- (43) Дата публикации заявки 2022.05.16
- (22) Дата подачи заявки 2020.08.18

- **(51)** Int. Cl. *C07H 1/00* (2006.01) *C07H 15/207* (2006.01)
- (54) СПОСОБ ПОЛУЧЕНИЯ ПРОМЕЖУТОЧНОГО СОЕДИНЕНИЯ ДЛЯ ИНГИБИТОРА Е-СЕЛЕКТИНА
- (31) 62/889,326
- (32) 2019.08.20
- (33) US
- (86) PCT/US2020/046742
- (87) WO 2021/034796 2021.02.25
- (71) Заявитель: ГЛИКОМИМЕТИКС, ИНК. (US)
- (72) Изобретатель:

Фланнер Хенри Х., Питерсон Джон М., Саркар Арун К., Магнани Джон Л. (US), Оссвальд Герд, Швицер Даниэль, Ланц Марк (CH), Киас Андреас Хельмут Бернд (DE)

- (74) Представитель: Медведев В.Н. (RU)
- (57) Обеспечивают способ получения промежуточного соединения, которое является пригодным в получении ингибиторов Е-селектина. Также обеспечивают подходящие промежуточные соединения, получаемые данным способом.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

2420-573416EA/55

СПОСОБ ПОЛУЧЕНИЯ ПРОМЕЖУТОЧНОГО СОЕДИНЕНИЯ ДЛЯ ИНГИБИТОРА Е-СЕЛЕКТИНА

По данной заявке испрашивается приоритет по 35 кодексу США § 119(e) предварительной патентной заявки США № 62/889326, поданной 20 августа 2019, которая включена в настоящее изобретение с помощью ссылки во всей своей полноте.

Настоящее изобретение обеспечивает способ получения промежуточного соединения, которое является пригодным в синтезе ингибиторов Е-селектина. Также настоящее изобретение обеспечивает подходящие промежуточные соединения, получаемые при осуществлении данного способа. Данный класс соединений описан, например, в патентах США № 9796745 и 9867841, патентных заявках США № 15/025730, 15/531951, 16/081275, 16/323685 и 16/303852, и РСТ международной заявке № РСТ/US2018/067961.

Селектины представляют собой группу структурно сходных рецепторов клеточной поверхности, важных для опосредования связывания лейкоцитов с эндотелиальными клетками. Данные белки представляют собой мембранные белки 1 типа и состоят из аминоконцевого лектинового домена, домена, подобного эпидермальному фактору роста (EGF), переменного количества повторов, связанных с рецептором к компонентам комплемента, области, охватывающей гидрофобный домен, и цитоплазматического домена. Связывающие взаимодействия, по-видимому, опосредованы контактом лектинового домена селектинов и различных углеводных лигандов.

Известны три селектина: Е-селектин, Р-селектин и L-селектин. Е-селектин находится на поверхности активированных эндотелиальных клеток, выстилающих внутреннюю стенку капилляров. Е-селектин связывается с углеводным сиалил-Льюисом X (sLe^x), который представлен в виде гликопротеина или гликолипида на поверхности некоторых лейкоцитов (моноцитов и нейтрофилов) и помогает данным клеткам прикрепляться к стенкам капилляров в тех местах, где окружающие ткани инфицированы или повреждены; и Е-селектин также связывается с сиалил-Льюисом A (sLe^a), который экспрессируется на многих опухолевых клетках. Р-селектин экспрессируется на воспаленном эндотелии и тромбоцитах, а также распознает sLe^x и sLe^a, но также содержит второй сайт, взаимодействующий с сульфатированным тирозином. Экспрессия Е-селектина и Р-селектина обычно повышается при инфицировании или повреждении ткани, прилегающей к капилляру. L-селектин экспрессируется на лейкоцитах. Межклеточная адгезия, опосредованная селектинами, является примером функции, опосредованной селектинами.

Хотя селектин-опосредованная клеточная адгезия необходима для борьбы с инфекцией и разрушения чужеродного материала, существуют ситуации, в которых данная клеточная адгезия является нежелательной или чрезмерной, приводя к повреждению ткани вместо восстановления. Например, многие патологии (такие как аутоиммунные и

воспалительные заболевания, шоковые и реперфузионные повреждения) связаны с аномальной адгезией лейкоцитов. Данная аномальная клеточная адгезия также может играть роль в отторжении трансплантата. Кроме того, некоторые циркулирующие раковые клетки, по-видимому, применяют воспалительный механизм для связывания с активированным эндотелием. В данных обстоятельствах может быть желательной модуляция селектин-опосредованной межклеточной адгезии.

Настоящее изобретение относится к новому способу получения соединения **15**, промежуточного соединения, которое является пригодным в получении ингибиторов Еселектина.

КРАТНОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фигуры 1a и 1b показывают получение соединения 15.

Фигура 2 показывает наблюдаемую порошковую рентгенограмму (XRPD) кристаллического соединения **14**.

Фигура 3 показывает кривую термогравиметрического анализа (ТГА) кристаллического соединения **14**.

Фигура 4 показывает термограмму дифференциальной сканирующей калориметрии (ДСК) кристаллического соединения **14**.

В некоторых вариантах осуществления, обеспечивают способ получения соединения 15, где указанный способ включает гидрирование соединения 14.

В некоторых вариантах осуществления, гидрирование соединения **14** включает применение H₂ и Pd/C. В некоторых вариантах осуществления, гидрирование соединения **14** проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель выбран из спиртов. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой 2-пропанол. В некоторых вариантах осуществления, по меньшей мере, один растворитель выбран из сложных и простых эфиров. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой THF. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой воду. В некоторых вариантах

осуществления, гидрирование соединения 14 проводят в присутствии, по меньшей мере, два растворителя. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой 2-пропанол и ТНГ. В некоторых вариантах осуществления, гидрирование соединения 14 проводят в присутствии, по меньшей мере, трех растворителей. В некоторых вариантах осуществления, по меньшей мере, три растворителя представляют собой 2-пропанол, ТНГ, и воду.

В некоторых вариантах осуществления, способ получения соединения 15 включает МеО-тритильное расшепление соединения 13, получая соединение 14.

В некоторых вариантах осуществления, МеО-тритильное расщепление соединения 13 включает применение, по меньшей мере, одной кислоты. В некоторых вариантах осуществления, по меньшей мере, одна кислота выбрана из неорганических кислот. В некоторых вариантах осуществления, по меньшей мере, одна кислота выбрана из органических кислот. В некоторых вариантах осуществления, по меньшей мере, одна кислота представляет собой хлористоводородную кислоту. В некоторых вариантах осуществления, по меньшей мере, одна кислота выбрана из трифторуксусной кислоты, трихлоруксусной кислоты, муравьиной кислоты, п-толуолсульфокислоты и метансульфокислоты. В некоторых вариантах осуществления, по меньшей мере, одна кислота представляет собой трихлоруксусную кислоту.

В некоторых вариантах осуществления, МеО-тритильное расшепление соединения 13 проводят в присутствии, по меньшей мере, один растворитель выбран из спиртов. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой метанол. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой воду. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой воду. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой дихлорметан. В некоторых вариантах осуществления, меО-тритильное расшепление соединения 13 проводят в присутствии, по меньшей мере, два растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой дихлорметан и метанол.

В некоторых вариантах осуществления, соединение **14** очищают способом, включающим хроматографию на силикагеле. В некоторых вариантах осуществления, хроматографию на силикагеле проводят в присутствии н-гептана. В некоторых вариантах осуществления, хроматографию на силикагеле проводят в присутствии этилацетата. В некоторых вариантах осуществления, хроматографию на силикагеле проводят в

присутствии н-гептана и этилацетата.

В некоторых вариантах осуществления, соединение 14 является кристаллическим. В некоторых вариантах осуществления, кристаллизацию соединения 14 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель выбран из спиртов. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой 2-пропанол. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется палочковидной морфологией.

В некоторых вариантах осуществления, кристаллическое соединение **14** характеризуется Порошковой рентгенограммой (XRPD), содержащей сигналы в одном или более из следующих мест:

положение	межатомное
[°2Th.]	расстояние [Å]
4,8	18,3
6,4	13,9
7,3	12,2
7,9	11,1
9,7	9,2
10,5	8,4
11,2	7,9
11,9	7,4
12,4	7,1
15,2	5,8
15,7	5,7
16,8	5,3
17,7	5,0
18,0	4,9
18,9	4,7
19,2	4,6
19,6	4,5

положение	межатомное
[°2Th.]	расстояние [Å]
20,2	4,4
20,5	4,3
20,8	4,3
21,7	4,1
21,8	4,1
22,4	4,0
22,9	3,9
23,5	3,8
23,9	3,7
24,9	3,6
25,8	3,5
26,8	3,3
27,7	3,2
29,1	3,1
31,4	2,8
33,9	2,6

В некоторых вариантах осуществления, кристаллическое соединение **14** характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, один сигнал, выбранный из сигналов при межатомных расстояниях $13,9\pm0,2$, $11,1\pm0,2$, $12,2\pm0,2$, $7,1\pm0,2$, $4,6\pm0,2$ и $4,9\pm0,2$. В некоторых вариантах осуществления, кристаллическое соединение **14** характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, два сигнала, выбранные из сигналов при межатомных расстояниях $13,9\pm0,2$, $11,1\pm0,2$, $12,2\pm0,2$, $7,1\pm0,2$, $4,6\pm0,2$ и $4,9\pm0,2$. В некоторых вариантах

осуществления, кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, три сигнала, выбранные из сигналов при межатомных расстояниях °f 13,9 \pm 0,2, 11,1 \pm 0,2, 12,2 \pm 0,2, 7,1 \pm 0,2, 4,6 \pm 0,2 и 4,9±0,2. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, четыре сигнала, выбранные из сигналов при межатомных расстояниях 13.9 ± 0.2 , 11.1 ± 0.2 , $7,1\pm0,2,$ $4,6\pm0,2$ и $4,9\pm0,2.$ В некоторых вариантах осуществления, $12,2\pm0,2$ кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, сигналы при межатомных расстояниях 13.9 ± 0.2 , 11.1 ± 0.2 , $12,2\pm0,2,7,1\pm0,2,4,6\pm0,2$ и $4,9\pm0,2$.

некоторых вариантах осуществления, кристаллическое соединение характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, один сигнал, выбранный из сигналов при углах 2 тета 19.2 ± 0.2 , 18.0 ± 0.2 , 12.4 ± 0.2 , 7.9 ± 0.2 , $7,3\pm0,2$ и $6,4\pm0,2$. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, два сигнала, выбранные из сигналов при углах 2 тета 19.2 ± 0.2 , 18.0 ± 0.2 , 12.4 ± 0.2 , 7.9 ± 0.2 , $7,3\pm0,2$ и $6,4\pm0,2$. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, три сигнала, выбранные из сигналов при углах 2 тета $19,2\pm0,2,\ 18,0\pm0,2,\ 12,4\pm0,2,\ 7,9\pm0,2,$ $7,3\pm0,2$ и $6,4\pm0,2$. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, четыре сигнала, выбранные из сигналов при углах 2 тета 19.2 ± 0.2 , 18.0 ± 0.2 , 12.4 ± 0.2 , $7,9\pm0,2$, $7,3\pm0,2$ и $6,4\pm0,2$. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется Порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, сигналы при углах 2 тета 19.2 ± 0.2 , 18.0 ± 0.2 , 12.4 ± 0.2 , 7.9 ± 0.2 , 7.3 ± 0.2 и $6,4\pm0,2$.

кристаллическое соединение 14 некоторых вариантах осуществления, характеризуется ДСК кривой с началом эндотермы при приблизительно 170°C. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется ДСК кривой с приблизительно 171°C. некоторых эндотермическим пиком при осуществления, кристаллическое соединение 14 характеризуется ДСК кривой с началом эндотермы при приблизительно 170°C и пиком при приблизительно 171°C. В некоторых вариантах осуществления, кристаллическое соединение 14 характеризуется ДСК кривой с началом эндотермы при 169,7°C и пиком при 171,4°C. В некоторых вариантах осуществления, кристаллическое соединение 14 имеет потерю массы приблизительно меньше чем 2% по весу вплоть до 140°C при анализе термогравиметрическим анализом. В некоторых вариантах осуществления, кристаллическое соединение 14 имеет потерю массы 1% приблизительно меньше чем ПО весу вплоть до 140°C при анализе В термогравиметрическим анализом. некоторых вариантах осуществления, кристаллическое соединение 14 имеет потерю массы приблизительно 0,7% по весу вплоть

до 140°C при анализе термогравиметрическим анализом.

В некоторых вариантах осуществления, способ получения соединения **15** включает отщепление alloc и ацилирование соединения **12**, получая соединение **13**.

В некоторых вариантах осуществления, отщепление alloc/ацилирование соединения 12 включает применение, по меньшей мере, одного основания. В некоторых вариантах осуществления, по меньшей мере, одно основание представляет собой 4-метилморфолин. В некоторых вариантах осуществления, отщепление alloc/ацилирование соединения 12 включает применение, по меньшей мере, одной кислоты. В некоторых вариантах осуществления, по меньшей мере, одна кислота представляет собой уксусную кислоту. В некоторых вариантах осуществления, отщепление alloc/ацилирование соединения 12 включает применение, по меньшей мере, одного ангидрида. В некоторых вариантах осуществления, по меньшей мере, одного ангидрида. В некоторых вариантах осуществления, по меньшей мере, одного ангидрида. В некоторых вариантах осуществления, по меньшей мере, один ангидрид представлчяет собой уксусный ангидрид.

В некоторых вариантах осуществления, отщепление alloc/ацилирование соединения 12 включает применение, по меньшей мере, одного фосфина. В некоторых вариантах осуществления, по меньшей мере, один фосфин представляет собой трифенилфосфин. В некоторых вариантах осуществления, отщепление alloc/ацилирование соединения 12 включает применение, по меньшей мере, одного катализатора. В некоторых вариантах осуществления, по меньшей мере, один катализатор представляет собой $Pd[(C_6H_5)_3P]_4$.

В некоторых вариантах осуществления, отщепление alloc/ацилирование соединения **12** проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой дихлорметан. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой толуол.

В некоторых вариантах осуществления, способ получения соединения 15 включает О-алкилирование соединения 9 соединением 11, получая соединение 12.

В некоторых вариантах осуществления, О-алкилирование соединения 9 включает применение, по меньшей мере, одного алкилолова. В некоторых вариантах осуществления, по меньшей мере, одно алкилолово представляет собой оксид дибутилолова(IV). В некоторых вариантах осуществления, О-алкилирование соединения 9 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой ацетонитрил. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой метанол. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой толуол. В некоторых вариантах осуществления, О-алкилирование соединения 9 проводят в присутствии, по меньшей мере, два растворителя представляют собой толуол и ацетонитрил. В некоторых вариантах осуществления, О-алкилирование соединения 9 включает, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, одного фторида.

В некоторых вариантах осуществления, способ получения соединения 15 включает метокси-тритилирование соединения 8, получая соединение 9.

В некоторых вариантах осуществления, метокси-тритилирование соединения 8 включает применение 4-МеО-тритил-С1. В некоторых вариантах осуществления, метокситритилирование соединения 8 включает применение, по меньшей мере, одного основания. В некоторых вариантах осуществления, по меньшей мере, одно основание выбрано из DABC°, пиридина и 2,6-лутидина. В некоторых вариантах осуществления, метокситритилирование соединения 8 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой дихлорметан. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой Ме-ТНF. В некоторых вариантах осуществления, метокси-тритилирование соединения 8 проводят в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой Ме-ТНF и дихлорметан.

В некоторых вариантах осуществления, соединение 9 осаждают. В некоторых

вариантах осуществления, соединение 9 осаждают в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой MeTHF. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой н-гептан. В некоторых вариантах осуществления, соединение 9 осаждают в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой MeTHF и н-гептан.

В некоторых вариантах осуществления, способ получения соединения 15 включает деацетилирование соединения 7, получая соединение 8.

В некоторых вариантах осуществления, деацетилирование соединения 7 включает применение, по меньшей мере, одного основания. В некоторых вариантах осуществления, по меньшей мере, одно основание выбрано из алкоксидов. В некоторых вариантах осуществления, по меньшей мере, одно основание представляет собой NaOMe. В некоторых вариантах осуществления, деацетилирование соединения 7 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой метанол. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой метилацетат. В некоторых вариантах осуществления, деацетилирование соединения 7 проводят в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой метанол и метилацетат.

В некоторых вариантах осуществления, соединение **8** является кристаллическим. В некоторых вариантах осуществления, соединение **8** кристаллизуется в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой 2-метил-2-бутанол. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой н-гептан. В некоторых вариантах осуществления, соединение **8** кристаллизуется в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой 2-метил-2-бутанол и н-гептан.

В некоторых вариантах осуществления, соединение 8 кристаллизуется в виде сольвата этанола. В некоторых вариантах осуществления, соединение 8 кристаллизуется в виде сольвата этанола в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой этанол.

В некоторых вариантах осуществления, соединение **8** кристаллизуется в виде сольвата этанола в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой этанол и воду. В некоторых вариантах осуществления, кристаллическое соединение **8** представляет собой сольват этанола. В некоторых вариантах осуществления, сольват этанола кристаллического соединения **8** характеризуется палочковидными кристаллами.

В некоторых вариантах осуществления, способ получения соединения 15 включает гликозилирование соединения 4 соединением 6, получая соединение 7.

В некоторых вариантах осуществления, гликозилирование соединения 4 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой толуол. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой дихлорметан. В некоторых вариантах осуществления, гликозилирование соединения 4 проводят в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой толуол и дихлорметан. В некоторых вариантах осуществления, гликозилирование соединения 4 включает применение, по меньшей мере, одной кислоты. В некоторых вариантах осуществления, меньшей мере, представляет ПО одна кислота трифторметансульфокислоту.

В некоторых вариантах осуществления, способ получения соединения 6 включает активацию соединения 5.

В некоторых вариантах осуществления, активация соединения 5 включает применение, по меньшей мере, одного фосфита. В некоторых вариантах осуществления, по меньшей мере, один фосфит выбран из хлорфосфитов. В некоторых вариантах осуществления, по меньшей мере, один фосфит представляет собой диэтилхлорфосфит. В некоторых вариантах осуществления, активацию соединения 5 проводят в присутствии, по

меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой толуол. В некоторых вариантах осуществления, активацию соединения 5 проводят в присутствии, по меньшей мере, одного органического основания. В некоторых вариантах осуществления, по меньшей мере, одно органическое основание представляет собой триэтиламин.

В некоторых вариантах осуществления, способ получения соединения **15** включает TBDMS-деблокирование соединения **3**, получая соединение **4**.

В некоторых вариантах осуществления, ТВDMS-деблокирование соединения **3** включает применение, по меньшей мере, одного фторида. В некоторых вариантах осуществления, по меньшей мере, один фторид представляет собой ТВАГ. В некоторых вариантах осуществления, ТВDMS-деблокирование соединения **3** проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой ТНГ. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой АСN. В некоторых вариантах осуществления, ТВDMS-деблокирование соединения **3** проводят в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой ТНГ и АСN.

В некоторых вариантах осуществления, соединение 4 кристаллизуется. В некоторых вариантах осуществления, соединение 4 кристаллизуется в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой дихлорметан. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой метанол. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой воду. В некоторых вариантах осуществления, соединение 4 кристаллизуется в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой воду и метанол.

В некоторых вариантах осуществления, способ получения соединения 15 включает фукозилирование соединения 1 соединением 2b, получая соединение 3.

ТВОМЅО СО
$$_2$$
Ме + О СО $_2$ Ме фукозилирование ВпО ОВп $_3$ СО $_2$ Ме $_4$ СО $_2$ Ме $_4$ СО $_2$ Ме $_5$ СО $_5$ Ме $_5$ Ме $_5$ СО $_5$ Ме $_5$ Ме $_5$ СО $_5$ Ме $_5$ Ме

В некоторых вариантах осуществления, фукозилирование соединения 1 включает применение ТВАВг. В некоторых вариантах осуществления, фукозилирование соединения 1 включает применение, по меньшей мере, одного основания. В некоторых вариантах осуществления, по меньшей мере, одно основание представляет собой DIPEA. В некоторых вариантах осуществления, фукозилирование соединения 1 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой МеТНГ. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой дихлорметан. В некоторых вариантах осуществления осуществления, фукозилирование соединения 1 проводят в присутствии, по меньшей мере, двух растворителей. В некоторых вариантах осуществления, по меньшей мере, два растворителя представляют собой МеТНГ и дихлорметан.

