7, ACPP, ADA2, ADAMTSL1, AOAH, ARSF, ARSI, ARSJ, ARSK, BTD, CHI3L2, ENPP1, ENPP2, ENPP3, ENPP5, ENTPD5, ENTPD6, GBP1, GGH, GPLD1, HPSE, LIPC, LIPF, LIPG, LIPH, LIPI, LIPK, LIPM, LIPN, LPL, PGLYRP2, PLA1A, PLA2G10, PLA2G12A, PLA2G1B, PLA2G2A, PLA2G2D, PLA2G2E, PLA2G2F, PLA2G3, PLA2G5, PLA2G7, PNLIP, PNLIPRP2, PNLIPRP3, PON1, PON3, PPT1, SMPDL3A, THEM6, THSD1 и THSD4); иммуноглобулинов (например, IGSF10, IGKV1-12, IGKV1-16, IGKV1-33, IGKV1-

5

10

15

20

25

30

6, IGKV1D-12, IGKV1D-39, IGKV1D-8, IGKV2-30, IGKV2D-30, IGKV3-11, IGKV3D-20, IGKV5-2, IGLC1, IGLC2, IGLC3); изомераз (например, NAXE, PPIA, PTGDS); киназ (например, ADCK1, ADPGK, FAM20C, ICOS, PKDCC); лиаз (например, PM20D1, PAM, САб); ингибиторов металлоферментов (например, FETUB, SPOCK3, TIMP2, TIMP3, TIMP4, WFIKKN1, WFIKKN2); металлопротеаз (например, ADAM12, ADAM28, ADAM9, ADAMDEC1, ADAMTS1, ADAMTS12, ADAMTS13, ADAMTS10, ADAMTS14, ADAMTS15, ADAMTS16, ADAMTS17, ADAMTS18, ADAMTS19, ADAMTS20, ADAMTS20, ADAMTS3, ADAMTS4, ADAMTS5, ADAMTS6, ADAMTS7, ADAMTS8, ADAMTS9, CLCA1, CLCA2, CLCA4, IDE, MEP1B, MMEL1, MMP1, MMP10, MMP11, MMP12, MMP13, MMP16, MMP17, MMP19, MMP2, MMP20, MMP21, MMP24, MMP25, MMP26, MMP28, MMP3, MMP7, MMP8, MMP9, PAPPA, PAPPA2, TLL1, TLL2); белков молока (например, CSN1S1, CSN2, CSN3, LALBA); нейроактивных белков (например, CARTPT, NMS, NMU, NPB, NPFF, NPS, NPVF, NPW, NPY, PCSK1N, PDYN, PENK, PNOC, POMC, PROK2, PTH2, PYY2, PYY3, QRFP, TAC1 и TAC3); протеаз (например, ADAMTS6, C1R, C1RL, C2, CASP4, CELA1, CELA2A, CELA2B, CFB, CFD, CFI, CMA1, CORIN, CTRB1, CTRB2, CTSB, CTSD, DHH, F10, F11, F12, F2, F3, F7, F8, F9, FAP, FURIN, GZMA, GZMK, GZMM, HABP2, HGFAC, HTRA3, HTRA4, IHH, KLK10, KLK11, KLK12, KLK13, KLK14, KLK15, KLK3, KLK4, KLK5, KLK6, KLK7, KLK8, KLK9, KLKB1, MASP1, MASP2, MST1L, NAPSA, OVCH1, OVCH2, PCSK2, PCSK5, PCSK6, PCSK9, PGA3, PGA4, PGA5, PGC, PLAT, PLAU, PLG, PROC, PRSS1, PRSS12, PRSS2, PRSS22, PRSS23, PRSS27, PRSS29P, PRSS3, PRSS33, PRSS36, PRSS38, PRSS3P2, PRSS42, PRSS44, PRSS47, PRSS48, PRSS53, PRSS57, PRSS58, PRSS8, PRTN3, RELN, REN, TMPRSS11D, TMPRSS11E, TMPRSS2, TPSAB1, TPSB2, TPSD1); ингибиторов протеаз (например, A2M, A2ML1, AMBP, ANOS1, COL28A1, COL6A3, COL7A1, CPAMD8, CST1, CST2, CST3, CST4, CST5, CST6, CST7, CST8, CST9, CST9L, CST9LP1, CSTL1, EPPIN, GPC3, HMSD, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, KNG1, OPRPN, OVOS1, OVOS2, PAPLN, PI15, PI16, PI3, PZP, R3HDML, SERPINA1, SERPINA10, SERPINA11, SERPINA12, SERPINA13P, SERPINA3, SERPINA4, SERPINA5, SERPINA7, SERPINA9, SERPINB2, SERPINB5, SERPINC1, SERPINE1, SERPINE2, SERPINE3, SERPINF2, SERPING1, SERPINI1, SERPINI2, SPINK1, SPINK13, SPINK14, SPINK2, SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, SPINK9, SPINT1, SPINT3, SPINT4, SPOCK1, SPOCK2, SPP2, SSPO, TFPI, TFPI2, WFDC1, WFDC10A, WFDC13, WFDC2, WFDC3, WFDC5, WFDC6, WFDC8); протеинфосфатаз (например, ACP7, ACPP, PTEN, PTPRZ1); эстераз (например, BCHE, CEL, CES4A, CES5A, NOTUM, SIAE); трансфераз (например, METTL24, FKRP, CHSY1, CHST9, B3GAT1); вазоактивных белков (например, AGGF1, AGT, ANGPT1, ANGPT2, ANGPTL4, ANGPTL6, EDN1, EDN2, EDN3, NTS),

5

10

15

20

25

30

интерферона I типа (например, IFN-α, включая, но не ограничиваясь интерфероном альфаn3, интерфероном альфа-2a и интерфероном альфа-2b, IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-ν, IFN-τ и IFN-ω), интерферона II типа (например, IFN-γ), интерферона III типа (например, IFN-λ), интерлейкина, например, IL-37, IL-38, и растворимого рецептора ACE2. В некоторых композиция, рекомбинантную аспектах, содержащая конструкцию полинуклеиновой кислоты, пригодна для лечения вирусной инфекции, заболевания или состояния. В некоторых аспектах композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения вирусной инфекции, заболевания или состояния. В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза. Рекомбинантная конструкция РНК для лечения вирусного заболевания или состояния.

[0232] Как описано выше, в некоторых аспектах, рекомбинантная конструкция полинуклеиновой кислоты представляет собой рекомбинантную конструкцию РНК. В некоторых аспектах рекомбинантная конструкция полинуклеиновой кислоты или рекомбинантная конструкция РНК применима в композиции для лечения или предотвращения вирусной инфекции, заболевания или состояния. В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) малую интерферирующую РНК

интересующего гена; причем целевая мРНК отличается от мРНК, кодирующей

(миРНК), способную связываться с целевой РНК (например, мРНК); и (ii) мРНК

интересующий ген.

5

10

15

20

25

30

35

[0233] В некоторых вариантах реализации рекомбинантная конструкция РНК содержит 1-10 видов миРНК. В некоторых вариантах реализации указанные виды миРНК одинаковы, например, способны связываться с одной и той же целевой мРНК. В некоторых вариантах реализации указанные виды миРНК отличны, например, способны связываться с отличными целевыми мРНК. В некоторых вариантах реализации некоторые виды миРНК одинаковы и некоторые отличны. В некоторых вариантах реализации миРНК содержит смысловую цепь миРНК. В некоторых вариантах реализации миРНК содержит смысловую цепь миРНК. В некоторых вариантах реализации миРНК содержит смысловую и антисмысловую цепи миРНК. В некоторых вариантах реализации миРНК не влияет на экспрессию интересующего гена. В некоторых вариантах реализации миРНК не ингибирует экспрессию интересующего гена. В некоторых вариантах реализации рекомбинантная конструкция РНК содержит две или более последовательностей нуклеиновых кислот, содержащих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция РНК дополнительно

содержит или кодирует линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет каждую из двух или более последовательностей нуклеиновых кислот, содержащих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации линкер включает тРНК-линкер. В некоторых вариантах реализации линкер включает пептидный линкер 2A. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот содержит миРНК, способную связываться с одной и той же целевой мРНК. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот содержит миРНК, способную связываться с отличной целевой мРНК. [0234] В некоторых вариантах реализации экспрессия целевой мРНК модулируется посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации осуществляется понижающая регуляция экспрессии целевой мРНК посредством миРНК, способной специфически связываться с целевой мРНК.

[0235] В некоторых вариантах реализации рекомбинантная конструкция РНК содержит последовательность нуклеиновой кислоты, содержащую интересующий ген (и, тем самым, кодирующую интересующую мРНК и/или интересующий белок, соответствующие интересующему гену). В некоторых вариантах реализации рекомбинантная конструкция РНК содержит две или более последовательностей нуклеиновых кислот, каждая из которых содержит интересующий ген и, тем самым, каждая кодирует интересующую мРНК и/или интересующий белок, соответствующий указанному гену.

[0236] В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот содержит один и тот же интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует одну и ту же мРНК и/или интересующий белок. В некоторых вариантах реализации рекомбинантная конструкция РНК содержит три или более последовательностей нуклеиновых кислот, каждая из которых содержит интересующий ген и, тем самым, каждая кодирует интересующую мРНК и/или интересующий белок, соответствующий указанному гену. В некоторых вариантах реализации каждая из трех или более последовательностей нуклеиновых кислот может содержать один и тот же интересующий ген, кодировать одну и ту же интересующую мРНК и/или кодировать один и тот же интересующий белок. В некоторых вариантах реализации каждая из трех или более последовательностей нуклеиновых кислот может содержать отличные интересующие гены, кодировать отличные интересующие мРНК и/или кодировать отличные интересующие белки. В некоторых вариантах реализации две или более из трех или более последовательностей нуклеиновых кислот могут содержать один и тот же интересующий ген, кодировать одну интересующий кодировать одну и тот же интересующий ген, кодировать одну интересующий какадам и тот же интересующий ген, кодировать одну и тот же интересующий какадам и тот же интересующий ген, кодировать одну и тот же интересующий ген, кодировать одну

и ту же интересующую мРНК и/или кодировать один и тот же интересующий белок, тогда как одна или более из трех или более последовательностей нуклеиновых кислот содержит отличный интересующий ген, кодирует отличную интересующую мРНК и/или кодирует отличный интересующий белок от двух или более из трех или более последовательностей нуклеиновых кислот.

5

10

15

20

25

30

35

[0237] В некоторых вариантах реализации уровень экспрессии интересующего гена или белка модулируется посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации уровень экспрессии интересующего гена повышают посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации рекомбинантная конструкция РНК является кодоноптимизированной. В некоторых вариантах реализации рекомбинантная конструкция РНК не является кодон-оптимизированной.

[**0238**] B некоторых вариантах реализации рекомбинантная РНК конструкция дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив, также называемый направляющим мотивом. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая нацеливающий мотив, функционально связана с по меньшей мере одной последовательностью нуклеиновой кодирующей интересующий ген. В некоторых вариантах реализации нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS). В некоторых вариантах реализации нацеливающий мотив выбран из группы, состоящей из (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.

5

10

15

20

25

30

35

[0239] В некоторых вариантах реализации сигнальный пептид выбран из группы, (a) сигнального пептида, гетерологичного белку, интересующим геном; (b) сигнального пептида, гетерологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты, при условии, что указанный белок не является оксидоредуктазой; (с) сигнального пептида, гомологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции сигнального пептида, причем указанная последовательность встречающаяся природе аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации у аминокислот 1 - 9 N-конца сигнального пептида средний балл гидрофобности выше 2.

[0240] В некоторых аспектах, представленных в данной заявке, предложена клетка, содержащая композицию любой рекомбинантной полинуклеиновой кислоты или конструкции РНК, описанных в данной заявке. В некоторых аспектах, представленных в данной заявке, предложена фармацевтическая композиция, содержащая композицию любой рекомбинантной полинуклеиновой кислоты или конструкции РНК, описанных в данной заявке, и фармацевтически приемлемое вспомогательное вещество. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния у нуждающегося в этом субъекта, включающий введение указанному субъекту фармацевтической композиции, описанной в данной заявке. В некоторых вариантах реализации заболевание или состояние представляет собой COVID-19. В некоторых вариантах реализации заболевание или состояние представляет собой SARS (тяжелый острый респираторный синдром), вызванный инфицированием SARS-CoV-1 или SARS-CoV-2. В некоторых вариантах реализации субъект представляет собой млекопитающее. В некоторых вариантах реализации субъект представляет собой человека. В некоторых вариантах реализации субъект представляет собой взрослого человека, ребенка или младенца. В некоторых вариантах реализации субъект представляет собой домашнее

животное. В некоторых вариантах реализации субъект представляет собой субъекта из семейства кошачьих, псовых или грызунов. В некоторых вариантах реализации субъект представляет собой собаку или кошку.

5

10

15

20

25

30

35

[0241] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной экспрессии миРНК и мРНК с одного транскрипта РНК в клетке, включающий введение в клетку композиции с любой рекомбинантной полинуклеиновой кислотой или конструкцией РНК, описанными в данной заявке. В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты интересующего гена; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном, и причем экспрессия целевой мРНК и интересующего гена модулируется одновременно.

[0242] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты интересующего гена; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном, и при этом осуществляется одновременная понижающая регуляция экспрессии целевой мРНК и повышающая регуляция экспрессии целевой мРНК посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии целевой мРНК посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии интересующего гена посредством экспрессии мРНК или белка, кодируемых интересующим геном.

[0243] В некоторых аспектах, представленных в данной заявке, предложен способ получения конструкции РНК, содержащей малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК), и мРНК интересующего гена, причем целевая мРНК отличается от мРНК, кодирующей интересующий ген, указанный способ включает: (а) предоставление для реакции транскрипции *in vitro*: (i)

конструкции полинуклеиновой кислоты, содержащей промотор, по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с целевой мРНК, по меньшей мере одну последовательность нуклеиновой кислоты, интересующий ген, и последовательность нуклеиновой кодирующую поли(А)-хвост; (іі) РНК-полимеразы; и (ііі) смеси нуклеозидтрифосфатов (NTP); и (b) выделение и очистку транскрибированных молекул РНК из реакционной смеси для транскрипции in vitro, таким образом получая конструкцию РНК. В некоторых вариантах реализации РНК-полимераза выбрана из группы, состоящей из РНК-полимеразы Т3, РНК-полимеразы Т7, РНК-полимеразы SP6, РНК-полимеразы P60, РНК-полимеразы Syn5 и РНК-полимеразы КР34. В некоторых вариантах реализации РНК-полимераза представляет собой РНК-полимеразу Т7. В некоторых вариантах реализации смесь NTP содержит немодифицированные NTP. В некоторых вариантах реализации смесь NTP NTP. В содержит модифицированные некоторых вариантах реализации NTP N^1 -метилпсевдоуридин, N^1 модифицированные включают псевдоуридин, N^1 -пропилпсевдоуридин, этилпсевдоуридин, N^1 -метоксиметилпсевдоуридин, тиоуридин, 4-тиоуридин, 5-метоксиуридин, 5-метилуридин, 5-карбоксиметиловый эфир уридина, 5-формилуридин, 5-карбоксиуридин, 5-гидроксиуридин, 5-бромуридин, 5,6-дигидроуридин, 6-азауридин, тиеноуридин, 3-метилуридин, 1йодуридин, карбоксиметилпсевдоуридин, 4-тио-1-метилпсевдоуридин, 2-тио-1-метилпсевдоуридин, дигидроуридин, дигидропсевдоуридин, 2-метоксиуридин, 2-метокси-4-тиоуридин, 4-метокси-2-тиопсевдоуридин, 5-метилцитидин, 5метоксипсевдоуридин, метоксицитидин, 5-гидроксиметилцитидин, 5-формилцитидин, 5-карбоксицитидин, 5-5-бромцитидин, гидроксицитидин, 5-йодцитидин, 2-тиоцитидин, 5-азацитидин, 3-метилцитидин, N^4 -ацетилцитидин, 5-формилцитидин, N^4 псевдоизоцитидин, 1-метилпсевдоизоцитидин, 4метилцитидин, 5-гидроксиметилцитидин, метоксипсевдоизоцитидин и 4-метокси-1-метилпсевдоизоцитидин, N^1 -метиладенозин, N^6 - $N^6.N^6$ - N^6 -изопентениладенозин, N^6 -метил-2-аминоаденозин, метиладенозин, диметиладенозин, 7-метиладенин, 2-метилтиоаденин и 2-метоксиаденин.

5

10

15

20

25

30

35

[0244] В некоторых вариантах реализации этап (а) дополнительно включает предоставление кэпирующего фермента. В некоторых вариантах реализации выделение и очистка транскрибированных РНК включают очистку на колонке.

[0245] В некоторых вариантах реализации специфическое связывание миРНК с ее целевой мРНК приводит к препятствованию нормальной функции целевой мРНК, чтобы вызвать модуляцию, например, понижающую регуляцию, функции и/или активности, и при этом присутствует достаточная степень комплементарности, чтобы избежать неспецифического

связывания миРНК с нецелевыми последовательностями нуклеиновых кислот, при условиях, в которых желательно специфическое связывание, т.е., при физиологических условиях в случае анализа *in vivo* или терапевтического лечения, и при условиях, в которых проводят анализы, в случае анализа *in vitro*.

5

10

15

20

25

30

35

[0246] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК IL-6; и (ii) мРНК, кодирующую IFNбета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, последовательностью, представленной в SEQ ID NO: 29 или 30 (Соединение В1 или В2). [0247] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах композиция содержит 3 миРНК,

каждая из которых нацелена на мРНК IL-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 31 (Соединение В3).

[0248] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные

по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 32 (Соединение В4).

5

10

15

20

25

30

35

[0249] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК IL-6R-бета. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 33 (Соединение В5).

[0250] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК ACE2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 34 или 35 (Соединение В6 или В7).

[0251] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну малую интерферирующую РНК (миРНК), способную специфически связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную специфически связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый

рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, например, композиция, содержащая Соединение B8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 или обоими. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 36.

[0252] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 37 или 39 (Соединение В9 или В11).

[0253] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ

5

10

15

20

25

30

[0254] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS или обоими. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 и/или MERS. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в любой из SEQ ID NO: 40, 41 и 42 (Соединения В12, В13 и В14).

5

10

15

20

25

30

35

[0255] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну миРНК, способную специфически связываться с мРНК IL-6, по меньшей мере одну миРНК, способную специфически связываться с мРНК АСЕ2, и по меньшей мере одну миРНК способную специфически связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид IFN-бета представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в любой из SEQ ID NO: 43, 44 и 45 (Соединения В15, В16 и В17).

[0256] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (і) по меньшей мере одну малую интерферирующую РНК, способную специфически связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную специфически связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 46 (Соединение B18). В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, представленную в SEQ ID NO: 190.

5

10

15

20

30

35

[0257] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую: (i) по меньшей мере одну миРНК, способную специфически связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах композиция содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах композиция содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах композиция содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция РНК содержит последовательность, кодируемую последовательностью, представленной в SEQ ID NO: 47 (Соединение В19).

25 **[0258]** В некоторых аспектах конструкция IFN-бета содержит модифицированный сигнальный пептид, описанный в данной заявке.

[0259] В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую последовательность нуклеиновой кислоты, кодируемую последовательностью, выбранной из группы, состоящей из последовательностей SEQ ID NO: 29 - 47. В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию РНК, содержащую последовательность нуклеиновой кислоты, представленную в SEQ ID NO: 190.

[0260] В некоторых вариантах реализации в соответствии с настоящим изобретением предложена композиция и связанные с ней способы, причем указанная композиция

содержит рекомбинантную конструкцию РНК, содержащую: по меньшей мере одну миРНК, способную связываться с целевой РНК; и мРНК, кодирующую интересующий ген; причем:

5

10

15

20

25

30

35

миРНК нацелена на РНК, выбранную из: мРНК IL-8, мРНК IL-1-бета, мРНК IL-17, мРНК TNF-альфа, PHK ORF1ab SARS CoV-2 (полипротеина PP1ab, например, в некодирующей области или когда он кодирует белок, который выбран из: неструктурного белка SARS CoV-2 (NSP), Nsp1, Nsp3 (Nsp3b, Nsp3c, PLpro и Nsp3e), комплекса Nsp7 Nsp8, Nsp9-Nsp10 и Nsp14-Nsp16, 3CLpro, Е-канала (белка Е), ORF7a, С-концевого связывающего РНК домена (CRBD), N-концевого связывающего РНК домена (NRBD), геликазы и RdRp), мРНК шиповидного белка (S) SARS CoV-2, мРНК нуклеокапсидного белка (N) SARS CoV-2, мРНК фактора некроза опухоли-альфа (TNF-альфа), мРНК интерлейкина (включая, но не ограничиваясь интерлейкином 1 (например, ІL-1-альфа, ІL-1-бета), интерлейкином 6 (IL-6), интерлейкином 6R (IL-6R), интерлейкином 6R альфа (IL-6R-альфа), интерлейкином 6R бета (IL-6R-бета), интерлейкином 18 (IL-18), интерлейкином 36 альфа (IL-36-альфа), интерлейкином 36 бета (IL-36-бета), интерлейкином 36 гамма (IL-36-гамма), интерлейкином 33 (IL-33)), мРНК ангиотензинпревращающего фермента-2 (ACE2), мРНК трансмембранной сериновой протеазы 2 (TMPRSS2) и PHK, кодирующей NSP12 и 13; и интересующий ген кодирует белок, выбранный из: IGF-1, IL-4, IGF-1 (включая его производные, описанные в других местах в данной заявке), карбоксипептидаз (например, ACE, ACE2, CNDP1, CPA1, CPA2, CPA4, CPA5, CPA6, CPB1, CPB2, CPE, CPN1, CPQ, CPXM1, CPZ, SCPEP1); цитокинов (например, BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8A, BMP8B, C1QTNF4, CCL1, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL2, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L, CCL4L2, CCL5, CCL7, CCL8, CD40LG, CER1, CKLF, CLCF1, CNTF, CSF1, CSF2, CSF3, CTF1, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, CXCL2, CXCL3, CXCL5, CXCL8, CXCL9, DKK1, DKK2, DKK3, DKK4, EDA, EBI3, FAM3B, FAM3C, FASLG, FLT3LG, GDF1, GDF10, GDF11, GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GPI, GREM1, GREM2, GRN, IFNA1, IFNA13, IFNA10, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, IL10, IL11, IL12A, IL12B, IL13, IL15, IL16, IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL19, IL1A, IL1B, IL1F10, IL2, IL20, IL21, IL22, IL23A, IL24, IL25, IL26, IL27, IL3, IL31, IL32, IL33, IL34, IL36A, IL36B, IL36G, IL36RN, IL37, IL4, IL5, IL6, IL7, IL9, LEFTY1, LEFTY2, LIF, LTA, MIF, MSTN, NAMPT, NODAL, OSM, PF4, PF4V1, SCGB3A1, SECTM1, SLURP1, SPP1, THNSL2, THPO, TNF, TNFSF10, TNFSF11, TNFSF12, TNFSF13,

TNFSF13B, TNFSF14, TNFSF15, TSLP, VSTM1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1 и XCL2); внеклеточных лигандов и транспортеров (например, APCS, CHI3L1, CHI3L2, CLEC3B, DMBT1, DMKN, EDDM3A, EDDM3B, EFNA4, EMC10, ENAM, EPYC, ERVH48-1, F13B, FCN1, FCN2, GLDN, GPLD1, HEG1, ITFG1, KAZALD1, KCP, LACRT, LEG1, METRN, NOTCH2NL, NPNT, OLFM1, OLFML3, PRB2, PSAP, PSAPL1, PSG1, PSG6, PSG9, PTX3, PTX4, RBP4, RNASE10, RNASE12, RNASE13, RNASE9, RSPRY1, RTBDN, S100A12, S100A13, S100A7, S100A8, SAA2, SAA4, SCG1, SCG2, SCG3, SCGB1C1, SCGB1C2, SCGB1D1, SCGB1D2, SCGB1D4, SCGB2B2, SCGB3A2, SCGN, SCRG1, SCUBE1, SCUBE2, SCUBE3, SDCBP, SELENOP, SFTA2, SFTA3, SFTPA1, SFTPA2, SFTPC, SFTPD, SHBG, SLURP2, SMOC1, SMOC2, SMR3A, SMR3B, SNCA, SPATA20, SPATA6, SOGA1, SPARC, SPARCL1, SPATA20, SPATA6, SRPX2, SSC4D, STX1A, SUSD4, SVBP, TCN1, TCN2, TCTN1, TF, TULP3, TFF2, TFF3, THSD7A, TINAG, TINAGL1, TMEFF2, TMEM25, VWC2L); белков внеклеточного матрикса (например, ABI3BP, AGRN, CCBE1, CHL1, COL15A1, COL19A1, COLEC11, DMBT1, DRAXIN, EDIL3, ELN, EMID1, EMILIN1, EMILIN2, EMILIN3, EPDR1, FBLN1, FBLN2, FBLN5, FLRT1, FLRT2, FLRT3, FREM1, GLDN, IBSP, KERA, KIAA0100, KIRREL3, KRT10, LAMB2, MGP, RPTN, SBSPON, SDC1, SDC4, SEMA3A, SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G, SIGLEC1, SIGLEC10, SIGLEC6, SLIT1, SLIT2, SLIT3, SLITRK1, SNED1, SNORC, SPACA3, SPACA7, SPON1, SPON2, STATH, SVEP1, TECTA, TECTB, TNC, TNN, TNR, TNXB); глюкозидаз (AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, CEMIP, CHIA, CHIT1, FUCA2, GLB1L, GLB1L2, HPSE, HYAL1, HYAL3, KL, LYG1, LYG2, LYZL1, LYZL2, MAN2B2, SMPD1, SMPDL3B, SPACA5, SPACA5B); гликозилтрансфераз (например, ART5, B4GALT1, EXTL2, GALNT1, GALNT2, GLT1D1, MGAT4A, ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST6GAL1, XYLT1); факторов роста (например, AMH, ARTN, BTC, CDNF, CFC1, CFC1B, CHRDL1, CHRDL2, CLEC11A, CNMD, EFEMP1, EGF, EGFL6, EGFL7, EGFL8, EPGN, EREG, EYS, FGF1, FGF10, FGF16, FGF17, FGF18, FGF19, FGF2, FGF20, FGF21, FGF22, FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FRZB, GDNF, GFER, GKN1, HBEGF, HGF, IGF-1, IGF2, INHA, INHBA, INHBB, INHBC, INHBE, INS, KITLG, MANF, MDK, MIA, NGF, NOV, NRG1, NRG2, NRG3, NRG4, NRTN, NTF3, NTF4, OGN, PDGFA, PDGFB, PDGFC, PDGFD, PGF, PROK1, PSPN, PTN, SDF1, SDF2, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5, TDGF1, TFF1, TGFA, TGFB1, TGFB2, TGFB3, THBS4, TIMP1, VEGFA, VEGFB, VEGFC, VEGFD, WISP3); белков, связывающих факторы роста (например, CHRD, CYR61, ESM1, FGFBP1, FGFBP2, FGFBP3, HTRA1, GHBP, IGFALS, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7,

5

10

15

20

25

30

LTBP1, LTBP2, LTBP3, LTBP4, SOSTDC1, NOG, TWSG1 и WIF1); белков, связывающих гепарин (например, ADA2, ADAMTSL5, ANGPTL3, APOB, APOE, APOH, COL5A1, COMP, CTGF, FBLN7, FN1, FSTL1, HRG, LAMC2, LIPC, LIPG, LIPH, LIPI, LPL, PCOLCE2, POSTN, RSPO1, RSPO2, RSPO3, RSPO4, SAA1, SLIT2, SOST, THBS1, VTN); гормонов (например, ADCYAP1, ADIPOQ, ADM, ADM2, ANGPTL8, APELA, APLN, AVP, C1QTNF12, C1QTNF9, CALCA, CALCB, CCK, CGA, CGB1, CGB2, CGB3, CGB5, CGB8, COPA, CORT, CRH, CSH1, CSH2, CSHL1, ENHO, EPO, ERFE, FBN1, FNDC5, FSHB, GAL, GAST, GCG, GH, GH1, GH2, GHRH, GHRL, GIP, GNRH1, GNRH2, GPHA2, GPHB5, IAPP, INS, INSL3, INSL4, INSL5, INSL6, LHB, METRNL, MLN, NPPA, NPPB, NPPC, OSTN, OXT, PMCH, PPY, PRL, PRLH, PTH, PTHLH, PYY, RETN, RETNLB, RLN1, RLN2, RLN3, SCT, SPX, SST, STC1, STC2, TG, TOR2A, TRH, TSHB, TTR, UCN, UCN2, UCN3, UTS2, UTS2B и VIP); гидролаз (например, AADACL2, ABHD15, ACP7, ACPP, ADA2, ADAMTSL1, AOAH, ARSF, ARSI, ARSJ, ARSK, BTD, CHI3L2, ENPP1, ENPP2, ENPP3, ENPP5, ENTPD5, ENTPD6, GBP1, GGH, GPLD1, HPSE, LIPC, LIPF, LIPG, LIPH, LIPI, LIPK, LIPM, LIPN, LPL, PGLYRP2, PLA1A, PLA2G10, PLA2G12A, PLA2G1B, PLA2G2A, PLA2G2D, PLA2G2E, PLA2G2F, PLA2G3, PLA2G5, PLA2G7, PNLIP, PNLIPRP2, PNLIPRP3, PON1, PON3, PPT1, SMPDL3A, THEM6, THSD1 и THSD4); иммуноглобулинов (например, IGSF10, IGKV1-12, IGKV1-16, IGKV1-33, IGKV1-6, IGKV1D-12, IGKV1D-39, IGKV1D-8, IGKV2-30, IGKV2D-30, IGKV3-11, IGKV3D-20, IGKV5-2, IGLC1, IGLC2, IGLC3); изомераз (например, NAXE, PPIA, PTGDS); киназ (например, ADCK1, ADPGK, FAM20C, ICOS, PKDCC); лиаз (например, PM20D1, PAM, САб); ингибиторов металлоферментов (например, FETUB, SPOCK3, TIMP2, TIMP3, TIMP4, WFIKKN1, WFIKKN2); металлопротеаз (например, ADAM12, ADAM28, ADAM9, ADAMDEC1, ADAMTS1, ADAMTS10, ADAMTS12, ADAMTS13, ADAMTS14, ADAMTS15, ADAMTS16, ADAMTS17, ADAMTS18, ADAMTS19, ADAMTS20, ADAMTS20, ADAMTS3, ADAMTS4, ADAMTS5, ADAMTS6, ADAMTS7, ADAMTS8, ADAMTS9, CLCA1, CLCA2, CLCA4, IDE, MEP1B, MMEL1, MMP1, MMP10, MMP11, MMP12, MMP13, MMP16, MMP17, MMP19, MMP2, MMP20, MMP21, MMP24, MMP25, MMP26, MMP28, MMP3, MMP7, MMP8, MMP9, PAPPA, PAPPA2, TLL1, TLL2); белков молока (например, CSN1S1, CSN2, CSN3, LALBA); нейроактивных белков (например, CARTPT, NMS, NMU, NPB, NPFF, NPS, NPVF, NPW, NPY, PCSK1N, PDYN, PENK, PNOC, POMC, PROK2, PTH2, PYY2, PYY3, QRFP, TAC1 и TAC3); протеаз (например, ADAMTS6, C1R, C1RL, C2, CASP4, CELA1, CELA2A, CELA2B, CFB, CFD, CFI, CMA1, CORIN, CTRB1, CTRB2, CTSB, CTSD, DHH, F10, F11, F12, F2, F3, F7, F8, F9, FAP, FURIN, GZMA, GZMK, GZMM, HABP2, HGFAC, HTRA3, HTRA4, IHH, KLK10, KLK11, KLK12, KLK13, KLK14, KLK15, KLK3, KLK4, KLK5, KLK6, KLK7, KLK8, KLK9, KLKB1, MASP1, MASP2, MST1L, NAPSA,

5

10

15

20

25

30

OVCH1, OVCH2, PCSK2, PCSK5, PCSK6, PCSK9, PGA3, PGA4, PGA5, PGC, PLAT, PLAU, PLG, PROC, PRSS1, PRSS12, PRSS2, PRSS22, PRSS23, PRSS27, PRSS29P, PRSS3, PRSS33, PRSS36, PRSS38, PRSS3P2, PRSS42, PRSS44, PRSS47, PRSS48, PRSS53, PRSS57, PRSS58, PRSS8, PRTN3, RELN, REN, TMPRSS11D, TMPRSS11E, TMPRSS2, TPSAB1, TPSB2, TPSD1); ингибиторов протеаз (например, A2M, A2ML1, AMBP, ANOS1, COL28A1, COL6A3, COL7A1, CPAMD8, CST1, CST2, CST3, CST4, CST5, CST6, CST7, CST8, CST9, CST9L, CST9LP1, CSTL1, EPPIN, GPC3, HMSD, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, KNG1, OPRPN, OVOS1, OVOS2, PAPLN, PI15, PI16, PI3, PZP, R3HDML, SERPINA1, SERPINA10, SERPINA11, SERPINA12, SERPINA13P, SERPINA3, SERPINA4, SERPINA5, SERPINA7, SERPINA9, SERPINB2, SERPINB5, SERPINC1, SERPINE1, SERPINE2, SERPINE3, SERPINF2, SERPING1, SERPINI1, SERPINI2, SPINK1, SPINK13, SPINK14, SPINK2, SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, SPINK9, SPINT1, SPINT3, SPINT4, SPOCK1, SPOCK2, SPP2, SSPO, TFPI, TFPI2, WFDC1, WFDC10A, WFDC13, WFDC2, WFDC3, WFDC5, WFDC6, WFDC8); протеинфосфатаз (например, ACP7, ACPP, PTEN, PTPRZ1); эстераз (например, BCHE, CEL, CES4A, CES5A, NOTUM, SIAE); трансфераз (например, METTL24, FKRP, CHSY1, CHST9, B3GAT1); вазоактивных белков (например, AGGF1, AGT, ANGPT1, ANGPT2, ANGPTL4, ANGPTL6, EDN1, EDN2, EDN3, NTS), интерферона I типа (например, IFN-α, включая, но не ограничиваясь интерфероном альфаn3, интерфероном альфа-2a и интерфероном альфа-2b, IFN-β, IFN-ε, IFN-к, IFN-ν, IFN-τ и IFN- ω), интерферона II типа (например, IFN-γ), интерферона III типа (например, IFN-λ), интерлейкина, например, IL-37, IL-38, и растворимого рецептора ACE2. В некоторых аспектах композиция, содержащая рекомбинантную конструкцию РНК, пригодна для лечения вирусной инфекции, заболевания или состояния. В некоторых аспектах композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения вирусной инфекции, заболевания или состояния. В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза.

5

10

15

20

25

30

35

[0261] В некоторых аспектах композиция, содержащая рекомбинантную конструкцию РНК, пригодна для лечения кожного заболевания или состояния. В некоторых аспектах композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения кожного заболевания или состояния. В некоторых вариантах реализации кожное заболевание или состояние включает воспалительное заболевание кожи. В некоторых вариантах реализации воспалительное заболевание кожи включает псориаз. В некоторых аспектах композиция, содержащая рекомбинантную конструкцию РНК, пригодна для лечения заболевания или состояния мышц. В некоторых аспектах композиция

присутствует или ее вводят в количестве, достаточном для лечения или предотвращения заболевания или состояния мышц. В некоторых вариантах реализации заболевание или состояние мышц включает заболевание скелетных мышц. В некоторых вариантах реализации заболевание скелетных мышц включает прогрессирующую оссифицирующую фибродисплазию (ПОФ). В некоторых аспектах композиция, содержащая рекомбинантную конструкцию РНК, пригодна для лечения нейродегенеративного заболевания или состояния. В некоторых аспектах композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения нейродегенеративного заболевания или состояния. В некоторых вариантах реализации нейродегенеративное заболевание или состояние включает расстройство двигательного нейрона. В некоторых вариантах реализации расстройство двигательного нейрона включает боковой амиотрофический склероз (БАС). В некоторых аспектах композиция, содержащая рекомбинантную конструкцию РНК, пригодна для лечения заболевания или состояния сустава. В некоторых аспектах композиция присутствует или ее вводят в количестве, достаточном для лечения или предотвращения заболевания или состояния сустава. В некоторых вариантах реализации заболевание или состояние сустава включает разрушение сустава. В некоторых вариантах реализации разрушение сустава включает болезнь межпозвоночных дисков (БМПД) или остеоартрит (ОА).

20 РНК-интерференция и малая интерферирующая РНК (миРНК).

5

10

15

25

30

35

[0262] РНК-интерференция (РНКи) или РНК-замалчивание представляет собой процесс, в котором молекулы РНК ингибируют экспрессию гена или трансляцию путем нейтрализации целевых молекул мРНК. Процесс РНКи описан в Mello & Conte (2004) Nature 431, 338-342, Meister & Tuschl (2004) Nature 431, 343-349, Hannon & Rossi (2004) Nature 431, 371-378, и Fire (2007) Angew. Chem. Int. Ed. 46, 6966-6984. Вкратце, в естественном процессе реакция начинается с расщепления длинной двухцепочечной РНК (дцРНК) на малые фрагменты дцРНК или миРНК со структурой шпильки или петли посредством дцРНК-специфической эндонуклеазы Dicer. Эти малые фрагменты дцРНК или миРНК затем встраиваются в индуцированный РНК замалчивающий комплекс (RISC) и направляют RISC к целевой последовательности мРНК. Во время интерференции дуплекс миРНК раскручивается, и антисмысловая цепь остается в комплексе с RISC, чтобы привести RISC к целевой последовательности мРНК, чтобы вызвать деградацию и последующее подавление трансляции белка. В отличие от доступных для приобретения синтетических миРНК (например, Патисиран и т.д.), миРНК в соответствии с настоящим изобретением использует эндогенные Dicer и путь RISC в цитоплазме клетки для ее

отщепления от конструкции транскрипта мРНК в соответствии с настоящим изобретением и следует природному процессу, подробно описанному выше. Кроме того, так как остальной транскрипт мРНК в соответствии с настоящим изобретением остается нетронутым после расщепления миРНК посредством Dicer, достигается желательная экспрессия белка с интересующего гена в транскрипте мРНК в соответствии с настоящим изобретением.

5

10

15

20

25

30

35

[0263] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную полинуклеиновую кислоту или конструкцию РНК, содержащую по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит последовательность нуклеиновой кислоты, кодирующую или содержащую смысловую цепь миРНК. В некотором варианте реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит последовательность нуклеиновой кислоты, кодирующую или содержащую антисмысловую цепь миРНК. В предпочтительном варианте реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит последовательность нуклеиновой кислоты, кодирующую или содержащую смысловую цепь миРНК, и последовательность нуклеиновой кислоты, кодирующую или содержащую антисмысловую цепь миРНК. Подробности о миРНК, включенной в настоящее изобретение, описаны в Cheng, и др. (2018) J. Mater. Chem. В., 6, 4638-4644, который включен в данную заявку посредством ссылки.

[0264] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит по меньшей мере 1 копию миРНК, т.е., последовательность нуклеиновой кислоты, кодирующую или содержащую смысловую цепь миРНК, и последовательность нуклеиновой кислоты, кодирующую или содержащую антисмысловую цепь миРНК. 1 копия миРНК, описанной в данной заявке, может относиться к 1 копии смысловой цепи миРНК и 1 копии антисмысловой цепи миРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит более чем 1 копию миРНК, т.е., более чем 1 копию последовательности нуклеиновой кислоты, кодирующей или содержащей смысловую цепь миРНК, и более чем 1 копию последовательности нуклеиновой кислоты, кодирующей или содержащей антисмысловую цепь миРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит от 1 до 10 копий миРНК, т.е., от 1 до 10 копий последовательности нуклеиновой кислоты, кодирующей или содержащей смысловую цепь миРНК, и от 1 до 10 копий

последовательности нуклеиновой кислоты, кодирующей или содержащей антисмысловую цепь миРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит от 1 до 2, от 1 до 3, от 1 до 4, от 1 до 5, от 1 до 6, от 1 до 7, от 1 до 8, от 1 до 9, от 1 до 10, от 2 до 3, от 2 до 4, от 2 до 5, от 2 до 6, от 2 до 7, от 2 до 8, от 2 до 9, от 2 до 10, от 3 до 4, от 3 до 5, от 3 до 6, от 3 до 7, от 3 до 8, от 3 до 9, от 3 до 10, от 4 до 5, от 4 до 6, от 4 до 7, от 4 до 8, от 4 до 9, от 4 до 10, от 5 до 6, от 5 до 7, от 5 до 8, от 5 до 9, от 5 до 10, от 6 до 7, от 6 до 8, от 6 до 9, от 6 до 10, от 7 до 8, от 7 до 9, от 7 до 10, от 8 до 9, от 8 до 10, или от 9 до 10 копий миРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 копий миРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит по меньшей мере 1, 2, 3, 4, 5, 6, 7, 8 или 9 копий миРНК. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК содержит не более 2, 3, 4, 5, 6, 7, 8, 9 или 10 копий миРНК.

5

10

15

20

25

30

35

[0265] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, может соединять каждую из двух или более последовательностей нуклеиновых кислот, кодирующих миРНК. В некоторых вариантах реализации линкер может представлять собой нерасщепляемый линкер. В предпочтительном варианте реализации линкер может представлять собой расщепляемый линкер. В некоторых вариантах реализации линкер может представлять собой саморасщепляемый линкер. В некоторых вариантах реализации представлять собой тРНК-линкер. Система тРНК эволюционно линкер может консервативна среди живых организмов и использует эндогенные РНКазы Р и Z для процессинга мультицистронных конструкций (Dong и др., 2016). В некоторых вариантах реализации тРНК-линкер может содержать последовательность нуклеиновой кислоты, содержащую

AACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGG GTTCGATTCCCGGCTGGTGCA (SEQ ID NO: 24).

[0266] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную полинуклеиновую кислоту или конструкцию РНК, содержащую по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК. Перечень неограничивающих примеров целевых мРНК, с которыми способна связываться указанная

миРНК, включает мРНК, кодирующую интерлейкин 8 (IL-8), интерлейкин 1-бета (IL-1-бета), интерлейкин 17 (IL-17) и фактор некроза опухоли-альфа (TNF-альфа или TNF-α). Перечень дополнительных примеров целевых РНК, с которыми способна связываться указанная миРНК, включает мРНК, кодирующую киназу 2, подобную рецептору активина (ALK2), и супероксиддисмутазу-1 (SOD1).

5

10

15

20

25

30

35

[0267] В некоторых аспектах миРНК способна связываться с целевой РНК, которая представляет собой РНК коронавируса. В некоторых вариантах реализации РНК коронавируса представляет собой целевую мРНК, которая кодирует белок коронавируса. В некоторых вариантах реализации РНК коронавируса представляет собой целевую некодирующую РНК. В некоторых вариантах реализации коронавирус представляет собой альфакоронавирус, бетакоронавирус, гаммакоронавирус или дельтакоронавирус. В некоторых вариантах реализации целевая мРНК коронавируса кодирует белок, выбранный из: ORF1ab SARS CoV-2 (полипротеина PP1ab); шиповидного белка (S) SARS CoV-2 и нуклеокапсидного белка (N) SARS CoV-2. В некоторых вариантах реализации миРНК способна связываться с мРНК ORF1ab на некотором участке или когда он кодирует белок, который выбран из: неструктурного белка SARS CoV-2 (NSP), Nsp1, Nsp3 (Nsp3b, Nsp3c, PLpro и Nsp3e), комплекса Nsp7 Nsp8, Nsp9-Nsp10 и Nsp14-Nsp16, 3CLpro, E-канала (белка E), ORF7a, С-концевого связывающего РНК домена (CRBD), N-концевого связывающего РНК домена (NRBD), геликазы и RdRp. В некоторых вариантах реализации целевая кодирующая РНК представляет собой NSP12 и 13 SARS CoV-2. В некоторых реализации целевая мРНК кодирует белок коронавируса, вариантах консервативен среди коронавирусов, например, среди SARS-CoV, SARS-CoV-2 и/или MERS-CoV, и соответствующая миРНК пригодна в композициях и способах, которые можно применять для лечения двух или более различных заболеваний или состояний, например, двух или более заболеваний или состояний, вызванных или связанных с более чем одним коронавирусом. В некоторых вариантах реализации целевая мРНК кодирует Nsp15 SARS-CoV-2, который на 89% идентичен аналогичному белку SARS-CoV, и конструкцию полинуклеиновой кислоты можно применять для лечения инфекции SARS-CoV и SARS-CoV-2. В некоторых вариантах реализации миРНК способна связываться с целевой мРНК или целевой некодирующей РНК, общей для более чем одного коронавируса. В некоторых вариантах реализации кодирующая целевая мРНК представляет собой Nsp12-Nsp13, относящиеся к SARS CoV-2, SARS-CoV и MERS-CoV. В некоторых вариантах реализации целевая РНК коронавируса и любой соответствующий кодируемый белок представляют собой любые, известные специалистам в данной области техники или описанные в литературе, например, в Wu, и др., 27 Feb 2020, Acta

Pharmaceutica Sinica, допечатная версия на doi.org/10.1016/j.apsb.2020.02.008, включена в данную заявку посредством ссылки. В некоторых вариантах реализации целевая мРНК кодирует белок хозяина. В некоторых вариантах реализации целевая мРНК кодирует цитокин. В некоторых вариантах реализации целевая мРНК кодирует цитокин, выбранный из группы, состоящей из: фактора некроза опухоли-альфа (TNF-альфа), интерлейкина (включая, но не ограничиваясь интерлейкином 1 (например, ІІ-1-альфа, ІІ-1-бета), интерлейкином 6 (IL-6), интерлейкином 6R (IL-6R), интерлейкином 6R альфа (IL-6Rальфа), интерлейкином 6R бета (IL-6R-бета), интерлейкином 18 (IL-18), интерлейкином 36 альфа (ІL-36-альфа), интерлейкином 36 бета (ІL-36-бета)), интерлейкином 36 гамма (ІL-36гамма) и интерлейкином 33 (IL-33)). Роль TNF-альфа при Covid-19 обсуждалась в литературе, например, в Feldmann, и др., 9 апреля 2020 г, The Lancet S0140-6736(20)30858-8, включен в данную заявку посредством ссылки. В некоторых вариантах реализации целевая мРНК кодирует воспалительный цитокин. В некоторых вариантах реализации целевая мРНК кодирует вирусный белок проникновения в хозяина. В некоторых вариантах реализации вирусный белок проникновения в хозяина представляет ангиотензинпревращающий фермент-2 (АСЕ2). В некоторых вариантах реализации целевая мРНК кодирует фермент хозяина. В некоторых вариантах реализации указанный фермент представляет собой трансмембранную сериновую протеазу 2 (TMPRSS2).

5

10

15

20

25

30

35

[0268] В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих миРНК, способную связываться с целевой РНК. В некоторых вариантах реализации целевая РНК представляет собой мРНК. В некоторых вариантах реализации целевая РНК представляет собой некодирующую РНК. В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит три последовательности нуклеиновых кислот, кодирующие миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит четыре последовательности нуклеиновых кислот, кодирующие миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит от 2 до 10 последовательностей нуклеиновых кислот, кодирующих миРНК, способную связываться с целевой мРНК. В некоторых вариантах реализации рекомбинантная конструкция нуклеиновой кислоты содержит от 2 до 6 последовательностей нуклеиновых кислот, кодирующих миРНК, способную

связываться с целевой мРНК. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует миРНК, способную связываться с одной и той же целевой мРНК. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует миРНК, способную связываться с отличной целевой мРНК.

5

10

15

20

25

30

35

[0269] В некоторых вариантах реализации экспрессия целевой мРНК модулируется посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации миРНК способна связываться с целевой мРНК в ее 5'-нетранслируемой области. В некоторых вариантах реализации миРНК способна связываться с целевой мРНК в ее 3'-нетранслируемой области. В некоторых вариантах реализации миРНК способна связываться с целевой мРНК в транслируемой области. В некоторых вариантах реализации осуществляется понижающая регуляция экспрессии целевой мРНК посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации экспрессия целевой мРНК ингибируется миРНК, способной связываться с целевой мРНК. Ингибирование или понижающая регуляция экспрессии целевой мРНК, описанной в данной заявке, может относиться, но не ограничена интерференцией с целевой мРНК, чтобы препятствовать трансляции белка с целевой мРНК, кодируемой или содержащейся в рекомбинантной полинуклеиновой кислоте или конструкции РНК, соответственно; таким образом, ингибирование или понижающая регуляция экспрессии целевой мРНК может относиться, но не ограничена снижением уровня белка, экспрессированного с целевой мРНК, относительно уровня белка, экспрессированного с целевой мРНК в отсутствие рекомбинантной полинуклеиновой кислоты или конструкции РНК, содержащей миРНК, способную связываться с целевой мРНК. Уровень экспрессии белка можно измерить, применяя любые способы, хорошо известные в данной области техники, и они включают, но не ограничены перечисленными: вестерн-блоттинг, проточную цитометрию, твердофазный иммуноферментный анализ (ELISA), радиоиммуноанализ (РИА) и различные методики протеомики. Типичный способ измерения или обнаружения полипентида представляет собой иммуноанализ, такой как ELISA. Этот тип определения количества белка может быть основан на антителе, способном захватывать специфический антиген, и втором антителе, способном детектировать захваченный антиген. Типичные способы анализа детектирования и/или измерения полипептидов описаны в Harlow, Е. и Lane, D. Antibodies: A Laboratory Manual, (1988), Cold Spring Harbor Laboratory Press.

[0270] В некоторых аспектах, представленных в данной заявке, предложена композиция, содержащая рекомбинантную полинуклеиновую кислоту или конструкцию РНК, содержащую по меньшей мере одну последовательность нуклеиновой кислоты,

кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, причем целевая мРНК отличается от мРНК, кодируемой интересующим геном. В некоторых вариантах реализации миРНК не влияет на экспрессию интересующего гена. В некоторых вариантах реализации миРНК не способна связываться с нуклеиновой кислотой, кодирующей интересующий ген. В предпочтительном варианте реализации миРНК не ингибирует экспрессию интересующего гена. В другом предпочтительном варианте реализации миРНК не снижает экспрессию интересующего гена. Ингибирование или снижение экспрессии интересующего гена, описанное в данной заявке, может относиться, но не ограничено препятствованием транскрипции ДНК и/или трансляции белка с рекомбинантной полинуклеиновой кислоты или конструкции РНК; таким образом, ингибирование или снижение экспрессии интересующего гена может относиться, но не ограничено снижением уровня белка относительно уровня белка, экспрессируемого в отсутствие рекомбинантной полинуклеиновой кислоты или конструкции РНК, содержащей миРНК, способную связываться с целевой мРНК. Уровень экспрессии белка можно измерить, применяя любые способы, хорошо известные в данной области техники, и они включают, но не ограничены перечисленными: вестерн-блоттинг, проточную цитометрию, ELISA, РИА и различные методики протеомики. Типичным способом для измерения или детектирования полипептида является иммуноанализ, такой как ELISA. Этот тип определения количества белка может быть основан на антителе, способном захватывать специфический антиген, и втором антителе, способном детектировать захваченный антиген. Типичные способы анализа детектирования и/или измерения полипептидов описаны в Harlow, E. и Lane, D. Antibodies: A Laboratory Manual, (1988), Cold Spring Harbor Laboratory Press.

5

10

15

20

25

30

35

[0271] В некоторых аспектах миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 - 109. В некоторых аспектах миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 - 109, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 110 - 139. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-8, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 - 83. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-8, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной последовательностей SEQ ID NO: 80 - 83, и соответствующую антисмысловую цепь,

кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 110 -113, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-1-бета, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 84 - 86. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-1-бета, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 84 -86, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 114 - 116, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК TNF-альфа, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной последовательностей SEQ ID NO: 87 - 89. В некоторых вариантах реализации целевая РНК представляет собой мРНК TNF-альфа, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 87 - 89, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 117 - 119, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-17, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 90 - 92. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-17, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 90 - 92, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 120 -122, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-6, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 93 - 95. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-6, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 93 -95, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 123 - 125, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-6R-альфа, и миРНК смысловую цепь, кодируемую последовательностью, последовательностей SEQ ID NO: 96 и 97. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-6R-альфа, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 96 и 97, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 125 и 127, соответственно. В некоторых вариантах

5

10

15

20

25

30

реализации целевая РНК представляет собой мРНК IL-6R-бета, и миРНК содержит смысловую цепь, кодируемую последовательностью, представленной в SEQ ID NO: 98. В некоторых вариантах реализации целевая РНК представляет собой мРНК IL-6R-бета, и миРНК содержит смысловую цепь, кодируемую последовательностью, представленной в соответствующую антисмысловую SEQ IDNO: 98, И цепь, кодируемую последовательностью, представленной в SEQ ID NO: 128. В некоторых вариантах реализации целевая РНК представляет собой мРНК АСЕ2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из SEQ ID NO: 99 - 101. В некоторых вариантах реализации целевая РНК представляет собой мРНК АСЕ2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из SEQ ID NO: 99 - 101, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из SEQ ID NO: 129 - 131, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК ORF1ab SARS CoV-2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 102 -105. В некоторых вариантах реализации целевая РНК представляет собой мРНК ORF1ab SARS CoV-2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 102 - 105, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной последовательностей SEQ ID NO: 132 - 135, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК шиповидного белка SARS CoV-2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 106 - 108. В некоторых вариантах реализации целевая РНК представляет собой мРНК шиповидного белка SARS CoV-2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 106 - 108, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 136 - 138, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК нуклеокапсидного белка SARS CoV-2, и миРНК содержит смысловую цепь, кодируемую последовательностью, представленной в SEQ ID NO: 109. В некоторых вариантах реализации целевая РНК представляет собой мРНК нуклеокапсидного белка SARS CoV-2, и миРНК содержит смысловую цепь, кодируемую последовательностью, представленной в SEQ ID NO: 109, и соответствующую антисмысловую цепь, кодируемую последовательностью, представленной в SEQ ID NO: 139. В некоторых аспектах миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной последовательностей SEQ ID NO: 140 - 145. В некоторых аспектах миРНК содержит

5

10

15

20

25

30

смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 140 - 145, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 146 - 151. В некоторых вариантах реализации целевая РНК представляет собой мРНК ALK2, и миРНК кодируемую последовательностью, содержит смысловую цепь, выбранной последовательностей SEQ ID NO: 140 - 142. В некоторых вариантах реализации целевая РНК представляет собой мРНК ALK2, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 140 - 142, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 146 - 148, соответственно. В некоторых вариантах реализации целевая РНК представляет собой мРНК SOD1, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 143 - 145. В некоторых вариантах реализации целевая РНК представляет собой мРНК SOD1, и миРНК содержит смысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 143 - 145, и соответствующую антисмысловую цепь, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 149 -151, соответственно.

Интересующий ген.

5

10

15

20

25

30

35

[0272] В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать три последовательности нуклеиновых кислот, кодирующие интересующий ген. В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать четыре последовательности нуклеиновых кислот, кодирующие интересующий ген. В некоторых вариантах реализации рекомбинантная нуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В одном варианте реализации каждая из двух или более последовательностей нуклеиновых кислот может кодировать один и тот же интересующий ген. В другом варианте реализации каждая из двух или более последовательностей нуклеиновых кислот кодирует отличный интересующий ген. В некоторых вариантах реализации каждая из двух или более последовательностей

нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую секреторный белок. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, может содержать последовательность нуклеиновой кислоты, кодирующую внутриклеточный белок. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновой кислоты, кодирующую белок, находящийся внутри органеллы. В некоторых вариантах реализации каждая из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, содержит последовательность нуклеиновых кислот, кодирующую мембранный белок.

5

10

15

20

25

30

35

[0273] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может дополнительно содержать последовательность нуклеиновой кислоты, кодирующую или содержащую линкер. В некоторых вариантах реализации последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, может соединять каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген. В некоторых вариантах реализации линкер может представлять собой нерасщепляемый линкер. В предпочтительном варианте реализации линкер может представлять собой расщепляемый линкер. В некоторых вариантах реализации представлять собой саморасщепляемый линкер может Неограничивающие линкера включают пептидный линкер примеры (или саморасщепляющиеся пептиды 2A), такой как T2A, P2A, E2A или F2A, или тРНК-линкер и т.д. В некоторых вариантах реализации линкер представляет собой пептидный линкер Т2А. В некоторых вариантах реализации линкер может представлять собой пептидный линкер Р2А. В некоторых вариантах реализации линкер может представлять собой пептидный линкер Е2А. В некоторых вариантах реализации линкер может представлять собой линкер F2A. В некоторых вариантах реализации линкер может представлять собой тРНК-линкер. Система тРНК эволюционно консервативна среди живых организмов и использует эндогенные РНКазы Р и Z для процессинга мультицистронных конструкций (Dong и др., 2016). В некоторых вариантах реализации тРНК-линкер может содержать последовательность нуклеиновой кислоты, содержащую

AACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGG GTTCGATTCCCGGCTGGTGCA (SEQ ID NO: 24).

[0274] В некоторых вариантах реализации экспрессия интересующего гена модулируется посредством экспрессии мРНК или белка, кодируемых интересующим геном. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии интересующего

гена посредством экспрессии мРНК или белка, кодируемых интересующим геном. Повышение экспрессии мРНК или белка, кодируемых интересующим геном, в данной заявке может относиться, но не ограничено повышением уровня белка, кодируемого интересующим геном. Уровень экспрессии белка можно измерить, применяя любые способы, хорошо известные в данной области техники, и они включают, но не ограничены перечисленными: вестерн-блоттинг, проточную цитометрию, ELISA, РИА и различные методики протеомики. Типичный способ измерения или детектирования полипептида представляет собой иммуноанализ, такой как ELISA. Этот тип определения количества белка может быть основан на антителе, способном захватывать специфический антиген, и втором антителе, способном детектировать захваченный антиген. Типичные способы анализа детектирования и/или измерения полипептидов описаны в Harlow, E. и Lane, D. Antibodies: A Laboratory Manual, (1988), Cold Spring Harbor Laboratory Press.

5

10

15

20

25

30

[0275] В некоторых вариантах реализации интересующий ген кодирует белок. В некоторых вариантах реализации указанный белок представляет собой терапевтический белок. В предпочтительном варианте реализации настоящего изобретения белок происходит из человека, т.е., представляет собой белок человека. Неограничивающие примеры белков, интересующим геном, включают: карбоксипептидазы; кодируемых внеклеточные лиганды и транспортеры; белки внеклеточного матрикса; глюкозидазы; гликозилтрансферазы; факторы роста; белки, связывающие факторы роста; белки, связывающие гепарин; гормоны; гидролазы; иммуноглобулины; изомеразы; киназы; лиазы; ингибиторы металлоферментов; металлопротеазы; белки молока; нейроактивные белки; протеазы; ингибиторы протеаз; протеинфосфатазы; эстеразы; трансферазы и вазоактивные белки, все происходящие из человека. В более предпочтительном варианте реализации настоящего изобретения белок в соответствии с настоящим изобретением представляет собой белок человека, выбранный из группы, состоящей из карбоксипептидаз человека; цитокинов человека; внеклеточных лигандов и транспортеров человека; белков внеклеточного матрикса человека; глюкозидаз человека; гликозилтрансфераз человека; факторов роста человека; белков человека, связывающих факторы роста; белков человека, связывающих гепарин; гормонов человека; гидролаз человека; иммуноглобулинов человека; изомераз человека; киназ человека; лиаз человека; ингибиторов металлоферментов человека; металлопротеаз человека; белков молока человека; нейроактивных белков человека; протеаз человека; ингибиторов протеаз человека; протеинфосфатаз человека; эстераз человека; трансфераз человека или вазоактивных белков человека.

[0276] В одном варианте реализации белок выбран из группы, состоящей из карбоксипептидаз, причем карбоксипептидазы выбраны из группы, состоящей из АСЕ, ACE2, CNDP1, CPA1, CPA2, CPA4, CPA5, CPA6, CPB1, CPB2, CPE, CPN1, CPQ, CPXM1, СРZ и SCPEP1; цитокинов, причем цитокины выбраны из группы, состоящей из BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8A, BMP8B, C1QTNF4, CCL1, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL2, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L, CCL4L2, CCL5, CCL7, CCL8, CD40LG, CER1, CKLF, CLCF1, CNTF, CSF1, CSF2, CSF3, CTF1, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, CXCL2, CXCL3, CXCL5, CXCL8, CXCL9, DKK1, DKK2, DKK3, DKK4, EDA, EBI3, FAM3B, FAM3C, FASLG, FLT3LG, GDF1, GDF10, GDF11, GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GPI, GREM1, GREM2, GRN, IFNA1, IFNA13, IFNA10, IFNA14, IFNA16, IFNA17, IFNA2, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, IFNG, IFNK, IFNL1, IFNL2, IFNL3, IFNL4, IFNW1, IL10, IL11, IL12A, IL12B, IL13, IL15, IL16, IL17A, IL17B, IL17C, IL17D, IL17F, IL18, IL19, IL1A, IL1B, IL1F10, IL2, IL20, IL21, IL22, IL23A, IL24, IL25, IL26, IL27, IL3, IL31, IL32, IL33, IL34, IL36A, IL36B, IL36G, IL36RN, IL37, IL4, IL5, IL6, IL7, IL9, LEFTY1, LEFTY2, LIF, LTA, MIF, MSTN, NAMPT, NODAL, OSM, PF4, PF4V1, SCGB3A1, SECTM1, SLURP1, SPP1, THNSL2, THPO, TNF, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TSLP, VSTM1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, XCL1, и XCL2; внеклеточных лигандов и транспортеров, причем внеклеточные лиганды и транспортеры выбраны из группы, состоящей из APCS, CHI3L1, CHI3L2, CLEC3B, DMBT1, DMKN, EDDM3A, EDDM3B, EFNA4, EMC10, ENAM, EPYC, ERVH48-1, F13B, FCN1, FCN2, GLDN, GPLD1, HEG1, ITFG1, KAZALD1, KCP, LACRT, LEG1, METRN, NOTCH2NL, NPNT, OLFM1, OLFML3, PRB2, PSAP, PSAPL1, PSG1, PSG6, PSG9, PTX3, PTX4, RBP4, RNASE10, RNASE12, RNASE13, RNASE9, RSPRY1, RTBDN, S100A12, \$100A13, \$100A7, \$100A8, \$AA2, \$AA4, \$CG1, \$CG2, \$CG3, \$CGB1C1, \$CGB1C2, SCGB1D1, SCGB1D2, SCGB1D4, SCGB2B2, SCGB3A2, SCGN, SCRG1, SCUBE1, SCUBE2, SCUBE3, SDCBP, SELENOP, SFTA2, SFTA3, SFTPA1, SFTPA2, SFTPC, SFTPD, SHBG, SLURP2, SMOC1, SMOC2, SMR3A, SMR3B, SNCA, SPATA20, SPATA6, SOGA1, SPARC, SPARCL1, SPATA20, SPATA6, SRPX2, SSC4D, STX1A, SUSD4, SVBP, TCN1, TCN2, TCTN1, TF, TULP3, TFF2, TFF3, THSD7A, TINAG, TINAGL1, TMEFF2, TMEM25 и VWC2L; белков внеклеточного матрикса, причем белки внеклеточного матрикса выбраны из группы, состоящей из ABI3BP, AGRN, CCBE1, CHL1, COL15A1, COL19A1, COLEC11,

5

10

15

20

25

30

DMBT1, DRAXIN, EDIL3, ELN, EMID1, EMILIN1, EMILIN2, EMILIN3, EPDR1, FBLN1, FBLN2, FBLN5, FLRT1, FLRT2, FLRT3, FREM1, GLDN, IBSP, KERA, KIAA0100, KIRREL3, KRT10, LAMB2, MGP, RPTN, SBSPON, SDC1, SDC4, SEMA3A, SEMA3B, SEMA3C, SEMA3D, SEMA3E, SEMA3F, SEMA3G, SIGLEC1, SIGLEC10, SIGLEC6, SLIT1, SLIT2, SLIT3, SLITRK1, SNED1, SNORC, SPACA3, SPACA7, SPON1, SPON2, STATH, SVEP1, TECTA, TECTB, TNC, TNN, TNR и TNXB; глюкозидаз, причем глюкозидазы выбраны из группы, состоящей из АМУ1А, АМУ1В, АМУ1С, АМУ2А, АМУ2В, СЕМІР, CHIA, CHIT1, FUCA2, GLB1L, GLB1L2, HPSE, HYAL1, HYAL3, KL, LYG1, LYG2, LYZL1, LYZL2, MAN2B2, SMPD1, SMPDL3B, SPACA5 и SPACA5B; гликозилтрансфераз, причем гликозилтрансферазы выбраны из группы, состоящей из ART5, B4GALT1, EXTL2, GALNT1, GALNT2, GLT1D1, MGAT4A, ST3GAL1, ST3GAL2, ST3GAL3, ST3GAL4, ST6GAL1, и XYLT1; факторов роста, причем факторы роста выбраны из группы, состоящей из AMH, ARTN, BTC, CDNF, CFC1, CFC1B, CHRDL1, CHRDL2, CLEC11A, CNMD, EFEMP1, EGF, EGFL6, EGFL7, EGFL8, EPGN, EREG, EYS, FGF1, FGF10, FGF16, FGF17, FGF18, FGF19, FGF2, FGF20, FGF21, FGF22, FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FRZB, GDNF, GFER, GKN1, HBEGF, HGF, IGF-1, IGF2, INHA, INHBA, INHBB, INHBC, INHBE, INS, KITLG, MANF, MDK, MIA, NGF, NOV, NRG1, NRG2, NRG3, NRG4, NRTN, NTF3, NTF4, OGN, PDGFA, PDGFB, PDGFC, PDGFD, PGF, PROK1, PSPN, PTN, SDF1, SDF2, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5, TDGF1, TFF1, TGFA, TGFB1, TGFB2, TGFB3, THBS4, TIMP1, VEGFA, VEGFB, VEGFC, VEGFD и WISP3; белков, связывающих факторы роста, причем белки, связывающие факторы роста, выбраны из группы, состоящей из CHRD, CYR61, ESM1, FGFBP1, FGFBP2, FGFBP3, HTRA1, GHBP, IGFALS, IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7, LTBP1, LTBP2, LTBP3, LTBP4, SOSTDC1, NOG, TWSG1 и WIF1; белков, связывающих гепарин, причем белки, связывающие гепарин, выбраны из группы, состоящей из ADA2, ADAMTSL5, ANGPTL3, APOB, APOE, APOH, COL5A1, COMP, CTGF, FBLN7, FN1, FSTL1, HRG, LAMC2, LIPC, LIPG, LIPH, LIPI, LPL, PCOLCE2, POSTN, RSPO1, RSPO2, RSPO3, RSPO4, SAA1, SLIT2, SOST, THBS1 и VTN; гормонов, причем гормоны выбраны из группы, состоящей из ADCYAP1, ADIPOQ, ADM, ADM2, ANGPTL8, APELA, APLN, AVP, C1QTNF12, C1QTNF9, CALCA, CALCB, CCK, CGA, CGB1, CGB2, CGB3, CGB5, CGB8, COPA, CORT, CRH, CSH1, CSH2, CSHL1, ENHO, EPO, ERFE, FBN1, FNDC5, FSHB, GAL, GAST, GCG, GH, GH1, GH2, GHRH, GHRL, GIP, GNRH1, GNRH2, GPHA2, GPHB5, IAPP, INS, INSL3, INSL4, INSL5, INSL6, LHB, METRNL, MLN, NPPA, NPPB, NPPC, OSTN, OXT, PMCH, PPY, PRL, PRLH, PTH, PTHLH, PYY, RETN, RETNLB, RLN1, RLN2, RLN3, SCT, SPX, SST, STC1, STC2, TG, TOR2A, TRH, TSHB, TTR, UCN, UCN2, UCN3, UTS2, UTS2B

5

10

15

20

25

30

и VIP; гидролаз, причем гидролазы выбраны из группы, состоящей из AADACL2, ABHD15, ACP7, ACPP, ADA2, ADAMTSL1, AOAH, ARSF, ARSI, ARSJ, ARSK, BTD, CHI3L2, ENPP1, ENPP2, ENPP3, ENPP5, ENTPD5, ENTPD6, GBP1, GGH, GPLD1, HPSE, LIPC, LIPF, LIPG, LIPH, LIPI, LIPK, LIPM, LIPN, LPL, PGLYRP2, PLA1A, PLA2G10, PLA2G12A. PLA2G1B, PLA2G2A, PLA2G2D, PLA2G2E, PLA2G2F, PLA2G3, PLA2G5, PLA2G7, PNLIP, PNLIPRP2, PNLIPRP3, PON1, PON3, PPT1, SMPDL3A, THEM6, THSD1 и THSD4; иммуноглобулинов, причем иммуноглобулины выбраны из группы, состоящей из IGSF10, IGKV1-12, IGKV1-16, IGKV1-33, IGKV1-6, IGKV1D-12, IGKV1D-39, IGKV1D-8, IGKV2-30, IGKV2D-30, IGKV3-11, IGKV3D-20, IGKV5-2, IGLC1, IGLC2 и IGLC3; изомераз, причем изомеразы выбраны из группы, состоящей из NAXE, PPIA и PTGDS; киназ, причем киназы выбраны из группы, состоящей из ADCK1, ADPGK, FAM20C, ICOS и PKDCC; лиаз, причем лиазы выбраны из группы, состоящей из PM20D1, PAM и CA6; ингибиторов металлоферментов, причем ингибиторы металлоферментов выбраны из группы, состоящей из FETUB, SPOCK3, TIMP2, TIMP3, TIMP4, WFIKKN1 и WFIKKN2; металлопротеаз, причем металлопротеазы выбраны из группы, состоящей из ADAM12, ADAM28, ADAM9, ADAMDEC1, ADAMTS1, ADAMTS10, ADAMTS12, ADAMTS13, ADAMTS15, ADAMTS16, ADAMTS17, ADAMTS18, ADAMTS19, ADAMTS20, ADAMTS20, ADAMTS3, ADAMTS4, ADAMTS5, ADAMTS6, ADAMTS7, ADAMTS8, ADAMTS9, CLCA1, CLCA2, CLCA4, IDE, MEP1B, MMEL1, MMP1, MMP10, MMP11, MMP12, MMP13, MMP16, MMP17, MMP19, MMP2, MMP20, MMP21, MMP24, MMP25, MMP26, MMP28, MMP3, MMP7, MMP8, MMP9, PAPPA, PAPPA2, TLL1 и TLL2; белков молока, причем белки молока выбраны из группы, состоящей из CSN1S1, CSN2, CSN3 и LALBA; нейроактивных белков, причем нейроактивные белки выбраны из группы, состоящей из CARTPT, NMS, NMU, NPB, NPFF, NPS, NPVF, NPW, NPY, PCSK1N, PDYN, PENK, PNOC, POMC, PROK2, PTH2, РҮҮ2, РҮҮ3, QRFP, TAC1 и TAC3; протеаз, причем протеазы выбраны из группы. состоящей из ADAMTS6, C1R, C1RL, C2, CASP4, CELA1, CELA2A, CELA2B, CFB, CFD, CFI, CMA1, CORIN, CTRB1, CTRB2, CTSB, CTSD, DHH, F10, F11, F12, F2, F3, F7, F8, F9, FAP, FURIN, GZMA, GZMK, GZMM, HABP2, HGFAC, HTRA3, HTRA4, IHH, KLK10, KLK11, KLK12, KLK13, KLK14, KLK15, KLK3, KLK4, KLK5, KLK6, KLK7, KLK8, KLK9, KLKB1, MASP1, MASP2, MST1L, NAPSA, OVCH1, OVCH2, PCSK2, PCSK5, PCSK6, PCSK9, PGA3, PGA4, PGA5, PGC, PLAT, PLAU, PLG, PROC, PRSS1, PRSS12, PRSS2, PRSS22, PRSS23, PRSS27, PRSS29P, PRSS3, PRSS33, PRSS36, PRSS38, PRSS3P2, PRSS42, PRSS44, PRSS47, PRSS48, PRSS53, PRSS57, PRSS58, PRSS8, PRTN3, RELN, REN, TMPRSS11D, TMPRSS11E, TMPRSS2, TPSAB1, TPSB2 и TPSD1; ингибиторов протеаз, причем ингибиторы протеаз выбраны из группы, состоящей из A2M, A2ML1, AMBP,

5

10

15

20

25

30

35

ANOS1, COL28A1, COL6A3, COL7A1, CPAMD8, CST1, CST2, CST3, CST4, CST5, CST6, CST7, CST8, CST9, CST9L, CST9LP1, CSTL1, EPPIN, GPC3, HMSD, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, KNG1, OPRPN, OVOS1, OVOS2, PAPLN, PI15, PI16, PI3, PZP, R3HDML, SERPINA1, SERPINA10, SERPINA11, SERPINA12, SERPINA13P, SERPINA3, SERPINA4, SERPINA5, SERPINA7, SERPINA9, SERPINB2, SERPINB5, SERPINC1, SERPINE1, SERPINE2, SERPINE3, SERPINF2, SERPING1, SERPINI1, SERPINI2, SPINK1, SPINK13, SPINK14, SPINK2, SPINK4, SPINK5, SPINK6, SPINK7, SPINK8, SPINK9, SPINT1, SPINT3, SPINT4, SPOCK1, SPOCK2, SPP2, SSPO, TFPI, TFPI2, WFDC1, WFDC10A, WFDC13, WFDC2, WFDC3, WFDC5, WFDC6 и WFDC8; протеинфосфатаз, причем протеинфосфатазы выбраны из группы, состоящей из ACP7, ACPP, PTEN и PTPRZ1; эстераз, причем эстеразы выбраны из группы, состоящей из BCHE, CEL, CES4A, CES5A, NOTUM и SIAE; трансфераз, причем трансферазы выбраны из группы, состоящей из METTL24, FKRP, CHSY1, CHST9 и B3GAT1; и вазоактивных белков, причем вазоактивные белки выбраны из группы, состоящей из AGGF1, AGT, ANGPT1, ANGPT2, ANGPTL4, ANGPTL6, EDN1, EDN2, EDN3 и NTS. В некоторых вариантах реализации белок выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета), интерферона альфа (IFN-альфа), растворимого рецептора ACE2, интерлейкина 37 (IL-37) и интерлейкина 38 (IL-38). В некоторых вариантах реализации белок выбран ИЗ группы, состоящей инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFNбета) и растворимого рецептора АСЕ2. В некоторых вариантах реализации белок выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4), интерферона бета (IFN-бета), растворимого рецептора ACE2 и эритропоэтина (EPO). В вариантах реализации белок выбран некоторых ИЗ группы, состоящей инсулиноподобного фактора роста 1 (IGF-1) и интерлейкина 4 (IL-4). В некоторых вариантах реализации белок представляет собой IGF-1. В некоторых вариантах реализации белок представляет собой IL-4. В некоторых вариантах реализации белок представляет собой интерферон бета (IFN-бета). В некоторых вариантах реализации белок представляет собой растворимый рецептор АСЕ2. В некоторых вариантах реализации белок представляет собой эритропоэтин (ЕРО).

5

10

15

20

25

30

35

[0277] В одном варианте реализации настоящего изобретения рекомбинантная полинуклеиновая кислота или конструкция РНК, содержащая последовательность нуклеиновой кислоты или мРНК, кодирующую интересующий ген, может содержать последовательность нуклеиновой кислоты, кодирующую инсулиноподобный фактор роста 1 (IGF-1) человека. В другом варианте реализации рекомбинантная полинуклеиновая кислота

или конструкция РНК может представлять собой голую ДНК или РНК, содержащую последовательность нуклеиновой кислоты, кодирующую IGF-1. В этом варианте реализации настоящего изобретения рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать последовательность нуклеиновой кодирующую зрелый IGF-1 человека. В предпочтительном варианте реализации настоящего изобретения, рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать последовательность нуклеиновой кислоты, кодирующую пропептид IGF-1, предпочтительно пропептид IGF-1 человека, и последовательность нуклеиновой кислоты, кодирующую зрелый белок IGF-1, или предпочтительно зрелый белок IGF-1 человека, и не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид IGF-1, предпочтительно не содержит последовательность нуклеиновой кислоты, кодирующую Епептид IGF-1 человека, т.е., IGF-1 с карбоксиконцевым удлинением. В более предпочтительном варианте реализации настоящего изобретения рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать последовательность нуклеиновой кислоты, кодирующую пропептид IGF-1, предпочтительно пропептид IGF-1 человека, последовательность нуклеиновой кислоты, кодирующую зрелый белок IGF-1, или предпочтительно зрелый белок IGF-1 человека. Предпочтительно рекомбинантная полинуклеиновая кислота или конструкция РНК не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид IGF-1, или более предпочтительно не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид IGF-1 человека. В дополнительном предпочтительном варианте реализации настоящего изобретения, рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать последовательность нуклеиновой кислоты, кодирующую пропептид IGF-1, предпочтительно пропептид IGF-1 человека, последовательность нуклеиновой кислоты, кодирующую зрелый белок IGF-1, или предпочтительно зрелый белок IGF-1 человека и последовательность нуклеиновой кислоты, кодирующую сигнальный пептид нейротрофического фактора головного мозга (BDNF). Предпочтительно рекомбинантная полинуклеиновая кислота или конструкция РНК не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид IGF-1, и более предпочтительно не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид IGF-1 человека.

5

10

15

20

25

30

35

[0278] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать последовательность нуклеиновой кислоты, кодирующую пропептид (также называемый продоменом) IGF-1, предпочтительно IGF-1 человека, содержащую 27 аминокислот, и последовательность нуклеотидов, кодирующую

зрелый IGF-1, предпочтительно зрелый IGF-1 человека, содержащую 70 аминокислот, и предпочтительно не содержит последовательность нуклеотидов, кодирующую Е-пептид IGF-1, и предпочтительно не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид IGF-1 человека. В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК может содержать последовательность нуклеиновой кислоты, кодирующую пропептид (также называемый продоменом) IGF-1, предпочтительно IGF-1 человека, содержащую 27 аминокислот, последовательность нуклеотидов, кодирующую зрелый IGF-1, предпочтительно зрелый IGF-1 человека, содержащую 70 аминокислот, и последовательность нуклеиновой кислоты, кодирующую сигнальный пептид нейротрофического фактора головного мозга (BDNF). Предпочтительно рекомбинантная полинуклеиновая кислота или конструкция РНК не содержит последовательность нуклеотидов, кодирующую Е-пептид IGF-1, более предпочтительно не содержит последовательность нуклеиновой кислоты, кодирующую Епептид IGF-1 человека.

