

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- Дата публикации заявки (43)2022.06.30
- Дата подачи заявки (22)2010.10.15

- (51) Int. Cl. A61M 5/20 (2006.01) **A61M 5/31** (2006.01) **A61M 5/315** (2006.01) **A61M 5/32** (2006.01) A61M 5/50 (2006.01)
- СПОСОБ ВВЕДЕНИЯ ЛЕКАРСТВЕННОГО ПРЕПАРАТА ИЗ УСТРОЙСТВА ДЛЯ (54) ДОСТАВКИ ЛЕКАРСТВЕННОГО ПРЕПАРАТА, ПРИВОДИМОГО В ДЕЙСТВИЕ ЛАДОНЬЮ РУКИ (ВАРИАНТЫ)
- (31) 61/252,378; 61/361,983
- (32)2009.10.16; 2010.07.07
- (33)US
- (62)202091957; 2010.10.15
- (71) Заявитель: ЯНССЕН БАЙОТЕК, ИНК. (US)
- (72) Изобретатель:

Олсон Лорин П., Крулевич Питер (US), Гленкросс Джеймс (GB), Ван Цзинли (US), Фоули Николас (GB), Чжао Минци (US)

(74) Представитель:

Веселицкая И.А., Веселицкий М.Б., Кузенкова Н.В., Каксис Р.А., Белоусов Ю.В., Куликов А.В., Кузнецова Е.В., Соколов Р.А., Кузнецова Т.В. (RU)

Раскрывается способ введения лекарственного препарата из устройства для доставки (57) лекарственного препарата, содержащего верхний корпус, нижний корпус, шприц, поддерживаемый нижним корпусом и имеющий иглу, и защитную насадку иглы, поддерживаемую нижним корпусом. При осуществлении способа прижимают указанное устройство к поверхности кожи, так что защитная насадка иглы упирается в поверхность кожи, при этом верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы; прикладывают усилие к верхнему корпусу вдоль направления введения, так что защитная насадка иглы втягивается, под действием поверхность кожи, относительно нижнего корпуса и, тем самым, обнажает иглу, так что игла проникает через поверхность кожи, и данный шаг приложение усилия приводит, посредством защитной насадки иглы, к разблокировке верхнего корпуса относительно перемещения в направлении иглы; и продолжают прикладывать усилие к верхнему корпусу вдоль направления введения, так что верхний корпус перемещается в направлении иглы, тем самым вытесняя содержащийся в шприце лекарственный препарат через иглу.

СПОСОБ ВВЕДЕНИЯ ЛЕКАРСТВЕННОГО ПРЕПАРАТА ИЗ УСТРОЙСТВА ДЛЯ ДОСТАВКИ ЛЕКАРСТВЕННОГО ПРЕПАРАТА, ПРИВОДИМОГО В ДЕЙСТВИЕ ЛАДОНЬЮ РУКИ (варианты)

Приоритет настоящей заявки испрашивается в соответствии с \$ 119 и (или) \$ 120 раздела 35 Свода федеральных законов США на основании предварительной патентной заявки США \$ 61/361983, поданной 07 июля 2010 года, и 61/252378, поданной 16 октября 2009 года, содержание которых полностью включено в настоящую заявку путем ссылки.

Область изобретения

В общем, изобретение относится к способам и устройствам для доставки лекарственных веществ парентеральным путем. Устройства предназначены для ручной доставки лекарственных веществ завершения процесса доставки подтверждением лекарственных веществ. Устройства образуют простую в использовании систему повышенной безопасности со звуковой или иной обратной связью с пользователем, уведомляющей о том, что доставка лекарственных веществ либо находится в процессе выполнения, либо завершена, либо об обоих событиях, что позволяет избежать введения неполной дозы или излишнего расхода лекарственного препарата, а обеспечивает простую В использовании систему повышенной безопасности.

Предпосылки создания изобретения

течение МНОГИХ лет введение лекарственных парентеральным путем выполнялось единственным общепринятым способом, а именно при помощи шприца и иглы. Шприц содержит определенное количество лекарственного вещества, которое либо шприце (если шприц поступает В находится в предварительно наполненный лекарственным препаратом), вводится в шприц путем втягивания в шприц из стеклянной или иной ампулы. Шприцы получили широкое распространение благодаря низкой себестоимости производства и простой и удобной конструкции.

Однако с точки зрения пользователя они имеют ряд недостатков.

Одним из недостатков является то, что многие пациенты боятся игл. В случаях, когда необходимо самостоятельное введение лекарственных препаратов, например, при лечении, многократных ежедневных инъекций, пациенты могут избегать вводить лекарственные препараты в соответствии с назначенной схемой лечения вследствие страха перед иглами, болью, обычно связанной с инъекциями, отсутствием сноровки, необходимой для надлежащего введения лекарственных веществ при помощи иглы и шприца или других аналогичных факторов. Для некоторых людей, двигательных нарушения зрения, возможностей восприятия, самовведение лекарственного препарата при помощи иглы и шприца представляет дополнительные трудности, могут помещать им получить необходимое медикаментозное лечение.

использование ИГЛ шприцев TOPO, И связано С проблемами безопасности и утилизации, касающимися не только пациента, но и окружающих его людей: в данном случае, помимо отношении схем медикаментозного стереотипов лечения использованием игл и шприцев, речь идет об инфицированных иглах, уколах, перекрестном инфицировании случайных И $T \cdot \Pi$. несмотря на эти недостатки для многих пациентов стимулом использованию игл И шприцев для доставки необходимых лекарственных препаратов является возможность контролировать введение иглы и скорость доставки лекарственных веществ путем поршень шприца, и, следовательно, возможность контролировать болевые и неприятные ощущения, связанные с такого типа инъекцией лекарственных веществ.

течением времени были реализованы попытки усовершенствования, направленные на облегчение самовведения лекарственных препаратов. К ним относится уменьшение толщины игл усовершенствование геометрии наконечника, ЧТО позволяет уменьшить болевые ощущения. Чтобы свести к минимуму вероятность случайного укола иглой, применяются безопасные шприцы, в которых закрытой после игла остается до, после ИЛИ И ДО, И использования. \square OMNMO \square OTOTE предлагались варианты усовершенствования эргономичности конструкции шприца, требующие

меньшей сноровки для точного и безопасного самовведения лекарственного препарата при помощи иглы и шприца. Для повышения точности дозировки были разработаны предварительно наполненные устройства одноразового использования с корпусом, выполненным по типу шариковой ручки, а для того, чтобы избавить пациента от страха и решить вопрос безопасности, используются автоинъекторы, где игла скрывается от пациента либо путем втягивания, либо путем помещения вокруг иглы защитного футляра.

ктоХ модификации позволили усовершенствовать подобные веществ при помощи иглы лекарственных конструкция, эргономичная шприцы-ручки и автоинъекторы, существу сохраняют сходство с оригинальной концепцией иглы и таким образом ограничивая степень приемлемости пациентами, нуждающимися В самовведении лекарственных препаратов. Существующие в настоящее время системы используют форм-фактор, предполагающий применение распространенной техники проведения инъекций «захват кожи в складку и быстрый укол», где пользователь удерживает устройство рукой, а большой палец его руки размещается на пусковой кнопке.

Современные автоинъекторы возлагают контроль доставки лекарственных веществ В организм на механическую высокой Поскольку такая система В степени зависит специфической механической конструкции автоинъектора, пациентам может понадобиться специализированное обучение по использованию устройства, при этом сохраняется риск неточной дозировки. ситуация усугубляется В случаях доставки очень лекарственных веществ, введение которых должно осуществляться один раз в неделю или реже.

Обычный способ использования современных автоинъекторов подразумевает, что пациент удерживает устройство, прижав его вплотную к коже, в течение нескольких секунд, пока устройство выполняет доставку лекарственного препарата. Многие пользователи, в частности, пожилые, могут ощутить усталость в плече или руке, вызванную неравномерным давлением устройства на кожу, или они могут преждевременно удалить устройство с места инъекции. Любая из двух перечисленных ситуаций может привести к

неточному дозированию, излишнему расходу лекарственного вещества, усилению неприятных ощущений и т.п. В любом случае современные устройства и способы, использующие традиционную систему шприцев и игл или разработанные на ее основе, имеют недостатки, снижающие эффективность назначенной схемы лечения лекарственными препаратами.

Наконец, как и в случае с любыми медицинскими устройствами или услугами в области здравоохранения, необходимо учитывать стоимость всех часто применяемых составляющих схемы лечения. Хотя использование препаратов в ампулах для наполнения пустых шприцев во время или незадолго до времени введения препарата, возможно, является наиболее экономичным решением, оно создает дополнительную вероятность излишнего расхода ИЛИ дорогостоящего лекарственного препарата. Если условия хранения лекарственного препарата подразумевают использование низких температур, каждый раз при извлечении и повторном помещении препарата в охлаждающее устройство перед наполнением шприца и этого качество препарата ухудшается, что приводит к после снижению ожидаемой эффективности, если количество препарата, содержащегося В ампуле, рассчитано на доставку в течение длительного периода времени. Хотя предварительно наполненные шприцы более надежны и удобны, для них также характерны ранее перечисленные недостатки.

Что касается таких устройств, как предварительно автоинъекторы, обычно предназначены наполненные OHN ПЛЯ использования совместно с широким спектром лекарственных специально приспособлены препаратов, НΟ при HOTE ДЛЯ использования только с одним лекарственным препаратом. Поскольку устройства возлагают контроль за скоростью инъекции лекарственного вещества на механические системы, имеющие в своем лекарственных составе пружины, доставка многих веществ, требующих различной вязкостью или охлаждения существенно изменяющих вязкость В результате изменения температуры, осуществляется слишком быстро или слишком медленно вследствие заранее заданного пружинного усилия, предусмотренного конструкцией автоинъектора. Во многих случаях слишком низкое

пружинное усилие приводит к неполной доставке лекарственных устройства ДО завершения доставки веществ, удалению повышению болевых и неприятных ощущений пользователя вследствие пролонгированного периода введения инъекционного устройства в организм пациента. С другой стороны, слишком высокое пружинное быстрой доставке усилие приводит K СЛИШКОМ лекарственных веществ, что вызывает деградацию лекарственных веществ или боль В месте инъекции, обусловленную быстрой доставкой кислотосодержащего препарата или градиентом давления под кожей или в вене.

