Изобретение обеспечивает комплексы и композиции, содержащие частицы, микрочастицы или наночастицы, для доставки нагрузок в клетку или через поляризованную эпителиальную клетку. Композиции могут содержать нагрузку в пилюле или таблетке для доставки нагрузки в поляризованную эпителиальную клетку или через нее.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ

2420-573533ЕА/23

КОМПОЗИЦИИ И ЧАСТИЦЫ ДЛЯ ДОСТАВКИ НАГРУЗКИ

ПЕРЕКРЕСТНАЯ ССЫЛКА

УРОВЕНЬ ТЕХНИКИ

[0002] Неспособность больших макромолекул и/или белковых биофармацевтических препаратов легко вводиться через эпителий, респираторный эпителий или эпителий кишечника может быть ограничивающим фактором при разработке коммерчески перспективных композиций этих агентов. Например, вследствие этой неспособности к абсорбции, лабильные материалы могут оставаться в просвете кишечника до тех пор, пока их не расцепят резидентные ферменты, причем стабильные материалы могут оставаться в просвете кишечника до тех пор, пока они не будут выведены из организма. Кроме того, могут возникнуть проблемы с доставкой терапевтических средств в легкие.

[0003] Несмотря на многообещающие результаты клинических исследований, оценивающих различные биологически активные вещества для лечения заболеваний, например, злокачественной опухоли, воспалительных заболеваний, иммунных заболеваний, нарушений роста и т.д., эти вещества могут не достичь своей оптимальной эффективности. Возможна незначительная или неадекватная общая эффективность вследствие присущих организму ограничений, таких как короткий биологический период полувыведения, который может препятствовать доставке оптимальных терапевтически эффективных доз, и/или пагубных побочных эффектов и токсичности, наблюдаемых при введении терапевтически эффективных доз. Кроме того, для этих веществ может потребоваться режимы многократного дозирования, что может потребовать непрерывного внутривенного введения или частых подкожных инъекций, что может быть обременительным для пациентов и лиц, осуществляющих уход за больным.

[0004] Таким образом, существует потребность в новых способах и композициях, которые можно использовать для введения терапевтических средств человеку. Также существует потребность в улучшенных способах и композициях для доставки веществ, регулирующих уровень глюкозы, субъекту.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] В настоящем документе, в некоторых вариантах осуществления, описаны композиции, содержащие носитель, способный проникать в поляризованную эпителиальную клетку или транскриптироваться через поляризованную эпителиальную клетку, а также гетерологичную нагрузку, причем молярное отношение гетерологичной нагрузки к носителю больше, чем 1:1. В некоторых вариантах осуществления, композиция содержит катион переходного металла. В некоторых вариантах осуществления, катион переходного металла выбран из группы, состоящей из Fe^{2+}, Mn^{2+}, Zn^{2+}, Co^{2+}, Ni^{2+} и Cu^{2+}. В некоторых вариантах осуществления, катион переходного металла представляет собой Zn^{2+}.

[0006] В некоторых вариантах осуществления, композиция содержит поликатион. В некоторых вариантах осуществления, поликатион представляет собой протамин.

[0007] В некоторых вариантах осуществления, носитель содержит часть полипептида Cholix. В некоторых вариантах осуществления, носитель состоит из части экзотоксина A Pseudomonas. В некоторых вариантах осуществления, носитель состоит из части полипептида Cholix. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 150-205 в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с C-концом на любой из аминокислот 150-195 в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 1-41 в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, начиная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix имеет C-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10. В некоторых вариантах осуществления, аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы с N-конца до C-конца и начинаются с положения 1 на N-конце.
В некоторых вариантах осуществления, гетерологичная нагрузка выбрана из группы, состоящей из макромолекулы, малой молекулы, пептида, полипептида, нуклеиновой кислоты, мРНК, миРНК, кшРНК, миРНК, антисмысловой молекулы, антитела, ДНК, плазиды, вакцины, полимерной наночастицы и катализаторы активного материала. В некоторых вариантах осуществления, гетерологичная нагрузка представляет собой терапевтическую нагрузку.

В некоторых вариантах осуществления, гетерологичная нагрузка выбрана из группы, состоящей из красителя и радиофармацевтического препарата, гормона, цитокина, ингибитор ФНО, агента, снижающего уровень глюкозы, антигена, ассоциированного с опухолью, пептида и полипептида. В некоторых вариантах осуществления, гетерологичная нагрузка представляет собой полипептид, который является модулятором воспаления в желудочно-кишечном тракте.

В некоторых вариантах осуществления, гетерологичная нагрузка представляет собой аналог глюкагоноподобного пептида-2 (GLP-2). В некоторых вариантах осуществления, аналог GLP-2 представляет собой тедуглутид.

В некоторых вариантах осуществления, гетерологичная нагрузка представляет собой цитокин. В некоторых вариантах осуществления, цитокин выбран из группы, состоящей из IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, ИЛ -10, ИЛ-11, ИЛ-12, ИЛ-13, ИЛ-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, ИЛ-26, ИЛ-27, ИЛ-28, ИЛ-29 и ИЛ-30. В некоторых вариантах осуществления, цитокин представляет собой ИЛ-10. В некоторых вариантах осуществления, цитокин представляет собой ИЛ-22. В некоторых вариантах осуществления, у цитокина отсутствует нативный сигнал секреции. В некоторых вариантах осуществления, терапевтическая нагрузка представляет собой гормон. В некоторых вариантах осуществления, гормон представляет собой гормон роста человека (hGH).

В некоторых вариантах осуществления, гетерологичная нагрузка представляет собой агент, снижающий уровень глюкозы. В некоторых вариантах осуществления, гетерологичная нагрузка представляет собой инкретин, глюкагоновый пропротеин, глюкагоновый пептид, глюкагоноподобный пептид 1, глюкагоноподобный пептид 2, глектицин, родственный глектицину полипептид, пропротеин гастроингибиторного полипептида, гастроингибиторный полипептид, дипептидилпептидазу 4, глукозный транспортер тип 4, пропротионаг, субстрат рецептора инсулина 1, инсулин, инсулиновый аналог, апопротеин А-II, семейство носителей растворенных веществ 2, глукозный транспортер тип 1, гликогенсинтаза 1, гликогенсинтаза 2, протеин-тирозин фосфатаза нерецепторного типа 1, RAC-альфа серин-триониновую протеинкиназу, гамма-рецептор, активируемый пролифератором пероксином, гексокиназу 3, фосфатидилнозитол-3,4,5-трифосфат-3-фосфатазу и белок двойной специфичности, киназытрипептидидегидрогеназы 1, белок 1, связывающий кальций и содержащий суперспиральный домен, Мах-подобный белок Х, фруктозо-бисфосфатальдозаза А, рецептор глюкагоноподобного пептида 1, рецептор
глюкагоноподобного пептида 2, рецептор гастроингибиторного полипептида, рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора роста 2, инсулиновый рецептор, агонист ГТП-1 - экскенатид, агонист ГТП-1-лираглутид, экскенатид, экскендин-4, экскендин-3, агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR - укороченный GIP1-30, агонист GLP-1R (аминоциклоты 1-37 GIP), агонист GLP-1R (аминоциклоты 7-36 GIP), ликсисенатид (торговые названия Adlyxin® и Lyxumia®, Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk A/S), семаглутид (торговое наименование Ozempic®, Novo Nordisk A/S), альбиглутид (торговое наименование Tanzeum®, GlaxoSmithKline, диар GLP-1, слизь с альбумином), дулаглутид (торговое наименование Trulicity®, Eli Lilly), глюкозозависимый инсулинотропный полипептид, мультиспецифический пептидный агонист, тирэпратид (Eli Lilly), SAR425899 (Sanofi), двойной агонист амилиновых и кальцитониновых рецепторов DACRA-089, глаарин/Lantus®, глухицин/Apidra®, глаарин/Toujco®, Insuman®, детемир/Levemir®, лиапро/Humalog®/Liprolog®, Деглудек/ДеглудексПлюс, инсулин аспарт, инсулин и аналоги (например, LY-2605541, LY2963016, NN1436), пегилированный инсулин Лиапрон, Humulin®, Линджета, SuliXen®, NN1045, инсулин плюс SymlinTM, PE0139, инсулины быстрого и короткого действия (например, Линджета, PH20, NN1218, HinsBet), (APC-002) гидрогель, пероральные, ингаляционные, трансдермальные и сульфаминовые инсулины (например, Exubera®, Nasulin®, Afrezza®, Tregopil®, TPM 02, капсулин, Oral-lyn®, Cobalamin®, пероральный инсулин, ORMD-0801, NN1953, NN1954, NN1956, VIAtab и пероральный инсулин Oshadi) или аналог экскендин-4, где аналог экскендин-4 представляет собой desPro36-экскендин-4(1-39)-Lys6NH2; H-des(Pro36, 37)-экскендин-4-Lys4-NH2; H-des(Pro36, 37)-экскендин-4-Lys5-NH2; desPro36[Asp28]экскендин-4(1-39); desPro36[IsoAsp28]экскендин-4(1-39); desPro36[Met(O)14, Asp28]экскендин-4(1-39); desPro36[Met(O)14, IsoAsp28]экскендин-4(1-39); desPro36[Trp(O2)26, Asp28]экскендин-4(1-39); или desPro36[Trp(O2)25, IsoAsp28]экскендин-4(1-39); desPro36[Met(O)14 Trp(O2)25, Asp28]экскендин-4(1-39); или desPro36[Met(O)14 Trp(O2)25, IsoAsp28]экскендин-4(1-39).

[0013] В некоторых вариантах осуществления, гетерологическая нагрузка представляет собой инсулин или аналог инсулина. В некоторых вариантах осуществления, гетерологическая нагрузка представляет собой экскенатид. В некоторых вариантах осуществления, гетерологическая нагрузка содержит флуоресцентную метку. В некоторых вариантах осуществления, флуоресцентная метка представляет собой флуоресценцию.

[0014] В некоторых вариантах осуществления, гетерологическая нагрузка представляет собой комплекс экскенатид-флуоресценции. В некоторых вариантах осуществления, композиция устойчива к расщеплению ферментом поджелудочной железы. В некоторых вариантах осуществления, по меньшей мере, 50% носителя остается интактным через 2 часа в анализе панкреатина, где анализ панкреатина включает инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мл фосфатно-солевого буфера (ФСБ) при температуре 37°С. В некоторых вариантах осуществления, молярное отношение катиона переходного металла к носителю составляет
от примерно 100:1 до примерно 300000:1. В некоторых вариантах осуществления, молярное отношение катиона переходного металла к носителю составляет от примерно 1000:1 до примерно 30000:1. В некоторых вариантах осуществления, молярное отношение катиона переходного металла к носителю составляет от примерно 1000:1 до примерно 10000:1.

[0017] В некоторых вариантах осуществления, композиция инкапсулирована. В некоторых вариантах осуществления, инкапсулированная композиция предназначена для высвобождения гетерологичной нагрузки при первом условии, но не при втором условии. В некоторых вариантах осуществления, инкапсулированная композиция предназначена для высвобождения гетерологичной нагрузки при высоком значении рН, но не при низком значении рН. В некоторых вариантах осуществления, инкапсулированная композиция содержит водорослевое покрытие. В некоторых вариантах осуществления, композиция представляет собой частицу. В некоторых вариантах осуществления, композиция содержит поликатион. В некоторых вариантах осуществления, носитель способен транспортировать гетерологическую нагрузку в поляризованную эпителиальную клетку или трансцитозировать гетерологичную нагрузку через поляризованную эпителиальную клетку. В некоторых вариантах осуществления, носитель связан с поликатионом. В некоторых вариантах осуществления, поликатион представляет собой протамин, полилизин, полиорнитин, полиэтиленмин (PEI), протамин, протамин, поливинилпирролидон (PVP), полиаргинин, поливиниламин или их сочетание. В
некоторых вариантах осуществления, поликатион представляет собой соль протамина. В некоторых вариантах осуществления, соль протамина представляет собой сульфат протамина, ацетат протамина, бромид протамина, хлорид протамина, капроат протамина, трифторacetат протамина, бикарбонат протамина, пропионат протамина, лактат протамина, формиат протамина, нитрат протамина, цитрат протамина, монофосфат протамина, дигидрофосфат протамина, тартрат протамина или перхлорат протамина. В некоторых вариантах осуществления, соль протамина представляет собой сульфат протамина.

[0018] В некоторых вариантах осуществления, описанных в настоящем документе, носители способны проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку, при этом, по меньшей мере, 60% носителя остается интактным через 0,5 часа в анализе панкреатина, причем анализ панкреатина включает инкубацию комбинации, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мл фосфатно-солевого буфера (ФСБ) при температуре 37°C.

[0020] В некоторых вариантах осуществления, полиеппептид Cholix состоит из аминокислотной последовательности, начинающая с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7. В некоторых вариантах осуществления, полиеппептид Cholix имеет С-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7. В некоторых
вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10. В некоторых вариантах осуществления, аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до C-конца и начинаются с положения 1 на N-конце.

[0021] В некоторых вариантах осуществления, в настоящем документе описаны композиции, содержащие вариант Cholix, оканчивающийся в положении 195-347, и гетерологическую нагрузку, где гетерологическая нагрузка представляет собой агент, регулирующий уровень глюкозы. В некоторых вариантах осуществления, конечное положение варианта Cholix определяется относительно SEQ ID NO: 7. В некоторых вариантах осуществления, носитель способен трансцитозировать гетерологическую нагрузку через поляризованную эпителиальную клетку. В некоторых вариантах осуществления, агент, регулирующий уровень глюкозы, представляет собой агент, снижающий уровень глюкозы. В некоторых вариантах осуществления, средство, снижающее уровень глюкозы, представляет собой инкретин, пропротеин глюкагона, пептид глюкагона, глюкагоноподобный пептид 1, глюкагоноподобный пептид 2, глицицептин, родственный глицицептину полипептид, пропротеин гастроингибиторного полипептида, гастроингибиторный полипептид, дипептидилпептидазу 4, глюкозный транспортер тип 4, препроглюкагон, субстрат рецептора инсулина 1, инсулин, аналог инсулина, аполипопротеин A-II, семейство носителей растворенных веществ 2, глюкозный транспортер тип 1, гликогенсинтазу 1, гликогенсинтазу 2, протеин-тирозиновую фосфатазу нерецепторного типа 1, RAC-альфа серин-трионовую протеинкиназу, гам-рецептор, активируемый пролифератором перокисом, гексокиназу 3, фосфатидилнозитол-3,4,5-трифосфат 3-фосфатазу и дуал-специфичный белок, киназу пируватдегидрогеназы 1, белок 1, связывающий кальций и содержащий суперспиральный домен, Мах-подобный белок Y, фруктозо-бисфосфатальдолаза A, рецептор глюкагоноподобного пептида 1, рецептор глюкагоноподобного пептида 2, рецепторы гастроингибиторного полипептида, рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора роста 2, инсулиновый рецептор, агонист ГППИ-1 - экзенатид, агонист ГППИ-1 - лираглутид, экзенатид, экзенотид-4, экзенотид-3, агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR - укороченный GIP1-30, агонист GLP-1R(аминокислоты 1-37 GIP), агонист GLP-1R(аминокислоты 7-36 GIP), ликсенатид (торговые марки Adlyxin® и Lyxumia®, Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk A/S), смеаглутид (торговое наименование Ozempic®, Novo Nordisk A/S), альбиглутид (торговое наименование Tanzeum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином), дуалглутид (торговое наименование Trulicity®, Eli Lilly), глюкозозависимый инсулинотропный полипептид, мультиспецифический пептидный агонист, тирепатид (Eli

[0022] В некоторых вариантах осуществления, гетерологическая нагрузка содержит инкремент. В некоторых вариантах осуществления, гетерологическая нагрузка содержит экскератид или инсулин. В некоторых вариантах осуществления, композиция содержит частичу. В некоторых вариантах осуществления, гетерологическая нагрузка представляет собой экскенин-3, эфелегенатид, семаглутид, агонист GLP-1R (аминоокислоты 1-37 GIP), агонист GLP-1R (аминоокислоты 7-36 GIP), тирзепатид, оксиситомодулин, агонист GIPR - укороченный GIP1-30, двойной агонист амилиновых и кальцитониновых рецепторов, пропронсультин, инсулин аспарт, инсулин глаггин или инсулин лизпро.

[0023] В некоторых вариантах осуществления, в настоящем документе описаны композиции, содержащие носитель, полученный из бактериального токсина, при этом носитель способен проникать в поляризованную эпителимальную клетку или трансцитозировать через поляризованную эпителимальную клетку; а также катион переходного металла или поликатион, где поликатион представляет собой молекулу или химический комплекс, имеющий более 2 положительных зарядов. В некоторых вариантах осуществления, композиция содержит катион переходного металла. В некоторых вариантах осуществления, катион переходного металла выбран из группы, состоящей из Fe^{2+}, Mn^{2+}, Zn^{2+}, Co^{2+}, Ni^{2+} и Cu^{2+}. В некоторых вариантах осуществления, катион переходного металла представляет собой Zn^{2+}. В некоторых вариантах осуществления, композиция содержит поликатион.

[0024] В некоторых вариантах осуществления, поликатион представляет собой протамин, полилизин, полирнитин, полиэтиленмин (PEI), проламин, протамин, поливинилпирролидон (PVP), полиартгин, поливиниламин или их сочетание. В некоторых вариантах осуществления, поликатион представляет собой соль протамина. В
некоторых вариантах осуществления, соль протамина представляет собой сульфат протамина, ацетат протамина, бромид протамина, хлорид протамина, капроат протамина, трифторацетат протамина, бикарбонат протамина, пропионат протамина, лактат протамина, формиат протамина, нитрат протамина, цитрат протамина, мононитрат протамина, ди- и тригидрофосфат протамина, тартрат протамина или перхлорат протамина. В некоторых вариантах осуществления, соль протамина представляет собой сульфат протамина. В некоторых вариантах осуществления, композиция дополнительно содержит гетерологичную нагрузку. В некоторых вариантах осуществления, гетерологичная нагрузка содержит экзенатид, инсулин или гормон роста человека.

[0025] В некоторых вариантах осуществления, носитель состоит из экзотоксина A Pseudomonas или части экзотоксина A Pseudomonas. В некоторых вариантах осуществления, носитель состоит из полипептида SEQ ID NO: 69 или части SEQ ID NO: 69. В некоторых вариантах осуществления, носитель состоит из части полипептида Cholix. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 1. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 150-205 в SEQ ID NO: 1. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с C-концом на любой из аминокислот 150-195 в SEQ ID NO: 1.

[0026] В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 1-41 в SEQ ID NO: 1. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 1. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, начиная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix имеет C-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8. В некоторых вариантах осуществления, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10. В некоторых вариантах осуществления, аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до C-конца и начинаются с положения 1 на N-конце. В некоторых вариантах осуществления, композиция содержит частицу.

[0027] В некоторых вариантах осуществления, в настоящем документе описаны
композиции, содержащие инсулин, где, по меньшей мере, 20% инсулина остается интактным через 1 час в анализе панкреатина, включающем инкубацию композиции, содержащей инсулин, с панкреатином в ФСБ при температуре 37ºС. В некоторых вариантах осуществления, в настоящем документе описаны композиции, содержащие инсулин, в которых, по меньшей мере, 20% инсулина остается интактным через 1 час в анализе моделируемой кишечной жидкости, включающем инкубирование частичек, содержащих инсулин, в моделированной кишечной жидкости USP (Rica Pharmaceuticals R7109000-500A, 4-кратное разведение, рН 6,8) при концентрации 142 мкг/мл (содержание инсулина при температуре 37ºС в течение 14 часов).

[0028] В некоторых вариантах осуществления, композиция дополнительно содержит носитель, полученный из бактериального токсина, при этом носитель способен транспортироваться в поляризованную эпителиальную клетку или трансциторизовать через поляризованную эпителиальную клетку. В некоторых вариантах осуществления, носитель состоит из части полипептида Cholix. В некоторых вариантах осуществления, композиция содержит катион переходного металла. В некоторых вариантах осуществления, катион переходного металла выбран из группы, состоящей из Fe2+, Mn2+, Zn2+, Co2+, Ni2+ и Cu2+. В некоторых вариантах осуществления, катион переходного металла представляет собой Zn2+. В некоторых вариантах осуществления, композиция содержит поликатион. В некоторых вариантах осуществления, поликатион представляет собой протамин. В некоторых вариантах осуществления, композиция содержит частицу. В некоторых вариантах осуществления, частица представляет собой микрочастицу. В некоторых вариантах осуществления, микрочастицы получают путем распылительной сушки. В некоторых вариантах осуществления, частица имеет диаметр от около 50 нм до около 20 мкм.

[0029] В некоторых вариантах осуществления, в настоящем документе описаны фармацевтические композиции, содержащие композиции, описанные в настоящем документе. В некоторых вариантах осуществления, в настоящем документе описаны фармацевтические композиции, содержащие композиции, описанные в настоящем документе, а также консервант. В некоторых вариантах осуществления, в настоящем документе описаны фармацевтические композиции, содержащие композиции, описанные в настоящем документе, а также фармацевтически приемлемое вспомогательное вещество. В некоторых вариантах осуществления, в настоящем документе описаны способы, включающие введение субъекту фармацевтической композиции, описанной в настоящем документе. В некоторых вариантах осуществления, субъект имеет воспалительное заболевание, аутоиммунное заболевание, злокачественную опухоль или нарушение обмена веществ. В некоторых вариантах осуществления, субъект имеет нарушение обмена веществ.

[0030] В некоторых вариантах осуществления, нарушение обмена веществ представляет собой диабет, сахарный диабет в следствие ожирения, гипергликемию, дислипидемию, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушение
толерантности к глюкозе (IGT), диабетическую дислипидемию, гиперлипидемию, жировую болезнь печени, неалкогольный стеатогепатит (NASH), гепатит, ожирение, сосудистые заболевания, болезни сердца, инсульт, нарушение толерантности к глюкозе, повышенный уровень глюкозы натощак, инсулинорезистентность, секрецию альбумина с мочной, центральный тип ожирения, гипертония, повышенный уровень триглицеридов, повышенный уровень холестерина ЛПНП и сниженный уровень холестерина ЛПВП, гипергликемию, гиперинсулинемию, дислипидемию, кетоз, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушенную гликемию натощак, нарушение толерантности к глюкозе (IGT), диабетическую дислипидемию, глюконеогенез, избыточный гликогенолиз, диабетический кетоацидоз, гипертриглицеридемию, артериальную гипертензию, диабетическую нефропатию, почечную недостаточность, декомпенсированную почечную недостаточность, гиперфагию, атрофию мышц, диабетическую невропатию, диабетическую ретинопатию, диабетическую кожу, атеросклероз, ишемическую болезнь сердца, заболевания периферических артерий или гиперлипидемию.

[0031] В некоторых вариантах осуществления, в настоящем документе, описаны способы, включающие комбинацию носителя бактериального происхождения с гетерологичной нагрузкой и катионом для получения частицы. В некоторых вариантах осуществления, гетерологичная нагрузка выбрана из группы, состоящей из красителя, радиофармацевтического средства, гормона, цитокина, ингибитора ФНО, агента, снижающего уровень глюкозы, опухолеассоциированного антигена, пептида и полиепптида. В некоторых вариантах осуществления, способ дополнительно включает распылительную сушку носителя, полученного из бактерий, гетерологичной нагрузки и катиона. В некоторых вариантах осуществления, способ включает (a) приготовление смеси, включающей изолированный носитель и нагрузку; (b) приготовление смеси, включающей сульфат протамина и NaPO₄; и (c) объединение смеси (a) со смесью (b) и выдерживание объединенной смеси в течение ночи при комнатной температуре. В некоторых вариантах осуществления, способ дополнительно включает стадию (d) разрушения частиц, полученных на стадии (c), на более мелкие частицы путем увеличения ионной силы объединенной смеси, полученной на стадии (c). В некоторых вариантах осуществления, препарат стадии (a) не содержит ZnCl₂. В некоторых вариантах осуществления, препарат стадии (a) содержит ZnCl₂.

[0032] Аспект настоящего изобретения представляет собой композицию, содержащую носитель, способный проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку; и гетерологичную нагрузку, где молярное отношение гетерологичной нагрузки к носителю больше, чем 1:1.

[0033] Композиция может представлять собой частицу. Частица может быть микрочастицей. Микрочастица может быть образована распылительной сушкой. Частица или микрочастица может иметь диаметр от примерно 50 нм до примерно 20 мкм.

[0034] В некоторых случаях, композиция содержит катион переходного металла.
Катион переходного металла может быть выбран из группы, состоящей из Fe$^{2+}$, Mn$^{2+}$, Zn$^{2+}$, Co$^{3+}$, Ni$^{2+}$ и Cu$^{2+}$. Катион переходного металла может представлять собой Zn$^{3+}$.

[0035] В некоторых случаях, композиция содержит поликатион. Поликатион может представлять собой протамин.

[0036] Композиция может содержать носитель, полученный из бактериального токсина. В некоторых случаях, носитель способен проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку. В некоторых случаях, носитель может быть связан с поликатионом.

[0038] В некоторых случаях, композиция содержит гетерологичную нагрузку. Гетерологическая нагрузка может быть выбрана из группы, состоящей из макромолекулы, малой молекулы, пептида, полипептида, нуклеиновой кислоты, матричной РНК (mPHK), микроPHK (miPHK), малой шипилевой РНК (miPHK), малой интерферирующей РНК (miPHK), CRISPR РНК (например, направляющая РНК, например, одиночная направляющая РНК (onPHK)), антисмысловой молекулы, белка, антитела, ДНК, плазмиды, вакцины, полимерной наночастицы и катализитически активного вещества.
[0039] Гетерологичная нагрузка может представлять собой терапевтическую нагрузку. Гетерологичная нагрузка может быть выбрана из группы, состоящей из красителя и радиофармацевтического средства, гормона, цитокина, ингибитора ФНО, средства, снижающего уровень глюкозы, опухолеассоциированного антигена, пептида и полипептида. Гетерологичная нагрузка может представлять собой полипептид, который является модулятором воспаления в желудочно-кишечном тракте. Терапевтическая нагрузка может представлять собой аналог глюкагоноподобного пептида-2 (GLP-2). Аналогом GLP-2 может быть тедуглутид.

[0040] Гетерологичная нагрузка может представлять собой цитокин. Цитокин может быть выбран из группы, состоящей из IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29 и IL-30. Цитокин может представлять собой IL-10. Цитокин может представлять собой IL-22. У цитокина может отсутствовать нативный сигнал секреции.

[0041] Гетерологичная нагрузка может представлять собой гормон. Гормон может представлять собой гормон роста человека (hGH).

[0042] Гетерологичная нагрузка может представлять собой агент, снижающий уровень глюкозы. Гетерологичная нагрузка может представлять собой инкретин, пропротеин глюкагона, пептид глюкагона, глюкагоноподобный пептид 1, глюкагоноподобный пептид 2, глиценин, глиценин-родственный полипептид, пропротеин гастроингибиторного полипептида, гастроингибиторный полипептид, дипептидилпептидазу 4, глюкозный транспортер тип 4, препроглюкагон, субстрат рецептора инсулина 1, инсулин, аналог инсулина, аполипопротеин A-II, семейство носителей растворенных веществ 2, глюкозный транспортер тип 1, гликогенсинтазу 1, гликогенсинтазу 2, протеин-тирозиновая фосфатаза нерецепторного типа 1, RAC-альфа серин-трипсиновая протеинкиназа, гамма-рецептор, активируемый пролифератором пероксисом, гексокиназу 3, фосфатидилинозитол-3,4,5-трифосфат-3-фосфатазу и белок двойной специфичности, киназа пируватдегидрогеназы 1, белок 1, связывающий кальций и содержащий суперсипральный домен, Max-подобный белок X, фруктозо-бисфосфатальдолаза A, рецептор глюкагоноподобного пептида 1, рецептор глюкагоноподобного пептида 2, рецептор гастроингибиторного полипептида, рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора роста 2, инсулиновый рецептор, агонист TПП-1 - екзенаатид, агонист TПП-1 - лираглутид, екзенаатид, екзендин-4, екзендин-3, агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR - укороченный GIP1-30, агонист GLP-1R(аининокислоты 1-37 GIP), агонист GLP-1R(аининокислоты 7-36 GIP), ликсисенатид (торговые марки Adlyxin® и Lyxumia®, Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk A/S), семаглутид (торговое наименование Ozempic®, Novo Nordisk A/S), альбиглутид (торговое наименование Tanzeum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином), дулаглутид (торговое наименование Trulicity®, Eli Lilly), глюкозозависимый
инсулинотропный полипептид, мультиспецифический нептидный агонист, тирзепатид (Eli Lilly), SAR425899 (Sanofi), двойной агонист амилновых и кальцитониновых рецепторов DACRA-089, глагрин/Lantus®, глумлизин/Apidra®, глагрин/Toujeo®, Insuman®, детемир/Levemir®, лизпро/Humalog®/Liprolog®, деглудек/ДеглудекПлюс, инсулин аспарт, инсулин и аналоги (например, LY-2605541, LY2963016, NN1436), инсулин пегилированный лизпро, Humulin®, Линджета, SuliXen®, NN1045, инсулин плюс SymlinTM, PE0139, инсулины быстрого и короткого действия (например, Линджета, PH20, NN1218, HinsBet), (APC-002) гидрогелевые, пероральные, ингаляционные, трансдермальные и сублингвальные инсулины (например, Exubera®, Nasulin®, Afrezza®, Tregopili®, TPM 02, капсулин, Oral-lyn®, Cobalamin®, пероральный инсулин, ORMD-0801, NN1953, NN1954, NN1956, VIATab и пероральный инсулин Oshadi) или аналог эксидин-4, где аналог эксидин-4 может представлять собой desPro36-эксидин-4-(1-39)-Lys6NH2; H-des(Pro36, 37)-эксидин-4-Lys4-NH2; H-des(Pro36, 37)-эксидин-4-Lys5-NH2; desPro36[Asp28]эксидин-4 (1-39); desPro36[Asp28]эксидин-4 (1-39); desPro36[Met(O)14, Asp28]эксидин-4 (1-39); desPro36[Met(O)14, isoAsp28]эксидин-4 (1-39); desPro36[Trp(O2) 26, Asp28]эксидин-4 (1-39); desPro36[Trp(O2) 25, isoAsp28]эксидин-4 (1-39); desPro36[Met(O)14 Trp(O2)25, Asp28]эксидин-4 (1-39); или desPro36[Met(O)14 Trp(O2)25, isoAsp28]эксидин-4 (1-39). Гетерологичной нагрузкой может быть инсулин или аналог инсулина. Гетерологичной нагрузкой может быть эксенатид.

[0043] Гетерологическая нагрузка может содержать флуороцентную метку. Флуоресцентная метка может представлять собой флуороцен. Гетерологичной нагрузкой может быть эксенатид-флуороценовый комплекс.

[0044] В некоторых случаях, композиция устойчива к расщеплению посредством фермента поджелудочной железы. По крайней мере 50% носителя может оставаться интактным после воздействия фермента поджелудочной железы в течение 2 часов. По меньшей мере 50% носителя может оставаться интактным через 2 часа в анализе панкреатина, при этом анализ панкреатина включает инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мкл фосфатно-солевого буфера (ФСБ) при температуре 37°C.

[0045] Молярное отношение катиона переходного металла к носителю может составлять от примерно 100:1 до примерно 300000:1. Молярное отношение катиона переходного металла к носителю может составлять от примерно 1000:1 до примерно 30000:1. Молярное отношение катиона переходного металла к носителю может составлять от примерно 1000:1 до примерно 10000:1.

[0046] Молярное отношение протамина к носителю может составлять от примерно 10:1 до примерно 0,01:1. Молярное отношение гетерологичной нагрузки к носителю может составлять от примерно 2:1 до примерно 6000:1. Молярное отношение протамина к носителю может составлять примерно 1:1.

[0047] Молярное отношение гетерологичной нагрузки к носителю может

[0049] Композиция может быть инкапсулирована. Инкапсулированная композиция может быть сконфигурирована для высвобождения гетерологической нагрузки при первом условии, но не при втором условии. Инкапсулированная композиция может быть сконфигурирована для высвобождения гетерологической нагрузки при высоком значении рН, но не при низком значении рН. Инкапсулированная композиция может содержать энтеросолюбильное покрытие.

[0050] Другой аспект настоящего изобретения представляет собой фармацевтическую композицию, содержащую любую описанную в настоящем документе композицию.

[0051] В некоторых случаях, поликатион представляет собой протамин, полиэтилнитрил, полиэтиленимин (PEI), проламин, протамин, поливинилпирролидон (PVP), полиаргинин, поливиниламид или их сочетание. В некоторых случаях, поликатион представляет собой сульфат протамина, ацетат протамина, бромид протамина, хлорид протамина, капроат протамина, трифторацетат протамина, бикарбонат протамина, пропонат протамина, лактат протамина, формат протамина, нитрат протамина, цитрат протамина, моногидрофосфат протамина, дигидрофосфат протамина, тартрат протамина или перхлорат протамина. В некоторых случаях, соль протамина представляет собой сульфат протамина.

[0052] Аспект настоящего изобретения представляет собой композицию, содержащую носитель, при этом носитель способен проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку, причем, по меньшей мере, 60% носителя остается интактным через 0,5 часа в анализе панкреатина, где анализ панкреатина включает инкубацию композиции, содержащей 100 мг носителя с 10 мкг панкреатина в 100 мкл фосфатно-солевого буфера (ФСБ) при температуре 37°C. В некоторых случаях по меньшей мере 90% носителя остается интактным через 2 часа в анализе панкреатина.

[0053] В некоторых случаях, композиция дополнительно содержит катион. В некоторых случаях, катион представляет собой катион металла или поликатион. В
некоторых случаях, катион представляет собой катион металла. В некоторых случаях, катион металла представляет собой катион переходного металла. В некоторых случаях, носитель состоит из части экзотоксина A Pseudomonas. В некоторых случаях, носитель состоит из части полипептида Cholix. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 7. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 150-205 SEQ ID NO: 7. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности с C-концом на любой из аминокислот 150 to 195 of SEQ ID NO: 7. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 1-41 в SEQ ID NO: 7. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 7. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности, начная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7. В некоторых случаях, полипептид Cholix имеет C-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8. В некоторых случаях, полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10. В некоторых случаях, аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до C-конца и начинаются с положения 1 на N-конце.

[0054] Другим аспектом настоящего изобретения является композиция, содержащая вариант Cholix, оканчивающийся в положении 195-347, и гетерологическую нагрузку, где гетерологическая нагрузка представляет собой агент, регулирующий уровень глюкозы. В некоторых случаях, конечное положение в варианте Cholix определяется относительно SEQ ID NO: 7. В некоторых случаях, носитель способен трансцитировать гетерологическую нагрузку через поляризованную эпителиальную клетку. В некоторых случаях, агент, регулирующий уровень глюкозы, представляет собой агент, снижающий уровень глюкозы. В некоторых случаях, средство, снижающее уровень глюкозы, представляет собой инкретин, пропротеин глюкагона, пептид глюкагона, глюкагоноподобный пептид 1, глюкагоноподобный пептид 2, глицентин, родственный глицентину полипептид, препротеин гастроингибиторного полипептида, гастроингибиторный полипептид, дипептидилпептидаза 4, глюкозный транспортер тип 4, пропроглюкагон, субстрат рецептора инсулина 1, инсулин, аналог инсулина, апопротеин А-II, семейство носителей растворенных веществ 2, глюкозный транспортер тип 1, гликогенсинтазу 1, гликогенсинтазу 2, протеин-тироzinовая фосфатаза.
нерецепторного типа 1, RAC-альфа серин-треониновая протеинкиназа, гамма-рецептор, активируемый протеинкиназой пероксин, гексокиназу 3, фосфатидилнозитол-3,4,5-
трифосфат-3-фосфатазу и белок двойной специфичности, киназа пируватдегидрогеназы 1,
белок 1, связывающий кальций и содержащий суперспирамальный домен, Max-подобный
белок X, фруктозо-бисфосфатдегидрогеназа A, рецептор глукагоноподобного пептида 1,
рецептор глукагоноподобного пептида 2, рецептор глютенгибиторного полипептида,
рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора
роста 2, инсулиновый рецептор, агонист GIP1-1 - экизинатид, агонист GIP1-1 - лираглутид,
экизинатид, экизинатид-4, экизинатид-3, агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR -
укороченный GIP1-30, агонист GLP-1R(аминокислоты 1-37 GIP), агонист GLP-
1R(аминокислоты 7-36 GIP), ликсинатид (торговые марки Adlyxin® и Lysumia®,
Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk A/S), семаглутид
(торговое наименование Ozempic®, Novo Nordisk A/S), альбиглутид (торговое наименование
Tanzem®, GlaxoSmithKline; димер GLP-1, слитый с альбумином),
дукаглутид (торговое наименование Trulicity®, Eli Lilly), глукозозависимый
инсулинотропный полипептид, мультиспецифический пептидный агонист, тирзепатид (Eli
Lilly), SAR425899 (Sanofi), двойной агонист амилиновых и кальцитониновых рецепторов
DACRA-089, гларгин/Lantus®, глулизин/Apidra®, гларгин/Toujco®, Insuman®,
детемир/Levemir®, лизопро/Humalog®/Liprolog®, Деглудек/ДеглудекПлюс, инсулин
апарт, инсулин и аналоги (например, LY-2605541, LY2963016, NN1436), инсулин
пентилюрированный лизпро, Humulin®, Линджета, SuliXen®, NN1045, инсулин плюс
SymlinTM, PE0139, инсулины быстрого и короткого действия (например, Линджета,
PH20, NN1218, HinsBet), (APC-002) гидрогелевые, пероральные, ингаляционные,
трансдермальные и сублингвальные инсулины (например, Exubera®, Nasulin®, Afrezza®,
Tregopil®, TPM 02, капсулирован, Oral-lyn®, Cobalamin®, пероральный инсулин, ORMD-0801,
NN1953, NN1954, NN1956, VIatab и пероральный инсулин Oshadi), или аналог экзенина-
4, где аналог экзенина-4 представляет собой desPro36-экзенина-4(1-39)-Lys6NH2; H-
des(Pro36, 37)-экзенина-4-Lys4-NH2; H-des(Pro36, 37)-экзенина-4-Lys5-NH2;
desPro36[Asp28]экзенина-4 (1-39); desPro36[Asp28]экзенина-4 (1-39);
desPro36[Met(O)14, Asp28]экзенина-4 (1-39); desPro36[Met(O)14, IsoAsp28]экзенина-4 (1-
39); desPro36[Trp(O2) 26, Asp28]экзенина-4 (1-39); или desPro36[Trp(O2) 25,
IsoAsp28]экзенина-4 (1-39); desPro36[Met(O)14 Trp(O2)25, Asp28]экзенина-4 (1-39); или
desPro36[Met(O)14 Trp(O2)25, IsoAsp28]экзенина-4 (1-39). В некоторых случаях,
гетерологичная нагрузка содержит инкретин. В некоторых случаях, гетерологичная
нагрузка включает экзенинатид или инсулин. В некоторых случаях, композиция содержит
частицу. В некоторых случаях, гетерологчная нагрузка представляет собой экзенина-3,
эфпегленатид, семаглутид, агонист GLP-1R(аминокислоты 1-37 GIP), агонист GLP-
1R(аминокислоты 7-36 GIP), тирзепатид, окситриомодулин, агонист GIPR - укороченный
GIP1-30, двойной агонист амилиновых и кальцитониновых рецепторов, препроинсулин,
инсулин апарт, инсулин гларгин или инсулин лизпро.
Одним из аспектов настоящего изобретения является композиция, содержащая носитель, полученный из бактериального токсина, способного проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку; и катион переходного металла или полионат, где полионат представляет собой молекулу или химический комплекс, имеющий более 2 положительных зарядов. В некоторых случаях, композиция содержит катион переходного металла. В некоторых случаях, катион переходного металла выбран из группы, состоящей из Fe^{2+}, Mn^{2+}, Zn^{2+}, Co^{2+}, Ni^{2+} и Cu^{2+}. В некоторых случаях, катионом переходного металла является Zn^{2+}. В некоторых случаях, композиция включает полионат. В некоторых случаях, полионат представляет собой соль протамина. В некоторых случаях, композиция дополнительно содержит гетерологичную нагрузку. В некоторых случаях, гетерологичная нагрузка включает экскенатид, инсулин или человеческий гормон роста. В некоторых случаях, носитель состоит из экзотоксина Pseudomonas A или части экзотоксина A Pseudomonas. В некоторых случаях, носитель состоит из полиептидда SEQ ID NO: 69 или части SEQ ID NO: 69. В некоторых случаях, носитель состоит из части полиептидда Cholix. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 1. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 150-205 в SEQ ID NO: 1. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности с C-концом на любой из аминокислот от 150 до 195 of SEQ ID NO: 1. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 1 to 41 of SEQ ID NO: 1. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 1. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности, начиная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7. В некоторых случаях, полиептид Cholix имеет C-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8. В некоторых случаях, полиептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10. В некоторых случаях, аминокислотные положения пронумерованы на основе выравнивания полиептидда Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до C-конца и начинаются с положения 1 на N-конце. В некоторых случаях, композиция содержит частью.

Одним из аспектов настоящего изобретения является композиция, содержащая инсулин, в которой, по меньшей мере, 20% инсулина остается интактым
через 1 час в анализе панкреатина, включающем инкубацию композиции, содержащей инсулин, с панкреатином при температуре 37°C. В некоторых случаях, 10 мкг инсулина инкубируют в течение 1 часа с 10 мкг панкреатина при температуре 37°C. В некоторых случаях, композиция дополнительно содержит носитель, полученный из бактериального токсина, при этом носитель способен транспортироваться в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку. В некоторых случаях носитель состоит из части полипептида Cholix. В некоторых случаях, композиция содержит катион переходного металла. В некоторых случаях, катион переходного металла выбран из группы, состоящей из Fe²⁺, Mn²⁺, Zn²⁺, Co²⁺, Ni²⁺ и Cu²⁺. В некоторых случаях, катионом переходного металла является Zn²⁺. В некоторых случаях, композиция содержит поликатион. В некоторых случаях, поликатион представляет собой протамин. В некоторых случаях, композиция содержит частицы. В некоторых случаях, частица представляет собой микрочастицу. В некоторых случаях, микрочастицы получают путем распылительной сушки. В некоторых случаях, частицы имеют диаметр от примерно 50 нм до примерно 20 мкм.

[0057] Другим аспектом настоящего изобретения является фармацевтическая композиция, содержащая любую описанную в настоящем документе композицию и консервант.

[0058] Другим аспектом настоящего изобретения является фармацевтическая композиция, содержащая любую описанную в настоящем документе композицию и фармацевтически приемлемое вспомогательное вещество.

[0059] В одном из аспектов настоящего изобретения предложен способ лечения заболевания у субъекта, включающий введение субъекту любой описанной в настоящем документе фармацевтической композиции.

[0060] Заболевание может представлять собой воспалительное заболевание, аутоиммунное заболевание, злокачественную опухоль или нарушение обмена веществ.

[0061] Заболевание может представлять собой метаболическое расстройство. Метаболическое расстройство может представлять собой сахарный диабет (T1D или T2D), диабет вследствие окончания, гипергликемию, дислипидемию, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушенную гликемию натощак, нарушение толерантности к глюкозе (IGT), диабетическую дислипидемию, гиперлипидемию, жировую болезнь печени, неалкогольный стеатогепатит, гепатит, ожирение, сосудистые заболевания, болезни сердца, инсульт, нарушение толерантности к глюкозе, повышенный уровень глюкозы натощак, инсулинорезистентность, секрецию альбумина с мочей, центральный тип ожирения, гипертонию, повышенный уровень триглицеридов, повышенный уровень холестерина ЛПНП и пониженный уровень холестерина ЛПВП, гипергликемию, гиперинсулинемию, дислипидемию, кетоз, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушенную гликемию натощак, нарушение толерантности к глюкозе (IGT), диабетическую дислипидемию, глуконеогенез, избыточный гликогенолиз, диабетический
кетоацилдоз, гипертриглицеридемия, артериальная гипертензия, диабетическая нефропатия, почечная недостаточность, декомпенсированная почечная недостаточность, гиперфагия, атрофия мышц, диабетическая невропатия, диабетическая ретинопатия, диабетическая кома, артериосклероз, ишемическая болезнь сердца, заболевание периферических артерий или гиперлипидемия.

