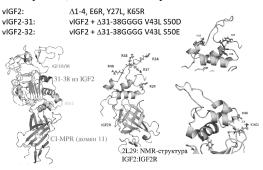
- (43) Дата публикации заявки 2022.07.29
- (22) Дата подачи заявки 2020.10.12

(51) Int. Cl. A61K 38/30 (2006.01) C07K 14/65 (2006.01) C12N 15/62 (2006.01)

(54) КОНСТРУКЦИИ, СОДЕРЖАЩИЕ ВАРИАНТ IGF2


- (31) 62/913,677; 62/929,054
- (32) 2019.10.10; 2019.10.31
- (33) US
- (86) PCT/US2020/055251
- (87) WO 2021/072372 2021.04.15
- (71) Заявитель: АМИКУС ТЕРАПЬЮТИКС, ИНК. (US)
- (72) Изобретатель:

До Хун, Туске Стивен, Готшалл Рассел, Лю Цэ Фен (US)

(74) Представитель: Рыбина Н.А., Рыбин В.Н. (RU)

(57) В изобретении предусмотрены новые пептиды IGF2, слитые белки и последовательности нуклеиновых кислот, кодирующие новые пептиды IGF2 и слитые белки, для лечения лизосомных болезней накопления, при этом пептиды IGF2 обеспечивают улучшенные свойства, такие как улучшенные экспрессия, секреция и поглощение клетками. Конструкции, предусмотренные в изобретении, являются применимыми для лечения лизосомных болезней накопления посредством как ферментозаместительной терапии, так и генной терапии.

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

202291121

WO 2021/072372 PCT/US2020/055251

КОНСТРУКЦИИ, СОДЕРЖАЩИЕ ВАРИАНТ IGF2

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Настоящая заявка испрашивает преимущество приоритета согласно предварительной заявке на патент США № 62/913677, поданной 10 октября 2019 года, и предварительной заявке на патент США № 62/929054, поданной 31 октября 2019 года, каждая из которых включена в данный документе посредством ссылки во всей своей полноте.

УРОВЕНЬ ТЕХНИКИ

[0002] Генетические нарушения возникают в результате наследственных мутаций или мутаций de novo, возникающих в областях генома, кодирующих гены. В некоторых случаях такие генетические нарушения лечат посредством введения белка, который заменяет белок, кодируемый геном, мутировавшим у индивидуума с генетическим нарушением, или посредством введения вектора для генной терапии, кодирующего такой белок. Однако такое лечение характеризуется наличием проблем, поскольку введение белка или белка, кодируемого вектором для генной терапии, не всегда приводит к тому, что белок достигает органов, клеток или органелл, где он необходим. Существует необходимость в белках с улучшенным внутриклеточным нацеливанием (например, на лизосомы) и кодирующих их векторах для генной терапии.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] В определенных аспектах предусмотрены конструкции нуклеиновой кислоты, содержащие (а) последовательность нуклеиновой кислоты, кодирующую терапевтический белок, и (b) последовательность нуклеиновой кислоты, кодирующую вариант пептида IGF2 (vIGF2). В некоторых вариантах осуществления пептид vIGF2 характеризуется аминокислотной последовательностью, которая на по меньшей мере 90, 95, 96, 97, 98 или 99%

идентична варианту пептида IGF2 из таблицы 3. В некоторых вариантах осуществления пептид vIGF2 содержит аминокислотную последовательность, которая на по меньшей мере 90, 95, 96, 97, 98 или 99% идентична варианту пептида IGF2, выбранному из группы, состоящей из SEQ ID NO:90-123 из таблицы 3. В некоторых вариантах осуществления пептид vIGF2 дополнительно содержит линкер, характеризующийся последовательностью, которая на по меньшей мере 90, 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 181-188. В некоторых vIGF2 вариантах осуществления пептид характеризуется пониженной аффинностью или отсутствием аффинности к рецептору инсулина и IGFR1 по сравнению с нативным пептидом IGF2. В некоторых вариантах осуществления пептид vIGF2 характеризуется повышенной аффинностью к CI-MPR по сравнению с нативным пептидом IGF2. В некоторых вариантах осуществления пептид vIGF2 обеспечивает улучшенную экспрессию и/или секрецию слитого белка по сравнению с нативным пептидом IGF2. В некоторых вариантах осуществления способен способствовать пептид vIGF2 поглощению лизосомой клетке. В терапевтического белка В некоторых вариантах осуществления терапевтический белок способен замещать дефектный или дефицитный белок, ассоциированный с генетическим нарушением, у субъекта, у В которого имеется генетическое нарушение. некоторых вариантах осуществления генетическое нарушение представляет собой лизосомную болезнь накопления. В некоторых вариантах осуществления генетическое нарушение выбрано из группы, состоящей из аспартилглюкозаминурии, CLN1, CLN2, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа І, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа A, болезни Моркио типа В, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1.

болезни Ниманна-Пика типа С2, болезни Шиндлера типа I, болезни Шиндлера II. комбинированного иммунодефицита, типа тяжелого аденозиндезаминазой (ADA-SCID), хронической гранулематозной болезни (CGD) и нейронального цероидного липофусциноза. В некоторых вариантах осуществления генетическое нарушение представляет собой болезнь Помпе. В некоторых вариантах осуществления генетическое нарушение представляет собой нейрональный цероидный липофусциноз. В некоторых вариантах осуществления терапевтический белок предусматривает фермент, выбранный из группы, состоящей из альфа-галактозидазы (А или В), β-галактозидазы, βгексозаминидазы (А или В), галактозилцерамидазы, арилсульфатазы (А или В), В-глюкоцереброзидазы, глюкоцереброзидазы, лизосомальной кислой липазы, лизосомального фермента, представляющего собой кислую сфингомиелиназу, формилглицин-генерирующего фермента, идуронидазы (например, альфа-L), ацетил-КоА:альфа-глюкозаминид-N-ацетилтрансферазы, гликозаминогликанальфа-L-идуроногидролазы, гепаран-N-сульфатазы, Ν-ацетил-α-Dглюкозаминидазы (NAGLU), идуронат-2-сульфатазы, галактозамин-6сульфатсульфатазы, N-ацетилгалактозамин-6-сульфатазы, Nсульфоглюкозаминсульфогидролазы, гликозаминогликан-Nацетилгалактозамин-4-сульфатазы, β-глюкуронидазы, гиалуронидазы, альфа-Nацетилнейраминидазы (сиалидазы), ганглиозидсиалидазы, фосфотрансферазы, альфа-глюкозидазы, альфа-D-маннозидазы, бета-D-маннозидазы, альфа-L-фукозидазы, баттенина, аспартилглюкозаминидазы, пальмитоилпротеинтиоэстеразы и других белков, связанных с болезнью Баттена (например, белок нейронального цероидного липофусциноза 6 типа), или его ферментативно активный фрагмент. В некоторых вариантах осуществления терапевтический белок представляет собой альфа-глюкозидазу ферментативно активный фрагмент. В некоторых вариантах осуществления терапевтический белок представляет собой пальмитоилпротеинтиоэстеразу 1 (PPT1). B некоторых вариантах осуществления терапевтический белок представляет собой трипептидилпептидазу 1 (ТРР1). В некоторых вариантах осуществления белок собой терапевтический представляет

некоторых аспартилглюкозаминидазу. В вариантах осуществления терапевтический белок представляет собой NAGLU (SEQ ID NO:54). В некоторых вариантах осуществления терапевтический белок представляет собой зрелый пептид NAGLU, соответствующий аминокислотам 24-743 из SEQ ID NO:54, которые остаются после удаления нативного сигнального пептида (SEQ ID NO:180). В некоторых вариантах осуществления конструкция нуклеиновой кислоты дополнительно содержит последовательность инициации трансляции. В некоторых вариантах осуществления последовательность инициации трансляции В предусматривает последовательность Козак. некоторых вариантах осуществления последовательность нуклеиновой кислоты, кодирующая vIGF2, 5'-конца относительно расположена co стороны последовательности нуклеиновой кислоты, кодирующей терапевтический белок. В некоторых осуществления последовательность вариантах нуклеиновой кислоты, vIGF2, 3'-конца кодирующая расположена co стороны относительно последовательности нуклеиновой кислоты, кодирующей терапевтический белок. В некоторых вариантах осуществления конструкция нуклеиновой кислоты содержит дополнительно линкерную последовательность, кодирующую пептид, между нуклеотидной последовательностью vIGF2 и последовательностью нуклеиновой кислоты, кодирующей терапевтический белок. В осуществления некоторых вариантах линкерный предусматривает SEQ ID NO: 181-188. В некоторых вариантах осуществления конструкция нуклеиновой кислоты представляет собой вирусный вектор. В некоторых вариантах осуществления вирусный вектор представляет собой вектор на основе аденовируса, вектор на основе аденоассоциированного вируса (AAV), вектор на основе ретровируса, вектор на основе лентивируса, вектор на основе вируса оспы, вектор на основе вируса коровьей оспы, вектор на основе аденовируса или вектор на основе вируса герпеса.

[0004] В дополнительных аспектах предусмотрены фармацевтические композиции, содержащие терапевтически эффективное количество любой из конструкций нуклеиновой кислоты, предусмотренных в данном документе, фармацевтически приемлемый носитель или вспомогательное вещество. В

некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[**0005**]B дополнительных аспектах предусмотрены способы лечения генетического нарушения, включающие введение нуждающемуся в этом субъекту любой из конструкций нуклеиновой кислоты, предусмотренных в любой данном документе, или из фармацевтических композиций, предусмотренных в данном документе. В некоторых вариантах осуществления генетическое нарушение представляет собой лизосомную болезнь накопления. В некоторых вариантах осуществления генетическое нарушение выбрано из группы, состоящей из аспартилглюкозаминурии, болезни Баттена, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа A, болезни Моркио типа B, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа C2, болезни Шиндлера типа I, болезни Шиндлера типа II, тяжелого комбинированного иммунодефицита, связанного с аденозиндезаминазой (АDA-SCID), хронической гранулематозной болезни (CGD) и нейронального цероидного липофусциноза (болезни Баттена). В некоторых осуществления генетическое нарушение представляет собой болезнь Помпе. В некоторых вариантах осуществления генетическое нарушение представляет собой нейрональный цероидный липофусциноз. В некоторых вариантах осуществления генетическое нарушение представляет собой аспартилглюкозаминурию. В некоторых вариантах осуществления введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей. В некоторых вариантах осуществления введение осуществляют интратекально.

[**0006**]B предусмотрены фармацевтические дополнительных аспектах композиции, содержащие любой ИЗ векторов для генной терапии, предусмотренных в данном документе, и фармацевтически приемлемый носитель или вспомогательное вещество для применения В лечении генетического нарушения. В дополнительных аспектах предусмотрена фармацевтическая композиция, содержащая любую из конструкций нуклеиновой кислоты, предусмотренных В данном документе, фармацевтически приемлемый носитель или вспомогательное вещество для применения в получении лекарственного препарата для лечения генетического нарушения. В некоторых вариантах осуществления генетическое нарушение представляет собой лизосомную болезнь накопления. В некоторых вариантах осуществления генетическое нарушение выбрано из группы, состоящей из аспартилглюкозаминурии, болезни Баттена, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа A, болезни Моркио типа B, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа С2, болезни Шиндлера типа I, болезни Шиндлера типа II. тяжелого комбинированного иммунодефицита, связанного с аденозиндезаминазой (АDA-SCID), хронической гранулематозной болезни (CGD) и нейронального липофусциноза. В цероидного некоторых вариантах осуществления генетическое нарушение представляет собой болезнь Помпе. В некоторых генетическое вариантах осуществления нарушение представляет собой нейрональный В цероидный липофусциноз. некоторых вариантах собой осуществления генетическое нарушение представляет

аспартилглюкозаминурию. В некоторых вариантах осуществления композиция составлена для введения, осуществляемого интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно или подкожно. В некоторых вариантах осуществления композиция составлена для введения, осуществляемого интратекально.

[0007] В дополнительных аспектах предусмотрены нуклеиновые кислоты, кодирующие слитый белок, характеризующийся аминокислотной последовательностью, которая на по меньшей мере 90, 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:47-53. В некоторых вариантах осуществления нуклеиновая кислота на по меньшей мере 85, 90, 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 60-67.

[0008] В дополнительных аспектах предусмотрена фармацевтическая композиция, содержащая любую из указанных выше нуклеиновых кислот и фармацевтически приемлемый носитель или вспомогательное вещество. В некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0009]B дополнительных предусмотрена фармацевтическая аспектах композиция, содержащая слитый белок, характеризующийся аминокислотной последовательностью, которая на по меньшей мере 90, 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 47-53 и SEQ ID NO: 60-67, и фармацевтически приемлемый носитель или В вспомогательное вещество. некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0010] В дополнительных аспектах предусмотрены векторы для генной терапии, содержащие нуклеиновую кислоту, кодирующую аминокислотную

последовательность, на по меньшей мере 90, 95, 96, 97, 98 или 99% идентичную последовательности, выбранной из группы, состоящей из SEQ ID NO: 47-53 и SEQ ID NO: 60-67; и нуклеиновую кислоту, кодирующую аминокислотную последовательность, на по меньшей мере 90, 95, 96, 97, 98 или 99% идентичную последовательности, выбранной из группы, состоящей из SEQ ID NO:106, 109, 111, 119, 120 и 121. В некоторых вариантах осуществления вектор для генной терапии представляет собой вирусный вектор. В некоторых вариантах осуществления вирусный вектор представляет собой вектор на основе аденовируса, вектор на основе аденоассоциированного вируса (AAV), вектор на основе ретровируса, вектор на основе лентивируса, вектор на основе вируса оспы, вектор на основе вируса коровьей оспы, вектор на основе аденовируса или вектор на основе вируса герпеса и фармацевтически приемлемый носитель или вспомогательное вещество. В некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0011] В дополнительных аспектах предусмотрены способы лечения болезни CLN1/PPT1 или болезни CLN2/TPP1, включающие введение нуждающемуся в этом субъекту терапевтически эффективного количества любой из нуклеиновых кислот, представленных в данном документе, любого из слитых белков, представленных в данном документе, любого из векторов для генной терапии, представленных в данном документе или любой из фармацевтических композиций, представленных в данном документе. В некоторых вариантах осуществления введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.

[0012]. В некоторых вариантах осуществления нуклеиновая кислота характеризуется последовательностью нуклеиновой кислоты, которая на по

меньшей мере 85, 90, 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:189-250.

[**0013**]B фармацевтические дополнительных аспектах предусмотрены композиции, содержащие любую из нуклеиновых кислот, представленных в данном документе, И фармацевтически приемлемый носитель или вспомогательное вещество. В некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0014]В некоторых вариантах осуществления предусмотрен вариант пептида IGF2 (vIGF2), который на по меньшей мере 95, 96, 97, 98 или 99% идентичен последовательности, выбранной из группы, состоящей из SEQ ID NO: 90-103.

[0015] В некоторых вариантах осуществления вариант пептида IGF2 (vIGF2) на по меньшей мере 98% идентичен по меньшей мере одной последовательности, выбранной из SEQ ID NO:106, 109, 111, 119, 120, 121. В некоторых вариантах осуществления пептид vIGF2 на по меньшей мере 95, 96, 97, 98 или 99% идентичен SEQ ID NO:120 или 121.

[0016] В некоторых вариантах осуществления предусмотрен слитый белок, содержащий вариант пептида vIGF2 и терапевтический белок, характеризующийся аминокислотной последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:4, аминокислотных остатков 21-306 из SEQ ID NO:4, аминокислотных остатков 28-306 из SEQ ID NO:4, SEQ ID NO: 8, SEQ ID NO:46 и SEQ ID NO:54.

[0017] В некоторых вариантах осуществления слитый белок характеризуется аминокислотной последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:60-67, SEQ ID NO:47-53 и SEQ ID NO:54-59. В некоторых вариантах осуществления слитый белок дополнительно содержит пептид, подвергающийся

лизосомальному расщеплению. В некоторых вариантах осуществления пептид, подвергающийся лизосомальному расщеплению, предусматривает SEQ ID NO:188. В некоторых вариантах осуществления пептид vIGF2 расположен со стороны N-конца относительно терапевтического белка. В некоторых вариантах осуществления пептид vIGF2 расположен со стороны C-конца относительно терапевтического белка.

[0018]B некоторых вариантах осуществления слитый белок содержит сигнальную последовательность. В некоторых вариантах осуществления сигнальная последовательность характеризуется аминокислотной последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:169-180.

[0019] В некоторых вариантах осуществления терапевтический белок представляет собой РРТ1 или его ферментативно активный фрагмент, ТРР1 или его ферментативно активный фрагмент или NAGLU или его ферментативно активный фрагмент.

[0020] В некоторых вариантах осуществления слитый белок подвергается поглощению клетками-мишенями с большей эффективностью, чем соответствующий белок, который не содержит пептида vIGF2. В некоторых вариантах осуществления слитый белок поглощается клетками головного мозга. В некоторых вариантах осуществления слитый белок поглощается нервными клетками. В некоторых вариантах осуществления слитый белок поглощается глиальными клетками.

[0021] В данном документе также предусмотрена фармацевтическая композиция, содержащая слитые белки, содержащие пептид vIGF2 и терапевтический белок, наряду с фармацевтически приемлемым носителем или вспомогательным веществом. В данном документе также предусмотрены способы лечения лизосомной болезни накопления, включающие введение таких фармацевтических композиций нуждающемуся в этом субъекту. В некоторых

вариантах осуществления лизосомная болезнь накопления выбрана из группы, состоящей из болезни CLN1/PPT1, болезни CLN2/TPP1 и болезни Санфилиппо некоторых вариантах осуществления слитый белок фармацевтическую композицию, содержащую слитый белок, вводят интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.

[0022] В некоторых вариантах осуществления введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в головном мозге. В некоторых вариантах осуществления введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в головном мозге. В некоторых вариантах осуществления введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в коре головного мозга или таламусе. В некоторых вариантах осуществления введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в коре головного мозга или таламусе.

[0023] Кроме того, в данном документе предусмотрены нуклеиновые кислоты, кодирующие слитый белок, содержащий vIGF2 и терапевтический белок, где нуклеиновая кислота характеризуется по меньшей мере 85, 90, 95, 96, 97, 98 или 99% идентичностью с последовательностью, выбранной из группы, состоящей из SEQ ID NO:189-250.

[0024] В дополнительных аспектах предусмотрены фармацевтические композиции, содержащие любой из слитых белков, представленных в данном документе, и фармацевтически приемлемый носитель или вспомогательное

вещество. В некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0025] В дополнительных аспектах предусмотрены векторы для генной терапии, содержащие нуклеиновую кислоту, кодирующую аминокислотную последовательность, на по меньшей мере 90% идентичную SEQ ID NO: 51. В некоторых вариантах осуществления вектор для генной терапии представляет собой вирусный вектор. В некоторых вариантах осуществления вирусный вектор представляет собой вектор на основе аденовируса, вектор на основе аденоассоциированного вируса (AAV), вектор на основе ретровируса, вектор на основе лентивируса, вектор на основе вируса оспы, вектор на основе вируса коровьей оспы, вектор на основе аденовируса или вектор на основе вируса герпеса.

[**0026**]B предусмотрены фармацевтические дополнительных аспектах содержащие любой ИЗ векторов генной композиции, для терапии, предусмотренных в данном документе, и фармацевтически приемлемый носитель или вспомогательное вещество. В некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0027] В другом аспекте предусмотрены конструкции нуклеиновой кислоты, содержащие (а) последовательность нуклеиновой кислоты, кодирующую терапевтический белок, и (b) последовательность нуклеиновой кислоты, кодирующую вариант пептида IGF2 (vIGF2), которая на по меньшей мере 95, 96, 97, на 98 или 99% идентична по меньшей мере одной последовательности, выбранной из SEQ ID NO: 90-103. В некоторых аспектах пептид vIGF2 характеризуется аминокислотной последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична варианту пептида IGF2, выбранному из SEQ ID NO:106, 109, 111, 119, 120, 121. В некоторых вариантах осуществления пептид vIGF2 содержит аминокислотную последовательность, которая на по

меньшей мере 95, 96, 97, на 98 или 99% идентична варианту пептида IGF2, выбранному из группы, состоящей из SEQ ID NO:120 и SEQ ID NO:121.

[0028] В некоторых аспектах нуклеиновая кислота дополнительно содержит последовательность, кодирующую линкер, характеризующийся последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 181-188. В некоторых вариантах осуществления пептид vIGF2 способен повышать экспрессию и/или секрецию терапевтического белка по сравнению с пептидом vIGF2, характеризующимся аминокислотной последовательностью под SEQ ID NO:80. . В некоторых вариантах осуществления пептид vIGF2 характеризуется повышенной аффинностью к CI-MPR по сравнению с пептидом vIGF2, характеризующимся аминокислотной последовательностью под SEO ID NO:80. В некоторых вариантах осуществления пептид vIGF2 способен улучшать поглощение терапевтического белка клеткой-мишенью, такой как клетка головного мозга человека. В некоторых вариантах осуществления клетка головного мозга человека представляет собой нервную клетку или глиальную клетку.

[0029] В определенных аспектах терапевтический белок способен замещать дефектный или дефицитный белок, ассоциированный С генетическим нарушением, у субъекта, у которого имеется генетическое нарушение. В некоторых вариантах осуществления генетическое нарушение представляет собой лизосомную болезнь накопления. В некоторых вариантах осуществления генетическое нарушение выбрано ИЗ группы, состоящей ИЗ аспартилглюкозаминурии, нейронального цероидного липофусциноза, болезни CLN1/PPT1, болезни CLN2/PPT1, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа А, болезни Моркио типа В, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа С2, болезни Шиндлера типа I, болезни Шиндлера типа II, тяжелого комбинированного иммунодефицита, связанного c аденозиндезаминазой (ADA-SCID), нейронального цероидного липофусциноза. В некоторых осуществления генетическое нарушение выбрано из группы, состоящей из болезни CLN1/PPT1, болезни CLN2/PPT1, болезни Помпе и болезни MPS IIIB. В некоторых аспектах генетическое нарушение представляет собой болезнь CLN1/PPT1 или болезнь CLN2/PPT1.

[0030]B некоторых аспектах терапевтический белок предусматривает выбранный человеческий фермент, ИЗ группы, состоящей галактозидазы (А или В), β-галактозидазы, β-гексозаминидазы (А или В), галактозилцерамидазы, арилсульфатазы (А или В), β-глюкоцереброзидазы, глюкоцереброзидазы, лизосомальной кислой липазы, лизосомального фермента, собой сфингомиелиназу, представляющего кислую формилглицин-(например, альфа-L), генерирующего фермента, идуронидазы ацетил-КоА:альфа-глюкозаминид-N-ацетилтрансферазы, гликозаминогликан-альфа-Lгепаран-N-сульфатазы, N-ацетил-α-D-глюкозаминидазы идуроногидролазы, (NAGLU), идуронат-2-сульфатазы, галактозамин-6-сульфатсульфатазы, ацетилгалактозамин-6-сульфатазы, N-сульфоглюкозаминсульфогидролазы, гликозаминогликан-N-ацетилгалактозамин-4-сульфатазы, β-глюкуронидазы, гиалуронидазы, альфа-N-ацетилнейраминидазы (сиалидазы), ганглиозидсиалидазы, фосфотрансферазы, альфа-глюкозидазы, альфа-Dбета-D-маннозидазы, аспартилглюкозаминидазы, маннозидазы, альфа-Lфукозидазы, баттенина, РРТ1, ТРР1 и других белков, связанных с болезнью Баттена (например, белок нейронального цероидного липофусциноза 6 типа), ферментативно активный фрагмент. В некоторых или его вариантах осуществления терапевтический белок представляет собой человеческий лизосомальный фермент или его ферментативно активный фрагмент. В некоторых вариантах осуществления человеческий лизосомальный фермент представляет собой альфа-глюкозидазу, PPT1, TPP1 или NAGLU.

[0031]В некоторых аспектах конструкция нуклеиновой кислоты дополнительно содержит последовательность, кодирующую сигнальный пептид. В некоторых вариантах осуществления сигнальный пептид представлен последовательностью, выбранной из SEQ ID NO:169-180. В некоторых вариантах осуществления последовательность нуклеиновой кислоты, кодирующая vIGF2. расположена co стороны 5'-конца относительно последовательности нуклеиновой кислоты, кодирующей терапевтический белок. В других вариантах осуществления последовательность нуклеиновой кислоты, кодирующая vIGF2, расположена co стороны 3'-конца относительно последовательности нуклеиновой кислоты, кодирующей терапевтический белок.

[0032] Кроме того, в данном документе предусмотрены векторы для генной терапии, содержащие нуклеиновые кислоты, описанные в данном документе. В некоторых вариантах осуществления вектор для генной терапии представляет собой вирусный вектор. В некоторых вариантах осуществления вирусный вектор представляет собой вектор на основе аденовируса, вектор на основе аденоассоциированного вируса (AAV), вектор на основе ретровируса, вектор на основе лентивируса, вектор на основе вируса оспы, вектор на основе вируса коровьей оспы, вектор на основе аденовируса или вектор на основе вируса герпеса.

[0033] В некоторых аспектах конструкции нуклеиновой кислоты в данном документе находятся в плазмиде или бактериальной искусственной хромосоме. В некоторых вариантах осуществления конструкции нуклеиновых кислот, описанные в данном документе, находятся в клетке-хозяине.

[0034] Кроме того, предусмотрены фармацевтические композиции, содержащие терапевтически эффективное количество описанных в данном документе конструкций нуклеиновых кислот или векторов для генной терапии, содержащих описанные в данном документе конструкции нуклеиновых кислот,

наряду с фармацевтически приемлемым носителем или вспомогательным веществом. В некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0035] Кроме того, в данном документе предусмотрены способы лечения генетического нарушения, включающие введение нуждающемуся в этом субъекту конструкций нуклеиновых кислот, векторов для генной терапии и/или фармацевтической композиции, описанных в данном документе. В некоторых вариантах осуществления генетическое нарушение представляет лизосомную болезнь накопления. В некоторых вариантах осуществления генетическое нарушение выбрано из группы, состояшей из аспартилглюкозаминурии, нейронального цероидного липофусциноза, болезни CLN1/PPT1, болезни CLN2/PPT1, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа А, болезни Моркио типа В, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа С2, болезни Шиндлера типа I, болезни Шиндлера типа II, тяжелого комбинированного иммунодефицита, связанного С аденозиндезаминазой (ADA-SCID), хронической гранулематозной болезни (CGD). В некоторых вариантах осуществления генетическое нарушение представляет собой болезнь Баттена, такую как болезнь CLN1/PPT1 или болезнь CLN2/TPP1. В некоторых вариантах осуществления генетическое нарушение представляет собой болезнь Помпе или болезнь Санфилиппо типа В.

[0036] В некоторых вариантах осуществления введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно,

внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.

[0037] В некоторых аспектах введение нуклеиновой кислоты, вектора для генной терапии, слитого белка или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в головном мозге. В некоторых вариантах осуществления введение нуклеиновой кислоты, вектора для генной терапии, слитого белка или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в головном мозге. В некоторых вариантах осуществления введение нуклеиновой кислоты, вектора для генной терапии, слитого белка или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в коре головного мозга или таламусе. В некоторых аспектах введение нуклеиновой кислоты, вектора для генной терапии, слитого белка или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в коре головного мозга или таламусе.

[0038] В некоторых аспектах нуклеиновая кислота кодирует слитый белок, характеризующийся последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:60-67. В некоторых вариантах осуществления нуклеиновая кислота кодирует слитый белок, характеризующийся последовательностью, которая на по меньшей мере 98% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:47-53.

[0039] В некоторых аспектах нуклеиновая кислота кодирует слитый белок, содержащий (а) аминокислотную последовательность, на по меньшей мере 95, 96, 97, 98 или 99% идентичную последовательности, выбранной из группы,

состоящей из SEQ ID NO:106, 109, 111, 119, 120 и 121; и (b) аминокислотную последовательность, на по меньшей мере 95, 96, 97, 98 или 99% идентичную последовательности, выбранной из группы, состоящей из SEQ ID NO:4, остатков 21-306 из SEQ ID NO:4, остатков 28-306 из SEQ ID NO:4, SEQ ID NO: 8 и SEQ ID NO:46. В некоторых вариантах осуществления нуклеиновая кислота кодирует vIGF2, на по меньшей мере 95, 96, 97, 98 или 99% идентичный SEQ ID NO:120 и 121. В некоторых вариантах осуществления нуклеиновая кислота кодирует слитый белок, содержащий (a) по меньшей мере одну последовательность под SEQ ID NO:106, 109, 111, 119, 120 или 121 и (b) по меньшей мере одно из SEQ ID NO:4, остатков 21-306 из SEQ ID NO:4, остатков 28-306 из SEQ ID NO:4, SEQ ID NO: 8 и SEQ ID NO:46.

[0040] В некоторых вариантах осуществления нуклеиновая кислота дополнительно кодирует пептид, подвергающийся лизосомальному расщеплению.

[0041]В некоторых аспектах слитый белок характеризуется последовательностью, на по меньшей мере 95, 96, 97, 98 или 99% идентичной по меньшей мере одной из последовательностей под SEQ ID NO:60-67 и SEQ ID NO:47-53. В некоторых вариантах осуществления слитый белок содержит по меньшей мере одну из последовательностей под SEQ ID NO:60-67 и SEQ ID NO:47-53. В некоторых вариантах осуществления слитый белок состоит или по сути состоит из последовательности под SEQ ID NO:60-67 и SEQ ID NO:47-53.

[0042] В дополнительных аспектах предусмотрены способы лечения лизосомной болезни накопления, включающие введение нуждающемуся в этом субъекту терапевтически эффективного количества любой из нуклеиновых кислот, представленных в данном документе, любого из слитых белков, представленных в данном документе, любого из векторов для генной терапии, представленных в данном документе, или любой из фармацевтических композиций, представленных в данном документе. В некоторых вариантах осуществления

введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.

[0043]В дополнительных аспектах предусмотрены способы лечения болезни Баттена, включая болезнь CLN1/PPT1 и болезнь CLN2/TPP1, включающие введение нуждающемуся в этом субъекту терапевтически эффективного количества любой из нуклеиновых кислот, представленных в данном документе, любого из слитых белков, представленных в данном документе, любого из векторов для генной терапии, представленных в данном документе, или любой из фармацевтических композиций, представленных в данном документе. В некоторых вариантах осуществления введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.

[**0044**]B дополнительных предусмотрены фармацевтические аспектах композиции, содержащие любую из нуклеиновых кислот, предусмотренных в фармацевтически приемлемый данном документе, И носитель или В вспомогательное вещество. некоторых вариантах осуществления вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.

[0045] В дополнительных аспектах предусмотрены фармацевтические композиции, содержащие любой из векторов для генной терапии, предусмотренных в данном документе, и фармацевтически приемлемый носитель или вспомогательное вещество.

[0046]В дополнительных аспектах предусмотрены слитые белки, содержащие (а) лизосомальный фермент и (b) вариант пептида IGF2 (vIGF2), где пептид vIGF2 содержит аминокислотную последовательность, которая на по меньшей мере 95,

96, 97, 98 или 99% идентична варианту пептида IGF2 из таблицы 3. В некоторых vIGF2 вариантах осуществления пептид содержит аминокислотную последовательность, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична варианту пептида IGF2, выбранному из группы, состоящей из SEQ ID NO: 69-131. . В некоторых вариантах осуществления пептид vIGF2 содержит аминокислотную последовательность, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична варианту пептида IGF2, выбранному из группы, состоящей из SEQ ID NO: 90-123. В некоторых вариантах осуществления vIGF2 был модифицирован с заменой остатков 31-38 IGF2 дикого типа на четыре остатка глицина (Δ 31-38GGGG). В некоторых вариантах осуществления vIGF2 был дополнительно модифицирован посредством мутации V43L. В некоторых вариантах осуществления vIGF2 был дополнительно модифицирован с заменой серина в положении 50 на кислотный остаток (аспарагиновую или глутаминовую кислоту). В некоторых аспектах vIGF2 характеризуется последовательностью под SEQ ID NO:120 или 121.

[0047]В некоторых вариантах осуществления пептид vIGF2 дополнительно содержит линкер, характеризующийся последовательностью, которая на по меньшей мере 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 181-188. В некоторых вариантах осуществления линкер является расщепляемым. В некоторых вариантах осуществления пептид vIGF2 характеризуется пониженной аффинностью или отсутствием аффинности к рецептору инсулина и IGFR1 по сравнению с нативным пептидом IGF2. В некоторых вариантах осуществления пептид vIGF2 характеризуется повышенной аффинностью к CI-MPR по сравнению с нативным пептидом IGF2. В некоторых вариантах осуществления пептид vIGF2 способен способствовать поглощению лизосомального фермента лизосомой в клетке. В осуществления лизосомальный фермент способен некоторых вариантах замещать дефектный или дефицитный белок, ассоциированный с лизосомной болезнью накопления. В некоторых вариантах осуществления лизосомная болезнь накопления выбрана из группы, состоящей из аспартилглюкозаминурии, болезни Баттена, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни метахроматической лейкодистрофии, муколипидоза типа Сандхоффа, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа А, болезни Моркио типа В, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа С2, болезни Шиндлера I, Шиндлера II, комбинированного типа болезни типа тяжелого иммунодефицита, связанного с аденозиндезаминазой (ADA-SCID), хронической гранулематозной болезни (CGD) и нейронального цероидного липофусциноза. В осуществления некоторых вариантах лизосомная болезнь накопления представляет собой болезнь Помпе. В некоторых вариантах осуществления лизосомная болезнь накопления представляет собой нейрональный цероидный липофусциноз. В некоторых вариантах осуществления лизосомальный фермент предусматривает фермент, выбранный из группы, состоящей из альфагалактозидазы (А или В), β-галактозидазы, β-гексозаминидазы (А или В), галактозилцерамидазы, арилсульфатазы (А или В), β-глюкоцереброзидазы, глюкоцереброзидазы, лизосомальной кислой липазы, лизосомального фермента, представляющего собой сфингомиелиназу, формилглицинкислую генерирующего фермента, идуронидазы (например, альфа-L), ацетил-КоА:альфа-глюкозаминид-N-ацетилтрансферазы, гликозаминогликан-альфа-Lидуроногидролазы, гепаран-N-сульфатазы, N-ацетил-α-D-глюкозаминидазы (NAGLU), идуронат-2-сульфатазы, галактозамин-6-сульфатсульфатазы, сульфоглюкозаминсульфогидролазы, N-ацетилгалактозамин-6-сульфатазы, гликозаминогликан-N-ацетилгалактозамин-4-сульфатазы, β-глюкуронидазы, альфа-N-ацетилнейраминидазы (сиалидазы), гиалуронидазы, фосфотрансферазы, ганглиозидсиалидазы, альфа-глюкозидазы, альфа-Dбета-D-маннозидазы, аспартилглюкозаминидазы, альфа-Lманнозидазы, баттенина, пальмитоилпротеинтиоэстераз и белков, фукозидазы. других связанных с болезнью Баттена (например, белок нейронального цероидного липофусциноза 6 типа), или его ферментативно активный фрагмент. В некоторых вариантах осуществления лизосомальный фермент представляет собой альфа-глюкозидазу или ее ферментативно активный фрагмент. В некоторых вариантах осуществления лизосомальный фермент представляет собой пальмитоилпротеинтиоэстеразу. В некоторых вариантах осуществления лизосомальный фермент представляет собой трипептидилпептидазу 1. В некоторых вариантах осуществления лизосомальный фермент представляет собой аспартилглюкозаминидазу.

[0048] Кроме того, в данном документе предусмотрены фармацевтические композиции, содержащие терапевтически эффективное количество любого из слитых белков, предусмотренных в данном документе, и фармацевтически приемлемый носитель или вспомогательное вещество.

ВКЛЮЧЕНИЕ ПУТЕМ ССЫЛКИ

[0049] Все публикации, патенты и заявки на патенты, упоминаемые в данном описании, включены в данный документ посредством ссылки в том же объеме, как если бы каждая отдельная публикация, патент или заявка на патент были специально и отдельно указаны с включением посредством ссылки.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0050] Данная заявка на патент содержит по меньшей мере один графический материал, выполненный в цвете. Копии данной заявки на патент с цветным(-и) графическим(-и) материалом(-ами) будут предоставлены ведомством по запросу и при уплате необходимой пошлины. Понимание признаков и преимуществ настоящего изобретения будет получено при обращении к нижеследующему подробному описанию, в котором изложены иллюстративные варианты осуществления, в которых используются принципы настоящего изобретения, и прилагаемым следующим графическим материалам.

[0051] На фиг. 1 показана аффинная хроматография с использованием иммобилизованного CI-MPR, которая использовалась для определения доли

GAA, которая способна взаимодействовать c CI-MPR посредством фосфорилированных олигосахаридов. Первый пик представлен материалом, протекающим через колонку, что указывает на то, что он не содержит фосфорилированных гликанов. Следующий пик представлен материалом, способным связывать иммобилизованный CI-MPR. Его элюирование происходит градиенте M6P. Результаты при нарастающем относительно демонстрируют, что GAA содержит как содержащие M6P, так и не содержащие M6P фракции. Поскольку связывание CI-MPR является обязательной первой стадией рецепторно-опосредованного эндоцитоза, только та фракция rhGAA, которая связывает CI-MPR, способна эффективно подвергаться поглощению клетками.

[0052] На фиг. 2 показана структура CI-MPR, включая различные связывающие домены для IGF2 и для моно- и бисфосфорилированных олигосахаридов.

[0053] На фиг. 3 показана последовательность и структура зрелого пептида IGF2 человека. Предполагается, что сайт-специфические аминокислотные замены влияют на связывание с другими рецепторами и белками сыворотки крови.

[0054] На фиг. 4 показано связывание пептида IGF2 дикого типа (wtIGF2) с CI-MPR, измеренное посредством поверхностного плазмонного резонанса.

[0055] На фиг. 5 показано связывание варианта пептида IGF2 (vIGF2) с CI-MPR, измеренное посредством поверхностного плазмонного резонанса.

[0056] На фиг. 6 показано преимущество добавления vIGF2 к алглюкозидазе альфа для повышения связывания с IGF2/CI-MPR.

[0057] На фиг. 7 показано преимущество добавления vIGF2 к рекомбинантной человеческой N-ацетил-α-D-глюкозаминидазе (rhNAGLU) для повышения связывания с IGF2/CI-MPR.

[0058] На фиг. 8 показано связывание человеческого IGF2 дикого типа с рецептором инсулина.

[0059] На фиг. 9 показано отсутствие поддающегося обнаружению связывания vIGF2 с рецептором инсулина.

[0060] На фиг. 10 показано связывание IGF2 дикого типа с рецептором инсулиноподобного фактора роста 1.

[0061] На фиг. 11 показано сниженное связывание пептида vIGF2 с рецептором инсулиноподобного фактора роста 1 по сравнению с IGF2 дикого типа.

[0062] На фиг. 12 показаны два примера кассет экспрессии для генной терапии, кодирующих природную hGAA и сконструированную hGAA. Природная hGAA характеризуется низкой степенью фосфорилирования и не способна эффективно связывать CI-MPR. В сконструированный hGAA добавлен элемент для улучшения связывания CIMPR (vIGF2), включен линкер 2GS, обеспечивающий более сильное взаимодействие белка vIGF2-GAA с CI-MPR, и сигнальный пептид BiP для улучшения секреции.

[0063] На фиг. 13 показан вестерн-блоттинг пальмитоилпротеинтиоэстеразы 1 (РРТ1) из клеток, экспрессирующих рекомбинантный человеческий РРТ1 (РРТ1-1), рекомбинантный человеческий РРТ1, содержащий нацеливающийся на vIGF2 домен (РРТ1-2), и рекомбинантный человеческий РРТ1, содержащий нацеливающийся на vIGF2 домен и сигнальную последовательность ВіР (РРТ1-29). На экспрессию белка может влиять используемый вариант IGF.

[0064] На фиг. 14 показано связывание конструкций РРТ1 с СІ-МРК.

[0065] На фиг. 15 показана активность GAA в кондиционированных средах клеток CHO, экспрессирующих сконструированную или природную hGAA.

[0066] На фиг. 16 показан план исследования для 4-недельного исследования в отношении генной терапии на мышах с нокаутом GAA.

[0067] На фиг. 17 показана активность GAA в плазме крови у необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0068] На фиг. 18 показаны уровни GAA, измеренные в плазме крови у необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0069] На фиг. 19 показано связывание рецептора клеточной поверхности СІ-MPR с rhGAA из образцов плазмы крови, полученных от обработанных мышей, как указано.

[0070] На фиг. 20 показана активность GAA и гистопатологическое оценивание для гликогена из передней большеберцовой мышцы у необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0071] На фиг. 21 показано PAS-окрашивание гликогена из передней большеберцовой мышцы необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средойносителем, как указано.

[0072] На фиг. 22 показан иммуногистохимический анализ hGAA из передней большеберцовой мышцы необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средойносителем, как указано.

[0073] На фиг. 23 показана активность GAA в головном мозге, гистопатологическое оценивание для гликогена головного мозга и гликогена спинного мозга в случае головного мозга и спинного мозга необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0074] На фиг. 24 показано PAS-окрашивание гликогена из головного мозга необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0075] На фиг. 25 показан иммуногистохимический анализ hGAA из ствола головного мозга и сосудистого сплетения необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0076] На фиг. 26 показано PAS-окрашивание гликогена из спинного мозга необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0077] На фиг. 27 показан иммуногистохимический анализ hGAA из спинного мозга необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0078] На фиг. 28 показана активность GAA из четырехглавой мышцы и гистопатологическое оценивание для гликогена для необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0079] На фиг. 29 показано окрашивание люксолом/PAS гликогена из четырехглавой мышцы необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средойносителем, как указано.

[0080] На фиг. 30 показан иммуногистохимический анализ hGAA из четырехглавой мышцы необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средойносителем, как указано.

[0081] На фиг. 31 показана активность GAA из трехглавой мышцы и гистопатологическое оценивание для необработанных мышей дикого типа ("нормальных") или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0082] На фиг. 32 показано окрашивание люксолом/PAS гликогена из трехглавой мышцы необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0083] На фиг. 33 показан иммуногистохимический анализ hGAA из трехглавой мышцы необработанных мышей дикого типа или мышей с нокаутом GAA, обработанных векторами для генной терапии или средой-носителем, как указано.

[0084] На фиг. 34 показано связывание сконструированного РРТ1 и РРТ1 дикого типа с CIMPR.

[0085] На фиг. 35 показано связывание сконструированного TPP1 и TPP1 дикого типа с CIMPR.

[0086] На фиг. 36 показано связывание сконструированного AGA и AGA дикого типа с CIMPR.

[0087] На фиг. 37 показано связывание сконструированного GLA и GLA дикого типа с CIMPR.

[0088] На фиг. 38 показан вестерн-блоттинг GAA из клеток, экспрессирующих различные конструкции мутантного vIGF2-GAA в кондиционированных средах.

[0089] На фиг. 39 показана секреция новых вариантов IGF2-GAA при сравнении с конструкциями vIGF2-GAA в случае вестерн-блоттинга, представленного на фиг. 38.

[0090] На фиг. 40 показано связывание CI-MPR различными конструкциями vIGF2-GAA.

[0091] На фиг. 41 показаны значения Втах и Kd для связывания CIMPR различными конструкциями vIGF2-GAA.

[0092] На фиг. 42 показано связывание CI-MPR различными конструкциями vIGF2-GAA.

[0093] На фиг. 43 показаны значения Втах и Kd для связывания CIMPR различными конструкциями vIGF2-GAA.

[0094] На фиг. 44 показано связывание CI-MPR различными конструкциями vIGF2-GAA.

[0095] На фиг. 45 показаны значения Втах и Kd для связывания CIMPR различными конструкциями vIGF2-GAA.

[0096] На фиг. 46 показано поглощение клетками различных конструкций vIGF2-GAA.

[0097] На фиг. 47 показано поглощение клетками различных конструкций vIGF2-GAA.

[0098] На фиг. 48 показаны различные пептиды vIGF2, связывающиеся с CI-MPR или IGF2R.

[0099] На фиг. 49 показан РРТ1 в кондиционированных средах, количественно определенный посредством вестерн-блоттинга.

[00100] На фиг. 50 показан РРТ1 в кондиционированных средах, количественно определенный посредством вестерн-блоттинга.

[00101] На фиг. 51 показан РРТ1 в кондиционированных средах, количественно определенный по активности.

[00102] На фиг. 52 показана корреляция между количественным определением PPT1 посредством вестерн-блоттинга и количественным определением PPT1 по активности.

[00103] На фиг. 53 показано связывание конструкций РРТ1 с СІ-МРК.

[00104] На фиг. 54 показана структурная схема выбранных конструкций PPT1.

[00105] На фиг. 55 показан вестерн-блоттинг РРТ1, секретированного в кондиционированные среды.

[00106] На фиг. 56 показан процессинг РРТ1 в клетке согласно результатам вестерн-блоттинга.

[00107] На фиг. 57 показан РРТ1 в кондиционированных средах, количественно определенный посредством вестерн-блоттинга.

[00108] На фиг. 58 показана относительная активность РРТ1.

[00109] На фиг. 59 показано связывание конструкций PPT1 с CI-MPR.

[00110] На фиг. 60 показано связывание конструкций PPT1 с CI-MPR.

[**00111**] На фиг. **61** показано выравнивание вариантов IGF2-GAA (1: vIGF2; 2: vIGF2-17; 3: IGF2-20 и 4: IGF2-22).

[00112] На фиг. 62 показаны дополнительные конструкции РРТ1.

[00113] На фиг. 63 (A) показана экспрессия конструкций РРТ1, нормализованная по отношению к немеченому РРТ1 дикого типа (конструкция 100), измеренная по интенсивности полосы при вестерн-блоттинге. Средняя интенсивность для четырех повторностей трансфекции показана для каждого образца с планками погрешностей для стандартного отклонения. На (B) показана экспрессия РРТ1/секреция РРТ1 в среде, нормализованная по отношению к дикому типу, измеренную по интенсивности полосы при вестерн-блоттинге.

[00114] На фиг. 64 показано поглощение конструкций РРТ1 кортикальными нейронами крыс, измеренное посредством иммунофлуоресценции. На (A) показано поглощение нейронами очищенных РРТ1-101 и РРТ1-104. На (B) показано поглощение нейронами конструкций РРТ-1 из среды (не очищенной).

[00115] На фиг. 65 показаны дополнительные конструкции NAGLU.

[00116] На фиг. 67 (A) показана экспрессия конструкций NAGLU, нормализованная по отношению к немеченому PPT1 дикого типа (конструкция 100), измеренная по интенсивности полосы при вестерн-блоттинге. Средняя интенсивность для четырех повторностей трансфекции показана для каждого образца с планками погрешностей для стандартного отклонения. На (B) показана экспрессия PPT1/секреция PPT1 в среде, нормализованная по отношению к дикому типу, измеренная по интенсивности полосы при вестерн-блоттинге.

[00117] На фиг. 68 показана экспрессия конструкций ТРР1, нормализованная по отношению к немеченому ТРР1 дикого типа, измеренная по интенсивности полосы при вестерн-блоттинге.

[00118] На фиг. 69 показано связывание СІ-МРК конструкциями ТРР1.

[00119] На фиг. 70 показана экспрессия трансгена человеческого CLN1, обнаруженная с помощью RT-qPCR.

[00120] На фиг. 71-72 показано накопление аутофлуоресцентного запасного вещества (ASM) в головном мозге, которое коррелирует с лизосомальной дисфункцией.

[00121] На фиг. 73 показан глиальный фибриллярный кислый белок (GFAP), который коррелирует с астроглиозом и нейровоспалением.

ПОДРОБНОЕ ОПИСАНИЕ

[00122] В данном документе предусмотрены новые сконструированные пептиды IGF2 с улучшенными свойствами, включая улучшенные экспрессию, секрецию и связывание СІМРR. Кроме того, в данном документе предусмотрены слитые белки и нуклеиновые кислоты, кодирующие слитые белки, содержащие новые пептиды IGF2 и лизосомальные ферменты с улучшенными свойствами, такими как повышенное связывание СІМРR и улучшенная экспрессия и секреция. Предусмотренные в данном документе слитые белки и конструкции

нуклеиновых кислот являются применимыми как для видов ферментозаместительной терапии, так и для видов генной терапии для лечения лизосомных болезней накопления.

[00123] Генная терапия генетических нарушений, затрагивающих один ген, потенциально представляет собой единичную процедуру лечения болезней и нарушений, некоторые из которых характеризуются пагубными симптомами, которые могут проявляться в раннем возрасте и иногда приводить пожизненной инвалидности. Генетические нарушения, такие как неврологические нарушения или лизосомные болезни накопления, часто лечат с использованием видов ферментозаместительной терапии, при которой пациенту вводят терапевтический белок, который представляет собой активную форму белка, дефектного или дефицитного при состоянии, характеризующемся наличием заболевания или нарушения. Однако при проведении современных видов терапии существуют проблемы, включая частые процедуры лечения, развитие иммунного ответа на терапевтический белок и трудности с нацеливанием терапевтического белка на пораженную ткань, клетку или субклеточный компартмент. Генная терапия обеспечивает преимущества, в том числе меньшее количество процедур лечения и длительную эффективность.

[00124] В предусмотрены белки, данном документе слитые предназначенные для введения в качестве ферментозаместительной терапии или кодируемые векторами, представленными векторами для генной терапии, которые обеспечивают улучшения в отношении ферментозаместительной терапии или генной терапии, такие как обеспечение большего количества терапевтического белка в том участке, где это необходимо, таким образом повышая эффективность лечения. Такие проблемы решаются в данном документе путем улучшения экспрессии и поглощения клетками или доставки по отношению ним, а также внутриклеточного или субклеточного нацеливания терапевтические белки. Конкретные инструменты или компоненты, предусмотренные в данном документе, включают без ограничения сигнальные пептиды (например, белок, связывающий иммуноглобулины (ВіР), и сигнальные пептиды Gaussia) для повышения секреции и пептиды, которые усиливают эндоцитоз терапевтического белка (например, пептиды, которые связываются с CI-MPR с высокой аффинностью с обеспечением повышения поглощения клетками и доставки в лизосомы). Такие пептиды сливают с терапевтическими белками, кодируемыми векторами для генной терапии. В некоторых вариантах осуществления пептиды представляют собой пептиды IGF2 (инсулиноподобный фактор роста 2) или их варианты. Предполагается, что векторы для генной терапии, предусмотренные в данном документе, в некоторых вариантах осуществления содержат нуклеиновую кислоту, кодирующую терапевтический белок, слитый с пептидом, который связывается с CI-MPR с высокой аффинностью для оптимизации эффективности генной терапии.

[00125] Были разработаны конструкции для генной терапии, предназначенные для ферментозаместительной генной терапии. За последовательностью инициации трансляции, включающей без ограничения последовательность Козак или последовательность IRES, такую как IRES CrPV, расположенной на 5'-конце конструкции, следует нуклеиновая кислота, кодирующая сигнальный пептид, выбранный из одного или нескольких сигнальных пептидов GAA, нуклеиновая кислота, кодирующая ингибитор трипсина, и нуклеиновая кислота, кодирующая последовательность ВіР. За ними следует нуклеиновая кислота, кодирующая домен, нацеливающий на клетку, который может представлять собой vIGF-2, HIRMab или TfRMab, или другой пептид или белок, нацеливающий на клетку. Конструкция для генной терапии дополнительно содержит нуклеиновую кислоту, кодирующую линкер, и нуклеиновую кислоту, кодирующую корректирующий фермент или его ферментативно активный фрагмент, где линкер соединяет домен, нацеливающий на клетку, с корректирующим ферментом или его ферментативно активным фрагментом. Применимые корректирующие ферменты включают без альфа-глюкозидазу ограничения (GAA), альфа-галактозидазу (GLA). идуронидазу (IDUA), идурониат-2-сульфатазу (IDS), PPT1, TPP1, NAGLU или их ферментативно активные фрагменты, а также другие ферменты, дефицит которых обнаруживают у человека.

Внутриклеточное нацеливание терапевтических белков

[00126] N-связанные углеводы в случае большинства лизосомальных белков модифицированы таким образом, что они содержат специализированную углеводную структуру, называемую маннозо-6-фосфатом (M6P). представляет собой биологический сигнал, который обеспечивает транспорт лизосомальных белков в лизосомы посредством мембраносвязанных рецепторов М6Р. В рамках видов ферментозаместительной терапии лизосомных болезней накопления используются рецепторы M6P для захвата доставки терапевтических белков в лизосомы. В случае некоторых терапевтических средств, включая Cerezyme® И другие версии рекомбинантной глюкоцереброзидазы человека, рецепторы М6Р не используются, при этом используется маннозный рецептор, который способен связывать концевую маннозу на белковых гликанах и обеспечивать доставку в лизосомы. Проблема, с которой сталкиваются В случае определенных ферментозамещающих терапевтических средств, заключается в том, что в ферментном терапевтическом средстве присутствуют низкие количества М6Р, что требует более высоких доз для достижения терапевтической эффективности. Это приводит к значительно более длительному времени инфузии, более высокой вероятности развития иммунных ответов на терапевтическое средство и более высокому спросу на лекарственное средство, что требует изготовления белка в повышенном количестве, что приводит к увеличению затрат.

[00127] СІ-МРК захватывает М6Р-содержащие лизосомальные ферменты из кровотока. Рецептор имеет отличающиеся связывающие домены для М6Р и инсулиноподобного фактора роста (домены 1-3 и 7-9, см. фиг. 2) и поэтому также известен как рецептор IGF2/маннозо-6-фосфата или IGF2/СІ-МРК. Этот рецептор может быть использован для нацеливания ферментозамещающих терапевтических средств, содержащих М6Р, IGF2 или вариант IGF2. Аффинность связывания этого рецептора с данными лигандами, включая инсулиноподобный фактор роста, представлена в таблице 1. Примечательно, что

пептид IGF2 обладает более высокой аффинностью связывания в отношении CI-MPR, чем моно- или бисфосфорилированные олигосахариды.

Таблица 1. Лиганды для CI-MPR		
Лиганд	Аффинность	связывания
	(кажущаяся Kd; нМ)	
IGF2	0,03-0,2	
[Leu27]IGF2	0,05	
Бис-М6Р	2	
Бета-галактозидаза	20	
Пентаманноза-М6Р	6,000	
Свободный М6Р	7,000	

[00128] Соответственно, в некоторых вариантах осуществления имеет место необходимость в разработке улучшенных вариантов пептидов IGF2 получения терапевтических (vIGF2) для слитых белков, которые стабильностью, характеризуются повышенной связыванием CI-MPR, поглощением клетками и лизосомной локализацией, например при лечении таких заболеваний, как лизосомные болезни накопления.

[00129] В вариантах vIGF2 некоторых осуществления вариант характеризуется улучшенным связыванием с СІ-МРК, который отвечает за поглощение клетками и доставку IGF2 в лизосомы для деградации. Некоторые варианты пептидов IGF2 характеризуются пониженной аффинностью к рецептору инсулиноподобного фактора роста 1 (IGF1R). В некоторых вариантах осуществления IGF2 характеризуется пониженной аффинностью или отсутствием аффинности к интегринам. В некоторых вариантах осуществления IGF2 также характеризуется пониженной аффинностью или отсутствием аффинности К по меньшей мере одному белков, ИЗ связывающих инсулиноподобный фактор роста (IGFBP1-6). В некоторых вариантах осуществления варианты IGF2 характеризуются пониженным связыванием с гепарином или его отсутствием. В некоторых вариантах осуществления варианты IGF2

[00130] Целью разработки пептида vIGF2 является улучшение биофизических свойств vIGF2 и усиление связывания с CI-MPR/поглощения клетками, а также доставки в лизосомы при минимизации других функций. Соответственно, пептиды vIGF2 могут (1) улучшать стабильность/растворимость vIGF2; (2) ослаблять аффинность связывания с IR/IGF1R/интегринами и (3) аффинность связывания с CI-MPR. В некоторых осуществления пептиды vIGF2 разрабатывают с использованием рационального направляемого структурой, с идентификацией дизайна, критических необязательных остатков, точечных мутаций и усечений. В некоторых вариантах vIGF2 осуществления пептиды разрабатывают С использованием вычислительных экспериментов in silico, предусматривающих систематические исследования мутаций для определения того, влияет ли данная мутация на стабильность и аффинность в отношении различных партнеров по связыванию, аланин-сканирующий мутагенез (NAMD) и/или улучшение растворимости, биодоступности и/или снижение иммуногенности IGF2. В некоторых вариантах осуществления пептиды vIGF2 разрабатывают путем направленной эволюции на основе анализов с разделенным GFP. В некоторых вариантах осуществления пептиды vIGF2 разрабатывают путем направленной эволюции на основе фагового дисплея.

[00131] В некоторых вариантах осуществления пептиды vIGF2 разрабатывают с использованием вычислительных экспериментов in silico, предусматривающих систематические исследования мутаций для определения того, влияет ли данная мутация на стабильность пептида IGF2. В некоторых вариантах осуществления стабильность пептида с мутацией является такой же или повышенной по сравнению с IGF2 дикого типа.

[00132] В некоторых вариантах осуществления пептиды vIGF2 разработаны с обеспечением сниженного связывания с интегрином. В некоторых вариантах

осуществления пептиды vIGF2 со сниженным связыванием с интегрином предусматривают мутации R24E/R34E, R24E/R37E/R38E, R34E/R37E/R38E, R24E/R37E, R24E/R38E или R24E/R34E/R37E/R38E. В некоторых вариантах осуществления пептиды vIGF2 характеризуются сниженным связыванием с интегрином и гепарином, как например вследствие мутаций по остаткам R37, R38 или R40.

В некоторых вариантах осуществления мутации T16I, T16V, T16L, [00133] Т16F, Т16Y или Т16W повышают связывание vIGF2 с CI-MPR. В некоторых вариантах осуществления мутации T16V или T16Y повышают связывание vIGF2 с CI-MPR. В некоторых вариантах осуществления мутации по D23, например D23K или D23R, повышают связывание vIGF2 с CI-MPR. В некоторых вариантах осуществления мутации по F19, такие как F19W, повышают связывание vIGF2 с CI-MPR. В некоторых вариантах осуществления мутации по S50, такие как S50D или S50E, повышают связывание vIGF2 с CI-MPR. В некоторых вариантах осуществления vIGF2, характеризующийся мутациями D23K и S50E, характеризуется повышенным связыванием с CI-MPR. В некоторых вариантах осуществления vIGF2, характеризующийся мутациями $\Delta 1$ -4, E6R, Y27L и K65R, характеризуется повышенным связыванием с CI-MPR. В некоторых вариантах осуществления vIGF2, характеризующийся мутациями ∆33-40, D23R, F26E и S50E, характеризуется повышенным связыванием с СІ-MPR.

[00134] В некоторых вариантах осуществления пептиды vIGF2 разработаны с обеспечением сниженного связывания IGFR1. В некоторых вариантах осуществления мутации, которые влияют на связывание IGF1R, находятся на другой стороне IGF2 по сравнению с мутациями, которые влияют на связывание СІ-МРR. В некоторых вариантах осуществления F26, Y27 и V43 имеют важное значение для связывания с IGF1R. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутацией S29N, R34_GS, S39_PQ, R34_GS/S39_PQ, S29N/S39_PQ или S29N/S39PQ, R43_GS, характеризуются пониженным связыванием с рецептором инсулина и IGF1R. В некоторых

вариантах осуществления пептид vIGF2, характеризующийся мутацией S39_PQ (вставка PQ после S39), характеризуется пониженным связыванием с рецептором инсулина и IGF1R. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями по G11, V14, L17, G25, F26, Y27, F28, S29, R30, P31, A32, S33, V35, S36, R37, S39, G41, I42, V43, E44, F48, T53, Y59, C60 или A61, характеризуются сниженным связыванием с IGF1R. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями по G10, L13, V14, L17, F26, Y27, F28, S29, R30, P31, A32, S33, V35, G41, I42, V43, T58 или Y59, характеризуются сниженным связыванием с IGF1R. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями V14D/F26A/F28R/V43D, характеризуются сниженным связыванием с IGF1R. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями F26S, Y27L или V43L, характеризуются сниженным связыванием с IGF1R и/или рецептором инсулина.

[00135] В некоторых вариантах осуществления пептиды vIGF2 характеризуются делецией в домене С (например, остатки 32-41, SRVSRRSR), которая обуславливает сниженное связывание пептидов vIGF2 с IGF1R, инсулиновым рецептором, гепарином и интегрином. В некоторых вариантах осуществления пептиды vIGF2 характеризуются мутацией Δ 1-4, E6R, Δ 30-39. В некоторых вариантах осуществления пептиды vIGF2 характеризуются мутацией Δ 1-4, E6R, Δ 33-40.

[00136] В некоторых вариантах осуществления пептиды vIGF2 характеризуются мутациями, снижающими показатель нестабильности. В некоторых вариантах осуществления мутации пептидов IGF2 с повышенной стабильностью включают R38G, R38G/E45W, R38G/E45W/S50G, P31G/R38G/E45W/S50G L17N/P31G/R38G/E45W/S50G. или В вариантах осуществления мутации пептидов IGF2 с повышенной стабильностью включают R38G, R38G/E45W, R38G/E45W/S50G, P31G/R38G/E45W/S50G, L17N/P31G/R38G/E45W/S50G, L17N/P31G/R38G/E45W/S50G/S66G, L17N/P31G/R38G/E45W/S50G/A64M/S66G S5L/L17N/P31G/R38G/E45W/S50G/A64M/S66G.

или

[00137] В некоторых вариантах осуществления пептиды vIGF2 подвергают мутации для уменьшения агрегации. В некоторых вариантах осуществления остатки, склонные к опосредованию агрегации, включают остатки 17-21 (LQFVC), 41-49 (GIVEECCFR) или 53-62 (LALLETYCAT). В некоторых вариантах осуществления пептиды vIGF2 подвергают мутации по F26, Y59, Y27, V14, A1 или L8 для уменьшения агрегации.

[00138] В некоторых вариантах осуществления пептиды vIGF2 разработаны с обеспечением сниженного связывания с IGFBP. В некоторых вариантах осуществления пептиды vIGF2 характеризуются мутациями L8A, V20A или L56A. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями по E6, L8, R24, G25, F26, Y27 или F28, характеризуются сниженным связыванием с IGFBP4. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями по T7, G10, V14, V43, E44, C47 или F48, характеризуются сниженным связыванием с IGFBP4. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями по E6 или L8, характеризуются сниженным связыванием с IGFBP4. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями E6Q или T7A, характеризуются сниженным связыванием со связывающим белками сыворотки крови человека. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями Q18Y или F19L, характеризуются сниженным связыванием со связывающим белками сыворотки крови человека. В некоторых вариантах осуществления пептиды vIGF2, характеризующиеся мутациями Е6О, Т7А, Q18У или F19L, характеризуются сниженным связыванием со связывающими белками сыворотки крови человека.

[00139] В некоторых вариантах осуществления пептиды vIGF2 были модифицированы с заменой остатков 31-38 на GGGG (vIGF2 Δ 31-38GGGG), и некоторые из этих пептидов vIGF2 дополнительно содержат мутацию V43L и

S50E или S50D. (SEQ ID NO: 120-121). В некоторых вариантах осуществления пептиды vIGF2, которые на по меньшей мере 95% идентичны SEQ ID NO: 120-121, усиливают экспрессию и/или секрецию терапевтического белка. В некоторых вариантах осуществления терапевтический белок представляет собой PPT1 или TPP1 или их ферментативно активный фрагмент.

Терапевтические слитые белки для генной терапии

[00140] В данном документе предусмотрены терапевтические слитые белки, полученные из векторов для генной терапии. В некоторых вариантах осуществления слитый белок секретируется клетками, трансдуцированными вектором для генной терапии, кодирующим слитый белок. В некоторых вариантах осуществления трансдуцированные клетки находятся в ткани или органе (например, в печени). После секретирования из клетки слитый белок транспортируется через сосудистую систему достигает пациента И представляющей интерес ткани. В некоторых вариантах осуществления терапевтический слитый белок сконструирован таким образом, чтобы он характеризовался улучшенной секрецией. В некоторых вариантах осуществления слитый белок содержит сигнальный пептид для повышения уровня секреции по сравнению с соответствующим терапевтическим белком или слитым белком, содержащим терапевтический белок, характеризующийся наличием только нативного сигнального пептида.

