Способ получения многослойной композитной пленки, многослойная композитная пленка и ее применение

Заявлен способ получения соэкструдированной и двухосно-вытянутой композитной пленки с использованием новой комбинации этапов вытягивания и релаксации, а также соответствующая композитная пленка с незначительной усадкой или без усадки.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ

СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОЙ КОМПОЗИТИНОЙ ПЛЕНКИ, МНОГОСЛОЙНАЯ КОМПОЗИТИНАЯ ПЛЕНКА И ЕЕ ПРИМЕНЕНИЕ

Описание

Область техники

Настоящая заявка относится к созэкструдированным и двухосно-вытянутым многослойным пленкам, которые могут применяться, например, в качестве упаковочных материалов, в частности, для пищевых продуктов, к способу их получения и их применению, предпочитательно для упаковки продукта питания, пищевкусовых продуктов или жидкых или твердых, в частности, порошкообразных товаров. Однако настоящая заявка не относится к ламинированным многослойным пленкам и к соответствующим способам получения.

Уровень техники и постановка задачи

Из уровня техники известны, с одной стороны, ламинированные многослойные пленки, являющиеся отличными упаковочными материалами. Так, на рынке упаковки широко представлены ламинаты из по меньшей мере двух или трех или более слоев, произведенных независимо друг от друга. В основном различают такие называемые "дуплексные" ламинатные пленки и такие называемые "триплексные" ламинатные пленки. Дуплексные ламинатные пленки представляют собой пленки, экструдированные в процессе литья или выдувания, в том числе также барьерные пленки с 5, 7 или 9 слоями, которые в отдельном процессе ламинируются (склеиваются) с так же отдельно произведенной двухосно-вытянутой пленкой из полиэтилентерефталата (PET), поламида (PA) или полипропилена (PP). До сих пор совокупность желаемых и/или требуемых свойств могла быть достигнута только с этими пленками, произведенными и ламинированными на отдельных последовательных технологических этапах. Так, два из требуемых свойств (герметизируемость и барьер от кислорода или вкусовых веществ) достигаются за счет присутствия экстредированной одно- или многослойной пленки, а другие свойства, такие как пригодность для печати, термостойкость или жаропрочность, а также механическая прочность, достигаются за счет присутствия отдельной двухосно-вытянутой пленки. Кроме того, обычным является, в частности, создание или повышение кислородонепроницаемости путем нанесения металлического слоя, выполняемого на дополнительном технологическом этапе.

Примеры дуплексных пленок, широко распространенных на рынке:

<table>
<thead>
<tr>
<th>тип пленки</th>
<th>кислородонепроницаемость</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOB/PE</td>
<td>нет/низкая</td>
</tr>
<tr>
<td>BOPA/PE</td>
<td>нет/низкая</td>
</tr>
<tr>
<td>BOPET/PE</td>
<td>нет/низкая</td>
</tr>
<tr>
<td>BOB/металлизация/PE</td>
<td>за счет металлизации</td>
</tr>
<tr>
<td>ВОА/металлизация/ Эти</td>
<td>за счет металлизации</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ВОПET/металлизация/ Эти</td>
<td>за счет металлизации</td>
</tr>
<tr>
<td>ВОПET/PE-HV-EVOH-HV-PE</td>
<td>за счет барьерного слоя в виде EVOH</td>
</tr>
<tr>
<td>ВОПET/PE-HV-PA-EVOH-PA-HV-PE</td>
<td>за счет барьерного слоя в виде EVOH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Дуплексная пленка</th>
<th>Термостойкость/ температура плавления наружного слоя</th>
<th>Пригодность для печати</th>
<th>Усадка при 90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOPP/мет./PE</td>
<td>164°C</td>
<td>32 дин/см</td>
<td>1-2%</td>
</tr>
<tr>
<td>BOPET/мет./PE</td>
<td>250°C</td>
<td>43 дин/см</td>
<td>0-1%</td>
</tr>
<tr>
<td>BOPET/5-слойная барьерная пленка (PE/HV/EV0H/HV/PE)</td>
<td>250°C</td>
<td>43 дин/см</td>
<td>0-1%</td>
</tr>
<tr>
<td>BOPET/7-слойная барьерная пленка (PE/HV/PA/EV0H/PA/HV/PE)</td>
<td>250°C</td>
<td>43 дин/см</td>
<td>1-2%</td>
</tr>
</tbody>
</table>

Аналогично обстоит дело с триплексной ламинарной пленкой, при этом совокупность желаемых и/или требуемых свойств достигается с помощью трех полученных отдельно пленок, которые позднее ламинируются друг с другом (склеиваются).

Таким образом, здесь двухосно-вытянутую пленку из PET, PA или PP ламируют с отдельной алюминиевой фольгой, и этот композит, в свою очередь, ламируют с экструдированной лить или выдувной пленкой.

В данном случае экструдируемая литая или выдувная пленка берет на себя задачу обеспечения герметичности, алюминиевая пленка выполняет функцию барьера, а двухосно-вытянутая пленка обеспечивает оптимальную пригодность для печати, термостойкость и механическую прочность. Однако недостатком ламинированных пленок является то, что их производство по своей природе является сложным, ресурсоемким и дорогим, и композитная пленка в целом часто бывает очень толстой, поскольку сначала надо отдельно получить несколько пленок, которые затем требуется склеить за несколько последовательных технологических этапов с помощью kleя горячего отверждения или жидкого kleя, чтобы в конечном итоге получить ламированную многослойную пленку.

Примеры триплексных пленок,
широко распространенных на рынке:

<table>
<thead>
<tr>
<th>Тип пленки</th>
<th>Кислородонепроницаемость</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOPP/Al/PE</td>
<td>за счет алюминиевой фольги</td>
</tr>
<tr>
<td>BOPA/Al/PE</td>
<td>за счет алюминиевой фольги</td>
</tr>
<tr>
<td>BOPET/Al/PE</td>
<td>за счет алюминиевой фольги</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Триплексная пленка</th>
<th>Термостойкость/ температура плавления наружного слоя</th>
<th>Пригодность для печати</th>
<th>Усадка при 90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Известные дуплексные и триплексные пленки показаны на фиг. 1-6.

С другой стороны, из уровня техники известны многослойные пленки, которые получают посредством соэкструзии и двухосной вытяжки. Используемые для этого технологические процессы позволяют изготавливать многослойную пленку всего за один технологический этап посредством соэкструзии, при этом последующее склеивание/ламинарирование отдельных слоев пленки и связанные с этим недостатки отсутствуют. В любом случае для достижения желаемой совокупности свойств (герметизируемость, термостойкость, барьерные свойства, механическая прочность, пригодность для печати) исходная соэкструдированная многослойная пленка вытягивается по двум осям. Если не считать герметизируемости, большинство требуемых свойств, таких как механическая прочность, термостойкость, пригодность для печати и барьерные свойства (в основном кислородо- или газонепроницаемость) достигаются за счет использования таких исходных материалов, как PET, PA, сополимер этилена с виниловым спиртом (EVOH), поливиниловый спирт (PVOH) или полимолочная кислота (PLA).

Таким образом, такие материалы, как EVOH, PVOH, PVDC и PA, являются предпочтительными для достижения кислородо- или газонепроницаемости, а такие материалы, как PET или PLA обеспечивают значительно лучшую барьерную защиту по сравнению с исходными материалами на основе полиолефинов, такими как PE или PP, особенно после вытягивания, а в идеале даже после двухосного вытягивания.

Кроме того, PET и PA используются, в частности, во внешнем слое пленок для достижения особенно хорошей термостойкости и отличной пригодности для печати, в частности, после двухосного вытягивания.

В частности, PA и PET, помимо их превосходной термостойкости, пригодности для печати и хороших барьерных свойств от газов и кислорода, вносят также решающий вклад в достижение желаемой механической прочности, особенно после двухосного вытягивания.

Однако общим для известных из уровня техники вариантов осуществления и способов является то, что все эти соэкструдированные многослойные барьерные пленки имеют, как правило, сравнительно высокую усадку, чаще всего выше 20% и уж во всяком случае больше 5%, как в направлении хода машины (MD), так и в поперечном направлении (TD), что выгодно или даже желательно для многих приложений, как, например, термоусадочные оболочки/покрынные пленки.

Примеры соэкструдированных пленок, широко распространенных на рынке:

<table>
<thead>
<tr>
<th>тип пленки</th>
<th>применение</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOPP/Al/PE</td>
<td>164°C</td>
</tr>
<tr>
<td>BOPA/Al/PE</td>
<td>220°C</td>
</tr>
<tr>
<td>BOPET/Al/PE</td>
<td>250°C</td>
</tr>
<tr>
<td>1</td>
<td>EVA/PVDC/EVA</td>
</tr>
<tr>
<td>2</td>
<td>PE/EVOH/PE</td>
</tr>
<tr>
<td>3</td>
<td>PP/EVOH/PP</td>
</tr>
<tr>
<td>4</td>
<td>PA/EVOH/PA/PE</td>
</tr>
<tr>
<td>5</td>
<td>PE/PA/EVOH/PA/PE</td>
</tr>
<tr>
<td>6</td>
<td>PA/PE/PA/EVOH/PA/PE</td>
</tr>
<tr>
<td>7</td>
<td>PET/PE/PA/EVOH/PA/PE</td>
</tr>
<tr>
<td>8</td>
<td>PET/PP/PA/EVOH/PA/PE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Применение</th>
<th>тип пленки</th>
<th>усадка MD+TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>термоусадочная оболочка для мяса или сыра</td>
<td>1, 2, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>b</td>
<td>покрывные пленки для лотков с мясом или сыром</td>
<td>3, 4, 5, 6, 7, 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Применение</th>
<th>термостойкость/</th>
<th>пригодность для печати</th>
<th>усадка при 90°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>усадочная пленка EVA/PVDC/EVA</td>
<td>93°C</td>
<td>32 дин/см</td>
<td>40-50%</td>
</tr>
<tr>
<td>усадочная пленка PE/EVOH/PE</td>
<td>118°C</td>
<td>32 дин/см</td>
<td>30-40%</td>
</tr>
<tr>
<td>покрывная пленка PP/EVOH/PP</td>
<td>164°C</td>
<td>32 дин/см</td>
<td>5-15%</td>
</tr>
<tr>
<td>покрывная пленка PET/PE/EVOH/PE</td>
<td>250°C</td>
<td>43 дин/см</td>
<td>10-20%</td>
</tr>
<tr>
<td>покрывная пленка PET/PE/PA/EVOH/PA</td>
<td>250°C</td>
<td>43 дин/см</td>
<td>5-15%</td>
</tr>
</tbody>
</table>

Однако на сегодняшний день не имеется многослойных барьерных пленок, которые были произведены посредством соэкструзии и двухосного вытягивания и которые имеют относительно небольшую усадку (менее 5%, предпочитительно менее 3%) или вовсе не имеют усадки, как в направлении хода машины (MD), так и в поперечном направлении (TD), а также обладают достаточными барьерными свойствами, герметизируемостью, термостойкостью, механической прочностью и пригодностью для печати.

Цель изобретения

Таким образом, задача настоящего изобретения состоит в том, чтобы разработать способ получения соэкструдированной и двухосно-вытянутой композитной пленки, предпочитительно соэкструдированной двухосно-вытянутой многослойной барьерной пленки, и предложить получаемую этим способом многослойную пленку, предпочитительно многослойную барьерную пленку, обладающую по меньшей мере одним из следующих свойств, а предпочитительно всеми следующими свойствами: достаточная кислородо- и/или паронепроницаемость, герметизируемость, термостойкость, пригодность для печати и механическая прочность, даже без дальнейшего процесса ламинарирования. Получаемая в результате многослойная барьерная пленка должна, кроме того, иметь сравнительно
небольшую усадку (менее 5%, предпочтительно менее 3%) как в направлении хода машины (MD), так и в поперечном направлении (TD), или вовсе не иметь усадки.

Раскрытие изобретения

Уровень техники и практическое использование показали, что для достижения наилучших возможностей печати и получении максимально возможной термостойкости свою эффективность доказали такие материалы, как PET и PA во внешнем слое. Однако такие материалы, как PLA или EVOH, намного лучше подходят с точки зрения пригодности для печати, термостойкости и способности к дополнительной обработке, чем исходные материалы на основе полиолефинов, такие как PE или PP.