[0062] Композиция может представлять собой частицу, где композиция содержит гетерологичную нагрузку, и при этом композиция содержит полиактлон, при этом носитель способен транспортировать гетерологичную нагрузку в поляризованную эпителлиальную клетку или осуществлять трансфузос гетерологичной нагрузки через поляризованную эпителлиальную клетку.

[0063] Носитель может быть связан с полиактлоном. Полиактлон может представлять собой протамин, полиазин, полиноритин, полиприсилимин (PEI), промулин, протамин, поливинилилпиролидон (PVP), полиаргинин, поливиниламид или их комбинацию. Полиактлон может представлять собой соль протамина. Соль протамина может представлять собой сульфат протамина, ацетат протамина, бромид протамина, хлорид протамина, капроат протамина, трифторат протамина, бикарбонат протамина (HCO₃⁻), пропионат протамина, лактат протамина, формат протамина, нитрат протамина, цитрат протамина, моногидрофосфат протамина, дигидрофосфат протамина, тартрат протамина или перхлорат протамина. Соль протамина может представлять собой сульфат протамина.

[0064] Аспект настоящего изобретения представляет собой фармацевтическую композицию, содержащую любую описанную в настоящем документе частицу, в которой гетерологичная нагрузка представляет собой агент, снижающий уровень глюкозы.

[0065] В некоторых случаях, агент, снижающий уровень глюкозы, выбран из группы, состоящей из инсулина и аналога инсулина. В некоторых случаях, инкапсулированная частица высвобождает нагрузку при высоком значении рН, но не при низком значении рН.

[0066] Другой аспект настоящего изобретения представляет собой фармацевтическую композицию, содержащую любую описанную в настоящем документе частицу и консервант. В некоторых случаях, фармацевтическая композиция дополнительно содержит модификатор тонуса.

[0067] В одном из аспектов, в настоящем изобретении предложена композиция, содержащая носитель, полученный из бактериального токсина, причем носитель способен транспортироваться в поляризованную эпителлиальную клетку или трансфузозировать через поляризованную эпителлиальную клетку, в которой по меньшей мере 30% носителя остаётся интактным через 0,5 часа в анализе панкреатина, включающем инкубацию композиции, содержащей 100 мкт носителя с 10 мкт панкреатина в 100 мкл ФСБ при температуре 37°C.

[0068] По меньшей мере 40% носителя может оставаться интактным через 0,5 часа в анализе панкреатина, включающем инкубацию композиции, содержащей 100 мкт
носителя с 10 мкг панкреатина в 100 мкл ФСБ при температуре 37°C. По меньшей мере 50% носителя может оставаться интактным через 0,5 часа в анализе панкреатина, включающем инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мкл ФСБ при температуре 37°C. По меньшей мере 60% носителя может быть интактным через 0,5 часа в анализе панкреатина, включающем инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мкл ФСБ при температуре 37°C. По меньшей мере 90% носителя может оставаться интактным через 2 часа в анализе панкреатина, включающем инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мкл ФСБ при температуре 37°C.

[0069] Композиция может дополнительно содержать катион. Катион может представлять собой катион металла или поликатион. Катион может представлять собой катион металла. Катион металла может представлять собой катион переходного металла.

[0070] Аспект настоящего изобретения представляет собой композицию, содержащую (a) носитель, полученный из бактериального токсина, и (b) катион или поликатион переходного металла, при этом носитель способен проникать в поляризованную эпителиальную клетку и/или трансцитироваться через поляризованную эпителиальную клетку.

[0071] Одним из аспектов настоящего изобретения включает способ, включающий комбинирование носителя бактериального происхождения с гетерологичной нагрузкой и катионом для получения частицы. В некоторых случаях, гетерологичная нагрузка выбрана из группы, состоящей из красителя, радиофармацевтического средства, гормона, цитокина, ингибитора ФНО, средства, снижающего уровень глюкозы, опухолеассоциированного антигена, пептида и полипептида. В некоторых случаях, способ дополнительно включает распылительную сушку носителя, полученного из бактерий, гетерологичной нагрузки и катиона. В некоторых случаях способ включает (a) получение смеси, состоящей из выделенного носителя и нагрузки; (b) получение смеси, содержащей сульфат протамина и NaPO₄; и (c) объединение смеси (a) со смесью (b) и выдерживание объединенной смеси в течение ночи при комнатной температуре. В некоторых случаях, способ дополнительно включает стадию (d) разрушения частиц со стадии (c) на более мелкие частицы путем увеличения ионной силы объединенной смеси со стадии (c). В некоторых случаях, препарат на стадии (a) не содержит ZnCl₂. В некоторых случаях, препарат на стадии (a) содержит ZnCl₂.

[0072] В одном из аспектов, в настоящем документе предложена конструкция для доставки, содержащая вариант Cholix, который не содержит аминокислоты 1-348 SEQ ID NO: 75 и не представляет собой SEQ ID NO: 76, в комплексе с гетерологичной нагрузкой, где гетерологичная нагрузка представляет собой агент, регулирующий уровень глюкозы, и при этом носитель способен a) трансцитозировать гетерологичную нагрузку через поляризованную эпителиальную клетку или b) транспортировать гетерологичную нагрузку в поляризованную эпителиальную клетку. Нагрузка может представлять собой инкретин или миметик инкретина. Нагрузка может содержать агонист рецептора GLP-1.
Нагрузка может содержать любую из SEQ ID NO: 26-34 или 17. Нагрузка может состоять из SEQ ID NO: 15. Нагрузка может состоять из SEQ ID NO: 29. Нагрузка может состоять из SEQ ID NO: 16. Нагрузка может состоять из SEQ ID NO: 17. Нагрузка может состоять из SEQ ID NO: 33. Нагрузка может состоять из SEQ ID NO: 34. Нагрузка может представлять собой агонист рецептора GIP. Нагрузка может включать любую из SEQ ID NO: 33 или 36-38.

[0073] Нагрузкой может представлять собой инсулин. Инсулин может содержать SEQ ID NO: 43 и SEQ ID NO: 44; SEQ ID NO: 45 и SEQ ID NO: 46; SEQ ID NO: 47 и SEQ ID NO: 48, или SEQ ID NO: 49 и SEQ ID NO: 50. Инсулин может содержать SEQ ID NO: 47 и SEQ ID NO: 48. Инсулин может содержать SEQ ID NO: 49 и SEQ ID NO: 50. Нагрузка может быть любой нагрузкой из SEQ ID NO: 51-63.

[0074] Вариант Cholix может представлять собой последовательность, указанную в SEQ ID NO: 81, или ее фрагмент или вариант последовательности. Носитель может быть нековалентно связан с гетерологичной нагрузкой. Носитель может быть ковалентно связан с гетерологичной нагрузкой.

[0075] Конструкция для доставки может представлять собой один полипептид. Конструкция для доставки может дополнительно содержать расщепляемый линкер, при этом расщепление линкера высвобождает нагрузку из носителя. Носитель может быть расположен на С-конце полипептида, причем нагрузка может находиться на N-конце полипептида. Носитель может содержать SEQ ID NO: 6; SEQ ID NO: 2; SEQ ID NO: 65; или SEQ ID NO: 73. Носитель может иметь, по меньшей мере, 90% аминокислотную идентичность укороченному с С-конца варианту SEQ ID NO: 1. Носитель может содержать укороченный с С-конца вариант SEQ ID NO: 81. Носитель может состоять из первых 195, 206, 244, 250, 266, 386 или 415 аминокислотных остатков SEQ ID NO: 1, SEQ ID NO: 12 или SEQ ID NO: 81. Гетерологичная нагрузка может быть сконфигурирована для связывания рецептора.

[0076] Также в настоящем документе предложен способ лечения метаболического расстройства у субъекта, включающий введение субъекту эффективного количества любой из указанных выше конструкций для доставки. Метаболическим расстройством может быть диабет и/или ожирение.

[0077] Любой аспект или случай, описанный в настоящем документе, может быть объединен с любым другим аспектом случая, описанного в настоящем документе.

ВКЛЮЧЕНИЕ СВЕДЕНИЙ ПОСРЕДСТВОМ ССЫЛКИ

[0078] Все публикации, патенты и патентные заявки, указанные в настоящем описании, включены здесь посредством ссылки в той же степени, как если бы каждая отдельная публикация, патент или патентная заявка были конкретно и отдельно указаны для включения посредством ссылки.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0079] Патентный файл или файл заявки содержит по меньшей мере один чертеж, выполненный в цвете. Копии публикации настоящего патента или патентной заявки с
цветным(и) чертежем(ами) будут предоставлены Ведомством по запросу и уплате пошлины. Новые признаки изобретения подробно изложены в прилагаемой формуле изобретения. Лучшее понимание признаков и преимуществ настоящего изобретения можно получить посредством следующего подробного описания, в котором представлены иллюстративные варианты осуществления, в которых используются принципы изобретения, а также прилагаемых чертежей, в которых:

[0080] **Фиг.1А** представляет собой цифровое изображение, отображающее самособирающиеся микрочастицы на основе слизи молекулы-протамина, полученные способом, описанные в примере 1, суспендированные в буфере с низкой ионной силой (0,05 М). **Фиг.1В** представляет собой цифровое изображение, изображающее самособирающиеся микрочастицы на основе слизи молекулы-протамина, полученные способом, описанные в примере 1, суспендированные в буфере с высокой ионной силой (>1 М). **Фиг.1С** представляет собой цифровое изображение, изображающее микрочастицы на **фиг.1В**, возвращенные в буфер с низкой ионной силой (0,05 М). Частицы визуализировали посредством системы GE Cytel в режиме светлого поля высокой мощности (10×).

[0081] **Фиг.2А** представляет собой цифровое изображение, отображающее самособирающиеся микрочастицы на основе инсулина-протамина, полученные способом, описанным в примере 2, в режиме светлого поля. **Фиг.2В** представляет собой цифровое изображение, изображающее самособирающиеся микрочастицы на основе инсулина-протамина, полученные способом, описанным в примере 2, которые демонстрируют ФИТЦ(флуоресцена изотиоцианат)-флуоресценцию в режиме синего поля. **Фиг.2С** представляет собой цифровое изображение, представляющее объединенное изображение светлого поля и синего поля, показанных на **фиг.2А** и **фиг.2В**. Объединенное изображение показывает ФИТЦ-флуоресценцию микрочасти инсулина. Частицы визуализировали посредством системы GE Cytel в режиме яркого или синего поля высокой мощности (10×). ФИТЦ-флуоресцентную визуализацию осуществляли посредством возбуждения образца при длине волны 381 нм и регистрации флуоресцентного излучения при 435 нм. Синяя стрелка указывает на частичу размером примерно 150 мкМ.

[0082] **Фиг.3А** представляет собой цифровое изображение, описывающее самособирающиеся микрочастицы на основе слизи молекулы-протамина-цинка, полученные способом, описанным в примере 3, в режиме красного поля.

[0083] **Фиг.3В** представляет собой цифровое изображение аналогичного синтеза микрочасти на основе слизи молекулы-протамина-цинка в режиме светлого поля. Частицы визуализировали посредством системы GE Cytel в режиме высокой мощности (10×) светлого или красного поля. Красную флуоресценцию визуализировали путем возбуждения образца при 481 нм и регистрации флуоресцентного излучения при 535 нм.

[0084] **Фиг.4А** представляет собой цифровое изображение, описывающее самособирающиеся микрочастицы на основе слизи молекулы-протамина (без ZnCl₂),
полученные способом, описанным в примере 3, в режиме светлого поля. **Фиг.4Б** представляет собой цифровое изображение аналогичных частиц в режиме красного поля. Частицы визуализировали посредством системы GE Cytel в режиме высокой мощности (10⁻⁴) светлого или красного поля. Красную флуоресценцию визуализировали путем возбуждения образца при 481 нм и регистрации флуоресцентного излучения при 535 нм.

[0085] На **фиг.5А** показан профиль растворения для композиции 37-156 при значении pH 2 и 7 и при повышении значения pH с 2 до 7.

[0086] На **фиг.5Б** показан профиль растворения для композиции 37-167 при pH 2 и pH 7 и при повышении значения pH с 2 до 7.

[0087] На **фиг.5С** показан профиль растворения полученных наночастиц при значении pH 2 и 7 и при повышении значения pH с 2 до 7.

[0088] На **фиг.6** показана стабильность инсулина при воздействии различных композиций наночастиц на панкреатин.

[0089] На **фиг.7А** показаны срезы тонкого кишечника крысы крысы через 15 минут после внутрикишечной инъекции 37-49 hGH/SEQ ID NO: 3/Eudragit FS частиц. hGH показан зеленым цветом, а SEQ ID NO: 3 показан красным. На **фиг.7Б** показаны срезы тонкого кишечника крысы крысы через 30 минут после внутрикишечной инъекции частиц 37-49 hGH/SEQ ID NO: 3/Eudragit FS. hGH показан зеленым цветом, а SEQ ID NO: 3 показан красным.

[0090] На **фиг.7C** показаны срезы тонкого кишечника крысы крысы через 45 минут после внутрикишечной инъекции частиц с 37-49 hGH/SEQ ID NO: 3/Eudragit FS. Зеленым цветом показан hGH, а SEQ ID NO: 3 показан красным цветом.

[0091] На **фиг.7D** показаны срезы тонкого кишечника крысы крысы через 60 минут после внутрикишечной инъекции частиц с 37-49 hGH/SEQ ID NO: 3/Eudragit FS. hGH показан зеленым цветом, а SEQ ID NO: 3 показан красным.

[0092] На **фиг.8** показаны уровни hGH в сыворотке крыс, которым вводили содержащие hGH частицы через желудочный зонд.

[0093] На **фиг.9** показаны уровни hGH, транспортируемые через клетки Caco-2 при доставке в различных композициях.

[0094] На **фиг.10А** показано высвобождение эксенатида in vitro, анализируемое посредством обращенно-фазовой жидкостной хроматографии (ОФ ВЭЖХ), из 5 частиц, представленных в **таблице 3**, при значениях pH, составляющих 5, 7, 7,5 и 10, в указанные моменты времени.

[0095] На **фиг.10B** показано высвобождение эксенатида in vitro, анализируемое посредством ОФ ВЭЖХ, из 5 дополнительных частиц, представленных в **таблице 3**, при значениях pH 5, 7, 7,5 и 10 в указанные моменты времени.

[0096] На **фиг.10C** показано высвобождение эксенатида in vitro, анализируемое посредством эксклюзивной хроматографии (SEC), из 5 частиц, представленных в **таблице 3**, при значениях pH 5, 7, 7,5 и 10 в указанные моменты времени.

[0097] На **фиг.10D** показано высвобождение эксенатида in vitro, анализируемое
посредством эксклюзивной хроматографии (SEC), из 5 дополнительных частиц, представленных в таблице 3, при значениях рН 5, 7, 7,5 и 10 в указанные моменты времени.

[0098] На фиг.11А-C показана стабильность панкреатина SEQ ID NO: 3 и/или эксенатида в различных композициях, описанных в настоящем документе. На фиг.11А показана стабильность панкреатина SEQ ID NO: 3 и/или эксенатида в цинксодержащих композициях, на фиг.11В показана стабильность панкреатина SEQ ID NO: 3 и/или эксенатида в композициях, содержащих протамин, и на фиг.11С показана стабильность панкреатина эксенатида в композиции цинк и эксенатида.

[0099] На фиг.12А показано изображение конфокальной микроскопии композиции SEQ ID NO: 3, ФИТЦ-эксенатида и цинка с визуализированным ФИТЦ-эксенатидом.

[0100] На фиг.12В показано изображение конфокальной микроскопии композиции SEQ ID NO: 3, ФИТЦ-эксенатида и цинка, с SEQ ID NO: 3, визуализируемой меченными Alexa 647 антителами против SEQ ID NO: 3.

[0101] На фиг.12С показано объединенное изображение фиг.12А и 12В.

[0102] На фиг.13 показано распределение частиц по размерам композиции на фиг.12А-C.

[0103] На фиг.14 показан транспорт описанных в настоящем документе композиций через клетки SMI-100.

[0104] На фиг.15 показан схематический пример способа получения кислотоустойчивых частиц, содержащих носитель Cholix, цинк и эксенатид.

[0105] На фиг.16 показаны способы, в которых прохождение микрочастиц через различные слои слизи и эпителия может быть обнаружено с использованием способов in vitro или in vivo.

[0106] На фиг.17А показана стабильность панкреатина SEQ ID NO: 3 и/или эксенатида в различных композициях, описанных в настоящем документе.

[0107] На фиг.17В показана стабильность панкреатина SEQ ID NO: 3 и/или ФИТЦ-эксенатида в композициях, описанных в настоящем документе.

[0108] На фиг.18 показана хроматограмма, полученная методом хроматографии с обращенной фазой (ОФ ВЭЖХ), показывающая присутствие SEQ ID NO: 3 при времени удерживания 6,8 мин, а также эксенатида при времени удерживания 7,5 мин.

[0109] На фиг.19 показано высвобождение эксенатида in vitro, анализируемое методом ОФ ВЭЖХ из композиций E0, E14, E18, E0-ФИТЦ, E14-ФИТЦ и E18-ФИТЦ при значениях рН, составляющих 1, 5 и 7, в указанные моменты времени при температуре 37°C.

[0110] На фиг.20 показаны концентрации эксенатида в сыворотке крови крыс, которым внутрикожно вводили композиции E0, E14 и E18.

[0111] На фиг.21 показаны концентрации эксенатида в сыворотке крови крыс, которым вводили эксенатид внутрикожно.

[0112] На фиг.22 показана чистота SEQ ID NO: 70-эксенатида (SEQ ID NO: 70,
сшитой с эксенатидом) с использованием геля, окрашенного кумасси синим, в ДСН-ПААГ-электрофорезе.

[0113] На фиг.23 показан трансцитоз in vivo эксенатида, поперечно сшитого с носителями SEQ ID NO: 80 или SEQ ID NO: 70 через тонкую кишку крыс линии Sprague Dawley. Количество (в пмоль) эксенатида, транспортируемого через ткани кишечника, измеряли через 10 и 40 минут после обработки. Данные показывают, что как SEQ ID NO: 80-эксенатид, так и SEQ ID NO: 70-эксенатид способны к транспорту с более высокой скоростью, чем только эксенатид в течение 10 и 40 минут.

[0114] На фиг.24 показан профиль временной зависимости концентрации сахара в крови после теста с глюкозной нагрузкой. Эффекты SEQ ID NO: 70-эксенатид, вводимый перорально через желудочный зонд, сравнивали с обработкой негативным контролем (пероральный буфер) и эксенатидом, вводимым посредством внутрибрюшинной инъекции, в качестве положительного контроля. Эти результаты демонстрируют, что SEQ ID NO: 70-эксенатид снижает повышение уровней глюкозы в крови после теста с глюкозной нагрузкой.

[0115] На фиг.25 показано, что SEQ ID NO: 11 может связываться с рецептором GLP-1.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

1. Общее описание

[0116] В настоящем документе предусмотрены способы и композиции, которые могут содержать (a) носитель, полученный из бактериального токсина, и (b) катион переходного металла или поликатион, где носитель способен проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку. Носителем, полученным на основе бактериального токсина, может быть, например, полипептид Cholix (например, на основе Vibrio cholerae) или экзотоксин Pseudomonas (PE) A, например, на основе Pseudomonas aeruginosa. Композиции могут дополнительно содержать нагрузку, например, гетерологичную нагрузку (например, нагрузка не является носителем, например, Cholix или PE), например, терапевтическую нагрузку. Композиции могут быть в форме частиц, например, микрочастиц или наночастиц, и могут быть получены, например, путем распылительной сушки и/или лиофилизации. Представленные в настоящем документе способы включают введение композиций субъекту. В некоторых случаях, композиции могут быть составлены таким образом, чтобы они, оставаясь интактными, проходили через кислоту среду желудка (например, частицы могут представлять собой кислотоустойчивые микрочастицы). На фиг.16 представлена схема, иллюстрирующая проникновение частиц через оболочки слизи, тонкий слой слизи над культивируемыми клетками и нормальный слой слизи над эпителиальными клетками in vivo. Частицы могут становиться растворимыми при значениях pH 5-7 и, например, могут поддерживать связывание или транспорт в восстановленном слизистом слое, оцениваемом в исследовании переноса с использованием культивируемых слоев эпителиальной ткани или через ткани кишечника.
в моделях in vitro или in vivo. В некоторых случаях, композиции, представленные в настоящем документе, могут быть получены для доставки субъекту другими способами, таким как, доставка в дыхательные пути.

[0117] Также в настоящем документе предложены способы и композиции, содержащие носитель, способный проникать в поляризованную эпителиальную клетку или осуществлять трансцитоз через поляризованную эпителиальную клетку, а также гетерологичную нагрузку, где молярное отношение гетерологической нагрузки к носителю составляет более 1:1.

[0118] В настоящем документе предусмотрены способы и композиции, содержащие носитель, при этом носитель способен проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку, причем, по меньшей мере, 60% носителя остается интактным через 0,5 часа в анализе панкреатина, где анализ панкреатина включает инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мл фосфатно-солевого буфера (ФСБ) при температуре 37°C. В настоящем документе представлены способы получения указанных композиций и способы введения указанных композиций субъекту.

[0119] Также в настоящем документе предусмотрены способы и композиции, содержащие вариант Cholix, оканчивающийся в положении 195-347, и гетерологичную нагрузку, причем гетерологичная нагрузка представляет собой агент, регулирующий уровень глюкозы. Также в настоящем документе предусмотрены композиции, содержащие носитель, связанный с агентом, регулирующим уровень глюкозы.

[0120] Также в настоящем документе предусмотрены фармацевтические композиции, включающие композиции, представленные в настоящем документе, способы изготовления представленных в настоящем документе композиций и способы введения представленных в настоящем документе композиций субъекту, например, субъекту с нарушением регуляции уровня глюкозы.

II. Частичные

[0121] Представленные в настоящем документе композиции могут содержать одну или несколько частиц. Одна или несколько частиц могут содержать одну или несколько микрочастиц или наночастиц. Одна или несколько частиц могут содержать один или несколько носителей, одну или несколько нагрузок (например, гетерологические нагрузки) и/или один или несколько катионов. Один или несколько катионов могут представлять собой один или несколько полианонов, например, протамин. Один или несколько катионов могут представлять собой один или несколько катионов металлов. Один или несколько катионов металлов могут представлять собой один или несколько катионов переходных металлов. Один или несколько катионов металлов могут представлять собой один или несколько катионов двуэлементных металлов. Один или несколько катионов переходных металлов могут представлять собой Fe²⁺, Mn²⁺, Zn²⁺, Co²⁺, Ni²⁺ и Cu²⁺. Один или несколько катионов переходных металлов могут представлять собой катион цинка. Катион одного или нескольких двухэлементных металлов может представлять собой
катион кальция (Ca^{2+}), хрома (Cr^{2+}), кобальта (Co^{2+}), железа (Fe^{2+}), магния (Mg^{2+}), марганца (Mn^{2+}), никеля (Ni^{2+}), меди (Cu^{2+}) или цинка (Zn^{2+}). Одни или несколько катионов могут представлять собой протамин, полизилимин, полиэтиленмин (ПЭИ), проламин, поливинилпирролидон (ПВП), полиаргинин, поливиниламин или их сочетание. Одни или несколько катионов могут представлять собой протаминовую соль.

[0122] Одна или несколько частиц, например, одна или несколько микрочастиц или наночастиц, могут представлять собой одну или несколько самособирающихся частиц, например стабильную самособирающуюся частицу, например, микрочастицу или наночастицу.

[0123] Представленные в настоящем документе композиции могут содержать один или несколько носителей и одну или несколько нагрузок и/или один или несколько катионов, например, один или несколько поликатионов. Одна или несколько носителей и одна или несколько нагрузок могут быть связаны непосредственно или косвенно, ковалентно или нековалентно. Одна или несколько носителей и одна или несколько нагрузок могут быть в форме слитой молекулы. В некоторых случаях, одни или несколько носителей и одна или несколько нагрузок не включены в состав слитой молекулы. Слитая молекула носитель-нагрузка может транспортировать одну или несколько молекул нагрузки (например, одну или несколько терапевтических нагрузок) в эпителиальные клетки (например, поляризованные эпителиальные клетки кишечника). Носитель может быть способен транспортировать нагрузку в эпителиальные клетки или через них, используя эндогенные транспортные пути. Использование эндогенных транспортных путей, в отличие от использования пассивного переноса (пассивной диффузии), может позволить носителю быстро и эффективно перемещать нагрузку в эпителиальные клетки или через них, не нарушая барьерную функцию этих клеток или биологическую активность нагрузки. Одна или несколько нагрузок могут представлять собой полипептид, содержащий, состоящий из, или по существу состоящий из, последовательности, представленной в любой из SEQ ID NO: 11 или 14-64 (см. таблицу 12).

[0124] Одни или несколько носителей и один или несколько катионов могут быть связаны непосредственно или косвенно, ковалентно или нековалентно. Одни или несколько носителей и один или несколько катионов могут быть в форме слитых молекул. В некоторых случаях, слитая молекула может собираться в микрочастицу или наночастицу с одной или несколькими нагрузками. Слитая молекула катион-носитель может транспортировать одну или несколько молекул нагрузки (например, одну или несколько терапевтических нагрузок) в эпителиальные клетки (например, поляризованные эпителиальные клетки кишечника). В некоторых случаях, один или несколько носителей и один или несколько катионов не связаны непосредственно или ковалентно. В некоторых случаях, один или несколько носителей и один или несколько катионов не являются частью слитой молекулы.

[0125] В некоторых случаях, один или несколько катионов представляют собой протамин или соль протамина. Протамин может относиться к группе сильноосновных
белков, присутствующих в сперматогониях в солеподобной комбинации с нуклеиновыми кислотами. Протамины можно получить из лосося (salmine), радужной форели (iridine), сельди (clupeine), осетра (sturine), испанской макреи или тунца (thynnine). Пептидная композиция состав конечного протамина может изменяться в зависимости от того, из какого семейства, рода или вида рыб он получен. Протамин может содержать четыре основных компонента, например, одноцепочечные пептиды, содержащие примерно 30-32 остатка, из которых примерно 21-22 представляют собой аргинины. N-концевой остаток может представлять собой пролин для каждого из четырех основных компонентов. Следовательно, можно ожидать, что химическая модификация протамина посредством конкретной соли будет гомогенной. Соль протамина может быть получена из лосося. Соль протамина может быть получена из сельди. Соль протамина может быть получена из радужной форели. Соль протамина может быть получена из тунца.

[0126] Одна или несколько частиц, например, одна или несколько микрочастицы или наночастицы, могут содержать соль протамина, выбранную из группы, состоящей из сульфата протамина, ацетата протамина, бромида протамина, хлорида протамина, капроата протамина, триттиорататата протамина, бикарбоната протамина (HCO3), пропионата протамина, лактата протамина, формата протамина, нитрата протамина, цитрата протамина, моногидрофосфата протамина, дигидрофосфата протамина, тартрата протамина, перхлората протамина и смеси любых двух солей протамина. Соль протамина может быть объединена с другими компонентами в жидкой среде перед образованием частиц, например, путем осаждения или распылительной суши. Соль протамина в жидкой среде, перед образованием частиц, может иметь концентрацию от примерно 0,05 мг/мл до примерно 0,10 мг/мл, от примерно 0,10 мг/мл до примерно 0,15 мг/мл, от примерно 0,15 мг/мл до примерно 0,20 мг/мл, от примерно 0,20 мг/мл до примерно 0,25 мг/мл, от примерно 0,25 мг/мл до примерно 0,30 мг/мл, от примерно 0,30 мг/мл до примерно 0,35 мг/мл, от примерно 0,35 мг/мл до примерно 0,40 мг/мл, от примерно 0,40 мг/мл до примерно 0,45 мг/мл или от примерно 0,45 мг/мл до примерно 0,5 мг/мл. Соль протамина может представлять собой смесь двух разных солей, где одна соль представляет собой сульфат, а другая соль представляет собой ацетат, пропионат, лактат, формат или нитрат протамина. Молярное соотношение между двумя различными солями может составлять от примерно 0,1 до примерно 1, от примерно 0,2 до примерно 1, от примерно 0,3 до примерно 1, от примерно 0,4 до примерно 1, от примерно 0,5 до примерно 1, от примерно 0,6 до примерно 1, от примерно 0,7 до примерно 1, от примерно 0,8 до примерно 1 и от примерно 0,9 до примерно 1.

[0127] Частица может дополнительно содержать ион двувалентного металла, например цинка, кобальта, магния или кальция, или сочетания этих ионов. Ион металла может представлять собой цинк.

[0128] В некоторых примерах, частицы могут быть образованы путем объединения носителя и катиона в соотношении от примерно 1:0,001 до примерно 1:2000 по массе (носитель:катион). В некоторых случаях, носитель и катион могут быть объединены в
соотношении примерно от 1:0,01 до примерно 1:500 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении примерно от 1:0,08 до примерно 1:173 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении примерно от 1:0,1 до примерно 1:200 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении примерно от 1:0,1 до примерно 1:5 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении примерно от 1:0,1 до примерно 1:180 по массе. В других примерах, частицы могут быть образованы путем объединения носителя и катиона в соотношении от примерно 0,01:1 до примерно 0,2:1 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении примерно 1:1 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении, по меньшей мере, примерно 1:0,001, 1:0,01, 1:0,08, 1:0,1, 1:0,16, 1:0,2, 1:0,3, 1:0,32, 1:0,4, 1:0,8, 1:1, 1:1,6, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:8,6, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:60, 1:70, 1:80, 1:86, 1:90, 1:100, 1:150, 1:172, 1:200 или 1:2000 по массе. В некоторых случаях, носитель и катион могут быть объединены в соотношении меньше, чем примерно 1:0,001, 1:0,01, 1:0,08, 1:0,1, 1:0,16, 1:0,2, 1:0,3, 1:0,32, 1:0,4, 1:0,8, 1:1, 1:1,6, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:8,6, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:60, 1:70, 1:80, 1:86, 1:90, 1:100, 1:150, 1:172 или 1:200, 1:2000 по массе.

[0129] В некоторых примерах, частицы могут быть образованы путем объединения нагрузки слитой молекулы и катиона в соотношении примерно от 1:0,001 до примерно 1:2000 по массе (нагрузка слитая молекула:катион). В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно от 1:0,01 до примерно 1:500 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно от 1:0,08 до примерно 1:173 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно от 1:0,1 до примерно 1:200 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно от 1:0,1 до примерно 1:5 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно от 1:0,08 до примерно 1:1,6 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно от 1:8 до примерно 1:180 по массе. В других примерах, частицы могут быть образованы путем объединения нагрузки слитой молекулы и катиона в соотношении от примерно 0,01:1 до примерно 0,2:1 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении примерно 1:1 по массе. В некоторых случаях, нагрузка слитая молекула и катион могут быть объединены в соотношении, по меньшей мере, примерно 1:0,001, 1:0,01, 1:0,08, 1:0,1, 1:0,16, 1:0,2, 1:0,3, 1:0,32, 1:0,4, 1:0,8, 1:1, 1:1,6, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:8,6, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50,
в некоторых случаях, носитель нагрузки при соотношении молекул катиона и катиона может иметь объединение в соотношении менее примерно 1:0,001, 1:0,01, 1:0,08, 1:0,1, 1:0,16, 1:0,2, 1:0,3, 1:0,32, 1:0,4, 1:0,8, 1:1, 1:1,6, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:8,6, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:60, 1:70, 1:80, 1:86, 1:90, 1:100, 1:150, 1:172 или 1:200, 1:2000 по массе.

[0130] В некоторых примерах, частицы могут быть образованы путем объединения носителя и нагрузки в соотношении от примерно 0,01:1 до примерно 1:2, от примерно 0,0116:1 до примерно 1:1, от примерно 0,1:1 до примерно 1:1 по массе. В некоторых случаях, носитель с нагрузкой могут быть объединены в соотношении, составляющем по меньшей мере 0,01:1, 0,0116:1, 0,02:1, 0,0232:1, 0,03:1, 0,04:1, 0,05:1, 0,06:1, 0,07:1, 0,08:1, 0,09:1, 0,1:1, 0,2:1, 0,232:1, 0,3:1, 0,4:1, 0,5:1, 0,6:1, 0,7:1, 0,8:1, 0,9:1, 1:1, 1:1,1, 1:2:1, 1:3:1, 1:4:1, 1:5:1, 1:6:1, 1:7:1, 1:8:1, 1:9:1 или 2:1 по массе. В некоторых случаях, носитель с нагрузкой может быть объединен в соотношении меньше, чем 0,01:1, 0,0116:1, 0,02:1, 0,0232:1, 0,03:1, 0,04:1, 0,05:1, 0,06:1, 0,07:1, 0,08:1, 0,09:1, 0,1:1, 0,2:1, 0,232:1, 0,3:1, 0,4:1, 0,5:1, 0,6:1, 0,7:1, 0,8:1, 0,9:1, 1:1, 1:1,1, 1:2:1, 1:3:1, 1:4:1, 1:5:1, 1:6:1, 1:7:1, 1:8:1, 1:9:1 или 2:1 по массе.

[0132] Частица или композиция может содержать носитель и нагрузку при соотношении носителя к нагрузке от примерно 1:1 до примерно 1:10 по молям, от примерно 10:1 до примерно 1:1000 по молям, от примерно от 1:1 до примерно 1:1000 по

[0133] В некоторых случаях, носитель косвенно и нековалентно связан с нагрузкой. В таких случаях, частицы (например, липосомы, микрочастицы, наночастицы, металлические наночастицы, наночастицы на основе полимера и т.д.) могут содержать (например, внутри и/или на поверхности частицы) молекулы нагрузки (например, IL-10, IL-22, GLP-1 и т.д.), причем носители, например молекула(ы) носителя, полученного из Cholix или PE, могут быть связаны с такими наночастицами (например, на их поверхности). В некоторых случаях, могут образовываться частицы, которые содержат молекулы нагрузки и молекулы носителя, например, молекулы, полученные из Cholix или PE.

[0134] В некоторых случаях, отношение (например, молярное отношение) нагрузки к носителю в представленной в настоящем документе композиции (например, частица) может составлять, по меньшей мере, примерно 15000:1, 10000:1, 5000:1, 2500:1, 1000:1, 500:1, 250:1, 100:1, 50:1, 25:1, 10:1, 5:1, 2,5:1, 1:1. Это отношение может обеспечивать транспорт таких частиц, содержащих нагрузку (например, наночастицы), в поляризованные эпителиальные клетки или через них (например, поляризованные эпителиальные клетки кишечника) с использованием носителя, например, носителя, полученного из PE или Cholix, прикрепленного к поверхности. В некоторых случаях,
частица (например, наночастица) может высвобождать нагрузку после трансцитоза или внутриклеточной доставки. В случаях, когда частица (например, наночастица) переносится через эпителиальные клетки, высвобожденная нагрузка может связываться с рецепторами внутри подслизистой ткани (например, lamina propria) и/или может поступать в системный кровоток и, таким образом, обеспечивать определенную функцию (например, терапевтическую или диагностическую функцию) системно. В других случаях, когда частица (например, наночастица) высвобождает нагрузку внутри эпителиальной клетки, нагрузка (например, нуклеиновая кислота) может обеспечивать определенные внутриклеточные функции, например, продукцию трансгенов в этих клетках, модуляцию экспрессии генов и т.д.

[0135] Частица или композиция, например фармацевтическая композиция, может дополнительно содержать консервант, например, фенол, м-крезол, метил-п-гидроксибензоат, пропил-п-гидроксибензоат, 2-феноксиэтанол, бутил-п-гидроксибензоат, 2-фенилэтанол, бензиловый спирт, хлорбутанол или тиомеросал или их смеси.

[0136] Композиция, например, фармацевтическая композиция, может дополнительно содержать модификатор тоничности, например, сахар или сахарный спирт, аминокислоту (например, L-глицин, L-гистидин, аргинин, лизин, изолейцин, аспарагиновую кислоту, триптофан, треонин), алдит (например, глицерол (глицерин), 1,2-пропандиол (пропиленгликоль), 1,3-пропандиол, 1,3-бутандиол), полиэтиленгликоль (например, ПЭГ400), глицерин, маннит, пропиленгликоль, диметилсульфоф, метилсульфонилметан, трегалозу, сахарозу, сорбит, сахарозу, лактозу или их смеси.

[0137] Композиция, например фармацевтическая композиция, может дополнительно содержать буфер, например, ацетат натрия, карбонат натрия, цитрат, глицилглицин, гистидин, глицерин, лизин, аргинин, дигидроfosfat натрия, динатрийгидроfosfat, фосфат натрия и трис(гидроксиметил)аминометан или их смеси.

[0139] В другом аспекте, в настоящем документе предложен способ получения частиц, например, микрочастиц или наночастиц, например, самособирающихся микрочастиц или наночастиц, содержащих носитель, нагрузку и катион. Носитель и нагрузка могут образовывать слитую молекулу. Способ может включать: (a) приготовление смеси, содержащей выделенный носитель и нагрузку (например, в виде слитой молекулы) и, необязательно, ZnCl₂; (b) приготовление смеси, включающей сульфат протамина и NaPO₄; и (c) объединение смеси (a) со смесью (b) и выдерживание объединенной смеси в течение ночи при комнатной температуре. Способ может дополнительно включать стадию (d) расщепления частиц на стадии (c) на более мелкие частицы, путем увеличения ионной силы объединенной смеси на стадии (c). В некоторых
сituacях, препарат стадии (a) не включает ZnCl₂. В некоторых случаях, препарат стадии (a) включает ZnCl₂.

[0140] В некоторых случаях, носитель и нагрузка не образуют слитную молекулу. Способ может включать: (a) приготовление смеси, содержащей выделенный носитель и выделенную нагрузку и, необязательно, ZnCl₂; (b) приготовление смеси, содержащей сульфат протамина и NaPO₄; и (c) объединение смеси (а) со смесью (b) и выдерживание объединенной смеси в течение ночи при комнатной температуре. Способ может дополнительно включать стадию (d) расщепления частиц со стадии (c) на более мелкие частицы путем увеличения ионной силы объединенной смеси со стадии (c). В некоторых случаях, препарат на стадии (a) не включает ZnCl₂. В некоторых случаях, препарат стадии (a) включает ZnCl₂. В некоторых случаях, объединенная смесь (a) и (b) может быть высушена путем распыления с образованием микрокапсули или наночастиц. В некоторых случаях, микрокапсулы или наночастицы могут быть получены с использованием доступной в продаже распылительной сушилки.

[0141] В некоторых случаях, носитель и катион могут образовывать слитную молекулу. Способ может включать: (a) приготовление смеси, содержащей слитную молекулу выделенного носителя и катиона, а также выделенную нагрузку и, необязательно, ZnCl₂; (b) приготовление смеси, содержащей выделенную нагрузку и NaPO₄; и (c) объединение смеси (а) со смесью (b) и выдерживание объединенной смеси в течение ночи при комнатной температуре. Способ может дополнительно включать стадию (d) расщепления частиц со стадии (c) на более мелкие частицы путем увеличения ионной силы объединенной смеси со стадии (c). В некоторых случаях, препарат на стадии (a) не включает ZnCl₂. В некоторых случаях, препарат стадии (a) включает ZnCl₂. В некоторых случаях, объединенная смесь (a) и (b) может быть высушена распылением с образованием микрокапсул или наночастиц. В некоторых случаях, микрокапсулы или наночастицы могут быть получены с использованием доступной в продаже распылительной сушилки.

[0142] Нанораспылительная сушилка B-90 (Buchi, Switzerland) может производить белковые частицы размером от субмикрона до 2 микрон с узким распределением по размерам и контролируемым высвобождением активного фармацевтического ингредиента. Белки, такие как hGH, инсулин, могут быть высушены распылением в непрерывном одноэтапном процессе. Противоны и полимерные вспомогательные вещества могут быть использованы для инкапсулирования и для достижения медленного высвобождения активного фармацевтического ингредиента. Система может быть совместима с водорастворимыми вспомогательными веществами и эмульсиями на водной основе. Скорость подачи пробы может составлять от 1 мл/мин до 3 мл/мин. Расход газа может составлять от 100 л/мин до 160 л/мин. Давление может соответствовать атмосферному давлению.

[0143] Концентрация белка может составлять примерно от 0,02 мкмоль до 1 мкмоль. Скорость подачи может составлять примерно от 100 л/мин до 200 л/мин. Температура на входе может составлять примерно от 80°C до 140°C. Температура
форсунки может составлять примерно от 30°C до 70°C. Можно использовать различные буферные растворы, такие как, например, карбонатный, ацетатный, лактатный, сукицинатный, фосфатный буфер и трис-буфер. Примеры вспомогательных веществ, которые можно использовать, включают гидроксипропилметилцеллюлозу (HPMC), карбоксихитозан целлюлозу (CMC), альгинат, эудрагиты (Eudragits), хитозан, декстран, поли(молочно-гликоловую кислоту) (PLGA), плороник, гуммиарарак и полисорбат 20. Неограничивающие примеры противоионов или молекул, которые включают противоионы, включают протамин, SEQ ID NO: конструция 3, кационные проникающие в клетку пептиды, полиглутамат и гиалуроновую кислоту.

[0144] Частички, например, самособирающиеся частицы или частицы, высущенные распылением, например, частицы протамина, частицы цинка или частицы цинка и протамина, могут иметь размер не больше, чем примерно 200 нм, не больше, чем примерно 300 нм, не больше, чем примерно 400 нм, не больше, чем примерно 500 нм, не больше, чем примерно 600 нм, не больше, чем примерно 700 нм, не больше, чем примерно 800 нм или не больше, чем примерно 900 нм. Самособирающиеся микрочастицы, например микрочастицы протамина, частицы цинка, частицы цинка и протамина, могут иметь размер не больше, чем примерно 10 нм, 20 нм, 30 нм, 40 нм, 50 нм, 60 нм, 70 нм, 80 нм, 90 нм, 100 нм, 110 нм, 120 нм, 130 нм, 140 нм, 150 нм, 160 нм, 170 нм, 180 нм, 190 нм, 200 нм, 250 нм, 300 нм, 350 нм, 400 нм, 450 нм, 500 нм, 600 нм, 700 нм, 800 нм, 900 нм, 1 мкм, не больше, чем примерно 5 мкм, не больше, чем примерно 10 мкм, не больше, чем примерно 15 мкм, не больше, чем примерно 20 мкм, не больше, чем примерно 25 мкм, не больше, чем примерно 30 мкм, не больше, чем примерно 35 мкм, не больше, чем примерно 40 мкм, не больше, чем примерно 45 мкм, не больше, чем примерно 50 мкм, не больше, чем примерно 55 мкм, не больше, чем примерно 60 мкм, не больше, чем примерно 65 мкм, не больше, чем примерно 70 мкм, не больше, чем примерно 75 мкм, не больше, чем примерно 80 мкм, не больше, чем примерно 85 мкм, не больше, чем примерно 90 мкм, не больше, чем примерно 95 мкм, не больше, чем примерно 100 мкм, не больше, чем примерно 105 мкм, не больше, чем примерно 110 мкм, не больше, чем примерно 115 мкм, не больше, чем примерно 120 мкм, не больше, чем примерно 125 мкм, не больше, чем примерно 130 мкм, не больше, чем примерно 135 мкм, не больше, чем примерно 140 мкм, не больше, чем примерно 145 мкм и не больше, чем примерно 150 мкм. В некоторых случаях, частицы имеют размер от около 1 мкм до около 20 мкм. В некоторых случаях, частицы имеют средний размер около 5 мкм ± 2 мкм. В некоторых случаях, частицы имеют средний размер около 150 мкм ± 50 мкм. В некоторых случаях, частицы имеют средний размер от примерно 30 нм до примерно 6000 нм, от примерно 60 нм до примерно 6000 нм, от примерно 30 нм до примерно 3000 нм, от примерно 60 нм до примерно 3000 нм, от примерно 100 нм до примерно 1000 нм, от примерно 200 нм до примерно 800 нм или от примерно 300 нм до примерно 600 нм. В некоторых случаях, частицы имеют средний размер, состоящийший по меньшей мере примерно 30 нм, 40 нм, 50 нм, 60 нм, 70 нм, 80 нм, 90 нм, 100 нм, 150 нм, 200 нм, 250 нм, 300 нм, 350 нм, 400 нм,
Частицы, например микрочастицы и наночастицы, могут быть инкапсулированы. Натуральные и синтетические полимерные матрицы могут использоваться для инкапсуляции лекарственных средств и контролируемого высвобождения. Полимерные матрицы, используемые для инкапсуляции частиц, могут быть выбраны таким образом, чтобы частицы и лекарственное средство, содержащееся внутри частиц, высвобождались при желаемом значении pH, температуре или времени. Полимерные матрицы, используемые для инкапсуляции частиц, могут быть выбраны таким образом, чтобы частицы и лекарственное средство, содержащееся внутри частиц, были защищены в среде с низким значением pH и высвобождались при повышении значения pH, например, защищались в желудке, а затем высвобождались в кишечнике. Полимерные матрицы, используемые для инкапсуляции частиц, также могут быть выбраны для защиты частиц от условий в первой ткани или биологической жидкости, т.е. желудочном соке. Eudragit можно использовать для pH- и временно-контролируемого высвобождения лекарственного средства, причем хитозаны, HPMC и гиалуроновую кислоту можно использовать для диффузионно-контролируемого высвобождения. Eudragit включают широкий спектр полимеров на основе полиметакрилата. Примеры Eudragits, которые могут подходить для использования со способами и композициями по настоящему изобретению, включают Eudragit RS 30 D: поли(этилакрилат-со-метилметакрилат-со-триметиламмониоэтилметакрилатхлорид) 1:2:0,1; Eudragit RL 30 D: Поли(этилакрилат-со-метилметакрилат-со-триметиламмониоэтилметакрилатхлорид) 1:2:0,2; Eudragit FS 30D: поли(метилакрилат-со-метилметакрилат-со-метакриловая кислота) 7:3:1; и Eudragit L 30 D-55: поли(метакриловая кислота-со-этилакрилат) 1:1.