5

10

15

20

25

30

35

[0279] В некоторых вариантах реализации рекомбинантная полинуклеиновая кислота или конструкция РНК в соответствии с настоящим изобретением может содержать последовательность нуклеиновой кислоты, кодирующую пропептид (также называемый продоменом) IGF-1 человека, содержащую 27 аминокислот, и последовательность нуклеиновой кислоты, кодирующую зрелый IGF-1 человека, содержащую 70 аминокислот, и предпочтительно не содержит последовательность нуклеиновой кислоты, кодирующую Е-пептид (также называемый Е-доменом) IGF-1 человека, причем последовательность нуклеиновой кислоты, кодирующая пропептид (также называемый продоменом) IGF-1 человека, содержащая 27 аминокислот, и последовательность нуклеиновой кислоты, кодирующая зрелый IGF-1 человека, содержащая 70 аминокислот, и последовательность нуклеиновой кислоты, кодирующая Е-пептиды, упоминаются в базе данных Uniprot как UniProtKB - P05019 и в базе данных Genbank как NM_000618.4, NM_001111285.2 и NM_001111283.2, соответственно.

[0280] В некоторых вариантах реализации интересующий ген (который может кодировать, например, интересующую мРНК и/или интересующий белок, соответствующие интересующему гену) кодирует интересующий белок, причем интересующий белок представляет собой противовоспалительный цитокин. В некоторых вариантах реализации противовоспалительный цитокин представляет собой интерферон или интерлейкин. В некоторых вариантах реализации интерферон представляет собой интерферон I типа (например, IFN- α , IFN- β , IFN- δ , IFN- κ , IFN- κ , IFN- τ и IFN- ω), интерферон II типа (IFN- γ) или интерферон III типа (IFN- λ). В некоторых вариантах реализации интерферон

альфа выбран из интерферона альфа-13, интерферона альфа-2а и интерферона альфа-2b. Активности интерферонов против вирусных инфекций были описаны, например, в WO 2004/096852 (Chen, и др.), описывающей действие IFN-ω против SARS, и WO 2005/097165 (Klucher, и др.), описывающей противовирусное действие вариантов IFN-λ, обе из которых включены в данную заявку посредством ссылки. В некоторых вариантах реализации цитокин представляет собой интерлейкин. В некоторых вариантах реализации интерлейкин является представителем семейства интерлейкина 1F. В некоторых вариантах реализации интерлейкин представляет собой интерлейкин 37 (IL-37, ранее известный как представитель 7 семейства интерлейкина-1 или IL-1F7 и описанный, например, в Yan, и др., 2018, Mediators of Inflammation, том 2019, статья № 2650590, и Conti, и др., март -апрель 2020 Γ, Journal of biological regulators and homeostatic agents 34(2), doi: 10.23812/CONTI-E [электронная публикация до выхода в печать], оба включены в данную заявку посредством ссылки). В некоторых вариантах реализации интерлейкин представляет собой интерлейкин 38 (ранее известный как IL-1HY2 и описанный, например, в Xu и др., июнь 2018 г., Frontiers in Immunology, том 9, статья 1462, включенном в данную заявку посредством ссылки). В некоторых вариантах реализации интересующий ген кодирует белок-приманку. В некоторых вариантах реализации белок-приманка представляет собой растворимую форму рецептора клетки-хозяина вируса. В некоторых вариантах реализации белок-приманка представляет собой растворимый рецептор АСЕ2. В некоторых вариантах реализации интересующий ген кодирует белок, выбранный из: интерферона I типа, интерферона II типа, интерферона III типа, интерлейкина и белка-приманки. В некоторых вариантах реализации интересующий ген кодирует белок, выбранный из: IFN-а, например, интерферона альфа-n3, интерферона альфа-2a или интерферона альфа-2b, IFN-β, IFN-δ, IFN-ε, IFN-ν, IFN-τ, IFN-ω, IFN-γ, IFN-λ, IL-37, IL-38, и растворимого рецептора ACE2.

Нацеливающий мотив

5

10

15

20

25

30

35

[0281] В некоторых вариантах реализации композиции, описанные в данной заявке, содержат рекомбинантную полинуклеиновую кислоту или конструкцию РНК, содержащую нацеливающий мотив. Термин «нацеливающий мотив» или «направляющий мотив» в данной заявке может относиться к любому короткому пептиду, присутствующему во вновь синтезированных полипептидах или белках, которые предназначены для любых частей мембран клетки, внеклеточных компартментов или внутриклеточных компартментов. Внутриклеточные компартменты включают, но не ограничены внутриклеточными органеллами, такими как ядро, ядрышко, эндосома, протеасома,

рибосома, хроматин, оболочка ядра, ядерная пора, экзосома, меланосома, аппарат Гольджи, пероксисома, эндоплазматический ретикулум (ER), лизосома, центросома, микротрубочка, митохондрия, хлоропласт, микрофиламент, промежуточный филамент или плазматическая мембрана. термины включают, но ограничены Другие не сигнальной последовательностью, нацеливающим сигналом сигналом, локализации, последовательностью локализации, транзитным пептидом, лидерной последовательностью или лидерным пептидом. В некоторых вариантах реализации нацеливающий мотив функционально связан с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген. Неограничивающие примеры нацеливающего мотива включают сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ЕR), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, сигнал центросомной локализации (CLS) или любой другой сигнал, который направляет белок в определенную часть мембраны клетки, внеклеточные компартменты или внутриклеточные компартменты.

5

10

15

20

25

30

35

[0282] В некоторых вариантах реализации нацеливающий мотив выбран из группы, состоящей из (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном; (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; (с) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.

[0283] В некоторых вариантах реализации нацеливающий мотив представляет собой сигнальный пептид. В некоторых вариантах реализации сигнальный пептид выбран из группы, состоящей из: (а) сигнального пептида, гетерологичного белку, кодируемому

интересующим геном; (b) сигнального пептида, гетерологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты, при условии, что указанный белок не является оксидоредуктазой; (с) сигнального пептида, гомологичного белку, кодируемому интересующим геном, причем указанный сигнальный пептид, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции сигнального пептида, причем указанная встречающаяся В природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты. В некоторых вариантах реализации у аминокислот 1 - 9 N-конца сигнального пептида средний балл гидрофобности выше 2.

5

10

15

20

25

30

35

[0284] Термин «нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном», или «сигнальный пептид, гетерологичный белку, кодируемому интересующим геном», в данной заявке относится к встречающемуся в природе нацеливающему мотиву или сигнальному пептиду, который отличен от встречающегося в природе нацеливающего мотива или сигнального пептида указанного белка, т.е., нацеливающий мотив или сигнальный пептид не происходит из того же гена, что и указанный белок. Обычно нацеливающий мотив или сигнальный пептид, гетерологичный данному белку, представляет собой нацеливающий мотив или сигнальный пептид из другого белка, который является родственным указанному белку, т.е., последовательность аминокислот, которая отличается от нацеливающего мотива или сигнального пептида указанного белка, например, который имеет последовательность аминокислот, которая отличается нацеливающего мотива или сигнального пептида данного белка более чем на 50%, предпочтительно более чем на 60%, более предпочтительно более чем на 70%, еще более предпочтительно более чем на 80%, наиболее предпочтительно более чем на 90% или, в частности, более чем на 95%. Предпочтительно последовательность нацеливающего мотива или сигнального пептида, гетерологичного данному белку, идентична последовательности встречающегося в природе (гомологичного) нацеливающего мотива или сигнального пептида данного белка менее чем на 95%, предпочтительно менее чем на 90%, более предпочтительно менее чем на 80%, еще более предпочтительно менее чем на 70%, наиболее предпочтительно менее чем на 60% или, в частности, менее чем на 50%. Хотя гетерологичные последовательности могут происходить из одного организма, они

естественным образом (в природе) не встречаются в одной молекуле нуклеиновой кислоты, такой как одна мРНК. Нацеливающий мотив или сигнальный пептид, гетерологичный белку, и белок, которому гетерологичен нацеливающий мотив или сигнальный пептид, могут быть одного или различного происхождения, и обычно имеют одно происхождение, более предпочтительно предпочтительно происходят из эукариот, эукариотического организма, еще более предпочтительно происходят из млекопитающего, в частности, происходят из одного млекопитающего организма или, конкретнее, происходят из человека. Например, предложена рекомбинантная полинуклеиновая кислота РНК, содержащая последовательность нуклеиновой или конструкция кодирующую сигнальный пептид BDNF человека и ген IGF-1 человека, т.е., сигнальный пептид, гетерологичный белку, причем указанный сигнальный пептид и белок имеют одно происхождение, а именно, происходят из человека.

5

10

15

20

25

30

35

[0285] Термин «нацеливающий мотив, гомологичный белку, кодируемому интересующим геном», или «сигнальный пептид, гомологичный белку, кодируемому интересующим геном», в данной заявке относится к встречающемуся в природе нацеливающему мотиву или сигнальному пептиду белка. Нацеливающий мотив или сигнальный пептид, гомологичный белку, представляет собой нацеливающий мотив или сигнальный пептид, кодируемый геном белка, который встречается в природе. Нацеливающий мотив или сигнальный пептид, гомологичный белку, обычно имеет эукариотическое происхождение, например, встречающийся в природе нацеливающий мотив или сигнальный пептид эукариотического белка, предпочтительно происходящий из млекопитающего, например, встречающийся в природе нацеливающий мотив или сигнальный пептид белка млекопитающего или, более предпочтительно, происходящий из человека, например, встречающийся в природе нацеливающий мотив или сигнальный пептид белка человека.

[0286] Термин «встречающаяся в природе последовательность аминокислот, у которой в природе нет функции нацеливающего мотива», или «встречающаяся в природе последовательность аминокислот, у которой в природе нет функции сигнального пептида», в данной заявке относится к последовательности аминокислот, которая встречается в природе и которая не идентична последовательности аминокислот любого нацеливающего мотива или сигнального пептида, встречающегося в природе. Встречающаяся в природе последовательность аминокислот, которая в природе не имеет функции нацеливающего мотива или сигнального пептида, упоминаемая в настоящем изобретении, имеет длину предпочтительно 10 - 50, более предпочтительно 11 - 45, еще более предпочтительно 12 - 45, наиболее предпочтительно 13 - 45, в частности, 14 - 45, конкретнее 15 - 45 или еще конкретнее 16 - 40 аминокислот. Предпочтительно встречающаяся в природе

последовательность аминокислот, которая в природе не имеет функции нацеливающего мотива или сигнального пептида, в соответствии с настоящим изобретением имеет эукариотическое происхождение и не идентична какому-либо нацеливающему мотиву или сигнальному пептиду эукариотического происхождения, более предпочтительно, она происходит из млекопитающего и не идентична какому-либо нацеливающему мотиву или сигнальному пептиду, происходящему из млекопитающего, или более предпочтительно она происходит из человека и не идентична какому-либо нацеливающему мотиву или сигнальному пептиду, происходящему из человека, встречающемуся в природе. Встречающаяся в природе последовательность аминокислот, у которой в природе нет функции нацеливающего мотива или сигнального пептида, обычно представляет собой последовательность аминокислот кодирующей последовательности белка. Встречающаяся в природе последовательность аминокислот, у которой в природе нет функции нацеливающего мотива или сигнального пептида в соответствии с настоящим изобретением, обычно имеет эукариотическое происхождение, предпочтительно происходит из млекопитающего или более предпочтительно происходит из человека. Термины «встречающийся в природе», «природный» и «в природе» в данной заявке имеют одинаковое значение.

5

10

15

20

25

30

35

[0287] Термин «аминокислоты 1 - 9 N-конца сигнального пептида» в данной заявке относится к первым девяти аминокислотам N-конца последовательности аминокислот сигнального пептида. Аналогично термин «аминокислоты 1 - 7 N-конца сигнального пептида» в данной заявке относится к первым семи аминокислотам N-конца последовательности аминокислот сигнального пептида и термин «аминокислоты 1 - 5 N-конца сигнального пептида» в данной заявке относится к первым пяти аминокислотам N-конца последовательности аминокислот сигнального пептида.

[0288] Формулировка «последовательность аминокислот, модифицированная путем вставки, делеции и/или замены по меньшей мере одной аминокислоты», в данной заявке относится к последовательности аминокислот, которая содержит замену, вставку и/или делецию по меньшей мере одной аминокислоты в указанной последовательности аминокислот. Формулировка «нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты» или «сигнальный пептид, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты» в данной заявке относится к последовательности аминокислот встречающегося в природе нацеливающего мотива или сигнального пептида, гетерологичного белку, которая содержит замену, вставку и/или делецию по меньшей мере

одной аминокислоты во встречающейся в природе последовательности аминокислот. Формулировка «нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты» или «сигнальный пептид, гомологичный белку, интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты» в данной заявке относится к встречающемуся в природе нацеливающему мотиву или сигнальному пептиду, гомологичному белку, который содержит замену, вставку и/или делецию по меньшей мере одной аминокислоты во встречающейся природе последовательности аминокислот. Формулировка «встречающаяся в природе последовательность аминокислот модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты» относится к встречающейся в природе последовательности аминокислот, которая содержит замену, вставку и/или делецию по меньшей мере одной аминокислоты во встречающейся в природе последовательности аминокислот. «Замена аминокислоты» или «замена» в данной заявке может относиться к замене аминокислоты в конкретном положении в исходной белковой последовательности на другую аминокислоту. Например, замена R34K относится к полипептиду, в котором аргинин в положении 34 заменяют на лизин. В предшествующем примере 34К указывает на замену аминокислоты в положении 34 на лизин. Для целей в данной заявке, несколько замен обычно разделяют наклонной чертой. Например, R34K/L78V относится к двойному варианту, содержащему замены R34K и L38V. «Вставка аминокислоты» или «вставка» в данной заявке может относиться к добавлению аминокислоты в конкретное положение в исходной белковой последовательности. Например, вставка -34 обозначает вставку в положении 34. «Делеция аминокислоты» или «делеция» в данной заявке может относиться к удалению аминокислоты в конкретном положении в исходной белковой последовательности. Например, R34- обозначает делецию аргинина в положении 34.

5

10

15

20

25

30

35

[0289] Предпочтительно удаленная аминокислота представляет собой аминокислоту с баллом гидрофобности ниже -0,8, предпочтительно ниже 1,9. Предпочтительно заменяющая аминокислота представляет собой аминокислоту с баллом гидрофобности, который выше, чем балл гидрофобности замененной аминокислоты, более предпочтительно заменяющая аминокислота представляет собой аминокислоту с баллом гидрофобности 2,8 и выше, или более предпочтительно с баллом гидрофобности 3,8 и выше. Предпочтительно вставленная аминокислота представляет собой аминокислоту с баллом гидрофобности 2,8 и выше, или более предпочтительно с баллом гидрофобности 3,8 и выше.

[0290] Обычно от 1 до 15, предпочтительно от 1 до 11 аминокислот, более предпочтительно от 1 до 10 аминокислот, еще более предпочтительно от 1 до 9 аминокислот, в частности, от 1 до 8 аминокислот, конкретнее, от 1 до 7 аминокислот, еще конкретнее от 1 до 6 аминокислот, особенно предпочтительно от 1 до 5 аминокислот, особенно предпочтительно от 1 до 4 аминокислот или еще более предпочтительно от 1 до 2 аминокислот в указанной последовательности аминокислот вставлены, удалены и/или заменены. Обычно от 1 до 15, предпочтительно от 1 до 11 аминокислот, более предпочтительно от 1 до 10 аминокислот, еще более предпочтительно от 1 до 9 аминокислот, в частности, от 1 до 8 аминокислот, конкретнее от 1 до 7 аминокислот, еще конкретнее от 1 до 6 аминокислот, особенно предпочтительно от 1 до 5 аминокислот, особенно предпочтительно от 1 до 4 аминокислот или еще более предпочтительно от 1 до 2 аминокислот в данной последовательности аминокислот вставлены, удалены и/или заменены, обычно в пределах аминокислот 1 - 11, предпочтительно в пределах аминокислот 1 - 10, более предпочтительно в пределах аминокислот 1 - 9, еще более предпочтительно в пределах аминокислот 1 - 8, в частности, в пределах аминокислот 1 - 7, конкретнее, в пределах аминокислот 1 - 6, еще конкретнее, в пределах аминокислот 1 - 5, в частности, предпочтительно в пределах аминокислот 1 - 4, особенно предпочтительно в пределах аминокислот 1 - 3, или еще более предпочтительно в пределах аминокислот 1 - 2 N-конца последовательности аминокислот нацеливающего мотива или сигнального пептида. Предпочтительно последовательность аминокислот возможно модифицирована путем делеции и/или замены по меньшей мере одной аминокислоты.

5

10

15

20

25

30

35

[0291] Предпочтительно, средний балл гидрофобности первых девяти аминокислот N-конца последовательности аминокислот модифицированного сигнального пептида повышается на 1,0 единицу или выше по сравнению с сигнальным пептидом без модификации.

[0292] Термин «инсулиноподобный фактор роста 1», «инсулиноподобный фактор роста 1 (IGF1 или IGF-1)», «IGF1» или «IGF-1» в данной заявке обычно относится к природной последовательности белка IGF-1 без сигнального пептида, и может включать пропептид и/или Е-пептид, и предпочтительно относится к природной последовательности белка IGF-1 без сигнального пептида и без Е-пептида. Термин «инсулиноподобный фактор роста 1 (IGF-1) человека» в данной заявке относится к природной последовательности IGF-1 человека (про-IGF-1, которая в базе данных Uniprot обозначена UniProtKB P05019 и в базе данных Genbank обозначена NM_000618.4, NM_001111285.2 и NM_001111283.2, или его фрагмент). Природная последовательность ДНК, кодирующая инсулиноподобный фактор роста 1 человека, может быть кодон-оптимизирована. Природная последовательность IGF-

1 человека состоит из сигнального пептида человека, содержащего 21 аминокислоту (нуклеотиды 1 - 63), пропептида человека (также называемого продоменом), содержащего 27 аминокислот (нуклеотиды 64 - 144), зрелого IGF-1 человека, содержащего 70 аминокислот (нуклеотиды 145 - 354), и С-концевого домена IGF-1 человека, который представляет собой так называемый Е-пептид (или Е-домен). С-концевой домен IGF-1 человека (так называемый Е-пептид или Е-домен) включает домен Ea, Eb или Ec, которые получены путем событий альтернативного сплайсинга. Домен Еа состоит из 35 аминокислот (105 нуклеотидов), домен Ев состоит из 77 аминокислот (231 нуклеотида), и домен Ес состоит из 40 аминокислот (120 нуклеотидов) (см., например, Wallis M (2009) New insulinlike growth factor (IGF)-precursor sequences from mammalian genomes: the molecular evolution of IGFs and associated peptides in primates. Growth Horm IGF Res 19(1):12-23. doi: 10.1016/j.ghir.2008.05.001). Термин «инсулиноподобный фактор роста 1 (IGF-1) человека» в данной заявке обычно относится к природной последовательности белка IGF-1 человека без сигнального пептида и может включать пропептид и/или Е-пептид, и предпочтительно относится к природной последовательности белка IGF-1 человека без сигнального пептида и без Е-пептида. Термин «инсулиноподобный фактор роста 1 (IGF-1) человека» в данной заявке обычно включает зрелый IGF-1 человека. Термин «зрелый белок» относится к белку, синтезированному в эндоплазматическом ретикулуме и секретированному посредством аппарата Гольджи В экспрессирующей клетке, секретирующий указанный белок. Термин «зрелый IGF-1» относится к белку, синтезированному в эндоплазматическом ретикулуме и секретированному посредством аппарата Гольджи в клетке, экспрессирующей и секретирующий IGF-1. Термин «зрелый IGF-1 человека» относится к белку, синтезированному в эндоплазматическом ретикулуме и секретированному посредством аппарата Гольджи в клетке человека, экспрессирующей и секретирующей IGF-1 человека, и обычно содержит аминокислоты, кодируемые последовательностью нуклеотидов, представленной в SEQ ID NO: 19.

[0293] SEQ ID NO: 19

5

10

15

20

25

30

35

GGACCTGAGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGGC GACAGAGGCTTCTACTTCAACAAGCCCACAGGCTACGGCAGCAGCTCTAGAAGGGC TCCTCAGACCGGAATCGTGGACGAGTGCTGTTTCAGAAGCTGCGACCTGCGGCGGC TGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGCGCC

[0294] Термин «сигнальный пептид инсулиноподобного фактора роста 1 (IGF-1), модифицированный», «модифицированный сигнальный пептид IGF-1» или «сигнальный пептид IGF-1-модифицированный» в данной заявке относится к модифицированному сигнальному пептиду IGF-1, причем природный сигнальный пептид IGF-1, который в базе

данных Uniprot обозначен P05019 и в базе данных Genbank обозначен NM_000618.4, NM_001111284.1 и NM_001111285.2, модифицирован с помощью замен G2L/S5L/T9L/Q10L и делеций K3- и C15- и предпочтительно имеет последовательность аминокислот, представленную в SEQ ID NO: 20, и/или предпочтительно кодируется последовательностью ДНК, представленной в SEQ ID NO: 21.

[0295] SEQ ID NO: 20

5

10

15

20

25

30

35

Met-Leu-Ile-Leu-Leu-Pro-Leu-Leu-Phe-Lys-Cys-Phe-Cys-Asp-Phe-Leu-Lys [0296] SEQ ID NO: 21

ATGCTGATTCTGCTGCTGCTGCTGCTGTTCAAGTGCTTCTGCGACTTCCTGAAA

[0297] Термин «про-домен инсулиноподобного фактора роста (IGF-1), IGF-1» модифицированный», «модифицированный про-домен «про-IGF-1или модифицированный» в данной заявке относится к про-пептиду IGF-1, который представляет собой встречающуюся в природе последовательность аминокислот, у которой в природе нет функции сигнального пептида, которая в базе данных Uniprot обозначена Р05019 и в базе данных Genbank обозначена NM 000618.4, NM 001111284.1 и NM 001111285.2, которая модифицирована путем делеции десяти аминокислотных остатков (VKMHTMSSSH (SEQ ID NO: 198)), фланкирующих 22 - 31 на N-конце пропептида, и предпочтительно имеет последовательность аминокислот, представленную в SEQ ID NO: 22, и/или предпочтительно кодируется последовательностью ДНК, представленной в SEQ ID NO: 23.

[0298] SEQ ID NO: 22

Met-Leu-Phe-Tyr-Leu-Ala-Leu-Cys-Leu-Leu-Thr-Phe-Thr-Ser-Ser-Ala-Thr-Ala [0299] SEQ ID NO: 23

ATGCTGTTCTATCTGGCCCTGTGCCTGCTGACCTTTACCAGCTCTGCTACCGCC

[0300] Формулировка «мРНК содержит последовательность нуклеиновой кислоты, кодирующую пропептид IGF-1, и последовательность нуклеиновой кислоты, кодирующую зрелый IGF-1, и не содержит последовательность нуклеиновой кислоты, кодирующую Епептид IGF-1» в данной заявке, как правило, относится к мРНК, которая содержит последовательность нуклеотидов, кодирующую пропептид (также называемый продоменом) IGF-1 человека, содержащий 27 аминокислот, и последовательность нуклеотидов, кодирующую зрелый IGF-1 человека, содержащий 70 аминокислот, и которая не содержит последовательность нуклеотидов, кодирующую Е-пептид (также называемый Е-доменом) IGF-1 человека, т.е., не содержит последовательность нуклеотидов, кодирующую домен Еа, Еb или Ес. Последовательность нуклеотидов, кодирующая пропептид (также называемый продоменом) IGF-1 человека, содержащий 27 аминокислот,

и последовательность нуклеотидов, кодирующая зрелый IGF-1 человека, содержащий 70 аминокислот, может быть кодон-оптимизирована.

[0301] Термины «индекс гидрофобности» или «балл гидрофобности» в данной заявке используют синонимично термину «балл гидропатии», и они относятся к степени гидрофобности аминокислоты, рассчитанной по шкале Кайта-Дулиттла (Куte J., Doolittle R.F.; J. Mol. Biol. 157:105-132(1982)). Баллы гидрофобности аминокислот по шкале Кайта-Дулиттла описаны далее:

Аминокислота	Однобуквенный	Балл
	код	гидрофобности
Изолейцин	Ι	4,5
Валин	V	4,2
Лейцин	L	3,8
Фенилаланин	F	2,8
Цистеин	С	2,5
Метионин	M	1,9
Аланин	A	1,8
Глицин	G	-0,4
Треонин	T	-0,7
Серин	S	-0,8
Триптофан	W	-0,9
Тирозин	Y	-1,3
Пролин	P	-1,6
Гистидин	H	-3,2
Глутаминовая	Е	-3,5
кислота		-5,5
Глутамин	Q	-3,5
Аспарагиновая	D	-3,5
кислота		-5,5
Аспарагин	N	-3,5
Лизин	K	-3,9
Аргинин	R	-4,5

5

10

[0302] «Средний балл гидрофобности» последовательности аминокислот, например, средний балл гидрофобности аминокислот 1 - 9 N-конца последовательности аминокислот сигнального пептида, рассчитывают путем сложения баллов гидрофобности по шкале Кайта-Дулиттла каждой аминокислоты последовательности аминокислот, например, баллов гидрофобности каждой из девяти аминокислот 1 - 9 N-конца, и деления на количество аминокислот, например, деления на девять.

[0303] Полярность рассчитывают в соответствии с коэффициентом полярности Циммермана (Zimmerman J.M., Eliezer N., Simha R.; J. Theor. Biol. 21:170-201(1968)).
 «Среднюю полярность» последовательности аминокислот, например, среднюю полярность аминокислот 1 - 9 N-конца последовательности аминокислот сигнального

пептида рассчитывают путем сложения значения полярности, рассчитанного в соответствии с коэффициентом полярности Циммермана, каждой из аминокислот в последовательности аминокислот, например, среднюю полярность каждой из девяти аминокислот 1 - 9 N-конца, и деления на количество аминокислот, например, деления на девять. Полярность аминокислот в соответствии с коэффициентом полярности Циммермана описана далее:

Аминокислота	Однобуквенный код	Полярность
Изолейцин	I	0,13
Валин	V	0,13
Лейцин	L	0,13
Фенилаланин	F	0,35
Цистеин	С	1,48
Метионин	M	1,43
Аланин	A	0
Глицин	G	0
Треонин	T	1,66
Серин	S	1,67
Триптофан	W	2,1
Тирозин	Y	1,61
Пролин	P	1,58
Гистидин	H	51,6
Глутаминовая	Е	40.0
кислота		49,9
Глутамин	Q	3,53
Аспарагиновая	D	49,7
кислота		(1 7,1
Аспарагин	N	3,38
Лизин	K	49,5
Аргинин	R	52

Заболевание и лечение.

5

10

15

[0304] В некоторых аспектах, представленных в данной заявке, предложена клетка, содержащая композицию любой рекомбинантной полинуклеиновой кислоты или конструкции РНК, описанных в данной заявке. В некоторых аспектах, представленных в данной заявке, предложена фармацевтическая композиция, содержащая композицию любой рекомбинантной полинуклеиновой кислоты или конструкции РНК, описанных в данной заявке. И фармацевтически приемлемое вспомогательное вещество. Фармацевтические композиции могут быть составлены обычным способом с применением одного или более фармацевтически приемлемых неактивных ингредиентов, которые способствуют переработке активных соединений с получением препаратов, которые можно применять в фармацевтике. Подходящий состав зависит от выбранного пути введения, и обзор фармацевтических композиций можно найти, например, в Remington: The Science and Practice of Pharmacy, девятнадцатое изд. (Истон, Пенсильвания: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Истон, Пенсильвания, 1975; Liberman, H.A. и Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, Нью-Йорк, Нью-Йорк, 1980; и Pharmaceutical Dosage Forms and Drug Delivery Systems, седьмое изд. (Lippincott Williams & Wilkins 1999), включенных в данную заявку посредством ссылки. В некоторых вариантах реализации фармацевтическая композиция способствует введению соединения в организм.

5

10

15

20

25

30

35

[0305] B некоторых аспектах, представленных В данной заявке, предложена фармацевтическая композиция, клетка, рекомбинантная конструкция полинуклеиновой кислоты или рекомбинантная конструкция РНК, описанные в данной заявке, для применения в качестве лекарственного средства. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния у нуждающегося в включающий введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, описанных в данной заявке. В некоторых аспектах, представленных в данной заявке, предложена фармацевтическая композиция, клетка, рекомбинантная конструкция полинуклеиновой кислоты или рекомбинантная конструкция РНК, описанные в данной заявке, для применения в способе лечения заболевания или состояния у нуждающегося в этом субъекта. В некоторых аспектах, представленных в предложено применение фармацевтической композиции, клетки, данной заявке, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, описанных в данной заявке, для производства лекарственного средства для лечения заболевания или состояния у нуждающегося в этом субъекта. В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из SARS (тяжелого острого респираторного синдрома), острого респираторного дистресс-синдрома (ОРДС), венозной тромбоэмболии, осложнений со стороны сердечно-сосудистой системы, острой почечной недостаточности, острой печеночной недостаточности, осложнений со стороны нервной системы, синдрома выброса цитокинов, детского мультисистемного воспалительного синдрома, септического шока, синдрома диссеминированной внутрисосудистой коагуляции, острой дыхательной недостаточности, и любой их комбинации, болезни межпозвоночных дисков (БМПД), остеоартрита, псориаза, прогрессирующей оссифицирующей фибродисплазии $(\Pi O \Phi)$ бокового амиотрофического склероза (БАС). В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из SARS (тяжелого острого респираторного

синдрома, ТОРС), острого респираторного дистресс-синдрома (ОРДС), венозной тромбоэмболии, осложнений со стороны сердечно-сосудистой системы, острой почечной недостаточности, острой печеночной недостаточности, осложнений со стороны нервной системы, синдрома выброса цитокинов, детского мультисистемного воспалительного диссеминированной синдрома, септического шока, синдрома внутрисосудистой коагуляции, острой дыхательной недостаточности и любой их комбинации, болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза. В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из SARS (тяжелого респираторного синдрома), болезни межпозвоночных дисков (БМПД), остеоартрита, псориаза, прогрессирующей оссифицирующей фибродисплазии (ПОФ) и бокового амиотрофического склероза (БАС). В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из SARS (тяжелого острого респираторного синдрома), болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза.

5

10

15

20

25

30

В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита, псориаза, прогрессирующей оссифицирующей фибродисплазии $(\Pi O \Phi)$ бокового амиотрофического склероза (БАС). В некоторых вариантах реализации заболевание или состояние выбрано из группы, состоящей из болезни межпозвоночных дисков (БМПД), остеоартрита и псориаза. В некоторых вариантах реализации заболевание или состояние включает кожное заболевание или состояние. В некоторых вариантах реализации кожное заболевание или состояние включает воспалительное заболевание кожи. В некоторых вариантах реализации воспалительное заболевание кожи включает псориаз. В некоторых вариантах реализации заболевание или состояние включает заболевание или состояние мышц. В некоторых вариантах реализации заболевание или состояние мышц включает заболевание скелетных мышц. В некоторых вариантах реализации заболевание скелетных мышц включает прогрессирующую оссифицирующую фибродисплазию $(\Pi O \Phi)$. B некоторых реализации заболевание состояние вариантах или включает нейродегенеративное заболевание или состояние. В некоторых вариантах реализации нейродегенеративное заболевание или состояние включает расстройство двигательного нейрона. В некоторых вариантах реализации расстройство двигательного нейрона включает боковой амиотрофический склероз (БАС). В некоторых вариантах реализации заболевание или состояние включает заболевание или состояние сустава. В некоторых вариантах реализации заболевание или состояние сустава включает разрушение сустава. В

некоторых вариантах реализации разрушение сустава включает болезнь межпозвоночных дисков (БМПД) или остеоартрит (ОА).

5

10

15

20

25

30

35

[0306] Болезнь межпозвоночных дисков (БМПД) представляет собой состояние, которое, согласно оценке, ежегодно поражает приблизительно 5% популяции в развитых странах и характеризуется разрушением одного или более дисков, которые отделяют каждый позвонок позвоночника. Межпозвоночные диски обеспечивают амортизацию между позвонками и поглощают давление, приложенное к позвоночнику. Хотя диски в нижней области позвоночника наиболее часто поражены при БМПД, разрушение диска может происходить в любой части позвоночника, и, следовательно, это состояние вызывает боль в спине, шее, ногах и руках. Также, в зависимости от расположения пораженного диска или дисков, БМПД может вызывать периодическую или хроническую боль, которая может усугубляться при сидении, сгибании, скручивании или поднятии тяжестей. БМПД происходит в результате комбинации генетических факторов и факторов окружающей среды, большинство из которых остаются неизвестными. Было выявлено несколько генов, варианты которых могут влиять на риск развития БМПД, и они включают гены, связанные с коллагеном, иммунной функцией и белками, которые играют роли в развитии и поддержании межпозвоночных дисков и позвонков. Негенетические факторы включают старение, курение, ожирение, хроническое воспаление и вождение в течение длительного периода времени. Два из этих генов представляют собой инсулиноподобный фактор роста 1 (IGF-1) и его рецептор (рецептор инсулиноподобного фактора роста 1 - IGF-1R), которые могут регулировать синтез внеклеточного матрикса и играют решающую роль в поддержании нормальной функции межпозвоночного диска.

[0307] Остеоартрит представляет собой широко распространенное заболевание суставов, для которого характерно прогрессирующее разрушение суставного хряща, вызывающее боль, скованность и ограничение подвижности по мере ухудшения состояния. Участки кости, более не амортизированные хрящом, трутся друг об друга и начинают разрушаться, вызывая дальнейшее повреждение, такое как воспаление, так как иммунная система пытается восстановить и обновить такие ткани. Кроме того, также могут встречаться остеофиты (или аномальные наросты кости и другой ткани), и они могут быть видны как увеличенные суставы. Считают, что баланс между катаболизмом и анаболизмом утрачен у пациентов с остеоартритом, что приводит к повреждению и полному разрушению хряща. Гены, экспрессия которых влияет на риск остеоартрита, обычно участвуют в образовании и поддержании кости и хряща.

[0308] Как при БМПД, так и при остеоартрите снижение воспаления (например, уменьшение IL-1-бета, IL-8 и т.д.) при повышении анаболического сигнала (например, IGF-

1 и т.д.) может оказывать терапевтическое действие. В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с целевой мРНК, и мРНК, кодирующую интересующий ген. В предпочтительном варианте реализации миРНК способна связываться с мРНК IL-1-бета. В другом предпочтительном варианте реализации миРНК способна связываться с мРНК IL-8. В предпочтительном варианте реализации мРНК, кодирующая интересующий ген, кодирует IGF-1.

5

10

15

20

25

30

35

[0309] В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния сустава у субъекта, указанный способ включает введение фармацевтической композиции, указанному субъекту клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния сустава у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-1-бета, и нуклеиновую кислоту, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния сустава у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых вариантах реализации заболевание или состояние сустава представляет собой разрушение сустава. В некоторых вариантах реализации разрушение сустава представляет собой болезнь межпозвоночных дисков (БМПД) или остеоартрит (ОА).

[0310] В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, указанный способ включает

введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-8, и мРНК, кодирующую IGF-1.

5

10

15

20

25

30

35

[0311] В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-1-бета, и нуклеиновую кислоту, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-8, и последовательность нуклеиновой кислоты, кодирующую IGF-1.

[0312] В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения болезни межпозвоночных дисков (БМПД) у субъекта, введение указанному субъекту указанный способ включает фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-8, и мРНК, кодирующую IGF-1.

[0313] В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с целевой мРНК, и мРНК, кодирующую интересующий ген. В предпочтительном варианте реализации миРНК способна связываться с мРНК IL-1-бета. В другом предпочтительном варианте реализации миРНК способна связываться с мРНК IL-8. В предпочтительном варианте реализации мРНК, кодирующая интересующий ген, кодирует IGF-1.

[0314] В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту

фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-8, и мРНК, кодирующую IGF-1.

5

10

15

20

25

30

35

[0315] В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-1-бета, и нуклеиновую кислоту, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-8, и последовательность нуклеиновой кислоты, кодирующую IGF-1.

[0316] В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения остеоартрита у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-8, и мРНК, кодирующую IGF-1. [0317] Псориаз представляет собой хроническое воспалительное заболевание кожи, которое характеризуется пятнами красной раздраженной кожи, которые часто покрыты хлопьевидными белыми чешуйками. У пациентов с псориазом также может развиться псориатический артрит - состояние, включающее воспаление сустава. Хотя точная причина этого заболевания на сегодняшний день не ясна, считают, что указанное заболевание является аутоиммунным заболеванием, вызванным проблемой иммунной системы с Т-клетками (например, Т-клетками, атакующими здоровые клетки кожи) и другими лейкоцитами, такими как нейтрофилы.

[0318] В некоторых аспектах, представленных в данной заявке, предложен способ лечения кожного заболевания или состояния у субъекта, указанный способ включает введение фармацевтической композиции, субъекту клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния сустава у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-1-бета, и нуклеиновую кислоту, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения кожного заболевания или состояния у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-1-бета, и мРНК, кодирующую IGF-1. В некоторых вариантах реализации кожное заболевание или состояние представляет собой воспалительное заболевание кожи. В некоторых вариантах реализации воспалительное заболевание кожи представляет собой псориаз.

5

10

15

20

25

30

35

[0319] В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с целевой мРНК, и мРНК, кодирующую интересующий ген. В предпочтительном варианте реализации миРНК способна связываться с мРНК IL-17. В другом варианте реализации миРНК способна связываться с мРНК TNF-альфа. В предпочтительном варианте реализации мРНК, кодирующая интересующий ген, кодирует IL-4.

[0320] В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК IL-17, и мРНК, кодирующую IL-4. В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты,

содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК IL-17, и нуклеиновую кислоту, кодирующую IL-4. В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК IL-17, и мРНК, кодирующую IL-4.

5

10

15

20

25

30

35

[0321] В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК TNF-альфа, и мРНК, кодирующую IL-4. В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, способ включает введение указанному субъекту vказанный фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК TNF-альфа, и нуклеиновую кислоту, кодирующую IL-4. В некоторых аспектах, представленных в данной заявке, предложен способ лечения псориаза у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК TNF-альфа, и мРНК, кодирующую IL-4.

[0322] Прогрессирующая оссифицирующая фибродисплазия (ПОФ) представляет собой заболевание скелетных мышц, при котором ткани мышц и соединительные ткани, такие как сухожилия и связки, постепенно окостеневают, образуя внескелетные или гетеротопические кости, что ограничивает движения. Образование внескелетной кости вызывает прогрессирующую утрату подвижности по мере поражения суставов. Любая травма мышц у индивида с ПОФ, такая как падение или инвазивная медицинская процедура, может запустить эпизоды отечности и воспаления мышц, а затем более быстрое окостенение мышц и соединительных тканей в поврежденной области.

[0323] В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния мышц у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК ALK2, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния мышц у субъекта, указанный способ включает введение

указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК АLК2, и нуклеиновую кислоту, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния мышц у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК АLК2, и мРНК, кодирующую IGF-1. В некоторых вариантах реализации заболевание или состояние мышц представляет собой заболевание скелетных мышц. В некоторых вариантах реализации заболевание скелетных мышц представляет собой прогрессирующую оссифицирующую фибродисплазию (ПОФ).

5

10

15

20

25

30

35

[0324] Боковой амиотрофический склероз (БАС), или Болезнь Лу Герига, представляет собой прогрессирующее нейродегенеративное заболевание, которое поражает нервные клетки в головном мозге и спинном мозге, вызывающее утрату мышц. Оно представляет собой болезнь двигательного нейрона, характеризуемую дегенерацией как верхнего, так и нижнего двигательных нейронов, которая приводит к слабости мышц и последующему параличу. Причина БАС до сих пор не известна, тем не менее, были открыты некоторые биомаркеры и гены, ассоциированные с БАС, включая супероксиддисмутазу 1 (SOD1). Существует 2 типа БАС, различаемых генетически: семейный и спорадический (идиопатический).

[0325] В некоторых аспектах, представленных в данной заявке, предложен способ лечения нейродегенеративного заболевания или состояния у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК SOD1, и мРНК, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения нейродегенеративного заболевания или состояния у субъекта, указанный способ включает субъекту фармацевтической композиции, введение указанному содержащей рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК SOD1, и нуклеиновую кислоту, кодирующую IGF-1. В некоторых аспектах, представленных в данной заявке, предложен способ лечения нейродегенеративного заболевания или состояния у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК SOD1, и мРНК, кодирующую

IGF-1. В некоторых вариантах реализации нейродегенеративное заболевание или состояние представляет собой расстройство двигательного нейрона. В некоторых вариантах реализации расстройство двигательного нейрона представляет собой боковой амиотрофический склероз (БАС).

5

10

15

20

25

30

35

[0326] В некоторых аспектах, представленных в данной заявке, предложен способ лечения нейродегенеративного заболевания или состояния у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, содержащей миРНК, способную связываться с мРНК SOD1, и мРНК, кодирующую EPO. В некоторых аспектах, представленных в данной заявке, предложен способ лечения нейродегенеративного заболевания или состояния у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию полинуклеиновой содержащую кислоты, последовательность нуклеиновой кислоты, кодирующую миРНК, способную связываться с мРНК SOD1, и нуклеиновую кислоту, кодирующую EPO. В некоторых аспектах, представленных в данной заявке, предложен способ лечения нейродегенеративного заболевания или состояния у субъекта, указанный способ включает введение указанному субъекту фармацевтической композиции, содержащей рекомбинантную конструкцию РНК, содержащую миРНК, способную связываться с мРНК SOD1, и мРНК, кодирующую ЕРО. В некоторых вариантах реализации нейродегенеративное заболевание или состояние представляет собой расстройство двигательного нейрона. В некоторых вариантах нейрона реализации расстройство двигательного представляет собой боковой амиотрофический склероз (БАС).

[0327] В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния, относящегося к инфекции коронавирусом, у нуждающегося в этом субъекта, включающий введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, описанных в данной заявке. В некоторых вариантах реализации заболевание или состояние представляет собой SARS (тяжелый острый респираторный синдром), вызванный инфицированием коронавирусом, ассоциированным с SARS. В некоторых вариантах реализации настоящее изобретение пригодно для лечения заболевания или состояния, вызванного или связанного с инфекцией коронавирусом, включая, но не ограничиваясь осложнением коронавирусной инфекции. В некоторых вариантах реализации заболевание или состояние представляет собой респираторный синдром, например, SARS (тяжелый острый респираторный синдром), вызванный

инфицированием коронавирусом, ассоциированным с SARS. В некоторых вариантах реализации заболевание или состояние выбрано, например, из острого респираторного дистресс-синдрома (ОРДС), венозной тромбоэмболии, осложнений со стороны сердечноострой почечной недостаточности, острой сосудистой системы, недостаточности, осложнений со стороны нервной системы, синдрома выброса цитокинов, детского мультисистемного воспалительного синдрома, септического шока, синдрома диссеминированной внутрисосудистой коагуляции, острой дыхательной недостаточности и любой их комбинации. В некоторых вариантах реализации заболевание или состояние, связанное с коронавирусной инфекцией, которое лечат, применяя композиции или способы в соответствии с настоящим изобретением, представляет собой любое заболевание или состояние, известное специалистам в данной области и описанное в литературе. В некоторых вариантах реализации настоящее изобретение пригодно для лечения такого заболевания или состояния путем параллельного контроля и/или понижающей регуляции определенного физиологического механизма с помощью миРНК и активации и/или повышения другого физиологического механизма, например, воспаления, путем сверхэкспрессии терапевтического белка. В некоторых вариантах реализации коронавирус представляет собой SARS-CoV (также известный как SARS-CoV-1; вирус, ответственный за эпидемию SARS в 2002 - 2003 г.), SARS-CoV-2 (вирус, который вызывает новое коронавирусное заболевание-2019, или COVID-19) или **MERS-CoV** ближневосточного респираторного синдрома). В некоторых вариантах реализации один или более из SARS-CoV, SARS-CoV-2 и MERS лечат с применением настоящего изобретения. Эти и родственные вирусы описаны, например, в Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, Mapt 2020 r., Nature Microbiology 5:536-44), включенном в данную заявку посредством ссылки.

5

10

15

20

25 **[0328]** В некоторых аспектах, представленных в данной заявке, предложен способ лечения заболевания или состояния, относящегося к инфекции коронавирусом, у нуждающегося в этом субъекта, включающий введение указанному субъекту фармацевтической композиции, клетки, рекомбинантной конструкции полинуклеиновой кислоты или рекомбинантной конструкции РНК, описанной в данной заявке.

30 **[0329]** В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6; и (ii) мРНК IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой

кислоты содержит 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах конструкция полинуклеиновой кислоты содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 29 или 30 (Соединение В1 или В2).

5

10

15

20

25

30

35

[0330] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно ACE2. В кодирует растворимый рецептор сходных аспектах конструкция полинуклеиновой кислоты содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах конструкция полинуклеиновой кислоты содержит 3 миРНК, каждая из которых нацелена на мРНК ІС-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 31 (Соединение ВЗ).

[0331] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 32 (Соединение В4).

[0332] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или

дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК IL-6R-бета. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 33 (Соединение В5).

5

10

15

20

25

30

35

[0333] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 34 или 35 (Соединение В6 или В7).

[0334] В некоторых аспектах композиция, которую вводят субъекту, содержит рекомбинантную конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно растворимый рецептор ACE2. В сходных аспектах полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 или обоими. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 36.

5

10

15

20

25

30

35

[0335] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор ACE2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 37 или 39 (Соединение В9 или В11).

[0336] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно В растворимый рецептор ACE2. сходных аспектах конструкция кодирует полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 38 (Соединение B10).

[0337] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно

ACE2. В растворимый рецептор сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS или обоими. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 и/или MERS. В сходных конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 40, 41 и 42 (Соединения В12, В13 и В14).

5

10

15

20

25

30

35

[0338] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (і) по меньшей мере одну миРНК, способную связываться с мРНК IL-6, по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2, и по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид IFN-бета представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 43, 44 и 45 (Соединения В15, В16 и В17).

[0339] В некоторых аспектах композиция, которую вводят субъекту, содержит

конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (і) по меньшей

CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 46 (Соединение В18). В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 190 (Соединение В18).

5

10

15

20

25

30

35

[0340] В некоторых аспектах композиция, которую вводят субъекту, содержит конструкцию полинуклеиновой кислоты, кодирующую или содержащую: (i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 47 (Соединение В19).

[0341] В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 29 - 47. В некоторых аспектах, в соответствии с настоящим изобретением предложена композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты SEQ ID NO: 190.

[0342] Композиции в соответствии с настоящим изобретением можно вводить субъекту, применяя любые подходящие способы, известные в данной области техники. Подходящие составы для применения в соответствии с настоящим изобретением и способы доставки в целом хорошо известны в данной области техники. Например, композиции, описанные в данной заявке, можно вводить субъекту различными способами, включая парентеральное, внутривенное, внутрикожное, внутримышечное введение, введение внутрь толстого

кишечника, ректальное или интраперитонеальное введение. В некоторых вариантах реализации композиции, описанные в данной заявке, вводят субъекту путем интраперитонеальной инъекции, внутримышечной инъекции, подкожной инъекции или внутривенной инъекции. В некоторых вариантах реализации композиции, описанные в данной заявке, можно вводить парентерально, внутривенно, внутримышечно или перорально.

5

10

15

20

25

30

35

[0343] Любая из композиций в соответствии с настоящим изобретением может быть предложена вместе с инструкцией по эксплуатации. Инструкция по эксплуатации может включать руководство для квалифицированного специалиста или лечащего врача, как лечить (или предотвращать) заболевание или расстройство, описанное в данной заявке (например, БМПД, остеоартрит, псориаз или повреждение скелетной мышцы), в соответствии с настоящим изобретением. В некоторых вариантах реализации инструкция по эксплуатации может включать руководство, касающееся описанных в данной заявке способа доставки/введения и режима доставки/введения, соответственно (например, пути доставки/введения, схемы приема лекарственного средства, времени доставки/введения, частоты доставки/введения и т.д.). В некоторых вариантах реализации инструкция по эксплуатации может включать инструкцию, как композицию в соответствии с настоящим изобретением вводить или инъекцировать и/или приготовить для введения или инъекции. В принципе, все, что было описано в других местах в данной заявке относительно способа доставки/введения и режима доставки/введения, соответственно, может быть включено как соответствующие инструкции в инструкции по эксплуатации.

[0344] Композицию в соответствии с настоящим изобретением можно применять в генотерапии. В некоторых реализации вариантах композицию, содержащую рекомбинантную полинуклеиновую кислоту или конструкцию РНК, описанные в данной заявке, можно доставить в клетку в векторах для генотерапии. Векторы для генотерапии и способы доставки генов хорошо известны в данной области техники. Неограничивающие примеры данных способов включают системы доставки на основе вирусных векторов, включая ДНК- и РНК-вирусы, геномы которых оказываются либо эписомными, либо встроенными после доставки в клетку, системы доставки, не основанные на вирусных векторах, включая ДНК-плазмиды, голую нуклеиновую кислоту и нуклеиновую кислоту в комплексе со средством доставки, систему транспозонов (для доставки и встраивания в геномы хозяев; Moriarity и др. (2013) Nucleic Acids Res 41(8), e92, Aronovich, и др., (2011) Hum. Mol. Genet. 20(R1), R14-R20), опосредованный ретровирусами перенос ДНК (например, вирусом лейкоза Молони мышей, вирусом некроза селезенки, ретровирусами, такими как вирус саркомы Рауса, вирус саркомы Харви, вирус лейкоза птиц, вирус лейкоза гиббона, вирус иммунодефицита человека, аденовирусом, вирусом миелопролиферативной саркомы и вирусом опухоли молочной железы; см., например, Кау и др. (1993) Science 262, 117-119, Anderson (1992) Science 256, 808-813), и опосредованный ДНК-вирусом перенос ДНК, включая аденовирус, вирус герпеса, парвовирус и аденоассоциированный вирус (например, Ali и др. (1994) Gene Therapy 1, 367-384). Вирусные векторы также включают, но не ограничены векторами на основе аденоассоциированного вируса, аденовируса, лентивируса, ретровируса и вируса простого герпеса. Векторы, способные встраиваться в геном хозяина, включают, но не ограничены ретровирусом или лентивирусом.

[0345] В некоторых вариантах реализации композицию, содержащую рекомбинантную полинуклеиновую кислоту или конструкцию РНК, описанные в данной заявке, можно доставить в клетку путем непосредственного переноса ДНК (Wolff и др. (1990) Science 247, 1465-1468). Рекомбинантную полинуклеиновую кислоту или конструкцию РНК можно доставить в клетки после небольшого механического нарушения мембраны клетки, временно делающего указанные клетки проницаемыми. Такое небольшое механическое нарушение мембраны можно осуществить путем аккуратного продавливания клеток через небольшое отверстие (Sharei и др. PLOS ONE (2015) 10(4), e0118803). В другом варианте реализации композицию, содержащую рекомбинантную полинуклеиновую кислоту или конструкцию РНК, описанные в данной заявке, можно доставить в клетку путем опосредованного липосомами переноса ДНК (например, Gao & Huang (1991) Biochem. Biophys. Res. Comm. 179, 280-285, Crystal (1995) Nature Med. 1, 15-17, Caplen и др. (1995) Nature Med. 3, 39-46). В объем термина «липосома» могут входить различные одно- и многослойные липидные носители, образованные путем получения замкнутых липидных бислоев или агрегатов. Рекомбинантная полинуклеиновая кислота или конструкция РНК могут быть инкапсулированы в водном внутреннем пространстве липосомы, рассеяны внутри липидного бислоя липосомы, присоединены к липосоме посредством линкерной молекулы, которая связана как с липосомой, так и с олигонуклеотидом, заключены в липосому или могут образовывать комплекс с липосомой.

Модуляция экспрессии генов.

5

10

15

20

25

30

[0346] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной экспрессии миРНК и мРНК с одного транскрипта РНК в клетке, включающий введение в клетку композиции любых конструкций рекомбинантной полинуклеиновой кислоты, описанных в данной заявке.

[0347] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном, и причем экспрессия целевой мРНК и интересующего гена модулируется одновременно.

5

20

25

30

35

[0348] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей:

 (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-1-бета; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем экспрессия мРНК IL-1-бета и IGF-1 модулируется одновременно.

[0349] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-8; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем экспрессия мРНК IL-8 и IGF-1 модулируется одновременно.

[0350] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-17; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IL-4; причем экспрессия мРНК IL-17 и IL-4 модулируется одновременно.

[0351] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей:

(i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или

содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК TNF-альфа; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IL-4; причем экспрессия мРНК TNF-альфа и IL-4 модулируется одновременно.

[0352] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей:

 (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК

 10 TNF-альфа, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-17; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IL-4; причем экспрессия мРНК TNF-альфа, мРНК IL-17 и IL-4 модулируется одновременно.

15 [0353] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК 20 ALK2; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем экспрессия мРНК ALK2 и IGF-1 модулируется одновременно. [0354] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: 25 (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК SOD1; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем экспрессия мРНК SOD1 и IGF-1 модулируется одновременно. [0355] В некоторых аспектах, представленных в данной заявке, предложен способ 30 одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК SOD1; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, 35 кодирующую EPO; причем экспрессия мРНК SOD1 и EPO модулируется одновременно.

[0356] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6; и (ii) мРНК IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах конструкция полинуклеиновой кислоты содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представляенную в SEQ ID NO: 29 или 30 (Соединение В1 или В2).

[0357] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах конструкция полинуклеиновой кислоты содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 31 (Соединение В3).

[0358] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1

миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 32 (Соединение В4).

5

10

15

20

25

30

[0359] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК IL-6R-бета. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 33 (Соединение В5).

[0360] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 34 или 35 (Соединение В6 или В7).

[0361] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (і) по меньшей мере одну малую интерферирующую РНК (миРНК), способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение В8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 или обоими. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 36.

5

10

15

20

25

30

35

[0362] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 37 или 39 (Соединение В9 или В11). [0363] В некоторых аспектах, представленных в данной заявке, предложен способ

введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 38 (Соединение В10).

5

10

15

20

25

30

35

[0364] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (і) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS или обоими. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 и/или MERS. В сходных конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 40, 41 и 42 (Соединения В12, В13 и В14).

[0365] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий

введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6, по меньшей мере одну миРНК, способную связываться с мРНК АСЕ2, и по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид IFN-бета представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 43, 44 и 45 (Соединения В15, В16 и В17).

5

10

15

20

25

30

35

[0366] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну малую интерферирующую РНК, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 46 (Соединение В18). В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 190 (Соединение В18).

[0367] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной модуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS

CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 47 (Соединение В19).

[0368] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой информационной РНК (мРНК); и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; причем целевая мРНК отличается от мРНК, кодируемой интересующим геном, и при этом осуществляется одновременная понижающая регуляция экспрессии целевой мРНК и повышающая регуляция экспрессии интересующего гена. В некоторых вариантах реализации осуществляется понижающая регуляция экспрессии целевой мРНК посредством миРНК, способной связываться с целевой мРНК. В некоторых вариантах реализации осуществляется повышающая регуляция экспрессии интересующего гена посредством экспрессии или повышенной экспрессии мРНК или белка, кодируемых интересующим геном.

[0369] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-1-бета; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем понижающая регуляция экспрессии мРНК IL-1-бета и повышающая регуляция экспрессии IGF-1 осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК IL-1-бета осуществляют посредством миРНК, способной связываться с мРНК IL-1-бета. В некоторых вариантах реализации повышающую регуляцию экспрессии IGF-1

осуществляют путем экспрессии или повышенной экспрессии мРНК IGF-1 или белка IGF-1.

5

10

15

20

25

30

35

[0370] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-8; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем понижающая регуляция экспрессии мРНК IL-8 и повышающая регуляция экспрессии IGF-1 осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК IL-8. В некоторых вариантах реализации повышающую регуляцию экспрессии IGF-1 осуществляют путем экспрессии или повышенной экспрессии мРНК IGF-1 или белка IGF-1.

[0371] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-17; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IL-4; причем понижающая регуляция экспрессии мРНК IL-17 и повышающая регуляция экспрессии IL-4 осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК IL-17. В некоторых вариантах реализации повышающую регуляцию экспрессии IL-4 осуществляют путем экспрессии или повышенной экспрессии мРНК IL-14 или белка IL-4.

[0372] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК ТNF-альфа; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IL-4; причем понижающая регуляция экспрессии мРНК TNF-альфа и повышающая регуляция экспрессии IL-4 осуществляются одновременно. В некоторых вариантах реализации понижающую

регуляцию экспрессии мРНК TNF-альфа осуществляют посредством миРНК, способной связываться с мРНК TNF-альфа. В некоторых вариантах реализации повышающую регуляцию экспрессии IL-4 осуществляют путем экспрессии или повышенной экспрессии мРНК IL-4 или белка IL-4.

5

10

15

20

25

30

35

[0373] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (і) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК TNF-альфа, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК IL-17; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IL-4; причем понижающая регуляция экспрессии мРНК TNF-альфа и/или экспрессии мРНК IL-17 и повышающая регуляция экспрессии IL-4 осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК TNF-альфа и понижающую регуляцию экспрессии мРНК IL-17 осуществляют посредством миРНК, способной связываться с мРНК TNF-альфа, и миРНК, способной связываться с мРНК IL-17. В некоторых вариантах реализации повышающую регуляцию экспрессии ІL-4 осуществляют путем экспрессии или повышенной экспрессии мРНК IL-4 или белка IL-4.

[0374] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК ALK2; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем понижающая регуляция экспрессии мРНК ALK2 и повышающая регуляция экспрессии IGF-1 осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК ALK2. В некоторых вариантах реализации повышающую регуляцию экспрессии IGF-1 осуществляют путем экспрессии или повышенной экспрессии мРНК IGF-1 или белка IGF-1.

[0375] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой

кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК SOD1; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую IGF-1; причем понижающая регуляция экспрессии мРНК SOD1 и повышающая регуляция экспрессии IGF-1 осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК SOD1 осуществляют посредством миРНК, способной связываться с мРНК SOD1. В некоторых вариантах реализации повышающую регуляцию экспрессии IGF-1 осуществляют путем экспрессии или повышенной экспрессии мРНК IGF-1 или белка IGF-1.

[0376] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, содержащей: (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с мРНК SOD1; и (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую ЕРО; причем понижающая регуляция экспрессии мРНК SOD1 и повышающая регуляция экспрессии ЕРО осуществляются одновременно. В некоторых вариантах реализации понижающую регуляцию экспрессии мРНК SOD1. В некоторых вариантах реализации повышающую регуляцию экспрессии ЕРО осуществляют путем экспрессии или повышенной экспрессии мРНК ЕРО или белка ЕРО.

[0377] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6; и (ii) мРНК IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6. В сходных аспектах конструкция полинуклеиновой кислоты содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO:

5

10

15

20

25

[0378] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R (IL-6R); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6R. В сходных аспектах конструкция полинуклеиновой кислоты содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 31 (Соединение В3).

[0379] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-альфа (IL-6R-альфа); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит 1 миРНК, нацеленную на мРНК IL-6R-альфа. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-альфа. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 32 (Соединение В4).

[0380] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК интерлейкина 6R-бета (IL-6R-бета); и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или

содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК IL-6Rбета. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК IL-6R-бета. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 33 (Соединение В5). [0381] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (і) по меньшей мере одну миРНК, способную связываться с мРНК ACE2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК АСЕ2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 34 или 35 (Соединение B6 или B7).

5

10

15

20

25

30

35

[0382] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну интерферирующую РНК (миРНК), способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно ACE2. растворимый рецептор В сходных аспектах полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab SARS CoV-2, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию

одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение В8 (SEQ ID NO: 36), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 или обоими. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 36.

5

10

15

20

25

30

[0383] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: ((i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 37 или 39 (Соединение В9 или В11).

[0384] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК N SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК N SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 38 (Соединение В10).

[0385] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (і) по меньшей мере одну миРНК, способную связываться с мРНК ORF1ab SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из іі) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК ORF1ab SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК ORF1ab SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B12 (SEQ ID NO: 40), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, MERS или обоими. В некоторых аспектах такая композиция, включая композицию, содержащую Соединение B13 (SEQ ID NO: 41), предназначена для применения в способах, описанных в данной заявке, например, для модуляции или регуляции экспрессии генов, имеющей отношение к инфицированию SARS CoV, SARS CoV-2 и/или MERS. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 40, 41 и 42 (Соединения В12, В13 и В14).

5

10

15

20

25

30

35

[0386] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК IL-6, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую IFN-бета. В сходных аспектах мРНК из ii) кодирует или дополнительно кодирует растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК IL-6, одну, нацеленную на мРНК ACE2, и одну, нацеленную на мРНК S SARS CoV-2. В сходных аспектах мРНК, кодирующая IFN-бета, кодирует нативный сигнальный пептид IFN-бета или модифицированный сигнальный пептид. В сходных аспектах модифицированный сигнальный пептид. IFN-бета

представляет собой SP1 или SP2, описанные в данной заявке (последовательности SEQ ID NO: 52 и 54, соответственно). В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в любой из последовательностей SEQ ID NO: 43, 44 и 45 (Соединения B15, B16 и B17).

[0387] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кодирующей или содержащей: (і) по меньшей кислоты, мере одну малую интерферирующую PHK, способную связываться с мРНК ORF1ab SARS CoV-2, по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2, и по меньшей мере одну миРНК, способную связываться с мРНК N SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК: одну, нацеленную на мРНК ORF1ab, одну, нацеленную на мРНК S SARS CoV-2, и одну, нацеленную на мРНК N SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 46 (Соединение В18). В сходных аспектах конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 190 (Соединение B18).

[0388] В некоторых аспектах, представленных в данной заявке, предложен способ одновременной повышающей и понижающей регуляции экспрессии двух или более генов в клетке, включающий введение в клетку рекомбинантной конструкции полинуклеиновой кислоты, кодирующей или содержащей: (i) по меньшей мере одну миРНК, способную связываться с мРНК S SARS CoV-2; и (ii) мРНК, кодирующую растворимый рецептор АСЕ2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит по меньшей мере 1, 2 или 3 миРНК. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 1 миРНК, нацеленную на мРНК S SARS CoV-2. В сходных аспектах конструкция полинуклеиновой кислоты кодирует или содержит 3 миРНК, каждая из которых нацелена на мРНК S SARS CoV-2. В сходных аспектах указанные по меньшей мере 3 миРНК одинаковы, отличны или представляют собой комбинацию одинаковых или отличных миРНК. В сходных аспектах рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, представленную в SEQ ID NO: 47 (Соединение В19).

Типичные варианты реализации

5

10

15

20

25

30

- [0389] Вариант реализации 1. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую:
- (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и

5

10

20

25

30

35

(ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;

причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

[0390] Вариант реализации 2. Композиция согласно варианту реализации 1, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК.

15 **[0391]** Вариант реализации 3. Композиция согласно варианту реализации 1 или 2, отличающаяся тем, что целевая РНК представляет собой мРНК.

[0392] Вариант реализации 4. Композиция согласно варианту реализации 1 или 2, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17) и фактора некроза опухоли-альфа (TNF-альфа).

[0393] Вариант реализации 5. Композиция согласно любому из вариантов реализации 1 - 4, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген или отличный интересующий ген.

[0394] Вариант реализации 6. Композиция согласно любому из вариантов реализации 1 - 5, отличающаяся тем, что интересующий ген содержит последовательность нуклеиновой кислоты, кодирующую белок, выбранный из группы, состоящей из секреторного белка, внутриклеточного белка, белка, находящегося внутри органеллы, и мембранного белка.

[0395] Вариант реализации 7. Композиция согласно любому из вариантов реализации 1 - 3, отличающаяся тем, что интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1) и интерлейкина 4 (IL-4).

[0396] Вариант реализации 8. Композиция согласно любому из вариантов реализации 1 - 7, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую

нацеливающий мотив, функционально связанный с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген, причем указанный нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS).

5

10

15

20

25

30

[0397] Вариант реализации 9. Композиция согласно варианту реализации 8, отличающаяся тем, что нацеливающий мотив выбран из группы, состоящей из:

- (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном;
- (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты;
- (c) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и
- (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.
- [0398] Вариант реализации 10. Композиция согласно любому из вариантов реализации 1 9, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак.

[0399] Вариант реализации 11. Композиция согласно любому из вариантов реализации 1 - 9, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты

дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер.

[0400] Вариант реализации 12. Композиция согласно любому из вариантов реализации 1-11, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и/или (c) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген.

[0401] Вариант реализации 13. Композиция согласно варианту реализации 11 или 12, отличающаяся тем, что линкер включает тРНК-линкер, пептидный линкер 2A или гибкий линкер.

[0402] Вариант реализации 14. Композиция согласно любому из вариантов реализации 11
 - 13, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину по меньшей мере 6 остатков нуклеиновой кислоты.

[0403] Вариант реализации 15. Композиция согласно любому из вариантов реализации 11 - 13, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 50 остатков нуклеиновой кислоты.

[0404] Вариант реализации 16. Композиция согласно любому из вариантов реализации 11 - 13, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 50 остатков нуклеиновой кислоты.

[0405] Вариант реализации 17. Композиция согласно любому из вариантов реализации 11
 - 13, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 15 остатков нуклеиновой кислоты.

[0406] Вариант реализации 18. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 1 - 8.

[0407] Вариант реализации 19. Композиция, содержащая рекомбинантную конструкцию РНК, содержащую:

- (і) малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
- 35 (іі) мРНК, кодирующую интересующий ген;

5

10

20

причем указанная целевая РНК отличается от мРНК, кодирующей интересующий ген.

[0408] Вариант реализации 20. Композиция согласно варианту реализации 19, отличающаяся тем, что целевая РНК представляет собой мРНК.

[0409] Вариант реализации 21. Композиция согласно любому из вариантов реализации 1 - 20 для применения для одновременной модуляции экспрессии двух или более генов в клетке.

5

10

15

20

25

30

[0410] Вариант реализации 22. Композиция согласно любому из вариантов реализации 1 - 21, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно.

[0411] Вариант реализации 23. Композиция согласно варианту реализации 22, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii).

[0412] Вариант реализации 24. Композиция согласно варианту реализации 22, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii).

[0413] Вариант реализации 25. Композиция согласно варианту реализации 22, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), расположена против хода транскрипции или по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii).

[0414] Вариант реализации 26. Композиция согласно любому из вариантов реализации 1 - 25, отличающаяся тем, что миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК.

[0415] Вариант реализации 27. Композиция согласно любому из вариантов реализации 1 - 26, отличающаяся тем, что миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК.

- [0416] Вариант реализации 28. Композиция согласно любому из вариантов реализации 1 27, отличающаяся тем, что миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее.
- [0417] Вариант реализации 29. Композиция согласно любому из вариантов реализации 1 28, отличающаяся тем, что интересующий ген экспрессируется без сплайсинга РНК.

5

25

30

- [0418] Вариант реализации 30. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения вирусного заболевания или состояния у субъекта, указанная конструкция содержит:
- (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
 - (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;

причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

- 15 [0419] Вариант реализации 31. Композиция согласно варианту реализации 30, в которой рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК.
 - [0420] Вариант реализации 32. Композиция согласно варианту реализации 30, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем по меньшей мере две последовательности нуклеиновых кислот кодируют или содержат миРНК, способную связываться с одной и той же целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты кодирует или содержит миРНК, способную связываться с отличной целевой РНК.
 - [0421] Вариант реализации 33. Композиция согласно любому из вариантов реализации 30 32, отличающаяся тем, что целевая РНК представляет собой мРНК.
 - [0422] Вариант реализации 34. Композиция согласно любому из вариантов реализации 30 32, отличающаяся тем, что целевая РНК представляет собой некодирующую РНК.
 - [0423] Вариант реализации 35. Композиция согласно любому из вариантов реализации 30 32, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок,

выбранный из группы, состоящей из: интерлейкина, ангиотензинпревращающего фермента-2 (ACE2); ORF1ab SARS CoV-2; S SARS CoV-2 и N SARS CoV-2.

[0424] Вариант реализации 36. Композиция согласно варианту реализации 35, отличающаяся тем, что интерлейкин выбран из группы, состоящей из: IL-1-альфа, IL-1-бета, IL-6, IL-6R, IL-6R-альфа, интерлейкина IL-6R-бета, IL-18, IL-36-альфа, IL-36-бета; IL-36-гамма и IL-33.

5

10

15

20

25

30

[0425] Вариант реализации 37. Композиция согласно любому из вариантов реализации 30 - 32, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: IL-6, IL-6R, IL-6R-альфа, IL-6R-бета, ангиотензинпревращающего фермента-2 (ACE2); ORF1ab SARS CoV-2; S SARS CoV-2 и N SARS CoV-2.

[0426] Вариант реализации 38. Композиция согласно любому из вариантов реализации 30 - 37, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген или отличный интересующий ген.

[0427] Вариант реализации 39. Композиция согласно любому из вариантов реализации 30 - 38, отличающаяся тем, что интересующий ген из (ii) выбран из группы генов, кодирующих: IFN-альфа-п3, IFN-альфа-2а, IFN-альфа-2b, IFN-бета-1a, IFN-бета-1b, растворимый рецептор АСЕ2, IL-37 и IL-38.

[0428] Вариант реализации 40. Композиция согласно любому из вариантов реализации 30 - 38, отличающаяся тем, что интересующий ген из (ii) выбран из группы генов, кодирующих: IFN-бета и растворимый рецептор АСЕ2.

[0429] Вариант реализации 41. Композиция согласно любому из вариантов реализации 30 - 40, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив, функционально связанный с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген, причем указанный нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в

протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS).

[0430] Вариант реализации 42. Композиция согласно варианту реализации 41 отличающаяся тем, что нацеливающий мотив выбран из группы, состоящей из:

- 5 (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном;
 - (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты;
- (с) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и
- (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.
 - [0431] Вариант реализации 43. Композиция согласно любому из вариантов реализации 30 42, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак.

- [0432] Вариант реализации 44. Композиция согласно любому из вариантов реализации 30
 43, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер.
- [0433] Вариант реализации 45. Композиция согласно варианту реализации 44, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК,

и/или (c) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген.

[0434] Вариант реализации 46. Композиция согласно варианту реализации 44 или 45, отличающаяся тем, что линкер включает тРНК-линкер, пептидный линкер 2A или гибкий линкер.

[0435] Вариант реализации 47. Композиция согласно любому из вариантов реализации 44 - 46, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину по меньшей мере 6 остатков нуклеиновой кислоты.

[0436] Вариант реализации 48. Композиция согласно любому из вариантов реализации 44 - 46, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину до 50 остатков нуклеиновой кислоты.

[0437] Вариант реализации 49. Композиция согласно любому из вариантов реализации 44 - 46, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 50 остатков нуклеиновой кислоты.

[0438] Вариант реализации 50. Композиция согласно любому из вариантов реализации 44 - 46, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 15 остатков нуклеиновой кислоты.

20 **[0439]** Вариант реализации 51. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 29 - 47.

[0440] Вариант реализации 55. Композиция, содержащая рекомбинантную конструкцию РНК, для лечения или предотвращения вирусного заболевания или состояния у субъекта, указанная конструкция содержит:

- (і) малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
- (ii) мРНК, кодирующую интересующий ген;

5

10

15

25

30

причем указанная целевая РНК отличается от мРНК, кодирующей интересующий ген.

[0441] Вариант реализации 53. Композиция согласно любому из вариантов реализации 30 - 52 для применения для одновременной модуляции экспрессии двух или более генов в клетке.

[0442] Вариант реализации 54. Композиция согласно любому из вариантов реализации 30 - 53, отличающаяся тем, что композиция присутствует в количестве, достаточном для лечения или предотвращения вирусного заболевания или состояния у субъекта.

- [0443] Вариант реализации 55. Композиция согласно любому из вариантов реализации 30 54, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой
- кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой РНК (i), и по меньшей мере одна последовательность
- нуклеиновой кислоты, кодирующая интересующий ген (ii), содержатся последовательно.
 - [0444] Вариант реализации 56. Композиция согласно варианту реализации 55,
 - отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой
 - РНК (i), расположена против хода транскрипции от по меньшей мере одной
 - последовательности нуклеиновой кислоты, кодирующей интересующий ген (іі).
 - [0445] Вариант реализации 57. Композиция согласно варианту реализации 55
 - отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или
 - содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой
 - РНК (i), расположена по ходу транскрипции от по меньшей мере одной
- 15 последовательности нуклеиновой кислоты, кодирующей интересующий ген (ii).
 - [0446] Вариант реализации 58. Композиция согласно варианту реализации 55
 - отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или
 - содержащая малую интерферирующую РНК (миРНК), способную связываться с целевой
 - РНК (і), расположена против хода транскрипции или по ходу транскрипции от по меньшей
 - мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген
 - (ii).

20

5

- [0447] Вариант реализации 59. Композиция согласно любому из вариантов реализации 30
- 58, отличающаяся тем, что миРНК, способная связываться с целевой РНК, связывается с экзоном целевой мРНК.
- 25 [0448] Вариант реализации 60. Композиция согласно любому из вариантов реализации 30
 - 59, отличающаяся тем, что миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК.
 - [0449] Вариант реализации 61. Композиция согласно любому из вариантов реализации 30
 - 60, отличающаяся тем, что миРНК, способная связываться с целевой РНК, не кодируется
- 30 последовательностью интрона интересующего гена или не состоит из нее.
 - [0450] Вариант реализации 62. Композиция согласно любому из вариантов реализации 30
 - 61, отличающаяся тем, что интересующий ген экспрессируется без сплайсинга РНК.
 - [0451] Вариант реализации 63. Композиция согласно любому из вариантов реализации 30
 - 62, отличающаяся тем, что миРНК содержит последовательность смысловой цепи,
- 35 выбранную из последовательностей SEQ ID NO: 93 109.

- [0452] Вариант реализации 64. Композиция согласно любому из вариантов реализации 1 29, отличающаяся тем, что миРНК содержит последовательность смысловой цепи, выбранную из последовательностей SEQ ID NO: 80 92.
- [0453] Вариант реализации 65. Композиция согласно любому из вариантов реализации 1 29, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, по меньшей мере на 85% идентичную любой из последовательностей SEQ ID NO: 177 189.
 - [0454] Вариант реализации 66. Композиция согласно любому из вариантов реализации 1 29, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, выбранную из группы, состоящей из последовательностей SEQ ID NO: 177 189.

10

- [0455] Вариант реализации 67. Композиция согласно любому из вариантов реализации 30 63, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность, по меньшей мере на 85% идентичную последовательности SEQ ID NO: 190.
- [0456] Вариант реализации 68. Композиция согласно любому из вариантов реализации 30 63, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит последовательность SEQ ID NO: 190.

ПРИМЕРЫ

[0457] Указанные примеры предложены исключительно с целью иллюстрирования, но не для ограничения объема формулы изобретения, представленной в данной заявке.

[0458] Пример 1. Дизайн, последовательность и синтез конструкции.

5 [0459] Дизайн конструкции.

10

15

20

30

35

[0460] В соответствии с настоящим изобретением предложено, что как молекулы миРНК, так и любые интересующие белки можно одновременно экспрессировать с одного транскрипта, полученного путем транскрипции in vitro. Конструкции РНК, описанные в данной заявке, были разработаны таким образом, чтобы они содержали дизайны миРНК, описанные в Cheng, и др. (2018) J. Mater. Chem. B., 6, 4638-4644, с одним или более интересующими генами по ходу транскрипции или против хода транскрипции от указанной последовательности миРНК (Фиг. 1). Конструкция в соответствии с настоящим может содержать более чем одну последовательность изобретением последовательно нацеленные на один и тот же или различные гены. Аналогичным образом, конструкция соответствии c настоящим изобретением может последовательности нуклеиновых кислот двух или более интересующих генов с последовательностью линкера или кодирующей линкер последовательностью между ними (например, пептидным линкером 2А или тРНК-линкером).

[0461] Конструкции дополнительно содержат последовательность промотора T7 (5' TAATACGACTCACTATA 3'; SEQ ID NO: 25) против хода транскрипции от последовательности миРНК для связывания РНК-полимеразы и успешной транскрипции *in vitro* как миРНК, так и интересующего гена. Можно использовать альтернативные промоторы, и альтернативные промоторы включают промоторы SP6, T3, P60, Syn5 и KP34, которые одинаково функциональны для транскрипции *in vitro*.

25 [0462] Синтез конструкции.

[0463] Разработанные конструкции (Таблица 1, номера Соединений А1 - А8) были синтезированы путем генной инженерии в GeneArt, Германия (Thermo Fisher Scientific). Конструкции были синтезированы в виде вектора рМА-RQ, который содержит промотор РНК-полимеразы Т7, причем оптимизацию кодонов осуществляли, применяя алгоритм GeneOptimizer. В Таблицу 1 сведены соединения, используемые в примерах настоящего изобретения, с соответствующей мишенью миРНК для снижения экспрессии белка и белковой мишенью для повышенной экспрессии белка. Все уридины в Соединениях А1-А8, используемых в примерах, описанных в данной заявке, были модифицированы с получением N¹-метилпсевдоуридина. Для каждого соединения положение последовательности миРНК указано относительно интересующего гена. Например, «5°

положение миРНК» указывает на то, что последовательности миРНК расположены против хода транскрипции или с 5'-стороны от интересующего гена в указанном соединении. Последовательности конструкций A1 - A8 представлены в **Таблице 2** и аннотированы, как указано в таблице ниже.

5 Таблица 1. Краткое описание Соединений А1 - А8.