<table>
<thead>
<tr>
<th>исходный материал</th>
<th>термостойкость/ температура плавления по DSG (ISO 11357)</th>
</tr>
</thead>
<tbody>
<tr>
<td>гомо-PET</td>
<td>250°C</td>
</tr>
<tr>
<td>PA6</td>
<td>220°C</td>
</tr>
<tr>
<td>PLA</td>
<td>210°C</td>
</tr>
<tr>
<td>EVOH (32 моль%)</td>
<td>183°C</td>
</tr>
<tr>
<td>HDPE</td>
<td>131°C</td>
</tr>
<tr>
<td>гомо-PP</td>
<td>164°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Исходный материал</th>
<th>EV A 28%</th>
<th>EV A 18%</th>
<th>EV A 12%</th>
<th>LLD PE</th>
<th>mLLD PE</th>
<th>стат. со-PP</th>
<th>со-PP</th>
<th>EV OH</th>
<th>PLA</th>
<th>PA6 6</th>
<th>PA6</th>
<th>со-PP</th>
<th>гомо-PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VST (°C) DIN EN ISO 306</td>
<td>40-50</td>
<td>60-70</td>
<td>70-85</td>
<td>100-120</td>
<td>100-120</td>
<td>100-120</td>
<td>120-140</td>
<td>155-175</td>
<td>160-180</td>
<td>180-200</td>
<td>190-210</td>
<td>210-230</td>
<td>240-260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>исходный материал</th>
<th>Пригодность для печати или полярность/ поверхностное натяжение (дин/см)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>30-32</td>
</tr>
<tr>
<td>PP</td>
<td>30-32</td>
</tr>
<tr>
<td>PET</td>
<td>43</td>
</tr>
<tr>
<td>PA</td>
<td>43</td>
</tr>
</tbody>
</table>

Для получения достаточных барьерных свойств от кислорода или газов хорошо показали себя такие исходные материалы как PET, PA, EVOH, PVOH и PVDC.

<table>
<thead>
<tr>
<th>исходный материал</th>
<th>Кислородонепроницаемость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65% отн. влажность</td>
</tr>
<tr>
<td></td>
<td>$\frac{cm^3}{m^2 \cdot \text{д} \cdot \text{бар}}$</td>
</tr>
<tr>
<td>Исходный материал</td>
<td>Температура плавления герметизирующих материалов (ASTM D3418)</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>EVA 12%</td>
<td>93°C</td>
</tr>
<tr>
<td>EVA 18%</td>
<td>84°C</td>
</tr>
<tr>
<td>POP</td>
<td>95°C</td>
</tr>
<tr>
<td>mLLDPE</td>
<td>118°C</td>
</tr>
<tr>
<td>RaCoPP</td>
<td>132°C</td>
</tr>
</tbody>
</table>

Примечательно, что исходные материалы, которые идеально пригодны для достижения таких свойств, как термостойкость, пригодность для печати и кислородонепроницаемость, обеспечивают также существенно более высокую прочность, в частности, после двухосного вытягивания, чем способны, хотя бы приблизительно, полипропилены, даже несмотря на двухосное вытягивание.

Следовательно, в оптимальной слоистой структуре кислородонепроницаемый слой
должен состоять из EVOH, PVOH или PA и находиться в одном из центральных или промежуточных слоев, а герметизирующий слой, состоящий из термосвариваемого полиполифина, должен находиться во внутреннем слое.

Внешний слой должен быть образован из одного из идеальных для этой цели термостойких материалов, пригодных для печати, таких, например, как PET или PA.

При более внимательном рассмотрении материалов, предпочитительных для достижения таких свойств, как термостойкость, пригодность для печати, кислородонепроницаемость и прочность, можно заметить, что все эти материалы имеют несколько общих черт: все они имеют плотность более 1,0 г/см³, все являются полярными материалами и почти все имеют температуру плавления выше 170°С.

При дальнейшем анализе исходных материалов, которые предпочтительно использовать в качестве герметизирующего слоя, следует отметить, что все они имеют плотность менее 0,95 г/см³ и температуру плавления <120°С.

<table>
<thead>
<tr>
<th>исходный материал</th>
<th>плотность (г/см³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>1,33-1,4</td>
</tr>
<tr>
<td>PA</td>
<td>1,12-1,14</td>
</tr>
<tr>
<td>PLA</td>
<td>0,124-0,125</td>
</tr>
<tr>
<td>EVOH</td>
<td>1,12-1,22</td>
</tr>
<tr>
<td>PE</td>
<td>0,89-0,96</td>
</tr>
<tr>
<td>PP</td>
<td>0,895-0,915</td>
</tr>
</tbody>
</table>

Не все из этих исходных материалов с плотностью более 1,0 г/см³ в равной степени идеально подходят для печати, как PA или PET, или являются термостойкими, как PET или PA. Кроме того, не все они имеют такую же высокую кислородонепроницаемость, как EVOH, PVOH или PA, не все повышают прочность в такой же степени, как PA или PET. Тем не менее, все они имеют значительно лучшие свойства, чем любое сырье на основе полиполифина, по каждому из индивидуальных свойств, в частности, после двухосного вытягивания, когда они действуют вместе в композитной пленке.

Из-за разных оптимальных характеристик исходных материалов с плотностью выше 1,0 г/см³ с точки зрения их термостойкости, пригодности для печати и кислородонепроницаемости, и следующего из этого идеального или предпочитительного разделения на по меньшей мере два отдельных слоя, это разделение обеспечивает следующий, очень положительный эффект, а именно заметное повышение прочности и жесткости пленки.

Этот эффект выражен тем заметнее, чем дальше эти два слоя, содержащие исходный материал с плотностью более 1,0 г/см³, отстоят друг от друга в общей многослойной системе.

Потому важно выбратьслоистую структуру, которая, с одной стороны, содержит по меньшей мере два независимых слоя с плотностью более 1,0 г/см³, причем один из этих слоев является внешним слоем, а другой образует промежуточный слой. С другой стороны,
композитная пленка должна содержать термосвариваемый слой, который образует внутренний слой и состоит из материала, предпочтительно полиолефина, имеющего плотность менее 0,95 г/см³ и температуру плавления ниже 120°C.

Хотя такая слоистая структура является отличным решением для достижения совокупности всех желаемых свойств (в частности, достаточной непроницаемости для кислорода и/или водяного пара, герметизируемости, термостойкости, пригодности для печати и механической прочности), особенно после двухосного вытягивания, но достижение желаемой низкой усадки, в частности, после двухосного вытягивания, этим еще не обеспечивается.

Этого нельзя достичь только за счет исходного материала, по крайней мере, если полученная пленка подвергалась двухосному вытягиванию. Для решения этой задачи требуется подходящий способ получения и/или подходящая обработка.

Именно после вытягивания, в частности, после двухосного вытягивания, полимеры или полимерные пленки иногда демонстрируют значительную усадку. Она выражена в разной степени в зависимости от полимера и существенно зависит от того, воздействовало ли на пленку и в какой мере тепло или температура.

Так, в принципе, чем выше действующая температура и тем больше продолжительность воздействия, тем значительнее усадка пленки.

Из уровня техники известны способы или обработки, которые используются с одноосными, а также особенно с двухосно-вытянутыми пленками для уменьшения усадки вытянутых пленок.

Так, особенно в случае одноосно-вытянутых пленок, но также и в случае двухосно-вытянутых пленок, известны постоработки (т.е. обработки, осуществляемые после процесса вытягивания), при которых пленки проходят через термостатируемые валки (так называемые отпускные валы) с как можно большим обхватом. В результате в пленку вводится тепло или температура, то есть она термофикаируется, и, таким образом, остаточная усадка уменьшается.

В области вытягивания плоских пленок, в так называемом процесс Tenter Frame (процесс растягивания и ориентирования пленки в раме), известны также постобработки (отпуск), называемые также термофикацией (термостабилизация), при которых пленка после вытягивания проводится горизонтально через установленную ниже по потоку нагревательную печь горизонтально и при этом обрабатывается горячим воздухом, благодаря чему усадка уменьшается.

Кроме того, известны также дополнительные термообработки рукавных пленок после их вытягивания процессе по так называемой технологии Triple Bubble или Multibubble. При этом пленки в форме рукава проводятся через печь и обрабатываются термически, в большинстве случаев, как и в процессе Tenter Frame, горячим воздухом. Альтернативно в процессе Triple Bubble пленка обрабатывается также инфракрасным излучением или же горячим водяным паром, чтобы уменьшить усадку, вызванную вытягиванием.
Таким образом, известны различные технологии, применяемые после двухосного вытягивания, которые снижают усадку благодаря внесению тепла. Помимо уровня используемой температуры, важным фактором здесь является также время или продолжительность теплового воздействия.

Однако лишь одна только обработка пленки теплом/температурой, чтобы не только уменьшить усадку пленки, но и полностью устранить ее, целесообразна и достаточна только для немногих типов пленок.

Так, пленки, полученные в процессе Tenter Frame, такие как BoPET, BoPA или BoPP (Bo=biaxial oriented=двуосно-ориентированная=двуосно-вытянутая), стабилизируются с помощью термообработки при очень высоких температурах (термофиксация), чтобы они имели очень низкую усадку или вовсе не имели усадки.

Похоже обстоит дело с некоторым типами пленок, которые вытягивают по двум осям в процессе Double Bubble, а затем термофиксируют с помощью отпускных валков или с использованием горизонтальной печи с горячим воздухом. Здесь также часто обрабатываются или фиксируются пленки BoPP или BoPA исключительно за счет температуры, после чего они демонстрируют очень низкую усадку или отсутствие усадки.

Это в основном связано с тем, что эти типы пленок представляют собой чистые пленки, независимо от процесса вытягивания, в которых используется только один тип/сорт исходного материала: BoPET (исключительно PET), BoPA (исключительно PA), BoPP (исключительно PP).

При этом для стабилизации может быть выбрана высокая температура термофиксации, соответствующая исходному материалу, вплоть до температуры, лежащей чуть ниже точки размягчения или точки плавления, таким образом, усадка может быть значительно уменьшена или даже устранена посредством одной только термообработки.

Однако для пленок, состоящих из разных исходных материалов, то есть из разных типов исходных материалов, в частности, материалов с очень разными температурами размягчения или плавления, это до сих пор считалось невозможным.

Так, на практике не известны соэкструдированные и двухосно-вытянутые пленки, которые содержат комбинацию различных исходных материалов с очень разными температурами размягчения или плавления и, кроме того, несмотря на вытягивание, не имеют никакой или имеют только очень незначительную усадку.

Исключение составляют отдельные многослойные пленки, изготовленные по технологии Tenter Frame или по технологии Double Bubble. При этом речь идет в основном о следующей слоистой структуре (изнутри наружу; HV=промотор адгезии):

PP-HV-EVOH-HV-PP

Так как при этом почти исключительно используются гомо-PP (гомополимерный PP; температура плавления: 155°C-165°C) в сочетании с EVOH, притом с марками EVOH с высоким содержанием этилена, которые имеют более низкую температуру плавления по сравнению с марками EVOH с низким содержанием этилена (температура плавления: 170°C-180°C), эти композиты действительно могут быть стабилизированы при подобных
температурах почти исключительно путем термической обработки, и усадка может быть уменьшена или устранена.

Однако эти многослойные пленки на основе PP, преимущественная часть которых состоит из PP, не обладают желаемой термостойкостью и, конечно, не обладают требуемой пригодностью для печати.

Поскольку даже самые термостойкие марки гомо-PP плавятся при температуре всегда 170°C, и, кроме того, PP также является одним из самых неполярных исходных материалов, который без дополнительной обработки совершенно не подходит для печати, при выборе идеального материала для наружного слоя о PP речь даже не идет.

Кроме того, эти известные на рынке, базирующиеся на PP многослойные пленки, из-за используемых типов PP и в принципе более плохой герметизирующей способности по сравнению с такими предпочтительно используемыми исходными материалами, как PE, имеют очень плохую или посредственную герметизируемость, т.е. относительно высокую температуру герметизации. Поэтому эти пленки обычно позднее ламинируются с пленками на основе PE.