Таким образом, существуют хорошие перспективы усовершенствований в области эпизодической доставки лекарственных веществ парентеральным путем, которые помогут преодолеть «боязнь иглы», снизить болевые ощущения у пациента и повысить безопасность, надежность и эффективность многих схем медикаментозного лечения.

Сущность изобретения

Предлагается способ введения лекарственного препарата из устройства для доставки лекарственного препарата, содержащего верхний корпус, нижний корпус, шприц, поддерживаемый нижним корпусом и имеющий иглу, и защитную насадку иглы, поддерживаемую нижним корпусом, включающий шаги, на которых:

прижимают устройство для доставки лекарственного препарата к поверхности кожи, так что защитная насадка иглы упирается в поверхность кожи, при этом верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы;

прикладывают усилие к верхнему корпусу вдоль направления введения, так ЧТО защитная насадка иглы втягивается, ПОД действием поверхность кожи, относительно нижнего корпуса и, тем самым, обнажает иглу, так что игла проникает через поверхность данный шаг приложение усилия приводит, посредством защитной насадки иглы, к разблокировке верхнего корпуса относительно перемещения в направлении иглы; и

продолжают прикладывать усилие усилие к верхнему корпусу вдоль направления введения, так что верхний корпус перемещается

в направлении иглы, тем самым, вытесняя содержащийся в шприце лекарственный препарат через иглу.

В предпочтительных вариантах осуществления шаг продолжения приложения усилия включает продвижение поршня в шприц, так что лекарственный препарат вытесняется через иглу.

Верхний корпус разаблокирован относительно перемещения в направлении иглы, когда защитная насадка иглы закончила свое перемещение относительно нижнего корпуса.

Устройство для доставки лекарственного препарата содержит защелку, которая взаимодействует с верхним корпусом так, что верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы, и шаг разблокирования включает приведение защитной насадки иглы в контакт с защелкой и смещение защелки от верхнего корпуса, тем самым разблокируя верхний корпус.

В одном из вариантов способ включает удаление устройства для доставки лекарственного препарата от поверхности кожи обратного направлению введения, направления, так что игла выводится из поверхности кожи. Указанный шаг удаления включает продвижение защитной насадки иглы относительно иглы так, по существу скрывается. Указанный шаг удаления далее предотвращение втягивания включает защитной насадки иглы относительно иглы.

Способ может дополнительно включать после шага продолжения приложения усилия шаг предотвращения втягивания верхнего корпуса от иглы.

В одном из вариантов используют устройство для доставки лекарственного препарата, дополнительно включающее корпус, присоединенный между верхним корпусом и нижним корпусом, шаг продолжения приложения усилия включает поступательное движение верхнего корпуса поверх среднего корпуса, тем самым индикацию обеспечивая визуальную выдачи лекарственного препарата. Указанный шаг поступательного движения включает по существу полное скрытие среднего корпуса посредством верхнего корпуса, что дает индикацию о полной выдачи лекарственного препарата.

Предлагается также способ введения лекарственного препарата из устройства для доставки лекарственного препарата, содержащего верхний корпус, нижний корпус, средний корпус, имеющий часть, визуально открытую между верхним корпусом и нижним корпусом, и шприц, поддерживаемый нижним корпусом и имеющий иглу, включающий шаги, на которых:

прижимают устройство для доставки лекарственного препарата к поверхности кожи;

перемещают устройство для доставки лекарственного препарата в направлении поверхности кожи вдоль направления, по которому игла проникает через поверхность кожи;

прикладывают усилие к верхнему корпусу вдоль упомянутого направления, перемещая, тем самым, верхний корпус вдоль среднего корпуса в направлении иглы, так что верхний корпус поступательно движется поверх среднего корпуса, когда верхний корпус движется в направлении иглы, обеспечивая при этом визуальную индикацию выдачи содержащегося в шприце лекарственного препарата.

В предпочтительных вариантах осуществления шаг приложения усилия включает перемещение верхнего корпуса вдоль среднего корпуса, пока первая поверхность нижнего корпуса сопрягается с соответствующей второй поверхностью на дистальном конце верхнего корпуса. Способ может далее включать возникновение тактильной обратной связи, когда первая поверхность нижнего корпуса сопрягается с соответствующей второй поверхностью.

На соотвествующем шаге прижимают устройство для доставки лекарственного препарата к поверхности кожи так, что защитная насадка иглы упирается в поверхность кожи, при этом верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы.

На упомянутом шаге перемещения прикладывают усилие к верхнему корпусу вдоль упомянутого направления, так что защитная насадка иглы, поддерживаемая нижним корпусом, втягивается, под действием поверхность кожи, относительно нижнего корпуса и обнажает иглу, так что игла проникает через поверхность кожи.

Краткое описание фигур

На фиг. 1A представлен вид сбоку варианта осуществления настоящего изобретения.

На фиг. 1В представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 1A, после снятия колпачка.

На фиг. 1С представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 1В, после нажатия кнопки блокировки.

На фиг. 1D представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 1C, после втягивания защитной насалки иглы и обнажения иглы.

На фиг. 2A представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 1D, в процессе инъекции лекарственного вещества.

На фиг. 2В представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 2A, после завершения инъекции лекарственного вещества.

На фиг. 2C представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 2B, после выдвижения защитной насадки иглы и скрытия иглы.

На фиг. 3 представлен вид в разобранном состоянии варианта осуществления изобретения, показанного на фиг. 1A.

На фиг. 4 представлен вид в поперечном сечении варианта осуществления, представленного на фиг. 1А.

На фиг. 5 представлен частичный вид в поперечном сечении варианта осуществления, показанного на фигуре 1A, где показана зашелка.

На фиг. 6 представлен частичный вид в поперечном сечении части варианта осуществления, показанного на фиг. 1A, где показана защелка.

На фиг. 7 представлен вид в поперечном сечении варианта осуществления, представленного на фиг. 2А.

На фиг. 8 представлен вид в поперечном сечении варианта осуществления, представленного на фиг. 2В.

На фиг. 9 представлен вид в поперечном сечении варианта осуществления, представленного на фиг. 2C.

На фиг. 10А представлен вид сбоку другого варианта осуществления настоящего изобретения.

На фиг. 10В представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 10А, после снятия колпачка.

На фиг. 10С представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 10В, после втягивания защитной насадки иглы и обнажения иглы.

На фиг. 11А представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 10С, в процессе инъекции лекарственного вещества.

На фиг. 11В представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 11А, после завершения инъекции лекарственного вещества.

На фиг.11С представлен вид сбоку варианта осуществления изобретения, показанного на фиг. 11В, после выдвижения защитной насадки иглы и скрытия иглы.

На фиг. 12 в разобранном виде представлен вариант осуществления изобретения, показанный на фиг. 10А.

На фиг. 13A представлен вид в перспективе нижнего корпуса варианта осуществления изобретения, показанного на фиг. 10A.

На фиг. 13B представлен вид в перспективе среднего корпуса варианта осуществления изобретения, показанного на фиг. 10A.

На фиг. 14 представлен частичный вид в поперечном сечении части верхнего и среднего корпусов варианта осуществления изобретения, показанного на фиг. 10A.

На фиг. 15 показан блокировочный механизм варианта осуществления изобретения, представленного на фиг. 10A

На фиг. 16 показан другой блокировочный механизм варианта осуществления изобретения, представленного на фиг. 10А.

На фиг. 17A представлен вид в поперечном сечении части варианта осуществления изобретения, представленного на фиг. 10A.

На фиг. 17В представлен вид в перспективе части нижнего корпуса варианта осуществления изобретения, показанного на фиг. 10А.

На фиг. 18 показан вид в поперечном сечении устройства, представленного на фиг. 10A.

На фиг. 19 представлен вид сбоку в разобранном состоянии еще одного варианта осуществления настоящего изобретения.

На фиг. 20 представлен вид сбоку в поперечном сечении еще одного варианта осуществления настоящего изобретения перед использованием.

На фиг. 21А представлен вид в перспективе альтернативной конструкции нижнего корпуса варианта осуществления изобретения, показанного на фиг. 10А.

На фиг. 21В представлен вид в перспективе альтернативного варианта исполнения нижнего корпуса варианта осуществления, показанного на фигуре 10A.

На фиг. 21С представлен вид в поперечном сечении нижнего корпуса, показанного на фигуре 21В.

Подробное описание изобретения и предпочтительных вариантов осуществления

Следующее подробное описание необходимо толковать с учетом иллюстраций, на которых одинаковые элементы на разных чертежах представлены под одинаковыми номерами. Варианты осуществления изобретения, показанные на фигурах, необязательно представленных в масштабе, служат исключительно для иллюстрации и разъяснения и ни в коей мере не ограничивают объем изобретения. Подробное описание раскрывает принципы настоящего изобретения с помощью примеров, которые не ограничивают объем настоящего изобретения.

Настоящее изобретение предлагает устройство для доставки лекарственных веществ и способы его применения, причем настоящее устройство лишено многих ограничений и недостатков, характерных для традиционных шприцев и игл, а также для устройств типа устранения ограничений автоинъекторов. Для И недостатков предыдущих устройств и удовлетворения потребностей в области техники варианты осуществления раскрываемого в настоящей заявке устройства и способов включают устройство, конструкция которого не позволяет пользователю видеть иглу или касаться таким образом снижая боязнь игл и риск потенциального инфицирования через иглу. Устройство подразумевает автоматическое скрытие иглы после доставки лекарственного вещества.

Варианты осуществления устройства имеют эргономичный формфактор, позволяющий управлять устройством одной рукой и чередовать места инъекций, например, выполнять инъекцию в бедро, в плечо или в живот. В вариантах осуществления изобретения, подразумевающих срабатывание под действием давления, защелка защитной насадки иглы не позволяет игле двигаться. Таким образом, устройство содержит предохранительный механизм, который не позволит обнажить иглу без достаточного давления на место инъекции.