[00141] Предусмотренные векторы для генной терапии в некоторых вариантах осуществления сконструированы таким образом, чтобы улучшать доставку терапевтического белка. Например, в некоторых случаях генная терапия может не обеспечить предполагаемого лечения за счет одного лишь генерирования достаточного количества терапевтического белка в организме пациента, если в клетки, нуждающиеся в терапевтическом белке, доставляется недостаточное количество терапевтического белка ввиду, например, физических и/или биологических барьеров, которые препятствуют распределению терапевтического белка в необходимом участке. Таким образом, даже если

генная терапия способна обеспечить увеличение количества терапевтического белка в крови или ткани до точки насыщения с достижением его высокой концентрации, генная терапия может продемонстрировать недостаточное терапевтическое действие. Кроме того, непродуктивные пути клиренса могут обуславливать удаление подавляющего количества терапевтического белка. Даже если терапевтический белок транспортируется из сосудистой сети в интерстициальное пространство внутри ткани (например, в мышечные волокна), адекватный терапевтический эффект не гарантируется. Для эффективного лечения лизосомных болезней накопления терапевтически эффективное белка количество терапевтического должно подвергаться клеточному эндоцитозу и доставке в лизосомы, чтобы обеспечить значимую эффективность. изобретение направлено на решение этих проблем Настоящее предоставления векторов для генной терапии, кодирующих слитые белки, содержащие пептид, который обеспечивает поступление путем эндоцитоза терапевтического белка в клетку-мишень для лечения, что приводит к эффективному лечению. В некоторых вариантах осуществления пептид, обеспечивающий эндоцитоз, представляет собой пептид, который связывает СІ-MPR. В некоторых вариантах осуществления пептид, который связывает CI-MPR, представляет собой пептид vIGF2. Известно, что рекомбинантно экспрессируемая GLA хорошо фосфорилируется и, таким образом, связывается с СІМРР, но, к удивлению, GLA, экспрессируемая у мышей, недостаточно фосфорилирована и плохо связывается с CIMPR. Следовательно, GLA для применения в генной терапии неожиданно требует дополнительных разработок для усиления связывания CIMPR (как например, IGF2-метки).

[00142] В данном документе предусмотрены векторы для генной терапии, кодирующие слитые белки, содержащие пептид, который обеспечивает поступление путем эндоцитоза терапевтического белка в клетку-мишень для обеспечения лечения. В некоторых вариантах осуществления векторы для генной терапии кодируют слитые белки, содержащие терапевтический белок и пептид, связывающий СІ-МРК. Такие слитые белки при экспрессии из вектора для генной терапии нацеливают терапевтические белки, такие как

ферментозамещающие терапевтические средства, на клетки, где необходимы, повышают доставку в такие клетки или поглощение клетками, а также нацеливают терапевтический белок на субклеточный компартмент вариантах (например, лизосому). В некоторых осуществления представляет собой пептид IGF2 или его вариант, который может нацеливать терапевтический белок на лизосому. Слитые белки в данном документе также в некоторых вариантах осуществления дополнительно содержат сигнальный пептид, который увеличивает секрецию, такой как сигнальный пептид ВіР или сигнальный пептид Gaussia. В некоторых вариантах осуществления слитые белки содержат линкерную последовательность. В некоторых вариантах осуществления нуклеиновые кислоты, кодирующие слитые белки. представленные в данном документе, содержат последовательности участка внутренней посадки рибосомы. Uh

Терапевтические слитые белки для ферментозаместительной терапии

[00143] В данном документе предусмотрены терапевтические слитые белки, полученные для ферментозаместительной терапии. Предусмотренные слитые белки в некоторых вариантах осуществления сконструированы таким образом, чтобы улучшать доставку терапевтического белка. Например, в некоторых случаях слитые белки могут не обеспечить предполагаемого лечения, если в клетки, нуждающиеся в терапевтическом белке, доставляется недостаточное количество терапевтического слитого белка ввиду, например, физических и/или биологических барьеров, которые препятствуют распределению терапевтического белка в необходимом участке. Даже если терапевтический белок транспортируется из сосудистой сети в интерстициальное пространство внутри ткани (например, в мышечные волокна), адекватный терапевтический эффект не гарантируется. Для эффективного лечения лизосомных болезней накопления терапевтически эффективное количество терапевтического белка должно подвергаться клеточному эндоцитозу и доставке в лизосомы, чтобы обеспечить значимую эффективность. Настоящее изобретение направлено на решение этих проблем путем предоставления слитых белков, содержащих пептид, который обеспечивает поступление путем эндоцитоза терапевтического белка в клетку-мишень для лечения, что приводит к эффективному лечению. В некоторых вариантах осуществления пептид, обеспечивающий эндоцитоз, представляет собой пептид, который связывает CI-MPR. В некоторых вариантах осуществления пептид, который связывает CI-MPR, представляет собой пептид vIGF2.

[00144] В данном документе предусмотрены слитые белки, содержащие пептид, который обеспечивает поступление путем эндоцитоза терапевтического белка в клетку-мишень для обеспечения лечения. В некоторых вариантах осуществления слитые белки содержат пептид, который связывает CI-MPR. Такие слитые белки применяются В качестве ферментозамещающих терапевтических средств, характеризуются повышенной доставкой в клетки или поглощением клетками, нуждающимися в таких белках, и нацеливают терапевтический белок на субклеточный компартмент (например, лизосому). В некоторых вариантах осуществления пептид представляет собой пептид IGF2 или его вариант, который может нацеливать терапевтический белок на лизосому.

[00145] В данном документе предусмотрены терапевтические белки для ферментозаместительной терапии или генной терапии, содержащие пептид vIGF2. Иллюстративные белки представлены в таблице 2 ниже.

Таблица	2. Аминокислотные последовательности	SEQ
		ID
		NO
Природ	MGVRHPPCSHRLLAVCALVSLATAALLGHILLHDFLLVPREL	1
ная	SGSSPVLEETHPAHQQGASRPGPRDAQAHPGRPRAVPTQCD	
hGAA	VPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQGAQMGQ	
	PWCFFPPSYPSYKLENLSSSEMGYTATLTRTTPTFFPKDILTLR	
	LDVMMETENRLHFTIKDPANRRYEVPLETPHVHSRAPSPLYS	
	VEFSEEPFGVIVRRQLDGRVLLNTTVAPLFFADQFLQLSTSLP	
	SQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGANLYGSH	

PFYLALEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGIL DVYIFLGPEPKSVVQQYLDVVGYPFMPPYWGLGFHLCRWG YSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTFNK DGFRDFPAMVQELHQGGRRYMMIVDPAISSSGPAGSYRPYD EGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWED MVAEFHDQVPFDGMWIDMNEPSNFIRGSEDGCPNNELENPP YVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASH RALVKARGTRPFVISRSTFAGHGRYAGHWTGDVWSSWEOL ASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVRWTQLGA FYPFMRNHNSLLSLPQEPYSFSEPAQQAMRKALTLRYALLPH LYTLFHQAHVAGETVARPLFLEFPKDSSTWTVDHQLLWGEA LLITPVLQAGKAEVTGYFPLGTWYDLQTVPVEALGSLPPPPA APREPAIHSEGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTT ESRQQPMALAVALTKGGEARGELFWDDGESLEVLERGAYT QVIFLARNNTIVNELVRVTSEGAGLQLQKVTVLGVATAPQQ VLSNGVPVSNFTYSPDTKVLDICVSLLMGEQFLVSWC MKLSLVAAMLLLLSAARASRTLCGGELVDTLQFVCGDRGFL Сконст FSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARSEGGG руиров GSGGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPD KAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSY KLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENR vIGF2-LHFTIKDPANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIV RRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLS PLMLSTSWTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSA HGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKS VVOOYLDVVGYPFMPPYWGLGFHLCRWGYSSTAITROVVE NMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQ ELHOGGRRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNE TGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPF DGMWIDMNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLO AATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRP

анная

hGAA

(BiP-

GAA)

GVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLL SLPQEPYSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVA GETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKA EVTGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQ WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT YSPDTKVLDICVSLLMGEQFLVSWC hGAA SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ A1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG EARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVT		FVISRSTFAGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLL	
GETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKA EVTGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQ WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT YSPDTKVLDICVSLLMGEQFLVSWC hGAA SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ 3 Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		GVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLL	
EVTGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQ WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT YSPDTKVLDICVSLLMGEQFLVSWC bGAA SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ 3 Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		SLPQEPYSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVA	
WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT YSPDTKVLDICVSLLMGEQFLVSWC hGAA SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		GETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKA	
ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT YSPDTKVLDICVSLLMGEQFLVSWC hGAA SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		EVTGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQ	
NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT YSPDTKVLDICVSLLMGEQFLVSWC hGAA δRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV	
SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV	
hGAA SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ 3 Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT	
Δ1-60 CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		YSPDTKVLDICVSLLMGEQFLVSWC	
EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG	hGAA	SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQ	3
ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG	Δ1-60	CEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLENLSSS	
VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		EMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDP	
WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		ANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGR	
NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		VLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTS	
DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		WTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGVFLL	
FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		NSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYL	
RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		DVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAH	
KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		FPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGG	
MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		RRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQPLIG	
SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		KVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWID	
AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		MNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAATICAS	
ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		SHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTF	
YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		AGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVG	
PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		ADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEP	
PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		YSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGETVAR	
PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG		PLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYF	
		PLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPA	
EARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVT		PLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKGG	
		EARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVT	
SEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSPDTKV		SEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSPDTKV	
LDICVSLLMGEQFLVSWC		LDICVSLLMGEQFLVSWC	

wt-		
''-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	4
пальми	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
тоилпр	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
отеинт	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
иоэстер	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
аза 1	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
(PPT1)	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-2	MASPGCLWLLAVALLPWTCASRALQHLSRTLCGGELVDTLQ	5
(vIGF2-	FVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYCA	
PPT1)	TPARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGMGDS	
	CCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLN	
	VNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQR	
	CPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAG	
	AYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGIN	
	ESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQA	
	KETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSE	
	EWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLWVALLLLSAARAAASRTLCGGELVDTL	6
29	QFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYC	
(BiP2aa	ATPARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGMGD	
-vIGF2-	SCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFL	
PPT1)	NVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQ	
	RCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNA	
	GAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGI	
	NESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQ	
	AKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLS	
	EEWFYAHIIPFLG	
PPT1,	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	7
сконст	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	

	WA OD CDCDDMINI ICUCCOLLOCUECI DE CECCULOREDUZ	
анная	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCGGE	
	LVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRECDLAL	
	LETYCATPARSE	
TPP1,	MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGWVSLGRAD	8
дикого	PEEELSLTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLEN	
типа	VADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSI	
	RQAELLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHV	
	DFVGGLHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRY	
	NLTSQDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGN	
	FAHQASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTW	
	VYSSPGRHEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDS	
	LSSAYIQRVNTELMKAAARGLTLLFASGDSGAGCWSVSGRH	
	QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVF	
	PRPSYQEEAVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGY	
	WVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFL	
	NPRLYQQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDP	
	VTGWGTPNFPALLKTLLNP	
TPP1,	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	9
сконст	FSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARSEGGG	
руиров	GSGGGGSRPRAVPTQSYSPEPDQRRTLPPGWVSLGRADPEEE	
анная	LSLTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVADL	
	VRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQAE	
	LLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVG	
	GLHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTSQ	
	DVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQA	
	SVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPG	
	RHEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYIQ	

	RVNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTFP	
	ASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQE	
	EAVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSNR	
	VPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLYQ	
	QHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWG	
	TPNFPALLKTLLNP	
AGA,	MARKSNLPVLLVPFLLCQALVRCSSPLPLVVNTWPFKNATEA	10
дикого	AWRALASGGSALDAVESGCAMCEREQCDGSVGFGGSPDEL	
типа	GETTLDAMIMDGTTMDVGAVGDLRRIKNAIGVARKVLEHTT	
	HTLLVGESATTFAQSMGFINEDLSTTASQALHSDWLARNCQP	
	NYWRNVIPDPSKYCGPYKPPGILKQDIPIHKETEDDRGHDTIG	
	MVVIHKTGHIAAGTSTNGIKFKIHGRVGDSPIPGAGAYADDT	
	AGAAAATGNGDILMRFLPSYQAVEYMRRGEDPTIACQKVIS	
	RIQKHFPEFFGAVICANVTGSYGAACNKLSTFTQFSFMVYNS	
	EKNQPTEEKVDCI	
AGA,	MARKSNLPVLLVPFLLCQALVRCSRTLCGGELVDTLQFVCG	11
сконст	DRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPAR	
руиров	SEGGGGSGGGSRPRAVPTQSSPLPLVVNTWPFKNATEAAW	
анная	RALASGGSALDAVESGCAMCEREQCDGSVGFGGSPDELGET	
(N-	TLDAMIMDGTTMDVGAVGDLRRIKNAIGVARKVLEHTTHTL	
концев	LVGESATTFAQSMGFINEDLSTTASQALHSDWLARNCQPNY	
oe	WRNVIPDPSKYCGPYKPPGILKQDIPIHKETEDDRGHDTIGMV	
слияни	VIHKTGHIAAGTSTNGIKFKIHGRVGDSPIPGAGAYADDTAG	
e)	AAAATGNGDILMRFLPSYQAVEYMRRGEDPTIACQKVISRIQ	
	KHFPEFFGAVICANVTGSYGAACNKLSTFTQFSFMVYNSEKN	
	QPTEEKVDCI	
GLA,	MQLRNPELHLGCALALRFLALVSWDIPGARALDNGLARTPT	12
дикого	MGWLHWERFMCNLDCQEEPDSCISEKLFMEMAELMVSEGW	
типа	KDAGYEYLCIDDCWMAPQRDSEGRLQADPQRFPHGIRQLAN	
	YVHSKGLKLGIYADVGNKTCAGFPGSFGYYDIDAQTFADWG	
	VDLLKFDGCYCDSLENLADGYKHMSLALNRTGRSIVYSCEW	

	PLYMWPFQKPNYTEIRQYCNHWRNFADIDDSWKSIKSILDW	
	TSFNQERIVDVAGPGGWNDPDMLVIGNFGLSWNQQVTQMA	
	LWAIMAAPLFMSNDLRHISPQAKALLQDKDVIAINQDPLGKQ	
	GYQLRQGDNFEVWERPLSGLAWAVAMINRQEIGGPRSYTIA	
	VASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPT	
	GTVLLQLENTMQMSLKDLL	
GLA,	MQLRNPELHLGCALALRFLALVSWDIPGARALDNGLARTPT	13
сконст	MGWLHWERFMCNLDCQEEPDSCISEKLFMEMAELMVSEGW	
руиров	KDAGYEYLCIDDCWMAPQRDSEGRLQADPQRFPHGIRQLAN	
анная	YVHSKGLKLGIYADVGNKTCAGFPGSFGYYDIDAQTFADWG	
	VDLLKFDGCYCDSLENLADGYKHMSLALNRTGRSIVYSCEW	
	PLYMWPFQKPNYTEIRQYCNHWRNFADIDDSWKSIKSILDW	
	TSFNQERIVDVAGPGGWNDPDMLVIGNFGLSWNQQVTQMA	
	LWAIMAAPLFMSNDLRHISPQAKALLQDKDVIAINQDPLGKQ	
	GYQLRQGDNFEVWERPLSGLAWAVAMINRQEIGGPRSYTIA	
	VASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPT	
	GTVLLQLENTMQMSLKDLLYIPAKQGLQGAQMGQPGGGGS	
	GGGGSRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGI	
	VEECCFRSCDLALLETYCATPARSE	
BiP-	MKLSLVAAMLLLLSAARASRTLCGGELVDTLQFVCGDRGFL	14
vIGF2-	FSRPASRVSRRSRGIVEECCFRECDLALLETYCATPARSEGGG	
17-	GSGGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPD	
2GS-	KAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSY	
GAA	KLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENR	
	LHFTIKDPANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIV	
	RRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLS	
	PLMLSTSWTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSA	
	HGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKS	
	VVQQYLDVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVE	
	NMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQ	
	ELHQGGRRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNE	

	TGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPF	
	DGMWIDMNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQ	
	AATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRP	
	FVISRSTFAGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLL	
	GVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLL	
	SLPQEPYSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVA	
	GETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKA	
	EVTGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQ	
	WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV	
	ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV	
	NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT	
	YSPDTKVLDICVSLLMGEQFLVSWC	
BiP-	MKLSLVAAMLLLLSAARASRTLCGGELVDTLQFVCGDRGFL	15
vIGF2-	FSRPASRVSRRSRGILEECCFRSCDLALLETYCATPARSEGGG	
20-	GSGGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPD	
2GS-	KAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSY	
GAA	KLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENR	
	LHFTIKDPANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIV	
	RRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLS	
	PLMLSTSWTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSA	
	HGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKS	
	VVQQYLDVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVE	
	NMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQ	
	ELHQGGRRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNE	
	TGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPF	
	DGMWIDMNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQ	
	AATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRP	
	FVISRSTFAGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLL	
	GVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLL	
	SLPQEPYSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVA	
	GETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKA	
Į.		

	EVTGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQ	
	WVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAV	
	ALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIV	
	NELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFT	
	YSPDTKVLDICVSLLMGEQFLVSWC	
BiP-	MKLSLVAAMLLLLSAARASRTLCGGELVDTLQFVCGDRGFL	16
vIGF2-	FSRGGGGSRGIVEECCFRSCDLALLETYCATPARSEGGGSG	
22-	GGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAIT	
2GS-	QEQCEARGCCYIPAKQGLQGAQMGQPWCFFPPSYPSYKLEN	
GAA	LSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTI	
	KDPANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQL	
	DGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLML	
	STSWTRITLWNRDLAPTPGANLYGSHPFYLALEDGGSAHGV	
	FLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQ	
	QYLDVVGYPFMPPYWGLGFHLCRWGYSSTAITRQVVENMT	
	RAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELH	
	QGGRRYMMIVDPAISSSGPAGSYRPYDEGLRRGVFITNETGQ	
	PLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDG	
	MWIDMNEPSNFIRGSEDGCPNNELENPPYVPGVVGGTLQAA	
	TICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVI	
	SRSTFAGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGV	
	PLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSL	
	PQEPYSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAGE	
	TVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEV	
	TGYFPLGTWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWV	
	TLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALT	
	KGGEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNEL	
	VRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSP	
	DTKVLDICVSLLMGEQFLVSWC	
PPT1-3	MKLSLVAAMLLLLSAARADPPAPLPLVIWHGMGDSCCNPLS	17
(BiP-	MGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLNVNSQV	

PPT1)	TTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQRCPSPP	
	MINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAGAYSKV	
	VQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGINESYKK	
	NLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQAKETIPL	
	QETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSEEWFYA	
	HIIPFLG	
PPT1-4	MKLSLVAAMLLLLSAARASRTLCGGELVDTLQFVCGDRGFL	18
(BiP-	FSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARSEGGG	
vIGF2-	GSGGGGSRPRAVPTQDPPAPLPLVIWHGMGDSCCNPLSMGAI	
PPT1)	KKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLNVNSQVTTVC	
	QALAKDPKLQQGYNAMGFSQGGQFLRAVAQRCPSPPMINLI	
	SVGGQHQGVFGLPRCPGESSHICDFIRKTLNAGAYSKVVQER	
	LVQAEYWHDPIKEDVYRNHSIFLADINQERGINESYKKNLMA	
	LKKFVMVKFLNDSIVDPVDSEWFGFYRSGQAKETIPLQETSL	
	YTQDRLGLKEMDNAGQLVFLATEGDHLQLSEEWFYAHIIPFL	
	G	
PPT1-5	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	19
(wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
vIGF2)	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGGGSGGGSRTLCGGE	
	LVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLAL	
	LETYCATPARSE	
PPT1 - 9	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	20
(wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1)	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
L		

	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	21
10 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
vIGF2_	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
2)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSRTLCGGEL	
	VDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALL	
	ETYCATPARSE	
PPT1-	MKLSLVAAMLLLLSAARASRALQHLDPPAPLPLVIWHGMGD	22
11	SCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFL	
(BiP-	NVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQ	
PPT1_2	RCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNA	
)	GAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGI	
	NESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQ	
	AKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLS	
	EEWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLSAARASRALQHLDPPAPLPLVIWHGMGD	23
12	SCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFL	
(BiPaa-	NVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQ	
PPT1_2	RCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNA	
)	GAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGI	
	NESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQ	
	AKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLS	
	EEWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLSAARAAADPPAPLPLVIWHGMGDSCCNP	24
13	LSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLNVNS	

(BiPaa-	QVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQRCPS	
PPT1)	PPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAGAYS	
	KVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGINESY	
	KKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQAKETI	
	PLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSEEWF	
	YAHIIPFLG	
PPT1-	MKLSLVAAMLLLLSLVAAMLLLLSAARASRTLCGGELVDTL	25
14	QFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYC	
(BiP1-	ATPARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGMGD	
vIGF2-	SCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFL	
PPT1)	NVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQ	
	RCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNA	
	GAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGI	
	NESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQ	
	AKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLS	
	EEWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLSLVAAMLLLLSAARAAASRTLCGGELVD	26
15	TLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLET	
(BiP1aa	YCATPARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGM	
-vIGF2-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1)	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLSLVAAMLLLLSAARAAASRALQHLDPPA	27
16	PLPLVIWHGMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIG	
(BiP1aa	KTLMEDVENSFFLNVNSQVTTVCQALAKDPKLQQGYNAMG	
_	FSQGGQFLRAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGE	
PPT1_2	SSHICDFIRKTLNAGAYSKVVQERLVQAEYWHDPIKEDVYR	

)	NHSIFLADINQERGINESYKKNLMALKKFVMVKFLNDSIVDP	
	VDSEWFGFYRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQ	
	LVFLATEGDHLQLSEEWFYAHIIPFLG	
PPT1-	MASPGSLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	28
17(wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
C6S)	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLWVALLLLSAARAAASRALQHLDPPAPLP	29
18	LVIWHGMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTL	
(BiP2aa	MEDVENSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQ	
-PPT1)	GGQFLRAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHI	
	CDFIRKTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSI	
	FLADINQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSE	
	WFGFYRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFL	
	ATEGDHLQLSEEWFYAHIIPFLG	
PPT1-	MGVKVLFALICIAVAEAAASRALQHLDPPAPLPLVIWHGMG	30
19	DSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFF	
(Gaussi	LNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVA	
aAA-	QRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLN	
PPT1_2	AGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQER	
)	GINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSG	
	QAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQ	
	LSEEWFYAHIIPFLG	
PPT1-	MGVKVLFALICIAVAEAAASRTLCGGELVDTLQFVCGDRGF	31
20	LFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARSEGG	
(Gaussi	GGSGGGGSRPRAVPTQDPPAPLPLVIWHGMGDSCCNPLSMG	
aAA-	AIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLNVNSQVTTV	

vIGF2-	CQALAKDPKLQQGYNAMGFSQGGQFLRAVAQRCPSPPMINL	
PPT1)	ISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAGAYSKVVQE	
	RLVQAEYWHDPIKEDVYRNHSIFLADINQERGINESYKKNLM	
	ALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQAKETIPLQETS	
	LYTQDRLGLKEMDNAGQLVFLATEGDHLQLSEEWFYAHIIPF	
	LG	
PPT1-	MLGLWGQRLPAAWVLLLLPFLPLLLLADPPAPLPLVIWHGM	32
21	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
(ppt2ss-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
PPT1)	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-	MLGLWGQRLPAAWVLLLLPFLPLLLLASRALQHLDPPAPLPL	33
22	VIWHGMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLM	
(ppt2ss-	EDVENSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQG	
PPT1_2	GQFLRAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHIC	
)	DFIRKTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFL	
	ADINQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEW	
	FGFYRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLAT	
	EGDHLQLSEEWFYAHIIPFLG	
PPT1-	MASPSCLWLLAVALLPWSCAARALGHLDPPAPLPLVIWHGM	34
23	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
(consen	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
susSS-	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
PPT1)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-	MASPSCLWLLAVALLPWSCAARALGHLDPPAPLPLVIWHGM	35

24	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
(consen	FFLNVNSQVTTVCQILAKDPKLQQGYNAMGFSQGGQFLRAV	
sus-	AQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTL	
PPT1)	NAGAYSKAVQERLVQAEYWHDPIKEDVYRNHSIFLADINQE	
	RGVNESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRS	
	GQAKETIPLQETTLYTQDRLGLKEMDKAGQLVFLATEGDHL	
	QLSEEWFYAHIIPFLE	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	36
25 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
L283C	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
H300C)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFCATEGDH	
	LQLSEEWFYACIIPFLG	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	37
26 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1	FFLNVNSQVTTVCQALAKDPKLQQGYNAMCFSQGGQFCRA	
G113C	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
L121C)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	38
27 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
A171C	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
A183C)	LNAGCYSKVVQERLVQCEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLG	
		<u> </u>

PPT1-	MKLSLVAAMLLLLWVALLLLSAARAAASRALQHLDPPAPLP	39
28	LVIWHGMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTL	
(BiP2aa	MEDVENSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQ	
-PPT1)	GGQFLRAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHI	
	CDFIRKTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSI	
	FLADINQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSE	
	WFGFYRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFL	
	ATEGDHLQLSEEWFYAHIIPFLG	
PPT1-	MKLSLVAAMLLLLSLVAAMLLLLSAARASRTLCGGELVDTL	40
31	QFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYC	
(BiP1-	ATPARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGMGD	
vIGF2-	SCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFL	
PPT1)	NVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQ	
	RCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNA	
	GAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGI	
	NESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQ	
	AKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLS	
	EEWFYAHIIPFLG	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	41
32 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
vIGF2-	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
32)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCGGE	
	LVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDLALLET	
	YCATPARSE	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	42
33 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	

vIGF2-	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
8Q)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCGGE	
	LVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRECDLAL	
	LETYCATPARSE	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	43
34 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
vIGF2-	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
8Q)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCGGE	
	LVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRECDLAL	
	LETYCATPARSE	
PPT1-	MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	44
35 (wt-	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
PPT1-	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
vIGF2-	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
8Q)	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCGGE	
	LVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRECDLAL	
	LETYCATPARSE	
Пропеп	SYSPEPDQRRTLPPGWVSLGRADPEEELSLTFALRQQNVERL	45
тид	SELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKW	
челове	LLAAGAQKCHSVITQDFLTCWLSIRQAELLLPGAEFHHYVGG	
ческой	PTETHVVRSPHPYQLPQALAPHVDFVGGLHRFPPTSSLRQRP	

TPP1	EPQVTGTVG	
Зрелый	LHLGVTPSVIRKRYNLTSQDVGSGTSNNSQACAQFLEQYFHD	46
пептид	SDLAQFMRLFGGNFAHQASVARVVGQQGRGRAGIEASLDV	
челове	QYLMSAGANISTWVYSSPGRHEGQEPFLQWLMLLSNESALP	
ческой	HVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLLFASG	
TPP1	DSGAGCWSVSGRHQFRPTFPASSPYVTTVGGTSFQEPFLITNE	
	IVDYISGGGFSNVFPRPSYQEEAVTKFLSSSPHLPPSSYFNASG	
	RAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLI	
	NEHRILSGRPPLGFLNPRLYQQHGAGLFDVTRGCHESCLDEE	
	VEGQGFCSGPGWDPVTGWGTPNFPALLKTLLNP	
pSvelte	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	47
001 -	FSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARSEGGG	
нативн	GSGGGGSRPRAVPTQSYSPEPDQRRTLPPGWVSLGRADPEEE	
ый	LSLTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVADL	
сигнал	VRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQAE	
ьный	LLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVG	
пептид	GLHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTSQ	
TPP1 -	DVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQA	
vIGF2	SVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPG	
_	RHEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYIQ	
линкер	RVNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTFP	
GS –	ASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQE	
участо	EAVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSNR	
К	VPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLYQ	
лизосо	QHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWG	
мально	TPNFPALLKTLLNPG	
го		
расщеп		
ления –		
пропеп		

тид		
TPP1 -		
зрелый		
пептид		
TPP1		
Svelte0	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	48
57 -	FSRPASRVSRRSRGIVEECCFRECDLALLETYCATPARSEGGG	
нативн	GSGGGSRPRAVPTQASYSPEPDQRRTLPPGWVSLGRADPEE	
ый	ELSLTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVAD	
сигнал	LVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQA	
ьный	ELLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFV	
пептид	GGLHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTS	
TPP1 -	QDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQ	
vIGF2v	ASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSP	
17 –	GRHEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYI	
линкер	QRVNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTF	
GS –	PASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQ	
участо	EEAVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSN	
К	RVPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLY	
лизосо	QQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGW	
мально	GTPNFPALLKTLLNPG	
го		
расщеп		
ления –		
пропеп		
тид		
TPP1 -		
зрелый		
пептид		
TPP1		

pSvelte	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	49
059 -	FSRGGGGSRGIVEECCFRSCDLALLETYCATPARSEGGGSG	
нативн	GGGSRPRAVPTQASYSPEPDQRRTLPPGWVSLGRADPEEELS	
ый	LTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVADLV	
сигнал	RPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQAEL	
ьный	LLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGG	
пептид	LHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTSQD	
TPP1 -	VGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQAS	
vIGF2v	VARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGR	
22 –	HEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYIQR	
линкер	VNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTFPA	
GS –	SSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEE	
участо	AVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSNR	
К	VPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLYQ	
лизосо	QHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWG	
мально	TPNFPALLKTLLNPG	
го		
расщеп		
ления –		
пропеп		
тид		
TPP1 -		
зрелый		
пептид		
TPP1		
pSvelte	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	50
060 -	FSRGGGGSRGILEECCFRSCDLALLETYCATPARSEGGGSG	
нативн	GGGSRPRAVPTQASYSPEPDQRRTLPPGWVSLGRADPEEELS	
ый	LTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVADLV	

сигнал	RPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQAEL	
ьный	LLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGG	
пептид	LHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTSQD	
TPP1 -	VGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQAS	
vIGF2v	VARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGR	
24 –	HEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYIQR	
линкер	VNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTFPA	
GS –	SSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEE	
участо	AVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSNR	
к	VPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLYQ	
лизосо	QHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWG	
мально	TPNFPALLKTLLNPG	
го		
расщеп		
ления –		
пропеп		
тид		
TPP1 -		
зрелый		
пептид		
TPP1		
pSvelte	MGLQACLLGLFALILSGKCSRTLCGGELVDVLQFVCGRRGFL	51
061 -	FSRPASRVSRRSRGIVEECCFRDCDLALLETYCATPARSEGGG	
нативн	GSGGGGSRPRAVPTQASYSPEPDQRRTLPPGWVSLGRADPEE	
ый	ELSLTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVAD	
сигнал	LVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQA	
ьный	ELLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFV	
пептид	GGLHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTS	
TPP1 -	QDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQ	
vIGF2v	ASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSP	

30 –	GRHEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYI	
линкер	QRVNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTF	
GS –	PASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQ	
участо	EEAVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSN	
к	RVPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLY	
лизосо	QQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGW	
мально	GTPNFPALLKTLLNPG*	
го		
расщеп		
ления –		
пропеп		
тид		
TPP1 -		
зрелый		
пептид		
TPP1		
pSvelte	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	52
062 -	FSRGGGGSRGILEECCFRDCDLALLETYCATPARSEGGGSG	
нативн	GGGSRPRAVPTQASYSPEPDQRRTLPPGWVSLGRADPEEELS	
ый	LTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVADLV	
сигнал	RPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQAEL	
ьный	LLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGG	
пептид	LHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTSQD	
TPP1 -	VGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQAS	
vIGF2v	VARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGR	
31 –	HEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYIQR	
линкер	VNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTFPA	
GS –	SSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEE	
участо	AVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSNR	
к	VPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLYQ	
	1	

	OHO A CLEDVED COHEGOL DEEVECOOF OG ODOWDDVEOVO	
лизосо	QHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWG	
мально	TPNFPALLKTLLNPG	
го		
расщеп		
ления –		
пропеп		
тид		
TPP1 -		
зрелый		
пептид		
TPP1		
pSvelte	MGLQACLLGLFALILSGKCSRTLCGGELVDTLQFVCGDRGFL	53
063 -	FSRGGGGSRGILEECCFRECDLALLETYCATPARSEGGGSG	
нативн	GGGSRPRAVPTQASYSPEPDQRRTLPPGWVSLGRADPEEELS	
ый	LTFALRQQNVERLSELVQAVSDPSSPQYGKYLTLENVADLV	
сигнал	RPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWLSIRQAEL	
ьный	LLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGG	
пептид	LHRFPPTSSLRQRPEPQVTGTVGLHLGVTPSVIRKRYNLTSQD	
TPP1 -	VGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFGGNFAHQAS	
vIGF2v	VARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGR	
32 –	HEGQEPFLQWLMLLSNESALPHVHTVSYGDDEDSLSSAYIQR	
линкер	VNTELMKAAARGLTLLFASGDSGAGCWSVSGRHQFRPTFPA	
GS –	SSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEE	
участо	AVTKFLSSSPHLPPSSYFNASGRAYPDVAALSDGYWVVSNR	
к	VPIPWVSGTSASTPVFGGILSLINEHRILSGRPPLGFLNPRLYQ	
лизосо	QHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWG	
мально	TPNFPALLKTLLNPG	
го		
расщеп		
ления —		

пропеп		
тид		
TPP1 -		
зрелый		
пептид		
TPP1		
Wt-	MEAVAVAAAVGVLLLAGAGGAAGDEAREAAAVRALVARL	54
NAGL	LGPGPAADFSVSVERALAAKPGLDTYSLGGGGAARVRVRGS	
U	TGVAAAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGEL	
	TEATPNRYRYYQNVCTQSYSFVWWDWARWEREIDWMALN	
	GINLALAWSGQEAIWQRVYLALGLTQAEINEFFTGPAFLAW	
	GRMGNLHTWDGPLPPSWHIKQLYLQHRVLDQMRSFGMTPV	
	LPAFAGHVPEAVTRVFPQVNVTKMGSWGHFNCSYSCSFLLA	
	PEDPIFPIIGSLFLRELIKEFGTDHIYGADTFNEMQPPSSEPSYL	
	AAATTAVYEAMTAVDTEAVWLLQGWLFQHQPQFWGPAQIR	
	AVLGAVPRGRLLVLDLFAESQPVYTRTASFQGQPFIWCMLH	
	NFGGNHGLFGALEAVNGGPEAARLFPNSTMVGTGMAPEGIS	
	QNEVVYSLMAELGWRKDPVPDLAAWVTSFAARRYGVSHPD	
	AGAAWRLLLRSVYNCSGEACRGHNRSPLVRRPSLQMNTSIW	
	YNRSDVFEAWRLLLTSAPSLATSPAFRYDLLDLTRQAVQELV	
	SLYYEEARSAYLSKELASLLRAGGVLAYELLPALDEVLASDS	
	RFLLGSWLEQARAAAVSEAEADFYEQNSRYQLTLWGPEGNI	
	LDYANKQLAGLVANYYTPRWRLFLEALVDSVAQGIPFQQHQ	
	FDKNVFQLEQAFVLSKQRYPSQPRGDTVDLAKKIFLKYYPR	
	WVAGSW	
Wt-	MEAVAVAAAVGVLLLAGAGGAAGDEAREAAAVRALVARL	55
NAGL	LGPGPAADFSVSVERALAAKPGLDTYSLGGGGAARVRVRGS	
U-	TGVAAAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGEL	
HPC4	TEATPNRYRYYQNVCTQSYSFVWWDWARWEREIDWMALN	
	GINLALAWSGQEAIWQRVYLALGLTQAEINEFFTGPAFLAW	

GRMGNLHTWDGPLPPSWHIKQLYLQHRVLDQMRSFGMTPV
LPAFAGHVPEAVTRVFPQVNVTKMGSWGHFNCSYSCSFLLA
PEDPIFPIIGSLFLRELIKEFGTDHIYGADTFNEMQPPSSEPSYL
AAATTAVYEAMTAVDTEAVWLLQGWLFQHQPQFWGPAQIR
AVLGAVPRGRLLVLDLFAESQPVYTRTASFQGQPFIWCMLH
NFGGNHGLFGALEAVNGGPEAARLFPNSTMVGTGMAPEGIS
QNEVVYSLMAELGWRKDPVPDLAAWVTSFAARRYGVSHPD
AGAAWRLLLRSVYNCSGEACRGHNRSPLVRRPSLQMNTSIW
YNRSDVFEAWRLLLTSAPSLATSPAFRYDLLDLTRQAVQELV
SLYYEEARSAYLSKELASLLRAGGVLAYELLPALDEVLASDS
RFLLGSWLEQARAAAVSEAEADFYEQNSRYQLTLWGPEGNI
LDYANKQLAGLVANYYTPRWRLFLEALVDSVAQGIPFQQHQ
FDKNVFQLEQAFVLSKQRYPSQPRGDTVDLAKKIFLKYYPR
WVAGSWGLEVLFQGPEDQVDPRLIDGK
MEAVAVAAAVGVLLLAGAGGAAGDASRTLCGGELVDTLOF

56

vIGF2-

NAGL U-

HPC4

VCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYCAT PARSEGGGGGGGGRPRAVPTQAEAREAAAVRALVARLLG PGPAADFSVSVERALAAKPGLDTYSLGGGGAARVRVRGSTG VAAAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGELTE ATPNRYRYYQNVCTQSYSFVWWDWARWEREIDWMALNGI NLALAWSGQEAIWQRVYLALGLTQAEINEFFTGPAFLAWGR MGNLHTWDGPLPPSWHIKQLYLQHRVLDQMRSFGMTPVLP AFAGHVPEAVTRVFPQVNVTKMGSWGHFNCSYSCSFLLAPE DPIFPIIGSLFLRELIKEFGTDHIYGADTFNEMQPPSSEPSYLAA ATTAVYEAMTAVDTEAVWLLQGWLFQHQPQFWGPAQIRAV LGAVPRGRLLVLDLFAESOPVYTRTASFOGOPFIWCMLHNFG GNHGLFGALEAVNGGPEAARLFPNSTMVGTGMAPEGISONE VVYSLMAELGWRKDPVPDLAAWVTSFAARRYGVSHPDAGA AWRLLLRSVYNCSGEACRGHNRSPLVRRPSLQMNTSIWYNR SDVFEAWRLLLTSAPSLATSPAFRYDLLDLTROAVOELVSLY YEEARSAYLSKELASLLRAGGVLAYELLPALDEVLASDSRFL

	LGSWLEQARAAAVSEAEADFYEQNSRYQLTLWGPEGNILDY	
	ANKQLAGLVANYYTPRWRLFLEALVDSVAQGIPFQQHQFDK	
	NVFQLEQAFVLSKQRYPSQPRGDTVDLAKKIFLKYYPRWVA	
	GSWGLEVLFQGPEDQVDPRLIDGK	
vIGF2-	MEAVAVAAAVGVLLLAGAGGAAGDASRTLCGGELVDTLQF	57
17-	VCGDRGFLFSRPASRVSRRSRGIVEECCFRECDLALLETYCAT	
NAGL	PARSEGGGGSGGGSRPRAVPTQAEAREAAAVRALVARLLG	
U	PGPAADFSVSVERALAAKPGLDTYSLGGGGAARVRVRGSTG	
	VAAAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGELTE	
	ATPNRYRYYQNVCTQSYSFVWWDWARWEREIDWMALNGI	
	NLALAWSGQEAIWQRVYLALGLTQAEINEFFTGPAFLAWGR	
	MGNLHTWDGPLPPSWHIKQLYLQHRVLDQMRSFGMTPVLP	
	AFAGHVPEAVTRVFPQVNVTKMGSWGHFNCSYSCSFLLAPE	
	DPIFPIIGSLFLRELIKEFGTDHIYGADTFNEMQPPSSEPSYLAA	
	ATTAVYEAMTAVDTEAVWLLQGWLFQHQPQFWGPAQIRAV	
	LGAVPRGRLLVLDLFAESQPVYTRTASFQGQPFIWCMLHNFG	
	GNHGLFGALEAVNGGPEAARLFPNSTMVGTGMAPEGISQNE	
	VVYSLMAELGWRKDPVPDLAAWVTSFAARRYGVSHPDAGA	
	AWRLLLRSVYNCSGEACRGHNRSPLVRRPSLQMNTSIWYNR	
	SDVFEAWRLLLTSAPSLATSPAFRYDLLDLTRQAVQELVSLY	
	YEEARSAYLSKELASLLRAGGVLAYELLPALDEVLASDSRFL	
	LGSWLEQARAAAVSEAEADFYEQNSRYQLTLWGPEGNILDY	
	ANKQLAGLVANYYTPRWRLFLEALVDSVAQGIPFQQHQFDK	
	NVFQLEQAFVLSKQRYPSQPRGDTVDLAKKIFLKYYPRWVA	
	GSWGLEVLFQGPEDQVDPRLIDGK	
vIGF2-	MEAVAVAAAVGVLLLAGAGGAAGDASRTLCGGELVDTLQF	58
31-	VCGDRGFLFSRGGGGSRGILEECCFRDCDLALLETYCATPAR	
NAGL	SEGGGGSGGGSRPRAVPTQAEAREAAAVRALVARLLGPGP	
U-	AADFSVSVERALAAKPGLDTYSLGGGGAARVRVRGSTGVA	
HPC4	AAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGELTEAT	
	PNRYRYYQNVCTQSYSFVWWDWARWEREIDWMALNGINL	
	I .	

ALAWSGQEAIWQRVYLALGLTQAEINEFFTGPAFLAWGRMG NLHTWDGPLPPSWHIKQLYLQHRVLDQMRSFGMTPVLPAFA GHVPEAVTRVFPQVNVTKMGSWGHFNCSYSCSFLLAPEDPIF PIIGSLFLRELIKEFGTDHIYGADTFNEMQPPSSEPSYLAAATT AVYEAMTAVDTEAVWLLQGWLFQHQPQFWGPAQIRAVLG AVPRGRLLVLDLFAESQPVYTRTASFQGQPFIWCMLHNFGG NHGLFGALEAVNGGPEAARLFPNSTMVGTGMAPEGISQNEV VYSLMAELGWRKDPVPDLAAWVTSFAARRYGVSHPDAGAA WRLLLRSVYNCSGEACRGHNRSPLVRRPSLOMNTSIWYNRS DVFEAWRLLLTSAPSLATSPAFRYDLLDLTRQAVQELVSLYY EEARSAYLSKELASLLRAGGVLAYELLPALDEVLASDSRFLL GSWLEQARAAAVSEAEADFYEQNSRYQLTLWGPEGNILDYA NKQLAGLVANYYTPRWRLFLEALVDSVAQGIPFQQHQFDKN VFQLEQAFVLSKQRYPSQPRGDTVDLAKKIFLKYYPRWVAG **SWGLEVLFQGPEDQVDPRLIDGK** MEAVAVAAAVGVLLLAGAGGAAGDASRTLCGGELVDTLQF

vIGF2-

NAGL

32-

U

VCGDRGFLFSRGGGGSRGILEECCFRECDLALLETYCATPAR
SEGGGGSGGGGSRPRAVPTQAEAREAAAVRALVARLLGPGP
AADFSVSVERALAAKPGLDTYSLGGGGAARVRVRGSTGVA
AAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGELTEAT
PNRYRYYQNVCTQSYSFVWWDWARWEREIDWMALNGINL
ALAWSGQEAIWQRVYLALGLTQAEINEFFTGPAFLAWGRMG
NLHTWDGPLPPSWHIKQLYLQHRVLDQMRSFGMTPVLPAFA
GHVPEAVTRVFPQVNVTKMGSWGHFNCSYSCSFLLAPEDPIF
PIIGSLFLRELIKEFGTDHIYGADTFNEMQPPSSEPSYLAAATT
AVYEAMTAVDTEAVWLLQGWLFQHQPQFWGPAQIRAVLG
AVPRGRLLVLDLFAESQPVYTRTASFQGQPFIWCMLHNFGG
NHGLFGALEAVNGGPEAARLFPNSTMVGTGMAPEGISQNEV
VYSLMAELGWRKDPVPDLAAWVTSFAARRYGVSHPDAGAA

WRLLLRSVYNCSGEACRGHNRSPLVRRPSLQMNTSIWYNRS

DVFEAWRLLLTSAPSLATSPAFRYDLLDLTRQAVQELVSLYY

59

	EEARSAYLSKELASLLRAGGVLAYELLPALDEVLASDSRFLL	
	GSWLEQARAAAVSEAEADFYEQNSRYQLTLWGPEGNILDYA	
	NKQLAGLVANYYTPRWRLFLEALVDSVAQGIPFQQHQFDKN	
	VFQLEQAFVLSKQRYPSQPRGDTVDLAKKIFLKYYPRWVAG	
	SWGLEVLFQGPEDQVDPRLIDGK	
PPT1-	MKLSLVAAMLLLLWVALLLLSAARAAASRTLCGGELVDTL	60
101	QFVCGDRGFLFSRGGGGSRGILEECCFRDCDLALLETYCATP	
	ARSEGGGGGGGSRPRAVPTQDPPAPLPLVIWHGMGDSCC	
	NPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLNV	
	NSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQRC	
	PSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAGA	
	YSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGINE	
	SYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQAK	
	ETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSEE	
	WFYAHIIPFLG	
PPT1-	MASPGSLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	61
104	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCGGE	
	LVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDLALLET	
	YCATPARSE	
PPT1-	MASPGSLWLLAVALLPWTCASRALQHLAASRTLCGGELVDT	62
112	LQFVCGDRGFLFSRGGGGSRGILEECCFRDCDLALLETYCAT	
	PARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGMGDSC	
	CNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLN	
	VNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQR	
	CPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAG	
	<u> </u>	

	ı
AYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGIN	
ESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQA	
KETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSE	
EWFYAHIIPFLG	
MASPGSLWLLAVALLPWTCASRALQHLAASRTLCGGELVDT	63
LQFVCGDRGFLFSRGGGGSRGILEECCFRECDLALLETYCAT	
PARSEGGGGSGGGSRPRAVPTQDPPAPLPLVIWHGMGDSC	
CNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLN	
VNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQR	
CPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAG	
AYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGIN	
ESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQA	
KETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSE	
EWFYAHIIPFLG	
MASPGSLWLLAVALLPWTCASRALQHLAADPPAPLPLVIWH	64
GMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVE	
NSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFL	
RAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIR	
KTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADI	
NQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGF	
YRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEG	
DHLQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCG	
GELVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDLALL	
ETYCATPARSE	
MASPGSLWLLAVALLPWTCASRALQHLAADPPAPLPLVIWH	65
GMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVE	
NSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFL	
RAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIR	
KTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADI	
NQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGF	
YRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEG	
	ESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQA KETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSE EWFYAHIIPFLG MASPGSLWLLAVALLPWTCASRALQHLAASRTLCGGELVDT LQFVCGDRGFLFSRGGGGSRGILEECCFRECDLALLETYCAT PARSEGGGGSGGGGSRPRAVPTQDPPAPLPLVIWHGMGDSC CNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENSFFLN VNSQVTTVCQALAKDPKLQQGYNAMGFSQGGGFLRAVAQR CPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKTLNAG AYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQERGIN ESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYRSGQA KETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSE EWFYAHIIPFLG MASPGSLWLLAVALLPWTCASRALQHLAADPPAPLPLVIWH GMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVE NSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGGFL RAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIR KTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADI NQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGF YRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEG DHLQLSEEWFYAHIIPFLGRPRAVPTQGGSGSGSTSSSRTLCG GELVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDLALL ETYCATPARSE MASPGSLWLLAVALLPWTCASRALQHLAADPPAPLPLVIWH GMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVE NSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGGFL RAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIR KTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADI NQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGF

	DHLQLSEEWFYAHIIPFLGRPRAVPTQGGGGSGSGGGSSRT	
	LCGGELVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDL	
	ALLETYCATPARSE	
PPT1-	MASPGSLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGM	66
117	GDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVENS	
	FFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRA	
	VAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIRKT	
	LNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADINQ	
	ERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGFYR	
	SGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDH	
	LQLSEEWFYAHIIPFLGRPRAVPTQGGGGSGSGGGGSSRTLC	
	GGELVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDLAL	
	LETYCATPARSE	
PPT1-	MASPGSLWLLAVALLPWTCASRALQHLAADPPAPLPLVIWH	67
118	GMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKTLMEDVE	
	NSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFL	
	RAVAQRCPSPPMINLISVGGQHQGVFGLPRCPGESSHICDFIR	
	KTLNAGAYSKVVQERLVQAEYWHDPIKEDVYRNHSIFLADI	
	NQERGINESYKKNLMALKKFVMVKFLNDSIVDPVDSEWFGF	
	YRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEG	
	DHLQLSEEWFYAHIIPFLGRPRAVPTQGGGGSGGGSSRTLC	
	GGELVDTLQFVCGDRGFLFSRGGGGSRGILEECCFRECDLAL	
	LETYCATPARSE	

[00146] Компоненты слитых белков, предусмотренных в данном документе, дополнительно описаны ниже.

Пептиды, связывающие CI-MPR (например, пептиды vIGF2)

[00147] В данном документе предусмотрены пептиды, которые связывают CI-MPR. Слитые белки, содержащие такие пептиды и терапевтический белок,

при экспрессии из вектора для генной терапии нацеливают терапевтический белок на клетки, где в нем есть необходимость, повышают для таких клеток уровень поглощения клетками и нацеливают терапевтический белок на субклеточный компартмент (например, лизосому). В некоторых вариантах осуществления пептид слит с N-концом терапевтического пептида. В некоторых вариантах осуществления пептид слит с С-концом терапевтического белка. В некоторых вариантах осуществления пептид представляет собой пептид vIGF2. Некоторые пептиды vIGF2 сохраняют высокую аффинность связывания с CI-MPR, в то время как их аффинность к рецептору IGF1, рецептору инсулина и IGF-связывающим белкам (IGFBP) снижена или устранена. Некоторые пептиды vIGF2 повышают аффинность связывания с CI-MPR. Таким образом, некоторые варианты пептидов IGF2 являются в существенной степени более селективными и характеризуются меньшими рисками в отношении безопасности по сравнению с IGF2 wt. Пептиды vIGF2, представленные в данном документе, включают пептиды, характеризуются аминокислотной последовательностью под SEQ ID NO: 31, 120 и 121. Варианты пептидов IGF2 дополнительно включают пептиды с вариантами аминокислот в положениях 6, 26, 27, 31-38, 43, 48, 49, 50, 54, 55 или 65 по сравнению с IGF2 wt (SEQ ID NO: 68). В некоторых вариантах осуществления vIGF2 характеризуются последовательностью, пептид предусматривающей одну или несколько замен из группы, состоящей из E6R, F26S, Y27L, V43L, F48T, R49S, S50E, S50I, A54R, L55R и K65R. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены E6R. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены F26S. В некоторых вариантах осуществления vIGF2 характеризуется последовательностью, пептид Y27L. В характеризующейся наличием замены некоторых вариантах осуществления vIGF2 характеризуется последовательностью, пептид V43L. В характеризующейся наличием замены некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, F48T. В характеризующейся замены некоторых наличием вариантах

характеризуется осуществления пептид vIGF2 последовательностью, характеризующейся наличием замены R49S. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены S50I. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены S50E. В некоторых вариантах осуществления пептид vIGF2, характеризующийся последовательностью, характеризующейся наличием замены S50E, характеризуется повышенным связыванием с CI-MPR. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены A54R. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены L55R. В некоторых вариантах осуществления пептид vIGF2 характеризуется последовательностью, характеризующейся наличием замены K65R. В некоторых vIGF2 осуществления пептид характеризуется последовательностью, характеризующейся наличием замен E6R, F26S, Y27L, V43L, F48T, R49S, S50I, A54R и L55R. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией одной аминокислоты. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией двух аминокислот. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией трех аминокислот. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией четырех аминокислот. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией четырех аминокислот и наличием замен E6R, Y27L и K65R. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией четырех аминокислот и наличием замен E6R и Y27L. В некоторых вариантах осуществления характеризуется N-концевой делецией пяти аминокислот. В вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией шести аминокислот. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией семи аминокислот. В некоторых вариантах осуществления пептид vIGF2 характеризуется N-концевой делецией семи аминокислот и наличием замен Y27L и K65R. В некоторых вариантах осуществления значение Втах для связывания СІМРК с помощью SEQ ID NO:83 повышено по сравнению с SEQ ID NO:80.

Таблица 3.	Аминокислотные последовательности	IGF2
(вариантные ост	гатки подчеркнуты)	
Пептид	Последовательность	SEQ
		ID NO
Дикий тип	AYRPSETLCGGELVDTLQFVCGDRGFYFS	68
	RPASRVSRRSRGIVEECCFRSCDLALLETY	
	CATPAKSE	
F26S	AYRPSETLCGGELVDTLQFVCGDRG <u>S</u> YFS	69
	RPASRVSRRSRGIVEECCFRSCDLALLETY	
	CATPAKSE	
Y27L	AYRPSETLCGGELVDTLQFVCGDRGF <u>L</u> FS	70
	RPASRVSRRSRGIVEECCFRSCDLALLETY	
	CATPAKSE	
V43L	AYRPSETLCGGELVDTLQFVCGDRGFYFS	71
	RPASRVSRRSRGI <u>L</u> EECCFRSCDLALLETY	
	CATPAKSE	
F48T	AYRPSETLCGGELVDTLQFVCGDRGFYFS	72
	RPASRVSRRSRGIVEECC <u>T</u> RSCDLALLETY	
	CATPAKSE	
R49S	AYRPSETLCGGELVDTLQFVCGDRGFYFS	73
	RPASRVSRRSRGIVEECCF <u>S</u> SCDLALLETY	
	CATPAKSE	
S50I	AYRPSETLCGGELVDTLQFVCGDRGFYFS	74
	RPASRVSRRSRGIVEECCFR <u>I</u> CDLALLETY	
	CATPAKSE	

A54R	AYRPSETLCGGELVDTLQFVCGDRGFYFS	75
	RPASRVSRRSRGIVEECCFRSCDLRLLETY	7.5
	CATPAKSE	
1.550		7.0
L55R	AYRPSETLCGGELVDTLQFVCGDRGFYFS	76
	RPASRVSRRSRGIVEECCFRSCDLA <u>R</u> LETY	
	CATPAKSE	
F26S, Y27L,	AYRPSETLCGGELVDTLQFVCGDRG <u>SL</u> FS	77
V43L, F48T,	RPASRVSRRSRGI <u>L</u> EECC <u>TSI</u> CDL <u>RR</u> LETY	
R49S, S50I,	CATPAKSE	
A54R, L55R		
Δ1-6, Y27L,	TLCGGELVDTLQFVCGDRGF <u>L</u> FSRPASRV	78
K65R	SRRSRGIVEECCFRSCDLALLETYCATPAR	
	SE	
Δ 1-7, Y27L,	LCGGELVDTLQFVCGDRGF <u>L</u> FSRPASRVS	79
K65R	RRSRGIVEECCFRSCDLALLETYCATPARS	
	Е	
Δ 1-4, E6R,	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	80
Y27L, K65R	RVSRRSRGIVEECCFRSCDLALLETYCATP	
	A <u>R</u> SE	
Δ1-4, E6R, Y27L	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	81
	RVSRRSRGIVEECCFRSCDLALLETYCATP	
	AKSE	
E6R	AYRPSRTLCGGELVDTLQFVCGDRGFYFS	82
	RPASRVSRRSRGIVEECCFRSCDLALLETY	
	CATPAKSE	
Δ 1-4, E6R,	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	83
Y27L, S50E,	RVSRRSRGIVEECCFR <u>E</u> CDLALLETYCATP	
K65R	ARSE	
N-концевой	GGGGSGGGSRPRAVPTQ	84
расщепляемый		

вариант IGF2		
С-концевой	YIPAKQGLQGAQMGQPGGGGSGGG	85
расщепляемый		
вариант IGF2		
С-концевой	RPRAVPTQGGSGSGSTSS	86
расщепляемый		
вариант IGF2		
N-концевой	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	87
расщепляемый	RVSRRSRGIVEECCFRSCDLALLETYCATP	
вариант IGF2	ARSEGGGSGGGSRPRAVPTQ	
С-концевой	YIPAKQGLQGAQMGQPGGGGSGGGSRT	88
расщепляемый	LCGGELVDTLQFVCGDRGFLFSRPASRVS	
вариант IGF2	RRSRGIVEECCFRSCDLALLETYCATPARS	
	E	
С-концевой	RPRAVPTQGGSGSGSTSSSRTLCGGELVD	89
расщепляемый	TLQFVCGDRGFLFSRPASRVSRRSRGIVEE	
вариант IGF2	CCFRECDLALLETYCATPARSE	
vIGF2-1	SRTLCGGELVDT <u>N</u> QFVCGDRGFLFSR <u>G</u> AS	90
(vIGF2_1_NGG	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
WGMG)	P M R G E	
vIGF2-2	SRTLCGGELVDTLQFVCGDRGFLFSR G AS	91
(vIGF2_2_GGW	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
GMG)	P M R G E	
vIGF2-3	SRTLCGGELVDT N QFVCGDRGFLFSR G AS	92
(vIGF2_3_NGG	RVSR G SRGIVEECCFR G CDLALLETYCAT	
GMG)	P M R G E	
vIGF2-4	SRTLCGGELVDTLQFVCGDRGFLFSRPIVE	93
(vIGF2_4_Δ32-	ECCFRSCDLALLETYCATPARSE	
41, 53aa)		
vIGF2-5 (vIGF2	SRTLCGGELVDTLQFVCGDRGFLFSRGIV	94

Δ 30-39, 53aa)	EECCFRSCDLALLETYCATPARSE	
vIGF2-6 (vIGF2	SRTLCGGELVDTLQFVCGDRGFLFSRPAGI	95
Δ 33-40, 55aa)	VEECCFRSCDLALLETYCATPARSE	
vIGF2-7 (vIGF2	SRTLCGGEL D DTLQFVCGDRG A L R SRGI D	96
Δ 30-	EECCFRSCDLALLETYCATPARSE	
39/V14D/F28R/		
V43D/F26A)		
vIGF2-8	SRTLCGGELVDTLQFVCG R RG E LFSRPAS	97
(vIGF2_8_REE)	RVSRRSRGIVEECCFR <u>E</u> CDLALLETYC	
	ATPARSE	
vIGF2-9	SRTLCGGELVDTLQFVCG R RG E LFSRPAG	98
(vIGF2_9_Δ 30-	IVEECCFR <u>E</u> CDLALLETYCATPARSE	
39-REE; vIGF2)		
vIGF2-10	SRTLCGGELVDTLQFVCG R RGFLFSRPAS	99
(vIGF2_1Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	
vIGF2 D23R)	ARSE	
vIGF2-11	SRTLCGGELVDTLQWVCGDRGFLFSRPAS	100
(vIGF2_2Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	
vIGF2 F19W)	ARSE	
vIGF2-12	SRTLCGGELVD <u>W</u> LQFVCGDRGFLFSRPAS	101
(vIGF2_3Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	
vIGF2 T16W)	ARSE	
vIGF2-13	SRTLCGGELVDTLQFVCG K RGFLFSRPAS	102
(vIGF2_4Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	
vIGF2 D23K)	ARSE	
vIGF2-14	SRTLCGGELVD <u>Y</u> LQFVCGDRGFLFSRPAS	103
(vIGF2_5Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	
vIGF2 T16Y)	ARSE	
vIGF2-15	SRTLCGGELVDTLQFVCGDRG E LFSRPAS	104
(vIGF2_6Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	

vIGF2 F26E)	ARSE	
vIGF2-16	SRTLCGGELVD <u>V</u> LQFVCGDRGFLFSRPAS	105
(vIGF2_7Q;	RVSRRSRGIVEECCFRSCDLALLETYCATP	
vIGF2 T16V)	ARSE	
vIGF2-17	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	106
(vIGF2_8Q;	RVSRRSRGIVEECCFR <u>E</u> CDLALLETYCATP	
vIGF2 S50E)	ARSE	
vIGF2-18	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	107
(vIGF2_9Q;	RVSRRSRGIVEECCFR D CDLALLETYCATP	
vIGF2 S50D)	ARSE	
vIGF2-19	SRTLCGGELVDTLQFVCGDRGSLFSRPAS	108
(vIGF2 F26S	RVSRRSRGILEECCFRSCDLALLETYCATP	
V43L)	ARSE	
vIGF2-20	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	109
(vIGF2 V43L)	RVSRRSRGILEECCFRSCDLALLETYCATP	
	ARSE	
vIGF2-21	SRTLCGGELEDTLQFVCGDRGSLRSRPAS	110
(vIGF2_ESRE;	RVSRRSRGIEEECCFRSCDLALLETYCATP	
vIGF2 V14E	ARSE	
F26S F28R		
V43E)		
vIGF2-22	SRTLCGGELVDTLQFVCGDRGFLFSRGGG	111
$vIGF2 \Delta 31-$	GSRGIVEECCFRSCDLALLETYCATPARSE	
38GGGG)		
vIGF2-23	SRTLCGGELVDTLQFVCGDRGFLFSGGGS	112
$(vIGF2 \Delta 30-$	GIVEECCFRSCDLALLETYCATPARSE	
40GGGG)		
vIGF2-24	SRTLCGGELVDTLQFVCGDRGFLFSRGGG	113
(vIGF2 Δ 31-	GSRGILEECCFRSCDLALLETYCATPARSE	
38GGGG V43L)		

vIGF2-25	SRTACGGELVDTLQFVCGDRGFLFSRPAS	114
(vIGF2 L8A)	RVSRRSRGIVEECCFRSCDLALLETYCATP	
	ARSE	
vIGF2-26	SQAACGGELVDTLQFVCGDRGFLFSRPAS	115
(vIGF2 R6Q	RVSRRSRGIVEECCFRSCDLALLETYCATP	
T7A L8A)	ARSE	
vIGF2-27	SRTLCGGELVDTLQFVCGDEGFLFSRPAS	116
(vIGF2 R24E	EVSEESRGIVEECCFRSCDLALLETYCATP	
R34E R37E	ARSE	
R38E)		
vIGF2-28	SRTLCGGELVDTLQFVCGDEGFLFSRPAS	117
(vIGF2 R24E	EVSRRSRGIVEECCFRSCDLALLETYCATP	
R34E)	ARSE	
vIGF2-29	SRTLCGGELVDTLQFVCGRRGFLFSRPAS	118
(vIGF2 D23R	RVSRRSRGIVEECCFRDCDLALLETYCATP	
S40D)	ARSE	
vIGF2-30	SRTLCGGELVDVLQFVCGRRGFLFSRPAS	119
(vIGF2 T16V	RVSRRSRGIVEECCFRDCDLALLETYCATP	
D23R S50D)	ARSE	
vIGF2-31	SRTLCGGELVDTLQFVCGDRGFLFSRGGG	120
$ (vIGF2 \Delta 31-$	GSRGILEECCFRDCDLALLETYCATPARSE	
38GGGG V43L		
S50D)		
vIGF2-32	SRTLCGGELVDTLQFVCGDRGFLFSRGGG	121
(vIGF2 Δ 31-	GSRGILEECCFRECDLALLETYCATPARSE	
38GGGG V43L		
S50E)		
vIGF2-33	SRTLCGGELVDTLQFVCGDRGFLFRLPSR	122
(vIGF2-N1)	PVSRHSHRRSRGIVEECCFQRCNLALLETY	
L		

	CATPARSE	
vIGF2-34	SRTLCGGELVDTLQFVCGDRGFLFRLPSR	123
(vIGF2-N1 V43L	PVSRHSHRRSRGILEECCFQECNLALLETY	
S50E)	CATPARSE	
vIGF2-1 R38G	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	124
	RVSR G SRGIVEECCFRSCDLALLETYCATP	
	ARSE	
vIGF2-2 R38G,	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	125
E45W	RVSR G SRGIVE W CCFRSCDLALLETYCAT	
	PARSE	
vIGF2-3 R38G,	SRTLCGGELVDTLQFVCGDRGFLFSRPAS	126
E45W, S50G	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
	PARSE	
vIGF2-4 P31G,	SRTLCGGELVDTLQFVCGDRGFLFSR G AS	127
R38G, E45W,	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
S50G	PARSE	
vIGF2-5 L17N,	SRTLCGGELVDT <u>N</u> QFVCGDRGFLFSR <u>G</u> AS	128
P31G, R38G,	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
E45W, S50G	PARSE	
vIGF2-6 L17N,	SRTLCGGELVDT <u>N</u> QFVCGDRGFLFSR <u>G</u> AS	129
P31G, R38G,	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
E45W, S50G,	PAR <u>G</u> E	
S66G		
vIGF2-7 L17N,	SRTLCGGELVDT <u>N</u> QFVCGDRGFLFSR <u>G</u> AS	130
P31G, R38G,	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
E45W, S50G,	P <u>M</u> R <u>G</u> E	
A64M, S66G		
vIGF2-8 S5L,	<u>L</u> RTLCGGELVDT <u>N</u> QFVCGDRGFLFSR <u>G</u> AS	131
L17N, P31G,	RVSR G SRGIVE W CCFR G CDLALLETYCAT	
R38G, E45W,	P <u>M</u> R <u>G</u> E	