Частицы могут быть инкапсулированы любым способом, известным в данной области техники. В некоторых случаях частицы, например микро частицы или наночастицы, могут быть сформированы на первой стадии и инкапсулированы на второй стадии. Например, частицы могут быть образованы путем осаждения, как описано выше, а затем инкапсулированы на второй стадии путем распылительной сушки. В другом примере, частицы могут быть сформированы на первой стадии путем распылительной сушки, а затем инкапсулированы на второй стадии распылительной сушки. В некоторых случаях, частицы могут быть сформированы и инкапсулированы за одну стадию. Например, инкапсулирующие полимерные матрицы можно смешивать с раствором, содержащим один или несколько носителей, нагрузки и катионы, перед стадией распылительной сушки. В некоторых случаях, раствор, содержащий одну или несколько инкапсулирующих полимерных матриц, носителей, нагрузок и катионов, можно подвергать распылительной сушке с образованием наночастиц или микро частиц.

III. Носители

Носитель может представлять собой белок или молекулу другого типа,
способную переносить гетерологическую нагрузку через эпителий или в него (например, поляризованный кишечный эпителий субъекта).

[0148] Носитель может быть получен из полипептида, секретируемого бактерией. Такой носитель может быть получен из полипептида, секретируемого Vibrio cholerae или Pseudomonas aeruginosa. Полипептид, секретируемый Vibrio cholerae, может представлять собой полипептид Cholix. Полипептид, секретируемый Pseudomonas aeruginosa, может представлять собой экзотоксин Pseudomonas (PE). Носитель, полученный из полипептида Cholix или PE, может быть природным или неприродным. Носитель, полученный из полипептида Cholix или PE, может представлять собой укороченный вариант природного пептида Cholix или PE, или неприродный мутантный вариант. Мутации могут включать замену, делецию, вставку.

[0149] A. Cholix

[0150] Носитель в настоящем документе может иметь сниженную (например, сниженную, по меньшей мере, на 50%) или удаленную активность АДФ-рибозилирования (например, рибозилирование фактора элонгации 2) по сравнению с носителем, представленным в SEQ ID NO: 1.

[0151] Носитель может представлять собой полипептид, полученный из Cholix, или его вариант, дополнительно укороченный в любом из положений 206-415 для трансцитоза, или в положении 151-187 для эндоцитоза по сравнению с этalonной последовательностью, такой как SEQ ID NO: 1 или 12 или 7. Также в настоящем документе предусмотрены носители для трансцитоза, по меньшей мере, примерно на 80%, 85%, 90%, 95%, 98% или 99% идентичны любой из последовательностей носителей, представленных в таблице 14, или носители для эндоцитоза, по меньшей мере, примерно на 80%, 85%, 90%, 95%, 98% или 99% идентичны любой из последовательностей носителей, представленных в таблице 15. Любой из носителей в настоящем документе может иметь V1L-замену. В некоторых случаях, носитель может представлять собой полипептид Cholix с укорочением C-концевой части по любой из аминокислот 206-425, 150-205 или 150-195 в SEQ ID NO: 1 или 7. В некоторых случаях, носитель может представлять собой полипептид Cholix с укорочением C-концевой части по любой из аминокислот 1-40 или 35-40 в SEQ ID NO: 1 или 7. В некоторых случаях, носитель состоит из аминокислотных остатков, начиная с N-концевого положения 40 до любого из C-концевых положений 150-205 последовательности, представленной в SEQ ID NO: 7. В некоторых случаях, носитель может представлять собой полипептид Cholix с укорочением C-концевой части по аминокислоте 266 в SEQ ID NO: 1, или 12, или 7. Такой носитель может содержать, по существу состоять или состоять из аминокислотной последовательности, указанной в любой из SEQ ID NO: 65-67. В других случаях, носитель может иметь C-конец в положениях 150 или 187 последовательности, представленной в SEQ ID NO: 7. В некоторых случаях, носитель состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8, 9, или 10. В некоторых случаях, носитель Cholix состоит из аминокислотной последовательности, представленной в SEQ
ID NO: 12 или 13. Нумерация положений может быть основана на выравнивании полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где положения пронумерованы от N-конца к C-концу, начиная с положения 1 на N-конце. В некоторых случаях, носитель может иметь последовательность SEQ ID NO: 3.

[0152] Носитель может представлять собой укороченный вариант природного полипептида Cholix или неприродный мутантный вариант. Мутации могут включать замены, делиции или вставки. Укороченный полученный из Cholix носитель может, например, содержать, состоять или по существу состоять из аминокислотных остатков 1-415, 1-386, 1-266 или 1-206 SEQ ID NO: 1 или 7. Таким образом, носитель может содержать, состоять или по существу состоять из аминокислотных остатков, указанных в SEQ ID NO: 6 (пример Cholix1-415), SEQ ID NO: 2 (пример Cholix1-386), SEQ ID NO: 65 (пример Cholix1-266) или SEQ ID NO: 73 (пример Cholix1-206). Аминокислотные последовательности представлены в табл. 12.

[0153] Носитель может включать одну или несколько аминокислот на своем N-конце, которые облегчают экспрессию в различных микроорганизмах (например, бактериях). Например, носитель может включать N-концевой метионин, который может быть сайтом инициации трансляции. Такой носитель может содержать, состоять или по существу состоять из аминокислотной последовательности, представленной в SEQ ID NO: 65 (пример M+Cholix1-386). Кроме того, любой из носителей в данном документе может иметь замену V1L, как указано в SEQ ID NO: 2 (пример V1L Cholix).

[0154] Носитель может представлять собой фрагмент SEQ ID NO: 81 и может содержать, по существу состоять или состоять из не больше, чем из 386 аминокислот аминокислотной последовательности SEQ ID NO: 81. Носитель может содержать, по существу состоять или состоять из аминокислотных остатков от любого из положений 1-38 до любого из аминокислотных остатков в положениях 195-347 SEQ ID NO: 81. Альтернативно, носитель может содержать, по существу состоять или состоять из аминокислотных остатков, начиная с положения 1 до любого из аминокислотных остатков в любом из положений 195-347 SEQ ID NO: 81.

[0155] Носитель может существовать, по существу состоять или состоять из аминокислотных остатков 1-195, 1-206, 1-244, 1-266, 1-386 или 1-415 SEQ ID NO: 1, SEQ ID NO: 12 или SEQ ID NO: 81. Аналогичным образом, носитель может существовать, по существу состоять или состоять из аминокислотных остатков 1-275, 1-266, 1-265, 2-265, 3-265, 4-265, 5-265, 1-250, 2-250, 3-250, 4-250, 5-250, 1-245, 2-245, 3-245, 4-245, 5-245, 1-205, 2-205, 3-205, 4-205 и 5-205 в SEQ ID NO: 1, SEQ ID NO: 12 или SEQ ID NO: 81.

[0156] Носители также включают варианты любого из вышеуказанных, по меньшей мере, на 80%, 85%, 90%, 95%, 98% или 99% идентичные любой из последовательностей, представленных в настоящем документе.

[0157] В. Псевдомонадный экзотоксин A

[0158] Носитель может содержать часть экзотоксина Pseudomonas. Экзотоксин Pseudomonas A или “PE” может секретироваться Pseudomonas aeruginosa в виде белка
массой 67 кДа, состоящего из трех основных глобулярных доменов (Ia, II и III) и одного небольшого субдомена (Ib), соединяющего домены II и III (см., например, Allured et al. и др., Proc.Natl.Acad.Sci., 83:1320, 1324, 1986). Зрелый PE может представлять собой белок из 613 остатков, последовательность которого указана в SEQ ID NO: 69. Пример нуклеиновой кислоты, кодирующей зрелый PE, как используется в настоящем документе, представлен в SEQ ID NO: 68.

[0159] Домен экзотоксина PE 1 (наприимер, SEQ ID NO: 82) может содержать аминокислоты 1-252 в SEQ ID NO: 69 и может представлять собой рецептор-связывающий домен, который может быть лигандом для рецептора клеточной поверхности и опосредует связывание PE с клеткой. Носитель может иметь аминокислотную последовательность, указанную в SEQ ID NO: 82. Носитель может содержать аминокислотную последовательность с больше, чем 50%, больше, чем 60%, больше, чем 70%, больше, чем 80%, больше, чем 90%, больше, чем 95% или больше, чем 99% гомологичности или идентичности последовательности, представленной в SEQ ID NO: 82. Также в настоящем документе предусмотрены носители, имеющие, по меньшей мере, примерно 80%, 85%, 90%, 95%, 98% или 99% идентичность последовательности любой из частей последовательности носителя SEQ ID NO: 69, представленной в табліцe 13.

[0160] В некоторых случаях, носитель содержит полиепптид с консервативными или неконсервативными заменами в аминокислотной последовательности SEQ ID NO: 7. Носитель может сохранять способность связываться с клеткой. Носитель может представлять собой укороченный вариант SEQ ID NO: 69, например, SEQ ID NO: 82. Носитель может содержать полиепптид с рецептор-связывающим доменом, в котором удалены один или несколько аминокислотных остатков SEQ ID NO: 82. Носитель может содержать полиепптид с рецептор-связывающим доменом, в котором один или несколько аминокислотных остатков SEQ ID NO: 82 замены другой аминокислотой.

[0161] Домен PE-носителя I может содержать аминокислотную последовательность, по меньшей мере, на 80% идентичную аминокислотной последовательности SEQ ID NO: 82 или, по меньшей мере, на 80% идентичную последовательности его функционального фрагмента. Носитель может содержать делецию или мутацию в одном или нескольких аминокислотных остатках 1-252 аминокислотной последовательности SEQ ID NO: 69, например аминокислотной последовательности SEQ ID NO: 82. Носитель может содержать аминокислотную последовательность, по меньшей мере, на 90% идентичную аминокислотной последовательности 1-252 SEQ ID NO: 69 (наприимер, аминокислотная последовательность SEQ ID NO: 82) или, по меньшей мере, на 90% идентичную последовательности его функционального фрагмента. Носитель может содержать аминокислотную последовательность, по меньшей мере, на 95% идентичную аминокислотной последовательности 1-252 SEQ ID NO: 69, например аминокислотную последовательность SEQ ID NO: 82, или, по меньшей мере. Носитель может содержать аминокислотную
последовательность, по меньшей мере, на 99% идентичную аминокислотной последовательности 1-252 SEQ ID NO: 69, например аминокислотную последовательность SEQ ID NO: 82, или, по меньшей мере, на 99% идентичную последовательности его функционального фрагмента. Носитель может содержать аминокислотную последовательность, на 100% идентичную аминокислотной последовательности 1-252 SEQ ID NO: 69, например, аминокислотную последовательность SEQ ID NO: 82, или на 100% идентичную последовательности его функционального фрагмента.

[0162] Носитель может быть связан непосредственно или косвенно, ковалентно или нековалентно, с нагрузкой. В некоторых случаях, носитель и нагрузка образуют слитный белок. Носитель может быть связан непосредственно или косвенно, ковалентно или нековалентно, с катионом. В некоторых случаях, носитель и катион образуют слитный белок или комплекс. В различных вариантах осуществления, носитель, нагрузка, комплексы носитель-нагрузка или слитые молекулы фармацевтических композиций кодируются нукleinовыми кислотами, которые содержат промотор, регуляторный элемент, последовательность ДНК, кодирующую носитель или фрагмент или укороченный вариант такого носителя, и последовательность ДНК, кодирующая нагрузку или катион. Регуляторный элемент может содержать сайты связывания транскрипции для факторов транскрипции, которые активируют или подавляют экспрессию кодирующих последовательностей ДНК. В некоторых случаях, регуляторный элемент представляет собой эндогенный регуляторный элемент последовательности ДНК, кодирующей носитель или фрагмент или укороченный вариант такого носителя. В некоторых случаях, регуляторным элементом является эндогенный регуляторный элемент последовательности ДНК, кодирующей нагрузку. В некоторых случаях, регуляторный элемент регулирует как последовательность ДНК, кодирующую носитель или фрагмент или укороченный вариант такого носителя, так и последовательность ДНК, кодирующую нагрузку или катион. В некоторых случаях, носитель и нагрузка кодируются на разных молекулах нукleinовой кислоты. В некоторых случаях, носитель, нагрузка и катион кодируются на разных нукleinовых молекулах. В некоторых случаях, носитель и нагрузка кодируются одной и той же молекулой нукleinовой кислоты. В некоторых случаях, носитель, нагрузка и катион кодируются одной и той же молекулой нукleinовой кислоты.

IV. Нагрузка

[0163] В дополнение к полипептиду носителя, композиции, представленные в настоящем документе, могут содержать одну или несколько нагрузок, например, одну или несколько гетерологических нагрузок или одну или несколько биологически активных нагрузок для доставки субъекту. Одна или несколько гетерологических нагрузок могут представлять собой одну или несколько нагрузок, которые не имеют последовательности носителя, например, последовательности Cholix или последовательности PE. Одна или несколько нагрузок, например, гетерологических нагрузок, могут представлять собой макромолеклу, малую молекулу, малую органическую молекулу, пептид, полипептид, нукleinовую кислоту, mРНК, микроRNK, мшRNK, mшRNK, ПНК, антисмысловую
мOLEKULU, ANTITELo, DNK, PLAZMIDU, POLISAKHARID, LIPID, ANTIGEN, VAKCINU, POLIMERNUю
NANOCHASTICU или KATALITICHESKI активный материал. Одна или несколько нагрузок,
например, гетерологических нагрузок, могут представлять собой полипептид, содержащий,
состоящий из или по существу состоящий из последовательности, представленной в
любой из SEQ ID NO: 11 или 14-64 (см. тАБЛИЦУ 12).

0164) Одна или несколько нагрузок, например, одна или несколько биологически
активных нагрузок могут представлять собой макромолекулы, которые могут проявлять
желаемую биологическую активность при введении в кровоток субъекта. Например, одна
или несколько нагрузок могут обладать активностью связывания с рецептором,
ферментативной активностью, активностью мессенджеров (т.е. действовать в качестве
gормона, цитокина, нейротрансмиттера, фактора свертывания крови, фактора роста или
дробной сигнальной молекулы), люминесцентной или другой обнаруживаемой
активностью или регулирующей активностью или любое их сочетание. В различных
диагностических вариантах осуществления, одна или несколько нагрузок могут быть
конъюгированы с фармацевтически приемлемым гамма-излучающим фрагментом или
могут сами представлять собой фармацевтически приемлемый гамма-излучающий
фрагмент, включая, но не ограничиваясь, индий и технеций, магнитные частицы,
рентгеноконтрастные материалы, такие как воздух или барий, и флюоресцентные
соединения (например, Alexa-488 или красный флюоресцентный белок). В некоторых
случаях, одна или несколько нагрузок, например одна или несколько биологически
активных нагрузок, не попадают в кровоток субъекта. В некоторых случаях, одна или
несколько нагрузок воздействуют на собственную пластинку слизистой.

0165) В различных вариантах осуществления, одна или несколько нагрузок
представляют собой белок, который содержит более одной полипептидной субъединицы.
Например, белок может быть димером, тримером или мультимером высшего порядка. В
различных вариантах осуществления, две или несколько субъединиц белка могут быть
соединены ковалентной связью, такой как, например, дисульфидная связь. В других
вариантах осуществления, субъединицы белка могут удерживаться вместе
нековалентными взаимодействиями. Специалист в данной области может
идентифицировать такие белки и определить, правильно ли связаны субъединицы,
используя, например, иммуноанализ.

0166) В различных вариантах осуществления, одна или несколько нагрузок,
например, одна или несколько терапевтических нагрузок, представляют собой, например,
краситель, радиофармацевтическое средство, гормон, цитокин, ингибитор ФНО, агент,
снижающий уровень глюкозы или опухолеассоциированный антител. В некоторых
случаях, одна или несколько терапевтических нагрузок представляют собой полипептид,
который является модулятором воспаления в желудочно-кишечном тракте. В различных
вариантах осуществления, одна или несколько нагрузок, подлежащих доставке,
представляют собой агент, снижающий уровень глюкозы для доставки субъекту. Примеры
агентов, снижающих уровень глюкозы, включают инкретины, глюкагон, пропротеин
глюкагона, пептид глюкагона, глюкагоноподобный пептид 1 (GLP-1), глюкагоноподобный пептид 2 (GLP-2), агонист GLP-2, тедуглутид, гллицентин, гллицентин-родственный полипептид, пропрепат гастроингибиторного полипептида, гастроингибиторный полипептид, дипептидилпептидаза 4, глюкозный транспортер тип 4, пропролюкагон, субстрат рецептора инсулина 1, инсулин, апополипротеин A-II, семейство носителей растворенных веществ 2, глюкозный транспортер тип 1, гликогенсинтаза 1, гликогенсинтаза 2, протеиновую тиросинфосфатазу рецепторного типа 1, RAC-альфа серин-треониновая протеинкиназа, гамма-рецептор, активируемый пролифератором пероксисом, гексокиназа 3, фосфатидилинозитол-3,4,5-трифосфат-3-фосфатазу и белок двойной специфичности, киназа пируватдегидрогеназы 1, белок 1, связывающий кальций и содержащий суперспириальный домен, Max-подобный белок X, фруктозо-бисфосфатальдегилаза A, рецептор глюкагоноподобного пептида 1, рецептор глюкагоноподобного пептида 2, рецептор гастроингибиторного полипептида, рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора роста 2, инсулиновый рецептор, агонист ГПП-1 - эженатид, агонист ГПП-1 - лираглутид, эксендин-4, эксендин-3, гастроингибиторный пептид (GIP), агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR - укороченный GIP1-30, агонист GLP-1R (аминокислоты 1-37 GIP), агонист GLP-1R (аминокислоты 7-36 GIP), ликсисенатид (торговые марки Adlyxin® и Lyxumia®, Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk A/S), семаглутид (торговое наименование Ozempic®, Novo Nordisk A/S), альбиглутид (торговое наименование Tanzeum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином), дулаглутид (торговое наименование Trulicity®, Eli Lilly), глюкозозависимый инсулинтропный полипептид, мультиспецифические пептидные агонисты, тирзепатид (Eli Lilly), SAR425899 (Sanofi), двойной агонист амилличных и кальцитониновых рецепторов DACRA-089, глагрин/Lantus®, гллулизин/Apidra®, глагрин/Toujeo®, Insuman®, детемир/Levemir®, лизопро/Humalog®/Liprolog®, деглудек/деглудекПлюс, инсулин аспарт, инсулин и аналоги (например, LY-2605541, LY2963016, NN1436), инсулин пегилированный липрис (SEQ ID NOs: 40-41), Humulin®, Линджета, SuliXen®, NN1045, инсулин плюс SymlinTM, PE0139, инсулины быстрого и короткого действия (например, Линджета, PH20, NN1218, HinsBet), (APC-002) гидрогелевые, пероральные, ингаляционные, трансдермальные и сублингвальные инсулины (например, Exubera®, Nasulin®, Afrezza®, Tregopil®, TFM 02, капсулин, Oral-lyn®, Cobalamin®, пероральный инсулин, ORMD-0801, NN1953, NN1954, NN1956, VIATab и пероральный инсулин Oshadi), и аналог эксендида-4, выбранный из группы, состоящей из: desPro36-эксендида-4(1-39)-Lys6NH2; H-des(Pro36, 37)-эксендида-4-Lys4-NH2; H-des(Pro36, 37)-эксендида-4-Lys5-NH2; desPro36[Asp28]эксендида-4 (1-39); desPro36[IsoAsp28]эксендида-4 (1-39); desPro36[Met(O)14, Asp28]эксендида-4 (1-39); desPro36[Met(O)14, IsoAsp28]эксендида-4 (1-39); desPro36[Trp(O2) 26, Asp28]эксендида-4 (1-39); desPro36[Trp(O2) 25, IsoAsp28]эксендида-4 (1-39); desPro36[Met(O)14 Trp(O2)25, Asp28]эксендида-4 (1-39); и desPro36[Met(O)14 Trp(O2)25, IsoAsp28]эксендида-4 (1-39). Агонисты GLP-1,
предполагаемые для использования в частичках или конструкциях для доставки, описанных в настоящем документе, включают: например, эксенатид (торговое наименование Byetta®, Amylin/AstraZeneca, SEQ ID NO: 14, SEQ ID NO: 11); ликсисенатид (торговые наименования Adlyxin® и Lyxumia®, Sanofi, SEQ ID NO: 15); лираглутид (торговое наименование Victoza®, Novo Nordisk A/S, SEQ ID NO: 16); семаглутид (торговое наименование Ozempic®, Novo Nordisk A/S); альбиглутид (торговое наименование Tanzum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином); и дулаглутид (торговое наименование Trulicity®, Eli Lilly, SEQ ID NO: 17). Нагрузка может обладать способностью связываться с инкретиновым рецептором, например, с инкретиновым рецептором в ткани желудочно-кишечного тракта или в воротной системе печени.

[0167] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько терапевтических нагрузок, имеют аминокислотную последовательность SEQ ID NO: 11 или любую одну или несколько из SEQ ID NO: 14-64.

Инкретины

[0168] Носитель может быть связан с одним или несколькими инкретинами. Инкретины принадлежат к классу гормонов желудочно-кишечного тракта, которые могут повышать высвобождение инсулина бета-клетками островков Лангерганса после еды, даже до повышения уровня глюкозы в крови. Инкретины могут замедлять скорость всасывания питательных веществ в кровоток путем уменьшения опорожнения желудка и могут снизить потребление пищи. Инкретины могут ингибировать высвобождение глюкагона из альфа-клеток островков Лангерганса. Инкретином может быть глюкагоноподобный пептид-1 (ГГПП-1) или гастроингибиторный пептид (GIP). GLP-1 и GIP могут быть быстро инактивированы ферментом дипептидилпептидазой 4 (DPP-4).

[0169] Инкретины или пептиды-миметики инкретинов, которые можно использовать в настоящем изобретении, могут быть природными инкретинами или пептидами-миметиками инкретинов или модифицированными природными инкретинами или пептидами-миметиками инкретинов. Пептиды могут быть химически синтезированы с использованием стандартных методов синтеза пептидов, таких как твердофазный синтез пептидов, или могут быть получены с использованием методов рекомбинантной ДНК, известных в данной области. Полученные таким образом пептиды могут или могут не быть идентичными природным пептидам. Аналоги, фрагменты и конъюгаты природных инкретинов или пептидов-миметиков инкретинов включены в настоящее изобретение в качестве нагрузки при условии, что они сохраняют одну или несколько биологических активностей природных инкретинов или пептидов-миметиков инкретинов.

[0170] GLP-1 может быть природным инкретиновым гормоном, синтезируемым в L-клетках кишечника путем тканеспецифического посттрансляционного процессинга препроглюкагона. GLP-1 участвует в контроле аппетита и удовлетворения чувства голода. GLP-1 может функционировать через рецептор GLP-1 (GLP-1R), члена суперсемейства рецепторов, связанных с G-белком (GPCR), состоящий из 463 аминокислот (см.,

[0171] GLP-1 может относиться к глюкагоноподобному пептиду 1 из любого источника, включая выделенный, очищенный и/или рекомбинантный GLP-1, полученный из любого источника или путем химического синтеза, например, с использованием твердофазного синтеза. Например, GLP-1 может иметь последовательность SEQ ID NO: 26. При этом также включены консервативные аминокислотные замены природного GLP-1. Например, могут быть осуществлены консервативные замены аминокислот, которые, несмотря на то, что изменяют первичную последовательность белка или пептида, обычно не изменяют его функции. Было описано много молекулярных производных GLP-1, включая некоторые из которых, как сообщается, обладают агонистической активностью и/или имеют более длительный период полувыведения, чем нативный GLP-1, см., например, патент США № 6358924; 6344180; 6284725; 6277819; 6271241; 6268343; и 6191102, содержание которых включено в настоящем документе посредством ссылки.

[0172] Также были описаны молекулы, родственные GLP-1, например, белки, и сообщалось, что они способны индуцировать эндокринную дифференцировку поджелудочной железы, пролиферацию островков и увеличение массы β-клеток (Parkes et al., Metabolism 50:583, 2001). Экскендин-4 (примером которого является SEQ ID NO: 14 или SEQ ID NO: 11, также известный как Эксенатид или Byetta®) и экскендин-3 (примером которого является SEQ ID NO: 28) представляют собой пептиды, состоящие из 39 аминокислот (отличающиеся остатками 2 и 3), которые примерно на 53% гомологичны GLP-1 и обладают инсулинотропной активностью. Было описано множество молекулярных производных экскендин-3 и экскендин-4, в том числе некоторые из которых, как сообщается, обладают агонистической активностью, см., например, патент США № 5424286; 6268343; 6384016; 6458924; 6858576; 6989366; 7115569; 7153825; 7223725; 7235627; 7297761; 7419952; 7521423; 7696161; 7700549; 8097698; 8853160; 8889619; 9012398; США 20120283179; США 20140206608; США 20140206609; 20140221281; США 20140213513; США 20150164997; и патент США № 9181305, содержания которых включено в настоящем документе посредством ссылки. Агонист GLP-1 может представлять собой аналог экскендин-4, который активно активирует рецепторы GLP-1 и GIP и, необязательно, рецептор глюкагона, и содержит, помимо других замен, модификацию Tyt в положении 1 и модификацию lle в положении 12. Примеры таких аналогов, предполагаемых для использования, включают аналоги, описанные, например, в
патенте США 20140206608; США 20140206609; 20140221281; и США 20140213513, содержание каждого из которых включено в настоящий документ в качестве ссылки.

[0173] Агонист GLP-1 может представлять собой, например, эксенатид (торговое название Byetta®, Amylin/AstraZeneca, SEQ ID NO: 14, SEQ ID NO: 11); ликсисенатид (торговые наименования Adlyxin® и Lyxumia®, Sanofi, SEQ ID NO: 15); лираглутид (торговое наименование Victoza®, Novo Nordisk A/S, SEQ ID NO: 16); семаглутид (торговое наименование Ozempic®, Novo Nordisk A/S, SEQ ID NO: 30); альбиглутид (торговое наименование Tanzeum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином); и дулаглутид (торговое наименование Trulicity®, Eli Lilly, SEQ ID NO: 17).

[0174] В некоторых случаях, нагрузка может представлять собой глюкозозависимый инсулинотропный полипептид. Глюкозозависимый инсулинотропный полипептид (также называемый гастронингибиторным полипептидом; GIP) может быть членом класса молекул инкретинов. GIP может быть получен из 153-аминокислотного пропротеина, кодируемого геном GIP, и циркулирует в виде биологически активного 42-аминокислотного пептида, содержащего, содержащего аминокислотную последовательность, указанную в SEQ ID NO: 36. GIP может быть синтезирован кишечными К-клетками, которые можно обнаружить в слизистой оболочке двенадцатиперстной и тощей кишки пищеварительного тракта. Рецепторы GIP могут представлять собой семь трансмембранных белков, обнаруживаемых на бета-клетках поджелудочной железы. Различные антагонисты GIP могут ингибитировать GIP-зависимое высвобождение инсулина in vivo, а также могут повышать толерантность к глюкозе в пероральном тесте на толерантность к глюкозе. Как таковые, антагонисты GIP можно использовать в способах лечения T2D (см., например, патент США 20070167363, содержание которого включено в настоящее описание в качестве ссылки). Агонист рецептора GIP (GIPR) в виде укороченного аналога GIP (аминокислотные остатки 1-30 GIP) и имеющий замену D-аланина (Ala) в положении 2 SEQ ID NO: 38, обозначенный как D-Ala2-GIP1-30 (D-GIP1-30), содержащий аминокислотную последовательность, указанную в SEQ ID NO: 37, может демонстрировать антидиабетическое действие без эффектов, способствующих ожирению (см., например, Widenmaier et al, PloS ONE, March 2010 | Volume 5 | Issue 3 | e9590). Агент, регулирующий уровень глюкозы, например, агент, снижающий уровень глюкозы, может представлять собой агонист GIPR, содержащий аминокислотную последовательность, указанную в SEQ ID NO: 60. Нагрузкой может представлять собой глюкагон.

Мультиспецифические пептидные агонисты

[0175] В некоторых случаях, композиция, представленная в настоящем документе, например, частица или конструкция для доставки, может быть разработана для осуществления двойной активации рецепторов GLP-1 и GIP, например, путем объединения действия GLP-1 и GIP в одном препарате. Вариантом осуществления конструкции для доставки является композиция с носителем или композиция с носителем и нагрузкой. Это может обеспечить терапию со значительно лучшим снижением уровня
глюкозы в крови, повышенной секрецией инсулина и снижением массы тела у мышей с диабетом 2 типа и ожирением по сравнению с имеющимся на рынке лираглутидом агонистом GLP-1 (см., например, VA Gault et al., Clin Sci. (Lond), 121, 107-117, 2011).

[0176] В некоторых случаях, носитель по настоящему изобретению связан с двойным агонистом, например, тирзепатидом (Eli Lilly, SEQ ID NO: 33) или SAR425899 (Sanofi).

[0177] Композиция, например, конструкция для доставки, предусмотренная в настоящем документе, может активировать рецепторы GLP-1, GIP и глюкагона. Предусмотренный в настоящем документе носитель может быть связан с триглициеридом GGG, который исследуется компанией Eli Lilly.

[0178] Носитель по настоящему документу может быть связан с другими исследуемыми пептидами для лечения диабета и ожирения, включая двойной агонист амилиновых и кальцитониновых рецепторов DACRA-089 (SEQ ID NO: 41, также известный как KBP-089, Sanofi).

Инсулин и его аналоги

[0179] Предусмотренная в настоящем документе нагрузка может представлять собой инсулин, или аналог инсулина, или производное инсулина. Используемые в настоящем документы термины “аналог инсулина” или “производное инсулина” могут относиться к полипептиду, молекулярная структура которого формально может быть получена из структуры природного инсулина, например инсулина человека (пример которого представляет собой A-цепь инсулина SEQ ID NO: 43 и B-цепь инсулина SEQ ID NO: 44, которые могут быть связаны дисульфидными связями), путем удаления и/или замены, по меньшей мере, одного аминокислотного остатка в природном инсулине, и/или или добавления, по меньшей мере, одного аминокислотного остатка. Добавленный и/или замененный аминокислотный остаток может быть либо кодируемым аминокислотным остатком, либо другим природным остатком, либо полностью синтетическим аминокислотным остатком.

[0180] Инсулин и аналоги/производные инсулина подробно описаны в данной области (см., например, США 20150216981; патент США № 9265723; патент США № 8633156; патент США № 8410048; патент США № 8048554; патент США № патент США № 7713930, патент США № 7696162, патент США № 7659363, патент США № 7291132, патент США № 7193035 и цитируемые в них ссылки, которые все включены в настоящее описание посредством ссылки). Инсулин может иметь нативную последовательность человеческого инсулина с цепью А (SEQ ID NO: 43) и цепью В (SEQ ID NO: 44), связанными дисульфидными связями.

[0181] В некоторых вариантах осуществления, инсулин содержит цепь A, имеющую аминокислотную последовательность, указанную в SEQ ID NO: 43, и цепь В, имеющую аминокислотную последовательность, указанную в SEQ ID NO: 44. Дополнительные варианты инсулина с благоприятными быстродеействующими или медленнодействующими (базальными) свойствами включают инсулин аспарт, имеющий
цепь A SEQ ID NO: 45 и цепь B SEQ ID NO: 46; инсулин гляриг, имеющий цепь A SEQ ID NO: 47 и цепь B SEQ ID NO: 48; и инсулин лизпр, имеющий цепь A SEQ ID NO: 49 и цепь B SEQ ID NO: 50.

[0182] Одна или несколько нагрузок, например гетерологичных нагрузок, могут представлять собой средство для лечения гемофилии, например, гемофилии A или гемофилии B. Средство для лечения гемофилии может представлять собой фактор свертывания крови VIII (например, концентрат фактора свертывания крови VIII), фактор свертывания крови IX (например, концентрат фактора свертывания крови IX), фактор VIIIa, Hemlibra® (ACE 910 или эмицизумаб), DDAVP® или Stimate® (демопрессина ацетат), антифibrинолитическое средство, например, Amicar® (аминоакпроновая кислота) или Lysteda® (транексамовая кислота), ELOCTATE® [антигемофильный фактор (рекомбинантный), слитый белок Fc] или криоцэнзин.

[0183] В некоторых случаях, нагрузка, например, гетерологичная нагрузка, например, агент, регулирующий уровень глюкозы, например, агент, снижающий уровень глюкозы, представляет собой инсулин или аналог инсулина. В некоторых случаях, нагрузка, например, гетерологичная нагрузка, например, агент, регулирующий уровень глюкозы, например агент, снижающий уровень глюкозы, представляет собой эксенаатид. Эксенаатид (SEQ ID NO: 11) может представлять собой пептид, обладающий GLP-1-подобной биологической активностью, который стабилизирован C-концевым амином и N-концевым Н.

[0184] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологичных нагрузок, используемых в настоящем документе, могут включать противоопухолевые соединения (такие как химиотерапевтические или противоопухолевые средства), такие как нитрогомогени, например, кармустин, ломустин, семустин, стрептоцидин; метилгидразины, например прокарбазин, дакарбазин; стероидные гормоны, например глюкокортикоиды, эстрогены, прогестены, андрогены, тетрагидродезоксикарикисторен; иммунокомпетентные соединения, такие как иммунодепрессанты, например, пириметамин, триметоприм, пенициллин, циклоспорин, азатиоприн; и иммуностимуляторы, например, левамизол, дигицидинокарбамат, энкефалины, эндорфины; противомикробные соединения, такие как антибиотики, например, бета-лактам, пенициллин, цефалоспорины, карбапенемы и монобактамы, ингибиторы бета-лактамазы, амногликозиды, макролиды, тетрациклины, спектиномицин; противомалярийные препараты, амебицыды, антипротозойные средства; противогрибковые средства, например, амфотерицин-бета, противовирусные средства, например, ацикловир, идоксурин, лидавирин, трифлурин, видарабин, ганцикловир; паразитицыды; противоглистные средства; радиоактивные лекарственные средства; желудочнокишечные лекарственные средства; гематологические соединения; иммуноглобулины; белки свертывания крови, например антигемофильный фактор, комплекс фактора IX; антикоагулянты, например декумарин, гепарин Na, ингибиторы фибринозина, например, транексамовая кислота; сердечно-сосудистые лекарственные
средства; периферические антиадренергические лекарственные средства; антигипертензивные лекарственные средства центрального действия, например, метилдопа, метилдопа HCl; антигипертензивные вазодилататоры прямого действия, например, диазоксид, гидразазина гидрохлорид; лекарственные средства, влияющие на ренин-ангиотензиновую систему; периферические вазодилататоры, например, фентоламин; антиангинальные лекарственные средства; глюкозиды сердечно-сосудистого действия; кардиотонические средства, например амринон, миленон, эноксимон, феноксимон, имазодан, сульмацол; антиаритмические средства; блокаторы входа кальция; лекарственные средства, влияющие на липиды крови, например ранитидин, бозентан, резуллин; лекарственные средства, действующие на органы дыхания; симпатомиметические лекарственные средства, например, альбутерол, битолтерол мезилат, добутамин гидрохлорид, дофамин гидрохлорид, ефедрин So, эпинефрин, фенфурамин гидрохлорид, изопротеренола гидрохлорид, метоксамина гидрохлорид, норэпинефрина битаррат, фенилэфрина гидрохлорид, ритодрина гидрохлорид; холиномиметические средства, например, ацетилхолина гидрохлорид; антихолинэстеразные средства, например, эдрофониум хлорид; реактиваторы холинэстеразы; адренергические блокаторы, например, ацбутолола гидрохлорид, атенолол, эсмолола гидрохлорид, лабеталола гидрохлорид, метопролол, nadolol, фентоламина мезилат, пропанолола гидрохлорид; антимускариновые средства, например, анисотропина метилбромид, атропин, клонидия бромид, глиокипрролат, интратопина бромид, скополамина гидробромид; средства, блокирующие нервно-мышечную передачу; деполяризующие средства, например, атракурия бензилат, гексафлуорения бромид, метокурин йодид, суцинилхолина хлорид, тубокуарина хлорид, векуриона бромид; миорелаксанты центрального действия, например, баклофен; нейротрансмиттеры и нейротрансмиттерные средства, например, ацетилхолин, аденозин, аденозинтрифосфат; аминокислотные нейротрансмиттеры, например, возбуждающие аминокислоты, гамма-аминонысыя кислота, глицин; биогенные амины - нейротрансмиттеры, например, дофамин, эпинефрин, гистамин, норадреналин, октапамин, серотонин, тирамин, нейропептиды, оксид азота, токсины К+-каналов; противопаркинсонические лекарственные средства, например амалтидина HCl, бензтропина мезилат, карбидола; диуретические лекарственные средства, например дихлорфенамида, метазоламид, бендофлуметазазид, политиазид; противовирусные лекарственные средства, например, карбопроста трометамина мезилат, доксорубицин, митомицин, цисплатин, даунорубицин, бломицин, актиномицин D, нокарциностатин и метисергида малеат.

[0185] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологических нагрузок, предусмотренных для использования со способами по настоящему изобретению, включают фактор, ингибитирующий лимфокины, макрофагальный колониестимулирующий фактор, фактор роста тромбоцитов, фактор стволовых клеток, фактор роста опухоли-β, фактор некроза опухоли, лимфотоксин, Fas, гранулозитарный колониестимулирующий фактор, гранулозитарно-макрофагальный
колониестимулирующий фактор, интерферон-α, интерферон-β, интерферон-γ, факторы роста и белковые гормоны, такие как эритропоэtin, антитело, фактор роста гепатоцитов, фактор роста фибробластов, фактор роста кератиноцитов, фактор роста нервов, фактор роста опухоли-α, тромбопоэтин, тиреостимулирующий фактор, тиреотропин-рилизинг гормон, нейротрофин, эпидермальный фактор роста, фактор роста сосудистого эндотелия (VEGF), цилиарный нейротрофический фактор, ЛПНП, соматомедин, инсулиновый фактор роста, инсулиноподобный фактор роста I и II, хемокины, такие как ENA-78, ELC, GRO-α, GRO-β, GRO-γ, HRG, LEF, IP-10, MCP-1, MCP-2, MCP-3, MCP-4, MIP-1-α, MIP-1-β, MG, MDC, NT-3, NT-4, SCF, LIF, лептин, RANTES, лимфотактин, этаксин-1, этаксин-2, TARC, TECK, WAP-1, WAP-2, GCP-1, GCP-2; α-хемокиновые рецепторы, например, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7; и рецепторы β-хемокинов, например, CCR1, CCR2, CCR3, CCR4, CCR5, CCR6 и CCR7. Дополнительные примеры нагрузок включают ингибиторы регуляторных T-клеток (Treg), таких как Treg, которые экспрессируют CD4, CD25 и Foxp3, и Treg, такие как Tr1, Th3, CD8+CD28-, Qa-1 ограниченные T-клетки и Treg-клетки IL-17.

[0186] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологичных нагрузок, могут представлять собой термолабильный энтеротоксин E. coli (Etx).

[0187] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологичных нагрузок, используемых с описанными в настоящем документе способами и композициями, могут представлять собой краситель или радиофармацевтическое средство. Одним или несколькими красителями и радиофармацевтическими средствами могут быть Alexa488, флуоресцентные соединения, индий, технеций, магнитные частицы, рентгеноконтрастные материалы и красный флуоресцентный белок (RFP).

[0188] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологичных нагрузок, используемых в описанных в настоящем документе способах и композициях, могут представлять собой гормон. Примеры гормонов включают, но не ограничиваются, гормон роста человека, NUTROPIN® (Genentech), HUMATROPE® (Lilly), GENOTROPIN® (Pfizer), NORDITROPIN® (Novo), SAIZEN® (Merck Serono, OMNITROPE® (Sandoz), SEROSTIM® (EMD Serono), ZORBITIVE® (Merck Serono), TEV-TROPIN® (Teva), гормоны гипофиза, например, хорионический гонадотропин, кортизол, тироксин, тироксин, тиротропин, пропицилин, пропицилин, тиреотропин, вазопрессин, липрессин; гормоны надпочечников, например, беклометазона дипропионат, бетаметазон, декстранетазон, триамцинолон, гормоны поджелудочной железы, например, глюкагон, инсулин, паратиреоидный гормон, например, диэтилстериол, гормоны щитовидной железы, например дигидротрийэтрилона натрия, левотироксин Na, лютиронин Na, лютирин, тироглобулин, терипаратидат ацетат, антитиреоидные средства; эстрогенные гормоны; прогестены и антагонисты; гормональные контрацептивы; тестостерональные гормоны; гормоны желудочно-кишечного
тракта, например, холестистокинин, энтерогликан, галанин, гастроингибиторный полипептид, эпидермальный фактор роста-урогастрон, гастроингибиторный полипептид, гастрин-высвобождающий пептид, гастрин, пентагастрин, тетрагастрин, мотилин, пептид YY, секретин, вазоактивный интестинальный пептид или синкалид, соматотропин, синтетический гормон роста человека, синтетический гормон роста человека парциальный, гормон роста человека 2, соматолиберин, гормон, регулирующий аппетит, лептин, рецептор гормона роста, рецептор соматотропин-рилизинг-гормона, рецептор секретагога гормона роста, форма A рецептора соматотропин-рилизинг-гормона и рецептор гормона роста.

[0189] В дополнительных примерах, одна или несколько нагрузок, например, одна или несколько гетерологических нагрузок, могут представлять собой цитокин. Один или несколько цитокинов могут представлять собой хемокины, интерлейкины, например, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29 и IL-30.

[0190] В дополнительных примерах, одна или несколько нагрузок, например, одна или несколько гетерологических нагрузок, могут представлять собой агент против ФНО(TNF). Примеры ингибиторов ФНО, которые можно использовать, включают антитела против ФНО, инфликсимаб (Ремикейд), адалимумаб (Хумира), этанерцепт (ENBREL®), фактор некроза опухоли-а (“TNF-α”), NP_000585.2, лимфтокин-α (“LT-α”), лимфотоксин-б (“LT-b”), лиганда CD30, лиганда CD40, лиганда CD70, лиганда ОX40, лиганда 41BB, лиганда Apo1 (или FasL или CD95L), лиганда Apo2 (или TRAIL, AIM-1 или AGP-1), лиганда Apo3 (или TWEAK), APRIL, LIGHT, лиганда OPG (или лиганда RANK), BlyS (или THANK), BCMA, TAC1, TNFR1, TNFR2, lymphotoxin-bR, CD40, CD95 (или FAS или APO-1), OPG, RANK, CD30, CD27, ОX40 (или CD134), 41BB, NGFR, BCMA, TAC1, ED24R, TROY, DR6, DR5 (или TRAILR2), DR4, DR3, HVEМ, LTβR, GITR, DcR3, Fn14 (или TWEAKR), BAFF, небольшие модульные иммунофармацевтические препарыты (SMIP), тетрациклины (например, тетрациклин, доксициклин, лимециклин, окситетрациклин, миноциклин), химически модифицированные тетрациклины (например, леиметилиаминотетрациклин), соединения гидроксамовой кислоты, карбоциклические кислоты и производные, лазароиды, пентоксифиллины, нафтопираны, аминон, пимобендан, венаринон, ингибиторы фосфодиэстеразы и низкомолекулярные ингибиторы киназ. Низкомолекулярные ингибиторы киназы включают, без ограничения, низкомолекулярные ингибиторы киназы р38MAPK, COT, MK2, P13K, IKKa, b,g, MEKK1,2,3, IRAK1,4 и Akt.