Таким образом, в настоящее время считается, что многослойную созэкструдированную и затем двухосно-вытянутую пленку, которая содержит герметизирующий слой с более низкой температурой плавления, которая позднее не ламинируется, и, кроме того, содержит термостойкий и пригодный для печати (полярный) внешний слой, а также находящийся в центральных слоях кислородонепроницаемый слой и не имеет или имеет минимальную усадку, получить невозможно.

Это объясняется тем, что такие многослойные композиты, которым для устранения усадки или уменьшения усадки до уровня ниже 5% или, лучше, ниже 3%, необходима обработка при соответствующей температуре, которую могут или не могут стабильно производиться без дополнительных мер в процессе.

Так, еще до того, как будет достигнута температура, необходимая для устранения усадки, отдельные слои в многослойном композите размягчаются или даже плавятся, что неизбежно приводит к прерыванию или, по крайней мере, значительному ухудшению процесса изготовления пленки.

Когда или при какой температуре возникнут нарушения или даже перебои в процессе, зависит в основном от того, имеются ли какие-либо слои всей композитной пленки состоят из материалов не на основе полиолефинов, т.е. термостойких материалов с плотностью >1,00 г/см³ и температурой плавления выше 170°C.

Если массовая доля материалов с плотностью >1,00 г/см³ превышает 40% от общей массы слоистой структуры пленки, композитная пленка допускает также обработку (термофиксацию) при температурах 80°C-100°C, а при массовой доле 50% и более даже при более высоких температурах.

Но даже при высокой массовой доле материалов с плотностью >1,00 г/см³, составляющей 40% и более, если композитная пленка содержит герметизирующий слой из исходных материалов на основе полиолефина с плотностью <0,95 г/см³ и температурой
плавления ниже 120°C, еще до достижения остаточной усадки менее 5%, как в MD, так и в TD, всегда возникают нарушения или перебои в процессе, так как температуры, необходимые для термофиксации пленок, должны составлять по меньшей мере 120°C-150°C, и здесь даже материалов с плотностью > 1,00 г/см³ и температурой плавления выше 170°C уже недостаточно для обеспечения стабильности производственного процесса.

Таким образом, чтобы не нарушать процесс производства пленки, при последующей термообработке можно выбирать только такие температуры, которые не исключают полностью усадку.

Чтобы, тем не менее, уменьшить усадку до минимума или даже совсем исключить, согласно изобретению требуется дополнительный технологический этап. В дополнение к термообработке двухосно-вытянутой пленки для устранения усадки, в процесс, в частности, в процесс Triple-Bubble или Multibubble вводится дополнительный технологический этап, а именно так называемая релаксация. При этом пленке после вытягивания дается возможность контролируемой возвратной усадки; это называется релаксацией и происходит при воздействии температуры или тепла.

При этом релаксация может проводиться в обоих направлениях, т.е. как в направлении производства, или в направлении хода машины (MD), так и в направлении, поперечном направлению производства (TD).

Релаксация может проводиться в обоих направлениях (MD и TD) одинаковым или разным образом (выраженно) в том или другом направлении.

Кроме того, возможна релаксация только в одном направлении, то есть только в MD или в TD. Выбор направления релаксации всегда может производиться независимо один от другого. Количественно релаксация в рамках настоящего изобретения выражается через так называемый коэффициент релаксации, который будет более подробно определен ниже.

Но одна лишь релаксация пленки не уменьшает усадку в достаточной степени, и во всяком случае усадку нельзя устранить полностью.

Это объясняется тем, что пленки (усадочные пленки/покрытые пленки) при релаксации обрабатываются, соответственно фиксируются только при температурах максимум до 60°C-80°C, так как этих относительно низких температур уже достаточно для достижения контролируемых возвратных усадок пленок и уменьшения остающейся усадки до значений 10-20%, как в MD, так и в TD, а в лучшем случае до >5-10% в одном из двух направлений.

Более низкие значения усадки в настоящее время недостижимы, поскольку ни релаксация, достигаемая при этих условиях (температурах), ни воздействующая температура не достаточно для уменьшения усадки до уровня ниже 5%, как в MD, так и в TD.

Уровень релаксации, который может быть достигнут, зависит в основном от уровня температуры, при которой пленка обрабатывается или фиксируется.

Так, максимально возможная релаксация, которая оказывает дополнительный положительный эффект на остаточную усадку, т.е. еще больше снижает остаточную усадку,
может быть достигнута только при соответствующих высоких температурах обработки пленки (термофиксации).

Однако здесь возникает та же проблема, какая описана выше, а именно, что при обработке пленок, в частности пленок, которые содержат комбинации исходных материалов с очень разными температурами плавления, температуры, необходимые для устранения усадки, приводят к размягчению или даже плавлению отдельных слоев и, таким образом, неизбежно к прерыванию или, по крайней мере, к значительному ухудшению процесса получения пленки.

Равным образом, при обработке пленки путем комбинации термообработки и релаксации снова диапазон температур, при котором производственный процесс ухудшается или прерывается, зависит от того, насколько высока массовая доля материалов с плотностью >1,00 г/см³ в слоистой структуре пленки.

Неожиданно оказалось, что доля при соответствующей релаксации можно использовать значительно меньшую долю материалов с плотностью >1,00 г/см³, чем только при термообработке без релаксации.

Таким образом, при соответствующей релаксации можно проводить обработку при заметно более высокой температуре, в любом случае выше 60°C, предпочитительно выше 70°C, в частности, выше 80°C, и вплоть до температуры 180°C, предпочитительно до 150°C, в частности, до 120°C, при одновременном уменьшении массовой доли материалов (термопластичной смоль) с плотностью >1,00 г/см³, в любом случае меньше 40%, предпочитительно меньше 30%, в частности, меньше 20%, и даже вплоть до массовой доли менее 10%, от полной массы слоистой структуры пленки. При этом массовая доля термопластичной смоль с плотностью >1,00 г/см³ составляет по меньшей мере 1%, предпочитительно по меньшей мере 5% от всей массы слоистой структуры пленки.

Потому в способе согласно изобретению температуру композитной пленки во время релаксации предпочитительно устанавливать в одном из следующих диапазонов: 60°C-180°C, предпочитительно 60°C-150°C, особенно предпочитительно 60°C-120°C, в высшей степени 80°C-100°C.

Для способа согласно изобретению важно, чтобы сумма коэффициента релаксации в направлении хода машины (MD) и коэффициента релаксации в поперечном направлении (TD) составляла по меньшей мере 0,05 (= 5%), предпочитительно по меньшей мере 0,1 (=10%), предпочитительно по меньшей мере 0,2 (=20%), в частности, по меньшей мере 0,4 (=40%). При этом коэффициент релаксации в направлении хода машины и коэффициент релаксации в поперечном направлении должны быть по меньшей мере больше, чем 0,00.

Следовательно, коэффициент релаксации, наряду с используемой температурой стабилизации (температура композитной пленки по время релаксации) являются решающими факторами для уменьшения или устранения усадки, возникающей в пленке при вытягивании.

Таким образом, в рамках настоящего изобретения оказалось целесообразным контролировать уменьшать или снимать растяжение, или удлинение пленки, вводимое в
пленку при вытягивании.

При рассмотрении суммарного результата технологических этапов, включающая вытягивание и последующую релаксацию можно видеть, что после обоих технологических этапов в пленке возникает остаточное растяжение, или остаточное удлинение. При этом можно рассчитать коэффициент остаточного растяжения, которые ниже определяется подробно и который основой на отношении длины участка композитной пленки после вытягивания и после релаксации к длине этого же участка перед вытягиванием и перед релаксацией.

Так как коэффициент остаточного растяжения в равной степени является результатом обоих процессов (вытягивания и релаксации), в идеале на него также можно влиять или изменять одинаково посредством обоих этих процессов.

При более близком рассмотрении этой зависимости выявляется, что уменьшение вытягивания про прочих равных условиях дает такой же эффект, как последующая релаксация пленки, т.е., при меньшем вытягивании можно даже с меньшей релаксацией достичь очень низкой усадки, а при большем вытягивании требуется, в свою очередь, более значительная релаксация, чтобы сохранить усадку низкой, но, что удивительно, влияние коэффициента релаксации существенно выше, чем влияние кратности вытягивания.

Тем не менее, решающее значение имеет не просто релаксация, но, скорее, сумма или произведение этих двух технологических этапов.

Таким образом, коэффициент остаточного растяжения и, конечно же, тепло, вносимое при релаксации, по существу определяют, осталась ли усадка в пленке и какая.

Поскольку на остаточную усадку значительное влияние оказывает не только процесс релаксации и используемая при этом температура, но также процесс вытягивания, а процесс вытягивания также подразумевает термообработку, влияние этого также следует учитывать.

Действительно, здесь также можно видеть влияние, т.е. при низких температурах вытягивания без одновременного изменения других параметров процесса остаточная усадка выше, чем при более высоких температурах вытягивания.

Однако по сравнению с релаксацией процесс вытягивания является значительно более чувствительным, т.е. температуры, необходимые для достижения стабильного процесса, часто находятся в узком температурном окне всего ±(2-3)°C. Поэтому диапазон изменения температуры здесь меньше или ограничен.

Кроме того, насколько известно авторам изобретения, влияние температуры композитной пленки во время вытягивания довольно мало.

Таким образом, температура композитной пленки во время вытягивания является фактором влияния, но не имеет такого же решающего значения, как температура при релаксации или кратность вытяжки, а также коэффициент релаксации или коэффициент остаточного растяжения.

При более близком рассмотрении технологических этапов и их влияния выявляется еще один важный фактор, а именно время или период, в течение которого пленка находится...
на отдельных технологических этапах и подвергается воздействию царящих там условий.

Правда, оказалось, что влиянием фактора времени на процесс вытяжки можно пренебречь по сравнению с виланием температуры и кратности вытяжки.

Напротив, оказалось, что в процессе релаксации время (продолжительность) релаксации имеет по меньшей мере такое же значение, что и коэффициент релаксации и установившаяся температура.

Отсюда следует, что комбинация времени (продолжительности) и коэффициента релаксации менее существенно, чем влияние времени (продолжительности) в сочетании с температурой, т.е. точнее, периода, в течение которого пленка испытывает действие температуры во время релаксации.

Чем больше продолжительность термообработки, тем большее ее влияние и, тем самым, снижение остаточной усадки.

Однако оказалось также, что продолжительность термообработки нельзя увеличивать бесконечно, напротив, после определенного периода воздействия температуры дальнейшего усиления эффекта, то есть уменьшения усадки, достичь больше невозможно, и наступает своего рода насыщение.

Однако гораздо более важной является минимальная продолжительность времени, в течение которого пленка подвергается воздействию температуры, при этом для распознавания желаемого воздействия требуется продолжительность или время пребывания под действием температуры не менее 2 секунд.

Таким образом, в этом отношении способ согласно изобретению может быть ограничен тем, что композитная пленка во время релаксации имеет температуру в вышеуказанном температурном диапазоне в течение заданного периода (так называемое "время пребывания под действием температуры"). Так, продолжительность релаксации или время пребывания на этапе релаксации под действием температуры должно предпочтительно составлять по меньшей мере 2 секунды, в частности, более 5 секунд. При этом длительность релаксации или время пребывания на этапе релаксации под действием температуры могут ограничиваться значениями не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд.

Так же, как температура или релаксация сами по себе не могут привести к соответствующей низкой усадке, одним только временем пребывания под действием температуры этого также не достичь. Эти факторы воздействия и достигаемый ими эффект взаимозависимы и влияют друг на друга.

Так, остающаяся остаточная усадка пленки мала в случае высокотемпературной термообработки и одновременно высокой релаксации, несмотря на короткое время пребывания под действием температуры.

Кроме того, остающаяся остаточная усадка пленки мала также в случае высокотемпературной термообработки и длительном времени пребывания под действием температуры, несмотря на низкую релаксацию.

Равным образом, остающаяся остаточная усадка пленки также мала при длительном
времени пребывания под действием температуры и высокой релаксации, несмотря на умеренную термообработку.