Таблица 4. Кодирующие последовательности ДНК IGF2		
Пептид	Последовательность ДНК	SEQ
		ID NO
Зрелый IGF2 wt	GCTTACCGCCCCAGTGAGACCCTGTGCG	132
	GCGGGGAGCTGGTGGACACCCTCCAGTT	
	CGTCTGTGGGGACCGCGGCTTCTACTTC	
	AGCAGGCCCGCAAGCCGTGTGAGCCGT	
	CGCAGCCGTGGCATCGTTGAGGAGTGCT	
	GTTTCCGCAGCTGTGACCTGGCCCTCCT	
	GGAGACGTACTGTGCTACCCCCGCCAAG	
	TCCGAG	
vIGF2 Δ 1-4,	TCTAGAACACTGTGCGGAGGGGAGCTT	133
E6R, Y27L,	GTAGACACTCTTCAGTTCGTGTGGAG	
K65R	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2 Δ 1-4,	TCTAGAACACTGTGCGGAGGGGAGCTT	134
E6R, Y27L,	GTAGACACTCTTCAGTTCGTGTGGAG	
S50E, K65R	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGGAGTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-1	TCTAGAACACTGTGCGGAGGGGAGCTT	135
(vIGF2_1_NGG	GTAGACACTAACCAGTTCGTGTGGAG	

WGMG)	ATCGCGGGTTCCTCTCTCTCGCGGCGC	
	TTCCAGAGTTTCACGGGGCTCTAGGGGT	
	ATAGTAGAGTGGTGTTGTTTCAGGGGCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAATGAGGGGCGAA	
vIGF2-2	TCTAGAACACTGTGCGGAGGGGAGCTT	136
(vIGF2_2_GGW	GTAGACACTCTTCAGTTCGTGTGGAG	
GMG)	ATCGCGGGTTCCTCTTCTCTCGCGGCGC	
	TTCCAGAGTTTCACGGGGCTCTAGGGGT	
	ATAGTAGAGTGGTGTTGTTTCAGGGGCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAATGAGGGGCGAA	
vIGF2-3	TCTAGAACACTGTGCGGAGGGGAGCTT	137
(vIGF2_3_NGG	GTAGACACTAACCAGTTCGTGTGTGGAG	
GMG)	ATCGCGGGTTCCTCTTCTCTCGCGGCGC	
	TTCCAGAGTTTCACGGGGCTCTAGGGGT	
	ATAGTAGAGGAGTGTTGTTTCAGGGGCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAATGAGGGGCGAA	
vIGF2-4	TCTAGAACACTGTGCGGAGGGGAGCTT	138
(vIGF2_4_Δ32-	GTAGACACTCTTCAGTTCGTGTGGAG	
41, 53aa)	ATCGCGGGTTCCTCTTCTCTCGCCCCAT	
	AGTAGAGGAGTGTTGTTTCAGGTCCTGT	
	GACTTGGCGCTCCTCGAGACCTATTGCG	
	CGACGCCAGCCAGGTCCGAA	
vIGF2-5 (vIGF2	TCTAGAACACTGTGCGGAGGGGAGCTT	139
Δ 30-39, 53aa)	GTAGACACTCTTCAGTTCGTGTGGAG	
	ATCGCGGGTTCCTCTTCTCTAGGGGTAT	
	AGTAGAGGAGTGTTGTTTCAGGTCCTGT	
	GACTTGGCGCTCCTCGAGACCTATTGCG	
	CGACGCCAGCCAGGTCCGAA	

vices 6 (vices	TCTAGAACACTGTGCGGAGGGGAGCTT	140
vIGF2-6 (vIGF2		140
Δ 33-40, 55aa)	GTAGACACTCTTCAGTTCGTGTGGAG	
	ATCGCGGGTTCCTCTCTCTCGCCCCGCT	
	GGTATAGTAGAGGAGTGTTGTTTCAGGT	
	CCTGTGACTTGGCGCTCCTCGAGACCTA	
	TTGCGCGACGCCAGCCAGGTCCGAA	
vIGF2-7 (vIGF2	TCTAGAACACTGTGCGGAGGGGAGCTT	141
Δ 30-	GACGACACTCTTCAGTTCGTGTGGAG	
39/V14D/F28R/	ATCGCGGGGCCCTCAGATCTAGGGGTAT	
V43D/F26A)	AGACGAGGAGTGTTGTTTCAGGTCCTGT	
	GACTTGGCGCTCCTCGAGACCTATTGCG	
	CGACGCCAGCCAGGTCCGAA	
vIGF2-8	TCTAGAACACTGTGCGGAGGGGAGCTT	142
(vIGF2_8_REE)	GTAGACACTCTTCAGTTCGTGTGGAA	
	GACGCGGGAGCTCTTCTCTCGCCCCGC	
	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
	ATAGTAGAGGAGTGTTGTTTCAGGGAGT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-9	TCTAGAACACTGTGCGGAGGGGAGCTT	143
(vIGF2_9_Δ 30-	GTAGACACTCTTCAGTTCGTGTGGAA	
39-REE; vIGF2	GACGCGGGAGCTCTTCTCTCGCCCCGC	
Homerun)	TGGTATAGTAGAGGAGTGTTGTTTCAGG	
	GAGTGTGACTTGGCGCTCCTCGAGACCT	
	ATTGCGCGACGCCAGCCAGGTCCGAA	
vIGF2-10	TCTAGAACACTGTGCGGAGGGGAGCTT	144
(vIGF2_1Q;	GTAGACACTCTTCAGTTCGTGTGGAC	
vIGF2 D23R)	GTCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	

	GCGACGCCAGCCAGGTCCGAA	
vIGF2-11	TCTAGAACACTGTGCGGAGGGGAGCTT	145
(vIGF2_2Q;	GTAGACACTCTTCAGTGGGTGTGTGGAG	
vIGF2 F19W)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-12	TCTAGAACACTGTGCGGAGGGGAGCTT	146
(vIGF2_3Q;	GTAGACTGGCTTCAGTTCGTGTGGAG	
vIGF2 T16W)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-13	TCTAGAACACTGTGCGGAGGGGAGCTT	147
(vIGF2_4Q;	GTAGACACTCTTCAGTTCGTGTGGAA	
vIGF2 D23K)	AGCGCGGGTTCCTCTCTCTCGCCCCGC	
	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
	ATAGTAGAGGAGTGTTGTTTCAGGTCCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-14	TCTAGAACACTGTGCGGAGGGGAGCTT	148
(vIGF2_5Q;	GTAGACTATCTTCAGTTCGTGTGGAG	
vIGF2 T16Y)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-15	TCTAGAACACTGTGCGGAGGGGAGCTT	149
(vIGF2_6Q;	GTAGACACTCTTCAGTTCGTGTGGAG	

vIGF2 F26E)	ATCGCGGGGAGCTCTTCTCTCGCCCCGC	
,	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
	ATAGTAGAGGAGTGTTGTTTCAGGTCCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-16	TCTAGAACACTGTGCGGAGGGGAGCTT	150
(vIGF2_7Q;	GTAGACGTTCTTCAGTTCGTGTGGAG	
vIGF2 T16V)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-17	TCTAGAACACTGTGCGGAGGGGAGCTT	151
(vIGF2_8Q;	GTAGACACTCTTCAGTTCGTGTGGAG	
vIGF2 S50E)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGGAGTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-18	TCTAGAACACTGTGCGGAGGGGAGCTT	152
(vIGF2_9Q;	GTAGACACTCTTCAGTTCGTGTGGAG	
vIGF2 S50D)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TAGTAGAGGAGTGTTGTTTCAGGGACTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-19	TCTAGAACACTGTGCGGAGGGGAGCTT	153
(vIGF2 F26S	GTAGACACTCTTCAGTTCGTGTGGAG	
V43L)	ATCGCGGGAGCCTCTTCTCTCGCCCCGC	
	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
	ATACTGGAGGAGTGTTGTTTCAGGTCCT	
	1	I

	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-20	TCTAGAACACTGTGCGGAGGGGAGCTT	154
(vIGF2 V43L)	GTAGACACTCTTCAGTTCGTGTGGAG	
	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
	TCCAGAGTTTCACGGAGGTCTAGGGGTA	
	TACTGGAGGAGTGTTGTTTCAGGTCCTG	
	TGACTTGGCGCTCCTCGAGACCTATTGC	
	GCGACGCCAGCCAGGTCCGAA	
vIGF2-21	TCTAGAACACTGTGCGGAGGGGAGCTT	155
(vIGF2_ESRE;	GAGGACACTCTTCAGTTCGTGTGGAG	
vIGF2 V14E	ATCGCGGGAGCCTCAGATCTCGCCCCGC	
F26S F28R	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
V43E)	ATAGAGGAGGAGTGTTGTTTCAGGTCCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-22	TCTAGAACACTGTGCGGAGGGGAGCTT	156
$ (vIGF2 \Delta 31-$	GTAGACACTCTTCAGTTCGTGTGGAG	
38GGGG)	ATCGCGGGTTCCTCTCTCTCGCGGAGG	
	TGGAGGTTCTAGGGGTATAGTAGAGGA	
	GTGTTGTTTCAGGTCCTGTGACTTGGCG	
	CTCCTCGAGACCTATTGCGCGACGCCAG	
	CCAGGTCCGAA	
vIGF2-23	TCTAGAACACTGTGCGGAGGGGAGCTT	157
$(vIGF2 \Delta 30-$	GTAGACACTCTTCAGTTCGTGTGGAG	
40GGGG)	ATCGCGGGTTCCTCTTCTCTGGTGGAGG	
	TTCTGGTATAGTAGAGGAGTGTTGTTTC	
	AGGTCCTGTGACTTGGCGCTCCTCGAGA	
	CCTATTGCGCGACGCCAGCCAGGTCCGA	
	A	
vIGF2-24	TCTAGAACACTGTGCGGAGGGGAGCTT	158

38GGGG V43L) ATCGCGGGTTCCTCTTCTCTCGCGGAGG TGGAGGTTCTAGGGGTATACTGGAGGA GTGTTGTTTCAGGTCCTGTGACTTGGCG CTCCTCGAGACCTATTGCGCGACGCCAG CCAGGTCCGAA VIGF2-25 (vIGF2 L8A) GTAGACACTCTTCAGTTCGTGTGTGGAG ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTCCTGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q T7A L8A) ATCGCGGGTTCCTCTTCTCTCTCCCCCCGCT TCCAGAGTTTCACGTCGGAGGGAGCTT TCCAGAGTTTCACGTCGTGTGTGGAG TTA L8A) ATCGCGGGTTCCTCTTCTCTCTCCCCCCGCT TCCAGAGTTTCACGTCTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E R37E ATGAGAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC CTCCAGAGCTTCAGTTCGTGTGTGGAG ATGAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC GTAGACACTCTTCAGTTCGTTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA VIGF2-28 TCTAGAACACTCTTCAGTTCTTCTCCCCCCCC GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA VIGF2-28 TCTAGAACACTGTGCGGAGGGAACCTATTG CGCGACGCCAGCCAGGTCCGAA	$(vIGF2 \Delta 31-$	GTAGACACTCTTCAGTTCGTGTGGAG	
GTGTTGTTTCAGGTCCTGTGACTTGGCG CTCCTCGAGACCTATTGCGCGACGCCAG CCAGGTCCGAA VIGF2-25 (vIGF2 L8A) GTAGACACTCTTCAGTTCGTGTGTGAG ATCGCGGGTTCCTCTCTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTCTTCAGTTCTTCAGTTCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q T7A L8A) ATCGCGGGTTCCTCTTCTCTCTCGCCCCGCT TCCAGAGTTTCACGTCGTGTGGAG TTCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTCTCTCTCTCTCTCTCCCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTTTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC R38E) TTCCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTTCAGGGGTA ATAGTAGAGGAGTTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACCCCAGCCAGGTCCGAA	38GGGG V43L)	ATCGCGGGTTCCTCTCTCTCGCGGAGG	
CTCCTCGAGACCTATTGCGCGACGCCAG CCAGGTCCGAA VIGF2-25 (vIGF2 L8A) GTAGACACTCTTCAGTTCGTGTGGAG ATCGCGGGTTCCTCTCTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGGTACTTCAGGTCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q T7A L8A) ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGTTCGTGTGTGAG ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCGCCCCGC R38E) TTCCGAGGTTTCAGAGGAACTTTCAGTTCGTGTGGAG ATGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC GTGACTTCAGGGTTCAGAGGAACTCTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA		TGGAGGTTCTAGGGGTATACTGGAGGA	
VIGF2-25 (vIGF2 L8A) GTAGACACTCTTCAGTTCGTGTGGAG ATCGCGGGTTCCTCTTCTCTCTCCCCCGCT TCCAGAGTTTCACGAGGTCTAGGGTA TAGTAGAGGAGTTTCACGAGGTCTAGGGTA TAGTAGAGGAGTCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGTGGAG TTCCAGGCCGCTGCGGAGGGAGCTT TCCAGGCCGCTGCGGAGGGAGCTT TCCAGGCCGCTCTCAGTTCGTGTGGAG TTAL8A) ATCGCGGGTTCCTCTTCTCTCTCCCCCCGCT TCCAGAGTTTCACGAGGTCTAGGGGTA TAGTAGAGGAGTCTTCAGTTCTTCAGTTCGTGTGGAG TAGTAGAGGAGTTTCACGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTTTCAGGACCTATTG CGCGACCCCGCCCCCCCCCC		GTGTTGTTTCAGGTCCTGTGACTTGGCG	
VIGF2-25 (vIGF2 L8A) TCTCAGGCCGCGTGCGGAGGGAGCTT (VIGF2 L8A) TCGCGGGTTCCTCTCTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTCTTCAGGTCCTG TGACTTGGCGCCCGCTCTGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q T7A L8A) ATCGCGGGTTCCTCTCTCTCTCGCCCCGCT TCCAGAGTTTCAGGTCCTG TGACTTCAGGCCGCTGCGAGAGCTT TCCAGAGTTCACGTTCGTGTGGAG TCCAGAGTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTTCTCTCTCTCCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTCTTCAGTTCGTGTGTGC GCGACGCCAGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC R38E) TCCCAGAGTTTCAGAGCAATCTAGGGGT ATAGTAGAGGAATCTAGGGGT ATAGTAGAGGAATCTAGGGGT ATAGTAGAGGAGTTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA		CTCCTCGAGACCTATTGCGCGACGCCAG	
(vIGF2 L8A) GTAGACACTCTTCAGTTCGTGTGGAG ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 TCTCAGGCCGCGTGCGGAGGGGAGCTT (vIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 TCTAGAACACTGTGCGGAGGGAGCTT (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTTTCAGAGGACCTATTG CGCGACGCCAGCCCAGGTCCTCAGACCCTATTG CGCGACGCCAGCCCAGGTCCTCAGACCCTATTG CGCGACGCCAGCCCAGGTCCTCAGACCCTATTG CGCGACGCCAGCCCAGGTCCTCAGACCCTATTG CGCGACGCCAGCCCAGGTCCCGAA		CCAGGTCCGAA	
ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (VIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTCTCTCTCTCCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 TCTAGAACACTGTGCGGAGGGAGCTT (VIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCCAGGTCCGAA	vIGF2-25	TCTCAGGCCGCGTGCGGAGGGGAGCTT	159
TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTTCTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGCGCGCTCCTCTTCTCTCCCCCCCC GTGACTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	(vIGF2 L8A)	GTAGACACTCTTCAGTTCGTGTGGAG	
TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTTCTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCGCCCCGC R38E) TCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTTTCAGGGGT ATAGTAGAGGAGTTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA		ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-26 (vIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 TCTAGAACACTGTGCGGAGGGAGCTT (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCCC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGCTCCTCAGTTCTCTCTCCCCCCCC GTGACTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGCCCAGGTCCGAA		TCCAGAGTTTCACGGAGGTCTAGGGGTA	
VIGF2-26 (VIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTTCTCTCTCCCCCCGCT TCCAGAGTTTCACGGAGGTCCTG TAGTAGAGGAGTGTTGTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (VIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCGCCCCGC R38E) TCCAGAGTTTCAGGTCCTG TGACTTGCGGGAGGGGAG		TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
vIGF2-26 (vIGF2 R6Q GTAGACACTCTTCAGTTCGTGTGGAG T7A L8A) ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA vIGF2-27 TCTAGAACACTGTGCGGAGGGGAGCTT (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCCCCCC R38E) TCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA		TGACTTGGCGCTCCTCGAGACCTATTGC	
(vIGF2R6QGTAGACACTCTTCAGTTCGTGTGTGGAGT7A L8A)ATCGCGGGTTCCTCTTCTCTCGCCCCGCTTCCAGAGTTTCACGGAGGTCTAGGGGTATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAAvIGF2-27TCTAGAACACTGTGCGGAGGGGAGCTT(vIGF2R24EGTAGACACTCTTCAGTTCGTGTGGAGR34ER37EATGAGGGGTTCCTCTTCTCTCGCCCCGCR38E)TTCCGAGGTTTCAGAGGAATCTAGGGGTATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAA		GCGACGCCAGCCAGGTCCGAA	
T7A L8A) ATCGCGGGTTCCTCTTCTCTCGCCCCGCT TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCCGCCCCGC R38E) TCCGAGGTTTCAGAGCAATCTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	vIGF2-26	TCTCAGGCCGCGTGCGGAGGGGAGCTT	160
TCCAGAGTTTCACGGAGGTCTAGGGGTA TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 TCTAGAACACTGTGCGGAGGGGAGCTT (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCGCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	(vIGF2 R6Q	GTAGACACTCTTCAGTTCGTGTGGAG	
TAGTAGAGGAGTGTTGTTTCAGGTCCTG TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 TCTAGAACACTGTGCGGAGGGGAGCTT (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTCTCTCCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	T7A L8A)	ATCGCGGGTTCCTCTTCTCTCGCCCCGCT	
TGACTTGGCGCTCCTCGAGACCTATTGC GCGACGCCAGCCAGGTCCGAA VIGF2-27 (VIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCGCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA		TCCAGAGTTTCACGGAGGTCTAGGGGTA	
VIGF2-27 TCTAGAACACTGTGCGGAGGGGAGCTT 161 (vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGTGGAG R34E R37E ATGAGGGGTTCCTCTTCTCTCGCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGCCAGGTCCGAA		TAGTAGAGGAGTGTTGTTTCAGGTCCTG	
vIGF2-27TCTAGAACACTGTGCGGAGGGGAGCTT161(vIGF2R24EGTAGACACTCTTCAGTTCGTGTGTGGAGR34ER37EATGAGGGGTTCCTCTTCTCTCGCCCCGCR38E)TTCCGAGGTTTCAGAGGAATCTAGGGGTATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAA		TGACTTGGCGCTCCTCGAGACCTATTGC	
(vIGF2R24EGTAGACACTCTTCAGTTCGTGTGTGAGR34ER37EATGAGGGGTTCCTCTTCTCTCGCCCCGCR38E)TTCCGAGGTTTCAGAGGAATCTAGGGGTATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAA		GCGACGCCAGCCAGGTCCGAA	
R34E R37E ATGAGGGGTTCCTCTCTCTCGCCCCGC R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	vIGF2-27	TCTAGAACACTGTGCGGAGGGGAGCTT	161
R38E) TTCCGAGGTTTCAGAGGAATCTAGGGGT ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	(vIGF2 R24E	GTAGACACTCTTCAGTTCGTGTGGAG	
ATAGTAGAGGAGTGTTGTTTCAGGTCCT GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	R34E R37E	ATGAGGGTTCCTCTCTCTCGCCCCGC	
GTGACTTGGCGCTCCTCGAGACCTATTG CGCGACGCCAGCCAGGTCCGAA	R38E)	TTCCGAGGTTTCAGAGGAATCTAGGGGT	
CGCGACGCCAGCCAGGTCCGAA		ATAGTAGAGGAGTGTTGTTTCAGGTCCT	
		GTGACTTGGCGCTCCTCGAGACCTATTG	
vIGF2-28 TCTAGAACACTGTGCGGAGGGGAGCTT 162		CGCGACGCCAGCCAGGTCCGAA	
	vIGF2-28	TCTAGAACACTGTGCGGAGGGGAGCTT	162
(vIGF2 R24E GTAGACACTCTTCAGTTCGTGTGGAG	vIGF2 R24E	GTAGACACTCTTCAGTTCGTGTGGAG	
R34E) ATGAGGGGTTCCTCTCTCTCGCCCCGC	R34E)	ATGAGGGGTTCCTCTCTCTCGCCCCGC	
TTCCGAGGTTTCACGGAGGTCTAGGGGT		TTCCGAGGTTTCACGGAGGTCTAGGGGT	

	ATAGTAGAGGAGTGTTGTTTCAGGTCCT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-29	TCTAGAACACTGTGCGGAGGGGAGCTT	163
(vIGF2 D23R	GTAGACACTCTTCAGTTCGTGTGGAA	
S40D)	GACGCGGGTTCCTCTCTCTCGCCCCGC	
	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
	ATAGTAGAGGAGTGTTGTTTCAGGGACT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-30	TCTAGAACACTGTGCGGAGGGGAGCTT	164
(vIGF2 T16V	GTAGACGTGCTTCAGTTCGTGTGGAA	
D23R S50D)	GACGCGGGTTCCTCTCTCTCGCCCCGC	
	TTCCAGAGTTTCACGGAGGTCTAGGGGT	
	ATAGTAGAGGAGTGTTGTTTCAGGGACT	
	GTGACTTGGCGCTCCTCGAGACCTATTG	
	CGCGACGCCAGCCAGGTCCGAA	
vIGF2-31	TCTAGAACACTGTGCGGAGGGGAGCTT	165
$ (vIGF2 \Delta 31-$	GTAGACACTCTTCAGTTCGTGTGGAG	
38GGGG V43L	ATCGCGGGTTCCTCTTCTCTCGCGGAGG	
S50D)	TGGAGGTTCTAGGGGTATACTGGAGGA	
	GTGTTGTTTCAGGGACTGTGACTTGGCG	
	CTCCTCGAGACCTATTGCGCGACGCCAG	
	CCAGGTCCGAA	
vIGF2-32	TCTAGAACACTGTGCGGAGGGGAGCTT	166
$(vIGF2 \Delta 31-$	GTAGACACTCTTCAGTTCGTGTGGAG	
38GGGG V43L	ATCGCGGGTTCCTCTCTCTCGCGGAGG	
S50E)	TGGAGGTTCTAGGGGTATACTGGAGGA	
	GTGTTGTTTCAGGGAGTGTGACTTGGCG	
	CTCCTCGAGACCTATTGCGCGACGCCAG	
	CCAGGTCCGAA	
	CCAGGTCCGAA	

vIGF2-33	TCTAGAACACTGTGCGGAGGGGAGCTT	167
(vIGF2-N1)	GTAGACACTCTTCAGTTCGTGTGGAG	
	ATCGCGGGTTCTTGTTTCGATTGCCGTC	
	CAGGCCCGTGTCCCGGCACAGTCACCGC	
	AGGTCAAGGGGGATAGTTGAAGAATGT	
	TGCTTTCAGAGGTGTAATTTGGCGCTCC	
	TCGAGACCTATTGCGCGACGCCAGCCAG	
	GTCCGAA	
vIGF2-34	TCTAGAACACTGTGCGGAGGGGAGCTT	168
(vIGF2-N1 V43L	GTAGACACTCTTCAGTTCGTGTGGAG	
S50E)	ATCGCGGGTTCTTGTTTCGATTGCCGTC	
	CAGGCCCGTGTCCCGGCACAGTCACCGC	
	AGGTCAAGGGGGATACTGGAAGAATGT	
	TGCTTTCAGGAGTGTAATTTGGCGCTCC	
	TCGAGACCTATTGCGCGACGCCAGCCAG	
	GTCCGAA	

Последовательности участка внутренней посадки рибосомы

[00148] В данном документе предусмотрены конструкции для генной терапии, применимые для лечения нарушения, которые дополнительно содержат последовательность участка внутренней посадки рибосомы (IRES) для обеспечения повышения экспрессии гена путем обхода "бутылочного горлышка" инициации трансляции. Подходящие последовательности участка внутренней посадки рибосомы для оптимизации экспрессии для генной терапии включают без ограничения IRES вируса паралича сверчка (CrPV), IRES пикорнавируса, IRES афтовируса, IRES герпесвируса, ассоциированного с саркомой Капоши, IRES вируса гепатита A, IRES вируса гепатита C, IRES пестивируса, IRES крипавируса, IRES вируса Rhopalosiphum padi, IRES вируса болезни Марека и другие подходящие последовательности IRES. В некоторых вариантах осуществления конструкция для генной терапии содержит IRES CrPV. В

CrPV некоторых вариантах осуществления **IRES** характеризуется последовательностью нуклеиновой кислоты AAAAATGTGATCTTGCTTGTAAATACAATTTTGAGAGGTTAATAAATTACA AGTAGTGCTATTTTGTATTTAGGTTAGCTATTTAGCTTTACGTTCCAGGAT GCCTAGTGGCAGCCCCACAATATCCAGGAAGCCCTCTCTGCGGTTTTTCAG ATTAGGTAGTCGAAAAACCTAAGAAATTTACCTGCT (SEQ ID NO: 191). B некоторых вариантах осуществления последовательность IRES CrPV является на по меньшей мере 90%, на по меньшей мере 91%, на по меньшей мере 92%, на по меньшей мере 93%, на по меньшей мере 94%, на по меньшей мере 95%, на по меньшей мере 96%, на по меньшей мере 97%, на по меньшей мере 98% или на по меньшей мере 99% идентичной SEQ ID NO: 191.

Сигнальные пептиды

[00149] Конструкции для генной терапии, предусмотренные в данном документе, в некоторых вариантах осуществления дополнительно содержат сигнальный пептид, который улучшает секрецию терапевтического белка из клетки, трансдуцированной конструкцией для генной терапии. Сигнальный пептид в некоторых вариантах осуществления обеспечивает улучшение процессинга терапевтических белков, И облегчение транслокации появляющегося комплекса полипептид-рибосома в ER, и обеспечивает правильные ко-трансляционные и посттрансляционные модификации. некоторых вариантах осуществления сигнальный пептид расположен (і) между последовательностью инициации трансляции и терапевтическим белком или (ii) в положении ниже терапевтического белка. Сигнальные пептиды, применимые в конструкциях для генной терапии, включают без ограничения сигнальный пептид белка, связывающего иммуноглобулины (ВіР), из семейства белков HSP70 (например, HSPA5, представитель 5 семейства А белков теплового шока) и сигнальные пептиды Gaussia и их варианты. Эти сигнальные пептиды характеризуются сверхвысокой аффинностью к частице распознавания сигнала. Примеры аминокислотных последовательностей BiP и Gaussia представлены в таблице 5 ниже. В некоторых вариантах осуществления сигнальный пептид характеризуется аминокислотной последовательностью, которая на по меньшей мере 90, 95, 96, 97, 98 или 99% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 169-180. В некоторых вариантах осуществления сигнальный пептид отличается от последовательности, выбранной из группы, состоящей из SEQ ID NO: 169-180, на 5 или меньше, 4 или меньше, 3 или меньше, 2 или меньше или 1 аминокислоту. В некоторых вариантах осуществления применяется нативный сигнальный пептид, взаимозаменяемо называемый в данном документе "эндогенным сигнальным пептидом", лизосомального белка.

Сигнальный	Аминокислотная последовательность	SEQ
пептид		ID
		NO:
Нативный	MKLSLVAAMLLLLSAARA	169
человеческий BiP		
Модифицированный	MKLSLVAAMLLLLSLVAAMLLLLSAARA	170
BiP-1		
Модифицированный	MKLSLVAAMLLLLWVALLLLSAARA	171
BiP-2		
Модифицированный	MKLSLVAAMLLLLSLVALLLLSAARA	172
BiP-3		
Модифицированный	MKLSLVAAMLLLLALVALLLLSAARA	173
BiP-4		
Gaussia	MGVKVLFALICIAVAEA	174
Нативный	MASPGCLWLLAVALLPWTCASRALQHL	175
сигнальный пептид		
PPT1 (eSP)		
Нативный	MASPGCLWLLAVALLPWTCASRALQHLAA	176
сигнальный пептид		
PPT1 (eSP AA)		

Нативный	MASPGSLWLLAVALLPWTCASRALQHL	177
сигнальный пептид		
PPT1 C6S (eSP C6S)		
Нативный	MASPGSLWLLAVALLPWTCASRALQHLAA	178
сигнальный пептид		
PPT1 C6S (eSP C6S		
AA)		
Нативный	MGLQACLLGLFALILSGKC	179
сигнальный пептид		
TPP1		
Нативный	MEAVAVAAAVGVLLLAGAGGAAGD	180
сигнальный пептид		
NAGLU		

[00150] Взаимодействие сигнального пептида ВіР с частицей распознавания сигнала (SRP) способствует транслокации в ER. Это взаимодействие проиллюстрировано на фиг. 20.

[00151] Сигнальный пептид Gaussia происходит из люциферазы из *Gaussia princeps* и управляет повышенным синтезом белка и секрецией терапевтических белков, слитых с этим сигнальным пептидом. В некоторых вариантах осуществления сигнальный пептид Gaussia характеризуется аминокислотной последовательностью, которая на по меньшей мере 90, 95, 96, 97, 98 или 99% идентична последовательности под SEQ ID NO: 174. В некоторых вариантах осуществления сигнальный пептид отличается от SEQ ID NO: 174 на 5 или меньше, 4 или меньше, 3 или меньше, 2 или меньше или 1 аминокислоту.

Линкер

[00152] Конструкции для генной терапии, предусмотренные в данном документе, в некоторых вариантах осуществления содержат линкер между нацеливающим пептидом и терапевтическим белком. Такие линкеры в

некоторых вариантах осуществления поддерживают надлежащее расстояние и смягчают стерический конфликт между пептидом vIGF2 и терапевтическим белком. Линкеры в некоторых вариантах осуществления содержат повторяющиеся остатки глицина, повторяющиеся остатки глицин-серина и их комбинации. В некоторых вариантах осуществления линкер состоит из 5-20 аминокислот, 5-15 аминокислот, 5-10 аминокислот, 8-12 аминокислот или приблизительно 5, 6, 7, 8, 9, 10, 11, 12 или 13 аминокислот. Применимые линкеры для генной терапии и конструкций для ферментозаместительной терапии, представленных в данном документе, включают без ограничения линкеры, представленные в таблице 6 ниже.

Таблица 6. Линкер	оные последовательност	И
Линкеры GS	Последовательность	SEQ ID NO:
	GGGSSGGG	181
	GGGGS	182
	GGGSGGGS	183
	GGGGSGGS	184
	GGSGSGSTS	185
	GGGGSGGGS	186
	GGGGSGSGGGGS	187
Линкер,	RPRAVPTQA	188
подвергающийся		
лизосомальному		
расщеплению		

Последовательность инициации трансляции

[00153] Предусмотренные в данном документе конструкции для генной терапии содержат нуклеиновую кислоту, характеризующуюся последовательностью инициации трансляции, как например последовательность Козак, которая способствует инициации трансляции мРНК. Последовательности

Козак, рассматриваемые в данном документе, характеризуются консенсусной последовательностью (gcc)RccATGG, где строчная буква обозначает наиболее распространенное основание в данном положении, и основание варьирует, при этом прописные буквы указывают на высококонсервативные основания, которые очень редко меняются. R указывает, что пурин (аденин или гуанин) всегда присутствует в этом положении. Последовательность в скобках (gcc) имеет неопределенное В некоторых осуществления значение. вариантах последовательность Козак предусматривает последовательность АХ₁Х₂АТGA, где каждый из X_1 и X_2 представляет собой любой нуклеотид. В некоторых вариантах осуществления X_1 предусматривает А. В некоторых вариантах осуществления X₂ предусматривает G. В некоторых вариантах осуществления последовательность Козак предусматривает последовательность нуклеиновой кислоты, на по меньшей мере 85% идентичную AAGATGA. В некоторых осуществления последовательность Козак отличается вариантах последовательности AAGATGA одним или двумя нуклеотидами. В некоторых вариантах осуществления последовательности Козак, предусмотренные в В данном документе, характеризуются последовательностью AAGATGA. некоторых вариантах осуществления Козак последовательность предусматривает последовательность нуклеиновой кислоты, на по меньшей мере 85% идентичную GCAAGAGTG. В некоторых вариантах осуществления последовательность Козак отличается от последовательности GCAAGATG одним или двумя нуклеотидами. В некоторых вариантах осуществления предусматривает GCAAGATG. последовательность Козак В вариантах осуществления последовательность Козак предусматривает последовательность нуклеиновой кислоты, на по меньшей мере 85% идентичную САССАТ В некоторых вариантах осуществления последовательность Козак отличается от последовательности CACCATG одним или двумя нуклеотидами. В некоторых вариантах осуществления последовательность Козак предусматривает CACCATG.

Терапевтический белок

[00154] Конструкции для генной терапии, предусмотренные в данном документе, содержат нуклеиновую кислоту, кодирующую терапевтический белок для лечения генетического нарушения, вызванного генетическим дефектом у индивидуума, приводящим к отсутствию или дефекту белка. Терапевтический белок, экспрессируемый с конструкции для генной терапии, заменяет отсутствующий или дефектный белок. Следовательно, терапевтические белки выбирают на основе генетического дефекта, требующего лечения у индивидуума. В некоторых вариантах осуществления терапевтический белок представляет собой структурный белок. В некоторых вариантах осуществления терапевтический белок представляет собой фермент. В некоторых вариантах осуществления терапевтический белок представляет собой регуляторный белок. В некоторых вариантах осуществления терапевтический белок представляет собой рецептор. В некоторых вариантах осуществления терапевтический белок представляет собой пептидный гормон. В некоторых вариантах осуществления терапевтический белок представляет собой цитокин или хемокин.

[00155] В некоторых вариантах осуществления конструкции для генной терапии, представленные в данном документе, кодируют фермент, такой как характеризующийся генетическим дефектом у индивидуума с фермент. лизосомной болезнью накопления. В некоторых вариантах осуществления конструкции для генной терапии кодируют лизосомальный фермент, такой как гликозидаза, протеаза или сульфатаза. В некоторых вариантах осуществления ферменты, кодируемые конструкциями для генной терапии, предусмотренными в данном документе, включают без ограничения α-D-маннозидазу; N-аспартил-βглюкозаминидазу; β-галактозидазу; церамидазу; фукозидазу; галактоцереброзидазу; A; арилсульфатазу N-ацетилглюкозамин-1фосфотрансферазу; идуронатсульфатазу; N-ацетилглюкозаминидазу; ацетил-КоА:α-глюкозаминидацетилтрансферазу; N-ацетилглюкозамин-6-сульфатазу; βглюкуронидазу; гиалуронидазу; сиалидазу; сульфатазу; сфингомиелиназу; кислую β-маннозидазу; катепсин К; 3-гексозаминидазу А; β-гексозаминидазу В; α-N-ацетилгалактозаминидазу; сиалин; гексозаминидазу А; бета-глюкозидазу; αидуронидазу; α-галактозидазу Α; β-глюкоцереброзидазу; лизосомную кислую

липазу; гликозаминогликан-альфа-L-идуроногидролазу; идуронат-2-сульфатазу; N-ацетилгалактозамин-6-сульфатазу; гликозаминогликан-Nацетилгалактозамин-4-сульфатазу; альфа-глюкозидазу; гепарансульфамидазу; субъединицу др-91 НАДФН-оксидазы; аденозиндезаминазу; циклинзависимый киназоподобный белок 5 и пальмитоилпротеинтиоэстеразу 1. В некоторых вариантах осуществления ферменты, кодируемые конструкциями для генной терапии, предусмотренными в данном документе, предусматривают альфаглюкозидазу. В некоторых вариантах осуществления терапевтический белок связан с генетическим нарушением, выбранным из группы, состоящей из муковисцидоза, альфа- и бета-талассемий, серповидноклеточной анемии, синдрома Марфана, синдрома ломкой Х-хромосомы, болезни Гентингтона, гемохроматоза, врожденной глухоты (несиндромальной), болезни Тея-Сакса, семейной гиперхолестеринемии, мышечной дистрофии Дюшенна, болезни Штаргардта, синдрома Ашера, хориодеремии, ахроматопсии, Х-сцепленного гемофилии, синдрома Вискотта-Олдрича, ретиношизиса, Х-сцепленной хронической гранулематозной болезни, дефицита декарбоксилазы L-аминокислот, рецессивного буллезного дистрофического эпидермолиза, дефицита альфа-1-антитрипсина, синдрома прогерии Хатчинсона-Гилфорда (HGPS), синдрома Нунан, X-сцепленного тяжелого комбинированного иммунодефицита (X-SCID).

[00156] Примеры векторов для генной терапии

Векторы для генной терапии и композиции

[00157] В данном документе предусмотрены векторы для генной терапии, в которых нуклеиновая кислота, как например ДНК, кодирующая терапевтический слитый белок, как например слитый с vIGF2, необязательно содержит сигнальный пептид. Вектор для генной терапии необязательно содержит последовательность участка внутренней посадки рибосомы. Векторы, основе ретровирусов, таких как лентивирус, полученные на являются подходящими инструментами для достижения долгосрочного переноса генов,

поскольку они обеспечивают долгосрочную стабильную интеграцию трансгена и его размножение в дочерних клетках. Вирусные векторы на основе лентивируса и аденоассоциированного вируса обладают дополнительным преимуществом по сравнению с векторами, полученными на основе онкоретровирусов, таких как вирусы мышиного лейкоза, заключающимся в том, что они способны трансдуцировать непролиферирующие клетки, такие как гепатоциты и нейроны. Они также обладают дополнительным преимуществом низкой иммуногенности.

[00158] Иллюстративные векторы для генной терапии, представленные в данном документе, кодируют терапевтические белки и терапевтические слитые белки, содержащие пептид vIGF2. Нуклеиновые кислоты, кодирующие иллюстративные аминокислотные последовательности слитых белков, представлены в таблице 7 ниже.

Табли	ца 7. Последовательности ДНК	
Конс	Последовательность ДНК	SEQ
трук		ID
ция		NO
Коза	GCAAGATGGGAGTGAGGCACCCGCCCTGCTCCCACCGGCTC	189
к-	CTGGCCGTCTGCGCCCTCGTGTCCTTGGCAACCGCTGCACTC	
hGA	CTGGGGCACATCCTACTCCATGATTTCCTGCTGGTTCCCCGA	
A	GAGCTGAGTGGCTCCTCCCCAGTCCTGGAGGAGACTCACCC	
(при	AGCTCACCAGCAGGGAGCCAGTAGACCAGGGCCCCGGGATG	
родн	CCCAGGCACACCCCGGCCGTCCCAGAGCAGTGCCCACACAG	
ая	TGCGACGTCCCCCCAACAGCCGCTTCGATTGCGCCCCTGAC	
GAA	AAGGCCATCACCCAGGAACAGTGCGAGGCCCGCGGCTGTTG	
)	CTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCCAGATGG	
	GGCAGCCCTGGTGCTTCTTCCCACCCAGCTACCCCAGCTACA	
	AGCTGGAGAACCTGAGCTCCTCTGAAATGGGCTACACGGCC	
	ACCCTGACCCGTACCACCCCCACCTTCTTCCCCAAGGACATC	
	CTGACCCTGCGGCTGGACGTGATGATGGAGACTGAGAACCG	
	CCTCCACTTCACGATCAAAGATCCAGCTAACAGGCGCTACG	

AGGTGCCCTTGGAGACCCCGCATGTCCACAGCCGGGCACCG TCCCCACTCTACAGCGTGGAGTTCTCCGAGGAGCCCTTCGGG GTGATCGTGCGCCGGCAGCTGGACGCCGCGTGCTGAA CACGACGGTGGCGCCCCTGTTCTTTGCGGACCAGTTCCTTCA GCTGTCCACCTCGCTGCCCTCGCAGTATATCACAGGCCTCGC CGAGCACCTCAGTCCCCTGATGCTCAGCACCAGCTGGACCA GGATCACCCTGTGGAACCGGGACCTTGCGCCCACGCCCGGT GCGAACCTCTACGGGTCTCACCCTTTCTACCTGGCGCTGGAG GACGGCGGTCGCCACACGGGGTGTTCCTGCTAAACAGCAA TGCCATGGATGTGGTCCTGCAGCCGAGCCCTGCCCTTAGCTG GAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTCCTGGG CCCAGAGCCCAAGAGCGTGGTGCAGCAGTACCTGGACGTTG TGGGATACCCGTTCATGCCGCCATACTGGGGCCTGGGCTTCC ACCTGTGCCGCTGGGGCTACTCCTCCACCGCTATCACCCGCC AGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCCTGGAC GTCCAGTGGAACGACCTGGACTACATGGACTCCCGGAGGGA CTTCACGTTCAACAAGGATGGCTTCCGGGACTTCCCGGCCAT GGTGCAGGAGCTGCACCAGGGCGGCGCGCGCTACATGATGA TCGTGGATCCTGCCATCAGCAGCTCGGGCCCTGCCGGGAGCT ACAGGCCCTACGACGAGGGTCTGCGGAGGGGGGTTTTCATC ACCAACGAGACCGGCCAGCCGCTGATTGGGAAGGTATGGCC CGGGTCCACTGCCTTCCCCGACTTCACCAACCCCACAGCCCT GGCCTGGTGGGAGGACATGGTGGCTGAGTTCCATGACCAGG TGCCCTTCGACGCATGTGGATTGACATGAACGAGCCTTCCA ACTTCATCAGGGGCTCTGAGGACGGCTGCCCCAACAATGAG CTGGAGAACCCACCCTACGTGCCTGGGGTGGTTGGGGGGAC CCTCCAGGCGCCACCATCTGTGCCTCCAGCCACCAGTTTCT CTCCACACACTACAACCTGCACAACCTCTACGGCCTGACCGA AGCCATCGCCTCCCACAGGGCGCTGGTGAAGGCTCGGGGGA CACGCCCATTTGTGATCTCCCGCTCGACCTTTGCTGGCCACG GCCGATACGCCGGCCACTGGACGGGGGACGTGTGGAGCTCC

	TGGGAGCAGCTCGCCTCCTCCGTGCCAGAAATCCTGCAGTTT	
	AACCTGCTGGGGGTGCCTCTGGTCGGGGCCGACGTCTGCGG	
	CTTCCTGGGCAACACCTCAGAGGAGCTGTGTGTGCGCTGGA	
	CCCAGCTGGGGGCCTTCTACCCCTTCATGCGGAACCACAACA	
	GCCTGCTCAGTCTGCCCCAGGAGCCGTACAGCTTCAGCGAG	
	CCGGCCCAGCAGGCCATGAGGAAGGCCCTCACCCTGCGCTA	
	CGCACTCCTCCCCCACCTCTACACACTGTTCCACCAGGCCCA	
	CGTCGCGGGGAGACCGTGGCCCGGCCCCTCTTCCTGGAGTT	
	CCCCAAGGACTCTAGCACCTGGACTGTGGACCACCAGCTCCT	
	GTGGGGGAGGCCCTGCTCATCACCCCAGTGCTCCAGGCCG	
	GGAAGGCCGAAGTGACTGGCTACTTCCCCTTGGGCACATGG	
	TACGACCTGCAGACGGTGCCAGTAGAGGCCCTTGGCAGCCT	
	CCCACCCCACCTGCAGCTCCCCGTGAGCCAGCCATCCACAG	
	CGAGGGCAGTGGGTGACGCTGCCGGCCCCCTGGACACCA	
	TCAACGTCCACCTCCGGGCTGGGTACATCATCCCCCTGCAGG	
	GCCCTGGCCTCACAACCACAGAGTCCCGCCAGCAGCCCATG	
	GCCCTGGCTGTGGCCCTGACCAAGGGTGGGGAGGCCCGAGG	
	GGAGCTTTTCTGGGACGATGGAGAGAGCCTGGAAGTGCTGG	
	AGCGAGGGCCTACACACAGGTCATCTTCCTGGCCAGGAAT	
	AACACGATCGTGAATGAGCTGGTACGTGTGACCAGTGAGGG	
	AGCTGGCCTGCAGCAGAAGGTGACTGTCCTGGGCGTGG	
	CCACGGCGCCCCAGCAGGTCCTCTCCAACGGTGTCCCTGTCT	
	CCAACTTCACCTACAGCCCCGACACCAAGGTCCTGGACATCT	
	GTGTCTCGCTGTTGATGGGAGAGCAGTTTCTCGTCAGCTGGT	
	GTTAG	
	GCAAGATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGC	190
	TCAGCGCGGCGCGCCTCTAGAACACTGTGCGGAGGGGAG	
	CTTGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGTTC	
	CTCTTCTCTCGCCCCGCTTCCAGAGTTTCACGGAGGTCTAGG	
	GGTATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCG	
	CTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAAGG	
_		

Коза

К

BiP-

vIGF

GAA

2-

("ско	GGGCGGTGGCTCAGGTGGTGGAGGTAGCAGACCAGGGCCCC
нстр	GGGATGCCCAGGCACACCCCGGCCGTCCCAGAGCAGTGCCC
уиро	ACACAGTGCGACGTCCCCCCAACAGCCGCTTCGATTGCGCC
ванн	CCTGACAAGGCCATCACCCAGGAACAGTGCGAGGCCCGCGG
ая	CTGTTGCTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCC
hGA	AGATGGGGCAGCCCTGGTGCTTCTTCCCACCCAGCTACCCCA
A")	GCTACAAGCTGGAGAACCTGAGCTCCTCTGAAATGGGCTAC
	ACGGCCACCTGACCCGTACCACCCCCACCTTCTTCCCCAAG
	GACATCCTGACCCTGCGGCTGGACGTGATGATGGAGACTGA
	GAACCGCCTCCACTTCACGATCAAAGATCCAGCTAACAGGC
	GCTACGAGGTGCCCTTGGAGACCCCGCATGTCCACAGCCGG
	GCACCGTCCCCACTCTACAGCGTGGAGTTCTCCGAGGAGCCC
	TTCGGGGTGATCGTGCGCCGGCAGCTGGACGGCCGCGTGCT
	GCTGAACACGACGGTGGCGCCCCTGTTCTTTGCGGACCAGTT
	CCTTCAGCTGTCCACCTCGCTGCCCTCGCAGTATATCACCGG
	CCTCGCCGAGCACCTCAGTCCCCTGATGCTCAGCACCAGCTG
	GACCAGGATCACCCTGTGGAACCGGGACCTTGCGCCCACGC
	CCGGTGCGAACCTCTACGGGTCTCACCCTTTCTACCTGGCGC
	TGGAGGACGGCGGTCGGCACACGGGGTGTTCCTGCTAAAC
	AGCAATGCCATGGATGTGGTCCTGCAGCCGAGCCCTGCCCTT
	AGCTGGAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTC
	CTGGGCCCAGAGCCCAAGAGCGTGGTGCAGCAGTACCTGGA
	CGTTGTGGGATACCCGTTCATGCCGCCATACTGGGGCCTGGG
	CTTCCACCTGTGCCGCTGGGGCTACTCCTCCACCGCTATCAC
	CCGCCAGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCC
	TGGACGTCCAGTGGAACGACCTGGACTACATGGACTCCCGG
	AGGGACTTCACGTTCAACAAGGATGGCTTCCGGGACTTCCC
	GGCCATGGTGCAGGAGCTGCACCAGGGCGGCGCGCTACA
	TGATGATCGTGGATCCTGCCATCAGCAGCTCGGGCCCTGCCG
	GGAGCTACAGGCCCTACGACGAGGGTCTGCGGAGGGGGTT
	TTCATCACCAACGAGACCGGCCAGCCGCTGATTGGGAAGGT

ATGGCCCGGGTCCACTGCCTTCCCCGACTTCACCAACCCCAC AGCCCTGGCCTGGTGGGAGGACATGGTGGCTGAGTTCCATG ACCAGGTGCCCTTCGACGGCATGTGGATTGACATGAACGAG CCTTCCAACTTCATCAGGGGCTCTGAGGACGGCTGCCCAAC AATGAGCTGGAGAACCCACCCTACGTGCCTGGGGTGGTTGG GGGGACCCTCCAGGCGGCCACCATCTGTGCCTCCAGCCACC AGTTTCTCCCACACACTACAACCTGCACAACCTCTACGGCC TGACCGAAGCCATCGCCTCCCACAGGGCGCTGGTGAAGGCT CGGGGGACACGCCCATTTGTGATCTCCCGCTCGACCTTTGCT GGCCACGGCCGATACGCCGGCCACTGGACGGGGGACGTGTG GAGCTCCTGGGAGCAGCTCGCCTCCTCCGTGCCAGAAATCCT GCAGTTTAACCTGCTGGGGGGTGCCTCTGGTCGGGGCCGACGT GCTGGACCCAGCTGGGGGCCTTCTACCCCTTCATGCGGAACC ACAACAGCCTGCTCAGTCTGCCCCAGGAGCCGTACAGCTTC AGCGAGCCGGCCCAGCAGGCCATGAGGAAGGCCCTCACCCT GCGCTACGCACTCCCCCCACCTCTACACACTGTTCCACCA GGCCCACGTCGCGGGGGAGACCGTGGCCCGGCCCCTCTTCC TGGAGTTCCCCAAGGACTCTAGCACCTGGACTGTGGACCAC CAGCTCCTGTGGGGGGGGGGCCCTGCTCATCACCCCAGTGCTC CAGGCCGGGAAGGCCGAAGTGACTGGCTACTTCCCCTTGGG CACATGGTACGACCTGCAGACGGTGCCAGTAGAGGCCCTTG TCCACAGCGAGGGCAGTGGGTGACGCTGCCGGCCCCCTG GACACCATCAACGTCCACCTCCGGGCTGGGTACATCATCCCC CTGCAGGGCCCTGGCCTCACAACCACAGAGTCCCGCCAGCA GCCCATGGCCCTGGCTGTGGCCCTGACCAAGGGTGGGGAGG CCCGAGGGGAGCTGTTCTGGGACGATGGAGAGAGCCTGGAA GTGCTGGAGCGAGGGCCTACACACAGGTCATCTTCCTGGC CAGGAATAACACGATCGTGAATGAGCTGGTACGTGTGACCA GTGAGGGAGCTGGCCTGCAGCTGCAGAAGGTGACTGTCCTG

	GGCGTGGCCACGGCGCCCCAGCAGGTCCTCTCCAACGGTGT	
	CCCTGTCTCCAACTTCACCTACAGCCCCGACACCAAGGTCCT	
	GGACATCTGTGTCTCGCTGTTGATGGGAGAGCAGTTTCTCGT	
	CAGCTGGTGTTAG	
IRES	<u>AAAAATGTGATCTTGCTTGTAAATACAATTTTGAGAGGTTAATAAA</u>	191
виру	<u>TTACAAGTAGTGCTATTTTTGTATTTAGGTTAGCTATTTAGCTTTAC</u>	
ca	<u>GTTCCAGGATGCCTAGTGGCAGCCCCACAATATCCAGGAAGCCC</u>	
пара	<u>TCTCTGCGGTTTTTCAGATTAGGTAGTCGAAAAACCTAAGAAATTT</u>	
лича	<u>ACCTGCTATG</u> AAGCTCTCCCTGGTGGCCGCGATGCTGCT	
свер	GCTCAGCGCGCGCGGGCCTCTAGAACACTGTGCGGAGGGG	
чка	AGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGT	
(под	TCCTCTTCTCCGCCCCGCTTCCAGAGTTTCACGGAGGTCTA	
черк	GGGGTATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGG	
нуто	CGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAA	
)-	GGGGGCGTGGCTCAGGTGGTGGAGGTAGCAGACCAGGGCC	
BiP-	CCGGGATGCCCAGGCACACCCCGGCCGTCCCAGAGCAGTGC	
vIGF	CCACACAGTGCGACGTCCCCCCAACAGCCGCTTCGATTGCG	
2-	CCCCTGACAAGGCCATCACCCAGGAACAGTGCGAGGC <i>CCGC</i>	
GAA	${\it GG}$ CTGTTGCTACATCCCTGCAAAGCAGGGGCTGCAGGGAGC	
	CCAGATGGGGCAGCCCTGGTGCTTCTTCCCACCCAGCTACCC	
	CAGCTACAAGCTGGAGAACCTGAGCTCCTCTGAAATGGGCT	
	ACACGGCCACCTGACCCGTACCACCCCCACCTTCTTCCCCA	
	AGGACATCCTGACCCTGCGGCTGGACGTGATGATGGAGACT	
	GAGAACCGCCTCCACTTCACGATCAAAGATCCAGCTAACAG	
	GCGCTACGAGGTGCCCTTGGAGACCCCGCATGTCCACAGCC	
	GGGCACCGTCCCCACTCTACAGCGTGGAGTTCTCCGAGGAG	
	CCCTTCGGGGTGATCGTGCGCCGGCAGCTGGACGGCCGCGT	
	GCTGCTGAACACGACGGTGGCGCCCCTGTTCTTTGCGGACCA	
	GTTCCTTCAGCTGTCCACCTCGCTGCCCTCGCAGTATATCAC	
	AGGCCTCGCCGAGCACCTCAGTCCCCTGATGCTCAGCACCA	
	GCTGGACCAGGATCACCCTGTGGAACCGGGACCTTGCGCCC	

ACGCCCGGTGCGAACCTCTACGGGTCTCACCCTTTCTACCTG GCGCTGGAGGACGGCGGGTCGGCACACGGGGTGTTCCTGCT AAACAGCAATGCCATGGATGTGGTCCTGCAGCCGAGCCCTG CCCTTAGCTGGAGGTCGACAGGTGGGATCCTGGATGTCTAC ATCTTCCTGGGCCCAGAGCCCAAGAGCGTGGTGCAGCAGTA CCTGGACGTTGTGGGATACCCGTTCATGCCGCCATACTGGGG CCTGGGCTTCCACCTGTGCCGCTGGGGCTACTCCTCCACCGC TATCACCCGCCAGGTGGTGGAGAACATGACCAGGGCCCACT TCCCCCTGGACGTCCAGTGGAACGACCTGGACTACATGGAC TCCCGGAGGGACTTCACGTTCAACAAGGATGGCTTCCGGGA GCTACATGATGATCGTGGATCCTGCCATCAGCAGCTCGGGCC CTGCCGGGAGCTACAGGCCCTACGACGAGGGTCTGCGGAGG GGGGTTTTCATCACCAACGAGACCGGCCAGCCGCTGATTGG GAAGGTATGGCCCGGGTCCACTGCCTTCCCCGACTTCACCAA CCCCACAGCCCTGGCCTGGTGGGAGGACATGGTGGCTGAGT TCCATGACCAGGTGCCCTTCGACGCATGTGGATTGACATGA ACGAGCCTTCCAACTTCATCAGGGGCTCTGAGGACGGCTGC CCCAACAATGAGCTGGAGAACCCACCCTACGTGCCTGGGGT GGTTGGGGGACCCTCCAGGCGGCCACCATCTGTGCCTCCA GCCACCAGTTTCTCTCCACACACTACAACCTGCACAACCTCT ACGGCCTGACCGAAGCCATCGCCTCCCACAGGGCGCTGGTG AAGGCTCGGGGGACACGCCCATTTGTGATCTCCCGCTCGACC TTTGCTGGCCACGGCCGATACGCCGGCCACTGGACGGGGA CGTGTGGAGCTCCTGGGAGCAGCTCGCCTCCTCCGTGCCAGA AATCCTGCAGTTTAACCTGCTGGGGGTGCCTCTGGTCGGGGC CGACGTCTGCGGCTTCCTGGGCAACACCTCAGAGGAGCTGT GTGTGCGCTGGACCCAGCTGGGGGCCTTCTACCCCTTCATGC GGAACCACAACAGCCTGCTCAGTCTGCCCCAGGAGCCGTAC AGCTTCAGCGAGCCGGCCCAGCAGGCCATGAGGAAGGCCCT CACCCTGCGCTACGCACTCCTCCCCCACCTCTACACACTGTT