№ Соединения	Мишень миРНК	Положение миРНК	Кол-во миРНК	Белковая мишень (интересующий ген)	Показание
Al	IL-8	5'	1	IGF-1	ОА, БМПД
A2	IL-8	5'	1	IGF-1	ОА, БМПД
A3	IL-8	5'	3	IGF-1	ОА, БМПД
A4	IL-8	5'	1		ОА, БМПД
A5	IL-8	5'	3		ОА, БМПД
A6	IL-1-бета	5'	1	IGF-1	ОА, БМПД
A7	IL-1-бета	5'	3	IGF-1	ОА, БМПД
A8	TNF-альфа/IL- 17*	5'	6	IL-4	Псориаз

OA: остеоартрит; БМПД: болезнь межпозвоночных дисков; *: исследовали только действие миРН \bar{K} на TNF- α

Таблица 2. Последовательности Соединений А1 - А8.

SEQ ID NO:	№ Соединения	Последовательность (направление 5′ → 3′)
		ATAGTGAGTCGTATTAACGTACCAACAA CAAGGAAGTGCTAAAGAA ACT
1		TG TTCTTTAGCACTTCCTTG TTTATCTTAGAGGCATATCCCT <i>GCCACCA</i>
		TGACCATCCTGTTTCTGACAATGGTCATCAGCTACTTCGGCTGCATGAA
A1		GGCCGTGAAGATGCACACCATGAGCAGCCACCTGTTCTATCTGGCC
смысловая	Coorumous A1	CTGTGCCTGACCTTTACCAGCTCTGCTACCGCCGGACCTGAGACAC
цепь миРНК	Соединение А1	TTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
80,		AGGCTTCTACTTCAACAAGCCCACAGGCTACGGCAGCAGCTCTAGAAGG
антисмыслов		GCTCCTCAGACCGGAATCGTGGACGAGTGCTGCTTCAGAAGCTGCGACC
ая 110		TGCGGCGGCTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGCGC
		CTAATTTATCTTAGAGGCATATCCCT
		ATAGTGAGTCGTATTAACGTACCAACAA CAAGGAGTGCTAAAGAA ACTT
2		GTTCTTTAGCACTCCTTGTTTATCTTAGAGGCATATCCCTGCCACCATG
		ACCATCCTGTTTCTGACAATGGTCATCAGCTACTTCGGCTGCATGAAGG
A2	Соединение А2	CCGTGAAGATGCACACCATGAGCAGCAGCCACCTGTTCTATCTGGCCCT
смысловая		GTGCCTGCTGACCTTTACCAGCTCTGCTACCGCCGGACCTGAGACACTT
цепь миРНК		TGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
81,		GCTTCTACTTCAACAAGCCCACAGGCTACGGCAGCAGCTCTAGAAGGGC
антисмыслов		TCCTCAGACCGGAATCGTGGACGAGTGCTGCTTCAGAAGCTGCGACCTG
ая 111		CGGCGGCTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGCGCCT
		AATTTATCTTAGAGGCATATCCCT
3		ATAGTGAGTCGTATTAACGTACCAACAA CAAGGAGTGCTAAAGAA ACTT
		GTTCTTTAGCACTCCTTG
от 5' к 3':		CAAGAGAGTGATTGAGAGTGGACTTGCCACTCTCAATCACTCTCTTTAT
A3-1		CTTAGAGGCATATCCCTACGTACCAACAAGAGAGCTCTGTCTG
смысловая		TTG <i>GGTCCAGACAGAGCTCTC</i> TTTATCTTAGAGGCATATCCCT <i>GCCACC</i>
цепь миРНК	Соединение А3	ATGACCATCCTGTTTCTGACAATGGTCATCAGCTACTTCGGCTGCATGA
81,	Соединение АЗ	AGGCCGTGAAGATGCACACCATGAGCAGCAGCACCTGTTCTATCTGGC
антисмыслов		CCTGTGCCTGACCTTTACCAGCTCTGCTACCGCCGGACCTGAGACA
ая 111;		CTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
A3-2		GAGGCTTCTACTTCAACAAGCCCACAGGCTACGGCAGCAGCTCTAGAAG
смысловая		GGCTCCTCAGACCGGAATCGTGGACGAGTGCTGCTTCAGAAGCTGCGAC
цепь миРНК		333133131333311133133113313311311311311

SEQ ID NO:	№ Соединения	Последовательность (направление 5' → 3')
82, антисмыслов ая 112; А3-3 смысловая цепь миРНК 83, антисмыслов ая 113		CTGCGGCGGCTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGCG CCTAATTTATCTTAGAGGCATATCCCT
4 А4 смысловая цепь миРНК 80, антисмыслов ая 110	Соединение А4	ATAGTGAGTCGTATTA <i>ACGTACCAACAACAA</i> GGAAGTGCTAAAGAAACT TG <i>TTCTTTAGCACTTCCTTG</i> TTTATCTTAGAGGCATATCCCT
5 А5-1 смысловая цепь миРНК 81, антисмыслов ая 111; А5-2 смысловая цепь миРНК 82, антисмыслов ая 112; А5-3 смысловая цепь миРНК 83, антисмыслов ая 113	Соединение А5	ATAGTGAGTCGTATTAACGTACCAACAACAACGAGTGCTAAAGAAACTT GTTCTTTAGCACTCCTTGTTTATCTTAGAGGCATATCCCTACGTACCAA CAAGAGAGTGATTGAGAGTGGACTTGCCACTCTCAATCACTCTCTTAT CTTAGAGGCATATCCCTACGTACCAACAAGAGAGCTCTGTCTG
6 A6 смысловая цепь миРНК 84, антисмыслов ая 114	Соединение А6	ATAGTGAGTCGTATTAACGTACCAACAAGAAGATGATAAGCCCACTCT ACTTGAGAGTGGGCTTATCATCTTTCTTTATCTTAGAGGCATATCCCTG CCACCATGACCATCCTGTTTCTGACAATGGTCATCAGCTACTTCGGCTG CATGAAGGCCGTGAAGATGCACACCATGAGCAGCCACCTGTTCTAT CTGGCCCTGTGCCTGCTGACCTTTACCAGCTCTGCAGCTTGTGTGG AGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
7 A7-1 смысловая цепь миРНК 84, антисмыслов ая 114; A7-2 смысловая цепь миРНК 85, антисмыслов ая 115;	Соединение А7	ATAGTGAGTCGTATTAACGTACCAACAAGAAGATGATAAGCCCACTCT ACTTGAGAGTGGGCTTATCATCTTTCTTTATCTTAGAGGCATATCCCTA CGTACCAACAAGGTGATGTCTGGTCCATATGAACTTGTCATATGGACCA GACATCACCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGATGAT AAGCCCACTCTAACTTGTAGAGTGGGCTTATCATCTTTATCTTAGAGGC ATATCCCTGCCACCATGACCATCCTGTTTCTGACAATGGTCATCAGCTA CTTCGGCTGCATGAAGGCCGTGAAGATGCACCATGAGCAGCACC CTGTTCTATCTGGCCCTGTGCCTGCTGACCTTTACCAGCTCTGCTACCG CCGGACCTGAGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTT TGTGTGTGGCGACAGAGGCTTCTACTTCAACAAGCCCACAGGCTACGGC AGCAGCTCTAGAAGGGCTCCTCAGACCGGAATCGTGGACGAGTGCTGCT TCAGAAGCTGCGACCTGCGGCGGCTGGAAATGTATTGTGCCCCCTCTGAA GCCTGCCAAGAGCCCTAATTTATCTTAGAGGCATATCCCT

SEQ ID NO:	№ Соединения	Последовательность (направление 5' → 3')
A7-3	за соединения	Trocked or a series of the ser
смысловая		
цепь миРНК		
86,		
антисмыслов		
ая 116		
8		
A8-1		
смысловая		
цепь миРНК		
87,		
антисмыслов		
ая 117;		
A8-2		
смысловая		ATAGTGAGTCGTATTAACGTACCAACAA GGCGTGGAGCTGAGAGATAA A
цепь миРНК		CTTG TTATCTCTCAGCTCCACGCC TTTATCTTAGAGGCATATCCCTACG
88,		TACCAACAAGGGCCTGTACCTCATCTACTACTTGAGTAGATGAGGTACA
антисмыслов		GGCCCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTATGAGCC
ая 118;		CATCTATCTACTTG AGATAGATGGGCTCATACCTTTATCTTAGAGGCAT
A8-3		ATCCCTACGTACCAACAA GCAATGAGGACCCTGAGAGAT ACTTG ATCTC
смысловая		TCAGGGTCCTCATTGCTTATCTTAGAGGCATATCCCTACGTACCAACA
цепь миРНК		AGCTGATGGGAACGTGGACTAACTTGTAGTCCACGTTCCCATCAGCTTT
89,		ATCTTAGAGGCATATCCCTACGTACCAACAAGGTCCTCAGATTACTACA
антисмыслов	Соединение А8	AACTTGTTGTTAGTAATCTGAGGGCCTTTATCTTAGAGGCCATATCCCTGC
ая 119;		CACCATGGGACTGACATCTCAACTGCTCCACTGTTCTTTCT
A8-4		GCCTGCGCCGGCAATTTTGTGCACGGCCACAAGTGCGACATCACCCTGC
смысловая		AAGAGATCATCAAGACCCTGAACAGCCTGACCGAGCAGAAAACCCTGTG
цепь миРНК		CACCGAGCTGACCGTGACCGATATCTTTGCCGCCAGCAAGAACACAACC GAGAAAGAGACATTCTGCAGAGCCGCCACCGTGCTGAGACAGTTCTACA
90,		GCCACCACGAGAAGGACACCAGATGCCTGGGAGCTACAGCCCAGCAGTT
антисмыслов ая 120;		CCACAGACAAAGCAGCTGATCCGGTTCCTGAAGCGGCTGGACAGAAAT
A8-5		CTGTGGGGACTCGCCGGCCTGAATAGCTGCCCTGTGAAAGAGGCCAACC
смысловая		AGTCTACCCTGGAAAACTTCCTGGAACGGCTGAAAACCATCATGCGCGA
цепь миРНК		GAAGTACAGCAAGTGCAGCAGCTGATTTATCTTAGAGGCATATCCCT
91,		
антисмыслов		
ая 121;		
A8-6		
смысловая		
цепь миРНК		
92,		
антисмыслов		
ая 122		

Жирный шрифт = смысловая цепь миРНК

Жирный шрифт и курсивный шрифт = антисмысловая цепь миРНК

Подчеркнутый = сигнальный пептид

5

Курсивный шрифт = последовательность Козак

Таблица 3. Последовательности плазмид для Соединений А1 - А8

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
	Соединение A1 в рМА-RQ	TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
9		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATATAGTGAGTCGTATTAACGTACC

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
		AACAACAAGGAAGTGCTAAAGAAACTTGTTCTTTAGCACTTCCTTGTTT
		ATCTTAGAGGCATATCCCTGCCACCATGACCATCCTGTTTCTGACAATG
		GTCATCAGCTACTTCGGCTGCATGAAGGCCGTGAAGATGCACACCATGA
		GCAGCAGCCACCTGTTCTATCTGGCCCTGTGCCTGACCTTTACCAG
		CTCTGCTACCGCCGGACCTGAGACACTTTGTGGCGCTGAACTGGTGGAC
		GCCCTGCAGTTTGTGTGTGGCGACAGAGGCTTCTACTTCAACAAGCCCA
		CAGGCTACGGCAGCTCTAGAAGGGCTCCTCAGACCGGAATCGTGGA CGAGTGCTGCTTCAGAAGCTGCGACCTGCGGCGGCTGGAAATGTATTGT
		GCCCTCTGAAGCCTGCCAAGAGCGCCTAATTTATCTTAGAGGCATATC
		CCT CTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGA
		AACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGT
		ATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGT
		TCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCA
		GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC
		CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAAC
		CCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCG
		TGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTT
		TCTCCCTTCGGGAAGCGTGGCGTTTCTCATAGCTCACGCTGTAGGTAT
		CTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAAC
		CCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGA GTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCACTGGT
		AACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGA
		AGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTG
		CGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGA
		TCCGGCAAACAACCACCGCTGGTAGCGGTGGTTTTTTTTT
		AGCAGATTACGCGCAGAAAAAAGGATCTCAAGAAGATCCTTTGATCTT
		TTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATT
		TTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATT
		AAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTC
		TGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGT
		CTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTA
		CGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCG
		AGAACCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAG
		GGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCC
		AGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAA
		TAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC
		TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGC
		GAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGG
		TCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATG
		GTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGAT
		GCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG
		TATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACC
		GCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTT CGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGAT
		GTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACC
		AGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAGG
		GAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTTCTT
		ATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATA
		TTTGAATGTATTTAGAAAATAAACAAATAGGGGTTCCGCGCACATTTC
		CCCGAAAAGTGCCAC
	+	CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC
10	Соединение А2	AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
10	в pMA-RQ	AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
	•	TTGGCGGAAGGCCGTCAAGGCCGCATATAAGTGAGTCGTATTAACGTACC
		AACAACAAGGAGTGCTAAAGAAACTTGTTCTTTAGCACTCCTTGTTTAT
		CTTAGAGGCATATCCCTGCCACCATGACCATCCTGTTTCTGACAATGGT
		CATCAGCTACTTCGGCTGCATGAAGGCCGTGAAGATGCACACCATGAGC
		AGCAGCCACCTGTTCTATCTGGCCCTGTGCCTGACCTTTACCAGCT

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
		CTGCTACCGCCGGACCTGAGACACTTTGTGGCGCTGAACTGGTGGACGC
		CCTGCAGTTTGTGTGTGGCGACAGAGGCTTCTACTTCAACAAGCCCACA
		GGCTACGGCAGCAGCTCTAGAAGGGCTCCTCAGACCGGAATCGTGGACG
		AGTGCTGCTTCAGAAGCTGCGACCTGCGGCGGCTGGAAATGTATTGTGC
		CCCTCTGAAGCCTGCCAAGAGCGCCTAATTTATCTTAGAGGCATATCCC
		T CTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGAAA
		CCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTAT
		TGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTC
		GGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGG
		AACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCC CTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCC
		GACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTC TCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCT
		CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCC CCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGT
		CCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAA
		CAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAG TGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCG
		CTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATC
		CGGCAAACAACCACCGCTGGTAGCGGTGGTTTTTTTTTT
		CAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTT
		CTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTT
		GGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAA
		AAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTG
		ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCT
		ATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACG
		ATACGGGAGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAG
		AACCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAG
		AAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA
		TCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATA
		GTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTC
		GTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGA GTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTC
		CTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGT
		TATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGC
		TTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTA
		TGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGC GCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCG
		GGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGT
		AACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAG
		CGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAAGGGA
		ATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAAT
		ATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATT
		TGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCC
		CGAAAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
11	Соединение A3 в pMA-RQ	TTGGCGGAAGGCCGTCAAGGCCGCATATAGTGAGTCGTATTAACGTACC AACAACAAGGAGTGCTAAAGAAACTTGTTCTTTAGCACTCCTTGTTTAT
	F	CTTAGAGGCATATCCCTACGTACCAACAAGAGAGTGATTGAGAGTGGAC
		TTGCCACTCTCAATCACTCTCTTTATCTTAGAGGCATATCCCTACGTAC
		CAACAAGAGAGCTCTGTCTGGACCACTTGGGTCCAGACAGA
		TATCTTAGAGGCATATCCCTGCCACCATGACCATCCTGTTTCTGACAAT
		GGTCATCAGCTACTTCGGCTGCATGAAGGCCGTGAAGATGCACACCATG
		AGCAGCACCTGTTCTATCTGGCCCTGTGCCTGACCTTTACCA

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
		CGCCCTGCAGTTTGTGTGTGGCGACAGAGGCTTCTACTTCAACAAGCCC
		ACAGGCTACGGCAGCTCTAGAAGGGCTCCTCAGACCGGAATCGTGG
		ACGAGTGCTGCAGAAGCTGCGACCTGCGGCGGCTGGAAATGTATTG
		TGCCCCTCTGAAGCCTGCCAAGAGCGCCTAATTTATCTTAGAGGCATAT
		CCCT CTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGG
		AAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCG
		TATTGGGCGCTCTCCGCTCACTGACTCGCTCGCTCGGTCG
		TTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCC
		AGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCC
		CCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAA
		CCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCT
		TTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTA
		TCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAA
		CCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTG
		AGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGG
		TAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTG
		AAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCT
		GCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTG
		ATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTT
		CAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCT
		TTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAAT
		TAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGT
		CTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTG
		TCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACT
		ACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGC
		GAGAACCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAG
		CGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATC
		CAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTA
		ATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACG
		CTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGG
		CGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCG GTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCAT
		GGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGA
		TGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGT
		GTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATAC
		CGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGA
		TGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCAC
		CAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAG
		GGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTC
		AATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACAT
		ATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTT
		CCCCGAAAAGTGCCAC CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGCCGAAATCGCCAAAATCCCTT
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATCAACGAGCTCACTATAGGGCGAA
12	Соединение А4	TTAACGTACCAACAACAAGGAGGTGCTAAAGAAACTTGTTCTTTAGCAC
14	в pMA-RQ	TTCCTTGTTTATCTTAGAGGCATATCCCTGGTACCCTCTGGGCCTCATG
		GCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAG
		CTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCG
		CTTCCTCGCTCACTGACTCGCTGCGCTCGTTCGGGTAAAGCCTGG
		GGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGG
		CCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCA
		CAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
		CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAG
		CGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAG
		GTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCG
		ACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAG
		ACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGA GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACT
		ACGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCC
		AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA
		ACCGCTGGTAGCGGTGGTTTTTTTTTTTGCAAGCAGCAGATTACGCGCA
		GAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA
		CGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTA
		TCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTA
		AATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATG CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC
		ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCT
		TACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACC
		GGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGC
		AGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTT
		GCCGGGAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGT
		TGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATG
		GCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCC
		CCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGT
		CAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTG CATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTG
		GTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG
		TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGA
		ACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCT
		CAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGC
		ACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGA
		GCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACAC
		GGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCAT TTATCAGGGTTATTGTCTCATGAGCGGATACATATTTTGAATGTATTTAG
		AAAAATAAACAAATAGGGGTTCCGCGCACATTCCCCGAAAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATGAAGGGCGCGCCA ATAGTGAGTC
		GTATTAACGTACCAACAACAAGGAGTGCTAAAGAAACTTGTTCTTTAGC
		ACTCCTTGTTTATCTTAGAGGCATATCCCTACGTACCAACAAGAGAGTG
		MATTGAGAGTGGACTTGCCACTCTCAATCACTCTCTTTATCTTAGAGGCA
		TATCCCTACGTACCAACAAGAGAGCTCTGTCTGGACCACTTGGGTCCAG ACAGAGCTCTCTTTATCTTAGAGGCATATCCCTTTTTAATTAA
		GGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGAAACCT
13	Соединение А5	GTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGG
	в pMA-RQ	GCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGG
		TAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAAC
		CGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTG
		ACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGAC
		AGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGC TCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCC
		CTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAG
		TTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCC
		GTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCA
		ACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG
		GATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGG
		TGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTC
		TGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGG
		CAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTTTTTT

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		ATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTA
		CGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGT
		CATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAA
		TGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACA
		GTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATT
		TCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATA
		CGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAAC
		CACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAG
		GGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCA
		ATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTT
		TGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTC GTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTT
		ACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTC
		CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTAT
		GGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTT
		TCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGC
		GGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCC
		ACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGG
		CGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAAC
		CCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGT
		TTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATA
		AGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATT
		ATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGA
		ATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGA
		AAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCAT ATAGTGAGTCGTATTAACGTACC
		AACAAGAAAGATGATAAGCCCACTCTACTTGAGAGTGGGCTTATCATCT
		TTCTTTATCTTAGAGGCATATCCCTGCCACCATGACCATCCTGTTTCTG
		ACAATGGTCATCAGCTACTTCGGCTGCATGAAGGCCGTGAAGATGCACA
		CCATGAGCAGCCACCTGTTCTATCTGGCCCTGTGCCTGACCTT
		TACCAGCTCTGCTACCGCCGGACCTGAGACACTTTGTGGCGCTGAACTG
		GTGGACGCCCTGCAGTTTGTGTGTGGCGACAGAGGCTTCTACTTCAACA
		AGCCCACAGGCTACGGCAGCAGCTCTAGAAGGGCTCCTCAGACCGGAAT
		CGTGGACGAGTGCTTCAGAAGCTGCGACCTGCGGCGGCTGGAAATG
		TATTGTGCCCTCTGAAGCCTGCCAAGAGCGCCTAGTTTATCTTAGAGG CATATCCCTCTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAG
14	Соединение А6	TCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCC
17	в pMA-RQ	TTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC
		GGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAA
		AGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCT
		CCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGG
		CGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCT
		CCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTC
		CGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGT
		AGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGC
		ACGAACCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG
		TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC
		ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGT
		TCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGG
		TATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGC
		TCTTGATCCGGCAAACAACCACCGCTGGTAGCGGTGGTTTTTTTGTTT
		GCAAGCAGCAGATTACGCGCAGAAAAAAAAGGATCTCAAGAAGATCCTTT
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA GGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTT
		TAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAAC
		IAAAI IAAAAAI GAAI CIAAAGIA IA IA IA GAGTAAAC

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCG
		ATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA
		TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGAT
		ACCGCGAGAACCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAG
		CCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCT CCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTA
		AGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTG
		TCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGAT
		CAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTC
		CTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCA
		CTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCG
		TAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGA
		ATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGAT
		AATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAAC
		GTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAG
		TTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACT
		TTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAA
		AAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT TTTTCAATATTTTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGA
		TACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCA
		CATTTCCCCGAAAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATATAGTGAGTCGTATTAACGTACC AACAAGAAAGATGATAAGCCCACTCTACTTGAGAGTGGGCTTATCATCT
		TTCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTGATGTCTGG
		TCCATATGAACTTGTCATATGGACCAGACATCACCTTTATCTTAGAGGC
		ATATCCCTACGTACCAACAAGATGATAAGCCCACTCTAACTTGTAGAGT
		GGGCTTATCATCTTTATCTTAGAGGCATATCCCTGCCACCATGACCATC
		CTGTTTCTGACAATGGTCATCAGCTACTTCGGCTGCATGAAGGCCGTGA
		AGATGCACACCATGAGCAGCAGCCACCTGTTCTATCTGGCCCTGTGCCT
		GCTGACCTTTACCAGCTCTGCTACCGCCGGACCTGAGACACTTTGTGGC
		GCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTGGCGACAGAGGCTTCT ACTTCAACAAGCCCACAGGCTACGGCAGCAGCTCTAGAAGGGCTCCTCA
		GACCGGAATCGTGGACGAGTGCTGCTTCAGAAGCTGCTGCGGCGG
		CTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGCGCCTAGTTTA
15	Соединение А7	TCTTAGAGGCATATCCCTCTGGGCCTCATGGGCCTTCCGCTCACTGCCC
	в pMA-RQ	GCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATA
		GCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTC
		GCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAG
		GCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTT
		CCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGT
		CAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCC
		CTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGG
		ATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGC
		TCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGG GCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGG
		TAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTG
		GCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTG
		CTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAAC
		AGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGA
		GTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTT
		TTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGA
		AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAAC
		TCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCT
		AGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATA
		TGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCT

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		ATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCG TCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGC TGCAATGATACCGCGAGAACCACGCTCACCGGCTCCAGATTTATCAGCA ATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTT TATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAG TAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTCAACGCC ATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCA
16	Соединение A8 в рМА-RQ	CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTGT TAAATCAGCTCATTTTTAACCAATAGGCCGAAATCGCTT ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCAAAATCCCTT ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGATGTGCTGC AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT AAAACGACGGCCATGAGGCGCAGAGTATACGACTCACTATAGGGCGAA TTGGCGGAAGGCCGTCAAGGCCGCATATAGTGAGTCGTATTAACGTACC AACAAGGCGTGGAGCTGAAGACTTATTTTTCTCTCAGGTCCACC CTTTATCTTAGAGGCATATACCTAACAAGGGCCTGTACCTCA TCTACTACTTGAGTAGATCCTACGTACCAACAAGGGCCTGTACCTCA TCTACTACTTGAGTAGATCACTACTACTTAGAGGCATAT CCCTACGTACCACACAAGGTATGACCCAACAAGGCCTTTATCTTAGAGGCATAT CCCTACGTACCACACAAGGTATGACCCAACAAGGCCTTTATCTTAGAGGCATAT CCCTACGTACCACACAAGGTATGACCCAACAAGCAAT TGAGGCCTTTATCTTTAGAGGCATATCCCTACGTACCAACAAGCAAT TGAGAGCCTTACACTTGATTCTTAGAGGCATTATCCTACGTACCAACAAGCAAT TGAGAGCCTTAGATCCATCAGCTTTATCTTAGAGGCATATCCCTACGT ACCAACAAGGCTTCCCATCAGCTTTATCTTAGAGGCATATCCCTACGT ACCAACAAGTCCTCAGATTACACAACTTGATTGTAATCTACAGGA CCTTTATCTTTAGAGGCATTACCACAAGCTGATGAACATCCCAC TGCTGCCTCCACTGTTCTTTCTTCTGCTGGCCTGCGCCGGCAATTTTTTGCA CCGCCACAAGTGCGAATAACCCTGCACCATGGGACTGACATCTCAAC TGCTGCCCCACTGTTCTTTTCTT

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		AAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCG
		GTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATC
		TCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAAC
		GAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCT
		TCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATC
		TATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAG
		GCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGAC
		TCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCC
		CAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGCTCCAGATTTA
		TCAGCAATAAACCAGCCAGCCGGAAGGGCCCGAGCGCAGAAGTGGTCCTG
		CAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAG
		AGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCT
		ACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCA
		CCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAA
		AAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGT
		GCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTA
		CTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAAC
		CAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCG
		GCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGC
		TCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACC
		GCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCT
		TCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAA
		GGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAAT
		ACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTAT
		TGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAATAAACAAA
		TAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC

Жирный шрифт и подчеркнутый = последовательность соединения

5

10

15

[0464] Пример 2. Транскрипция in vitro конструкций РНК и анализ результатов.

[0465] Векторы рМА-RQ, кодирующие Соединения A1 - A8, и гомологичную пару праймеров (Таблица 4) использовали для получения мРНК путем основанной на ПЦР транскрипции *in vitro*. Матрицу для транскрипции получали с помощью ПЦР, применяя прямой и обратный праймеры, представленные в Таблице 4. Поли(А)-хвост кодировался матрицей; полученный в результате этого продукт ПЦР кодировал поли(А)-хвост длиной 120 п.о. (SEQ ID NO: 193). Осуществили несколько оптимизаций в связи с повторяющейся последовательностью фланкирующих миРНК участков (см. Таблицы 2 и 3), чтобы добиться специфической амплификации. Данные оптимизации включали: 1) малое количество плазмидной ДНК вектора; 2) применение специальной ДНК-полимеразы (полимераза Q5 hot start, New England Biolabs); 3) уменьшенное время денатурации (с 30 секунд до 10 секунд) и удлинения (с 45 секунд/т.п.н. до 10 секунд/т.п.н.) в каждом цикле ПЦР; 4) увеличенное время отжига (с 10 секунд до 30 секунд) в каждом цикле ПЦР; и 5) увеличенное время заключительного удлинения (до 15 минут) в каждом цикле ПЦР. Кроме того, чтобы избежать неспецифического связывания праймеров, реакционную смесь для ПЦР готовили на льду, включая размораживание реагентов, и количество циклов ПЦР уменьшали до 25.

[0466] Для транскрипции *in vitro* применяли PHK-полимеразу T7 (набор MEGAscript, Thermo Fisher Scientific) при 37°C в течение 2 часов и, синтезированные молекулы PHK химически модифицировали 100% N1-метилпсевдо-UTP и котранскрипционно кэпировали аналогом кэп, встраивающимся в прямой ориентации (ARCA; [m₂^{7,3'-O}G(5')ppp(5')G]), по 5'-концу (Jena Bioscience). После транскрипции *in vitro*, мРНК очищали на колонке, применяя набор MEGAclear (Thermo Fisher Scientific), и определяли ее количество, применяя спектрофотометр Nanophotometer-N60 (Implen).

Таблица 4. Праймеры для получения матрицы

5

10

15

20

25

30

SEQ ID NO	Направление праймера	Последовательность (от 5' к 3')
17	Прямой	GCTGCAAGGCGATTAAGTTG
18	Обратный	U(2'OMe)U(2'OMe)U(2'OMe)TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
		TTTCAGCTATGACCATGTTAATGCAG

[0467] Применяя транскрипцию *in vitro*, получали Соединения А1 - А5 в диапазоне 50 - 200 мкг и исследовали на понижающую регуляцию IL-8 и экспрессию IGF-1 в моделях сверхэкспрессии в клетках НЕК-293 (Пример 3) и ТНР-1 (Пример 4), в которых сверхэкспрессировали IL-8, применяя соответствующую мРНК. Кроме того, получали Соединения А6 и А7 в диапазоне 50 - 200 мкг и исследовали на понижающую регуляцию эндогенного IL-1-бета и экспрессию IGF-1 в клетках ТНР-1, которые стимулировали с помощью ЛПС и дцДНК для эндогенной секреции IL-1-бета (Пример 4). Соединение А8 получали в диапазоне 50 - 200 мкг и исследовали на понижающую регуляцию эндогенного TNF-а и экспрессию IL-4 в клетках ТНР-1, в которых эндогенную экспрессию TNF-а стимулировали с помощью обработки ЛПС и R848 (Пример 4). Аналогичным образом, Соединение А8 исследовали на понижающую регуляцию TNF-а и экспрессию IL-4 в моделях сверхэкспрессии в клетках НЕК-293, в которых сверхэкспрессировали TNF-а, применяя кодирующую TNF-а мРНК (Пример 3).

[0468] Результаты анализировали, применяя GraphPad Prism 8 (Сан-Диего, США). Для оценки уровней белка (IGF-1, IL-4, IL-8, IL-1-бета или TNF-α) с помощью ELISA в стандарте или образце, среднее значение поглощения пустой пробы вычитали из среднего значения поглощения стандартов или образцов. Получали стандартную кривую и строили график методом нелинейной регрессии по четырем параметрам, в соответствии с протоколом производителя. Для того чтобы определить концентрацию белков (IGF-1, IL-4, IL-8, IL-1-бета или TNF-α) в каждом образце, концентрацию белка интерполировали по стандартной кривой. Конечную концентрацию белка в образце рассчитывали путем

умножения на фактор разведения. Статистический анализ проводили, применяя критерий Стьюдента.

[0469] Пример 3. Трансфекция НЕК-293 *in vitro*, и модель сверхэкспрессии IL-8 в клетках НЕК-293.

5 [0470] Трансфекция НЕК-293 in vitro.

10

15

20

25

30

35

[0471] Клетки эмбриональной почки человека 293 (НЕК-293; ATCC CRL-1573) поддерживали в модифицированной по способу Дульбекко среде Игла (DMEM, Biochrom), дополненной 10% (об./об.) фетальной бычьей сывороткой (ФБС) и смесью пенициллинстрептомицин-амфотерицин В (882087, Biozym Scientific). Клетки высевали при плотности 20000 клеток/лунку в 96-луночный культуральный планшет и инкубировали при 37°С в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов перед трансфекцией. Клетки растили в ростовой среде DMEM, содержащей 10% ФБС без антибиотиков, до достижения конфлюентности <60% перед трансфекцией. После этого клетки НЕК-293 трансфицировали определенными конструкциями мРНК в различных концентрациях (100 - 900 нг), применяя липофектамин 2000 (Invitrogen), следуя инструкциям производителя, при соотношении мРНК к липофектамину, составляющем 1:1 (масса/объем). 100 мкл DMEM удаляли и заменяли на 50 мкл Орti-МЕМ и 50 мкл комплекса мРНК и липофектамина 2000 в Орti-МЕМ (Thermo Fisher Scientific). Через 5 часов среду заменяли на свежую среду и планшеты инкубировали при 37°С в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов.

[0472] Модель сверхэкспрессии ІL-8 в клетках НЕК-293.

[0473] Для того чтобы оценить одновременное действие РНК-интерференции (РНКи) IL-8 и экспрессии IGF-1 с конструкций РНК (Соединений А1 - А5) в клетках НЕК-293, создали модель сверхэкспрессии IL-8, применяя трансфекцию мРНК IL-8 (300 нг/лунку). Для того чтобы оценить способность конструкций мРНК, содержащих нацеленную на IL-8 миРНК (Соединения А1 - А5), интерферировать с экспрессией IL-8 и одновременно экспрессировать IGF-1, конструкции мРНК (Соединения А1 - А5; 300 - 900 нг/лунку) котрансфицировали мРНК IL-8 (300 нг/лунку). После трансфекции клетки инкубировали при 37°C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов, с последующим количественным анализом IL-8 (целевой ген для понижающей регуляции) и IGF-1 (интересующий ген для сверхэкспрессии) с помощью ELISA в культуральном супернатанте.

[0474] Модель сверхэкспрессии TNF-а в клетках HEK-293.

[0475] Для того чтобы оценить одновременное действие РНК-интерференции (РНКи) ТNF а и экспрессии IL-4 с Соединения А8 в клетках НЕК-293, создали модель сверхэкспрессии TNF-α, применяя трансфекцию мРНК TNF-α (600 нг/лунку). Для того чтобы оценить способность Соединения A8, содержащего нацеленную на TNF-α миРНК, осуществлять понижающую регуляцию TNF-α и одновременно экспрессировать IL-4, клетки котрансфицировали Соединением A8 (600 нг/лунку) и мРНК TNF-α (600 нг/лунку). После трансфекции клетки инкубировали при 37°C в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов с последующим количественным анализом TNF-α (целевой ген для понижающей регуляции) и IL-4 (интересующий ген для сверхэкспрессии) с помощью ELISA в одном и том же культуральном супернатанте.

[0476] Результаты.

5

10

15

20

25

30

35

[0477] Соединение А1, содержащее нацеленную на IL-8 миРНК и последовательность, кодирующую белок IGF-1, исследовали на понижающую регуляцию IL-8 и одновременную (100 -HEK-293 900 экспрессию IGF-1 клетках нг/лунку). продемонстрировали, что Соединение A1 экспрессирует белок IGF-1 на том же уровне или на более высоком уровне, чем экспрессируемый с контрольной мРНК IGF-1, как показано на Фиг. 2A (незалитые круги - экспрессия IGF-1 с контрольной мРНК IGF-1; залитые круги - экспрессия IGF-1 с Соединения A1). В том же эксперименте оценивали РНКинтерференцию с помощью Соединения А1 (300 нг/лунку), направленную против экспрессии IL-8, с конструкции для сверхэкспрессии IL-8 (300 нг/лунку) с последующим ELISA IL-8. На Фиг. 2В показано, что Соединение А1 (правый столбик) снижало уровень IL-8 по сравнению с необработанным контролем (левый столбик) (P < 0.01). Эти анализы показали, что Соединение А1 осуществляло понижающую регуляцию ІL-8 по меньшей мере приблизительно в 3 раза (65%), не снижая экспрессию IGF-1.

[0478] Для того чтобы оценить зависимую от дозы способность Соединения А1 интерферировать с экспрессией IL-8 в модели сверхэкспрессии IL-8 в НЕК-293, клетки НЕК-293 котрансфицировали возрастающей дозой Соединения А1 (300 – 900 нг Соединения А1/лунку) и постоянной дозой мРНК IL-8 (300 нг/лунку) и оценивали экспрессию IL-8 с помощью ELISA. На Фиг. 3 продемонстрировано, что конструкции мРНК Соединения А1, содержащие нацеленную на IL-8 миРНК и последовательность, кодирующую белок IGF-1, ингибировали экспрессию IL-8 в клетках НЕК-293 зависимым от дозы образом. На Фиг. 3 показано, что при концентрации 300 нг/лунку Соединение А1 снижало экспрессию IL-8 по меньшей мере приблизительно в 3,5 раза (70%), и при 600 или 900 нг/лунку Соединение А1 снижало экспрессию IL-8 по меньшей мере приблизительно в 4,25 раза (75%).

[0479] Соединение А2 и Соединение А3, которые содержат 1X и 3X миРНК, нацеленные на IL-8, соответственно, и последовательность, кодирующую белок IGF-1, исследовали,

чтобы оценить, влияет ли присутствие последовательности миРНК в той же конструкции на экспрессию IGF-1. Клетки НЕК-293 трансфицировали мРНК IGF-1 (600 нг/лунку). Результаты, представленные на **Фиг. 4B** (Соединение А2) и **5B** (Соединение А3), показали, что IGF-1 экспрессируется с Соединений А2 и А3.

5 **[0480]** Соединение Аб и Соединение А7, которые содержат 1Х и 3Х миРНК, нацеленные на IL-1-бета, соответственно, и последовательность, кодирующую белок IGF-1, исследовали, чтобы оценить, влияет ли присутствие миРНК в одной и той же конструкции на экспрессию IGF-1. Клетки НЕК-293 трансфицировали мРНК IGF-1 (600 нг/лунку). Результаты, представленные на **Фиг. 8С** (Соединение Аб) и **9С** (Соединение А7), показали, что IGF-1 экспрессируется с Соединений Аб и А7.

[0481] Соединение А8, содержащее нацеленную на TNF- α миРНК и последовательность, кодирующую белок IL-4, исследовали на одновременную понижающую регуляцию TNF- α и экспрессию IL-4 в клетках НЕК-293 (600 нг/лунку) с экзогенно доставленной мРНК TNF- α (600 нг/лунку). Результаты продемонстрировали, что Соединение А8 экспрессирует IL-4, как показано на Фиг. 10С. В том же эксперименте с тем же культуральным супернатантом, РНК-интерференцию с помощью Соединения А8 (600 нг/лунку), направленную против экспрессии TNF- α с конструкции для сверхэкспрессии TNF- α (600 нг/лунку), оценивали с помощью ELISA TNF- α . На Фиг. 10А показано, что Соединение А8 (правый столбик) снижало уровень TNF- α по сравнению с необработанным контролем (левый столбик) (P<0,05). В данном анализе, Соединение А8 снижало уровень TNF- α по меньшей мере приблизительно на 50%. Полученные результаты демонстрируют, что Соединение А8 осуществляло понижающую регуляцию TNF- α , не влияя на экспрессию IL-4.

15

20

25

30

35

[0482] Затем Соединение А4 и Соединение А5, которые содержат 1X и 3X миРНК, нацеленные на IL-8, соответственно, но не содержат последовательность, кодирующую IGF-1, оценивали на зависимую от дозы способность интерферировать с экспрессией IL-8 в клетках НЕК-293. Клетки НЕК-293 с повышенной экспрессией IL-8 (600 нг мРНК IL-8) трансфицировали различными концентрациями (300 – 900 нг/лунку) Соединения А4 (1X миРНК) и Соединения А5 (3X миРНК). На Фиг. 7 продемонстрировано, что Соединение А4 и Соединение А5 ингибировали экспрессию IL-8 в клетках НЕК-293 зависимым от дозы образом.

[0483] Пример 4. Трансфекция *in vitro* клеток THP-1, модель эндогенной экспрессии IL-1-бета/TNF-α в клетках THP-1 и модель сверхэкспрессии IL-8 в клетках THP-1 [0484] Трансфекция клеток THP-1 *in vitro*.

[0485] Линию клеток моноцитарного лейкоза человека THP-1 (Sigma-Aldrich, № в каталоге 88081201) поддерживали в ростовой среде (RPMI 1640, дополненной 10% ФБС и 2 мМ

глутамином). Клетки высевали при плотности 30000 клеток ТНР-1 в 96-луночный культуральный планшет за 72 часа до трансфекции и активировали 50 нМ форбола-12-миристата-13-ацетата (РМА) (Sigma-Aldrich, № в каталоге Р8139), разбавленного в ростовой среде. Клетки трансфицировали определенной мРНК путем монотрансфекции или котрансфекции (300 - 1200 нг/лунку), применяя липофектамин 2000 (Thermo Fisher Scientific). 100 мкл DМЕМ удаляли из каждой лунки и заменяли на 50 мкл Орti-МЕМ (Thermo Fisher Scientific) и 50 мкл комплекса мРНК и липофектамина 2000 в Орti-МЕМ. Через 5 часов среду заменяли на свежую ростовую среду, дополненную с 50 нМ РМА, и планшеты инкубировали при 37°С в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов.

[0486] Модель эндогенной экспрессии IL-1-бета в клетках ТНР-1.

5

10

15

20

25

30

[0487] Для эндогенной секреции IL-1-бета в клетках THP-1, клетки THP-1 стимулировали происходящим из *E. coli* липополисахаридом (LPS-L4391; Sigma Aldrich) при конечной концентрации 10 мкг/мл с дцДНК (специфический ампликон ПЦР; 50 нг/лунку) и инкубировали в течение 90 минут. Вызванная продукция IL-1-бета соответствует физиологическим условиям, наблюдаемым при остеоартрите и БМПД. После стимуляции 50 мкл среды удаляли и заменяли на трансфекционный комплекс, содержащий определенные конструкции мРНК (Соединения А6 и А7), в комплексе с липофектамином 2000 в Орті-МЕМ и инкубировали при 37°С в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов с последующим количественным анализом IL-1-бета с помощью ELISA.

[0488] Модель эндогенной экспрессии TNF-а в клетках THP-1.

[0489] Для эндогенной секреции TNF-α в клетках THP-1, клетки THP-1 стимулировали происходящим из *E. coli* липополисахаридом (LPS-L4391; Sigma Aldrich) при конечной концентрации 10 мкг/мл с R848 (агонист TLR7/8; Invivogen) при конечной концентрации 1 мкг/мл и инкубировали в течение 90 минут. Индуцированная продукция TNF-α соответствовала физиологическим условиям, наблюдаемым при псориазе. После стимуляции 50 мкл среды удаляли и заменяли на трансфекционный комплекс, содержащий определенные конструкции мРНК (Соединение A8), в комплексе с липофектамином 2000 в Орti-МЕМ и инкубировали при 37°С в увлажненной атмосфере, содержащей 5% CO₂ в течение 24 часов. После трансфекции собирали культуральный супернатант и проводили количественный анализ на TNF-α (целевой ген для понижающей регуляции) и IL-4 (интересующий ген для сверхэкспрессии) с помощью ELISA.

[0490] Модель сверхэкспрессии IL-8 в клетках ТНР-1.

[0491] Для того чтобы оценить РНК-интерференцию (РНКи) конструкций мРНК в клетках ТНР-1, создали модель сверхэкспрессии IL-8, применяя трансфекцию мРНК IL-8 (300 нг/лунку). Для того чтобы оценить способность конструкций мРНК, содержащих нацеленную на IL-8 миРНК (Соединения А1 - А5), интерферировать с экспрессией IL-8, конструкции мРНК (300 - 900 нг/лунку) котрансфицировали мРНК IL-8 (300 нг/лунку). После трансфекции клетки инкубировали при 37°C в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов, с последующим количественным анализом IL-8 и IGF-1 с помощью ELISA.

[0492] Результаты

5

10

15

20

25

30

35

[0493] Соединение А2 и Соединение А3 были разработаны таким образом, чтобы они содержали 1Х и 3Х миРНК, нацеленные на IL-8, соответственно, и последовательность, кодирующую IGF-1 (Таблицы 1 и 2), и их исследовали, чтобы оценить, может ли содержание более чем одной миРНК максимизировать действие направленной РНКи. Соединение А4 и Соединение А5 были разработаны в качестве внутренних контролей, которые содержали только 1Х и 3Х миРНК, нацеленные на IL-8, соответственно, без последовательности, кодирующей IGF-1 (Таблицы 1 и 2). На Фиг. 4A, 5A, 6A и 6В продемонстрировано, что Соединения A2 - A5 ингибируют экспрессию IL-8 в клетках ТНР-1, независимо от того, содержит ли соединение последовательность, кодирующую IGF-1. Соединение А2 ингибировало экспрессию ІL-8 по меньшей мере приблизительно на 30% (Фиг. 4A). Соединение А3 ингибировало экспрессию IL-8 по меньшей мере приблизительно на 45% (Фиг. 6B). Соединение A4 ингибировало экспрессию IL-8 приблизительно на 40% (Фиг. 6А). Соединение А5 ингибировало экспрессию IL-8 по меньшей мере приблизительно на 70% (Фиг. 6А и 6В). Следовательно, соединения, содержащие три миРНК (Соединения А3 и А5), ингибировали экспрессию IL-8 на от по меньшей мере приблизительно 45% до по меньшей мере приблизительно 70%, тогда как соединения, содержащие одну миРНК (Соединения А2 и А4), ингибировали экспрессию IL-8 на от по меньшей мере приблизительно 30% до по меньшей мере приблизительно 40%. [0494] Затем оценивали действие Соединения А6 (1X миРНК, нацеливающая на IL-1-бета, + последовательность, кодирующая IGF-1) и Соединения А7 (3X миРНК, нацеленные на IL-1-бета, + последовательность, кодирующая IGF-1) в отношении интерфериренции с экспрессией IL-1-бета в клетках THP-1, стимулированных 10 мкг/мл ЛПС и 50 нг/лунку дцДНК, чтобы вызвать эндогенную секрецию IL-1-бета. Созданная модель ТНР-1 имитирует физиологическое иммунное состояние остеоартрита и БМПД. На Фиг. 8А, 8В, 9А и 9В продемонстрировано, что Соединение Аб и Соединение А7 снижали эндогенную экспрессию IL-1-бета в клетках THP-1 (P < 0.001). Соединение A6 снижало экспрессию IL-

1-бета по меньшей мере приблизительно на 40% (**Фиг. 8A** и **8B**). Соединение А7 снижало экспрессию IL-1-бета на от по меньшей мере приблизительно 45% до по меньшей мере приблизительно 50% (**Фиг. 9A** и **9B**, соответственно).

[0495] Действие Соединения А8 (содержащего миРНК, нацеленную на ТNF- α , и последовательность, кодирующую IL-4) на понижающую регуляцию TNF- α оценивали в клетках THP-1, стимулированных 10 мкг/мл ЛПС и 1 мкг/мл R848, чтобы вызвать эндогенную секрецию TNF- α . Созданная модель THP-1 имитирует физиологическое иммунное состояние псориаза. На **Фиг. 10В** продемонстрировано, что Соединение А8 снижало эндогенную экспрессию TNF- α в клетках THP-1 (P <0,05). В данном анализе Соединение А8 снижало экспрессию TNF- α по меньшей мере приблизительно на 20%. В том же культуральном супернатанте измеряли экспрессию IL-4 и подтвердили, что экспрессия IL-4 не была нарушена (**Фиг. 10D**).

[0496] Пример 5. Дизайн, последовательность и синтез противовирусной конструкции.

15 [0497] Дизайн противовирусной конструкции.

5

10

20

25

30

[0498] Как миРНК, так и интересующие белки одновременно экспрессировали с одного транскрипта, полученного путем транскрипции *in vitro*. Полинуклеотидные конструкции или конструкции РНК сконструированы, чтобы они содержали дизайны миРНК, описанные в Cheng, и др. (2018) Ј. Маter. Chem. В., 6, 4638-4644, и дополнительно содержали один или более интересующих генов по ходу транскрипции или против хода транскрипции от последовательности миРНК (схематическое изображение на Фиг. 1). Конструкция может кодировать или содержать более одной последовательности миРНК, нацеленной на одну и ту же или на отличные целевые мРНК. Аналогичным образом, конструкция может содержать последовательности нуклеиновых кислот двух или более интересующих генов. Последовательность линкера может присутствовать между любыми двумя элементами конструкции (например, пептидный линкер 2A или тРНК-линкер).

[0499] На Фиг. 1 представлено, что конструкция полинуклеиновой кислоты может содержать последовательность промотора Т7 (5' TAATACGACTCACTATA 3'; SEQ ID NO: 25) против хода транскрипции от последовательности интересующего гена, для связывания РНК-полимеразы и успешной транскрипции *in vitro* как интересующего гена, так и миРНК в одном транскрипте. Можно применять альтернативный промотор, например, SP6, T3, P60, Syn5 и KP34. Матрицу для транскрипции получают с помощью ПЦР для получения мРНК с применением праймеров, разработанных таким образом, чтобы они фланкировали последовательности промотора Т7, IFN-бета и миРНК. Обратный праймер содержит

участок T(120) (SEQ ID NO: 197), чтобы добавить к мРНК поли(A)-хвост длиной 120 п.о. (SEQ ID NO: 193).

[0500] Синтез противовирусной конструкции.

5

10

15

[0501] Конструкции, представленные в Таблице 5, синтезировали в GeneArt, Германия (Thermo Fisher Scientific), в виде векторов, содержащих промотор РНК-полимеразы Т7 рМА-Т или рМА-RQ), с оптимизацией кодонов (алгоритм например, GeneOptimizer). В Таблице 5 показаны, для каждого соединения: белок, понижающую осуществить миРНК с регуляцию которого нужно посредством связывания соответствующей мРНК, количество миРНК в конструкции (например, либо множество миРНК, нацеленных на одну и ту же мРНК, или множество миРНК, каждая из которых нацелена на отличную мРНК), и белковая мишень для повышающей регуляции, т.е., продукт интересующего гена. Все уридины в Соединениях В1 - В19, используемых в примерах, описанных в данной заявке, были модифицированы на N^1 -метилпсевдоуридин. Последовательности каждой конструкции представлены в Таблице 6 и аннотированы, как указано под таблицей.

Таблица 5. Краткое описание соединений В1 - В19.

№ Соединения	Мишень миРНК	Положение миРНК	Кол-во миРНК	Белковая мишень (интересующий ген)	Механизм
B1	IL-6	3'	3	IFN-β	Цитокиновый шторм, противовоспалительный
B2	IL-6	3'	1	IFN-β	Цитокиновый шторм, противовоспалительный
В3	IL-6R	3'	3	IFN-β	Цитокиновый шторм, противовоспалительный
B4	IL-6R-альфа	3'	1	IFN-β	Цитокиновый шторм, противовоспалительный
B5	IL-6R-бета	3'	1	IFN-β	Цитокиновый шторм, противовоспалительный
B6	ACE2	3'	3	IFN-β	Проникновение вируса, противовоспалительный
В7	ACE2	3'	1	IFN-β	Проникновение вируса, противовоспалительный
B8	SARS CoV-2 (ORF1ab, S, N)	3'	3	IFN-β	Противовирусный, противовоспалительный
B9	SARS CoV-2 (S)	3'	1	IFN-β	Противовирусный, противовоспалительный
B10	SARS CoV-2 (N)	3'	1	IFN-β	Противовирусный, противовоспалительный
B11	SARS CoV-2 (S)	3'	3	IFN-β	Противовирусный, противовоспалительный
B12	SARS CoV-2 (ORF1ab)	3'	3	IFN-β	Противовирусный, противовоспалительный
B13	SARS CoV-2 (ORF1ab)	3'	1	IFN-β	Противовирусный, противовоспалительный

№ Соединения	Мишень миРНК	Положение миРНК	Кол-во миРНК	Белковая мишень (интересующий ген)	Механизм
B14	SARS CoV-2 (ORF1ab)	3,	1	IFN-β	Противовирусный, противовоспалительный
B15	IL6/ACE2/SARS CoV-2 (S)	3,	3	IFN-β	Цитокиновый шторм, проникновение вируса, противовирусный, противовоспалительный
B16	IL6/ACE2/SARS CoV-2 (S)	3,	3	IFN-β (1)*	Цитокиновый шторм, проникновение вируса, противовирусный, противовоспалительный
B17	IL6/ACE2/SARS CoV-2 (S)	3,	3	IFN-β (2)*	Цитокиновый шторм, проникновение вируса, противовирусный, противовоспалительный
B18	SARS CoV-2 (ORF1ab, S, N)	3'	3	Растворимый рецептор ACE2	Противовирусный, нейтрализация вируса
B19	SARS CoV-2 (S)	3'	3	Растворимый рецептор ACE2	Противовирусный, нейтрализация вируса

^{*}IFN- β (1) и IFN- β (2) представляют модифицированный сигнальный пептид (SP) для повышенной секреции

Таблица 6. Последовательности Соединений В1 - В19

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
29		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
B1-1		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
смысловая цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
93,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
ая 123;		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
B1-2	Соединение	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
смысловая цепь миРНК	B1	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
94,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 124;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAAGCCC
B1-3		TGAGAAAGGAGACATGTACTTGACATGTCTCCTTTCTCAGGGC
смысловая цепь миРНК		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGAGGAGACT
95,		TGCCTGGTGAAAACTTGTTTCACCAGGCAAGTCTCCTCTTTAT
антисмыслов		CTTAGAGGCATATCCCTACGTACCAACAAGAGGGCTCTTCGGC
ая 125		AAATGTAACTTG TACATTTGCCGAAGAGCCCTCTTTATCTTAG
		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
30		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
D2	Соединение	TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
В2 смысловая	B2	GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
цепь миРНК		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
94,		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
антисмыслов		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
ая 124		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAGAG
		GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAAGAGG
		AGACTTGCCTGGTGAAAACTTGTTTCACCAGGCAAGTCTCCTC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		T
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
31		<u>TGTGCTTCAGCACAACAGCCCTGAGC</u> ATGAGCTACAACCTGCT
5, 2,		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
от 5' к 3': В3-1		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
смысловая		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
96,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAAATCTGCTGGCCAACGTGTA
ая 126;		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAAGCTG
B3-2	Соединение	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
смысловая цепь миРНК	B3	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
97,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 127;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GTGA
B3-3		GGAAGTTTCAGAACAGTACTTGACTGTTCTGAAACTTCCTCAC
смысловая		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGAACGGTCA
цепь миРНК 98,		AAGACATTCACAACTTG <i>TGTGAATGTCTTTGACCGTTC</i> TTTAT
очетисмыслов (предоставление) и предоставление и предоставление п		CTTAGAGGCATATCCCTACGTACCAACAAGGGAAGGTTACATC
ая 128		AGATCATACTTGATGATCTGATGTAACCTTCCC
		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
32		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
5 2		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
B2		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
смысловая	Соединение	CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAGAG
96,	B4	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
антисмыслов ая 126		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
ал 120		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GTGA
		GGAAGTTTCAGAACAGTACTTGACTTCTCAC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		T

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
33		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
B5	C	GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
смысловая	Соединение В5	CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
цепь миРНК 98,	ВЗ	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
антисмыслов		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
ая 128		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAAGGGA
		AGGTTACATCAGATCATACTTGATGATCTGATGTAACCTTCCC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		T
		<i>GCCACC</i> ATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
34		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
B6-1		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
смысловая цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
99,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
ая 129;		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
B6-2	Соединение	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
смысловая	B6	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
цепь миРНК 100,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 130;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GCAG
B6-3		CTGAGGCCATTATATGAACTTGTCATATAATGGCCTCAGCTGC
смысловая		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGGACCCAGG
цепь миРНК 101,		AAATGTTCAGAAAACTTG <i>TTCTGAACATTTCCTGGGTCC</i> TTTAT
тот, антисмыслов		CTTAGAGGCATATCCCTACGTACCAACAAGGCTGAAAGACCAG
ая 131		AACAAGAACTTG TCTTGTTCTGGTCTTTCAGCC
		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCTTCCAGTGCCAGAAACTG
25		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
35		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
B6		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
смысловая	Соединение	CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
цепь миРНК	В7	GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
99,		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
антисмыслов		GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
ая 129		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GCAG

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
		CTGAGGCCATTATATGAACTTGTCATATAATGGCCTCAGCTGC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		Т
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
36		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
B8-1		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
смысловая цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
102,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
ая 132;		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
B8-2	Соединение	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
смысловая цепь миРНК	B8	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
107,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 137;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GTGT
B8-3		GACCGAAAGGTAAGATGACTTGCATCTTACCTTTCGGTCACAC
смысловая цепь миРНК		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGAGGTGATG
109,		AAGTCAGACAAAACTTGTTTGTCTGACTTCATCACCTC
антисмыслов		CTTAGAGGCATATCCCTACGTACCAACAAGCAACTGAGGGAGC
ая 139		CTTGAATACTTGATTCAAGGCTCCCTCAGTTGCTTATCTTAG
		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
		<u>TGTGCTTCAGCACAACAGCCCTGAGC</u> ATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
		CTGTGGCAGCTGAACGCCCGGCTGGAATACTGCCTGAAGGACC
		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
37		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
Do		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
В9	Соединение	GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
смысловая цепь миРНК	В9	CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
107,		GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
антисмыслов		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
ая 137		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GAGG
		TGATGAAGTCAGACAAAACTTGTTTGTCTGACTTCATCACCTC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		Т
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
38		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
B10		CTGTGGCAGCTGAACGCCGGCTGGAATACTGCCTGAAGGACC
СМЫСЛОВАЯ	НК В10	GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
109,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
ая 139		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAAGATG
		GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GCAA
		CTGAGGGAGCCTTGAATACTTGATTCAAGGCTCCCTCAGTTGC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		T
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
39		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
B11-1		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
смысловая цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
цень миглк 106,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
ая 136;		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
B11-2	Соединение	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
смысловая	B11	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
цепь миРНК 107,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
107, антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 137;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GTTG
B11-3		CTGATTATTCTGTCCTAACTTGTAGGACAGAATAATCAGCAAC
смысловая		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGAGGTGATG
цепь миРНК		AAGTCAGACAAAACTTGTTTGTCTGACTTCATCACCTC
108,		CTTAGAGGCATATCCCTACGTACCAACAAGCCGGTAGCACCC
антисмыслов ая 138		TTGTAATACTTGATTACAAGGTGTGCTACCGGCTTTATCTTAG
ал 136		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
40		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
-		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGGCAGCTGAACGCCGGCTGGAATACTGCCTGAAGGACC
B12-1		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
смысловая		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
цепь миРНК		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
103,		GCTGGAACGAGCATCTTCCGGCAGGACAGCAGCTCACAG
антисмыслов ая 133;		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
В12-2	Coor	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
смысловая	Соединение В12	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
цепь миРНК	D12	
104,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
антисмыслов		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA TTTA
ая 134; В12-3		AATATTGGGATCAGACACTTGGTCTATTAACGTACCAACAATTTA
смысловая		
цепь миРНК		TATCTTAGAGGCATATCCCTACGTACCAACAAAAGAATAGAGC
105,		TCGCACACTTGGTGCGAGCTCTATTCTTTTTTTTTTTTT
антисмыслов		TATCCCTACGTACCAACAACTGTTGATTCATCACAGGGACTT
ая 135		GCCCTGTGATGAATCAACAGTTTTTATCTTAGAGGCATATCCCT
4.1		TTTATCTTAGAGGCATATCCCT
41		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
B13	Соединение	<u>TGTGCTTCAGCACAACAGCCCTGAGC</u> ATGAGCTACAACCTGCT
נוט	В13	GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
СМИСЛОВЗА		
смысловая цепь миРНК	D 13	CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
антисмыслов		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
ая 134		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
		GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAAAAGA
		ATAGAGCTCGCACACTTGGTGCGAGCTCTATTCTTTTTTTT
		AGAGGCATATCCCTTTTATCTTAGAGGCATATCCCT
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
		<u>TGTGCTTCAGCACAACAGCCCTGAGC</u> ATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
42		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
B14	Caar	GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
смысловая	Соединение	CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
цепь миРНК	B14	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
102, антисмыслов		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
ая 132		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GTGT
		GACCGAAAGGTAAGATGACTTGCATCTTACCTTTCGGTCACAC
		TTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCATATCCC
		T
		GCCACCATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGC
43		TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
73		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGCAGCTGAACGCCGGCTGGAATACTGCCTGAAGGACC
B15-1		
смысловая		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
94,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAAATCTGCTGGCCAACGTGTA
ая 124; В15-2		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
СМЫСЛОВАЯ	Соединение	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
цепь миРНК	B15	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
99,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 129;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAAGAGG
B15-3		AGACTTGCCTGGTGAAAACTTGTTTCACCAGGCAAGTCTCCTC
смысловая		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGCAGCTGAG
цепь миРНК		GCCATTATATGAACTTGTCATATAATGGCCTCAGCTGCTTTAT
109, антисмыслов		CTTAGAGGCATATCCCTACGTACCAACAAGCAACTGAGGGAGC
антисмыслов		CTTGAATACTTGATTCAAGGCTCCCTCAGTTGCTTATCTTAG
un 157		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
4.4		GCCACCATGCTCCTGATCTGCCTGCTGGTGATTGCCCTGCTGC
44	Соединение	
or 5' r 2'.	B16*	TGTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
от 5' к 3':		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
B16-1		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
смысловая		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
цепь миРНК		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
94,		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
антисмыслов		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
ая 124; В 16-2		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
смысловая		GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
цепь миРНК		ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
99,		
антисмыслов		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
ая 129;		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
B16-3		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAA GAGG
смысловая		AGACTTGCCTGGTGAAAACTTGTTTCACCAGGCAAGTCTCCTC
цепь миРНК 109,		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGCAGCTGAG
антисмыслов		GCCATTATATGAACTTGTCATATAATGGCCTCAGCTGCTTTAT
ая 139		CTTAGAGGCATATCCCTACGTACCAACAAGCAACTGAGGGAGC
		CTTGAATACTTGATTCAAGGCTCCCTCAGTTGCTTATCTTAG
		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
		GCCACCATGCTCCTGAAGCTCCTGCTGGTGATTGCCCTGCTGG
45		CCTGCTTCAGCACAACAGCCCTGAGCATGAGCTACAACCTGCT
		GGGCTTCCTGCAGCGGAGCAGCAACTTCCAGTGCCAGAAACTG
от 5' к 3':		CTGTGGCAGCTGAACGGCCGGCTGGAATACTGCCTGAAGGACC
B17-1		GGATGAACTTCGACATCCCCGAGGAAATCAAGCAGCTGCAGCA
смысловая		GTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGCTG
цепь миРНК		CAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAG
94,		GCTGGAACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTA
антисмыслов ая 124;		CCACCAGATCAACCACCTGAAAACCGTGCTGGAAGAGAAGCTG
B17-2		
смысловая	Соединение В17*	GAAAAAGAGGACTTCACCCGGGGCAAGCTGATGAGCAGCCTGC
цепь миРНК	B1/"	ACCTGAAGCGGTACTACGGCAGAATCCTGCACTACCTGAAGGC
99,		CAAAGAGTACAGCCACTGCGCCTGGACCATCGTGCGCGTGGAA
антисмыслов		ATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCTACC
ая 129;		TGAGAAACTGAATAGTGAGTCGTATTAACGTACCAACAAGAGG
B17-3		AGACTTGCCTGGTGAAAACTTG <i>TTTCACCAGGCAAGTCTCCTC</i>
смысловая цепь миРНК		TTTATCTTAGAGGCATATCCCTACGTACCAACAAGCAGCTGAG
109,		GCCATTATATGAACTTGTCATATAATGGCCTCAGCTGCTTTAT
антисмыслов		CTTAGAGGCATATCCCTACGTACCAACAAGCAACTGAGGGAGC
ая 139		CTTGAATACTTGATTCAAGGCTCCCTCAGTTGCTTATCTTAG
		AGGCATATCCCTTTTATCTTAGAGGCATATCCCT
46		GCCACCATGTCTAGCAGCTCTTGGCTGCTGTCTCTGGTGG
		CTGTGACAGCCGCTCAGAGCACCATTGAGGAACAGGCCAAGAC
от 5' к 3':		CTTCCTGGACAAGTTCAACCACGAGGCCGAGGACCTGTTCTAC
B18-1		CAGTCTAGCCTGGCCAGCTGGAACTACAACACCCAACATCACCG
смысловая		
цепь миРНК 102,		AAGAGAACGTGCAGAACATGAACAACGCCGGCGACAAGTGGAG
102, антисмыслов		CGCCTTCCTGAAAGAGCAGAGCACACTGGCCCAGATGTACCCT
ая 132;	Соединение	CTGCAAGAGATCCAGAACCTGACCGTGAAGCTCCAGCTGCAGG
B18-2	B18	CCCTCCAGCAGAATGGAAGCTCTGTGCTGAGCGAGGACAAGAG
смысловая		CAAGCGGCTGAACACCATCCTGAATACCATGAGCACCATCTAC
цепь миРНК		AGCACCGGCAAAGTGTGCAACCCCGACAATCCCCAAGAGTGCC
107,		TGCTGCTGGAACCCGGCCTGAATGAGATCATGGCCAACAGCCT
антисмыслов		GGACTACAACGAGAGACTGTGGGCCTGGGAGTCTTGGAGAAGC
ая 137; В 18-3		GAAGTGGGAAAGCAGCTGCGGCCCCTGTACGAGGAATACGTGG
		TGCTGAAGAACGAGATGGCCAGAGCCAACCACTACGAGGACTA
смысловая		1

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
цепь миРНК		CGGCGACTATTGGAGAGGCGACTACGAAGTGAATGGCGTGGAC
109,		GGCTACGACTACAGCAGAGGCCAGCTGATCGAGGACGTGGAAC
антисмыслов ая 139		ACACCTTCGAGGAAATCAAGCCTCTGTACGAGCATCTGCACGC
ая 139		CTACGTGCGGGCCAAGCTGATGAATGCTTACCCCAGCTACATC
		AGCCCCATCGGCTGTCTGCCTGCTCATCTGCTGGGAGACATGT
		GGGGCAGATTCTGGACCAACCTGTACAGCCTGACAGTGCCCTT
		CGGCCAGAAACCTAACATCGACGTGACCGACGCCATGGTGGAT
		CAGGCTTGGGATGCCCAGCGGATCTTCAAAGAGGCCGAGAAGT
		TCTTCGTGTCCGTGGGCCTGCCTAATATGACCCAAGGCTTCTG
		GGAGAACTCCATGCTGACAGACCCCGGCAATGTGCAGAAAGCC
		GTGTGTCATCCTACCGCCTGGGATCTCGGCAAGGGCGACTTCA
		GAATCCTGATGTGCACCAAAGTGACGATGGACGACTTCCTGAC
		AGCCCACCACGAGATGGGCCACATCCAGTACGATATGGCCTAC
		GCCGCTCAGCCCTTCCTGCTGAGAAATGGCGCCAATGAGGGCT
		TCCACGAAGCCGTGGGAGAGATCATGAGCCTGTCTGCCGCCAC
		ACCTAAGCACCTGAAGTCTATCGGACTGCTGAGCCCCGACTTC
		CAAGAGGACAACGAGACAGAGATCAACTTCCTGCTCAAGCAGG
		CCCTGACCATCGTGGGCACACTGCCCTTTACCTACATGCTGGA
		AAAGTGGCGTGGATGGTCTTTAAGGGCGAGATCCCCAAGGAC
		CAGTGGATGAAGAAATGGTGGGAGATGAAGCGCGAGATCGTGG
		GCGTTGTGGAACCTGTGCCTCACGACGAGACATACTGCGATCC
		TGCCAGCCTGTTTCACGTGTCCAACGACTACTCCTTCATCCGG
		TACTACACCCGGACACTGTACCAGTTCCAGTTTCAAGAGGCTC
		TGTGCCAGGCCGCCAAGCACGAAGGACCTCTGCACAAGTGCGA
		CATCAGCAACTCTACAGAGGCCGGACAGAAACTGTTCAACATG
		CTGCGGCTGGGCAAGAGCGAGCCTTGGACACTGGCTCTGGAAA
		ATGTCGTGGGCGCCAAGAATATGAACGTGCGGCCACTGCTGAA
		CTACTTCGAGCCCCTGTTCACCTGGCTGAAGGACCAGAACAAG
		AACAGCTTCGTCGGCTGGTCCACCGATTGGAGCCCTTACGCCG
		ACCAGAGCATCAAAGTGCGGATCAGCCTGAAAAGCGCCCTGGG
		CGATAAGGCCTATGAGTGGAACGACAATGAGATGTACCTGTTC
		CGGTCCAGCGTGGCCTATGCTATGCGGCAGTACTTTCTGAAAG
		TCAAGAACCAGATGATCCTGTTCGGCGAAGAGGATGTGCGCGT
		GGCCAACCTGAAGCCTCGGATCAGCTTCAACTTCTTCGTGACT
		GCCCCTAAGAACGTGTCCGACATCATCCCCAGAACCGAGGTGG
		AAAAGGCCATCAGAATGAGCAGAAGCCGGATCAACGACGCCTT
		CCGCTGAACGACAACTCCCTGGAATTCCTGGGCATTCAGCCC
		ACACTGGGCCCTCCAAATCAGCCTCCTGTGTCCTAAATAGTGA
		GTCGTATTAACGTACCAACAAGTGTGACCGAAAGGTAAGATGA
		CTTG CATCTTACCTTTCGGTCACAC TTTATCTTAGAGGCATAT
		CCCTACGTACCAACAAGAGGTGATGAAGTCAGACAAAACTTG <i>T</i>
		TTGTCTGACTTCATCACCTCTTTATCTTAGAGGCATATCCCTA
		CGTACCAACAAGCAACTGAGGGAGCCTTGAATACTTG <i>ATTCAA</i>
		GCTCCCTCAGTTGCTTTATCTTAGAGGCATATCCCTTTTATC
		TTAGAGGCATATCCCT
47		GCCACCATGTCTAGCAGCTCTTGGCTGCTGTCTCTGGTGG
		CTGTGACAGCCGCTCAGAGCACCATTGAGGAACAGGCCAAGAC
от 5' к 3':	Соединение	CTTCCTGGACAAGTTCAACCACGAGGCCGAGGACCTGTTCTAC
B19-1	В19	CAGTCTAGCCTGGCCAGCTGGAACTACAACACCAACATCACCG
смысловая		AAGAGAACGTGCAGAACATGAACAACGCCGGCGACAAGTGGAG
цепь миРНК		CGCCTTCCTGAAAGAGCAGAGCACACTGGCCCAGATGTACCCT
106,]	COCCITCOTONANORACADANGIACCONDATGIACCC

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
антисмыслов		CTGCAAGAGATCCAGAACCTGACCGTGAAGCTCCAGCTGCAGG
ая 136;		CCCTCCAGCAGAATGGAAGCTCTGTGCTGAGCGAGGACAAGAG
B19-2		CAAGCGGCTGAACACCATCCTGAATACCATGAGCACCATCTAC
смысловая		AGCACCGGCAAAGTGTGCAACCCCGACAATCCCCAAGAGTGCC
цепь миРНК 107,		TGCTGCTGGAACCCGGCCTGAATGAGATCATGGCCAACAGCCT
антисмыслов		GGACTACAACGAGAGACTGTGGGCCTGGGAGTCTTGGAGAAGC
ая 137;		GAAGTGGGAAAGCAGCTGCGGCCCCTGTACGAGGAATACGTGG
B19-3		TGCTGAAGAACGAGATGGCCAGAGCCAACCACTACGAGGACTA
смысловая		CGGCGACTATTGGAGAGGCGACTACGAAGTGAATGGCGTGGAC
цепь миРНК		GGCTACGACTACAGCAGAGGCCAGCTGATCGAGGACGTGGAAC
108, антисмыслов		ACACCTTCGAGGAAATCAAGCCTCTGTACGAGCATCTGCACGC
ая 138		CTACGTGCGGGCCAAGCTGATGAATGCTTACCCCAGCTACATC
431 13 0		AGCCCCATCGGCTGTCTGCCTGCTCATCTGCTGGGAGACATGT
		GGGGCAGATTCTGGACCAACCTGTACAGCCTGACAGTGCCCTT
		CGGCCAGAAACCTAACATCGACGTGACCGACGCCATGGTGGAT
		CAGGCTTGGGATGCCCAGCGGATCTTCAAAGAGGCCGAGAAGT TCTTCGTGTCCGTGGGCCTGCCTAATATGACCCAAGGCTTCTG
		GGAGAACTCCATGCTGACAGACCCCGGCAATGTGCAGAAAGCC
		GTGTGTCATCCTACCGCCTGGGATCTCGGCAAGGGCGACTTCA
		GAATCCTGATGTGCACCAAAGTGACGATGGACGACTTCCTGAC
		AGCCCACCACGAGATGGGCCACATCCAGTACGATATGGCCTAC
		GCCGCTCAGCCCTTCCTGCTGAGAAATGGCGCCAATGAGGGCT
		TCCACGAAGCCGTGGGAGAGATCATGAGCCTGTCTGCCGCCAC
		ACCTAAGCACCTGAAGTCTATCGGACTGCTGAGCCCCGACTTC
		CAAGAGGACAACGAGACAGAGATCAACTTCCTGCTCAAGCAGG
		CCCTGACCATCGTGGGCACACTGCCCTTTACCTACATGCTGGA
		AAAGTGGCGGTGGATGGTCTTTAAGGGCGAGATCCCCAAGGAC
		CAGTGGATGAAGAAATGGTGGGAGATGAAGCGCGAGATCGTGG
		GCGTTGTGGAACCTGTGCCTCACGACGAGACATACTGCGATCC
		TGCCAGCCTGTTTCACGTGTCCAACGACTACTCCTTCATCCGG
		TACTACACCGGACACTGTACCAGTTCCAGTTTCAAGAGGCTC
		TGTGCCAGGCCGCCAAGCACGAAGGACCTCTGCACAAGTGCGA
		CATCAGCAACTCTACAGAGGCCGGACAGAAACTGTTCAACATG
		CTGCGGCTGGGCAAGAGCGAGCCTTGGACACTGGCTCTGGAAA
		ATGTCGTGGGCCCAAGAATATGAACGTGCGGCCACTGCTGAA
		CTACTTCGAGCCCCTGTTCACCTGGCTGAAGGACCAGAACAAG
		AACAGCTTCGTCGGCTGGTCCACCGATTGGAGCCCTTACGCCG
		ACCAGAGCATCAAAGTGCGGATCAGCCTGAAAAAGCGCCCTGGG
		CGATAAGGCCTATGAGTGGAACGACAATGAGATGTACCTGTTC
		CGGTCCAGCGTGGCCTATGCTATGCGGCAGTACTTTCTGAAAG
		TCAAGAACCAGATGATCCTGTTCGGCGAAGAGGATGTGCGCGT
		GGCCAACCTGAAGCCTCGGATCAGCTTCAACTTCTTCGTGACT
		GCCCCTAAGAACGTGTCCGACATCATCCCCAGAACCGAGGTGG
		AAAAGGCCATCAGAATGAGCAGAAGCCGGATCAACGACGCCTT
		CCGGCTGAACGACAACTCCCTGGAATTCCTGGGCATTCAGCCC
		ACACTGGGCCCTCCAAATCAGCCTCCTGTGTCCTAAATAGTGA
		GTCGTATTAACGTACCAACAAGTTGCTGATTATTCTGTCCTAA
		CTTG TAGGACAGAATAATCAGCAACTTTATCTTAGAGGCATAT
		CCCTACGTACCAACAAGAGGTGATGAAGTCAGACAAAACTTGT
		TTGTCTGACTTCATCACCTCTTTATCTTAGAGGCATATCCCTA
		CGTACCAACAAGCCGGTAGCACACCTTGTAATACTTGATTACA

SEQ ID NO	Соединение	Последовательность (от 5' к 3')
		AGGTGTGCTACCGGCTTTATCTTAGAGGCATATCCCTTTTATC
		TTAGAGGCATATCCCT

Жирный шрифт = смысловая цепь миРНК

Жирный шрифт и курсивный шрифт = антисмысловая цепь миРНК

Подчеркнутый = сигнальный пептид

10

15

20

35

Курсивный шрифт = последовательность Козак

5 *Выделение жирным шрифтом внутри подчеркнутой последовательности указывает на модифицированный сигнальный пептид IFN-β.

[0502] Пример 6. Транскрипция in vitro противовирусных конструкций РНК и анализ результатов.

- [0503] Транскрипцию in vitro на основе ПЦР проводили, применяя векторы рМХ, кодирующие Соединения В1 - В19, для получения мРНК. Матрицу для транскрипции получали с помощью ПЦР, применяя прямой и обратный праймеры, представленные в Таблице 4. Поли(А)-хвост кодировался матрицей, в результате чего образовывался поли(A)-хвост длиной 120 п.о. (SEQ ID NO: 193). Оптимизации осуществляли при необходимости, чтобы добиться специфической амплификации, учитывая повторяющиеся последовательности фланкирующих миРНК участков. Оптимизации включали: 1) уменьшение количества векторной ДНК, 2) замену ДНК-полимеразы (полимераза Q5 hot start, New England Biolabs), 3) уменьшение времени денатурации (с 30 секунд до 10 секунд) и времени удлинения (с 45 секунд/т.п.н. до 10 секунд/т.п.н.) в каждом цикле ПЦР, 4) увеличение времени отжига (с 10 секунд до 30 секунд) в каждом цикле ПЦР, и 5) увеличение времени заключительного удлинения (до 15 минут) в каждом цикле ПЦР. Кроме того, чтобы избежать неспецифического связывания праймеров, реакционную смесь для ПЦР готовили на льду, включая размораживание реагентов, и количество циклов ПЦР уменьшали до 25.
- 25 [0504] Для транскрипции in vitro PHK-полимеразу Т7 (MEGAscript набор, Thermo Fisher Scientific) применяли при 37°C в течение 2 часов. Синтезированные РНК химически модифицировали 100% N1-метилпсевдо-UTP и котранскрипционно кэпировали аналогом кэп, встраивающимся в прямой ориентации (ARCA; $[m_2^{7,3'-O}G(5')ppp(5')G]$) по 5'-концу (Jena Bioscience). После транскрипции in vitro очищали мРНК на колонке, применяя набор MEGAclear (Thermo Fisher Scientific), и осуществляли количественный анализ, применяя 30
- Nanophotometer-N60 (Implen).
 - [0505] Применяя транскрипцию *in vitro*, получали Соединения В1 В17 и исследовали на понижающую регуляцию целевой мРНК/белка и экспрессию интересующего гена/интересующего белка и сравнивали с моделями сверхэкспрессии, в которых сверхэкспрессируется интересующий ген/интересующий белок.