Таким образом, лишь комбинация этих факторов воздействия позволяет достичь желаемой низкой остаточной усадки пленки.
<table>
<thead>
<tr>
<th>Кратность вытяжки (TDxMD)</th>
<th>Коэффициент релаксации (TDxMD) (%)</th>
<th>Уровень релаксации</th>
<th>Коэф-т остаточной релаксации (TDxMD)</th>
<th>Температура стабилизации (°C)</th>
<th>Уровень t-ры стабилизации</th>
<th>Время пребывания на релаксации (сек)</th>
<th>Длина от времени пребывания</th>
<th>Усадка после вытягивания и релаксации (TDxMD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4×2,6</td>
<td>5×1</td>
<td>↓</td>
<td>3,23×2,57</td>
<td>120</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>19×17</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>40×20</td>
<td>↑</td>
<td>2,04×2,08</td>
<td>120</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>0×0,5</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>60</td>
<td>↓</td>
<td>5</td>
<td>→</td>
<td>17×14</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>180</td>
<td>↑</td>
<td>5</td>
<td>→</td>
<td>процесс нестабилен</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>120</td>
<td>→</td>
<td>2</td>
<td>↓</td>
<td>9×8</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>120</td>
<td>→</td>
<td>9</td>
<td>↑</td>
<td>0,5×0,5</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>5×1</td>
<td>↓</td>
<td>3,23×2,57</td>
<td>60</td>
<td>↓</td>
<td>2</td>
<td>↓</td>
<td>46×42</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>120</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>2×1</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>40×20</td>
<td>↑</td>
<td>2,04×2,08</td>
<td>180</td>
<td>↑</td>
<td>9</td>
<td>↑</td>
<td>0×0</td>
</tr>
</tbody>
</table>

Пленка 2: PET(10%)/HV/PE/HV/PA(10%)/EVOH(5%)/PA(10%)/HV/PE; содержания указаны в массовых процентах от полной массы композитной пленки; доля материала с плотностью >1,0 г/см³ <40%, температура стабилизации=температура композитной пленки во время релаксации

<table>
<thead>
<tr>
<th>Кратность вытяжки (TDxMD)</th>
<th>Коэффициент релаксации (TDxMD) (%)</th>
<th>Уровень релаксации</th>
<th>Коэф-т остаточной релаксации (TDxMD)</th>
<th>Температура стабилизации (°C)</th>
<th>Уровень t-ры стабилизации</th>
<th>Время пребывания на релаксации (сек)</th>
<th>Длина от времени пребывания</th>
<th>Усадка после вытягивания и релаксации (TDxMD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4×2,6</td>
<td>5×1</td>
<td>↓</td>
<td>3,23×2,57</td>
<td>100</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>17×18</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>40×20</td>
<td>↑</td>
<td>2,04×2,08</td>
<td>100</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>0,5×0,5</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>60</td>
<td>↓</td>
<td>5</td>
<td>→</td>
<td>15×14</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>150</td>
<td>↑</td>
<td>5</td>
<td>→</td>
<td>процесс нестабилен</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>100</td>
<td>→</td>
<td>2</td>
<td>↓</td>
<td>8×8</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>100</td>
<td>→</td>
<td>9</td>
<td>↑</td>
<td>0,5×1</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>5×1</td>
<td>↓</td>
<td>3,23×2,57</td>
<td>60</td>
<td>↓</td>
<td>2</td>
<td>↓</td>
<td>43×41</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>20×5</td>
<td>→</td>
<td>2,72×2,47</td>
<td>100</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>1,5×2</td>
</tr>
<tr>
<td>3,4×2,6</td>
<td>40×20</td>
<td>↑</td>
<td>2,04×2,08</td>
<td>150</td>
<td>↑</td>
<td>9</td>
<td>↑</td>
<td>0×0</td>
</tr>
</tbody>
</table>

Пленка 3: PA(10%)/HV/PP/HV/EVOH(5%)/HV/PE; содержание указаны в массовых процентах от полной массы композитной пленки; доля материала с плотностью >1,0 г/см³ <20%; температура стабилизации=температура композитной пленки во время релаксации

<table>
<thead>
<tr>
<th>кратность вытяжки (TDxMD)</th>
<th>коэффициент релаксации (TDxMD) (%)</th>
<th>уровень релаксации</th>
<th>коэф-т остаточной релаксации (TDxMD)</th>
<th>температура стабилизации* (°C)</th>
<th>уровень т-ры стабилизации</th>
<th>время пребывания на релаксации (сек)</th>
<th>длина от времени пребывания</th>
<th>усадка после вытягивания и релаксация (TDxMD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5×2,8</td>
<td>5×1</td>
<td>↓</td>
<td>3,33×2,77</td>
<td>90</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>21×24</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>40×20</td>
<td>↑</td>
<td>2,1×2,24</td>
<td>90</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>0,5×1</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>20×5</td>
<td>→</td>
<td>2,8×2,66</td>
<td>60</td>
<td>↓</td>
<td>5</td>
<td>→</td>
<td>19×22</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>20×5</td>
<td>→</td>
<td>2,8×2,66</td>
<td>120</td>
<td>↑</td>
<td>5</td>
<td>→</td>
<td>процесс нестабилен</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>20×5</td>
<td>→</td>
<td>2,8×2,66</td>
<td>90</td>
<td>→</td>
<td>2</td>
<td>↓</td>
<td>9×11</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>20×5</td>
<td>→</td>
<td>2,8×2,66</td>
<td>90</td>
<td>→</td>
<td>9</td>
<td>↑</td>
<td>1×1,5</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>5×1</td>
<td>↓</td>
<td>3,33×2,77</td>
<td>60</td>
<td>↓</td>
<td>2</td>
<td>↓</td>
<td>45×47</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>20×5</td>
<td>→</td>
<td>2,8×2,66</td>
<td>90</td>
<td>↓</td>
<td>5</td>
<td>→</td>
<td>2×2,5</td>
</tr>
<tr>
<td>3,5×2,8</td>
<td>40×20</td>
<td>↑</td>
<td>2,1×2,24</td>
<td>120</td>
<td>↑</td>
<td>9</td>
<td>↑</td>
<td>0×0</td>
</tr>
</tbody>
</table>

Пленка 4: PET(5%)/HV/PE/HV/EVOH(5%)/HV/PE; содержание указаны в массовых процентах от полной массы композитной пленки; доля материала с плотностью >1,0 г/см³ ≤10%; температура стабилизации=температура композитной пленки во время релаксации

<p>| кратность вытяжки (TDxMD) | коэффициент релаксации (TDxMD) (%) | уровень релаксации | коэф-т остаточной релаксации (TDxMD) | температура стабилизации* (°C) | уровень т-ры стабилизации | время пребывания на релаксации (сек) | длина от времени пребывания | усадка после вытягивания и релаксация (TDxMD) (%) |</p>
<table>
<thead>
<tr>
<th>кратность вытяжки (TDxMD)</th>
<th>коэффициент релаксации (TDxMD) (%)</th>
<th>уровень релаксации</th>
<th>коэф-ты остаточной релаксации (TDxMD)</th>
<th>температура стабилизации * (°C)</th>
<th>уровень т-ры стабилизации</th>
<th>время пребывания на релаксации (сек)</th>
<th>длина от времени пребывания</th>
<th>усадка после вытягивания и релаксации (TDxMD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0×5,0</td>
<td>5×1</td>
<td>↓</td>
<td>4,75×4,95</td>
<td>70</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>37×39</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>40×20</td>
<td>↑</td>
<td>3,0×4,0</td>
<td>70</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>9×11</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>20×5</td>
<td>→</td>
<td>4,0×4,75</td>
<td>60</td>
<td>↓</td>
<td>5</td>
<td>→</td>
<td>31×34</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>20×5</td>
<td>→</td>
<td>4,0×4,75</td>
<td>80</td>
<td>↑</td>
<td>5</td>
<td>→</td>
<td>процесс нестабилен</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>20×5</td>
<td>→</td>
<td>4,0×4,75</td>
<td>70</td>
<td>→</td>
<td>2</td>
<td>↓</td>
<td>28×29</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>20×5</td>
<td>→</td>
<td>4,0×4,75</td>
<td>70</td>
<td>→</td>
<td>9</td>
<td>↑</td>
<td>процесс нестабилен</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>5×1</td>
<td>↓</td>
<td>4,75×4,95</td>
<td>60</td>
<td>↓</td>
<td>2</td>
<td>↓</td>
<td>37×39</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>20×5</td>
<td>→</td>
<td>4,0×4,75</td>
<td>70</td>
<td>→</td>
<td>5</td>
<td>→</td>
<td>23×24</td>
</tr>
<tr>
<td>5,0×5,0</td>
<td>40×20</td>
<td>↑</td>
<td>3,0×4,0</td>
<td>80</td>
<td>↑</td>
<td>9</td>
<td>↑</td>
<td>процесс нестабилен</td>
</tr>
</tbody>
</table>

Пленка 5: PP/HV/EVOH(5%)/HV/PE; содержания указаны в массовых процентах от полной массы композитной пленки; доля материала с плотностью >1,0 г/см³ ≤5%; температура стабилизации=температура композитной пленки во время релаксации.
Таким образом, для решения поставленной задачи, в дополнение к идеально подходящей для использования слоистой структуре с предпочтительно содержащимися в ней исходными материалами в комбинации с температурами, присутствующими на отдельных технологических этапах, факторами процесса, в частности, такими как кратность вытяжки, коэффициент релаксации и коэффициент остаточного растяжения, а также время пребывания, решающее значение имеет по меньшей мере продолжительность термофиксации (релаксации). Благодаря предлагаемой изобретением комбинации вышеуказанных или определенных в зависимых пунктах формулы признаков и параметров впервые была достигнута цель получения, в частности, стабильного получения композитной пленки указанного во введении типа путем сожестуризации и без ламинарирования, которая, наряду с исконными свойствами, как, например, термостойкость, пригодность для печати и кислородонепроницаемость, не имеет усадки или имеет усадку менее 5%, предпочтительно менее 3%, как в MD, так и в TD.

Особенно предпочтительно, если термопластичная смола, которая содержится в слое (c), или из которой состоит слой (c), имеет температуру плавления ниже 120°C. Из-за повышенной разницы с температурой плавления внешнего слоя гарантируется, что композитная пленка может быть заерметизирована раньше, т.е. при более низкой температуре. Кроме того, достигается более высокая частота цикла при дальнейшей обработке композитной пленки.

Кроме того, особенно предпочтительно, если термопластичная смола, которая содержится в слое (a) или из которой состоит слой (a), имеет температуру плавления выше 170°C. Благодаря повышенной температуре плавления внешнего слоя при дальнейшей обработке можно работать при более высоких температурах и, таким образом, можно при дальнейшей обработке композитной пленки достичь более высокой частоты цикла.

Далее, согласно изобретению, слой (a), то есть внешний слой, или термопластичная смола слоя (a) предпочтительно может иметь заданную поверхность, которая представляет поверхностным натяжением, указанным в единицах дин/см. Это значение предпочтительно может составлять >40 дин/см, в частности, >42 дин/см, чтобы обеспечить наилучшую пригодность для печати.

Кроме того, согласно изобретению в предпочтительном варианте осуществления можно предусмотреть, чтобы внешний слой (a) состоял из EVOH или содержал его.

До настоящего времени из уровня техники не были известны оригинальные композитные пленки, в которых EVOH использовался бы в качестве компонента слоя во внешнем слое (a), или в которых слой (a) состоял из EVOH. Из уровня техники известно использование EVOH в качестве материала с превосходной кислородонепроницаемостью. Однако использование для этой цели требует нахождения EVOH во внутренних слоях, так как при проникновении влаги EVOH быстро теряет свои хорошие свойства кислородного барьера. Поэтому EVOH как компонент или материал слоя всегда использовался окруженным с обеих сторон защитными слоями, например, полиолефина или полиамида, которые иногда имеют высокую паронепроницаемость. Однако использование EVOH в
оригинальных композитных пленках для других целей и другим способом или в другой конфигурации, например, в качестве наружного или герметизирующего слоя (внутренний слой; поверхность, обращенная к упаковываемому товару), до сих пор не было известно.