CCACCAGGCCCACGTCGCGGGGGAGACCGTGGCCCGGCCCC TCTTCCTGGAGTTCCCCAAGGACTCTAGCACCTGGACTGTGG ACCACCAGCTCCTGTGGGGGGGGGGCCCTGCTCATCACCCCA GTGCTCCAGGCCGGGAAGGCCGAAGTGACTGGCTACTTCCC CTTGGGCACATGGTACGACCTGCAGACGGTGCCAGTAGAGG CCCTTGGCAGCCTCCCACCCCACCTGCAGCTCCCCGTGAGC CAGCCATCCACAGCGAGGGGCAGTGGGTGACGCTGCCGGCC CCCCTGGACACCATCAACGTCCACCTCCGGGCTGGGTACATC ATCCCCCTGCAGGGCCCTGGCCTCACAACCACAGAGTCCCG CCAGCAGCCCATGGCCCTGGCTGTGGCCCTGACCAAGGGTG GGGAGGCCCGAGGGGAGCTGTTCTGGGACGATGGAGAGAG CCTGGAAGTGCTGGAGCGAGGGCCTACACACACAGGTCATCT TCCTGGCCAGGAATAACACGATCGTGAATGAGCTGGTACGT GTGACCAGTGAGGGAGCTGGCCTGCAGCTGCAGAAGGTGAC TGTCCTGGGCGTGGCCACGGCGCCCCAGCAGGTCCTCTCCAA CGGTGTCCCTGTCTCCAACTTCACCTACAGCCCCGACACCAA GGTCCTGGACATCTGTGTCTCGCTGTTGATGGGAGAGCAGTT **TCTCGTCAGCTGGTGTTAG** ATGGCATCACCGGGTTGCCTCTGGTTGTTGGCCGTTGCGTTG 192 CTTCCGTGGACATGTGCATCAAGAGCTCTTCAACATCTGGAT CCCCCAGCTCCCTGCCGCTCGTAATCTGGCACGGGATGGGG GATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAA GATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCT GGAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCT TCTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAG CATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCG ATGGGGTTTAGCCAGGGCGGACAGTTTCTTAGAGCCGTCGC ACAGCGCTGTCCATCTCCCCCGATGATTAACCTTATATCTGT CGGGGGACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCC TGGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTT GAACGCAGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTG

wt-

PPT1

Кодо

опти

мизи

рова

поср

едст

BOM

IDT

на

H-

TTCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTT TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA CGCGGAATCAACGAAAGCTACAACAAAAAGAATCTTATGGCTCT CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG CCAGGCGAAGGAGACTCGGACTGAAAGAAACGTCTCTCT ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG GGCCAGTTGGTCTTCTTGGCTACGGAAGGAGACGATCATCCCAA CTCTCCGAAGAAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCGCGGTTGCGCT -2 CTGCCATGGACGTGCGCCTCCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCCGCTAGC CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAAGAATCCTG PPT1 TTCCCGGCCGAAGGTCCCGGGGTATCGTTGAAGAATCCTG TTTCCCGGAAGACCCTCGGACCTTCCACACACTGTCC AGGACACTTTGCGGCGGAAGGTCCCTGGAGAAACACTGTGC CGCCTGTCCCGAAAGGTCCCGGGGTATCGTTGAAGAATCCTG TTTCCCGGCCTGCGATCTTGCACTGTTGGAGACATCTCTCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGAGTGGGGGACTCA OIITI TGAAAAGAAAATTCCAGGTATTATGTCCTCTCTTTTTCCT TAATGTCAATTCCAGGTCACAACAGTTTGTCAGGCTCTGGC GAAGGATCCTAAGCTGAGAAAACTCCTTTTTTCCT TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTTTTTCCT TAATGTCAATTCTCAGGTCACAACAGTTTTTCAGGCCTTGGC GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT BOM GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA UHCT CAACACCAGGAGGTTTTCGGCCCAGGTTCCCGGGGGA UHCT CAACACCAGGAGTTTTCGGCCCAGGTTCCCGGGGA UHCT CAACACCAGGAGTTTTCGGCTCCCAGGAACCCTTAACGC TTTTCCCAGGGAGGCCAATTTCTCAGGAAACCCCTTAACGC TTTTCCCAGGGAGGCCAATTTCTCAGGAAACCCCTTAACGC TTTTCCCAGGGAGGCCAATTTCCAAGAACCGCATTGGCAGGAAACCCTTAACGC TTTTCCCAGGGAGGCCAATTTCCAAGAACAGGCTTTAACGC TTTTCCCAGGGAGGCCAATTTCCTCAAGGAAACCCCTTAACGC TTTTCCCAGGGAGGTTTTCAGGCCAGAACCCCTTAACGC TTTTCCCAGGGAGGCCAATTTCCTCAAGGAAACCCCTTAACGC TTTTCCCAGGGAGGCCAATTTCCTCAAGGAACCCCTTAACGC TTTTCCCAGGGAGGCCAATTTCCTCAAGGAACCCCTTAACGC TTTTCCCAGGGAGGCCAATTTCCTCAAGGAACCCCTTAACGC TTTTCCAATACTGGCACGATCCCATCAAGGAACCCTTAACGC TTTTCCAATACTGGCACGATCCCATCAAGGAAACCCCTTAACGC TTTTCCAATACTGGCACGATCCCATCAAGGAACACGTTTAATATAGG MM38 AACCACAGTATCTTTTCTGGCAGAACACATAAATATAATCAGGAAAAGGGGG TTTTCCTGCAATACTTTCTTCTGCAAGAACACGTATAA			
CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCGCGGTTGCCGC (wt- AGGACACTTTGCGGCGGAGGTGCTCCTTTTTTCTCGGCCCGCTAGC CGCGTGTCCCGAAGGTCCCCCGAGCCCTCCAACACCTGTCC (wt- GGGCTAACCCCCGGATGTTTGTGGCTGCTGCGCGTTCCTGCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAAGAATGCTG PPT1 TTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAAGAGCCAGGGTGGAGGGGGTTCTGGAGGTG KOJO GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCTCTGGTCATCTGGCATGGGATGGGGGGACTCA OITIU TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT MISH TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTTTAAAT DOBA CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT HA TAATGTCAATTCTCAGGTCACAACAGTTTGCAGGCTCTGGC GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT BOM GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA HHCT CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA HHCT CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA HTTCCGGCGCTTACTCAAAGGTGGTTCAAGAACCCCTTAACGC HTTACCGGCGCTTACTCAAAGGTGGTTCAAGAACCCCTTAACGC HTTCCGGCGCTTACTCAAAGGTGGTTCAAGAACGCCTTTACGC CTGAATACTGGCACGATCCCATCAAGGAAGACCCTTAACGC HTTCCGGCGCTTACTCAAAGGTGGTTCAAGAACGCCTTTGTGCAGG OIITIU CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG		TTCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTT	
CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCTGGCGGTTGCGCTT -2 CTGCCATGGACGGCGCTCCCAACACCCTGTCC (wi- AGGACACTTTGCGGCGGAGGTTCGTTCTTTTTCTCGGCCCGCTAACCCCTGCC (wi- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGAATACTGTGC ; TACGCCTGCGAGAAGCGAGGGGTGAGAGGGGGTTCTCCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGGAGGGGTTCCCA GTTU TGTTGTAACCCGCTGAGTATTGGGGGCAATTAAAAAAAATGGT MH3H TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTTTGAAAT DOBA CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC GOAGGATCCTAAGCTGCAGCAACAGCTTTGTCAGGCTT GCCT GCTCTTCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT GTCCATCACCACCGATGATAAAATCTGATCAGGCTTCGGC GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT CCCT CCACCACCACGATGATAAAATCTGATCAGTGTCGGCGGA UHICT CAACACCAGGGAGTTTCCGGCAGGAAGCCCTTAACGC HTTA CGGCGCTTACTCAAAGGTTTCAAGAACGCCTTTGCAGG OIITH CTGAATACTGCAACAGTTTTCTCAAGAACGCCTTTACCG CGGCGCTTACTCAAAGGTTGTCAAGAACGCCTTTACGC OIITH CTGAATACTGGCACCAACAGGTTTCAAGAACGCCTTTACGC OIITH CTGAATACTGCAACAGGTTTCAAGAACAGCCTTTAACGC CTGAATACTGCACACAAAAGGTTTCAAGAACAGCCTTAACGC CTGAATACTGCAACAGATCTCAATCAAGAACAGCCTTAACGC OIITH CTGAATACTGCAACAGATCTCAATAAGGAAAGATGTATATAAGG OIITH CTGAATACTGCACACAGATCCCATCAAGGAAGATCTTATATAGG OIITH CTGAATACTGCACACAGATCCCATCAAGGAAGATGTATATAAGG		TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA	
AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCTGCGCGTTGCCCTT -2 CTGCCATGGACGTGCGCCTCCCGAGCCCTCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTGTGGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAGAGCCTCCACCAGGATCTTGGAGGATCCTCCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGGGGGGACTCA OIITH TGTTGTAACCCGCTGAGTATTGGGGGCAATTAAAAAAATGGT MM3BI TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC IOCP GAAGGATCCTAAGCTGCAGCAAACAGTTTGTCAGGCTCTGGC GOCP GAAGGATCCTAAGCTGCAGCAAACAGTTTGTCAGGCTCTGGC IOCP GAAGGATCCTAAGCTGCAGCAAACAGTTTGTCAGGCTCTGGC GTCCATCACCACCGATGATAAAATCTGATCAGTGTCGGCGGA UHCT CAACACCAGGGAGTTTTCGGCCCCAGGTGTCCGGCGGA UHCT CAACACCAGGGAGTTTTCGGCAAGACCCTTAACGC HTB CGGCGCTTACTCAAAGGTGGTTCCAAGACCCTTAACGC CTGAATACTGCACAATATGTGACTTCATTCGCAAGACCCCTTAACGC CTGAATACTGCACAACAGGTTTCCAAGACCCCTTAACGC CTGAATACTGCACAACAGGTTCCAAGAACGCCTTTAACGC CTGAATACTGCACACAAGGTTTCCAAGAACGCCTTTAACGC CTGAATACTGCACACAAGGTTCCAAACAGCCTTTAACGC CTGAATACTGCACACAAGGTTTCCAAGAACGCCTTTAACGC CTGAATACTGCACACAAGGTTTCCAAGAACAGCCTTTAACGC CTGAATACTGCACCACAAACAGTTTCCAAGAACAGCCTTTAACGC CTGAATACTGCACACAGATCCCATCAAGGAAGATGTATATAAGG OIITH CTGAATACTGCACAGATCCCATCAAGGAAGATGTATATAAGG		CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT	
CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCGGGTTGCGCTT -2 CTGCCATGGACGTGCGCCTCCCGAGCCCTCCAACACCCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vlGF GTGTGTGGGGATAGAGGTCCCTGTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGAATACTGTGC ; TACGCCTGCGAGAGGCGAGGTGGAGGGGGTTCTGAAGGTG KOJO GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCTCTGGTCATCTGGCATGGGATGGGGGACTCA OIITH TGTTGTAACCCGCTGAGTATTGGGGGCAATTAAAAAAATGGT MM3H TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTTGAAAT DOBA CGGTAAGACACTTATGGAGGATGGGAAAACTCCTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC GAAGGATCCTAAGCTGCAGCAAGAGTTGCAGCATGGGTT CGCT TTTCCCAGGGAGGCCAATTCTCAGGCTCAGCAT GTCCATCACCACCGATGATAAAATCTGATCAGGTTCCGCGGGA UHCT CAACACCAGGGAGTTTTCGGCCCCAGGTTCCCGGGGGA HCC CAACACCAGGGAGTTTTCGGCCCCAGGTTCCCGGGGA ATCTAGTCACATATGTGACTTCATCGCAAGACCCTTAACGC HTa CGGCGCTTACTCAAAGGTGGTTCAAGAACGCCTTAACGC CTGAATACTGCACACAACGTTCCAACAGACCCTTAACGC CTGAATACTGGCACGATCCCATCAAGGAAGACTTTTTCCAGG OIITH CTGAATACTGGCACGATCCCATCAAGGAAGACGCTTGCAGG OIITH CTGAATACTGGCACGATCCCATCAAGGAAGACGCTTGTCCAGG OIITH CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG		CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT	
ATACACAAGACTCGGACTGAAAGAGATGGATAATGCG GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCGGGTTGCGCTT -2 CTGCCATGGACGTGCGCCTCCCGAGCCCTCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC -2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAATGC FPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGGATACTGTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGAAGTGGGAGGGGGATCCTCCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGGACTCCA GTTGTAACCCGCTGAGTATGGGGGGAATAAAAAAAATGGT MM3H TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT CGGTAAGACACTTATGGAGGATGGGAAAACTCCTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC TOCP GAAGGATCCTAAGCTGCAGCAAGAGCTACAACGCCATGGGTT CACCACCACCGATGATAAAATCTGATCAGGTTCCGCGGA BOM GTCCATCACCACCGATGATAAAATCTGATCAGTGTCGGCGGA HHCT CAACACCAGGGAGTTTCCGGCAGGAAGCCCTTAACGC CTGAATACTGGCACGATCCAACAGACTTTTGCCAGGGGA ATCTAGTCACATATGTGACTTCATCGCAAGACCCTTAACGC CTGAATACTGGCACGATCCAACAGACCCTTAACGC CTGAATACTGGCACGATCCAACAGACCCTTAACGC CTGAATACTGGCACGATCCCATCAAGGAAGACCCTTAACGC CTGAATACTGGCACGATCCCATCAAGGAAGACCCTTAACGC CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG OITIU CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG		AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG	
GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCTGCGGGTTGCGCTT -2 CTGCCATGGACGTCGCGCTCCCGAGCCCTCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vlGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGAGGAATACTGTGC ; TACGCCTGCGAGAAGCGAGGGGGGGAGGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCTCTGGTCATCTGGCATGGGATGGGGGACTCA 0ПТИ ТGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT МИЗИ ТGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT рова CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC GAAGGATCCTAAGCTGCAGCAAGAGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT ВОМ GTCCATCACCACCGATGATAAAATCTGATCAGTGTCGGCGGA ИНСТ CAACACCAGGGAGTTTTCGGGCTGCCCAGGGTTCCCAGGGTA CTGAATACTGCACATATGTGACTTCATTCGCAAGACCCTTAACGC HTTA CGGCGCTTACTCAAAGGTGGTTCAAGAACCCCTTAACGC CTGAATACTGCACAAAGGTGTTCAAGAACAGCTTGTCCAGG OITTH CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG CTGAATACTGCACAGATCCCATCAAGGAAGATGTATATAGG		CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT	
CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG GGCTAA PPT1 ATGGCATCCCCCGGATGTTTGTGGCTGCTGCGGGTTGCGCTT -2 CTGCCATGGACGTCGCCGCCCCCGAGCCCTCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGAGGAATACTGTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG KOJO GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCTCTGGTCATCTGGCATGGGATGGGGGACTCA OIITH TGTTGTAACCCGCTGAGTATTGGCGCAAAAAAAAAAATGGT MU3H TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTTTGAAAT DOBA CGGTAAGACACTTATGGAGGATGGAAAACTCCTTTTTCCT HA TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC GAAGGATCCTAAGCTGCAGCAAGAGCTACAACGCCATGGGTT CACT BOM GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA HHCT CAACACCAGGGAGTTTTCGGGCTGCCCAGGGTTCCGGCGGA ATCTAGTCACATATGTGACTTCATCGCAAGACCCTTAACGC HTA CGGCGCTTACTCAAAGGTGGTTCAAGAACGCCTTAACGC CTGAATACTGGCACGATCCTAAGAACGGCTTGTCCAGG OITH CTGAATACTGGCACGATCCCATCAAGAACGCCTTAACGC CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG		ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG	
PPT1 ATGGCATCCCCGGATGTTTGTGGCTGCTGCGGTTGCGCTT -2 CTGCCATGGACGTGCGCCTCCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGTCGATACGCTTCAATTC vlGF GTGTGTGGGGGATAGAGGCTTCCTTTTTTCTCGGCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAAGGTCCCGGGGTATCGTTGGAGGATCCTCCA H- GCTCCTCTGCCTCTGGTCATCTGCACTGGAGTGGGGGACTCA 0ПТИ TGTTGTAACCCGCTGAGTATTGGCATGGGATGGGGGACTCA 0ПТИ TGTAACCCGCTGAGTATTGGCATGGGATGGGGGACTCA 0ПТИ TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTTTGAAAT poba CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT BOM GTCCATCACCACCGATGATAAAATCTGATCAGTCTCGGCGGA HHCT CAACACCACGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA PyMe ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC HTa CGGCGCTTACTCAAAGGTGGTTCAAGACGCCTTGTGCAGG 0ПТИ CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAAGG		GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA	
PPT1 ATGGCATCCCCGGATGTTTGTGGCTGCTGGCGGTTGCGCTT -2 CTGCCATGGACGTGCGCCTCCCGAGCCCTCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vIGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCATCTTGCACTGTTGGAGGATCTTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGAGTGGGAGCATCA ОПТИ TGTTGTAACCCGCTGAGTATTGGCATGGGAGAAAAAAAAA		CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG	
CTGCCATGGACGTGCGCCTCCCGAGCCCTCCAACACCTGTCC (wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC VIGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC CGCGTGTCCCGAAGGTCCCGGAGGTATCGTTGAGGAATGCTG TTTCCGGTCCTGCAAGGTCCCGGAGTATCGTTGAGGAATGCTG TTTCCGGTCCTGCGATCTTGCACTGTTGAGGACATACTGTGC TACGCCTGCGAGAAGCGAGGGTGAGGGGGTTCTGGAGGTG GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGG		GGCTAA	
(wt- AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC vlGF GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT11 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA н- GCTCCTCTGCTCTGGTCATCTGGCATGGGATGGGGGACTCA опти TGTTGTAACCCGCTGAGTATTGGCATGGGATGGGGGACTCA мизи TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT рова CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT на ТААТGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTTTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCCGGCGGA инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA инст CAACACCAGGGAGTTTTCGGCTCCCAGGTGTCCGGGGGA уме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	PPT1	ATGGCATCCCCCGGATGTTTGTGGCTGCTGGCGGTTGCGCTT	193
VIGF GTGTGTGGGGATAGAGGCTTCCTTTTTCTCGGCCCGCTAGC 2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGACTCA OПТИ TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT MИЗИ ТGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT poba CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT BOM GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA ИНСТ CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGCGGA ИНСТ CAACACCAGGGAGTTTTCGGACTCCAAGACCCTTAACGC НТа СGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG ОПТИ CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	-2	CTGCCATGGACGTGCGCCTCCCGAGCCCTCCAACACCTGTCC	
2- CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA H- GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGACTCA OПТИ TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT МИЗИ TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTTTGAAAT poba CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT Ha TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT BOM GTCCATCACCACCGATGATAAAATCTGATCAGTGTCGGCGGA ИНСТ CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC НТа СGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG ОПТИ CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	(wt-	AGGACACTTTGCGGCGGAGAGTTGGTCGATACGCTTCAATTC	
PPT1 TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC ; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA н- GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGGACTCA ОПТИ TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT МИЗИ TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTTGAAAT рова CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT на TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта СGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG ОПТИ CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	vIGF	GTGTGTGGGGATAGAGGCTTCCTTTTTTCTCGGCCCGCTAGC	
; TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA н- GCTCCTCTGCTCTGGTCATCTGGCATGGGATGGGGACTCA опти TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT мизи ТGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTTTGAAAT рова CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT на ТААТGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст ТТТСССАGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA инст СААСАССАGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта СGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти СТGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	2-	CGCGTGTCCCGAAGGTCCCGGGGTATCGTTGAGGAATGCTG	
кодо GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA н- GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGACTCA опти TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT мизи TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT рова CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT на TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCCGGCGGA инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	PPT1	TTTCCGGTCCTGCGATCTTGCACTGTTGGAGACATACTGTGC	
H-GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGGACTCAОПТИTGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGTМИЗИTGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAATроваCGGTAAGACACTTATGGAGGATGTGGAAAAACTCCTTTTTCCTНаTAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGCПосрGAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTTСДСТTTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGATВОМGTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGAИНСТCAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGAРУМЕATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGCНТаCGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGGОПТИCTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	;	TACGCCTGCGAGAAGCGAGGGTGGAGGGGGTTCTGGAGGTG	
опти ТGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAATGGT мизи ТGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT рова СGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT на ТААТGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст ТТТСССАGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA инст СААСАССАGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме АТСТАGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта СGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти СТGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	кодо	GAGGGAGCCGGCCTCGGGCGGTTCCCACCCAGGATCCTCCA	
мизиTGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAATроваCGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCTнаTAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGCпосрGAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTTедстTTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGATвомGTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGAинстCAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGAрумеATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGCнтаCGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGGоптиCTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	н-	GCTCCTCTGCCTCTGGTCATCTGGCATGGGATGGGGGACTCA	
рова CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT на TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC поср GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта СGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	опти	TGTTGTAACCCGCTGAGTATGGGGGCAATTAAAAAAAATGGT	
наTAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGCпосрGAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTTедстTTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGATвомGTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGAинстCAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGAрумеATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGCнтаCGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGGоптиCTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	мизи	TGAAAAGAAAATTCCAGGTATTTATGTCCTCTCTCTTGAAAT	
посрGAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTTедстTTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGATвомGTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGAинстCAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGAрумеATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGCнтаCGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGGоптиCTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	рова	CGGTAAGACACTTATGGAGGATGTGGAAAACTCCTTTTTCCT	
едст TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	на	TAATGTCAATTCTCAGGTCACAACAGTTTGTCAGGCTCTGGC	
вом GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	поср	GAAGGATCCTAAGCTGCAGCAAGGCTACAACGCCATGGGTT	
инст CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	едст	TTTCCCAGGGAGGCCAATTTCTCAGAGCGGTAGCTCAGCGAT	
руме ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC нта CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	вом	GTCCATCACCACCGATGATAAATCTGATCAGTGTCGGCGGA	
нта CGGCGCTTACTCAAAAGGTGGTTCAAGAACGGCTTGTGCAGG опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	инст	CAACACCAGGGAGTTTTCGGGCTGCCCAGGTGTCCGGGGGA	
опти CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	руме	ATCTAGTCACATATGTGACTTCATTCGCAAGACCCTTAACGC	
	нта	CGGCGCTTACTCAAAGGTGGTTCAAGAACGGCTTGTGCAGG	
миза AACCACAGTATCTTTCTGGCAGACATAAATCAGGAAAGGGG	опти	CTGAATACTGGCACGATCCCATCAAGGAAGATGTATATAGG	
· · · · · · · · · · · · · · · · · · ·	миза	AACCACAGTATCTTTCTGGCAGACATAAATCAGGAAAGGGG	

ции	TATTAACGAAAGCTACAAGAAAAATCTCATGGCCCTGAAGA	
кодо	AATTTGTAATGGTTAAGTTTTTGAACGATTCTATAGTAGATC	
нов	CTGTTGACTCCGAGTGGTTCGGGTTCTATCGATCTGGTCAAG	
IDT)	CCAAGGAGACGATTCCGCTTCAGGAAACTTCACTGTACACA	
	CAGGATCGGCTGGGACTCAAGGAGATGGACAATGCGGGCCA	
	GTTGGTGTTTCTGGCTACAGAGGGAGACCATCTCCAGTTGAG	
	TGAAGAATGGTTCTATGCACATATTATCCCATTCCTCGGCTA	
	A	
PPT1	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCTGG	194
-29	GTGGCACTGCTGCTCAGCGCGGCGAGGGCCGCCGCGAG	
(BiP	TCGCACGTTGTGTGGAGGTGAACTCGTCGACACCCTTCAGTT	
2aa-	CGTATGTGGAGATCGCGGTTTCCTCTCTCACGCCCAGCTTC	
vIGF	CAGAGTTTCCCGAAGATCACGAGGAATAGTTGAGGAGTGCT	
2-	GTTTTCGGTCTTGTGATCTGGCTCTCCTCGAGACTTATTGTGC	
PPT1	TACGCCGGCCCGCTCTGAAGGAGGTGGTGGCAGTGGAGGAG	
;	GAGGGAGTCGGCCTAGGGCAGTCCCAACCCAGGACCCGCCG	
прир	GCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGGAGACAG	
одна	CTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAAAAAATGGT	
я	GGAGAAGAAAATACCTGGAATTTACGTCTTATCTTTAGAGAT	
чело	TGGGAAGACCCTGATGGAGGACGTGGAGAACAGCTTCTTCT	
вече	TGAATGTCAATTCCCAAGTAACAACAGTGTGTCAGGCACTTG	
ская	CTAAGGATCCTAAATTGCAGCAAGGCTACAATGCTATGGGA	
посл	TTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGGCTCAGAG	
едов	ATGCCCTTCACCTCCCATGATCAATCTGATCTCGGTTGGGGG	
атель	ACAACATCAAGGTGTTTTTGGACTCCCTCGATGCCCAGGAGA	
ност	GAGCTCTCACATCTGTGACTTCATCCGAAAAACACTGAATGC	
ь)	TGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTCGTGCAAG	
	CCGAATACTGGCATGACCCCATAAAGGAGGATGTGTATCGC	
	AACCACAGCATCTTCTTGGCAGATATAAATCAGGAGCGGGG	
	TATCAATGAGTCCTACAAGAAAAACCTGATGGCCCTGAAGA	
	AGTTTGTGATGGTGAAATTCCTCAATGATTCCATTGTGGACC	

	CTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGTGGCCAAG	
	CCAAGGAAACCATTCCCTTACAGGAGACCTCCCTGTACACA	
	CAGGACCGCCTGGGGCTAAAGGAAATGGACAATGCAGGAC	
	AGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTTCAGTTGT	
	CTGAAGAATGGTTTTATGCCCACATCATACCATTCCTTGGAT	
	GA	
PPT1	ATGGCGTCGCCCGGCTGCCTGTGGCTCTTGGCTGTGGCTCTC	195
,	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC	
скон	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
стру	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
иров	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	
анна	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
Я	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	
	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	
	TTGGGGGACAACATCAAGGTGTTTTTTGGACTCCCTCGATGCC	
	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	
	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	
	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGGGAGTGG	
	GAGTGGATCCACTTCATCCTCTAGAACACTGTGCGGAGGGG	
	AGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGT	

		ı
	TCCTCTTCTCTCGCCCCGCTTCCAGAGTTTCACGGAGGTCTA	
	GGGGTATAGTAGAGGAGTGTTGTTTCAGGGAGTGTGACTTG	
	GCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGA	
	ATGA	
TPP1	ATGGGACTCCAAGCCTGCCTCCTAGGGCTCTTTGCCCTCATC	196
,	CTCTCTGGCAAATGCAGTTACAGCCCGGAGCCCGACCAGCG	
дико	GAGGACGCTGCCCCAGGCTGGGTGTCCCTGGGCCGTGCGG	
го	ACCCTGAGGAAGAGCTGAGTCTCACCTTTGCCCTGAGACAG	
типа	CAGAATGTGGAAAGACTCTCGGAGCTGGTGCAGGCTGTGTC	
	GGATCCCAGCTCTCCAATACGGAAAATACCTGACCCTAG	
	AGAATGTGGCTGATCTGGTGAGGCCATCCCCACTGACCCTCC	
	ACACGGTGCAAAAATGGCTCTTGGCAGCCGGAGCCCAGAAG	
	TGCCATTCTGTGATCACACAGGACTTTCTGACTTGCTGGCTG	
	AGCATCCGACAAGCAGAGCTGCTGCTCCCTGGGGCTGAGTT	
	TCATCACTATGTGGGAGGACCTACGGAAACCCATGTTGTAA	
	GGTCCCCACATCCCTACCAGGCTTCCACAGGCCTTGGCCCCCC	
	ATGTGGACTTTGTGGGGGGGACTGCACCGTTTTCCCCCAACAT	
	CATCCCTGAGGCAACGTCCTGAGCCGCAGGTGACAGGGACT	
	GTAGGCCTGCATCTGGGGGTAACCCCCTCTGTGATCCGTAAG	
	CGATACAACTTGACCTCACAAGACGTGGGCTCTGGCACCAG	
	CAATAACAGCCAAGCCTGTGCCCAGTTCCTGGAGCAGTATTT	
	CCATGACTCAGACCTGGCTCAGTTCATGCGCCTCTTCGGTGG	
	CAACTTTGCACATCAGGCATCAGTAGCCCGTGTGGTTGGACA	
	ACAGGCCGGGCCGGGCCGGGATTGAGGCCAGTCTAGATG	
	TGCAGTACCTGATGAGTGCTGGTGCCAACATCTCCACCTGGG	
	TCTACAGTAGCCCTGGCCGGCATGAGGGACAGGAGCCCTTC	
	CTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCA	
	CATGTGCATACTGTGAGCTATGGAGATGATGAGGACTCCCTC	
	AGCAGCGCCTACATCCAGCGGGTCAACACTGAGCTCATGAA	
	GGCTGCCGCTCGGGGTCTCACCCTGCTCTTCGCCTCAGGTGA	
	CAGTGGGGCCGGGTGTTGGTCTGTCTCTGGAAGACACCAGTT	

CCGCCCTACCTTCCCTGCCTCCAGCCCCTATGTCACCACAGT GGGAGGCACATCCTTCCAGGAACCTTTCCTCATCACAAATGA AATTGTTGACTATATCAGTGGTGGTGGCTTCAGCAATGTGTT CCCACGGCCTTCATACCAGGAGGAAGCTGTAACGAAGTTCC TGAGCTCTAGCCCCACCTGCCACCATCCAGTTACTTCAATG CCAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTTCTGATG GCTACTGGGTGGTCAGCAACAGAGTGCCCATTCCATGGGTG TCCGGAACCTCGGCCTCTACTCCAGTGTTTGGGGGGGATCCTA TCCTTGATCAATGAGCACAGGATCCTTAGTGGCCGCCCCCCT CTTGGCTTTCTCAACCCAAGGCTCTACCAGCAGCATGGGGCA GGACTCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTCTG GATGAAGAGGTAGAGGGCCAGGGTTTCTGCTCTGGTCCTGG CTGGGATCCTGTAACAGGCTGGGGAACACCCAACTTCCCAG CTTTGCTGAAGACTCTACTCAACCCCTGA TPP1 ATGGGACTCCAAGCCTGCCTCCTAGGGCTCTTTGCCCTCATC 197 CTCTCTGGCAAATGCTCTAGAACACTGTGCGGAGGGGAGCT TGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGTTCCT скон CTTCTCTCGCCCCGCTTCCAGAGTTTCACGGAGGTCTAGGGG стру TATAGTAGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCGCT иров CCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAAGGAG анна GTGGTGGCAGTGGAGGAGGAGGAGTAGACCTAGAGCAGT Я GCCTACGCAGAGTTACAGCCCGGAGCCCGACCAGCGGAGGA CGCTGCCCCAGGCTGGGTGTCCCTGGGCCGTGCGGACCCTG AGGAAGAGCTGAGTCTCACCTTTGCCCTGAGACAGCAGAAT GTGGAAAGACTCTCGGAGCTGGTGCAGGCTGTGTCGGATCC CAGCTCTCCTCAATACGGAAAATACCTGACCCTAGAGAATG TGGCTGATCTGGTGAGGCCATCCCCACTGACCCTCCACACGG TGCAAAAATGGCTCTTGGCAGCCGGAGCCCAGAAGTGCCAT TCTGTGATCACACAGGACTTTCTGACTTGCTGGCTGAGCATC CGACAAGCAGAGCTGCTGCTCCCTGGGGCTGAGTTTCATCAC TATGTGGGAGGACCTACGGAAACCCATGTTGTAAGGTCCCC

ACATCCCTACCAGCTTCCACAGGCCTTGGCCCCCCATGTGGA CTTTGTGGGGGGACTGCACCGTTTTCCCCCAACATCATCCCT GAGGCAACGTCCTGAGCCGCAGGTGACAGGGACTGTAGGCC TGCATCTGGGGGTAACCCCCTCTGTGATCCGTAAGCGATACA ACTTGACCTCACAAGACGTGGGCTCTGGCACCAGCAATAAC AGCCAAGCCTGTGCCCAGTTCCTGGAGCAGTATTTCCATGAC TCAGACCTGGCTCAGTTCATGCGCCTCTTCGGTGGCAACTTT GCACATCAGGCATCAGTAGCCCGTGTGGTTGGACAACAGGG CCGGGGCCGGGCTTGAGGCCAGTCTAGATGTGCAGT ACCTGATGAGTGCTGGTGCCAACATCTCCACCTGGGTCTACA GTAGCCCTGGCCGGCATGAGGGACAGGAGCCCTTCCTGCAG TGGCTCATGCTCAGTAATGAGTCAGCCCTGCCACATGTG CATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAG CGCCTACATCCAGCGGGTCAACACTGAGCTCATGAAGGCTG CCGCTCGGGGTCTCACCCTGCTCTTCGCCTCAGGTGACAGTG GGGCCGGGTGTTGGTCTGTCTCTGGAAGACACCAGTTCCGCC CTACCTTCCCTGCCTCCAGCCCCTATGTCACCACAGTGGGAG GCACATCCTTCCAGGAACCTTTCCTCATCACAAATGAAATTG TTGACTATATCAGTGGTGGTGGCTTCAGCAATGTGTTCCCAC GGCCTTCATACCAGGAGGAAGCTGTAACGAAGTTCCTGAGC TCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGCCAGT GGCCGTGCCTACCCAGATGTGGCTGCACTTTCTGATGGCTAC TGGGTGGTCAGCAACAGAGTGCCCATTCCATGGGTGTCCGG AACCTCGGCCTCTACTCCAGTGTTTGGGGGGGATCCTATCCTT GATCAATGAGCACAGGATCCTTAGTGGCCGCCCCCCTCTTGG CTTTCTCAACCCAAGGCTCTACCAGCAGCATGGGGCAGGAC TCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTCTGGATG GATCCTGTAACAGGCTGGGGAACACCCAACTTCCCAGCTTTG CTGAAGACTCTACTCAACCCCTGA

ATGGCGCGGAAGTCGAACTTGCCTGTGCTTCTCGTGCCGTTT

198

AGA

,	CTGCTCTGCCAGGCCCTAGTGCGCTGCTCCAGCCCTCTGCCC	
дико	CTGGTCGTCAACACTTGGCCCTTTAAGAATGCAACCGAAGC	
го	AGCGTGGAGGCATTAGCATCTGGAGGCTCTGCCCTGGATG	
типа	CAGTGGAGAGCGGCTGTGCCATGTGTGAGAGAGAGCAGTGT	
	GACGGCTCTGTAGGCTTTGGAGGAAGTCCTGATGAACTTGG	
	AGAAACCACACTAGATGCCATGATCATGGATGGCACTACTA	
	TGGATGTAGGAGCAGTAGGAGATCTCAGACGAATTAAAAAT	
	GCTATTGGTGTGGCACGGAAAGTACTGGAACATACAACACA	
	CACACTTTTAGTAGGAGAGTCAGCCACCACATTTGCTCAAAG	
	TATGGGGTTTATCAATGAAGACTTATCTACCACTGCTTCTCA	
	AGCTCTTCATTCAGATTGGCTTGCTCGGAATTGCCAGCCA	
	TTATTGGAGGAATGTTATACCAGATCCCTCAAAATACTGCGG	
	ACCCTACAAACCACCTGGTATCTTAAAGCAGGATATTCCTAT	
	CCATAAAGAAACAGAAGATGATCGTGGTCATGACACTATTG	
	GCATGGTTGTAATCCATAAGACAGGACATATTGCTGCTGGTA	
	CATCTACAAATGGTATAAAATTCAAAATACATGGCCGTGTA	
	GGAGACTCACCAATACCTGGAGCTGGAGCCTATGCTGACGA	
	TACTGCAGGGCAGCCGCAGCCACTGGGAATGGTGATATAT	
	TGATGCGCTTCCTGCCAAGCTACCAAGCTGTAGAATACATGA	
	GAAGAGGAGAAGATCCAACCATAGCTTGCCAAAAAGTGATT	
	TCAAGAATCCAGAAGCATTTTCCAGAATTCTTTGGGGCTGTT	
	ATATGTGCCAATGTGACTGGAAGTTACGGTGCTGCTTGCAAT	
	AAACTTTCAACATTTACTCAGTTTAGTTTCATGGTTTATAATT	
	CCGAAAAAATCAGCCAACTGAGGAAAAAGTGGACTGCATC	
	TAA	
AGA	ATGGCGCGGAAGTCGAACTTGCCTGTGCTTCTCGTGCCGTTT	199
,	CTGCTCTGCCAGGCCCTAGTGCGCTGCTCTAGAACACTGTGC	
скон	GGAGGGGAGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGA	
стру	TCGCGGGTTCCTCTCTCTCGCCCCGCTTCCAGAGTTTCACG	
иров	GAGGTCTAGGGGTATAGTAGAGGAGTGTTGTTTCAGGTCCT	
анна	GTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCCA	

я (N-	GGTCCGAAGGAGGTGGTGGCAGTGGAGGAGGAGGAGTAG	
конц	ACCTAGAGCAGTGCCTACGCAGTCCAGCCCTCTGCCCCTGGT	
евое	CGTCAACACTTGGCCCTTTAAGAATGCAACCGAAGCAGCGT	
слия	GGAGGCATTAGCATCTGGAGGCTCTGCCCTGGATGCAGTG	
ние)	GAGAGCGGCTGTGCCATGTGTGAGAGAGAGCAGTGTGACGG	
	CTCTGTAGGCTTTGGAGGAAGTCCTGATGAACTTGGAGAAA	
	CCACACTAGATGCCATGATCATGGATGGCACTACTATGGAT	
	GTAGGAGCAGTAGGAGATCTCAGACGAATTAAAAATGCTAT	
	TGGTGTGGCACGGAAAGTACTGGAACATACAACACACACA	
	TTTTAGTAGGAGAGTCAGCCACCACATTTGCTCAAAGTATGG	
	GGTTTATCAATGAAGACTTATCTACCACTGCTTCTCAAGCTC	
	TTCATTCAGATTGGCTTGCTCGGAATTGCCAGCCAAATTATT	
	GGAGGAATGTTATACCAGATCCCTCAAAATACTGCGGACCC	
	TACAAACCACCTGGTATCTTAAAGCAGGATATTCCTATCCAT	
	AAAGAAACAGAAGATGATCGTGGTCATGACACTATTGGCAT	
	GGTTGTAATCCATAAGACAGGACATATTGCTGCTGGTACATC	
	TACAAATGGTATAAAATTCAAAATACATGGCCGTGTAGGAG	
	ACTCACCAATACCTGGAGCTGGAGCCTATGCTGACGATACT	
	GCAGGGCAGCCGCAGCCACTGGGAATGGTGATATATTGAT	
	GCGCTTCCTGCCAAGCTACCAAGCTGTAGAATACATGAGAA	
	GAGGAGAAGATCCAACCATAGCTTGCCAAAAAGTGATTTCA	
	AGAATCCAGAAGCATTTTCCAGAATTCTTTGGGGCTGTTATA	
	TGTGCCAATGTGACTGGAAGTTACGGTGCTGCTTGCAATAAA	
	CTTTCAACATTTACTCAGTTTAGTTTCATGGTTTATAATTCCG	
	AAAAAAATCAGCCAACTGAGGAAAAAGTGGACTGCATCTAA	
GLA	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC	200
,	GCGGCGCGGCCCTGGACAATGGATTGGCAAGGACGCCTAC	
дико	CATGGGCTGCACTGGGAGCGCTTCATGTGCAACCTTGA	
го	CTGCCAGGAAGAGCCAGATTCCTGCATCAGTGAGAAGCTCT	
типа	TCATGGAGATGGCAGAGCTCATGGTCTCAGAAGGCTGGAAG	
	GATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTGGATG	
L		

GCTCCCCAAAGAGATTCAGAAGGCAGACTTCAGGCAGACCC TCAGCGCTTTCCTCATGGGATTCGCCAGCTAGCTAATTATGT TCACAGCAAAGGACTGAAGCTAGGGATTTATGCAGATGTTG GAAATAAAACCTGCGCAGGCTTCCCTGGGAGTTTTGGATACT ACGACATTGATGCCCAGACCTTTGCTGACTGGGGAGTAGAT CTGCTAAAATTTGATGGTTGTTACTGTGACAGTTTGGAAAAT TTGGCAGATGGTTATAAGCACATGTCCTTGGCCCTGAATAGG ACTGGCAGAAGCATTGTGTACTCCTGTGAGTGGCCTCTTTAT ATGTGGCCCTTTCAAAAGCCCAATTATACAGAAATCCGACA GTACTGCAATCACTGGCGAAATTTTGCTGACATTGATGATTC ${\sf CTGGAAAAGTATAAAGAGTATCTTGGACTGGACATCTTTTAA}$ CCAGGAGAGAATTGTTGATGTTGCTGGACCAGGGGGTTGGA ATGACCCAGATATGTTAGTGATTGGCAACTTTGGCCTCAGCT GGAATCAGCAAGTAACTCAGATGGCCCTCTGGGCTATCATG GCTGCTCCTTTATTCATGTCTAATGACCTCCGACACATCAGC CCTCAAGCCAAAGCTCTCCTTCAGGATAAGGACGTAATTGCC ATCAATCAGGACCCCTTGGGCAAGCAAGGGTACCAGCTTAG ACAGGGAGACAACTTTGAAGTGTGGGAACGACCTCTCTCAG GCTTAGCCTGGGCTGTAGCTATGATAAACCGGCAGGAGATT GGTGGACCTCGCTCTTATACCATCGCAGTTGCTTCCCTGGGT AAAGGAGTGGCCTGTAATCCTGCCTGCTTCATCACACAGCTC CTCCCTGTGAAAAGGAAGCTAGGGTTCTATGAATGGACTTC AAGGTTAAGAAGTCACATAAATCCCACAGGCACTGTTTTGCT TCAGCTAGAAAATACAATGCAGATGTCATTAAAAGACTTAC TTTAA ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC 201 GCGGCGCGGCCCTGGACAATGGATTGGCAAGGACGCCTAC CATGGGCTGCACTGGGAGCGCTTCATGTGCAACCTTGA CTGCCAGGAAGAGCCAGATTCCTGCATCAGTGAGAAGCTCT TCATGGAGATGGCAGAGCTCATGGTCTCAGAAGGCTGGAAG GATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTGGATG

GLA

скон

стру

иров

анна

Я

GCTCCCCAAAGAGATTCAGAAGGCAGACTTCAGGCAGACCC TCAGCGCTTTCCTCATGGGATTCGCCAGCTAGCTAATTATGT TCACAGCAAAGGACTGAAGCTAGGGATTTATGCAGATGTTG GAAATAAAACCTGCGCAGGCTTCCCTGGGAGTTTTGGATACT ACGACATTGATGCCCAGACCTTTGCTGACTGGGGAGTAGAT CTGCTAAAATTTGATGGTTGTTACTGTGACAGTTTGGAAAAT TTGGCAGATGGTTATAAGCACATGTCCTTGGCCCTGAATAGG ACTGGCAGAAGCATTGTGTACTCCTGTGAGTGGCCTCTTTAT ATGTGGCCCTTTCAAAAGCCCAATTATACAGAAATCCGACA GTACTGCAATCACTGGCGAAATTTTGCTGACATTGATGATTC ${\sf CTGGAAAAGTATAAAGAGTATCTTGGACTGGACATCTTTTAA}$ CCAGGAGAGAATTGTTGATGTTGCTGGACCAGGGGGTTGGA ATGACCCAGATATGTTAGTGATTGGCAACTTTGGCCTCAGCT GGAATCAGCAAGTAACTCAGATGGCCCTCTGGGCTATCATG GCTGCTCCTTTATTCATGTCTAATGACCTCCGACACATCAGC CCTCAAGCCAAAGCTCTCCTTCAGGATAAGGACGTAATTGCC ATCAATCAGGACCCCTTGGGCAAGCAAGGGTACCAGCTTAG ACAGGGAGACAACTTTGAAGTGTGGGAACGACCTCTCTCAG GCTTAGCCTGGGCTGTAGCTATGATAAACCGGCAGGAGATT GGTGGACCTCGCTCTTATACCATCGCAGTTGCTTCCCTGGGT AAAGGAGTGGCCTGTAATCCTGCCTGCTTCATCACACAGCTC CTCCCTGTGAAAAGGAAGCTAGGGTTCTATGAATGGACTTC AAGGTTAAGAAGTCACATAAATCCCACAGGCACTGTTTTGCT TCAGCTAGAAAATACAATGCAGATGTCATTAAAAGACTTAC TTTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCCAGATG GGGCAGCCCGGGGGCGGTGGCTCAGGTGGTGGAGGTTCAAG AACACTGTGCGGAGGGGAGCTTGTAGACACTCTTCAGTTCGT GTGTGGAGATCGCGGGTTCCTCTCTCTCTCGCCCCGCTTCCAG AGTTTCACGGAGGTCTAGGGGGTATAGTAGAGGAGTGTTGTTT CAGGTCCTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGAC GCCAGCCAGGTCCGAATAA

BiP-	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC	202
vIGF	GCGGCGCGGGCCTCTAGAACACTGTGCGGAGGGGAGCTTGT	
2-17-	AGACACTCTTCAGTTCGTGTGGAGATCGCGGGTTCCTCTT	
2GS-	CTCTCGCCCCGCTTCCAGAGTTTCACGGAGGTCTAGGGGTAT	
GAA	AGTAGAGGAGTGTTGTTTCAGGGAGTGTGACTTGGCGCTCCT	
	CGAGACCTATTGCGCGACGCCAGCCAGGTCCGAAGGGGGCG	
	GTGGCTCAGGTGGTGGAGGTAGCAGACCAGGGCCCCGGGAT	
	GCCCAGGCACACCCCGGCCGTCCCAGAGCAGTGCCCACACA	
	GTGCGACGTCCCCCCAACAGCCGCTTCGATTGCGCCCCTGA	
	CAAGGCCATCACCCAGGAACAGTGCGAGGCCCGCGGCTGTT	
	GCTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCCAGATG	
	GGGCAGCCCTGGTGCTTCTTCCCACCCAGCTACCCCAGCTAC	
	AAGCTGGAGAACCTGAGCTCCTCTGAAATGGGCTACACGGC	
	CACCCTGACCCGTACCACCCCCACCTTCTTCCCCAAGGACAT	
	CCTGACCCTGCGGCTGGACGTGATGATGGAGACTGAGAACC	
	GCCTCCACTTCACGATCAAAGATCCAGCTAACAGGCGCTAC	
	GAGGTGCCCTTGGAGACCCCGCATGTCCACAGCCGGGCACC	
	GTCCCCACTCTACAGCGTGGAGTTCTCCGAGGAGCCCTTCGG	
	GGTGATCGTGCGCCGGCAGCTGGACGGCCGCGTGCTGA	
	ACACGACGGTGGCGCCCCTGTTCTTTGCGGACCAGTTCCTTC	
	AGCTGTCCACCTCGCTGCCCTCGCAGTATATCACAGGCCTCG	
	CCGAGCACCTCAGTCCCCTGATGCTCAGCACCAGCTGGACC	
	AGGATCACCCTGTGGAACCGGGACCTTGCGCCCACGCCCGG	
	TGCGAACCTCTACGGGTCTCACCCTTTCTACCTGGCGCTGGA	
	GGACGGCGGTCGGCACACGGGGTGTTCCTGCTAAACAGCA	
	ATGCCATGGATGTGGTCCTGCAGCCGAGCCCTGCCCTTAGCT	
	GGAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTCCTGG	
	GCCCAGAGCCCAAGAGCGTGGTGCAGCAGTACCTGGACGTT	
	GTGGGATACCCGTTCATGCCGCCATACTGGGGCCTGGGCTTC	
	CACCTGTGCCGCTGGGGCTACTCCTCCACCGCTATCACCCGC	
	CAGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCCTGGA	
		1

CGTCCAGTGGAACGACCTGGACTACATGGACTCCCGGAGGG ACTTCACGTTCAACAAGGATGGCTTCCGGGACTTCCCGGCCA TGGTGCAGGAGCTGCACCAGGGCGGCGCGCGCTACATGATG ATCGTGGATCCTGCCATCAGCAGCTCGGGCCCTGCCGGGAG CTACAGGCCCTACGACGAGGGTCTGCGGAGGGGGGTTTTCA TCACCAACGAGACCGGCCAGCCGCTGATTGGGAAGGTATGG CCCGGGTCCACTGCCTTCCCCGACTTCACCAACCCCACAGCC CTGGCCTGGTGGGAGGACATGGTGGCTGAGTTCCATGACCA GGTGCCCTTCGACGGCATGTGGATTGACATGAACGAGCCTTC CAACTTCATCAGGGGCTCTGAGGACGGCTGCCCCAACAATG AGCTGGAGAACCCACCCTACGTGCCTGGGGTGGTTGGGGGG ACCCTCCAGGCGGCCACCATCTGTGCCTCCAGCCACCAGTTT CTCTCCACACACTACAACCTGCACAACCTCTACGGCCTGACC GAAGCCATCGCCTCCCACAGGGCGCTGGTGAAGGCTCGGGG GACACGCCCATTTGTGATCTCCCGCTCGACCTTTGCTGGCCA CGGCCGATACGCCGGCCACTGGACGGGGGACGTGTGGAGCT CCTGGGAGCAGCTCGCCTCCTCCGTGCCAGAAATCCTGCAGT TTAACCTGCTGGGGGTGCCTCTGGTCGGGGCCGACGTCTGCG GCTTCCTGGGCAACACCTCAGAGGAGCTGTGTGTGCGCTGG ACCCAGCTGGGGGCCTTCTACCCCTTCATGCGGAACCACAAC AGCCTGCTCAGTCTGCCCCAGGAGCCGTACAGCTTCAGCGA GCCGGCCCAGCAGGCCATGAGGAAGGCCCTCACCCTGCGCT ACGCACTCCCCCCACCTCTACACACTGTTCCACCAGGCCC ACGTCGCGGGGAGACCGTGGCCCGGCCCCTCTTCCTGGAG TTCCCCAAGGACTCTAGCACCTGGACTGTGGACCACCAGCTC CTGTGGGGGGAGGCCCTGCTCATCACCCCAGTGCTCCAGGC CGGGAAGGCCGAAGTGACTGGCTACTTCCCCTTGGGCACAT GGTACGACCTGCAGACGGTGCCAGTAGAGGCCCTTGGCAGC CTCCCACCCCACCTGCAGCTCCCCGTGAGCCAGCCATCCAC AGCGAGGGCAGTGGGTGACGCTGCCGGCCCCCCTGGACAC CATCAACGTCCACCTCCGGGCTGGGTACATCATCCCCCTGCA

	GGGCCCTGGCCTCACAACCACAGAGTCCCGCCAGCAGCCCA	
	TGGCCCTGGCTGTGGCCCTGACCAAGGGTGGGGAGGCCCGA	
	GGGGAGCTGTTCTGGGACGATGGAGAGAGCCTGGAAGTGCT	
	GGAGCGAGGGCCTACACACAGGTCATCTTCCTGGCCAGGA	
	ATAACACGATCGTGAATGAGCTGGTACGTGTGACCAGTGAG	
	GGAGCTGGCCTGCAGCAGAAGGTGACTGTCCTGGGCGT	
	GGCCACGGCGCCCCAGCAGGTCCTCTCCAACGGTGTCCCTGT	
	CTCCAACTTCACCTACAGCCCCGACACCAAGGTCCTGGACAT	
	CTGTGTCTCGCTGTTGATGGGAGAGCAGTTTCTCGTCAGCTG	
	GTGTTAG	
BiP-	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC	203
vIGF	GCGGCGCGGGCCTCTAGAACACTGTGCGGAGGGGAGCTTGT	
2-20-	AGACACTCTTCAGTTCGTGTGGAGATCGCGGGTTCCTCTT	
2GS-	CTCTCGCCCCGCTTCCAGAGTTTCACGGAGGTCTAGGGGTAT	
GAA	ACTGGAGGAGTGTTGTTTCAGGTCCTGTGACTTGGCGCTCCT	
	CGAGACCTATTGCGCGACGCCAGCCAGGTCCGAAGGGGGCG	
	GTGGCTCAGGTGGTGGAGGTAGCAGACCAGGGCCCCGGGAT	
	GCCCAGGCACACCCCGGCCGTCCCAGAGCAGTGCCCACACA	
	GTGCGACGTCCCCCCAACAGCCGCTTCGATTGCGCCCCTGA	
	CAAGGCCATCACCCAGGAACAGTGCGAGGCCCGCGGCTGTT	
	GCTACATCCCTGCAAAGCAGGGGCTGCAGGGAGCCCAGATG	
	GGGCAGCCCTGGTGCTTCTTCCCACCCAGCTACCCCAGCTAC	
	AAGCTGGAGAACCTGAGCTCCTCTGAAATGGGCTACACGGC	
	CACCCTGACCCGTACCACCCCCACCTTCTTCCCCAAGGACAT	
	CCTGACCCTGCGGCTGGACGTGATGATGGAGACTGAGAACC	
	GCCTCCACTTCACGATCAAAGATCCAGCTAACAGGCGCTAC	
	GAGGTGCCCTTGGAGACCCCGCATGTCCACAGCCGGGCACC	
	GTCCCCACTCTACAGCGTGGAGTTCTCCGAGGAGCCCTTCGG	
	GGTGATCGTGCGCCGGCAGCTGGACGGCCGCGTGCTGA	
	ACACGACGGTGGCGCCCCTGTTCTTTGCGGACCAGTTCCTTC	
	AGCTGTCCACCTCGCTGCCCTCGCAGTATATCACAGGCCTCG	

CCGAGCACCTCAGTCCCCTGATGCTCAGCACCAGCTGGACC AGGATCACCCTGTGGAACCGGGACCTTGCGCCCACGCCCGG TGCGAACCTCTACGGGTCTCACCCTTTCTACCTGGCGCTGGA GGACGGCGGTCGGCACACGGGGTGTTCCTGCTAAACAGCA ATGCCATGGATGTGGTCCTGCAGCCGAGCCCTGCCCTTAGCT GGAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTCCTGG GCCCAGAGCCCAAGAGCGTGGTGCAGCAGTACCTGGACGTT GTGGGATACCCGTTCATGCCGCCATACTGGGGCCTGGGCTTC CACCTGTGCCGCTGGGGCTACTCCTCCACCGCTATCACCCGC CAGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCCTGGA CGTCCAGTGGAACGACCTGGACTACATGGACTCCCGGAGGG ACTTCACGTTCAACAAGGATGGCTTCCGGGACTTCCCGGCCA TGGTGCAGGAGCTGCACCAGGGCGGCGCCGCCTACATGATG ATCGTGGATCCTGCCATCAGCAGCTCGGGCCCTGCCGGGAG CTACAGGCCCTACGACGAGGGTCTGCGGAGGGGGTTTTCA TCACCAACGAGACCGGCCAGCCGCTGATTGGGAAGGTATGG CCCGGGTCCACTGCCTTCCCCGACTTCACCAACCCCACAGCC CTGGCCTGGTGGGAGGACATGGTGGCTGAGTTCCATGACCA GGTGCCCTTCGACGGCATGTGGATTGACATGAACGAGCCTTC CAACTTCATCAGGGGCTCTGAGGACGGCTGCCCCAACAATG AGCTGGAGAACCCACCCTACGTGCCTGGGGTGGTTGGGGGG ACCCTCCAGGCGGCCACCATCTGTGCCTCCAGCCACCAGTTT CTCTCCACACACTACAACCTGCACAACCTCTACGGCCTGACC GAAGCCATCGCCTCCCACAGGGCGCTGGTGAAGGCTCGGGG GACACGCCCATTTGTGATCTCCCGCTCGACCTTTGCTGGCCA CGGCCGATACGCCGGCCACTGGACGGGGGACGTGTGGAGCT CCTGGGAGCAGCTCGCCTCCTCCGTGCCAGAAATCCTGCAGT TTAACCTGCTGGGGGTGCCTCTGGTCGGGGCCGACGTCTGCG GCTTCCTGGGCAACACCTCAGAGGAGCTGTGTGTGCGCTGG ACCCAGCTGGGGGCCTTCTACCCCTTCATGCGGAACCACAAC AGCCTGCTCAGTCTGCCCCAGGAGCCGTACAGCTTCAGCGA

GCCGGCCCAGCAGGCCATGAGGAAGGCCCTCACCCTGCGCT ACGCACTCCTCCCCCACCTCTACACACTGTTCCACCAGGCCC ACGTCGCGGGGGAGACCGTGGCCCGGCCCCTCTTCCTGGAG TTCCCCAAGGACTCTAGCACCTGGACTGTGGACCACCAGCTC CTGTGGGGGGAGGCCCTGCTCATCACCCCAGTGCTCCAGGC CGGGAAGGCCGAAGTGACTGGCTACTTCCCCTTGGGCACAT GGTACGACCTGCAGACGGTGCCAGTAGAGGCCCTTGGCAGC CTCCCACCCCACCTGCAGCTCCCCGTGAGCCAGCCATCCAC AGCGAGGGCAGTGGGTGACGCTGCCGGCCCCCCTGGACAC CATCAACGTCCACCTCCGGGCTGGGTACATCATCCCCCTGCA GGGCCCTGGCCTCACACCACAGAGTCCCGCCAGCAGCCCA TGGCCCTGGCTGTGGCCCTGACCAAGGGTGGGGAGGCCCGA GGGGAGCTGTTCTGGGACGATGGAGAGAGCCTGGAAGTGCT GGAGCGAGGGCCTACACACAGGTCATCTTCCTGGCCAGGA ATAACACGATCGTGAATGAGCTGGTACGTGTGACCAGTGAG GGAGCTGGCCTGCAGCTGCAGAAGGTGACTGTCCTGGGCGT GGCCACGGCCCCAGCAGGTCCTCTCCAACGGTGTCCCTGT CTCCAACTTCACCTACAGCCCCGACACCAAGGTCCTGGACAT CTGTGTCTCGCTGTTGATGGGAGAGCAGTTTCTCGTCAGCTG **GTGTTAG** ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC

BiP-204 GCGGCGCGGCCTCTAGAACACTGTGCGGAGGGGAGCTTGT vIGF 2-22-AGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGTTCCTCTT CTCTCGCGGAGGTGGAGGTTCTAGGGGGTATAGTAGAGGAGT 2GS-**GAA** GTTGTTTCAGGTCCTGTGACTTGGCGCTCCTCGAGACCTATT GCGCGACGCCAGCCAGGTCCGAAGGGGGCGGTGGCTCAGGT GGTGGAGGTAGCAGACCAGGGCCCCGGGATGCCCAGGCACA CCCCGGCCGTCCCAGAGCAGTGCCCACACAGTGCGACGTCC CCCCCAACAGCCGCTTCGATTGCGCCCCTGACAAGGCCATCA ${\sf CCCAGGAACAGTGCGAGGCCCGCGGCTGTTGCTACATCCCT}$ GCAAAGCAGGGCTGCAGGGAGCCCAGATGGGGCAGCCCT

GGTGCTTCTTCCCACCCAGCTACCCCAGCTACAAGCTGGAGA ACCTGAGCTCCTCTGAAATGGGCTACACGGCCACCCTGACCC GTACCACCCCACCTTCTTCCCCAAGGACATCCTGACCCTGC GGCTGGACGTGATGATGGAGACTGAGAACCGCCTCCACTTC ACGATCAAAGATCCAGCTAACAGGCGCTACGAGGTGCCCTT GGAGACCCCGCATGTCCACAGCCGGGCACCGTCCCCACTCT ACAGCGTGGAGTTCTCCGAGGAGCCCTTCGGGGTGATCGTG CGCCGGCAGCTGGACGCCGCGTGCTGAACACGACGGT GGCGCCCTGTTCTTTGCGGACCAGTTCCTTCAGCTGTCCAC CTCGCTGCCCTCGCAGTATATCACAGGCCTCGCCGAGCACCT CAGTCCCCTGATGCTCAGCACCAGCTGGACCAGGATCACCCT GTGGAACCGGGACCTTGCGCCCACGCCCGGTGCGAACCTCT ACGGGTCTCACCCTTTCTACCTGGCGCTGGAGGACGGCGGGT CGGCACACGGGGTGTTCCTGCTAAACAGCAATGCCATGGAT GTGGTCCTGCAGCCGAGCCCTGCCCTTAGCTGGAGGTCGAC AGGTGGGATCCTGGATGTCTACATCTTCCTGGGCCCAGAGCC CAAGAGCGTGGTGCAGCAGTACCTGGACGTTGTGGGATACC CGTTCATGCCGCCATACTGGGGCCTGGGCTTCCACCTGTGCC GCTGGGGCTACTCCTCCACCGCTATCACCCGCCAGGTGGTGG AGAACATGACCAGGGCCCACTTCCCCCTGGACGTCCAGTGG AACGACCTGGACTACATGGACTCCCGGAGGGACTTCACGTT CAACAAGGATGGCTTCCGGGACTTCCCGGCCATGGTGCAGG AGCTGCACCAGGGCGGCCGGCGCTACATGATGATCGTGGAT CCTGCCATCAGCAGCTCGGGCCCTGCCGGGAGCTACAGGCC CTACGACGAGGGTCTGCGGAGGGGGGTTTTCATCACCAACG AGACCGGCCAGCCGCTGATTGGGAAGGTATGGCCCGGGTCC ACTGCCTTCCCCGACTTCACCAACCCCACAGCCCTGGCCTGG TGGGAGGACATGGTGGCTGAGTTCCATGACCAGGTGCCCTT CGACGCATGTGGATTGACATGAACGAGCCTTCCAACTTCAT CAGGGGCTCTGAGGACGGCTGCCCCAACAATGAGCTGGAGA ACCCACCCTACGTGCCTGGGGTGGTTGGGGGGGACCCTCCAG

GCGGCCACCATCTGTGCCTCCAGCCACCAGTTTCTCTCCACA CACTACAACCTGCACAACCTCTACGGCCTGACCGAAGCCAT CGCCTCCCACAGGGCGCTGGTGAAGGCTCGGGGGACACGCC CATTTGTGATCTCCCGCTCGACCTTTGCTGGCCACGGCCGAT ACGCCGGCCACTGGACGGGGGACGTGTGGAGCTCCTGGGAG CAGCTCGCCTCCGTGCCAGAAATCCTGCAGTTTAACCTG CTGGGGGTGCCTCTGGTCGGGGCCGACGTCTGCGGCTTCCTG GGCAACACCTCAGAGGAGCTGTGTGTGCGCTGGACCCAGCT GGGGGCCTTCTACCCCTTCATGCGGAACCACAACAGCCTGCT CAGTCTGCCCCAGGAGCCGTACAGCTTCAGCGAGCCGGCCC AGCAGGCCATGAGGAAGGCCCTCACCCTGCGCTACGCACTC CTCCCCCACCTCTACACACTGTTCCACCAGGCCCACGTCGCG GGGGAGACCGTGGCCCGGCCCCTCTTCCTGGAGTTCCCCAA GGACTCTAGCACCTGGACTGTGGACCACCAGCTCCTGTGGG GGGAGGCCCTGCTCATCACCCCAGTGCTCCAGGCCGGGAAG GCCGAAGTGACTGGCTACTTCCCCTTGGGCACATGGTACGAC CTGCAGACGGTGCCAGTAGAGGCCCTTGGCAGCCTCCCACC CCCACCTGCAGCTCCCCGTGAGCCAGCCATCCACAGCGAGG GGCAGTGGGTGACGCTGCCGGCCCCCTGGACACCATCAAC GTCCACCTCCGGGCTGGGTACATCATCCCCCTGCAGGGCCCT GGCCTCACAACCACAGAGTCCCGCCAGCAGCCCATGGCCCT GGCTGTGGCCCTGACCAAGGGTGGGGAGGCCCGAGGGGAGC TGTTCTGGGACGATGGAGAGAGCCTGGAAGTGCTGGAGCGA GGGGCCTACACACAGGTCATCTTCCTGGCCAGGAATAACAC GATCGTGAATGAGCTGGTACGTGTGACCAGTGAGGGAGCTG GCCTGCAGCTGCAGAAGGTGACTGTCCTGGGCGTGGCCACG GCGCCCAGCAGGTCCTCTCCAACGGTGTCCCTGTCTCCAAC TTCACCTACAGCCCCGACACCAAGGTCCTGGACATCTGTGTC TCGCTGTTGATGGGAGAGCAGTTTCTCGTCAGCTGGTGTTAG

PPT1 ATGAAACTGTCTCTGGTTGCAGCAATGCTCTTGCTGTTGAGT

205

-3 GCGGCCCGCGGATCCACCTGCTCCCTGCCCCTCGTTATA

(BiP-	TGGCATGGCATGGGAGATTCCTGTTGTAATCCCCTCAGCATG	
PPT1	GGGGCCATCAAAAAAATGGTGGAAAAAAAAAAAATACCTGGCAT	
;	ATATGTACTCTCACTTGAAATCGGTAAGACCCTTATGGAAGA	
кодо	CGTCGAAAATTCCTTCTTTTTGAACGTGAACTCACAAGTTAC	
н-	GACCGTCTGTCAAGCTCTCGCGAAAGACCCTAAGCTCCAGC	
опти	AAGGTTATAATGCAATGGGCTTCTCACAGGGAGGTCAGTTCT	
мизи	TGCGAGCGGTAGCCCAGAGGTGTCCGTCTCCGCCAATGATC	
рова	AACTTGATCTCAGTGGGGGGTCAGCACCAAGGCGTTTTTGG	
на	ACTCCCTAGATGCCCTGGAGAGAGCTCTCACATTTGCGATTT	
поср	TATACGGAAGACGCTGAATGCCGGCGCGTATTCAAAGGTCG	
едст	TTCAAGAGCGACTCGTCCAGGCTGAATACTGGCACGATCCG	
вом	ATTAAGGAAGACGTGTATCGAAACCATTCTATCTTTCTTGCC	
IDT)	GACATTAACCAGGAGCGAGGGATCAACGAAAGTTATAAAAA	
	AAACCTGATGGCACTCAAGAAATTTGTAATGGTTAAATTCCT	
	GAACGATTCAATAGTTGATCCGGTGGATTCCGAGTGGTTCGG	
	CTTCTACCGGTCCGGTCAGGCCAAGGAAACAATCCCATTGC	
	AAGAAACCAGTCTCTATACTCAGGACCGCCTGGGTCTGAAA	
	GAAATGGACAACGCTGGCCAACTTGTTTTTCTGGCAACGGA	
	GGGTGATCACTTGCAGCTCTCTGAAGAATGGTTTTACGCACA	
	CATCATTCCTTGGTTAA	
PPT1	ATGAAGTTGTCCCTCGTAGCTGCAATGTTGCTGCTCCTCAGT	206
-4	GCAGCGCGGGCAAGTCGCACGTTGTGTGGAGGTGAACTCGT	
(BiP-	CGACACCCTTCAGTTCGTATGTGGAGATCGCGGTTTCCTCTT	
vIGF	CTCACGCCCAGCTTCCAGAGTTTCCCGAAGATCACGAGGAA	
2-	TAGTTGAGGAGTGCTGTTTTCGGTCTTGTGATCTGGCTCTCCT	
PPT1	CGAGACTTATTGTGCTACGCCGGCCCGCTCTGAAGGAGGTG	
;	GTGGCAGTGGAGGAGGAGGGAGTCGGCCTAGGGCAGTCCCA	
кодо	ACCCAGGATCCCCCAGCACCCCTCCCCCTGGTAATTTGGCAT	
н-	GGAATGGGTGATTCCTGCTGTAACCCACTCTCAATGGGGGC	
опти	AATTAAGAAAATGGTAGAGAAAAAGATCCCTGGCATTTATG	
мизи	TTCTGTCACTCGAAATCGGTAAAACGCTCATGGAGGACGTA	

рова	GAAAACAGCTTTTTTCTGAATGTTAATTCACAGGTTACCACG	
на	GTCTGCCAAGCATTGGCAAAGGACCCGAAATTGCAACAAGG	
поср	CTATAACGCGATGGGGTTCAGCCAAGGCGGGCAGTTTCTTC	
едст	GAGCTGTGGCTCAGCGCTGCCCTTCCCCACCGATGATAAATT	
вом	TGATTAGCGTAGGGGGACAACATCAAGGGGTTTTCGGTTTG	
IDT)	CCAAGGTGTCCTGGCGAATCTTCACATATTTGCGACTTTATA	
	CGGAAGACCTTGAATGCGGGGGGCGTATAGTAAAGTCGTCCA	
	GGAACGGCTTGTCCAAGCTGAATACTGGCACGATCCCATCA	
	AAGAAGATGTCTATCGGAATCACAGCATTTTTCTCGCCGACA	
	TAAACCAAGAACGCGGAATTAATGAGTCATACAAGAAGAAC	
	TTGATGGCACTTAAAAAATTTGTGATGGTTAAGTTTTTGAAT	
	GATAGTATCGTAGATCCCGTAGATAGTGAATGGTTTC	
	TATCGATCCGGACAGGCTAAAGAAACGATACCATTGCAGGA	
	AACCTCTTTGTATACTCAAGATAGGTTGGGCCTCAAGGAGAT	
	GGATAATGCGGGGCAACTTGTCTTCCTCGCGACTGAGGGTG	
	ACCACCTCCAGCTCAGCGAGGAATGGTTTTACGCCCACATCA	
	TTCCTTTCCTTGGTTAA	
PPT1	ATGGCAAGTCCAGGGTGTCTTTGGTTGCTCGCGGTTGCCTTG	207
-5	CTCCCTTGGACGTGCGCGTCCCGAGCCCTTCAACACCTCGAT	
(wt-	CCACCAGCCCGCTTCCTCTCGTGATATGGCACGGCATGGGC	
PPT1	GACAGTTGCTGCAATCCCTTGTCTATGGGCGCAATTAAAAAG	
-	ATGGTGGAAAAGAAAATCCCTGGTATCTACGTTTTGAGCCTC	
vIGF	GAAATTGGGAAAACGCTCATGGAGGATGTCGAGAACAGCTT	
2;	CTTTCTTAACGTCAATTCCCAAGTTACCACGGTTTGTCAAGC	
кодо	CTTGGCGAAAGATCCCAAGCTTCAGCAAGGGTATAACGCTA	
н-	TGGGATTTAGCCAGGGCGGACAGTTCCTGAGGGCGGTAGCA	
опти	CAGAGGTGTCCTAGTCCACCAATGATAAATCTCATCTCA	
мизи	GGGGCCAGCACCAGGGCGTCTTCGGGCTTCCTCGATGCCC	
рова	CGGCGAATCCAGCCACATATGTGACTTCATTAGAAAAACTTT	
на	GAATGCAGGGCCTACAGTAAAGTGGTTCAAGAACGCCTGG	
поср	TACAAGCAGAGTATTGGCATGACCCGATTAAGGAAGATGTC	

едст	TACAGAAATCACTCTATTTTTTTGGCGGACATCAATCAGGAA	
вом	CGAGGCATTAACGAGTCTTACAAGAAGAACCTGATGGCGCT	
IDT)	GAAAAAGTTCGTCATGGTCAAGTTCTTGAATGACTCCATTGT	
	CGATCCTGTAGACAGCGAGTGGTTTGGCTTCTACAGGTCTGG	
	TCAAGCAAAGGAGACAATACCACTTCAGGAAACCAGTCTCT	
	ATACACAAGACAGACTGGGTTTGAAGGAAATGGACAATGCA	
	GGCCAACTGGTATTCCTGGCTACAGAGGGAGATCATCTTCA	
	ACTGAGCGAAGAGTGGTTTTATGCCCACATAATCCCCTTTCT	
	GGGAAGACCTAGAGCAGTGCCTACGCAGGGTGGTGGCT	
	CTGGAGGAGGAGCTCCAGGACTCTGTGTGGGGGGCGAGCTG	
	GTGGACACCTTGCAATTCGTGTGTGGCGACCGAGGATTTCTG	
	TTCAGTCGACCTGCCTCAAGAGTAAGCCGGAGGAGTCGGGG	
	GATCGTTGAAGAATGCTGTTTCCGGAGCTGCGACTTGGCGTT	
	GCTCGAGACTTATTGTGCCACACCTGCAAGGAGTGAGTGA	
PPT1	ATGGCGTCGCCCGGCTGCCTGTGGCTCTTGGCTGTGGCTCTC	208
- 9	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC	
(wt-	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
PPT1	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
;	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	
прир	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
одна	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	
я	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
чело	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
вече	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	
ская	TTGGGGGACAACATCAAGGTGTTTTTGGACTCCCTCGATGCC	
посл	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
едов	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
атель	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
ност	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
ь)	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	

	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	
	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGATGA	
PPT1	ATGGCATCACCGGGTTGCCTCTGGTTGTTGGCCGTTGCGTTG	209
-10	CTTCCGTGGACATGTGCATCAAGAGCTCTTCAACATCTGGAT	
(wt-	CCCCCAGCTCCCCTGCCGCTCGTAATCTGGCACGGGATGGGG	
PPT1	GATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAAA	
-	GATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCT	
vIGF	GGAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCT	
2_2;	TCTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAG	
кодо	CATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCG	
н-	ATGGGGTTTAGCCAGGGCGGACAGTTTCTTAGAGCCGTCGC	
опти	ACAGCGCTGTCCATCTCCCCCGATGATTAACCTTATATCTGT	
мизи	CGGGGGACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCC	
рова	TGGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTT	
на	GAACGCAGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTG	
поср	TTCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTT	
едст	TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA	
вом	CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT	
IDT)	CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT	
	AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG	
	CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT	
	ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG	
	GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA	
	CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG	
	GGCAGACCTAGAGCAGTGCCTACGCAGGGAGGGAGTGGGA	
	GTGGATCCACTTCATCCAGGACTCTGTGTGGGGGGCGAGCTG	
	GTGGACACCTTGCAATTCGTGTGTGGCGACCGAGGATTTCTG	

