(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2022.03.01
- (22) Дата подачи заявки 2020.05.12

(51) Int. Cl. *A61K 31/519* (2006.01) *C07D 487/04* (2006.01)

(54) ИНГИБИТОРЫ FGFR И СПОСОБЫ ИХ ПРИМЕНЕНИЯ

- (31) 62/846,991; 62/993,957; 63/011,469
- (32) 2019.05.13; 2020.03.24; 2020.04.17
- (33) US
- (86) PCT/US2020/032474
- (87) WO 2020/231990 2020.11.19
- (71) Заявитель: РЕЛЭЙ ТЕРАПЬЮТИКС, ИНК.; Д.Е. ШОУ РИСЕРЧ, ЛЛС (US)
- (72) Изобретатель:

Туре Барри, Шёнхерр Хайке, Тейлор Александр М., Джорданетто Фабрицио, Мустакас Деметри Т., Маклин Томас Х., Хадсон Бренди М., Мэдер Мэри М., Аяз Пелин, Шэрон Дина А., Курукуласурия Рави, Боэцио Алессандро (US)

- (74) Представитель: Нилова М.И. (RU)
- (57) Изобретение относится к новым соединениям и их фармацевтическим композициям, а также к способам ингибирования активности ферментов FGFR с помощью соединений и композиций согласно настоящему изобретению. Настоящее изобретение также относится, но не ограничивается лишь ими, к способам лечения заболеваний, связанных с передачей сигнала FGFR, с помощью соединений и композиций согласно настоящему изобретению.

ИНГИБИТОРЫ FGFR И СПОСОБЫ ИХ ПРИМЕНЕНИЯ

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Настоящая заявка испрашивает приоритет на основании предварительной заявки на патент США № 62/846,991, поданной 13 мая 2019 года, предварительной заявки на патент США № 62/993,957, поданной 24 марта 2020 года, и предварительной заявки на патент США № 63/011,469, поданной 17 апреля 2020 года, полное содержание каждой из которых включено в настоящую заявку посредством ссылки.

УРОВЕНЬ ТЕХНИКИ

[0002] Рецепторы фактора роста фибробластов (FGFR1, FGFR2, FGFR3 и FGFR4) представляют собой рецепторные тирозинкиназы, состоящие из внеклеточного лигандсвязывающего домена и внутриклеточного тирозинкиназного домена. Связывание лигандов FGF приводит к димеризации рецептора и конформационному изменению во внутриклеточном приводит межмолекулярному домене, что К трансфосфорилированию киназного домена И внутриклеточного хвоста. Фосфорилированные остатки выступают в качестве стыковочных участков (докингсайтов) для адаптерных белков, которые стимулируют нисходящие сигнальные каскады, определяющие различные виды клеточного поведения, пролиферацию, выживаемость, дифференцировку, миграцию ангиогенез. И Дерегуляция передачи сигнала FGFR может происходить в результате амплификации или слияния гена FGFR, миссенс-мутаций в гене FGFR, сверхэкспрессии рецептора, возникающей В результате нарушенной регуляции эпигенетических и/или транскрипционных регуляторов, или повышенной регуляции FGF лигандов в микроокружении опухоли. Рецепторы FGFR экспрессируются на многих типах клеток; аберрантную передачу сигнала **FGFR** связывают c так, онкогенезом, прогрессированием опухоли и резистентностью к терапии у многих видов опухолей. (Подробный обзор по теме передачи сигнала FGFR см. в публикации N. Turner and R. Grose, Nat. Rev. Cancer 2010, 10:116-129; и цитируемых в ней публикациях).

[0003] Ингибиторы pan-FGFR1-3 вызывали клинические ответы при многочисленных видах рака с измененными формами FGFR, однако специфичная в отношении опухолевой мишени токсичность ограничивает дозировку этих ингибиторов. Одним из

наиболее распространенных побочных эффектов ингибирования посредством рал-FGFR является гиперфосфатемия. Регуляция фосфатной реабсорбции опосредуется рецепторами FGFR3 и FGFR1. Таким образом, существует потребность в FGFR-селективных ингибиторах, не затрагивающих FGFR1. (J. Gattineni *et al.*, *Am. J. Physiol. Renal Physiol.* 2014, 306:F351-F358; X. Han *et al.*, *PLoS One* 2016, 11:e0147845). Было показано, что раковые заболевания, при которых имеют место слияния гена *FGFR2*, а также раковые заболевания, связанные с амплификацией гена *FGFR2* и/или мутациями, активирующими ген *FGFR2*, отвечают на ингибирование с помощью рап-FGFR, однако невысокие показатели и длительность ответов указывают на ограничения, связанные с токсичностью. Таким образом, существует потребность в соединениях, представляющих собой FGFR2-селективные ингибиторы, и способах лечения рака и других заболеваний с помощью этих соединений. (Подробные обзоры по теме ингибиторов рап-FGFR1-3 и клинических ответов на них см. в публикациях I. S. Ваbina and N.C. Turner, *Nat. Rev. Cancer* 2017, 17:318-332 и М. Katoh, *Nat. Rev. Clin. Oncol.* 2019, 16:105-122, а также в цитируемых в них публикациях).

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0004] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I-1:

I-1

или его фармацевтически приемлемая соль, где каждый из Cy^A , Cy^6 , L^6 , R^5 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем изобретении.

[0005] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I:

$$\begin{array}{c|c}
NH_2 & R^5 \\
N & & \\$$

или его фармацевтически приемлемая соль, где каждый из Cy^6 , L^6 , R^5 , R^7 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем изобретении.

[0006] В некоторых вариантах реализации настоящего изобретения предложена фармацевтическая композиция, содержащая соединение формулы I или его фармацевтически приемлемую соль и фармацевтически приемлемый носитель, адъювант или разбавитель. В некоторых вариантах реализации настоящего изобретения предложена фармацевтическая композиция, содержащая соединение согласно настоящему описанию, например, соединение формулы I-1 или его фармацевтически приемлемую соль и фармацевтически приемлемый носитель, адъювант или разбавитель.

[0007] В некоторых вариантах реализации настоящего изобретения предложен способ лечения FGFR-опосредованного заболевания, включающий введение нуждающемуся в этом пациенту соединения формулы I или композиции, содержащей указанное соединение. В некоторых вариантах реализации настоящего изобретения предложен способ лечения FGFR-опосредованного заболевания, включающий введение нуждающемуся в этом пациенту соединения согласно настоящему изобретению, например, соединения формулы I-1, или композиции, содержащей указанное соединение.

[0008] В некоторых вариантах реализации настоящего изобретения предложен способ получения соединения формулы I или его синтетических промежуточных соединений. В некоторых вариантах реализации настоящего изобретения предложен способ получения соединения согласно настоящему изобретению, например, соединения формулы I-1 или его синтетических промежуточных соединений.

[0009] В некоторых вариантах реализации настоящего изобретения предложен способ получения фармацевтических композиций, содержащих соединения формулы І. В некоторых вариантах реализации настоящего изобретения предложен способ получения фармацевтических композиций, содержащих соединения согласно настоящему изобретению, например, соединение формулы І-1.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

1. Общее описание некоторых вариантов реализации настоящего изобретения:

[0010] Соединения согласно настоящему изобретению и их фармацевтические композиции можно применять в качестве ингибиторов FGFR2. В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I-1:

$$Cy^A$$
 $Cy^6-L^6-R^W$

I-1

или его фармацевтически приемлемая соль, где:

$$R^8$$
 R^8 R^8

где \nearrow представляет собой связь с \mathbb{R}^5 , а \nearrow представляет собой связь с $\mathbb{C}\mathrm{y}^6$;

 R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^5 - R^{5B} :

 R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен п группами R^{5D} ;

Су⁶ представляет собой фенилен; двухвалентное насыщенное или частично ненасыщенное 3-14-членное карбоциклическое кольцо; двухвалентное насыщенное или частично ненасыщенное 3-14-членное гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или 5-14-членный гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W ;

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два вариант R^6 , вариант R^6 и вариант R^C , вариант R^C и вариант R^C , или вариант R^C и вариант R^C совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное или ароматическое кольцо, содержащее не более 4 гетероатомов, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 R^7 представляет собой H или R^B , при этом R^7 замещен t вариантами R^{7A} ;

 R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1- 3 галогенами;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, где одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-6} циклоалкилен, 3-6-членный гетероарилен, - $N(R^L)$ -, - $N(R^L)$ -,

гетероарилена необязательно замещен одним вариантом R^A или C_{1-6} алифатического алкила;

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} вместе с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее не более 2 гетероатомов, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено w вариантами R^{C} ;

 R^{WD} представляет собой галоген или -OS(O)₂R;

- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^L независимо представляет собой R^A или R^B и замещен и вариантами R^C ; или
- два варианта R^{5C} , один вариант R^{5C} и один вариант R^{5D} или два варианта R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее не более 4 гетероатомов, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено у вариантами R^{C} :
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C_{1-6} алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное

моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)_R, -S(O)_R, -S(O)₂F, -OS(O)₂F, -C(O)_R, -C(O)OR, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(NR)NR₂, -N(R)S(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота объединены с находящимися между ними атомами с образованием 4-7-членного насыщенного, частично ненасыщенного или гетероарильного кольца, содержащего не более 3 гетероатомов, помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы;

каждый из m, n, p, q, r, t, u, v и w независимо равен 0, 1, 2, 3 или 4.

[0011] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I:

$$\begin{array}{c|c}
 & \text{NH}_2 & \mathbb{R}^5 \\
 & \text{N} & \text{Cy}^6 - \mathbb{L}^6 - \mathbb{R}^W \\
 & \mathbb{R}^7
\end{array}$$

T

или его фармацевтически приемлемая соль, где:

 R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^{5} - R^{5B} ;

 R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен п группами R^{5D} ;

 Cy^6 представляет собой фенилен или 6-членный гетероарилен, содержащий 1-3 атома азота, где Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W ;

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее не более 4 гетероатомов, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 ${\bf R}^7$ представляет собой H или ${\bf R}^B$, при этом ${\bf R}^7$ замещен t вариантами ${\bf R}^{7A}$;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)$ -, -

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, - C(O)R, -C(O)OR, - $C(O)NR_2$, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или

частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее не более 2 гетероатомов, независимо выбранных из азота, кислорода и серы;

 R^{WD} представляет собой галоген или -OS(O)₂R;

- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^{L} независимо представляет собой R^{A} или R^{B} и замещен и вариантами R^{C} ;
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C₁₋₆ алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)_R, -S(O)_R, -S(O)₂F, -OS(O)₂F, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(NR)NR₂, -N(R)S(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и

5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота объединены с находящимися между ними атомами с образованием 4-7-членного насыщенного, частично ненасыщенного или гетероарильного кольца, содержащего не более 3 гетероатомов, помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы;

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

2. Соединения и определения:

[0012] Соединения согласно настоящему изобретению включают соединения, в целом описанные в настоящем документе, и дополнительно проиллюстрированы классами, подклассами и видами, раскрытыми в настоящем описании. В контексте настоящего описания следует руководствоваться следующими определениями, если не указано иное. Для целей настоящего изобретения химические элементы определены согласно периодической таблице элементов, CAS-вариант, Handbook of Chemistry and Physics, 75th Ed. Кроме того, общие принципы органической химии описаны в книгах "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, и "March's Advanced Organic Chemistry", 5th Ed., Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001, полное содержание которых включено в настоящее описание посредством ссылок. Химические названия, тривиальные названия и химические структурные формулы могут использоваться взаимозаменяемо для описания одной и той же структуры. Если химическое соединение упоминается с использованием как химической структурной формулы, так и химического названия, и существует неясность в отношении структурной формулы и химического названия, то превалирующее значение имеет структурная формула.

[0013] Термин «алифатический» или «алифатическая группа» в контексте настоящего описания означает линейную (т.е. неразветвленную) или разветвленную, замещенную

или незамещенную, углеводородную цепь, которая является полностью насыщенной или содержит одну или более единиц ненасыщенности, или моноциклический бициклический углеводород, который является полностью углеводород или насыщенным или содержит одну или большее количество единиц ненасыщенности, но не является ароматическим (также именуемый в настоящем описании как «карбоцикл» или «циклоалифатический»), который имеет единственную точку присоединения к остальной части молекулы. Если не указано иное, алифатические группы содержат 1-6 алифатических атомов углерода. В некоторых вариантах реализации алифатические группы содержат 1-5 алифатических атомов углерода. В других вариантах реализации алифатические группы содержат 1-4 алифатических атомов углерода. В третьих вариантах реализации алифатические группы содержат 1-3 алифатических атома углерода, и в четвертых вариантах реализации алифатические группы содержат 1-2 алифатических атома углерода. В некоторых вариантах реализации термин «циклоалифатический алкил» (или «карбоцикл») относится к моноциклическому С₃-С₆ углеводороду, который является полностью насыщенным, или который содержит одну или большее количество единиц ненасыщенности, но не является ароматическим, и в котором имеется единственная точка соединения с остальной частью молекулы. Подходящие алифатические группы включают, но не ограничиваются ими, линейные или разветвленные замещенные или незамещенные алкильные, алкенильные, алкинильные группы и их гибриды, такие как (циклоалкил)алкил, (циклоалкенил)алкил или (циклоалкил)алкенил.

[0014] Термин «алкил», если не указано иное, в контексте настоящего описания относится к одновалентному алифатическому углеводородному радикалу, содержащему линейную цепь, разветвленную цепь, моноциклический фрагмент или полициклический фрагмент, или их комбинацию, при этом указанный радикал необязательно имеет замещения на одном или более атомов углерода в прямой цепи, разветвленной цепи, моноциклическом фрагменте или полициклическом фрагменте, или в их комбинации с одним или большим количеством заместителей на каждом атоме углероде, при этом один или большее количество заместителей независимо представляют собой C_1 - C_{10} алкил. Примеры "алкильных" групп включают метил, этил, пропил, изопропил, бутил, *изо*-бутил, *втор*-бутил, *трет*-бутил, пентил, гексил, гептил, циклопропил, циклобутил, циклопентил, циклогексил, циклогептил, норборнил и т.п.

[0015] Термин «низший алкил» относится к линейной или разветвленной C_{1-4} алкильной группе. Типичными низшими алкильными группами являются метил, этил, пропил, изопропил, бутил, изобутил и трет-бутил.

[0016] Термин «низший галогеналкил» относится к линейной или разветвленной C_{1-4} алкильной группе, замещенной одним или большим количеством атомов галогена.

[0017] Термин «гетероатом» означает один или большее количество атомов кислорода, серы, азота, фосфора или кремния (включая любую окисленную форму азота, серы, фосфора или кремния, четвертичную форму любого азотистого основания или замещаемый азот гетероциклического кольца, например N (как в 3,4-дигидро-2*H*-пирролиле), NH (как в пирролидиниле) или NR⁺ (как в N-замещенном пирролидиниле)).

[0018] Термин «ненасыщенный» в контексте настоящего описания означает, что фрагмент содержит одну или большее количество единиц ненасыщенности.

[0019] В контексте настоящего описания термин « C_{1-8} (или C_{1-6} , или C_{1-4}) двухвалентная насыщенная или ненасыщенная, линейная или разветвленная углеводородная цепочка» относится к двухвалентным алкиленовым, алкениленовым и алкиниленовым цепочкам, которые являются линейными или разветвленными, как это определено в настоящем описании.

[0020] Термин «алкилен» относится к двухвалентной алкильной группе. Термин «алкиленовая цепочка» представляет собой полиметиленовую группу, т.е. $-(CH_2)_n$ -, где п представляет собой положительное целое число, предпочтительно от 1 до 6, от 1 до 4, от 1 до 3, от 1 до 2 или от 2 до 3. Замещенная алкиленовая цепь представляет собой полиметиленовую группу, в которой один или более метиленовых атомов водорода замещены заместителем. Подходящие заместители включают заместители, описанные ниже для замещенной алифатической группы.

[0021] Термин «алкенилен» относится к двухвалентной алкенильной группе. Замещенная алкениленовая цепь представляет собой полиметиленовую группу, содержащую по меньшей мере одну двойную связь, в которой один или большее количество атомов водорода замещены заместителем. Подходящие заместители включают заместители, описанные ниже для замещенной алифатической группы.

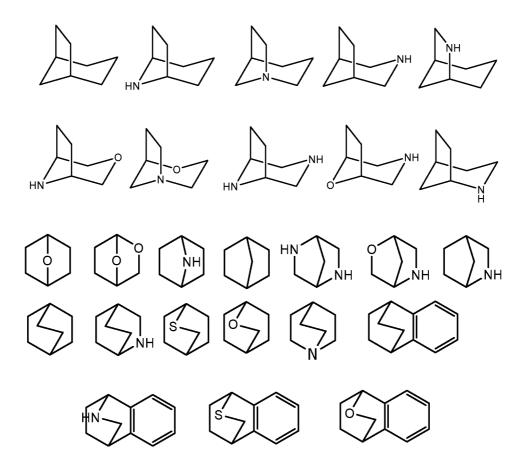
[0022] Термин «галоген» означает F, Cl, Br или I.

[0023] Термин «арил», применяемый отдельно или в составе большего фрагмента, такого как «аралкил», «аралкоксигруппа» или «арилоксиалкил», относится к моноциклическим или бициклическим кольцевым системам, содержащим в общей сложности от пяти до четырнадцати членов кольца, при этом по меньшей мере одно кольцо в указанной системе является ароматическим, при этом каждое кольцо в указанной системе содержит от 3 до 7 членов кольца. Термин «арил» может использоваться взаимозаменяемо с термином «арильное кольцо». В некоторых вариантах реализации настоящего изобретения термин «арил» относится к ароматической кольцевой системе, которая включает, но не ограничивается ими, фенил, бифенил, нафтил, антрацил и т.п., которые могут нести один или большее количество заместителей.

[0024] Термины «гетероарил» или «гетероароматический», если иное не определено особо, в контексте данного описания относятся к моноциклическому ароматическому 5-6-членному кольцу, содержащему один или более гетероатомов, например, от одного до трех гетероатомов, таких как азот, кислород и сера, или 8-10-членной полициклической кольцевой системе, содержащей один или более гетероатомов, при этом по меньшей мере одно кольцо в полициклической кольцевой системе является ароматическим, и точка присоединения полициклической кольцевой системы находится на кольцевом атоме ароматического кольца. Гетероарильное кольцо может быть связано с примыкающими радикалами через углерод или азот. Примеры гетероарильных колец включают, но не ограничиваются ими, фуран, тиофен, пиррол, тиазол, оксазол, изотиазол, изоксазол, имидазол, пиразол, приазол, пиридин, пиримидин, индол и т.д. Например, если иное не определено особо, 1,2,3,4тетрагидрохинолин представляет собой гетероарильное кольцо, если присоединения происходит через бензольное кольцо, например:

[0025] Термины «гетероциклил» или «гетероциклическая группа», если иное не определено особо, относятся к насыщенной или частично ненасыщенной 3-10-членной моноциклической или 7-14-членной полициклической кольцевой системе, включая связанные мостиковой связью или конденсированные кольца, при этом кольцевая система содержит от одного до четырех гетероатомов, таких как азот, кислород и сера.

Гетероциклильное кольцо может быть связано с примыкающими радикалами через углерод или азот.


[0026] Термин «частично ненасыщенный» в контексте колец, если иное не определено особо, относится к моноциклическому кольцу или составляющему кольцу в составе полициклической (например, бициклической, трициклической и т. д.) кольцевой системы, где составляющее кольцо содержит по меньшей мере одну степень ненасыщенности помимо тех, которые обеспечиваются самим кольцом, но при этом не является ароматическим. Примеры частично ненасыщенных колец включают, но не ограничиваются ими, 3,4-дигидро-2Н-пиран, 3-пирролин, 2-тиазолин и т.д. Если частично ненасыщенное кольцо является частью полициклической кольцевой системы, другие составляющие кольца в полициклической кольцевой системе могут быть ненасыщенными или ароматическими, насыщенными, частично точка присоединения полициклической кольцевой системы к молекуле находится на частично ненасыщенном составляющем кольце. Например, если не указано иное, 1,2,3,4-тетрагидрохинолин является частично ненасыщенным кольцом, если его присоединение к молекуле происходит через пиперидиновое кольцо, например:

[0027] Термин «насыщенный» в контексте колец, если иное не определено особо, 3-10-членному моноциклическому кольцу или 7-14-членной полициклической (например, бициклической, трициклической и т.д.) кольцевой системе, где моноциклическое кольцо или составляющее кольцо полициклической кольцевой системы, через которое происходит присоединение этой системы к молекуле, не содержит дополнительных степеней ненасыщенности помимо тех, которые обеспечиваются самим кольцом. Примеры моноциклических насыщенных колец включают, но не ограничиваются ими, азетидин, оксетан, циклогексан и т.д. Если насыщенное кольцо является частью полициклической кольцевой системы, другие составляющие кольца в полициклической кольцевой системе могут быть насыщенными, частично ненасыщенными или ароматическими, но точка присоединения полициклической кольцевой системы к молекуле находится на насыщенном составляющем кольце. Например, если иное не определено особо, 2азаспиро[3.4]окт-6-ен является насыщенным кольцом, если его присоединение к молекуле происходит через азетидиновое кольцо, например:

$$-N$$

[0028] Термины «алкилен», «арилен», «циклоалкилен», «гетероарилен», «гетероциклоалкилен» и другие аналогичные термины с суффиксом «-илен» при их использовании в настоящем документе относятся к двухвалентно привязанному варианту группы, название который изменяется суффиксом. Например, «алкилен» представляет собой алкильную группу, соединяющуюся двойной связью с группами, к которым он присоединена.

[0029] В контексте настоящего описания термин «мостиковый бициклический» относится к любой бициклической кольцевой системе, т.е. карбоциклической или гетероциклической, насыщенной или частично ненасыщенной, содержащей по меньшей мере одну мостиковую связь. Согласно определению Международного союза теоретической и прикладной химии (IUPAC) «мостик» представляет собой неразветвленную цепь атомов, или атом, или валентную связь, соединяющую две «головки мостика» (bridgeheads), где «головка мостика» представляет собой любой скелетный атом кольцевой системы, который связан с тремя или большим количеством скелетных атомов (исключая водород). В некоторых вариантах реализации мостиковая бициклическая группа содержит 7-12 кольцевых элементов и не более 4 гетероатомов, выбранных из азота, кислорода или серы. Такие мостиковые бициклические группы хорошо известны из уровня техники и включают группы, указанные ниже, где каждая группа присоединена к остальной части молекулы по любому замещаемому атому углерода или азота. Если иное не определено особо, мостиковая бициклическая группа необязательно несет один или более заместителей, указанных для алифатических групп. Дополнительно или как вариант, любой замещаемый азот мостиковой бициклической группы является необязательно замещенным. Типичные мостиковые бициклические группы включают:

[0030] Как описано в настоящем документе, соединения согласно настоящему изобретению могут содержать «необязательно замещенные» фрагменты. В целом термин «замещенный», независимо от того, предшествует ему термин «необязательно» или нет, означает, что один или более атомов водорода указанного фрагмента заменены подходящим заместителем. Если не указано иное, «необязательно замещенная» группа может содержать подходящий заместитель в каждом замещаемом положении указанной группы, и когда более чем одно положение в любой данной структуре может быть замещено более чем одним заместителем, выбранным из определенной группы, указанный заместитель в каждом положении может быть одинаковым или отличающимся. Комбинации заместителей, предусмотренных в настоящем изобретении, предпочтительно представляют собой комбинации, которые приводят к образованию стабильных или химически осуществимых соединений. Термин «стабильный» в контексте настоящего описания относится к соединениям, которые существенно не изменяются под воздействием условий, необходимых для их получения, выявления и, в некоторых вариантах реализации, их выделения, очистки и применения для одной или нескольких целей, раскрытых в настоящем описании.

[0031] Подходящие моновалентные заместители на замещаемом атоме углерода «необязательно замещенной» группы независимо представляют собой галоген; - $(CH_2)_{0-4}R^{\circ}; -(CH_2)_{0-4}OR^{\circ}; -O(CH_2)_{0-4}R^{\circ}, -O-(CH_2)_{0-4}C(O)OR^{\circ}; -(CH_2)_{0-4}CH(OR^{\circ})_{2};$ $-(CH_2)_{0-4}SR^{\circ}$; $-(CH_2)_{0-4}Ph$, который может иметь заместитель R° ; $-(CH_2)_{0-4}O(CH_2)_{0-1}Ph$, который может иметь заместитель R° ; –CH=CHPh, который может иметь заместитель R° ; $-(CH_2)_{0-4}O(CH_2)_{0-1}$ -пиридил, который может иметь заместитель R° ; $-NO_2$; -CN; $-N_3$; $-(CH_2)_{0-4}N(R^\circ)_2$; $-(CH_2)_{0-4}N(R^\circ)C(O)R^\circ$; $-N(R^\circ)C(S)R^\circ$; $-(CH_2)_{0-4}N(R^\circ)C(O)NR^\circ_2$; $-N(R^{\circ})C(S)NR^{\circ}_{2}$; $-(CH_{2})_{0-4}N(R^{\circ})C(O)OR^{\circ}$; $-N(R^{\circ})N(R^{\circ})C(O)R^{\circ}$; $-N(R^{\circ})N(R^{\circ})C(O)NR^{\circ}_{2}$; $-N(R^{\circ})N(R^{\circ})C(O)OR^{\circ}; -(CH_2)_{0-4}C(O)R^{\circ}; -C(S)R^{\circ}; -(CH_2)_{0-4}C(O)OR^{\circ}; -(CH_2)_{0-4}C(O)SR^{\circ};$ $-(CH_2)_{0-4}C(O)OSiR^{\circ}_3; \quad -(CH_2)_{0-4}OC(O)R^{\circ}; \quad -OC(O)(CH_2)_{0-4}SR^{\circ}; \quad -SC(S)SR^{\circ}; \quad -(CH_2)_{0-4}OC(O)R^{\circ}_3; \quad$ ${}_{4}SC(O)R^{\circ}; \ -(CH_{2})_{0-4}C(O)NR^{\circ}{}_{2}; \ -C(S)NR^{\circ}{}_{2}; \ -C(S)SR^{\circ}; \ -SC(S)SR^{\circ}, \ -(CH_{2})_{0-4}OC(O)NR^{\circ}{}_{2};$ $-C(O)N(OR^{\circ})R^{\circ};$ $-C(O)C(O)R^{\circ};$ $-C(O)CH_2C(O)R^{\circ};$ $-C(NOR^{\circ})R^{\circ};$ $-(CH_2)_{0\rightarrow}SSR^{\circ};$ $-(CH_2)_{0-4}S(O)_2R^{\circ}; -(CH_2)_{0-4}S(O)_2OR^{\circ}; -(CH_2)_{0-4}OS(O)_2R^{\circ}; -S(O)_2NR^{\circ}_2; -(CH_2)_{0-4}S(O)R^{\circ};$ $-N(R^{\circ})S(O)_2NR^{\circ}_2$; $-N(R^{\circ})S(O)_2R^{\circ}$; $-N(OR^{\circ})R^{\circ}$; $-C(NH)NR^{\circ}_2$; $-P(O)(OR^{\circ})R^{\circ}$; $-P(O)R^{\circ}_2$; $-OP(O)R^{\circ}_{2}$; $-OP(O)(OR^{\circ})_{2}$; $-SiR^{\circ}_{3}$; $-(C_{1-4}$ линейный или разветвленный алкилен)O- $N(R^{\circ})_2$; или $-(C_{1-4}$ линейный или разветвленный алкилен) $C(O)O-N(R^{\circ})_2$, где каждый R° может быть замещен, как определено ниже, и независимо представляет собой водород, C_{1-6} алифатический алкил, $-CH_2Ph$, $-O(CH_2)_{0-1}Ph$, $-CH_2$ -(5-6-членное гетероарильное кольцо) или 5-6-членное насыщенное, частично ненасыщенное или арильное кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода или серы, или безотносительно приведенного выше определения два независимых варианта R° совместно с находящимся между ними атомом (или атомами), образуют 3-12-членное насыщенное, частично ненасыщенное или арильное моно- или бициклическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода или серы, которое может иметь замещения, как это определено ниже.

[0032] Подходящие одновалентные заместители на R° (или кольце, образованном путем объединения двух независимых вариантов R° вместе с их промежуточными атомами), независимо представляют собой галоген, $-(CH_2)_{0-2}R^{\bullet}$, $-(raлогенR^{\bullet})$, $-(CH_2)_{0-2}OH$, $-(CH_2)_{0-2}OR^{\bullet}$, $-(CH_2)_{0-2}CH(OR^{\bullet})_2$; $-O(raлогенR^{\bullet})$, -CN, $-N_3$, $-(CH_2)_{0-2}C(O)R^{\bullet}$, $-(CH_2)_{0-2}C(O)OH$, $-(CH_2)_{0-2}C(O)OR^{\bullet}$, $-(CH_2)_{0-2}SR^{\bullet}$, $-(CH_2)_{0-2}NH_2$, $-(CH_2)_{0-2}NHR^{\bullet}$, $-(CH_2)_{0-2}NR^{\bullet}$, $-(CH_2)_{0-2}NR^{\bullet}$, $-(CH_2)_{0-2}NH_2$, $-(CH_2)_{0-2}NHR^{\bullet}$, $-(CH_2)_{0-2}NR^{\bullet}$, -

каждый $R \bullet$ является незамещенным или, когда ему предшествует приставка «галоген», замещен только одним или большим количеством атомов галогена и независимо выбран из C_{1-4} алифатического алкила, $-CH_2Ph$, $-O(CH_2)_{0-1}Ph$ или 5-6- членного насыщенного, частично ненасыщенного или арильного кольца, содержащего 0-4 гетероатома, независимо выбранных из азота, кислорода или серы. Подходящие двухвалентные заместители на насыщенном атоме углерода в R° включают =O и =S.

[0033] Подходящие двухвалентные заместители на насыщенном атоме углерода «необязательно замещенной» группы включают следующее: =0, =S, $=NNR^*_2$, $=NNHC(O)R^*$, $=NNHC(O)QR^*$, $=NNHS(O)_2R^*$, $=NR^*$, $=NOR^*$, $-O(C(R^*_2))_{2-3}O-$ или $-S(C(R^*_2))_{2-3}S-$, где каждый независимый экземпляр R^* выбран из водорода, C_{1-6} алифатического алкила, который может нести замещения, как это определено ниже, или незамещенного 5-6-членного насыщенного, частично ненасыщенного или арильного кольца, содержащего 0-4 гетероатома, независимо выбранных из азота, кислорода или серы. Подходящие двухвалентные заместители, которые связаны с вицинальными замещаемыми атомами углерода «необязательно замещенной» группы, включают $-O(CR^*_2)_{2-3}O-$, где каждый независимый экземпляр R^* выбран из водорода, C_{1-6} алифатического алкила, который может иметь замещения, как это определено ниже, или незамещенного 5-6-членного насыщенного, частично ненасыщенного или арильного кольца, содержащего 0-4 гетероатома, независимо выбранных из азота, кислорода или серы.

[0034] Подходящие заместители алифатической группы R^* включают галоген, $-R^{\bullet}$, $-(галогенR^{\bullet})$, -OH, $-OR^{\bullet}$, $-O(галогенR^{\bullet})$, -CN, -C(O)OH, $-C(O)OR^{\bullet}$, $-NH_2$, $-NHR^{\bullet}$, $-NR^{\bullet}_2$ или $-NO_2$, где каждый R^{\bullet} является незамещенным или, когда ему предшествует «галоген», замещен только одним или большим количеством галогенов и независимо представляет собой C_{1-4} алифатический алкил, $-CH_2Ph$, $-O(CH_2)_{0-1}Ph$ или 5-6-членное насыщенное, частично ненасыщенное или арильное кольцо, содержащее 0−4 гетероатома, независимо выбранных из азота, кислорода или серы.

[0035] Подходящие заместители у замещаемого азота в «необязательно замещенной» группе включают $-R^{\dagger}$, $-NR^{\dagger}_2$, $-C(O)R^{\dagger}$, $-C(O)OR^{\dagger}$, $-C(O)C(O)R^{\dagger}$, $-C(O)CH_2C(O)R^{\dagger}$, $-S(O)_2R^{\dagger}$, $-S(O)_2NR^{\dagger}_2$, $-C(S)NR^{\dagger}_2$, $-C(NH)NR^{\dagger}_2$ или $-N(R^{\dagger})S(O)_2R^{\dagger}$; где каждый R^{\dagger} независимо представляет собой водород, C_{1-6} алифатический алкил, который может иметь замещения, как это определено ниже, незамещенный -OPh или незамещенное 5-6-членное насыщенное, частично ненасыщенное или арильное кольцо, содержащим

0—4 гетероатома, независимо выбранных из азота, кислорода или серы, или безотносительно приведенного выше определения два независимых экземпляра R^{\dagger} совместно с их промежуточным атомом (или атомами) образуют незамещенное 3-12-членное насыщенное, частично ненасыщенное или арильное моно- или бициклическое кольцо, содержащее 0—4 гетероатома, независимо выбранных из азота, кислорода или серы.

[0036] Подходящие заместители в алифатической группе R^{\dagger} независимо представляют собой галоген, -R ●, -(галогенR ●), -OH, -OR ●, -O(галогенR ●), -CN, -C(O)OH, -C(O)OR ●, -NH₂, -NHR ●, -NR ●₂ или -NO₂, где каждый R ● является незамещенным или, когда ему предшествует приставка «галоген», замещен только одним или большим количеством атомов галогенов и независимо представляет собой C_{1-4} алифатический алкил, -CH₂Ph, -O(CH₂)₀₋₁Ph или 5-6-членное насыщенное, частично ненасыщенное или арильное кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода или серы.

[0037] Термин «изомер» в контексте настоящего описания относится к соединению, имеющему идентичную химическую формулу, но отличную структурную или оптическую конфигурацию. Термин «стереоизомер» в контексте настоящего описания относится к изомерным молекулам, которые имеют одинаковую молекулярную формулу, отличаются пространственным расположением атомов но функциональных групп в молекуле. Все стереоизомеры соединений согласно настоящему изобретению (например, те, которые могут иметь место из-за асимметричности атомов углерода В различных заместителях), включая энантиомерные формы и диастереомерные формы, подразумеваются входящими в объем настоящего изобретения. Таким образом, если не указано иное, единые стереохимические изомеры, а также смеси энантиомеров, диастереомеров и геометрических (или конформационных) изомеров соединений согласно настоящему изобретению входят в объем настоящего изобретения.

[0038] Термин «таутомер» в контексте настоящего описания относится к одному из двух или большего количества структурных изомеров, которые существуют во взаимном равновесии и легко переходят из одной изомерной формы в другую. Понятно, что таутомеры охватывают валентные таутомеры и протонные таутомеры (также известные как прототропные таутомеры). Валентные таутомеры включают взаимопревращения путем реорганизации некоторых из связывающих электронов.

Протонные таутомеры включают взаимопревращения посредством миграции протона, такие как кето-енольные и имино-енаминовые изомеризации. Если не указано иное, все таутомеры соединений согласно настоящему изобретению входят в объем настоящего изобретения.

[0039] Термин «изотопное замещение» в контексте настоящего описания относится к замещению атома его изотопом. Термин «изотоп» в контексте настоящего описания относится к атому, имеющему тот же атомный номер, что и атомы, доминирующие в природе, но имеющему массовое число (количество нейтронов), отличное от массового числа атомов, доминирующих в природе. Понятно, что соединение с изотопным замещением относится к соединению, в котором по меньшей мере один содержащийся атом замещен его изотопом. Атомы, которые могут быть замещены их изотопами, включают, но не ограничиваются ими, водород, углерод и кислород. Примеры изотопа атома водорода включают ²H (также представлены как D) и ³H. Примеры изотопов атома углерода включают 13 С и 14 С. Примеры изотопов атома кислорода включают 18 О. Если не указано иное, все соединения согласно настоящему изобретению, имеющие изотопные замещения, входят в объем настоящего изобретения. Такие соединения подходят для применения, например, в качестве аналитических инструментов, в качестве зондов в биологических пробах или в качестве лекарственных средств согласно настоящему изобретению. Например, в определенных вариантах реализации активная группа R^{W} предложенного соединения содержит один или более атомов дейтерия.

[0040] В контексте настоящего описания термин «фармацевтически приемлемая соль» относится к солям, которые в рамках здравого медицинского суждения подходят для применения в контакте с тканями людей и низших животных, не вызывая чрезмерной токсичности, раздражений, аллергических реакций и т.п., и соответствуют разумному соотношению риска и пользы. Типичные фармацевтически приемлемые соли найдены, например, в работах Berge, *et al.* (*J. Pharm. Sci.* 1977, 66(1), 1; и Gould, P.L., *Int. J. Pharmaceutics* 1986, 33, 201-217; (полное содержание каждой из которых включено в настоящее описание посредством ссылки).

[0041] Фармацевтически приемлемые соли соединений согласно настоящему изобретению включают соли, производные от подходящих неорганических и органических кислот и оснований. Примерами фармацевтически приемлемых и нетоксичных кислотно-аддитивных солей могут служить соли аминогруппы,

образующиеся присоединения неорганических путем кислот, таких как хлористоводородная кислота, бромистоводородная кислота, фосфорная кислота, серная кислота и хлорная кислота, или органических кислот, таких как уксусная кислота, щавелевая кислота, малеиновая кислота, винная кислота, лимонная кислота, янтарная кислота или малоновая кислота, или другими способами, применяемыми в ланной области техники, такими как, например, ионный обмен. Другие фармацевтически приемлемые соли включают адипаты, альгинаты, аскорбаты, аспартаты, бензолсульфонаты, бензоаты, бисульфаты, бораты, бутираты, камфораты, камфорсульфонаты, цитраты, циклопентанпропионаты, диглюконаты, додецилсульфаты, этансульфонаты, формиаты, фумараты, глюкогептонаты, глицерофосфаты, глюконаты, гемисульфаты, гептаноаты, гексаноаты, гидроиодиды, 2-гидроксиэтансульфонаты, лактобионаты, лактаты, лаураты, лаурилсульфаты, малаты, малеаты, малонаты, метансульфонаты, 2-нафталинсульфонаты, никотинаты, нитраты, олеаты, оксалаты, пальмитаты, памоаты, пектинаты, персульфаты, 3-фенилпропионаты, фосфаты, пивалаты, пропионаты, стеараты, сукцинаты, сульфаты, тартраты, тиоцианаты, n-толуолсульфонаты, ундеканоаты, валераты и другие подобные им соли.

[0042] Соли, производные от подходящих оснований, включают соли щелочных металлов, щелочноземельных металлов, аммония и четвертичных аммониевых оснований типа $N^+(C_{1-4}$ алкил)4. Типичные соли щелочных или щелочноземельных металлов включают соли натрия, лития, калия, кальция, магния и тому подобное. Другие фармацевтически приемлемые соли по мере целесообразности могут содержать нетоксичные катионы аммония, четвертичного аммония и аминов, и быть образованы с применением противоионов (анионов), таких как галогенид, гидроксид, карбоксилат, сульфат, фосфат, нитрат, низший алкилсульфонат и арилсульфонат.

[0043] Подразумевается, что понятие «фармацевтически приемлемые соли» также охватывает гемисоли (неполные или половинные соли), где соотношение соединения и кислоты составляет соответственно 2:1. Типичные гемисоли представляют собой соли, производные от кислот, содержащих по две карбоксильные кислотные группы, такие как яблочная кислота, фумаровая кислота, малеиновая кислота, янтарная кислота, винная кислота, глутаровая кислота, щавелевая кислота, адипиновая кислота и лимонная кислота. Другие типичные гемисоли представляют собой соли, производные от двухосновных минеральных кислот, таких как серная кислота. Типичные

предпочтительные гемисоли включают, но не ограничиваются ими, гемималеат, гемифумарат и гемисукцинат.

[0044] В контексте настоящего описания термин «примерно» используется для обозначения таких понятий, как «приблизительно», «около», «вокруг» или «в районе». Когда термин «примерно» используется в сочетании с числовым диапазоном, он изменяет этот диапазон путем расширения границ выше и ниже заданных числовых значений. В целом, термин «примерно» используется в настоящем описании для допущения численного значения выше и ниже указанной величины с отклонением примерно на 20 процентов в одну или другую сторону (выше или ниже).

[0045] «Эффективное количество», «достаточное количество» или «терапевтически эффективное количество» в контексте настоящего описания представляет собой количество соединения, которое является достаточным для достижения полезных или желаемых результатов, включая клинические результаты. Таким образом, эффективное количество может быть достаточным, например, для уменьшения или смягчения тяжести и/или продолжительности недомоганий, связанных с сигнализацией FGFR2, или одного или большего количества их симптомов, для предотвращения прогрессирования состояний или симптомов, вызванных заболеваниями, связанными с сигнализацией FGFR2, или для усиления или иного повышения профилактического или терапевтического эффекта (или эффектов) других видов терапии. Эффективное количество также включает количество соединения, которое позволяет исключать или существенно смягчать нежелательные побочные эффекты.

[0046] Термин «лечение» в контексте настоящего описания, также понимаемый и в данной области техники, представляет собой способ, применяемый для получения полезных или желаемых результатов, включая клинические результаты. Благоприятные или желательные клинические результаты могут включать, но не ограничиваются ими, облегчение или смягчение одного или большего количества симптомов или состояний, уменьшение степени заболевания или поражения, стабилизированное (т.е. не ухудшающееся) состояние заболевания или поражения, предотвращение развития заболевания или поражения, задержку или замедление развития заболевания или поражения, облегчение или смягчение состояния при заболевании или поражении и ремиссию (частичную или полную), будь то обнаруживаемую или не обнаруживаемую. Термин «лечение» также может означать продление выживаемости по сравнению с ожидаемой выживаемостью в случае не получения лечение. В некоторых вариантах реализации лечение может быть назначено после развития одного или большего количества симптомов. В других вариантах реализации лечение может быть назначено и при отсутствии симптомов. Например, лечение может быть назначено предрасположенному индивидууму до проявления симптомов (например, в свете предыстории развития у него симптомов и/или в свете его генетических или других факторов подверженности). Лечение также может быть продолжено после исчезновения симптомов, например, для предотвращения или отсрочки их рецидива.

[0047] Фраза «нуждающийся в нем» относится к необходимости симптомного или асимптомного облегчения состояний, связанных с сигнальной активностью FGFR2, или других состояний, которые могут быть облегчены путем применения соединений и/или композиций согласно настоящему изобретению.

3. Описание примерных вариантов реализации:

[0048] Как описано выше, в некоторых вариантах реализации настоящего изобретения предложено соединение формулы I-1:

$$Cy^A$$
 $Cy^6-L^6-R^W$

или его фармацевтически приемлемая соль, где:

$$R^8$$
 R^8 R^8

где \nearrow^* представляет собой связь с R^5 , а \nearrow представляет собой связь с Cy^6 ; R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

или

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^{5} - R^{5B} :

 R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен n группами R^{5D} ;

Су⁶ представляет собой фенилен; двухвалентное насыщенное или частично ненасыщенное 3-14-членное карбоциклическое кольцо; двухвалентное насыщенное или частично ненасыщенное 3-14-членное гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или 5-14-членный гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо L^6 - R^W ;

$$R^{W}$$
 представляет собой галоген, -CN, R^{WA} , R^{WB} ,

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два вариант R^6 , вариант R^6 и вариант R^1 , вариант R^6 и вариант R^{WA} , или вариант R^6 и вариант R^{7a} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 ${\bf R}^7$ представляет собой H или ${\bf R}^{\rm B}$, при этом ${\bf R}^7$ замещен t вариантами ${\bf R}^{7{\rm A}}$;

 R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1- 3 галогенами;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, где одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)_2$ -, C_{3-6} циклоалкилен, 3-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)C(O)$ -, -C(O)NH-, - $C(O)N(R^L)$ -, - $NHS(O)_2$ -, - $N(R^L)S(O)_2$ -, - $S(O)_2NH$ -, - $S(O)_2N(R^L)$ -, -O-, -

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} вместе с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее не более 2 гетероатомов, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено w вариантами R^{C} ;

 R^{WD} представляет собой галоген или -OS(O)₂R;

в каждом случае R^{5C} , R^{5D} , R^{7A} и R^L независимо представляет собой R^A или R^B и замещен и вариантами R^C ; или

два варианта R^{5C} , один вариант R^{5C} и один вариант R^{5D} или два варианта R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее не более 4 гетероатомов, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено у вариантами R^{C} ;

- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C_{1-6} алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)₂R, -S(O)₂R, -S(O)₂F, -OS(O)₂F, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(NR)NR₂, -N(R)S(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота объединены с находящимися между ними атомами с образованием 4-7-членного насыщенного, частично ненасыщенного

или гетероарильного кольца, содержащего 0-3 гетероатома, помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы;

каждый из m, n, p, q, r, t, u, v и w независимо равен 0, 1, 2, 3 или 4.

[0049] Как определено выше, Су^А представляет собой

$$\mathbb{R}^{10}$$
 , где \mathbb{R}^7 , где \mathbb{R}^7 представляет собой связь с \mathbb{R}^5 , а представляет собой

связь с Cy⁶. В некоторых вариантах реализации Cy^A представляет собой

В некоторых вариантах реализации Су^А представляет собой

R′ . В некоторых

вариантах реализации Cy^A представляет собой

. В некоторых вариантах

реализации Су^А представляет собой

. В некоторых вариантах реализации

N R R

Су^А представляет собой

. В некоторых вариантах реализации Cy^A

R⁸

представляет собой

В некоторых вариантах реализации Су^А

R⁸

представляет собой

В некоторых вариантах реализации Су^А

представляет собой

К⁸ ***** или

[0050] В некоторых вариантах реализации $\mathrm{Cy^A}$ представляет собой

N N R 7

В некоторых вариантах реализации Су^А представляет собой

 \mathbb{R}^9 \mathbb{R}^7

В

или

некоторых вариантах реализации Cy^A представляет собой

$$\mathbb{R}^{8}$$
 или \mathbb{R}^{10-N} В некоторых вариантах реализации $\mathbb{C}\mathrm{y}^{\mathrm{A}}$ выбран

из групп, показанных среди соединений, представленных в Таблице 1.

[0051] Как в целом определено выше, Cy^6 представляет собой фенилен; двухвалентное насыщенное или частично ненасыщенное 3-14-членное карбоциклическое кольцо; двухвалентное насыщенное или частично ненасыщенное 3-14-членное гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или 5-14-членный гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W .

[0052] В некоторых вариантах реализации изобретения Су⁶ представляет собой фенилен; двухвалентное насыщенное или частично ненасыщенное 3-7-членное моноциклическое карбоциклическое кольцо; двухвалентное насыщенное или частично ненасыщенное 8-14-членное бициклическое карбоциклическое кольцо; двухвалентное насыщенное частично ненасыщенное 3-7-членное моноциклическое или гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или двухвалентное насыщенное или частично ненасыщенное 8-14-членное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 5-6-членный моноциклический гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или 9-10-членный бициклический гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy⁶ замещен р вариантами R^6 помимо - L^6 - R^W .

[0053] В некоторых вариантах реализации Cy^6 представляет собой двухвалентное насыщенное или частично ненасыщенное 3-14-членное карбоциклическое кольцо; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Cy^6 представляет собой двухвалентное насыщенное или частично ненасыщенное 3-7-членное моноциклическое карбоциклическое кольцо или двухвалентное насыщенное или частично ненасыщенное 8-14-членное бициклическое карбоциклическое кольцо; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Cy^6 представляет собой двухвалентное насыщенное или частично

ненасыщенное 3-7-членное моноциклическое карбоциклическое кольцо; при этом Cy^6 замещен р вариантами R^6 помимо $-L^6-R^W$. В некоторых вариантах реализации Cy^6 представляет собой двухвалентное насыщенное или частично ненасыщенное 8-14-членное бициклическое карбоциклическое кольцо; при этом Cy^6 замещен р вариантами R^6 помимо $-L^6-R^W$.

[0054] В некоторых вариантах реализации Cy^6 представляет собой двухвалентное насыщенное или частично ненасыщенное 3-14-членное гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации изобретения Cy^6 представляет собой двухвалентное насыщенное или частично ненасыщенное 3-7-членное моноциклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или двухвалентное насыщенное или частично ненасыщенное 8-14-членное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W .

[0055] В некоторых вариантах реализации Су⁶ представляет собой двухвалентное 3-7-членное моноциклическое насыщенное или частично ненасыщенное гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Су⁶ представляет собой двухвалентное насыщенное или частично ненасыщенное 5-6-членное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Су⁶ представляет собой бивалентное пирролидиновое или дигидропирролидиновое Cv^6 R^6 кольцо; замещен вариантами при этом помимо $-L^6-R^W$.

[0056] В некоторых вариантах реализации Cy^6 представляет собой 5-14-членный гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации изобретения Cy^6 представляет собой 5-6-членный моноциклический гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или 9-10-членный бициклический гетероарилен,

содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W .

[0057] В некоторых вариантах реализации Cy^6 представляет собой 5-6-членный моноциклический гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Cy^6 представляет собой 5-6-членный моноциклический гетероарилен, содержащий 1-2 атома азота; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Cy^6 представляет собой 5-членный моноциклический гетероарилен, имеющий 1-2 атома азота; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W .

[0058] В некоторых вариантах реализации Cy^6 представляет собой 9-10-членный бициклический гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации Cy^6 представляет собой 9-10-членный бициклический гетероарилен, содержащий 1-3 атома азота; при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W .

[0059] В некоторых вариантах реализации Cy⁶ выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0060] В некоторых вариантах реализации -Cy 6 -L 6 -R W в совокупности представляет собой:

$$(R^{6})_{p}$$

где каждый из L^6 , R^6 , R^W и р является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации - Cy^6 - L^6 - R^W в совокупности представляет собой:

$$(R^{6})_{p} \qquad (R^{6})_{p} \qquad$$

где каждый из L^6 , R^6 , R^W и р является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации - Cy^6 - L^6 - R^W в совокупности представляет собой:

$$(R^{6})_{p}$$

где каждый из L^6 , R^6 , R^W и р является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации - Cy^6 - L^6 - R^W в совокупности представляет собой:

$$(R^{6})_{p}$$

где каждый из L^6 , R^6 , R^W и р является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0061] Как определено выше, в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или два варианта R^6 , вариант R^6 и вариант R^6 и вариант R^{0} и вариантами R^{0} и

[0062] В некоторых вариантах реализации изобретения два варианта R^6 , вариант R^6 и вариант R^6 и вариант R^6 и вариант R^{0} и вариантами R^{0} и вариантами

[0063] В некоторых вариантах реализации изобретения вариант R^6 и вариант R^{WA} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C . В некоторых вариантах реализации изобретения вариант R^6 и вариант R^{7a} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C .

[0064] В некоторых вариантах реализации изобретения вариант R^6 и вариант R^{7a} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C . В некоторых вариантах реализации изобретения вариант R^6 и вариант R^{7a} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное кольцо, содержащее один атом азота; при этом указанное кольцо необязательно замещено 1, 2 или 3 заместителями, независимо выбранными из галогена, -CN, -O-(C_{1-4} алкил) и -(C_{1-4} алкил); при этом каждый C_{1-4} алкил необязательно замещен 1, 2 или 3 атомами фтора. В некоторых вариантах реализации изобретения вариант R^6 и вариант R^{7a} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное кольцо. В некоторых вариантах реализации изобретения вариант R^6 и вариант R^7a совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное кольцо, содержащее один атомами образуют 4-8-членное частично ненасыщенное кольцо, содержащее один атом азота.

[0065] В некоторых вариантах реализации каждый \mathbb{R}^6 выбран из групп, показанных среди соединений, показанных в Таблице 1.

[0066] Как в целом определено выше, R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 атомами галогена. В некоторых вариантах реализации R^8 представляет собой H. В некоторых вариантах реализации R^8 представляет собой -NR₂. В некоторых вариантах реализации R^8 представляет собой галоген. В некоторых вариантах реализации R^8 представляет собой -OH. В некоторых вариантах реализации R^8 представляет собой C_{1-6} алифатический алкил, необязательно замещенный 1-3 атомами галогена.

[0067] В некоторых вариантах реализации R^8 представляет собой -NH₂. В некоторых вариантах реализации R^8 представляет собой C_{1-4} алкил. В некоторых вариантах реализации R^8 представляет собой метил. В некоторых вариантах реализации R^8 представляет собой -NH₂ или метил. В некоторых вариантах реализации R^8 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0068] Как в целом определено выше, R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 атомами галогена. В некоторых вариантах реализации R^9 представляет собой H. В некоторых вариантах реализации R^9

представляет собой -NR₂. В некоторых вариантах реализации R^9 представляет собой -NH₂. В некоторых вариантах реализации R^9 представляет собой галоген. В некоторых вариантах реализации R^9 представляет собой C_{1-6} алифатический алкил, необязательно замещенный 1-3 атомами галогена. В некоторых вариантах реализации R^9 представляет собой C_{1-4} алкил. В некоторых вариантах реализации R^9 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0069] Как в целом определено выше, R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1-3 атомами галогена. В некоторых вариантах реализации R^{10} представляет собой H. В некоторых вариантах реализации R^{10} представляет собой C_{1-6} алифатический алкил, необязательно замещенный 1-3 атомами галогена. В некоторых вариантах реализации R^{10} представляет собой C_{1-4} алкил. В некоторых вариантах реализации R^{10} представляет собой метил. В некоторых вариантах реализации R^{10} представляет собой H или метил. В некоторых вариантах реализации R^{10} выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0070] Как в целом определено выше, L^6 представляет собой ковалентную связь или C_{1-4} бивалентную насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на $-CH(R^L)$ -, $-C(R^L)_2$ -, C_{3-6} циклоалкилен, 3-6-членный гетероарилен, -NH-, $-N(R^L)$ -, -NHC(O)-, $-N(R^L)C(O)$ -, -C(O)NH-, $-C(O)N(R^L)$ -, $-NHS(O)_2$ -, $-N(R^L)S(O)_2$ -, $-S(O)_2NH$ -, $-S(O)_2N(R^L)$ -, -O-, -C(O)-, -OC(O)-, -C(O)O-, -S-, -S(O)- или $-S(O)_2$ -; где каждый из указанных C_{3-6} циклоалкилена, 3-6-членного гетероциклоалкилена и 5-6-членного гетероарилена необязательно замещен одним вариантом R^A или C_{1-6} алифатического алкила;

[0071] В некоторых вариантах реализации L^6 представляет собой C_{3-6} циклоалкилен, 3-6-членный гетероциклоалкилен или 5-6-членный гетероарилен, каждый из которых необязательно замещен одним вариантом R^A или C_{1-6} алифатического алкила. В некоторых вариантах реализации L^6 представляет собой C_{3-6} циклоалкилен, 3-6-членный гетероциклоалкилен или 5-6-членный гетероарилен.

[0072] В некоторых вариантах реализации L^6 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0073] Как в целом определено выше, в каждом случае R^{5C} и R^{5D} независимо представляет собой R^A или R^B и замещен и вариантами R^C ; или двумя вариантами R^{5C} , одним вариантом R^{5C} и одним вариантом R^{5D} , или два варианта R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо имеет замещения у вариантами R^C .

[0074] В некоторых вариантах реализации два варианта R^{5C} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо имеет замещения у вариантами R^{C} .

[0075] В некоторых вариантах реализации один вариант R^{5C} и один вариант R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо имеет замещения V вариантами R^{C} . В некоторых вариантах реализации один вариант R^{5C} и один вариант R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо, замещенное V вариантами R^{C} .

[0076] В некоторых вариантах реализации два варианта R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено у вариантами R^{C} . В некоторых вариантах реализации два варианта R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо, замещенное у вариантами R^{C} .

[0077] В некоторых вариантах реализации каждый экзепляр ${\bf R}^{5C}$ и ${\bf R}^{5D}$ выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0078] Как в целом определено выше, v равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации v равен 0. В некоторых вариантах реализации v равен 1. В некоторых вариантах реализации v равен 3. В некоторых вариантах реализации v равен 4. В некоторых вариантах реализации v равен

0 или 1. В некоторых вариантах реализации изобретения v равен 0, 1 или 2. В некоторых вариантах реализации v равен 0, 1, 2 или 3. В некоторых вариантах реализации v равен 1 или 2. В некоторых вариантах реализации изобретения v равен 1, 2, или 3. В некоторых вариантах реализации v равен 1, 2, 3, или 4. В некоторых вариантах реализации v равен 2 или 3. В некоторых вариантах реализации v равен 2, 3 или 4. В некоторых вариантах реализации v равен 3 или 4. В некоторых вариантах реализации v выбран из значений, представленных среди соединений, представленных в Таблице 1.

[0079] Как в целом определено выше, w равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации w равен 0. В некоторых вариантах реализации w равен 1. В некоторых вариантах реализации w равен 3. В некоторых вариантах реализации w равен 4. В некоторых вариантах реализации w равен 0 или 1. В некоторых вариантах реализации w равен 0, 1 или 2. В некоторых вариантах реализации w равен 0, 1 или 2. В некоторых вариантах реализации w равен 1 или 2. В некоторых вариантах реализации w равен 1 или 2. В некоторых вариантах реализации w равен 1, 2 или 3. В некоторых вариантах реализации w равен 1, 2, 3 или 4. В некоторых вариантах реализации w равен 2 или 3. В некоторых вариантах реализации w равен 2, 3 или 4. В некоторых вариантах реализации w равен 2, 3 или 4. В некоторых вариантах реализации w выбран из значений, представленных среди соединений, представленных в Таблице 1.

[0080] В некоторых вариантах реализации настоящего изобретения предложено соединение Формулы I-1, где каждая из переменных является такой, как определено в описании Формулы I или Формулы I-2 ниже и описано в вариантах реализации, представленных в настоящем документе, как по отдельности, так и в различных сочетаниях.

[0081] Как описано выше, в некоторых вариантах реализации настоящего изобретения предложено соединение формулы I-2:

I-2

или его фармацевтически приемлемая соль, где:

 R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^{5} - R^{5B} :

 ${
m R}^{5{
m B}}$ представляет собой водород или ${
m R}^{{
m B}}$, при этом ${
m R}^{5{
m B}}$ замещен п группами ${
m R}^{5{
m D}}$;

 Cy^6 представляет собой фенилен или 6-членный гетероарилен, содержащий 1-3 атома азота, где Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W ;

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 ${\bf R}^7$ представляет собой H или ${\bf R}^B$, при этом ${\bf R}^7$ замещен t вариантами ${\bf R}^{7A}$;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на $-CH(R^L)$ -, $-C(R^L)_2$ -, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, $-N(R^L)$ -, -NHC(O)-, $-N(R^L)C(O)$ -, -C(O)NH-, $-C(O)N(R^L)$ -, $-NHS(O)_2$ -, $-N(R^L)S(O)_2$ -, $-S(O)_2NH$ -, $-S(O)_2N(R^L)$ -, -O-, -C(O)-, -O-, -C(O)-, -C(O)-,

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную

группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы;

 R^{WD} представляет собой галоген или -OS(O)2R;

- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^L независимо представляет собой R^A или R^B и замещен и вариантами R^C ;
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C₁₋₆ алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)_R, -S(O)_R, -S(O)₂F, -OS(O)₂F, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R)C(O)R₂, -N(R)C(O)R₂, -N(R)C(O)R₂, -N(R)C(O)R₃ или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца,

содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота совместно с находящимися между ними атомами образуют 4-7-членное насыщенное, частично ненасыщенное или гетероарильное кольцо, содержащее 0-3 гетероатома помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы; и

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

[0082] Как в целом определено выше, каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O) N(R)OR или необязательно замещенную группу, выбранную из C₁₋₆ алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^L , или R^{WC} и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы.

[0083] В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂ или -C(O)N(R)OR. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий или необязательно замещенный C_{1-6} алифатический алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, - C_{1-4} алкил, -(C_{1-4} алкил)-O-(C_{1-4} алкил) или -(C_{1-4} алкил)-N(C_{1-4} алкил)₂; при этом каждый C_{1-4} алкил необязательно

замещен 1, 2 или 3 атомами фтора. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий или - C_{1-4} алкил, необязательно замещенный 1, 2 или 3 атомами фтора. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий или - C_{1-4} алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий или - C_{1-1} В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или дейтерий. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой представляет собой дейтерий.

[0084] В некоторых вариантах реализации настоящего изобретения предложено соединение Формулы I-2, где каждая из переменных является такой, как определено в описании Формулы I ниже и описано в вариантах реализации, представленных в настоящем документе, как по отдельности, так и в различных сочетаниях.

[0085] Как описано выше, в некоторых вариантах реализации настоящего изобретения предложено соединение формулы I:

$$NH_2 R^5$$

$$Cy^6-L^6-R^W$$

$$R^7$$

.

или его фармацевтически приемлемая соль, где:

 R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^{5} - R^{5B} ;

 R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен п группами R^{5D} ;

 Cy^6 представляет собой фенилен или 6-членный гетероарилен, содержащий 1-3 атома азота, при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W ;

$$\mathbf{R}^{\mathrm{W}}$$
 представляет собой галоген, -CN, \mathbf{R}^{W} , \mathbf{R}^{W}

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 R^7 представляет собой H или R^B , при этом R^7 замещен t вариантами R^{7A} ;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)$ -, -

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, - C(O)R, -C(O)NR, - $C(O)NR_2$, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или

частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы;

 R^{WD} представляет собой галоген или -OS(O)₂R;

- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^{L} независимо представляет собой R^{A} или R^{B} и замещен и вариантами R^{C} ;
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C₁₋₆ алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)₂R, -S(O)₂R, -C(O)₂R, -C(O)₂R, -C(O)₂R, -C(O)₂R, -C(O)₂R, -C(O)₂R, -OC(O)₂R, -OC(O)₂R, -N(R)₂C(O)₂R, -N
- каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и

5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота совместно с находящимися между ними атомами образуют 4-7-членное насыщенное, частично ненасыщенное или гетероарильное кольцо, содержащее 0-3 гетероатома помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы; и

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

[0086] Как в целом определено выше, R^{5A} представляет собой двухвалентный радикал R^{B} , при этом R^{5A} замещен m вариантами R^{5C} помимо - L^{5} - R^{5B} . B некоторых вариантах реализации R^{5A} представляет собой бивалентный C_{1-6} алифатический алкил, замещенный m вариантами R^{5C} помимо $-L^5$ - R^{5B} . В некоторых вариантах реализации R^{5A} представляет собой фенилен, замещенный m вариантами R^{5C} помимо - L^{5} - R^{5B} . B R^{5A} представляет некоторых вариантах реализации собой 5-6-членное моноциклическое гетероариленовое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное m вариантами R^{5C} помимо - L^5 - R^{5B} . вариантах реализации R^{5A} представляет собой 8-10-членное некоторых бициклическое гетероариленовое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное m вариантами R^{5C} помимо - L^5 - R^{5B} . В некоторых вариантах реализации R^{5A} представляет собой двухвалентное 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо, замещенное т вариантами R^{5C} помимо $-L^5$ - R^{5B} . В некоторых вариантах реализации R^{5A} представляет собой двухвалентное 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное m вариантами R^{5C} помимо - L^5 - R^{5B} . В некоторых вариантах реализации R^{5A} представляет собой двухвалентное 7-12членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное m вариантами R^{5C} помимо $-L^5-R^{5B}$. B некоторых вариантах реализации R^{5A} выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0087] Как в целом определено выше, L^5 представляет собой ковалентную связь или C_{1-4} бивалентную насыщенную или ненасыщенную, линейную или разветвленную

углеводородную цепь, где одно или два метиленовых звена указанной цепи необязательно и независимо заменены на -CH(R^L)-, -C(R^L)₂-, C_{3-5} циклоалкилен, 3-5членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, $-N(R^L)$ -, -NHC(O)-, $-N(R^{L})C(O)$ -, -C(O)NH-, $-C(O)N(R^{L})$ -, -NHS(O)2-, $-N(R^{L})S(O)$ 2-, -S(O)2NH-, -S(O)2N(R^{L})-, -O-, -C(O)-, -C(O)O-, -S-, -S(O)- или $-S(O)_2-$. В некоторых вариантах реализации L⁵ представляет собой ковалентную связь. В некоторых вариантах реализации изобретения L⁵ представляет собой C₁₋₄ бивалентную насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, где одно или два метиленовых звена указанной цепи необязательно и независимо заменены на -CH(R^L)-, циклоалкилен, 3-5-членный гетероциклоалкилен, $-C(R^{L})_{2}$ -, C_{3-5} 5-6-членный гетероарилен, -NH-, -N(R^L)-, -NHC(O)-, -N(R^L)C(O)-, -C(O)NH-, -C(O)N(R^L)-, $-NHS(O)_2-$, $-N(R^L)S(O)_2-$, $-S(O)_2NH-$, $-S(O)_2N(R^L)-$, -O-, -C(O)-, -OC(O)-, -C(O)O-, -S-, -S(O)- или -S(O)₂-.

[0088] В некоторых вариантах реализации L^5 представляет собой C_{1-2} бивалентную насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, где одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)C(O)$ -, -C(O)NH-, - $C(O)N(R^L)$ -, -NHS(O)2-, - $N(R^L)S(O)$ 2-, -S(O)2NH-, -S(O)2 $N(R^L)$ -, -O-, -C(O)-, -O-, -O-,

[0089] В некоторых вариантах реализации L^5 представляет собой -O-, -C(O)-, -C(O)NH- или -C(O)N(R^L)-. В некоторых вариантах реализации L^5 представляет собой -C(O)-. В некоторых вариантах реализации L^5 представляет собой -C(O)NH-. В некоторых вариантах реализации L^5 представляет собой -C(O)NH-. В некоторых вариантах реализации L^5 представляет собой -C(O)N(R^L)-. В некоторых вариантах реализации L^5 представляет собой -C(O)N(R^L)-. В некоторых вариантах реализации L^5 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0090] Как в целом определено выше, R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен п вариантами R^{5D} . В некоторых вариантах реализации R^{5B} представляет собой водород. В некоторых вариантах реализации R^{5B} представляет собой R^{B} , замещенный п вариантами R^{5D} . В некоторых вариантах реализации R^{5B}

представляет собой C_{1-6} алифатический алкил, замещенный п вариантами R^{5D} . В некоторых вариантах реализации R^{5B} представляет собой фенил, замещенный п вариантами R^{5D} . В некоторых вариантах реализации R^{5B} представляет собой 5-6членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D}. В некоторых вариантах реализации R^{5B} представляет собой 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D}. В некоторых вариантах реализации R^{5B} представляет собой 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо, замещенное п вариантами R^{5D}. В некоторых вариантах реализации R^{5B} представляет собой 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D}. В некоторых вариантах реализации R^{5B} представляет собой 7-12членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D}.

[0091] В некоторых вариантах реализации R^{5B} представляет собой 4-6-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D} . В некоторых вариантах реализации R^{5B} представляет собой 5-членное моноциклическое гетероарильное кольцо, содержащее 1-3 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D} . В некоторых вариантах реализации R^{5B} представляет собой 6-членное моноциклическое гетероарильное кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; замещенное п вариантами R^{5D} . В некоторых вариантах реализации R^{5B} выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0092] Как в целом определено выше, в каждом случае R^{5C} независимо представляет собой R^A или R^B и замещен и вариантами R^C . В некоторых вариантах реализации в каждом случае R^{5C} представляет собой R^A . В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из галогена, -CN, -OR, -S(O)₂NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -OC(O)R и -N(R)C(O)R. В некоторых вариантах реализации в

каждом случае R^{5C} независимо выбран из галогена, -CN, -OR и -C(O)NR₂. В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из галогена, -CN, -O-(C₁₋₄ алкила) и -C(O)N(C₁₋₄ алкил)₂; при этом каждый C₁₋₄ алкил необязательно замещен 1, 2 или 3 атомами галогена. В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из галогена, -CN, -O-(C₁₋₄ алкил) и -C(O)N(C₁₋₄ алкил)₂.

[0093] В некоторых вариантах реализации в каждом случае R^{5C} представляет собой R^B, при этом R^{5C} замещен и вариантами R^{C} . В некоторых вариантах реализации в каждом случае R^{5C} представляет собой R^{B} , при этом R^{5C} замещен одним вариантом R^{C} . В некоторых вариантах реализации изобретения в каждом случае R^{5C} независимо выбран алифатического алкила; фенила; 5-6-членного C_{1-6} моноциклического гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членного насыщенного или частично ненасыщенного карбоциклического кольца; 3-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый необязательно замещен и вариантами R^C.

[0094] В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из C_{1-6} алифатического алкила; 3-7-членного насыщенного или частично ненасыщенного карбоциклического кольца и 3-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый необязательно замещен и вариантами R^{C} . В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из С₁₋₄ алифатического алкила, необязательно замещенного одним вариантом R^C; 3-5-членного насыщенного карбоциклического кольца; и 3-5-членного насыщенного моноциклического гетероциклического кольца, содержащего 1 гетероатом, независимо выбранный из азота, кислорода и серы; при этом каждый из них необязательно замещен 1, 2 или 3 атомами галогена. В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из C_{1-4} алкила, необязательно замещенного одним вариантом -OH, -O-(C_{1-4} алкил) или -N(C_{1-4} алкил)₂; 3-5-членного карбоциклического 3-5-членного насыщенного кольца; И насыщенного моноциклического гетероциклического кольца, содержащего 1 атом кислорода; при этом каждый из них необязательно замещен 1, 2 или 3 атомами фтора или хлора.

[0095] В некоторых вариантах реализации каждый пример R^{5C} независимо выбран из галогена, -CN, -OR, -C(O)NR2 и следующих групп, каждая из которых необязательно замещена и вариантами R^C: C₁₋₆ алифатический алкил; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; и 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из галогена, -CN и следующих групп, каждая из которых необязательно замещена 1, 2 или 3 атомами галогена: -O-(C_{1-4} алкил), - $C(O)N(C_{1-4}$ алкил)₂, C_{1-4} алифатический алкил, необязательно замещенный одним вариантом R^C; 3-5-членное насыщенное карбоциклическое кольцо; и 3-5-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 гетероатом, независимо выбранный из азота, кислорода и серы. В некоторых вариантах реализации в каждом случае R^{5C} независимо выбран из галогена, -CN, -O-(C_{1-4} алкил), - $C(O)N(C_{1-4}$ алкил) $_2$ и следующих групп, каждая из которых необязательно замещена 1, 2 или 3 атомами фтора или хлора: С₁₋₄ алкил, необязательно замещенный одним вариантом -OH, $-O-(C_{1-4})$ алкил) или $-N(C_{1-4} \text{ алкил})_2$; 3-5-членное насыщенное карбоциклическое кольцо; и 3-5-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 атом кислорода. В некоторых вариантах реализации R^{5C} выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0096] Как в целом определено выше, в каждом случае R^{5D} независимо представляет собой R^A или R^B и замещен и вариантами R^C . В некоторых вариантах реализации в каждом случае R^{5D} представляет собой R^A . В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN, -OR, -S(O)₂NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -OC(O)R и -N(R)C(O)R. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN, -OR и -C(O)NR₂. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN, -O-(C₁₋₄ алкил) и -C(O)N(C₁₋₄ алкил)₂; при этом каждый C₁₋₄ алкил необязательно замещен 1, 2 или 3 атомами галогена. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN, -O-(C₁₋₄ алкил) и -C(O)N(C₁₋₄ алкил)₂.

[0097] В некоторых вариантах реализации в каждом случае R^{5D} представляет собой R^{B} , при этом R^{5D} замещен и вариантами R^{C} . В некоторых вариантах реализации в каждом случае R^{5D} представляет собой R^{B} , при этом R^{5D} замещен одним вариантом R^{C} . В

некоторых вариантах реализации изобретения в каждом случае R^{5D} независимо выбран из C_{1-6} алифатического алкила; фенила; 5-6-членного моноциклического гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членного насыщенного или частично ненасыщенного карбоциклического кольца; 3-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый из них необязательно замещен и вариантами R^{C} .

[0098] В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из C_{1-6} алифатического алкила; 3-7-членного насыщенного или частично ненасыщенного карбоциклического кольца и 3-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый из них необязательно замещен и вариантами R^C. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из C_{1-4} алифатического алкила, необязательно замещенного одним вариантом R^C; 3-5-членного насыщенного карбоциклического кольца; и 3-5-членного насыщенного моноциклического гетероциклического кольца, содержащего 1 гетероатом, независимо выбранный из азота, кислорода и серы; при этом каждый из них необязательно замещен 1, 2 или 3 атомами галогена. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из C_{1-4} алкила, необязательно замещенного одним вариантом -OH, -O-(C_{1-4} алкил) или -N(C_{1-4} алкил)₂; 3-5-членного насыщенного карбоциклического кольца; и 3-5-членного насыщенного моноциклического гетероциклического кольца, содержащего 1 атом кислорода; при этом каждый из них необязательно замещен 1, 2 или 3 атомами фтора или хлора.

[0099] В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN, -OR, -C(O)NR₂ и следующих групп, каждая из которых необязательно замещена и вариантами R^C : C_{1-6} алифатический алкил; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; и 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN и следующих групп, каждая из которых необязательно замещена 1, 2 или 3 атомами галогена: -O-(C_{1-4} алкил), -C(O)N(C_{1-4} алкил)₂, C_{1-4} алифатический алкил, необязательно

замещенный одним вариантом R^C ; 3-5-членное насыщенное карбоциклическое кольцо; и 3-5-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 гетероатом, независимо выбранный из азота, кислорода и серы. В некоторых вариантах реализации в каждом случае R^{5D} независимо выбран из галогена, -CN, -O-(C_{1-4} алкил), - $C(O)N(C_{1-4}$ алкил) $_2$ и следующих групп, каждая из которых необязательно замещена 1, 2 или 3 атомами фтора или хлора: C_{1-4} алкил, необязательно замещенный одним вариантом -OH, -O-(C_{1-4} алкил) или -N(C_{1-4} алкил) $_2$; 3-5-членное насыщенное карбоциклическое кольцо; и 3-5-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 атом кислорода. В некоторых вариантах реализации R^{5D} выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0100] Как в целом определено выше, в некоторых вариантах реализации настоящего изобретения предложено соединение формулы I, где R^5 представляет собой - R^{5A} - L^5 - R^{5B} . В некоторых вариантах реализации R^5 (т.е. - R^{5A} - L^5 - R^{5B} вместе взятые) представляет собой:

где каждый из L^5 , R^{5B} , R^{5C} и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0101] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) представляет собой:

$$O-R^{5B}$$
 $O-R^{5B}$ $O-R^{5B}$

где каждый из R^{5B} , R^{5C} и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0102] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) представляет собой:

$$(R^{5C})_m$$
 $(R^{5C})_m$ $(R^{5C})_m$ $(R^{5C})_m$ $(R^{5C})_m$ $(R^{5C})_m$ $(R^{5C})_m$

где каждый из R^{5B} , R^{5C} и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0103] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) представляет собой:

$$(R^{5C})_{m} \xrightarrow{R^{5B}} (R^{5C})_{m} \xrightarrow{NH} (R^{5C})_{m} \xrightarrow{NH} (R^{5C})_{m}$$

где каждый из R^{5B} , R^{5C} и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0104] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) представляет собой:

$$O-R^{5B}$$
 O R^{5B} O NH $(R^{5C})_m$ $(R^{5C})_m$ $(R^{5C})_m$

где каждый из R^{5B} , R^{5C} и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0105] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) представляет собой:

$$O-R^{5B}$$
 R^{5B}
 R^{5C}
 R^{5C}
 R^{5C}
 R^{5C}
 R^{5C}
 R^{5C}

где каждый из R^{5B} и R^{5C} является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0106] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) представляет собой:

$$R^{5C}$$
 $O-R^{5B}$ R^{5C} R^{5B} R^{5C} N

где каждый из R^{5B} и R^{5C} является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0107] В некоторых вариантах реализации R^5 (т.е. $-R^{5A}$ - L^5 - R^{5B} вместе взятые) выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0108] Как в целом определено выше, Су⁶ представляет собой фенилен или 6-членный гетероарилен, содержащий 1-3 атома азота, где Су⁶ замещен р вариантами R^6 помимо - L^6 - R^W . В некоторых вариантами R^6 помимо - L^6 - R^W . В некоторых вариантами R^6 помимо - L^6 - R^W . В некоторых вариантах реализации L^6 представляет собой 6-членный гетероарилен, имеющий 1-3 атома азота, где L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 помимо - L^6 - L^6 - L^6 в некоторых вариантах реализации L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 помимо - L^6 - L^6 - L^6 в некоторых вариантах реализации L^6 представляет собой 6-членный гетероарилен, имеющий 2 атома азота, замещенный р вариантами L^6 помимо - L^6 - L^6 - L^6 в некоторых вариантах реализации L^6 представляет собой 6-членный гетероарилен, имеющий 2 атома азота, замещенный р вариантами L^6 помимо - L^6 - L^6 - L^6 в некоторых вариантах реализации L^6 представляет собой 6-членный гетероарилен, имеющий 2 атома азота, замещенный голько - L^6 - L^6 - L^6 в некоторых вариантах реализации L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 представляет собой 6-членный гетероарилен, имеющий 1-2 атома азота, замещенный р вариантами L^6 представляет собой

ковалентную связь, а $-R^W$ представляет собой -CN или $\stackrel{!}{R}^{WA}$. В некоторых вариантах реализации Cy^6 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0109] Как в целом определено выше, в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C . В некоторых вариантах реализации каждый из R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C .

[0110] В некоторых вариантах реализации изобретения два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C . В некоторых вариантах реализации два варианта R^6 совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C .

[0111] В некоторых вариантах реализации изобретения вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C . В некоторых вариантах реализации изобретения вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное кольцо, содержащее один атом азота; при этом указанное кольцо необязательно замещено 1, 2 или 3 заместителями, независимо выбранными из галогена, -CN, -O-(C_{1-4} алкил) и -(C_{1-4} алкил); при этом каждый C_{1-4} алкил необязательно замещен 1, 2 или 3 атомами фтора. В некоторых вариантах реализации изобретения вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное кольцо, содержащее один атом азота.

[0112] В некоторых вариантах реализации в каждом случае R^6 представляет собой R^A . В некоторых вариантах реализации каждый пример R^6 независимо выбран из галогена, -CN, -OR, -S(O)₂NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -OC(O)R и -N(R)C(O)R. В некоторых вариантах реализации каждый пример R^6 независимо выбран из галогена, -CN, -OR и -C(O)NR₂. В некоторых вариантах реализации в каждом случае R^6 независимо выбран из галогена, -CN, -O-(C₁₋₄ алкил) и -C(O)N(C₁₋₄ алкил)₂; при этом каждый C₁₋₄ алкил необязательно замещен 1, 2 или 3 атомами галогена. В некоторых вариантах реализации в каждом случае R^6 независимо выбран из галогена, -CN, -O-(C₁₋₄ алкил) и -C(O)N(C₁₋₄ алкил)₂.

[0113] В некоторых вариантах реализации в каждом случае R^6 представляет собой R^B , при этом R^6 замещен q вариантами R^C . В некоторых вариантах реализации в каждом случае R^6 представляет собой R^B , при этом R^6 замещен одним вариантом R^C . В некоторых вариантах реализации изобретения каждый пример R^6 независимо выбран из C_{1-6} алифатического алкила; фенила; 5-6-членного моноциклического гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членного насыщенного или частично ненасыщенного карбоциклического кольца; 3-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый из них необязательно замещен q вариантами R^C .

[0114] В некоторых вариантах реализации в каждом случае \mathbb{R}^6 независимо выбран из C_{1-6} алифатического алкила; 3-7-членного насыщенного или частично ненасыщенного карбоциклического кольца и 3-7-членного насыщенного или частично ненасыщенного моноциклического гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый из них необязательно замещен q вариантами R^C . В некоторых вариантах реализации изобретения в каждом случае R^6 независимо выбран из C_{1-4} алифатического алкила. необязательно замещенного одним вариантом R^C; 3-5-членного насыщенного карбоциклического кольца И 3-5-членного насыщенного моноциклического гетероциклического кольца, содержащего 1 гетероатом, независимо выбранный из азота, кислорода и серы; при этом каждый из них необязательно замещен 1, 2 или 3 атомами галогена. В некоторых вариантах реализации в каждом случае R⁶ независимо выбран из С₁₋₄ алкила, необязательно замещенного одним вариантом -ОН, -О-(С₁₋₄

алкил) или $-N(C_{1-4}$ алкил)₂; 3-5-членного насыщенного карбоциклического кольца и 3-5-членного насыщенного моноциклического гетероциклического кольца, содержащего 1 атом кислорода; при этом каждый из них необязательно замещен 1, 2 или 3 атомами фтора или хлора.

[0115] В некоторых вариантах реализации в каждом случае \mathbb{R}^6 независимо выбран из галогена, -CN, -OR, -C(O)NR2 и следующих групп, каждая из которых необязательно замещена q вариантами R^C: C₁₋₆ алифатический алкил; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо и 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах реализации изобретения в каждом случае \mathbb{R}^6 независимо выбран из галогена, -CN и следующих групп, каждая из которых необязательно замещена 1, 2 или 3 атомами галогена: -O-(C_{1-4} алкил), -C(O)N(C_{1-4} алкил)₂, C_{1-4} алифатический алкил, вариантом R^{C} ; 3-5-членное необязательно замещенный одним карбоциклическое И 3-5-членное насыщенное моноциклическое кольцо гетероциклическое кольцо, содержащее 1 гетероатом, независимо выбранный из азота, кислорода и серы. В некоторых вариантах реализации в каждом случае R⁶ независимо выбран из галогена, -CN, -O-(C_{1-4} алкил), -C(O)N(C_{1-4} алкил)₂ и следующих групп, каждая из которых необязательно замещена 1, 2 или 3 атомами фтора или хлора: С1-4 алкил, необязательно замещенный одним вариантом -ОН, -О-(С1-4 алкил) или $-N(C_{1-4} \text{ алкил})_2$; 3-5-членное насыщенное карбоциклическое кольцо и 3-5-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 атом кислорода. В некоторых вариантах реализации R⁶ выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0116] Как в целом определено выше, L^6 представляет собой ковалентную связь или C_{1-4} бивалентную насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, - $N(R^L)$

ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на -CH(\mathbb{R}^L)-, -C(\mathbb{R}^L)₂-, C₃₋₅ циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, -N(\mathbb{R}^L)-, -NHC(O)-, -N(\mathbb{R}^L)C(O)-, -C(O)NH-, -C(O)N(\mathbb{R}^L)-, -NHS(O)₂-, -N(\mathbb{R}^L)S(O)₂-, -S(O)₂NH-, -S(O)₂N(\mathbb{R}^L)-, -O-, -C(O)-, -OC(O)-, -C(O)O-, -S-, -S(O)- или -S(O)₂-.

[0117] В некоторых вариантах реализации L^6 представляет собой C_{1-2} бивалентную насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)C(O)$ -, -C(O)NH-, - $C(O)N(R^L)$ -, -NHS(O)2-, - $N(R^L)S(O)$ 2-, -S(O)2NH-, -S(O)2 $N(R^L)$ -, -O-, -C(O)-, -O-, -

[0118] В некоторых вариантах реализации L^6 представляет собой -NH- или -N(R^L)-. В некоторых вариантах реализации L^6 представляет собой -NH-. В некоторых вариантах реализации L^6 представляет собой -N(R^L)-. В некоторых вариантах реализации L^6 представляет собой -NH- или -N(CH_3)-. В некоторых вариантах реализации L^6 представляет собой -N(CH_3)-. В некоторых вариантах реализации L^6 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0119] Как в целом определено выше, RW представляет собой галоген, -CN,

вариантах реализации R^W представляет собой галоген, -CN,

[0120] В некоторых вариантах реализации R^W представляет собой галоген. В некоторых вариантах реализации R^W представляет собой -CN. В некоторых вариантах

реализации R^{W} представляет собой R^{WA} или R^{WB} В некоторых вариантах реализации R^{W} представляет собой R^{WC} , R^{WB} ,

вариантах реализации R^W представляет собой R^{WA} . В некоторых вариантах

реализации R^W представляет собой R^{WA} . В некоторых вариантах реализации R^W

представляет собой . В некоторых вариантах реализации R^W представляет собой . В некоторых вариантах реализации R^W представляет собой .

[0121] В некоторых вариантах реализации R^W представляет собой R^{WA} . В некоторых вариантах реализации R^W представляет собой R^{WB} . В некоторых

 ${}^{\mathsf{R}^{\mathsf{WB}}}$. В некоторых вариантах вариантах реализации R^W представляет собой . В некоторых вариантах реализации реализации RW представляет собой B некоторых вариантах реализации R^{W} **R**^W представляет собой некоторых вариантах реализации R^W представляет собой $^{\mathsf{R}^{\mathsf{WC}}}$. В некоторых вариантах реализации R^{W} представляет представляет собой $R^{WA} R^{WB}$. В некоторых вариантах реализации R^{W} представляет собой собой некоторых вариантах реализации RW представляет собой . В некоторых вариантах реализации R^{W} представляет собой В некоторых вариантах реализации R^W представляет собой [0122] В некоторых вариантах реализации R^W представляет собой -CN,

. В некоторых вариантах реализации R^{w} представляет собой

или

или
$$\mathbb{R}^{WB}$$
 . \mathbb{B} некоторых вариантах реализации \mathbb{R}^{W} представляет собой \mathbb{R}^{WC} \mathbb{R}^{WB} \mathbb{R}^{WB} \mathbb{R}^{WB} \mathbb{R}^{WB}

[0123] В некоторых вариантах реализации R^W представляет собой R^{WA}

$$\mathbb{R}^{WA}$$
 , \mathbb{R}^{WA} , \mathbb{R}^{WA} , \mathbb{R}^{WA} , \mathbb{R}^{WA} , \mathbb{R}^{WB} , \mathbb{R}^{WB} , \mathbb{R}^{WA} , \mathbb{R}^{WB} , \mathbb{R}^{WB}

O ; а R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^L или R^{WC} и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы.

[0124] В некоторых вариантах реализации R^W представляет собой R^{WA} ", а R^{WA} и R^{WB} или R^{WB} и R^{WC} совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное кольцо, содержащее 0-1 гетероатом, независимо выбранный из азота, кислорода и серы. В некоторых вариантах реализации R^W

представляет собой R^{WB} , R^{W

 R^{W} представляет собой R^{WA} или R^{WA} , а R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и

серы. В некоторых вариантах реализации R^W выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0125] Без привязки к какой-либо конкретной теории считается, что R^W является активной группой соединения, особенно подходящей для ковалентного связывания с сульфгидрильной группой боковой цепи протеинкиназы, например, Cys491 в FGFR2. Таким образом, в некоторых вариантах реализации R^W характеризуется тем, что он способен ковалентно связываться с цистеиновым остатком, чем необратимо ингибировать протеинкиназу. В некоторых вариантах реализации протеинкиназа представляет собой FGFR. В некоторых вариантах реализации протеинкиназа представляет собой FGFR2. В некоторых вариантах реализации протеинкиназа представляет собой FGFR2, а цистеиновый остаток представляет собой Cys491.

[0126] Как в целом определено выше, каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O) N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^L , или R^{WC} и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы.

[0127] В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторый вариантах реализации изобретения R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы.

[0128] В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂ или -C(O)N(R)OR. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы.

[0129] В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или необязательно замещенный C_{1-6} алифатический алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или необязательно замещенный C_{1-6} алифатический алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, $-C_{1-4}$ алкил, $-(C_{1-4}$ алкил)-O- $(C_{1-4}$ алкил) или $-(C_{1-4}$ алкил)-N(C_{1-4} алкил)2; при этом каждый C_{1-4} алкил необязательно замещен 1, 2 или 3 атомами фтора. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или $-C_{1-4}$ алкил, необязательно замещенный 1, 2 или 3 атомами фтора. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или $-C_{1-4}$ алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или $-C_{1-4}$ алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или $-C_{1-4}$ алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород или $-C_{1-4}$ алкил. В некоторых вариантах реализации каждый из R^{WA} , R^{WB} и R^{WC}

[0130] В некоторых вариантах реализации R^{WA} и R^{WB} или R^{WB} и R^{WC} совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное кольцо, содержащее 0-1 гетероатом, независимо выбранный из азота, кислорода и серы. В некоторых вариантах реализации R^{WA} и R^{WB} или R^{WB} и R^{WC} совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное карбоциклическое кольцо. В некоторых вариантах реализации R^{WA} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-1 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах реализации R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах реализации R^{WC} и вариант R^{L}

совместно с находящимися между ними атомами образуют 5-6-членное частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы. В некоторых вариантах реализации каждый R^{WA} , R^{WB} и R^{WC} выбран из групп, показанных среди соединений, показанных в Таблице 1.

[0131] Как в целом определено выше, R^{WD} представляет собой галоген или -OS(O)₂R. В некоторых вариантах реализации R^{WD} представляет собой хлор или бром. В некоторых вариантах реализации R^{WD} представляет собой хлор. В некоторых вариантах реализации R^{WD} представляет собой хлор. В некоторых вариантах реализации R^{WD} представляет собой -OS(O)₂R. В некоторых вариантах реализации R^{WD} представляет собой -OS(O)₂-(необязательно замещенный C_{1-3} алкил). В некоторых вариантах реализации R^{WD} представляет собой -OS(O)₂CH₃ или -OS(O)₂CF₃. В некоторых вариантах реализации R^{WD} представляет собой -OS(O)₂-(необязательно замещенный фенил). В некоторых вариантах реализации R^{WD} представляет собой -OS(O)₂-(необязательно замещенный фенил). В некоторых вариантах реализации R^{WD} выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0132] В некоторых вариантах реализации -Cy⁶-L⁶-R^W в совокупности представляет собой:

где каждый из L^6 , R^6 , R^W и р является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации - Cv^6 - L^6 - R^W в совокупности представляет собой:

где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации $-Cy^6-L^6-R^W$ в совокупности представляет собой:

$$\begin{array}{c|c} & & & \\ & & &$$

где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации $-Cy^6-L^6-R^W$ в совокупности представляет собой:

$$\begin{array}{c|c} & & & \\ & &$$

 $(R^6)_p$

где каждый из L^6 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0133] В некоторых вариантах реализации изобретения -Cy 6 -L 6 -R W в совокупности

представляет собой: $L^6 - R^W$, где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации

изобретения $-Cy^6-L^6-R^W$ в совокупности представляет собой: $N = L^6-R^W$, где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации изобретения $-Cy^6-L^6-R^W$ в совокупности представляет

собой: $(R^6)_p$ собо

изобретения $-Cy^6-L^6-R^W$ в совокупности представляет собой: $N^{-1}L^6-R^W$, где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе.

[0134] В некоторых вариантах реализации изобретения - Cy^6 - L^6 - R^W в совокупности

представляет собой: $L^6 - R^W$, где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации

изобретения $-Cy^6-L^6-R^W$ в совокупности представляет собой: L^6-R^W , где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации изобретения $-Cy^6-L^6-R^W$ в совокупности представляет

собой: $L^6 - R^W$, где каждый из L^6 и R^W является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе.

[0135] В некоторых вариантах реализации - Cy^6 - L^6 - R^W в совокупности представляет собой:

$$\begin{array}{c|c} (R^6)_p & (R^6)_p \\ \hline \\ L^6 - R^W & \\ \hline \\ N & \\ \end{array} \begin{array}{c} (R^6)_p \\ \\$$

где каждый из L^6 , R^6 , R^W и р является таким, как определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации - Cy^6 - L^6 - R^W в совокупности представляет собой:

$$(R^{6})_{2}$$
 $L^{6}-R^{W}$
 $(R^{6})_{2}$
 $L^{6}-R^{W}$
 $(R^{6})_{2}$
 $L^{6}-R^{W}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$
 $(R^{6})_{2}$

где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации $-Cy^6-L^6-R^W$ в совокупности представляет собой:

где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации $-Cy^6-L^6-R^W$ в совокупности представляет собой:

$$L^{6}-R^{W}$$
, $L^{6}-R^{W}$, $L^{6}-R^{W}$

где каждый из L^6 и R^W является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0136] В некоторых вариантах реализации изобретения -Cy⁶-L⁶-R^W в совокупности

представляет собой: , где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации

изобретения $-Cy^6-L^6-R^W$ в совокупности представляет собой: N , где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации изобретения $-Cy^6-L^6-R^W$ в совокупности представляет

собой: $^{\text{N}}$, где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации

изобретения - Cy^6 - L^6 - R^W в совокупности представляет собой: , где каждый из L^6 , R^6 , R^W и р является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе.

[0137] В некоторых вариантах реализации изобретения -Cy 6 -L 6 -R W в совокупности

представляет собой: , где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации

изобретения $-Cy^6-L^6-R^W$ в совокупности представляет собой: , где каждый из L^6 , R^6 и R^W является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе. В некоторых вариантах реализации изобретения $-Cy^6-L^6-R^W$ в совокупности представляет

собой: $L^6 - R^W$, где каждый из L^6 и R^W является таким, как это определено в вариантах реализации изобретения и классах и подклассах, представленных в настоящем документе.

[0138] В некоторых вариантах реализации $-Cy^6-L^6-R^W$ выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0139] Как в целом определено выше, R^7 представляет собой H или R^B , при этом R^7 замещен t вариантами R^{7A} . B некоторых вариантах реализации R^7 представляет собой $H. \ B$ некоторых вариантах реализации R^7 представляет собой R^B , при этом R^7 замещен t вариантами R^{7A} . В некоторых вариантах реализации изобретения R^7 представляет собой C_{1-6} алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый из них замещен t вариантами R^{7A} . В реализации изобретения \mathbf{R}^7 представляет собой С1-6 некоторых вариантах алифатический алкил; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо или 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом каждый из них замещен t вариантами $\mathbf{R}^{7\mathbf{A}}$.

[0140] В некоторых вариантах реализации R^7 представляет собой C_{1-6} алкил; 3-7-членное насыщенное карбоциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота и кислорода; при этом каждый из них замещен 0-1 вариантами R^{7A} и 0-3 атомами галогенов. В некоторых вариантах реализации R^7 представляет собой C_{1-6} алкил, замещенный 0-1 вариантами R^{7A} и 0-3 атомами галогенов. В некоторых вариантах реализации R^7 представляет собой C_{1-4} алкил, C_{1-4} алкил, необязательно замещен 1, 2 или 3 атомами фтора. В некоторых вариантах реализации C_{1-4} алкил, необязательно замещенный 1, 2 или 3 атомами фтора. В некоторых вариантах реализации C_{1-4} алкил, необязательно замещенный 1, 2 или 3 атомами фтора. В некоторых вариантах реализации C_{1-4} алкил, замещенный 0-1 вариантах реализации C_{1-6} алкил, замещенный 0-1 вариантами C_{1-6} алкил, замещенный 0-1 вариантами C_{1-6} алкил, замещенный 0-1 вариантами C_{1-6} алкил, замещенный 0-1

[0141] В некоторых вариантах реализации ${\bf R}^7$ представляет собой 3-7-членное насыщенное карбоциклическое кольцо, замещенное 0-1 вариантами R^{7A} и 0-3 атомами галогенов. В некоторых вариантах реализации R^7 представляет собой 3-7-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее гетероатома, независимо выбранных из азота и кислорода, которое замещено 0-1 вариантами R^{7A} и 0-3 атомами галогенов. В некоторых вариантах реализации R^{7} представляет собой 5-6-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 атом кислорода; которое замещено 0-1 вариантами R^{7A} и 0-3атомами галогенов. В некоторых вариантах реализации R⁷ представляет собой 5-6членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 атом кислорода, которое замещено 0-3 атомами галогенов и 0-1 группой, выбранной из - C_{1-4} алкила, -OH, -O-(C_{1-4} алкил) или $N(C_{1-4}$ алкил)₂; при этом каждый C_{1-4} алкил необязательно замещен 1, 2 или 3 атомами фтора. В некоторых вариантах реализации R^7 представляет собой 5-6-членное насыщенное моноциклическое гетероциклическое кольцо, содержащее 1 атом кислорода. В некоторых вариантах реализации R^7 выбран из групп, показанных среди соединений, представленных в Таблице 1.

[0142] Как в целом определено выше, m равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации m равен 0. В некоторых вариантах реализации m равен 1. В некоторых вариантах реализации m равен 3. В некоторых вариантах реализации m равен 3. В некоторых вариантах реализации m равен 4. В некоторых вариантах реализации m

равен 0 или 1. В некоторых вариантах реализации m равен 0, 1 или 2. В некоторых вариантах реализации m равен 0, 1, 2 или 3. В некоторых вариантах реализации m равен 1 или 2. В некоторых вариантах реализации m равен 1, 2 или 3. В некоторых вариантах реализации m равен 1, 2, 3 или 4. В некоторых вариантах реализации m равен 2 или 3. В некоторых вариантах реализации m равен 2, 3 или 4. В некоторых вариантах реализации m равен 3 или 4. В некоторых вариантах реализации m выбран из значений, показанных среди соединений, представленных в Таблице 1.

[0143] Как в целом определено выше, п равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации п равен 0. В некоторых вариантах реализации п равен 1. В некоторых вариантах реализации п равен 3. В некоторых вариантах реализации п равен 4. В некоторых вариантах реализации п равен 0 или 1. В некоторых вариантах реализации п равен 0, 1 или 2. В некоторых вариантах реализации п равен 0, 1, 2 или 3. В некоторых вариантах реализации п равен 1 или 2. В некоторых вариантах реализации п равен 1, 2 или 3. В некоторых вариантах реализации п равен 1, 2, 3 или 4. В некоторых вариантах реализации п равен 2 или 3. В некоторых вариантах реализации п равен 2 или 3. В некоторых вариантах реализации п равен 3 или 4. В некоторых вариантах реализации п равен 3 или 4. В некоторых вариантах реализации п выбран из значений, показанных среди соединений, представленных в Таблице 1.

[0144] Как в целом определено выше, р равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации р равен 0. В некоторых вариантах реализации р равен 1. В некоторых вариантах реализации р равен 3. В некоторых вариантах реализации р равен 4. В некоторых вариантах реализации р равен 0 или 1. В некоторых вариантах реализации р равен 0, 1 или 2. В некоторых вариантах реализации р равен 0, 1, 2 или 3. В некоторых вариантах реализации р равен 1 или 2. В некоторых вариантах реализации р равен 1, 2 или 3. В некоторых вариантах реализации р равен 1, 2, 3 или 4. В некоторых вариантах реализации р равен 2 или 3. В некоторых вариантах реализации р равен 2 или 3. В некоторых вариантах реализации р равен 3 или 4. В некоторых вариантах реализации р равен 3 или 4. В некоторых вариантах реализации р выбран из значений, показанных среди соединений, представленных в Таблице 1.

[0145] Как в целом определено выше, q равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации q равен 0. В некоторых вариантах реализации q равен 1. В некоторых вариантах реализации q равен 2. В некоторых вариантах реализации q равен 3. В некоторых вариантах реализации q равен 4. В некоторых вариантах реализации q равен

0 или 1. В некоторых вариантах реализации q равен 0, 1 или 2. В некоторых вариантах реализации q равен 0, 1, 2 или 3. В некоторых вариантах реализации q равен 1 или 2. В некоторых вариантах реализации q равен 1, 2 или 3. В некоторых вариантах реализации q равен 1, 2, 3 или 4. В некоторых вариантах реализации q равен 2 или 3. В некоторых вариантах реализации q равен 2 или 3. В некоторых вариантах реализации q равен 3 или 4. В некоторых вариантах реализации q равен 3 или 4. В некоторых вариантах реализации q равен 3 или 4. В некоторых вариантах реализации q выбран из значений, показанных среди соединений, представленных в Таблице 1.

[0146] Как в целом определено выше, г равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации г равен 0. В некоторых вариантах реализации г равен 1. В некоторых вариантах реализации г равен 3. В некоторых вариантах реализации г равен 4. В некоторых вариантах реализации г равен 0 или 1. В некоторых вариантах реализации г равен 0, 1 или 2. В некоторых вариантах реализации г равен 0, 1, 2 или 3. В некоторых вариантах реализации г равен 1 или 2. В некоторых вариантах реализации г равен 1, 2 или 3. В некоторых вариантах реализации г равен 1, 2, 3 или 4. В некоторых вариантах реализации г равен 2 или 3. В некоторых вариантах реализации г равен 2 или 3. В некоторых вариантах реализации г равен 3 или 4. В некоторых вариантах реализации г равен 3 или 4. В некоторых вариантах реализации г равен 3 или 4. В некоторых вариантах реализации г выбран из значений, показанных в соединениях, представленных в Таблице 1.

[0147] Как в целом определено выше, t равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации t равен 0. В некоторых вариантах реализации t равен 1. В некоторых вариантах реализации t равен 3. В некоторых вариантах реализации t равен 4. В некоторых вариантах реализации t равен 0 или 1. В некоторых вариантах реализации t равен 0, 1 или 2. В некоторых вариантах реализации t равен 0, 1, 2 или 3. В некоторых вариантах реализации t равен 1 или 2. В некоторых вариантах реализации t равен 1, 2 или 3. В некоторых вариантах реализации t равен 1 или 2. В некоторых вариантах реализации t равен 1, 2, 3, или 4. В некоторых вариантах реализации t равен 2 или 3. В некоторых вариантах реализации t равен 3 или 4. В некоторых вариантах реализации t равен 3 или 4. В некоторых вариантах реализации t равен 3 или 4. В некоторых вариантах реализации t выбран из значений, показанных в соединениях, представленных в Таблице 1.

[0148] Как в целом определено выше, и равен 0, 1, 2, 3 или 4. В некоторых вариантах реализации и равен 0. В некоторых вариантах реализации и равен 1. В некоторых вариантах реализации и равен 3. В некоторых вариантах реализации и равен 4. В некоторых вариантах реализации и равен

0 или 1. В некоторых вариантах реализации и равен 0, 1 или 2. В некоторых вариантах реализации и равен 0, 1, 2 или 3. В некоторых вариантах реализации и равен 1 или 2. В некоторых вариантах реализации и равен 1, 2, или 3. В некоторых вариантах реализации и равен 1, 2, 3, или 4. В некоторых вариантах реализации и равен 2 или 3. В некоторых вариантах реализации и равен 2 или 3. В некоторых вариантах реализации и равен 3 или 4. В некоторых вариантах реализации и равен 3 или 4. В некоторых вариантах реализации и равен 3 или 4. В некоторых вариантах реализации и выбран из значений, показанных в соединениях, представленных в Таблице 1.

[0149] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I-1, содержащее пирролопиримидин, пирролотриазин, пиразолопиразин, пирролопиридин, фуропиримидин, тиенопиримидин или пирролопиридазинон, посредством которого получают соединения с формулами Ia, Ib, Ic, Id, Ie, If, Ig или Ih:

или их фармацевтически приемлемые соли, при этом каждый из Cy^6 , L^6 , R^W , R^5 , R^7 , R^8 , R^9 и R^{10} является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0150] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы **I-1**, где R^{5A} представляет собой фенилен, пиридинилен или циклогексенилен, посредством которого получают соединения с формулами **II-1**, **III-1**, **IV-1** или **V-1**:

или их фармацевтически приемлемые соли, где каждый из Cy^A , Cy^6 , L^5 , L^6 , R^{5B} , R^{5C} , R^W и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0151] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы **I-1**, где Cy⁶ представляет собой фенилен, пиридинилен или пиримидинилен, посредством которого получают соединения с формулами **VI-1**, **VIII-1** или **IX-1**:

или их фармацевтически приемлемые соли, где каждый из Cy^A , L^6 , R^5 , R^W , R^6 и р является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0152] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **II-1**, **III-1**, **IV-1** или **V-1**, где Су⁶ представляет собой фенилен, посредством которых получают соединения с формулами **X-1**, **XI-1**, **XII-1** или **XIII-1**, соответственно:

или их фармацевтически приемлемые соли, где каждый из Cy^A , L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^6 , m и p является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0153] Например, в некоторых вариантах реализации настоящего изобретения предложены соединения с формулами X-1, XI-1, XII-1 или XIII-1:

или их фармацевтически приемлемые соли, где:

$$Cy^{A}$$
 представляет собой R^{7} , R^{8} R^{9} R^{7} R^{9} R^{9} R^{9} R^{7} R^{9} R^{9}

 ${\bf R}^{\rm 5B}$ представляет собой водород или ${\bf R}^{\rm B}$, при этом ${\bf R}^{\rm 5B}$ замещен n вариантами ${\bf R}^{\rm 5D}$;

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 ${\bf R}^7$ представляет собой H или ${\bf R}^{\rm B}$, при этом ${\bf R}^7$ замещен t вариантами ${\bf R}^{7{\rm A}}$;

 R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1- 3 галогенами;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)_2$ -, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)$ -, -

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу,

выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы;

 R^{WD} представляет собой галоген или -OS(O)2R;

- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^{L} независимо представляет собой R^{A} или R^{B} и замещен и вариантами R^{C} ;
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C₁₋₆ алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)_R, -S(O)_R, -S(O)₂F, -OS(O)₂F, -C(O)_R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R)C(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-

членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота совместно с находящимися между ними атомами образуют 4-7-членное насыщенное, частично ненасыщенное или гетероарильное кольцо, содержащее 0-3 гетероатома помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы; и

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

[0154] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы **X-1, XI-1, XII-1** или **XIII-1**:

XII-1 XIII-1

или их фармацевтически приемлемые соли, где:

$$R^{8}$$
 представляет собой R^{8} R^{8}

 ${
m R}^{5B}$ представляет собой водород или ${
m R}^{B}$, при этом ${
m R}^{5B}$ замещен п вариантами ${
m R}^{5D}$;

$$R^{W}$$
 представляет собой галоген, -CN, R^{WA} , R^{WB} ,

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо,

содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено r вариантами R^C ;

 R^7 представляет собой H или R^B , при этом R^7 замещен t вариантами R^{7A} ;

 R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1- 3 галогенами:

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, - $N(R^L)$ -, -NHC(O)-, - $N(R^L)$ -, -

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы;

 R^{WD} представляет собой галоген или -OS(O)₂R;

в каждом случае R^{5C} , R^{5D} , R^{7A} и R^L независимо представляет собой R^A или R^B и замещен и вариантами R^C ;

- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C_{1-6} алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)₂R, -S(O)₂R, -S(O)₂F, -OS(O)₂F, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(NR)NR₂, -N(R)S(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота совместно с находящимися между ними атомами образуют 4-7-членное насыщенное, частично ненасыщенное или

гетероарильное кольцо, содержащее 0-3 гетероатома помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы; и

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

[0155] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **II-1**, **III-1**, **IV-1** или **V-1**, где Су⁶ представляет собой пиридинилен, посредством которых получают соединения с формулами **XIV-1**, **XVII-1**, **XVIII-1**, **XVIII-1**, **XIX-1**, **XX-1** или **XXI-1**, соответственно:

или их фармацевтически приемлемые соли, где каждый из Cy^A , L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^6 , m и p является таким, как это определено в вариантах реализации и классах и

подклассах, представленных в настоящем документе.

[0156] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **II-1**, **III-1**, **IV-1** или **V-1**, где Су⁶ представляет собой пиримидинилен, посредством которых получают соединения с формулами **XXII-1**, **XXIV-1** или **XXV-1** соответственно:

или их фармацевтически приемлемые соли, где каждый из Cy^A , L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^6 , m и p является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0157] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, II-1, III-1, IV-1, V-1, VII-1, VIII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIV-1, XV-1, XVII-1, XVIII-1, XIX-1, XXII-1, X

$$\mathbb{R}^{8}$$
 \mathbb{R}^{7} \mathbb{R}^{7}

XXIII-1, **XXIV-1** или **XXV-1**, где Су^A представляет собой

где * представляет собой связь с R^5 , а * представляет собой связь с Cy^6 .

[0158] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, II-1, III-1, IV-1, V-1, VII-1, VIII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIV-1, XV-1, XVII-1, XVIII-1, XIX-1, XXII-1, X

$$\mathbb{R}^{8}$$
 \mathbb{R}^{7}
, в котором \mathbb{R}^{7}

XXIII-1, **XXIV-1** или **XXV-1**, где Су^A представляет собой

представляет собой связь с \mathbb{R}^5 , а \nearrow представляет собой связь с $\mathbb{C}\mathrm{y}^6$.

[0159] В некоторых вариантах реализации настоящего изобретения предложены соединения I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VI-1, VII-1, VIII-1, IX-1, XI-1, XII-1, XIII-1, XIV-1, XV-1, XVI-1, XVII-1, XVIII-1, XIX-1, XXI-1, XXII-1, XXIII-1, XXIV-1 или XXV-1, где L⁵ представляет собой -О-, -С(О)-, -С(О)NН-или -С(О)N(R^L)-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIV-1, XV-1, XVII-1, XVII-1, XIII-1, XIX-1, XXII-1, XXII-1, XXII-1, XXIV-1 или XXV-1, где L⁵

представляет собой -O-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, IX-1, XXI-1, XXI-1, XXII-1, XXIII-1, XXIV-1, XV-1, XVI-1, XVII-1, XVIII-1, XIX-1, XXXI-1, XXII-1, XXIII-1, XXIII-1, XXIV-1 или XXV-1, где L⁵ представляет собой -C(O)-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIII-1, XIV-1, XV-1, XVI-1, XVIII-1, XVIII-1, XIX-1, XXII-1, XXIII-1, XXIII-1, XXIV-1 или XXV-1, где L⁵ представляет собой -C(O)NH-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIII-1, XIV-1, XV-1, XVI-1, XVIII-1, XVIII-1, XIX-1, XXII-1, XXIII-1, XXIII-1, XXIV-1 или XXV-1, где L⁵ представляет собой -C(O)N(R^L)-.

[0160] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, IX-1, X-1, XI-1, XIII-1, XIII-1, XIV-1, XV-1, XVI-1, XVII-1, XVIII-1, XIX-1, XXI-1, XXII-1, XXIII-1, XXIV-1 или XXV-1, где L⁶ представляет собой -NH-или -N(R^L)-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, IX-1, X-1, XI-1, XIII-1, XIII-1, XIV-1, XV-1, XVII-1, XVIII-1, XVIII-1, XIX-1, XXII-1, XXIII-1, XXIII-1, XIII-1, XIV-1, Tде L⁶ представляет собой -NH-.

[0161] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами І-1, Іа, ІЬ, Іс, Іd, Іе, Іf, Іg, Іh, ІІ-1, ІІІ-1, І

[0162] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIII-1, XIV-1, XVI-1, XVII-1, XVIII-1, XVIII-1, XIX-1, XXII-1, XXIII-1, XXIII-1, XXIV-1 или XXV-1, где р равен 0 или 1. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VII-1, VIII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIV-1, XVI-1, XVII-1, XVIII-1, XIII-1, XXII-1, XXII-1, XXIII-1, XXIII-1, XXIII-1, XXIII-1, XXIII-1, XXIII-1, XXIII-1, XXIII-1, XIII-1, III-1, IV-1, V-1, VII-1, VIII-1, IX-1, X-1, XII-1, XIII-1, XIII-1, XIV-1, XVII-1, XVIII-1, XIII-1, XIII-1, XIII-1, XIV-1, XVII-1, XVIII-1, XIII-1, XIII-1, XIII-1, XIII-1, XIII-1, XIV-1, XV-1, XVII-1, XVIII-1, XIII-1, XIII-1, XXIII-1, XXIII

[0163] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VI-1, VII-1, VIII-1, IX-1, X-1, XI-1, XII-1, XIII-1, XIV-1, XV-1, XVI-1, XVII-1, XVIII-1, XIX-1, XXI-1, XXII-1, XXIII-1, XXIV-1 или XXV-1, где R^W представляет собой

R^{WA} . В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I-1, Ia, Ib, Ic, Id, Ie, If, Ig, Ih, II-1, III-1, IV-1, V-1, VI-1, VII-1, VIII-1, IX-1, X-1, XI-1, XII-1, XIII-1, XIV-1, XV-1, XVI-1, XVII-1, XVII-1, XIX-1, XXI-1, XXII-1, XXIII-1, XXIV-1 или XXV-1, где R^W

[0164] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I, где R^{5A} представляет собой фенилен, пиридинилен или циклогексенилен, посредством которого получают соединения с формулами II, III, IV или V:

или их фармацевтически приемлемые соли, при этом каждый из Cy^6 , L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^7 и m является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0165] В некоторых вариантах реализации настоящего изобретения предложено соединение формулы I, где Cy^6 представляет собой фенилен, пиридинилен или пиримидинилен, посредством которого получают соединения с формулами VI, VII, VIII или IX:

или их фармацевтически приемлемые соли, где каждый из L^6 , R^5 , R^W , R^6 , R^7 и р является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0166] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **II**, **III**, **IV** или **V**, где Cy⁶ представляет собой фенилен, посредством которых получают соединения с формулами **X**, **XI**, **XII** или **XIII**, соответственно:

или их фармацевтически приемлемые соли, где каждый из L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^6 , R^7 , m и p является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0167] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **II**, **III**, **IV** или **V**, где Су⁶ представляет собой пиридинилен, посредством которых получают соединения с формулами **XIV**, **XV**, **XVI**, **XVII**, **XVIII**, **XIX**, **XX** или **XXI**, соответственно:

или их фармацевтически приемлемые соли, где каждый из Cy^A , L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^6 , m и p является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0168] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **II**, **III**, **IV** или **V**, где Су⁶ представляет собой пиримидинилен, посредством которых получают соединения с формулами **XXII**, **XXIII**, **XXIV** или **XXV** соответственно:

или их фармацевтически приемлемые соли, где каждый из Cy^A , L^5 , L^6 , R^{5B} , R^{5C} , R^W , R^6 , m и p является таким, как это определено в вариантах реализации и классах и подклассах, представленных в настоящем документе.

[0169] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где L^5 представляет собой -O-, -C(O)-, -C(O)NH- или -C(O)N(R^L)-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где L^5 представляет собой -O-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где L^5 представляет собой -C(O)-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где L^5 представляет собой -C(O)NH-. В некоторых вариантах реализации настоящего

изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где L^5 представляет собой -C(O)N(R^L)-.

[0170] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **I**, **II**, **III**, **IV**, **V**, **VI**, **VII**, **VIII**, **IX**, **X**, **XI**, **XII** или **XIII**, где L^6 представляет собой -NH- или -N(R^L)-. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **I**, **II**, **III**, **IV**, **V**, **VI**, **VII**, **VIII**, **IX**, **X**, **XI**, **XII** или **XIII**, где L^6 представляет собой -NH-.

[0171] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где m равен 0 или 1. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где m равен 0. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где m равен 1.

[0172] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где р равен 0 или 1. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где р равен 0. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где р равен 1.

[0173] В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где R^W

представляет собой RWA . В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III, IV, V, VI, VII, VIII, IX, X,

XI, XII или XIII, где R^W представляет собой R^{WA}. В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами I, II, III,

 $IV, V, VI, VII, VIII, IX, X, XI, XII или XIII, где <math>R^W$ представляет собой $= R^{WB}$

XXIV или **XXV**, где R^W представляет собой R^{WA} . В некоторых вариантах реализации настоящего изобретения предложены соединения с формулами **XIV**, **XV**, **XVI**, **XVII**, **XVIII**, **XIX**, **XX**, **XXI**, **XXII**, **XXIII**, **XXIV** или **XXV**, где R^W представляет

[0179] Примеры соединений согласно настоящему изобретению включают соединения, перечисленные в таблицах и примерах, приведенных в настоящем документе, или их фармацевтически приемлемые соли, стереоизомеры или смеси стереоизомеров. Некоторые варианты реализации настоящего изобретения содержат соединения, выбранные из соединений, показанных в Таблице 1 ниже, или их фармацевтически приемлемые соли, стереоизомеры или смеси стереоизомеров. В некоторых вариантах реализации настоящего изобретения предложены соединения, указанные в Таблице 1 ниже, или их фармацевтически приемлемые соли. В некоторых вариантах реализации настоящего изобретения предложены соединения, указанные в Таблице 1 ниже.

Таблица 1. Типичные соединения согласно настоящему изобретению с данными по их биоактивности.