В некоторых вариантах осуществления, способ получения соединения **2b** включает реакцию соединения **2a** с Br₂. В некоторых вариантах осуществления, реакцию соединения **2a** с Br₂ проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой циклогексан.

В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, одну из следующих стадий:

- (а) гидрирование соединения 14;
- (b) МеО-тритильное расщепление соединения 13;
- (c) отщепление alloc/ацилирование соединения 12;
- (d) О-алкилирование соединения 9;
- (е) метокси-тритилирование соединения 8;
- (f) деацетилирование соединения 7;
- (g) гликозилирование соединения 4;
- (h) TBDMS-деблокирование соединения 3; и
- (і) фукозилирование соединения 1.

В некоторых вариантах осуществления, стадия d выше включает О-алкилирование соединения 9 соединением 11, получая соединение 12. В некоторых вариантах осуществления, стадия g выше включает гликозилирование соединения 4 соединением 6, получая соединение 7.

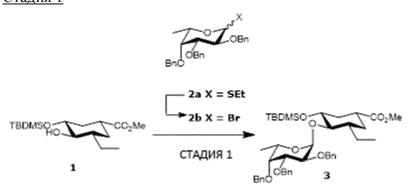
В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, две стадии, выбранные из стадий (а)-(і) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, три стадии, выбранные из стадий (а)-(і) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, четыре стадии, выбранные из стадий (а)-(і) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, пять стадий, выбранные из стадий (а)-(і) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере,

шесть стадий, выбранные из стадий (a)-(i) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, семь стадий, выбранные из стадий (a)-(i) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает, по меньшей мере, восемь стадий, выбранные из стадий (a)-(i) выше. В некоторых вариантах осуществления, способ получения соединения 15 включает каждую из стадий (a)-(i) выше.

В некоторых вариантах осуществления, кристаллизацию соединения 15 проводят в присутствии, по меньшей мере, одного растворителя. В некоторых вариантах осуществления, по меньшей мере, один растворитель выбран из спиртов. В некоторых вариантах осуществления, по меньшей мере, один растворитель представляет собой этанол. В некоторых вариантах осуществления, кристаллизацию соединения 15 проводят в присутствии, по меньшей мере, двух растворитель. В некоторых вариантах осуществления, кристаллизацию соединения 15 проводят в присутствии, по меньшей мере, два растворителя представляют собой этанол и воду. В некоторых вариантах осуществления, кристаллическое соединение 15 представляет собой гидрат сольвата этанола. В некоторых вариантах осуществления, гидрат сольвата этанола кристаллического соединения 15 характеризуется пластинчатыми кристаллами.

Соединение 15 можно получить согласно общей реакционной схеме, показанной на фигурах 1а и 1b. Ясно, что специалист в данной области техники способен получить данные соединения аналогичными способами или комбинируя другие способы, известные специалисту в данной области техники. В общем, исходные компоненты можно получить из источников, таких как Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI и Fluorochem US и т.д. и/или получить согласно источникам, известным специалисту в данной области техники (смотри, например, Advanced organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) и/или получить, как описано в настоящем изобретении.

Реагенты. аналогичные описанным настоящем изобретении, онжом идентифицировать с помощью индексов известных химических веществ, подготовленных Химической реферативной службой Американского химического общества, которые доступны в большинстве публичных и университетских библиотек, а также с помощью онлайновых баз данных (Американская Химическое общество, Вашингтон, округ Колумбия, можно связаться для получения более подробной информации). Химические вещества, которые являются известными, но не доступными в каталогах, могут быть получены специализированными фирмами по синтезу химических веществ, где многие из фирм, поставляющих стандартные химические вещества (например, перечисленные выше), предоставляют услуги синтеза по индивидуальному заказу. Ссылкой на получение и выбор фармацевтических солей настоящего изобретения является Р. Н. Stahl & C. G. Wermuth «Handbook of Pharmaceutical Salts», Verlag Helvetica Chimica Acta, Zurich, 2002.


Способы, известные специалисту в данной области техники, мождно найти в различных справочниках, статьях и базах данных. Подходящие справочники и монографии,

в которых подробно описывают синтез реагентов, применяемых в получении соединений настоящего изобретения, или в которых даны ссылки на статьи, описывающие получение, включают, например, "Synthetic organic Chemistry," John Wiley & Sons, Inc., New York; S. R. Sandler et al., "organic Functional Group Preparations," 2nd Ed., Academic Press, New York, 1983; H. O. House, "Modern Synthetic Reactions", 2nd Ed., W. A. Benjamin, Inc. Menlo Park, Calif. 1972; T. L. Gilchrist, "Heterocyclic Chemistry", 2nd Ed., John Wiley & Sons, New York, 1992; J. March, "Advanced organic Chemistry: Reactions, Mechanisms and Structure," 4th Ed., Wiley-Interscience, New York, 1992. Дополнительные подходящие справочники и монографии, в которых подробно описывают синтез реагентов, применяемых в получении соединений настоящего изобретения, или в которых даны ссылки на статьи, описывающие получение, включая, например, Fuhrhop, J. and Penzlin G. "organic Synthesis: Concepts, Methods, Starting Materials", Second, Revised and Enlarged Edition (1994) John Wiley & Sons ISBN: 3-527-29074-5; Hoffman, R.V. "organic Chemistry, An Intermediate Text" (1996) Oxford University Press, ISBN 0-19-509618-5; Larock, R. C. "Comprehensive organic Transformations: A Guide to Functional Group Preparations" 2nd Edition (1999) Wiley-VCH, ISBN: 0-471-19031-4; March, J. "Advanced organic Chemistry: Reactions, Mechanisms, and Structure" 4th Edition (1992) John Wiley & Sons, ISBN: 0-471-60180-2; Otera, J. (editor) "Modern Carbonyl Chemistry" (2000) Wiley-VCH, ISBN: 3-527-29871-1; Patai, S. "Patai's 1992 Guide to the Chemistry of Functional Groups" (1992) Interscience ISBN: 0-471-93022-9; Quin, L.D. et al. "A Guide to organophosphorus Chemistry" (2000) Wiley-Interscience, ISBN: 0-471-31824-8; Solomons, T. W. G. "organic Chemistry" 7th Edition (2000) John Wiley & Sons, ISBN: 0-471-19095-0; Stowell, J.C., "Intermediate organic Chemistry" 2nd Edition (1993) Wiley-Interscience, ISBN: 0-471-57456-2; "Industrial organic Chemicals: Starting Materials and Intermediates: An Ullmann's Encyclopedia" (1999) John Wiley & Sons, ISBN: 3-527-29645-X, в 8 томах; "organic Reactions" (1942-2000) John Wiley & Sons, B 55 TOMAX; II "Chemistry of Functional Groups" John Wiley & Sons, B 73 TOMAX.

ПРИМЕРЫ

ПРИМЕР 1: ПОЛУЧЕНИЕ соединения 15

Стадия 1

Соединение 3: 39,34 г соединения **2a** (1,30 экв) растворяли в циклогексане (8 об.), отгоняли (6 об.) при $Ta=55^{\circ}C/200$ мбар, добавляли циклогексан (5 об.) и снова отгоняли (5 об.) при $Ta=55^{\circ}C/230-210$ мбар. DCM (2,2 об.) добавляли и раствор охлаждали до $Ti=0^{\circ}C$.

Раствор брома (1,20 экв) в DCM (0,4 об.) добавляли в течение 67 мин при Ti=0-5°C и перемешивали в течение следующих 55 мин при Ti 0°C перед добавлением циклогексана (1,5 экв. добавляли в течение 55 мин при Ti=0-5°C. Смесь (соединение **2b** в DCM) перемешивали в течение следующих 40 мин при 0°C.

DIPEA (3,0 экв), TBABr (1,0 экв) и MeTHF (2 об.) добавляли при $Ti=0^{\circ}C$. Затем раствор соединения **1** (20,02 г/1,0 экв.) в DCM (2 об.) добавляли в течение 10 мин при $Ti=0-1^{\circ}C$. Емкость для добавления промывали DCM (1 об.), и промывку добавляли к реакционной смеси. Реакционную смесь нагревали в течение 120 мин до $Ti=25^{\circ}C$ и продолжали перемешивание при $Ti=25^{\circ}C$ в течение 120 ч.

Воду (7 об.) добавляли при $Ti=25^{\circ}C$, фазы разделяли, и водную фазу повторно экстрагировали DCM (2 об.) (рH \sim 7 AP). Объединенные органические слои последовательно промывали 15% водн. лимонной кислотой (5 об.), 7,4% водн. NaHCO₃ (5 об.) и водой (5 об.) (рH \sim 7 конечного AP). Объем органического слоя определяли ($^{\circ}P$ 4#1 \sim 260 мл) и концентрировали до 10 об. при $Ta=45^{\circ}C/500$ мбар. pH концентрата контролировали (рH 4-5) и DIPEA (0,2 экв) добавляли, получая pH \sim 9. После регулирования pH проводили отгонку, и 4 об. растворителя отгоняли при $Ta=60^{\circ}C/500-190$ мбар. Добавляли ацетонитрил (7 об.) и 6 об. отгоняли при $Ta=55^{\circ}C/200-190$ мбар.

Стадия 2

Соединение 4: 1М ТВАF в ТНF (2,2 экв) добавляли при $Ti \sim 20^{\circ}C$ в течение 10 мин, и реакционную смесь (красный раствор) нагревали до $Ti=55^{\circ}C$ и перемешивали 19 ч при $Ti=55^{\circ}C$.

4 об. растворителя отгоняли при Ta=55°C/240-190 мбар. Добавляли DCM (5 об.) и воду (5 об.), фазы разделяли и водную фазу повторно экстрагировали DCM (2 об.). Объединенные органические слои последовательно промывали 3,7% водн. NaHCO₃ (5 об.) и водой (5 об.). Объем органических слоев определяли (230 мл) и концентрировали до 6 об. Объема концентрата при Ta=55°C/580-420 мбар (-> раствор). Добавляли метанол (12 об.), получая в результате густую суспензию. 4 об. отгоняли при Ta=58°C-70°C/480-430 мбар. Суспензию кипятили с обратным холодильником при Ta=80°C/атм. (Ti ~60°C), получая прозрачный раствор. Добавляли воду (1 об.) в течение 17 мин при Ta=75°C. Суспензию охлаждали в течение приблизительно 85 мин до Ti=20°C.

Суспензию перемешивали 4 ч 20 мин при $Ti=20^{\circ}$ С и затем фильтровали. Остаток на фильтре промывали MeOH/вода 6:1 (3 об.), MeOH/вода 4:1 (1 об.) и метил-циклогексан (4 об.). Сушка на нутч-фильтре в вакууме и упаривание на роторе при $Ta=45^{\circ}$ С до содержания сухого веса 99,56% DC. 28,36 г нескорректированная/28,24 г скорректированная на ПМВ (У скорректированный на ПМВ: 72,1%).

¹Н ЯМР (хлороформ-d) δ: 7,27-7,42 (м, 15H), 4,95-5,02 (м, 2H), 4,94-5,03 (м, 2H), 4,73-4,87 (м, 2H), 4,67 (дд, Ј=14,1, 11,5 Γ ц, 2H), 4,62-4,72 (м, 2H), 4,06-4,14 (м, 2H), 3,96 (дд, Ј=10,1, 2,8 Γ ц, 1H), 3,64-3,73 (м, 4H), 3,38-3,47 (м, 1H), 2,98 (дд, Ј=10,3, 8,5 Γ ц, 1H), 2,35 (тт, Ј=12,6, 3,2 Γ ц, 1H), 2,23 (тдд, Ј=7,9, 4,7, 2,9 Γ ц, 1H), 1,99-2,10 (м, 2H), 1,33-1,56 (м, 2H), 1,07-1,20 (м, 5H), 0,79 (т, Ј=7,5 Γ ц, 3H). MS: рассчитанная для $C_{37}H_{46}O_8$ =618,76, найденная m/z =641,3 (М+Na⁺).

Стадия 3

Соединение 6: к соединению 5 (1,50 экв. скорректированные, 45,32 г нескорректированная/42,47 г скорректированная) добавляли толуол (8 об.), затем 5 об. растворителя отгоняли при $Ta=55^{\circ}C/130$ -60 мбар. Добавляли толуол (2 об.), и 2 об. растворителя отгоняли при $Ta=55^{\circ}C$. Концентрат разбавляли толуолом (5,5 об.). После охлаждения до Ti=0-5°C добавляли триэтиламин (2,05 экв). Добавляли диэтилхлорфосфит (0,93 экв) при Ti=0-3°C в течение 30 мин к реакционной смеси (экзотермическая реакция). Смесь перемешивали при Ti=0°C в течение 30 мин. Добавляли вторую порцию диэтилхлорфосфита (0,13 экв) при Ti=0-5°C в течение 10 мин. Смесь перемешивали при Ti=0°C в течение 30 мин. Добавляли третью порцию диэтилхлорфосфита (0,09 экв) при Ti=0-5°C в течение 7 мин. Смесь перемешивали при Ti=0°C в течение 30 мин.

Реакционную смесь отфильтровывали от твердых веществ (TEAxHCl) при $Ti=1^{\circ}C$ в атмосфере азота и промывали холодным толуолом (3 об.). Фильтрат фильтровали через через тонкий 0,2 мкм фильтрующий наконечник. Фильтрат фильтровали второй раз через тонкий 0,2 мкм фильтрующий наконечник. Фильтрат хранили в течение ночи при $Ta=4^{\circ}C$ и затем фильтровали в третий раз через 0,2 мкм фильтрующий наконечник. Раствор фосфита хранили в холодильнике для последующего эксперимента по гликозилированию.

Соединение 7: 126,41 г раствора гликозилфосфита (33,1 ммоль соединения **6**, 1,28 экв.) помещали в 500 мл колбу и загружали 16,03 г соединения **4** (15,95 г, 25,78 ммоль) и 32 мл (2 об.) толуола. Раствор концентрировали на роторном испарителе при Tj=50°C/100-4 мбар, удаляя 175 мл (\sim 11 об.) толуола. Полученный в результате твердый остаток

растворяли в 96 мл (6 об.) DCM и переносили в 3 -горлую колбу.

Реакцию инициировали добавлением 3,53 г (23,5 ммоль, 0,91 экв.) трифторметансульфокислоты в течение 30 мин при $Ti=-30^{\circ}$ С. Реакцию прекращали через 7,5 ч, добавляя 4,756 г (46,94 ммоль, 1,82 экв.) NEt_3 . Реакционную смесь (184,16 г прозрачный оранжевый раствор) хранили при $T=-20^{\circ}$ С до последующей обработки.

Соединение 8: Погашенную реакционную смесь, содержащую соединение 7, концентрировали отгонкой 5 об. при Ta=55°C/600-100 мбар. Добавляли толуол (4 об.), с последующим добавлением смеси 23,1% NaCl раствора (2,5 об.) и 7,4% NaHCO₃ раствора (2,5 об.). Фазы разделяли, и водный слой (AP 1#1, pH 9) повторно экстрагировали толуолом (5 об.). Объем объединенных органических слоев (°P 1) определяли равным 198 мл. °P 1 концентрировали до объема концентрата 4,3 об. при Ta=58°C/200-79 мбар отгонкой 132 мл растворителя. Концентрат разбавляли метанолом (3,5 об.) и добавляли метилацетат (1 об.). Добавляли NaOMe 30% в MeOH (0,60 экв), и емкость для добавления промывали метанолом (0,5 об.). Реакционную смесь перемешивали 3 ч при Ti=20°C.

Реакционную смесь гасили добавлением уксусной кислоты (0,60 экв) в течение 5 мин при Ti=20°C, получая pH 5-6. 5 об. растворителя отгоняли при Ta=56°C/300-260 мбар. Добавляли этилацетат (2,5 об.) и 2,5 об. отгоняли при Ta 58° C/200 мбар. Добавляли этилацетат (5 об.), 23,1% NaCl раствор (2,5 об.) и воду (2,5 об.), и после перемешивания фазы разделяли $(-> \text{AP } 2\#1 \text{ pH } 6, ^{\circ}\text{P } 2\#1)$. Водный слой (AP 2#1) повторно экстрагировали этилацетатом (3 об.) $(-> ^{\circ}\text{P } 2\#2)$. Объединенные органические слои промывали 23,1% NaCl раствором (5 об.), и объем органического слоя $(^{\circ}\text{P } 3\#1)$ определяли равным 180 мл.

 $^{\circ}$ Р 3#1 концентрировали до объема концентрата 4,0 об. при Ta=60°C/330-300 мбар отгонкой 116 мл растворителя. Добавляли 2-метил-2-бутанол (5 об.) при Tj=60°C (все еще раствор). 2,75 об. растворителя отгоняли при Tj=67°C/280-195 мбар, получая в результате слегка мутный раствор.

Раствор нагревали до $Ti=70^{\circ}C$ в течение 30 мин. Раствор затем охлаждали до комнатной температуры в течение 100 мин. Начиналось осаждение при Ti приблизительно 33°C. Суспензию перемешивали при $Ti=20^{\circ}C$ в течение 85 мин. Затем добавляли н-гептан (8 об.) при $Ti=20^{\circ}C$ в течение 50 мин, и суспензию охлаждали до $Ti=10^{\circ}C$ в течение 25 мин и перемешивали 3 ч при данной температуре. Фильтровали суспензию (2 мин), промывали остаток на фильтре смесью 2-метил-2-бутанол/н-гептан (0,7 об./1,4 об. при $10^{\circ}C$) и наконец н-гептаном (3 об.), охлажденным до $Ti=10^{\circ}C$. Сушили продукт продукт на нутч-фильтре в

вакууме/азоте в течение ночи и затем на роторном испарителе при $Ta=45^{\circ}C$ в течение 6 ч до содержания сухого веса 97,22%. 17,00 г нескорректированная/16,527 г скорректированная на ПМВ (Y: 73,91%).

 1 Н ЯМР (хлороформ-d) δ 7,23-7,43 (м, 17H), 5,90 (ддт, J=17,2, 10,4, 5,8 Гц, 1H), 5,31 (дкв, J=17,1, 1,5 Гц, 1H), 5,24 (дд, J=10,4, 1,3 Гц, 1H), 5,10 (д, J=3,3 Гц, 1H), 4,59-5,01 (м, 9H), 4,53-4,58 (м, 2H), 4,44 (д, J=7,9 Гц, 1H), 4,00-4,12 (м, 2H), 3,83-3,94 (м, 2H), 3,71-3,82 (м, 4H), 3,68 (с, 3H), 3,32-3,35 (м, 1H), 2,34 (тт, J=12,2, 3,2 Гц, 1H), 2,20 (д, J=13,2 Гц, 1H), 1,91-2,05 (м, 2H), 1,40-1,60 (м, 3H), 1,16-1,30 (м, 4H), 1,12 (д, J=6,6 Гц, 4H), 0,92 (т, J=7,6 Гц, 1H), 0,81 (т, J=7,4 Гц, 3H). МЅ: Рассчитанная для $C_{47}H_{61}NO_{14}$ =863,99; найденная m/z=886,4 (M+Na⁺).

Стадия 5

Соединение 9: соединение 8 (25,00 г) растворяли в DCM (6 об.). Растворитель (4 об.) отгоняли при Tj=50°C/вак. Добавляли DCM (6 об.), и тот же объем растворителя отгоняли. Добавляли DCM (6 об.), и тот же объем растворителя отгоняли. Прозрачный желтоватый концентрат разбавляли DCM (4 об.) и охлаждали до температуры окружающей среды в атмосфере азота. Добавляли 2,6-лутидин (1,8 экв). Добавляли 4-МеО-тритилхлорид (1,03 экв) тремя порциями к реакционной смеси и промывали DCM (0,5 об.) и перемешивали при температуре окружающей среды в течение 1 ч.

Загружали воду (3 об.), с последующим добавлением Me-THF (6 об.), и 6 об. растворителя отгоняли. Добавляли Me-THF (6 об.), и то же количество растворителя отгоняли. Добавляли лимонную кислоту 15% вес/вес (3 об.), и смесь интенсивно перемешивали. Фазы разделяли, и органическую фазу промывали смесью воды (3 об.), соляного раствора (3 об.) и насыщ. водн. NaHCO₃ (1 об.). Фазы разделяли, и рН водной фазы измеряли равной 7. Органическую фазу промывали полуконцентрированным водным NaCl (6 об.), получая 140 мл органической фазы.