	TTCAGTCGACCTGCCTCAAGAGTAAGCCGGAGGAGTCGGGG	
	GATCGTTGAAGAATGCTGTTTCCGGAGCTGCGACTTGGCGTT	
	GCTCGAGACTTATTGTGCCACACCTGCAAGGAGTGAATGA	
PPT1	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC	210
-11	GCGGCGCGGCCTCAAGAGCTCTTCAACATCTGGATCCCCC	
(BiP-	AGCTCCCCTGCCGCTCGTAATCTGGCACGGGATGGGGGATTC	
PPT1	ATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAAAAGATGG	
_2;	TTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAA	
кодо	TCGGTAAGACACTGATGGAAGACGTGGAGAACTCCTTCTTTC	
н-	TCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAGCATTGG	
опти	CAAAGGACCCTAAACTTCAGCAGGGGTACAATGCGATGGGG	
мизи	TTTAGCCAGGGCGACAGTTTCTTAGAGCCGTCGCACAGCG	
рова	CTGTCCATCTCCCCCGATGATTAACCTTATATCTGTCGGGGG	
на	ACAACACCAGGGTGTTTTTTGGTCTTCCTCGCTGTCCTGGTGA	
поср	AAGCTCCCACATCTGTGATTTCATACGCAAAACGTTGAACGC	
едст	AGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAG	
вом	CGGAGTATTGGCATGACCCAATAAAAGAAGAAGACGTTTATAGG	
IDT)	AATCACTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGA	
	ATCAACGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAA	
	ATTTGTTATGGTGAAATTCCTTAATGACTCTATAGTAGATCC	
	TGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGC	
	GAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACA	
	AGACAGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGT	
	TGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCG	
	AAGAGTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA	
PPT1	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCAGC	211
-12	GCGGCGCGGCCTCAAGAGCTCTTCAACATCTGGATCCCCC	
(BiPa	AGCTCCCCTGCCGCTCGTAATCTGGCACGGGATGGGGGATTC	
a-	ATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAAAAAGATGG	
PPT1	TTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAA	
_2;	TCGGTAAGACACTGATGGAAGACGTGGAGAACTCCTTCTTTC	

кодо	TCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAGCATTGG	
н-	CAAAGGACCCTAAACTTCAGCAGGGGTACAATGCGATGGGG	
опти	TTTAGCCAGGGCGACAGTTTCTTAGAGCCGTCGCACAGCG	
мизи	CTGTCCATCTCCCCCGATGATTAACCTTATATCTGTCGGGGG	
рова	ACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGA	
на	AAGCTCCCACATCTGTGATTTCATACGCAAAACGTTGAACGC	
поср	AGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAG	
едст	CGGAGTATTGGCATGACCCAATAAAAGAAGAAGACGTTTATAGG	
вом	AATCACTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGA	
IDT)	ATCAACGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAA	
	ATTTGTTATGGTGAAATTCCTTAATGACTCTATAGTAGATCC	
	TGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGC	
	GAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACA	
	AGACAGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGT	
	TGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCG	
	AAGAGTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA	
PPT1	ATGAAACTGTCTCTGGTTGCAGCAATGCTCTTGCTGTTGAGT	212
-13	GCGGCCCGCGCGCCGATCCACCTGCTCCCCTC	
(BiPa	GTTATATGGCATGGCATGGGAGATTCCTGTTGTAATCCCCTC	
a-	AGCATGGGGGCCATCAAAAAAATGGTGGAAAAAAAAAATAC	
PPT1	CTGGCATATATGTACTCTCACTTGAAATCGGTAAGACCCTTA	
;	TGGAAGACGTCGAAAATTCCTTCTTTTTGAACGTGAACTCAC	
кодо	AAGTTACGACCGTCTGTCAAGCTCTCGCGAAAGACCCTAAG	
н-	CTCCAGCAAGGTTATAATGCAATGGGCTTCTCACAGGGAGG	
опти	TCAGTTCTTGCGAGCGGTAGCCCAGAGGTGTCCGTCTCCGCC	
мизи	AATGATCAACTTGATCTCAGTGGGGGGTCAGCACCAAGGCG	
рова	TTTTTGGACTCCCTAGATGCCCTGGAGAGAGCTCTCACATTT	
на	GCGATTTTATACGGAAGACGCTGAATGCCGGCGCGTATTCA	
поср	AAGGTCGTTCAAGAGCGACTCGTCCAGGCTGAATACTGGCA	
едст	CGATCCGATTAAGGAAGACGTGTATCGAAACCATTCTATCTT	
вом	TCTTGCCGACATTAACCAGGAGCGAGGGATCAACGAAAGTT	

IDT)	ATAAAAAAACCTGATGGCACTCAAGAAATTTGTAATGGTT	
	AAATTCCTGAACGATTCAATAGTTGATCCGGTGGATTCCGAG	
	TGGTTCGGCTTCTACCGGTCCGGTCAGGCCAAGGAAACAAT	
	CCCATTGCAAGAAACCAGTCTCTATACTCAGGACCGCCTGG	
	GTCTGAAAGAAATGGACAACGCTGGCCAACTTGTTTTTCTGG	
	CAACGGAGGTGATCACTTGCAGCTCTCTGAAGAATGGTTTT	
	ACGCACACATCATTCCTTTCCTTGGTTAA	
PPT1	ATGAAGCTCAGTCTCGTGGCAGCTATGCTCCTCCTGCTGTCC	213
-14	CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCGAGAGCA	
(BiP	AGTCGCACGTTGTGTGGAGGTGAACTCGTCGACACCCTTCAG	
1-	TTCGTATGTGGAGATCGCGGTTTCCTCTCTCACGCCCAGCT	
vIGF	TCCAGAGTTTCCCGAAGATCACGAGGAATAGTTGAGGAGTG	
2-	CTGTTTTCGGTCTTGTGATCTGGCTCTCCTCGAGACTTATTGT	
PPT1	GCTACGCCGGCCCGCTCTGAAGGAGGTGGTGGCAGTGGAGG	
;	AGGAGGGAGTCGGCCTAGGGCAGTCCCAACCCAGGATCCCC	
кодо	CAGCACCCCTCCCCTGGTAATTTGGCATGGAATGGGTGATT	
н-	CCTGCTGTAACCCACTCTCAATGGGGGCAATTAAGAAAATG	
опти	GTAGAGAAAAAGATCCCTGGCATTTATGTTCTGTCACTCGAA	
мизи	ATCGGTAAAACGCTCATGGAGGACGTAGAAAACAGCTTTTT	
рова	TCTGAATGTTAATTCACAGGTTACCACGGTCTGCCAAGCATT	
на	GGCAAAGGACCCGAAATTGCAACAAGGCTATAACGCGATGG	
поср	GGTTCAGCCAAGGCGGGCAGTTTCTTCGAGCTGTGGCTCAGC	
едст	GCTGCCCTTCCCCACCGATGATAAATTTGATTAGCGTAGGGG	
ВОМ	GACAACATCAAGGGGTTTTCGGTTTGCCAAGGTGTCCTGGCG	
IDT)	AATCTTCACATATTTGCGACTTTATACGGAAGACCTTGAATG	
	CGGGGGCGTATAGTAAAGTCGTCCAGGAACGGCTTGTCCAA	
	GCTGAATACTGGCACGATCCCATCAAAGAAGATGTCTATCG	
	GAATCACAGCATTTTTCTCGCCGACATAAACCAAGAACGCG	
	GAATTAATGAGTCATACAAGAAGAACTTGATGGCACTTAAA	
	AAATTTGTGATGGTTAAGTTTTTGAATGATAGTATCGTAGAT	
	CCCGTAGATAGTGAATGGTTTGGTTTCTATCGATCCGGACAG	
		1

	GCTAAAGAAACGATACCATTGCAGGAAACCTCTTTGTATACT	
	CAAGATAGGTTGGGCCTCAAGGAGATGGATAATGCGGGGCA	
	ACTTGTCTTCCTCGCGACTGAGGGTGACCACCTCCAGCTCAG	
	CGAGGAATGGTTTTACGCCCACATCATTCCTTTCCTTGGTTA	
	A	
PPT1	ATGAAGCTCAGTCTCGTGGCAGCTATGCTCCTCCTGCTGTCC	214
-15	CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCGAGAGCA	
(BiP	GCAGCTAGTCGCACGTTGTGTGGAGGTGAACTCGTCGACAC	
1aa-	CCTTCAGTTCGTATGTGGAGATCGCGGTTTCCTCTCTCACG	
vIGF	CCCAGCTTCCAGAGTTTCCCGAAGATCACGAGGAATAGTTG	
2-	AGGAGTGCTGTTTTCGGTCTTGTGATCTGGCTCTCCTCGAGA	
PPT1	CTTATTGTGCTACGCCGGCCCGCTCTGAAGGAGGTGGTGGCA	
;	GTGGAGGAGGAGGGAGTCGGCCTAGGGCAGTCCCAACCCAG	
кодо	GATCCCCCAGCACCCCTCCCCCTGGTAATTTGGCATGGAATG	
н-	GGTGATTCCTGCTGTAACCCACTCTCAATGGGGGCAATTAAG	
опти	AAAATGGTAGAGAAAAAGATCCCTGGCATTTATGTTCTGTC	
мизи	ACTCGAAATCGGTAAAACGCTCATGGAGGACGTAGAAAACA	
рова	GCTTTTTTCTGAATGTTAATTCACAGGTTACCACGGTCTGCC	
на	AAGCATTGGCAAAGGACCCGAAATTGCAACAAGGCTATAAC	
поср	GCGATGGGGTTCAGCCAAGGCGGGCAGTTTCTTCGAGCTGT	
едст	GGCTCAGCGCTGCCCTTCCCCACCGATGATAAATTTGATTAG	
вом	CGTAGGGGACAACATCAAGGGGTTTTCGGTTTGCCAAGGT	
IDT)	GTCCTGGCGAATCTTCACATATTTGCGACTTTATACGGAAGA	
	CCTTGAATGCGGGGGCGTATAGTAAAGTCGTCCAGGAACGG	
	CTTGTCCAAGCTGAATACTGGCACGATCCCATCAAAGAAGA	
	TGTCTATCGGAATCACAGCATTTTTCTCGCCGACATAAACCA	
	AGAACGCGGAATTAATGAGTCATACAAGAAGAACTTGATGG	
	CACTTAAAAAATTTGTGATGGTTAAGTTTTTGAATGATAGTA	
	TCGTAGATCCCGTAGATAGTGAATGGTTTGGTTTCTATCGAT	
	CCGGACAGGCTAAAGAAACGATACCATTGCAGGAAACCTCT	
	TTGTATACTCAAGATAGGTTGGGCCTCAAGGAGATGGATAA	

CCAGCTCAGCGAGGAATGGTTTTACGCCCACATCATTCCTTT CCTTGGTTAA PPT1 ATGAAGCTCAGTCTCGTGGCAGCTATGCTCCTCTGCTGCC -16 CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCGAGAGCA (BiP GCCGCGTCAAGAGCTCTTCAACATCTGGATCCCCCAGCTCCC -18a CTGCCGCTCGTAATCTGGCACGGGATGGGGGATCATGTTGT PPT1 AACCCGTTGTCAATGGGCGCGGAAAAAAAAAAAAAAAAA		TGCGGGCAACTTGTCTTCCTCGCGACTGAGGGTGACCACCT	
PPT1 ATGAAGCTCAGTCTCGTGGCAGCTATGCTCCTCCTGCTGTCC 1610 CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCAGAGCA (BiP) GCCGCGTCAAGAGCTCTTCAACATCTGGATCCCCCAGCTCCC 1821 CTGCCGCTCGTAATCTGGCACGGGATGGGGGATTCATGTTGT PPT1 AACCCGTTGTCAATGGGCACGGGATGAGGGGATTCATGTTGT PPT1 AACCCGTTGTCAATGGGCACGGGATAAAAAAAGATGGTTGAAAA 2; GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA KOJO GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT H- CAATAGTCAGGCACTACCGTCTGTCAAGCATTGGCAAAGG OITH ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC MU39 CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA CCAGGGTGTTTTTGGTCTTCCTCGCTGTCTGGTGAAAGCTC CCACATCTGTGATTTCATACGCAAAAACGTTGAACGCAGGAG BOM TATTGGCATGACCCAATAAAAGAACGCTTTCTAAGCAGGAG BOM TATTGGCATGACCCAATAAAAGAACGCTTTCTAAGAATCA CTCTATCTTCTTTGGCCGATATCAACCAAGAACGCGAATCAA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGATAATCCTGTCCTG		CCAGCTCAGCGAGGAATGGTTTTACGCCCACATCATTCCTTT	
-16 CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCGAGAGCA (BiP GCCGCGTCAAGAGCTCTTCAACATCTGGATCCCCCAGCTCCC 1aa- 1aa- 1cq CTGCCGCTCGTAATCTGGCACGGGATGGGGGATTCATGTTGT PPTI AACCCGTTGTCAATGGGCGCGGATAAAAAAAGATGGTTGAAAA 2; GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA кодо GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT H- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG 0ПТИ АСССТАААСТТСАGCAGGGGTACAATGCGATGGGGTTTAGC САGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA Ha CCAGGGTGTTTTTGGTCTTCCTCGCTGTCAAGCAGGAG CACCTTATAGTAAAGTCGTCCAAGAACGTTGAACGCAGGAG EACT CTTATAGTAAAGTCGTCCAAGAACGTTTATAAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAGAAACATCTATAGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCTCTATACACAAGAAC AGACTCGGACTGAAAGAACGTCTCCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCCTGG		CCTTGGTTAA	
(ВіР GCCGCGTCAAGAGCTCTTCAACATCTGGATCCCCCAGCTCCC 1аа- CTGCCGCTCGTAATCTGGCACGGGATGGGGGATTCATGTTGT РРТ1 AACCCGTTGTCAATGGGCGCGATAAAAAAAGATGGTTGAAAA _2; GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA кодо GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT н- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG опти ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC мизи CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC рова ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC госр CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG едст CTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCAGAG вом TATTGGCATGACCCAATAAAAGAACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA Садаадстасааааадаатстататадстастасаадаатстататадаатстатадаатстатадааттатадааттатадааттатадааттатадааттатадааттатадааттатадааттатадаататадааттатадааттадаа дадаттаттатадаатадаатадаататадаатадаат	PPT1	ATGAAGCTCAGTCTCGTGGCAGCTATGCTCCTCCTGCTGTCC	215
18а- CTGCCGCTCGTAATCTGGCACGGGATGGGGGATTCATGTTGT PPT1 AACCCGTTGTCAATGGGCGCGATAAAAAAAGATGGTTGAAAA _2; GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA коло GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT II- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG ОПТИ ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC МИЗИ ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC МИЗИ ACCCTAAACTTCAGCAGAGGCGTCGCACAGCGCTGTCC рова ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC поср CCACATCTGTGATTTCATACGCAAAAACGTTGAACGCAGGAG едст CTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCAGGAG вом TATTGGCATGACCCAATAAAAGAACAGCTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGAGTGGATATCTCCAACTCTCCGAAGA GTGTTCTATGCCCATATAATCCCTTCAGCTTCCTGGCCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTTTGGCTGGC	-16	CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCGAGAGCA	
PPT1 AACCCGTTGTCAATGGGCGCGATAAAAAAGATGGTTGAAAA _2; GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA кодо GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT н- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG опти ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC мизи CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC рова ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC поср ССАСАТСТGТGATTTCATACGCAAAACGTTGAACGCAGGAG едст СТТАТАGTAAAGTCGTCCAAGAACGGTTGTTCAAGCGAGG Вом ТАТТGGCATGACCCAATAAAAGAACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGGGAATCAA	(BiP	GCCGCGTCAAGAGCTCTTCAACATCTGGATCCCCCAGCTCCC	
2; GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA КОДО GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT H- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG OПТИ ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTAGC CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA ACCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC CACAGTGTTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC CACACTCTGTGATTTCATACCGAAAACGTTGAACGCAGGAG CACAC CACACTCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG CACAC CACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG ATTTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA CACAAGACCTACTTCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGCTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGAGGGGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGGCCATATAATCCCGTTCCTGGCCAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCCAACACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCCTAACACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCCTACCTCCCAAGACCTCTCCGACCCCGCAGCCTGTGGCTCTTCTTGGCTTGGCTCTC 216 CTGCCATGGACCTGCGCTTCCTGGGCTGCAGCATCTGGAC (Wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGATGGG	1aa-	CTGCCGCTCGTAATCTGGCACGGGATGGGGGATTCATGTTGT	
GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT H- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG OПТИ ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC MИЗИ CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC poba ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA Ha CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG eдcт CTTATAGTAAAGTCGTCCAAGAACGGCTTGTCCAAGCAGGAG Bom TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCTAGCTCTC 216 PPT1 ATGGCGTCGCCCGGCAGCCTTGTGGCTCTTGGCTTCTGGCC (wt- CCGCCGGCGCCCGCTGCCGTTGGTGATCTGGCATGGAC (wt- CCGCCGGCGCCCGCTGCCGTTGGTGATCTTGAAAAA	PPT1	AACCCGTTGTCAATGGGCGCGATAAAAAAGATGGTTGAAAA	
н- CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG опти ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC мизи CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC рова ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC поср CCACATCTGTGATTTCATACGCAAAAACGTTGAACGCAGGAG едст CTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCGGAG вом TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA СGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCCAGCTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCTGTGGCTCTC 216 -17 CTGCCATGGACCTGCGCTTCTCGGGCCTGCAGCATCTGGAC CCGCCGGCGCCCGCTGCCGTTCCTGACTCTCAACCTTCTAAAAA CCGCCGGCGCCCCTTCCCGTTCTCAACCTTCTAAAAAAAA	_2;	GAAGATTCCAGGCATCTACGTTCTGTCCCTGGAAATCGGTAA	
ОПТИ ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC МИЗИ CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC рова ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC поср CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG едст CTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCGAGG вом TATTGGCATGACCCAATAAAAGAACGCTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTCGGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTCTCTGGCTGCATATTAAAA PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGATCGTCATTAAAA	кодо	GACACTGATGGAAGACGTGGAGAACTCCTTCTTTCTCAACGT	
мизи CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC рова ATCTCCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC поср CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG едст СТТАТАGТАААGTCGTCCAAGAACGCTTGTTCAAGCGGAG вом ТАТТGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA СGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTCCGGCCTCC 17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCCCGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGATGGG	н-	CAATAGTCAGGTCACTACCGTCTGTCAAGCATTGGCAAAGG	
рова ATCTCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA на CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC поср CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG едст CTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCGGAG вом TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA СGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCT -17 CTGCCATGGACCTGCGCTTCCTGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGATGGG	опти	ACCCTAAACTTCAGCAGGGGTACAATGCGATGGGGTTTAGC	
ССАСЯ СТТТТТСТТСТССТССТТТТТТТТТТТТТТТТТТ	мизи	CAGGGCGGACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCC	
CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG egct CTTATAGTAAAGTCGTCCAAGAACGCTTGTTCAAGCGGAG BOM TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	рова	ATCTCCCCGATGATTAACCTTATATCTGTCGGGGGACAACA	
ECCTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCGGAG BOM TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGCCGTCGCCCGGCAGCCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGT AGACAGCTGTTGCAATCCCTTAAGCATGGGATGGG	на	CCAGGGTGTTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTC	
BOM TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA IDT) CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTC 216 -17 CTGCCATGGACCTGCGCTTCTCGGGCGAGCATCTGGAC (wt- CCGCCGGCCGCCGCTGCCGTTGGTGATCTGGCATGGATGG	поср	CCACATCTGTGATTTCATACGCAAAACGTTGAACGCAGGAG	
IDT) CTCTATCTTCTGGCCGATATCAACCAAGAACGCGGAATCAA CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGCTCTC 17 CTGCCATGGACCTGCGCTTCCTGGGCGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	едст	CTTATAGTAAAGTCGTCCAAGAACGGCTTGTTCAAGCGGAG	
CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	вом	TATTGGCATGACCCAATAAAAGAAGACGTTTATAGGAATCA	
TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCAGCATCTGGAC (wt- CCGCCGGCGCCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	IDT)	CTCTATCTTCTTGGCCGATATCAACCAAGAACGCGGAATCAA	
ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		CGAAAGCTACAAAAAGAATCTTATGGCTCTCAAGAAATTTG	
GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		TTATGGTGAAATTCCTTAATGACTCTATAGTAGATCCTGTCG	
AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCCGCTGCCGTTGGTGATCTGGCATGGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		ATTCAGAATGGTTCGGGTTCTACAGGTCTGGCCAGGCGAAG	
CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		GAGACTATTCCCCTCCAAGAAACGTCTCTCTATACACAAGAC	
GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC 216 -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		AGACTCGGACTGAAAGAGATGGATAATGCGGGCCAGTTGGT	
PPT1 ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC 216 -17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		CTTCTTGGCTACGGAAGGCGATCATCTCCAACTCTCCGAAGA	
-17 CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC (wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA		GTGGTTCTATGCCCATATAATCCCGTTCCTGGGCTAA	
(wt- CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	PPT1	ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC	216
PPT1 AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	-17	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC	
	(wt-	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
- AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	PPT1	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
	-	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	

C6S;	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
прир	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	
одна	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
Я	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
чело	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	
вече	TTGGGGGACAACATCAAGGTGTTTTTGGACTCCCTCGATGCC	
ская	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
посл	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
едов	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
атель	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
ност	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
ь)	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	
	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	
	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGATGA	
PPT1	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCTGG	217
-18	GTGGCACTGCTGCTCAGCGCGGCGAGGGCCGCCGCGTC	
(BiP	AAGAGCTCTTCAACATCTGGATCCCCCAGCTCCCCTGCCGCT	
2aa-	CGTAATCTGGCACGGGATGGGGGATTCATGTTGTAACCCGTT	
PPT1	GTCAATGGGCGCGATAAAAAAGATGGTTGAAAAAGAAGATTC	
;	CAGGCATCTACGTTCTGTCCCTGGAAATCGGTAAGACACTGA	
кодо	TGGAAGACGTGGAGAACTCCTTCTTTCTCAACGTCAATAGTC	
н-	AGGTCACTACCGTCTGTCAAGCATTGGCAAAGGACCCTAAA	
опти	CTTCAGCAGGGGTACAATGCGATGGGGTTTAGCCAGGGCGG	
мизи	ACAGTTTCTTAGAGCCGTCGCACAGCGCTGTCCATCTCCCCC	
рова	GATGATTAACCTTATATCTGTCGGGGGACAACACCAGGGTG	
на	TTTTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTCCCACATCTG	
поср	TGATTTCATACGCAAAACGTTGAACGCAGGAGCTTATAGTA	

едст	AAGTCGTCCAAGAACGGCTTGTTCAAGCGGAGTATTGGCAT	
вом	GACCCAATAAAAGAAGACGTTTATAGGAATCACTCTATCTTC	
IDT)	TTGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTA	
	CAAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA	
	ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG	
	GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC	
	CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA	
	CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT	
	ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT	
	GCCCATATAATCCCGTTCCTGGGCTAA	
PPT1	ATGGGTGTAAAGGTGTTGTTCGCTCTTATCTGCATTGCCGTT	218
-19	GCAGAAGCTGCCGCGTCAAGAGCTCTTCAACATCTGGATCC	
(Gau	CCCAGCTCCCCTGCCGCTCGTAATCTGGCACGGGATGGGGG	
ssiaA	ATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAAAG	
A-	ATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCTG	
PPT1	GAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCTT	
_2;	CTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAGC	
кодо	ATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCGA	
н-	TGGGGTTTAGCCAGGGCGGACAGTTTCTTAGAGCCGTCGCA	
опти	CAGCGCTGTCCATCTCCCCCGATGATTAACCTTATATCTGTC	
мизи	GGGGGACAACACCAGGGTGTTTTTTGGTCTTCCTCGCTGTCCT	
рова	GGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTTG	
на	AACGCAGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTGT	
поср	TCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTTT	
едст	ATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAAC	
вом	GCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCTC	
IDT)	AAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGTA	
	GATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGGC	
	CAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTAT	
	ACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCGG	
	GCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAAC	

	TCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTGG	
	GCTAA	
PPT1	ATGGGTGTAAAGGTGTTGTTCGCTCTTATCTGCATTGCCGTT	219
-20	GCAGAAGCTGCAGCTAGTCGCACGTTGTGTGGAGGTGAACT	
(Gau	CGTCGACACCCTTCAGTTCGTATGTGGAGATCGCGGTTTCCT	
ssiaA	CTTCTCACGCCCAGCTTCCAGAGTTTCCCGAAGATCACGAGG	
A-	AATAGTTGAGGAGTGCTGTTTTCGGTCTTGTGATCTGGCTCT	
vIGF	CCTCGAGACTTATTGTGCTACGCCGGCCCGCTCTGAAGGAGG	
2-	TGGTGGCAGTGGAGGAGGAGGGAGTCGGCCTAGGGCAGTCC	
PPT1	CAACCCAGGATCCCCCAGCACCCCTCCCCCTGGTAATTTGGC	
;	ATGGAATGGGTGATTCCTGCTGTAACCCACTCTCAATGGGGG	
кодо	CAATTAAGAAAATGGTAGAGAAAAAGATCCCTGGCATTTAT	
н-	GTTCTGTCACTCGAAATCGGTAAAACGCTCATGGAGGACGT	
опти	AGAAAACAGCTTTTTTCTGAATGTTAATTCACAGGTTACCAC	
мизи	GGTCTGCCAAGCATTGGCAAAGGACCCGAAATTGCAACAAG	
рова	GCTATAACGCGATGGGGTTCAGCCAAGGCGGGCAGTTTCTT	
на	CGAGCTGTGGCTCAGCGCTGCCCTTCCCCACCGATGATAAAT	
поср	TTGATTAGCGTAGGGGGACAACATCAAGGGGTTTTCGGTTTG	
едст	CCAAGGTGTCCTGGCGAATCTTCACATATTTGCGACTTTATA	
вом	CGGAAGACCTTGAATGCGGGGGGCGTATAGTAAAGTCGTCCA	
IDT)	GGAACGGCTTGTCCAAGCTGAATACTGGCACGATCCCATCA	
	AAGAAGATGTCTATCGGAATCACAGCATTTTTCTCGCCGACA	
	TAAACCAAGAACGCGGAATTAATGAGTCATACAAGAAGAAC	
	TTGATGGCACTTAAAAAATTTGTGATGGTTAAGTTTTTGAAT	
	GATAGTATCGTAGATCCCGTAGATAGTGAATGGTTTGGTTTC	
	TATCGATCCGGACAGGCTAAAGAAACGATACCATTGCAGGA	
	AACCTCTTTGTATACTCAAGATAGGTTGGGCCTCAAGGAGAT	
	GGATAATGCGGGCAACTTGTCTTCCTCGCGACTGAGGGTG	
	ACCACCTCCAGCTCAGCGAGGAATGGTTTTACGCCCACATCA	
	TTCCTTTCCTTGGTTAA	
PPT1	ATGCTGGGGCTCTGGGGGCAGCGGCTCCCCGCGGCGTGGGT	220

		, , ,
-21	CCTGCTTCTGTTGCCTTTCCTGCCGCTGCTGCTGCTGCAGAT	
(ppt2	CCCCAGCTCCCTGCCGCTCGTAATCTGGCACGGGATGGGG	
ss-	GATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAA	
PPT1	GATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCT	
;	GGAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCT	
кодо	TCTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAG	
н-	CATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCG	
опти	ATGGGGTTTAGCCAGGGCGGACAGTTTCTTAGAGCCGTCGC	
мизи	ACAGCGCTGTCCATCTCCCCCGATGATTAACCTTATATCTGT	
рова	CGGGGGACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCC	
на	TGGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTT	
поср	GAACGCAGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTG	
едст	TTCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTT	
вом	TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA	
IDT)	CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT	
	CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT	
	AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG	
	CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT	
	ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG	
	GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA	
	CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG	
	GGCTAA	
PPT1	ATGCTGGGGCTCTGGGGGCAGCGGCTCCCCGCGGCGTGGGT	221
-22	CCTGCTTCTGTTGCCTTTCCTGCCGCTGCTGCTGCTTGCATCA	
(ppt2	AGAGCTCTTCAACATCTGGATCCCCCAGCTCCCCTGCCGCTC	
ss-	GTAATCTGGCACGGGATGGGGGATTCATGTTGTAACCCGTTG	
PPT1	TCAATGGGCGCGATAAAAAAGATGGTTGAAAAAGAAGATTCC	
_2;	AGGCATCTACGTTCTGTCCCTGGAAATCGGTAAGACACTGAT	
кодо	GGAAGACGTGGAGAACTCCTTCTTTCTCAACGTCAATAGTCA	
н-	GGTCACTACCGTCTGTCAAGCATTGGCAAAGGACCCTAAAC	
опти	TTCAGCAGGGGTACAATGCGATGGGGTTTAGCCAGGGCGGA	

MH39H CAGTTTCTTAGAGCCGTCGCACAGCGCTGTCCATCTCCCCCG DDBA ATGATTAACCTTATATCTGTCGGGGGACAACACCAGGGTGTT HA TTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTCCCACATCTGT IDCP GATTTCATACGCAAAACGTTGAACGCAGGAGCTTATAGTAA EACT AGTCGTCCAAGAACGGCTTGTTCAAGCGGAGCTTATAGTAA ACCCAATAAAAGAACGCTTTATAGGAATCACTCTATCTTCT IDT) TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGCTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTAGCAAGAGAGAGGTCTTCAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCTGTCTTTGGCTGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGGTGTAATCCACTGAGCATGGAGCCATAAAGAA SS- AATGGTTAGAAAAAAAATACCAGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGAAAAAAAATACCAGGAATATATGTCTGAGCC TTTTTTTTTGAACGTGAATAGTCAAGTCA		,	
TTTGGTCTCCTCGCTGTCCTGGTGAAAGCTCCCACATCTGT ПОСР GATTTCATACGCAAAACGTTGAACGCAGGAGCTTATAGTAA AGTCGTCCAAGAACGGCTTGTTCAAGCGAGAGCTATTGGCATG BOM ACCCAATAAAAGAAGACGCTTTATAGGAATCACTCTATCTTCT IDT) TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTAGAAAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTAGCATGGCCATTTGGACC (cone CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAACGGA SS- AATGGTTGAGAAAAAAAATACCGGGAATAATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTTGCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OПTH CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTCA MH3H GTAGGCGGACAACATCAGGGCGTTTCCTGCCTGC CCACAGCCCCAACTCCCCTAGGTTCCTGCTCTCCTCCCCTGC OTTH CACAGAGGTGCCCCAATGATAAAATCTCATTTCA MH3H GTAGGCGGACAACATCAGGGCGTTTCCTCCCCCTGC CCTGCAGGCCGAATCATCACAGTTCCAACAGAAACA Ha CTTAACGCGGGGGCTTACTCCAAGTTACAACAAAGAAC BOM AGCGAGGTATAAATCACTCTATATTCTTGGCCGACATCAACAACG BOM AGCGAGGTATAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	мизи	CAGTTTCTTAGAGCCGTCGCACAGCGCTGTCCATCTCCCCCG	
поср GATTTCATACGCAAAACGTTGAACGCAGGAGCTTATAGTAA едст AGTCGTCCAAGAACGGCTTGTTCAAGCGGAGTATTGGCATG вом ACCCAATAAAAGAAGACGCTTTATAGGAATCACTCTATCTTCT IDT) TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC ААААAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGGCTGTTGCCTTGC 222 -23 TTCCTTGGTCTTGTGCGGGCGCGGGCACTCGGCCATTTGGACC (cone CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTTGAAAACTCA k070 GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTCCTCGCTGC n071 CACAGAGGTGCCCGAGTCCGCCAATGATAAAATCCCATTCCA CTTAACGCGGGGCCTTACTCCAAGTTTCCAAGTTCCAAGAAACA Ha HB CTTAACGCCGGACTTACTCCAAGTTTCAAGAAAAACCCCAAG CCGGGTGAGTCT	рова	ATGATTAACCTTATATCTGTCGGGGGACAACACCAGGGTGTT	
AGTCGTCCAAGAACGGCTTGTTCAAGCGGAGTATTGGCATG BOM ACCCAATAAAAGAAGACGTTTATAGGAATCACTCTATCTTCT IDT) TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGTGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTAGCAAGAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTGGCTGGCTGTTGCCTTGC 222 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (cone CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTTTGCAA КОДО GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OHTIU CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MIJ3H GTAGGCGGACAACATCAGGGCGTTTCCTCCCGCTGC CCGGGTGAGTCTTCTCCACATTTGCGATTCCAAGAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAAGAAACA CCGGGTGAGTCTTCTCCACATTTGCGATTTCAAAGAAACC EGCT TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACAAGA BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAAGAAAAACCTCATGGCT	на	TTTGGTCTTCCTCGCTGTCCTGGTGAAAGCTCCCACATCTGT	
ВОМ ACCCAATAAAAGAAGACGTTTATAGGAATCACTCTATCTTCT IDT) TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTAGCTGGCCATTTGGCT -23 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAACGTAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTTCTGCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OITH CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MИЗИ GTAGGCGGACAACATCAGGGCGTGTTCCGTGCC CCGGGTGAGTCTTCTCACATTTGCGATTCAAGAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAAGAACA CCGGGTGAGTCTTCTCACATTTGCGATTCAAAGAACA CCGGGTGAGTCTTCTCACATTTGCGATTCAAAGAAACA CCGGGTGAGTCTTCTCACATTTGCGATTCAAAGAAACA CCTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAAGAAACA CCGGGTGAGTCTTCTCACATTTGCGATTCAAAGAAACA CCTTAACGCGGGGGCTTACTCCAAGTTCAAAGAAACA CCTTAACGCGGGGGCTTACTCCAAGTAGTTCAAAGAAACA CCTTAACACAGGTACTTACTCCAAGGTAGTTCAAAGAAACA CCTTAACAGAAACACCTCTAATTTCTTGGCCGACATCAAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	поср	GATTTCATACGCAAAACGTTGAACGCAGGAGCTTATAGTAA	
IDT) TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGGCTGTTGCCTTGC CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OПТИ CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MИЗИ GTAGGCGGACAACATCAGGGGCGTTTCCTGCTGCC CCGGGTGAGTCTTCTCACATTTGCGATTCAAGAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGAC CCGTGCAGGCCGAATACTCCAAGGTAGTTCAAGAAAGAC CCGTGCAGGCCGAATACTCCAAGGTAGTTCAAGAAAGAC TIOCP CGTGCAGGCCGAATACTGCAATTCCAAAGAAAACA CTTAACGCGGGGGCTTACTCCAAGGTACCAAACAAG ACCTTAACAAAATCACTCTATATTCTTGGCCAACAACAACA CTTAACGCGGGGGCTTACTCCAAGTTCCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGTTCCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGTACCAATCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGTACCAATCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGTACCAATCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGTACCAATCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGTACCAATCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGGTACCAATCAAAGAAACA CTTAACGCGGGGGCTTACTCCAAGGTACTCAAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	едст	AGTCGTCCAAGAACGGCTTGTTCAAGCGGAGTATTGGCATG	
AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGCTTGCCTTGC -23 TTCCTTGGTCTTGTGCGGCGCGGGCACTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGAA ensus GATAGTTGCTGTAATCCACTGAGCATGGAACCATAAAGAA SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OIITH CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MU3H GTAGGCGGACAACATCAGGGCGTGTTCCGTGCTCCCCCCCC	вом	ACCCAATAAAAGAAGACGTTTATAGGAATCACTCTATCTTCT	
ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCCATTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATAGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAACCATAAAGAA SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OIITIU CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MU391 GTAGGCGGACAACATCAGGGCGTTTCGGTCTTCCTCGCTGC CCGGGTGAGTCTTCTCACATTTGCGATTCAAGAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAAGAAACC egct TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	IDT)	TGGCCGATATCAACCAAGAACGCGGAATCAACGAAAGCTAC	
GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGCCTTGC 222 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTTTGCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OITHU CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MU3H GTAGGCGGACAACATCAGGGCGTGTTCGTCTCCTCCGCTGC CCGGGTGAGTCTTCTCACATTTGCGATTCAACGAAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAACA CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAAGAAAACC egct TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCCTCATGGCT		AAAAAGAATCTTATGGCTCTCAAGAAATTTGTTATGGTGAA	
CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGCCTTGC 222 -23 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OIITH CACAGAGGTGCCCGAATCATGATAAATCTCATTTCA MH3H GTAGGCGGACAACATCAGGGGTGTTCGGTCTTCCTCGCTGC CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT IOCP CGTGCAGGCCGAATACTGGCATGATCAAACAAGAAGACG ejict TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT		ATTCCTTAATGACTCTATAGTAGATCCTGTCGATTCAGAATG	
CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGGCTGTTGCCTTGC -23 TTCCTTGGTCTTGTGCGGCGCGCGCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAAAAACCCA TGGAGATAGGTAAGCACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OIITU CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MИЗИ GTAGGCGGACAACATCAGGGCGTTTCGTCTCCTCGCTGC POBB CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGACG EJCT TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT		GTTCGGGTTCTACAGGTCTGGCCAGGCGAAGGAGACTATTC	
ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT GCCCATATAATCCCGTTCCTGGGCTAA PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGTTGCCTTGC -23 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA KOJO GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG OIITU CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA MU3H GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC poba CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGACC egct TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT		CCCTCCAAGAAACGTCTCTCTATACACAAGACAGACTCGGA	
PPT1 ATGGCAAGTCCTTCCTGTCTTTTGGCTGCTGTCTTTGCCTTGC 222 -23 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGAGCATAAAGAA SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA Mизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAAGACG на CTTAACGCGGGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT		CTGAAAGAGATGGATAATGCGGGCCAGTTGGTCTTCTTGGCT	
PPT1 ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGGCTGTTGCCTTGC -23 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC н- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAGAAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT		ACGGAAGGCGATCATCTCCAACTCTCCGAAGAGTGGTTCTAT	
-23 TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC (conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG ОПТИ CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA МИЗИ GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA Ha CTTAACGCGGGGGCTTACTCCAAGTTACAAGAAAGACG ССТСТСТАТАССССТАТАТСТСТАТАТССТАТССААТСАААGAAAGACG ССТСТТСТАТАССТСТАТАТТСТТСТСССТССТСТСТСТ		GCCCATATAATCCCGTTCCTGGGCTAA	
(conc CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC н- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	PPT1	ATGGCAAGTCCTTCCTGTCTTTGGCTGCTGGCTGTTGCCTTGC	222
ensus GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC н- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	-23	TTCCTTGGTCTTGTGCGGCGCGGGCACTCGGCCATTTGGACC	
SS- AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG ОПТИ CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA МИЗИ GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG ВОМ AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	(conc	CACCAGCCCCACTGCCCTTGGTTATATGGCATGGAATGGGA	
PPT1 TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA ; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC н- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAGAAGACG едст ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	ensus	GATAGTTGCTGTAATCCACTGAGCATGGGAGCCATAAAGAA	
; TTTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC H- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG ОПТИ CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA МИЗИ GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCCACATTTGCGATTTCATACGCAAAACA Ha CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT ПОСР СGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG ЕДСТ ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG ВОМ AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	SS-	AATGGTTGAGAAAAAAATACCGGGAATATATGTTCTGAGCC	
кодо GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC н- GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	PPT1	TGGAGATAGGTAAGACACTCATGGAAGACGTTGAAAACTCA	
н-GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCGоптиCACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCAмизиGTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGCроваCCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACAнаCTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCTпосрCGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACGедстTCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAGвомAGCGAGGTATAAATGAAAGTTACAAGAAAAAACCTCATGGCT	;	TTTTTTTGAACGTGAATAGTCAAGTCACAACGGTCTGTCAA	
опти CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на СТТААСGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср СGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом АGCGAGGTATAAATGAAAGTTACAAGAAAAAACCTCATGGCT	кодо	GCTCTGGCTAAAGATCCTAAGTTGCAACAGGGTTACAATGC	
мизи GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC poba CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на СТТААСGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT ССТGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	н-	GATGGGATTTAGTCAAGGTGGACAGTTCCTGCGGGCCGTCG	
рова CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAAACCTCATGGCT	опти	CACAGAGGTGCCCGAGTCCGCCAATGATAAATCTCATTTCA	
на CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	мизи	GTAGGCGGACAACATCAGGGCGTGTTCGGTCTTCCTCGCTGC	
поср CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG едст TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	рова	CCGGGTGAGTCTTCTCACATTTGCGATTTCATACGCAAAACA	
едст ТСТАТАGAAATCACTCTATATTCTTGGCCGACATCAACCAAG вом AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	на	CTTAACGCGGGGGCTTACTCCAAGGTAGTTCAAGAAAGGCT	
BOM AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	поср	CGTGCAGGCCGAATACTGGCATGATCCAATCAAAGAAGACG	
	едст	TCTATAGAAATCACTCTATATTCTTGGCCGACATCAACCAAG	
IDT) CTTAAAAAATTTGTTATGGTAAAATTTCTTAATGACTCTATC	вом	AGCGAGGTATAAATGAAAGTTACAAGAAAAACCTCATGGCT	
	IDT)	CTTAAAAAATTTGTTATGGTAAAATTTCTTAATGACTCTATC	

	GTTGACCCGGTCGATAGTGAGTGGTTTTGGGTTTTATAGGAGC	
	GGACAGGCCAAAGAGACAATTCCGTTGCAGGAGACAAGTTT	
	GTACACGCAGGATAGGCTTGGTCTTAAGGAGATGGACAACG	
	CGGGCCAACTTGTATTTTTGGCTACTGAAGGTGATCACCTCC	
	AATTGTCTGAAGAGTGGTTTTATGCGCATATTATTCCTTTCCT	
	CGGCTAA	
PPT1	ATGGCAAGCCCTTCCTGCCTCTGGTTGCTTGCTTTGC	223
-24	TTCCTTGGTCTTGTGCTGCAAGAGCACTTGGCCACCTTGATC	
(cons	CTCCTGCACCTCTCCCGCTCGTTATATGGCACGGCATGGGGG	
ensus	ATAGCTGTTGTAATCCACTGTCAATGGGGGCTATTAAGAAA	
_	ATGGTGGAGAAGAAATTCCGGGAATTTATGTGCTCTCCCTG	
PPT1	GAGATAGGCAAAACGCTTATGGAAGACGTGGAGAACAGTTT	
;	TTTTCTTAACGTAAATTCACAGGTTACCACCGTCTGTCAAAT	
кодо	TTTGGCCAAAGATCCCAAACTGCAACAAGGGTATAACGCTA	
н-	TGGGCTTCAGTCAAGGGGGGTCAATTTTTGAGGGCGGTTGCGC	
опти	AACGCTGCCCTAGTCCGCCCATGATAAACTTGATCAGTGTTG	
мизи	GGGGACAGCACCAGGGAGTATTTGGTCTGCCGAGGTGTCCA	
рова	GGCGAGTCTTCACACATCTGTGACTTTATTCGCAAGACCTTG	
на	AACGCGGGCGCTTATTCCAAGGCTGTGCAGGAAAGGCTTGT	
поср	GCAAGCGGAATATTGGCACGATCCTATAAAGGAAGATGTGT	
едст	ATCGCAACCACTCTATCTTCCTGGCGGATATCAATCAAGAAC	
вом	GAGGAGTCAATGAGTCCTACAAGAAAAATCTGATGGCGCTT	
IDT)	AAAAAGTTCGTAATGGTCAAGTTCCTGAATGACAGCATAGT	
	AGATCCGGTGGATTCTGAATGGTTCGGATTCTACCGGTCAGG	
	ACAGGCCAAGGAGACAATCCCCCTTCAAGAGACGACCCTGT	
	ACACACAAGATAGATTGGGACTGAAAGAAATGGATAAGGCC	
	GGTCAATTGGTCTTCTTGGCCACAGAAGGGGACCATCTCCAA	
	CTGAGTGAAGAATGGTTTTATGCACATATAATTCCCTTCCTG	
	GAGTAA	
PPT1	ATGGCATCACCGGGTTGCCTCTGGTTGTTGGCCGTTGCGTTG	224
-25	CTTCCGTGGACATGTGCATCAAGAGCTCTTCAACATCTGGAT	

(wt-	CCCCAGCTCCCTGCCGCTCGTAATCTGGCACGGGATGGGG	
PPT1	GATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAA	
L283	GATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCT	
$\begin{array}{ c c }\hline C & & & \\ \hline C & & & \\ \hline \end{array}$	GGAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCT	
H300	TCTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAG	
C;	CATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCG	
	ATGGGGTTTAGCCAGGGCGGACAGTTTCTTAGAGCCGTCGC	
кодо		
Н-	ACAGCGCACAACAACACCACCTCTTTTTTCCTCTTCCTCCTCCTCTCCTC	
опти	CGGGGGACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCC	
МИЗИ	TGGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTT	
рова	GAACGCAGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTG	
на	TTCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTT	
поср	TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA	
едст	CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT	
вом	CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT	
IDT)	AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG	
	CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT	
	ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG	
	GGCCAGTTGGTCTTCTGCGCTACGGAAGGCGATCATCTCCAA	
	CTCTCCGAAGAGTGGTTCTATGCCTGCATAATCCCGTTCCTG	
	GGCTAA	
PPT1	ATGGCATCACCGGGTTGCCTCTGGTTGTTGGCCGTTGCGTTG	225
-26	CTTCCGTGGACATGTGCATCAAGAGCTCTTCAACATCTGGAT	
(wt-	CCCCCAGCTCCCTGCCGCTCGTAATCTGGCACGGGATGGGG	
PPT1	GATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAAA	
G113	GATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCT	
C	GGAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCT	
L121	TCTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAG	
C;	CATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCG	
кодо	ATGTGCTTTAGCCAGGGCGGACAGTTTTGCAGAGCCGTCGC	
н-	ACAGCGCTGTCCATCTCCCCCGATGATTAACCTTATATCTGT	

опти	CGGGGGACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCC	
мизи	TGGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTT	
рова	GAACGCAGGAGCTTATAGTAAAGTCGTCCAAGAACGGCTTG	
на	TTCAAGCGGAGTATTGGCATGACCCAATAAAAGAAGACGTT	
поср	TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA	
едст	CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT	
вом	CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT	
IDT)	AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG	
	CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT	
	ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG	
	GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA	
	CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG	
	GGCTAA	
PPT1	ATGGCATCACCGGGTTGCCTCTGGTTGTTGGCCGTTGCGTTG	226
-27	CTTCCGTGGACATGTGCATCAAGAGCTCTTCAACATCTGGAT	
(wt-	CCCCCAGCTCCCCTGCCGCTCGTAATCTGGCACGGGATGGGG	
PPT1	GATTCATGTTGTAACCCGTTGTCAATGGGCGCGATAAAAA	
A171	GATGGTTGAAAAGAAGATTCCAGGCATCTACGTTCTGTCCCT	
C	GGAAATCGGTAAGACACTGATGGAAGACGTGGAGAACTCCT	
A183	TCTTTCTCAACGTCAATAGTCAGGTCACTACCGTCTGTCAAG	
C;	CATTGGCAAAGGACCCTAAACTTCAGCAGGGGTACAATGCG	
кодо	ATGGGGTTTAGCCAGGGCGGACAGTTTCTTAGAGCCGTCGC	
н-	ACAGCGCTGTCCATCTCCCCCGATGATTAACCTTATATCTGT	
опти	CGGGGGACAACACCAGGGTGTTTTTGGTCTTCCTCGCTGTCC	
мизи	TGGTGAAAGCTCCCACATCTGTGATTTCATACGCAAAACGTT	
рова	GAACGCAGGATGCTATAGTAAAGTCGTCCAAGAACGGCTTG	
на	TTCAATGCGAGTATTGGCATGACCCAATAAAAGAAGACGTT	
поср	TATAGGAATCACTCTATCTTCTTGGCCGATATCAACCAAGAA	
едст	CGCGGAATCAACGAAAGCTACAAAAAGAATCTTATGGCTCT	
вом	CAAGAAATTTGTTATGGTGAAATTCCTTAATGACTCTATAGT	
IDT)	AGATCCTGTCGATTCAGAATGGTTCGGGTTCTACAGGTCTGG	
	I l	

	CCAGGCGAAGGAGACTATTCCCCTCCAAGAAACGTCTCTCT	
	ATACACAAGACAGACTCGGACTGAAAGAGATGGATAATGCG	
	GGCCAGTTGGTCTTCTTGGCTACGGAAGGCGATCATCTCCAA	
	CTCTCCGAAGAGTGGTTCTATGCCCATATAATCCCGTTCCTG	
	GGCTAA	
PPT1	ATGAAACTTAGTCTCGTCGCAGCAATGTTGCTTCTCCTGTGG	227
-28	GTTGCCCTCCTGTTGCTCAGCGCAGCTAGGGCTGCTGCGTCT	
(BiP	CGGGCGCTGCAGCATCTGGACCCGCCGGCGCCGCTGCCGTT	
2aa-	GGTGATCTGGCATGGGATGGGAGACAGCTGTTGCAATCCCT	
PPT1	TAAGCATGGGTGCTATTAAAAAAAATGGTGGAGAAGAAAATA	
;	CCTGGAATTTACGTCTTATCTTTAGAGATTGGGAAGACCCTG	
прир	ATGGAGGACGTGGAGAACAGCTTCTTCTTGAATGTCAATTCC	
одна	CAAGTAACAACAGTGTGTCAGGCACTTGCTAAGGATCCTAA	
Я	ATTGCAGCAAGGCTACAATGCTATGGGATTCTCCCAGGGAG	
чело	GCCAATTTCTGAGGGCAGTGGCTCAGAGATGCCCTTCACCTC	
вече	CCATGATCAATCTGATCTCGGTTGGGGGACAACATCAAGGT	
ская	GTTTTTGGACTCCCTCGATGCCCAGGAGAGAGCTCTCACATC	
посл	TGTGACTTCATCCGAAAAACACTGAATGCTGGGGCGTACTCC	
едов	AAAGTTGTTCAGGAACGCCTCGTGCAAGCCGAATACTGGCA	
атель	TGACCCCATAAAGGAGGATGTGTATCGCAACCACAGCATCT	
ност	TCTTGGCAGATATAAATCAGGAGCGGGGTATCAATGAGTCC	
ь)	TACAAGAAAAACCTGATGGCCCTGAAGAAGTTTGTGATGGT	
	GAAATTCCTCAATGATTCCATTGTGGACCCTGTAGATTCGGA	
	GTGGTTTGGATTTTACAGAAGTGGCCAAGCCAAGGAAACCA	
	TTCCCTTACAGGAGACCTCCCTGTACACACAGGACCGCCTGG	
	GGCTAAAGGAAATGGACAATGCAGGACAGCTAGTGTTTCTG	
	GCTACAGAAGGGGACCATCTTCAGTTGTCTGAAGAATGGTTT	
	TATGCCCACATCATACCATTCCTTGGATGA	
PPT1	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCTGG	228
-101	<u>GTGGCACTGCTGCTCAGCGCGGCGAGGGCCGCCGCG</u> TC	
	TAGAACACTGTGCGGAGGGGAGCTTGTAGACACTCTTCAGT	

TCGTGTGTGGAGATCGCGGGTTCCTCTCTCTCTCGCGGAGGTG GAGGTTCTAGGGGTATACTGGAGGAGTGTTGTTTCAGGGAC TGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCC AGGTCCGAAGGAGGTGGTGGCAGTGGAGGAGGAGGAGTC GGCCTAGGGCAGTCCCAACCCAGGACCCGCCGCCGCCGCTG CCGTTGGTGATCTGGCATGGGATGGGAGACAGCTGTTGCAA TCCCTTAAGCATGGGTGCTATTAAAAAAATGGTGGAGAAGA AAATACCTGGAATTTACGTCTTATCTTTAGAGATTGGGAAGA CCCTGATGGAGGACGTGGAGAACAGCTTCTTCTTGAATGTCA ATTCCCAAGTAACAACAGTGTGTCAGGCACTTGCTAAGGAT CCTAAATTGCAGCAAGGCTACAATGCTATGGGATTCTCCCAG GGAGGCCAATTTCTGAGGGCAGTGGCTCAGAGATGCCCTTC ACCTCCCATGATCAATCTGATCTCGGTTGGGGGACAACATCA AGGTGTTTTTGGACTCCCTCGATGCCCAGGAGAGAGCTCTCA CATCTGTGACTTCATCCGAAAAACACTGAATGCTGGGGCGT ACTCCAAAGTTGTTCAGGAACGCCTCGTGCAAGCCGAATAC TGGCATGACCCCATAAAGGAGGATGTGTATCGCAACCACAG CATCTTCTTGGCAGATATAAATCAGGAGCGGGGTATCAATG AGTCCTACAAGAAAAACCTGATGGCCCTGAAGAAGTTTGTG ATGGTGAAATTCCTCAATGATTCCATTGTGGACCCTGTAGAT AACCATTCCCTTACAGGAGACCTCCCTGTACACACAGGACC GCCTGGGGCTAAAGGAAATGGACAATGCAGGACAGCTAGTG TTTCTGGCTACAGAAGGGGACCATCTTCAGTTGTCTGAAGAA TGGTTTTATGCCCACATCATACCATTCCTTGGATGA ATGAAGCTCAGTCTCGTGGCAGCTATGCTCCTCCTGCTGTCC 229 CTGGTTGCGGCAATGTTGCTCTTGCTGAGCGCCGCGAGAGCA AGTCGCACGTTGTGTGGAGGTGAACTCGTCGACACCCTTCAG TTCGTATGTGGAGATCGCGGTTTCCTCTCTCACGCCCAGCT TCCAGAGTTTCCCGAAGATCACGAGGAATAGTTGAGGAGTG

PPT1

-31

(BiP

vIGF

1_

F-		1
2-	CTGTTTTCGGTCTTGTGATCTGGCTCTCCTCGAGACTTATTGT	
PPT1	GCTACGCCGGCCCGCTCTGAAGGAGGTGGTGGCAGTGGAGG	
;	AGGAGGGAGTCGGCCTAGGGCAGTCCCAACCCAGGACCCGC	
прир	CGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGGAGAC	
одна	AGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAAAAATG	
Я	GTGGAGAAGAAATACCTGGAATTTACGTCTTATCTTTAGAG	
чело	ATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGCTTCTT	
вече	CTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAGGCACT	
ская	TGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGCTATGG	
посл	GATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGGCTCAG	
едов	AGATGCCCTTCACCTCCCATGATCAATCTGATCTCGGTTGGG	
атель	GGACAACATCAAGGTGTTTTTGGACTCCCTCGATGCCCAGGA	
ност	GAGAGCTCTCACATCTGTGACTTCATCCGAAAAACACTGAAT	
ь)	GCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTCGTGCA	
	AGCCGAATACTGGCATGACCCCATAAAGGAGGATGTGTATC	
	GCAACCACAGCATCTTCTTGGCAGATATAAATCAGGAGCGG	
	GGTATCAATGAGTCCTACAAGAAAAACCTGATGGCCCTGAA	
	GAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATTGTGGA	
	CCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGTGGCCA	
	AGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCTGTACA	
	CACAGGACCGCCTGGGGCTAAAGGAAATGGACAATGCAGG	
	ACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTTCAGTT	
	GTCTGAAGAATGGTTTTATGCCCACATCATACCATTCCTTGG	
	ATGA	
PPT1	ATGGCGTCGCCCGGCTGCCTGTGGCTCTTGGCTGTGGCTCTC	230
-32	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC	
(wt-	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
PPT1	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
_	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	
vIGF	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
2-32;	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	

прир	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
одна	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
Я	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	
чело	TTGGGGGACAACATCAAGGTGTTTTTGGACTCCCTCGATGCC	
вече	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
ская	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
посл	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
едов	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
атель	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
ност	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	
ь)	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	
	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGGGAGTGG	
	GAGTGGATCCACTTCATCCTCTAGAACACTGTGCGGAGGGG	
	AGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGT	
	TCCTCTTCTCCGCGGAGGTGGAGGTTCTAGGGGTATACTGG	
	AGGAGTGTTGTTTCAGGGAGTGTGACTTGGCGCTCCTCGAGA	
	CCTATTGCGCGACGCCAGCCAGGTCCGAATGA	
PPT1	ATGGCGTCGCCCGGCTGCCTGTGGCTCTTGGCTGTGGCTCTC	231
-33	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGAC	
(wt-	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
PPT1	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
-	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	
vIGF	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
2-	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	
8Q;	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
прир	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
одна	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	

Я	TTGGGGGACAACATCAAGGTGTTTTTTGGACTCCCTCGATGCC	
чело	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
вече	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
ская	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
посл	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
едов	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
атель	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	
ност	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	
ь)	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGGGAGTGG	
	GAGTGGATCCACTTCATCCTCTAGAACACTGTGCGGAGGGG	
	AGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGT	
	TCCTCTTCTCCGCCCCGCTTCCAGAGTTTCACGGAGGTCTA	
	GGGGTATAGTAGAGGAGTGTTGTTTCAGGGAGTGTGACTTG	
	GCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGA	
	ATGA	
PPT1	ATGGCCTCCCCAGGCTGCTTATGGTTGCTGGCCGTAGCACTT	232
-34	TTACCATGGACATGTGCTAGTCGAGCTTTACAACACTTAGAC	
(wt-	CCGCCAGCGCCTCTTCCTTTAGTTATCTGGCACGGCATGGGC	
PPT1	GACTCGTGTTGTAACCCGCTCAGTATGGGTGCCATAAAGAA	
-	GATGGTGGAGAAGAAATTCCCGGAATCTATGTGCTTAGCC	
vIGF	TCGAAATCGGCAAAACACTTATGGAGGACGTAGAGAACTCA	
2-	TTCTTCCTGAATGTAAATAGCCAAGTCACCACGGTATGTCAA	
8Q;	GCTCTAGCGAAGGACCCTAAACTCCAGCAGGGGTATAACGC	
кодо	AATGGGATTTTCTCAGGGCGGCCAGTTTCTGCGTGCTGTCGC	
н-	ACAGCGTTGCCCTTCTCCGCCTATGATAAACTTAATTTCCGT	
опти	AGGAGGCAACACCAAGGGGTATTCGGCTTACCGAGGTGTC	
мизи	CAGGCGAATCTTCACATATATGCGACTTCATCCGAAAGACCC	

рова	TTAATGCCGGGGCCTATTCCAAGGTGGTACAGGAACGGTTG	
на	GTGCAAGCTGAGTATTGGCACGACCCTATAAAGGAAGATGT	
поср	GTATCGGAATCACTCAATCTTTCTTGCGGATATAAATCAAGA	
едст	GCGCGGCATTAACGAGAGCTACAAGAAGAACCTCATGGCTC	
вом	TTAAGAAATTCGTCATGGTCAAATTCCTCAACGACAGTATAG	
GEN	TTGATCCCGTCGATTCGGAGTGGTTTGGATTCTACCGCTCTG	
Eius)	GGCAAGCCAAAGAGACCATACCACTACAGGAAACATCGCTA	
	TATACCCAAGATCGCTTGGGTTTGAAAGAAATGGATAACGC	
	CGGTCAGCTTGTGTTCTTAGCGACAGAGGGTGATCATCTCCA	
	GCTGTCGGAAGAATGGTTCTATGCCCACATAATACCTTTCCT	
	TGGACGACCCCGTGCGGTCCCAACGCAGGGTGGATCAGGTA	
	GCGGCTCAACTAGTTCCAGCCGTACGTTGTGCGGCGGAGAA	
	CTAGTAGACACTCTTCAATTCGTTTGTGGGGATCGGGGCTTC	
	CTCTTCAGCAGGCCAGCGTCACGCGTGTCGCGTCGGAGCCG	
	AGGTATAGTGGAAGAATGCTGCTTCCGCGAATGTGATCTAG	
	CACTCCTTGAAACCTACTGCGCGACGCCTGCCCGAAGTGAAT	
	GA	
PPT1	ATGGCTTCCCCTGGCTGCCTGTGGCTCTCTGTGGCCCTC	233
-35	CTGCCCTGGACCTGTGCTTCTCGGGCCCTTCAGCATCTGGAC	
(wt-	CCTCCAGCCCCCTCCCCTTGGTCATCTGGCACGGCATGGGC	
PPT1	GACAGCTGCTGCAACCCTCTGTCCATGGGGGCCCATCAAGAA	
-	AATGGTTGAGAAGAAGATCCCAGGCATCTACGTGCTGAGCC	
vIGF	TGGAAATTGGCAAGACACTGATGGAGGATGTGGAAAACAGC	
2-	TTCTTCCTGAATGTGAACTCCCAGGTGACCACCGTGTGCCAG	
8Q;	GCTCTGGCCAAAGATCCCAAGCTGCAGCAGGGCTACAATGC	
кодо	CATGGGATTCAGCCAGGGGGGCCAGTTTCTGCGGGCTGTTG	
н-		
	CCCAGAGGTGCCCCAGCCCCCATGATCAATCTCATCTCTG	
опти	CCCAGAGGTGCCCCAGCCCCCATGATCAATCTCATCTCTG TGGGCGGCAGCACCAGGGTGTGTTTTGGCCTGCCTGCC	
опти мизи		
	TGGGCGGCAGCACCAGGGTGTGTTTTGGCCTGCCTGCC	

поср	TGTACAGAAACCACAGCATCTTCCTGGCTGACATCAACCAG	
едст	GAGAGAGGAATTAATGAGAGCTACAAGAAGAACCTCATGGC	
вом	CTTGAAAAAGTTTGTGATGGTGAAGTTCTTGAATGACTCCAT	
COO	CGTGGATCCTGTGGACAGTGAATGGTTTGGGTTCTACCGCTC	
L)	TGGACAGGCCAAGGAAACCATCCCCTGCAAGAAACATCCC	
	TGTACACCCAGGACCGCCTGGGGCTGAAGGAGATGGACAAC	
	GCCGGCCAACTGGTCTTCCTTGCCACAGAAGGAGACCACCT	
	GCAGCTGTCTGAGGAGTGGTTCTATGCCCACATCATCCCCTT	
	CCTGGGCCGGCCCAGGGCCGTGCCCACACAGGGAGGCAGTG	
	GCAGCGGCTCCACCAGCTCCAGCAGGACCCTGTGTGGCGGC	
	GAGCTGGTTGACACCCTCCAGTTCGTGTGTGGGGACAGAGG	
	CTTCCTCTTCTCCAGGCCCGCCAGCCGGGTGAGCCGCCGCTC	
	CCGGGGCATTGTGGAGGAATGTTGCTTCCGGGAGTGTGACC	
	TGGCCCTGCTGGAGACCTACTGTGCCACCCCTGCCCGGAGTG	
	AGTGA	
PPT1	<u>ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCTGG</u>	234
-101	<u>GTGGCACTGCTGCTCAGCGCGGCGAGGGCCGCCGCG</u> TC	
(пос	TAGAACACTGTGCGGAGGGGAGCTTGTAGACACTCTTCAGT	
ледо	TCGTGTGGAGATCGCGGGTTCCTCTCTCTCGCGGAGGTG	
вател	GAGGTTCTAGGGGTATACTGGAGGAGTGTTGTTTCAGGGAC	
ьнос	TGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGCCAGCC	
ть,	AGGTCCGAAGGAGGTGGTGGCAGTGGAGGAGGAGGAGTC	
коди	GGCCTAGGGCAGTCCCAACCCAGGACCCGCCGGCGCCGCTG	
рую	CCGTTGGTGATCTGGCATGGGATGGGAGACAGCTGTTGCAA	
щая	TCCCTTAAGCATGGGTGCTATTAAAAAAAATGGTGGAGAAGA	
сигн		
	AAATACCTGGAATTTACGTCTTATCTTTAGAGATTGGGAAGA	
альн	AAATACCTGGAATTTACGTCTTATCTTTAGAGATTGGGAAGA CCCTGATGGAGGACGTGGAGAACAGCTTCTTCTTGAATGTCA	
альн ый		
	CCCTGATGGAGGACGTGGAGAACAGCTTCTTCTTGAATGTCA	
ый	CCCTGATGGAGGACGTGGAGAACAGCTTCTTCTTGAATGTCA ATTCCCAAGTAACAACAGTGTGTCAGGCACTTGCTAAGGAT	