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
2	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	
3	NH ₂	A	
4	NH ₂	A	A
5	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
6	NH ₂	В	
7	NH ₂ NH ₂ NH ₂ NH _N	A	
8	NH ₂	A	
9	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
10	NH ₂	A	
11	NH ₂ F NH	A	A
12	NH ₂	A	
13	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
14	NH ₂	A	A
15	NH ₂ NH ₃ NH ₃ NH ₃ NH ₄ NH ₄ NH ₅	A	A
16	NH ₂	A	A
17	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
18	NH ₂ NH ₃ NH ₄ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
19	NH ₂	A	
20	NH ₂	В	
21	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
22	NH ₂	A	
23	NH ₂	C	
24	NH ₂ NH ₂ NH NH NH NH NH NH NH	A	A
25	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
26	NH ₂	A	
27	NH ₂	A	
28	NH ₂	A	
29	NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
30	NH ₂	C	
31	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
32	NH ₂	A	A
33	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
34	NH ₂	A	
35	NH ₂ NH ₂ NH NH NH NH	A	A
36	NH ₂	C	В
37	NH ₂ Br	A	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
38	NH ₂ NH ₃ NH ₄ NH ₂ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
39	NH ₂	В	
40	NH ₂	A	
41	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
42	NH ₂	A	
43	NH ₂	D	
44	NH ₂	A	
45	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
46	NH ₂	A	
47	F F O N N N N N N N N N N N N N N N N N	A	A
48	NH ₂	A	A
49	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
50	NH ₂	A	A
51	NH ₂	A	A
52	NH ₂	A	
53	F NH ₂ NH ₂ NH	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
54	NH ₂	A	A
55	NH ₂	C	
56	NH ₂	A	
57	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	В	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
58	NH ₂ NH ₂ NH	A	
59	NH ₂	В	
60	NH ₂ NH ₂ NH	A	С
61	NH ₂	A	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
62	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	
63	NH ₂	D	
64	NH ₂	D	
65	NH ₂	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
66	NH ₂ NH ₃ NH ₄ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	
67	NH ₂	D	
68	NH ₂ NH ₂ NH	A	
69	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	С

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
70	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₆ NH ₆ NH ₆ NH ₇	C	C
71	HO NH ₂	C	
72	NH ₂ NH ₂ NH O	C	
73	NH ₂	В	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
74	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅	C	
75	NH ₂ NH NH NH NH	C	
76	NH ₂ NH ₂ NH NH NH NH	В	
77	NH ₂ NH ₂ NH NH NH		

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
78	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
79	NH ₂	В	
80	NH ₂	В	
81	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
82	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	
83	NH ₂	A	A
84	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	
85	NH ₂	В	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
86	NH ₂ NH ₂ NH	D	C
87	NH ₂	A	
88	NH ₂	В	
89	NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
90	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
91	NH ₂	A	A
92	NH ₂	D	
93	NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
94	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
95	NH ₂ NH ₂ NH NH NH NH NH NH	В	A
96	F NH ₂ NH O	A	A
97	NH ₂ NH ₂ NH ₂ NH NH	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
98	NH ₂	A	A
99	NH ₂ NH ₂ NH NH NH NH NH NH	D	
100	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	В
101	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
102	NH ₂	В	
103	NH ₂ NH ₂ NH ₂ NH NH NH NH	A	A
104	NH ₂ NH ₂ NH NH	D	
105	NH ₂ NH	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
106	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	
107	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	
108	NH ₂	D	
109	NH ₂	В	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
110	F NH ₂ NH	A	A
111	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	
112	NH ₂	D	
113	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
114	NH ₂	C	В
115	NH ₂ NH ₃ NH ₄ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	
116	NH ₂	A	A
117	NH ₂ NH ₂ NH O	C	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
118	F NH ₂ NH	D	
119	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	
120	NH ₂	A	A
121	H ₂ N O NH NH O		

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
122	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	
123	NH ₂	A	A
124	NH ₂ NH ₂ NH NH	D	
125	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
126	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	D	
127	H ₂ N O F NH	В	
128	NH ₂ NH ₃	A	A
129	NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
130	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	
131	NH ₂ NH ₂ NH ₂ NH ₂ NH	D	
132	NH ₂	D	
133	NH ₂	В	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
134	NH ₂	D	
135	NH ₂	C	В
136	NH ₂	D	
137	F N O NH	C	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
138	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	
139	NH ₂ F NH	D	
140	NH ₂	C	В
141	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
142	NH ₂	D	
143	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	С
144	NH ₂ NH ₂ NH N N N N N N N N N N N N N N N N N N	D	
145	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
146	NH ₂	D	
147	NH ₂ NH ₂ NH NH	D	
148	NH ₂ NH ₂ NH NH NH NH	A	A
149	NH ₂ NH NH NH O	C	

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
150	NH ₂	A	A
151	NH ₂ NH NH	C	
152	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	C
153	NH ₂	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
154	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	В	A
155	NH ₂	A	A
156	NH ₂	C	В
157	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	C

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
158	NH ₂	D	
159	F NH ₂ NH ₂ NH	D	
160	S=0 NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	C	С
161	NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
162	HO O CI NH2 NH	C	
163	NH ₂	D	
164	NH ₂	В	
165	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
166	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	C
167	NH ₂	D	В
168	NH ₂	В	
169	NH ₂	D	C

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
170	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	
171	NH ₂	В	C
172	NH ₂	D	
173	NH ₂ NH ₂ NNH NNH	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
174	NH ₂	A	A
175	NH ₂	A	
176	NH ₂	D	С
177	F NH ₂	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
178	NH ₂ NH ₂ NH O	C	
179	H ₂ N NH NH	D	
180	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	В
181	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
182	NH ₂	D	
183	NH ₂	D	
184	NH ₂	D	
185	HN O NH NH	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
186	NH ₂ NH NH NH	D	C
187	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	
188	NH ₂ NH ₂ NH ₂ NH ₂ NH	D	С
189	NH ₂ NH ₂ NH O	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
190	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	С
191	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	
192	NH ₂ NH ₂ NH ₂ NH ₃ NH ₃ NH ₄ NH ₄ NH ₅	D	
193	NH ₂	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
194	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	C	C
195	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄		
196	NH ₂	D	
197	NH ₂	D	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
198	NH ₂	D	
199	NH ₂ NH ₂ NH NH NH NH	C	С
200	NH ₂ NH ₃ NH ₄	D	
201	NH ₂	D	С

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
202	NH ₂	C	В
203	NH ₂	D	
204	NH ₂	D	
205	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
206	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	В
207	NH ₂ NH ₂ NH O	C	С
208	NH ₂ NH ₂ N N O	D	
209	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
210	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH	D	C
211	NH ₂ NH NH NH	A	A
212	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
213	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
214	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	
215	NH ₂ F NH	C	С
216	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH	A	A
217	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
218	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	D	
219	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
220	NH ₂ NH	A	A
221	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
222	NH ₂	D	
223	NH ₂	A	A
224	NH ON	A	A
225	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
226	HN ON NH2 NH2	A	
227	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	В
228	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
229	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
230	NH ₂	A	A
231	NH ₂	D	
232	NH ₂	C	
233	NH ₂ NH ₂ NH NH NH NH	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
234	NH ₂ NH ₂ NH N	A	A
235	NH ₂		
236	NH ₂ NH NH NH	В	В
237	NH ₂	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
238	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	C
239	NH ₂	A	A
240	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	
241	NH ₂	D	C

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
242	NH ₂	D	
243	NH ₂	D	
244	NH ₂	D	С
245	NH ₂ NH ₂ NH NH NH NH	C	C

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
246	NH ₂ NH ₂ NH NO	C	В
247	NH ₂	D	
248	NH ₂	A	A
249	NH ₂	C	C

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
250	NH ₂ NH ₂ NH	D	
251	F NH ₂ N N	C	
252	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	
253	NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
254	OH OH OH OH OH OH OH	C	
255	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A
256	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	
257	NH ₂	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
258	NH ₂	A	A
259	F NH ₂	D	
260	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
261	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
262	NH ₂ NH ₂ NH ₀ NH	A	A
263	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	С
264	NH ₂	В	A
265	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
266	NH ₂ NH NH NH NH	D	C
267	NH ₂	A	A
268	NH ₂	D	
269	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
270	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	C
271	NH ₂ NH NH	D	
272	NH ₂	A	A
273	NH ₂ NH ₂ NH NH NH NH	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
274	NH ₂	В	С
275	NH ₂	D	
276	NH ₂	A	A
277	NH ₂ NH ₂ NH NH NH	C	

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
278	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	
279	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	В	
280	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	В	
281	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
282	NH ₂	В	C
283		A	A
284	NH ₂	D	
285	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
286	F F N N N N N N N N N N N N N N N N N N	D	
287	NH ₂	D	
288	NH ₂	A	С
289	NH ₂	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
290	HO HN O	A	В
291	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
292	NH ₂	A	A
293	NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
294	NH ₂	D	С
295	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	С
296	NH ₂ NH NH NH	A	A
297	NH ₂ NH ₂ NH NH NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
298	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
299	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
300	NH ₂	A	A
301	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
302	NH ₂	D	С
303	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	С
304	NH ₂	A	A
305	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
306	NH ₂ NH ₃ NH ₂ NH ₃ NH ₄ NH ₂ NH ₄ NH ₅	A	A
307	NH ₂	A	A
308	NH ₂	A	В
309	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
310	HN NH ₂	D	С
311	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	С
312		C	С
313	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
314	NH ₂ NH ₃ NH ₄ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	C
315	F F F NH	C	C
316	F F F N N N N N N N N N N N N N N N N N	C	С
317	HN S O	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
318	NH N	D	C
319	NH ₂ OH NH	A	
320	NH ₂	A	A
321	NH ₂	В	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
322	OH OH OH	C	
323	NH ₂	В	
324	NH ₂	D	C
325	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
326	F F NH OSSO NH ₂ NH ONH ONH ONH ONH ONH ONH ONH	D	
327	NH ₂	A	В
328	OH HN O NH ₂ NH ₂ NH ₂	C	
329	NH ₂ NH ₃ NH ₄ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
330	HO NH O NH O	В	
331	NH ₂ NH	A	A
332	OH F F F NH O	A	С
333	NH ₂	В	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
334	NH ₂ NH ₂ NH O NH O	C	
335	NH ₂	C	C
336	NH ₂	В	
337	NH ₂ NH	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
338	NH ₂	A	A
339	NH ₂	В	A
340	NH ₂	A	A
341	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
342	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₅	A	A
343	NH ₂	A	A
344	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	В	A
345	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
346	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
347	NH ₂	A	
348	NH ₂	A	С
349	NH ₂	A	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
350	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	
351	NH ₂	A	A
352	NH ₂ NH ₂ NH O	C	С
353	NH ₂	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
354	H ₂ N NH	D	С
355	NH ₂	A	A
356	NH ₂	В	
357	NH ₂	A	A

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
358	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	
359	NH ₂	A	
360	NH ₂	A	
361	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
362	NH ₂ NH ₂ NH NH NH NH	A	С
363	NH ₂ NH NH NH NH NH NH	A	
364	HN O	A	
365	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
366	NH ₂ NH NH NH NH	В	
367	NH ₂	C	
368	NH ₂	C	C
369	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
370	NH ₂ NH ₂ NN NN NH NN NH	A	A
371	F NH O NH O NH	A	A
372	HO HIN O	A	С
373	NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
374	NH ₂	D	C
375	NH ₂	C	С
376	NH ₂	A	A
377	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	C	C

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
378	NH ₂ NH ₃ NH ₄ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	С
379	NH ₂	A	A
380	NH ₂	В	C
381	NH ₂ NH NH NH O	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
382	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
383	NH ₂	D	С
384	NH ₂	A	A
385	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
386	NH ₂	A	В
387	NH ₂	В	A
388	NH ₂	C	В
389	NH ₂	В	

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
390	NH ₂	D	
391	NH ₂	A	A
392	NH ₂ NH NH NH NH	D	
393	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
394	NH ₂	C	
395	F O NH NH O	A	A
396	HN O NH O NH	В	
397	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
398	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A	A
399	NH ₂ NH NH NH NH NH NH	В	A
400	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	В	
401	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
402	NH ₂	В	
403	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	
404	abs N NH ₂ and 1	В	
405	NH ₂	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
406	NH ₂	A	A
407	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	
408	NH ₂	A	A
409	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
410	NH ₂	A	A
411	NH ₂	C	С
412	F NH ₂	A	
413	F NH ₂ NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
414	NH ₂	В	
415	NH ₂ NH NH NH NH	A	A
416	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
417	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
418	NH ₂	A	A
419	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A	A
420	NH ₂	D	
421	NH ₂ NH ₂ NO NH ₂ NO	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
422	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	
423	F NH ₂ NH	A	В
424	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
425	F NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
426	NH ₂ NH ₂ NH	A	A
427	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	A
428	NH ₂	A	A
429	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	В	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
430	F F F N O NH2 NH	C	
431	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	
432	NH ₂ NH ₂ NH NH NH	D	
433	NH ₂ NH ₂ N NH N O	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
434	NH ₂ NH ₂ NH ₂ NH NH NH	A	A
435	NH ₂	A	В
436	NH ₂ NH ₂ NH ₂ NH ₂ NH NH	A	В
437	NH ₂ NH ₂ NH	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
438	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	D	
439	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	D	
440	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	
441	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
442	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A
443	NH ₂	D	
444	NH ₂	A	A
445	NH ₂ NH ₃ NH ₄ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
446	NH ₂ NH ₂ NH NH NH NH NH NH	В	A
447	NH ₂	A	A
448	NH ₂	C	В
449	NH ₂	C	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
450	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	C	
451	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH NH	C	A
452	NH ₂ NH ₂ NH NH NH NH	D	C
453	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
454	F F F N O NH O NH	C	
455	NH ₂ NH ₂ NH	C	
456	NH ₂ NH ₂ NH	C	
457	O NH NH NH NH	В	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
458	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	A
459	NH ₂ NH ₂ NH NH NH	A	A
460	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
461	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
462	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH	A	A
463	NH ₂	A	A
464	NH ₂ NH ₂ NH NH NH	A	A
465	NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
466	NH ₂ NH ₂ NH ₂ NH ₂ NH NH	A	A
467	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	В	
468	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
469	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
470	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	В	
471	NH ₂ NH ₃ NH ₂ NH ₃	В	В
472	NH ₂	C	
473	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
474	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
475	NH ₂	D	С
476	NH ₂	A	A
477	NH ₂	В	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
478	NH ₂	В	
479	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	A	A
480	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	
481	NH ₂	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
482	NH ₂ NH ₃ NH ₄ NH ₂ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	A	A
483	NH ₂ NH ₃ NH ₄ NH ₂ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	
484	NH ₂	A	A
485	NH ₂ NH ₂ NH	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
486	NH ₂ NH ₃ NH ₄	D	
487	NH ₂	A	A
488	NH ₂	D	
489	NH ₂ NH ₂ NH	C	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
490	NH ₂	A	A
491	NH ₂	D	
492	NH ₂	A	A
493	N N N N N N N N N N N N N N N N N N N	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
494	NH ₂	A	A
495	F O N N N N N N N N N N N N N N N N N N	A	A
496	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
497	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
498	HO N N NH ₂	A	A
499	F NH NH	A	A
500	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
501	NH ₂	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
502	F NH ₂	A	A
503	NH ₂	A	A
504	NH ₂	D	
505	NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
506	NH ₂	C	С
507	NH ₂ NNH ₂ NNH NNH	A	A
508	NH ₂	A	A
509	NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
510	NH ₂ NH ₂ NH ₂ NH NH NH	A	
511	NH ₂	A	A
512	NH ₂ NH ₂ NH ₂ NH	A	A
513	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
514	F F N N N N N N N N N N N N N N N N N N	A	A
515	NH ₂	A	A
516	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	
517	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
518	NH ₂	A	
519	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	
520	NH ₂	В	В
521	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
522	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
523	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	
524	NH ₂ NH ₂ NH O	A	A
525	NH ₂ NH ₂ NH ₂ NH ₂ NH NH NH NH	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
526	NH ₂	A	A
527	NH ₂ NH ₃ NH ₄ NH ₂ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A
528	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	
529	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
530	F O N NH	A	A
531	F O N NH NH O	A	A
532	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	
533	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
534	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ OH	A	
535	NH ₂ NH ₃ NH ₄	A	A
536	NH ₂	A	
537	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	В	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
538	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
539	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ Or1	A	A
540	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	D	
541	NH ₂	D	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
542	NH ₂ NH ₂ NH NH NH NH NH NH	D	
543	NH ₂ F NH	A	A
544	NH ₂ N N N N N N N N N N N N N N N N N N N	D	
545	NH ₂ NH ₂ NH O	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
546	NH ₂ F	A	A
547	OH NH ₂	C	
548	NH ₂	A	
549	NH ₂	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
550	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	В	A
551	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	
552	F O N N N N N N N N N N N N N N N N N N	A	A
553	NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
554	N N N N N N N N N N N N N N N N N N N	C	C
555	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	
556	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	C	
557	NH ₂	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
558	NH ₂ NH ₂ NO CI	A	A
559	NH ₂ NH O O O O O O O O O O O O O O O O O O	C	С
560	NH ₂ NH ₂ NH OF CI	В	В
561	NH ₂ NH ₂ NO CI	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
562	F NH ₂ NH	В	A
563	N NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	С
564	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	С
565	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
566	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	A
567	HN O NH	В	A
568	NH ₂	A	A
569	NH ₂	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
570	F NH ₂ F	A	A
571	NH ₂ CHF ₂ NH	D	С
572	F NH ₂	A	A
573	N N N N N N N N N N N N N N N N N N N	D	С

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
574	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	
575	HO NH ₂ Abs NH	D	
576	F _M , abs	D	
577	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
578	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	D	
579	NH ₂ NH ₂ NH NH NH NH NH	C	
580	NH ₂ NH ₂ NH NH NH NH	D	
581	NH ₂ ort	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
582	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
583	HO NH ₂ Abs NH	C	
584	NH ₂	В	С
585	NH ₂	В	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
586	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	В	
587	CI NH ₂ NH	D	
588	NH ₂ CHF ₂	D	
589	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
590	NH ₂ NH ₂ NH NH NH NH	A	A
591	F _{III} , abs	В	
592	NH ₂ NH ₂ NH NH NH	A	A
593	Om, ans NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
594	NH ₂	В	A
595	NH ₂	A	
596	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	
597	NH ₂ NH ₂ NH O	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
598	NH ₂	В	C
599	NH ₂ NH ₂ NH ₃ NH ₄ NH ₅ NH ₆ NH ₇	В	
600	F F NH NH NH	A	A
601	NH ₂ F	D	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
602	NH ₂	A	A
603	NH ₂	A	A
604	NH ₂	A	
605	NH ₂	A	
606	NH ₂	A	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
607	NH ₂ N OH	A	A
608	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
609	NH ₂ N N N N N N N N N N N N N N N N N N N	С	
610	NH ₂ N N N N N N N N N N N N N N N N N N N	С	
611	NH ₂ N N N N N N N N N N N N N N N N N N N	D	

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
612		В	
613	O CI NH2 N CI N N N N N N N N N N N N N N N N N	D	
614	CI NH ₂ N N	D	
615	NH ₂ C ₁ N N N N N N N N N N N N N N N N N N N	A	
616	O CI NH2 N N N N N N N N N N N N N N N N N N	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
617		В	С
618	NH ₂	A	A
619	NH ₂	В	В
620	NH ₂	A	A
621	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
622	NH ₂ N N N N N N N N N N N N N N N N N N N	C	D
623	NH ₂	В	В
624	NH ₂	D	
625	NH ₂	C	
626	NH ₂ N N N N N N N N N N N N N N N N N N N	В	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
627	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
628	Z-Z Z-Z Z-Z Z-Z Z-Z	A	A
629	NH ₂	A	A
630	NH ₂ N ₂ N ₂ N ₃ N ₄ N ₅	A	A
631	NH ₂ NH ₂ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
632	NH ₂ NH ₂ NNH	A	A
633	NH ₂ N ₂ N ₂ N ₂ N ₃ N ₄ N ₂ N ₃ N ₄ N ₃ N ₄ N ₅	В	В
634	NH ₂ N _N N	A	A
635	NH ₂ N N N N N N N N N N N N N N N N N N N	В	A
636	NH ₂ N N N N N N N N N N N N N N N N N N N	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
637	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
638	NH ₂ NH ₂ N	A	A
639	NH ₂ NN	A	A
640	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
641	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
642	NH ₂ NH ₂ N NH ₂ N N N N N N N N N N N N N N N N N N N	C	В
643	NH ₂ N N N N N N N N N N N N N N N N N N N	С	С
644	NH ₂	С	С
645	NH ₂	A	A
646	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
647	NH ₂	A	A
648	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	В
649	NH ₂	В	С
650	NH ₂	A	A
651	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
652	NH ₂ N N N N N N N N N N N N N N N N N N N	В	D
653	NH ₂ N N N N N N N N N N N N N N N N N N N	С	D
654	NH ₂	A	A
655	NH ₂ N N N N N N N N N N N N N N N N N N N	С	D
656	NH ₂	A	A
657	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
658	NH ₂ N N N N N N N N N N N N N N N N N N N	D	
659	NH ₂ N N N N N N N N N N N N N N N N N N N	D	
660	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
661	NH ₂	D	D
662	NH ₂ NH ₂ NH NH	В	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
663	NH ₂	С	С
664	NH ₂ N N N N N N N N N N N N N N N N N N N	В	В
665	NH ₂	В	С
666	NH ₂	A	A
667	NH ₂	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
668	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	D
669	NH ₂ N N N N N N N N N N N N N N N N N N N	C	С
670	NH ₂	С	С
671	NH ₂ N N N N N N N N N N N N N N N N N N N	С	D
672	NH ₂ N N N N N N N N N N N N N N N N N N N	В	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
673	NH ₂ NH ₂ N	A	A
674	NH ₂	A	A
675	NH ₂	С	D
676	NH ₂	A	A
677	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
678	NH ₂	A	В
679	NH ₂	A	
680	NH ₂	A	A
681	NH ₂	A	A
682	NH ₂ N	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
683	NH ₂	A	A
684	NH ₂ N N N N N N N N N N N N N N N N N N N	D	D
685	NH ₂	D	D
686	NH ₂	A	A
687	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
688	NH ₂	D	D
689	NH ₂	A	A
690	NH ₂	A	A
691	NH ₂	С	D
692	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
693	NH ₂	C	D
694	NH ₂	C	С
695	NH ₂	В	A
696	NH ₂	С	В
697	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
698	NH ₂ NH ₃	С	В
699	NH ₂	В	A
700	NH ₂	D	С
701	NH ₂	A	A
702	NH ₂	C	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
703	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
704	NH ₂	C	В
705	NH ₂	В	A
706		A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
707	NH ₂	D	D
708	NH ₂ Ori	A	A
709	NH ₂	A	A
710	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	C	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
711	NH ₂ N or 1	A	A
712	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
713	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	A	A
714	NH ₂ NH ₂ OH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
715	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	D	D
716	NH ₂	A	A
717	NH ₂	D	С
718	F F N O N N N O N N O N N O N N O N N O N N O N N O N N O N O N N O N	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
719	NH ₂	A	A
720	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	D	D
721	NH ₂	C	С
722	NH ₂ N N N N N N N N N N N N N N N N N N N	D	D
723	P F F F N N N N N N N N N N N N N N N N	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
724	HO abs	D	D
725		A	В
726	NH ₂	D	D
727	D O O D O O O O O O O O O O O O O O O O	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
728	NH ₂ N NH ₂ N	D	D
729	NH ₂	В	В
730	NH ₂ N NH ₂ N NH ₂ N NH ₃ N NH ₄ N NH ₄ N NH ₄ N NH ₅	С	D
731	S N O N N N N N N N N N N N N N N N N N	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
732	NH ₂	В	D
733		С	С
734	NH ₂	В	A
735		C	С
736		D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
737	H ₂ N N N N N N N N N N N N N N N N N N N	D	D
738		D	D
739	CI NH2 N N N N N N N N N N N N N N N N N N	В	A
740	NH ₂ NNH ₂ NNN NNN NNN NNN NNN NNN NNN NNN NNN N	D	D

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
741	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	D	D
742	H ₂ N N N N	D	D
743	H ₂ N N N N N N N N N N N N N N N N N N N	C	D
744	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
745	CI NH ₂ N N	D	D
746	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	C
747	NH ₂	A	A
748	NH ₂	В	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
749	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
750	NH ₂	A	A
751	NH ₂	C	В
752	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
753	NH ₂	D	D
754	NH ₂	С	В
755	HN N NH2 N N	A	D
756	H ₂ N N N	В	A
757	H ₂ N N	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
758	NH ₂	A	A
759		C	С
760	NH ₂	A	A
761	H ₂ N N O	В	В
762		D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
763	NH ₂	C	C
764	NH ₂	D	D
765	NH ₂	A	D
766	NH ₂	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
767	NH ₂ N N N N N N N N N N N N N N N N N N N	C	В
768	NH ² NH ²	C	В
769	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
770	H ₂ N N		D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
771	NH2 NH2 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	D	D
772	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
773	NH ₂ N N N	D	D
774	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
775	NH ₂ NH ₂ N	В	D
776	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
777	NH ₂	D	D
778	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
779	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
780	NH ₂ NN _N	C	С
781	NH ₂	D	D
782	H ₂ N N	D	D
783	NH ₂	В	D
784	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
785	NH ₂	A	A
786	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	С	D
787	NH ₂ NH ₂ NH ₂ NH ₂ NH NH	A	A
788	NH ₂ NH ₂ NH NH NH NH	A	A
789		D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
790	OH NH2 N NO	С	D
791	NH ₂ N N N N N N N N N N N N N N N N N N N	С	С
792	H ₂ N N	В	В
793	HN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	C	D
794	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
795	NH ₂ NH ₂ NH ₂ NH ₂ NH	D	D
796	NH ₂ NH ₂ NH NH NH NH	A	A
797	NH ₂ N N N N N N N N N N N N N N N N N N N	C	С
798	H ₂ N N	С	D
799	H ₂ Z Z	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
800	F NH ₂	A	A
801	NH ₂	A	A
802	NH ₂	D	D
803	NH ₂ N N N N N N N N N N N N N N N N N N N	D	D
804	H ₂ N N	В	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
805	O N N N N N N N N N N N N N N N N N N N	D	С
806	NH ₂ N N N N N N N N N N N N N N N N N N N	A	В
807	NH ₂ N N N N N N N N N N N N N N N N N N N	С	С
808	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	В	В
809	NH ₂ NN	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
810	TZ Z	A	A
811		В	С
812	NH ₂	A	A
813	NH2 N	C	С
814	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
815	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	С	D
816	NH ₂	C	В
817	NH ₂	В	В
818	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇	С	С
819	NH ₂ OH	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
820	N N N N N N N N N N N N N N N N N N N	A	A
821	NH ₂ NH ₂ NH NH	D	D
822	NH ₂ NH NH NH	С	С
823	F F F HN O NH NH	В	С
824	NH ₂ NH ₂ NH	В	С

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
825	NH ₂	В	A
826	NH ₂	C	С
827	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	D
828	NH ₂	D	С
829	NH ₂ NH ₂ NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
830	NH ₂ NH ₂ NH NH	A	A
831	N N N N N N N N N N N N N N N N N N N	A	В
832	F F HN O O NH NH	D	D
833	NH ₂ N N N N N N N N N N N N N N N N N N N	В	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
834	HN SEO	C	С
835	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₅	D	D
836	NH ₂ NH ₂ NH NH NH	A	A
837	NH ₂ NH ₂ NH	A	A
838	F F F HN O NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
839		A	A
840		A	A
841	NH ₂	С	С
842	O NH ₂	C	D
843	NH ₂	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
844	NH ₂	D	D
845	NH ₂ N NH N N	С	С
846	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A	D
847	NH ₂ N N N N N N N N N N N N N N N N N N N	C	С
848	NH ₂	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
849	2	В	C
850		D	D
851	NH ₂	D	D
852		C	D
853	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
854	NH ₂ NH OH NH OH	В	A
855	NH ₂	C	D
856	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	C	C
857	NH ₂ N NH N NH N NH N NH	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
858	NH ₂	A	A
859	NH ₂ NS _N	D	D
860	NH ₂ N N N N N N N N N N N N N	A	С
861	NH ₂ NO OF TO N	D	D
862	NH ₂ NH ₂ NH NH	D	D

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
863	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	C	В
864	NH ₂ ON SIO	A	В
865	NH2 NH2 NN	В	С
866	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
867	NH ₂ NH ₂ NH ₂ NH ₂ NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
868		D	D
869	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	С
870	NH ₂	D	В
871	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	C	С
872	O NH ₂ NH ₂ NH ₂ N	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
873	ON ORT NH2	D	С
874	NH ₂ or1	С	В
875	NH ₂ Ort N	C	С
876	NH ₂ CI	A	A
877	NH ₂	В	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
878	NH ₂ NH ₂ NH NH NH	В	A
879	NH ₂	D	D
880	NH ₂ NH NH	D	D
881	NH ₂ NH ₂ NH ₂ NH _N NH _N	D	D
882	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
883	NH ₂ Ort	D	D
884	NH ₂ N N N N N N N N N N N N N N N N N N N	D	В
885	F NH ₂ N	D	D
886	NH ₂ NH ₂ NOTION OF 1	С	A
887	NH ₂ Ori	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
888	NH ₂ N or 1	D	D
889	NH ₂ NNH	C	В
890	NH ₂ Orl	D	D
891	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	D	D
892	NH ₂ NH ₂ NH	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
893	NH ₂	D	D
894	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	С	С
895	NH ₂	D	D
896	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	В	С
897	NH ₂ NH ₂ NH NH	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
898	NH ₂ NH	A	A
899	NH ₂ NH ₂ NH Or1 NH	D	D
900	NH ₂ NH ₂ NH NH NH NH NH NH	D	D
901	NH ₂	D	D
902	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
903	NH ₂ N labs	D	D
904	NH ₂	D	D
905	NH ₂ NH NH O CI	В	A
906	NH ₂ NH ₂ N H N N CI	A	A
907	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
908	NH ₂ NH ₂ NNH	В	A
909	NH ₂ NOT1	D	D
910	NH ₂	D	D
911	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
912	NH ₂	A	A
913	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
914	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	A	A
915	NH ₂	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
916	H ₂ N N	D	В
917	NH ₂ NH ₂ NOTIO	В	В
918	NH ₂ NH ₂ NOTIO	С	D
919	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	В	D
920	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
921	H ₂ N N N N	D	С
922	NH ₂	C	С
923	NH ₂	D	С
924	NH ₂	D	D
925	ON NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
926	O NH2 NH	D	D
927	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	D
928	NH ²	C	C
929	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇	C	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
930	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	C	В
931	NH ₂ NH ₂ NOT	C	D
932	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	В	С
933	NH ₂ NH ₂ N N Or N Or N Or N O O O O O O O O O O	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
934	NH ₂	A	A
935	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	D
936	NH ₂ Or1	D	С
937	NH ₂ 81, MH Or1	D	D
938	NH ₂ Or1	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
939	NH ₂ NH	D	D
940	NH ₂	D	D
941	NH ₂ N O O O O O O O O O O O O O O O O O O	C	В
942	NH ₂	C	С
943	NH ₂	C	С

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
944	NH ₂ NH ₂ NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE	D	D
945	NH ₂ Orl	D	D
946	NH ₂	С	D
947	NH ₂	A	A
948	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
949	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	В	D
950	ON NH2 NH O	D	D
951	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆	С	В
952	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
953	O NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	D
954	NH ₂ NH ₂ NH _N NH	A	A
955	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	D	С
956	NH ₂	A	A
957	NH ₂	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
958	NH2 NH2 NH2 NH2 NH	С	A
959	NH ₂ N N N N N N N N N N N N N N N N N N N	C	A
960	Or 1	D	D
961	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	D	С
962	NH ₂ NH ₃	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
963	NH ₂	A	A
964	F.III.	A	A
965	NH ₂	A	A
966	F N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
967	NH ₂	D	D
968	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	С	С
969	NH ₂ F O NH	A	A
970	F O NH H ₂ N N N N N N N N N N N N N	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
971	F NH ₂	C	С
972	NH ₂ NH ₂ Orl NH Orl NH Orl NH	D	D
973	NH ₂ NOTI OTI NH O	C	D
974	NH ₂ NH ₂ NH ₂ NH OTI NH OTI	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
975	NH ₂ NH ₂ NH ₂ NH Ori NH O	D	D
976	NH ₂	D	D
977	NH ₂ NH ₂ NH NH NH NH	A	A
978	NH ₂	C	С

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
979	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	С
980	NH ₂	A	A
981	NH ₂	С	С
982	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	С
983	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
984	NH ₂	A	A
985	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	С
986	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	С
987	NH ₂ NH NH	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
988	NH ₂ NH	C	A
989	NH ₂	D	С
990	NH ₂	A	A
991	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
992	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	D	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
993	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
994	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	В
995	NH ₂ NH ₂ NH ₂ NH	D	С
996	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	C	В
997	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
998		A	A
999	NH ₂	A	A
1000	NH ₂	D	С
1001		A	A
1002	NH ₂ NH ₂ NH ₂ NH NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1003	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	C	В
1004	NH ₂	A	A
1005	NH ₂ NH	C	В
1006	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	C	C

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1007	NH ₂	A	A
1008	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	В	В
1009	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	С
1010	NH ₂ N N N N N N N N N N N N N N N N N N N	D	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1011	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	A
1012	NH ₂ NH ₂ NH NH NH	C	В
1013	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
1014	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	A	A
1015	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1016	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	D	D
1017	NH ₂ NH ₂ NH NH NH	A	A
1018	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A	A
1019	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	A	A
1020	NH ₂	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1021	NH ₂ HN	A	A
1022	NH ₂ NH ₂ NH _N NH NH	C	D
1023	NH ₂ NH ₂ NH _N NH	D	D
1024	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	С
1025	NH ₂ NH ₂ NH ₂ NH NH	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1026	NH ₂ NH ₂ NH NH NH	D	D
1027	NH ₂ HN O	D	D
1028	F NH ₂	A	A
1029	NH ₂ OrT	D	С
1030	NH ₂ HN	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1031	NH ₂ Orim N	A	В
1032	NH ₂ Ortal H	C	A
1033	NH ₂	A	A
1034	NH ₂ Or1	В	A
1035	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1036	H ₂ N N N N N N	C	A
1037	or1 Or1 NH ₂ NH ₂ NH ₂	A	С
1038	ort ort NH ₂	A	A
1039	or1 NH ₂ NH ₂ NH ₂ NH ₂	D	D
1040	NH ₂	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1041	H ₂ N NH	В	A
1042	NH ₂ NH	A	A
1043	or1 NH ₂ NH ₂ NH ₂	A	A
1044	NH ₂	A	A
1045	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1046	NH ₂	D	D
1047	NH ₂	С	С
1048	NH ₂	С	В
1049	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
1050	H ₂ N N	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1051	NH ₂	A	A
1052	NH ₂	D	D
1053	NH ₂	В	С
1054	NH ₂ NH ₂ NH ₂ NH NH	A	A
1055	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1056	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	C	A
1057	HO NH NH	A	A
1058	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	D	D
1059	H ₂ N &1	D	D
1060	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1061	NH ₂	A	A
1062	NH ₂	D	D
1063	NH ₂	A	A
1064	NH ₂ NH ₂ NH ₂ NH NH NH NH	A	A
1065	N N N N N N N N N N N N N N N N N N N	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1066	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A
1067	NH ₂	A	A
1068	N N N N N N N N N N N N N N N N N N N	A	A
1069	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	С	С
1070	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1071	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	C	A
1072	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₅	C	C
1073	NH ₂	D	D
1074	NH ₂ NH ₂ NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1075	NH ₂ NH ₂ NH NH	A	
1076	NH ₂ F NH	A	
1077	NH ₂	A	A
1078	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1079	NH F	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1080	NH ₂	D	D
1081	NH ₂	C	С
1082	NH ₂	A	A
1083	NH ₂ NH ₂ NH ₂ NH	C	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1084	NH ₂	A	A
1085	NH ₂	D	D
1086	N N N N N N N N N N N N N N N N N N N	A	A
1087	NH ₂	A	A
1088	NH ₂ N N N N N N N N N N N N N N N N N N N	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1089	NH ₂ NH ₂ NH ₂ NH NH CI F	D	D
1090	NH ₂	A	A
1091	NH ₂ NH	D	D
1092	NH ₂ NH ₂ NH NH	A	A
1093	N N N N N N N N N N N N N N N N N N N	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1094	N N N N N N N N N N N N N N N N N N N	A	A
1095	NH ₂ NH ₂ NH ₂ NH	A	A
1096	NH ₂	A	A
1097	NH ₂ F	A	A
1098	NH ₂ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1099	NH ₂ HN O	A	
1100		В	
1101	NH ₂ NH ₂ NH NH	A	
1102	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	A	A
1103	NH ₂ NH ₂ NH ₂ NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1104	N N N N N N N N N N N N N N N N N N N	A	A
1105	N N N N N N N N N N N N N N N N N N N	A	A
1106	N N N N N N N N N N N N N N N N N N N	A	A
1107	Ori NH	A	A
1108	NH ₂ NH ₂ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1109	H ₂ N N	A	A
1110	NH ₂	A	A
1111	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1112	N N N N N N N N N N N N N N N N N N N	A	A
1113	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1114	NH ₂	C	A
1115	NN NN NH ₂ NH ₂ NN NH	D	D
1116	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH	В	A
1117		В	A
1118	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1119	NH ₂	D	С
1120	NH ₂ NH ₂ NH NH	A	A
1121	NH ₂ HN N	A	A
1122	NH ₂ NH ₂ NH NH	A	
1123	H ₂ N N N N N N N N N N N N N N N N N N N	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1124	H ₂ N NH NH	D	С
1125		D	D
1126	N N N N N N N N N N N N N N N N N N N	A	A
1127		A	A
1128	H ₂ N NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1129	F F O NH2 N NH2	A	
1130	NH ₂	С	С
1131	NH ₂ NH ₂ Nabs	A	A
1132	NH ₂	D	С
1133	NH ₂ NH ₂ Nh ₂ Nh ₃ Nh ₄ Nh ₅ Nh ₆ Nh ₇	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1134	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	С	В
1135	NH ₂	C	В
1136	NH ₂ N=N N=N N=N	A	A
1137	NH ₂ NH ₂ N	C	В
1138	HN NH ₂ NH ₂ NH O	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1139	N N N N N N N N N N N N N N N N N N N	A	
1140		A	A
1141		A	A
1142	NH ₂ NH ₂ NNH	A	A
1143	NH ₂	D	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1144	NH ₂	В	A
1145	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	D	D
1146	NH ₂	С	
1147	H ₂ N N N N N	D	
1148	NH ₂ NH ₂ NH ₂ NH N	A	A
1149	NH ₂ NH N	A	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1150	NH ₂	A	
1151		В	С
1152	NH ₂	D	
1153	NH ₂	A	В
1154	NH ₂ NH NH NH NH NH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1155	N N N N N N N N N N N N N N N N N N N	A	A
1156	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	D	
1157	NH ₂ NH NH	С	С
1158	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH	A	A
1159	NH ₂	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1160	NH ₂	A	A
1161	NH ₂ NH ₂ NNH	A	A
1162	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1163		A	A
1164	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1165	NH ₂	A	A
1166		A	A
1167		A	A
1168	NH ₂	A	D
1169	O N N N N N N N N N N N N N N N N N N N	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1170		A	A
1171	NH ₂ F	A	A
1172	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1173	NH ₂	D	
1174		D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1175	NH ₂	В	A
1176	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	D	
1177	NH ₂ F	A	A
1178	NH ₂	D	
1179	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1180	NH ₂	A	A
1181	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1182	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1183	F N N N N N N N N N N N N N N N N N N N	A	A
1184	NH ₂ N N N N N N N N N N N N N N N N N N N	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1185	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1186		A	A
1187	NH ₂	A	A
1188	NH ₂	A	A
1189	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1190	NH ₂	D	
1191	NH ₂	D	
1192	NH ₂	A	
1193	NH ₂	С	С
1194	NH ₂	D	D
1195	NH ₂	В	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1196	F NH ₂	C	
1197	F NH ₂	A	A
1198	NH ₂	A	A
1199	O N N N N N N N N N N N N N N N N N N N	A	A
1200	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1201		A	A
1202	NH ₂ NH _N NH	D	С
1203	F NH ₂	A	A
1204	NH ₂	A	A
1205	NH ₂	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1206	NH ₂	C	С
1207	O N N N N N N N N N N N N N N N N N N N	D	D
1208		D	С
1209	NH ₂ S O	С	
1210	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1211	NH ₂	A	В
1212	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	В
1213	NH ₂	A	A
1214	NH ₂	A	A
1215	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1216	NH ₂ NH ₂ NH NH	D	
1217	F NH ₂ N	A	A
1218	N N N N N N N N N N N N N N N N N N N	D	
1219	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1220	N N N N N N N N N N N N N N N N N N N	A	

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1221	NH ₂ S NH	C	
1222	NH ₂	D	
1223	N N N N N N N N N N N N N N N N N N N	D	
1224	NH ₂	C	
1225	N N N N N N N N N N N N N N N N N N N	C	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1226	F F F N N N N N N N N N N N N N N N N N	D	
1227	NH ₂	D	
1228	NH ₂	A	A
1229	NH ₂ NH ₂ NNH	A	A
1230	NH ₂ NH ₂ NNH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1231	OH OOH OOTT	A	A
1232	NH ₂	A	A
1233	NH ₂	A	A
1234	NH2 NH2	A	A
1235	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1236	NH ₂	D	D
1237		C	A
1238	ON NH2 NH2	C	В
1239	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1240	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	В	В
1241	NH ₂ NH ₂ N	A	A
1242	H ₂ N N	В	D
1243	F NH ₂	A	A
1244	NH ₂	D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1245	Z L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	A	A
1246	F NH ₂	A	A
1247	NH ₂ NH ₂ NH NH	D	
1248		D	
1249	abs NH2 NN	C	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1250	NH ₂ NH ₂ NH ₂ N CI	A	A
1251	NH ₂	A	A
1252	NH ₂ NH ₃ NH ₄ NH ₅	A	A
1253	NH ₂ NH ₂ N F	A	A
1254		D	

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1255		A	A
1256	N N N N N N N N N N N N N N N N N N N	D	
1257	ahani N NH ₂ N N N	C	С
1258	NH ₂	A	A
1259	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1260	NH ₂ F	A	A
1261	F NH ₂ F	A	A
1262	NH ₂	A	A
1263	NH ₂	A	A
1264	CI NH2 NH2 N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1265	NH ₂	A	В
1266	NH ₂ NH ₂ NH ₂ NH	D	С
1267	NH ₂ NH	D	D
1268	NH ₂	D	D
1269	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1270	NH ₂	С	С
1271	NH ₂	D	D
1272	NH ₂	D	D
1273	NH ₂	D	D
1274	H ₂ N N N N	D	D
1275	NH ₂	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1276	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₃ NH ₄ NH ₅	D	D
1277	NH ₂	C	D
1278	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	C	С
1279	NH ₂	C	С
1280	H ₂ N N N	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1281	NH ₂	D	С
1282	NH ₂	D	D
1283	NH ₂	D	D
1284	H ₂ N N N N	D	D
1285	F N N N N N N N N N N N N N N N N N N N	C	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1286	NH ₂	С	С
1287	Z Z Z Z Z Z	D	D
1288	NH ₂	D	D
1289	NH ₂	D	D
1290	N N N N N N N N N N N N N N N N N N N	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1291	F F NH ₂ NH ₂ NH ₂	D	D
1292	NH ₂	D	D
1293	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	В	С
1294	NH ₂ NH	С	D
1295	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	D	D
1296	NH ₂	В	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1297	NH ₂	С	С
1298	NH ₂ OH NH	С	D
1299	NH ₂ NH ₂ NH NH	D	D
1300	HZ O NH2	D	D
1301	NH ₂	D	D
1302	NH ₂ NH ₂ NH NH NH	D	D

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1303	HN O NH NH	D	D
1304	NH ₂ NH ₂ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	C	С
1305	NH ₂ F	A	A
1306	NH ₂ F	A	A
1307	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1308	NH ₂	A	A
1309	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₃ NH ₃ NH ₃ NH ₃ NH ₄ NH ₅	A	С
1310	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1311	NH ₂	A	С
1312	NH ₂ NH ₂ N	C	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1313	NH ₂	A	A
1314	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	В	A
1315	N N N N N N N N N N N N N N N N N N N	В	С
1316	NH ₂	C	C

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1317	NH ₂	D	
1318	NH ₂ NH ₂ NH ₂ NH ₂ NH	D	
1319	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1320	abs NH ₂ NNH	A	С

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1321	NH ₂ NH ₂ NN NH ₂ N N N N N N N N N N N N N	A	A
1322	NH ₂	A	A
1323	NH ₂ NH ₂ NH _N NH NH NH NH	D	D
1324	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1325	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	C	С
1326	NH ₂ NH F	В	
1327	NH ₂ NH ₂ N	A	A
1328	NH ₂	A	A
1329	NH ₂ or i	C	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1330	ONH ₂ P	A	A
1331	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1332	NH ₂	A	A
1333	NH ₂	C	
1334	N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1335	NH ₂	A	
1336	NH ₂	A	A
1337	NH ₂ NH ₂ NH NH NH NH	В	A
1338	NH ₂ NH ₂ NH NH NH NH NH	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1339	NH ₂	A	A
1340	NH ₂	A	A
1341	NH ₂ NN _N	A	С
1342	NH ₂	A	A
1343	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1344	NH ₂	A	A
1345	NH ₂	D	D
1346	abs NH ₂ NH _N NH	A	С
1347	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1348	NH2 F N	В	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1349	NH ₂ NH ₂ NH ₂ N Ortive	A	A
1350	NH ₂	D	D
1351	NH ₂	D	D
1352	NH ₂	A	A
1353	F NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1354	81 NH2 NN NN	A	A
1355	&1 NH2 NH2 NNO	A	A
1356		A	A
1357	F NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1358	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1359	NH ₂	A	A
1360	NH ₂	A	A
1361	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1362	NH ₂	В	
1363	NH ₂ NH ₂ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	A	A
1364	N N N N N N N N N N N N N N N N N N N	A	A
1365	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1366	NH ₂	D	D
1367	NH ₂	A	A
1368	NH ₂	A	A
1369	NH ₂ NH ₂ NNH	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1370	NH ₂ NH ₂ NH ₂ NH ₂ NH	В	В
1371	NH ₂	D	С
1372	NH ₂ NH	D	D
1373	NH ₂ OH NH	A	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1374		C	В
1375		A	A
1376	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₃ NH ₃ NH ₄ NH ₄ NH ₅	С	В
1377	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1378	NH ₂	D	D
1379	NH ₂	В	A
1380	NH ₂ NN _N	C	С
1381		В	A

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1382	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1383	81 NH ₂ NN NN NN NN NN NN NN NN NN NN NN NN NN	C	C
1384	NH ₂ N N N N N N N N N N N N N N N N N N N	A	В
1385	F NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1386	NH ₂	A	A
1387	NH ₂	D	D
1388	NH ₂	A	A
1389	HO NH ₂	D	С
1390	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1391	NH ₂	A	A
1392		D	D
1393	NH ₂ NH ₂ NN _N	D	D
1394	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	В	В

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1395	NH ₂	A	A
1396	N Abs	C	D
1397		C	A
1398	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1399	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	В
1400		A	A
1401		A	A
1402	NH ₂	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1403		A	A
1404	NH ₂ NH ₂ N	C	С
1405	NH ₂	A	A
1406		A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1407	NH ₂ NH ₂ NH	C	C
1408		A	В
1409		A	A
1410		A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1411	F NH ₂	A	A
1412	NH ₂	C	С
1413	NH ₂	A	A
1414	Атропоизомер 1	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1415	r r r r r r r r r r	A	A
1416	Атропоизомер 1	A	В
1417	Атропизомер 2	A	A
1418		A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1419	NH ₂	A	A
1420	NH ₂	C	С
1421	NH ₂	C	С
1422	NH ₂ NH ₂ NH ₂ NH ₂ NH	C	С
1423	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	C	С

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1424	NH ₂ NH	В	C
1425	NH ₂	D	D
1426	NH ₂	A	A
1427	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1428	NH ₂ NN _N	A	A
1429	NH ₂ NH ₂ N	A	A
1430		A	A
1431	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1432		D	D
1433	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A	A
1434	NH ₂	A	A
1435	NH ₂ NH NH	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1436	NH ₂ PNH	D	D
1437	NH ₂ NH	С	D
1438	NH ₂ NH ₂ N	A	A
1439	NH ₂	A	A
1440	F N N N N N N N N N N N N N N N N N N N	A	A

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1441	H ₂ N N N N N N N N N N N N N N N N N N N	C	В
1442	H ₂ N N abs	D	C
1443	N O F N N N N N N N N N N N N N N N N N	В	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1444	Abs N O E Abs N N N N N N N N N N N N N N N N N N N	A	
1445	N F N N N N N N N N N N N N N N N N N N	A	A
1446		A	A
1447	NH ₂	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1448	NH ₂ NH ₂ NH ₂ NH NH		
1449	N O D D D D N N N N N N N N N N N N N N	A	
1450	N NC		
1451	N N N N N N N N N N N N N N N N N N N	A	

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1452	F NH ₂ N O	A	A
1453	N N N N N N N N N N N N N N N N N N N	A	A
1454		A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1455	H ₂ N N abs	A	A
1456	N N N N N N N N N N N N	A	A
1457	F HN O N N N	В	A
1458	NH ₂	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1459	N O N O	A	A
1460	N N O	D	С
1461	NH ₂ NH ₂ N N	C	В
1462	N O F O N O O O O O O O O O O O O O O O	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1463	Nabs NNO	В	A
1464	Nabs Nabs N	C	С
1465	Nabs N	A	A
1466	abs N	В	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1467	abs N	C	A
1468	abs N	A	A
1469	NH ₂ or1 N	A	A
1470	NH ₂ or1.	A	A

с	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1471	NH ₂ or1 N	A	A
1472	NH ₂ Ori	A	A
1473	О NC	A	A
1474	о NC	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1475	О NC	D	D
1476	О N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N C N N N N N N N N N N	D	С
1477	N O F N N N N N N N N N N N N N N N N N	A	A
1478	NH ₂	C	В

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1479	N O F O N O N O N O N O N O N O N O N O	C	A
1480	NH ₂ NH ₂ NH ₂ NH	D	С
1481	abs NH ₂ NH NH	C	В
1482	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1483	NH ₂ F O NH	A	A
1484	NH ₂ О атропизомер 1	D	D
1485	NH ₂ О атропизомер 2	D	D
1486	NH ₂ О атропизомер 1	D	D
1487	NH ₂ О атропизомер 2 NH ₂ NH	D	D

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1488	N N F	C	С
1489	N N N N N N N N N N N N N N N N N N N	A	A
1490	NH ₂ N N N N N N N N N N N N N N N N N N N	D	D
1491	NH ₂ N N N N N N N N N N N N N N N N N N N	A	A

c	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1492	F NH ₂ N N	A	A
1493	N N N N N N N N N N N N N N N N N N N	A	A
1494	NH ₂ NN N	A	A
1495	N F N N N N N N N N N N N N N N N N N N	A	A

С	Структурная формула	Оценка IC ₅₀ в отношении FGFR2 по методике Caliper	Оценка IC ₅₀ в отношении клеток SNU-16
1496	abs N A N N N N N N N N N N N N	C	

[0180] В структурных химических формулах, представленных в Таблице 1 выше, если стереоцентр изображен с пунктирной или клиновидной связью и помечен меткой «abs» (или не помечен), соединение по существу представляет собой единый изомер при этом стереоцентре (а не эквимолярную смесь), и его абсолютная стереохимия является такой, как это показано в структурной химической формуле (см., например, структурную формулу для Примера 146). Когда стереоцентр изображен с пунктирной или клиновидной связью и также помечен меткой «ог 1», соединение представляет собой единый изомер при этом стереоцентре, но абсолютная стереохимия при этом стереоцентре не определена (см., например, структурные формулы для Примеров 397 и 398). Когда стереоцентр изображен с пунктирной или клиновидной связью, а также помечен метками «and1» или «&1», соединение представляет собой смесь двух изомеров при этом стереоцентре с показанной структурой и изомером, в котором этот стереогенный центр имеет противоположную конфигурацию (см., например, структурную формулу для Примера 581).

[0181] Некоторые соединения, показанные в Таблице 1 выше, существуют в растворе при комнатной температуре в виде не взаимнопревращающихся атропоизомеров по биарильной связи. Когда один из атомов биарильной связи помечен меткой «ог 1», это означает, что соединение существует в растворе при комнатной температуре в виде не взаимнопревращающихся атропоизомеров, и соединение по существу представляет собой единый атропоизомер (а не эквимолярную смесь) (см., например, структурные формулы для Примеров 516 и 517).

[0182] В некоторых вариантах реализации настоящего изобретения предложено соединение, показанное в Таблице 1 выше, при этом в колонке «Оценка IC₅₀ в отношении FGFR2 по методике Caliper» указывается, что это соединение имеет рейтинг "А". В некоторых вариантах реализации настоящего изобретения предложено соединение, показанное в Таблице 1 выше, при этом в колонке «Оценка IC₅₀ в отношении FGFR2 по методике Caliper» указывается, что это соединение имеет рейтинг "А" или "В". В некоторых вариантах реализации настоящего изобретения предложено соединение, показанное в Таблице 1 выше, при этом в колонке «Оценка IC₅₀ в отношении FGFR2 по методике Caliper» указывается, что это соединение имеет рейтинг "А" или "В" или "С".

[0183] В некоторых вариантах реализации настоящего изобретения предложено соединение, показанное в Таблице 1 выше, при этом в колонке «Оценка IC₅₀ в отношении клеток SNU-16» указывается, что это соединение имеет рейтинг "А". В некоторых вариантах реализации настоящего изобретения предложено соединение, показанное в Таблице 1 выше, при этом в колонке «Оценка IC₅₀ в отношении клеток SNU-16» указывается, что это соединение имеет рейтинг "А" или "В". В некоторых вариантах реализации настоящего изобретения предложено соединение, показанное в Таблице 1 выше, при этом в колонке «Оценка IC₅₀ в отношении клеток SNU-16» указывается, что это соединение имеет рейтинг "А" или "В" или "С".

4. Общие способы получения соединений согласно настоящему изобретению

[0184] Соединения согласно настоящему изобретению могут быть в целом получены или выделены с помощью синтетических и/или полусинтетических способов, известных специалистам в данной области техники в отношении аналогичных соединений, и способов, подробно описанных в разделе «Примеры» настоящего описания.

5. Способы применения, составления и введения фармацевтически приемлемых композиций

[0185] В соответствии с другим вариантом реализации в настоящем изобретении предложена композиция, содержащая соединение согласно настоящему изобретению или его фармацевтически приемлемое производное и фармацевтически приемлемый носитель, адъювант или среду. В некоторых вариантах реализации настоящего

изобретения предложена фармацевтическая композиция, содержащая соединение согласно настоящему изобретению и фармацевтически приемлемый носитель. Количество соединения в композициях согласно настоящему изобретению взято таким, чтобы оно эффективно обеспечивало измеримое ингибирование протеинкиназы FGFR2 или ее мутанта в биологическом образце или у пациента. В определенных вариантах реализации количество соединения в композициях согласно настоящему изобретению взято таким, чтобы оно эффективно обеспечивало измеримое ингибирование протеинкиназы FGFR2 или ее мутанта в биологическом образце или у пациента. В определенных вариантах реализации композиция согласно настоящему изобретению приготовлена для введения пациенту, нуждающемуся в такой композиции. В некоторых вариантах реализации композиция согласно настоящему изобретению приготовлена для перорального введения пациенту.

[0186] Термины «субъект» и «пациент» в контексте настоящего описания означают животное (т.е. представителя животного мира), предпочтительно млекопитающее и наиболее предпочтительно человека. В некоторых вариантах реализации субъект представляет собой человека, мышь, крысу, кошку, обезьяну, собаку, лошадь или свинью. В некоторых вариантах реализации субъект представляет собой человека. В некоторых вариантах реализации субъект представляет собой мышь, крысу, кошку, обезьяну, собаку, лошадь или свинью.

[0187] Термин «фармацевтически приемлемый носитель, адъювант или среда» относится к нетоксичным носителю, адъюванту или среде, которые не нарушают фармакологической активности соединения, входящего в состав фармацевтической композиции. Фармацевтически приемлемые носители, адъюванты или носители, которые можно применять в композициях согласно настоящему изобретению, включают, но не ограничиваются ими, ионообменные смолы, оксид алюминия, стеарат алюминия, лецитин, сывороточные белки, такие как человеческий сывороточный альбумин, буферные вещества, такие как фосфаты, глицин, сорбиновая кислота, сорбат калия, смеси неполных глицеридов насыщенных растительных жирных кислот, воду, соли или электролиты, такие как протамина сульфат, гидрофосфат натрия, гидрофосфат калия, хлорид натрия, соли цинка, коллоидный диоксид кремния, трисиликат магния, поливинилпирролидон, вещества на основе целлюлозы, полиэтиленгликоль, натрий карбоксиметилцеллюлозу, полиакрилаты, воски, блокполимеры полиэтилен-полиоксипропилен, полиэтиленгликоль и ланолин.

[0188] Термин «фармацевтически приемлемое производное» означает любую нетоксичную соль, сложный эфир, соль сложного эфира или другое производное соединения согласно настоящему изобретению, которые при введении их реципиенту способны воспроизводить, будь то непосредственно или опосредованно, соединение согласно настоящему изобретению или его ингибиторно активный метаболит или остаток.

[0189] В настоящем документе термин «его ингибиторно активный метаболит или остаток» означает, что метаболит или остаток соединения согласно настоящему изобретению также является ингибитором протеинкиназы FGFR2 или ее мутанта.

[0190] Композиции согласно настоящему изобретению могут быть перорально, парентерально, ингаляторным спреем, местно, ректально, назально, буккально, вагинально или посредством имплантируемого резервуара. Термин «парентеральный» контексте настоящего описания включает подкожную, внутривенную, внутримышечную, внутрисуставную, внутрисиновиальную, интрастернальную, интратекальную, внутрипеченочную, внутриочаговую внутричерепную инъекцию или инфузию. Предпочтительно композицию применяют перорально, внутрибрюшинно или внутривенно.

[0191] Стерильные инъекционные формы композиций согласно настоящему изобретению могут представлять собой водную или масляную суспензию. Эти суспензии могут быть получены в соответствии со способами, известными из уровня техники, с применением подходящих диспергирующих или смачивающих агентов и суспендирующих агентов. Стерильный инъекционный препарат также может представлять собой стерильный инъекционный раствор или суспензию в нетоксичном разбавителе или растворителе, приемлемом для парентерального введения, например в виде раствора в 1,3-бутандиоле. К числу приемлемых носителей и растворителей, которые могут быть применены, относятся вода, раствор Рингера и изотонический раствор хлорида натрия. Кроме того, в качестве растворителя или суспендирующей среды обычно применяют стерильные нелетучие масла.

[0192] Для данной цели может быть применено любое легкое нелетучее масло, включая синтетические моно- или диглицериды. Жирные кислоты, такие как олеиновая кислота и ее глицеридные производные могут быть применены для получения инъекционных форм, примерами являются натуральные фармацевтически

приемлемые масла, такие как оливковое масло или касторовое масло, в частности в их полиоксиэтилированных формах. Эти масляные растворы или суспензий также могут содержать растворитель или диспергирующее вещество на основе длинноцепочечного спирта, такой как карбоксиметилцеллюлоза или аналогичные диспергирующие агенты, которые обычно применяют в составе фармацевтически приемлемых лекарственных форм, включая эмульсии и суспензии. Также для получения составов могут быть применены и другие обычно применяемые поверхностно-активные вещества, такие как разновидности реагентов Tween, Span и другие эмульгирующие агенты или усилители биодоступности, которые обычно применяют для получения фармацевтически приемлемых твердых, жидких или других лекарственных форм.

[0193] Фармацевтически приемлемые композиции согласно настоящему изобретению могут быть введены перорально в любой приемлемой для перорального введения лекарственной форме, включая, но не ограничиваясь ими, капсулы, таблетки, водные суспензии или растворы. В случае таблеток для перорального применения носители обычно включают лактозу и кукурузный крахмал. Также обычно добавляют смазывающие агенты, такие как стеарат магния. Для перорального введения в форме капсул подходящие для применения разбавители включают лактозу и сухой кукурузный крахмал. Когда необходимы водные суспензии для перорального активный ингредиент объединяют применения, эмульгирующими По желанию суспендирующими агентами. онжом добавлять подсластители, пищевкусовые добавки или пищевые красители.

[0194] Как вариант, фармацевтически приемлемые композиции согласно настоящему изобретению можно вводить в форме суппозиториев для ректального или вагинального введения. Они могут быть приготовлены путем смешивания фармацевтически приемлемой композиции с нераздражающим вспомогательным веществом, которое является твердым при комнатной температуре и жидким при температуре в прямой кишке или влагалище, и таким образом, оно будет плавиться в прямой кишке или влагалище, высвобождая лекарство. Такие материалы включают масло какао, пчелиный воск и полиэтиленгликоли.

[0195] Фармацевтически приемлемые композиции согласно настоящему изобретению также могут быть введены местно, особенно когда мишень для лечения включает области или органы, легко доступные для местного нанесения, включая заболевания глаз, кожи и нижнего отдела желудочно-кишечного тракта. Подходящие составы для

местного нанесения могут быть легко получены для каждой из этих областей или органов.

[0196] Местное нанесение для нижнего отдела желудочно-кишечного тракта может быть произведено с помощью состава, представляющего собой ректальный суппозиторий (см. выше), или с помощью подходящего состава для клизмы. Также могут быть применены местно-трансдермальные пластыри.

[0197] Для местного применения предложенные фармацевтически приемлемые композиции могут быть приготовлены в виде подходящей мази, содержащей активный компонент, суспендированный или растворенный в одном или более носителях. Носители для местного введения соединений согласно настоящему изобретению включают, но не ограничиваются ими, минеральное масло, жидкий вазелин, белый вазелин, пропиленгликоль, полиоксиэтилен, полиоксипропиленовое соединение, эмульгирующий воск и воду. Как вариант, предложенные фармацевтически приемлемые композиции могут быть приготовлены в виде подходящего лосьона или крема, содержащего активные компоненты, суспендированные или растворенные в одном или более фармацевтически приемлемых носителях. Подходящие носители включют, но не ограничиваются ими, минеральное масло, сорбитан моностеарат, полисорбат 60, воск на основе сложных эфиров цетилового спирта, цетеариловый спирт, 2-октилдодеканол, бензиловый спирт и воду.

[0198] Для офтальмологического применения предложенные фармацевтически приемлемые композиции могут быть приготовлены в виде микронизированных суспензий в изотоническом, стерилизованном солевом растворе с отрегулированным рН или в виде растворов в изотоническом, стерилизованном солевом растворе с отрегулированным рН, с или без добавления консерванта, такого как бензилалкония хлорид. В качестве альтернативы, для офтальмологического применения фармацевтические приемлемые композиции могут быть получены в виде мази, такой как вазелин.

[0199] Фармацевтически приемлемые композиции согласно настоящему изобретению также могут быть введены с помощью назального аэрозоля или путем ингаляции. Такие композиции готовят согласно методикам, хорошо известным в области получения лекарственных форм, и могут быть приготовлены в виде растворов в солевом растворе с использованием бензилового спирта или других подходящих

консервантов, стимуляторов абсорбции для повышения биодоступности, фторуглеродов и/или других традиционных солюбилизирующих или диспергирующих агентов.

[0200] Предпочтительно фармацевтически приемлемые композиции согласно настоящему изобретению получают в виде лекарственных форм для перорального введения. Такие лекарственные формы могут быть введены с пищей или без нее. В некоторых вариантах реализации фармацевтически приемлемые композиции согласно настоящему изобретению вводят без пищи. В других вариантах реализации фармацевтически приемлемые композиции согласно настоящему изобретению вводят с пищей.

[0201] Количество соединения согласно настоящему изобретению, которое может быть объединено с носителями для получения композиции в единой лекарственной форме, будет варьироваться в зависимости от получающего лечение пациента и конкретного способа введения. Предпочтительно предложенные композиции должны быть составлены таким образом, чтобы принимающему эти композиции пациенту могла быть введена доза ингибитора, составляющая от 0,01 до 100 мг/кг массы тела в сутки.

[0202] Следует также понимать, что конкретная доза и режим лечения для любого отдельного пациента будет зависеть от множества различных факторов, включая активность конкретного применяемого соединения, возраст, массу тела, общее состояние здоровья, пол, диету, время введения, скорость выведения, комбинацию лекарственных препаратов, мнение лечащего врача и тяжесть конкретного заболевания, подлежащего лечению. Количества соединения согласно настоящему изобретению в композиции также будет зависеть от того, какое соединение входит в композицию.

[0203] Точная доза, применяемая в композициях, также будет зависеть от способа приема, и решение о ее величине следует принимать в соответствии с мнением практикующего врача и медицинским состоянием каждого субъекта. В конкретных вариантах реализации настоящего изобретения подходящие диапазоны доз для перорального введения соединений согласно настоящему изобретению составляют, как правило, от примерно 1 мг/сутки до примерно 1000 мг/сутки. В некоторых вариантах реализации пероральная доза составляет от примерно 1 мг/сутки до примерно 800 мг/сутки. В некоторых вариантах реализации пероральная доза составляет от примерно

1 мг/сутки до примерно 500 мг/сутки. В некоторых вариантах реализации пероральная доза составляет от примерно 1 мг/сутки до примерно 250 мг/сутки. В некоторых вариантах реализации пероральная доза составляет от примерно 1 мг/сутки до примерно 100 мг/сутки. В некоторых вариантах реализации пероральная доза составляет от примерно 5 мг/сутки до примерно 50 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 5 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 10 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 20 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 30 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 40 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 50 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 60 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 70 мг/сутки. В некоторых вариантах реализации пероральная доза составляет примерно 100 мг/сутки. Следует понимать, что любая из доз, перечисленных в настоящем документе, может представлять собой верхнюю или нижнюю границу диапазона доз и может быть объединена с любой другой дозой с образованием некоторого диапазона доз, включающего его верхнюю и нижнюю границу.

[0204] В некоторых вариантах реализации изобретения фармацевтически приемлемые композиции содержат предложенное соединение и/или его фармацевтически приемлемую соль в концентрациях, варьирующихся от примерно 0,01 до примерно 90 масс. %, от примерно 0,01 до примерно 80 масс. %, от примерно 0,01 до примерно 50 масс. %, от примерно 0,01 до примерно 60 масс. %, от примерно 0,01 до примерно 50 масс. %, от примерно 0,01 до примерно 40 масс. %, от примерно 0,01 до примерно 30 масс. %, от примерно 0,01 до примерно 20 масс. %, от примерно 0,01 до примерно 2,0 масс. %, от примерно 0,01 до примерно 1 масс. %, от примерно 1 до примерно 0,5 масс. %, от примерно 1 до примерно 30 масс. % или от примерно 1 до примерно 20 масс. %. Композиция может быть составлена в виде раствора, суспензии, мази или капсулы и т. п. Фармацевтическая композиция может быть приготовлена в виде водного раствора и может содержать дополнительные компоненты, такие как консерванты, буферы, регуляторы тоничности, антиоксиданты, стабилизаторы, модификаторы вязкости и т. п.

[0205] Фармацевтически приемлемые носители хорошо известны специалистам в области техники и включают, например, адъюванты, разбавители, данной вспомогательные вещества, наполнители, лубриканты и носители. В некоторых представляет собой разбавитель, вариантах реализации носитель адъювант, вспомогательное вещество или растворяющую основу. В некоторых вариантах реализации носитель представляет собой разбавитель, адъювант или вспомогательное В некоторых вариантах реализации носитель представляет собой вещество. разбавитель или адъювант. В некоторых вариантах реализации носитель представляет собой вспомогательное вещество.

[0206] Примеры фармацевтически приемлемых носителей могут включать, например, воду или солевой раствор, полимеры, такие как полиэтиленгликоль, углеводы и их производные, масла, жирные кислоты или спирты. Неограничивающие примеры масел в качестве фармацевтических носителей включают масла нефтяного, животного, растительного или синтетического происхождения, такие как арахисовое масло, соевое масло, минеральное масло, кунжутное масло и т.п. Фармацевтические носители также могут представлять собой солевой раствор, акациевую камедь, желатин, крахмальную пасту, тальк, кератин, коллоидный диоксид кремния, мочевину и т.п. Кроме того, можно применять вспомогательные, стабилизирующие, загущающие, смазывающие и окрашивающие агенты. Другие примеры подходящих фармацевтических носителей описаны, например, в изданиях Remington «The Science and Practice of Pharmacy», 22nd Ed. (Allen, Loyd V., Jr ed., Pharmaceutical Press (2012)); «Modern Pharmaceutics», 5th Ed. (Alexander T. Florence, Juergen Siepmann, CRC Press (2009)); «Handbook of Pharmaceutical Excipients», 7th Ed. (Rowe, Raymond C.; Sheskey, Paul J.; Cook, Walter G.; Fenton, Marian E. eds., Pharmaceutical Press (2012)) (полное содержание каждого из которых включено в настоящее описание посредством ссылки).

[0207] Фармацевтически приемлемые носители, используемые настоящем изобретении, могут быть выбраны из различных органических или неорганических материалов, применяемых в фармацевтических рецептурах, которые могут быть включены качестве анальгетиков, буферов, связующих, разрыхлителей, разбавителей, эмульгаторов, вспомогательных веществ, наполнителей, скользящих веществ, солюбилизаторов, стабилизаторов, суспендирующих агентов, регуляторов тоничности, носителей и загустителей. Также могут быть включены фармацевтические добавки, такие как антиоксиданты, ароматизаторы, красители, пищевкусовые добавки,

консерванты и подсластители. Примеры подходящих фармацевтических носителей включают, среди прочего, карбоксиметилцеллюлозу, кристаллическую целлюлозу, глицерин, гуммиарабик, лактозу, стеарат магния, метилцеллюлозу, порошки, физиологический раствор, альгинат натрия, сахарозу, крахмал, тальк и воду. В некоторых вариантах реализации изобретения термин «фармацевтически приемлемый» означает одобренный регулирующим органом федерального правительства или правительства штата или указанный в Фармакопее США или другой общепризнанной фармакопее с возможностью применения для животных и, в частности, для людей.

[0208] Также для применения в рецептурах подходят поверхностно-активные вещества, такие как, например, детергенты. Конкретные примеры поверхностноактивных веществ включают поливинилпирролидон, поливиниловые спирты, сополимеры винилацетата и винилпирролидона, полиэтиленгликоли, бензиловый спирт, маннит, глицерин, сорбит или полиоксиэтиленированные сложные эфиры сорбитана; лецитин или карбоксиметилцеллюлозу натрия; или акриловые производные, такие как метакрилаты и другие, анионные поверхностно-активные вещества, такие как щелочные стеараты, в частности, стеарат натрия, калия или аммония; стеарат кальция или стеарат триэтаноламина; алкилсульфаты, в частности, лаурилсуфат натрия и цетилсульфат натрия; додецилбензолсульфонат натрия или диоктилсульфосукцинат натрия; или жирные кислоты, в частности, полученные из кокосового масла, катионные поверхностно-активные вещества, такие как водорастворимые четвертичные аммониевые соли с формулой N+R'R'"R""Y-, в которой радикалы R представляют собой идентичные или различные необязательно гидроксилированные углеводородные радикалы, а У представляет собой анион сильной кислоты, такой как галогенид-, сульфат- и сульфонат-анионы; бромид цетилтриметиламмония представляет собой одно из разрешенных к применению катионных поверхностно-активных веществ, аминовые соли с формулой N⁺R'R", в которых радикалы R представляют собой идентичные или различные необязательно гидроксилированные углеводородные радикалы; одним из разрешенных к применению катионных поверхностно-активных веществ является гидрохлорид октадециламина, неионные поверхностно-активные вещества, такие как необязательно полиоксиэтиленированные сложные эфиры сорбитана, в частности, Полисорбат 80, полиоксиэтиленированные алкильные эфиры; полиэтиленгликольстеарат, полиоксиэтиленированные производные касторового эфиры масла., сложные

полиглицерина, полиоксиэтиленированные жирные спирты, полиоксиэтиленированные жирные кислоты или сополимеры этиленоксида и пропиленоксида, амфотерные поверхностно-активные вещества, такие как замещенные лаурильные соединения бетаина.

[0209] Подходящие фармацевтические носители также могут включать вспомогательные вещества, такие как крахмал, глюкоза, лактоза, сахароза, желатин, солод, рис, мука, мел, силикагель, стеарат натрия, моностеарат глицерина, тальк, хлорид натрия, cyxoe обезжиренное молоко, глицерин, пропиленгликоль, Полиэтиленгликоль 300, вода, этанол, Полисорбат 20 и т.п. Настоящие композиции по желанию также могут содержать увлажняющие или эмульгирующие агенты, или регуляторы кислотности.

[0210] Рецептуры таблеток и капсул могут дополнительно содержать один или большее количество адъювантов, связующих, разбавителей, разрыхлителей, вспомогательных веществ, наполнителей или лубрикантов, каждый из которых известен из уровня техники. Примеры таких добавок включают углеводы, такие как лактоза или сахароза, безводный двухосновный фосфат кальция, кукурузный крахмал, маннит, ксилит, целлюлозу или ее производные, микрокристаллическую целлюлозу, желатин, стеараты, диоксид кремния, тальк, натрия крахмалгликолят, акациевую камедь, пищевкусовые добавки, консерванты, регуляторы кислотности, разрыхлители и красители. Перорально вводимые композиции могут содержать один или большее количество необязательных агентов, таких как, например, подсластители, такие как фруктоза, аспартам или сахарин; пищевкусовые добавки, такие как мята перечная, масло винтергреневое или вишневое; красители; и консерванты для получения фармацевтического препарата с приятным вкусом.

Применение соединений и их фармацевтически приемлемых композиций

[0211] Соединения и композиции, описанные в настоящем документе, в целом применимы для ингибирования киназы или ее мутанта. В некоторых вариантах реализации изобретения киназа, ингибируемая соединениями и композициями, описанными в настоящем документе, представляет собой рецептор фактора роста фибробластов (FGFR). В некоторых вариантах реализации изобретения киназа, ингибируемая соединениями и композициями, описанными в настоящем документе, представляет собой один или большее количество из FGFR1, FGFR2, FGFR3 и FGFR4.

В некоторых вариантах реализации изобретения киназа, ингибируемая соединениями и композициями, описанными в настоящем документе, представляет собой FGFR2.

[0212] Соединения или композиции согласно настоящему изобретению могут быть пригодны в таких областях применения, где ингибирование ферментов FGFR2 дает ощутимую пользу. Например, ингибиторы FGFR2 согласно настоящему изобретению в целом пригодны для лечения пролиферативных заболеваний.

[0213] Активирующие FGFR2 слияния генов были обнаружены при многих видах раковых заболеваний, включая внутрипеченочную холангиокарциному, гепатоцеллюлярную карциному, рак молочной железы, рак предстательной железы, плоскоклеточную карциному легкого, рак щитовидной железы, рак желудка и рак яичников (см. публикацию І. S. Babina and N.C. Turner, Nat. Rev. Cancer 2017, 17:318-332; Y-M Wu, et al. Cancer Discov. 3: 636-647; и цитируемую в ней литературу).

[0214] Амплификация FGFR2 была описана при раке желудка, раке молочной железы, трижды негативном раке молочной железы и раке прямой кишки (см. публикацию І. S. Babina and N.C. Turner, Nat. Rev. Cancer 2017, 17:318-332; М. Katoh, Nat. Rev. Clin. Oncol. 2019, 16:105-122; и цитируемую в ней литературу).

[0215] Активирующие FGFR2 мутации были обнаружены при карциноме эндометрия, немелкоклеточном раке легкого, плоскоклеточной карциноме легкого, раке желудка, раке молочной железы и уротелиальном раке. Наиболее распространенные мутации включают мутации во внутриклеточном домене киназы (например, N549K и K659N/M) и во внеклеточном домене (S252W и P253R). Мутации резистентности, которые возникают в FGFR2 при лечении ингибиторами pan-FGFR1-3, также могут стать мишенью для адресного воздействия ингибиторами FGFR2. К ним относятся V564F, E565A, N549K/H/T и L617V (см. публикацию I. S. Babina and N.C. Turner, Nat. Rev. Cancer 2017, 17:318-332; М. Katoh, Nat. Rev. Clin. Oncol. 2019, 16:105-122; R. Porta, et al. Crit. Rev. Oncol. Hematol. 2017, 113: 256-267; и цитируемую в ней литературу).

[0216] Ингибирование FGFR2 также обладает противоопухолевой активностью в опухолях с повышенной экспрессией лигандов FGFR2 (FGFs1-4, 7, 8, 10, 21-23) (см. публикацию N. Turner and R. Grose, Nat. Rev. Cancer 2010, 10:116-129; и цитируемую в ней литературу).

[0217] Ингибирование FGFR2 также обладает противоопухолевой активностью в опухолях с амплификацией или сверхэкспрессией адаптерного к FGFR белка FRS2 (см.

публикацию I. S. Babina and N.C. Turner, Nat. Rev. Cancer 2017, 17:318-332; и цитируемую в ней литературу).

[0218] Селективное ингибирование FGFR2 в целом может быть эффективным при тех же показаниях, где эффективны ингибиторы pan-FGFR1-3. Такие показания описаны в публикации І. S. Babina и N.C. Turner, Nat. Rev. Cancer 2017, 17:318-332; М. Katoh, Nat. Rev. Clin. Oncol. 2019, 16:105-122; R. Porta, et al. Crit. Rev. Oncol. Hematol. 2017, 113:256-267; и цитируемой в ней литературе.

[0219] Активирующие мутации FGFR2 также были обнаружены при краниосиностотических синдромах, включая синдромы Краузона, Аперта, Пфайффера, Энтли-Бикслера, синдрома кутис-гирата Бира-Стивенсона, Джексона-Вейсса, дисплазии изогнутых костей и синдромах, подобных синдрому Сетре-Чотзена, которые приводят к преждевременному слиянию черепных швов (см. публикацию S.C. Azoury, et al. Int. J. Biol. Sci. 2017, 13: 1479-1488; и цитируемую в ней литературу). Ингибирование FGFR2 также эффективно при таких краниосиностотических синдромах.

[0220] Активность соединений, применяемых в настоящем изобретении в качестве ингибиторов киназ FGFR, например, FGFR2, или их мутантов, может быть определена in vitro, in vivo или в клеточных линиях. Анализы in vitro включают анализы, которые позволяют ингибирование фосфорилирующей определить активности и/или АТФазной дальнейших функциональных последствий, или активности активированного FGFR2 или его мутантов. Альтернативные анализы in vitro позволяют количественно определить способность ингибитора связываться с FGFR2. Связывание ингибитора может быть определено путем введения в ингибитор радиоактивной метки перед связыванием, выделения комплекса ингибитор/FGFR2 и определения количества связанной радиоактивной метки. Как вариант, степень связывания с ингибитором быть определена путем проведения эксперимента по конкурентному связыванию, когда новые ингибиторы инкубируют с FGFR2, связанным с известными радиоактивными лигандами. Репрезентативные анализы in vitro и in vivo, подходящие для количественного определения ингибитора FGFR2, включают анализы, описанные и раскрытые в патентах и научных публикациях, описанных в настоящем документе. Подробные условия для количественного определения соединения, применяемого в настоящем изобретении в качестве ингибитора FGFR2 или его мутанта, представлены ниже в разделе «Примеры».

Лечение заболеваний

[0221] Предложенные соединения представляют собой ингибиторы FGFR2 и соответственно пригодны для лечения одного или большего количества заболеваний, связанных с активностью FGFR2 или его мутантов. Так в определенных вариантах реализации настоящего изобретения предложен способ лечения опосредованного FGFR2 заболевания у субъекта, включающий введение нуждающемуся в этом субъекту терапевтически эффективного количества соединения согласно настоящему изобретению или его фармацевтически приемлемой соли, или фармацевтически приемлемой композиции, содержащей любые из вышеперечисленных ингредиентов. В некоторых вариантах реализации настоящего изобретения предложен способ лечения опосредованного FGFR2 заболевания y субъекта, включающий ввеление терапевтически соединения эффективного количества согласно настоящему изобретению или его фармацевтически приемлемой композиции нуждающемуся в этом субъекту.

[0222] В контексте настоящего описания термин «опосредованные FGFR2 патологии, заболевания и/или состояния» означает любое заболевание или другое вредоносное состояние, о котором известно, что важную роль в его патогенезе играет FGFR2 или его мутант. Соответственно, другой вариант реализации настоящего изобретения относится к лечению или уменьшению тяжести одного или большего количества заболеваний, о которых известно, что важную роль в их патогенезе играет FGFR2 или его мутант. Такие FGFR2-опосредованные заболевания включают, но не ограничиваются ими, пролиферативные заболевания (например, раковые заболевания) и краниосиностотические синдромы.

[0223] В некоторых вариантах реализации настоящего изобретения предложен способ лечения одного или большего количества заболеваний, где заболевания выбраны из пролиферативных заболеваний и краниосиностотических синдромов, при этом указанный способ включает введение нуждающемуся в этом пациенту терапевтически эффективного количества соединения согласно настоящему изобретению, или его фармацевтически приемлемой соли, или фармацевтически приемлемой композиции, составленной из любых вышеперечисленных ингредиентов. В некоторых вариантах реализации настоящего изобретения предложен способ лечения одного или большего количества заболеваний, где заболевания выбраны из пролиферативных заболеваний и краниосиностотических синдромов, при этом указанный способ включает введение

нуждающемуся в этом пациенту терапевтически эффективного количества соединения согласно настоящему изобретению или содержащей его фармацевтически приемлемой композиции.

[0224] В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболеваний у субъекта, при этом указанный способ включает введение нуждающемуся в этом субъекту терапевтически эффективного количества соединения согласно настоящему изобретению или его фармацевтически приемлемой соли, или фармацевтической любой композиции, включающей ИЗ вышеперечисленных ингредиентов, где заболевание представляет собой рак желчных протоков, рак печени, рак молочной железы, рак предстательной железы, рак легкого, рак щитовидной железы, рак желудка, рак яичников, рак прямой кишки, рак эндометрия или рак уротелия. В некоторых вариантах реализации изобретения заболевание представляет собой внутрипеченочную холангиокарциному. В некоторых вариантах реализации изобретения заболевание представляет собой гепатоцеллюлярную карциному. В некоторых вариантах реализации изобретения заболевание представляет собой плоскоклеточную карциному легкого или немелкоклеточный рак легкого.

[0225] В некоторых вариантах реализации изобретения заболевание представляет собой рак желчного протока. В некоторых вариантах реализации изобретения рак желчного протока представляет собой внутрипеченочную холангиокарциному. В некоторых вариантах реализации изобретения заболевание представляет собой рак печени. В некоторых вариантах реализации изобретения рак печени представляет собой гепатоцеллюлярную карциному. В некоторых вариантах реализации изобретения заболевание представляет собой рак легкого. В некоторых вариантах реализации изобретения рак легкого представляет собой плоскоклеточную карциному легкого или немелкоклеточный рак легкого.

[0226] В некоторых вариантах реализации настоящего изобретения предложен способ лечения внутрипеченочной холангиокарциномы у субъекта, при этом указанный способ включает введение нуждающемуся в этом субъекту терапевтически эффективного количества соединения согласно настоящему изобретению, или его фармацевтически приемлемой соли, или фармацевтической композиции, содержащей любые из вышеперечисленных ингредиентов. В некоторых вариантах реализации настоящего изобретения предложен способ лечения гепатоцеллюлярной карциномы у субъекта, при этом указанный способ включает введение нуждающемуся в этом

субъекту терапевтически эффективного количества соединения согласно настоящему изобретению, или его фармацевтически приемлемой соли, или фармацевтической композиции, содержащей любые из вышеперечисленных ингредиентов. В некоторых вариантах реализации настоящего изобретения предложен способ лечения плоскоклеточной карциномы легкого или немелкоклеточного рака легкого у субъекта, при этом указанный способ включает введение нуждающемуся в этом субъекту терапевтически эффективного количества соединения по настоящему изобретению, или его фармацевтически приемлемой соли, или фармацевтической композиции, содержащей любые из вышеперечисленных ингредиентов.

[0227] В некоторых вариантах реализации изобретения заболевание связано с сигнализацией FGFR2. Известно, что FGFR2 и другие рецепторные тирозинкиназы (RTK) имеют несколько восходящих и нисходящих сигнальных путей (см. публикацию Turner and Grose, Nat. Rev. Cancer (2010)10, 116), и для лечения расстройств, связанных с нарушенной сигнализацией по этим путям, может быть использовано ингибирование FGFR2. В некоторых вариантах реализации изобретения заболевание связано с сигнализацией FGF, сигнализацией JAK-STAT, сигнализацией PI3K-Akt, сигнализацией ПЛК-гамма или сигнализацией MAPK.

[0228] В некоторых вариантах реализации изобретения способ лечения включает стадии: i) идентификации субъекта, нуждающегося В таком лечении; іі) предоставления раскрытого соединения или его фармацевтически приемлемой соли; введения указанного предоставленного соединения в терапевтически эффективном предупреждения количестве для лечения, подавления и/или патологического заболевания или состояния у субъекта, нуждающегося в таком лечении.

[0229] В некоторых вариантах реализации изобретения способ лечения включает стадии: i) идентификации субъекта, нуждающегося таком лечении; іі) предоставления композиции, содержащей раскрытое соединение или его фармацевтически приемлемую соль; и ііі) введения указанной композиции в терапевтически эффективном количестве для лечения, подавления и/или предупреждения заболевания субъекта, патологического или состояния нуждающегося в таком лечении.

[0230] В другом аспекте настоящего изобретения предложено соединение согласно определениям, приведенным в настоящем документе, или его фармацевтически приемлемая соль, или фармацевтическая композиция, содержащая любые из вышеперечисленных ингредиентов, для применения при лечении заболевания, описанного в настоящем документе. В другом аспекте настоящего изобретения предложено применение соединения согласно определениям, приведенным в настоящем документе, или его фармацевтически приемлемой соли, фармацевтической содержащей вышеперечисленных композиции, любые из ингредиентов, для лечения заболевания, описанного в настоящем документе. Аналогичным образом, в настоящем изобретении предложено применение соединения определениям, приведенным В настоящем документе, фармацевтически приемлемой соли для приготовления лекарственного средства для лечения заболевания, описанного в настоящем документе.

Пролиферативные заболевания

[0231] В некоторых вариантах реализации изобретения заболевание представляет собой пролиферативное заболевание. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой раковое заболевание. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой лейкоз, рак молочной железы, рак легких, колоректальный рак или их комбинацию. В реализации изобретения пролиферативное вариантах заболевание представляет собой лейкоз. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой рак молочной железы. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой рак легких. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой колоректальный рак.

[0232] В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой внутрипеченочную холангиокарциному, гепатоцеллюлярную карциному, рак молочной железы, рак предстательной железы, плоскоклеточную карциному легкого, рак щитовидной железы, рак желудка, рак яичников, рак прямой кишки, карциному эндометрия, немелкоклеточный рак легкого или рак уротелия. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой внутрипеченочную холангиокарциному, гепатоцеллюлярную карциному, рак молочной железы, рак предстательной железы, плоскоклеточную

карциному легкого, рак щитовидной железы, рак желудка или рак яичников. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой рак желудка, рак молочной железы, трижды негативный рак молочной железы или рак прямой кишки. В некоторых вариантах реализации изобретения пролиферативное заболевание представляет собой карциному эндометрия, немелкоклеточный рак легкого, плоскоклеточную карциному легкого, рак желудка, рак молочной железы или уротелиальный рак.

[0233] В некоторых вариантах реализации изобретения пролиферативное заболевание связано с одной или большим количеством активирующих мутаций в FGFR2. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой мутацию в одном или более из внутриклеточного киназного домена и внеклеточного домена. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой мутацию во внутриклеточном киназном домен. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой мутацию во внеклеточном домене. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 выбрана из N549K, K659N/M, S252W, P253R и их комбинаций. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой N549K или K659N/M. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой N549K. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой K659N/M. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой S252W или P253R. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой S252W. В некоторых вариантах реализации изобретения активирующая мутация в FGFR2 представляет собой P253R.

[0234] В некоторых вариантах реализации изобретения пролиферативное заболевание связано с одной или большим количеством мутаций резистентности в FGFR2. В некоторых вариантах реализации изобретения мутация резистентности в FGFR2 выбрана из V564F, E565A, N549K/H/T и L617V и их комбинаций. В некоторых вариантах реализации изобретения мутация резистентности в FGFR2 представляет собой V564F. В некоторых вариантах реализации изобретения мутация резистентности в FGFR2 представляет собой E565A. В некоторых вариантах реализации изобретения мутация резистентности в FGFR2 представляет собой N549K/H/T. В некоторых

вариантах реализации изобретения мутация резистентности в FGFR2 представляет собой L617V.

Способы введения и лекарственные формы

[0235] В соответствии со способами согласно настоящему изобретению соединения и композиции можно вводить, используя любое количество и любой путь введения, эффективный для лечения или облегчения тяжести заболевания (например, пролиферативного заболевания или краниосиностотического синдрома). потребное количество будет варьироваться от субъекта к субъекту в зависимости от вида, возраста и общего состояния субъекта, тяжести инфицирования, конкретного используемого агента, способа его введения и т.п. Соединения согласно настоящему изобретению предпочтительно готовят в виде единичной лекарственной формы для простоты введения и однородности дозировки. В настоящем документе выражение «единичная лекарственная форма» относится к физически дискретной единице агента, подходящего для нуждающегося в лечении пациента. Однако следует понимать, что суммарные суточные дозы соединений и композиций согласно настоящему изобретению будут определяться лечащим врачом в рамках здравого медицинского суждения. Специфический эффективный уровень дозы для любого отдельного пациента или организма будет зависеть от множества факторов, включая подлежащее лечению заболевание и степень тяжести этого заболевания; активность конкретного используемого соединения; конкретную применяемую композицию; возраст, массу тела, общее состояние здоровья, пол и рацион питания пациента; время введения, путь введения скорость выведения конкретного применяемого соединения; продолжительность лечения; лекарственные средства, используемые в комбинации или одновременно с конкретным применяемым соединением, и другие подобные факторы, хорошо известные в данной области медицины.

[0236] Фармацевтически приемлемые композиции согласно настоящему изобретению могут быть введены человеку и другим животным перорально, ректально, парентерально, интрацистернально, интравагинально, внутрибрюшинно, местно (в виде порошков, мазей или капель), буккально, в виде перорального или назального спрея или т.п. В некоторых вариантах реализации соединения согласно настоящему изобретению могут быть введены перорально или парентерально в дозах от примерно 0,01 мг/кг до примерно 50 мг/кг и предпочтительно от примерно 1 мг/кг до примерно

25 мг/кг массы тела субъекта в сутки, один или большее количество раз в сутки для получения желаемого терапевтического эффекта.

[0237] Жидкие лекарственные формы для перорального введения включают, но не ограничиваются ими, фармацевтически приемлемые эмульсии, микроэмульсии, растворы, суспензии, сиропы и эликсиры. Помимо активных соединений жидкие лекарственные формы могут содержать инертные разбавители, обычно применяемые в данной области техники, такие как, например, вода или другие растворители, солюбилизирующие агенты и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый спирт, бензиловый спирт, пропиленгликоль, 1,3-бутиленгликоль, диметилформамид, масла (в частности, хлопковое, арахисовое, кукурузное, зародышевое, оливковое, касторовое и кунжутное масла), глицерин, тетрагидрофурфуриловый спирт, полиэтиленгликоли и сложные эфиры жирных кислот и сорбитана и их смеси. Кроме инертных разбавителей композиции для перорального введения также могут содержать адъюванты, такие как смачивающие агенты, эмульгирующие и суспендирующие агенты, подсластители, ароматизаторы и отдушки.

[0238] Инъекционные препараты, например стерильные инъекционные водные или масляные суспензии, могут быть приготовлены в соответствии с известным уровнем техники с применением подходящих диспергирующих или смачивающих агентов и суспендирующих агентов. Стерильный инъекционный препарат также может представлять собой стерильный инъекционный раствор, суспензию или эмульсию в нетоксичном парентерально приемлемом разбавителе или растворителе, например раствор в 1,3-бутандиоле. Среди приемлемых сред и растворителей, которые могут применяться, присутствуют вода, раствор Рингера, представленный в Фармакопее США (U.S.P.), и изотонический раствор хлорида натрия. Кроме того, в качестве растворителя или суспендирующей среды традиционно применяют стерильные нелетучие масла. Для этой цели можно применять любое мягкое нелетучее масло, включая синтетические моно- или диглицериды. Кроме того, для приготовления инъекционных препаратов применяют жирные кислоты, такие как олеиновая кислота.

[0239] Инъекционные препараты можно стерилизовать, например, путем фильтрования через фильтр, задерживающий бактерии, или путем введения стерилизующих агентов в форме стерильных твердых композиций, которые можно растворять или диспергировать в стерильной воде или другой стерильной инъекционной среде перед применением.

[0240] Для продления действия соединения согласно настоящему изобретению часто бывает желательным замедлить скорость всасывания соединения при подкожной или внутримышечной инъекции. Это можно обеспечить путем использования жидкой суспензии кристаллического или аморфного материала с малой растворимостью в воде. Скорость всасывания соединения, таким образом, зависит от скорости его растворения, которая, в свою очередь, может зависеть от размера кристалла и кристаллической формы. В качестве альтернативы, отсроченное всасывание вводимой соединения обеспечивают парентерально формы путем растворения суспендирования соединения в масляной среде. Инъекционные депо-формы получают путем формирования микрокапсульных матриц соединения в биоразлагаемых полимерах, таких как полилактид-полигликолид. В зависимости от соотношения количеств соединения и полимера и природы конкретного используемого полимера можно контролировать скорость высвобождения соединения. Примеры других биоразлагаемых полимеров включают поли(ортоэфиры) И поли(ангидриды). Инъекционные депо-составы также получают путем заключения соединения в липосомы или микроэмульсии, которые являются совместимыми с тканями организма.

[0241] Композиции для ректального или вагинального введения предпочтительно представляют собой суппозитории, которые могут быть получены путем смешивания соединений согласно настоящему изобретению с подходящими нераздражающими впомогательными веществами или носителями, такими как масло какао, полиэтиленгликоль или воск для суппозиториев, которые являются твердыми при температуре окружающей среды, но жидкими при температуре тела и, следовательно, размягчаются в прямой кишке или полости влагалища с высвобождением активного соединения.

[0242] Твердые лекарственные формы для перорального введения включают капсулы, таблетки, пилюли, порошки и гранулы. В таких твердых лекарственных формах активное соединение смешивают c по меньшей мере одним инертным фармацевтически приемлемым вспомогательным веществом или носителем, таким как цитрат натрия или дикальцийфосфат, и/или а) наполнителями или веществами, увеличивающими объем, такими как крахмалы, лактоза, сахароза, глюкоза, маннит и кислота, b) связующими веществами, такими карбоксиметилцеллюлоза, альгинаты, желатин, поливинилпирролидинон, сахароза и камедь, с) увлажнителями, такими как глицерин, d) дезинтегрирующими агентами,

такими как агар-агар, карбонат кальция, картофельный или тапиоковый крахмал, альгиновая кислота, некоторые силикаты и карбонат натрия, е) агентами, замедляющими растворение, такими как парафин, f) ускорителями всасывания, такими как четвертичные аммониевые соединения, g) смачивающими агентами, такими как, например, цетиловый спирт и моностеарат глицерина, h) абсорбентами, такими как каолин и бентонитовая глина и i) смазывающими веществами, такими как тальк, стеарат кальция, стеарат магния, твердые полиэтиленгликоли, лаурилсульфат натрия и их смеси. В случае капсул, таблеток и пилюль лекарственная форма также может содержать буферные агенты.

[0243] Твердые композиции аналогичного типа также могут применяться в качестве наполнителей в мягких и твердых желатиновых капсулах с использованием таких наполнителей как лактоза или молочный сахар, а также высокомолекулярные полиэтиленгликоли и тому подобное. Твердые лекарственные формы таблеток, драже, капсул, пилюль и гранул могут быть получены с покрытиями и оболочками, такими как энтеросолюбильные покрытия и другие покрытия, хорошо известные в области получения фармацевтических составов. Они могут необязательно содержать матирующие агенты и также могут иметь такой состав, что они высвобождают исключительно или предпочтительно активный ингредиент(ы) в определенной части кишечного тракта, необязательно, с отсрочкой. Примеры заключающих композиций, которые могут применяться, включают полимерные вещества и воски. Твердые композиции подобного типа также могут применяться в качестве наполнителей в мягких и твердых желатиновых капсулах с использованием таких наполнителей как лактоза или молочный сахар, а также высокомолекулярные полиэтиленгликоли и тому подобное.

[0244] Активные соединения также могут находиться в форме микрокапсул с одним или более наполнителями, как указано выше. Твердые лекарственные формы таблеток, драже, капсул, пилюль и гранул могут быть получены с покрытиями и оболочками, такими как энтеросолюбильные покрытия, покрытия, регулирующие высвобождение, и другими покрытиями, хорошо известными в области получения фармацевтических составов. В таких твердых лекарственных формах активное соединение может быть смешано по меньшей мере с одним инертным разбавителем, таким как сахароза, лактоза или крахмал. Такие лекарственные формы также могут содержать, как это принято в практике, дополнительные вещества, отличные от инертных разбавителей,

например смазывающие вещества для таблетирования и другие вспомогательные вещества для таблетирования, такие как стеарат магния и микрокристаллическая целлюлоза. В случае капсул, таблеток и пилюль лекарственные формы также могут содержать буферные агенты. Они могут необязательно содержать матирующие агенты и также могут иметь такой состав, что они высвобождают исключительно или предпочтительно активный ингредиент(ы) в определенной части кишечного тракта, необязательно с отсрочкой. Примеры заключающих композиций, которые могут применяться, включают полимерные вещества и воски.

[0245] Лекарственные формы для местного или трансдермального соединения согласно настоящему изобретению включают мази, пасты, кремы, лосьоны, гели, порошки, растворы, спреи, ингалянты или пластыри. Активный компонент смешивают в стерильных условиях с фармацевтически приемлемым носителем и любыми необходимыми консервантами или буферами, которые могут потребоваться. Состав для внутриглазного введения, ушные капли и глазные капли также включены в объем настоящего изобретения. Кроме того, настоящее изобретение предусматривает применение трансдермальных пластырей, которые дополнительное преимущество, заключающееся в обеспечении контролируемой доставки соединения в организм. Такие лекарственные формы могут быть получены путем растворения или диспергирования соединения в подходящей среде. Усилители всасывания также могут применяться для увеличения скорости потока соединения через кожу. Скорость можно контролировать либо путем применения регулирующей скорость мембраны, либо за счет диспергирования соединения в полимерной матрице или геле.

Количества и режимы дозирования

[0246] В соответствии со способами согласно настоящему изобретению, соединения согласно настоящему изобретению вводят субъекту в терапевтически эффективном количестве, достаточном для уменьшения или смягчения симптомов заболевания у субъекта. Это количество легко определит специалист в данной области техники на основании известных процедур, включая анализ кривых титрования, полученных *in vivo*, и способов и количественных определений, раскрытых в настоящем документе.

[0247] В некоторых вариантах реализации эти способы включают введение терапевтически эффективной дозы соединений согласно настоящему описанию. В

некоторых вариантах реализации изобретения терапевтически эффективная доза составляет по меньшей мере примерно 0,0001 мг/кг массы тела, по меньшей мере примерно 0,001 мг/кг массы тела, по меньшей мере примерно 0,01 мг/кг массы тела, по меньшей мере примерно 0,05 мг/кг массы тела, по меньшей мере примерно 0,1 мг/кг массы тела, по меньшей мере примерно 0,25 мг/кг массы тела, по меньшей мере примерно 0,3 мг/кг массы тела, по меньшей мере примерно 0,5 мг/кг массы тела, по меньшей мере примерно 0,75 мг/кг массы тела, по меньшей мере примерно 1 мг/кг массы тела, по меньшей мере примерно 2 мг/кг массы тела, по меньшей мере примерно 3 мг/кг массы тела, по меньшей мере примерно 4 мг/кг массы тела, по меньшей мере примерно 5 мг/кг массы тела, по меньшей мере примерно 6 мг/кг массы тела, по меньшей мере примерно 7 мг/кг массы тела, по меньшей мере примерно 8 мг/кг массы тела, по меньшей мере примерно 9 мг/кг массы тела, по меньшей мере примерно 10 мг/кг массы тела, по меньшей мере примерно 15 мг/кг массы тела, по меньшей мере примерно 20 мг/кг массы тела, по меньшей мере примерно 25 мг/кг массы тела, по меньшей мере примерно 30 мг/кг массы тела, по меньшей мере примерно 40 мг/кг массы тела, при по меньшей мере примерно 50 мг/кг массы тела, по меньшей мере примерно 75 мг/кг массы тела, по меньшей мере примерно 100 мг/кг массы тела, по меньшей мере примерно 200 мг/кг массы тела, по меньшей мере примерно 250 мг/кг массы тела, по меньшей мере примерно 300 мг/кг массы тела, по меньшей мере примерно 350 мг/кг массы тела, по меньшей мере примерно 400 мг/кг массы тела, по меньшей мере примерно 450 мг/кг массы тела, по меньшей мере примерно 500 мг/кг массы тела, по меньшей мере примерно 550 мг/кг массы тела, по меньшей мере примерно 600 мг/кг массы тела, по меньшей мере примерно 650 мг/кг массы тела, по меньшей мере примерно 700 мг/кг массы тела, по меньшей мере примерно 750 мг/кг массы тела, по меньшей мере примерно 800 мг/кг массы тела, по меньшей мере примерно 900 мг/кг массы тела или по меньшей мере примерно 1000 мг/кг массы тела. Следует понимать, что любая из доз, перечисленных в настоящем документе, может представлять собой верхнюю или нижнюю границу диапазона доз и может быть объединена с любой другой дозой с образованием некоторого диапазона доз, включающего его верхнюю и нижнюю границу.

[0248] В некоторых вариантах реализации изобретения терапевтически эффективная доза находится в диапазоне от примерно 0,1 мг до примерно 10 мг/кг массы тела, от

примерно 0,1 мг до примерно 6 мг/кг массы тела, от примерно 0,1 мг до примерно 4 мг/кг массы тела или от примерно 0,1 мг до примерно 2 мг/кг массы тела.

[0249] В некоторых вариантах реализации изобретения терапевтически эффективная доза находится в диапазоне примерно от 1 до 500 мг, примерно от 2 до 150 мг, примерно от 2 до 120 мг, примерно от 2 до 80 мг, примерно от 2 до 40 мг, примерно от 5 до 150 мг, примерно от 5 до 80 мг, примерно от 10 до 150 мг, примерно от 10 до 120 мг, примерно от 10 до 80 мг, примерно от 10 до 40 мг, примерно от 20 до 150 мг, примерно от 20 до 150 мг, примерно от 20 до 150 мг, примерно от 20 до 100 мг, примерно от 20 до 100 мг, примерно от 40 до 150 мг, примерно от 40 до 120 мг или примерно от 40 до 80 мг.

[0250] В некоторых вариантах реализации способы включают введение однократной дозы (например, однократную инъекцию или депонирование). В некоторых вариантах реализации в качестве альтернативы эти способы включают введение дозы нуждающемуся в этом субъекту один раз в сутки, два раза в сутки, три раза в сутки или четыре раза в сутки на протяжении от примерно 2 до примерно 28 дней, или от примерно 7 до примерно 10 дней, или от примерно 7 до примерно 15 дней, или дольше. В некоторых вариантах реализации эти способы включают длительное или постоянное введение. В то же время в других вариантах реализации эти способы включают введение в течение нескольких недель, месяцев, лет или десятилетий. В других вариантах реализации эти способы включают введение в течение нескольких недель. В других вариантах реализации эти способы включают введение в течение объекти в течение в течение в течение объекти в течение в течение объекти в течение

[0251] Вводимая доза может варьироваться в зависимости от известных факторов, таких как фармакодинамические характеристики активного ингредиента, способ и путь его введения; время введения активного ингредиента; возраст, пол, здоровье и вес реципиента; характер и степень симптомов; вид проводимого параллельно другого лечения, периодичность проведения лечения и его желаемый эффект; и скорость Bce определяются выведения. они легко И ΜΟΓΥΤ быть использованы квалифицированным специалистом для корректировки или подбора доз и/или режимов дозирования.

Ингибирование протеинкиназ

[0252] Согласно одному варианту реализации настоящее изобретение относится к способу ингибирования активности протеинкиназы в биологическом образце, включающему стадию приведения указанного биологического образца в контакт с соединением согласно настоящему изобретению или композицией, содержащей указанное соединение.

[0253] Согласно другому варианту реализации настоящее изобретение относится к способу ингибирования активности FGFR2 или его мутанта в биологическом образце, включающему стадию приведения указанного биологического образца в контакт с соединением согласно настоящему изобретению или композицией, содержащей указанное соединение. В определенных вариантах реализации настоящее изобретение относится к способу обратимого ингибирования активности FGFR2 или его мутанта в биологическом образце, включающему стадию приведения указанного биологического образца в контакт с соединением согласно настоящему изобретению или композицией, содержащей указанное соединение. В определенных вариантах реализации настоящее изобретение относится к способу необратимого ингибирования активности FGFR2 или его мутанта в биологическом образце, включающему стадию приведения указанного биологического образца в контакт с соединением согласно настоящему изобретению или композицией, содержащей указанное соединение.

[0254] В некоторых вариантах реализации настоящее изобретение относится к способу необратимого ингибирования FGFR2 или его мутанта, в котором соединение согласно настоящему изобретению образует ковалентную связь с FGFR2 или его мутантом. В некоторых вариантах реализации настоящее изобретение относится к способу необратимого ингибирования FGFR2 или его мутанта, в котором соединение согласно настоящему изобретению образует ковалентную связь между радикалом R^W в соединении и цистеином в FGFR2 или его мутанте. В некоторых вариантах реализации настоящее изобретение относится к способу необратимого ингибирования FGFR2 или его мутанта, в котором соединение согласно настоящему изобретению образует ковалентную связь между радикалом R^W в соединении и Cys491 в FGFR2 или его мутанте.

[0255] Согласно другому варианту реализации настоящее изобретение относится к FGFR2 или его мутанту, необратимо ингибированному соединением согласно

настоящему изобретению. В некоторых вариантах реализации настоящее изобретение относится к FGFR2 или его мутанту, ковалентно связанному с соединением согласно настоящему изобретению. В некоторых вариантах реализации настоящее изобретение относится к FGFR2 или его мутанту, ковалентно связанному с соединением согласно настоящему изобретению, где ковалентная связь образована между R^W в соединении и цистеином в FGFR2 или его мутанте. В некоторых вариантах реализации настоящее изобретение относится к FGFR2 или его мутанту, ковалентно связанному с соединением согласно настоящему изобретению, где ковалентная связь образована между R^W в соединении и Cys491 в FGFR2 или его мутанте.

[0256] В другом варианте реализации настоящего изобретения предложен способ селективного ингибирования FGFR2 в присутствии одного или большего количества других рецепторов, выбранных из FGFR1, FGFR3 и FGFR4. В некоторых вариантах реализации соединение согласно настоящему изобретению является более чем 5-кратно селективным по сравнению с FGFR1, FGFR3 и FGFR4. В некоторых вариантах реализации соединение согласно настоящему изобретению является более чем в 10-кратно селективным по сравнению с FGFR1, FGFR3 и FGFR4. В некоторых вариантах реализации соединение согласно настоящему изобретению является более чем в 50-кратно селективным по сравнению с FGFR1, FGFR3 и FGFR4. В некоторых вариантах реализации соединение согласно настоящему изобретению является более чем в 100-кратно селективным по сравнению с FGFR1, FGFR3 и FGFR4. В некоторых вариантах реализации соединение согласно настоящему изобретению является более чем в 200-кратно селективным по сравнению с FGFR1, FGFR3 и FGFR4.

[0257] Термин «биологический образец» в контексте настоящего описания включает, без ограничений, культуры клеток или их экстракты; биопсийный материал, полученный от млекопитающих, или его экстракты; и кровь, слюну, мочу, кал, семенную жидкость, слезы или другие биологические жидкости организма или их экстракты.

[0258] Ингибирование активности FGFR2 (или его мутанта) в биологическом образце применимо для самых разных целей, известных специалисту в данной области техники. Примеры таких целей включают, но не ограничиваются ими, переливание крови, трансплантацию органов, хранение биологических образцов и выполнение биологических проб.

[0259] Другой вариант реализации настоящего изобретения относится к способу ингибирования активности протеинкиназы у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение.

[0260] Согласно другому варианту реализации настоящее изобретение относится к способу ингибирования активности FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению, или композиции, содержащей указанное соединение. Согласно определенным вариантам реализации настоящее изобретение относится к способу обратимого или необратимого ингибирования активности одного или большего количества из FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение. В некоторых вариантах реализации настоящее изобретение относится к способу обратимого ингибирования активности одного или большего количества из FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение. В некоторых вариантах реализации настоящее изобретение относится к способу необратимого ингибирования активности одного или большего количества из FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение.

[0261] В некоторых вариантах реализации настоящее изобретение относится к способу необратимого ингибирования активности одного или большего количества из FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение, при этом указанное соединение образует ковалентную связь с FGFR2 или его мутантом. В некоторых вариантах реализации настоящее изобретение относится к способу необратимого ингибирования активности одного или большего количества из FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение, при этом указанное соединение образует ковалентную связь между R^W в соединении и цистеином в FGFR2 или его мутанте. В некоторых вариантах реализации настоящее изобретение относится к способу

необратимого ингибирования активности одного или большего количества из FGFR2 или его мутанта у пациента, включающему стадию введения указанному пациенту соединения согласно настоящему изобретению или композиции, содержащей указанное соединение, при этом указанное соединение образует ковалентную связь между R^W в соединении и Cys491 в FGFR2 или его мутанте.

[0262] Согласно другому варианту реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции. Такие заболевания подробно описаны в настоящем документе. В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции, при этом указанное соединение обратимо ингибирует FGFR2 или его мутант.

[0263] В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции, при этом указанное соединение необратимо ингибирует FGFR2 или его мутант. В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции, при этом указанное соединение образует ковалентную связь с FGFR2 или его мутантом. В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции, при этом указанное соединение образует ковалентную связь между RW в соединении и цистеином в FGFR2 или его мутанте. В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения

указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции, при этом указанное соединение образует ковалентную связь между R^W в соединении и Cys491 в FGFR2 или его мутанте.

[0264] Согласно другому варианту реализации настоящего изобретения предложен способ ингибирования сигнальной активности FGFR2 или его мутанта у субъекта, включающий введение терапевтически эффективного количества соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции нуждающемуся в этом субъекту. В некоторых вариантах реализации настоящего изобретения предложен способ ингибирования сигнальной активности FGFR2 у субъекта, включающий введение терапевтически эффективного количества соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции нуждающемуся в этом субъекту.

[0265] В некоторых вариантах реализации настоящего изобретения предложен способ лечения заболевания, опосредованного FGFR2 или его мутантом, у нуждающегося в этом пациента, включающий стадию введения указанному пациенту соединения согласно настоящему изобретению или его фармацевтически приемлемой композиции, при этом указанное соединение обратимо ингибирует FGFR2 или его мутант.

[0266] Соединения, описанные в настоящем документе, также могут ингибировать функцию FGFR2 посредством включения в состав агентов, катализирующих разложение FGFR2. Например, соединения могут быть включены в состав протеолизтаргетированной химеры (PROTAC). PROTAC представляет собой бифункциональную молекулу, одна часть которой способна взаимодействовать с ЕЗ убиквитинлигазой, а другая часть обладает способностью связываться с целевым белком, предназначенным для деградации с помощью механизма контроля качества клеточных белков. Рекрутирование целевого белка к специфической Е3 лигазе обеспечивает его маркировку для разрушения (т.е. убиквитинирование) и последующей деградации протеасомой. Может быть использована любая Е3 лигаза. Часть молекулы PROTAC, которая взаимодействует с Е3 лигазой, соединена с частью молекулы PROTAC, которая взаимодействует с целевым белком, через линкер, представляющий собой цепочку атомов переменной длины. Таким образом, рекрутирование FGFR2 к Е3 лигазе приводит к разрушению белка FGFR2. Цепочка атомов переменной длины может включать, например, кольца, гетероатомы и/или повторяющиеся полимерные звенья. Она может быть жесткой или гибкой. Она может присоединяться к двум

описанным выше частям молекулы химеры с помощью стандартных методик, известных в области органического синтеза.

Комбинированные терапии

[0267] В зависимости от конкретного расстройства, состояния или заболевания, подлежащего лечению, в комбинации с соединениями и композициями согласно настоящему изобретению могут быть введены дополнительные терапевтические агенты, которые обычно вводят для лечения такого состояния. В контексте настоящего документа дополнительные терапевтические агенты, которые обычно вводят для лечения конкретного заболевания или состояния, известны как «подходящие для заболевания или состояния, подлежащего лечению».

[0268] Соответственно, в определенных вариантах реализации способ лечения включает введение соединения или композиции согласно настоящему изобретению в комбинации с одним или большим количеством дополнительных терапевтических агентов. В других определенных вариантах реализации способ лечения включает введение соединения или композиции согласно настоящему изобретению как единственного терапевтического агента.

[0269] B некоторых вариантах реализации один ИЛИ большее количество терапевтических агентов выбраны из антител, коньюгатов антител с лекарственными ингибиторов средствами, киназ, иммуномодуляторов И ингибиторов гистондеацетилазы. В некоторых вариантах реализации один или большее количество терапевтических агентов выбраны из следующих агентов или их фармацевтически приемлемых солей:. Ингибиторы BCR-ABL: например, иматиниб, инилотиниб, нилотиниб, дазатиниб, бозутиниб, понатиниб, бафетиниб, данусертиб, саракатиниб, PF03814735; Ингибиторы ALK (см. публикацию Dardaei et al, 2018, Nat Med.; 24(4):512-517): например, кризотиниб, NVP-TAE684, церитиниб, бригатиниб, энтректиниб, лорлатиниб; Ингибиторы BRAF (см. публикацию Prahallad et al, 2015, Cell Rep. 12, 1978–1985): например, вемурафениб, дабрафениб; Ингибиторы FGFR: например, инфигратиниб, довитиниб, эрдафитиниб, BLU-554, AZD4547; Ингибиторы FLT3: например, сунитиниб, мидостаурин, танутиниб, сорафениб, лестауртиниб, квизартиниб и креноланиб; Ингибиторы MEK (см. публикацию Fedele et al, 2018, BioRxiv 307876; Torres-Ayuso et al, 2018, Cancer Discov. 8, 1210-1212; and Wong et al, 2016, Oncotarget. 2016 Oct 4; 7(40): 65676-65695): например, траметиниб,

кобиметиниб, биниметиниб, селуметиниб; Ингибиторы ERK: например, уликсертиниб, МК-8353, LY-3214996; Ингибиторы рецептора VEGF: например, бевацизумаб, акситиниб, афлиберцепт, бриваниб, мотесаниб, пасиреотид, сорафениб; Ингибиторы тирозинкиназы: например, эрлотиниб, линифаниб, сунитиниб, пазопаниб; Ингибиторы рецептора эпидермального фактора роста (EGFR): гефитиниб, осимертиниб, цетуксимаб, панитумумаб; Ингибиторы рецептора HER2: например, трастузумаб, нератиниб, лапатиниб; Ингибиторы МЕТ: например, кризотиниб, кабозантиниб; Антитела CD20: например, ритуксимаб, тозитумомаб, офатумумаб; Ингибиторы синтеза ДНК: например, капецитабин, гемцитабин, неларабин, гидроксикарбамид; Антинеопластические агенты: например, оксалиплатин, цисплатин; Ингибиторы пертузумаб; Модуляторы человеческого димеризации HER: например, гранулоцитарного колониестимулирующего фактора (G-CSF): например, филграстим; Иммуномодуляторы: например, афутузумаб, леналидомид, талидомид, помалидомид; Ингибиторы CD40: например, дацетузумаб; Проапоптотические агонисты рецепторов (PARA): например, дуланермин; Ингибиторы белков теплового шока (HSP): например, танеспимицин 17-аллиламино-17 -деметоксигельданамицин); Антагонисты сигнального пути Hedgehog: например, висмодегиб; Ингибиторы протеасом: например, бортезомиб; Ингибиторы РІЗК: например, пиктилисиб, дактолизиб, бупарлисиб, таселисиб, иделалисиб, дувелисиб, умбралисиб; Ингибиторы фосфолипазы А2: например, анагрелид; Ингибиторы BCL-2: например, венетоклакс; Ингибиторы ароматазы: эксеместан, летрозол, анастрозол, фаслодекс, тамоксифен; Ингибиторы топоизомеразы І: например, иринотекан, топотекан; Ингибиторы топоизомеразы ІІ: например, этопозид, тенипозид; Ингибиторы mTOR: например, темсиролимус, ридафоролимус, эверолимус, сиролимус; Ингибиторы остеокластической резорбции костной ткани: например, золедроновая кислота; Конъюгаты антитела СD33 с лекарственными средствами: например, гемтузумаб озогамицин; Конъюгаты антитела СD22 с лекарственными средствами: например, инотузумаб озогамицин; Конъюгаты антитела CD20 с лекарственными средствами: например, ибритутомаб тиуксетан; Аналоги соматостатина: например, октреотид; Интерлейкин-11 (IL-11): например, опрелвекин; Синтетический эритропоэтин: например, дарбэпоэтин альфа; Ингибиторы рецептора-активатора ядерного фактора каппа-В (RANK): например, деносумаб; Белки-миметики тромбопоэтина: например, ромиплостим; Стимуляторы клеточного роста: например, палифермин; Антитела рецептора инсулиноподобного фактора роста 1 (IGF-1R): например, фигитумумаб; Антитела anti-CSI: например, элотузумаб;

Ингибиторы Антитела CD52: например, алемтузумаб; CTLA-4: например, тремелимумаб, ипилимумаб; Ингибиторы PD1: например, ниволумаб, пембролизумаб; Иммуноадгезины: например, пидилизумаб, AMP-224; Ингибиторы PDL1: например, MSB0010718C; YW243.55.S70, MPDL3280A; MEDI-4736, MSB-0010718C или MDX-1105; Ингибиторы LAG-3: например, BMS-986016; Агонисты GITR; белки слияния GITR и антитела anti-GITR; Ингибиторы гистондеацетилазы (HDI): например, вориностат; Антитела anti-CTLA4: например, тремелимумаб, ипилимумаб; Алкилирующие агенты: например, темозоломид, дактиномицин, мелфалан, алтретамин, кармустин, бендамустин, бусульфан, карбоплатин, ломустин, цисплатин, хлорамбуцил, циклофосфамид, дакарбазин, алтретамин, ифосфамид, прокарбазин, мехлорэтамин (мустин или хлорметин), стрептозоцин, тиотепа; Модификаторы биологического ответа: например, бацилла Кальмета-Герена, денилейкин-дифтитокс; Противоопухолевые антибиотики: например, доксорубицин, блеомицин, даунорубицин, даунорубицин липосомный, митоксантрон, эпирубицин, идарубицин, митомицин С; Ингибиторы микротубулина: например, эстрамустин; Ингибиторы катепсина К: например, оданакатиб; Аналоги эпотилона: например, иксабепилон; Агонисты TpoR: например, элтромбопаг; Антимитотические агенты: например, доцетаксел; Ингибиторы стероида надпочечников: например, аминоглутетимид; Антиандрогены: например, нилутамид; Ингибиторы андрогеновых рецепторов: например, энзалутамид, абиратерона ацетат, ортеронель, галетерон, севитеронель, бикалутамид, флутамид; Андрогены: например, флуоксиместерон; Ингибиторы CDK1: например, альвоцидиб, палбоциклиб, рибоциклиб, трилациклиб, абемациклиб; Агонисты рецептора гонадотропин-высвобождающего гормона (GnRH): например, лейпрорелин или лейпрорелина ацетат; Антинеопластические средства семейства таксанов: например, кабазитаксел, ларотаксел; Агонисты рецептора 5-HTla: например, ксалипроден; Вакцины от ВПЧ: например, Cervarix®, торгуемый GlaxoSmithKline, Gardasil®, торгуемый Merck; Железо-хелатирующие агенты: например, деферазирокс; Антиметаболиты: например, кладрибин, 5-фторурацил, 6-тиогуанин, пеметрексед, цитарабин, цитарабин липосомный, децитабин, гидроксикарбамид, флударабин, флоксуридин, кладрибин, метотрексат, пентостатин; Бисфосфонаты: например, Деметилирующие 5-азацитидин, памидронат; агенты: например, децитабин; Противоопухолевые растительные алкалоиды: например, паклитаксел, связанный с белком, винбластин, винкристин, винорелбин, паклитаксел; Ретиноиды: например, третиноин, изотретиноин, бексаротен; Глюкокортикостероиды: алитретиноин,

например, гидрокортизон, дексаметазон, преднизолон, преднизон, метилпреднизолон; Цитокины: например интерлейкин-2, интерлейкин-11 (опревелкин), альфа-интерферон (IFN-alpha); Негативные регуляторы фулвестрант; рецептора эстрогена: тамоксифен, торемифен; Антиэстрогены: например, Селективные модуляторы (SERM): рецептора эстрогена например, ралоксифен; Агонисты гормона, стимулирующего высвобождение лютеинизирующего гормона (LHRH): например, гозерелин; Прогестероны: например, мегестрол; Цитотоксические агенты: триоксид мышьяка, аспарагиназа (также известная как L-аспарагиназа, Erwinia L-аспарагиназа); Противорвотные средства: например, антагонисты рецептора NK-1 (например, касопитант); Цитопротекторы: например, амифостин, лейковорин; и Ингибиторы контрольных точек иммунного ответа. Термин «контрольные точки иммунного ответа» относится к группе молекул, находящихся на клеточной поверхности CD4 и CD8 Tклеток. Молекулы контрольных точек иммунного ответа включают, но не ограничиваются ими, Programmed Death 1 (PD-1), Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), B7H1, B7H4, OX-40, CD 137, CD40 и LAG3. Иммунотерапевтические агенты, которые могут действовать в качестве ингибиторов контрольных точек иммунного ответа, пригодных для применения в способах согласно настоящему изобретению, включают, но не ограничиваются ими, ингибиторы PD-L1, PD-L2, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD 160, 2B4 и/или TGFR бета.

вариантах реализации [0270] B ОДИН большее некоторых или количество дополнительных терапевтических агентов выбраны из следующих агентов: антител к FGFR; цитотоксических агентов; терапевтических средств, направленных эндокринных терапевтических эстрогенные рецепторы, ИЛИ других ингибиторов контрольных точек иммунного ответа, ингибиторов СDK, других ингибиторов рецепторной тирозинкиназы, ингибиторов BRAF, ингибиторов МЕК, ингибиторов PI3K, ингибиторов SHP2 и ингибиторов SRC (см. публикацию М. Katoh, Nat. Rev. Clin. Oncol. 2019, 16:105-122; Y.K. Chae, et al. Oncotarget 2017, 8:16052-16074; L. Formisano et al., Nat. Comm. 2019, 10: 1373-1386; и цитируемую в ней литературу).

[0271] Структурные формулы активных соединений, идентифицируемых по кодовым номерам, тривиальным или торговым названиям, можно взять в текущем издании стандартного руководства "The Merck Index" или в базах данных, например, Patents International (например, IMS World Publications).

[0272] Соединение согласно настоящему изобретению также может быть применено в комбинации известными терапевтическими процессами, например введением гормонов или облучением. В некоторых вариантах реализации предложенное соединение применяют в качестве радиосенсибилизатора, в частности для лечения опухолей, которые проявляют плохую чувствительность к радиотерапии.

[0273] Соединение согласно настоящему изобретению можно вводить отдельно или в комбинации с одним или большим количеством других терапевтических соединений, при этом возможная комбинированная терапия принимает форму фиксированных комбинаций, или производится путем введения соединения согласно настоящему изобретению и одного или большего количества других терапевтических соединений поэтапно или независимо друг от друга, или путем комбинированного введения комбинаций И большего фиксированных одного или количества терапевтических соединений. Соединение согласно настоящему изобретению можно, помимо прочего или в дополнение, назначать главным образом для лечения опухолей в сочетании с химиотерапией, радиотерапией, иммунотерапией, фототерапией, хирургическим вмешательством или их комбинациями. Длительная терапия также возможна, как и адъювантная терапия в контексте других стратегий лечения, как описано выше. Другими возможными способами лечения являются терапия для поддержания состояния пациента после регрессии опухоли или даже химиопрофилактическая терапия, например, у пациентов из группы риска.

[0274] Указанные дополнительные агенты могут быть введены отдельно от композиции, содержащей соединение согласно настоящему изобретению, как часть схемы с многократным дозированием. Как вариант, эти агенты могут представлять собой часть лекарственной формы с однократной дозой, будучи смешанными с соединением согласно настоящему изобретению в единую композицию. При введении в виде части схемы с многократным дозированием два активных агента могут быть введены одновременно, последовательно или в течение определенного промежутка времени между их введением, обычно в пределах пяти часов между введением одного и другого.

[0275] В настоящем документе термины «комбинация», «комбинированный» и родственные им термины относятся к одновременному или последовательному введению терапевтических агентов в соответствии с настоящим изобретением. Например, комбинация согласно настоящему изобретению может быть введена с

другим терапевтическим агентом одновременно или последовательно в отдельных лекарственных формах с единичными дозами или совместно в единой лекарственной форме с единичными дозами. Соответственно, в настоящем изобретении предложена единая дозированная лекарственная форма, содержащая соединение согласно настоящему изобретению, дополнительный терапевтический агент и фармацевтически приемлемый носитель, адъювант или среду.

[0276] Количества соединения согласно настоящему изобретению и дополнительного терапевтического агента (в композициях, содержащих дополнительный терапевтический агент, как это описано выше), которые можно комбинировать с материалами-носителями для получения единой дозированной лекарственной формы, будет варьироваться в зависимости от хозяина, подвергаемого лечению, и конкретного способа введения. Предпочтительно композиции согласно настоящему изобретению должны быть приготовлены таким образом, чтобы доза соединения согласно настоящему изобретению составляла от 0,01 до 100 мг/кг массы тела/сутки.

[0277] В тех композициях, которые содержат дополнительный терапевтический агент, этот дополнительный терапевтический агент и соединение согласно настоящему изобретению могут действовать синергетически. Следовательно, количество дополнительного терапевтического агента в таких композициях будет меньше, чем это требуется при монотерапии, использующей только этот терапевтический агент. В таких композициях можно вводить дозу дополнительного терапевтического агента в пределах от 0,01 до 1000 µг/кг массы тела/сутки.

[0278] Количество дополнительного терапевтического агента, присутствующего в композициях согласно настоящему изобретению, не будет превышать количество, которое обычно вводят в композицию, содержащую этот терапевтический агент в качестве единственного активного агента. Предпочтительно количество дополнительного терапевтического агента в композициях, раскрытых в настоящем документе, будет составлять примерно от 50% до 100% от количества, которое обычно присутствует в композиции, содержащей этот агент в качестве единственного терапевтически активного агента.

[0279] Соединения согласно настоящему изобретению или их фармацевтические композиции также могут быть включены в композиции для покрытия имплантируемого медицинского устройства, такого как протезы, искусственные

клапаны, сосудистые трансплантаты, стенты и катетеры. Сосудистые стенты, например, используют для преодоления рестеноза (повторного сужения стенки сосуда после травмы). Однако для пациентов со стентами или другими имплантируемыми устройствами существует риск тромбообразования или активации тромбоцитов. Эти эффекты нежелательные могут быть исключены или путем смягчены предварительного покрытия устройства фармацевтически приемлемой композицией, содержащей ингибитор киназы. Имплантируемые устройства, покрытые соединением согласно настоящему изобретению, являются еще одним вариантом реализации настоящего изобретения.

[0280] Любое из соединений и/или композиций согласно настоящему изобретению может быть представлено в наборе, содержащем соединения и/или композиции. Так в некоторых вариантах реализации соединение и/или композиция согласно настоящему описанию представлена в наборе.

[0281] Настоящее изобретение дополнительно описано с помощью следующих неограничивающих примеров.

ПРИМЕРЫ

[0282] Здесь приведены примеры, способствующие более полному пониманию настоящего изобретения. Представленные далее примеры служат в качестве иллюстрации типичных способов получения и практического применения предмета изобретения. Однако не следует считать, что объем настоящего изобретения ограничивается только этими конкретными вариантами реализации, раскрытыми в приведенных примерах, поскольку они являются лишь иллюстративными.

[0283] Как описано в примерах ниже, в определенных типичных вариантах реализации соединения получали в соответствии со следующими общими методиками. Следует понимать, что хотя общие методики показывают путь синтеза определенных конкретных соединений согласно настоящему изобретению, эти общие методики, а также другие способы, известные специалистам в данной области техники, могут быть применены и для других классов, подклассов и видов каждого из таких соединений, описанных в настоящем документе. Дополнительные соединения согласно настоящему изобретению получали способами, по существу аналогичными тем, которые описаны в

настоящем документе в разделе «Примеры», и способами, известными специалистам в данной области техники.

[0284] В описании приведенных ниже способов синтеза, если не указано иное, следует понимать, что все реакционные условия (например, реакционный растворитель, атмосфера, температура, продолжительность и рабочие процедуры) выбраны из стандартных условий, принятых для этой реакции. Что касается общих схем, специалистам в области органического синтеза понятно, что функциональность, представленная на различных участках молекулы, должна быть совместима с предложенными реагентами и реакциями. Заместители, не совместимые с реакционными условиями, будут очевидны специалистам в данной области техники, и поэтому указаны альтернативные способы синтеза (например, использование специальных защитных групп или альтернативных реакций). Исходные материалы, взятые для примеров, являются обычными, доступными в продаже или легко получаются стандартными способами из известных материалов.

[0285] По меньшей мере некоторые из соединений, обозначенные в настоящем документе как "промежуточные соединения", рассматриваются в качестве соединений согласно настоящему изобретению.

[0286] В некоторых вариантах реализации изобретения соединения формулы I получают согласно общей методике, показанной на Схеме 1 ниже.

Схема 1

[0287] В некоторых вариантах реализации изобретения Стадия 1 включает конденсацию Int-1 с соединением формулы $X-R^7$, в результате чего получается соединение формулы Int-2, где R^7 уже определен в представленных здесь вариантах реализации изобретения, а X представляет собой уходящую группу.

[0288] В некоторых вариантах реализации изобретения Стадия 2 включает иодирование соединения формулы Int-2. В некоторых вариантах реализации изобретения используемый реагент представляет собой N-иодсукцинимид.

[0289] В некоторых вариантах реализации изобретения Стадия 3 включает реакцию сочетания соединения формулы Int-3 с синтоном, содержащим Cy⁶-L⁶-R^W, функционализированным подходящей реакционноспособной группой, посредством чего получают соединение формулы Int-4. В некоторых вариантах реализации изобретения подходящая реакционноспособная группа представляет собой боронатный эфир. В некоторых вариантах реализации изобретения подходящая реакционная группа представляет собой пинаколборонат.

[0290] В некоторых вариантах реализации изобретения Стадия 4 включает реакцию сочетания соединения формулы Int-4 с синтоном, содержащим R^5 , функционализированным подходящей реакционноспособной группой, посредством чего получают соединение формулы I. В некоторых вариантах реализации изобретения подходящая реакционная группа представляет собой бороновую кислоту или боронатный эфир.

Пример 1.

N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

5-Бром-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин

[0291] Стадия 1: В круглодонную колбу загружали 5-бром-7Н-пирроло [2,3d]пиримидин-4-амин (3 г, 14,0 ммоль), Cs_2CO_3 (9,10 г, 28,0 ммоль), DMF (50 мл) и магнитную мешалку. Смесь охлаждали до 0°C и добавляли иодметан (1,98 г, 14,0 ммоль), после чего раствор перемешивали в течение 3 часов при 0°C. Реакционную смесь разбавляли Н2О (300 мл), и водную фазу трижды экстрагировали этилацетатом (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюируя смесью МеОН/DCM=1/80). Концентрация под вакуумом давала 5-бром-7-метил-7Нпирроло[2,3-d]пиримидин-4-амин (2,20)Γ, выход 70%) виде желтого кристаллического твердого вещества.

5-Бром-6-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин

[0292] **Стадия 2:** В круглодонную колбу загружали 5-бром-7-метил-7H-пирроло [2,3-d]пиримидин-4-амин (3 г, 13,2 ммоль), ТFA (7,52 г, 66,0 ммоль), DCM (50 мл) и

магнитную мешалку. Смесь охлаждали до 0°С и добавляли 1-иодпирролидин-2,5-дион (2,96 г, 13,2 ммоль), после чего раствор перемешивали в течение 2 ч при комнатной температуре. Реакционную смесь разбавляли насыщенным раствором Na_2SO_3 (100 мл). Величину рН раствора доводили до уровня $7\sim8$ насыщенным раствором $NaHCO_3$. Полученное твердое вещество фильтровали и промывали H_2O_3 , затем небольшим количеством DCM, в результате чего получали 5-бром-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (3,70 г, выход 80%) в виде белого аморфного твердого вещества.

N-(4-(4-амино-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-6ил)фенил)метакриламид

[0293] Стадия 3: В герметизируемую реакционную пробирку загружали 5-бром-6-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин(3,7 г, 10,51 ммоль), N-(4-(4,4,5,5тетраметил-1,3,2-диоксаборолан-2-ил)фенил)метакриламид г, 12,61 (3,7)Pd(PPh₃)₄ (1,21 г, 1,05 ммоль), K₃PO₄ (6,68 г, 31,53 ммоль), DMF (50 мл), H₂O (3 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 1 ч при 50°C. Затем реакционную смесь концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюируя смесью MeOH/DCM=1/100~1/20). При вакуумом получали N-(4-(4-амино-5-бром-7-метил-7Нконцентрировании под пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (2,2 г, с выходом 54%) в виде твердого почти белого аморфного вещества.

N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илокси)фенил)-7-метил-7Hпирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

[0294] Стадия 4: В герметизируемую реакционную пробирку загружали N-(4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (120 мг, 0,31 ммоль), 2-(2-метокси-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)пиримидин (122 мг, 0,373 ммоль), Pd(DtBPF)Cl₂ (20,1 мг, 0,031 ммоль), CsF (240 мг, 0,930 ммоль), DMF (4 мл), H₂O (0,5 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 ч при 90°С. Затем реакционную смесь концентрировали под вакуумом. Полученный сырой материал очищали методом ТСХ (элюирование смесью МеОН/DCM=1/15). При концентрировании под вакуумом получали N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (13,9 мг, выход 9%) в виде белого твердого аморфного вешества.

Пример 2

Альтернативный путь синтеза для N-(4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламида

6-(4-Аминофенил)-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0295] **Стадия 1:** В круглодонную колбу загружали трет-бутил-4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенилкарбамат (20 г, 47,8 ммоль), DCM (240 мл) и магнитную мешалку. Добавляли ТFA (60 мл). Раствор перемешивали в течение 4 ч при комнатной температуре. Реакционную смесь подщелачивали насыщенным водным раствором Na₂CO₃ (40 мл), очищали фильтрованием от твердых частиц и концентрировали под вакуумом. В результате получали 6-(4-аминофенил)-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (14 г, выход 92,1%) в виде почти белого твердого аморфного вещества.