Раствор продукта концентрировали до 4 об. удалением отгонкой приблизительно 50 мл растворителя при $Tj=45^{\circ}C/250$ мбар. Концентрат нагревали до $Ti=40^{\circ}C$ и добавляли н-гептан (12 об.) в течение 30 мин при той же температуре. Полученную в результате суспензию нагревали до $Ti=60^{\circ}C$ для растворения корок со стенки колбы и выдерживали при данной температуре в течение 25 мин. Суспензию охлаждали до $20^{\circ}C$ в течение 2 ч и перемешивали при данной температуре в течение ночи. Твердый остаток фильтровали через 250 мл перевернутую фритту Р3. Остаток на фильтре промывали меточником и н-

гептаном (2,3 об.) и сушили в вакууме в атмосфере потока азота в течение 5 ч и дополнительно на роторном испарителе при $Tj=33^{\circ}C$ в течение ночи. 30,03 г нескорректированная/29,89 г скорректированная на ПМВ (Y 93,8% скорректированный).

¹Н ЯМР (хлороформ-d) δ 1Н ЯМР (хлороформ-d) сдвиг: 7,09-7,47 (м, 28H), 6,76-6,82 (м, 2H), 5,83-5,99 (м, 1H), 5,32 (дд, J=17,2, 1,5 Гц, 1H), 5,24 (дд, J=10,3, 1,4 Гц, 1H), 4,77-5,00 (м, 4H), 4,44-4,75 (м, 7H), 4,10-4,21 (м, 2H), 3,98-4,09 (м, 2H), 3,75-3,95 (м, 4H), 3,61-3,70 (м, 6H), 3,54-3,60 (м, 1H), 3,37-3,50 (м, 2H), 3,27-3,37 (м, 2H), 2,15-2,37 (м, 2H), 1,93-2,14 (м, 2H), 1,36-1,56 (м, 2H), 1,05-1,29 (м, 5H), 0,73-0,86 (м, 3H). МS: Рассчитанная для $C_{67}H_{77}NO_{15}$ =1136,33, найденная m/z=1158,5 (M+Na⁺).

Стадия 6

Соединение 11: соединение **10** (40,03 г; 1 вес) растворяли в DCM (4,5 об.). Добавляли DIPEA (2,3 экв), и раствор охлаждали до $Ti=-10^{\circ}C$. Трифторметансульфоновый ангидрид (1,3 экв) загружали при $Ti=-10^{\circ}C$ в течение 43 мин. Капельную воронку промывали DCM (0,5 об.). Темно-коричневую смесь перемешивали при $Ti=-10^{\circ}C$ в течение 150 мин.

Реакционную смесь гасили добавлением 15% водн. лимонной кислоты (4 об.) в течение 25 мин при Ti=-10°C-8°C. Раствор нагревали до температуры окружающей среды. 4,45 об. растворителя отгоняли при Tj=45°C/600-280 мбар. Добавляли толуол (4 об.), и фазы разделяли. Водную фазу экстрагировали толуолом (3 об.), и объединенные органические фазы промывали водой (3 об.), с последующей промывкой соляным раствором (3 об.). Органическую фазу концентрировали до 5,5 об. при Tj=45°C/250-55 мбар отгонкой 155 мл растворителя. Раствор продукта фильтровали через 0,45 мкм найлоновую мембрану и промывали толуолом (0,3 об.), получая в результате темно коричневый раствор продукта (L°D роторным испарителем: 33,56% вес/вес). 183,92 г нескорректированная/61,72 г скорректированная на ПМВ (Y на основе сухой массы: 102,56%).

 1 Н ЯМР (DMSO-d6) δ 7,30-7,47 (м, 6H), 5,25-5,38 (м, 3H), 1,70-1,81 (м, 3H), 1,51-1,69 (м, 5H), 1,28-1,43 (м, 1H), 1,04-1,21 (м, 5H), 0,76-0,99 (м, 3H). МS: рассчитанная для $C_{17}H_{21}F_{3}O_{5}S_{5}=394,41$, найденная m/z=417,0 (M+Na).

Соединение 12: соединение **9** (20,45 г, 1 вес), оксид дибутилолова (IV) (0,37 вес/1,7 экв), метанол (4 об.) и толуол (2 об.) кипятили с обратным холодильником при $Tj=82^{\circ}C$ и перемешивали при кипячении с обратным холодильником в течение 2 ч. Растворитель (3

об.) удаляли отгонкой при $Tj=65^{\circ}C/320$ мбар). Добавляли толуол (3 об.), и раствор перемешивали при кипячении с обратным холодильником при $Tj=82^{\circ}C$ в течение 75 мин. Растворитель (4 об.) удаляли отгонкой при $Tj=65^{\circ}C/400-140$ мбар. Добавляли толуол (3 об.), и растворитель (3 об.) удаляли отгонкой при $Tj=65^{\circ}C/130$ мбар). Добавляли толуол (3 об.), и растворитель (3 об.) удаляли отгонкой при $Tj=65^{\circ}C/105$ мбар).

Ацетонитрил (5 об.) добавляли к концентрату при Ti=20°C. Добавляли соединение 11 в толуоле (2,25 экв.; CA18-0119), фторид цезия (3,0 экв.; F17-04152) и метанол (1,0 экв). Получали смесь воды (0,5 экв) и ацетонитрила (0,5 экв). 1/4 полученного раствора ACN добавляли к реакционной смеси, которую затем перемешивали в течение 1 ч при Ti=20°C. Добавляли вторую порцию раствора ACN, и смесь перемешивали в течение следующего часа. Это повторяли еще два раза. После добавления последней порции ACN/вода реакционную смесь перемешивали 180 мин при Ti=20°C.

Смесь гасили добавлением 7,4% водн. NaHCO₃ (4 об.) и перемешивали в течение 50 мин при Ti=20°C. Двухфазную смесь фильтровали через слой целита (2 вес; уравновешенный заранее 12 об. толуола). Остаток на фильтре промывали толуолом (3 об.). Фазы разделяли, и водный слой экстрагировали толуолом (3 об.). Объединенные органические слои промывали полнасыщ. водн. NaHCO₃ (5 об.). Органический слой сушили над Na₂SO₄ (2,0 вес), Na₂SO₄ фильтровывали, и остаток на фильтре промывали толуолом (2 об.). 4-Метилморфолин (1,0 экв.; F17-03830) добавляли к раствору продукта. Раствор хранили в течение ночи при 4°C.

Стадия 7

Соединение 13: Органическую фазу, содержащую соединение 12, концентрировали до 5 об. на роторном испарителе при $Ta=55^{\circ}C/200-90$ мбар. Загружали 4-метилморфолин (20 экв) и DCM (8 об.). Добавляли уксусный ангидрид (8 экв) и уксусную кислоту (2 экв.; F16-04758) при $Ti=20^{\circ}C$. Колбу вакуумировали и продували азотом три раза. Добавляли трифенилфосфин (0,05 экв) и $Pd[(C_6H_5)_3P]_4$ (0,05 экв), с последующим циклом вакуумирования/продувания азотом. Реакционную смесь перемешивали в течение 18 ч при $Ti=20^{\circ}C$.

Реакцию прекращали добавлением воды (5 об.) в течение 20 мин при температуре окружающей среды. Фазы разделяли, и органический слой промывали водн. лимонной кислотой 15%вес/вес (5 об.). К органической фазе добавляли насыщ. NaHCO₃ (5 об.) и

метанол (0,5 об.). Смесь интенсивно перемешивали в течение 45 мин при температуре окружающей среды. Фазы разделяли, и органическую фазу промывали дважды водой (каждый раз 5 об.) и концентрировали на роторном испарителе до 7 об. при $Tj=50^{\circ}C/600$ мбар.

Стадия 8

Соединение 14: Концентрат (140 мл), содержащий соединение **13**, загружали метанолом (0,2 об.) и водой (0,5 об.) и охлаждали до Ti=0-5°C. Смесь TCA (3,0 экв) и DCM (1 об.) получали и добавляли к концентрату в течение 20 мин при Ti=1-2°C. Реакционную смесь перемешивали при данной температуре в течение 3,5 ч.

Насыщ. водн. NaHCO₃ (5 об.) добавляли к реакционной смеси при Ti=1-3°C в течение 25 мин, и смесь нагревали до комнатной температуры. Фазы разделяли, и водную фазу экстрагировали DCM (2 об.). Объединенные органические слои промывали водой (5 об.) и сушили над Na_2SO_4 (1,5 вес). Na_2SO_4 фильтровали и промывали DCM (2 об.).

Очистка: хроматографическую колонку загружали 1548 г (10 вес) силикагеля (15 см диаметр, высота слоя 22 см) и уравновешивали этилацетатом/гептаном 1:1. 582 г раствора продукта из стадия 6/7/8 (исходное соединение: 157,63 г) загружали на верх колонки и предварительно элюировали 15 мл DCM. Колонку элюировали, сначала применяя 60 об. (9,5 л) элюента 1 (этилацетат/гептан 1:1: после сбора 1 л фракций пробмывки собирали 19 фракций 1#1-1#19 (0,5 л об. каждая). После этого элюент заменяли на элюент 2 (этилацетат/гептан 3:1), собирали допольнительные фракции 1#20-1#33 (1,0 л об. каждая). Фракции анализировали ТСХ: пул 1: фракции 1#18-1#29 собирали и концентрировали, получая соединение 14 в виде 80,88 г твердого остатка, 98,15%а/а. Фракции 1#15-1#17 собирали в виде второго пула II, получая вторую порцию соединения 14 в виде 9,98 г твердого остатка, 67,1% а/а.

Альтернативная очистка: Biotage картридж (40 кг силикагеля, типа KP-Sil Flash 400L) радиально сжимали в рубашке с 2-пропанолом (10 л) и затем уравновешивали гептаном (94 л) и затем 1:1 гептан/EtOAc (98 л). Неочищенное соединение **14** в толуоле/DCM (12,319 кг нескорректированная/3,308 кг скорректированная) загружали в нутч-фильтр и переносили с помощью азота на колонку. Нутч-фильтр промывали небольшим объемом дихлорметана (0,5 л) и промывочный раствор переносили на колонку. Колонку элюировали 264 л 1:1 гептан/EtOAc, с последующими 260 л 1:3 гептан/EtOAc. Стадию очистки повторяли с дополнительными 12,234 кг нескорр. соединения **14** в

толуоле/DCM.

Все фракции, содержащие соединение **14**, собирали, объединяли и концентрировали в 160 л эмалированном реакторе при $Tj=60^{\circ}C/242-156$ мбар до 12 об. Концентрат переносили в емкость для добавления, и измеряли, что объем равен 71 л.

Раствор переносили в реаткор и дополнительно концентрировали до 5 об. при $Tj=60^{\circ}C/176-170$ мбар. 2-Пропанол (36 L) загружали через емкость для добавления, и 30 л растворителя удаляли отгонкой при $Tj=60^{\circ}C/185-120$ мбар. Загружали 2-пропанол (24,5 л), и 20 л растворителя удаляли отгонкой при $Tj=60^{\circ}C/120-93$ мбар. Загружали 2-пропанол (20 л), и 25 л растворителя удаляли отгонкой при $60^{\circ}C/98-90$ мбар.

Реакционную смесь перемешивали в течение приблизительно 1 ч при Ti=55°C и затем вносили затравку кристаллического соединения **14** (1 г) (затравочные кристаллы можно получить добавлением образца соединения **14**, полученного после хроматографии, к 2-пропанолу и перемешиванием до того, как будет наблюдаться кристаллизацию). Реакционную смесь охлаждали до Ti=1,7°C в течение 4 ч и перемешивали при данной температуре в течение 8,5 ч. Полученную в результате суспензию переносили на нутчфильтр и фильтровали в ML-барабан. Реактор промывали маточным раствором (14 L).

В реактор загружали 2-пропанол (10 л) и охлаждали до $Ti=1,7^{\circ}C$. Промывку переносили на нутч-фильтр и фильтровали в ML-барабан в течение 2,5 ч. Остаток на фильтре сушили в течение 3 д в вакууме и потоке азота. Продукт извлекали. 2,246 кг нескорректированная/2,241 кг скорректированная на ПМВ (У относительно сухой массы: 70,9% извлечение).

 1 Н ЯМР (хлороформ-d) δ 7,20-7,45 (м, 24H), 5,66 (д, Ј=6,8 Гц, 1H), 5,14-5,25 (м, 2H), 5,05 (д, Ј=8,4 Гц, 1H), 4,69-5,01 (м, 7H), 4,61 (д, Ј=11,4 Гц, 1H), 4,35 (дд, Ј=10,6, 3,0 Гц, 1H), 3,95-4,12 (м, 3H), 3,76-3,87 (м, 2H), 3,59-3,74 (м, 7H), 3,41 (т, Ј=4,7 Гц, 1H), 3,29 (т, Ј=9,6 Гц, 1H), 3,08-3,21 (м, 1H), 2,66 (дд, Ј=9,5, 2,2 Гц, 1H), 2,29 (тт, Ј=12,6, 3,1 Гц, 1H), 2,13 (д, Ј=12,7 Гц, 1H), 1,91-2,08 (м, 5H), 1,36-1,81 (м, 13H), 0,99-1,31 (м, 9H), 0,72-0,98 (м, 5H). МЅ: рассчитанная для $C_{61}H_{79}NO_{15}=1066,28$, найденная m/z=1088,5 (М+Nа).

Затравочные кристаллы соединения **14** можно получить добавлением соединения **14**, полученного после хроматографии, к 2-пропанолу и перемешиванием до того, как будет наблюдаться кристаллизация.

Стадия 9

Соединение 15: к соединению **14** (5,03 г; 1 вес; CA18-0480) добавляли 2-пропанол (15 об.), воду 0,5 об.) и ТНГ (2,5 об.). Суспензию нагревали до Ti=30°C, получая раствор. Добавляли Pd/C 10% 0,2 вес; F15-01378) и 2-пропанол (3 об.), и смесь перемешивали в

атмосфере водорода при атмосферном давлении и $Tj=37^{\circ}C$ в течение 7 ч. Дегазированную воду (1,5 об.) добавляли к реакционной смеси, и гидрирование продолжали при $Tj=37^{\circ}C/1$ бар в течение 17 ч. Добавляли дегазированную воду (2 об.), и гидрирование продолжали в вышеуказанных условиях в течение следующих 7 ч. Реакционную смесь перемешивали в течение ночи в атмосфере водорода при $Tj=37^{\circ}C/1$ бар.

Атмосферу водорода заменяли азотом и добавляли твердый NaHCO₃ (0,05 экв) и воду (2 об.). Реакционную смесь фильтровали при 30° С через 0,45 мкм найлоновую мембрану, и остаток на фильтре промывали смесью 2-пропанола (3 об.) и воды (1 об.). Объединенные фильтраты концентрировали досуха при $Tj = 35^{\circ}$ С/вак, получая в результате 4,80 г твердого материала. Твердый остаток растворяли в смеси воды (0,2 об.) и THF (3 об.), получая прозрачный раствор.

Изопропилацетат (25,5 об.) охлаждали до $Ti=0^{\circ}C$ и раствор продукта добавляли через капельную воронку в течение 55 мин при $Ti=0^{\circ}C$. Капельную воронку промывали смесью воды (0,1 об.) и THF (0,3 об.). Суспензию фильтровали после перемешивания в течение 80 мин при $Ti=0^{\circ}C$. Остаток на фильтре промывали МТВЕ (3 об.), и продукт сушили в вакууме и потоке азота в течение ночи. 3,10 г нескорректированная/3,08 г Скорректированная на ПМВ (Y, скорректированный на ПМВ, 92,66%).

¹Н ЯМР (400 МГц, DMSO-d6) δ 4,61-4,83 (м, 2H), 4,08-4,26 (м, 3H), 3,98 (д, J=8,6 Гц, 1H), 3,80 (с, 1H), 3,29-3,57 (м, 10H), 3,19-3,28 (м, 1H), 3,06 (т, J=9,5 Гц, 1H), 2,34-2,47 (м, 1H), 2,22 (д, J=12,7 Гц, 1H), 1,91-2,04 (м, 1H), 1,71-1,89 (м, 5H), 1,34-1,69 (м, 8H), 0,68-1,31 (м, 13H). MS: рассчитанная для $C_{33}H_{55}NO_{15}$ =705,79, найденная m/z=728,4 (M+Na).

ПРИМЕР 2: РЕНТГЕНОВСКИЙ АНАЛИЗ МОНОКРИСТАЛЛОВ Сольвата этанола соединения **8**

Абсолютную структуру сольвата этанола соединения **8** определяли способом рентгеновской дифракции монокристаллов. Кристаллы получали следующими способами:

Соединение **8** (10 мг) растворяли в этаноле (100 мкл) в 2 мл прозрачной стеклянной пробирке и добавляли две капли воды (приблизительно 20 мкл). Данную порбирку закрывали крышкой и оставляли стоять при 5°С. Несколько дней спустя было отмечено, что под мениском раствора выросли очень большие стержнеобразные кристаллы, которые оказались подходящими для исследования способом рентгеновской дифракции монокристаллов.

SXRD анализ проводили на дифрактометре Agilent Technologies (Dual S°urce) SuperNova с применением монохроматического излучения Cu K α (λ =1,54184 Å). Дифрактометр был оснащен низкотемпературным устройством oxford Cryosystems, позволяющим проводить сбор данных при температуре 120(1) K, и кристалл заключали в защитный слой паратонового масла. Собранные данные были скорректированы с учетом эффектов поглощения на основе интегрирования Гаусса по модели многогранного кристалла, реализованной как часть программного пакета CrysAlisPro (Agilent Technologies, 2014).

Структуру разрешали прямыми способами (SHELXS97) и формировали полным

уточнением наименьших квадратов на F (SHELXL97) с интерфейсом через программный пакет OLEX2. Изображения получали так через *OLEX2*. *Cмотри* Sheldrick, G. M. Acta Cryst. Sect. A 2008, 64, 112; Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J Appl. Cryst. 2009, 42, 339-341.

Данные собирали, разрешали и уточнены в ромбической пространственной группе $P2_12_12_1$, и был проведен поиск более высокой метрической симметрии с применением процедуры ADDSYMM PLAT $^{\circ}$ N, но не удалось обнаружить какую-либо симметрию более высокого порядка. Смотри Le Page, Y. J. Appl. Cryst. 1987, 20, 264; Le Page, Y. J. Appl. Cryst. 1988, 21, 983; Spek A. L., Acta Cryst. 2009, D65, 148.

Все неводородные атомы располагали на карте Фурье, и их положения уточняли перед описанием их теплового движения всех неводородных атомов анизотропно. В структуре одна полная, кристаллографически независимая формульная единица соединения **8** была обнаружена в асимметрической ячейке вместе с одной полностью занятой молекулой этанола. В молекуле исходного соединения **8** отмечены участки неупорядоченности по бензильным кольцам C27 > C32, C34 > C39 и C41 > C46, уточненные как жесткие шестиугольники (AFIX66) с заселенностью 62:38, 68:32 и 53:47, соответственно. Концевое виниловое плечо C7 > C9 alloc защитной группы также оказалось неупорядоченным и уточненным с заселенностью 50:50 с фиксированными длинами связей (DFIX) 1,54 Å с э.с.о. 0,01 для C7-C8 и 1,40 Å с э.с.о. 0,01 для C8-C9.

Все атомы водорода размещали в расчетных позициях с применением модели «наездника» с фиксированным Uiso в 1,2 раза для всех групп CH, CH_2 и NH и в 1,5 раза для всех групп CH_3 и OH.

Было обнаружено, что самый высокий остаточный пик Фурье составляет 0,56 е.Å⁻³, приблизительно 0,92 Å от C26, и самое глубокое отверстие Фурье составляет -0,24 е.Å⁻³, приблизительно 0,94 Å от O8.

Кристаллические данные для $C_{49}H_{67}NO_{15}$ (M =910,05 г/моль): моноклинная пространственная группа I2 (№ 5), a=22,606 Å, b=8,657 Å, c=24,51470(1) Å, β =90,35°, V=4797,44(2) ų, Z=4, T=120(10) K, μ (CuK α)=0,765 мм⁻¹, Dcalc=1,257 г/см³, измерено 439372 отражений (7,212° ≤ 2 Θ ≤ 152,404°), 9977 уникальных (R_{int} =0,0574, R_{sigma} =0,0142), которые применяли во всех расчетах. Конечная R_1 составляла 0,0467 (I > 2 σ (I)), и wR_2 составляла 0,1279 (все данные).

Структурные особенности сольвата этанола соединения 8. Размеры элементарной ячейки собранной структуры оказались следующими:

Пространственная группа: моноклинная I2 а=22,606(1) Å α =90° b=8,6568(1) Å β =90,345(1)° c=24,5147(1) Å γ =90° Объем=4797,44(2) Å3 Z=4. Z`=1

Было обнаружено, что асимметрическая ячейка содержит одну полную формульную

единицу соединения 8 и отдельную область электронной плотности, которая наблюдаемо уточняется как одна полностью занятая молекула этанола.