[0191] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологических нагрузок, могут представлять собой опухолеассоциированный антиген. Примеры опухолеассоциированных антигенов включают Her2/neu, Her3, Her4, EGF, EGFR, CD2, CD3, CD5, CD7, CD13, CD19, CD20, CD21, CD23, CD30, CD33, CD34, CD38, CD46, CD55, CD59, CD69, CD70, CD71, CD97, CD117, CD127, CD134, CD137, CD138, CD146, CD147, CD152, CD154, CD195, CD200, CD212, CD223, CD253, CD272, CD274, CD276, CD278, CD279, CD309 (VEGFR2), DR6, PD-L1, Kv1.3, 5.00E+10, MUC1,
uPA, SLAMF7 (CD319), MAGE 3, MUC 16 (CA-125), KLK3, K-gas, мезотелин, p53, сервивин, G250 (антиген почечно-клеточной карциномы) и PSMA.

[0192] В некоторых случаях, одна или несколько нагрузок, например, одна или несколько гетерологичных нагрузок, могут представлять собой фермент, такой как гиалуронидаза, стрептокиназа, активатор тканевого плазминогена, урокиназа, PGE-аденозинедезаминаза; внутривенные анестетики, такие как дроперидол, этомидат, фетанилцират/дроперидол, гексобарбитал, кетамин HCl, метогекситал Na, тиамида Na, тиопентал Na; противоэпилептические средства, например, карбамазепин, клоназепам, дивалпроекс Na, этосуксимид, мепфенилдон, параметадион, фенилдон, примидон. В различных вариантах осуществления, биологически активная нагрузка представляет собой фермент, выбранный из гиалуронидазы, стрептокиназы, тканевого активатора плазминогена, урокиназы или PGE-аденозинедезаминазы.

V. Связывание нагрузки или катиона с носителем

[0193] В некоторых случаях, представленные в настоящем документе композиции содержат носитель, соединенный с нагрузкой, например гетерологической нагрузкой. Нагрузка, например гетерологическая нагрузка, может быть соединена с носителем любым способом, известным специалисту в данной области, без ограничений. Нагрузка может связываться с носителем посредством нековалентных взаимодействий, таких как ионы взаимодействия, или сборки в наночастицы. Нагрузка может быть химически связана с носителем посредством ковалентных взаимодействий. В некоторых случаях, одна или несколько нагрузок соединены с носителем. В слитой молекуле одна или несколько нагрузок или один или несколько катионов слитой молекулы могут быть присоединены к остальной части слитой молекулы любым способом, известным специалисту в данной области, без ограничений. Нагрузка или катион могут быть введены в любую часть слитой молекулы, которая не нарушает клеточносвязывающую или транспортную активность носителя. В различных вариантах осуществления, нагрузка или катион могут быть связаны с боковой цепью в группе аминокислоты носителя. Нагрузка может быть ковалентно связана с носителем через спейсер или линкер. В различных вариантах осуществления, нагрузка или катион связаны с носителем посредством расцепляемого линкера таким образом, что расщепление на расщепляемом(ым) линкере(ами) отделяет нагрузку или катион от остальной части слитой молекулы. В различных вариантах осуществления, нагрузка или катион представляет собой полипептид, который также может содержать короткий лидерный пептид, который остается присоединенным к полипептиду после расщепления расщепляемого линкера. Например, нагрузка или катион может содержать короткий лидерный пептид, содержащий больше, чем 1 аминокислота, больше, чем 5 аминокислот, больше, чем 10 аминокислот, больше, чем 15 аминокислот, больше, чем 20 аминокислот, больше, чем 25 аминокислот, больше, чем 30 аминокислот, больше, чем 50 аминокислот или больше, чем 100 аминокислот. В некоторых случаях, биологически активная нагрузка может включать
короткий лидерный пептид, содержащий меньше, чем 100 аминокислот, меньше, чем 50 аминокислот, меньше, чем 30 аминокислот, меньше, чем 25 аминокислот, меньше, чем 20 аминокислот, меньше, чем 15 аминокислот, меньше, чем 10 аминокислот или меньше, чем 5 аминокислот. В некоторых случаях, нагрузка или катион могут включать короткий лидерный пептид, содержащий от 1 до 100 аминокислот, от 5 до 10 аминокислот, от 10 до 50 аминокислот или от 20 до 80 аминокислот.

[0194] В вариантах осуществления, где нагрузка или катион экспрессируются вместе с другой последовательностью в виде слитого белка, нагрузка или катион могут быть вставлены в слитую молекулу любым способом, известным специалисту в данной области, без ограничений. Например, нуклеиновые кислоты, кодирующие аминокислоты, соответствующие нагрузке или катиону, могут быть непосредственно вставлены в нуклеиновые кислоты, кодирующие другой фрагмент или слитую молекулу, с делением нативных аминокислотных последовательностей или без нее.

[0195] В вариантах осуществления, где нагрузка или катион не экспрессируются вместе в виде слитого белка, нагрузка или катион могут быть связаны любым подходящим способом, известным специалисту в данной области, без ограничений. Более конкретно, примеры способов, описанных выше для соединения рецепторсвязывающего домена с остальной частью молекулы, в равной степени применимы для соединения нагрузки или катиона с остальной частью молекулы.

VI. Продукция нуклеиновых кислот, кодирующих носители и/или нагрузки

[0196] В различных вариантах осуществления, носители, нагрузки и/или неприродные конструкции для доставки, такие как, слитая молекула по настоящему изобретению, получают методом, описанным, например, в патентах США № 9090691 и 7713737, каждый из которых включен полностью в настоящий документ посредством ссылки.

[0197] В различных вариантах осуществления, носители, нагрузки и/или неприродные слитые молекулы синтезируются методом рекомбинаантной ДНК. В общем случае, метод может включать формирование последовательности ДНК, которая кодирует носитель, нагрузку и/или слитую молекулу, помещение ДНК в кассету экспрессии под контролем определенного промотора, экспрессию молекулы в хозяине, выделение экспрессируемой молекулы и, при необходимости, сворачивание молекулы в активную конформационную форму.

Химический синтез может обеспечить одноцепочечный олигонуклеотид. Его можно преобразовать в двухцепочечную ДНК путем гибридизации с комплементарной последовательностью или путем полимеризации посредством ДНК-полимеразы с использованием одноцепочной ДНК в качестве матрицы. Химический синтез можно использовать для создания последовательностей ДНК примерно из 100 оснований. Более длинные последовательности могут быть получены лигированием более коротких последовательностей.

Альтернативно субпоследовательности могут быть клонированы и соответствующие субпоследовательности расщеплены с использованием соответствующих ферментов рестрикции. Затем фрагменты можно лигировать с получением желаемой последовательности ДНК.

В различных вариантах осуществления, ДНК, кодирующая носитель, нагрузку и/или сливные молекулы по настоящему изобретению, можно клонировать с использованием методов амплификации ДНК, таких как полимераза цепная реакция (ПЦР). Таким образом, например, ген или гены для одной или нескольких нагрузок, т.е. одну или несколько биологически активных нагрузок подвергают ПЦР-амплификации с использованием смыслового праймера, содержащего сайт рестрикции, например, для NdeI, и антисмыслового праймера, содержащего сайт рестрикции для HindIII. Это может привести к образованию одной или нескольких нуклеиновых кислот, кодирующих одну или несколько последовательностей нагрузки и имеющих терминальные сайты рестрикции. Носитель, имеющий "комплémentарные" сайты рестрикции, может быть аналогичным образом клонирован и затем лигирован с одной или несколькими нуклеиновыми кислотами, кодирующими одну или несколько нагрузок, и/или с линкером, присоединенным к одной или нескольким нуклеиновым кислотам, кодирующим одну или несколько нагрузок. Лигирование последовательностей нуклеиновых кислот и вставка в вектор обеспечивает вектор, кодирующий одну или несколько нагрузок, присоединенных к носителю/носителем.

VII. Расщепляемые линкеры

Интересного в различных вариантах осуществления, одна или несколько нагрузок, например, гетерологических нагрузок, которые должны быть доставлены субъекту, связаны с носителем с использованием одного или нескольких расщепляемых линкеров. Количество расщепляемых линкеров, присутствующих в молекуле сляния, зависит по меньшей мере частично, от расположения одной или нескольких нагрузок относительно носителя, и от природы биологически активной нагрузки. В случае, если одна или несколько нагрузок могут быть отделены от остатка сливной молекулы с расщеплением по одному линкеру, сливные молекулы могут содержать один расщепляемый линкер. Кроме того, в тех случаях, когда одна или несколько нагрузок представляют собой, например, димер или другой мультимер, каждая субъединица одной или нескольких нагрузок может быть отделена от остатка сливной молекулы и/или других субъединиц одной или нескольких нагрузок путем расщепления по расщепляемому линкеру.
[0203] В различных вариантах осуществления, расщепляемые линкеры расщепляются посредством расщепляющего фермента, который присутствует на базолатеральной мембране эпителиальной клетки или рядом с ней. Вследствие выбора расщепляемого линкера для расщепления такими ферментами, одна или несколько нагрузок могут высвобождаться из остатка слитой молекулы после трансцитоза через слизистую мембрану и высвобождаться из эпителиальной клетки в клеточный матрикс на базолатеральной стороне мембраны. Кроме того, можно использовать расщепляющие ферменты, которые присутствуют внутри эпителиальной клетки, таким образом, что расщепляемый линкер расщепляется перед высвобождением слитой молекулы из базолатеральной мембраны, при условии, что расщепляющий фермент не расщепит слитую молекулу до того, как слитая молекула войдет в транспортный путь в поляризованной эпителиальной клетке, что приведет к высвобождению слитной молекулы и одной или нескольких нагрузок из базолатеральной мембраны клетки.

[0204] В различных вариантах осуществления, расщепляемый линкер проявляет большую способность к расщеплению, чем остальная часть конструкции для доставки. Как известно специалисту в данной области, многие пептидные и полипептидные последовательности могут быть расщеплены пептидазами и протеазами. В различных вариантах осуществления, расщепляемый линкер выбран таким образом, чтобы он был предпочтительно расщеплен, по сравнению с другими аминокислотными последовательностями, присутствующими в конструкции для доставки, в процессе введения конструкции для доставки. В различных вариантах осуществления, рецепторсвязывающий домен является по существу (например, примерно 99%, примерно 95%, примерно 90%, примерно 85%, примерно 80 или примерно 75%) интактным после доставки конструкции для доставки в кровоток субъекта. В различных вариантах осуществления, трансцитозная активность по существу (например, примерно 99%, примерно 95%, примерно 90%, примерно 85%, примерно 80 или примерно 75%) остается интактной после доставки конструкции для доставки в кровоток субъекта. В различных вариантах осуществления, макромолекула остается практически (например, примерно на 99%, примерно 95%, примерно 90%, примерно 85%, примерно 80 или примерно 75%) интактной после доставки конструкции для доставки в кровоток субъекта. В различных вариантах осуществления, расщепляемый линкер в значительной степени (например, примерно на 99%, примерно на 95%, примерно на 90%, примерно на 85%, примерно на 80 или примерно на 75%) расщепляется после доставки конструкции в кровоток субъекта.

[0205] В других вариантах осуществления, для расщепления расщепляемого линкера может быть использован расщепляющий фермент, обнаруженный в плазме субъекта. Любой расщепляющий фермент, который, как известно специалисту в данной области, присутствует в плазме субъекта, может быть использован для расщепления расщепляемого линкера.

[0206] В различных вариантах осуществления, расщепляемый линкер расщепляется расщепляющим ферментом, обнаруженным в плазме субъекта. Любой расщепляющий
фермент, который, как известно специалисту в данной области, присутствует в плазме субъекта, может быть использован для расцепления расцепляемого лихерка. В некоторых случаях, для расцепления конструкций доставки можно использовать расцепляющие ферменты плазмы. В других вариантах осуществления, расцепляемый лихерк содержит нуклеиновую кислоту, такую как РНК или ДНК. В других вариантах осуществления, расцепляемый лихерк содержит углевод, такой как дисахарид или трисахарид.

[0207] В различных вариантах осуществления, расцепляемый лихерк может представлять собой расцепляемый лихерк, который расцепляется после изменения среды слитой молекулы. Например, расцепляемый лихерк может быть расцепляемым лихерком, который чувствителен к значению pH и расцепляется при изменении значения pH, что происходит, когда слитая молекула высвобождается из базально-латеральной мембраны поляризованной эпителиальной клетки. Например, среда просвета кишечника может быть сильнокислою, тогда как плазма может быть практически нейтральной. Таким образом, расцепляемый лихерк может представлять собой фрагмент, который расцепляется при сдвиге значения pH от щелочного к нейтральному. Изменением среды слитой молекулы, которая расцепляет расцепляемый лихерк, может быть любое изменение окружающей среды, происходящее в случае, когда слитая молекула высвобождается из базально-латеральной мембраны поляризованной эпителиальной клетки, известное специалисту в данной области, без ограничения.

VIII. Нерасцепляемые лихерки

[0208] В различных вариантах осуществления, носитель и одна или несколько нагрузок могут быть разделены лихерком. В случае, когда используется лихерк, лихерк может включать одну или несколько аминокислот. Примеры рассматриваемых в настоящем документе лихерков включают такие последовательности, как S. (GS)x. (GGSS)x. (GGGSS)x или (GGGGSS)x, где x=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 или 15. В некоторых случаях лихерк не включает концевой остаток S, например, SEQ ID NO: 4 (GGGGSSGGGSSGGG). В общем случае лихерк не может обладать конкретной биологической активностью, кроме связывания белков или сохранения некоторой минимальной дистанции или другого пространственного отношения между ними. Однако в различных вариантах осуществления, аминокислоты, входящие в состав лихерка, могут быть выбраны таким образом, чтобы они оказывали влияние на некоторые свойства молекулы, такие как фолдинг, полный заряд или гидрофобность.

[0209] В различных вариантах осуществления, лихерк способен образовывать ковалентные связи как с носителем, так и с биологически активной нагрузкой. Подходящие лихерки включают прямые или разветвленные углеродные лихерки, гетероциклические углеродные лихерки или пептидные лихерки. В различных вариантах осуществления, лихерк(ы) может быть присоединен к составляющим аминокислотам носителя и/или одной или нескольким нагрузкам через их боковые группы (например, через дисульфидную связь с цистеином). В различных вариантах осуществления, лихерки присоединены к альфа-углеродным амино- и/или карбоксильным группам концевых
aminokislot nositelya i/ili biologicheski aktivnoi nagruzki.

[0210] Bifunktsionalnyi linter, imeyushiy odnu funktsionalnuyu gruppu, vzaimodeystvuyushuyu s gruppoy na nositеле, i druguyu gruppu, vzaimodeystvuyushuyu s

одной или несколькими нагрузками, можно использовать для формирования желаемого конъюгата. Альтернативно, дериватизация может включать химическую обработку

нацеливающего фрагмента. Способы образования, например, свободных сульфгидрильных групп на полипептидах, таких как антитела или фрагменты антител,

являются хорошо известными (см. патент США № 4659839).

[0211] Известно множество способов и линкерных молекул для присоединения различных соединений, включая радиоактивные хелаты металлов, носители и

лекарственные средства, к белкам, таким как антитела. Смотри, например, Европейскую патентную заявку №188256; патент США № 4671958, 4659839, 4414148, 4699784;

4680338; 4569789; и 4589071; и Borlinghaus et al. (1987) Cancer Res. 47: 4071-4075.

IX. Химическая конъюгация или образование комплекса нагрузки или

катиона с носителем

[0212] В различных вариантах осуществления, нагрузка, которая должна быть
dostavlena sубъекту, химически конъюгирована с носителем. Способы химического

konьюгирования молекул хорошо известны специалистам в данной области.

[0213] Процедура конъюгации двух молекул изменяется в зависимости от

химической структуры агента. Полипептиды обычно содержат множество

фундаментальных групп, например, группы карбоновой кислоты (COOH) или свободного

амина (--NH2), которые доступны для взаимодействия с подходящей функциональной

gруппой на другом пептиде или на линкере для присоединения к нему молекул.

[0214] В различных вариантах осуществления настоящего изобретения,

выделенные носители получают путем бактериальной ферментации и очищают

существующими способами. Затем окисленный носитель модифицируется на своем C-

конце, чтобы сделать возможным прямое химическое связывание через свободный

сульфгидрильный остаток, расположенный рядом с C-концом белка. C-концевая

модификация может включать цистеин-ограниченную петлю, содержащую консенсусную

последовательность расщепления ENLFQS для высокоселективной протеазы из вируса

gравировки табака (TEV), второй цистеин и гексагистдиновую (His6) метку (например,

SEQ ID NO: 77 и SEQ ID NO: 78). Второй цистеин включен для формирования

dисульфидного мостика с цистеином, который в конечном итоге используется для

связывания. Добавление последовательности His6 к белку может упростить очистку, а

последовательность расщепления TEV обеспечивает механизм для селективного удаления

концевого остатка цистеина после мягкого восстановления. Расщепление TEV и мягкое

восстановление с помощью 0,1 mM дитиотетита после экспрессии и выделения

конструкций нетоксичного бактериального токсина позволяет осуществлять прямое

химическое связывание агента, регулирующего уровень глюкозы, например агента,

воспринимающего уровень активности посредством реакции на основе маленимида в
качестве общего механизма прикрепления нагрузки. После расщепления, восстановления и связывания протеазой TEV посредством маленимидной реакции со свободным сульфгидрилом, удаление высвобожденной C-концевой последовательности было достигнуто на второй стадии коночной хроматографии с Ni2+.

[0215] В некоторых вариантах осуществления, конструкция для доставки содержит частицы, которые ковалентно декорированы носителем, и при этом нагрузка интегрирована в частицы. В некоторых вариантах осуществления частицы могут быть меньше ~150 нм в диаметре, меньше ~100 нм или меньше ~50 нм.

Анализ трансцитоза

[0216] Функцию носителя можно анализировать на основе его способности пропускать носитель или нагрузку, ассоциированную с носителем, например, в частице, через эпителиальную мембрану. Поскольку для трансцитоза может сначала потребоваться связывание с клеткой, указанные анализы также можно использовать для оценки функции домена распознавания клеток.

[0217] Трансцитозную активность можно анализировать любым способом, известным специалисту в данной области, без ограничений. Трансцитозную активность можно анализировать путем оценки способности композиции, частицы, проникать в неполяризованный клетку, с которой она связывается. Аналогичное свойство, которое позволяет носителю проходить через поляризованную эпителиальную клетку, может также обеспечить молекулам, содержащим носитель, проникновение в неполяризованные клетки. Таким образом, способность композиции проникать в клетку можно оценить, например, путем обнаружения физического присутствия композиции (например, носителя или нагрузки) внутри клетки. Например, композиция может быть помечена, например, флуоресцентным маркером, и доставка вступает в контакт с клеткой. Затем клетки можно промыть, удалив любую композицию (например, носитель или нагрузку, например конструкцию для доставки, которая не проника в клетку, и определить количество оставшейся метки. Обнаружение метки в этом анализе указывает на то, что композиция проникла в клетку.

[0218] Способность композиции к трансцитозу можно проверить путем оценки способности носителя или нагрузки (например, конструкции для доставки) проходить через поляризованную эпителиальную клетку. Например, композиция может метиться, например флуоресцентным маркером, и вступать в контакт с апикальными мембранами слоя эпителиальных клеток. Флуоресценция, обнаруженная на базально-латеральной стороне мембраны, образованной эпителиальными клетками, показывает, что носитель функционирует должным образом.

Анализ расщепления расщепляемого линкера

[0219] Функция расщепляемого линкера обычно может быть исследована в анализе расщепления. Любой подходящий анализ расщепления, известный специалисту в данной области, без ограничения, может быть использован для исследования расщепляемых линкеров. Для исследования способности фермента расщеплять расщепляемые линкеры
можно использовать как клеточный анализ, так и бесклеточный анализ.

[0220] Типичный бесклеточный анализ для исследования расщепления расщепляемых линкеров включает получение экстрактов поляризованных эпителиальных клеток и экспонирование меченой слитой молекулы, несущей расщепляемый линкер, к фракции экстракта, соответствующей мембранаассоциированным ферментам. В указанных анализах, метка может прикрепляться либо к агенту, регулирующему уровень глюкозы, например, доставляемому агенту, снижающему уровень глюкозы, либо к остатку слитой молекулы. В числе этих ферментов присутствуют ферменты расщепления, обнаруживаемые рядом с базально-латеральной мембраной поляризованной эпителиальной клетки, как описано выше. Расщепление можно обнаружить, например, путем связывания слитой молекулы, например, с антителом, и отмывания несвязавшихся молекул. Если метка прикреплена к агенту, регулирующему уровень глюкозы, например, доставляемому агенту, то на молекуле, связанной с антителами, должно быть незначительное количество меток или они должны отсутствовать. Альтернативно, связывающий агент, используемый в анализе, может быть специфичным в отношении агента, регулирующего уровень глюкозы, например, агента, снижающего уровень глюкозы, причем остаток конструкции может быть помеченным. В любом случае расщепление может быть оценено.

[0221] Расщепление также может быть исследовано с помощью клеточных анализов, посредством которых анализируется расщепление поляризованными эпителиальными клетками, собранными в мембраны. Например, меченая слитая молекула или часть слитой молекулы, содержащей расщепляемый линкер, может контактировать либо с апикальной, либо с базолатеральной стороной монолоена подходящих эпителиальных клеток, таких как, например, клетки Сосо-2, в условиях которые обеспечивают расщепление линкера. Расщепление можно обнаружить путем обнаружения присутствия или отсутствия метки с использованием реагента, который специфически связывает слитую молекулу или ее часть. Например, антитело, специфичное в отношении слитой молекулы, можно использовать для связывания слитой молекулы, содержащей метку, удаленную от расщепляемого линкера относительно части слитой молекулы, связанной с антителом. Затем может быть оценено расщепление путем обнаружения присутствия метки на молекулах, связанных с антителом. В случае, если произошло расщепление, метки могут наблюдаться в незначительном количестве или полностью отсутствовать на молекулах, связанных с антителом. При проведении таких экспериментов можно идентифицировать ферменты, которые расщепляют преимущественно на базолатеральной мембране, а не апикальной мембране, и, кроме того, можно подтвердить способность таких ферментов расщеплять расщепляемый линкер в слитой молекуле.

[0222] Кроме того, расщепление также можно исследовать с использованием флуоресцентного репортерного анализа, как описано в патенте США № 6759207. Вкратце, в таких анализах, флуоресцентный репортер может вступать в контакт с базолатеральной...
стороной монослоя подходящих эпителиальных клеток в условиях, которые позволяют расщепляющему ферменту расщеплять репортёр. Расщепление репортёра изменяет структуру флуоресцентного репортёра, изменения его конфигурацию с нефлуоресцентной на флуоресцентную. Количество наблюдаемой флуоресценции может указывать на активность расщепляющего фермента, присутствующего на базолатеральной мембране.

[0223] Кроме того, расщепление также можно исследовать с использованием молекулярного зонда с внутrimолекулярным гашением, например описанного в патенте США № 6592847. Такие зонды обычно содержат флуоресцентный компонент, испускающий фотоньи при возбуждении светом соответствующей длины волны, а также компонент гасителя, который поглощает такие фотоньи в непосредственной близости от флуоресцентного компонента. Расщепление зонда отделяет компонент гасителя от флуоресцентного компонента, так что можно обнаружить флуоресценцию, тем самым указывая на то, что расщепление произошло. Таким образом, такие зонды можно использовать для идентификации и оценки расщепления определенными расщепляющимися ферментами путем контакта базолатеральной стороны монослоя подходящих эпителиальных клеток с зондом в условиях, позволяющих расщепляющему ферменту расщеплять зонд. Наблюдаемая величина флуоресценции указывает на активность исследуемого расщепляющего фермента.

X. Способы применения

[0224] Способы и композиции, например, фармацевтические композиции по настоящему изобретению, можно использовать для лечения заболеваний или состояний, например, медицинских состояний. Способы и композиции могут быть пригодны для перорального и/или интраназального введения и доставки. Заболевание или состояние может быть иммунологическим заболеванием, метаболическим заболеванием или заболеванием центральной нервной системы (ЦНС). “Метаболические заболевания или расстройства” могут относиться к сочетанию медицинских расстройств, которые при совместном протекании повышают риск развития диабета и атеросклеротического сосудистого заболевания, т.е. болезни сердца и инсульта. Определяющие медицинские параметры для метаболического синдрома включают сахарный диабет, нарушение толерантности к глюкозе, повышенный уровень глюкозы натощак, инсулинорезистентность, секрецию альбумина с мочой, центральный тип ожирения, гипертензию, повышенный уровень триглицеридов, повышенный уровень холестерина ЛПНП и сниженный уровень холестерина ЛПВП.

[0225] Способы и композиции, например, фармацевтические композиции, представленные в настоящем документе, могут быть использованы для лечения нервного заболевания, состояния, связанного с иммунологией, и состояния, связанного с эндокринологией, состояния, связанного с иммуноневрология, состояния, связанного с нейроэндокринологией, или состояние, связанного с иммунонейроэндокринологией. Способы и композиции, например, фармацевтические композиции, представленные в настоящем документе, можно использовать для лечения сердечно-сосудистого заболевания, редкого
заболевания, заболеваний печени, воспалительного заболевания кишечника, респираторного заболевания, неврологического заболевания или желудочно-кишечного расстройства. Композицией, представленной в настоящем документе, может быть вакцина. Заболевания или состояния включают, например, вирусное заболевание или инфекцию, злокачественную опухоль, метаболические заболевания, ожирение, аутоиммунные заболевания, воспалительные заболевания, аллергию, реакцию “трансплантат против хозяина”, системную микробную инфекцию, анемию, сердечно-сосудистые заболевания, психозы, генетические заболевания, нейродегенеративные заболевания, нарушения кроветворных клеток, заболевания эндокринной системы или репродуктивной системы, желудочно-кишечные заболевания. Другие примеры заболеваний включают, но ими не ограничиваются, диабет, диабет, следствие ожирения, гипергликемию, дислипидемию, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушение толерантности к глюкозе (IGT), диабетическую дислипидемию, гиперлипидемию, жировую болезнь печени, неалкогольный стеатогепатит (NASH), гепатит, ожирение, сосудистые заболевания, болезни сердца, инсульта, нарушение толерантности к глюкозе, повышенный уровень глюкозы натощак, инсулинорезистентность, секреция альбумина с мочей, центральный тип ожирения, гипертензия, повышенный уровень тропинов, повышенный уровень холестерина ЛПНП и сниженный уровень холестерина ЛПВП, гипергликемия, гиперинсулинемия, дислипидемия, кетоз, гипертриглицеридемия, метаболический синдром X, инсулинорезистентность, нарушение гликемии натощак, нарушение толерантности к глюкозе (IGT), диабетическая дислипидемия, глюконеогенез, избыточный гликогеноз, диабетический кетоацидоз, гипертриглицеридемия, гипертензия, диабетическая нефропатия, почечная недостаточность, дегенеративная почечная недостаточность, гипертония, атрофия мышц, диабетическая невропатия, диабетическая ретинопатия, диабетическая катаракта, атеросклероз, ишемическая болезнь сердца, заболевание периферических артерий, фиброз и гипертриглицеридемия. Заболевание или состояние может представлять собой язвенный колит, болезнь Крона, псoriasis, псориатический артрит, ревматоидный артрит или псориаз. Заболевание или состояние может представлять собой гастроэнтерологическое состояние, например, синдром короткой кишки (SBS). Заболевание или состояние может представлять собой дефицит гормона роста. В некоторых случаях композиция по настоящему изобретению содержит GLP-2, и композицию вводят, например, перорально, субъекту с гастроэнтерологическим заболеванием, например, синдромом короткой кишки (SBS). В некоторых случаях, композиция по настоящему изобретению содержит GLP-1, причем композицию вводят, например, перорально, субъекту для лечения метаболического заболевания; композиция может быть составлена для пероральной доставки для местного желудочно-кишечного и/или системного воздействия. В некоторых случаях, композиция по настоящему изобретению содержит GLP-1 или аналог GLP-1, причем композиция предоставляется, например, перорально субъекту для лечения метаболического расстройства (например,
диабета, ожирения) или неалкогольного стеатогепатита (NASH) или заболевания центральной нервной системы (CNS). Композиция может быть составлена для пероральной доставки. В некоторых случаях, композиция по настоящему изобретению содержит гормон роста человека, и композиция предоставляется субъекту с дефицитом гормона роста или родственным расстройством для лечения дефицита гормона роста или родственного расстройства. Композиция может быть составлена для пероральной доставки, и целевая локация для нагрузки может соответствовать системное воздействие. В некоторых случаях, нагрузка может достигать печени. В некоторых случаях, композиция по настоящему изобретению содержит инкретин. В некоторых случаях, композицию по настоящему изобретению вводят субъекту для регуляции гликемической функции.

[0226] При многих хронических заболеваниях, пероральные и/или интраназальные композиции по настоящему изобретению могут быть особенно эффективны, поскольку они могут обеспечить долгосрочный уход за пациентом и терапию посредством домашнего применения без использования инъекционного лечения или лекарственных протоколов. Композиции по настоящему описанию можно вводить перорально, пулмонально, интраназально, трансбукально или сублингваально. Таким образом, в другом аспекте, настоящее изобретение относится к применению фармацевтической композиции, которая представляет собой самособирающуюся частицу, например, микрочастицу, содержащую носитель, нагрузку (например, гетерологическую нагрузку) и/или неприродную слитую молекулу в качестве лекарственного вещества в пилюле или таблетке для пероральной доставки одной или нескольких нагрузок при лечении заболеваний и состояний, для которых показано применение одной или нескольких нагрузок, содержащихся в таких композициях.

[0227] Фармацевтические композиции, которые представляют собой частицы, например, микрочастицы, содержащие носитель, нагрузку (например, гетерологическую нагрузку) и/или слитые молекулы по настоящему изобретению, могут иметь несколько преимуществ по сравнению с обычными методами локальной или системной доставки макромолекул субъекту. Основным в числе таких преимуществ является возможность доставки одной или нескольких нагрузок субъекту без использования иглы для прокола кожи субъекта. Многим субъектам требуется повторные регулярные дозы макромолекул. Качество жизни таких субъектов было бы значительно улучшено, если бы доставку макромолекулы можно было осуществить без инъекции, при этом избегая боль или возможные осложнения.

[0228] Кроме того, связывание одной или нескольких нагрузок с остатком слитой молекулы с линкером, который расщепляется ферментом, присутствующим на базолатеральной мембране эпителиальной клетки, может обеспечить высвобождение одной или нескольких нагрузок из слитой молекулы и высвобождение из остатков слитой молекулы вскоре после трансцитоза через эпителиальную мембрану. Такое высвобождение может снизить вероятность вызывания иммунного ответа против
нагрузки, например, биологически активной нагрузки. Оно также может обеспечить взаимодействие одной или нескольких нагрузок со своей мишенью без остатка слитой молекулы.

[0229] Кроме того, после переноса через эпителий ЖКТ, слитые молекулы по настоящему изобретению будут демонстрировать увеличенный период полужизни в сыворотке, то есть одна или несколько нагрузок слитых молекул могут демонстрировать увеличенный период полужизни в сыворотке по сравнению с одной или несколькими нагрузками в неслитом состоянии, и в результате пероральное введение слитой молекулы может доставить более высокую эффективную концентрацию доставляемой одной или нескольких нагрузок в печень субъекта по сравнению с наблюдаемой в плазме крови субъекта.

[0230] Конструкции по настоящему изобретению могут снижать чувствительность нагрузки к протеолитическому расщеплению, способствовать рефолдингу химеры и улучшать стабильность химеры в процессе хранения. Таким образом, слитые молекулы могут быть использованы в получении нового класса фармацевтических композиций для перорального введения биологически активных терапевтических средств.

[0231] Используемые в настоящем документе термины “совместное введение”, “совместно вводимый” и “в сочетании с”, относящиеся к микрочастицам или наночастицам по настоящему изобретению и одному или нескольким другим терапевтическим средствам, могут включать: одновременное введение такого сочетания микрочастиц или наночастиц по настоящему изобретению и терапевтического средства(средств) пациенту, нуждающегося в лечении, когда такие компоненты объединены в монолитную лекарственную форму, которая высвобождает компоненты у пациента по существу в одно и то же время; по существу одновременное введение такого сочетания микрочастиц или наночастиц по настоящему изобретению и терапевтического средства(средств) пациенту, нуждающемуся в таком лечении, когда такие компоненты получены отдельно друг от друга в виде отдельных лекарственных форм, которые принимаются по существу в одно и то же время пациентом, после чего компоненты высвобождаются у пациента по существу в одно и то же время; последовательное введение такого сочетания микрочастиц или наночастиц по настоящему изобретению и терапевтического средства(средств) пациенту, нуждающемуся в лечении, когда такие компоненты получены отдельно друг от друга в виде отдельных лекарственных форм, которые последовательно принимаются пациентом со значительным временным интервалом между каждым введением, после чего компоненты высвобождаются у пациента в существенно разное время; и последовательное введение такого сочетания микрочастиц по настоящему изобретению и терапевтического средства(средств) пациенту, нуждающемуся в лечении, когда такие компоненты объединены в монолитную лекарственную форму, которая высвобождает компоненты контролируемым образом, после чего они высвобождаются одновременно, последовательно и/или высвобождение перекрывается по времени и/или в разное время у пациента, где каждая часть может быть
введена либо одним и тем же, либо другим способом.

[0232] В различных вариантах осуществления, комбинированная терапия включает одновременное введение композиции выделенных микрочастиц или наночастиц и композиции второго средства либо в одной и той же фармацевтической композиции, либо в отдельных фармацевтических композициях. В различных вариантах осуществления, композицию выделенных микрочастиц или наночастиц и композицию второго средства вводят последовательно, то есть композицию выделенных микрочастиц или наночастиц вводят либо до, либо после введения композиции второго средства.

[0233] В различных вариантах осуществления, введение частицы, например, композиции микрочастиц или наночастиц и композиции второго средства является одновременным, то есть период введения композиции выделенной частицы, например, микрочастицы или наночастицы, и композиции второго средства перекрываются друг с другом.

[0234] В различных вариантах осуществления, введение композиции частиц, например микрочастиц или наночастиц, и композиции второго агента не является одновременным. Например, в различных вариантах осуществления введение композиции выделенной частицы, например микрочастицы или наночастицы, прекращают до введения композиции второго средства. В различных вариантах осуществления, введение композиции второго средства прекращается до введения композиции выделенной f-частицы, например, микрочастицы или наночастицы.

[0235] В различных вариантах осуществления, терапевтически эффективное количество микрочастиц или наночастиц, описанных в настоящем документе, будет вводиться в сочетании с одним или несколькими другими терапевтическими средствами. Такие терапевтические средства могут быть приняты в данной области техники в качестве стандартного лечения конкретного болезненного состояния, как описано в настоящем документе, такого как метаболическое расстройство, воспалительная болезнь печени, воспалительное заболевание, аутоиммунное заболевание, злокачественная опухоль или задержка роста, обусловленная с дефицитом гормона роста (GH). Типичные предполагаемые терапевтические средства включают, но не ограничиваются, цитокины, факторы роста, стероиды, нестероидные противовоспалительные препараты, базисные препараты для лечения ревматоидного артрита, противовоспалительные средства, химиотерапевтические средства, радиотерапевтические средства или другие активные и вспомогательные средства.

[0236] В другом аспекте, настоящее изобретение относится к способам лечения субъекта, классифицированного как страдающего ожирением (например, имеющего индекс массы тела (BMI) 30 кг/м² или больше), включающим введение субъекту терапевтически эффективного количества композиция, например частицы, содержащей носитель и нагрузку (например, конструкцию для доставки) по настоящему изобретению.

[0237] В другом аспекте, настоящее изобретение относится к способам лечения субъекта с диагнозом диабет 1 типа (T1D), включающим пероральное введение
композиции, например, частицы, содержащей носитель и нагрузку (например, конструкцию для доставки) по настоящему изобретению, в количестве, достаточном для лечения указанного заболевания, без добавления инсулина.

[0238] В другом аспекте настоящее изобретение относится к способам лечения субъекта с диагнозом диабет 1 типа (T1D), включающим (a) пероральное введение композиции, например, частицы, содержащей носитель и нагрузку (например, конструкцию для доставки) по настоящему изобретению, в количестве, достаточном для лечения указанного заболевания, и (b) добавление инсулина. В некоторых вариантах осуществления, добавка инсулина включает введение дозы инсулина, которая может составлять от около 70% до 90%, от около 50% до 70%, от около 30% до 50%, от около 15% до 30%, от около 10 до 15%, примерно от 5 до 10% и от 0 до 5%, включая 4%, 3,5%, 3%, 2,5%, 2%, 1,5%, 1%, 0,5%, 0,4%, 0,3%, 0,2% или 0,1% от нормальной суточной дозы инсулина.

[0239] В другом аспекте, настоящее изобретение относится к способам лечения субъекта с диагнозом диабета 2 типа (T2D), включающим пероральное введение композиции, например, частицы, содержащей носитель и нагрузку (например, конструкцию для доставки) по настоящему изобретению, в количестве, достаточном для лечения указанного заболевания.

[0240] В другом аспекте, настоящее изобретение относится к способу лечения субъекта, страдающего заболеванием печени (например, неалкогольной жировой болезнью печени (NAFLD); неалкогольным стеатогепатитом (NAS)), желудочно-кишечным заболеванием или нейрогенеративным заболеванием, причем указанный способ включает пероральное введение композиции, например, частицы, содержащей носитель и нагрузку (например, конструкцию для доставки) по настоящему изобретению, в количестве, достаточном для лечения указанного заболевания.

XI. Полинуклеотиды, кодирующие носители, нагрузки и слитые молекулы

[0241] В другом аспекте, в настоящем изобретении предложены полинуклеотиды, содержащие нуклеотидную последовательность, кодирующую носитель, нагрузку (например, гетерологичную нагрузку) и неприродные слитые молекулы. Эти полинуклеотиды используются, например, для изготовления носителя, нагрузки (например, гетерологичной нагрузки) и слитых молекул. В еще одном аспекте, в настоящем изобретении предложена система экспрессии, которая содержит рекомбинантную полинуклеотидную последовательность, кодирующую носитель, например, носитель Cholix или PE, и область вставки полилинкера для полинуклеотидной последовательности, кодирующей нагрузку, например, агент, регулирующий уровень глюкозы, например, агент, снижающий уровень глюкозы или катион. В различных вариантах осуществления, система экспрессии может содержать полинуклеотидную последовательность, которая кодирует расщепляемый линкер, вследствие чего расщепление по расщепляемому линкеру отделяет нагрузку, например, агент, кодированный нуклеиновой кислотой, вставленной в область вставки полилинкера, от
остальной части кодированной слитой молекулы. Таким образом, в вариантах осуществления, где область вставки полиинуклеотида находится на конце кодируемой конструкции, полиинуклеотид содержит одну нуклеотидную последовательность, кодирующую расщепляемый линкер между областью вставки полиинуклеотида и остатком полиинуклеотида. В вариантах осуществления, где область вставки полиинуклеотида не находится на конце кодируемой конструкции, область вставки полиинуклеотида может быть флакирована нуклеотидными последовательностями, каждая из которых кодирует расщепляемый линкер.

[0242] Различные методы in vitro, которые можно использовать для получения полиинуклеотида, кодирующего носитель, например, носитель Cholix или PE, нагрузку или слитые молекулы по настоящему изобретению, включают, но ими не ограничиваются, обратную транскрипцию, полимеразную цепную реакцию (PCR), лигазную цепную реакцию (LCR), систему опосредованной транскрипцией аmplifikasiки (TAS), систему самоподдерживающейся реакции репликации последовательностей (3SR) и систему амплификации с использованием QP-репликазы (QB).

[0244] Конструирование нуклеиновых кислот, кодирующих носители, нагрузки или слитые молекулы по настоящему изобретению, может быть облегчено путем введения в конструкцию сайта встраивания для нуклеиновой кислоты, кодирующей агент, снижающий уровень активности.

[0245] Кроме того, полиинуклеотиды также могут кодировать секреторную последовательность на аминоконец кодируемого носителя, нагрузки или слитой молекулы. Такие конструкции используются для получения носителей, нагрузок или слитых молекул в клетках млекопитающих, поскольку они упрощают выделение иммуногена.

[0246] Кроме того, полиинуклеотиды по настоящему изобретению также охватывают варианты производных полиинуклеотидов, кодирующих носитель, нагрузку или слитую молекулу. Например, производные могут быть получены сайт-специфическим мутагенезом, включая замену, вставку или делецио одного, двух, трех, пяти, десяти или более нуклеотидов полиинуклеотидов, кодирующих слитую молекулу. Альтернативно, производные могут быть получены неспецифическим мутагенезом.

[0247] Соответственно, в различных вариантах осуществления в описании предложен полиинуклеотид, который кодирует носитель, нагрузку или слитую молекулу. Носитель, нагрузка или слитая молекула могут включать модифицированный носитель и
нагрузку, например агент, регулирующий уровень глюкозы, например агент, снижающий уровень глюкозы, который должен быть доставлен субъекту; и, необязательно, расщепляемый линкер. Расщепление по расщепляемому линкеру может отделить нагрузку, например агент, регулирующий уровень глюкозы, например, агент, снижающий уровень глюкозы, от остальной части сливной молекулы. Расщепляемый линкер может быть расщеплен ферментом, присутствующим на базально-латеральной мембране поляризованной эпителиальной клетки субъекта или в плазме субъекта.

[0248] В различных вариантах осуществления, полинуклеотид гидризуется в жестких условиях гидризации с любым полинуклеотидом по настоящему изобретению. В дополнительных вариантах осуществления, полинуклеотид гидризуется в жестких условиях с нуклеиновой кислотой, которая кодирует любой носитель, нагрузку или сливную молекулу по настоящему изобретению.

[0250] Векторы экспрессии могут содержать сигналы экспрессии и репликации, совместимые с клеткой, в которой экспрессируются носители, нагрузки или сливные молекулы. Векторы экспрессии могут быть введены в клетку для экспрессии носителей, нагрузок или сливных молекул любым способом, известным специалисту в данной области, без ограничения. Векторы экспрессии также могут содержать очищающий компонент, устраивающий выделение носителя, нагрузки или сливной молекулы.

[0251] В еще одном аспекте, изобретение относится к клетке, содержащей вектор экспрессии для экспрессии носителей, нагрузок или сливных молекул или их частей. Клетка может быть выбрана, исходя из своей способности экспрессировать высокие концентрации носителя, нагрузки или сливной молекулы для облегчения очистки белка. В различных вариантах осуществления, клетка представляет собой прокариотическую клетку, например, E. coli. Как описано, например, в примерах, носители, нагрузки и сливные молекулы могут быть надлежащим образом свернуты и могут содержать соответствующие дисульфидные связи при экспрессии в E. coli.

[0252] В других вариантах осуществления, клетка представляет собой
эукариотическую клетку. Используемые эукариотические клетки включают клетки дрожжей и млекопитающих. Любая клетка млекопитающего, известная специалисту в данной области как подходящая для экспрессии рекомбинантного полипептида, без ограничения, может быть использована для экспрессии носителей, нагрузок или слитых молекул. Например, клетки яичника китайского хомячка (CHO) можно использовать для экспрессии носителей, нагрузок или слитых молекул.

[0253] Носитель, нагрузки или слитые молекулы по изобретению могут быть получены путем рекомбинации, как описано ниже. Однако носитель, нагрузки или слитые молекулы также могут быть получены путем химического синтеза с использованием способов, известных специалистам в данной области.

[0254] Способы экспрессии и очистки носителей, нагрузок и слитых молекул по настоящему изобретению подробно описаны в настоящем документе, например, в приведенных ниже примерах. В общем случае, способы могут основываться на введении вектора экспрессии, кодирующего носитель, нагрузку и/или слитую молекулу, в клетку, которая может экспрессировать носитель, нагрузку и/или слитую молекулу из вектора. Затем носитель, нагрузка и/или слитая молекула могут быть очищены для введения субъекту, например, при лечении заболеваний и состояний, для которых показано использование одной или нескольких нагрузок, содержащихся в таких композициях.