	·	
еркн	AGGTGTTTTTGGACTCCCTCGATGCCCAGGAGAGAGCTCTCA	
ута)	CATCTGTGACTTCATCCGAAAAACACTGAATGCTGGGGCGT	
	ACTCCAAAGTTGTTCAGGAACGCCTCGTGCAAGCCGAATAC	
	TGGCATGACCCCATAAAGGAGGATGTGTATCGCAACCACAG	
	CATCTTCTTGGCAGATATAAATCAGGAGCGGGGTATCAATG	
	AGTCCTACAAGAAAACCTGATGGCCCTGAAGAAGTTTGTG	
	ATGGTGAAATTCCTCAATGATTCCATTGTGGACCCTGTAGAT	
	TCGGAGTGGTTTGGATTTTACAGAAGTGGCCAAGCCAAG	
	AACCATTCCCTTACAGGAGACCTCCCTGTACACACAGGACC	
	GCCTGGGGCTAAAGGAAATGGACAATGCAGGACAGCTAGTG	
	TTTCTGGCTACAGAAGGGGACCATCTTCAGTTGTCTGAAGAA	
	TGGTTTTATGCCCACATCATACCATTCCTTGGATGA	
PPT1	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	235
-104	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTG</u> GAC	
(пос	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
ледо	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
вател	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	
ьнос	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
ть,	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	
коди	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
рую	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
щая	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	
сигн	TTGGGGGACAACATCAAGGTGTTTTTGGACTCCCTCGATGCC	
альн	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
ый	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
пепт	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
ид,	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
подч	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
еркн	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	
ута)	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	

	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGGGAGTGG	
	GAGTGGATCCACTTCATCCTCTAGAACACTGTGCGGAGGGG	
	AGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATCGCGGGT	
	TCCTCTTCTCTCGCGGAGGTGGAGGTTCTAGGGGTATACTGG	
	AGGAGTGTTGTTTCAGGGAGTGTGACTTGGCGCTCCTCGAGA	
	CCTATTGCGCGACGCCAGCCAGGTCCGAATGA	
PPT-	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	236
112	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCC</u>	
(пос	<u>GCG</u> TCTAGAACACTGTGCGGAGGGGAGCTTGTAGACACTCT	
ледо	TCAGTTCGTGTGGAGATCGCGGGTTCCTCTCTCTCGCGG	
вател	AGGTGGAGGTTCTAGGGGGTATACTGGAGGAGTGTTGTTTCA	
ьнос	GGGACTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACGC	
ть,	CAGCCAGGTCCGAAGGAGGTGGTGGCAGTGGAGGAGGAGG	
коди	GAGTCGGCCTAGGGCAGTCCCAACCCAGGACCCGCCGGCGC	
рую	CGCTGCCGTTGGTGATCTGGCATGGGATGGGAGACAGCTGT	
щая	TGCAATCCCTTAAGCATGGGTGCTATTAAAAAAAATGGTGGA	
сигн	GAAGAAAATACCTGGAATTTACGTCTTATCTTTAGAGATTGG	
альн	GAAGACCCTGATGGAGGACGTGGAGAACAGCTTCTTCTA	
ый	ATGTCAATTCCCAAGTAACAACAGTGTGTCAGGCACTTGCTA	
пепт	AGGATCCTAAATTGCAGCAAGGCTACAATGCTATGGGATTC	
ид,	TCCCAGGGAGGCCAATTTCTGAGGGCAGTGGCTCAGAGATG	
подч	CCCTTCACCTCCCATGATCAATCTGATCTCGGTTGGGGGACA	
еркн	ACATCAAGGTGTTTTTGGACTCCCTCGATGCCCAGGAGAGA	
ута)	GCTCTCACATCTGTGACTTCATCCGAAAAACACTGAATGCTG	
	GGGCGTACTCCAAAGTTGTTCAGGAACGCCTCGTGCAAGCC	
	GAATACTGGCATGACCCCATAAAGGAGGATGTGTATCGCAA	

	CCACAGCATCTTCTTGGCAGATATAAATCAGGAGCGGGGTA	
	TCAATGAGTCCTACAAGAAAAACCTGATGGCCCTGAAGAAG	
	TTTGTGATGGTGAAATTCCTCAATGATTCCATTGTGGACCCT	
	GTAGATTCGGAGTGGTTTGGATTTTACAGAAGTGGCCAAGC	
	CAAGGAAACCATTCCCTTACAGGAGACCTCCCTGTACACAC	
	AGGACCGCCTGGGGCTAAAGGAAATGGACAATGCAGGACA	
	GCTAGTGTTTCTGGCTACAGAAGGGGACCATCTTCAGTTGTC	
	TGAAGAATGGTTTTATGCCCACATCATACCATTCCTTGGATG	
	A	
PPT-	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	237
114	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCC</u>	
(пос	<u>GCG</u> TCTAGAACACTGTGCGGAGGGGAGCTTGTAGACACTCT	
ледо	TCAGTTCGTGTGGAGATCGCGGGTTCCTCTTCTCTCGCGG	
вател	AGGTGGAGGTTCTAGGGGGTATACTGGAGGAGTGTTGTTTCA	
ьнос	GGGAGTGTGACTTGGCGCTCCTCGAGACCTATTGCGCGACG	
ть,	CCAGCCAGGTCCGAAGGAGGTGGTGGCAGTGGAGGAGGAG	
коди	GGAGTCGGCCTAGGGCAGTCCCAACCCAGGACCCGCCGGCG	
рую	CCGCTGCCGTTGGTGATCTGGCATGGGATGGGAGACAGCTG	
щая	TTGCAATCCCTTAAGCATGGGTGCTATTAAAAAAAATGGTGG	
сигн	AGAAGAAAATACCTGGAATTTACGTCTTATCTTTAGAGATTG	
альн	GGAAGACCCTGATGGAGGACGTGGAGAACAGCTTCTTCTTG	
ый	AATGTCAATTCCCAAGTAACAACAGTGTGTCAGGCACTTGCT	
пепт	AAGGATCCTAAATTGCAGCAAGGCTACAATGCTATGGGATT	
ид,	CTCCCAGGGAGGCCAATTTCTGAGGGCAGTGGCTCAGAGAT	
подч	GCCCTTCACCTCCCATGATCAATCTGATCTCGGTTGGGGGAC	
еркн	AACATCAAGGTGTTTTTGGACTCCCTCGATGCCCAGGAGAG	
ута)	AGCTCTCACATCTGTGACTTCATCCGAAAAACACTGAATGCT	
	GGGGCGTACTCCAAAGTTGTTCAGGAACGCCTCGTGCAAGC	
	CGAATACTGGCATGACCCCATAAAGGAGGATGTGTATCGCA	
	ACCACAGCATCTTCTTGGCAGATATAAATCAGGAGCGGGGT	

	ATCAATGAGTCCTACAAGAAAAACCTGATGGCCCTGAAGAA	
	GTTTGTGATGGTGAAATTCCTCAATGATTCCATTGTGGACCC	
	TGTAGATTCGGAGTGGTTTGGATTTTACAGAAGTGGCCAAGC	
	CAAGGAAACCATTCCCTTACAGGAGACCTCCCTGTACACAC	
	AGGACCGCCTGGGGCTAAAGGAAATGGACAATGCAGGACA	
	GCTAGTGTTTCTGGCTACAGAAGGGGACCATCTTCAGTTGTC	
	TGAAGAATGGTTTTATGCCCACATCATACCATTCCTTGGATG	
	A	
PPT1	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	238
-115	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCT</u>	
(пос	<u>GCC</u> GACCCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGG	
ледо	GATGGGAGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTA	
вател	TTAAAAAAATGGTGGAGAAGAAAATACCTGGAATTTACGTC	
ьнос	TTATCTTTAGAGATTGGGAAGACCCTGATGGAGGACGTGGA	
ть,	GAACAGCTTCTTCTTGAATGTCAATTCCCAAGTAACAACAGT	
коди	GTGTCAGGCACTTGCTAAGGATCCTAAATTGCAGCAAGGCT	
рую	ACAATGCTATGGGATTCTCCCAGGGAGGCCAATTTCTGAGG	
щая	GCAGTGGCTCAGAGATGCCCTTCACCTCCCATGATCAATCTG	
сигн	ATCTCGGTTGGGGGACAACATCAAGGTGTTTTTGGACTCCCT	
альн	CGATGCCCAGGAGAGAGCTCTCACATCTGTGACTTCATCCGA	
ый	AAAACACTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGA	
пепт	ACGCCTCGTGCAAGCCGAATACTGGCATGACCCCATAAAGG	
ид,	AGGATGTGTATCGCAACCACAGCATCTTCTTGGCAGATATAA	
подч	ATCAGGAGCGGGGTATCAATGAGTCCTACAAGAAAAACCTG	
еркн	ATGGCCCTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGAT	
ута)	TCCATTGTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTAC	
	AGAAGTGGCCAAGCCAAGGAAACCATTCCCTTACAGGAGAC	
	CTCCCTGTACACACAGGACCGCCTGGGGCTAAAGGAAATGG	
	ACAATGCAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGAC	
	CATCTTCAGTTGTCTGAAGAATGGTTTTATGCCCACATCATA	

	CCATTCCTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGG	
	GAGTGGGAGTGGATCCACTTCATCCTCTAGAACACTGTGCG	
	GAGGGGAGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATC	
	GCGGGTTCCTCTCTCTCGCGGAGGTGGAGGTTCTAGGGGTA	
	TACTGGAGGAGTGTTGTTTCAGGGAGTGTGACTTGGCGCTCC	
	TCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAATGA	
PPT-	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	239
116	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCT</u>	
(пос	<u>GCC</u> GACCCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGG	
ледо	GATGGGAGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTA	
вател	TTAAAAAAATGGTGGAGAAGAAAATACCTGGAATTTACGTC	
ьнос	TTATCTTTAGAGATTGGGAAGACCCTGATGGAGGACGTGGA	
ть,	GAACAGCTTCTTCTTGAATGTCAATTCCCAAGTAACAACAGT	
коди	GTGTCAGGCACTTGCTAAGGATCCTAAATTGCAGCAAGGCT	
рую	ACAATGCTATGGGATTCTCCCAGGGAGGCCAATTTCTGAGG	
щая	GCAGTGGCTCAGAGATGCCCTTCACCTCCCATGATCAATCTG	
сигн	ATCTCGGTTGGGGGACAACATCAAGGTGTTTTTGGACTCCCT	
альн	CGATGCCCAGGAGAGAGCTCTCACATCTGTGACTTCATCCGA	
ый	AAAACACTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGA	
пепт	ACGCCTCGTGCAAGCCGAATACTGGCATGACCCCATAAAGG	
ид,	AGGATGTGTATCGCAACCACAGCATCTTCTTGGCAGATATAA	
подч	ATCAGGAGCGGGTATCAATGAGTCCTACAAGAAAAACCTG	
еркн	ATGGCCCTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGAT	
ута)	TCCATTGTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTAC	
	AGAAGTGGCCAAGCCAAGGAAACCATTCCCTTACAGGAGAC	
	CTCCCTGTACACACAGGACCGCCTGGGGCTAAAGGAAATGG	
	ACAATGCAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGAC	
	CATCTTCAGTTGTCTGAAGAATGGTTTTATGCCCACATCATA	
	CCATTCCTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGG	
	GGGTGGCAGTGGCAGTGGAGGCGGCGGTTCCTCTAGAACAC	

	TGTGCGGAGGGGAGCTTGTAGACACTCTTCAGTTCGTGTGTG	
	GAGATCGCGGGTTCCTCTCTCTCGCGGAGGTGGAGGTTCTA	
	GGGGTATACTGGAGGAGTGTTGTTTCAGGGAGTGTGACTTG	
	GCGCTCCTCGAGACCTATTGCGCGACGCCAGCCAGGTCCGA	
	ATGA	
PPT1	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	240
-117	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTG</u> GAC	
(пос	CCGCCGGCGCCGCTGCCGTTGGTGATCTGGCATGGGATGGG	
ледо	AGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTATTAAAA	
вател	AAATGGTGGAGAAGAAAATACCTGGAATTTACGTCTTATCTT	
ьнос	TAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGC	
ть,	TTCTTCTTGAATGTCAATTCCCAAGTAACAACAGTGTGTCAG	
коди	GCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGC	
рую	TATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGG	
щая	CTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCTCGG	
сигн	TTGGGGGACAACATCAAGGTGTTTTTTGGACTCCCTCGATGCC	
альн	CAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACA	
ый	CTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTC	
пепт	GTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGT	
ид,	GTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGG	
подч	AGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCC	
еркн	CTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATT	
ута)	GTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGT	
	GGCCAAGCCAAGGAAACCATTCCCTTACAGGAGACCTCCCT	
	GTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATG	
	CAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTT	
	CAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTC	
	CTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGGGGGTGG	
	CAGTGGCAGTGGAGGCGGCGGTTCCTCTAGAACACTGTGCG	
	GAGGGGAGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATC	

		ı
	GCGGGTTCCTCTCTCGCGGAGGTGGAGGTTCTAGGGGTA	
	TACTGGAGGAGTGTTGTTTCAGGGAGTGTGACTTGGCGCTCC	
	TCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAATGA	
PPT-	<u>ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC</u>	241
118	<u>CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCT</u>	
(пос	<u>GCC</u> GACCCGCCGCCGCCGCTGCCGTTGGTGATCTGGCATGG	
ледо	GATGGGAGACAGCTGTTGCAATCCCTTAAGCATGGGTGCTA	
вател	TTAAAAAAATGGTGGAGAAGAAAATACCTGGAATTTACGTC	
ьнос	TTATCTTTAGAGATTGGGAAGACCCTGATGGAGGACGTGGA	
ть,	GAACAGCTTCTTCTTGAATGTCAATTCCCAAGTAACAACAGT	
коди	GTGTCAGGCACTTGCTAAGGATCCTAAATTGCAGCAAGGCT	
рую	ACAATGCTATGGGATTCTCCCAGGGAGGCCAATTTCTGAGG	
щая	GCAGTGGCTCAGAGATGCCCTTCACCTCCCATGATCAATCTG	
сигн	ATCTCGGTTGGGGGACAACATCAAGGTGTTTTTTGGACTCCCT	
альн	CGATGCCCAGGAGAGAGCTCTCACATCTGTGACTTCATCCGA	
ый	AAAACACTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGA	
пепт	ACGCCTCGTGCAAGCCGAATACTGGCATGACCCCATAAAGG	
ид,	AGGATGTGTATCGCAACCACAGCATCTTCTTGGCAGATATAA	
подч	ATCAGGAGCGGGTATCAATGAGTCCTACAAGAAAAACCTG	
еркн	ATGGCCCTGAAGAAGTTTGTGATGGTGAAAATTCCTCAATGAT	
ута)	TCCATTGTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTAC	
	AGAAGTGGCCAAGCCAAGGAAACCATTCCCTTACAGGAGAC	
	CTCCCTGTACACACAGGACCGCCTGGGGCTAAAGGAAATGG	
	ACAATGCAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGAC	
	CATCTTCAGTTGTCTGAAGAATGGTTTTATGCCCACATCATA	
	CCATTCCTTGGAAGACCTAGAGCAGTGCCTACGCAGGGAGG	
	GGGTGGCAGTGGAGGCGGCGGTTCCTCTAGAACACTGTGCG	
	GAGGGAGCTTGTAGACACTCTTCAGTTCGTGTGTGGAGATC	
	GCGGGTTCCTCTCTCGCGGAGGTGGAGGTTCTAGGGGTA	
	TACTGGAGGAGTGTTGTTTCAGGGAGTGTGACTTGGCGCTCC	
		I .

	TCGAGACCTATTGCGCGACGCCAGCCAGGTCCGAATGA	
BiP2	ATGAAGCTCTCCCTGGTGGCCGCGATGCTGCTGCTCTGG	242
AA	GTGGCACTGCTGCTCAGCGCGGCGAGGGCCGCCGCG	
eSP	ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC	243
C6S	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTG	
eSP	ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC	244
C6S	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCC	
AA	GCG	
(при		
меня		
ется		
В		
PPT		
1-		
112		
И		
PPT		
1-		
114)		
11.)		
eSP	ATGGCGTCGCCCGGCAGCCTGTGGCTCTTGGCTGTGGCTCTC	245
C6S	CTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGCT	
AA	GCC	
(при		
меня		
ется		
В		
PPT		
111		

115, PPT 1- 116 PPT 1- 118) -
1- 116 и РРТ 1-
116 u PPT 1-
и РРТ 1-
PPT 1-
1-
118)
разл
ича
юще
еся
испо
льзо
вани
e
кодо
нов
для
част
и АА
WT ATGgaggccgtggccgcgcgcgcgtgggcgtgctgctgctgctggcggc
NAG ccgccggcgacgaggcccgggaggccgccgcgtgcgggccctggtggcccggctgctgggc
LU- cccgccccgccgacttcagcgttagcgtggagcgggccctggccgaagcccggcctgg
HPC acacetacageetgggeggeggeggegeegeegggggggggg
4 geegeegeegeetgeaeeggtatetgegggaettetgeggetgeeaegtggeetggagegg
(пос cagccagctgcggctgcccggccctgccggcgtgccgggggggg
ледо саассудтаtcggtactaccagaacgtgtgcacccagagctacagcttcgtgtggtgggactgggc
вател сседения сседе

PCT/US2020/055251

ьнос ggccaggaggccatctggcagcgggtgtacctggccctgacccaggccgagatcaacgΤЬ, коди ccctgctccaagctggcacatcaagcagctgtacctgcagcaccgggtgctggaccagatgcggagetteggeatgacecegtgetgeeegeettegeeggeeacgtgeeegaggeegtgaceeggg рую щая tgttccccaagttaacgtgaccaagatgggcagctggggccacttcaactgcagctacagctgcag**HPC** cttcctgctggccccgaggaccccatcttccccatcatcggcagcctgttcctgcgggagctgatca4, aggagt teggeacegaceacate taeggegeegacacet teaacgagat geageetee aageageвыде gageceagetacetggeegeegeeaceacegeegtgtaegaggeeatgaeegeegtggaeaceg лена aggccgtgtggctgctgctggctgttccagcaccagcccagttctggggacctgcccagatccggccgtgctgggcgccgtgctagaggacggctgctggtgctggacctgttcgccgagagcзагла cage cegt g tacacceg g acceg cage cttcate t g g t g cat g ctg cacaacвны ttcggcggcaaccacggcctgttcggcgccctggaggccgtgaacggcgccccgaggccgcccΜИ букв ggctgttccccaacagcaccatggtgggcaccggcatggccccgagggcatcagccagaacga ами) ggtggtgtacagcctgatggccgagctggctggcggaaggaccccgtgcccgacctggccgc tgggtgaccagcttcgccgccggcggtacggcgtgagccaccccgacgccggcgccgcctggcggctgctgctgcggagcgtgtacaactgcagcggcgaggcctgccggggccacaaccggagcc ccctggtgcggcgccagcctgcagatgaacaccagcatctggtacaaccggagcgacgtgttcgaggectggeggetgetgetgaccagecccagectggecaccagecccgecttcagataega cctgctggacctgacccggcaggccgtgcaggagctggtgagcctgtactacgaggaggcccggagcgcctacctgagcaaggagctggccagcctgctgcggcggcggcgtgctggcctacgagccagg ccg gg ccg ccg tgag gg gg gg gg gg ccg act tct acg ag cag aa cag ccgg tatggtggccaactactacaccccaaggtggcggctgttcctggaggccctggtggacagcgtggcccaggg catccccttccag cag caccagttcgacaagaacgtgttccagctggagcaggccttcgtgctgagcaagcagcggtatcccagccagcctagaggagacaccgtggacctggccaagaagatcttcc tgaagtactaccccggtgggtggccggcagctggggaCTTGAGGTACTGTTCCAAGGGCCCGAGGACCAGGTAGACCCACGACTCATTGATGGAA AATAG

ATGGAGGCTGTGGCTGTGGCAGCTGCGGTGGGGGTCCTTCTC

vIGF

2-

GTTGTGTGGGGAACTTGTCGACACACTGCAGTTTGTCTG NAG LU-CGGCGACCGAGGATTTCTTTTTTCCAGGCCTGCCTCAAGAGT **HPC** ATCTAGGAGGTCCCGCGGTATTGTTGAAGAGTGCTGTTTTAG GTCATGCGACCTTGCGTTGTTGGAGACATATTGTGCTACCCC TGCACGCTCTGAAGGTGGAGGTGGTTCAGGTGGTGGAGGTT CCAGGCCAAGGGCGGTCCCTACTCAGGCCgaggccgggaggccgccggagegggecetggccaagcceggcetggacacctacagcetgggeggeggeggegeg cccgggtgcgggtgcggcagcaccggcgtggccgccgccgccggcctgcaccggtatctgccgccgtgcccggcgagctgaccgaggccacccccaaccggtatcggtactaccagaacgtgtgcacccagagctacagcttcgtgtgggactgggactgggcccggtgggagcgggagatcgactggatggccctgaacggcatcaacctggcctggacggcggccaggaggccatctggcagcgggtgtacctggcctgggcctgacccaggccgagatcaacgagttcttcaccggcccgccttcctggcctggggeeggatggcaacetgeacacetgggaeggeeecetgeeteeaagetggcacateaageagetg tacetge ag cacegggtgetggace ag at geggagettegge at gacecegtgetge eegect terms of the contract of the contracgccggccacgtgcccgaggccgtgacccgggtgttcccccaagttaacgtgaccaagatgggcagctggggccacttcaactgcagctacagctgcagcttcctgctggccccgaggaccccatcttccccat categg cag cet gtt cet gegg gag et gat caa ggag t teggeace gae cae at ctae ggegeegacacetteaacgagatgeageeteeaagcagegageceagetacetggeegeegeeaceaceg cagcaccagcccagttctggggacctgcccagatccgggccgtgctgggcgcgtgcctagag caggg cag ccett catct g t g cat g ct g ca a a ct t c g g c g ca a c ca c g g c c t g t t c g c g c cctggaggccgtgaacggcggcccgaggccgccggctgttccccaacagcaccatggtgggca ccg g cat g g cccc g ag g g cat cag ccag aac g ag g t g t a cag cct g at g g ccg ag ct g g gctggcggaaggaccccgtgccgacctggccgcctggtgaccagcttcgccgcccggcggtacggcgtgagccaccccgacgccggcgccgcctggcggctgctgctgctgcggagcgtgtacaactgca gcggcgaggcctgccggggccacaaccggagcccctggtgcggcggcccagcctgcagatga a cac cag cat ctg g ta caa ccg g ag c g acg tg ttcg ag g cct g ctg ctg ctg accag cg cc

cccagcctggccaccagcccgccttcagatacgacctgctggacctgacccggcaggccgtgcaggagctggtgagcctgtactacgaggaggcccggagcgcctacctgagcaaggagctggccagcccg agg ccg act tct acg ag cag aa cag ccgg tat cag ctg accct gt ggg ga cct gagg gcaacat cetggactacgccaacaagcagctggccggcctggtggccaactactacaccccaaggtggcggctgttcctggaggccctggtggacagcgtggcccagggcatccccttccagcagcaccagttcgagctggggaCTTGAGGTACTGTTCCAAGGGCCCGAGGACCAGGTA GACCCACGACTCATTGATGGAAAATAG

ATGGAGGCTGTGGCTGTGGCAGCTGCGGTGGGGGTCCTTCTC vIGF

2-17-CTGGCCGGGGCCGGGGCGCGCGCACGCTagcagaacacttt

NAG

LU-

gtggcgagagctggtggacaccctgcagtttgtgtgtggcgacagaggcttcctgttcagcagac

ctg catccag ag ttag cag gcg gtccag ag gaatcg tg gaag ag tg ctg cttcag a GAAtg cga**HPC**

to tgg coetge tgg aaa acctact g tgc cacaccag coagat ctg aa GGTGGAGGTGGTTCAGGTGGTGGAGGTTCCAGGCCAAGGGCGGTCCCTACTCAG GCCgaggcccgggaggccgccgtgcgggccctggtggcccggctgctgggccccggcc ccgccgccgacttcagcgttagcgtggagcgggccctggccgaagcccggcctggacacctacagcctgggcggcggcgccgcccgggtgcggtgcggggagcacccggcgtggccgcc gccgccggcctgcaccggtatctgcgggacttctgcggctgccacgtggcctggagcggcagcca getgeggetgeceggecectgeceggeggtgeceggegagetgacegaggecacececaaceggtatcggtactaccagaacgtgtgcacccagagctacagcttcgtgtggtgggactgggcccggtg ggagcgggagatcgactggatggccctgaacggcatcaacctggcctggagcggccag gaggccatctggcagcgggtgtacctggccctgggcctgacccaggccgagatcaacgagttcttc accggcccgccttcctggcctggggccggatgggcaacctgcacacctgggacggcccctgcctccaagctggcacatcaagcagctgtacctgcagcaccgggtgctggaccagatgcggagcttcggcatgaccccgtgctgcccgccttcgccggccacgtgcccgaggccgtgacccgggtgttcccc

tggccccgaggaccccatcttccccatcatcggcagcctgttcctgcgggagctgatcaaggagtt

cggcaccgaccacatctacggcgccgacaccttcaacgagatgcagcctccaagcagcgagccc agctacctggccgccaccaccgccgtgtacgaggccatgaccgccgtggacaccgaggccg tgtggctgctgcagggctgttccagcaccagcccagttctggggacctgcccagatccggg gtgtacacccggaccgccagcttccagggccagcccttcatctggtgcatgctgcacaacttcggcg g caacca cggcctgttcggcgccctggaggccgtgaacggcggccccgaggccgccggctgttccca a cag cac cat g g t g g cac c g g cat t g g ccc c g a g g g cat cag c cag a a c g a g g t g g tgtacagcctgatggccgagctggcggaaggaccccgtgccgacctggccgcctgggtg ctgctgcggagcgtgtacaactgcagcggcgaggcctgccggggccacaaccggagccccttggtgeggeggeceagectgeagatgaacaccagcatctggtacaaccggagegacgtgttegaggeetggcggctgctgctgaccagcgccccagcctggccaccagccccgccttcagatacgacctgctggacctgacccggcaggccgtgcaggagctggtgagcctgtactacgaggaggcccggagcgc ccgggccgccgtgagcgaggccgaggccgacttctacgagcagaacagccggtatcagctgaccetg tggggacctg agggcaa catcetggactacgccaa caag cagctggccggcctggtggccaactactacaccccaaggtggcggctgttcctggaggccctggtggacagcgtggcccagggcateccette cag cag cac cagt tega caa gaa cgtg tte cag ctg gag cag geet tegtg ctg ag caaactaccccggtgggtggccggcagctggggaCTTGAGGTACTGTTCCAAGGGCCCGAGGACCAGGTAGACCCACGACTCATTGATGGAAAATAG

vIGF ATGGAGGCTGTGGCTGTGGCAGCTGCGGTGGGGGTCCTTCTC 249
2-31- CTGGCCGGGGCCGGGGGCGCGGCAGGCGACGcTagcagaacacttt
NAG gtggcggagagctggtggacaccctgcagtttgtgtgtggcgacagaggcttcctgttcagcagaG
LU- GTGGAGGTGGAtctagaggaatcCTGgaagagtgctgcttcagaGATtgcgatctgg
HPC ccctgctggaaacctactgtgccacaccagccagatctgaaGGTGGAGGTGCTTCAG
4 GTGGTGGAGGTTCCAGGCCAAGGGCGGTCCCTACTCAGGCC
gaggcccgggaggccgccgcggtgcgggccctggtgggcccggctgctgggccccgccccgc

cgccgacttcagcgttagcgtggagcgggccctggccgaagcccggcctggacacctacagcctgggcggcggcgccgccgggtgcgggtgcggggcagcaccggcgtggccgccgccg cggctgcccggccctgcccgcgtgcccggcgagctgaccgaggccacccccaaccggtatc ggtactaccagaacgtgtgcacccagagctacagcttcgtgtggtgggactgggcccggtgggag cggagatcgactggatggccctgaacggcatcaacctggcctggacggccaggaggccatctgg cag cgg tgtacctgg cctgg cctgacccag gccgag at caacgag ttcttcaccggcccgccttcctggcctggggccggatgggcaacctgcacacctgggacggccccctgcctccaagctggcacatcaagcagctgtacctgcagcaccgggtgctggaccagatgcggagcttcggcatgaccccgtgctgccgccttcgccggccacgtgcccgaggccgtgacccgggtgttcccccaagttaacgtgaccaagatgggcagctggggccacttcaactgcagctacagctgcagcttcctgctggccccg agg accccatcttccccatcatcgg cagcctgttcctgcgggagctgatcaaggagttcggcaccgacca catctacggcgccgacaccttcaacgagatgcagcctccaagcagcgagcccagctacctggccgccaccaccgccgtgtacgaggccatgaccgccgtggacaccgaggccgtgtggctgctgcagggctgttccagcaccagcccagttctggggacctgcccagatccgggccgtgcacceggaccgccagcttccagggccagcccttcatctggtgcatgctgcacaacttcggcggcaaccacggcctgttcggcgccctggaggccgtgaacggcggccccgaggccgccggctgttcccca a cag cac cat g g t g g g cac c g g cat g g c c c c g a g g g cat cag c cag a a c g a g g t g t g t a cagcctgatggccgagctggcggaaggaccccgtgccgacctggccgcctgggtgaccagcttcgccgccggcgtacggcgtgagccaccccgacgccgccgcctggcggctgctgctgcggagcgtgtacaactgcagcggcgaggcctgccggggccacaaccggagccccctggtgcgg cggcccagcctgcagatgaacaccagcatctggtacaaccggagcgacgtgttcgaggcctggcg getgetgetgaceagegececagectggecaceagecegectteagatacgacetgetggacet gacccggcaggccgtgcaggagctggtgagcctgtactacgaggaggcccggagcgcctacctg agca aggag ctgg ccag cctgctg cgg cgg cgg cgtgctg cctacgag ctgctg cccgccccgccgccgtgagccgaggccgacttctacgagcagaacagccggtatcagctgaccctgtctacaccccaaggtggcggctgttcctggaggccctggtggacagcgtggcccagggcatcccctt

	ggtatcccagccagcctagaggagacaccgtggacctggccaagaagatcttcctgaagtactacc	
	cccggtgggtggccggcagctggggaCTTGAGGTACTGTTCCAAGGGCCC	
	GAGGACCAGGTAGACCCACGACTCATTGATGGAAAATAG	
vIGF	ATGGAGGCTGTGGCAGCTGCGGTGGGGGTCCTTCTC	250
2-32-	CTGGCCGGGGCCGGGGGGCGCGCGCACGcTagcagaacacttt	
NAG	gtggcggagagctggtggacaccctgcagtttgtgtgtggcgacagaggcttcctgttcagcagaG	
LU-	GTGGAGGTGGAtctagaggaatcCTGgaagagtgctgcttcagaGAAtgcgatctg	
HPC	gccctgctggaaacctactgtgccacaccagccagatctgaaGGTGGAGGTGGTTCA	
4	GGTGGTGGAGGTTCCAGGCCAAGGGCGGTCCCTACTCAGGC	
	Cgaggcccgggaggccgccgtgcgggccctggtggcccggctgctgggcccggccccg	
	ccgccgacttcagcgttagcgtggagcggggccctggccgaagcccggcctggacacctacag	
	cctgggcggcggcgccgccgggtgcgggtgcggggcagcaccggcgtggccgccgcc	
	gccggcctgcaccggtatctgcgggacttctgcggctgccacgtggcctggagcggcagccagc	
	geggetgeeeeggeeetgeeegtgeeeggegagetgaeegaggeeaeeeeaaeeggtat	
	cggtactaccagaacgtgtgcacccagagctacagcttcgtgtggtgggactgggcccggtggga	
	gcgggagatcgactggatggccctgaacggcatcaacctggcctggcctggagcggccaggag	
	gccatctggcagcgggtgtacctggccctgggcctgacccaggccgagatcaacgagttcttcacc	
	ggcccgccttcctggcctggggccggatgggcaacctgcacacctgggacggcccctgcctcc	
	aagetggcacatcaagcagetgtacetgcagcacegggtgetggaccagatgeggagetteggca	
	tgaccccgtgctgccgccttcgccggccacgtgcccgaggccgtgacccgggtgttcccccaa	
	gttaacgtgaccaagatgggcagctggggccacttcaactgcagctacagctgcagcttcctgctgg	
	ccccgaggaccccatcttccccatcatcggcagcctgttcctgcgggagctgatcaaggagttcgg	
	caccgaccacatctacggcgccgacaccttcaacgagatgcagcctccaagcagcgagcccagct	
	acctggccgccgccaccaccgccgtgtacgaggccatgaccgccgtggacaccgaggccgtgtg	
	gctgctgcagggctggctgttccagcaccagccccagttctggggacctgcccagatccgggccgt	
	gctgggcgccgtgcctagaggacggctgctggtgctggacctgttcgccgagagccagcc	
	acacceggaccgccagettccagggccagccettcatctggtgcatgctgcacaacttcggcggca	
	accacggcctgttcggcgccctggaggccgtgaacggcggcccgaggccgccggctgttccc	
	caacagcaccatggtgggcaccggcatggcccccgagggcatcagccagaacgaggtggtgtac	
	agcctgatggccgagctggctggcggaaggaccccgtgcccgacctggccgcctgggtgacca	

[00159] В некоторых вариантах осуществления вектор, содержащий нуклеиновую кислоту, кодирующую требуемый терапевтический слитый белок, как например слитый с vIGF2 или слитый с сигнальным пептидом, необязательно характеризующийся наличием последовательности участка внутренней посадки рибосомы, представленный в данном документе, представляет собой вектор на основе аденоассоциированного вируса (А5/35).

[00160] В некоторых вариантах осуществления нуклеиновая кислота, кодирующая терапевтический слитый белок, как например слитый с vIGF2, необязательно характеризуется наличием последовательности участка внутренней посадки рибосомы и может быть встроена в вектора различных типов. Например, в некоторых вариантах осуществления нуклеиновую кислоту встраивают в вектор, включающий без ограничения плазмиду, фагмиду, производное фага, вирус животного и космиду. Векторы, представляющие

интерес, включают векторы экспрессии, векторы репликации, векторы генерации зондов и векторы секвенирования.

[00161] Кроме того, вектор экспрессии, кодирующий терапевтический слитый белок, как например слитый с vIGF2 или слитый с сигнальным пептидом, необязательно характеризующийся наличием последовательности участка внутренней посадки рибосомы, в некоторых вариантах осуществления доставляется в клетку в форме вирусного вектора. Технология вирусных векторов описана, например, в Sambrook et al., 2012, Molecular Cloning: A Laboratory Manual, volumes 1-4, Cold Spring Harbor Press, NY), а также в других руководствах по вирусологии и молекулярной биологии. Вирусы, которые применимы в качестве векторов, включают без ограничения ретровирусы, аденовирусы, аденоассоциированные вирусы, вирусы герпеса и лентивирусы. В целом, подходящий вектор содержит точку начала репликации, функционирующую в по меньшей мере одном организме, промоторную последовательность, удобные сайты для рестрикционных эндонуклеаз и один или несколько селектируемых маркеров (например, WO 01/96584; WO 01/29058; и патент США № 6326193).

[00162] В данном документе также предусмотрены композиции и системы для переноса генов. Для переноса генов в клетки млекопитающих был разработан ряд систем на основе вирусов. Например, ретровирусы обеспечивают удобную платформу для систем доставки генов. В некоторых вариантах осуществления выбранный ген вставляют в вектор и упаковывают в ретровирусные частицы c применением подходящих методик. рекомбинантный вирус выделяют и доставляют в клетки субъекта in vivo или ex vivo. Для генной терапии подходящим является ряд ретровирусных систем. В некоторых вариантах осуществления применяют векторы на основе аденовируса. Для генной терапии подходящим является ряд векторов на основе аденовируса. В некоторых вариантах осуществления применяют векторы на основе аденоассоциированного вируса. Для генной терапии подходящим является ряд аденоассоциированных вирусов. В одном варианте осуществления применяют векторы на основе лентивируса.

[00163] Конструкции для генной терапии, предусмотренные в данном документе, содержат вектор (или вектор экспрессии для генной терапии), в который встроен представляющий интерес ген, или иначе, который содержит представляющий интерес ген таким образом, что нуклеотидные последовательности вектора обеспечивают возможность экспрессии (конститутивной или иначе регулируемой некоторым образом) представляющего интерес гена. Предусмотренные в данном документе векторные конструкции включают любой подходящий вектор экспрессии гена, который может быть доставлен в представляющую интерес ткань и который будет обеспечивать экспрессию представляющего интерес гена в выбранной представляющей интерес ткани.

[00164] В некоторых вариантах осуществления вектор представляет собой вектор на основе аденоассоциированного вируса (AAV), что обусловлено способностью векторов на основе AAV преодолевать гематоэнцефалический осуществлять трансдукцию в нервной ткани. В И предусмотренных в данном документе, предполагается применение AAV любого серотипа. Серотип вирусного вектора, используемого в определенных вариантах осуществления, выбран из группы, состоящей из вектора на основе AAV1, вектора на основе AAV2, вектора на основе AAV3, вектора на основе AAV4, вектора на основе AAV5, вектора на основе AAV6, вектора на основе AAV7, вектора на основе AAV8, вектора на основе AAV9, вектора на основе AAVrhS, вектора на основе AAVrh10, вектора на основе AAVrh33, вектора на основе AAVrh34, вектора на основе AAVrh74, вектора на основе AAV Anc80, вектора на основе AAVPHP.В, вектора на основе AAVhu68, вектора на основе AAV-DJ и других, подходящих для генной терапии.

[00165] Векторы на основе AAV представляют собой ДНК-содержащие парвовирусы, непатогенные для млекопитающих. Вкратце, в векторах на основе

AAV удаляют вирусные гены гер и сар, которые составляют 96% вирусного генома, оставляя два фланкирующих инвертированных концевых повтора (ITR) из 145 пар оснований, которые используются для инициации репликации, упаковки и интеграции вирусной ДНК.

[00166] Дополнительные варианты осуществления предусматривают использование капсидов других серотипов с получением вектора на основе AAV1, вектора на основе AAV2, вектора на основе AAV3, вектора на основе AAV4, вектора на основе AAV5, вектора на основе AAV6, вектора на основе AAV7, вектора на основе AAV8, вектора на основе AAV9, вектора на основе AAV7hS, вектора на основе AAV7h10, вектора на основе AAV7h33, вектора на основе AAV7h34, вектора на основе AAV7h34, вектора на основе AAV7h74, вектора на основе AAV Anc80, вектора на основе AAVPHP.В, вектора на основе AAV7h10 и других, подходящих для генной терапии. Необязательно, вирусный капсид AAV представляет собой вирусный капсид AAV2/9, AAV9, AAV7hS, AAV7h10, AAVAnc80 или AAV PHP.В.

[00167] Дополнительные промотора, элементы например энхансеры, регулируют частоту инициации транскрипции. Как правило, они расположены в области, расположенной на 30-110 п. о. выше стартового сайта, хотя было показано, что ряд промоторов также содержат функциональные элементы, расположенные ниже стартового сайта. Интервал между элементами промотора часто является гибким, так что функция промотора сохраняется, если элементы инвертируются или перемещаются относительно друг друга. В промоторе тимидинкиназы (tk) интервал между элементами промотора часто увеличивается до 50 п. о., прежде чем активность начинает снижаться. В зависимости от промотора, по-видимому, отдельные элементы функционируют либо совместно, либо независимо, для активации транскрипции.

[00168] Примером промотора, способного обеспечивать экспрессию трансгена терапевтического слитого белка, как например слитого с vIGF2 или слитого с сигнальным пептидом, необязательно характеризующегося наличием

последовательности участка внутренней посадки рибосомы, Т-клетке млекопитающего, является промотор EF1a. Нативный промотор EF1a запускает экспрессию альфа-субъединицы комплекса фактора элонгации-1, который отвечает за ферментативную доставку аминоацил-тРНК к рибосоме. Промотор EF1a широко используется в плазмидах экспрессии млекопитающих, и было показано, что он эффективен в управлении экспрессией с трансгенов, встроенных в лентивирусный вектор (см., например, Milone et al., Mol. Ther. 17(8): 1453-1464 (2009)). Другим примером промотора является последовательность немедленно-раннего промотора цитомегаловируса (CMV). Эта промоторная последовательность собой представляет сильную конститутивную промоторную последовательность, способную запускать высокие уровни экспрессии любой полинуклеотидной последовательности, функционально связанной с ней. Однако иногда также используют другие конститутивные промоторные последовательности, включая без ограничения промотор гена β-актина курицы, промотор Р546, ранний промотор вируса обезьян 40 (SV40), промотор вируса опухоли молочной железы мыши (MMTV), промотор длинного концевого повтора (LTR) вируса иммунодефицита человека (HIV), промотор MoMuLV, промотор вируса лейкемии птиц, немедленно-ранний промотор вируса Эпштейна-Барр, промотор вируса саркомы Рауса, а также промоторы генов человека, такие как без ограничения промотор актина, промотор миозина, промотор фактора элонгации-1а, промотор гемоглобина и промотор креатинкиназы. Дополнительно, не предполагается, что векторы для генной терапии ограничиваются использованием конститутивных промоторов. В данном документе также предполагаются индуцируемые промоторы. Индуцируемый промотор обеспечивает молекулярный переключатель, способный включать экспрессию полинуклеотидной последовательности, с которой он функционально связан, когда такая экспрессия необходима, и выключать экспрессию, экспрессия нежелательна. Примеры когда индуцируемых промоторов включают без ограничения металлотионининдуцируемый промотор, глюкокортикоид-индуцируемый промотор,

прогестерон-индуцируемый промотор и промотор, регулируемый тетрациклином.

[00169] Чтобы оценить экспрессию терапевтического слитого белка, как например слитого с vIGF или слитого с сигнальным пептидом, необязательно характеризующегося наличием последовательности участка внутренней посадки рибосомы, или его фрагментов, вектор экспрессии, который подлежит введению в клетку, часто содержит либо селективный маркерный ген, либо репортерный ген, либо оба, чтобы способствовать идентификации и отбору экспрессирующих клеток из популяции клеток, предназначенных для трансфекции или инфицированных вирусными векторами. В других аспектах селективный маркер часто находится на отдельном участке ДНК и используется в процедуре котрансфекции. Как селективные маркеры, так и репортерные гены иногда фланкируют соответствующими регуляторными последовательностями для обеспечения экспрессии в клетках-хозяевах. Применимые селективные маркеры включают, например, гены устойчивости к антибиотикам, такие как пео и т. п.

[00170] Способы и композиции для введения и экспрессии генов в клетке являются подходящими для описанных в данном документе способов. В контексте вектора экспрессии вектор легко вводится в клетку-хозяина, например, в клетку млекопитающих, бактерий, дрожжей или насекомых, любым способом, известным в данной области техники. Например, вектор экспрессии переносят в клетку-хозяина с помощью физических, химических или биологических средств.

[00171] Физические способы и композиции для введения полинуклеотида в клетку-хозяина включают осаждение фосфатом кальция, липофекцию, бомбардировку частицами, микроинъекцию, генную пушку, электропорацию и тому подобное. Способы получения клеток, содержащих векторы и/или экзогенные нуклеиновые кислоты, являются подходящими для описанных в данном документе способов (см., например, Sambrook et al., 2012, Molecular Cloning: A Laboratory Manual, volumes 1-4, Cold Spring Harbor Press, NY). Одним

из способов введения полинуклеотида в клетку-хозяина является трансфекция с использованием фосфата кальция.

[00172] Химические средства и композиции для введения полинуклеотида в клетку-хозяина включают коллоидные дисперсионные системы, такие как комплексы макромолекул, нанокапсулы, микросферы, гранулы-микроносители и системы на основе липидов, включая эмульсии типа масло-в-воде, мицеллы, смешанные мицеллы, частицы на основе нуклеиновых кислот и липидов и липосомы. Иллюстративной коллоидной системой для использования в качестве средства доставки in vitro и in vivo является липосома (например, искусственная мембранная везикула). Доступны и другие современные способы направленной доставки нуклеиновых кислот, такие как доставка полинуклеотидов с помощью направленных наночастиц или другой подходящей системы доставки субмикронного размера.

[00173] В случае использования системы доставки, отличной от вирусной, иллюстративным средством доставки является липосома. Предполагается использование липидных составов для введения нуклеиновых кислот в клеткухозяина (in vitro, ex vivo или in vivo). В другом аспекте нуклеиновая кислота ассоциирована с липидом. Нуклеиновая кислота, ассоциированная с липидом, в некоторых вариантах осуществления, инкапсулирована во внутренней водной части липосомы, вкраплена в липидный бислой липосомы, присоединена к липосоме посредством присоединяющей молекулы, которая ассоциирована как с липосомой, так и с олигонуклеотидом, заключена в липосоме, находится в комплексе с липосомой, диспергирована в растворе, содержащем липид, смешана с липидом, комбинирована с липидом, содержится в липиде в виде суспензии, содержится в мицелле или находится в комплексе с мицеллой или иным образом ассоциирована с липидом. Композиции, ассоциированные с липидом, липидом/ДНК или липидом/вектором экспрессии, не ограничиваются какой-либо конкретной структурой в растворе. Например, в некоторых вариантах осуществления они присутствуют в виде двухслойной структуры, такой как мицеллы, или со "сжатой" структурой. В качестве альтернативы они

просто вкраплены в раствор, возможно, образуя агрегаты, которые не являются однородными по размеру или форме. Липиды представляют собой жирные вещества, которые В некоторых вариантах осуществления встречающимися в естественных условиях или синтетическими липидами. Например, липиды включают жирные капли, которые в естественных условиях a встречаются В цитоплазме, также класс соединений, содержащих длинноцепочечные алифатические углеводороды и их производные, такие как жирные кислоты, спирты, амины, аминоспирты и альдегиды.

[00174] Подходящие для использования липиды получают из коммерческих источников. Например, В некоторых вариантах осуществления димиристилфосфатидилхолин ("DMPC") получают от Sigma, Сент-Луис, Миссури; в некоторых вариантах осуществления дицетилфосфат ("DCP") получают от К & K Laboratories (Плейнвью, Нью-Йорк); холестерин ("Choi") в Calbiochem-Behring; некоторых вариантах осуществления получают OT димиристилфосфатидилглицерин ("DMPG") и другие липиды часто получают от Avanti Polar Lipids, Inc. (Бирмингем, Алабама). Исходные растворы липидов в хлороформе или смеси хлороформ/метанол часто хранят при температуре приблизительно -20°C. Хлороформ используется в качестве единственного растворителя, поскольку он испаряется легче, чем метанол. "Липосома" - это общий термин, охватывающий множество одно- и многослойных липидных сред-носителей, образующихся путем получения замкнутых липидных бислоев или агрегатов. Липосомы часто характеризуются наличием везикулярных структур с двухслойной фосфолипидной мембраной и внутренней водной средой. Многослойные липосомы содержат несколько липидных слоев, разделенных водной средой. Они образуются спонтанно, когда фосфолипиды суспендируют в избытке водного раствора. Липидные компоненты подвергаются самоперестройке перед образованием замкнутых структур и захватывают воду и растворенные вещества между липидными бислоями (Ghosh et al., 1991 Glycobiology 5: 505-10). Однако настоящим изобретением также охватываются композиции, которые обладают структурой в растворе, отличной от нормальной везикулярной структуры. Например, в некоторых вариантах осуществления липиды приобретают мицеллярную структуру или просто существуют в виде неоднородных агрегатов липидных молекул. Также предполагаются комплексы липофектамин-нуклеиновая кислота.

[00175] Независимо от способа, используемого для введения экзогенных нуклеиновых кислот в клетку-хозяина или иного воздействия на клетку терапевтическим слитым белком, как например слитым с vIGF2 или слитым с сигнальным пептидом, необязательно характеризующимся наличием последовательности участка внутренней посадки рибосомы, предусмотренным в данном документе, для подтверждения присутствия последовательности рекомбинантной ДНК в клетке-хозяине предполагается проведение ряда различных анализов. Такие анализы включают, например, "молекулярнобиологические" анализы, подходящие для описанных в данном документе такие нозерн-блоттинг, способов, как саузерн-И ОТ-ПЦР "биохимические" анализы, такие как обнаружение присутствия или отсутствия конкретного пептида, например, иммунологическими методами (ELISA и вестерн-блоттинг) или анализами, описанными в данном документе, для идентификации средств, попадающих в объем, представленный в данном документе.

[00176] Настоящее изобретение дополнительно предусматривает вектор, содержащий терапевтический слитый белок, как например слитый с vIGF2 или слитый с сигнальным пептидом, необязательно характеризующийся наличием последовательности участка внутренней посадки рибосомы, кодирующий молекулу нуклеиновой кислоты. В одном аспекте вектор терапевтического слитого белка может быть напрямую трансдуцирован в клетку. В одном аспекте вектор представляет собой вектор клонирования или экспрессии, например вектор, включающий без ограничения одну или несколько плазмид (например, плазмиды экспрессии, векторы клонирования, миникольца, минивекторы, двойные микрохромосомы), ретровирусные и лентивирусные векторные конструкции. В одном аспекте вектор можно использовать для экспрессии конструкции, представленной терапевтическим белком, слитым с vIGF2, в

клетках млекопитающих. В одном аспекте клетка млекопитающего представляет собой клетку человека.

Варианты применения и способы лечения

[00177] В данном документе также предусмотрены способы лечения генетических нарушений с использованием генной терапии, включающие введение индивидууму нуклеиновой кислоты, кодирующей терапевтический слитый белок (как например слитый с vIGF2, или слитый с сигнальным пептидом, или слитый с сигнальным пептидом и vIGF2), необязательно характеризующейся наличием последовательности участка внутренней посадки документе. Генетические рибосомы, раскрытой В данном нарушения, подходящие для лечения с использованием описанных в данном документе способов, включают нарушения у индивидуума, вызванные одной или несколькими мутациями в геноме, вызывающими отсутствие экспрессии или экспрессию дисфункционального белка в случае мутантного гена.

[00178] Кроме того, в данном документе предусмотрены фармацевтические композиции, содержащие вектор для генной терапии, такой как вектор для генной терапии, содержащий нуклеиновую кислоту, кодирующую терапевтический слитый белок (как например слитый с vIGF2, или слитый с сигнальным пептидом, или слитый с сигнальным пептидом и vIGF2), необязательно характеризующуюся наличием последовательности участка рибосомы, описанную внутренней посадки В данном документе, фармацевтически приемлемый носитель или вспомогательное вещество для применения в получении лекарственного препарата для лечения генетического нарушения.

[00179] В некоторых вариантах осуществления генетические нарушения, подходящие для лечения с использованием способов, предусмотренных в данном документе, представляют собой лизосомные болезни накопления. В некоторых вариантах осуществления в данном документе лизосомные болезни накопления лечат посредством генной терапии с обеспечением доставки

пациенту отсутствующих или дефектных ферментов. В некоторых вариантах осуществления описанные в данном документе способы обеспечивают доставку фермента, слитого с vIGF2 или слитого с сигнальным пептидом, пациенту с целью доставки фермента в клетку, где в нем есть необходимость. В некоторых вариантах осуществления лизосомная болезнь накопления выбрана из группы, состоящей из аспартилглюкозаминурии, болезни Баттена, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа A, болезни Моркио типа B, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа C2, болезни Шиндлера типа I, болезни Шиндлера типа II. В некоторых вариантах осуществления лизосомная болезнь накопления выбрана из группы, состоящей из дефицита активатора, GM2-ганглиозидоза; GM2-ганглиозидоза, варианта АВ; альфа-маннозидоза (типа 2, среднетяжелой формы; типа 3, неонатального, тяжелого); бета-маннозидоза; аспартилглюкозаминурии; дефицита лизосомальной кислой липазы; цистиноза (позднего ювенильного или подросткового нефропатического типа; младенческого нефропатического); синдрома Дорфмана-Чанарина; болезни накопления нейтральных липидов с миопатией; NLSDM; болезни Данона; болезни Фабри; болезни Фабри типа II с поздним началом; болезни Фарбера; липогранулематоза Фарбера; фукозидоза; галактосиалидоза (сочетанного дефицита нейраминидазы и бета-галактозидазы); болезни Гоше; болезни Гоше типа II; болезни Гоше типа III; болезни Гоше типа IIIC; атипичной формы болезни Гоше, обусловленной дефицитом сапозина С; GM1-ганглиозидоза (позднего детского/ювенильного GM1-ганглиозидоза: взрослого/хронического GM1-ганглиозидоза); глобоидно-клеточной лейкодистрофии, болезни Краббе (с началом в позднем младенческом возрасте; с началом в юношеском возрасте; с началом во взрослом возрасте); атипичной

болезни Краббе, обусловленной формы дефицитом сапозина A; метахроматической лейкодистрофии (ювенильной; взрослой); частичного цереброзид-сульфата; дефицита псевдоарилсульфатазы дефицита A; метахроматической лейкодистрофии вследствие дефицита B; сапозина мукополисахаридозных нарушений: MPS I, синдрома Гурлера; MPS I, синдрома Гурлера-Шейе; MPS I, синдрома Шейе; MPS II, синдрома Хантера; MPS II, синдрома Хантера; синдрома Санфилиппо типа A/MPS IIIA; синдрома Санфилиппо типа B/MPS IIIB; синдрома Санфилиппо типа C/MPS IIIC; синдрома Санфилиппо типа D/MPS IIID; синдрома Моркио, тип A/MPS IVA; синдрома Моркио, типа B/MPS IVB; MPS IX, дефицита гиалуронидазы; MPS VI, синдрома Марото-Лами; MPS VII, синдрома Слая; муколипидоза I, сиалидоза II: І-клеточной болезни, болезни II: типа Леруа, муколипидоза псевдополидистрофии Гурлера/муколипидоза типа III; муколипидоза IIIC/ML III гамма; муколипидоза типа IV; множественного дефицита сульфатазы; болезни Ниманна-Пика (типа В; типа С1/хронической нейропатической формы; типа С2; типа D/новошотландского типа); нейрональных цероидных липофусцинозов: болезни CLN6 - атипичной поздней младенческой формы, варианта с поздним началом, ранней юношеской формы; болезни Баттена-Шпильмейера-Фогта/юношеского NCL/болезни CLN3; финского варианта поздней младенческой CLN5; болезни Янского-Бильшовского/поздней младенческой CLN2/болезни TPP1; болезни Kyфca/NCL С началом во взрослом возрасте/болезни CLN4 (типа B); северной эпилепсии/позднего младенческого варианта CLN8; болезни Сантавуори-Халтиа/младенческого CLN1/болезни РРТ; болезни Помпе (болезни накопления гликогена типа II); болезни Помпе с поздним началом; пикнодизостоза; болезни Сандхоффа/ганглиозидоза GM2; болезни Сандхоффа/ганглиозидоза GM2; болезни Сандхоффа/ганглиозидоза GM2; болезни Шиндлера (типа III/промежуточной, вариабельной); болезни Канзаки; болезни Салла; младенческой болезни накопления свободной сиаловой (ISSD): спинальной мышечной атрофии С прогрессирующей кислоты миоклонической эпилепсией (SMAPME); болезни Тея-Сакса/ганглиозидоза GM2; болезни Тея-Сакса с началом в юношеском возрасте; болезни Тея-Сакса с

поздним началом; синдрома Кристиансона; окулоцереброренального синдрома Лоу; болезни Шарко-Мари-Тута типа 4J, СМТ4J; синдрома Юниса-Варона; двусторонней височно-затылочной полимикрогирии (ВТОР); Х-сцепленного гиперкальциурического нефролитиаза, болезни Дента-1; болезни Дента-2. В некоторых вариантах осуществления терапевтический белок ассоциирован с лизосомной болезнью накопления, и терапевтический белок выбран из группы, состоящей из белка-активатора GM2; α-маннозидазы; MAN2B1; лизосомальной В-маннозидазы: гликозиласпарагиназы; лизосомальной кислой цистинозина; CTNS; PNPLA2; ассоциированного с лизосомой мембранного белка-2; α-галактозидазы A; GLA; кислой церамидазы; α-L-фукозидазы; защитного белка/катепсина A; кислой В-глюкозидазы; GBA; PSAP; Вгалактозидазы-1; GLB1; галактозилцерамид-β-галактозидазы; GALC; PSAP; арилсульфатазы A; ARSA; α-L-идуронидазы; идуронат-2-сульфатазы; гепаран-N-сульфатазы; Ν-α-ацетилглюкозаминидазы; гепаранацетил-КоА: N-ацетилглюкозамин-6-сульфатазы; глюкозаминидацетилтрансферазы; галактозамин-6-сульфатсульфатазы; В-галактозидазы; гиалуронидазы; арилсульфатазы B; β-глюкуронидазы; нейраминидазы; NEU1; гаммасубъединицы N-ацетилглюкозамин-1-фосфотрансферазы; муколипина-1; сульфатазо-модифицирующего фактора-1; кислой сфингомиелиназы; SMPD1; NPC1 и NPC2.

[00180] В некоторых вариантах осуществления при лечении посредством способов, представленных в данном документе, осуществляют доставку гена, кодирующего терапевтический белок, в клетку, для которой необходим данный терапевтический белок. В некоторых вариантах осуществления при лечении осуществляют доставку гена ко всем соматическим клеткам индивидуума. В некоторых вариантах осуществления лечение обеспечивает замену дефектного гена в клетках-мишенях. В некоторых вариантах осуществления индивидууму доставляют клетки, обработанные ех vivo с обеспечением экспрессии терапевтического белка.

[00181] Генная терапия нарушений, описанных в данном документе, обеспечивает превосходные результаты лечения по сравнению с обычными способами лечения, включая ферментозаместительную терапию, поскольку она не требует длительных процедур инфузий при лечении.

Определения

[00182] Применяемый в данном документе термин "генная терапия ex vivo" относится к способам, при которых клетки пациента генетически модифицируют вне организма субъекта, например, с обеспечением экспрессии терапевтического гена. Затем клетки с новой генетической информацией возвращают субъекту, от которого они были получены.

[00183] Применяемый в данном документе термин "генная терапия in vivo" относится к способам, при которых вектор, несущий терапевтический(-е) ген(-ы), непосредственно вводят субъекту.

[00184] Применяемые в данном документе термины "слитый белок" и "терапевтический слитый белок" используются В данном взаимозаменяемо и относятся к терапевтическому белку, обладающему по меньшей мере одним дополнительным белком, пептидом или полипептидом, присоединенным к нему. В некоторых случаях слитые белки представляют собой одну белковую молекулу, содержащую два или более белков или их фрагментов, ковалентно соединенных пептидной связью в пределах их соответствующих пептидных цепей, без химических линкеров. В некоторых вариантах осуществления слитый белок содержит терапевтический белок и сигнальный пептид, пептид, обеспечивающий увеличение уровня эндоцитоза слитого белка, или и то и другое. В некоторых вариантах осуществления пептид, обеспечивающий увеличение уровня эндоцитоза, представляет собой пептид, который связывает CI-MPR.

[00185] Применяемые в данном документе термины "вектор" или "вектор для генной терапии", используемые в данном документе взаимозаменяемо,

относятся к средам-носителям или носителям для доставки при генной терапии, с помощью которых доставляют терапевтические гены в клетки. Вектор для генной терапии представляет собой любой вектор, пригодный для использования в генной терапии, например любой вектор, подходящий для терапевтической доставки полимеров нуклеиновой кислоты (кодирующих полипептид или его вариант) в клетки-мишени (например, сенсорные нейроны) пациента. В некоторых вариантах осуществления вектор для генной терапии доставляет нуклеиновую кодирующую терапевтический кислоту, белок или терапевтический слитый белок, в клетку, где терапевтический белок или слитый белок экспрессируется и секретируется из клетки. Вектор может являться вектором любого типа, например, он может являться плазмидным вектором или миникольцевой ДНК. Как правило, вектор представляет собой вирусный вектор. К ним относятся как генетически поврежденные вирусы, такие как аденовирус, так и невирусные векторы, такие как липосомы. Вирусный вектор можно получить, например, из аденоассоциированного вируса (AAV), ретровируса, лентивируса, вируса простого герпеса или аденовируса. Векторы, полученные из AAV. Вектор может содержать геном AAV или его производное.

[00186] Применяемый в данном документе термин "конструкция" относится к молекуле или последовательности нуклеиновой кислоты, которая кодирует терапевтический белок или слитый белок и необязательно содержит дополнительные последовательности, такие как последовательность инициации трансляции или последовательность IRES.

[00187] Применяемый в данном документе термин "плазмида" относится к кольцевой двухцепочечной единице ДНК, которая реплицируется в клетке независимо от хромосомной ДНК.

[00188] Применяемый в данном документе термин "промотор" относится к сайту на ДНК, с которым связывается фермент РНК-полимераза и инициирует транскрипцию ДНК в РНК.

[00189] Применяемый в данном документе термин "соматическая терапия" относится к способам, при которых манипулирование экспрессией генов в клетках будет корректировать состояние пациента, но не наследоваться следующим поколением. Соматические клетки включают все клетки организма человека, отличные от репродуктивных.

[00190] Применяемый в данном документе термин "соматические клетки" относится ко всем клеткам организма, кроме репродуктивных клеток.

[00191] Применяемый в данном документе термин "тропизм" относится к предпочтению определенного типа клеток или ткани вектором, таким как вирус. Различные факторы определяют способность вектора инфицировать конкретную клетку. Вирусы, например, должны связываться со специфическими рецепторами клеточной поверхности, чтобы проникнуть в клетку. Вирусы, как правило, не способны инфицировать клетку, если она не экспрессирует необходимые рецепторы.

[00192] "трансдукция" обозначения Термин используется ДЛЯ введения/доставки нуклеиновой кислоты, кодирующей терапевтический белок, в клетку-мишень in vivo или in vitro посредством дефектного по репликации rAAV по настоящему изобретению, что приводит к экспрессии функционального полипептида клеткой-реципиентом. Трансдукция клеток вектором для генной терапии, таким как rAAV по настоящему изобретению, приводит к устойчивой экспрессии полипептида или РНК, кодируемых rAAV. Таким образом, настоящее изобретение предусматривает способы введения/доставки субъекту вектора для генной терапии, такого как rAAV, кодирующего терапевтический белок, интраретинальным, интратекальным, интраокулярным, интравитреальным, интрацеребровентрикулярным, интрапарехимальным или внутривенным путем или любой их комбинацией. "Интратекальная" доставка относится к доставке в пространство под паутинной оболочкой головного мозга или спинного мозга. В некоторых вариантах осуществления интратекальное введение осуществляют путем интрацистернального введения. Настоящее изобретение также предусматривает способы введения/доставки клеток, которые были трансдуцированы ех vivo вектором для генной терапии, таким как вектор на основе rAAV, кодирующим терапевтический белок, интратекальным, интраретинальным, интраокулярным, интравитреальным, интрацеребровентрикулярным, интрапарехимальным или внутривенным путем или любой их комбинацией.

"реципиент", "индивидуум", "субъект", "хозяин" [00193] Термины "пациент" используются в данном документе взаимозаменяемо и в некоторых случаях относятся к любому субъекту-млекопитающему, которому необходимы постановка диагноза, лечение или терапия, в частности к людям. Термин "млекопитающее" в контексте лечения относится к любому животному, классифицируемому как млекопитающее, включая людей, одомашненных и сельскохозяйственных животных, a также лабораторных, зоопарковых, спортивных или домашних животных, таких как собаки, лошади, кошки, коровы, овцы, козы, свиньи, мыши, крысы, кролики, морские свинки, обезьяны и т. д. В некоторых вариантах осуществления млекопитающее представляет собой человека.

[00194] Применяемые в данном документе термины "лечение", "проведение лечения", "уменьшение интенсивности симптома" и т. п. в некоторых случаях относятся к введению средства или проведению процедуры с целью получения терапевтического эффекта, включая подавление, ослабление, уменьшение, предупреждение или изменение по меньшей мере одного аспекта или маркера нарушения статистически значимым или клинически значимым образом. Термин "уменьшать интенсивность" или "проводить лечение" не указывает и не подразумевает излечение от основного состояния. Применяемые в данном документе термины "лечение" или "уменьшить интенсивность" (и т. п.) могут включать лечение млекопитающего, в частности человека, и включают: (а) предупреждение возникновения нарушения или симптома нарушения у субъекта, который может быть предрасположен к нарушению, но у которого еще не диагностировали наличие нарушения (например, включая нарушения,

которые могут быть ассоциированы с первичным нарушением или быть вызваны им; (b) подавление нарушения, т. е. остановка его развития; (c) облегчение нарушения, т. е. обуславливание регресса нарушения; и (d) обеспечение улучшения в отношении по меньшей мере одного симптома нарушения. Проведение лечения может относиться к любым признакам успеха в лечении, уменьшения интенсивности или предупреждения нарушения, включая любой объективный или субъективный параметр, такой как ослабление выраженности; ремиссия; уменьшение выраженности симптомов или повышение переносимости состояния нарушения для пациента; замедление скорости дегенерации или ухудшения или уменьшение изнурительности конечной точки ухудшения. Лечение или уменьшение интенсивности симптомов основано на одном или нескольких объективных или субъективных параметрах; в том числе результатах осмотра врачом. Соответственно, термин "проведение лечения" включает введение соединений или средств по настоящему изобретению для предупреждения или задержки, облегчения, или остановки, или подавления развития симптомов или состояний, ассоциированных с нарушением. Термин "терапевтический эффект" относится к уменьшению, устранению предупреждению нарушения, симптомов нарушения или побочных эффектов нарушения у субъекта.