Напротив, изобретение дает возможность осознанно использовать EVOH в слое (a), то есть во внешнем слое, представляющем наружную поверхность композитной пленки. При этом внешний слой (a) может содержать EVOH или состоять из него. Однако при использовании EVOH во внешнем слое (a) роль EVOH как барьера от кислорода не имеет значения. Вернее, согласно изобретению, использование EVOH во внешнем слое приводит к существенному повышению пригодности пленки для повторного использования по сравнению с композитными пленками, которые содержат внешний слой с PA или PET. Это связано с тем, что EVOH имеет более низкую температуру плавления по сравнению с материалами PA и PET, предусматривавшимися раньше для внешнего слоя, так что разница в температурах плавления внешнего слоя и герметизирующего слоя (внутреннего слоя) уменьшается. Тем самым, температура плавления, необходимая для вторичной переработки, может быть в целом снижена, что улучшает возможность вторичного использования композитной пленки.

Кроме того, авторы изобретения установили, что благодаря EVOH во внешнем слое можно дополнительно улучшить механические свойства пленки, например, жесткость и пригодность для печати, как у PET или PA, по сравнению с полиолефинами, например, PE или PP. Так, более высокая по сравнению с этими полиолефинами температура плавления EVOH и связанная с этим более высокая термостойкость внутреннего слоя (герметизирующий слой) ведет к лучшим в целом технологическим характеристикам композитной пленки (частота цикла).

В контексте настоящей заявки раскрываются также следующие объекты. Вышеуказанная цель достигается посредством объектов, определенных в соответствии со следующими пунктами.

1. Способ получения многослойной композитной пленки, причем способ включает по меньшей мере следующие этапы:
 - этап соэкструзии по меньшей мере трех слоев (a), (b) и (c), из которых
 - слой (a) образует поверхность композитной пленки, обращенную наружу;
 - слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующую с ним, и
 - слой (b) находится между слоем (a) и слоем (c);
 - причем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, …), предпочтительно из двух, трех или четырех слоев;
 - этап вытягивания соэкструдированной композитной пленки и
 - этап релаксации вытянутой композитной пленки;
 причем вытягивание проводится по двум осям;
 причем кратность вытяжки в направлении хода машины, или в продольном направлении, (MD) составляет по меньшей мере 2,0;
причем кратность вытяжки в поперечном направлении, или в направлении ширины, (TD) составляет по меньшей мере 2,0;

причем сумма кратности вытяжки в направлении хода машины (MD) и кратности вытяжки в поперечном направлении (TD) составляет по меньшей мере 5,0;

причем композитная пленка в процессе вытягивания имеет температуру 70°C-130°C;

причем коэффициент релаксации в направлении хода машины (MD) имеет значение больше 0,00;

причем коэффициент релаксации в поперечном направлении (TD) имеет значение больше 0,00;

причем сумма коэффициента релаксации в направлении хода машины (MD) и коэффициента релаксации в поперечном направлении (TD) составляет по меньшей мере 0,05 (= 5%), предпочтительно по меньшей мере 0,1 (= 10%), предпочтительно по меньшей мере 0,2 (= 20%), в частности, по меньшей мере 0,4 (= 40%);

причем композитная пленка в процессе релаксации имеет температуру 60°C-180°C, предпочтительно 60°C-150°C, особенно предпочтительно 60°C-120°C, особенно предпочтительно 80°C-100°C;

причем время пребывания на этапе релаксации, предпочтительно на этапе релаксации под воздействием температуры, предпочтительно составляет по меньшей мере 2 секунды, в частности, более 5 секунд, или длительность релаксации предпочтительно составляет по меньшей мере 2 секунды, в частности, более 5 секунд;

причем время пребывания на этапе релаксации, предпочтительно релаксации под воздействием температуры, предпочтительно составляет не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд, или длительность релаксации предпочтительно составляет не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд;

причем коэффициент остаточного растяжения в направлении хода машины (MD) составляет не более 5,0;

причем коэффициент остаточного растяжения в поперечном направлении (TD) составляет не более 5,0;

причем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и

причем слой (b) или каждый из множества слоев (b1, b2, ...) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и

причем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³ или состоит из нее.

2. Способ получения многослойной композитной пленки, предпочтительно способ в соответствии с пунктом 1, причем способ включает по меньшей мере следующие этапы:

- этап соэкструзии по меньшей мере четырех слоев (a), (b), (d) и (c), из которых
- слой (a) образует поверхность композитной пленки, обращенную наружу;
- слой (c) образует поверхность композитной пленки, обращенную к
упаковываемому товару или контактирующую с ним;
- слой (b) находится между слоем (a) и слоем (c); и
- слой (d) находится между слоем (a) и слоем (c), предпочитительно между слоем (a) и слоем (b);
 причем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, ...
 ..., предпочитительно из двух, трех или четырех слоев;
 причем слой (d) состоит из единственного слоя или множества слоев (d1, d2, ...),
 предпочитительно из двух, трех или четырех слоев;
- этап вытягивания соэкструдированной композитной пленки и
- этап релаксации вытянутой композитной пленки,
 причем вытягивание проводится по двум осям;
 причем кратность вытяжки в направлении хода машины, или в продольном
 направлении, (MD) составляет по меньшей мере 2,0;
 причем кратность вытяжки в поперечном направлении, или в направлении ширины,
 (TD) составляет по меньшей мере 2,0;
 причем сумма кратности вытяжки в направлении хода машины (MD) и кратности
 вытяжки в поперечном направлении (TD) составляет по меньшей мере 5,0;
 причем композитная пленка на этапе вытягивания имеет температуру 70°C-130°C;
 причем коэффициент релаксации в направлении хода машины (MD) имеет значение
 больше 0,00;
 причем коэффициент релаксации в поперечном направлении (TD) имеет значение
 больше 0,00;
 причем сумма коэффициента релаксации в направлении хода машины (MD) и
 коэффициента релаксации в поперечном направлении (TD) составляет по меньшей мере
 0,05 (= 5%), предпочитительно по меньшей мере 0,1 (= 10%), предпочитительно по меньшей
 мере 0,2 (= 20%), в частности, по меньшей мере 0,4 (= 40%);
 причем композитная пленка на этапе релаксации имеет температуру 60°C-180°C,
 предпочитительно 60°C-150°C, особенно предпочитительно 60°C-120°C, особенно
 предпочитительно 80°C-100°C;
 причем время пребывания на этапе релаксации, предпочитительно на этапе
 релаксации под воздействием температуры, предпочитительно составляет по меньшей мере
 2 секунды, в частности, более 5 секунд, или длительность релаксации предпочитительно
 составляет по меньшей мере 2 секунды, в частности, более 5 секунд;
 причем время пребывания на этапе релаксации, предпочитительно релаксации под
 воздействием температуры, предпочитительно составляет не более 30 секунд,
 предпочитительно не более 20 секунд, в частности, не более 10 секунд, или длительность
 релаксации предпочитительно составляет не более 30 секунд, предпочитительно не более 20
 секунд, в частности, не более 10 секунд;
 причем коэффициент остаточного растяжения в направлении хода машины (MD)
 составляет не более 5,0;
причем коэффициент остаточного растяжения в поперечном направлении (TD) составляет не более 5,0;
причем слой (а) содержит термопластиическую смолу с плотностью более 1,00 г/см³ или состоит из нее;
причем слой (d) или каждый из множества слоев (d1, d2, ...) содержит термопластиическую смолу, предпочитительно полиолефин, с плотностью менее 1,00 г/см³, предпочитительно менее 0,98 г/см³, или состоит из нее;
причем слой (b) или каждый из множества слоев (b1, b2, ...) содержит термопластиическую смолу с плотностью более 1,00 г/см³ или состоит из нее; и
причем слой (c) содержит термопластиическую смолу с плотностью менее 0,95 г/см³ или состоит из нее.
3. Способ в соответствии с предыдущим пунктом 1 или 2, отличающийся тем, что
- термопластичная смола слоя (а) и термопластичная смола слоя (b) являются различными; или
- термопластичная смола слоя (а) отличается от термопластичной смолы слоя (b) или всех термопластичных смол слоев (b1, b2, ...), или
- термопластичная смола слоя (а) и термопластичная смола слоя (b) являются идентичными; или
- термопластичная смола слоя (а) является идентичной по меньшей мере одной из термопластичных смол слоев (b1, b2, ...).
4. Способ в соответствии с одним из предшествующих пунктов 1-3, отличающийся тем, что
- термопластичная смола слоя (а) имеет температуру плавления выше 170°С; и/или
- термопластичная смола слоя (а) имеет поверхностное натяжение >40 дин/см, в частности >42 дин/см.
5. Способ в соответствии с одним из предшествующих пунктов 1-4, отличающийся тем, что
- термопластичная смола слоя (c) является полиолефином с температурой герметизации, которая ниже температуры герметизации термопластичной смолы слоя (а), и/или
- термопластичная смола слоя (c) является полиолефином с температурой плавления ниже 120°С.
6. Способ в соответствии с одним из предшествующих пунктов 1-5, отличающийся тем, что
- термопластичная смола слоя (b) или термопластичные смолы слоев (b1, b2, ...), по отдельности или в сумме, имеют кислородопроницаемость менее 100 см³/м²·д·бар; и/или
- слой (b) или слои (b1, b2, ...) по отдельности или в сумме имеют кислородопроницаемость менее 100 см³/м²·д·бар.
7. Способ в соответствии с одним из предшествующих пунктов 1-6, отличающийся тем, что вытягивание проводится одновременно или в несколько последовательных
стуиней.

8. Способ в соответствии с одним из предшествующих пунктов 1-7, отличающийся тем, что

- композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочтительно менее 0,03 (= 3%), в направлении хода машины (MD); и/или
- композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочтительно менее 0,03 (= 3%), в поперечном направлении (TD); и/или
- после вытягивания и релаксации сумма усадки композитной пленки в направлении хода машины (MD) и усадки в поперечном направлении (TD) (= полная усадка) предпочтительно составляет менее 0,05 (= 5%).

9. Способ в соответствии с одним из предшествующих пунктов 1-8, отличающийся тем, что

- толщина слоя (a) не превышает 20%, предпочтительно 10%, толщины всей композитной пленки; и/или
- толщина слоя (b) или суммарная толщина слоев (b1, b2, ...) не превышает 20%, предпочтительно 10% толщины всей композитной пленки.

10. Способ в соответствии с одним из предшествующих пунктов 1-9, отличающийся тем, что

- массовая доля слоя (a) не превышает 10% полной массы композитной пленки 10%, и/или
- массовая доля слоя (b) или сумма массовых долей слоев (b1, b2, ...) не превышает 10% от полной массы композитной пленки.

11. Способ в соответствии с одним из предшествующих пунктов 1-10, отличающийся тем, что сумма массовых долей слоев (a) и (b) или слоев (a) и (b1, b2, ...) не превышает 10% от полной массы композитной пленки.

12. Способ в соответствии с одним из предшествующих пунктов 1-11, отличающийся тем, что термопластичная смола слоя (a) содержит сложный полиэфир, предпочтительно полиэтиленфталат (PET) или полимолочную кислоту или полиакрил (PLA), полиамид (PA), сополимер этилена с виниловым спиртом (EVOH) или любую их смесь или состоит из указанных веществ.

13. Способ в соответствии с одним из предшествующих пунктов 1-12, отличающийся тем, что термопластичная смола слоя (c) содержит полиолефин (PO), предпочтительно полиэтилен (PE) и/или полипропилен (PP), сополимер этилена с винилакетатом (EVA), иономер (IO), сополимер этилена с метилиметакрилатом (EMMA), сополимер этилена с метакриловой кислотой (EMA), или любую их смесь или состоит из указанных веществ.

14. Многослойная композитная пленка, полученная способом в соответствии с одним из предшествующих пунктов 1-13; причем композитная пленка предпочтительно является плоской или рукавной.