N-(4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6ил)фенил)метакриламид

[0296] Стадия 2: В герметизируемую реакционную пробирку загружали 6-(4-аминофенил)-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (10,0 г, 31,4 ммоль), смесь DMF и пиридина (4:1, 200 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Раствор охлаждали до 0°С. Затем в DMF (10 мл) растворяли метакрилоилхлорид (4,0 г, 37,7 ммоль), полученный раствор добавляли к указанному выше раствору, и смесь перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь разбавляли H₂O (200 мл), и водную фазу трижды экстрагировали этилацетатом (200 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал перекристаллизовывали в MeCN. При концентрировании под вакуумом получали N-(4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (8,8 г, выход 73%) в виде твердого аморфного вещества почти белого цвета.

Пример 3

4-(4-Амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5ил)-N-(оксетан-2-илметил)бензамид

Метил-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)бензоат

[0297] Стадия 1: В герметизируемую реакционную пробирку загружали 5-иод-7метил-7Н-пирроло[2,3-d]пиримидин-4-амин (20 72,9 Γ, ммоль), [4-(метоксикарбонил)фенил]бороновую кислоту (15,7 г,87,4 ммоль), Pd(DtBPF)Cl₂ $(4,74 \, \Gamma, 7,29 \, \text{ммоль}), \, \text{CsF} \, (33,1 \, \Gamma, 218 \, \text{ммоль}), \, \text{DMF} \, (200 \, \text{мл}), \, \text{H}_2\text{O} \, (25 \, \text{мл}) \, \text{и магнитную}$ мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°C в течение 1 ч.Реакционную смесь разбавляли H₂O (500 мл), и водную фазу трижды подвергали экстракции DCM (200 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. К реакционной смеси добавляли MeCN (10 мл) и фильтровали через слой целита (Celite®), затем этот слой затем промывали MeCN. Фильтрат концентрировали под вакуумом, в результате чего получали твердый продукт, а именно метил-4-{4-амино-7-метил-7H-пирроло[2,3d]пиримидин-5-ил}бензоат (11,0 г, выход 38,9 ммоль), в виде твердого аморфного вещества желтого цвета.

Метил-4-(4-амино-6-иодо-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)бензоат

[0298] **Стадия 2:** В круглодонную колбу загружали метил-4-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}бензоат (10,9 г, 38,6 ммоль), DCM (200 мл), TFA (13,1 г, 115 ммоль) и магнитную мешалку. Смесь охлаждали до 0°C, добавляли NIS (9,53 г, 42,4 ммоль), после чего раствор перемешивали в течение 1 часа при комнатной

температуре. Реакционную смесь разбавляли раствором Na₂SO₃, и водную фазу трижды экстрагировали DCM (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. Добавляли DCM (20 мл), и смесь фильтровали через слой целита (Celite[®]), после чего этот слой промывали небольшим количеством DCM. Фильтрат концентрировали под вакуумом, в результате чего получали твердый продукт, а именно метил-4-{4-амино-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}бензоат (12,0 г, 29,3 ммоль), в виде почти белого твердого аморфного вещества.

Метил-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3d]пиримидин-5-ил)бензоат

[0299] Стадия 3: В герметизируемую реакционную пробирку загружали метил-4-{4-амино-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}бензоат (11,9 г, 29,1 ммоль), 2-метил-N-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]проп-2-енамид (10,0 г, 34,9 ммоль), Pd(dppf)Cl₂ (2,12 г, 2,91 ммоль), K₃PO₄ (18,5 г, 87,3 ммоль), DMF (100 мл), H₂O (12,5 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°С в течение 1 ч. Реакционную смесь разбавляли H₂O (500 мл), и водную фазу трижды экстрагировали DCM (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью MeOH/DCM=1/40). После концентрирования под вакуумом получали метил-4-{4-амино-7-метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}бензоат (7,70 г, 17,4 ммоль) в виде желтого твердого аморфного вещества.

4-(4-Амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5ил)бензойная кислота

[0300] Стадия 4: В круглодонную колбу загружали метил-4-{4-амино-7-метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}бензоат (7,65 г, 17,3 ммоль), МеОН (40 мл), NаОН (2 н. раствор, 40 мл) и магнитную мешалку. Раствор перемешивали в течение ночи при комнатной температуре. Величину рН реакционной смеси доводили до уровня 6~7 раствором НСІ (2 М). Реакционную смесь фильтровали через слой целита (Celite®), затем этот слой промывали H_2O . Фильтрат концентрировали под вакуумом, в результате чего получали твердый продукт, а именно 4-{4-амино-7-метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}бензойную кислоту (6,50 г, 15,2 ммоль), в виде почти белого твердого аморфного вещества.

4-(4-Амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5ил)-N-(оксетан-2-илметил)бензамид

[0301] **Стадия 5:** В круглодонную колбу загружали 4-{4-амино-7-метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}бензойную кислоту (60 мг, 0,14 ммоль), 1-(оксетан-2-ил)метанамин (13,4 мг, 0,15 ммоль), НАТИ (58,7 мг, 0,15 ммоль) DIEA (54,2 мг, 0,42 ммоль) и магнитную мешалку. Добавляли диметилформамид (3 мл), и раствор перемешивали при 25°C в течение 2 часов. Полученный сырой материал очищали методом ВЭЖХ (колонка: XBridge Prep Phenyl OBD Column, 19×150 мм, 5 мкм, 13 нм). После лиофилизации получили 4-{4-амино-7-

метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}-N- [(оксетан-2-ил)метил]бензамид (20,0 мг, 0,040 ммоль) в виде почти белого твердого аморфного вещества.

[0302] Другие такие же соединения, полученные согласно способам, описанным в Примерах 1-3, показаны в Таблице 2 ниже.

Таблица 2. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-	1	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	507,3
метокси-4-(6-	N=	10,29 (s, 1H), 8,21 (s, 1H), 7,72 (d,	
метилпиридин-2-		$J = 8,5 \Gamma$ ц, 2H), 7,66 (t, $J = 7,8 \Gamma$ ц,	
илокси)фенил)-7-метил-	-0	1H), 7,38 – 7,31 (m, 2H), 7,07 (d, <i>J</i>	
7Н-пирроло[2,3-		$= 8,1 \Gamma_{\text{H}}, 1\text{H}, 6,98 - 6,89 \text{ (m, 2H)},$	
d пиримидин-6-	NH ₂	$6,83 \text{ (dd, } J = 8,0,2,0 \ \Gamma \text{ц, 1H)}, 6,64$	
ил)фенил)акриламид	N N	$(d, J = 8,2 \Gamma \mu, 1H), 6,45 (dd, J =$	
	NH NH	17,0, 10,1 Γ ц, 1 H), 6,28 (dd, J =	
	N .	17,0, 2,0 Гц, 1H), 6,06 (s, 2H), 5,78	
		$(dd, J = 10,0, 2,1 \Gamma \mu, 1H), 3,63 (s,$	
		3H), 3,54 (s, 3H), 2,30 (s, 3H).	
N-(3-(4-амино-5-(3-	/	¹ Н ЯМР (400 МГц, Метанол- <i>d</i> ₄) δ	507,35
метокси-4-(6-	N=	8,23 (s, 1H), 7,75 (t, $J = 1.9$ Гц,	
метилпиридин-2-	/ 0-4	1H), 7,67 (ddd, $J = 8,2, 2,2, 1,0 \Gamma$ ц,	
илокси)фенил)-7-метил-		1H), 7,62 (dd, $J = 8,3, 7,4 \Gamma \mu$, 1H),	
7Н-пирроло[2,3-		7,42 (t, J = 7,9 Гц, 1H), 7,13 (ddt, J	
d]пиримидин-6-	NH ₂ HN	= 13,0, 7,8, 1,0 Гц, 2Н), 6,99 –	
ил)фенил)акриламид		6,90 (m, 3H), 6,58 (dt, J = 8,3,0,8	
		Гц, 1H), 6,48 – 6,32 (m, 2H), 5,80	
	N N	$(dd, J = 9,3, 2,5 \Gamma \mu, 1H), 3,74 (s,$	
	,	3H), 3,57 (s, 3H), 2,39 (s, 3H).	
N-(4-(4-амино-5-(3-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	521,35
метокси-4-(6-	N=	8,41 (s, 1H), 7,65 (dd, J = 8,2, 7,3	
метилпиридин-2-		Гц, 1H), 7,54 – 7,44 (m, 2H), 7,42	
илокси)фенил)-7-метил-		-7,34 (m, 2H), $7,12$ (d, $J = 8,0$ Гц,	
7Н-пирроло[2,3-	<i>(</i>)	1H), 7,01 (s, 2H), 6,96 – 6,91 (m,	
d пиримидин-6-	NH ₂	2H), 6,88 (dd, $J = 8,0, 2,0 \Gamma \mu$, 1H),	
ил)фенил)-N-	N N	6,67 - 6,60 (m, 1H), 6,17 (dd, J =	
метилакриламид		$16.8, 2.5 \Gamma$ ц, 1H), 6.08 (d, $J = 11.3$	
	/ //	Гц, 1H), 5,58 – 5,50 (m, 1H), 3,72	
		(s, 3H), 3,67(s, 3H), 3,28 (s, 3H),	
		2,29 (s, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(3-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,24 (s, 1H), 8,21 (s, 1H), 7,74 – 7,63 (m, 3H), 7,37 (t, J = 7,9 Γц, 1H), 7,33 – 7,23 (m, 2H), 7,17 – 6,97 (m, 4H), 6,75 (d, J = 8,2 Γц, 1H), 6,42 (dd, J = 16,9, 10,1 Γц, 1H), 6,26 (dd, J = 17,0, 2,1 Γц, 1H), 5,96 (s, 1H), 5,77 (dd, J = 10,0, 2,1 Γц, 1H), 3,62 (s, 3H), 2,33 (s, 3H).	477,30
1-(6-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3,4-дигидрохинолин-1(2H)-ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, Хлороформ-d) δ 8,31 (s, 1H), 7,59 (t, J = 7,8 Гц, 1H), 7,20 (s, 1H), 7,17 – 7,08 (m, 3H), 6,88 (dd, J = 7,6, 3,0 Гц, 2H), 6,83 (d, J = 2,0 Гц, 1H), 6,65 (d, J = 8,2 Гц, 1H), 6,61 – 6,44 (m, 2H), 5,74 (dd, J = 9,4, 2,7 Гц, 1H), 3,90 (t, J = 6,5 Гц, 2H), 3,82 (s, 3H), 3,64 (s, 3H), 2,73 (t, J = 6,5 Гц, 2H), 2,42 (s, 3H), 2,01 (p, J = 6,5 Гц, 2H).	547,4
1-(5-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)индолин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO-d6) δ 8,39 (s, 1H), 8,18 (s, 1H), 7,66 (t, J = 7,7 Γц, 1H), 7,29 (s, 1H), 7,22 (d, J = 8,4 Γц, 1H), 7,08 (d, J = 8,0 Γц, 1H), 7,03 (d, J = 2,0 Γц, 1H), 6,93 (d, J = 7,4 Γц, 1H), 6,85 – 6,70 (m, 1H), 6,64 (d, J = 8,2 Γц, 1H), 6,32 (d, J = 16,5 Γц, 1H), 5,88 – 5,81 (m, 1H), 4,26 (s, 2H), 3,67 (s, 3H), 3,59 (s, 3H), 3,18 (d, J = 9,0 Γц, 2H), 2,31 (s, 3H).	533,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(5-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)изоиндолин-2-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 1H), 7,65 (t, J = 7,8 Гц, 1H), 7,43 (t, J = 3,9 Гц, 1H), 7,41 – 7,30 (m, 2H), 7,07 (dd, J = 8,1, 1,0 Гц, 1H), 7,00 (d, J = 2,0 Гц, 1H), 6,92 (d, J = 7,3 Гц, 1H), 6,81 (dd, J = 8,0, 1,6 Гц, 1H), 6,67 (ddt, J = 21,6, 8,0, 4,6 Гц, 2H), 6,23 (dt, J = 16,8, 2,2 Гц, 1H), 6,05 (s, 1H), 5,76 (ddd, J = 10,3, 3,7, 2,3 Гц, 1H), 5,00 (s, 1H), 4,95 (s, 1H), 4,73 (d, J = 17,7 Гц, 2H), 3,62 (d, J = 1,7, 3H), 3,56 (s, 3H), 2,29 (d, J = 3,6 Гц, 3H).	533,40
N-(4-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-N- метилакриламид	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 1H), 7,73 (dd, J = 8,1, 7,4 Γц, 1H), 7,48 – 7,40 (m, 2H), 7,37 – 7,22 (m, 4H), 7,14 – 6,96 (m, 3H), 6,78 (d, J = 8,1 Γц, 1H), 6,22 – 6,01 (m, 2H), 5,58 (dd, J = 9,9, 2,7 Γц, 1H), 3,65 (s, 3H), 3,27 (s, 3H), 2,33 (s, 3H).	491,15
1-(6-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3,4- дигидроизохинолин- 2(1H)-ил)проп-2-ен-1- он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,20 (s, 1H), 7,73 (t, $J = 7,7$ Гц, 1H), 7,30 – 7,15 (m, 5H), 7,13 – 7,06 (m, 2H), 7,01 (d, $J = 7,4$ Гц, 1H), 6,89 (dd, $J = 16,7$, 10,5 Γц, 1H), 6,77 (d, $J = 8,2$ Гц, 1H), 6,15 (dd, $J = 16,7$, 2,4 Гц, 1H), 5,88 (s, 2H), 5,72 (dd, $J = 10,4$, 2,4 Гц, 1H), 4,81 (s, 1H), 4,71 (s, 1H), 3,80 (d, $J = 6,3$ Гц, 2H), 3,62 (s, 3H), 2,83 (s, 2H), 2,33 (s, 3H).	517,25
N-(4-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- метилфенил)акриламид	NH ₂ NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,48 (s, 1H), 8,20 (s, 1H), 7,73 (t, J = 7,7 Гц, 1H), 7,62 (d, J = 8,2 Гц, 1H), 7,32 – 7,25 (m, 2H), 7,23 (d, J = 2,0 Гц, 1H), 7,17 (dd, J = 8,3, 2,1 Γц, 1H), 7,15 – 7,07 (m, 2H), 7,01 (d, J = 7,3 Γц, 1H), 6,77 (d, J = 8,1 Γц, 1H), 6,57 (dd, J = 17,0, 10,2 Γц, 1H), 6,26 (dd, J = 17,0, 2,1 Γц, 1H), 6,14 – 5,86 (m, 1H), 5,77 (dd, J = 10,2, 2,0 Гц, 1H), 3,63 (s, 3H), 2,34 (s, 3H), 2,20 (s, 3H).	491,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- фторфенил)акриламид	NH ₂ O N N N N N F	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,21 (s, 1H), 8,15 (t, J = 8,1 Гц, 1H), 7,74 (dd, J = 8,2, 7,4 Гц, 1H), 7,37 – 7,33 (m, 2H), 7,23 – 7,16 (m, 2H), 7,16 – 7,08 (m, 2H), 7,03 (dt, J = 7,4, 0,7 Гц, 1H), 6,77 (dt, J = 8,2, 0,7 Гц, 1H), 6,58 (dd, J = 17,0, 10,2 Гц, 1H), 6,42 (dd, J = 17,0, 1,8 Гц, 1H), 5,83 (dd, J = 10,2, 1,8 Гц, 1H), 3,73 (s, 3H), 2,43 (s, 3H).	495,30
N-(4-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метоксифенил)акрилам ид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,45 (s, 1H), 8,21 (s, 1H), 8,14 (d, J = 8,3 Гц, 1H), 7,74 (t, J = 7,8 Гц, 1H), 7,35 – 7,24 (m, 2H), 7,17 – 7,07 (m, 2H), 7,07 – 6,98 (m, 2H), 6,98 – 6,89 (m, 1H), 6,79 (d, J = 8,1 Γц, 1H), 6,73 (dd, J = 17,0, 10,2 Γц, 1H), 6,25 (dd, J = 17,1, 2,1 Γц, 1H), 5,92 (s, 1H), 5,73 (dd, J = 10,2, 2,1 Γц, 1H), 3,70 (d, J = 9,0 Гц, 6H), 2,34 (s, 3H).	507,35
N-(4-(4-амино-7-метил- 5-(3-метил-4-(6- метилпиридин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,19 (d, J = 1,9 Γц, 1H), 7,77 – 7,66 (m, 3H), 7,41 – 7,30 (m, 2H), 7,21 (d, J = 2,2 Γц, 1H), 7,07 (dd, J = 8,2, 2,2 Γц, 1H), 6,97 (dd, J = 7,8, 5,7 Γц, 2H), 6,69 (d, J = 8,1 Γц, 1H), 6,45 (dd, J = 16,9, 10,1 Γц, 1H), 6,27 (dd, J = 16,9, 2,1 Γц, 1H), 5,92 (s, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 1H), 3,62 (s, 3H), 2,32 (s, 3H), 2,06 (s, 3H).	491,35
N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,56 (d, J = 4,8 Гц, 2H), 8,40 (s, 1H), 7,66 (d, J = 8,2 Гц, 2H), 7,48 (s, 1H), 7,30 (d, J = 2,1 Гц, 1H), 7,17 (d, J = 8,1 Гц, 1H), 7,05 (t, J = 4,8 Гц, 1H), 6,94 (dd, J = 8,1, 2,0 Гц, 1H), 6,86 (d, J = 1,9 Гц, 1H), 6,49 (dd, J = 16,9, 1,3 Гц, 1H), 6,29 (dd, J = 16,9, 10,2 Гц, 1H), 5,83 (dd, J = 10,2, 1,3 Гц, 1H), 5,27 (s, 2H), 3,75 (s, 3H), 3,57 (s, 3H).	494,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-4-(пиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Хлороформ- d) 8 8,39 (s, 1H), 8,15 (ddd, J = 5,0, 2,0, 0,8 Гц, 1H), 7,72 (ddd, J = 8,3, 7,2, 2,0 Гц, 1H), 7,67 (d, J = 8,2 Гц, 2H), 7,44 (s, 1H), 7,30 (d, J = 1,9 Гц, 1H), 7,28 (s, 1H), 7,10 (d, J = 8,1 Гц, 1H), 7,00 (ddd, J = 7,2, 5,0, 0,9 Гц, 1H), 6,98 – 6,89 (m, 2H), 6,86 (d, J = 2,0 Гц, 1H), 6,48 (dd, J = 16,8, 1,2 Гц, 1H), 6,28 (dd, J = 16,8, 10,2 Гц, 1H), 5,83 (d, J = 10,2, 1,2 Гц, 1H), 5,35 (s, 2H), 3,75 (s, 3H), 3,60 (s, 3H).	493,15
N-(4-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)бут-3-енамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,20 (s, 1H), 7,73 – 7,60 (m, 3H), 7,35 – 7,28 (m, 2H), 7,07 (d, J = 8,0 Γц, 1H), 6,98 – 6,89 (m, 2H), 6,82 (dd, J = 8,1, 2,0 Γц, 1H), 6,64 (d, J = 8,2 Γц, 1H), 5,97 (ddt, J = 17,0, 10,1, 6,9 Γц, 1H), 5,19 (dq, J = 17,2, 1,8 Γц, 1H), 5,18 – 5,10 (m, 1H), 3,61 (s, 3H), 3,54 (s, 3H), 3,14 (dt, J = 7,0, 1,5 Γц, 2H), 2,30 (s, 3H).	521,20
N-(4-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)бут-2-инамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,75 (s, 1H), 8,20 (s, 1H), 7,70 – 7,54 (m, 3H), 7,32 (d, J = 8,2 Гц, 2H), 7,07 (d, J = 8,0 Гц, 1H), 7,02 – 6,88 (m, 2H), 6,82 (dd, J = 8,2, 1,9 Гц, 1H), 6,64 (d, J = 8,2 Гц, 1H), 6,02 (s, 2H), 3,57 (d, J = 32,6 Гц, 7H), 2,30 (s, 3H), 2,06 (s, 3H).	519,35
N-(4-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-N-метилбут-2-инамид	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 1H), 7,66 (dd, J = 8,2, 7,3 Γц, 1H), 7,43 (s, 4H), 7,08 (d, J = 8,0 Гц, 1H), 6,97 – 6,90 (m, 2H), 6,87 (dd, J = 8,0, 1,9 Γц, 1H), 6,64 (d, J = 8,2 Γц, 1H), 6,06 (s, 2H), 3,65 (s, 3H), 3,53 (s, 4H), 3,23 (s, 2H), 2,30 (s, 3H), 2,11 (s, 1H), 1,66 (s, 2H).	533,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,21 (s, 1H), 7,77 – 7,70 (m, 2H), 7,70 – 7,62 (m, 1H), 7,36 – 7,29 (m, 2H), 7,07 (d, J = 8,1 Γц, 1H), 6,99 – 6,89 (m, 2H), 6,82 (dd, J = 8,1, 1,9 Γц, 1H), 6,64 (d, J = 8,2 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,62 (s, 3H), 3,55 (s,	521,35
(Е)-N-(4-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)бут-2-енамид	NH ₂ O NH	3H), 2,30 (s, 3H), 1,96 (t, $J = 1,2$ Γ ц, 3H). TH ЯМР (400 М Γ ц, DMSO- d_6) δ 10,09 (d, $J = 5,7$ Γ ц, 1H), 8,20 (s, 1H), 7,66 (ddd, $J = 21,5$, 8,6, 3,9 Γ ц, 3H), 7,32 (dd, $J = 8,7$, 3,2 Γ ц, 2H), 7,07 (dd, $J = 8,0$, 1,7 Γ ц, 1H), 6,98 – 6,89 (m, 2H), 6,88 – 6,75 (m, 2H), 6,64 (d, $J = 8,2$ Γ ц, 1H), 6,13 (dd, $J = 15,1$, 2,0 Γ ц, 1H), 6,0 (m, 1H), 5,25 – 5,10 (m, 1H), 3,62 (d, $J = 3,0$ Γ ц, 3H), 3,54 (s, 3H), 3,14 (dt, $J = 6,8$, 1,6 Γ ц, 1H), 2,30 (s, 3H), 1,88 (d, $J = 6,9$, 1,6 Γ ц,	521,35
N-(4-(4-амино-5-(3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	2H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,27 (s, 1H), 8,19 (s, 1H), 7,72 – 7,64 (m, 2H), 7,34 – 7,24 (m, 3H), 6,90 – 6,78 (m, 2H), 6,76 (dd, J = 2,6, 1,6 Γц, 1H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 3H), 3,67 (s, 3H), 3,60 (s, 3H).	400,1
N-(4-(4-амино-5-(3-метокси-4-(м-толилокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	.¹H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,20 (s, 1H), 7,71 (d, J = 8,4 Γц, 2H), 7,32 (d, J = 8,4 Γц, 2H), 7,19 (t, J = 8,0 Γц, 1H), 6,90 – 6,97 (m, 2H), 6,76 – 6,88 (m, 2H), 6,71 (d, J = 2,0 Γц, 1H), 6,66 - 6,64 (m, 1H), 6,47 - 6,40 (m, 1H), 6,29 – 6,25 (m, 1H), 5,79 - 5,76 (m, 1H), 3,60 (d, J = 18,0 Γц, 6H), 2,27 (s, 3H).	506,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(м- толилокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,27 (s, 1H), 8,19 (s, 1H), 7,69 (d, J = 8,4 Γц, 2H), 7,35 – 7,17 (m, 6H), 7,02 – 6,80 (m, 5H), 6,44 (dd, J = 16,8, 10,0 Γц, 1H), 6,27 (dd, J = 16,8, 2,0 Γц, 1H), 6,16 – 5,66 (m, 2H), 3,61 (s, 3H), 2,30 (s, 3H).	476,15
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,73 (t, J = 8,1 Гц, 3H), 7,33 – 7,22 (m, 4H), 7,13 – 7,05 (m, 2H), 7,01 (d, J = 7,3 Γц, 1H), 6,78 (d, J = 8,2 Γц, 1H), 5,80 (t, J = 1,0 Γц, 1H), 5,53 (t, J = 1,4 Γц, 1H), 3,62 (s, 3H), 3,32 (d, J = 0,7 Γц, 1H), 2,35 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	491,2
N-(4-(4-амино-7-метил- 5-(4-(м- толилокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,19 (s, 1H), 7,71 (d, J = 8,2 Гц, 2H), 7,25 (dd, J = 18,4, 7,8 Γц, 5H), 6,95 (d, J = 8,2 Γц, 3H), 6,91 – 6,82 (m, 2H), 5,86 (s, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,61 (s, 3H), 2,30 (s, 3H), 1,95 (s, 3H).	490,15
N-(4-(4-амино-5-(3-метокси-4-феноксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,20 (s, 1H), 7,77 – 7,69 (m, 2H), 7,37 – 7,27 (m, 4H), 7,04 (t, J = 7,4 Γц, 1H), 7,00 – 6,93 (m, 2H), 6,93 – 6,86 (m, 2H), 6,80 (dd, J = 8,2, 2,0 Γц, 1H), 6,06 (s, 1H), 5,81 (s, 1H), 5,54 (d, J = 1,8 Γц, 1H), 3,60 (d, J = 10,8 Γц, 6H), 1,95 (d, J = 1,4 Γц, 3H).	506,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-4-(м-толилокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,20 (s, 1H), 7,73 (d, J = 8,5 Гц, 2H), 7,30 (d, J = 8,4 Γц, 2H), 7,19 (t, J = 7,9 Γц, 1H), 6,98 – 6,90 (m, 2H), 6,85 (d, J = 7,5 Γц, 1H), 6,79 (dd, J = 8,1, 1,9 Γц, 1H), 6,71 (d, J = 2,3 Γц, 1H), 6,65 (dd, J = 8,2, 2,5 Γц, 1H), 6,04 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,60 (d, J = 12,6 Γц, 6H), 2,27 (s, 3H), 1,95 (s, 3H).	519,23
N-(4-(4-амино-5-(3-метокси-4-((5-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,44 (d, J = 0,8 Гц, 2H), 8,21 (s, 1H), 7,73 (d, J = 8,4 Γц, 2H), 7,37 (d, J = 8,4 Γц, 2H), 7,14 (d, J = 8,0 Γц, 1H), 6,97 (d, J = 1,6 Γц, 1H), 6,86 (dd, J = 8,0, 2,0 Γц, 1H), 6,45 (dd, J = 16,8, 10,0 Γц, 1H), 6,32 – 6,21 (m, 1H), 5,79 (d, J = 11,6 Γц, 1H), 3,60 (s, 3H), 3,53 (s, 3H), 2,20 (s, 3H).	508,20
N-(4-(4-амино-5-(3-метокси-4-((4-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,44 (s, 2H), 8,22 (s, 1H), 7,74 (d, J = 8,4 Γц, 2H), 7,38 (d, J = 8,4 Γц, 2H), 7,15 (d, J = 8,0 Γц, 1H), 6,97 (d, J = 2,0 Γц, 1H), 6,86 (d, J = 10,0 Γц, 1H), 6,46 (dd, J = 17,2, 10,0 Γц, 1H), 6,29 (d, J = 18,8 Γц, 1H), 5,79 (d, J = 12,0 Γц, 1H), 3,60 (s, 3H), 3,53 (s, 3H), 2,20 (s, 3H).	507,25
N-(4-(4-амино-5-(3-метокси-4-(5-метилпиридин-3-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,20 (s, 1H), 8,17 – 8,10 (m, 1H), 8,05 (d, J = 2,7 Гц, 1H), 7,78 – 7,66 (m, 2H), 7,38 – 7,26 (m, 2H), 7,12 (d, J = 2,5 Γц, 1H), 7,04 (d, J = 8,1 Γц, 1H), 6,98 (d, J = 1,9 Γц, 1H), 6,81 (dd, J = 8,1, 1,9 Γц, 1H), 6,45 (dd, J = 16,9, 10,1 Γц, 1H), 6,28 (dd, J = 17,0, 2,1 Гц, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 2H), 3,60 (d, J = 16,1 Гц, 6H), 2,27 (s, 3H).	507,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-4-(пиридин-4-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,41 (d, J = 5,5 Гц, 2H), 8,21 (s, 1H), 7,72 (d, J = 8,4 Γц, 2H), 7,32 (d, J = 8,4 Γц, 2H), 7,13 (d, J = 8,0 Γц, 1H), 7,00 (d, J = 2,0 Γц, 1H), 6,95 – 6,79 (m, 3H), 6,52 – 6,38 (m, 1H), 6,36 – 6,20 (m, 1H), 6,14 (s, 2H), 5,86 – 5,70 (m, 1H), 3,63 (s, 3H), 3,57 (s, 3H).	493,15
N-(4-(4-амино-5-(4-((6-хлорпиридин-2-ил)окси)-3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	CI NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,21 (s, 1H), 7,84(t, J = 14,6 Гц, 1H), 7,72 (d, J = 8,4 Гц, 2H), 7,33 (d, J = 8,8 Гц, 2H), 7,19 (d, J = 7,2 Γц, 1H), 7,14 (d, J = 8,0 Γц, 1H), 6,98 (s, 1H), 6,91 (d, J = 8,0 Гц, 1H), 6,85 (dd, J = 6,0 Гц, 1H), 6,41 – 6,43 (m, 1H), 6,25 – 6,29 (m, 1H), 5,82 – 6,18 (br, 1H), 3,62 (s, 3H), 3,55 (s, 3H), 2,78 (t, J = 12,0 Гц, 1H).	527,30
N-(4-(4-амино-5-(4-(((6- этилпиридин-2- ил)окси)-3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH _N NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,39 (s, 1H), 7,61 (dd, J = 26,2, 7,9 Гц, 3H), 7,47 (s, 1H), 7,09 (d, J = 7,9 Гц, 1H), 6,87 (d, J = 25,9 Гц, 3H), 6,62 (d, J = 8,3 Гц, 1H), 6,48 (d, J = 16,9 Гц, 1H), 6,29 (t, J = 13,8 Гц, 1H), 5,82 (d, J = 10,2 Гц, 1H), 5,22 (s, 2H), 3,76 (s, 3H), 3,59 (s, 3H), 2,69 (d, J = 8,0 Гц, 2H), 1,20 (t, J = 7,7 Гц, 3H).	521,2
N-(4-(4-амино-5-(4- ((5,6-диметилпиридин- 2-ил)окси)-3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,20 (s, 1H), 7,71 (d, J = 8,6 Γц, 2H), 7,50 (d, J = 8,4 Γц, 1H), 7,34 (d, J = 8,4 Γц, 2H), 7,03 (d, J = 8,0 Γц, 1H), 6,95 (d, J = 2,0 Γц, 1H), 6,81 (dd, J = 8,2, 1,8 Γц, 1H), 6,57 (d, J = 8,2 Γц, 1H), 6,45 (dd, J = 17,0, 10,0 Γц, 1H), 6,32 – 6,23 (m, 1H), 5,78 (d, J = 11,8 Γц, 1H), 3,62 (s, 3H), 3,54 (s, 3H), 2,25 (s, 3H), 2,17 (s, 3H), 1,24 (s, 1H).	521,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,41 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,73 (d, J = 8,6 Γц, 2H), 7,40 – 7,33 (m, 2H), 7,17 – 7,07 (m, 2H), 6,97 (d, J = 1,8 Γц, 1H), 6,86 (dd, J = 8,0, 2,0 Γц, 1H), 6,45 (dd, J = 17,0, 10,2 Γц, 1H), 6,28 (dd, J = 17,0, 2,0 Γц, 1H), 5,78 (dd, J = 10,2, 2,0 Γц, 1H), 3,61 (s, 3H), 3,53 (s, 3H), 2,40 (s, 3H).	508,15
N-(4-(4-амино-5-(3-метокси-4-(5-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,20 (s, 1H), 7,91 (s, 1H), 7,71 – 7,73 (d, J = 8 Γц, 2H), 7,60 – 7,62 (d, J = 8 Γц, 1H), 7,34 – 7,36 (d, J = 8 Γц, 1H), 7,05 - 7,07 (d, J = 8 Γц, 1H), 6,94 (s, 1H), 6,82 – 6,86 (m, 2H), 6,41 - 6,48 (m, 1H), 6,25 - 6,30 (m, 1H), 5,97 (s, 1H), 5,77 - 5,79 (d, J = 8 Γц, 1H), 3,60 (s, 3H), 3,53 (s, 3H), 2,21 (s, 3H).	507,35
N-(4-(4-амино-5-(3-метокси-4-((3-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,21 (s, 1H), 7,88 (d, J = 4,9 Γц, 1H), 7,73 (d, J = 8,2 Γц, 2H), 7,65 (d, J = 7,2 Γц, 1H), 7,35 (dd, J = 17,4, 8,2 Γц, 2H), 7,08 (dd, J = 8,1, 2,8 Γц, 1H), 7,01 – 6,92 (m, 2H), 6,88 – 6,80 (m, 1H), 6,45 (dd, J = 17,0, 10,0 Γц, 1H), 6,28 (dd, J = 16,9, 2,0 Γц, 1H), 5,99 (s, 2H), 5,78 (dd, J = 9,9, 2,1 Γц, 1H), 3,60 (d, J = 5,7 Γц, 3H), 3,53 (s, 3H), 2,30 (s, 3H).	507,2
N-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-3-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,20 (s, 1H), 8,13 (dd, J = 2,4, 1,2 Γц, 1H), 7,71 (d, J = 8,4 Γц, 2H), 7,38 – 7,27 (m, 2H), 7,26 – 7,16 (m, 2H), 7,06 – 6,93 (m, 2H), 6,79 (dd, J = 8,0, 2,0 Γц, 1H), 6,45 (dd, J = 17,2, 10,0 Γц, 1H), 6,28 (dd, J = 17,2, 2,0 Γц, 1H), 6,05 (s, 1H), 5,78 (dd, J = 10,0, 2,0 Γц, 1H), 3,62 (s, 3H), 3,59 (s, 3H), 2,42 (s, 3H).	507,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- метокси-4-(пиримидин- 2-илокси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,62 (d, J = 4,8 Γц, 2H), 8,21 (s, 1H), 7,79 – 7,72 (m, 2H), 7,39 – 7,33 (m, 2H), 7,23 (t, J = 4,8 Γц, 1H), 7,17 (d, J = 8,1 Γц, 1H), 6,99 (d, J = 1,9 Γц, 1H), 6,86 (dd, J = 8,0, 2,0 Γц, 1H), 6,01 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,60 (s, 3H), 3,55 (s, 3H), 1,96 (s, 3H).	508,30
N-(4-(4-амино-5-(3- метокси-4-(пиримидин- 2-илокси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)пропионамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,01 (s, 1H), 8,62 (d, J = 4,8 Гц, 2H), 8,21 (s, 1H), 7,65 (d, J = 8,4 Γц, 2H), 7,33 (d, J = 8,4 Γц, 2H), 7,23 (t, J = 4,8 Γц, 1H), 7,17 (d, J = 8,1 Γц, 1H), 6,98 (d, J = 2,0 Γц, 1H), 6,85 (dd, J = 8,0, 1,9 Γц, 1H), 5,97 (s, 2H), 3,56 (d, J = 17,7 Γц, 6H), 2,33 (q, J = 7,5 Γц, 2H), 1,09 (t, J = 7,5 Γц, 3H).	496,3
N-(4-(4-амино-5-(3,4- диметоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,18 (s, 1H), 7,69 (d, J = 8,4 Гц, 2H), 7,35 – 7,23 (m, 2H), 6,94 (d, J = 8,0 Γц, 1H), 6,77 (d, J = 8,0 Γц, 2H), 6,45 (dd, J = 17,2, 10,0 Γц, 1H), 6,28 (dd, J = 16,8, 2,0 Γц, 1H), 5,78 (dd, J = 10,0, 2,0 Γц, 1H), 3,75 (s, 3H), 3,60 (d, J = 0,8 Γц, 6H).	430,30
N-(4-(4-амино-5-(3- этокси-4-(пиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,62 (d, J = 4,8 Гц, 2H), 8,21 (s, 1H), 7,85 – 7,68 (m, 2H), 7,56 – 7,29 (m, 2H), 7,23 (t, J = 4,8 Γц, 1H), 7,18 (d, J = 8,1 Γц, 1H), 6,95 (d, J = 2,0 Γц, 1H), 6,91 – 6,81 (m, 1H), 6,51 – 6,39 (m, 1H), 6,35 – 6,21 (m, 1H), 5,98 (s, 2H), 5,82 – 5,73 (m, 1H), 3,88 – 3,74 (m, 2H), 3,60 (s, 3H), 0,93 (t, J = 7,0 Γц, 3H).	508,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- этил-4-(пиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,65 (d, J = 4,8 Гц, 2H), 8,21 (s, 1H), 7,72 (d, J = 8,4 Γц, 2H), 7,35 (d, J = 8,4 Гц, 2H), 7,30 – 7,18 (m, 2H), 7,18 – 7,03 (m, 2H), 6,45 (dd, J = 16,9, 10,1 Γц, 1H), 6,28 (dd, J = 17,0, 2,1 Γц, 1H), 5,96 (s, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 1H), 3,60 (s, 3H), 2,47 – 2,31 (m, 2H), 0,97 (t, J = 7,5 Γц, 3H).	492,15
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илокси)-3- (трифторметил)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	F F O N NH ₂ NH ₂ NH _N NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,32 (s, 1H), 8,72 – 8,66 (m, 2H), 8,23 (s, 1H), 7,74 (d, J = 8,3 Γц, 2H), 7,59 – 7,53 (m, 2H), 7,43 (d, J = 9,0 Γц, 1H), 7,39 – 7,30 (m, 3H), 6,45 (dd, J = 16,9, 10,1 Γц, 1H), 6,28 (dd, J = 16,7, 2,0 Γц, 1H), 6,03 (s, 2H), 5,83 – 5,75 (m, 1H), 3,59 (s, 3H).	532,1
N-(4-(4-амино-5-(3- (диметиламино)-4- (пиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,63 (d, J = 4,8 Гц, 2H), 8,20 (s, 1H), 7,73 (d, J = 8,4 Γц, 2H), 7,39 – 7,31 (m, 2H), 7,24 (t, J = 4,8 Γц, 1H), 7,07 (d, J = 8,0 Γц, 1H), 6,89 – 6,81 (m, 2H), 6,45 (dd, J = 16,8, 10,2 Γц, 1H), 6,28 (dd, J = 16,8, 2,2 Γц, 1H), 6,06 (s, 2H), 5,78 (dd, J = 10,0, 2,2 Γц, 1H), 3,60 (s, 3H), 2,53 (s, 6H).	507,20
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илокси)-3- (трифторметокси)фенил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	F F N N O N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,68 (d, J = 4,7 Гц, 2H), 8,23 (s, 1H), 7,74 (d, J = 8,5 Γц, 2H), 7,47 (d, J = 8,4 Гц, 1H), 7,40 – 7,19 (m, 6H), 6,53 – 6,36 (m, 1H), 6,30 (d, J = 2,0 Γц, 1H), 6,03 (s, 2H), 5,85 – 5,73 (m, 1H), 3,60 (s, 3H).	548,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- (гидроксиметил)-4- (пиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 10,04 (s, 1H), 8,52 (dd, J = 4,2, 2,8 Γц, 1H), 8,16 (s, 1H), 8,02 (dd, J = 6,5, 2,8 Γц, 1H), 7,69 – 7,62 (m, 2H), 7,26 – 7,19 (m, 2H), 6,98 (d, J = 7,9 Γц, 2H), 6,80 (d, J = 8,0 Γц, 1H), 6,46 (dd, J = 16,9, 10,1 Γц, 1H), 6,39 (dd, J = 6,5, 4,1 Γц, 1H), 6,29 (dd, J = 16,9, 2,1 Γц, 1H), 5,79 (dd, J = 10,1, 2,1 Γц, 1H), 4,91 (s, 2H), 3,58 (s, 3H).	494,3
N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илтио)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH	¹ H, 1H), 4,91 (8, 2H), 5,38 (8, 3H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,57 (d, J = 4,8 Γц, 2H), 8,23 (s, 1H), 7,81 – 7,70 (m, 2H), 7,53 (d, J = 8,0 Γц, 1H), 7,44 – 7,32 (m, 2H), 7,20 (m, J = 4,8 Γц, 1H), 7,01 – 6,83 (m, 2H), 6,46 (dd, J = 17,2, 10,0 Γц, 1H), 6,29 (dd, J = 17,2, 2,0 Γц, 1H), 6,02 (s, 1H), 5,79 (dd, J = 10,0, 2,0 Γц, 1H), 3,60 (d, J = 17,2 Γц, 6H).	510,10
N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-иламино)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,46 - 8,47 (d, J = 4,8 Γц, 1H), 8,16 - 8,19 (m, 2H), 8,04 (s, 1H), 7,69 - 7,71 (d, J = 8 Γц, 2H), 7,33 - 7,35 (d, J = 8 Γц, 2H), 6,83 - 6,87 (m, 3H), 6,40 - 6,49 (m, 1H), 6,24 - 6,29 (m, 1H), 5,98 (s, 1H), 5,76 - 5,78 (m, 1H), 3,70 (s, 3H), 3,60 (s, 3H).	493,30
N-(4-(4-амино-5-(3-метокси-4-(метил(пиримидин-2-ил)амино)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,29 - 8,31 (m, 2H), 8,19 (s, 1H), 7,75 - 7,77 (d, J = 8,2 Γц, 2H), 7,19 - 7,21 (d, J = 8,1 Γц, 1H), 6,85 - 6,92 (m, 2H), 6,64 - 6,69 (m, 1H), 6,42 - 6,49 (m, 1H), 6,25 - 6,31 (m, 1H), 6,01 (s, 1H), 5,77 - 5,80 (m, 1H), 3,56 - 3,59 (m, 6H), 3,30 (s, 3H).	507,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-5-метил-4-(пиримидин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,61 (d, J = 4,8 Гц, 2H), 8,21 (s, 1H), 7,74 (d, J = 8,4 Γц, 2H), 7,39 (d, J = 8,5 Γц, 2H), 7,22 (t, J = 4,8 Γц, 1H), 6,85 – 6,77 (m, 2H), 6,45 (dd, J = 17,0, 10,1 Γц, 1H), 6,28 (dd, J = 16,9, 2,0 Γц, 1H), 5,78 (dd, J = 10,1, 2,0 Γц, 1H), 3,59 (s, 3H), 3,50 (s, 3H), 2,05 (s, 3H).	508,25
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,67 (d, $J = 4,8$ Гц, 2H), 8,21 (s, 1H), 7,78 – 7,70 (m, 2H), 7,35 – 7,25 (m, 5H), 7,25 – 7,17 (m, 2H), 5,83 – 5,78 (m, 1H), 5,56 – 5,51 (m, 1H), 3,60 (s, 3H), 1,95 (t, $J = 1,2$ Γц, 3H).	478,10
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илтио)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,61 (d, J = 4,8 Гц, 2H), 8,22 (s, 1H), 7,71 (d, J = 8,6 Гц, 2H), 7,59 (d, J = 8,1 Гц, 2H), 7,36 – 7,29 (m, 4H), 7,25 (t, J = 4,8 Гц, 1H), 6,44 (dd, J = 17,0, 10,2 Гц, 1H), 6,28 (dd, J = 17,0, 2,0 Гц, 1H), 5,78 (dd, J = 10,1, 2,1 Гц, 1H), 3,61 (s, 3H).	480,25
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илтио)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,62 (d, J = 4,9 Гц, 2H), 8,22 (s, 1H), 7,74 (d, J = 8,6 Γц, 2H), 7,59 (d, J = 8,1 Γц, 2H), 7,37 – 7,28 (m, 4H), 7,25 (t, J = 4,8 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,61 (s, 3H), 1,95 (s, 3H).	494,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- иламино)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 9,73 (s, 1H), 8,48 (d, J = 4,8 Гц, 2H), 8,18 (s, 1H), 7,76 (d, J = 8,3 Γц, 4H), 7,68 (d, J = 8,3 Γц, 2H), 7,30 (d, J = 8,6 Γц, 2H), 7,16 (d, J = 8,6 Γц, 2H), 6,84 (t, J = 4,7 Γц, 1H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 5,77 (dd, J = 10,0, 2,1 Γц, 2H), 3,61 (s, 4H).	463,25
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- иламино)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 9,73 (s, 1H), 8,48 (d, J = 4,6 Γц, 2H), 8,19 (s, 1H), 8,02 – 7,52 (m, 5H), 7,22 (dd, J = 53,0, 7,6 Γц, 4H), 6,85 (s, 1H), 5,79 (s, 2H), 5,53 (s, 1H), 3,61 (s, 3H), 1,95 (s, 3H).	477,30
N-(4-(4-амино-7-метил- 5-(4-(метил(пиримидин- 2-ил)амино)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,39 (d, J = 4,8 Гц, 2H), 8,20 (s, 1H), 7,71 (d, J = 8,3 Γц, 2H), 7,42 – 7,32 (m, 4H), 7,26 (d, J = 8,2 Гц, 2H), 6,75 (t, J = 4,7 Γц, 1H), 6,44 (dd, J = 16,9, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,0 Гц, 1H), 5,78 (dd, J = 9,9, 2,0 Гц, 2H), 3,59 (s, 3H), 3,47 (s, 3H).	477,25
N-(4-(4-амино-7-метил- 5-(4-(метил(пиримидин- 2-ил)амино)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,40 (d, J = 4,7 Гц, 2H), 8,20 (s, 1H), 7,74 (d, J = 8,4 Γц, 2H), 7,35 (t, J = 8,9 Γц, 4H), 7,26 (d, J = 8,3 Γц, 2H), 6,75 (t, J = 4,7 Γц, 1H), 5,80 (s, 2H), 5,54 (s, 1H), 3,59 (s, 3H), 3,47 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H).	491,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- метокси-4-(пиридин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)пропионамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,01 (s, 1H), 8,21 (s, 1H), 8,11 (dd, J = 5,0, 1,9 Гц, 1H), 7,84 – 7,76 (m, 1H), 7,65 (d, J = 8,5 Γц, 2H), 7,32 (d, J = 8,6 Γц, 2H), 7,13 – 7,03 (m, 2H), 6,98 – 6,92 (m, 2H), 6,83 (dd, J = 8,0, 2,0 Γц, 1H), 5,99 (s, 2H), 3,59 (s, 3H), 3,54 (s, 3H), 2,34 (q, J = 7,6 Γц, 2H), 1,09 (t, J = 7,5 Γц, 3H).	494,21
N-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)пропионамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,00 (s, 1H), 8,20 (s, 1H), 7,64 (d, J = 8,5 Гц, 3H), 7,30 (d, J = 8,2 Гц, 2H), 7,07 (d, J = 8,0 Гц, 1H), 6,98 – 6,89 (m, 2H), 6,82 (d, J = 7,9 Γц, 1H), 6,64 (d, J = 8,2 Γц, 1H), 6,01 (s, 2H), 3,61 (s, 3H), 3,54 (s, 3H), 2,32 (d, J = 14,9 Γц, 5H), 1,09 (t, J = 7,5 Γц, 3H).	508,22
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)пропионамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,00 (s, 1H), 8,67 (d, J = 4,8 Гц, 2H), 8,20 (s, 1H), 7,67 – 7,60 (m, 2H), 7,33 – 7,25 (m, 5H), 7,24 – 7,17 (m, 2H), 5,90 (s, 2H), 3,59 (s, 3H), 2,33 (q, J = 7,5 Γц, 2H), 1,09 (t, J = 7,6 Γц, 3H).	466,25
N-(4-(4-амино-5-(4-((5- (гидроксиметил)пирими дин-2-ил)окси)-3- метоксифенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	OH N N N N N N N N O N N O N O N O N O N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,57 (s, 2H), 8,22 (s, 1H), 7,73 (d, J = 8,3 Гц, 2H), 7,36 (d, J = 8,4 Гц, 2H), 7,35 (s, 1H), 7,17 (d, J = 8,0 Гц, 1H), 7,00 – 6,92 (m, 2H), 6,47 (dd, J = 17,0, 9,4 Гц, 1H), 6,39 (dd, J = 17,2, 2,5 Гц, 1H), 5,81 (dd, J = 9,5, 2,4 Гц, 1H), 4,63 (s, 2H), 3,72 (s, 3H), 3,57 (s, 3H).	524,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(5- (гидроксиметил)пирими дин-2-илокси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	OH N N N N N N N N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,59 (s, 2H), 8,21 (s, 1H), 7,78 – 7,71 (m, 2H), 7,36 – 7,25 (m, 4H), 7,22 – 7,14 (m, 2H), 5,80 (t, J = 1,1 Γц, 2H), 5,54 (t, J = 1,5 Γц, 1H), 5,38 (t, J = 5,6 Γц, 1H), 4,49 (d, J = 5,5 Γц, 2H), 3,60 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H).	508,30
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,67 (d, J = 4,8 Гц, 2H), 8,21 (s, 1H), 7,75 – 7,67 (m, 2H), 7,38 – 7,25 (m, 5H), 7,25 – 7,17 (m, 2H), 6,44 (dd, J = 16,8, 10,1 Гц, 1H), 6,28 (dd, J = 17,0, 2,2 Гц, 1H), 5,78 (dd, J = 10,1, 2,1 Гц, 1H), 3,60 (s, 3H).	464,15
N-(4-(4-амино-7-метил- 5-(4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)бут-2-инамид	NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,74 (s, 1H), 8,67 (d, J = 4,8 Γц, 2H), 8,20 (s, 1H), 7,63 (d, J = 8,3 Γц, 2H), 7,36 – 7,25 (m, 5H), 7,21 (d, J = 8,4 Γц, 2H), 5,89 (s, 2H), 3,59 (s, 3H), 2,07 (d, J = 9,3 Γц, 3H).	476,2
N-(4-(4-амино-5-(3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,19 (s, 1H), 7,70 (d, J = 8,3 Гц, 2H), 7,27 (dd, J = 8,2, 5,8 Γц, 3H), 6,86 (dd, J = 8,3, 2,6 Γц, 1H), 6,81 (d, J = 7,5 Γц, 1H), 6,77 (t, J = 2,0 Γц, 1H), 5,78 (s, 2H), 5,53 (s, 1H), 3,67 (s, 3H), 3,60 (s, 3H), 1,95 (s, 3H).	414,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(Е)-N-(4-(4-амино-5-(3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)бут-2-енамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,07 (s, 1H), 8,19 (s, 1H), 7,70 – 7,62 (m, 2H), 7,32 – 7,24 (m, 3H), 6,90 – 6,74 (m, 4H), 6,17 – 6,08 (m, 1H), 5,91 (s, 1H), 3,67 (s, 3H), 3,60 (s, 3H), 1,88 (dd, J = 6,8, 1,6 Гц, 3H).	414,15
N-(4-(4-амино-5-(3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)бут-2-инамид	NH ₂ O O O O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,73 (s, 1H), 8,19 (s, 1H), 7,60 (d, $J = 8,4$ Гц, 2H), 7,27 (dd, $J = 8,4$, 6,4 Гц, 3H), 6,86 (dd, $J = 8,4$, 2,8 Γц, 1H), 6,80 (d, $J = 7,6$ Гц, 1H), 6,78 – 6,73 (m, 1H), 5,91 (s, 1H), 3,67 (s, 3H), 3,59 (s, 3H), 2,06 (s, 3H).	412,25
N-(4-(4-амино-5-(4- (гидрокси(о- толил)метил)-3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	HO NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,22 (s, 1H), 7,71 - 7,43 (d, $J = 8$ Гц, 1H), 7,22 - 7,43 (m, 7H), 6,46 - 6,48 (m, $J = 8$ Гц, 1H), 6,26 - 6,44 (m, 2H), 5,77 - 5,80 (d, $J = 8$ Γц, 1H), 3,62 (s, 3H), 3,43 (s, 3H), 2,35 (s, 3H).	518,20
N-(4-(4-амино-7-метил- 5-фенил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	$J = 8,7 \text{ H}, 2H), 7,37 \text{ (dd, } J = 8,1, 6,6 \Gamma \text{L}, 2H), 7,34 - 7,18 \text{ (m, 5H),} 6,43 \text{ (dd, } J = 17,0, 10,1 \Gamma \text{L}, 1H), 6,27 \text{ (dd, } J = 17,0, 2,1 \Gamma \text{L}, 1H), 5,78 \text{ (dd, } J = 10,1, 2,0 \Gamma \text{L}, 1H), 3,61 \text{ (s, 3H).}$	370,25
N-(4-(4-амино-7-метил- 5-фенил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,19 (s, 1H), 7,69 (d, J = 8,6 Гц, 2H), 7,36 (t, J = 7,4 Γц, 2H), 7,30 – 7,18 (m, 5H), 5,79 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	384,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-этил-5- (4-((6-метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,20 (s, 1H), 7,73 (dd, J = 8,3, 6,6 Γц, 3H), 7,33 – 7,22 (m, 4H), 7,11 – 7,04 (m, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,77 (d, J = 8,1 Γц, 1H), 5,88 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 4,12 (q, J = 7,0 Γц, 2H), 2,34 (s, 3H), 1,95 (s, 3H), 1,14 (t, J = 7,1 Γц, 3H).	505,2
N-(4-(4-амино-7-(3-гидроксициклобутил)-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,83 – 7,66 (m, 3H), 7,22 (t, J = 8,2 Γц, 5H), 7,11 – 6,95 (m, 4H), 6,77 (d, J = 8,1 Γц, 1H), 5,79 (s, 1H), 5,54 (d, J = 1,8 Γц, 1H), 5,22 (d, J = 5,8 Γц, 1H), 4,33 – 4,00 (m, 1H), 3,82 (h, J = 7,0 Γц, 1H), 3,10 – 2,90 (m, 2H), 2,34 (s, 4H), 1,95 (s, 3H), 1,87 (s, 2H).	547,25
N-(4-(4-амино-7-(2-(4-метилпиперазин-1-ил)этил)-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ ONH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,19 (s, 1H), 7,73 (dt, J = 8,2, 3,4 Γц, 3H), 7,35 – 7,28 (m, 2H), 7,28 – 7,12 (m, 2H), 7,11 – 7,04 (m, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,77 (d, J = 8,2 Γц, 1H), 5,80 (t, J = 1,1 Γц, 1H), 5,53 (t, J = 1,4 Γц, 1H), 4,18 (t, J = 6,9 Γц, 2H), 2,47 (d, J = 7,0 Γц, 2H), 2,34 (s, 3H), 2,23 (s, 8H), 2,09 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	603,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-(2-гидроксиэтил)-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,19 (s, 1H), 7,77 – 7,68 (m, 3H), 7,35 – 7,28 (m, 2H), 7,28 – 7,20 (m, 2H), 7,11 – 7,03 (m, 2H), 7,01 (d, J = 7,3 Γц, 1H), 6,77 (d, J = 8,2 Γц, 1H), 5,82 – 5,77 (m, 1H), 5,53 (t, J = 1,4 Γц, 1H), 4,90 (t, J = 5,6 Γц, 1H), 4,13 (t, J = 6,6 Γц, 2H), 3,58 (q, J = 6,4 Γц, 2H), 2,34 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	521,20
N-(4-(4-амино-5-(4-(6-метилпиридин-2-илокси)фенил)-7-(2-морфолиноэтил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,19 (s, 1H), 7,73 (dt, J = 7,7, 3,5 Γ ц, 3H), 7,36 – 7,29 (m, 2H), 7,29 – 7,22 (m, 2H), 7,13 – 7,06 (m, 2H), 7,01 (d, J = 7,4 Γ ц, 1H), 6,78 (d, J = 8,1 Γ ц, 1H), 5,91 (s, 1H), 5,81 (s, 1H), 5,53 (s, 1H), 4,21 (t, J = 7,0 Γ ц, 2H), 3,44 (t, J = 4,6 Γ ц, 4H), 2,48 (d, J = 7,0 Γ ц, 2H), 2,34 (s, 3H), 2,22 (t, J = 4,7 Γ ц, 4H), 1,95 (s, 3H).	590,30
N-(4-(4-амино-7-(2- (диметиламино)этил)-5- (4-(6-метилпиридин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,73 (t, J = 7,6 Γц, 3H), 7,31 (d, J = 8,6 Γц, 2H), 7,28 – 7,20 (m, 2H), 7,12 – 7,05 (m, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,78 (d, J = 8,1 Γц, 1H), 5,90 (s, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 4,20 (t, J = 7,0 Γц, 2H), 2,38 (t, J = 7,1 Γц, 2H), 2,34 (s, 3H), 2,01 (s, 6H), 1,97 (s, 3H).	548,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,07 (s, 1H), 9,83 (s, 1H), 8,12 (s, 1H), 7,77 (t, $J = 7,8$ Гц, 1H), 7,65 – 7,58 (m, 2H), 7,42 – 7,34 (m, 2H), 7,34 – 7,26 (m, 2H), 7,23 – 7,15 (m, 2H), 7,04 (d, $J = 7,4$ Гц, 1H), 6,85 (d, $J = 8,2$ Гц, 1H), 5,78 (s, 1H), 5,52 (t, $J = 1,5$ Гц, 1H), 2,38 (s, 3H), 1,94 (d, $J = 1,3$ Гц, 3H).	477,3
N-(4-(4-амино-5-(4-((5-хлорпиримидин-2-ил)окси)-3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	CI N N O NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,73 (s, 2H), 8,23 (s, 1H), 7,73 (d, J = 8,6 Γц, 2H), 7,44 - 7,31 (m, 2H), 7,20 (d, J = 8,1 Γц, 1H), 6,99 (d, J = 1,9 Γц, 1H), 6,92 - 6,84 (m, 1H), 6,59 $-$ 6,31 (m, 1H), 6,30 $-$ 6,26 (m, 1H), 6,06 (s, 2H), 5,85 $-$ 5,73 (m, 1H), 3,60 (s, 3H), 3,55 (s, 3H).	528,20
N-(4-(4-амино-5-(4-((5-аминопиримидин-2-ил)окси)-3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	H ₂ N N O O NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (d, J = 14,0 Гц, 1H), 8,19 (d, J = 14,7 Гц, 1H), 7,93 (s, 2H), 7,81 – 7,58 (m, 2H), 7,48 – 7,20 (m, 2H), 7,06 (d, J = 8,0 Γц, 1H), 6,93 (d, J = 1,9 Γц, 1H), 6,88 – 6,80 (m, 1H), 6,50 – 6,40 (m, 1H), 6,35 – 6,22 (m, 1H), 5,78 (d, J = 10,1 Γц, 1H), 5,12 (s, 2H), 3,67 – 3,57 (m, 4H), 3,53 (s, 3H).	509,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-метокси-4-(5-(метиламино)пиримиди н-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	HN N O O NH ₂ N O NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,21 (s, 1H), 7,93 (s, 2H), 7,73 (d, J = 8,6 Γц, 2H), 7,43 – 7,32 (m, 2H), 7,07 (d, J = 8,0 Γц, 1H), 6,94 (d, J = 2,0 Γц, 1H), 6,83 (dd, J = 8,1, 1,9 Γц, 1H), 6,45 (dd, J = 17,0, 10,1 Γц, 1H), 6,28 (dd, J = 17,0, 2,1 Γц, 1H), 5,96 (s, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 1H), 5,70 (q, J = 5,2 Γц, 1H), 3,60 (s, 3H), 3,53 (s, 3H), 2,67 (d, J = 5,2 Γц, 3H).	523,35
N-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илметил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,71 - 8,72 (d, J = 4 Γц, 2H), 8,19 (s, 1H), 7,70 - 7,72 (d, J = 8 Γц, 2H), 7,30 - 7,34 (m, 3H), 7,03 - 7,05 (d, J = 8 Γц, 1H), 6,77 - 6,82 (m, 2H), 5,53 - 5,81 (m, 3H), 4,17 (s, 2H), 3,57 - 3,58 (m, 6H), 1,95 (s, 3H).	506,35
N-(4-(4-амино-5-(4- (гидрокси(о- толил)метил)-3- метоксифенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	N OH OO NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,75 - 8,76 (d, J = 4 Γц, 2H), 8,19 (s, 1H), 7,70 - 7,72 (d, J = 8 Γц, 1H), 7,43 - 7,45 (d, J = 8 Γц, 1H), 7,30 - 7,37 (m, 3H), 6,78 - 6,87 (m, 1H), 6,77 (s, 1H), 5,99 - 6,01 (d, J = 8 Γц, 1H), 5,77 - 5,81 (m, 3H), 5,53 (s, 1H), 3,58 (s, 3H), 3,52 (s, 3H), 1,95 (s, 3H).	522,25
N-(4-(4-амино-5-(3- этил-5-гидрокси-4- (пиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (d, J = 10,6 Гц, 1H), 9,54 (s, 1H), 8,64 (m, J = 19,1, 4,8 Γц, 2H), 8,17 (d, J = 17,0 Γц, 1H), 7,85 – 7,63 (m, 2H), 7,35 (d, J = 8,4 Γц, 2H), 7,20 (s, 1H), 6,92 – 6,48 (m, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,59 (s, 3H), 2,39 (q, J = 7,5 Γц, 2H), 1,96 (d, J = 3,4 Γц, 3H), 1,02 - 0,91 (m, 3H).	522,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- илсульфонил)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	O O O O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,22 (s, 1H), 7,79 – 7,65 (m, 4H), 7,40 (d, J = 8,4 Γц, 2H), 7,25 – 7,17 (m, 2H), 6,03 (s, 2H), 5,79 (s, 1H), 5,54 (s, 1H), 3,63 (s, 3H), 3,21 – 3,00 (m, 4H), 1,95 (d, J = 1,6 Γц, 3H), 1,72 – 1,52 (m, 4H).	517,20
N-(4-(5-(4-ацетамидо-3-метоксифенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 9,12 (s, 1H), 8,19 (s, 1H), 7,93 (d, J = 8,2 Γц, 1H), 7,76 – 7,54 (m, 2H), 7,40 – 7,18 (m, 2H), 6,94 – 6,65 (m, 2H), 5,80 (t, J = 1,1 Γц, 1H), 5,59 – 5,35 (m, 1H), 3,67 (s, 3H), 3,61 (s, 3H), 2,08 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H).	471,15
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,77 – 7,66 (m, 2H), 7,55 – 7,43 (m, 2H), 7,33 – 7,20 (m, 4H), 5,92 (s, 1H), 5,83 – 5,77 (m, 1H), 5,53 (q, J = 1,4 Γц, 1H), 3,61 (s, 3H), 3,44 (dt, J = 16,1, 6,5 Γц, 4H), 1,95 (t, J = 1,3 Γц, 3H), 1,83 (dq, J = 18,0, 6,6 Γц, 4H).	481,35
N-(4-(4-амино-5-(3- фтор-4-((5- фторпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ F NH ₂ NH ₀ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,78 (s, 2H), 8,22 (s, 1H), 7,85 – 7,71 (m, 2H), 7,42 – 7,29 (m, 3H), 7,21 (dd, J = 11,6, 2,0 Γц, 1H), 7,12 (dd, J = 8,4, 2,0 Γц, 1H), 6,00 (s, 1H), 5,81 (s, 1H), 5,55 (s, 1H), 3,59 (s, 3H), 1,96 (d, J = 1,6 Γц, 2H).	514,35
N-(4-(4-амино-5-(3- фтор-4-((5- фторпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ F NH O	¹ H ЯМР (400 МГц, DMSO- d_o) δ 9,94 (s, 1H), 8,29 (s, 1H), 8,17 (d, J = 3,1 Гц, 1H), 7,86 (ddd, J = 9,0, 7,9, 3,1 Γц, 1H), 7,80 – 7,73 (m, 2H), 7,34 (s, 1H), 7,36 – 7,26 (m, 2H), 7,25 – 7,16 (m, 2H), 7,13 – 7,06 (m, 1H), 6,37 (s, 2H), 5,82 (s, 1H), 5,55 (d, J = 2,0 Γц, 1H), 3,62 (s, 3H), 1,96 (d, J = 1,2 Γц, 3H).	513,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((5- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,42 (d, J = 5,6 Гц, 2H), 8,21 (s, 1H), 7,72 (d, J = 8,4 Γц, 2H), 7,31 (d, J = 8,4 Γц, 2H), 7,13 (d, J = 8,0 Γц, 1H), 7,01 (d, J = 2,0 Γц, 1H), 6,91 – 6,86 (m, 2H), 6,86 – 6,80 (m, 1H), 6,50 – 6,39 (m, 1H), 6,33 – 6,23 (m, 1H), 6,14 (s, 2H), 5,82 – 5,75 (m, 1H), 3,65 – 3,54 (d, J = 23,2 Γц, 6H).	510,20
N-(4-(4-амино-5-(3,5- дифтор-4-(пиразин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F O N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,77 (d, J = 1,4 Γц, 1H), 8,48 (d, J = 2,7 Γц, 1H), 8,27 (dd, J = 2,7, 1,5 Γц, 1H), 8,22 (s, 1H), 7,78 (d, J = 8,5 Γц, 2H), 7,35 (d, J = 8,5 Γц, 2H), 7,09 (d, J = 8,8 Γц, 2H), 6,16 (s, 1H), 5,82 (s, 1H), 5,55 (s, 1H), 3,58 (s, 3H), 1,96 (s, 3H).	514,20
N-(4-(4-амино-5-(4-(((5-хлорпиримидин-2-ил)окси)-3-фторфенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N CI ON NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,81 (s, 2H), 8,22 (s, 1H), 7,76 (d, J = 8,3 Γц, 2H), 7,47 – 7,30 (m, 3H), 7,23 – 7,06 (m, 2H), 5,81 (s, 1H), 5,55 (s, 1H), 3,59 (s, 3H), 1,96 (s, 3H).	530,15
N-(4-(4-амино-5-(3,5- дифтор-4-(пиридин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,22 (s, 1H), 8,15 (d, J = 5,4 Гц, 1H), 7,92 (td, J = 8,4, 7,8, 2,2 Γц, 1H), 7,78 (d, J = 8,6 Γц, 2H), 7,35 (d, J = 8,4 Γц, 2H), 7,25 – 7,15 (m, 2H), 7,05 (d, J = 8,8 Γц, 2H), 6,13 (s, 1H), 5,82 (s, 1H), 5,55 (s, 1H), 3,58 (s, 3H), 1,96 (s, 3H).	513,35
N-(4-(4-амино-5-(4-((5-фторпиридин-2-ил)окси)-3-гидроксифенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ OH NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 9,61 (s, 1H), 8,23 – 8,10 (m, 2H), 7,81 – 7,71 (m, 3H), 7,31 (d, J = 8,4 Γц, 2H), 7,09 – 6,96 (m, 2H), 6,81 (d, J = 2,2 Γц, 1H), 6,70 (dd, J = 8,0, 2,2 Γц, 1H), 5,81 (s, 1H), 5,54 (s, 1H), 3,60 (s, 3H), 1,96 (s, 3H).	511,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((5- фторпиримидин-2- ил)окси)-3- метилфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,74 (s, 2H), 8,20 (s, 1H), 7,77 – 7,71 (m, 2H), 7,37 – 7,30 (m, 2H), 7,25 (s, 1H), 7,11 (d, J = 1,3 Γц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,59 (s, 3H), 2,06 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	509,20
N-(4-(4-амино-5-(3-гидрокси-4-((5-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	HO O NH O NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (d, J = 3,1 Гц, 1H), 9,51 (d, J = 6,1 Гц, 1H), 8,17 (d, J = 14,7 Гц, 1H), 7,98 (s, 0H), 7,73 (dd, J = 8,6, 6,1 Γц, 2H), 7,65 – 7,56 (m, 1H), 7,30 (dd, J = 13,8, 8,6 Γц, 2H), 6,94 – 6,76 (m, 4H), 5,82 (s, 1H), 5,55 (s, 1H), 3,60 (d, J = 4,6 Γц, 3H), 2,22 (s, 3H), 1,97 (dd, J = 3,1, 1,8 Γц, 3H).	507,20
N-(4-(4-амино-5-(3,5-дифтор-4-(пиримидин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	F O N F NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,72 (d, J = 4,8 Γц, 2H), 8,22 (s, 1H), 7,79 (d, J = 8,4 Γц, 2H), 7,42 – 7,33 (m, 3H), 7,08 (d, J = 8,8 Γц, 2H), 6,13 (s, 2H), 5,82 (s, 1H), 5,55 (s, 1H), 3,57 (s, 3H), 1,96 (s, 3H).	514,35
N-(4-(4-амино-5-(4-((6-фтор-5-метоксипиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,86 – 7,65 (m, 3H), 7,28 (m, <i>J</i> = 12,2, 8,3 Γц, 4H), 7,11 (d, <i>J</i> = 8,3 Гц, 2H), 6,99 – 6,71 (m, 1H), 5,80 (s, 2H), 5,53 (s, 1H), 3,86 (s, 3H), 3,61 (s, 3H), 1,95 (s, 3H).	525,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-амино-4-((5-фторпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N F O NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 – 8,13 (m, 2H), 7,83 – 7,73 (m, 1H), 7,73 (d, J = 8,6 Γц, 2H), 7,32 (d, J = 8,6 Γц, 2H), 7,02 (dd, J = 9,1, 3,6 Γц, 1H), 6,87 (d, J = 8,1 Γц, 1H), 6,70 (d, J = 2,1 Γц, 1H), 6,41 (dd, J = 8,1, 2,1 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 5,01 (s, 2H), 3,60 (s, 3H), 2,08 (s, 1H), 1,96 (s, 3H).	510,20
N-(4-(4-амино-5-(3-амино-5-фтор-4-(пиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	H ₂ N O F NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,25 – 8,07 (m, 2H), 7,91 – 7,70 (m, 3H), 7,35 (d, J = 8,4 Γц, 2H), 7,17 – 6,99 (m, 2H), 6,53 (s, 1H), 6,24 (dd, J = 10,8, 2,0 Γц, 1H), 5,82 (s, 1H), 5,54 (s, 1H), 5,34 (s, 2H), 3,59 (s, 3H), 1,96 (s, 3H).	510,20
N-(4-(4-амино-5-(4-(((5-хлорпиридин-2-ил)окси)-3-гидроксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ OH NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (d, J = 4,6 Гц, 1H), 9,65 (d, J = 5,8 Гц, 1H), 8,25 – 8,10 (m, 2H), 7,92 – 7,85 (m, 1H), 7,73 (dd, J = 8,6, 6,5 Γц, 2H), 7,30 (dd, J = 11,6, 8,6 Γц, 2H), 7,07 – 6,92 (m, 2H), 6,92 – 6,77 (m, 2H), 6,20 (s, 1H), 5,82 (s, 1H), 5,55 (s, 1H), 3,60 (d, J = 1,5 Γц, 3H), 1,97 (d, J = 3,3 Гц, 3H).	527,30
N-(4-(4-амино-5-(3- хлор-5-фтор-4- (пиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N CI NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,71 (d, J = 4,8 Γц, 2H), 8,22 (s, 1H), 7,79 (d, J = 8,4 Γц, 2H), 7,40 – 7,34 (m, 3H), 7,28 – 7,17 (m, 2H), 5,83 (s, 1H), 5,55 (s, 1H), 3,57 (s, 3H), 1,96 (s, 3H).	530,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-гидрокси-5-метил-4-(пиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	ON OH OH NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 9,42 (s, 1H), 8,21 – 8,06 (m, 2H), 7,76 (p, J = 11,6, 9,8 Γц, 3H), 7,32 (dd, J = 16,8, 8,4 Γц, 2H), 7,11 – 6,88 (m, 2H), 6,71 (dd, J = 49,6, 10,1 Γц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,59 (d, J = 5,8 Γц, 3H), 2,15 – 1,89 (m, 6H).	507,30
N-(4-(4-амино-5-(3- фтор-4-((5- метилпиразин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,50 (d, J = 1,3 Гц, 1H), 8,21 (s, 1H), 8,11 (s, 1H), 7,75 (d, J = 8,6 Γц, 2H), 7,33 (dd, J = 8,5, 3,7 Γц, 3H), 7,19 (dd, J = 11,6, 2,0 Γц, 1H), 7,10 (d, J = 9,2 Γц, 1H), 6,02 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,59 (s, 3H), 2,45 (s, 3H), 1,96 (s, 3H).	510,20
N-(4-(4-амино-5-(3-метокси-4-((1-метил-1H-пиразол-3-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,19 (s, 1H), 7,72 (d, J = 8,7 Γц, 2H), 7,55 (d, J = 2,3 Γц, 1H), 7,30 (d, J = 8,6 Γц, 2H), 6,98 (d, J = 8,2 Γц, 1H), 6,92 (d, J = 2,1 Γц, 1H), 6,79 – 6,71 (m, 1H), 5,81 (s, 1H), 5,70 (d, J = 2,3 Γц, 1H), 5,54 (s, 1H), 3,71 (s, 3H), 3,64 (s, 3H), 3,60 (s, 3H), 2,00 – 1,89 (m, 3H).	510,45
N-(4-(4-амино-5-(4-((5-хлорпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	CI NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,78 (s, 2H), 8,21 (s, 1H), 7,71 (d, J = 8,4 Γц, 2H), 7,37 – 7,26 (m, 4H), 7,27 – 7,21 (m, 2H), 6,45 (dd, J = 17,2, 10,0 Γц, 1H), 6,28 (dd, J = 17,2, 2,0 Γц, 1H), 5,78 (dd, J = 10,0, 2,0 Γц, 2H), 3,60 (s, 3H).	498,10

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(((5-хлорпиримидин-2-ил)окси)-3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	CI N N O NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,74 (s, 2H), 8,21 (s, 1H), 7,78 – 7,72 (m, 2H), 7,39 – 7,32 (m, 2H), 7,20 (d, J = 8,0 Γц, 1H), 7,00 (d, J = 1,9 Γц, 1H), 6,87 (dd, J = 8,1, 1,9 Γц, 1H), 5,98 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,58 (d, J = 14,3 Γц, 6H), 1,96 (s, 3H).	542,15
N-(4-(4-амино-5-(4-((5-хлор-6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	CI NO NH ₂ N NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,89 (d, J = 8,6 Гц, 1H), 7,72 (d, J = 8,5 Γц, 2H), 7,28 (t, J = 8,4 Γц, 4H), 7,16 – 7,08 (m, 2H), 6,89 (d, J = 8,7 Γц, 1H), 5,94 (s, 3H), 5,80 (s, 1H), 5,54 (s, 1H), 3,62 (s, 3H), 2,40 (s, 3H), 1,95 (s, 3H).	525,20
N-(4-(4-амино-5-(4-((5-хлорпиридин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	CI NH ₂ NH _N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,34 – 8,09 (m, 2H), 8,09 – 7,89 (m, 1H), 7,78 – 7,57 (m, 2H), 7,35 – 7,20 (m, 4H), 7,21 – 7,04 (m, 3H), 5,80 (d, J = 1,3 Гц, 3H), 5,54 (t, J = 1,4 Гц, 1H), 3,60 (d, J = 5,2 Гц, 3H), 1,95 (d, J = 1,2 Гц, 3H).	511,15
N-(4-(4-амино-5-(4-((5-хлор-6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	CI NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,20 (s, 1H), 7,88 (d, J = 8,6 Гц, 1H), 7,73 – 7,67 (m, 2H), 7,34 – 7,23 (m, 4H), 7,15 – 7,08 (m, 2H), 6,89 (d, J = 8,6 Γц, 1H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 16,9, 2,0 Γц, 1H), 5,96 (s, 2H), 5,78 (dd, J = 10,1, 2,1 Γц, 1H), 3,62 (s, 3H), 2,40 (s, 3H).	511,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((5- (дифторметил)пиримид ин-2-ил)окси)-3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	F ₂ HC N N N O O NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,87 (s, 2H), 8,22 (s, 1H), 7,73 (d, J = 8,3 Γц, 2H), 7,38 (d, J = 8,4 Γц, 2H), 7,22 (d, J = 8,0 Γц, 1H), 7,15 (s, 0H), 7,03 – 6,98 (m, 1H), 6,89 (dd, J = 8,0, 1,9 Γц, 1H), 6,45 (dd, J = 17,0, 10,1 Γц, 1H), 6,28 (dd, J = 16,9, 2,0 Γц, 1H), 6,00 (s, 2H), 5,78 (dd, J = 10,0, 2,1 Γц, 1H), 3,60 (s, 3H), 3,55 (s, 3H).	544,2
N-(4-(4-амино-5-(4-(((5- фторпиримидин-2- ил)окси)-3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,71 (s, 2H), 8,21 (s, 1H), 7,73 (d, J = 8,6 Γц, 2H), 7,40 – 7,34 (m, 2H), 7,18 (d, J = 8,2 Γц, 1H), 6,99 (d, J = 1,8 Γц, 1H), 6,87 (dd, J = 8,0, 2,0 Γц, 1H), 6,45 (dd, J = 17,0, 10,2 Γц, 1H), 6,28 (dd, J = 17,0, 2,0 Γц, 1H), 5,99 (s, 1H), 5,79 (dd, J = 10,2, 2,0 Γц, 1H), 3,60 (s, 3H), 3,55 (s, 3H).	512,30
N-(4-(4-амино-7-метил- 5-(2-метил-4- (метилсульфонил)фени л)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,21 (s, 1H), 7,80 (d, J = 2,0 Γц, 1H), 7,75 – 7,63 (m, 3H), 7,45 (d, J = 8,0 Γц, 1H), 7,22 (d, J = 8,6 Γц, 2H), 5,78 (s, 1H), 5,72 (s, 2H), 5,52 (s, 1H), 3,66 (s, 3H), 3,30 (s, 1H), 3,23 (s, 3H), 2,08 (s, 3H), 1,93 (s, 3H).	476,30
N-(4-(4-амино-7-метил- 5-(2-оксоиндолин-5-ил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,40 (s, 1H), 9,88 (s, 1H), 8,17 (s, 1H), 7,69 (d, J = 8,3 Γц, 2H), 7,28 (d, J = 8,2 Γц, 2H), 7,10 (s, 1H), 7,03 (d, J = 8,0 Γц, 1H), 6,78 (d, J = 7,9 Γц, 1H), 5,79 (s, 1H), 5,53 (s, 1H), 3,59 (s, 3H), 3,44 (s, 2H), 1,95 (s, 3H).	439,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(морфолин-4- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,41 – 7,34 (m, 2H), 7,30 – 7,22 (m, 4H), 5,98 (s, 1H), 5,80 (s, 1H), 5,54 (d, J = 1,7 Гц, 1H), 3,32 (s, 11H), 1,95 (t, J = 1,2 Гц, 3H).	497,20
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-N,N-диметил-1H-индол-2-карбоксамид	O NH NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,60 (s, 1H), 9,83 (s, 1H), 8,18 (s, 1H), 7,68 – 7,61 (m, 2H), 7,50 (d, J = 1,6 Γц, 1H), 7,40 (d, J = 8,4 Γц, 1H), 7,31 – 7,24 (m, 2H), 7,07 (dd, J = 8,4, 1,6 Γц, 1H), 6,86 (d, J = 2,1 Γц, 1H), 5,77 (s, 1H), 5,51 (d, J = 1,9 Γц, 1H), 3,63 (s, 3H), 3,11 (s, 6H), 1,93 (t, J = 1,2 Γц, 3H).	494,30
N-(4-(4-амино-7-метил- 5-(6-(оксазол-2- ил)пиридин-3-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆ NH ₆ NH ₆ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,41 (d, $J = 2,2$ Гц, 1H), 8,28 (s, 1H), 8,23 (s, 1H), 8,05 (d, $J = 8,1$ Γц, 1H), 7,80 – 7,70 (m, 3H), 7,45 (s, 1H), 7,33 – 7,25 (m, 2H), 6,15 (s, 2H), 5,80 (s, 1H), 5,53 (t, $J = 1,5$ Γц, 1H), 3,62 (s, 3H), 1,95 (t, $J = 1,3$ Гц, 3H).	452,1
N-(4-(5-(6-(1H-1,2,4- триазол-1-ил)пиридин- 3-ил)-4-амино-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N-N N-N NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 9,37 (s, 1H), 8,32 – 8,25 (m, 2H), 8,23 (s, 1H), 7,85 (s, 1H), 7,73 (d, J = 8,4 Γц, 2H), 7,31 (d, J = 8,4 Γц, 2H), 6,17 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 1,95 (s, 3H).	452,30
N-(4-(4-амино-7-метил- 5-(4-(3-метилизоксазол- 5-ил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	H ₂ N N N N N O	1H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,79 (d, J = 7,9 Γц, 2H), 7,71 (d, J = 8,3 Γц, 2H), 7,34 (d, J = 7,8 Γц, 2H), 7,28 (d, J = 8,2 Γц, 2H), 6,85 (s, 1H), 5,97 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 2,50 (s, 3H), 1,94 (s, 3H).	465,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(пиперидин-4- илметил)-1Н-пиразол-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	HN N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,36 (s, 1H), 7,85 – 7,70 (m, 2H), 7,59 – 7,50 (m, 2H), 7,41 – 7,33 (m, 2H), 6,48 (dd, J = 17,0, 9,4 Гц, 2H), 8,85 (dd, J = 17,0, 2,5 Гц, 1H), 4,10 (dd, J = 9,4, 2,5 Гц, 2H), 3,80 (d, J = 7,1 Гц, 3H), 3,41 (s, 2H), 3,01 (d, J = 12,7 Гц, 2H), 2,20 – 2,01 (m, 1H), 1,81 – 1,61 (d, J = 14,0 Гц, 2H), 1,55 – 1,23 (m, 2H).	457,3
N-(4-(4-амино-5-(4-амино-3- (трифторметокси)фенил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F O NH ₂ F NH ₂ N NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,17 (s, 1H), 7,71 (d, J = 8,3 Γц, 2H), 7,26 (d, J = 8,3 Γц, 2H), 6,95 - 6,89 (m, 2H), 6,78 (d, J = 8,7 Γц, 1H), 5,90 (s, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 5,44 (s, 2H), 3,58 (s, 3H), 1,96 (s, 3H).	483,15
N-(4-(4-амино-5-(5- (гидроксиметил)пириди н-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,40 (d, J = 2,0 Гц, 1H), 8,24 – 8,17 (m, 2H), 7,71 (d, J = 8,3 Γц, 2H), 7,64 (d, J = 2,5 Γц, 1H), 7,27 (d, J = 8,4 Γц, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 5,32 (t, J = 5,6 Γц, 1H), 4,53 (d, J = 5,6 Γц, 2H), 3,61 (s, 3H), 3,30 (s, 1H), 1,95 (s, 3H).	415,2
N-(4-(4-амино-5-(4-(2- (диметиламино)-2- оксоэтил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,19 (s, 1H), 7,69 (d, J = 8,4 Γц, 2H), 7,27 (d, J = 8,4 Γц, 2H), 7,17 - 7,22 (m, 4H), 5,80 (s, 1H), 5,53 (s, 1H), 3,69 (s, 2H), 3,60 (s, 3H), 3,01 (s, 3H), 2,84 (s, 3H), 1,95 (s, 3H).	469,20
N-(4-(4-амино-5-(4-(2- (диметиламино)-2- оксоэтил)-3- фторфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F O NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,75 – 7,69 (m, 2H), 7,33 – 7,26 (m, 2H), 7,22 (t, $J = 7,9$ Γц, 1H), 7,02 (dd, $J = 7,7$, 1,7 Γц, 1H), 6,97 (dd, $J = 10,9$, 1,7 Γц, 1H), 5,91 -5,81 (s, 2H), 5,54 (d, $J = 2,0$ Гц, 1H), 3,70 (s, 2H), 3,59 (s, 3H), 3,05 (s, 3H), 2,85 (s, 3H), 1,95 (s, 3H).	487,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(пиридин-3- илметил)-1Н-пиразол-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N-N N-N N-N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,52 – 8,43 (m, 2H), 8,16 (s, 1H), 7,84 (s, 1H), 7,74 (d, J = 8,5 Γц, 2H), 7,49 – 7,42 (m, 1H), 7,40 – 7,29 (m, 4H), 5,81 (s, 1H), 5,55 (s, 1H), 5,37 (s, 2H), 3,59 (s, 2H), 1,97 (s, 3H).	465,4
N-(4-(5-(4-((2H-тетразол-5-ил)метил)фенил)-4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	HN N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,20 (s, 1H), 7,68 – 7,62 (m, 2H), 7,27 (d, J = 8,1 Гц, 6H), 5,82 (s, 1H), 5,54 (s, 1H), 4,27 (s, 2H), 3,70 (s, 3H), 2,04 (t, J = 1,2 Гц, 3H), 1,33 (d, J = 15,8 Гц, 1H).	466,20
2-(4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенокси)уксусная кислота	HO O O NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 13,02 (s, 1H), 9,88 (s, 1H), 8,18 (s, 1H), 7,69 (d, J = 8,3 Γц, 2H), 7,28 (dd, J = 12,5, 8,1 Γц, 2H), 7,17 (d, J = 8,2 Γц, 2H), 6,90 (d, J = 8,1 Γц, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 4,65 (s, 2H), 3,60 (s, 3H), 1,95 (s, 3H).	458,40
4-(6-(4- акриламидофенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- метилциклогекс-3-ен-1- карбоксамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,31 (s, 1H), 8,10 (s, 1H), 7,78 (dd, J = 7,8, 5,9 Гц, 3H), 7,44 (d, J = 8,5 Гц, 2H), 6,48 (dd, J = 17,0, 10,1 Гц, 2H), 6,30 (dd, J = 17,0, 2,1 Γц, 1H), 5,83 – 5,74 (m, 2H), 3,57 (s, 3H), 2,57 (d, J = 4,5 Γц, 3H), 2,45 (q, J = 6,2 Γц, 3H), 2,29 (s, 1H), 2,24 (s, 2H), 1,89 (s, 2H), 1,65 (d, J = 6,2 Γц, 2H).	431,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(1-ацетил- 1,2,5,6- тетрагидропиридин-3- ил)-4-амино-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NO ONH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (d, J = 6,3 Гц, 1H), 8,15 (d, J = 5,0 Гц, 1H), 7,82 (t, J = 8,2 Гц, 2H), 7,44 (dd, J = 10,6, 8,4 Γц, 2H), 6,35 (s, 2H), 6,05 – 5,81 (m, 2H), 5,56 (s, 1H), 3,78 (d, J = 34,2 Γц, 2H), 3,55 (t, J = 5,9 Гц, 4H), 3,48 (t, J = 5,7 Γц, 1H), 2,23 (d, J = 27,7 Γц, 2H), 1,55 (c, 2H)	431,25
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N,N-диметилбензо[b]тиофен-2-карбоксамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	4H), 1,55 (s, 2H). ¹ H ЯМР (400 МΓц, DMSO- d_6) δ 9,86 (s, 1H), 8,21 (s, 1H), 7,95 (d, J = 8,3 Γц, 1H), 7,84 – 7,77 (m, 2H), 7,71 – 7,64 (m, 2H), 7,32 – 7,23 (m, 3H), 5,78 (s, 1H), 5,52 (d, J = 1,9 Γц, 1H), 3,63 (s, 3H), 3,20 (s, 3H), 3,07 (s, 3H), 1,93 (s, 3H).	511,2
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-1Н-индол-2-карбоновая кислота	HO O NH NH2 N NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 13,45 – 12,25 (s, 1H), 11,85 (s, 1H), 9,85 (d, J = 12,7 Гц, 1H), 8,25 (d, J = 12,7 Γц, 1H), 7,78 – 7,65 (m, 2H), 7,54 (d, J = 1,6 Γц, 1H), 7,35 (d, J = 8,5 Γц, 1H), 7,35 – 7,20 (m, 2H), 7,20 – 7,01 (dd, J = 8,5, 1,7 Γц, 2H), 6,20 – 5,60 (d, J = 2,1 Γц, 2H), 5,60 – 5,40 (s, 1H), 3,65 (t, J = 1,5 Γц, 3H), 1,95 (d, J = 1,4 Гц, 3H).	467,25
N-(4-(4-амино-7-метил- 5-(4-(тиазол-2- ил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,22 (s, 1H), 7,95 – 7,89 (m, 3H), 7,79 (d, J = 3,2 Γц, 1H), 7,72 (d, J = 8,3 Γц, 2H), 7,31 (dd, J = 18,0, 8,0 Γц, 4H), 5,79 (s, 2H), 5,53 (s, 1H), 3,62 (s, 3H), 1,94 (s, 3H), 1,18 (d, J = 13,5 Γц, 1H).	467,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(пиридин-4- илметил)-1Н-пиразол-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,54 – 8,48 (m, 2H), 8,17 (s, 1H), 7,83 (s, 1H), 7,78 (d, J = 8,4 Γц, 2H), 7,43 (s, 1H), 7,35 (d, J = 8,4 Γц, 2H), 6,96 (d, J = 5,4 Γц, 2H), 5,81 (s, 1H), 5,56 (s, 1H), 5,40 (s, 2H), 3,61 (s, 3H), 1,97 (s, 3H).	465,2
N-(4-(4-амино-5-(6- (бензилокси)пиридин-3- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,20 (s, 1H), 8,01 (d, J = 2,4 Γц, 1H), 7,76 – 7,68 (m, 2H), 7,57 (dd, J = 8,5, 2,4 Γц, 1H), 7,49 – 7,25 (m, 7H), 6,87 (d, J = 8,5 Γц, 1H), 5,94 (s, 1H), 5,81 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 5,31 (s, 2H), 3,60 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	491,30
N-(4-(4-амино-7-метил- 5-(3-метил-4- (тетрагидрофуран-3- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,24 (s, 1H), 8,17 (d, J = 2,2 Гц, 1H), 7,67 (d, J = 8,4 Γц, 2H), 7,33 – 7,22 (m, 2H), 7,09 – 6,96 (m, 2H), 6,88 (d, J = 8,4 Γц, 1H), 6,44 (dd, J = 16,9, 10,1 Γц, 1H), 6,27 (dd, J = 16,9, 2,1 Γц, 1H), 5,81 – 5,74 (m, 1H), 5,01 (d, J = 5,6 Γц, 1H), 3,94 – 3,72 (m, 4H), 3,59 (d, J = 5,5 Γц, 3H), 2,19 (dt, J = 14,5, 7,0 Γц, 1H), 2,09 (s, 3H), 1,99 (d, J = 14,4 Гц, 1H).	470,30
N-(4-(4-амино-5-(4- ((3,5-диметил-1Н- пиразол-1- ил)метил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,18 (s, 1H), 7,73 – 7,65 (m, 2H), 7,29 – 7,18 (m, 4H), 7,05 (d, J = 8,0 Γц, 2H), 5,99 – 5,75 (s, 3H), 5,55 (m, 1H), 5,20 (m, 2H), 3,65 (s, 3H), 2,15 (s, 3H), 2,10 (d, J = 0,7 Γц, 3H), 1,95 (s, 3H).	492,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-метил-3,4-дигидро- 2H-пиридо[3,2- b][1,4]оксазин-7-ил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,17 (s, 1H), 7,76 – 7,68 (m, 2H), 7,50 (d, J = 1,9 Γц, 1H), 7,33 – 7,26 (m, 2H), 6,78 (d, J = 2,0 Γц, 1H), 5,91 (s, 2H), 5,81 (s, 1H), 5,54 (d, J = 1,8 Γц, 1H), 4,20 (t, J = 4,5 Γц, 2H), 3,57 (s, 3H), 3,43 (t, J = 4,5 Γц, 2H), 3,01 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	456,35
N-(4-(5-(2-ацетамидо- 2,3-дигидро-1Н-инден- 5-ил)-4-амино-7-метил- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	H ₂ N NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 – 8,12 (m, 2H), 7,69 (d, J = 8,4 Γц, 2H), 7,28 (d, J = 8,4 Γц, 2H), 7,19 (d, J = 7,7 Γц, 1H), 7,12 (s, 1H), 7,02 (d, J = 7,8 Γц, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 4,45 (q, J = 6,8 Γц, 1H), 3,59 (s, 3H), 3,14 (td, J = 15,7, 7,6 Γц, 2H), 2,72 (td, J = 15,1, 5,8 Γц, 2H), 1,95 (s, 3H), 1,79 (s, 3H).	481,30
N-(4-(4-амино-7-метил- 5-(4-((3-метил-2,4- диоксоимидазолидин-1- ил)метил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	O N O NH2 NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,19 (s, 1H), 7,69 (d, J = 8,6 Γц, 2H), 7,30 – 7,19 (m, 6H), 5,80 (s, 1H), 5,53 (s, 1H), 4,50 (s, 2H), 3,91 (s, 2H), 3,60 (s, 3H), 2,88 (s, 3H), 1,95 (s, 3H).	510,2
N-(4-(4-амино-7-метил- 5-(6-(5-метил-1,3,4- оксадиазол-2- ил)пиридин-3-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_o) δ 9,94 (s, 1H), 8,43 (d, $J = 2,2$ Гц, 1H), 8,24 (s, 1H), 8,09 (d, $J = 8,1$ Γц, 1H), 7,81 (dd, $J = 8,1,2,2$ Гц, 1H), 7,77 – 7,70 (m, 2H), 7,32 – 7,25 (m, 2H), 6,20 (s, 2H), 5,80 (s, 1H), 5,54 (d, $J = 1,7$ Гц, 1H), 3,62 (s, 3H), 2,60 (s, 3H), 1,95 (d, $J = 1,3$ Гц, 3H).	467,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (изоксазол-3-ил)фенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 9,00 (d, $J = 1,8$ Гц, 1H), 8,22 (s, 1H), 7,90 – 7,84 (m, 2H), 7,75 – 7,68 (m, 2H), 7,39 – 7,32 (m, 2H), 7,32 – 7,25 (m, 2H), 7,15 (d, $J = 1,7$ Γц, 1H), 6,15 – 5,75 (s, 3H), 5,55 – 5,50 (m, 1H), 3,62 (s, 3H), 1,95 (s, 3H).	451,2
N-(4-(4-амино-7-метил- 5-(6- (фенилтио)пиридин-3- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	S N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 – 8,14 (m, 2H), 7,76 – 7,70 (m, 2H), 7,64 – 7,57 (m, 2H), 7,49 (dt, J = 7,2, 2,1 Γц, 4H), 7,30 – 7,23 (m, 2H), 6,92 (d, J = 8,3 Γц, 1H), 6,02 (s, 2H), 5,81 (s, 1H), 5,55 (s, 1H), 3,58 (s, 2H), 1,96 (d, J = 1,4 Γц, 3H).	493,30
N-(4-(4-амино-7-метил- 5-(1-метил-1,2,3,4- тетрагидрохинолин-6- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,24 (s, 1H), 8,15 (s, 1H), 7,68 (d, J = 8,3 Γ ц, 2H), 7,30 (d, J = 8,3 Γ ц, 2H), 6,86 (dd, J = 8,2, 2,1 Γ ц, 1H), 6,80 (d, J = 2,2 Γ ц, 1H), 6,53 (d, J = 8,4 Γ ц, 1H), 6,45 (dd, J = 17,0, 10,1 Γ ц, 1H), 6,27 (dd, J = 17,1, 2,1 Γ ц, 1H), 5,78 (dd, J = 10,0, 2,1 Γ ц, 1H), 3,58 (s, 3H), 3,19 (t, J = 5,6 Γ ц, 2H), 2,82 (s, 3H), 2,63 (t, J = 6,5 Γ ц, 2H), 1,87 (p, J = 6,1 Γ ц, 2H).	439,30
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метилиндолин-1-карбоксамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,17 (s, 1H), 7,78 (d, J = 8,2 Гц, 1H), 7,73 – 7,66 (m, 2H), 7,31 – 7,24 (m, 2H), 7,01 (d, J = 1,7 Γц, 1H), 6,95 (dd, J = 8,2, 1,9 Γц, 1H), 6,57 (q, J = 4,4 Гц, 1H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,86 (t, J = 8,7 Γц, 2H), 3,60 (s, 3H), 3,07 (t, J = 8,7 Γц, 2H), 2,66 (d, J = 4,3 Γц, 3H), 1,95 (t, J = 1,2 Γц, 3H).	482,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N,N-диметилпиколинамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,30 (s, 1H), 8,23 (s, 1H), 7,72 (t, J = 9,9 Γц, 3H), 7,51 (d, J = 7,9 Γц, 1H), 7,27 (d, J = 8,2 Γц, 2H), 6,16 – 6,10 (m, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,62 (s, 3H), 2,99 (d, J = 4,8 Γц, 6H), 1,95 (s, 3H).	456,25
N-(4-(4-амино-5-(4- (циклопропилсульфини л)фенил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	S=O NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,22 (s, 1H), 7,71 (d, J = 8,5 Γц, 2H), 7,68 – 7,62 (m, 2H), 7,41 (d, J = 8,1 Γц, 2H), 7,31 – 7,24 (m, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 2,43 (s, 1H), 1,95 (s, 3H), 1,07 – 0,81 (m, 4H).	472,1
N-(4-(4-амино-7-метил- 5-(4-((N-метилацетамидо)метил) фенил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,20 (d, J = 2,8 Гц, 1H), 7,66 (d, J = 8,2 Гц, 2H), 7,34 (d, J = 7,9 Гц, 1H), 7,31 – 7,22 (m, 5H), 5,81 (s, 1H), 5,54 (s, 1H), 4,63 (d, J = 15,5 Гц, 2H), 3,70 (d, J = 1,7 Гц, 3H), 3,04 (s, 2H), 2,94 (s, 1H), 2,18 (d, J = 6,6 Гц, 3H), 2,04 (s, 3H).	469,35
N-(4-(5-(6-(1Н-пиразол- 1-ил)пиридин-3-ил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,60 (d, $J = 2,6$ Гц, 1H), 8,24 – 8,18 (m, 2H), 7,89 (d, J = 8,4 Γц, 1H), 7,85 – 7,75 (m, 2H), 7,73 (d, J = 8,5 Γц, 2H), 7,30 (d, J = 8,5 Γц, 2H), 6,57 (t, J = 2,2 Γц, 1H), 6,12 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 1,94 (s, 3H).	451,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(6-(3- (трифторметил)фенокси)пиридин-3-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F F F NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,20 (s, 1H), 7,96 (d, J = 2,4 Гц, 1H), 7,74 (s, 1H), 7,74 – 7,65 (m, 2H), 7,64 (d, J = 8,0 Γц, 1H), 7,60 – 7,54 (m, 2H), 7,51 (d, J = 8,3 Γц, 1H), 7,32 – 7,25 (m, 2H), 7,10 (d, J = 8,4 Γц, 1H), 6,08 (s, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,32 (s, 3H), 1,95 (s, 3H).	545,25
N-(4-(4-амино-5-(4-(4,5-диметилоксазол-2-ил)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,87 – 7,80 (m, 2H), 7,74 – 7,67 (m, 2H), 7,35 – 7,28 (m, 2H), 7,31 – 7,23 (m, 2H), 5,94 (s, 2H), 5,82 – 5,77 (m, 1H), 5,55 – 5,50 (m, 1H), 3,62 (s, 3H), 2,31 (d, J = 1,2 Γц, 3H), 2,09 (d, J = 1,1 Γц, 3H), 1,95 (t, J = 1,2 Γц, 3H).	479,35
N-(4-(5-(4- ацетамидоциклогекс-1- енил)-4-амино-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	ONH NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,31 (s, 1H), 8,12 (s, 1H), 7,85 – 7,76 (m, 2H), 7,74 (d, J = 7,3 Γц, 1H), 7,49 – 7,41 (m, 2H), 6,47 (dd, J = 17,0, 10,1 Γц, 1H), 6,36 – 6,21 (m, 3H), 5,80 (dd, J = 10,1, 2,1 Γц, 1H), 5,69 (d, J = 4,1 Γц, 1H), 3,80 (s, 1H), 3,57 (s, 3H), 2,34 (d, J = 16,4 Γц, 1H), 2,10 – 1,88 (m, 3H), 1,80 (s, 3H), 1,66 (d, J = 12,7 Γц, 1H), 1,46 (s, 1H).	431,15
N-(4-(4-амино-5-(3,4- диэтоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,70 (d, J = 8,2 Гц, 2H), 7,28 (d, J = 8,2 Γц, 2H), 6,92 (d, J = 8,2 Γц, 1H), 6,79 - 6,70 (m, 2H), 6,13 (s, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 4,01 (q, J = 7,0 Γц, 2H), 3,87 (q, J = 7,0 Γц, 2H), 3,33 (s, 3H), 1,95 (s, 3H), 1,32 (t, J = 7,0 Γц, 3H), 1,21 (t, J = 7,0 Γц, 3H).	472,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(2-оксо-1,2,3,4- тетрагидрохинолин-6- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 9,89 (s, 1H), 8,17 (s, 1H), 7,73 – 7,67 (m, 2H), 7,32 – 7,25 (m, 2H), 7,09 (d, J = 1,9 Γц, 1H), 6,98 (dd, J = 8,0, 2,0 Γц, 1H), 6,80 (d, J = 8,1 Γц, 1H), 5,80 (s, 2H), 5,54 (d, J = 1,9 Γц, 1H), 3,59 (s, 3H), 2,83 (t, J = 7,5 Γц, 2H), 2,44 (dd, J = 8,5, 6,5 Γц, 2H), 1,95 (d, J = 1,3 Γц, 3H).	453,30
N-(4-(4-амино-7-метил- 5-(4-(оксазол-4- ил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆	1 H 9MP (400 MΓ μ , DMSO- d_6) δ 9,88 (s, 1H), 8,62 (d, J = 1,0 Γ μ , 1H), 8,47 (d, J = 1,0 Γ μ , 1H), 8,20 (s, 1H), 7,80 – 7,74 (m, 2H), 7,74 – 7,66 (m, 2H), 7,32 – 7,22 (m, 4H), 5,79 (s, 1H), 5,55 – 5,50 (m, 1H), 3,61 (s, 3H), 1,95 (d, J = 1,2 Γ μ , 3H).	451,35
N-(4-(4-амино-7-метил- 5-(4-((3- оксоморфолин)метил)ф енил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,19 (s, 1H), 7,69 (d, J = 8,4 Γц, 2H), 7,25 (d, J = 18,7 Γц, 6H), 6,12 – 5,75 (s, 2H), 5,55 (s, 1H), 4,55 (s, 2H), 4,15(s, 2H), 3,91 – 3,75 (s, 2H), 3,60 (s, 3H), 3,29 (s, 2H), 1,95 (s, 3H).	497,3
N-(4-(4-амино-7-метил- 5-(6-(2-метил-2Н- тетразол-5-ил)пиридин- 3-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,45 (s, 1H), 8,24 (s, 1H), 8,09 (d, J = 8,1 Γц, 1H), 7,84 – 7,77 (m, 1H), 7,73 (d, J = 8,3 Γц, 2H), 7,29 (d, J = 8,2 Γц, 2H), 6,15 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 4,45 (s, 3H), 3,32 (s, 2H), 2,08 (s, 0H), 1,95 (s, 3H).	467,30
N-(4-(5-(4-(1H-имидазол-2-ил)фенил)-4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	H ₂ N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,47 (s, 1H), 9,88 (s, 1H), 8,21 (s, 1H), 7,92 – 7,85 (m, 2H), 7,73 – 7,67 (m, 2H), 7,32 – 7,22 (m, 5H), 7,03 (s, 1H), 5,97 – 5,90 (m, 1H), 5,79 (s, 1H), 5,53 (d, J = 2,0 Γц, 1H), 3,63 (s, 3H), 1,94 (s, 3H).	450,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(6-(3-фторфенокси)пиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N N N NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,20 (s, 1H), 7,98 (d, J = 2,4 Гц, 1H), 7,76 – 7,70 (m, 2H), 7,67 (dd, J = 8,4, 2,5 Γц, 1H), 7,44 (q, J = 8,0 Γц, 1H), 7,32 – 7,25 (m, 2H), 7,11 (dt, J = 10,4, 2,4 Γц, 1H), 7,04 (dq, J = 8,3, 3,5, 2,3 Γц, 3H), 5,80 (s, 1H), 5,54 (s, 1H), 3,60 (s, 3H), 1,96 (s, 3H).	495,15
N-(4-(4-амино-7-метил- 5-(4-(5-(трифторметил)- 1,3,4-оксадиазол-2- ил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,25 (s, 1H), 8,13 – 8,06 (m, 2H), 7,73 – 7,65 (m, 2H), 7,56 – 7,50 (m, 2H), 7,35 – 7,27 (m, 2H), 5,81 (s, 1H), 5,54 (d, J = 1,7 Гц, 1H), 3,72 (s, 3H), 2,04 (d, J = 1,3 Гц, 3H).	520,3
N-(4-(4-амино-7-метил- 5-(5- морфолинопиридин-3- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (d, J = 11,4 Γц, 2H), 7,79 (s, 1H), 7,72 (d, J = 8,3 Γц, 2H), 7,29 (d, J = 8,2 Γц, 2H), 7,22 (d, J = 2,9 Γц, 1H), 6,12 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,75 (t, J = 4,8 Γц, 4H), 3,61 (s, 3H), 3,16 (t, J = 4,9 Γц, 4H), 1,96 (s, 3H).	470,20
N-(4-(4-амино-7-метил- 5-(6-(4-метил-1Н- пиразол-1-ил)пиридин- 3-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	H ₂ N N N O HN	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,37 (s, 1H), 8,22 (s, 1H), 8,17 (d, J = 2,2 Γц, 1H), 7,83 (d, J = 8,4 Γц, 1H), 7,79 – 7,69 (m, 3H), 7,64 (s, 1H), 7,29 (d, J = 8,5 Γц, 2H), 6,10 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 2,10 (s, 3H), 1,95 (s, 3H).	465,30
N-(4-(4-амино-7-метил- 5-(3-метил-2-оксо-2,3- дигидро-1Н- бензо[d]имидазол-5- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,86 (s, 1H), 9,86 (s, 1H), 8,18 (s, 1H), 7,71 – 7,63 (m, 2H), 7,32 – 7,26 (m, 2H), 6,98 (d, J = 1,6 Γц, 1H), 6,93 (d, J = 7,9 Γц, 1H), 6,83 (dd, J = 7,9, 1,6 Γц, 1H), 5,79 (s, 1H), 5,55 – 5,50 (m, 1H), 3,61 (s, 3H), 3,20 (s, 3H), 1,94 (t, J = 1,2 Γц, 3H)	454,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (циклопропилметокси)ф енил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,17 (s, 1H), 7,72 – 7,65 (m, 2H), 7,26 (d, J = 8,4 Γц, 2H), 7,14 (d, J = 8,6 Γц, 2H), 6,90 (d, J = 8,3 Γц, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,80 (d, J = 7,0 Γц, 2H), 3,60 (s, 3H), 1,95 (s, 3H), 1,20 (ddd, J = 12,5, 7,9, 5,0 Γц, 1H), 0,61 – 0,52 (m, 2H), 0,32 (dd, J = 4,8, 1,6 Γц, 2H).	454,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N,N-диметилбензамид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,75 – 7,67 (m, 2H), 7,40 – 7,34 (m, 2H), 7,30 – 7,23 (m, 4H), 6,02 (s, 2H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,62 (s, 3H), 2,96 (s, 6H), 1,95 (d, J = 1,3 Γц, 3H).	455,20
N-(4-(4-амино-5-(1-бензил-6-оксо-1,6-дигидропиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,24 (s, 1H), 7,81 – 7,73 (m, 2H), 7,60 (d, J = 7,0 Гц, 1H), 7,41 – 7,26 (m, 7H), 6,49 (d, J = 1,9 Гц, 1H), 6,23 (dd, J = 7,0, 1,9 Гц, 1H), 5,85 – 5,80 (m, 1H), 5,56 (d, J = 1,8 Гц, 1H), 5,18 (s, 2H), 3,68 (s, 3H), 2,08 – 2,03 (m, 3H).	491,30
N-(4-(4-амино-5-(2,3-диметил-1-оксоизоиндолин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	ONH ONH NH ₂	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,22 (s, 1H), 7,73 – 7,66 (m, 2H), 7,59 (d, J = 7,7 Гц, 1H), 7,44 (s, 1H), 7,28 (td, J = 7,5, 6,9, 1,7 Гц, 3H), 5,79 (s, 1H), 5,53 (s, 1H), 4,50 (q, J = 6,6 Гц, 1H), 3,63 (s, 3H), 2,99 (s, 3H), 1,95 (t, J = 1,3 Гц, 3H), 1,33 (d, J = 6,6 Гц, 3H).	467,25
N-(4-(4-амино-7-метил- 5-(4-(5-(метиламино)- 1,3,4-тиадиазол-2- ил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N NH ₂ NH S NN NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,87 (q, J = 4,8 Гц, 1H), 7,75 – 7,68 (m, 4H), 7,33 – 7,25 (m, 4H), 5,80 (s, 1H), 5,53 (t, J = 1,6 Γц, 1H), 3,61 (s, 3H), 2,93 (d, J = 4,8 Γц, 3H), 1,95 (d, J = 1,3 Γц, 3H).	497,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(метилсульфонил)- 1Н-индол-5-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,22 (s, 1H), 9,85 (s, 1H), 8,20 (s, 1H), 8,01 (s, 1H), 7,70 – 7,61 (m, 3H), 7,50 (d, J = 8,4 Γц, 1H), 7,31 – 7,24 (m, 2H), 7,14 (dd, J = 8,4, 1,7 Γц, 1H), 5,90 (s, 2H), 5,77 (s, 1H), 5,51 (t, J = 1,4 Γц, 1H), 3,63 (s, 3H), 3,02 (s, 3H), 1,93 (t, J = 1,2 Γц, 3H).	501,35
N-(4-(4-амино-7-метил- 5-(4-метил-3,4-дигидро- 2H- бензо[b][1,4]оксазин-7- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ ONH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,16 (s, 1H), 7,71 (d, J = 8,3 Гц, 2H), 7,28 (d, J = 8,3 Гц, 2H), 6,67 (s, 2H), 6,53 (s, 1H), 5,80 (s, 2H), 5,54 (s, 1H), 4,21 (t, J = 4,3 Γц, 2H), 3,31 (s, 2H), 3,24 (t, J = 4,5 Γц, 2H), 2,83 (s, 3H), 1,96 (s, 3H), 1,35 – 1,07 (m, 2H).	455,30
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N,N-диметил-2,3-дигидро-1Н-инден-1-карбоксамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,18 (s, 1H), 7,74 – 7,66 (m, 2H), 7,33 – 7,25 (m, 2H), 7,15 (s, 1H), 7,09 – 6,98 (m, 2H), 5,80 (s, 2H), 5,53 (t, $J = 1,5$ Γц, 1H), 4,43 (t, $J = 8,0$ Γц, 1H), 3,59 (s, 3H), 3,32 (s, 3H), 3,19 (s, 4H), 2,94 (dt, $J = 12,1$, 4,4 Γц, 1H), 2,25 (s, 2H), 1,98 (dt, $J = 16,0$, 8,3 Γц, 3H).	495,3
N-(4-(4-амино-5-(1- циклопропил-6-оксо- 1,6-дигидропиридин-3- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, Хлороформ- <i>d</i>) δ 8,40 (s, 1H), 7,67 (dd, J = 9,7, 3,0 Γ ц, 3H), 7,30 (d, J = 2,6 Γ ц, 1H), 7,27 (dd, J = 8,5, 2,0 Γ ц, 2H), 7,14 (d, J = 2,6 Γ ц, 1H), 6,56 (d, J = 9,3 Γ ц, 1H), 5,86 (s, 1H), 5,55 (q, J = 1,5 Γ ц, 1H), 5,07 (s, 2H), 3,72 (s, 3H), 3,33 (tt, J = 7,6, 4,2 Γ ц, 1H), 2,11 (d, J = 1,3 Γ ц, 3H), 1,12 – 1,02 (m, 2H), 0,70 – 0,61 (m, 2H).	441,15
N-(4-(4-амино-7-метил- 5-(2-метил-2Н-индазол- 6-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,86 (s, 1H), 8,33 (s, 1H), 8,20 (s, 1H), 7,71 – 7,62 (m, 3H), 7,42 (q, J = 1,2 Γц, 1H), 7,33 – 7,25 (m, 2H), 6,88 (dd, J = 8,5, 1,4 Γц, 1H), 5,78 (t, J = 1,1 Γц, 1H), 5,54 – 5,49 (m, 1H), 4,15 (s, 3H), 3,63 (s, 3H), 1,93 (t, J = 1,2 Γц, 3H).	438,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (циклопентилсульфони л)фенил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ O=S=O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,23 (s, 1H), 7,84 – 7,77 (m, 2H), 7,75 – 7,68 (m, 2H), 7,47 – 7,40 (m, 2H), 7,27 – 7,21 (m, 2H), 6,01 (s, 0H), 5,80 (s, 1H), 5,54 (s, 1H), 3,82 – 3,70 (m, 1H), 3,62 (s, 3H), 1,95 (d, J = 1,5 Γц, 3H), 1,84 (d, J = 8,8 Γц, 4H), 1,57 (q, J = 6,7, 6,1 Γц, 4H).	516,25
N-(4-(4-амино-5-(6- (диметиламино)пириди н-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,18 (s, 1H), 7,92 (d, J = 2,4 Γц, 1H), 7,71 (d, J = 8,6 Γц, 2H), 7,37 (dd, J = 8,7, 2,5 Γц, 1H), 7,29 (d, J = 8,6 Γц, 2H), 6,63 (d, J = 8,7 Γц, 1H), 5,80 (s, 1H), 5,72 (s, 1H), 5,54 (s, 1H), 3,59 (s, 3H), 3,01 (s, 6H), 1,95 (s, 3H).	428,35
N-(4-(4-амино-5-(3- фтор-4-((4-метил-1Н- пиразол-1- ил)метил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,71 (d, J = 8,4 Γц, 2H), 7,56 (s, 1H), 7,30 – 7,24 (m, 3H), 7,02 (d, J = 11,5 Γц, 3H), 5,92 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 5,29 (s, 2H), 3,58 (s, 3H), 2,01 (s, 3H), 1,96 (s, 3H).	496,35
N-(4-(4-амино-7-метил- 5-(2-метил-1- оксоизоиндолин-5-ил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,72 – 7,65 (m, 2H), 7,55 (d, J = 7,9 Γ ц, 1H), 7,42 (d, J = 7,1 Γ ц, 2H), 7,26 (d, J = 8,5 Γ ц, 2H), 5,79 - 5,76 (s, 2H), 5,53 (d, J = 1,9 Γ ц, 1H), 4,45 (s, 2H), 3,62 (s, 3H), 3,06 (s, 3H), 1,94 (s, 3H).	453,20
N-(4-(4-амино-5-(4- ((4,4-дифторпиперидин- 1-ил)метил)-3- фторфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (d, J = 1,9 Гц, 1H), 7,68 (dd, J = 8,7, 2,0 Гц, 2H), 7,43 (t, J = 7,8 Гц, 1H), 7,29 (dd, J = 8,7, 2,0 Гц, 2H), 7,13 (d, J = 7,7 Гц, 1H), 7,01 (d, J = 10,8 Гц, 1H), 5,82 (s, 1H), 5,55 (s, 1H), 3,72 – 3,65 (m, 5H), 3,33 (d, J = 9,1 Гц, 1H), 2,64 (d, J = 6,6 Гц, 4H), 2,07 – 1,95 (m, 7H).	535,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(2,2-диоксидо-1,3-дигидробензо[с]тиофен-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,71 (d, J = 8,6 Гц, 2H), 7,36 – 7,25 (m, 4H), 7,19 (dd, J = 7,8, 1,8 Γц, 1H), 5,80 (s, 1H), 5,54 (d, J = 2,0 Γц, 1H), 4,48 (d, J = 4,6 Γц, 4H), 3,60 (s, 3H), 1,95 (s, 3H).	474,15
N-(4-(4-амино-5-(4-((3-гидроксипирролидин-1-ил)метил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,19 (s, 1H), 7,69 (d, J = 8,3 Гц, 2H), 7,27 (dd, J = 8,2, 4,7 Γц, 4H), 7,19 (d, J = 7,7 Гц, 2H), 5,86 (s, 2H), 5,53 (s, 1H), 4,67 (d, J = 4,6 Γц, 1H), 4,19 (d, J = 7,1 Γц, 1H), 3,61 (s, 3H), 3,54 (d, J = 5,5 Γц, 2H), 2,67 (dd, J = 9,6, 6,2 Γц, 1H), 2,57 (t, J = 7,7 Γц, 1H), 2,40 (q, J = 7,5 Γц, 1H), 2,30 (dd, J = 9,8, 3,6 Γц, 1H), 2,06 – 1,95 (m, 4H), 1,65 – 1,41 (m, 1H).	483,3
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиперазин-1- ил)метил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,46 (s, 1H), 8,21 (s, 1H), 7,65 (d, J = 8,4 Гц, 2H), 7,36 (d, J = 7,9 Гц, 2H), 7,28 (t, J = 8,1 Гц, 4H), 5,81 (s, 1H), 5,55 (s, 1H), 3,68 (d, J = 18,2 Гц, 5H), 3,03 (s, 4H), 2,69 (s, 7H), 2,04 (s, 3H).	496,35
N-(4-(4-амино-5-(1-изопропил-1Н-индазол-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,84 (s, 1H), 8,19 (s, 1H), 8,04 (s, 1H), 7,70 – 7,61 (m, 4H), 7,28 (d, J = 8,6 Γц, 2H), 7,21 (dd, J = 8,6, 1,6 Γц, 1H), 5,77 (s, 2H), 5,51 (s, 1H), 4,97 (p, J = 6,6 Γц, 1H), 3,62 (s, 3H), 1,93 (s, 3H), 1,49 (d, J = 6,6 Γц, 6H).	466,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(2-оксопиперидин- 1-ил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ ONH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,75 – 7,67 (m, 2H), 7,41 – 7,21 (m, 6H), 5,85 (m, 2H), 5,55 (d, J = 1,2 Γц, 1H), 3,65 (d, J = 8,1 Γц, 5H), 2,55 – 2,31 (t, J = 6,3 Γц, 2H), 1,95 (t, J = 1,2 Γц, 3H), 1,91 – 1,77 (m, 4H).	481,3
N-(4-(4-амино-7-метил- 5-(1-(1-метилазетидин- 3-ил)-1Н-пиразол-4-ил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,38 (s, 1H), 7,63 (d, J = 8,3 Гц, 2H), 7,56 (s, 1H), 7,50 (s, 1H), 7,38 (s, 1H), 7,29 (s, 1H), 5,84 (s, 1H), 5,53 (d, J = 1,8 Гц, 1H), 5,08 (s, 2H), 4,87 (p, J = 6,9 Гц, 1H), 3,86 $-$ 3,75 (m, 2H), 3,70 (s, 3H), 3,54 $-$ 3,45 (m, 2H), 2,45 (s, 3H), 2,11 (s, 3H).	443,20
N-(4-(4-амино-7-метил- 5-(6-(2- оксопирролидин-1- ил)пиридин-3-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,28 (d, J = 8,6 Гц, 1H), 8,23 – 8,14 (m, 2H), 7,75 – 7,63 (m, 3H), 7,28 (d, J = 8,3 Γц, 2H), 5,95 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,97 (t, J = 7,1 Γц, 2H), 3,61 (s, 3H), 2,57 (t, J = 8,0 Γц, 2H), 2,04 (q, J = 7,5 Γц, 2H), 1,95 (s, 3H).	468,35
N-(4-(4-амино-5-(5- фтор-2- метоксипиридин-4-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,21 (s, 1H), 8,04 (d, J = 1,4 Γц, 1H), 7,75 – 7,69 (m, 2H), 7,30 – 7,23 (m, 2H), 6,70 (d, J = 5,0 Γц, 1H), 6,16 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,82 (s, 3H), 3,62 (s, 3H), 1,95 (s, 3H).	433,20
N-(4-(4-амино-7-метил- 5-(4-(2- оксоимидазолидин-1- ил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	O N NH2 NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,18 (s, 1H), 7,69 (d, J = 8,6 Гц, 2H), 7,55 (d, J = 8,6 Γц, 2H), 7,31 – 7,24 (m, 2H), 7,18 (d, J = 8,6 Γц, 2H), 6,96 (s, 1H), 5,94 (s, 2H), 5,79 (s, 1H), 5,55 – 5,50 (m, 1H), 3,84 (dd, J = 9,2, 6,6 Γц, 2H), 3,40 (t, J = 7,9 Γц, 3H), 3,32 (s, 2H), 1,95 (s, 3H).	468,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(2,5- диметоксипиридин-4- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,18 (s, 1H), 7,87 (s, 1H), 7,70 (d, J = 8,4 Γц, 2H), 7,23 (d, J = 8,4 Γц, 2H), 6,51 (s, 1H), 5,88 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,76 (s, 3H), 3,60 (d, J = 2,3 Γц, 6H), 1,95 (s, 3H).	445,25
N-(4-(4-амино-5- (имидазо[1,2- а]пиридин-7-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,44 (d, J = 7,0 Гц, 1H), 8,21 (s, 1H), 7,89 (s, 1H), 7,72 (d, J = 8,5 Γц, 2H), 7,56 – 7,51 (m, 1H), 7,36 – 7,28 (m, 3H), 6,63 (dd, J = 7,0, 1,7 Γц, 1H), 6,15 (s, 2H), 5,78 (d, J = 11,5 Γц, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 1,94 (s, 3H).	424,25
N-(4-(4-амино-7-метил- 5-(6-(1- метилпиперидин-4- илокси)пиридин-3-ил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,97 (d, J = 2,5 Гц, 1H), 7,75 – 7,70 (m, 2H), 7,52 (dd, J = 8,5, 2,5 Γц, 1H), 7,32 – 7,24 (m, 2H), 6,75 (d, J = 8,5 Γц, 1H), 5,92 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 4,95 (tt, J = 8,8, 4,1 Γц, 1H), 3,60 (s, 3H), 2,66 (dd, J = 12,9, 5,5 Γц, 2H), 2,19 – 2,08 (m, 5H), 1,99 – 1,93 (m, 5H), 1,69 (ddt, J = 14,5, 9,2, 4,8 Γц, 2H).	498,25
N-(4-(4-амино-5-(8-азабицикло[3.2.1]окт-2-ен-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	$^{-1}$ H ЯМР (400 МГц, Метанол- d_4) δ 8,37 (s, 1H), 7,90 (d, J = 8,4 Гц, 2H), 7,50 (d, J = 8,4 Гц, 2H), 6,21 (d, J = 5,6 Гц, 1H), 5,87 (s, 1H), 5,60 (s, 1H), 4,37 (t, J = 5,5 Гц, 1H), 4,10 (s, 1H), 3,75 (s, 3H), 2,93 – 2,84 (m, 1H), 2,31 – 2,12 (m, 4H), 2,07 (s, 3H), 1,99 – 1,90 (m, 1H), 1,57 (s, 1H), 1,30 (d, J = 13,5 Гц, 1H).	415,30
N-(4-(4-амино-5-(4-(6-метилпиридин-2-илокси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-N-метилакриламид	NH ₂ ON NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,17 (s, 1H), 8,14 (s, 1H), 7,74 - 7,78 (m, 1H), 7,41 - 7,47 (m, 4H), 7,21 - 7,24 (m, 4H), 6,84 - 6,86 (d, J = 8 Γц, 1H), 5,17 - 6,18 (m, 5H), 3,23 (s, 3H), 2,36 (s, 3H).	477,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,12 (s, 1H), 9,82 (s, 1H), 8,13 (s, 1H), 7,59 (d, J = 8,3 Γц, 4H), 7,39 (d, J = 8,1 Γц, 2H), 7,25 (d, J = 8,6 Γц, 2H), 5,79 (s, 1H), 5,52 (s, 1H), 3,48 (dt, J = 11,2, 6,4 Γц, 4H), 1,96 – 1,81 (m, 7H).	467,30
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,21 (s, 1H), 7,72 – 7,65 (m, 2H), 7,55 – 7,46 (m, 2H), 7,28 (dd, J = 8,6, 6,8 Γц, 4H), 6,44 (dd, J = 17,0, 10,2 Γц, 1H), 6,27 (dd, J = 17,0, 2,2 Γц, 1H), 5,78 (dd, J = 10,2, 2,2 Γц, 2H), 3,62 (s, 3H), 3,44 (dt, J = 17,8, 6,6 Γц, 4H), 1,84 (ddd, J = 17,8, 12,8, 6,8 Γц, 4H).	467,20
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)бут-2-инамид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,72 (s, 1H), 8,21 (s, 2H), 7,59 - 7,61 (d, $J = 8$ Γц, 2H), 7,47 - 7,49 (d, $J = 8$ Γц, 2H), 7,26 (m, 4H), 5,91 (s, 1H), 3,59 (s, 3H), 3,16 - 3,45 (m, 4H), 2,05 (s, 3H), 1,82 - 1,86 (m, 4H).	479,35
N-(4-(4-амино-5-(3- этокси-4-((6- метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,05 (s, 1H), 9,83 (s, 1H), 8,13 (s, 1H), 7,70 (m, 1H), 7,66 – 7,60 (m, 2H), 7,39 – 7,30 (m, 2H), 7,18 (d, J = 8,0 Γц, 1H), 7,09 (d, J = 2,0 Γц, 1H), 7,01 – 6,90 (m, 2H), 6,74 (d, J = 8,4 Γц, 1H), 5,79 (s, 2H), 5,53 (s, 1H), 3,93 – 3,88 (m, 2H), 2,34 (s, 3H), 1,95 (s, 3H), 1,23 – 1,13 (m, 3H).	521,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- метокси-4-((6- метилпиридин-2-	-NO	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 12,07 (s, 1H), 10,66 (s, 1H), 8,13 (s, 1H), 7,69 (t, J = 8,0 Γц, 1H),	505,25
ил)окси)фенил)-7Н-пирроло[2,3-	NH ₂ O	7,53 (d, J = 8,8 Гц, 2H), 7,37 – 7,25 (m, 2H), 7,17 (d, J = 8,0 Гц, 1H),	
d]пиримидин-6- ил)фенил)бут-2-инамид	N N N N N N N N N N N N N N N N N N N	7,10 (d, $J = 2.0 \Gamma \mu$, 1H), 7,04 – 6,88 (m, 2H), 6,72 (d, $J = 8.4 \Gamma \mu$, 1H), 5,84 (s, 2H), 3,62 (s, 3H), 2,34 (s, 3H), 2,05 (s, 3H).	
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-	NO NO	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 12,07 (s, 1H), 10,19 (s, 1H), 8,12 (s, 1H), 7,77 (t, $J = 7,8$ Γ ц, 1H), 7,60 (d, $J = 8,6$ Γ ц, 2H), 7,42 –	463,4
d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	7,35 (m, 2H), 7,32 (d, $J = 8,5$ Γ ц, 2H), 7,23 – 7,16 (m, 2H), 7,04 (d, $J = 7,3$ Γ ц, 1H), 6,85 (d, $J = 8,2$ Γ ц, 1H), 6,43 (dd, $J = 17,0$, 10,1 Γ ц,	
	· · н	1H), 6,26 (dd, J = 17,0, 2,0 Γ ц, 1H), 5,76 (dd, J = 10,1, 2,0 Γ ц, 1H), 2,38 (s, 3H).	
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-	NO NO	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 12,05 (s, 1H), 9,87 (s, 1H), 8,12 (s, 1H), 7,76 (t, J = 7,8 Γ ц, 1H), 7,54 (d, J = 8,6 Γ ц, 2H), 7,40 – 7,33 (m,	479,4
d]пиримидин-6- ил)фенил)изобутирамид	NH ₂ O	2H), 7,31 – 7,25 (m, 2H), 7,22 – 7,15 (m, 2H), 7,04 (d, <i>J</i> = 7,4 Γμ, 1H), 6,84 (d, <i>J</i> = 8,2 Γμ, 1H), 5,74	
	N N H	(s, 2H), 2,59 (q, <i>J</i> = 6,7 Гц, 1H), 2,38 (s, 3H), 1,09 (d, <i>J</i> = 6,8 Гц, 6H).	172.00
N-(4-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)-7H- пирроло[2,3-	N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,20 (s, 1H), 7,88 (d, J = 8,6 Гц, 1H), 7,73 – 7,67 (m, 2H), 7,34 – 7,23 (m, 4H), 7,15 –	453,30
d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	7,08 (m, 2H), 6,89 (d, J = 8,6 Γμ, 1H), 6,44 (dd, J = 17,0, 10,1 Γμ, 1H), 6,27 (dd, J = 16,9, 2,0 Γμ, 1H), 5,96 (s, 2H), 5,78 (dd, J =	
	11	10,1, 2,1 Гц, 1H), 3,62 (s, 3H), 2,40 (s, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((6-фторпиридин-3-ил)окси)-3-гидроксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 9,61 (s, 1H), 8,23 – 8,10 (m, 2H), 7,81 – 7,71 (m, 3H), 7,31 (d, J = 8,4 Γц, 2H), 7,09 – 6,96 (m, 2H), 6,81 (d, J = 2,2 Γц, 1H), 6,70 (dd, J = 8,0, 2,2 Γц, 1H), 5,81 (s, 1H), 3,60 (s, 3H), 1,96 (s, 3H).	511,20
N-(4-(4-амино-5-(3-метокси-4-((1-метил-1H-пиразол-3-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,19 (d, J = 2,2 Гц, 1H), 7,78 – 7,60 (m, 3H), 7,55 (d, J = 2,3 Гц, 1H), 7,32 (d, J = 8,6 Гц, 2H), 7,01 – 6,95 (m, 1H), 6,92 (d, J = 2,0 Γц, 1H), 6,75 (m, J = 8,2, 2,2 Γц, 1H), 6,45 (m, J = 17,0, 10,1 Гц, 1H), 6,21 – 6,12 (m, 1H), 5,78 (dd, J = 10,1, 2,0 Γц, 1H), 5,69 (d, J = 2,3 Гц, 1H), 3,71 (s, 3H), 3,62 (d, J = 9,0 Гц, 6H).	496,20
N-(4-(4-амино-5-(3-метокси-4-(пирролидин-1-карбонил)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,72 (d, J = 8,4 Γц, 2H), 7,30 (d, J = 8,4 Γц, 2H), 7,14 (d, J = 7,6 Γц, 1H), 6,90 (s, 1H), 6,83 (d, J = 7,6 Γц, 1H), 6,11 (s, 1H), 5,82 (s, 1H), 5,54 (s, 1H), 3,63 (d, J = 12,4 Γц, 6H), 3,43 (t, J = 6,8 Γц, 2H), 3,16 - 3,13 (m, 2H), 1,96 (s, 3H), 1,87 - 1,77 (m, 4H).	511,35
N-(4-(4-амино-5-(3-метокси-4-(пирролидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,27 (s, 1H), 8,21 (s, 1H), 7,70 (d, J = 8,4 Γц, 2H), 7,31 (d, J = 8,5 Γц, 2H), 7,14 (d, J = 7,6 Γц, 1H), 6,88 (d, J = 1,5 Γц, 1H), 6,82 (dd, J = 7,7, 1,4 Γц, 1H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 6,02 (s, 2H), 5,78 (dd, J = 10,0, 2,0 Γц, 1H), 3,62 (d, J = 6,3 Γц, 6H), 3,42 (t, J = 6,9 Γц, 2H), 3,13 (t, J = 6,5 Γц, 2H), 1,82 (dqq, J = 19,6, 7,0 Γц, 4H).	497,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(3-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,21 (s, 1H), 7,72 (d, J = 8,4 Γц, 2H), 7,53 – 7,35 (m, 3H), 7,25 (d, J = 8,4 Γц, 2H), 7,17 (d, J = 2,0 Γц, 1H), 5,78 (s, 1H), 5,54 (s, 1H), 3,61 (s, 3H), 3,37 (t, J = 7,0 Γц, 2H), 2,84 (t, J = 6,6 Γц, 2H), 1,95 (s, 3H), 1,81 – 1,73 (m, 2H), 1,67 – 1,59 (m, 2H).	481,35
N-(4-(4-амино-7-метил- 5-(1-(пирролидин-1- карбонил)пиперидин-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH	¹ H 9MP (400 MΓμ, DMSO- d_6) δ 9,98 (s, 1H), 8,11 (s, 1H), 7,83 (d, J = 8,4 Γμ, 2H), 7,35 (d, J = 8,3 Γμ, 2H), 6,38 (s, 2H), 5,83 (s, 1H), 5,56 (s, 1H), 3,60 (d, J = 12,7 Γμ, 2H), 3,36 (s, 3H), 3,18 (d, J = 6,3 Γμ, 4H), 3,05 (s, 1H), 2,73 (t, J = 12,3 Γμ, 2H), 1,98 (s, 3H), 1,72 (d, J = 4,9 Γμ, 4H), 1,68 – 1,49 (m, 4H).	488,25
N-(4-(4-амино-7-метил- 5-(4-(3-метилазетидин- 1-карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,63 – 7,57 (m, 2H), 7,27 (t, J = 8,4 Γц, 4H), 5,80 (s, 1H), 5,53 (t, J = 1,6 Γц, 1H), 4,42 (t, J = 8,3 Γц, 1H), 4,15 (t, J = 8,8 Γц, 1H), 3,88 (s, 1H), 3,61 (s, 3H), 3,32 (s, 1H), 2,75 – 2,66 (m, 1H), 1,95 (d, J = 1,2 Γц, 3H), 1,20 (d, J = 6,8 Γц, 3H).	481,20
N-(4-(4-амино-5-(4-(4,4-дифторпиперидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	F F N O NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,81 – 7,64 (m, 2H), 7,41 (d, J = 8,1 Γц, 2H), 7,34 – 7,18 (m, 4H), 5,80 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 2,09 – 1,97 (m, 4H), 1,95 (d, J = 1,3 Γц, 3H).	531,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(3,3-дифторпирролидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	F F O NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,51 (s, 2H), 7,30 – 7,23 (m, 2H), 5,98 (s, 2H), 5,80 (s, 1H), 5,53 (d, J = 1,8 Γц, 1H), 3,93 (s, 2H), 3,72 (t, J = 7,4 Γц, 2H), 3,61 (s, 3H), 2,50 – 2,32 (m, 2H), 1,95 (d, J = 1,2 Γц, 3H).	517,35
N-(4-(4-амино-7-метил- 5-(4- (октагидроциклопента[с]пиррол-2- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,71 (d, J = 8,5 Гц, 2H), 7,45 (d, J = 7,9 Γц, 2H), 7,26 (dd, J = 8,4, 2,1 Γц, 4H), 5,93 (s, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 3,69 (s, 1H), 3,61 (s, 4H), 3,22 (s, 2H), 2,62 (s, 2H), 1,95 (s, 3H), 1,84 – 1,60 (m, 3H), 1,60 – 1,20 (m, 3H).	521,30
N-(4-(4-амино-5-(4-(3-гидроксипирролидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	HO NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,71 (d, J = 8,4 Гц, 2H), 7,49 (dd, J = 8,3, 2,3 Γц, 2H), 7,27 (dd, J = 8,3, 1,8 Γц, 4H), 5,80 (s, 3H), 5,53 (t, J = 1,5 Γц, 1H), 4,96 (dd, J = 27,0, 3,5 Γц, 1H), 4,28 (d, J = 36,6 Γц, 1H), 3,66 (s, 3H), 3,32 (s, 3H), 3,24 (d, J = 11,0 Γц, 1H), 1,95 (t, J = 1,2 Γц, 5H).	497,35
N-(4-(4-амино-7-метил- 5-(4-(пиперидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,68 (m, 2H), 7,34 (d, J = 8,2 Γц, 2H), 7,27 (dd, J = 8,3, 1,4 Γц, 4H), 5,95 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,68 – 3,36 (m, 7H), 1,96 (t, J = 1,2 Γц, 3H), 1,62 (d, J = 6,4 Γц, 2H), 1,51 (s, 4H).	495,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(пиперидин-4- илметил)-1Н-пиразол-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	HN N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,37 (s, 1H), 7,77 – 7,70 (m, 2H), 7,59 (s, 1H), 7,54 (s, 1H), 7,40 – 7,33 (m, 2H), 5,84 (s, 1H), 5,58 (d, $J=1,8$ Гц, 1H), 4,10 (d, $J=7,1$ Гц, 2H), 3,79 (s, 3H), 3,46 – 3,37 (m, 2H), 2,96 (td, $J=12,9$, 3,0 Гц, 2H), 2,16 (ddd, $J=11,4$, 7,6, 3,9 Гц, 1H), 2,06 (s, 3H), 1,72 – 1,63 (m, 2H), 1,55 – 1,25 (m, 2H).	471,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метилциклогекс-3-ен-1-карбоксамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,10 (s, 1H), 7,84 – 7,75 (m, 3H), 7,46 – 7,39 (m, 2H), 5,83 (s, 1H), 5,77 (s, 1H), 5,56 (d, J = 1,6 Γц, 1H), 3,57 (s, 3H), 2,57 (d, J = 4,5 Γц, 3H), 2,45 (q, J = 6,2 Γц, 1H), 2,29 (s, 1H), 2,24 (s, 1H), 1,98 (t, J = 1,2 Γц, 3H), 1,89 (s, 2H), 1,65 (d, J = 6,3 Γц, 2H).	445,30
N-(4-(4-амино-7-метил- 5-(3-метил-4- (тетрагидрофуран-3- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,17 (s, 1H), 7,69 (d, J = 8,4 Гц, 2H), 7,28 (d, J = 8,3 Гц, 2H), 7,07 (s, 1H), 7,01 (d, J = 8,7 Γц, 1H), 6,88 (d, J = 8,4 Γц, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 5,00 (d, J = 5,8 Γц, 1H), 3,94 – 3,72 (m, 4H), 3,59 (s, 3H), 2,20 (dq, J = 14,5, 7,7 Γц, 1H), 2,09 (s, 3H), 1,99 (d, J = 7,1 Гц, 1H), 1,95 (s, 3H), 1,16 (t, J = 13,1 Гц, 1H).	484,35
N-(4-(4-амино-7-метил- 5-(1-метил-1,2,3,4- тетрагидрохинолин-6- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,15 (s, 1H), 7,70 (d, J = 8,3 Гц, 2H), 7,29 (d, J = 8,3 Гц, 2H), 6,86 (dd, J = 8,3, 2,2 Γц, 1H), 6,81 (d, J = 2,2 Γц, 1H), 6,53 (d, J = 8,3 Γц, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 3,58 (s, 3H) 3,20 (t, J = 5,6 Γц, 2H), 2,82 (s, 3H), 2,63 (t, J = 6,5 Γц, 2H), 1,95 (s, 3H), 1,87 (p, J = 6,2 Γц, 2H).	453,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(Е)-N-(4-(4-амино-7-метил-5-(4- (пирролидин-1-карбонил)фенил)-7H-пирроло[2,3- d]пиримидин-6-ил)фенил)-4- (диметиламино)бут-2-енамид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,17 (s, 1H), 8,20 (s, 1H), 7,67 (d, J = 8,3 Γ ц, 2H), 7,49 (d, J = 7,9 Γ ц, 2H), 7,26 (dd, J = 8,3, 1,9 Γ ц, 4H), 6,74 (dt, J = 15,5, 5,8 Γ ц, 1H), 6,31 – 6,23 (m, 1H), 5,92 (s, 1H), 3,61 (s, 3H), 3,43 (dt, J = 17,9, 6,6 Γ ц, 4H), 3,28 (s, 1H), 3,09 – 3,03 (m, 1H), 2,18 (s, 6H), 1,89 – 1,78 (m, 4H).	524,45
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метилфенил)акриламид	NH ₂ NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,47 (s, 1H), 8,21 (s, 1H), 7,60 (d, J = 8,2 Гц, 1H), 7,49 (d, J = 8,1 Гц, 2H), 7,28 (d, J = 8,1 Гц, 2H), 7,20 (d, J = 2,1 Гц, 1H), 7,13 (dd, J = 8,2, 2,1 Γц, 1H), 6,56 (dd, J = 16,9, 10,2 Γц, 1H), 6,26 (dd, J = 17,0, 2,0 Γц, 1H), 5,76 (dd, J = 10,1, 2,0 Γц, 2H), 3,43 (dt, J = 21,9, 6,5 Γц, 4H), 3,33 (s, 3H), 2,18 (s, 3H), 1,84 (dq, J = 18,5, 7,1 Γц, 4H).	481,45
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- фторфенил)акриламид	NH ₂ F NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,04 (s, 1H), 8,22 (s, 1H), 8,08 (t, J = 8,3 Гц, 1H), 7,54 – 7,48 (m, 2H), 7,32 – 7,23 (m, 3H), 7,14 (dd, J = 8,3, 1,9 Гц, 1H), 6,64 (dd, J = 17,0, 10,2 Γц, 1H), 6,29 (dd, J = 17,0, 2,0 Γц, 1H), 5,79 (dd, J = 10,1, 2,0 Γц, 1H), 3,62 (s, 3H), 3,44 (dt, J = 19,1, 6,5 Γц, 4H), 1,85 (dp, J = 18,1, 6,7 Γц, 4H).	485,1
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2,6- дифторфенил)акрилами д	NH ₂ F NH F O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,99 (s, 1H), 8,23 (s, 1H), 7,53 (d, J = 7,9 Гц, 2H), 7,31 (d, J = 7,8 Γц, 2H), 7,18 (d, J = 8,4 Γц, 2H), 6,55 – 6,40 (m, 1H), 6,27 (dd, J = 17,2, 1,9 Γц, 1H), 5,82 (dd, J = 10,2, 1,9 Γц, 2H), 3,69 (s, 3H), 3,48 (q, J = 9,0, 6,9 Γц, 2H), 3,41 (t, J = 6,5 Γц, 2H), 1,90 – 1,79 (m, 4H).	503,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,21 (s, 1H), 8,21 (s, 1H), 7,58 (d, J = 8,3 Γ ц, 2H), 7,49 – 7,42 (m, 2H), 7,27 (d, J = 8,1 Γ ц, 1H), 7,24 – 7,18 (m, 2H), 6,44 (dd, J = 17,0, 10,1 Γ ц, 1H), 6,27 (dd, J = 17,0, 2,1 Γ ц, 1H), 5,77 (dd, J = 10,0, 2,1 Γ ц, 1H), 3,41 (d, J = 6,3 Γ ц, 7H), 1,91 (s, 3H), 1,83 (dt, J = 18,0, 6,5 Γ ц, 4H).	481,2
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,49 (s, 1H), 8,22 (s, 1H), 7,79 (dd, J = 12,2, 2,0 Гц, 1H), 7,49 (d, J = 7,8 Гц, 2H), 7,37 (dd, J = 8,5, 2,0 Γц, 1H), 7,32 – 7,24 (m, 2H), 7,24 (s, 1H), 6,43 (dd, J = 17,0, 10,0 Γц, 1H), 6,30 (dd, J = 17,0, 2,0 Γц, 1H), 6,03 (s, 2H), 5,82 (dd, J = 10,1, 2,1 Γц, 1H), 3,55 (s, 3H), 3,43 (dt, J = 18,4, 6,6 Γц, 4H), 1,83 (dq, J = 12,9, 6,8 Гц, 4H).	485,35
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- фторфенил)метакрилам ид	NH ₂ F NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,61 (s, 1H), 8,22 (s, 1H), 7,59 (t, J = 8,2 Гц, 1H), 7,54 – 7,47 (m, 2H), 7,32 – 7,24 (m, 3H), 7,13 (dd, J = 8,3, 1,9 Γц, 1H), 5,88 (s, 1H), 5,56 (s, 1H), 3,65 (s, 3H), 3,44 (dt, J = 16,9, 6,5 Γц, 4H), 1,95 (s, 3H), 1,84 (dq, J = 18,5, 7,0 Γц, 4H).	499,2
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2,6- дифторфенил)метакрил амид	NH ₂ F NH F O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,66 (s, 1H), 8,23 (s, 1H), 7,53 (d, J = 8,0 Гц, 2H), 7,31 (d, J = 7,9 Гц, 2H), 7,23 – 7,13 (m, 2H), 5,91 (s, 1H), 5,60 (s, 1H), 3,44 (dt, J = 19,8, 6,5 Гц, 4H), 3,33 (s, 2H), 1,94 (s, 3H), 1,84 (dq, J = 18,4, 6,7 Гц, 3H).	517,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклопентил-N-метилбензамид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,73 – 7,67 (m, 2H), 7,32 (d, J = 7,8 Γц, 2H), 7,26 (dd, J = 8,4, 2,4 Γц, 4H), 6,33 – 5,71 (s, 3H), 5,53 (d, J = 1,8 Γц, 1H), 4,99 – 3,92 (s, 1H), 3,65 (s, 3H), 2,82 (s, 3H), 1,95 (d, J = 1,6 Γц, 3H), 1,90 – 1,58 (s, 6H), 1,57 – 1,33 (s, 2H).	509,4
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклопентилбензамид	HN O NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,29 – 8,19 (m, 2H), 7,81 (d, J = 8,2 Γц, 2H), 7,79 – 7,66 (m, 2H), 7,27 (t, J = 8,4 Γц, 4H), 6,31 – 5,45(s, 4H), 4,22 (q, J = 6,9 Γц, 1H), 3,65 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H), 1,87 (s, 2H), 1,69 (s, 2H), 1,53 (q, J = 11,7, 8,4 Γц, 4H).	495,35
N-(4-(5-(4-(2- азабицикло[2.2.2]октан- 2-карбонил)фенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,71 – 7,64 (m, 2H), 7,44 – 7,35 (m, 4H), 7,28 (dd, J = 9,4, 2,7 Гц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,70 (s, 4H), 3,58 (d, J = 2,5 Гц, 2H), 2,08 – 2,02 (m, 4H), 1,92 (s, 2H), 1,81 – 1,68 (m, 6H).	521,40
N-(4-(4-амино-5-(4- (азепан-1- карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,73 – 7,67 (m, 2H), 7,32 (d, J = 8,1 Γц, 2H), 7,25 (dd, J = 8,3, 1,6 Γц, 4H), 5,93 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 3,55 (t, J = 5,7 Γц, 2H), 1,95 (d, J = 1,5 Γц, 3H), 1,70 (s, 2H), 1,55 (s, 6H).	509,4