[00195] Термин "аффинность" относится к силе связывания между молекулой и ее партнером по связыванию или рецептором.

[00196] Применяемая в данном документе фраза "высокая аффинность" относится, например, к терапевтическому слитому продукту, содержащему такой пептид, который связывает СІ-МРР, который обладает аффинностью к СІ-МРР, которая является в приблизительно 100-1000 раз или в 500-1000 раз выше, чем таковая у терапевтического белка без пептида. В некоторых вариантах осуществления аффинность является в по меньшей мере 100, в по меньшей мере 500 или в по меньшей мере 1000 раз выше, чем без пептида. Например, если терапевтический белок и СІ-МРР объединяют в относительно равных концентрациях, пептид с высокой аффинностью будет связываться с доступным

CI-MPR с обеспечением смещения равновесия в сторону высокой концентрации получаемого в результате комплекса.

[00197] Применяемый в данном документе термин "секреция" относится к высвобождению белка из клетки, например, в кровоток, для переноса в представляющую интерес ткань или В место приложения действия терапевтического белка. Если продукт для генной терапии секретируется в интерстициальное пространство органа, секреция может обеспечить возможность перекрестной коррекции соседних клеток.

[00198] Применяемый в данном документе термин "доставка" означает доставку лекарственного средства. В некоторых вариантах осуществления процесс доставки означает транспортировку лекарственного вещества (например, терапевтического белка или слитого белка, полученного из клетки, трансдуцированной вектором для генной терапии) за пределы клетки (например, крови, ткани или интерстициального пространства) в клетку-мишень для проявления терапевтической активности лекарственного вещества.

[00199] Применяемый в данном документе термин "конструирование" или "конструирование белка" относится к манипулированию структурами белка путем получения соответствующей последовательности нуклеиновой кислоты, которая кодирует белок, с получением требуемых свойств или синтезу белка с определенными структурами.

[00200] "Терапевтически эффективное количество" в некоторых случаях означает количество, которое при введении субъекту для лечения нарушения является достаточным для эффективного лечения этого нарушения.

[00201] Применяемый в данном документе термин "приблизительно" в отношении числа относится к диапазону от значения на 10% меньшего, чем это число, до значения на 10% большего, чем это число, и включая значения внутри диапазона, такие как само число.

[00202] Применяемый в данном документе термин "включающий" элемент или элементы в формуле изобретения относится к этим элементам, но не препятствует включению дополнительного элемента или элементов.

ПРИМЕРЫ

[00203] Следующие ниже примеры приведены с целью иллюстрации различных вариантов осуществления изобретения и не предназначены для ограничения настоящего изобретения каким-либо образом. Настоящие примеры вместе со способами, описанными в данном документе, в настоящее время представляют предпочтительные варианты осуществления, являются иллюстративными и не предназначены для ограничения объема изобретения. При этом изменения и другие варианты применения, которые охвачены сущностью изобретения, определенной объемом формулы изобретения, будут очевидны специалистам в данной области техники.

Пример 1. Связывание варианта пептида IGF2 с рецептором CI-MPR

[00204] Эксперименты с использованием поверхностного плазмонного резонанса (SPR) проводили с использованием Biacore для измерения связывания IGF2 дикого типа и варианта IGF2 (vIGF2) с рецептором CI-MPR. Зрелый пептид IGF2 (IGF2 человеческого дикого типа wt) характеризуется последовательностью, представленной под SEQ ID NO: 68. Последовательность vIGF2 отличается от IGF2 wt отсутствием остатков 1-4 и наличием следующих E6R, Y27L K65R. Он характеризуется мутаций: И аминокислотной последовательностью

SRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLET YCATPARSE (SEQ ID NO: 80). vIGF2 также содержит N-концевой линкер с последовательностью GGGGSGGGG (SEQ ID NO: 181). Объединенная последовательность представляет собой GGGGSGGGSRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCF RSCDLALLETYCATPARSE. На фиг. 4 показано, что, как и ожидалось, пептид IGF2 дикого типа связывается с рецептором CI-MPR с высокой аффинностью

(0,2 нМ). На фиг. 5 показано, что вариант пептида IGF2 (vIGF2) также связывается с рецептором CI-MPR с высокой аффинностью (0,5 нМ). Эти данные показывают, что пептид vIGF2 характеризуется высокой аффинностью к предполагаемому рецептору CI-MPR для нацеливания терапевтических средств на лизосомы.

[00205] SPR использовали для измерения связывания пептида с рецептором инсулина для оценки потенциальных побочных эффектов. Инсулин связывается с рецептором инсулина с высокой аффинностью (~8 нМ; данные не показаны). Тестировали IGF2 дикого типа и vIGF2, при этом vIGF2 характеризовался последовательностью

SRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLET YCATPARSE (SEQ ID NO: 80), при этом характеризуясь наличием N-концевого линкера с последовательностью GGGGSGGGG (SEQ ID NO: 181). На фиг. 8 показано, что IGF2 дикого типа также связывается с рецептором инсулина с относительно высокой аффинностью (~100 нМ). Пептид IGF2, входящий в состав слитого белка IGF2-GAA (BMN-701) от Biomarin/Zystor, также связывается с рецептором инсулина с высокой аффинностью, и в клинических испытаниях было показано, что он вызывает гипогликемию. На фиг. 9 показано отсутствие поддающегося измерению связывания пептида vIGF2 с рецептором инсулина. Эти данные показывают, что пептид vIGF2 обеспечивает лучший профиль безопасности по сравнению со слитыми белками на основе пептидов IGF2 wt.

[00206] Такой же анализ связывания SPR использовали для характеристики взаимодействия пептида vIGF2 с рецептором IGF1. На фиг. 10 показано, что пептид IGF2 дикого типа связывается с рецептором IGF1 с относительно высокой аффинностью (~100 нМ). На фиг. 11 показано отсутствие поддающегося измерению связывания пептида vIGF2 с рецептором IGF1, что свидетельствует об улучшенном профиле безопасности по сравнению с IGF2 дикого типа.

Таблица 8. Результаты в отношении аффинности согласно SPR			
Рецептор	Kd для IGF2 wt (нМ)	Kd для vIGF2 (нМ)	
CI-MPR	0,2	0,5	
Рецептор инсулина	100	Отсутствие	
		поддающегося	
		обнаружению связывания	
Рецептор IGF1	100	Отсутствие	
		поддающегося	
		обнаружению связывания	

<u>Пример 2. vIGF2 превращает низкоаффинный лиганд в высокоаффинное</u> средство ERT для CI-MPR

Пептид vIGF2 (SEQ ID NO: 80) с N-концевым линкером (SEQ ID [00207] NO: 181) химически связывали с алглюкозидазой-альфа, что в данном документе обозначается как vIGF2-алглюкозидаза-альфа, чтобы определить, способен ли пептид vIGF2 улучшать аффинность к CI-MPR. Как показано на фиг. 6, значения аффинности связывания алглюкозидазы-альфа и vIGF2-алглюкозидазы-альфа непосредственному сравнению с использованием подвергали связывания с CI-MPR на планшетах, проводимых в 96-луночных планшетах, покрытых CI-MPR. Несвязанный фермент отмывали перед измерением активности связанного фермента. Использовали различные концентрации обоих ферментных препаратов со свободным пептидом IGF2 wt или без него. vIGF2 значительно улучшал аффинность к CI-MPR. Кроме того, связывание vIGF2алглюкозидазы-альфа блокировалось свободным IGF2 wt, что указывает на то, что связывание являлось IGF2-зависимым. (Данные не показаны.) Связывание пептида vIGF2 не нарушало активность фермента GAA.

[00208] vIGF2 связывали с рекомбинантной человеческой N-ацетил-α-D-глюкозаминидазой (rhNAGLU). RrhNAGLU, представляет собой лизосомальный фермент, не содержащий M6P, для определения того, может ли пептид

превращать нелиганд в высокоаффинный лиганд для CI-MPR. В данном эксперименте rhNAGLU и vIGF2-rhNAGLU подвергали непосредственному сравнению с использованием анализов связывания с CI-MPR на планшетах при использовании планшетов, покрытых CI-MPR. Несвязанный фермент отмывали перед измерением активности связанного фермента. Использовали различные концентрации обоих ферментных препаратов со свободным пептидом vIGF2 или без него. Как показано на фиг. 7, vIGF2-rhNAGLU характеризуется значительно более высокой аффинностью к CI-MPR, чем rhNAGLU, не содержащая vIGF2. Кроме того, связывание vIGF2-rhNAGLU блокировалось свободным пептидом vIGF2, что указывает на то, что связывание рецептора было специфичным в отношении пептида IGF2. Эти результаты показывают, что пептид vIGF2 можно использовать для улучшения нацеливания лекарственных средств на лизосомы.

Пример 3. Поглощение миобластами слитых белков vIGF2-GAA

[00209] Вводили слитые белки vIGF2-GAA (такие же последовательности, как и в примерах 1-2) и измеряли поглощение фермента миобластами L6. На фиг. 6 показано превосходное поглощение vIGF2-rhGAA по сравнению с rhGAA и M6P-GAA. Следовательно, vIGF2 эффективен в отношении нацеливания GAA на клетки.

<u>Пример 4. Конструкции для ERT, доставленные посредством генной терапии</u>

[00210] Две разные конструкции проиллюстрированы на фиг. 12. На верхней панели показана конструкция, которая содержит последовательность Козак и нуклеиновую кислоту, кодирующую рекомбинантную человеческую GAA с нативным сигнальным пептидом, кодирующая "природную hGAA" (SEQ ID NO: 189). На средней панели показана конструкция Козак-BiP-vIGF2-2GS-GAA, кодирующая "сконструированную hGAA" (SEQ ID NO: 190). Эта характеризуется последовательностью Козак, конструкция нуклеиновой кодирующей сигнальный пептид ВіР, нуклеиновой кислотой, кислотой, кодирующей vIGF2, характеризующийся последовательностью, пептид представленной под SEQ ID NO: 80, и нуклеиновой кислотой, кодирующей линкер 2GS (SEQ ID NO:181), за которой следует нуклеиновая кислота, кодирующая рекомбинантную человеческую GAA (SEQ ID NO:1) с удаленными 60 N-концевыми аминокислотами для предупреждения преждевременного процессинга и удаления vIGF2. Аминокислотная последовательность "сконструированной hGAA" представлена под SEQ ID NO:2.

Пример 5. Усиленная секреция конструкций для генной терапии

[00211] Сконструированная hGAA характеризуется более высокой секрецией и способна взаимодействовать с рецептором клеточной поверхности, подходящим для обеспечения поглощения клетками и нацеливания на лизосомы.

СНО, экспрессирующие сконструированную hGAA, более подробно описанную ниже, или природную hGAA, культивировали и кондиционированные среды собирали для измерения активности GAA. На фиг. 15 показана относительная активность сконструированной и природной hGAA, демонстрирующая, что сконструированная hGAA характеризуется повышенной активностью по сравнению с природной hGAA, что указывает на более эффективную секрецию сконструированной hGAA.

Пример 6. Анализ РРТ1 в кондиционированных средах

[00212] Встраивание конструкций РРТ1

Конструкции PPT1 встраивали в вектор экспрессии pcDNA3.1 (ThermoFisher, № по кат. V79020), который содержит промотор CMV. Тестируемые конструкции включали PPT1-1 (WT-PPT1) (SEQ ID NO: 4); PPT1-2 (WT-vIGF2-PPT1) (SEQ ID NO: 5); PPT1-29 (BiP2aa-vIGF2-PPT1) (SEQ ID NO: 6).

Секреция и связывание РРТ1

[00213] Конструкции РРТ1 временно экспрессировались в клетках НЕК293Т в течение 3 дней, и РРТ1 секретировалась в среду. Секретируемую РРТ1 количественно определяли посредством вестерн-блоттинга и

анализировали на связывание CI-MPR с использованием установленных способов. Секретируемая PPT1 показана на фиг. 13. Связывание CI-MPR показано на фиг. 14.

[00214] <u>Пример 7. Тестирование векторов для генной терапии на животной</u> модели болезни Помпе

[00215] Генная терапия болезни Помпе: план доклинического исследования по проверке концепции

[00216] Доклиническое исследование проводили на мышах с нокаутом GAA (GAA KO) с использованием высокой дозы для начального сравнения конструкций. Конструкции показаны на фиг. 12. Мышей обрабатывали средойносителем или одной из двух конструкций: природной hGAA или сконструированной hGAA. Мышам вводили 5e11 копий генома/мышь (примерно 2,5e13 копий генома/кг). Мышей с нокаутом GAA использовали в возрасте 2 месяцев. В качестве контроля использовали нормальных мышей (дикого типа). План исследования схематически показан на фиг. 16.

[00217] Генная терапия болезни Помпе: плазма крови

[00218] Плазму крови собирали у мышей дикого типа (нормальных) или мышей GAA KO, обработанных средой-носителем или вектором для генной терапии, как указано, и измеряли активность GAA и связывание с клеточной поверхностью. Данные обобщены на фиг. 17, фиг. 27 и фиг. 19. Подобные высокие уровни GAA наблюдали у мышей, обработанных векторами для генной терапии (фиг. 17, фиг. 18). Однако при использовании сконструированной конструкции наблюдали более высокий уровень связывания с рецептором, опосредующим нацеливание на клетку (фиг. 19).

[00219] Генная терапия болезни Помпе: четырехглавая мышца

[00220] Активность GAA и накопление гликогена/цитоплазматическую вакуолизацию оценивали у нормальных мышей (дикого типа) и обработанных

мышей GAA KO (фиг. 28). Активность GAA в четырехглавой мышце была приблизительно в 20 раз выше, чем у дикого типа. Также оценивали PASокрашивание гликогена (фиг. 29) и иммуногистохимические параметры (фиг. Иммуногистохимический анализ показал более высокий нацеливания сконструированной hGAA на лизосомы по сравнению с диким более типом. Снижение уровня гликогена было устойчивым сконструированной hGAA согласно результатам окрашивания с помощью PAS.

[00221] Генная терапия болезни Помпе: трехглавая мышца

[00222] Активность GAA и накопление гликогена/цитоплазматическую вакуолизацию оценивали у нормальных мышей (дикого типа) и у обработанных мышей GAA КО (фиг. 31). Активность GAA была приблизительно в 10-15 раз выше, чем у дикого типа. Также оценивали иммуногистохимические параметры и PAS-окрашивание гликогена (фиг. 32 и фиг. 33). Иммуногистохимический анализ продемонстрировал более высокий уровень нацеливания сконструированной hGAA на лизосомы по сравнению с GAA дикого типа. Снижение уровня гликогена было более устойчивым для сконструированной hGAA, как измерено по окрашиванию с помощью PAS.

[00223] Генная терапия болезни Помпе: передняя большеберцовая мышца (TA)

[00224] Активность GAA и накопление гликогена/цитоплазматическую вакуолизацию оценивали у нормальных (дикого типа) и обработанных мышей GAA КО (фиг. 20). Активность GAA в ТА была приблизительно в 15-20 раз выше, чем у дикого типа. Также оценивали иммуногистохимические параметры и PAS-окрашивание гликогена (фиг. 21 и фиг. 22). Иммуногистохимический анализ продемонстрировал более высокий уровень нацеливания сконструированной hGAA на лизосомы по сравнению с GAA дикого типа. Уровни гликогена являлись близкими к уровням для дикого типа. Снижение уровня гликогена было более устойчивым для сконструированной hGAA согласно результатам окрашивания с помощью PAS.

[00225] Генная терапия болезни Помпе: головной мозг и спинной мозг

[00226] GAA. Активность содержание гликогена И накопление гликогена/цитоплазматическую вакуолизацию оценивали у нормальных мышей (дикого типа) и обработанных мышей GAA KO (фиг. 23). Активность GAA в головном мозге была приблизительно в 5 раз ниже, чем у дикого типа. Также оценивали иммуногистохимические параметры и PAS-окрашивание гликогена (фиг. 24, фиг. 25, фиг. 26 и фиг. 27). Иммуногистохимический анализ показал, что может иметь место прямая трансдукция некоторых клеток. Однако при использовании конструкции с природным белком достигали незначительного клиренса гликогена или не достигали его вовсе. Уровни гликогена были близки к уровням для дикого типа в случае сконструированной конструкции, даже несмотря на то, что активность составляла только 20% от активности для дикого типа. PAS-окрашивание в спинном мозге показывает незначительный клиренс гликогена или отсутствие клиренса при использовании конструкции с природным белком. Уровни гликогена, близкие к таковым для дикого типа, в случае сконструированной конструкции наблюдали в вентральных рогах, включая двигательные нейроны. Иммуногистохимический анализ продемонстрировала прямую трансдукцию в нейронах спинного мозга. Сконструированная hGAA, продуцируемая сосудистым сплетением и нервными клетками, была способна снижать уровень гликогена за счет перекрестной коррекции в спинном мозге, в то время как в случае природной hGAA наблюдали незначительное снижение уровня гликогена.

[00227] Выводы

[00228] В целом, данные, представленные в этом примере, продемонстрировали, что сконструированные конструкции для генной терапии поглощаются в тканях и снижают уровень гликогена в значительно более высокой степени, чем GAA дикого типа, используемая в традиционных видах лечения, включая эффекты в отношении головного мозга и спинного мозга.

ПРИМЕР 8. Протоколы исследований на животных

[00229] Векторы AAVhu68 получали и титровали с помощью Penn Vector Core, как описано. (Lock, Alvira et al. 2010, "Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale." Hum Gene Ther 21(10): 1259-1271).

[00230] Миѕ muѕсиluѕ, мышей с болезнью Помпе с нокаутом Gaa в фоновом генотипе основателей C57BL/6/129 приобретали в Jackson Labѕ (линия №004154 – также известная как "мыши 6neo").

[00231] Мышам вводили $5x10^{11}$ копий генома (примерно $2,5x10^{13}$ копий генома/кг) AAVhu68.CAG.hGAA (содержащего либо природную hGAA (SEQ ID NO: 189), либо сконструированную hGAA (SEQ ID NO: 190) в 0,1 мл через боковую хвостовую вену, у них отбирали кровь в день 7 и день 21 после введения вектора для выделения сыворотки крови и терминально отбирали кровь (для выделения плазмы крови) и умерщвляли обескровливанием через 28 дней после инъекции. Ткани немедленно собирали, начиная с головного мозга.

Активность GAA

[00232] Плазму крови смешивали с 5,6 мМ 4-МU-α-глюкопиранозида, рН 4,0, и инкубировали в течение трех часов при 37°С. Реакцию останавливали с помощью 0,4 М карбоната натрия, рН 11,5. Измерение в относительных единицах флуоресценции, RFU, осуществляли с использованием флуориметра Victor3, с возб. при 355 нм и излучением при 460 нм. Активность в единицах нмоль/мл/ч рассчитывали путем интерполяции стандартной кривой 4-МU. Активность в отдельных образцах ткани дополнительно нормализовали на основании общего содержания белка в гомогенате.

Сигнатурный пептид GAA по данным LC/MS

[00233] Плазму крови осаждали в 100% метаноле и центрифугировали. Супернатанты удаляли. В осадок добавляли стабильный меченный изотопом пептид, уникальный для hGAA, в качестве внутреннего стандарта, и его ресуспендировали с трипсином и инкубировали при 37°С в течение одного часа.

Расщепление останавливали с помощью 10% муравьиной кислоты. Триптические пептиды разделяли с помощью хроматографии с обращенной фазой с колонкой С-18 и идентифицировали и количественно определяли с помощью масс-спектроскопии с использованием ESI. Общую концентрацию GAA в плазме крови рассчитывали по концентрации сигнатурного пептида.

Анализ связывания рецептора клеточной поверхности

[00234] 96-луночный планшет покрывали рецептором, промывали и блокировали с использованием BSA. 28-дневную плазму крови от мышей, обработанных с помощью AAV, серийно разбавляли для получения ряда уменьшающихся концентраций и инкубировали со связанным рецептором. После инкубации планшет промывали для удаления несвязавшихся hGAA и 4-МU-α-глюкопиранозида, добавленных на один час при 37°C. Реакцию останавливали с помощью 1,0 М глицина, рН 10,5, и считывали RFU с помощью флуориметра Spectramax; возб. при 370, излучение при 460. RFU для каждого образца преобразовывали в активность (нмоль/мл/ч) путем интерполяции стандартной кривой 4-МU. Нелинейную регрессию выполняли с помощью GraphPad Prism.

Гистологический анализ

[00235] Ткани фиксировали формалином И заливали парафином. Предметные стекла в случае мышц окрашивали с помощью PAS; предметные ЦНС окрашивали с помощью с люксола стекла в случае синего/реактива Шиффа (PAS). Сертифицированный ветеринарный патологоанатом (ЈН) анализировал гистологические препараты в заслепленном режиме. Полуколичественную оценку общего процента клеток с накоплением гликогена и цитоплазматической вакуолизацией проводили на подвергнутых сканированию предметных стеклах. Значение показателя от 0 до 4 присваивали, как описано в таблице ниже.

Таблица 9. Гистологическое оценивание

	Накопление/вакуолизация	
0	0	
1	от 1 до 9%	
2	от 10 до 49%	
3	от 50 до 74%	
4	от 75 до 100%	

Иммуногистохимический анализ (ІНС)

Авторы настоящего изобретения изучили экспрессию трансгена и клеточную локализацию на предметных стеклах, подвергнутых иммунному окрашиванию с использованием антитела к человеческой GAA (Sigma HPA029126).

[00236] <u>ПРИМЕР 9. Гистологический анализ, обработка тканей, протоколы и результаты для животной модели болезни Помпе</u>

[00237] Все ткани фиксировали в 10% NBF (нейтральный забуференный формалин). Анализы (PAS-окрашивание и IHC) регулярно используются в данной области.

[00238] РАЅ-окрашивание четырехглавой мышцы и трехглавой мышц (фиг. 29 и фиг. 32) - ткани фиксировали в 10% NВF и заливали парафином. Срезы подвергали дополнительной фиксации в 1% йодной кислоте и окрашивали реактивом Шиффа. После этого срезы докрашивали гематоксилином. Гликоген был представлен как агрегаты пурпурного цвета (связанный с лизосомами) или диффузное розовое окрашивание (цитозольный); ядра характеризовались синим окрашиванием. Основываясь на изображениях и предполагая, что каждое из них является репрезентативным для группы, порядок ранжирования с точки зрения клиренса гликогена является следующим: сконструированная hGAA > природная hGAA. Конструкция сконструированной hGAA обеспечивала большее окрашивание по всему изображению по сравнению с остальными,

демонстрируя улучшенный эндоцитоз белка GAA, опосредованный связыванием vIGF2 с CI-MPR.

[00239] РАЅ-окрашивание спинного мозга (фиг. 26) - ткани фиксировали в 10% NВF. Дополнительную фиксацию в 1% йодной кислоте можно проводить до или после заливки парафином. Срезы окрашивали реактивом Шиффа и аналогично докрашивали метиленовым синим. Гликоген был представлен как агрегаты пурпурного цвета (связанный с лизосомами); нервные волокна характеризовались синим окрашиванием. Изображения фокусировались на вентральных рогах спинного мозга и накоплении гликогена в двигательных нейронах. Сконструированная hGAA оказалась наиболее эффективной в отношении снижения уровня гликогена среди всех конструкций.

[00240] IHC GAA (фиг. 22, фиг. 25, фиг. 27, фиг. 30 и фиг. 35) - ткани фиксировали в 10% NBF и заливали парафином. Срезы инкубировали с первичным антителом к GAA, а затем со вторичным антителом, которое распознает первичное антитело и несет ферментную метку — HRP. Затем проводили ферментативную реакцию, и образовывался осадок коричневого цвета. Затем срезы докрашивали гематоксилином. Конструкции продемонстрировали обеспечение поглощения GAA мышечными волокнами (фиг. 31). Сконструированная hGAA > природная hGAA. Конструкция BiPvIGF2 характеризовалась более диффузным окрашиванием ПО всему изображению по сравнению с остальными.

[00241] По сравнению с другими векторами сконструированная hGAA обеспечивала получение большего количества сигналов при IHC GAA, характеризуясь точечным внешним видом внутри мышечных волокон, при этом демонстрируя гораздо более эффективное нацеливание на лизосомы (фиг. 22).

[00242] В целом, сконструированная hGAA постоянно демонстрировала превосходство в отношении поглощения тканями, нацеливания на лизосомы и снижения уровня гликогена в различных тканях среди конструкций.

ПРИМЕР 10. Связывание слитых белков с CIMPR

[00243] В этом примере терапевтические ферменты конструировали таким образом, чтобы они нацеливались на CI-MPR. Данные в этом примере показывают, что слитые белки лучше связываются с CIMPR, когда они содержат метку в виде vIGF2. Это было показано даже для ферментов, которые, как известно, хорошо фосфорилируются, как например PPT1.

[00244] Каждый трансген встраивали в плазмиду pIREShyg3 и с помощью ДНК трансфицировали клетки НЕК 293К в суспензии с использованием реагента для трансфекции РЕІ. Клетки выращивали в экспрессионной среде FreeStyle 293. Осуществляли сбор кондиционированных сред для клеток через три-четыре дня после трансфекции. Количество секретируемого фермента в кондиционированных средах определяли с помощью анализа активности или анализа сигнатурных пептидов. Эти концентрации использовали для проведения анализов связывания СІМРR.

[00245] В ходе анализа связывания планшет сначала покрывали СІ-МРК. Затем в планшете инкубировали образец, содержащий представляющий интерес фермент. Планшет промывали таким образом, чтобы на планшете оставались только вещества, связанные с СІ-МРК. Количество представляющего интерес фермента, связанного с планшетом, определяли с помощью ферментативного анализа или масс-спектрометрии. Анализ связывания проводили в диапазоне концентраций представляющего интерес фермента, чтобы получить кривую связывания.

[00246] Количество меченого и немеченого фермента, связанного с планшетом, определяли для построения кривых связывания. В случае AGA и ТРР1 для этого определения проводили анализ активности ферментов. В других случаях для определения количества связанного фермента проводили анализ сигнатурных пептидов.

[00247] Анализ активности TPP1 описан на сайте www.rndsystems.com/products/recombinant-human-tripeptidyl-peptidase-i-tpp1-protein-cf 2237-se#product-details.

[00248] Анализ активности AGA описан в YaV, et al. Applications of a new fluorometric enzyme assay for the diagnosis of aspartylglucosaminuria. *J Inherit Metab Disease* 1993 и Banning, et al. Identification of Small Molecule Compounds for Pharmacological Chaperone Therapy of Aspartylglucosaminuria. *Sci Rep* 2016.

[00249] На фиг. 34 показано повышенное связывание сконструированной PPT1 по сравнению с PPT1 дикого типа. На фиг. 35 показано повышенное связывание сконструированной TPP1 по сравнению с TPP1 дикого типа. На фиг. 36 показано повышенное связывание сконструированной AGA по сравнению с AGA дикого типа. На фиг. 37 показано повышенное связывание сконструированной GLA по сравнению с GLA дикого типа.

ПРИМЕР 11. Встраивание слитых белков на основе РРТ1

[00250] Все конструкции РРТ1 собирали в вектор экспрессии pcDNA3.1 с использованием набора для встраивания In-Fusion от Takara Bio.

[00251] Линеаризованный вектор pcDNA3.1 и каждый из фрагментов гена PPT1 рекомбинировали с помощью реакции InFusion с получением окончательного вектора pcDNA3.1, содержащего указанные конструкции PPT1.

ПРИМЕР 12. Встраивание мутантных вариантов vIGF2

[00252] Все мутантные варианты vIGF2 заменяли вектором экспрессии pcDNA3.1-BiP-vIGF2-2GS-GAA с использованием набора для встраивания In-Fusion от Takara.

[00253] Рекомбинация упорядоченного фрагмента vIGF2 и линеаризованного вектора pcDNA3.1-GAA с помощью реакции InFusion обеспечивала окончательный кольцевой вектор экспрессии pcDNA3.1-BiP-vIGF2*-2GS-GAA.

ПРИМЕР 13. Определение характеристик конструкций vIGF2-GAA

[00254] Временная трансфекция клеток HEK293T плазмидами pcDNA3.1vIGF2-GAA

[00255] Клетки НЕК293Т временно трансфицировали посредством 1 мкг ДНК с использованием реагента для трансфекции Fugene HD. Культуры инкубировали в течение дополнительных 2-5 дней при 37°С с добавлением 5% СО₂ перед сбором кондиционированных сред и клеточного осадка.

[00256] Анализ vIGF2-GAA в кондиционированных средах методом вестерн-блоттинга

[00257] Процедуры вестерн-блоттинга проводили общепринятым стандартным способом с использованием системы обнаружения Licor Odyssey. Первичное антитело, используемое для обнаружения vIGF2-GAA, представляло собой кроличье антитело к GAA, полученное в собственной лаборатории (FL059). Вторичные антитела, используемые для GAA, представляли собой козьи антитела к иммуноглобулину кролика DyLight 800 (ThermoFisher, № по кат. SA5-35571).

[00258] Анализ активности GAA

[00259] Активность GAA измеряли, как описано выше.

[00260] Анализ связывания CI-MPR

[00261] Связывание CI-MPR измеряли, как описано выше.

[00262] Анализ поглощения клетками

[00263] Результаты в отношении более 30 созданных конструкций IGF2-GAA являются следующими.

[00264] Конструкции vIGF2-GAA, которые продемонстрировали уровень секреции/экспрессии, составляющий не менее 80% от исходного для vIGF2, представляют собой vIGF2-4, 5, 10, 11, 14, 16, 17, 31 и 32 (фиг. 38 и фиг. 39).

[00265] Конструкции vIGF2-GAA, которые продемонстрировали уровень секреции/экспрессии, составляющий не менее 50% от исходного для vIGF2, представляют собой vIGF2-4, 5, 6, 9-14, 16-23, 25, 27 и 29-34 (фиг. 38 и фиг. 39).

[00266] Все конструкции vIGF2-GAA, по-видимому, подвергались правильному процессингу внутри клеток, в которых наблюдали наличие фрагмента зрелого пептида GAA массой 70/76 кДа (фиг. 38).

[00267] vIGF2-17 стабильно обеспечивал значение Втах связывания СІ-MPR, значительно более высокое, чем у исходного vIGF2 (фиг. 40, фиг. 41, фиг. 44 и фиг. 45).

[00268] vIGF2-24 значительно лучше связывает CI-MPR, чем исходный vIGF2 (фиг. 42 и фиг. 43).

Конструкции vIGF2-GAA, обладающие сравнимыми или лучшими свойствами поглощения клетками PM25 по сравнению с исходным vIGF2, включают vIGF2-7, vIGF2-10, vIGF-17, vIGF2-18, vIGF2-20, vIGF2-22 и vIGF2-23 (фиг. 46 и фиг. 47).

ПРИМЕР 14. Тестирование конструкций РРТ1

[00269] Пептиды vIGF2 конструировали, как обсуждалось в других частях данного документа. Варианты выбирали на основе повышенного селективного связывания с CI-MPR и улучшенной экспрессии белка. Иллюстративные пептиды и их структура представлены на фиг. 48.

[00270] Временная трансфекция клеток HEK293T плазмидами pcDNA3.1-PPT1 [00271] HEK293T, Клетки которые выращивали до достижения приблизительно 80% конфлюэнтности в 1 мл среды ОртіМЕМ с добавлением 5% FBS в 12-луночной культуре, временно трансфицировали с помощью 1 мкг ДНК трансфекции использованием реагента для Fugene HD. инкубировали в течение дополнительных 2-5 дней при 37°C с добавлением 5% СО₂ перед сбором кондиционированных сред и клеточного осадка.

[00272] Анализ РРТ1 в кондиционированных средах методом вестернблоттинга

[00273] Процедуры вестерн-блоттинга проводили общепринятым стандартным способом с использованием системы обнаружения Licor Odyssey. Первичное антитело, используемое для обнаружения РРТ1, представляло собой мышиное поликлональное антитело от Abcam (№ по кат. ab89022). Вторичные антитела, используемые для РРТ1, представляли собой козьи антитела к иммуноглобулину мыши DyLight 800 (ThermoFisher, № по кат. SA5-35521).

[00274] Вестерн-блоттинг для экспрессии PPT1 и график, показывающий интенсивность полос, показаны на фиг. 49. График, показывающий PPT1 в кондиционированных средах, количественно определенную посредством вестерн-блоттинга, показан на фиг. 50.

[00275] Анализ активности *PPT1*

[00276] Используемый анализ активности РРТ1 по сути был описан в Van Diggelen et al. (Mol Genet Metab. 66:240-244, 1999). Вкратце, в ходе типичного анализа активности РРТ1 10 мкл кондиционированных сред, содержащих секретируемый РРТ1, смешивали с 90 мкл реакционного буфера, содержащего 75 мкм MU-6S-Palm-βGlc (4-метилумбеллиферил-6-тиопальмитат-β-D-глюкопиранозид, Cayman Chemical; CAS 229644-17-1), 2 ед/мл β-глюкозидазы (Sigma Chemicals; CAS 9001-22-3; G4511), 20 мМ цитрата, рН 4,0, 5 мМ DТТ, 0,02% Triton X-100 и 50 мМ NаCl в 96-луночном планшете с черным прозрачным дном (Corning, № по кат. 3631). Используя длину волны возбуждения 330 нм и

длину волны излучения 450 нм, флуоресценцию отслеживали с 30-секундными интервалами в течение периода длительностью 1 ч при 25°C с использованием SpectraMax M2. Скорость реакции PPT1 устанавливали путем аппроксимирования данных относительно флуоресценции с течением времени с использованием линейной регрессии.

[00277] График, показывающий РРТ1 в кондиционированных средах, количественно определенную по активности, показан на фиг. 51. Обнаружили, что активность сильно коррелирует с результатами вестерн-блоттинга. На фиг. 52 показана корреляция между активностью и результатами количественного определения посредством вестерн-блоттинга.

[00278] Анализ стабильности *PPT1*

[00279] Вкратце, в ходе типичного анализа стабильности 180 мкл кондиционированных сред, содержащих РРТ1, разбавляли с помощью 20 мкл 10X PBS, рН 7,4, и инкубировали при 37°С. В разные моменты времени отбирали аликвоту объемом 15 мкл и мгновенно замораживали в этаноле, охлажденном сухим льдом. В конце эксперимента по оценке динамики замороженные образцы оттаивали и измеряли активность РРТ1 с использованием анализа активности РРТ1.

[00280] Анализ связывания CI-MPR

[00281] Анализ связывания с CI-MPR на планшетах выполняли, как описано ранее, затем определяли связанное количество с помощью анализа активности PPT1.

[00282] Связывание конструкций PPT1 с CI-MPR в присутствии M6P показано в таблице ниже. Кривые связывания показаны на фиг. 53.

[00283] Таблица 10. Связывание конструкций РРТ1 с CI-MPR в присутствии М6Р

	Bmax	Относительная Кd
PPT1-9		Н. о.
PPT1-27		Н. о.
PPT1-28		Н. о.
PPT1-29	8,98	0,107
PPT1-30	4,88	0,056
PPT1-32	6,05	0,121
PPT1-33	9,19	0,143
PPT1-2		Н. о.

[00284] Шесть конструкций РРТ1 отбирали для дальнейшего анализа. Эти шесть конструкций показаны на фиг. 54. Для этих шести конструкций определяли секрецию РРТ1 в среду (фиг. 55), процессинг РРТ1 в клетке (фиг. 56), результаты количественного определения РРТ1 посредством вестерн-блоттинга (фиг. 57) и активность (фиг. 58).

ПРИМЕР 15. Конструирование и тестирование дополнительных конструкций на основе PPT1, слитого с IGF2

[00285] Конструировали и встраивали дополнительные конструкции РРТ1, как показано на фиг. 62. Эти конструкции содержали либо эндогенную сигнальную последовательность, характеризующуюся мутацией C6S (SEQ ID NO:177), необязательно с удлинением из двух аланинов для улучшения расщепления (SEQ ID NO:178), либо модифицированный сигнальный пептид ВіР, ВіР-2 (SEQ ID NO: 171), последовательность РРТ1, содержащую аминокислотные остатки 21-306 или 28-306 человеческой РРТ1 дикого типа (SEQ ID NO: 4), линкер GS (SEQ ID NO:181-187) и вариант IGF2-31 или 32 (SEQ ID NO:120 или 121), разделенные сайтом лизосомального расщепления, RPRAVPTQA (SEQ ID NO: 188).

Все конструкции РРТ1 (фиг. 62) временно экспрессировались клетками FreeStyle 293 в суспензии. Вкратце, клетки FreeStyle 293 трансфицировали каждой конструкцией РРТ1 в составе остова pcDNA3.1, используя полиэтиленимин (РЕІ) в качестве реагента для трансфекции. После четырех дней экспрессии в

экспрессионной среде FreeStyle 293 кондиционированную среду в случае каждой процедуры трансфекции собирали и подвергали процедурам вестерн-блоттинга с использованием первичного антитела к РРТ1. Относительные уровни РРТ1 в среде количественно определяли по плотности полос, полученных входе этих процедур вестерн-блоттинга. Ha фиг. 63 показано, несколько протестированных конструкций характеризуются более высокими уровнями среду, чем PPT1 WT. Более высокие уровни кондиционированной среде отражают как хорошую экспрессию, так эффективную секрецию из клетки. Хотя vIGF2-31 (SEQ ID NO:120) и vIGF2-32 (SEQ ID NO:32) разрабатывали для улучшения связывания CIMPR, экспрессия и секреция РРТ1 неожиданно усиливались по сравнению с более ранним вариантом IGF2 (SEQ ID NO:80).

Эксперименты по поглощению нейронами с использованием очищенных белковых конструкций РРТ1-101 и РРТ1-104 показали успешное поглощение обоих белков, причем РРТ1-104 поглощался примерно в два раза большем количестве, чем РРТ1-101 (фиг. 64 А). Для этого эксперимента нейроны коры головного мозга крыс культивировали в среде NeuroCult и помещали на покровные стекла, покрытые поли-L-лизином. Нейроны обрабатывали с помощью 5 мкг/мл очищенных РРТ1-101 или РРТ1-104, которые были помечены флуоресцентным красителем Alexa Fluor 680. После инкубации в течение одного часа клетки фиксировали, пермеабилизировали и визуализировали с использованием конфокального микроскопа Leica SP8.

Эксперименты по поглощению нейронами с использованием кондиционированной среды проводили с использованием кондиционированной среды, полученной в результате процедур трансфекции клеток FreeStyle 293, как описано выше. Концентрацию белка каждой конструкции PPT1 в среде сначала определяли посредством вестерн-блоттинга с использованием стандартной кривой, полученной с использованием образца PPT1 известной концентрации. Каждый образец кондиционированных сред перед обработкой нейронов концентрировали. Нейроны коры головного мозга крыс культивировали в среде

для роста первичных нейронов и высевали на покровные стекла, покрытые поли-L-лизином. Нейроны обрабатывали следующими концентрациями белка PPT1 в средах:

WT	PPT1-101	PPT1-104	PPT1-112	PPT1-114	PPT1-117
5,6	6,8	12,8	14,8	15,4	17,8
мкг/мл	мкг/мл	мкг/мл	мкг/мл	мкг/мл	мкг/мл

После инкубации в течение одного часа клетки фиксировали, пермеабилизировали и визуализировали с использованием конфокального микроскопа Leica SP8. Поглощение при использовании всех вариантов PPT1 было выше, чем при использовании PPT1 WT; причем PPT1-104 и PPT1-117 показали самые высокие уровни поглощения (фиг. 64 В).

ПРИМЕР 16. Анализ конструкций NAGLU

Мутантные слитые белки, содержащие рекомбинантный белок [00286] человеческой NAGLU, характеризующийся наличием N-концевой метки в виде vIGF2, вставленной между сигнальным пептидом и белком конструировали, как показано на фиг. 65. Получали несколько вариантов, включая слитые белки, содержащие vIGF2 (SEQ ID NO:80), vIGF2-17 (SEQ ID NO:106), vIGF2-31 (SEQ ID NO:120) и vIGF2-32 (SEQ ID NO:121). Слитые белки экспрессировали в клетках HEK293F. Содержание NAGLU, определенное посредством вестерн-блоттинга с использованием ab214671 (R&Dsystems), показано во фракциях лизата и среды для каждого протестированного слитого белка. (фиг. 66-АВ) Ферментативную активность в кондиционированных средах для каждого слитого белка определяли с помощью анализа 4-МU. (фиг. 66 С) Значения количества белка в кондиционированных средах не подвергали нормализации/выравниванию, и данные относительно активности представляют относительную секрецию конструкций в кондиционированные среды, а не относительную удельную активность равных количеств белков. Как видно на фиг. 66, присутствие варианта IGF2 приводило к снижению экспрессии и секреции по сравнению с немеченым NAGLU. Однако связывание CIMPR IGF2-меченным NAGLU значительно улучшалось по сравнению с немеченым NAGLU. (фиг. 67) Примечательно, что в качестве вносимого количества для анализа связывания использовали примерно в 2,5 раза меньшее количество IGF2-меченного NAGLU по сравнению с WT, но, тем не менее, большее количество меченых белков связывалось с иммобилизованным рецептором по сравнению с WT.

ПРИМЕР 17. Анализ конструкций ТРР1

[00287] Ряд конструкций нуклеиновых кислот для экспрессии слитых белков ТРР1, связанных с вариантами IGF2, разрабатывали и исследовали на предмет экспрессии, секреции и связывания CIMPR. Слитые белки содержат сигнальный пептид (SEQ ID NO:179, вариант последовательности IGF2 (SEQ ID NO:80, 106, 111, 133, 119-121), линкер GS (GGGGSGGGGS, SEQ ID NO:186), сайт лизосомального расшепления (RPRAVPTQA, SEQ ID NO:188), пропептид TPP1 (SEQ ID NO:45) и зрелый пептид TPP1 (SEQ ID NO:46). Получали и тестировали конструкции, меченные посредством vIGF2 как на N-конце, так и на С-конце. Примеры слитых белков на основе PPT1, которые разрабатывали и тестировали, показаны в таблице 11.

[00288] Таблица 11. Слитые конструкции ТРР1

Конструкция РРТ1	SEQ ID
pSvelte001 - нативный сигнальный пептид ТРР1	47
– vIGF2 – линкер GS – участок лизосомального	
расщепления – пропептид ТРР1 – зрелый	
пептид ТРР1	
pSvelte057 - нативный сигнальный пептид TPP1	48
– vIGF2v17 – линкер GS – участок	
лизосомального расщепления – пропептид	

ТРР1 – зрелый пептид ТРР1	
тет – зрелый пентид тет	
pSvelte059 - нативный сигнальный пептид ТРР1	49
– vIGF2v22 – линкер GS – участок	
— VIOI 2V22 — Линкер OS — участок	
лизосомального расщепления – пропептид	
TPP1 – зрелый пептид TPP1	
a Constant of the Constant of	50
pSvelte060 - нативный сигнальный пептид ТРР1	30
– vIGF2v24 – линкер GS – участок	
лизосомального расщепления – пропептид	
TPP1 – зрелый пептид TPP1	
pSvelte061 - нативный сигнальный пептид ТРР1	51
– vIGF2v30 – линкер GS – участок	
лизосомального расщепления – пропептид	
TPP1 – зрелый пептид TPP1	
-	
pSvelte062 - нативный сигнальный пептид TPP1	52
– vIGF2v31 – линкер GS – участок	
лизосомального расщепления – пропептид	
TPP1 – зрелый пептид TPP1	
pSvelte063 - нативный сигнальный пептид ТРР1	53
– vIGF2v32 – линкер GS – участок	
лизосомального расщепления – пропептид	
TPP1 – зрелый пептид TPP1	

Экспрессия и секреция

[00289] Для каждой конструкции клетки Freestyle 293 (3,7 миллиона клеток в 1,5 мл среды Freestyle 293) трансфицировали с помощью 9 мкл 1 мг/мл РЕІ и 3 мкг ДНК и выращивали в 24-луночных планшетах с глубокими лунками в условиях, предусматривающих встряхивание (при 37 градусах С, 5% СО2, относительной влажности 80%, 250 об./мин). Примерно через 24 часа после трансфекции к трансфекционной среде добавляли вальпроевую кислоту (конечная концентрация 2,2 мМ) и дополнительные 1,5 мл среды Freestyle.

Культуры собирали через 3 дня после трансфекции и центрифугировали для разделения клеток и кондиционированных сред. Белок в кондиционированных средах разделяли на геле SDS-PAGE и переносили на нитроцеллюлозную мембрану. Мембрану блокировали посредством 5% молока и зондировали посредством антител к TPP1 (аbcam EPR16537) и антител к иммуноглобулину кролика 800СW от Licor (926-32213). Осуществляли визуализацию результатов блоттинга, и в отношении полос проводили количественное определение с помощью Licor Odyssey CLX, как показано на фиг. 68.

Связывание СІМРК

[00290] Связывание СІМРК измеряли по сути так, как описано в примере 10. Результаты показаны на фиг. 69. rhTPP1 (R&D system, № 2237-SE-010, экспрессированная в мышиных миеломных клетках NS0) и TPP1 WT (SEQ ID NO:8) включали в качестве контролей. Как показано на фиг. 69, все новые конструкции TPP1 показали улучшенное связывание по сравнению с rhTPP1.

ПРИМЕР 18. Тестирование новых вариантов РРТ1 в мышиной модели CLN1

[00291] Конструкции PPT1-101 (SEQ ID NO:60) и PPT1-104 (SEQ ID NO:61) тестировали в мышиной модели CLN1^{R151X}. (Miller, 2014, Human Molecular Genetics, 24(1)185–196). Получали конструкции для генной терапии, содержащие кодирующие последовательности PPT1-101 (SEQ ID NO:228) и PPT1-104 (SEQ ID NO:235). Мышам в постнатальный день 1 (P1) интрацеребровентрикулярно вводили вирусные конструкции (или контроль в виде PBS) в дозах 5х1010, 1х1010 или 1х109 вирусных геномов/животное. PPT1 дикого типа (р546) включали в качестве контроля. Трансгены вводили с использованием вектора на основе AAV9. Результаты оценивали в возрасте 2 месяцев.

Экспрессия трансгена

[00292] Экспрессию трансгена CLN1 человека обнаруживали с помощью RT-qPCR. Как видно на фиг. 70, экстракты головного мозга и спинного мозга

показали сходную экспрессию генов между различными конструкциями с более высокой экспрессией в коре головного мозга.

Уменьшение содержания автофлуоресцентного запасного вещества

[00293] На фиг. 71-72 показан эффект каждой конструкции в отношении накопления аутофлуоресцентного запасного вещества (ASM) в головном мозге, которое коррелирует с лизосомальной дисфункцией. При дозах 5×10^{10} и 1×10^{10} в коре головного мозга и при дозах 1×10^{10} и 1×10^{9} в таламусе конструкции 101 и 104 имеют тенденцию к большему снижению ASM по сравнению с конструкцией р546 WT.

Снижение уровня глиального фибриллярного кислого белка (GFAP)

[00294] На фиг. 73 показан эффект каждой конструкции в отношении глиального фибриллярного кислого белка (GFAP), который коррелирует с астроглиозом и нейровоспалением. При дозе 1х109 в коре головного мозга конструкция 104 имела тенденцию к большему снижению GFAP. При дозе 1х1010 в таламусе конструкция 101 имела тенденцию к большему снижению GFAP. GFAP-положительные клетки морфологически соответствовали фенотипу реактивных астроцитов.

[00295] Таким образом, новые конструкции для генной терапии PPT1 101 и 104 демонстрируют улучшенную перекрестную коррекцию по сравнению с PPT1 дикого типа в мышиной модели CLN1, что приводит к большему снижению уровня как ASM, так и GFAP в коре головного мозга и таламусе.

[00296] В то время, как в данном документе были показаны и описаны предпочтительные варианты осуществления настоящего изобретения, специалистам в данной области техники будет очевидно, что такие варианты осуществления представлены только в качестве примера. Многочисленные вариации, изменения и замены теперь будут очевидны специалистам в данной области техники без отступления от настоящего изобретения. Следует понимать, что можно использовать различные альтернативы описанным в данном

WO 2021/072372 PCT/US2020/055251 205

документе вариантам осуществления. Предполагается, что нижеследующая формула изобретения определяет объем настоящего изобретения и что способы и структуры в рамках данной формулы изобретения и их эквиваленты охвачены ею.

WO 2021/072372 PCT/US2020/055251

Опубликованная формула изобретения

- 1. Конструкция нуклеиновой кислоты, содержащая
- (а) последовательность нуклеиновой кислоты, кодирующую терапевтический белок, и
- (b) последовательность нуклеиновой кислоты, кодирующую вариант пептида IGF2 (vIGF2), который на по меньшей мере 95% идентичен по меньшей мере одной последовательности, выбранной из SEQ ID NO: 90-103.
- 2. Конструкция нуклеиновой кислоты по п. 1, где пептид vIGF2 характеризуется аминокислотной последовательностью, которая на по меньшей мере 98% идентична варианту пептида IGF2, выбранному из SEQ ID NO: 106, 109, 111, 119, 120, 121.
- 3. Конструкция нуклеиновой кислоты по п. 1, где пептид vIGF2 содержит аминокислотную последовательность, которая на по меньшей мере 98% идентична варианту пептида IGF2, выбранному из группы, состоящей из SEQ ID NO: 120 и SEQ ID NO:121.
- 4. Конструкция нуклеиновой кислоты по любому из пп. 1-3, дополнительно содержащая последовательность, кодирующую линкер, характеризующийся последовательностью, которая на по меньшей мере 98% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO: 181-188.
- 5. Конструкция нуклеиновой кислоты по любому из пп. 1-4, где пептид vIGF2 способен повышать экспрессию и/или секрецию терапевтического белка по сравнению с пептидом vIGF2, характеризующимся аминокислотной последовательностью под SEQ ID NO:80.
- 6. Конструкция нуклеиновой кислоты по любому из пп. 1-4, где пептид vIGF2 характеризуется повышенной аффинностью к CI-MPR по сравнению с пептидом vIGF2, характеризующимся аминокислотной последовательностью под SEQ ID NO:80.

- 7. Конструкция нуклеиновой кислоты по пп. 1-4, где пептид vIGF2 способен улучшать поглощение терапевтического белка клеткой.
- 8. Конструкция нуклеиновой кислоты по любому из пп. 1-7, где терапевтический белок способен замещать дефектный или дефицитный белок, ассоциированный с генетическим нарушением, у субъекта, у которого имеется генетическое нарушение.
- 9. Конструкция нуклеиновой кислоты по п. 8, где генетическое нарушение представляет собой лизосомную болезнь накопления.
- 10. Конструкция нуклеиновой кислоты по п. 8, где генетическое нарушение выбрано из группы, состоящей из аспартилглюкозаминурии, нейронального липофусциноза, болезни CLN1/PPT1, болезни CLN2/PPT1, цероидного цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа С, болезни Санфилиппо типа D, болезни Моркио типа A, болезни Моркио типа В, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа В, болезни Ниманна-Пика типа С1, болезни Ниманна-Пика типа С2, болезни Шиндлера типа І, болезни Шиндлера типа II, тяжелого комбинированного иммунодефицита, связанного аденозиндезаминазой (ADA-SCID), И нейронального цероидного липофусциноза.
- 11. Конструкция нуклеиновой кислоты по п. 8 или п. 9, где генетическое нарушение выбрано из группы, состоящей из болезни CLN1/PPT1, болезни CLN2/PPT1, болезни Помпе и болезни MPS IIIB.
- 12. Конструкция нуклеиновой кислоты по п. 11, где генетическое нарушение представляет собой болезнь CLN1/PPT1 или болезнь CLN2/PPT1.

- 13. нуклеиновой кислоты по любому из пп. 1-12, Конструкция терапевтический белок предусматривает человеческий фермент, выбранный из группы, состоящей из альфа-галактозидазы (А или В), β-галактозидазы, βгексозаминидазы (А или В), галактозилцерамидазы, арилсульфатазы (А или В), В-глюкоцереброзидазы, глюкоцереброзидазы, лизосомальной кислой липазы, лизосомального фермента, представляющего собой кислую сфингомиелиназу, формилглицин-генерирующего фермента, идуронидазы (например, альфа-L), ацетил-КоА:альфа-глюкозаминид-N-ацетилтрансферазы. гликозаминогликанальфа-L-идуроногидролазы, гепаран-N-сульфатазы, Ν-ацетил-α-Dглюкозаминидазы (NAGLU), идуронат-2-сульфатазы, галактозамин-6сульфатсульфатазы, N-ацетилгалактозамин-6-сульфатазы, Nсульфоглюкозаминсульфогидролазы, гликозаминогликан-Nацетилгалактозамин-4-сульфатазы, β-глюкуронидазы, гиалуронидазы, альфа-Nацетилнейраминидазы (сиалидазы), ганглиозидсиалидазы, фосфотрансферазы, альфа-глюкозидазы, альфа-D-маннозидазы, бета-D-маннозидазы, аспартилглюкозаминидазы, альфа-L-фукозидазы, баттенина, РРТ1, ТРР1 и других белков, связанных с болезнью Баттена (например, белок нейронального цероидного липофусциноза 6 типа), или его ферментативно активный фрагмент.
- 14. Конструкция нуклеиновой кислоты по п. 13, где терапевтический белок представляет собой альфа-глюкозидазу или ее ферментативно активный фрагмент.
- 15. Конструкция нуклеиновой кислоты по п. 13, где терапевтический белок представляет собой человеческую РРТ1.
- 16. Конструкция нуклеиновой кислоты по п. 13, где терапевтический белок представляет собой человеческую ТРР1.
- 17. Конструкция нуклеиновой кислоты по п. 13, где терапевтический белок представляет собой человеческую NAGLU.

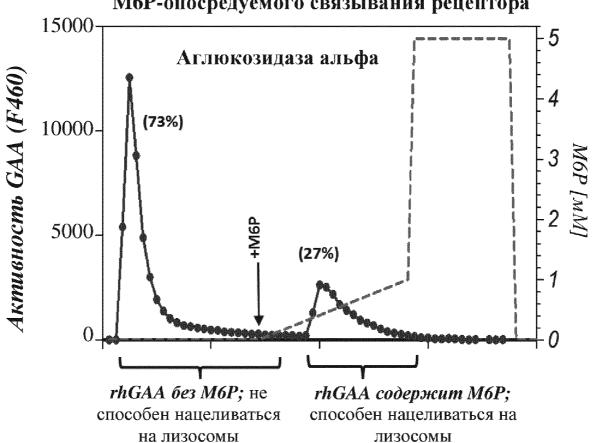
- 18. Конструкция нуклеиновой кислоты по п. 1, где конструкция нуклеиновой кислоты дополнительно содержит последовательность, кодирующую сигнальный пептид.
- 19. Конструкция нуклеиновой кислоты по п. 18, где сигнальный пептид представлен одной из последовательностей, выбранных из группы, состоящей из SEQ ID NO:169-180.
- 20. Конструкция нуклеиновой кислоты по любому из пп. 1-19, где последовательность нуклеиновой кислоты, кодирующая vIGF2, расположена со стороны 5'-конца относительно последовательности нуклеиновой кислоты, кодирующей терапевтический белок.
- 21. Конструкция нуклеиновой кислоты по любому из пп. 1-19, где последовательность нуклеиновой кислоты, кодирующая vIGF2, расположена со стороны 3'-конца относительно последовательности нуклеиновой кислоты, кодирующей терапевтический белок.
- 22. Вектор для генной терапии, содержащий конструкцию нуклеиновой кислоты по любому из пп. 1-21.
- 23. Вектор для генной терапии по п. 22, где вектор для генной терапии представляет собой вирусный вектор.
- 24. Вектор для генной терапии по п. 23, где вирусный вектор представляет собой вектор на основе аденовируса, вектор на основе аденоассоциированного вируса (AAV), вектор на основе ретровируса, вектор на основе лентивируса, вектор на основе вируса оспы, вектор на основе вируса коровьей оспы, вектор на основе аденовируса или вектор на основе вируса герпеса.
- 25. Конструкция нуклеиновой кислоты по любому из пп. 1-21, где конструкция нуклеиновой кислоты представляет собой плазмиду.
- 26. Фармацевтическая композиция, содержащая терапевтически эффективное количество конструкции нуклеиновой кислоты по любому из пп. 1-23 или

вектора для генной терапии по любому из пп. 22-24 и фармацевтически приемлемый носитель или вспомогательное вещество.

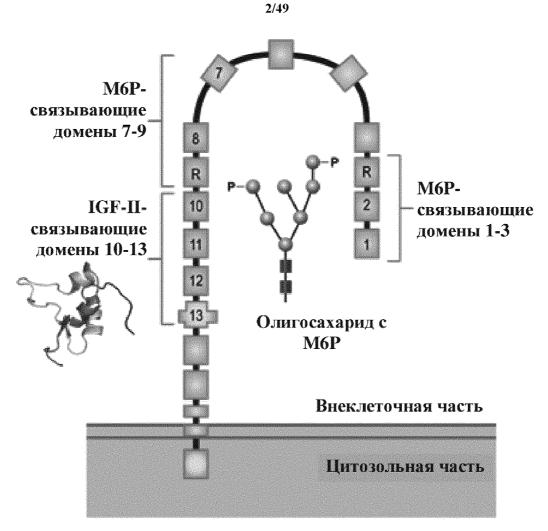
- 27. Фармацевтическая композиция по п. 25, где вспомогательное вещество предусматривает неионогенное низкоосмолярное соединение, буфер, полимер, соль или их комбинацию.
- 28. Способ лечения генетического нарушения, включающий введение нуждающемуся в этом субъекту конструкции нуклеиновой кислоты по любому из пп. 1-23 или фармацевтической композиции по п. 25 или п. 26.
- 29. Способ по п. 27, где генетическое нарушение представляет собой лизосомную болезнь накопления.
- 30. Способ по п. 27 или п. 28, где генетическое нарушение выбрано из группы, состоящей из аспартилглюкозаминурии, нейронального цероидного липофусциноза, болезни CLN1/PPT1, болезни CLN2/PPT1, цистиноза, болезни Фабри, болезни Гоше типа I, болезни Гоше типа II, болезни Гоше типа III, болезни Помпе, болезни Тея-Сакса, болезни Сандхоффа, метахроматической лейкодистрофии, муколипидоза типа I, муколипидоза типа II, муколипидоза типа II, муколипидоза типа III, муколипидоза типа IV, болезни Гурлера, болезни Хантера, болезни Санфилиппо типа А, болезни Санфилиппо типа В, болезни Санфилиппо типа В, болезни Моркио типа А, болезни Моркио типа В, болезни Марото-Лами, болезни Слая, болезни Ниманна-Пика типа А, болезни Ниманна-Пика типа С2, болезни Шиндлера типа I, болезни Шиндлера типа II, тяжелого комбинированного иммунодефицита, связанного с аденозиндезаминазой (ADA-SCID), и хронической гранулематозной болезни (CGD).
- 31. Способ по п. 29, где генетическое нарушение представляет собой болезнь CLN1/PPT1.
- 32. Способ по п. 29, где генетическое нарушение представляет собой болезнь CLN2/TPP1.

- 33. Способ по п. 29, где генетическое нарушение представляет собой болезнь Санфилиппо типа В.
- 34. Способ по любому из пп. 27-32, где введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно, интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.
- 35. Способ по п. 31, где введение нуклеиновой кислоты, вектора для генной терапии или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в головном мозге.
- 36. Способ по п. 31, где введение нуклеиновой кислоты, вектора для генной терапии или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в головном мозге.
- 37. Способ по п. 35, где введение нуклеиновой кислоты, вектора для генной терапии или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в коре головного мозга или таламусе.
- 38. Способ по п. 36, где введение нуклеиновой кислоты, вектора для генной терапии или фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в коре головного мозга или таламусе.
- 39. Способ по любому из пп. 31, 35-38, где нуклеиновая кислота кодирует слитый белок, характеризующийся последовательностью, которая на по меньшей мере 98% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:60-67.

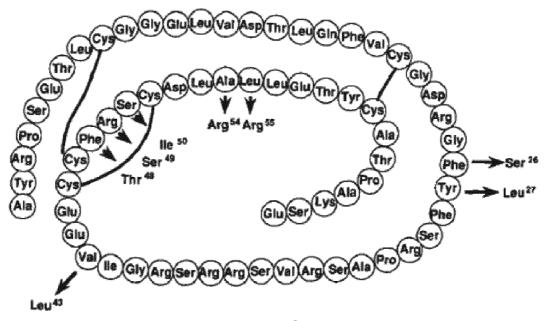
- 40. Способ по п. 32, где нуклеиновая кислота кодирует слитый белок, характеризующийся последовательностью, которая на по меньшей мере 98% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:47-53.
- 41. Нуклеиновая кислота по любому из пп. 1-13, где нуклеиновая кислота кодирует слитый белок, содержащий:
- а. аминокислотную последовательность, на по меньшей мере 98% идентичную последовательности, выбранной из группы, состоящей из SEQ ID NO:106, 109, 111, 119, 120 и 121; и
- b. аминокислотную последовательность, на по меньшей мере 95% идентичную последовательности, выбранной из группы, состоящей из SEQ ID NO:4, остатков 21-306 из SEQ ID NO:4, остатков 28-306 из SEQ ID NO:4, SEQ ID NO: 8, SEQ ID NO:54-59, остатков 24-743 из SEQ ID NO:54 и SEQ ID NO:46.
- 42. Нуклеиновая кислота по п. 41, содержащая последовательность, кодирующую слитый белок, содержащий аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO:120 и 121.
- 43. Нуклеиновая кислота по пп. 41-42, дополнительно содержащая последовательность, кодирующую пептид, подвергающийся лизосомальному расщеплению.
- 44. Нуклеиновая кислота по любому из пп. 43-45, где слитый белок характеризуется последовательностью, на по меньшей мере 95% идентичной последовательности, выбранной из группы, состоящей из SEQ ID NO:60-67 и SEQ ID NO:47-53.
- 45. Нуклеиновая кислота по п. 44, где слитый белок характеризуется последовательностью, на по меньшей мере 98% идентичной последовательности, выбранной из группы, состоящей из SEQ ID NO:60-67 и SEQ ID NO 47-53.

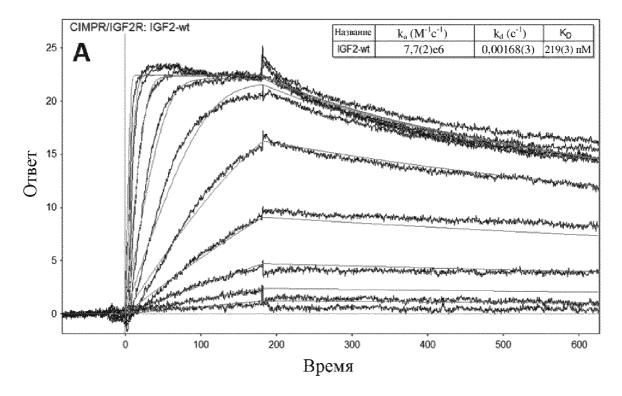

- 46. Фармацевтическая композиция, содержащая нуклеиновую кислоту по любому из пп. 41-44 и фармацевтически приемлемый носитель или вспомогательное вещество.
- 47. Вариант пептида IGF2 (vIGF2), который на по меньшей мере 98% идентичен по меньшей мере одной последовательности, выбранной из группы, состоящей из SEQ ID NO: 90-103.
- 48. Вариант пептида IGF2 (vIGF2) по п. 47, где vIGF2 на по меньшей мере 98% идентичен по меньшей мере одной последовательности, выбранной из SEQ ID NO:106, 109, 111, 119, 120, 121.
- 49. Слитый белок, содержащий вариант пептида vIGF2 по п. 47 или п. 48, дополнительно содержащий терапевтический белок, характеризующийся аминокислотной последовательностью, которая на по меньшей мере 95% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:4, аминокислотных остатков 21-306 из SEQ ID NO:4, аминокислотных остатков 28-306 из SEQ ID NO:4, SEQ ID NO:54 и аминокислотных остатков 24-743 из SEQ ID NO:54.
- 50. Слитый белок по п. 49, характеризующийся аминокислотной последовательностью, которая меньшей мере 95% на ПО идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:60-67. SEO ID NO:47-53 и SEO ID NO:54-59.
- 51. Слитый белок по любому из пп. 49-50, где слитый белок дополнительно содержит пептид, подвергающийся лизосомальному расщеплению.
- 52. Слитый белок по любому из пп. 49-51, где пептид vIGF2 расположен со стороны N-конца относительно терапевтического белка.
- 53. Слитый белок по любому из пп. 49-51, где пептид vIGF2 расположен со стороны С-конца относительно терапевтического белка.