Окончательные параметры уточнения были следующими:

 $R_1 [I \ge 2\sigma(I)] = 4,67\%$

GOOF (качество аппроксимации)=1,051

wR₂ (все данные)=13,20%

 $R_{int}=5,74\%$

Параметр Флэка =-0,07(4)

В таблице 1 показаны относительные атомные координаты ($\times 10^4$) и эквивалентные изотропные параметры смещения ($\mathring{A}^2 \times 10^3$) для сольвата этанола кристаллического соединение **8**. $U_{\text{экв.}}$ определяют как $^{1}/_{3}$ следа ортогонального U_{IJ} тензора.

Таблица 1

Атом	x	v	z	U(экв)
C 1	1020,1(10)	1809(3)	6042,6(9)	27,3(5)
N1	848,1(9)	1878(3)	6612,4(9)	31,5(4)
O 1	1879,4(7)	1648,9(19)	5449,9(6)	26,4(3)
C2	765,7(10)	373(3)	5760,1(10)	30,3(5)
O2	272,2(14)	4033(3)	6550,9(11)	68,0(8)
C3	997,1(11)	262(3)	5179,1(10)	30,8(5)
O3	488,6(10)	2921(3)	7361,5(9)	48,7(5)
C4	1668,6(11)	231(3)	5214,2(10)	28,6(5)
O4	816,3(8)	1557(2)	4862,2(7)	34,5(4)
C5	1694,8(10)	1826(3)	5997,4(9)	25,0(4)
O5	135,4(8)	421(3)	5744,9(8)	37,5(4)
C6	517,7(13)	3032(4)	6811,2(13)	43,1(6)
O6	2586,4(9)	-173(3)	4714,3(9)	42,7(4)
C7A	151(6)	4235(13)	7633(4)	39(2)
С7В	69(9)	3825(17)	7609(7)	69(5)
O7	1886,9(7)	3277,2(19)	6170,8(7)	26,1(3)
C8A	44(3)	3533(10)	8198(3)	49,6(16)
C8B	312(7)	4471(18)	8122(5)	128(7)
O8	3503,1(17)	4367(4)	7880,4(9)	78,3(10)
C9A	220(8)	4500(20)	8624(6)	106(7)
C9B	-43(11)	4150(20)	8576(6)	151(11)

O 9	3490,7(10)	1857(3)	7690,0(9)	49,7(5)
C10	1967,5(12)	71(3)	4665(1)	34,9(5)
O10	2620,5(7)	4869(2)	5432,9(6)	27,5(3)
C11	2516,6(10)	3413(3)	6242,9(9)	25,9(4)
O11	1787,6(7)	6451(2)	5294,8(7)	28,5(3)
C12	2697(1)	4980(3)	6013,0(9)	26,3(4)
O12	3080,4(8)	5459(2)	4480,2(8)	37,7(4)
C13	3346,6(10)	5385(3)	6152,9(10)	31,5(5)
O13	2129,3(9)	4897(2)	3731,8(7)	38,9(4)
C14	3470,3(12)	5190(3)	6766,6(10)	34,9(5)
O14	1244,8(8)	6617(2)	4234,3(7)	35,1(4)
C15	3318,9(11)	3558(3)	6957,4(10)	32,0(5)
C16	2660,9(11)	3237(3)	6848,7(9)	30,3(5)
C17	3450,3(13)	3335(4)	7554,9(11)	42,1(7)
C18	3603,8(18)	1553(7)	8265,9(16)	74,8(14)
C19	3536,6(13)	7000(4)	5958,5(13)	42,2(6)
C20	3208,5(17)	8348(4)	6208,5(15)	53,3(8)
C21	2384,2(11)	6196(3)	5170,2(10)	28,0(5)
C22	2483,7(11)	5966(3)	4557(1)	29,9(5)
C23	2051,5(12)	4807(3)	4310,0(9)	31,8(5)
C24	1415,7(11)	5178(3)	4477,9(10)	31,1(5)
C25	1388(1)	5259(3)	5097,4(10)	28,6(5)
C26	3393,2(17)	6281(5)	4066,6(16)	57,5(9)
C27A	3970(3)	5486(8)	3972(2)	42,2(15)
C32A	4008(3)	4344(8)	3575(2)	49,9(15)
C31A	4531(4)	3521(8)	3511(3)	66(2)
C30A	5016(3)	3840(10)	3843(3)	68(3)
C29A	4978(3)	4981(10)	4240(3)	65(2)
C28A	4455(3)	5805(7)	4305(2)	52,8(17)
C27B	4014(7)	5560(20)	4121(9)	90(9)
C32B	4043(7)	4310(30)	3767(7)	88(8)
C31B	4572(9)	3510(30)	3702(8)	95(9)

C30B	5074(7)	3970(30)	3990(10)	88(9)
C29B	5045(8)	5230(30)	4344(10)	103(10)
C28B	4515(9)	6020(20)	4409(11)	133(13)
C33	1952,1(18)	3542(4)	3445,7(12)	49,5(8)
C34	1926,4(15)	3918(4)	2848,9(11)	46,2(7)
C35B	2308(3)	3372(8)	2450(2)	79(5)
C36B	2235(5)	3836(12)	1911,1(18)	156(16)
C37B	1781(5)	4846(12)	1770,8(18)	118(9)
C38B	1399(4)	5392(10)	2170(4)	93(5)
C39B	1472(2)	4928(7)	2709(3)	61(4)
C35A	2248(6)	2895(17)	2538(5)	95(5)
C36A	2301(8)	3165(15)	1979(5)	107(7)
C37A	2048(3)	4387(10)	1727(3)	39,8(17)
C38A	1670(4)	5287(10)	2033(4)	51(2)
C39A	1631(5)	5077(11)	2593(4)	58(3)
C40	720,5(14)	6567(4)	3925,1(15)	52,3(8)
C41	701,8(15)	7830(3)	3514(1)	46,2(7)
C46B	190,8(15)	7789(8)	3196,2(18)	60(2)
C45B	100(2)	8893(10)	2793(2)	107(5)
C44B	521(4)	10038(7)	2707(2)	87(4)
C43B	1032(4)	10078(6)	3025(3)	98(4)
C42B	1122(3)	8974(6)	3428,2(19)	106(5)
C42A	1291(4)	8532(9)	3391(4)	29,0(16)
C43A	1337(4)	9824(12)	3042(4)	36,5(19)
C44A	829(4)	10348(13)	2788(5)	42(2)
C45A	311(4)	9670(13)	2857(4)	38(2)
C46A	268(5)	8488(10)	3226(4)	37(2)
C47	783,8(11)	5647(3)	5315,3(10)	32,7(5)
O15	3306,9(11)	2235(3)	5120,2(12)	54,0(6)
C48	3818(2)	2058(6)	4839(3)	86,9(16)
C49	4080,4(18)	525(6)	4906(2)	70,8(11)

В таблице 2 показаны анизотропные параметры смещения ($\mathring{A}^2 \times 10^3$) для сольвата

этанола кристаллического соединения **8**. Показатель коэффициента анизотропного смещения принимает вид: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+\dots]$.

Таблица 2

Атом	U11	U22	U33	U23	U ₁₃	U ₁₂
C1	26,1(10)	25,0(11)	30,7(11)	4,3(9)	-0,6(8)	-0,1(9)
N1	31,2(9)	30,6(11)	32,6(10)	6,1(8)	3,8(8)	0,8(8)
O1	29,9(7)	21,1(8)	28,2(7)	-2,6(6)	-0,2(6)	-3,9(6)
C2	26,8(10)	26,9(12)	37,1(12)	6(1)	-4,7(9)	-5,0(9)
O2	86,6(18)	51,8(15)	66,0(15)	19,2(13)	30,2(14)	35,0(14)
C3	35,5(12)	21,9(11)	35,0(11)	3,3(9)	-6,7(9)	-5,9(9)
O3	53,4(12)	48,9(13)	43,8(11)	-8,5(10)	9,3(9)	3,3(10)
C4	34,7(11)	18,5(11)	32,6(11)	-2,7(9)	-2,9(9)	-2,7(9)
O4	35,2(9)	30,7(9)	37,3(9)	7,0(7)	-10,5(7)	-6,9(7)
C5	25,6(10)	20,9(10)	28,4(10)	0,2(8)	-0,3(8)	-2,2(8)
O5	26,8(8)	44,1(11)	41,6(9)	12,4(9)	-5,2(7)	-7,1(8)
C6	44,1(14)	39,4(15)	45,9(15)	2,0(12)	11,6(12)	0,3(12)
O6	43,9(10)	35,1(10)	49,3(11)	-8,9(9)	8,3(8)	-1,0(8)
C7A	66(6)	17(5)	34(3)	-5(3)	15(3)	4(4)
С7В	81(7)	31(8)	94(8)	-31(5)	23(5)	-12(5)
O7	25,2(7)	22,0(8)	31,0(8)	-3,3(6)	0,6(6)	-1,1(6)
C8A	56(4)	59(5)	34(3)	-8(3)	2(3)	14(3)
C8B	180(17)	113(12)	93(9)	-41(9)	-31(10)	87(12)
O8	137(3)	67,9(18)	30,4(10)	2,5(11)	-14,3(13)	-56,6(19)
C9A	123(11)	134(13)	60(7)	-55(8)	-37(8)	81(10)
C9B	270(30)	119(13)	67(9)	49(9)	89(13)	116(16)
O 9	51,0(12)	54,8(14)	43,1(11)	17,2(10)	-9,9(9)	-6(1)
C10	43,3(13)	26,9(13)	34,6(12)	-5,6(10)	1(1)	-2,7(10)
O10	31,4(8)	24,0(8)	27,1(7)	-0,4(6)	-0,1(6)	-0,6(6)
C11	23,9(10)	25,2(11)	28,7(10)	-0,8(9)	-0,8(8)	-1,9(8)
O11	29,1(8)	23,8(8)	32,6(8)	-2,2(7)	-1,2(6)	-1,1(7)
C12	28,9(10)	25,0(11)	25(1)	-1,5(8)	-0,2(8)	-3,3(9)
O12	39,8(9)	34,4(10)	39,1(9)	8,9(8)	11,3(7)	4,1(8)

C13	28,0(11)	32,8(13)	33,7(12)	1,9(10)	-1,4(9)	-7,1(10)
O13	59,9(12)	28,6(9)	28,3(8)	-3,1(7)	2,9(8)	-7,7(9)
C14	36,6(12)	34,9(14)	33,1(12)	-0,3(10)	-5,8(9)	-10,6(10)
O14	41,0(9)	25,7(9)	38,3(9)	3,8(7)	-9,7(7)	-5,1(7)
C15	31,3(11)	34,6(13)	30,0(11)	-0,3(10)	-3,4(9)	-5,4(10)
C16	32,3(11)	31,1(12)	27,6(11)	0,6(9)	-1,6(9)	-6,2(9)
C17	40,9(14)	50,1(17)	35,3(13)	7,6(12)	-8,7(10)	-21,2(13)
C18	59(2)	108(4)	58(2)	49(2)	-24,7(16)	-38(2)
C19	38,5(13)	40,9(15)	47,0(15)	8,2(12)	-6,2(11)	-16,0(12)
C20	68(2)	33,4(15)	58,0(18)	2,5(14)	-10,5(15)	-16,7(15)
C21	31,6(11)	21,5(11)	30,8(11)	0,0(8)	-0,2(9)	-1,4(9)
C22	35,4(12)	23,8(11)	30,4(11)	0,9(9)	2,5(9)	0,0(9)
C23	44,8(13)	22,8(11)	27,8(11)	-0,2(9)	2,3(9)	-2,4(10)
C24	39,5(12)	22,4(11)	31,3(11)	1,2(9)	-4,9(9)	-5,5(9)
C25	31,9(11)	22,1(11)	31,7(11)	1,3(9)	-1,9(9)	-3,2(9)
C26	59,5(19)	45,8(19)	67(2)	14,7(16)	18,5(16)	-1,9(15)
C27A	42(4)	43(4)	42(2)	7(2)	10,7(19)	-4(3)
C32A	53(3)	52(3)	45(4)	3(3)	13(2)	-6(2)
C31A	72(5)	62(4)	65(5)	0(3)	33(4)	2(3)
C30A	46(5)	74(5)	83(6)	5(4)	22(4)	8(4)
C29A	41(3)	66(5)	88(5)	9(4)	5(3)	-9(3)
C28A	57(5)	40(3)	62(3)	-1(2)	15(3)	-13(3)
C27B	48(12)	56(12)	170(20)	42(13)	46(12)	-12(9)
C32B	51(8)	130(20)	78(15)	15(14)	6(9)	-21(10)
C31B	56(11)	130(20)	96(17)	-55(15)	28(10)	-6(10)
C30B	34(7)	139(19)	92(14)	-52(13)	22(7)	-23(9)
C29B	49(10)	97(16)	160(20)	-40(15)	28(11)	-29(10)
C28B	52(11)	81(15)	270(40)	-66(18)	10(15)	-25(10)
C33	81(2)	30,6(15)	36,9(14)	-9,3(12)	2,1(14)	-8,2(14)
C34	61,2(18)	45,6(17)	31,9(13)	-7,8(12)	2,7(12)	-17,0(14)
C35B	109(9)	82(9)	46(6)	-38(6)	34(6)	-47(8)
C36B	310(40)	127(19)	35(8)	-25(10)	23(13)	-140(20)

C37B	169(18)	159(19)	26(5)	-17(8)	27(8)	-102(15)
	` ´					` ′
C38B	138(12)	91(9)	49(6)	19(6)	-25(7)	-62(9)
C39B	86(7)	57(6)	39(5)	17(4)	-7(5)	-36(5)
C35A	145(12)	94(9)	46(4)	17(5)	14(6)	70(9)
C36A	194(15)	89(9)	38(4)	14(5)	27(6)	90(11)
C37A	53(4)	38(3)	28(4)	-7(3)	10(3)	6(3)
C38A	56(4)	42(4)	56(5)	12(3)	24(4)	15(3)
C39A	95(6)	35(4)	46(4)	10(3)	23(4)	-9(4)
C40	42,0(14)	50,6(18)	64,0(19)	22,7(16)	-19,3(14)	-14,1(14)
C41	74(2)	34,6(15)	30,0(13)	-1,8(11)	-9,2(13)	7,4(14)
C46B	41(3)	81(6)	59(4)	33(4)	12(3)	23(4)
C45B	56(5)	177(12)	90(7)	90(8)	26(4)	51(6)
C44B	135(12)	71(7)	56(6)	28(5)	16(7)	55(8)
C43B	199(13)	41(5)	54(4)	16(4)	-55(8)	-37(7)
C42B	219(14)	47(5)	50(4)	20(4)	-67(7)	-65(7)
C42A	36(3)	11(3)	40(4)	4(3)	-4(3)	6(3)
C43A	45(4)	32(4)	32(4)	10(3)	-19(3)	10(3)
C44A	46(5)	39(5)	41(5)	-7(4)	-21(4)	26(4)
C45A	41(5)	45(6)	29(4)	-8(4)	-5(4)	18(4)
C46A	48(4)	29(5)	34(4)	-3(3)	-2(3)	14(4)
C47	32,4(12)	29,2(13)	36,5(12)	4,8(10)	-0,7(9)	-1,5(10)
O15	49,3(12)	36,8(12)	75,9(16)	-4,3(11)	8,4(11)	7,8(9)
C48	60(2)	53(2)	148(5)	11(3)	38(3)	-3,2(19)
C49	50,2(19)	69(3)	94(3)	-7(2)	14,1(19)	16,1(19)
	1	1	1	1	1	1

В таблице 3 показаны длины связей для сольвата этанола кристаллического соединения 8.

Таблица 3

Атом	Атом	Длина/Å
C1	N1	1,453(3)
C 1	C2	1,533(3)
C 1	C5	1,530(3)
C7Aa	C8A	1,532(9)

Атом	Атом	Длина/Å
C4	C10	1,516(3)
C5	O7	1,395(3)
O6	C10	1,419(3)
O7	C11	1,438(3)

C7Bb	C8B	1,478(12)
C8Aa	C9A	1,394(11)
C8Bb	С9В	1,402(13)
C27Aa	C32A	1,3900
C32Aa	C31A	1,3900
C31Aa	C30A	1,3900
C30Aa	C29A	1,3900
C29Aa	C28A	1,3900
C27Aa	C28A	1,3900
C27Bb	C32B	1,3900
C32Bb	C31B	1,3900
C31Bb	C30B	1,3900
C30Bb	C29B	1,3900
C27Bb	C28B	1,3900
C29Bb	C28B	1,3900
C35Bb	C36B	1,3900
C36Bb	C37B	1,3900
C37Bb	C38B	1,3900
C38Bb	C39B	1,3900
C35Aa	C36A	1,395(17)
C36Aa	C37A	1,350(13)
C37Aa	C38A	1,382(9)
C38Aa	C39A	1,388(13)
C46Bb	C45B	1,3900
C45Bb	C44B	1,3900
C44Bb	C43B	1,3900
C43Bb	C42B	1,3900
C42Aa	C43A	1,413(13)
C43Aa	C44A	1,380(10)
C44Aa	C45A	1,323(16)
C45Aa	C46A	1,369(14)
N1	C6	1,341(4)

O8	C17	1,203(4)
O 9	C17	1,324(4)
O 9	C18	1,457(4)
O10	C12	1,435(3)
O 10	C21	1,419(3)
C11	C12	1,526(3)
C11	C16	1,526(3)
O11	C21	1,402(3)
O11	C25	1,452(3)
C12	C13	1,546(3)
O12	C22	1,432(3)
O12	C26	1,429(4)
C13	C14	1,538(3)
C13	C19	1,539(4)
O13	C23	1,432(3)
O13	C33	1,423(3)
C14	C15	1,527(4)
O14	C24	1,434(3)
O14	C40	1,404(3)
C15	C16	1,535(3)
C15	C17	1,505(4)
C19	C20	1,514(5)
C21	C22	1,534(3)
C22	C23	1,523(4)
C23	C24	1,531(4)
C24	C25	1,522(3)
C25	C47	1,507(3)
C26	C27A	1,494(7)
C26	C27B	1,541(17)
C33	C34	1,500(4)
C34	C35B	1,3900
C34	C39B	1,3900

O1	C4	1,437(3)
O1	C5	1,416(3)
C2	C3	1,523(4)
C2	O5	1,426(3)
O2	C6	1,209(4)
C3	C4	1,520(3)
C3	O4	1,423(3)
О3	C6	1,354(4)
О3	C7A	1,526(13)
O3	С7В	1,374(19)

C34	C35A	1,379(12)
C34	C39A	1,356(11)
C40	C41	1,487(4)
C41	C46B	1,3900
C41	C42B	1,3900
C41	C42A	1,497(10)
C41	C46A	1,334(11)
O15	C48	1,358(5)
C48	C49	1,463(7)

В таблице 4 показаны углы связей для сольвата этанола кристаллического соединения 8.