[0506] Результаты анализировали, применяя GraphPad Prism 8 (Сан-Диего, США). Для оценки уровней белка с применением ELISA в стандарте или образце, среднее значение поглощения пустой пробы вычитали из среднего поглощения стандартов или образцов. Получали стандартную кривую и строили график методом нелинейной регрессии по четырем параметрам, в соответствии с протоколом производителя. Для того чтобы определить концентрацию белка в каждом образце, концентрацию каждого белка интерполировали по стандартной кривой. Конечную концентрацию белка в образце рассчитывали путем умножения на фактор разведения. Статистический анализ проводили, используя критерий Стьюдента. Процент положительных по GFP клеток рассчитывали, применяя инструмент SoftMax Pro. Относительный подсчет вирусной РНК с помощью количественной ПЦР анализировали, применяя критерии рандомизации с попарным фиксированным перераспределением, с помощью программного обеспечения REST 2009.

[0507] Пример 7. Модель сверхэкспрессии IFN-бета в клетках A549.

5

10

15

20

25

30

[0508] Трансфекция *in vitro* клеток A549 соединениями, которые сверхэкспрессируют IFN-бета.

[0509] Клетки А549 представляют собой обычные клетки альвеолярного типа II (ATII), происходящие из карциномы легкого человека. Поскольку смертность от COVID-19, главным образом, связана с респираторным заболеванием вследствие высокой экспрессии рецептора для проникновения вируса (ACE2) в клетках-хозяевах ATII, клетки A549 использовали для имитирования клинической ситуации. Клетки A549 (Sigma-Aldrich, Букс, Швейцария, № в каталоге 6012804) поддерживали на модифицированной по способу Дульбекко среде Игла с высоким содержанием глюкозы (DMEM, Sigma-Aldrich, Букс, Швейцария, № в каталоге D0822), дополненной 10 % ФБС (Thermofischer, Базель, Швейцария, № в каталоге 10500-064). Для того чтобы оценить экспрессию IFN-бета, клетки А549 высевали при плотности 10000 клеток/лунку в обычную ростовую среду за 24 часа до трансфекции. После этого клетки трансфицировали Соединениями В1 - 19 (0,3 - 0,6 микрограмм), применяя липофектамин 2000 (www.invitrogen.com), следуя инструкциям производителя. 100 мкл DMEM удаляли и в каждую лунку добавляли 50 мкл Opti-MEM (www.thermofisher.com), а затем 50 мкл комплекса мРНК и липофектамина 2000 в Opti-МЕМ. После 5 часов инкубации среду заменяли на свежую ростовую среду и планшеты инкубировали в течение 24 часов при 37 °C в увлажненной атмосфере, содержащей 5 % CO₂, с последующим количественным анализом IFN-бета с помощью ELISA (набор Human IFN-beta bioluminescent ELISA 2.0, код в каталоге: luex-hifnbv2, Invivogen).

[0510] Пример 8. Модель стимуляции эндогенного ІL-6 в клетках А549.

35 [0511] Трансфекция *in vitro* клеток A549 подавляющими IL-6 соединениями.

[0512] Для эндогенной секреции IL-6 в клетках A549, клетки A549 стимулировали рекомбинантным IL1-бета человека (20 нг/мл; код в каталоге: rcyec-hil1b; Invivogen) и рекомбинантным TNF-альфа человека (20 нг/мл; код в каталоге: rcyc-htnfa; Invivogen) и инкубировали в течение 120 минут. Индуцированная продукция IL-6 соответствует физиологическим условиям, наблюдаемым при COVID-19. После стимуляции 50 мкл среды удаляли и заменяли на трансфекционный комплекс, содержащий специфические конструкции мРНК (Соединения В1, В2, В15, В16 и В17), в комплексе с липофектамином 2000 в Opti-MEM и инкубировали при 37°C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов с последующим количественным анализом IL-6 с помощью ELISA (ThermoFisher Scientific, № в каталоге 88-7066-22). Подтверждали снижение IL-6 по сравнению с необработанными образцами. Для того чтобы проверить функциональное подавление IL-6, использовали репортерные клетки HEK-BlueTM IL-6, стабильно трансфицированные IL-6R и индуцируемым STAT3 репортерным геном SEAP (код в каталоге: hkb-hil6, Invivogen). В культуральном супернатанте стимулированных IL-6 образцов с обработкой или без измеряли биоактивный ІС-6 человека, чтобы определить, что вследствие опосредованной миРНК интерференции культуральный супернатант с обработкой Соединениями В1, В2, В15, В16 и В17 содержит меньшее количество биоактивного IL-6 человека по сравнению c необработанным контролем. Кондиционированный клетками супернатант использовали для измерения количества IFNбета с помощью ELISA (Human IFN-beta bioluminescent ELISA kit 2.0, код в каталоге: luexhifnbv2, Invivogen).

5

10

15

20

25

30

35

[0513] Пример 9. Модель подавления эндогенного IL-6R в клетках THP-1. [0514] Трансфекция *in vitro* клеток THP-1 подавляющими IL-6R соединениями.

[0515] Клетки А549 эндогенно не экспрессируют IL-6R, следовательно, клетки THP-1 использовали вследствие высокой эндогенной экспрессии в них указанного рецептора (54х, www.proteinatlas.org). Линию клеток моноцитарного лейкоза человека THP-1 (Sigma-Aldrich, № в каталоге 88081201) поддерживали в ростовой среде (RPMI 1640, дополненной с 10% ФБС и 2 мМ глутамином). Клетки высевали при плотности 30000 клеток THP-1 в 96-луночный культуральный планшет за 72 часа до трансфекции и активировали 50 нМ форбола-12-миристата-13-ацетата (PMA) (Sigma-Aldrich, № в каталоге P8139), разбавленного в ростовой среде. Клетки трансфицировали Соединениями В3 - В5 (300 - 1200 нг/лунку), применяя липофектамин 2000 (Thermo Fisher Scientific). 100 мкл DMEM удаляли из каждой лунки и заменяли на 50 мкл Opti-MEM (Thermo Fisher Scientific) и 50 мкл комплекса мРНК и липофектамина 2000 в Opti-MEM. Через 5 часов среду заменяли на свежую ростовую среду, дополненную с 50 нМ РМА, и планшеты инкубировали при 37°С

в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов. После инфицирования культуральный супернатант (ThermoFisher Scientific, № в каталоге BMS214) и клеточный лизат обрабатывали (LSBio, № в каталоге LS-F1001), чтобы определить количество IL-6R с помощью ELISA. Для того чтобы проверить функциональное подавление IL-6R, использовали репортерные клетки HEK-BlueTM IL-6, стабильно трансфицированные IL-6R и индуцируемым STAT3 репортерным геном SEAP (код в каталоге: hkb-hil6, Invivogen). Поскольку трансфекция Соединениями ВЗ - В5 приводит к опосредованному миРНК подавлению IL-6R в клетках НЕК-BlueTM, добавление рекомбинантного IL-6 человека (код в каталоге: rcyec-hil6, Invivogen) не активировало индуцируемый STAT-3 репортерный ген SEAP. Это эффективный функциональный анализ для проверки блокирования сигнального пути IL-6R. Кондиционированный клетками супернатант использовали для измерения количества IFN-бета с помощью ELISA (Human IFN-beta bioluminescent ELISA kit 2.0, код в каталоге: luex-hifnbv2, Invivogen).

[0516] Пример 10. Модель сверхэкспрессии АСЕ2 в клетках А549.

5

10

20

25

30

35

15 [0517] Трансфекция *in vitro* клеток A549 мРНК ACE2 и соединениями, подавляющими ACE2/сверхэкспрессирующими IFN-бета.

[0518] Модель сверхэкспрессии АСЕ2 использовали для оценки одновременной РНК-интерференции (РНКи) АСЕ2 и сверхэкспрессии IFN-бета с мРНК Соединений В6, В7, В15, В16 и В17 в клетках А549. Модель создали путем трансфекции мРНК АСЕ2 (из SEQ ID NO: 57). Каждый образец клеток котрансфицировали одной из мРНК Соединений В6, В7, В15, В16 и В17 (300 - 900 нг/лунку) и мРНК АСЕ2 (300 нг/лунку). После трансфекции клетки инкубировали при 37 °С в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов с последующим количественным анализом АСЕ2 (целевая мРНК для понижающей регуляции) и IFN-бета (интересующий ген для сверхэкспрессии) с помощью ЕLISA в культуральном супернатанте (Aviva Systems Biology, № в каталоге ОКВВ00649).

[0519] Пример 11. Модель сверхэкспрессии шиповидного белка SARS CoV-2 в клетках A549.

[0520] Трансфекция *in vitro* клеток A549 мРНК шиповидного белка SARS CoV-2 и соединениями, подавляющими шиповидный белок SARS CoV-2/сверхэкспрессирующими IFN-бета.

[0521] Модель сверхэкспрессии шиповидного (S) белка SARS CoV-2 использовали для оценки одновременной РНК-интерференции (РНКи) с шиповидным белком SARS CoV-2 и сверхэкспрессии IFN-бета с мРНК Соединений В8, В9, В11, В15, В16 и В17 в клетках А549. Модель создали путем трансфекции мРНК, кодирующей домен связывания с рецептором (RBD) шиповидного белка SARS CoV-2 (S-RBD, SEQ ID NO: 60). Каждый образец клеток

котрансфицировали одной из мРНК Соединений В8, В9, В11, В15, В16 и В17 (300 - 900 нг/лунку) и мРНК S-RBD (300 нг/лунку). После трансфекции клетки инкубировали при 37 °C в увлажненной атмосфере, содержащей 5% СО₂, в течение 24 часов, с последующим количественным анализом S-RBD с помощью ELISA (Sino biological, № в каталоге КІТ40591). Одновременно измеряли экспрессию IFN-бета в культуральном супернатанте с помощью ELISA (Human IFN-beta bioluminescent ELISA kit 2.0, код в каталоге: luex-hifnbv2, Invivogen).

5

15

20

25

30

35

[0522] Пример 12. Модель сверхэкспрессии нуклеокапсидного белка SARS CoV-2 в клетках A549.

10 [0523] Трансфекция *in vitro* клеток A549 мРНК нуклеокапсидного белка SARS CoV-2 и соединениями, подавляющими нуклеокапсидный белок SARS CoV-2/сверхэкспрессирующими IFN-бета.

[0524] Модель сверхэкспрессии шиповидного белка SARS CoV-2 использовали для оценки одновременного подавления РНКи нуклеокапсидного (N) белка SARS CoV-2 и сверхэкспрессии IFN-бета с мРНК Соединений В8 и В10 в клетках А549. Модель создали путем трансфекции мРНК, кодирующей полноразмерный домен, кодирующий белок N SARS CoV-2 (SEQ ID NO: 62), меченый по 3' еGFP. В отдельном дополнительном подходе белок N SARS CoV-2 сверхэкспрессировали с плазмиды (вектора рсDNA3+), тем самым предоставляя две независимые системы оценки эффекта подавления с помощью РНКи Соединениями В8 и В10. РНКи Соединениями В8 и В10, нацеленных на белок N SARS CoV-2, нарушала трансляцию и экспрессию еGFP.

[0525] Каждый образец клеток (трансфицированных мРНК клеток или клеток, несущих плазмиду) котрансфицировали одной из мРНК Соединений В8 и В10 (300 - 900 нг/лунку) и мРНК N SARS CoV-2 (300 нг/лунку).

[0526] После трансфекции клетки инкубировали при 37 °C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов с последующим количественным анализом белка N SARS CoV-2 с помощью ELISA (Sino biological, № в каталоге KIT40588). Одновременно измеряли экспрессию IFN-бета в культуральном супернатанте с помощью ELISA (Human IFN-beta bioluminescent ELISA kit 2.0, код в каталоге: luex-hifnbv2, Invivogen). Для того чтобы определить, приводит ли подавление РНКи Соединениями В8 и В10 к нарушению трансляции eGFP, нуклеокапсидные белки SARS CoV-2, меченые eGFP (в результате экспрессии как плазмиды, так и мРНК), исследовали под микроскопом на экспрессию eGFP, применяя многорежимный спектрофотометр для прочтения микропланшетов SpectraMax i3X (Molecular Devices). Рассчитывали процент положительных по eGFP клеток в обработанных и контрольных необработанных образцах.

- [0527] Пример 13. Модель сверхэкспрессии Nsp1 SARS CoV-2 в клетках A549.
- [0528] Трансфекция *in vitro* клеток A549 мРНК неструктурного белка SARS CoV-2 и соединениями, подавляющими неструктурный белок SARS CoV-2/сверхэкспрессирующими IFN-бета.
- 5 [0529] Выравнивание геномных последовательностей SARS CoV-2 с SARS CoV и MERS-CoV на уровне РНК показало меньшую консервативность, чем при сравнении аминокислот. Анализ филогенетического дерева (модель генетических расстояний: Тамура-Ней; способ построения дерева: UPGMA) показал, что у MERS-CoV высокий уровень отличия последовательности РНК (>45%), тогда как у SARS CoV и SARS CoV-2 10 низкий уровень отличия (до 21%) (см. Фиг. 11). Авторы настоящего изобретения выровняли SARS CoV с SARS CoV-2 отдельно и искали консервативные локусы минимум 20 п.о. для дизайна миРНК. Авторы настоящего изобретения обнаружили гомологию 47 п.о. рядом с началом генома вируса (235 – 281 п.о.), которую они использовали для дизайна миРНК (Соединения В8 и В14). МиРНК расположена в первом кодоне (АТG) 15 неструктурного белка 1 (Nsp1). Нацеливание на первый кодон (метионин; AUG) вирусного генома в идеальном случае приводит к огромному влиянию на репликацию вируса, так как следующие основания для метионина (AUG) расположен на расстоянии 84 аминокислот, чтобы инициировать альтернативную трансляцию.
 - [0530] Модель сверхэкспрессии Nsp1 SARS CoV-2 применяли для оценки одновременного подавления Nsp1 SARS CoV-2 посредством РНКи и сверхэкспрессии IFN-бета с мРНК Соединений В8 и В14 в клетках А549.

20

25

30

35

- [0531] Модель создали путем трансфекции мРНК, кодирующей частичный домен (первые 100 аминокислот) Nsp1 SARS CoV-2 (SEQ ID NO: 64), меченый по 3' eGFP. В отдельном дополнительном подходе Nsp1 SARS CoV-2 сверхэкспрессировали с плазмиды (вектор pcDNA3+), таким образом предоставляя две независимые системы оценки эффекта подавления с помощью РНКи Соединениями В8 и В14. РНКи Соединениями В8 и В14, нацеленными на Nsp1 SARS CoV-2, нарушает трансляцию и экспрессию eGFP.
- [0532] Каждый образец клеток (трансфицированных мРНК клеток или клеток, несущих плазмиду) котрансфицировали одной из мРНК Соединений В8 и В14 (300 900 нг/лунку), и мРНК Nsp1 SARS CoV-2 (300 нг/лунку).
- [0533] После трансфекции клетки инкубировали при 37 °C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов. Для того чтобы определить, приводит ли подавление с помощью РНКи Соединениями В8 и В14 к нарушению трансляции eGFP, Nsp1 SARS CoV-2, меченый eGFP (в результате экспрессии как плазмиды, так и мРНК), исследовали под микроскопом на экспрессию eGFP, применяя многорежимный

спектрофотометр для прочтения микропланшетов SpectraMax i3X (Molecular Devices). Рассчитывали процент положительных по eGFP клеток в обработанных и контрольных необработанных образцах. Одновременно, экспрессию IFN-бета измеряли с помощью ELISA в культуральном супернатанте (Human IFN-beta bioluminescent ELISA kit 2.0, код в каталоге: luex-hifnbv2, Invivogen). Для того чтобы определить, приводит ли подавление с помощью РНКи Соединениями В8 и В14 к нарушению трансляции eGFP, нуклеокапсидные белки SARS CoV-2, меченые eGFP (в результате экспрессии как плазмиды, так и мРНК), экспрессию eGFP. Рассчитывали исследовали под микроскопом на процент положительных по eGFP клеток в обработанных и контрольных необработанных образцах.

5

10

15

20

25

30

[0534] Пример 14. Дизайн миРНК Nsp12-Nsp13, нацеленных на мРНК SARS CoV-2, SARS-CoV и MERS-CoV, и модель сверхэкспрессии Nsp12-Nsp13 в клетках A549 [0535] Дизайн миРНК Nsp12-Nsp13, нацеленных на мРНК SARS CoV-2, SARS-CoV и MERS-CoV.

[0536] Для дизайна миРНК, которые нацелены на все три SARS CoV-2, SARS-CoV и MERS-CoV, авторы настоящего изобретения идентифицировали настолько короткие миРНК, как имеющие длину 17 п.о., допускающие до 1 несовпадения между последовательностями. Используя этот нестрогий подход авторы настоящего изобретения разработали одну миРНК длиной 17 п.о. (между 14299 – 14318, относительно генома SARS CoV-2) и две дополнительные миРНК, каждая из которых допускает несовпадение одной п.о. между тремя геномными последовательностями (15091 – 15107 и 17830 – 17849, относительно генома SARS CoV-2), объединив их в конструкцию со сверхэкспрессией IFN-бета.

[0537] Модель сверхэкспрессии Nsp12-13 SARS CoV-2 использовали для оценки одновременного подавления с помощью PHKи Nsp12-13 SARS CoV-2 и сверхэкспрессии IFN-бета с мРНК Соединений B12 и B13 в клетках A549. Модель создали путем трансфекции мРНК, кодирующей некодирующий домен NSP12 и NSP13 (14202 - 17951 п.о.; 3749 п.о.) генома SARS CoV-2 (SEQ ID NO: 67), меченый по 3' еGFP. Каждый образец клеток (трансфицированных мРНК клеток или клеток, несущих плазмиду) котрансфицировали одной из мРНК Соединений B12 и B13 (300 - 900 нг/лунку) и частью геномной РНК NSP-12 и NSP-13 SARS CoV-2 (300 нг/лунку).

[0538] После трансфекции клетки инкубировали при 37 °C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов с последующим анализом на основе Таqman-кПЦР, чтобы оценить деградацию вирусной РНК по сравнению с нетрансфицированным контролем. Одновременно измеряли экспрессию IFN-бета в культуральном супернатанте с

помощью ELISA (Human IFN-beta bioluminescent ELISA kit 2.0, код в каталоге: luex-hifnbv2, Invivogen).

[0539] Пример 15. Модель сверхэкспрессии растворимого рецептора АСЕ2 в клетках А549.

5 [0540] Трансфекция *in vitro* клеток A549 соединениями, сверхэкспрессирующими с растворимый рецептор ACE2.

[0541] Клетки А549 представляют собой обычные клетки альвеолярного типа II (ATII), происходящие из карциномы легкого человека. Поскольку смертность от COVID-19, главным образом, связана с респираторным заболеванием вследствие высокой экспрессии рецептора проникновения вируса (АСЕ2) в клетках-хозяевах АТІІ, клетки А549 использовали для имитирования клинической ситуации. Клетки A549 (Sigma-Aldrich, Букс, Швейцария, № в каталоге 6012804) поддерживали на модифицированной по способу Дульбекко среде Игла с высоким содержанием глюкозы (DMEM, Sigma-Aldrich, Букс, Швейцария, № в каталоге D0822), дополненной 10 % ФБС (Thermofischer, Базель, Швейцария, № в каталоге 10500-064). Для того чтобы оценить экспрессию растворимого рецептора АСЕ2, клетки А549 высевали при плотности 10000 клеток/лунку в обычную ростовую среду за 24 часа до трансфекции. После этого клетки трансфицировали Соединениями В18 и В19 (0,3 - 0,6 микрограмм), применяя липофектамин 2000 (www.invitrogen.com), следуя инструкциям производителя. 100 мкл DMEM удаляли и добавляли в каждую лунку 50 мкл Opti-MEM (www.thermofisher.com), а затем 50 мкл комплекса мРНК и липофектамина 2000 в Opti-MEM. После 5 часов инкубации среду заменяли на свежую ростовую среду и инкубировали планшеты в течение 24 часов при 37 °С в увлажненной атмосфере, содержащей 5% CO₂, с последующим количественным анализом ACE2 с помощью ELISA (Aviva Systems Biology, № в каталоге OKBB00649). Противовирусную активность Соединения В18 и Соединения В19 исследовали в Примерах

[0542] Пример 16. Дополнительные конструкции.

10

15

20

25

30

35

11 - 13.

[0543] Дизайн, последовательность и синтез конструкций.

[0544] Подробности дизайна и синтеза конструкций описаны в **Примере 1**. В **Таблице 8** сведены дополнительные соединения, используемые в примерах в настоящем описании, с соответствующими мишенями миРНК для снижения экспрессии белка и белковыми мишенями для повышения экспрессии белка. Последовательности конструкций A9 - A15 представлены в **Таблице 9** и аннотированы, как указано в таблице ниже. Все уридины в Соединениях A9 - A15, используемых в примерах, описанных в данной заявке, были модифицированы на N¹-метилпсевдоуридин. Для каждого соединения положение

последовательности миРНК указано относительно интересующего гена. Например, «5'-положение миРНК» указывает на то, что последовательности миРНК расположены против хода транскрипции или с 5'-стороны от интересующего гена в соединении. И наоборот, «3'-положение миРНК» указывает на то, что последовательности миРНК расположены по ходу транскрипции или с 3'-стороны от интересующего гена в соединении. Последовательности плазмид конструкций А9 - А15 представлены в **Таблице 10**.

Таблица 8. Краткое описание соединений А9 - А15.

5

10

№ Соединения	Мишень миРНК	Положение миРНК	Кол-во миРНК	Белковая мишень (интересующий ген)	Показание
A 9	TNF-альфа	5'	3	IL-4	Псориаз
A10	TNF-альфа	3'	3	IL-4	Псориаз
A11	ALK2	3'	3	IGF-1	ПОФ
A12	SOD1	5'	3	IGF-1	БАС
A13	SOD1	5'	3	EPO	БАС
A14	IL-1-бета	5'	3	IGF-1	ОА, БМПД
A15	IL-1-бета	3'	3	IGF-1	ОА, БМПД

ПОФ: прогрессирующая оссифицирующая фибродисплазия; БАС: боковой амиотрофический склероз; ОА: остеоартрит; БМПД: болезнь межпозвоночных дисков

Таблица 9. Последовательности Соединений А9 - А15.

SEQ ID NO:	№ Соединения	Последовательность (направление 5′ → 3′)
152 от 5' к 3': А9-1 смысловая цепь миРНК 87, антисмыслов ая 117; А9-2 смысловая цепь миРНК 88, антисмыслов ая 118; А9-3 смысловая цепь миРНК 89, антисмысловая	Соединение А9	ATAGTGAGTCGTATTAACGTACCAACAAGGCGTGGAGCTGAGAGATAAA CTTGTTATCTCTCAGCTCCACGCCTTTATCTTAGAGGCATATCCCTACG TACCAACAAGGGCCTGTACCTCATCTACTACTTGAGTAGATGAGGTACA GGCCCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTATGAGCC CATCTATCTACTTGAGATAGATGGGCTCATACCTTTATCTTAGAGGCAT ATCCCTGCCACCATGGGACTGACATCTCAACTGCTGCCTCCACTGTTCT TTCTGCTGGCCTGCGCCGGCAATTTTGTGCACGGCCACAAGTGCGACAT CACCCTGCAAGAGATCATCAAGACCCTGAACAGCCTGACCGAGCAAGA ACCCTGTGCACCGAGCTGACCGTGACCGATATCTTTGCCGCCAGCAAGA ACCCTGTGCACCGAGCAGACACCAGATGCCTGAGACA GTTCTACAGCCACCACGAGAAGACACCAGATGCCTGGAGCCACCACGCC CAGCAGTTCCACAGACACACAGCCTGATCCTGAAGCGCCCACCGTGCTGAACAG GTCTACAGCCACCACGAGAAGCACCAGATGCCTGAAGCGCCTGG ACAGAAATCTGTGGGGACTCGCCGGCCTGAATAGCTGCCCTGTGAAAGA GGCCAACCAGTCTACCCTGGAAAACTTCCTGGAACGGCTGAAAACCATC ATGCGCGAGAAGTACAGCAAGTGCAGCAGCTGATTTATCTTAGAGGCAT ATCCCT
153 от 5' к 3': А10-1 смысловая цепь миРНК 87,	Соединение A10	GCCACCATGGGACTGACATCTCAACTGCTGCCTCCACTGTTCTTTCT

SEQ ID NO:	№ Соединения	Последовательность (направление $5' \to 3'$)
антисмыслов ая 117; А10-2 смысловая цепь миРНК 88, антисмыслов ая 118; А10-3 смысловая цепь миРНК 89, антисмыслов ая 119		CCAGTCTACCCTGGAAAACTTCCTGGAACGGCTGAAAACCATCATGCGC GAGAAGTACAGCAAGTGCAGCAGCTGAATAGTGAGTCGTATTAACGTAC CAACAAGGCGTGGAGCTGAGAGAAACTTGTTATCTCTCAGCTCCACG CCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGGCCTGTACCTC ATCTACTACTTGAGTAGATGAGGTACAGGCCCTTTATCTTAGAGGCATA TCCCTACGTACCAACAAGGTATGAGCCCATCTATCTACTTGAGATAGAT
от 5' к 3': А11-1 смысловая цепь миРНК 140, антисмыслов ая 146; А11-2 смысловая цепь миРНК 141, антисмыслов ая 147; А11-3 смысловая цепь миРНК 142, антисмыслов ая 148	Соединение А11	GCCACCATGACCATCCTGTTTCTGACAATGGTCATCAGCTACTTCGGCT GCATGAAGGCCGTGAAGATGCACACCATGAGCAGCCACCTGTTCTA TCTGGCCCTGTGCCTGCTGACCTTTACCAGCTCTGCTACCGCCGGACCT GAGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
от 5' к 3': А12-1 смысловая цепь миРНК 143, антисмыслов ая 149; А12-2 смысловая цепь миРНК 144, антисмыслов ая 150; А12-3 смысловая цепь миРНК 145, антисмысловая цепь миРНК	Соединение A12	ATAGTGAGTCGTATTAACGTACCAACAAGAAGGAAAGTAATGGACCAGT ACTTGACTGGTCCATTACTTTCCTTCTTTATCTTAGAGGCATATCCCTA CGTACCAACAAGGTCCTCACTTTAATCCTCTAACTTGTAGAGGATTAAA GTGAGGACCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGAGAC TTGGGCAATGTGACTACTTGAGTCACATTGCCCAAGTCTCCTTTATCTT AGAGGCATATCCCTGCCACCATGGGCAAGATTAGCAGCCTGCCT
ая 151 156 от 5' к 3': А13-1 смысловая цепь миРНК 143, антисмыслов ая 149; А13-2	Соединение А13	ATAGTGAGTCGTATTAACGTACCAACAAGAAGGAAAGTAATGGACCAGT ACTTGACTGGTCCATTACTTTCCTTCTTTATCTTAGAGGCATATCCCTA CGTACCAACAAGGTCCTCACTTTAATCCTCTAACTTGTAGAGGATTAAA GTGAGGACCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGAGAC TTGGGCAATGTGACTACTTGAGTCACATTGCCCAAGTCTCCTTTATCTT AGAGGCATATCCCTGCCACCATGGGAGTGCATGAATGTCCTGCTTGGCT GTGGCTGCTGCTGAGCCTGCTCTCTCTCTCTGGGAACGCTGTTCTT GGAGCCCCTCCTAGACTGATCTGCGACAGAGTGCTGGAAAGATACC TGCTGGAAGCCAAAGAGGCCGAGAACATCACCACAGGCTGTGCCGAGCA

SEQ ID NO:	№ Соединения	Последовательность (направление 5' → 3')
смысловая цепь миРНК 144, антисмыслов ая 150; А13-3 смысловая цепь миРНК 145, антисмыслов ая 151		CTGCAGCCTGAACGAGAATATCACCGTGCCTGACACCAAAGTGAACTTC TACGCCTGGAAGCGGATGGAAGTGGGCCAGCAGGCTGTGGAAGTTTGGC AAGGACTGGCCCTGCTGAGCGAAGCTGTTCTGAGAGGACAGGCTCTGCT GGTCAACAGCTCTCAGCCTTGGGAACCTCTGCAACTGCACGTGGACAAG GCCGTGTCTGGCCTGAGAAGCCTGACCACACTGCTGAGAGCACTGGGAG CCCAGAAAGAGGCCATCTCTCCACCTGATGCTGCCCTCTTGAGAACCATCACCTGCTGCCCCTCT GAGAACCATCACCGCCGACACCTTCAGAAAGCTGTTCCGGGTGTACAGC AACTTCCTGCGGGGCAAGCTGAAGCTGTACACAGGCGAGGCTTGCAGAA CCGGCGACAGATAATTTATCTTAGAGGCATATCCCT
157 от 5' к 3': А14-1 смысловая цепь миРНК 84, антисмыслов ая 114; А14-2 смысловая цепь миРНК 85, антисмыслов ая 115; А14-3 смысловая цепь миРНК 86, антисмыслов ая 116	Соединение A14	ATAGTGAGTCGTATTAACGTACCAACAAGAAGATGATAAGCCCACTCT ACTTGAGAGTGGGCTTATCATCTTTCTTTATCTTAGAGGCATATCCCTA CGTACCAACAAGGTGATGTCTGGTCCATATGAACTTGTCATATGGACCA GACATCACCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGATGAT AAGCCCACTCTAACTTGTAGAGTGGGCTTATCATCTTTATCTTAGAGGC ATATCCCTGCCACCATGGGCAAGATTAGCAGCCTGCCTACACAGCTGTT CAAGTGCTGCTTCTGCGACTTCCTGAAAGTGAAGATGCACCACATGAGC AGCAGCCACCTGTTCTATCTGGCCCTGTGCCTGACCTTTACCAGCT CTGCTACCGCCGGACCTGAGACACTTTGTGGCGCTGAACTGGTGGACGC CCTGCAGTTTGTGTGTGGCGACAGAGGCTTCTACTTCAACAAGCCCACA GGCTACGGCAGCAGCTCTAGAAGGGCTCCTCAGACCGGAATCGTGGACG AGTGCTGTTTCAGAAGCTGCGACCTGCGGCGGCTGGAAATGTATTGTGC CCCTCTGAAGCCTGCCAAGAGCCCTAATTTATCTTAGAGGCATATCCC T
158 от 5' к 3': A15-1 смысловая цепь миРНК 84, антисмыслов ая 114; A15-2 смысловая цепь миРНК 85, антисмыслов ая 115; A15-3 смысловая цепь миРНК 86, антисмыслов ая 116	Соединение A15	GCCACCATGGGCAAGATTAGCAGCCTGCCTACACAGCTGTTCAAGTGCT GCTTCTGCGACTTCCTGAAAGTGAAGATGCACACCATGAGCAGCCA CCTGTTCTATCTGGCCCTGTGCCTGCTGACCTTTACCAGCTCTGCTACC GCCGGACCTGAGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGT TTGTGTGTGGCGACAGAGGCTTCTACTTCAACAAGCCCACAGGCTACGG CAGCAGCTCTAGAAGGGCTCCTCAGACCGGAATCGTGGACGAGTGCTGT TTCAGAAGCTGCGACCTGCGGCGGCTGGAAATGTATTGTGCCCCTCTGA AGCCTGCCAAGAGCGCCTAAATAGTGAGTCGTATTAACGTACCAACAAG AAAGATGATAAGCCCACTCTACTTGAGAGTGGGCTTATCATCTTTCTT

ая 116 | Жирный шрифт = смысловая цепь миРНК

Жирный шрифт и курсивный шрифт = антисмысловая цепь миРНК

Подчеркнутый = сигнальный пептид

5

Курсивный шрифт = последовательность Козак

Таблица 10. Последовательности плазмид для Соединений А9 - А15

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
	Соединение А9	CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
160		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCT
	в pMA-RQ	ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATATAGTGAGTCGTATTAACGTACC
		AACAAGGCGTGGAGCTGAGAGATAAACTTGTTATCTCTCAGCTCCACGC
		CTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGGCCTGTACCTCA
		TCTACTACTTGAGTAGATGAGGTACAGGCCCTTTATCTTAGAGGCATAT
		CCCTACGTACCAACAAGGTATGAGCCCATCTATCTACTTGAGATAGAT
		GGCTCATACCTTTATCTTAGAGGCATATCCCTGCCACCATGGGACTGAC
		ATCTCAACTGCTGCCTCCACTGTTCTTTCTGCTGGCCTGCGCCGGCAAT
		TTTGTGCACGGCCACAAGTGCGACATCACCCTGCAAGAGATCATCAAGA
		CCCTGAACAGCCTGACCGAGCAGAAAACCCTGTGCACCGAGCTGACCGT
		GACCGATATCTTTGCCGCCAGCAAGAACACAACCGAGAAAGAGACATTC
		TGCAGAGCCGCCACCGTGCTGAGACAGTTCTACAGCCACCACGAGAAGG
		ACACCAGATGCCTGGGAGCTACAGCCCAGCAGTTCCACAGACACAAGCA
		GCTGATCCGGTTCCTGAAGCGGCTGGACAGAAATCTGTGGGGACTCGCC
		GGCCTGAATAGCTGCCCTGTGAAAGAGGCCAACCAGTCTACCCTGGAAA
		ACTTCCTGGAACGCTGAAAACCATCATGCGCGAGAAGTACAGCAAGTG
		CAGCAGCTGATTTATCTTAGAGGCATATCCCT
		TCCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA
		TTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCC
		TCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGC
		CTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAAGGCCGCG
		TTGCTGGCGTTTTTCCATAGGCTCCGCCCCTGACGAGCATCACAAAA
		ATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACC
		CTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGG
		CGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGT
		TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGC
		TGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACG
		ACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG
		GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGC
		TACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTA
		CCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA
		TGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAA
		AAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTC
		AGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAA
		AAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCA
		ATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAA
		TCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGT
		TGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCA
		TCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGCTC
		CAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAG
		TGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGG
		GAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTG
		CCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC
		ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATG
		TTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAA
		GTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAA
		TTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAG
		TACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCT
		CTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTT
		AAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGG ATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCA
		ACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAA
		AACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAA
		TGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATC
		AGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAA
		TAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC
	Соединение	CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
161	A10 в pMA-RQ	TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
	T 1110 P binty-16	

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATGCCATGGGACTGACATCTCA
		ACTGCTGCCTCCACTGTTCTTTCTGCTGGCCTGCGCCGGCAATTTTGTG
		CACGGCCACAAGTGCGACATCACCCTGCAAGAGATCATCAAGACCCTGA
		ACAGCCTGACCGAGCAGAAAACCCTGTGCACCGAGCTGACCGTGACCGA
		TATCTTTGCCGCCAGCAAGAACACAACCGAGAAAGAGACATTCTGCAGA
		GCCGCCACCGTGCTGAGACAGTTCTACAGCCACCACGAGAAGGACACCA
		GATGCCTGGGAGCTACAGCCCAGCAGTTCCACAGACACAAGCAGCTGAT
		CCGGTTCCTGAAGCGGCTGGACAGAAATCTGTGGGGACTCGCCGGCCTG
		AATAGCTGCCCTGTGAAAGAGGCCAACCAGTCTACCCTGGAAAACTTCC
		TGGAACGCTGAAAACCATCATGCGCGAGAAGTACAGCAAGTGCAGCAG
		CTGAATAGTGAGTCGTATTAACGTACCAACAAGGCGTGGAGCTGAGAGA
		TAAACTTGTTATCTCTCAGCTCCACGCCTTTATCTTAGAGGCATATCCC
		TACGTACCAACAAGGGCCTGTACCTCATCTACTACTTGAGTAGATGAGG
		TACAGGCCCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTATG
		AGCCCATCTATCTACTTGAGATAGATGGGCTCA TACCTTTATCTTAGAG
		GCATATCCCTTTTATCTTAGAGGCATATCCCTCTGGGCCTCATGGGCCT
		TCCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA
		TTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCC
		TCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGC
		CTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCG
		TTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAA
		ATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA
		CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACC
		CTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGG
		CGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGT
		TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGC
		TGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACG
		ACTTATCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGAGCGAG
		GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGC
		TACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTA
		CCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA
		TGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAA
		AAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTC
		AGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAA
		AAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCA
		ATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAA
		TCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGT
		TGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCA
		TCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGCTC
		CAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCCGAGCGCAGAAG
		TGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGG
		GAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTG
		CCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTC
		ATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATG
		TTGTGCAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAA
		GTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAA
		TTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAG
		TACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCT
		CTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTT
		AAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGG
		ATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCA
		ACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAA
		AACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAA
		TGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATC
		AGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAA
		TAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC
	_1	

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATGCCATGACCATCCTGTTTCT
		GACAATGGTCATCAGCTACTTCGGCTGCATGAAGGCCGTGAAGATGCAC
		ACCATGAGCAGCCACCTGTTCTATCTGGCCCTGTGCCTGACCT
		TTACCAGCTCTGCTACCGCCGGACCTGAGACACTTTGTGGCGCTGAACT
		GGTGGACGCCCTGCAGTTTGTGTGTGGCGACAGAGGCTTCTACTTCAAC
		AAGCCCACAGGCTACGGCAGCAGCTCTAGAAGGGCTCCTCAGACCGGAA
		TCGTGGACGAGTGCTGCTTCAGAAGCTGCGACCTGCGGCGGCTGGAAAT
		GTATTGTGCCCCTCTGAAGCCTGCCAAGAGCGCCTAAATAGTGAGTCGT
		ATTAACGTACCAACAAGGCCTCATTATTCTCTCTACTTGAGAGAGA
		ATGAGGCCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGTGTTCG
		CAGTATGTCTTACTTGAAGACATACTGCGAACACTTTATCTTAGAGGCA
		TATCCCTACGTACCAACAAGCCTGCCTGCTGGGGAGTTACTTGAACTCCC
		AGCAGGCAGGCTTTATCTTAGAGGCATATCCCTTTTATCTTAGAGGCAT
		ATCCCTCTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCG
		GGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTG
		CGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGT
		CGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGG
		CCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTTCCATAGGCTCCG
		CCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGA AACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCC
		TCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC
		CTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGG
		TATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACG
162	Соединение	AACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCT
102	A11 в pMA-RQ	TGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACT
		GGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT
		TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTAT
		CTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCT
		TGATCCGGCAAACAACCACCGCTGGTAGCGGTGGTTTTTTTT
		AGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGAT
		CTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGG
		ATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAA
		ATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTG
		GTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATC
		TGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAA
		CTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACC
		GCGAGAACCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA
		GCCGGAAGGGCCGAGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCA
		TCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGT
		TAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCA
		CGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAA
		GGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTT
		CGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTC
		ATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAA
		GATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATA
		GTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAAT
		ACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT
		CTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTC
		GATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTC ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAA
		ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAA AGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTTCTT
		TCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATACTCTTTCTT
		ATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACAT
		TTCCCCGAAAAGTGCCAC
		TICCCCGAAAAGIGCCAC

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATATAACGTACC
		AACAAGAAGGAAAGTAATGGACCAGTACTTGACTGGTCCATTACTTTCC
		TTCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTCCTCACTTT
		AATCCTCTAACTTGTAGAGGATTAAAGTGAGGACCTTTATCTTAGAGGC
		ATATCCCTACGTACCAACAAGGAGACTTGGGCAATGTGACTACTTGAGT
		CACATTGCCCAAGTCTCCTTTATCTTAGAGGCATATCCCTGCCACCATG
		GGCAAGATTAGCAGCCTGCCTACACAGCTGTTCAAGTGCTGCTTCTGCG
		ACTTCCTGAAAGTGAAGATGCACACCATGAGCAGCCACCTGTTCTA TCTGGCCCTGTGCCTGCTGACCTTTACCAGCTCTGCTACCGCCGGACCT
		GAGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
		GCGACAGAGGCTTCTACTTCAACAAGCCCACAGGCTACGGCAGCAGCTC
		TAGAAGGCTCCTCAGACCGGAATCGTGGACGAGTGCTGTTTCAGAAGC
		TGCGACCTGCGGCGGCTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCA
		AGAGCGCCTAATTTATCTTAGAGGCATATCCCTCTGGGCCTCATGGGCC
		TTCCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGC
		ATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTC
		CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTG
		CCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGC
		GTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAA
		AATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGAT
		ACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGAC
		CCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG
	Соединение	GCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCG
163	A12 в pMA-RQ	TTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCG
	r	CTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGA
		GGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGG
		CTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTT ACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA
		CTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAA
		AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCT
		CAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAA
		AAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATC
		AATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTA
		ATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAG
		TTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACC
		ATCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGCT
		CCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAA
		GTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCG
		GGAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTT
		GCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTT
		CATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCAT
		GTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGA
		AGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATA
		ATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA
		GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGC
		TCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTT
		TAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAG
		GATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCC AACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAA
		AACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAA AAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAA
		AAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAA ATGTTGAATACTCATACTCTTTCTTTTCAATATTTATTGAAGCATTTAT
		CAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAA
		ATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC
	<u> </u>	11111111100001110000000111100000000000

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA TTGGCGGAAGGCCGTCAAGGCCGCAT ATAGTGAGTCGTATTAACGTACC
		AACAAGAAGGAAAGTAATGGACCAGTACTTGACTGGTCCATTACTTTCC
		TTCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTCCTCACTTT
		AATCCTCTAACTTGTAGAGGATTAAAGTGAGGACCTTTATCTTAGAGGC
		ATATCCCTACGTACCAACAAGGAGACTTGGGCAATGTGACTACTTGAGT
		CACATTGCCCAAGTCTCCTTTATCTTAGAGGCATATCCCTGCCACCATG
		GGAGTGCATGAATGTCCTGCTTGGCTGTGGCTGCTGCTGAGCCTGCTGT
		CTCTGCCTCTGGGACTGCCTGTTCTTGGAGCCCCTCCTAGACTGATCTG
		CGACAGCAGAGTGCTGGAAAGATACCTGCTGGAAGCCAAAGAGGCCGAG
		AACATCACCACAGGCTGTGCCGAGCACTGCAGCCTGAACGAGAATATCA
		CCGTGCCTGACACCAAAGTGAACTTCTACGCCTGGAAGCGGATGGAAGT
		GGGCCAGCAGGCTGTGGAAGTTTGGCAAGGACTGGCCCTGCTGAGCGAA
		GCTGTTCTGAGAGGACAGGCTCTGCTGGTCAACAGCTCTCAGCCTTGGG
		AACCTCTGCAACTGCACGTGGACAAGGCCGTGTCTGGCCTGAGAAGCCT
		GACCACACTGCTGAGAGCACTGGGAGCCCAGAAAGAGGCCATCTCTCCA
		CCTGATGCTGCCTCTGCCCCTCTGAGAACCATCACCGCCGACACCT
		TCAGAAAGCTGTTCCGGGTGTACAGCAACTTCCTGCGGGGCAAGCTGAA
		GCTGTACACAGGCGAGGCTTGCAGAACCGGCGACAGATAATTTATCTTA
		GAGGCATATCCCTCTGGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTT
		CCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGT TTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGC
		GCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAG
		CAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA
	Соединение	GGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAG
164	A13 B pMA-RQ	GTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA
		AGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACC
		TGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACG
		CTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGT
		GTGCACGAACCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT
		ATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGC
		AGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACA
		GAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTAT
		TTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAAGAGTTGG
		TAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTT GTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATC
		CTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACG
		TTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATC
		CTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGT
		AAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTC
		AGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTG
		TAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAA
		TGATACCGCGAGAACCACGCTCACCGGCTCCAGATTTATCAGCAATAAA
		CCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCC
		GCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTA
		CGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGT
		GGTGTCACGCTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAA
		CGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTA
		GCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTT
		ATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCA
		TCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCT
		GAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACG
		GGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGA
		AAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGAT
		CCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTT
	i contract of the contract of	TACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCC

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		GCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCT
		TCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAG
		CGGATACATATTTGAATGTATTTTAGAAAAATAAACAAATAGGGGTTCCG
		CGCACATTTCCCCGAAAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATA ATAGTGAGTCGTATTAACGTAC
		CAACAAGAAAGATGATAAGCCCACTCTACTTGAGAGTGGGCTTATCATC
		TTTCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGGTGATGTCTG
		GTCCATATGAACTTGTCATATGGACCAGACATCACCTTTATCTTAGAGG
		CATATCCCTACGTACCAACAAGATGATAAGCCCACTCTAACTTGTAGAG
		TGGGCTTATCATCTTTATCTTAGAGGCATATCCCTGCCACCATGGGCAA
		GATTAGCAGCCTGCCTACACAGCTGTTCAAGTGCTGCTTCTGCGACTTC
		CTGAAAGTGAAGATGCACCACCATGAGCAGCCACCTGTTCTATCTGG
		CCCTGTGCCTGCTGACCTTTACCAGCTCTGCTACCGCCGGACCTGAGAC
		ACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTG
		GGGCTCCTCAGACCGGAATCGTGGACGAGTGCTGTTTCAGAAGCTGCGA
		CCTGCGGCGGCTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGC
		GCCTAATTTATCTTAGAGGCATATCCCTCTGGGCCTCATGGGCCTTCCG
		CTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAA
		CATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGC
		TCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAA
		TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC
		TGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCG
		ACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAG
		GCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGC
165	Соединение	CGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCT
	A14 в pMA-RQ	TTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGC TCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCG
		CCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTT
		ATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTAT
		GTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACA
		CTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT
		CGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGT
		AGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG
		GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTG
		GAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGG
		ATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATC
		TGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCC
		TGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTG
		GCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGCTCCAGA
		TTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGT
		CCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAG
		CTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCAT
		TGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTC
		AGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGT
		GCAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAA
		GTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCT
		CTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACT
		CAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTG
		CCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAA GTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCT
		TACCGCTGTTGAGATCCAGTTCGTTGAGGCGAAAACTCTCAAGGATCT
		ATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACA
		GGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTT

SEQ ID NO	№ Соединения	Последовательность (направление 5' → 3')
		GAATACTCATACTCTTTCTTTTCAATATTATTGAAGCATTTATCAGGG
		TTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAA
		CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT
		TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT AAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATGCCACCATAGGGCGAAGATTAGCAG
		CCTGCCTACACAGCTGTTCAAGTGCTGCTTCTGCGACTTCCTGAAAGTG
		AAGATGCACACCATGAGCAGCAGCCACCTGTTCTATCTGGCCCTGTGCC
		TGCTGACCTTTACCAGCTCTGCTACCGCCGGACCTGAGACACTTTGTGG
		CGCTGAACTGGTGGACGCCCTGCAGTTTGTGTGTGGCGACAGAGGCTTC
		TACTTCAACAAGCCCACAGGCTACGGCAGCAGCTCTAGAAGGGCTCCTC
		AGACCGGAATCGTGGACGAGTGCTGTTTCAGAAGCTGCGACCTGCGGCG
		GCTGGAAATGTATTGTGCCCCTCTGAAGCCTGCCAAGAGCGCCTAAATA
		GTGAGTCGTATTAACGTACCAACAAGAAGATGATAAGCCCACTCTACT
		TGAGAGTGGGCTTATCATCTTTCTTTATCTTAGAGGCATATCCCTACGT
		ACCAACAAGGTGATGTCTGGTCCATATGAACTTGTCATATGGACCAGAC
		ATCACCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGATGATAAG
		CCCACTCTAACTTGTAGAGTGGGCTTATCATCTTTATCTTAGAGGCATA
		TCCCTTTTATCTTAGAGGCATATCCCTCTGGGCCTCATGGGCCTTCCGC TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAAC
		ATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCT
		CACTGACTCGCTGCGCTCGTTCGGGTAAAGCCTGGGGTGCCTAAT
		GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAAGGCCGCGTTGCT
		GGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGA
		CGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGG
		CGTTTCCCCCTGGAAGCTCCCTCGTGCGCCTCTCCTGTTCCGACCCTGCC
	Соединение	GCTTACCGGATACCTGTCCGCCTTTCTCCCCTTCGGGAAGCGTGGCGCTT
166	A15 B pMA-RQ	TCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCT
	Parad	CCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGC
		CTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTA
		TCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG TAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACAC
		TAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC
		GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAACCACCGCTGGTA
		GCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGG
		ATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG
		AACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGA
		TCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATC
		AAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGT
		GAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCT
		GACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGG
		CCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGCTCCAGAT
		TTATCAGCAATAAACCAGCCAGCCGGAAGGGCCCGAGCCCAGAAGTGGTC CTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGC
		TAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATT
		GCTACAGGCATCGTGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCA
		GCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTG
		CAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAG
		TTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTC
		TTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTC
		AACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGC
		CCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAG
		TGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTT
		ACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGA
		TCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAG GAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTG
		AATACTCATACTCTTCCTTTTTCAATATTTGAAGCATTTATCAGGGT
		AATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGT

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
		TATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAATAAAC
		AAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC
		CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGT TAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTT
		ATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGGC
		GCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGG
		TGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGATGTGCTGC
		AAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGT
		AAAACGACGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAA
		TTGGCGGAAGGCCGTCAAGGCCGCATGCCACCATGTCTAGCAGCTCTTG GCTGCTGCTGTCTCTGGTGGCTGTGACAGCCGCTCAGAGCACCATTGAG
		GAACAGGCCAAGACCTTCCTGGACAAGTTCAACCACGAGGCCGAGGACC
		TGTTCTACCAGTCTAGCCTGGCCAGCTGGAACTACAACACCAACATCAC
		CGAAGAGAACGTGCAGAACATGAACAACGCCGGCGACAAGTGGAGCGCC
		TTCCTGAAAGAGCAGAGCACACTGGCCCAGATGTACCCTCTGCAAGAGA
		TCCAGAACCTGACCGTGAAGCTCCAGCTGCAGGCCCTCCAGCAGAATGG
		AAGCTCTGTGCTGAGCGAGGACAAGAGCGAGCGGCTGAACACCATCCTG
		AATACCATGAGCACCATCTACAGCACCGGCAAAGTGTGCAACCCCGACA ATCCCCAAGAGTGCCTGCTGCTGGAACCCGGCCTGAATGAGATCATGGC
		CAACAGCCTGGACTACAACGAGAGACTGTGGGCCTGGGAGTCTTGGAGA
		AGCGAAGTGGGAAAGCAGCTGCGGCCCCTGTACGAGGAATACGTGGTGC
		TGAAGAACGAGATGGCCAGAGCCAACCACTACGAGGACTACGGCGACTA
		TTGGAGAGGCGACTACGAAGTGAATGGCGTGGACGGCTACGACTACAGC
		AGAGGCCAGCTGATCGAGGACGTGGAACACACCTTCGAGGAAATCAAGC
		CTCTGTACGAGCATCTGCACGCCTACGTGCGGGCCAAGCTGATGAATGC TTACCCCAGCTACATCAGCCCCATCGGCTGTCTGCCTGCTCATCTGCTG
		GGAGACATGTGGGGCAGATTCTGGACCAACCTGTACAGCCTGACAGTGC
		CCTTCGGCCAGAAACCTAACATCGACGTGACCGACGCCATGGTGGATCA
		GGCTTGGGATGCCCAGCGGATCTTCAAAGAGGCCGAGAAGTTCTTCGTG
		TCCGTGGGCCTGCCTAATATGACCCAAGGCTTCTGGGAGAACTCCATGC
	C	TGACAGACCCCGGCAATGTGCAGAAAGCCGTGTGTCATCCTACCGCCTG
159	Соединение В18 в рМА-RQ	GGATCTCGGCAAGGGCGACTTCAGAATCCTGATGTGCACCAAAGTGACG ATGGACGACTTCCTGACAGCCCACCACGAGATGGGCCACATCCAGTACG
	B piviA-KQ	ATATGGCCTACGCCGCTCAGCCCTTCCTGCTGAGAAATGGCGCCAATGA
		GGGCTTCCACGAAGCCGTGGGAGAGATCATGAGCCTGTCTGCCGCCACA
		CCTAAGCACCTGAAGTCTATCGGACTGCTGAGCCCCGACTTCCAAGAGG
		ACAACGAGACAGAGTCAACTTCCTGCTCAAGCAGGCCCTGACCATCGT
		GGGCACACTGCCCTTTACCTACATGCTGGAAAAGTGGCGGTGGATGGTC
		TTTAAGGGCGAGATCCCCAAGGACCAGTGGATGAAGAAATGGTGGGAGA TGAAGCGCGAGATCGTGGGCGTTGTGGAACCTGTGCCTCACGACGAGAC
		ATACTGCGATCCTGCCAGCCTGTTTCACGTGTCCAACGACTACTCCTTC
		ATCCGGTACTACACCCGGACACTGTACCAGTTCCAGTTTCAAGAGGCTC
		TGTGCCAGGCCGCCAAGCACGAAGGACCTCTGCACAAGTGCGACATCAG
		CAACTCTACAGAGGCCGGACAGAAACTGTTCAACATGCTGCGGCTGGGC
		AAGAGCGAGCCTTGGACACTGGCTCTGGAAAATGTCGTGGGCGCCAAGA
		ATATGAACGTGCGGCCACTGCTGAACTACTTCGAGCCCCTGTTCACCTG GCTGAAGGACCAGAACAGAA
		AGCCCTTACGCCGACCAGAGCATCAAAGTGCGGATCAGCCTGAAAAGCG
		CCCTGGGCGATAAGGCCTATGAGTGGAACGACAATGAGATGTACCTGTT
		CCGGTCCAGCGTGGCCTATGCTATGCGGCAGTACTTTCTGAAAGTCAAG
		AACCAGATGATCCTGTTCGGCGAAGAGGATGTGCGCGTGGCCAACCTGA
		AGCCTCGGATCAGCTTCAACTTCTTCGTGACTGCCCCTAAGAACGTGTC
		CGACATCATCCCCAGAACCGAGGTGGAAAAGGCCATCAGAATGAGCAGA AGCCGGATCAACGACGCCTTCCGGCTGAACGACAACTCCCTGGAATTCC
		TGGGCATTCAGCCCACACTGGGCCCTCCAAATCAGCCTCCTGTGTCCTA
		AATAGTGAGTCGTATTAACGTACCAACAAGTGTGACCGAAAGGTAAGAT
		GACTTGCATCTTACCTTTCGGTCACACTTTATCTTAGAGGCATATCCCT
		ACGTACCAACAAGAGGTGATGAAGTCAGACAAAACTTGTTTGT
		TCATCACCTCTTTATCTTAGAGGCATATCCCTACGTACCAACAAGCAAC
		TGAGGGAGCCTTGAATACTTGATTCAAGGCTCCCTCAGTTGCTTTATCT
		TAGAGGCATATCCCTTTTATCTTAGAGGCATATCCCTCTGGGCCTCATG GGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAG
		GGCC11CCGC1CAC1GCCGC111CCAG1CGGGAAACC1G1CG1GCCAG

SEQ ID NO	№ Соединения	Последовательность (направление $5' \to 3'$)
		CTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCG
		CTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGG
		GGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGG
		CCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCA
		CAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA
		AGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC
		CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAG
		CGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAG
		GTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCG
		ACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAG
		ACACGACTTATCGCCACTGGCAGCCACTGGTAACAGGATTAGCAGA
		GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACT
		ACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCC
		AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA
		ACCGCTGGTAGCGGTGGTTTTTTTTTTTTGCAAGCAGCAGATTACGCGCA
		GAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA
		CGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTA
		TCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTA
		AATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATG
		CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC
		ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCT
		TACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACC
		GGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGC
		AGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTT
		GCCGGGAAGCTAGAGTAAGTTCGCCAGTTAATAGTTTGCGCAACGT
		TGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATG
		GCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCC
		CCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGT
		CAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTG
		CATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTG
		GTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG
		TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCCACATAGCAGA
		ACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCT
		CAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGC
		ACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGA
		GCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACAC
		GGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCAT
		TTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAG
		AAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC

Жирный шрифт и подчеркнутый = последовательность соединения

5

10

[0545] Транскрипция in vitro конструкций РНК и анализ результатов.

[0546] Подробности транскрипции *in vitro* представлены в **Примере 2**. Применяя транскрипцию *in vitro*, Соединение А9 и Соединение А10 получали в диапазоне концентраций 50 - 200 мкг и исследовали на понижающую регуляцию эндогенного TNF-α и экспрессию IL-4 в клетках THP-1, в которых эндогенную экспрессию TNF-α стимулировали путем обработки ЛПС и R848 (Пример 17). Аналогичным образом, Соединение А9 и Соединение А10 исследовали на понижающую регуляцию TNF-α и экспрессию IL-4 в моделях сверхэкспрессии клеток HEK-293, в которых TNF-α сверхэкспрессировали, применяя мРНК, кодирующую TNF-α (Пример 18).

[0547] Кроме того, Соединение A11 получали в диапазоне 50 - 200 мкг и исследовали на понижающую регуляцию эндогенного ALK2 и экспрессию IGF-1 в клетках A549 (Пример

19). Кроме того, Соединение A12 и Соединение A13 получали в диапазоне 50 - 200 мкг и исследовали на понижающую регуляцию эндогенного SOD1 наряду с экспрессией IGF-1 и эритропоэтина (EPO), соответственно, в клетках IMR32 (Пример 20). Соединения A15 и A16 получали в диапазоне концентраций 50 - 200 мкг и исследовали на экспрессию IGF-1 и понижающую регуляцию IL-1-бета в модели сверхэкспрессии, применяя клетки HEK293. Белок IL-1-бета сверхэкспрессировали, применяя мРНК, кодирующую IL-1-бета (Пример 21).

5

10

15

20

25

30

35

[0548] Соединение В18 получали в диапазоне концентраций 50 - 200 мкг и исследовали на экспрессию растворимого рецептора ACE2 и понижающую регуляцию меченого eGFP нуклеокапсидного белка SARS CoV-2 в модели сверхэкспрессии с применением клеток A549, в которых меченый eGFP нуклеокапсидный белок SARS CoV-2 сверхэкспрессировали с вектора pcDNA3+ (Пример 22).

[0549] Результаты анализировали, применяя GraphPad Prism 8 (Сан-Диего, США). Для оценки уровней белка (IGF-1, IL-4, IL-1-бета, ALK2, SOD1, EPO и TNF-α) с применением ELISA в стандарте или образце, среднее значение поглощения пустой пробы вычитали из среднего значения поглощения стандартов или образцов. Получали стандартную кривую и строили график методом нелинейной регрессии по четырем параметрам, в соответствии с протоколом производителя. Для того чтобы определить концентрацию белков (IGF-1, IL-4, IL-1-бета, ALK2, SOD1, EPO и TNF-α) в каждом образце, концентрацию белка интерполировали по стандартной кривой. Конечную концентрацию белка в образце рассчитывали путем умножения на фактор разведения. Статистический анализ проводили, применяя критерий Стьюдента или однофакторный дисперсионный анализ с последующим критерием множественных сравнений Даннета относительно контроля. Процент положительных по GFP клеток рассчитывали, применяя инструмент SoftMax Pro, как описано в Примере 22. Относительный количественный анализ оставшейся целевой мРНК после обработки соединениями проводили, применяя способ $2^{-\Delta\Delta Ct}$, между исследуемыми группами. Уровень значимости принимали как Р-значение <0,05. Определение молекулярной массы Соединения А11 проводили, как описано ниже. Молекулярную массу Соединения А11 рассчитывали на основании последовательности его мРНК путем умножения количества каждого основания на молекулярную массу основания (например, А: 347,2 г/моль; С: 323,2 г/моль; G: 363,2 г/моль; N1-UTP: 338,2 г/моль). Молекулярную массу соединения определяли путем добавления полученной общей массы всех оснований к молекулярной массе ARCA, равной 817,4 г/моль. Молекулярную массу конструкции использовали для пересчета количества трансфицированной мРНК в лунке в концентрацию в нМ.

[0550] Пример 17. Модель эндогенной экспрессии ТПГ-а в клетках ТНР-1.

[0551] Анализировали способность Соединения А9 и Соединения А10 снижать экспрессию TNF-α и сверхэкспрессировать IL-4 в клетках THP-1. Для эндогенной секреции TNF-α в клетках ТНР-1, клетки ТНР-1 стимулировали происходящим из *E. coli* липополисахаридом (LPS-L4391; Sigma Aldrich) при конечной концентрации 10 мкг/мл с R848 (агонист TLR7/8; Invivogen) при конечной концентрации 1 мкг/мл и инкубировали в течение 90 минут. Индуцированная продукция TNF-α соответствовала физиологическим условиям, наблюдаемым при псориазе. После стимуляции 50 мкл среды удаляли и заменяли на трансфекционный комплекс, содержащий специфические конструкции мРНК (Соединения А9 и А10), или рандомизированную миРНК (sc-миРНК) в комплексе с липофектамином 2000 в Opti-MEM и инкубировали при 37°C в увлажненной атмосфере, содержащей 5% СО2, в течение 24 часов. Sc-миРНК использовали, чтобы исключить связанную с трансфекцией гибель клеток (универсальный контроль миРНК, Sigma; № в каталоге SIC002). После трансфекции собирали культуральный супернатант и проводили количественный анализ TNF-а (целевой ген для понижающей регуляции) и IL-4 (интересующий ген для сверхэкспрессии) с помощью ELISA. Уровни TNF-а в образцах, трансфицированных только мРНК TNF-α, использовали в качестве контролей и принимали за 100%, и рассчитывали процент нокдауна TNF-а.

[0552] Результаты.

5

10

15

20

25

30

35

[0553] Действие Соединения А9 (содержащего миРНК, нацеленную на TNF-а, с 5'стороны от последовательности, кодирующей ІС-4) и Соединения А10 (содержащего миРНК, нацеленную на TNF-а, с 3'-стороны от последовательности, кодирующей IL-4) в отношении понижающей регуляции TNF-α оценивали в клетках THP-1, стимулированных 10 мкг/мл ЛПС и 1 мкг/мл R848, чтобы вызвать эндогенную секрецию TNF-а. Созданная модель ТНР-1 имитирует физиологическое иммунное состояние псориаза. На Фиг. 12А продемонстрировано, что Соединение А9 и Соединение А10 снижали эндогенную экспрессию TNF-α в клетках THP-1 по меньшей мере приблизительно на 80% по сравнению с контролем (P <0,001). Примечательно, что Соединение A10 вызывало значительно более сильную понижающую регуляцию TNF-а по сравнению с Соединением А9, которое содержало миРНК, расположенную против хода транскрипции (или с 5'-стороны) от ОРС IL-4 (**Фиг. 12A**; P < 0.05). Соединение A10 вызывало понижающую регуляцию TNF- α на по меньшей мере приблизительно 85% по сравнению с контролем, и приблизительно на 5 -10% больше, чем Соединение А9. В том же культуральном супернатанте измеряли экспрессию IL-4, и полученные результаты показали, что экспрессия IL-4 с Соединения А10 в 2,5 раза выше, чем экспрессия IL-4 с Соединения А9, как показано на Фиг. 12B (P <0,01). Этот анализ продемонстрировал, что для Соединения A10 (нацеленная на TNF-α миРНК расположена с 3'-стороны от гена IL-4), по сравнению с Соединением A9 (нацеленная на TNF-α миРНК расположена с 5'-стороны от гена IL-4), наблюдали на 5 - 10% большую активность миРНК в отношении нацеливания на TNF-α (понижающей регуляции) и в 2,5 раза большую экспрессию IL-4 (повышение на 70%).

[0554] Пример 18. Модель сверхэкспрессии TNF-а в клетках НЕК-293.

[0555] Анализировали способность Соединения А9 и Соединения А10 снижать экспрессию TNF-α и сверхэкспрессировать IL-4 в клетках HEK-293. Для того чтобы оценить одновременное действие РНК-интерференции (РНКи) TNF-α и экспрессии IL-4, создали модель сверхэкспрессии TNF-α, применяя трансфекцию мРНК TNF-α (600 нг/лунку). Как описано, Соединение А9 содержит нацеленную на TNF-α миРНК с 5'-стороны от последовательности, кодирующей ІС-4 (против хода транскрипции от гена ІС-4), тогда как Соединение A10 содержит нацеленную на миРНК TNF-α с 3'-стороны последовательности, кодирующей IL-4 (по ходу транскрипции от гена IL-4). Для того чтобы оценить способность Соединения А9 и Соединения А10, содержащих нацеленную на TNF-α миРНК, осуществлять понижающую регуляцию TNF-α и одновременно экспрессировать IL-4, клетки котрансфицировали Соединением А9 или Соединением А10 (900 нг/лунку) и мРНК TNF-α (600 нг/лунку). После трансфекции клетки инкубировали при 37°C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов с последующим количественным анализом TNF-α (целевой ген для понижающей регуляции) и IL-4 (интересующий ген для сверхэкспрессии) с помощью ELISA в одном и том же культуральном супернатанте. Уровни TNF-α в образцах, трансфицированных только мРНК ТΝГ-а, использовали в качестве контролей и принимали за 100%, и рассчитывали процент нокдауна TNF-а.

25 [0556] Результаты.

5

10

15

20

30

35

[0557] Соединение А9 и Соединение А10 исследовали на понижающую регуляцию TNF- α и одновременную экспрессию IL-4 в клетках HEK-293 (900 нг/лунку) с экзогенно доставленной мРНК TNF- α (600 нг/лунку). Результаты показали в 20 раз более высокую экспрессию IL-4 с Соединения А10, чем с Соединения А9, как показано на **Фиг. 13B** (P <0,001). В том же эксперименте с тем же культуральным супернатантом оценивали РНК-интерференцию с помощью Соединения А9 и Соединения А10 (900 нг/лунку), направленную против экспрессии TNF- α , применяя конструкцию для сверхэкспрессии TNF- α (600 нг/лунку), а затем ELISA TNF- α . Как Соединение А9, так и Соединение А10 понижающим образом регулировали уровень TNF- α по сравнению с необработанным контролем до 80% (P <0,01), как показано на **Фиг. 13A**. Результаты анализа,

представленные на **Фиг. 13A** и **13B**, продемонстрировали, что Соединение A10 (которое содержит нацеленную на TNF-α миРНК с 3'-стороны от последовательности, кодирующей IL-4) осуществляло понижающую регуляцию TNF-α по меньшей мере так же, как и Соединение A9 (которое содержит нацеленную на TNF-α миРНК с 5'-стороны от последовательности, кодирующей IL-4), приблизительно на 80%. Кроме того, Соединение A10 вызывало по меньшей мере в 20 раз большее повышение экспрессии IL-4 по сравнению с Соединением A9.

[0558] Пример 19. Модель эндогенной экспрессии ALK2 в клетках A549.

[0559] Трансфекция in vitro клеток A549 Соединением A11.

5

10

15

20

25

30

[0560] Клетки А549 представляют собой обычные клетки альвеолярного типа II (ATII), происходящие из карциномы легкого человека. Поскольку клетки А549 экспрессируют эндогенные транскрипты РНК ALK2 на среднем уровне, клетки A549 применяли для исследования разрушающего действия Соединения A11 на мРНК ALK2 параллельно с измерением экспрессии IGF-1. Клетки A549 (Sigma-Aldrich, Букс, Швейцария № в каталоге 6012804) поддерживали на модифицированной по способу Дульбекко среде Игла с высоким содержанием глюкозы (DMEM, Sigma-Aldrich, Букс, Швейцария, № в каталоге D0822), дополненной 10% ФБС (Thermo Fisher Scientific, Базель, Швейцария; № в каталоге 10500-064). Для того чтобы оценить активность Соединения А11, клетки А549 высевали при плотности 10000 клеток/лунку в обычную ростовую среду за 24 часа до трансфекции. После этого клетки трансфицировали возрастающими концентрациями Соединения А11 (0, 0,61, 1,25, 2,54, 5,08, 10,16 и 20,33 нМ, соответствующими 0, 19, 38, 75, 150, 300 или 600 нг/лунку, соответственно), применяя липофектамин 2000 (www.invitrogen.com), следуя инструкциям производителя. 100 мкл DMEM удаляли и добавляли в каждую лунку 50 мкл Opti-MEM (www.thermofisher.com), а затем 50 мкл комплекса мРНК и липофектамина 2000 в Opti-MEM. После 5 часов инкубации среду заменяли на свежую ростовую среду и инкубировали планшеты в течение 24 часов при 37 °C в увлажненной атмосфере, содержащей 5% CO₂, с последующим количественным анализом IGF-1 с помощью ELISA и мРНК ALK2 с помощью относительного количественного анализа, применяя количественную ПЦР с праймерами, нацеленными на мРНК ALK2 человека (прямой 5'-GACGTGGAGTATGGCACTATCG-3' И обратный праймер: CACTCCAACAGTGTAATCTGGCG-3'; последовательности SEQ ID NO: 171 и 172, соответственно) с применением набора SYBR 1-Step Cells-to-CT (Thermo Fisher Scientific, Базель, Швейцария; № в каталоге A25599). 18S рРНК человека использовали в качестве опорного контроля (прямой праймер: 5'- ACCCGTTGAACCCCATTCGTGA-3' и обратный праймер: 5'-GCCTCACTAAACCATCCAATCGG-3'; последовательности SEQ ID NO: 173 и 174, соответственно).

[0561] Результаты.

5

10

15

20

25

30

35

[0562] Оценивали действие Соединения А11 (содержащего 3х нацеленные на АLК2 миРНК с 3'-стороны от последовательности, кодирующей белок IGF-1) в отношении понижающей регуляции АLК-2 и одновременной экспрессии IGF-1 в клетках А549 с ответом на дозу (от 0,6 нМ до 20,33 нМ). Результаты продемонстрировали, что Соединение А11 экспрессирует белок IGF-1 зависимым от дозы образом, достигая уровня выше 150 нг/мл, как показано на Фиг. 14. В том же культуральном супернатанте оценивали РНК-интерференцию с помощью Соединения А11, направленную против оставшейся экспрессии ALK-2. На Фиг. 14 продемонстрировано, что Соединение А11 снижало экспрессию эндогенных транскриптов РНК ALK2 до приблизительно 75%. В этом анализе продемонстрировали, что Соединение А11 снижало экспрессию ALK2 на 75% и одновременно экспрессировало IGF-1 зависимым от дозы образом до по меньшей мере 150 нг/мл.

[0563] Пример 20. Модель эндогенной экспрессии SOD1 в клетках IMR32.

[0564] Анализировали способность Соединения А12 и Соединения А13 снижать экспрессию SOD1 и сверхэкспрессировать IGF-1 (Соединение A12) или EPO (Соединение А13) в клетках нейробластомы белого человека (IMR32). Клетки IMR32 (№ в каталоге 86041809, ЕСАСС, Великобритания) высевали при плотности 20000 клеток на лунку в 96луночный предварительно покрытый BRAND микротитрационный планшет (№ в каталоге 782082) в минимальную необходимую среду Игла (EMEM, Bioconcept, № в каталоге 1-31S01-І, www.bioconcept.ch), дополненную 10% (об./об.) термоинактивированной фетальной бычьей сывороткой (ФБС), L-глутамином (2 мМ) и заменимыми аминокислотами (NEAA, 1x). Клетки растили в течение ночи при 37°C в увлажненной атмосфере, содержащей 5% СО2. Клетки трансфицировали тремя дозами конструкций Соединения A12 или Соединения A13 (150, 300 или 900 нг/лунку), применяя JetMessenger (www.polyplus-transfection.com), следуя инструкциям производителя. Рандомизированную миРНК (sc-миРНК) использовали для исключения связанной с трансфекцией гибели клеток (Universal siRNA, Sigma; № в каталоге SIC002). Вкратце, комплекс мРНК/JetMessenger был образован путем смешивания 0,25 мкл реагента JetMessenger с 0,1 мкг конструкции мРНК. После инкубации в течение 15 минут при комнатной температуре комплекс JetMessenger добавляли в виде 10 мкл и через 5 часов после трансфекции среду/мРНК/JetMessenger удаляли из лунок и заменяли на 100 мкл свежей ростовой среды, и планшеты инкубировали в течение 24 часов при 37°C в увлажненной атмосфере, содержащей 5% CO₂. Оставшуюся

мРНК SOD1 измеряли с помощью количественной ПЦР в клеточных лизатах через 24 часа после трансфекции Соединением А12 и Соединением А13 путем относительного анализа с применением количественной ПЦР с праймерами, количественного 5'нацеленными мРНК SOD1 человека (прямой праймер: на CTCACTCTCAGGAGACCATTGC-3' обратный праймер: 5'-И ССАСААGCCAAACGACTTCCAG-3'; последовательности SEQ ID NO: 175 и 176, соответственно), используя набор SYBR 1-Step Cells-to-CT (Thermo Fischer Scientific, Базель, Швейцария; № в каталоге A25599). 18S рРНК человека использовали в качестве эталонного контроля, применяя те же праймеры, которые указаны в Примере 19. Тот же культуральный супернатант использовали для измерения IGF-1 и EPO (Thermo Fisher Scientific, Базель, Швейцария; № в каталоге BMS2035) с помощью ELISA.

[0565] Результаты.

5

10

15

20

25

30

35

[0566] Оценивали понижающее регуляцию SOD1 в клетках IMR32 действие возрастающей серии из трех доз Соединения A12 (содержащего 3х нацеленные на SOD1 миРНК и последовательность, кодирующую белок IGF-1) и Соединения A13 (содержащего 3х нацеленные на SOD1 миРНК и последовательность, кодирующую белок EPO) (150, 300 и 900 нг/лунку). Анализ показал, что Соединение A12 и Соединение A13 уменьшали количество транскриптов SOD1 зависимым от дозы образом (до по меньшей мере приблизительно 70%) (Фиг. 15A, незалитые круги и залитые круги, соответственно). Для рандомизированной миРНК не выявили действия (Фиг. 15A, заштрихованные круги). В том же культуральном супернатанте (кондиционированном клетками IMR32) оценивали экспрессию белка EPO с Соединения A13. На Фиг. 15В продемонстрировано, что Соединение A13 вызывало экспрессию EPO зависимым от дозы образом. Аналогичным образом оценивали экспрессию белка IGF-1 с Соединения A12 в том же культуральном супернатанте IMR32. На Фиг. 15С показано, что Соединение A12 одновременно экспрессировало IGF-1.

[0567] Пример 21. Модель сверхэкспрессии IL-1-бета в клетках НЕК-293.

[0568] Анализировали способность Соединения А14 и Соединения А15 к понижающей регуляции экспрессии IL-1-бета и сверхэкспрессии IGF-1 в клетках НЕК-293. Создали модель сверхэкспрессии IL-1-бета в клетках НЕК-293 с помощью трансфекции мРНК IL-1-бета (300 нг/лунку). Соединение А14 содержит миРНК, нацеленную на IL-1-бета, с 5'-стороны от последовательности, кодирующей IGF-1 (против хода транскрипции от гена IGF-1), тогда как Соединение А15 содержит миРНК, нацеленную на IL-1-бета, с 3'-стороны от последовательности, кодирующей IGF-1 (по ходу транскрипции от гена IGF-1). Для того чтобы оценить способность Соединения А14 и Соединения А15, содержащих миРНК,

нацеленные на IL-1-бета, к понижающей регуляции IL-1-бета и одновременной экспрессии IGF-1, клетки HEK-293 котрансфицировали Соединением A14 или Соединением A15 (900 нг/лунку) и мРНК IL-1-бета (300 нг/лунку). После трансфекции клетки инкубировали при 37°C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов, с последующим количественным анализом IL-1-бета (целевой ген для понижающей регуляции) и IGF-1 (интересующий ген для сверхэкспрессии) с помощью ELISA в одном и том же культуральном супернатанте.

[0569] Результаты.

5

10

15

20

25

30

[0570] Соединение A14 и Соединение A15 содержат нацеленную на IL-1-бета миРНК либо с 5'-, либо с 3'-стороны от последовательности, кодирующей IGF-1, соответственно. Конструкции исследовали на понижающую регуляцию IL-1-бета и одновременную экспрессию IGF-1 в клетках HEK-293 (900 нг/лунку) с экзогенно доставленной мРНК IL-1бета (300 нг/лунку). Результаты продемонстрировали, что Соединение А15 экспрессирует приблизительно в 13 раз больше IGF-1, чем Соединение A14, как показано на Фиг. 16B (Р <0,001). В том же эксперименте с тем же культуральным супернатантом, оценивали РНКинтерференцию с помощью Соединения А14 и Соединения А15 (900 нг/лунку), направленную против экспрессии IL-1-бета с конструкции для сверхэкспрессии IL-1-бета (300 нг/лунку), измеряли с помощью ELISA IL-1-бета. Соединение A14 и Соединение A15 понижающим образом регулировали уровни IL-1-бета более чем приблизительно в 150 раз и в 290 раз, соответственно, по сравнению с необработанным контролем (P < 0.001), как показано на Фиг. 16А. Соединение А15 вызывало по меньшей мере приблизительно в 2 раза большую понижающую регуляцию ІІ-1-бета по сравнению с Соединением А14, в котором миРНК расположена против хода транскрипции (с 5'-стороны) от ОРС IGF-1 (**Фиг. 16A**; P < 0.05). Полученные результаты продемонстрировали, что Соединение A15 (содержащее нацеленную на IL-1-бета миРНК, расположенную с 3'-стороны от гена IGF-1) осуществляло понижающую регуляцию IL-1-бета в 290 раз, при этом значительно повышая экспрессию IGF-1. Соединение A14 (содержащее нацеленную на IL-1-бета миРНК, расположенную с 5'-стороны от гена IGF-1) осуществляло понижающую регуляцию IL-1-бета в 150 раз, при этом значительно повышая экспрессию IGF-1. Таким образом, понижающая регуляция IL-1-бета Соединением A15 была в 2 раз больше, чем таковая, наблюдаемая для Соединения A14. Кроме того, экспрессия IGF-1 с Соединения А15 была в 13 раз больше, чем таковая, наблюдаемая для Соединения А14.

[0571] Пример 22. Модель сверхэкспрессии нуклеокапсидного белка SARS CoV-2 в клетках A549.