На фиг. 1A-1D представлен один вариант осуществления устройства, составляющего предмет изобретения, который имеет окошко 104, позволяющее видеть лекарственное вещество перед использованием. После использования устройства в окошке появляется цветной индикатор для визуальной индикации расхода лекарственного вещества, содержащегося в устройстве. Кроме того, после доставки лекарственного вещества обеспечивается повышенная безопасность и предельное снижение риска случайного укола иглой.

Для уверенности в том, что пользователь осведомлен о статусе доставки лекарственного вещества и о завершении доставки, данный вариант осуществления изобретения содержит собачку храпового механизма и храповой механизм, такие как собачка храпового механизма 117 и храповой механизм 116 на фиг. 4 и 7, которые по завершении инъекции издают один или несколько слышимых щелчков. Такой механизм сигнализирует пользователю о доставке дозы лекарственного вещества и о том, что устройство можно удалить, препятствуя тем самым преждевременному извлечению устройства из места инъекции. Таким образом, пользователь активно участвует в течение всего процесса доставки, в отличие традиционных автоинъекторов, при использовании которых пользователь должен ожидать несколько секунд, чтобы удостовериться в том, что доза введена полностью.

Для обеспечения лучшей обратной связи с пользователем раскрытая система храпового механизма обеспечивает слышимые щелчки и движение устройства во время доставки, которые свидетельствуют о том, что инъекция находится в процессе выполнения. В другом варианте осуществления изобретения обратная

связь, свидетельствующая о завершении доставки, происходит только путем громкого щелчка в конце доставки либо путем комбинации звуковой и визуальной индикации.

Более того, настоящее изобретение имеет удобный, неотпугивающий дизайн и способ функционирования, в отличие от традиционных устройств с безопасной иглой и автоинъекторов, напоминающих шприцы и причиняющих пользователю неудобства. Кроме этого, в отличие от традиционных автоинъекторов, пользователь имеет возможность контролировать введение иглы и ход самой инъекции лекарственного вещества, как описано далее.

На фигурах 1-9 представлен пример устройства, составляющего предмет настоящего изобретения. На фиг. 1A-1D представлен вариант осуществления устройства на различных этапах подготовки к выполнению инъекции лекарственного вещества, а на фиг. 2A-2C показан вариант осуществления изобретения во время инъекции лекарственного вещества и после нее. На фигуре 1A представлено устройство 100 в конфигурации, предшествующей использованию, т.е. в том виде, в котором устройство поступает к пользователю. В этом свободном положении верхний корпус 101 частично покрывает проксимальную или самую верхнюю часть нижнего корпуса 102. В описании различных вариантов осуществления устройства термин «проксимальный» используется по отношению к нижней поверхности устройства. Например, на фиг. 1В проксимальной является нижняя поверхность или нижняя часть 131 устройства 100.

Как показано, к видимым снаружи элементам устройства относятся верхний корпус 101, нижний корпус 102, колпачок 103, окошко 104, кнопка блокировки 105, зажимное кольцо 106, нижняя кромка 111 верхнего корпуса 101 и индикатор дозы 107. На фигуре 3 вариант осуществления настоящего изобретения представлен в разобранном состоянии.

На подготовительным этапе использования устройства необходимо снять колпачок 103, который надет на нижний корпус 102, как показано на фиг. 1B. При снятии колпачка одновременно удаляется предохранительный футляр иглы 113 обнажается защитная насадка иглы 108. Окошко 104 и прорезь защитной насадки иглы 109 (каждый из упомянутых

предпочтительно присутствует с обеих сторон устройства) позволяют пользователю видеть и контролировать расположенный внутри корпуса шприц 118 и содержащееся в нем лекарственное вещество.

На практике захват устройства, размещающегося на ладони руки, производится поверх верхнего корпуса 101, по аналогии с захватом рычага переключения скоростей в автомобиле. Зажимное кольцо 106 представляет для пользователя визуальный ориентир для правильного захвата устройства. В одном варианте осуществления изобретения зажимное кольцо 106 имеет покрытие или изготовлено из подходящего для этих целей эластомера, включая среди прочих неопреновый каучук, уретан, полиуретан, силикон, натуральный каучук, термопластичный эластомер (ТПЭ) или комбинации таковых, чтобы получить нескользящую и удобную поверхность захвата.

Пользователь нажимает устройство, надавливая ладонью вниз на прижимное кольцо 106 и кнопку блокировки 105 и прижимая устройство к телу в выбранном месте инъекции, обычно на верхней или боковой поверхности верхней части бедра, на животе либо на верхней или задней поверхности верхней части плеча. Давление ладони на кнопку блокировки 105 смещает ее вниз, как показано на фиг. 1С, что в свою очередь освобождает защелку защитной насадки иглы 124, как показано на рис, 5, обеспечивая скольжение защитной насадки иглы 108 вверх и обнажая иглу 110 (следует отметить, что некоторые элементы устройства на фиг. показаны в иллюстративных целях). Защелка защитной насадки иглы выполнена как единое целое с частью дистального конца верхней переходной втулки 120. Верхняя переходная втулка 120 представляет собой полый цилиндр, часть которого располагается в верхнем корпусе 101, а часть - в нижнем корпусе 102, когда устройство находится в состоянии покоя. Верхняя переходная втулка 120 имеет гибкое соединение с верхним корпусом 101 и выполняет функции блокировки, а также действует как элемент, смещающий ловушку 119 к нижнему корпусу 102, как подробно описывается далее.

Защелка защитной насадки иглы 124 на внутренней стороне по отношению к продольной центральной оси А-А' устройства имеет

наклонную поверхность 127 и упор 130 на своем самом верхнем Для освобождения защелки защитной насадки иглы 124 наклонная кнаружи поверхность 128, дополняющая поверхность 127, дистальный конец отжатой кнопки блокировки сцепляется с наклонной поверхностью 127 на защелке защитной насадки иглы 124. При сцеплении поверхностей 127 и 128 защелка защитной насадки иглы 124 отклоняется кнаружи по отношению к центральной оси, перемещая упор 130 из положения блокировки движения защитной насадки иглы 108 вверх. Механизм блокировки и иглы 108 предпочтительно насадка имеют конфигурацию, которая препятствует движению защитной насадки иглы 108 вверх, если полностью не нажата кнопка блокировки 105. Это защищает иглу от заражения и повреждения в результате с другими поверхностями, защищает пользователя случайного укола иглой и скрывает иглу из поля зрения.

мере того как пользователь продолжает оказывать верхний корпус 101 направленное вниз давление, защитная насадка иглы 108 перемещается вверх, обнажая иглу 110 и обеспечивая ее проникновение через кожу пациента, при MOTE остановка происходит, когда нижняя поверхность 131 нижнего корпуса 102 плотно прижата к коже и практически утоплена в нее. После того как защитная насадка иглы 108 заходит за упор 130, пользователь может отпустить кнопку блокировки 105 или не отпускать ее - это оказывает вдияния на оставшиеся этапы инъекции. отпускании кнопки блокировки 105 упругий элемент 121 возвращает кнопку блокировки 105 в верхнее положение. Направляющая движения обеспечивает перемещение кнопки блокировки по прямой в направлении вверх и вниз.

Процесс введения иглы, описанный в настоящем документе, позволяет пользователю самостоятельно контролировать введение. Это позволяет использовать преимущество распространенного способа, часто применяемого инсулинозависимыми диабетиками: если игла соприкасается с кожей и удерживается в этом положении без осуществления прокола, то через несколько секунд пользователь перестает чувствовать иглу. Таким образом, в этом месте игла может быть введена безболезненно путем приложения к ней

давления.

введения иглы 110 в кожу пользователя обычно После начинается процесс инъекции, как показано на фиг. 2А-2С. фигуре 6 защелка корпуса 122, являющаяся частью нижнего корпуса 102, показана в закрытом состоянии и препятствует движению 101 относительно нижнего корпуса 102 корпуса состоянии устройства, предшествующем использованию (следует отметить, что некоторые элементы устройства на фиг. 6 показаны в иллюстративных целях). По завершении движения вверх защитной насадки иглы 108 наклонная поверхность 133 на защитной наклонной иглы 108 вступает в контакт с поверхности 134, образующей конец защелки корпуса 122, отклоняя защелку корпуса 122 вовнутрь, таким образом обеспечивая движение вниз верхнего корпуса 101 и переходной втулки верхнего корпуса 120.

После введения иглы 110 в организм пользователь сохраняет давление на верхний корпус 101. Как показано на фиг. 3, 4, 7 и 8, шток поршня 115 продвигает вперед поршень 112. Шток поршня 115 неподвижно прикреплен к верхнему корпусу 101, а шприц 118 надежно закреплен или удерживается в цилиндре, образованном внутри нижнего корпуса 102. Таким образом, когда верхний корпус 101 перемещается вниз по отношению к нижнему корпусу 102 и по нему, лекарственное вещество внутри шприца 110 доставляется пациенту через иглу 110 посредством перемещения штока поршня 115 и поршня 112 вниз внутри шприца 118.

После освобождения защелки корпуса 122 смещающий элемент 119, окружающий дистальный конец переходной втулки верхнего корпуса 120, выходит из состояния растяжения, воздействуя с направленной вниз силой на верхний корпус 101 путем приложения направленной вниз силы к переходной втулке верхнего корпуса 120, самый верхний конец которой зафиксирован на верхнем корпусе 101. Смещающий элемент 119 также может служить для доставки энергии, необходимой для продвижения вперед штока поршня 115 и поршня 112, в сочетании с прилагаемым пользователем дополнительным необходимым усилием, обеспечивающим выполнение инъекции лекарственного вещества, или же энергии, поставляемой смещающим

элементом 119, может быть достаточно только для проталкивания поршня 15 и поршня 112. В альтернативном осуществления настоящего изобретения смещающий обеспечивает достаточное усилие для осуществления инъекции лекарственного вещества без дополнительного усилия со стороны образом, предлагается инъекционное пользователя: таким устройство, В котором игла вводится вручную, а инъекция лекарственного вещества выполняется автоматически. В качестве может использоваться любой элемент, смещающего элемента выполненный с возможностью воздействия в необходимой степени направленной вниз силой на переходную втулку верхнего корпуса 120, включая, в частности, пружину, пневмопривод, гидравлический привод, привод с восковым элементом, электрохимический привод, сплав с эффектом запоминания формы и т.п., а также комбинации таковых. В варианте осуществления изобретения, представленном на 1-9, пользователь прилагает дополнительное усилие, необходимое для продвижения вперед штока поршня 115 и поршня 112, путем направленного вниз давления на верхний корпус 101. Таким образом, усилие, требующееся от пользователя для инъекции лекарственного вещества, подобно снижается TOMY, как гидроусилитель рулевого управления в автомобиле снижает усилие, необходимое водителю для вращения рулевого колеса. В отличие от традиционных автоинъекторов, пользователь участвует в создании необходимого для выполнения инъекции, и настоящее изобретение обеспечивает пользователю контроль за скоростью инъекции лекарственного вещества.