Таблица 4

Атом	Атом	Атом	Уго л/°
N1	C1	C2 111,5(2)	
N1	C1	C5	109,98(18)
C9Aa	C8Aa	C7A	113,2(12)
C9Bb	C8Bb	С7В	112,9(18)
C5	C1	C2	110,27(19)
C6	N1	C1	122,2(2)
C5	O1	C4	112,00(17)
C3	C2	C1	110,10(19)
O5	C2	C1	111,1(2)
O5	C2	C3	109,04(19)
C4	C3	C2	107,26(19)
O4	C3	C2	111,2(2)
O4	C3	C4	109,15(19)
C6	О3	C7A	114,2(4)
C6	О3	С7В	115,9(8)
C28Bb	C27Bb	C26	131,8(15)
C32Aa	C27Aa	C26	119,6(5)
C32Bb	C27Bb	C26	108,0(15)

Атом	Атом	Атом	Угол/°
C40	O14	C24	115,0(2)
C14	C15	C16	109,5(2)
C17	C15	C14	111,9(2)
C17	C15	C16	109,3(2)
C11	C16	C15	110,59(19)
O8	C17	O 9	123,0(3)
O8	C17	C15	124,6(3)
O 9	C17	C15	112,4(3)
C20	C19	C13	115,9(2)
O10	C21	C22	106,44(18)
O11	C21	O10	112,86(19)
O11	C21	C22	112,38(19)
O12	C22	C21	108,20(19)
O12	C22	C23	110,4(2)
C23	C22	C21	112,16(19)
O13	C23	C22	105,99(19)
O13	C23	C24	112,1(2)
C22	C23	C24	110,9(2)

Geo.	G05.4	las.	1.00.0(4)
	C27Aa		120,3(4)
C31Aa	C32Aa	C27A	120,0
C29Aa	C28Aa	C27A	120,0
C30Aa	C31Aa	C32A	120,0
C28Aa	C29Aa	C30A	120,0
C31Aa	C30Aa	C29A	120,0
O1	C4	C3	109,67(19)
O1	C4	C10	106,63(19)
C10	C4	C3	113,7(2)
O1	C5	C1	111,54(18)
O7	C5	C1	107,18(18)
O7	C5	O1	107,06(17)
C32Aa	C27Aa	C28A	120,0
C29Bb	C28Bb	C27B	120,0
C30Bb	C31Bb	C32B	120,0
C27Bb	C32Bb	C31B	120,0
C28Bb	C29Bb	C30B	120,0
C31Bb	C30Bb	C29B	120,0
C32Bb	C27Bb	C28B	120,0
C38Bb	C39Bb	C34	120,0
C36Bb	C35Bb	C34	120,0
C38Bb	C37Bb	C36B	120,0
N1	C6	O3	109,8(3)
O2	C6	N1	126,6(3)
O2	C6	О3	123,5(3)
C5	O7	C11	114,66(17)
C17	O 9	C18	115,4(3)
O6	C10	C4	112,5(2)
C21	O 10	C12	116,01(18)
O7	C11	C12	107,09(18)
O7	C11	C16	108,47(18)
C12	C11	C16	113,11(19)
	I	1	I

O14	C24	C23	108,7(2)
O14	C24	C25	111,3(2)
C25	C24	C23	108,80(19)
O11	C25	C24	109,64(18)
O11	C25	C47	106,7(2)
C47	C25	C24	114,0(2)
O12	C26	C27A	108,5(4)
O12	C26	C27B	101,0(7)
O13	C33	C34	108,1(2)
C35Bb	C36Bb	C37B	120,0
C37Bb	C38Bb	C39B	120,0
C37Aa	C36Aa	C35A	122,8(10)
C36Aa	C37Aa	C38A	117,0(8)
C37Aa	C38Aa	C39A	120,4(7)
C43Aa	C42Aa	C41	120,8(7)
C43Bb	C42Bb	C41	120,0
C45Bb	C46Bb	C41	120,0
C43Bb	C44Bb	C45B	120,0
C46Bb	C45Bb	C44B	120,0
C42Bb	C43Bb	C44B	120,0
C44Aa	C43Aa	C42A	118,0(10)
C45Aa	C44Aa	C43A	122,2(11)
C44Aa	C45Aa	C46A	118,9(9)
C35Aa	C34	C33	112,5(6)
C35Bb	C34	C33	126,3(4)
C39Aa	C34	C33	128,9(5)
C39Bb	C34	C33	113,7(4)
C35Bb	C34	C39B	120,0
C39Aa	C34	C35A	118,6(7)
C46Aa	C41	C40	133,7(6)
C46Bb	C41	C40	112,4(3)
C42Bb	C41	C40	127,6(3)
	<u> </u>	<u> </u>	

C21	O11	C25	114,37(18)
O10	C12	C11	106,00(18)
O10	C12	C13	110,11(18)
C11	C12	C13	112,03(19)
C26	O12	C22	114,3(2)
C14	C13	C12	111,04(19)
C14	C13	C19	110,7(2)
C19	C13	C12	113,8(2)
C33	O13	C23	114,0(2)
C15	C14	C13	111,2(2)

C46Bb	C41	C42B	120,0
C46Aa	C41	C42A	111,9(6)
О3	C7Aa	C8A	100,4(7)
О3	C7Bb	C8B	109,8(13)
O14	C40	C41	111,3(3)
C40	C41	C42A	114,4(4)
C34	C35Aa	C36A	118,9(10)
C34	C39Aa	C38A	121,4(8)
O15	C48	C49	112,9(4)
C41	C46Aa	C45A	127,9(10)

В таблице 5 показаны торсионные углы для сольвата этанола кристаллического соединения ${\bf 8}$.

Таблица 5

A	В	C	D	Угол/°
C7Bb	О3	C6	N1	-167,0(7)
C7Aa	О3	C6	N1	176,7(6)
C35Bb	C36Bb	C37Bb	C38Bb	0,0
C46Bb	C45Bb	C44Bb	C43Bb	0,0
C28Bb	C27Bb	C32Bb	C31Bb	0,0
C28Aa	C27Aa	C32Aa	C31Aa	0,0
C7Bb	О3	C6	O2	12,4(7)
C32Aa	C27Aa	C28Aa	C29Aa	0,0
C32Aa	C31Aa	C30Aa	C29Aa	0,0
C7Aa	O3	C6	O2	-3,8(7)
C36Bb	C37Bb	C38Bb	C39Bb	0,0
C32Bb	C27Bb	C28Bb	C29Bb	0,0
C30Aa	C29Aa	C28Aa	C27Aa	0,0
C36Aa	C37Aa	C38Aa	C39Aa	10,0(17)
C31Bb	C30Bb	C29Bb	C28Bb	0,0
C35Aa	C36Aa	C37Aa	C38Aa	-8(2)
C42Aa	C43Aa	C44Aa	C45Aa	-0,8(14)
C32Bb	C31Bb	C30Bb	C29Bb	0,0

A	В	C	D	Угол/°
C11	C12	C13	C19	-176,5(2)
O11	C21	C22	O12	-170,4(2)
O11	C21	C22	C23	-48,4(3)
C12	O10	C21	O11	-69,8(2)
C12	O10	C21	C22	166,52(18)
C12	C11	C16	C15	-54,8(3)
C12	C13	C14	C15	56,1(3)
C22	O12	C26	C27Bb	175,7(9)
C22	O12	C26	C27Aa	-171,6(3)
C12	C13	C19	C20	62,6(3)
O12	C22	C23	O13	-68,5(2)
O12	C22	C23	C24	169,69(19)
O12	C26	C27Bb	C28Bb	-94,7(13)
O12	C26	C27Aa	C32Aa	91,3(4)
O12	C26	C27Bb	C32Bb	91,2(11)
O12	C26	C27Aa	C28Aa	-84,0(5)
C13	C14	C15	C16	-59,9(3)
C13	C14	C15	C17	178,7(2)

C45Rh	C44Rh	C43Rh	C42Bb	0.0
			C28Aa	
C43Aa	C44Aa	C45Aa	C46Aa	5,3(15)
C27Aa	C32Aa	C31Aa	C30Aa	0,0
C30Bb	C29Bb	C28Bb	C27Bb	0,0
C27Bb	C32Bb	C31Bb	C30Bb	0,0
C37Bb	C38Bb	C39Bb	C34	0,0
C37Aa	C38Aa	C39Aa	C34	-5,0(14)
C44Bb	C43Bb	C42Bb	C41	0,0
C44Aa	C45Aa	C46Aa	C41	-4,7(15)
C1	N1	C6	O2	8,5(5)
C1	N1	C6	О3	-172,0(2)
C 1	C2	C3	C4	57,3(2)
C1	C2	C3	O4	-62,0(2)
C1	C5	O7	C11	170,01(17)
C35Bb	C34	C39Bb	C38Bb	0,0
C39Aa	C34	C35Aa	C36Aa	5,5(18)
C35Aa	C34	C39Aa	C38Aa	-3,0(14)
C39Bb	C34	C35Bb	C36Bb	0,0
C46Bb	C41	C42Bb	C43Bb	0,0
C42Bb	C41	C46Bb	C45Bb	0,0
C46Aa	C41	C42Aa	C43Aa	5,1(10)
C42Aa	C41	C46Aa	C45Aa	-0,5(11)
N1	C1	C2	C3	-175,12(19)
N1	C1	C2	O5	64,0(2)
N1	C1	C5	O1	175,82(19)
N1	C1	C5	O7	-67,3(2)
O1	C4	C10	O 6	67,3(3)
O1	C5	O7	C11	-70,2(2)
C2	C1	N1	C6	-117,6(3)
C2	C 1	C5	O 1	52,5(2)
C2	C1	C5	О7	169,38(18)

O13	C23	C24	O14	-51,5(3)
O13	C23	C24	C25	-172,87(19)
C14	C13	C19	C20	-63,3(3)
C14	C15	C16	C11	58,5(3)
C14	C15	C17	O8	20,0(4)
C14	C15	C17	O 9	-161,3(2)
O14	C24	C25	O11	-60,3(2)
O14	C24	C25	C47	59,2(3)
C16	C11	C12	O10	171,04(18)
C16	C11	C12	C13	50,9(3)
C16	C15	C17	O8	-101,4(4)
C16	C15	C17	O 9	77,3(3)
C17	C15	C16	C11	-178,5(2)
C18	O 9	C17	O8	0,1(5)
C18	O 9	C17	C15	-178,6(3)
C19	C13	C14	C15	-176,5(2)
C21	O10	C12	C11	140,39(19)
C21	O10	C12	C13	-98,2(2)
C21	O11	C25	C24	-61,5(2)
C21	O11	C25	C47	174,57(19)
C21	C22	C23	O13	170,8(2)
C21	C22	C23	C24	49,0(3)
C22	C23	C24	O14	66,7(2)
C22	C23	C24	C25	-54,7(3)
C23	O13	C33	C34	167,3(3)
O13	C33	C34	C39Aa	-53,4(7)
O13	C33	C34	C39Bb	-68,7(4)
O13	C33	C34	C35Aa	127,6(8)
O13	C33	C34	C35Bb	110,5(4)
C23	C24	C25	O11	59,5(2)
C23	C24	C25	C47	179,0(2)
C24	O14	C40	C41	-156,4(3)

C2	С3	C4	O1	-62,5(2)	
C2	С3	C4	C10	178,2(2)	
C3	C4	C10	O6	-171,7(2)	
О3	C7Bb	C8Bb	C9Bb	-125,5(13)	
О3	C7Aa	C8Aa	C9Aa	128,4(9)	
C4	O1	C5	C1	-58,9(2)	
C4	O1	C5	О7	-175,88(17)	
O4	СЗ	C4	O1	58,1(2)	
O4	СЗ	C4	C10	-61,2(3)	
C5	C1	N1	C6	119,8(3)	
C5	C1	C2	C3	-52,7(2)	
C5	C1	C2	O5	-173,56(18)	
C5	O1	C4	C3	64,6(2)	
C5	O1	C4	C10	-171,88(19)	
C5	O7	C11	C12	138,36(19)	
C5	O7	C11	C16	-99,3(2)	
O5	C2	СЗ	C4	179,4(2)	
O5	C2	СЗ	O4	60,1(3)	
C6	О3	C7Aa	C8Aa	164,1(5)	
C6	О3	C7Bb	C8Bb	-140,4(12)	
O7	C11	C12	O10	-69,5(2)	
O7	C11	C12	C13	170,36(18)	
O7	C11	C16	C15	-173,5(2)	
O10	C12	C13	C14	-168,5(2)	
O10	C12	C13	C19	65,8(3)	
O10	C21	C22	O12	-46,3(2)	
O10	C21	C22	C23	75,6(2)	
C11	C12	C13	C14	-50,8(3)	

C25	O11	C21	O 10	-65,2(2)			
O14	C40	C41	C42Aa	18,6(6)			
O14	C40	C41	C42Bb	-1,3(5)			
O14	C40	C41	C46Aa	-161,3(6)			
O14	C40	C41	C46Bb	179,0(4)			
C25	O11	C21	C22	55,2(3)			
C26	C27Bb	C28Bb	C29Bb	-173,4(17)			
C26	C27Aa	C28Aa	C29Aa	175,3(6)			
C26	C27Aa	C32Aa	C31Aa	-175,3(6)			
C26	C27Bb	C32Bb	C31Bb	174,9(13)			
C26	O12	C22	C21	-131,9(3)			
C26	O12	C22	C23	105,0(3)			
C33	O13	C23	C22	156,4(2)			
C33	O13	C23	C24	-82,5(3)			
C33	C34	C35Bb	C36Bb	-179,2(4)			
C33	C34	C35Aa	C36Aa	-175,4(12)			
C33	C34	C39Aa	C38Aa	178,1(6)			
C33	C34	C39Bb	C38Bb	179,3(3)			
C34	C35Aa	C36Aa	C37Aa	0(3)			
C34	C35Bb	C36Bb	C37Bb	0,0			
C40	O14	C24	C23	125,9(3)			
C40	O14	C24	C25	-114,3(3)			
C40	C41	C42Aa	C43Aa	-174,9(7)			
C40	C41	C46Aa	C45Aa	179,5(7)			
C40	C41	C42Bb	C43Bb	-179,6(4)			
C40	C41	C46Bb	C45Bb	179,7(3)			
C41	C46Bb	C45Bb	C44Bb	0,0			
C41	C42Aa	C43Aa	C44Aa	-4,6(13)			
OHODOHURY CROSON $(\mathring{\Lambda} \times 10^4)$ H. HOOTOOHULO							

В таблице 6 показаны координаты водородных связей ($\mathring{A} \times 10^4$) и изотропные параметры смещения ($\mathring{A}^2 \times 10^3$) для сольвата этанола кристаллического соединения **8**.

Таблица 6

	<u>'</u>			
Атом	ı x	v	z	U(экв)

H1A	864,02	2726,73	5857,18	33
H1	962,14	1155,07	6829,26	38
H2	891,04	-547,33	5962,91	36
H3	853,43	-692,03	5008,45	37
H4A	1790,73	-631,68	5447,92	34
H4	502,88	1359,82	4707,2	52
H5A	1868,34	1015,24	6226,9	30
H5	6,76	348,92	6055,86	56
H6	2737,34	558,94	4875,72	64
H7AA	-218	4455,65	7444,45	47
H7AB	386,6	5168,88	7655,56	47
Н7ВА	-278,92	3210,79	7686,69	82
Н7ВВ	-46,13	4658,93	7366,57	82
H8A	-121,76	2561,2	8250,98	59
H8B	661,69	5032,25	8142,08	154
Н9АА	382,94	5460,59	8548,68	127
Н9АВ	173,69	4180,68	8983,68	127
Н9ВА	-388,96	3578,42	8532,6	181
Н9ВВ	68,97	4498,83	8919,59	181
H10A	1792,29	-789,1	4468,83	42
H10B	1897,22	1000,69	4453,22	42
H11	2714,25	2592,16	6037,63	31
H12	2435,05	5783,23	6156,76	32
H13	3595,74	4635,2	5962,28	38
H14A	3884,81	5397,09	6840,49	42
H14B	3237,08	5931,78	6969,36	42
H15	3554,76	2818,83	6748,18	38
H16A	2565,43	2196,1	6965,83	36
H16B	2422,07	3951,48	7057,96	36
H18A	3998,85	1870,09	8357,96	112
H18B	3560,61	467,67	8336,16	112
H18C	3326,34	2119,64	8483,09	112

H19A	3955,09	7125,42	6036,11	51
H19B	3485,9	7047,68	5565,64	51
H20A	3344,38	9294,21	6048,19	80
H20B	3281,15	8369,71	6594,61	80
H20C	2792,07	8233,36	6141,1	80
H21	2612,39	7098,86	5289	34
H22	2431,36	6961,44	4372,49	36
H23	2154,63	3766,16	4435,42	38
H24	1151,74	4357,71	4347,21	37
H25	1513,06	4262,3	5248,38	34
H26A	3461,54	7338,27	4181,78	69
H26B	3162,32	6298,87	3731,86	69
H26C	3400,95	7382,23	4139,2	69
H26D	3223,44	6099,85	3707,92	69
H32A	3683,84	4131,3	3352,5	60
H31A	4556,52	2757,16	3245,2	79
H30A	5365,96	3288,67	3800,39	81
H29A	5302,72	5194,32	4462,89	78
H28A	4430,05	6568,48	4570,2	63
Н32В	3707,37	3996,96	3574,52	105
H31B	4591,61	2675,34	3465,57	113
H30B	5427,99	3444,71	3946,64	106
H29B	5380,13	5535,69	4536,68	123
H28B	4495,9	6857,33	4645,64	160
НЗЗА	1566,68	3205,02	3570,47	59
Н33В	2233,69	2716,29	3511,35	59
H35B	2611,62	2696,88	2544,07	94
H36B	2490,07	3471,13	1644,34	187
H37B	1732,01	5156,21	1410,15	141
H38B	1095,49	6067,04	2075,69	111
H39B	1217,04	5292,8	2975,42	73
H35A	2426,9	2038,91	2697,88	114

H36A	2518,85	2472,31	1771,57	128
H37A	2125,64	4612,38	1363,57	48
H38A	1440,18	6038,81	1862,84	61
H39A	1398,38	5744,8	2796,89	70
H40A	383,76	6662,41	4166,17	63
H40B	692,18	5578,37	3740,78	63
H46B	-90,63	7023,55	3253,58	72
H45B	-241,61	8866,45	2579,9	129
H44B	460,35	10776,61	2436,72	105
H43B	1313,3	10843,88	2967,21	118
H42B	1464,3	9000,99	3640,89	127
H42A	1631,46	8111,67	3546,27	35
H43A	1699,37	10307,48	2985,39	44
H44A	852,45	11206,02	2560,56	50
H45A	-18,83	9990,72	2658,2	46
H46A	-110,09	8096,17	3281,62	44
H47A	796,81	5654,63	5706,75	49
H47B	503,95	4886,38	5192,87	49
H47C	665,87	6647,06	5184,93	49
H15A	3153,38	3061,33	5038,02	81
H48A	4100,06	2830,87	4960,93	104
	1	1	1	

ПРИМЕР 3: ТЕРМОГРАВИМЕТРИЧЕСКИЙ/ДИФФЕРЕНЦИАЛЬНЫЙ ТЕРМИЧЕСКИЙ АНАЛИЗ соединения **14**

Приблизительно 5 мг кристаллического соединения **14** взвешивали в открытом алюминиевом тигле и загружали в синхронный термогравиметрический/дифференциальный термоанализатор (ТГ/ДТА) и выдерживали при комнатной температуре. Затем образец нагревали со скоростью 10°С/мин от 20°С до 300°С, в течение чего регистрировали изменение массы образца наряду с любыми дифференциальными тепловыми явлениями (ДТА). В качестве продувочного газа применяли азот с расходом 300 см³/мин. Значимых потерь массы до расплавления не наблюдали. Смотри фигуру 3.

ПРИМЕР 4: ДИФФЕРЕНЦИАЛЬНАЯ СКАНИРУЮЩАЯ КАЛОРИМЕТРИЯ СОЕДИНЕНИЯ **14**

Приблизительно 5 мг кристаллического соединения 14 взвешивали в алюминиевом

тигле для ДСК и негерметично закрывали перфорированной алюминиевой крышкой. Тигль с образцом затем загружали в Seiko DSC6200 (оснащенный охладителем), охлаждали и выдерживали при 20°С. Как только получали стабильный отклик теплового потока, образец и эталон нагревали до 190°С со скоростью сканирования 10°С/мин, и отслеживали результирующую реакцию теплового потока. В качестве продувочного газа применяли азот при скорости потока 50 см³/мин. Выявлена одна эндотерма с началом 169,7°С, пиком 171,4°С (82,3 мДж/мг). Смотри фигуру 4.

ПРИМЕР 5: характеризация кристаллической структуры соединения 14

XRPD анализ проводили на приборе PANalytical X'pert pro, сканируя образец между 3 и 35° 20. Кристаллическое соединение **14** осторожно растирали для устранения любых агломератов и загружали в многолуночный планшет с полимерной пленкой «Кэптон» или «Майлар» для поддержки образца. Затем многолуночный планшет помещали в дифрактометр и анализировали с применением Cu K-излучения ($\alpha_1 \lambda = 1,54060 \text{ Å}$; $\alpha_2 = 1,54443 \text{ Å}$; $\beta = 1,39225 \text{ Å}$; соотношение $\alpha_1:\alpha_2=0,5$), работая в режиме передачи (размер шага $0,0130^\circ$ 20) с применением настроек генератора 40 кB/40 мA. Порошковая рентгенограмма (XRPD) дала результаты, суммированные на фигуре 2 и в таблице 7 ниже.