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(4-(2-азаспиро[3.3]гептан-2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,74 – 7,68 (m, 2H), 7,62 – 7,56 (m, 2H), 7,31 – 7,23 (m, 4H), 5,80 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 4,29 (s, 2H), 4,00 (s, 2H), 3,61 (s, 3H), 2,15 (t, J = 7,6 Γц, 4H), 1,95 (s, 3H), 1,86 (s, 1H), 1,76 (td, J = 7,8, 3,7 Γц, 2H).	507,40
N-(4-(4-амино-7-метил- 5-(4-(2-оксопиперидин- 1-карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,21 (s, 1H), 7,72 (d, J = 8,6 Гц, 2H), 7,54 (d, J = 8,2 Γц, 2H), 7,27 (dd, J = 8,2, 5,8 Γц, 4H), 5,80 (s, 1H), 5,70 (s, 2H), 5,53 (s, 1H), 3,67 (t, J = 5,7 Γц, 2H), 3,61 (s, 3H), 2,50(s, 2H)1,95 (s, 3H), 1,87 (tt, J = 11,7, 6,3 Γц, 4H).	509,25
N-(4-(5-(4-(3-азабицикло[4.1.0]гептан-3-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,71 (d, J = 8,5 Гц, 2H), 7,32 (d, J = 7,9 Γц, 2H), 7,26 (d, J = 8,3 Γц, 4H), 5,95 (s, 2H), 5,80 (s, 1H), 5,53 (d, J = 1,7 Γц, 1H), 3,68 (d, J = 12,5 Γц, 2H), 3,61 (s, 4H), 3,08 (s, 1H), 1,95 (s, 4H), 1,70 – 1,64 (m, 1H), 1,06 (s, 2H), 0,64 (s, 1H), 0,21 (s, 1H).	507,40
N-(4-(5-(4-(2-азабицикло[4.1.0]гептан -2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,73 – 7,66 (m, 2H), 7,52 (d, J = 7,9 Γц, 1H), 7,34 (d, J = 7,9 Γц, 1H), 7,26 (dd, J = 8,2, 4,2 Γц, 4H), 6,25 – 5,70 (s, 3H), 5,53 (t, J = 1,5 Γц, 1H), 4,05 (d, J = 12,6 Γц, 1H), 3,65 (d, J = 7,1 Γц, 3H), 3,02 (t, J = 12,6 Γц, 1H), 2,52 (t, J = 12,6 Γц, 1H), 1,95 (s, 3H), 1,85 (s, 2H), 1,83 – 1,55 (m, 1H), 1,35 (d, J = 13,8 Γц, 2H), 0,37 (s, 1H).	507,4

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенил)циклопентанк арбоксамид	NH ₂ NH ₃ NH ₄ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (d, J = 11,0 Γц, 2H), 8,18 (s, 1H), 7,72 – 7,65 (m, 2H), 7,62 – 7,55 (m, 2H), 7,29 – 7,22 (m, 2H), 7,18 – 7,11 (m, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 2,76 (p, J = 7,8 Γц, 1H), 1,95 (d, J = 1,5 Γц, 3H), 1,85 (ddd, J = 14,1, 8,3, 4,3 Γц, 2H), 1,77 – 1,62 (m, 4H), 1,61 – 1,51 (m, 2H).	495,20
N-(4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенил)-N-метилциклопентанкарбоксамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,80 – 7,62 (m, 2H), 7,36 – 7,19 (m, 6H), 5,78 (s, 1H), 5,53 (s, 1H), 3,63 (s, 3H), 3,17 (d, J = 2,9 Γц, 3H), 1,94 (t, J = 1,2 Γц, 3H), 1,65 – 1,30 (s, 9H).	509,30
N-(4-(5-(4-(3-азабицикло[3.1.0]гексан -3-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,75 (d, J = 8,4 Гц, 2H), 7,45 (d, J = 7,9 Гц, 2H), 7,26 (dd, J = 8,2, 4,4 Γц, 4H), 6,25 – 5,75 (s, 2H), 5,53 (s, 1H), 3,95 (d, J = 11,9 Γц, 1H), 3,66 (d, J = 10,7 Γц, 1H), 3,58 (s, 3H), 3,38 (d, J = 10,8 Γц, 2H), 1,95 (s, 3H), 1,69 – 1,51 (m, 2H), 0,65 (q, J = 4,3 Γц, 1H), 0,08 (q, J = 4,3 Γц, 1H).	493,35
N-(4-(5-(4-(5-азаспиро[2.4]гептан-5-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,70 (dd, J = 8,8, 3,4 Γц, 2H), 7,50 (dd, J = 12,8, 7,8 Γц, 2H), 7,26 (dt, J = 8,2, 4,5 Γц, 4H), 6,04 (s, 1H), 5,92 - 5,80 (s, 1H), 5,53 (s, 1H), 3,66 – 3,55 (m, 5H), 3,37 (d, J = 8,4 Γц, 2H), 1,95 (s, 3H), 1,81 (t, J = 7,1 Γц, 1H), 1,76 (t, J = 6,7 Γц, 1H), 0,54 (d, J = 3,4 Γц, 4H).	507,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(4-(2-азабицикло[3.1.0]гексан-2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,70 (d, J = 8,4 Гц, 2H), 7,59 (d, J = 7,7 Гц, 2H), 7,44 (s, 1H), 7,28 (t, J = 8,9 Γц, 3H), 5,95 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,96 (d, J = 12,2 Γц, 1H), 3,61 (s, 3H), 3,31 - 3,21 (s, 1H), 3,13 (d, J = 12,0 Γц, 1H), 2,06 (s, 1H), 1,95 (s, 4H), 1,60 (s, 1H), 0,77 (t, J = 6,5 Γц, 2H).	493,40
N-(4-(5-(4-((1R,4R)-2- окса-5- азабицикло[2.2.2]октан- 5-карбонил)фенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (d, J = 2,7 Γц, 1H), 7,75 (d, J = 8,3 Γц, 2H), 7,59 – 7,25 (d, J = 7,8 Γц, 2H), 7,23 (dd, J = 8,3, 4,7 Γц, 4H), 6,25 – 5,72 (s, 3H), 5,53 (s, 1H), 4,06 (d, J = 17,0 Γц, 2H), 3,95 – 3,72 (dd, J = 18,0, 9,0 Γц, 3H), 3,65 (m, 3H), 3,51 (d, J = 3,7 Γц, 1H), 2,05 (d, J = 10,8 Γц, 2H), 1,95 (s, 3H), 1,85 – 1,64 (m, 2H).	523,35
N-(4-(4-амино-7-метил- 5-(4-(3- метилпиперидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,36 – 7,22 (m, 6H), 5,79 (s, 1H), 5,53 (s, 1H), 4,28 (s, 1H), 3,62 (s, 4H), 2,96 (s, 1H), 1,95 (s, 3H), 1,78 (d, J = 12,6 Γ ц, 1H), 1,57 (s, 2H), 1,42 (d, J = 13,0 Γ ц, 1H), 1,17 (t, J = 11,1 Γ ц, 1H), 0,77 (s, 3H).	509,40
N-(4-(4-амино-7-метил- 5-(4-(4- метилпиперидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,6 Гц, 2H), 7,33 (d, J = 8,1 Гц, 2H), 7,26 (d, J = 8,3 Γц, 4H), 5,95 (s, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 4,42 (s, 1H), 3,61 (s, 4H), 2,99 (s, 1H), 2,72 (s, 1H), 1,95 (s, 3H), 1,62 (s, 3H), 1,14 – 1,07 (m, 1H), 1,05 (s, 1H), 0,92 (d, J = 6,2 Γц, 3H).	509,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(2- метилпиперидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,4 Гц, 2H), 7,31 (d, J = 8,0 Гц, 2H), 7,26 (d, J = 9,0 Гц, 4H), 5,80 (s, 1H), 5,53 (s, 1H), 4,45 (s, 1H), 3,61 (s, 3H), 3,30 (s, 1H), 2,98 (s, 1H), 1,95 (s, 3H), 1,62 (dd, J = 19,7, 7,5 Гц, 5H), 1,36 (d, J = 12,8 Гц, 1H), 1,18 (d, J = 6,9 Гц, 3H).	509,4
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклобутил-N-метилбензамид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,32 – 7,23 (m, 6H), 5,97 (s, 0H), 5,79 (s, 1H), 5,53 (d, J = 1,8 Γц, 1H), 4,32 (s, 1H), 3,62 (s, 3H), 2,93 (s, 3H), 2,22 (dq, J = 12,2, 9,4 Γц, 2H), 1,95 (s, 5H), 1,60 (s, 1H).	495,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклобутилбензамид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,59 (d, J = 7,6 Гц, 1H), 8,21 (s, 1H), 7,79 (d, J = 8,2 Γц, 2H), 7,73 – 7,67 (m, 2H), 7,32 – 7,23 (m, 4H), 5,92 (s, 2H), 5,79 (s, 1H), 5,54 (s, 1H), 4,40 (q, J = 8,2 Γц, 1H), 3,61 (s, 3H), 2,20 (d, J = 8,7 Γц, 3H), 2,12 – 1,98 (m, 2H), 1,95 (d, J = 1,4 Γц, 3H), 1,65 (td, J = 10,7, 9,4, 6,1 Гц, 2H).	481,35
N-(4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенил)циклобутанка рбоксамид	NH ₂ NH ₃ NH ₂ NH ₃	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 9,76 (s, 1H), 8,18 (s, 1H), 7,69 (d, J = 8,3 Γц, 2H), 7,59 (d, J = 8,1 Γц, 2H), 7,25 (d, J = 8,2 Γц, 2H), 7,15 (d, J = 8,1 Γц, 2H), 5,79 (s, 1H), 5,58 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 3,26 – 3,17 (m, 1H), 2,22 (t, J = 9,5 Γц, 2H), 2,10 (d, J = 9,3 Γц, 2H), 1,95 (s, 4H), 1,80 (d, J = 10,6 Γц, 1H).	481,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(4-(5- азаспиро[2,5]октан-5- карбонил)фенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,70 (d, <i>J</i> = 8,2 Гц, 2H), 7,26 (s, 6H), 5,79 (s, 2H), 5,53 (s, 1H), 3,62 (s, 3H), 3,39 (s, 2H), 3,30 (s, 1H), 3,09 (s, 1H), 1,95 (s, 3H), 1,60 (s, 2H), 1,46 (s, 2H), 0,46 (s, 1H), 0,29 (s, 2H), 0,11 (s, 1H).	521,40
N-(4-(5-(4-(6-азаспиро[2.5]октан-6-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,3 Гц, 2H), 7,41 (d, J = 7,8 Γц, 2H), 7,26 (dd, J = 8,4, 2,6 Γц, 4H), 6,25 – 5,75 (s, 2H), 5,53 (s, 1H), 3,85 – 3,35 (s, 7H), 1,95 (s, 3H), 1,35 (s, 4H), 0,35 (s, 4H).	521,4
N-(4-(4-амино-7-метил- 5-(1-оксоизоиндолин-5- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,51 (s, 1H), 8,21 (s, 1H), 7,73 – 7,66 (m, 2H), 7,59 (d, J = 7,7 Γц, 1H), 7,43 (s, 1H), 7,35 – 7,23 (m, 3H), 5,91 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 4,33 (s, 2H), 3,62 (s, 3H), 1,95 (s, 3H).	439,25
N-(4-(4-амино-5-(4- (циклопентилокси)фени л)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,17 (s, 1H), 7,73 – 7,66 (m, 2H), 7,30 – 7,23 (m, 2H), 7,18 – 7,09 (m, 2H), 6,92 – 6,83 (m, 2H), 5,80 (s, 1H), 5,53 (d, J = 1,9 Γц, 1H), 4,79 (td, J = 6,0, 3,0 Γц, 1H), 3,60 (s, 3H), 1,97 – 1,86 (m, 5H), 1,75 – 1,65 (m, 4H), 1,58 (q, J = 6,0, 3,6 Γц, 2H).	468,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (циклопентилметокси)ф енил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,17 (s, 1H), 7,72 – 7,66 (m, 2H), 7,29 – 7,23 (m, 2H), 7,17 – 7,10 (m, 2H), 6,94 – 6,87 (m, 2H), 5,79 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,83 (d, J = 6,9 Γц, 2H), 3,60 (s, 3H), 2,28 (dq, J = 14,7, 7,4 Γц, 1H), 2,08 (s, 1H), 1,95	482,35
N-(4-(4-амино-7-метил-		(t, J = 1,2 Γ μ , 3H), 1,76 (ddd, J = 11,9, 9,2, 4,7 Γ μ , 2H), 1,65 – 1,47 (m, 4H), 1,39 – 1,26 (m, 2H). ¹ H ЯМР (400 МГ μ , DMSO- d ₆) δ	535,50
5-(4-(октагидро-1Н- изоиндол-2- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH O	9,92 (s, 1H), 8,37 (s, 1H), 7,72 (d, J = 8,6 Γ u, 2H), 7,52 (d, J = 8,0 Γ u, 2H), 7,27 (d, J = 8,0 Γ u, 4H), 6,74 (s, 3H), 5,80 (s, 1H), 5,54 (s, 1H), 3,66 (s, 3H), 3,51 – 3,41 (m, 2H), 3,39 – 3,26 (m, 1H), 3,31 (s, 1H), 2,25 (d, J = 6,9 Γ u, 1H), 2,16 (s, 1H), 1,95 (s, 3H), 1,49 (d, J = 9,3 Γ u, 5H), 1,33 – 1,26 (m, 3H).	
N-(4-(4-амино-5-(4-(4-фторпиперидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H 9MP (400 MΓ _{II} , DMSO- d_6) δ 9,91 (s, 1H), 8,29 (s, 1H), 7,75 – 7,68 (m, 2H), 7,41 – 7,34 (m, 2H), 7,27 (dd, J = 8,4, 2,4 Γ _{II} , 4H), 5,80 (s, 1H), 5,54 (s, 1H), 4,97 (s, 1H), 4,85 (s, 1H), 3,63 (s, 3H), 3,61 (s, 3H), 1,95 (s, 3H), 1,73 (s, 3H).	513,40
N-(4-(4-амино-5-(4-(4-метоксипиперидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,74 – 7,67 (m, 2H), 7,35 (d, J = 7,8 Γц, 2H), 7,26 (d, J = 8,1 Γц, 4H), 5,96 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,89 (s, 1H), 3,61 (s, 3H), 1,95 (s, 3H), 1,84 (s, 2H), 1,44 (s, 2H).	525,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(3,3-дифторазетидин-1-карбонил)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,75 – 7,63 (m, 4H), 7,34 – 7,23 (m, 4H), 5,96 (s, 1H), 5,80 (t, $J = 1,0$ Γц, 1H), 5,54 (t, $J = 1,4$ Γц, 1H), 4,78 (s, 2H), 4,52 (s, 2H), 3,61 (s, 3H), 1,95 (t, $J = 1,2$ Γц, 3H).	503,20
4-(4-амино-6-(4- метакриламидофенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- (2,2,2- трифторэтил)бензамид	O H F F F F NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 9,09 (t, J = 6,3 Γц, 1H), 8,36 (s, 1H), 7,87 (d, J = 8,2 Γц, 2H), 7,76 – 7,68 (m, 2H), 7,33 (d, J = 8,2 Γц, 2H), 7,30 – 7,24 (m, 2H), 6,69 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 4,08 (td, J = 9,9, 6,3 Γц, 2H), 3,65 (s, 3H), 1,95 (s, 3H).	509,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-гидроксиэтил)-N-метилбензамид	NH ₂ OH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,70 (d, J = 8,4 Γц, 2H), 7,38 (d, J = 7,9 Γц, 2H), 7,30 – 7,23 (m, 4H), 5,94 (s, 0H), 5,80 (s, 1H), 5,53 (s, 1H), 4,77 (s, 1H), 3,62 (s, 4H), 3,50 (s, 2H), 3,32 (s, 1H), 2,98 (s, 3H), 1,95 (s, 3H), 1,25 (s, 1H).	485,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-метоксиэтил)-N-метилбензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,73 – 7,67 (m, 2H), 7,35 (d, J = 8,1 Γц, 2H), 7,26 (d, J = 8,2 Γц, 4H), 5,80 (s, 2H), 5,53 (s, 1H), 3,62 (s, 3H), 3,41 (s, 2H), 3,29 (s, 1H), 3,11 (s, 2H), 2,97 (s, 3H), 1,95 (d, J = 1,5 Γц, 3H).	499,40
(R)-N-(4-(4-амино-5-(4- (3-метоксипирролидин- 1-карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,67 (d, $J = 8,4$ Гц, 2H), 7,52 (dd, $J = 8,2$, 2,1 Гц, 2H), 7,38 (d, $J = 8,0$ Гц, 2H), 7,31 – 7,24 (m, 2H), 5,85 (s, 1H), 5,54 (d, $J = 2,1$ Гц, 1H), 4,20 – 4,00 (dq, $J = 4,2$, 2,3 Гц, 1H), 3,75 (s, 4H), 3,55 (s, 3H), 3,35 (dd, $J = 7,7$, 4,6 Гц, 2H), 3,25(m, 2H), 2,31 – 1,89 (m, 5H).	511,4

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-5-(4- (3-метоксипирролидин- 1-карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,74 – 7,66 (m, 2H), 7,48 (dd, J = 7,9, 5,6 Γц, 2H), 7,26 (dd, J = 8,2, 1,7 Γц, 4H), 5,93 (s, 1H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,97 (d, J = 32,6 Γц, 1H), 3,61 (s, 3H), 3,51 (d, J = 11,3 Γц, 3H), 3,26 (s, 2H), 3,17 (s, 2H), 2,01 – 1,92 (m, 5H).	511,45
N-(4-(5-(4-(2-азабицикло[2.2.1]гептан -2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (d, J = 1,7 Гц, 1H), 7,68 (dd, J = 8,7, 2,4 Гц, 2H), 7,50 (dd, J = 8,3, 2,8 Гц, 2H), 7,39 (dd, J = 11,2, 8,1 Гц, 2H), 7,29 (dq, J = 8,6, 2,1 Гц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 4,18 (s, 1H), 3,71 (d, J = 1,8 Гц, 3H), 3,55 (d, J = 11,3 Гц, 1H), 3,19 (dd, J = 11,3, 1,7 Гц, 1H), 2,70 (s, 1H), 2,08 – 2,02 (m, 3H), 1,80 (q, J = 12,8, 10,8 Гц, 3H), 1,70 (d, J = 10,3 Гц, 1H), 1,59 (s, 1H), 1,52 (d, J = 9,7 Гц, 1H).	507,40
N-(4-(5-(4-(3-аза- бицикло[3.2.1]октан-3- карбонил)фенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,74 – 7,67 (m, 2H), 7,28 (q, J = 8,1 Γц, 6H), 5,94 (s, 2H), 5,80 (s, 1H), 5,53 (d, J = 2,0 Γц, 1H), 4,29 (s, 1H), 3,38 (s, 1H), 3,32 (s, 2H), 3,17 (s, 1H), 2,79 (s, 1H), 2,28 – 2,19 (m, 2H), 2,12 (s, 1H), 1,95 (d, J = 1,4 Γц, 3H), 1,60 (d, J = 10,5 Γц, 3H), 1,49 (s, 3H), 1,39 (s, 1H).	521,40
(R)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1-циклопропил-2-гидроксиэтил)бензамид	NH ₂ NH NH ₂ O HN H	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 8,14 (d, J = 8,4 Гц, 1H), 7,82 (d, J = 8,1 Гц, 2H), 7,70 (d, J = 8,5 Γц, 2H), 7,32 – 7,23 (m, 4H), 5,79 (s, 2H), 5,53 (s, 1H), 4,63 (t, J = 5,7 Γц, 1H), 3,62 (s, 3H), 3,58 – 3,39 (m, 3H), 1,95 (s, 3H), 0,98 (d, J = 8,1 Γц, 1H), 0,48 – 0,42 (m, 1H), 0,38 – 0,13 (m, 3H).	511,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(пиримидин-2-ил)бензамид	NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,73 (d, $J = 4,8$ Гц, 2H), 8,22 (s, 1H), 7,96 – 7,89 (m, 2H), 7,77 – 7,69 (m, 2H), 7,38 – 7,30 (m, 2H), 7,33 – 7,22 (m, 3H), 5,98 (s, 1H), 5,80 (t, $J = 1,0$ Γц, 1H), 5,53 (t, $J = 1,4$ Γц, 1H), 3,62 (s, 3H), 1,95 (t, $J = 1,2$ Гц, 3H).	505,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-(пиримидин-2-ил)бензамид	NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,52 (d, J = 4,8 Гц, 2H), 8,19 (s, 1H), 7,75 – 7,68 (m, 2H), 7,25 – 7,08 (m, 7H), 5,82 (d, J = 1,3 Γц, 2H), 5,56 (t, J = 1,4 Γц, 1H), 3,61 (s, 3H), 3,54 (s, 3H), 1,97 (d, J = 1,3 Γц, 3H), 1,24 (s, 1H).	519,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-(тетрагидрофуран-3-ил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,40 (s, 1H), 7,73 (d, J = 8,4 Γц, 2H), 7,35 (s, 2H), 7,30 – 7,23 (m, 4H), 5,80 (s, 1H), 5,54 (s, 1H), 3,99 – 3,89 (m, 1H), 3,78 (dd, J = 9,6, 3,9 Γц, 1H), 3,67 (s, 3H), 3,42 (s, 1H), 2,87 (s, 3H), 2,11 (s, 1H), 1,95 (s, 3H).	511,40
N-(4-(5-(4-(2-азабицикло[2.1.1]гексан-2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,75 – 7,67 (m, 2H), 7,64 (d, J = 7,8 Гц, 1H), 7,40 (d, J = 7,7 Γц, 1H), 7,27 (d, J = 8,0 Γц, 4H), 5,95 (s, 1H), 5,80 (t, J = 1,0 Γц, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,69 – 4,33 (d, J = 6,8 Γц, 1H), 3,61 (s, 3H), 3,45 (d, J = 9,0 Γц, 2H), 2,93 – 2,84 (m, 1H), 1,95 (d, J = 1,2 Γц, 4H), 1,47 (s, 1H), 1,33 (s, 1H).	493,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(4-(2-азаспиро[3.4]октан-2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH _N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,66 (dd, J = 10,2, 8,2 Гц, 4H), 7,42 (d, J = 7,9 Гц, 2H), 7,28 (d, J = 8,3 Гц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 4,22 (s, 2H), 4,02 (s, 2H), 3,70 (s, 3H), 2,05 (d, J = 4,9 Гц, 3H), 1,87 (d, J = 6,6 Гц, 4H), 1,68 – 1,64 (m, 4H).	521,4
N-(4-(4-амино-5-(4- (гексагидро-1Н- фуро[3,4-с]пиррол-5- карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,69 (m, 2H), 7,55 (m, 2H), 7,39 (d, J = 8,1 Гц, 2H), 7,25 (m, 2H), 5,81 (s, 1H), 5,54 (d, J = 1,9 Гц, 1H), 4,05 – 3,72 (s, 4H), 3,70 (s, 5H), 3,55 (s, 1H), 3,42 (d, J = 11,6 Гц, 1H), 3,03 (s, 2H), 2,04 (d, J = 1,6 Гц, 3H).	523,4
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((1-метил-1Н-пиразол-4-ил)метил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,5 Γц, 2H), 7,58 (s, 1H), 7,37 (d, J = 8,0 Γц, 2H), 7,26 (dd, J = 8,1, 3,7 Γц, 4H), 5,80 (s, 2H), 5,56 – 5,51 (m, 1H), 4,44 (s, 1H), 4,28 (s, 1H), 3,80 (s, 3H), 3,61 (s, 3H), 2,87 (s, 3H), 1,95 (s, 3H).	535,45
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1,2,4-оксадиазол-3-ил)бензамид	NH ₂ NH _N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,52 (s, 1H), 9,91 (s, 1H), 9,01 (s, 1H), 8,23 (s, 1H), 8,07 – 8,00 (m, 2H), 7,76 – 7,68 (m, 2H), 7,47 – 7,40 (m, 2H), 7,32 – 7,25 (m, 2H), 6,04 (s, 2H), 5,80 (s, 1H), 5,54 (d, J = 1,7 Γц, 1H), 3,62 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H).	495,2
N-((1,2,4-оксадиазол-3-ил)метил)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-N-метилбензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 9,62 (s, 1H), 8,20 (d, J = 2,6 Гц, 1H), 7,73 – 7,67 (m, 2H), 7,44 – 7,37 (m, 2H), 7,26 (d, J = 8,5 Γц, 4H), 5,97 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 4,85 (s, 1H), 4,73 (s, 1H), 3,32 (s, 3H), 3,05 (s, 1H), 2,98 (s, 1H), 1,95 (t, J = 1,3 Γц, 3H).	523,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4- метакриламидофенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- метил-N-((3-метил- 1,2,4-оксадиазол-5- ил)метил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,3 Γц, 2H), 7,42 (s, 2H), 7,26 (d, J = 8,4 Γц, 3H), 5,80 (s, 1H), 5,53 (s, 1H), 4,91 (s, 2H), 3,61 (s, 3H), 3,29 (s, 1H), 3,11 (s, 3H), 2,35 (s, 3H), 1,95 (s, 3H).	537,45
N-(4-(5-(4-(2-окса-6-азаспиро[3.4]октан-6-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,71 (dd, J = 8,7, 3,5 Γ ц, 2H), 7,49 (t, J = 7,0 Γ ц, 2H), 7,27 (t, J = 7,5 Γ ц, 4H), 5,96 (s, 1H), 5,80 (t, J = 1,0 Γ ц, 1H), 5,56 – 5,51 (m, 1H), 4,62 (d, J = 6,0 Γ ц, 1H), 4,47 (q, J = 7,7, 6,8 Γ ц, 3H), 3,70 (s, 2H), 3,61 (s, 3H), 3,46 (q, J = 7,3 Γ ц, 2H), 2,14 (dt, J = 12,1, 7,0 Γ ц, 2H), 1,95 (t, J = 1,2 Γ ц, 3H).	523,25
N-{4-[4-амино-5-(4-{6- азаспиро[3.4]октан-6- карбонил}фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил]фенил}-2- метилпроп-2-енамид	NH ₂ NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,38 (s, 1H), 7,73 (dd, $J = 8,7, 2,7$ Гц, 2H), 7,50 (d, $J = 8,1$ Γц, 2H), 7,31 – 7,23 (m, 4H), 6,80 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,43 (dd, $J = 11,9, 5,6$ Гц, 5H), 2,03 (s, 1H), 1,95 (s, 3H), 1,89 (dd, $J = 18,8, 5,4$ Гц, 8H).	521,45
N-(4-(5-(4-(3-азабицикло[3.2.0]гептан -3-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,52 – 7,45 (m, 2H), 7,31 – 7,23 (m, 4H), 5,80 (s, 2H), 5,53 (t, J = 1,4 Γц, 1H), 3,96 (s, 1H), 3,61 (s, 3H), 3,32 (s, 5H), 2,91 (s, 2H), 2,14 (s, 2H), 1,95 (d, J = 1,2 Γц, 3H), 1,60 (s, 2H).	507,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((тетрагидрофуран-2-ил)метил)бензамид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,33 (s, 2H), 7,26 (dd, J = 8,5, 2,9 Γц, 4H), 5,79 (s, 1H), 5,56 – 5,50 (m, 1H), 4,09 (s, 1H), 4,03 (s, 1H), 3,79 (s, 1H), 3,62 (s, 3H), 2,99 (s, 3H), 1,95 (d, J = 1,5 Γц, 3H), 1,54 (s, 1H).	525,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-{4-[4-амино-7-метил-	0 0	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	509,35
5-(4-{1-окса-6-	N N	9,90 (s, 1H), 8,21 (s, 1H), 7,71 (d, <i>J</i>	
азаспиро[3.3]гептан-6-		$= 8,5 \Gamma$ ц, 2H), 7,60 (d, $J = 8,2 \Gamma$ ц,	
карбонил}фенил)-7Н-		2H), 7,31 – 7,23 (m, 4H), 5,91 (s,	
пирроло[2,3-	NH ₂	3H), 5,80 (s, 1H), 5,54 (s, 1H), 4,53	
d]пиримидин-6-	N	(s, 1H), 4,40 (t, $J = 7,5$ Гц, 2H),	
ил]фенил}-2-	NH NH	4,31 (s, 1H), 4,12 (s, 1H), 3,61 (s,	
метилпроп-2-енамид	N '',	3H), 2,83 (t, $J = 7,4$ Гц, 2H), 1,95	
	_	(s, 3H).	
N-(4-(4-амино-7-метил-	 0	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	537,35
5-(4-(3-		9,90 (s, 1H), 8,21 (s, 1H), 7,74 –	
(тетрагидрофуран-3-	J	7,67 (m, 2H), 7,61 (d, $J = 7,9$ Гц,	
ил)азетидин-1-		2H), 7,27 (t, <i>J</i> = 8,6 Гц, 4H), 5,93	
карбонил)фенил)-7Н-	ŅH ₂	(s, 1H), 5,80 (s, 1H), 5,54 (s, 1H),	
пирроло[2,3-	N T	4,39 (d, $J = 8,1$ Гц, 1H), $4,20$ –	
d]пиримидин-6-	\bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar	$3,90 \text{ (m, 2H)}, 3,73 \text{ (d, } J = 7,4 \Gamma \text{ц,}$	
ил)фенил)метакриламид	N N	3H), 3,61 (s, 4H), 3,30 (s, 2H), 2,59	
	, , , , , ,	(s, 1H), 1,95 (s, 4H), 1,45 (s, 1H).	
4-(4-амино-6-(4-	0. /	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	531,40
метакриламидофенил)-	N	9,89 (s, 1H), 8,21 (s, 1H), 7,74 –	
7-метил-7Н-	F	7,67 (m, 2H), 7,37 (d, $J = 7,7$ Гц,	
пирроло[2,3-	NH ₂ F	2H), 7,31 – 7,23 (m, 4H), 6,05 (s,	
d]пиримидин-5-ил)-N-		2H), 5,80 (s, 1H), 5,53 (d, $J = 1,9$	
(3,3-	N NH /	Гц, 1H), 4,45 (s, 1H), 3,62 (s, 3H),	
дифторциклобутил)-N-	N N	3,01-2,69 (m, 7H), 1,95 (d, J =	
метилбензамид	, o, "	1,5 Гц, 3Н).	
			1.5 -
4-(6-(4-	\ NH	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	433,35
акриламидофенил)-4-	O ₹ NH	10,33 (s, 1H), 8,07 (s, 1H), 7,89 (d,	
амино-7-метил-7Н-		$J = 4,4 \Gamma$ ц, 1H), 7,85 – 7,79 (m,	
пирроло[2,3-	\ \ \	2H), 7,39 – 7,32 (m, 2H), 6,93 (s,	
d]пиримидин-5-ил)-N-	NH ₂	2H), 6,49 (dd, J = 17,0, 10,1 Γ ц,	
метилциклогексан-1-	N NH	1H), 6,31 (dd, $J = 17,0, 2,0 \Gamma \mu$,	
карбоксамид	N N N N N N N N N N N N N N N N N N N	1H), 5,80 (dd, $J = 10,0, 2,0 \Gamma \mu$,	
	o" \	1H), 3,43 (s, 3H), 2,60 (d, $J = 4,6$	
		Гц, 4H), 2,45 (s, 1H), 2,21 – 2,10	
		(m, 2H), 1,83 (d, $J = 12,9 \Gamma \mu$, 2H),	
		1,52 – 1,39 (m, 4H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(6-(4- акриламидофенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- циклопентилциклогекс- 3-енкарбоксамид	O NH NH ₂ NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,31 (s, 1H), 8,10 (s, 1H), 7,78 (dd, J = 8,2, 6,6 Гц, 3H), 7,48 – 7,40 (m, 2H), 6,47 (dd, J = 17,0, 10,1 Γц, 1H), 6,30 (dd, J = 17,0, 2,1 Γц, 1H), 5,83 – 5,75 (m, 2H), 3,99 (p, J = 6,8 Γц, 1H), 3,57 (s, 3H), 2,45 (t, J = 6,0 Γц, 1H), 2,28 (s, 1H), 2,19 (d, J = 17,9 Γц, 1H), 1,90 – 1,84 (m, 2H), 1,82 – 1,69 (m, 2H), 1,62 (s, 4H), 1,47 (q, J = 7,0 Γц, 2H), 1,35 (s, 1H), 1,32 (s, 1H).	485,2
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)циклогекс-1- енил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,10 (s, 1H), 7,82 – 7,75 (m, 2H), 7,49 – 7,42 (m, 2H), 6,47 (dd, J = 17,0, 10,1 Γц, 1H), 6,30 (dd, J = 17,0, 2,1 Γц, 1H), 5,83 – 5,73 (m, 2H), 3,58 (s, 3H), 3,51 (dt, J = 10,0, 6,6 Γц, 1H), 3,43 (dt, J = 10,0, 6,7 Γц, 1H), 3,32 – 3,20 (m, 2H), 2,82 (q, J = 6,0 Γц, 1H), 2,27 (d, J = 12,9 Γц, 2H), 1,89 (s, 4H), 1,76 (p, J = 6,7 Γц, 2H), 1,63 (d, J = 6,1 Γц, 2H).	471,2
4-(6-(4- акриламидофенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)- N,N-диметилциклогекс- 3-енкарбоксамид	NH ₂ NH ₂ NH ₂ NH ₀ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 8,10 (s, 1H), 7,82 – 7,75 (m, 2H), 7,49 – 7,41 (m, 2H), 6,47 (dd, J = 17,0, 10,1 Γц, 1H), 6,29 (dd, J = 17,0, 2,1 Γц, 1H), 5,83 – 5,73 (m, 2H), 3,58 (s, 3H), 3,02 (s, 3H), 3,08 – 2,97 (m, 1H), 2,82 (s, 3H), 2,27 (d, J = 12,9 Γц, 2H), 1,90 (s, 1H), 1,83 (d, J = 17,4 Γц, 1H), 1,61 (d, J = 6,0 Γц, 2H).	445,2
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-5,6-дигидропиридин-1(2H)-карбоксамид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,13 (s, 1H), 7,84 – 7,78 (m, 2H), 7,44 – 7,38 (m, 2H), 6,34 (d, J = 4,5 Γц, 1H), 6,25 (s, 2H), 5,83 (s, 1H), 5,78 (s, 1H), 5,55 (d, J = 1,8 Γц, 1H), 3,91 (d, J = 3,3 Γц, 2H), 3,56 (s, 3H), 2,57 (d, J = 4,3 Γц, 3H), 1,97 (d, J = 1,4 Γц, 3H), 1,95 (s, 2H).	446,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (пирролидин-1- илсульфонил)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид N-(4-(4-амино-5-(3- фтор-4-((5- фторпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,21 (s, 1H), 9,85 (s, 1H), 8,14 (s, 1H), 7,88 – 7,81 (m, 2H), 7,62 – 7,52 (m, 4H), 7,16 (d, J = 8,8 Γц, 2H), 5,86 (s, 2H), 5,78 (s, 1H), 5,52 (s, 1H), 3,24 – 3,12 (m, 2H), 1,94 (d, J = 1,2 Γц, 3H), 1,71 – 1,63 (m, 3H), 1,57 (s, 1H), 1,32 (q, J = 7,2 Γц, 1H), 0,94 (t, J = 7,2 Γц, 1H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,14 (s, 1H), 9,85 (s, 1H), 8,81 (s, 2H), 8,14 (s, 1H), 7,68 – 7,61 (m, 2H), 7,48 (t, J = 8,4 Γц, 1H), 7,38 – 7,27 (m, 3H), 7,24 (dd, J = 8,3, 2,0 Γц, 1H), 5,80 (s, 1H), 5,75 (s, 1H), 5,53 (d, J = 1,6 Γц, 1H), 1,95 (s, 3H).	503,15
N-(4-(4-амино-7-метил- 5-(4-((1-метил-1Н- пиразол-3- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,18 (s, 1H), 7,72 – 7,62 (m, 3H), 7,32 – 7,25 (m, 2H), 7,25 – 7,16 (m, 2H), 7,07 – 6,98 (m, 2H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 5,88 (d, J = 2,3 Γц, 1H), 5,78 (dd, J = 10,0, 2,1 Γц, 1H), 3,75 (s, 3H), 3,60 (s, 3H).	466,30
N-(4-(5-(4-((1H-пиразол-1-ил)метил)фенил)-4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N-N NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,19 (s, 1H), 7,84 (d, J = 2,2 Γц, 1H), 7,72 – 7,64 (m, 2H), 7,48 (d, J = 1,8 Γц, 1H), 7,31 – 7,20 (m, 4H), 7,14 (d, J = 8,0 Γц, 2H), 6,28 (t, J = 2,0 Γц, 1H), 5,80 (s, 2H), 5,53 (t, J = 1,6 Γц, 1H), 5,35 (s, 2H), 3,59 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	464,30
N-(4-(4-амино-7-метил- 5-(4-((3-метил-1Н- пиразол-1- ил)метил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N-N N-N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,19 (s, 1H), 7,69 (dd, J = 5,4, 3,1 Гц, 3H), 7,30 – 7,18 (m, 4H), 7,14 (d, J = 8,2 Γц, 2H), 6,04 (d, J = 2,2 Γц, 1H), 5,91 (s, 2H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 5,24 (s, 2H), 3,59 (s, 3H), 2,15 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	478,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((1-метил-1Н-пиразол-3-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,75 (s, 1H), 10,13 (s, 1H), 8,12 (d, J = 13,8 Гц, 2H), 7,64 (d, J = 8,8 Гц, 2H), 7,59 – 7,52 (m, 2H), 7,46 – 7,39 (m, 2H), 7,23 – 7,14 (m, 3H), 6,57 – 6,37 (m, 1H), 6,31 – 6,11 (m, 1H), 5,96 (s, 2H), 5,81 – 5,69 (m, 1H), 3,80 (s, 3H).	452,15
N-(4-(4-амино-7-метил- 5-(4-((1-метил-1Н- пиразол-3- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,18 (s, 1H), 7,74 – 7,67 (m, 2H), 7,65 (d, J = 2,3 Γц, 1H), 7,31 – 7,23 (m, 2H), 7,23 – 7,16 (m, 2H), 7,06 – 6,98 (m, 2H), 5,88 (d, J = 2,3 Γц, 1H), 5,85 – 5,77 (m, 3H), 5,56 – 5,51 (m, 1H), 3,75 (s, 3H), 3,60 (s, 3H), 1,95 (d, J = 1,1 Γц, 3H).	480,35
N-(4-(4-амино-7-метил- 5-(4-((4-метил-1Н- пиразол-1- ил)метил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,19 (s, 1H), 7,72 – 7,65 (m, 2H), 7,58 (s, 1H), 7,27 (s, 2H), 7,27 – 7,17 (m, 3H), 7,13 (d, J = 8,1 Γц, 2H), 5,80 (s, 1H), 5,71 (s, 1H), 5,56 – 5,51 (m, 1H), 5,25 (s, 2H), 3,59 (s, 3H), 2,01 (s, 3H), 1,95 (d, J = 1,1 Γц, 3H).	478,35
N-(4-(4-амино-7-метил- 5-(4-((5-метил-1Н- пиразол-1- ил)метил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N-N N-N N-N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,18 (s, 1H), 7,72 – 7,64 (m, 2H), 7,35 (d, J = 1,7 Γц, 1H), 7,29 – 7,17 (m, 4H), 7,04 (d, J = 7,9 Γц, 2H), 6,07 (d, J = 1,9 Γц, 1H), 5,96 (s, 1H), 5,80 (s, 1H), 5,78 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 5,30 (s, 2H), 3,59 (s, 3H), 2,21 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H).	478,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- ((3,5-диметил-1Н- пиразол-1- ил)метил)фенил)-7-	N-N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 10,24 (s, 1H), 8,18 (s, 1H), 7,70 – 7,63 (m, 2H), 7,30 – 7,21 (m, 2H), 7,24 – 7,16 (m, 2H), 7,04 (d, J = 8,1	478,40
метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH O	Γ _{II} , 2H), 6,44 (dd, J = 17,0, 10,1 Γ _{II} , 1H), 6,27 (dd, J = 17,0, 2,1 Γ _{II} , 1H), 5,95 (s, 2H), 5,85 (s, 1H), 5,78 (dd, J = 10,0, 2,1 Γ _{II} , 1H), 5,19 (s, 2H), 3,59 (s, 3H), 2,14 (s, 3H), 2,10 (s, 3H).	
N-((1,2,4-оксадиазол-3- ил)метил)-4-(4-амино-6- (4- метакриламидофенил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5- ил)бензамид	O H N O N O N O N O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 9,55 (s, 1H), 9,16 (t, J = 5,8 Гц, 1H), 8,21 (s, 1H), 7,86 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,36 – 7,29 (m, 2H), 7,29 – 7,22 (m, 2H), 5,92 (s, 1H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,62 (d, J = 5,7 Γц, 2H), 3,32 (s, 3H), 1,95 (d, J = 1,3 Гц, 3H).	509,30
(S)-N-(4-(4-амино-7-метил-5-(4-(2-метилпиперидин-1-карбонил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,6 Γц, 2H), 7,34 – 7,22 (m, 6H), 5,79 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H), 1,61 (d, J = 16,0 Γц, 3H), 1,50 (s, 2H), 1,36 (d, J = 12,6 Γц, 1H), 1,18 (d, J = 7,0 Γц, 3H).	509,45
(R)-N-(4-(4-амино-7-метил-5-(4-(2-метилпиперидин-1-карбонил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,6 Γц, 2H), 7,34 – 7,22 (m, 6H), 5,79 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 2,98 (s, 1H), 1,95 (d, J = 1,3 Γц, 3H), 1,63 (s, 1H), 1,59 (s, 2H), 1,51 (s, 1H), 1,37 (s, 1H), 1,18 (d, J = 6,9 Γц, 3H).	509,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(тетрагидрофуран-3-ил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,51 (d, J = 6,5 Гц, 1H), 8,21 (s, 1H), 7,84 – 7,78 (m, 2H), 7,74 – 7,66 (m, 2H), 7,32 – 7,22 (m, 4H), 5,91 (s, 1H), 5,79 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 4,44 (d, J = 8,0 Γц, 1H), 3,84 (td, J = 8,7, 6,7 Γц, 2H), 3,71 (td, J = 8,1, 5,7 Γц, 1H), 3,61 (s, 3H), 3,57 (dd, J = 8,9, 4,4 Γц, 1H), 2,20 – 2,06 (m, 1H), 1,97 – 1,85 (m, 4H).	497,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-N-(2,2-дифторэтил)бензамид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,84 (t, J = 5,9 Гц, 1H), 8,21 (s, 1H), 7,83 (d, J = 7,9 Γц, 2H), 7,70 (d, J = 8,4 Гц, 2H), 7,31 (d, J = 8,0 Гц, 2H), 7,26 (d, J = 8,3 Гц, 2H), 6,33 – 5,63 (m, 4H), 5,53 (s, 1H), 3,72 – 3,61 (m, 3H), 3,32 (s, 2H), 1,95 (s, 3H).	491,15
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-гидрокси-2-метилпропил)бензамид	NH ₂ NH ₂ NH _N NH ₂ NH _N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (d, J = 9,3 Гц, 2H), 7,85 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,33 – 7,23 (m, 4H), 5,92 (s, 1H), 5,80 (s, 1H), 5,56 – 5,51 (m, 1H), 4,53 (s, 1H), 3,61 (s, 3H), 3,24 (d, J = 6,1 Γц, 2H), 1,95 (d, J = 1,2 Γц, 3H), 1,10 (s, 6H).	499,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-метокси-2-метилпропил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (d, J = 5,4 Γц, 2H), 7,84 – 7,77 (m, 2H), 7,74 – 7,67 (m, 2H), 7,33 – 7,24 (m, 4H), 5,90 (s, 1H), 5,80 (s, 1H), 5,53 (d, J = 1,9 Γц, 1H), 3,61 (s, 3H), 3,32 (d, J = 6,5 Γц, 1H), 3,15 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H), 1,11 (s, 6H).	513,50
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-(2,2,2-трифторэтил)бензамид	NH ₂ NH NH O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,39 (s, 2H), 7,27 (dd, J = 13,3, 8,2 Гц, 4H), 5,98 (s, 2H), 5,80 (s, 1H), 5,53 (d, J = 1,8 Гц, 1H), 3,32 (s, 2H), 3,07 (s, 3H), 1,95 (t, J = 1,2 Гц, 3H).	523,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(оксетан-3-ил)бензамид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 9,08 (d, $J = 6,4$ Гц, 1H), 8,21 (s, 1H), 7,86 – 7,80 (m, 2H), 7,75 – 7,67 (m, 2H), 7,35 – 7,22 (m, 4H), 5,92 - 5,79 (s, 2H), 5,54 (t, $J = 1,5$ Γц, 1H), 4,99 (h, $J =$ 6,9 Γц, 1H), 4,76 (dd, $J = 7,5$, 6,3 Γц, 2H), 4,58 (t, $J = 6,4$ Гц, 2H), 3,61 (s, 3H), 1,95 (d, $J = 1,1$ Гц, 3H).	483,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-изобутилбензамид	NH ₂ NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,43 (t, J = 5,8 Гц, 1H), 8,21 (s, 1H), 7,79 (d, J = 8,0 Γц, 2H), 7,70 (d, J = 8,6 Гц, 2H), 7,28 (dd, J = 11,2, 8,4 Γц, 4H), 5,79 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 3,07 (t, J = 6,4 Γц, 2H), 1,95 (d, J = 1,2 Γц, 3H), 1,83 (dt, J = 13,6, 6,8 Γц, 1H), 0,89 (d, J = 6,7 Γц, 6H).	483,40
N-(4-(4-амино-5-(4-(N- циклопентилсульфамои л)фенил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	HN O = S = O NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,22 (s, 1H), 7,77 – 7,66 (m, 4H), 7,57 (d, J = 7,7 Γц, 1H), 7,38 (d, J = 8,2 Γц, 2H), 7,22 (d, J = 8,5 Γц, 2H), 5,96 (s, 0H), 5,78 (s, 1H), 5,53 (s, 1H), 3,63 (s, 3H), 3,42 (q, J = 7,0 Γц, 1H), 3,32 (s, 1H), 1,94 (s, 3H), 1,53 (s, 3H), 1,37 (s, 2H), 1,21 (d, J = 6,0 Γц, 2H).	531,35
N-(4-(4-амино-5-(4-(N-(2-гидрокси-2-метилпропил)сульфамо ил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	OH NH O=S=O NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,22 (s, 1H), 7,73 (t, J = 8,3 Гц, 4H), 7,45 (t, J = 6,5 Гц, 1H), 7,42 – 7,36 (m, 2H), 7,29 – 7,21 (m, 2H), 5,80 (s, 1H), 5,53 (t, J = 1,6 Γц, 1H), 4,38 (s, 1H), 3,61 (s, 3H), 3,32 (s, 2H), 2,66 (d, J = 6,5 Γц, 2H), 1,95 (t, J = 1,3 Γц, 3H), 1,03 (s, 6H).	535,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(N-(2,2,2- трифторэтил)сульфамои л)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F F NH O=S=O NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,59 (s, 1H), 8,22 (s, 1H), 7,80 – 7,68 (m, 4H), 7,40 (d, J = 8,1 Γц, 2H), 7,26 (d, J = 8,3 Γц, 2H), 5,99 (s, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,74 (d, J = 9,4 Γц, 2H), 3,69 (d, J = 9,5 Γц, 1H), 3,53 (s, 3H), 1,95 (s, 3H).	545,30
N-(4-(4-амино-5-(4-(N-изобутилсульфамоил)ф енил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH O=S=O NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,75 – 7,68 (m, 4H), 7,55 (t, J = 6,1 Γц, 1H), 7,42 – 7,35 (m, 2H), 7,27 – 7,20 (m, 2H), 5,95 (s, 2H), 5,79 (d, J = 1,3 Γц, 1H), 5,56 – 5,51 (m, 1H), 3,62 (s, 3H), 2,58 (t, J = 6,4 Γц, 2H), 1,95 (t, J = 1,3 Γц, 3H), 1,58 (hept, J = 6,7 Γц, 1H), 0,78 (d, J = 6,7 Γц, 6H).	519,40
N-(4-(4-амино-7-метил- 5-(4-(N-(оксетан-3- ил)сульфамоил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	HN O O S S O NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,49 (d, J = 7,4 Гц, 1H), 8,22 (s, 1H), 7,75 – 7,67 (m, 4H), 7,42 – 7,35 (m, 2H), 7,27 – 7,19 (m, 2H), 5,97 (m, 2H), 5,82 – 5,77 (m, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,46 (dd, J = 7,6, 5,6 Γц, 2H), 4,40 (q, J = 7,1 Γц, 1H), 4,21 (t, J = 6,0 Γц, 2H), 3,62 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	519,35
N-(4-(4-амино-5-(4-(N- циклопентилсульфамид оил)фенил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	HN OSS NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,85 – 7,79 (m, 2H), 7,68 (d, J = 8,6 Γц, 2H), 7,37 – 7,31 (m, 2H), 7,23 (d, J = 8,3 Γц, 2H), 6,85 (d, J = 8,0 Γц, 1H), 5,90 (br, 2H), 5,77 (s, 1H), 5,55 (s, 1H), 4,04 (s, 1H), 3,63 (s, 3H), 3,40 – 3,60(m, 1H), 1,94 (t, J = 1,2 Γц, 3H), 1,49 (s, 4H), 1,33 (s, 2H), 1,15 (s, 2H).	530,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- сульфонимидоил)фенил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N O=S=NH NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,22 (s, 1H), 7,82 – 7,76 (m, 2H), 7,73 – 7,66 (m, 2H), 7,41 – 7,34 (m, 2H), 7,26 – 7,18 (m, 2H), 5,79 (s, 3H), 5,56 – 5,50 (m, 1H), 4,37 (s, 1H), 3,63 (s, 3H), 3,06 (d, J = 6,4 Γц, 4H), 1,95 (d, J = 1,3 Γц, 3H), 1,61 – 1,53 (m, 4H).	516,30
N-(4-(4-амино-5-(4-(N- циклопентил-N- метилсульфамоил)фени л)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,75 – 7,65 (m, 4H), 7,43 – 7,36 (m, 2H), 7,25 – 7,17 (m, 2H), 5,98 (s, 2H), 5,78 (t, J = 1,1 Γц, 1H), 5,56 – 5,51 (m, 1H), 4,17 (q, J = 8,0 Γц, 1H), 3,64 (s, 3H), 2,64 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H), 1,52 (q, J = 5,0, 4,5 Γц, 2H), 1,42 (d, J = 11,8 Γц, 4H), 1,32 – 1,23 (m, 2H).	545,40
N-(4-(4-амино-7-метил- 5-(4-(N-метил-N-(2,2,2- трифторэтил)сульфамои л)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F F N O S O NH2 NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,23 (s, 1H), 7,83 – 7,76 (m, 2H), 7,76 – 7,69 (m, 2H), 7,45 – 7,38 (m, 2H), 7,29 – 7,21 (m, 2H), 5,83 – 5,78 (m, 1H), 5,54 (t, $J = 1,4$ Γц, 1H), 4,02 (q, $J = 9,2$ Γц, 2H), 3,62 (s, 3H), 2,83 (s, 3H), 1,96 (t, $J = 1,2$ Гц, 3H).	559,40
N-(4-(4-амино-5-(4- (циклопентилметилсуль фонил)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	O=S=O NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,23 (s, 1H), 7,86 – 7,79 (m, 2H), 7,74 – 7,68 (m, 2H), 7,47 – 7,40 (m, 2H), 7,27 – 7,21 (m, 2H), 5,79 (s, 1H), 5,53 (d, J = 1,8 Γц, 1H), 3,62 (s, 3H), 3,37 – 3,27 (m, 2H), 2,10 (hept, J = 7,5 Γц, 1H), 1,95 (d, J = 1,1 Γц, 3H), 1,75 – 1,63 (m, 2H), 1,54 (qd, J = 9,4, 8,0, 3,0 Γц, 2H), 1,45 (qt, J = 7,1, 2,6 Γц, 2H), 1,16 (dq, J = 11,8, 7,7 Гц, 2H).	530,4

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(3,3,3- трифторпропилсульфон ил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F F F O=S=O NH NH O	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,91 (s, 1H), 8,23 (s, 1H), 7,90 – 7,84 (m, 2H), 7,76 – 7,69 (m, 2H), 7,47 – 7,41 (m, 2H), 7,29 – 7,22 (m, 2H), 5,80 (s, 1H), 5,54 (d, <i>J</i> = 1,8 Γц, 1H), 3,61 (s, 4H), 3,65 – 3,57 (m, 1H), 2,73 – 2,58 (m, 2H), 1,95 (s, 3H).	544,3
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-метоксициклопентил)бе нзамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,33 (d, J = 7,7 Гц, 1H), 8,21 (s, 1H), 7,79 (d, J = 7,9 Гц, 2H), 7,70 (d, J = 8,2 Гц, 2H), 7,28 (dd, J = 12,1, 8,1 Гц, 4H), 5,92 (s, 1H), 5,79 (s, 1H), 5,53 (s, 1H), 4,18 (dd, J = 11,6, 6,3 Гц, 1H), 3,69 (dd, J = 6,7, 3,4 Гц, 1H), 3,33 (s, 3H), 3,25 (s, 3H), 1,98 (d, J = 7,7 Гц, 1H), 1,95 (s, 3H), 1,88 (dq, J = 13,8, 7,0 Гц, 1H), 1,69 (s, 1H), 1,70 – 1,59 (m, 0H), 1,58 (s, 2H), 1,52 (d, J = 14,1, 7,4, 6,3 Гц, 1H).	525,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-гидроксициклопентил)б ензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (d, J = 7,7 Гц, 2H), 7,83 – 7,76 (m, 2H), 7,73 – 7,67 (m, 2H), 7,32 – 7,22 (m, 4H), 5,90 (s, 1H), 5,79 (s, 1H), 5,53 (d, J = 2,0 Γц, 1H), 4,74 (d, J = 3,8 Γц, 1H), 3,98 (s, 2H), 3,61 (s, 3H), 2,03 – 1,92 (m, 4H), 1,91 – 1,78 (m, 1H), 1,65 (p, J = 7,8, 6,8 Γц, 2H), 1,47 (dd, J = 13,4, 7,0 Γц, 2H).	511,25
N-(4-(4-амино-5-(4-(N-(2-метоксициклопентил)су льфамоил)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,22 (s, 1H), 7,78 – 7,66 (m, 4H), 7,43 – 7,36 (m, 2H), 7,27 – 7,19 (m, 2H), 5,96 (s, 2H), 5,80 – 5,75 (m, 1H), 5,56 – 5,51 (m, 1H), 3,62 (s, 3H), 3,41 – 3,28 (m, 2H), 2,97 (s, 3H), 2,08 (s, 1H), 1,94 (d, J = 1,3 Γц, 3H), 1,76 – 1,57 (m, 1H), 1,61 – 1,44 (m, 1H), 1,48 – 1,36 (m, 3H), 1,21 (dt, J = 12,2, 6,4 Γц, 1H).	561,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(N-(2-гидроксициклопентил)с ульфамоил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N NH ₂ N NH ₂ N NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,22 (s, 1H), 7,78 – 7,67 (m, 4H), 7,50 (d, J = 7,5 Γц, 1H), 7,42 – 7,35 (m, 2H), 7,27 – 7,20 (m, 2H), 5,94 (s, 1H), 5,78 (s, 1H), 5,53 (s, 1H), 4,66 (d, J = 4,4 Γц, 1H), 3,75 (dt, J = 8,7, 4,5 Γц, 1H), 3,58 (s, 1H), 3,32 (s, 2H), 3,24 – 3,17 (m, 1H), 1,95 (t, J = 1,2 Γц, 3H), 1,77 – 1,64 (m, 1H), 1,63 – 1,49 (m, 1H), 1,49 (d, J = 7,3 Γц, 2H), 1,35 (d, J = 11,7, 5,7 Γц, 1H), 1,11 (d, J = 13,1, 6,6 Γц, 1H).	547,35
N-(4-(4-амино-5-(4-(N- циклобутилсульфамоил)фенил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	HN O=S=O NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,87 (d, J = 9,1 Гц, 1H), 7,75 – 7,65 (m, 4H), 7,38 (d, J = 8,3 Γц, 2H), 7,25 – 7,18 (m, 2H), 5,78 (s, 1H), 5,53 (s, 1H), 3,63 (s, 3H), 3,59 (d, J = 8,3 Γц, 0H), 3,32 (s, 1H), 1,94 (d, J = 1,5 Γц, 3H), 1,89 – 1,77 (m, 2H), 1,74 – 1,60 (m, 2H), 1,57 – 1,40 (m, 2H).	517,35
(R)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(тетрагидрофуран-3-ил)бензамид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,51 (d, J = 6,5 Гц, 1H), 8,21 (s, 1H), 7,81 (d, J = 8,2 Γц, 2H), 7,70 (d, J = 8,6 Γц, 2H), 7,32 – 7,23 (m, 4H), 5,79 (s, 1H), 5,53 (s, 1H), 4,44 (d, J = 7,2 Γц, 1H), 3,89 – 3,79 (m, 2H), 3,73 (m, 1H), 3,68 – 3,61 (m, 3H), 3,56 (dd, J = 8,8, 4,4 Γц, 1H), 2,18 – 2,07 (m, 1H), 1,97 – 1,87 (m, 4H).	497,20
(S)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(тетрагидрофуран-3-ил)бензамид	O NH NH ₂ NH N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,23 (s, 1H), 7,83 – 7,78 (m, 2H), 7,70 – 7,64 (m, 2H), 7,40 – 7,35 (m, 2H), 7,30 – 7,25 (m, 2H), 5,87 – 5,77 (m, 1H), 5,54 (dt, J = 2,0, 1,0 Гц, 1H), 4,59 (ddt, J = 8,0, 6,0, 4,1 Гц, 1H), 4,02 – 3,94 (m, 2H), 3,86 (td, J = 8,3, 5,8 Гц, 1H), 3,77 – 3,69 (m, 4H), 2,38 – 2,23 (m, 1H), 2,04 – 1,93 (d, J = 1,3 Гц, 4H).	497,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3,3,3-трифтор-2-гидроксипропил)бензамид	F OH HN O NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,70 (t, J = 5,7 Γц, 1H), 8,21 (s, 1H), 7,85 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,34 – 7,23 (m, 4H), 6,47 (d, J = 6,4 Γц, 1H), 5,92 (s, 1H), 5,79 (s, 1H), 5,53 (t, J = 1,4 Γц, 1H), 4,22 – 4,16 (m, 2H), 3,62 (s, 3H), 3,58 (d, J = 5,2 Γц, 1H), 1,95 (d, J = 1,2 Γц, 3H).	539,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((3-фтороксетан-3-ил)метил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,78 (t, $J = 6,0$ Гц, 1H), 8,21 (s, 1H), 7,86 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,34 – 7,29 (m, 2H), 7,29 – 7,22 (m, 2H), 5,79 (s, 1H), 5,53 (d, $J = 2,1$ Γц, 1H), 4,70 (d, $J = 8,0$ Γц, 1H), 4,65 (q, $J = 3,4$ Γц, 2H), 4,59 (d, $J = 8,0$ Γц, 1H), 3,82 (d, $J = 6,0$ Гц, 1H), 3,77 (d, $J = 6,0$ Гц, 1H), 3,61 (s, 3H), 1,95 (t, $J = 1,2$ Гц, 3H).	515,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((тетрагидрофуран-3-ил)метил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,40 (s, 1H), 7,71 (d, J = 7,9 Гц, 2H), 7,63 – 7,55 (m, 3H), 7,34 (d, J = 8,0 Гц, 2H), 7,25 – 7,19 (m, 2H), 6,39 (t, J = 5,5 Гц, 1H), 5,82 (s, 1H), 5,52 (d, J = 2,0 Гц, 1H), 5,03 (s, 2H), 3,95 (td, J = 8,3, 5,2 Гц, 1H), 3,86 (dd, J = 8,9, 6,9 Гц, 1H), 3,82 – 3,72 (m, 4H), 3,66 (dd, J = 8,9, 4,9 Гц, 1H), 3,50 (dd, J = 7,2, 5,3 Гц, 2H), 2,63 (p, J = 6,9 Гц, 1H), 2,19 – 2,05 (m, 4H), 1,78 – 1,66 (m, 1H).	511,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-гидроксициклопропил)метил)бензамид	NH ₂ NH OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,38 (t, J = 5,8 Γц, 1H), 8,21 (s, 1H), 7,86 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,33 – 7,23 (m, 4H), 5,80 (d, J = 1,4 Γц, 3H), 5,53 (t, J = 1,6 Γц, 1H), 5,40 (s, 1H), 3,67(s, 3H), 3,42 (d, J = 5,7 Γц, 2H), 1,95 (t, J = 1,3 Γц, 3H), 0,55 (q, J = 2,2 Γц, 4H).	497,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-гидроксициклопропил)метил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,38 (t, J = 5,8 Гц, 1H), 8,21 (s, 1H), 7,86 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,33 – 7,23 (m, 4H), 5,80 (d, J = 1,4 Γц, 3H), 5,53 (t, J = 1,6 Γц, 1H), 5,40 (s, 1H), 3,67(s, 3H), 3,42 (d, J = 5,7 Γц, 2H), 1,95 (t, J = 1,3 Γц, 3H), 0,55 (q, J = 2,2 Γц, 4H).	497,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-гидрокси-2,2-диметилпропил)бензамид	HO HN O NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,38 (t, $J = 6,2$ Гц, 1H), 8,21 (s, 1H), 7,82 – 7,75 (m, 2H), 7,74 – 7,67 (m, 2H), 7,34 – 7,24 (m, 4H), 6,07 – 5,75 (m, 2H), 5,53 (t, $J = 1,4$ Γц, 1H), 4,58 (t, $J =$ 6,1 Γц, 1H), 3,61 (s, 3H), 3,17 – 3,09 (m, 4H), 1,95 (t, $J = 1,2$ Гц, 3H), 0,83 (s, 6H).	513,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-(гидроксиметил)циклобутил)бензамид	OH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,53 (d, J = 7,5 Гц, 1H), 8,21 (s, 1H), 7,79 (dd, J = 8,4, 1,7 Γц, 2H), 7,73 – 7,67 (m, 2H), 7,32 – 7,22 (m, 4H), 5,79 (d, J = 1,3 Γц, 2H), 5,54 (d, J = 1,8 Γц, 1H), 4,51 – 4,38 (m, 1H), 4,27 (q, J = 8,4 Γц, 1H), 3,61 (s, 3H), 3,50 – 3,42 (m, 1H), 3,36 (t, J = 5,7 Γц, 2H), 2,25 (d, J = 8,8 Γц, 2H), 2,13 – 2,04 (m, 2H), 1,95 (d, J = 1,3 Γц, 3H), 1,82 – 1,70 (m, 1H).	511,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-(оксетан-3-ил)этил)бензамид	HN O O NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,71 (d, J = 8,6 Гц, 2H), 7,49 (d, J = 7,3 Гц, 2H), 7,27 (d, J = 7,6 Γц, 4H), 5,80 (s, 2H), 5,53 (s, 1H), 4,67 (dd, J = 20,8, 5,0 Γц, 1H), 3,61 (s, 3H), 3,58 – 3,36 (m, 4H), 3,32 – 3,22 (m, 2H), 2,40 – 2,20 (m, 1H), 1,95 (t, J = 1,2 Γц, 3H), 1,88 (s, 1H), 1,64 (s, 1H).	511,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(азетидин-3-илметил)бензамид 2,2,2-трифторацетат	NH ₂ NH O O O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,68 (t, J = 5,8 Гц, 1H), 8,64 – 8,41 (m, 3H), 7,87 – 7,80 (m, 2H), 7,77 – 7,69 (m, 2H), 7,37 – 7,25 (m, 4H), 5,80 (s, 1H), 5,55 (d, J = 1,9 Γц, 1H), 3,95 (t, J = 10,1 Γц, 2H), 3,80 (q, J = 8,9, 7,9 Γц, 2H), 3,67 (s, 3H), 3,48 (t, J = 6,1 Γц, 2H), 3,01 (p, J = 7,5 Γц, 1H), 1,95 (t, J = 1,3 Γц, 3H).	496,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-оксабицикло[3.1.0]гексан-6-ил)бензамид	NH ₂ NH O HN	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,46 (d, J = 4,2 Гц, 1H), 8,21 (s, 1H), 7,79 – 7,73 (m, 2H), 7,73 – 7,66 (m, 2H), 7,32 – 7,22 (m, 4H), 5,90 (s, 1H), 5,79 (s, 1H), 5,56 – 5,51 (m, 1H), 3,86 (d, J = 8,4 Γц, 2H), 3,63 (d, J = 13,4 Γц, 5H), 2,59 (q, J = 2,9 Γц, 1H), 1,95 (t, J = 1,2 Γц, 3H), 1,87 (s, 2H).	509,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-метоксициклобутил)метил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,27 (t, J = 6,1 Γц, 1H), 8,21 (s, 1H), 7,81 (d, J = 7,9 Γц, 2H), 7,70 (d, J = 8,3 Γц, 2H), 7,28 (dd, J = 11,9, 8,1 Γц, 4H), 5,80 (s, 2H), 5,53 (s, 1H), 3,53 (d, J = 6,0 Γц, 2H), 3,33 (s, 3H), 3,13 (s, 3H), 1,96 (d, J = 9,9 Γц, 7H), 1,70 – 1,64 (m, 1H), 1,63 – 1,54 (m, 1H).	525,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-циано2-метилпропил)бензамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,78 (t, $J = 6,4$ Гц, 1H), 8,22 (s, 1H), 7,86 – 7,80 (m, 2H), 7,75 – 7,67 (m, 2H), 7,36 – 7,24 (m, 4H), 5,80 (s, 1H), 5,54 (d, J = 1,9 Гц, 1H), 3,61 (s, 3H), 3,46 (d, $J = 6,4$ Гц, 2H), 1,95 (d, $J = 1,3$ Гц, 3H), 1,33 (s, 6H).	508,2

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1-циклопропил-3-гидроксипропан-2-ил)бензамид	NH ₂ NH OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 8,06 (d, J = 8,4 Гц, 1H), 7,85 – 7,78 (m, 2H), 7,74 – 7,67 (m, 2H), 7,32 – 7,23 (m, 4H), 5,95 (s, 2H), 5,79 (s, 1H), 5,56 – 5,51 (m, 1H), 4,63 (t, J = 5,8 Γц, 1H), 4,05 – 3,98 (m, 1H), 3,61 (s, 3H), 3,53 – 3,36 (m, 3H), 1,94 (d, J = 1,3 Γц, 3H), 1,44 (h, J = 7,4 Γц, 2H), 0,72 (s, 1H), 0,42 – 0,33 (m, 2H), 0,11 (d, J = 8,8 Γц, 1H).	525,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(оксетан-3-илметил)бензамид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,60 (t, J = 5,7 Гц, 1H), 8,21 (s, 1H), 7,82 – 7,75 (m, 2H), 7,74 – 7,67 (m, 2H), 7,33 – 7,23 (m, 4H), 5,92 (s, 1H), 5,80 (t, J = 1,0 Γц, 1H), 5,54 (t, J = 1,5 Γц, 1H), 4,63 (dd, J = 7,8, 6,0 Γц, 2H), 4,34 (t, J = 6,0 Γц, 2H), 3,61 (s, 3H), 3,53 (dd, J = 6,9, 5,7 Γц, 2H), 3,16 (dq, J = 13,7, 6,9 Γц, 1H), 1,95 (t, J = 1,2 Γц, 3H).	497,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(цианометил)бензамид	NH ₂ NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 9,18 (t, J = 5,5 Γц, 1H), 8,21 (s, 1H), 7,85 – 7,79 (m, 2H), 7,74 – 7,67 (m, 2H), 7,36 – 7,29 (m, 2H), 7,29 – 7,22 (m, 2H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,30 (d, J = 5,4 Γц, 2H), 3,61 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	466,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(тетрагидро-2Н-пиран-3-ил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (d, J = 6,9 Γц, 2H), 7,83 – 7,76 (m, 2H), 7,74 – 7,66 (m, 2H), 7,32 – 7,22 (m, 4H), 5,91 (s, 2H), 5,79 (s, 1H), 5,56 – 5,51 (m, 1H), 3,93 – 3,86 (m, 1H), 3,83 – 3,72 (m, 2H), 3,61 (s, 3H), 3,28 – 3,22 (m, 1H), 3,14 (dd, J = 10,7, 9,5 Γц, 1H), 1,95 (t, J = 1,2 Γц, 4H), 1,69 (s, 1H), 1,58 (t, J = 9,3 Гц, 2H).	511,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(оксетан-2-илметил)бензамид	N N NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,61 (t, J = 5,8 Гц, 1H), 8,21 (s, 1H), 7,82 (d, J = 8,3 Γц, 2H), 7,73 – 7,66 (m, 2H), 7,33 – 7,23 (m, 4H), 5,91 (s, 1H), 5,79 (s, 1H), 5,53 (s, 1H), 4,85 – 4,77 (m, 1H), 4,55 – 4,38 (m, 2H), 3,61 (s, 3H), 3,60 – 3,51 (m, 1H), 3,51 – 3,41 (m, 1H), 2,68 – 2,55 (m, 1H), 2,47 – 2,37 (m, 1H), 1,95 (d, J = 1,2 Γц, 3H).	497,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-гидроксиэтил)бензамид	NH ₂ NH OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,81 (d, J = 8,0 Γц, 2H), 7,73 – 7,66 (m, 2H), 7,27 (dd, J = 11,7, 8,3 Γц, 4H), 5,79 (s, 1H), 5,53 (s, 1H), 4,69 (t, J = 5,7 Γц, 1H), 3,61 (s, 3H), 3,50 (q, J = 6,2 Γц, 2H), 1,95 (s, 3H).	471,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-гидроксипропил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,42 (t, J = 5,6 Γц, 1H), 8,21 (s, 1H), 7,82 – 7,75 (m, 2H), 7,74 – 7,67 (m, 2H), 7,32 – 7,23 (m, 4H), 5,91 (s, 0H), 5,80 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 4,46 (t, J = 5,2 Γц, 1H), 3,61 (s, 3H), 3,46 (q, J = 6,0 Γц, 2H), 3,34 (d, J = 6,0 Γц, 2H), 1,95 (t, J = 1,2 Γц, 3H), 1,67 (p, J = 6,6 Γц, 2H).	485,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-метоксипропил)бензами д	HN O NH O	¹ H ЯМР (400 МГц, Хлороформ- <i>d</i>) δ 8,40 (s, 1H), 7,75 – 7,68 (m, 2H), 7,65 (s, 1H), 7,62 – 7,55 (m, 2H), 7,37 – 7,29 (m, 2H), 7,26 – 7,18 (m, 2H), 6,96 – 6,88 (m, 1H), 5,82 (s, 1H), 5,51 (q, <i>J</i> = 1,6 Гц, 1H), 5,03 (s, 2H), 3,74 (s, 3H), 3,59 (q, <i>J</i> = 5,8 Гц, 4H), 3,41 (s, 3H), 2,09 (t, <i>J</i> = 1,2 Гц, 3H), 1,96 – 1,86 (m, 2H).	499,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1,3-дифторпропан-2-ил)бензамид	F F HN O NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,65 (d, $J = 7.2$ Гц, 1H), 8,21 (s, 1H), 7,87 – 7,81 (m, 2H), 7,74 – 7,67 (m, 2H), 7,35 – 7,29 (m, 2H), 7,29 – 7,23 (m, 2H), 5,94 (s, 1H), 5,80 (s, 1H), 5,53 (d, J = 1,9 Γц, 1H), 4,64 (t, J = 5,1 Γц, 2H), 4,53 (s, 3H), 3,62 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H).	505,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(пирролидин-3-ил)бензамид 2,2,2-трифторацетат	N N N N N N N N N N N N N N N N N N N	1 H 9MP (400 MΓμ, DMSO- d_6) δ 9,95 (s, 1H), 8,84 (s, 2H), 8,60 (d, J = 6,2 Γμ, 1H), 8,46 (d, J = 1,5 Γμ, 1H), 7,87 – 7,80 (m, 2H), 7,76 – 7,70 (m, 2H), 7,37 – 7,31 (m, 2H), 7,31 – 7,24 (m, 2H), 5,80 (s, 1H), 5,55 (t, J = 1,5 Γμ, 1H), 4,50 (hept, J = 6,0, 5,4 Γμ, 1H), 3,67 (s, 3H), 3,41 (ddt, J = 28,8, 12,4, 6,4 Γμ, 2H), 3,31 – 3,22 (m, 1H), 3,21 – 3,12 (m, 1H), 2,26 – 2,13 (m, 1H), 2,01 (dt, J = 13,1, 6,4 Γμ, 1H), 1,95 (t, J = 1,2 Γμ, 3H).	496,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклопропилметил)бен замид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,67 (dd, J = 7,2, 3,8 Γц, 1H), 8,21 (s, 1H), 7,79 (dd, J = 8,3, 2,7 Гц, 2H), 7,70 (d, J = 8,6 Γц, 2H), 7,33 – 7,22 (m, 4H), 5,92 (s, 2H), 5,79 (s, 1H), 5,53 (d, J = 2,0 Гц, 1H), 3,97 (q, J = 7,9 Γц, 1H), 3,61 (s, 3H), 2,72 (ddd, J = 9,6, 6,5, 3,1 Γц, 1H), 2,46 (s, 1H), 2,33 – 2,20 (m, 1H), 1,94 (d, J = 1,4 Гц, 3H).	481,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1-(метоксиметил)циклобутил)бензамид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,34 (s, 1H), 8,21 (s, 1H), 7,84 – 7,78 (m, 2H), 7,74 – 7,66 (m, 2H), 7,30 – 7,22 (m, 4H), 5,80 (d, J = 1,3 Γц, 1H), 5,56 – 5,51 (m, 1H), 3,61 (d, J = 1,4 Γц, 5H), 3,31 (d, J = 13,6 Γц, 3H), 2,30 – 2,18 (m, 2H), 2,18 – 2,09 (m, 2H), 1,95 (d, J = 1,3 Γц, 3H), 1,85 (dd, J = 9,4, 4,8 Γц, 1H), 1,84 – 1,72 (m, 1H).	525,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-фторциклобутил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,67 (dd, J = 7,2, 3,8 Γц, 1H), 8,21 (s, 1H), 7,79 (dd, J = 8,3, 2,7 Гц, 2H), 7,70 (d, J = 8,6 Γц, 2H), 7,33 – 7,22 (m, 4H), 5,92 (s, 2H), 5,79 (s, 1H), 5,53 (d, J = 2,0 Γц, 1H), 3,97 (q, J = 7,9 Γц, 1H), 3,61 (s, 3H), 2,72 (ddd, J = 9,6, 6,5, 3,1 Γц, 1H), 2,46 (s, 1H), 2,33 – 2,20 (m, 1H), 1,94 (d, J = 1,4 Гц, 3H).	499,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((3-гидроксициклобутил)метил)бензамид	NH ₂ NH NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,43 (t, J = 5,9 Γц, 1H), 8,21 (s, 1H), 7,78 (d, J = 8,0 Γц, 2H), 7,70 (d, J = 8,5 Γц, 2H), 7,28 (dd, J = 10,3, 8,3 Γц, 4H), 5,79 (s, 3H), 5,53 (s, 1H), 4,92 (s, 1H), 3,91 – 3,83 (m, 1H), 3,61 (s, 3H), 3,25 (t, J = 6,2 Γц, 2H), 2,23 (p, J = 7,6, 7,1 Γц, 2H), 1,95 – 1,90 (s, 4H), 1,59 – 1,47 (m, 2H), 1,24 (s, 0H).	511,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-цианоциклопропил)мет ил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,87 (t, J = 6,1 Γц, 1H), 8,21 (s, 1H), 7,86 – 7,79 (m, 2H), 7,74 – 7,66 (m, 2H), 7,35 – 7,29 (m, 2H), 7,29 – 7,23 (m, 2H), 5,92 (s, 2H), 5,79 (s, 1H), 5,53 (d, J = 2,0 Γц, 1H), 3,61 (s, 3H), 3,42 (d, J = 5,9 Γц, 2H), 1,94 (t, J = 1,3 Γц, 3H), 1,21 (q, J = 3,9, 2,9 Γц, 2H), 1,18 – 1,08 (m, 2H).	506,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-гидроксициклобутил)бе нзамид	NH ₂ NH ₂ OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,55 (t, J = 8,4 Γц, 1H), 8,21 (s, 1H), 7,79 (dd, J = 8,4, 2,0 Γц, 2H), 7,74 – 7,67 (m, 2H), 7,27 (td, J = 8,7, 2,2 Γц, 4H), 5,79 (s, 1H), 5,56 – 5,51 (m, 1H), 5,07 (d, J = 5,5 Γц, 1H), 3,86 (d, J = 7,7 Γц, 1H), 3,61 (s, 3H), 2,30 – 2,21 (m, 1H), 2,01 – 1,83 (m, 4H).	497,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1-гидроксипропан-2-ил)бензамид	NH ₂ NH OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 8,07 (d, J = 8,2 Гц, 1H), 7,80 (d, J = 8,2 Гц, 2H), 7,70 (d, J = 8,5 Γц, 2H), 7,27 (t, J = 8,8 Γц, 4H), 5,89 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 4,69 (t, J = 5,8 Γц, 1H), 4,01 (q, J = 6,7 Γц, 1H), 3,61 (s, 3H), 3,45 (dt, J = 11,2, 5,8 Γц, 1H), 3,37 – 3,27 (m, 1H), 1,95 (t, J = 1,3 Γц, 3H), 1,12 (d, J = 6,7 Γц, 3H).	485,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-(гидроксиметил)циклопропил)метил)бензамид	O H OH NH ₂ NH ₂ NH O	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,37 (s, 1H), 7,78 – 7,69 (m, 3H), 7,57 (d, J = 8,4 Гц, 2H), 7,30 (d, J = 8,0 Гц, 2H), 7,19 (d, J = 8,4 Гц, 2H), 7,13 (t, J = 5,9 Гц, 1H), 5,83 (s, 1H), 5,51 (d, J = 1,8 Гц, 1H), 5,09 (s, 2H), 3,73 (s, 3H), 3,51 – 3,43 (m, 4H), 2,08 (s, 3H), 0,60 – 0,49 (m, 4H).	511,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((4-метилморфолин-3-ил)метил)бензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,37 (t, J = 5,9 Γц, 1H), 8,21 (s, 1H), 7,81 – 7,74 (m, 2H), 7,73 – 7,66 (m, 2H), 7,33 – 7,23 (m, 4H), 5,79 (s, 1H), 5,53 (s, 1H), 3,74 – 3,62 (m, 2H), 3,61 (s, 3H), 3,57 – 3,41 (m, 2H), 3,23 (dd, J = 11,3, 9,3 Γц, 1H), 3,13 (dt, J = 13,3, 6,4 Γц, 1H), 2,63 (d, J = 11,7 Γц, 1H), 2,29 (s, 3H), 2,21 – 2,11 (m, 2H), 1,94 (t, J = 1,2 Γц, 3H).	540,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-фторэтил)бензамид	F HN O NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,68 (d, $J = 6,1$ Гц, 1H), 8,21 (s, 1H), 7,82 (d, $J = 7,9$ Γц, 2H), 7,70 (d, $J = 8,4$ Γц, 2H), 7,28 (dd, $J = 16,5$, 8,1 Γц, 4H), 5,80 (s, 2H), 5,53 (s, 1H), 4,59 (t, $J = 5,2$ Гц, 1H), 4,47 (t, $J = 5,2$ Гц, 1H), 3,62 (s, 3H), 3,59 (d, $J = 5,4$ Гц, 1H), 3,59 – 3,50 (m, 1H), 1,95 (s, 3H).	473,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-аминоэтил)-N-(2,2,2-трифторэтил)бензамид	F F N O NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,46 (s, 1H), 7,86 (s, 3H), 7,73 (d, J = 8,5 Γц, 2H), 7,43 (d, J = 7,9 Γц, 2H), 7,29 (dd, J = 19,9, 8,0 Γц, 4H), 5,80 (s, 1H), 5,54 (d, J = 1,7 Γц, 1H), 4,25 (s, 2H), 3,68 (m, 5H), 3,08 (s, 2H), 1,94 (d, J = 1,5 Γц, 3H).	552,2
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-гидроксициклобутил)метил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,31 (t, J = 5,9 Гц, 1H), 8,21 (s, 1H), 7,83 (d, J = 8,3 Γц, 2H), 7,74 – 7,67 (m, 2H), 7,33 – 7,23 (m, 4H), 5,92 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 5,15 (s, 1H), 3,61 (s, 3H), 3,41 (d, J = 6,0 Γц, 2H), 2,10 – 1,99 (m, 2H), 1,95 (d, J = 1,3 Γц, 3H), 1,89 (dd, J = 11,6, 8,9 Γц, 2H), 1,63 (d, J = 9,9 Гц, 1H), 1,48 (q, J = 9,2 Гц, 1H).	511,40
N-(4-(4-амино-5-(3- фтор-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,75 – 7,71 (m, 3H), 7,35 – 7,33 (m, 1H), 7,22 (t, J = 8,4 Гц, 1H), 7,16 – 7,11 (m, 2H), 7,00 (d, J = 7,3 Гц, 1H), 6,81 (d, J = 8,2 Гц, 1H), 5,83 (s, 1H), 5,55 (s, 1H), 3,71 (s, 3H), 2,39 (s, 3H), 2,05 (s, 3H).	509,30
N-(4-(4-амино-5-(3-(2-метоксиэтокси)-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,20 (s, 1H), 7,78 – 7,71 (m, 2H), 7,70 – 7,62 (m, 1H), 7,35 – 7,28 (m, 2H), 7,08 (d, J = 8,2 Γц, 1H), 6,97 – 6,90 (m, 2H), 6,84 (dd, J = 8,2, 2,0 Γц, 1H), 6,66 (d, J = 8,2 Γц, 1H), 5,79 (s, 1H), 5,53 (s, 1H), 3,88 (dd, J = 5,6, 3,8 Γц, 2H), 3,62 (s, 3H), 3,31 – 3,25 (m, 2H), 3,06 (s, 3H), 2,30 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H).	565,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(2-((6-метилпиридин- 2-ил)окси)пиримидин- 5-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,39 (s, 2H), 8,21 (s, 1H), 7,91 – 7,64 (m, 3H), 7,31 (d, J = 8,6 Γц, 2H), 7,18 (d, J = 7,4 Γц, 1H), 7,01 (d, J = 8,0 Γц, 1H), 6,33 (s, 2H), 5,82 (s, 1H), 5,55 (d, J = 1,9 Γц, 1H), 3,60 (s, 3H), 2,42 (s, 3H), 1,96 (s, 3H).	493,20
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N N N	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 9,92 (s, 1H), 8,47 (d, J = 5,0 Γ ц, 1H), 8,21 (s, 1H), 7,78 – 7,66 (m, 2H), 7,33 (m, J = 8,6, 2,3 Γ ц, 3H), 7,21 – 7,16 (m, 2H), 7,12 (s, 0H), 5,80 (s, 1H), 5,54 (d, J = 1,7 Γ ц, 1H), 3,59 (s, 3H), 2,42 (s, 3H), 1,95 (d, J = 1,2 Γ ц, 3H).	510,20
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 9,90 (s, 1H), 8,46 (d, J = 5,0 Γ ц, 1H), 8,20 (s, 1H), 7,82 – 7,68 (m, 2H), 7,37 – 7,26 (m, 4H), 7,24 – 7,12 (m, 3H), 5,79 (s, 1H), 5,53 (d, J = 1,8 Γ ц, 1H), 3,60 (s, 3H), 2,41 (s, 3H), 1,95 (t, J = 1,3 Γ ц, 3H).	492,20
N-(4-(4-амино-7-метил- 5-(4-(5- метилпиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ ONH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,50 (d, J = 0,9 Γц, 2H), 8,20 (s, 1H), 7,81 – 7,67 (m, 2H), 7,39 – 7,25 (m, 4H), 7,25 – 7,12 (m, 2H), 6,2 – 5,67 (t, J = 1,0 Γц, 2H), 5,54 (t, J = 1,5 Γц, 1H), 3,60 (s, 3H), 2,22 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	492,20
N-(4-(4-амино-7-(2-метоксиэтил)-5-(4-(6-метилпиридин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ ONH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,19 (s, 1H), 7,73 (dd, J = 8,4, 7,3 Γ ц, 3H), 7,34 – 7,27 (m, 2H), 7,31 – 7,21 (m, 2H), 7,10 – 7,03 (m, 2H), 7,01 (d, J = 7,4 Γ ц, 1H), 6,77 (d, J = 8,1 Γ ц, 1H), 5,82 – 5,77 (m, 1H), 5,69 (s, 1H), 5,53 (t, J = 1,4 Γ ц, 1H), 4,25 (t, J = 6,0 Γ ц, 2H), 3,50 (t, J = 6,0 Γ ц, 2H), 3,09 (s, 3H), 2,34 (s, 3H), 2,08 (s, 1H), 1,95 (t, J = 1,2 Γ ц, 3H).	535,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(6-метилпиридин-2-илокси)фенил)-7-(оксетан-3-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,20 (s, 1H), 7,77 – 7,68 (m, 3H), 7,24 (dd, J = 8,6, 3,1 Γц, 4H), 7,10 – 7,05 (m, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,78 (d, J = 8,1 Γц, 1H), 5,79 (s, 1H), 5,63 – 5,51 (m, 2H), 5,15 (t, J = 6,9 Γц, 2H),	533,2
N-(4-(4-амино-7-метил-	N N N	4,61 (dd, <i>J</i> = 7,9, 6,2 Γц, 2H), 2,34 (s, 3H), 1,95 (d, <i>J</i> = 1,6 Γц, 3H).	505,25
5-(4-(6-метилпиридин- 2-илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)метакрила мид	NH ₂ NH NH	9,83 (s, 1H), 8,20 (s, 1H), 7,71 (t, J = 7,8 Γ u, 1H), 7,65 – 7,56 (m, 2H), 7,26 (d, J = 8,2 Γ u, 1H), 7,24 – 7,16 (m, 2H), 7,09 – 7,02 (m, 2H), 7,00 (d, J = 7,3 Γ u, 1H), 6,76 (d, J = 8,2 Γ u, 1H), 5,79 (s, 1H), 5,52 (t, J = 1,5 Γ u, 1H), 3,32 (s, 3H), 2,33 (s, 3H), 1,97 – 1,91 (m, 6H).	
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,21 (s, 1H), 7,81 – 7,69 (m, 2H), 7,51 (dd, J = 8,5, 2,0 Γц, 1H), 7,34 – 7,21 (m, 3H), 7,09 (d, J = 8,7 Γц, 2H), 7,02 (d, J = 7,4 Γц, 1H), 6,78 (d, J = 8,1 Γц, 1H), 5,82 (s, 1H), 5,58 (s, 1H), 3,55 (s, 3H), 2,34 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	509,50
N-(4-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метилфенил)метакрила мид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,31 (s, 1H), 8,19 (s, 1H), 7,72 (t, J = 7,8 Гц, 1H), 7,35 (d, J = 8,1 Гц, 1H), 7,30 – 7,21 (m, 3H), 7,16 (d, J = 8,2 Γц, 1H), 7,09 (d, J = 8,1 Γц, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,76 (d, J = 8,2 Γц, 1H), 5,85 (s, 1H), 5,50 (s, 1H), 3,32 (s, 2H), 2,34 (s, 3H), 2,17 (s, 3H), 1,96 (s, 3H).	505,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(6-метилпиридин- 2-илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метоксифенил)метакрил амид	NH ₂ NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,79 (s, 1H), 8,20 (s, 1H), 7,92 (d, J = 8,2 Гц, 1H), 7,73 (t, J = 7,8 Гц, 1H), 7,33 – 7,25 (m, 2H), 7,13 – 7,06 (m, 2H), 7,04 – 6,93 (m, 3H), 6,79 (d, J = 8,1 Γц, 1H), 5,95 (s, 1H), 5,84 (s, 1H), 5,51 (d, J = 1,7 Γц, 1H), 3,69 (d, J = 6,4 Гц, 6H), 2,33 (s, 3H), 1,96 (d, J = 1,5 Гц, 3H).	521,10
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- фторфенил)метакрилам ид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,21 (s, 1H), 7,81 – 7,69 (m, 2H), 7,51 (dd, J = 8,6, 2,1 Γц, 1H), 7,27 (dd, J = 23,5, 8,5 Γц, 3H), 7,09 (d, J = 8,5 Γц, 1H), 7,02 (d, J = 7,4 Γц, 1H), 6,78 (d, J = 8,2 Γц, 1H), 5,82 (s, 1H), 5,58 (s, 1H), 3,55 (s, 3H), 2,34 (s, 3H), 1,95 (s, 3H).	509,50
N-(4-(4-амино-5-(4-((6-аминопиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	H ₂ N N O NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,19 (s, 1H), 7,75 – 7,68 (m, 2H), 7,40 (t, J = 7,8 Γц, 1H), 7,33 – 7,27 (m, 2H), 7,27 – 7,19 (m, 2H), 7,05 – 6,97 (m, 2H), 6,18 (d, J = 7,9 Γц, 1H), 6,05 – 5,97 (m, 3H), 5,80 (s, 1H), 5,67 (s, 2H), 5,53 (t, J = 1,5 Γц, 1H), 3,60 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	492,25
N-(4-(4-амино-5-(4-((6- цианопиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NC NO NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 8,09 (dd, J = 8,4, 7,2 Γц, 1H), 7,81 (d, J = 7,2 Γц, 1H), 7,77 – 7,67 (m, 2H), 7,41 (d, J = 8,4 Γц, 1H), 7,35 – 7,26 (m, 4H), 7,26 – 7,08 (m, 2H), 5,80 (s, 2H), 5,58 – 5,45 (m, 1H), 3,61 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	502,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((6- (гидроксиметил)пириди н-2-ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	HO NO NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,85 (t, J = 7,8 Гц, 1H), 7,76 – 7,68 (m, 2H), 7,33 – 7,21 (m, 5H), 7,14 – 7,06 (m, 2H), 6,84 (d, J = 8,1 Γц, 1H), 5,93 (s, 2H), 5,80 (s, 1H), 5,54 (t, J = 1,5 Γц, 1H), 5,38 (t, J = 5,8 Γц, 1H), 4,42 (d, J = 5,0 Γц, 2H), 3,62 (s, 3H), 1,96 (d, J = 1,3 Γц, 3H).	507,30
N-(4-(4-амино-5-(4-((6- (метоксиметил)пиридин -2-ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,86 (t, J = 7,8 Γц, 1H), 7,77 – 7,68 (m, 2H), 7,33 – 7,22 (m, 4H), 7,20 – 7,05 (m, 3H), 6,91 (d, J = 8,2 Γц, 1H), 5,80 (s, 1H), 5,56 – 5,51 (m, 1H), 4,35 (s, 2H), 3,62 (s, 3H), 3,33 (d, J = 6,5 Γц, 4H), 1,95 (t, J = 1,3 Γц, 3H).	521,25
N-(4-(4-амино-5-(4-((6-метоксипиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,75 – 7,62 (m, 3H), 7,33 – 7,19 (m, 4H), 7,15 – 7,01 (m, 2H), 6,52 (d, J = 7,9 Γц, 2H), 6,26 – 5,68 (m, 1H), 5,57 – 5,43 (m, 1H), 3,62 (s, 5H), 1,95 (d, J = 1,3 Γц, 3H).	507,20
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- (метоксиметил)акрилам ид	NH ₂ O NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,02 (s, 1H), 8,19 (s, 1H), 7,84 – 7,58 (m, 3H), 7,35 – 7,20 (m, 4H), 7,13 – 7,05 (m, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,78 (d, J = 8,1 Γц, 1H), 5,94 (s, 1H), 5,70 (s, 1H), 4,15 (s, 2H), 3,61 (s, 3H), 3,31 (d, J = 7,2 Γц, 3H), 2,34 (s, 3H).	521,30
N-(4-(4-амино-7-метил- 5-(4-(((5-метил-1,3,4- оксадиазол-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,21 (s, 1H), 7,69 – 7,67 (m, 2H), 7,40 (s, 4H), 7,31 – 7,29 (m, 2H), 5,82 (s, 1H), 5,54 (d, J = 1,6 Гц, 1H), 3,71 (s, 3H), 2,50 (s, 3H), 2,04 (s, 3H).	482,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((5-метил-1,3,4-оксадиазол-2-ил)метил)бензамид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,40 (s, 1H), 7,62 – 7,56 (m, 3H), 7,48 (d, J = 8,0 Гц, 2H), 7,34 (d, J = 8,0 Гц, 2H), 7,23 (d, J = 8,4 Гц, 2H), 5,83 (s, 1H), 5,52 (s, 1H), 5,04 (s, 2H), 4,94 (s, 2H), 3,74 (s, 3H), 3,14 (s, 3H), 2,58 (s, 3H), 2,09 (t, J = 1,3 Гц, 3H).	537,35
N-((1,2,4-оксадиазол-5- ил)метил)-4-(4-амино-6- (4- метакриламидофенил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5-ил)-N- метилбензамид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 9,60 (s, 1H), 8,21 (s, 1H), 8,17 – 8,10 (m, 2H), 7,74 – 7,67 (m, 2H), 7,34 – 7,23 (m, 4H), 5,91 (s, 1H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,15 (s, 2H), 3,62 (s, 3H), 3,07 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	523,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((5-метил-1,2,4-оксадиазол-3-ил)метил)бензамид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,6 Гц, 2H), 7,40 (d, J = 8,2 Гц, 2H), 7,26 (d, J = 8,4 Γц, 4H), 5,80 (s, 1H), 5,53 (s, 1H), 4,76 (s, 1H), 4,62 (s, 1H), 3,61 (s, 3H), 3,03 (s, 2H), 2,96 (s, 1H), 2,60 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	537,2
(R)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1-циклопропил-2-метоксиэтил)бензамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,27 (d, J = 8,5 Гц, 1H), 8,21 (s, 1H), 7,83 – 7,77 (m, 2H), 7,73 – 7,67 (m, 2H), 7,32 – 7,23 (m, 4H), 5,79 (s, 3H), 5,53 (d, J = 1,7 Γц, 1H), 3,68 – 3,61 (m, 4H), 3,48 (qd, J = 9,9, 6,2 Γц, 2H), 324(s, 3H), 1,95 (d, J = 1,2 Γц, 3H), 0,95 (dd, J = 8,1, 5,0 Γц, 1H), 0,45 (dt, J = 8,7, 4,1 Γц, 1H), 0,37 – 0,22 (m, 3H).	525,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-гидрокси-2-метилпропил)-N-метилбензамид	ON OH NH2 N N N N O	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,35 (s, 1H), 7,60 (d, J = 8,0 Гц, 3H), 7,44 (d, J = 7,8 Гц, 2H), 7,32 (d, J = 7,8 Гц, 2H), 7,22 (d, J = 8,3 Гц, 2H), 5,83 (s, 1H), 5,52 (d, J = 1,5 Гц, 1H), 3,75 (s, 3H), 3,62 (s, 2H), 3,14 (s, 3H), 2,09 (t, J = 1,2 Гц, 3H), 1,33 (s, 6H), 1,01 (s, 1H).	513,45
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- (метоксиметил)фенил)м етакриламид	NH ₂ NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,38 (s, 1H), 8,20 (s, 1H), 7,85 – 7,63 (m, 2H), 7,51 – 7,18 (m, 4H), 7,15 – 7,06 (m, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,76 (d, J = 8,2 Γц, 1H), 5,85 (s, 1H), 5,54 (t, J = 1,6 Γц, 1H), 4,45 (s, 2H), 3,63 (s, 3H), 3,20 (s, 3H), 2,33 (d, J = 5,9 Γц, 3H), 1,98 (s, 3H).	535,30
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- ((диметиламино)метил) фенил)метакриламид	NH ₂ NH ₂ NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,20 (s, 1H), 8,28 (d, J = 8,4 Гц, 1H), 8,19 (s, 1H), 7,72 (t, J = 7,8 Γц, 1H), 7,35 (dd, J = 8,5, 2,0 Гц, 1H), 7,27 – 7,20 (m, 2H), 7,10 – 7,04 (m, 3H), 7,01 (d, J = 7,3 Γц, 1H), 6,74 (d, J = 8,1 Γц, 1H), 5,85 (s, 1H), 5,71 (s, 2H), 5,54 (t, J = 1,6 Γц, 1H), 3,65 (s, 3H), 3,47 (s, 2H), 2,35 (s, 3H), 2,14 (s, 6H), 1,99 (s, 3H).	548,30
N-(4-(4-амино-7-метил- 5-(5-((6-метилпиридин- 2-ил)окси)пиразин-2- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,02 (s, 1H), 8,63 (s, 1H), 8,20 (s, 1H), 7,83 (dd, $J = 31,7, 8,0$ Гц, 3H), 7,66 (s, 1H), 7,59 – 7,28 (m, 4H), 7,12 (d, $J = 7,4$ Γц, 1H), 6,97 (d, $J = 8,1$ Γц, 1H), 5,83 (s, 1H), 5,56 (s, 1H), 3,57 (s, 3H), 2,35 (s, 3H), 1,97 (s, 3H).	493,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- циано-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ: 9,92 (s, 1H), 8,27 (s, 1H), 7,82 (t, J = 7,8 Γц, 1H), 7,76 (d, J = 8,6 Γц, 2H), 7,71 (s, 1H), 7,47 (dd, J = 8,7, 2,2 Γц, 1H), 7,30 (d, J = 8,6 Γц, 2H), 7,23 (d, J = 8,6 Γц, 1H), 7,11 (d, J = 7,3 Γц, 1H), 6,97 (d, J = 8,1 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,63 (s, 3H), 2,35 (s, 3H), 1,96 (s, 3H), 2,44 (s, 3H), 1,96 (d, J = 1,2 Γц, 3H).	516,20
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-фтор-N-(тетрагидрофуран-3-ил)бензамид	O H O F NH ₂ NH ₂ NH ₂ O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,23 (s, 1H), 7,71 – 7,69 (m, 2H), 7,64 (t, J = 7,8 Гц, 1H), 7,31 – 7,27 (m, 2H), 7,21 (dd, J ₁ = 8,0 Гц, J ₂ = 1,2 Гц, 1H), 7,09 (dd, J ₁ = 11,6 Гц, J ₂ = 1,2 Гц, 1H), 5,82 (t, J = 1,0 Гц, 1H), 5,55 (d, J = 1,8 Гц, 1H), 4,58 – 4,55(m, 1H), 3,98 – 3,93 (m, 2H), 3,87 – 3,83 (m, 1H), 3,75 – 3,71 (m, 1H), 3,70 (s, 1H), 2,33 – 2,30(m, 1H), 2,05(s, 3H), 1,97 – 1,96(m, 1H).	515,35
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)цианамид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,38 (s, 1H), 8,19 (s, 1H), 7,73 (t, $J = 7,8$ Гц, 1H), 7,33 – 7,28 (m, 2H), 7,28 – 7,21 (m, 2H), 7,13 – 7,05 (m, 2H), 7,02 (d, $J = 7,3$ Γц, 1H), 6,98 – 6,91 (m, 2H), 6,78 (d, $J = 8,1$ Γц, 1H), 5,90 (s, 2H), 3,60 (s, 3H), 2,35 (s, 3H).	448,20
5-(4-амино-7-метил-5- (4-((6-метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пиримидин-2- карбонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,97 (s, 2H), 8,26 (s, 1H), 7,75 (s, 1H), 7,47 – 7,26 (m, 2H), 7,25 – 7,10 (m, 2H), 7,04 (d, J = 7,4 Γц, 1H), 6,83 (d, J = 8,2 Γц, 1H), 3,76 (s, 3H), 2,36 (s, 3H).	435,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-5-(1- (4-(диметиламино)-2- метилбутаноил)пиперид ин-4-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,15 (s, 1H), 7,81 – 7,79 (m, 2H), 7,56 – 7,48 (m, 3H), 6,77 (d, J = 7,2 Гц, 1H), 6,56 (d, J = 8,4 Гц, 1H), 5,87 – 5,85 (m, 2H), 5,57 – 5,56 (m, 1H), 5,39 – 5,37 (m, 1H), 3,67 (s, 3H), 2,67 – 2,62 (m, 1H), 2,47 – 2,45 (m, 1H), 2,41(s, 3H), 2,28 – 2,23 (m, 1H), 2,08 (s, 3H), 2,07 – 2,02 (m, 2H), 1,86 (d, J = 6,4 Гц, 1H).	495,40
(R)-N-(4-(4-амино-5-(1- (4-(диметиламино)-2- метилбутаноил)пиперид ин-4-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ ONH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,15 (s, 1H), 7,81 – 7,79 (m, 2H), 7,56 – 7,48 (m, 3H), 6,78 (d, J = 7,2 Гц, 1H), 6,56 (d, J = 8,4 Гц, 1H), 5,87 – 5,85 (m, 2H), 5,57 (d, J = 1,7 Гц, 1H), 5,39 – 5,37 (m, 1H), 3,67 (s, 3H), 2,67 – 2,62 (m, 1H), 2,47 – 2,45 (m, 1H), 2,41(s, 3H), 2,28 – 2,23 (m, 1H), 2,08 (s, 3H), 2,07 – 2,02 (m, 2H), 1,86 (m, 1H).	495,40
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)метакрила мид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,82 (s, 1H), 8,21 (s, 1H), 7,61 (s, 2H), 7,45 (d, J = 8,2 Γц, 2H), 7,23 (dd, J = 18,0, 8,2 Γц, 3H), 5,80 (s, 2H), 5,52 (s, 1H), 3,43 (s, 7H), 1,95 (s, 3H), 1,90 (s, 3H), 1,88 – 1,68 (m, 4H).	495,30
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,22 (s, 1H), 7,76 (dd, J = 12,4, 2,0 Гц, 1H), 7,48 (dd, J = 8,4, 1,6 Γц, 3H), 7,31 – 7,21 (m, 3H), 6,01 (s, 1H), 5,82 (s, 1H), 5,57 (s, 1H), 3,55 (s, 3H), 3,43 (dt, J = 17,2, 6,6 Γц, 4H), 1,95 (t, J = 1,2 Γц, 3H), 1,83 (dt, J = 17,8, 7,4 Γц, 4H).	499,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метилфенил)метакрила мид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,31 (s, 1H), 8,21 (s, 1H), 7,63 – 7,40 (m, 2H), 7,34 (d, J = 8,1 Γц, 1H), 7,30 – 7,24 (m, 2H), 7,22 (d, J = 2,0 Γц, 1H), 7,12 (dd, J = 8,0, 2,0 Γц, 1H), 5,85 (s, 1H), 5,50 (s, 1H), 3,62 (s, 3H), 3,43 (d, J = 21,0 Γц, 4H), 2,15 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H), 1,88 – 1,68 (m, 4H).	495,30
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метоксифенил)метакрил амид	NH ₂ NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,21 (s, 1H), 7,89 (d, J = 8,8 Гц, 1H), 7,53 – 7,47 (m, 2H), 7,33 – 7,26 (m, 2H), 6,94 (d, J = 6,6 Γц, 2H), 5,85 (s, 1H), 5,54 – 5,48 (m, 1H), 3,67 (d, J = 2,8 Γц, 6H), 3,44 (dt, J = 18,4, 6,6 Γц, 4H), 1,96 (d, J = 1,4 Γц, 3H), 1,90 – 1,79 (m, 4H).	511,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-(1-метил-2-оксопирролидин-3-ил)бензамид	ON ON ON NH2 ON NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,74 – 7,66 (m, 2H), 7,38 (d, J = 7,7 Γц, 2H), 7,29 – 7,22 (m, 4H), 5,80 (s, 1H), 5,53 (s, 1H), 4,58 (t, J = 9,3 Γц, 1H), 3,61 (s, 3H), 3,32 (d, J = 8,7 Γц, 1H), 3,18 (d, J = 8,7 Γц, 1H), 2,77 (t, J = 13,3 Γц, 6H), 2,16 (s, 2H), 1,95 (s, 3H).	538,35
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1-метил-2-оксопирролидин-3-ил)бензамид	O NH O NH O NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,72 (d, J = 8,4 Гц, 1H), 8,21 (s, 1H), 7,81 (d, J = 8,2 Γц, 2H), 7,72 – 7,66 (m, 2H), 7,29 (d, J = 8,1 Γц, 2H), 7,27 – 7,21 (m, 2H), 5,93 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 4,57 (q, J = 9,0 Γц, 1H), 3,62 (s, 3H), 3,34 (s, 2H), 2,77 (s, 3H), 2,32 (s, 1H), 1,94 (s, 4H).	524,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(6-(пирролидин-1- карбонил)пиридин-3- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,31 (dd, J = 1,9, 1,1 Γц, 1H), 8,23 (s, 1H), 7,79 – 7,64 (m, 4H), 7,33 – 7,16 (m, 2H), 6,09 (s, 2H), 5,86 – 5,76 (m, 1H), 5,54 (q, J = 1,5 Γц, 1H), 3,63 (d, J = 10,6 Γц, 5H), 3,52 – 3,42 (m, 2H), 1,95 (t, J = 1,2 Γц, 3H), 1,83 (dqd, J = 5,1, 3,7, 1,7 Γц, 4H).	482,35
(R)-N-(4-(4-амино-5-(4- (2- (метоксиметил)пирроли дин-1-карбонил)фенил)- 7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,45 (d, J = 7,8 Γц, 2H), 7,26 (dd, J = 8,4, 2,8 Γц, 4H), 5,80 (s, 2H), 5,53 (t, J = 1,5 Γц, 1H), 4,25 (s, 1H), 3,62 (s, 4H), 3,50 – 3,35 (m, 3H), 3,30 (s, 2H), 2,91 (s, 1H), 2,04 – 1,95 (m, 1H), 1,95 (d, J = 1,2 Γц, 3H), 1,85 (s, 2H), 1,70 (s, 1H).	525,40
(S)-N-(4-(4-амино-5-(4- (2- (метоксиметил)пирроли дин-1-карбонил)фенил)- 7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,45 (d, J = 7,7 Γц, 2H), 7,26 (dd, J = 8,4, 2,8 Γц, 4H), 5,95 (s, 2H), 5,80 (s, 1H), 5,53 (d, J = 1,8 Γц, 1H), 4,25 (s, 1H), 4,04 (s, 0H), 3,62 (s, 3H), 3,42 (d, J = 7,1 Γц, 1H), 2,90 (s, 1H), 2,04 – 1,92 (m, 4H), 1,85 (s, 3H), 1,70 (s, 1H).	525,45
(R)-N-(4-(4-амино-5-(4- (2-цианопирролидин-1- карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,74 – 7,68 (m, 2H), 7,57 (d, J = 7,8 Γц, 2H), 7,33 – 7,23 (m, 4H), 5,80 (s, 1H), 5,53 (d, J = 2,0 Γц, 1H), 4,88 (t, J = 6,7 Γц, 1H), 3,70 – 3,60 (m, 4H), 3,59 – 3,50 (m, 1H), 2,33 (s, 1H), 2,18 (dq, J = 12,2, 6,1 Γц, 1H), 2,05 – 1,90 (m, 5H).	506,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-5-(4- (3-метоксипиперидин- 1-карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ ON NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,24 (s, 1H), 7,70 (d, J = 8,3 Гц, 2H), 7,33 (s, 2H), 7,26 (dd, J = 8,3, 6,1 Γц, 4H), 6,14 (s, 2H), 5,79 (s, 1H), 5,53 (d, J = 1,6 Γц, 1H), 3,62 (s, 4H), 3,52 (s, 3H), 3,22 (s, 3H), 2,98 (s, 1H), 1,94 (d, J = 1,5 Γц, 3H), 1,67 (s, 3H), 1,42 (s, 1H).	525,35
(S)-N-(4-(4-амино-5-(4- (3-метоксипиперидин- 1-карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,69 (d, J = 8,4 Γц, 2H), 7,33 (d, J = 7,8 Γц, 2H), 7,30 – 7,22 (m, 4H), 5,95 (s, 0H), 5,79 (s, 1H), 5,53 (d, J = 1,8 Γц, 1H), 3,97 - 3,63 (m, 4H), 3,62 - 3,31 (m, 3H), 3,29 - 3,13 (m, 3H), 2,98 (s, 1H), 1,94 (t, J = 1,3 Γц, 3H), 1,85 (s, 1H), 1,67 (s, 1H), 1,57 (s, 1H), 1,41 (s, 1H).	525,45
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-метокси-N-(тетрагидрофуран-3-ил)бензамид	O NH NH ₂ O NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,19 (d, J = 14,1 Γц, 2H), 7,75 – 7,69 (m, 2H), 7,61 (d, J = 7,8 Γц, 1H), 7,34 – 7,26 (m, 2H), 6,93 (d, J = 1,5 Γц, 1H), 6,86 (dd, J = 7,8, 1,5 Γц, 1H), 6,02 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 4,43 (d, J = 7,0 Γц, 1H), 3,82 (td, J = 10,2, 9,7, 6,7 Γц, 2H), 3,71 (s, 3H), 3,71 (td, J = 8,2, 5,6 Γц, 1H), 3,60 (s, 3H), 3,55 (dd, J = 8,9, 4,0 Γц, 1H), 2,15 (dq, J = 12,6, 7,6 Γц, 1H), 1,95 (d, J = 1,2 Γц, 3H), 1,89 – 1,80 (m, 1H).	527,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-(оксетан-3-ил)-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-метокси-N-(тетрагидрофуран-3-ил)бензамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,24 – 8,15 (m, 2H), 7,70 (d, J = 8,2 Γц, 2H), 7,59 (d, J = 7,8 Γц, 1H), 7,25 (d, J = 8,3 Γц, 2H), 6,93 (s, 1H), 6,84 (d, J = 7,9 Γц, 1H), 5,80 (s, 1H), 5,59 – 5,51 (m, 2H), 5,15 (t, J = 6,8 Γц, 2H), 4,60 (t, J = 6,9 Γц, 2H), 4,42 (s, 1H), 3,81 (td, J = 10,1, 9,6, 6,5 Γц, 2H), 3,70 (s, 4H), 3,54 (d, J = 8,8, 4,0 Γц, 1H), 2,14 (dq, J = 14,6, 7,6 Γц, 1H), 1,95 (s, 3H), 1,84 (s, 1H).	569,40
N-(4-(4-амино-5-(4-(2- цианопирролидин-1- карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 7,70 (d, J = 8,6 Γц, 2H), 7,57 (d, J = 7,7 Γц, 2H), 7,28 (dd, J = 13,0, 8,2 Γц, 4H), 5,80 (s, 1H), 5,53 (s, 1H), 4,87 (s, 1H), 3,61 (s, 3H), 3,55 (s, 1H), 2,22 – 2,14 (m, 1H), 1,94 (d, J = 1,5 Γц, 3H).	506,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(1,3-дифторпропан-2-ил)-N-метилбензамид	F F O NH ₂ NH ₂ NH _N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,22 (s, 1H), 7,74 – 7,67 (m, 2H), 7,37 (s, 1H), 7,27 (dd, J = 8,7, 6,8 Γц, 5H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,95 – 4,30 (dd, J = 8,7, 6,8 Γц, 5H), 3,62 (s, 3H), 2,96 (s, 3H), 1,95 (d, J = 1,2 Γц, 3H).	519,4
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-(диметиламино)этил)-N-(2,2,2-трифторэтил)бензамид	F F N O NH O NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,41 (s, 1H), 7,56 (dd, J = 7,5, 5,7 Гц, 3H), 7,41 (d, J = 7,9 Гц, 2H), 7,35 (d, J = 8,2 Гц, 2H), 7,26 – 7,18 (m, 2H), 5,83 (d, J = 1,2 Гц, 1H), 5,52 (d, J = 1,6 Гц, 1H), 4,26 (s, 2H), 3,74 (s, 3H), 3,61 (s, 2H), 2,46 (s, 2H), 2,24 – 2,05 (m, 9H).	580,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(2- (метоксиметил)пиперид ин-1-карбонил)фенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,73 – 7,66 (m, 2H), 7,32 (d, J = 7,8 Γц, 2H), 7,29 – 7,22 (m, 4H), 5,94 (s, 2H), 5,79 (s, 1H), 5,53 (d, J = 1,9 Γц, 1H), 3,61 (s, 3H), 3,32 (s, 4H), 2,94 (s, 1H), 1,94 (t, J = 1,2 Γц, 3H), 1,57 (s, 4H), 1,38 (s, 1H).	539,25
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклобутилметил)пико линамид	HN O NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,73 (t, $J = 6,2$ Гц, 1H), 8,33 (d, $J = 2,1$ Гц, 1H), 8,23 (s, 1H), 7,97 (d, $J = 8,0$ Гц, 1H), 7,77 (dd, $J = 8,0$, 2,2 Гц, 1H), 7,76 – 7,69 (m, 2H), 7,30 – 7,24 (m, 2H), 6,13 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,61 (s, 3H), 3,32 (d, $J =$ 13,5 Γц, 1H), 2,55 (d, $J =$ 7,4 Гц, 1H), 2,01 – 1,90 (m, 1H), 1,95 (s, 4H), 1,88 – 1,76 (m, 2H), 1,76 – 1,64 (m, 2H).	496,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклобутилметил)бенз амид	HN O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,42 (t, J = 5,8 Гц, 1H), 8,21 (s, 1H), 7,78 (d, J = 8,0 Гц, 2H), 7,70 (d, J = 8,5 Гц, 2H), 7,28 (dd, J = 10,3, 8,3 Гц, 4H), 5,91 -5,80 (s, 2H), 5,53 (s, 1H), 3,61 (s, 3H), 3,28 (t, J = 6,4 Гц, 3H), 2,05 – 1,94 (m, 1H), 1,99 (s, 2H), 1,95 (s, 2H), 1,82 (p, J = 7,2, 6,3 Гц, 2H), 1,71 (p, J = 8,6, 7,8 Гц, 2H).	495,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклобутилметил)-2-метоксибензамид	HN O O NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,21 (s, 1H), 8,07 (t, J = 5,8 Гц, 1H), 7,75 – 7,69 (m, 2H), 7,66 (d, J = 7,9 Γц, 1H), 7,34 – 7,27 (m, 2H), 6,93 (d, J = 1,5 Γц, 1H), 6,86 (dd, J = 7,9, 1,5 Γц, 1H), 6,01 (s, 1H), 5,81 (s, 1H), 5,54 (s, 1H), 3,72 (s, 3H), 3,34 – 3,26 (m, 5H), 2,00 (dd, J = 8,5, 3,9 Γц, 1H), 1,96 (s, 4H), 1,90 – 1,78 (m, 2H), 1,1 - 1,73 (ddd, J = 17,0, 8,4, 4,5 Γц, 3H).	525,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
2-ацетил-4-(4-амино-6- (4- метакриламидофенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- (циклобутилметил)бенз амид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,21 (s, 1H), 7,75 – 7,67 (m, 2H), 7,51 (d, J = 7,7 Γц, 1H), 7,45 (d, J = 1,4 Γц, 1H), 7,33 – 7,25 (m, 2H), 7,24 (dd, J = 7,7, 1,5 Γц, 1H), 6,20 (s, 1H), 5,79 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,61 (s, 3H), 3,45 (dd, J = 14,0, 7,6 Γц, 1H), 3,38 – 3,28 (m, 1H), 2,74 (q, J = 7,6 Γц, 1H), 2,03 – 1,97 (m, 1H), 1,98 (s, 1H), 1,95 (t, J = 1,2 Γц, 3H), 1,84 – 1,72 (m, 4H), 1,51 (s, 3H).	537,4
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклобутилметил)-2-фторбензамид	HN O NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,25 (dt, J = 6,0, 2,9 Γц, 1H), 8,22 (s, 1H), 7,78 – 7,70 (m, 2H), 7,54 (t, J = 7,8 Гц, 1H), 7,33 – 7,25 (m, 2H), 7,10 (dd, J = 7,9, 1,6 Γц, 1H), 7,06 (dd, J = 11,4, 1,6 Γц, 1H), 5,81 (s, 1H), 5,54 (t, J = 1,5 Γц, 1H), 3,59 (s, 3H), 3,27 (dd, J = 7,0, 5,8 Γц, 2H), 2,48 (s, 1H), 2,04 – 1,92 (m, 5H), 1,89 – 1,77 (m, 2H), 1,80 – 1,65 (m, 2H).	513,2
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-фтор-N-(2-метокси-2-метилпропил)бензамид	HN O F NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,21 (s, 1H), 8,00 (q, J = 4,3, 2,8 Гц, 1H), 7,76 – 7,69 (m, 2H), 7,56 (t, J = 8,0 Γц, 1H), 7,32 – 7,25 (m, 2H), 7,12 – 7,03 (m, 2H), 5,80 (t, J = 1,0 Γц, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,59 (s, 3H), 3,31 (d, J = 6,0 Γц, 2H), 3,13 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H), 1,12 (s, 6H).	531,3
5-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-метилпропил)пиколинамид	NH ₂ NH ₂ NH NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,37 (d, $J = 2,1$ Гц, 1H), 8,30 (t, $J = 6,2$ Гц, 1H), 8,22 (s, 1H), 7,99 (d, $J = 8,0$ Γц, 1H), 7,81 – 7,69 (m, 3H), 7,30 – 7,24 (m, 2H), 6,12 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 3,36 (d, J = 6,2 Γц, 2H), 3,15 (s, 3H), 1,95 (d, $J = 1,3$ Гц, 3H), 1,11 (s, 6H).	514,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-метил-1Н-пиразол-3-ил)метил)бензамид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,86 (t, J = 5,9 Γц, 1H), 8,21 (s, 1H), 7,83 (d, J = 8,0 Γц, 2H), 7,70 (d, J = 8,6 Γц, 2H), 7,56 (d, J = 2,2 Γц, 1H), 7,32 – 7,23 (m, 4H), 6,12 (d, J = 2,2 Γц, 1H), 5,91 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 4,39 (d, J = 5,8 Γц, 2H), 3,78 (s, 3H), 3,61 (s, 3H), 1,95 (s, 3H), 1,29 (s, 1H).	521,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((тетрагидрофуран-2-ил)метил)бензамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,50 (t, J = 5,9 Гц, 1H), 8,22 (s, 1H), 7,84 – 7,77 (m, 2H), 7,74 – 7,66 (m, 2H), 7,32 – 7,23 (m, 4H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,97 (p, J = 6,3 Γц, 1H), 3,82 – 3,73 (m, 1H), 3,67 – 3,57 (m, 1H), 3,62 (s, 3H), 3,25 (s, 2H), 1,95 (t, J = 1,2 Γц, 3H), 1,94 – 1,85 (m, 1H), 1,85 – 1,77 (m, 2H), 1,65 – 1,54 (m, 1H).	511,3
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-метилпирролидин-2-ил)метил)бензамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,35 (s, 1H), 8,21 (s, 1H), 7,82 – 7,75 (m, 2H), 7,74 – 7,66 (m, 2H), 7,33 – 7,23 (m, 4H), 5,80 (d, $J = 1,4$ Γц, 1H), 5,56 – 5,51 (m, 1H), 3,61 (s, 3H), 3,46 (dt, $J = 12,9$, 5,0 Γц, 1H), 3,16 (s, 1H), 2,97 (s, 1H), 2,34 (s, 4H), 2,17 (s, 1H), 1,95 (t, $J = 1,2$ Гц, 3H), 1,85 (s, 1H), 1,63 (s, 3H).	524,3
N-(4-(4-амино-7-метил- 5-(4-(1-метил-1Н- пиразол-3- илокси)циклогекс-1- енил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,13 (s, 1H), 7,85 – 7,79 (m, 2H), 7,49 – 7,42 (m, 3H), 5,83 (s, 1H), 5,68 (dd, J = 11,6, 3,0 Γц, 2H), 5,58 – 5,53 (m, 1H), 4,83 – 4,74 (m, 1H), 3,66 (s, 3H), 3,59 (s, 3H), 2,55 (s, 1H), 2,33 (d, J = 18,3 Γц, 1H), 2,16 – 2,06 (m, 1H), 2,01 – 1,91 (m, 4H), 1,89 (q, J = 6,4 Γц, 1H), 1,80 (d, J = 9,1 Гц, 1H).	484,4