На фиг. 4 и 7 показаны виды в поперечном сечении вариантов осуществления настоящего изобретения перед осуществлением доставки лекарственного вещества И после ee начала соответственно. В процессе доставки лекарственного вещества собачка храпового механизма 117, присоединенная к переходной втулке верхнего корпуса 120, перемещается вдоль механизма 116, присоединенного к нижнему корпусу 102. Собачка храпового механизма 117 и храповой механизм 116 могут выполнять меньшей мере две следующие функции. Во-первых, расцеплении они препятствуют отделению верхнего корпуса 101 от

нижнего корпуса 102. Во-вторых, при перемещении собачки храпового механизма 117 вдоль храпового механизма 116 раздаются тихие щелчки, обеспечивающие обратную связь с пользователем, свидетельствующую о том, что верхний корпус 101 движется и лекарственного вещества находится В процессе доставка выполнения. Кроме того, как показано на фиг. 8, в конце хода верхнего корпуса 101 собачка храпового механизма 117 может зацепляться за более глубокую выемку в храповом механизме 116, в результате чего раздается более громкий щелчок, являющийся для пользователя слышимым сигналом конца хода и завершения доставки лекарственного вещества, а также в результате этого происходит верхнего корпуса 101 препятствующая на MecTe, возвращению устройства в исходное положение и его повторному использованию.

Как показано на фиг. 2В и 8, когда инъекция лекарственного вещества полностью завершена и верхний корпус 101 находится в конце своего хода, нижняя кромка 111 верхнего корпуса 101 покрывает индикатор дозы 107. Индикатор дозы 107 представляет собой цветное кольцо, проходящее по периметру окружности на дистальной части нижнего корпуса 102. Он служит визуальным ориентиром для пользователя, свидетельствующим о завершении доставки лекарственного вещества.

использованием устройства пациент может Перед видеть лекарственное вещество через окошко 104, ЧТО позволяет контролировать прозрачность раствора или присутствие нерастворенных частиц. После использования через ОКОШКО 104 можно видеть поршень 112, что свидетельствует о TOM, было использовано. В устройство альтернативном варианте конструкция окошка позволяет увидеть после использования ШТОК кншаоп 115, что также свидетельствует о устройства завершении инъекции. Поршень 112 и шток поршня 115 могут быть окрашены в яркий цвет для обеспечения отчетливой индикации пользователю об использовании устройства.

Как показано на фиг. 2С и 9, после выполнения инъекции пользователь удаляет устройство 100 с поверхности кожи, а возвращающий элемент защитной насадки иглы 114 обеспечивает

возвращение защитной насадки иглы 108 в исходное положение и 110, таким образом защищая пользователя окружающих от случайных уколов иглой. В качестве возвращателя защитной насадки иглы төжом использоваться любой выполненный с возможностью возвращения защитной насадки иглы 108 в исходное положение и сокрытие иглы 110, включая, в частности, пружину, пневмопривод, гидравлический привод, привод с восковым элементом, электрохимический привод, сплав С запоминания формы и т.п., а также комбинации таковых. полного выдвижения защитной насадки иглы 108 фиксатор защитной насадки иглы 125 зацепляется за прорезь в защитной насадке иглы 108, препятствуя обратному втягиванию защитной насадки иглы 108. Фиксатор защитной насадки иглы 125 представляет собой скользящую выступающую в направлении вовнутрь \circ T поверхности переходной втулки верхнего корпуса 120. нижнего корпуса 126, являющийся частью нижнего корпуса 102, препятствует преждевременному зацеплению фиксатора защитной насадки иглы 125 за прорезь в защитной насадке иглы 108 процессе доставки, блокируя прорезь. В другом варианте осуществления настоящего изобретения защитная насадка иглы 108 может выступать и фиксироваться на месте при удалении устройства 100 до завершения доставки, препятствуя таким образом повторному устройства использованию ИЛИ COBMECTHOMY использованию устройства.

Принудительный способ доставки, предлагаемый в настоящем изобретении, позволяет пользователю принимать активное участие в течение всего процесса доставки. Этот способ следует отличать от процесса активации традиционных автоинъекторов, в котором после нажатия кнопки пользователь в течении нескольких секунд пассивно ожидает завершения доставки лекарственного вещества, не имея возможности точно установить, выполнена инъекция или нет.

преимущество Дополнительное способа принудительной доставки, составляющего предмет настоящего изобретения, состоит времени доработки И сокращении расходов, связанных модификацией и адаптацией инъекционного устройства для доставки различных лекарственных веществ, благодаря TOMY, ЧТО

пользователь имеет возможность контролировать скорость доставки, изменяя силу воздействия на верхний корпус 101. Если поршень слегка застревает, пользователь может приложить большее усилие, в отличие от традиционных автоинъекторов, конструкция которых рассчитана с учетом величины усилия, необходимой в самом неблагоприятном варианте, тогда как в действительности величина усилия варьируется в зависимости от лекарственного вещества, картриджа, поршня, иглы и силы трения, возникающей в механизме.

В варианте осуществления изобретения другом блокировки 105 и блокировочная пружина 121 могут быть предусмотрены конструкцией. При этом верхний корпус 101 может свободно перемещаться вниз до упора. Это движение используется для освобождения защитной насадки иглы 108 при помощи механизма, выше описанному механизму блокировки, обеспечивает втягивание защитной насадки иглы 108. После полного защитной насадки иглы 108 освобождается втягивания защелка, что обеспечивает прекращение движения верхнего корпуса 101 по направлению вниз и выполнение инъекции лекарственного вещества по аналогии с описанным выше способом.

На фиг. 10-18 представлен еще один вариант осуществления 200, имеющее изобретения. На фиг. 10А показано устройство верхний корпус 205, нижний корпус 202 и средний корпус 201, расположенный между ними. Верхний корпус 205 содержит зажимной колпачок 228. В свободном положении верхний корпус 205 частично заходит на проксимальную часть среднего корпуса 201. дистальная часть среднего корпуса 201 неподвижно закреплена в нижнем корпусе 202. Также на фиг. 10А показана нижняя кромка верхнего корпуса 211, ограничивающий ход выступ 216 и окошко 204. Окошко 204 предпочтительно размещается в проксимальной 202. Второе окошко (не части нижнего корпуса показано) предпочтительно размещается на стороне, противоположной окошку 204.

Колпачок 203 надет на нижний корпус 202, и на фиг. 10В устройство 200 показано без колпачка с обнаженным футляром иглы 213, зажимом футляра иглы 217 и защитной насадкой иглы 208. При удалении колпачка 203 зажим футляра иглы 217 захватывает и

одновременно снимает футляр иглы 213, открывая защитную насадку иглы 208 и делая ее видимой пользователю. Когда пользователь устройства прижимает защитную насадку иглы 208 к коже, защитная насадка иглы 208 скользит вверх, обнажая иглу 210, как показано на фиг. 10С.

На фигуре 12 показано устройство 200 в разобранном состоянии. Зажимной колпачок 228 содержит сборочные штырьки зажимного колпачка 230, которые неподвижно фиксируют зажимной колпачок 228 на верхнем корпусе 205. Сборочные штырьки 230 верхнем с отверстиями 242 В корпусе Предпочтительно сборочные штырьки 230 имеют квадратное с закругленными поперечное сечение углами ДЛЯ получения обтекаемой поверхности между углами сборочных штырьков 230 и отверстиями 242. Направляющие 233 и шток поршня 215 выступают внутренней поверхности зажимного колпачка составляют с ним одно целое, как показано на фигуре. Шток поршня 215 содержит демпфер 221, размещенный на его дистальном конце. Также показаны шприц 218 с поршнем 212 и футляром иглы 213.

предпочтительном варианте осуществления изобретения внешняя поверхность зажимного колпачка 228 покрыта или выполнена зажимной колпачок 228 выполнен) весь из материала, обеспечивающего мягкую, нескользящую поверхность захвата для Подходящими пользователя. материалами для покрытия ИЛИ изготовления зажимного колпачка являются, среди эластомеры, такие как неопреновый каучук, уретан, полиуретан, силикон, натуральный каучук, ТПЭ и т.п. или комбинации таковых.

Верхний корпус 205 содержит фиксирующую защелку 220, направляющий гребень рукоятки 238 и нижнюю кромку 211. Что касается фиксирующей защелки 220, так же как и других защелок, используемых в устройстве, предпочтительно использование по меньшей мере двух защелок, расположенных симметрично друг относительно друга для обеспечения плавного хода и функционирования устройства.

Средний корпус 201 представлен на фиг. 12, где показана его основная часть 207 и направляющие прорези рукоятки 239 на внешней поверхности проксимальной части основной части корпуса

207. Во время использования устройства направляющие гребни рукоятки 238, составляющие одно целое с верхним корпусом 205, зацепляются за направляющие прорези рукоятки 239 и скользят по ним, обеспечивая плавный ход и контролируемое перемещение верхнего корпуса 205 в процессе доставки лекарственного вещества.