Таблица 7

положение	FWHM	Межатомное	высота	Отн.
[°2Th.]	[°2Th.]	расстояние [Å]	[cts]	интенсивность [%]
4,8	0,0640	18,3	314,03	13,01
6,4	0,0640	13,9	1233,13	51,11
7,3	0,0512	12,2	2412,81	100,00
7,9	0,0640	11,1	1074,85	44,55
9,7	0,0640	9,2	243,51	10,09
10,5	0,0768	8,4	445,93	18,48
11,2	0,0768	7,9	490,98	20,35
11,9	0,0640	7,4	717,43	29,73
12,4	0,1023	7,1	2331,65	96,64
15,2	0,0768	5,8	229,73	9,52
15,7	0,0768	5,7	519,78	21,54
16,8	0,0768	5,3	289,48	12,00
17,7	0,0768	5,0	800,79	33,19
18,0	0,0768	4,9	1050,59	43,54
18,9	0,0768	4,7	406,49	16,85
19,2	0,1023	4,6	1212,33	50,25
19,6	0,0768	4,5	362,78	15,04

20,2	0,1279	4,4	281,13	11,65
20,5	0,1279	4,3	293,78	12,18
20,8	0,1535	4,3	229,10	9,50
21,7	0,0936	4,1	899,05	37,26
21,8	0,1151	4,1	839,99	34,81
22,4	0,1023	4,0	323,41	13,40
22,9	0,1279	3,9	309,08	12,81
23,5	0,1535	3,8	131,77	5,46
23,9	0,1279	3,7	405,89	16,82
24,9	0,1279	3,6	259,22	10,74
25,8	0,1151	3,5	247,57	10,26
26,8	0,1279	3,3	206,58	8,56
27,7	0,6140	3,2	50,02	2,07
29,1	0,1535	3,1	107,07	4,44
31,4	0,3070	2,8	75,93	3,15
33,9	0,3070	2,6	66,39	2,75

XRPD пики, приведенные в настоящем изобретении, следует понимать как отражающее точность $\pm 0,2$ для 2 тета-сигналов и сигналов межатомных расстояний. Настоящее изобретение также полностью включает раздел 941 Фармакопеи США и Национального формуляра от 2014 г. (USP 37/NF 32, том 1), относящийся к характеристике кристаллических и частично кристаллических твердых веществ XRPD.

ПРИМЕР 6: РЕНТГЕНОВСКИЙ АНАЛИЗ МОНОКРИСТАЛЛОВ СОЕДИНЕНИЯ 14

Абсолютную структуру соединения **14** определяли рентгеновской дифракцией монокристалла из подходящих кристаллов, выращенных при медленной диффузии гексана в ТНF раствор соединения **14** в лаборатоных условиях.

SXRD анализ проводили на дифрактометре Agilent Technologies (Dual Source) SuperNova с применением монохроматического излучения Cu K α (λ =1,54184 Å). Дифрактометр оснащали низкотемпературным устройством Oxford Cryosystems, позволяющим проводить сбор данных при температуре 120(1) K, и кристалл заключали в защитный слой паратонового масла. Собранные данные корректировали с учетом эффектов поглощения на основе интегрирования Гаусса по модели многогранного кристалла, реализованной как часть программного пакета CrysAlisPro (Agilent Technologies, 2014).

Структуру разрешали прямыми способами (SHELXS97) и формировали полным уточнением наименьших квадратов на F (SHELXL97) с интерфейсом через программный пакет OLEX2. Изображения получали так через *OLEX2*. *Смотри* Sheldrick, G. M. Acta Cryst. Sect. A 2008, 64, 112; Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K.,

Puschmann, H. J Appl. Cryst. 2009, 42, 339-341.

Данные собирали, разрешали и уточнены в ромбической пространственной группе $P2_12_12_1$, и был проведен поиск более высокой метрической симметрии с применением процедуры ADDSYMM PLAT $^{\circ}$ N, но не удалось обнаружить какую-либо симметрию более высокого порядка. *Смотри* Le Page, Y. J. Appl. Cryst. 1987, 20, 264; Le Page, Y. J. Appl. Cryst. 1988, 21, 983; Spek A. L., Acta Cryst. 2009, D65, 148.

Все неводородные атомы были расположены на карте Фурье, и их положения уточняли перед анизотропным описанием их теплового движения всех неводородных атомов. В структуре одна полная, кристаллографически независимая формульная единица соединения 14 была обнаружена только в пределах асимметричной ячейки. Никакой неупорядоченности в окончательной структуре не наблюдали и не моделировали.

Все атомы водорода помещали в рассчитанные положения с применением модели «наездника» с фиксированным Uiso в 1,2 раза для всех групп C_H , CH_2 и NH и в 1,5 раза для всех групп CH_3 и $^{\circ}H$.

Было обнаружено, что самый высокий остаточный пик Фурье составляет 0,26 е. $Å^{-3}$, приблизительно 1,25 Å от C(59), и самое глубокое отверстие Фурье составляет -0,20 $e.Å^{-3}$ приблизительно 0,94 Å от C21.

Кристаллические данные для $C_{61}H_{79}NO_{15}$ (M =1066,25 г/моль): орторомбическая пространственная группа $P2_12_12_1$ (№ 19), α =8,76 Å, b=24,19 Å, c=27,59 Å, V=5850 ų, Z=4, T=120(1) K, μ (CuK α)=0,702 мм $^{-1}$, Dcalc=1,211 г/см 3 , измеряли 404815 отражений (6,408 $^\circ$ ≤ 2 Θ ≤ 153,014 $^\circ$), 12200 уникальные (R_{int} =0,1016, R_{sigma} =0,0309), которые применяли во всех расчетах. Конечная R_1 составляла 0,0435 (I > 2 σ (I), и wR_2 составляла 0,1152 (все данные).

Структурные особенности соединения 14. Размеры элементарной ячейки собранной структуры оказались следующими:

```
Пространственная группа: орторомбическая пространственная группа P212121 a=8,76 Å \alpha=90° b=24,19 Å \beta=90° c=27,59 Å \gamma=90° объем=5850 ų
```

Было обнаружено, что асимметричная ячейка содержит только одну полную формульную единицу соединения 14.

Окончательные параметры уточнения были следующими:

```
R_1 [I > 2\sigma(I)]=4,35% GooF (Качество аппроксимации)=1,066 wR_2 (все данные)=11,52% R_{int}=10,16% (12200 независимых отражений) параметр \Phiлэка =-0,03(5) (100% покрытие \Phiриделя)
```

Z=4, Z=2

В таблице 8 показаны относительные атомные координаты ($\times 10^4$) и эквивалентные изотропные параметры смещения ($\mathring{A}^2 \times 10^3$) для кристаллического соединения **14**. U_{экв.}

определяют как $^{1}/_{3}$ следа ортогонального \mathbf{U}_{IJ} тензора.

Таблица 8

Атом	1X	v	z	U(экв)
O 1	13190(2)	-118,2(8)	2214,3(7)	40,6(4)
O2	15331(2)	293,0(8)	2476,3(7)	42,6(5)
O3	12111(2)	860,7(7)	1856,7(6)	31,3(4)
O4	10828(2)	415,4(7)	464,9(6)	29,0(3)
O5	11300(2)	-132,9(7)	1377,4(6)	34,9(4)
O6	12539(3)	-365,9(9)	-84,7(7)	46,9(5)
O7	8117(2)	1476,1(8)	1664,3(7)	39,7(4)
O8	9156,5(19)	1126,3(7)	441,9(6)	28,0(3)
O 9	8082(2)	2904,6(8)	-854,4(9)	47,1(5)
O 10	10567(2)	2790,6(7)	-729,9(7)	35,0(4)
O11	7675(2)	405,2(7)	-196,5(6)	28,9(3)
O12	6149(2)	246,3(7)	492,2(6)	29,9(4)
O13	6702(2)	-525,0(7)	-630,2(6)	36,4(4)
O14	7691(3)	-1309,9(7)	66,4(7)	43,8(5)
O15	6012(2)	-869,3(7)	855,2(6)	34,8(4)
N1	10387(3)	1611,1(8)	1287,0(7)	29,2(4)
C 1	12464(4)	2207,4(13)	2781,9(14)	55,2(8)
C2	12304(5)	2814,9(15)	2635,1(17)	67,9(11)
C3	13809(5)	3064,1(13)	2499,0(13)	55,9(8)
C4	14620(6)	2729,3(14)	2107,5(13)	63,2(10)
C5	14777(4)	2126,0(13)	2259,9(12)	51,3(8)
C 6	13227(4)	1865,8(11)	2388(1)	39,6(6)
C7	13395(3)	1259,0(11)	2533,2(9)	37,3(6)
C8	13548(3)	868,7(11)	2100,0(9)	32,9(5)
C 9	13966(3)	292,0(11)	2265,3(9)	34,6(5)
C10	15840(4)	-229,2(12)	2686,0(11)	44,0(7)
C11	15021(3)	-343,5(12)	3156(1)	38,9(6)
C12	15303(4)	-18,7(12)	3558,8(11)	45,9(7)
C13	14508(4)	-107,0(14)	3985,5(12)	53,3(8)
	I		1	

C14	13430(4)	-521,5(15)	4014,4(11)	50,5(8)
C15	13175(4)	-855,3(14)	3619,2(12)	49,1(7)
C16	13958(3)	-767,6(12)	3188,1(11)	41,8(6)
C17	12159(3)	820,9(10)	1344,4(8)	28,3(5)
C18	10630(3)	1038,4(9)	1154,8(8)	27,2(5)
C19	10603(3)	972,2(9)	604,2(8)	27,3(5)
C20	12275(3)	201,4(10)	620,8(9)	30,5(5)
C21	12401(3)	225,7(10)	1170,8(9)	30,3(5)
C22	12396(3)	-383,6(11)	431,4(10)	37,3(6)

В таблице 9 показаны анизотропные параметры смещения (Å $^2 \times 10^3$) для кристаллического соединения **14**. Показатель коэффициента анизотропного смещения принимает вид: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+\dots]$.

Таблица 9

Атом	1 U11	U22	U33	U23	U13	U12
O 1	50,2(12)	36,1(10)	35,4(9)	3,1(7)	-4,9(8)	1,6(9)
O2	36,1(10)	44,6(11)	47,1(10)	12,7(8)	-5,3(9)	2,4(9)
O3	32,9(9)	34,5(8)	26,4(8)	-0,2(7)	-3,6(7)	0,6(7)
O4	27,5(8)	28,6(8)	31,0(8)	-2,4(6)	-3,9(7)	3,6(7)
O5	41,7(11)	29,2(8)	33,9(9)	2,4(7)	-1,2(8)	-2,9(7)
O6	55,9(13)	48,2(11)	36,5(10)	-12,1(8)	-7,5(9)	11,1(10)
O7	36,4(11)	42,6(10)	40(1)	-2,7(8)	7,3(8)	-0,3(8)
O8	25,8(8)	31,4(8)	26,8(8)	1,1(6)	-1,4(6)	1,9(7)
O 9	34,5(11)	31,6(9)	75,3(14)	7,8(9)	-12,6(10)	-1,6(8)
O 10	29,8(10)	31,5(9)	43,7(10)	6,4(7)	-3,8(8)	-4,8(7)
O11	29,0(9)	26,3(8)	31,4(8)	2,0(6)	1,4(7)	-2,2(7)
O12	30,5(9)	30,9(8)	28,4(8)	1,1(6)	0,1(7)	0,1(7)
O13	43,7(11)	33,8(9)	31,8(9)	-3,2(7)	2,9(8)	-10,3(8)
O14	54,7(13)	27,8(9)	49,1(11)	1,0(8)	7,6(10)	3,3(9)
O15	35,8(10)	31,4(8)	37,1(9)	9,9(7)	0,3(7)	-0,8(8)
N1	30,8(11)	27,0(9)	29,7(10)	-0,6(8)	-1,2(8)	-0,5(8)
C1	53(2)	44,2(16)	68(2)	-11,8(15)	10,0(17)	-3,6(15)
C2	63(2)	45,4(18)	95(3)	-20,4(18)	-2(2)	10,1(17)

C3	69(2)	36,2(15)	62,7(19)	-4,6(14)	-8,0(18)	-0,3(15)
C4	91(3)	43,6(17)	54,8(19)	4,8(14)	10,2(19)	-3,6(18)
C5	63(2)	40,9(15)	49,8(16)	-0,9(13)	13,8(15)	-1,5(15)
C6	48,1(17)	36,0(13)	34,6(13)	-2,3(10)	-12,3(12)	2,9(12)
C7	45,5(16)	36,8(13)	29,6(12)	0,8(10)	-4,5(11)	-0,6(11)
C8	34,5(13)	35,7(12)	28,4(11)	3,3(10)	-4,9(10)	0,9(11)
C 9	40,7(15)	35,1(13)	27,9(11)	1,8(9)	-0,3(10)	2,9(11)
C10	38,1(15)	44,9(15)	48,9(15)	14,3(12)	-0,8(12)	10,5(13)
C11	36,2(15)	38,9(14)	41,5(14)	7,5(11)	-5,7(11)	8,5(11)
C12	49,7(18)	37,8(14)	50,2(16)	4,4(12)	-9,3(14)	2,5(13)
C13	63(2)	54,2(18)	43,2(16)	-3,2(13)	-10,5(14)	16,5(16)
C14	45,0(18)	65(2)	41,8(15)	10,1(14)	2,9(13)	13,2(15)
C15	37,9(16)	52,8(17)	56,7(18)	10,7(14)	-1,5(13)	3,8(14)
C16	38,5(15)	41,7(15)	45,0(15)	2,9(12)	-4,9(12)	2,0(12)
C17	28,8(12)	31,3(11)	24,9(10)	0,8(9)	-1,6(9)	0,9(10)
C18	29,4(12)	25,3(10)	27,0(11)	0,7(8)	0,9(9)	-0,4(9)
C19	24,4(12)	26,4(11)	30,9(11)	0,3(9)	1,0(9)	2,1(9)
C20	26,7(12)	33,3(12)	31,4(11)	-0,5(9)	-1,8(9)	5,4(10)
C21	30,9(13)	29,1(11)	30,7(11)	1,5(9)	-2,3(10)	1,2(10)
C22	40,4(15)	35,9(13)	35,6(13)	-4,3(10)	-5,3(11)	8,9(11)
C23	34,3(14)	33,8(12)	31,2(11)	-2,8(9)	-2,2(10)	0,9(11)
C24	44,5(17)	38,1(15)	64,2(19)	-13,2(13)	4,4(15)	4,0(13)
C25	27,4(12)	29,3(11)	26(1)	0,9(8)	-0,9(9)	1,8(9)
C26	29,1(13)	29,9(11)	32,6(12)	1,3(9)	-4,1(10)	-1,8(10)
C27	26,6(12)	29,1(11)	33,5(12)	4,1(9)	-1,7(9)	0,3(9)

В таблице 10 показаны длины связей для кристаллического соединения 14. Таблица 10

Атом	Атом	Длина/Å
O1	C9	1,211(3)
O2	C9	1,331(3)
O2	C10	1,460(3)
О3	C8	1,427(3)

Атом	Атом	Длина/Å
C15	C16	1,389(4)
C17	C18	1,532(3)
C17	C21	1,532(3)
C18	C19	1,527(3)

O3	C17	1,417(3)
O4	C19	1,415(3)
O4	C20	1,436(3)
O5	C21	1,417(3)
O6	C22	1,430(3)
O7	C23	1,225(3)
O8	C19	1,395(3)
O8	C25	1,434(3)
O9	C33	1,205(3)
O10	C33	1,329(3)
O10	C34	1,450(3)
O11	C30	1,431(3)
O11	C35	1,408(3)
O12	C35	1,412(3)
O12	C39	1,444(3)
O13	C36	1,421(3)
O13	C40	1,428(3)
O14	C37	1,431(3)
O14	C47	1,426(4)
O15	C38	1,431(3)
O15	C54	1,425(3)
N1	C18	1,449(3)
N1	C23	1,348(3)
C1	C2	1,531(5)
C1	C6	1,521(4)
C2	C3	1,498(6)
C3	C4	1,526(5)
C4	C5	1,525(5)
C5	C6	1,539(5)
C6	C7	1,529(4)
C7	C8	1,529(4)
C8	C9	1,513(4)

C20	C21	1,523(3)
C20	C22	1,512(3)
C23	C24	1,506(4)
C25	C26	1,526(3)
C25	C30	1,524(3)
C26	C27	1,536(3)
C27	C28	1,522(3)
C27	C33	1,504(3)
C28	C29	1,529(3)
C29	C30	1,538(3)
C29	C31	1,533(4)
C31	C32	1,530(3)
C35	C36	1,529(3)
C36	C37	1,517(4)
C37	C38	1,535(4)
C38	C39	1,523(4)
C39	C61	1,514(4)
C40	C41	1,491(4)
C41	C42	1,398(5)
C41	C46	1,390(4)
C42	C43	1,384(5)
C43	C44	1,382(5)
C44	C45	1,362(5)
C45	C46	1,390(5)
C47	C48	1,511(5)
C48	C49	1,384(5)
C48	C53	1,392(5)
C49	C50	1,393(5)
C50	C51	1,390(6)
C51	C52	1,369(6)
C52	C53	1,389(5)
C54	C55	1,488(5)

C10	C11	1,507(4)
C11	C12	1,383(4)
C11	C16	1,389(4)
C12	C13	1,384(5)
C13	C14	1,380(5)
C14	C15	1,375(5)

C55	C56	1,387(5)
C55	C60	1,383(5)
C56	C57	1,364(6)
C57	C58	1,369(7)
C58	C59	1,397(8)
C59	C60	1,395(6)

В таблице 11 показаны углы связей для кристаллического соединения 14. Таблица 11

Атом	Атом	Атом	Угол/°
C9	O2	C10	116,5(2)
C17	О3	C8	116,34(19)
C19	O4	C20	112,66(18)
C19	O8	C25	113,62(18)
C33	O10	C34	115,7(2)
C35	O11	C30	116,34(18)
C35	O12	C39	114,02(19)
C36	O13	C40	113,2(2)
C47	O14	C37	114,2(2)
C54	O15	C38	114,3(2)
C23	N1	C18	122,8(2)
C 6	C1	C2	111,9(3)
C3	C2	C1	111,8(3)
C2	C3	C4	112,0(3)
C5	C4	СЗ	110,8(3)
C4	C5	C6	112,0(3)
C 1	C6	C5	109,3(2)
C1	C6	C7	112,2(2)
C7	C6	C5	111,6(3)
C6	C7	C8	113,4(2)
О3	C8	C7	107,4(2)
O3	C8	C 9	110,0(2)
C 9	C8	C7	110,8(2)

Атом	Атом	Атом	Угол/°
C25	C26	C27	110,55(19)
C28	C27	C26	109,5(2)
C33	C27	C26	110,3(2)
C33	C27	C28	111,7(2)
C27	C28	C29	111,0(2)
C28	C29	C30	109,45(19)
C28	C29	C31	111,9(2)
C31	C29	C30	112,5(2)
O11	C30	C25	106,91(19)
O11	C30	C29	111,19(18)
C25	C30	C29	109,75(19)
C32	C31	C29	113,2(2)
O 9	C33	O10	122,5(2)
O 9	C33	C27	125,0(2)
O10	C33	C27	112,5(2)
O11	C35	O12	113,29(19)
O11	C35	C36	106,8(2)
O12	C35	C36	111,32(18)
O13	C36	C35	108,51(19)
O13	C36	C37	112,3(2)
C37	C36	C35	110,8(2)
O14	C37	C36	107,2(2)
O14	C37	C38	111,8(2)

O1	C 9	O2	123,8(2)
O1	C 9	C8	125,8(3)
O2	C 9	C8	110,3(2)
O2	C10	C11	110,7(2)
C12	C11	C10	120,1(3)
C12	C11	C16	119,2(3)
C16	C11	C10	120,7(3)
C11	C12	C13	120,4(3)
C14	C13	C12	120,4(3)
C15	C14	C13	119,5(3)
C14	C15	C16	120,6(3)
C11	C16	C15	119,9(3)
О3	C17	C18	106,94(19)
О3	C17	C21	112,31(19)
C18	C17	C21	109,71(19)
N1	C18	C17	111,79(19)
N1	C18	C19	110,39(18)
C19	C18	C17	108,49(19)
O4	C19	C18	111,58(18)
O8	C19	O4	107,09(18)
O8	C19	C18	107,77(19)
O4	C20	C21	110,4(2)

C36	C37	C38	108,5(2)
O15	C38	C37	110,0(2)
O15	C38	C39	109,8(2)
C39	C38	C37	109,1(2)
O12	C39	C38	110,6(2)
O12	C39	C61	107,4(2)
C61	C39	C38	112,5(2)
O13	C40	C41	109,1(2)
C42	C41	C40	120,4(3)
C46	C41	C40	121,8(3)
C46	C41	C42	117,9(3)
C43	C42	C41	120,6(3)
C44	C43	C42	120,3(3)
C45	C44	C43	119,9(3)
C44	C45	C46	120,4(3)
C41	C46	C45	120,9(3)
O14	C47	C48	113,9(3)
C49	C48	C47	122,0(3)
C49	C48	C53	119,4(3)
C53	C48	C47	118,6(3)
C48	C49	C50	120,2(4)
C51	C50	C49	119,9(4)

В таблице 12 показаны торсионные углы для кристаллического соединения 14. Таблица 12

A	В	C	D	Уго л/°	
O2	C10	C11	C12	-68,5(3)	
O2	C10	C11	C16	110,3(3)	
О3	C8	C9	O 1	-2,0(4)	
О3	C8	C 9	O2	177,7(2)	
О3	C17	C18	N1	61,1(2)	
О3	C17	C18	C19	-176,89(18)	
О3	C17	C21	O5	53,5(3)	