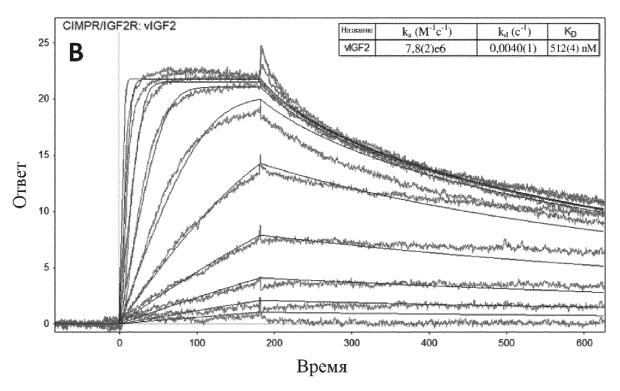
- 54. Слитый белок по любому из пп. 49-51, где слитый белок содержит сигнальную последовательность.
- 55. Слитый белок по п. 54, при этом сигнальная последовательность характеризуется аминокислотной последовательностью, которая на по меньшей мере 95% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:169-180.
- 56. Слитый белок по п. 56, где пептид vIGF2 на по меньшей мере 98% идентичен SEQ ID NO:120 или 121.
- 57. Слитый белок по п. 57, где терапевтический белок выбран из группы, состоящей из РРТ1 или ее ферментативно активного фрагмента, ТРР1 или ее ферментативно активного фрагмента и NAGLU или ее ферментативно активного фрагмента.
- 58. Слитый белок по п. 57, где слитый белок подвергается поглощению клетками-мишенями с большей эффективностью, чем соответствующий белок, который не содержит пептида vIGF2.
- 59. Фармацевтическая композиция, содержащая слитый белок по любому из пп. 49-58 и фармацевтически приемлемый носитель или вспомогательное вещество.
- 60. Способ лечения лизосомной болезни накопления, включающий введение фармацевтической композиции по п. 59 нуждающемуся в этом субъекту.
- 61. Способ по п. 60, где лизосомная болезнь накопления выбрана из группы, состоящей из болезни CLN1/PPT1, болезни CLN2/TPP1 и болезни Санфилиппо типа В.
- 62. Способ по любому из пп. 60-61, где введение осуществляют интратекально, интраокулярно, интравитреально, ретинально, внутривенно, внутримышечно, интравентрикулярно, интрацеребрально, интрацеребеллярно,


интрацеребровентрикулярно, интрапаренхимально, подкожно или посредством комбинации указанных путей.

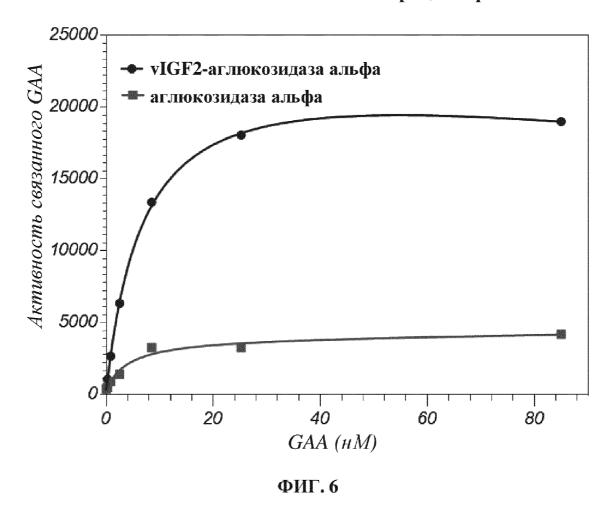
- 63. Способ по п. 61 или п. 62, где введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в головном мозге.
- 64. Способ по п. 61 или п. 62, где введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в головном мозге.
- 65. Способ по п. 63, где введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию накопления аутофлуоресцентного запасного вещества (ASM) в коре головного мозга или таламусе.
- 66. Способ по п. 64, где введение фармацевтической композиции обеспечивает предупреждение/уменьшение или реверсию повышения уровня глиального фибриллярного кислого белка (GFAP) в коре головного мозга или таламусе.
- 67. Нуклеиновая кислота, кодирующая слитый белок, содержащий vIGF2 и терапевтический белок, где нуклеиновая кислота на по меньшей мере 85% идентична последовательности, выбранной из группы, состоящей из SEQ ID NO:189-250.


Результаты хроматографии в отношении М6Р-опосредуемого связывания рецептора

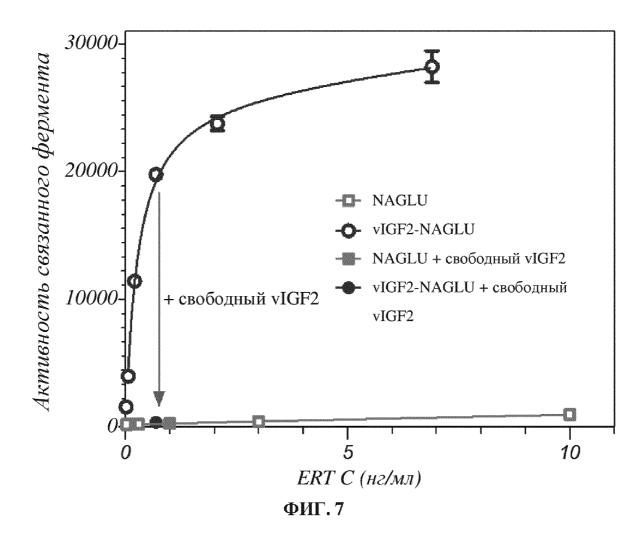

ФИГ. 1

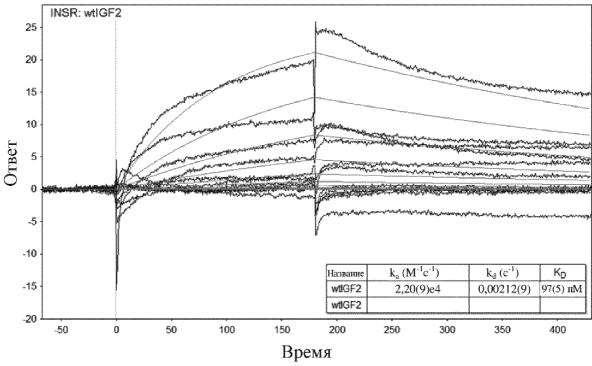

ФИГ. 2

ФИГ. 3

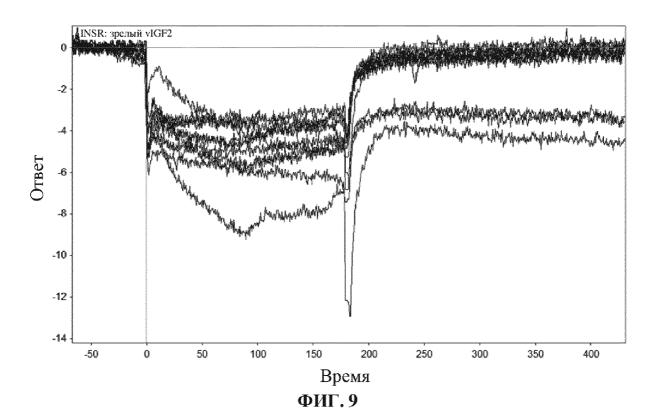


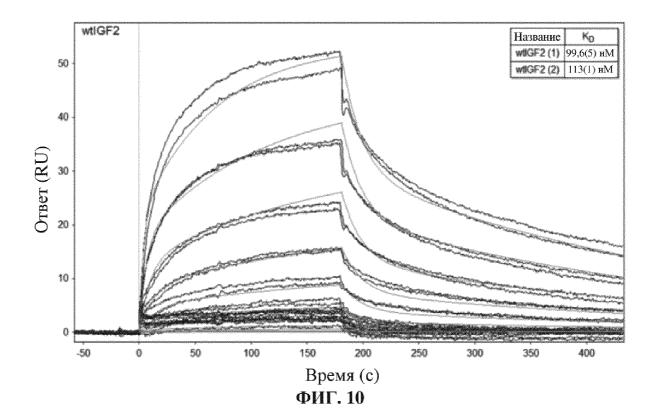
ФИГ. 4

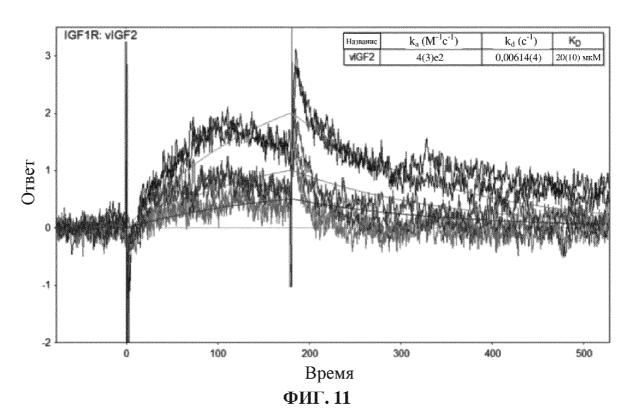


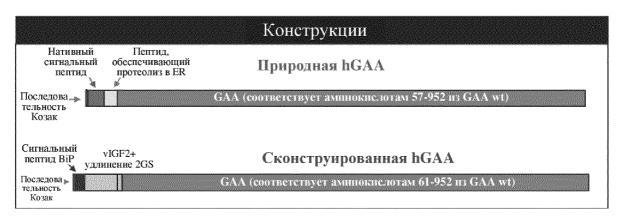

ФИГ. 5

Связывание IGF2/CI-MPR-рецептора

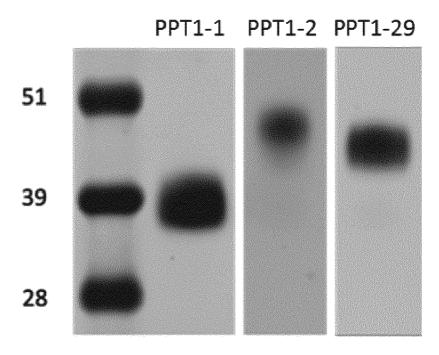


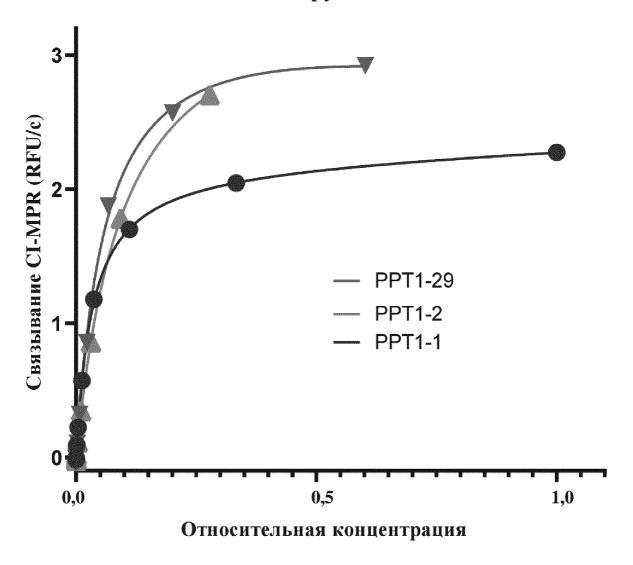

Связывание IGF2/CI-MPR-рецептора



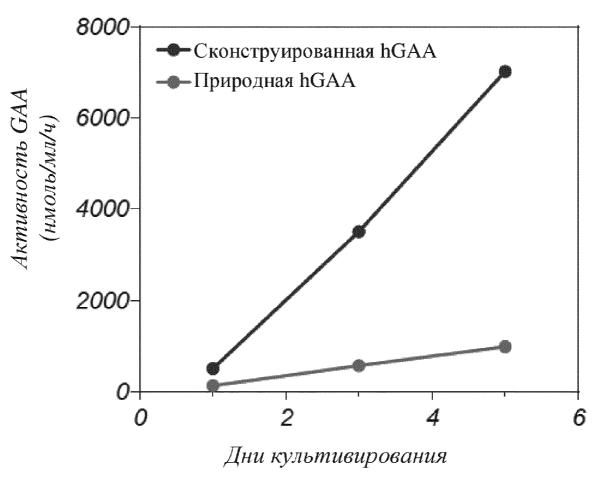


ФИГ. 8





ФИГ. 12

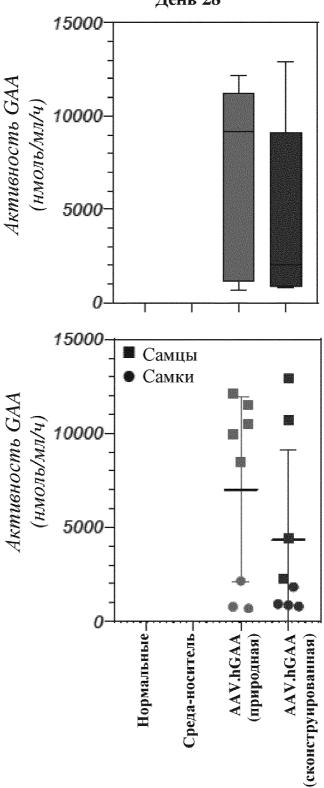

ФИГ. 13

Связывание конструкций PPT1 с CI-MPR

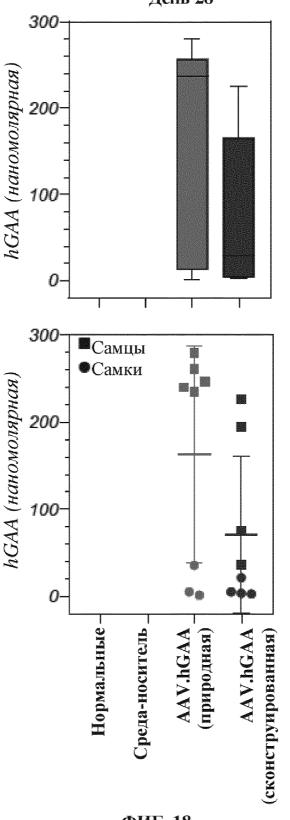


ФИГ. 14

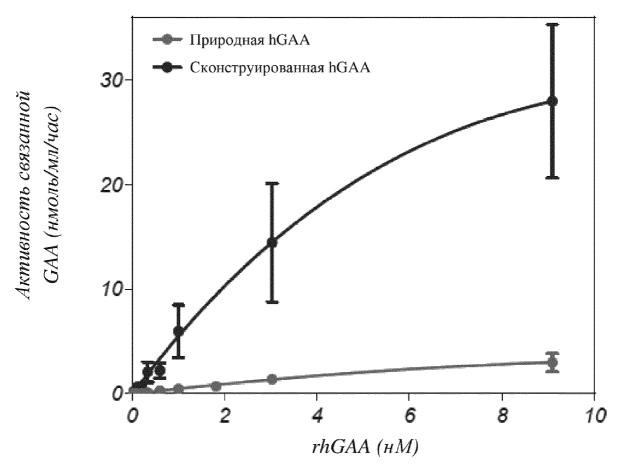
Активность GAA в среде



ФИГ. 15


ФИГ. 16

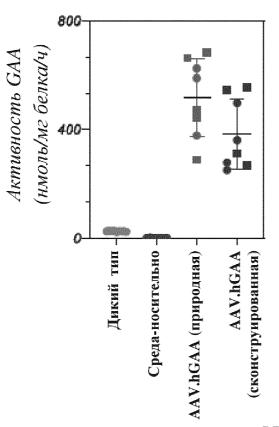
Активность GAA в плазме крови День 28

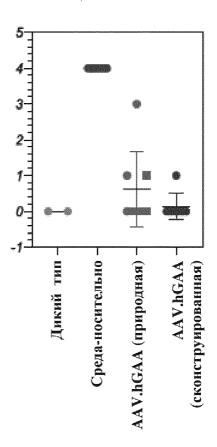

ФИГ. 17

Уровни сигнатурного пептида GAA День 28

ФИГ. 18

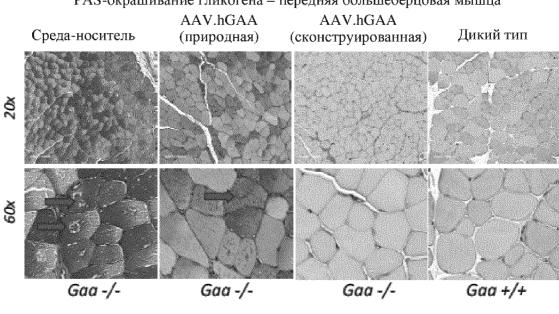
Связывание рецепторов клеточной поверхности



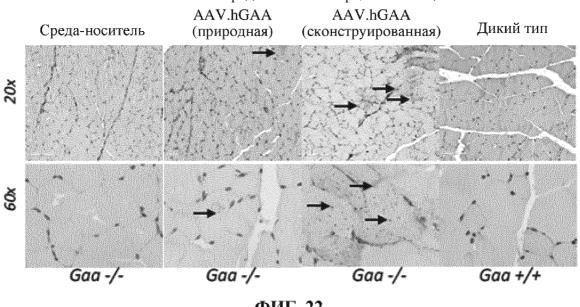

Образцы плазмы крови использовали для оценки взаимодействия с клеточными рецепторами

ФИГ. 19

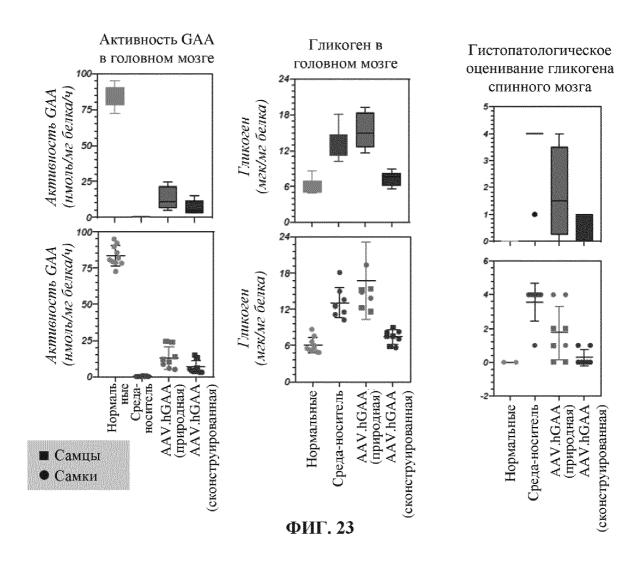
Активность GAA


Гистопатологическое оценивание

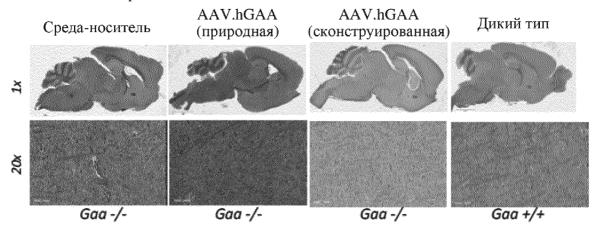



ФИГ. 20

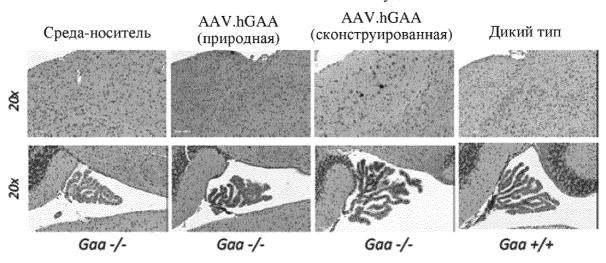
PAS-окрашивание гликогена – передняя большеберцовая мышца



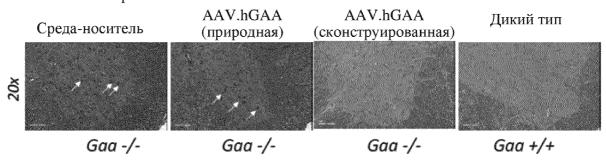
ФИГ. 21



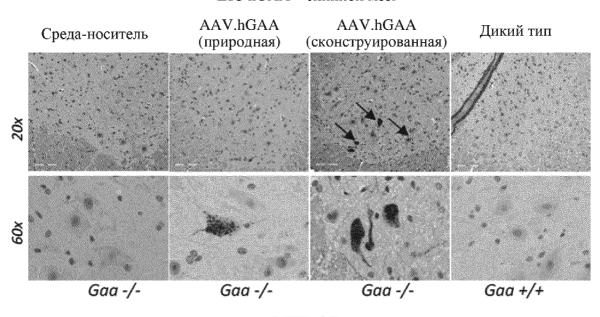
ФИГ. 22



Окрашивание гликогена люксолом/PAS – головной мозг

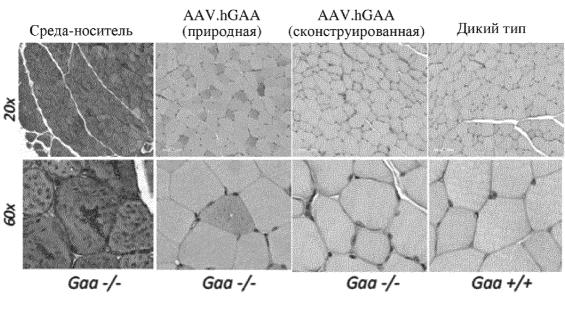

ФИГ. 24

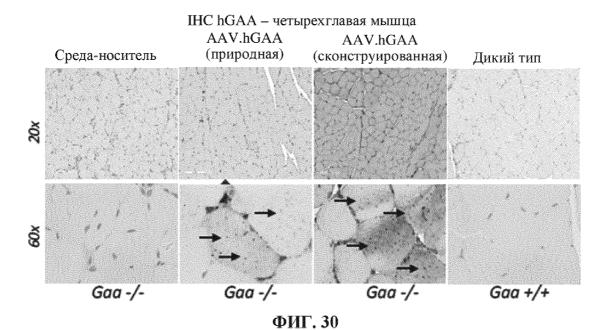
IHC hGAA – ствол головного мозга и сосудистое сплетение

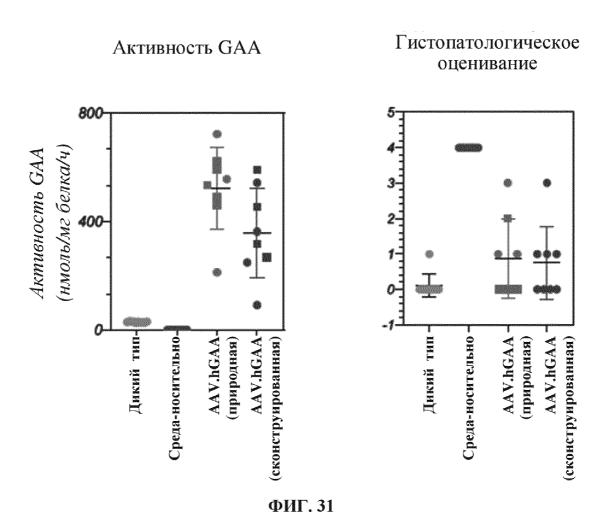

ФИГ. 25

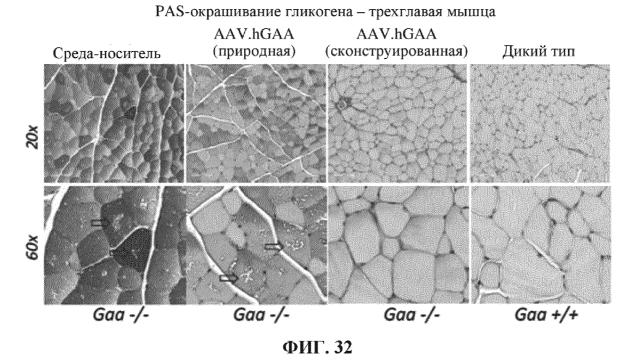
Окрашивание гликогена люксолом/PAS – спинной мозг

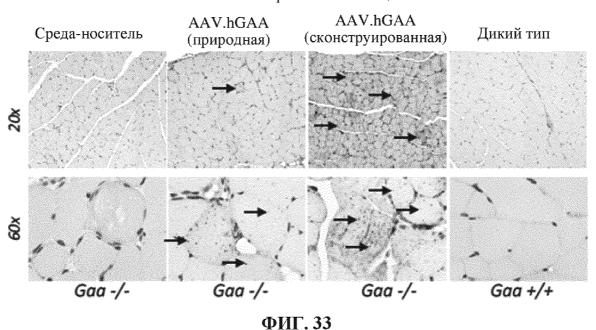
ФИГ. 26

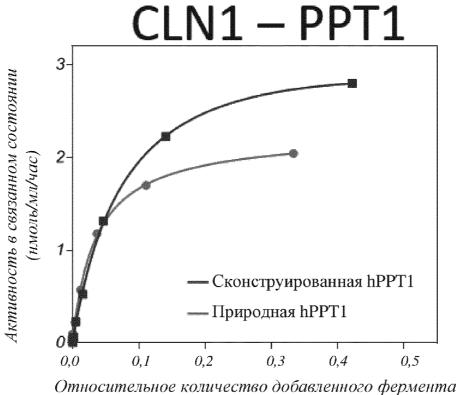

IHC hGAA – спинной мозг

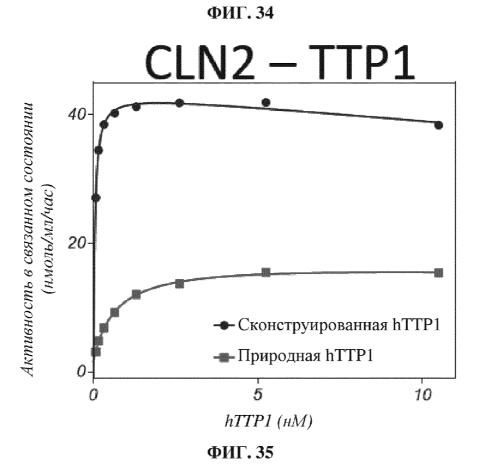

ФИГ. 27

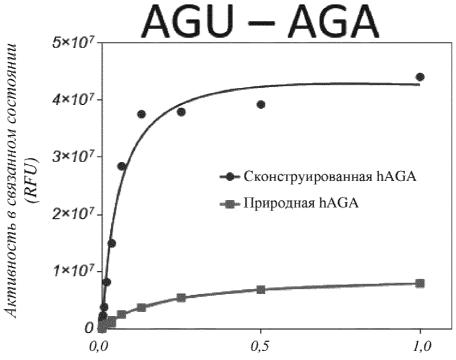


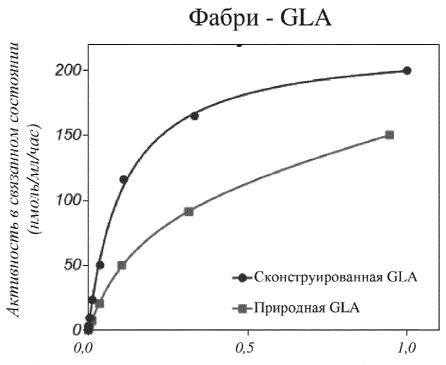

PAS-окрашивание гликогена - четырехглавая мышца


ФИГ. 29

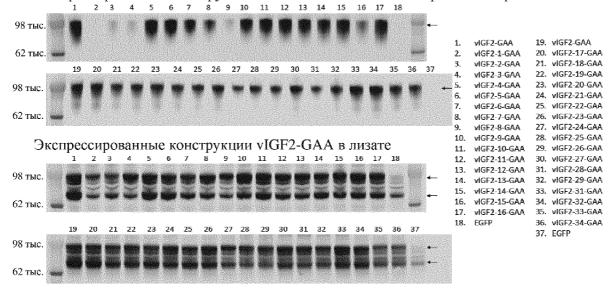


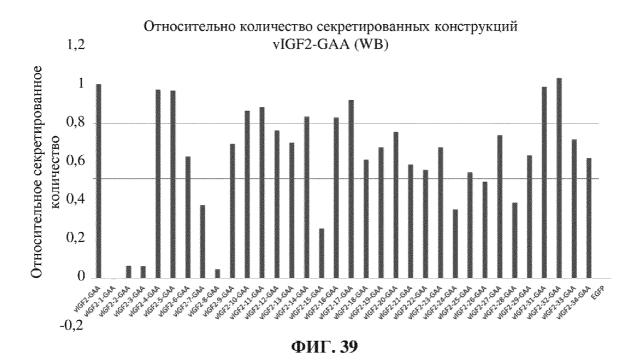


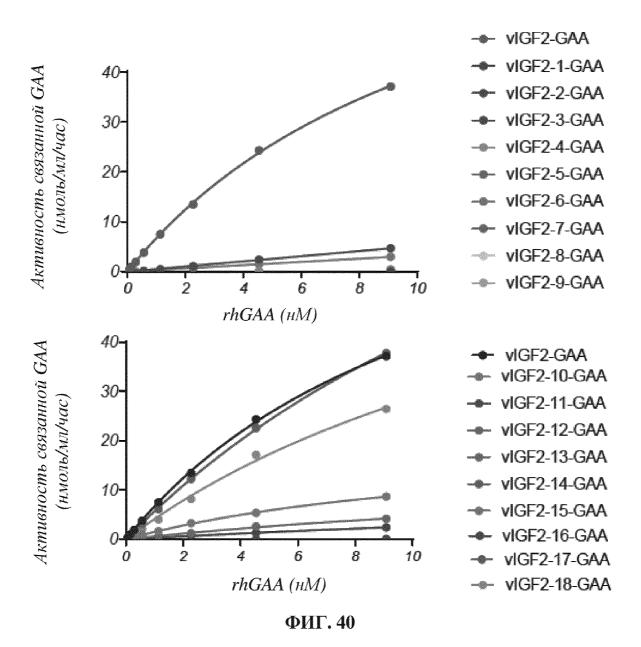

IHC hGAA – трехглавая мышца

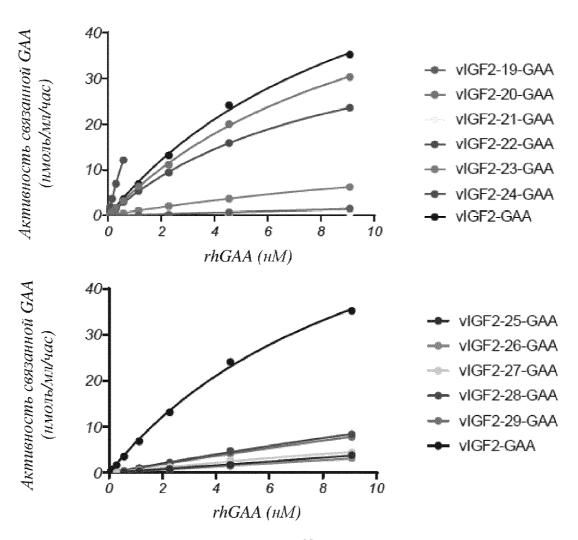

nestonoe nosia reentoo oo outavennoco quepment

Относительное количество добавленного фермента

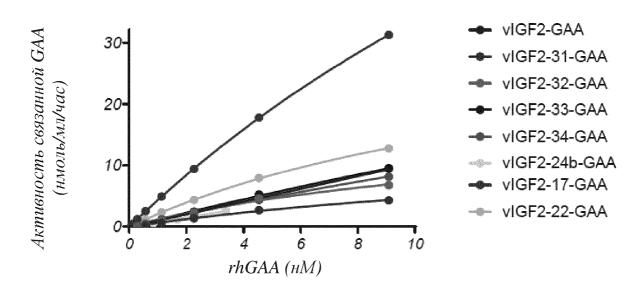

ФИГ. 36


Относительное количество добавленного фермента


ФИГ. 37


ФИГ. 38

Конструкция	Втах (нмоль/мл/ч)	Kd (HM)
vIGF2-GAA	85	12
vIGF2-1-GAA	-	-
vIGF2-2-GAA	-	
vIGF2-3-GAA	_	_
vIGF2-4-GAA	-	
vIGF2-5-GAA	-	•
vIGF2-6-GAA	_	
vIGF2-7-GAA	-	-
vIGF2-8-GAA	e e	
vIGF2-9-GAA	-	-
VIGF2-10-GAA	21	13
/IGF2-11-GAA	-	-
VIGF2-12-GAA	-	
VIGF2-13-GAA	16	25
VIGF2-14-GAA	_	-
vIGF2-15-GAA	-	-
VIGF2-16-GAA	14	45
/IGF2-17-GAA	124	21
vIGF2-18-GAA	82	19


ФИГ. 41

ФИГ. 42

Конструкция	Втах (нмоль/мл/ч)	Kd (нM)	
vIGF2-GAA	78	11	
vIGF2-19-GAA			
vIGF2-20-GAA		•	
vIGF2-21-GAA	67	11	4
vIGF2-22-GAA	46	8,7	4
vIGF2-23-GAA	20	19	
vIGF2-24-GAA	50	1,8	4
vIGF2-25-GAA	•		
vIGF2-26-GAA		•	
vIGF2-27-GAA	24	39	
vIGF2-28-GAA	66	62	
vIGF2-29-GAA	69	70	

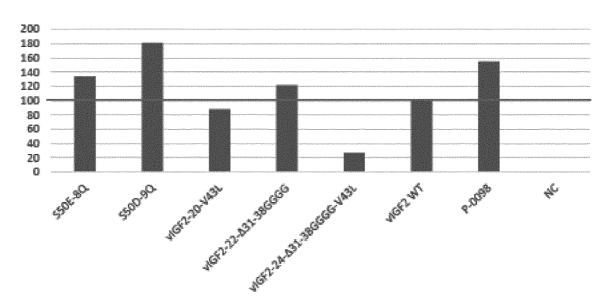
ФИГ. 43

ФИГ. 44

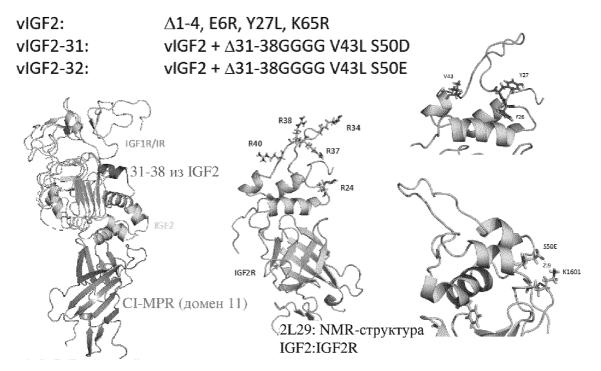
Конструкция	Втах (нмоль/мл/ч)	Kd (нM)	
vIGF2-GAA		-	
vIGF2-31-GAA	14	20	
vIGF2-32-GAA	18	15	
vIGF2-33-GAA	87	74	4
vIGF2-34-GAA	54	51	
vIGF2-17-GAA	132	29	4
vIGF2-22-GAA	35	16	4
vIGF2-24b-GAA	_		

ФИГ. 45

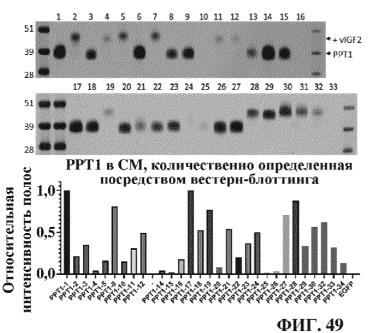
Поглощение vIGF2-GAA клетками (PM25)

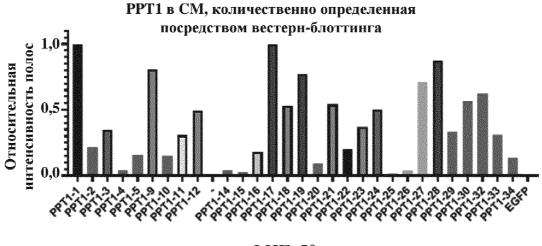


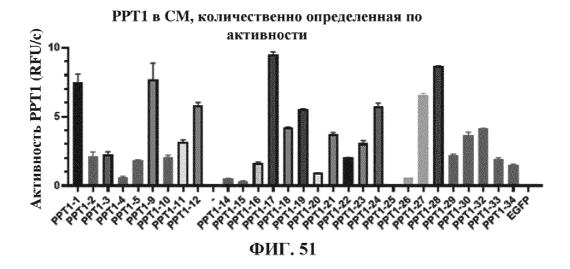
1. vIGF2-1 viGF2-2 viGF2-3 viGF2-4 vIGF2-5 6. vIGF2-6 7. vIGF2-7 (Δ30-39/V14D/F28R/V43D/F26A) vIGF2-8 9. viGF2-9 10. viGF2-10 (D23R) 11. vIGF2-11 12. viGF2-12 13. viGF2-13 14. vIGF2-14 15. vIGF2-15 16. vIGF2-17 (8Q; SS0E) 17. viGF2-18 (9Q; S500) 18. viGF2-19 19. vIGF2-20 (V43L) 20. vIGF2-21 21. vIGF2-22 (∆31-38GGGG) 22. vIGF2-23 (A30-40GGGG) 23. vIGF2-24 24. viGF2-25 25. viGF2-26 26. viGF2-27 27. vIGF2-28 28. vIGF2-29 29. viGF2-WT

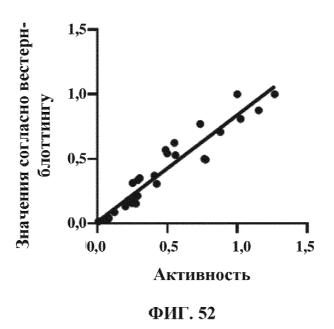

30. EGFP

ФИГ. 46

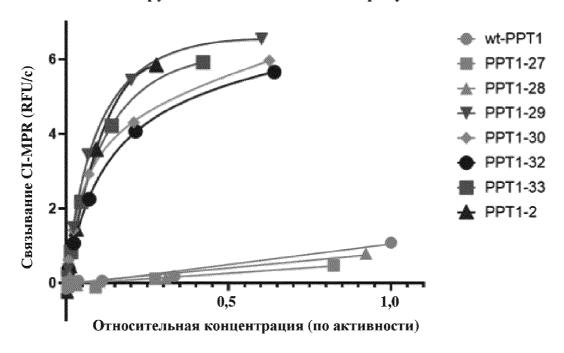

Анализ поглощения vIGF2-GAA


ФИГ. 47

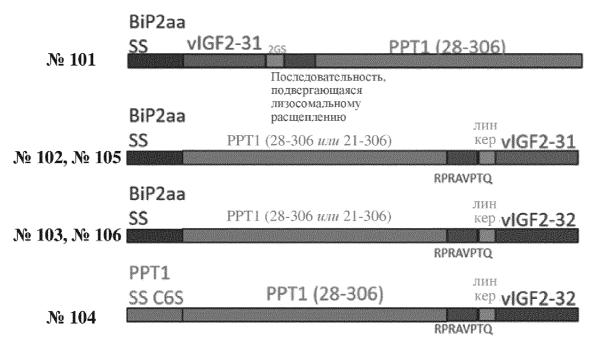

ФИГ. 48



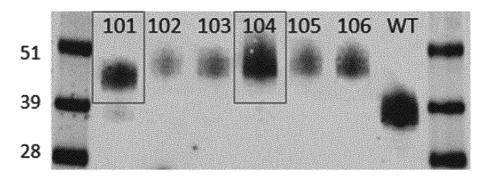
До рож ка	Навание конструкции	Сигнальный пентил	N-IGF2	PPT1	IGF2-C
1	PPT1-1	WT	-	PPT1 (28-306)	-
2	PPT1-2	WT	viGF2	PPT1 (28-306)	-
3	PPT1×3	8/P		PPT1 (28-306)	
A	PPT1-4	BIP	viGF2	PPT1 (28-306)	-
ş	PPT1-5	WT	*	PPT1 (28-306)	vlGF2
6	PPT1-9	WT	-	PPT1 (28-306)	-
7	PPT1-10	WT	2	PPT1 (28-306)	viGF2
8	PPT1-11	8 P		PPT1 (21-306)	
9	PPT1-12	B Paa		PPT1 (21-306)	•
11	PPT1-14	BiP1	vIGF2	PPT1 (28-306)	-
12	PPT1-15	BiPtea	vIGF2	PPT1 (28-306)	-
13	PPT1-16	BiPlaa		PPT1 (28-306)	
14	PPT1-17	WT		C63	
15	PPT1-18	BIP2aa		PPT1 (28-306)	
18	PPT1-19	GaussiaAA	-	PPT1 (21-306)	-
19	PPT3-20	GaussiaAA	vIGF2	PPT1 (28-306)	
20	PPT1-21	PPT2	- Annalas annalas anna	PPT1 (28-306)	-
21	PPT1-22	PPT2		PPT1 (21-306)	-
22	PPT1-23	PPT1 consensus		PPT1 (28-306)	
23	PFT1-24	PPT1 consensus		PPT1consensus	-
24	PPT1-25	WT		1283C H300C	
25	PPT1-26	WT		G113C L121C	-
26	PFT1-27	WT	-	A171C A183C	-
27	PPT1-28	BiP2aa		PPT1 (28-306)	
28	PPT3-29	BiP2aa	viGF2	PPT1 (28-306)	-
29	PPT1-30	BIP2aa	viGF2-24	PPT1 (28-306)	-
30	PPT1-32	WT	-	PPT1 [28-306]	viGF2-33
31	PPT1-33	WT	-	PPT1 (28-306)	viceE2-17 focuses cost
32	PPT1-34	WT		PPT1 [28-306]	VEGET-17 GEN



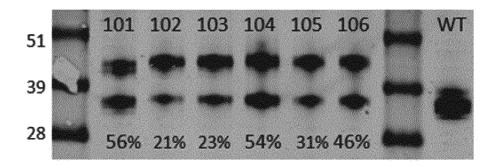
ФИГ. 50



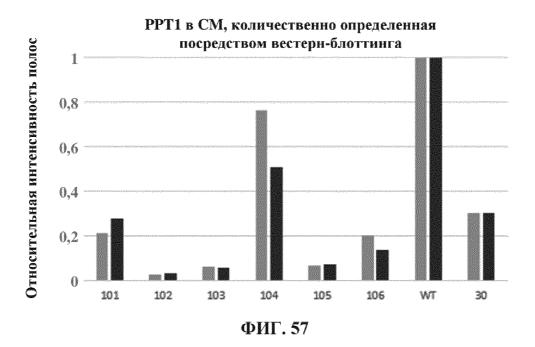
Связывание конструкций PPT1 с CI-MPR в присутствии M6P



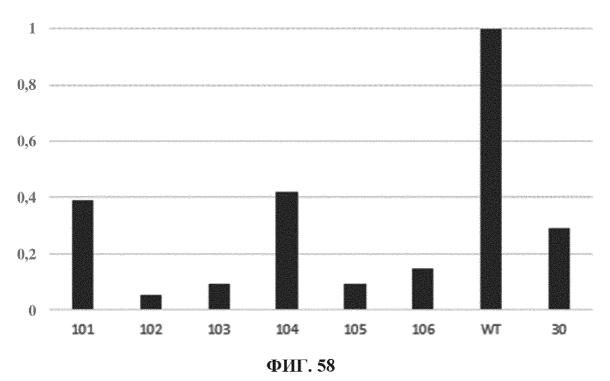
ФИГ. 53

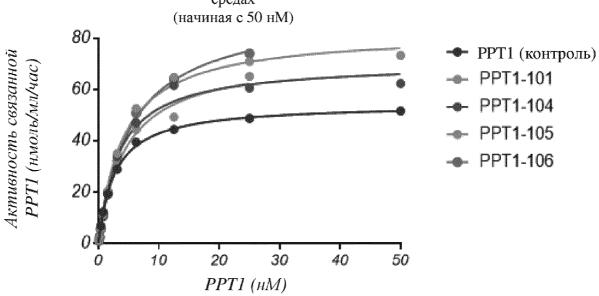

ФИГ. 54

РРТ1, секретируемая в кондиционированные среды

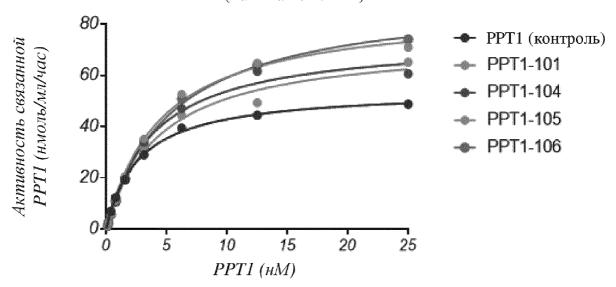


ФИГ. 55


Процессинг РРТ1 в клетке


ФИГ. 56

Относительная активность РРТ1


Анализ связывания CIMPR с PPT1 в кондиционированных средах

	РРТ1 (контроль)	PPT1-101	PPT1-104	PPT1-105	PPT1-106
Bmax	54,43	82,4	70,43	73,54	91,38
Kd	2,703	4,12	3,407	4,452	5,457

ФИГ. 59

Анализ связывания CIMPR с PPT1 в кондиционированных средах (начиная с 25 нМ)

	РРТ1 (контроль)	PPT1-101	PPT1-104	PPT1-105	PPT1-106
Bmax	54,46	86,4	74,61	73,54	91,38
Kd	2,707	4,568	3,868	4,452	5,457

ФИГ. 60

36/49

Характеризующиеся консенсусной последовательностью

- 1. vIGF2
- 2. vIGF2-17
- 3. vIGF2-20 4. vIGF2-22

------SRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARS -----SRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPARS 2 -----SRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGIVEECCFRECDLALLETYCATPARS 62 ------SRTLCGGELVDTLQFVCGDRGFLFSRPASRVSRRSRGILEECCFRSCDLALLETYCATPARS 62 3 4 -----SRTLCGGELVDTLOFVCGDRGFLFSRGGG----GSRGIVEECCFRSCDLALLETYCATPARS 58 EGGGGSGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFP EGGGGSGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFP 142 1 EGGGGSGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFP 142 2 3 EGGGGSGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFP 142 EGGGGSGGGSRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQGAQMGQPWCFFP PSYPSYKLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDPANRRYEVPLETPHVHSRAPSPLYS PSYPSYKLENLSSSENGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDPANRRYEVPLETPHVHSRAPSPLYS 222 2 PSYPSYKLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDPANRRYEVPLETPHVHSRAPSPLYS 222 3 PSYPSYKLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDPANRRYEVPLETPHVHSRAPSPLYS 222 4 PSYPSYKLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLHFTIKDPANRRYEVPLETPHVHSRAPSPLYS 218 **VEFSEEPFGVIVRRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGAN** VEFSEEPFGVIVRRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGAN 2 VEFSEEPFGVIVRRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGAN 3 VEFSEEPFGVIVRRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGAN 302 VEFSEEPFGVIVRRQLDGRVLLNTTVAPLFFADQFLQLSTSLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGAN 298 LYGSHPFYLALEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYLDVVGYPFMPPYWGLG LYGSHPFYLALEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYLDVVGYPFMPPYWGLG 382 2 LYGSHPFYLALEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYLDVVGYPFMPPYWGLG 382 3 LYGSHPFYLALEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYLDVVGYPFMPPYWGLG 382 LYGSHPFYLALEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYLDVVGYPFMPPYWGLG 378 FHLCRWGYSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGGRRYMMIVDPAISSSG FHLCRWGYSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGGRRYMMIVDPAISSSG 462 2 FHLCRWGYSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPANVQELHQGGRRYMMIVDPAISSSG 462 FHLCRWGYSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGGRRYMMIVDPAISSSG 3 FHLCRWGYSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTFNKDGFRDFPAMVQELHQGGRRYMMIVDPAISSSG 458 ${\tt PAGSYRPYDEGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWIDMNEPSNFIRGSE}$ PAGSYRPYDEGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWIDMNEPSNFIRGSE 542 2 PAGSYRPYDEGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWIDMNEPSNFIRGSE 542 PAGSYRPYDEGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWIDMNEPSNFIRGSE 542 3 PAGSYRPYDEGLRRGVFITNETGQPLIGKVWPGSTAFPDFTNPTALAWWEDMVAEFHDQVPFDGMWIDMNEPSNFIRGSE 538

1

2

3

2

3

3

4

1

2

3

DGCPNNELENPPYVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTFAGHGRYA
DGCPNNELENPPYVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTFAGHGRYA
622
DGCPNNELENPPYVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTFAGHGRYA
622
DGCPNNELENPPYVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTFAGHGRYA
622

GHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEPYSFSEP
GHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEPYSFSEP
702
GHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEPYSFSEP
704
GHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEPYSFSEP
705
706
707

698

GHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVRWTQLGAFYPFMRNHNSLLSLPQEPYSFSEP

DGCPNNELENPPYVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISRSTFAGHGRYA 618

AQQAMRKALTLRYALLPHLYTLFHQAHVAGETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYFPLG
AQQAMRKALTLRYALLPHLYTLFHQAHVAGETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYFPLG
782
AQQAMRKALTLRYALLPHLYTLFHQAHVAGETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYFPLG
782
AQQAMRKALTLRYALLPHLYTLFHQAHVAGETVARPLFLEFPKDSSTWTVDHQLLWGEALLITPVLQAGKAEVTGYFPLG
778

TWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKG

TWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKG 862

TWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKG 862

TWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKG 862

TWYDLQTVPVEALGSLPPPPAAPREPAIHSEGQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQPMALAVALTKG 858

GEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSP

GEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSP

GEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSP

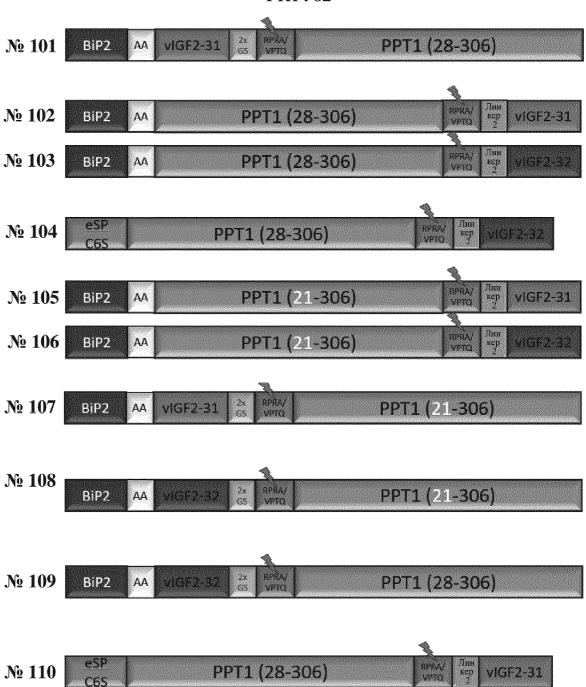
GEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSP

GEARGELFWDDGESLEVLERGAYTQVIFLARNNTIVNELVRVTSEGAGLQLQKVTVLGVATAPQQVLSNGVPVSNFTYSP

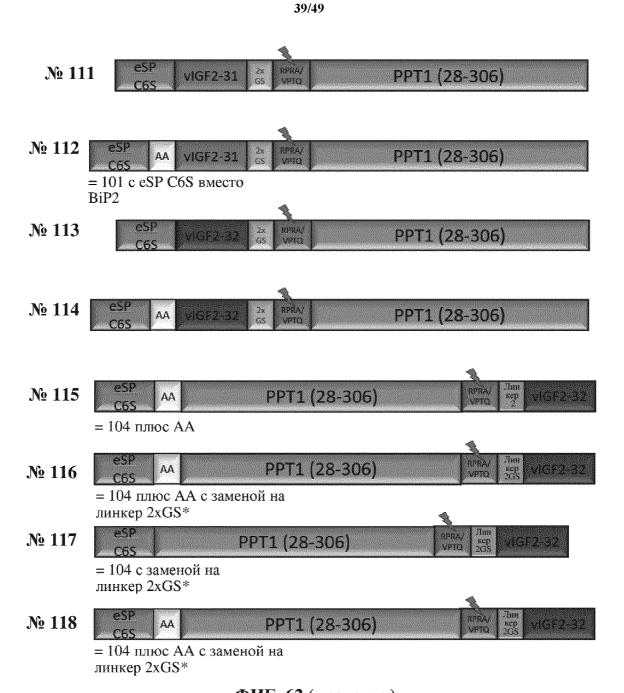
938

DTKVLDICVSLLMGEQFLVSWC

DTKVLDICVSLLMGEQFLVSWC 964

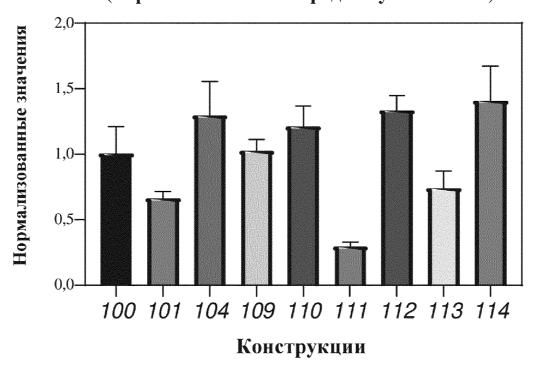

DTKVLDICVSLLMGEQFLVSWC 964

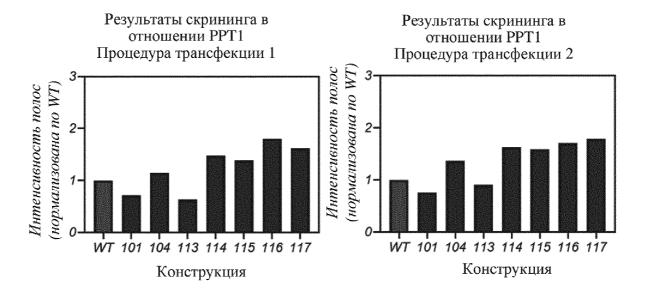
DTKVLDICVSLLMGEQFLVSWC 964


DTKVLDICVSLLMGEQFLVSWC 960

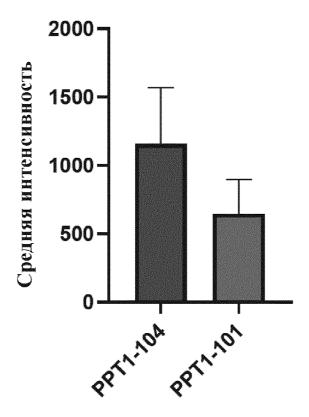
ФИГ. 61 (продолж.)

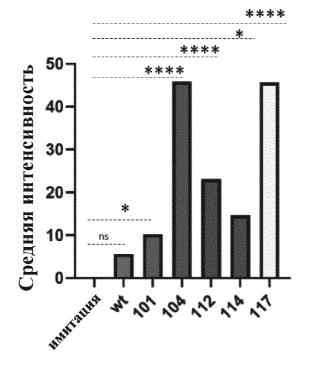
ФИГ. 62




ФИГ. 62 (продолж.)

ФИГ. 62 (продолж.)


Результаты скрининга в отношении PPT1 (нормализованы по среднему значению)



ФИГ. 64

A PPT1 AF680

B

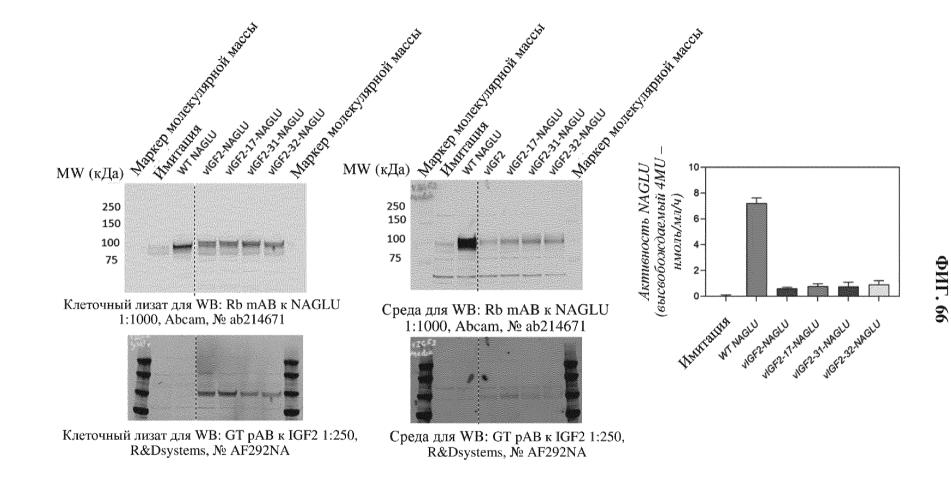
N(имитация)=28

<u>Nwt</u>=23

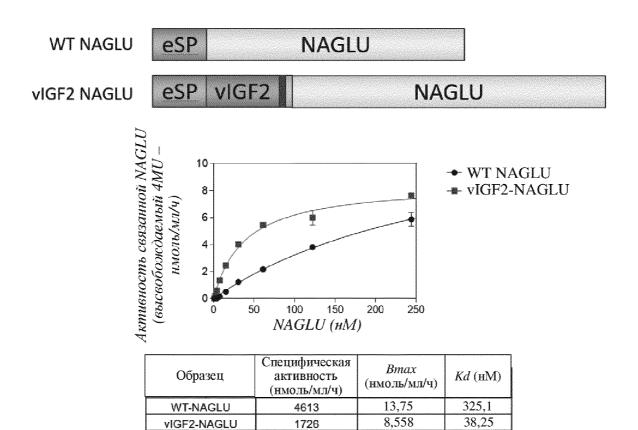
N101=30

N104=29

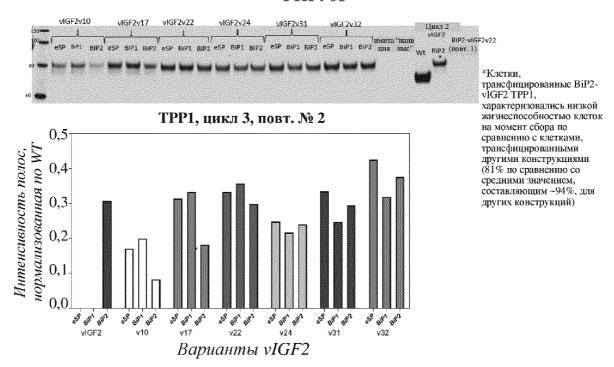
N₁₁₂=25

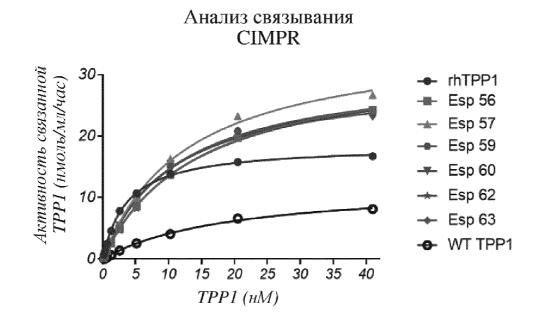

N114=30

N₁₁₇=27

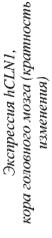

N(изображения)=3

ФИГ. 65

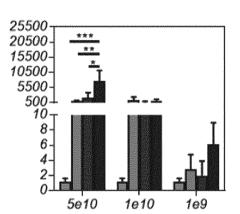

WT NAGLU	eSP	NAGLU	HPC4		
vIGF2-NAGLU	eSP vIGF2	NA	GLU	HPC4	
vIGF2-17-NAGLU	eSP vlGF2-17	NA	GLU	HPC4	
vIGF2-31-NAGLU	eSP viGF2-31	NA	GLU	HPC4	
vIGF2-32-NAGLU	eSP viGF2-32	NA NA	GLU	HPC4	
Эндогенный сигнальный пептид	Нацеливаю Линкер Линкер, щая метка GS подвергающийся лизосомальному расщеплению			Метка очистки	


ФИГ. 67

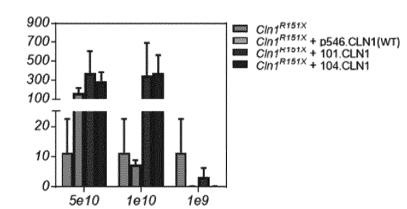
ФИГ. 68



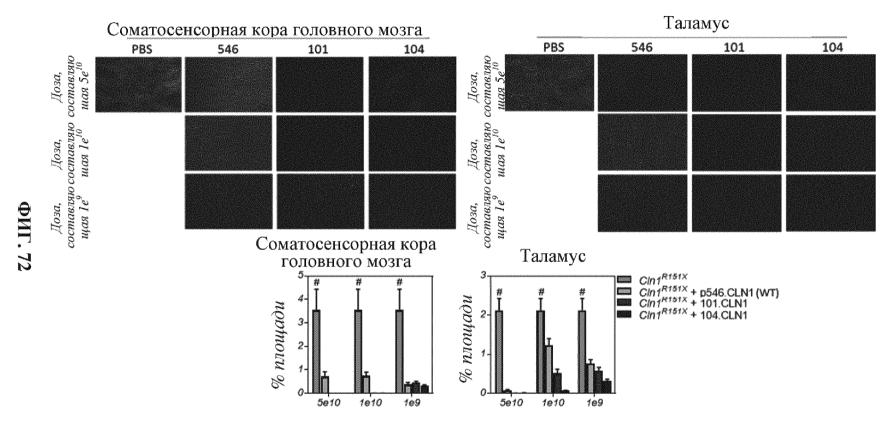
ФИГ. 69



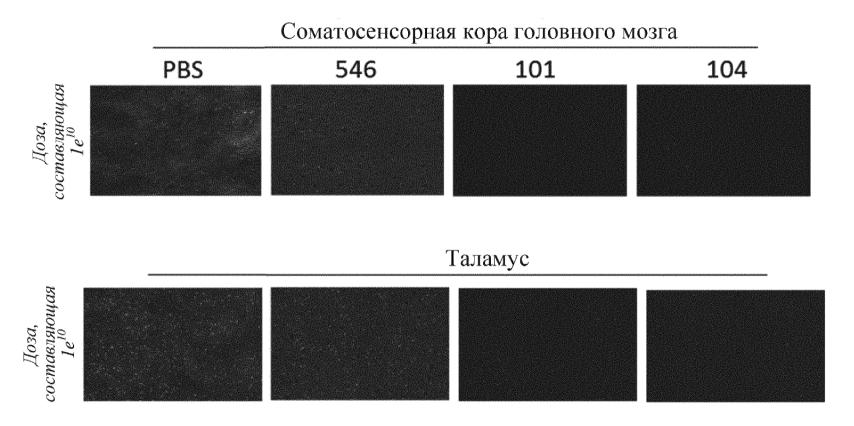
	rhTPP1	Esp 56	Esp 57	Esp 59	Esp 60	Esp 62	Esp 63	WT TPP1
Bmax	18,48	33,05	35,99	31,21	29,83	32,47	30,92	12,25
Kd	3,704	14,52	12,83	11,41	10,55	14,10	11,36	19,72


ФИГ. 70

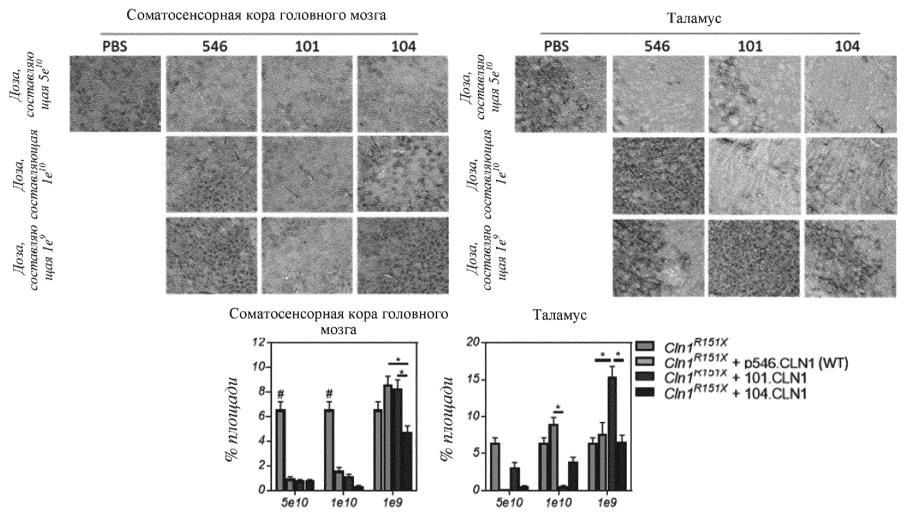
ФИГ. 71



поясничный отдел спинного мозга (кратность изменения) Экспрессия hCLN1,



Двухфакторный ANOVA, апостериорный критерий Тьюки. *p<0,05, **p<0,01, ***p<0,001 * обозначает наличие значимости применительно к указанной группе


scAAV9.p546.CLN1 (WT) $5x10^{10}$, $1x10^{10}$, $1x10^9$ вирусных scAAV9.101.CLN1 геномов/животное scAAV9.104.CLN1

Однофакторный иерархический ANOVA, апостериорный критерий наименьшей значимой разности Фишера. # обозначает наличие значимости применительно ко всем другим гурппам

ФИГ. 73

Однофакторный иерархический ANOVA, апостериорный критерий наименьшей значимой разности Фишера. *p<0,05

обозначает наличие значимости применительно ко всем другим группам; * обозначает наличие значимости применительно к указанной группе