[0572] Трансфекция in vitro клеток A549 нуклеокапсидным белком SARS CoV-2 с помощью вектора pcDNA3+ с меткой eGFP и соединениями, подавляющими нуклеокапсидный белок SARS CoV-2/сверхэкспрессирующими растворимый ACE2. [0573] Модель сверхэкспрессии нуклеокапсидного белка SARS CoV-2 применяли для оценки одновременного подавления нуклеокапсидного (N) белка SARS CoV-2 путем РНКи и сверхэкспрессии растворимого АСЕ2 с помощью Соединения В18 в клетках А549. Модель создали путем трансфекции плазмидным вектором pcDNA3+ (300 нг/лунку), содержащим белок N SARS CoV-2 с меткой eGFP. РНКи посредством Соединения B18, нацеленного на белок N SARS CoV-2, нарушает трансляцию и экспрессию eGFP по ходу транскрипции. Соединение В18 содержит ОРС, кодирующую растворимый АСЕ2, и 3х нацеленные на SARS CoV-2 миРНК (1х нацеленную на участок ORF1ab, 1х нацеленную на шиповидный белок и 1х нацеленную на нуклеокапсидный белок) с 3'-стороны (по ходу транскрипции) от ОРС АСЕ2. Клетки котрансфицировали Соединением В18 (600 нг/лунку) плазмидной конструкцией, осуществляющей повышенную нуклеокапсидного белка SARS CoV-2 (300 нг/лунку). После трансфекции клетки инкубировали при 37 °C в увлажненной атмосфере, содержащей 5% CO₂, в течение 24 часов с последующим определением, приводит ли подавление путем РНКи с помощью Соединения B18 к нарушению трансляции eGFP. Нуклеокапсидные белки SARS CoV-2, меченые eGFP (в результате экспрессии плазмиды), исследовали под микроскопом на экспрессию eGFP, применяя многорежимный спектрофотометр для прочтения SpectraMax (Molecular процент микропланшетов i3X Devices). Рассчитывали положительных по eGFP клеток в обработанных и контрольных необработанных образцах. [0574] Результаты.

5

10

15

20

25

30

[0575] Оценивали понижающее регуляцию белка N SARS CoV-2 действие Соединения В18 (содержащего 3х нацеленные на SARS CoV-2 миРНК с 3'-стороны от последовательности, кодирующей растворимый белок ACE2) в клетках А549. Наблюдали сниженное количество положительных по eGFP клеток, что показало нацеленное действие Соединения В18, направленное против мРНК, кодирующей белок N SARS CoV-2 (Фиг. 17А и 17В). Совокупный анализ различных образцов показал приблизительно 8-кратное уменьшение количества положительных по eGFP клеток с помощью Соединения В18 по сравнению с необработанным контролем (Фиг. 17С).

[0576] Примеры и варианты реализации, описанные в данной заявке, предназначены исключительно с целью иллюстрирования, и различные модификации или изменения,

предложенные специалистам в данной области техники, должны входить в объем и область действия настоящей заявки и объем прилагаемой формулы изобретения.

Таблица 7. Таблица перечисленных последовательностей.

Белок или нуклеиновая	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
Кислота	C	1 - 8
Соединения A1 - A8	См. таблицу 2	1 - 8
Соединения А1	C252	9 - 16
- А8	См. таблицу 3	9 - 10
(последователь		
ности плазмид)	GCTGCAAGGCGATTAAGTTG	17
Прямой праймер для	GCIGCAAGGCGAIIAAGIIG	17
получения матрицы		
Обратный	U(2'OMe)U(2'OMe)U(2'OMe)TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	18
праймер для		10
получения	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
матрицы	CCATGTTAATGCAG	
Последователь	GGACCTGAGACACTTTGTGGCGCTGAACTGGTGGACGCCCTGCAGTTTGT	19
ность,	GTGTGGCGACAGAGGCTTCTACTTCAACAAGCCCACAGGCTACGGCAGCA	10
кодирующая	GCTCTAGAAGGGCTCCTCAGACCGGAATCGTGGACGAGTGCTGTTTCAGA	
зрелый IGF-1	AGCTGCGACCTGCGGCGGCTGGAAATGTATTGTGCCCCTCTGAAGCCTGC	
человека	CAAGAGCGCC	
Модифицирова	MLILLLPLLLFKCFCDFLK	20
нный		20
сигнальный		
пептид IGF-1		
Модифицирова	ATGCTGATTCTGCTGCTGCCCCTGCTGCTGTTCAAGTGCTTCTGCGACTT	21
нный	CCTGAAA	
сигнальный		
пептид IGF-1 -		
кодирующая		
последовательн		
ость		
Модифицирова	MLFYLALCLLTFTSSATA	22
нный про-		
домен IGF-1		
Модифицирова	ATGCTGTTCTATCTGGCCCTGTGCCTGACCTTTACCAGCTCTGCTAC	23
нный про-	CGCC	
домен IGF-1 -		
кодирующая		
последовательн		
ость		
тРНК-линкер	AACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAG ACCCGGGTTCGATTCCCGGCTGGTGCA	24
Промотор Т7	TAATACGACTCACTATA	25
Последователь	GCCACC	26
ность Козак	accas	27
Последователь	GGGGS	27
ность		
аминокислот		

INCREMIDED	Белок или		
пиского пинкера Последователь пость пукленновой кислоты пибкого линкера Соединения ВІ ВІ ВІР противовирусн ые последователь пость пукленновых кислот Последователь пость аминокислот ППоследователь пость пикленновых кислот ППоследователь пость пикленновых кислот ППоследователь пость пикленнови кислоты ППоследователь пость пикленновой кислоты ППоследователь пость пикленновок пислоты пикленновок пислоты ППоследователь пость пислоты писл		Последовательность (белок: от N-конца к C-концу; нуклеиновая	SEQ ID
Последователь исть последователь ность последовательность на последовательность последовательность на последовательность на последовательность последовательность на последовательнос	•	кислота: от 5' к 3')	NO:
Линкера GGGGGTGGAGGCTCT 28			
Последователь ность нужленновой кислоты гибкого линкера См. таблицу 5 и 6 29 - 47			
ность нукленновой кислоты гибкого линкера Соединения В1 — В19, противовирусные последовательности нукленновых кислот Последователь ность минюкислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последовательность ССАТАСССАТАGGAGAAGAGATTCTACAGAAAGAAGACTTCAGAAGCATTCAGAAGACTTCAGAAGAAGAACACTTTGGAAGCCTGCATTCAGAAGAAGAACACTTTGGAAGCCTCAGAAGAACACTTTGGAAGCACTCAGAAGAAACACTTTGCATTCAGAAGAACACTTTCAGAAGAACACTTTCAGAAGAACACTTTCAGAAGAAACACTTTCAGAAGAAACACTTTCAGAAAGAA		CCCCCTCT	28
нуклеиновой кислоты гости пинкера Соединения ВІ ВІР противовируеные последовательность инженовока (Genbank NM_002176.3) Последовательность инженовой кислоты IFN-бета человека (Genbank NM_002176.3)		GGGGG1GGAGGC1C1	20
кислоты гибкого линкера Соединения В1 - В19, противовируен ые последователь ности нукленновых кислот Последователь ность миннокислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последователь ность Соединения В1 - В19, противовируен ые последователь ность МТМКСLLQIALLLCFSTTALSMSYNLLGFLQRSNFQCQKLLWQLNGRLE УСЬКОВМИРОТРЕЕТКQLQQFQKEDAALTTYEMLQNIFAIFRQDSSSTGW NETTVENLLANVYHQINHLKTVLEEKLEKEDFTRGKIMSSLHLKRYYGRI LHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN WETTVENLLANVYHQINHLKTVLEEKLEKEDFTRGKIMSSLHLKRYYGRI LHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN CCATACCCATGGAGAAAGGACATTCTAACTGCAACCTTTCGAAGCCTTTG CTCTGGCACAACAGGTAGTAGGGGACACTGTTCGTGTTGTCACATACAGC CTCTGGCACAACAGGTAGTAGGGGACACTGTTCGTGTTGTCACATACAGC CTCTAGGACAACAGGTAGTAGTCTCTACAAAAGAAGAGCAGCAAC TTCAGTGTCAGAAGCATCTGGTGGAATTGATAGCAGCGCAA CCATACCCATGGAGAAAGAACTTTGACATCCCTGAGGAGAGTTAAACCACTC CTCAGGACAACAGGTAGTAGCATTCCATCATGAGC CTCTGGCACAACAGGTAGTAGCATTCACATCAGCAGC CTCCAGAGCAGAG			
гибкого линкера Соединения В1 - В19, противовируен ые последовательн ости нуклеиновых кислот Последователь ность аминокислот IFN-бета человека (Genbank NM_002176.3) Последовательн ость Последов			
Линкера Cосдинения В1			
Соединения В I - В 19 , противовирусные последовательности нуклеиновых кислот МТИКСЬ Д ТАГЬ ДЕТЕТТА LSMSYNL LGFL QRSSN FQC QKL LWQLNGRLE YCLKDRMN FD I PEE I KQL QQ FQ KEDAAL LTI YEM QWI FAI FRQ DSSSTGW NET I VENL LANVY HQ I NHL KTV LEE ELLE KEDFT RGKLMSS LH LKRYYGR I LHYL KAKEY SHCAWT I VRVE I LRN FY FINR LTGYLRN 48 МТОЛЕ ОВ ВОВОВЕНИЕ В ВОВОВЕНИ			
- В19, противовирусн ые последовательн ости нуклеиновых кислот Последователь ность аминокислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последовательность — ССАТАСССАТБЯБЯБЯТЕЛЕНСЕННЕЕННЕЕННЕЕННЕЕННЕЕННЕЕННЕЕННЕЕНН		C 6 5 6	20 47
противовирусные последовательн ости нуклеиновых кислот Последователь ность аминокислот IFN-бета человека (Gеnbank NM_002176.3) Последовательность аминокислот IFN-бета человека (Genbank NM_002176.3) Последовательность инфирациальная последовательность ость Ссатасссат деловека (деловательность ость ость ость ость ость ость ость		См. таолицу 3 и б	29 - 47
ме последовательн ости нуклеиновых кислот Последователь ность аминокислот IFN-бета человека (Gerbank NM_002176.3) Подчеркнута: сигнальная последовательн ость Последовательн ость Последовательность Подчеркнута: сигнальная последовательн ость Сатасссатддадаладададададададададададададададад	<i>'</i>		
последовательности муклеиновых кислот Последователь ность аминокислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: ситнальная последовательность Последовательность Последовательность Последовательность ССАТАСССАТБОВАДАЛАГУЕЛИВНЕКТЕКТЕКТЕКТЕТИВНЕКТЕКТЕКТЕТИВНЕТИВНЕТИВНЕТИВНЕТТЕТИВНЕТИВНЕТТЕТИВНЕТИВН			
ости нуклеиновых кислот Последователь ность аминокислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последователь ность нуклеиновой кислот Последователь ность нуклеиновой кислот кислот последователь ность нуклеиновой кислот кислот кислоты кислоты последователь ность нуклеиновой кислоты	_		
Hykneuhobix кислот Последователь ность аминокислот IFN-бета человека (Genbank NM_002176.3) CCATACCCATGGAGAAAGGAGAGACCTTCCACTACAGGAGAATCCTCAGAAGAGGAGAACCTCCTGGAAGAATTCTTACACTGCACATTTTCCACTACAGAGAATTCTTCACAGAGAGTAGAGAACCTCCTGGAAGAATTCTAACTGCACATTTTCCACTACAGAGAGAACCTTTCCACTACAGAGAGAG	* *		
Последователь ность минокислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последовательн ость последовательн ость Ссатасссата дада дада дада дада дада дада			
Последователь ность аминокислот IFN-бета человека (Genbank NM_002176.3) MTNKCLLQIALLCFSTTALSMSYNLLGFLQRSSNFQCQKLLWQLNGRLE YCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGW NETIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRI LHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN 48 Подчеркнута: сигнальная последовательн ость ССАТАСССАТGGAGAAAGGACATTCTAACTGCAACCTTTCGAAGCCTTTG CTCTGGCACAACAGGTAGTAGGCGACACTGTTCGTGTTGTCAACATGACC AACAAGTGTCTCCTCCAAATTGCTCTCTGTTGTCTACACAAGC TCTTTCCATGAGCTACAACCTTTCCATGAAGCACAACTTTCCACACAAGC TCTTTCCATGAAGCACACTTTCCACACAAGC TCTTTCCATGAAGCACACTTTGCACACAAGCAATT TCAGTGTCAGAAGCACCTCTGGCAATTGACATCCCTGAGGAGATTAAGCAGCTGCA GCAGTTCCAGAAGAAGATTCATCAAGAAGAATTCATCAGAAGAACACATCT GCAGGACAGGA	•		
ность аминокислот IFN-бета человека (Genbank NM_002176.3) ССАТАСССАТБВАВААВБВАВАВВЕНЬ КРУУБП LHYLKAKEYSHCAWTIVRVEILRNFY FINRLTGYLRN Подчеркнута: сигнальная последовательн ость ССАТАСССАТБВАВАВСЕТСТВЕТСА САСТЕТСВАВСЕТТЕВ СТСТСВАВАВСЕТСТВЕТСА САСТАСАВ СТСТТССАТА САСТВЕТСА САСТВЕТСА САСТВЕТСА САСТВЕТСВ СТСТАВ САСТВЕТСВ СТСТАВ САСТВЕТСВ СТСТАВ САСТВЕТСВ СТСТАВ САСТВЕТСВ СТСТАВ САСТВЕТСВ СТСТВ САСТВЕТСВ СТВЕТСВ СТВЕ		MINISTER OF THE CHARMAN AND AND AND AND AND AND AND AND AND A	4.0
аминокислот IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последовательн ость ССАТАСССАТББАБАВАСТСТСТААСТБСААССТТТСБААБССТТТБ СТСТББССАСААСАВБТАБТАБССВСАСТТТСТСТСТТТСТСАСАТБАСС ААСАВСТБТСТСТССАВАТТБСТСТССТБТТБТСТСТССАСТАСАБС ТСТТССАТБАБСТАСААСТТБСТТСТСТСТТСТСАСТАСАБС ТСТТССАТБАБСТАСААСТТБСТТСТССТБТТБТСТССАСТАСАБС ТСТТССАТБАБСТАСААСТТБСТТССТСТТСТСАСАТТСТСС ААСАВСТБТССТСАВАТТБСТСТССТБТБТБТСТСТССАСТАСАБС ТСТТСАТБАБСТАСААСТТБСТТСТССТБТТБТСТССАСТАСАБС ТСТТСАТБАБСТАСАСТТБСТТТТССТСАСТТВСТТСТСАСТТВСТВСТТСТССАСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВС	' '		48
IFN-бета человека (Genbank NM_002176.3) Подчеркнута: сигнальная последовательн ость ССАТАСССАТБСАБСАСАССТССАВСТАТСТАВСТБСАВССТТТСВАВССТТТБ ААСАВСТЕТССТССАВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВСТВ			
человека (Genbank NM_002176.3) Подчеркнута: сигнальная последовательн ость Ссатасссата дадаа дадаа дадаа дадаа дадаа даттет дадаа дадааа дадаа дадаа дадаа дадааа дадаа дадааа дадаа дадаа дадаа дадаа дадаа дадаа дадаа дада			
(Genbank NM_002176.3) 1 1 49 Подчеркнута: сигнальная последовательн ость ССАТАСССАТБВАБАРАНДЕВ СТСТБВАВ ССТТТСВАВ ССТТТВ СТСТБВСАСА САСАВ СТВЕТСТВЕТВ СТВЕТВ	IFN-бета	LHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN	
NM_002176.3) Подчеркнута: сигнальная последовательн ость ССАТАСССАТБЭАБАААБВАААВВААСАТТСТААСТБЭТТСТВАСАТТВЕТВ СТСТЕТВЕТВ СТЕТЕТВ СТЕТВ САСААСТВЕТВ СТЕТЕТВ САСАТВ СТЕТЕТВ СТЕТЕТВ САСАТВ СТЕТЕТВ С			
Подчеркнута: сигнальная последовательн ость ССАТАСССАТБСАСААСБЕСТСТСТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТОТО	`		
Сигнальная последовательн ость ССАТАСССАТБСАБАБАВБАВБАВБАВБАВБАВБАВБАВБАВБАВБАВБАВБ	NM_002176.3)		
Сигнальная последовательн ость ССАТАСССАТБСАБАБАВБАВБАВБАВБАВБАВБАВБАВБАВБАВБАВБАВБ			
последовательн ость ССАТАСССАТБСАБАБАВ АВСЕТТСТВОВ СТСТБСАВ СТТТС АВСАВСТТТС АВСАТСТВ СТСТСТВ САВСАВ СТТТСАВ САВСТВ СТСТСТВ СТСТСТВ САВСТВ СТСТТВ САВСАВ СТТТССАТ САВСАВ СТСТТССАТ САВСАВ СТСТТССАТ САВСАВ СТСТТССАТ САВСАВ СТСТТССАТ САВСАВ СТСТТССАТ САВСАВ СТСТТВ САВСАВ СТСТВ СТСАВ СВ СВ	<u>Подчеркнута</u> :		
ость ССАТАСССАТБОАБАРААБОВАТЕТЬ НОСТЬ НУКЛЕИНОВОЙ КИСЛОТЫ IFN- бета человека (Genbank NM_002176.3) ССАТАСССАТБОАБАРАТСТВОАВОСТОТОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВОВ	сигнальная		
ССАТАСССАТБЯВАВАА СТАТСТВАВ ССТТТСВАВ ССТТТБ СТСТБЯВ САВСТВЕТ СТСТВЯВ СТСТВЯ СТСТВЯВ СТСТВЯ СТСТВЯ СТСТВЯВ СТСТВЯВ СТСТВЯ СТСТВ СТСТВЯ СТСТВ СТЕТВ СТСТВЯ СТСТВ СТЕТВ СТСТВ СТЕТВ СТСТВ СТЕТВ СТТВ СТ	последовательн		
СТСТБССАСААСАБСТАСТССТСТСТСТСТСТСТСТСТСТ	ость		
Последователь ность нуклеиновой кислоты IFN-бета человека (Genbank NM_002176.3) — Астаттстаадаадстаадаадстаадаадсаадаадаадаадаадаадаадаадаадаадаад			49
Последователь ность нуклеиновой кислоты IFN-бета человека (Genbank NM_002176.3) Последователь (Genbank NA_002176.3) ТСТТТССАТБАБССТАСААСТТЕСТАБССТБТБССТСТББСАТТТТТСАБССАБСТВСАТСТВ ВАЗАСТБТВСАТСТВ ВАЗАСТТЕТВ ВАЗАСТТЕТВ ВАЗАСТВ В ВТЕТВ ВТЕТВ ВТЕТВ ВТЕТВ В ТЕТТТСАТ ВАЗАСТВ ВАЗАСТВ ВАЗАСТВ В ВТЕТВ В ТЕТТТВ ВАЗАСТВ В ВТЕТВ В ТЕТТТВ ВАЗАСТВ В В ВТЕТВ В ВТЕТВ В ВТЕТВ В В ВТЕТВ В В ВТЕТВ В В ВТЕТВ В В В			
Последователь ность нуклеиновой кислоты IFN-бета человека (Genbank NM_002176.3) Тасстдандара достант достандара достанда достанд			
Последователь ность нуклеиновой кислоты IFN-бета человека (Genbank NM_002176.3) М_002176.3) СТСААGGACAGGATGAACTTTGACATCCCTGAGGAGATTAAGCAGCTGCA GCAGTTCCAGAAGGAGGACGCCGCATTGACCATCTATGAGATGATGATGAGATGAGATGAGAAGAAGATTCATCAGAATAAACCATCT GAAGACAGTCCTGGAAGAAAAACTGGAGAAAGAATTTCACCAGGGGAA AACTCATGAGCAGTCTGCACCTGAAAAGAATATTATGGGAGGATTCTGCAT TACCTGAAGGCCAAGGAGTACAGTCACTGTGCCTGGACCATAGTCAGAGT GGAAATCCTAAGGAACTTTTACTTCATTAACAGACTTACAGGTTACCTCC GAAACTGAAGATCTCCTAGCCTGTGCCTCTGGGACAATTGCTTCA AGCATTCTTCAACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTAC			
ность нуклеиновой кислоты IFN-бета человека (Genbank NM_002176.3) М_002176.3) GCAGTTCCAGAAGGAGGACGCCGCATTGACCATCTATGAGATGCTCCAGA ACATCTTTGCTATTTTCAGACAAGATTCATCTAGCACTGGCTGG			
ность нуклеиновой кислоты IFN-бета человека (Genbank NM_002176.3) М_002176.3) GCAGTTCCAGAAGGAGGACGCCGCATTGACCATCTATGAGATGATGATGATGATGATGATGATGATGATGATGA	Поспелователь	CTCAAGGACAGGATGAACTTTGACATCCCTGAGGAGATTAAGCAGCTGCA	
нуклеиновой кислоты IFN- бета человека (Genbank NM_002176.3) М_002176.3) Кастеттестатттсадасаадаттсатстадсастадаталастст садададательной статтальной совтать ислоте исл			
кислоты IFN- бета человека (Genbank NM_002176.3)			
бета человека (Genbank NM_002176.3) СТСАТБАВСАВТЕТЕСТАВ В В В В В В В В В В В В В В В В В В			
(Genbank NM_002176.3) ACCTCATGAGCAGTCTGCACCTGAAAAGATATTATGGGAGGATTCTGCAT TACCTGAAGGCCAAGGAGTACAGTCACTGTGCCTGGACCATAGTCAGAGT GGAAATCCTAAGGAACTTTTACTTCATTAACAGACTTACAGGTTACCTCC GAAACTGAAGATCTCCTAGCCTGTGCCTCTGGGACAATTGCTTCA AGCATTCTTCAACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTAC	_		
NM_002176.3) IACCTGAAGGCCAAGGAGTACAGTCACTGTGCCTGGACCATAGTCAGAGT GGAAATCCTAAGGAACTTTTACTTCATTAACAGACTTACAGGTTACCTCC GAAACTGAAGATCTCCTAGCCTGTGCCTCTGGGACTGACAATTGCTTCA AGCATTCTTCAACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTAC			
GGAAATCCTAAGGAACTTTACTTCATTAACAGACTTACAGGTTACCTCC GAAACTGAAGATCTCCTAGCCTGTGCCTCTGGGACAATTGCTTCA AGCATTCTTCAACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTAC	*		
AGCATTCTTCAACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTAC	1111_002170.3)		
		GAAACTGAAGATCTCCTAGCCTGTGCCTCTGGGACTGGACAATTGCTTCA	
		TGCATATGAAAGGACACTAGAAGATTTTTGAAATTTTTATTAAATTATGAG	
TTATTTTATTTAAATTTTATTTTGGAAAATAAATTATTTTTGGTG			
CAAAAGTCA			
Oптимизирова ATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGCTGCTGCTAGCAC 50	Оптимизирова	ATGACCAACAAGTGCCTGCTGCAGATTGCCCTGCTGCTGTGCTTCAGCAC	50
HHAS ACAGCCCTGAGCATGAGCTACAACCTGCTGGGCTTCCTGCAGCGGAGCA	- 1	<u>AACAGCCCTGAGC</u> ATGAGCTACAACCTGCTGGGCTTCCTGCAGCGGAGCA	
L GCAAC'I'I'CCAG'I'GCCAGAAAC'I'GC'I'G'I'GGCAGCGGCGGCGGCTGGAA L		GCAACTTCCAGTGCCAGAAACTGCTGTGGCAGCTGAACGGCCGGC	
последовательн ТАСТGCCTGAAGGACCGGATGAACTTCGACATCCCCGAGGAAATCAAGCA		TACTGCCTGAAGGACCGGATGAACTTCGACATCCCCGAGGAAATCAAGCA	
ость GCTGCAGCAGTTCCAGAAAGAGACGCCGCTCTGACCATCTACGAGATGC		GCTGCAGCAGTTCCAGAAAGAGGACGCCGCTCTGACCATCTACGAGATGC	
нуклеиновой технология истана технология и технология истана технология и технология истана технология истана технология и тех		TGCAGAACATCTTCGCCATCTTCCGGCAGGACAGCAGCTCCACAGGCTGG	
кислоты IFN- AACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTACCACCAGATCAA		AACGAGACAATCGTGGAAAATCTGCTGGCCAACGTGTACCACCAGATCAA	
бета человека, ССАССТGААААССGTGCTGGAAGAGAGAGCTGGAAAAAGAGAGACTTCACCC	оета человека,	CCACCTGAAAACCGTGCTGGAAGAGAGAGCTGGAAAAAGAGGACTTCACCC	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
кодирующая SEQ ID NO: 48	GGGGCAAGCTGATGAGCAGCCTGCACCTGAAGCGGTACTACGGCAGAATC CTGCACTACCTGAAGGCCAAAGAGTACAGCCACTGCGCCTGGACCATCGT GCGCGTGGAAATCCTGCGGAACTTCTACTTCATCAACCGGCTGACCGGCT ACCTGAGAAACTGA	
сигнальная последовательн ость		
Сигнальный пептид IFN- бета (Genbank	MTNKCLLQIALLLCFSTTALS	51
NM_002176.3) Последователь ность аминокислот модифицирова	MLLICLLVIALLLCFSTTALS	52
нного сигнального пептида IFN-бета (SP1) (T2L/N3L/K4I и Q8V)		
Модифицирова нная последовательн ость нуклеиновой кислоты сигнального пептида IFN-бета (SP1)	ATGCTCCTGATCTGCCTGCTGGTGATTGCCCTGCTGCTGCTTCAGCAC AACAGCCCTGAGC	53
Модифицирова нная последовательн ость аминокислот сигнального пептида IFN-бета (SP2) (T2L/N3L/C5L/Q8V и L13A)	MLLKLLLVIALLACFSTTALS	54
Модифицирова нная последовательн ость нуклеиновой кислоты сигнального пептида IFN-бета (SP2)	ATGCTCCTGAAGCTCCTGCTGGTGATTGCCCTGCTGGCCTGCTCAGCAC AACAGCCCTGAGC	55
Последователь ность аминокислот	MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNY NTNITEENVQNMNNAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQAL QQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQECLLLEPGLNE IMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYG	56

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
ACE2 (Genbank	DYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMN	
NM 021804.2)	AYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQ	
14141_021004.2)	AWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWD	
¹ T/*	LGKGDFRILMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGF	
Жирный		
шрифт:	HEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNETEINFLLKQALTIVGTL	
трансмембранн	PFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDP	
ый домен и	ASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEA	
внутриклеточн	GQKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNK	
ый домен АСЕ2	NSFVGWSTDWSPYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYA	
(остатки 741 -	MRQYFLKVKNQMILFGEEDVRVANLKPRISFNFFVTAPKNVSDIIPRTEV	
805)	EKAIRMSRSRINDAFRLNDNSLEFLGIQPTLGPPNQPPVS IWLIVFGVVM	
,	GVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGENNPGFQNTDD VQTSF	
	ATGTCAAGCTCTTCCTGGCTCCTTCTCAGCCTTGTTGCTGTAACTGCTGC	57
	TCAGTCCACCATTGAGGAACAGGCCAAGACATTTTTGGACAAGTTTAACC	-
	ACGAAGCCGAAGACCTGTTCTATCAAAGTTCACTTGCTTCTTGGAATTAT	
	AACACCAATATTACTGAAGAGAATGTCCAAAACATGAATAATGCTGGGGA	
	CAAATGGTCTGCCTTTTTAAAGGAACAGTCCACACTTGCCCAAATGTATC	
	CACTACAAGAAATTCAGAATCTCACAGTCAAGCTTCAGCTGCAGGCTCTT	
Последователь	CAGCAAAATGGGTCTTCAGTGCTCTCAGAAGACAAGAGCAAACGGTTGAA	
ность	CACAATTCTAAATACAATGAGCACCATCTACAGTACTGGAAAAGTTTGTA	
нуклеиновой	ACCCAGATAATCCACAAGAATGCTTATTACTTGAACCAGGTTTGAATGAA	
кислоты АСЕ2,	ATAATGGCAAACAGTTTAGACTACAATGAGAGGCTCTGGGCTTGGGAAAG	
кодирующая	CTGGAGATCTGAGGTCGGCAA <i>GCAGCTGAGGCCATTATATGA</i> AGAGTATG	
SEQ ID NO: 56	TGGTCTTGAAAAATGAGATGGCAAGAGCAAATCATTATGAGGACTATGGG	
(из Genbank	GATTATTGGAGAGGAGACTATGAAGTAAATGGGGTAGATGGCTATGACTA	
NM 021804.2)	CAGCCGCGGCCAGTTGATTGAAGATGTGGAACATACCTTTGAAGAGATTA	
14111_021004.2)	AACCATTATATGAACATCTTCATGCCTATGTGAGGGCAAAGTTGATGAAT	
Выделены	GCCTATCCTTCCTATATCAGTCCAATTGGATGCCTCCCTGCTCATTTGCT	
	TGGTGATATGTGGGGTAGATTTTGGACAAATCTGTACTCTTTGACAGTTC	
жирным	CCTTTGGACAGAAACCAAACATAGATGTTACTGATGCAATGGTGGACCAG	
шрифтом и	GCCTGGGATGCACAGAGAATATTCAAGGAGGCCGAGAAGTTCTTTGTATC	
курсивом:	TGTTGGTCTTCCTAATATGACTCAAGGATTCTGGGAAAATTCCATGCTAA	
участки	C <i>GGACCCAGGAAATGTTCAGAA</i> AGCAGTCTGCCATCCCACAGCTTGGGAC	
связывания	CTGGGGAAGGGCGACTTCAGGATCCTTATGTGCACAAAGGTGACAATGGA	
миРНК	CGACTTCCTGACAGCTCATCATGAGATGGGGCATATCCAGTATGATATGG	
	CATATGCTGCACAACCTTTTCTGCTAAGAAATGGAGCTAATGAAGGATTC	
Жирный	CATGAAGCTGTTGGGGAAATCATGTCACTTTCTGCAGCCACACCTAAGCA	
шрифт∶	TTTAAAATCCATTGGTCTTCTGTCACCCGATTTTCAAGAAGACAATGAAA	
последовательн	CAGAAATAAACTTCCTGCTCAAACAAGCACTCACGATTGTTGGGACTCTG	
ость,	CCATTTACTTACATGTTAGAGAAGTGGAGGTGGATGGTCTTTAAAGGGGA	
кодирующая	AATTCCCAAAGACCAGTGGATGAAAAAGTGGTGGTGGAGATGAAGCGAGAGA	
трансмембранн		
ый домен и	TAGTTGGGGTGGTGGAACCTGTGCCCCATGATGAAACATACTGTGACCCC	
внутриклеточн	GCATCTCTGTTCCATGTTTCTAATGATTACTCATTCATTC	
ый домен АСЕ2	AAGGACCCTTTACCAATTCCAGTTTCAAGAAGCACTTTGTCAAGCAGCTA	
an gomon nedz	AACATGAAGGCCCTCTGCACAAATGTGACATCTCAAACTCTACAGAAGCT	
	GGACAGAAACTGTTCAATATGCTGAGGCTTGGAAAATCAGAACCCTGGAC	
	CCTAGCATTGGAAAATGTTGTAGGAGCAAAGAACATGAATGTAAGGCCAC	
	TGCTCAACTACTTTGAGCCCTTATTTACCT GGCTGAAAGACCAGAACAAG	
	A ATTCTTTTGTGGGATGGAGTACCGACTGGAGTCCATATGCAGACCAAAG	
	CATCAAAGTGAGGATAAGCCTAAAATCAGCTCTTGGAGATAAAGCATATG	
	AATGGAACGACAATGAAATGTACCTGTTCCGATCATCTGTTGCATATGCT	
	ATGAGGCAGTACTTTTTAAAAGTAAAAAATCAGATGATTCTTTTTGGGGA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TTGTCACTGCACCTAAAAATGTGTCTGATATCATTCCTAGAACTGAAGTT GAAAAGGCCATCAGGATGTCCCGGAGCCGTATCAATGATGCTTTCCGTCT GAATGACAACAGCCTAGAGTTTCTGGGGATACAGCCAACACTTGGACCTC CTAACCAGCCCCCTGTTTCCATATGGCTGATTGTTTTTTGGAGTTGTGATG GGAGTGATAGTGGTTGGCATTGTCATCCTGATCTTCACTGGGATCAGAGA TCGGAAGAAGAAAATAAAGCAAGAAGTGGAGAAAATCCTTATGCCTCCA TCGATATTAGCAAAGGAGAAAATAATCCAGGATTCCAAAACACTGATGAT GTTCAGACCTCCTTTTAG	
Последователь ность аминокислот эктодомена растворимого рецептора АСЕ2 (происходит из Genbank NM_021804.2; не содержит трансмембранн ый домен и внутриклеточн ый домен)	MSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNY NTNITEENVQNMNNAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQAL QQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQECLLLEPGLNE IMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYG DYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMN AYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQ AWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWD LGKGDFRILMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGF HEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNETEINFLLKQALTIVGTL PFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDP ASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEA GQKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNK NSFVGWSTDWSPYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYA MRQYFLKVKNQMILFGEEDVRVANLKPRISFNFFVTAPKNVSDIIPRTEV EKAIRMSRSRINDAFRLNDNSLEFLGIQPTLGPPNQPPVS	58
Последователь ность нуклеиновой кислоты эктодомена растворимого рецептора АСЕ2, кодирующая SEQ ID NO: 58 Подчеркнута: сигнальная последовательн ость (происходит из Genbank NM_021804.2; не содержит последовательн ость, кодирующую трансмембрания	ATGTCAAGCTCTTCCTGGCTCCTTCTCAGCCTTGTTGCTGTAACTGCTGC TCAGTCCACCATTGAGGAACAGGCCAAGACATTTTTGGACAAGTTTAACC ACGAAGCCGAAGACCTGTTCTATCAAAGTTCACTTGCTTCTTTGGAATTAT AACACCAATATTACTGAAGAGAATATGCCACACACTTGCCCAAATGTTCT CACACAAATGGCCTTTTTTAAAGGAACAGTCCACACTTGCCCAAATGTATC CACTACAAGAAATTCAGAATCTCACAGTCAAGCTTCAGCTGCAGGCTCTT CAGCAAAATGGGTCTTCAGTGCTCTCAGAAGACAAGAGCAAACGGTTGAA CACAATTCTAAATACAATGAGCACCATCTACAGTACTGGAAAAGTTTGTA ACCCAGATAATCCACAAGAATGCTTATTACTTGAACCAGGTTTGAATGAA	59
ость,	CTGGGGAAGGGCGACTTCAGGATCCTTATGTGCACAAAGGTGACAATGGA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
внутриклеточн ый домен)	CAGAAATAAACTTCCTGCTCAAACAAGCACTCACGATTGTTGGGACTCTG CCATTTACTTACATGTTAGAGAAGTGGAGGTGGATGGTCTTTAAAGGGGA AATTCCCAAAGACCAGTGGATGAAAAAGTGGTGGAGATGAAGCGAGAGA TAGTTGGGGTGGTGGAACCTGTGCCCCATGATGAAACATACTGTGACCCC GCATCTCTGTTCCATGTTTCTAATGATTACTCATTCATTC	
	GAATGACAACAGCCTAGAGTTTCTGGGGATACAGCCAACACTTGGACCTC CTAACCAGCCCCTGTTTCCTAA	
Последователь ность аминокислот RBD шиповидного белка SARS CoV-2	RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVL YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKI ADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDI STEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELL HAPATVCGPKKSTNLVKNKCVNF	60
Последователь ность нуклеиновой кислоты RBD шиповидного белка SARS CoV-2 (кодирующая SEQ ID NO: 36) Выделены жирным и курсивом: участки, связывающие	AGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTT GTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATG CTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTTTATTCTGTCCTA TATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTAC TAAATTAAAT	61
миРНК Последователь ность аминокислот нуклеокапсидн ого белка (N) SARS CoV-2 (NCBI YP_009724397. 2)	MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTA SWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGK MKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRN PANNAAIVLQLPQGTTLPKGFYAEGSRGGSQASSRSSSRSNSSRNSTPG SSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTKKS AAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKH WPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQV ILLNKHIDAYKTFPPTEPKKDKKKKKADETQALPQRQKKQQTVTLLPAADL DDFSKQLQQSMSSADSTQA	62

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
Последователь ность нуклеиновой кислоты нуклеокапсидн ого белка (N) SARS CoV-2, кодирующая SEQ ID NO: 38	GCCACC ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCAT TACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAAC GCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAAT ACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGACCTTAA ATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCCAGATG ACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGAC GGTAAAATGAAAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAAC TGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATAT GGGTTGCAACTGAGGAGCCTTGAATACACCAAAAGATCACATTGGCACC CGCAATCCTGCTAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAAC AACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCAGTCAAG	63
шрифт и подчеркнута: последовательн ость Козак Выделена	CCTCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACT CCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGCAATGGCGG TGATGCTGCTCTTGCTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGA GCAAAATGTCTGGTAAAGGCCAACAACAACAAGGCCAAACTGTCACTAAG AAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCAC TAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAA CCCAAGGAAATTTTTGGGGACCAGGAACTAATCAGACAAGGAACTGATTAC	
курсивом: ОРС нуклеокапсидн ого (N) белка SARS CoV-2	AAACATTGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTT CGGAATGTCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGA CCTACACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTTCAAAGAT CAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACC AACAGAGCCTAAAAAAGGACAAAAAGAAGAGGCTGATGAAACTCCAAGCCT TACCGCAGAGACAGAAGAAAAAGAACTGTGACTCTTCTTCCTGCTGCA	
жирным и курсивом: участок связывания миРНК	GATTTGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGA CTCAACTCAGGCCGGGGGTGGAGGCTCTGTGTCCAAGGGCGAAGAACTGT TCACCGGCGTGGTGCCCATTCTGGTGGAACTGGACGGGGATGTGAACGGC CACAAGTTTAGCGTTAGCGGCGAAGGCGAAGGGGATGCCACATACGGAAA GCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCTGTGCCTTGGC CTACACTGGTCACCACACTGACATACGGCGTGCAGTGCTTCAGCAGATAC	
Жирный шрифт: Гибкий линкер Подчеркнута: ОРС репортерного белка eGFP	CCCGACCATATGAAGCAGCACGACTTCTTCAAGAGCGCCATGCCTGAGGG CTACGTGCAAGAGCGGACCATCTTCTTTAAGGACGACGCAACTACAAGA CCAGGGCCGAAGTGAAGT	
Белок Nsp1 SARS CoV-2 (NCBI YP_009725297. 1)	MESLVPGFNEKTHVQLSLPVLQVRDVLVRGFGDSVEEVLSEARQHLKDGT CGLVEVEKGVLPQLEQPYVFIKRSDARTAPHGHVMVELVAELEGIQYGRS GETLGVLVPHVGEIPVAYRKVLLRKNGNKGAGGHSYGADLKSFDLGDELG TDPYEDFQENWNTKHSSGVTRELMRELNGG	64
Белок Nsp1 SARS CoV-2 (первые 100 аминокислот последовательн ости SEQ ID NO: 40)	MESLVPGFNEKTHVQLSLPVLQVRDVLVRGFGDSVEEVLSEARQHLKDGT CGLVEVEKGVLPQLEQPYVFIKRSDARTAPHGHVMVELVAELEGIQYGRS	65

Fara		
Белок или	Последовательность (белок: от N-конца к С-концу; нуклеиновая	SEQ ID
нуклеиновая	кислота: от 5' к 3')	NO:
кислота		
Последователь	GACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGT	66
ность	GTTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAA	
нуклеиновой	GGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACACACGTCCA	
кислоты белка	ACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTG	
NSP1 SARS	GAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGAT	
CoV-2	GGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGA	
(кодирующая	ACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATG	
SEQ ID NO: 40	GTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGT	
в положениях	CGTAGTGGGGGTGGAGGCTCTGTGTCCAAGGGCGAAGAACTGTTCACCGG	
107 - 406, OPC	CGTGGTGCCCATTCTGGTGGAACTGGACGGGGATGTGAACGGCCACAAGT	
выделена	TTAGCGTTAGCGGCGAAGGCGAAGGGGATGCCACATACGGAAAGCTGACC	
курсивом)	CTGAAGTTCATCTGCACCACCGGCAAGCTGCCTGTGCCTTGGCCTACACT	
	GGTCACCACACTGACATACGGCGTGCAGTGCTTCAGCAGATACCCCGACC	
Выделен	ATATGAAGCAGCACGACTTCTTCAAGAGCGCCATGCCTGAGGGCTACGTG	
жирным	CAAGAGCGGACCATCTTCTTTAAGGACGACGCAACTACAAGACCAGGGC	
шрифтом и	CGAAGTGAAGTTCGAGGGCGACACCCTGGTCAACCGGATCGAGCTGAAGG	
курсивом:	GCATCGACTTCAAAGAGGACGGCAACATCCTGGGCCACAAGCTCGAGTAC	
участок	AACTACAACAGCCACAACGTGTACATCATGGCCGACAAGCAGAAAAACGG	
связывания	CATCAAAGTGAACTTCAAGATCCGGCACAACATCGAGGACGGCTCTGTGC	
миРНК	AGCTGGCCGATCACTACCAGCAGAACACCCCATCGGAGATGGCCCTGTG	
	CTGCTGCCCGATAACCACTACCTGAGCACACAGAGCGCCCTGAGCAAGGA	
Жирный	CCCCAACGAGAGAGGGATCACATGGTGCTGCTGGAATTCGTGACCGCCG	
шрифт: гибкий	CTGGCATCACACTCGGCATGGATGAGCTGTACAAGTGA	
линкер		
,		
Подчеркнута:		
OPC		
репортерного		
белка eGFP		
(5'-HTO SARS		
CoV-2 показана		
против хода		
транскрипции		
от первого		
кодона ATG в		
положении		
107)		
ĺ		
	GTCACATGTTGACACTGACTTAACAAAGCCTTACATTAAGTGGGATTTGT	67
Последователь	TAAAATATGACTTCACGGAAGAGAGGTTAAAACTCTTTGACCGTTAT TTT	07
ность	AAATATTGGGATCAGACATACCACCCAAATTGTGTTAACTGTTTTGGATGA	
нуклеиновой	CAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTACAGTGT	
кислоты NSP-	TCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGT	
12 и NSP13	GTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTGT	
SARS CoV-2	ACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAAT	
	TACTTGTGTATGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCTA	
	INCITIGITATIGCI GOTANOCCI GOTANI GOTACOTI GOTANI CITA	

Белок или		CEO ID
нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая	SEQ ID
кислота	кислота: от 5' к 3')	NO:
Выделен	TTACTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACAA	
	TGTTGCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTATG	
жирным	ACTTTGCTGTGTCTAAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATTA	
шрифтом и		
курсивом:	AAACACTTCTTCTTTGCTCAGGATGGTAATGCTGCTATCAGCGATTATGA CTACTATCGTTATAATCTACCAACAATGTGTGATATCAGACAACTACTAT	
участки		
связывания	TTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATGGTGGCTGT	
миРНК	ATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGGTTT	
	TCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTT	
	ATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCCT	
	ACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCA AAGAATAGAGC	
	TCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAGT	
	TTCATCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGTA	
	GTAATTGGAACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAAC	
	TGTTTATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGATTATCCTA	
	AATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGTT	
	CTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTTTCTATAG	
	ATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATGTGTGGCG	
	GTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACAACT	
	GCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATGT	
	TAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTCC	
	GCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGTT	
	GACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTC	
	AATGATGATACTCTCTGACGATGCTGTTGTGTGTTTCAATAGCACTTATG	
	CATCTCAAGGTCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTAT	
	TATCAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTGA	
	CCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACAATGCTAGTTA	
	AACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCCATCAAGAATC	
	CTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGTACACT	
	TATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTTACCCACTTACTA	
	AACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATAC	
	ATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATTC	
	TGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTTT	
	ATGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTGT	
	GTTCTTTGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTAG	
	ACCATTCTTATGTTGTAAATGCTGTTACGACCATGTCATATCAACATCAC	
	ATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCAATGCTCCAGGTTGT	
	GATGTCACAGATGTGACTCAACTTTACTTAGGAGGTATGAGCTATTATTG	
	TAAATCACATAAACCACCATTAGTTTTCCATTGTGTGCTAATGGACAAG	
	TTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGAC	
	TTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTTT	
	AGCTAACACCTGTACTGAAAGACTCAAGCTTTTTTGCAGCAGAAACGCTCA	
	AAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACGT	
	GAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAACC	
	TAGACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACCTA	
	AAAACAGTAAAGTACAAATTATGTCTTTACTGGTTATCGTGTAACTA	
	GGTGATGCTGTTTTACCGAGGTACAACAACTTACAAATTAAATGTTGG	
	TGATTATTTTGTGCTGACATCACATACAGTAATGCCATTAAGTGCACCTA	
	CACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGCTTATACCCAACA	
	CTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATCAAAAGGT	
	TGGTATGCAAAAGTATTCTACACTCCAGGGACCACCTGGTACTGGTAAGA	
	GTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTGCTCGCATAGTG	
	TATACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAGAAGGCATT	
	AAAATATTTGCCTATAGATAAATGTAGTAGAATTATACCTGCACGTGCTC	
	GTGTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATTAGAACAGTAT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GTCTTTTGTACTGTAAATGCATTGCCTGAGACGACAGCAGATATAGTTGT CTTTGATGAAATTTCAATGGCCACAAATTATGATTTGAGTGTTGTCAATG CCAGATTACGTGCTAAGCACTATGTGTACATTGGCGACCCTGCTCAATTA CCTGCACCACGCACATTGCTAACTAAGGGCACACTAGAACCAGAATATTT CAATTCAGTGTGTAGACTTATGAAAACTATAGGTCCAGACATGTTCCTCG GAACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGTGAGTGCTTTG GTTTATGATAATAAGCTTAAAGCACATAAAGACAAATCAGCTCAATGCTT TAAAATGTTTTATAAGGGTGTTATCACGCATGATGTTTCATCTGCAATTA ACAGGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGTAACCCTGCT TGGAGAAAAGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTT CAGAATATGACTATGTCATATTCACTCAAACCACTGAAACAGCTCACTCT TGTAATGTAA	
Набор 1 для кПЦР, прямой праймер -1	GATGTGGTGCTTGCATACGT	68
Набор 1 для кПЦР, зонд -1	TGCTGTTACGACCATGTCAT	69
Набор 1 для кПЦР, обратный праймер -1	TCACAACCTGGAGCATTGCA	70
Набор 2 для кПЦР, прямой праймер -2	AATAGAGCTCGCACCGTAGC	71
Набор 2 для кПЦР, зонд-2	GGTGTCTCTATCTGTAGTACTATGACC	72
Набор 2 для кПЦР, обратный праймер -2	AGTGGCGGCTATTGATTTCA	73
Последователь ность нуклеиновой кислоты IL-6 (кодирующая белок последовательн ость) Выделены экирным и курсивом: участки связывания миРНК	ATGAACTCCTTCTCCACAAGCGCCTTCGGTCCAGTTGCCTTCTCCCTGGG GCTGCTCCTGGTGTTGCCTGCTGCCTTCCCTGCCCCAGTACCCCCAGGAG AAGATTCCAAAGATGTAGCCGCCCCACACAGACAGCCACTCACCTCTTCA GAACGAATTGACAAACAAATTCGGTACATCCTCGACGCCATCTCAGCCCT GAGAAAGGAGACATGTAACAAGAGTAACATGTGTGAAAGCAGCAAAGAGG CACTGGCAGAAAACAACCTGAACCTTCCAAAGATGGCTGAAAAAAGATGGA TGCTTCCAATCTGGATTCAATGAGGAGACTTGCCTGGTGAAAAATCATCAC TGGTCTTTTGGAGTTTGAGGTATACCTAGAGTACCTCCAGAACAGATTTG AGAGTAGTGAGGAACAAGCCAGAGCTGTGCAGATGAGTACAAAAGTCCTG ATCCAGTTCCTGCAGAAAAAGGCAAAGAATCTAGATGCAATAACCACCC TGACCCAACCACAAATGCCAGCCTGCTGACGAAGCTGCAGGCACAGAACC AGTGGCTGCAGGACATGACAACTCATCTCAT	74

Белок или нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
кислота		75
	ATGCTGGCCGTCGGCTGCCGCGCTGCTGCCTGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	75
	AGCGGCGCTGGCCCCAAGGCGCTGCCCTGCGCAGAGGTGGCGAGAGGCG	
Последователь	TGCTGACCAGTCTGCCAGGAGACAGCGTGACTCTGACCTGCCCGGGGGTA	
ность	GAGCCGGAAGACAATGCCACTGTTCACTGGGTGCTCAGGAAGCCGGCTGC	
нуклеиновой	AGGCTCCCACCCAGCAGATGGGCTGGCATGGGAAGGAGGCTGCTGA	
кислоты IL-6R-	GGTCGGTGCAGCTCCACGACTCTGGAAACTATTCATGCTACCGGGCCGGC	
альфа	CGCCCAGCTGGGACTGTGCACTTGCTGGTGGATGTTCCCCCCGAGGAGCC	
(кодирующая	CCAGCTCTCCTGCTTCCGGAAGAGCCCCCTCAGCAATGTTGTTTGT	
белок	GGGGTCCTCGGAGCACCCCATCCCTGACGACAAAGGCTGTGCTCTTG <i>GTG</i>	
последовательн	AGGAAGTTTCAGAACAGTCCGGCCGAAGACTTCCAGGAGCCGTGCCAGTA	
ость)	TTCCCAGGAGTCCCAGAAGTTCTCCTGCCAGTTAGCAGTCCCGGAGGGAG	
0015)	ACAGCTCTTTCTACATAGTGTCCATGTGCGTCGCCAGTAGTGTCGGGAGC	
Выделены	AAGTTCAGCAAAACTCAAACCTTTCAGGGTTGTGGAATCTTGCAGCCTGA	
экирным	TCCGCCTGCCAACATCACAGTCACTGCCGTGGCCAGAAACCCCCGCTGGC	
	TCAGTGTCACCTGGCAAGACCCCCACTCCTGGAACTCATCTTTCTACAGA	
шрифтом и	CTACGGTTTGAGCTCAGATATCGGGCT <i>GAACGGTCAAAGACATTCACA</i> AC	
курсивом:	ATGGATGGTCAAGGACCTCCAGCATCACTGTGTCATCCACGACGCCTGGA	
участки	GCGGCCTGAGGCACGTGGTGCAGCTTCGTGCCCAGGAGGAGTTCGGGCAA	
связывания	GGCGAGTGGAGCGGAGCCCGGAGGCCATGGGCACGCCTTGGACAGA	
миРНК	CAGGCTTTCTCCTCGTTGCCCAGGATGGAGTACAGCAGTGCAATCACAGC	
	TCACGGCAACTTCTGCCTCCTGGGTTCAAGCAATCCTCCCGCCTCAGCCT	
	CCTAAGTAG	
Посполовотот	ATGTTGACGTTGCAGACTTGGCTAGTGCAAGCCTTGTTTATTTTCCTCAC	76
Последователь	CACTGAATCTACAGGTGAACTTCTAGATCCATGTGGTTATATCAGTCCTG	
ность	AATCTCCAGTTGTACAACTTCATTCTAATTTCACTGCAGTTTGTGTGCTA	
нуклеиновой	AAGGAAAAATGTATGGATTATTTTCATGTAAATGCTAATTACATTGTCTG	
кислоты IL-6R-	GAAAACAAACCATTTTACTATTCCTAAGGAGCAATATACTATCATAAACA	
бета	GAACAGCATCCAGTGTCACCTTTACAGATATAGCTTCATTAAATATTCAG	
(кодирующая	CTCACTTGCAACATTCTTACATTCGGACAGCTTGAACAGAATGTTTATGG	
белок	AATCACAATAATTTCAGGCTTGCCTCCAGAAAAACCTAAAAATTTGAGTT	
последовательн	GCATTGTGAACGAGGGGAAGAAAATGAGGTGTGAGTGGGATGGTGGAAGG	
ость)	GAAACACACTTGGAGACAAACTTCACTTTAAAATCTGAATGGGCAACACA	
	CAAGTTTGCTGATTGCAAAGCAAAACGTGACACCCCCACCTCATGCACTG	
Выделены	TTGATTATTCTACTGTGTATTTTGTCAACATTGAAGTCTGGGTAGAAGCA	
жирным	GAGAATGCCCTT <i>GGGAAGGTTACATCAGATCAT</i> ATCAATTTTGATCCTGT	
шрифтом и	ATATAAAGTGAAGCCCAATCCGCCACATAATTTATCAGTGATCAACTCAG	
курсивом:	AGGAACTGTCTAGTATCTTAAAATTGACATGGACCAACCCAAGTATTAAG	
участки	AGGAACTGTCTAGTATCTTAAAATTGACATGGACCAACCCAAGTATTAAG AGTGTTATAATACTAAAATATAACATTCAATATAGGACCAAAGATGCCTC	
связывания	AACTTGGAGCCAGATTCCTCCTGAAGACACAGCATCCACCGATCTTCAT	
миРНК	TCACTGTCCAAGACCTTAAACCTTTTACAGAATATGTGTTTAGGATTCGC	
	TGTATGAAGGAAGATGGTAAGGGATACTGGAGTGACTGGAGTGAAGAAGC	
	AAGTGGGATCACCTATGAAGATAACATTGCCTCCTTTTGA	77
	ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAAC	77
	TTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTC	
	GGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGT	
	CGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGT	
CADO	TTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTG	
SARS CoV-	TGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAAC	
2_Refseq	ACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTAC	
	GTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACAT	
	CTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAAGGCGTTTTGCC	
	TCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTG	
	CACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATT	
	CAGTACGGTCGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGG	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	CGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAACGGTAATA	
	AAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTA	
	GGCGACGAGCTTGGCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAA	
	CACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAACG	
	GAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGC	
	TACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTC	
	ATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTAT	
	ACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCT	
	GAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAA	
	ATTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATT	
	CCATAATCAAGACTATTCAACCAAGGGTTGAAAAGAAAA	
	TTTATGGGTAGAATTCGATCTGTCTATCCAGTTGCGTCACCAAATGAATG	
	CAACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCATTGTGGTGAAA	
	CTTCATGGCAGACGGGCGATTTTGTTAAAGCCACTTGCGAATTTTGTGGC	
	ACTGAGAATTTGACTAAAGAAGGTGCCACTACTTGTGGTTACTTAC	
	AAATGCTGTTGTTAAAATTTATTGTCCAGCATGTCACAATTCAGAAGTAG	
	GACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGGCTTGAAAACC	
	ATTCTTCGTAAGGGTGGTCGCACTATTGCCTTTGGAGGCTGTGTTTCTC	
	TTATGTTGGTTGCCATAACAAGTGTGCCTATTGGGTTCCACGTGCTAGCG	
	CTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGT	
	CTTAATGACAACCTTCTTGAAATACTCCAAAAAGAGAAAGTCAACATCAA	
	TATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCAT	
	CTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTTTGGAT	
	TATAAAGCATTCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTAC	
	AAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAA	
	TACTGAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGA	
	TCAATTTTCTCCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTT	
	ACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAGTATTCACTGA	
	GACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAATCTA	
	GTTGTAATGGCCTACATTACAGGTGGTGTTGTTCAGTTGACTTCGCAGTG	
	GCTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCGTCCTTG	
	ATTGGCTTGAAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGT	
	TGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAATTGTCGGTGG	
	ACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGACATTCT	
	TTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATT	
	GGTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCA	
	CTCAAAGGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCC	
	TACTCATGCCTCTAAAAGCCCCCAAAAGAAATTATCTTCTTAGAGGGAGAA	
	ACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGA	
	TTTACAACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGCTCCATTGG	
	TTGGTACACCAGTTTGTATTAACGGGCTTATGTTGCTCGAAATCAAAGAC	
	ACAGAAAAGTACTGTGCCCTTGCACCTAATATGATGGTAACAAACA	
	CTTCACACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGGTGATGACA	
	CTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATATCACTTTTGAACTT	
	GATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGT	
	TGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATGCTG	
	TCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATT	
	GATTTAGATGAGTGGAGTATGGCTACATACTACTTATTTGATGAGTCTGG	
	TGAGTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATG	
	AGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACT	
	CAATATGAGTATGGTACTGAAGATGATTACCAAGGTAAACCTTTGGAATT	
	TGGTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCAAGAAGAAGATT	
	GGTTAGATGATGATAGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAG	
	GACAATCAGACAACTACTATTCAAACAATTGTTGAGGTTCAACCTCAATT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	AGAGATGGAACTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTA	
	GTGGTTATTTAAAACTTACTGACAATGTATACATTAAAAATGCAGACATT	
	GTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAA	
	TGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGGCTA	
	CTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGA	
	CCACTTAAAGTGGGTGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAA	
	ACACTGTCTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTC	
	AACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTT	
	GCACCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTT	
	AAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTG	
	ATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGT	
	GAAAAGCAAGTTGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAA	
	GCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATG	
	ATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAA	
	ACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGGCAA	
	TCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCT	
	TAAAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTT	
	TTAACTGCTGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAAT	
	GCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTT	
	ACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGCAAAGACAGTG	
	CTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAA	
	TGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGC	
	TTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGT	
	AAAGCCATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACA	
	AGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAA	
	CAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAACTCTT	
	GTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGC	
	TGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTT	
	CACCTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTAAA	
	ACACCTGAAGAACATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAA	
	AGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATAGAATTTCTTA	
	AGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACATTCCAC	
	CTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCT	
	GAGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACC	
	TCCACACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGGT	
	CCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAA	
	ACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTACGTG	
	TTGAGGCTTTTGAGTACTACCACACACTGATCCTAGTTTTCTGGGTAGG	
	TACATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAA	
	TGGTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTG	
	CATTGTTAACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGCTCTA	
	CAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGC	
	ACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTGATGTTA	
	GAGAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAAA	
	AGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCT	
	TAAGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAAT	
	TTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACAAGCTACAAAA	
	TATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGC	
	TCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTG	
	GTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTG	
	TATTGCATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCC	
	TATTACGGATGTTTTCTACAAAGAAAACAGTTACAAACAA	
	CAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAAATTGACCCTAAG	
	TTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGCAACCAAT	
	IIGGACAAIIAIIAIAAGAAAAGACAAIICIIATTTCACAGAGCAACCAAT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTTTA	
	AGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACT	
	GGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGA	
	CTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTT	
	TTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGTTTGGCATGTTAAC	
	AATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTG	
	TCTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGA	
	AGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAA	
	CCAGTCTCTGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCT	
	TGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAAC	
	CAGCAAATAATAGTTTAAAAATTACAGAAGAGGTTGGCCACACAGATCTA	
	ATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGA	
	ATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTG	
	CTGTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTT	
	CTTAACAAAGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAA	
	CCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCTACAAT	
	TGTGTACTTTACTAGAAGTACAAATTCTAGAATTAAAGCATCTATGCCG	
	ACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGA	
	GGCTTCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATA	
	TTATAATTTGGTTTTTACTATTAAGTGTTTTGCCTAGGTTCTTTAATCTAC	
	TCAACCGCTGCTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTA	
	CTGTACTGGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCACTATTG	
	CAACCTACTGTACTGGTTCTATACCTTGTAGTGTTTTGTCTTAGTGGTTTA	
	GATTCTTTAGACACCTATCCTTCTTTAGAAACTATACAAATTACCATTTC	
	ATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGGTTTT	
	TGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCTGCA	
	ATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTC	
	TTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAG	
	CTATGGTTAGAATGTACATCTTCTTTGCATCATTTTATTATGTATG	
	AGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTG	
	TTACAAACGTAATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATG	
	GTGTTAGAAGGTCCTTTTATGTCTATGCTAATGGAGGTAAAGGCTTTTGC	
	AAACTACACAATTGGAATTGTGTTAATTGTGATACATTCTGTGCTGGTAG	
	TACATTTATTAGTGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAAA	
	GACCAATAAATCCTACTGACCAGTCTTCTTACATCGTTGATAGTGTTACA	
	GTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAAAAGAC	
	TTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAG	
	CTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGT	
	AAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAG	
	TCAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTG	
	ATGTTGGTGATAGTGCGGAAGTTGCAGTTAAAATGTTTGATGCTTACGTT	
	AATACGTTTTCATCAACTTTTAACGTACCAATGGAAAAACTCAAAACACT	
	AGTTGCAACTGCAGAAGCTGAACTTGCAAAGAATGTGTCCTTAGACAATG	
	TCTTATCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGATTCAGAT GTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGA	
	CATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCACCTATAACA AAGTTGAAAACATGACACCCCGTGACCTTGGTGCTTGTATTGACTGTAGT	
	GCGCGTCATATTAATGCGCAGGTAGCAAAAAAGTCACAACATTGCTTTGAT	
	ATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAA	
	TACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCA	
	ACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGG	
	TGGTAAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAAGTTACACTTG	
	TGTTCCTTTTTGTTGCTGCTATTTTCTATTTAATAACACCTGTTCATGTC	
	ATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAAGGCTAT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGATGGTGGTGACATCGTGACATAGCATCTACAGATACTTGTTTTGCTA	
	ACAAACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTAT	
	ACTAATGACAAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGT	
	GGGTTTTGTCGTGCCTGGTTTGCCTGGCACGATATTACGCACAACTAATG	
	GTGACTTTTTGCATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACATC	
	TGTTACACACCATCAAAACTTATAGAGTACACTGACTTTGCAACATCAGC	
	TTGTGTTTTGGCTGCTGAATGTACAATTTTTAAAGATGCTTCTGGTAAGC	
	CAGTACCATATTGTTATGATACCAATGTACTAGAAGGTTCTGTTGCTTAT	
	GAAAGTTTACGCCCTGACACACGTTATGTGCTCATGGATGG	
	TCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGTAACAACTT	
	TTGATTCTGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGT	
	GTTTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAG	
	ATCTTTACCAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTAC	
	ATATGTTTACACCACTAATTCAACCTATTGGTGCTTTGGACATATCAGCA	
	TCTATAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGCCTTGCCTA	
	CTATTTTATGAGGTTTAGAAGAGCTTTTGGTGAATACAGTCATGTAGTTG	
	CCTTTAATACTTTACTATTCCTTATGTCATTCACTGTACTCTGTTTAACA	
	CCAGTTTACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGTACTT	
	GACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACATATTCAGTGGA	
	TGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTTATATC	
	ATTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAA	
	GAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTG	
	CGCTGTGCACCTTTTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGT	
	GATGTGCTATTACCTCTTACGCAATATAATAGATACTTAGCTCTTTATAA	
	TAAGTACAAGTATTTTAGTGGAGCAATGGATACAACTAGCTACAGAGAAG	
	CTGCTTGTTGTCATCTCGCAAAGGCTCTCAATGACTTCAGTAACTCAGGT	
	TCTGATGTTCTTTACCAACCACCACAAACCTCTATCACCTCAGCTGTTTT	
	GCAGAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAAGTTGAGGGTT	
	GTATGGTACAAGTAACTTGTGGTACAACTACACTTAACGGTCTTTGGCTT	
	GATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCTGAAGACAT	
	GCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATAATT	
	TCTTGGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATG	
	CAAAATTGTGTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACC	
	TAAGTATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTCAGTGTTAG	
	CTTGTTACAATGGTTCACCATCTGGTGTTTACCAATGTGCTATGAGGCCC	
	AATTTCACTATTAAGGGTTCATTCCTTAATGGTTCATGTGGTAGTGTTGG	
	TTTTAACATAGATTATGACTGTGTCTCTTTTTTGTTACATGCACCATATGG	
	AATTACCAACTGGAGTTCATGCTGGCACAGACTTAGAAGGTAACTTTTAT	
	GGACCTTTTGTTGACAGGCAAACAGCACAAGCAGCTGGTACGGACACAAC	
	TATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTATAAATGGAG	
	ACAGGTGGTTTCTCAATCGATTTACCACAACTCTTAATGACTTTAACCTT	
	GTGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGACAT	
	ACTAGGACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTG	
	CTTCATTAAAAGAATTACTGCAAAATGGTATGAATGGACGTACCATATTG	
	GGTAGTGCTTTATTAGAAGATGAATTTACACCTTTTGATGTTGTTAGACA	
	ATGCTCAGGTGTTACTTTCCAAAGTGCAGTGAAAAGAACAATCAAGGGTA	
	CACACCACTGGTTGTTACTCACAATTTTGACTTCACTTTTAGTTTTAGTC	
	CAGAGTACTCAATGGTCTTTGTTCTTTTTTTTTTTTTTT	
	ACCTTTTGCTATGGGTATTATTGCTATGTCTGCTTTTTGCAATGATGTTTG	
	TCAAACATAAGCATGCATTTCTCTGTTTTGTTTTTTTTTT	
	ACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGGTGATGCG	
	TATTATGACATGGTTGGATATGGTTGATACTAGTTTGTCTGGTTTTAAGC	
	TAAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATG	
	ACAGCAAGAACTGTGTATGATGATGGTGCTAGGAGAGTGTGGACACTTAT	
	ACAGCAAGAACIGIGIAIGAIGGIGCIAGGAGAGTGTGGACACTTAT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GAATGTCTTGACACTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATC	
	AAGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTTCTAACTACTCA	
	GGTGTAGTTACAACTGTCATGTTTTTGGCCAGAGGTATTGTTTTTATGTG	
	TGTTGAGTATTGCCCTATTTTCTTCATAACTGGTAATACACTTCAGTGTA	
	TAATGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTTACTTTGGC	
	CTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGGTGTTTATGA	
	TTACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGACTAC	
	TCCCACCCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTG	
	GGTGTTGGTGGCAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAAT	
	GTCAGATGTAAAGTGCACATCAGTAGTCTTACTCTCAGTTTTGCAACAAC	
	TCAGAGTAGAATCATCTAAATTGTGGGCTCAATGTGTCCAGTTACAC	
	AATGACATTCTCTTAGCTAAAGATACTACTGAAGCCTTTGAAAAAATGGT	
	TTCACTACTTTCTGTTTTGCTTTCCATGCAGGGTGCTGTAGACATAAACA	
	AGCTTTGTGAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTATAGCC	
	TCAGAGTTTAGTTCCCTTCCATCATATGCAGCTTTTGCTACTGCTCAAGA	
	AGCTTATGAGCAGGCTGTTGCTAATGGTGATTCTGAAGTTGTTCTTAAAA	
	AGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGATGCA	
	GCCATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAAT	
	GTATAAACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCTA	
	TGCAGACAATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTC	
	AACAACATTATCAACAATGCAAGAGATGGTTGTGTTCCCTTGAACATAAT	
	ACCTCTTACAACAGCAGCCAAACTAATGGTTGTCATACCAGACTATAACA	
	CATATAAAAATACGTGTGATGGTACAACATTTACTTATGCATCAGCATTG	
	TGGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAG	
	TGAAATTAGTATGGACAATTCACCTAATTTAGCATGGCCTCTTATTGTAA	
	CAGCTTTAAGGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCTTAGT	
	CCTGTTGCACTACGACAGATGTCTTGTGCTGCCGGTACTACACAAACTGC	
	TTGCACTGATGACAATGCGTTAGCTTACTACAACAACAACAAAGGGAGGTA	
	GGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGCTAGA	
	TTCCCTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACCACC	
	TTGTAGGTTTGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTAT	
	ACTTTATTAAAGGATTAAACAACCTAAATAGAGGTATGGTACTTGGTAGT	
	TTAGCTGCCACAGTACGTCTACAAGCTGGTAATGCAACAGAAGTGCCTGC	
	CAATTCAACTGTATTATCTTTCTGTGCTTTTGCTGTAGATGCTGCTAAAG	
	CTTACAAAGATTATCTAGCTAGTGGGGGACAACCAATCACTAATTGTGTT	
	AAGATGTTGTGTACACACACTGGTACTGGTCAGGCAATAACAGTTACACC	
	GGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCATCGTGTTGTCTGT	
	ACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTGTGACTTA	
	AAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTGGG	
	TTTTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTT	
	ATGGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAG	
	GCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACA	
	CCGTGCGGCACAGGCACTAGTACTGATGTCGTATACAGGGCTTTTGACAT	
	CTACAATGATAAAGTAGCTGGTTTTGCTAAAATTCCTAAAAACTAATTGTT	
	GTCGCTTCCAAGAAAAGGACGAAGATGACAATTTAATTGATTCTTACTTT	
	GTAGTTAAGAGACACACTTTCTCTAACTACCAACATGAAGAAACAATTTA	
	TAATTTACTTAAGGATTGTCCAGCTGTTGCTAAACATGACTTCTTTAAGT	
	TTAGAATAGACGGTGACATGGTACCACATATATCACGTCAACGTCTTACT	
	AAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGG	
	TAATTGTGACACATTAAAAGAAATACTTGTCACATACAATTGTTGTGATG	
	ATGATTATTTCAATAAAAAGGACTGGTATGATTTTTGTAGAAAACCCAGAT	
	ATATTACGCGTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTTTGTT	
	AAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTG	
	TACTGACATTAGATAATCAAGATCTCAATGGTAACTGGTATGATTTCGGT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GATTTCATACAAACCACGCCAGGTAGTGGAGTTCCTGTTGTAGATTCTTA	
	TTATTCATTGTTAATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAG	
	AGTCACATGTTGACACTGACTTAACAAAGCCTTACATTAAGTGGGATTTG	
	TTAAAATATGACTTCACGGAAGAGAGGTTAAAACTCTTTGACCGTTATTT	
	TAAATATTGGGATCAGACATACCACCCAAATTGTGTTAACTGTTTGGATG	
	ACAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTACAGTG	
	TTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGG	
	TGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTG	
	TACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAA	
	TTACTTGTGTATGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCT	
	ATTACTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACA	
	ATGTTGCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTAT	
	GACTTTGCTGTGTCTAAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATT	
	AAAACACTTCTTCTTTGCTCAGGATGGTAATGCTGCTATCAGCGATTATG	
	ACTACTATCGTTATAATCTACCAACAATGTGTGATATCAGACAACTACTA	
	TTTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATGGTGGCTG	
	TATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGGTT	
	TTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGT	
	TATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCC	
	TACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAG	
	CTCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAG	
	TTTCATCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGT	
	AGTAATTGGAACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAA	
	CTGTTTATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGATTATCCT	
	AAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGT	
	TCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTTTCTATA	
	GATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATGTGTGGC	
	GGTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACAAC	
	TGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATG	
	TTAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTC	
	CGCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGT	
	TGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCT	
	CAATGATGATACTCTCTGACGATGCTGTTTGTGTGTTTCAATAGCACTTAT	
	GCATCTCAAGGTCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTA	
	TTATCAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTG	
	ACCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACAATGCTAGTT	
	AAACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCCATCAAGAAT	
	CCTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGTACAC	
	TTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTTACCCACTTACT	
	AAACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATA	
	CATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATT	
	CTGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTT	
	TATGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTG	
	TGTTCTTTGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTA GACCATTCTTATGTTGTAAATGCTGTTACGACCATGTCATATCAACATCA	
	CATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCAATGCTCCAGGTTG TGATGTCACAGATGTGACTCAACTTTACTTAGGAGGTATGAGCTATTATT	
	GTAAATCACATAAACCACCCATTAGTTTTCCATTGTGTGCTAATGGACAA	
	GTTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGA	
	CTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTT	
	TAGCTAACACCTGTACTGAAAGACTCAAGCTTTTTTGCAGCAGAAACGCTC	
	AAAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACG	
	TGAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAAC	
	CTAGACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	AAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAAGGTGACTA	
	TGGTGATGCTGTTTACCGAGGTACAACAACTTACAAATTAAATGTTG	
	GTGATTATTTTGTGCTGACATCACATACAGTAATGCCATTAAGTGCACCT	
	ACACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGCTTATACCCAAC	
	ACTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATCAAAAGG	
	TTGGTATGCAAAAGTATTCTACACTCCAGGGACCACCTGGTACTGGTAAG	
	AGTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTGCTCGCATAGT	
	GTATACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAGAAGGCAT	
	TAAAATATTTGCCTATAGATAAATGTAGTAGAATTATACCTGCACGTGCT	
	CGTGTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATTAGAACAGTA	
	TGTCTTTTGTACTGTAAATGCATTGCCTGAGACGACAGCAGATATAGTTG	
	TCTTTGATGAAATTTCAATGGCCACAAATTATGATTTGAGTGTTGTCAAT	
	GCCAGATTACGTGCTAAGCACTATGTGTACATTGGCGACCCTGCTCAATT	
	ACCTGCACCACGCACATTGCTAACTAAGGGCACACTAGAACCAGAATATT	
	TCAATTCAGTGTGTAGACTTATGAAAACTATAGGTCCAGACATGTTCCTC	
	GGAACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGTGAGTGCTTT	
	GGTTTATGATAATAAGCTTAAAGCACATAAAGACAAATCAGCTCAATGCT	
	TTAAAATGTTTTATAAGGGTGTTATCACGCATGATGTTTCATCTGCAATT	
	AACAGGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGTAACCCTGC	
	TTGGAGAAAGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTGTAG	
	CCTCAAAGATTTTGGGACTACCAACTCAAACTGTTGATTCATCACAGGGC	
	TCAGAATATGACTATGTCATATTCACTCAAACCACTGAAACAGCTCACTC	
	TTGTAATGTAAACAGATTTAATGTTGCTATTACCAGAGCAAAAGTAGGCA	
	TACTTTGCATAATGTCTGATAGAGACCTTTATGACAAGTTGCAATTTACA	
	AGTCTTGAAATTCCACGTAGGAATGTGGCAACTTTACAAGCTGAAAATGT	
	AACAGGACTCTTTAAAGATTGTAGTAAGGTAATCACTGGGTTACATCCTA	
	CACAGGCACCTACACACCTCAGTGTTGACACTAAATTCAAAACTGAAGGT	
	TTATGTGTTGACATACCTGGCATACCTAAGGACATGACCTATAGAAGACT	
	CATCTCTATGATGGGTTTTTAAAATGAATTATCAAGTTAATGGTTACCCTA	
	ACATGTTTATCACCCGCGAAGAAGCTATAAGACATGTACGTGCATGGATT	
	GGCTTCGATGTCGAGGGGTGTCATGCTACTAGAGAAGCTGTTGGTACCAA TTTACCTTTACAGCTAGGTTTTTCTACAGGTGTTAACCTAGTTGCTGTAC	
	CTACAGGTTATGTTGATACACCTAATAATACAGATTTTTCCAGAGTTAGT	
	GCTAAACCACCGCCTGGAGATCAATTTAAACACCTCATACCACTTATGTA	
	CAAAGGACTTCCTTGGAATGTAGTGCGTATAAAGATTGTACAAATGTTAA	
	GTGACACACTTAAAAATCTCTCTGACAGAGTCGTATTTGTCTTATGGGCA	
	CATGGCTTTGAGTTGACATCTATGAAGTATTTTGTGAAAAATAGGACCTGA	
	GCGCACCTGTTGTCTATGTGATAGACGTGCCACATGCTTTTCCACTGCTT	
	CAGACACTTATGCCTGTTGGCATCATTCTATTGGATTTGATTACGTCTAT	
	AATCCGTTTATGATTGATGTTCAACAATGGGGTTTTACAGGTAACCTACA	
	AAGCAACCATGATCTGTATTGTCAAGTCCATGGTAATGCACATGTAGCTA	
	GTTGTGATGCAATCATGACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTT	
	AAGCGTGTTGACTGGACTATTGAATATCCTATAATTGGTGATGAACTGAA	
	GATTAATGCGGCTTGTAGAAAGGTTCAACACATGGTTGTTAAAGCTGCAT	
	TATTAGCAGACAAATTCCCAGTTCTTCACGACATTGGTAACCCTAAAGCT	
	ATTAAGTGTGTACCTCAAGCTGATGTAGAATGGAAGTTCTATGATGCACA	
	GCCTTGTAGTGACAAAGCTTATAAAATAGAAGAATTATTCTATTCTTATG	
	CCACACATTCTGACAAATTCACAGATGGTGTATGCCTATTTTGGAATTGC	
	AATGTCGATAGATATCCTGCTAATTCCATTGTTTGTAGATTTGACACTAG	
	AGTGCTATCTAACCTTAACTTGCCTGGTTGTGATGGTGGCAGTTTGTATG	
	TAAATAAACATGCATTCCACACACCAGCTTTTGATAAAAGTGCTTTTGTT	
	AATTTAAAACAATTACCATTTTTCTATTACTCTGACAGTCCATGTGAGTC	
	TCATGGAAAACAAGTAGTGTCAGATATAGATTATGTACCACTAAAGTCTG	
	CTACGTGTATAACACGTTGCAATTTAGGTGGTGCTGTCTGT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GCTAATGAGTACAGATTGTATCTCGATGCTTATAACATGATGATCTCAGC	
	TGGCTTTAGCTTGTGGGTTTACAAACAATTTGATACTTATAACCTCTGGA	
	ACACTTTTACAAGACTTCAGAGTTTAGAAAATGTGGCTTTTAATGTTGTA	
	AATAAGGGACACTTTGATGGACAACAGGGTGAAGTACCAGTTTCTATCAT	
	TAATAACACTGTTTACACAAAAGTTGATGGTGTTGATGTAGAATTGTTTG	
	AAAATAAAACAACATTACCTGTTAATGTAGCATTTGAGCTTTGGGCTAAG	
	CGCAACATTAAACCAGTACCAGAGGTGAAAATACTCAATAATTTGGGTGT	
	GGACATTGCTGCTAATACTGTGATCTGGGACTACAAAAGAGATGCTCCAG	
	CACATATATCTACTATTGGTGTTTGTTCTATGACTGACATAGCCAAGAAA	
	CCAACTGAAACGATTTGTGCACCACTCACTGTCTTTTTTGATGGTAGAGT	
	TGATGGTCAAGTAGACTTATTTAGAAATGCCCGTAATGGTGTTCTTATTA	
	CAGAAGGTAGTGTTAAAGGTTTACAACCATCTGTAGGTCCCAAACAAGCT	
	AGTCTTAATGGAGTCACATTAATTGGAGAAGCCGTAAAAACACAGTTCAA	
	TTATTATAAGAAAGTTGATGGTGTTGTCCAACAATTACCTGAAACTTACT	
	TTACTCAGAGTAGAAATTTACAAGAATTTAAACCCAGGAGTCAAATGGAA	
	ATTGATTTCTTAGAATTAGCTATGGATGAATTCATTGAACGGTATAAATT	
	AGAAGGCTATGCCTTCGAACATATCGTTTATGGAGATTTTAGTCATAGTC	
	AGTTAGGTGGTTTACATCTACTGATTGGACTAGCTAAACGTTTTAAGGAA	
	TCACCTTTTGAATTAGAAGATTTTATTCCTATGGACAGTACAGTTAAAAA	
	CTATTTCATAACAGATGCGCAAACAGGTTCATCTAAGTGTGTGT	
	TTATTGATTTATTACTTGATGATTTTGTTGAAATAATAAAATCCCAAGAT	
	TTATCTGTAGTTTCTAAGGTTGTCAAAGTGACTATTGACTATACAGAAAT	
	TTCATTTATGCTTTGGTGTAAAGATGGCCATGTAGAAACATTTTACCCAA	
	AATTACAATCTAGTCAAGCGTGGCAACCGGGTGTTGCTATGCCTAATCTT	
	TACAAAATGCAAAGAATGCTATTAGAAAAGTGTGACCTTCAAAATTATGG	
	TGATAGTGCAACATTACCTAAAGGCATAATGATGAATGTCGCAAAATATA	
	CTCAACTGTGTCAATATTTAAACACATTAACATTAGCTGTACCCTATAAT	
	ATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGG	
	TACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACGCTGCTTGTCGATT	
	CAGATCTTAATGACTTTGTCTCTGATGCAGATTCAACTTTGATTGGTGAT	
	TGTGCAACTGTACATACAGCTAATAAATGGGATCTCATTATTAGTGATAT	
	GTACGACCCTAAGACTAAAAATGTTACAAAAGAAAATGACTCTAAAGAGG	
	GTTTTTCACTTACATTTGTGGGTTTATACAACAAAAGCTAGCT	
	GGTTCCGTGGCTATAAAGATAACAGAACATTCTTGGAATGCTGATCTTTA	
	TAAGCTCATGGGACACTTCGCATGGTGGACAGCCTTTGTTACTAATGTGA	
	ATGCGTCATCATCTGAAGCATTTTTAATTGGATGTAATTATCTTGGCAAA	
	CCACGCGAACAATAGATGGTTATGTCATGCATGCAAATTACATATTTTG	
	GAGGAATACAAATCCAATTCAGTTGTCTTCCTATTCTTTATTTGACATGA	
	GTAAATTTCCCCTTAAATTAAGGGGTACTGCTGTTATGTCTTTAAAAGAA	
	GGTCAAATCAATGATATGATTTTATCTCTTCTTAGTAAAGGTAGACTTAT	
	AATTAGAGAAAACAACAGAGTTGTTATTTCTAGTGATGTTCTTGTTAACA	
	ACTAAACGAACAATGTTTGTTTTTCTTGTTTTTATTGCCACTAGTCTCTAG	
	TCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTA	
	ATTCTTTCACACGTGGTGTTTATTACCCTGACAAAGTTTTCAGATCCTCA	
	GTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTAC	
	TTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTG	
	ATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAG	
	AAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAA	
	GACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAG	
	TCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTTATTACCAC	
	AAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGC	
	GAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTG	
	AAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAAT	
	ATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGT	
	ATTGATGGTTATTTTAAATATATTCTAAGCACACGCCTATTAATTTAGT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGC	
	CAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGA	
	AGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGC	
	AGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATA	
	ATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTC	
	TCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTA	
	TCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTC	
	CTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAGA	
	TTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGC	
	TGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTT	
	ATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTAT	
	GCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGG	
	GCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTA	
	CAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGT	
	GGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACC	
	TTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTT	
	GTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGT	
	TTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACT	
	TTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGT	
	CTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTA	
	ACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCA	
	ACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCAC	
	AGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGT	
	GTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCA	
	GGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTA	
	CTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGT	
	GCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGA	
	CATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATT	
	CTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACT	
	ATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGC	
	CATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGT	
	CTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCA	
	ACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATT	
	AAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAAACACCCAAG	
	AAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGAT	
	TTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAG	
	CAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAG	
	ATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCT	
	AGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACC	
	TTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGG	
	GTACAATCACTTCTGGTTGGACCTTTTGGTGCAGGTGCTGCATTACAAATA	
	CCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACA	
	GAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAA	
	CTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGA	
	AAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGT	
	TAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAACACGCTTGT	
	TCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTG	
	ATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAAT	
	TAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGT	
	CAGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGC	
	TATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTT	
	GCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTG	
	CCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTT	
	TCAAATGGCACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
Tenesio i a	AATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAA	
	TAGGAATTGTCAACAACACTTTATGATCCTTTGCAACCTGAATTAGAC	
	TCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGA	
	TGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTC	
	AAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCT	
	CTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCC	
	ATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGG	
	TGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGC	
	TGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCC	
	AGTGCTCAAAGGAGTCAAATTACATTACACATAAACGAACTTATGGATTT	
	GTTTATGAGAATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGTGAAA	
	TCAAGGATGCTACTCCTTCAGATTTTGTTCGCGCTACTGCAACGATACCG	
	ATACAAGCCTCACTCCCTTTCGGATGGCTTATTGTTGGCGTTGCACTTCT	
	TGCTGTTTTTCAGAGCGCTTCCAAAATCATAACCCTCAAAAAGAGATGGC	
	AACTAGCACTCTCCAAGGGTGTTCACTTTGTTTGCAACTTGCTGTTGTTG	
	TTTGTAACAGTTTACTCACACCTTTTGCTCGTTGCTGCTGGCCTTGAAGC	
	CCCTTTTCTCTATCTTTATGCTTTAGTCTACTTCTTGCAGAGTATAAACT	
	TTGTAAGAATAATGAGGCTTTGGCTTTGCTGGAAATGCCGTTCCAAA	
	AACCCATTACTTTATGATGCCAACTATTTTCTTTGCTGGCATACTAATTG	
	TTACGACTATTGTATACCTTACAATAGTGTAACTTCTTCAATTGTCATTA	
	CTTCAGGTGATGGCACAACAAGTCCTATTTCTGAACATGACTACCAGATT	
	GGTGGTTATACTGAAAAATGGGAATCTGGAGTAAAAGACTGTGTTGTATT	
	ACACAGTTACTTCACTTCAGACTATTACCAGCTGTACTCAACTCAATTGA	
	GTACAGACACTGGTGTTGAACATGTTACCTTCTTCATCTACAATAAAATT	
	GTTGATGAGCCTGAAGAACATGTCCAAATTCACACAATCGACGGTTCATC	
	CGGAGTTGTTAATCCAGTAATGGAACCAATTTATGATGAACCGACGACGA	
	CTACTAGCGTGCCTTTGTAAGCACAAGCTGATGAGTACGAACTTATGTAC	
	TCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCT	
	TTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTG	
	CGCTTCGATTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTA	
	AAACCTTCTTTTTACGTTTACTCTCGTGTTTAAAAATCTGAATTCTTCTAG	
	AGTTCCTGATCTTCTGGTCTAAACGAACTAAATATTATATTAGTTTTTCT	
	GTTTGGAACTTTAATTTTAGCCATGGCAGATTCCAACGGTACTATTACCG	
	TTGAAGAGCTTAAAAAGCTCCTTGAACAATGGAACCTAGTAATAGGTTTC	
	CTATTCCTTACATGGATTTGTCTTCTACAATTTGCCTATGCCAACAGGAA	
	TAGGTTTTTGTATATAATTAAGTTAATTTTCCTCTGGCTGTTATGGCCAG	
	TAACTTTAGCTTGTTTTTGTGCTTGCTGCTGTTTTACAGAATAAATTGGATC	
	ACCGGTGGAATTGCTATCGCAATGGCTTGTCTTGTAGGCTTGATGTGGCT	
	CAGCTACTTCATTGCTTCTTTCAGACTGTTTGCGCGTACGCGTTCCATGT GGTCATTCAATCCAGAAACTAACATTCTTCTCAACGTGCCACTCCATGGC	
	ACTATTCTGACCAGACCGCTTCTAGAAAGTGAACTCGTAATCGGAGCTGT	
	GATCCTTCGTGGACATCTTCGTATTGCTGGACACCATCTAGGACGCTGTG	
	ACATCAAGGACCTGCCTAAAGAAATCACTGTTGCTACATCACGAACGCTT	
	TCTTATTACAAATTGGGAGCTTCGCAGCGTGTAGCAGGTGACTCAGGTTT	
	TGCTGCATACAGTCGCTACAGGATTGGCAACTATAAATTAAACACAGACC	
	ATTCCAGTAGCAGTGACAATATTGCTTTGCTTGTACAGTAAGTGACAACA	
	GATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAA	
	TTATTATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATA	
	AACCTCATAATTAAAAATTTATCTAAGTCACTAACTGAGAATAAATA	
	TCAATTAGATGAAGAGCAACCAATGGAGATTGATTAAACGAACATGAAAA	
	TTATTCTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCAC	
	TACCAAGAGTGTGTTAGAGGTACAACAGTACTTTTAAAAAGAACCTTGCTC	
	TTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACA	
	AATTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGAC	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
KHCJIOTA	GGCGTAAAACACGTCTATCAGTTACGTGCCAGATCAGTTTCACCTAAACT	
	GTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTA	
	TTGTTGCGGCAATAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAG	
	ACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCTTTTTTAGCC	
	TTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACT	
	TGAACTGCAAGATCATAATGAAACTTGTCACGCCTAAACGAACATGAAAT	
	TTCTTGTTTTCTTAGGAATCATCACAACTGTAGCTGCATTTCACCAAGAA	
	TGTAGTTTACAGTCATGTACTCAACATCAACCATATGTAGTTGATGACCC	
	GTGTCCTATTCACTTCTATTCTAAATGGTATATTAGAGTAGGAGCTAGAA	
	AATCAGCACCTTTAATTGAATTGTGCGTGGATGAGGCTGGTTCTAAATCA	
	CCCATTCAGTACATCGATATCGGTAATTATACAGTTTCCTGTTTACCTTT	
	TACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGTGCGTTGTT CGTTCTATGAAGACTTTTTAGAGTATCATGACGTTCGTGTTGTTTTAGAT	
	TTCATCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAG	
	CGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAG	
	TAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCC	
	AAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCA	
	GGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACAC	
	CAATAGCAGTCCAGATGACCAAATTGGCTACTACCGAAGAGCTACCAGAC	
	GAATTCGTGGTGACGGTAAAATGAAAGATCTCAGTCCAAGATGGTAT	
	TTCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAA	
	CAAAGACGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAA	
	AAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTA	
	CAACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAG	
	CAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAACA	
	GTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGA	
	ATGGCTGGCAATGGCGGTGATGCTGCTCTTGCTTGCTGCTGACAG	
	ATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAG	
	GCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGG	
	CAAAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAG	
	ACGTGGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCA	
	GACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCC	
	AGCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAGTCACACC	
	TTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAG	
	ATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCA	
	TACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGAGC	
	TGATGAAACTCAAGCCTTACCGCAGAGACAGAAAACAGCAAACTGTGA	
	CTCTTCTTCCTGCTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAA	
	TCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACAC	
	AAGGCAGATGGGCTATATAAACGTTTTTCGCTTTTTCCGTTTTACGATATATA	
	GTCTACTCTTGTGCAGAATGAATTCTCGTAACTACATAGCACAAGTAGAT	
	GTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTA	
	GGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTAC	
	GATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAG	
	CCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAA	
	TAGCTTCTTAGGAGAATGACAAAAAAAAAAAAAAAAAAA	
	ATATTAGGTTTTTACCTACCCAGGAAAAGCCAACCAACCTCGATCTCTTG	78
	TAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTAGCTGTCGCTCGGC	, ,
	TGCATGCCTAGTGCACCTACGCAGTATAAACAATAATAAATTTTACTGTC	
SARS	GTTGACAAGAACGAGTAACTCGTCCCTCTTCTGCAGACTGCTTACGGTT	
CoV_Refseq	TCGTCCGTGTTGCAGTCGATCATCAGCATACCTAGGTTTCGTCCGGGTGT	
	GACCGAAAGGTAAGATGGAGAGCCTTGTTCTTGGTGTCAACGAGAAAACA	
	CACGTCCAACTCAGTTTGCCTGTCCTTCAGGTTAGAGACGTGCTAGTGCG	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGGCTTCGGGGACTCTGTGGAAGAGGCCCTATCGGAGGCACGTGAACACC	
	TCAAAAATGGCACTTGTGGTCTAGTAGAGCTGGAAAAAGGCGTACTGCCC	
	CAGCTTGAACAGCCCTATGTGTTCATTAAACGTTCTGATGCCTTAAGCAC	
	CAATCACGGCCACAAGGTCGTTGAGCTGGTTGCAGAAATGGACGGCATTC	
	AGTACGGTCGTAGCGGTATAACACTGGGAGTACTCGTGCCACATGTGGGC	
	GAAACCCCAATTGCATACCGCAATGTTCTTCTTCGTAAGAACGGTAATAA	
	GGGAGCCGGTGGTCATAGCTATGGCATCGATCTAAAGTCTTATGACTTAG	
	GTGACGAGCTTGGCACTGATCCCATTGAAGATTATGAACAAAACTGGAAC	
	ACTAAGCATGGCAGTGGTGCACTCCGTGAACTCACTCGTGAGCTCAATGG	
	AGGTGCAGTCACTCGCTATGTCGACAACAATTTCTGTGGCCCAGATGGGT	
	ACCCTCTTGATTGCATCAAAGATTTTCTCGCACGCGCGGGCAAGTCAATG	
	TGCACTCTTTCCGAACAACTTGATTACATCGAGTCGAAGAGAGGTGTCTA	
	CTGCTGCCGTGACCATGAGCATGAAATTGCCTGGTTCACTGAGCGCTCTG	
	ATAAGAGCTACGAGCACCAGACACCCTTCGAAATTAAGAGTGCCAAGAAA	
	TTTGACACTTTCAAAGGGGAATGCCCAAAGTTTGTGTTTCCTCTTAACTC	
	AAAAGTCAAAGTCATTCAACCACGTGTTGAAAAGAAAAAGACTGAGGGTT	
	TCATGGGGCGTATACGCTCTGTGTACCCTGTTGCATCTCCACAGGAGTGT	
	AACAATATGCACTTGTCTACCTTGATGAAATGTAATCATTGCGATGAAGT	
	TTCATGCAGACGTGCGACTTTCTGAAAGCCACTTGTGAACATTGTGGCA	
	CTGAAAATTTAGTTATTGAAGGACCTACTACATGTGGGTACCTACT	
	AATGCTGTAGTGAAAATGCCATGTCCTGCCTGTCAAGACCCAGAGATTGG	
	ACCTGAGCATAGTGTTGCAGATTATCACAACCACTCAAACATTGAAACTC	
	GACTCCGCAAGGGAGGTAGGACTAGATGTTTTGGAGGCTGTGTTTTGCC	
	TATGTTGGCTGCTATAATAAGCGTGCCTACTGGGTTCCTCGTGCTAGTGC	
	TGATATTGGCTCAGGCCATACTGGCATTACTGGTGACAATGTGGAGACCT	
	TGAATGAGGATCTCCTTGAGATACTGAGTCGTGAACGTGTTAACATTAAC	
	ATTGTTGGCGATTTTCATTTGAATGAAGAGGTTGCCATCATTTTGGCATC	
	TTTCTCTGCTTCTACAAGTGCCTTTATTGACACTATAAAGAGTCTTGATT	
	ACAAGTCTTTCAAAACCATTGTTGAGTCCTGCGGTAACTATAAAGTTACC	
	AAGGGAAAGCCCGTAAAAGGTGCTTGGAACATTGGACAACAGAGATCAGT	
	TTTAACACCACTGTGTGTTTTCCCTCACAGGCTGCTGGTGTTATCAGAT	
	CAATTTTTGCGCGCACACTTGATGCAGCAAACCACTCAATTCCTGATTTG	
	CAAAGAGCAGCTGTCACCATACTTGATGGTATTTCTGAACAGTCATTACG	
	TCTTGTCGACGCCATGGTTTATACTTCAGACCTGCTCACCAACAGTGTCA	
	TTATTATGGCATATGTAACTGGTGGTCTTGTACAACAGACTTCTCAGTGG	
	TTGTCTAATCTTTTGGGCACTACTGTTGAAAAACTCAGGCCTATCTTTGA	
	ATGGATTGAGGCGAAACTTAGTGCAGGAGTTGAATTTCTCAAGGATGCTT	
	GGGAGATTCTCAAATTTCTCATTACAGGTGTTTTTGACATCGTCAAGGGT	
	CAAATACAGGTTGCTTCAGATAACATCAAGGATTGTGTAAAATGCTTCAT	
	TGATGTTGTTAACAAGGCACTCGAAATGTGCATTGATCAAGTCACTATCG	
	CTGGCGCAAAGTTGCGATCACTCAACTTAGGTGAAGTCTTCATCGCTCAA	
	AGCAAGGGACTTTACCGTCAGTGTATACGTGGCAAGGAGCAGCTGCAACT	
	ACTCATGCCTCTTAAGGCACCAAAAGAAGTAACCTTTCTTGAAGGTGATT	
	CACATGACACAGTACTTACCTCTGAGGAGGTTGTTCTCAAGAACGGTGAA	
	CTCGAAGCACTCGAGACGCCCGTTGATAGCTTCACAAATGGAGCTATCGT	
	TGGCACACCAGTCTGTGTAAATGGCCTCATGCTCTTAGAGATTAAGGACA	
	AAGAACAATACTGCGCATTGTCTCCTGGTTTACTGGCTACAAACAA	
	TTTCGCTTAAAAGGGGGTGCACCAATTAAAGGTGTAACCTTTGGAGAAGA	
	TACTGTTTGGGAAGTTCAAGGTTACAAGAATGTGAGAATCACATTTGAGC	
	TTGATGAACGTGTTGACAAAGTGCTTAATGAAAAGTGCTCTGTCTACACT	
	GTTGAATCCGGTACCGAAGTTACTGAGTTTGCATGTGTTGTAGCAGAGGC	
	TGTTGTGAAGACTTTACAACCAGTTTCTGATCTCCTTACCAACATGGGTA	
	TTGATCTTGATGAGTGGAGTGTAGCTACATTCTACTTATTTGATGATGCT	
	GGTGAAGAAACTTTTCATCACGTATGTATTGTTCCTTTTACCCTCCAGA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGAGGAAGAAGAGGACGATGCAGAGTGTGAGGAAGAAGAAATTGATGAAA	
	CCTGTGAACATGAGTACGGTACAGAGGATGATTATCAAGGTCTCCCTCTG	
	GAATTTGGTGCCTCAGCTGAAACAGTTCGAGTTGAGGAAGAAGAAGAGGA	
	AGACTGGCTGGATGATACTACTGAGCAATCAGAGATTGAGCCAGAACCAG	
	AACCTACACCTGAAGAACCAGTTAATCAGTTTACTGGTTATTTAAAACTT	
	ACTGACAATGTTGCCATTAAATGTGTTGACATCGTTAAGGAGGCACAAAG	
	TGCTAATCCTATGGTGATTGTAAATGCTGCTAACATACACCTGAAACATG	
	GTGGTGGTGTAGCAGGTGCACTCAACAAGGCAACCAATGGTGCCATGCAA	
	AAGGAGAGTGATGATTACATTAAGCTAAATGGCCCTCTTACAGTAGGAGG	
	GTCTTGTTTGCTTTCTGGACATAATCTTGCTAAGAAGTGTCTGCATGTTG	
	TTGGACCTAACCTAAATGCAGGTGAGGACATCCAGCTTCTTAAGGCAGCA	
	TATGAAAATTTCAATTCACAGGACATCTTACTTGCACCATTGTTGTCAGC	
	AGGCATATTTGGTGCTAAACCACTTCAGTCTTTACAAGTGTGCGTGC	
	CGGTTCGTACACAGGTTTATATTGCAGTCAATGACAAAGCTCTTTATGAG	
	CAGGTTGTCATGGATTATCTTGATAACCTGAAGCCTAGAGTGGAAGCACC	
	TAAACAAGAGGAGCCACCAAACACAGAAGATTCCAAAACTGAGGAGAAAT	
	CTGTCGTACAGAAGCCTGTCGATGTGAAGCCAAAAATTAAGGCCTGCATT	
	GATGAGGTTACCACAACACTGGAAGAAACTAAGTTTCTTACCAATAAGTT	
	ACTCTTGTTTGCTGATATCAATGGTAAGCTTTACCATGATTCTCAGAACA	
	TGCTTAGAGGTGAAGATATGTCTTTCCTTGAGAAGGATGCACCTTACATG	
	GTAGGTGATGTTATCACTAGTGGTGATATCACTTGTGTTGTAATACCCTC	
	CAAAAAGGCTGGTGGCACTACTGAGATGCTCTCAAGAGCTTTGAAGAAAG	
	TGCCAGTTGATGAGTATATAACCACGTACCCTGGACAAGGATGTGCTGGT	
	TATACACTTGAGGAAGCTAAGACTGCTCTTAAGAAATGCAAATCTGCATT	
	TTATGTACTACCTTCAGAAGCACCTAATGCTAAGGAAGAGATTCTAGGAA	
	CTGTATCCTGGAATTTGAGAGAAATGCTTGCTCATGCTGAAGAGACAAGA	
	AAATTAATGCCTATATGCATGGATGTTAGAGCCATAATGGCAACCATCCA	
	ACGTAAGTATAAAGGAATTAAAATTCAAGAGGGCATCGTTGACTATGGTG	
	TCCGATTCTTCTTTTATACTAGTAAAGAGCCTGTAGCTTCTATTATTACG	
	AAGCTGAACTCTCTAAATGAGCCGCTTGTCACAATGCCAATTGGTTATGT	
	GACACATGGTTTTAATCTTGAAGAGGCTGCGCGCTGTATGCGTTCTCTTA	
	AAGCTCCTGCCGTAGTGTCAGTATCATCACCAGATGCTGTTACTACATAT	
	AATGGATACCTCACTTCGTCATCAAAGACATCTGAGGAGCACTTTGTAGA	
	AACAGTTTCTTTGGCTGGCTCTTACAGAGATTGGTCCTATTCAGGACAGC	
	GTACAGAGTTAGGTGTTGAATTTCTTAAGCGTGGTGACAAAATTGTGTAC	
	CACACTCTGGAGAGCCCCGTCGAGTTTCATCTTGACGGTGAGGTTCTTTC	
	ACTTGACAAACTAAAGAGTCTCTTATCCCTGCGGGAGGTTAAGACTATAA	
	AAGTGTTCACAACTGTGGACAACACTAATCTCCACACACA	
	ATGTCTATGACATATGGACAGCAGTTTGGTCCAACATACTTGGATGGTGC	
	TGATGTTACAAAAATTAAACCTCATGTAAATCATGAGGGTAAGACTTTCT	
	TTGTACTACCTAGTGATGACACACTACGTAGTGAAGCTTTCGAGTACTAC	
	CATACTCTTGATGAGAGTTTTCTTGGTAGGTACATGTCTGCTTTAAACCA	
	CACAAAGAAATGGAAATTTCCTCAAGTTGGTGGTTTAACTTCAATTAAAT	
	GGGCTGATAACAATTGTTATTTGTCTAGTGTTTTTATTAGCACTTCAACAG	
	CTTGAAGTCAAATTCAATGCACCAGCACTTCAAGAGGCTTATTATAGAGC	
	CCGTGCTGGTGATGCTGCTAACTTTTGTGCACTCATACTCGCTTACAGTA	
	ATAAAACTGTTGGCGAGCTTGGTGATGTCAGAGAAACTATGACCCATCTT	
	CTACAGCATGCTAATTTGGAATCTGCAAAGCGAGTTCTTAATGTGGTGTG	
	TAAACATTGTGGTCAGAAAACTACTACCTTAACGGGTGTAGAAGCTGTGA	
	TGTATATGGGTACTCTATCTTATGATAATCTTAAGACAGGTGTTTCCATT	
	CCATGTGTGTGGTCGTGATGCTACACAATATCTAGTACAACAAGAGTC	
	TTCTTTTGTTATGATGTCTGCACCACCTGCTGAGTATAAATTACAGCAAG	
	GTACATTCTTATGTGCGAATGAGTACACTGGTAACTATCAGTGTGGTCAT	
	TACACTCATATAACTGCTAAGGAGACCCTCTATCGTATTGACGGAGCTCA	