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-		¹H ЯМР (400 МГц, DMSO-d ₆) δ	484,3
метил-5-(4-(1-метил-	N J	9,96 (s, 1H), 8,13 (s, 1H), 7,86 –	
1Н-пиразол-3-	, o	7,79 (m, 2H), 7,50 – 7,42 (m, 3H),	
илокси)циклогекс-1-		5,83 (d, <i>J</i> = 1,4 Гц, 1H), 5,72 –	
енил)-7Н-пирроло[2,3-	NH ₂	5,64 (m, 2H), $5,56$ (t, $J = 1,5$ Гц,	
d]пиримидин-6-		1H), 4,78 (q, <i>J</i> = 2,7 Гц, 1H), 3,66	
ил)фенил)метакриламид	N NH	(s, 3H), 3,58 (s, 3H), 2,55 (d, J =	
	N N	8,1 Гц, 1H), $2,33$ (d, $J = 18,2$ Гц,	
	`	1H), 2,18 – 2,06 (m, 1H), 2,03 –	
		1,93 (m, 4H), 1,89 (q, J = 6,3 Γ ц,	
		1H), 1,83 – 1,73 (m, 1H).	
(S)-N-(4-(4-амино-7-	_N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	484,3
метил-5-(4-(1-метил-	N=	9,96 (s, 1H), 8,13 (s, 1H), 7,86 –	
1Н-пиразол-3-	o jo	7,79 (m, 2H), 7,49 – 7,42 (m, 3H),	
илокси)циклогекс-1-		5,83 (s, 1H), 5,71 – 5,64 (m, 2H),	
енил)-7Н-пирроло[2,3-	NH ₂	5,56 (t, $J = 1,5$ Гц, 1H), $4,81 - 4,75$	
d]пиримидин-6-		(m, 1H), 3,66 (s, 3H), 3,59 (s, 3H),	
ил)фенил)метакриламид	N NH	2,52 (s, 1H), 2,33 (d, J = 18,3 Γ ц,	
	N N	1H), 2,12 (d, J = 17,4 Γ ц, 1H), 2,04	
	\	-1,93 (m, 4H), $1,88$ (q, $J = 6,3$ Гц,	
		1H), 1,80 (d, J = 8,6 Γ ц, 1H).	
N-(4-(5-(4-(3-	0 1	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	525,35
азабицикло[3.2.1]октан-	N	9,94 (s, 1H), 8,09 (s, 1H), 7,90 –	
3-карбонил)циклогекс-		7,76 (m, 2H), 7,43 (d, $J = 8,2$ Гц,	
1-ен-1-ил)-4-амино-7-	⟨	2H), 6,52 (s, 2H), 5,83 (s, 1H), 5,75	
метил-7Н-пирроло[2,3-	NH ₂	(s, 1H), 5,55 (s, 1H), 4,17 (d, J =	
d]пиримидин-6-	N N	12,6 Гц, 1H), 4,08 (d, J = 12,8 Гц,	
ил)фенил)метакриламид	NH NH	0H), 3,73 (s, 1H), 3,58 (s, 3H), 3,14	
	" · · ·	-3,02 (m, 2H), 2,57 (d, $J = 12,0$	
		Гц, 1H), 2,19 (s, 4H), 1,97 (s, 3H),	
		1,86 (s, 1H), 1,65 (s, 1H), 1,54 (s,	
		7H), 1,30 (s, 1H), 1,24 (s, 1H).	
4-(4-амино-6-(4-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	517,25
метакриламидофенил)-	0 0	10,01 (s, 1H), 8,38 (s, 1H), 8,26 (s,	
7-метил-7Н-	NH /	1H), 7,90 (t, $J = 6,1 \Gamma \mu$, 1H), 7,88 –	
пирроло[2,3-		7,82 (m, 2H), 7,51 – 7,44 (m, 2H),	
d]пиримидин-5-ил)-N-	NH ₂	5,89 (s, 1H), 5,84 (s, 1H), 5,57 (d, <i>J</i>	
(2-метокси-2-		= 1,9 Гц, 1H), 3,67 (s, 3H), 3,25	
метилпропил)циклогекс	N NH	$(dd, J = 13,6, 6,8 \Gamma \mu, 1H), 3,08 (s,$	
-3-ен-1-карбоксамид		3H), 3,01 (dd, J = 13,6, 5,3 Γ ц,	
	\	1H), 2,74 (d, <i>J</i> = 4,7 Гц, 1H), 2,28	
		(s, 1H), 1,98 (d, $J = 1,1 \Gamma \mu$, 3H),	
		$1,92 (d, J = 12,0 \Gamma \mu, 1H), 1,80 (d, J)$	
		$= 12.8 \Gamma_{\text{II}}, 2\text{H}), 1.66 (d, J = 11.7)$	
		Γ ц, 1H), 1,03 (d, J = 5,3 Γ ц, 6H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-((S)-2- метилпиперидин-1- карбонил)циклогекс-1- ен-1-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (d, J = 1,8 Γ ц, 1H), 8,10 (s, 1H), 7,84 – 7,77 (m, 2H), 7,46 – 7,40 (m, 2H), 6,54 (s, 2H), 5,83 (s, 1H), 5,80 – 5,73 (m, 1H), 5,55 (d, J = 2,0 Γ ц, 1H), 4,76 (s, 1H), 4,31 (s, 1H), 3,75 (d, J = 12,4 Γ ц, 1H), 3,58 (s, 3H), 3,07 (s, 1H), 3,01 (s, 1H), 2,60 (s, 2H), 2,31 (s, 1H), 2,23 (s, 2H), 2,08 (s, 1H), 1,98 (d, J = 1,5 Γ ц, 4H), 1,91 (s, 1H), 1,81 (d, J = 17,7 Γ ц, 1H), 1,60 (s, 6H), 1,51 (d, J = 14,5 Γ ц, 1H), 1,20 (s, 2H), 1,08 – 0,98 (m, 2H).	513,35
N-(4-(4-амино-5-(4-(5- фторпиримидин-2- илокси)циклогекс-1- енил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,68 (s, 2H), 8,13 (s, 1H), 7,87 – 7,79 (m, 2H), 7,50 – 7,42 (m, 2H), 5,83 (t, J = 1,0 Γц, 1H), 5,74 – 5,67 (m, 1H), 5,55 (t, J = 1,5 Γц, 1H), 5,24 – 5,18 (m, 1H), 3,58 (s, 3H), 2,67 – 2,63 (s, 1H), 2,40 (s, 1H), 2,13 – 2,02 (m, 2H), 1,98 (t, J = 1,2 Γц, 3H), 1,93 – 1,83 (m, 2H).	500,2
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклобутилметил)циклогекс-3-ен-1-карбоксамид	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,10 (s, 1H), 7,85 – 7,77 (m, 3H), 7,46 – 7,39 (m, 2H), 6,45 (s, 2H), 5,83 (s, 1H), 5,81 – 5,75 (m, 1H), 5,58 – 5,53 (m, 1H), 3,57 (s, 3H), 3,13 (dt, J = 13,0, 6,4 Γц, 1H), 3,02 (dt, J = 13,0, 6,0 Γц, 1H), 2,47 (t, J = 5,9 Γц, 1H), 2,43 – 2,33 (m, 1H), 2,35 – 2,26 (m, 1H), 2,22 (d, J = 5,3 Γц, 1H), 1,98 (d, J = 1,2 Γц, 3H), 1,98 – 1,86 (m, 4H), 1,85 – 1,70 (m, 2H), 1,68 – 1,55 (m, 4H).	499,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(2-фтор-2-метилпропил)бензамид	HN O O NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,59 (t, J = 6,3 Γц, 1H), 8,21 (s, 1H), 7,96 – 7,79 (m, 2H), 7,76 – 7,60 (m, 2H), 7,43 – 6,93 (m, 4H), 5,79 (s, 1H), 5,53 (d, J = 1,8 Γц, 1H), 3,61 (s, 3H), 3,49 (d, J = 6,2 Γц, 1H), 3,44 (d, J = 6,2 Γц, 1H), 1,94 (t, J = 1,3 Γц, 3H), 1,35 (s, 3H), 1,29 (s, 3H).	501,30
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-N- метилметакриламид	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,21 (s, 1H), 7,79 – 7,69 (m, 1H), 7,39 – 7,32 (m, 2H), 7,32 – 7,26 (m, 2H), 7,26 – 7,19 (m, 2H), 7,13 – 7,05 (m, 2H), 7,02 (d, J = 7,3 Γц, 1H), 6,76 (d, J = 8,1 Γц, 1H), 5,93 (s, 2H), 5,04 (p, J = 1,6 Γц, 1H), 4,86 (t, J = 1,3 Γц, 1H), 3,62 (s, 3H), 3,27 (s, 3H), 2,35 (s, 3H), 1,69 (d, J = 1,3 Γц, 3H).	505,25
4-(4-амино-7-метил-6- (4-(N- метилметакриламидо)ф енил)-7Н-пирроло[2,3- d]пиримидин-5-ил)-N- (2-метокси-2- метилпропил)бензамид	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 2H), 7,86 – 7,76 (m, 2H), 7,39 – 7,19 (m, 6H), 5,95 (s, 2H), 5,09 – 5,04 (m, 1H), 4,86 (s, 1H), 3,62 (s, 3H), 3,34 (s, 2H), 3,27 (s, 3H), 3,15 (s, 3H), 1,70 (d, J = 1,5 Гц, 3H), 1,11 (s, 6H).	527,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2,6-дифтор-N-(2-метилпропил)бензамид	HN O F NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,50 (t, J = 6,1 Гц, 1H), 8,22 (s, 1H), 7,77 (d, J = 2,0 Гц, 1H), 7,38 – 7,28 (m, 2H), 6,94 (d, J = 8,1 Γц, 2H), 6,08 (s, 2H), 5,82 (s, 1H), 5,54 (s, 1H), 3,59 (s, 3H), 3,30 (d, J = 6,2 Γц, 2H), 3,12 (s, 3H), 1,96 (d, J = 1,2 Γц, 3H), 1,12 (s, 6H).	549,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((3-фтороксетан-3-ил)метил)-N-метилбензамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,77 – 7,65 (m, 2H), 7,37 (d, J = 7,8 Γц, 2H), 7,33 – 7,21 (m, 4H), 5,95 (s, 1H), 5,80 (t, J = 1,1 Γц, 1H), 5,53 (t, J = 1,5 Γц, 1H), 4,66 (d, J = 20,1 Γц, 4H), 4,06 (d, J = 22,7 Γц, 2H), 3,62 (s, 3H), 2,97 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	529,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3-метокси-2,2-диметилпропил)бензамид	NH ₂ O NH	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (d, J = 12,8 Γ ц, 2H), 7,88 – 7,71 (m, 2H), 7,74 – 7,50 (m, 2H), 7,40 – 6,99 (m, 4H), 5,79 (s, 3H), 5,53 (d, J = 1,9 Γ ц, 1H), 3,61 (s, 3H), 3,32 (s, 3H), 3,26 (s, 2H), 3,17 (d, J = 6,3 Γ ц, 2H), 1,94 (d, J = 1,5 Γ ц, 3H), 0,86 (s, 6H).	527,30
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)циклогекс-ен- 1-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ OON NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,10 (s, 1H), 7,84 – 7,77 (m, 2H), 7,47 – 7,39 (m, 2H), 6,51 (s, 2H), 5,83 (s, 1H), 5,77 (s, 1H), 5,55 (d, $J = 1,9$ Γц, 1H), 3,58 (s, 3H), 3,55 – 3,48 (m, 1H), 3,47 – 3,39 (m, 1H), 3,31 – 3,22 (m, 2H), 2,83 (t, $J = 6,0$ Γц, 1H), 2,26 (s, 2H), 1,98 (d, $J = 1,3$ Гц, 3H), 1,88 (dd, $J = 13,4$, 6,6 Гц, 4H), 1,77 (q, $J = 6,7$ Гц, 2H), 1,63 (d, $J = 6,2$ Гц, 2H).	485,25
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)циклогекс-1- ен-1-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,10 (s, 1H), 7,84 – 7,77 (m, 2H), 7,47 – 7,39 (m, 2H), 6,51 (s, 2H), 5,83 (s, 1H), 5,77 (s, 1H), 5,55 (d, J = 1,9 Γц, 1H), 3,58 (s, 3H), 3,55 – 3,48 (m, 1H), 3,47 – 3,39 (m, 1H), 3,31 – 3,22 (m, 2H), 2,83 (t, J = 6,0 Γц, 1H), 2,26 (s, 2H), 1,98 (d, J = 1,3 Γц, 3H), 1,88 (dd, J = 13,4, 6,6 Γц, 4H), 1,77 (q, J = 6,7 Γц, 2H), 1,63 (d, J = 6,2 Γц, 2H).	485,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- циано-4-((5- фторпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,83 (s, 2H), 8,22 (s, 1H), 7,77 (d, J = 1,9 Γц, 1H), 7,76 – 7,73 (m, 2H), 7,55 – 7,53 (m, 1H), 7,45 (s, 1H), 7,33 (d, J = 8,6 Γц, 2H), 6,05 (s, 1H), 5,82 (s, 1H), 5,55 (s, 1H), 3,59 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	521,20
N-(4-(4-амино-5-(3-метокси-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,41 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,75 (d, 2H), 7,35 (d, 2H), 7,16 – 7,07 (m, 2H), 6,98 (d, J = 2,0 Γц, 1H), 6,85 (dd, J = 8,1, 1,9 Γц, 1H), 5,96 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,61 (s, 3H), 3,55 (s, 3H), 2,40 (s, 3H), 1,96 (s, 3H).	528,20
N-(4-(4-амино-5-(4-((5-фторпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,76 (s, 2H), 8,20 (s, 1H), 7,73 (d, J = 8,7 Γц, 2H), 7,32 - 7,29 (m, 3H), 7,21 (d, J = 8,7 Γц, 2H), 5,80 (t, J = 1,1 Γц, 2H), 5,54 (t, J = 1,5 Γц, 1H), 3,60 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	496,15
N-(4-(4-амино-5-(4-((5- фторпиримидин-2- ил)окси)-3- метилфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ NH ₂ NH N F O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,12 (s, 1H), 8,73 (s, 2H), 8,22 (s, 1H), 7,79 (dd, $J = 12,4, 2,0$ Гц, 1H), 7,53 (dd, $J = 8,4, 2,0$ Γц, 1H), 7,34 (t, $J = 8,4$ Γц, 1H), 7,24 (s, 1H), 7,11 (d, $J = 2,3$ Γц, 2H), 5,83 (s, 1H), 5,59 (s, 1H), 3,53 (s, 3H), 2,06 (s, 3H), 1,96 (t, $J = 1,2$ Γц, 3H).	528,35
N-(4-(4-амино-5-(3,5-дифтор-4-((5-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	F ON NH2 NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,54 (s, 2H), 8,22 (s, 1H), 7,82 – 7,76 (m, 2H), 7,39 – 7,33 (m, 2H), 7,07 (d, J = 8,8 Γц, 2H), 6,12 (s, 2H), 5,83 (s, 1H), 5,56 (s, 1H), 3,58 (s, 3H), 2,24 (s, 3H), 1,97 (d, J = 1,2 Γц, 3H).	528,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3,5-дифтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	F O N F NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,51 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,78 (d, J = 8,7 Γц, 2H), 7,34 (d, 2H), 7,24 (d, J = 5,0 Гц, 1H), 7,06 (d, J = 8,8 Γц, 2H), 6,12 (s, 2H), 5,82 (s, 1H), 5,54 (s, 1H), 3,59 (s, 3H), 2,44 (s, 3H), 1,96 (d, J = 1,2 Γц, 3H).	520,25
N-(4-(4-амино-5-(4-((5- (диметиламино)пирими дин-2-ил)окси)-3- фторфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,20 (d, J = 9,0 Гц, 3H), 7,87 – 7,65 (m, 2H), 7,45 – 7,24 (m, 3H), 7,21 – 7,03 (m, 2H), 5,68 (d, J = 108,0 Γц, 2H), 3,59 (s, 3H), 2,89 (s, 6H), 1,96 (s, 3H).	539,30
N-(4-(4-амино-5-(4-((5-метоксипиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,43 (s, 2H), 8,20 (s, 1H), 7,73 (d, J = 8,6 Гц, 2H), 7,34 – 7,25 (m, 4H), 7,19 – 7,12 (m, 2H), 5,80 (s, 1H), 5,54 (d, J = 1,8 Γц, 1H), 3,86 (s, 3H), 3,60 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	508,20
N-(4-(4-амино-5-(3- (диметиламино)-4-((5- фторпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,72 (s, 2H), 8,20 (s, 1H), 7,91 – 7,63 (m, 2H), 7,34 (d, J = 8,6 Γц, 2H), 7,16 – 6,99 (m, 1H), 6,86 (s, 2H), 5,81 (s, 1H), 5,55 (d, J = 1,9 Γц, 1H), 3,59 (s, 3H), 2,55 (s, 6H), 1,96 (t, J = 1,2 Γц, 3H).	539,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((5- метоксипиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,43 (s, 2H), 8,21 (s, 1H), 7,80 – 7,73 (m, 2H), 7,38 – 7,29 (m, 3H), 7,18 (dd, J = 11,6, 2,0 Γц, 1H), 7,10 (dd, J = 8,4, 2,0 Гц, 1H), 5,99 (s, 2H), 5,81 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 3,86 (s, 3H), 3,59 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	526,20
N-(4-(4-амино-5-(4-((5- фторпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,12 (s, 1H), 8,76 (s, 2H), 8,22 (s, 1H), 7,82 – 7,73 (m, 1H), 7,56 – 7,49 (m, 1H), 7,36 – 7,24 (m, 3H), 7,24 – 7,19 (m, 2H), 5,83 (s, 1H), 5,59 (d, J = 2,1 Γц, 1H), 3,54 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	514,35
N-(4-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- ((диметиламино)метил) акриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,21 (s, 1H), 8,20 (s, 1H), 7,73 (t, $J = 7.8$ Гц, 1H), 7,66 – 7,62 (m, 2H), 7,35 – 7,29 (m, 2H), 7,28 – 7,23 (m, 2H), 7,13 – 7,06 (m, 2H), 7,01 (d, $J = 7.3$ Γц, 1H), 6,79 (d, $J = 8.1$ Гц, 1H), 6,02 (d, $J = 1.8$ Гц, 3H), 5,58 (d, $J = 1.6$ Гц, 1H), 3,62 (s, 3H), 3,23 (s, 2H), 2,35 (s, 3H), 2,25 (s, 6H).	534,25
N-(6-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-3-ил)метакриламид	NH ₂ N NH N NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,09 (s, 1H), 10,04 (s, 1H), 8,90 (d, $J = 2,5$ Гц, 1H), 8,13 (s, 1H), 7,91 (dd, $J = 8,8$, 2,5 Гц, 1H), 7,78 (t, $J = 7,8$ Гц, 1H), 7,52 – 7,42 (m, 2H), 7,35 – 7,16 (m, 2H), 7,07 (t, J = 7,6 Γц, 2H), 6,88 (d, $J = 8,1$ Гц, 1H), 5,85 (s, 1H), 5,58 (s, 1H), 2,39 (s, 3H), 1,96 (t, $J = 1,2$ Гц, 3H).	478,30
N-(4-(4-амино-5-(2- фтор-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ F NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,20 (s, 1H), 7,71 (d, J = 8,7 Гц, 3H), 7,40 – 7,21 (m, 3H), 7,12 – 7,00 (m, 2H), 6,96 (dd, J = 8,4, 2,4 Γц, 1H), 6,85 (d, J = 8,1 Γц, 1H), 5,80 (s, 3H), 5,53 (t, J = 1,5 Γц, 1H), 3,65 (s, 3H), 2,37 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	509,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-	/	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	492,25
5-(5-((6-метилпиридин-	N=	8,41 (s, 1H), 7,65 (dd, $J = 8,2,7,3$	
2-ил)окси)пиридин-2-	0-41	Гц, 1H), 7,54 – 7,44 (m, 2H), 7,42	
ил)-7Н-пирроло[2,3-		-7,34 (m, 2H), $7,12$ (d, $J = 8,0$ Гц,	
d]пиримидин-6-	()	1H), 7,01 (s, 2H), 6,96 – 6,91 (m,	
ил)фенил)метакриламид	$ NH_2 \rangle = N$	2H), 6,88 (dd, J = 8,0, 2,0 Γ ц, 1H),	
	N AIII	6,67 – 6,60 (m, 1H), 6,17 (dd, <i>J</i> =	
	NH NH	16,8, 2,5 Гц, 1H), $6,08$ (d, $J = 11,3$	
	'\	Гц, 1H), 5,58 – 5,50 (m, 1H), 3,72	
		(s, 3H), 3,67(s, 3H), 3,28 (s, 3H),	
		2,29 (s, 3H).	
N-(4-(4-амино-5-(3-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	548,30
((диметиламино)метил)-	N-	9,88 (s, 1H), 8,20 (s, 1H), 7,76 –	
4-((6-метилпиридин-2-	9-(-)	7,66 (m, 3H), 7,35 (d, $J = 2,4$ Гц,	
ил)окси)фенил)-7-	N	1H), 7,33 – 7,25 (m, 2H), 7,16 (dd,	
метил-7Н-пирроло[2,3-	NH ₂	J = 8,4, 2,4 Гц, 1H), 6,99 (dd, J =	
d]пиримидин-6-	- /	18,4,7,8 Гц, 2H), 6,71 (d, $J = 8,2$	
ил)фенил)метакриламид	N NH //	Гц, 1H), 5,98 (s, 2H), 5,79 (s, 1H),	
		5,53 (t, $J = 1,6$ Гц, 1H), $3,63$ (s,	
	· · · · · · · · · · · · · · · · · · ·	3H), 3,30 (s, 2H), 2,31 (s, 3H), 2,00	
		(s, 6H), 1,95 (t, $J = 1,2$ Гц, 3H).	
N-(4-(4-амино-7-метил-		¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	506,20
5-(1-((6-метилпиридин-		9,96 (s, 1H), 8,22 (s, 1H), 7,85 –	
2-ил)метил)-2-оксо-1,2-	N N	7,76 (m, 2H), 7,69 – 7,61 (m, 2H),	
дигидропиридин-4-ил)-	N.	7,39 - 7,31 (m, 2H), 7,15 (d, J =	
7Н-пирроло[2,3-	l ()	7,6 Гц, 1Н), 6,93 (d, J = 7,7 Гц,	
d]пиримидин-6-	NH ₂	1H), 6,32 (s, 2H), 6,21 (d, $J = 1.9$	
ил)фенил)метакриламид	N	Γ ц, 1H), 6,00 (dd, J = 7,0, 2,0 Γ ц,	
	NH NH	1H), 5,82 (d, J = 1,3 Γ ц, 1H), 5,55	
	N '\	$(d, J = 1,6 \Gamma \mu, 1H), 5,09 (s, 2H),$	
		3,59 (s, 3H), 2,44 (s, 3H), 1,97 (t, <i>J</i>	
		= 1,2 Гц, 3Н).	
N-(4-(4-амино-7-метил-	N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	479,35
5-(1-((6-метилпиридин-	N N	9,93 (s, 1H), 8,18 (s, 1H), 7,84 (s,	
2-ил)метил)-1Н-	NH ₂	1H), 7,80 – 7,72 (m, 2H), 7,63 (t, <i>J</i>	
пиразол-4-ил)-7Н-	N \	= 7,8 Гц, 1H), 7,39 – 7,31 (m, 3H),	
пирроло[2,3-	NH NH	7,15 (d, J = 7,8 Гц, 1H), 6,63 (d, J	
d]пиримидин-6-	" '\	= 7,8 Гц, 1H), 6,06 (s, 2H), 5,84 –	
ил)фенил)метакриламид		5,79 (m, 1H), $5,56$ (t, $J = 1,4$ Гц,	
		1H), 5,38 (s, 2H), 3,61 (s, 3H), 2,44	
		(s, 3H), 1,98 (t, $J = 1,2$ Гц, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((S)-2-цианопирролидин-1-карбонил)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,23 (s, 1H), 7,77 (dd, J = 12,5, 2,0 Гц, 1H), 7,57 (d, J = 7,8 Гц, 2H), 7,49 (dd, J = 8,5, 2,0 Γц, 1H), 7,32 – 7,22 (m, 3H), 5,82 (t, J = 1,0 Γц, 1H), 5,58 (d, J = 2,0 Γц, 1H), 4,87 (t, J = 6,6 Γц, 1H), 3,65 (s, 1H), 3,56 (s, 4H), 2,32 (s, 1H), 2,17 (ddd, J = 12,7, 11,5, 6,1 Γц, 1H), 1,95 (t, J = 1,3 Γц, 5H).	524,2
(S)-N-(4-(4-амино-5-(4- (2-цианопирролидин-1- карбонил)-3- фторфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (s, 1H), 7,74 (d, J = 8,4 Γц, 2H), 7,42 (t, J = 7,5 Γц, 1H), 7,27 (d, J = 8,4 Γц, 2H), 7,08 (d, J = 9,3 Γц, 2H), 5,82 (s, 1H), 5,54 (s, 1H), 4,95 – 4,87 (m, 1H), 3,60 (s, 3H), 1,96 (s, 4H).	524,40
4-(4-амино-6-(2-фтор-4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((3-фтороксетан-3-ил)метил)-N-метилбензамид	O F O NH ₂ N N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,22 (s, 1H), 7,76 (dd, $J = 12,5, 2,0$ Гц, 1H), 7,49 (dd, $J = 8,4, 2,0$ Гц, 1H), 7,37 (s, 2H), 7,30 – 7,21 (m, 3H), 5,82 (s, 1H), 5,58 (s, 1H), 4,64(s, 5H), 4,09 (s, 1H), 4,03 (s, 1H), 3,55 (s, 3H), 2,96 (s, 3H), 1,95 (d, $J = 1,2$ Гц, 3H).	547,30
4-(4-амино-6-(2-фтор-4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((3-метил-1,2,4-оксадиазол-5-ил)метил)бензамид	NH ₂ NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,09 (s, 1H), 8,22 (s, 1H), 7,76 (dd, J = 12,4, 2,0 Гц, 1H), 7,48 (dd, J = 8,5, 2,0 Гц, 1H), 7,43 (s, 2H), 7,28 (s, 3H), 7,25 (d, J = 8,5 Γц, 1H), 6,04 (s, 2H), 5,83 (s, 1H), 5,58 (s, 1H), 4,91 (s, 2H), 3,55 (s, 3H), 3,10 (s, 3H), 2,35 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	555,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(2-фтор-4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-цианоциклопропил)метил)-N-метилбензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,23 (s, 1H), 7,77 (dd, J = 12,5, 2,0 Гц, 1H), 7,49 (dd, J = 8,5, 2,0 Гц, 1H), 7,37 (d, J = 7,5 Гц, 2H), 7,28 (d, J = 8,2 Гц, 3H), 6,04 (s, 2H), 5,83 (s, 1H), 5,57 (s, 1H), 3,32 (s, 3H), 3,06 (s, 3H), 1,95 (d, J = 1,5 Γц, 3H), 1,29 (s, 2H), 1,16 (t, J = 13,2 Γц, 2H).	538,40
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((тетрагидрофуран-3-ил)метил)бензамид	O NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,35 (s, 2H), 7,30 – 7,22 (m, 4H), 5,92 (s, 2H), 5,80 (s, 1H), 5,56 – 5,50 (m, 1H), 3,76 (s, 1H), 3,62 (s, 4H), 3,53 (s, 2H), 3,22 (s, 1H), 2,95 (s, 3H), 2,62 (s, 0,5H), 1,95 (d, J = 1,2 Γц, 3H), 1,82 (s, 0,5H), 1,60 (s, 0,5H), 1,31 (s, 0,5H).	525,35
4-(4-амино-6-(4- метакриламидофенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- изобутил-N- метилбензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,70 (d, J = 8,6 Γц, 2H), 7,35 (s, 2H), 7,27 (d, J = 7,9 Γц, 2H), 7,26 (s, 2H), 5,79 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,62 (s, 3H), 3,28 (s, 1H), 3,05 (s, 1H), 2,92 (s, 3H), 2,03 – 1,85 (s, 1H), 1,95 (t, J = 1,2 Γц, 3H), 0,91 (d, J = 6,6 Γц, 3H), 0,68 (s, 3H).	497,3
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-метоксициклопропил)метил)-N-метилбензамид	NH ₂ NH ₂ NH O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,23 (s, 1H), 7,67 (d, $J = 8,3$ Гц, 2H), 7,46 – 7,37 (m, 4H), 7,28 (d, $J = 7,7$ Гц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,83 (s, 1H), 3,71 (s, 3H), 3,59 (s, 1H), 3,39 (s, 2H), 3,11 (s, 3H), 2,86 (s, 1H), 2,04 (d, $J = 1,3$ Гц, 3H), 0,88 (s, 1H), 0,82 (s, 1H), 0,73 (s, 1H), 0,52 (s, 1H).	525,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(4-((1R,5S)-2-азабицикло[3.1.0]гексан -2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакрилам ид	H NH ₂ N N F O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,23 (s, 1H), 7,77 (dd, J = 12,4, 2,0 Гц, 1H), 7,60 (d, J = 7,6 Гц, 1H), 7,49 (dd, J = 8,5, 2,0 Γц, 1H), 7,28 (d, J = 8,3 Гц, 3H), 6,05 (s, 2H), 5,83 (s, 1H), 5,58 (s, 1H), 3,97 (s, 1H), 3,56 (s, 3H), 3,14 (s, 1H), 2,06 (s, 1H), 1,96 (d, J = 1,2 Гц, 3H), 1,70 (s, 1H), 0,77 (s, 2H).	511,30
N-(4-(5-(4-((1S,5R)-2-азабицикло[3.1.0]гексан -2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакрилам ид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,23 (s, 1H), 7,77 (dd, J = 12,5, 2,0 Гц, 1H), 7,60 (d, J = 7,7 Гц, 1H), 7,49 (dd, J = 8,4, 2,0 Γц, 2H), 7,28 (d, J = 8,3 Гц, 3H), 6,03 (s, 1H), 5,83 (s, 1H), 5,58 (s, 1H), 3,97 (s, 1H), 3,56 (s, 4H), 3,14 (s, 1H), 2,06 (s, 1H), 1,96 (d, J = 1,2 Γц, 4H), 1,70 (s, 1H), 0,77 (s, 2H).	511,30
N-(4-(5-(4-(2-азабицикло[2.1.1]гексан-2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакриламид	NH ₂ N N F O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,09 (s, 1H), 8,22 (s, 1H), 7,77 (dd, J = 12,5, 2,0 Гц, 1H), 7,64 (d, J = 8,9 Гц, 1H), 7,49 (dd, J = 8,4, 2,0 Гц, 1H), 7,40 (d, J = 7,9 Гц, 1H), 7,26 (d, J = 7,3 Γц, 3H), 6,02 (s, 1H), 5,83 (s, 1H), 5,57 (s, 1H), 4,33 (d, J = 6,9 Γц, 1H), 3,55 (s, 3H), 3,44 (s, 2H), 2,89 (d, J = 17,1 Γц, 1H), 1,95 (s, 5H), 1,47 (s, 1H), 1,33 (s, 1H).	511,40
4-(4-амино-6-(2-фтор-4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-(оксетан-3-илметил)бензамид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,22 (s, 1H), 7,76 (dd, J = 12,6, 1,9 Гц, 1H), 7,48 (dd, J = 8,4, 2,0 Γц, 1H), 7,34 (d, J = 7,7 Γц, 2H), 7,25 (d, J = 7,8 Γц, 3H), 5,82 (s, 1H), 5,76 (s, 1H), 5,58 (s, 1H), 4,65 (s, 2H), 4,40 (s, 1H), 4,15 (s, 1H), 3,76 (s, 1H), 3,55 (s, 4H), 3,22 (s, 1H), 2,88 (s, 3H), 1,95 (s, 3H).	529,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-метил-5-(4-(2-метилпиперидин-1-карбонил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакрилам ид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,09 (s, 1H), 8,22 (s, 1H), 7,76 (dd, J = 12,5, 2,0 Гц, 1H), 7,48 (dd, J = 8,5, 2,0 Гц, 1H), 7,31 (d, J = 8,3 Гц, 2H), 7,29 – 7,21 (m, 3H), 6,02 (s, 1H), 5,82 (s, 1H), 5,57 (s, 1H), 3,55 (s, 5H), 2,98 (s, 1H), 1,95 (d, J = 1,3 Γц, 3H), 1,64 (d, J = 10,9 Γц, 1H), 1,59 (s, 3H), 1,51 (s, 1H), 1,36 (d, J = 12,8 Γц, 1H), 1,18 (d, J = 6,9 Γц, 3H).	527,40
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- (морфолинометил)фени л)метакриламид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (s, 1H), 7,80 (dd, J = 8,3, 2,2 Γц, 1H), 7,75 (d, J = 2,2 Γц, 1H), 7,45 (d, J = 7,9 Γц, 2H), 7,41 (d, J = 8,3 Γц, 1H), 7,23 (d, J = 7,9 Γц, 2H), 6,02 (s, 2H), 5,83 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 3,48 – 3,35 (m, 3H), 3,15 (d, J = 13,8 Γц, 1H), 2,75 (d, J = 13,7 Γц, 1H), 2,05 (d, J = 6,7 Γц, 2H), 1,96 (t, J = 1,2 Γц, 5H), 1,83 (dt, J = 19,2, 6,4 Γц, 3H).	580,50
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- (тетрагидрофуран-2- ил)фенил)метакриламид (атропоизомер 1)	NH ₂ NH ₂ NH O NH Aтропизомер 1	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,24 (s, 1H), 7,84 (d, J = 2,2 Гц, 1H), 7,74 (dd, J = 8,3, 2,3 Гц, 1H), 7,55 – 7,48 (m, 2H), 7,38 (dd, J = 13,8, 8,2 Гц, 3H), 5,86 – 5,81 (m, 1H), 5,55 (d, J = 1,8 Гц, 1H), 4,47 (dd, J = 7,9, 6,8 Гц, 1H), 4,05 (q, J = 7,2 Гц, 1H), 3,75 (q, J = 7,6 Гц, 1H), 3,59 (t, J = 7,0 Гц, 2H), 3,55 (s, 3H), 3,47 (t, J = 6,6 Гц, 2H), 2,08 – 2,01 (m, 3H), 1,96 (dq, J = 27,5, 6,8 Гц, 5H), 1,87 – 1,74 (m, 1H), 1,61 (dq, J = 12,7, 7,0 Гц, 1H), 1,34 (dq, J = 12,5, 8,1 Гц, 1H).	551,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- (тетрагидрофуран-2- ил)фенил)метакриламид (атропоизомер 1)	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,24 (s, 1H), 7,84 (d, $J = 2,2$ Гц, 1H), 7,74 (dd, $J = 8,3$, 2,3 Гц, 1H), 7,55 – 7,48 (m, 2H), 7,38 (dd, $J = 13,8$, 8,2 Гц, 3H), 5,86 – 5,81 (m, 1H), 5,55 (d, $J = 1,8$ Гц, 1H), 4,47 (dd, $J = 7,9$, 6,8 Гц, 1H), 3,91 (q, $J = 7,2$ Гц, 1H), 3,75 (q, $J = 7,6$ Гц, 1H), 3,59 (t, $J = 7,0$ Гц, 2H), 3,55 (s, 3H), 3,47 (t, $J = 6,6$ Гц, 2H), 2,08 – 2,01 (m, 3H), 1,96 (dq, $J = 27,5$, 6,8 Гц, 5H), 1,87 – 1,74 (m, 1H), 1,61 (dq, $J = 12,7$, 7,0 Гц, 1H), 1,34 (dq, $J = 12,5$, 8,1 Гц, 1H).	551,40
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- хлорфенил)метакрилам ид	NH ₂ N CI O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,06 (s, 1H), 8,23 (s, 1H), 8,03 (d, J = 2,0 Гц, 1H), 7,65 (dd, J = 8,4, 2,1 Γц, 1H), 7,47 (d, J = 8,2 Γц, 2H), 7,33 (d, J = 8,4 Γц, 1H), 7,24 (d, J = 8,1 Γц, 2H), 6,02 (s, 1H), 5,83 (d, J = 1,4 Γц, 1H), 5,58 (s, 1H), 3,48 (s, 3H), 3,42 (dt, J = 18,3, 6,6 Γц, 4H), 1,98 – 1,93 (m, 3H),	515,35
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- цианофенил)метакрила мид	NH ₂ N NH ₂ N N NH ₂ N N NH	1,83 (dt, $J = 18,7$, 6,6 Γ u, 4H). ¹ H ЯМР (400 М Γ u, DMSO- d_6) δ 10,21 (s, 1H), 8,26 (s, 1H), 8,20 (d, $J = 2,2$ Γ u, 1H), 8,03 (dd, $J = 8,6$, 2,3 Γ u, 1H), 7,62 (d, $J = 8,6$ Γ u, 1H), 7,49 (d, $J = 7,9$ Γ u, 2H), 7,22 (d, $J = 7,8$ Γ u, 2H), 6,12 (s, 1H), 5,86 (s, 1H), 5,61 (s, 1H), 3,56 (s, 3H), 3,49 – 3,38 (m, 4H), 1,96 (s, 3H), 1,88 – 1,78 (m, 4H).	506,35
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- (дифторметил)фенил)ме такриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,24 (s, 1H), 8,07 (d, J = 2,2 Гц, 1H), 8,00 – 7,93 (m, 1H), 7,52 (d, J = 8,4 Гц, 1H), 7,45 (d, J = 8,2 Γц, 2H), 7,23 (d, J = 8,1 Γц, 2H), 6,51 (d, J = 5,6 Γц, 1H), 6,02 (s, 1H), 5,86 (d, J = 1,3 Γц, 1H), 5,58 (d, J = 1,7 Γц, 1H), 3,44 (d, J = 13,6 Γц, 6H), 1,96 (t, J = 1,2 Γц, 3H), 1,82 (dq, J = 19,2, 6,7 Γц, 4H).	531,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-		¹H ЯМР (400 МГц, DMSO-d ₆) δ	511,40
5-(4-(пирролидин-1-	/	9,89 (s, 1H), 8,19 (s, 1H), 7,62 (d, <i>J</i>	,
карбонил)фенил)-7Н-) = 0	$= 1.9 \Gamma \mu$, 1H), $7.49 - 7.43$ (m, 2H),	
пирроло[2,3-		7,26 (dd, $J = 8,3, 1,9 \Gamma \mu, 1H$), 7,25	
d]пиримидин-6-ил)-3-	NH ₂	-7,18 (m, 2H), 6,99 (d, $J = 8,2$ Гц,	
метоксифенил)метакрил		1H), 5,92 (s, 1H), 5,81 (t, $J = 1,0$	
амид	N—NH "	Γ ц, 1H), 5,54 (t, J = 1,4 Γ ц, 1H),	
		3,70 (s, 3H), 3,47 (s, 4H), 3,45 –	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3,37 (m, 3H), $1,96$ (t, $J = 1,2$ Гц,	
	\	3H), 1,83 (dt, $J = 17,0, 6,4$ Гц, 4H).	
N-(4-(4-амино-7-метил-	\sim	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	521,4
5-(4-(пирролидин-1-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9,79 (s, 1H), 8,32 (s, 1H), 7,61 (dd,	
карбонил)фенил)-7Н-) = 0	$J = 8,3, 2,1 \Gamma$ ц, 1H), 7,50 – 7,43	
пирроло[2,3-		(m, 2H), 7,28 – 7,16 (m, 4H), 5,80	
d пиримидин-6-ил)-3-	()	(s, 1H), 5,53 (t, $J = 1,6 \Gamma \text{H}$, 1H),	
циклопропилфенил)мет	NH ₂	3,52 (s, 3H), $3,43$ (dt, $J = 17,2,6,6$	
акриламид	N NH //	Γ ц, 4H), 1,94 (t, J = 1,2 Γ ц, 3H),	
		$1,83 \text{ (dq, } J = 18,6,6,8 \ \Gamma \text{ц, 4H)},$	
		1,52 - 1,40 (m, 1H), 0,84 (ddt, J =	
		10,2, 8,7, 4,0 Гц, 1Н), 0,72 – 0,52	
		(m, 2H), 0,44 – 0,34 (m, 1H).	
N-(4-(4-амино-7-метил-	\wedge	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	521,3
5-(4-(пирролидин-1-	/_N	9,78 (s, 1H), 8,29 (s, 1H), 7,60 (dd,	
карбонил)фенил)-7Н-)=0	$J = 8,3, 2,1 \Gamma \mu, 1H), 7,50 - 7,43$	
пирроло[2,3-		(m, 2H), 7,28 – 7,17 (m, 4H), 5,80	
d]пиримидин-6-ил)-3-	NII	(s, 1H), 5,53 (t, $J = 1,5 \Gamma \mu$, 1H),	
циклопропилфенил)мет	NH ₂	3,52 (s, 3H), $3,43$ (dt, $J = 17,3,6,6$	
акриламид	N NH //	Γ ц, 4H), 1,95 (d, J = 1,2 Γ ц, 3H),	
		1,90 - 1,75 (m, 4H), $1,46$ (td, $J =$	
		8,5, 4,4 Γ u, 1H), 0,84 (p, J = 4,9	
		Γ ц, 1H), 0,63 (ddt, J = 29,5, 9,2,	
	Атропизомер 1	$4,5 \Gamma$ ц, 2H), 0,39 (р, J = 4,8 Γ ц,	
		1H).	
N-(4-(4-амино-7-метил-	\wedge	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	521,3
5-(4-(пирролидин-1-		9,77 (s, 1H), 8,21 (s, 1H), 7,59 (dd,	-
карбонил)фенил)-7Н-) FO	$J = 8,4, 2,1 \Gamma \mu, 1H), 7,49 - 7,43$	
пирроло[2,3-		(m, 2H), 7,32 – 7,16 (m, 4H), 5,80	
d]пиримидин-6-ил)-3-	NH ₂	(s, 1H), 5,55 – 5,50 (m, 1H), 3,49	
циклопропилфенил)мет		(s, 3H), 3,47 – 3,38 (m, 4H), 1,95	
акриламид	N NH //	$(t, J = 1,3 \Gamma \mu, 3H), 1,83 (dq, J =$	
		17,3, 6,5 Γ u, 4H), 1,48 (td, J = 8,3,	
	" \	4,5 Гц, 1H), 0,85 (s, 1H), 0,66 (d, <i>J</i>	
	Amnouvoovon 2	$= 13.8 \Gamma \mu$, 1H), 0.58 (dt, $J = 10.1$,	
	Атропизомер 2	5,2 Гц, 1H), 0,43 – 0,36 (m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- этилфенил)метакрилам ид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,21 (s, 1H), 7,70 – 7,61 (m, 2H), 7,48 – 7,42 (m, 2H), 7,32 (d, J = 8,3 Γц, 1H), 7,26 – 7,19 (m, 2H), 6,19 – 5,79 (m, 3H), 5,53 (t, J = 1,6 Γц, 1H), 3,48 – 3,35 (m, 7H), 2,29 (dt, J = 15,1, 7,4 Γц, 1H), 2,10 (dq, J = 15,0, 7,5 Γц, 1H), 1,96 (t, J = 1,2 Γц, 3H), 1,84 (dq, J = 18,9, 6,8 Γц, 4H), 0,83 (t, J = 7,5 Γц, 3H).	509,3
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- этилфенил)метакрилам ид	NH ₂ N NH N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,22 (s, 1H), 7,71 – 7,62 (m, 2H), 7,49 – 7,42 (m, 2H), 7,32 (d, J = 8,3 Γц, 1H), 7,23 (d, J = 8,2 Γц, 2H), 5,82 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,48 – 3,35 (m, 7H), 2,30 (dt, J = 15,0, 7,5 Γц, 1H), 2,10 (dq, J = 14,9, 7,5 Γц, 1H), 1,96 (t, J = 1,2 Γц, 3H), 1,85 (dq, J = 18,9, 6,8 Γц, 4H), 0,83 (t, J = 7,5 Γц, 3H).	509,3
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- этилфенил)метакрилам ид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,22 (s, 1H), 7,71 – 7,62 (m, 2H), 7,49 – 7,42 (m, 2H), 7,32 (d, J = 8,2 Γц, 1H), 7,23 (d, J = 8,2 Γц, 2H), 5,82 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,48 – 3,35 (m, 7H), 2,30 (dt, J = 15,0, 7,5 Γц, 1H), 2,10 (dq, J = 14,9, 7,5 Γц, 1H), 1,96 (d, J = 1,2 Γц, 3H), 1,82 (dq, J = 18,6, 6,6 Γц, 4H), 0,83 (t, J = 7,5 Γц, 3H).	509,3
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,80 – 7,76 (m, 1H), 7,53 – 7,51 (m, 1H), 7,36 – 7,26 (m, 3H), 7,23 – 7,13 (m, 3H), 5,82 (s, 1H), 5,58 (d, J = 1,8 Γц, 1H), 3,54 (s, 3H), 2,41 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	510,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(2- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ F NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,50 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,76 – 7,66 (m, 2H), 7,38 (t, J = 8,5 Γц, 1H), 7,31 – 7,27 (m, 2H), 7,22 – 7,15 (m, 2H), 7,09 – 7,07 (m, 1H), 5,80 (d, J = 1,3 Γц, 1H), 5,53 (d, J = 1,7 Γц, 1H), 3,64 (s, 3H), 2,43 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	510,20
N-(4-(4-амино-5-(3-метокси-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакриламид	NH ₂ N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,11 (s, 1H), 8,40 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,80 (dd, J = 12,5, 2,0 Гц, 1H), 7,54 (dd, J = 8,4, 2,0 Гц, 1H), 7,36 (t, J = 8,5 Гц, 1H), 7,14 (d, J = 8,1 Гц, 1H), 7,09 (d, J = 5,1 Гц, 1H), 6,97 (d, J = 2,0 Γц, 1H), 6,85 (dd, J = 8,1, 2,0 Гц, 1H), 5,83 (s, 1H), 5,58 (s, 1H), 3,55 (d, J = 5,1 Гц, 6H), 2,39 (s, 3H), 1,96 (t, J = 1,2 Гц, 3H).	540,25
N-(4-(4-амино-5-(4-((5- фторпиримидин-2- ил)окси)-3- метоксифенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,71 (s, 2H), 8,21 (s, 1H), 7,75 (d, J = 8,7 Γц, 2H), 7,35 (d, J = 8,6 Γц, 2H), 7,18 (d, J = 8,1 Γц, 1H), 6,99 (d, J = 2,0 Γц, 1H), 6,86 (dd, J = 8,1, 2,0 Γц, 1H), 5,81 (s, 1H), 5,54 (s, 1H), 3,60 (s, 3H), 3,56 (s, 3H), 1,96 (d, J = 1,3 Γц, 3H).	526,20
N-(4-(4-амино-7-метил- 5-(6-((6-метилпиридин- 2-ил)окси)пиридин-3- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,21 (s, 1H), 7,99 (d, J = 2,4 Γц, 1H), 7,75 (t, J = 8,2 Γц, 4H), 7,42 – 7,24 (m, 2H), 7,08 (dd, J = 14,6, 7,9 Γц, 2H), 6,92 (d, J = 8,1 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,61 (s, 3H), 2,38 (s, 3H), 1,96 (t, J = 1,3 Γц, 3H).	492,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(6-((5- фторпиримидин-2- ил)окси)пиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,83 (s, 2H), 8,22 (s, 1H), 8,07 (d, J = 2,4 Γц, 1H), 7,76 (dd, J = 9,4, 2,5 Γц, 3H), 7,43 – 7,26 (m, 2H), 7,23 (s, 1H), 5,92 (d, J = 81,4 Γц, 3H), 5,55 (d, J = 1,8 Γц, 1H), 3,60 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	497,25
N-(4-(4-амино-5-(5-((5-фторпиримидин-2-ил)окси)пиридин-2-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ N NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,02 (s, 1H), 8,78 (s, 2H), 8,60 (d, J = 2,8 Γ ц, 1H), 8,17 (s, 1H), 7,93 – 7,85 (m, 2H), 7,50 (dd, J = 8,8, 2,8 Γ ц, 1H), 7,46 – 7,38 (m, 2H), 6,94 (d, J = 8,8 Γ ц, 1H), 5,84 (t, J = 1,0 Γ ц, 1H), 5,57 (t, J = 1,6 Γ ц, 1H), 3,52 (s, 3H), 1,98 (t, J = 1,2 Γ ц, 3H).	497,30
N-(4-(4-амино-7-метил- 5-(2-метил-4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,19 (s, 1H), 7,70 (d, J = 8,6 Γц, 2H), 7,28 (dd, J = 8,6, 2,3 Γц, 3H), 7,15 (d, J = 5,1 Γц, 1H), 7,10 – 7,00 (m, 2H), 5,78 (s, 1H), 5,53 (s, 1H), 3,66 (s, 3H), 2,42 (s, 3H), 1,97 (s, 3H), 1,94 (s, 3H).	540,25
N-(4-(5-((4R)-4-(3-азабицикло[3.2.1]октан-3-карбонил)циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,09 (s, 1H), 7,90 – 7,76 (m, 2H), 7,43 (d, J = 8,2 Гц, 2H), 6,52 (s, 2H), 5,83 (s, 1H), 5,75 (s, 1H), 5,55 (s, 1H), 4,17 (d, J = 12,6 Γц, 1H), 4,08 (d, J = 12,8 Γц, 0H), 3,73 (s, 1H), 3,58 (s, 3H), 3,14 – 3,02 (m, 2H), 2,57 (d, J = 12,0 Γц, 1H), 2,19 (s, 4H), 1,97 (s, 3H), 1,86 (s, 1H), 1,65 (s, 1H), 1,54 (s, 7H), 1,30 (s, 1H), 1,24 (s, 1H).	525,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-((4S)-4-(3-	0 1	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	525,30
азабицикло[3.2.1]октан-	N N	9,94 (s, 1H), 8,09 (s, 1H), 7,90 –	
3-карбонил)циклогекс-		7,76 (m, 2H), 7,43 (d, $J = 8,2$ Гц,	
1-ен-1-ил)-4-амино-7-	NH ₂	2H), 6,52 (s, 2H), 5,83 (s, 1H), 5,75	
метил-7Н-пирроло[2,3-		(s, 1H), 5,55 (s, 1H), 4,17 (d, J =	
d]пиримидин-6-	N NH	12,6 Гц, 1H), 4,08 (d, J = 12,8 Гц,	
ил)фенил)метакриламид	N N	0H), 3,73 (s, 1H), 3,58 (s, 3H), 3,14	
	\ o' \\	-3,02 (m, 2H), 2,57 (d, $J = 12,0$	
		Гц, 1H), 2,19 (s, 4H), 1,97 (s, 3H),	
		1,86 (s, 1H), 1,65 (s, 1H), 1,54 (s,	
		7H), 1,30 (s, 1H), 1,24 (s, 1H).	
(R)-4-(4-амино-6-(4-	/ .	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	517,25
метакриламидофенил)-	0 0	9,94 (s, 1H), 8,10 (s, 1H), 7,85 –	
7-метил-7Н-	NH /	7,77 (m, 2H), 7,70 (t, $J = 6,2 \Gamma \mu$,	
пирроло[2,3-		1H), 7,47 – 7,39 (m, 2H), 6,44 (s,	
d]пиримидин-5-ил)-N-	NH ₂	1H), 5,83 (t, J = 1,1 Γ ц, 1H), 5,78	
(2-метокси-2-		(s, 1H), 5,58 – 5,53 (m, 1H), 3,57	
метилпропил)циклогекс	N NH	$(s, 3H), 3,19 (dd, J = 13,6, 6,5 \Gamma ц,$	
-3-ен-1-карбоксамид	N N	1H), 3,08 (s, 3H), 3,03 (dd, $J =$	
	\	13,6, 5,6 Гц, 1H), 2,61 (d, $J = 6,3$	
		Γ ц, 1H), 2,29 (s, 1H), 2,21 (d, J =	
		18,0 Гц, 1H), 1,98 (t, J = 1,2 Гц,	
		3H), 1,90 (s, 2H), 1,66 (d, $J = 6,1$	
		Γ ц, 2H), 1,03 (d, J = 4,0 Γ ц, 6H).	
(S)-4-(4-амино-6-(4-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	517,30
метакриламидофенил)-	0 /0	9,94 (s, 1H), 8,12 (s, 1H), 7,85 –	
7-метил-7Н-	NH /	7,77 (m, 2H), 7,70 (t, $J = 6,0$ Гц,	
пирроло[2,3-		1H), 7,47 – 7,39 (m, 2H), 6,50 (s,	
d]пиримидин-5-ил)-N-	,,,, (,)	1H), 5,86 – 5,76 (m, 2H), 5,55 (t, <i>J</i>	
(2-метокси-2-	NH ₂ O	= 1,4 Гц, 1H), 3,58 (s, 3H), 3,19	
метилпропил)циклогекс	N NH	(dd, $J = 13,6,6,5$ Гц, 1H), 3,08 (s,	
-3-ен-1-карбоксамид	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3H), 3,03 (dd, J = 13,6, 5,6 Γ ц,	
	, ,	1H), 2,65 – 2,58 (m, 1H), 2,26 (d, <i>J</i>	
		$= 22,4 \Gamma$ ц, 2H), 1,98 (t, $J = 1,2 \Gamma$ ц,	
		3H), 1,94 – 1,87 (m, 2H), 1,66 (s,	
		2H), 1,24 (s, 0H), 1,03 (d, $J = 4,0$	
		Гц, 6Н).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((тетрагидрофуран-3-ил)метил)бензамид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,71 – 7,64 (m, 2H), 7,40 (s, 5H), 7,28 (d, J = 8,2 Гц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,96 – 3,87 (m, 1H), 3,80 (d, J = 7,6 Гц, 2H), 3,71 (s, 3H), 3,60 (d, J = 6,9 Гц, 3H), 3,10 (s, 1H), 3,05 (s, 2H), 2,77 (s, 1H), 2,11 (s, 1H), 2,04 (t, J = 1,3 Гц, 3H), 1,76 (s, 1H).	525,30
(R)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-метил-N-((тетрагидрофуран-3-ил)метил)бензамид	NH ₂ N NH N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,71 – 7,64 (m, 2H), 7,40 (s, 5H), 7,28 (d, J = 8,2 Гц, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,96 – 3,87 (m, 1H), 3,80 (d, J = 7,6 Гц, 2H), 3,71 (s, 3H), 3,60 (d, J = 6,9 Гц, 3H), 3,10 (s, 1H), 3,05 (s, 2H), 2,77 (s, 1H), 2,11 (s, 1H), 2,04 (t, J = 1,3 Гц, 3H), 1,76 (s, 1H).	525,30
N-(4-(5-(4-(2-азабицикло[3.1.0]гексан -2-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакрилам ид	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,09 (s, 1H), 8,22 (s, 1H), 7,76 (dd, J = 12,5, 2,0 Гц, 1H), 7,59 (d, J = 7,8 Γц, 1H), 7,48 (dd, J = 8,4, 2,1 Γц, 2H), 7,28 (d, J = 8,6 Γц, 3H), 6,03 (s, 1H), 5,82 (d, J = 1,1 Γц, 1H), 5,58 (s, 1H), 3,95 (d, J = 10,7 Γц, 1H), 3,55 (s, 3H), 3,13 (s, 2H), 2,05 (s, 1H), 1,95 (d, J = 1,3 Γц, 4H), 1,69 (s, 4H), 1,59 (s, 1H), 0,76 (s, 2H).	511,35
N-(4-(5-(4-(3-азабицикло[3.1.0]гексан -3-карбонил)фенил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакрилам ид	NH ₂ NH ₂ NH ₂ NH ₂ NH N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,22 (s, 1H), 7,77 (dd, J = 12,5, 2,0 Гц, 1H), 7,49 (dd, J = 8,5, 2,0 Гц, 1H), 7,41 (d, J = 8,1 Γц, 2H), 7,31 – 7,20 (m, 3H), 5,83 (s, 1H), 5,76 (s, 1H), 5,58 (d, J = 2,0 Γц, 1H), 3,95 (d, J = 11,9 Γц, 1H), 3,66 (d, J = 10,0 Γц, 1H), 3,55 (s, 3H), 3,3 – 3,2 (m, 2H), 1,95 (t, J = 1,2 Γц, 3H), 1,54 (s, 2H), 0,68 – 0,59 (m, 1H), 0,07 (q, J = 4,3 Γц, 1H).	511,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((2- метилпиримидин-4- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,60 (d, J = 5,8 Гц, 1H), 8,21 (s, 1H), 7,78 – 7,72 (m, 2H), 7,35 (t, J = 8,3 Γц, 1H), 7,33 – 7,28 (m, 2H), 7,21 (dd, J = 11,4, 2,1 Γц, 1H), 7,10 (d, J = 8,1 Γц, 1H), 7,03 (d, J = 5,7 Γц, 1H), 6,05 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,62 (s, 3H), 2,46 (s, 3H), 1,95 (s, 3H).	510,20
N-(4-(4-амино-5-(3- фтор-4-((6- метилпиразин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F O N N N N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,45 – 8,14 (m, 3H), 7,81 – 7,70 (m, 2H), 7,42 – 7,24 (m, 3H), 7,24 – 7,02 (m, 2H), 6,27 – 5,90 (m, 1H), 5,80 (t, J = 1,1 Γц, 1H), 5,54 (t, J = 1,5 Γц, 1H), 3,61 (s, 3H), 2,35 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	510,20
N-(4-(4-амино-5-(4-((4-хлорпиримидин-2-ил)окси)-3-фторфенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	F O N NH2 NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,66 (d, J = 5,2 Гц, 1H), 8,22 (s, 1H), 7,76 (d, J = 8,5 Γц, 2H), 7,54 (d, J = 5,3 Гц, 1H), 7,42 (t, J = 8,4 Γц, 1H), 7,33 (d, J = 8,5 Γц, 2H), 7,23 (d, J = 13,3 Γц, 1H), 7,13 (d, J = 8,4 Γц, 1H), 6,21 – 5,90 (m, 1H), 5,81 (s, 1H), 5,55 (s, 1H), 3,60 (s, 3H), 1,96 (s, 3H).	530,20
N-(4-(4-амино-5-(4-(4- (дифторметил)пиримид ин-2-ил)окси)-3- фторфенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F F N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,90 (d, J = 4,9 Гц, 1H), 8,22 (s, 1H), 7,80 – 7,72 (m, 2H), 7,59 (d, J = 5,0 Γц, 1H), 7,42 (t, J = 8,4 Γц, 1H), 7,37 – 7,29 (m, 2H), 7,23 (dd, J = 11,4, 2,0 Γц, 1H), 7,15 – 7,06 (m, 1H), 6,88 (d, J = 54,0 Γц, 1H), 5,99 (s, 1H), 5,81 (t, J = 1,1 Γц, 1H), 5,54 (t, J = 1,5 Γц, 1H), 3,60 (s, 3H), 1,96 (t, J = 1,2 Гц, 3H).	546,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-	—	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	526,25
фтор-4-((4-	N N	9,92 (s, 1H), 8,34 (d, $J = 5,7$ Гц,	
метоксипиримидин-2-	N O	1H), 8,21 (s, 1H), 7,74 (d, $J = 8,6$	
ил)окси)фенил)-7-		Гц, 2H), 7,45 – 7,24 (m, 3H), 7,20	
метил-7Н-пирроло[2,3-	\	$(t, J = 11, 4, 2, 0 \Gamma \mu, 1H), 7, 11 (d, J)$	
d]пиримидин-6-	NH ₂	$= 8,2 \Gamma$ ц, 1H), 6,72 (d, $J = 5,7 \Gamma$ ц,	
ил)фенил)метакриламид	N NH NH	1H), 5,81 (s, 1H), 5,55 (s, 1H), 3,81	
		(s, 3H), 3,60 (s, 3H), 1,96 (t, J = 1,2)	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Гц, 3Н).	
N-(4-(4-амино-5-(4-((4-		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	521,25
цианопиримидин-2-	N N	9,92 (s, 1H), 9,03 (d, $J = 4.8$ Гц,	
ил)окси)-3-фторфенил)-	N O	1H), 8,22 (s, 1H), 7,97 (d, $J = 4.8$	
7-метил-7Н-		Гц, 1H), 7,79 – 7,72 (m, 2H), 7,42	
пирроло[2,3-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$(t, J = 8,4 \Gamma \mu, 1H), 7,33 (d, J = 8,6)$	
d]пиримидин-6-	NH ₂	Γ ц, 2H), 7,25 (dd, J = 11,4, 2,0 Γ ц,	
ил)фенил)метакриламид	N NH NH	1H), 7,14 (dd, $J = 8,2, 1,8 \Gamma \mu$, 1H),	
	N N N N	6,01 (s, 2H), 5,81 (s, 1H), 5,54 (s,	
	\ o' \\	1H), 3,59 (s, 3H), 1,96 (t, $J = 1,4$	
		Гц, 3Н).	
N-(4-(4-амино-5-(3-	110 F	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	526,10
фтор-4-((4-	HO N	9,93 (s, 1H), 8,61 (d, $J = 5,0$ Гц,	,
(гидроксиметил)пирими	N O	1H), 8,21 (s, 1H), 7,80 – 7,72 (m,	
дин-2-ил)окси)фенил)-	E	2H), 7,34 (dd, $J = 8,3,5,4 \Gamma \mu, 4H$),	
7-метил-7Н-	NH ₂	7,19 (dd, $J = 11,4,2,0$ Гц, 1H),	
пирроло[2,3-		7,11 (dt, $J = 8,3, 1,4$ Гц, 1H), $5,84$	
d]пиримидин-6-	N NH	-5.79 (m, 1H), 5.67 (t, $J = 6.0$ Γu ,	
ил)фенил)метакриламид	N N N	1H), 5,54 (t, $J = 1,5 \Gamma \mu$, 1H), 4,50	
	, 0 "	$(d, J = 5.9 \Gamma \mu, 2H), 3.60 (s, 3H),$	
		3,32 (s, 2H), $1,96$ (t, $J = 1,2$ Гц,	
		3H).	
N-(4-(4-амино-5-(3-	1	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	540,20
фтор-4-((4-	O N	9,93 (s, 1H), 8,63 (d, $J = 5.0$ Гц,	,
(метоксиметил)пирими	N O	1H), 8,21 (s, 1H), 7,79 – 7,73 (m,	
дин-2-ил)окси)фенил)-		2H), 7,41 – 7,31 (m, 2H), 7,32 (d, <i>J</i>	
7-метил-7Н-	F	= 2,0 Γ _{II} , 1H), 7,28 (d, $J = 5,0$ Γ _{II} ,	
пирроло[2,3-	NH ₂	1H), 7,19 (dd, $J = 11,4, 2,0 \Gamma \mu$,	
d]пиримидин-6-		1H), 7,11 (dd, J = 8,4, 2,1 Γ ц, 1H),	
ил)фенил)метакриламид	NH NH	5,98 (s, 2H), 5,81 (s, 1H), 5,54 (s,	
	0 /	1H), 4,45 (s, 2H), 3,60 (s, 3H), 3,39	
		(s, 3H), 1,96 (s, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((5-фтор-4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,57 (d, J = 1,4 Γц, 1H), 8,21 (s, 1H), 7,80 – 7,71 (m, 2H), 7,41 – 7,30 (m, 3H), 7,20 (dd, J = 11,5, 2,0 Γц, 1H), 7,14 – 7,08 (m, 1H), 5,98 (s, 1H), 5,81 (t, J = 1,1 Γц, 1H), 5,54 (t, J = 1,5 Γц, 1H), 3,60 (s, 3H), 2,43 (d, J = 2,5 Γц, 3H), 1,96 (t, J = 1,2 Γц, 3H).	528,40
N-(4-(4-амино-5-(3- хлор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	CI ON NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,77 (d, J = 8,5 Γц, 2H), 7,41 (d, J = 2,1 Γц, 1H), 7,34 (d, J = 8,4 Γц, 3H), 7,30 – 7,20 (m, 1H), 7,18 (d, J = 5,0 Γц, 1H), 5,97 (s, 1H), 5,81 (s, 1H), 5,54 (s, 1H), 3,60 (s, 3H), 2,43 (s, 3H), 1,96 (d, J = 1,2 Γц, 3H).	526,15
N-(4-(4-амино-7-метил- 5-(3-метил-4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,44 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,74 (d, J = 8,7 Γц, 2H), 7,33 (d, J = 8,7 Γц, 2H), 7,24 (d, J = 2,0 Γц, 1H), 7,14 – 7,05 (m, 3H), 5,80 (d, J = 1,3 Γц, 2H), 5,54 (s, 1H), 3,60 (s, 3H), 2,41 (s, 3H), 2,04 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H).	506,25
N-(4-(4-амино-5-(3- (метоксиметил)-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,44 (d, $J = 5,0$ Гц, 1H), 8,21 (s, 1H), 7,73 (d, $J = 8,3$ Γц, 2H), 7,39 – 7,26 (m, 3H), 7,23 – 7,21 (m, 1H), 7,17 – 7,09 (m, 2H), 5,79 (s, 2H), 5,53 (s, 1H), 4,29 (s, 2H), 3,61 (s, 3H), 3,08 (s, 3H), 2,41 (s, 3H), 1,95 (s, 3H).	536,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- циано-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид N-(4-(4-амино-5-(3- (диметиламино)-4-((4- метилпиримидин-2-	NH ₂ NH ₂ NH _N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,52 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,82 – 7,69 (m, 3H), 7,53 (t, J = 8,6, 2,2 Γц, 1H), 7,41 (d, J = 8,6 Γц, 1H), 7,33 (d, J = 8,6 Γц, 2H), 7,25 (d, J = 5,1 Γц, 1H), 5,81 (s, 1H), 5,55 (s, 1H), 3,60 (s, 3H), 2,45 (s, 3H), 1,96 (t, J = 1,3 Γц, 3H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,43 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,84 – 7,58 (m,	517,25
ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид N-(4-(4-амино-5-(3-	NH ₂ N N N N N N N N N N N N N N N N N N N	2H), 7,43 – 7,27 (m, 2H), 7,10 (d, J = 5,0 Γμ, 1H), 7,05 – 6,97 (m, 1H), 6,83 (d, J = 6,7 Γμ, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,60 (s, 3H), 2,55 (s, 6H), 2,40 (s, 3H), 1,96 (s, 3H).	536,45
этокси-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆	9,90 (s, 1H), 8,42 (d, J = 5,0 Γ μ , 1H), 8,21 (s, 1H), 7,74 (d, J = 8,6 Γ μ , 2H), 7,34 (d, J = 8,6 Γ μ , 2H), 7,34 (d, J = 8,6 Γ μ , 2H), 7,18 – 7,05 (m, 2H), 6,94 (d, J = 2,0 Γ μ , 1H), 6,84 (dd, J = 8,1, 1,9 Γ μ , 1H), 5,80 (s, 1H), 5,54 (s, 1H), 3,81 (d, J = 7,0 Γ μ , 2H), 3,61 (s, 3H), 2,44 – 2,31 (m, 3H), 1,96 (t, J = 1,3 Γ μ , 3H), 0,94 (t, J = 6,9 Γ μ , 3H).	
N-(4-(4-амино-5-(3-метокси-5-метил-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,39 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,87 – 7,69 (m, 2H), 7,43 – 7,30 (m, 2H), 7,09 (d, J = 5,0 Γц, 1H), 6,84 – 6,77 (m, 2H), 5,81 (s, 2H), 5,54 (d, J = 1,5 Γц, 1H), 3,60 (s, 3H), 3,50 (s, 3H), 2,41 (s, 3H), 2,03 (s, 3H), 1,96 (s, 3H).	536,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ P NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,14 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,80 (dd, J = 12,5, 2,0 Γц, 1H), 7,55 (dd, J = 8,5, 2,0 Γц, 1H), 7,35 (td, J = 8,4, 2,4 Γц, 2H), 7,22 – 7,16 (m, 2H), 7,13 – 7,08 (m, 1H), 6,07 (s, 2H), 5,83 (s, 1H), 5,59 (s, 1H), 3,54 (s, 3H), 2,42 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	528,35
N-(4-(4-амино-7-метил- 5-(3-метил-4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)метакрилам ид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,13 (s, 1H), 8,44 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,80 (dd, J = 12,4, 1,9 Γц, 1H), 7,53 (dd, J = 8,5, 2,0 Γц, 1H), 7,35 (t, J = 8,4 Γц, 1H), 7,23 (s, 1H), 7,14(d, J = 4,0 Γц, 1H), 7,16 – 7,09 (m, 2H), 5,97 (s, 1H), 5,84 (s, 1H), 5,59 (s, 1H), 3,54 (s, 3H), 2,42 (s, 3H), 2,04 (s, 3H), 1,96 (d, J = 1,5 Γц, 3H).	524,35
N-(4-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-(гидроксиметил)фенил)метакриламид	NH ₂ NH OH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,91 (d, J = 2,2 Гц, 1H), 7,74 (dd, J = 8,3, 2,3 Гц, 1H), 7,36 – 7,27 (m, 2H), 7,20 – 7,11 (m, 2H), 7,08 (dd, J = 8,4, 2,0 Гц, 1H), 6,05 (s, 1H), 5,83 (s, 1H), 5,54 (s, 1H), 5,17 (t, J = 5,3 Гц, 1H), 4,17 (dd, J = 13,9, 5,3 Гц, 1H), 4,02 (dd, J = 13,8, 5,3 Гц, 1H), 2,41 (s, 3H), 1,96 (d, J = 1,6 Гц, 3H).	540,40
N-(4-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-(гидроксиметил)фенил)метакриламид	NH ₂	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,41 – 8,32 (m, 2H), 7,82 (dd, J = 8,3, 2,2 Гц, 1H), 7,71 – 7,64 (m, 2H), 7,33 (d, J = 8,3 Гц, 1H), 7,22 (t, J = 8,2 Гц, 1H), 7,06 (t, J = 8,2 Гц, 2H), 6,95 (d, J = 5,1 Гц, 1H), 5,85 (s, 1H), 5,60 (s, 1H), 5,54 (d, J = 1,7 Гц, 1H), 4,36 (d, J = 13,2 Гц, 1H), 4,25 (d, J = 13,2 Гц, 1H), 3,59 (s, 3H), 2,51 (s, 3H), 2,13 – 2,08 (m, 3H).	540,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-		¹ Н ЯМР (400 МГц, Хлороформ <i>-d</i>)	540,45
фтор-4-((4-		δ 8,39 (s, 1H), 8,34 (d, J = 5,0 Γ ц,	
метилпиримидин-2-	N O	1H), 7,82 (dd, $J = 8,3, 2,1 \Gamma \mu$, 1H),	
ил)окси)фенил)-7-		7,71 - 7,64 (m, 2H), 7,33 (d, J =	
метил-7Н-пирроло[2,3-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$8,3 \Gamma$ ц, 1H), $7,21$ (t, $J = 8,2 \Gamma$ ц,	
d]пиримидин-6-ил)-3-	NH ₂	1H), 7,06 (t, $J = 8,0$ Гц, 2H), 6,94	
(гидроксиметил)фенил)	N NH /	(d, $J = 5.0 \Gamma \mu$, 1H), 5.85 (s, 1H),	
метакриламид		$5,53 (d, J = 1,6 \Gamma \mu, 2H), 4,36 (d, J)$	
	" \	= 13,3 Γ u, 1H), 4,25 (d, J = 13,3	
	ЭН	Гц, 1H), 3,59 (s, 3H), 2,51 (s, 3H),	
	Атропизомер В	2,10 (t, $J=1,2$ Гц, 3H).	
N-(4-(4-амино-5-(3-		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	554,25
фтор-4-((4-		9,95 (s, 1H), 8,45 (d, $J = 5,0$ Гц,	
метилпиримидин-2-	N O	1H), 8,22 (s, 1H), 7,86 – 7,76 (m,	
ил)окси)фенил)-7-		2H), 7,38 (d, $J = 8,3 \Gamma \mu$, 1H), 7,31	
метил-7Н-пирроло[2,3-	NH ₂	$(t, J = 8,4 \Gamma \mu, 1H), 7,20 - 7,10 (m,$	
d]пиримидин-6-ил)-3-		2H), 7,07 (dd, $J = 8,3, 2,2 \Gamma \text{u}, 1\text{H}),$	
(метоксиметил)фенил)м	N NH /	6,06 (s, 1H), $5,84$ (t, $J = 1,1$ Гц,	
етакриламид	N N N	1H), 5,54 (t, J = 1,5 Γ ц, 1H), 4,12	
	\ \ \ o o \\	$(d, J = 12,7 \Gamma \mu, 1H), 3,91 (d, J =$	
	, o	12,7 Гц, 1H), 3,42 (s, 3H), 3,10 (s,	
	,	3H), 2,40 (s, 3H), 1,96 (t, $J = 1,2$	
		Гц, 3Н).	
N-(4-(4-амино-5-(3-	N	¹ Н ЯМР (400 МГц, Хлороформ- <i>d</i>)	554,45
фтор-4-((4-		δ 8,41 (s, 1H), 8,35 (d, J = 5,0 Γμ,	
метилпиримидин-2-	"	1H), 7,89 – 7,82 (m, 1H), 7,64 –	
ил)окси)фенил)-7-	F	7,56 (m, 2H), 7,32 (d, $J = 8,3$ Гц,	
метил-7Н-пирроло[2,3-	NH ₂	1H), 7,22 (t, $J = 8,2$ Гц, 1H), 7,06	
d]пиримидин-6-ил)-3-		$(d, J = 10,7 \Gamma \mu, 2H), 6,94 (d, J =$	
(метоксиметил)фенил)м	NH /	5,0 Гц, 1H), 5,84 (s, 1H), 5,53 (s,	
етакриламид	N N	1H), 5,37 (s, 1H), 4,14 (d, $J = 12,4$	
	, (0 , , ,	Γ_{II} , 1H), 3,99 (d, $J = 12,3 \Gamma_{\text{II}}$, 1H),	
	/	3,57 (s, 3H), 3,21 (s, 3H), 2,50 (s,	
	Атропизомер А	3H), 2,10 (t, $J = 1,2 \Gamma \mu$, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- (метоксиметил)фенил)м етакриламид	N N N N N N N N N N	¹ Н ЯМР (400 МГц, Хлороформ- d) 8 8,41 (s, 1H), 8,35 (d, J = 5,0 Гц, 1H), 7,85 (dd, J = 8,3, 2,2 Гц, 1H), 7,64 – 7,56 (m, 2H), 7,32 (d, J = 8,3 Гц, 1H), 7,22 (t, J = 8,2 Гц, 1H), 7,10 – 7,03 (m, 2H), 6,94 (d, J = 5,0 Гц, 1H), 5,84 (s, 1H), 5,53 (d, J = 1,5 Гц, 1H), 5,40 (s, 2H), 4,14 (d, J = 12,4 Гц, 1H), 3,99 (d, J = 12,4 Гц, 1H), 3,57 (s, 3H), 3,21 (s, 3H), 2,50 (s, 3H), 2,13 – 2,08 (m, 3H).	554,45
N-(4-(4-амино-5-(3- фтор-4-(4- метилпиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6-ил)-3- этилфенил)метакрилам ид	NH ₂ P NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,47 (d, J = 5,1 Гц, 1H), 8,23 (s, 1H), 7,70 (d, J = 6,2 Гц, 2H), 7,39 – 7,28 (m, 2H), 7,18 (d, J = 5,1 Гц, 1H), 7,13 (d, J = 11,3 Гц, 1H), 7,07 (d, J = 8,7 Гц, 1H), 5,82 (s, 1H), 5,54 (s, 1H), 2,40 (s, 3H), 2,17 (dd, J = 14,9, 7,2 Гц, 1H), 1,97 (s, 3H), 0,90 (t, J = 7,6 Гц, 3H).	538,25
2-(4-амино-5-(3-фтор-4- (4-метилпиримидин-2- илокси)фенил)-7-метил- 7Н-пирроло[2,3- d]пиримидин-6-ил)-5- метакриламидо-N,N- диметилбензамид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,04 (s, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,85 (dd, J = 8,5, 2,3 Гц, 1H), 7,72 (d, J = 2,1 Гц, 1H), 7,64 (d, J = 8,3 Гц, 1H), 7,34 (t, J = 8,4 Гц, 1H), 7,17 (d, J = 5,1 Гц, 1H), 7,12 – 7,05 (m, 1H), 7,03 (d, J = 8,6 Гц, 1H), 5,85 (d, J = 1,2 Гц, 1H), 5,57 (d, J = 1,8 Гц, 1H), 3,45 (s, 3H), 2,71 (s, 3H), 2,37 (s, 3H), 2,30 (s, 3H), 1,96 (t, J = 1,2 Гц, 3H).	581,3
N-(4-(4-амино-5-(3- (дифторметил)-4-(4- метилпиримидин-2- илокси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ F NH O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,43 (d, $J = 5,1$ Гц, 1H), 8,23 (s, 1H), 7,71 (d, $J = 8,3$ Гц, 2H), 7,58 (s, 1H), 7,48 (d, $J = 8,6$ Гц, 1H), 7,33 (d, $J = 8,3$ Гц, 2H), 7,25 (d, $J = 8,4$ Гц, 1H), 7,18 (d, $J = 5,1$ Гц, 1H), 7,00 – 6,71 (m, 1H), 5,83 (s, 1H), 5,55 (s, 1H), 3,72 (s, 3H), 2,51 (s, 3H), 2,05 (s, 3H).	542,2

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- (дифторметил)фенил)ме такриламид	NH ₂ F F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,14 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 8,13 (d, J = 1,9 Γц, 1H), 7,99 (d, J = 8,4 Γц, 1H), 7,55 (d, J = 8,4 Γц, 1H), 7,32 (t, J = 8,4 Γц, 1H), 7,22 – 7,14 (m, 2H), 7,07 (dd, J = 8,3, 2,1 Γц, 1H), 6,58 (s, 1H), 6,06 (s, 1H), 5,86 (s, 1H), 5,58 (d, J = 1,8 Γц, 1H), 3,42 (s, 3H), 2,40 (s, 3H), 1,97 (d, J = 1,2 Γц, 3H).	560,40
N-(4-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-(дифторметил)фенил)метакриламид	N	¹ H ЯМР (400 МГц, Хлороформ- d) δ 8,43 (s, 1H), 8,36 (d, J = 5,0 Гц, 1H), 8,03 (d, J = 8,4 Гц, 1H), 7,80 (s, 1H), 7,71 (s, 1H), 7,39 (d, J = 8,3 Гц, 1H), 7,23 (t, J = 8,2 Гц, 1H), 7,09 – 7,00 (m, 2H), 6,94 (d, J = 5,0 Гц, 1H), 6,31 (s, 1H), 5,87 (s, 1H), 5,56 (d, J = 1,5 Гц, 1H), 5,29 (s, 2H), 3,57 (s, 3H), 2,50 (s, 3H), 2,11 (dd, J = 1,6, 0,9 Гц, 3H).	560,35
N-(4-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-(дифторметил)фенил)метакриламид	NH ₂	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,42 (s, 1H), 8,36 (d, J = 5,0 Гц, 1H), 8,03 (d, J = 8,4 Гц, 1H), 7,80 (d, J = 2,2 Гц, 1H), 7,72 (s, 1H), 7,39 (d, J = 8,4 Гц, 1H), 7,23 (t, J = 8,3 Гц, 1H), 7,09 – 7,00 (m, 2H), 6,94 (d, J = 5,0 Гц, 1H), 6,31 (s, 1H), 5,87 (s, 1H), 5,56 (q, J = 1,6 Гц, 1H), 5,40 (s, 2H), 3,58 (s, 3H), 2,50 (s, 3H), 2,11 (d, J = 1,3 Гц, 3H).	560,40
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- ((диметиламино)метил) фенил)метакриламид	NH ₂ PH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,21 (d, J = 7,9 Гц, 1H), 7,86 (s, 1H), 7,79 (d, J = 8,3 Γц, 1H), 7,37 (d, J = 8,3 Γц, 1H), 7,30 (t, J = 8,4 Γц, 1H), 7,16 (d, J = 5,0 Γц, 1H), 7,11 (d, J = 11,5 Γц, 1H), 7,06 (d, J = 8,3 Γц, 1H), 6,07 (s, 2H), 5,84 (s, 1H), 5,53 (s, 1H), 3,4 (d, J = 14,1 Γц, 3H), 3,15 (d, J = 14,1 Γц, 1H), 2,79 (d, J = 14,0 Гц, 1H), 2,39 (s, 3H), 1,95 (d, J = 5,1 Гц, 9H).	567,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- метоксифенил)метакрил амид	NH ₂ NH ₂ NH _N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,47 (d, $J = 5,1$ Гц, 1H), 8,20 (s, 1H), 7,63 (d, $J = 1,9$ Гц, 1H), 7,38 – 7,27 (m, 2H), 7,18 (d, $J = 5,0$ Гц, 1H), 7,15 – 7,08 (m, 2H), 7,08 – 7,01 (m, 1H), 6,00 (s, 2H), 5,82 (s, 1H), 5,55 (s, 1H), 3,71 (s, 3H), 3,47 (s, 3H), 2,41 (s, 3H), 1,96 (t, $J = 1,2$ Гц, 3H).	540,25
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)метакрила мид	NH ₂ NH ₂ NH ₀	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,86 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,69 – 7,59 (m, 2H), 7,36 – 7,27 (m, 2H), 7,18 (d, J = 5,1 Гц, 1H), 7,12 (dd, J = 11,5, 2,1 Гц, 1H), 7,06 (dd, J = 8,4, 2,1 Гц, 1H), 6,04 (s, 2H), 5,81 (s, 1H), 5,54 (d, J = 1,8 Гц, 1H), 3,43 (s, 3H), 2,41 (s, 3H), 1,96 (d, J = 1,4 Гц, 6H).	524,25
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)метакрила мид	N N O F NH O O O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,69 – 7,60 (m, 2H), 7,32 (t, J = 7,7 Γц, 2H), 7,18 (d, J = 5,0 Γц, 1H), 7,15 – 7,09 (m, 1H), 7,06 (d, J = 8,6 Γц, 1H), 5,81 (s, 2H), 5,53 (s, 1H), 3,43 (s, 3H), 2,41 (s, 3H), 1,96 (s, 6H).	524,25
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)метакрила мид	N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,47 (d, J = 5,1 Гц, 1H), 8,23 (s, 1H), 7,69 – 7,60 (m, 2H), 7,32 (dd, J = 8,5, 7,1 Γц, 2H), 7,18 (d, J = 5,1 Γц, 1H), 7,12 (d, J = 12,5 Γц, 1H), 7,06 (d, J = 8,4 Γц, 1H), 5,81 (s, 2H), 5,53 (s, 1H), 3,43 (s, 3H), 2,41 (s, 3H), 1,96 (s, 6H).	524,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-(4- метилпиримидин-2- илокси)фенил)-7- изопропил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N O F NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,19 (s, 1H), 7,80 – 7,73 (m, 2H), 7,35 – 7,27 (m, 3H), 7,23 – 7,15 (m, 2H), 7,10 (dd, J = 8,3, 2,0 Γц, 1H), 5,81 (s, 1H), 5,54 (t, J = 1,5 Γц, 1H), 4,33 (p, J = 6,8 Γц, 1H), 2,41 (s, 3H), 1,96 (t, J = 1,3 Γц, 3H), 1,59 (d, J = 6,8 Γц, 6H).	538,2
N-(4-(4-амино-7-этил-5- (3-фтор-4-(4- метилпиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,81 – 7,74 (m, 2H), 7,38 – 7,28 (m, 3H), 7,23 – 7,15 (m, 2H), 7,11 (dd, J = 8,3, 2,1 Γц, 1H), 5,81 (s, 1H), 5,54 (t, J = 1,5 Γц, 1H), 4,10 (q, J = 7,0 Гц, 2H), 2,42 (s, 3H), 1,96 (d, J = 1,4 Γц, 3H), 1,22 – 1,10 (m, 3H).	524,4
N-(4-(4-амино-5-(3- фтор-4-(4- метилпиримидин-2- илокси)фенил)-7-(2- гидроксиэтил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH OH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,79 – 7,72 (m, 2H), 7,37 (s, 1H), 7,39 – 7,29 (m, 2H), 7,21 – 7,13 (m, 2H), 7,10 (dd, J = 8,1, 2,0 Гц, 1H), 5,99 (s, 2H), 5,81 (s, 1H), 5,54 (d, J = 1,9 Гц, 1H), 4,90 (t, J = 5,5 Гц, 1H), 4,11 (t, J = 6,6 Гц, 2H), 3,58 (t, J = 6,2 Гц, 2H), 2,42 (s, 3H), 1,96 (t, J = 1,2 Гц, 3H).	540,40
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- (тетрагидрофуран-3- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,78 (d, J = 8,3 Γц, 2H), 7,32 (dd, J = 8,5, 3,5 Γц, 3H), 7,24 – 7,15 (m, 2H), 7,11 (dd, J = 8,2, 2,0 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 4,75 – 4,62 (m, 1H), 4,18 (dt, J = 14,4, 8,0 Γц, 2H), 3,96 (t, J = 8,2 Γц, 1H), 3,83 (q, J = 7,3 Γц, 1H), 2,77 (dq, J = 14,1, 7,3 Γц, 1H), 2,41 (s, 3H), 2,24 – 2,11 (m, 1H), 1,96 (s, 3H).	566,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- (тетрагидрофуран-2- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ P NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,47 (d, J = 5,1 Гц, 1H), 8,21 (s, 1H), 7,74 (d, J = 8,3 Γц, 2H), 7,31 (d, J = 8,6 Γц, 3H), 7,25 – 7,15 (m, 2H), 7,11 (d, J = 8,2 Γц, 1H), 5,94 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 4,09 (d, J = 7,7 Γц, 1H), 3,78 (s, 1H), 2,81 (s, 1H), 2,41 (s, 3H), 2,20 (d, J = 29,2 Γц, 2H), 1,95 (s, 3H), 1,89 (s, 1H).	566,45
N-(6-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пиридин-3- ил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,09 (s, 1H), 9,02 – 8,97 (m, 1H), 8,22 (s, 1H), 8,00 (dd, J = 8,6, 2,6 Гц, 1H), 7,74 (dd, J = 8,2, 7,4 Гц, 1H), 7,33 – 7,25 (m, 2H), 7,17 – 7,06 (m, 3H), 7,02 (d, J = 7,4 Гц, 1H), 6,81 (d, J = 8,2 Гц, 1H), 5,86 (t, J = 1,0 Гц, 1H), 5,59 (t, J = 1,6 Гц, 1H), 3,77 (s, 3H), 2,36 (s, 3H), 1,96 (t, J = 1,2 Гц, 3H).	492,20
1-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-1H-пиррол- 2(5H)-он	NH ₂ O O N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,21 (s, 1H), 7,82 (d, J = 8,5 Гц, 2H), 7,49 (d, J = 8,0 Гц, 3H), 7,35 (d, J = 8,4 Гц, 2H), 7,28 (d, J = 7,8 Гц, 2H), 6,25 (dt, J = 6,1, 1,9 Гц, 1H), 5,92 (s, 2H), 4,61 (d, J = 2,0 Гц, 2H), 3,62 (s, 3H), 3,44 (dt, J = 13,7, 6,5 Гц, 4H), 1,85 (dt, J = 11,2, 6,2 Гц, 3H), 1,79 (d, J = 6,8 Гц, 1H).	479,20
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)циклопент-1- ен-1-карбоксамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,74 (s, 1H), 8,20 (s, 1H), 7,73 – 7,67 (m, 2H), 7,52 – 7,45 (m, 2H), 7,26 (dd, J = 8,5, 3,0 Γц, 4H), 6,70 (p, J = 2,2 Γц, 1H), 5,93 (s, 2H), 3,61 (s, 3H), 3,43 (dt, J = 16,5, 6,4 Γц, 4H), 2,57 (tt, J = 6,9, 2,2 Γц, 2H), 2,51 (tt, J = 6,9, 2,2 Γц, 2H), 1,97 – 1,76 (m, 6H).	507,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
5-(4-амино-7-метил-5- (4-(пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пиколинонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,73 (d, $J = 5,1$ Гц, 1H), 8,26 (s, 1H), 7,97 (s, 1H), 7,62 (dd, $J = 5,1$, 1,7 Гц, 1H), 7,54 (d, $J = 8,0$ Гц, 2H), 7,30 (d, $J = 8,0$ Гц, 2H), 3,73 (s, 3H), 3,47 (t, $J = 6,8$ Гц, 2H), 3,41 (t, $J = 6,3$ Гц, 2H), 1,84 (dt, $J = 19,3$, 6,8 Гц, 4H).	424,30
(4-(4-амино-6-(4-(1,1-диоксидоизотиазол-2(3H)-ил)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)фенил)(пирролидин-1-ил)метанон	NH ₂ O S	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,21 (d, J = 2,0 Гц, 1H), 7,50 (d, J = 7,8 Гц, 2H), 7,39 (dd, J = 13,6, 8,3 Гц, 4H), 7,28 (t, J = 7,0 Γц, 4H), 5,96 (s, 1H), 4,62 (s, 2H), 3,61 (s, 3H), 3,43 (dt, J = 13,0, 6,5 Γц, 4H), 1,84 (dt, J = 18,6, 6,9 Γц, 4H).	515,35
(4-(4-амино-6-(4-(1,1- диоксидо-3,4-дигидро- 2H-1,2-тиазин-2- ил)фенил)-7-метил-7H- пирроло[2,3- d]пиримидин-5- ил)фенил)(пирролидин- 1-ил)метанон	NH ₂ O S S N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,21 (s, 1H), 7,49 (d, J = 7,8 Γц, 2H), 7,41 – 7,18 (m, 6H), 5,93 (dd, J = 80,2, 10,4 Γц, 4H), 4,52 – 4,21 (m, 2H), 3,86 (d, J = 4,3 Γц, 2H), 3,62 (s, 3H), 3,43 (dt, J = 20,3, 6,5 Γц, 4H), 1,84 (dt, J = 18,5, 6,7 Γц, 4H).	529,25
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)циклобут-1- ен-1-карбоксамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,83 (s, 1H), 8,21 (s, 1H), 7,74 – 7,67 (m, 2H), 7,52 – 7,45 (m, 2H), 7,31 – 7,21 (m, 4H), 6,80 (d, J = 1,3 Γц, 1H), 5,93 (s, 2H), 3,62 (s, 3H), 3,44 (dt, J = 18,5, 6,5 Γц, 4H), 2,74 – 2,68 (m, 2H), 2,46 – 2,40 (m, 2H), 1,83 (dq, J = 18,0, 6,9 Γц, 4H).	493,20
1-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)-5,6- дигидропиридин-2(1Н)- он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,21 (s, 1H), 7,55 – 7,45 (m, 2H), 7,42 – 7,25 (m, 6H), 6,83 (dt, J = 9,7, 4,2 Γц, 1H), 5,91 (dt, J = 9,7, 1,8 Γц, 3H), 3,83 (t, J = 6,9 Γц, 2H), 3,63 (s, 3H), 3,44 (dt, J = 13,7, 6,5 Γц, 4H), 2,48 (d, J = 10,1 Γц, 1H), 1,84 (dq, J = 18,2, 6,8 Γц, 4H).	493,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- циклобутилиденацетам ид N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- циклопентилиденацета мид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,20 (s, 1H), 7,66 – 7,56 (m, 2H), 7,54 – 7,42 (m, 2H), 7,32 – 7,15 (m, 4H), 5,81 (t, J = 2,3 Γц, 1H), 3,61 (s, 3H), 3,47 – 3,32 (m, 4H), 3,10 (t, J = 8,2 Γц, 2H), 2,83 (t, J = 7,9 Γц, 2H), 2,05 (p, J = 7,9 Γц, 2H), 1,92 – 1,75 (m, 4H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,20 (s, 1H), 7,67 – 7,60 (m, 2H), 7,52 – 7,45 (m, 2H), 7,29 – 7,20 (m, 4H), 6,01 (q, J = 2,4 Γц, 1H), 5,93 (s, 2H), 3,61 (s, 3H), 3,43 (dt, J = 15,8, 6,4 Γц, 4H), 2,75 (t, J = 7,2 Γц, 2H), 2,43 (t, J = 7,2 Γц, 2H), 1,84 (dp, J = 17,8, 6,6 Γц, 4H), 1,64 (dp, J = 34,2, 7,0 Γц, 4H).	507,30
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- ((диметиламино)метил) акриламид	NH ₂ NH ₂ NH ₀ NH ₀ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,22 (s, 1H), 8,21 (s, 1H), 7,71 – 7,59 (m, 2H), 7,54 – 7,44 (m, 2H), 7,28 (t, $J = 8,0$ Γц, 4H), 6,02 (s, 2H), 5,59 (s, 1H), 3,62 (s, 3H), 3,62 – 3,41 (m, 4H), 3,23 (s, 2H), 2,25 (s, 6H), 1,89 – 1,80 (m, 4H).	524,35
(Е)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4-(диметиламино)-2-метилбут-2-енамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,81 (s, 1H), 8,20 (s, 1H), 7,70 (d, J = 8,0 Γц, 2H), 7,49 (d, J = 8,2 Γц, 2H), 7,28 – 7,05 (m, 4H), 6,89 (t, J = 1,6 Γц, 1H), 6,03 – 5,80 (m 1H), 3,60 (s, 3H), 3,47 – 3,41 (m, 4H), 3,04 (d, J = 6,0 Γц, 2H), 2,20 (s, 6H), 1,87 (s, 3H), 1,85 – 1,72 (m, 4H).	538,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(2- фтор-4-(пирролидин-1- карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH2 ONN	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,20 (s, 1H), 7,71 – 7,64 (m, 2H), 7,36 – 7,30 (m, 3H), 7,27 – 7,21 (m, 2H), 5,92 (s, 2H), 5,80 (d, J = 1,4 Γц, 1H), 5,53 (t, J = 1,4 Γц, 1H), 3,65 (s, 3H), 3,45 (q, J = 7,2 Γц, 4H), 1,95 (t, J = 1,2 Γц, 3H), 1,92 – 1,77 (m, 4H).	499,25
N-(4-(4-амино-5-(2,3- дифтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N O F O NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,51 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,75 (d, J = 8,4 Γц, 2H), 7,42 – 6,94 (m, 5H), 6,04 (s, 2H), 5,80 (s, 1H), 5,54 (s, 1H), 3,64 (s, 3H), 2,43 (s, 3H), 1,95 (s, 3H).	528,30
N-(4-(4-амино-5-(2,5- дифтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N O F NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,51 (d, J = 5,0 Γц, 1H), 8,21 (s, 1H), 7,81 – 7,71 (m, 2H), 7,43 – 7,27 (m, 4H), 7,22 (d, J = 5,1 Γц, 1H), 6,00 (s, 2H), 5,85 – 5,77 (m, 1H), 5,54 (t, J = 1,5 Γц, 1H), 3,63 (s, 3H), 2,43 (s, 3H), 1,96 (t, J = 1,3 Γц, 3H).	528,30
N-(4-(4-амино-7-метил- 5-(4-((1-метил-1Н- пиразол-4- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,18 (s, 1H), 7,77 (s, 1H), 7,74 – 7,67 (m, 2H), 7,39 (s, 1H), 7,30 – 7,23 (m, 2H), 7,23 – 7,15 (m, 2H), 7,00 – 6,92 (m, 2H), 5,80 (s, 2H), 5,54 (d, J = 1,8 Γц, 1H), 3,81 (s, 3H), 3,59 (s, 3H), 1,95 (d, J = 1,5 Γц, 3H).	480,35
N-(4-(4-амино-7-метил- 5-(4-(1-метил-2-аза- бицикло[2.1.1]гексан-2- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,21 (s, 1H), 7,73 – 7,67 (m, 2H), 7,50 (d, J = 7,7 Γц, 2H), 7,29 – 7,22 (m, 4H), 5,80 (s, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,62 (s, 3H), 3,40 (s, 2H), 2,71 (d, J = 3,1 Γц, 1H), 1,95 (d, J = 1,4 Γц, 3H), 1,76 (d, J = 4,8 Γц, 2H), 1,60 (s, 3H), 1,50 (dd, J = 4,5, 1,9 Γц, 2H).	507,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-(1-		¹ Η ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	523,2
(гидроксиметил)-2-аза-	OH OH	9,90 (s, 1H), 8,21 (s, 1H), 7,71 (d, <i>J</i>	
бицикло[2.1.1]гексан-2-	\ >0	$= 8,6 \Gamma$ ц, 2H), 7,57 (d, $J = 7,9 \Gamma$ ц,	
карбонил)фенил)-7-		2H), 7,27 (dd, $J = 8,4,3,0$ Гц, 4H),	
метил-7Н-пирроло[2,3-	NH ₂	5,80 (s, 1H), 5,53 (s, 1H), 5,12 (t, <i>J</i>	
d]пиримидин-6-		$= 6,5 \Gamma$ ц, 1H), 3,93 (d, $J = 6,4 \Gamma$ ц,	
ил)фенил)метакриламид	N NH	2H), 3,62 (s, 3H), 3,46 (s, 2H), 2,74	
	N	(d, $J = 3.2 \Gamma \text{H}$, 1H), 1.95 (s, 3H),	
	\	1,93 - 1,87 (m, 2H), 1,47 (dd, J =	
		4,6, 1,8 Гц, 2Н).	
N-(4-(4-амино-5-(2-	N-	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	528,40
фтор-4-((4-	0-(1-)	10,10 (s, 1H), 8,49 (d, $J = 5$,0 Γ ц,	
метилпиримидин-2-	N N	1H), 8,22 (s, 1H), 7,77 (dd, $J =$	
ил)окси)фенил)-7-	F_// >	12,5, 2,0 Гц, 1H), 7,50 (dd, $J = 8,5$,	
метил-7Н-пирроло[2,3-	NH ₂	2,0 Гц, 1H), $7,26$ (t, $J = 8,4$ Гц,	
d]пиримидин-6-ил)-3-	N N	2H), 7,18 (d, $J = 5,0$ Гц, 2H), 7,07	
фторфенил)метакрилам		(d, $J = 8.3 \Gamma \text{u}$, 1H), 5.82 (s, 1H),	
ид	" \ F 0 \	5,58 (s, 1H), 3,57 (s, 3H), 2,42 (s,	
		3H), 1,95 (d, J = 1,2 Γ ц, 3H).	
(4-(4-амино-7-метил-6-	0.	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	462,35
(2-винилпиримидин-5-	N .	8,75 (s, 2H), 8,25 (s, 1H), 7,54 (d, <i>J</i>	
ил)-7Н-пирроло[2,3-		$= 7,9 \Gamma$ ц, 2H), 7,33 (d, $J = 7,9 \Gamma$ ц,	
d]пиримидин-5-	(/ -)	2H), 6,84 (dd, J = 17,3, 10,5 Γ ц,	
ил)фенил)(пирролидин-	NH ₂	1H), 6,57 (dd, J = 17,3, 2,0 Γ ц,	
1-ил)метанон	N N	1H), 5,81 (dd, J = 10,5, 2,0 Γ ц,	
		1H), 3,72 (s, 3H), 3,45 (dt, $J = 16.8$,	
	N N N	6,5 Гц, 4H), $1,84$ (dq, $J = 18,7,6,8$	
		Гц, 4Н).	
N-(4-(4-амино-7-метил-	0, /	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	489,35
5-(4-(пирролидин-1-	> N	10,43 (s, 1H), 8,21 (s, 1H), 7,68 (s,	
карбонил)фенил)-7Н-		3H), 7,61 (d, $J = 8,1 \Gamma \mu$, 2H), 7,49	
пирроло[2,3-	NH ₂	(d, $J = 7.7 \Gamma \text{H}$, 2H), 7,28 (dd, $J =$	
d]пиримидин-6-		15,1, 7,9 Гц, 4H), 5,94 (s, 2H), 4,27	
ил)фенил)-2-	N NH	(s, 2H), 3,61 (s, 3H), 3,45 (dd, J =	
хлорацетамид	N O CI	16,0, 8,9 Гц, 4H), 1,84 (dd, <i>J</i> =	
		18,3, 6,3 Гц, 5Н).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-(тетрагидрофуран-3-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,81 – 7,74 (m, 2H), 7,37 – 7,28 (m, 3H), 7,24 – 7,15 (m, 2H), 7,11 (dd, J = 8,2, 2,0 Γц, 1H), 5,95 (s, 1H), 5,80 (s, 1H), 5,54 (d, J = 1,8 Γц, 1H), 4,68 (p, J = 8,2 Γц, 1H), 4,18 (dt, J = 15,3, 8,2 Γц, 2H), 3,96 (t, J = 8,2 Γц, 1H), 3,83 (q, J = 7,5 Γц, 1H), 2,77 (dq, J = 14,1, 7,2 Γц, 1H), 2,41 (s, 3H), 2,17 (d, J = 10,1, 4,9 Γц, 1H),	566,25
(S)-N-(4-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7- (тетрагидрофуран-3-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	N O F NH O	1,96 (t, J = 1,2 Γ μ , 3H). ¹H ЯМР (400 МГ μ , DMSO- d_6) δ 9,95 (s, 1H), 8,47 (d, J = 5,0 Γ μ , 1H), 8,24 (s, 1H), 7,81 – 7,74 (m, 2H), 7,37 – 7,28 (m, 3H), 7,25 – 7,15 (m, 2H), 7,14 – 7,07 (m, 1H), 6,12 (s, 1H), 5,80 (s, 1H), 5,55 (d, J = 1,9 Γ μ , 1H), 4,68 (q, J = 8,3 Γ μ , 1H), 4,24 – 4,12 (m, 2H), 3,97 (t, J = 8,2 Γ μ , 1H), 3,83 (q, J = 7,4 Γ μ , 1H), 2,76 (dq, J = 14,2, 7,3 Γ μ , 1H), 2,41 (s, 3H), 2,19 (s, 1H), 1,96 (t, J = 1,2 Γ μ , 3H).	566,20
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- (циклопент-1-ен-1- ил)ацетамид	NH ₂ O NH	1. (t, $J = 1,2$ 1 H, 5H). 1. H 9MP (400 MΓμ, DMSO- d_6) δ 10,06 (s, 1H), 8,20 (s, 1H), 7,64 – 7,57 (m, 2H), 7,52 – 7,45 (m, 2H), 7,29 – 7,21 (m, 4H), 5,92 (s, 2H), 5,52 (s, 1H), 3,60 (s, 3H), 3,43 (dt, $J = 18,2, 6,4$ Γμ, 4H), 3,13 (s, 2H), 2,30 (t, $J = 7,6$ Γμ, 4H), 1,84 (tdd, $J = 12,4, 7,0, 3,8$ Γμ, 6H).	521,35
2-((4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)амино)ацетон итрил	NH ₂	¹ H ЯМР (400 МГц, CDCl ₃): δ 8,41 - 8,36 (m, 2H), 8,21 (s, 1H), 7,48 (s, 1H), 7,41 - 7,38 (m, 2H), 7,31 - 7,28 (m, 2H), 6,96 (s, 1H), 5,14 (s, 2H), 4,28 (m, 2H), 3,21 (s, 1H), 2,85 - 2,81 (m, 2H), 2,54 (s, 3H), 2,40 - 2,36 (m, 2H).	460,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
метил(2 <i>E</i>)-4-{[4-(4- амино-5-{3-фтор-4-[(4- метилпиримидин-2- ил)окси]фенил}-7- метил-7 <i>H</i> -пирроло[2,3- <i>d</i>]пиримидин-6- ил)фенил]амино}бут-2- еноат	NH ₂	¹ H ЯМР (400 МГц, CD ₃ OD): δ 8,42 (d, J = 5,2 Γц, 1H), 8,19 (s, 1H), 7,29 - 7,25 (m, 1H), 7,18 - 7,02 (m, 6H), 6,65 (d, J = 8,4 Γц, 2H), 6,03 (d, J = 15,6 Γц, 1H), 3,99 - 3,97 (m, 2H), 3,71 (s, 3H), 3,68 (s, 3H), 2,51 (s, 3H).	540,3
N-[(3S)-1-[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]пирролидин-3-ил]проп-2-енамид	NH ₂	¹ H ЯМР (400 МГц, CDCl ₃): δ 8,37 (s, 1 H), 7,62 - 7,54 (m, 1H), 7,33 - 7,26 (m, 2H), 7,08 - 7,04 (m, 2H), 6,93 - 6,88 (m, 2H), 6,70 - 6,62 (m, 2H), 6,59 - 6,52 (m, 1H), 6,38 - 6,25 (m, 2H), 6,10 - 5,99 (m, 1H), 5,93 - 5,83 (m, 1H), 5,05 - 4,96 (m, 2H), 4,76 - 4,63 (m, 1H), 3,75 (s, 3H), 3,53 - 3,45 (m, 1H), 3,39 - 3,05 (m, 3H), 2,45 (s, 3H), 2,36 - 2,26 (m, 1H), 2,06 - 1,96 (m, 1H).	546,1
N-[(3R)-1-[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]пирролидин-3-ил]проп-2-енамид	NH ₂	¹ H ЯМР (400 МГц, CDCl ₃): δ 8,37 (s, 1H), 7,62 - 7,54 (m, 1H), 7,33 - 7,26 (m, 2H), 7,08 - 7,04 (m, 2H), 6,93 - 6,88 (m, 2H), 6,70 - 6,62 (m, 2H), 6,59 - 6,52 (m, 1H), 6,38 - 6,25 (m, 2H), 6,10 - 5,99 (m, 1H), 5,93 - 5,83 (m, 1H), 5,05 - 4,96 (m, 2H), 4,76 - 4,63 (m, 1H), 3,75 (c, 3H), 3,53 - 3,45 (m, 1H), 3,39 - 3,05 (m, 3H), 2,45 (s, 3 H), 2,36 - 2,26 (m, 1H), 2,06 - 1,96 (m, 1H).	546,1
1-{4-[3-(4-амино-7-метил-5-{4-[6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил]пиперазин-1-ил} проп-2-ен-1-она гидрохлорид	NH ₂ NH ₂ NHCI	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,57 (s, 1H), 7,73 - 7,70 (m, 1H), 7,63 - 7,60 (d, $J = 8,0$ Гц, 1H), 7,49 - 7,45 (m, 2H), 7,35 - 7,28 (m, 3H), 7,32 - 7,28 (m, 3H), 7,14 - 7,10 (m, 2H), 7,02 - 7,00 (d, $J = 7,6$ Γц, 1H), 6,79 - 6,76 (m, 1H), 6,69 - 6,59 (m, 1H), 6,49 (s, 1H), 6,23 - 6,15 (m, 1H), 5,75 - 5,70 (m, 1H), 4,69 (s, 1H), 4,55 - 4,47 (d, $J = 32,4$ Гц, 2H), 4,32 (s, 1H), 3,75 - 3,73 (d, $J = 6,8$ Гц, 3H), 2,31 - 2,29 (d, $J = 7,2$ Гц, 3H).	529,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-{[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]метил}проп-2-енамида гидрохлорид	HCI N O NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 8,71 - 8,67 (m, 1H), 8,58 (s, 1H), 7,76 (t, J = 7,8 Γц, 1H), 7,44 - 7,20 (m, 6H), 7,15 - 7,00 (m, 3H), 6,81 (d, J = 8,0 Γц, 1H), 6,32 - 6,23 (m, 1H), 6,16 - 6,05 (m, 1H), 5,61 (dd, J = 2,1, 10,0 Γц, 1H), 4,36 (d, J = 6,0 Γц, 2H), 3,69 (s, 3H), 2,37 (s, 3H).	491,1
N-[2-(4-амино-7-метил- 5-{4-[(6-метилпиридин- 2-ил)окси]фенил}-7H- пирроло[2,3- d]пиримидин-6- ил)фенил]проп-2- енамида гидрохлорид	HCI NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	¹ H ЯМР (400 МГц, CD ₃ OD): δ 8,10 (s, 1H), 7,66 - 7,55 (m, 2H), 7,40 - 7,32 (m, 2H), 7,28 - 7,19 (m, 1H), 7,11 (br d, J = 7,8 Γц, 2H), 6,90 (t, J = 7,2 Γц, 3H), 6,63 (d, J = 8,4 Γц, 1H), 6,17 - 5,99 (m, 2H), 5,58 - 5,50 (m, 1H), 5,10 (s, 1H), 4,88 - 4,82 (m, 4H), 4,51 (s, 11H), 3,54 (s, 4H), 2,36 - 2,27 (m, 3H)	477,2
N-[5-(4-амино-7-метил- 5-{4-[(4- метилпиримидин-2- ил)окси]фенил}- 7Нпирроло[2,3- d]пиримидин-6-ил)-1- метил-1Н-пиразол-3- ил]проп-2-енамид	NH ₂ HN O	¹ Н ЯМР (400 МГц, Метанол- d_4): δ 8,30 (d, J = 5,0 Гц, 1H), 8,14 (s, 1H), 7,29 (d, J = 8,4 Гц, 2H), 7,13 (d, J = 8,8 Гц, 2H), 7,02 (d, J = 5,0 Гц, 1H), 6,82 (s, 1H), 6,40 - 6,23 (m, 2H), 5,68 (dd, J = 2,4, 9,8 Гц, 1H), 4,50 (s, 4H), 3,61 - 3,56 (m, 3H), 2,38 (s, 3H).	482,3
N-[5-(4-амино7-метил- 5-{4-[(6-метилпиридин- 2-ил)окси]фенил}-7H- пирроло[2,3- d]пиримидин-6-ил)-1- метил-1H-пиразол-3- ил]проп-2-енамид	NH ₂	¹ HNMR (400 MΓ _{II} , DMSO- d_6): δ 10,73 (s, 1H), 8,28 (s, 1H), 7,85 (t, J = 7,6 Γ _{II} , 1H), 7,62 (d, J = 2,0 Γ _{II} , 1H), 7,54 - 7,45 (m, 3H), 7,35 (d, J = 8,4 Γ _{II} , 2H), 7,13 (d, J = 7,6 Γ _{II} , 1H), 7,00 - 6,94 (m, 1H), 6,93 - 6,87 (m, 1H), 6,58 (d, J = 2,4 Γ _{II} , 1H), 4,01 (s, 3H), 3,88 - 3,75 (m, 4H), 2,45 (s, 3H).	481,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
[3-[4-амино-7-метил-5- [4-[(6-метил-2- пиридил)окси]фенил]пи рроло[2,3- <i>d</i>]пиримидин- 6-ил]фенил]цианамид	NH ₂ HN—IN	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,20 (s, 1H), 7,72 (t, $J = 7,6$ Гц, 1H), 7,38 (t, $J = 8,0$ Гц, 1H), 7,2 (d, $J = 8,8$ Гц, 2H), 7,09 (d, $J = 7,6$ Гц, 2H), 7,04 - 7,00 (m, 2H), 6,98 - 6,93 (m, 1H), 6,81 (s, 1H), 6,77 (d, $J = 8,0$ Γц, 1H), 5,93 (br, 1H), 3,60 (s, 3H), 2,35 (s, 3H).	448,2
4-{4-амино-7-метил-6- [3-(проп-2- енамидо)фенил]-7Н- пирроло[2,3- d]пиримидин-5-ил}-N- [(3-фтороксетан-3- ил)метил]бензамид	NH ₂ HN	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,24 (s, 1H), 8,83 - 8,77 (m, 1H), 8,22 (s, 1H), 7,82 (d, $J = 8,0$ Гц, 2H), 7,73 - 7,64 (m, 2H), 7,38 - 7,29 (m, 3H), 6,99 (d, $J = 7,6$ Гц, 1H), 6,47 - 6,35 (m, 1H), 6,30 - 6,21 (m, 1H), 5,98 (s, 1H), 5,79 - 5,73 (m, 1H), 4,73 - 4,55 (m, 4H), 3,82 (d, $J = 6,0$ Гц, 1H), 3,76 (d, $J = 6,0$ Гц, 1H), 3,60 (s, 3H).	501,1
4-{4-амино-7-метил-6- [4-(проп-2- енамидо)фенил]-7Н- пирроло[2,3- d]пиримидин-5-ил}-N- [(3-фтороксетан-3- ил)метил]бензамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 10,27 (s, 1H), 8,82 - 8,74 (m, 1H), 8,20 (s, 1H), 7,82 (d, $J = 8.0$ Гц, 2H), 7,67 (d, $J = 8.0$ Гц, 2H), 7,33 - 7,24 (m, 4H), 6,48 - 6,38 (m, 1H), 6,30 - 6,23 (m, 1H), 5,93 (br, 1H), 5,80 - 5,74 (m, 1H), 4,71 - 4,52 (m, 4H), 3,83 - 3,73 (m, 2H), 3,60 (s, 3H).	501,1
4-[4-амино-6-[3-(2-метилпроп-2-еноиламино)фенил]-7Н-пирроло[2,3-d]пиримидин-5-ил]-N-[(3-фтороксетан-3-ил)метил]бензамид	NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6): δ 12,16 (br, 1H), 9,81 (s, 1H), 8,86 (t, $J = 6,0$ Гц, 1H), 8,14 (s, 1H), 7,92 (d, $J = 8,4$ Гц, 2H), 7,81 (s, 1H), 7,57 (d, $J = 8,0$ Гц, 1H), 7,42 (d, $J = 8,4$ Гц, 2H), 7,21 (m, 1H), 6,89 (d, $J = 8,0$ Гц, 1H), 5,75 (s, 1H), 5,51 (s, 1H), 4,74 - 4,59 (m, 4H), 3,82 (dd, $J = 19,6$ Гц, 6,6 Гц, 2H), 1,92 (s, 3H).	501,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-{4-амино-7-метил-6- [3-(2-метилпроп-2- енамидо)фенил]-7 <i>H</i> - пирроло[<i>2</i> , <i>3</i> - <i>d</i>]пиримидин-5-ил}- <i>N</i> - [(3-фтороксетан-3- ил)метил]бензамид	NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6): δ 9,88 (s, 1H), 8,81 - 8,78 (m, 1H), 8,22 (s, 1H), 7,82 (d, $J = 8,4$ Гц, 2H), 7,72 (d, $J = 8,8$ Гц, 2H), 7,34 - 7,29 (m, 3H), 6,95 (d, $J = 7,6$ Гц, 1H), 5,78 (s, 1H), 5,52 (s, 1H), 4,70 - 4,57 (m, 4H), 3,82 - 3,75 (m, 2H), 3,60 (s, 3H), 1,93 (s, 3H).	515,1
(2 <i>E</i>)- <i>N</i> -(3-{4-амино-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7 <i>H</i> -пирроло[2,3- <i>d</i>]пиримидин-6-ил}фенил)-4-(диметиламино)бут-2-енамида гидрохлорид	NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6): δ 10,99 (s, 1H), 10,72 (s, 1H), 8,60 (s, 1H), 7,77 - 7,73 (m, 2H), 7,49 (d, $J = 8,4$ Γц, 2H), 7,72 (d, $J = 8,8$ Γц, 2H), 7,43 - 7,39 (m, 1H), 7,28 (d, $J = 8,4$ Γц, 2H), 7,07 (d, $J = 7,6$ Γц, 1H), 6,83 - 6,76 (m, 1H), 6,50 (d, $J = 7,2$ Γц, 1H), 3,92 - 3,89 (m, 2H), 3,71 (s, 3H), 3,45 - 3,40 (m, 4H), 2,74 (d, $J = 4,0$ Γц, 6H), 1,88 - 1,76 (m, 4H).	524,4
4-[4-амино-6-(4-{2- [(диметиламино)метил] проп-2- енамидо}фенил)-7- метил-7 <i>H</i> -пирроло[2,3- d]пиримидин-5-ил]- <i>N</i> - [(3-фтороксетан-3- ил)метил]бензамид	NH ₂ NH F NH N	¹ Н ЯМР (400 МГц, DMSO- d_6): δ 8,83 - 8,74 (m, 1H), 8,16 (s, 1H), 7,80 (d, J = 8,0 Гц, 2H), 7,28 (d, J = 8,0 Гц, 2H), 6,99 (d, J = 8,0 Гц, 2H), 6,58 (d, J = 8,0 Гц, 2H), 6,30 - 6,20 (m, 1H), 5,83 (br, 1H), 5,36 (s, 1H), 5,12 (s, 1H), 4,74 - 4,53 (m, 4H), 3,89 - 3,70 (m, 4H), 3,57 (s, 3H), 2,91 - 2,78 (d, J = 16,0 Гц, 6H).	558,2
4-{4-амино-7-метил-6- [4-(проп-2- енамидо)фенил]-7 <i>H</i> - пирроло[<i>2</i> , <i>3</i> - <i>d</i>]пиримидин-5-ил}- <i>N</i> - (2- метилпропил)бензамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 8,40 (s, 1H), 7,81 (d, J = 8,4 Гц, 2H), 7,71 (d, J = 8,8 Гц, 2H), 7,40 (d, J = 8,4 Гц, 2H), 7,30 (d, J = 8,4 Гц, 2H), 6,47 - 6,34 (m, 2H), 5,81 - 5,78 (m, 2H), 3,8 (s, 3H), 3,19 (d, J = 6,8 Гц, 1H), 1,95 - 1,88 (m, 1H), 0,95 (d, J = 6,4 Гц, 6H).	469,2

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(1 <i>S</i>)-4-{4-амино-7-метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}-N-[(3-фтороксетан-3-ил)метил]циклогекс-3-ен-1-карбоксамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 9,95 (s, 1H), 8,35 - 8,24 (m, 1H), 8,10 (s, 1H), 7,81 (d, $J = 12,0$ Γц, 2H), 7,43 (d, $J = 12,0$ Γц, 2H), 6,60 - 6,24 (m, 2H), 5,92 - 5,72 (m, 2H), 5,55 (s, 1H), 4,68 - 4,43 (m, 4H), 3,63 - 3,53 (m, 4H), 2,59 - 2,53 (m, 1H), 2,38 - 2,16 (m, 2H), 1,97 (s, 3H), 1,91 - 1,84 (m, 2H), 1,75 - 1,60 (m, 2H).	519,1
(1 <i>R</i>)-4-{4-амино-7-метил-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-пирроло[2,3-d]пиримидин-5-ил}-N-[(3-фтороксетан-3-ил)метил]циклогекс-3-ен-1-карбоксамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 9,96 (s, 1H), 8,26 (t, J = 6,0 Γц, 1H), 8,10 (s, 1H), 7,81 (d, J = 8,4 Γц, 2H), 7,43 (d, J = 8,4 Γц, 2H), 6,44 (br s, 2H), 5,88 - 5,70 (m, 2H), 5,55 (s, 1H), 4,64 - 4,46 (m, 4H), 3,62 - 3,53 (m, 4H), 2,59 - 2,54 (m, 1H), 2,39 - 2,16 (m, 2H), 1,97 (s, 3H), 1,93 - 1,83 (m, 2H), 1,72 - 1,60 (m, 2H).	519,1
N-{3-[4-амино-7-метил-5-(1-метил-1,2,3,4-тетрагидрохинолин-6-ил)-7 <i>H</i> -пирроло[2,3-d]пиримидин-6-ил]фенил}проп-2-енамида гидрохлорид	HCI N NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6): δ 10,60 - 10,32 (m, 1H), 8,59 - 8,40 (m, 1H), 7,78 (s, 1H), 7,70 (d, J = 7,6 Γц, 1H), 7,42 - 7,33 (m, 1H), 7,06 - 7,00 (m, 1H), 6,93 - 6,84 (m, 2H), 6,59 (d, J = 8,4 Γц, 1H), 6,52 - 6,41 (m, 1H), 6,25 (dd, J = 1,6, 16,8 Γц, 1H), 5,80 - 5,71 (m, 1H), 3,65 - 3,64 (m, 3H), 3,27 - 3,16 (m, 2H), 2,83 (s, 3H), 2,68 - 2,59 (m, 2H), 1,86 (m, 2H)	439,1
N-(3-{4-амино-7-метил- 5-[(4S)-4-(пирролидин- 1-карбонил)циклогекс- 1-ен-1-ил]-7H- пирроло[2,3- d]пиримидин-6- ил}фенил)проп-2- енамид	NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6): δ 10,27 (s, 1H), 8,11 (s, 1H), 7,90 (s, 1H), 7,66 (dd, J = 8,0 Γц, 1H), 7,44 (t, J = 8,0 Γц, 1H), 7,20 (d, J = 7,6 Γц, 1H), 6,530 (br, 2H), 6,491 - 6,423 (m, 1H), 6,35 - 6,21 (m, 1H), 5,83 - 5,71 (m, 2H), 3,69 - 3,53 (m, 3H), 3,52 - 3,40 (m, 2H), 3,42 - 3,40 (m, 1H), 3,29 - 3,20 (m, 2H), 2,81 (m, 1H), 2,37 - 2,13 (m, 2H), 1,98 - 1,58 (m, 8H).	471,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(3-{4-амино-7-метил- 5-[(4R)-4-(пирролидин- 1-карбонил)циклогекс- 1-ен-1-ил]-7H- пирроло[2,3- d]пиримидин-6- ил}фенил)проп-2- енамид	NH ₂ HN O	¹ H ЯМР (400 МГц, DMSO- d_6): δ 10,28 (s, 1H), 8,11 (s, 1H), 7,90 (s, 1H), 7,67 (dd, $J = 8,0$ Гц, 1H), 7,44 (t, $J = 8,0$ Γц, 1H), 7,20 (d, $J = 7,6$ Γц, 1H), 6,526 (br, 2H), 6,493-6,425 (m, 1H), 6,33 - 6,22 (m, 1H), 5,85 - 5,69 (m, 2H), 3,60 (s, 3H), 3,52 - 3,40 (m, 4H), 3,34 - 3,20 (m, 3H), 2,88 - 2,74 (m, 1H), 2,38 - 2,14 (m, 2H), 2,01 - 1,56 (m, 8H).	471,1
N-(4-{4-амино-7-метил- 5-[(1R)-3'-оксо-1',3'- дигидроспиро[циклогек сан-1,2'-инден]-3-ен-4- ил]-7H-пирроло[2,3- d]пиримидин-6- ил}фенил)-2- метилпроп-2-енамид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,16 (s, 1H), 7,83 (d, $J = 8,8$ Гц, 2H), 7,75 - 7,64 (m, 2H), 7,58 - 7,48 (m, 3H), 7,47 - 7,39 (m, 1H), 5,98 (s, 1H), 5,87 (s, 1H), 5,58 (d, $J = 0,8$ Гц, 1H), 3,68 (s, 3H), 3,01 (s, 2H), 2,70 - 2,43 (m, 1H), 2,37 - 2,17 (m, 2H), 2,09 (s, 3H), 2,06 - 1,96 (m, 1H), 1,86 - 1,78 (m, 1H), 1,69 - 1,56 (m, 1H).	504,1
N-(4-{4-амино-7-метил- 5-[(1S)-3'-оксо-1',3'- дигидроспиро[циклогек сан-1,2'-инден]-3-ен-4- ил]-7H-пирроло[2,3- d]пиримидин-6- ил}фенил)-2- метилпроп-2-енамид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,06 (s, 1H), 7,79 - 7,66 (m, 2H), 7,64 - 7,50 (m, 2H), 7,46 - 7,36 (m, 3H), 7,35 - 7,28 (m, 1H), 5,87 (s, 1H), 5,75 (s, 1H), 5,46 (d, $J=0.8$ Гц, 1H), 3,58 (s, 3H), 2,89 (s, 2H), 2,55 - 2,34 (m, 1H), 2,27 - 2,04 (m, 2H), 1,97 (s, 3H), 1,94 - 1,87 (m, 1H), 1,72 - 1,66 (m, 1H), 1,58 - 1,47 (m, 1H).	504,1
N-(4-{4-амино-5-[(1R)-2'-метокси-7'-оксо-5',7'-дигидроспиро[циклогек сан-1,6'-циклопента[b] пиридин]-3-ен-4-ил]-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 9,97 (s, 1H), 8,13 (s, 1H), 7,93 (d, J = 8,4 Гц, 1H), 7,84 (d, J = 8,4 Γц, 2H), 7,48 (d, J = 8,4 Γц, 2H), 7,12 (d, J = 8,4 Γц, 1H), 6,51 (br, 2H), 5,87 - 5,78 (m, 2H), 5,56 (s, 1H), 3,88 (s, 3H), 3,60 (s, 3H), 2,89 - 2,74 (m, 2H), 2,47 - 2,42 (m, 2H), 2,14 - 2,09 (m, 2H), 2,05 - 1,98 (m, 4H), 1,83 - 1,66 (m, 1H), 1,58 - 1,45 (m, 1H).	535,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-{4-амино-5-[(1S)-2'-метокси-7'-оксо-5',7'-дигидроспиро[циклогек сан-1,6'-циклопента[b]пиридин] -3-ен-4-ил]-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6): δ 9,99 (s, 1H), 8,13 (s, 1H), 7,94 (d, J = 8,4 Гц, 1H), 7,85 (d, J = 8,8 Γц, 2H), 7,48 (d, J = 8,4 Γц, 2H), 7,13 (d, J = 8,4 Γц, 1H), 6,53 (br, 2H), 5,90 - 5,80 (m, 2H), 5,56 (s, 1H), 3,89 (s, 3H), 3,61 (s, 3H), 2,92 - 2,77 (m, 2H), 2,47 - 2,43 (m, 1H), 2,14 - 2,10 (m, 2H), 2,02 - 1,99 (m, 4H), 1,81 - 1,69 (m, 1H), 1,57 - 1,46 (m, 1H).	535,1
N-(4-{4-амино-7-метил-5-[(1R)-2'-метил-7'-оксо-5',7'- дигидроспиро[циклогек сан-1,6'- циклопента[<i>b</i>]пиридин] -3-ен-4-ил]-7 <i>H</i> -пирроло[2,3- <i>d</i>]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид	NH ₂ NH	¹ H ЯМР (400 МГц, CDCl ₃): δ 8,33 (s, 1H), 7,79 - 7,67 (m, 3H), 7,61 (s, 1H), 7,44 (d, J = 8,4 Γц, 2H), 7,35 (d, J = 8,0 Γц, 1H), 5,96 (br, 1H), 5,86 (s, 1H), 5,54 (s, 1H), 3,70 (s, 3H), 2,93 (s, 2H), 2,68 (s, 3H), 2,61 - 2,56 (m, 1H), 2,45 - 2,15 (m, 3H), 2,12 (s, 3H), 2,05 - 1,92 (m, 1H), 1,89 - 1,78 (m, 1H).	519,1
N-(4-{4-амино-7-метил-5-[(1S)-2'-метил-7'-оксо-5',7'- дигидроспиро[циклогек сан-1,6'- циклопента[<i>b</i>]пиридин] -3-ен-4-ил]-7 <i>H</i> -пирроло[2,3- <i>d</i>]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид	NH ₂ O NH	¹ H ЯМР (400 МГц, CDCl ₃): δ 8,28 (s, 1H), 7,79 - 7,69 (m, 3H), 7,65 (s, 1H), 7,43 (d, J = 8,4 Γц, 2H), 7,36 (d, J = 8,0 Γц, 1H), 5,96 (s, 1H), 5,86 (s, 1H), 5,54 (s, 1H), 3,72 (s, 3H), 2,94 (s, 2H), 2,68 (s, 3H), 2,59 - 2,53 (m, 1H), 2,43 - 2,26 (m, 3H), 2,12 (s, 3H), 2,02 - 1,92 (m, 1H), 1,82 - 1,71 (m, 1H).	519,1

Схема 2

Пример 4

N-(4-(4-амино-7-метил-5-(1-(2,2,2-трифторацетил)-1,2,3,6-тетрагидропиридин-4ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид

Трет-бутил-4-(6-(4-акриламидофенил)-4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-3,6-дигидропиридин-1(2H)-карбоксилат

[0303] **Стадия 1:** В круглодонную колбу загружали N-(4-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}фенил)проп-2-енамид (200 мг, 537 мкмоль), трет-

бутил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,2,3,6-тетрагидропиридин-1-карбоксилат (199 мг, 644 мкмоль), Pd(dtbpf)Cl₂ (34,9 мг, 53,7 мкмоль), K₃PO₄ (341 мг, 1,61 ммоль), 5 мл DMF и магнитную мешалку. Раствор перемешивали при 90°С в течение 2 часов. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 2 г; элюирование смесью гептанов и этилацетата, 3:1). После концентрирования под вакуумом получали трет-бутил-4-{4-амино-7-метил-6-[4-(проп-2-енамидо)фенил]-7Н-пирроло[2,3-d]пиримидин-5-ил}-1,2,3,6-тетрагидропиридин-1-карбоксилат (121 мг, выход 48%) в виде желтой маслянистой жидкости.