Основная часть корпуса 207 служит индикатором дозы, так как при активации устройства верхний корпус 205 опускается поверх основной части корпуса 207. После доставки полной дозы препарата основная часть корпуса 207 полностью скрывается под верхним корпусом 205, как показано на фигуре 11C. Предпочтительно основная часть корпуса 207 окрашена, более предпочтительно яркий В цвет, ИЛИ на нее нанесен обеспечивающий визуальную обратную СВЯЗЬ С пользователем, свидетельствующую о выполнении доставки или о ее завершении. При необходимости на основную часть корпуса 207 может быть нанесена шкала, визуально отражающая количество доставленного или оставшегося лекарственного вещества.

Как показано на фиг. 13, средний корпус 201 также содержит зажимные защелки 224, удерживающие прорези фиксирующей защелки 236 и защелку защитной насадки иглы 237. Зажимная защелка 224 представляет собой, как правило, прямоугольный элемент, крайняя дистальная часть которого подвижно соединена с внутренней поверхностью 243 среднего корпуса 201, так что под действием силы она способна смещаться кнаружи в направлении внутренней поверхности 243. Зажимная защелка 224 также имеет поверхность 245 и трехгранный упор 244, выступающий из угла ее наивысшей части кнутри в направлении центра устройстваКогда устройство находится в состоянии покоя, зажимная защелка 224, находясь в положении, предшествующем использованию, блокирует движение верхнего корпуса 205 относительно среднего корпуса 201 благодаря упору 245, который препятствует опусканию направляющих 233 зажимного колпачка 228.

Как показано на фиг. 12 и 13, нижний корпус 202 имеет основание нижнего корпуса 206, конец ограничивающего ход гребня 216, окошко 204, защелку корпуса 229, направляющие прорези 227 и

зажим, удерживающий шприц 235. Колпачок 203 надет на основание нижнего корпуса 206 и зафиксирован на нем посредством удерживающего кольца колпачка 234. На практике основание нижнего корпуса 206 соприкасается с кожей пользователя и, таким образом, предпочтительно должно быть выполнено из мягких эластичных материалов, пригодных для изготовления зажимного колпачка 228.

Окошко 204 образовано отверстием в нижнем корпусе 202, обеспечивающим обзор содержимого шприца 218. Окошко 204 размещается таким образом, чтобы нижняя часть шприца 218 была видна пользователю, позволяя удостовериться в том, что поршень 212 достиг конца своего хода к нижней части шприца. Окошко 204 может иметь любой удобный размер и форму, предпочтительно оно имеет продолговатую форму, а его продольная ось совпадает с продольной осью устройства и шприца, таким образом обеспечивая обзор необходимого участка шприца.

Направляющие прорези 227 позволяют сохранить правильное расположение трех различных элементов: направляющих 233 зажимного колпачка 228; механизма отпуска зажимной защелки 231 и механизма выдвижения защитной насадки иглы 241. Направляющие 227 выполнены С возможностью плавной прорези активации устройства, сохраняя правильное расположение и вертикальность хода верхнего корпуса 202 и защитной насадки иглы 208, а также надежной фиксации и отпускания зажимной защелки 231. Защелка корпуса 229, выступающая кнаружи, фиксирует средний корпус 201 на нижнем корпусе 202, зацепляясь за выемку (не показана) внутренней поверхности 243 среднего корпуса 201. В вариантах осуществления устройства, не предназначенных для повторного 229 использования, форма защелки И выемки не позволяет разъединить средний и нижний корпус. В вариантах осуществления многократного использования, устройства, пригодных для конфигурация выемки и защелки предусматривает разъединение среднего и нижнего корпуса.

Как показано на фиг. 12, защитная насадка иглы 208 имеет прорезь защитной насадки иглы 209, образуемую на одной стороне механизмом отпуска зажимной защелки 231, а на другой стороне - механизмом выдвижения защитной насадки иглы 241. Механизм

отпуска зажимной защелки 231 имеет наклонную поверхность 240. Как показано на фиг. 14 и 15, наклонная поверхность 240 механизма отпуска зажимной защелки 231 обращена кнаружи, и по мере перемещения зажимной защелки 231 вверх происходит сцепление с наклонной поверхностью 244 на зажимной защелке 224, обращенной вовнутрь, что вызывает отклонение зажимной защелки 224 наружу и устраняет препятствие движению направляющих 233 и 205 вниз.

Прорезь защитной насадки иглы 209 позволяет использовать окошко 204 для обзора шприца и поршня в момент, когда поршень в шприце находится в конце своего хода вниз. Кроме того, внутри в нижней части пространства, образованного механизмом отпуска зажимной защелки 231 и механизмом выдвижения защитной насадки иглы 241, находится возвращатель защитной насадки иглы 214.

Обладающий признаками изобретения аспект устройства 200 состоит в способе размещения шприца 218 внутри устройства. Как показано на фиг. 12, 13 и 17, шприц 218 удерживается между 221, модитуф иглы 213 И демпфером каждый ИЗ представляет собой гибкий элемент и защищает шприц 218 в случае падения или иного неправильного обращения с устройством 200. Когда устройство находится в собранном состоянии, шприц 218 свободно удерживается в полости 246 нижнего корпуса 202 при 235. В помощи удерживающих зажимов зависимости препарата внутри шприца 218, лекарственного процессе использования устройства допускается незначительное смещение верхнего корпуса 205 перед тем, как демпфер 221 вступает контакт с поршнем 212, а во время начального движения вниз 221 выступает В качестве воздушного кншаоп демпфер пространстве между концом штока поршня 215 и поршнем 212, что обеспечивает зависящее от скорости сопротивление исходное положение при движении захвата вниз. При быстром перемещении демпфера 221 воздух не имеет возможности выйти достаточно быстро, чтобы сократить нарастание давления воздуха. альтернативном варианте демпфер 221 может иметь сквозные отверстия (не показаны), обеспечивающие отток воздуха демпфером 221. В альтернативном варианте допускается фрикционное сопротивление демпфера без наращивания давления, использование демпфера, не предусматривающего ни отток воздуха, ни зависимость от скорости, или их комбинация. При контакте демпфера 221 с поршнем 212 демпфер 221 сжимается кнутри в направлении штока поршня 215, уменьшая трение между демпфером 221 и внутренней поверхностью полости 246.

Как показано на фиг. 10 и 11, приступая к использованию устройства 200, пользователь снимает колпачок 203 с нижнего корпуса 202, что одновременно обеспечивает удаление футляра иглы зашитной 208. 213 обнажение насалки иглы Пользователь захватывает устройство 200 за верхний корпус 205, помещая ладонь руки на зажимной колпачок 228, и надавливает с направленным вниз 228, зажимной колпачок одновременно на устройство 200 к желаемому месту инъекции на теле, при этом под действием силы надавливания защитная насадка иглы 208 скользит вверх, обнажая иглу 210. Под действием давления на зажимной колпачок 228 игла 210 проникает через кожу и подкожную ткань, останавливаясь, когда основание нижнего корпуса 206 соприкасается с поверхностью кожи или когда гребень проходящий вдоль защитной насадки иглы 208, достигает конца своего хода внутри нижнего корпуса 202.

Как показано на фиг. 15, когда защитная насадка иглы 208 конца своего хода внутри нижнего корпуса достигает наклонная поверхность 240 механизма отпуска зажимной защелки 231 В контакт с имеющей такой же угол наклона, противоположно направленной наклонной поверхностью 244 зажимной защелки 224 среднего корпуса 201, в результате чего зажимная защелка 224 отклоняется в направлении внутренней стенки 243 среднего корпуса 201. В результате этого действия 245 зажимной защелки 224 более не представляет препятствия для движения направляющей 233 зажимного колпачка 228 вниз, освобождая направляющую 233 и позволяя верхнему корпусу 205 двигаться вниз поверх среднего корпуса 201.

При перемещении верхнего корпуса 205 вниз выполняется доставка лекарственного препарата, содержащегося внутри шприца 218, через иглу 210 по мере того, как шток поршня 215 и демпфер 221 зажимного колпачка 228 надавливают с направленным вниз

усилием на поршень шприца 212. В конце доставки лекарственного препарата основная часть корпуса 207 оказывается практически полностью закрытой верхним корпусом 205, а нижняя кромка 211 верхнего корпуса 205 сопрягается с ограничивающим ход выступом 216 нижнего корпуса 202, имеющим соответствующую форму. Шток поршня 215, демпфер 221 и поршень 212 также отчетливо видны в 204. окошке Все ЭТИ элементы служат для визуального подтверждения завершения доставки лекарственного вещества, а твердый упор нижней кромки 211 в ограничивающий ход выступ 216 служит для тактильной обратной связи с пользователем.

TOPO, В конце доставки лекарственного вещества защелкивающийся механизм, обеспечивая срабатывает СЛЫШИМУЮ обратную связь. Как показано на фиг. 14, фиксирующая защелка 220 кнаружи, когда ee наклонная плоскость контактирует с верхней частью среднего корпуса 201 и скользит по ней. Когда наклонная плоскость 247 перемещается достаточно далеко по направлению вниз, наклонная плоскость 247 совмещается с удерживающей прорезью фиксирующей защелки 236, и наклонная ПЛОСКОСТЬ 247 входит в удерживающую прорезь 236, при этом прорезь проходит через стенку в проксимальной части среднего корпуса 201 и защелкивается на внешней поверхности основной части 207 среднего корпуса 201, издавая щелчок. В вариантах непригодных для повторного устройства, использования, фиксирующая защелка 220 постоянно удерживается в удерживающей прорези 236, и ее возвращение в исходное положение невозможно. В предпочтительном варианте осуществления изобретения фиксирующие защелки 220 установлены в положении 180 градусов друг напротив друга, обеспечивая плавную активацию устройства и облегчая защелкивание.