15. Многослойная соэкструдированная, двухосно-вытянутая и релаксированная
композитная пленка, предпочтительно полученная способом в соответствии с одним из предшествующих пунктов 1-13, содержащая по меньшей мере три слоя (a), (b) и (c), из которых
- слой (a) образует поверхность композитной пленки, обращенную наружу;
- слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующую с ним, и
- слой (b) находится между слоем (a) и слоем (c);
прочем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, ...), предпочтительно из двух, трех или четырех слоев;
прочем коэффициент остаточного растяжения в направлении хода машины (MD) составляет не более 5,0;
прочем коэффициент остаточного растяжения в поперечном направлении (TD) составляет не более 5,0;
прочем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее;
прочем слой (b) или каждый из множества слоев (b1, b2, ...) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и
прочем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³ или состоит из нее.

16. Многослойная соэкструдированная двухосно-вытянутая и релаксированная композитная пленка, предпочтительно композитная пленка в соответствии с предыдущим пунктом 15, содержащая по меньшей мере четыре слоя (a), (b), (d) и (c), из которых
- слой (a) образует поверхность композитной пленки, обращенную наружу;
- слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующей с ним;
- слой (b) находится между слоем (a) и слоем (c); и
- слой (d) находится между слоем (a) и слоем (c), предпочтительно между слоем (a) и слоем (b);
прочем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, ...), предпочтительно из двух, трех или четырех слоев;
прочем слой (d) состоит из единственного слоя или множества слоев (d1, d2, ...), предпочтительно из двух, трех или четырех слоев;
прочем коэффициент остаточного растяжения в направлении хода машины (MD) составляет не более 5,0;
прочем коэффициент остаточного растяжения в поперечном направлении (TD) составляет не более 5,0;
прочем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее;
прочем слой (d) или каждый из множества слоев (d1, d2, ...) содержит термопластичную смолу, предпочтительно полиолефин, с плотностью менее 1,00 г/см³,
предпочтительно менее 0,98 г/см³, или состоит из нее;
причем слой (b) или каждый из множества слоев (b1, b2, …) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и
причем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³ или состоит из нее.

17. Композитная пленка в соответствии с одним из предшествующих пунктов 14-16, отличающаяся тем, что
- термопластичная смола слоя (a) и термопластичная смола слоя (b) являются различными; или
- термопластичная смола слоя (a) отличается от термопластичной смолы слоя (b) или всех термопластичных смол слоев (b1, b2, …); или
- термопластичная смола слоя (a) и термопластичная смола слоя (b) являются идентичными; или
- термопластичная смола слоя (a) является идентичной по меньшей мере одной из термопластичных смол слоев (b1, b2, …).

18. Композитная пленка в соответствии с одним из предшествующих пунктов 14-17, отличающаяся тем, что термопластичная смола слоя (a) имеет температуру плавления выше 170°C.

19. Композитная пленка в соответствии с одним из предшествующих пунктов 14-18, отличающаяся тем, что
- термопластичная смола слоя (c) является полиолефином с температурой герметизации ниже, чем температура герметизации термопластичной смолы слоя (a); и/или
- термопластичная смола слоя (c) является полиолефином с температурой плавления ниже 120°C.

20. Композитная пленка в соответствии с одним из предшествующих пунктов 14-19, отличающаяся тем, что
- термопластичная смола слоя (b) или термопластичные смолы слоев (b1, b2, …), по отдельности или в сумме, имеет кислородопроницаемость менее 100 см³/м²·д·бар, и/или
- слой (b) или слои (b1, b2, …), по отдельности или в сумме, имеют кислородопроницаемость менее 100 см³/м²·д·бар.

21. Композитная пленка в соответствии с одним из предшествующих пунктов 14-20, отличающаяся тем, что
- композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочитительно менее 0,03 (= 3%), в направлении хода машины (MD); и/или
- композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочитительно менее 0,03 (= 3%), в поперечном направлении (TD); и/или
- предпочитительно, после вытягивание и релаксации сумма усадки композитной пленки в направлении хода машины (MD) и усадки в поперечном направлении (TD) (= полная усадка) составляет менее 0,05 (= 5%).

22. Композитная пленка в соответствии с одним из предшествующих пунктов 14-21,
отличающаяся тем, что
- толщина слоя (a) не превышает 20%, предпочтительно 10% от толщины всей композитной пленки; и/или
- толщина слоя (b) или суммарная толщина слоев (b1, b2, …) не превышает 20%, предпочтительно 10% толщины всей композитной пленки.

23. Композитная пленка в соответствии с одним из предшествующих пунктов 14-22, отличающаяся тем, что
- массовая доля слоя (a) не превышает 10% от полной массы композитной пленки; и/или
- массовая доля слоя (b) или сумма массовых долей слоев (b1, b2, …) не превышает 10% от полной массы композитной пленки; и/или

24. Композитная пленка в соответствии с одним из предшествующих пунктов 14-23, отличающаяся тем, что сумма массовых долей слоев (a) и (b) или слоев (a) и (b1, b2, …) не превышает 10% от полной массы композитной пленки.

25. Композитная пленка в соответствии с одним из предшествующих пунктов 14-24, отличающаяся тем, что термопластичная смола слоя (a) содержит сложный полиэфир, предпочтительно полиэтилентерефтлат (PET) или полимолочную кислоту или полиэтилэн (PLA), полиамид (PA), сополимер этилена с виниловым спиртом (EVOH), или любую их смесь или состоит из указанных веществ.

26. Композитная пленка в соответствии с одним из предшествующих пунктов 14-25, отличающаяся тем, что термопластичная смола слоя (c) содержит полиполефин (PO), предпочтительно полиэтилен (PE) и/или полипропилен (PP), сополимер этилена с винилацетатом (EVA), иономер (IO), сополимер этилена с метилметакрилатом (EMMA), сополимер этилена с метакриловой кислотой (EMA), или любую их смесь или состоит из указанных веществ.

27. Применение многослойной композитной пленки в соответствии с одним из предшествующих пунктов 14-26 или полученной из нее оболочки для упаковки предмета, предпочтительно для упаковки продукта питания, пищевкусового продукта или жидкого или твердого, в частности, порошкообразного товара.

28. Способ в соответствии с одним из предшествующих пунктов 1-13, композитная пленка в соответствии с одним из предшествующих пунктов 14-26 или применение в соответствии с пунктом 27, отличающиеся тем, что массовая доля компонента слоя с температурой плавления выше 170°C, предпочтительно термопластичной смолы слоя (a) с температурой плавления выше 170°C, составляет от 1% до <40%, предпочтительно от 1% до <30%, предпочтительно от 1% до <20%, в частности, от 5% до <20%, от полной массы композитной пленки.

Дополненное описание (определение и т.д.):
Описанный здесь способ получения многослойной композитной пленки в соответствии с изобретением может быть охарактеризован тем, что он не имеет стадии ламинарирования, то есть склеивания слоев или слоистых композитов.
Соответственно, описанная здесь многослойная композитная пленка согласно изобретению может быть неламинированной композитной пленкой.

Определение длин (по отношению к направлению хода машины или поперечному направлению):

L0 := длина заданного участка композитной пленки перед вытягиванием;
L1 := длина этого же участка композитной пленки после вытягивания и перед релаксацией;
L2 := длина этого же участка композитной пленки после вытягивания и перед релаксацией;
L3 := длина этого же участка композитной пленки после вытягивания и после релаксации.

Определение кратности вытяжки: кратность вытяжки \(V = \text{длина} L1 \text{ заданного участка композитной пленки после вытягивания и перед релаксацией, деленная на длину} L0 \text{ этого же участка композитной пленки перед вытягиванием} \) \(V = L1/L0 \).

Определение коэффициента релаксации: коэффициент релаксации \(RL = \text{абсолютное значение разности} \) (длина L3 заданного участка композитной пленки после вытягивания и после релаксации минус длина L2 этого же участка композитной пленки после вытягивания и перед релаксацией), деленное на длину L2 этого же участка композитной пленки после вытягивания и перед релаксацией \(RL = (L3-L2)/L2 \).

Определение коэффициента остаточного растяжения: коэффициент остаточного растяжения \(RV = \text{длина} L3 \text{ заданного участка композитной пленки после вытягивания и после релаксации, деленная на длину} L0 \text{ этого же участка композитной пленки перед вытягиванием и после релаксацией} \) \(RV = L3/L0 \).

Композитная пленка согласно изобретению предпочтительно является многослойной композитной пленкой с барьерной функцией, или многослойной барьерной пленкой, при этом барьерные свойства относятся к пониженной кислородопроницаемости, или пониженной паропроницаемости, или к обеим.

Усадка (или термоусадка): измеряется в воде при 90°C, предпочтительно в течение 1 секунды после погружения, но не позднее 10 секунд после погружения.

Согласно изобретению, образец для определения усадки (или термоусадки) погружают в воду при 90°C на определенное, в частности, указанное выше время и после извлечения сразу же охлаждают водой до комнатной температуры. Измеряют длину предварительно размоченного участка после этой обработки и соотносят с длиной этого же участка образца, измеренной перед обработкой. Полученное отношение длин ("усаженной" к "неусаженной"), указанное в процентах, определяется как усадка. В зависимости от направления измерения длины получают усадку в продольном (MD) и поперечном (TD) направлениях. Полная усадка рассчитывается как сумма усадок в продольном и в поперечном направлении. Многократные измерения, например, трех- или пятнадцатые измерения длины и вычисление на их основе соответствующих средних значений, предпочтительно повышают точность определения. Согласно изобретению, усадку и
общую усадку можно определить, в частности, в соответствии со стандартом ASTM 2732.

В рамках изобретения измерение кислородопроницаемости проводится при 23°C и относительной влажности воздуха 75% (ASTMD 1434).

Способ согласно изобретению и композитная пленка согласно изобретению могут с успехом применяться, соответственно производиться, в известном специалистам в данной области процессе так называемого двойного раздува (Double-Bubble), в частности, в процессе тройного раздува (Tripple-Bubble), для чего авторы заявки предлагают подходящие установки. При этом многослойная композитная пленка может, например, соэкструдироваться из соответствующих полимерных расплавов с помощью предлагаемой Заявителем выдувной головки, настроенная для производства композитных пленок с тремя или более слоями, предпочтительно с термическим разделением отдельных слоев, охлаждаться с помощью водяного охлаждения, предлагаемого Заявителем, повторно нагреваться, вытягиваться по двум осям в машинном направлении (MD) и в поперечном направлении (TD) с помощью включенного пузырька сжатого воздуха и, наконец, релаксировать на следующем этапе в заданном температурном режиме (т. е. термофиксации). Композитная пленка согласно изобретению может быть пленкой, имеющей барьер от диффузии газов, в частности, диффузии кислорода, и/или от диффузии водяного пара. Такой способ получения известен специалистам из учебника Savic, Z., Savic, I., "Sausage Casings", 1. Auflage, 2002, VICTUS Lebensmittelindustriebedarf Vertriebsgesellschaft mbH, Wien, Österreich, глава 7, включая подраздел 4.2, с. 267-270.

Другой возможностью получения пленки согласно изобретению является вытягивание соэкструдированной плоской пленки с использованием известного специалистам способа Tenter-Frame.

Композитную пленку по настоящему изобретению можно с успехом производить на устройстве или установке этого же Заявителя для получения пищевых рукавных пленок для упаковки пищевых продуктов, как, например, усадочные пленки или термоусадочные оболочки, дутьевым способом, если при этом использовать устройство быстрого охлаждения точных термопластичных рукавов после их экструзии, описанное в патенте DE 19916428 B4 от этого же заявителя. В этой связи также можно принять во внимание соответствующую усовершенствованную разработку согласно описанию патента DE 10048178 B4.

При этом рукавная пленка, образованная в выдувной головке из полимерного расплава, подвергается интенсивному охлаждению, при котором аморфная структура термопласта из полимерного расплава сохраняется. Рукавная пленка, выдавливаемая вертикально из полимерного расплава в выдувной головке, сначала перемещается в охлаждающее устройство, не касаясь стенок, как подробно описано в публикациях DE 19916428 B4 и DE 10048178 B4. Что касается деталей процедур, конструкций и режима работы этого охлаждающего устройства, называемого также калибровочным устройством, во избежание повторения следует обратиться к содержанию документов DE 19916 428 B4 и DE 10048178 B4.
Затем рукавная пленка проводится в охлаждающем устройстве через опоры, на которые пленка опирается вследствие разницы давлений между внутренней частью рукавной пленки и охлаждающей средой, при этом сохраняется жидкая пленка между пленкой и опорами, так что прилипание рукавной пленки исключается. Поскольку при этом диаметр опор влияет на диаметр рукавной пленки, это охлаждающее устройство называется этим же заявителем калиброзовочным устройством.