N-(4-(4-амино-7-метил-5-(1,2,3,6-тетрагидропиридин-4-ил)-7H-пирроло[2,3d]пиримидин-6-ил)фенил)акриламид

[0304] Стадия 2: В круглодонную колбу загружали трет-бутил-4-{4-амино-7-метил-6-[4-(проп-2-енамидо)фенил]-7Н-пирроло[2,3-d]пиримидин-5-ил}-1,2,3,6-тетрагидропиридин-1-карбоксилат (30 мг, 63,2 мкмоль), 0,2 мл ТFA, 0,8 мл DCM и магнитную мешалку. Раствор перемешивали при комнатной температуре в течение 1 ч.Затем реакционную смесь фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали N-{4-[4-амино-7-метил-5-(1,2,3,6-тетрагидропиридин-4-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил]фенил} проп-2-енамид (16,8 мг, выход 71%) в виде твердого вещества белого цвета.

N-(4-(4-амино-7-метил-5-(1-(2,2,2-трифторацетил)-1,2,3,6-тетрагидропиридин-4ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид

[0305] Стадия 3: В круглодонную колбу загружали N-{4-[4-амино-7-метил-5-(1,2,3,6-тетрагидропиридин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил]фенил}проп-2-енамид (40 мг, 106 мкмоль), ТЕА (32,1 мг, 318 мкмоль), DMAP (1,29 мг, 10,6 мкмоль), 5 мл DCM и магнитную мешалку. При 0°С по каплям добавляли ТFAA. Раствор перемешивали при комнатной температуре в течение 1 часа. Реакционную смесь разбавляли водой (30 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали

N-(4-{4-амино-7-метил-5-[1-(2,2,2-трифторацетил)-1,2,3,6-тетрагидропиридин-4-ил]-7H-пирроло[2,3-d]пиримидин-6-ил}фенил)проп-2-енамид (27,9 мг, выход 37%) в виде твердого вещества белого цвета.

[0306] Другие такие же соединения, полученные согласно способам, описанным в Примере 4, показаны в Таблице 3 ниже.

Таблица 3. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(2,2,2- трифторацетил)-1,2,3,6- тетрагидропиридин-4- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,33 (d, J = 2,8 Гц, 1H), 8,14 (d, J = 1,2 Γц, 1H), 7,87 – 7,68 (m, 2H), 7,47 – 7,39 (m, 2H), 6,49 – 6,28 (m, 3H), 5,85 – 5,70 (m, 2H), 4,30 – 4,09 (m, 2H), 3,65 – 3,52 (m, 5H), 2,09 (s, 2H).	471,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1,2,3,6- тетрагидропиридин-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (d, J = 28,0 Гц, 1H), 8,21 – 8,08 (m, 1H), 7,80 – 7,56 (m, 2H), 7,44 - 7,39 (m, 2H), 6,56 – 6,05 (m, 2H), 5,80 (d, J = 10,4 Γц, 1H), 3,57 - 3,46 (m, 4H), 3,16 (d, J = 46,0 Γц, 2H), 2,77 – 2,63 (m, 2H), 2,00 (m, J = 46,4 Γц, 2H).	375,2

Схема 3

Пример 5

N-(4-(4-амино-7-метил-5-(1-(пирролидин-1-карбонил)пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

Трет-бутил-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-3,6дигидропиридин-1(2H)-карбоксилат

[0307] Стадия 1: В круглодонную колбу загружали 5-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (3,00 г, 10,9 ммоль), трет-бутил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,2,3,6-тетрагидропиридин-1-карбоксилат (4,01 г, 13,0 ммоль), Pd(dtbpf)Cl₂ (710 мг, 1,09 ммоль), K₃PO₄ (6,91 г, 32,6 ммоль) и магнитную мешалку. Добавляли DMF (45 мл) и H₂O (3 мл), и раствор перемешивали в течение 3 ч при 90°С. Смесь разбавляли этилацетатом (EtOAc) (300 мл) и промывали водой (3*100 мл), органическую фазу концентрировали и сырой продукт очищали с помощью колонки с силикагелем, используя смесь DCM:МеOH= 25:1, в результате чего получали трет-бутил-4-{4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил}-1,2,3,6-тетрагидропиридин-1-карбоксилат (2,97 г, выход 83%) в виде маслянистой жидкости коричневого цвета.

Трет-бутил-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1карбоксилат

[0308] **Стадия 2:** В круглодонную колбу загружали трет-бутил-4-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}-1,2,3,6-тетрагидропиридин-1-карбоксилат (1,70 г, 5,16 ммоль), Pd/C (326 мг, 154 мкмоль) и магнитную мешалку. Добавляли МеОН (50 мл), и раствор перемешивали при 50°C в течение 48 часов в атмосфере H₂. Смесь фильтровали и 5 раз промывали МеОН, фильтраты концентрировали и получали трет-бутил-4-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}пиперидин-1-карбоксилат (900 мг, выход 53%) в виде маслянистой жидкости коричневого цвета.

Трет-бутил-4-(4-амино-6-бром-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил) пиперидин-1-карбоксилат

[0309] Стадия 3: В круглодонную колбу загружали трет-бутил-4-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}пиперидин-1-карбоксилат (800 мг, 2,41 ммоль), NBS (428 мг, 2,41 ммоль) и магнитную мешалку. Добавляли АСN (20 мл), и раствор перемешивали при 25°С в течение 0,5 часа. Смесь концентрировали при пониженном давлении и получали продукт, а именно трет-бутил-4-{4-амино-6-бром-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}пиперидин-1-карбоксилат (500 мг, выход 51%) в виде твердого вещества коричневого цвета. Сырой продукт использовали на следующей стадии без какой-либо дополнительной очистки.

6-Бром-7-метил-5-(пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0310] **Стадия 4:** В круглодонную колбу загружали трет-бутил-4-{4-амино-6-бром-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}пиперидин-1-карбоксилат (500 мг, 1,21 ммоль), DCM (5 мл) и магнитную мешалку. Добавляли ТFA (0,5 мл), и раствор перемешивали при 25°С в течение 2 часов. Смесь концентрировали при пониженном давлении, разбавляли DCM (30 мл), промывали насыщенным водным раствором NaHCO₃ (3*15 мл), органическую фазу концентрировали и получали продукт. а именно 6-бром-7-метил-5-(пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (310 мг, выход 83%) в виде маслянистой жидкости коричневого цвета.

(4-(4-Амино-6-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1-ил)(пирролидин-1-ил)метанон

[0311] Стадия 5: В круглодонную колбу загружали 6-бром-7-метил-5-(пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (280 мг, 902 мкмоль), DIEA (580 мг, 4,50 ммоль), DCM (10 мл) и магнитную мешалку. Затем добавляли трифосген (106 мг, 360 мкмоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре, после чего добавляли пирролидин (512 мг, 7,21 ммоль) и перемешивали в течение 1 часа при комнатной температуре. Растворитель удаляли, и сырой продукт очищали на хроматографической колонке C18 Flash, в результате чего получали 6-бром-7-метил-5-[1-(пирролидин-1-карбонил)пиперидин-4-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (160 мг, выход 21%) в виде твердого вещества почти белого цвета.

N-(4-(4-амино-7-метил-5-(1-(пирролидин-1-карбонил)пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

[0312] Стадия 6: В герметизируемую реакционную пробирку загружали 6-бром-7-метил-5-[1-(пирролидин-1-карбонил)пиперидин-4-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (140 мг, 0,34 ммоль), N-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)акриламид (112 мг, 0,41 ммоль), Pd(dppf)Cl₂ (25,1 мг, 34,3 мкмоль), K₃PO₄ (216 мг, 1,02 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли DMF (1 мл) и H₂O (0,1 мл), и полученную смесь перемешивали в течение 3 часов при температуре 90°С. Полученную смесь очищали с помощью хроматографической колонки С18. Полученный сырой материал очищали методом ВЭЖХ. После лиофилизации получали N-(4-{4-амино-7-метил-5-[1-(пирролидин-1-карбонил)пиперидин-4-ил]-7H-пирроло[2,3-d]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид (24,3 мг, выход 15%) в виде твердого аморфного вещества белого цвета.

[0313] Другие такие же соединения, полученные согласно способам, описанным в Примере 5, показаны в Таблице 4 ниже.

Таблица 4. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(1-(пирролидин-1- карбонил)пиперидин-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,98 (s, 1H), 8,11 (s, 1H), 7,83 (d, $J = 8,4$ Γц, 2H), 7,35 (d, $J =$ 8,3 Γц, 2H), 6,38 (s, 2H), 5,83 (s, 1H), 5,56 (s, 1H), 3,58 – 3,61 (m, 2H), 3,55 (s, 3H), 3,26 – 3,38 (m, 4H), 3,02 – 3,05 (m, 1H), 2,68 – 2,76 (m, 2H), 2,08 (s, 3H), 1,63 – 1,66 (m, 4H), 1,48 – 1,57 (m, 4H).	488,3

Схема 4

Пример 6

N-(4-(4-амино-7-метил-5-(1-метилпиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид

Трет-бутил-4-(6-(4-акриламидофенил)-4-амино-7-метил-7H-пирроло[2,3d]пиримидин-5-ил)пиперидин-1-карбоксилат

[0314] **Стадия 1:** В круглодонную колбу загружали трет-бутил-4-(4-амино-6-бром-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1-карбоксилат (700 мг, 1,7 ммоль), N-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)акриламид (559 мг,

2,0 ммоль), $Pd(dtbpf)Cl_2$ (124 мг, 0,17 ммоль), K_3PO_4 (1,08 г, 5,1 ммоль) и магнитную мешалку. Добавляли DMF (10 мл) и $H_2O(1$ мл), после чего раствор перемешивали в течение 3 ч при температуре 90°С. Смесь разбавляли этилацетатом (EtOAc) (100 мл) и промывали водой (3*100 мл), органическую фазу концентрировали и полученный сырой продукт очищали на колонке с силикагелем с использованием смеси DCM:MeOH= 25:1, в результате чего получали трет-бутил-4-(6-(4-акриламидофенил)-4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1-карбоксилат (340 мг, выход 42%) в виде твердого вещества желтого цвета.

Трет-бутил-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1карбоксилат

[0315] Стадия 2: В круглодонную колбу загружали трет-бутил-4-(6-(4-акриламидофенил)-4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1-карбоксилат (340 мг, 0,71 ммоль), DCM (5 мл) и магнитную мешалку. Добавляли ТFA (0,5 мл), и раствор перемешивали при 25°С в течение 2 часов. Смесь концентрировали при пониженном давлении, разбавляли DCM (30 мл), промывали насыщенным водным раствором NaHCO₃ (3*15 мл), органическую фазу концентрировали и получали продукт, а именно трет-бутил-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1-карбоксилат (240 мг, выход 89%), в виде маслянистой жидкости коричневого цвета.

N-(4-(4-амино-7-метил-5-(1-метилпиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид

[0316] Стадия 3: В круглодонную колбу загружали трет-бутил-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)пиперидин-1-карбоксилат (120 мг, 0,32 ммоль), NаВН(ОАс)₃ (81 мг, 0,38 ммоль), (СН₂О)п (20 мг, 0,64 ммоль) и магнитную мешалку. Добавляли DCM (5 мл) и АсОН (0,5 мл), после чего раствор перемешивали в течение ночи при комнатной температуре. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали DCM (20 мл). Объединенные органические слои сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ. После лиофилизации получали N-(4-{4-амино-7-метил-5-[1-(пирролидин-1-карбонил)пиперидин-4-ил]-7Н-пирроло[2,3-d]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид (8 мг, выход 6%) в виде твердого аморфного вещества белого цвета.

[0317] Другие такие же соединения, полученные согласно способам, описанным в Примере 6, показаны в Таблице 5 ниже.

Таблица 5. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5-(1-метилпиперидин-4-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,35 (s, 1H), 8,11 (s, 1H), 7,85 – 7,78 (m, 2H), 7,40 – 7,29 (m, 2H), 6,49 (dd, J = 17,0, 10,1 Γц, 1H), 6,37 - 6,28 (m, 3H), 5,81 (dd, J = 10,0, 2,0 Γц, 1H), 3,37 (s, 3H), 2,75 (d, J = 10,9 Γц, 3H), 2,50 - 2,31 (m, 3H), 2,14 (s, 3H), 1,93 - 1,91 (m, 2H), 1,65 (s, 4H).	391,2

Схема 5

Пример 7

N-(4-(4-амино-7-метил-5-(1-((метилкарбамоил)глицил)пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид

[0318] В герметизируемую реакционную пробирку загружали N-{4-[4-амино-7-метил-5-(пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил]фенил} проп-2-енамид (100 мг, 0,265 ммоль), 2-[(метилкарбамоил)амино]уксусную кислоту (35,0 мг, 0,265 ммоль), НАТИ (121 мг, 0,32 ммоль), DIEA (68,5 мг, 0,53 ммоль) и магнитную мешалку. Добавляли диметилформамид (5 мл), и смесь перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь разбавляли водой (10 мл), и водную фазу трижды экстрагировали дихлорметаном (15 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали N-{4-[4-амино-7-метил-5-(1-{2-[(метилкарбамоил)амино]ацетил} пиперидин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил]фенил} проп-2-енамид (6,00 мг, выход 5%) в виде белого твердого аморфного вещества.

[0319] Другие такие же соединения, полученные согласно способам, описанным в Примере 7, показаны в Таблице 6 ниже.

Таблица 6. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5-(1- ((метилкарбамоил)гл ицил)пиперидин-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,35 (s, 1H), 8,10 (s, 1H), 7,79 (d, J = 8,3 Гц, 2H), 7,34 (d, J = 8,2 Γц, 2H), 6,47 (dd, J = 17,0, 10,2 Γц, 1H), 6,39 (s, 2H), 6,30 (d, J = 16,8 Γц, 1H), 6,10 (s, 1H), 5,92 (s, 1H), 5,80 (d, J = 10,5 Γц, 1H), 3,78 - 3,66 (m, 3H), 3,45 - 3,37 (m, 1H), 3,31 (s, 3H), 3,21 - 3,08 (m, 2H), 2,55 - 2,53 (m, 1H), 2,51 (s, 3H), 1,86 - 1,73 (m, 2H), 1,45 - 1,24 (m, 2H).	491,2
(R)-N-(4-(4-амино-5-(1-(4- (диметиламино)-2- метилбутаноил)пипе ридин-4-ил)-7- метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH	III, 211). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,31 (s, 1H), 8,10 (s, 1H), 7,79 (d, J = 8,0 Гц, 2H), 7,32 (t, J = 7,2 Γц, 2H), 6,53 – 6,42 (m, 3H), 6,30 (dd, J = 16,8, 2,1 Γц, 1H), 5,80 (dd, J = 10,0, 2,0 Γц, 1H), 4,37 (s, 1H), 3,88 (s, 1H), 3,28 (s, 3H), 3,09 (t, J = 13,6 Γц, 1H), 2,75 - 2,61 (m, 2H), 2,06 (s, 4H), 2,01 (s, 4H), 1,76 - 1,48 (m, 4H), 1,29 - 1,22 (m, 3H), 0,91 - 0,82 (m, 3H).	504,4

Пример 8

Схема 6

5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин

[0320] **Стадия 1:** В герметизируемую реакционную пробирку загружали 5-иод-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (20 г, 72,9 ммоль), (4-метоксифенил)бороновую кислоту (13,3 г, 87,5 ммоль), Pd(DtBPF)Cl₂ (4,74 г, 7,29 ммоль), CsF (33,1 г, 218 ммоль), DMF (200 мл), H₂O (25 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°C в течение 1 ч. Реакционную смесь разбавляли H₂O (500 мл), и водную фазу трижды подвергали экстракции DCM (200 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия,

фильтровали, и концентрировали под вакуумом. К реакционной смеси добавляли MeCN (10 мл) и фильтровали через слой целита (Celite®), затем этот слой затем промывали MeCN. Фильтрат концентрировали под вакуумом, в результате чего получали твердый продукт, а именно 5-(4-метоксифенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (10,2 г, выход 55%), в виде твердого аморфного вещества желтого цвета.

6-Иод-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин

[0321] **Стадия 2:** В круглодонную колбу загружали 5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (9,8 г, 38,5 ммоль), DCM (200 мл), TFA (13,1 г, 115 ммоль) и магнитную мешалку. Смесь охлаждали до 0°С, добавляли NIS (9,53 г, 42,4 ммоль), полученный и раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь разбавляли раствором Na₂SO₃, и водную фазу трижды экстрагировали DCM (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. Добавляли DCM (20 мл), и смесь фильтровали через слой целита (Celite®), после чего этот слой промывали небольшим количеством DCM. Фильтрат концентрировали под вакуумом, в результате чего получали твердый продукт, а именно 6-иод-5-(4-метоксифенил) -7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (10,9 г, выход 74%), в виде почти белого твердого аморфного вещества.

Трет-бутил-4-(4-(4-амино-5-(4-метоксифенил)-7-метил-7H-пирроло[2,3d]пиримидин-6-ил)-1H-пиразол-1-ил)пиперидин-1-карбоксилат

[0322] Стадия 3: В герметизируемую реакционную пробирку загружали 6-иод-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (1 г, 2,63 ммоль), третбутил-4-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1Н-пиразол-1-ил)пиперидин-1-карбоксилат (1,2 г, 3,16 ммоль), Pd(dppf)Cl₂ (190 мг, 0,26 ммоль), К₃PO₄ (1,5 г, 6,9 ммоль), DMF (20 мл), H₂O (2 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°С в течение 1 ч. Реакционную смесь разбавляли H₂O (100 мл), и водную фазу трижды экстрагировали DCM (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью MeOH/DCM=1/40). После концентрирования под вакуумом получали трет-бутил-4-(4-(4-амино-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-карбоксилат (800 мг, выход 61%) в виде твердого вещества желтого цвета.

5-(4-Метоксифенил)-7-метил-6-(1(пиперидин-4-ил)-1H-пиразол-4-ил)-7H-пирроло[2,3-d]пиримидин-4-амина трифторацетатная соль

[0323] **Стадия 4:** В круглодонную колбу загружали трет-бутил-4-(4-(4-амино-5-(4-метоксифенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-1H-пиразол-1-ил)пиперидин-1-карбоксилат (800 мг, 1,6 ммоль), DCM (20 мл) и магнитную мешалку. Добавляли ТFA (5 мл). Реакционную смесь перемешивали в течение 1 ч при комнатной температуре. Растворитель удаляли под вакуумом, в результате чего получали 5-(4-метоксифенил)-7-метил-6-(1-(пиперидин-4-ил)-1H-пиразол-4-ил)-7H-пирроло[2,3-d]пиримидин-4-амина трифторацетатную соль (795 мг, 100%) в виде темной маслянистой жидкости.

1-(4-(4-(4-Амино-5-(4-метоксифенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-1H-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он

[0324] Стадия 5: В круглодонную колбу загружали 5-(4-метоксифенил)-7-метил-6-(1-(пиперидин-4-ил)-1Н-пиразол-4-ил)-7Н-пирроло[2,3-d]пиримидин-4-амина трифторацетатную соль (120 мг, 0,24 ммоль), Et₃N (72,9 мг, 0,72 ммоль) DCM (10 мл) и магнитную мешалку. Смесь охлаждали до -30°С, по каплям добавляли проп-2-еноилхлорид (21,6 мг, 0,24 ммоль), и полученный раствор перемешивали в течение 0,5 ч при -30°С. Затем реакционную смесь гасили МеОН и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ. После лиофилизации получали 1-(4-(4-(4-амино-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он (33 мг, выход 30%) в виде твердого аморфного вещества белого цвета.

[0325] Другие такие же соединения, полученные согласно способам, описанным в Примере 8, показаны в Таблице 7 ниже.

Таблица 7. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-7-метил-5-(4-феноксифенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)пропан-1-он	NH ₂ N N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,63 – 1,88 (m, 2H), 2,01 (t, J = 14,8 Гц, 2H), 2,35 (q, J = 7,6 Гц, 2H), 2,73 (t, J = 12,4 Γц, 1H), 3,16 (t, J = 12,8 Γц, 1H), 3,70 (s, 3H), 3,93 (d, J = 14,0 Γц, 1H), 4,43 (td, J = 5,6, 11,5 Γц, 2H), 5,85 (s, 1H), 7,02 – 7,07 (m, 2H),	522,23
		7,07 – 7,12 (m, 2H), 7,17 (t, J = 7,2 Γμ, 1H), 7,27 – 7,35 (m, 2H), 7,39 – 7,46 (m, 3H), 7,89 (s, 1H), 8,15 (s, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 (s, 1H), 7,95 (s, 1H), 7,36 (s, 1H), 7,29 – 7,21 (m, 2H), 7,04 – 6,96 (m, 2H), 6,85 (m, 1H), 6,12 (m, 1H), 5,70 (m, 1H), 4,47 (t, J = 7,2 Γц, 2H), 4,13 (d, J = 13,6 Γц, 1H), 3,79 (s, 3H), 3,70 (s, 3H), 3,24 (d, J = 13,6 Γц, 1H), 2,83 (t, J = 12,4 Γц, 1H), 2,04 (d, J = 12,4 Γц, 2H), 1,79 (d, J = 16,8 Γц, 2H).	458,22
1-(3-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)-2-метилпиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,77 (s, 1H), 7,80 – 7,72 (m, 1H), 7,48 (s, 1H), 7,38 – 7,25 (m, 2H), 7,16 – 7,10 (m, 2H), 7,05 (d, J = 7,4 Γц, 1H), 6,82 (d, J = 8,2 Γц, 1H), 6,66 (s, 1H), 6,01 (d, J = 16,4 Γц, 1H), 5,60 (d, J = 10,4 Γц, 1H), 5,01 (s, 1H), 4,38 (s, 1H), 4,07 (s, 1H), 3,66 (s, 3H), 3,32 (s, 1H), 3,07 (s, 1H), 2,37 (s, 3H), 2,15 (s, 2H), 1,49 (s, 1H), 1,38 (s, 1H), 1,31 (d, J = 6,8 Γц, 3H).	549,25
1-(3-(4-(4-амино-7-метил-5-(4-феноксифенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)-2-метилпиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,77 (s, 1H), 7,80 – 7,72 (m, 1H), 7,48 (s, 1H), 7,38 – 7,25 (m, 2H), 7,16 – 7,10 (m, 2H), 7,05 (d, J = 7,4 Γц, 1H), 6,82 (d, J = 8,2 Γц, 1H), 6,66 (s, 1H), 6,01 (d, J = 16,4 Γц, 1H), 5,60 (d, J = 10,4 Γц, 1H), 5,01 (s, 1H), 4,38 (s, 1H), 4,07 (s, 1H), 3,66 (s, 3H), 3,32 (s, 1H), 3,07 (s, 1H), 2,15 (s, 2H), 1,49 (s, 1H), 1,38 (s, 1H), 1,31 (d, J = 6,8 Γц, 3H).	534,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,96 (s, 1H), 7,79 – 7,71 (m, 1H), 7,47 (s, 1H), 7,38 – 7,31 (m, 2H), 7,16 (d, J = 8,4 Γц, 2H), 7,03 (d, J = 7,2 Γц, 1H), 6,82 (d, J = 8,4 Γц, 2H), 6,38 – 5,91 (m, 1H), 5,67 (dd, J = 10,4, 32,3 Γц, 1H), 4,51 – 3,93 (m, 3H), 3,70 (s, 3H), 3,56 (s, 0H), 3,17 (s, 1H), 2,98 (s, 0H), 2,36 (s, 3H), 2,09 (d, J = 17,2 Γц, 2H), 1,77 (s, 1H), 1,50 (s, 1H).	535,25
1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,95 (s, 1H), 7,74 (t, J = 8,0 Гц, 1H), 7,44 (s, 1H), 7,34 (d, J = 8,4 Γц, 2H), 7,15 (d, J = 8,4 Γц, 2H), 7,03 (d, J = 7,6 Γц, 1H), 6,80 (d, J = 8,4 Γц, 1H), 5,17 (s, 1H), 5,00 (s, 1H), 4,46 (t, J = 11,6 Γц, 1H), 3,94 (s, 1H), 3,70 (s, 3H), 2,84 (s, 1H), 2,35 (s, 3H), 2,04 (d, J = 12,8 Γц, 2H), 1,86 (s, 3H), 1,79 (d, J = 12,8 Γц, 2H).	549,26
(E)-1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)-4-(диметиламино)бут-2-ен-1-он	NH ₂ NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,15 (s, 1H), 7,95 (s, 1H), 7,75 (t, J = 8,0 Гц, 1H), 7,44 (s, 1H), 7,34 (d, J = 8,4 Γц, 2H), 7,14 (d, J = 8,4 Γц, 2H), 7,03 (d, J = 7,6 Γц, 1H), 6,80 (d, J = 8,4 Γц, 1H), 6,62 (d, J = 2,8 Γц, 2H), 4,45 (s, 2H), 4,13 (s, 1H), 3,69 (s, 3H), 3,02 (d, J = 4,0 Γц, 2H), 2,80 (s, 2H), 2,35 (s, 3H), 2,14 (s, 6H), 2,03 (s, 2H), 1,78 (s, 3H).	592,41

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,16 (s, 1H), 7,98 (d, J = 18,1 Гц, 1H), 7,78 – 7,75 (m, 1H), 7,50 – 7,44 (m, 1H), 7,37 – 7,30 (m, 2H), 7,14 (dd, J = 8,6, 1,9 Γц, 2H), 7,03 (d, J = 7,4 Γц, 1H), 6,82 (d, J = 8,2 Γц, 1H), 6,57 (dt, J = 16,7, 10,6 Γц, 1H), 6,14 (ddd, J = 16,7, 5,5, 2,4 Γц, 1H), 5,66 (ddd, J = 12,8, 10,3, 2,4 Γц, 1H), 5,09 – 4,96 (m, 1H), 3,92 – 3,78 (m, 1H), 3,70 (s, 5H), 3,62 – 3,42 (m,	521,20
1-(4-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1,2,4-оксадиазол-5-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	3H), 2,36 (s, 4H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,26 (s, 1H), 7,76 (t, J = 7,7 Γц, 1H), 7,42 (d, J = 8,2 Γц, 2H), 7,17 (d, J = 8,1 Γц, 2H), 7,05 (d, J = 7,4 Γц, 1H), 6,79 (dd, J = 17,3, 9,7 Γц, 2H), 6,09 (dd, J = 16,6, 2,5 Γц, 1H), 5,66 (dd, J = 10,3, 2,5 Γц, 1H), 4,15 (d, J = 13,0 Γц, 1H), 3,92 (s, 2H), 3,22 (d, J = 45,6 Γц, 4H), 3,03 (d, J = 12,4 Γц, 1H), 2,37 (s, 3H), 2,12 – 1,96 (m, 2H), 1,64 (s, 2H).	537,40
1-(4-(5-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1,3,4-оксадиазол-2-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,41 – 1,68 (m, 2H), 1,80 – 1,92 (m, 2H), 2,38 (s, 3H), 2,92 – 3,00 (m, 1H), 3,10 – 3,26 (m, 2H), 3,85 – 3,98 (m, 1H), 4,04 (s, 3H), 4,04 – 4,09 (m, 1H), 5,63 (dd, J = 2,8 Γц, 1H), 6,07 (dd, J = 2,4 Γц, 1H), 6,70 – 6,77 (m, 1H), 6,83 (d, J = 8,0 Γц, 1H), 7,06 (d, J = 7,2 Γц, 1H), 7,24 (d, J = 11,2 Γц, 1H), 7,48 (d, J = 4,8 Γц, 1H), 7,79 (t, J = 15,6 Γц, 1H), 8,28 (s, 1H)	537,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метил-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 (s, 1H), 8,01 (s, 1H), 7,77 – 7,70 (m, 1H), 7,25 (d, J = 8,5 Γц, 2H), 7,11 (d, J = 8,6 Γц, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,89 – 6,75 (m, 2H), 6,12 (dd, J = 16,7, 2,4 Γц, 1H), 5,71 – 5,66 (m, 1H), 4,49 (d, J = 12,4 Γц, 1H), 4,39 (d, J = 11,2 Γц, 1H), 4,14 (d, J = 13,5 Γц, 1H), 3,55 (s, 3H), 3,32 (s, 2H), 3,23 (s, 1H), 2,83 (t, J = 13,1 Γц, 1H), 2,34 (s, 3H), 2,07 (d, J = 10,1 Γц, 2H), 1,88 – 1,75 (m, 2H), 1,70 (s, 3H).	549,40
1-(4-(4-(4-амино-7-метил-5-(4-((5-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 8,03 (dd, J = 2,1, 1,1 Γц, 1H), 7,94 (d, J = 0,7 Гц, 1H), 7,71 (dd, J = 8,2, 2,5 Γц, 1H), 7,45 (d, J = 0,7 Γц, 1H), 7,37 – 7,29 (m, 2H), 7,17 – 7,09 (m, 2H), 6,99 (d, J = 8,3 Γц, 1H), 6,85 (dd, J = 16,7, 10,4 Γц, 1H), 6,12 (dd, J = 16,7, 2,4 Γц, 1H), 5,69 (dd, J = 10,4, 2,4 Γц, 1H), 4,51 – 4,41 (m, 2H), 4,14 (d, J = 13,9 Γц, 1H), 3,70 (s, 3H), 3,23 (t, J = 12,9 Γц, 1H), 2,84 (t, J = 12,5 Γц, 1H), 2,27 (s, 3H), 2,04 (s, 2H), 1,78 (t, J = 13,6 Γц, 2H).	535,3
1-(4-(4-(4-амино-7-метил-5-(4-((4-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 8,05 (d, J = 5,2 Γц, 1H), 7,95 (s, 1H), 7,45 (s, 1H), 7,36 – 7,31 (m, 2H), 7,16 – 7,12 (m, 2H), 7,02 – 6,99 (m, 1H), 6,91 (s, 1H), 6,85 (dd, J = 16,7, 10,5 Γц, 1H), 6,12 (dd, J = 16,7, 2,5 Γц, 1H), 5,69 (dd, J = 10,4, 2,4 Γц, 1H), 4,46 (t, J = 10,8 Γц, 1H), 4,14 (d, J = 13,7 Γц, 1H), 3,70 (s, 3H), 3,21 (d, J = 12,9 Γц, 1H), 2,83 (t, J = 12,6 Γц, 1H), 2,35 (s, 4H), 2,04 (s, 2H), 1,80 (d, J = 13,6 Γц, 2H).	535,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-5-(4- ((6-фторпиридин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6-ил)- 1Н-пиразол-1- ил)пиперидин-1- ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 8,05 (q, J = 8,1 Гц, 1H), 7,92 (s, 1H), 7,46 (s, 1H), 7,42 – 7,34 (m, 2H), 7,27 – 7,19 (m, 2H), 6,97 (dd, J = 7,9, 1,7 Γц, 1H), 6,92 (dd, J = 7,9, 2,4 Γц, 1H), 6,84 (dd, J = 16,7, 10,5 Γц, 1H), 6,12 (dd, J = 16,7, 2,4 Γц, 1H), 5,85 (s, 2H), 5,69 (dd, J = 10,4, 2,4 Γц, 1H), 4,46 (ddd, J = 15,3, 11,3, 3,9 Γц, 1H), 4,14 (d, J = 13,8 Γц, 1H), 3,70 (s, 3H), 3,22 (t, J = 12,9 Γц, 1H), 2,83 (t, J = 12,6 Γц, 1H), 2,05 (d, J = 12,4 Γц, 2H), 1,79 (t, J = 12,8 Γц, 2H).	539,3
1-(4-(4-(4-амино-5-(4- ((6-метоксипиридин- 2-ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6-ил)- 1Н-пиразол-1- ил)пиперидин-1- ил)этан-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,98 (s, 1H), 7,76 (t, J = 7,9 Гц, 1H), 7,41 – 7,30 (m, 3H), 7,25 – 7,16 (m, 2H), 6,85 (dd, J = 16,7, 10,4 Гц, 1H), 6,55 (dd, J = 7,9, 5,0 Гц, 2H), 6,12 (dd, J = 16,6, 2,5 Гц, 1H), 5,69 (dd, J = 10,5, 2,4 Гц, 1H), 4,47 (td, J = 12,2, 11,3, 6,8 Гц, 2H), 4,14 (d, J = 13,6 Гц, 1H), 3,69 (d, J = 15,3 Гц, 6H), 3,21 (d, J = 13,0 Гц, 1H), 2,83 (t, J = 12,6, 1H), 2,04 (d, J = 12,5 Гц, 2H), 1,89 – 1,65 (m, 2H).	551,35
1-(4-(4-(4-амино-7-метил-5-(4-(пиридин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H 9MP (400 MΓμ, DMSO- d_6) δ 8,25 – 8,13 (m, 2H), 7,94 (s, 1H), 7,88 (ddd, J = 8,2, 7,2, 2,0 Γμ, 1H), 7,46 (s, 1H), 7,38 – 7,30 (m, 2H), 7,22 – 7,11 (m, 3H), 7,07 (dd, J = 8,3, 1,0 Γμ, 1H), 6,84 (dd, J = 16,7, 10,5 Γμ, 1H), 6,12 (dd, J = 16,7, 2,4 Γμ, 1H), 5,86 (s, 1H), 5,69 (dd, J = 10,5, 2,4 Γμ, 1H), 4,47 (td, J = 11,1, 5,5 Γμ, 2H), 4,14 (d, J = 13,8 Γμ, 1H), 3,70 (s, 3H), 3,23 (t, J = 12,9 Γμ, 1H), 2,83 (t, J = 12,7 Γμ, 1H), 2,12 – 1,98 (m, 2H), 1,78 (t, J = 12,9 Γμ, 2H).	521,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-7-метил-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)- 1Н-пиразол-1- ил)пиперидин-1- ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,68 (d, J = 4,8 Гц, 2H), 8,17 (s, 1H), 7,96 (s, 1H), 7,48 (d, J = 0,7 Γц, 1H), 7,39 (d, J = 8,5 Γц, 2H), 7,34 – 7,23 (m, 3H), 6,85 (dd, J = 16,7, 10,5 Γц, 1H), 6,13 (dd, J = 16,6, 2,4 Γц, 1H), 5,70 (dd, J = 10,4, 2,4 Γц, 1H), 4,49 (d, J = 12,4 Γц, 2H), 4,15 (d, J = 13,7 Γц, 1H), 3,70 (s, 3H), 3,24 (s, 1H), 2,84 (t, J = 12,3 Γц, 1H), 2,07 (d, J = 12,4 Γц, 2H), 1,81 (d, J = 14,3 Γц, 2H).	522,2
1-(4-(4-(4-амино-7-метил-5-(4-(пиразин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	1H ЯМР (400 МГц, DMSO- d_6) δ 8,58 (d, J = 1,4 Γц, 1H), 8,41 (d, J = 2,7 Γц, 1H), 8,26 (dd, J = 2,7, 1,4 Γц, 1H), 8,17 (s, 1H), 7,94 (d, J = 0,7 Γц, 1H), 7,46 (d, J = 0,7 Γц, 1H), 7,42 – 7,35 (m, 2H), 7,31 – 7,23 (m, 2H), 6,85 (dd, J = 16,7, 10,4 Γц, 1H), 6,12 (dd, J = 16,7, 2,4 Γц, 1H), 5,69 (dd, J = 10,5, 2,4 Γц, 1H), 4,47 (m, 2H), 4,14 (d, J = 13,5 Γц, 1H), 3,70 (s, 3H), 3,23 (t, J = 12,9 Γц, 1H), 2,84 (t, J = 12,8 Γц, 1H), 2,04 (s, 2H), 1,80 (d, J = 13,6 Γц, 2H).	522,2
N-(3-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)циклобутил)-N-метилакриламид	NH ₂ N O	1H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (d, J = 1,4 Γц, 1H), 8,02 (s, 1H), 7,75 (td, J = 7,7, 2,3 Γц, 1H), 7,50 (d, J = 12,4 Γц, 1H), 7,36 (dd, J = 8,7, 2,6 Γц, 2H), 7,18 – 7,14 (m, 2H), 7,04 – 7,00 (m, 1H), 6,82 (dd, J = 8,1, 3,2 Γц, 1H), 6,19 – 5,57 (m, 3H), 5,14 (d, J = 106,7 Γц, 1H), 4,90 (dt, J = 9,0, 4,8 Γц, 1H), 3,71 (d, J = 2,7 Γц, 3H), 3,16 – 2,91 (m, 3H), 2,90 – 2,54 (m, 6H), 2,35 (s, 3H).	535,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-5-метил-1Н-пиразол-1-ил)пиперидин-1-	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 (s, 1H), 7,74 (t, J = 7,8 Γц, 1H), 7,67 (s, 1H), 7,22 (d, J = 8,2 Γц, 2H), 7,10 (d, J = 8,2 Γц, 2H), 7,02 (d, J = 7,4 Γц, 1H), 6,85 (dd, J = 16,8, 10,6 Γц, 1H), 6,79 (d, J = 8,2 Γц, 1H), 6,12 (dd, J = 16,8, 2,4 Γц, 1H), 6,01 (s, 2H), 5,69 (dd, J = 10,4, 2,4 Γц, 1H), 4,50 (d, J = 13,2 Γц, 1H), 4,40 (s, 1H), 4,16 (d, J = 13,6 Γц, 1H), 3,58 (s, 3H), 3,20 (t, J = 12,2 Γц, 1H), 2,79 (s, 1H), 2,35 (s, 3H), 1,83 (s, 4H), 1,78 (s, 3H).	549,25
(E)-2-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-карбонил)бут-2-еннитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 1,82 – 1,93 (m, 3H), 2,07 – 2,09 (m, 5H), 2,25 – 2,36 (m, 5 H), 2,80 – 3,08 (br, 1H), 3,70 (s, 3H), 3,82 – 4,70 (m, 3H), 5,50 – 6,10 (br, 1 H), 6,69 – 6,92 (m, 1H), 6,92 – 7,16 (m, 4H), 7,33 – 7,36 (m, 2H), 7,45 (s, 1H), 7,72 – 7,80 (m, 1H), 7,97 (s, 1H), 8,10 (s, 1H).	574,40
1-(3-(4-(4- амино-7- метил-5- (4-((6- метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)- 1Н-пиразол-1-ил) пирролидин-1-ил)бут- 2-ин-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 2,00 (d, J = 14,4 Гц, 3H), 2,36 (s, 5H), 3,31 (s, 1H), 3,49 (m, 1H), 3,62 – 3,80 (m, 5H), 3,88 – 4,05 (m, 1H), 5,04 (s, 1H), 6,82 (d, J = 8,4 Γц, 1H), 7,03 (d, J = 7,6 Γц, 1H), 7,11 – 7,19 (m, 2H), 7,30 – 7,39 (m, 2H), 7,48 (d, J = 2,8 Γц, 1H), 7,75 (t, J = 7,6 Γц, 1H), 7,99 (d, J = 9,6 Γц, 1H), 8,17 (d, J = 0,8 Γц, 1H).	533,23

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(E)-1-(3-(4-(4- амино-7-метил- 5-(4-((6-метилпиридн- 2-ил)окси)фенил)- 7H-пирроло[2,3-d] пиримидин-6-ил)- 1H-пиразол-1-ил) пирролидин-1-ил)бут -2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,82 (m, 3H), 2,36 (s, 5H), 3,51 (m, 1H), 3,70 (s, 4H), 3,80 – 4,05 (m, 1H), 4,95 – 5,11 (m, 1H), 6,25 (m, 1H), 6,64 – 6,73 (m, 1H), 6,82 (d, J = 8,4 Γц, 1H), 7,03 (d, J = 7,2 Γц, 1H), 7,11 – 7,18 (m, 2H), 7,34 (m, 2H), 7,48 (d, J = 4,4 Γц, 1H), 7,72 – 7,79 (m, 1H), 7,96 (d, J = 26,4 Γц, 1H), 8,16 (d, J = 0,8 Γц, 1H).	535,2
(E)-1-(3-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)азетидин-1-ил)-4-(диметиламино)-2-метилбут-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,15 (d, J = 11,3 Гц, 2H), 7,76 (t, J = 7,8 Гц, 1H), 7,51 (s, 1H), 7,40 – 7,32 (m, 2H), 7,20 – 7,12 (m, 2H), 7,03 (d, J = 7,4 Γц, 1H), 6,82 (d, J = 8,2 Γц, 1H), 5,92 (td, J = 6,5, 1,6 Γц, 2H), 5,27 (ddd, J = 13,4, 8,2, 5,2 Γц, 1H), 4,70 – 4,05 (m, 4H), 3,71 (s, 3H), 3,31 (s, 1H), 2,98 (d, J = 6,5 Γц, 2H), 2,36 (s, 3H), 2,14 (s, 6H), 1,75 (d, J = 1,4 Гц, 3H).	578,45
(E)-1-(3-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)азетидин-1-ил)бут-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,82 – 1,84 (m, 4H), 2,36 (s, 1H), 3,71 (s, 1H), 4,12 – 4,19 (m, 1H), 4,31 – 4,58 (m, 2H), 4,61 – 4,69 (m, 1 H), 5,27 – 5,33 (m, 1H), 6,01 – 6,06 (m, 1H), 6,66 – 6,68 (m, 1H), 6,82 (d, J = 8,0 Γц, 1H), 7,03 (d, J = 8,0 Γц, 1H), 7,15 (dd, J = 2,0 Γц, 2H), 7,35 (dd, J = 2,0 Γц, 2H), 7,52 (s, 1H), 7,76 (t, J = 15,6 Γц, 1H), 8,13 (s, 1H), 8,17 (s, 1H).	521,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино- 7-метил-5-(4-((6-метилпиридин -2-ил)окси)фенил) -7Н-пирроло[2,3-d]пиримидин-6-ил)- 1Н-пиразол-1-ил) пиперидин-1-ил)-2- (морфолинометил) проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,81 (s, 2H), 2,04 (d, J = 12,5 Гц, 2H), 2,35 (s, 4H), 2,37 (s, 3H), 2,85 (s, 1H), 3,10 (s, 1H), 3,22 (s, 1H), 3,54 (t, J = 4,8 Γц, 4H), 3,70 (s, 3H), 3,98 (s, 1H), 4,38 – 4,51 (m, 2H), 5,20 (s, 1H), 5,35 (s, 1H), 6,81 (d, J = 8,0 Γц, 1H), 7,03 (d, J = 7,2 Γц, 1H), 7,12 – 7,18 (m, 2H), 7,32 – 7,38 (m, 2H), 7,47 (d, J = 0,8 Γц, 1H), 7,75 (m, 1H), 7,94 (s, 1H), 8,16 (s, 1H).	634,5
1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)бут-2-ин-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,73 (m, 1H), 1,86 (m, 1H), 2,03 (s, 4H), 2,10 (d, J = 13,2 Γц, 1H), 2,36 (s, 3H), 2,80 – 2,92 (m, 1H), 3,27 (d, J = 2,8 Γц, 1H), 3,70 (s, 3H), 4,34 (m, 2H), 4,41 – 4,52 (m, 1H), 6,21 (d, J = 273,6 Γц, 1H), 6,81 (d, J = 8,4 Γц, 1H), 7,03 (d, J = 7,2 Γц, 1H), 7,10 – 7,21 (m, 2H), 7,31 – 7,40 (m, 2H), 7,44 (d, J = 0,7 Γц, 1H), 7,75 (d, J = 7,3, 8,2 Γц, 1H), 7,97 (s, 1H), 8,16 (s, 1H).	547,25
(E)-1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)бут-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,94 (d, $J = 0,7$ Гц, 1H), 7,75 (dd, $J = 8,2,7,4$ Гц, 1H), 7,44 (d, $J = 0,7$ Гц, 1H), 7,37 – 7,32 (m, 2H), 7,17 – 7,13 (m, 2H), 7,03 (d, $J = 7,3$ Γц, 1H), 6,80 (d, $J = 8,1$ Гц, 1H), 6,75 – 6,64 (m, 1H), 6,54 (dd, $J = 14,9,17$ Гц, 1H), 6,20 – 5,50 (m, 1H), 4,53 – 4,37 (m, 2H), 4,14 (s, 1H), 3,70 (s, 3H), 3,24 – 3,12 (m, 1H), 2,78 (s, 1H), 2,36 (s, 3H), 2,14 – 1,98 (m, 2H), 1,84 (dd, $J = 6,7,1,5$ Гц, 3H), 1,77 (s, 2H).	549,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(Е)-1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)-4-морфолинобут-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,79 (d, $J = 18,2=4$ Гц, 2H), 2,06 (d, $J = 16,0$ Гц, 2H), 2,36 (s, 6H), 3,09 (d, $J = 5,6$ Гц, 4H), 3,58 (t, J = 4,8 Гц, 4H), 3,70 (s, 3H), 4,12 (d, $J = 13,6$ Гц, 1H), 4,46 (m, 2H), 5,84 (s, 1H), 6,53 – 6,72 (m, 2H), 6,80 (d, $J = 8,0$ Гц, 1H), 7,03 (d, $J = 7,2$ Гц, 1H), 7,15 (d, J = 8,5 Гц, 2H), 7,24 – 7,40 (m, 2H), 7,44 (s, 1H), 7,95 (s, 1H), 8,15 (d, $J = 4,4$ Гц, 2H)	634,3
(Е)-1-(4-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)-4-(диметиламино)-2-метилбут-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,97 (s, 1H), 7,75 (t, J = 7.8 Гц, 1H), 7,45 (s, 1H), 7,37 - 7,31 (m, 2H), 7,19 - 7,13 (m, 2H), 7,03 (d, $J = 7.3$ Гц, 1H), 6,81 (d, $J = 8.1$ Гц, 1H), 5,51 (td, J = 6.6, 1,7 Γц, 2H), 4,60 - 4,33 (m, 1H), 4,38 - 3,79 (m, 1H), 3,70 (s, 3H), 3,34 (s, 1H), 2,93 (d, J = 6.7 Гц, 4H), 2,35 (s, 3H), 2,13 (s, 6H), 2,04 (d, $J = 12.7$ Гц, 2H), 1,88 - 1,72 (m, 5H).	606,45
1-(4-(4-(4-амино-7-метил-5-(4-феноксифенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H 9MP (400 MΓμ, DMSO- d_6) δ 8,15 (s, 1H), 7,91 (s, 1H), 7,49 – 7,38 (m, 3H), 7,36 – 7,28 (m, 2H), 7,17 (t, J = 7,4 Γμ, 1H), 7,11 – 7,07 (m, 2H), 7,07 – 7,02 (m, 2H), 5,84 (s, 2H), 5,24 – 5,12 (m, 1H), 5,01 (t, J = 1,3 Γμ, 1H), 4,51 – 4,34 (m, 2H), 3,91 (d, J = 28,7 Γμ, 1H), 3,70 (s, 3H), 3,22 (s, 1H), 2,86 (s, 1H), 2,04 (d, J = 12,6 Γμ, 2H), 1,88 (d, J = 1,4 Γμ, 3H), 1,78 (tt, J = 12,2, 6,1 Γμ, 2H).	534,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ O O O O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,14 (s, 1H), 7,94 (s, 1H), 7,36 (s, 1H), 7,28 – 7,22 (m, 2H), 7,07 – 6,90 (m, 2H), 5,76 (s, 2H), 5,26 – 5,14 (m, 1H), 5,01 (t, J = 1,3 Γц, 1H), 4,44 (ddt, J = 11,1, 8,0, 4,0 Γц, 2H), 3,97 (s, 1H), 3,79 (s, 3H), 3,70 (s, 3H), 3,03 (d, J = 139,1 Γц, 2H), 2,04 (d, J = 12,5 Γц, 2H), 1,88 (d, J = 1,4 Γц, 3H), 1,78 (qd, J = 12,1, 4,4 Γц, 2H).	472,35
7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-6-(1-(1-(винилсульфонил)пип еридин-4-ил)-1H-пиразол-4-ил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,97 – 7,94 (m, 1H), 7,75 (dd, J = 8,2, 7,3 Γц, 1H), 7,46 (d, J = 0,7 Γц, 1H), 7,38 – 7,32 (m, 2H), 7,20 – 7,12 (m, 2H), 7,03 (d, J = 7,3 Γц, 1H), 6,91 – 6,79 (m, 2H), 6,21 – 6,09 (m, 2H), 5,85 (s, 2H), 4,33 (dt, J = 7,2, 4,1 Γц, 0H), 3,70 (s, 3H), 3,60 (d, J = 12,4 Γц, 2H), 2,84 (td, J = 12,2, 2,7 Γц, 2H), 2,36 (s, 3H), 2,10 (d, J = 12,9 Γц, 2H), 1,95 (qd, J = 12,0, 4,2 Γц, 2H).	571,15
1-(4-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ NH ₂ N NN N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,98 (s, 1H), 7,67 (dd, J = 8,2, 7,4 Γц, 1H), 7,49 (d, J = 0,8 Γц, 1H), 7,14 (d, J = 8,0 Γц, 1H), 7,03 (d, J = 2,0 Γц, 1H), 6,97 – 6,90 (m, 2H), 6,85 (dd, J = 16,8, 10,6 Γц, 1H), 6,66 (d, J = 8,2 Γц, 1H), 6,12 (dd, J = 16,8, 2,6 Γц, 1H), 5,93 (s, 2H), 5,69 (dd, J = 10,6, 2,4 Γц, 1H), 4,54 – 4,43 (m, 2H), 4,15 (d, J = 13,8 Γц, 1H), 3,70 (s, 3H), 3,61 (s, 3H), 3,23 (t, J = 13,4 Γц, 1H), 2,83 (t, J = 12,4 Γц, 1H), 2,32 (s, 3H), 2,06 (d, J = 18,0 Γц, 2H), 1,87 – 1,71 (m, 2H).	565,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-5-(3-метокси-4-(м-толилокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 1,79 (m, 2H), 2,03 (s, 2H), 2,29 (s, 3H), 2,83 (m, 1H), 3,23 (m, 1H), 3,67 (d, J = 20,4 Γц, 6H), 4,14 (d, J = 14,0 Γц, 1H), 4,40 – 4,54 (m, 2H), 5,69 (m, 1H), 6,12 (m, 1H), 6,66 (m, 1H), 6,76 – 6,91 (m, 4H), 7,02 (m, 2H), 7,20 (d, J = 8,0 Γц, 1H), 7,47 (s, 1H), 7,95 (s, 1H), 8,16 (s, 1H).	564,45
1-(4-(4-(4-амино-5-(3-метокси-4-(пиридин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 8,11 (dd, J = 5,2, 2,0 Γц, 1H), 7,96 (s, 1H), 7,82 (ddd, J = 8,4, 7,2, 2,1 Γц, 1H), 7,52 (s, 1H), 7,17 (d, J = 8,0 Γц, 1H), 7,08 (ddd, J = 7,2, 4,9, 0,9 Γц, 1H), 7,03 – 6,92 (m, 3H), 6,85 (dd, J = 16,7, 10,5 Γц, 1H), 6,12 (dd, J = 16,7, 2,4 Γц, 1H), 5,95 (s, 1H), 5,69 (dd, J = 10,4, 2,4 Γц, 1H), 4,57 – 4,36 (m, 2H), 4,13 (t, J = 11,7 Γц, 1H), 3,69 (s, 3H), 3,60 (s, 3H), 3,29 – 3,14 (m, 1H), 2,84 (t, J = 12,7 Γц, 1H), 2,05 (s, 2H), 1,79 (t, J = 13,1 Γц, 2H).	551,20
1-(4-(3-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-5-метил-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 1H), 7,69 (t, J = 7,7 Гц, 1H), 7,15 (d, J = 8,0 Гц, 1H), 7,11 (d, J = 1,9 Гц, 1H), 7,00 – 6,92 (m, 2H), 6,84 (dd, J = 16,7, 10,5 Γц, 1H), 6,69 (d, J = 8,2 Γц, 1H), 6,12 (dd, J = 16,7, 2,4 Γц, 2H), 5,86 (s, 1H), 5,68 (dd, J = 10,4, 2,5 Γц, 1H), 4,57 – 4,43 (m, 2H), 4,16 (d, J = 13,7 Γц, 1H), 3,84 (s, 3H), 3,63 (s, 3H), 3,25 (d, J = 12,7 Γц, 1H), 2,86 (t, J = 12,0 Γц, 1H), 2,30 (d, J = 17,8 Γц, 6H), 1,90 (d, J = 22,3 Γц, 4H).	579,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-5-метил-1Н-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,19 (s, 1H), 7,73 – 7,63 (m, 2H), 7,13 (d, J = 8,0 Γц, 1H), 6,94 (d, J = 7,3 Γц, 1H), 6,90 – 6,78 (m, 3H), 6,68 (d, J = 8,2 Γц, 1H), 6,12 (dd, J = 16,6, 2,4 Γц, 2H), 5,69 (dd, J = 10,5, 2,4 Γц, 1H), 4,56 – 4,35 (m, 2H), 4,17 (d, J = 13,7 Γц, 1H), 3,60 (s, 3H), 3,47 (s, 3H), 3,20 (t, J = 13,1 Γц, 1H), 2,79 (s, 1H), 2,31 (s, 3H), 1,78 (s, 7H).	579,45
1-(4-(4-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-1Н-пиразол-1-ил)-2-метилпиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (d, $J = 1,3$ Гц, 1H), 8,04 (s, 1H), 7,71 – 7,62 (m, 1H), 7,53 (s, 1H), 7,13 (dd, $J = 9,2$, 8,0 Гц, 1H), 7,04 (dd, $J = 6,3$, 1,9 Гц, 1H), 6,97 – 6,88 (m, 2H), 6,88 – 6,70 (m, 1H), 6,66 (dd, $J = 8,3$, 4,5 Гц, 1H), 6,10 (dd, $J = 16,6$, 2,4 Гц, 1H), 5,95 (s, 1H), 5,72 – 5,62 (m, 1H), 4,46 (s, 1H), 4,06 (s, 1H), 3,69 (s, 3H), 3,62 (d, $J = 3,7$ Гц, 3H), 2,31 (d, $J = 1,9$ Гц, 3H), 2,28 – 2,18 (m, 1H), 2,07 (dd, $J = 16,7$, 8,8 Гц, 2H), 1,32 – 1,18 (m, 1H), 0,84 (d, 6,8 Гц, 2H).	578,67
1-(4-(4-амино-5-(3-метокси-4-(пиримидин-2-илокси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,64 (d, J = 4,8 Γц, 2H), 8,17 (s, 1H), 7,30 – 7,22 (m, 2H), 7,10 (s, 1H), 6,98 (d, J = 8,1 Γц, 1H), 6,80 (ddd, J = 28,0, 16,6, 10,4 Γц, 1H), 6,31 – 5,87 (m, 3H), 5,69 (t, J = 8,7 Γц, 1H), 4,20 (d, J = 31,7 Γц, 2H), 3,66 (d, J = 5,4 Γц, 8H), 2,18 (s, 2H).	484,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-амино-5-(4-((6- этилпиридин-2- ил)окси)-3- метоксифенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6-ил)- 3,6-дигидропиридин- 1(2H)-ил)проп-2-ен-1- он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,69 (t, J = 7,8 Гц, 1H), 7,18 (d, J = 8,0 Гц, 1H), 7,08 (s, 1H), 6,95 (dd, J = 11,4, 7,8 Γц, 2H), 6,75 (dd, J = 38,1, 9,5 Γц, 2H), 6,38 – 5,84 (m, 3H), 5,69 (t, J = 9,3 Γц, 1H), 4,42 – 4,06 (m, 2H), 3,66 (d, J = 3,1 Γц, 8H), 2,57 (q, J = 7,5 Γц, 2H), 2,18 (s, 2H), 1,08 (t, J = 7,5 Γц, 3H).	511,25
1-(4-(4-амино-5-(3-метокси-4-((5-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,94 (s, 1H), 7,64 (dd, J = 8,5, 2,4 Γ ц, 1H), 7,16 (d, J = 8,1 Γ ц, 1H), 7,07 (s, 1H), 6,95 (d, J = 8,1 Γ ц, 1H), 6,90 – 6,71 (m, 2H), 6,30 – 5,85 (m, 3H), 5,68 (d, J = 9,9 Γ ц, 1H), 4,20 (d, J = 32,5 Γ ц, 2H), 3,66 (d, J = 3,5 Γ ц, 8H), 2,24 (s, 3H), 2,17 (s, 2H).	497,35
1-(4-(4-амино-5-(3-метокси-4-((5-метилпиридин-3-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 – 8,07 (m, 3H), 7,18 – 7,08 (m, 3H), 6,96 (dd, J = 8,0, 1,9 Γц, 1H), 6,79 (ddd, J = 26,9, 16,6, 10,4 Γц, 1H), 6,17 – 6,07 (m, 2H), 5,96 (d, J = 18,9 Γц, 1H), 5,74 – 5,64 (m, 1H), 4,19 (d, J = 33,2 Γц, 2H), 3,71 (s, 3H), 3,66 (s, 5H), 2,29 (s, 3H), 2,16 (s, 2H), 2,08 (s, 1H).	497,20
1-(3-(4-амино-7-метил-5-(4-(пиримидин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,68 (dd, $J = 12,3, 4,7$ Гц, 2H), 8,19 (d, $J = 1,1$ Гц, 1H), 7,51 – 7,41 (m, 2H), 7,38 – 7,27 (m, 3H), 6,62 – 6,25 (m, 2H), 6,15 (dd, $J = 16,8, 2,4$ Гц, 1H), 5,89 (s, 2H), 5,69 (ddd, $J = 14,8, 10,2, 2,4$ Гц, 1H), 4,56 (dt, $J = 4,8, 2,4$ Гц, 1H), 4,35 – 4,22 (m, 2H), 4,05 (q, $J = 2,4$ Гц, 1H), 3,78 (d, $J = 4,1$ Гц, 3H).	440,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)- 2,5-дигидро-1Н- пиррол-1-ил)-2- метилпроп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 4,6 Гц, 2H), 8,18 (s, 1H), 7,49 – 7,41 (m, 2H), 7,38 – 7,28 (m, 3H), 6,28 (dd, J = 39,5, 2,3 Γц, 1H), 5,86 (s, 2H), 5,32 – 4,93 (m, 2H), 4,50 – 4,28 (m, 2H), 4,06 (d, J = 10,4 Γц, 2H), 3,79 (d, J = 4,9 Γц, 3H), 1,90 – 1,72 (m, 3H).	454,15
4-(6-(1-(1- акрилоилпиперидин- 4-ил)-1Н-пиразол-4- ил)-4-амино-7-метил- 7Н-пирроло[2,3- d]пиримидин-5-ил)-N- (2-гидрокси-2- метилпропил)бензами д	O NH OH NH2 N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,27 (t, $J = 6,1$ Гц, 1H), 8,18 (s, 1H), 8,00 (s, 1H), 7,92 – 7,81 (m, 2H), 7,43 – 7,35 (m, 3H), 6,84 (dd, $J = 16,7, 10,5$ Гц, 1H), 6,12 (dd, $J = 16,7, 2,4$ Гц, 1H), 5,82 (s, 1H), 5,69 (dd, $J = 10,5, 2,4$ Гц, 1H), 4,55 (s, 1H), 4,51 – 4,43 (m, 1H), 4,13 (d, $J = 13,6$ Гц, 1H), 3,69 (s, 3H), 3,27 (d, $J = 6,2$ Гц, 2H), 2,82 (d, $J = 12,1$ Гц, 1H), 2,05 (d, $J = 12,7$ Гц, 2H), 1,79 (s, 2H), 1,12 (s, 6H).	543,35
4-(6-(1-(1-акрилоилпиперидин-4-ил)-1Н-пиразол-4-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(тетрагидрофуран-3-ил)бензамид	O NH Z-N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,57 (d, $J = 6,4$ Гц, 1H), 8,17 (s, 1H), 8,00 (s, 1H), 7,92 – 7,86 (m, 2H), 7,43 – 7,33 (m, 3H), 6,85 (dd, $J = 16,7, 10,5$ Гц, 1H), 5,83 - 5,69 (dd, $J = 10,4, 2,4$ Гц, 2H), 4,52 – 4,41 (m, 3H), 4,14 (d, $J = 13,6$ Гц, 1H), 3,87 (dd, $J = 8,8,6,5$ Гц, 2H), 3,73 (td, $J = 8,1,5,8$ Гц, 1H), 3,68 (s, 3H), 3,59 (dd, $J = 8,8,4,3$ Гц, 1H), 3,23 (t, $J = 13,1$ Гц, 1H), 2,83 (t, 12,9 Гц, 1H), 2,16 (dq, $J = 12,4,7,5$ Гц, 1H), 2,05 (d, $J = 12,4$ Гц, 2H), 1,94 (tt, $J = 12,4,5,6$ Гц, 1H), 1,78 (d, $J = 13,0$ Гц, 2H).	541,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-(5-(4-(2- азабицикло[2.1.1] гекса н-2-карбонил)фенил)- 4-амино-7-метил-7Н- пирроло[2,3- d] пиримидин-6-ил)- 1Н-пиразол-1- ил) пиперидин-1- ил) проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,92 (s, 1H), 7,69 (d, J = 7,7 Γ ц, 1H), 7,46 (d, J = 7,8 Γ ц, 1H), 7,44 – 7,33 (m, 3H), 6,84 (dd, J = 16,7, 10,4 Γ ц, 1H), 5,87 (s, 1H), 5,69 (dd, J = 10,5, 2,4 Γ ц, 1H), 4,50 – 4,40 (m, 2H), 4,13 (d, J = 13,8 Γ ц, 1H), 3,69 (s, 3H), 3,47 (s, 2H), 3,32 – 3,17 (m, 1H), 2,89 (s, 1H), 2,81 (d, J = 12,3 Γ ц, 1H), 2,10 – 1,95 (m, 5H), 1,77 (s, 2H), 1,49 (s, 1H), 1,36 (s, 1H).	537,45
4-(6-(1-(1- акрилоилпиперидин- 4-ил)-1Н-пиразол-4- ил)-4-амино-7-метил- 7Н-пирроло[2,3- d]пиримидин-5-ил)-N- метил-N-((3-метил- 1,2,4-оксадиазол-5- ил)метил)бензамид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,92 (s, 1H), 7,39 (d, $J = 14,2$ Гц, 5H), 6,84 (dd, $J = 16,7$, 10,5 Гц, 1H), 6,11 (dd, $J = 16,7$, 2,4 Гц, 1H), 5,89 (s, 1H), 5,69 (dd, $J = 10,5$, 2,4 Гц, 1H), 4,94 (s, 2H), 4,45 (s, 2H), 4,12 (d, $J = 13,8$ Гц, 1H), 3,69 (s, 3H), 3,17 (d, $J = 33,9$ Гц, 4H), 2,82 (t, $J = 12,9$ Гц, 1H), 2,37 (s, 3H), 2,05 (d, $J = 26,0$ Гц, 2H), 1,78 (d, $J = 13,9$ Гц, 2H).	581,30
1-(4-(4-(4-амино-7-метил-5-(4-((1-метил-1H-пиразол-3-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1H-пиразол-1-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,15 (s, 1H), 7,92 (s, 1H), 7,83 (s, 1H), 7,55 (s, 1H), 7,46 – 7,38 (m, 2H), 7,26 (s, 1H), 7,20 – 7,16 (m, 2H), 6,87 – 6,80 (m, 1H), 6,11 (dd, $J = 16,7, 2,4$ Γц, 1H), 6,07 – 5,99 (m, 1H), 5,70 – 5,66 (m, 1H), 4,56 – 4,38 (m, 2H), 4,18 – 4,09 (m, 1H), 3,79 (s, 3H), 3,74 (s, 3H), 3,21 (t, $J = 12,7$ Гц, 1H), 2,81 (t, $J = 12,7$ Гц, 1H), 2,02 (d, $J = 12,5$ Гц, 2H), 1,84 – 1,68 (m, 2H).	524,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(6-(1-(1- акрилоилпиперидин- 4-ил)-1Н-пиразол-4- ил)-4-амино-7-метил- 7Н-пирроло[2,3- d]пиримидин-5-ил)-N- (2-метокси-2- метилпропил)бензами д	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 8,00 (s, 2H), 7,88 (d, J = 7,9 Γц, 2H), 7,43 – 7,35 (m, 3H), 6,84 (dd, J = 16,8, 10,7 Γц, 1H), 6,12 (d, J = 16,6 Γц, 1H), 5,69 (d, J = 10,8 Γц, 2H), 4,48 (d, J = 14,5 Γц, 2H), 4,13 (s, 1H), 3,68 (s, 3H), 3,40 - 3,23 (s, 3H), 3,16 (s, 3H), 2,83 (s, 1H), 2,04 (s, 2H), 1,79 (s, 2H), 1,13 (s, 6H).	557,45
1-(4-{4-[4-амино-5-(2-хлор-4-феноксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил]-1Н-пиразол-1-ил} пиперидин-1-ил)проп-2-ен-1-он	NH ₂ CI N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,15 (s, 1H), 7,88 (s, 1H), 7,47 (t, $J=7,7$ Гц, 1H), 7,40 (d, $J=8,4$ Γц, 1H), 7,33 (s, 1H), 7,28 – 7,14 (m, 4H), 7,00 (dd, $J=8,4$, 2,6 Гц, 1H), 6,85 (dd, $J=16,7$, 10,4 Γц, 1H), 6,13 (dd, $J=16,8$, 2,4 Γц, 1H), 5,77 (s, 2H), 4,47 (tt, $J=11,4$, 4,1 Γц, 2H), 4,14 (d, $J=13,7$ Γц, 1H), 3,76 (s, 3H), 3,24 (t, $J=12,8$ Гц, 1H), 2,85 (t, $J=12,7$ Гц, 1H), 2,03 (s, 2H), 1,78 (t, $J=12,6$ Гц, 2H).	554,05
1-(4-{4-[4-амино-5-(3-метокси-4-феноксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил]-1Н-пиразол-1-ил}пиперидин-1-ил)проп-2-ен-1-он; муравьиная кислота	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,92 (s, 1H), 7,49 (s, 1H), 7,34 (t, J = 7,7 Γ μ, 2H), 7,10 – 7,00 (m, 3H), 7,00 – 6,79 (m, 4H), 6,13 (dd, J = 16,7, 2,4 Γ μ, 1H), 5,70 (dd, J = 10,4, 2,4 Γ μ, 1H), 4,49 (tt, J = 11,6, 4,1 Γ μ, 2H), 4,14 (d, J = 13,8 Γ μ, 1H), 3,71 (s, 3H), 3,65 (s, 3H), 3,24 (t, J = 12,9 Γ μ, 1H), 2,85 (t, J = 12,7 Γ μ, 1H), 2,03 (s, 2H), 1,80 (t, J = 12,6 Γ μ, 2H).	595,66

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-{4-[4-амино-5-(4-хлор-3-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил]-1Н-пиразол-1-ил} пиперидин-1-ил) проп-2-ен-1-он	O NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,98 (d, $J = 0.8$ Гц, 1H), 7,46 – 7,39 (m, 2H), 7,00 (d, $J = 1.9$ Гц, 1H), 6,91 – 6,85 (m, 1H), 6,89 – 6,80 (m, 1H), 6,12 (dd, $J = 16.7$, 2,4 Гц, 1H), 5,92 (s, 2H), 5,70 (dd, $J = 10.5$, 2,4 Гц, 1H), 4,53 – 4,43 (m, 1H), 4,14 (d, $J = 14.0$ Гц, 1H), 3,76 (s, 3H), 3,67 (s, 3H), 3,23 (t, $J = 13.2$ Гц, 1H), 2,84 (t, $J = 12.9$ Гц, 1H), 2,04 (d, $J = 12.8$ Гц, 2H), 1,80 (s, 2H).	491,98
1-(4-{4-[4-амино-5-(2-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил]-1Н-пиразол-1-ил} пиперидин-1-ил)проп-2-ен-1-он	NH2 N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (s, 1H), 7,87 (s, 1H), 7,40 (t, J = 7,8 Γ ц, 1H), 7,29 (s, 1H), 7,20 (d, J = 7,3 Γ ц, 1H), 7,12 (d, J = 8,3 Γ ц, 1H), 7,00 (t, J = 7,4 Γ ц, 1H), 6,84 (dd, J = 16,7, 10,5 Γ ц, 1H), 6,12 (dd, J = 16,5, 2,4 Γ ц, 1H), 5,69 (dd, J = 10,3, 2,4 Γ ц, 1H), 5,57 (s, 2H), 4,42 (dt, J = 15,2, 5,3 Γ ц, 2H), 4,12 (d, J = 13,8 Γ ц, 1H), 3,73 (s, 3H), 3,64 (s, 3H), 2,82 (t, J = 12,9 Γ ц, 3H), 2,02 (d, J = 12,5 Γ ц, 2H), 1,81 – 1,70 (m, 2H).	457,53
1-(4-{4-[4-амино-5-(5-хлор-2H-1,3-бензодиоксол-4-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил]-1H-пиразол-1-ил} пиперидин-1-ил)проп-2-ен-1-он		¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,27 (s, 1H), 7,96 (s, 1H), 7,37 (s, 1H), 7,04 (d, J = 8,4 Γц, 2H), 7,00 (d, J = 8,4 Γц, 1H), 6,85 (dd, J = 16,7, 10,5 Γц, 1H), 6,12 (dd, J = 16,7, 2,4 Γц, 1H), 6,01 (d, J = 1,0 Γц, 1H), 5,96 (d, J = 1,0 Γц, 1H), 5,70 (dd, J = 10,5, 2,4 Γц, 1H), 4,53 – 4,43 (m, 2H), 4,13 (d, J = 13,8 Γц, 1H), 3,80 (s, 3H), 3,25 (d, J = 13,6 Γц, 1H), 2,83 (t, J = 12,6 Γц, 1H), 2,04 (d, J = 12,5 Γц, 2H), 1,79 (s, 2H).	505,96

Схема 7

N-(4-(4-аминопирроло[2,1-f][1,2,4]триазин-6-ил)фенил)метакриламид

[0326] Стадия 1: В герметизируемую реакционную пробирку загружали 6-бромпирроло[2,1-f][1,2,4]триазин-4-амин (500 мг, 2,34 ммоль), 2-метил-N-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]проп-2-енамид (804 мг, 2,80 ммоль), К₃РО₄ (1,48 г, 7,02 ммоль), Рd(dppf)Cl₂ (171 мг, 234 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли DMF/H₂O (10 мл), и смесь перемешивали при 90°C в течение 1 часа. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ

(элюирование смесью дихлорметана и метанола, 15:1). При концентрировании под вакуумом получали N-(4-{4-аминопирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2-енамид (280 мг, выход 34%) в виде почти белого твердого аморфного вещества.

N-(4-{4-амино-5,7-дибромпирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2енамид

[0327] Стадия 2: В круглодонную колбу загружали N-(4-{4-аминопирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2-енамид (260 мг, 886 мкмоль), добавляли диметилформамид (5 мл), затем при 0°С добавляли NBS (313 мг, 1,77 ммоль), и раствор перемешивали в течение 1 часа при 0°С. Реакционную смесь разбавляли водным раствором Na₂SO₃ (10 мл), и водную фазу трижды экстрагировали дихлорметаном (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ (элюирование смесью дихлорметана и метанола, 20:1). При концентрировании под вакуумом получали N-(4-{4-амино-5,7-дибромпирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2-енамид (350 мг, выход 87%) в виде оранжевого твердого аморфного вещества.

N-(4-(4-амино-5-бромпирроло[2,1-f][1,2,4]триазин-6-ил)фенил)метакриламид

[0328] **Стадия 3:** В герметизируемую реакционную пробирку загружали N-(4-{4-амино-5,7-дибромпирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2-енамид (300 мг, 665 мкмоль), добавляли тетрагидрофуран (6 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. При температуре - 78 °C добавляли п-ВиLi (0,8 мл, 2 ммоль), и полученную смесь перемешивали при -78 °C в течение 5 минут. Реакционную смесь разбавляли водой (5 мл), и водную фазу

трижды экстрагировали дихлорметаном (5 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ТСХ (элюирование смесью дихлорметана и метанола, 15:1). При концентрировании под вакуумом получали N-(4-{4-амино-5-бромпирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2-енамид (100 мг, выход 40%) в виде почти белого твердого аморфного вещества.

N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)пирроло[2,1f][1,2,4]триазин-6-ил)фенил)метакриламид

[0329] Стадия 4: В герметизируемую реакционную пробирку загружали N-(4-{4амино-5-бромпирроло[2,1-f][1,2,4]триазин-6-ил}фенил)-2-метилпроп-2-енамид (90,0 мг, 241 мкмоль), 2-метил-6-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2ил)фенокси]пиридин (82,4 мг, 265 мкмоль), K₃PO₄ (153 мг, 722 мкмоль), Pd(dppf)Cl₂ (17,6 мг, 24,1 мкмоль), добавляли DMF/H₂O (4 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, а затем смесь перемешивали при 90°C в течение 1 часа. Реакционную смесь разбавляли водой (10 мл), и водную фазу трижды экстрагировали дихлорметаном (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 30×150 мм 5 мкм; Подвижная фаза А: неопределенная, Подвижная фаза В: неопределенная; Скорость пропускания: 60 мл/мин; Градиент: от 35 В до 50 В в течение 8 мин; 220 нм; RT1: 7,54; RT2: -; Объем вводимой пробы: - мл; Количество рабочих циклов: -;). После лиофилизации получали N-[4-(4-амино-5-{4-[(6-метилпиридин-2ил)окси]фенил}пирроло[2,1-f][1,2,4]триазин-6-ил)фенил]-2-метилпроп-2-енамид (7,62 мг, выход 6%) в виде почти белого твердого аморфного вещества.

[0330] Другие такие же соединения, полученные согласно способам, описанным в Примере 9, показаны в Таблице 8 ниже.

Таблица 8. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,76 (s, 1H), 8,03 (s, 1H), 7,90 (s, 1H), 7,77 (t, $J = 7.8$ Γц, 1H), 7,60 – 7,53 (m, 2H), 7,41 – 7,34 (m, 2H), 7,23 – 7,13 (m, 4H), 7,05 (d, $J = 7.4$ Γц, 1H), 6,85 (d, $J = 8.1$ Γц, 1H), 5,77 (s, 1H), 5,50 (s, 1H), 2,38 (s, 3H), 1,94 (s, 3H).	477,20
N-(4-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)пиррол о[2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d ₆) δ 9,73 (s, 1H), 8,03 (s, 1H), 7,91 (s, 1H), 7,64 – 7,51 (m, 4H), 7,42 – 7,36 (m, 2H), 7,14 – 7,08 (m, 2H), 5,77 (d, J = 1,3 Γц, 1H), 5,50 (t, J = 1,5 Γц, 1H), 3,48 (dt, J = 13,3, 6,3 Γц, 4H), 2,01 – 1,71 (m, 7H).	467,35
N-(4-(4-амино-5-(4- (пирролидин-1- илсульфонил)фенил)пи рроло[2,1- f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,75 (s, 1H), 8,04 (s, 1H), 7,94 (s, 1H), 7,85 (d, J = 8,2 Γц, 2H), 7,54 (dd, J = 8,4, 5,8 Γц, 4H), 7,01 (d, J = 8,6 Γц, 2H), 5,76 (s, 1H), 5,50 (s, 1H), 3,25 – 3,13 (m, 4H), 1,96 – 1,89 (m, 3H), 1,77 – 1,57 (m, 4H).	503,35
N-(4-(4-амино-5-(3- фтор-4-((5- фторпиримидин-2- ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ F NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,77 (s, 1H), 8,81 (s, 2H), 8,02 (s, 1H), 7,93 (s, 1H), 7,62 – 7,56 (m, 2H), 7,49 (t, J = 8,3 Гц, 1H), 7,36 (dd, J = 11,2, 2,0 Гц, 1H), 7,24 (dd, J = 8,3, 2,1 Гц, 1H), 7,21 – 7,10 (m, 2H), 5,79 (s, 1H), 5,54 – 5,45 (m, 1H), 1,95 (t, J = 1,3 Гц, 3H).	500,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-((6-	/	¹Н ЯМР (400 МГц, DMSO-	441,30
метилпиридин-2-	N	d_6) δ 7,86 (d, J = 1,5 Гц, 1H),	
ил)окси)фенил)пирроло	o - 1	7,84 – 7,72 (m, 2H), 7,45 (dd,	
[2,1-f][1,2,4]триазин-6-		Ј = 8,6, 2,6 Гц, 2Н), 7,29 –	
ил)пирролидин-1-	()	7,19 (m, 2H), 7,05 (d, J = 7,4	
ил)проп-2-ен-1-он	NH_2 O	Γ ц, 1H), 6,86 (d, $J = 8,1$ Γ ц,	
	N N	1H), 6.55 (ddd, $J = 16.8$, 13.5 ,	
	N N	10,3 Гц, 1H), 6,12 (dt, J =	
	N	16,9, 2,0 Гц, 1H), 5,65 (ddd, J	
		= 9,8, 6,9, 2,4 Гц, 1Н), 4,70	
		(d, $J = 8.6 \Gamma \mu$, 1H), $3.91 - 3.59$	
		(m, 2H), 3,59 – 3,42 (m, 1H),	
		3,37 (s, 1H), 3,28 – 3,14 (m,	
		2H), 2,37 (d, $J = 3,0 \Gamma \mu$, 3H),	
		2,25 – 1,85 (m, 2H).	
N-(4-(4-амино-5-(4-((6-		¹Н ЯМР (400 МГц, DMSO-	463,30
метилпиридин-2-		d_6) δ 10,12 (s, 1H), 8,03 (s,	
ил)окси)фенил)пирроло	N O	1H), 7,90 (s, 1H), 7,81 – 7,73	
[2,1-f][1,2,4]триазин-6-		(m, 1H), 7.56 (d, $J = 8.6$ Γ_{LL} ,	
ил)фенил)акриламид	/ >	2H), 7,44 – 7,32 (m, 2H), 7,24	
	NH ₂ O, //	-7,13 (m, 4H), $7,05$ (d, $J = 7,4$	
		Гц, 1H), 6,84 (s, 1H), 6,42 (dd,	
	NH NH	$J = 16,9, 10,1 \Gamma$ ц, 1H), 6,24	
	N · C	(dd, $J = 17,0, 2,0 \Gamma \mu, 1H$), 5,75	
		(dd, $J = 10,1,2,1 \Gamma \mu, 1H$), 2,38	
		(s, 3H).	
N-(4-(4-амино-7-метил-		¹H ЯМР (400 МГц, DMSO-	491,30
5-(4-((6-метилпиридин-		d_6) δ 9,78 (s, 1H), 7,96 (s, 1H),	
2-	N-O	7,83 – 7,71 (m, 1H), 7,64 –	
ил)окси)фенил)пирроло		7,57 (m, 2H), 7,35 – 7,24 (m,	
[2,1-f][1,2,4]триазин-6-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2H), 7,16 – 7,06 (m, 4H), 7,02	
ил)фенил)метакриламид	NH ₂	$(d, J = 7,4 \Gamma \mu, 1H), 6,80 (d, J)$	
		$= 8,1 \Gamma \text{H}, 1\text{H}, 5,77 \text{ (t, } J = 1,1)$	
	NH \	Гц, 1H), 5,60 – 5,39 (m, 1H),	
	N. 1	2,46 (s, 3H), 2,35 (s, 3H), 1,94	
		$(d, J = 1,2 \Gamma \mu, 3H).$	

Схема 8

4-(4-Амино-7-(гидроксиметил)-6-(4-метакриламидофенил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид

4-(4-Амино-7-(гидроксиметил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2трифторэтил)бензамид

[0331] **Стадия 1:** В герметизируемую реакционную пробирку загружали (4-амино-5-бромпирроло[2,1-f][1,2,4]триазин-7-ил)метанол (600 мг, 2,49 ммоль), 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-N-(2,2,2-трифторэтил)бензамид (983 мг, 2,99 ммоль), Pd(dtbpf)Cl₂ (162 мг, 249 мкмоль), CsF (1,14 г, 7,47 ммоль), смесь DMF:вода=16:1 (8 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Раствор перемешивали в течение 2 часов при 90°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу отделяли и сушили над Na₂SO₄, после чего фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ. После концентрирования под вакуумом получали 4-(4-амино-7-(гидроксиметил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид (400 мг, выход 44%) в виде маслянистой жидкости желтого цвета.

4-(4-Амино-7-(((трет-бутилдиметилсилил)окси)метил)пирроло[2,1f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид

[0332] Стадия 2: В герметизируемую реакционную пробирку загружали 4-(4-амино-7-(гидроксиметил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид (380 мг, 1,04 ммоль), имидазол (283 мг, 4,16 ммоль), DMF (5 мл) и магнитную мешалку. Добавляли TBSCl (314 мг, 2,08 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Итоговую смесь очищали с помощью хроматографической колонки C18. После концентрирования под вакуумом получали 4-(4-амино-7-(((трет-бутилдиметилсилил)окси)метил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид (420 мг, выход 84%) в виде желтого твердого аморфного вещества.

4-(4-Амино-6-бром-7-(((трет-бутилдиметилсилил)окси)метил)пирроло[2,1f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид

[0333] Стадия 3: В круглодонную колбу загружали 4-(4-амино-7-(((третбутилдиметилсилил)окси)метил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид (400 мг, 0,84 ммоль), диметилформамид (5 мл) и магнитную мешалку. Добавляли NBS (225 мг, 1,00 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу отделяли и сушили над Na₂SO₄, после чего фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали 4-(4-амино-6-бром-7-(((трет-бутилдиметилсилил)окси)метил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид (450 мг, выход 94%) в виде желтого твердого аморфного вещества.

6-{5-[2-(Трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амин

[0334] Стадия 4: В герметизируемую реакционную пробирку загружали 4-(4-амино-6бром-7-(((трет-бутилдиметилсилил)окси)метил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид (200 мг, 0,36 ммоль), N-(4-(4,4,5,5-тетраметил-1,3,2диоксаборолан-2-ил)фенил)метакриламид (124 мг, 0,43 ммоль), Pd(dtbpf)Cl₂ (23,4 мг, 36 мкмоль), CsF (164 мг, 1,08 ммоль), смесь DMF:вода=16:1 (4 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Раствор перемешивали в течение 2 часов при 90°C в атмосфере N₂. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу собирали и сушили над Na₂SO₄, после чего фильтровали и концентрировали под вакуумом. Полученный неочищенный материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 19*250 мм, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO3 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 25 мл/мин; Градиент: от 20 B до 50 B в течение 8 мин; 220 нм; RT1: 7,23). После лиофилизации получали 4-(4амино-7-(гидроксиметил)-6-(4-метакриламидофенил)пирроло[2,1-f][1,2,4]триазин-5ил)-N-(2,2,2-трифторэтил)бензамид (30,4 мг, выход 16%) в виде почти белого твердого аморфного вещества.

[0335] Другие такие же соединения, полученные согласно способам, описанным в Примере 10, показаны в Таблице 9 ниже.

Таблица 9. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-циано- 5-(4-((6-метилпиридин- 2- ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 9,88 (s, 1H), 8,46 (s, 1H), 8,20 (s, 1H), 7,80 – 7,63 (m, 3H), 7,36 (d, J = 8,4 Γ μ, 2H), 7,25 – 7,14 (m, 4H), 7,04 (d, J = 7,3 Γ μ, 1H), 6,84 (d, J = 8,2 Γ μ, 1H), 5,79 (s, 1H), 5,53 (s, 1H), 2,36 (s, 3H), 1,94 (s, 3H).	502,35
N-(4-(4-амино-7- (гидроксиметил)-5-(4- ((6-метилпиридин-2- ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ OH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,78 (s, 1H), 7,99 (s, 1H), 7,75 (t, J = 7,8 Гц, 1H), 7,64 – 7,55 (m, 2H), 7,32 – 7,26 (m, 2H), 7,22 – 7,10 (m, 4H), 7,03 (d, J = 7,4 Гц, 1H), 6,81 (d, J = 8,1 Гц, 1H), 5,77 (s, 1H), 5,51 (s, 1H), 5,17 (t, J = 5,0 Гц, 1H), 4,69 (d, J = 4,9 Гц, 2H), 2,36 (s, 3H), 1,94 (s, 3H).	507,35
N-(4-(4-амино-7- (гидроксиметил)-5-(4- ((6-метилпиридин-2- ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6- ил)фенил)акриламид	NH ₂ O NH N HO	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,14 (s, 1H), 7,99 (s, 1H), 7,75 (t, J = 7,7 Γц, 1H), 7,63 – 7,56 (m, 2H), 7,33 – 7,25 (m, 2H), 7,24 – 7,17 (m, 2H), 7,17 – 7,09 (m, 2H), 7,03 (d, J = 7,3 Γц, 1H), 6,81 (d, J = 8,1 Γц, 1H), 6,43 (dd, J = 17,0, 10,1 Γц, 1H), 6,25 (dd, J = 17,0, 2,1 Γц, 1H), 5,75 (dd, J = 10,1, 2,1 Γц, 1H), 5,16 (t, J = 5,0 Γц, 1H), 4,69 (d, J = 5,0 Γц, 2H), 2,36 (s, 3H).	493,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-7- (гидроксиметил)-6-(4- метакриламидофенил)п ирроло[2,1- f][1,2,4]триазин-5-ил)- N-(2,2,2- трифторэтил)бензамид	F F HN O O NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,76 (s, 1H), 9,13 (s, 1H), 8,01 (s, 1H), 7,93 – 7,83 (m, 2H), 7,61 – 7,54 (m, 2H), 7,43 – 7,30 (m, 2H), 7,18 – 7,08 (m, 2H), 5,77 (d, J = 1,2 Γц, 1H), 5,51 (s, 0H), 5,16 (t, J = 4,9 Γц, 1H), 4,68 (d, J = 5,0 Γц, 2H), 4,19 – 4,00 (m, 2H), 1,93 (t, J = 1,2 Γц, 3H).	525
N-(4-(4-амино-7- (гидроксиметил)-5-(4- (пиперидин-1- карбонил)фенил)пиррол о[2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,76 (s, 1H), 7,99 (s, 1H), 7,60 – 7,53 (m, 2H), 7,37 (d, J = 8,1 Γц, 2H), 7,32 – 7,26 (m, 2H), 7,15 – 7,09 (m, 2H), 5,77 (s, 1H), 5,50 (d, J = 1,9 Γц, 1H), 5,17 (s, 1H), 4,68 (s, 2H), 3,57 - 3,35 (d, J = 2,8 Γц, 4H), 1,93 (t, J = 1,2 Γц, 3H), 1,69 – 1,40 (m, 6H).	511,40
N-(4-(4-амино-7- (метоксиметил)-5-(4- ((6-метилпиридин-2- ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,78 (s, 1H), 8,00 (s, 1H), 7,74 (t, J = 7,7 Гц, 1H), 7,61 (d, J = 8,6 Гц, 2H), 7,36 – 7,25 (m, 2H), 7,12 (d, J = 8,3 Γц, 4H), 7,03 (d, J = 7,4 Γц, 1H), 6,81 (d, J = 8,1 Γц, 1H), 5,77 (s, 1H), 5,50 (s, 1H), 4,60 (s, 2H), 3,31 (s, 3H), 2,35 (s, 3H), 1,94 (d, J = 1,3 Γц, 3H).	521,40
N-(4-(4-амино-7- ((диметиламино)метил)- 5-(4-((6-метилпиридин- 2- ил)окси)фенил)пирроло [2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,74 (s, 1H), 7,96 (s, 1H), 7,79 – 7,70 (m, 1H), 7,62 – 7,56 (m, 2H), 7,34 – 7,26 (m, 2H), 7,26 – 7,20 (m, 2H), 7,15 – 7,07 (m, 2H), 7,03 (d, J = 7,4 Γц, 1H), 6,80 (d, J = 8,1 Γц, 1H), 5,77 (s, 1H), 5,50 (t, J = 1,5 Γц, 1H), 3,71 (s, 2H), 2,36 (s, 3H), 2,11 (s, 6H), 1,94 (d, J = 1,2 Γц, 3H).	534,35

Схема 9

Метил-4-(4-амино-6-(4-метакриламидофенил)-7H-циклопента[d]пиримидин-5ил)бензоат

[0336] Стадия 1: В круглодонную колбу загружали N-(4-{4-амино-5-бром-7Н-циклопента[d]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид (800 мг, 2,15 ммоль), метил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)бензоат (731 мг, 2,79 ммоль), Pd(dtbpf)Cl₂ (139 мг, 215 мкмоль), СsF (980 мг, 6,45 ммоль), смесь DMF:H₂O=16:1 (8 мл) и магнитную мешалку. Раствор перемешивали в течение 2 часов при 90°С в атмосфере N₂. Реакционную смесь разбавляли водой (50 мл) и трижды экстрагировали EtOAc (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали метил-4-{4-амино-6-[4-(2-

метилпроп-2-енамидо)фенил]-7H-циклопента[d]пиримидин-5-ил}бензоат (600 мг, выход 56%) в виде почти белого твердого аморфного вещества.

4-(4-Амино-6-(4-метакриламидофенил)-7H-циклопента[d]пиримидин-5ил)бензойная кислота

[0337] **Стадия 2:** В круглодонную колбу загружали метил-4-{4-амино-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-циклопента[d]пиримидин-5-ил}бензоат (580 мг, 1,35 ммоль), THF:LiOH(2M)=1:1 (6 мл) и магнитную мешалку. Раствор перемешивали в течение 3 часов при комнатной температуре. Величину рН раствора доводили до уровня 6~7 водным раствором HCl.Целевой продукт осаждали путем добавления HCl и сушили. В результате этого получали 4-{4-амино-6-[4-(2-метилпроп-2-енамидо)фенил]-7H-циклопента[d]пиримидин-5-ил}бензойную кислоту (350 мг, выход 63%) в виде почти белого твердого аморфного вещества.

4-(4-Амино-6-(4-метакриламидофенил)пирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2гидрокси-2-метилпропил)бензамид

[0338] **Стадия 3:** В герметизируемую реакционную пробирку загружали 4-{4-амино-6-[4-(2-метилпроп-2-енамидо)фенил]-7аН-циклопента[d]пиримидин-5-ил}бензойную кислоту (60 мг, 145 мкмоль), 1-амино-2-метилпропан-2-ол (15,5 мг, 174 мкмоль), НАТU (55,2 мг, 145 мкмоль), DIEA (37,4 мг, 290 мкмоль), диметилформамид (10 мл) и магнитную мешалку. Смесь перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой и очищали методом ВЭЖХ (Колонка:

ХВгіdge Prep OBD C18 Column, 19*150 мм, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO3 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 25 мл/мин; Градиент: от 15 В до 50 В в течение 7 мин; 254/220 нм; RT1: 7,58). После лиофилизации получали 4-{4-амино-6-[4-(2-метилпроп-2-енамидо)фенил]пирроло[2,1-f][1,2,4]триазин-5-ил}-N-(2-гидрокси-2-метилпропил)бензамид (40,2 мг, выход 56,4%) в виде твердого аморфного вещества белого цвета.

[0339] Другие такие же соединения, полученные согласно способам, описанным в Примере 11, показаны в Таблице 10 ниже.

Таблица 10. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)п ирроло[2,1-f][1,2,4]триазин-5-ил)-N-(2,2,2-трифторэтил)бензамид	F F HN O O NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,74 (s, 1H), 9,18 (t, J = 6,3 Γц, 1H), 8,03 (s, 1H), 8,00 – 7,89 (m, 3H), 7,59 – 7,51 (m, 2H), 7,51 – 7,37 (m, 2H), 7,14 – 7,03 (m, 2H), 5,77 (d, J = 1,1 Γц, 1H), 5,50 (t, J = 1,5 Γц, 1H), 4,12 (qd, J = 9,7, 6,1 Γц, 2H), 1,93 (t, J = 1,2 Γц, 3H).	485,25
N-(4-(4-амино-5-(4- (пиперидин-1- карбонил)фенил)пиррол о[2,1-f][1,2,4]триазин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,74 (s, 1H), 8,02 (s, 1H), 7,91 (s, 1H), 7,63 – 7,50 (m, 2H), 7,50 – 7,28 (m, 4H), 7,17 – 7,03 (m, 2H), 5,77 (s, 1H), 5,57 – 5,46 (m, 1H), 3,48 (d, <i>J</i> = 89,5 Гц, 4H), 1,75 – 1,37 (m, 6H).	481,40
N-(4-(4-амино-5-(4- (пиперидин-1- карбонил)фенил)пиррол о[2,1-f][1,2,4]триазин-6- ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO-d ₆) δ 10,11 (s, 1H), 8,02 (s, 1H), 7,91 (s, 1H), 7,55 – 7,48 (m, 2H), 7,44 (d, J = 8,2 Γц, 2H), 7,39 (d, J = 8,1 Γц, 2H), 7,14 – 7,03 (m, 2H), 6,56 – 6,35 (m, 1H), 6,24 (dd, J = 17,0, 2,1 Γц, 1H), 5,74 (dd, J = 10,1, 2,1 Γц, 1H), 3,59 (s, 4H), 1,64 (s, 2H), 1,54 (s, 4H).	467,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(6-(4-	F	¹Н ЯМР (400 МГц, DMSO-d ₆)	481,30
акриламидофенил)-4-	F ← F	δ 10,11 (s, 1H), 9,18 (t, J = 6,3	
аминопирроло[2,1-	· >	Гц, 1H), 8,03 (s, 1H), 8,01 –	
f][1,2,4]триазин-5-ил)-	HN O	7,89 (m, 3H), 7,56 – 7,50 (m,	
N-(2,2,2-		2H), 7,50 – 7,33 (m, 2H), 7,17 –	
трифторэтил)бензамид		7,05 (m, 2H), 6,41 (dd, $J = 17,0$,	
	NH ₂ O //	10,1 Γu, 1H), 6,24 (dd, $J = 17,0$,	
	N N	$2,1 \Gamma \mu$, 1H), 5,74 (dd, $J = 10,0$,	
	i	2,1 Γu, 1H), 4,21 – 4,03 (m,	
	N. N.	2H).	
4-(4-амино-6-(4-		¹Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	467,35
метакриламидофенил)п		δ 9,75 (s, 1H), 8,70 (d, J = 7,4	
ирроло[2,1-	HN _	Гц, 1H), 8,03 (s, 1H), 7,91 (d, J	
f][1,2,4]триазин-5-ил)-	>0	$= 8.3 \Gamma \mu, 3H), 7.53 (d, J = 8.5)$	
N-циклобутилбензамид		Γ ц, 2H), 7,42 (d, J = 7,9 Γ ц,	
	NH ₂	2H), 7,10 (d, $J = 8,5 \Gamma \mu$, 2H),	
	Nn ₂	5,76 (s, 1H), 5,50 (s, 1H), 4,53 –	
	N N	4,26 (m, 1H), 2,22 (s, 2H), 2,09	
	NH \	$(t, J = 10,6 \Gamma \mu, 2H), 1,93 (s,$	
	N N	3H), 1,68 (s, 2H).	
N-(4-(4-амино-5-(4-(N-		¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	503,35
циклобутилсульфамоил		δ 9,75 (s, 1H), 8,04 (s, 1H), 7,98	
)фенил)пирроло[2,1-	HN _	(s, 1H), 7,93 (s, 1H), 7,87 – 7,80	
f][1,2,4]триазин-6-	``````````````````````````````````````	(m, 2H), 7,55 – 7,49 (m, 4H),	
ил)фенил)метакриламид		7,08 – 7,01 (m, 2H), 5,75 (s,	
	NH ₂	1H), 5,50 (t, J = 1,5 Γ ц, 1H),	
		3,68 (s, 1H), 2,02 – 1,85 (m,	
	N N NH	5H), 1,79 – 1,65 (m, 2H), 1,63 –	
	N N N N N N N N N N N N N N N N N N N	1,38 (m, 2H).	
4-(4-амино-6-(4-	0 /	¹Н ЯМР (400 МГц, DMSO-d ₆)	445,35
метакриламидофенил)п	N N	δ 9,82 (s, 1H), 7,90 (s, 1H), 7,78	
ирроло[2,1-		(s, 1H), 7,75 – 7,66 (m, 2H),	
f][1,2,4]триазин-5-ил)-		7,54 (d, $J = 8,3$ Гц, $2H$), $7,25$ (s,	
N,N-диметилциклогекс-	NH ₂ O. //	1H), 5,90 (d, $J = 4,4 \Gamma \mu$, 1H),	
3-ен-1-карбоксамид		5,81 (t, $J = 1,1 \Gamma \mu$, 1H), 5,52 (t,	
T	NH \	$J = 1.5 \Gamma \mu$, 1H), 3,20 (d, $J = 13.7$	
	N' - W	Гц, 1H), 3,06 (s, 3H), 2,85 (s,	
		3H), 2,36 (s, 2H), 1,97 (t, $J = 1,2$	
		Гц, 3H), 1,90 (s, 2H), 1,77 (s,	
		1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-	O H / OH	¹Н ЯМР (400 МГц, DMSO-d ₆)	485,35
метакриламидофенил)п	→ N ← OH	δ 9,74 (s, 1H), 8,34 (t, J = 6,2	
ирроло[2,1-		Гц, 1H), 8,03 (s, 1H), 7,93 (d, J	
f][1,2,4]триазин-5-ил)-	NH ₂	$= 8.5 \Gamma \text{u}, 3\text{H}), 7.56 - 7.48 \text{m},$	
N-(2-гидрокси-2-		2H), 7,45 – 7,39 (m, 2H), 7,18 –	
метилпропил)бензамид	N NH	7,06 (m, 2H), 5,76 (d, J = 1,4	
	N N N N N N N N N N N N N N N N N N N	Гц, 1H), 5,53 – 5,43 (m, 1H),	
		4,56 (s, 1H), 3,28 (d, $J = 6,1 \Gamma \mu$,	
		2H), 1,92 (t, $J = 1,2 \Gamma \mu$, 3H),	
		1,12 (s, 6H).	
4-(4-амино-6-(4-	O H	¹Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	483,15
метакриламидофенил)п	N	δ 9,74 (s, 1H), 8,62 (d, J = 6,4	
ирроло[2,1-		Гц, 1H), 8,03 (s, 1H), 7,93 (d, J	
f][1,2,4]триазин-5-ил)-	NH ₂	$= 8.0 \Gamma \text{u}, 3\text{H}, 7.62 - 7.49 \text{ (m,}$	
N-(тетрагидрофуран-3-	Nn ₂	2H), 7,46 – 7,39 (m, 2H), 7,14 –	
ил)бензамид	N NH	7,04 (m, 2H), 5,76 (s, 1H), 5,49	
	\sum_N/N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$(t, J = 1.5 \Gamma u, 1H), 4.51 - 4.41$	
		(m, 1H), 3,87 (dd, J = 9,0, 6,6)	
		Γ ц, 2H), 3,73 (td, J = 8,1, 5,7	
		Γ_{H} , 1H), 3,61 (dd, J = 8,9, 4,4	
		Γ ц, 1H), 2,16 (dq, J = 12,6, 7,6	
		Гц, 1H), 1,99 – 1,81 (m, 4H).	
N-(4-(5-(4-(2-	0 /7\	¹Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	479,35
азабицикло[2.1.1] гексан	N √ N √	δ 9,74 (s, 1H), 8,02 (s, 1H), 7,91	
-2-карбонил)фенил)-4-	/ /	(s, 1H), 7,73 (d, $J = 7,8 \Gamma \mu$, 1H),	
аминопирроло[2,1-	NH ₂	7,57 - 7,47 (m, 3H), 7,39 (d, J =	
f][1,2,4]триазин-6-		7,3 Гц, 2H), 7,17 – 7,06 (m,	
ил)фенил)метакриламид	N NII	2H), 5,77 (d, J = 1,5 Гц, 1H),	
	N N N	5,49 (t, J = 1,5 Гц, 1H), 4,55	
		(dd, $J = 147.8, 7.0 \Gamma \mu, 1H$), 3,48	
		(d, $J = 10.6 \Gamma \mu$, 2H), 2.91 (d, $J =$	
		16,9 Гц, 1H), 2,05 – 1,84 (m,	
		5H), 1,51 (s, 1H), 1,37 (s, 1H).	
4-(4-амино-6-(4-	он,	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	499,25
метакриламидофенил)п	O H O	δ 9,74 (s, 1H), 8,33 (t, J = 6,2	
ирроло[2,1-		Гц, 1H), 8,03 (s, 1H), 7,95 –	
f][1,2,4]триазин-5-ил)-	()	7,88 (m, 3H), 7,54 (d, $J = 8,8$	
N-(2-метокси-2-	NH ₂ O	Γ ц, 2H), 7,43 (d, J = 1,9 Γ ц,	
метилпропил)бензамид	N N	2H), 7,15 – 7,06 (m, 2H), 5,76	
	NH \	(s, 1H), 5,49 (s, 1H), 3,35 (d, J =	
	IN .	6,2 Гц, 2H), 3,16 (s, 3H), 1,92	
		$(t, J = 1,2 \Gamma \mu, 3H), 1,13 (s, 6H).$	

N-(3-метил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)акриламид

[0340] Стадия 1: В круглодонную колбу загружали 3-метил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)анилин (10 г, 42,8 ммоль), проп-2-еноилхлорид (3,87 г, 42,8 ммоль), пиридин (10,1 г, 128 ммоль), дихлорметан (150 мл) и магнитную мешалку. Раствор перемешивали в течение 1 часа при 0°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу сущили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали N-(3-метил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)акриламид (12 г, выход 98%) в виде маслянистой жидкости желтого цвета.

N-(4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3метилфенил)акриламид

[0341] **Стадия 2:** В круглодонную колбу загружали N-[3-метил-4-(4,4,5,5-тетраметил-1,3,2-диоксаболан-2-ил)фенил]проп-2-енамид (1 г, 3,48 ммоль), 5-бром-6-иод-7-метил-

7H-пирроло[2,3-d]пиримидин-4-амин (1,22 г, 3,48 ммоль), Pd(dppf)Cl₂ (254 мг, 348 мкмоль), K₃PO₄ (2,20 г, 10,4 ммоль), смесь DMF/H₂O (16:1) (15 мл) и магнитную мешалку. Раствор перемешивали в течение 2 часов при 50°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали N-(4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид (440 мг, выход 33%) в виде твердого вещества почти белого цвета.

(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид

[0342] Стадия 3: В герметизируемую реакционную пробирку загружали N-(4-{4амино-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил}-3-метилфенил)проп-2енамид (200 мг, 517 мкмоль), 1-[(1R)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2ил)циклогекс-3-ен-1-карбонил]пирролидин (156 мг, 517 мкмоль), Pd(pddf)Cl₂ (37,8 мг, 517 мкмоль), Na₂CO₃ (164 мг, 1,55 ммоль), DMF (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 часов при 90°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: YMC-Actus Triart C18, 30*250, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO3 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 50 мл/мин; Градиент: от 40 В до 62 В в течение 8 мин; 220 нм; RT1: 6,83). После лиофилизации получали (R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил) акриламид (40 мг, выход 16%) в виде почти-белого твердого аморфного вещества.

(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид

[0343] Стадия 4: В герметизируемую реакционную пробирку загружали N-(4-{4амино-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил}-3-метилфенил)проп-2енамид (240 мг, 621 мкмоль), Pd(dppf)Cl₂ (45,4 мг, 62,1 мкмоль), Na₂CO₃ (197 мг, 1,86 ммоль), 1-[(1S)-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)циклогекс-3-ен-1карбонил пирролидин (189240 мг, 621 мкмоль), смесь диметилформамид/Н2О (8 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 часов при 90°C. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: YMC-Actus Triart C18, 30*250, 5 мкм; Подвижная фаза А: вода (раствор NH₄HCO₃ 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 50 мл/мин; Градиент: от 40 В до 60 В в течение 8 мин; 220 нм; RT1: 7,67; RT2: -; Объем вводимой пробы: - мл; Количество рабочих циклов: -;). После лиофилизации получали (S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3метилфенил) акриламид (39 мг, выход 14%) в виде почти-белого твердого аморфного вещества.

[0344] Другие такие же соединения, полученные согласно способам, описанным в Примере 12, показаны в Таблице 11 ниже.