XII. Применение фармацевтических композиций микрочастиц или наночастиц для доставки в легкие

[0255] Композиции частиц, например, фармацевтические композиции микрочастиц, описанные в настоящем документе, можно использовать в качестве лекарственного вещества для пульманальной доставки нагрузки, например, биологически активной нагрузки. Пульманальные методы доставки могут включать распыление или ингаляцию сухого порошка.

[0256] Фармацевтические композиции частиц, например, микрочастиц или наночастиц, могут быть составлены для пульманальной доставки. Фармацевтические композиции, составленные для пульманального введения, могут быть легко распылены или аэрозолизованы. В некоторых случаях, фармацевтические композиции, составленные для пульманального введения, используют способность носителя опосредовать трансцитоз через легочный эпителий. Интратрахальное введение может быть использовано для легочной доставки и может включать втягивание или засасывание носом порошка.

XIII. Применение композиций для перорального введения

[0257] Композиции, например, частицы, например, композиции микрочастиц или наночастиц, например, фармацевтические композиции микрочастиц, описанные в настоящем документе, могут быть использованы в качестве лекарственного вещества в пиллюлях или таблетках для пероральной доставки нагрузки, например, биологически активной нагрузки, индивидууму, например, при лечении заболеваний и состояний, для которых показано использование одной или нескольких нагрузок, содержащихся в таких
композициях.

[0258] Композиции, например, фармацевтические композиции на основе микрочастиц или наночастиц, могут быть составлены для перорального введения. Фармацевтические композиции, составленные для перорального введения, могут быть устойчивыми к разложению в пищеварительном тракте.

[0260] После переноса через эпителии, композиции, например, фармацевтические композиции в виде микрочастиц или наночастиц по настоящему изобретению, могут проявлять увеличенный период полуразпада в сыворотке, то есть нагрузка, например биологически активная нагрузка (например, слитые молекулы), может демонстрировать увеличенный период полужизни в сыворотке по сравнению с нагрузкой, например биологически активной нагрузкой, в ее неслитом состоянии. Пероральные композиции фармацевтических композиций по настоящему изобретению могут быть получены таким образом, чтобы они были пригодны для транспорта в эпителии ЖКТ и защиты носителя, нагрузки или слитой молекулы в желудке. Такие композиции могут включать компоненты носителя и диспергатора и могут быть в любой подходящей форме, включая аэрозоли (для пероральной или пульмональной доставки), сиропы, эликсиры, таблетки, включая жевательные таблетки, твердые или мягкие капсулы, пастилки, леденцы, водные или масляные суспензии, эмульсии, облатки или пеллеты, гранулы и диспергируемые порошки. В различных вариантах осуществления, фармацевтические композиции используются в твердых лекарственных формах, например, в таблетках, капсулах и т.п., подходящих для простого перорального введения точных доз.

[0261] В различных вариантах осуществления, композиция для перорального
применения содержит фармацевтическую композицию в виде микрокапсул и одно или несколько соединений, которые могут защищать носитель, нагрузку или слитую молекулу или неслитые молекулы носителя и нагрузки, пока они находятся в желудке. Например, защитное соединение должно предотвращать кислотный и/или ферментативный гидролиз молекул. В различных вариантах осуществления, пероральная композиция содержит фармацевтическую композицию в виде микрокапсул и одно или несколько соединений, которые могут способствовать прохождению конструкции/конструкций из желудка в тонкую кишку. В различных вариантах осуществления, одно или несколько соединений, которые могут защитить носитель, нагрузку или слитую молекулу от деградации в желудке, также могут способствовать прохождению конструкции из желудка в тонкий кишечник. Например, включение бикарбоната натрия может быть эффективным для облегчения быстрого перемещения веществ, доставляемых внутривенно, из желудка в двенадцатиперстную кишку, как описано в Mrsny et al., Vaccine 17:1425-1433, 1999. Другие способы получения композиций, для того, чтобы носители, нагрузки или слитые молекулы могли проходить через желудок и контактировать с поляризованными эпителиальными мембранами в тонкой кишке, включают, но ими не ограничивается, технологии энтеросолюбильного покрытия, как описано в DeYoung, Int J Pancreatol, 5 Suppl:31-6, 1989, а также способы, представленные в патенте США № 6613332, 6174529, 6086918, 5922680 и 5807832, каждый из которых полностью включен в настоящее описание посредством ссылки.

[0262] В некоторых случаях, защитное соединение представляет собой катион, который стабилизирует устойчивые к кислоте микрокапсулы или наночастицы. В некоторых случаях, частица, содержащая носитель, катион и гетерологичную нагрузку, может быть устойчива к ферментам поджелудочной железы без необходимости в энтеросолюбильном покрытии или другом стабилизирующем соединении. Например, на фиг.11 показаны результаты анализа переваривания посредством панкреатина, выполненного на композициях, содержащих белок-носитель (SEQ ID NO: 3) вместе с катионом (либо цинк, либо протамин) и гетерологичной нагрузкой (экскенатид). На трехках 1-4 фиг.11A показано разложение панкреатином композиции белка SEQ ID NO: 3 через 0, 30, 60 и 120 минут, через 120 минут белок полностью разлагается. Однако на трехках 5-8 показана композиция белка SEQ ID NO. 3, и соли цинка, полученная путем смещения компонентов в соотношении 1:1 (масса/масса носитель:соль цинка). На треке 8 фиг.11A показано, что эта композиция только частично распадается через 120 минут инкубации с панкреатином. Аналогичные результаты наблюдаются для композиции SEQ ID NO: 3, цинка и экскенатида смешанные в соотношении 1:1:1 или в соотношении 1:2:1. На фиг.11B показаны аналогичные результаты с использованием протамина в качестве катиона, но не цинка. На фиг.11C показан результат обработки панкреатином композиции, содержащей экскенатид и цинк без SEQ ID NO: 3. В некоторых случаях, описанная в настоящем документе композиция может быть устойчива к разщеплению панкреатином. В некоторых случаях, описанная в настоящем документе композиция может быть устойчива к
расщеплению панкреатином, так что, по меньшей мере, 30%, 40%, 50%, 60%, 70%, 80% или 90% гетерологичной нагрузки и/или белка носителя остаются интактными после инкубаций композиции с панкреатином в течение 30 минут при температуре 37°C. В некоторых случаях, композиция, описанная в настоящем документе, может быть устойчива к расщеплению панкреатином, так что, по меньшей мере, 30%, 40%, 50%, 60%, 70%, 80% или 90% гетерологичной нагрузки и/или белка-носителя остаются интактными после инкубации композиции с панкреатином в течение 60 минут при 37°C. В некоторых случаях, композиция, описанная в настоящем документе, может быть устойчива к расщеплению панкреатином, так что, по меньшей мере, 30%, 40%, 50%, 60%, 70%, 80% или 90% гетерологичной нагрузки и/или белка-носителя остаются интактными после инкубации композиции с панкреатином в течение 120 минут при 37°C. В некоторых случаях по меньшей мере 30%, 40%, 50%, 60%, 70%, 80% или 90% терапевтического белка остается интактным через 0,5 часа, 1 час или 2 часа в анализе панкреатина; при этом анализ панкреатина включает инкубацию композиции, содержащей 100 мкт терапевтического белка, с 10 мкт панкреатина в 100 мкл фосфатно-солевого буферного раствора (ФСБ) при 37°C.

[0263] Фармацевтические композиции, предназначенные для перорального применения, могут быть получены в соответствии с любым известным в данной области способом получения фармацевтических композиций, и такие композиции могут содержать один или несколько агентов, выбранных из группы, состоящей из подслагательей, для получения фармацевтически превосходного и приятного на вкус препарата. Например, для получения перорально доставляемых таблеток, фармацевтическую композицию в виде микрокапсили смещивают, по меньшей мере, с одним фармацевтическим вспомогательным веществом, а твердую композицию прессуют известными способами с образованием таблетки для доставки в желудочно-кишечный тракт. Таблеточную композицию обычно составляют с добавками, т.е. сахаридным или целлюлозным носителем, связывающим, таким как крахмальная паста или метилцеллюлоза, наполнитель, разрыхлитель или другие добавки, обычно используемые при производстве медицинских препаратов. Для получения капсул для перорального введения, ДГЭА смешивают, по меньшей мере, с одним фармацевтическим вспомогательным веществом и твердую композицию помещают в капсульный контейнер, подходящий для доставки в желудочно-кишечный тракт. Композиции, включающие носители, нагрузки или слитые молекулы, могут быть получены способом, описанным в общих чертах в Remington's Pharmaceutical Sciences, 18th Ed. 1990 (Mack Publishing Co. Easton Pa. 18042) в главе 89, которая включена в настоящем документе в качестве ссылки.

[0264] В различных вариантах осуществления, фармацевтические композиции получают в виде таблеток для перорального введения, содержащих фармацевтические композиции микрокапсил в смеси с нетоксичными фармацевтически приемлемыми вспомогательными веществами, которые подходят для изготовления таблеток. Эти вспомогательные вещества могут представлять собой инертные разбивители, такие как
карбонат кальция, карбонат натрия, лактоза, фосфат кальция или фосфат натрия; гранулирующие и разрыхляющие агенты, например кукурузный крахмал, желатин или гуммиарабик, и смазывающие агенты, например стеарат магния, стеариновая кислота или тальк. Таблетки могут быть не иметь покрытие, или они могут быть покрыты известными методами для замедления разложения и всасывания в желудочно-кишечном тракте и, таким образом, обеспечения устойчивое действие в течение более длительного периода времени. Например, может быть использовано обеспечивающее временную задержку вещество, такое как моностеарат глицерина или дистеарат глицерина, отдельно или с воском.

[0265] В различных вариантах осуществления, фармацевтические композиции получают в виде твердых желатиновых капсул, в которых носитель, нагрузка и слитая молекула смешаны с инертным твердым разбавителем, например, карбонатом кальция, фосфатом кальция или каолином, или в виде мягких желатиновых капсул, в которых носитель, нагрузка или слитая молекула смешаны с водной или масляной средой, например, маслом земляного ореха, арахисовым маслом, жидким парафином или оливковым маслом.

[0266] В различных вариантах осуществления, водные суспензии могут содержать фармацевтическую композицию микрочастиц в смеси со вспомогательными веществами, пригодными для изготовления водных суспензий. Такими вспомогательными веществами являются суспендирующие агенты, например, карбоксиметилцеллюлоза натрия, метилцеллюлоза, гидроксипропилметилцеллюлоза, альгинат натрия, поливинилипирролидон, трагакантовая камедь и аравийская камедь; диспергирующими или смачивающими агентами могут быть природный фосфатид, например, лецитин, или продукты конденсации алкilenоксида с жирными кислотами, например, полиоксиэтиленстеарат, или продукты конденсации этиленоксида с длинноцепочечными алифатическими спиртами, например, гептадецилэтиленокситетанол, или продукты конденсации этиленоксида с неполярными сложными эфирами, полученными из жирных кислот и гексита, такие как моноолеат полиоксиэтиленсорбита, или продукты конденсации этиленоксида с неполярными эфирами, полученными из жирных кислот и ангириддов гекситола, например полиоксиэтиленсорбитанмоноолеат. Водные суспензии также могут содержать один или несколько консервантов, например, этил- или н-пропил-п-гидроксibenzoат, один или несколько красителей, один или несколько ароматизаторов и один или несколько подсладителей, таких как сахароза или сахарин.

[0267] В различных вариантах осуществления, масляные суспензии могут быть получены путем суспендирования фармацевтической композиции микрочастиц в растительном масле, например, арахисовом масле, оливковом масле, кунжутном масле или кокосовом масле, или в минеральном масле, таком как жидкый парафин. Масляные суспензии могут содержать загуститель, например пчелиный воск, твердый парафин или цетиловый спирт. Для получения приятного на вкус препарата для перорального применения, могут добавляться подсладители, такие как описанные выше, и
ароматизаторы. Эти композиции могут сохраняться путем добавления антиоксиданта, такого как аскорбиновая кислота.

[0268] В различных вариантах осуществления, фармацевтические композиции могут быть в форме эмульсий типа “масло в воде”. Масляная фаза может представлять собой растительное масло, например, оливковое масло или арахисовое масло, или минеральное масло, например, аравийскую камедь или тропарактовую камедь, природные фосфаты, например соевой лецитин, и сложные эфиры или неполные сложные эфиры, полученные из жирных кислот и гликозидов гекситола, например сорбитанмонолеат, и продукты конденсации аналогичных неполных эфиров с этиленоксидом, например полиоксиэтиленсорбитанмонолеат. Эмульсии также могут содержать подсластители и ароматизаторы.

[0269] Можно использовать инкапсулированные таблетки или таблетки с покрытием, которые высвобождают одну или несколько нагрузок послойным методом, тем самым высвобождая одну или несколько нагрузок в течение заранее определенного периода времени при перемещении по желудочно-кишечному тракту. Кроме того, таблетки, содержащие одну или несколько нагрузок, могут быть помещены в более крупную таблетку, тем самым защищая внутреннюю таблетку от условий окружающей среды и условий переработки, таких как температура, химические агенты (например, растворители), pН и влажность. Внешняя таблетка и покрытие дополнительно служат для защиты одной или нескольких нагрузок во внутрьжелудочной среде. В некоторых случаях, инкапсулированные частицы могут размещаться в более крупной таблетке или капсуле, которые инкапсулированы таким образом, что более крупная таблетка или капсула растворяются в первой окружающей среде, а инкапсулированные частицы растворяются во второй окружающей среде. В некоторых случаях, инкапсулированная частица высвобождает нагрузку в первой среде, но не во второй среде. Например, инкапсулированная частица может высвобождать нагрузку при высоком значении рН, но не при низком рН. В некоторых случаях, инкапсулированная частица имеет кишечнорастворимую оболочку.

[0270] Поверхностно-активные вещества или сурфактант способствуют абсорбции полипептидов через слизистую оболочку или выстилку. Используемые поверхностно-активные вещества или сурфактант включают жировые кислоты и их соли, соли желчных кислот, фосфолипиды и алкилсахариды. Примеры жирных кислот и их солей включают натриевые, калиевые и лизиновые соли каприлата (C8), капрата (C10), лаурата (C12) и миристата (C14). Примеры солей желчных кислот включают холевую кислоту, хенодезоксихолевую кислоту, гликоксилевую кислоту, таурохолевую кислоту, гликоксилдезоксихолевую кислоту, таурогексилдезоксихолевую кислоту, дезоксихолевую кислоту, гликодезоксихолевую кислоту, тауродезоксихолевую кислоту, литохолевую кислоту и урсодезоксихолевую кислоту. Примеры фосфолипидов включают одноцепочечные фосфолипиды, такие как лизофосфатидилхолин, лизофосфатидилглицерин, лизофосфатидилэтаноламин, лизофосфатидилхолинол и
либо фосфатидилипиды, такие как диацилфосфатидилхолины, диацилфосфатидилглицероны, диацилфосфатидилэтаноламин, диацилфосфатидилпирофосфаты и диацилфосфатидилспирофосфаты. Примеры алкилсахаридов включают алкилглюкозиды или алкилглюкозиды, такие как децилглюкозид и додецилглюкозид.

[0271] В другом аспекте, настоящее изобретение относится к способам перорального введения фармацевтических композиций по настоящему изобретению. Пероральное введение фармацевтической композиции в виде микрочастиц может обеспечить абсорбцию носителя, нагрузки или слитой молекулы через поляризованные эпителиальные клетки слизистой оболочки пищеварительного тракта, например, слизистой оболочки кишечника, с последующим (в некоторых случаях) расщеплением слитной молекулы и высвобождением одной или нескольких нагрузок на базолатеральной стороне слизистой оболочки. Затем одна или несколько нагрузок могут быть доставлены непосредственно в печень через воротную вену печени. Таким образом, когда одна или несколько нагрузок демонстрируют биологическую активность в печени, такую как, например, активность, опосредованная одной или несколькими нагрузками, связывающимися с родственным рецептором, предполагается, что одна или несколько нагрузок оказывают эффект, превышающий тот, который можно было бы ожидать, исходя из концентраций в плазме, наблюдаемых у субъекта, т.е. пероральное введение носителя, нагрузки или слитой молекулы может обеспечить более высокую эффективную концентрацию доставленной одной или нескольких нагрузок в печень субъекта по сравнению с наблюдаемой в плазме крови субъекта.

[0272] В другом аспекте, настоящее изобретение относится к способам перорального введения фармацевтических композиций по настоящему изобретению. Такие способы могут включать, но ими не ограничиваясь, стадии перорального введения композиций пациентом или влажно, осуществляющим уход. Такие стадии введения могут включать введение с интервалами, например один или два раза в сутки, в зависимости от носителя, нагрузки или слитой молекулы, заболевания или состояния пациента или конкретного пациента. К таким методам также относится введение различных доз конкретного носителя, нагрузки или слитой молекулы. Например, начальная доза фармацевтической композиции может быть на более высоком уровне для обеспечения желаемого эффекта, такого как снижение уровня глюкозы в крови. Последующие дозы могут быть уменьшены после достижения желаемого эффекта. Такие изменения или модификации протоколов введения могут быть выполнены лечащим врачом или медицинским работником.

[0273] Эти фармацевтические композиции можно вводить субъекту в соответствующей дозе. Режим дозирования будет определяться лечащим врачом на основании конкретных клинических факторов. Как хорошо известно в области медицины, дозы для любого пациента зависят от многих факторов, включая размер пациента, площадь поверхности тела, возраст, пол и общее состояние здоровья, а также от
конкретного вводимого соединения, времени и способа введения и других лекарственных средств, принимаемых одновременно. Терапевтически эффективное количество для данной ситуации будет легко определено с помощью рутинных экспериментов и находится в пределах навыков и суждений рядового клинициста или врача. Специалисту в данной области техники известно, что эффективное количество фармацевтической композиции, вводимой в конкретный раствор, будет, среди прочего, зависеть от природы биологически активной нагрузки. Продолжительность лечения, необходимая для наблюдения за изменениями, и интервал после лечения для появления терапевтических эффектов, изменяется в зависимости от желаемого эффекта. Конкретные количества могут быть определены обычными тестами, которые хорошо известны специалистам в данной области.

[0274] Количество одной или нескольких нагрузок представляет собой количество, эффективное для достижения цели конкретного активного агента. Количество в композиции обычно представляет собой фармакологически, биологически, терапевтически или химически эффективное количество. Однако количество может быть меньше, чем фармакологически, биологически, терапевтически или химически эффективное количество, когда композицию используют в единичной дозированной форме, такой как капсула, таблетка или жидкость, поскольку единичная дозированная форма может содержать множество композиций носителя/биологически или химически активного агента или может содержать разделенное фармакологически, биологически, терапевтически или химически эффективное количество. Затем общие эффективные количества можно вводить в кумулятивных единицах, содержащих в целом фармакологически, биологически, терапевтически или химически активные количества биологически активной нагрузки.

[0275] В некоторых случаях, интестинальное введение композиции по настоящему изобретению, содержащей 10 мкг эксантата, может обеспечить максимальную концентрацию в плазме больше, чем примерно 15 нг/мл или больше, чем примерно 30 нг/мл. В некоторых случаях, интестинальное введение композиции по настоящему изобретению, содержащей 10 мкг эксантата, может обеспечить максимальную концентрацию в плазме, составляющую примерно 17,3 нг/мл или примерно 35,7 нг/мл. В некоторых случаях, интестинальное введение композиции по настоящему изобретению, содержащей 10 мкг эксантата, может обеспечить время достижения максимальной концентрации в плазме, составляющее примерно 60 минут или примерно 45 минут.

[0276] Если иное не определено в настоящем документе, научные и технические термины, используемые в рамках настоящего описания, должны иметь значения, обычно понятные рядовому специалисту в данной области техники. Кроме того, если иное не предусмотрено контекстом, термины в форме единственного числа должны включать форму множественного числа, и термины в форме множественного числа должны включать формы в единственном числе. В общем случае, номенклатуры, используемые в связи с культурами клеток и тканей, молекулярной биологией, имmunологией,
микробиологией, генетикой, химией белков и нуклиновых кислот и гибридизацией, описанные в настоящем документе, и способы их применения являются широко используемыми и хорошо известными в данной области техники.

[0277] Используемый в настоящем документе термин “примерно” может означать плюс или минус 1%, 2%, 3%, 4%, 5% или 10% от числа, к которому относится этот термин.

[0278] Как описано в настоящем документе, термин “процент (%) идентичности последовательности” и связанные с ним термины, в контексте аминокислотных последовательностей, представляют собой процентную долю аминокислотных остатков в кандидатной последовательности, которые идентичны аминокислотным остаткам в выбранной последовательности, после выравнивания последовательностей и введения гэпов, при необходимости, для достижения максимальной процентной идентичности последовательности, и без учета каких-либо консервативных замен как части идентичности последовательности. Выравнивание в целях определения процента идентичности аминокислотных последовательности может быть достигнуто различными способами, известными специалистам в данной области, например, с использованием общедоступного компьютерного программного обеспечения, такого как Clustal Omega, BLAST, BLAST-2, ALIGN, ALIGN-2 или программного обеспечения Megalign (DNASTAR). Специалисты в данной области могут определить соответствующие параметры для определения выравнивания, включая любые алгоритмы, необходимые для достижения максимального выравнивания по всей длине сравниваемых последовательностей.

ПРИМЕРЫ
Пример 1

[0279] В этом примере описано получение стабильных самособирающихся микрочастиц, содержащих неприродную слитую молекулу, для использования в качестве лекарственного вещества в пилюлях или таблетках для пероральной доставки биологически активной нагрузки. В частности, неприродную слитую молекулу, содержащую молекулу-носитель Cholix, имеющую аминокислотную последовательность SEQ ID NO: 2, связанную с молекулой гормона роста человека (“hGH”), имеющую аминокислотную последовательность SEQ ID NO: 5, получали с использованием коагуляционной системы протамин-цинк, как описано ниже.

[0280] Типичный вектор экспрессии слитой молекулы, содержащий молекулу SEQ ID NO: 2 и молекулу hGH, конструировали следующим образом: сначала полипептидные гены амплифицируют посредством ПЦР, включая пары рестрикцияльных ферментов NdeI и EcoRI, PstI и PsI, AgeI и EcoRI, или сайты PstI и EcoRI на двух концах продуктов ПЦР. После расщепления рестрикциейными ферментами продукты ПЦР клонируют в подходящую плазмиду для клеточной экспрессии, которая расщепляется соответствующими парами рестрикцционных ферментов. Полученные конструкции кодируют SEQ ID NO: 2 и hGH, а также мечены мотивом 6-His на N-конце полипептида
для облегчения очистки. Конечные плазмы контролировали расщеплением рестрикционными ферментами и секвенированием ДНК.

[0281] Слияние молекулы экспрессировали следующим образом: компетентные клетки E. coli BL21(DE3) pLysS (Novagen, Madison, Wis.) трансформировали стандартным методом теплового шока в присутствии соответствующей плазмы с получением клеток экспрессии слитых молекул, отобранных в среде, содержащей ампициллин, и выделяли и выращивали в бульоне Лурна-Бертани (Difco; Becton Dickinson, Franklin Lakes, NJ) с антибиотиком, затем индуцировали экспрессию белка путем добавления 1 mM изопропил-D-тиогалактопиранозида (IPTG) при оптической плотности (OD) 0.6. Через два часа после индукции, IPTG клетки собирали центрифугированием при 5000 об/мин в течение 10 мин. После лизиса клеток выделяли тельца включения, и белки солюбилизовали в буфере, содержащем 100 mM Трис-НСl (pH 8,0), 2 mM ЭДТА, 6 M гуанидин НСl и 65 mM дитиотретиола. Солюбилизированную слитую молекулу рефолдилировали в присутствии 0,1 M Трис, pH=7,4, 500 mM L-аргинина, 0,9 mM GSSG, 2 mM ЭДТА. Подвернутое рефолдингу белки оцищали посредством ионообменной хроматографии на Q-сепаре и гель-фильтрационной хроматографии Superdex 200 (Amersham Biosciences, Inc., Sweden). Чистоту белков оценивали посредством ДСН-ПААГ-электрофореза и аналитической ВЭЖХ (Agilent, Inc. Palo Alto, CA). Полученную слитую молекулу получали в концентрации 1 mg/ml и хранили в ФСБ при -80°C.

[0282] Получение микро частиц на основе протамина осуществляли следующим образом: (а) слитую молекулу, содержащую SEQ ID NO:2 и SEQ ID NO:5, добавляли к 0,1 n НСl до конечной концентрации 1 mg/ml слитой молекулы в микроцентрифужной пробирке объемом 1,5 мл, а затем к раствору слитой молекулы добавляли 0,02 мл ZnCl₂ (10 mg/ml в H₂O); (b) 2,0 мл сульфата протамина (0,6 mg/ml) добавляли к 2,0 мл 0,1 M NaPO₄, и (c) смесь со стадии (а) объединяли со смесью со стадии (b) и объединенную смесь оставляют на ночь при комнатной температуре. Сразу после смешивания (а) и (b) образовался осадок, как показал переход от прозрачного к мутному.

[0283] На следующее утро частицы визуализировали с использованием системы GE Cyclone в режиме яркого поля высокой мощности (10×). Частицы имели размер приблизительно 50 мкм и спонтанно образовывались при комнатной температуре после смешивания реагентов (см. фиг.1А). Эти частицы могут быть разбиты на более мелкие единицы размером примерно 5 мкм при увеличении ионной силы раствора путем добавления по каплям 5M NaCl (см. ФИГ.1В). Агрегаты могут быть повторно ассоциированы путем снижения ионной силы добавлением по каплям подготовленной воды Milli-Q (см. фиг.1С).

[0284] Эти данные демонстрируют, что протамин-цинковая коацерватная система может быть использована для получения стабильных самособирающихся микро частиц, содержащих слитую молекулу, полученную на основе носителя, и что система будет собираться в различные виды частиц в зависимости от ионной силы буфера и что процессы ассоциации и диссоциации обратимы для этих конкретных молекулярных
сборок. Полученные с помощью этой “настраиваемой” системы самособирающиеся микрокаверты могут быть использованы в качестве лекарственного вещества для получения пилюли или таблетки для пероральной доставки биологически активной нагрузки.

Пример 2
[0285] Используя метод примера 1, стабильные инсулинсодержащие микрокапсулы и микрокапсулы, содержащие меченный ФИТЦ инсулин, получали и оценивали способом, описанным ниже.

[0286] В одном препарате, инсулин и ФИТЦ-инсулин добавляли в соотношении 2:1 к 1,0 мл 0,1 н HCl до конечной концентрации 5 мг/мл в микроцентрифужной пробирке объемом 1,5 мл, а затем к раствору инсулина добавляли 0,02 мл ZnCl₂ (10 мг/мл в H₂O). Во втором препарате, ФИТЦ-инсулин добавляли в соотношении 2:1 к 1,0 мл 0,1 н HCl до конечной концентрации 5 мг/мл в микроцентрифужной пробирке объемом 1,5 мл, а затем к раствору инсулина добавляли 0,02 мл ZnCl₂ (10 мг/мл в H₂O). На определенной стадии, к 2,0 мл 0,1 M NaPO₄ добавляли 2,0 мл сульфата протамина (1 мг/мл). Потом раствор протамина добавляли к раствору, содержащему инсулин, и к раствору, содержащему ФИТЦ-инсулин, и каждую объединенную смесь оставляли отстаиваться в течение ночи при комнатной температуре. Осадок образовывался сразу после перемешивания, что подтверждалось перехождением от прозрачного состояния к мутному.

[0287] На следующее утро, частицы, содержащие инсулин и/или ФИТЦ-инсулин, визуализировали посредством системы GE Cyte1 в режиме яркого поля высокой мощности (10⁻⁶). Частицы имели размер примерно 50-150 мкМ и образовывались спонтанно при комнатной температуре после смешивания реагентов. На фиг.2А и 2В показано изображения яркого и синего фильтров соответственно. Синяя стрелка указывает на частицу размером примерно 150 мкМ. На фиг.2С показаны объединенные синие и светлопольные изображения микрокапсул. Наблюдаемая синяя флуоресцентия указывает на включение ФИТЦ-инсулина в частицы. Свойства флуоресцентного излучения этих микрокапсулы согласуются с композицией на белковой основе.

Пример 3
[0288] В этом примере стабильные микрокапсулы, содержащие неприродную слитную молекулу, содержавшую молекулу-носитель Cholix, имеющую аминокислотную последовательность SEQ ID NO: 6, связанную с молекулой красного флуоресцентного белка (“RFP”), получали и оценивали с использованием протамин-цинковой коагуляционной системы, как описано ниже.

[0289] Слитную молекулу, содержащую SEQ ID NO: 6, связанную с красным флуоресцентным белком (“RFP”), получали следующим образом: плазмидную конструкцию, кодирующую SEQ ID NO: 6, получали способом, описанным в настоящем документе. Экспрессию белка осуществляли с использованием клеток E. coli DH5α (Invitrogen, Carlsbad, CA) после трансформации темпом в шоком (1 мин при 42°C) соответствующей плазмидой, трансформированные клетки, отобранные на содержащих
антибиотик средах, выделяли и выращивали в бульоне Лурия-Бернтани (Difco); экспрессию белка индуцировали добавлением 1 мМ изопропил-Д-тгогалактопиронозида (IPTG); через два часа после индукции, IPTG клетки собирали центрифугированием при 5000 г в течение 10 мин при температуре 4°С; телыца включения выделяли после лициса клеток, и белки солюбилизировали в 6 М гуанидин ХCL и 2 мМ ЭДТА (рН 8,0), а также 65 мМ дитиотретилола, после рефолдинг и очистки, белки хранили в концентрации ~5 мг/мл в ФСБ (рН 7,4) без Са2+ и Mg2+ при температуре -80°С. Было подтверждено, что чистота всех использованных в этих исследованиях белков превышает 90%, что следует из данных эксклюзийной хроматографии по размеру.

[0290] Белок, в соответствии с SEQ ID NO: 6, затем модифицировали на его С-конце, чтобы сделать возможным прямое химическое связывание через свободный сульфгидрильный остаток, расположенный вблизи С-конца белка. С-концевая модификация включает ограниченную цистенном петлю, содержащую консенсусную последовательность расщепления для высокоселективной протеазы гравировки табака (TEV), второй цистени и гексагистидиновую (His6) метку. Второй Cys был включен для образования дисульфидного мостика с Cys, который, в конечном итоге, использовали для связывания. Добавление последовательности His6 к белку упрощает очистку, а последовательность расщепления TEV обеспечивает механизм для селективного удаления концевого остатка Cys после мягкого восстановления. Расщепление TEV и мягкое восстановление посредством 0,1 мМ дитиотретилола после экспрессии и выделения конструкций SEQ ID NO: 6 обеспечивали прямое химическое связывание одной или нескольких нагрузок посредством малаенидного взаимодействия в качестве общего механизма присоединения нагрузки. После расщепления протеазой TEV, восстановления и связывания RFP посредством малаенидного взаимодействия со свободным сульфгидридом, удаление свободной С-концевой последовательности достигали на второй стадии хроматографии на колонке с Ni2+. Слитая молекула в дальнейшем будет обозначаться как FM001.

[0291] Получение микрочастец на основе протамина осуществляли следующим образом: (а) FM001 добавляли к 0,1 н HCl до конечной концентрации 1 мг/мл FM001 в микроцентрифужной пробирке объемом 1,5 мл, и затем к раствору FM001 добавляли 0,02 мл ZnCl2 (10 мг/мл в H2O); во втором препарате не использовали ZnCl2; (b) к 2,0 мл 0,1 М NaPO4 добавляли 2,0 мл сульфата протамина (0,6 мг/мл); и (c) каждую из двух смесей, полученную на стадии (а) объединяли со смесью, полученную на стадии (b) и объединенные смеси оставляли отстаиваться в течение ночи при комнатной температуре. Сразу после смешивания смесей (а) и (b) образовался осадок, что подтверждалось перехождом от прозрачного состояния к мутному.

[0292] На следующее утро, с помощью системы GE Cytel получали цифровые изображения частиц. Красную флуоресценцию визуализировали путем возбуждения образца при длине волны 481 нм, а также регистрации флуоресцентного излучения при длине волны 535 нм. При 4-кратном увеличении, частицы, содержащие протамин, цинк и
FM001, имеют одинаковый размер, составляющий примерно при 150 мкМ (фиг.3А). При возбуждении светом с длиной волны 481 нм частицы излучают красную флуоресценцию (фиг.3В). Наблюдаемая красная флуоресценция свидетельствует о включении FM001 в частицы. Флуоресценция была однородной по распределению, что указывало на однородное распределение FM001 и на то, что структура белка не была нарушена в процессе образования частиц. При 10-кратном увеличении, исключение цинка из коацервата обеспечивало образование частиц одинакового размера (~150 мкМ), однако частицы имели более овальную форму (фиг.4А). Эти частицы обладали флуоресцентными свойствами, аналогичными свойствам частиц, содержащим цинк (фиг.4В), что указывает на то, что цинк не требуется для поддержания структуры белка в процессе коацервации и что композиция коацервата может определять форму частиц.

Пример 4
[0293] В этом примере исследовали ряд различных условий и композиций для получения высушенных распыленных частиц с желаемыми свойствами. В этом примере получали несколько различных композиций частиц. Эти частицы обычно состоят из носителя, лекарственного средства, полимерной матрицы, ПЭГ, поверхностно-активных веществ и цинка.

[0294] Пример подробного протокола представлен ниже для композиций 37-49, содержащей hGH/SEQ ID NO: 3/Эудрагит FS30D/Полисорбат 20/ZnCl₂. В пробирку Falcon добавляли 15 мл полисорбата, затем 7,6 мл раствора SEQ ID NO: 3 (9,5 мг, 0,27 мкмоль). Потом порошкообразный hGH 3,0 мг (0,14 мкмоль) растворяли в 4,0 мл денионизированной воды в отдельной стеклянной сцинтилляционной пробирке объемом 20 мл с получением прозрачного раствора, а затем переносили в указанный выше раствор в пробирке Falcon. К смеси добавляли 15 мл исходного раствора ZnCl₂ (5 мг/мл) (0,075 мг, 0,55 мкмоль), затем 82 мг суспензии Eudragit FS 30D. Суспензию встряхивали на ротационном шейкере в течение 20 минут, затем разбивали 50 мМ раствором бикарбоната аммония до общего объема, составляющего 25 мл. Перед сушкой распылением на распылительной сушилке Buchi B-90 nano, раствор фильтровали через дисковый фильтр с размером пор 0,4 мкм в лаборатории Pall.

[0295] Распылительную сушку осуществляли в следующих условиях: форсуника среднего размера для распыления/атомизации, температура на входе 110°С, температура на выходе 49°С, расход газа 130 л/мин, производительность насоса 12% и степень распыления 100%. Распылительная сушка завершилась через 2 часа. Продукт собирали в виде белого подвижного порошка. Выход составлял около 56% по массе. Постсвязом машиной спектрометрии, размер частиц оценивали как равный 300-600 нм. Аналогичным образом получали другие частицы.

[0296] Частицы, полученные в различных условиях составления композиции, первоначально подвергали скринингу посредством гель-электрофореза для подтверждения качества белка после процесса распылительной сушки. Для этого частицы растворяли и выделенный белок анализировали посредством вестерн-блоттинга, чтобы
убедиться, что белок не является поврежденным.

[0297] После этого различные частицы подвергали скринингу на предмет эффективности инкапсуляции и высвобождения при физиологическом значении pH. На фиг.5А показаны результаты анализа раствора частицы, содержащей инсулин, SEQ ID NO: 3 и Eudragit FS (37-156). Эта композиция продуцировала частицы с низкой скоростью высвобождения лекарственного средства при значении pH 2 и постепенным высвобождением лекарственного средства при значении pH 7. Повышение значения pH с 2 до 7 индуцировало контролируемое высвобождение ранее инкапсулированного лекарственного средства. В некоторых случаях это может представлять желаемые свойства инкапсуляции и высвобождения. На фиг.5Б показаны результаты раствора частицы, содержащей инсулин, SEQ ID NO: 3 и Eudragit L30 (37-167). Данная композиция продуцировала частицы с быстрым высвобождением лекарственного средства как при значении pH 2, так и при значении pH 7. В некоторых случаях, это может быть нежелательным свойством инкапсулирования и высвобождения. На фиг.5С показаны результаты анализа раствора частицы, содержащей hGH и Eudragit FS. Данная композиция обеспечивала низкое высвобождение лекарственного средства при значении pH 2, постепенное высвобождение лекарственного средства при значении pH 7 и контролируемую индукцию высвобождения лекарственного средства при повышении значения pH с 2 до pH 7. Этот профиль высвобождения указывает на то, что композиция потенциально может быть пригодна для перорального введения, например, посредством желудочного зонда.

[0298] Затем исследовали стабильность композиции в моделируемой кишечной жидкости с панкреатином. Различные частицы подвергали воздействию моделируемой кишечной жидкости с панкреатином, и количество оставшегося лекарственного средства оценивали через 1 час и 14 часов. На фиг.6 показан процент лекарственного средства, оставшегося через 1 час и 14 часов для стандартного раствора инсулина и пяти различных композиций. Подробные данные композиций, представленных на фиг.6, перечислены в таблице 1. Все пять высушенных распылением частиц, представленных на фиг.6, обеспечивают долговременную лекарственную защиту от панкреатина. Две разные композиции, 37-166 (инсулин/PEG8K/SEQ ID NO: 3/Eudragit FS/Tween-20/ZnCl2) и 37-224 (инсулин/SEQ ID NO: 3/2x Eudragit L30/ZnCl2), обеспечивали более высокую концентрацию инсулина через 1 час, чем при использовании только лишь инсулина.

Таблица 1: Композиции, оцененные на фиг.6.

<table>
<thead>
<tr>
<th>Название композиции</th>
<th>Композиция распылительной сушки</th>
<th>Содержание лекарственного средства (масса/масса)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Инсулин</td>
<td>Стандартный раствор инсулина</td>
<td>100%</td>
</tr>
<tr>
<td>37-166</td>
<td>Инсулин/PEG8K/SEQ ID NO: 3/Eud FS/Tw20/ZnCl2</td>
<td>1,54%</td>
</tr>
<tr>
<td>37-186</td>
<td>Инсулин/SEQ ID NO: 3/Eud FS/Tw20</td>
<td>1,42%</td>
</tr>
<tr>
<td>37-188</td>
<td>Инсулин/PEG8K/SEQ ID NO: 3/Eud L30/Tw20</td>
<td>3,17%</td>
</tr>
<tr>
<td>37-219</td>
<td>Инсулин/SEQ ID NO: 3/Eud L30/ ZnCl2</td>
<td>6,17%</td>
</tr>
<tr>
<td>37-224</td>
<td>Инсулин/SEQ ID NO: 3/2X Eud L30/ ZnCl2</td>
<td>4,97%</td>
</tr>
</tbody>
</table>

Пример 5

[0299] В этом примере будет оцениваться абсорбция лекарственного средства in vivo из различных композиций частиц. Предполагается, что задержка лекарственного средства в кишечнике будет коррелировать с абсорбией лекарственного средства и будет модулироваться композициями частиц. Флуоресцентно-меченые лекарственные средства будут преобразовываться в лекарственную форму в виде частиц способом, описанным выше. Частицы будут суспендироваться в подходящем растворе для введения посередине желудочно-эозона. В некоторых случаях, раствором может быть вода. Суспензия частиц будет вводиться крысам посередине желудочного зонда. Четырем крысам будет вводиться каждое отдельное сочетание флуоресцентно меченого лекарственного средства и композиции. Еще четырем крысам будет вводиться раствор, содержащий аналогичное суммарное количество флуоресцентно меченого лекарственного средства без преобразования в лекарственную форму в виде частиц. Перед введением флуоресцентно меченого лекарственного средства и через 0,5 часа, 1 час, 2 часа, 4 часа, 6 часов, 8 часов, 10 часов, 12 часов и 24 часа после его введения будет осуществляться сканирование всего организма на двух крысах из всех четырех. Оставшиеся две крысы, из каждой обрабатываемой группы, будут умерщвляться через 4 часа и 12 часов, и будут отбирать кишечники для подтверждения концентраций лекарственного средства.

Пример 6

[0300] В этом примере, для оценки трансцитоза in vivo, частицы композиции 37-49 (hGH/SEQ ID NO: 3/Eudragit FS) вводили в модель in vivo. Частицы композиции 37-49 вводили крысам посередине интрамедиальной инъекции в дозе 34 мкт/кг.

[0301] Самцов крыс линии Wistar содержали по 3-5 на одну клетку с 12/12-часовым циклом свет/темнота, и на момент начала проведения исследования их масса составляла 225-275 г (примерно 6-8 недель). Все эксперименты проводились во время световой фазы с использованием протокола без восстановления, в котором использовалась непрерывная анестезия изофлураном. Срединный разрез брюшной стенки длиной 4-5 см обнаруживает средние отдельы тощей кишки. Исходный раствор 3,86×10-5 M частиц композиции 37-49 получали в фосфатно-солевом буферном растворе (ФСБ) с введением 50 мкл (на 250 г крысы) посередине интрамедиальной инъекции (ILI) с использованием иглы 29-го калибра. Помечали перманентным маркером мезентерий участка инъекции. После окончания исследования, выделяли участок размером 3-5 мм, охватывающий отмеченный
сегмент кишечника, и обрабатывали его для оценки с использованием микроскопа.

[0302] Через различные промежутки времени после инъекции инъецированных животных умерщвляли, и отбирали кишечники и делали срезы. Срезы инъецированной области кишечника подготавливали и визуализировали посредством иммунофлуоресценции. Через 15 минут наблюдали поглощение частиц в сравнении с 1-5 минутами, наблюдаемыми для конструкций cholix. Как видно на фиг.7А, через 15 минут после инъекции, hGH (зеленый) и cholix (красный) изначально в значительной степени совместно локализованы (желтый) и, как видно на фиг.7В-D, наблюдали больше свободного hGH в более поздние моменты времени, через 30, 45 и 60 минут после инъекции соответственно.

[0303] Для дальнейшей оценки доставки лекарственного средства в виде наночастиц hGH SEQ ID NO: 3, трем крысам (животные А, В и С) вводили путем интраеондонной инъекции в дозе 1,93 нмоль/кг, что обеспечивало дозу примерно 43 мкг/кг hGH, и общее количество, составляющее 11 мкг hGH на крысу. Образцы сыворотки собирали через 0, 30, 45, 60, 75, 90, 105 и 120 минут после инъекции. Через 120 минут животных умерщвляли и отбирали кишечник и печень. На фиг.8 показана концентрация hGH у животного А. Наблюдали быстрое повышение концентрации hGH в сыворотке, достигающее пикового значения примерно через 40 минут после введения при 4 нг/мл и остающееся выше 3,5 нг/мл, по меньшей мере, в течение 75 минут после введения. Уровни hGH в сыворотке животных В и С не были определяемыми. Обнаруживали hGH в сыворотке и кишечнике животного А, и при этом в кишечнике животного В, но не в сыворотке. Не обнаруживали hGH ни в сыворотке, ни в кишечнике животного С, и не обнаруживали в печени ни одного из животных через 120 минут.

Пример 7

[0304] В этом примере, для оценки транспорта через клетки, частицы, содержащие hGH, наносили на клетки Caco-2. Клетки Caco-2 представляют собой клеточную линию эпителиального рака толстой кишки человека, которую можно использовать в качестве модели кишечной абсорбции лекарственных средств и других соединений у человеком. При культивировании в виде монослоя, клетки Caco-2 дифференцируются и образуют плотные контакты между клетками при культивировании в виде монослоя. Этот монослой можно использовать в качестве модели парацеллюлярного перемещения соединений.

Клетки Caco-2 экспрессируют белки-транспортеры, эфлюксные белки и ферменты конъюгации фазы II для моделирования различных трансцеллюлярных путей. В некоторых случаях, монослой клеток Caco-2 можно использовать в качестве имитации кишечного эпителия человека.