При удалении пользователем устройства 200 с кожи возвращатель защитной насадки иглы 214 (пружина, показанная на фиг. 12), который находился в сжатом состоянии, когда устройство 200 было прижато к коже пользователя, расправляется, обеспечивая выдвижение защитной насадки иглы 208 вниз и сокрытие иглы 210, таким образом защищая пользователя от случайных уколов. Помимо пружины, в качестве возвращателя защитной насадки иглы может

использоваться пневмопривод, гидравлический привод, привод с восковым элементом, электрохимический привод, сплав с эффектом запоминания формы и т.п., а также комбинации таковых. Когда защитная насадка иглы 208 находится в ПОЛНОСТЬЮ выдвинутом положении, фиксатор защитной насадки иглы 232 сцепляется с упором 248, показанным на фигуре 13, на нижнем корпусе 202, препятствуя отделению защитной насадки иглы 208 от нижнего корпуса 202. На фиг. 16 показана защелка защитной насадки иглы 237, дистальный конец которой подвижно соединен с внутренней поверхностью 243 среднего корпуса 201. В процессе перемещения защитной насадки иглы 208 вверх защелка защитной насадки иглы отклоняется кнаружи, вступая В контакт внешней поверхностью направляющей 233 или механизма выдвижения защитной насадки иглы 241. В процессе перемещения защитной насадки иглы 208 вниз и ее выдвижения с целью сокрытия иглы 210 защелка зашитной насалки иглы 237 насаживается на верхнюю механизма выдвижения защитной насадки иглы 241, препятствуя обратному втягиванию защитной насадки иглы 208.

Перед использованием направляющие механизма выдвижения 233 зажимного колпачка 228 удерживают защелку защитной насадки иглы в отклоненном кнаружи положении, обеспечивая втягивание защитной насадки иглы 208 для введения иглы 210. Два фиксатора защитной насадки иглы 232 и защелки защитной насадки иглы 237 предпочтительно используются и размещаются на расстоянии 180 градусов вокруг центральной оси устройства 200. Если устройство удаляется С поверхности кожи ДО завершения лекарственного препарата, защитная насадка иглы 208 выдвигается, скрывая иглу 210, и блокируется в таком положении, препятствуя повторному использованию устройства. В альтернативном варианте осуществления изобретения, предназначенном для многократного использования, в случае удаления устройства 200 с поверхности кожи до завершения доставки лекарственного препарата защитная насадка иглы 208 выдвигается, но не фиксируется на месте.

На фигуре 19 представлен альтернативный вариант осуществления устройства 200, пригодный для многократного использования, где верхний корпус 205 и средний корпус 201

отсоединяются от нижнего корпуса 202. В этом варианте осуществления изобретения пользователь отсоединяет средний и верхний корпус, вставляет шприц 218 в нижний корпус, а затем вновь присоединяет к нему средний и верхний корпус.

На фигуре 20 представлен еще один альтернативный вариант осуществления устройства 200, в конструкцию которого включен вспомогательный привод 219. Применение вспомогательного привода 219 наиболее оправдано при доставке вязких лекарственных веществ. Вспомогательный привод 219 прилагает усилие между 205 и средним корпусом 201, корпусом направленное вниз давление на переходную втулку верхнего корпуса Это позволяет снизить необходимую величину направленного вниз давления, оказываемого пользователем на зажимной колпачок 228 с целью выполнения инъекции лекарственного вещества. качестве вспомогательного привода 219 могут использоваться пружина, пневмопривод, гидравлический привод, привод с восковым элементом, электрохимический привод, сплав эффектом запоминания формы и т.п., а также комбинации таковых. альтернативном варианте вспомогательный привод обеспечивает достаточное усилие для осуществления инъекции лекарственного вещества без дополнительного усилия со стороны пользователя: таким образом, предлагается инъекционное устройство, в котором вводится вручную, а инъекция лекарственного вещества выполняется автоматически подобно традиционным автоинъекторам.

На фигуре 21 представлен альтернативный вариант исполнения нижнего корпуса 202 устройства 200, В который многократно переустанавливаемый защелкивающийся механизм использования устройства. многократного В MOTE варианте осуществления изобретения направляющие прорези 227 сцепляются с направляющей 225 звукового сигнализатора 222. Звуковой сигнализатор 222 смещается посредством возвращателя защитной насадки иглы 214. Для установки звукового сигнализатора 222 пользователь надавливает на одну из направляющих звукового сигнализатора 225 тех пор, ДО пока защелка звукового сигнализатора 226 не зайдет на звуковой сигнализатор 222, удерживая его в нажатом положении. При перемещении зажимного

колпачка 228 вниз в конце хода направляющая 233 вступает в контакт с наклонной поверхностью на защелке звукового сигнализатора 226, отклоняя ее внутрь, освобождая звуковой сигнализатор 222 и позволяя ему перемещаться вверх под действием усилия, оказываемого возвращателем защитной насадки иглы 214. Когда контактная поверхность 223 звукового сигнализатора 222 вступает в контакт с нижним корпусом 202, раздается слышимый щелчок, сигнализирующий о завершении доставки лекарственного Сжатие возвращателя защитной насадки ИГЛЫ 214 вещества. увеличивается, когда защитная насадка иглы 208 втягивается во время выполнения инъекции лекарственного вещества, при этом величина усилия, оказываемого возрастает на звуковой сигнализатор, и увеличивается громкость щелчка. В альтернативном варианте защелкивающийся механизм автоматически возвращается в исходное состояние, когда пользователь присоединяет корпус к нижнему корпусу после загрузки в устройство нового шприца.

Настоящим предусматриваются дополнительные альтернативные варианты осуществления данного изобретения, однако они не включены в сопроводительные фигуры. Сюда относится конструкция с многократной дозой, в которой верхний или средний корпус либо оба корпуса вместе используются не в полном объеме, и при нажатии пользователем осуществляется частичная доставка дозы, содержащейся в шприце.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ введения лекарственного препарата из устройства для доставки лекарственного препарата, содержащего верхний корпус, нижний корпус, шприц, поддерживаемый нижним корпусом и имеющий иглу, и защитную насадку иглы, поддерживаемую нижним корпусом, включающий шаги, на которых:

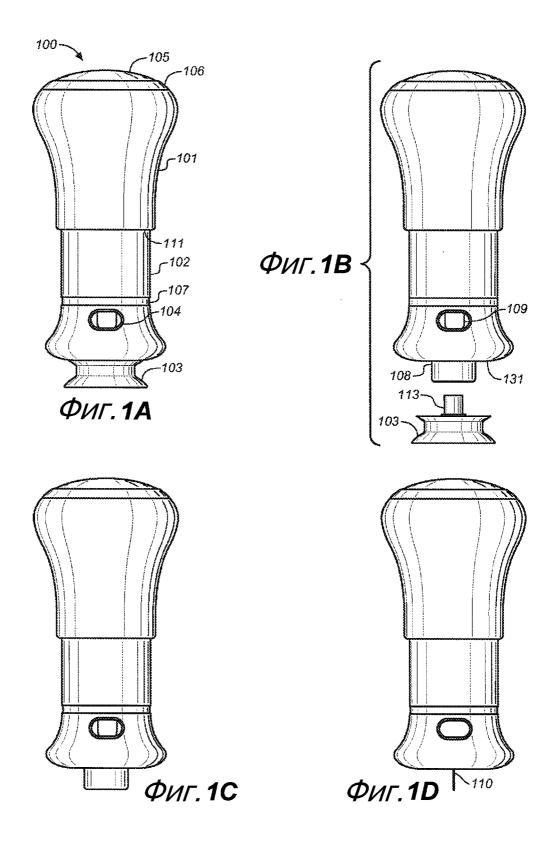
прижимают устройство для доставки лекарственного препарата к поверхности кожи, так что защитная насадка иглы упирается в поверхность кожи, при этом верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы;

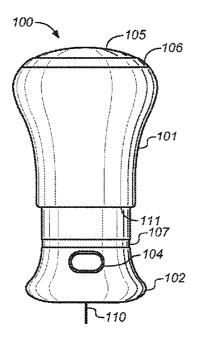
прикладывают усилие к верхнему корпусу вдоль направления введения, так что защитная насадка иглы втягивается, под действием поверхность кожи, относительно нижнего корпуса и, тем самым, обнажает иглу, так что игла проникает через поверхность кожи, и данный шаг приложение усилия приводит, посредством защитной насадки иглы, к разблокировке верхнего корпуса относительно перемещения в направлении иглы; и

продолжают прикладывать усилие усилие к верхнему корпусу вдоль направления введения, так что верхний корпус перемещается в направлении иглы, тем самым, вытесняя содержащийся в шприце лекарственный препарат через иглу.

- 2. Способ по п. 1, в котором шаг продолжения приложения усилия включает продвижение поршня в шприц, так что лекарственный препарат вытесняется через иглу.
- 3. Способ по п. 1, в котором верхний корпус разаблокирован относительно перемещения в направлении иглы, когда защитная насадка иглы закончила свое перемещение относительно нижнего корпуса.
- 4. Способ по п. 1, в котором устройство для доставки лекарственного препарата содержит защелку, которая взаимодействует с верхним корпусом так, что верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы, и шаг разблокирования включает приведение защитной насадки иглы в контакт с защелкой и смещение

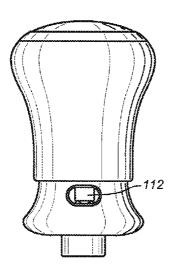
защелки от верхнего корпуса, тем самым разблокируя верхний корпус.