A	В	C	D	Угол∕°
C21	C20	C22	O6	-169,9(2)
C22	C20	C21	O5	-54,5(3)
C22	C20	C21	C17	-176,1(2)
C23	N1	C18	C17	-125,7(2)
C23	N1	C18	C19	113,4(2)
C25	O8	C19	O4	-76,0(2)
C25	O8	C19	C18	163,86(18)

O3	C17	C21	C20	174,1(2)
O4	C20	C21	O5	65,0(2)
O4	C20	C21	C17	-56,6(3)
O4	C20	C22	O6	68,8(3)
O8	C25	C26	C27	-176,17(19)
O8	C25	C30	O11	-63,1(2)
O8	C25	C30	C29	176,16(18)
O11	C35	C36	O13	-54,6(2)
O11	C35	C36	C37	69,1(2)
O12	C35	C36	O13	-178,7(2)
O12	C35	C36	C37	-55,0(3)
O13	C36	C37	O14	-62,0(3)
O13	C36	C37	C38	177,1(2)
O13	C40	C41	C42	-84,1(4)
O13	C40	C41	C46	96,9(3)
O14	C37	C38	O15	-54,6(3)
O14	C37	C38	C39	-175,1(2)
O14	C47	C48	C49	-5,9(5)
O14	C47	C48	C53	175,1(3)
O15	C38	C39	O12	-62,7(3)
O15	C38	C39	C61	57,3(3)
O15	C54	C55	C56	121,9(3)
O15	C54	C55	C60	-57,9(4)
N1	C18	C19	O4	-179,62(19)
N1	C18	C19	O8	-62,3(2)
C1	C2	C3	C4	54,1(5)
C1	C6	C7	C8	157,1(3)
C2	C1	C6	C5	55,5(4)
C2	C1	C6	C7	179,8(3)
C2	C3	C4	C5	-54,2(5)
C3	C4	C5	C6	55,6(4)
C4	C5	C6	C1	-56,2(4)

C25	C26	0.5		
	C20	C27	C28	56,1(3)
C25	C26	C27	C33	179,4(2)
C26	C25	C30	O11	176,57(18)
C26	C25	C30	C29	55,9(3)
C26	C27	C28	C29	-59,6(3)
C26	C27	C33	O 9	-105,0(3)
C26	C27	C33	O10	74,4(3)
C27	C28	C29	C30	60,4(3)
C27	C28	C29	C31	-174,2(2)
C28	C27	C33	O9	16,9(4)
C28	C27	C33	O10	-163,6(2)
C28	C29	C30	O11	-175,3(2)
C28	C29	C30	C25	-57,2(3)
C28	C29	C31	C32	59,2(3)
C30	O11	C35	O12	-76,1(2)
C30	O11	C35	C36	160,95(18)
C30	C25	C26	C27	-55,5(3)
C30	C29	C31	C32	-177,1(2)
C31	C29	C30	O11	59,7(3)
C31	C29	C30	C25	177,7(2)
C33	C27	C28	C29	178,0(2)
C34	O10	C33	O9	-1,3(4)
C34	O10	C33	C27	179,2(2)
C35	O11	C30	C25	134,7(2)
C35	O11	C30	C29	-105,6(2)
C35	O12	C39	C38	-58,5(3)
C35	O12	C39	C61	178,38(19)
C35	C36	C37	O14	176,5(2)
C35	C36	C37	C38	55,6(3)
C36	O13	C40	C41	165,9(3)
C36	C37	C38	O15	63,4(3)
C36	C37	C38	C39	-57,1(3)

C4	C5	C 6	C7	179,2(3)
C5	C6	C7	C8	-79,9(3)
C 6	C1	C2	C3	-55,6(4)
C6	C7	C8	О3	-69,0(3)
C 6	C7	C8	C 9	170,8(2)
C7	C8	C 9	O 1	116,6(3)

C37	O14	C47	C48	-87,1(3)
C37	C38	C39	O12	57,9(3)
C37	C38	C39	C61	177,9(2)
C38	O15	C54	C55	-175,5(2)
C39	O12	C35	O11	-64,0(2)
C39	O12	C35	C36	56,4(3)

В таблице 13 показаны координаты водородных связей ($\mathring{A}\times 10^4$) и изотропные параметры смещения ($\mathring{A}^2\times 10^3$) для кристаллического соединения **14**.

Таблица 13

Атом	x	V	z	U(экв)
H5	11409,99	-139,75	1679,84	52
H6	12229,04	-665,45	-203,14	70
H1	11089,05	1855,47	1209,41	35
H1A	13073,59	2182,71	3083,16	66
H1B	11439,64	2052,97	2849,96	66
H2A	11595,07	2843,49	2356,78	81
Н2В	11859,27	3025,89	2908,29	81
Н3А	14466,31	3084,26	2790,19	67
Н3В	13643,18	3445,57	2380,37	67
H4A	14033,87	2751,27	1801,38	76
H4B	15644,87	2887,64	2048,68	76
H5A	15461,77	2102,29	2544,58	62
Н5В	15250,58	1913,76	1992,44	62
H6A	12567,94	1881,97	2092,57	47
Н7А	12493,8	1148,4	2726,47	45
Н7В	14307,2	1219,14	2742,07	45
H8	14351,82	1011,06	1875,01	39
H10A	16953,29	-213,57	2745,44	53
H10B	15639,61	-533,49	2454,68	53
H12	16045,63	266,53	3542,65	55
H13	14705,08	119,1	4259,92	64
H14	12868,21	-575,79	4305,04	61
	1	1	1	·

H15	12456,71	-1148,44	3641,06	59
H16	13766,24	-997,39	2915,67	50
H17	13002,8	1059,01	1218,16	34
H18	9789,78	810,41	1296,9	33
H19	11398,17	1212,94	452,71	33
H20	13108,41	429,43	475,09	37
H21	13443,03	100,29	1269,63	36
H22A	13298,17	-568,23	574,49	45
H22B	11475,54	-596,32	523,04	45
H24A	8169,44	2550,73	1422,21	73
H24B	9982,19	2575,07	1488,47	73
H24C	8905,74	2477,2	1949,09	73
H25	9970,62	1043,05	-229,95	33
H26A	10218,52	1983,96	-34,49	37
H26B	8411,25	2044,29	36,87	37
H27	9887,47	1808,34	-873,4	36
H28A	7414,27	1851,19	-1224,26	39
H28B	6677,78	1933,01	-697,59	39
H29	8367,62	970,65	-981,01	36
H30	6720,65	1146,93	-88,51	34

ПРИМЕР 7: РЕНТГЕНОВСКИЙ АНАЛИЗ МОНОКРИСТАЛЛОВ ГИДРАТА СОЛЬВАТА ЭТАНОЛА СОЕДИНЕНИЯ **15**

Соединение **15** (10 мг) растворяли в этаноле (абсолютном) (400 мкл) в 2 мл прозрачной стеклянной пробирке и добавляли воду (200 мкл). Данную пробирку закрывали крышкой и оставляли стоять при 5°С примерно на три недели. Через три недели было отмечено, что небольшие пластинчатые кристаллы выросли ниже мениска растворения, что оказалось подходящим для исследования с помощью рентгеновской дифракции монокристаллов.

SXRD анализ проводили с применением прибора с двумя источниками Agilent SuperNova с применением Cu K α -излучения (λ =1,54184 Å), генерируемого герметичной трубкой. Дифрактометр был оснащен низкотемпературным устройством Oxford Cryosystems, позволяющим проводить сбор данных при температуре 120(1) K, и кристалл заключали в защитный слой паратонового масла. Было собрано несколько наборов данных, которые были разрешены и уточнены в хиральной моноклинной пространственной группе C2. Эффекты поглощения корректировали, применяя эмпирическую коррекцию со

сферическими гармониками (SCALE3 ABSPACK) в составе пакета программ CrysAlisPro (Agilent Technologies, 2014).

Структуру разрешали прямыми способами (SHELXS97) и формировали полным уточнением наименьших квадратов на F (SHELXL97) с интерфейсом через программный пакет OLEX2. Изображения получали так через *OLEX2*. *Cмотри* Sheldrick, G. M. Acta Cryst. Sect. A 2008, 64, 112; Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J Appl. Cryst. 2009, 42, 339-341.

Проводили поиск более высокой метрической симметрии с применением процедуры ADDSYMM PLATON, но не удалось обнаружить какую-либо симметрию более высокого порядка. Смотри Le Page, Y. J. Appl. Cryst. 1987, 20, 264; Le Page, Y. J. Appl. Cryst. 1988, 21, 983; Spek A. L., Acta Cryst. 2009, D65, 148. Все неводородные атомы расположены на карте Фурье, и их положение уточнено до описания теплового движения всех неводородных атомов анизотропно. Внутри структуры была обнаружена одна полная формульная единица соединения 15 в асимметричной ячейке, а также два кармана электронной плотности, которые хорошо уточнялись: молекула воды с заселенностью 0,67 и молекула этанола с заселенностью 0,33. Длины связей внутри молекулы этанола были ограничены до 1,54(2) Å для длины С-С и 1,44(2) для С-О в дополнение к ограничению теплового движения атомов почти изотропным поведением. В дополнение к данной пустоте растворения было обнаружено, что метокси-эфирное плечо исходного соединения 15 неупорядочено, поэтому было смоделировано два положения с эквивалентными занятостями.

Все водородные атомы размещали в расчетных позициях с применением модели «наездника» с фиксированным Uiso в 1,2 раза для всех групп CH, CH_2 и NH и в 1,5 раза для всех групп CH_3 и OH.

Было обнаружено, что наибольший остаточный пик Фурье составляет $0.84~e.\text{Å}^{-3}$ приблизительно 0.73~Å от C(36), и самое глубокое отверстие Фурье составляет $-0.29~e.\text{Å}^{-3}$ приблизительно 1.04~Å от $^{\circ}(11)$.

Кристаллические данные для $C_{33,33}H_{58,33}N^{\circ}_{16}$ (M =729,37 г/моль): моноклинная пространственная группа C2 (№ 5), α =45,7226(18) Å, b=4,9503(3) Å, c=16,7304(8) Å, α =90°, β =95,885(4)°, β =90°, V=3766,8(3) ų, Z=4, T=120(1) K, μ (CuK α)=0,860 мм-1, Dcalc=1,290 г/см3, измерено 114512 отражений (6,896° \leq 2 Θ \leq 162,986°), 7536 уникальных (Rint=0,1458, Rsigma=0,0766), которые применяли во всех расчетах. Конечная R1 составляла 0,0842 (I > 2 σ (I), и W2 составляла 0,2463 (все данные)

Структурные особенности гидрата сольвата этанола соединения 15. Размеры элементарной ячейки собранной структуры оказались следующими:

Пространственная группа: моноклинная I2 а=45,703(4) Å α =90° b=4,9471(4) Å β =95,819(8)° c=16,7285(15) Å γ =90° объем=3762,8(3) Å³

$$Z=4, Z=1$$

Было обнаружено, что асимметричная ячейка содержит одну полную формульную единицу соединения **15** с небольшой областью неупорядоченной электронной плотности, эквивалентной 38 электронам/элементарная ячейка (9,5 электронов/асимметричная ячейка), в настоящее время уточненной как частично занятая смешанная пустота вода/этанол при занятости 0,67 для воды (и 0,33 занятости для этанола). Примечание: 10 электронов на всю молекулу воду и 18 электронов на всю молекулу этанола.

Параметры окончательного уточнения были следующими:

 $R_1 [I > 2\sigma(I)] = 8,42\%$

GOOF (качество апроксимации)=1,010

wR₂ (все данные)=24,63%

 $R_{int}=14,58\%$

параметр Φ лэка =0,3(2)

В таблице 14 показаны относительные атомные координаты ($\times 10^4$) и эквивалентные изотропные параметры смещения ($\mathring{A}^2 \times 10^3$) для гидрата сольвата этанола кристаллического соединения **15**. U_{3KB} , определяют как $^{1}/_{3}$ следа ортогонального U_{IJ} тензора.

Таблица 14

x	y	z.	U(экв)
6265,6(10)	740(14)	1746(3)	43,1(12)
5948,7(9)	495(11)	1597(2)	42,5(10)
6678,4(8)	-211(12)	2726(2)	59,6(13)
6418,5(11)	-798(15)	1115(3)	47,1(14)
6752,2(12)	-746(18)	1327(4)	60,6(19)
6330,5(8)	442(10)	352(2)	50,9(10)
6824,6(12)	-1850(19)	2170(4)	62(2)
6369,2(10)	-393(15)	2582(3)	45,7(14)
5764,5(12)	2562(14)	1635(3)	44,5(13)
6860,9(11)	1897(15)	1254(3)	78,9(17)
5442,3(12)	1818(18)	1573(4)	57,2(17)
7216,6(10)	-3563(17)	3132(3)	91(2)
6257,6(7)	1208(9)	3169(2)	44,1(9)
5167(5)	-380(40)	3413(17)	97(7)
5224(3)	-4670(30)	3813(10)	80(4)
6461,7(7)	1922(9)	4811,3(19)	40,5(9)
6589,4(7)	280(10)	6116(2)	49,9(10)
	6265,6(10) 5948,7(9) 6678,4(8) 6418,5(11) 6752,2(12) 6330,5(8) 6824,6(12) 6369,2(10) 5764,5(12) 6860,9(11) 5442,3(12) 7216,6(10) 6257,6(7) 5167(5) 5224(3) 6461,7(7)	6265,6(10) 740(14) 5948,7(9) 495(11) 6678,4(8) -211(12) 6418,5(11) -798(15) 6752,2(12) -746(18) 6330,5(8) 442(10) 6824,6(12) -1850(19) 6369,2(10) -393(15) 5764,5(12) 2562(14) 6860,9(11) 1897(15) 5442,3(12) 1818(18) 7216,6(10) -3563(17) 6257,6(7) 1208(9) 5167(5) -380(40) 5224(3) -4670(30) 6461,7(7) 1922(9)	6265,6(10) 740(14) 1746(3) 5948,7(9) 495(11) 1597(2) 6678,4(8) -211(12) 2726(2) 6418,5(11) -798(15) 1115(3) 6752,2(12) -746(18) 1327(4) 6330,5(8) 442(10) 352(2) 6824,6(12) -1850(19) 2170(4) 6369,2(10) -393(15) 2582(3) 5764,5(12) 2562(14) 1635(3) 6860,9(11) 1897(15) 1254(3) 5442,3(12) 1818(18) 1573(4) 7216,6(10) -3563(17) 3132(3) 6257,6(7) 1208(9) 3169(2) 5167(5) -380(40) 3413(17) 5224(3) -4670(30) 3813(10) 6461,7(7) 1922(9) 4811,3(19)

O13	7212,1(8)	318(12)	6691(2)	57,0(12)
O14	7387,4(7)	1629(10)	5174(3)	48,9(10)
O15	6916,7(9)	-1158(11)	4261(2)	56,4(12)
C17	7148,5(13)	-1740(30)	2455(4)	91(4)
C18	6122,1(10)	-220(13)	3785(3)	42,2(12)
C19	6153,3(10)	1594(14)	4518(3)	41,4(12)
C20	5963(1)	777(14)	5184(3)	43,6(13)
C21	5643,8(11)	216(15)	4831(3)	48,2(14)
C22	5627,1(11)	-1821(14)	4141(4)	48,6(14)
C23	5801,0(11)	-752(14)	3483(3)	46,5(13)
C24	5964,6(12)	2981(16)	5836(3)	52,6(16)
C25	5870,5(15)	1950(20)	6624(4)	67(2)
C26	5310,4(13)	-2337(17)	3814(4)	57,3(16)
C28	6597,1(11)	-224(13)	5289(3)	43,3(12)
C29	6748,3(12)	2659(16)	6402(3)	52,7(15)
C30	7071,9(11)	2456(15)	6238(3)	50,1(14)
C31	7090,2(10)	2017(14)	5337(3)	44,3(13)
C32	6912,2(10)	-478(13)	5078(3)	42,6(13)
C33	6706,6(14)	2970(30)	7278(4)	83(3)
O17	7389(4)	-6100(60)	791(12)	125(11)
C35	7644(5)	-1110(50)	848(10)	65(6)
C36	7464(6)	-3340(50)	578(15)	88(7)
O2	4157,1(10)	4887(11)	8295(3)	57,0(11)
O16	2765,3(17)	8290(20)	1746(5)	88(3)
O4	3169,4(12)	11309(16)	406(3)	82,2(18)
O5	3260,4(14)	7637(15)	1159(3)	82,9(17)
C8	3619,3(13)	8839(17)	324(3)	55,3(16)
C 9	3322,9(15)	9370(19)	612(4)	63,2(19)
C10	3857,6(13)	9486(18)	1005(3)	57,5(17)
C11	4170,1(13)	9168(17)	806(3)	57,2(17)
C12	4233,7(15)	6438(19)	471(4)	65,8(19)
C13	4554,0(15)	6110(20)	318(4)	67(2)

C14	4763,5(15)	6680(20)	1068(4)	72(2)
C15	4704,5(16)	9380(20)	1409(4)	71(2)
C16	4386,2(14)	9711(18)	1561(3)	59,9(17)
C27A	5081(4)	4840(60)	6487(15)	86(6)
O10B	5182(2)	-4070(30)	4273(7)	63(3)
O9B	5194(4)	-1740(60)	3198(13)	112(9)
C27B	5117(4)	5210(50)	6023(14)	76(5)

В таблице 15 показаны анизотропные параметры смещения (Å $^2 \times 10^3$) для гидрата сольвата этанола кристаллического соединения 15. Показатель коэффициента анизотропного смещения принимает вид: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+\dots]$.

Таблица 15

Атом	I U11	U22	U33	U23	U13	U12
C1	37(2)	51(4)	42(2)	-3(2)	5,2(18)	-1(2)
N1	37(2)	47(3)	43(2)	-3(2)	1,9(16)	-0,8(19)
O 1	29,7(16)	102(4)	46,5(19)	-16(2)	-1,1(14)	1(2)
C2	39(2)	64(4)	37(2)	-1(3)	0,9(19)	3(2)
C3	39(3)	93(6)	50(3)	-10(3)	3(2)	2(3)
О3	51(2)	64(3)	38,1(17)	2,2(18)	5,8(14)	3(2)
C4	34(2)	104(6)	47(3)	-15(3)	-2(2)	9(3)
C5	30(2)	65(4)	41(2)	-8(3)	1,1(17)	0(2)
C6	49(3)	45(4)	39(2)	2(2)	2,4(19)	4(2)
O6	55(2)	106(5)	78(3)	-18(3)	22(2)	-22(3)
C7	39(3)	82(5)	48(3)	5(3)	-4(2)	7(3)
O7	45(2)	169(7)	57(2)	-34(4)	-10,8(18)	35(3)
O8	36,9(16)	56(3)	39,7(17)	-3,1(17)	5,4(12)	-4,2(16)
O9A	54(7)	81(13)	148(17)	14(11)	-34(8)	-1(8)
O 10	49(6)	63(9)	117(11)	6(8)	-39(7)	-1(5)
A	47(0)	03(2)	117(11)	0(8)	-35(1)	-1(3)
O 11	30,8(15)	52(3)	38,4(16)	0,9(16)	-0,3(12)	0,1(15)
O12	35,2(16)	75(3)	38,3(17)	7,5(19)	0,1(13)	-0,9(18)
O13	32,0(16)	92(4)	46,0(19)	5(2)	-1,9(14)	-3,0(19)
O14	31,9(16)	52(3)	63(2)	0(2)	6,2(14)	0,6(16)

O15	40,6(19)	80(4)	47(2)	-12(2)	-1,1(15)	8(2)
C17	36(3)	182(11)	55(4)	-21(5)	4(2)	15(4)
C18	33(2)	51(4)	42(2)	4(2)	2,5(18)	-2(2)
C19	29(2)	56(4)	38(2)	1(2)	2,0(16)	2(2)
C20	30(2)	54(4)	47(3)	6(2)	5,6(18)	1(2)
C21	32(2)	62(4)	51(3)	8(3)	7,1(19)	5(2)
C22	31(2)	55(4)	59(3)	11(3)	1(2)	-1(2)
C23	33(2)	60(4)	46(3)	1(3)	-0,1(19)	-2(2)
C24	37(2)	82(5)	40(3)	5(3)	7,9(19)	5(3)
C25	57(3)	103(7)	42(3)	8(3)	12(2)	-1(4)
C26	38(3)	68(5)	64(4)	10(3)	-2(2)	1(3)
C28	38(2)	47(4)	44(2)	3(2)	1,8(19)	-1(2)
C29	41(3)	75(5)	41(3)	-4(3)	0(2)	0(3)
C30	38(2)	64(4)	47(3)	-1(3)	-4(2)	-2(3)
C31	32(2)	56(4)	46(3)	-1(2)	5,4(18)	-1(2)
C32	31(2)	53(4)	42(2)	-2(2)	-2,8(18)	0(2)
C33	43(3)	160(10)	46(3)	-20(4)	3(2)	11(4)
O17	69(10)	230(30)	74(11)	-20(16)	18(9)	-40(15)
C35	75(12)	86(17)	37(8)	18(9)	20(8)	32(12)
C36	87(11)	113(14)	69(10)	19(10)	26(9)	27(11)
O2	59(2)	48(3)	63(2)	0(2)	2,3(18)	-5(2)
O16	68(4)	134(9)	69(4)	-38(5)	47(4)	-35(5)
O4	70(3)	113(5)	68(3)	-8(3)	25(2)	8(3)
O5	86(3)	100(5)	68(3)	-6(3)	32(3)	-20(3)
C8	51(3)	76(5)	40(3)	2(3)	7(2)	-8(3)
C 9	58(4)	82(6)	51(3)	-1(3)	14(3)	-8(4)
C10	57(3)	77(5)	39(3)	-1(3)	6(2)	-4(3)
C11	53(3)	78(5)	39(3)	-2(3)	1(2)	-8(3)
C12	62(4)	82(6)	52(3)	-4(4)	0(3)	3(4)
C13	66(4)	87(6)	46(3)	-6(3)	-2(3)	10(4)
C14	54(3)	97(7)	62(4)	-7(4)	-7(3)	4(4)
C15	62(4)	93(7)	57(3)	4(4)	-6(3)	-2(4)

C16	59(3)	79(5)	40(3)	-3(3)	0(2)	1(3)
C27A	45(8)	107(17)	101(14)	-4(14)	-23(9)	9(9)
O10B	37(4)	88(10)	65(6)	14(6)	4(4)	-9(5)
О9В	60(9)	170(20)	102(13)	64(15)	-35(8)	-57(13)
C27B	44(7)	90(14)	94(12)	-3(12)	14(8)	18(8)

В таблице 16 показаны длины связей для гидрата сольвата этанола кристаллического соединения 15.