[0305] Клетки Caco-2 высевали в транспланки в количестве 1,5×10⁵ клеток/мл. Культуральную среду заменяли каждые 2 суток как в апикальной (0,5 мл), так и в базолатеральной (1,5 мл) камерах. Эксперименты проводили после выращивания клеток в течение 21 суток и формирования функционально плотных монослоев, определенного по трансцеллюлярного электрического сопротивления (TEER). На 21 сутки, трансвэллы
однократно промывали ФСБ. В апикальные камеры добавляли 100 мкл суспензии, содержащей частицы hGH. В базальную камеру добавляли 0,5 мл ФСБ. Через 2 часа при температуре 37°C, раствор из базолатеральных камер собирали и концентрировали. Транспорт hGH через ткани оценивали посредством вестерн-блоттинга. Белки разделяли посредством одномерного гель-электрофореза в 4-12% геле NuPAGE (BioRad, каталожный номер 5678095). Разделенные белки переносили на мембрану из ПВДФ (PVDF) (BioRad, каталожный номер 1704157), инкубировали с козьим поликлональным антителом против hGH (1:1000, R&D AF1067), а затем со вторичным кроличьим антикозым антителом, конъюгированным с щелочной фосфатазой (AP) (1:10000, Абкам ab6742). Полосы белков визуализировали с использованием субстрата AP для вестерн-блоттинга (Promega S3841).

| Таблица 2: Композиции частиц, изображенные на фиг.9. |
|----------------|--|----------------|
| Номер композиции | Композиция распылительной суспензии | Содержание лекарственного средства (масса/масса) |
| 37-49 | hGH/Eudragit FS/SEQ ID NO: 3/Tween 20/ZnCl₂ | 0,34% |
| 37-155 | *hGH/Eudragit FS/SEQ ID NO: 3/Tween 20/ZnCl₂ | 0,38% |
| 37-168 | 37-49 Партия 2 | 0,30% |
| 37-233 | hGH/Eudragit FS/SEQ ID NO: 3/Tween 20/ZnCl₂ | 1,77% |

Пример 8

[0306] В этом примере, несколько различных микрочастиц получали путем смещивания SEQ ID NO: 3, катиона и экссенатида, как указано в таблице 3 и таблице 4. Для определения фактических количеств каждого компонента в микрочастицах, полученные таким образом частицы анализировали посредством ВЭЖХ.

<p>| Таблица 3: Компоненты для получения частиц и анализ частиц |
|----------------|--|------------------------------|
| Код композиции | SEQ ID NO: 3 (мг) | Эксенатид (мг) | Катион (мг) | Содержание в % SEQ ID NO: 3 | Содержание в % экссенатида | SEQ ID NO: 3 (мольное отношение) | Эксенатид (мольное отношение) | Катион (мольное отношение) |</p>
<table>
<thead>
<tr>
<th>№</th>
<th>Код композиции</th>
<th>Количество SEQ ID NO: 3 (мг)</th>
<th>Количество Zn/Протамин (мг)</th>
<th>% SEQ ID NO: 3</th>
<th>% Exe</th>
<th>SEQ ID NO: 3 (мольное соотношение)</th>
<th>Экссенатид (мольное соотношение)</th>
<th>Zn/Протамин (мольное соотношение)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>019-08-E1</td>
<td>5</td>
<td>Цинк 1</td>
<td>65,1</td>
<td>4,5</td>
<td>1</td>
<td>7,16</td>
<td>32,68</td>
</tr>
<tr>
<td>2</td>
<td>019-08-E2</td>
<td>5</td>
<td>Цинк 2</td>
<td>68,9</td>
<td>5,4</td>
<td>1</td>
<td>7,16</td>
<td>65,36</td>
</tr>
<tr>
<td>3</td>
<td>019-08-E3</td>
<td>5</td>
<td>Цинк 5</td>
<td>59,0</td>
<td>11,3</td>
<td>1</td>
<td>7,16</td>
<td>163,39</td>
</tr>
<tr>
<td>4</td>
<td>019-08-E4</td>
<td>5</td>
<td>Цинк 10</td>
<td>72,2</td>
<td>0,0</td>
<td>1</td>
<td>7,16</td>
<td>326,79</td>
</tr>
<tr>
<td>5</td>
<td>019-08-E5</td>
<td>5</td>
<td>Цинк 20</td>
<td>57,5</td>
<td>3,4</td>
<td>1</td>
<td>7,16</td>
<td>653,57</td>
</tr>
<tr>
<td>6</td>
<td>019-08-E6</td>
<td>2,5</td>
<td>Протамин 0,2</td>
<td>19,7</td>
<td>2,1</td>
<td>1</td>
<td>7,16</td>
<td>0,04</td>
</tr>
<tr>
<td>7</td>
<td>019-08-E7</td>
<td>2,5</td>
<td>Протамин 0,4</td>
<td>7,3</td>
<td>2,8</td>
<td>1</td>
<td>7,16</td>
<td>0,09</td>
</tr>
<tr>
<td>8</td>
<td>019-08-E8</td>
<td>2,5</td>
<td>Протамин 0,8</td>
<td>23,5</td>
<td>5,2</td>
<td>1</td>
<td>7,16</td>
<td>0,18</td>
</tr>
<tr>
<td>9</td>
<td>019-08-E9</td>
<td>2,5</td>
<td>Протамин 2</td>
<td>17,1</td>
<td>3,1</td>
<td>1</td>
<td>7,16</td>
<td>0,45</td>
</tr>
<tr>
<td>10</td>
<td>019-08-E10</td>
<td>2,5</td>
<td>Протамин 4</td>
<td>4,9</td>
<td>1,0</td>
<td>1</td>
<td>7,16</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Таблица 4: Компоненты для получения и анализа частиц
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>019-08-E12</td>
<td>0,116</td>
<td>5</td>
<td>Цинк 10</td>
<td>0,61</td>
<td>12,75</td>
</tr>
<tr>
<td>13</td>
<td>019-08-E13</td>
<td>0,29</td>
<td>5</td>
<td>Цинк 10</td>
<td>1,42</td>
<td>14,25</td>
</tr>
<tr>
<td>14</td>
<td>019-08-E14</td>
<td>0,58</td>
<td>5</td>
<td>Цинк 10</td>
<td>19,08</td>
<td>27,83</td>
</tr>
<tr>
<td>15</td>
<td>019-08-E15</td>
<td>1,16</td>
<td>5</td>
<td>Цинк 10</td>
<td>11,67</td>
<td>12,25</td>
</tr>
<tr>
<td>16</td>
<td>019-08-E16</td>
<td>0,058</td>
<td>5</td>
<td>Протамин 10</td>
<td>20,75</td>
<td>14,11</td>
</tr>
<tr>
<td>17</td>
<td>019-08-E17</td>
<td>0,116</td>
<td>5</td>
<td>Протамин 10</td>
<td>0,43</td>
<td>12,00</td>
</tr>
<tr>
<td>18</td>
<td>019-08-E18</td>
<td>0,29</td>
<td>5</td>
<td>Протамин 10</td>
<td>3,25</td>
<td>19,75</td>
</tr>
<tr>
<td>19</td>
<td>019-08-E19</td>
<td>0,58</td>
<td>5</td>
<td>Протамин 10</td>
<td>0,90</td>
<td>11,17</td>
</tr>
<tr>
<td>20</td>
<td>019-08-E20</td>
<td>1,16</td>
<td>5</td>
<td>Протамин 10</td>
<td>17,83</td>
<td>9,17</td>
</tr>
</tbody>
</table>

[0307] Высвобождение эксенатида in vitro из полученных выше частиц оценивали путем инкубации частиц в растворах с различными значениями рН в течение до 18 часов. Количество высвобожденного эксенатида определяли количественно посредством жидкостной хроматографии с обращенной фазой (ОФ ВЭЖХ, фиг.10А и 10В) или эксклюзционной хроматографии (SEC, фиг.10C и 10D). Композиции образовывали рН-стабильную смесь, что видно на фиг.10A-D.
Пример 9
[0308] Для определения стабильности панкреатина различных SEQ ID NO: 3 и экссенатидные комплексы инкубировали с ферментами панкреатина в течение 0, 30, 60 или 120 минут, как описано ранее. На фи́г.11А-С показаны количества SEQ ID NO: 3 (~30162 да), экссенатида (~7000 да) и протамина (~4186 да), оставшиеся для разных композиций в разные моменты времени. В таблице 5, таблице 6 и таблице 7 ниже показаны композиции и моменты времени каждого трека на фи́г.11А-С.

Таблица 5: Описание треков на фи́г.11А

| Трек | Композиция: соотношение носитель:цинк:экссенатид | Момент времени (минуты) | Трек | Композиция: соотношение носитель:цинк:экссенатид | Момент времени (мин)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:0:0</td>
<td>0</td>
<td>9</td>
<td>1:1:1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>30</td>
<td>10</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>60</td>
<td>11</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>120</td>
<td>12</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>1:1:0</td>
<td>0</td>
<td>13</td>
<td>1:2:1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>30</td>
<td>14</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>60</td>
<td>15</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>120</td>
<td>16</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Таблица 6: Описание треков на фи́г.11Б

| Трек | Композиция: соотношение носитель:протамин:экссенатид | Момент времени (минуты) | Трек | Композиция: соотношение носитель:протамин:экссенатид | Момент времени (минуты)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0:0:1</td>
<td>0</td>
<td>9</td>
<td>1:0:16:1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>30</td>
<td>10</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>60</td>
<td>11</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>120</td>
<td>12</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>0:1:1</td>
<td>0</td>
<td>13</td>
<td>1:0:8:1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>30</td>
<td>14</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>60</td>
<td>15</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>120</td>
<td>16</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Таблица 7: Описание треков на фи́г.11С
На фиг. 12А-С показаны конфокальные изображения микрочастиц, полученных из cholix, ФИТЦ-меченного эксенацтада и цинка. На каждом изображении показана линейка масштабом 20 мкм. Распределение по размерам примерно 100 частиц показано на фиг. 13. Средний размер микрочастиц составлял ~5 мкм ± 2 мкм.

Для определения способности частиц к трансцитозу через клетки SMI-100 человека, частицы получали способом, указанным в таблице 8. Полученные частицы растворяли в 10 мл ФСБ и наносили 100 мл раствора апикальную сторону клеток и в базальную камеру добавляли 500 мл ФСБ. Через 1 час при температуре 37°С, белки в базальном растворе концентрировали и анализировали посредством вестерн-блоттинга. Эксенацтад в базальном растворе количественно определяли посредством ВЭЖХ. Как видно на фиг. 14 и представленно в таблице 8, трансцитоз наблюдался в 6 исследуемых композициях. Е8 соответствует контролю без белков, причем Е9 не растворялся в ФСБ. Более высокие уровни переноса эксенацтадов наблюдались у частиц, содержащих цинк, а не протамин (Е11, Е13 и Е14).

Таблица 8: Композиции, используемые в анализе трансцитоза

<table>
<thead>
<tr>
<th>Композиция</th>
<th>SEQ ID NO: 3 (мг)</th>
<th>Эксенатид (мг)</th>
<th>Катион (мг)</th>
<th>% SEQ ID NO: 3</th>
<th>Эксенатид в %</th>
<th>Базолатеральная концентрация эксенацтада (нг/мл)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>0</td>
<td>35</td>
<td>Цинк 2</td>
<td>0</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>E9</td>
<td>2,5</td>
<td>2,5</td>
<td>Протамин 2</td>
<td>17,1</td>
<td>3,1</td>
<td>0</td>
</tr>
<tr>
<td>E6</td>
<td>2,5</td>
<td>2,5</td>
<td>Протамин 0,2</td>
<td>19,7</td>
<td>2,1</td>
<td>0</td>
</tr>
<tr>
<td>E16</td>
<td>0,058</td>
<td>5</td>
<td>Протамин 10</td>
<td>20,8</td>
<td>14,1</td>
<td>3</td>
</tr>
<tr>
<td>E18</td>
<td>0,29</td>
<td>5</td>
<td>Протамин 10</td>
<td>3,25</td>
<td>19,8</td>
<td>3</td>
</tr>
<tr>
<td>E11</td>
<td>0,058</td>
<td>5</td>
<td>Цинк 10</td>
<td>0,42</td>
<td>13,6</td>
<td>4</td>
</tr>
</tbody>
</table>
Пример 10: Исследование in vivo

[0311] Композиции отбирали для исследования in vivo. Эти композиции получали в большем масштабе, и образцы анализировали на содержание и чистоту описанным выше способом. Данные о композиции и результаты аналитических исследований представлены в таблице 9. В типичном препарате, раствор, содержащий носитель Cholix SEQ ID NO:3 (или, если Cholix не был заменен водой), смешивали с раствором эксентида в течение одной минуты в смесительном устройстве. К перемешиваемому раствору по каплям добавляли раствор цинка или протамина. После перемешивания в течение 15 мин, весь раствор/суспензию лиофилизировали. Аналогичным способом получали три дополнительные композиции с использованием эксентида, меченного флуоресцением; данные композиций приведены в таблице 10. Флуоресценция на боковой цепи лизина добавляли к N-концу эксентида посредством твердофазного пептидного синтеза.

Таблица 9: Композиции эксентида, Cholix (SEQ ID NO: 3) и катиона

<table>
<thead>
<tr>
<th>Код композиции</th>
<th>Количество SEQ ID NO: 3 (мг)</th>
<th>Количество эксентида (мг)</th>
<th>Количество Zn/Pro (мг)</th>
<th>% SEQ ID NO: 3</th>
<th>Эксенатид в %</th>
<th>Чистота в %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 019-08-E10</td>
<td>0</td>
<td>10</td>
<td>Цинк 20</td>
<td>0</td>
<td>13,45</td>
<td>>95</td>
</tr>
<tr>
<td>13 019-08-E13</td>
<td>0,58</td>
<td>10</td>
<td>Цинк 20</td>
<td>3,10</td>
<td>37,68</td>
<td>>95</td>
</tr>
<tr>
<td>14 019-08-E14</td>
<td>1,16</td>
<td>10</td>
<td>Цинк 20</td>
<td>4,57</td>
<td>24,7</td>
<td>>95</td>
</tr>
<tr>
<td>18 019-08-E18</td>
<td>0,58</td>
<td>10</td>
<td>Протамин 20</td>
<td>2,75</td>
<td>35,65</td>
<td>>95</td>
</tr>
<tr>
<td>10 019-08-E10</td>
<td>0</td>
<td>10</td>
<td>Цинк 20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 10: Композиции, полученные с эксентида-флуоресценином.

<table>
<thead>
<tr>
<th>Композиция</th>
<th>Компоненты</th>
<th>% SEQ ID NO: 3</th>
<th>% Эксенатид</th>
</tr>
</thead>
<tbody>
<tr>
<td>019-10-E0 ФИТЦ</td>
<td>Экс-флуоресцен+Zn (1:2)</td>
<td>0</td>
<td>13,45</td>
</tr>
<tr>
<td>019-10-E14 ФИТЦ</td>
<td>SEQ ID NO: 3+Екс-флуоресцен+Zn</td>
<td>4,57</td>
<td>24,7</td>
</tr>
<tr>
<td>(0,116:1:2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>019-10-E18 ФИТЦ</td>
<td>SEQ ID NO: 3+Exe- флороцен+Pro (0,058:1:2)</td>
<td>2,75</td>
<td>35,65</td>
</tr>
</tbody>
</table>

Чистота каждого порошка, использованного при получении композиций, соответствовала следующему: процентное содержание эксенната ~ 89,0% и процентное содержание SEQ ID NO: 3 ~ 71,8%, определенная путем вычисления выраженной в процентах относительной площади пика, наблюдаемой на хроматограмме, получаемой в результате эксклузионной хроматографии (SEC).

[0312] Анализ панкреатина проводили для определения стабильности различных композиций; результаты можно увидеть на фиг.17А и 17В. Образцы анализировали с использованием 4-20% готовых гелей Citerion TGX STAIN-FREE (Bio-Rad, 5678094), неокрашенного стандарта Precision Plus (Bio-Rad, 161-0375) и анализировали посредством сканера гелей ThermoFisher Gel Scanner. Композиции Е14, Е18, Е14-ФИТЦ и Е18-ФИТЦ показали очень незначительное расщепление SEQ ID NO: 3 даже после 2 ч воздействия ферментами панкреатина. На фиг.18 показана хроматограмма, полученная методом хроматографии с обращенной фазой (ОФ ВЭЖХ), показывающая присутствие SEQ ID NO: 3 при времени удерживания 6,8 мин и эксенната при времени удерживания 7,5 мин. Эти композиции также оценивали на растворимость в воде при различных значениях pH. Как видно на фиг.19, композиции ФИТЦ были в меньшей степени растворимы, чем композиции без ФИТЦ. Композиция Е14 показала низкую растворимость при значениях pH 1 и высокую растворимость при значениях pH 7 и выше. Композиция Е0 также показала низкую растворимость при значениях pH 1 и высокую растворимость при значениях pH 5 и выше.

Для оценки фармакокинетики и фармакодинамики in vivo частицы суспендировали в ФСб и по 100 мкл каждой взвести вводили в просвет кишечника крысы. Для каждой композиции использовали четыре крыса, и композиции суспендировали для получения дозы 10 мкг эксенната для Е14 и Е18, и 0 мкг эксенната для Е0. Образцы крови по 100 мкл брали через 15, 30, 45, 60 и 90 минут после инъекции. Крови давали свернуться, а затем центрифугировали для получения сыворотки, концентрацию эксенната определяли посредством иммуноферментного анализа (ИФА). Как видно на фиг.20, эксеннат обнаруживали в сыворотке животных, которым вводили как Е14, так и Е18. Композиция Е18 обеспечивала более высокую максимальную концентрацию в сыворотке и большую площадь под кривой. Максимальная концентрация Cmax для композиции Е14 составляла 17,3 нг/мл, а для композиции Е18 составляла 35,7 нг/мл. Время достижения максимальной концентрации в плазме крови Tmax составляла 60 минут для Е14 и 45 минут для Е18. Никаких изменений по сравнению с исходным уровнем в уровнях глюкозы в крови не наблюдали ни у одного животного. Для сравнения, крысам внутривенно вводили эквивалентное количество эксенната и оценивали концентрацию в сыворотке, см.
Фиг. 21. Фармакокинетика введенного в кишечник E14, E18 и экскенатида, введенного внутривенно, сравнивается в таблице 11.

Таблица 11. Фармакокинетика.

<table>
<thead>
<tr>
<th>Композиция</th>
<th>Cmax (нг/мл)</th>
<th>AUC (нг/мл × мин)</th>
<th>Относительная доступность (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>465,0</td>
<td>27250</td>
<td>100</td>
</tr>
<tr>
<td>E14</td>
<td>20,2</td>
<td>996,3</td>
<td>3,66</td>
</tr>
<tr>
<td>E18</td>
<td>40,6</td>
<td>1386</td>
<td>5,09</td>
</tr>
</tbody>
</table>

Пример 11: Получение композиций, содержащих экскенатид

[0314] Экскенатид (SEQ ID NO: 11) представляет собой пептид, обладающий GLP-1-подобной биологической активностью, который стабилизирован С-концевым амином и N-концевым Н. В этом примере, две неприродные выделенные конструкции, содержащие: 1) носитель, имеющий SEQ ID NO: 78, преобразованный в носитель, имеющий SEQ ID NO: 70 и сшитый с SEQ ID NO: 11, и 2) носитель, имеющий SEQ ID NO: 77, преобразованный в носитель, имеющий SEQ ID NO: 80 и сшитый с SEQ ID NO: 11, получали и исследовали на перенос через кишечный эпителий in vivo. Носители, имеющие SEQ ID NO: 80 и SEQ ID NO: 70, получали способом, описанным в настоящем документе, а экскенатид (SEQ ID NO: 11) (кат. № HOR-246) приобретали у компании ProSpec-Tany Technogene Ltd. PO Box 6591, East Brunswick, NJ 08816. Набор для сшивания белков Pierce™ Controlled Protein-Protein Crosslinking Kit (кат. № 23456), содержащий сшивющий агент сульфо-СМЦК(SMCC), приобретали у компании ThermoFisher.

Активация нагрузки и носителя, и поперечное сшивание:

[0315] Экскенатид (10 мг) растворяли в 5 мл H₂O с образованием раствора с концентрацией 2 мг/мл. Сульфо-СМЦК (2 мг) растворяли в 2 мл ФСБ. Непосредственно после этого, к 1,0 мл раствора экскенатида добавляли 0,088 мл (~ 5-кратный молярный избыток) раствора сульфо-СМЦК и инкубировали 30 мин при комнатной температуре. Непрореагировавший сульфо-СМЦК удаляли, нанося 1,0 мл реакционной смеси маленид-экскенатид на обесщелачивающую колонку, уравновешенную ФСБ, элюируя ФСБ и собирая фракции по 0,5 мл. Для локализации белкового пика, измеряли оптическую плотность каждой фракции при длине волны 280 нм. Объединяли пиковые фракции, содержащие большую часть белка. Концентрацию объединенного активированного экскенатида определяли путем сравнения его оптической плотности при длине волны 280 нм с оптической плотностью исходного раствора белка.

[0316] Носители, имеющие SEQ ID NO: 77 и SEQ ID NO: 78, имеют С-концевое удлинение, содержащее сайт расщепления TEV, фланированный двумя цистеиновыми остатками, образующими дисульфидную связь, и С-концевую His₆ метку. Носители, имеющие SEQ ID NO: 77 и SEQ ID NO: 78, очищали на колонке HisTrap стандартными способами. Активировали 2 мг белка (200 мкг 10 мг/мл) в ФСБ при значении рН 7,4 обработкой 2 мкл 0,1 М дитиотретола и 5 мкл протеазы TEV в течение двух часов при
температуру 30°C. Расщепленный и восстановленный белок наносили на колонку HisTrap объемом 1 мл, уравновешенную ФСБ. С-концевой фрагмент, связанный с колонкой, и активированный N-концевой продукт SEQ ID NO: 80 или SEQ ID NO: 70 со свободным цистеином рядом с С-концом собирали в проточном режиме.

[0317] Активированный мальеимидом эксенатид и носители (белок, содержащий сульфидрил-SEQ ID NO: 80, или белок, содержащий сульфидрил-SEQ ID NO: 7 белок) смешивали в равных молярных количествах и затем инкубировали в течение 60 минут при комнатной температуре. Чистоту сшитого СМЦК комплекса SEQ ID NO: 70 - эксенатид оценивали в окрашенном кумасси геле в присутствии додецилсульфата натрия. Комплекс имел приблизительно правильную молекулярную массу и чистоту >90% (фиг. 22). Затем сшитую конструкцию для доставки хранили при температуре 4°C.

Пример 12: Трансциритоз конструкций для доставки эксенатида in vivo:

[0318] Конструкции для доставки из примера 11 исследовали на перенос через эпителий следующим образом: крыс линии Спрague-Доули (Sprague Dawley®) дицого типа (~200-250 граммов, возраст ~6 недель, приобретенные у компании Charles River) не кормили в течение ночи для очистки их кишечников. Подготовливали следующие материалы: микроцентрифужные пробирки, содержащие 4% формальдегида, пробирки для консервации тканей, микроцентрифужные пробирки для сбора крови, микроцентрифужные пробирки для сбора сыворотки, ФСБ и исследуемый образец. Животных готовили к эксперименту путем анестезии изофлораном и брилли брюшка. Для каждого животного подготавливали четыре инъекции (2 в толстую кишку и 2 в толстую кишку). Брюшную полость вскрывали. Участки инъекций локализовывали и отмечали отличительными цветами. Исследуемые образцы медленно вводили в просвет в течение 10 минут для толстой кишки и 40 минут для тощей кишки. Животные получали 35 мкг белка на инъекцию в концентрации 1 мкг/мкл. Эвтаназию животных осуществляли через 50 минут. Терминальный образец крови собирали посредством пункции сердца. Толстую кишку и толстую кишку удаляли и помещали на рабочую поверхность с пластиковым покрытием. Содержимое тощей кишки и толстой кишки смывали ФСБ и выбрасывали. Из участка инъекции вырезали отрезок кишки длиной 1 см. Иссеченную ткань разрезали пополам. Один срез помещали в 4% формальдегид. Затем оставшуюся ткань разрезали вдоль и немедленно помещали в микроцентрифужную пробирку и замораживали. Этот процесс повторяли в отношении всех участков инъекций. Печень (~1 см³) удаляли и разделяли на 2 части. Для хранения один срез печени помещали в формальдегид, а второй сразу же замораживали. Образцы кишечника, печени и сыворотки крови собирали через 40 минут после инъекции. Образцы крови центрифугировали и полученную сыворотку переносили в контейнер для хранения. Образцы переносили на сухой лед и хранили при -80°C. Способ дозирования был следующим:

SEQ ID NO: 70-Эксенатид 100 мкл, 490 пмоль/29,4 мкг (4,9 мкМ)
SEQ ID NO: 80-Эксенатид 100 мкл, 490 пмоль/30,9 мкг (4,9 мкМ)
SEQ ID NO: 11 100 мкл, 490 пмоль/2 мкг (4,9 мкМ)
Биоаналитический анализ кишечного эпителиального транспорта SEQ ID NO: 70-Эксенатид, SEQ ID NO: 80-Эксенатид и SEQ ID NO: 11 (Эксенатид) проводили с использованием набора Эксендин-4 для иммуноферментного анализа (Phoenix Pharma, Cat# EK-070-94) следующим образом: образцы тканей получали из Brains On-line; В каждую пробирку, содержащую образец ткани, добавляли 300 мкл буфера для анализа (1×); ткань удаляли из буфера для анализа и помещали на стерильный чистый планшет с крышкой для клеточных культур; кишечные образцы осторожно удаляли клеточным скребком, стараясь не задеть брыжейку; образцы печени обрабатывали аналогичным образом с дополнительной мацерацией и гомогенизацией; полученный клеточный гомогенат переносили обратно в исходную пробирку; оставшиеся образцы ткани и рабочую область промывали 100 мкл буфера (2×); раствор клеточного гомогената центрифугировали с максимальным усилием в течение 5 минут; супернатант наносили на планшет для ИФА, который обрабатывали в соответствии с инструкциями производителя; оставшийся супернатант хранили при температуре -20³С для последующего применения.

Как показано на фиг.23, перенос как SEQ ID NO: 70-эксенатида, так и SEQ ID NO: 80-эксенатида через эпителиальные клетки кишечника наблюдался через 10 и 40 минут. Кроме того, как SEQ ID NO: 70-эксенатида, так и SEQ ID NO: 80-эксенатид переносились с более высокой скоростью, чем только SEQ ID NO: 11 (эксенатид), в частности через 40 минут.

Пример 13: Глюкозорегулирующая активность конструкции доставки с экзенатидной нагрузкой

Модель теста с глюкозной нагрузкой, используемая для тестирования SEQ ID NO: 70 - экзенатида, была разработана для изучения возможности GLP-1-подобной активности повышать скорость восстановления после скачка уровня глюкозы. Внутрибрюшинную инъекцию глюкозы использовали для инициирования скачка уровня глюкозы, и экзенатид, вводимый путем внутрибрюшинной инъекции, использовался в качестве положительного контроля для определения времени и степени эффекта по сравнению с эффектом, наблюдаемым при контроле внутрибрюшинной инъекции плацебо.

Самцы мышей линии CD1, использованные в тесте с глюкозной нагрузкой, имели возраст 9-16 недель. Для того, чтобы свести к минимуму вызванный процедурой стресс, животных акклиматизировали к окружающей среде, взятину проб крови и процедурам дозирования в течение 1 недели до начала экспериментов, поскольку уровень глюкозы в плазме может адаптироваться к стрессу, вызванному процедурой. Перед проведением исследования, мыши не получали корм в течение 18 часов. Перед проведением исследования, животных взвешивали. У всех животных определяли исходный уровень сахара в крови перед введением дозы 2 мг/кг раствора D-глюкозы (в 50 мкл стерильного ФСБ) путем внутрибрюшинной (IP) инъекции. Затем животным вводили внутрибрюшинную инъекцию 10 мг SEQ ID NO: 14 (положительный контроль), желудочный зонд для экспериментальной обработки, содержащий 10 мг SEQ ID NO: 14 в
200 мкл 0,2 М NaHCO₃ (pH 8,5), или желудочный зонд 200 мкл 0,2 М NaHCO₃ (отрицательный контроль). Образцы крови брали в моменты времени t=0, 15, 30, 45, 60 мин; 2, 3 и 4 часа. Измерения уровня глюкозы в крови проводили с использованием взятого из хвоста образца крови объемом 5 мл с помощью коммерческого глюкометра, который перед началом исследования был откалиброван по глюкозным стандартам.

[0323] Профиль временной зависимости уровня глюкозы в крови у животных, получавших три разных препарата, представлен на фиг.24. Коррекция уровня глюкозы в крови наступала уже через 15 мин после внутрибрюшинного введения 10 мкг коммерческого экстената (1-40)-Gly, и профиль коррекции, завершался на 120 мин. Желудочный зонд с SEQ ID NO: 70-экстенатид (10 мг) приводил к аналогичной зависимости концентрации глюкозы в крови от времени. Для сравнения, у мышей с отрицательным контролем уровень сахара в крови был в 2 раза выше, и для полного восстановления до исходного уровня требовалось около 4 часов. Эти результаты свидетельствуют о том, что последовательность носителя SEQ ID NO: 70 была способна облегчать трансцитоз эпителиальных клеток биологически активного экстената, количество которого было достаточно для получения фармакодинамического эффекта в данной модели исследования с глюкозной нагрузкой.

Пример 14: Активация рецептора GLP-1 конструкцией доставки с экстенатидной нагрузкой

[0324] SEQ ID NO: 71 представляет собой конструкцию для доставки слитого белка, содержащую N-концевой домен экстената-4 (SEQ ID NO: 14), спейсер (SEQ ID NO: 79) и C-концевой носитель (SEQ ID NO: 73). SEQ ID NO: 83 представляет собой конструкцию для доставки слитого белка, содержащую N-концевой носитель (SEQ ID NO: 67), спейсер (SEQ ID NO: 79) и C-концевой домен экстената-4 (SEQ ID NO: 14). Анализ взаимодействий β-аррестина и рецепторов, сопряженных с G-белком PathHunter® (GPCR) (DiscoverRx) использовали для анализа способности SEQ ID NO: 71, SEQ ID NO: 11 (Экстенатид) и M+SEQ ID NO: 65 связывать рецептор GLP-1. В анализе PathHunter, связывание лиганда активирует рецептор GLP-1 и обеспечивает рекрутирование β-аррестина к рецептору. Статус активации рецептора определяется посредством анализа усиления сигнала, основанного на ферментной комплементации фрагментов. Фермент β-галактозидаза (β-gal) расщепляется на два фрагмента: донор фермента (ED) и акцептор фермента (EA). Самостоятельно эти фрагменты не обладают активностью. Однако они дополняют друг друга с образованием активного фермента β-gal, при объединении путем сборки белкового комплекса. Рецептор GLP-1 метили фрагментом ED и коэкспрессировали в клетках, стабильно экспрессирующих β-аррести, меченый EA. Рекрутирование EA-меченного β-аррестина активированным ED-меченным рецептором GLP-1, объединяет домены EA и ED с восстановлением активности фермента β-gal, которую можно обнаружить по высвобождению люмисенцентного продукта. На фиг.25 показано, что SEQ ID NO: 11 и SEQ ID NO: 71 связываются с рецептором. SEQ ID NO: 83 демонстрировала пониженную активность по сравнению с SEQ ID NO: 71.
[0325] Хотя в настоящем документе были показаны и описаны предпочтительные варианты осуществления настоящего изобретения, специалистам в данной области техники будет очевидно, что такие варианты осуществления приведены только в качестве примера. Специалистам в данной области техники будут очевидны многочисленные варианты, изменения и замены без отхода от сущности изобретения. Следует понимать, что различные альтернативы вариантам осуществления изобретения, описанным в настоящем документе, могут быть использованы при практическом применении изобретения. Предполагается, что следующая формула изобретения определяет объем изобретения и что способы и структуры, а также их эквиваленты, включены в объем настоящей формулы изобретения.

Таблица 12. Последовательности

<table>
<thead>
<tr>
<th>SEQ NO</th>
<th>Последовательность</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VEEALNIFDECRSRCSPCSLTPEPGKPIQSKLSIPSD VVLDEGVLYYSMTINDEQNDIKDEDKGESIITI GEFATVRATRHYVNQDAPFGVIHLDITTENGT KTYSYNRKEGFEAINWLVPIGEDSPASIKISVD ELDQQRNIIEVPKLYSIDLDNQTLQEWKQTQGN VSFSVTRPEHNAISWPSVSYKAAQKEGRH RKWAHWHTGLACWLVPMDAJNYITQQNCT LGDNWFGGSYETVAGTPKVITVKQGIEQKPV EQRHFSKGNAMSALAAHRCVGPLETLARS RKPRDLTDDLSCAYQAQNIVSLFVATRILFSH LDSVFTLNLDEQEPEVAERLSDLRINENNGP MVTQVLTVARQIYNDYVTTHPGLTPEQTSAG AQAADILSLFCPDADKSCVASNNDQANINIES RSGRSYLPENRAVITPQGVTNWTYQELEATH QALTREGYVFVGYHGTNHAQQTIQVNRAPV PRGNNTENEKKWGGLYVATHAEVAGHYARI KEGTGVEYLTPRAEDARGVMLRYVIPRASL ERFYRTNTPLENAEEHIQTQVIGHSLPLRNEAFT GPESAGGEDETVIGWDMAIHAVIAIPSITPAGNA YEELAIDDEEEAAVEKQISSTKPPYKERRDELK</td>
</tr>
<tr>
<td>2</td>
<td>VEEALNIFDECRSRCSPCSLTPEPGKPIQSKLSIPSD VVLDEGVLYYSMTINDEQNDIKDEDKGESIITI GEFATVRATRHYVNQDAPFGVIHLDITTENGT</td>
</tr>
</tbody>
</table>