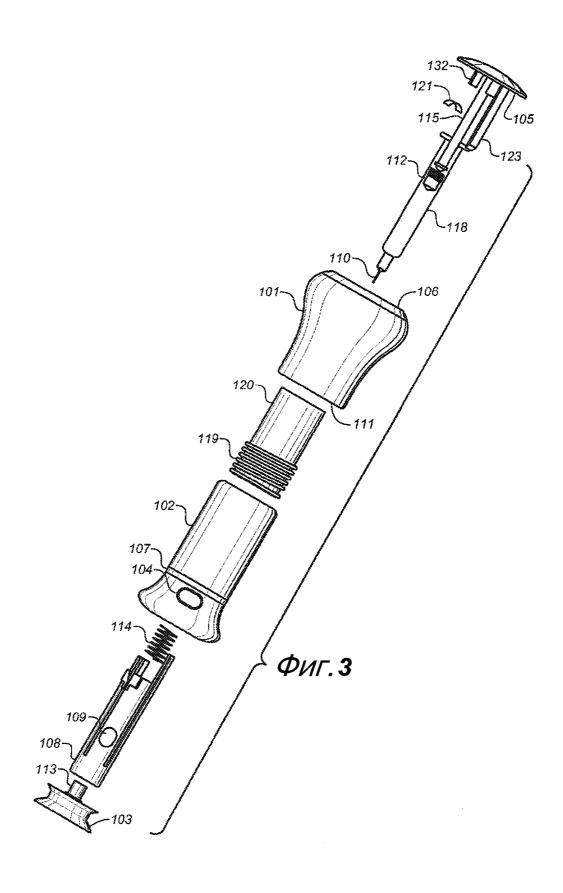

- 5. Способ по п. 1, включающий удаление устройства для доставки лекарственного препарата от поверхности кожи вдоль направления, обратного направлению введения, так что игла выводится из поверхности кожи.
- 6. Способ по п. 5, в котором указанный шаг удаления включает продвижение защитной насадки иглы относительно иглы так, что игла по существу скрывается.
- 7. Способ по п. 6, в котором указанный шаг удаления далее включает предотвращение втягивания защитной насадки иглы относительно иглы.
- 8. Способ по п. 1, дополнительно включающий после шага продолжения приложения усилия шаг предотвращения втягивания верхнего корпуса от иглы.
- 9. Способ по п. 1, в котором используют устройство для доставки лекарственного препарата, дополнительно включающее средний корпус, присоединенный между верхним корпусом и нижним корпусом, а шаг продолжения приложения усилия включает поступательное движение верхнего корпуса поверх среднего корпуса, тем самым обеспечивая визуальную индикацию выдачи лекарственного препарата.
- 10. Способ по п. 9, в котором указанный шаг поступательного движения включает по существу полное скрытие среднего корпуса посредством верхнего корпуса, что дает индикацию о полной выдачи лекарственного препарата.
- 11. Способ введения лекарственного препарата из устройства для доставки лекарственного препарата, содержащего верхний корпус, нижний корпус, средний корпус, имеющий часть, визуально открытую между верхним корпусом и нижним корпусом, и шприц, поддерживаемый нижним корпусом и имеющий иглу, включающий шаги, на которых:

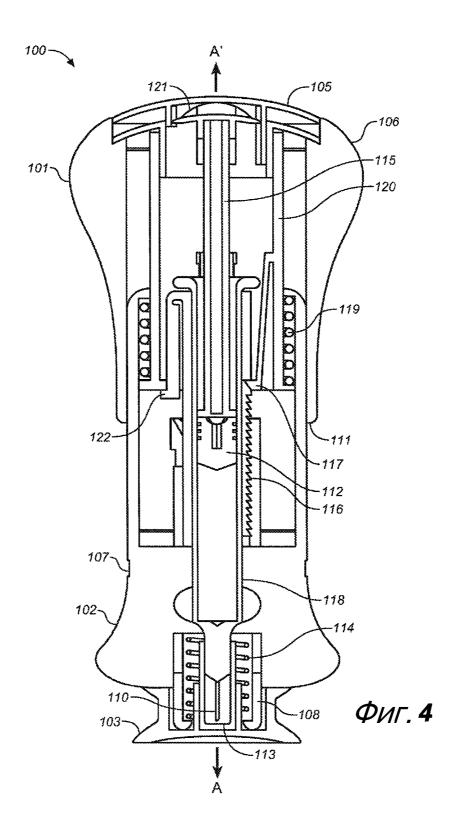

прижимают устройство для доставки лекарственного препарата к поверхности кожи;

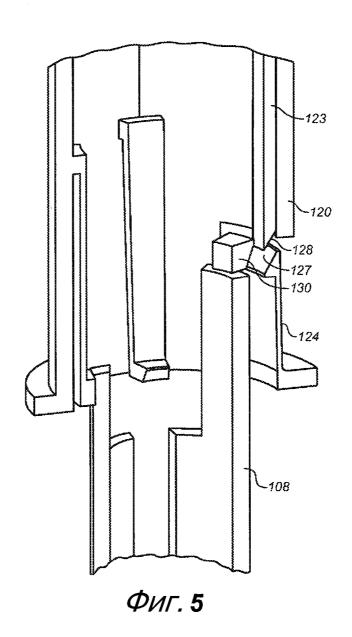
перемещают устройство для доставки лекарственного препарата в направлении поверхности кожи вдоль направления, по которому игла проникает через поверхность кожи;

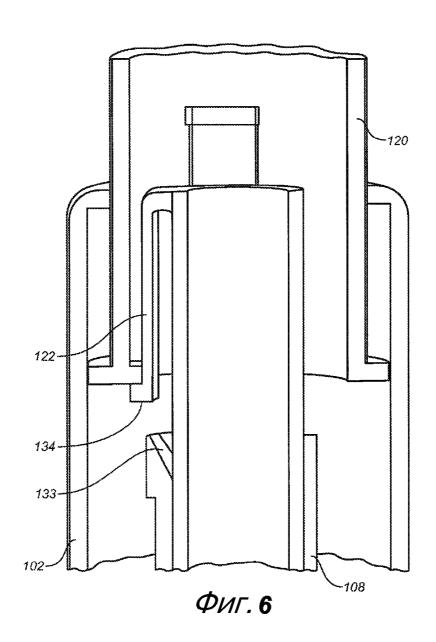
прикладывают усилие к верхнему корпусу вдоль упомянутого направления, перемещая, тем самым, верхний корпус вдоль среднего корпуса в направлении иглы, так что верхний корпус поступательно движется поверх среднего корпуса, когда верхний корпус движется в направлении иглы, обеспечивая при этом визуальную индикацию выдачи содержащегося в шприце лекарственного препарата.

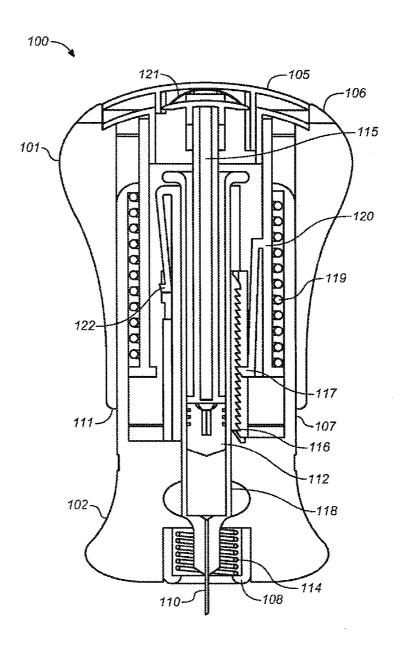

- 12. Способ по п. 11, в котором шаг приложения усилия включает перемещение верхнего корпуса вдоль среднего корпуса, пока первая поверхность нижнего корпуса сопрягается с соответствующей второй поверхностью на дистальном конце верхнего корпуса.
- 13. Способ по п. 12, включающий возникновение тактильной обратной связи, когда первая поверхность нижнего корпуса сопрягается с соответствующей второй поверхностью.
- 14. Способ по п. 11, в котором на упомянутом шаге прижимают устройство для доставки лекарственного препарата к поверхности кожи так, что защитная насадка иглы упирается в поверхность кожи, при этом верхний корпус заблокирован, с возможностью освобождения, относительно перемещения в направлении иглы.
- 15. Способ по п. 14, в котором на упомянутом шаге перемещения прикладывают усилие к верхнему корпусу вдоль упомянутого направления, так что защитная насадка иглы, поддерживаемая нижним корпусом, втягивается, под действием поверхность кожи, относительно нижнего корпуса и обнажает иглу, так что игла проникает через поверхность кожи.