Таблица 11. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-метил-7-(4-((6-метилпиридин-2-ил)окси)фенил)-5H-пирроло[3,2-d]пиримидин-6-ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,03 (s, 1H), 9,16 (s, 1H), 8,94 (s, 1H), 7,88 (d, J = 8,4 Гц, 2H), 7,72 (t, J = 7,8 Гц, 1H), 7,48 (dd, J = 20,9, 8,5 Гц, 4H), 7,08 – 6,96 (m, 3H), 6,75 (d, J = 8,2 Гц, 1H), 5,85 (s, 1H), 5,57 (s, 1H), 3,75 (s, 3H), 2,34 (s, 3H), 1,98 (s, 3H).	476,15
N-(4-(4-амино-7-оксо-3- (4-(пирролидин-1- карбонил)фенил)-6,7- дигидро-1Н-пирроло[2,3- d]пиридазин-2- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,72 (s, 1H), 11,38 (s, 1H), 9,83 (s, 1H), 7,62 – 7,54 (m, 4H), 7,45 – 7,35 (m, 2H), 7,28 – 7,21 (m, 2H), 5,78 (s, 1H), 5,52 (s, 1H), 4,55 (s, 2H), 3,46 (dt, J = 23,1, 6,3 Γц, 4H), 1,98 – 1,80 (m, 7H).	483,25
N-(4-(4-амино-1-метил-7-оксо-3-(4-(пирролидин-1-карбонил)фенил)-6,7-дигидро-1Н-пирроло[2,3-d]пиридазин-2-ил)фенил)метакриламид	NH ₂ NH ₂ NH NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,41 (s, 1H), 9,91 (s, 1H), 7,69 (d, J = 8,2 Γц, 2H), 7,47 (d, J = 7,7 Γц, 2H), 7,26 (dd, J = 12,9, 8,1 Γц, 4H), 5,79 (s, 1H), 5,53 (s, 1H), 4,59 (s, 2H), 3,98 (s, 3H), 3,45 (t, J = 7,0 Γц, 2H), 1,93 (s, 3H), 1,82 (dt, J = 18,4, 7,0 Γц, 4H).	497,35
N-(4-(4-амино-1,6- диметил-7-оксо-3-(4- (пирролидин-1- карбонил)фенил)-6,7- дигидро-1Н-пирроло[2,3- d]пиридазин-2- ил)фенил)метакриламид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 7,73 – 7,66 (m, 2H), 7,47 (d, J = 8,1 Γ ц, 2H), 7,31 – 7,21 (m, 4H), 5,79 (s, 1H), 5,53 (s, 1H), 4,72 (s, 2H), 3,98 (s, 3H), 3,55 (s, 3H), 3,45 (t, J = 6,8 Γ ц, 2H), 3,37 (t, J = 6,4 Γ ц, 2H), 1,94 (s, 3H), 1,84 (m, J = 18,4 Γ ц, 4H).	511,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- (2-оксо-4-(пирролидин-1- карбонил)пиридин-1(2H)- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,21 (s, 1H), 7,84 – 7,71 (m, 2H), 7,44 (d, J = 7,0 Γц, 1H), 7,36 – 7,25 (m, 2H), 6,49 (d, J = 1,7 Γц, 1H), 6,32 (s, 2H), 6,14 (dd, J = 7,0, 1,8 Γц, 1H), 5,88 – 5,79 (m, 1H), 5,54 (d, J = 1,8 Γц, 1H), 3,65 (s, 3H), 3,40 (td, J = 11,7, 11,3, 5,5 Γц, 3H), 1,95 (d, J = 1,2 Γц, 3H), 1,89 – 1,80 (m, 4H).	498,25
(R)-N-(4-(4-амино-7-метил-5-(2-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,15 (s, 1H), 7,82 - 7,75 (m, 2H), 7,46 (d, J = 8,3 Гц, 2H), 5,97 (s, 1H), 5,85 (t, J = 1,0 Гц, 1H), 5,59 - 5,53 (m, 1H), 3,67 (s, 4H), 3,60 - 3,45 (m, 1H), 3,49 - 3,35 (m, 2H), 2,98 (s, 1H), 2,46 (d, J = 9,9 Гц, 1H), 2,37 (s, 1H), 2,07 (t, J = 1,2 Гц, 3H), 2,01 - 1,90 (m, 5H), 1,72 (s, 1H), 1,55 (d, J = 12,8 Гц, 1H), 0,90 (s, 3H).	499,25
(R)-N-(4-(4-амино-7-метил-5-(2-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,15 (s, 1H), 7,78 (d, J = 8,3 Гц, 2H), 7,46 (d, J = 8,3 Гц, 2H), 5,97 (s, 1H), 5,87 - 5,82 (m, 1H), 5,56 (q, J = 1,6 Гц, 1H), 3,67 (s, 4H), 3,60 - 3,51 (m, 1H), 3,50 - 3,35 (m, 2H), 2,98 (s, 1H), 2,60 - 2,46 (d, J = 10,4 Гц, 1H), 2,37 (s, 1H), 2,07 (t, J = 1,3 Гц, 3H), 2,00 (p, J = 6,5 Гц, 2H), 1,95 - 1,85 (m, 2H), 1,80 - 1,60 (s, 1H), 1,59 - 1,50 (m, 1H), 1,1 - 0,45 (m, 3H).	499,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(2-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,15 (s, 1H), 7,83 - 7,75 (m, 2H), 7,52 - 7,45 (m, 2H), 6,03 (t, J = 3,1 Гц, 1H), 5,85 (t, J = 0,9 Гц, 1H), 5,57 (d, J = 1,9 Гц, 1H), 3,66 (s, 3H), 3,63 (s, 1H), 3,62 - 3,49 (m, 1H), 3,48 - 3,35 (m, 2H), 2,75 (s, 1H), 2,49 (s, 1H), 2,37 (s, 1H), 2,07 (t, J = 1,2 Гц, 3H), 1,99 (q, J = 6,6 Гц, 3H), 1,95 - 1,85 (m, 2H), 1,84 (s, 1H), 1,55 (q, J = 11,1 Гц, 1H), 0,74 (d, J = 7,1 Гц, 3H).	499,20
(S)-N-(4-(4-амино-7-метил-5-(2-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,15 (s, 1H), 7,83 - 7,75 (m, 2H), 7,51 - 7,45 (m, 2H), 6,06 - 6,00 (m, 1H), 5,85 (t, J = 1,0 Гц, 1H), 5,57 (q, J = 1,8 Гц, 1H), 3,66 (s, 3H), 3,61 - 3,48 (m, 2H), 3,43 - 3,35 (m, 2H), 3,13 - 2,71 (s, 1H), 2,75 (s, 1H), 2,37 (s, 1H), 2,10 - 1,91 (m, 6H), 1,89 (dd, J = 10,4, 4,4 Гц, 2H), 1,84 (s, 1H), 1,62 - 1,49 (m, 1H), 0,74 (d, J = 7,1 Гц, 3H).	499,30
(S)-N-(4-(4-амино-5-(2-фтор-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ F NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,15 (d, J = 11,9 Гц, 1H), 7,84 - 7,75 (m, 2H), 7,48 - 7,40 (m, 2H), 5,85 (s, 1H), 5,57 (s, 1H), 3,69 (d, J = 5,4 Гц, 3H), 3,67 - 3,50 (m, 1H), 3,52 - 3,36 (m, 2H), 3,16 (d, J = 1,7 Гц, 2H), 2,48 (t, J = 16,7 Гц, 2H), 2,15 (s, 1H), 2,10 - 1,69 (m, 10H).	503,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-5-(2-фтор-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ F NH	¹ H ЯМР (400 МГц, Метанол- d ₄) 8,16 (d, J = 8,6 Гц, 1H), 7,84 - 7,75 (m, 2H), 7,48 - 7,40 (m, 2H), 5,85 (t, J = 1,0 Гц, 1H), 5,57 (d, J = 2,0 Гц, 1H), 3,69 (d, J = 3,1 Гц, 3H), 3,67 - 3,55 (m, 1H), 3,55 - 3,35 (m, 3H), 3,16 (s, 1H), 2,50 (d, J = 11,2 Гц, 2H), 2,15 (s, 1H), 2,07 (t, J = 1,2 Гц, 3H), 1,99 (р, J = 6,5 Гц, 2H), 1,94 - 1,86 (m, 4H), 1,69 (s, 1H).	503,25
(R)-N-(4-(4-амино-7-метил-5-(2-метил-1-оксо-2-азаспиро[4.5]дек-7-ен-8-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,11 (s, 1H), 7,84 – 7,77 (m, 2H), 7,47 – 7,41 (m, 2H), 6,65 (s, 1H), 5,83 (s, 1H), 5,71 (d, J = 4,0 Γц, 1H), 5,56 (d, J = 1,8 Γц, 1H), 3,59 (s, 3H), 3,26 (ddt, J = 9,7, 7,1, 3,4 Γц, 2H), 2,73 (s, 3H), 2,27 (d, J = 17,7 Γц, 1H), 2,17 – 2,01 (m, 2H), 1,97 (s, 3H), 1,90 (s, 1H), 1,87 – 1,72 (m, 3H), 1,45 – 1,31 (m, 1H).	471,25
N-(4-(4-амино-7-метил-5- (3-(6-метилпиридин-2- ил)-2,3- дигидробензофуран-6- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,18 (s, 1H), 7,77 - 7,64 (m, 3H), 7,34 $-$ 7,24 (m, 2H), 7,21 $-$ 7,12 (m, 2H), 7,06 (d, J = 7,6 Гц, 1H), 6,73 (d, J = 1,5 Гц, 1H), 6,69 (dd, J = 16,4, 1,5 Гц, 1H), 6,25 $-$ 5,61 (m, 2H), 5,61 $-$ 5,50 (m, 1H), 4,97 $-$ 4,68 (m, 3H), 3,58 (s, 3H), 2,45 (s, 3H), 1,95 (t, J = 1,2 Гц, 3H).	517,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-метил-5-(3-(6-метилпиридин-2-ил)-2,3-дигидробензофуран-6-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,18 (s, 1H), 7,78 – 7,63 (m, 3H), 7,39 – 7,25 (m, 2H), 7,13 (t, J = 7,0 Γц, 2H), 7,06 (d, J = 7,6 Γц, 1H), 6,72 (dd, J = 7,6, 1,5 Γц, 1H), 6,67 (d, J = 1,4 Γц, 1H), 5,80 (s, 1H), 5,54 (d, J = 1,9 Γц, 1H), 5,00 – 4,69 (m, 3H), 3,58 (s, 3H), 2,45 (s, 3H), 1,95 (d, J = 1,4 Γц, 3H).	517,25
(S)-N-(4-(4-амино-7-метил-5-(3-(6-метилпиридин-2-ил)-2,3-дигидробензофуран-6-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,18 (s, 1H), 7,79 – 7,61 (m, 3H), 7,33 – 7,27 (m, 2H), 7,13 (t, J = 7,0 Γц, 2H), 7,06 (d, J = 7,6 Γц, 1H), 6,72 (dd, J = 7,6, 1,5 Γц, 1H), 6,67 (d, J = 1,5 Γц, 1H), 5,80 (s, 1H), 5,54 (t, J = 1,6 Γц, 1H), 4,98 – 4,74 (m, 3H), 3,58 (s, 3H), 2,45 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	517,25
(S)-N-(4-(4-амино-7-метил-5-(1-(6-метилпиридин-2-ил)-1,3-дигидроизобензофуран-5-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,74 – 7,62 (m, 3H), 7,33 – 7,19 (m, 5H), 7,19 – 7,09 (m, 2H), 6,68 – 5,38 (m, 5H), 5,29 (dd, J = 12,7, 2,8 Γц, 1H), 5,14 (d, J = 12,6 Γц, 1H), 3,59 (s, 3H), 2,50 (s, 3H), 1,94 (d, J = 1,4 Γц, 3H).	517,25
(R)-N-(4-(4-амино-7-метил-5-(1-(6-метилпиридин-2-ил)-1,3-дигидроизобензофуран-5-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,20 (s, 1H), 7,81 – 7,61 (m, 3H), 7,35 – 7,10 (m, 7H), 6,75 – 5,41 (m, 5H), 5,29 (dd, J = 12,8, 2,8 Γц, 1H), 5,14 (d, J = 12,6 Γц, 1H), 3,59 (s, 3H), 2,50 (s, 3H), 1,94 (s, 3H).	517,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(2-метил-1-оксо-2-азаспиро[4.5]дек-7-ен-8-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (s, 1H), 7,83 - 7,77 (m, 2H), 7,47 $-$ 7,41 (m, 2H), 6,61 (s, 2H), 5,83 (s, 1H), 5,72 (d, J = 3,8 Гц, 1H), 5,55 (s, 1H), 3,58 (s, 3H), 3,32 $-$ 3,21 (m, 2H), 2,73 (s, 3H), 2,27 (d, J = 17,4 Гц, 1H), 2,15 $-$ 2,01 (m, 2H), 1,97 (s, 3H), 1,90 (s, 1H), 1,87 $-$ 1,72 (m, 3H), 1,45 $-$ 1,31 (m, 1H).	471,25
(R)-N-(4-(5-(4-(5-азаспиро[2.4]гептан-5-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,10 (s, 1H), 7,81 (dd, J = 8,7, 2,5 Γ ц, 2H), 7,43 (dd, J = 8,4, 3,6 Γ ц, 2H), 6,51 (s, 2H), 5,83 (s, 1H), 5,77 (s, 1H), 5,55 (s, 1H), 3,67 (t, J = 7,3 Γ ц, 1H), 3,58 (d, J = 1,8 Γ ц, 3H), 3,32 – 3,21 (m, 1H), 2,88 (t, J = 6,0 Γ ц, 1H), 2,28 (s, 2H), 1,98 (s, 3H), 1,90 (s, 2H), 1,82 (d, J = 4,4 Γ ц, 1H), 1,75 – 1,68 (m, 2H), 1,63 (dd, J = 15,1, 6,7 Γ ц, 2H), 0,63 – 0,53 (m, 4H).	511,30
(S)-N-(4-(5-(4-(5-азаспиро[2.4]гептан-5-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₆ NH ₇ NH ₇ NH ₇ NH ₇ NH ₈ NH ₈ NH ₈ NH ₈ NH ₉	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,10 (s, 1H), 7,81 (dd, J = 8,7, 2,6 Γ ц, 2H), 7,43 (dd, J = 8,6, 3,5 Γ ц, 2H), 6,51 (s, 2H), 5,83 (s, 1H), 5,77 (s, 1H), 5,55 (s, 1H), 3,71 – 3,60 (m, 1H), 3,58 (d, J = 1,9 Γ ц, 3H), 3,42 (dd, J = 17,0, 11,4 Γ ц, 1H), 3,32 – 3,13 (m, 1H), 2,73 (q, J = 6,0 Γ ц, 1H), 2,28 (s, 2H), 1,98 (s, 3H), 1,90 (s, 2H), 1,82 (dt, J = 10,1, 4,6 Γ ц, 1H), 1,72 (td, J = 7,0, 4,0 Γ ц, 1H), 1,63 (dd, J = 14,8, 6,3 Γ ц, 2H), 0,61 (d, J = 6,4 Γ ц, 1H), 0,56 (d, J = 5,7 Γ ц, 3H).	511,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-2-хлорацетамид	NH ₂ NH ₂ O CI	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,48 (s, 1H), 8,10 (s, 1H), 7,88 – 7,75 (m, 2H), 7,57 – 7,40 (m, 2H), 6,55 (s, 1H), 5,77 (d, J = 3,1 Γц, 1H), 4,29 (s, 2H), 3,58 (s, 3H), 3,56 – 3,48 (m, 1H), 3,48 – 3,40 (m, 1H), 3,32 – 3,23 (m, 3H), 2,82 (q, J = 6,0 Γц, 1H), 2,38 – 2,10 (m, 2H), 1,87 (h, J = 6,4 Γц, 4H), 1,76 (p, J = 6,3 Γц, 2H), 1,63 (d, J = 5,9 Гц, 2H).	493,20
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-2-хлорацетамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,48 (s, 1H), 8,10 (s, 1H), 7,85 – 7,69 (m, 2H), 7,53 – 7,44 (m, 2H), 6,55 (s, 1H), 5,76 (d, J = 4,0 Гц, 1H), 4,29 (s, 2H), 3,58 (s, 3H), 3,51 (dt, J = 10,1, 6,7 Гц, 1H), 3,47 – 3,41 (m, 1H), 3,32 (d, J = 9,3 Гц, 3H), 2,83 (р, J = 5,9 Гц, 1H), 2,37 – 2,14 (m, 2H), 1,87 (р, J = 6,8 Гц, 4H), 1,76 (р, J = 6,3 Гц, 2H), 1,63 (d, J = 6,1 Гц, 2H).	493,20
(S)-N-(4-(4-амино-7-метил-5-(6-(пирролидин-1-карбонил)-5,6-дигидро-2H-пиран-3-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,99 (s, 1H), 8,12 (s, 1H), 7,81 (d, J = 8,2 Γ μ, 2H), 7,42 (d, J = 8,4 Γ μ, 2H), 6,63 (s, 2H), 5,94 (d, J = 4,2 Γ μ, 1H), 5,82 (s, 1H), 5,56 (s, 1H), 4,55 (t, J = 5,0 Γ μ, 1H), 3,77 (d, J = 2,9 Γ μ, 2H), 3,55 (s, 3H), 3,50 (s, 3H), 3,29 (td, J = 6,8, 3,1 Γ μ, 2H), 2,45 (d, J = 17,9 Γ μ, 1H), 2,31 (dt, J = 17,1, 4,2 Γ μ, 1H), 1,97 (s, 3H), 1,79 (dp, J = 24,9, 6,9 Γ μ, 4H), 1,19 (s, 1H).	487,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-метил-5-(6-(пирролидин-1-карбонил)-5,6-дигидро-2H-пиран-3-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,98 (s, 1H), 8,11 (s, 1H), 7,85 – 7,78 (m, 2H), 7,46 – 7,39 (m, 2H), 6,55 (s, 2H), 5,94 (s, 1H), 5,85 – 5,80 (m, 1H), 5,56 (d, J = 1,8 Γц, 1H), 4,54 (t, J = 5,0 Γц, 1H), 3,77 (s, 2H), 3,55 (s, 3H), 3,52 – 3,41 (m, 2H), 3,39 – 3,28 (m, 3H), 2,43 (s, 1H), 2,29 (s, 1H), 1,97 (s, 3H), 1,77 (ddt, J = 24,2, 11,8, 5,5 Γц, 4H), 1,19 (s, 1H).	487,20
N-(4-(4-амино-7-метил-5-(1-(пирролидин-1-карбонил)-1,2,3,6-тетрагидропиридин-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,97 (s, 1H), 8,13 (s, 1H), 7,84 – 7,78 (m, 2H), 7,46 – 7,39 (m, 2H), 6,3 (s, 1H), 5,81 (d, J = 11,2 Γц, 2H), 5,56 (s, 1H), 3,83 (d, J = 3,3 Γц, 2H), 3,57 (s, 3H), 3,23 (s, 1H), 1,97 (d, J = 1,2 Γц, 5H), 1,77 – 1,70 (m, 4H).	486,25
N-(4-(4-амино-5-(1- (циклопентанкарбонил)- 1,2,3,6- тетрагидропиридин-4- ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₅	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,97 (s, 1H), 8,13 (s, 1H), 7,84 – 7,78 (m, 2H), 7,46 – 7,39 (m, 2H), 6,3 (s, 1H), 5,81 (d, J = 11,2 Γц, 2H), 5,56 (s, 1H), 3,83 (d, J = 3,3 Γц, 2H), 3,57 (s, 3H), 3,23 (s, 1H), 2,45 (s, 1H), 1,97 (d, J = 1,2 Γц, 5H), 1,77 – 1,70 (m, 4H).	485,25
N-(4-(4-амино-5-((R)-4- ((S)-2- этинилпирролидин-1- карбонил)циклогекс-1- енил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,15 (d, J = 3,5 Гц, 1H), 7,91 - 7,65 (m, 2H), 7,54 - 7,38 (m, 2H), 5,94 (s, 1H), 5,89 - 5,73 (m, 1H), 5,64 - 5,44 (m, 1H), 4,90 - 4,65 (m, 1H), 3,70 - 3,60 (m, 3H), 3,60 - 3,50 (m, 1H), 3,50 - 3,40 (m, 1H), 3,10 - 2,88 (m, 1H), 2,88 - 2,60 (m, 1H), 2,55 - 2,30 (m, 2H), 2,30 - 2,10 (m, 2H), 2,10 - 1,98 (m, 7H), 1,90 - 1,80 (m, 1H), 1,80 - 1,70 (m, 1H), 1,40 - 1,30 (m, 1H).	509,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-{4-амино-5-[(4R)-4-[(2R)-2-этинилпирролидин-1-карбонил]циклогекс-1-ен-1-ил]-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил}фенил)-2-метилпроп-2-енамид	NH ₂ NH ₂ NH _O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,14 (d, J = 3,4 Гц, 1H), 7,79 (dq, J = 9,1, 2,5 Гц, 2H), 7,47 (dd, J = 8,7, 2,1 Гц, 2H), 5,93 (d, J = 9,6 Гц, 1H), 5,85 (dt, J = 2,0, 1,0 Гц, 1H), 5,59 – 5,54 (m, 1H), 4,77 - 4,71 (m, 1H), 3,70 - 3,65 (m, 3H), 3,65 - 3,55 (m, 1H), 3,55 - 3,40 (m, 1H), 3,20 - 2,55 (m, 2H), 2,53 - 2,30 (m, 2H), 2,20 - 2,10 (m, 2H) 2,10 - 1,93 (m, 7H), 1,90 - 1,60 (m, 2H), 1,40 - 1,30 (m, 1H).	509,25
N-(4-{4-амино-7-метил-5- [(4S)-4-{2-окса-5- азаспиро[3.4]октан-5- карбонил}циклогекс-1- ен-1-ил]-7H-пирроло[2,3- d]пиримидин-6- ил}фенил)-2-метилпроп- 2-енамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,11 (s, 1H), 7,84 – 7,78 (m, 2H), 7,47 – 7,38 (m, 2H), 6,48 (s, 2H), 5,83 - 5,79 (m, 2H), 5,56 (d, J = 2,0 Γц, 1H), 5,33 - 5,28 (m, 2H), 4,18 (dd, J = 4,9, 3,0 Γц, 2H), 3,58 (s, 3H), 3,55 (dt, J = 9,6, 6,1 Γц, 1H), 3,46 (dt, J = 9,6, 6,8 Γц, 1H), 2,85 (s, 1H), 2,40 - 2,30 (m, 1H), 2,30 - 2,10 (m, 3H), 2,0 - 1,80 (m, 5H), 1,80 - 1,50 (m, 4H).	527,30
N-{4-[4-амино-7-метил-5-(4-{7-окса-1-азаспиро[4.4]нонан-1-карбонил}циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил]фенил}-2-метилпроп-2-енамид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,13 (s, 1H), 7,85 – 7,72 (m, 2H), 7,52 – 7,42 (m, 2H), 5,93 (s, 1H), 5,85 (s, 1H), 5,57 (s, 1H), 4,15 (q, J = 7,7 Гц, 1H), 3,99 (d, J = 8,1 Гц, 1H), 3,92 (td, J = 7,8, 5,1 Гц, 1H), 3,66 (s, 5H), 3,53 – 3,43 (m, 1H), 2,87 (t, J = 6,0 Гц, 1H), 2,73 (ddd, J = 12,6, 7,9, 5,1 Гц, 1H), 2,38 (q, J = 19,0 Гц, 2H), 2,13 – 1,90 (m, 8H), 1,89 – 1,66 (m, 4H), 1,31 (s, 1H).	541,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-{4-[4-амино-7-метил-5-(4-{7-окса-1-азаспиро[4.4]нонан-1-карбонил} циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил]фенил}-2-метилпроп-2-енамид	O NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	¹ Н ЯМР (400 МГц, Метанол- d ₄) δ 8,13 (s, 1H), 7,82 – 7,73 (m, 2H), 7,53 – 7,41 (m, 2H), 5,93 (s, 1H), 5,85 (s, 1H), 5,57 (s, 1H), 4,15 (q, J = 7,7 Γ ц, 1H), 3,99 (d, J = 8,1 Γ ц, 1H), 3,92 (td, J = 7,8, 5,1 Γ ц, 1H), 3,66 (s, 5H), 3,53 – 3,41 (m, 1H), 2,96 – 2,81 (m, 1H), 2,73 (ddd, J = 12,6, 7,9, 5,1 Γ ц, 1H), 2,38 (q, J = 19,0 Γ ц, 2H), 2,07 (d, J = 1,2 Γ ц, 3H), 2,02 (q, J = 8,5, 7,3 Γ ц, 3H), 1,98 – 1,81 (m, 2H), 1,81 – 1,71 (m, 4H), 1,31 (s, 1H).	541,25
N-(4-(4-амино-5-(6,6-дифтор-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	ON NH ₂ F ON NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) δ 8,16 (s, 1H), 7,76 (d, J = 8,4 Гц, 2H), 7,40 (d, J = 8,4 Гц, 2H), 6,32 (s, 1H), 5,87 – 5,82 (m, 1H), 5,59 – 5,54 (m, 1H), 5,20 (s, 1H), 3,63 (s, 3H), 3,59 (s, 2H), 3,44 (t, J = 6,9 Гц, 2H), 3,40 (s, 1H), 2,47 (s, 2H), 2,31 (s, 1H), 2,09 – 1,97 (m, 5H), 2,00 – 1,87 (m, 2H).	521,30
N-[4-(4-амино-5-{4-[(2R)-2-этинилпирролидин-1-карбонил]циклогекс-1-ен-1-ил}-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил]-2-метилпроп-2-енамид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) δ 8,14 (d, J = 3,4 Γ ц, 1H), 7,82 – 7,74 (m, 2H), 7,47 (dt, J = 8,7, 2,1 Γ ц, 2H), 5,93 (d, J = 9,7 Γ ц, 1H), 5,85 (dt, J = 2,1, 1,0 Γ ц, 1H), 5,57 (d, J = 1,8 Γ ц, 1H), 4,74 (dd, J = 24,7, 7,0 Γ ц, 1H), 3,67 (d, J = 1,8 Γ ц, 3H), 3,59 (t, J = 8,8 Γ ц, 1H), 3,45 – 3,35 (m, 1H), 3,20 - 2,55 (m, 2H), 2,50 - 2,30 (m, 2H), 2,25 - 1,98 (m, 9H), 1,90 - 1,70 (m, 2H).	509,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-((S)-4- ((S)-2- этинилпирролидин-1- карбонил)циклогекс-1- енил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH _O	¹ Н ЯМР (400 МГц, Метанол- d ₄) δ 8,14 (d, J = 3,4 Γ ц, 1H), 7,82 – 7,74 (m, 2H), 7,47 (dt, J = 8,7, 2,1 Γ ц, 2H), 5,93 (d, J = 9,7 Γ ц, 1H), 5,85 (dt, J = 2,1, 1,0 Γ ц, 1H), 5,57 (d, J = 1,8 Γ ц, 1H), 4,74 (dd, J = 24,7, 7,0 Γ ц, 1H), 3,67 (d, J = 1,8 Γ ц, 3H), 3,59 (t, J = 8,8 Γ ц, 1H), 3,45 – 3,35 (m, 1H), 3,20 - 2,55 (m, 2H), 2,50 - 2,30 (m, 2H), 2,25 - 1,98 (m, 9H), 1,90 - 1,70 (m, 2H).	509,25
N-{4-[4-амино-7-метил-5-(4-{2-окса-5-азаспиро[3.4]октан-5-карбонил} циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил]фенил}-2-метилпроп-2-енамид	NH ₂ NH ₂ NH N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,12 (s, 1H), 7,84 – 7,77 (m, 2H), 7,47 – 7,40 (m, 2H), 6,52 (s, 1H), 5,83 (s, 1H), 5,78 (s, 1H), 5,56 (t, J = 1,5 Γц, 1H), 5,33 (d, J = 4,9 Γц, 1H), 5,28 (d, J = 4,9 Γц, 1H), 4,18 (dd, J = 4,9, 3,1 Γц, 2H), 3,59 (s, 3H), 3,57 – 3,50 (m, 1H), 3,46 (dt, J = 9,7, 6,8 Γц, 1H), 2,89 – 2,81 (m, 1H), 2,33 (s, 1H), 2,30 – 2,14 (m, 3H), 1,97 (t, J = 1,2 Γц, 3H), 1,92 – 1,86 (m, 2H), 1,72 (q, J = 6,7 Γц, 2H), 1,64 (s, 2H).	527,25
N-{4-[4-амино-7-метил-5-(4-{7-окса-1-азаспиро[4.4]нонан-1-карбонил} циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил]фенил}-2-метилпроп-2-енамид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,31 (s, 1H), 7,72 – 7,65 (m, 2H), 7,62 (s, 1H), 7,47 – 7,39 (m, 2H), 6,35 - 5,95 (m, 2H), 5,90 - 5,75 (s, 1H), 5,65 - 5,45 (m, 1H), 4,13 (q, J = 8,0 Γ ц, 1H), 4,02 – 3,92 (m, 2H), 3,70 (s, 3H), 3,64 (t, J = 8,2 Γ ц, 1H), 3,55 – 3,45 (m, 1H), 3,43 (d, J = 8,0 Γ ц, 1H), 2,81 (s, 1H), 2,64 (ddd, J = 11,5, 7,5, 3,3 Γ ц, 1H), 2,51 (d, J = 18,0 Γ ц, 1H), 2,35 – 2,25 (m, 1H), 2,15 – 2,10 (m, 3H), 2,10 - 1,82 (m, 6H), 1,80 - 1,70 (m, 3H).	541,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-{4-[4-амино-7-метил-5-(4-{7-окса-1-азаспиро[4.4]нонан-1-карбонил} циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил]фенил}-2-метилпроп-2-енамид	NH ₂ O NH	¹ H ЯМР (400 МГ μ , Χποροφορм- d) δ 8,32 (s, 1H), 7,76 – 7,65 (m, 3H), 7,46 – 7,39 (m, 2H), 5,96 - 5,87 (m, 3H), 5,54 (d, J = 1,7 Γ μ , 1H), 4,18 (q, J = 8,0 Γ μ , 1H), 3,98 (td, J = 8,0, 3,7 Γ μ , 1H), 3,88 (d, J = 8,0 Γ μ , 1H), 3,70 (s, 3H), 3,55 (dtd, J = 15,7, 10,0, 9,6, 6,8 Γ μ , 2H), 3,42 (d, J = 8,0 Γ μ , 1H), 2,77 (tt, J = 7,9, 3,8 Γ μ , 2H), 2,59 - 2,40 (m, 1H), 2,40 - 2,25 (m, 1H), 2,10 - 2,15 (m, 3H), 2,10 - 1,82 (m, 6H), 1,80 - 1,72 (m, 3H).	541,30
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	O N NH ₂ NH N N	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 10,31 (s, 1H), 8,10 (s, 1H), 7,78 (d, $J = 8,7$ Г ц, 2H), 7,49 – 7,42 (m, 2H), 6,47 (dd, $J = 17,0$, 10,1 Γ ц, 2H), 6,29 (dd, $J = 17,0$, 2,0 Γ ц, 1H), 5,79 (dd, $J = 10,1$, 2,1 Γ ц, 1H), 5,76 (s, 1H), 3,60 (s, 3H), 3,54 – 3,47 (m, 1H), 3,47 – 3,37 (m, 1H), 3,30 – 3,20 (m, 2H), 2,83 (t, $J = 5,9$ Γ ц, 1H), 2,26 (s, 2H), 1,91 – 1,81 (m, 4H), 1,76 (q, $J = 6,6$ Γ ц, 2H), 1,63 (d, $J = 6,2$ Γ ц, 2H).	471,20
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,31 (s, 1H), 8,09 (s, 1H), 7,82 – 7,75 (m, 2H), 7,48 – 7,42 (m, 2H), 6,47 (dd, J = 17,0, 10,1 Γц, 2H), 6,29 (dd, J = 17,0, 2,0 Γц, 1H), 5,79 (dd, J = 10,1, 2,0 Γц, 1H), 5,76 (s, 1H), 3,58 (s, 3H), 3,56 – 3,47 (m, 1H), 3,47 – 3,37 (m, 1H), 3,31 – 3,20 (m, 2H), 2,82 (t, J = 5,9 Γц, 1H), 2,26 (s, 2H), 1,90 – 1,81 (m, 4H), 1,76 (p, J = 6,6 Γц, 2H), 1,63 (d, J = 5,7 Гц, 2H).	471,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-илсульфонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,13 (s, 1H), 7,81 (d, J = 2,0 Γц, 2H), 7,49 – 7,37 (m, 2H), 6,42 (s, 1H), 5,84 (s, 1H), 5,71 (d, J = 4,8 Γц, 1H), 5,55 (t, J = 1,5 Γц, 1H), 3,62 (s, 1H), 3,58 (s, 3H), 3,42 – 3,22 (m, 4H), 2,47 – 2,31 (m, 2H), 2,10 (d, J = 12,2 Γц, 1H), 2,03 – 1,90 (m, 5H), 1,90 – 1,75 (m, 4H), 1,63 (s, 1H).	521,25
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-илсульфонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₃	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 9,96 (s, 1H), 8,13 (s, 1H), 7,81 (d, J = 2,0 Γ μ, 2H), 7,49 – 7,37 (m, 2H), 6,42 (s, 1H), 5,84 (s, 1H), 5,71 (d, J = 4,8 Γ μ, 1H), 5,55 (t, J = 1,5 Γ μ, 1H), 3,62 (s, 1H), 3,58 (s, 3H), 3,42 – 3,22 (m, 4H), 2,47 – 2,31 (m, 2H), 2,10 (d, J = 12,2 Γ μ, 1H), 2,03 – 1,90 (m, 5H), 1,90 – 1,75 (m, 4H), 1,63 (s, 1H).	521,25
N-(4-(4-амино-5-(4- (циклопентилсульфонил) циклогекс-1-ен-1-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,33 (s, 1H), 7,69 (t, J = 8,4 Гц, 3H), 7,38 (d, J = 8,2 Гц, 2H), 5,92 (s, 1H), 5,87 (s, 1H), 5,55 (s, 3H), 3,68 (s, 3H), 3,50 (m, J = 8,2 Гц, 1H), 3,20 (d, J = 7,6 Гц, 1H), 2,73 (s, 1H), 2,66 (s, 1H), 2,31 (d, J = 15,8 Гц, 1H), 2,12 (s, 3H), 2,01 (d, J = 19,2 Гц, 6H), 1,85 (s, 3H), 1,70 (d, J = 8,4 Гц, 2H).	520,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклопентилциклогекс-3-ен-1-карбоксамид	O H NH ₂ NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,11 (s, 1H), 7,80 (t, J = 7,9 Γц, 3H), 7,43 (d, J = 8,6 Γц, 2H), 6,52 (s, 1H), 5,83 (s, 1H), 5,78 (s, 1H), 5,56 (s, 1H), 3,98 (q, J = 6,9 Γц, 1H), 3,57 (s, 3H), 2,45 (s, 1H), 2,28 (s, 1H), 2,21 (s, 1H), 1,98 (s, 3H), 1,88 (s, 2H), 1,76 (dt, J = 12,8, 6,6 Γц, 2H), 1,62 (dd, J = 12,4, 5,7 Γц, 2H), 1,47 (q, J = 6,8 Гц, 2H), 1,39 – 1,31 (m, 1H), 1,34 – 1,22 (m, 1H).	499,25
(R)-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклопентилциклогекс-3-ен-1-карбоксамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,11 (s, 1H), 7,80 (t, J = 7,9 Гц, 3H), 7,46 – 7,39 (m, 2H), 6,52 (s, 1H), 5,83 (s, 1H), 5,78 (s, 1H), 5,56 (s, 1H), 3,98 (q, J = 6,8 Гц, 1H), 3,57 (s, 3H), 2,44 (s, 1H), 2,28 (s, 1H), 2,21 (s, 1H), 1,98 (d, J = 1,2 Гц, 3H), 1,88 (s, 2H), 1,76 (dt, J = 12,5, 6,5 Гц, 2H), 1,61 (dt, J = 13,2, 6,0 Гц, 3H), 1,47 (q, J = 7,0 Гц, 2H), 1,35 (s, 2H), 1,31 (d, J = 13,2, 6,9 Гц, 1H).	499,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(3,3-дифторциклобутил)-2-метоксибензамид	NH ₂ NH ₃ NH ₄ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,47 (d, J = 6,8 Γц, 1H), 8,22 (s, 1H), 7,76 – 7,69 (m, 2H), 7,62 (d, J = 7,9 Γц, 1H), 7,35 – 7,27 (m, 2H), 6,93 (d, J = 1,5 Γц, 1H), 6,87 (dd, J = 7,8, 1,5 Γц, 1H), 6,01 (s, 1H), 5,81 (s, 1H), 5,54 (t, J = 1,5 Γц, 1H), 4,30 – 4,21 (m, 1H), 3,71 (s, 3H), 3,61 (s, 3H), 3,00 – 2,85 (m, 2H), 2,82 – 2,68 (m, 2H), 2,08 (s, 1H), 1,96 (d, J = 1,2 Γц, 3H).	547,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-циклобутил-2-метоксибензамид	NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,23 (d, J = 11,7 Гц, 2H), 7,76 – 7,68 (m, 2H), 7,60 (d, J = 7,8 Гц, 1H), 7,34 – 7,26 (m, 2H), 6,92 (d, J = 1,5 Гц, 1H), 6,85 (dd, J = 7,9, 1,5 Гц, 1H), 6,01 (s, 1H), 5,81 (d, J = 1,3 Гц, 1H), 5,57 – 5,51 (m, 1H), 4,39 (h, J = 8,2 Гц, 1H), 3,72 (s, 3H), 3,60 (s, 3H), 2,21 (dtt, J = 8,9, 6,9, 3,0 Гц, 2H), 2,06 – 1,93 (m, 5H), 1,66 (tt, J = 10,5, 6,3 Гц, 2H).	511,45
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1s,3s)-3-фторциклобутил)-2-(метоксиметил)бензамид	P NH2 NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,65 (d, J = 6,9 Гц, 1H), 8,21 (s, 1H), 7,71 (d, J = 8,5 Гц, 2H), 7,40 (d, J = 7,8 Гц, 1H), 7,35 (d, J = 1,8 Гц, 1H), 7,29 (d, J = 8,5 Гц, 2H), 7,20 (dd, J = 7,9, 1,8 Гц, 1H), 5,85 (s, 1H), 5,79 (s, 1H), 5,54 (s, 1H), 5,32 – 5,14 (m, 1H), 4,51 (s, 2H), 4,45 (s, 1H), 3,60 (s, 3H), 3,16 (s, 3H), 2,53 – 2,35 (m, 4H), 1,95 (s, 3H).	543,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-(дифторметокси)-N-((1r,3r)-3-фторциклобутил)бензамид	F O NH NH NH O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,62 (d, J = 7,0 Гц, 1H), 8,22 (s, 1H), 7,78 – 7,70 (m, 2H), 7,47 (d, J = 7,9 Гц, 1H), 7,34 – 7,26 (m, 2H), 7,17 – 7,01 (m, 3H), 6,01 (s, 2H), 5,80 (d, J = 1,3 Гц, 1H), 5,55 (d, J = 1,7 Гц, 1H), 5,31 (ddd, J = 10,5, 6,4, 4,2 Гц, 1H), 5,17 (ddd, J = 11,0, 6,6, 4,3 Гц, 1H), 3,59 (s, 3H), 2,55 (dd, J = 9,2, 4,2 Гц, 1H), 2,51 – 2,29 (m, 2H), 1,95 (d, J = 1,2 Гц, 3H).	565,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1r,3r)-3-фторциклобутил)-2-(метоксиметил)бензамид	HN O NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,62 (d, J = 7,5 Γц, 1H), 8,21 (s, 1H), 7,71 (dd, J = 8,7, 2,2 Γц, 2H), 7,40 (d, J = 7,8 Γц, 1H), 7,35 (d, J = 1,8 Γц, 1H), 7,33 – 7,25 (m, 2H), 7,20 (dd, J = 7,8, 1,8 Γц, 1H), 5,98 (s, 1H), 5,79 (s, 1H), 5,54 (d, J = 2,0 Γц, 1H), 4,92 – 4,78 (p, J = 6,8 Γц, 1H), 4,51 (s, 2H), 3,92 (p, J = 7,9 Γц, 1H), 3,60 (s, 3H), 3,16 (s, 3H), 2,73 (ddqq, J = 12,7, 6,0, 3,1 Γц, 2H), 2,29 – 2,11 (m, 2H), 1,95 (d, J = 1,2 Γц, 3H).	543,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1s,3s)-3-фторциклобутил)-2-метоксибензамид	F ₁ O NH ₂ NH ₂ NH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,32 (d, J = 7,7 Гц, 1H), 8,21 (s, 1H), 7,72 (d, J = 8,3 Гц, 2H), 7,59 (d, J = 7,8 Гц, 1H), 7,30 (d, J = 8,7 Гц, 2H), 6,92 (s, 1H), 6,86 (d, J = 7,8 Гц, 1H), 6,01 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 5,02 – 4,65 (m, 1H), 3,96 (q, J = 8,0 Гц, 1H), 3,66 (d, J = 43,5 Гц, 6H), 2,72 (dd, J = 11,6, 5,5 Гц, 2H), 2,37 – 2,11 (m, 2H), 1,95 (s, 3H).	529,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1r,3r)-3-фторциклобутил)-2-метоксибензамид	P NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,32 (d, J = 7,7 Γ ц, 1H), 8,21 (s, 1H), 7,72 (d, J = 8,3 Γ ц, 2H), 7,59 (d, J = 7,8 Γ ц, 1H), 7,30 (d, J = 8,7 Γ ц, 2H), 6,92 (s, 1H), 6,86 (d, J = 7,8 Γ ц, 1H), 6,01 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 5,02 – 4,65 (m, 1H), 3,96 (q, J = 8,0 Γ ц, 1H), 3,66 (d, J = 43,5 Γ ц, 6H), 2,72 (dd, J = 11,6, 5,5 Γ ц, 2H), 2,37 – 2,11 (m, 2H), 1,95 (s, 3H).	529,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-метокси-N-(1-(метоксиметил)циклобут ил)бензамид	O NH NH ₂ NH ₂ NH ₂ NH ₂	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,40 (s, 1H), 8,14 (s, 1H), 7,75 (t, J = 8,1 Гц, 3H), 7,35 – 7,27 (m, 2H), 7,04 - 6,99 (m, 1H), 6,86 (dd, J = 7,9, 1,5 Гц, 1H), 5,81 (s, 1H), 5,55 (d, J = 1,6 Гц, 1H), 3,77 (s, 3H), 3,67 (s, 3H), 3,58 (s, 2H), 3,33 (s, 3H), 2,43 – 2,33 (m, 2H), 2,07 (s, 2H), 1,95 (d, J = 1,5 Гц, 3H), 1,93 – 1,72 (m, 2H).	555,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-изобутил-2-метоксибензамид	NH ₂ NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,21 (s, 1H), 8,10 (t, J = 5,9 Γ ц, 1H), 7,76 – 7,69 (m, 2H), 7,65 (d, J = 7,9 Γ ц, 1H), 7,34 – 7,27 (m, 2H), 6,94 (d, J = 1,5 Γ ц, 1H), 6,86 (dd, J = 7,9, 1,5 Γ ц, 1H), 6,02 (s, 1H), 5,81 (s, 1H), 5,54 (d, J = 1,9 Γ ц, 1H), 3,72 (s, 3H), 3,60 (s, 3H), 3,10 (t, J = 6,4 Γ ц, 2H), 1,95 (t, J = 1,2 Γ ц, 3H), 1,81 (hept, J = 6,7 Γ ц, 1H), 0,89 (d, J = 6,7 Γ ц, 6H).	513,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-(дифторметокси)-N-((1s,3s)-3-фторциклобутил)бензамид	F O H NH ₂ N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,58 (d, J = 7,7 Γ ц, 1H), 8,22 (s, 1H), 7,74 - 7,73 (d, J = 6,8 Γ ц, 2H), 7,46 (d, J = 7,8 Γ ц, 1H), 7,33 - 7,25 (m, 2H), 7,13 - 6,84 (dd, J = 7,9, 1,6 Γ ц, 3H), 6,03 (s, 1H), 5,80 (s, 1H), 5,54 (t, J = 1,5 Γ ц, 1H), 4,78 (p, J = 7,0 Γ ц, 1H), 3,93 (q, J = 8,0 Γ ц, 1H), 3,59 (s, 3H), 2,73 (dq, J = 9,6, 3,0 Γ ц, 1H), 2,27 - 2,06 (m, 2H), 1,95 (t, J = 1,2 Γ ц, 3H),	565,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-циклопропокси-N-((1s,3s)-3-фторциклобутил)бензамид	F ONH2 NH2 N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (s, 1H), 8,16 (d, J = 7,0 Γ ц, 1H), 7,81 – 7,66 (m, 2H), 7,55 (d, J = 7,9 Γ ц, 1H), 7,39 – 7,28 (m, 2H), 7,23 (d, J = 1,6 Γ ц, 1H), 6,91 (dd, J = 7,8, 1,5 Γ ц, 1H), 5,85 – 5,75 (m, 1H), 5,58 – 5,51 (m, 1H), 5,23 (dddd, J = 56,7, 10,2, 6,5, 3,8 Γ ц, 1H), 4,48 (q, J = 7,7 Γ ц, 1H), 3,73 (tt, J = 6,1, 3,0 Γ ц, 1H), 3,61 (s, 3H), 2,48 – 2,38 (m, 2H), 2,38 – 2,28 (m, 2H), 1,96 (t, J = 1,3 Γ ц, 3H), 0,66 (t, J = 5,8 Γ ц, 2H), 0,61 (d, 3,2 Γ ц, 2H).	555,25
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-циклопропокси-N-((1r,3r)-3-фторциклобутил)бензамид	F NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (s, 1H), 8,12 (d, J = 7,7 Γц, 1H), 7,82 – 7,67 (m, 2H), 7,54 (d, J = 7,8 Γц, 1H), 7,34 – 7,26 (m, 2H), 7,22 (d, J = 1,5 Γц, 1H), 6,90 (dd, J = 7,9, 1,5 Γц, 1H), 5,81 (t, J = 1,1 Γц, 1H), 5,54 (t, J = 1,4 Γц, 1H), 4,84 (dp, J = 56,8, 6,8 Γц, 1H), 3,92 (dt, J = 15,3, 7,6 Γц, 1H), 3,72 (dq, J = 6,2,3,0 Γц, 1H), 3,61 (s, 3H), 2,81 – 2,64 (m, 2H), 2,29 – 2,03 (m, 2H), 1,95 (t, J = 1,2 Γц, 3H), 0,64 (dd, J = 24,4, 4,7 Γц, 4H).	555,30
4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-((1-фторциклобутил)метил)-2-метоксибензамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	¹ Н ЯМР (400 МГц, DMSO- d_6) 8 9,91 (s, 1H), 8,24 (d, J = 18,2 Гц, 2H), 7,75 – 7,68 (m, 3H), 7,33 – 7,27 (m, 2H), 6,95 (d, J = 1,4 Гц, 1H), 6,87 (dd, J = 7,9, 1,5 Гц, 1H), 6,04 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 3,73 (s, 3H), 3,71 – 3,60 (m, 2H), 3,60 (s, 3H), 2,26 – 2,13 (m, 4H), 2,08 (s, 1H), 1,95 (t, J = 1,2 Гц, 3H), 1,75 (dd, J = 11,4, 6,3 Гц, 1H), 1,53 (q, J = 8,8 Гц, 1H).	543,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-N-(циклобутилметил)-2-метоксиникотинамид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,99 (s, 1H), 8,18 (d, J = 11,9 Γц, 2H), 7,86 – 7,69 (m, 3H), 7,40 – 7,28 (m, 4H), 6,55 (d, J = 7,9 Γц, 1H), 5,83 (s, 1H), 5,56 (d, J = 1,9 Γц, 1H), 4,03 (s, 3H), 3,55 (s, 3H), 3,28 (d, J = 6,3 Γц, 2H), 2,53 (s, 1H), 1,82 (q, J = 6,7, 6,2 Γц, 2H), 1,77 – 1,67 (m, 2H).	526,30
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-хлорфенил)метакриламид	NH ₂ ONN NH ₂ NH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,12 (s, 1H), 8,11 (d, J = 3,9 Γ ц, 1H), 8,07 (d, J = 2,0 Γ ц, 1H), 7,74 (ddd, J = 8,4, 3,5, 2,1 Γ ц, 1H), 7,37 (dd, J = 8,4, 6,3 Γ ц, 1H), 6,55 (d, J = 47,7 Γ ц, 2H), 5,87 (s, 1H), 5,75 - 5,63 (m, 1H), 5,60 (s, 1H), 3,51 - 3,41 (m, 2H), 3,40 (d, J = 2,0 Γ ц, 3H), 3,27 (ddt, J = 12,1, 8,4, 4,6 Γ ц, 2H), 2,75 (qt, J = 7,7, 3,4 Γ ц, 1H), 2,34 - 2,03 (m, 3H), 1,97 (s, 4H), 1,84 (qd, J = 6,7, 3,3 Γ ц, 2H), 1,76 (qd, J = 6,7, 2,2 Γ ц, 2H), 1,71 - 1,45 (m, 2H).	519,20
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакрилами д	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,15 (s, 1H), 8,12 (s, 1H), 7,83 (dd, $J = 12,6, 2,0$ Гц, 1H), 7,59 (dd, $J = 8,4, 2,1$ Гц, 1H), 7,37 (t, $J = 8,5$ Гц, 1H), 6,57 (s, 2H), 5,86 (s, 1H), 5,69 (s, 1H), 5,60 (s, 1H), 3,55 – 3,40 (m, 5H), 3,28 (d, $J = 6,5$ Γц, 1H), 2,79 (t, $J = 6,1$ Гц, 1H), 2,21 (d, $J = 17,2$ Гц, 2H), 1,97 (d, $J = 1,3$ Гц, 3H), 1,81 (dq, $J = 35,8$, 6,8 Гц, 4H), 1,63 (s, 2H).	503,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)метакриламид	O NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,10 (s, 1H), 7,71 (t, $J = 2,7$ Гц, 1H), 7,62 (ddd, $J = 8,0$, 5,6, 2,2 Гц, 1H), 7,18 (dd, $J = 8,3$, 6,6 Гц, 1H), 6,48 (d, $J = 17,0$ Гц, 2H), 5,91 - 5,79 (m, 1H), 5,66 (ddt, $J = 14,5$, 4,1, 2,2 Гц, 1H), 5,54 (t, $J = 1,5$ Гц, 1H), 3,56 - 3,39 (m, 2H), 3,34 (s, 3H), 3,27 (q, $J = 6,9$ Гц, 2H), 2,73 (p, $J = 6,3$ Гц, 1H), 2,21 (q, $J = 15,7$, 12,1 Гц, 2H), 2,06 (s, 3H), 2,01 - 1,80 (m, 7H), 1,80 - 1,70 (m, 2H), 1,56 (q = 7,9, 7,0 Гц, 2H).	499,35
(R)-N-(4-(5-(4-(2-окса-5-азаспиро[3.4]октан-5-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,16 (s, 1H), 8,14 (s, 1H), 7,84 (dd, J = 12,6, 2,0 Гц, 1H), 7,59 (dd, J = 8,4, 2,0 Гц, 1H), 7,37 (t, J = 8,5 Γц, 1H), 6,55 (s, 2H), 5,86 (t, J = 1,1 Γц, 1H), 5,71 (s, 1H), 5,60 (d, J = 1,9 Γц, 1H), 5,30 (dd, J = 13,7, 4,9 Γц, 2H), 4,19 (d, J = 4,9 Γц, 2H), 3,60 – 3,43 (m, 5H), 2,97 – 2,78 (m, 1H), 2,44 – 2,07 (m, 4H), 1,98 (t, J = 1,2 Γц, 5H), 1,70 (dq, J = 19,5, 7,6, 7,1 Γц, 4H).	545,25
(S)-N-(4-(5-(4-(2-окса-5-азаспиро[3.4]октан-5-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,16 (s, 1H), 8,14 (s, 1H), 7,84 (dd, J = 12,6, 2,0 Γц, 1H), 7,59 (dd, J = 8,5, 2,0 Γц, 1H), 7,37 (t, J = 8,5 Γц, 1H), 6,55 (s, 2H), 5,86 (t, J = 1,0 Γц, 1H), 5,71 (s, 1H), 5,60 (d, J = 1,8 Γц, 1H), 5,30 (dd, J = 13,7, 4,9 Γц, 2H), 4,19 (d, J = 4,9 Γц, 2H), 3,61 – 3,40 (m, 5H), 2,93 – 2,78 (m, 1H), 2,37 – 2,13 (m, 4H), 1,98 (t, J = 1,2 Γц, 5H), 1,70 (td, J = 15,9, 14,6, 7,9 Γц, 4H).	545,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(5-(4-(2-окса-5-азаспиро[3.4]октан-5-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,11 (s, 1H), 7,73 - 7,70 (m, 1H), 7,63 - 7,62 (m, 1H), 7,20 - 7,17 (m, 1H), 6,51 (d, J = 28,6 Γц, 2H), 5,83 (s, 1H), 5,68 (d, J = 10,9 Γц, 1H), 5,55 (t, J = 1,5 Γц, 1H), 5,31 - 5,26 (m, 2H), 4,18 - 4,17 (m, 2H), 3,54 - 3,47 (m, 1H), 3,47 - 3,38 (m, 1H), 3,34 (s, 3H), 2,74 (d, J = 12,8 Γц, 1H), 2,35 - 2,24 (m, 1H), 2,23 - 2,16 (m, 3H), 2,06 (s, 3H), 1,97 (t, J = 1,2 Γц, 4H), 1,93 - 1,79 (m, 1H), 1,70 (p, J = 6,7 Γц, 2H), 1,58 (d, J = 5,2 Γц, 2H).	541,35
(S)-N-(4-(5-(4-(2-окса-5-азаспиро[3.4]октан-5-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)метакрилам ид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,11 (s, 1H), 7,73 - 7,70 (m, 1H), 7,63 - 7,62 (m, 1H), 7,20 - 7,17 (m, 1H), 6,51 (d, J = 28,6 Γц, 2H), 5,83 (s, 1H), 5,68 (d, J = 10,9 Γц, 1H), 5,55 (t, J = 1,5 Γц, 1H), 5,31 - 5,26 (m, 2H), 4,18 - 4,17 (m, 2H), 3,54 - 3,47 (m, 1H), 3,47 - 3,38 (m, 1H), 3,34 (s, 3H), 2,74 (d, J = 12,8 Γц, 1H), 2,35 - 2,24 (m, 1H), 2,23 - 2,16 (m, 3H), 2,06 (s, 3H), 1,97 (t, J = 1,2 Γц, 4H), 1,93 - 1,79 (m, 1H), 1,70 (p, J = 6,7 Γц, 2H), 1,58 (d, J = 5,2 Γц, 2H).	541,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-фторфенил)метакриламид	NH ₂ NH ₂ NH NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,15 (s, 1H), 8,12 (s, 1H), 7,83 (dd, $J = 12,5, 2,0$ Гц, 1H), 7,59 (dd, $J = 8,5, 2,0$ Гц, 1H), 7,37 (t, $J = 8,4$ Гц, 1H), 6,60 (s, 2H), 5,86 (s, 1H), 5,69 (s, 1H), 5,60 (s, 1H), 3,55 – 3,40 (m, 5H), 3,28 (d, $J = 6,5$ Γц, 1H), 2,83 – 2,76 (m, 1H), 2,21 (d, $J = 16,9$ Гц, 2H), 1,98 (t, $J = 1,2$ Гц, 3H), 1,87 (p, $J = 6,8$ Гц, 2H), 1,63 (s, 2H).	503,25
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)метакрилам ид	ONN NH2 NH2 NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,86 (s, 1H), 8,10 (s, 1H), 7,71 (d, J = 2,4 Γц, 1H), 7,61 (t, J = 8,2, 2,3 Γц, 1H), 7,18 (t, J = 8,3, 6,6 Γц, 1H), 6,50 (s, 2H), 5,87 - 5,78 (m, 1H), 5,64 (s, 1H), 5,54 (d, J = 1,8 Γц, 1H), 3,52 - 3,38 (m, 2H), 3,33 - 3,22 (m, 5H), 2,73 (t, J = 6,1 Γц, 1H), 2,25 (t, J = 42,5, 23,2 Γц, 2H), 2,06 (s, 3H), 1,97 (d, J = 1,2 Γц, 4H), 1,93 - 1,80 (m, 3H), 1,75 (p, J = 6,7 Γц, 2H), 1,56 (d, J = 6,1 Γц, 2H).	499,30
(S)-N-(4-(4-амино-7-метил-5-(4-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ usomep 1	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,12 (s, 1H), 7,80 – 7,72 (m, 2H), 7,32 – 7,24 (m, 2H), 5,86 – 5,78 (m, 2H), 5,76 (s, 2H), 5,56 – 5,51 (m, 1H), 3,58 (s, 3H), 3,39 (s, 4H), 2,74 (d, $J = 16,0$ Γц, 1H), 2,05 – 1,82 (m, 7H), 1,77 – 1,55 (m, 5H), 1,16 (s, 3H).	499,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	О N изомер 2 NH O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,88 (s, 1H), 8,13 (s, 1H), 7,80 - 7,72 (m, 2H), 7,32 $-$ 7,24 (m, 2H), 6,05 $-$ 5,65 (m, 3H), 5,56 $-$ 5,51 (m, 1H), 3,59 (s, 3H), 3,41 (s, 4H), 2,75 (d, $J = 16,7$ Гц, 1H), 2,08 $-$ 1,89 (m, 7H), 1,75 (s, 4H), 1,63 (dd, $J = 12,6$, 6,4 Гц, 1H), 1,16 (s, 3H).	499,30
(S)-N-(4-(4-амино-7-метил-5-(4-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	о N NH ₂ изомер 3 N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,08 (s, 1H), 7,84 – 7,76 (m, 2H), 7,45 – 7,37 (m, 2H), 6,53 (s, 2H), 5,83 (s, 1H), 5,78 (d, J = 4,5 Γц, 1H), 5,56 (t, J = 1,5 Γц, 1H), 3,57 (s, 4H), 3,33 (s, 3H), 2,77 (d, J = 14,8 Γц, 1H), 2,11 (d, J = 13,6 Γц, 1H), 1,98 (d, J = 1,2 Γц, 3H), 1,90 (d, J = 17,3 Γц, 1H), 1,77 (s, 6H), 1,44 (s, 1H), 1,21 (s, 3H).	499,30
(S)-N-(4-(4-амино-7-метил-5-(4-метил-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	О N изомер 4 N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,08 (s, 1H), 7,84 – 7,77 (m, 2H), 7,45 – 7,37 (m, 2H), 6,52 (s, 2H), 5,83 (t, J = 1,1 Γц, 1H), 5,81 – 5,75 (m, 1H), 5,56 (t, J = 1,5 Γц, 1H), 3,57 (s, 4H), 3,50 (s, 3H), 2,82 – 2,73 (m, 1H), 2,12 (d, J = 13,7 Γц, 1H), 1,97 (t, J = 1,2 Γц, 3H), 1,90 (d, J = 17,1 Γц, 1H), 1,77 (s, 6H), 1,70 – 1,37 (m, 1H), 1,21 (s, 3H).	499,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-хлорфенил)метакриламид	NH ₂ NH _O O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,13 (s, 1H), 8,15 - 8,03 (m, 2H), 7,74 (ddd, J = 8,4, 3,6, 2,2 Гц, 1H), 7,37 (dd, J = 8,4, 6,4 Гц, 1H), 6,55 (d, J = 48,7 Гц, 2H), 5,87 (s, 1H), 5,78 - 5,60 (m, 2H), 3,54 - 3,41 (m, 2H), 3,40 (d, J = 2,0 Гц, 3H), 3,27 (ddt, J = 12,1, 8,4, 4,5 Гц, 2H), 2,75 (tt, J = 9,5, 4,2 Гц, 1H), 2,36 - 2,03 (m, 3H), 1,97 (s, 4H), 1,84 (qd, J = 6,7, 3,3 Гц, 2H), 1,76 (qd, J = 6,8, 2,2 Гц, 2H), 1,70 - 1,44 (m, 2H).	519,20
(R)-N-(4-(5-(4-(6-азаспиро[3.4]октан-6-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,14 (s, 1H), 7,81 -7,75 (m, 2H), 7,49 - 7,43 (m, 2H), 5,93 (s, 1H), 5,85 (t, J = 0,9 Гц, 1H), 5,57 (d, J = 1,7 Гц, 1H), 3,66 (s, 3H), 3,64 - 3,49 (m, 2H), 3,28 - 3,17 (m, 2H), 2,88 - 2,80 (m, 1H), 2,43 (t, J = 11,5 Гц, 1H), 2,35 (s, 1H), 2,16 - 1,98 (m, 7H), 1,96 - 1,86 (s, 1H), 1,86 - 1,68 (s, 7H), 1,28 (s, 1H).	525,30
(S)-N-(4-(5-(4-(6-азаспиро[3.4]октан-6-карбонил)циклогексан-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH	¹ Н ЯМР (400 МГц, Метанол- d ₄) 8,14 (s, 1H), 7,82 - 7,74 (m, 2H), 7,46 (d, J = 8,2 Гц, 2H), 5,93 (s, 1H), 5,85 (t, J = 1,0 Гц, 1H), 5,57 (d, J = 1,5 Гц, 1H), 3,66 (s, 3H), 3,64 - 3,50 (m, 2H), 3,28 - 3,17 (m, 2H), 2,84 (t, J = 6,2 Гц, 1H), 2,42 (s, 1H), 2,35 (s, 1H), 2,16 - 1,98 (m, 7H), 1,96 - 1,85 (m, 1H), 1,81 (q, J = 6,6 Гц, 2H), 1,76 (s, 5H), 1,28 (s, 1H).	525,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (индолин-1- карбонил)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH2 NH2 NH	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (s, 1H), 7,73 (d, J = 8,5 Гц, 2H), 7,55 (d, J = 7,7 Гц, 2H), 7,35 – 7,24 (m, 5H), 7,16 (s, 1H), 7,02 (s, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 4,05 (t, J = 8,3 Гц, 2H), 3,62 (s, 3H), 3,08 (t, J = 8,2 Гц, 2H), 1,95 (d, J = 1,3 Гц, 3H).	529,25
(S)-N-(4-(4-амино-5-(4- (индолин-1- карбонил)циклогекс-1- енил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	ONN NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,13 (d, J = 8,7 Γц, 2H), 7,82 (d, J = 8,6 Γц, 2H), 7,52 – 7,39 (m, 2H), 7,23 (d, J = 7,4 Γц, 1H), 7,14 (t, J = 7,7 Γц, 1H), 6,99 (t, J = 7,4 Γц, 1H), 6,57 (s, 2H), 5,83 (d, J = 7,2 Γц, 2H), 5,55 (s, 1H), 4,32 – 4,02 (m, 2H), 3,59 (s, 3H), 3,14 (t, J = 8,5 Γц, 2H), 3,01 (s, 1H), 2,37 (s, 2H), 1,98 (t, J = 1,2 Γц, 5H), 1,75 (s, 2H).	533,25
(R)-N-(4-(4-амино-5-(4- (индолин-1- карбонил)циклогекс-1- енил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 9,95 (s, 1H), 8,13 (d, J = 8,7 Γ μ, 2H), 7,82 (d, J = 8,6 Γ μ, 2H), 7,52 – 7,39 (m, 2H), 7,23 (d, J = 7,4 Γ μ, 1H), 7,14 (t, J = 7,7 Γ μ, 1H), 6,99 (t, J = 7,4 Γ μ, 1H), 6,57 (s, 2H), 5,83 (d, J = 7,2 Γ μ, 2H), 5,55 (s, 1H), 4,32 – 4,02 (m, 2H), 3,59 (s, 3H), 3,14 (t, J = 8,5 Γ μ, 2H), 3,01 (s, 1H), 2,37 (s, 2H), 1,98 (t, J = 1,2 Γ μ, 5H), 1,75 (s, 2H).	533,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- ((S)-4-((R)-2- метилпиперидин-1- карбонил)циклогекс-1- ен-1-ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (s, 1H), 7,81 (d, J = 8,5 Γц, 2H), 7,43 (d, J = 8,3 Γц, 2H), 6,54 (s, 2H), 5,83 (s, 1H), 5,79 – 5,71 (m, 1H), 5,55 (s, 1H), 4,74 (s, 1H), 4,30 (s, 1H), 3,58 (s, 3H), 3,05 (dd, J = 31,8, 9,0 Γц, 2H), 2,36 – 2,11 (m, 2H), 1,97 (s, 3H), 1,87 – 1,70 (m, 2H), 1,72 – 1,34 (m, 7H), 1,35 – 1,12 (m, 2H), 1,05 (d, J = 6,9 Γц, 2H).	513,30
N-(4-(5-((S)-4-((1S,5R)-2-азабицикло[3.1.0] гексан-2-карбонил) циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d] пиримидин-6-ил) фенил) метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (d, J = 2,1 Γ ц, 1H), 8,10 (s, 1H), 7,81 (dt, J = 8,8, 2,2 Γ ц, 2H), 7,49 - 7,40 (m, 2H), 6,55 (s, 1H), 5,84 (t, J = 1,0 Γ ц, 1H), 5,78 (d, J = 9,9 Γ ц, 1H), 5,56 (d, J = 1,7 Γ ц, 1H), 3,80 - 3,65 (m, 1H), 3,59 (s, 4H), 3,17 (dd, J = 19,5, 9,2 Γ ц, 1H), 2,96 (dt, J = 12,5, 8,6 Γ ц, 1H), 2,44 - 2,20 (m, 2H), 2,19 - 1,99 (m, 1H), 1,98 (d, J = 1,2 Γ ц, 3H), 1,95 - 1,73 (m, 3H), 1,75 - 1,48 (m, 2H), 0,85 - 0,67 (m, 1H), 0,61 - 0,47 (m, 1H).	497,25
(S)-N-(4-(5-(4-(2-азабицикло[2.1.1]гексан-2-карбонил)циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	ONN NH2 NH2 NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (d, J = 1,8 Гц, 1H), 8,10 (d, J = 2,3 Гц, 1H), 7,81 (dd, J = 8,7, 2,2 Гц, 2H), 7,43 (dd, J = 8,7, 3,1 Гц, 2H), 6,55 (s, 1H), 5,83 (s, 1H), 5,77 (d, J = 6,0 Γц, 1H), 5,55 (s, 1H), 4,56 (dd, J = 21,1, 7,0 Γц, 1H), 3,58 (s, 3H), 3,51 – 3,41 (m, 1H), 3,24 (d, J = 4,3 Γц, 1H), 2,98 – 2,78 (m, 2H), 2,73 (q, J = 6,1 Γц, 1H), 2,37 – 2,13 (m, 2H), 1,98 (d, J = 1,2 Γц, 4H), 1,90 (s, 3H), 1,66 (d, J = 6,2 Γц, 1H), 1,58 (s, 1H), 1,38 – 1,19 (m, 2H).	497,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-((S)-4- ((S)-2- (метоксиметил)пирролид ин-1- карбонил)циклогекс-1- ен-1-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇ NH ₇ NH ₇ NH ₇ NH ₈ NH ₈ NH ₈ NH ₈ NH ₉	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,10 (d, J = 5,0	529,30
(S)-N-(4-(4-амино-5-(4- (азепан-1- карбонил)циклогекс-1- ен-1-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,10 (s, 1H), 7,80 (d, J = 8,7 Гц, 2H), 7,43 (d, J = 8,6 Гц, 2H), 6,52 (s, 2H), 5,83 (s, 1H), 5,76 (s, 1H), 5,55 (s, 1H), 3,58 (s, 3H), 3,55 – 3,33 (m, 4H), 2,96 (s, 1H), 2,24 (t, J = 17,8 Гц, 2H), 1,97 (d, J = 1,3 Гц, 3H), 1,92 (s, 1H), 1,87 (s, 1H), 1,67 (d, J = 6,0 Гц, 2H), 1,61 (d, J = 6,5 Гц, 4H), 1,48 (s, 4H).	513,35
(R)-N-(4-(5-(4-(2-азабицикло[2.1.1] гексан-2-карбонил) циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d] пиримидин-6-ил) фенил) метакриламид	NH ₂ NH ₂ NH _O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (d, J = 1,8 Гц, 1H), 8,10 (d, J = 2,3 Гц, 1H), 7,81 (dd, J = 8,7, 2,2 Гц, 2H), 7,43 (dd, J = 8,7, 3,1 Гц, 2H), 6,55 (s, 1H), 5,83 (s, 1H), 5,77 (d, J = 6,0 Γц, 1H), 5,55 (s, 1H), 4,56 (dd, J = 21,1, 7,0 Γц, 1H), 3,58 (s, 3H), 3,51 – 3,41 (m, 1H), 3,24 (d, J = 4,3 Γц, 1H), 2,98 – 2,78 (m, 2H), 2,73 (q, J = 6,1 Γц, 1H), 2,37 – 2,13 (m, 2H), 1,98 (d, J = 1,2 Γц, 4H), 1,90 (s, 3H), 1,66 (d, J = 6,2 Γц, 1H), 1,58 (s, 1H), 1,38 – 1,19 (m, 2H).	497,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-((R)-4-((S)-2-(метоксиметил)пирролид ин-1-карбонил)циклогекс-1-ен-1-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,10 (d, J = 5,0	529,30
(R)-N-(4-(4-амино-5-(4- (азепан-1- карбонил)циклогекс-1- ен-1-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,93 (s, 1H), 8,11 (s, 1H), 7,80 (d, J = 8,7 Γц, 2H), 7,43 (d, J = 8,6 Γц, 2H), 6,57(s, 2H)5,83 (s, 1H), 5,76 (s, 1H), 5,55 (s, 1H), 3,58 (s, 3H), 3,53 – 3,41 (m, 2H), 3,44 – 3,30 (m, 2H), 2,96 (s, 1H), 2,39 – 2,04 (m, 2H), 1,97 (d, J = 1,3 Γц, 3H), 1,87 (s, 2H), 1,67 (d, J = 5,8 Γц, 2H), 1,60 (d, J = 6,5 H, 4H), 1,49(s, 4H).	513,30
N-(4-(4-амино-7-метил-5- ((R)-4-((R)-2- метилпиперидин-1- карбонил)циклогекс-1- ен-1-ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 9,94 (s, 1H), 8,09 (s, 1H), 7,87 – 7,75 (m, 2H), 7,51 – 7,29 (m, 2H), 6,57 (s, 2H), 5,83 (t, J = 1,1 Γ μ, 1H), 5,76 (t, J = 1,9 Γ μ, 1H), 5,55 (s, 1H), 4,77 (s, 1H), 4,28 – 3,67 (m, 1H), 3,58 (s, 3H), 3,15 – 2,58 (m, 2H), 2,42 – 2,11 (m, 2H), 1,97 (d, J = 1,2 Γ μ, 3H), 1,80 (d, J = 13,6 Γ μ, 2H), 1,68 – 1,41 (m, 7H), 1,11 (dd, J = 78,3, 6,8 Γ μ, 4H).	513,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-((R)-4-((1S,5R)-2-азабицикло[3.1.0]гексан-2-карбонил)циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₆ NH ₇	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (d, J = 1,0 Гц, 1H), 7,91 - 7,64 (m, 2H), 7,44 (dq, J = 8,7, 2,1, 1,5 Гц, 2H), 6,71 - 6,31 (m, 1H), 5,83 (s, 1H), 5,77 (d, J = 3,6 Гц, 1H), 5,56 (t, J = 1,4 Гц, 1H), 3,72 - 3,61 (m, 1H), 3,59 (d, J = 0,9 Гц, 3H), 3,49 (d, J = 5,9 Гц, 1H), 3,18 - 2,64 (m, 2H), 2,45 - 2,19 (m, 2H), 2,19 - 1,77 (m, 8H), 1,69 (dd, J = 13,2, 6,6 Гц, 2H), 1,55 (d, J = 28,9, 6,9 Гц, 1H), 0,88 - 0,73 (m, 1H), 0,63 - 0,51 (m, 1H).	497,25
N-(4-(5-((S)-4-((1R,5S)-2-азабицикло[3.1.0]гексан-2-карбонил)циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (d, J = 1,0 Γц, 1H), 7,89 - 7,72 (m, 2H), 7,53 - 7,32 (m, 2H), 6,52 (s, 1H), 5,84 (d, J = 1,3 Γц, 1H), 5,77 (s, 1H), 5,56 (d, J = 1,9 Γц, 1H), 3,75 - 3,63 (m, 1H), 3,59 (d, J = 0,9 Γц, 3H), 3,49 (q, J = 6,5, 5,8 Γц, 1H), 3,22 - 2,63 (m, 2H), 2,41 - 2,14 (m, 2H), 2,13 - 2,01 (m, 1H), 2,00 - 1,97 (m, 3H), 1,96 - 1,81 (d, J = 6,3 Γц, 2H), 1,75 - 1,63 (m, 2H), 1,61 - 1,45 (m, 1H), 0,86 - 0,77 (m, 1H), 0,62 - 0,48 (m, 1H).	497,30
N-(4-(5-((R)-4-((1R,5S)-2-азабицикло[3.1.0] гексан-2-карбонил) циклогекс-1-ен-1-ил)-4-амино-7-метил-7Н-пирроло[2,3-d] пиримидин-6-ил) фенил) метакриламид	NH ₂ NH ₂ NH O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (s, 1H), 7,81 (dt, J = 8,8, 2,1 Гц, 2H), 7,44 (d, J = 8,3 Гц, 2H), 6,54 (s, 1H), 5,83 (s, 1H), 5,77 (d, J = 9,8 Гц, 1H), 5,55 (s, 1H), 3,80 - 3,65 (m, 1H), 3,58 (s, 4H), 3,23 - 3,07 (m, 1H), 2,96 - 2,63 (m, 1H), 2,32 (q, J = 18,6, 18,0 Гц, 2H), 1,98 (m, 4H), 1,94 - 1,74 (m, 3H), 1,67 (ddd, J = 21,7, 11,2, 5,8 Гц, 2H), 0,77 (q, J = 7,4, 6,7 Гц, 1H), 0,69 (q, J = 6,7 Гц, 0H), 0,59 - 0,43 (m, 1H).	497,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- ((S)-4-((R)-2- метилпирролидин-1- карбонил)циклогекс-1- ен-1-ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 9,94 (s, 1H), 8,09 (d, J = 4,8 Γ ц, 1H), 7,80 (d, J = 8,3 Γ ц, 2H), 7,47 – 7,39 (m, 2H), 6,59 (s, 2H), 5,83 (s, 1H), 5,77 (s, 1H), 5,55 (s, 1H), 4,03 (q, J = 9,6, 8,8 Γ ц, 1H), 3,58 (d, J = 2,2 Γ ц, 3H), 3,48 (q, J = 7,3, 6,4 Γ ц, 1H), 3,32 (s, 1H), 2,82 (s, 1H), 2,32 (d, J = 17,2 Γ ц, 1H), 2,20 (d, J = 17,1 Γ μ, 1H), 1,97 (s, 3H), 1,96 – 1,73 (m, 5H), 1,61 (s, 2H), 1,47 (s, 1H), 1,14 (d, J = 6,4 Γ μ, 1H), 1,04 (d, J = 6,3 Γ μ, 2H).	499,25
N-(4-(4-амино-7-метил-5- ((S)-4-((S)-2- метилпирролидин-1- карбонил)циклогекс-1- ен-1-ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	O N N N N O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (d, J = 4,7 Гц, 1H), 7,84 – 7,77 (m, 2H), 7,43 (dd, J = 8,7, 2,1 Гц, 2H), 6,62 (s, 2H), 5,83 (s, 1H), 5,76 (d, J = 3,8 Гц, 1H), 5,55 (d, J = 1,9 Гц, 1H), 4,10 – 3,97 (m, 1H), 3,58 (d, J = 2,2 Гц, 3H), 3,48 (q, J = 6,8, 6,2 Гц, 1H), 2,83 (q, J = 5,4 Гц, 1H), 2,32 (d, J = 16,7 Гц, 1H), 2,20 (d, J = 18,7 Гц, 1H), 2,00 – 1,86 (m, 4H), 1,84 (s, 3H), 1,66 – 1,57 (m, 2H), 1,52 – 1,41 (m, 2H), 1,14 (d, J = 6,3 Гц, 1H), 1,05 (d, J = 6,2 Гц, 3H).	499,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-((S)-4-((R)-2- циклопропилпирролидин -1-карбонил)циклогекс-1- ен-1-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	ON NOW NOW NOW NOW NOW NOW NOW NOW NOW N	¹ H ЯМР (400 МГц, DMSO- d_6) 9,93 (s, 1H), 8,09 (d, J = 8,0 Гц, 1H), 7,83 - 7,77 (m, 2H), 7,43 (dd, J = 8,7, 2,7 Γц, 2H), 6,63 - 6,45 (m, 2H), 5,83 (t, J = 2,9 Γц, 1H), 5,77 (s, 1H), 5,57 - 5,52 (m, 1H), 3,80 (t, J= 7,5 Γц, 1H), 3,60 - 3,50 (s, 3H), 3,50 - 3,40 (s, 2H), 2,86 (s, 1H), 2,40 - 2,10 (m, 2H), 2,00 - 1,95 (s, 3H), 1,95 - 1,65 (m, 6H), 1,65 - 1,50 (s, 2H), 1,00 - 0,75 (m, 1H), 0,53 - 0,41 (m, 1H), 0,32 - 0,13 (m, 2H), 0,10 (dt, J = 9,8, 4,3 Γц, 1H).	525,25
N-(4-(4-амино-7-метил-5- ((R)-4-((R)-2- метилпирролидин-1- карбонил)циклогекс-1- ен-1-ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H 9MP (400 MΓu, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (d, J = 3,7 Γu, 1H), 7,81 (dd, J = 8,3, 3,9 Γu, 2H), 7,43 (dd, J = 8,7, 2,5 Γu, 2H), 6,46 (s, 2H), 5,83 (s, 1H), 5,75 (s, 1H), 5,55 (s, 1H), 4,05 – 3,96 (m, 1H), 3,58 (d, J = 1,9 Γu, 4H), 3,46 – 3,39 (m, 1H), 2,77 (s, 1H), 2,27 – 2,22 (m, 2H), 1,94 (d, J = 22,2 Γu, 8H), 1,60 (s, 2H), 1,49 (d, J = 7,6 Γu, 1H), 1,09 (dd, J = 8,2, 6,2 Γu, 3H).	499,30
N-(4-(4-амино-7-метил-5- ((R)-4-((S)-2- метилпирролидин-1- карбонил)циклогекс-1- ен-1-ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,95 (d, J = 2,0 Гц, 1H), 8,11 (d, J = 3,8 Гц, 1H), 7,81 (dq, J = 9,1, 2,1 Гц, 2H), 7,43 (dd, J = 8,8, 2,5 Гц, 2H), 6,46 (s, 2H), 5,83 (s, 1H), 5,79 – 5,72 (m, 1H), 5,55 (d, J = 1,9 Гц, 1H), 4,01 (td, J = 6,6, 2,7 Гц, 1H), 3,58 (d, J = 1,9 Гц, 3H), 3,44 (t, J = 7,9 Гц, 1H), 2,76 (dd, J = 12,2, 6,3 Гц, 1H), 2,25 (s, 2H), 1,97 (t, J = 1,2 Гц, 4H), 1,90 (s, 3H), 1,81 (s, 2H), 1,61 (s, 2H), 1,52 – 1,45 (m, 1H), 1,09 (dd, J = 8,2, 6,3 Гц, 3H).	499,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-((S)-4- ((S)-2- циклопропилпирролидин -1-карбонил)циклогекс-1- ен-1-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	H ₂ N NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) 9,94 (s, 1H), 8,11 (d, J = 2,6 Гц, 1H), 7,81 (dd, J = 8,5, 5,9 Гц, 2H), 7,43 (d, J = 8,4 Γц, 2H), 6,44 (s, 1H), 5,83 (s, 1H), 5,79 - 5,73 (m, 1H), 5,55 (t, J = 1,5 Γц, 1H), 3,75 (t, J = 7,0 Γц, 1H), 3,58 (d, J = 1,8 Γц, 3H), 3,55 (s, 1H), 3,55 - 3,42 (m, 1H), 2,78 (s, 1H), 2,27 (s, 1H), 2,22 (s, 1H), 1,97 (d, J = 1,3 Γц, 9H), 1,79 (d, J = 1,3 Γц, 3H), 0,91 (d, J = 7,8 Γц, 1H), 0,50 (dd, J = 9,6, 4,9 Γц, 1H), 0,35 (dddt, J = 27,8, 13,4, 9,3, 4,6 Γц, 2H), 0,13 (dt, J = 9,5, 4,8 Γц, 1H).	525,25
N-(4-(4-амино-5-((R)-4-((R)-2- циклопропилпирролидин -1-карбонил)циклогекс-1- ен-1-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,95 (s, 1H), 8,09 (d, J = 8,2 Γц, 1H), 7,85 - 7,73 (m, 2H), 7,45 - 4,41 (m, 2H), 6,65 (s, 2H), 5,82 (d, J = 4,9 Γц, 1H), 5,77 (s, 1H), 5,55 (d, J = 1,8 Γц, 1H), 3,81 - 3,79 (m, 1H), 3,58 (s, 5H), 2,86 (s, 1H), 2,42 -2,14 (m, 2H), 1,97 (d, J = 1,3 Γц, 2H), 1,88 - 1,67 (m, 4H), 1,67 - 1,55 (m, 2H), 0,87 - 0,85 (m, 1H), 0,47 (d, J = 4,3 Γц, 1H), 0,38 - 0,14 (m, 2H), 0,09 (d, J = 4,8 Γц, 1H).	525,30
N-(4-(4-амино-5-((R)-4- ((S)-2- циклопропилпирролидин -1-карбонил)циклогекс-1- ен-1-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	H ₂ N NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,10 (d, J = 2,8 Γц, 1H), 7,87 - 7,75 (m, 2H), 7,43 (d, J = 8,3 Γц, 2H), 6,44 (s, 2H), 5,83 (s, 1H), 5,76 (s, 1H), 5,55 (d, J = 1,8 Γц, 1H), 3,74 (t, J = 7,2 Γц, 1H), 3,58 (d, J = 2,1 Γц, 4H), 3,46 - 3,40 (m, 1H), 2,79 (d, J = 7,2 Γц, 1H), 2,24 (d, J = 20,6 Γц, 2H), 2,02 - 1,88 (m, 6H), 1,89 - 1,50 (m, 5H), 0,95 - 0,86 (m, 1H), 0,55 - 0,25 (m, 3H), 0,15 - 0,11 (m, 1H).	525,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-3-(3-фтор- 4-((4-метилпиримидин-2- ил)окси)фенил)-1-метил- 1H-пирроло[3,2- с]пиридин-2- ил)фенил)метакриламид	F O N NH ₂ NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,48 (d, J = 5,0 Γц, 1H), 7,78 – 7,69 (m, 3H), 7,37 – 7,27 (m, 3H), 7,24 – 7,16 (m, 2H), 7,16 – 7,09 (m, 1H), 6,88 (d, J = 6,0 Γц, 1H), 5,80 (s, 1H), 5,54 (s, 1H), 5,15 (s, 2H), 3,57 (s, 3H), 2,42 (s, 3H), 1,96 (s, 3H).	509,20
4-(4-амино-2-(4-метакриламидофенил)-1-метил-1Н-пирроло[3,2-с]пиридин-3-ил)-N-(циклобутилметил)-2-метоксибензамид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,10 (t, J = 5,8 Γц, 1H), 7,75 – 7,66 (m, 3H), 7,64 (d, J = 7,8 Γц, 1H), 7,31 – 7,23 (m, 2H), 6,95 (d, J = 1,6 Γц, 1H), 6,91 – 6,84 (m, 2H), 5,80 (t, J = 1,2 Γц, 1H), 5,53 (t, J = 1,6 Γц, 1H), 5,18 (s, 2H), 3,73 (s, 3H), 3,57 (s, 3H), 3,29 (m, J = 12,0 Γц, 2H), 2,54 (d, J = 7,6 Γц, 1H), 2,04 – 1,92 (m, 5H), 1,89 – 1,78 (m, 2H), 1,78 – 1,65 (m, 2H).	524,25
N-(4-(4-амино-1-метил-3- (4-((6-метилпиридин-2- ил)окси)фенил)-1Н- пирроло[3,2-с]пиридин- 2-ил)фенил)акриламид	0.5FA NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,26 (s, 1H), 8,15 (d, J = 1,2 Γц, 1H), 7,80 - 7,62 (m, 4H), 7,34 - 7,23 (m, 4H), 7,11 - 7,06 (m, 2H), 7,02 (d, J = 7,4 Γц, 1H), 6,99 (s, 1H), 6,77 (d, J = 8,1 Γц, 1H), 6,48 - 6,41 (m, 1H), 6,29 - 6,25 (m, 1H), 5,79 - 5,76 (m, 1H), 5,52 (s, 2H), 3,62 (s, 3H), 2,35 (s, 4H).	476,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-1-метил-3-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-1Н-пирроло[3,2-с]пиридин-2-ил)фенил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 7,78 (d, J = 8,3 Γц, 2H), 7,62 (d, J = 5,9 Γц, 1H), 7,43 (d, J = 8,5 Γц, 2H), 6,74 (d, J = 6,2 Γц, 1H), 6,51 - 6,44 (m, 1H), 6,32 - 6,27 (m, 1H), 5,83 - 5,74 (m, 2H), 5,69 (s, 2H), 3,55 (d, J = 1,9 Γц, 3H), 3,52 - 3,41 (m, 1H), 3,30 - 3,22 (m, 2H), 2,79 - 2,64 (m, 1H), 2,38 - 2,16 (m, 2H), 2,04 - 1,82 (m, 4H), 1,76 (p, J = 6,6 Γц, 2H), 1,61 (d, J = 30,7 Γц, 2H).	470,20
(R)-N-(4-(4-амино-1-метил-3-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-1Н-пирроло[3,2-с]пиридин-2-ил)фенил)акриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,30 (s, 1H), 7,78 (d, J = 8,3 Γц, 2H), 7,62 (d, J = 5,9 Γц, 1H), 7,43 (d, J = 8,5 Γц, 2H), 6,74 (d, J = 6,2 Γц, 1H), 6,51 - 6,44 (m, 1H), 6,32 - 6,27 (m, 1H), 5,83 - 5,74 (m, 2H), 5,69 (s, 2H), 3,55 (d, J = 1,9 Γц, 3H), 3,52 - 3,41 (m, 1H), 3,30 - 3,22 (m, 2H), 2,79 - 2,64 (m, 1H), 2,38 - 2,16 (m, 2H), 2,04 - 1,82 (m, 4H), 1,76 (p, J = 6,6 Γц, 2H), 1,61 (d, J = 30,7 Γц, 2H).	470,25
(E)-N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)-4- (диметиламино)бут-2- енамид	N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,22 (s, 1H), 8,48 (d, J = 5,0 Γ ц, 1H), 8,21 (s, 1H), 7,72 (d, J = 8,2 Γ ц, 2H), 7,33 (d, J = 8,4 Γ ц, 3H), 7,23 - 7,15 (m, 2H), 7,15 - 7,07 (m, 1H), 6,76 (dt, J = 15,1, 5,9 Γ ц, 1H), 6,29 (d, J = 15,4 Γ ц, 1H), 5,98 (s, 2H), 3,60 (s, 3H), 3,12 (d, J = 5,9 Γ ц, 2H), 2,42 (s, 3H), 2,22 (s, 6H).	553,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R,E)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4-(диметиламино)бут-2-енамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₄ NH ₅ NH ₄ NH ₅	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 10,23 (s, 1H), 8,10 (d, J = 1,8 Гц, 1H), 7,78 (d, J = 8,2 Гц, 2H), 7,51 - 7,38 (m, 2H), 6,77 (dt, J = 15,3, 5,9 Гц, 1H), 6,53 (s, 2H), 6,32 (d, J = 15,4 Гц, 1H), 5,84 - 5,72 (m, 1H), 3,58 (s, 3H), 3,56 - 3,47 (m, 1H), 3,47 - 3,39 (m, 1H), 3,27 (dd, J = 16,0, 9,3 Гц, 3H), 3,11 (d, J = 5,9 Гц, 2H), 2,84 (q, J = 6,0 Гц, 1H), 2,27 (d, J = 14,7 Гц, 2H), 2,22 (s, 6H), 1,87 (dt, J = 13,3, 6,4 Гц, 4H), 1,76 (p, J = 6,7 Гц, 2H), 1,63 (q = 6,4 Гц, 2H).	528,40
(S,E)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4-(диметиламино)бут-2-енамид	NH ₂ NH ₂ NH _N NH _N NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,23 (s, 1H), 8,10 (d, J = 1,7 Γ ц, 1H), 7,77 (d, J = 8,2 Γ ц, 2H), 7,47 – 7,40 (m, 2H), 6,77 (dt, J = 15,4, 5,9 Γ ц, 1H), 6,53 (s, 2H), 6,31 (d, J = 15,3 Γ ц, 1H), 5,76 (d, J = 4,5 Γ ц, 1H), 3,58 (d, J = 1,8 Γ ц, 3H), 3,56 – 3,48 (m, 1H), 3,47 – 3,38 (m, 1H), 3,32 – 3,21 (m, 1H), 3,10 (d, J = 5,8 Γ ц, 2H), 2,83 (p, J = 6,0 Γ ц, 1H), 2,40 – 2,23 (m, 2H), 2,21 (s, 6H), 1,87 (dt, J = 13,2, 6,4 Γ ц, 4H), 1,76 (p = 6,5 Γ ц, 2H), 1,63 (J = 6,3 Γ ц, 2H).	528,35
(Е)-N-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4-(диметиламино)бут-2-енамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,18 (s, 1H), 8,47 (d, J = 5,0 Γц, 1H), 8,20 (s, 1H), 7,74 - 7,67 (m, 2H), 7,36 - 7,24 (m, 4H), 7,23 - 7,07 (m, 4H), 6,75 (dt, J = 15,4, 5,8 Γц, 1H), 6,28 (dt, J = 15,4, 1,6 Γц, 1H), 5,90 (s, 2H), 3,60 (s, 3H), 3,07 (dd, J = 5,9, 1,6 Γц, 2H), 2,41 (s, 3H), 2,19 (s, 7H).	535,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-илсульфонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,12 (s, 1H), 7,72 (dd, $J = 13,0$, 2,2 Гц, 1H), 7,63 (ddd, $J = 13,1$, 8,3, 2,2 Гц, 1H), 7,18 (dd, $J = 12,5$, 8,3 Гц, 1H), 6,35 (s, 2H), 5,83 (t, $J = 1,1$ Гц, 1H), 5,62 (s, 1H), 5,59 - 5,50 (m, 1H), 3,54 (d, $J = 15,4$ Гц, 1H), 3,34 (s, 3H), 3,31 - 3,24 (m, 4H), 2,37 (d, $J = 30,0$ Гц, 2H), 2,10 - 2,02 (m, 5H), 1,97 (t, $J = 1,3$ Гц, 3H), 1,95 - 1,79 (m, 5H), 1,56 (p, $J = 10,8$ Гц, 1H).	535,25
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-илсульфонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,40 (s, 1H), 7,78 (d, J = 2,1 Γц, 3H), 7,20 (dd, J = 9,9, 8,3 Γц, 1H), 5,84 (s, 1H), 5,71 (s, 1H), 5,56 (d, J = 1,9 Γц, 1H), 3,43 (d, J = 1,6 Γц, 4H), 3,31 - 3,23 (m, 4H), 2,42 (s, 2H), 2,06 (d, J = 3,6 Γц, 4H), 1,97 (t, J = 1,2 Γц, 4H), 1,94 - 1,82 (m, 5H), 1,60 (s, 1H).	535,25
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) 10,24 (d, J = 1,5 Гц, 1H), 8,10 (s, 1H), 7,78 - 7,64 (m, 1H), 7,59 (ddd, J = 7,9, 5,5, 2,1 Γц, 1H), 7,20 (dd, J = 8,3, 6,5 Γц, 1H), 6,47 (dd, J = 17,0, 10,1 Γц, 2H), 6,29 (dd, J = 16,9, 2,0 Γц, 1H), 5,79 (dd, J = 10,1, 2,1 Γц, 1H), 5,67 (d, J = 15,5 Γц, 1H), 3,53 - 3,37 (m, 2H), 3,34 (s, 3H), 3,27 (q, J = 6,9 Γц, 2H), 2,73 (p, J = 6,2 Γц, 1H), 2,21 (q, J = 18,5 Γц, 2H), 1,93 (d, J = 14,5 Γц, 3H), 1,89 - 1,80 (m, 4H), 1,80 - 1,68 (m, 2H), 1,57 (d, J = 6,3 Γц, 2H).	485,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид	O NH NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) 10,24 (d, J = 1,5 Гц, 1H), 8,10 (s, 1H), 7,78 - 7,64 (m, 1H), 7,59 (ddd, J = 7,9, 5,5, 2,1 Γц, 1H), 7,20 (dd, J = 8,3, 6,5 Γц, 1H), 6,47 (dd, J = 17,0, 10,1 Γц, 2H), 6,29 (dd, J = 16,9, 2,0 Γц, 1H), 5,79 (dd, J = 10,1, 2,1 Γц, 1H), 5,67 (d, J = 15,5 Γц, 1H), 3,53 - 3,37 (m, 2H), 3,34 (s, 3H), 3,27 (q, J = 6,9 Γц, 2H), 2,73 (p, J = 6,2 Γц, 1H), 2,21 (q, J = 18,5 Γц, 2H), 1,93 (d, J = 14,5 Γц, 3H), 1,89 - 1,80 (m, 4H), 1,80 - 1,68 (m, 2H), 1,57 (d, J = 6,3 Γц, 2H).	485,15
N-(4-(4-амино-7-метил-5- (4-(4-метил-1Н-пиразол- 1-ил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,26 (s, 1H), 8,20 (s, 1H), 7,79 - 7,66 (m, 4H), 7,56 (s, 1H), 7,34 - 7,25 (m, 4H), 5,89 (s, 2H), 5,79 (t, J = 1,0 Γц, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,62 (s, 3H), 2,10 (s, 3H), 1,94 (t, J = 1,2 Γц, 3H).	464,10
N-(4-(4-амино-7-метил-5- (6-(3-метил-1Н-пиразол- 1-ил)пиридин-3-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,47 (d, J = 2,5 Γц, 1H), 8,25 – 8,15 (m, 2H), 7,80 (dd, J = 8,4, 0,8 Γц, 1H), 7,77 – 7,68 (m, 3H), 7,33 – 7,25 (m, 2H), 6,37 (d, J = 2,5 Γц, 1H), 6,09 (s, 2H), 5,82 – 5,77 (m, 1H), 5,55 – 5,50 (m, 1H), 3,62 (s, 3H), 2,29 (s, 3H), 1,95 (t, J = 1,2 Γц, 3H).	465,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- (4-(4-(трифторметил)-1Н- пиразол-1-ил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F F F N NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 9,20 – 9,15 (m, 1H), 8,21 (d, J = 1,2 Γц, 2H), 7,91 – 7,83 (m, 2H), 7,75 – 7,68 (m, 2H), 7,41 – 7,34 (m, 2H), 7,33 – 7,25 (m, 2H), 5,95 (s, 2H), 5,81 – 5,76 (m, 1H), 5,56 – 5,50 (m, 1H), 3,62 (s, 3H), 1,95 (t, J = 1,3 Γц, 3H).	518,30
N-(4-(4-амино-7-метил-5- (6-(1-метил-1Н-пиразол- 3-ил)пиридин-3-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГ ц, DMSO- d_6) δ 9,91 (s, 1H), 8,35 – 8,30 (m, 1H), 8,22 (s, 1H), 7,85 (dd, J = 8,2, 0,9 Γ ц, 1H), 7,79 – 7,69 (m, 3H), 7,63 (dd, J = 8,2, 2,3 Γ ц, 1H), 7,29 (d, J = 8,6 Γ ц, 2H), 6,77 (d, J = 2,2 Γ ц, 1H), 6,02 (s, 1H), 5,79 (s, 1H), 5,53 (s, 1H), 3,91 (s, 3H), 3,62 (s, 3H), 1,94 (t, J = 1,3 Γ ц, 3H).	465,20
N-(4-(4-амино-7-метил-5- (6-(1-метил-1Н-пиразол- 5-ил)пиридин-3-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,44 (dd, J = 2,3, 0,9 Гц, 1H), 8,23 (s, 1H), 7,81 – 7,70 (m, 3H), 7,69 (dd, J = 8,2, 2,3 Гц, 1H), 7,48 (d, J = 2,0 Гц, 1H), 7,35 – 7,28 (m, 2H), 6,80 (d, J = 2,0 Гц, 1H), 6,10 (s, 2H), 5,80 (t, J = 1,1 Гц, 1H), 5,54 (t, J = 1,4 Гц, 1H), 4,14 (s, 3H), 3,62 (s, 3H), 1,95 (t, J = 1,2 Гц, 3H).	460,30
N-(4-(5-(4-(1Н-пиразол-5- ил)фенил)-4-амино-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH NH O	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 12,87 (1H, s), 9,88 (1H, s), 8,21 (1H, s), 7,84 - 7,62 (5H, m), 7,32 - 7,23 (4H, m), 6,72 (1H, d, J=2,2 Γц), 5,79 (3H, s), 5,52 (1H, t, J=1,5 Γц), 3,63 (3H, s), 1,95 (3H, d, J=1,2 Γц)	450,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- (4-(5-метил-1,2,4- оксадиазол-3-ил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇ NH ₇ NH ₇ NH ₈ NH ₈ NH ₈ NH ₉	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,89 (s, 1H), 8,22 (s, 1H), 7,94 (d, J = 7,8 Γц, 2H), 7,71 (d, J = 8,2 Γц, 2H), 7,38 (d, J = 7,9 Γц, 2H), 7,27 (d, J = 8,2 Γц, 2H), 5,96 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 3,31 (s, 1H), 2,66 (s, 3H), 1,95 (s, 3H).	466,35
N-(4-(4-амино-7-метил-5- (4-(5-метил-1,3,4- оксадиазол-2-ил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,22 (s, 1H), 7,92 (d, $J = 7,9$ Γц, 2H), 7,71 (d, $J = 8,3$ Γц, 2H), 7,40 (d, $J = 7,9$ Γц, 2H), 7,27 (d, $J = 8,3$ Γц, 2H), 5,99 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 3,32 (s, 1H), 2,57 (s, 3H), 1,95 (s, 3H).	466,20
N-(4-(4-амино-7-метил-5- (2-метил-2Н-индазол-5- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,29 (s, 1H), 8,19 (s, 1H), 7,65 (d, J = 8,4 Γц, 2H), 7,55 (d, J = 9,2 Γц, 2H), 7,27 (d, J = 8,3 Γц, 2H), 7,07 (dd, J = 8,8, 1,8 Γц, 1H), 5,77 (s, 1H), 5,52 (s, 1H), 4,15 (s, 3H), 3,64 (s, 3H), 1,93 (s, 3H).	438,15
N-(4-(4-амино-7-метил-5-(1,2,3,6-тетрагидро-[1,1'-бифенил]-4-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,97 (s, 1H), 8,14 (s, 1H), 7,88 - 7,80 (m, 2H), 7,50 - 7,42 (m, 2H), 7,34 - 7,23 (m, 4H), 7,23 - 7,14 (m, 1H), 6,29 (s, 1H), 5,89 - 5,82 (m, 2H), 5,56 (t, J = 1,4 Γц, 1H), 3,58 (s, 3H), 2,82 (dd, J = 10,7, 5,7 Γц, 1H), 2,42 (d, J = 17,3 Γц, 1H), 2,28 (d, J = 16,6 Γц, 1H), 2,14 (s, 1H), 1,98 (t, J = 1,2 Γц, 3H), 1,92 (d, J = 4,8 Γц, 1H), 1,77 (s, 2H).	464,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- (4-(3-метил-1,2,4- оксадиазол-5- ил)циклогекс-1-ен-1-ил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,95 (s, 1H), 8,12 (s, 1H), 7,80 (d, J = 8,5 Γц, 2H), 7,42 (d, J = 8,3 Γц, 2H), 5,82 (d, J = 8,1 Γц, 2H), 5,55 (s, 1H), 3,58 (s, 3H), 3,45 (s, 1H), 2,69 - 2,57 (m, 2H), 2,33 (s, 3H), 1,98 (s, 3H), 1,95 - 1,76 (m, 4H).	470,25
N-(4-(4-амино-5- (бензо[b]тиофен-2-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ S O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,90 (s, 1H), 8,23 (s, 1H), 7,85 (dd, J = 18,2, 7,7 Γц, 2H), 7,76 - 7,69 (m, 2H), 7,42 - 7,32 (m, 4H), 7,32 (td, J = 7,5, 1,5 Γц, 1H), 6,22 (s, 2H), 5,79 (s, 1H), 5,53 (s, 1H), 3,62 (s, 3H), 1,94 (d, J = 1,2 Γц, 3H).	440,10
N-(4-(4-амино-7-метил-5- (4-фенилтиофен-2-ил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ S O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,92 (s, 1H), 8,22 (s, 1H), 7,82 (d, J = 1,6 Гц, 1H), 7,76 (dd, J = 8,5, 2,5 Гц, 2H), 7,70 (d, J = 7,6 Гц, 2H), 7,53 (d, J = 1,6 Гц, 1H), 7,41 (dt, J = 7,9, 3,3 Гц, 4H), 7,30 (t, J = 7,4 Гц, 1H), 6,13 (s, 2H), 5,80 (s, 1H), 5,53 (s, 1H), 3,61 (s, 3H), 1,95 (s, 3H).	466,20
N-(4-(4-амино-7-метил-5- (3-метилбензо[b]тиофен- 2-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,22 (s, 1H), 7,94 - 7,86 (m, 1H), 7,79 - 7,70 (m, 1H), 7,70 - 7,59 (m, 2H), 7,46 - 7,35 (m, 2H), 7,35 - 7,26 (m, 2H), 5,76 (t, $J = 1,1$ Γц, 1H), 5,55 - 5,46 (m, 1H), 3,68 (s, 3H), 2,07 (s, 3H), 1,92 (t, $J = 1,3$ Γц, 3H).	454,05

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- (4-(3-метил-1,2,4- оксадиазол-5-ил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 8,23 (s, 1H), 8,07 – 7,99 (m, 2H), 7,76 – 7,68 (m, 2H), 7,46 – 7,38 (m, 2H), 7,32 – 7,24 (m, 2H), 6,02 (s, 2H), 5,80 (t, J = 1,1 Γц, 1H), 5,53 (t, J = 1,5 Γц, 1H), 3,62 (s, 3H), 2,41 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H).	466,25
N-(4-(4-амино-7-метил-5- (4-(2-метилоксазол-4- ил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,39 (s, 1H), 7,81 (s, 1H), 7,66 (d, J = 7,8 Гц, 2H), 7,58 (d, J = 8,5 Гц, 3H), 7,33 - 7,22 (m, 3H), 5,81 (s, 1H), 5,50 (s, 1H), 5,10 (s, 2H), 3,75 (s, 3H), 2,53 (s, 3H), 2,08 (s, 3H), 1,91 (s, 1H).	465,30
N-(4-(4-амино-5-(6-(4- этил-1Н-пиразол-1- ил)пиридин-3-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,42 (s, 1H), 8,30 (ddd, J = 4,7, 2,1, 0,9 Гц, 2H), 7,92 (dd, J = 8,5, 0,8 Гц, 1H), 7,70 (dd, J = 8,5, 2,3 Гц, 1H), 7,66 - 7,56 (m, 4H), 7,29 - 7,21 (m, 2H), 5,82 (s, 1H), 5,52 (d, J = 1,7 Гц, 1H), 5,01 (s, 2H), 3,76 (s, 3H), 2,59 (q, J = 7,5 Гц, 2H), 2,09 (dd, J = 1,6, 0,9 Гц, 3H), 1,27 (t, J = 7,6 Гц, 3H).	479,35
N-(4-(4-амино-7-метил-5- (1Н-пиразол-4-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	N-NH NH ₂ N-NH N-NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,89 (s, 1H), 10,28 (s, 1H), 8,17 (d, J = 1,3 Γц, 1H), 7,54 (dd, J = 143,2, 8,2 Γц, 6H), 6,46 (dd, J = 16,9, 10,0 Γц, 1H), 6,29 (dt, J = 16,9, 1,7 Γц, 1H), 5,94 (s, 2H), 5,79 (d, J = 10,2 Γц, 1H), 3,58 (s, 3H).	360,10

N-(4-(4-амино-7-метил-5-(IH-широл-3-ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(IH- пидол-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(IH- пидол-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(IH- пидол-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(IH- пидол-3-пидор-п	Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1Н- индол-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5- пл)фенил)акриламид N-(4-(4-амино-5-	N-(4-(4-амино-7-метил-5-	/ NH	¹Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	359,15
пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-3-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримдин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- д, 1H, 2, 49 (d, J = 8,3 Ги, 2,4 Ги, 1H, 2,4 Ги, 1H	(1Н-пиррол-3-ил)-7Н-	NH ₂	δ 10,87 (s, 1H), 10,24 (s, 1H),	
ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-3-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-3-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пироло[2,3-d]пиримидин-6-ил)фенил фенил фени	пирроло[2,3-		8,13 (s, 1H), 7,72 – 7,65 (m,	
ил)фенил)акриламид N-(4-(4-амино-5-(1Н- индол-3-ил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1Н- нидол-2-ил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1н- нидол-2-ил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1н- нидол-2-ил)-7-метил-7Н- пирроло[2,3- d]пиримид	d]пиримидин-6-	N NH	2H), 7,40 – 7,32 (m, 2H), 6,79	
10,1 Ги, 1H), 6,28 (dd, J = 17,0, 2,0 Ги, 1H), 5,78 (dd, J = 10,0, 2,1 Ги, 1H), 5,78 (dd, J = 10,0, 2,1 Ги, 1H), 5,78 (dd, J = 10,0, 2,1 Ги, 1H), 3,56 (s, 3H). 10,1 Ги, 1H), 5,78 (dd, J = 10,0, 2,1 Ги, 1H), 5,75 (dd, J = 10,0, 2,1 Ги, 1H), 10,19 (s, 1H), 3,56 (s, 3H). 11,24 - 11,19 (m, 1H), 10,19 (s, 1H), 7,40 (d, J = 8,1 Ги, 1H), 7,40 (d, J = 8,0 Ги, 1H), 7,90 (t, J = 7,6 Ги, 1H), 6,93 (t, J = 7,5 Ги, 1H), 6,93 (t, J = 7,5 Ги, 1H), 6,41 (dd, J = 16,9, 10,1 Ги, 1H), 5,75 (dd, J = 10,0, 2,1 Ги, 1H), 5,75 (dd, J = 10,0, 2,1 Ги, 1H), 5,75 (dd, J = 10,0, 2,1 Ги, 1H), 8,28 (s, 1H), 8,27 (s, 1H), 1,25 (s, 1H), 8,27 (s, 1H), 1,3 (s, 1H), 1,0,25 (s, 1H), 8,27 (s, 1H), 7,31 (d, J = 8,0 Ги, 1H), 7,40 (d, J = 8,5 Ги, 2H), 7,31 (d, J = 8,0 Ги, 1H), 7,40 (d, J = 8,5 Ги, 2H), 7,31 (d, J = 8,6 Ги, 2H), 7,31 (d, J = 8,6 Ги, 1H), 7,11 - 7,03 (m, 1H), 6,99 (t, J = 7,4 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,55 - 6,21 (m,3H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Ги, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H), 5,77 (dd, J = 10,0,2,0 Γи, 1H), 6,10 (s, 2H	ил)фенил)акриламид	N N N	$(q, J = 2, 4 \Gamma \mu, 1H), 6,65 (q, J =$	
N-(4-(4-амино-5-(1H-индол-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил]фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил]фенил]фенил N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-пирроло[2,3-d]пиримидин-6-и		\ o'\\	2,0 Гц, 1H), $6,45$ (dd, $J = 17,0$,	
N-(4-(4-амино-5-(1H-индол-3-ил)-7-метил-7H-пироло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-3-ил)-7-метил-7H-пироло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H-ил)-7-метил-7H-пироло[2,3- d]пиримидин-6- ил)фенил)акриламид			10,1 Гц, 1H), 6,28 (dd, J = 17,0,	
N-(4-(4-амино-5-(1H-индол-3-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-3-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид			2,0 Гц, 1H), 5,99 (q, $J = 2,4$ Гц,	
N-(4-(4-амино-5-(1Н- индол-3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1Н- индол-2-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-			1H), 5,78 (dd, $J = 10,0, 2,1$ Гц,	
индол-3-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH2 NH4 NH4 NH4 NH4 NH4 NH4 NH5 NH6 NH6 NH7 NH7 NH7 NH7 NH7 NH7			1H), 3,56 (s, 3H).	
индол-3-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH NH NH NH NH NH NH NH NH N	N-(4-(4-амино-5-(1H-	Н	¹Н ЯМР (400 МГц, DMSO-d ₆)	409,15
МН2 МН2 МН3 КВ Сид 2H), 7,40 (d, J = 8,1 Гц, 1H), 7,36 - 7,27 (m, 3H), 7,18 (d, J = 8,0 Гц, 1H), 7,99 (t, J = 7,6 Гц, 1H), 6,93 (t, J = 7,5 Гц, 1H), 6,94 (dd, J = 16,9, 10,1 Гц, 1H), 6,24 (dd, J = 16,9, 2,1 Гц, 1H), 5,75 (dd, J = 10,0, 2,1 Гц, 2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотназол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	индол-3-ил)-7-метил-7Н-	, N	δ 11,24 - 11,19 (m, 1H), 10,19	
МН2 МН2 МН3 КВ СП, 2Н), 7,40 (d, J = 8,1 Гц, 1H), 7,36 - 7,27 (m, 3H), 7,18 (d, J = 8,0 Гц, 1H), 7,99 (t, J = 7,6 Гц, 1H), 6,93 (t, J = 7,5 Гц, 1H), 6,94 (dd, J = 16,9, 10,1 Гц, 1H), 6,24 (dd, J = 16,9, 2,1 Гц, 1H), 5,75 (dd, J = 10,0, 2,1 Гц, 1H), 8,28 (s, 3H), 8,21 (s, 1H), 8,87 (s, 1H), 8,28 (s, 1H), 8,21 (s, 1H), 7,75 - 7,68 (m, 2H), 7,35 - 7,28 (m, 2H), 6,45 (dd, J = 17,0, 10,1 Гц, 1H), 6,01 (s, 1H), 5,79 (dd, J = 10,1, 2,1 Гц, 1H), 3,60 (s, 3H). N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	1	NH ₂	(s, 1H), 8,17 (s, 1H), 7,60 (d, J =	
ил)фенил)акриламид NH (IH), 7,36 - 7,27 (m, 3H), 7,18 (d, J = 8,0 Гш, 1H), 7,09 (t, J = 7,6 Гш, 1H), 6,93 (t, J = 7,5 Гш, 1H), 6,41 (dd, J = 16,9, 10,1 Гш, 1H), 6,24 (dd, J = 16,9, 2,1 Гш, 1H), 5,75 (dd, J = 10,0, 2,1 Гш, 2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотиазол-4-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	** * '			
(d, J = 8,0 Гц, 1H), 7,09 (t, J = 7,6 Гц, 1H), 6,93 (t, J = 7,5 Гц, 1H), 6,94 (dd, J = 16,9, 10,1 Гц, 1H), 6,24 (dd, J = 16,9, 2,1 Гц, 1H), 5,75 (dd, J = 10,0, 2,1 Гц, 1H), 5,75 (dd, J = 10,0, 2,1 Гц, 2H), 3,66 (s, 3H). N-(4-(4-амино-5-(изотиазол-4-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид		N NH		
IH), 6,41 (dd, J = 16,9, 10,1 Гп, 1H), 6,24 (dd, J = 16,9, 2,1 Гп, 1H), 5,75 (dd, J = 10,0, 2,1 Гп, 2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид		N N		
1 H), 6,24 (dd, J = 16,9, 2,1 Гц, 1H), 5,75 (dd, J = 10,0, 2,1 Гц, 2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- (уд. 1 H), 3,60 (s, 3 H)).		\	7,6 Γ ц, 1 H), 6,93 (t, $J = 7,5 \Gamma$ ц,	
1 H), 6,24 (dd, J = 16,9, 2,1 Гц, 1H), 5,75 (dd, J = 10,0, 2,1 Гц, 2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- (уд. 1 H), 3,60 (s, 3 H)).			1H), 6,41 (dd, $J = 16.9$, 10,1 $\Gamma \mu$,	
2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид				
2H), 3,66 (s, 3H). N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид			1H), 5,75 (dd, $J = 10,0, 2,1 \Gamma_{II}$,	
N-(4-(4-амино-5- (изотиазол-4-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH2				
(изотиазол-4-ил)-7- метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH2 NH3 NH4 NH4 NH4 NH4 NH5 NH6 NH7 NH7 NH9 NH7 NH9 NH9 NH9 NH9	N-(4-(4-амино-5-	N		377,10
метил-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1H- индол-2-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH2 NH2 NH3 NH4 NH4 NH4 NH4 NH4 NH4 NH4	, ,	,	`	
Приримидин-6- ил)фенил)акриламид N-(4-(4-амино-5-(1Н- индол-2-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH NH NH NH NH NH NH NH NH N	1 '	NH ₂		
ил)фенил)акриламид 2H), 6,45 (dd, J = 17,0, 10,1 Гц, 1H), 6,28 (dd, J = 17,0, 2,0 Гц, 1H), 6,01 (s, 1H), 5,79 (dd, J = 10,1, 2,1 Гц, 1H), 3,60 (s, 3H). N-(4-(4-амино-5-(1Н-индол-2-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид NH NH NH NH NH NH NH NH NH N	**	N		
N 1 1H), 6,28 (dd, J = 17,0, 2,0 Гц, 1H), 6,01 (s, 1H), 5,79 (dd, J = 10,1, 2,1 Гц, 1H), 3,60 (s, 3H). N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид NH2 NH2 NH4 NH4 NH4 NH4 NH4 NH6, 6,28 (dd, J = 17,0, 2,0 Гц, 1H), 3,60 (s, 3H). IH ЯМР (400 МГц, DМSО-d₀) 409,10 δ 11,13 (s, 1H), 10,25 (s, 1H), 8,22 (s, 1H), 7,69 (d, J = 8,3 Гц, 2H), 7,49 (d, J = 8,5 Гц, 2H), 7,31 (d, J = 8,0 Гц, 1H), 7,11 - 7,03 (m, 1H), 6,99 (t, J = 7,4 Гц, 1H), 6,55 - 6,21 (m, 3H), 6,10 (s, 2H), 5,77 (dd, J = 10,0, 2,0 Гц, 1H), 6,57 (dd, J = 10,0, 2,0 Γц, 1H), 6,57 (dd, J = 10,0, 2,0 Γц, 1H), 6,57		NH NH		
1H), 6,01 (s, 1H), 5,79 (dd, J = 10,1, 2,1 Γ ц, 1H), 3,60 (s, 3H). N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид NH2 NH2 NH2 NH4 NH2 NH4 NH4 NH4				
N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид $N+(4-(4-a))$ $N+(4-(4-$				
N-(4-(4-амино-5-(1H-индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид NH2 NH2 NH4 NH4 NH4 NH4 NH4 NH4				
индол-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид NH_2 N	N-(4-(4-амино-5-(1H-			409.10
пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид NH NH NH NH NH NH NH NH NH N	1 , ,		` '	,
МН ₂ NH ₂ 2H), 7,49 (d, J = 7,8 Гц, 1H), 7,40 (d, J = 8,5 Гц, 2H), 7,31 (d, J = 8,0 Гц, 1H), 7,11 - 7,03 (m, 1H), 6,99 (t, J = 7,4 Гц, 1H), 6,55 - 6,21 (m, 3H), 6,10 (s, 2H), 5,77 (dd, J = 10,0, 2,0 Гц,	1 ' '			
ил)фенил)акриламид $ \begin{array}{c} \text{NH} \\ \text{N} \\ \text$	_ **	NH ₂ NH ₂		
$J = 8,0$ Γ _{II} , 1 H), $7,11 - 7,03$ (m, 1 H), $6,99$ (t, $J = 7,4$ Γ _{II} , 1 H), $6,55 - 6,21$ (m, 3 H), $6,10$ (s, 2 H), $5,77$ (dd, $J = 10,0,2,0$ Γ _{II} ,				
1H), 6,99 (t, $J = 7.4 \Gamma \mu$, 1H), 6,55 - 6,21 (m, 3H), 6,10 (s, 2H), 5,77 (dd, $J = 10.0$, 2,0 $\Gamma \mu$,	, 1 · · · , · · · · · · · · · · · · · ·	'N		
6,55 - 6,21 (m, 3H), 6,10 (s, 2H), 5,77 (dd, J = 10,0, 2,0 Γμ,		N N N		
2H), 5,77 (dd, $J = 10,0, 2,0 \Gamma \mu$,		, o "		
1 1H), 3,66 (s, 3H).			1H), 3,66 (s, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5- (6-оксо-1,6- дигидропиридин-3-ил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	HN NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,52 (s, 1H), 10,28 (s, 1H), 8,17 (s, 1H), 7,77 - 7,71 (m, 2H), 7,37 - 7,25 (m, 2H), 7,21 (dd, J = 9,4, 2,6 Γц, 1H), 7,14 (d, J = 2,5 Γц, 1H), 6,46 (dd, J = 17,0, 10,1 Γц, 1H), 6,33 - 6,25 (m, 2H), 6,12 (s, 2H), 5,79 (dd, J = 10,1, 2,0 Γц, 1H), 3,58 (s, 3H).	387,15
N-(4-(4-амино-5-(1Н-индол-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	HN NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,17 (s, 1H), 10,20 (s, 1H), 8,17 (s, 1H), 7,62 (d, J = 8,3 Γц, 2H), 7,43 (d, J = 1,6 Γц, 1H), 7,37 (d, J = 8,7 Γц, 2H), 7,30 (d, J = 8,6 Γц, 2H), 6,96 (dd, J = 8,3, 1,7 Γц, 1H), 6,47 - 6,36 (m, 2H), 6,25 (dd, J = 16,9, 2,1 Γц, 1H), 5,76 (dd, J = 10,0, 2,1 Γц, 1H), 3,63 (s, 3H).	409,15
N-(4-(4-амино-5-(4-гидроксифенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	OH NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,24 (s, 1H), 9,49 (s, 1H), 8,16 (s, 1H), 7,67 (d, J = 8,5 Γц, 2H), 7,31 - 7,24 (m, 2H), 7,08 - 7,00 (m, 2H), 6,78 - 6,71 (m, 2H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 5,78 (dd, J = 10,0, 2,1 Γц, 1H), 3,60 (s, 3H).	386,15
N-(4-(4-амино-7-метил-5- (1-метил-1Н-пиразол-4- ил)-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,27 (s, 1H), 8,16 (s, 1H), 7,84 - 7,59 (m, 3H), 7,39 - 7,31 (m, 2H), 7,27 (d, J = 0,9 Γц, 1H), 6,46 (dd, J = 17,0, 10,1 Γц, 1H), 6,28 (dd, J = 17,0, 2,0 Γц, 1H), 6,01 (s, 2H), 5,79 (dd, J = 10,1, 2,1 Γц, 1H), 3,81 (s, 3H), 3,56 (s, 3H).	374,10

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5- (бензо[b]тиофен-2-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ S NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,23 (s, 1H), 7,90 - 7,79 (m, 2H), 7,75 - 7,67 (m, 2H), 7,45 - 7,37 (m, 2H), 7,41 - 7,32 (m, 2H), 7,32 (ddd, J = 8,5, 7,1, 1,5 Γц, 1H), 6,43 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,0 Γц, 2H), 5,77 (dd, J = 10,1, 2,1 Γц, 1H), 3,62 (s,	426,10
N-(4-(4-амино-5-(1H- индол-6-ил)-7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ NH NH O	3H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,07 (t, J = 2,3 Γц, 1H), 10,21 (s, 1H), 8,18 (s, 1H), 7,67 - 7,60 (m, 2H), 7,53 (d, J = 8,1 Γц, 1H), 7,36 - 7,26 (m, 3H), 7,23 (q, J = 1,0 Γц, 1H), 6,91 (dd, J = 8,1, 1,5 Γц, 1H), 6,47 – 6,36 (m, 2H), 6,25 (dd, J = 17,0, 2,1 Γц, 1H), 5,76 (dd, J = 10,0, 2,1 Γц, 2H), 3,63 (s, 3H).	409,15
N-(4-(4-амино-7-метил-5- (1-фенил-1,2,3,6- тетрагидропиридин-4- ил)-7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,15 (s, 1H), 7,80 (d, J = 7,9 Γц, 2H), 7,43 (d, J = 8,3 Γц, 2H), 7,20 (t, J = 7,7 Γц, 2H), 6,91 (d, J = 8,2 Γц, 2H), 6,73 (t, J = 7,2 Γц, 1H), 6,26 (s, 2H), 5,92 (s, 1H), 5,82 (s, 1H), 5,55 (s, 1H), 3,84 (s, 2H), 3,58 (s, 3H), 2,16 - 2,05 (m, 4H), 1,97 (s, 3H).	465,25
бензил-4-(4-амино-6-(4-метакриламидофенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-3,6-дигидропиридин-1(2H)-карбоксилат	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,96 (s, 1H), 8,14 (s, 1H), 7,83 (dd, J = 8,7, 2,3 Γц, 2H), 7,53 - 7,27 (m, 7H), 6,33 (s, 2H), 5,80 (d, J = 21,2 Γц, 2H), 5,55 (s, 1H), 5,09 (s, 2H), 4,06 (s, 2H), 3,56 (s, 3H), 3,46 (s, 2H), 1,99 (d, J = 11,6 Γц, 5H).	523,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(1-бензил-1,2,3,6-тетрагидропиридин-4-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,98 (s, 1H), 8,14 (s, 1H), 7,87 - 7,80 (m, 2H), 7,47 - 7,40 (m, 2H), 7,33 (d, J = 5,1 Γц, 4H), 7,27 (s, 1H), 6,26 (s, 2H), 5,81 (d, J = 25,0 Γц, 2H), 5,56 (t, J = 1,5 Γц, 1H), 3,56 (s, 5H), 3,34 (s, 2H), 3,10 (s, 2H), 1,98 (d, J = 1,3 Γц, 5H).	479,25
N-(4-(4-амино-5-(3-фтор- 4-((6-метилпиридин-2- ил)окси)фенил)-7-метил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ F NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,21 (s, 1H), 7,81 – 7,67 (m, 3H), 7,37 – 7,29 (m, 2H), 7,26 (t, J = 8,4 Γц, 1H), 7,16 (dd, J = 11,5, 2,0 Γц, 1H), 7,07 (dd, J = 8,5, 2,0 Γц, 1H), 7,00 (d, J = 7,3 Γц, 1H), 6,86 (d, J = 8,2 Γц, 1H), 6,45 (dd, J = 17,0, 10,1 Γц, 1H), 6,28 (dd, J = 17,0, 2,1 Γц, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 1H), 3,62 (s, 3H), 2,30 (s, 3H).	495,20
4-(6-(4- акриламидофенил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-N- циклобутил-2- метоксибензамид	HN O O NH2 NH	¹ H ЯМР (300 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,22 (d, J = 3,3 Γц, 1H), 7,71 (d, J = 8,6 Гц, 2H), 7,60 (d, J = 7,8 Γц, 1H), 7,32 (d, J = 8,6 Γц, 2H), 6,95 – 6,81 (m, 2H), 6,45 (dd, J = 17,0, 9,9 Γц, 1H), 6,28 (dd, J = 17,0, 2,2 Γц, 1H), 5,79 (dd, J = 9,9, 2,2 Γц, 1H), 4,39 (q, J = 8,3 Γц, 1H), 3,70 (s, 3H), 3,60 (s, 3H), 2,21 (s, 2H), 1,98 (q, J = 9,7 Γц, 2H), 1,76 – 1,53 (m, 2H).	497,20
N-(4-(4-амино-7-метил-5- (3-метил-4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- фторфенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,52 (s, 1H), 8,43 (d, J = 5,0 Γц, 1H), 8,22 (s, 1H), 7,81 (dd, J = 12,1, 2,0 Γц, 1H), 7,44 – 7,27 (m, 2H), 7,22 (s, 1H), 7,15 – 7,02 (m, 3H), 6,44 (dd, J = 17,0, 10,0 Γц, 1H), 6,31 (dd, J = 17,0, 2,1 Γц, 1H), 5,82 (dd, J = 10,0, 2,0 Γц, 1H), 3,53 (s, 3H), 2,41 (s, 3H), 2,03 (s, 3H).	510,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5-		¹ Н ЯМР (300 МГц, DMSO- <i>d</i> ₆)	512,10
(4-((4-метилпиримидин-		δ 10,49 (s, 1H), 8,45 (d, $J = 5,0$	
2-ил)окси)фенил)-7Н-	N O	Гц, 1H), 8,22 (s, 1H), 8,07 (d, <i>J</i>	
пирроло[2,3-		$= 2.0 \Gamma \text{u}, 1\text{H}), 7.57 \text{ (dd}, J = 8.4,$	
d]пиримидин-6-ил)-3-		2,1 Гц, 1H), $7,41$ (d, $J = 8,4$ Гц,	
хлорфенил)акриламид	NH_2 O N	1H), 7,27 (d, J = 8,6 Γ ц, 2H),	
		7,20 – 7,05 (m, 3H), 6,50 – 6,25	
	NH NH	(m, 2H), 5,83 (dd, J = 9,8, 2,3)	
	N N	Гц, 1H), 3,48 (s, 3H), 2,40 (s,	
	· CI	3H).	

Пример 13

N-(2-(4-бромфенил)пропан-2-ил)акриламид

[0345] **Стадия 1:** К перемешиваемому раствору/смеси 2-(4-бромфенил)пропан-2-амина (1,50 г, 7,006 ммоль) и TEA (2,13 г, 21,018 ммоль) в DCM (30 мл) по каплям частями добавляли акрилоилхлорид (0,63 г, 7,006 ммоль) при 0°С в атмосфере азота. Смесь перемешивали в течение 1 часа при 0°С. Полученную смесь подвергали экстракции СН₂Сl₂. Объединенные органические слои промывали солевым раствором, сушили над безводным Na₂SO₄. После фильтрования фильтрат концентрировали при пониженном давлении, в результате чего получали N-(2-(4-бромфенил)пропан-2-ил)акриламид (500 мг, выход 27%) в виде твердого вещества желтого цвета.

N-(2-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)пропан-2-ил)акриламид

[0346] Стадия 2: Раствор/смесь N-[2-(4-бромфенил)пропан-2-ил]проп-2-енамида (470,00 мг, 1,753 ммоль), биспинаколатодибора (667,63 мг, 2,629 ммоль), АсОК (516,05 мг, 5,258 ммоль) и Pd(dppf)Cl₂ (128,25 мг, 0,175 ммоль) в DMF (10 мл) перемешивали в течение 2 часов при 80°С в атмосфере азота. Полученную смесь экстрагировали этилацетатом (EtOAC). Объединенные органические слои промывали солевым раствором, сушили над безводным Na₂SO₄. После фильтрования фильтрат концентрировали при пониженном давлении. Остаток очищали методом колоночной хроматографии на силикагеле путем элюирования смесью PE/EtOAc = 4/1, в результате чего получали N-(2-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)пропан-2-ил)акриламид (400 мг, выход 72%) в виде почти белого твердого вещества.

N-(2-(4-(4-амино-7-метил-5-(4-(4-метилпиримидин-2-илокси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)пропан-2-ил)акриламид

[0347] Стадия 3: Раствор/смесь 6-иод-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-4-амина (200,00 мг, 0,44 ммоль), N-[2-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]пропан-2-ил]проп-2-енамида (165,1 мг, 0,52 ммоль), К₃РО₄ (277,9 мг, 1,31 ммоль) и Pd(dppf)Cl₂ (31,9 мг, 0,04 ммоль) в DMF (4 мл) и H₂O (1 мл) перемешивали в течение 1 ч при 90°С в атмосфере азота. Полученную смесь экстрагировали этилацетатом (EtOAC). Объединенные органические слои промывали солевым раствором, сушили над безводным Na₂SO₄. После фильтрования фильтрат концентрировали при пониженном давлении. Сырой продукт очищали методом ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 19*150

мм, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO3 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 25 мл/мин; Градиент: от 25 В до 43 В в течение 7 мин; 220/254 нм; RT1: 6,25; RT2: -; Объем вводимой пробы: - мл; Количество рабочих циклов: -;). После лиофилизации получали N-(2-(4-(4-амино-7-метил-5-(4-(4-метилпиримидин-2-илокси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)пропан-2-ил)акриламид (51 мг, выход 22,3%) в виде почти белого твердого аморфного вещества.

[0348] Другие такие же соединения, полученные согласно способам, описанным в Примере 13, показаны в Таблице 12 ниже.