Согласно изобретению, полиамид (PA) может представлять собой соединение, выбранное из группы, состоящей из PA из ε-капролактама (поли(ε-капролактам), RA6), PA из гексаметилендиамина и адипиновой кислоты (полигексаметиленадипинамид, RA6.6), RA из ε-капролактама и гексаметилендиамина/адипиновой кислоты (PA6.66), PA из гексаметилендиамина и додецилкарбоновой кислоты (полигексаметилендодеканамид, PA6.12), RA из 11-аминоундекановой кислоты (полиундеканамид, PA11), RA из 12-лауринлактама (поли(ω-лауринлактам), PA12) или смесь этих RA, или смесь этих RA с аморфными RA или с другими полимерами. Общее написание PAху эквивалентно написанию PAху или PAху.

В контексте настоящей заявки полилефир (РО) может представлять собой соединение, выбранное из группы, состоящей из PP, PE, LDPE, LLDPE, полилефиновых пластиков (POP), сополимеров этилена с винилацетатом (EVA), сополимеров этилена с метилметакрилатом (EMMA), сополимеров этилена с метакриловой кислотой (EMA), сополимеров этилена с акриловой кислотой (EAA), сополимеров циклолефинов/циклоалканов с 1-алканами, или циклолефиновых сополимеров (COC), иномеров (IQ) или их смесь. Кроме того, в контексте настоящего изобретения РО охватывает также смеси вышеуказанных ПО с иномерами и/или промоторами адгезии.

В рамках настоящего изобретения в качестве компонента слоя для слоя (а) можно использовать сложный полилефир. Сложные полилефиры представляют собой полимеры со сложноэфирными группами в их основной цепи, они могут быть, в частности, алифатическими или ароматическими полилефирами. Полилефиры могут быть получены поликонденсацией соответствующих дикарбоновых кислот с диолами. Для синтеза полилефира можно использовать любую дикарбоновую кислоту, подходящую для образования сложного полилефира, в частности, терефталевую кислоту и изоформальную кислоту, а также димеры ненасыщенных алифатических кислот. В качестве других компонентов для синтеза полилефиров можно использовать диолы, например, полиалкиленгликоли, такие как этиленгликоль, пропilenгликоль, тетраметилэнгликоль, неопентилгликоль, гексаметиленгликоль, диэтиленгликоль, полизетилиленгликоль и полипропиленетиленоксидгликоль; а также 1,4-циклогександиметанол и 2-алкил-1,3-пропандиол.

Особенно предпочтительным в качестве сложного полилефира является PET (полизетилентерефтлат). PET можно получить поликонденсацией терефталевой кислоты (1,4-бензолдикарбоновая кислота) и этиленгликоль (1,2-дигидроксиэтан).

Другим предпочтительным полилефиром являются полилактиды или полимолочные
кислоты (PLA), которые могут содержаться как компоненты слоя в слоях, для которых полиэфир предусматривается как компонент слоя. Эти полимеры являются биосовместимыми/биоразлагаемыми и, помимо низкого влагопоглощения имеют высокие температуры, или точки, плавления и хорошую прочность при растяжении.

В рамках настоящего изобретения EVOH означает как сам EVOH, так и смесь EVOH с другими полимерами, иономерами, EMA или EMMA. В частности, термин EVOH охватывает также смесь EVOH и PA или смесь EVOH и иономера.

В композитной пленке согласно изобретению в качестве промежуточных слоев можно предусмотреть промоторы адгезии (HV), которые представляют собой клеящие слои, обеспечивающие хорошую адгезию между отдельными слоями. При этом HV могут иметь в основе материал, выбранный из группы, состоящей из PE, PP, EVA, EMA, EMMA, EAA и иономера, или их смесь. Согласно изобретению, особенно подходящими в качестве промоторов адгезии (HV) являются EVA, EMA или EMMA, с чистотой >99%, предпочтительно >99,9%.

Согласно следующему, предпочтительному, варианту осуществления слои, которые содержат HV как компонент слоя, могут также содержать смесь PO и HV, или смесь EVA, EMA, EMMA или EAA и HV, или смесь иономера и HV, или смесь нескольких промоторов адгезии.

В контексте настоящего изобретения точка размягчения полимера определяется по способу определения температуры размягчения по Вика (VST=Vicat softening temperature) согласно стандарту DIN EN ISO 306:2014-03.

В контексте настоящего изобретения пригодность для печати измеряется в соответствии со стандартом DIN 16500-2:2018-09.

В контексте настоящего изобретения обозначение материала как "компонент слоя" означает, что слой композитной пленки согласно изобретению по меньшей мере частично включает этот материал. При этом обозначение "компонент слоя" в контексте настоящего изобретения может охватывать, в частности, случай, когда слой состоит полностью или исключительно из этого материала.

В контексте настоящего изобретения "средний" или "промежуточный" слой означает слой композитной пленки, который находится между слоем (а) и слоем (с). Согласно изобретению, слой (а) является слоем, который образует внешнюю поверхность композитной пленки (внешний слой). Согласно изобретению, слой (с) является слоем, который образует поверхность композитной пленки, обращенную к упаковываемому товару или соприкасающемуся с ним (внутренний слой). По определению, слой (а) и (с) композитной пленки по изобретению не могут быть "средним" или "промежуточным" слоем.
Композитная пленка согласно изобретению предпочтительно является плоской или рукавной. Предпочтительно композитная пленка представляет собой пленку для продуктов питания или оболочку для продуктов питания. Кроме того, композитная пленка предпочтительно подходит для применения в качестве нетермоусаживаемого упаковочного материала.

Примеры предлагаемых изобретением соэкструдированных и двухосно-вытянутых многослойных пленок с барьерной функцией, содержащих по меньшей мере три слоя (a), (b) и (c):

<table>
<thead>
<tr>
<th>3-слойные структуры</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>PA</td>
</tr>
</tbody>
</table>

Примеры предлагаемых изобретением соэкструдированных и двухосно-вытянутых многослойных пленок с барьерной функцией, содержащих по меньшей мере четыре слоя (a), (b), (d) и (c):

<table>
<thead>
<tr>
<th>4-слойные структуры</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>PET</td>
</tr>
<tr>
<td>PA</td>
</tr>
</tbody>
</table>

(a)	(d)	(b)	(c)
PET	PO	PVDC	PO
PA	PO	PVDC	PO

<table>
<thead>
<tr>
<th>5-слойные структуры</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>PET</td>
</tr>
<tr>
<td>PA</td>
</tr>
</tbody>
</table>

(a)	(d1)	(b)	(d2)	(c)
PET	PO	PVDC	HV	PO
PA	PO	PVDC	HV	PO

<table>
<thead>
<tr>
<th>7-слойные структуры</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>PET</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>PET</td>
</tr>
<tr>
<td>PA</td>
</tr>
</tbody>
</table>

9-слойные структуры

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(d1)</th>
<th>(d2)</th>
<th>(d3)</th>
<th>(b1)</th>
<th>(b2)</th>
<th>(b3)</th>
<th>(d4)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>HV</td>
<td>PO</td>
<td>HV</td>
<td>PA</td>
<td>EVOH</td>
<td>PA</td>
<td>HV</td>
<td>PO</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>HV</td>
<td>PO</td>
<td>HV</td>
<td>PA</td>
<td>EVOH</td>
<td>PA</td>
<td>HV</td>
<td>PO</td>
<td></td>
</tr>
</tbody>
</table>
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения многослойной композитной пленки, причем способ включает по меньшей мере следующие этапы:
 - этап соэкструзии по меньшей мере трех слоев (a), (b) и (c), из которых
 - слой (a) образует поверхность композитной пленки, обращенную наружу;
 - слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующую с ним, и
 - слой (b) находится между слоем (a) и слоем (c);
 - причем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, ...
 , предпочтительно из двух, трех или четырех слоев;
 - этап вытягивания соэкструдированной композитной пленки и
 - этап релаксации вытянутой композитной пленки;
 причем вытягивание проводится по двум осям;
 причем кратность вытяжки в направлении хода машины, или в продольном направлении, (MD) составляет по меньшей мере 2,0;
 причем кратность вытяжки в поперечном направлении, или в направлении ширины, (TD) составляет по меньшей мере 2,0;
 причем сумма кратности вытяжки в направлении хода машины (MD) и кратности вытяжки в поперечном направлении (TD) составляет по меньшей мере 5,0;
 причем композитная пленка в процессе вытягивания имеет температуру 70°C-130°C;
 причем коэффициент релаксации в направлении хода машины (MD) имеет значение больше 0,00;
 причем коэффициент релаксации в поперечном направлении (TD) имеет значение больше 0,00;
 причем сумма коэффициента релаксации в направлении хода машины (MD) и коэффициента релаксации в поперечном направлении (TD) составляет по меньшей мере 0,05 (= 5%), предпочтительно по меньшей мере 0,1 (= 10%), предпочтительно по меньшей мере 0,2 (= 20%), в частности, по меньшей мере 0,4 (= 40%);
 причем композитная пленка в процессе релаксации имеет температуру 60°C-180°C, предпочтительно 60°C-150°C, особенно предпочтительно 60°C-120°C, особенно предпочтительно 80°C-100°C;
 причем время пребывания на этапе релаксации, предпочтительно на этапе релаксации под воздействием температуры, предпочтительно составляет по меньшей мере 2 секунды, в частности, более 5 секунд, или длительность релаксации предпочтительно составляет по меньшей мере 2 секунды, в частности, более 5 секунд;
 причем время пребывания на этапе релаксации, предпочтительно релаксации под воздействием температуры, предпочтительно составляет не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд, или длительность релаксации предпочтительно составляет не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд;
причем коэффициент остаточного растяжения в направлении хода машины (MD) составляет не более 5,0;
причем коэффициент остаточного растяжения в поперечном направлении (TD) составляет не более 5,0;
причем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее;
причем слой (b) или каждый из множества слоев (b1, b2, ...) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и
причем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³ или состоит из нее.

2. Способ по п. 1, отличающийся тем, что способ включает по меньшей мере следующий этап:
- этап созкструзии по меньшей мере четырех слоев (a), (b), (d) и (c), из которых
 - слой (a) образует поверхность композитной пленки, обращенную наружу;
 - слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующую с ним;
 - слой (b) находится между слоем (a) и слоем (c), и
 - слой (d) находится между слоем (a) и слоем (c), предпочтительно между слоем (a) и слоем (b);
причем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, ...), предпочтительно из двух, трех или четырех слоев;
причем слой (d) состоит из единственного слоя или множества слоев (d1, d2, ...), предпочтительно из двух, трех или четырех слоев;
- этап вытягивания созкстружированной композитной пленки и
- этап релаксации вытянутой композитной пленки;
причем вытягивание проводится по двум осям;
причем кратность вытяжки в направлении хода машины, или в продольном направлении, (MD) составляет по меньшей мере 2,0;
причем кратность вытяжки в поперечном направлении, или в направлении ширины, (TD) составляет по меньшей мере 2,0;
причем сумма кратности вытяжки в направлении хода машины (MD) и кратности вытяжки в поперечном направлении (TD) составляет по меньшей мере 5,0;
причем композитная пленка на этапе вытягивания имеет температуру 70°С-130°С;
причем коэффициент релаксации в направлении хода машины (MD) имеет значение больше 0,00;
причем коэффициент релаксации в поперечном направлении (TD) имеет значение больше 0,00;
причем сумма коэффициента релаксации в направлении хода машины (MD) и коэффициента релаксации в поперечном направлении (TD) составляет по меньшей мере 0,05 (= 5%), предпочтительно по меньшей мере 0,1 (= 10%), предпочтительно по меньшей
mere 0,2 (= 20%), в частности, по меньшей мере 0,4 (= 40%);

причем композитная пленка на этапе релаксации имеет температуру 60°C-180°C, предпочтительно 60°C-150°C, особенно предпочтительно 60°C-120°C, особенно предпочтительно 80°C-100°C;

причем время пребывания на этапе релаксации, предпочтительно на этапе релаксации под воздействием температуры, предпочтительно составляет по меньшей мере 2 секунды, в частности, более 5 секунд, или длительность релаксации предпочтительно составляет по меньшей мере 2 секунды, в частности, более 5 секунд;

причем время пребывания на этапе релаксации, предпочтительно релаксации под воздействием температуры, предпочтительно составляет не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд, или длительность релаксации предпочтительно составляет не более 30 секунд, предпочтительно не более 20 секунд, в частности, не более 10 секунд;

причем коэффициент остаточного растяжения в направлении хода машины (MD) составляет не более 5,0;

причем коэффициент остаточного растяжения в поперечном направлении (TD) составляет не более 5,0;

причем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее;

причем слой (d) или каждый из множества слоев (d1, d2, …) содержит термопластичную смолу, предпочтительно полилефин, с плотностью менее 1,00 г/см³, предпочтительно менее 0,98 г/см³, или состоит из нее;

причем слой (b) или каждый из множества слоев (b1, b2, …) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и

причем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³ или состоит из нее.