| 3 | KTYSYNRKEGEFAINWLVPIGEDSPASIKISVD ELDOQRNIIEVPKLYSIDLNDQTLEQWKTQGNN VSFSVTRPEHNIAISWPSVSYSYKAQQKEGSRHK RWAWHWTGLALCWLVPMDAIJNYITQQNCT LGDNWFGGSYETVAGTPKVITVKQGIEQKPV EQRIHFSKGNAMSALAAHRVCGVPLETLARS RKPDLTDDLSCAYQAQNIVSLFVATRILFSH LDSVFTLNLDQEQEPEVAERLSDLRRINENMG MVTVQVTLVARQIYNDYVTHHPGLTPEQTSAGAQA MVEEALNFDECSPCSLTPEPGKPIQSKLSIPS DVVLDEGVLYYSMTINDEQNDIKDEDKGESII TIGEFATVRAETHYVNQDAPFGVHIHLDITTEN GTKTYSYNRKEGEFAINWLVPIGEDSPASIKISVDELDQQRNIIEVPKLYSIDLNDQTLEQWKTQG GNVSVSFSVTRPEHNIAISWPSVSYSYKAQQKEGSRHKRWAWHWTGLALCWLVPMDAIJNYITQQNCT CTLDGNWFGGSYETVAGTPKVITVKQGIEQKPV PVEQRIHFSKGSGGSGGGGGGSPRRRURRSSRPRVSRRRRRRGGGRRHHHHHHHH GGGGSGGGGGSGGGG MFPTIPLSRFDNAMLRAHRHLQFLAFDQYQEF EEAYIPKEQKYSFLQNPQTSLCFSESIPTPSNREETQQKSNLELRLISLLLLIQSWLEPVQFLRSVFANSLVYGASDSSNYDLLLLKDEEGIQLTMG DGSPTGQIFKQTYSKFDTNSSHDALLKNYGLLYCPRKDMKDVETFLRIVQCRSVEGSCGF VEEALNFDECSPCSLTPEPGKPIQSKLSIPSVD VVLDEGVLYYSMTINDEQNDIKDEDKGESITITGEFATVRAETHYVNQDAPFGVHIHLDITTENGKT KTYSYNRKEGEFAINWLVPIGEDSPASIKISVD ELDOQRNIIEVPKLYSIDLNDQTLEQWKTQGNVSFSVTRPEHNIAISWPSVSYSYKAQQKEGSRHKRWAWHWTGLALCWLVPMDAIJNYITQQNCT LGDNWFGGSYETVAGTPKVITVKQGIEQKPV |
состоящей из A и T; X114 выбран из группы, состоящей из N и H; X118 выбран из группы, состоящей из P и I; X119 выбран из группы, состоящей из I и P; X131 выбран из группы, состоящей из V и I; X134 выбран из группы, состоящей из L и I; X137 выбран из группы, состоящей из Q и K; X160 выбран из группы, состоящей из K и E; X161 выбран из группы, состоящей из T и N; X166 выбран из группы, состоящей из S и F; X168 выбран из группы, состоящей из S и A; X174 выбран из группы, состоящей из H и Q; X175 выбран из группы, состоящей из N, S, SIAKQS и SIAKQSIAKQS; X186 выбран из группы, состоящей из K и N; X189 выбран из группы, состоящей из Q, E и H; X191 выбран из группы, состоящей из E, N и D; X193 выбран из группы, состоящей из S и A; X200 выбран из группы, состоящей из H и N; X202 выбран из группы, состоящей из H, L, F и R; X204 выбран из группы, состоящей из G и T; X205 выбран из группы, состоящей из L и S; X206 выбран из группы, состоящей из A и P; X207 выбран из группы, состоящей из L, E и K; X208 выбран из группы, состоящей из C и V; X209 выбран из группы, состоящей из W, V и T; X211 выбран из группы, состоящей из V и не содержащей аминокислоту; X212 выбран из группы, состоящей из P и не содержащей аминокислоту; X213 выбран из группы, состоящей из M, I, L и не содержащей аминокислоту; X214 выбран из группы, состоящей из D и не содержащей аминокислоту; X215 выбран из группы, состоящей из A и не содержащей аминокислоту; X216 выбран из группы, состоящей из I и не содержащей
аминокислоту; Х217 выбран из группы, состоящей из Y и C; Х218 выбран из группы, состоящей из N и F; Х219 выбран из группы, состоящей из Y и F; Х220 выбран из группы, состоящей из I и E; Х221 выбран из группы, состоящей из T и D; Х222 выбран из группы, состоящей из Q и R; Х223 выбран из группы, состоящей из Q, E и A; Х224 выбран из группы, состоящей из N, L и Q; Х227 выбран из группы, состоящей из L и Y; Х229 выбран из группы, состоящей из D и E; Х230 выбран из группы, состоящей из N и D; Х232 выбран из группы, состоящей из F, H и Y; Х235 выбран из группы, состоящей из S и A; Х237 выбран из группы, состоящей из E и K; Х242 выбран из группы, состоящей из T и I; Х244 выбран из группы, состоящей из K, E и G; Х245 выбран из группы, состоящей из V и A; Х247 выбран из группы, состоящей из T и М; Х252 выбран из группы, состоящей из I и М; Х256 выбран из группы, состоящей из Р, T и A; Х265 выбран из группы, состоящей из K, Q и N; Х266 выбран из группы, состоящей из G и K; Х269 выбран из группы, состоящей из М и I; Х270 выбран из группы, состоящей из S и E; Х271 выбран из группы, состоящей из A и T; Х288 выбран из группы, состоящей из S и G; Х293 выбран из группы, состоящей из D и Y; Х295 выбран из группы, состоящей из T, P и Q; Х299 выбран из группы, состоящей из S и Q; Х301 выбран из группы, состоящей из A и V; Х303 выбран из группы, состоящей из Q и N; Х306 выбран из группы, состоящей из N и Q; Х312 выбран из группы, состоящей из V и L; Х316 выбран из группы, состоящей из I и М; Х319 выбран из группы,
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | состоящей из S и T; X321 выбран из группы, состоящей из L и I; X324 выбран из группы, состоящей из V и I; X330 выбран из группы, состоящей из D, E и H; X331 выбран из группы, состоящей из E и G; X333 выбран из группы, состоящей из E и A; X335 выбран из группы, состоящей из E и A; X337 выбран из группы, состоящей из A и T; X341 выбран из группы, состоящей из S, D и T; X342 выбран из группы, состоящей из D и A; X343 выбран из группы, состоящей из L и I; X345 выбран из группы, состоящей из R и Q; X349 выбран из группы, состоящей из N и D; X353 выбран из группы, состоящей из M и V; X355 выбран из группы, состоящей из T и I; X360 выбран из группы, состоящей из V и I; X371 выбран из группы, состоящей из H и E; X374 выбран из группы, состоящей из G и L; X376 выбран из группы, состоящей из T и I; X383 выбран из группы, состоящей из G и S; X393 выбран из группы, состоящей из F и L; X394 выбран из группы, состоящей из C и Y; X397 выбран из группы, состоящей из A и T; X399 выбран из группы, состоящей из K, E и G; X400 выбран из группы, состоящей из S, P и H; X404 выбран из группы, состоящей из S и L; X405 выбран из группы, состоящей из N и D; X406 выбран из группы, состоящей из N и S; X413 выбран из группы, состоящей из I и V; X423 выбран из группы, состоящей из P и L; X431 выбран из группы, состоящей из P и Q; X443 выбран из группы, состоящей из E и D; X444 выбран из группы, состоящей из A и T; X445 выбран из группы, состоящей из T и K; X448 выбран из группы, состоящей из A и T; X451 выбран из группы,
состоящей из R и Q; X453 выбран из группы, состоящей из G и D; X465 выбран из группы, состоящей из V и A; X469 выбран из группы, состоящей из T, S и N; X475 выбран из группы, состоящей из A, S и T; X481 выбран из группы, состоящей из N и S; X482 выбран из группы, состоящей из N и D; X485 выбран из группы, состоящей из N, S и K; X487 выбран из группы, состоящей из E, R и K; X488 выбран из группы, состоящей из K, A и E; X492 выбран из группы, состоящей из L и V; X495 выбран из группы, состоящей из A и S; X497 выбран из группы, состоящей из H и D; X499 выбран из группы, состоящей из E и S; X500 выбран из группы, состоящей из V и L; X501 выбран из группы, состоящей из A и N; X502 выбран из группы, состоящей из H и Y; X503 выбран из группы, состоящей из G и R; X505 выбран из группы, состоящей из A и T; X507 выбран из группы, состоящей из I и L; X508 выбран из группы, состоящей из K и Q; X509 выбран из группы, состоящей из E и K; X512 выбран из группы, состоящей из G и A; X513 выбран из группы, состоящей из E, D и N; X514 выбран из группы, состоящей из Y, G, A и N; X515 выбран из группы, состоящей из G и E; X516 выбран из группы, состоящей из L и G; X517 выбран из группы, состоящей из P и L; X519 выбран из группы, состоящей из R, P и T; X520 выбран из группы, состоящей из A и E; X521 выбран из группы, состоящей из E и K; X522 выбран из группы, состоящей из R, Q и K; X523 выбран из группы, состоящей из D, K и E; X524 выбран из группы, состоящей из A, T и S; X530 выбран из группы, состоящей из R и K; X533 выбран из
группы, состоящей из I и L; X534 выбран из группы, состоящей из Р и Н; X535 выбран из группы, состоящей из R и Q; X544 выбран из группы, состоящей из T и I; X546 выбран из группы, состоящей из T, A и I; X547 выбран из группы, состоящей из P и D; X550 выбран из группы, состоящей из N и K; X551 выбран из группы, состоящей из A и E; X552 выбран из группы, состоящей из E, R и D; X553 выбран из группы, состоящей из E, N и R; X554 выбран из группы, состоящей из H и L; X555 выбран из группы, состоящей из I и V; X556 выбран из группы, состоящей из T и E; X557 выбран из группы, состоящей из Q, R, H и D; X562 выбран из группы, состоящей из S и P; X573 выбран из группы, состоящей из P и T; X574 выбран из группы, состоящей из E и D; X575 выбран из группы, состоящей из S, A и R; X576 выбран из группы, состоящей из A, E и V; X577 выбран из группы, состоящей из G, E и D; X579 выбран из группы, состоящей из E и S; X580 выбран из группы, состоящей из D и N; X583 выбран из группы, состоящей из V и А; X588 выбран из группы, состоящей из M и I; X591 выбран из группы, состоящей из H и Y; X592 выбран из группы, состоящей из A и G; X603 выбран из группы, состоящей из A и S; X605 выбран из группы, состоящей из E и A; X606 выбран из группы, состоящей из E, A, Q, G, V и R; X608 выбран из группы, состоящей из A, Р и T; X609 выбран из группы, состоящей из I, T и P; X610 выбран из группы, состоящей из D и A; X614 выбран из группы, состоящей из V и VKEAI; X616 выбран из группы, состоящей из K и E; X622 выбран из группы, состоящей из T, A и P;
| 8 | VLYYSMTINDEQNDIKDGEDKGESIITGEFAT
RATRHYVNDAPFGVIIILDITTENGTKTYSY
NRKEGEFAINWLVPIDEDSPASIKISVDELDDQ
RNIIEVPKLYSIDLDNQTLEQWKTQGNSVF
TRPEHNAISWPSVSYKA |
| 9 | GVLYYSMTNDEQNDIKDGEDKGESIITGEFAT
VRATRHYVNDAPFGVIIILDITTENGTKTYSY
YNRKEGEFAINWLVPIDEDSPASIKISVDELDDQ
QRNIIEVPKLYSIDLDNQTLEQWKTQGNVSFS
VTRPEHNAISWPSVSYKAQQKEGRH
HWHTGL |
| 10 | VEEALNIFDECSCPSPCGFQKIQSKLSIPSD
VVLDEGVLYYSMTINDEQNDIKDGEDKGESIIITI
GEFATVRATRHYVNDAPFGVIIILDITTENGT
KTYSYNRKEGEFAINWLVPIDEDSPASIKISVD
ELDQQRNIIEVPKLYSIDL |
| 11 | Эксенатид (Byetta) |
| 12 | LEEALNIFDECSCPSPCGFQKIQSKLSIPSD
VVLDEGVLYYSMTINDEQNDIKDGEDKGESIIITI
GEFATVRATRHYVNDAPFGVIIILDITTENGT
KTYSYNRKEGEFAINWLVPIDEDSPASIKISVD
ELDQQRNIIEVPKLYSIDLDNQTLEQWKTQGN
VSFSVTRPEHNAISWPSVSYKAAQKEGRHK
RWAHWHTGLACWLVPMDAYNTQCNCT
LGDNWFGGSYETVAGTPKVITVQGIEQKPV
EQRHFSKGNAMSALAHRVCVPLELARS
RKPRDLTDLSCAYQANIVSLVFVTRILF
LDSVFTNLDEQEPEVAERLSDLRINENNNP
MVTQVLTVARQIYNDYVTHHPGLTEQTSAG |
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>LEEALNIFDEC RSPCSLP EPGKPIQ SLSIPSD VVLDEGVL YSMTINDEQNDIKDEDKGESIITI GEFATVR ATRHVNYQDAPFGVHHLDIT TENGKT TYSYNRKEGEFAINWLVPEDSPASI KISVD ELDQQRNIEVPKL YSILDLNQTEWKTQGN VSFSVTRPEHNIAISWPSVSY KAAQKEGRHK RWAHWHTGLACWLVPMDA IYNYTQ QNCT LGDNWF GGSYETV AGTPKVITVK QGIEQKPV EQRIHFSKGNAMSALAAHRVC GVPLETLARS RKPRDLTDDLSCAYQAQNIVSVLFVATRILFSH LDSVFTLNLDEQEPEVAER LSDLRRINENNP GMVTQVLTVARQIYNDYVT HHPGLTPEQTSAG AQA</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Эксендин-4</td>
<td>HGEGTFTSDL SKQMEEEAVRLFIEWL KNGGP SSGAPPPS</td>
</tr>
<tr>
<td>15</td>
<td>Ликсисенатид (Adlyxin)</td>
<td>HGEGTFTSDL SKQMEEEAVRLFIEWL KNGGP SSGAPPSKKKKKK</td>
</tr>
<tr>
<td>16</td>
<td>Лираглутид</td>
<td>HAEGTFTSVSS YLEGQA AKEEFIAWL VRGR G (гамма-Е-пальмитоил на E21)</td>
</tr>
<tr>
<td>17</td>
<td>Дулаглутид</td>
<td>HGEGTFTSVSS YLEEQAAKEFIAWL VKGGG GGGGSGGGGSGGGGSAESKYGPPCPCPAPP EAAGGPSVFLPPKPDITLMISRTPEVTCVVVVD VSPQEDPEVQFNVYVVDGVEVHNAKTKPREEQ FNSTYRVSVLTVLHSDKLNGKEYKCKVSN KGPSSIEKTISAKGQPREPQVYTLPSQEM TKNQVSLTCLVKGFYPSDIAEVESNGQPPEN NYKTTPPVLDSGDGSFLYSLRTVDKSRQEG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>Тедуглутид</td>
<td>HGDGSFSDEMNTILDNLAARDFINWLIQTKITD</td>
</tr>
<tr>
<td>19</td>
<td>Тедуглутид</td>
<td>H- HisGlyAspGlySerPheSerAspGluMetAsnThrIleLeuAspAsnLeuAlaAlaArgAspPheIleAsnTrpLeuIleGlnThrLysIleThrAsp-OH</td>
</tr>
<tr>
<td>20</td>
<td>hGH</td>
<td>FPTIPLSRFDAMLRAHRLHQLFQDFTYQEFEEAYIPKEQKYSFQLNPQTSLCFSESIPTPSNREE TQQKSNELLRLISSLLIQSWLEPVQLRFSVFANSLVYGASDNSVYDLDKLEEGIQTLMGRLED GSPRTGQIFQYTSKFDTNSSHDDALLKNYG LLYCFRKMDFKVDTELHRVCRSVEGCIF</td>
</tr>
<tr>
<td>21</td>
<td>IL-22</td>
<td>APISSHCRLDKSNFQQPYTINRTFMLAKEASL ADNNTDVRLIGEKLFHVSMSERCYLMKQLVF NFTLEYLFPQSDRFQPYMQEVPFLARLSNR LSTCHIEGDDLHVRNQVLKDKTVKLGESGE IKAIGELDLLFMSLRLNACI</td>
</tr>
<tr>
<td>22</td>
<td>IL-10</td>
<td>SPGQQTQSENSCTHFPGLPNMLRDLRDAFSR VKTFFQMKDQLDNLKESLLEDFKGYLGQC ALESIQFYLEEVMPQANQDPDIKAHVNSL GENLKTLLRLRRCHRFPCENKSAVEQV KNAFNLQKEKGIYKAMSEFDIFINYIEAYMTMKIRN</td>
</tr>
<tr>
<td>23</td>
<td>Препроглюкагон</td>
<td>MKSIYFVAGLFVMLVQGWSQRSLSQDTEEEKSRSFASQADPLSDPDMNEDKRSQGGTFTSDY SKYLDSSRAQDFVQWLMNTRKRNRNIAKRH DEFERHAEGTFTSDVSSYLEGQAATEFIAWLY KGRGRDFPEEVAIVEELGRNHADGFSDEMN TILD NLAARDFINWLIQTKITDRK</td>
</tr>
<tr>
<td>24</td>
<td>Пропротеин глюкагона</td>
<td>RSLQDTEEEKRSFSASQADPLSDPDMNEDKRSQGGTFTSDYSKYLDSSRAQDFVQWLMNTRKRNRNIAKRHDEFERHAEGTFTSDVSSYLEGQAATEFIAWLY KGRGRDFPEEVAIVEELGR</td>
</tr>
<tr>
<td>No.</td>
<td>Подробности</td>
<td>Аминокислотная последовательность</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>25</td>
<td>Пептид глюкагона</td>
<td>HSQGTFSDYKLDRLRAQDFVQLMNT</td>
</tr>
<tr>
<td>26</td>
<td>Глюкагоноподобный пептид 1 (GLP-1)</td>
<td>HAEGTFSDVSSYLEGQAKEFIAWLHKGR</td>
</tr>
<tr>
<td>27</td>
<td>Глюкагоноподобный пептид 2 (GLP-2)</td>
<td>HADGSFSDEMNTILDNLAAARDFINWLIQTKITD</td>
</tr>
<tr>
<td>28</td>
<td>Эксендин-3</td>
<td>HSDGTFSDLSKQMEEAVRLFIEWLKNGGPS SGAPPPS</td>
</tr>
<tr>
<td>29</td>
<td>Эфлеленатид</td>
<td>4-имидазоациетил- GEGTFSDLSKQMEEAVRLFIEWL-(K-PEG-Fc)-NGGPPSSGAPPPS-NH2</td>
</tr>
<tr>
<td>30</td>
<td>Семаглутид (Оземник)</td>
<td>HXEGTFSDVSSYLEGQAKEFIAWLVRGRG (acylated)</td>
</tr>
<tr>
<td>31</td>
<td>Агонист GLP-1R(аминоокислоты 1-37 GIP)</td>
<td>YAEFTFISDYSIAMDKIHQQDFVNWLLAQKG KKNDWK</td>
</tr>
<tr>
<td>32</td>
<td>Агонист GLP-1R(аминоокислоты 7-36 GIP)</td>
<td>ISDYSIAMDKIHQQDFVNWLLAQKGKKNWD</td>
</tr>
<tr>
<td>33</td>
<td>Тирзепатид</td>
<td>YXEGTFSDYSIXLDAIQKAFVQWLJAGGPS SGAPPPS</td>
</tr>
<tr>
<td>34</td>
<td>Окситомодулин</td>
<td>HSQGTFSDYSKYLSRRAQDFVQWMNNTK RNKNIA</td>
</tr>
<tr>
<td>35</td>
<td>Препротеин гастроингибиторного полипептида</td>
<td>MVATKTFALLLLSLAVGLGEKKEKHELALPSLPVGSHAKVSSPQPRPRAEGTFISDYSIA MDKIHQQDFVNWLLAQKGKKNWDKHNITQ REARALELASQANRKEEEAVEPQSSPAKNPSD EDLLRDLLQELLAQLLQEDTLNLCRLRSR</td>
</tr>
<tr>
<td>36</td>
<td>Гастроингибиторный полипептид (GIP)</td>
<td>YAEFTFISDYSIAMDKIHQQDFVNWLLAQKG KKNDWKHNITQ</td>
</tr>
<tr>
<td>37</td>
<td>Агонист GIPR (Des-Ala2-GIP1-30)</td>
<td>YEGTTFISDYSIAMDKIHQQDFVNWLLAQK</td>
</tr>
<tr>
<td>38</td>
<td>Агонист GIPR</td>
<td>YAEFTFISDYSIAMDKIHQQDFVNWLLAQK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>39</td>
<td>Глицентин</td>
<td>RSLQDTEEKSRFSASQADPLSDPQMNEDK RHSQGFTSDYKYLDSRRAQDFVQWLMT KRNRRNNIA</td>
</tr>
<tr>
<td>40</td>
<td>Глицентин-родственный полипептид</td>
<td>RSLQDTEEKSFSASQADPLSDPQMNED</td>
</tr>
<tr>
<td>41</td>
<td>Двойной агонист амилиновых и кальцитониновых рецепторов</td>
<td>Ас-CSNLSTCMLGRLSQDLHRLQTPKTDTVGANAP</td>
</tr>
<tr>
<td>42</td>
<td>Препроинсулин</td>
<td>MALWMRLLPLLALLALWGPDPAAAFVNHQL CGSHLVEALYLVCGERGFFYTPKTRREAEDL QVGGQVSGSAGPSGLQPLALEGLQKRIGV EQCCTISCJQLYQCN</td>
</tr>
<tr>
<td>43</td>
<td>А-цепь инсулина</td>
<td>GIVEQCCTSICSJQLYQCN</td>
</tr>
<tr>
<td>44</td>
<td>В-цепь инсулина</td>
<td>FVNQHLCGSHLVEALYLVCGERGFFYTPKT</td>
</tr>
<tr>
<td>45</td>
<td>А-цепь инсулин аспарта</td>
<td>GIVEQCCTSICSJQLYQCN</td>
</tr>
<tr>
<td>46</td>
<td>В-цепь инсулин аспарта</td>
<td>FVNQHLCGSHLVEALYLVCGERGFFYTDKT</td>
</tr>
<tr>
<td>47</td>
<td>А-цепь инсулин гларгина</td>
<td>GIVEQCCTSICSJQLYQNCG</td>
</tr>
<tr>
<td>48</td>
<td>В-цепь инсулин гларгина</td>
<td>FVNQHLCGSHLVEALYLVCGERGFFYTPKTR</td>
</tr>
<tr>
<td>49</td>
<td>А-цепь инсулин лизпро</td>
<td>GIVEQCCTSICSJQLYQCN</td>
</tr>
<tr>
<td>50</td>
<td>В-цепь инсулин лизпро</td>
<td>FVNQHLCGSHLVEALYLVCGERGFFYTKPT</td>
</tr>
<tr>
<td>51</td>
<td>Субстрат рецептора инсулина 1</td>
<td>MASPPESDGFSDVKVGILRKPSMHKRFV LRAASEAGPGPARLEYEYNEKKWHRKSSAPKR SIPLESCFNIANKRDSKKNHLVALYTRDEHFAI AADSEAEQDSWWQALQLHNRAGHHGDA AALGAGGGGGGSCSGSSGLGEAGEDLSYDVP PGPAFKEWQVILKPKGLQGTKNLIGYRCL TLSTSFVKLNSEAAAVVQLMLNIRRCGHSEN FFFIEVGRSATGPGFWMQVDVSVAQNM HETILEAMRASDEFRPRSQSSSNCNPISV PLRRHHLNPPSVQVLRRSRTSLTATSPAS</td>
</tr>
<tr>
<td>52</td>
<td>Аполипопротеин А-II</td>
<td>MKL LAATVLLLTICSELEGALVRRAKEPCVES LVSQYFQTVDYGKDLMEKVSPELQAEAKS YFEKSKEQLTPLIKKAGTELNVNFSLSYFVELGT QPDRTQ</td>
</tr>
<tr>
<td>53</td>
<td>Гликогенсинтаза 1</td>
<td>MPLNR TLSMSSLPGLDWEFDLENAVLF E</td>
</tr>
<tr>
<td>54</td>
<td>Гликогенсинтаза 2</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MLRGRSLSVTSLGGLPQWEVEELPVEELLLFE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAWEVTNKVGIGIYTQIQTAKTADDEWGEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YFLIGPYFEHMNMKTQVEQCEPVMDARAVD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMNKHGCQVHFGRWIEGSPYVVLFDIGYSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WNLDRWKGDLEXSVGIPYHDREANDMLI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FGSLTAWFLEVTDHADGKYVVAQFHEWQA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIGILSARLKLAITFTTHATLLGRYLAAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DFYNHLDKFNIDKEAGERQIYHRYCMERASV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCAHVFTTVSEITAIEAEHMLKRKPDVVTPNG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LNVKKFSAVHEFQNLHAMYKARIQDFVRGHF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YGHLDFDELEKTLFLFIAGRYEFNSKGDIFLES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSRLNFLRLMHKSDITVMVFIMPAKTNNFNV</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 109 | VAWEVANKVGIGIYTQLKTAKVTDWEDGDA |
| | NYFLVGPYTEQGVRTQVEELLEAPTPALKRTL | |
| | DSMNKGCKVYFGRWLIEGGGPLVVLLDVGAS |
| | AWALERWKGELWDTCNIGVWYDREANDA |
| | VLFGLTTTWFLGFLAQSEEKPHVVAHFHEW |
| | LAGVGLCLRCARRLPVATIETFTHATTLLGRYLC |
| | AGADEVYNLENFNDKEAGERQIYHRYCM |
| | ERAAAHCAHVFTTVSAITAIEAQHLKRKPD |
| | VTPNLVNKKFSAMHEFQNLHAQSRRKARIQEF |
| | VRGHLFYGHLDNFNLKTLHFFIAGRYEFNKG |
| | ADVFLEALARNLYLVRNGSEQTVVAFIMP |
| | ARTNNFNVETLKGQAVRKQLWDANTVEKEK |
| | FGRKLYESLLVGLPDMKNMLKDEFTMMMK |
| | RAIFATQRQSFPPVCTHNMLDDSSDPIITTIRI |
| | GLFNSSADRVKVIHFPEFLSSTSPLLPVDYEEF |
| | VRGCHLGVFPSYEPWGYTPAECTVMGIPSIS |
| | TNLSGFGCMEEHIADPSAYGIYILDRRFRSLD |
| | DSCSQLTSFLYSFCQSSRQRRIQRNRTERLSD |
| | LLDWKYLGRYMSARHMALSKAFPEHFTYE |
| | PNEADAQQGcuryprpasvppspLsrhsshphQ |
| | SEDEEDPRNPGPLEEDGERYDEEDEAAKDRRN |
| | RAPESPRAUCSTSSTSGSKRNSVDATATSSLS |
| | TPSEPLSPTSSLGEERN |
| 55 | Протеиновая тирозинфосфатаза, рецепторный тип 1 | MEMEKEFEQIDKSGWAAYQDRIHEASDFPC RVAKLPLLKNRRYRDVSPFDHSRIKHLQED NDYINASLKMEEAQRSTQLQGPLNCTCGH WEMVWEQKSRRVVMNRVMEKSLKCAQY WPQKEEKEMIFEDTNKLTLSEDIKSYYTVR QLELNLTTQTREILHFHYTTWPDFGVPESP ASFNLFKVRVRESGSLPHEHPVVHCSAGIG RSGTFCALDTCLLMDKRRDPSSVDIKVLLLE MRKFRMGRIQTADQLRFSLAVIEGAKFIMG DSSVQDQWKELSHEDLEPPPEHIPPPPPPKRI LEPHNGKCREFPNHQWVKEETQEDKDCPIK EEKGSPLNAAPYIESMSDTEVRSRVVGGS LSRAQAASPAKGEPSLPEDHALASYWKPL VNMCVATVLTAGAYLCYRFLENSNT |
| 56 | RAC-альфа серин-треониновая протеинкиназа | MSDVAIVKEGLHHRGEYIKTWPRPREFLFLKN DGTFIGYKERQPDQVREAPLNNFSAQCQL MTKERPNTIFIIICLQWTVIERTFHVETPEE REEWTTAISVADLKKQEEEEMDFRSGSPS DNSGAAEEMVLAKPKHRVTMNEFEYKLLEG KGTFGKVLVKEKATGRYYAMKILKKEVIVA KDEVAHTL TENRVLQNSRPFLTALKYSFQT HDRICFVMFYANGGELFFHLSREVFSEDRA RGYGAEIVSALDLHSEKNVYRDLKLENLM LDKDGHIKITDFGLCEGIKEKDGATMKTCGTP |
| 57 | Гамма-рецептор, активируемый пролифератором пероксисом | EYLAPVELEDNDYGRAVDWWGLGVVMYEM MCGRLPFIYNQDHEKLFELILMEEIRFRRTLGP EAKSSLGGLKDPKQRLGSGEDAKEIMQH RFFAGIVWQHVEYKKLSPPFKPQVTSETDTRY FDEEFTAQMITITIPPDQDSMCEVDSEERRPHF PQFSYSAASGTA |
| 58 | Гексокиназа 3 | MDSIGSSGLRQGEETLSCSEEGLPGPSDSELV QECLQQFKVTRAQLQQIQAASSGLSMEQALRG QASPAPAVRMLPTYVGSTPHGETQGDFVVLE LGATGASLRVLWVTLGTIEGRVEPRSQEFVI PQEVMLGAGQQLFDFAAHCLOSEFDLAQPVNK QGLQLGFSGSFSPCHQTGLDRSTLISWTKGFRC SGVEGQDQVQLLRAIRRQGAYNDVVAVV NDTVGMGCEPGVRRCEVGLVVDGTGNAC YMEEARHVAVLDEDGRVCVSVEWGSFSDD GALGPVLITFDHTLDHESLNPQARFEKMIG GLYLGELVRLVLAHLARCGLVFGGCTSPALL SQGSILLEHAVEMDPSTGAARVHAILQDLGL SPGASDVELVQHVCAAVCTRAAQLCAAALA |</p>
<table>
<thead>
<tr>
<th>59</th>
<th>Фосфатидилнозитол-3,4,5-трифосфат-3-фосфатаза и белок двойной специфичности</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Киназа пируатдегидрогеназы 1</td>
</tr>
</tbody>
</table>

| | AVLSCLQHSREQQTQLQAVATGGRVCRERHPFRCSVLQGTVMLLAPECDSVLIPSVDGGGRGVAMVTAVAARLAAHRLLEETLAPFRLNHDQLAAVQAQMRRKAMAKGLRGEOSSLRMLPTFVRACTPDGSERGDFLALDLGGTNFRVLLVRVTGQITSEIYSIPETVAAQGSSQQLFDHIVDCIVDFQQKQGLSGLQSLPLGFTFSFPCRQGLDQGILLNWTKGFKASDCEQDVVSLLREAIATRQAVERLNVAIVNVTGTMMSCGYEDPRCEIGLIVGTGTMACYEELRNVAGVPGDSGRMCINMEWGAFFDGDSLAMLSTRFADSVQASINPGKQRFEKMSIGMYLGEIVRHILLHLSGLVGFLRGQQIQLQLQRTDFKTKFSELIESDSLARQVRAILEDGLPLTSDDALMVEVCQAVSQAQALCGAGVAAVVEKIRENGLEELAVSVGVDGTKYLHPRFSSLVAATVRELAPRCVVTFLQSEDGSKGAAVLTVACRLAQLTRV |

| | MTAIIKEIVSRNKRYQEDGFDDLTYIYPNIAMGFPAERLECVYRNIDDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVAYQYPFEDHNPQOLELIKPFCEDLDQWLDSEDNHVAAIHCKAGKGRTGVMICAYLHRRGKFLQAEDLDFYGEVRTRDKKKGVTIPSSQRVYVYYSYLLKHNLDYRPVALLFHKMMFETIPMFSGTCNPQFVCQLKVKIYSSNSGPRREDFKFMYEFQPQPPLVCGDIKVEFFHKQNKMMLKKDKMFHFHVNTFFIPGEESEKEVENGSDLQEIDSICSIERADNDKEYLVLTTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPNSPEASSSTSVPDVSNDNEPDHYRYSDDTTSDPENEPFDDEDQHTQITKV |

<p>| | MRLARLLRGAALAGPGPLRAAGFSSRSFSSDGSSPASERGVPGQVDFYARFSPSPLSMKQFLDFGSVNAEKTSMFLQRLEPVRLANIMKESSLPDNLLRTPSVQLVQSWYIQSLQELLDFKDKSAEDAKAIYDFTDTVIRIRNHRHNDVIPTMAQG |</p>
<table>
<thead>
<tr>
<th>61</th>
<th>Белок 1, связывающий кальций и содержащий суперспиральный домен</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VIYKESFGVDPVTSQNVQYFLDFYMSRISISR</td>
</tr>
<tr>
<td></td>
<td>MLLNQHSLLFGGKGKGSHPHRKHIGSNPCN</td>
</tr>
<tr>
<td></td>
<td>VLEVIKGDYENARLCDLYYINSPELELEELN</td>
</tr>
<tr>
<td></td>
<td>AKSPGQPIQVYVPISHYLYHVMFELFKNAMRA</td>
</tr>
<tr>
<td></td>
<td>TMEEHANRGVYPPQVHVTGNDLTVKMS</td>
</tr>
<tr>
<td></td>
<td>DRGGGVPRLRKLIRDLFNMYSTAPRPRVETSR</td>
</tr>
<tr>
<td></td>
<td>AVPLAGFGYGGLPISRLYAQYFQGDLKLYSLEG</td>
</tr>
<tr>
<td></td>
<td>YGTDAYIYIKALSTDIERLPGVNYKAAWKHY</td>
</tr>
<tr>
<td></td>
<td>NTNHEADDCWCVSPREPDKMTTFRSA</td>
</tr>
<tr>
<td></td>
<td>MEESPLSRAPSRGGVNFNLVARTYIPNTKVEC</td>
</tr>
<tr>
<td></td>
<td>HYTLPPPVMPSASDWIGIFKVEAACVRDYHTF</td>
</tr>
<tr>
<td></td>
<td>VWSSVPESTTDGSPHIHTSVQFQASYLPKPGAQ</td>
</tr>
<tr>
<td></td>
<td>LYQFRYVNRQGQVCQSPFPQFREPMPDEL</td>
</tr>
<tr>
<td></td>
<td>VTLTEADGGSILDLLVVPKATVLQNQLDESQQ</td>
</tr>
<tr>
<td></td>
<td>ERNDLMQLKLQLEGQVTELRSRVQELERALA</td>
</tr>
<tr>
<td></td>
<td>TARQEHTELMEQYKGISRSHGEITEERDSLRSQ</td>
</tr>
<tr>
<td></td>
<td>QGDHVARILELEDQIQTISEKVLTEVELDRL</td>
</tr>
<tr>
<td></td>
<td>RDTVKALTREQEKLQLGQLKEVQADKEQSEAEL</td>
</tr>
<tr>
<td></td>
<td>LQVAQQENHLLNLDLKEAKSWQEEQSAQAQ</td>
</tr>
<tr>
<td></td>
<td>RLKDKVAMKTDLQQAQQRVAELEPLQEQL</td>
</tr>
<tr>
<td></td>
<td>RGAQELAASSQQKATLLGEELASAAARDRT</td>
</tr>
<tr>
<td></td>
<td>IAEELHRSLTVAEVNGRAELGLHKLKEEKCQ</td>
</tr>
<tr>
<td></td>
<td>WSKERAGLQVESAEKDKILKLSAEIIRLEKA</td>
</tr>
<tr>
<td></td>
<td>VQEERTQNQVFKTELAREKDSSLVQLSESKEK</td>
</tr>
<tr>
<td></td>
<td>LTELRSALRLQKEKEQLQEEQKELLEYMRK</td>
</tr>
<tr>
<td></td>
<td>LEARLEKVADEKWNEDATEDDEEAAAVGLSCP</td>
</tr>
<tr>
<td></td>
<td>AALTDSEDESPEDMRLPPYGLCERDGPGSSPA</td>
</tr>
<tr>
<td></td>
<td>GPREASPLVVISQPAPISPHLSGPAEDSSSDSEA</td>
</tr>
<tr>
<td></td>
<td>EDEKSVMAAVQSGGEEANLLLPLEGSAFYD</td>
</tr>
<tr>
<td></td>
<td>MASGFTVGTSETSTGGPATPTKECPICKER</td>
</tr>
<tr>
<td></td>
<td>FPAESDKDALEDHMDGHHFFSTQDPFTF</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Мах-подобный белок X</td>
</tr>
<tr>
<td></td>
<td>MTEPGASPEDPWWKVASPVGAHAGEGRAGRA</td>
</tr>
<tr>
<td></td>
<td>RARRGAGRRGASLLSPKSTLSVPRGCREDDSS</td>
</tr>
<tr>
<td></td>
<td>HPACAKVEYAYSDNSLDPGFLVESTRKGSVV</td>
</tr>
<tr>
<td></td>
<td>SRANSIGSTSASSVPNTDDEDSDYHQEAYKES</td>
</tr>
<tr>
<td>63</td>
<td>Фруктозо-бисфосфатдегидрогеназа А</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>YKDRRRAHTQAEQKRRAIKRYDDLQTIV</td>
</tr>
<tr>
<td></td>
<td>PTCQQQDFSISQKLSIAVLQKTIDYIFLHK</td>
</tr>
<tr>
<td></td>
<td>EKKKQEEEVSTLRKVDVTALKIMKYNYEIQV</td>
</tr>
<tr>
<td></td>
<td>AHQDNPHEGEDQVSDQVKFNFQGIMDLSFQ</td>
</tr>
<tr>
<td></td>
<td>SFNASISVASFQELSAEVFWSIEEHCKPQTLRE</td>
</tr>
<tr>
<td></td>
<td>IVIGVHLQLKNQLY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>64</th>
<th>Дипептидилпептидаза 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MKTPWKVLGLGLGGAAALVTIITVPVVLLNKG</td>
</tr>
<tr>
<td></td>
<td>TDDATADSRKTYTTLTDYLKNTYRLKLYSLRW</td>
</tr>
<tr>
<td></td>
<td>ISDHEYLYKQENNILVFNAEYGNSVVFLENST</td>
</tr>
<tr>
<td></td>
<td>FDEFGHISINDYSPDGQFILLENYVKQWRH</td>
</tr>
<tr>
<td></td>
<td>SYTASYDIYDLNKRQLITEERIPNNTQWVTWS</td>
</tr>
<tr>
<td></td>
<td>PVGHKLAYVVNNDIYVKIEPNLPSYRTWTG</td>
</tr>
<tr>
<td></td>
<td>KEDIYNGITDVYEEFSAYSLWWSPNG</td>
</tr>
<tr>
<td></td>
<td>TFLAYAQFNDETEVIPLIEYSFYSDESLEQYPKT</td>
</tr>
<tr>
<td></td>
<td>RVPYPEAKAGAVPTKFFVNTDSLSVTVNAT</td>
</tr>
<tr>
<td></td>
<td>SIQITAPASMLIGDHLCDVTWATQERISLQW</td>
</tr>
<tr>
<td></td>
<td>LRRQNYSVMDICDYEDESSGRWNCLVARQHI</td>
</tr>
<tr>
<td></td>
<td>EMSTTTGWGFRFPRSEPHTLDGNFYYKISNE</td>
</tr>
<tr>
<td></td>
<td>EGYRHICYFQIDKKDCTFITKGTWVIGIEALT</td>
</tr>
<tr>
<td></td>
<td>SDYLYYISNEYKGMPPGRNLYKIQLSDYTKV</td>
</tr>
<tr>
<td></td>
<td>TCLSCELNPQRCYYSVSFSKEAKYYQLRCSG</td>
</tr>
<tr>
<td></td>
<td>PGLPLYTLHSSVNDKGLRVLEDNSALDKMLQ</td>
</tr>
<tr>
<td></td>
<td>NVQMPSSKLDIILNETKFQWYQMLPPHDKS</td>
</tr>
<tr>
<td>Word</td>
<td>Characters</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| носитель Cholix¹⁻²⁶⁶ | VEEALNIFDECRRSPCSLTPEPGPKIQSKLSIPSD VVLDEGVLYYSMTINDEQNDIKDEDKGESIITI GEFATVRATRHYNQDAPFGVIIHLTITENGKT KTSYNRKEGEFAINWLVPIGEDSPASIKISVD ELDQQRNIIEVPKLISIDLDNQTEWQKTQGN VSFSVTRPEHNIAISWPSVSYKAQKEGRH
| носитель Cholix¹⁻²⁶⁶ | LEEALNIFDECRRSPCSLTPEPGPKIQSKLSIPSD VVLDEGVLYYSMTINDEQNDIKDEDKGESIITI GEFATVRATRHYNQDAPFGVIIHLTITENGKT KTSYNRKEGEFAINWLVPIGEDSPASIKISVD ELDQQRNIIEVPKLISIDLDNQTEWQKTQGN VSFSVTRPEHNIAISWPSVSYKAQKEGRH
| носитель Cholix¹⁻²⁶⁶ | VEDELNIFDECRRSPCSLTPEPGPKIQSKLSIPSD VVLDEGVLYYSMTINDEQNDIKDEDKGESIITI GEFATVRATRHYNQDAPFGVIIHLTITENGKT KTSYNRKEGEFAINWLVPIGEDSPASIKISVD ELDQQRNIIEVPKLISIDLDNQTEWQKTQGN VSFSVTRPEHNIAISWPSVSYKAQKEGRH

| 68 | Ген экзотоксина А синегнойной палочки | GTCGAAGAAAGCTTTAAAACATCTTTTGATGAA
| | | TGCCTGTTCCCAATGTTTGACCCCAGGAAC
| | | CCGGTAGCCGATTCATCAAAATGTCTA
| | | TCCCTAGTGATTTGATTTCTGGATGAAGGTGT
| | | TCTGTATTACCTCGATGACGATTAATATGATGA
| | | GCAGAAATGATATTAAGGATGAGGACAAG
| | | GCCAGTCCACTATCACTATTGGTGAATTTCG
| | | CACAGTACGCAGCATAGACATTATTGTAAA
| | | TCAAGATGCGCCTTTTGGTGTCATCCATTTA
| | | GATATTACGACAGAATAATGGTACAAACAAACG
| | | TACTCTTATAACCGAAAGAGGGTGGAATT
| | | GCAATCAATTGTTAGTGCCTATTGGTGAA
| | | GATTCTCTGCACAAGCATCAAAAATCTCCGTTG
| | | ATGAGCTTCGATCGCAACGCATATTCATCG
| | | AGGTGCCTAAAATGTGATAGTAGTATGCTCG
| | | ATAAACCAACGTTAGAGCAGTGGGAAAACCC
| | | AAGGTAATGTTTTCTTTTCGTTAAGCCTCC
| | | TGAACATAATATCGCTATCTCTTTGCAAG
| | | CGTGAGTACAAAAACGCCAGCAGAAAGAGG
| | | GTTCACGCCTAAAGCGTTGCGCTATTGGC
| | | ATACAAGCGTTAGCCTGTGTGCTGTGCTGCC
| | | AATGGATGCTATCTATAACTATATCACC
| | | GCAAAATTGTACTTTTAGGGGATAATTGTT
| | | TGTTGGCTCTTATGAGCCTGTGCAAGCAC
| | | TCCGAAGGTGATTACGTTAAGCAAGGGAT
| | | TGAACAAAGCCAGTTGAGCAGCAGCATCCA
| | | TTTCTCAAGGGGAAATGCGATGAGCAGCAGCT
| | | TGCTGCTCATTCCCGTCTGTGTTGTGTCATT
| | | GAAGACTTTGGCAGCGATCAGCAGAAACCTC
| | | GATCTGACCGGATTTATCATGTCCTATC
| | | AAGCGCAGAATATCGTGAGTTATTTGTCG
| | | CGACGCGTATCTCTGTCTCTCATCTGGATAG
| | | CGTAGGATTACTCATGAACTTTGGACAGAAAGA
| | | ACCAGAGTTGCGCTGAACGTCTAAGTGATCT
| | | TCGCCGTATCAATGAAAATAACCCGGGCA
<p>| | |
| | | |
| 69 | Экзотоксин А синегнойной палочки | AEEAFDLWNECAKACVLDLDKGDVGVRSSRMSV DPADTDNGQVLHYSMVLEGNDLKLAD NALSITSDGLTIRLEGGVEPNKVPVYSTRQA RGSWSLNPVLPNGHEKPSNIVKFIHELNAGNQ LSHMSPIYTMGDELLAKLARDATFFVRAHE SNEMQPTLAIISHAGVSVMQAQPRREKRW SEWASGKVLCLLDPDGVYNYLAQQRNCNLV |
| 70 | Продукт расщепления TEV варианта Cholix | DTWEGKIYRVLAGNPACHLDIKPTVISLHELH
FPEGSLAALTAHQACHLPLETFTHRQPRG
WEQLEQCGYPVQRLVALYAARLSWNQVDQ
IRNAASPGSGDGGEAIREQPEQARLATL
AAAESERFVRQGTGNDEAGAASADVVSITCP
VAAGECAGPASGDALLERNYPTAEFLGDG
GDVVSFRGSTQNWTVERLQAHRLQLEEGYV
FGYHTFLEAAQSIVGGVRARSQDLDAIW
RGFYIAGDPALEYGAQDQEPDAARGIRNGA
LLRVYVPRSSLPFGYRTGLTAAPAAGEVER
LIGHPLPLRDAIGPEEEGRLETILGWPLAE
RTVVIPSPAIPDPRNVRGDLDPSSIPDEKQAI
ALPDIASQPQKPPREDLK |
| 71 | Экзенатид - Вариант Cholix | MVEEALNFDECRRSPCSLTPPEPGKPIQSKLSIPS
DVVLDEGVLYYSMQINDEQNDIKDGEDKGESII
TIGEFATVRATRHYVNQDAPFGVIHLDTTEN
GKRTYSYNRKEGEFAINWLVPJEDSPASIKIS
VDELDQQRNIIIEVPKLYSIDLDNQTLEQWKTQ
GNVSFVTRPEHNAISWPSVSYKAAQKEGR
HKRWAWHTGLALCWLVPM
DAIYNITYQQNCTLGDNWFGGYETVAGTPK
VITVQKQIEKQPVEQRIHFSKGNAMSALAAHR
VGCVPLETALSRKPRDLTDDLSACYQAQNI
VSLFVATRILFSDLSDVTLNLDEQEPEVAERL
SLRIRINENNPGMTQVLTARQIYNDYVTH
HPGLTPEQTSAGAQCACLENFQ |</p>
<table>
<thead>
<tr>
<th></th>
<th>N-конец природного варианта Cholix</th>
<th>VEDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Вариант Cholix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEEALNIFDECRRSPCSLTPEGKPIQSKLSIPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VVLDEGVLYYSMTINDEQNDIKDEDKGESIIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEFATVRA TRHYVNQDAPFGVIHLDITTENGT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KTYSYNRKEGEFAINWLVPIGEDSPASIKISVD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELDQQRNiIEVPKLYISIDLNDQTEWKTQGN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSFSVTTRPEHNIAISWPSVSYKAAQKEGRHK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RWAHWHTGLA</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Вариант Cholix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MVEEALNIFDECRRSPCSLTPEGKPIQSKLSIPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DVLDEGVLYYSMTINDEQNDIKDEDKGESIIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIGEFATVRA TRHYVNQDAPFGVIHLDITTEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTKTYSYNRKEGEFAINWLVPIGEDSPASIKIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDELDQQRNiIEVPKLYISIDLNDQTEWKTQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GNVSFSVTTRPEHNIAISWPSVSYKAAQKEGR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HKRWAHWHTGLALCWLVPMDAKEYNITYTQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QNCTLGDNWFGGSYETVAGTPKVITVQGIEQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KPVPEQRIHFSKGNAMSALAAHRVCGVEP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTRA RSRRKPRDLTDSDLSCAYQAQNI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVSLFVATRILF SHLDSVFTLNLEQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPEVAERLSDLRRINENN PGMV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TQVLTVARQIYNDYVTHHPGLTPEQTSAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGAQA</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Вариант Cholix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEDELNIFDECRRSPCSLTPEGKPIQSKLSIPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VVLDEGVLYYSMTINDEQNDIKDEDKGESIIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEFATVRA TRHYVNQDAPFGVIHLDITTENGT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KTYSYNRKEGEFAINWLVPIGEDSPASIKISVD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELDQQRNiIEVPKLYISIDLNDQTEWKTQGN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSFSVTTRPEHNIAISWPSVSYKAAQKE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRHK RWAHWHTGLALCWLVPMDAKEYNITYTQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QNCLGDNWFGGSYETVAGTPKVITVQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIEQKPVPEQRIHFSKGNAMSALAAHRV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGVEP LTRA RSRRKPRDLTDSDL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCAYQAQNI NVSLFVATRILF SHLDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VFTLNLEQ EPEVAERLSDLRRINENN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PGMVTQVLTVARQIYNDYVTHHPGLT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEQTSAG AGAQA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>76</td>
<td>Вариант Cholix</td>
<td>RSGRSYLPENRAVTPQGVTNWNTYQELEATHQALTREGYVFVGYHGTNVAATIVNRIAPVPRGNÖTENEEKWGGLYVATHAEVAHYARIKEGTGEYGLPTRAERDARGVMMLRVYIPRASLERFYRTNTPLEANAAEHITQVIGHSLPLRNÆAFTGPESAAGGEDETVIGWDMAIHAVAIPSTIPGNYEELAIDEEAVAKEQSIŠTKPPYKERKDELK</td>
</tr>
<tr>
<td>77</td>
<td>TEV варианта Cholix</td>
<td>VEEALNFIDECRSPCSŁTPEPGBKQSKLISPGDVVLDEGLYYSMITNDINDKEDKGEISITIGEFATVRATRHYVSDAPFGVNIŁDITENGTKTYSFKNRKESEFAINWLVPIDSPASIŠIDEŁDQQRNIIIEVPKLYSIDLNDQTŁEQWTQGNNVSVSTVPEHNIASWPSVYKAQKEGRHKRWAHLWGLALCWLVPMIDAIYNITYQQNCTLGDNWFGGSYETVAGTPKAITVQGISIEKPVEQRIHFSKKNAMEALAAHRVCVGPLETLARSKPRDLPDDLSCAYNAQQIVSLFLATRILFTHIDSIFTLNLDGQIEPEVAERLDDLRRINENNPGMVIQVLTVARQIYNDYVTHPGLTPEQTSAGAQAADILSŁFCPĐADKȘCVASNSDQANINIES</td>
</tr>
<tr>
<td>78</td>
<td>TEV варианта Cholix</td>
<td>MVEEALNFIDECRSPCSŁTPEPGBKQSKLISPSDVVLDEGLYYSMITNDINDKEDKGEISITIGEFATVRATRHYVSDAPFGVNIŁDITENGTKTYSFKNRKESEFAINWLVPIDSPASIŠIDEŁDQQRNIIIEVPKLYSIDLNDQTŁEQWTQGNNVSVSTVPEHNIASWPSVYKAQKEGRHKRWAHLWGLALCWLVPMIDAIYNITYQQNCTLGDNWFGGSYETVAGTPKAITVQGISIEKPVEQRIHFSKKNAMEALAAHRVCVGPLETLARSKPRDLPDDLSCAYNAQQIVSLFLATRILFTHIDSIFTLNLDGQIEPEVAERLDDLRRINENNPGMVIQVLTVARQIYNDYVTHPGLTPEQTSAGAQAADILSŁFCPĐADKȘCVASNSDQANINIESESCENŁFSQTCHHHHHH</td>
</tr>
<tr>
<td>Строка</td>
<td>Содержание</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>(G5S)(G4S)2 спейсер</td>
<td>GGGSYSGGGGGGS</td>
</tr>
<tr>
<td>80</td>
<td>Продукт расщепления TEV варианта Cholix</td>
<td>MVEEALNFDECRCPSLTPEPGKIQSKLSIPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVVLDEGLYYSMTINDEQNIDKDEDKGESII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIGEFATVRATRHYVNQDAPFGVIHLDTTEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GKTYSYNKKEGEFAINWLVPGEDSPASIKIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDELDQQRNIIEVPKLYSIDLDNQTLEQWKTQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GNVVSFSVTRPEHNIAISWPSVSYKAAAQKEGSR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HKRWAHWHTGLACWLVPMDAIYNITYTQQN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTLGDNWFGGSYETVAGTPKVITVKQGIEQK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PVEQRIHFSKNMSALAAHRVCVRPLETLA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSRKPRDLTIIDLSCAYQAQNIIVSLFVATRLF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHLDSVFTNLDEQEPEVAERLSDLRRINENN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PGMVTVLTVVARQIYNDVTHHPGLTPEQTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGAQACENLFGSQLCHHHHH</td>
</tr>
</tbody>
</table>
| X603-Y-X605-X606-L-X608-X609-X610-E-E-A-X614-A-X616-E-Q-S-I-S-X622-K-P-P-Y-K-E-X629-X630-D-E-L-K; | X603-Y-X605-X606-L-X608-X609-X610-E-E-A-X614-A-X616-E-Q-S-I-S-X622-K-P-P-Y-K-E-X629-X630-D-E-L-K; wherein X3 выбран из группы, состоящей из E и D; X4 выбран из группы, состоящей из A и E; X6 выбран из группы, состоящей из N и K; X16 выбран из группы, состоящей из S и L; X21 выбран из группы, состоящей из P и L; X24 выбран из группы, состоящей из P и Q; X30 выбран из группы, состоящей из S и F; X33 выбран из группы, состоящей из S и G; X56 выбран из группы, состоящей из K и M; X59 выбран из группы, состоящей из D и G; X67 выбран из группы, состоящей из I и F; X73 выбран из группы, состоящей из V и I; X81 выбран из группы, состоящей из N и S; X90 выбран из группы, состоящей из H и N; X101 выбран из группы, состоящей из T и M; X104 выбран из группы, состоящей из Y и F; X108 выбран из группы, состоящей из E и D; X109 выбран из группы, состоящей из G и S; X112 выбран из группы, состоящей из A и T; X114 выбран из группы, состоящей из N и H; X118 выбран из группы, состоящей из P и I; X119 выбран из группы, состоящей из I и P; X131 выбран из группы, состоящей из V и I; X134 выбран из группы, состоящей из L и I; X137 выбран из группы, состоящей из Q и K; X160 выбран из группы, состоящей из K и E; X161 выбран из группы, состоящей из T и N; X166 выбран из группы, состоящей из S и F; X168 выбран из группы, состоящей из S и A; X174 выбран из группы, состоящей из H и Q; X175 выбран из группы, состоящей из N, S, SIAKQS и SIAKQSIAKQS; X186 выбран из группы,
состоящей из K и N; X189 выбран из группы, состоящей из Q, E и H; X191 выбран из группы, состоящей из E, N и D; X193 выбран из группы, состоящей из S и A; X200 выбран из группы, состоящей из H и N; X202 выбран из группы, состоящей из H, L, F и R; X204 выбран из группы, состоящей из G и T; X205 выбран из группы, состоящей из L и S; X206 выбран из группы, состоящей из A и P; X207 выбран из группы, состоящей из L, E и K; X208 выбран из группы, состоящей из C и V; X209 выбран из группы, состоящей из W, V и T; X211 выбран из группы, состоящей из V и не содержащей аминокислоту; X212 выбран из группы, состоящей из R и не содержащей аминокислоту; X213 выбран из группы, состоящей из M, I, L, и не содержащей аминокислоту; X214 выбран из группы, состоящей из D и не содержащей аминокислоту; X215 выбран из группы, состоящей из A и не содержащей аминокислоту; X216 выбран из группы, состоящей из I и не содержащей аминокислоту; X217 выбран из группы, состоящей из Y и C; X218 выбран из группы, состоящей из N и F; X219 выбран из группы, состоящей из Y и F; X220 выбран из группы, состоящей из I и E; X221 выбран из группы, состоящей из T и D; X222 выбран из группы, состоящей из Q и P; X223 выбран из группы, состоящей из Q, E и A; X224 выбран из группы, состоящей из N, L и Q; X227 выбран из группы, состоящей из L и Y; X229 выбран из группы, состоящей из D и E; X230 выбран из группы, состоящей из N и D; X232 выбран из группы, состоящей из F, H и Y; X235 выбран из группы, состоящей из S и A; X237 выбран из
группы, состоящей из E и K; X242 выбран из группы, состоящей из T и I; X244 выбран из группы, состоящей из K, E и G; X245 выбран из группы, состоящей из V и A; X247 выбран из группы, состоящей из T и M; X252 выбран из группы, состоящей из I и M; X256 выбран из группы, состоящей из P, T и A; X265 выбран из группы, состоящей из K, Q и N; X266 выбран из группы, состоящей из G и K; X269 выбран из группы, состоящей из M и I; X270 выбран из группы, состоящей из S и E; X271 выбран из группы, состоящей из A и T; X288 выбран из группы, состоящей из S и G; X293 выбран из группы, состоящей из D и Y; X295 выбран из группы, состоящей из T, P и Q; X299 выбран из группы, состоящей из S и Q; X301 выбран из группы, состоящей из A и V; X303 выбран из группы, состоящей из Q и N; X306 выбран из группы, состоящей из N и Q; X312 выбран из группы, состоящей из V и L; X316 выбран из группы, состоящей из I и M; X319 выбран из группы, состоящей из S и T; X321 выбран из группы, состоящей из L и I; X324 выбран из группы, состоящей из V и I; X330 выбран из группы, состоящей из D, E и H; X331 выбран из группы, состоящей из E и G; X333 выбран из группы, состоящей из E и A; X335 выбран из группы, состоящей из E и A; X337 выбран из группы, состоящей из A и T; X341 выбран из группы, состоящей из S, D и T; X342 выбран из группы, состоящей из D и A; X343 выбран из группы, состоящей из L и I; X345 выбран из группы, состоящей из R и Q; X349 выбран из группы, состоящей из N и D; X353 выбран из группы, состоящей из M и V; X355 выбран из
группы, состоящей из T и I; X360 выбран из группы, состоящей из V и I; X371 выбран из группы, состоящей из Н и Е; X374 выбран из группы, состоящей из G и L; X376 выбран из группы, состоящей из T и I; X383 выбран из группы, состоящей из G и S; X393 выбран из группы, состоящей из F и L; X394 выбран из группы, состоящей из C и Y; X397 выбран из группы, состоящей из A и T; X399 выбран из группы, состоящей из К, E и G; X400 выбран из группы, состоящей из S, P и H; X404 выбран из группы, состоящей из S и L; X405 выбран из группы, состоящей из N и D; X406 выбран из группы, состоящей из N и S; X413 выбран из группы, состоящей из I и V; X423 выбран из группы, состоящей из P и L; X431 выбран из группы, состоящей из P и Q; X443 выбран из группы, состоящей из E и D; X444 выбран из группы, состоящей из A и T; X445 выбран из группы, состоящей из T и K; X448 выбран из группы, состоящей из A и T; X451 выбран из группы, состоящей из R и Q; X453 выбран из группы, состоящей из G и D; X465 выбран из группы, состоящей из V и А; X469 выбран из группы, состоящей из T, S и N; X475 выбран из группы, состоящей из A, S и T; X481 выбран из группы, состоящей из N и S; X482 выбран из группы, состоящей из N и D; X485 выбран из группы, состоящей из N, S и K; X487 выбран из группы, состоящей из E, R и K; X488 выбран из группы, состоящей из K, A и Е; X492 выбран из группы, состоящей из L и V; X495 выбран из группы, состоящей из A и S; X497 выбран из группы, состоящей из H и D; X499 выбран из группы, состоящей из Е и S; X500 выбран из
группы, состоящей из V и L; X501 выбран из группы, состоящей из A и N; X502 выбран из группы, состоящей из H и Y; X503 выбран из группы, состоящей из G и R; X505 выбран из группы, состоящей из A и T; X507 выбран из группы, состоящей из I и L; X508 выбран из группы, состоящей из K и Q; X509 выбран из группы, состоящей из E и K; X512 выбран из группы, состоящей из G и A; X513 выбран из группы, состоящей из E, D и N; X514 выбран из группы, состоящей из Y, G, A и N; X515 выбран из группы, состоящей из G и E; X516 выбран из группы, состоящей из L и G; X517 выбран из группы, состоящей из P и L; X519 выбран из группы, состоящей из R, P и T; X520 выбран из группы, состоящей из A и E; X521 выбран из группы, состоящей из E и K; X522 выбран из группы, состоящей из R, Q и K; X523 выбран из группы, состоящей из D, K и E; X524 выбран из группы, состоящей из A, T и S; X530 выбран из группы, состоящей из R и K; X533 выбран из группы, состоящей из I и L; X534 выбран из группы, состоящей из P и H; X535 выбран из группы, состоящей из R и Q; X544 выбран из группы, состоящей из T и I; X546 выбран из группы, состоящей из T, A и I; X547 выбран из группы, состоящей из P и D; X550 выбран из группы, состоящей из N и K; X551 выбран из группы, состоящей из A и E; X552 выбран из группы, состоящей из E, R и D; X553 выбран из группы, состоящей из E, N и R; X554 выбран из группы, состоящей из H и L; X555 выбран из группы, состоящей из I и V; X556 выбран из группы, состоящей из T и E; X557 выбран из группы, состоящей из Q, R, H и D; X562 выбран
из группы, состоящей из S и P; X573 выбран из группы, состоящей из R и T; X574 выбран из группы, состоящей из E и D; X575 выбран из группы, состоящей из S, A и R; X576 выбран из группы, состоящей из A, E и V; X577 выбран из группы, состоящей из G, E и D; X579 выбран из группы, состоящей из E и S; X580 выбран из группы, состоящей из D и N; X583 выбран из группы, состоящей из V и A; X588 выбран из группы, состоящей из M и I; X591 выбран из группы, состоящей из H и Y; X592 выбран из группы, состоящей из A и G; X603 выбран из группы, состоящей из A и S; X605 выбран из группы, состоящей из E и A; X606 выбран из группы, состоящей из E, A, Q, G, V и R; X608 выбран из группы, состоящей из A, P и T; X609 выбран из группы, состоящей из I, T и P; X610 выбран из группы, состоящей из D и A; X614 выбран из группы, состоящей из V и VVKEAI; X616 выбран из группы, состоящей из K и E; X622 выбран из группы, состоящей из T, A и P; и X629 выбран из группы, состоящей из R, Q и H; и X630 выбран из группы, состоящей из K и не содержащей аминокислоту.