Белок или нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
кислота	CCTTACAAAGATGTCAGAGTACAAAGGACCAGTGACTGATGTTTTCTACA	
	AGGAAACATCTTACACTACAACCATCAAGCCTGTGTCGTATAAACTCGAT	
	GGAGTTACTTACACAGAGATTGAACCAAAATTGGATGGGTATTATAAAAA	
	GGATAATGCTTACTATACAGAGCAGCCTATAGACCTTGTACCAACTCAAC	
	CATTACCAAATGCGAGTTTTGATAATTTCAAACTCACATGTTCTAACACA	
	AAATTTGCTGATGATTTAAATCAAATGACAGGCTTCACAAAGCCAGCTTC	
	ACGAGAGCTATCTGTCACATTCTTCCCAGACTTGAATGGCGATGTAGTGG	
	CTATTGACTATAGACACTATTCAGCGAGTTTCAAGAAAGGTGCTAAATTA	
	CTGCATAAGCCAATTGTTTGGCACATTAACCAGGCTACAACCAAGACAAC	
	GTTCAAACCAAACACTTGGTGTTTACGTTGTCTTTGGAGTACAAAGCCAG	
	TAGATACTTCAAATTCATTTGAAGTTCTGGCAGTAGAAGACACACAAGGA	
	ATGGACAATCTTGCTTGTGAAAGTCAACAACCCACCTCTGAAGAAGTAGT	
	GGAAAATCCTACCATACAGAAGGAAGTCATAGAGTGTGACGTGAAAACTA	
	CCGAAGTTGTAGGCAATGTCATACTTAAACCATCAGATGAAGGTGTTAAA	
	GTAACACAAGAGTTAGGTCATGAGGATCTTATGGCTGCTTATGTGGAAAA	
	CACAAGCATTACCATTAAGAAACCTAATGAGCTTTCACTAGCCTTAGGTT	
	TAAAAACAATTGCCACTCATGGTATTGCTGCAATTAATAGTGTTCCTTGG	
	AGTAAAATTTTGGCTTATGTCAAACCATTCTTAGGACAAGCAGCAATTAC	
	AACATCAAATTGCGCTAAGAGATTAGCACAACGTGTGTTTAACAATTATA	
	TGCCTTATGTGTTTACATTATTGTTCCAATTGTGTACTTTTACTAAAAGT	
	ACCAATTCTAGAATTAGAGCTTCACTACCTACAACTATTGCTAAAAATAG	
	TGTTAAGAGTGTTGCTAAATTATGTTTGGATGCCGGCATTAATTA	
	AGTCACCCAAATTTTCTAAATTGTTCACAATCGCTATGTGGCTATTGTTG	
	TTAAGTATTTGCTTAGGTTCTCTAATCTGTGTAACTGCTGCTTTTTGGTGT	
	ACTCTTATCTAATTTTGGTGCTCCTTCTTATTGTAATGGCGTTAGAGAAT	
	TGTATCTTAATTCGTCTAACGTTACTACTATGGATTTCTGTGAAGGTTCT	
	TTTCCTTGCAGCATTTGTTTAAGTGGATTAGACTCCCTTGATTCTTATCC	
	AGCTCTTGAAACCATTCAGGTGACGACTTCATCGTACAAGCTAGACTTGA	
	CAATTTTAGGTCTGGCCGCTGAGTGGGTTTTTGGCATATATGTTGTTCACA AAATTCTTTTATTTATTAGGTCTTTCAGCTATAATGCAGGTGTTCTTTGG	
	CTATTTTGCTAGTCATTTCATCAGCAATTCTTGGCTCATGTGGTTTATCA	
	TTAGTATTGTACAAATGGCACCCGTTTCTGCAATGGTTAGGATGTACATC	
	TTCTTTGCTTCTTTCTACTACATATGGAAGAGCTATGTTCATATCATGGA	
	TGGTTGCACCTCTTCGACTTGCATGATGTGCTATAAGCGCAATCGTGCCA	
	CACGCGTTGAGTGTACAACTATTGTTAATGGCATGAAGAGATCTTTCTAT	
	GTCTATGCAAATGGAGGCCGTGGCTTCTGCAAGACTCACAATTGGAATTG	
	TCTCAATTGTGACACATTTTGCACTGGTAGTACATTCATT	
	TTGCTCGTGATTTGTCACTCCAGTTTAAAAGACCAATCAACCCTACTGAC	
	CAGTCATCGTATATTGTTGATAGTGTTGCTGTGAAAAATGGCGCGCTTCA	
	CCTCTACTTTGACAAGGCTGGTCAAAAGACCTATGAGAGACATCCGCTCT	
	CCCATTTTGTCAATTTAGACAATTTGAGAGCTAACAACACTAAAGGTTCA	
	CTGCCTATTAATGTCATAGTTTTTGATGGCAAGTCCAAATGCGACGAGTC	
	TGCTTCTAAGTCTGCTTCTGTGTACTACAGTCAGCTGATGTGCCAACCTA	
	TTCTGTTGCTTGACCAAGCTCTTGTATCAGACGTTGGAGATAGTACTGAA	
	GTTTCCGTTAAGATGTTTGATGCTTATGTCGACACCTTTTCAGCAACTTT	
	TAGTGTTCCTATGGAAAAACTTAAGGCACTTGTTGCTACAGCTCACAGCG	
	AGTTAGCAAAGGGTGTAGCTTTAGATGGTGTCCTTTCTACATTCGTGTCA	
	GCTGCCCGACAAGGTGTTGTTGATACCGATGTTGACACAAAGGATGTTAT	
	TGAATGTCTCAAACTTTCACATCACTCTGACTTAGAAGTGACAGGTGACA	
	GTTGTAACAATTTCATGCTCACCTATAATAAGGTTGAAAAACATGACGCCC	
	AGAGATCTTGGCGCATGTATTGACTGTAATGCAAGGCATATCAATGCCCA	
	AGTAGCAAAAAGTCACAATGTTTCACTCATCTGGAATGTAAAAGACTACA	
	TGTCTTTATCTGAACAGCTGCGTAAACAAATTCGTAGTGCTGCCAAGAAG	
	AACAACATACCTTTTAGACTAACTTGTGCTACAACTAGACAGGTTGTCAA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGTCATAACTACTAAAATCTCACTCAAGGGTGGTAAGATTGTTAGTACTT	
	GTTTTAAACTTATGCTTAAGGCCACATTATTGTGCGTTCTTGCTGCATTG	
	GTTTGTTATATCGTTATGCCAGTACATACATTGTCAATCCATGATGGTTA	
	CACAAATGAAATCATTGGTTACAAAGCCATTCAGGATGGTGTCACTCGTG	
	ACATCATTTCTACTGATGATTGTTTTGCAAATAAACATGCTGGTTTTGAC	
	GCATGGTTTAGCCAGCGTGGTGGTTCATACAAAAATGACAAAAGCTGCCC	
	TGTAGTAGCTGCTATCATTACAAGAGAGATTGGTTTCATAGTGCCTGGCT	
	TACCGGGTACTGTGCTGAGAGCAATCAATGGTGACTTCTTGCATTTTCTA	
	CCTCGTGTTTTTAGTGCTGTTGGCAACATTTGCTACACACCTTCCAAACT	
	CATTGAGTATAGTGATTTTGCTACCTCTGCTTGCGTTCTTGCTGCTGAGT	
	GTACAATTTTTAAGGATGCTATGGGCAAACCTGTGCCATATTGTTATGAC	
	ACTAATTTGCTAGAGGGTTCTATTTCTTATAGTGAGCTTCGTCCAGACAC	
	TCGTTATGTGCTTATGGATGGTTCCATCATACAGTTTCCTAACACTTACC	
	TGGAGGGTTCTGTTAGAGTAGTAACAACTTTTGATGCTGAGTACTGTAGA	
	CATGGTACATGCGAAAGGTCAGAAGTAGGTATTTGCCTATCTACCAGTGG	
	TAGATGGGTTCTTAATAATGAGCATTACAGAGCTCTATCAGGAGTTTTCT	
	GTGGTGTTGATGCGATGAATCTCATAGCTAACATCTTTACTCCTCTTGTG	
	CAACCTGTGGGTGCTTTAGATGTGTCTGCTTCAGTAGTGGCTGGTGGTAT	
	TATTGCCATATTGGTGACTTGTGCTGCCTACTACTTTATGAAATTCAGAC	
	GTGTTTTTGGTGAGTACAACCATGTTGTTGCTGCTAATGCACTTTTGTTT	
	TTGATGTCTTTCACTATACTCTGTCTGGTACCAGCTTACAGCTTTCTGCC	
	GGGAGTCTACTCAGTCTTTTACTTGTACTTGACATTCTATTTCACCAATG	
	ATGTTTCATCTTGGCTCACCTTCAATGGTTTGCCATGTTTTCTCCTATT	
	GTGCCTTTTTGGATAACAGCAATCTATGTATTCTGTATTTCTCTGAAGCA	
	CTGCCATTGGTTCTTTAACAACTATCTTAGGAAAAGAGTCATGTTTAATG	
	GAGTTACATTTAGTACCTTCGAGGAGGCTGCTTTGTGTACCTTTTTGCTC	
	AACAAGGAAATGTACCTAAAATTGCGTAGCGAGACACTGTTGCCACTTAC	
	ACAGTATAACAGGTATCTTGCTCTATATAACAAGTACAAGTATTTCAGTG	
	GAGCCTTAGATACTACCAGCTATCGTGAAGCAGCTTGCTGCCACTTAGCA	
	AAGGCTCTAAATGACTTTAGCAACTCAGGTGCTGATGTTCTCTACCAACC	
	ACCACAGACATCACTTCTGCTGTTCTGCAGAGTGGTTTTAGGAAAA	
	TGGCATTCCCGTCAGGCAAAGTTGAAGGGTGCATGGTACAAGTAACCTGT	
	GGAACTACAACTCTTAATGGATTGTGGTTGGATGACACAGTATACTGTCC	
	AAGACATGTCATTTGCACAGCAGAAGACATGCTTAATCCTAACTATGAAG	
	ATCTGCTCATTCGCAAATCCAACCATAGCTTTCTTGTTCAGGCTGGCAAT	
	GTTCAACTTCGTGTTATTGGCCATTCTATGCAAAATTGTCTGCTTAGGCT	
	TAAAGTTGATACTTCTAACCCTAAGACACCCAAGTATAAATTTGTCCGTA	
	TCCAACCTGGTCAAACATTTTCAGTTCTAGCATGCTACAATGGTTCACCA	
	TCTGGTGTTTATCAGTGTGCCATGAGACCTAATCATACCATTAAAGGTTC	
	TTTCCTTAATGGATCATGTGGTAGTGTTTGGTTTTAACATTGATTATGATT	
	GCGTGTCTTTCTGCTATATGCATCATATGGAGCTTCCAACAGGAGTACAC	
	GCTGGTACTGACTTAGAAGGTAAATTCTATGGTCCATTTGTTGACAGACA	
	AACTGCACAGGCTGCAGGTACAGACACCATAACATTAAATGTTTTGG	
	CATGGCTGTATGCTGTTATCAATGGTGATAGGTGGTTTCTTAATAGA	
	TTCACCACTACTTTGAATGACTTTAACCTTGTGGCAATGAAGTACAACTA	
	TGAACCTTTGACACAAGATCATGTTGACATATTGGGACCTCTTTCTGCTC	
	AAACAGGAATTGCCGTCTTAGATATGTGTGCTGCTTTGAAAGAGCTGCTG	
	CAGAATGGTATGAATGGTCGTACTATCCTTGGTAGCACTATTTTAGAAGA	
	TGAGTTTACACCATTTGATGTTGTTAGACAATGCTCTGGTGTTACCTTCC	
	AAGGTAAGTTCAAGAAAATTGTTAAGGGCACTCATCATTGGATGCTTTTA	
	ACTTTCTTGACATCACTATTGATTCTTGTTCAAAGTACACAGTGGTCACT	
	GTTTTTCTTTGTTTACGAGAATGCTTTCTTGCCATTTACTCTTGGTATTA	
	TGGCAATTGCTGCATGTGCTATGCTGCTTGTTAAGCATAAGCACGCATTC	
	TTGTGCTTGTTTCTGTTACCTTCTCTTGCAACAGTTGCTTACTTTAATAT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GGTCTACATGCCTGCTAGCTGGGTGATGCGTATCATGACATGGCTTGAAT	
	TGGCTGACACTAGCTTGTCTGGTTATAGGCTTAAGGATTGTGTTATGTAT	
	GCTTCAGCTTTAGTTTTGCTTATTCTCATGACAGCTCGCACTGTTTATGA	
	TGATGCTGCTAGACGTGTTTGGACACTGATGAATGTCATTACACTTGTTT	
	ACAAAGTCTACTATGGTAATGCTTTAGATCAAGCTATTTCCATGTGGGCC	
	TTAGTTATTTCTGTAACCTCTAACTATTCTGGTGTCGTTACGACTATCAT	
	GTTTTTAGCTAGAGCTATAGTGTTTGTGTGTGTTGAGTATTACCCATTGT	
	TATTTATTACTGGCAACACCTTACAGTGTATCATGCTTGTTTATTGTTTC	
	TTAGGCTATTGTTGCTGCTGCTACTTTGGCCTTTTCTGTTTACTCAACCG	
	TTACTTCAGGCTTACTCTTGGTGTTTATGACTACTTGGTCTCTACACAAG	
	AATTTAGGTATATGAACTCCCAGGGGCTTTTGCCTCCTAAGAGTAGTATT	
	GATGCTTTCAAGCTTAACATTAAGTTGTTGGGTATTGGAGGTAAACCATG	
	TATCAAGGTTGCTACTGTACAGTCTAAAATGTCTGACGTAAAGTGCACAT	
	CTGTGGTACTGCTCTCGGTTCTTCAACAACTTAGAGTAGAGTCATCTTCT	
	AAATTGTGGGCACAATGTTACAACTCCACAATGATATTCTTCTTGCAAA	
	AGACACAACTGAAGCTTTCGAGAAGATGGTTTCTCTTTTTGTCTGTTTTTGC	
	TATCCATGCAGGGTGCTGTAGACATTAATAGGTTGTGCGAGGAAATGCTC	
	GATAACCGTGCTACTCTTCAGGCTATTGCTTCAGAATTTAGTTCTTTACC	
	ATCATATGCCGCTTATGCCACTGCCCAGGAGGCCTATGAGCAGGCTGTAG	
	CTAATGGTGATTCTGAAGTCGTTCTCAAAAAGTTAAAGAAATCTTTGAAT	
	GTGGCTAAATCTGAGTTTGACCGTGATGCTGCCATGCAACGCAAGTTGGA	
	AAAGATGGCAGATCAGGCTATGACCCAAATGTACAAACAGGCAAGATCTG	
	AGGACAAGAGGGCAAAAGTAACTAGTGCTATGCAAACAATGCTCTTCACT	
	ATGCTTAGGAAGCTTGATAATGATGCACTTAACAACATTATCAACAATGC	
	GCGTGATGGTTGTGTTCCACTCAACATCATACCATTGACTACAGCAGCCA	
	AACTCATGGTTGTTGTCCCTGATTATGGTACCTACAAGAACACTTGTGAT	
	GGTAACACCTTTACATATGCATCTGCACTCTGGGAAATCCAGCAAGTTGT	
	TGATGCGGATAGCAAGATTGTTCAACTTAGTGAAATTAACATGGACAATT	
	CACCAAATTTGGCTTGGCCTCTTATTGTTACAGCTCTAAGAGCCAACTCA	
	GCTGTTAAACTACAGAATAATGAACTGAGTCCAGTAGCACTACGACAGAT	
	GTCCTGTGCGGCTGGTACCACACAAACAGCTTGTACTGATGACAATGCAC	
	TTGCCTACTATAACAATTCGAAGGGAGGTAGGTTTGTGCTGGCATTACTA	
	TCAGACCACCAAGATCTCAAATGGGCTAGATTCCCTAAGAGTGATGGTAC	
	AGGTACAATTTACACAGAACTGGAACCACCTTGTAGGTTTGTTACAGACA	
	CACCAAAAGGGCCTAAAGTGAAATACTTGTACTTCATCAAAGGCTTAAAC	
	AACCTAAATAGAGGTATGGTGCTGGGCAGTTTAGCTGCTACAGTACGTCT	
	TCAGGCTGGAAATGCTACAGAAGTACCTGCCAATTCAACTGTGCTTTCCT	
	TCTGTGCTTTTGCAGTAGACCCTGCTAAAGCATATAAGGATTACCTAGCA	
	AGTGGAGGACAACCAATCACCAACTGTGTGAAGATGTTGTGTACACACAC	
	TGGTACAGGACAGGCAATTACTGTAACACCAGAAGCTAACATGGACCAAG	
	AGTCCTTTGGTGGTGCTTCATGTTGTCTGTATTGTAGATGCCACATTGAC	
	CATCCAAATCCTAAAGGATTCTGTGACTTGAAAGGTAAGTACGTCCAAAT	
	ACCTACCACTTGTGCTAATGACCCAGTGGGTTTTTACACTTAGAAACACAG	
	TCTGTACCGTCTGCGGAATGTGGAAAGGTTATGGCTGTAGTTGTGACCAA	
	CTCCGCGAACCCTTGATGCAGTCTGCGGATGCATCAACGTTTTTAAACGG	
	GTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCACTAG	
	TACTGATGTCGTCTACAGGGCTTTTGATATTTACAACGAAAAAGTTGCTG	
	GTTTTGCAAAGTTCCTAAAAACTAATTGCTGTCGCTTCCAGGAGAAGGAT	
	GAGGAAGGCAATTTATTAGACTCTTACTTTGTAGTTAAGAGGCATACTAT	
	GTCTAACTACCAACATGAAGAGACTATTTATAACTTGGTTAAAGATTGTC	
	CAGCGGTTGCTGTCCATGACTTTTTCAAGTTTAGAGTAGATGGTGACATG	
	GTACCACATATATCACGTCAGCGTCTAACTAAATACACAATGGCTGATTT	
	AGTCTATGCTCTACGTCAGTGTTAGTGAGGGTAATTGTGATACATTAAAAG	
	AAATACTCGTCACATACAATTGCTGTGATGATGATTATTTCAATAAGAAG	
	ANALACICGICACALACAALIGCIGIGAIGAIGATTATTTCAATAAGAAG	