3. Способ по п. 1 или 2, отличающийся тем, что
 - термопластичная смола слоя (a) и термопластичная смола слоя (b) являются различными, или
 - термопластичная смола слоя (a) отличается от термопластичной смолы слоя (b) или всех термопластичных смол слоев (b1, b2, …); или
 - термопластичная смола слоя (a) и термопластичная смола слоя (b) являются идентичными, или
 - термопластичная смола слоя (a) является идентичной по меньшей мере одной из термопластичных смол слоев (b1, b2, …).

4. Способ по одному из п.п. 1-3, отличающийся тем, что
 - термопластичная смола слоя (a) имеет температуру плавления выше 170°C; и/или
 - термопластичная смола слоя (c) является полилефином с температурой герметизации ниже, чем температура герметизации термопластичной смолы слоя (a); и/или
 - термопластичная смола слоя (c) является полилефином с температурой плавления
ниже 120°С; и/или
- термопластичная смола слоя (b) имеет кислородопроницаемость менее 100 см³/м²·д·бар, или термопластичная смола слоев (b₁, b₂, ...), по отдельности или в сумме, имеет кислородопроницаемость менее 100 см³/м²·д·бар; и/или
- слой (b) имеет кислородопроницаемость менее 100 см³/м²·д·бар или слои (b₁, b₂, ...), по отдельности или в сумме, имеют кислородопроницаемость менее 100 см³/м²·д·бар; и/или
- вытягивание проводится одновременно или в несколько последовательных ступеней; и/или
- композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочтительно менее 0,03 (= 3%), в направлении хода машины (MD); и/или
- композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочтительно менее 0,03 (= 3%), в поперечном направлении (TD); и/или
- после вытягивания и релаксации сумма усадки композитной пленки в направлении хода машины (MD) и усадки в поперечном направлении (TD) (= полная усадка) предпочтительно составляет менее 0,05 (= 5%).

5. Способ по одному из п.п. 1-4, отличающийся тем, что
- толщина слоя (a) не превышает 20%, предпочтительно 10%, толщины всей композитной пленки; и/или
- толщина слоя (b) или суммарная толщина слоев (b₁, b₂, ...) не превышает 20%, предпочтительно 10% толщины всей композитной пленки; и/или
- массовая доля слоя (a) не превышает 10% полной массы композитной пленки 10%; и/или
- массовая доля слоя (b) или сумма массовых долей слоев (b₁, b₂, ...) не превышает 10% от полной массы композитной пленки; и/или
- сумма массовых долей слоев (a) и (b) или слоев (a) и (b₁, b₂, ...) не превышает 10% от полной массы композитной пленки.

6. Способ по одному из п.п. 1-5, отличающийся тем, что
- термопластичная смола слоя (a) содержит сложный полиэфир, предпочтительно полиэтилентерефталат (PET) или полимочечную кислоту или полилактид (PLA), полинамид (PA), сополимер этилена с виниловым спиртом (EVOH), или любую их смесь или состоит из указанных веществ; и/или
- термопластичная смола слоя (c) содержит полилефин (PO), предпочтительно полиэтилен (PE) и/или полипропилен (PP), сополимер этилена с винилацетатом (EVA), ионочерный (IO), сополимер этилена с метилметакрилатом (EMMA), сополимер этилена с метакриловой кислотой (EMA) или любую их смесь или состоит из указанных веществ.

7. Многослойная соэкструдированная, двухосно-вытянутая и релаксированная композитная пленка, предпочтительно полученная способом по одному из п.п. 1-6, содержащая по меньшей мере три слоя (a), (b) и (c), из которых
- слой (a) образует поверхность композитной пленки, обращенную наружу;
- слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующую с ним, и
 - слой (b) находится между слоем (a) и слоем (c);
 причем слой (b) состоит из единственного слоя или множества слоев (b1, b2, b3, b4, …), предпочитительно из двух, трех или четырех слоев;
 причем коэффициент остаточного растяжения композитной пленки в направлении хода машины (MD) составляет не более 5,0;
 причем коэффициент остаточного растяжения композитной пленки в поперечном направлении (TD) составляет не более 5,0;
 причем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее;
 причем слой (b) или каждый из множества слоев (b1, b2, …) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и
 причем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³ или состоит из нее.

8. Многослойная соэкструдированная, двухосно-выхтывная и релаксированная композитная пленка, предпочитительно композитная пленка по п. 7, содержащая по меньшей мере четыре слоя (a), (b), (d) и (c), из которых
 - слой (a) образует поверхность композитной пленки, обращенную наружу;
 - слой (c) образует поверхность композитной пленки, обращенную к упаковываемому товару или контактирующую с ним; и
 - слой (b) находится между слоем (a) и слоем (c);
 - слой (d) находится между слоем (a) и слоем (c), предпочитительно между слоем (a) и слоем (b);
 причем слой (b) состоит из единственного слоя или множества слоев (b1, b2, …), предпочитительно из двух, трех или четырех слоев;
 причем слой (d) состоит из единственного слоя или множества слоев (d1, d2, …), предпочитительно из двух, трех или четырех слоев;
 причем коэффициент остаточного растяжения композитной пленки в направлении хода машины (MD) составляет не более 5,0;
 причем коэффициент остаточного растяжения композитной пленки в поперечном направлении (TD) составляет не более 5,0;
 причем слой (a) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее;
 причем слой (d) или каждый из множества слоев (d1, d2, …) содержит термопластичную смолу, предпочитительно полиолефин, с плотностью менее 1,00 г/см³, предпочитительно менее 0,98 г/см³, или состоит из нее;
 причем слой (b) или каждый из множества слоев (b1, b2, …) содержит термопластичную смолу с плотностью более 1,00 г/см³ или состоит из нее; и
 причем слой (c) содержит термопластичную смолу с плотностью менее 0,95 г/см³.
или состоит из нее.

9. Композитная пленка по п. 7 или 8, отличающаяся тем, что
 - термопластичная смола слоя (a) и термопластичная смола слоя (b) являются различными, или
 - термопластичная смола слоя (a) отличается от термопластичной смолы слоя (b) или всех термопластичных слоев (b1, b2, ...); или
 - термопластичная смола слоя (a) и термопластичная смола слоя (b) являются идентичными; или
 - термопластичная смола слоя (a) является идентичной по меньшей мере одной из термопластичных слоев (b1, b2, ...).

10. Композитная пленка по одному из п.п. 7-9, отличающаяся тем, что
 - термопластичная смола слоя (a) имеет температуру плавления выше 170°C; и/или
 - термопластичная смола слоя (c) является полиолефином с температурой герметизации ниже, чем температура герметизации термопластичной смолы слоя (a); и/или
 - термопластичная смола слоя (c) является полиолефином с температурой плавления ниже 120°C; и/или
 - термопластичная смола слоя (b) имеет кислородопроницаемость менее 100 см³/м²·д·бар, или термопластичная смола слоев (b1, b2, ...), по отдельности или в сумме, имеет кислородопроницаемость менее 100 см³/м²·д·бар; и/или
 - слой (b) имеет кислородопроницаемость менее 100 см³/м²·д·бар или слои (b1, b2, ...), по отдельности или в сумме, имеют кислородопроницаемость менее 100 см³/м²·д·бар.

11. Композитная пленка по одному из п.п. 7-10, отличающаяся тем, что
 - композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочтительно менее 0,03 (= 3%), в направлении хода машины (MD); и/или
 - композитная пленка после вытягивания и релаксации имеет усадку менее 0,05 (= 5%), предпочтительно менее 0,03 (= 3%), в поперечном направлении (TD); и/или
 - предпочтительно, после вытягивание и релаксации сумма усадок композитной пленки в направлении хода машины (MD) и усадки в поперечном направлении (TD) (= полная усадка) составляет менее 0,05 (= 5%).

12. Композитная пленка по одному из п.п. 7-11, отличающаяся тем, что
 - толщина слоя (a) не превышает 20%, предпочтительно 10% от толщины всей композитной пленки; и/или
 - толщина слоя (b) или суммарная толщина слоев (b1, b2, ...) не превышает 20%, предпочтительно 10% толщины всей композитной пленки; и/или
 - массовая доля слоя (a) не превышает 10% от полной массы композитной пленки; и/или
 - массовая доля слоя (b) или сумма массовых долей слоев (b1, b2, ...) не превышает 10% от полной массы композитной пленки; и/или
 - сумма массовых долей слоев (a) и (b) или слоя (a) и слоев (b1, b2, ...) не превышает 10% от полной массы композитной пленки.
13. Композитная пленка по одному из п.п. 7-12, отличающаяся тем, что
- термопластичная смола слоя (a) содержит сложный полиэфир, предпочтительно полиэтилентерефталат (PET) или полимолочной кислоту или полиакид (PLA), полинами (PA), сополимер этилена с виниловым спиртом (EVOH) или любую их смесь или состоит из указанных веществ, и/или
- термопластичная смола слоя (c) содержит полиполефин (PO), предпочтительно полиэтилен (PE) и/или полипроопилен (PP), сополимер этилена с винилацетатом (EVA), иономер (IO), сополимер этилена с метилметакрилатом (EMMA), сополимер этилена с метакриловой кислотой (EMA), или любую их смесь или состоит из указанных веществ.

14. Применение многослойной композитной пленки по одному из п.п. 7-13 или полученной из нее оболочки для упаковки предмета, предпочтительно для упаковки продукта питания, пищевкусового продукта или жидкого или твердого, в частности, порошкообразного товара.

15. Способ по одному из п.п. 1-6, композитная пленка по одному из п.п. 7-13 или применение по п. 14, отличающиеся тем, что массовая доля компонента слоя с температурой плавления выше 170°C, предпочтительно термопластичной смолы слоя (a) с температурой плавления выше 170°C, составляет от 1% до <40%, предпочтительно от 1% до <30%, предпочтительно от 1% до <20%, в частности, от 5% до <20%, от полной массы композитной пленки.

По доверенности
ФИГ.1

Дуплекс

BoPET/BoPA/BoPP 10-12 мкм
Металлизация
Клей

Герметизирующая пленка из PE 20-120 мкм

ФИГ.2

Дуплекс

BoPET/BoPA/BoPP 10-12 мкм
Металлизация
Клей

Герметизирующая пленка из PE 20-120 мкм
ФИГ.3

Дуплекс

BoPET/BoPA/BoPP 10-12 мкм
Клей
Барьерная пленка с герметизирующим слоем 20-120 мкм

ФИГ.4

Дуплекс

BoPET/BoPA/BoPP 10-12 мкм
Клей
Барьерная пленка с герметизирующим слоем 20-120 мкм
ФИГ.5

Триплекс

BoPET/BoPA/BoPP 10-12 мкм

Клей

Алюминиевая фольга 5-6 мкм

Клей

Герметизирующий слой из PE 20-120 мкм

ФИГ.6

Триплекс

BoPET/BoPA/BoPP 10-12 мкм

Клей

Алюминиевая фольга 5-6 мкм

Клей

Герметизирующий слой из PE 20-120 мкм