<table>
<thead>
<tr>
<th>Вариант экзотоксина А синегнойной палочки</th>
<th>AEEAFDLWNNECAKACVLDLKDGVRSRMSVDPAIADTNGQGVLHYSMVLEGNDALKLAIDNALSITSDGLTIRLEGGVEPNKPVRYSYTRQA RGSWSLNWLPIGHEKPSIKVFHELNAQQLSNSHMSPIYTIEMGDELLAKLARDATFFVRAHE SNEMQPTLAISHAGVSVMQAQPRREKRWSEWASGKVLCLLDPDGVYNLAQQRCNLD DTWEGKIYRVLAGNPAXHDLDIKPTVISHRLHFPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>MVEEALNIFDECRRSPCSLTPEPGKPIQSKLSIPSDVVLDEGVLYSMTINDEQNDIkedkGESII</td>
</tr>
<tr>
<td>АА остатки</td>
<td>АА остатки</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1-252</td>
<td>1-291</td>
</tr>
<tr>
<td>1-253</td>
<td>1-292</td>
</tr>
<tr>
<td>1-254</td>
<td>1-293</td>
</tr>
<tr>
<td>1-255</td>
<td>1-294</td>
</tr>
<tr>
<td>1-256</td>
<td>1-295</td>
</tr>
<tr>
<td>1-257</td>
<td>1-296</td>
</tr>
<tr>
<td>1-258</td>
<td>1-297</td>
</tr>
<tr>
<td>1-259</td>
<td>1-298</td>
</tr>
<tr>
<td>1-260</td>
<td>1-299</td>
</tr>
<tr>
<td>1-261</td>
<td>1-300</td>
</tr>
<tr>
<td>1-262</td>
<td>1-301</td>
</tr>
<tr>
<td>1-263</td>
<td>1-302</td>
</tr>
<tr>
<td>1-264</td>
<td>1-303</td>
</tr>
<tr>
<td>1-265</td>
<td>1-304</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1-266</td>
<td>1-305</td>
</tr>
<tr>
<td>1-267</td>
<td>1-306</td>
</tr>
<tr>
<td>1-268</td>
<td>1-307</td>
</tr>
<tr>
<td>1-269</td>
<td>1-308</td>
</tr>
<tr>
<td>1-270</td>
<td>1-309</td>
</tr>
<tr>
<td>1-271</td>
<td>1-310</td>
</tr>
<tr>
<td>1-272</td>
<td>1-311</td>
</tr>
<tr>
<td>1-273</td>
<td>1-312</td>
</tr>
<tr>
<td>1-274</td>
<td>1-313</td>
</tr>
<tr>
<td>1-275</td>
<td>1-314</td>
</tr>
<tr>
<td>1-276</td>
<td>1-315</td>
</tr>
<tr>
<td>1-277</td>
<td>1-316</td>
</tr>
<tr>
<td>1-278</td>
<td>1-317</td>
</tr>
<tr>
<td>1-279</td>
<td>1-318</td>
</tr>
<tr>
<td>1-280</td>
<td>1-319</td>
</tr>
<tr>
<td>1-281</td>
<td>1-320</td>
</tr>
<tr>
<td>1-282</td>
<td>1-321</td>
</tr>
<tr>
<td>1-283</td>
<td>1-322</td>
</tr>
<tr>
<td>1-284</td>
<td>1-323</td>
</tr>
<tr>
<td>1-285</td>
<td>1-324</td>
</tr>
<tr>
<td>1-286</td>
<td>1-325</td>
</tr>
<tr>
<td>1-287</td>
<td>1-326</td>
</tr>
<tr>
<td>1-288</td>
<td>1-327</td>
</tr>
<tr>
<td>1-289</td>
<td>1-328</td>
</tr>
<tr>
<td>1-290</td>
<td>1-329</td>
</tr>
</tbody>
</table>

Таблица 14 - Примеры трансцитозирующих носителей, идентифицирующих аминокислотные остатки SEQ ID NO: 7

<table>
<thead>
<tr>
<th>АА остатки</th>
<th>АА остатки</th>
<th>АА остатки</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-195</td>
<td>1-246</td>
<td>1-297</td>
</tr>
<tr>
<td>1-196</td>
<td>1-247</td>
<td>1-298</td>
</tr>
<tr>
<td>1-197</td>
<td>1-248</td>
<td>1-299</td>
</tr>
<tr>
<td>1-198</td>
<td>1-249</td>
<td>1-300</td>
</tr>
<tr>
<td>1-199</td>
<td>1-250</td>
<td>1-301</td>
</tr>
<tr>
<td>1-200</td>
<td>1-251</td>
<td>1-302</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1-201</td>
<td>1-252</td>
<td>1-303</td>
</tr>
<tr>
<td>1-202</td>
<td>1-253</td>
<td>1-304</td>
</tr>
<tr>
<td>1-203</td>
<td>1-254</td>
<td>1-305</td>
</tr>
<tr>
<td>1-204</td>
<td>1-255</td>
<td>1-306</td>
</tr>
<tr>
<td>1-205</td>
<td>1-256</td>
<td>1-307</td>
</tr>
<tr>
<td>1-206</td>
<td>1-257</td>
<td>1-308</td>
</tr>
<tr>
<td>1-207</td>
<td>1-258</td>
<td>1-309</td>
</tr>
<tr>
<td>1-208</td>
<td>1-259</td>
<td>1-310</td>
</tr>
<tr>
<td>1-209</td>
<td>1-260</td>
<td>1-311</td>
</tr>
<tr>
<td>1-210</td>
<td>1-261</td>
<td>1-312</td>
</tr>
<tr>
<td>1-211</td>
<td>1-262</td>
<td>1-313</td>
</tr>
<tr>
<td>1-212</td>
<td>1-263</td>
<td>1-314</td>
</tr>
<tr>
<td>1-213</td>
<td>1-264</td>
<td>1-315</td>
</tr>
<tr>
<td>1-214</td>
<td>1-265</td>
<td>1-316</td>
</tr>
<tr>
<td>1-215</td>
<td>1-266</td>
<td>1-317</td>
</tr>
<tr>
<td>1-216</td>
<td>1-267</td>
<td>1-318</td>
</tr>
<tr>
<td>1-217</td>
<td>1-268</td>
<td>1-319</td>
</tr>
<tr>
<td>1-218</td>
<td>1-269</td>
<td>1-320</td>
</tr>
<tr>
<td>1-219</td>
<td>1-270</td>
<td>1-321</td>
</tr>
<tr>
<td>1-220</td>
<td>1-271</td>
<td>1-322</td>
</tr>
<tr>
<td>1-221</td>
<td>1-272</td>
<td>1-323</td>
</tr>
<tr>
<td>1-222</td>
<td>1-273</td>
<td>1-324</td>
</tr>
<tr>
<td>1-223</td>
<td>1-274</td>
<td>1-325</td>
</tr>
<tr>
<td>1-224</td>
<td>1-275</td>
<td>1-326</td>
</tr>
<tr>
<td>1-225</td>
<td>1-276</td>
<td>1-327</td>
</tr>
<tr>
<td>1-226</td>
<td>1-277</td>
<td>1-328</td>
</tr>
<tr>
<td>1-227</td>
<td>1-278</td>
<td>1-329</td>
</tr>
<tr>
<td>1-228</td>
<td>1-279</td>
<td>1-330</td>
</tr>
<tr>
<td>1-229</td>
<td>1-280</td>
<td>1-331</td>
</tr>
<tr>
<td>1-230</td>
<td>1-281</td>
<td>1-332</td>
</tr>
<tr>
<td>1-231</td>
<td>1-282</td>
<td>1-333</td>
</tr>
<tr>
<td>1-232</td>
<td>1-283</td>
<td>1-334</td>
</tr>
<tr>
<td>1-233</td>
<td>1-284</td>
<td>1-335</td>
</tr>
<tr>
<td>1-234</td>
<td>1-285</td>
<td>1-336</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1-235</td>
<td>1-286</td>
<td>1-337</td>
</tr>
<tr>
<td>1-236</td>
<td>1-287</td>
<td>1-338</td>
</tr>
<tr>
<td>1-237</td>
<td>1-288</td>
<td>1-339</td>
</tr>
<tr>
<td>1-238</td>
<td>1-289</td>
<td>1-340</td>
</tr>
<tr>
<td>1-239</td>
<td>1-290</td>
<td>1-341</td>
</tr>
<tr>
<td>1-240</td>
<td>1-291</td>
<td>1-342</td>
</tr>
<tr>
<td>1-241</td>
<td>1-292</td>
<td>1-343</td>
</tr>
<tr>
<td>1-242</td>
<td>1-293</td>
<td>1-344</td>
</tr>
<tr>
<td>1-243</td>
<td>1-294</td>
<td>1-345</td>
</tr>
<tr>
<td>1-244</td>
<td>1-295</td>
<td>1-346</td>
</tr>
<tr>
<td>1-245</td>
<td>1-296</td>
<td>1-347</td>
</tr>
</tbody>
</table>

Таблица 15 - Примеры аминокислотных остатков носителей Cholix SEQ ID NO: 7

<table>
<thead>
<tr>
<th>Остатки Cholix AA</th>
<th>Остатки Cholix AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-150</td>
<td>1-178</td>
</tr>
<tr>
<td>1-151</td>
<td>1-179</td>
</tr>
<tr>
<td>1-152</td>
<td>1-180</td>
</tr>
<tr>
<td>1-153</td>
<td>1-181</td>
</tr>
<tr>
<td>1-154</td>
<td>1-182</td>
</tr>
<tr>
<td>1-155</td>
<td>1-183</td>
</tr>
<tr>
<td>1-156</td>
<td>1-184</td>
</tr>
<tr>
<td>1-157</td>
<td>1-185</td>
</tr>
<tr>
<td>1-158</td>
<td>1-186</td>
</tr>
<tr>
<td>1-159</td>
<td>1-187</td>
</tr>
<tr>
<td>1-160</td>
<td>22-187</td>
</tr>
<tr>
<td>1-161</td>
<td>23-187</td>
</tr>
<tr>
<td>1-162</td>
<td>24-187</td>
</tr>
<tr>
<td>1-163</td>
<td>25-187</td>
</tr>
<tr>
<td>1-164</td>
<td>26-187</td>
</tr>
<tr>
<td>1-165</td>
<td>27-187</td>
</tr>
<tr>
<td>1-166</td>
<td>28-187</td>
</tr>
<tr>
<td>1-167</td>
<td>29-187</td>
</tr>
<tr>
<td>1-168</td>
<td>30-187</td>
</tr>
<tr>
<td>1-169</td>
<td>31-187</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1-170</td>
<td>32-187</td>
</tr>
<tr>
<td>1-171</td>
<td>33-187</td>
</tr>
<tr>
<td>1-172</td>
<td>34-187</td>
</tr>
<tr>
<td>1-173</td>
<td>35-187</td>
</tr>
<tr>
<td>1-174</td>
<td>38-187</td>
</tr>
<tr>
<td>1-175</td>
<td>39-187</td>
</tr>
<tr>
<td>1-176</td>
<td>40-187</td>
</tr>
<tr>
<td>1-177</td>
<td>41-187</td>
</tr>
</tbody>
</table>
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Композиция, содержащая носитель, способный проникать в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку; и гетерологичную нагрузку, причем молярное отношение гетерологичной нагрузки к носителю больше, чем 1:1.

2. Композиция по п.1, отличающаяся тем, что композиция содержит катион переходного металла.

3. Композиция по п.2, отличающаяся тем, что катион переходного металла выбран из группы, состоящей из Fe^{2+}, Mn^{2+}, Zn^{2+}, Co^{2+}, Ni^{2+} и Cu^{2+}.

4. Композиция по п.3, отличающаяся тем, что катионом переходного металла является Zn^{2+}.

5. Композиция по п.1, отличающаяся тем, что композиция содержит поликатион.

6. Композиция по п.5, отличающаяся тем, что поликатионом является протамин.

7. Композиция по любому из пп.1-6, отличающаяся тем, что носитель содержит часть полипептида Cholix.

8. Композиция по п.7, отличающаяся тем, что носитель состоит из части экзотоксина A синегнойной палочки.

9. Композиция по п.7, отличающаяся тем, что носитель состоит из части полипептида Cholix.

10. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 7.

11. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 150-205 в SEQ ID NO: 7.

12. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с C-концом на любой из аминокислот 150-195 в SEQ ID NO: 7.

13. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 1-41 в SEQ ID NO: 7.

14. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 7.

15. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, начиная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7.

16. Композиция по п.8, отличающаяся тем, что полипептид Cholix имеет C-конец в
любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7.

17. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8.

18. Композиция по п.8, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10.

19. Композиция по любому из пп.10-14, отличающаяся тем, что аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до C-конца и начинаются с положения 1 на N-конце.

20. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка выбрана из группы, состоящей из макромолекулы, малой молекулы, пептида, полипептида, нуклеиновой кислоты, мРНК, миРНК, мшРНК, миРНК, антисмысловой молекулы, антитела, ДНК, плазмиды, вакцины, полимерной наночастицы и каталитически активного материала.

21. Композиция по п.20, отличающаяся тем, что гетерологическая нагрузка является терапевтической нагрузкой.

22. Композиция по п.1, отличающаяся тем, что гетерологическая нагруда выбрана из группы, состоящей из красителя и радиофармацевтического средства, гормона, цитокина, ингибитора ФНО, средства, снижающего уровень глюкозы, опухолеассоциированного антигена, пептида и полипептида.

23. Композиция по п.1, отличающаяся тем, что гетерологическая нагрузка представляет собой полипептид, являющийся модулятором воспаления в желудочно-кишечном тракте.

24. Композиция по п.1, отличающаяся тем, что гетерологическая нагрузка представляет собой аналог глюкагоноподобного пептида-2 (GLP-2).

25. Композиция по п.24, отличающаяся тем, что аналогом GLP-2 является тедуглутид.

26. Композиция по п.1, отличающаяся тем, что гетерологической нагрузкой является цитокин.

27. Композиция по п.26, отличающаяся тем, что цитокин выбран из группы, состоящей из IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29 и IL-30.

28. Композиция по п.27, отличающаяся тем, что цитокин представляет собой IL-10.

29. Композиция по п.28, отличающаяся тем, что цитокин представляет собой IL-22.

30. Композиция по п.26, отличающаяся тем, что у цитокина отсутствует нативный сигнал секреции.

31. Композиция по п.21, отличающаяся тем, что терапевтическая нагрузка представляет собой гормон.
32. Композиция по п.31, отличающаяся тем, что гормон представляет собой гормон роста человека (hGH).

33. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка представляет собой агент, снижающий уровень глюкозы.

34. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка представляет собой инкретин, пропротеин глюкагона, пептид глюкагона, глюкагоноподобный пептид 1, глюкагоноподобный пептид 2, глицентин, родственный глицентину полипептид, пропротеин гастроингибиторного полипептида, гастроингибиторный полипептид, диепиптидилипептидаза 4, глюкозный транспортёр тип 4, препроглюкагон, субстрат рецептора инсулина 1, инсулин, аналог инсулина, аполипопротеин А-II, семейство носителей растворенных веществ 2, глюкозный транспортёр тип 1, гликогенсинтазу 1, гликогенсинтазу 2, протеин-тирозиновая фосфатаза нерецепторного типа 1, RAC-альфа серин-трёпнина протеинкиназа, гамма-рецептор, активируемый пролилгидроксилазой, гексокиназу 3, фосфатидилинозитол-3,4,5-трифосфат-3-фосфатазу и белок двойной специфичности, киназа пируватдегидрогеназы 1, белок 1, связывающий кальций и содержащий суперспиральный домен, Max-подобный белок X, фруктозо-бисфосфаталдегидаза A, рецептор глюкагоноподобного пептида 1, рецептор глюкагоноподобного пептида 2, рецептор гастроингибиторного полипептида, рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора роста 2, инсулиновый рецептор, агонист ГГП-1 - экзенатид, агонист ГГП-1 - лираглутид, экзенатид, экзендин-4, экзендин-3, агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR - укороченный GIP1-30, агонист GLP-1R(аминокислоты 1-37 GIP), агонист GLP-1R(аминокислоты 7-36 GIP), ликсисенатид (торговые марки Adlyxin® и Lyxumia®, Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk A/S), семаглутид (торговое наименование Ozempic®, Novo Nordisk A/S), альбиглутид (торговое наименование Tanzzeum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином), дулаглутид (торговое наименование Trulicity®, Eli Lilly), глюкозозависимый инсулино тропный полипептид, мультиспецифический пептидный агонист, тирзепатид (Eli Lilly), SAR425899 (Sanofi), двойной агонист амилновых и кальцитониновых рецепторов DACRA-089, гларгин/Lantus®, глулизин/Apidra®, гларин/Toujco®, Insuman®, детемир/Levemir®, лиэпро/Humalog®/Liprolog®, Деглудек/ДеглудекПлюс, инсulin аспарт, инсулин и аналоги (например, LY-2605541, LY2963016, NN1436), инсулин пептилизированный лиэпро, Humulin®, Линджета, SuliXen®, NN1045, инсулин плюс SymlinTM, PE0139, инсулины быстрого и короткого действия (например, Линджета, PH20, NN1218, HinsBet), (APC-002) гидрогелевые, пероральные, ингаляционные, трансдермальные и сублингвальные нанесенье (например, Exubera®, Nasulxin®, Afrezza®, Tregopil®, TPM 02, капсулин, Oral-lyn®, Cobalamin®, пероральный инсулин, ORMD-0801, NN1953, NN1954, NN1956, VIAtab и пероральный инсулин Oshadi), или аналог экзенлина-4, где агент экзенлина-4 представляет собой desPro36-экзендин-4(1-39)-Lys6NH2; H-des(Pro36, 37)-экзендин-4-Lys4-NH2; H-des(Pro36, 37)-экзендин-4-Lys5-NH2;
135

35. Композиция по п.1, отличающаяся тем, что гетерологичной нагрузкой является инсулин или аналог инсулина.

36. Композиция по п.1, отличающаяся тем, что гетерологичной нагрузкой является эксенаид.

37. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка содержит флюоресцентную метку.

38. Композиция по п.37, отличающаяся тем, что флюоресцентная метка представляет собой флюоресцен.

39. Композиция по п.38, отличающаяся тем, что гетерологичная нагрузка представляет собой эксенаид-флюоресценновый комплекс.

40. Композиция по п.1, отличающаяся тем, что композиция устойчива к расщеплению ферментом поджелудочной железы.

41. Композиция по п.40, отличающаяся тем, что по меньшей мере 50% носителя остается интактным через 2 часа в анализе панкреатина, причем анализ панкреатина включает инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мкл фосфатно-солевого буфера раствора (ФСБ) при температуре 37°C.

42. Композиция по п.2, отличающаяся тем, что молярное отношение катаина переходного металла к носителю составляет от примерно 100:1 до примерно 300000:1.

43. Композиция по п.2, отличающаяся тем, что молярное отношение катаина переходного металла к носителю составляет от примерно 1000:1 до примерно 30000:1.

44. Композиция по п.2, отличающаяся тем, что молярное отношение катаина переходного металла к носителю составляет от примерно 1000:1 до примерно 10000:1.

45. Композиция по п.6, отличающаяся тем, что молярное соотношение протамина к носителю составляет от примерно 10:1 до примерно 0,01:1.

46. Композиция по п.1, отличающаяся тем, что молярное соотношение гетерологичной нагрузки к носителю составляет примерно 2:1 до примерно 6000:1.

47. Композиция по п.6, отличающаяся тем, что молярное соотношение протамина к носителю составляет примерно 1:1.

48. Композиция по п.1, отличающаяся тем, что молярное соотношение гетерологичной нагрузки к носителю составляет примерно 2:1 до примерно 10:1.

49. Композиция по п.1, отличающаяся тем, что молярное соотношение гетерологичной нагрузки к носителю составляет примерно 7:1.

50. Композиция по п.1, отличающаяся тем, что молярное отношение гетерологичной нагрузки к носителю составляет примерно 7,16:1.

51. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка
представляет собой полипептид, содержащий последовательность SEQ ID NO: 11 или SEQ ID NO: 14.

52. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка представляет собой полипептид, содержащий последовательность SEQ ID NO: 18 или SEQ ID NO: 19.

53. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка представляет собой полипептид, содержащий последовательность SEQ ID NO: 20.

54. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка представляет собой полипептид, содержащий последовательность SEQ ID NO: 21.

55. Композиция по п.1, отличающаяся тем, что гетерологичная нагрузка представляет собой полипептид, содержащий последовательность SEQ ID NO: 22.

56. Композиция по п.1, отличающаяся тем, что композиция инкапсулирована.

57. Композиция по п.56, отличающаяся тем, что инкапсулированная композиция предназначена для высвобождения гетерологической нагрузки при первом условии, но не при втором условии.

58. Композиция по п.56, отличающаяся тем, что инкапсулированная композиция предназначена для высвобождения гетерологической нагрузки при высоком значении рН, но не при низком значении рН.

59. Композиция по п.56, отличающаяся тем, что инкапсулированная композиция содержит кишечнорастворимую оболочку.

60. Композиция по п.1, отличающаяся тем, что композиция является частицей.

61. Композиция по п.1, отличающаяся тем, что композиция содержит полициатион.

62. Композиция по п.1, отличающаяся тем, что носитель способен переносить гетерологичную нагрузку в поляризованную эпителиальную клетку или осуществлять трансцитоз гетерологической нагрузки через поляризованную эпителиальную клетку.

63. Композиция по п.61, отличающаяся тем, что носитель связан с полициатионом.

64. Композиция по п.61, отличающаяся тем, что полициатион представляет собой протамин, полилиизин, полиоргинин, полиэтиленмин (PEI), проламин, протамин, поливинилпирролидон (PVP), полиаргинин, полицинилинамин или их сочетание.

65. Композиция по п.61, отличающаяся тем, что полициатион является солью протамина.

66. Композиция по п.65, отличающаяся тем, что солью протамина является сульфат протамина, ацетат протамина, бромид протамина, хлорид протамина, капроат протамина, трифторацилат протамина, бикарбонат протамина, пропионат протамина, лактат протамина, формат протамина, нитрат протамина, цитрат протамина, моногидрофосфат протамина, дигидрофосфат протамина, тартрат протамина или перхлорат протамина.

67. Композиция по п.66, отличающаяся тем, что солью протамина является сульфат протамина.

68. Композиция, содержащая носитель, отличающаяся тем, что носитель способен проникать в поляризованную эпителиальную клетку или трансцитозировать через
поляризованную эпителиальную клетку, причем, по меньшей мере, 60% носителя остается интактным через 0,5 часа в анализе панкреатина, при этом анализ панкреатина включает инкубацию композиции, содержащей 100 мкг носителя с 10 мкг панкреатина в 100 мл фосфатно-солевого буферного раствора (ФСБ) при температуре 37°C.

69. Композиция по п.68, отличающаяся тем, что по меньшей мере 90% носителя остается интактным через 2 часа в анализе панкреатина.

70. Композиция по п.68, дополнительно содержащая катион.

71. Композиция по п.70, отличающаяся тем, что катион представляет собой катион металла или полиkatион.

72. Композиция по п.71, отличающаяся тем, что катион является катионом металла.

73. Композиция по п.72, отличающаяся тем, что катион металла является катионом переходного металла.

74. Композиция по п.68, отличающаяся тем, что носитель состоит из части экзотоксина A синегнойной палочки.

75. Композиция по п.68, отличающаяся тем, что носитель состоит из части полиепптида Cholix.

76. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности с С-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 7.

77. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности с С-концом в любом из аминокислотных положений 150-205 в SEQ ID NO: 7.

78. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности с С-концом на любой из аминокислот 150-195 в SEQ ID NO: 7.

79. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности с Н-концом в любом из аминокислотных положений 1-41 в SEQ ID NO: 7.

80. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности с Н-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 7.

81. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности, начиная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных положений 150-205 последовательности, представленной в SEQ ID NO: 7.

82. Композиция по п.74, отличающаяся тем, что полиепптид Cholix имеет С-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7.

83. Композиция по п.74, отличающаяся тем, что полиепптид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8.
84. Композиция по п.74, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10.

85. Композиция по любому из пп.76-84, отличающаяся тем, что аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до С-конца и начинаются с положения 1 на N-конце.

86. Композиция, содержащая вариант Cholix, оканчивающийся в положениях 195-347, и гетерологичную нагрузку, причем гетерологичная нагрузка представляет собой агент, регулирующий уровень глюкозы.

87. Композиция по п.86, отличающаяся тем, что конечное положение варианта Cholix определяется относительно SEQ ID NO: 7.

88. Композиция по п.86, отличающаяся тем, что носитель способен трансцитировать гетерологичную нагрузку через поляризованную эпителиальную клетку.

89. Композиция по п.86, отличающаяся тем, что агент, регулирующий уровень глюкозы, является агентом, снижающим уровень глюкозы.

90. Композиция по п.89, отличающаяся тем, что средство, снижающее уровень глюкозы, представляет собой инкретин, пропротеин глюкагона, пептид глюкагона, глюкагоноподобный пептид 1, глюкагоноподобный пептид 2, глицентин, родственны глишенитину полипептид, пропротеин гастроингибиторного полипептида, гастроингибиторный полипептид, дипептидилпептидаза 4, глюкозный транспортер тип 4, препроглюкагон, субстрат рецептора инсулина 1, инсулин, аналог инсулина, аполипопротеин А-2, семейство носителей растворенных веществ 2, глюкозный транспортер тип 1, гликогенсинтазу 1, гликогенсинтазу 2, протеин-тирозиновая фосфатаза нерецепторного типа 1, RAC-альфа серин-треониновая протеинкиназа, гамма-рецептор, активируемых пролифератором пероксисом, гексокиназу 3, фосфатидилинозитол-3,4,5-трифосфат-3-фосфатазу и белок двойной специфичности, киназа пируватдегидрогеназы 1, белок 1, связывающий кальций и содержащий суперспиральный домен, Max-подобный белок X, фруктозо-бисфосфатальдеголаза А, рецептор глюкагоноподобного пептида 1, рецептор глюкагоноподобного пептида 2, рецептор гастроингибиторного полипептида, рецептор инсулиноподобного фактора роста 1, рецептор инсулиноподобного фактора роста 2, инсулиновый рецептор, агонист ГЛПП-1 - экиннатид, агонист ГЛПП-1 - лираглутид, экиннатид, экиннатид-4, экиннатид-3, агонист GIPR (Des-Ala2-GIP1-30), агонист GIPR - укороченный GIP1-30, агонист GLP-1R(аминоциклоты 1-37 GIP), агонист GLP-1R(аминоциклоты 7-36 GIP), ликсинатид (торговые марки Adlyxin® и Lyxumia®, Sanofi), лираглутид (торговое наименование Victoza®, Novo Nordisk А/С), семаглутид (торговое наименование Ozempic®, Novo Nordisk А/С), альбиглутид (торговое наименование Tanzeum®, GlaxoSmithKline; димер GLP-1, слитый с альбумином), дураглутид (торговое наименование Trulicity®, Eli Lilly), глюкозозависимый инсулиностороннный полипептид, мультиспецифический пептидный агонист, тирепатид (Eli Lilly), SAR425899 (Sanofi), двойной агонист амилиновых и кальцитониновых рецепторов.

91. Композиция по п.86, отличающаяся тем, что гетерологическая нагрузка содержит инкретин.

92. Композиция по п.86, отличающаяся тем, что гетерологическая нагрузка включает эксенатид или инсулин.

93. Композиция по п.86, отличающаяся тем, что композиция содержит частицу.

94. Композиция по п.86, отличающаяся тем, что гетерологическая нагрузка представляет собой экссендин-3, эфпегленатид, семаглутид, агонист GLP-1R(аминоокислоты 1-37 GIP), агонист GLP-1R(аминоокислоты 7-36 GIP), тирзепатид, окситомодулин, агонист GIPR - укороченный GIP1-30, двойной агонист амилиновых и кальцитониновых рецепторов, препроинсулин, инсулин аспарт, инсулин глагрин или инсулин липро.

95. Композиция, содержащая носитель, полученный из бактериального токсина, способный проникать в поляризованную эпителиальную клетку или транслироваться через поляризованную эпителиальную клетку; и катион переходного металла или поликатион, причем поликатион представляет собой молекулу или химический комплекс, имеющий более 2 положительных зарядов.

96. Композиция по п.95, отличающаяся тем, что композиция содержит катион переходного металла.

97. Композиция 96, отличающийся тем, что катион переходного металла выбран из группы, состоящей из Fe²⁺, Mn²⁺, Zn²⁺, Co²⁺, Ni²⁺ и Cu²⁺.

98. Композиция по п.95, отличающаяся тем, что катионом переходного металла является Zn²⁺.

99. Композиция по п.95, отличающаяся тем, что композиция содержит поликатион.
100. Композиция по п.99, отличающаяся тем, что поликатион представляет собой протамин, полиэтилен, полиэтиленмин (PEI), проламин, протамин, поливинилпирролидон (PVP), полиаргинин, поливиниламин или их сочетание.

101. Композиция по п.99, отличающаяся тем, что поликатион представляет собой соль протамина.

102. Композиция по п.99, отличающаяся тем, что солью протамина является сульфат протамина, ацетат протамина, бромид протамина, хлорид протамина, капроат протамина, трифторacetat протамина, протамина бикарбоната, пропионат протамина, лактат протамина, формиат протамина, нитрат протамина, цитрат протамина, моногидроfosfat протамина, дигидроfosfat протамина, тартрат протамина или перхлорат протамина.

103. Композиция по п.99, отличающаяся тем, что солью протамина является сульфат протамина.

104. Композиция по п.95, дополнительно содержащая гетерологичную нагрузку.

105. Композиция по п.103, отличающаяся тем, что гетерологичная нагрузка включает экзенатид, инсулин или человеческий гормон роста.

106. Композиция по п.95, отличающаяся тем, что носитель состоит из экзотоксина A синегнойной палочки или части экзотоксина A синегнойной палочки.

107. Композиция по п.104, отличающаяся тем, что носитель состоит из полипептида SEQ ID NO: 69 или части SEQ ID NO: 69.

108. Композиция по п.95, отличающаяся тем, что носитель состоит из части полипептида Cholix.

109. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 206-425 в SEQ ID NO: 1.

110. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с C-концом в любом из аминокислотных положений 150-205 в SEQ ID NO: 1.

111. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с C-концом на любой из аминокислот 150 to 195 of SEQ ID NO: 1.

112. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 1 to 41 of SEQ ID NO: 1.

113. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности с N-концом в любом из аминокислотных положений 35-40 в SEQ ID NO: 1.

114. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, начиная с аминокислотного положения 40 последовательности, представленной в SEQ ID NO: 7, до любого из аминокислотных
положений 150-205 последовательности, представленной в SEQ ID NO: 7.

115. Композиция по п.95, отличающаяся тем, что полипептид Cholix имеет C-конец в любом из аминокислотных положений 150-187 последовательности, представленной в SEQ ID NO: 7.

116. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 8.

117. Композиция по п.95, отличающаяся тем, что полипептид Cholix состоит из аминокислотной последовательности, представленной в SEQ ID NO: 9 или SEQ ID NO: 10.

118. Композиция по любому из пп.107-115, отличающаяся тем, что аминокислотные положения пронумерованы на основе выравнивания полипептида Cholix с последовательностью, представленной в SEQ ID NO: 7, где аминокислотные положения пронумерованы от N-конца до C-конца и начинаются с положения 1 на N-конце.

119. Композиция по п.95, отличающаяся тем, что композиция содержит частицу.

120. Композиция, содержащая инсулин, отличающаяся тем, что по меньшей мере 20% инсулина остается интактным через 1 час в анализе панкреатина, включающем инкубацию композиции, содержащей инсулин, с панкреатином в ФСБ при температуре 37°C.

121. Композиция по п.118, дополнительно содержащая носитель, полученный из бактериального токсина, причем носитель способен транспортироваться в поляризованную эпителиальную клетку или трансцитозировать через поляризованную эпителиальную клетку.

122. Композиция по п.119, отличающаяся тем, что носитель состоит из части полипептида Cholix.

123. Композиция по п.118, отличающаяся тем, что композиция содержит катион переходного металла.

124. Композиция по п.121, отличающаяся тем, что катион переходного металла выбран из группы, состоящей из Fe²⁺, Mn²⁺, Zn²⁺, Co²⁺, Ni²⁺ и Cu²⁺.

125. Композиция по п.121, отличающаяся тем, что катионом переходного металла является Zn²⁺.

126. Композиция по п.118, отличающаяся тем, что композиция содержит поликатион.

127. Композиция по п.125, отличающаяся тем, что поликатионом является протамин.

128. Композиция по любому из пп.1-125, отличающаяся тем, что композиция содержит частицу.

129. Композиция по п.126, отличающаяся тем, что частица состоит из микрочастицы.

130. Композиция по п.127, отличающаяся тем, что микрочастицы образуются распылительной сушкой.

131. Композиция по п.126, отличающаяся тем, что частица имеет диаметр от
примерно 50 нм до примерно 20 мкм.

132. Фармацевтическая композиция, содержащая композицию по любому из пп.1-129.

133. Фармацевтическая композиция, содержащая композицию по любому из пп.1-129 и консервант.

134. Фармацевтическая композиция, содержащая композицию по любому из пп.1-130 и фармацевтически приемлемое вспомогательное вещество.

135. Способ, включающий введение субъекту фармацевтической композиции по любому из пп.130-132.

136. Способ по п.133, отличающийся тем, что субъект страдает воспалительным заболеванием, аутоиммунным заболеванием, злокачественной опухолью или метаболическим расстройством.

137. Способ по п.134, отличающийся тем, что субъект страдает метаболическим расстройством.

138. Способ по п.135, метаболическое расстройство представляет собой сахарный диабет, диабет вследствие ожирения, гипергликемию, дислипидемию, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушение толерантности к глюкозе (IGT), диабетическую дислипидемию, гиперлипидемию, жировую болезнь печени, неалкогольный стеатогепатит (NASH), гепатит, ожирение, сосудистые заболевания, болезни сердца, инсульт, нарушение толерантности к глюкозе, повышенный уровень глюкозы натощак, инсулинорезистентность, секрецию альбумина с мочой, центральный тип ожирения, гипертонию, повышенный уровень триглицеридов, повышенный уровень холестерина ЛПНП и пониженный уровень холестерина ЛПВП, гипергликемию, гиперинсулинемию, дислипидемию, кетоз, гипертриглицеридемию, метаболический синдром X, инсулинорезистентность, нарушенную гликемию натощак, нарушение толерантности к глюкозе (IGT), диабетическую дислипидемию, глюкокортикоиды, избыточный гликогеноз, диабетический кетоацидоз, гипертриглицеридемию, артериальную гипертензию, диабетическую нефропатию, почечную недостаточность, декомпенсированную почечную недостаточность, гиперфагию, атрофию мышц, диабетическую невропатию, диабетическую ретинопатию, диабетическую кому, атеросклероз, ишемическую болезнь сердца, заболевание периферических артерий или гиперлипидемию.

139. Способ, включающий комбинирование носителя бактериального происхождения с гетерологичной нагрузкой и катионом для получения частицы.

140. Способ по п.137, отличающийся тем, что гетерологичная нагрузка выбрана из группы, состоящей из красителя, радиофармацевтического средства, гормона, цитокина, ингибитора ФНО, средства, снижающего уровень глюкозы, опухолеассоциированного антигена, пептида и полипептида.

141. Способ по п.137, дополнительно включающий распылительную сушку носителя бактериального происхождения, гетерологической нагрузки и катиона.
142. Способ по п.137, отличающийся тем, что способ включает (a) приготовление смеси, состоящей из выделенного носителя и нагрузки; (b) приготовление смеси, содержащей сульфат протамина и NaPO₄; и (c) объединение смеси (a) со смесью (b) и выдерживание объединенной смеси в течение ночи при комнатной температуре.

143. Способ по п.140, отличающийся тем, что способ дополнительно включает стадию (d) расщепления частиц со стадии (c) на более мелкие частицы путем увеличения ионной силы объединенной смеси со стадии (c).

144. Способ по п.140, отличающийся тем, что препарат стадии (a) не содержит ZnCl₂.

145. Способ по п.140, отличающийся тем, что препарат стадии (a) содержит ZnCl₂.

По доверенности
ФИГ. 5А

ФИГ. 5В
Раствор hGH/Eudragit FS

ФИГ. 5С
Стабильность инсулинового сухого порошка в тесте с искусственной кишечной жидкости

ФИГ. 6
ФИГ. 11С
SEQ ID NO. 3-Zn-Exe-ФИТЦ
Меченный Alexa 647 анти-SEQ ID NO. 3

ФИГ. 12А
ФИГ. 12В
ФИГ. 12С
ФИГ. 13

Гистограмма размеров

Частота

Размер микрочастиц (мкм)

большее значение

ФИГ. 14

Апикальное нанесение

Базальный отдел

E0 E9 E6 E16 E18 E11 E13 E14

E0 E9 E6 E16 E18 E11 E13 E14
Эксенатид
Чоликс-266
Добавление ацетата цинка и лиофилизация/сушка распылением
\(\text{ZN}^{2+} \)
Частицы сухого порошка, стабилизированные \(\text{ZN}^{2+} \)
Вспомогательные вещества
Кислотостойкие микрочастицы

ФИГ. 15
Микрочастицы

Собранная нативная
слизь или раствор
очищенного муцина

pH
5-7

Слизистый гель
- Суспензия дозы
- Частицы лекар. сред. ровных частиц

Эпителиальная клетка
Бокаловидная клетка

Клеточная культура

in vivo или ex vivo
Ткань кишечника

Прилегающий
~ 100-700 мкм

Прилегающий
~ 10-150 мкм

ФИГ. 16
ФИГ. 17А

ФИГ. 17Б
ФИГ. 20

ФИГ. 21
ФИГ. 24
ФИГ. 25

Яркость

Концентрация белка (мкМ)