Белок или нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
кислота		
	GATTGGTATGACTTCGTAGAGAATCCTGACATCTTACGCGTATATGCTAA CTTAGGTGAGCGTGTACGCCAATCATTATTAAAGACTGTACAATTCTGCG	
	ATGCTATGCGTGATGCAGGCATTGTAGGCGTACTGACATTCTGCG	
	GATCTTAATGGGAACTGGTACGATTTCGGTGATTTCGTACAAGTAGCACC	
	AGGCTGCGGAGTTCCTATTGTGGATTTCATATTACTCATTGCTGATGCCCA	
	TCCTCACTTTGACTAGGGCATTGGCTGAGTCCCATATGGATGCTGAT	
	CTCGCAAAACCACTTATTAAGTGGGATTTGCTGAAATATGATTTTACGGA	
	AGAGAGACTTTGTCTCTCGACCGTTATTTTAAATATTGGGACCAGACAT	
	ACCATCCCAATTGTATTAACTGTTTGGATGATAGGTGTATCCTTCATTGT	
	GCAAACTTTAATGTGTTATTTTCTACTGTGTTTCCACCTACAAGTTTTGG	
	ACCACTAGTAAGAAAATATTTGTAGATGGTGTTCCTTTTGTTGTTTCAA	
	CTGGATACCATTTTCGTGAGTTAGGAGTCGTACATAATCAGGATGTAAAC	
	TTACATAGCTCGCGTCTCAGTTTCAAGGAACTTTTAGTGTATGCTGCTGA	
	TCCAGCTATGCATGCAGCTTCTGGCAATTTATTGCTAGATAAACGCACTA	
	CATGCTTTTCAGTAGCTGCACTAACAAACAATGTTGCTTTTCAAACTGTC	
	AAACCCGGTAATTTTAATAAAGACTTTTATGACTTTGCTGTGTCTAAAGG	
	TTTCTTTAAGGAAGGAAGTTCTGTTGAACTAAAACACTTCTTCTTTGCTC	
	AGGATGGCAACGCTGCTATCAGTGATTATGACTATTATCGTTATAATCTG	
	CCAACAATGTGTGATATCAGACAACTCCTATTCGTAGTTGAAGTTGTTGA	
	TAAATACTTTGATTGTTACGATGGTGGCTGTATTAATGCCAACCAA	
	TCGTTAACAATCTGGATAAATCAGCTGGTTTCCCATTTAATAAATGGGGT	
	AAGGCTAGACTTTATTATGACTCAATGAGTTATGAGGATCAAGATGCACT	
	TTTCGCGTATACTAAGCGTAATGTCATCCCTACTATAACTCAAATGAATC	
	TTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCTGGTGTC	
	TCTATCTGTAGTACTATGACAAATAGACAGTTTCATCAGAAATTATTGAA	
	GTCAATAGCCGCCACTAGAGGAGCTACTGTGGTAATTGGAACAAGCAAG	
	TTTACGGTGGCTGGCATAATATGTTAAAAACTGTTTACAGTGATGTAGAA	
	ACTCCACACCTTATGGGTTGGGATTATCCAAAATGTGACAGAGCCATGCC	
	TAACATGCTTAGGATAATGGCCTCTCTTGTTCTTGCTCGCAAACATAACA	
	CTTGCTGTAACTTATCACACCGTTTCTACAGGTTAGCTAACGAGTGTGCG	
	CAAGTATTAAGTGAGATGGTCATGTGTGGCGGCTCACTATATGTTAAACC	
	AGGTGGAACATCATCCGGTGATGCTACAACTGCTTATGCTAATAGTGTCT	
	TTAACATTTGTCAAGCTGTTACAGCCAATGTAAATGCACTTCTTTCAACT	
	GATGGTAATAAGATAGCTGACAAGTATGTCCGCAATCTACAACACAGGCT	
	CTATGAGTGTCTCTATAGAAATAGGGATGTTGATCATGAATTCGTGGATG	
	AGTTTTACGCTTACCTGCGTAAACATTTCTCCATGATGATTCTTCTGAT	
	GATGCCGTTGTGTGCTATAACAGTAACTATGCGGCTCAAGGTTTAGTAGC TAGCATTAAGAACTTTAAGGCAGTTCTTTATTATCAAAATAATGTGTTCA	
	TGTCTGAGGCAAAATGTTGGACTGAGCTGACCTTACTAAAGGACCTCAC	
	GAATTTTGCTCACAGCATACAATGCTAGTTAAACAAGGAGATGATTACGT	
	GTACCTGCCTTACCCAGATCCATCAAGAATATTAGGCGCAGGCTGTTTTG	
	TCGATGATATTGTCAAAACAGATGGTACACTTATGATTGAAAGGTTCGTG	
	TCACTGGCTATTGATGCTTACCCACTTACAAAACATCCTAATCAGGAGTA	
	TGCTGATGTCTTTCACTTGTATTTACAATACATTAGAAAGTTACATGATG	
	AGCTTACTGGCCACATGTTGGACATGTATTCCGTAATGCTAACTAA	
	AACACCTCACGGTACTGGGAACCTGAGTTTTATGAGGCTATGTACACACC	
	ACATACAGTCTTGCAGGCTGTAGGTGCTTGTGTATTGTGCAATTCACAGA	
	CTTCACTTCGTTGCGGTGCCTGTATTAGGAGACCATTCCTATGTTGCAAG	
	TGCTGCTATGACCATGTCATTTCAACATCACAAATTAGTGTTGTCTGT	
	TAATCCCTATGTTTGCAATGCCCCAGGTTGTGATGTCACTGATGTGACAC	
	AACTGTATCTAGGAGGTATGAGCTATTATTGCAAGTCACATAAGCCTCCC	
	ATTAGTTTTCCATTATGTGCTAATGGTCAGGTTTTTTGGTTTATACAAAAA	
	CACATGTGTAGGCAGTGACAATGTCACTGACTTCAATGCGATAGCAACAT	
	GTGATTGGACTAATGCTGGCGATTACATACTTGCCAACACTTGTACTGAG	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	AGACTCAAGCTTTTCGCAGCAGAAACGCTCAAAGCCACTGAGGAAACATT	
	TAAGCTGTCATATGGTATTGCCACTGTACGCGAAGTACTCTCTGACAGAG	
	AATTGCATCTTTCATGGGAGGTTGGAAAACCTAGACCACCATTGAACAGA	
	AACTATGTCTTTACTGGTTACCGTGTAACTAAAAATAGTAAAGTACAGAT	
	TGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTGTGTACA	
	GAGGTACTACGACATACAAGTTGAATGTTGGTGATTACTTTGTGTTGACA	
	TCTCACACTGTAATGCCACTTAGTGCACCTACTCTAGTGCCACAAGAGCA	
	CTATGTGAGAATTACTGGCTTGTACCCAACACTCAACATCTCAGATGAGT	
	TTTCTAGCAATGTTGCAAATTATCAAAAGGTCGGCATGCAAAAGTACTCT	
	ACACTCCAAGGACCACCTGGTACTGGTAAGAGTCATTTTGCCATCGGACT	
	TGCTCTCTATTACCCATCTGCTCGCATAGTGTATACGGCATGCTCTCATG	
	CAGCTGTTGATGCCCTATGTGAAAAGGCATTAAAATATTTGCCCATAGAT	
	AAATGTAGTAGAATCATACCTGCGCGTGCGCGTAGAGTGTTTTGATAA	
	ATTCAAAGTGAATTCAACACTAGAACAGTATGTTTTCTGCACTGTAAATG	
	CATTGCCAGAAACAACTGCTGACATTGTAGTCTTTGATGAAATCTCTATG	
	GCTACTAATTATGACTTGAGTGTTGTCAATGCTAGACTTCGTGCAAAACA	
	CTACGTCTATATTGGCGATCCTGCTCAATTACCAGCCCCCGCACATTGC	
	TGACTAAAGGCACACTAGAACCAGAATATTTTAATTCAGTGTGCAGACTT	
	ATGAAAACAATAGGTCCAGACATGTTCCTTGGAACTTGTCGCCGTTGTCC	
	TGCTGAAATTGTTGACACTGTGAGTGCTTTAGTTTATGACAATAAGCTAA	
	AAGCACAAAGGATAAGTCAGCTCAATGCTTCAAAATGTTCTACAAAGGT	
	GTTATTACACATGATGTTTCATCTGCAATCAACAGACCTCAAATAGGCGT	
	TGTAAGAGAATTTCTTACACGCAATCCTGCTTGGAGAAAAGCTGTTTTTA	
	TCTCACCTTATAATTCACAGAACGCTGTAGCTTCAAAAATCTTAGGATTG	
	CCTACGCAGACTGTTGATTCATCACAGGGTTCTGAATATGACTATGTCAT	
	ATTCACACAAACTACTGAAACAGCACACTCTTGTAATGTCAACCGCTTCA	
	ATGTGGCTATCACAAGGGCAAAAATTGGCATTTTGTGCATAATGTCTGAT	
	AGAGATCTTTATGACAAACTGCAATTTACAAGTCTAGAAATACCACGTCG	
	CAATGTGGCTACATTACAAGCAGAAAATGTAACTGGACTTTTTAAGGACT	
	GTAGTAAGATCATTACTGGTCTTCATCCTACACAGGCACCTACACACCTC	
	AGCGTTGATATAAAGTTCAAGACTGAAGGATTATGTGTTGACATACCAGG	
	CATACCAAAGGACATGACCTACCGTAGACTCATCTCTATGATGGGTTTCA	
	AAATGAATTACCAAGTCAATGGTTACCCTAATATGTTTATCACCCGCGAA	
	GAAGCTATTCGTCACGTTCGTGCGTGGATTGGCTTTGATGTAGAGGGCTG	
	TCATGCAACTAGAGATGCTGTGGGTACTAACCTACCTCTCCAGCTAGGAT	
	TTTCTACAGGTGTTAACTTAGTAGCTGTACCGACTGGTTATGTTGACACT	
	GAAAATAACACAGAATTCACCAGAGTTAATGCAAAACCTCCACCAGGTGA	
	CCAGTTTAAACATCTTATACCACTCATGTATAAAGGCTTGCCCTGGAATG	
	TAGTGCGTATTAAGATAGTACAAATGCTCAGTGATACACTGAAAGGATTG	
	TCAGACAGAGTCGTGTTCGTCCTTTGGGCGCATGGCTTTGAGCTTACATC	
	AATGAAGTACTTTGTCAAGATTGGACCTGAAAGAACGTGTTGTCTGTGTG	
	ACAAACGTGCAACTTGCTTTTCTACTTCATCAGATACTTATGCCTGCTGG	
	AATCATTCTGTGGGTTTTGACTATGTCTATAACCCATTTATGATTGAT	
	TCAGCAGTGGGGCTTTACGGGTAACCTTCAGAGTAACCATGACCAACATT	
	GCCAGGTACATGGAAATGCACATGTGGCTAGTTGTGATGCTATCATGACT	
	AGATGTTTAGCAGTCCATGAGTGCTTTGTTAAGCGCGTTGATTGGTCTGT	
	TGAATACCCTATTATAGGAGATGAACTGAGGGTTAATTCTGCTTGCAGAA	
	AAGTACAACACATGGTTGTGAAGTCTGCATTGCTTGCTGATAAGTTTCCA	
	GTTCTTCATGACATTGGAAATCCAAAGGCTATCAAGTGTGTGCCTCAGGC	
	TGAAGTAGAATGGAAGTTCTACGATGCTCAGCCATGTAGTGACAAAGCTT	
	ACAAAATAGAGGAACTCTTCTATTCTTATGCTACACATCACGATAAATTC	
	ACTGATGGTGTTTGTTTTGGAATTGTAACGTTGATCGTTACCCAGC	
	CAATGCAATTGTGTAGGTTTGACACAAGAGTCTTGTCAAACTTGAACT	
	TACCAGGCTGTGATGGTGGTAGTTTGTATGTGAATAAGCATGCAT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	ACTCCAGCTTTCGATAAAAGTGCATTTACTAATTTAAAGCAATTGCCTTT	
	CTTTTACTATTCTGATAGTCCTTGTGAGTCTCATGGCAAACAAGTAGTGT	
	CGGATATTGATTATGTTCCACTCAAATCTGCTACGTGTATTACACGATGC	
	AATTTAGGTGGTGCTGTTTGCAGACACCATGCAAATGAGTACCGACAGTA	
	CTTGGATGCATATAATATGATGATTTCTGCTGGATTTAGCCTATGGATTT	
	ACAAACAATTTGATACTTATAACCTGTGGAATACATTTACCAGGTTACAG	
	AGTTTAGAAAATGTGGCTTATAATGTTGTTAATAAAGGACACTTTGATGG	
	ACACGCCGGCGAAGCACCTGTTTCCATCATTAATAATGCTGTTTACACAA	
	AGGTAGATGGTATTGATGTGGAGATCTTTGAAAATAAGACAACACTTCCT	
	GTTAATGTTGCATTTGAGCTTTGGGCTAAGCGTAACATTAAACCAGTGCC	
	AGAGATTAAGATACTCAATAATTTGGGTGTTGATATCGCTGCTAATACTG	
	TAATCTGGGACTACAAAAGAGAAGCCCCAGCACATGTATCTACAATAGGT	
	GTCTGCACAATGACTGACATTGCCAAGAAACCTACTGAGAGTGCTTGTTC	
	TTCACTTACTGTCTTGTTTGATGGTAGAGTGGAAGGACAGGTAGACCTTT	
	TTAGAAACGCCCGTAATGGTGTTTTAATAACAGAAGGTTCAGTCAAAGGT	
	CTAACACCTTCAAAGGGACCAGCACAAGCTAGCGTCAATGGAGTCACATT	
	AATTGGAGAATCAGTAAAAACACAGTTTAACTACTTTAAGAAAGTAGACG	
	GCATTATTCAACAGTTGCCTGAAACCTACTTTACTCAGAGCAGAGACTTA	
	GAGGATTTTAAGCCCAGATCACAAATGGAAACTGACTTTCTCGAGCTCGC	
	TATGGATGAATTCATACAGCGATATAAGCTCGAGGGCTATGCCTTCGAAC	
	ACATCGTTTATGGAGATTTCAGTCATGGACAACTTGGCGGTCTTCATTTA	
	ATGATAGGCTTAGCCAAGCGCTCACAAGATTCACCACTTAAATTAGAGGA	
	TTTTATCCCTATGGACAGCACAGTGAAAAATTACTTCATAACAGATGCGC	
	AAACAGGTTCATCAAAATGTGTGTGTTCTGTGATTGATCTTTTACTTGAT	
	GACTTTGTCGAGATAATAAAGTCACAAGATTTGTCAGTGATTTCAAAAGT	
	GGTCAAGGTTACAATTGACTATGCTGAAATTTCATTCATGCTTTGGTGTA	
	AGGATGGACATGTTGAAACCTTCTACCCAAAACTACAAGCAAG	
	TGGCAACCAGGTGTTGCGATGCCTAACTTGTACAAGATGCAAAGAATGCT	
	TCTTGAAAAGTGTGACCTTCAGAATTATGGTGAAAATGCTGTTATACCAA	
	AAGGAATAATGATGAATGTCGCAAAGTATACTCAACTGTGTCAATACTTA	
	AATACACTTACTTTAGCTGTACCCTACAACATGAGAGTTATTCACTTTGG	
	TGCTGGCTCTGATAAAGGAGTTGCACCAGGTACAGCTGTGCTCAGACAAT	
	GGTTGCCAACTGGCACACTACTTGTCGATTCAGATCTTAATGACTTCGTC	
	TCCGACGCAGATTCTACTTTAATTGGAGACTGTGCAACAGTACATACGGC	
	TAATAAATGGGACCTTATTATTAGCGATATGTATGACCCTAGGACCAAAC	
	ATGTGACAAAAGAATGACTCTAAAGAAGGGTTTTTCACTTATCTGTGT	
	GGATTTATAAAGCAAAAACTAGCCCTGGGTGGTTCTATAGCTGTAAAGAT	
	AACAGAGCATTCTTGGAATGCTGACCTTTACAAGCTTATGGGCCATTTCT	
	CATGGTGGACAGCTTTTGTTACAAATGTAAATGCATCATCATCGGAAGCA	
	TTTTTAATTGGGGCTAACTATCTTGGCAAGCCGAAGGAACAAATTGATGG	
	CTATACCATGCATGCTAACTACATTTTCTGGAGGAACACAAATTGATGG	
	AGTTGTCTTCCTATTCACTCTTTGACATGAGCAAATTCCTCTTAAATTA	
	AGAGGAACTGCTGTAATGTCTCTTTAAGGAGAATCAAATCAATGATATGAT	
	TTATTCTCTCTGGAAAAGGTAGGCTTATCATTAGAGAAAACAACAGAG	
	TTATTCTCTTCTGGAAAAAGGTAGGCTTATCATTAGAGAAAACAACAGAG TTGTGGTTTCAAGTGATATTCTTGTTAACAACTAAACGAACATGTTTATT	
	TTGTGGTTTCAAGTGATATTCTTGTTAACAACTAAACGAACATGTTTATT TTCTTATTATTTCTTACTCTCACTAGTGGTAGTGACCTTGACCGGTGCAC	
	CACTTTTGATGATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTA	
	TGAGGGGGGTTTACTATCCTGATGAAATTTTTAGATCAGACACTCTTTAT	
	TTAACTCAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCA	
	TACTATTAATCATACGTTTGGCAACCCTGTCATACCTTTTAAGGATGGTA	
	TTTATTTTGCTGCCACAGAGAAATCAAATGTTGTCCGTGGTTGGGTTTTT	
	GGTTCTACCATGAACAACAAGTCACAGTCGGTGATTATTATTAACAATTC	
	TACTAATGTTGTTATACGAGCATGTAACTTTGAATTGTGTGACAACCCTT	
	TCTTTGCTGTTTCTAAACCCATGGGTACACAGACACATACTATGATATTC	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GATAATGCATTTAATTGCACTTTCGAGTACATATCTGATGCCTTTTCGCT	
	TGATGTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAGAGTTTGTGT	
	TTAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACCTATA	
	GATGTAGTTCGTGATCTACCTTCTGGTTTTAACACTTTGAAACCTATTTT	
	TAAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCCATTCTTACAG	
	CCTTTTCACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCCTATTTT	
	GTTGGCTATTTAAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGG	
	TACAATCACAGATGCTGTTGATTGTTCTCAAAATCCACTTGCTGAACTCA	
	AATGCTCTGTTAAGAGCTTTGAGATTGACAAAGGAATTTACCAGACCTCT	
	AATTTCAGGGTTGTTCCCTCAGGAGATGTTGTGAGATTCCCTAATATTAC	
	AAACTTGTGTCCTTTTGGAGAGGTTTTTAATGCTACTAAATTCCCTTCTG	
	TCTATGCATGGGAGAGAAAAAAATTTCTAATTGTGTTGCTGATTACTCT	
	GTGCTCTACAACTCAACATTTTTTTCAACCTTTAAGTGCTATGGCGTTTC	
	TGCCACTAAGTTGAATGATCTTTGCTTCTCCAATGTCTATGCAGATTCTT	
	TTGTAGTCAAGGGAGATGATGTAAGACAAATAGCGCCAGGACAAACTGGT	
	GTTATTGCTGATTATAATTATAAATTGCCAGATGATTTCATGGGTTGTGT	
	CCTTGCTTGGAATACTAGGAACATTGATGCTACTTCAACTGGTAATTATA	
	ATTATAAATATAGGTATCTTAGACATGGCAAGCTTAGGCCCTTTGAGAGA	
	GACATATCTAATGTGCCTTTCTCCCCTGATGGCAAACCTTGCACCCCACC	
	TGCTCTTAATTGTTATTGGCCATTAAATGATTATGGTTTTTACACCACTA	
	CTGGCATTGGCTACCAACCTTACAGAGTTGTAGTACTTTCTTT	
	TTAAATGCACCGGCCACGGTTTGTGGACCAAAATTATCCACTGACCTTAT	
	TAAGAACCAGTGTCAATTTTAATTTTAATGGACTCACTGGTACTGGTG	
	TGTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAATTTGGCCGT	
	GATGTTTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTGAAAT	
	ATTAGACATTTCACCTTGCGCTTTTGGGGGTGTAAGTGTAATTACACCTG	
	GAACAAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGC	
	ACTGATGTTTCTACAGCAATTCATGCAGATCAACTCACACCAGCTTGGCG	
	CATATATTCTACTGGAAACAATGTATTCCAGACTCAAGCAGGCTGTCTTA	
	TAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATTCCTATTGGA	
	GCTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAG	
	CCAAAAATCTATTGTGGCTTATACTATGTCTTTAGGTGCTGATAGTTCAA	
	TTGCTTACTCTAATAACACCATTGCTATACCTACTAACTTTTCAATTAGC	
	ATTACTACAGAAGTAATGCCTGTTTCTATGGCTAAAACCTCCGTAGATTG	
	TAATATGTACATCTGCGGAGATTCTACTGAATGTGCTAATTTGCTTCTCC	
	AATATGGTAGCTTTTGCACACAACTAAATCGTGCACTCTCAGGTATTGCT	
	GCTGAACAGGATCGCAACACACGTGAAGTGTTCGCTCAAGTCAAACAAA	
	GTACAAAACCCCAACTTTGAAATATTTTTGGTGGTTTTTAATTTTTCACAAA	
	TATTACCTGACCTCTAAAGCCAACTAAGAGGTCTTTTATTGAGGACTTG	
	CTCTTTAATAAGGTGACACTCGCTGATGCTGGCTTCATGAAGCAATATGG	
	CGAATGCCTAGGTGATATTAATGCTAGAGATCTCATTTGTGCGCAGAAGT	
	TCAATGGACTTACAGTGTTGCCACCTCTGCTCACTGATGATATGATTGCT	
	GCCTACACTGCTGCTCTAGTTAGTGGTACTGCCACTGCTGGATGGA	
	GGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAGAACCAAAAA	
	CAAATCGCCAACCAATTTAACAAGGCGATTAGTCAAATTCAAGAATCACT	
	TACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCAGA	
	ATGCTCAAGCATTAAACACTTGTTAAACACTTAGCTCTAATTTTGGT	
	GCAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGA	
	GGCGGAGGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTTC	
	AAACCTATGTAACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCT	
	GCTAATCTTGCTGCTACTAAAATGTCTGAGTGTGTTCTTGGACAATCAAA	
	AAGAGTTGACTTTTGTGGAAAGGGCTACCACCTTATGTCCTTCCCACAAG	
	CAGCCCGCATGGTGTTGTCTTCCTACATGTCACGTATGTGCCATCCCAG	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GAGAGGAACTTCACCACAGCGCCAGCAATTTGTCATGAAGGCAAAGCATA	
	CTTCCCTCGTGAAGGTGTTTTTGTGTTTAATGGCACTTCTTGGTTTATTA	
	CACAGAGGAACTTCTTTCTCCACAAATAATTACTACAGACAATACATTT	
	GTCTCAGGAAATTGTGATGTCGTTATTGGCATCATTAACAACACAGTTTA	
	TGATCCTCTGCAACCTGAGCTTGACTCATTCAAAGAAGAGCTGGACAAGT	
	ACTTCAAAAATCATACATCACCAGATGTTGATCTTGGCGACATTTCAGGC	
	ATTAACGCTTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGA	
	GGTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAA	
	AATATGAGCAATATATTAAATGGCCTTGGTATGTTTGGCTCGGCTTCATT	
	GCTGGACTAATTGCCATCGTCATGGTTACAATCTTGCTTTGTTGCATGAC	
	TAGTTGTTGCAGTTGCCTCAAGGGTGCATGCTCTTGTGGTTCTTGCTGCA	
	AGTTTGATGAGGATGACTCTGAGCCAGTTCTCAAGGGTGTCAAATTACAT	
	TACACATAAACGAACTTATGGATTTGTTTATGAGATTTTTTACTCTTAGA	
	TCAATTACTGCACAGCCAGTAAAAATTGACAATGCTTCTCCTGCAAGTAC	
	TGTTCATGCTACAGCAACGATACCGCTACAAGCCTCACTCCCTTTCGGAT	
	GGCTTGTTATTGGCGTTGCATTTCTTGCTGTTTTTTCAGAGCGCTACCAAA	
	ATAATTGCGCTCAATAAAAGATGGCAGCTAGCCCTTTATAAGGGCTTCCA	
	GTTCATTTGCAATTTACTGCTGCTATTTGTTACCATCTATTCACATCTTT	
	TGCTTGTCGCTGCAGTATTGGTACCATCTATTCACATCTTT	
	ATATATTTTCTACAATGCATCAACGCATGTAGAATTATTATGAGATGTTG	
	GCTTTGTTGGAAGTGCAAATCCAAGAACCCATTACTTTATGATGCCAACT	
	ACTTTGTTTGCTGGCACACACATAACTATGACTACTGTATACCATATAAC	
	AGTGTCACAGATACAATTGTCGTTACTGAAGGTGACGGCATTTCAACACC	
	AAAACTCAAAGAAGACTACCAAATTGGTGGTTATTCTGAGGATAGGCACT	
	CAGGTGTTAAAGACTATGTCGTTGTACATGGCTATTTCACCGAAGTTTAC	
	TACCAGCTTGAGTCTACACAAATTACTACAGACACTGGTATTGAAAATGC	
	TACATTCTTCATCTTTAACAAGCTTGTTAAAGACCCACCGAATGTGCAAA	
	TACACACAATCGACGGCTCTTCAGGAGTTGCTAATCCAGCAATGGATCCA	
	ATTTATGATGAGCCGACGACGACTACTAGCGTGCCTTTGTAAGCACAAGA	
	AAGTGAGTACGAACTTATGTACTCATTCGTTTCGGAAGAAACAGGTACGT	
	TAATAGTTAATAGCGTACTTCTTTTTCTTGCTTTCGTGGTATTCTTGCTA	
	GTCACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAA	
	TATTGTTAACGTGAGTTTAGTAAAACCAACGGTTTACGTCTACTCGCGTG	
	TTAAAAATCTGAACTCTTCTGAAGGAGTTCCTGATCTTCTGGTCTAAACG	
	AACTAACTATTATTATTATTCTGTTTGGAACTTTAACATTGCTTATCATG	
	GCAGACAACGGTACTATTACCGTTGAGGAGCTTAAACAACTCCTGGAACA	
	ATGGAACCTAGTAATAGGTTTCCTATTCCTAGCCTGGATTATGTTACTAC	
	AATTTGCCTATTCTAATCGGAACAGGTTTTTGTACATAATAAAGCTTGTT	
	TTCCTCTGGCTCTTGTGGCCAGTAACACTTGCTTGTTTTTGTGCTTGCT	
	TGTCTACAGAATTAATTGGGTGACTGGCGGGATTGCGATTGCAATGGCTT	
	GTATTGTAGGCTTGATGTGGCTTAGCTACTTCGTTGCTTCCTTC	
	TTTGCTCGTACCCGCTCAATGTGGTCATTCAACCCAGAAACAAAC	
	TCTCAATGTGCCTCTCCGGGGGACAATTGTGACCAGACCGCTCATGGAAA	
	GTGAACTTGTCATTGGTGCTGTGATCATTCGTGGTCACTTGCGAATGGCC	
	GGACACTCCCTAGGGCGCTGTGACATTAAGGACCTGCCAAAAGAGATCAC	
	TGTGGCTACATCACGAACGCTTTCTTATTACAAATTAGGAGCGTCGCAGC	
	GTGTAGGCACTGATTCAGGTTTTGCTGCATACAACCGCTACCGTATTGGA	
	AACTATAAATTAAATACAGACCACGCCGGTAGCAACGACAATATTGCTTT	
	GCTAGTACAGTAAGTGACAACAGATGTTTCATCTTGTTGACTTCCAGGTT	
	ACAATAGCAGAGATATTGATTATCATTATGAGGACTTTCAGGATTGCTAT	
	TTGGAATCTTGACGTTATAATAAGTTCAATAGTGAGACAATTATTTAAGC	
	CTCTAACTAAGAAGAATTATTCGGAGTTAGATGATGAAGAACCTATGGAG	
	TTAGATTATCCATAAAACGAACATGAAAATTATTCTCTTCCTGACATTGA	
	TTGTATTTACATCTTGCGAGCTATATCACTATCAGGAGTGTGTTAGAGGT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
AMENIO I A	ACGACTGTACTACTAAAAGAACCTTGCCCATCAGGAACATACGAGGGCAA	
	TTCACCATTTCACCCTCTTGCTGACAATAAATTTGCACTAACTTGCACTA	
	GCACACACTTTGCTTTTGCTTGTGCTGACGGTACTCGACATACCTATCAG	
	CTGCGTGCAAGATCAGTTTCACCAAAACTTTTCATCAGACAAGAGGAGGT	
	TCAACAAGAGCTCTACTCGCCACTTTTTCTCATTGTTGCTGCTCTAGTAT	
	TTTTAATACTTTGCTTCACCATTAAGAGAAAGACAGAATGAAT	
	CTTTAATTGACTTCTATTTGTGCTTTTTAGCCTTTCTGCTATTCCTTGTT	
	TTAATAATGCTTATTATATTTTGGTTTTCACTCGAAATCCAGGATCTAGA	
	AGAACCTTGTACCAAAGTCTAAACGAACATGAAACTTCTCATTGTTTTGA	
	CTTGTATTTCTCTATGCAGTTGCATATGCACTGTAGTACAGCGCTGTGCA	
	TCTAATAAACCTCATGTGCTTGAAGATCCTTGTAAGGTACAACACTAGGG	
	GTAATACTTATAGCACTGCTTGGCTTTGTGCTCTAGGAAAGGTTTTACCT	
	TTTCATAGATGGCACACTATGGTTCAAACATGCACACCTAATGTTACTAT	
	CAACTGTCAAGATCCAGCTGGTGGTGCGCTTATAGCTAGGTGTTGGTACC	
	TTCATGAAGGTCACCAAACTGCTGCATTTAGAGACGTACTTGTTTTTA	
	AATAAACGAACAAATTAAAATGTCTGATAATGGACCCCAATCAAACCAAC	
	GTAGTGCCCCCCGCATTACATTTGGTGGACCCACAGATTCAACTGACAAT	
	AACCAGAATGGAGGACGCAATGGGGCAAGGCCAAAACAGCGCCGACCCCA	
	AGGTTTACCCAATAATACTGCGTCTTGGTTCACAGCTCTCACTCA	
	GCAAGGAGGAACTTAGATTCCCTCGAGGCCAGGGCGTTCCAATCAACACC	
	AATAGTGGTCCAGATGACCAAATTGGCTACTACCGAAGAGCTACCCGACG	
	AGTTCGTGGTGACGGCAAAATGAAAGAGCTCAGCCCCAGATGGTACT	
	TCTATTACCTAGGAACTGGCCCAGAAGCTTCACTTCCCTACGGCGCTAAC	
	AAAGAAGGCATCGTATGGGTTGCAACTGAGGGAGCCTTGAATACACCCAA	
	AGACCACATTGGCACCCGCAATCCTAATAACAATGCTGCCACCGTGCTAC	
	AACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAGGGAAGC	
	AGAGGCGGCAGTCAAGCCTCTTCTCGCTCCTCATCACGTAGTCGCGGTAA	
	TTCAAGAAATTCAACTCCTGGCAGCAGTAGGGGAAATTCTCCTGCTCGAA	
	TGGCTAGCGGAGGTGGTGAAACTGCCCTCGCGCTATTGCTGCTAGACAGA	
	TTGAACCAGCTTGAGAGCAAAGTTTCTGGTAAAGGCCAACAACAACAAGG	
	CCAAACTGTCACTAAGAAATCTGCTGCTGAGGCATCTAAAAAAGCCTCGCC	
	AAAAACGTACTGCCACAAAACAGTACAACGTCACTCAAGCATTTGGGAGA	
	CGTGGTCCAGAACAAACCCAAGGAAATTTCGGGGACCAAGACCTAATCAG	
	ACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCTCCAA	
	GTGCCTCTGCATTCTTTGGAATGTCACGCATTGGCATGGAAGTCACACCT	
	TCGGGAACATGGCTGACTTATCATGGAGCCATTAAATTGGATGACAAAGA	
	TCCACAATTCAAAGACAACGTCATACTGCTGAACAAGCACATTGACGCAT	
	ACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAAAAGACT	
	GATGAAGCTCAGCCTTTGCCGCAGAGACAAAAGAAGCAGCCCACTGTGAC	
	TCTTCTTCCTGCGGCTGACATGGATGATTTCTCCAGACAACTTCAAAATT	
	CCATGAGTGGAGCTTCTGCTGATTCAACTCAGGCATAAACACTCATGATG	
	ACCACACAGGCAGATGGGCTATGTAAACGTTTTCGCAATTCCGTTTACG	
	ATACATAGTCTACTCTTGTGCAGAATGAATTCTCGTAACTAAACAGCACA	
	AGTAGGTTTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAATGTGT	
	AACATTAGGGAGGACTTGAAAGAGCCACCACATTTTCATCGAGGCCACGC	
	GGAGTACGATCGAGGGTACAGTGAATAATGCTAGGGAGAGCTGCCTATAT	
	GGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTG	
	ATTTTAATAGCTTCTTAGGAGAATGACAAAAAAAAAAAA	
	A A	
		70
	GATTTAAGTGAATAGCTTGGCTATCTCACTTCCCCTCGTTCTCTTGCAGA	79
MERS	ACTTTGATTTTAACGAACTTAAATAAAAGCCCTGTTGTTTAGCGTATCGT	
CoV Refseq	TGCACTTGTCTGGTGGGATTGTGGCATTAATTTGCCTGCTCATCTAGGCA	
1	GTGGACATATGCTCAACACTGGGTATAATTCTAATTGAATACTATTTTTC	
	AGTTAGAGCGTCGTGTCTCTTGTACGTCTCGGTCACAATACACGGTTTCG	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TCCGGTGCGTGGCAATTCGGGGCACATCATGTCTTTCGTGGCTGGTGTGA	
	CCGCGCAAGGTGCGCGCGGTACGTATCGAGCAGCGCTCAACTCTGAAAAA	
	CATCAAGACCATGTGTCTCTAACTGTGCCACTCTGTGGTTCAGGAAACCT	
	GGTTGAAAAACTTTCACCATGGTTCATGGATGGCGAAAATGCCTATGAAG	
	TGGTGAAGGCCATGTTACTTAAAAAGGAGCCACTTCTCTATGTGCCCATC	
	CGGCTGGCTGGACACACTAGACACCTCCCAGGTCCTCGTGTGTACCTGGT	
	TGAGAGGCTCATTGCTTGTGAAAATCCATTCATGGTTAACCAATTGGCTT	
	ATAGCTCTAGTGCAAATGGCAGCCTGGTTGGCACAACTTTGCAGGGCAAG	
	CCTATTGGTATGTTCTTCCCTTATGACATCGAACTTGTCACAGGAAAGCA	
	AAATATTCTCCTGCGCAAGTATGGCCGTGGTGGTTATCACTACACCCCAT	
	TCCACTATGAGCGAGACAACACCTCTTGCCCTGAGTGGATGGA	
	GAGGCGGATCCTAAAGGCAAATATGCCCAGAATCTGCTTAAGAAGTTGAT	
	TGGCGGTGATGTCACTCCAGTTGACCAATACATGTGTGGCGTTGATGGAA	
	AACCCATTAGTGCCTACGCATTTTTAATGGCCAAGGATGGAATAACCAAA	
	CTGGCTGATGTTGAAGCGGACGTCGCAGCACGTGCTGATGACGAAGGCTT	
	CATCACATTAAAGAACAATCTATATAGATTGGTTTGGCATGTTGAGCGTA	
	AAGACGTTCCATATCCTAAGCAATCTATTTTTACTATTAATAGTGTGGTC	
	CAAAAGGATGGTGTTGAAAACACTCCTCCTCACTATTTTACTCTTTGGATG	
	CAAAATTTTAACGCTCACCCCACGCAACAAGTGGAGTGG	
	TGTCCCTCAAACAAAAACTCCTTTACACCTTCTATGGTAAGGAGTCACTT	
	GAGAACCCAACCTACATTTACCACTCCGCATTCATTGAGTGTGGAAGTTG	
	TGGTAATGATTCCTGGCTTACAGGGAATGCTATCCAAGGGTTTGCCTGTG	
	GATGTGGGGCATCATATACAGCTAATGATGTCGAAGTCCAATCATCTGGC	
	ATGATTAAGCCAAATGCTCTTCTTTGTGCTACTTGCCCCTTTGCTAAGGG	
	TGATAGCTGTTCTTAATTGCAAACATTCAGTTGCTCAGTTGGTTAGTT	
	ACCTTTCTGAACGCTGTAATGTTATTGCTGATTCTAAGTCCTTCACACTT	
	ATCTTTGGTGGCGTAGCTTACGCCTACTTTGGATGTGAGGAAGGTACTAT	
	GTACTTTGTGCCTAGAGCTAAGTCTGTTGTCTCAAGGATTGGAGACTCCA	
	TCTTTACAGGCTGTACTGGCTCTTGGAACAAGGTCACTCAAATTGCTAAC	
	ATGTTCTTGGAACAGACTCAGCATTCCCTTAACTTTGTGGGAGAGTTCGT	
	TGTCAACGATGTTGTCCTCGCAATTCTCTCTGGAACCACAACTAATGTTG	
	ACAAAATACGCCAGCTTCTCAAAGGTGTCACCCTTGACAAGTTGCGTGAT	
	TATTTAGCTGACTATGACGTAGCAGTCACTGCCGGCCCATTCATGGATAA	
	TGCTATTAATGTTGGTGGTACAGGATTACAGTATGCCGCCATTACTGCAC	
	CTTATGTAGTTCTCACTGGCTTAGGTGAGTCCTTTAAGAAAGTTGCAACC	
	ATACCGTATAAGGTTTGCAACTCTGTTAAGGATACTCTGGCTTATTATGC	
	TCACAGCGTGTTGTACAGAGTTTTTCCTTATGACATGGATTCTGGTGTGT	
	CATCCTTTAGTGAACTACTTTTTGATTGCGTTGATCTTTCAGTAGCTTCT	
	ACCTATTTTTTAGTCCGCATCTTGCAAGATAAGACTGGCGACTTTATGTC	
	TACAATTATTACTTCCTGCCAAACTGCTGTTAGTAAGCTTCTAGATACAT	
	GTTTTGAAGCTACAGAAGCAACATTTAACTTCTTGTTAGATTTGGCAGGA	
	TTGTTCAGAATCTTTCTCCGCAATGCCTATGTGTACACTTCACAAGGGTT	
	TGTGGTGGTCAATGGCAAAGTTTCTACACTTGTCAAACAAGTGTTAGACT	
	TGCTTAATAAGGGTATGCAACTTTTGCATACAAAGGTCTCCTGGGCTGGT	
	TCTAAAATCATTGCTGTTATCTACAGCGGCAGGGAGTCTCTAATATTCCC	
	ATCGGGAACCTATTACTGTGTCACCACTAAGGCTAAGTCCGTTCAACAAG	
	ATCTTGACGTTATTTTGCCTGGTGAGTTTTCCAAGAAGCAGTTAGGACTG	
	CTCCAACCTACTGACAATTCTACAACTGTTAGTGTTACTGTATCCAGTAA	
	CATGGTTGAAACTGTTGTGGGTCAACTTGAGCAAACTAATATGCATAGTC	
	CTGATGTTATAGTAGGTGACTATGTCATTATTAGTGAAAAATTGTTTGT	
	CGTAGTAAGGAAGAAGACGGATTTGCCTTCTACCCTGCTTGCACTAATGG	
	TCATGCTGTACCGACTCTCTTTAGACTTAAGGGAGGTGCACCTGTAAAAA	
	AAGTAGCCTTTGGCGGTGATCAAGTACATGAGGTTGCTGCTGTAAGAAGT	
	GTTACTGTCGAGTACAACATTCATGCTGTATTAGACACACTACTTGCTTC	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TTCTAGTCTTAGAACCTTTGTTGTAGATAAGTCTTTGTCAATTGAGGAGT	
	TTGCTGACGTAGTAAAGGAACAAGTCTCAGACTTGCTTGTTAAATTACTG	
	CGTGGAATGCCGATTCCAGATTTTGATTTAGACGATTTTATTGACGCACC	
	ATGCTATTGCTTTAACGCTGAGGGTGATGCATCCTGGTCTTCTACTATGA	
	TCTTCTCTCTCACCCCGTCGAGTGTGACGAGGAGTGTTCTGAAGTAGAG	
	GCTTCAGATTTAGAAGAAGGTGAATCAGAGTGCATTTCTGAGACTTCAAC	
	TGAACAAGTTGACGTTTCTCATGAGACTTCTGACGACGAGTGGGCTGCTG	
	CAGTTGATGAAGCGTTCCCTCTCGATGAAGCAGAAGATGTTACTGAATCT	
	GTGCAAGAAGAAGCACCAGTAGAAGTACCTGTTGAAGATATTGCGCA	
	GGTTGTCATAGCTGACACCTTACAGGAAACTCCTGTTGTGCCTGATACTG	
	TTGAAGTCCCACCGCAAGTGGTGAAACTTCCGTCTGCACCTCAGACTATC	
	CAGCCCGAGGTAAAAGAAGTTGCACCTGTCTATGAGGCTGATACCGAACA	
	GACACAGAATGTTACTGTTAAACCTAAGAGGTTACGCAAAAAGCGTAATG	
	TTGACCCTTTGTCCAATTTTGAACATAAGGTTATTACAGAGTGCGTTACC	
	ATAGTTTTAGGTGACGCAATTCAAGTAGCCAAGTGCTATGGGGAGTCTGT	
	GTTAGTTAATGCTGCTAACACACATCTTAAGCATGGCGGTGGTATCGCTG	
	GTGCTATTAATGCGGCTTCAAAAGGGGCTGTCCAAAAAGAGTCAGATGAG	
	TATATTCTGGCTAAAGGGCCGTTACAAGTAGGAGATTCAGTTCTCTTGCA	
	AGGCCATTCTCTAGCTAAGAATATCCTGCATGTCGTAGGCCCAGATGCCC	
	GCGCTAAACAGGATGTTTCTCTCCTTAGTAAGTGCTATAAGGCTATGAAT	
	GCATATCCTCTTGTAGTCACTCCTCTTGTTTCAGCAGGCATATTTGGTGT	
	AAAACCAGCTGTGTCTTTTGATTATCTTATTAGGGAGGCTAAGACTAGAG	
	TTTTAGTCGTCGTTAATTCCCAAGATGTCTATAAGAGTCTTACCATAGTT	
	GACATTCCACAGAGTTTGACTTTTTCATATGATGGGTTACGTGGCGCAAT	
	ACGTAAAGCTAAAGATTATGGTTTTACTGTTTTTGTGTGCACAGACAACT	
	CTGCTAACACTAAAGTTCTTAGGAACAAGGGTGTTGATTATACTAAGAAG	
	TTTCTTACAGTTGACGGTGTGCAATATTATTGCTACACGTCTAAGGACAC	
	TTTAGATGATATCTTACAACAGGCTAATAAGTCTGTTGGTATTATATCTA	
	TGCCTTTGGGATATGTGTCTCATGGTTTAGACTTAATGCAAGCAGGGAGT	
	GTCGTGCGTAGAGTTAACGTGCCCTACGTGTGTCTCCTAGCTAATAAAGA	
	GCAAGAAGCTATTTTGATGTCTGAAGACGTTAAGTTAAACCCTTCAGAAG	
	ATTTTATAAAGCACGTCCGCACTAATGGTGGTTACAATTCTTGGCATTTA	
	GTCGAGGGTGAACTATTGGTGCAAGACTTACGCTTAAATAAGCTCCTGCA	
	TTGGTCTGATCAAACCATATGCTACAAGGATAGTGTGTTTTATGTTGTAA	
	AGAATAGTACAGCTTTTCCATTTGAAACACTTTCAGCATGTCGTGCGTAT	
	TTGGATTCACGCACGACACAGCAGTTAACAATCGAAGTCTTAGTGACTGT	
	CGATGGTGTAAATTTTAGAACAGTCGTTCTAAATAATAAGAACACTTATA	
	GATCACAGCTTGGATGCGTTTTCTTTAATGGTGCTGATATTTCTGACACC	
	ATTCCTGATGAGAAACAGAATGGTCACAGTTTATATCTAGCAGACAATTT	
	GACTGCTGATGAAACAAAGGCGCTTAAAGAGTTATATGGCCCCGTTGATC	
	CTACTTCTTACACAGATTCTATTCACTTAAGGCTGCAGTCCATGGGTGG	
	AAGATGGTTGTGTGATAAGGTACGTTCTCTCAAATTGAGTGATAATAA	
	TTGTTATCTTAATGCAGTTATTATGACACTTGATTTATTGAAGGACATTA	
	AATTTGTTATACCTGCTCTACAGCATGCATTTATGAAACATAAGGGCGGT	
	GATTCAACTGACTTCATAGCCCTCATTATGGCTTATGGCAATTGCACATT	
	TGGTGCTCCAGATGATGCCTCTCGGTTACTTCATACCGTGCTTGCAAAGG	
	CTGAGTTATGCTGTTCTGCACGCATGGTTTGGAGAGAGTGGTGCAATGTC	
	TGTGGCATAAAAGATGTTGTTCTACAAGGCTTAAAAAGCTTGTTGTTACGT	
	GGGTGTGCAAACTGTTGAAGATCTGCGTGCTCGCATGACATATGTATG	
	AGTGTGGTGGAACGTCATCGGCAATTAGTCGAACACCACCCCCTGG	
	TTGCTGCTCTCAGGCACACCAAATGAAAAATTGGTGACAACCTCCACGGC	
	GCCTGATTTTGTAGCATTTAATGTCTTTCAGGGCATTGAAACGGCTGTTG	
	GCCATTATGTTCATGCTCGCCTGAAGGGTGGTCTTATTTTAAAGTTTGAC	
	TCTGGCACCGTTAGCAAGACTTCAGACTGGAAGTGCAAGGTGACAGATGT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	ACTTTTCCCCGGCCAAAAATACAGTAGCGATTGTAATGTCGTACGGTATT	
	CTTTGGACGGTAATTTCAGAACAGAGGTTGATCCCGACCTATCTGCTTTC	
	TATGTTAAGGATGGTAAATACTTTACAAGTGAACCACCCGTAACATATTC	
	ACCAGCTACAATTTTAGCTGGTAGTGTCTACACTAATAGCTGCCTTGTAT	
	CGTCTGATGGACAACCTGGCGGTGATGCTATTAGTTTGAGTTTTAATAAC	
	CTTTTAGGGTTTGATTCTAGTAAACCAGTCACTAAGAAATACACTTACTC	
	CTTCTTGCCTAAAGAAGACGGCGATGTGTTGTTGGCTGAGTTTGACACTT	
	ATGACCCTATTTATAAGAATGGTGCCATGTATAAAGGCAAACCAATTCTT	
	TGGGTCAATAAAGCATCTTATGATACTAATCTTAATAAGTTCAATAGAGC	
	TAGTTTGCGTCAAATTTTTGACGTAGCCCCCATTGAACTCGAAAATAAAT	
	TCACACCTTTGAGTGTGGAGTCTACACCAGTTGAACCTCCAACTGTAGAT	
	GTGGTAGCACTTCAACAGGAAATGACAATTGTCAAATGTAAGGGTTTAAA	
	TAAACCTTTCGTGAAGGACAATGTCAGTTTCGTTGCTGATGATTCAGGTA	
	CTCCCGTTGTTGAGTATCTGTCTAAAGAAGACCTACATACA	
	GACCCTAAGTATCAAGTCATTGTCTTAAAAGACAATGTACTTTCTTCTAT	
	GCTTAGATTGCACACCGTTGAGTCAGGTGATATTAACGTTGTTGCAGCTT	
	CCGGATCTTTGACACGTAAAGTGAAGTTACTATTTAGGGCTTCATTTTAT	
	TTCAAAGAATTTGCTACCCGCACTTTCACTGCTACCACTGCTGTAGGTAG	
	TTGTATAAAGAGTGTAGTGCGGCATCTAGGTGTTACTAAAGGCATATTGA	
	CAGGCTGTTTTAGTTTTGCCAAGATGTTATTTATGCTTCCACTAGCTTAC	
	TTTAGTGATTCAAAACTCGGCACCACAGAGGTTAAAGTGAGTG	
	AACAGCCGGCGTTGTGACAGGTAATGTTGTAAAACAGTGTTGCACTGCTG	
	CTGTTGATTTAAGTATGGATAAGTTGCGCCGTGTGGATTGGAAATCAACC	
	CTACGGTTGTTACTTATGTTATGCACAACTATGGTATTGTTGTCTTCTGT	
	GTATCACTTGTATGTCTTCAATCAGGTCTTATCAAGTGATGTTATGTTTG	
	AAGATGCCCAAGGTTTGAAAAAGTTCTACAAAGAAGTTAGAGCTTACCTA	
	GGAATCTCTTCTGCTTGTGACGGTCTTGCTTCAGCTTATAGGGCGAATTC	
	CTTTGATGTACCTACATTCTGCGCAAACCGTTCTGCAATGTGTAATTGGT	
	GCTTGATTAGCCAAGATTCCATAACTCACTACCCAGCTCTTAAGATGGTT	
	CAAACACATCTTAGCCACTATGTTCTTAACATAGATTGGTTGTGGTTTGC	
	ATTTGAGACTGGTTTGGCATACATGCTCTATACCTCGGCCTTCAACTGGT	
	TGTTGTTGGCAGGTACATTGCATTATTTCTTTGCACAGACTTCCATATTT	
	GTAGACTGGCGGTCATACAATTATGCTGTGTCTAGTGCCTTCTGGTTATT	
	CACCCACATTCCAATGGCGGGTTTGGTACGAATGTATAATTTGTTAGCAT	
	GCCTTTGGCTTTTACGCAAGTTTTATCAGCATGTAATCAATGGTTGCAAA	
	GATACGGCATGCTTGCTCTGCTATAAGAGGAACCGACTTACTAGAGTTGA	
	AGCTTCTACCGTTGTCTGTGGTGGAAAACGTACGTTTTATATCACAGCAA	
	ATGGCGGTATTTCATTCTGTCGTAGGCATAATTGGAATTGTGTGGATTGT	
	GACACTGCAGGTGTGGGGAATACCTTCATCTGTGAAGAAGTCGCAAATGA	
	CCTCACTACCGCCCTACGCAGGCCTATTAACGCTACGGATAGATCACATT	
	ATTATGTGGATTCCGTTACAGTTAAAGAGACTGTTGTTCAGTTTAATTAT	
	CGTAGAGACGGTCAACCATTCTACGAGCGGTTTCCCCTCTGCGCTTTTAC	
	AAATCTAGATAAGTTGAAGTTCAAAGAGGTCTGTAAAACTACTACTGGTA	
	TACCTGAATACAACTTTATCATCTACGACTCATCAGATCGTGGCCAGGAA	
	AGTTTAGCTAGGTCTGCATGTGTTTATTATTCTCAAGTCTTGTGTAAATC	
	AATTCTTTTGGTTGACTCAAGTTTGGTTACTTCTGTTGGTGATTCTAGTG	
	AAATCGCCACTAAAATGTTTGATTCCTTTGTTAATAGTTTCGTCTCGCTG	
	TATAATGTCACACGCGATAAGTTGGAAAAACTTATCTCTACTGCTCGTGA	
	TGGCGTAAGGCGAGGCGATAACTTCCATAGTGTCTTAACAACATTCATT	
	ACGCAGCACGAGGCCCCGCAGGTGTGGAGTCTGATGTTGAGACCAATGAA	
	ATTGTTGACTCTGTGCAGTATGCTCATAAACATGACATACAAATTACTAA	
	TGAGAGCTACAATAATTATGTACCCTCATATGTTAAACCTGATAGTGTGT	
	CTACCAGCGATTTAGGTAGTCTCATTGATTGTAATGCGGCTTCAGTTAAC	
	CAAATTGTCTTGCGTAATTCTAATGGTGCTTGCATTTGGAACGCTGCTGC	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	ATATATGAAACTCTCGGATGCACTTAAACGACAGATTCGCATTGCATGCC	
	GTAAGTGTAATTTAGCTTTCCGGTTAACCACCTCAAAGCTACGCGCTAAT	
	GATAATATCTTATCAGTTAGATTCACTGCTAACAAAATTGTTGGTGGTGC	
	TCCTACATGGTTTAATGCGTTGCGTGACTTTACGTTAAAGGGTTATGTTC	
	TTGCTACCATTATTGTGTTTCTGTGTGCTGTACTGATGTATTTGTGTTTA	
	CCTACATTTTCTATGGCACCTGTTGAATTTTATGAAGACCGCATCTTGGA	
	CTTTAAAGTTCTTGATAATGGTATCATTAGGGATGTAAATCCTGATGATA	
	AGTGCTTTGCTAATAAGCACCGGTCCTTCACACAATGGTATCATGAGCAT	
	GTTGGTGGTGTCTATGACAACTCTATCACATGCCCATTGACAGTTGCAGT	
	AATTGCTGGAGTTGCTGGTGCTCGCATTCCAGACGTACCTACTACATTGG	
	CTTGGGTGAACAATCAGATAATTTTCTTTGTTTCTCGAGTCTTTGCTAAT	
	ACAGGCAGTGTTTGCTACACTCCTATAGATGAGATACCCTATAAGAGTTT	
	CTCTGATAGTGGTTGCATTCTTCCATCTGAGTGCACTATGTTTAGGGATG	
	CAGAGGGCCGTATGACACCATACTGCCATGATCCTACTGTTTTGCCTGGG	
	GCTTTTGCGTACAGTCAGATGAGGCCTCATGTTCGTTACGACTTGTATGA	
	TGGTAACATGTTTATTAAATTTCCTGAAGTAGTATTTGAAAGTACACTTA	
	GGATTACTAGAACTCTGTCAACTCAGTACTGCCGGTTCGGTAGTTGTGAG	
	TATGCACAAGAGGGTGTTTGTATTACCACAAATGGCTCGTGGGCCATTTT	
	TAATGACCACCATCTTAATAGACCTGGTGTCTATTGTGGCTCTGATTTTA	
	TTGACATTGTCAGGCGGTTAGCAGTATCACTGTTCCAGCCTATTACTTAT	
	TTCCAATTGACTACCTCATTGGTCTTGGGTATAGGTTTGTGTGCGTTCCT	
	GACTTTGCTCTTCTATTATATAAAAGTAAAACGTGCTTTTGCAGATT	
	ACACCCAGTGTGCTGTAATTGCTGTTGTTGCTGCTGTTCTTAATAGCTTG	
	TGCATCTGCTTTGTTACCTCTATACCATTGTGTATAGTACCTTACACTGC	
	ATTGTACTATTATGCTACATTCTATTTTACTAATGAGCCTGCATTTATTA	
	TGCATGTTTCTTGGTACATTATGTTCGGGCCTATCGTTCCCATATGGATG	
	ACCTGCGTCTATACAGTTGCAATGTGCTTTAGACACTTCTTCTGGGTTTT	
	AGCTTATTTTAGTAAGAAACATGTAGAAGTTTTTACTGATGGTAAGCTTA	
	ATTGTAGTTTCCAGGACGCTGCCTCTAATATCTTTGTTATTAACAAGGAC	
	ACTTATGCAGCTCTTAGAAACTCTTTAACTAATGATGCCTATTCACGATT	
	TTTGGGGTTGTTTAACAAGTATAAGTACTTCTCTGGTGCTATGGAAACAG	
	CCGCTTATCGTGAAGCTGCAGCATGTCATCTTGCTAAAGCCTTACAAACA	
	TACAGCGAGACTGGTAGTGATCTTCTTTACCAACCACCCAACTGTAGCAT	
	AACCTCTGGCGTGTTGCAAAGCGGTTTGGTGAAAATGTCACATCCCAGTG	
	GAGATGTTGAGGCTTGTATGGTTCAGGTTACCTGCGGTAGCATGACTCTT	
	AATGGTCTTTGGCTTGACAACACAGTCTGGTGCCCACGACACGTAATGTG	
	CCCGCTGACCAGTTGTCTGATCCTAATTATGATGCCTTGTTGATTTCTA	
	TGACTAATCATAGTTTCAGTGTGCAAAAACACATTGGCGCTCCAGCAAAC	
	TTGCGTGTTGTTGGTCATGCCATGCAAGGCACTCTTTTGAAGTTGACTGT	
	CGATGTTGCTAACCCTAGCACTCCAGCCTACACTTTTACAACAGTGAAAC	
	CTGGCGCAGCATTTAGTGTGTTTAGCATGCTATAATGGTCGTCCGACTGGT	
	ACATTCACTGTTGTAATGCGCCCTAACTACACAATTAAGGGTTCCTTTCT	
	GTGTGGTTCTTGTGGTAGTGTTGGTTACACCAAGGAGGGTAGTGTGATCA	
	ATTTCTGTTACATGCATCAAATGGAACTTGCTAATGGTACACATACCGGT TCAGCATTTGATGGTACTATGTATGGTGCCTTTATGGATAAACAAGTGCA	
	CCAAGTTCAGTTAACAGACAAATACTGCAGTGTTAATGTAGTAGCTTGGC	
	TTTACGCAGCAATACTTAATGGTTGCGCTTGGTTTGTAAAACCTAATCGC	
	ACTAGTGTTGTTTCTTTTAATGAATGGGCTCTTGCCAACCAA	
	ATTTGTTGGCACTCAATCCGTTGACATGTTAGCTGTCAAAACAGGCGTTG	
	CTATTGAACAGCTGCTTTATGCGATCCAACAACTGTATACTGGGTTCCAG	
	GGAAAGCAAATCCTTGGCAGTACCATGTTGGAAGATGAATTCACACCTGA	
	GGATGTTAATATGCAGATTATGGGTGTGGTTATGCAGAGTGGTGTGAGAA	
	AAGTTACATATGGTACTGCGCATTGGTTGTTTGCGACCCTTGTCTCAACC	
	TATGTGATAATCTTACAAGCCACTAAATTTACTTTGTGGAACTACTTGTT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGAGACTATTCCCACACAGTTGTTCCCACTCTTATTTGTGACTATGGCCT	
	TCGTTATGTTGTTGGTTAAACACAAACACACCTTTTTGACACTTTTCTTG	
	TTGCCTGTGGCTATTTGTTTGACTTATGCAAACATAGTCTACGAGCCCAC	
	TACTCCCATTTCGTCAGCGCTGATTGCAGTTGCAAATTGGCTTGCCCCCA	
	CTAATGCTTATATGCGCACTACACATACTGATATTGGTGTCTACATTAGT	
	ATGTCACTTGTATTAGTCATTGTAGTGAAGAGATTGTACAACCCATCACT	
	TTCTAACTTTGCGTTAGCATTGTGCAGTGGTGTAATGTGGTTGTACACTT	
	ATAGCATTGGAGAAGCCTCAAGCCCCATTGCCTATCTGGTTTTTGTCACT	
	ACACTCACTAGTGATTATACGATTACAGTCTTTGTTACTGTCAACCTTGC	
	AAAAGTTTGCACTTATGCCATCTTTGCTTACTCACCACAGCTTACACTTG	
	TGTTTCCGGAAGTGAAGATGATACTTTTATTATACACATGTTTAGGTTTC	
	ATGTGTACTTGCTATTTTGGTGTCTTCTCTCTTTTGAACCTTAAGCTTAG	
	AGCACCTATGGGTGTCTATGACTTTAAGGTCTCAACACAAGAGTTCAGAT	
	TCATGACTGCTAACAATCTAACTGCACCTAGAAATTCTTGGGAGGCTATG	
	GCTCTGAACTTTAAGTTAATAGGTATTGGCGGTACACCTTGTATAAAGGT	
	TGCTGCTATGCAGTCTAAACTTACAGATCTTAAATGCACATCTGTGGTTC	
	TCCTCTCTGTGCTCCAACAGTTACACTTAGAGGCTAATAGTAGGGCCTGG	
	GCTTTCTGTGTTAAATGCCATAATGATATATTGGCAGCAACAGACCCCAG	
	TGAGGCTTTCGAGAAATTCGTAAGTCTCTTTGCTACTTTAATGACTTTTT	
	CTGGTAATGTAGATCTTGATGCGTTAGCTAGTGATATTTTTGACACTCCT	
	AGCGTACTTCAAGCTACTCTTTCTGAGTTTTCACACTTAGCTACCTTTGC	
	TGAGTTGGAAGCTGCGCAGAAAGCCTATCAGGAAGCTATGGACTCTGGTG	
	ACACCTCACCACAAGTTCTTAAGGCTTTGCAGAAGGCTGTTAATATAGCT	
	AAAAACGCCTATGAGAAGGATAAGGCAGTGGCCCGTAAGTTAGAACGTAT	
	GGCTGATCAGGCTATGACTTCTATGTATAAGCAAGCACGTGCTGAAGACA	
	AGAAAGCAAAAATTGTCAGTGCTATGCAAACTATGTTGTTTGGTATGATT	
	AAGAAGCTCGACAACGATGTTCTTAATGGTATCATTTCTAACGCTAGGAA	
	TGGTTGTATACCTCTTAGTGTCATCCCACTGTGTGCTTCAAATAAACTTC	
	GCGTTGTAATTCCTGACTTCACCGTCTGGAATCAGGTAGTCACATATCCC	
	TCGCTTAACTACGCTGGGGCTTTGTGGGACATTACAGTTATAAACAATGT	
	GGACAATGAAATTGTTAAGTCTTCAGATGTTGTAGACAGCAATGAAAATT	
	TAACATGGCCACTTGTTTTAGAATGCACTAGGGCATCCACTTCTGCCGTT	
	AAGTTGCAAAATAATGAGATCAAACCTTCAGGTCTAAAAACCATGGTTGT	
	GTCTGCGGGTCAAGAGCAAACTAACTGTAATACTAGTTCCTTAGCTTATT	
	ACGAACCTGTGCAGGGTCGTAAAATGCTGATGGCTCTTCTTTCT	
	GCCTATCTCAAATGGGCGCGTGTTGAAGGTAAGGACGGATTTGTCAGTGT	
	AGAGCTACAACCTCCTTGCAAATTCTTGATTGCGGGACCAAAAGGACCTG	
	AAATCCGATATCTCTATTTTGTTAAAAATCTTAACAACCTTCATCGCGGG	
	CAAGTGTTAGGGCACATTGCTGCGACTGTTAGATTGCAAGCTGGTTCTAA	
	CACCGAGTTTGCCTCTAATTCCTCGGTGTTGTCACTTGTTAACTTCACCG	
	TTGATCCTCAAAAAGCTTATCTCGATTTCGTCAATGCGGGAGGTGCCCCA	
	TTGACAAATTGTGTTAAGATGCTTACTCCTAAAACTGGTACAGGTATAGC	
	TATATCTGTTAAACCAGAGAGTACAGCTGATCAAGAGACTTATGGTGGAG	
	CTTCAGTGTGTCTCTATTGCCGTGCGCATATAGAACATCCTGATGTCTCT GGTGTTTGTAAATATAAGGGTAAGTTTGTCCAAATCCCTGCTCAGTGTGT	
	CCGTGACCCTGTGGGATTTTGTTTGTCCAAATACCCCCTGTAATGTCTGTC	
	AATATTGGATTGGATATGGGTGCAATTGTGACTCGCTTAGGCAAGCAGCA	
	CTGCCCCAATCTAAAGATTCCAATTTTTTAAACGAGTCCGGGGTTCTATT	
	GTAAATGCCCGAATAGAACCCTGTTCAAGTGGTTTGTCCACTGATGTCGT	
	CTTTAGGGCATTTGACATCTGCAACTATAAGGCTAAGGTTGCTGGTATTG	
	GAAAATACTACAAGACTAATACTTGTAGGTTTGTAGAATTAGATGACCAA	
	GGGCATCATTTAGACTCCTATTTTGTCGTTAAGAGGCATACTATGGAGAA	
	TTATGAACTAGAGAAGCACTGTTACGACTTGTTACGTGACTGTGATGCTG	
	TAGCTCCCCATGATTTCTTCATCTTTGATGTAGACAAAGTTAAAACACCT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	CATATTGTACGTCAGCGTTTAACTGAGTACACTATGATGGATCTTGTATA	
	TGCCCTGAGGCACTTTGATCAAAATAGCGAAGTGCTTAAGGCTATCTTAG	
	TGAAGTATGGTTGCTGTGATGTTACCTACTTTGAAAATAAACTCTGGTTT	
	GATTTTGTTGAAAATCCCAGTGTTATTGGTGTTTATCATAAACTTGGAGA	
	ACGTGTACGCCAAGCTATCTTAAACACTGTTAAATTTTGTGACCACATGG	
	TCAAGGCTGGTTTAGTCGGTGTGCTCACACTAGACAACCAGGACCTTAAT	
	GGCAAGTGGTATGATTTTGGTGACTTCGTAATCACTCAACCTGGTTCAGG	
	AGTAGCTATAGTTGATAGCTACTATTCTTATTTGATGCCTGTGCTCTCAA	
	TGACCGATTGTCTGGCCGCTGAGACACATAGGGATTGTGATTTTAATAAA	
	CCACTCATTGAGTGGCCACTTACTGAGTATGATTTTACTGATTATAAGGT	
	ACAACTCTTTGAGAAGTACTTTAAATATTGGGATCAGACGTATCACGCAA	
	ATTGCGTTAATTGTACTGATGACCGTTGTGTGTTACATTGTGCTAATTTC	
	AATGTATTGTTTGCTATGACCATGCCTAAGACTTGTTTCGGACCCATAGT	
	CCGAAAGATCTTTGTTGATGGCGTGCCATTTGTAGTATCTTGTGGTTATC	
	ACTACAAAGAATTAGGTTTAGTCATGAATATGGATGTTAGTCTCCATAGA	
	CATAGGCTCTCTTAAGGAGTTGATGATGTATGCCGCTGATCCAGCCAT	
	GCACATTGCCTCCTCTAACGCTTTTCTTGATTTGAGGACATCATGTTTTA	
	GTGTCGCTGCACTTACAACTGGTTTGACTTTTCAAACTGTGCGGCCTGGC	
	AATTTTAACCAAGACTTCTATGATTTCGTGGTATCTAAAGGTTTCTTTAA	
	GGAGGGCTCTTCAGTGACGCTCAAACATTTTTTCTTTGCTCAAGATGGTA	
	ATGCTGCTATTACAGATTATAATTACTATTCTTATAATCTGCCTACTATG	
	TGTGACATCAAACAAATGTTGTTCTGCATGGAAGTTGTAAACAAGTACTT	
	CGAAATCTATGACGGTGGTTGTCTTAATGCTTCTGAAGTGGTTGTTAATA	
	ATTTAGACAAGAGTGCTGGCCATCCTTTTAATAAGTTTGGCAAAGCTCGT	
	GTCTATTATGAGAGCATGTCTTACCAGGAGCAAGATGAACTTTTTGCCAT	
	GACAAAGCGTAACGTCATTCCTACCATGACTCAAATGAATCTAAAATATG	
	CTATTAGTGCTAAGAATAGAGCTCGCACTGTTGCAGGCGTGTCCATACTT	
	AGCACAATGACTAATCGCCAGTACCATCAGAAAATGCTTAAGTCCATGGC	
	TGCAACTCGTGGAGCGACTTGCGTCATTGGTACTACAAAGTTCTACGGTG	
	GCTGGGATTTCATGCTTAAAACATTGTACAAAGATGTTGATAATCCGCAT	
	CTTATGGGTTGGGATTACCCTAAGTGTGATAGAGCTATGCCTAATATGTG	
	TAGAATCTTCGCTTCACTCATATTAGCTCGTAAACATGGCACTTGTTGTA	
	CTACAAGGGACAGATTTTATCGCTTGGCAAATGAGTGTGCTCAGGTGCTA	
	AGCGAATATGTTCTATGTGGTGGTGGTTACTACGTCAAACCTGGAGGTAC	
	CAGTAGCGGAGATGCCACCACTGCATATGCCAATAGTGTCTTTAACATTT	
	TGCAGGCGACAACTGCTAATGTCAGTGCACTTATGGGTGCTAATGGCAAC	
	AAGATTGTTGACAAAGAAGTTAAAGACATGCAGTTTGATTTGTATGTCAA	
	TGTTTACAGGAGCACTAGCCCAGACCCCAAATTTGTTGATAAATACTATG	
	CTTTTCTTAATAAGCACTTTTCTATGATGATACTGTCTGATGACGGTGTC	
	GTTTGCTATAATAGTGATTATGCAGCTAAGGGTTACATTGCTGGAATACA	
	GAATTTTAAGGAAACGCTGTATTATCAGAACAATGTCTTTATGTCTGAAG	
	CTAAATGCTGGGTGGAAACCGATCTGAAGAAAGGGCCACATGAATTCTGT	
	TCACAGCATACGCTTTATATTAAGGATGGCGACGATGGTTACTTCCTTC	
	TTATCCAGACCCTTCAAGAATTTTGTCTGCCGGTTGCTTTGTAGATGATA	
	TCGTTAAGACTGACGGTACACTCATGGTAGAGCGGTTTGTGTCTTTGGCT	
	ATAGATGCTTACCCTCTCACAAAGCATGAAGATATAGAATACCAGAATGT	
	ATTCTGGGTCTACTTACAGTATATAGAAAAACTGTATAAAGACCTTACAG	
	GACACATGCTTGACAGTTATTCTGTCATGCTATGTGGTGATAATTCTGCT	
	AAGTTTTGGGAAGAGGCATTCTATAGAGATCTCTATAGTTCGCCTACCAC	
	TTTGCAGGCTGTCGGTTCATGCGTTGTATGCCATTCACAGACTTCCCTAC	
	GCTGTGGGACATGCATCCGTAGACCATTTCTCTGCTGTAAATGCTGCTAT	
	GATCATGTTATAGCAACTCCACATAAGATGGTTTTGTCTGTTTCTCCTTA	
	CGTTTGTAATGCCCCTGGTTGTGGCGTTTCAGACGTTACTAAGCTATATT	
	TAGGTGGTATGAGCTACTTTTGTGTAGATCATAGACCTGTGTGTAGTTTT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	CCACTTTGCGCTAATGGTCTTGTATTCGGCTTATACAAGAATATGTGCAC	
	AGGTAGTCCTTCTATAGTTGAATTTAATAGGTTGGCTACCTGTGACTGGA	
	CTGAAAGTGGTGATTACACCCTTGCCAATACTACAACAGAACCACTCAAA	
	CTTTTTGCTGCTGAGACTTTACGTGCCACTGAAGAGGCGTCTAAGCAGTC	
	TTATGCTATTGCCACCATCAAAGAAATTGTTGGTGAGCGCCAACTATTAC	
	TTGTGTGGGAGGCTGGCAAGTCCAAACCACCACTCAATCGTAATTATGTT	
	TTTACTGGTTATCATATAACCAAAAATAGTAAAGTGCAGCTCGGTGAGTA	
	CATTTTCGAGCGCATTGATTATAGTGATGCTGTATCCTACAAGTCTAGTA	
	CAACGTATAAACTGACTGTAGGTGACATCTTCGTACTTACCTCTCACTCT	
	GTGGCTACCTTGACGGCGCCCACAATTGTGAATCAAGAGAGGTATGTTAA	
	AATTACTGGGTTGTACCCAACCATTACGGTACCTGAAGAGTTCGCAAGTC	
	ATGTTGCCAACTTCCAAAAATCAGGTTATAGTAAATATGTCACTGTTCAG	
	GGACCACCTGGCACTGGCAAAAGTCATTTTGCTATAGGGTTAGCGATTTA	
	CTACCCTACAGCACGTGTTGTTTATACAGCATGTTCACACGCAGCTGTTG	
	ATGCTTTGTGTGAAAAAGCTTTTAAATATTTGAACATTGCTAAATGTTCC	
	CGTATCATTCCTGCAAAGGCACGTGTTGAGTGCTATGACAGGTTTAAAGT	
	TAATGAGACAAATTCTCAATATTTGTTTAGTACTATTAATGCTCTACCAG	
	AAACTTCTGCCGATATTCTGGTGGTTGATGAGGTTAGTATGTGCACTAAT	
	TATGATCTTTCAATTATTAATGCACGTATTAAAGCTAAGCACATTGTCTA	
	TGTAGGAGATCCAGCACAGTTGCCAGCTCCTAGGACTTTGTTGACTAGAG	
	GCACATTGGAACCAGAAAATTTCAATAGTGTCACTAGATTGATGTGTAAC	
	TTAGGTCCTGACATATTTTTAAGTATGTGCTACAGGTGTCCTAAGGAAAT	
	AGTAAGCACTGTGAGCGCTCTTGTCTACAATAATAAATTGTTAGCCAAGA	
	AGGAGCTTTCAGGCCAGTGCTTTAAAATACTCTATAAGGGCAATGTGACG	
	CATGATGCTAGCTCTGCCATTAATAGACCACAACTCACATTTGTGAAGAA	
	TTTTATTACTGCCAATCCGGCATGGAGTAAGGCAGTCTTTATTTCGCCTT	
	ACAATTCACAGAATGCTGTGTCTCGTTCAATGCTGGGTCTTACCACTCAG	
	ACTGTTGATTCCTCACAGGGTTCAGAATACCAGTACGTTATCTTCTGTCA	
	AACAGCAGATACGGCACATGCTAACAACATTAACAGATTTAATGTTGCAA	
	TCACTCGTGCCCAAAAAGGTATTCTTTGTGTTATGACATCTCAGGCACTC	
	TTTGAGTCCTTAGAGTTTACTGAATTGTCTTTTACTAATTACAAGCTCCA	
	GTCTCAGATTGTAACTGGCCTTTTTAAAGATTGCTCTAGAGAAACTTCTG	
	GCCTCTCACCTGCTTATGCACCAACATATGTTAGTGTTGATGACAAGTAT	
	AAGACGAGTGATGAGCTTTGCGTGAATCTTAATTTACCCGCAAATGTCCC	
	ATACTCTCGTGTTATTTCCAGGATGGGCTTTAAACTCGATGCAACAGTTC	
	CTGGATATCCTAAGCTTTTCATTACTCGTGAAGAGGCTGTAAGGCAAGTT	
	CGAAGCTGGATAGGCTTCGATGTTGAGGGTGCTCATGCTTCCCGTAATGC	
	ATGTGGCACCAATGTGCCTCTACAATTAGGATTTTCAACTGGTGTGAACT	
	TTGTTGTTCAGCCAGTTGGTGTTGTAGACACTGAGTGGGGTAACATGTTA	
	ACGGGCATTGCTGCACGTCCTCCACCAGGTGAACAGTTTAAGCACCTCGT	
	GCCTCTTATGCATAAGGGGGCTGCGTGGCCTATTGTTAGACGACGTATAG	
	TGCAAATGTTGTCAGACACTTTAGACAAATTGTCTGATTACTGTACGTTT	
	GTTTGTTGGGCTCATGGCTTTGAATTAACGTCTGCATCATACTTTTGCAA	
	GATAGGTAAGGAACAGAAGTGTTGCATGTGCAATAGACGCGCTGCAGCGT	
	ACTCTTCACCTCTGCAATCTTATGCCTGCTGGACTCATTCCTGCGGTTAT	
	GATTATGTCTACAACCCTTTCTTTGTCGATGTTCAACAGTGGGGTTATGT	
	AGGCAATCTTGCTACTAATCACGATCGTTATTGCTCTGTCCATCAAGGAG	
	CTCATGTGGCTTCTAATGATGCAATAATGACTCGTTGTTTAGCTATTCAT	
	TCTTGTTTTATAGAACGTGTGGATTTGGGATATAGAGTATCCTTATATCTC	
	ACATGAAAAGAAATTGAATTCCTGTTGTAGAATCGTTGAGCGCAACGTCG	
	TACGTGCTGCTCTTCTTGCCGGTTCATTTGACAAAGTCTATGATATTGGC	
	AATCCTAAAGGAATTCCTATTGTTGATGACCCTGTGGTTGATTGGCATTA	
	TTTTGATGCACAGCCCTTGACCAGGAAGGTACAACAGCTTTTCTATACAG	
	AGGACATGGCCTCAAGATTTGCTGATGGGCTCTGCTTATTTTGGAACTGT	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	AATGTACCAAAATATCCTAATAATGCAATTGTATGCAGGTTTGACACACG	
	TGTGCATTCTGAGTTCAATTTGCCAGGTTGTGATGGCGGTAGTTTGTATG	
	TTAACAAGCACGCTTTTCATACACCAGCATATGATGTGAGTGCATTCCGT	
	GATCTGAAACCTTTACCATTCTTTTATTATTCTACTACACCATGTGAAGT	
	GCATGGTAATGGTAGTATGATAGAGGATATTGATTATGTACCCCTAAAAT	
	CTGCAGTCTGTATTACAGCTTGTAATTTAGGGGGGCGCTGTTTGTAGGAAG	
	CATGCTACAGAGTACAGAGAGTATATGGAAGCATATAATCTTGTCTCTGC	
	ATCAGGTTTCCGCCTTTGGTGTTATAAGACCTTTGATATTTATAATCTCT	
	GGTCTACTTTTACAAAAGTTCAAGGTTTGGAAAACATTGCTTTTAATGTT	
	GTTAAACAAGGCCATTTTATTGGTGTTGAGGGTGAACTACCTGTAGCTGT	
	AGTCAATGATAAGATCTTCACCAAGAGTGGCGTTAATGACATTTGTATGT	
	TTGAGAATAAAACCACTTTGCCTACTAATATAGCTTTTGAACTCTATGCT	
	AAGCGTGCTGTACGCTCGCATCCCGATTTCAAATTGCTACACAATTTACA	
	AGCAGACATTTGCTACAAGTTCGTCCTTTGGGATTATGAACGTAGCAATA	
	TTTATGGTACTGCTACTATTGGTGTATGTAAGTACACTGATATTGATGTT	
	AATTCAGCTTTGAATATATGTTTTGACATACGCGATAATTGTTCATTGGA	
	GAAGTTCATGTCTACTCCCAATGCCATCTTTATTTCTGATAGAAAAATCA	
	AGAAATACCCTTGTATGGTAGGTCCTGATTATGCTTACTTCAATGGTGCT	
	ATCATCCGTGATAGTGATGTTGTTAAACAACCAGTGAAGTTCTACTTGTA	
	TAAGAAAGTCAATAATGAGTTTATTGATCCTACTGAGTGTATTTACACTC	
	AGAGTCGCTCTTGTAGTGACTTCCTACCCCTTTCTGACATGGAGAAAGAC	
	TTTCTATCTTTTGATAGTGATTTTTCATTAAGAAGTATGGCTTGGAAAA	
	CTATGCTTTTGAGCACGTAGTCTATGGAGACTTCTCTCATACTACGTTAG	
	GCGGTCTTCACTTGCTTATTGGTTTATACAAGAAGCAACAGGAAGGTCAT	
	ATTATTATGGAAGAAATGCTAAAAGGTAGCTCAACTATTCATAACTATTT	
	TATTACTGAGACTAACACAGCGGCTTTTAAGGCGGTGTTCTGTTATAG	
	ATTTAAAGCTTGACGACTTTGTTATGATTTTAAAGAGTCAAGACCTTGGC	
	GTAGTATCCAAGGTTGTCAAGGTTCCTATTGACTTAACAATGATTGAGTT	
	TATGTTATGGTGTAAGGATGGACAGGTTCAAACCTTCTACCCTCGACTCC	
	AGGCTTCTGCAGATTGGAAACCTGGTCATGCAATGCCATCCCTCTTTAAA	
	GTTCAAAATGTAAACCTTGAACGTTGTGAGCTTGCTAATTACAAGCAATC	
	TATTCCTATGCCTCGCGGTGTGCACATGAACATCGCTAAATATATGCAAT	
	TGTGCCAGTATTTAAATACTTGCACATTAGCCGTGCCTGCC	
	GTTATACATTTTGGCGCTGGTTCTGATAAAGGTATCGCTCCTGGTACCTC	
	AGTTTTACGACAGTGGCTTCCTACAGATGCCATTATTATAGATAATGATT	
	TAAATGAGTTCGTGTCAGATGCTGACATAACTTTATTTGGAGATTGTGTA	
	ACTGTACGTGTCGGCCAACAAGTGGATCTTGTTATTTCCGACATGTATGA	
	TCCTACTACTAAGAATGTAACAGGTAGTAATGAGTCAAAGGCTTTATTCT	
	TTACTTACCTGTGTAACCTCATTAATAATAATCTTGCTCTTGGTGGGTCT	
	GTTGCTATTAAAATAACAGAACACTCTTGGAGCGTTGAACTTTATGAACT	
	TATGGGAAAATTTGCTTGGTGGACTGTTTTCTGCACCAATGCAAATGCAT	
	CCTCATCTGAAGGATTCCTCTTAGGTATTAATTACTTGGGTACTATTAAA	
	GAAAATATAGATGGTGGTGCTATGCACGCCAACTATATATTTTGGAGAAA	
	TTCCACTCCTATGAATCTGAGTACTTACTCACTTTTTGATTTATCCAAGT	
	TTCAATTAAAATTAAAAGGAACACCAGTTCTTCAATTAAAGGAGAGTCAA	
	ATTAACGAACTCGTAATATCTCTCCTGTCGCAGGGTAAGTTACTTATCCG	
	TGACAATGATACACTCAGTGTTTCTACTGATGTTCTTGTTAACACCTACA	
	GAAAGTTACGTTGATGTAGGGCCAGATTCTGTTAAGTCTGCTTGTATTGA	
	GGTTGATATACAACAGACTTTCTTTGATAAAACTTGGCCTAGGCCAATTG	
	ATGTTTCTAAGGCTGACGGTATTATATACCCTCAAGGCCGTACATATTCT	
	AACATAACTATCACTTATCAAGGTCTTTTTCCCTATCAGGGAGACCATGG	
	TGATATGTATGTTTACTCTGCAGGACATGCTACAGGCACAACTCCACAAA	
	AGTTGTTTGTAGCTAACTATTCTCAGGACGTCAAACAGTTTGCTAATGGG	
	TTTGTCGTCCGTATAGGAGCAGCTGCCAATTCCACTGGCACTGTTATTAT	

TRGCCCATCTACCAGGGCTACTACTACAGATAGTACCTGCTTCTATAGC TGGTTCTTCAGTTGGTAGTTTCTCAGATGGTAGATAGTGGCCGTTCTC AATCATACTCTAGTTCTTTTGCCCATGGTAGTGTAGT	Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
ANTORTACTCAGTTCTTTTGCCCGATCGAGATCTGCCCTTGCAGC TTTTTATTGTATCTTATTGCCCCTTTGCAAATCATTTTCTCTCTC		TAGCCCATCTACCAGCGCTACTATACGAAAAATTTACCCTGCTTTTATGC	
TTTTTATTETATTCTAGACTCCCTCTGARATCATTCTCT GATGGCATTACACATCGTTATTCCCACTTATCACACTCCTGAACAGATTCTTCT GATGGCATTACACATCGTAGTTCTATCTACACTCCTGAACAGATTCTTCT TATTTACATACACACTGTAGTTCACACACTCTTTAGACACTTTTAGACAGATTCTTCACTC TTCTCATCTCGTATGTTGAGTTTACCACACACTCTCAAGAGATTC AGATTTTAGAGTGGTTTGCATTACACACACACTCTCAAGAGATTC CACCTTGCCTGTTATGATACACTACAC		TGGGTTCTTCAGTTGGTAATTTCTCAGATGGTAAAATGGGCCGCTTCTTC	
ATTOCTATACTATOTATICGCACTTATCACACTCTCACACAGATTCTT GATGCAATTACAATCGTAATCCCAGTCTGAACTCTTTTAAGCACTTATT TAATTTACCTAACTCCACCTTATAGTACACTTATAACATTACCGAAGATG ACATTTTACAGAGTGGTTTGCATTATATACTATAC		AATCATACTCTAGTTCTTTTGCCCGATGGATGTGGCACTTTACTTAGAGC	
GATGCAATTACAATCGTAATCCCAGTCTAAAACTTATAAGAGTATT TAATTTACGTAACTCCACCTTTATGTACACTTATAACATTACGAAAGTG AGATTTTAGAGTGGTTTGCATTATACACAATCGTCAAGGTGTTCAACTC TTCTCATCTCGGTATGTTGATTTACACAAAGTGGTCAAGGTGTTCAACTC TTCTCATCTCGGTATGTTGATTTACACAAAGTGTTATATTTCTCAATTCC CACCTTGCCTGTTTATGATACTATTAAGATATTATTCTACAATTCCCAC GTATTCGTCTATCCAAAGTGATACATTTAGATATTATTCATCATCACGTA TATAAACTTCAACCGTTAACTTTCTGTTGGGTTTTTCTTGATGTTA TATACCACACGATAACATTGGGTTTTAATGATTTCACAACTCCACT GCTCATATGAATCCTTCGGTTGTGAATCTTTCAGATTTTCAGTTTA TATACCACACGATAACATTGGGTTTTATGAATTCAGACTCCACT GCTCATATGAATCCTTCGGCTCAGTTTGTGGAACAGCTCCTCAGGTTTATAAT TCAAGCGTTTGGTTTTTACCAATTTCAAATTAAATCTTACCAAATTCCAT ACTGATTTTTCACCACTCTTCGTCTCGGCACACCTCCTCAGGTTTATAAT TCAAGCGTTTGTTTACCAATTTACTTGTAGTACAAATTCCACACC AATTGCTTTCTTTTCT		TTTTTATTGTATTCTAGAGCCTCGCTCTGGAAATCATTGTCCTGCTGGCA	
TRATTTACGTARCTGCACCTTATGTACACTTATACACTTACCGARGATG AGATTTTAGAGAGTGGTTTAGCATTAGCARACTGCTCAGGTGTTCACCTC TTCTCATCTCGGTATGTTGATTTATTGTAGGGGGCATATGTTCAGATTGC CACCTTGCCTGTTATAGATACTATTAAGTATTATTCATCACTCCACA GTATTCGTTCTACCAAAGTGATAAGATATTATTCTACATTCCTCACA GTATTCGTTCTACCAAAGTGATAAGATATTTCTCTCTTCTAGTTA TATAAACTTCAACCGTTAACTTTCATTGGATTTTTCTCACAACTCCACT GCTCATATGAATCCTTCGATGTTGAATCTGGATTTTTCACAACTCCACT GCTCATATGAATCCTTCGATGTTGAATCTGGAACAGGCTCAAGGTTTACATT TCAGAGCAAAACCTTCTGGTCAGTTGGAACAGGCTCAAAGGTTTCA ATGTGATTTTCACCTCTTCTGTCTGGCACACCTCCTCAGGTTTATAATT TCAAGGGTTTGGTTT		ATTCCTATACTTCTTTTGCCACTTATCACACTCCTGCAACAGATTGTTCT	
AGATTTAGAGTGTTTGGCATTACACAAACTGCTCAAGTGTTCACCTC TTCTCATCTCGGTATGTTGATTTGAT		GATGGCAATTACAATCGTAATGCCAGTCTGAACTCTTTTAAGGAGTATTT	
TTCTCATCTCGGTATGTTGATACTATTACATATTTCTATCATTCC CACCTTGCCTGTTTATGATACTATTACTATTACTATTCTATCATTCAT		TAATTTACGTAACTGCACCTTTATGTACACTTATAACATTACCGAAGATG	
CACCTTGCCTGTTTATGATACTATTAGGTATATCTATCATCCCAC GTATTCCTTCTATCCAAAGCTAGAAAAGCTTGGGCTGCCTTCTACGTA TATAAACTCCAACGGTTAACTTTCCTGTTGGGTTGCTTCTTCTGTTGATGGTTA TATAACCTCAACGGTTAACTTTGCTGTTGGGTTTTCTTCTTGTTGATGGTTA TATACGCAGAGCTATAGACTTGGTTTTAATGATTTGCTCTGGCTCATATGAACTACACTTGCACTTTCCATCTGATTTGAATCTGCAGTTTATTCAGTTTCGTCT TCCAGACCAAAACCTCCTGCTCATTGGAACTAGGGCTGAAGGGTTAA ATGTGATTTTCACCTCTTCTGTCTGGCACACCTCCTCAGGTTTATAATT TCAAGCGTTTGGTTTTTACCAATTGCAATTATAATCTTACCAAATTGCTT TCAACTTTTTCTGTGAAAATATTAATCTTACCAAAATTGCTT TCAAGCATTTTCTGTGAAAATATTAATCTTACCAAAATTGCTT CAACTTTTTCTGTGAAAATATTAATCTTACCAAAATTGCTC CACTTACTATAAAAAACCCTTTCTCAATTACCACAAATTACC CACTTAATTAA		AGATTTTAGAGTGGTTTGGCATTACACAAACTGCTCAAGGTGTTCACCTC	
GTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCTGCCTTCTACGTA TATAAACTTCAACGGTTAACTTTCTGTTGGATTTTTCTGTTGATGGTTA TATAACCGCAGAGCTTAGCTT		TTCTCATCTCGGTATGTTGATTTGTACGGCGGCAATATGTTTCAATTTGC	
TATAAACTTCAACCGTTAACTTTCCTGTTGATTTTCTGTTGATGGTTA TATACGCAGAGCTATACACTCTGGTTTTAATCACTTTGTCACAACTCCACT GCTCATATGAATCCTTCGATTGTGATTGTCACAACTCCACT GCTCATATGAATCCTTCGTTTGTGTTGTG		CACCTTGCCTGTTTATGATACTATTAAGTATTATTCTATCATTCCTCACA	
TATACGCAGAGCTATAGACTGTGGTTTTAATGATTTGTCACACTC GCTCATATGAATCCTTCGATCTTGAATCTGAGCTTTATCAGTTTTCTTT TTCAAGCATTAGAACCTTCTGGCTCAGTTGTGGAACCACGCTGAGGGTGTTGAA ATGTGATTTTTCACCTCTTCTGTCTGGCACACCTCCTCAGGTTTATAATT TCAAGCGTTTGGTTTTTACCAATTGCAATTATATCTTACCAAATTGCTT TCACTTTTTTCTGTGAGAATATTCCAATTACTCACACACTC CACTTAGTATCAATGATTTTCATTACTTGAGTCAAATATCTCCAGCAGC AATTGCTAGCAACTGTTATTCTTCACTGATTTTGGATTACTTTACACACAC		GTATTCGTTCTATCCAAAGTGATAGAAAAGCTTGGGCTGCCTTCTACGTA	
TATACGCAGAGCTATAGACTGTGGTTTTAATGATTTGTCACACTC GCTCATATGAATCCTTCGATCTTGAATCTGAGCTTTATCAGTTTTCTTT TTCAAGCATTAGAACCTTCTGGCTCAGTTGTGGAACCACGCTGAGGGTGTTGAA ATGTGATTTTTCACCTCTTCTGTCTGGCACACCTCCTCAGGTTTATAATT TCAAGCGTTTGGTTTTTACCAATTGCAATTATATCTTACCAAATTGCTT TCACTTTTTTCTGTGAGAATATTCCAATTACTCACACACTC CACTTAGTATCAATGATTTTCATTACTTGAGTCAAATATCTCCAGCAGC AATTGCTAGCAACTGTTATTCTTCACTGATTTTGGATTACTTTACACACAC			
GCTCATATGAATCCTTCGATGTTGAATCTGGAGTTTATTCAGTTTCTT TTCGAAGCAAAACCTTCTGGCTCAGTTTGGAACAGGCTGAAGGTGTTGA ATGTGATTTTCACCTTCTTGTCTGGCACACCTCCTCAGGTTTATAATT TCAAGCGTTTGGTTTTACCAATTGCAATTATAATCTTACCAAATTGCTT TCACTTTTTTCTGTGAATGATTTTCACTGATTTTGAATTATCTCCAGCAGC AATTGCTAGCAACTGTTATTCTTCACTGATTTTGAATTATCTTCATACC CACTTAGTATGAAACATCTCACTGTTAGTTTTGAATTACTTTCATACC CACTTAGTATGAAACCTTCACTGTTAGTTTTGAATTACTTTCATACC CACTTAGTATGAAACCTTCACTGTTAGTTCTGCAGTGTTCAATTACC CACTTTAACAAGTGCTCTTTTCTAATCCCACATGTTTGATTTTAGC GACTGTTCCCATAACCTACTACTACTACTACTACTAAGCCTCTTAAGTACACCT CAGTTAGTGAACGCTAATCAATACTCACCTGTGTATCCAATGTCCCATC CACTGTGTGAACGCTAATCAATACTCACCCTGTGTATCCATTGTCCCATC CACTGTGTGGAACACGTGATTATTATTAGGAAACACTATCTCCCATC GACTTTTCCAGAGAGCGTGATTATTATTAGGAAACACTATCTCCCATC GACTTTTCACGAATGGCTTTTGCTATTACTTTGCATCACTCTGAG GAATTACAGATGGCTTTTGTTATTATTAGGAACACAAAAATTGCCTCTC AATTAGGGAATTGCGTGGAATATTCCCTCTATTGGTTCTTGCGGCCGTGGT GTTTTCAGAATTTCGCTGTGTATTACTTTGTTTTTCGGGCCGTTGGT GTTTTCAGAATTTCACTTTTTTTTTT			
TTCGAAGCAAAACCTTCTGGCTCAGTTGTGAACAGGCTGAAGGTGTGA ATGTGATTTTCACCTCTCTGTCTGCACACCCTCCTCAGGTTTATAATT TCAAGGGTTTGGTTT			
ATGTGATTTTCACCTCTTCTGTCTGGCACACCTCCTAGGTTTATAATT TCAAGCGTTTGGTTTTTACCAATTGCAATTATAATCTTTACCAAATTACTT TCACTTTTTTCTGTGAATGATTTTACTTAGTAGTATTACCAAATTACTCTAGCAGCAGC AATTGCTAGCAACTGTTATTCTTCACTGATTGTTCAGATTACTCTCAGCAGC CACTTAGTATGAAATCCGACTCTTTCTTAATCCCACATCTTTCATTTTAGC CACTTAGTATGAAATCCGACTCTTTCTTAATCCACACTCTTTAGTTACC CACTTAGTATTAAACAGTCCTTTTCTAATCCACACTCTTTAGTATTTAGC GACTGTTCTCATACCATTTTCTAATCCACACTCTTAATTACCAGCT ATATTAACAAGTGCTCTTCTTTCTTATTACTAAGTACAGCT ATATTAACAAGTGCTCTCGTCTTCTTTCTGATGATCGACTTGAAGTACCT CACTTGTGGAAGACGGTAATCAATACTACACCCTGTTAATCCACTTC CACTTGTGGGAAGACGGTAATCATATAGGAACACACTATCTCCACTTC AAGGTGGTGGCTTGTTTCTTATAGGAACACACTATCTCCACTTC AAGGTGGTGGCTTGTTTCTTATAGGAACACACTATCTCCACTTC AAGGTGGTGGCTTTGTTATTACAGTTCAATATGGTACAGACACAA TACTGTTTTCCCCAAGCTTGAATTTCCTATTGTGTACTATGACACACAC			
TCAAGCGTTTGGTTTTTACCAATTGCAATTATAATCTTACCAAATTGCTT TCACTTTTTCTGTGAATGATTTTACTTGTAGTCAAAATTCTCCAGCAGC AATTGCTAGCAACTGTTATTCTTCACTGATTTTGGTTACTTTCATACC CACTTAGTAGAAATCCGATCTCACTGTTTTGTTT			
TCACTTTTTCTGTGAATGATTTTACTTGTAGTCAATATCTCCAGCAGC AATTGCTAGCAACTGTTATTTCTCACTGATTTTGATTACC CACTTAGTAGAAATCCGATCTCAGTGTTAGTTCTGCTGGTCCAATATCC CACTTAGTATGAAATCCGATCTCAGTGTTAGTCTCGTTGATTATACC CACTTTAATTATAAACAGTCCTTTCTTATACTCACACTTTTTAGTTTTAGC GACTGTTCCTCATAACCTTACTACTATTACTAAGCCTCTTAAGTACAGCT ATATTAACAAGTGCTCTCGTCTTCTTCTGATGATCGTACTGAGAGTACCT CAGTTAGTGAAGCGTAATCAATACTCACCCTGTGTATCCATTGCCATC CACTGTGGGAAGACGGTGATTATTATAGGAAAACAACTATCTCCACTTG AAGGTGGGGGGGGGG			
AATTGCTAGCAACTGTTATTCTCACTGATTTTGGATTACTTTCATACC CACTTAGTATGAAATCCGATCTCAGTGTTAGTTCGCTGGTCCAATATCC CAGTTTAATTATAAACAGTCCTTTTCTAATCCCACATGTTTGATTTTAGC GACTGTCCTCATAACGTTACTACTATTACCACACATGTTTGATTTTAGC GACTGTCCCATAACACTTACTACTATTACTAAGCCTCTTAAGTTACGCT ATATTAACAAGTGCTCTCTTCTTTCTGATGATCGTACTGAAGTACCT CAGTTAGTGAACGCTAATCACCCTGTGTATCCATTGCCATC CACTGTGGGAAGACGGTAATTATTATAGGAAACAACTATCTCCACTTG AAGGTGGTGGCTTGGTTTGCTAATTATAGGAAACAACTATCTCCACTTG AAGGTGGTGGCTTGGTTTGCTAATTAGGAAACAACTATTCCCATGAGGAC CAATTACAGATGGCCTTTGGTATTACAGTTCAATATGGTACAGACCAA TAGTGTTTGCCCAAGCTTGAATTTCCTAATATGGTACAGACACCAA TAGTGTTTGCCCAAGCTTGAATTTCCTCATTATTCTTCGGCCGTTGTT ATTACAGATTGCCCAAGCTGTAGGTGTTCGACAGCAGCCGCTTTGTTA TGATGCGTACCAGAATTACTTGGCTATTATTCTGATGATGGCAACTACT ACTGTTTTCCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCCGCTTTTTTA TGATGCGTACCAGAATTACTTGGCTATTATTCTATGATGAGCAACAAT ACTGTTTGCCTGTCTTGTTAGTGTTCCTCTTTCATATATAAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGTAAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCAATCATTGATAAAC GGCGAGATTCTACATTATGGCCCCCTTCAGACACCTTTTGGTTGCTCCTAAAC GGCAGAATTCTACATATGGCCCCCTTCAGACACCTGTTTGGTTGCTCCTAGG GCAGATTCTACATATGGCCCCCTTCAGACACCTAGTACTCACACCTCCCA GGACTTGTTAATTCCTCTTTGTTCGTAGGGACTCAAGTTGCCTTTCAA GACTTGTTAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTAAT CAATCTCTTGTGTCCTTCCTGAAATGCGCTTGGATACTTCACAACCCTACT TCAAAACTTACTCTTTGGTGTGAATGCGCTTGGATACTTCACAACCCA TTCAGAAAGTTACTTCTTTTGTAAACACTTTGGTTTTTTAATTAA			
CACTTAGTATGAAATCCGATCTCAGTGTTAGTTCTGCTGGTCCAATATCC CAGTTTAATTATAAACAGTCCTTTTCTAAATCCCACATGTTTGATTTTAGC GACTGTTCCTCATAACCTTACTATTACTAAACCCTCTTAAGTACAGCT ATATTAACAAGTGCTCTCTTCTTCTTGATGATCGTACAGCT ATATTAACAAGTGCTCTCATCTTCTTCTGATGATCGTACTGAACTACCT CAGTTAGTGAACCGTCAATCAATACTCACCCTGTGTATCCATTGACCTC CACTGTGTGGAACGCTAATCAATACTCACCCTGTGTATCCATTGCCATC CACTGTGTGGGAAGACGGTGATTATTATAGGAAACAACTATCTCCACTTG AAGGTGGTGGCTGGCTTGTTGCTAGTGGCTCAACTGTTGCCATGACTGAG CAATTACAGATGGGCTTTGGTATTACAGTTCAATTTGGCATGACCAA TAGTGTTTGCCCCAAGCTTTGGTATTCAATATGGTACAGACACAA TAGTGTTTGCCCCAAGCTTGGAATTTCCCTCTATGGTGTTTCGGGCCGTGGT GTTTTTCAGAATTGCACAGCTGTAGGTGTTCGACACCAGCGCGTTTGTTT			
CAGTTTAATTATAAACAGTCCTTTTCTAATCCCACATGTTTGATTTTAGC GACTGTTCCTCATAACCTTACTACTACTATTACTAAGCCTTCTAAGTACAGCT ATATTAACAAGTGCTCTCGTCTTCTTTCTGATGACTGCTTAAGTACAGCT CAGTTAGTGAACGCTAATCATACTATTCTGATGATGCTTACTGAAGTACCT CAGTTAGTGAACGCTAATCATACCCTGTGTATCCATTGCCATC CACTGTGTGGGAACACGGTGATTATTATAGGAAACAACTATCTCCACTTC AAGGTGGTGGCTGGCTTGTTGCTAGTGGCTCAACTGTTGCCATGAC CAATTACAGATGGCTTTGGTATTACAGTTCAACTGTGCCATGAC CAATTACAGATGGCTTTGGTATTACAGTTCAATATGGTACAGACACAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATATGGTACAGACACCAA TAGTGTTTGCCCCAAGCTTGAATTTCCTCTATTGGTGTTTCGGCCGTGGT GTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCTTTGTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGACAGCAGCGCTTTGTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGACATGGCAACTACT ACTGTTTGCGTGCTTTGTTAGTGTTCCTTTTTTGTACATGACACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTAGCGGATCAATGCTTAAAC GGCGAGATTCTACATATGCCCCCTTCAGACACCTGTTGGTTG			
GACTGTTCCTCATAACCTTACTACTATTACTAAGCCTCTTAAGTACAGCT ATATTAACAAGTGCTCTCGTCTTCTTTCTGATGATCACTGAAGTACCT CACTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATTGCCATC CACTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATTGCCATC CACTGTGGGAGAGCGGTGATTATTATAGGAAACAACTATCTCCACTTG AAGGTGGTGGCTGGCTGTGCTAGTGGCTCAACTGTTGCCATCGACTGAG CAATTACAGATGGCTTTGTTTACAGTTCAATATGGTACAGACACAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATATGGTACAGACACAA TAGTGTTTGCCCCAAGCTTGAATTTCCTCTATTGGTGTTTCGGGCCGTGT GTTTTCAGAATTGCACAGCTTGAGTTTCGACAGCAGCGCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGATGGCAACTACT ACTGTTTGCGTGCTTTGTTTAGTGTTCTGTTC			
ATATTAACAAGTGCTCTGTCTTCTTCTGATGATCTACTGAAGTACCT CAGTTAGTCAACACTATCAATACTCACCCTGTGATCCATTGTCCATC CACTGTGTGGGAAGAGGGTGATTATTATTAGGAAACAACTACTCCACTTG AAGGTGGTGGCTGGCTTGTTGCTAGTGGCTCAACTGTTGCCATGACACTGTGTGGCATGACTGTTGTAGTGGCTCAACTGTTGCAATGAGCAACAAAATTACAGTTGCATGAGCAATAACAACAACACAACAAAATTAGCCCCAAGCCTTGAATTTGCTAATATGACACAAAAATTGCCTCTC AATTAGGCAATTGCCCAAGCTTGAATTTGCTAATGACACAAAAATTGCCTCTC AATTAGGCAATTGCACAGCTGTAGTGTTCCACAGCAGCGCTTTGTTTA TGATGCTTTCAGAATTGCACAGCTGTATGTTTCTGATGATGGCAACTACT ACTGTTTTCGGTGCTTGTGTTAGTGTTCTGTCATGTAGTGAACACAC ACTGTTTTCGCTGCTTGTTTAGTGTTCTGTCATCTATAGAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGTAAAC GACAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
CAGTTAGTGAACGCTAATCAATACTCACCCTGTGTATCCATTGTCCCATC CACTGTGTGGGAAGACGGTGATTATTATAGGAAACACTATCTCCACTTG AAGGTGGTGGCTGGCTTTGTTGCTAGTGGCCCAACTGTTGCCATGACCAAG CAATTACAGATGGCTTTGGTATTACAGTTCAATTGGCACAGACCCAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATTAGGACACACAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATTAGCACACAAAAAATTGCCTCTC AATTAGGCAATTGCGTGGAATATTCCCTCTATGGTGTTTCGGGCCGTGGT GTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGATGACACACTACT ACTGTTTGCGTGCTTGTGTTTAGTGTTCCTGTTTCTGTCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTTGGTAGTTTGCATCTATGATAAA GAACTAAAACCCACGCTACTCTATTTTGGTAGTTTGCATTGACACACT TTCTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTCAAA GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
CACTGTGTGGGAAGACGGTGATTATTATAGGAAACAACTATCTCCACTTG AAGGTGGTGGCTGGCTTGTTGCTAGTGGCTCAACTGTTGCCATGACTGAG CAATTACAGATGGGCTTTGGTATTACAGTTCAATTAGGTACAGACACCAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAATTGCCTCTC AATTAGGCAATTGCGTGGAATATTCCTCTATGGTGTTTCGGCCGTGGT GTTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGATGACCAACTACT ACTGTTTGCGTGCTTGTTTAGTTGTCTTTCTGTCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTCCACTCTATGATAAA GAAACTAAAACCCACGCTACCTTATTTGGTAGTGTTTGCATCTATGATAAA GGCAGATTCTACATATGCCCCCTTCAGACACCTGTTGGTTTGTTCCTA GGACTTGTTAATTCCTCTTTTTTTTCTAGAGACACTGTTTGTT			
AAGGTGGTGGCTTGTTGCTAGTGGCTCAACTGTTGCCATGACTGAG CAATTACAGATGGGCTTTGTATTACAGTTCAATATGGTACAGACACCAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATATGGTACAGACACCAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATGGTGTTTCGGGCCGTTGT AATTAGGCAATTGCGTGGAATATTCCCTCTATGGTGTTTCGGGCCGTTGT GTTTTCAGAATTGCGCAACTGTAGGTGTTCGACAGCAGCGCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGACAGCAGCGCTTTTTA ACTGTTTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGTGAACACAT TTCTTCTACCATGTCTCAATACCCCGTTCTACGCGATCAATGCTTAAAC GCCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
CAATTACAGATGGCTTTGGTATTACAGTTCAATATGGTACAGACACCAA TAGTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAATTTGCCTCTC AATTAGGCAATTGCGTGGAATATTCCCTCTATGGTGTTTCGGGCCGTGGT GTTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGAGCAACTACT ACTGTTTGCGTGCTTTAGTTGTCCTGTTTCTGTCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGGTACACCAT TTCTTCACCATGTCTCAATACTCCCGTTCTAGCGGATCAATGCTTAAAC GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
TAGTGTTTGCCCCAAGCTTGAATTTGCTAATGACACAAAAATTGCCTCTC AATTAGGCAATTGCGTGGAATATTCCCTCTATGGTGTTTCGGGCCGTGGT GTTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCTTTGTTTA TGATGGGTACCAGAATTTAGTTGGCTATTATTCTGATGATGGCAACTACT ACTGTTTGCGTGCTTGTTATGTTGCTTTCTGTCATCTATGATAAA GAAACTAAAACCACCGCTACTCTATTTGGTAGTGTTGCATGATAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAAAC GGCGACATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
AATTAGGCAATTGCGTGGAATATTCCCTCTATGGTGTTTTCGGGCCGTGGT GTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGATGCAACTACT ACTGTTTGCGTGCTTGTTTAGTGTTCCTGTTTCTGTCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTCCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTCCATGTAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAACC GGCGGAGATTCTACATATGCCCCCTTCAGCACCTGTTGGTTG			
GTTTTTCAGAATTGCACAGCTGTAGGTGTTCGACAGCAGCGCTTTGTTTA TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGATGCAACTACT ACTGTTTGCGTGCTTGTTTAGTGTTCCTGTTTCTGTCATCATCATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTCCATGTGAACACAT TTCTTCTACCATGCTCCAATACTCCGTTCTACGCGATCAATGCTTAAAC GGCGAGATTCTACATATGCCCCCTTCAGACACCTTTTGTTGTTCCTA GGACTTGTTAATTCCTCTTTTGTTCGTAGAGCACCTTTTGTTGCCTA GGACTTGTTAATTCCTCTTTTGTTCGTAGAGACCTAGTACTCCACACCTCGCA GTGTGCGCTCTGTTCCTGACACACCTAGTACTCTCACACCTCGCA GTGTGCGCTCTGTTCCAGGTGAAATGCGCTTGGCATCCATTGCTTTTAAT CATCCTATTCAGGTTGAACACTTAATAGTAGTTATTTTAAATTAAGTAT ACCACTAATTTTTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCA TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACTATTTGAGACCTGTTTCTATATCTACTTCG CAGTCGTAGTGCACTTATATGCAAGGTTACGATGATTGCATCACAAGCAA GGTCCAGCATCAGCTCGTTATATGCAAGGTTACGATGATTGCATGCA			
TGATGCGTACCAGAATTTAGTTGGCTATTATTCTGATGATGGCAACTACT ACTGTTTGCGTGCTTGTGTTAGTGTTCCTGTTTCTGTCATCTATGATAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGTGAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAAAC GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
ACTGTTTGCGTGCTTGTTTAGTGTTCCTGTTTCTGTCATCTATAAAA GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGTAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAAAC GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGTGAACACAT TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAAAC GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAAAC GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG			
GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG		GAAACTAAAACCCACGCTACTCTATTTGGTAGTGTTGCATGTGAACACAT	
GGACTTGTTAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTGG TCAATCTCTCTGTGCTCTTCCTGACACACCTAGTACTCTCACACCTCGCA GTGTGCGCTCTGTTCCAGGTGAAATGCGCTTGGCATCCATTGCTTTTAAT CATCCTATTCAGGTTGATCAACTTAATAGTAGTTATTTTAAATTAAGTAT ACCCACTAATTTTTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCA TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATGCAGCAA GGTCCAGCATCAGCTCCTGTATTTTTTTTTT		TTCTTCTACCATGTCTCAATACTCCCGTTCTACGCGATCAATGCTTAAAC	
TCAATCTCTGTGCTCTTCCTGACACCCTAGTACTCTCACACCTCGCA GTGTGCGCTCTGTTCCAGGTGAAATGCGCTTGGCATCCATTGCTTTTAAT CATCCTATTCAGGTTGATCAACTTAATAGTAGTTATTTTAAATTAAGTAT ACCCACTAATTTTTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCA TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTTCATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTTGTGCTCAATATGTGACACAA GGTCCAGCATCAGCTCGTGATCTTATTTGTGCTCAATATGTGGCTGGTTA CAAAGTATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATACTT CATCTTTGCTTGCAGCACAAGGTTTGCCTGGACTGCTTATCC TCCTTTGCTGCTATTCCATTTTCAGAGAACCAAAAGCTTATTGCCA		GGCGAGATTCTACATATGGCCCCCTTCAGACACCTGTTGGTTG	
GTGTGCGCTCTGTTCCAGGTGAAATGCGCTTGGCATCCATTGCTTTTAAT CATCCTATTCAGGTTGATCAACTTAATAGTAGTTATTTTAAATTAAGTAT ACCCACTAATTTTTCCTTTGGTGTGACTCAGGAGTACATCAGACAACCA TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		GGACTTGTTAATTCCTCTTTGTTCGTAGAGGACTGCAAGTTGCCTCTTGG	
CATCCTATTCAGGTTGATCAACTTAATAGTAGTTATTTAAATTAAGTAT ACCCACTAATTTTTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCA TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		TCAATCTCTCTGTGCTCTTCCTGACACCCTAGTACTCTCACACCTCGCA	
ACCCACTAATTTTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCA TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		GTGTGCGCTCTGTTCCAGGTGAAATGCGCTTGGCATCCATTGCTTTTAAT	
TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		CATCCTATTCAGGTTGATCAACTTAATAGTAGTTATTTTAAATTAAGTAT	
AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		ACCCACTAATTTTTCCTTTGGTGTGACTCAGGAGTACATTCAGACAACCA	
CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		TTCAGAAAGTTACTGTTGATTGTAAACAGTACGTTTGCAATGGTTTCCAG	
TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		AAGTGTGAGCAATTACTGCGCGAGTATGGCCAGTTTTGTTCCAAAATAAA	
GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		CCAGGCTCTCCATGGTGCCAATTTACGCCAGGATGATTCTGTACGTAATT	
CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		TGTTTGCGAGCGTGAAAAGCTCTCAATCATCTCCTATCATACCAGGTTTT	
CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA		GGAGGTGACTTTAATTTGACACTTCTAGAACCTGTTTCTATATCTACTGG	
GGTCCAGCATCAGCTCGTGATCTTATTTGTGCTCAATATGTGGCTGGTTA CAAAGTATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATACTT CATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACTGCTGGCTTATCC TCCTTTGCTGCTATTCCATTTGCACAGAGTATCTTTTATAGGTTAAACGG TGTTGGCATTACTCAACAGGTTCTTTCAGAGAACCAAAAGCTTATTGCCA		CAGTCGTAGTGCACGTAGTGCTATTGAGGATTTGCTATTTGACAAAGTCA	
GGTCCAGCATCAGCTCGTGATCTTATTTGTGCTCAATATGTGGCTGGTTA CAAAGTATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATACTT CATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACTGCTGGCTTATCC TCCTTTGCTGCTATTCCATTTGCACAGAGTATCTTTTATAGGTTAAACGG TGTTGGCATTACTCAACAGGTTCTTTCAGAGAACCAAAAGCTTATTGCCA		CTATAGCTGATCCTGGTTATATGCAAGGTTACGATGATTGCATGCA	
CAAAGTATTACCTCCTCTTATGGATGTTAATATGGAAGCCGCGTATACTT CATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACTGCTGGCTTATCC TCCTTTGCTGCTATTCCATTTGCACAGAGTATCTTTTATAGGTTAAACGG TGTTGGCATTACTCAACAGGTTCTTTCAGAGAACCAAAAGCTTATTGCCA			
CATCTTTGCTTGGCAGCATAGCAGGTGTTGGCTGGACTGCTGGCTTATCC TCCTTTGCTGCTATTCCATTTGCACAGAGTATCTTTTATAGGTTAAACGG TGTTGGCATTACTCAACAGGTTCTTTCAGAGAACCAAAAGCTTATTGCCA			
TCCTTTGCTGCTATTCCATTTGCACAGAGTATCTTTTATAGGTTAAACGG TGTTGGCATTACTCAACAGGTTCTTTCAGAGAACCAAAAGCTTATTGCCA			
TGTTGGCATTACTCAACAGGTTCTTTCAGAGAACCAAAAGCTTATTGCCA			
L(AP) = A(APPPP) + A(APPPPPPPPPP		ATAAGTTTAATCAGGCTCTGGGAGCTATGCAAACAGGCTTCACTACAACT	
AATGAAGCTTTTCAGAAGGTTCAGGATGCTGTGAACAACAATGCACAGGC			