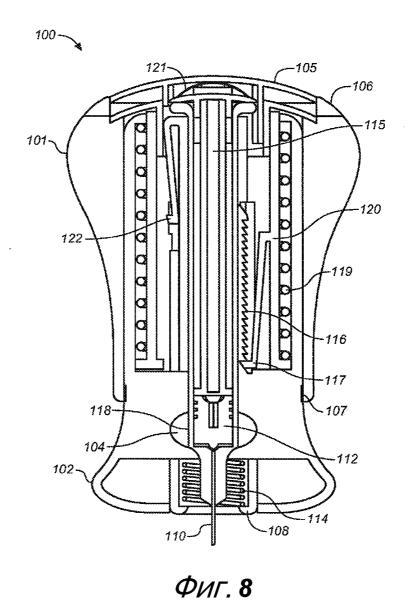


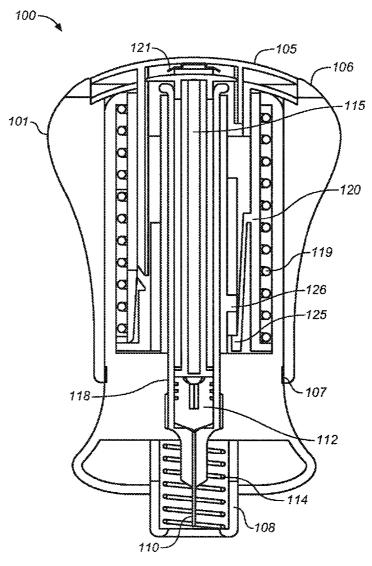

Фиг. 2В

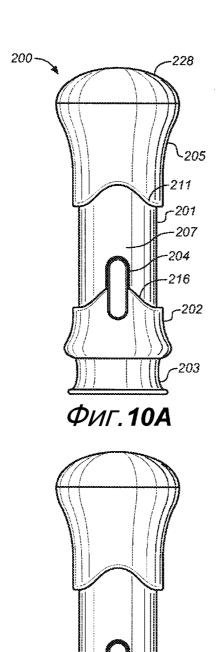

Фиг. 2А

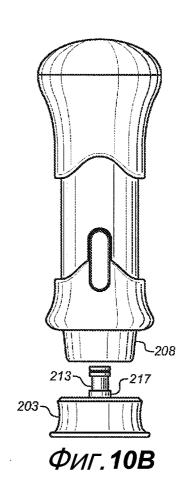


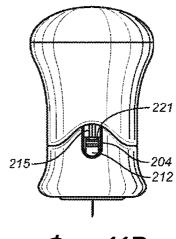

Фиг. 2С



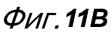


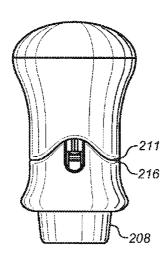


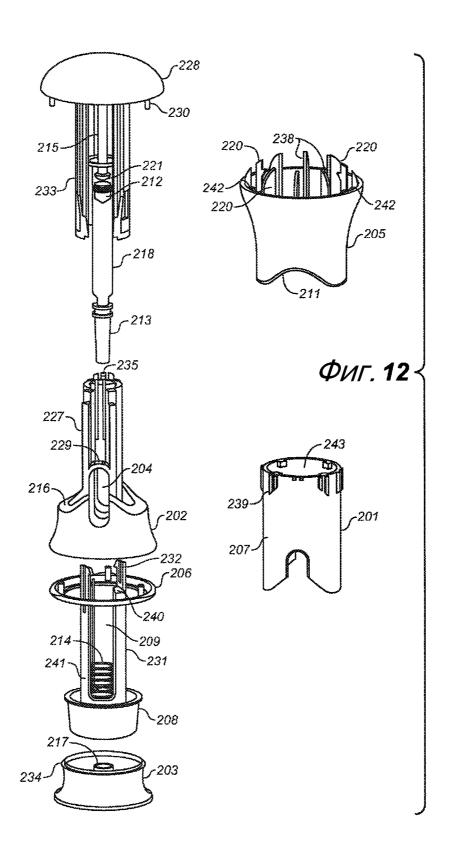

Фиг. 7

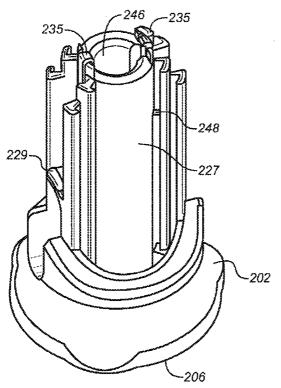


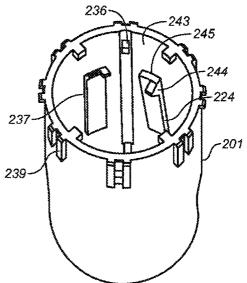
Фиг. 9



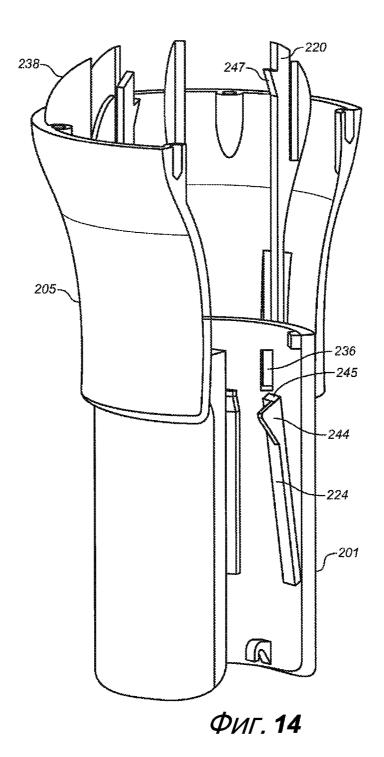


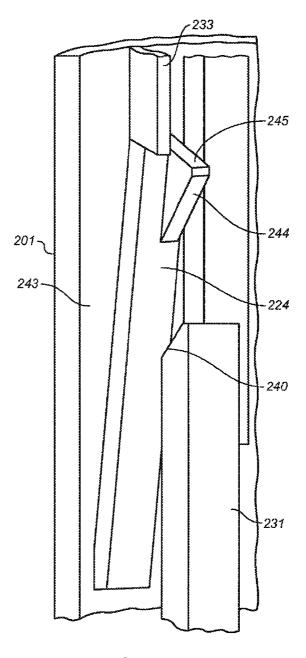



Фиг.11А

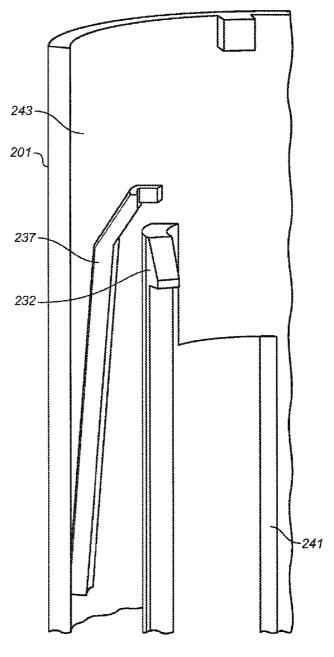


Фиг. 11С

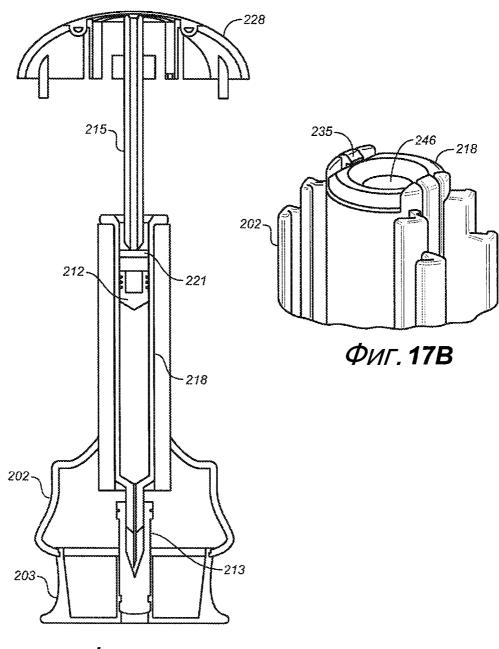


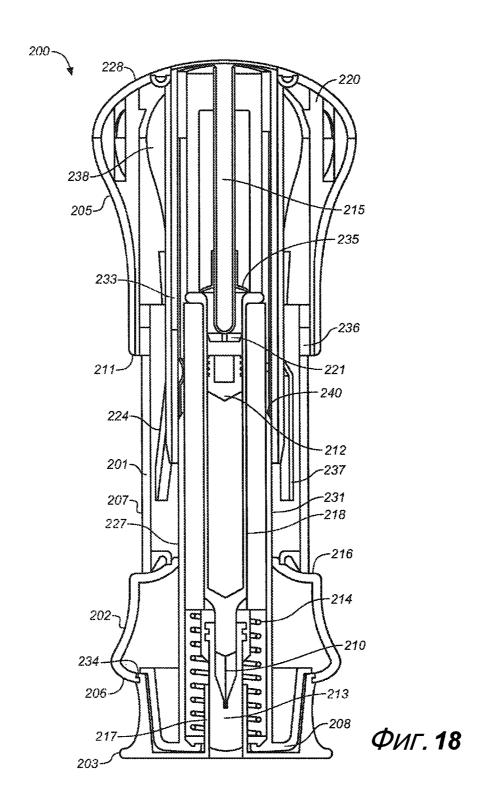


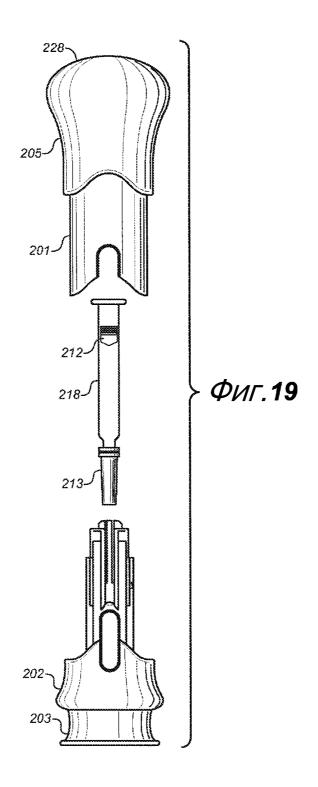
Фиг. 13А

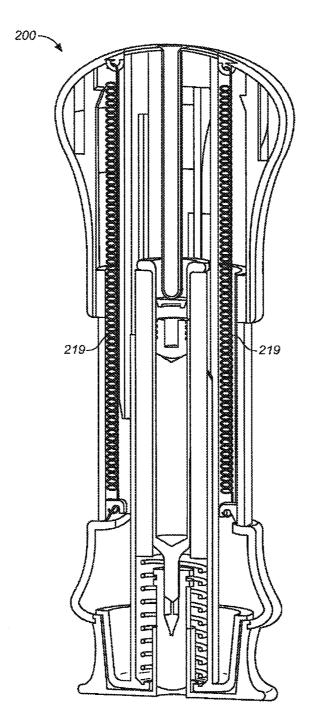


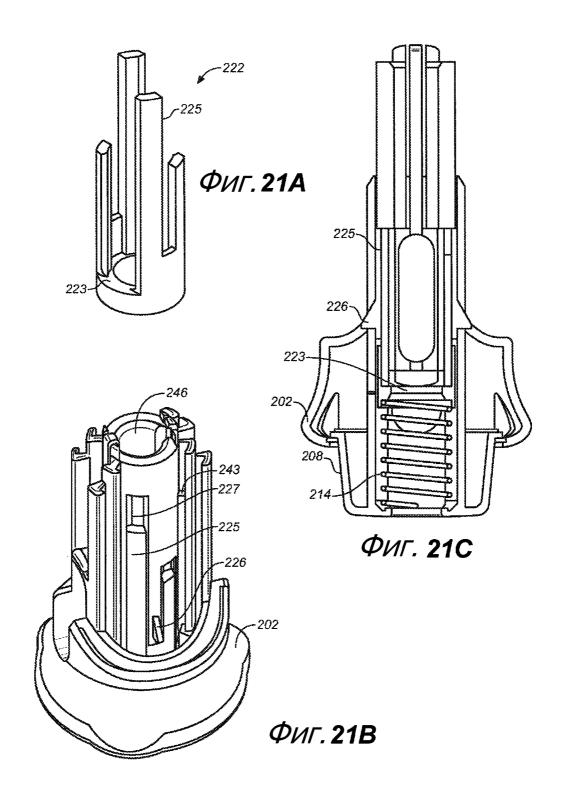
Фиг. 13В




Фиг. 15




Фиг.16


Фиг. 17А

Фиг. 20