Таблица 16

Атом	Атом	Длина/Å
C1	N1	1,450(6)
C1	C2	1,528(8)
C 1	C5	1,536(7)
C27A	O10A ¹	1,455(18)
O9A	C26	1,31(2)
O10A	C26	1,220(16)
O10A	C27A ²	1,455(18)
C27B	O10B ¹	1,45(2)
O10B	C27B ²	1,45(2)
N1	C6	1,331(8)
O1	C4	1,448(8)
O1	C5	1,412(6)
C2	СЗ	1,531(7)
C2	О3	1,437(7)
C3	C4	1,517(9)
C3	O6	1,410(11)
O3	C8 ³	1,420(8)
C4	C17	1,510(8)
C5	O8	1,398(7)
C6	C7	1,512(8)
C6	O2 ⁴	1,207(8)
O7	C17	1,456(12)
O8	C18	1,441(6)

Атом	Атом	Длина/Å
C18	C23	1,526(7)
C19	C20	1,537(7)
C20	C21	1,543(7)
C20	C24	1,542(9)
C21	C22	1,530(9)
C22	C23	1,517(8)
C22	C26	1,516(8)
C24	C25	1,516(8)
C26	O10B	1,327(14)
C26	О9В	1,15(2)
C28	C32	1,523(7)
C29	C30	1,536(7)
C29	C33	1,504(8)
C30	C31	1,533(8)
C31	C32	1,518(8)
O17	C36	1,46(2)
C35	C36	1,42(2)
O2	C6 ⁴	1,207(8)
O4	C9	1,218(11)
O5	C9	1,307(10)
C8	O3 ⁵	1,420(8)
C8	C 9	1,507(9)
C8	C10	1,527(8)

O11	C19	1,454(5)	C10	C11	1,508(9)
O11	C28	1,432(7)	C11	C12	1,503(12)
O12	C28	1,409(6)	C11	C16	1,545(8)
O12	C29	1,440(9)	C12	C13	1,521(9)
O13	C30	1,416(8)	C13	C14	1,525(9)
O14	C31	1,426(6)	C14	C15	1,491(13)
O15	C32	1,409(6)	C15	C16	1,512(10)
C18	C19	1,515(8)			
11-x,-1	+y,-z; 21-x,	+y,1-z; 31-x,-1+y,1-z	z; 41-x,1+y,-z; 51-	x,1+y,1-z	

В таблице 17 показаны углы связей для гидрата сольвата этанола кристаллического соединения 15.

Таблица 17

Атом	Атом	Атом	Угол/°
N1	C1	C2	111,0(4)
N1	C1	C5	109,6(4)
C2	C1	C5	109,1(5)
C6	N1	C1	123,6(5)
C5	O1	C4	112,0(4)
C1	C2	СЗ	110,3(5)
O3	C2	C1	107,2(5)
O3	C2	C3	112,4(5)
O10A	C26	O9A	123,5(12)
O10A	C26	C22	117,1(7)
O9A	C26	C22	117,9(11)
O10B	C26	C22	111,4(7)
O9B	C26	C22	128,2(11)
O9B	C26	O10B	119,4(12)
C4	СЗ	C2	109,1(5)
O6	СЗ	C2	110,3(6)
O6	СЗ	C4	111,7(6)
C8 ¹	O3	C2	114,6(5)
O1	C4	C3	108,9(6)

Атом	Атом	Атом	Угол/°
C22	C21	C20	112,3(4)
C23	C22	C21	109,2(5)
C26	C22	C21	110,8(5)
C26	C22	C23	110,5(5)
C22	C23	C18	112,2(4)
C25	C24	C20	113,3(6)
O11	C28	C32	107,3(4)
O12	C28	O11	111,3(5)
O12	C28	C32	111,2(4)
O12	C29	C30	110,4(5)
O12	C29	C33	107,3(6)
C33	C29	C30	113,7(5)
O13	C30	C29	110,2(5)
O13	C30	C31	110,6(5)
C31	C30	C29	109,6(4)
O14	C31	C30	110,9(4)
O14	C31	C32	109,2(5)
C26	O10A	C27A ³	117,3(15)
C26	O10B	C27B ³	114,9(12)

O1	C4	C17	106,2(5)
17	C4	C3	113,2(6)
	C5	C1	110,0(4)
8	C5	C1	109,4(5)
D8	C5	O1	106,0(4)
N1	C6	C7	115,2(6)
$O2^2$	C6	N1	123,7(5)
$O2^2$	C6	C7	121,1(6)
C5	O8	C18	116,1(5)
C28	O11	C19	117,0(4)
C28	O12	C29	114,1(4)
O7	C17	C4	110,4(7)
O8	C18	C19	106,1(5)
O8	C18	C23	108,5(4)
C19	C18	C23	112,2(4)
O11	C19	C18	110,3(4)
O11	C19	C20	112,7(4)
C18	C19	C20	114,7(5)
C19	C20	C21	110,7(4)
C19	C20	C24	111,4(5)
C24	C20	C21	109,5(4)

В таблице 18 показаны координаты водородных связей ($\mathring{A} \times 10^4$) и изотропные параметры смещения ($\mathring{A}^2 \times 10^3$) для гидрата сольвата этанола кристаллического соединения 15.

Таблица 18

Атом	x	v	z	U(экв)
H1	6319,57	2653,51	1728,26	52
H1A	5875,68	-1072,33	1477,36	51
H2	6351,08	-2678,05	1100,56	56
Н3	6842,8	-1919,47	949,97	73
H4	6755,19	-3719,38	2190,78	75

H5	6305,04	-2270,32	2627,43	55
Н6	6888,83	2181,79	784,86	118
Н7А	5349,34	2753,37	1981,59	86
Н7В	5423,02	-95,51	1645,4	86
Н7С	5349,94	2322,68	1053,45	86
H7	7116,74	-3161,1	3493,93	137
H13	7388,77	340,4	6642,23	86
H14	7414,33	29,28	5077,12	73
H15	6861,13	138,49	3980,61	85
H17A	7261,86	-2248,93	2019,39	109
H17B	7202,54	90,21	2616,23	109
H18	6224,44	-1933,48	3906,78	51
H19	6083,7	3381,31	4332,6	50
H20	6044,12	-885,29	5436,6	52
H21A	5533,22	-472,4	5252,26	58
H21B	5553,21	1897,29	4638,24	58
H22	5715,16	-3526,92	4341,48	58
H23A	5711,76	912,93	3272,31	56
H23B	5792,06	-2052,72	3047,82	56
H24A	6161,2	3727,09	5932,46	63
H24B	5833,6	4429,13	5638,57	63
H25A	5672,98	1275,33	6537,63	101
H25B	5878,88	3400,88	7006,59	101
H25C	6000	526,31	6825,65	101
H28	6492,07	-1911,9	5148,62	52
H29	6660,48	4227,54	6111,57	63
H30	7171,17	4153,82	6399,31	60
H31	7007,8	3589,01	5037,95	53
H32	7001,06	-1994,86	5391,28	51
Н33А	6500,39	3044,14	7339,89	125
Н33В	6799,58	4605,06	7479,77	125
Н33С	6793,35	1454,78	7572,16	125

H17	7537,68	-7036,33	831,09	187
Н35А	7834,04	-1301,09	661,06	97
H35B	7663,88	-1057,6	1425,06	97
H35C	7554,08	535,51	641,49	97
H36A	7518,89	-3592,16	38,36	106
H36B	7271,03	-2507,36	502,2	106
H5A	3246,97	6119,43	962,01	124
H8	3632,61	6926,43	181,61	66
H10A	3830,7	11334,54	1175,56	69
H10B	3829,28	8322,62	1457,13	69
H11	4205,57	10527,72	401,51	69
H12A	4110,01	6170,73	-29,45	79
H12B	4184,1	5055,05	844,86	79
H13A	4597,26	7341,61	-105,89	80
H13B	4585,55	4285,19	135,71	80
H14A	4739,92	5296,46	1468,07	86
H14B	4964,74	6608,45	934,07	86
H15A	4755,1	10774,12	1037,82	86
H15B	4828,57	9628,6	1909,38	86
H16A	4355,91	11534,29	1748,18	72
H16B	4343,27	8474,83	1983,38	72
H27A	5206,57	5408,98	6092,31	130
H27B	5109,57	2940,77	6589,65	130
H27C	5129,02	5830,08	6975,03	130
H27D	5162,11	3456,46	5822,86	113
H27E	5136,17	5174,92	6599,49	113
H27F	5250,35	6517,69	5841,68	113

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения соединения 15

где указанный способ включает, по меньшей мере, одну стадию, выбранную из:

(а) гидрирования соединения 14

15

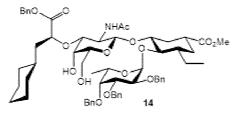
(b) МеО-тритильного расщепления соединения 13

(c) отщепления alloc/ацилирования соединения 12

(d) О-алкилирования соединения 9

(е) метокси-тритилирования соединения 8

(f) деацетилирования соединения 7


(g) гликозилирования соединения 4

(h) TBDMS-деблокирования соединения 3

(і) фукозилирования соединения 1

- 2. Способ по п. 1, где способ включает, по меньшей мере, две стадии, выбранные из стадий (a)-(i).
- 3. Способ по п. 1, где способ включает, по меньшей мере, три стадии, выбранные из стадий (a)-(i).
- 4. Способ по п. 1, где способ включает, по меньшей мере, четыре стадии, выбранные из стадий (a)-(i).
- 5. Способ по п. 1, где соединение **15** выделяют в виде кристаллического твердого остатка.
- 6. Способ по п. 1, где соединение **14** выделяют в виде кристаллического твердого остатка.
- 7. Способ по п. 1, где соединение **8** выделяют в виде кристаллического твердого остатка.
- 8. Способ по п. 1, где соединение **4** выделяют в виде кристаллического твердого остатка.
 - 9. Соединение соединения 14

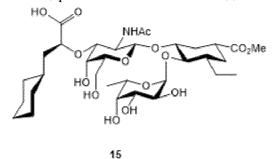
- 10. Соединение по п. 9, где указанное соединение является кристаллическим.
- 11. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD) по существу аналогичной фигуре 2.
- 12. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, один сигнал, выбранный из сигналов при межатомных расстояниях $13,9\pm0,2$, $11,1\pm0,2$, $12,2\pm0,2$, $7,1\pm0,2$, $4,6\pm0,2$ и $4,9\pm0,2$.
- 13. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, два сигнала, выбранные из сигналов при межатомных расстояниях $13,9\pm0,2,\ 11,1\pm0,2,\ 12,2\pm0,2,\ 7,1\pm0,2,\ 4,6\pm0,2$ и $4,9\pm0,2$.
- 14. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, три сигнала, выбранные из сигналов при межатомных расстояниях $13,9\pm0,2$, $11,1\pm0,2$, $12,2\pm0,2$, $7,1\pm0,2$, $4,6\pm0,2$ и $4,9\pm0,2$.
 - 15. Соединение по п. 10, где указанное соединение характеризуется порошковой

рентгенограммой (XRPD), содержащей, по меньшей мере, четыре сигнала, выбранные из сигналов при межатомных расстояниях $13,9\pm0,2$, $11,1\pm0,2$, $12,2\pm0,2$, $7,1\pm0,2$, $4,6\pm0,2$ и $4,9\pm0,2$.

- 16. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, сигналы при межатомных расстояниях 13.9 ± 0.2 , 11.1 ± 0.2 , 12.2 ± 0.2 , 7.1 ± 0.2 , 4.6 ± 0.2 и 4.9 ± 0.2 .
- 17. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, один сигнал, выбранный из сигналов при углах 2 тета $19,2\pm0,2$, $18,0\pm0,2$, $12,4\pm0,2$, $7,9\pm0,2$, $7,3\pm0,2$ и $6,4\pm0,2$.
- 18. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, два сигнала, выбранные из сигналов при углах 2 тета $19,2\pm0,2$, $18,0\pm0,2$, $12,4\pm0,2$, $7,9\pm0,2$, $7,3\pm0,2$ и $6,4\pm0,2$.
- 19. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, три сигнала, выбранные из сигналов при углах 2 тета $19,2\pm0,2$, $18,0\pm0,2$, $12,4\pm0,2$, $7,9\pm0,2$, $7,3\pm0,2$ и $6,4\pm0,2$.
- 20. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, четыре сигнала, выбранные из сигналов при углах 2 тета $19,2\pm0,2$, $18,0\pm0,2$, $12,4\pm0,2$, $7,9\pm0,2$, $7,3\pm0,2$ и $6,4\pm0,2$.
- 21. Соединение по п. 10, где указанное соединение характеризуется порошковой рентгенограммой (XRPD), содержащей, по меньшей мере, сигналы при углах 2 тета $19,2\pm0,2,\ 18,0\pm0,2,\ 12,4\pm0,2,\ 7,9\pm0,2,\ 7,3\pm0,2$ и $6,4\pm0,2$.
- 22. Соединение по п. 10, где указанное соединение характеризуется следующими параметрами элементарной ячейкой:

$$a=8,76 \text{ Å} \alpha=90^{\circ}$$

$$b=24.19 \text{ Å } \beta=90^{\circ}$$

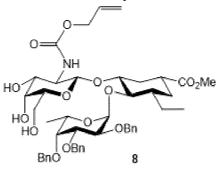

$$c=27,59 \text{ Å } \gamma=90^{\circ}$$

Объем= 5850 Å^3

$$Z=4, Z=2$$

Пространственная группа: орторомбическая пространственная группа $P2_12_12_1$.

- 23. Соединение по п. 10, где указанное соединение характеризуется ДСК кривой с началом эндотермы при приблизительно 170°С.
 - 24. Гидрат сольвата этанола соединения 15


где указанное соединение характеризуется следующими параметрами элементарной

ячейкой:

$$a=45,7$$
 Å $\alpha=90^{\circ}$
 $b=4,95$ Å $\beta=96^{\circ}$
 $c=16,73$ Å $\gamma=90^{\circ}$
Объем=3763 Å³
 $Z=4, Z = 1$

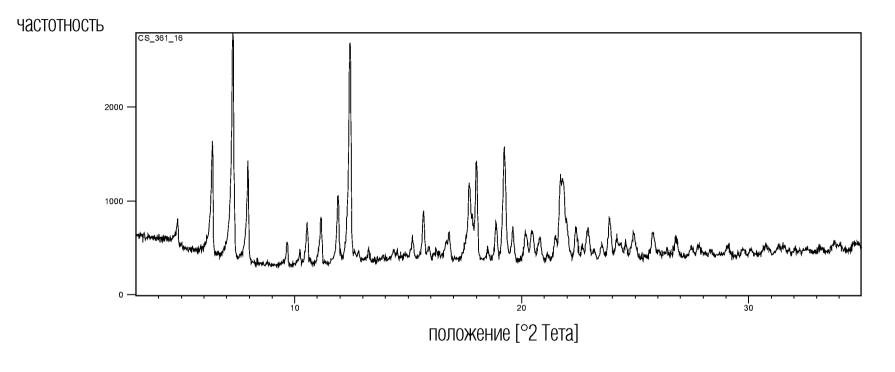
Пространственная группа: моноклинная С2.

25. Соединение, представляющее собой соединения 8

где указанное соединение характеризуется следующими параметрами элементарной ячейкой:

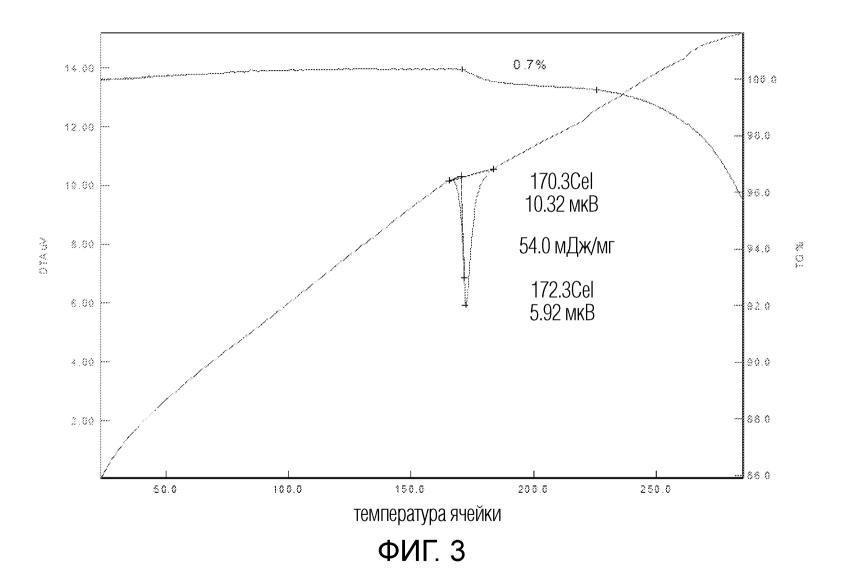
$$a=22,61$$
 Å $\alpha=90^{\circ}$
 $b=8,66$ Å $\beta=90^{\circ}$
 $c=24,51$ Å $\gamma=90^{\circ}$
Объем=4797 Å3
 $Z=4$, $Z = 1$

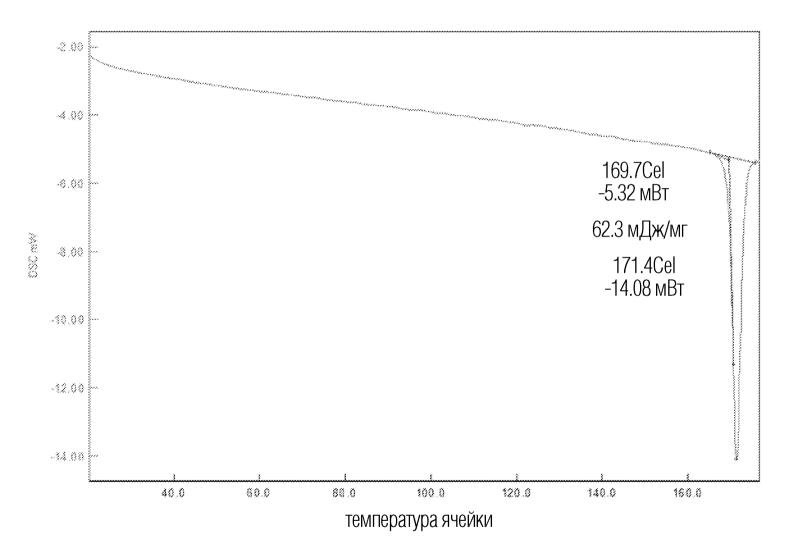
Пространственная группа: моноклинная І2.


573416

ФИГ. 1а

BnOOBn


СТАДИЯ 4


ФИГ. 1b

ФИГ. 2

ФИГ. 4