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TCTATCCAAATTAGCTAGCGAGCTATCTAATACTTTTGGTGCTATTTCCG	
	CCTCTATTGGAGACATCATACAACGTCTTGATGTTCTCGAACAGGACGCC	
	CAAATAGACAGACTTATTAATGGCCGTTTGACAACACTAAATGCTTTTGT	
	TGCACAGCAGCTTGTTCGTTCCGAATCAGCTGCTCTTTCCGCTCAATTGG	
	CTAAAGATAAAGTCAATGAGTGTGTCAAGGCACAATCCAAGCGTTCTGGA	
	TTTTGCGGTCAAGGCACACATATAGTGTCCTTTGTTGTAAATGCCCCTAA	
	TGGCCTTTACTTCATGCATGTTGGTTATTACCCTAGCAACCACATTGAGG	
	TTGTTTCTGCTTATGGTCTTTGCGATGCAGCTAACCCTACTAATTGTATA	
	GCCCCTGTTAATGGCTACTTTATTAAAACTAATAACACTAGGATTGTTGA	
	TGAGTGGTCATATACTGGCTCGTCCTTCTATGCACCTGAGCCCATTACCT	
	CCCTTAATACTAAGTATGTTGCACCACAGGTGACATACCAAAACATTTCT	
	ACTAACCTCCCTCCTCTTCTCGGCAATTCCACCGGGATTGACTTCCA	
	AGATGAGTTGGATGAGTTTTTCAAAAATGTTAGCACCAGTATACCTAATT	
	TTGGTTCCCTAACACAGATTAATACTACATTACTCGATCTTACCTACGAG	
	ATGTTGTCTCTTCAACAAGTTGTTAAAGCCCTTAATGAGTCTTACATAGA	
	CCTTAAAGAGCTTGGCAATTATACTTATTACAACAAATGGCCGTGGTACA	
	TTTGGCTTGGTTTCATTGCTGGGCTTGTTGCCTTAGCTCTATGCGTCTTC	
	TTCATACTGTGCTGCACTGGTTGTGGCACAAACTGTATGGGAAAACTTAA	
	GTGTAATCGTTGTTGTGATAGATACGAGGAATACGACCTCGAGCCGCATA	
	AGGTTCATGTTCACTAATTAACGAACTATTAATGAGAGTTCAAAGACCAC	
	CCACTCTTGTTAGTGTTTTCACTCTCTTTTTGGTCACTGCATCCTCA	
	AAACCTCTCTATGTACCTGAGCATTGTCAGAATTATTCTGGTTGCATGCT	
	TAGGGCTTGTATTAAAACTGCCCAAGCTGATACAGCTGGTCTTTATACAA	
	ATTTTCGAATTGACGTCCCATCTGCAGAATCAACTGGTACTCAATCAGTT	
	TCTGTCGATCTTGAGTCAACTTCAACTCATGATGGTCCTACCGAACATGT	
	TACTAGTGTGAATCTTTTTGACGTTGGTTACTCAGTTAATTAA	
	TATGGATTACGTGTCTCTGCTTAATCAAATTTGGCAGAAGTACCTTAACT	
	CACCGTATACTACTTGTTTGTACATCCCTAAACCCACAGCTAAGTATACA	
	CCTTTAGTTGGCACTTCATTGCACCCTGTGCTGTGGAACTGTCAGCTATC	
	CTTTGCTGGTTATACTGAATCTGCTGTTAATTCTACAAAAGCTTTGGCCA	
	AACAGGACGCAGCTCAGCGAATCGCTTGGTTGCTACATAAGGATGGAGGA	
	ATCCCTGATGGATGTTCCCTCTACCTCCGGCACTCAAGTTTATTCGCGCA	
	AAGCGAGGAAGAGGAGCCATTCTCCAACTAAGAAACTGCGCTACGTTAAG	
	CGTAGATTTTCTCTTCTGCGCCATGAAGACCTTAGTGTTATTGTCCAACC	
	AACACACTATGTCAGGGTTACATTTTCAGACCCCAACATGTGGTATCTAC	
	GTTCGGGTCATCATTTACACTCAGTTCACAATTGGCTTAAACCTTATGGC	
	GGCCAACCTGTTTCTGAGTACCATATTACTCTAGCTTTGCTAAATCTCAC	
	TGATGAAGATTTAGCTAGAGATTTTTCACCCATTGCGCTCTTTTTGCGCA	
	ATGTCAGATTTGAGCTACATGAGTTCGCCTTGCTGCGCAAAACTCTTGTT	
	CTTAATGCATCAGAGATCTACTGTGCTAACATACATAGATTTAAGCCTGT	
	GTATAGAGTTAACACGGCAATCCCTACTATTAAGGATTGGCTTCTCGTTC	
	AGGGATTTTCCCTTTACCATAGTGGCCTCCCTTTACATATGTCAATCTCT	
	AAATTGCATGCACTGGATGATGTTACTCGCAATTACATCATTACAATGCC	
	ATGCTTTAGAACTTACCCTCAACAAATGTTTGTTACTCCTTTGGCCGTAG	
	ATGTTGTCTCCATACGGTCTTCCAATCAGGGTAATAAACAAATTGTTCAT	
	TCTTATCCCATTTTACATCATCCAGGATTTTAACGAACTATGGCTTTCTC	
	GGCGTCTTTATTTAAACCCGTCCAGCTAGTCCCAGTTTCTCCTGCATTTC	
	ATCGCATTGAGTCTACTGACTCTATTGTTTTCACATACAT	
	GGCTATGTAGCTGCTTTAGCTGTCAATGTGTGTCTCATTCCCCTATTATT	
	ACTGCTACGTCAAGATACTTGTCGTCGCAGCATTATCAGAACTATGGTTC	
	TCTATTTCCTTGTTCTGTATAACTTTTTATTAGCCATTGTACTAGTCAAT	
	GGTGTACATTATCCAACTGGAAGTTGCCTGATAGCCTTCTTAGTTATCCT	
	CATAATACTTTGGTTTGTAGATAGAATTCGTTTCTGTCTCATGCTGAATT	
	CCTACATTCCACTGTTTGACATGCGTTCCCACTTTATTCGTGTTAGTACA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GTTTCTCTCATGGTATGGTCCCTGTAATACACACCAAACCATTATTTAT	
	TAGAAACTTCGATCAGCGTTGCAGCTGTTCTCGTTGTTTTTATTTGCACT	
	CTTCCACTTATATAGAGTGCACTTATATTAGCCGTTTTAGTAAGATTAGC	
	CTAGTTTCTGTAACTGACTTCTCCTTAAACGGCAATGTTTCCACTGTTTT	
	CGTGCCTGCAACGCGCGATTCAGTTCCTCTTCACATAATCGCCCCGAGCT	
	CGCTTATCGTTTAAGCAGCTCTGCGCTACTATGGGTCCCGTGTAGAGGCT	
	AATCCATTAGTCTCTCTTTGGACATATGGAAAACGAACTATGTTACCCTT	
	TGTCCAAGAACGAATAGGGTTGTTCATAGTAAACTTTTTCATTTTTACCG	
	TAGTATGTGCTATAACACTCTTGGTGTGTATGGCTTTCCTTACGGCTACT	
	AGATTATGTGTGCAATGTATGACAGGCTTCAATACCCTGTTAGTTCAGCC	
	CGCATTATACTTGTATAATACTGGACGTTCAGTCTATGTAAAATTCCAGG	
	ATAGTAAACCCCCTCTACCACCTGACGAGTGGGTTTAACGAACTCCTTCA	
	TAATGTCTAATATGACGCAACTCACTGAGGCGCAGATTATTGCCATTATT	
	AAAGACTGGAACTTTGCATGGTCCCTGATCTTTCTCTTAATTACTATCGT	
	ACTACAGTATGGATACCCATCCCGTAGTATGACTGTCTATGTCTTTAAAA	
	TGTTTGTTTTATGGCTCCTATGGCCATCTTCCATGGCGCTATCAATATTT	
	AGCGCCGTTTATCCAATTGATCTAGCTTCCCAGATAATCTCTGGCATTGT	
	AGCAGCTGTTTCAGCTATGATGTGGATTTCCTACTTTGTGCAGAGTATCC	
	GGCTGTTTATGAGAACTGGATCATGGTGGTCATTCAATCCTGAGACTAAT	
	TGCCTTTTGAACGTTCCATTTGGTGGTACAACTGTCGTACGTCCACTCGT	
	AGAGGACTCTACCAGTGTAACTGCTGTTGTAACCAATGGCCACCTCAAAA	
	TGGCTGGCATGCATTTCGGTGCTTGTGACTACGACAGACTTCCTAATGAA	
	GTCACCGTGGCCAAACCCAATGTGCTGATTGCTTTAAAAATGGTGAAGCG	
	GCAAAGCTACGGAACTAATTCCGGCGTTGCCATTTACCATAGATATAAGG	
	CAGGTAATTACAGGAGTCCGCCTATTACGGCGGATATTGAACTTGCATTG	
	CTTCGAGCTTAGGCTCTTTAGTAAGAGTATCTTAATTGATTTTAACGAAT	
	CTCAATTTCATTGTTATGGCATCCCCTGCTGCACCTCGTGCTGTTTCCTT	
	TGCCGATAACAATGATATAACAAATACAAACCTATCTCGAGGTAGAGGAC	
	GTAATCCAAAACCACGAGCTGCACCAAATAACACTGTCTCTTGGTACACT	
	GGGCTTACCCAACACGGGAAAGTCCCTCTTACCTTTCCACCTGGGCAGGG	
	TGTACCTCTTAATGCCAATTCTACCCCTGCGCAAAATGCTGGGTATTGGC	
	GGAGACAGGACAGAAAAATTAATACCGGGAATGGAATTAAGCAACTGGCT	
	CCCAGGTGGTACTTCTACTACACTGGAACTGGACCCGAAGCAGCACTCCC	
	ATTCCGGGCTGTTAAGGATGGCATCGTTTGGGTCCATGAAGATGGCGCCA	
	CTGATGCTCCTTCAACTTTTGGGACGCGGAACCCTAACAATGATTCAGCT	
	ATTGTTACACAATTCGCGCCCGGTACTAAGCTTCCTAAAAACTTCCACAT	
	TGAGGGGACTGGAGGCAATAGTCAATCATCTTCAAGAGCCTCTAGCTTAA	
	GCAGAAACTCTTCCAGATCTAGTTCACAAGGTTCAAGATCAGGAAACTCT	
	ACCCGCGGCACTTCTCCAGGTCCATCTGGAATCGGAGCAGTAGGAGGTGA	
	TCTACTTTACCTTGATCTTCTGAACAGACTACAAGCCCTTGAGTCTGGCA	
	AAGTAAAGCAATCGCAGCCAAAAGTAATCACTAAGAAAGA	
	GCTAAAAATAAGATGCGCCACAAGCGCACTTCCACCAAAAGTTTCAACAT	
	GGTGCAAGCTTTTGGTCTTCGCGGACCAGGAGACCTCCAGGGAAACTTTG	
	GTGATCTTCAATTGAATAAACTCGGCACTGAGGACCCACGTTGGCCCCAA	
	ATTGCTGAGCTTGCTCCTACAGCCAGTGCTTTTATGGGTATGTCGCAATT	
	TAAACTTACCCATCAGAACAATGATGATCATGGCAACCCTGTGTACTTCC	
	TTCGGTACAGTGGAGCCATTAAACTTGACCCAAAGAATCCCAACTACAAT	
	AAGTGGTTGGAGCTTCTTGAGCAAAATATTGATGCCTACAAAACCTTCCC	
	TAAGAAGGAAAAGAAACAAAAGGCACCAAAAGAAGAATCAACAGACCAAA	
	TGTCTGAACCTCCAAAGGAGCAGCGTGTGCAAGGTAGCATCACTCAGCGC	
	ACTCGCACCCGTCCAAGTGTTCAGCCTGGTCCAATGATTGAT	
	TGATTAGTGTCACTCAAAGTAACAAGATCGCGGCAATCGTTTGTGTTTTGG	
	CAACCCCATCTCACCATCGCTTGTCCACTCTTGCACAGAATGGAATCATG	
	TTGTAATTACAGTGCAATAAGGTAATTATAACCCATTTAATTGATAGCTA	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	TGCTTTATTAAAGTGTGTAGCTGTAGAGAGAATGTTAAAGACTGTCACCT CTGCTTGATTGCAAGTGAACAGTGCCCCCCGGGAAGAGCTCTACAGTGTG AAATGTAAATAAAAAATAGCTATTATTCAATTAGATTAG	
Смысловая цепь миРНК IL- 8 (миРНК A1, миРНК A4)	CAAGGAAGTGCTAAAGAA	80
Смысловая цепь миРНК IL- 8 (миРНК А2, миРНК А3-1, миРНК А5-1)	CAAGGAGTGCTAAAGAA	81
Смысловая цепь миРНК IL- 8 (миРНК АЗ-2, миРНК А5-2)	GAGAGTGATTGAGAGTGG	82
Смысловая цепь миРНК IL- 8 (миРНК АЗ-3, миРНК А5-3)	GAGAGCTCTGTCTGGACC	83
Смысловая цепь миРНК IL- 1-бета (миРНК А6, миРНК А7-1)	GAAAGATGATAAGCCCACTCT	84
Смысловая цепь миРНК IL- 1-бета (миРНК A7-2)	GGTGATGTCTGGTCCATATGA	85
Смысловая цепь миРНК IL- 1-бета	GATGATAAGCCCACTCTA	86
(миРНК А7-3) TNF-альфа, смысловая цепь (миРНК А8-1)	GGCGTGGAGCTGAGAGATAA	87
TNF-альфа, смысловая цепь (миРНК А8-2)	GGGCCTGTACCTCTACT	88
TNF-альфа, смысловая цепь (миРНК А8-3)	GGTATGAGCCCATCTATCT	89
IL-17, смысловая цепь (миРНК А8-4)	GCAATGAGGACCCTGAGAGAT	90
IL-17, смысловая цепь (миРНК А8-5)	GCTGATGGGAACGTGGACTA	91
IL-17, смысловая цепь (миРНК А8-6)	GGTCCTCAGATTACTACAA	92

Белок или		GT 0 ==
нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая	SEQ ID
кислота	кислота: от 5' к 3')	NO:
IL-6,	GCCCTGAGAAAGGAGACATGT	93
смысловая цепь	00001011011110110111011	
(миРНК В1-1)		
IL-6,	GAGGAGACTTGCCTGGTGAAA	94
смысловая цепь		
(миРНК В1-2,		
B2, B15-1, B16-		
1, B17-1)		
IL-6,	GAGGGCTCTTCGGCAAATGTA	95
смысловая цепь		
(миРНК В1-3)		
IL6R-альфа,	GTGAGGAAGTTTCAGAACAGT	96
смысловая цепь		
(миРНК В3-1,		
B4)		<u> </u>
IL6R-альфа,	GAACGGTCAAAGACATTCACA	97
смысловая цепь		
(миРНК В3-2)		
IL6R-бета,	GGGAAGGTTACATCAGATCAT	98
смысловая цепь		
(миРНК В3-3,		
B5)		
ACE2,	GCAGCTGAGGCCATTATATGA	99
смысловая цепь		
(миРНК В6-1,		
B7, B15-2, B16-		
2, B17-2)		
ACE2,	GGACCCAGGAAATGTTCAGAA	100
смысловая цепь		
(миРНК В6-2)		101
ACE2,	GGCTGAAAGACCAGAACAAGA	101
смысловая цепь		
(миРНК В6-3)		100
SARS CoV-	GTGTGACCGAAAGGTAAGATG	102
2_ORF1ab, смысловая цепь		
(миРНК В8-1,		
В14, В18-1)		
SARS CoV-	TTTAAATATTGGGATCAGAC	103
2 ORF1ab,	IIINAAIAIIGGGAICAGAC	103
2_ОКГ тао, смысловая цепь		
(миРНК В12-1)		
SARS CoV-	AAGAATAGAGCTCGCAC	104
2 ORF1ab,		107
смысловая цепь		
(миРНК В12-2,		
B13)		
SARS CoV-	ACTGTTGATTCATCACAGGG	105
2 ORF1ab,		
смысловая цепь		
(миРНК В12-3)		
Шиповидный	GTTGCTGATTATTCTGTCCTA	106
белок SARS		
		•

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
CoV-2, смысловая цепь (миРНК В11-1, В19-1)		
Шиповидный белок SARS CoV-2, смысловая цепь (миРНК В8-2, В9, В11-2, В18-2, В19-2)	GAGGTGATGAAGTCAGACAAA	107
Щиповидный белок SARS CoV-2, смысловая цепь (миРНК В11-3, В19-3)	GCCGGTAGCACCTTGTAAT	108
Нуклеокапсидный белок SARS CoV-2, смысловая цепь (миРНК В8-3, В10, В15-3, В16-3, В18-3)	GCAACTGAGGGAGCCTTGAAT	109
Антисмыслова я цепь миРНК IL-8 (миРНК A1, миРНК A4)	TTCTTTAGCACTTCCTTG	110
Антисмыслова я цепь миРНК IL-8 (миРНК A2, миРНК A3-1, миРНК A5-1)	TTCTTTAGCACTCCTTG	111
Антисмыслова я цепь миРНК IL-8 (миРНК АЗ-2, миРНК А5-2)	CCACTCTCAATCACTCTC	112
Антисмыслова я цепь миРНК IL-8 (миРНК АЗ-3, миРНК А5-3)	GGTCCAGACAGAGCTCTC	113
Антисмыслова я цепь миРНК IL-1-бета (миРНК А6, миРНК А7-1)	AGAGTGGGCTTATCATCTTTC	114
Антисмыслова я цепь миРНК IL-1-бета	TCATATGGACCAGACATCACC	115

Белок или	п (с у с	CEC TO
нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая	SEQ ID
кислота	кислота: от 5' к 3')	NO:
(миРНК А7-2)		
Антисмыслова	TAGAGTGGGCTTATCATC	116
я цепь миРНК		_
IL-1-бета		
(миРНК А7-3)		
TNF-альфа,	TTATCTCTCAGCTCCACGCC	117
антисмысловая		
цепь (миРНК		
A8-1)		
TNF-альфа,	AGTAGATGAGGTACAGGCCC	118
антисмысловая		
цепь (миРНК		
A8-2)		
TNF-альфа,	AGATAGATGGGCTCATACC	119
антисмысловая		
цепь (миРНК		
A8-3)		
IL-17,	ATCTCTCAGGGTCCTCATTGC	120
антисмысловая		
цепь (миРНК		
A8-4)		
IL-17,	TAGTCCACGTTCCCATCAGC	121
антисмысловая		
цепь (миРНК		
A8-5)		
IL-17,	TTGTAGTAATCTGAGGACC	122
антисмысловая		
цепь (миРНК		
A8-6)		
IL-6,	ACATGTCTCCTTTCTCAGGGC	123
антисмысловая		
цепь (миРНК		
B1-1)		
IL-6,	TTTCACCAGGCAAGTCTCCTC	124
антисмысловая		
цепь (миРНК		
B1-2, B2, B15-		
1, B16-1, B17-1)		
IL-6,	TACATTTGCCGAAGAGCCCTC	125
антисмысловая		
цепь (миРНК		
B1-3)		
IL6R-альфа,	ACTGTTCTGAAACTTCCTCAC	126
антисмысловая		
цепь (миРНК		
B3-1, B4)		10-
IL6R-альфа,	TGTGAATGTCTTTGACCGTTC	127
антисмысловая		
цепь (миРНК		
B3-2)		100
IL6R-бета,	ATGATCTGATGTAACCTTCCC	128
антисмысловая		

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
(миРНК В3-3, В5)		
АСЕ2, антисмысловая цепь (миРНК В6-1, В7, В15- 2, В16-2, В17-2)	TCATATAATGGCCTCAGCTGC	129
АСЕ2, антисмысловая цепь (миРНК В6-2)	TTCTGAACATTTCCTGGGTCC	130
АСЕ2, антисмысловая цепь (миРНК В6-3)	TCTTGTTCTGGTCTTTCAGCC	131
SARS CoV- 2_ORF1ab, антисмысловая цепь (миРНК B8-1, B14, B18- 1)	CATCTTACCTTTCGGTCACAC	132
SARS CoV- 2_ORF1ab, антисмысловая цепь (миРНК B12-1)	GTCTGATCCCAATATTTAAA	133
SARS CoV- 2_ORF1ab, антисмысловая цепь (миРНК B12-2, B13)	GTGCGAGCTCTATTCTT	134
	CCCTGTGATGAATCAACAGT	135
Шиповидный белок SARS CoV-2, антисмысловая цепь (миРНК В11-1, В19-1)	TAGGACAGAATAATCAGCAAC	136
Шиповидный белок SARS CoV-2, антисмысловая цепь (миРНК B8-2, B9, B11-2, B18-2, B19-2)	TTTGTCTGACTTCATCACCTC	137
Шиповидный белок SARS CoV-2, антисмысловая	ATTACAAGGTGTGCTACCGGC	138

Белок или	Постолого (болош от Минения и Синения и	CEO ID
нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая	SEQ ID
кислота	кислота: от 5' к 3')	NO:
цепь (миРНК		
B11-3, B19-3)		
Нуклеокапсидн	ATTCAAGGCTCCCTCAGTTGC	139
ый белок SARS		135
CoV-2,		
антисмысловая		
,		
B8-3, B10, B15-		
3, B16-3, B17-3,		
B18-3)		1.40
ALK2,	GGCCTCATTATTCTCTCT	140
смысловая цепь		
(миРНК А11-1)		
ALK2,	GTGTTCGCAGTATGTCTT	141
смысловая цепь		
(миРНК А11-2)		
ALK2,	GCCTGCCTGCGGAGTT	142
смысловая цепь		
(миРНК А11-3)		
SOD1,	GAAGGAAAGTAATGGACCAGT	143
смысловая цепь		
(миРНК А12-1,		
A13-1)		
SOD1,	GGTCCTCACTTTAATCCTCTA	144
смысловая цепь		1
(миРНК А12-2,		
A13-2)		
SOD1,	GGAGACTTGGGCAATGTGACT	145
смысловая цепь	GGAGACIIGGGCAAIGIGACI	143
(миРНК А12-3,		
A13-3)		1.4.6
ALK2,	AGAGAGATAATGAGGCC	146
антисмысловая		
цепь (миРНК		
A11-1)		
ALK2,	AAGACATACTGCGAACAC	147
антисмысловая		
цепь (миРНК		
A11-2)		
ALK2,	AACTCCCAGCAGGCAGGC	148
антисмысловая		
цепь (миРНК		
A11-3)		
SOD1,	ACTGGTCCATTACTTTCCTTC	149
антисмысловая		
цепь (миРНК		
A12-1, A13-1)		
SOD1,	TAGAGGATTAAAGTGAGGACC	150
антисмысловая		
цепь (миРНК		
A12-2, A13-2)		
SOD1,	AGTCACATTGCCCAAGTCTCC	151
антисмысловая		
шинополовая	I	<u> </u>

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
цепь (миРНК A12-3, A13-3)		
Соединения A9 - A15	См. таблицу 9	152 - 158
Соединения В18 и А9 - А15 (последователь ности плазмид)	См. таблицу 10	159 - 166
IL-4 Последователь ность аминокислот IL-4 человека (Genbank NM_000589.4)	ATCGTTAGCTTCTCCTGATAAACTAATTGCCTCACATTGTCACTGCAAAT CGACACCTATTAATGGGTCTCACCTCCCAACTGCTTCCCCTCTGTTCTT CCTGCTAGCATGTGCCGGCAACTTTGTCCACGGACACAAGTGCGATATCA CCTTACAGGAGATCATCAAAACTTTGAACAGCCTCACAGAGCAGAAGACT CTGTGCACCGAGTTGACCGTAACAGACATCTTTGCTGCCTCCAAGAACAC AACTGAGAAGGAAACCTTCTGCAGGGCTGCGACTGTGCTCCGGCAGTTCT ACAGCCACCATGAGAAGGACACTCGCTGCCTGGGTGCGACAGCAG TTCCACAGGCACAAGCAGCTGATCCGATTCCTGAAACGGCTCGACAGGAA CCTCTGGGGGCCTGGCGGGCTTGAATTCCTGTCAAAGGAAGCCAACC AGAGTACGTTGGAAAACTTCTTGGAAAGGCTAAAGACGATCATGAGAGAG AAATATTCAAAGTGTTCGAGCTGAATATTTTAATTTTATGAGTTTTTTGATA GCTTTATTTTTTTAAGTATTTATATATTTATAACTCATCATAAAATAAAGT ATATATAGAATCTAA	167
IL-4 Последователь ность аминокислот IL-4 человека (Genbank NP_000580.1) Подчеркнута: сигнальная последовательн ость	MGLTSQLLPPLFFLLACAGNFVHGHKCDITLQEIIKTLNSLTEQKTLCTE LTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQFHRH KQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERLKTIMREKYSK CSS	168
Эритропоэтин (ЕРО) Последователь ность аминокислот ЕРО человека (Genbank NM_000799.4)	CCTTTCCAGATAGCACGCTCCGCCAGTCCCAAGGGTGCGCAACCGGCTG CACTCCCTCCCGCGACCCAGGGCCCGGGAGCAGCCCCATGACCCACAC GCACGTCTGCAGCAGCCCCGCTCACGCCCCGGCGAGCCTCAACCCAGGCG TCCTGCCCTGC	169

Белок или	Последовательность (белок: от N-конца к С-концу; нуклеиновая	SEQ ID
нуклеиновая	кислота: от 5' к 3')	NO:
кислота	ACACTTTCCGCAAACTCTTCCGAGTCTACTCCAATTTCCTCCGGGGAAAG CTGAAGCTGTACACAGGGGAGGCCTGCAGGACAGGGGACAGATGACCAGG TGTGTCCACCTGGGCATATCCACCACCTCCCTCACCAACATTGCTTGTGC CACACCCTCCCCGCCACTCCTGAACCCCGTCGAGGGGCTCTCAGCTCAG CGCCAGCCTGTCCCATGGACACTCCAGTGCCAGCAATGACATCTCAGGGG CCAGAGGAACTGTCCAGAGAGCAACTCTGAGATCTAAGGATGTCACAGGG CCAACTTGAGGGCCCAGAGCAAGCATTCAGAGAGCAGCTTTAAACTC AGGGACAGAGCCATGCTGGGAAGACCCTGAGCTCACTCGGCACCCTGCA AAATTTGATGCCAGGACACGCTTTGGAGGCGATTTACCTGTTTTCGCACC TACCATCAGGGACAGGATGACCTGGATAACTTAGGTGGCAAGCTGTGACT TCTCCAGGTCTCACGGGCATGGGCACCCCTTT GACACCGGGGTGTGGGAACCATGAAGACAGGATGGGGGCTGGCCTCTGG	NO.
Эритропоэтин	CTCTCATGGGGTCCAAGTTTTGTGTATTCTTCAACCTCATTGACAAGAAC TGAAACCACCAA MGVHECPAWLWLLLSLLSLPLGLPVLGAPPRLICDSRVLERYLLEAKEAE	170
(ЕРО) Последователь ность аминокислот ЕРО человека (Genbank NP_000790.2)	NITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEA VLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPD AASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR	
Подчеркнута: сигнальная последовательн ость		
мРНК ALK2, прямой праймер	GACGTGGAGTATGGCACTATCG	171
мРНК ALK2, обратный праймер	CACTCCAACAGTGTAATCTGGCG	172
18S рРНК человека, прямой праймер	ACCCGTTGAACCCCATTCGTGA	173
18S рРНК человека, обратный праймер	GCCTCACTAAACCATCCAATCGG	174
мРНК SOD1 человека, прямой праймер	CTCACTCTCAGGAGACCATTGC	175
мРНК SOD1 человека, обратный праймер	CCACAAGCCAAACGACTTCCAG	176
Последователь ность РНК Соединения A1	AUAGUGAGUCGUAUUAACGUACCAACAACAAGGAAGUGCUAAAGAAACUU GUUCUUUAGCACUUCCUUGUUUAUCUUAGAGGCAUAUCCCUGCCACCAUG ACCAUCCUGUUUCUGACAAUGGUCAUCAGCUACUUCGGCUGCAUGAAGGC	177

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	CGUGAAGAUGCACCAUGAGCAGCAGCCACCUGUUCUAUCUGGCCCUGU GCCUGCUGACCUUUACCAGCUCUGCUACCGCCGGACCUGAGACACUUUGU GGCGCUGAACUGGGACGCCCUGCAGUUUGUGUGUGGCGACAGAGGCUU CUACUUCAACAAGCCCACAGGCUACGGCAGCUCUAGAAGGGCUCCUC AGACCGGAAUCGUGGACGAGUGCUGCUUCAGAAGCUGCGACCUGCGGGG CUGGAAAUGUAUUGUGCCCCUCUGAAGCCUGCCAAGAGCGCCUAAUUUAU CUUAGAGGCAUAUCCCU	
Последователь ность РНК Соединения А2	AUAGUGAGUCGUAUUAACGUACCAACAACAAGAGUGCUAAAGAAACUUG UUCUUUAGCACUCCUUGUUUAUCUUAGAGGCAUAUCCCUGCCACCAUGAC CAUCCUGUUUCUGACAAUGGUCAUCAGCUACUUCGGCUGCAUGAAGGCCG UGAAGAUGCACCAUGAGCAGCAGCCACCUGUUCUAUCUGGCCCUGUGC CUGCUGACCUUUACCAGCUCUGCUACCGCCGGACCUGAGACACUUUGUGG CGCUGAACUGGUGGACGCCUGCAGUUUGUGUGGGCGACAGAGGCUUCU ACUUCAACAAGCCCACAGGCUACGGCAGCUCUAGAAGGGCUCCUCAG ACCGGAAUCGUGGACGAGUGCUCUCAGAAGCUGCGACCUGCGGCGCU GGAAAUGUAUUGUGCCCCUCUGAAGCCUGCCAAGAGCCCUAAUUUAUCU UAGAGGCAUAUCCCU (все U модифицированы; N¹-метилпсевдоуридин)	178
Последователь ность РНК Соединения А3	AUAGUGAGUCGUAUUAACGUACCAACAACAAGGAGUGCUAAAGAAACUUG UUCUUUAGCACUCCUUGUUUAUCUUAGAGGCAUAUCCCUACGUACCAACA AGAGAGUGAUUGAGAGUGGACUUGCCACUCUCAAUCACUCUCUUUAUCUU AGAGGCAUAUCCCUACGUACCAACAAGAGAGAGCUCUGUCUG	179
Последователь ность РНК Соединения А6	AUAGUGAGUCGUAUUAACGUACCAACAAGAAAGAUGAUAAGCCCACUCUA CUUGAGAGUGGGCUUAUCAUCUUUCUUUAUCUUAGAGGCAUAUCCCUGCC ACCAUGACCAUCCUGUUUCUGACAAUGGUCAUCAGCUACUUCGGCUGCAU GAAGGCCGUGAAGAUGCACCAUGAGCAGCACCUGUUCUAUCUGG CCCUGUGCCUGACCUUUACCAGCUCUGCUACCGCCGGACCUGAGACA CUUUGUGGCGCUGAACUGGUGGACGCCCUGCAGUUUGUGUGGGCGACAG AGGCUUCUACUUCAACAAGCCCACAGGCUACGGCAGCUCUAGAAGGG CUCCUCAGACCGGAAUCGUGGACGAGUGCUUCAGAAGCUGCGACCUG CGGCGGCUGGAAAUGUAUUGUGCCCCUCUGAAGCCUGCCAAGAGCGCCUA AUUUAUCUUAGAGGCAUAUCCCU (все U модифицированы; N¹-метилпсевдоуридин)	180
Последователь ность РНК Соединения А7	AUAGUGAGUCGUAUUAACGUACCAACAAGAAAGAUGAUAAGCCCACUCUA CUUGAGAGUGGGCUUAUCAUCUUUCUUUAUCUUAGAGGCAUAUCCCUACG UACCAACAAGGUGAUGUCUGGUCCAUAUGAACUUGUCAUAUGGACCAGAC AUCACCUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGAUGAUAAGC CCACUCUAACUUGUAGAGGUGGGCUUAUCAUCUUUAUCUUAGAGGCAUAUC CCUGCCACCAUGACCAUCCUGUUUCUGACAAUGGUCAUCAGCUACUUCGG CUGCAUGAAGGCCGUGAAGAUGCACCAUGAGCAGCCACCUGUUCU AUCUGGCCCUGUGCCUGCUGACCUUUACCAGCUCUGCUACCGCCGGACCU GAGACACUUUGUGGCGCUGAACUGGGGACGCCCUGCAGUUUGUGUGGG	181

нуклеиновая ки	Госледовательность (белок: от N-конца к C-концу; нуклеиновая ислота: от 5' к 3')	SEQ ID NO:
кислота	AAGGGCUCCUCAGACCGGAAUCGUGGACGAGUGCUGCUUCAGAAGCUGC	
	ACCUGCGGCGGCUGGAAUGUAUUGUGCCCCUCUGAAGCCUGCCAAGAG	
	GCCUAAUUUAUCUUAGAGGCAUAUCCCU	
	все U модифицированы; N¹-метилпсевдоуридин)	
	uagugagucguauuaacguaccaacaaggcgugagagcugagagauaaac	182
	UGUUAUCUCUCAGCUCCACGCCUUUAUCUUAGAGGCAUAUCCCUACGUA	102
	CAACAAGGGCCUGUACCUCAUCUACUUGAGUAGAUGAGGUACAGGC	
	CUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGGUAUGAGCCCAUC	
	AUCUACUUGAGAUAGAUGGGCUCAUACCUUUAUCUUAGAGGCAUAUCCC	
	ACGUACCAACAAGCAAUGAGGACCCUGAGAGAUACUUGAUCUCUCAGGG	
	CCUCAUUGCUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGCUGAU	
	GGAACGUGGACUAACUUGUAGUCCACGUUCCCAUCAGCUUUAUCUUAGA	
	GCAUAUCCCUACGUACCAACAAGGUCCUCAGAUUACUACAAACUUGUUG	
Последователь И	AGUAAUCUGAGGACCUUUAUCUUAGAGGCAUAUCCCUGCCACCAUGGGA	
	UGACAUCUCAACUGCUGCCUCCACUGUUCUUUCUGCUGGCCUGCGCCGG	
Соединения А8	AAUUUUGUGCACGGCCACAAGUGCGACAUCACCCUGCAAGAGAUCAUCA	
	GACCCUGAACAGCCUGACCGAGCAGAAAACCCUGUGCACCGAGCUGACC	
GT	UGACCGAUAUCUUUGCCGCCAGCAAGAACACAACCGAGAAAGAGACAUU	
CT	UGCAGAGCCGCCACCGUGCUGAGACAGUUCUACAGCCACCACGAGAAGG	
AC	CACCAGAUGCCUGGGAGCUACAGCCCAGCAGUUCCACAGACACAAGCAG	
CT	UGAUCCGGUUCCUGAAGCGGCUGGACAGAAAUCUGUGGGGACUCGCCGG	
CC	CUGAAUAGCUGCCCUGUGAAAGAGGCCAACCAGUCUACCCUGGAAAACU	
UC	CCUGGAACGCCUGAAAACCAUCAUGCGCGAGAAGUACAGCAAGUGCAGC	
	GCUGAUUUAUCUUAGAGGCAUAUCCCU	
(F	все U модифицированы; N^1 -метилпсевдоуридин)	
	UAGUGAGUCGUAUUAACGUACCAACAAGGCGUGGAGCUGAGAGAUAAAC	183
	UGUUAUCUCUCAGCUCCACGCCUUUAUCUUAGAGGCAUAUCCCUACGUA	
	CAACAAGGGCCUGUACCUCAUCUACUACUUGAGUAGAUGAGGUACAGGC	
	CUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGGUAUGAGCCCAUC	
	AUCUACUUGAGAUAGAUGGGCUCAUACCUUUAUCUUAGAGGCAUAUCCC	
	GCCACCAUGGGACUGACAUCUCAACUGCUGCCUCCACUGUUCUUUCU	
Поспелователь	GGCCUGCGCCGGCAAUUUUGUGCACGGCCACAAGUGCGACAUCACCCUG	
HOCTE PHK CA	AAGAGAUCAUCAAGACCCUGAACAGCCUGACCGAGCAGAAAACCCUGUG	
Гоелинения А 9 I	ACCGAGCUGACCGUGACCGAUAUCUUUGCCGCCAGCAAGAACACAACCG	
	GAAAGAGACAUUCUGCAGAGCCGCCACCGUGCUGAGACAGUUCUACAGC ACCACGAGAAGGACACCAGAUGCCUGGGAGCUACAGCCCAGCAGUUCCA	
	ACCACGAGAAGGACACCAGAOGCCOGGGAGCOACAGCCCAGCAGOOCCA AGACACAAGCAGCUGAUCCGGUUCCUGAAGCGGCUGGACAGAAAUCUGU	
	GGGACUCGCCGGCCUGAAUAGCUGCCCUGUGAAGAGGGCCAACCAGUCU	
	CCCUGGAAAACUUCCUGGAACGGCUGAAAACCAUCAUGCGCGAGAAGUA	
	AGCAAGUGCAGCAGCUGAUUUAUCUUAGAGGCAUAUCCCU	
	все U модифицированы; N¹-метилпсевдоуридин)	
	все о модифицированы, и -метилисевдоуридин) ССАССАUGGGACUGACAUCUCAACUGCUGCUCCACUGUUCUUUCUGCU	184
	GCCUGCGCCGGCAAUUUUGUGCACGGCCACAAGUGCGACAUCACCCUGC	107
	AGAGAUCAUCAAGACCCUGAACAGCCUGACCGAGCAGAAAACCCUGUGC	
	CCGAGCUGACCGUGACCGAUAUCUUUGCCGCCAGCAAGAACACAACCGA	
l G	AAAGAGACAUUCUGCAGAGCCGCCACCGUGCUGAGACAGUUCUACAGCC	
Последователь	CCACGAGAAGGACACCAGAUGCCUGGGAGCUACAGCCCAGCAGUUCCAC	
ность РНК _{До}	GACACAAGCAGCUGAUCCGGUUCCUGAAGCGGCUGGACAGAAAUCUGUG	
Соединения	GGACUCGCCGGCCUGAAUAGCUGCCCUGUGAAAGAGGCCAACCAGUCUA	
LAI() L	CCUGGAAAACUUCCUGGAACGGCUGAAAACCAUCAUGCGCGAGAAGUAC	
	GCAAGUGCAGCAGCUGAAUAGUGAGUCGUAUUAACGUACCAACAAGGCG	
	GGAGCUGAGAGAUAAACUUGUUAUCUCUCAGCUCCACGCCUUUAUCUUA	
	AGGCAUAUCCCUACGUACCAACAAGGGCCUGUACCUCAUCUACUACUUG	
G <i>t</i>		

Белок или нуклеиновая	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
кислота		
	ACAAGGUAUGAGCCCAUCUAUCUACUUGAGAUAGAUGGGCUCAUACCUUU	
	AUCUUAGAGGCAUAUCCCUUUUAUCUUAGAGGCAUAUCCCU	
	(все U модифицированы; N^1 -метилпсевдоуридин)	105
	GCCACCAUGACCAUCCUGUUUCUGACAAUGGUCAUCAGCUACUUCGGCUG	185
	CAUGAAGGCCGUGAAGAUGCACACCAUGAGCAGCCACCUGUUCUAUC	
	UGGCCCUGUGCCUGACCUUUACCAGCUCUGCUACCGCCGGACCUGAG	
	ACACUUUGUGGCGCUGAACUGGUGGACGCCCUGCAGUUUGUGUGUG	
Подполовотоли	CAGAGGCUUCUACUUCAACAAGCCCACAGGCUACGGCAGCAGCUCUAGAA GGGCUCCUCAGACCGGAAUCGUGGACGAGUGCUGCUUCAGAAGCUGCGAC	
Последователь ность РНК	CUGCGGCGGCUGGAAAUGUAUUGUGCCCCUCUGAAGCCUGCCAAGAGCGC	
	CUAAAUAGUGAGUCGUAUUAACGUACCAACAAGGCCUCAUUAUUCUCUCU	
Соединения A11	ACUUGAGAGAGAAUAAUGAGGCCUUUAUCUUAGAGGCAUAUCCCUACGUA	
All	CCAACAAGUGUUCGCAGUAUGUCUUACUUGAAGACAUACUGCGAACACUU	
	UAUCUUAGAGGCAUAUCCCUACGUACCAACAAGCCUGCCU	
	ACUUGAACUCCCAGCAGGCAGGCUUUAUCUUAGAGGCAUAUCCCUUUUAU	
	CUUAGAGGCAUAUCCCU	
	(все U модифицированы; N^1 -метилпсевдоуридин)	
	AUAGUGAGUCGUAUUAACGUACCAACAAGAAGGAAAGUAAUGGACCAGUA	186
	CUUGACUGGUCCAUUACUUUCCUUCUUUAUCUUAGAGGCAUAUCCCUACG	100
	UACCAACAAGGUCCUCACUUUAAUCCUCUAACUUGUAGAGGAUUAAAGUG	
	AGGACCUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGGAGACUUGG	
	GCAAUGUGACUACUUGAGUCACAUUGCCCAAGUCUCCUUUAUCUUAGAGG	
Последователь	CAUAUCCCUGCCACCAUGGGCAAGAUUAGCAGCCUGCCUACACAGCUGUU	
ность РНК	CAAGUGCUGCUUCUGCGACUUCCUGAAAGUGAAGAUGCACACCAUGAGCA	
Соединения	GCAGCCACCUGUUCUAUCUGGCCCUGUGCCUGACCUUUACCAGCUCU	
A12	GCUACCGCCGGACCUGAGACACUUUGUGGCGCUGAACUGGUGGACGCCCU	
	GCAGUUUGUGUGGGGACAGAGGCUUCUACUUCAACAAGCCCACAGGCU	
	ACGGCAGCAGCUCUAGAAGGGCUCCUCAGACCGGAAUCGUGGACGAGUGC	
	UGUUUCAGAAGCUGCGACCUGCGGCGGCUGGAAAUGUAUUGUGCCCCUCU	
	GAAGCCUGCCAAGAGCGCCUAAUUUAUCUUAGAGGCAUAUCCCU	
	(все U модифицированы; N^1 -метилпсевдоуридин)	
	AUAGUGAGUCGUAUUAACGUACCAACAAGAAGGAAAGUAAUGGACCAGUA	187
	CUUGACUGGUCCAUUACUUUCCUUCUUUAUCUUAGAGGCAUAUCCCUACG	
	UACCAACAAGGUCCUCACUUUAAUCCUCUAACUUGUAGAGGAUUAAAGUG	
	AGGACCUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGGAGACUUGG	
	GCAAUGUGACUUGAGUCACAUUGCCCAAGUCUCCUUUAUCUUAGAGG	
	CAUAUCCCUGCCACCAUGGGAGUGCAUGAAUGUCCUGCUUGGCUGUGGCU	
	GCUGCUGAGCCUGUCUGUCUGCCUCUGGGACUGCCUGUUCUUGGAGCCC	
Последователь	CUCCUAGACUGAUCUGCGACAGCAGAGUGCUGGAAAGAUACCUGCUGGAA	
ность РНК	GCCAAAGAGGCCGAGAACAUCACCACAGGCUGUGCCGAGCACUGCAGCCU	
Соединения	GAACGAGAAUAUCACCGUGCCUGACACCAAAGUGAACUUCUACGCCUGGA	
A13	AGCGGAUGGAAGUGGGCCAGCAGGCUGUGGAAGUUUGGCAAGGACUGGCC	
	CUGCUGAGCGAAGCUGUUCUGAGAGGACAGGCUCUGCUGGUCAACAGCUC	
	UCAGCCUUGGGAACCUCUGCAACUGCACGUGGACAAGGCCGUGUCUGGCC	
	UGAGAAGCCUGACCACACUGCUGAGAGCACUGGGAGCCCAGAAAGAGGCC	
	AUCUCUCCACCUGAUGCUGCCUCUGCUGCCCCUCUGAGAACCAUCACCGC	
	CGACACCUUCAGAAAGCUGUUCCGGGUGUACAGCAACUUCCUGCGGGGCA	
	AGCUGAAGCUGUACACAGGCGAGGCUUGCAGAACCGGCGACAGAUAAUUU	
	AUCUUAGAGGCAUAUCCCU	
П	(все U модифицированы; N ¹ -метилпсевдоуридин)	100
Последователь	AUAGUGAGUCGUAUUAACGUACCAACAAGAAGAUGAUAAGCCCACUCUA	188
ность РНК	CUUGAGAGUGGGCUUAUCAUCUUUCUUUAUCUUAGAGGCAUAUCCCUACG	
Соединения	UACCAACAAGGUGAUGUCUGGUCCAUAUGAACUUGUCAUAUGGACCAGAC	
A14	AUCACCUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGAUGAUAAGC	

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к C-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
кислота	CCACUCUAACUUGUAGAGUGGGCUUAUCAUCUUUAUCUUAGAGGCAUAUC CCUGCCACCAUGGGCAAGAUUAGCAGCCUGCCUACACAGCUGUUCAAGUG	
	CUGCUUCUGCGACUUCCUGAAAGUGAAGAUGCACCAUGAGCAGCC ACCUGUUCUAUCUGGCCCUGUGCCUGACCUUUACCAGCUCUGCUACC GCCGGACCUGAGACACUUUGUGGCGCUGAACUGGUGGACGCCCUGCAGUU	
	UGUGUGUGGCGACAGAGCUUCUACUUCAACAAGCCCACAGGCUACGGCA GCAGCUCUAGAAGGGCUCCUCAGACCGGAAUCGUGGACGAGUGCUGUUUC AGAAGCUGCGACCUGCGGCGGCUGGAAAUGUAUUGUGCCCCUCUGAAGCC	
	UGCCAAGAGCGCCUAAUUUAUCUUAGAGGCAUAUCCCU (все U модифицированы; N¹-метилпсевдоуридин)	100
Последователь ность РНК Соединения A15	GCCACCAUGGGCAAGAUUAGCAGCCUGCCUACACAGCUGUUCAAGUGCUG CUUCUGCGACUUCCUGAAAGUGAAGAUGCACACCAUGAGCAGCAGCCACC UGUUCUAUCUGGCCCUGUGCCUGACCUUUACCAGCUCUGCUACCGCC GGACCUGAGACACUUUGUGGCGCUGAACUGGUGGACGCCCUGCAGUUUGU GUGUGGCGACAGAGGCUUCUACUUCAACAAGCCCACAGGCUACGGCAGCA GCUCUAGAAGGGCUCCUCAGACCGGAAUCGUGGACGAGUGCUGUUUCAGA AGCUGCGACCUGCGGCGGCUGGAAAUGUAUUGUGCCCCUCUGAAGCCUGC CAAGAGCGCCUAAAUAGUGAGUCGUAUUAACGUACCAACAAGAAAGA	189
	UAAGCCCACUCUACUUGAGAGUGGGCUUAUCAUCUUUCUU	
Последователь ность РНК Соединения В18	GCCACCAUGUCUAGCAGCUCUUGGCUGCUGUCUCUGGUGCUGACAGC AGCCGCUCAGAGCACCAUUGAGGAACAGGCCAAGACCUUCCUGGACAAGU UCAACCACGAGCCCGAGGACCUGUUCUACCAGUCUAGCCUGGCCAGCUGG AACUACAACACCAACAUCACCGAAGAGAGACGUCAGAACAUGAACAACGC CGGCGACAAGAGGCGCCUUCCUGAAAGAGCAGAACAUGAACAACGC CGGCGCACAAGAGGCGCCUUCCUGAAAGAGCAGACACAUGACCAGA UGUACCCUCUGCAAGAGAUCCAGAACCUGACCGUGAAGCUCCAGCUGCAG GCCUCCAGCAGAAUGGAAGCUCUGUGCUGAGCGAGGACAAAGCG GCUGAACACCAUCCUGAAUACCAUGAGCACCAUCUACAGCACCGGCAAAG GCUGAACACCAUCCUGAAUACCAUGAGCACCAUCUACAGCACCGGCAAAG UGUGCAACCCCGACAAUCCCCAAGAGUGCCUGCUGCUGCUGGAACCCGGCCUG AAUGAGAUCAUGGCCAACAGCUGGACUACAACGAGAGACUGUGGGCCUG GGAGUCUUGGAGAAGCGAAGUGGCCAGAGCCACCACUACGAGGAC UACGGCGACUAUUGGAGAAGAGCAGCUGGACCACCACUACGAGGAC UACGGCGACUAUUGGAGAGACGAGGCCAACCACUACGAGGAC UACGGCGACUAUUGGAGAGACGAGGCCAACCACUACGAGGAC UACGGCGACUAUUGGAGGAGCCAACCACUACGAGGAC UCUGCUGGGAGACCACCACUACGAGCCUACAGCCCAAGCUG AUGAAUGCUUACCCCAGCUGAUCAGACCCCAUCGGCGGCCCAAGCUG AUCAGCCUUCGGCCAGAAACCUACAGCCCAUCGGCGGCCCAAGCUG AUCAGCCUUCGGCCAGAAACCUAACAUCAGCCCAUCGACGCCUGAC CCAGUGCCCUUCGGCCAGAAACCUAACAUCAGCCCAACCCUUCAGCCCAGCCAG	190

Белок или нуклеиновая кислота	Последовательность (белок: от N-конца к С-концу; нуклеиновая кислота: от 5' к 3')	SEQ ID NO:
	GAUCCUGCCAGCCUGUUUCACGUGUCCAACGACUACUCCUUCAUCCGGUA	
	CUACACCCGGACACUGUACCAGUUCCAGUUUCAAGAGGCUCUGUGCCAGG	
	CCGCCAAGCACGAAGGACCUCUGCACAAGUGCGACAUCAGCAACUCUACA	
	GAGGCCGGACAGAAACUGUUCAACAUGCUGCGGCUGGGCAAGAGCGAGC	
	UUGGACACUGGCUCUGGAAAAUGUCGUGGGCGCCAAGAAUAUGAACGUGC	
	GGCCACUGCUGAACUACUUCGAGCCCCUGUUCACCUGGCUGAAGGACCAG	
	AACAAGAACAGCUUCGUCGGCUGGUCCACCGAUUGGAGCCCUUACGCCGA	
	CCAGAGCAUCAAAGUGCGGAUCAGCCUGAAAAAGCGCCCUGGGCGAUAAGG	
	CCUAUGAGUGGAACGACAAUGAGAUGUACCUGUUCCGGUCCAGCGUGGCC	
	UAUGCUAUGCGGCAGUACUUUCUGAAAGUCAAGAACCAGAUGAUCCUGUU	
	CGGCGAAGAGGAUGUGCGCGUGGCCAACCUGAAGCCUCGGAUCAGCUUCA	
	ACUUCUUCGUGACUGCCCCUAAGAACGUGUCCGACAUCAUCCCCAGAACC	
	GAGGUGGAAAAGGCCAUCAGAAUGAGCAGAAGCCGGAUCAACGACGCCUU	
	CCGGCUGAACGACAACUCCCUGGAAUUCCUGGGCAUUCAGCCCACACUGG	
	GCCCUCCAAAUCAGCCUCCUGUGUCCUAAAUAGUGAGUCGUAUUAACGUA	
	CCAACAAGUGUGACCGAAAGGUAAGAUGACUUGCAUCUUACCUUUCGGUC	
	ACACUUUAUCUUAGAGGCAUAUCCCUACGUACCAACAAGAGGUGAUGAAG	
	UCAGACAAAACUUGUUUGUCUGACUUCAUCACCUCUUUAUCUUAGAGGCA	
	UAUCCCUACGUACCAACAAGCAACUGAGGGAGCCUUGAAUACUUGAUUCA	
	AGGCUCCCUCAGUUGCUUUAUCUUAGAGGCAUAUCCCUUUUAUCUUAGAG	
	GCAUAUCCCU	
	(все U модифицированы; N^1 -метилпсевдоуридин)	

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую:
- (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и

5

15

последовательно.

- (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;
- причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном, и причем по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, содержатся
 - 2. Композиция по п. 1, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, разделены.
- 3. Композиция по п. 1, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 4. Композиция по п. 1, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 5. Композиция по п. 1, отличающаяся тем, что миРНК не ингибирует экспрессию интересующего гена.
 - 6. Композиция по п. 1, отличающаяся тем, что экспрессия интересующего гена модулируется и необязательно повышающим образом регулируется посредством экспрессии мРНК или белка, кодируемого интересующим геном.

7. Композиция по п. 3, отличающаяся тем, что экспрессия интересующего гена повышается по сравнению с экспрессией интересующего гена с рекомбинантной конструкции полинуклеиновой кислоты, содержащей: по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться целевой PHK; И меньшей c ПО последовательность нуклеиновой кислоты, кодирующую интересующий ген, в которой последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена против хода транскрипции от последовательности нуклеиновой кислоты, кодирующей интересующий ген.

5

10

15

20

- 8. Композиция по п. 1, отличающаяся тем, что экспрессия целевой РНК модулируется, и необязательно понижающим образом регулируется посредством миРНК, способной связываться с целевой РНК.
- 9. Композиция по п. 3, отличающаяся тем, что понижающая регуляция целевой РНК повышается по сравнению с понижающей регуляцией целевой РНК с рекомбинантной конструкции полинуклеиновой кислоты, содержащей: по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой РНК; и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген; в которой последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена против хода транскрипции от последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 10. Композиция по любому из пп. 1 9, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК.
- 30 11. Композиция по любому из пп. 1 10, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген или отличный интересующий ген.

- 12. Композиция по любому из пп. 1 11, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер.
- 13. Композиция по п. 12, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой РНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, и/или (с) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген.
- 14. Композиция по п. 12 или 13, отличающаяся тем, что линкер включает тРНК-линкер, пептидный линкер 2A или гибкий линкер.
- 15. Композиция по любому из пп. 12 14, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 80 остатков нуклеиновой кислоты.
 - 16. Композиция по любому из пп. 1 15, отличающаяся тем, что целевая РНК представляет собой мРНК.
- 17. Композиция по любому из пп. 1 15, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), киназы 2, подобной рецептору активина (ALK2), и супероксиддисмутазы 1 (SOD1).
- 25 18. Композиция по любому из пп. 1 17, отличающаяся тем, что интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4) и эритропоэтина (EPO).
 - 19. Композиция по любому из пп. 1 18, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив, функционально связанный с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген, причем указанный нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому,

30

5

сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS).

- 20. Композиция по п. 19, отличающаяся тем, что нацеливающий мотив выбран из группы, состоящей из:
 - (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном;
 - (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты;
 - (c) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и
 - (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.
- 21. Композиция по любому из пп. 1 20, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак.
- 22. Композиция по любому из пп. 1 21, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты представляет собой конструкцию РНК.
- 23. Композиция по любому из пп. 1 21, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты представляет собой вектор, подходящий для генотерапии.
- 24. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из

- 320 -

5

15

20

25

- группы, состоящей из последовательностей SEQ ID NO: 1 8 и последовательностей SEQ ID NO: 152 158.
- 25. Композиция по любому из пп. 1 24, отличающаяся тем, что миРНК содержит последовательность смысловой цепи, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 80 92 и последовательностей SEQ ID NO: 140 145.

5

10

15

20

25

- 26. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения вирусного заболевания или состояния у субъекта, указанная конструкция содержит:
- (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
 - (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;
 - причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.
 - 27. Композиция по п. 26, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует или содержит миРНК, способную связываться с одной и той же целевой РНК или с отличной целевой РНК.
 - 28. Композиция по п. 26, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит три или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой РНК, причем по меньшей мере две последовательности нуклеиновых кислот кодируют или содержат миРНК, способную связываться с одной и той же целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты кодирует или содержит миРНК, способную связываться с отличной целевой РНК.
 - 29. Композиция по любому из пп. 26 28, отличающаяся тем, что целевая РНК представляет собой мРНК.
 - 30. Композиция по любому из пп. 26 28, отличающаяся тем, что целевая РНК представляет собой некодирующую РНК.

- 31. Композиция по любому из пп. 26 28, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: интерлейкина, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2.
- 5 32. Композиция по п. 31, отличающаяся тем, что интерлейкин выбран из группы, состоящей из: IL-1-альфа, IL-1-бета, IL-6, IL-6R, IL-6R-альфа, интерлейкина IL-6R-бета, IL-18, IL-36-альфа, IL-36-бета; IL-36-гамма и IL-33.

10

15

25

- 33. Композиция по любому из пп. 26 28, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: IL-6, IL-6R, IL-6R-альфа, IL-6R-бета, ангиотензинпревращающего фермента-2 (ACE2), ORF1ab SARS CoV-2, S SARS CoV-2 и N SARS CoV-2.
- 34. Композиция по любому из пп. 26 33, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты содержит две или более последовательностей нуклеиновых кислот, кодирующих интересующий ген, причем каждая из двух или более последовательностей нуклеиновых кислот кодирует один и тот же интересующий ген или отличный интересующий ген.
- 35. Композиция по любому из пп. 26 34, отличающаяся тем, что интересующий ген выбран из группы генов, кодирующих: IFN-альфа-n3, IFN-альфа-2a, IFN-альфа-2b, IFN-бета-1a, IFN-бета-1b, растворимый рецептор АСЕ2, IL-37 и IL-38.
- 36. Композиция по любому из пп. 26 34, отличающаяся тем, что интересующий ген выбран из группы генов, кодирующих: IFN-бета и растворимый рецептор ACE2.
 - 37. Композиция по любому из пп. 26 36, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую нацеливающий мотив, функционально связанный с по меньшей мере одной последовательностью нуклеиновой кислоты, кодирующей интересующий ген, причем указанный нацеливающий мотив включает сигнальный пептид, сигнал ядерной локализации (NLS), сигнал ядрышковой локализации (NoLS), сигнал, направляющий в лизосому, сигнал, направляющий в митохондрию, сигнал, направляющий в пероксисому, сигнал локализации на конце микротрубочки (MtLS), сигнал, направляющий в эндосому, сигнал, направляющий в хлоропласт, сигнал, направляющий в аппарат Гольджи, сигнал, направляющий в эндоплазматический ретикулум (ER), сигнал, направляющий в протеасому, сигнал, направляющий на мембрану, сигнал, направляющий через мембрану, или сигнал центросомной локализации (CLS).

38. Композиция по п. 37, отличающаяся тем, что нацеливающий мотив выбран из группы, состоящей из:

5

10

15

20

25

- (а) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном;
- (b) нацеливающего мотива, гетерологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гетерологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты;
- (c) нацеливающего мотива, гомологичного белку, кодируемому интересующим геном, причем указанный нацеливающий мотив, гомологичный белку, кодируемому интересующим геном, модифицирован путем вставки, делеции и/или замены по меньшей мере одной аминокислоты; и
- (d) встречающейся в природе последовательности аминокислот, у которой в природе нет функции нацеливающего мотива, причем указанная встречающаяся в природе последовательность аминокислот необязательно модифицирована путем вставки, делеции и/или замены по меньшей мере одной аминокислоты.
- 39. Композиция по любому из пп. 26 38, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 40. Композиция по любому из пп. 26 38, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 41. Композиция по любому из пп. 26 40, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую поли(А)-хвост, последовательность нуклеиновой кислоты, кодирующую или содержащую 5'-кэп, последовательность нуклеиновой кислоты, кодирующую или содержащую промотор, или последовательность нуклеиновой кислоты, кодирующую или содержащую последовательность Козак.

- 42. Композиция по любому из пп. 26 41, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты дополнительно содержит последовательность нуклеиновой кислоты, кодирующую или содержащую линкер.
- 43. Композиция по п. 42, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, соединяет (а) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую миРНК, способную связываться с целевой мРНК, и по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген, (b) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих или содержащих миРНК, способную связываться с целевой мРНК, и/или (с) каждую из двух или более последовательностей нуклеиновых кислот, кодирующих интересующий ген.

5

10

25

30

- 44. Композиция по п. 42 или 43, отличающаяся тем, что линкер включает тРНК-линкер, пептидный линкер 2A или гибкий линкер.
- 45. Композиция по любому из пп. 42 44, отличающаяся тем, что последовательность нуклеиновой кислоты, кодирующая или содержащая линкер, имеет длину от приблизительно 6 до приблизительно 80 остатков нуклеиновой кислоты.
 - 46. Композиция по любому из пп. 26 45, отличающаяся тем, что рекомбинантная конструкция полинуклеиновой кислоты представляет собой конструкцию РНК.
- 47. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, содержащую последовательность нуклеиновой кислоты, выбранную из группы, состоящей из последовательностей SEQ ID NO: 29 47.
 - 48. Композиция по любому из пп. 26 47, отличающаяся тем, что композиция присутствует в количестве, достаточном для лечения или предотвращения вирусного заболевания или состояния у субъекта.
 - 49. Композиция по любому из пп. 26 47, отличающаяся тем, что миРНК содержит последовательность смысловой цепи, кодируемую последовательностью, выбранной из последовательностей SEQ ID NO: 93 109.
 - 50. Композиция по любому из пп. 1 49 для применения для одновременной модуляции экспрессии двух или более генов в клетке.
 - 51. Композиция по любому из пп. 1 50, отличающаяся тем, что миРНК, способная связываться с целевой РНК, связывается с экзоном целевой РНК.
 - 52. Композиция по любому из пп. 1 51, отличающаяся тем, что миРНК, способная связываться с целевой РНК, специфично связывается с одной целевой РНК.

- 53. Композиция по любому из пп. 1 52, отличающаяся тем, что миРНК, способная связываться с целевой РНК, не кодируется последовательностью интрона интересующего гена или не состоит из нее.
- 54. Композиция по любому из пп. 1 53, отличающаяся тем, что интересующий ген экспрессируется без сплайсинга РНК.
- 55. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения кожного заболевания или состояния у субъекта, указанная конструкция содержит:
 - (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
 - (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;

причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

- 56. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения заболевания или состояния мышц у субъекта, указанная конструкция содержит:
 - (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
 - (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;

причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

- 57. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения нейродегенеративного заболевания или состояния у субъекта, указанная конструкция содержит:
 - (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
 - (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;

причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

10

5

15

20

25

30

58. Композиция, содержащая рекомбинантную конструкцию полинуклеиновой кислоты, для лечения или предотвращения заболевания или состояния сустава у субъекта, указанная конструкция содержит:

5

10

15

20

25

30

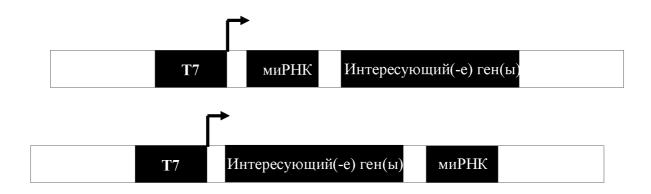
35

- (i) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую или содержащую малую интерферирующую РНК (миРНК), способную связываться с целевой РНК; и
- (ii) по меньшей мере одну последовательность нуклеиновой кислоты, кодирующую интересующий ген;

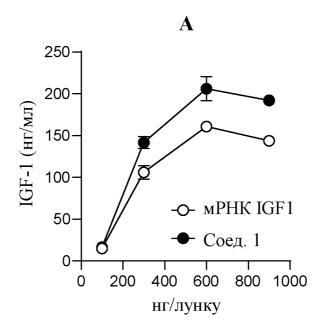
причем указанная целевая РНК отличается от мРНК, кодируемой интересующим геном.

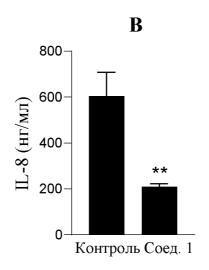
- 59. Композиция по любому из пп. 55 58, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, и по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая интересующий ген, содержатся последовательно.
- 60. Композиция по п. 59, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена против хода транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 61. Композиция по п. 59, отличающаяся тем, что по меньшей мере одна последовательность нуклеиновой кислоты, кодирующая или содержащая миРНК, способную связываться с целевой РНК, расположена по ходу транскрипции от по меньшей мере одной последовательности нуклеиновой кислоты, кодирующей интересующий ген.
- 62. Композиция по любому из пп. 55 61, отличающаяся тем, что целевая РНК представляет собой мРНК, кодирующую белок, выбранный из группы, состоящей из: интерлейкина 8 (IL-8), интерлейкина 1-бета (IL-1-бета), интерлейкина 17 (IL-17), фактора некроза опухоли-альфа (TNF-альфа), киназы 2, подобной рецептору активина (ALK2), и супероксиддисмутазы 1 (SOD1).
- 63. Композиция по любому из пп. 55 61, отличающаяся тем, что интересующий ген выбран из группы, состоящей из инсулиноподобного фактора роста 1 (IGF-1), интерлейкина 4 (IL-4) и эритропоэтина (EPO).
- 64. Композиция по любому из пп. 55 63, отличающаяся тем, что субъект представляет собой человека.

- 65. Способ лечения кожного заболевания или состояния, включающий введение нуждающемуся в этом субъекту композиции по любому из пп. 1 25 и 50 54.
- 66. Способ по п. 65, отличающийся тем, что кожное заболевание или состояние включает воспалительное заболевание кожи.
- 5 67. Способ по п. 66, отличающийся тем, что воспалительное заболевание кожи включает псориаз.

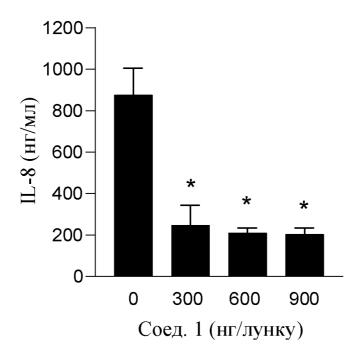

10

15

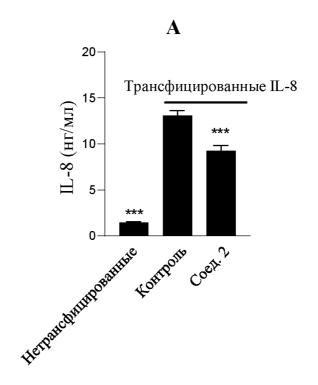

25

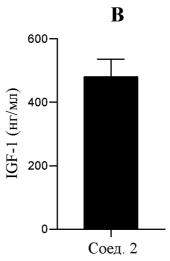

- 68. Способ лечения заболевания или состояния мышц, включающий введение нуждающемуся в этом субъекту композиции по любому из пп. 1 25 и 50 54.
- 69. Способ по п. 68, отличающийся тем, что заболевание или состояние мышц включает заболевание скелетных мышц.
- 70. Способ по п. 69, отличающийся тем, что заболевание скелетных мышц включает прогрессирующую оссифицирующую фибродисплазию (ПОФ).
- 71. Способ лечения нейродегенеративного заболевания или состояния, включающий введение нуждающемуся в этом субъекту композиции по любому из пп. 1 25 и 50 54.
- 72. Способ по п. 71, отличающийся тем, что нейродегенеративное заболевание или состояние включает расстройство двигательного нейрона.
- 73. Способ по п. 72, отличающийся тем, что расстройство двигательного нейрона включает боковой амиотрофический склероз (БАС).
- 20 74. Способ лечения заболевания или состояния сустава, включающий введение нуждающемуся в этом субъекту композиции по любому из пп. 1 25 и 50 54.
 - 75. Способ по п. 74, отличающийся тем, что заболевание или состояние сустава включает разрушение сустава.
 - 76. Способ по п. 75, отличающийся тем, что разрушение сустава включает болезнь межпозвоночных дисков (БМПД) или остеоартрит (ОА).
 - 77. Способ по любому из пп. 65 76, отличающийся тем, что субъект представляет собой человека.

1/17 ФИГ. 1

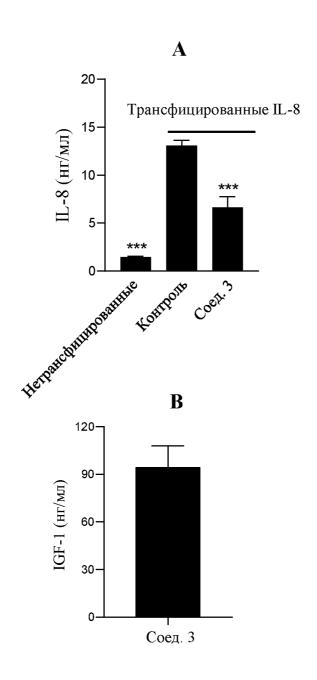


2/17 ФИГ. 2

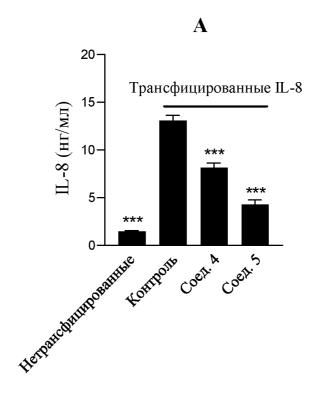


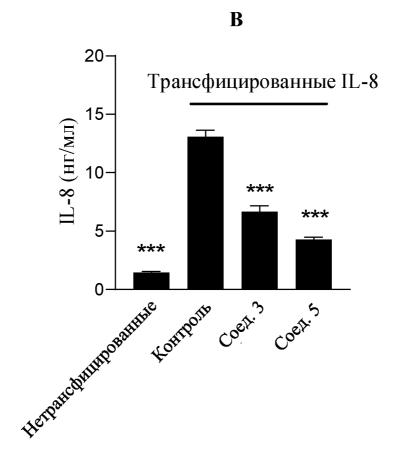


3/17 ФИГ. 3

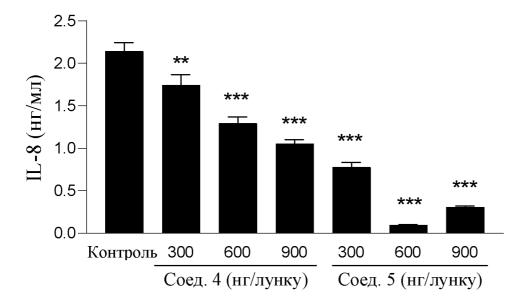


4/17 ФИГ. 4

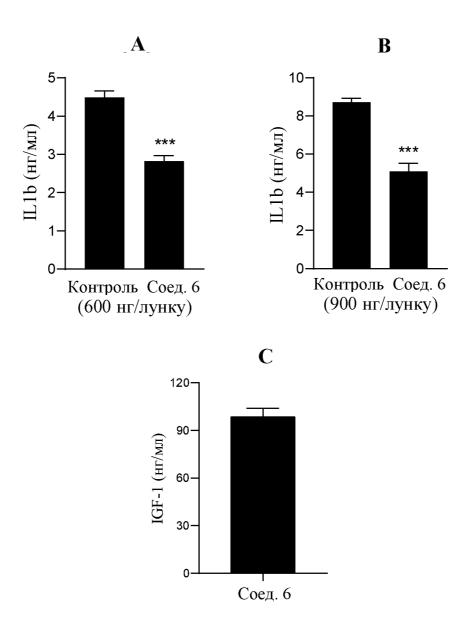


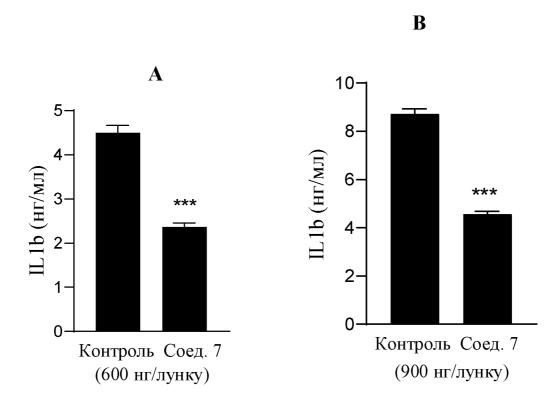


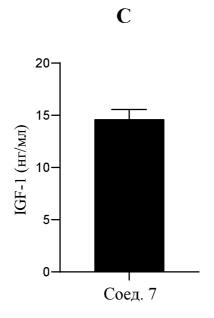
ФИГ. 5



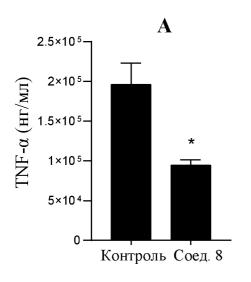
6/17 ФИГ. 6

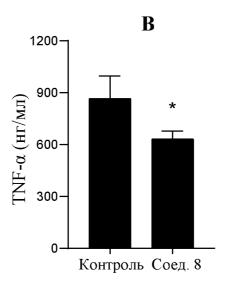


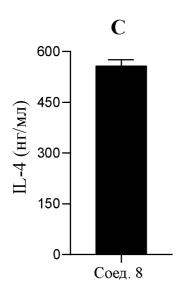

7/17 ФИГ. 7

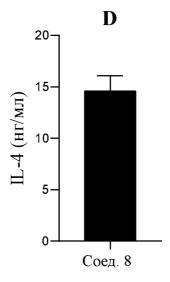


8/17 ФИГ. 8

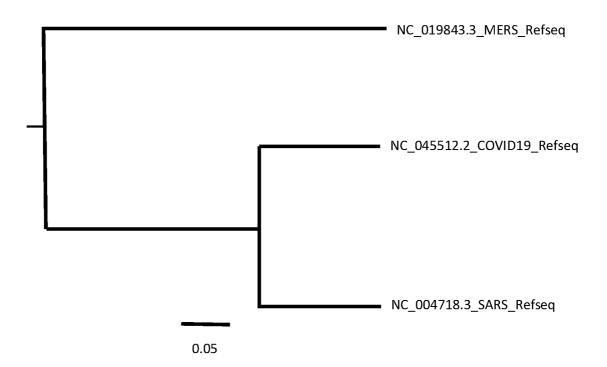


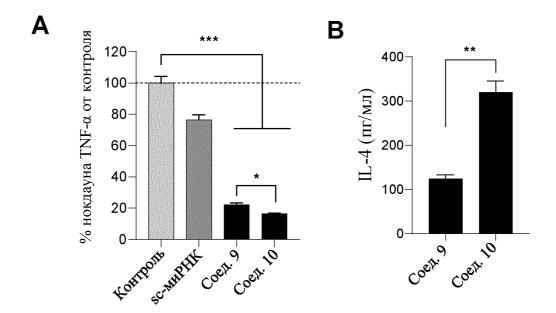

9/17 ФИГ. 9

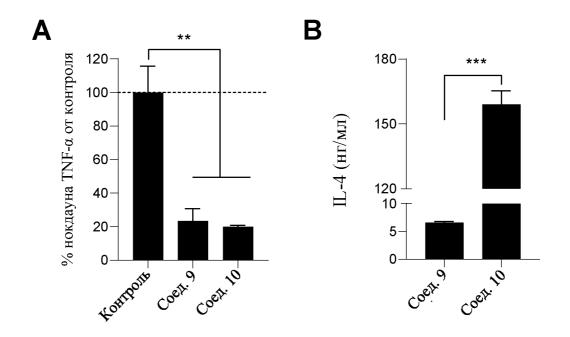




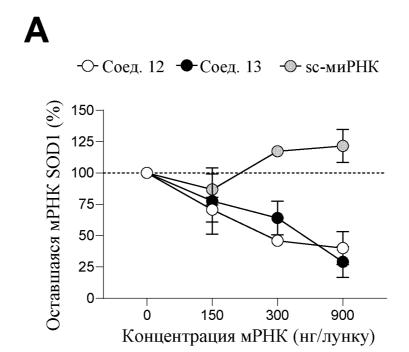
10/17 ФИГ. 10

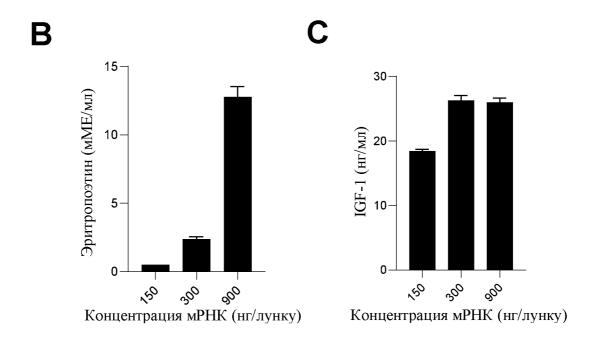




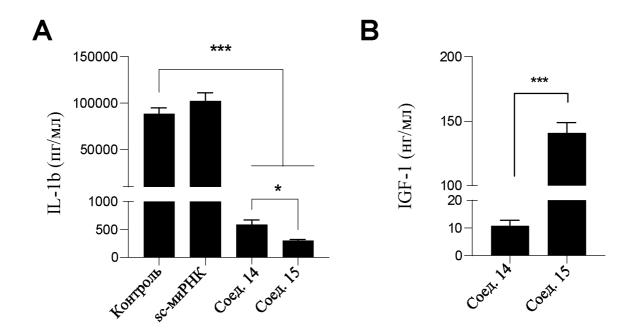

11/17 ФИГ. 11


12/17 ФИГ. 12

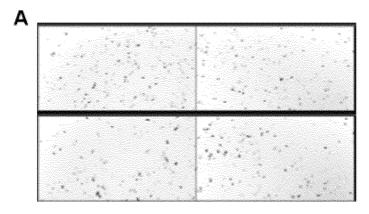

13/17 ФИГ. 13

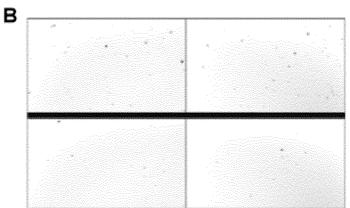


14/17 ФИГ. 14

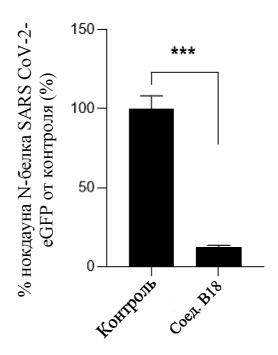


15/17 ФИГ. 15





16/17 ФИГ. 16



17/17 ФИГ. 17

C