Таблица 12. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
7-(4-амино-5-(3-метокси-4-(6-метилпиридин-2-илокси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3,4-дигидропиридо[1,2-а]пиримидин-2-он	O N N N N O	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,41 (s, 1H), 7,61 (t, J = 7,7 Гц, 1H), 7,53 (dd, J = 9,2, 2,1 Гц, 1H), 7,20 – 7,13 (m, 2H), 7,05 (d, J = 9,2 Гц, 1H), 6,94 – 6,84 (m, 3H), 6,73 (d, J = 8,2 Гц, 1H), 5,20 (s, 2H), 4,20 (t, J = 7,4 Гц, 2H), 3,80 (s, 3H), 3,74 (s, 3H), 2,74 (t, J = 7,4 Гц, 2H), 2,40 (s, 3H).	508,00
1-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-6-метил-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,67 (td, J = 7,7, 2,1 Γц, 1H), 7,18 (dd, J = 8,0, 6,2 Γц, 1H), 7,10 – 7,05 (m, 1H), 7,00 – 6,92 (m, 2H), 6,86 – 6,73 (m, 1H), 6,68 (t, J = 7,6 Γц, 1H), 6,09 (dt, J = 34,3, 19,4 Γц, 2H), 5,86 (s, 1H), 5,67 (d, J = 11,0 Γц, 1H), 4,93 – 4,61 (m, 1H), 4,48 (s, 1H), 4,14 – 3,73 (m, 1H), 3,67 (s, 6H), 3,25 – 2,64 (m, 1H), 2,30 (d, J = 3,1 Γц, 3H), 1,96 (d, J = 67,9, 16,5 Γц, 1H), 1,31 – 0,80 (m, 3H).	511,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-ил)проп-2-ен-1-он	NH ₂ O O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,19 (s, 1H), 7,67 (td, J = 7,7, 4,7 Γц, 1H), 7,25 – 7,12 (m, 2H), 7,04 – 6,90 (m, 2H), 6,68 (dd, J = 8,2, 3,6 Γц, 1H), 6,58 (dd, J = 16,7, 10,3 Γц, 1H), 6,42 – 6,10 (m, 3H), 6,02(s, 1H), 5,68 (ddd, J = 16,3, 10,2, 2,4 Γц, 1H), 4,56 (p, J = 2,5 Γц, 1H), 4,33 (s, 2H), 4,05 (p, J = 2,2 Γц, 1H), 3,79 (d, J = 2,9 Γц, 3H), 3,69 (s, 3H), 2,30 (d, J = 11,6 Γц, 3H).	483,20
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,07 (s, 1H), 9,83 (s, 1H), 8,12 (s, 1H), 7,77 (t, $J = 7.8$ Гц, 1H), 7,65 – 7,57 (m, 2H), 7,42 – 7,35 (m, 2H), 7,38 – 7,26 (m, 2H), 7,23 – 7,15 (m, 2H), 7,04 (d, $J = 7.4$ Γц, 1H), 6,85 (d, $J = 8.1$ Гц, 1H), 5,78 (s, 2H), 5,52 (t, $J = 1.5$ Гц, 1H), 2,38 (s, 3H), 1,94 (d, $J = 1.3$ Γц, 3H).	477,30
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)фуро[2,3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,03 (s, 1H), 8,27 (s, 1H), 7,93 (d, $J = 8,2$ Гц, 2H), 7,75 (t, $J =$ 7,8 Гц, 1H), 7,50 (dd, $J = 8,4$, 5,2 Γц, 4H), 7,11 (d, $J = 8,4$ Гц, 2H), 7,03 (d, $J = 7,4$ Гц, 1H), 6,81 (d, $J =$ 8,2 Гц, 1H), 5,84 (s, 1H), 5,56 (s, 1H), 2,33 (s, 3H), 1,98 (s, 3H).	478,30
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-N-метилакриламид	NH ₂ O NH ₂ N H	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,17 (s, 1H), 8,14 (s, 1H), 7,77 (t, J = 7,7 Γц, 1H), 7,44 (dd, J = 15,1, 8,2 Γц, 4H), 7,23 (dd, J = 8,2, 5,9 Γц, 4H), 7,04 (d, J = 7,3 Γц, 1H), 6,86 (d, J = 8,2 Γц, 1H), 6,24 – 5,44 (m, 5H), 3,24 (s, 3H), 2,37 (s, 3H).	477,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,12 (s, 1H), 9,82 (s, 1H), 8,13 (s, 1H), 7,59 (d, J = 8,3 Γц, 4H), 7,39 (d, J = 8,1 Γц, 2H), 7,25 (d, J = 8,7 Γц, 2H), 5,79 (s, 1H), 5,52 (s, 1H), 3,48 (dt, J = 11,2, 6,4 Γц, 4H), 1,94 (s, 3H), 1,87 (dq, J = 13,0, 6,8 Γц, 4H).	467,30
N-(4-(4-амино-5-(3- этокси-4-((6- метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,05 (s, 1H), 9,83 (s, 1H), 8,13 (s, 1H), 7,70 (t, J = 7,7 Гц, 1H), 7,66 – 7,60 (m, 2H), 7,39 – 7,30 (m, 2H), 7,18 (d, J = 8,0 Γц, 1H), 7,09 (d, J = 1,9 Γц, 1H), 7,01 – 6,90 (m, 2H), 6,74 (d, J = 8,2 Γц, 1H), 5,79 (s, 2H), 5,53 (t, J = 1,5 Γц, 1H), 3,91 (q, J = 6,9 Γц, 2H), 2,34 (s, 3H), 1,95 (d, J = 1,5 Γц, 3H), 1,27 – 1,07 (m, 1H), 1,00 (t, J = 6,9 Γц, 3H).	521,25
N-(4-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)бут-2-инамид	NH ₂ O O NH	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 12,07 (s, 1H), 10,66 (s, 1H), 8,13 (s, 1H), 7,74 – 7,65 (m, 1H), 7,53 (d, J = 8,7 Γц, 2H), 7,38 – 7,29 (m, 2H), 7,21 – 7,06 (m, 2H), 7,02 – 6,88 (m, 2H), 6,72 (d, J = 8,2 Γц, 1H), 5,84 (s, 1H), 3,62 (s, 2H), 2,34 (s, 3H), 2,05 (s, 2H).	505,25
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,07 (s, 1H), 10,19 (s, 1H), 8,12 (s, 1H), 7,77 (t, $J = 7,8$ Гц, 1H), 7,60 (d, $J = 8,6$ Γц, 2H), 7,41 – 7,36 (m, 2H), 7,32 (d, $J = 8,6$ Γц, 2H), 7,22 – 7,16 (m, 2H), 7,04 (d, J = 7,3 Γц, 1H), 6,85 (d, $J = 8,2Γц, 1H), 6,43 (dd, J = 17,0, 10,1Γц, 1H), 6,26 (dd, J = 17,0, 2,0Γц, 1H), 5,76 (dd, J = 10,1, 2,0Γц, 2H), 2,38 (s, 3H).$	463,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)изобутирамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,05 (s, 1H), 9,87 (s, 1H), 8,12 (s, 1H), 7,76 (t, $J = 7.8$ Гц, 1H), 7,54 (d, $J = 8.7$ Гц, 2H), 7,39 – 7,35 (m, 2H), 7,28 (d, $J = 8.6$ Гц, 2H), 7,19 (d, $J = 8.4$ Γц, 2H), 7,04 (d, $J = 7.4$ Гц, 1H), 6,84 (d, $J =$ 8,2 Гц, 1H), 5,75 (s, 1H), 2,79 – 2,57 (m, 1H), 2,38 (s, 3H), 1,09	479,45
N-(4-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акриламид	NH ₂ O NH N N H	(d, $J = 6.8 \Gamma \text{u}$, 6H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,12 (s, 1H), 10,20 (s, 1H), 8,13 (s, 1H), 7,62 – 7,54 (m, 4H), 7,45 – 7,36 (m, 2H), 7,31 – 7,23 (m, 2H), 6,42 (dd, $J = 17.0$, 10,1 Γu , 1H), 6,25 (dd, $J = 17.0$, 2,1 Γu , 1H), 5,76 (dd, $J = 10.0$, 2,1 Γu , 2H), 3,54 – 3,43 (m, 4H), 2,08 (s, 1H), 1,88 (dt, $J = 12.6$, 6,7 Γu , 4H).	453,30
1-(6-(4-амино-7-метил- 5-(4-((6-метилпиридин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- окса-8- азабицикло[3.2.1]октан- 8-ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 3,2 Гц, 1H), 7,77 (t, J = 7,7 Гц, 1H), 7,45 – 7,09 (m, 4H), 7,05 (d, J = 7,4 Гц, 1H), 6,87 (dd, J = 10,3, 8,2 Гц, 1H), 6,65 (ddd, J = 35,0, 16,7, 10,3 Γц, 1H), 6,24 (ddd, J = 16,7, 4,8, 2,4 Γц, 1H), 5,70 (td, J = 10,5, 2,4 Γц, 1H), 4,68 (s, 1H), 4,50 (d, J = 16,1 Γц, 2H), 3,95 (dt, J = 24,1, 7,3 Γц, 1H), 3,77 – 3,67 (m, 5H), 3,67 – 3,52 (m, 2H), 3,44 (dd, J = 10,8, 6,1 Γц, 1H), 2,37 (d, 2,4 Γц, 3H), 2,31 – 2,06 (m, 2H).	497,35
N-(4-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)тиено[2, 3-d]пиримидин-6-ил)фенил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,00 (s, 1H), 8,35 (s, 1H), 7,85 (d, J = 8,3 Гц, 2H), 7,74 (t, J = 7,8 Гц, 1H), 7,39 (d, J = 8,2 Γц, 2H), 7,29 (d, J = 8,5 Γц, 2H), 7,03 (t, J = 7,6 Γц, 3H), 6,79 (d, J = 8,1 Γц, 1H), 5,83 (s, 1H), 5,56 (s, 1H), 2,33 (s, 3H), 1,97 (s, 3H).	494,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(4- (пирролидин-1- илсульфонил)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇ NH ₇ NH ₈ NH ₈ NH ₉	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,21 (s, 1H), 9,85 (s, 1H), 8,14 (s, 1H), 7,88 – 7,81 (m, 2H), 7,62 – 7,52 (m, 4H), 7,16 (d, J = 8,8 Γц, 2H), 5,86 (s, 2H), 5,78 (s, 1H), 5,52 (s, 1H), 3,24 – 3,12 (m, 2H), 1,94 (d, J = 1,2 Γц, 3H), 1,71 – 1,63 (m, 3H), 1,57 (s, 1H), 1,32 (q, J = 7,2 Γц, 1H), 0,94 (t, J = 7,2 Γц, 1H).	503,2
N-(4-(4-амино-5-(3- фтор-4-((5- фторпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	NH ₂ NH _N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,14 (s, 1H), 9,85 (s, 1H), 8,81 (s, 2H), 8,14 (s, 1H), 7,70 – 7,59 (m, 2H), 7,48 (t, J = 8,4 Γц, 1H), 7,38 – 7,26 (m, 3H), 7,24 (dd, J = 8,3, 2,0 Γц, 1H), 5,80 (s, 3H), 5,53 (d, J = 1,7 Γц, 1H), 1,95 (s, 3H).	500,35
N-(4-(7-(4-((6-метилпиридин-2-ил)окси)фенил)-5H-пирроло[3,2-d]пиримидин-6-ил)фенил)метакриламид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,24 (s, 1H), 9,99 (s, 1H), 8,91 (s, 1H), 8,86 (s, 1H), 7,83 – 7,76 (m, 2H), 7,75 (t, J = 7,8 Γц, 1H), 7,58 – 7,50 (m, 4H), 7,17 – 7,10 (m, 2H), 7,02 (d, J = 7,4 Γц, 1H), 6,80 (d, J = 8,2 Γц, 1H), 5,83 (s, 1H), 5,56 (s, 1H), 2,36 (s, 3H), 1,97 (d, J = 1,2 Γц, 3H).	462,3
N-(4-(4-амино-5-(4-((1-метил-1Н-пиразол-3-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	NH ₂ ONN NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,75 (s, 1H), 10,13 (s, 1H), 8,12 (d, J = 13,8 Гц, 2H), 7,64 (d, J = 8,8 Гц, 2H), 7,59 – 7,52 (m, 2H), 7,46 – 7,39 (m, 2H), 7,23 – 7,14 (m, 3H), 6,57 – 6,37 (m, 1H), 6,24 (m, J = 17,0, 2,1 Γц, 1H), 5,96 (s, 2H), 5,81 – 5,69 (m, 1H), 3,80 (s, 3H).	452

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(6-(4-амино-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-3-ил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,09 (s, 1H), 10,04 (s, 1H), 8,90 (d, J = 2,5 Γ ц, 1H), 8,13 (s, 1H), 7,91 (dd, J = 8,8, 2,5 Γ ц, 1H), 7,78 (t, J = 7,8 Γ ц, 1H), 7,50 – 7,42 (m, 2H), 7,28 – 7,20 (m, 2H), 7,07 (t, J = 7,6 Γ ц, 2H), 6,88 (d, J = 8,1 Γ ц, 1H), 5,85 (s, 2H), 5,58 (s, 1H), 2,39 (s, 3H), 1,96 (t, J = 1,2 Γ ц, 3H).	478,30
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)азиридин-2- карбоксамид	NH ₂ NH ₂ NH NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,55 – 7,49 (m, 2H), 7,43 (d, J = 8,3 Гц, 2H), 7,40 – 7,29 (m, 4H), 4,33 (dd, J = 5,6, 2,6 Гц, 1H), 3,99 (t, J = 5,8 Гц, 1H), 3,69 (s, 3H), 3,61 (t, J = 6,9 Гц, 2H), 3,50 (t, J = 6,6 Гц, 2H), 3,45 (dd, J = 6,0, 2,7 Гц, 1H), 1,97 (dq, J = 25,9, 6,8 Гц, 4H).	482,20
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)азиридин-2-карбоксамид	NH ₂ NH ₂ NH NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,55 – 7,49 (m, 2H), 7,43 (d, J = 8,3 Гц, 2H), 7,40 – 7,29 (m, 4H), 4,33 (dd, J = 5,6, 2,6 Гц, 1H), 3,99 (t, J = 5,8 Гц, 1H), 3,69 (s, 3H), 3,61 (t, J = 6,9 Гц, 2H), 3,50 (t, J = 6,6 Гц, 2H), 3,45 (dd, J = 6,0, 2,7 Гц, 1H), 1,97 (dq, J = 25,9, 6,8 Гц, 4H).	482,20
(S)-N-(4-(4-амино-7-метил-5-(4- (пирролидин-1-карбонил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)азиридин-2-карбоксамид	NH ₂ NH NH NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,22 (s, 1H), 7,55 – 7,49 (m, 2H), 7,43 (d, J = 8,3 Гц, 2H), 7,40 – 7,29 (m, 4H), 4,33 (dd, J = 5,6, 2,6 Гц, 1H), 3,99 (t, J = 5,8 Гц, 1H), 3,69 (s, 3H), 3,61 (t, J = 6,9 Гц, 2H), 3,50 (t, J = 6,6 Гц, 2H), 3,45 (dd, J = 6,0, 2,7 Гц, 1H), 1,97 (dq, J = 25,9, 6,8 Гц, 4H).	482,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(4-(4-амино-7-метил-6- (1-метил-2-винил-1Н- бензо[d]имидазол-6- ил)-7Н-пирроло[2,3- d]пиримидин-5- ил)фенил)(пирролидин- 1-ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,23 (s, 1H), 7,62 (d, $J = 1,6$ Гц, 1H), 7,57 (d, $J = 8,3$ Гц, 1H), 7,48 – 7,42 (m, 2H), 7,31 – 7,25 (m, 2H), 7,12 – 7,05 (m, 1H), 7,04 (dd, $J = 16,1,10,0$ Гц, 1H), 6,43 (dd, $J = 17,1,2,1$ Гц, 1H), 5,94 (s, 1H), 5,73 (dd, $J = 11,0,2,0$ Гц, 1H), 3,80 (s, 3H), 3,64 (s, 3H), 3,41 (dt, $J = 24,1,6,5$ Гц, 4H), 1,82 (dq, $J = 19,1,6,8$ Гц, 4H).	478,25
(S)-N-(5-(4-амино-7-метил-5-(4- (пирролидин-1-карбонил)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-1-метил-1Н-пиразол-3- ил)метакриламид	O N O HN N-N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,43 (s, 1H), 8,13 (s, 1H), 7,59 (d, J = 7,9 Γ ц, 2H), 7,36 (d, J = 7,7 Γ ц, 2H), 7,05 (s, 1H), 5,89 (s, 1H), 5,53 (d, J = 1,8 Γ ц, 1H), 5,20 (s, 2H), 3,74 (s, 3H), 3,68 (t, J = 6,9 Γ ц, 2H), 3,47 (t, J = 6,5 Γ ц, 2H), 3,25 (s, 3H), 2,09 (s, 3H), 1,97 (dp, J = 24,7, 6,7 Γ ц, 4H).	485,20
(4-(4-амино-7-метил-6- (1-метил-2-винил-1Н- бензо[d]имидазол-5- ил)-7Н-пирроло[2,3- d]пиримидин-5- ил)фенил)(пирролидин- 1-ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 1H), 7,62 – 7,53 (m, 2H), 7,48 – 7,41 (m, 2H), 7,30 – 7,23 (m, 2H), 7,16 (dd, J = 8,3, 1,5 Γц, 1H), 7,04 (dd, J = 17,1, 11,0 Γц, 1H), 6,41 (dd, J = 17,1, 2,1 Γц, 1H), 5,92 (s, 2H), 5,72 (dd, J = 11,0, 2,1 Γц, 1H), 3,85 (s, 3H), 3,61 (s, 3H), 3,41 (dt, J = 18,5, 6,5 Γц, 4H), 1,81 (dq, J = 20,2, 6,8 Γц, 4H).	478,25
(S)-N-(4-(4-амино-7-метил-5-(2-оксо-4-(пирролидин-1-карбонил)пиперидин-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	ON NO NH2 NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,98 (s, 1H), 8,10 (s, 1H), 7,88 – 7,80 (m, 2H), 7,42 – 7,33 (m, 2H), 6,91 (s, 2H), 5,83 (t, J = 1,1 Γц, 1H), 5,59 – 5,53 (m, 1H), 3,62 (s, 3H), 3,53 (dt, J = 10,2, 6,6 Γц, 1H), 3,45 – 3,33 (m, 2H), 3,32 – 3,29 (m, 1H), 3,15 (s, 1H), 2,95 (dd, J = 11,4, 4,9 Γц, 1H), 2,49 – 2,32 (m, 2H), 1,98 (d, J = 1,2 Γц, 4H), 1,88 (p, J = 6,2 Γц, 2H), 1,79 (p, J = 7,8, 7,1 Γц, 2H), 1,68 (s, 1H), 1,24 (s, 1H).	502,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-метил-5-(2-оксо-4-(пирролидин-1-карбонил)пиперидин-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	O N NH ₂ N NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,98 (s, 1H), 8,10 (s, 1H), 7,88 – 7,80 (m, 2H), 7,43 – 7,33 (m, 2H), 6,93 (s, 1H), 5,83 (t, J = 1,0 Γц, 1H), 5,59 – 5,53 (m, 1H), 3,62 (s, 3H), 3,53 (dt, J = 10,3, 6,6 Γц, 1H), 3,45 – 3,33 (m, 2H), 3,32 (s, 1H), 3,15 (s, 1H), 2,99 – 2,91 (m, 1H), 2,47 – 2,33 (m, 2H), 1,98 (d, J = 1,2 Γц, 4H), 1,88 (d, J = 6,6 Γц, 2H), 1,80 (d, J = 6,5 Γц, 2H), 1,73 – 1,61 (m, 1H), 1,24 (s, 1H).	502,25
N-(4-(4-амино-7-метил- 5-(4-(4- метилпиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- хлорацетамид	NH ₂ O CI	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,41 (d, J = 5,1 Гц, 1H), 8,21 (s, 1H), 7,66 (d, J = 8,5 Гц, 2H), 7,35 (t, J = 9,3 Гц, 4H), 7,24 – 7,06 (m, 3H), 4,21 (s, 2H), 3,71 (s, 3H), 2,50 (s, 3H).	500,30
7-метил-5-(4-(4- метилпиримидин-2- илокси)фенил)-6-(2- винилпиримидин-5-ил)- 7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,66 (s, 2H), 8,44 – 8,36 (m, 2H), 7,40 - 7,30 (m, 2H), 7,38 - 7,23 (m, 2H), 6,98 – 6,86 (m, 2H), 6,68 (dd, J = 17,4, 1,7 Гц, 1H), 5,82 (dd, J = 10,6, 1,7 Гц, 1H), 5,16 (s, 2H), 3,81 (s, 3H), 2,53 (s, 3H).	437,25
(R)-(3-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-ил)(оксиран-2-ил)метанон	N N N O N O N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,44 (dd, J = 5,1, 3,5 Гц, 1H), 8,19 (d, J = 2,8 Гц, 1H), 7,58 – 7,48 (m, 2H), 7,38 – 7,27 (m, 2H), 7,16 (dd, J = 5,1, 2,3 Гц, 1H), 6,25 (dt, J = 23,2, 2,0 Гц, 1H), 4,82 – 4,61 (m, 1H), 4,49 – 4,29 (m, 2H), 4,20 (d, J = 3,9 Гц, 1H), 3,87 (d, J = 13,1 Гц, 3H), 3,60 (ddd, J = 90,2, 4,3, 2,4 Гц, 1H), 2,94 (ddd, J = 36,6, 6,4, 4,3 Гц, 1H), 2,81 (ddd, J = 28,6, 6,4, 2,4 Гц, 1H), 2,52 (d, J = 2,1 Гц, 3H).	470,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-(3-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-ил)(оксиран-2-ил)метанон	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) 8 8,44 (dd, J = 5,1, 3,5 Гц, 1H), 8,19 (d, J = 2,8 Гц, 1H), 7,58 – 7,48 (m, 2H), 7,38 – 7,27 (m, 2H), 7,16 (dd, J = 5,1, 2,3 Гц, 1H), 6,25 (dt, J = 23,2, 2,0 Гц, 1H), 4,82 – 4,61 (m, 1H), 4,49 – 4,29 (m, 2H), 4,20 (d, J = 3,9 Гц, 1H), 3,87 (d, J = 13,1 Гц, 3H), 3,60 (ddd, J = 90,2, 4,3, 2,4 Гц, 1H), 2,94 (ddd, J = 36,6, 6,4, 4,3 Гц, 1H), 2,81 (ddd, J = 28,6, 6,4, 2,4 Гц, 1H), 2,52 (d, J = 2,1 Гц, 3H).	470,20
N-(4-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-2- цианоацетамид	NH ₂ O NH N	1H, 1H), 2,32 (d, J = 2,11 H, 3H). 1H J MP (400 J M L M L DMSO- J M L (s, 1H), 7,57 (d, J = 8,3 L L, 2H), 7,49 (d, J = 8,1 L L, 2H), 7,33 - 7,22 (m, 4H), 6,00 (s, 2H), 3,92 (s, 2H), 3,61 (s, 3H), 3,44 (dt, J = 19,1, 6,5 L L, 4H), 1,84 (dq, J = 18,4, 6,8 L L, 4H).	480,20
N-(4-(4-амино-7-метил- 5-(4-(4- метилпиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)-4,5- дигидрофуран-3- карбоксамид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,47 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,75 – 7,64 (m, 2H), 7,51 (d, J = 1,9 Γц, 1H), 7,29 (d, J = 8,4 Γц, 4H), 7,21 – 7,14 (m, 3H), 5,90 (s, 1H), 4,52 (t, J = 9,7 Γц, 2H), 3,61 (s, 3H), 3,06 – 2,75 (m, 2H), 2,41 (s, 3H).	520,25
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)-2,5- дигидрофуран-3- карбоксамид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,05 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,75 – 7,68 (m, 2H), 7,37 – 7,25 (m, 4H), 7,22 – 7,12 (m, 3H), 6,97 – 6,92 (m, 1H), 5,93 (s, 2H), 4,77 (h, J = 2,9 Γц, 4H), 3,61 (s, 3H), 2,41 (s, 3H).	520,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
5-(4-(4-амино-7-метил- 5-(4-(4- метилпиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)тиазол-2- карбонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,72 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,86 (d, J = 8,3 Гц, 2H), 7,53 (d, J = 8,3 Гц, 2H), 7,33 (d, J = 8,5 Гц, 2H), 7,24 – 7,19 (m, 2H), 7,16 (d, J = 5,0 Гц, 1H), 3,67 (s, 3H), 2,41 (s, 3H).	517,20
5-(4-(4-амино-7-метил- 5-(4-(4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)оксазол-2- карбонитрил	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, $J = 5,0$ Гц, 1H), 8,23 (s, 1H), 8,17 (s, 1H), 7,88 (d, $J = 8,2$ Γц, 2H), 7,55 (d, $J = 8,1$ Гц, 2H), 7,31 (d, $J = 8,2$ Гц, 2H), 7,23 – 7,13 (m, 3H), 5,98 (s, 1H), 3,67 (s, 3H), 2,41 (s, 3H).	501,15
7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(4-(2-винилтиазол-5-ил)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, Хлороформ- d) δ 8,42 – 8,36 (m, 2H), 7,99 (s, 1H), 7,63 – 7,55 (m, 2H), 7,38 – 7,30 (m, 4H), 7,26 – 7,16 (m, 2H), 6,99 – 6,88 (m, 2H), 6,09 (d, <i>J</i> = 17,5 Гц, 1H), 5,61 (d, <i>J</i> = 10,9 Гц, 1H), 5,27 (s, 2H), 3,80 (s, 3H), 2,52 (s, 3H).	518,25
6-(4-(2-хлороксазол-5- ил)фенил)-7-метил-5-(4- ((4-метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,47 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,86 (s, 1H), 7,76 – 7,69 (m, 2H), 7,53 – 7,46 (m, 2H), 7,34 – 7,27 (m, 2H), 7,23 – 7,13 (m, 3H), 3,66 (s, 3H), 2,41 (s, 3H), 1,24 (s, 1H).	510,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(4-(2-этинилоксазол- 5-ил)фенил)-7-метил-5- (4-((4-метилпиримидин- 2-ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) 8,46 (s, 1H), 8,23 (s, 1H), 7,89 (s, 1H), 7,80 - 7,75 (m, 2H), 7,50 (s, 2H), 7,31 (m, 2H), 7,19 (s, 3H), 5,95 (s, 1H), 4,97 (s, 1H), 3,66 (s, 3H), 2,41 (s, 3H).	500,15
6-(2-фторпиримидин-5- ил)-7-метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,85 (d, J = 1,5 Гц, 2H), 8,48 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,44 – 7,31 (m, 2H), 7,26 – 7,21 (m, 2H), 5,81 (s, 1H), 7,17 (d, J = 5,0 Γц, 1H), 3,70 (s, 3H), 2,42 (s, 3H).	429,10
(S)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(4-(оксиран-2-илметокси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ NH ₂ N abs O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,39 – 7,23 (m, 4H), 7,22 – 7,09 (m, 3H), 7,07 – 6,92 (m, 2H), 5,82 (d, J = 52,7 Γц, 2H), 4,36 (dd, J = 11,3, 2,8 Γц, 1H), 3,86 (dd, J = 11,4, 6,6 Γц, 1H), 3,58 (s, 3H), 3,17 (d, J = 5,3 Γц, 1H), 2,85 (t, J = 4,7 Γц, 1H), 2,76 – 2,61 (m, 1H), 2,42 (s, 3H).	481,20
1-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)азетидин-2-он	H ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,37 (s, 4H), 7,31 – 7,25 (m, 2H), 7,21 – 7,14 (m, 3H), 5,84 (d, J = 60,6 Γц, 1H), 3,65 (t, J = 4,5 Γц, 2H), 3,60 (s, 3H), 3,09 (t, J = 4,5 Γц, 2H), 2,41 (s, 3H).	478,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(4-((оксиран-2-илметил)амино)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,17 (s, 1H), 7,33 – 7,24 (m, 2H), 7,21 – 7,12 (m, 3H), 7,11 – 7,00 (m, 2H), 6,64 (d, J = 8,5 Γц, 2H), 6,14 (t, J = 5,6 Γц, 1H), 5,81 (s, 1H), 3,58 (s, 3H), 3,40 – 3,33 (m, 1H), 3,09 (td, J = 7,6, 6,2, 3,5 Γц, 2H), 2,75 (dd, J = 5,1, 3,9 Γц, 1H), 2,60 (dd, J = 5,1, 2,3 Γц, 1H), 2,42 (s, 3H).	480,15
(R)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(4-(оксиран-2-илметокси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N abs O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, $J = 5,0$ Гц, 1H), 8,20 (s, 1H), 7,38 – 7,22 (m, 4H), 7,22 – 7,11 (m, 3H), 7,07 – 6,97 (m, 2H), 4,36 (dd, $J = 11,4,2,8$ Гц, 1H), 3,86 (dd, $J = 11,3,6,6$ Гц, 1H), 3,58 (s, 3H), 3,31 (s, 1H), 2,85 (dd, $J = 5,1,4,2$ Гц, 1H), 2,72 (dd, $J = 5,1,2,7$ Гц, 1H), 2,41 (s, 3H).	481,25
7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(4-(2-винилоксазол-5-ил)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,46 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,84 – 7,76 (m, 3H), 7,51 – 7,45 (m, 2H), 7,35 – 7,27 (m, 2H), 7,23 – 7,12 (m, 3H), 6,70 (dd, J = 17,6, 11,2 Γц, 1H), 6,26 (dd, J = 17,6, 1,1 Γц, 1H), 6,03 (s, 1H), 5,91 (s, 1H), 5,79 – 5,72 (m, 1H), 3,66 (s, 3H), 2,40 (s, 3H).	502,15
метил(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)карбамат	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,80 (s, 1H), 8,20 (s, 1H), 7,48 (dd, J = 8,7, 7,1 Γц, 4H), 7,32 – 7,18 (m, 4H), 3,67 (s, 3H), 3,60 (s, 3H), 3,43 (dt, J = 16,5, 6,5 Γц, 4H), 1,83 (dq, J = 18,3, 6,7 Γц, 4H).	471,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(7-(4-амино-7-метил-	/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	518,20
5-(4-((4-	N=	8,46 (d, $J = 5,0$ Гц, 1H), $8,20$ (s,	
метилпиримидин-2-	o ~ . /	1H), 7,36 – 7,26 (m, 2H), 7,25 –	
ил)окси)фенил)-7Н-	N 0 //	7,09 (m, 6H), 6,89 (dd, J = 16,6,	
пирроло[2,3-		10,6 Γ ц, 1H), 6,15 (dd, J = 16,7,	
d]пиримидин-6-ил)-3,4-	NH ₂	2,4 Гц, 1H), $5,72$ (dd, $J = 10,4$,	
дигидроизохинолин-		2,4 Гц, 1H), $4,76$ (d, $J = 41,4$ Гц,	
2(1Н)-ил)проп-2-ен-1-		2H), 3,78 (dt, $J = 24,4$, 5,9 Γ ц,	
ОН	N, N, —	2H), 3,61 (s, 3H), 2,94 – 2,71 (m,	
		2H), 2,41 (s, 3H).	
(R)-N-(7-(4-амино-7-	/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	532,25
метил-5-(4-((4-	N=	8,46 (d, $J = 5,0$ Гц, 1H), $8,23 -$	
метилпиримидин-2-	0	8,14 (m, 2H), 7,38 – 7,29 (m, 2H),	
ил)окси)фенил)-7Н-		7,24 – 7,07 (m, 6H), 6,26 (dd, <i>J</i> =	
пирроло[2,3-	NH ₂ HN	17,1, 10,0 Гц, 1Н), 6,10 (dd, $J =$	
d]пиримидин-6-ил)-		17,1, 2,4 Гц, 1H), 5,97 – 5,69 (m,	
1,2,3,4-		1H), 5,59 (dd, J = 10,1, 2,4 Γ ц,	
тетрагидронафталин-2-	N N	1H), 4,03 (s, 1H), 3,61 (s, 3H),	
ил)акриламид	\ \ \	2,97 (dd, $J = 16,6,5,3$ Гц, 1H),	
		2,85 (d, $J = 11,2$ Гц, 2H), $2,71 -$	
		2,57 (m, 2H), 2,41 (s, 3H), 1,97	
		(d, $J = 12.0 \Gamma \mu$, 1H), 1,76 – 1,62	
		(m, 1H).	
(S)-N-(7-(4-амино-7-	/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	532,25
метил-5-(4-((4-	N=	8,46 (d, $J = 5,0$ Гц, 1H), $8,19$ (d, J	
метилпиримидин-2-	0	$= 4.2 \Gamma \mu, 2H), 7.35 - 7.27 (m,$	
ил)окси)фенил)-7Н-		2H), 7,26 – 7,08 (m, 6H), 6,33 –	
пирроло[2,3-	HN	6,23 (m, 1H), $6,12$ (d, $J = 2,3$ Гц,	
d]пиримидин-6-ил)-	H ₂ N	1H), 6,08 (d, J = 2,4 Γ ц, 1H), 5,59	
1,2,3,4-	N	$(dd, J = 10,1, 2,4 \Gamma \mu, 1H), 4,03 (s,$	
тетрагидронафталин-2-	LN	1H), 3,61 (s, 3H), 2,97 (dd, $J =$	
ил)акриламид	''	16,5,5,3 Гц, 1H), 2,85 (d, $J =$	
		11,2 Гц, 2H), 2,84 – 2,57 (m, 2H),	
		2,41 (s, 3H), 1,98 (d, $J = 11,9 \Gamma \mu$,	
		1H), 1,67 (р, J = 9,8 Гц, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,3-дигидро-1Н-инден-1-ил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,55 (d, J = 8,3 Гц, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,35 – 7,26 (m, 3H), 7,25 – 7,14 (m, 5H), 6,32 – 6,12 (m, 2H), 5,81 (s, 1H), 5,63 (dd, J = 9,9, 2,5 Γц, 1H), 5,39 (q, J = 8,0 Γц, 1H), 3,59 (s, 3H), 2,99 – 2,88 (m, 1H), 2,83 (dt, J = 16,2, 8,3 Γц, 1H), 2,45 (dt, J = 8,0, 3,8 Γц, 1H), 2,41 (s, 3H),	518,25
(R)-N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,3-дигидро-1Н-инден-1-ил)акриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	1,82 (dq, $J = 12,5, 8,7$ Γ μ, 1H). ¹ H ЯМР (400 М Γ μ, DMSO- d_6) δ 8,20 (s, 1H), 7,73 (t, $J = 7,7$ Γ μ, 1H), 7,30 – 7,15 (m, 5H), 7,13 – 7,06 (m, 2H), 7,01 (d, $J = 7,4$ Γ μ, 1H), 6,89 (dd, $J = 16,7, 10,5$ Γ μ, 1H), 6,77 (d, $J = 8,2$ Γ μ, 1H), 6,15 (dd, $J = 16,7, 2,4$ Γ μ, 1H), 5,88 (s, 2H), 5,72 (dd, $J = 10,4, 2,4$ Γ μ, 1H), 4,81 (s, 1H), 4,71 (s, 1H), 3,80 (d, $J = 6,3$ Γ μ, 2H), 3,62 (s, 3H), 2,83 (s, 2H), 2,33 (s, 3H).	517,25
(R)-N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,3-дигидро-1Н-инден-2-ил)акриламид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 – 8,41 (m, 2H), 8,20 (s, 1H), 7,34 – 7,23 (m, 4H), 7,21 – 7,13 (m, 4H), 6,26 – 6,06 (m, 2H), 5,88 (s, 1H), 5,58 (dd, J = 9,9, 2,5 Гц, 1H), 4,56 (q, J = 6,6 Гц, 1H), 3,59 (s, 3H), 3,23 (ddd, J = 16,2, 12,9, 7,6 Гц, 2H), 2,81 (ddd, J = 16,8, 11,8, 5,6 Гц, 2H), 2,41 (s, 3H).	518,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2,3-дигидро-1H-инден-2-ил)акриламид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 – 8,41 (m, 2H), 8,20 (s, 1H), 7,34 – 7,23 (m, 4H), 7,21 – 7,13 (m, 4H), 6,26 – 6,06 (m, 2H), 5,88 (s, 1H), 5,58 (dd, J = 9,9, 2,5 Гц, 1H), 4,56 (q, J = 6,6 Гц, 1H), 3,59 (s, 3H), 3,23 (ddd, J = 16,2, 12,9, 7,6 Гц, 2H), 2,81 (ddd, J = 16,8, 11,8, 5,6 Гц, 2H), 2,41 (s, 3H).	518,25
1-(2-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-1- метил-1,5,6,7- тетрагидро-4H- имидазо[4,5-b]пиридин- 4-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,74 (dd, J = 28,0 Γц, 1H), 7,25 (d, J = 8,4 Γц, 2H), 7,25 (d, J = 8,4 Γц, 2H), 7,16 (d, J = 5,2 Γц, 1H), 6,25 (d, J = 16,0 Γц, 1H), 5,77 – 5,69 (m, 1H), 3,83 (s, 2H), 3,66 (s, 3H), 2,99 (s, 3H), 2,58 (t, J = 6,4 Γц, 2H), 2,40 (s, 3H), 1,94 (s, 2H).	522,25
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)бензил)акриламид	H ₂ N HN O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,65 (t, J = 6,1 Гц, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,20 (s, 1H), 7,36 (d, J = 8,2 Γц, 2H), 7,33 – 7,27 (m, 4H), 7,21 – 7,13 (m, 3H), 6,30 (dd, J = 17,1, 10,1 Γц, 1H), 6,14 (dd, J = 17,1, 2,2 Γц, 1H), 5,89 (s, 1H), 5,64 (dd, J = 10,1, 2,3 Γц, 1H), 4,40 (d, J = 6,0 Γц, 2H), 3,59 (s, 3H), 2,41 (s, 3H).	492,20
N-(2-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)пропан-2-ил)акриламид	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,48 (s, 1H), 8,20 (s, 1H), 7,73 (t, $J = 7,7$ Гц, 1H), 7,62 (d, $J = 8,2$ Γц, 1H), 7,32 – 7,25 (m, 2H), 7,23 (d, $J = 2,0$ Гц, 1H), 7,17 (dd, $J = 8,3$, 2,1 Гц, 1H), 7,15 – 7,07 (m, 2H), 7,01 (d, $J = 7,3$ Гц, 1H), 6,77 (d, $J = 8,1$ Гц, 1H), 6,57 (dd, $J = 17,0$, 10,2 Гц, 1H), 6,26 (dd, $J = 17,0$, 2,1 Гц, 1H), 6,14 – 5,86 (m, 1H), 5,77 (dd, $J = 10,2$, 2,0 Гц, 1H), 3,63 (s, 3H), 2,34 (s, 3H), 2,20 (s, 3H).	491,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(2-винил-1Н-бензо[d]имидазол-6-ил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,74 (d, J = 14,7 Гц, 1H), 8,44 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,62 (s, 1H), 7,55 – 7,34 (m, 1H), 7,34 – 7,24 (m, 2H), 7,21 – 7,04 (m, 4H), 6,77 (dd, J = 17,8, 11,2 Γц, 1H), 6,28 (d, J = 17,8 Гц, 1H), 5,88 (s, 1H), 5,69 (d, J = 11,4 Γц, 1H), 3,61 (s, 3H), 2,39 (s, 3H).	475,20
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7-(гекс- 5-ин-1-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,94 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,76 (d, J = 8,7 Γц, 2H), 7,37 – 7,28 (m, 3H), 7,24 – 7,15 (m, 2H), 7,11 (d, J = 8,1 Γц, 1H), 6,01 (s, 2H), 5,81 (s, 1H), 5,54 (s, 1H), 4,11 (t, J = 7,2 Γц, 2H), 2,70 (t, J = 2,7 Γц, 1H), 2,42 (s, 3H), 2,04 (td, J = 7,0, 2,6 Γц, 2H), 1,96 (t, J = 1,2 Γц, 3H), 1,60 (q, J = 7,4 Γц, 2H), 1,26 (q, J = 7,3 Γц, 2H).	576,25
N-(4-(5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4-гидрокси-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид	OH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,04 (d, J = 3,8 Гц, 1H), 9,95 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,00 (d, J = 3,7 Гц, 1H), 7,82 – 7,70 (m, 2H), 7,38 – 7,23 (m, 3H), 7,20 – 7,11 (m, 2H), 7,06 – 6,99 (m, 1H), 5,81 (d, J = 1,4 Γц, 1H), 5,54 (t, J = 1,5 Γц, 1H), 3,57 (s, 3H), 2,42 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	511,20
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-5- хлор-2- фторфенил)метакрилам ид	NH ₂ F NH CI O	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) 9,78 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,93 (d, J = 7,0 Γц, 1H), 7,52 (d, J = 10,5 Гц, 1H), 7,32 - 7,25 (m, 2H), 7,23 - 7,12 (m, 3H), 6,38 - 5,88 (s, 1H), 5,88 (s, 1H), 5,60 (s, 1H), 3,51 (s, 3H), 2,40 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H).	544,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- хлор-2- фторфенил)метакрилам ид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH NH NH NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,21 (s, 1H), 7,42 (s, 4H), 7,30 (d, $J = 8,5$ Гц, 2H), 7,22 – 7,12 (m, 3H), 5,82 (d, $J = 1,6$ Γц, 1H), 4,27 (s, 2H), 3,61 (s, 3H), 2,41 (s, 3H).	544,30
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-5- хлор-2- метилфенил)метакрила мид	NH ₂ NH ₂ NH CI O	¹ H ЯМР (400 МГц, DMSO- d_6) 9,38 (s, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,68 (s, 1H), 7,34 (s, 1H), 7,32 - 7,25 (m, 2H), 7,22 - 7,11 (m, 3H), 5,95 (s, 2H), 5,55 (t, J = 1,5 Γц, 1H), 3,48 (s, 3H), 2,40 (s, 3H), 2,18 (s, 3H), 1,97 (t, J = 1,3 Γц, 3H).	540,15
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- фтор-5- метилфенил)метакрила мид	NH ₂ F NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) 9,88 (s, 1H), 8,57 - 8,39 (m, 2H), 7,85 - 7,59 (m, 1H), 7,35 (dd, J = 8,4, 1,5 Гц, 1H), 7,31 - 7,25 (m, 2H), 7,24 - 7,19 (m, 2H), 7,16 (d, J = 5,0 Гц, 1H), 5,90 (s, 1H), 5,62 (d, J = 1,8 Гц, 1H), 3,58 (s, 3H), 2,41 (s, 3H), 1,96 (d, J = 1,2 Гц, 3H).	524,35
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- хлор-3- метилфенил)метакрила мид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,39 (s, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,61 (d, J = 8,1 Γц, 1H), 7,38 (d, J = 8,3 Γц, 1H), 7,29 – 7,22 (m, 2H), 7,19 – 7,11 (m, 3H), 5,92 (s, 2H), 5,56 (t, J = 1,5 Γц, 1H), 3,45 (s, 3H), 2,40 (s, 3H), 2,06 (s, 3H), 1,97 (t, J = 1,2 Γц, 3H).	540,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- хлор-2- метилфенил)метакрила мид	NH ₂ NH ₃ NH ₄ NH ₂ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,63 (s, 1H), 8,44 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,38 – 7,24 (m, 4H), 7,20 – 7,11 (m, 3H), 5,88 (s, 1H), 5,55 (t, J = 1,5 Γц, 1H), 3,46 (s, 3H), 2,40 (s, 3H), 2,27 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	540,20
N-(3-хлор-4-(5-(3-фтор- 4-((4-метилпиримидин- 2-ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)метакриламид	F O N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,13 (s, 1H), 8,77 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,07 (d, J = 2,0 Гц, 1H), 7,72 (dd, J = 8,5, 2,1 Γц, 1H), 7,47 (d, J = 8,4 Γц, 1H), 7,31 (t, J = 6,0 Γц, 1H), 7,18 (d, J = 5,1 Γц, 1H), 7,14 (d, J = 8,2 Γц, 1H), 5,84 (s, 1H), 5,59 (s, 1H), 3,58 (s, 3H), 2,41 (d, J = 8,0 Γц, 6H), 1,96 (d, J = 1,3 Γц, 3H).	543,20
N-(3-хлор-4-(5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)акриламид	F O N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,51 (s, 1H), 8,77 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,08 (d, J = 2,1 Гц, 1H), 7,61 (dd, J = 8,5, 2,0 Γц, 1H), 7,49 (d, J = 8,4 Гц, 1H), 7,38 – 7,25 (m, 2H), 7,16 (dd, J = 16,1, 6,7 Γц, 2H), 6,43 (dd, J = 16,9, 10,0 Γц, 1H), 6,31 (dd, J = 17,0, 2,1 Γц, 1H), 5,84 (dd, J = 9,9, 2,1 Γц, 1H), 3,58 (s, 3H), 2,41 (d, J = 8,9 Гц, 6H).	529,20
1-(4-(4-амино-7-метил- 5-(4-(((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-3- метиленазетидин-2-он	H ₂ N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,40 (d, J = 11,7 Гц, 1H), 8,13 (s, 1H), 7,63 (d, J = 2,7 Γц, 1H), 6,59 (s, 2H), 5,69 (d, J = 30,0 Γц, 2H), 4,42 (d, J = 1,1 Γц, 1H), 3,51 – 3,38 (m, 2H), 3,37 (d, J = 1,4 Γц, 3H), 3,28 (s, 0H), 2,75 (s, 0H), 2,68 (p, J = 1,8 Γц, 1H), 2,34 (p, J = 1,9 Γц, 1H), 2,20 (d, J = 7,1 Γц, 2H), 1,93 (d, J = 9,1 Γц, 2H), 1,85 (q, J = 6,1 Γц, 1H), 1,82 – 1,69 (m, 2H), 1,60 (d, J = 7,0 Гц, 2H).	490,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)-3-метил-1,5- дигидро-2Н-пиррол-2- он	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,41 (d, J = 5,1 Гц, 1H), 8,22 (s, 1H), 7,90 – 7,80 (m, 2H), 7,42 – 7,34 (m, 4H), 7,22 – 7,12 (m, 3H), 7,03 (q, J = 1,8 Гц, 1H), 4,45 (p, J = 2,0 Гц, 2H), 3,72 (s, 3H), 2,50 (s, 3H), 1,94 (q, J = 1,9 Гц, 3H).	504,20
N-(6-(4-амино-5-(3- фтор-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-5- метилпиридин-3- ил)метакриламид	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,10 (s, 1H), 8,90 (d, J = 2,4 Гц, 1H), 8,24 (s, 1H), 8,03 (d, J = 2,4 Γц, 1H), 7,78 – 7,71 (m, 1H), 7,24 (t, J = 8,4 Γц, 1H), 7,07 – 6,95 (m, 3H), 6,86 (d, J = 8,2 Γц, 1H), 6,21 (s, 1H), 5,87 (s, 1H), 5,60 (s, 1H), 3,51 (s, 3H), 2,30 (s, 3H), 1,97 (t, J = 1,2 Γц, 3H), 1,83 (s, 3H).	524,35
N-(6-(4-амино-5-(3- фтор-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-5- фторпиридин-3- ил)метакриламид	NH ₂ N NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,40 (s, 1H), 8,89 – 8,84 (m, 1H), 8,25 (s, 1H), 8,13 (dd, J = 11,9, 2,0 Γц, 1H), 7,75 (dd, J = 8,2, 7,3 Γц, 1H), 7,27 (t, J = 8,4 Γц, 1H), 7,14 (dd, J = 11,5, 2,1 Γц, 1H), 7,07 – 6,98 (m, 2H), 6,86 (d, J = 8,2 Γц, 1H), 6,22 (s, 1H), 5,90 (s, 1H), 5,68 – 5,63 (m, 1H), 3,65 (s, 3H), 2,31 (s, 3H), 1,97 (t, J = 1,2 Γц, 3H).	528,35
N-(5-(4-амино-5-(3- фтор-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-6- метилпиридин-2- ил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,32 (d, J = 13,1 Гц, 1H), 8,23 (s, 1H), 8,11 – 8,00 (m, 1H), 7,82 (d, J = 8,5 Гц, 1H), 7,73 (dd, J = 8,2, 7,4 Γц, 1H), 7,25 (t, J = 8,4 Γц, 1H), 7,13 (dd, J = 11,6, 2,0 Γц, 1H), 7,07 – 6,97 (m, 2H), 6,84 (d, J = 8,2 Γц, 1H), 6,13 (s, 1H), 5,94 (s, 1H), 5,58 – 5,53 (m, 1H), 3,50 (s, 3H), 2,28 (s, 3H), 2,10 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	524,21

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(5-(4-амино-5-(3- фтор-4-((6- метилпиридин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-4- метилпиридин-2- ил)метакриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,35 (s, 1H), 8,23 (s, 1H), 8,03 (d, J = 8,4 Гц, 1H), 7,82 (d, J = 8,5 Гц, 1H), 7,77 – 7,69 (m, 1H), 7,25 (t, J = 8,4 Гц, 1H), 7,13 (dd, J = 11,5, 2,1 Γц, 1H), 7,05 – 6,97 (m, 2H), 6,85 (d, J = 8,2 Γц, 1H), 5,94 (s, 1H), 5,58 – 5,53 (m, 1H), 3,50 (s, 3H), 2,28 (s, 3H), 2,09 (s, 3H), 1,96 (t, J = 1,2 Γц, 3H).	524,21
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-3- фтор-5- метилфенил)метакрила мид	NH ₂ F NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,03 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,66 (dd, J = 11,6, 2,0 Γц, 1H), 7,44 – 7,42 (m, 1H), 7,26 – 7,22 (m, 2H), 7,21 – 7,13 (m, 3H), 6,01 (s, 1H), 5,82 (s, 1H), 5,57 (s, 1H), 3,45 (s, 3H), 2,40 (s, 3H), 1,96 – 1,89 (m, 6H).	524,25
N-(4-(5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид	F O N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,32 (s, 1H), 9,23 (s, 1H), 8,94 (s, 1H), 8,46 (d, J = 5,0 Γц, 1H), 7,76 -7,67 (m, 2H), 7,42 (d, J = 8,3 Γц, 1H), 7,32 (t, J = 8,4 Γц, 1H), 7,26 -7,15 (m, 3H), 6,47 (dd, J = 17,0, 10,1 Γц, 1H), 6,30 (dd, J = 17,0, 2,1 Γц, 1H), 5,80 (dd, J = 10,1, 2,1 Γц, 1H), 3,55 (s, 3H), 2,42 (s, 3H), 2,00 (s, 3H).	495,20
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) 10,22 (s, 1H), 8,45 (d, J = 4,3 Гц, 1H), 8,21 (d, J = 3,0 Гц, 1H), 7,60 (d, J = 13,2 Γц, 2H), 7,35 -7,28 (m, 1H), 7,28 -7,22 (m, 2H), 7,15 (d, J = 7,4 Γц, 3H), 6,45 (dd, J = 17,9, 9,9 Γц, 1H), 6,27 (d, J = 16,8 Γц, 1H), 5,78 (d, J = 10,2 Γц, 1H), 5,56 (s, 1H), 3,39 (s, 3H), 2,40 (d, J = 3,0 Γц, 3H), 1,97 (d, J = 3,0 Γц, 3H).	492,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-6-ил)-3- метилфенил)акриламид	NH ₂ NH ₃ NH ₄	¹ H ЯМР (400 МГц, DMSO- d_6) 10,24 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,66 -7,57 (m, 2H), 7,32 (t, J = 8,4 Γц, 2H), 7,17 (d, J = 5,0 Γц, 1H), 7,12 (dd, J = 11,6, 2,1 Γц, 1H), 7,06 (dd, J = 8,4, 2,0 Γц, 1H), 6,45 (dd, J = 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 6,08 -6,01 (m, 1H), 5,78 (dd, J = 10,0, 2,1 Γц, 1H), 3,43 (s, 3H), 2,41 (s, 3H), 1,96 (s, 3H).	510,10
6-(2,6-диметилпиридин- 3-ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, $J = 5,0$ Гц, 1H), 8,24 (s, 1H), 7,72 (d, $J = 7,8$ Гц, 1H), 7,33 (t, $J = 8,4$ Γц, 1H), 7,24 - 7,11 (m, 3H), 7,08 - 7,01 (m, 1H), 3,44 (s, 3H), 2,48 (s, 3H), 2,41 (s, 3H), 2,12 (s, 3H).	456,20
(2E)-3-[4-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил]-2-циано-N-метилпроп-2-енамид	NH ₂ N O HN	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,46 (d, J = 5,0 Гц, 1H), 8,41 (d, J = 4,6 Гц, 1H), 8,24 (s, 1H), 8,17 (s, 1H), 7,94 – 7,89 (m, 1H), 7,86 (d, J = 1,8 Γц, 1H), 7,62 (s, 1H), 7,32 (t, J = 8,4 Γц, 1H), 7,21 – 7,11 (m, 2H), 7,06 (ddd, J = 8,3, 2,1, 0,8 Γц, 1H), 6,09 (s, 1H), 3,46 (s, 3H), 2,77 (d, J = 4,5 Γц, 3H), 2,40 (s, 3H), 2,04 (s, 3H).	549,35
(Е)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-(6-(3-метоксипроп-1-ен-1-ил)-4-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 2,01 (s, 3H), 2,40 (s, 3H), 3,46 (s, 3H), 4,11 (d, J = 5,1 Γц, 2H), 6,68 (s, 1H), 6,79 – 6,88 (m, 1H), 7,05 (d, J = 8,3 Γц, 1H), 7,12 – 7,21 (m, 2H), 7,32 (t, J = 8,4 Γц, 1H), 7,43 (s, 1H), 8,23 (s, 1H), 8,46 (d, J = 4,9 Γц, 2H).	512,4

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-5-(3-	/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	500,10
фтор-4-((4-		8,50 (d, $J = 5,0$ Гц, 1H), $8,17$ (s,	
метилпиримидин-2-	 	1H), 8,08 (d, J = 7,5 Гц, 1H), 7,43	
ил)окси)фенил)-7-	O	$(t, J = 8,4 \Gamma \mu, 1H), 7,32 (dd, J =$	
метил-7Н-пирроло[2,3-	F	11,5, 2,1 Γμ, 1H), 7,26 - 7,17 (m,	
d]пиримидин-6-		2H), 6,22 (dd, J = 17,0, 10,0 Γ ц,	
ил)циклогекс-3-ен-1-	NH ₂ O	1H), 6,07 (dd, J = 17,1, 2,3 Γ ц,	
ил)акриламид	N N	2H), 5,84 (d, J = 4,4 Γ ц, 1H), 5,57	
	i	(dd, $J = 10,0, 2,4 \Gamma \mu, 1H$), 3,91 (s,	
	N° N	1H), 3,66 (s, 3H), 2,42 (m, 4H),	
		2,21 (s, 1H), 2,08 (d, J = 15,5 Γ ц,	
		2H), 1,78 (d, <i>J</i> = 25,3 Гц, 1H),	
		1,53 (d, $J = 11,5$ Гц, $5,2$ Гц, 1 Н).	
(R)-N-(4-(4-амино-5-(3-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	500,25
фтор-4-((4-		8,50 (d, $J = 5,0$ Гц, 1H), $8,16$ (s,	
метилпиримидин-2-		1H), 8,07 (d, $J = 7.5 \Gamma \mu$, 1H), 7,43	
ил)окси)фенил)-7-	N O	$(t, J = 8,4 \Gamma \mu, 1H), 7,32 (dd, J =$	
метил-7Н-пирроло[2,3-	F T	11,4, 2,1 Гц, 1H), 7,26 - 7,17 (m,	
d]пиримидин-6-ил)		2H), 6,22 (dd, <i>J</i> = 17,1, 10,1 Гц,	
циклогекс-3-ен-1-	NH_2 O. //	1H), 6,07 (dd, J = 17,1, 2,4 Γ ц,	
ил)акриламид	N	1H), 6,00 (s, 1H), 5,83 (d, $J = 4,6$	
	NH >-NH	Γ ц, 1H), 5,56 (dd, J = 10,1, 2,3	
		Гц, 1H), 3,91 (s, 1H), 3,65 (s,	
	,	3H), 2,42 (s, 3H), 2,27 (d, $J =$	
		45,4 Гц, 1H), 2,08 (d, $J = 15,3$	
		Гц, 2H), 1,89 - 1,73 (m, 1H), 1,54	
		(dd, $J = 11,3, 5,2 \Gamma \mu, 1H$).	
(S)-N-(4-(4-амино-5-(3-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	500,25
фтор-4-((4-		8,50 (d, $J = 5,0$ Гц, 1H), $8,16$ (s,	
метилпиримидин-2-		1H), 8,06 (d, J = 7,5 Γ ц, 1H), 7,43	
ил)окси)фенил)-7-	N O	$(t, J = 8.3 \Gamma\text{u}, 1\text{H}), 7.33 (d, J =$	
метил-7Н-пирроло[2,3-	F T	$2.0 \Gamma\text{II}, 1\text{H}), 7.21 (\text{dd}, J = 13.1,$	
d]пиримидин-6-ил)		6,7 Γ II, 2H), 6,22 (dd, J = 17,1,	
циклогекс-3-ен-1-	NH ₂ O //	10,1 Γ μ, 1H), 6,07 (dd, J = 17,1,	
ил)акриламид		2,3 Гц, 1H), 5,98 (s, 1H), 5,84 (s,	
) INH	1H), 5,56 (dd, J = 10,0, 2,4 Γ ц,	
	N N	1H), 3,91 (s, 1H), 3,65 (s, 3H),	
	,	2,42 (s, 4H), 2,21 (s, 1H), 2,15 -	
		1,97 (m, 2H), 1,83 (d, $J = 11,9$	
		Γ ц, 1H), 1,54 (d, J = 11,5, 5,2 Γ ц,	
		1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
7-(4-амино-7-метил-5-	\	1 Н ЯМР (400 МГц, DMSO- d_{6}) δ	489,30
(4-((4-метилпиримидин-		8,46 (d, $J = 5,0$ Гц, 1H), $8,22$ (s,	
2-ил)окси)фенил)-7Н-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1H), 7,91 (d, J = 1,9 Гц, 1H), 7,60	
пирроло[2,3-	O N	(dd, $J = 7.9, 2.0 \Gamma \mu$, 1H), 7,44 (d,	
d]пиримидин-6-ил)-2-		$J = 8.0 \Gamma \text{u}, 1\text{H}), 7.35 - 7.27 \text{(m)},$	
метилен-3,4-		2H), 7,22 – 7,10 (m, 3H), 6,05 (d,	
дигидронафталин-		$J = 2.1 \Gamma \text{u}, 1\text{H}, 5.93 \text{ (s, 2H)}, 5.56$	
1(2Н)-он	H ₂ N	(d, $J = 1.9 \Gamma \mu$, 1H), 3,61 (s, 3H),	
	$ $ $ $ $ $ $ $	3,02 (t, $J = 6,4$ Гц, 2H), $2,90$ –	
	N N	2,82 (m, 2H), 2,40 (s, 3H).	
6-(4-амино-7-метил-5-	/	1 Н ЯМР (400 МГц, DMSO- d_{6}) δ	489,35
(4-((4-метилпиримидин-	N=	8,46 (d, $J = 5,0$ Гц, 1H), $8,24$ (s,	
2-ил)окси)фенил)-7Н-		1H), 7,93 (d, J = 8,1 Гц, 1H), 7,42	
пирроло[2,3-	N-	(d, $J = 1.7 \Gamma \mu$, 1H), 7.36 (dd, $J =$	
d]пиримидин-6-ил)-2-	NH ₂	8,0, 1,7 Гц, 1H), 7,35 - 7,27 (m,	
метилен-3,4-		2H), 7,24 - 7,13 (m, 3H), 6,06 (d,	
дигидронафталин-		J = 2,1 Гц, 1H), 5,99 (s, 2H), 5,56	
1(2Н)-он	NNN	(d, $J = 2.0 \Gamma \mu$, 1H), 3.68 (s, 3H),	
	\	2,96 (t, $J = 6,3$ Гц, 2H), $2,84$ (t, J	
		= 6,1 Гц, 2H), 2,41 (s, 3H).	

Пример 14

Схема 12

Трет-бутил-3-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1карбоксилат

[0349] **Стадия 1:** В герметизируемую реакционную пробирку загружали трет-бутил-3-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-2,5-дигидро-1H-пиррол-1-карбоксилат (1,2 г, 3,07 ммоль), Pd-C (120 мг, 1,2 моль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли МеОН (20 мл), и полученную смесь перемешивали в течение ночи при 50°C. Реакционную смесь фильтровали через слой целита (Celite®), затем этот слой промывали водой, и фильтрат концентрировали под вакуумом, в результате чего получали трет-бутил-3-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1-карбоксилат (0,9 г, выход 91,8%) в виде твердого вещества почти белого цвета.

Трет-бутил-3-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6ил)пирролидин-1-карбоксилат

[0350] Стадия 2: В круглодонную колбу загружали трет-бутил-3-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1-карбоксилат (300 мг, 945 мкмоль), NBS (168 мг, 945 мкмоль) и магнитную мешалку. Добавляли дихлорметан (5 мл), и полученный раствор перемешивали в течение 30 мин при комнатной температуре. Реакционную смесь разбавляли водой (10 мл) и трижды экстрагировали водную фазу дихлорметаном (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали *под вакуумом*, в результате чего получали трет-бутил-3-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-пирролидин-1-карбоксилат (230 мг, выход 61,4%) в виде твердого вещества светло-желтого цвета.

Трет-бутил-3-(4-амино-7-метил-5-(4-(пиримидин-2-илокси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-карбоксилат

[0351] Стадия 3: В герметизируемую реакционную пробирку загружали трет-бутил-3-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1-карбоксилат (200 мг, 504 мкмоль), 2-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиримидин (165 мг, 554 мкмоль), Pd(dtbpf)Cl₂ (32,8 мг, 50,4 мкмоль), K₃PO₄ (320 мг, 1,51 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли DMF с водой (2 мл), и полученную смесь перемешивали в течение 2 часов при 90°С. Реакционную смесь разбавляли водой (10 мл) и трижды экстрагировали водную фазу дихлорметаном (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный неочищенный материал очищали методом хроматографии на силикагеле (колонка на 5 г, элюирование смесью дихлорметан/метанол/0,1% триэтиламина; соотношение -). После концентрирования под вакуумом получали трет-бутил-3-{4-амино-7-метил-5-[4-(пиримидин-2-илокси)фенил]-7H-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1-карбоксилат (100 мг, выход 40,7%) в виде твердого вещества светло-коричневого цвета.

7-Метил-5-(4-(пиримидин-2-илокси)фенил)-6-(пирролидин-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0352] Стадия 4: В круглодонную колбу загружали трет-бутил-3-{4-амино-7-метил-5-[4-(пиримидин-2-илокси)фенил]-7H-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1карбоксилат (200 мг, 410 мкмоль) и магнитную мешалку. Добавляли ТFA и DCM (1 и 4 мл), и раствор перемешивали в течение 30 минут при комнатной температуре. Затем реакционную смесь концентрировали под вакуумом. Затем остаток растворяли в насыщенном водном растворе NaHCO₃, и трижды экстрагировали DCM. Объединенные органические слои сушили над безводным Na₂SO₄. После фильтрования и упаривания получали 7-метил-5-[4-(пиримидин-2-илокси)фенил]-6-(пирролидин-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (150 мг, выход 94,4%) в виде твердого вещества почти белого цвета.

1-(3-(4-Амино-7-метил-5-(4-(пиримидин-2-илокси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он

[0353] Стадия 5: В круглодонную колбу загружали 7-метил-5-[4-(пиримидин-2-илокси)фенил]-6-(пирролидин-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (50 мг, 129 мкмоль), ТЕА (39,0 мг, 387 мкмоль), дихлорметан (4 мл) и магнитную мешалку. Добавляли проп-2-еноилхлорид (10,4 мг, 116 мкмоль) при -30°С, и полученный раствор перемешивали в течение 30 мин при -30°С. Реакционную смесь фильтровали через слой целита (Celite®), затем слой промывали DCM, и фильтрат концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали 1-(3-{4-амино-7-метил-5-[4-(пиримидин-2-илокси)фенил]-7H-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1-ил)проп-2-ен-1-он (5,92 мг, выход 11,6%л) в виде твердого аморфного вещества белого цвета.

[0354] Другие такие же соединения, полученные согласно способам, описанным в Примере 14, показаны в Таблице 13 ниже.

Таблица 13. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-[4-(4-амино-5-{3-		¹H ЯМР (400 МГц, DMSO-d ₆) δ	498,587
метокси-4-[(6-		8,10 (s, 1H), $7,68$ (t, $J = 7,7$ Гц, 1H),	ĺ
метилпиридин-2-	N N	7,17 (d, $J = 8.0$ Гц, 1H), 7,10 – 7,05	
ил)окси]фенил}-7-	<i>[</i>	(m, 1H), 6,94 (d, $J = 7,3$ Γu , 2H),	
метил-7Н-	NH ₂	6,76 (dd, $J = 16,7, 10,5 \Gamma \mu$, 1H), 6,64	
пирроло[2,3-	N O	$(d, J = 8.2 \Gamma \mu, 1H), 6.04 (dd, J =$	
d]пиримидин-6-	"i	16,7, 2,4 Гц, 1H), $5,61$ (dd, $J = 10,4$,	
ил)пиперидин-1-		2,5 Гц, 2H), 4,47 (s, 1H), 4,13 – 4,06	
ил]проп-2-ен-1-он	,	(m, 1H), 3,77 (s, 3H), 3,67 (s, 3H),	
		3,09 (s, 2H), 2,64 (s, 2H), 2,31 (s,	
		3H), 1,83 (s, 2H), 1,57 (s, 2H).	
1-(4-(4-амино-7-	/	¹ Н ЯМР (400 МГц, Хлороформ- <i>d</i>) δ	469,25
метил-5-(4-((6-	N=	8,30 (s, 1H), $7,66$ (t, $J = 7,7$ Гц, 1H),	,
метилпиридин-2-	04	7,35 (d, J = 8,5 Гц, 2H), 7,21 (d, J =	
ил)окси)фенил)-7Н-		8,3 Γ ц, 2H), 6,97 (d, J = 7,4 Γ ц, 1H),	
пирроло[2,3-		6,76 (d, $J = 8,1$ Γ u, 1H), 6,58 (dd, $J =$	
d]пиримидин-6-	NH ₂	16,8, 10,6 Γ u, 1H), 6,28 (dd, J =	
ил)пиперидин-1-	N O	16,8, 2,0 Γ u, 1H), 5,70 (dd, J = 10,5,	
ил)проп-2-ен-1-он	$N \longrightarrow N \longrightarrow$	2,0 Γц, 1H), 4,87 – 4,83 (m, 2H),	
	N' N' W	4,79 (s, 1H), $4,08$ (d, $J = 13,6$ Гц,	
	,	1H), 3,88 (s, 3H), 3,18 – 3,03 (m,	
		2H), 2,64 (s, 1H), 2,50 (s, 3H), 1,83	
		(s, 2H), 1,75 (s, 2H).	
1-[3-(4-амино-7-		¹ H ЯМР (400 МГц, DMSO-d ₆) δ	469,35
метил-5-{4-[(6-		8,27 (s, 1H), 7,77 (t, $J = 7,7$ Гц, 1H),	
метилпиридин-2-	,	7,44 (d, J = 7,3 Гц, 2H), 7,23 (d, J =	
ил)окси]фенил}-7Н-	N=	8,1 Гц, 2H), $7,05$ (d, $J = 7,3$ Гц, 1H),	
пирроло[2,3-		6,87 (d, $J = 9,1$ Гц, 1H), $6,84 - 6,75$	
d]пиримидин-6-	0-	(m, 1H), 6,08 (t, $J = 17,7 \Gamma \mu$, 1H),	
ил)пиперидин-1-		5,67 (t, $J = 9.9 \Gamma \mu$, 1H), 4,51 - 4,45	
ил]проп-2-ен-1-он	NH ₂	(d, $J = 12.5 \Gamma \mu$, 1H), 4.15 - 4.07 (d, J	
] - /	= 13,4 Γu, 1H), 3,84 (s, 3H), 3,17 -	
	N N	3,07 (m, 1H), 2,97 (s, 1H), 2,87 -	
	N N	2,61 (t, J = 12,2 Γ ц, 1H), 2,42 - 2,35	
	\	(s, 3H), 1,90 (d, $J = 12,6 \Gamma \mu$, 1H),	
		1,67 (s, 2H), $1,41$ (d, $J = 13,9$ Гц,	
		2H), 1,18 (t, <i>J</i> = 7,3 Гц, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-[5-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-1,2,3,6-тетрагидропиридин-1-ил]проп-2-ен-1-он	NH ₂ O N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,34 (s, 1H), 7,64 (t, J = 7,8 Гц, 1H), 7,41 (d, J = 8,1 Гц, 2H), 7,22 (d, J = 8,6 Гц, 2H), 6,95 (d, J = 7,4 Гц, 1H), 6,75 (d, J = 8,1 Гц, 1H), 6,67 - 6,56 (m, 1H), 6,33 - 6,20 (d, J = 16,6 Гц, 1H), 6,03 (s, 1H), 5,75 (d, J = 10,6 Гц, 1H), 5,61 (d, J = 10,4 Гц, 1H), 5,44 (s, 1H), 4,14 (s, 1H), 3,91 (s, 1H), 3,79 (s, 3H), 3,77 (s, 1H), 3,64 (s, 1H), 2,48 (s, 3H), 2,43 (s, 1H), 2,39 (s, 1H).	467,35
1-[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-ил]проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, Хлороформ- d) δ 8,36 (d, J = 3,2 Гц, 1H), 7,70 - 7,59 (m, 1H), 7,40 (dd, J = 11,3, 8,3 Гц, 2H), 7,23 (dd, J = 11,3, 8,2 Гц, 2H), 6,96 (d, J = 7,3 Гц, 1H), 6,79 - 6,70 (m, 1H), 6,47 - 6,37 (m, 1H), 6,24 - 6,11 (m, 1H), 5,96 (s, 1H), 5,79 - 5,64 (m, 1H), 5,02 (s, 2H), 4,52 (s, 2H), 4,32 (s, 1H), 4,22 (s, 1H), 3,88 (d, J = 10,2 Гц, 3H), 2,49 (d, J = 9,9 Гц, 3H).	453,30
1-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,75 (t, J = 7,8 Гц, 1H), 7,39 (d, J = 8,1 Γц, 2H), 7,18 (d, J = 8,1 Γц, 2H), 7,03 (d, J = 7,3 Γц, 1H), 6,88 – 6,70 (m, 2H), 6,12 (d, J = 16,7 Γц, 1H), 5,97 (s, 1H), 5,92 (s, 1H), 5,69 (t, J = 9,4 Γц, 1H), 4,23 (s, 1H), 4,14 (s, 1H), 3,66 (m, 5H), 2,36 (s, 3H), 2,13 (s, 2H).	467,2
1-(3-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (d, J = 1,6 Γ ц, 1H), 7,67 (t, J = 7,8 Γ ц, 1H), 7,26 – 7,07 (m, 2H), 6,96 (dd, J = 15,4, 7,5 Γ ц, 3H), 6,70 (dd, J = 8,2, 5,8 Γ ц, 1H), 6,58 – 6,39 (m, 1H), 6,10 (dd, J = 16,9, 2,6 Γ ц, 1H), 5,69 – 5,57 (m, 1H), 3,97 (t, J = 9,2 Γ ц, 1H), 3,79 (d, J = 6,4 Γ ц, 4H), 3,73 – 3,63 (m, 4H), 3,55 (dq, J = 17,8, 9,8, 9,2 Γ ц, 2H), 2,30 (d, J = 5,6 Γ ц, 3H), 2,21 – 1,89 (m, 2H).	485,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (s, 1H), 7,69 (t, J = 7,8 Гц, 1H), 7,20 (d, J = 8,0 Гц, 1H), 7,14 (s, 1H), 7,00 (d, J = 8,1 Гц, 1H), 6,95 (d, J = 7,3 Гц, 1H), 6,88 – 6,71 (m, 2H), 6,09 (t, J = 17,2 Γц, 1H), 5,68 (d, J = 10,9 Гц, 1H), 4,57 – 4,47 (d, 1H), 4,19 – 4,09 (d, 1H), 3,81 (s, 3H), 3,71 (s, 3H), 3,17 – 2,98 (d, 2H), 2,72 – 2,43 (d, 1H), 2,28 (s, 3H), 1,94 (d, J = 12,6 Γц, 1H), 1,71 (s, 2H), 1,41 (s, 1H).	499,2
1-(4-(4-амино-5-(4-метоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,21 (s, 1H), 7,33 – 7,25 (m, 2H), 7,06 – 6,99 (m, 2H), 6,79 (ddd, J = 21,6, 16,7, 10,4 Гц, 1H), 6,13 (dt, J = 16,7, 3,6 Γц, 1H), 5,92 (d, 1H), 5,75 – 5,64 (m, 1H), 4,22 (s, 1H), 4,13 (s, 1H), 3,80 (s, 3H), 3,66 (m, 5H), 2,08 (s, 2H).	390,2
1-(5-(4-амино-5-(3-метокси-4-((6-метилпиридин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,6-дигидропиридин-1(2H)-ил)проп-2-ен-1-он 1-(3-(4-амино-7-	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 (s, 1H), 7,66 (dt, J = 11,8, 7,8 Γц, 1H), 7,17 (m, 1H), 7,11 (d, J = 1,9 Гц, 1H), 7,02 – 6,91 (m, 2H), 6,85 (dd, J = 16,6, 10,4 Γц, 1H), 6,70 (d, J = 8,3 Γц, 1H), 6,31 (dd, J = 16,6, 10,4 Γц, 1H), 6,20 -5,95 (m, J = 16,1 Γц, 3H), 5,75 -5,52 (d, J = 10,5 Γц, 1H), 4,01 (s, 2H), 3,71 – 3,62 (m, 8H), 2,30 (d, J = 2,6 Γц, 5H).	497,3
1-(3-(4-амино-7-метил-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O N	7H HMP (400 MI II, DMSO- a_6) 8 8,69 (t, J = 4,5 Γ II, 2H), 8,13 (d, J = 1,8 Γ II, 1H), 7,49 – 7,42 (m, 2H), 7,36 – 7,28 (m, 3H), 6,51 (ddd, J = 34,2, 16,8, 10,4 Γ II, 1H), 6,11 (ddd, J = 16,8, 5,6, 2,4 Γ II, 1H), 5,70 – 5,59 (m, 1H), 3,95 (t, J = 9,2 Γ II, 1H), 3,80 (d, J = 6,8 Γ II, 3H), 3,77 – 3,45 (m, 1H), 2,27 – 1,97 (m, 2H).	442,23

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-амино-7- метил-5-(4- (пиридин-2-	9 N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,23 – 8,10 (m, 2H), 7,92 – 7,82 (m, 1H), 7,39 (d, J = 7,9 Гц, 2H), 7,25 –	453,1
(пиридин-2- илокси)фенил)-7H- пирроло[2,3-	NH ₂	7,10 (m, 3H), 7,06 (d, J = 8,3 Γμ, 1H), 6,78 (ddd, J = 25,5, 16,6, 10,4	
d]пиримидин-6-ил)- 3,6-дигидропиридин- 1(2H)-ил)проп-2-ен-	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	Γ μ, 1H), 6,12 (dt, J = 16,4, 3,7 Γ μ, 1H), 5,94 (d, J = 24,1 Γ μ, 2H), 5,69 (t, J = 9,0 Γ μ, 1H), 4,26 – 4,08 (m,	
1-он	" \	(t, J = 9,0 H, 111), 4,20 = 4,08 (iii, 2H), 3,63 (d, J = 12,5 Γ H, 4H), 2,13 (s, 2H).	
1-(4-(4-амино-7- метил-5-(4- (пиримидин-2-	O N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,69 (d, J = 4,7 Γц, 2H), 8,17 (s, 1H), 7,43 (d, J = 8,0 Γц, 2H), 7,30 (q, J =	454,3
илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-	NH ₂	4,0, 3,2 Γu, 3H), 6,80 (ddd, J = 26,5, 16,7, 10,5 Γu, 1H), 6,12 (d, J = 16,8 Γu, 1H), 5,99 (s, 1H), 5,93 (s, 1H),	
3,6-дигидропиридин- 1(2H)-ил)проп-2-ен-		5,69 (t, J = 9,7 Γμ, 1H), 4,23 (s, 1H), 4,14 (s, 1H), 3,66 (s, 3H), 3,62 (s,	
1-он		0H), 3,07 (s, 1H), 2,15 (s, 2H), 1,17 (t, J = 7,3 Γμ, 1H).	492.25
1-(4-(4-амино-5-(3- метокси-4-(пиридин- 2-илокси)фенил)-7- метил-7H-	o o N	¹ H ЯМР (400 М Γ ц, DMSO- d_6) δ 8,20 – 8,06 (m, 2H), 7,88 – 7,75 (m, 1H), 7,20 (d, J = 8,0 Γ ц, 1H), 7,09 (dd, J = 7,0, 4,8 Γ ц, 2H), 6,97 (d, J =	483,35
пирроло[2,3- d]пиримидин-6-ил)-	NH ₂	8,2 Γц, 2H), 6,80 (ddd, J = 27,3, 16,6, 10,3 Γц, 1H), 6,05 (dd, J =	
3,6-дигидропиридин- 1(2H)-ил)проп-2-ен- 1-он	N N N	56,4, 20,5 Γц, 3H), 5,68 (d, J = 9,0 Γц, 1H), 4,20 (d, J = 31,9 Γц, 2H), 3,66 (d, J = 3,0 Γц, 8H), 2,18 (s, 2H).	
1-(4-(4-амино-5-(3- метокси-4-((4- метилпиридин-2-	o o N	¹ H ЯМР (400 М Γ ц, DMSO- d ₆) δ 8,17 (s, 1H), 7,97 (d, J = 5,1 Γ ц, 1H), 7,17 (d, J = 8,0 Γ ц, 1H), 7,08 (s, 1H),	497,4
ил)окси)фенил)-7- метил-7Н- пирроло[2,3-	NH ₂	7,01 – 6,88 (m, 2H), 6,86 – 6,76 (m, 2H), 6,05 (dd, J = 56,6, 19,7 Γμ, 3H), 5,68 (d, J = 9,2 Γμ, 1H), 4,20 (d, J =	
d]пиримидин-6-ил)- 3,6-дигидропиридин- 1(2H)-ил)проп-2-ен-		33,4 Γu, 2H), 2,33 (s, 3H), 2,18 (s, 2H).	
1-он			

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4- (пиридин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,31 – 8,14 (m, 2H), 7,90 (ddd, J = 9,0, 7,2, 2,0 Гц, 1H), 7,56 – 7,38 (m, 2H), 7,26 – 7,21 (m, 2H), 7,19 (s, 1H), 7,10 (dd, J = 8,3, 2,7 Γц, 1H), 6,50 (ddd, J = 36,0, 16,8, 10,3 Γц, 1H), 6,11 (dt, J = 16,8, 2,7 Γц, 1H), 5,64 (td, J = 9,9, 2,4 Γц, 1H), 4,03 – 3,66 (m, 5H), 3,64 – 3,23 (m, 5H),	441
1-(3-(4-амино-5-(3-метокси-4-(пиридин- 2-илокси)фенил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	2,35 – 1,94 (m, 2H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (s, 2H), 7,82 (t, J = 8,1 Гц, 1H), 7,27 – 6,94 (m, 5H), 6,64 – 6,37 (m, 1H), 6,11 (d, J = 16,6 Гц, 1H), 5,64 (t, J = 10,5 Гц, 2H), 3,99 – 3,75 (m, 5H), 3,69 (s, 4H), 3,66 – 3,48 (m, 2H), 2,37 – 1,96 (m, 2H).	471,20
1-(3-(4-амино-5-(3-метокси-4- (пиримидин-2- илокси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,64 (t, J = 4,8 Гц, 2H), 8,14 (s, 1H), 7,37 – 7,19 (m, 2H), 7,12 (s, 1H), 7,01 (dd, J = 7,9, 1,9 Γц, 1H), 4,00 – 3,82 (m, 1H), 3,80 (d, J = 6,4 Γц, 3H), 3,69 (s, 4H), 3,63 (t, J = 10,3 Γц, 1H), 3,33 (s, 1H), 2,35 – 1,95 (m, 2H).	472
1-(3-(4-амино-5-(3-метокси-4-((6-метилпиридин-3-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,20 (dd, J = 12,7, 2,9 Гц, 1H), 8,12 (d, J = 2,1 Гц, 1H), 7,32 – 7,17 (m, 2H), 7,17 – 7,04 (m, 2H), 6,96 (d, J = 8,1 Γц, 1H), 6,60 – 6,38 (m, 1H), 6,10 (dd, J = 16,8, 2,5 Γц, 1H), 5,76 – 5,54 (m, 2H), 3,92 (t, J = 9,1 Γц, 1H), 3,56 (s, 1H), 2,44 (s, 3H), 2,31 – 2,22 (m, 1H), 2,08 (s, 2H).	485,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)бут-2-ин-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (d, J = 2,1 Γ ц, 1H), 7,76 (td, J = 7,7, 2,9 Γ ц, 1H), 7,40 (dd, J = 8,6, 3,3 Γ ц, 2H), 7,21 (dd, J = 8,1, 5,6 Γ ц, 2H), 7,04 (d, J = 7,3 Γ ц, 1H), 6,85 (dd, J = 8,2, 2,9 Γ ц, 1H), 5,78 (s, 1H), 3,92 – 3,65 (m, 5H), 3,50 (dt, J = 18,9, 9,8 Γ ц, 2H), 3,28 – 3,14 (m, 1H), 2,36 (s, 3H), 2,19 (d, J = 6,9 Γ ц, 1H), 1,97 (d, J = 19,3 Γ ц, 4H).	467,25
(Е)-1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)бут-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (d, J = 2,7 Гц, 1H), 7,76 (t, J = 7,8 Гц, 1H), 7,41 (dd, J = 8,6, 3,8 Гц, 2H), 7,19 (dd, J = 8,2, 5,7 Γц, 2H), 7,04 (d, J = 7,3 Γц, 1H), 6,84 (dd, J = 8,2, 2,6 Γц, 1H), 6,65 (ddt, J = 13,7, 10,7, 6,7 Γц, 1H), 6,17 (ddd, J = 31,7, 14,9, 1,9 Γц, 1H), 5,78 (s, 1H), 3,98 – 3,85 (m, 1H), 3,79 (d, J = 8,4 Γц, 4H), 3,63 (d, J = 9,9 Γц, 1H), 3,53 (d, J = 10,2 Γц, 1H), 3,48 – 3,39 (m, 1H), 2,36 (d, J = 4,2 Γц, 3H), 2,26 – 1,91 (m, 2H), 1,80 (td, J = 6,9, 1,6 Γц, 3H).	469
1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (s, 1H), 7,76 (q, J = 7,5 Гц, 1H), 7,62 – 7,33 (m, 2H), 7,21 (d, J = 8,0 Γц, 2H), 7,04 (d, J = 7,4 Γц, 1H), 6,84 (s, 1H), 5,61(s, 1H), 5,22 (d, J = 18,1 Γц, 1H), 5,05 (d, J = 52,4 Γц, 1H), 3,78 (s, 3H), 3,71 (d, J = 9,5 Γц, 2H), 3,34 (s, 2H), 3,34 (s, 1H), 2,36 (s, 3H), 2,19 (s, 1H), 1,99 (dt, J = 21,1, 10,0 Γц, 1H), 1,81 (d, J = 14,3 Γц, 3H).	469,30
1-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пиперидин-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,10 (s, 1H), 7,76 (t, J = 7,8 Гц, 1H), 7,39 (d, J = 8,2 Γц, 2H), 7,20 (d, J = 8,2 Γц, 2H), 7,05 (d, J = 7,4 Γц, 1H), 6,80 (d, J = 8,1 Γц, 1H), 5,08 (s, 1H), 4,80 (s, 1H), 4,36 (s, 1H), 3,78 (s, 3H), 3,20 (t, J = 12,4 Γц, 1H), 3,06 (s, 1H), 2,37 (s, 3H), 1,78 (s, 4H), 1,50 (d, J = 10,0 Γц, 2H).	483,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(Е)-1-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пиперидин-1-ил)бут-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,10 (s, 1H), 7,76 (t, J = 7,8 Гц, 1H), 7,43 – 7,32 (m, 2H), 7,24 – 7,13 (m, 2H), 7,04 (d, J = 7,4 Γц, 1H), 6,81 (d, J = 8,2 Γц, 1H), 6,63 (dq, J = 13,4, 6,7 Γц, 1H), 6,46 (dd, J = 14,8, 1,9 Γц, 1H), 4,48 (s, 1H), 4,09 (d, J = 13,1 Γц, 1H), 3,77 (s, 3H), 3,16 (t, J = 12,3 Γц, 1H), 3,03 (s, 1H), 2,58 (s, 1H), 2,36 (s, 3H), 1,87 – 1,72 (m, 5H), 1,52 (d, J = 16,1 Γц, 2H).	483,25
1-(4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пиперидин-1-ил)бут-2-ин-1-он	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,10 (s, 1H), 7,76 (t, J = 7,8 Гц, 1H), 7,38 (d, J = 8,3 Гц, 2H), 7,31 – 7,15 (m, 2H), 7,04 (d, J = 7,3 Γц, 1H), 6,82 (d, J = 8,1 Γц, 1H), 4,39 – 4,20 (m, 2H), 3,78 (s, 3H), 3,23 – 3,07 (m, 2H), 2,66 (dd, J = 13,5, 10,8 Γц, 1H), 2,36 (s, 3H), 2,00 (s, 3H), 1,90 – 1,73 (m, 2H), 1,50 (dtd, J = 37,5, 12,7, 4,2 Γц, 2H).	481,35
1-(4-(4-амино-7-метил-5-(4- (пиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)пиперидин-1- ил)проп-2-ен-1-он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (d, J = 4,8 Гц, 2H), 8,14 (s, 1H), 7,42 (d, J = 8,0 Гц, 2H), 7,35 – 7,21 (m, 3H), 6,76 (dd, J = 16,7, 10,3 Γц, 1H), 6,17 – 5,90 (m, 1H), 5,63 (d, J = 10,7 Γц, 1H), 4,49 (s, 1H), 4,10 (s, 1H), 3,79 (s, 3H), 2,65 (d, J = 19,5 Γц, 3H), 1,81 (s, 2H), 1,54 (s, 2H).	456
1-(3-(4-амино-7-метил-5-фенил-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 1,9 Γц, 1H), 7,53 – 7,36 (m, 5H), 6,46 (ddd, J = 40,1, 16,8, 10,3 Γц, 1H), 6,08 (ddd, J = 16,8, 4,7, 2,4 Γц, 1H), 5,63 (ddd, J = 12,9, 10,3, 2,5 Γц, 1H), 3,78 (d, J = 6,5 Γц, 4H), 3,66 (s, 1H), 3,50 (s, 2H), 3,25 (s, 1H), 2,31 – 1,71 (m, 2H).	348,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-амино-7-метил-5-(4-(пиридин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пиперидин-1-ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,23 (ddd, J = 4,9, 2,1, 0,8 Гц, 1H), 8,11 (s, 1H), 7,90 (ddd, J = 8,3, 7,2, 2,1 Гц, 1H), 7,42 – 7,34 (m, 2H), 7,25 – 7,15 (m, 3H), 7,07 (dt, J = 8,2, 0,9 Гц, 1H), 6,77 (dd, J = 16,7, 10,5 Γц, 1H), 6,05 (dd, J = 16,7, 2,5 Γц, 1H), 5,63 (dd, J = 10,5, 2,5 Γц, 2H), 4,48 (d, J = 12,7 Γц, 1H), 4,08 (d, J = 13,5 Γц, 1H), 3,78 (s, 3H), 3,23 – 3,12 (m, 1H), 3,06 (t, J = 12,8 Γц, 1H), 2,62 (t, J = 12,6 Γц, 1H), 1,81 (d, J = 12,9 Γц, 2H), 1,58 – 1,48 (m, 2H).	455,25
(R)-1-(3-(4-амино-7-метил-5-(4- (пиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 4,5 Гц, 2H), 8,15 (d, J = 1,1 Гц, 1H), 7,49 – 7,42 (m, 2H), 7,32 (dd, J = 7,6, 2,9 Гц, 3H), 6,51 (ddd, J = 34,7, 16,8, 10,3 Гц, 1H), 6,11 (ddd, J = 16,8, 5,7, 2,4 Гц, 1H), 5,65 (ddd, J = 12,4, 10,4, 2,5 Гц, 1H), 4,00 – 3,91 (m, 0H), 3,81 (d, J = 6,5 Гц, 3H), 3,78 – 3,45 (m, 3H), 3,34 – 3,24 (m, 0H), 2,22 (tt, J = 10,7, 5,9 Гц, 0H), 2,13 (d, J = 8,3 Гц, 1H), 2,04 (dt, J = 21,0, 11,0 Гц, 0H), 1,24 (s, 1H), 1,18 (t, J = 7,2 Гц, 0H), 0,89 (s, 1H).	442,25
(S)-1-(3-(4-амино-7-метил-5-(4-(пиримидин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 4,5 Гц, 2H), 8,13 (d, J = 1,8 Гц, 1H), 7,49 – 7,42 (m, 2H), 7,32 (dd, J = 6,5, 3,5 Гц, 3H), 6,51 (ddd, J = 34,2, 16,8, 10,3 Гц, 1H), 6,11 (ddd, J = 16,8, 5,7, 2,4 Гц, 1H), 5,87 (s, 2H), 5,64 (ddd, J = 12,4, 10,4, 2,5 Γц, 1H), 3,80 (d, J = 6,7 Γц, 3H), 3,78 – 3,61 (m, 1H), 3,54 (dtd, J = 24,3, 10,1, 9,6, 6,2 Γц, 1H), 3,34 – 3,24 (m, 0H), 2,28 – 1,94 (m, 2H).	442,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-	_	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	378,15
метоксифенил)-7-	0	8,10 (d, $J = 1.7 \Gamma \mu$, 1H), 7,30 (d, $J =$	
метил-7Н-		8,2 Гц, 2H), 7,03 (d, J = 8,3 Гц, 2H),	
пирроло[2,3-	NH ₂ Q	6,47 (ddd, $J = 40,7, 16,8, 10,3$ Гц,	
d]пиримидин-6-		1H), 6,09 (ddd, $J = 16,8, 5,6, 2,4 \Gamma \mu$,	
ил)пирролидин-1-	N N	1H), 5,63 (ddd, $J = 14,6$, 10,3, 2,5	
ил)проп-2-ен-1-он	N N	Γ ц, 2H), 3,81 (d, J = 1,1 Γ ц, 3H),	
	\	3,77 (d, $J = 6,0$ Гц, 4H), $3,66$ (q, $J =$	
		8,7,7,2 Гц, 1H), $3,52$ (d, $J = 9,7$ Гц,	
		2H), 2,35 – 1,70 (m, 2H).	
1-(3-(4-амино-7-		¹ H ЯМР (400 МГц, DMSO-d ₆) δ	456,3
этил-5-(4-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8,69 (t, $J = 5.0 \Gamma \mu$, 2H), 8,13 (d, $J =$	
(пиримидин-2-	N O	1,6 Гц, 1H), 7,50 – 7,43 (m, 2H),	
илокси)фенил)-7Н-		7,31 (dd, $J = 6,0, 3,6 \Gamma \mu, 3H$), 6,49	
пирроло[2,3-	// >	(ddd, $J = 30.9, 16.8, 10.3 \Gamma \mu, 1H$),	
d]пиримидин-6-	NH ₂	6,10 (ddd, $J = 16.8, 5.9, 2.5 \Gamma \text{u}, 1\text{H}$),	
ил)пирролидин-1-	N N	5,64 (td, $J = 10,0, 2,4 \Gamma \mu, 1H$), 4,31	
ил)проп-2-ен-1-он		$(t, J = 3,2 \Gamma \mu, 1H), 4,29 (s, 2H), 3,76$	
	N	(s, 1H), 3,66 (t, $J = 9.2 \Gamma \mu$, 1H), 3,61	
		-3.51 (m, 1H), 3.49 (t, $J = 9.8$ Γ u,	
		1H), 3,32 – 3,24 (m, 1H), 2,27 – 2,11	
		(m, 1H), 2,11 – 1,90 (m, 1H), 1,35	
		(td, $J = 7.0, 3.7 \Gamma \mu, 3H$).	
1-(3-(4-амино-7-(3-		¹ Η ЯМР (400 МГц, Хлороформ- <i>d</i>) δ	498
гидроксициклобутил	\(\sigma_1\)	$8,63$ (t, $J = 3,9$ $\Gamma II, 2H), 8,26$ (d, $J =$	
)-5-(4-(пиримидин-2-	N O	6,1 Гц, 1H), $7,39$ (q, $J = 8,9$, $8,3$ Гц,	
илокси)фенил)-7Н-		4H), 7,14 (t, $J = 4,8$ Гц, 1H), 6,60 –	
пирроло[2,3-		6,15 (m, 2H), 5,88 – 5,54 (m, 1H),	
d]пиримидин-6-	NH ₂ O	4,72 – 4,46 (m, 1H), 4,27 (dd, J =	
ил)пирролидин-1-		13,0, 6,6 Гц, 1H), 4,11 – 3,88 (m,	
ил)проп-2-ен-1-он		1H), 3,80 (d, $J = 8,2 \Gamma \mu$, 1H), 3,59	
	N N	(tt, $J = 19.8, 9.5 \Gamma \mu, 3H$), $3.37 - 2.99$	
		(m, 2H), 2,20 (q, $J = 10,3, 9,6 \Gamma \mu$,	
	\ \ \ \ \ \	2H), 2,05 (d, $J = 9,7$ Гц, 1H), 1,28 (s,	
	ОН	1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-(2- (4-метилпиперазин- 1-ил)этил)-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,62 (t, J = 4,8 Гц, 2H), 8,31 (d, J = 3,2 Гц, 1H), 7,44 (d, J = 8,2 Гц, 2H), 7,37 – 7,29 (m, 2H), 7,12 (q, J = 4,4 Гц, 1H), 6,43 – 6,33 (m, 1H), 6,28 (dd, J = 16,8, 9,8 Гц, 1H), 5,75 – 5,64 (m, 1H), 4,73 (s, 2H), 4,42 (dd, J = 14,1, 7,2 Гц, 2H), 3,97 – 3,72 (m, 1H), 3,68 – 3,32 (m, 4H), 2,96 – 2,78 (m, 2H), 2,71 (d, J = 24,7 Гц, 8H), 2,41 (d, J = 27,9 Гц, 3H), 2,32 – 2,19 (m, 2H), 1,28 (s, 1H).	554,30
1-(3-(4-амино-5-(4- (пиримидин-2- илокси)фенил)-7- (тетрагидро-2Н- пиран-4-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 4,5 Гц, 2H), 8,11 (s, 1H), 7,46 (d, J = 8,1 Гц, 2H), 7,31 (td, J = 6,1, 5,0, 2,0 Гц, 3H), 6,60 (dd, J = 16,8, 10,3 Гц, 1H), 6,13 (ddd, J = 16,7, 8,6, 2,4 Гц, 1H), 5,66 (ddd, J = 19,8, 10,2, 2,4 Гц, 1H), 4,43 (s, 1H), 4,00 (d, J = 11,1 Гц, 2H), 3,80 (s, 2H), 3,72 (s, 0H), 3,57 – 3,48 (m, 2H), 3,51 – 3,38 (m, 1H), 3,38 – 3,25 (m, 1H), 3,04 (d, J = 14,2 Γц, 2H), 2,21 (d, J = 12,7, 6,6 Γц, 0H), 1,93 (t, J = 10,5 Γц, 0H), 1,74 (d, J = 13,8 Γц, 2H).	512,4
1-(3-(4-амино-7-(2-морфолиноэтил)-5-(4-(пиримидин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N NN NN N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 5,0 Гц, 2H), 8,12 (s, 1H), 7,46 (d, J = 8,1 Γц, 2H), 7,32 (d, J = 7,8 Γц, 3H), 6,48 (ddd, J = 30,4, 16,8, 10,3 Γц, 1H), 6,16 – 6,05 (m, 1H), 5,88 – 5,31 (m, 2H), 4,35 (q, J = 5,9, 4,8 Γц, 2H), 4,13 – 3,84 (m, 1H), 3,68 (dd, J = 23,6, 9,2 Γц, 2H), 3,64 – 3,44 (m, 6H), 3,34 (s, 2H), 2,72 – 2,50 (m, 4H), 2,40 – 1,47 (m, 2H).	541,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-(2- (диметиламино)этил) -5-(4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,61 (t, J = 4,6 Гц, 2H), 8,32 (d, J = 2,1 Гц, 1H), 7,50 – 7,40 (m, 2H), 7,36 – 7,30 (m, 2H), 7,12 (td, J = 4,8, 2,4 Гц, 1H), 6,47 – 6,36 (m, 1H), 6,36 – 6,19 (m, 1H), 5,68 (ddd, J = 15,8, 8,6, 3,7 Гц, 1H), 4,70 (s, 2H), 4,41 (dp, J = 21,2, 6,9 Гц, 2H), 4,15 – 3,73 (m, 2H), 3,57 (dtd, J = 39,7, 19,1, 17,7, 8,6 Гц, 3H), 2,77 (t, J = 7,2 Гц, 2H), 2,37 (d, J = 10,1 Гц, 6H), 2,31 – 1,98 (m, 2H).	499,25
1-(3-(4-амино-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,86 (d, J = 2,0 Гц, 1H), 8,69 (d, J = 4,8 Гц, 2H), 8,10 (s, 1H), 7,47 (dd, J = 8,5, 3,5 Гц, 2H), 7,41 – 7,23 (m, 3H), 6,59 (ddd, J = 16,8, 10,3, 2,4 Γц, 1H), 6,15 (dd, J = 16,8, 2,5 Γц, 1H), 5,67 (ddd, J = 10,7, 8,7, 2,5 Γц, 2H), 4,01 (t, J = 8,9 Γц, 1H), 3,90 – 3,81 (m, 1H), 3,78 – 3,50 (m, 2H), 3,42 (dd, J = 10,7, 6,2 Γц, 1H), 2,42 – 2,03 (m, 2H).	428,25
геl-(R)-1-(3-(4- амино-7-этил-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N O O O O O O O O O O O O O O O O O O	¹ H 9MP (400 MΓμ, DMSO- d_6) δ 8,69 (t, J = 5,0 Γμ, 2H), 8,14 (d, J = 1,0 Γμ, 1H), 7,47 (d, J = 8,0 Γμ, 2H), 7,31 (dd, J = 6,3, 3,9 Γμ, 3H), 6,49 (ddd, J = 31,1, 16,8, 10,3 Γμ, 1H), 6,10 (ddd, J = 16,9, 5,9, 2,4 Γμ, 1H), 5,64 (td, J = 10,0, 2,5 Γμ, 1H), 4,30 (d, J = 6,8 Γμ, 2H), 3,85 (dd, J = 11,8, 8,0 Γμ, 1H), 3,61 – 3,51 (m, 1H), 3,49 (t, J = 9,7 Γμ, 1H), 3,27 (d, J = 11,4 Γμ, 1H), 2,18 (ddt, J = 26,2, 14,2, 7,0 Γμ, 1H), 1,99 – 1,90 (m, 1H), 1,35 (t, J = 7,2, 3,8 Γμ, 3H).	456,3

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
rel-(S)-1-(3-(4-амино- 7-этил-5-(4- (пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 5,1 Гц, 2H), 8,15 (s, 1H), 7,47 (d, J = 8,1 Гц, 2H), 7,31 (td, J = 5,7, 4,9, 2,0 Гц, 3H), 6,49 (ddd, J = 31,5, 16,8, 10,3 Гц, 1H), 6,10 (ddd, J = 16,8, 5,9, 2,4 Гц, 1H), 5,64 (td, J = 10,0, 2,5 Гц, 1H), 4,31 (d, J = 7,5 Гц, 2H), 3,66 (t, J = 9,1 Гц, 2H), 3,51 (dt, J = 19,2, 9,5 Гц, 1H), 2,29 – 2,13 (m, 1H), 2,07 (d, J = 9,5 Гц, 1H), 1,96 (q, J = 10,4 Гц, 1H), 1,35 (td, J = 7,1, 3,5 Гц, 3H).	456,3
(R)-1-(3-(4-амино-7- (2-морфолиноэтил)- 5-(4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 5,0 Гц, 2H), 8,12 (d, J = 1,9 Гц, 1H), 7,46 (d, J = 8,2 Гц, 2H), 7,31 (dq, J = 7,0, 2,5, 1,9 Гц, 3H), 6,48 (ddd, J = 31,7, 16,8, 10,3 Гц, 1H), 6,10 (ddd, J = 16,8, 5,5, 2,4 Гц, 1H), 5,64 (ddd, J = 10,3, 6,4, 2,4 Γц, 1H), 4,36 (s, 2H), 4,02 – 3,83 (m, 1H), 3,82 – 3,62 (m, 2H), 3,60 – 3,45 (m, 6H), 3,32 (s, 1H), 2,71 – 2,66 (m, 2H), 2,48 (s, 3H), 2,22 (ddt, J = 35,7, 12,7, 6,6 Γц, 1H), 1,99 (dq, J = 44,7, 10,4 Гц, 1H).	541,45
(S)-1-(3-(4-амино-7- (2-морфолиноэтил)- 5-(4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	Description of the second seco	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,69 (t, J = 5,0 Гц, 2H), 8,12 (d, J = 1,9 Гц, 1H), 7,46 (d, J = 8,0 Гц, 2H), 7,31 (dd, J = 6,1, 3,7 Гц, 3H), 6,48 (ddd, J = 31,6, 16,7, 10,2 Гц, 1H), 6,10 (ddd, J = 16,9, 5,6, 2,5 Гц, 1H), 5,64 (ddd, J = 10,0, 6,6, 2,4 Гц, 1H), 4,37 (d, J = 8,7 Гц, 2H), 4,03 – 3,84 (m, 1H), 3,83 – 3,63 (m, 2H), 3,60 – 3,45 (m, 6H), 3,30 (d, J = 13,6 Гц, 1H), 2,68 (q, J = 6,0, 5,5 Гц, 2H), 2,56 – 2,43 (m, 3H), 2,33 – 2,11 (m, 1H), 1,99 (dq, J = 44,8, 10,6 Гц, 1H).	541,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-1-(3-(4-амино-5- (4-(пиримидин-2- илокси)фенил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,86 (s, 1H), 8,69 (d, J = 4,8 Гц, 2H), 8,10 (s, 1H), 7,47 (dd, J = 8,5, 3,5 Γц, 2H), 7,39 – 7,19 (m, 3H), 6,59 (ddd, J = 16,8, 10,3, 2,5 Γц, 1H), 6,15 (dd, J = 16,7, 2,5 Γц, 1H), 5,97 – 5,53 (m, 2H), 4,14 – 3,39 (m, 5H), 2,44 – 1,99 (m, 2H).	428,15
(S)-1-(3-(4-амино-5- (4-(пиримидин-2- илокси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,87 (s, 1H), 8,69 (d, J = 4,8 Гц, 2H), 8,11 (s, 1H), 7,47 (dd, J = 8,5, 3,5 Γц, 2H), 7,43 – 7,24 (m, 3H), 6,59 (ddd, J = 16,8, 10,3, 2,5 Γц, 1H), 6,15 (dd, J = 16,8, 2,5 Γц, 1H), 5,67 (ddd, J = 10,7, 8,7, 2,5 Γц, 2H), 4,16 – 3,37 (m, 5H), 2,42 – 2,00 (m, 2H).	428,15
1-(3-(4-амино-5-(4- (циклопропилметокс и)фенил)-7-метил- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,10 (d, J = 1,7 Гц, 1H), 7,27 (d, J = 8,1 Гц, 2H), 7,01 (d, J = 8,1 Гц, 2H), 6,47 (ddd, J = 39,8, 16,8, 10,2 Гц, 1H), 6,09 (ddd, J = 16,8, 5,4, 2,5 Гц, 1H), 5,63 (ddd, J = 15,4, 10,3, 2,5 Γц, 1H), 3,89 (dd, J = 17,8, 8,0 Гц, 2H), 3,77 (d, J = 5,8 Гц, 4H), 3,77 – 3,58 (m, 1H), 3,55 – 3,44 (m, 2H), 3,26 (d, J = 10,8 Гц, 1H), 2,00 (dt, J = 45,8, 9,7 Гц, 2H), 1,25 (m, 1H), 0,64 – 0,55 (m, 2H), 0,35 (d, J = 4,7, 2,3 Гц, 2H).	418,20
1-(3-(5-(1-((1- ацетилпиперидин-4- ил)метил)-1Н- пиразол-4-ил)-4- амино-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,09 (d, J = 1,3 Γц, 1H), 7,88 - 7,82 (m, 1H), 7,51 (d, J = 6,1 Γц, 1H), 6,62 - 6,40 (m, 1H), 6,13 (dd, J = 16,7, 2,4 Γц, 1H), 5,71 - 5,61 (m, 2H), 4,34 (d, J = 13,1 Γц, 1H), 4,06 (d, J = 7,4 Γц, 2H), 3,93 (q, J = 9,4 Γц, 0H), 3,76 (d, J = 5,6 Γц, 3H), 3,68 (s, 2H), 3,53 (q, J = 8,1 Γц, 1H), 3,32 (s, 2H), 3,30 (s, 1H), 2,95 (t, J = 13,0 Γц, 1H), 2,47 (d, J = 12,2 Γц, 1H), 2,16 (s, 3H), 1,97 (t, 2,2 Γц, 3H), 1,45 (s, 2H), 1,16 - 0,98 (m, 2H).	477,50

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(1- (пиперидин-4- илметил)-1Н- пиразол-4-ил)-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,08 (d, J = 2,6 Гц, 1H), 7,89 – 7,81 (m, 1H), 7,49 (q, J = 3,8 Гц, 1H), 6,47 (ddd, J = 39,8, 16,8, 10,2 Гц, 1H), 6,09 (ddd, J = 16,8, 5,4, 2,5 Γц, 1H), 5,90 (bar, 1H), 5,62 (s, 1H), 4,00 (d, J = 7,6 Γц, 2H), 3,82 – 3,62 (m, 5H), 3,55 – 3,40 (m, 2H), 3,20 (m, 1H), 2,89 (d, J = 11,3 Γц, 1H), 2,79 (s, 1H), 2,36 (d, J = 16,4 Γц, 2H), 2,21 (s, 1H), 2,07 (s, 1H), 1,92 (s, 1H), 1,82 (s, 1H), 1,36 (s, 2H), 1,15 (s, 1H), 1,04 (d, J = 12,9 Γц, 1H).	435,20
1-(3-(4-амино-5-(4- (циклопропанкарбон ил)фенил)-7-метил- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	H ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) 8,17 - 8,10 (m, 3H), 7,55 (d, J = 7,9 Гц, 2H), 6,46 (ddd, J = 38,7, 16,7, 10,3 Гц, 1H), 6,08 (ddd, J = 16,7, 6,1, 2,5 Гц, 1H), 5,61 (ddd, J = 20,0, 10,2, 2,5 Гц, 2H), 4,03 - 3,74 (m, 5H), 3,69 (t, J = 9,0 Гц, 2H), 3,57 (t, J = 9,9 Гц, 1H), 3,00 - 2,92 (m, 1H), 2,28 - 1,84 (m, 2H), 1,07 (d, J = 6,3 Гц, 4H).	416,20
1-(3-(4-амино-5-(4- (2- метоксиэтокси)фени л)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,10 (d, J = 1,6 Гц, 1H), 7,29 (d, J = 8,1 Гц, 2H), 7,03 (d, J = 8,2 Гц, 2H), 6,51 - 6,42 (dd, J = 16,8, 10,3 Гц, 1H), 6,09 (ddd, J = 16,7, 5,3, 2,4 Γц, 1H), 5,63 (ddd, J = 14,2, 10,3, 2,5 Γц, 2H), 4,18 - 4,11 (m, 2H), 3,97 - 3,88 (m, 4H), 3,77 - 3,70 (d, J = 4,6 Γц, 5H), 3,70 - 3,58 (m, 3H), 3,57 - 3,41 (m, 1H), 2,19 (s, 1H), 2,00 (dt, J = 46,6, 9,6 Γц, 1H).	422,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4- циклопропоксифени л)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 8,10 (d, J = 1,7 Гц, 1H), 7,31 (d, J = 8,2 Гц, 2H), 7,14 (d, J = 8,2 Гц, 2H), 6,46 (ddd, J = 45,8, 16,7, 10,2 Γц, 1H), 6,09 (ddd, J = 16,8, 7,0, 2,5 Γц, 1H), 5,79 – 5,51 (m, 2H), 3,89 (dt, J = 6,1, 2,6 Γц, 1H), 3,82 – 3,53 (m, 4H), 3,32 (s, 3H), 3,27 – 3,15 (m, 1H), 2,34 – 1,81 (m, 2H), 1,24 (s, 1H), 0,80 (t, J = 5,7 Γц, 2H), 0,70 (d, J = 3,5 Γц, 2H).	404,20
1-(3-(4-амино-7-метил-5-(1- (тетрагидрофуран-3-ил)-1Н-пиразол-4-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	O NH ₂ N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,09 (d, J = 1,5 Гц, 1H), 7,88 (s, 1H), 7,52 (d, J = 7,5 Гц, 1H), 6,50 (ddd, J = 43,5, 16,8, 10,3 Гц, 1H), 6,11 (dt, J = 16,8, 2,6 Γц, 1H), 5,85 – 5,40 (bar, 2H), 5,64 (td, J = 10,8, 2,5 Γц, 1H), 5,05 (t, J = 5,3 Γц, 1H), 3,98 (ddd, J = 19,1, 10,3, 6,6 Γц, 3H), 3,95 – 3,78 (m, 2H), 3,76 (s, 3H), 3,76 – 3,62 (m, 1H), 3,62 – 3,46 (m, 2H), 3,38 (t, J = 10,1 Γц, 1H), 2,36 (dtd, J = 17,9, 9,2, 8,5, 3,1 Гц, 2H), 2,22 (s, 1H), 2,16 – 1,94 (m, 1H).	408,20
1-(3-{4-амино-5-[4- (циклопентилсульфа нил)фенил]-7-метил- 7Н-пирроло[2,3- d]пиримидин-6- ил}пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N=N O	¹ H ЯМР (400 МГц, DMSO- d_6) 8,11 (d, J = 1,8 Γц, 1H), 7,43 - 7,37 (m, 2H), 7,32 (d, J = 7,2 Γц, 2H), 6,52 - 6,39 (dd, J = 16,8, 10,3 Γц, 1H), 6,09 (ddd, J = 16,8, 6,4, 2,4 Γц, 1H), 5,62 (ddd, J = 18,5, 10,3, 2,5 Γц, 3H), 3,90 (t, J = 9,1 Γц, 1H), 3,81 - 3,73 (m, 5H), 3,66 (q, J = 10,1, 9,4 Γц, 1H), 3,59 - 3,52 (m, 1H), 3,48 - 3,24 (m, 1H), 2,10 - 1,88 (m, 4H), 1,76 - 1,52 (m, 6H).	448,19
N-(4-{4-амино-7-метил-6-[1-(проп-2-еноил)пирролидин-3-ил]-7Н-пирроло[2,3-d]пиримидин-5-ил}фенил)-N-метилацетамид		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) 8,12 (d, J=2,7 Γц, 1H), 7,42 (t, J=6,4 Γц, 4H), 6,45 (ddd, J=49,5, 16,8, 10,3 Γц, 1H), 6,08 (dd, J=16,8, 2,4 Γц, 1H), 5,62 (ddd, J=14,9, 10,3, 2,5 Γц, 3H), 4,17 - 3,40 (m, 7H), 3,22 (s, 3H), 1,95 (s, 3H), 1,85 (s, 2H).	419,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-{4-амино-7- метил-5-[1- (пиперидин-4-ил)- 1Н-пиразол-4-ил]-	H	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,14 - 8,06 (m, 1H), 7,87 (d, J = 3,0 Γц, 1H), 7,58 - 7,46 (m, 1H), 6,65 - 6,33 (m, 1H), 6,11 (d, J = 16,8 Γц,	421,25
7H-пирроло[2,3- d]пиримидин-6- ил}пирролидин-1- ил)проп-2-ен-1-он	NH ₂	1H), 5,83 - 5,49 (m, 2H), 4,50 (s, 1H), 4,21 (s, 1H), 3,87 (dt, $J = 18,6$, 8,5 Γ u, 1H), 3,75 (d, $J = 7,0$ Γ u, 5H), 3,64 (dt, $J = 17,7$, 9,1 Γ u, 1H), 3,04	
	N N O	(t, J = 8,0 Γ ц, 1H), 2,79 (d, J = 13,0 Γ ц, 2H), 2,38 - 2,06 (m, 3H), 1,97 (d, J = 11,8 Γ ц, 2H), 1,83 (d, J = 12,1 Γ ц, 2H).	
1-(3-{4-амино-5-[1- (азетидин-3-ил)-1Н- пиразол-4-ил]-7- метил-7Н- пирроло[2,3- d]пиримидин-6-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹ H ЯМР (400 МГц, DMSO- d_6) 9,10 - 8,95 (s, 2H), 8,45 - 8,39 (m, 1H), 7,99 (d, J = 2,0 Γц, 1H), 7,73 (d, J = 10,1 Γц, 1H), 6,53 - 6,41 (dd, J = 16,8, 10,3 Γц, 1H), 6,11 (dd, J = 16,8, 2,4 Γц, 1H), 5,66 (ddd, J =	3293,25
ил}пирролидин-1- ил)проп-2-ен-1-он; соль трифторуксусной кислоты	N N N O	12,8, 10,2, 2,5 Γ u, 1H), 5,41 (td, J = 7,5, 3,7 Γ u, 1H), 4,41(m, 4H), 3,86 (d, J = 6,2 Γ u, 4H), 3,81 - 3,58 (m, 2H), 3,58 - 3,33 (dt, J = 12,0, 7,7 Γ u, 2H), 2,31 - 1,93 (m, 2H), 1,08 (s, 1H).	
1-(3-(4-амино-5-(4- (циклопентилокси)ф енил)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 8,10 (d, J = 1,6 Гц, 1H), 7,26 (d, J = 8,3 Гц, 2H), 6,97 (d, J = 8,1 Гц, 2H), 6,45 (ddd, J = 49,5, 16,8, 10,3 Гц, 1H), 6,08 (ddd, J = 16,8, 7,7, 2,5 Гц, 1H), 5,62 (ddd, J = 19,2, 10,3, 2,5 Гц, 1H), 4,86 (q, J = 4,6, 3,2 Гц, 1H),	432,35
	0	$3,95 - 3,73$ (m, 4H), $3,65$ (d, $J = 9,8$ Γ u, 1H), $3,54 - 3,45$ (m, 1H), $3,32$ (s, 4H), $2,24 - 1,88$ (m, 4H), $1,76$ (d, $J = 12,6$ Γ u, 4H), $1,60$ (d, $J = 9,0$ Γ u, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4- (3,3- дифторпирролидин- 1-карбонил)фенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	F F N O N N N N O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,14 (d, J = 2,0 Гц, 1H), 7,68 (s, 2H), 7,55 (d, J = 7,9 Гц, 2H), 6,53 (t, J = 13,7 Гц, 1H), 6,25 – 6,16 (m, 1H), 5,70 (dd, J = 17,9, 10,5 Гц, 1H), 4,04 (s, 2H), 4,02 – 3,91 (m, 6H), 3,88 (d, J = 4,8 Гц, 4H), 2,50 (s, 2H), 2,28 (s, 1H), 2,23 – 2,04 (m, 1H).	481,35
(R)-1-(3-(4-амино-5- (4- (метоксиметил)фени л)-7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	H ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (d, J = 1,9 Гц, 2H), 7,39 (q, J = 7,8 Гц, 8H), 6,51 (dd, J = 16,8, 10,3 Γц, 1H), 6,40 (dd, J = 16,8, 10,3 Γц, 1H), 6,08 (ddd, J = 16,8, 5,7, 2,5 Γц, 2H), 5,62 (ddd, J = 15,9, 10,3, 2,5 Γц, 2H), 4,48 (s, 4H), 3,92 (t, J = 9,1 Γц, 1H), 3,78 (s, 4H), 3,75 – 3,64 (m, 1H), 3,67 – 3,57 (m, 1H), 3,53 (s, 1H), 3,51 (s, 1H), 3,49 – 3,41 (m, 1H), 3,36 – 3,25 (m, 9H), 3,28 – 3,20 (m, 1H), 2,20 (dt, J = 12,5, 6,7, 1H), 2,15 – 1,89 (m, 2H).	392,10
1-(3-{4-амино-7-метил-5-[1-(1-метилпиперидин-4-ил)-1Н-пиразол-4-ил]-7Н-пирроло[2,3-d]пиримидин-6-ил} пирролидин-1-ил)проп-2-ен-1-он	NH ₂ NH ₂ N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,11 (s, 1H), 7,84 (d, J = 3,3 Гц, 1H), 7,57 (d, J = 6,3 Гц, 1H), 6,56 - 6,43 (ddd, J = 16,7, 10,4 Гц, 1H), 6,30 - 6,19 (m, 1H), 5,78 - 5,67 (m, 1H), 4,26 (s, 1H), 3,99 - 3,86 (m, 1H), 3,84 (d, J = 2,7 Гц, 4H), 3,75 (d, J = 7,5 Гц, 1H), 3,69 - 3,57 (m, 2H), 3,02 (d, J = 11,4 Гц, 2H), 2,36 (s, 3H), 2,32 (s, 3H), 2,34 - 2,25 (m, 3H), 2,12 (d, J = 12,1 Гц, 2H), 2,05 (s, 1H).	435,20
1-(3-{4-амино-7-метил-5-[1-(2,2,2-трифторэтил)-1Н-пиразол-4-ил]-7Н-пирроло[2,3-d]пиримидин-6-ил}пирролидин-1-ил)проп-2-ен-1-он	F F F N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (s, 1H), 7,99 (s, 1H), 7,67 (d, J = 4,6 Гц, 1H), 6,62 - 6,36 (m, 1H), 6,12 (ddd, J = 16,7, 4,7, 2,4 Γц, 1H), 5,76 (s, 1), 0 (d, J = 44,9 Γц, 1H), 5,17 (q, J = 9,0 Γц, 2H), 3,93 (t, J = 9,0 Γц, 1H), 3,87 - 3,74 (m, 4H), 3,68 (t, J = 9,1 Γц, 1H), 3,61 - 3,45 (m, 3H), 2,29 – 1,89 (m, 2H).	420,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7- метил-5-(4- (морфолин-4- карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (d, J = 3,0 Гц, 1H), 7,50 (d, J = 7,8 Гц, 2H), 7,46 (d, J = 4,8 Гц, 2H), 6,51 - 6,42 (dd, J = 16,7, 10,3 Γц, 1H), 6,07 (ddd, J = 16,9, 7,1, 2,4 Γц, 1H), 5,68 - 5,57 (m, 3H), 3,91 (t, J = 9,2 Γц, 4H), 3,79 - 3,31 (d, J = 16,0 Γц, 11H), 3,27 (s, 1H), 2,23 (s, 1H), 2,10 (s, 1H).	461,20
1-(3-(4-амино-5-(4- (гидроксиметил)цик логекс-1-ен-1-ил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	HO NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,06 (d, J = 1,3 Γц, 1H), 6,62 (dd, J = 16,8, 10,3 Γц, 1H), 6,01 (s, 3H), 5,76 (s, 2H), 4,52 (t, J = 4,9 Γц, 1H), 4,01 (s, 2H), 3,69 (d, J = 6,0 Γц, 5H), 3,36 (d, J = 5,7 Γц, 2H), 2,21 (s, 5H), 1,87 (s, 3H), 1,40 (s, 1H).	382,40
1-(3-(4-амино-7-метил-5-(1-(пиридин-3-ил)-1Н-пиразол-4-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 9,15 (t, $J = 2.5$ Гц, 1H), 8,69 (d, $J = 11.2$ Гц, 1H), 8,54 (dt, $J = 4.6$, 1,5 Гц, 1H), 8,27 (d, $J = 7.8$ Гц, 1H), 8,12 (s, 1H), 7,86 (d, $J = 4.0$ Гц, 1H), 7,57 (dd, $J = 8.4$, 4,8 Гц, 1H), 6,48 (ddd, $J = 29.3$, 16,7, 10,3 Гц, 1H), 6,01 (ddd, $J = 16.7$, 6,1, 2,5 Гц, 1H), 5,87 (s, 1H), 5,56 (ddd, $J = 16.3$, 10,3, 2,5 Гц, 1H), 3,94 (t, $J = 9.0$ Гц, 2H), 3,88 - 3,63 (m, 5H), 3,52 (ddt, $J = 29.1$, 19,5, 8,3 Гц, 1H), 2,25 (s, 1H), 2,12 (dt, $J = 36.2$, 10,9 Гц, 1H).	415,40
1-[3-(4-амино-5-{4- [(3,3- диметилпирролидин- 1-ил)метил]фенил}- 7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил]проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) 8,11 (d, J = 2,0 Гц, 1H), 7,36 (ddd, J = 26,6, 8,1, 2,7 Гц, 4H), 6,51 - 6,37 (dd, J = 16,8, 10,3 Гц, 1H), 6,08 (ddd, J = 16,8, 6,5, 2,5 Гц, 1H), 5,64 - 5,58 (dd, J = 10,3, 2,5 Гц, 2H), 3,94 - 3,85 (m, 1H), 3,81 - 3,69 (m, 4H), 3,69 - 3,62 (s, 3H), 3,58 - 3,21 (m, 3H), 3,18 (s, 1H), 2,58 (td, J = 7,0, 3,2 Гц, 2H), 2,29 (d, J = 2,2 Гц, 2H), 2,21 - 1,88 (m, 2H), 1,54 (t, J = 7,0 Гц, 2H), 1,24 (s, 1H), 1,06 (d, J = 1,4 Гц, 5H).	459,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-		¹Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	449,25
(азетидин-1-		8,13 (d, $J = 2,6$ Гц, 1H), $7,56$ (q, $J =$	
карбонил)-3-	F, F	7,1 Γ ц, 1H), 7,30 (ddd, J = 17,0,	
фторфенил)-7-метил-		10,0, 1,7 Гц, 2H), 6,49 (ddd, $J =$	
7Н-пирроло[2,3-	NH ₂	29,8, 16,8, 10,4 Γ u, 1H), 6,09 (dt, J =	
d]пиримидин-6-		16,8, 3,0 Γ u, 1H), 5,64 (td, J = 10,5,	
ил)пирролидин-1-	N N	2,4 Γц, 2H), 4,11 – 4,03 (m, 4H),	
ил)проп-2-ен-1-он	N N N	3,94 (t, $J = 9,3$ Гц, 1H), $3,82 - 3,66$	
		(m, 5H), 3,62 – 3,47 (m, 1H), 2,27	
	_	$(p, J = 7.6 \Gamma \mu, 2H), 2.07 (dd, J =$	
		19,2, 9,6 Гц, 1H), 2,03 – 1,91 (m,	
		1H).	
1-(3-(4-амино-5-(4-	- =	¹H ЯМР (400 МГц, DMSO-d ₆) δ	452,15
бензоилфенил)-7-		8,14 (d, $J = 2,4$ Гц, 1H), $7,83$ (ddd, J	-
метил-7Н-		$= 12.3, 8.9, 6.7 \Gamma \mu, 4H), 7.71 (t, J =$	
пирроло[2,3-		7,4 Гц, 1H), 7,64 – 7,53 (m, 4H),	
d]пиримидин-6-	NH ₂ Q	$6,47 \text{ (ddd, } J = 38,4, 16,7, 10,3 Гц,}$	
ил)пирролидин-1-		1H), 6,07 (dt, $J = 16,8, 2,8 \Gamma \mu$, 1H),	
ил)проп-2-ен-1-он		5,90 - 5,33 (bar, 1H), $5,61$ (ddd, $J =$	
	N N	16,5, 10,3, 2,5 Гц, 1Н), 4,00 – 3,68	
	\	(m, 6H), 3,65 – 3,54 (m, 1H), 3,54 –	
		3,37 (m, 1H), 2,24 (s, 1H), 2,18 –	
		1,97 (m, 1H).	
1-(3-(4-амино-7-	s ^	¹ Н ЯМР (400 МГц, DMSO-d ₆) 8,10	453,20
метил-5-(5-	$\langle s \rangle \langle N \rangle$	(d, $J = 1.7 \Gamma \mu$, 1H), 7,44 (dd, $J = 4.5$,	,
(морфолинометил)ти	NH ₂	$1,5 \Gamma$ ц, 1H), $7,00 (d, J = 5,3 \Gamma$ ц, 1H),	
офен-3-ил)-7Н-	N N	6,48 (ddd, $J = 50.3, 16.8, 10.3 \Gamma \mu$,	
пирроло[2,3-		1H), 6,10 (dd, $J = 16,7, 2,5 \Gamma \Pi, 2H$),	
d]пиримидин-6-	N N V	5,80 - 5,50 (m, 2H), $3,92$ (t, $J = 9,0$	
ил)пирролидин-1-		Гц, 1H), 3,76 (d, J = 5,7 Гц, 4H),	
ил)проп-2-ен-1-он		3,71 (d, J = 4,0 Гц, 3H), 3,58 (t, J =	
, , ,		4,6 Гц, 4H), 3,51 (d, J = 10,1 Гц,	
		1H), 3,32 (s, 1H), 2,41 (d, J = 5,8 Гц,	
		4H), 2,32 – 2,11 (m, 1H), 2,10 – 1,89	
		(m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(1-(пиридин-2-ил)-1Н-пиразол-4-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ NH ₂ NO	¹ H ЯМР (400 МГц, DMSO- d_6) 8,65 (d, $J = 4,4$ Гц, 1H), 8,49 (d, $J = 4,9$ Гц, 1H), 8,12 (d, $J = 1,6$ Гц, 1H), 8,07 - 7,95 (m, 2H), 7,88 (d, $J = 3,3$ Гц, 1H), 7,38 (td, $J = 5,5$, 4,8, 2,9 Гц, 1H), 6,49 (td, $J = 17,4$, 10,2 Гц, 1H), 6,04 (dt, $J = 16,7$, 2,2 Гц, 1H), 5,57 (ddd, $J = 15,5$, 10,2, 2,5 Гц, 1H), 3,97 (s, 1H), 4,07 - 3,72 (m, 5H), 3,72 - 3,37 (m, 2H), 2,20 - 2,02 (m, 2H).	415,40
1-(3-(4-амино-5-(1-изопропил-1Н-пиразол-4-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	H ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,09 (s, 1H), 7,87 (s, 1H), 7,48 (d, J = 6,5 Гц, 1H), 6,50 (ddd, J = 46,6, 16,8, 10,3 Гц, 1H), 6,11 (ddd, J = 16,8, 4,3, 2,5 Гц, 1H), 5,64 (ddd, J = 12,5, 10,2, 2,5 Гц, 1H), 4,53 (р, J = 6,6 Гц, 1H), 3,89 (t, J = 9,1 Гц, 1H), 3,82 - 3,66 (m, 5H), 3,56 (tq, J = 17,0, 8,9 Гц, 2H), 3,37 (d, J = 10,8 Гц, 0H), 2,26 - 1,93 (m, 2H), 1,44 (d, J = 6,7 Гц, 6H).	380,25
1-(3-(4-амино-7-метил-5-(1-(о-толил)-1Н-пиразол-4-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,24 – 8,01 (m, 2H), 7,77 (d, J = 8,3 Γц, 1H), 7,54 – 7,27 (m, 3H), 6,51 (ddd, J = 31,5, 16,7, 10,3 Γц, 1H), 6,10 (dt, J = 16,8, 2,2 Γц, 1H), 5,63 (ddd, J = 10,3, 5,7, 2,5 Γц, 2H), 4,00 – 3,67 (m, 4H), 3,65 – 3,39 (m, 3H), 3,33 – 3,17 (m, 2H), 2,34 – 2,00 (m, 5H).	428,35
1-{3-[4-амино-5-(4- {[(3R)-3- гидроксипирролидин -1-ил]метил}фенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил]пирролидин-1- ил} проп-2-ен-1-он	OH NH ₂ N=N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) 8,11 (d, J=2,0 Гц, 1H), 7,39 (d, J=7,9 Гц, 4H), 6,38 (dd, J=16,8, 10,0 Гц, 1H), 6,08 (ddd, J=16,7, 7,3, 2,5 Гц, 1H), 5,68 - 5,56 (m, 3H), 4,69 (s, 1H), 4,21 (s, 1H), 3,90 - 3,42 (t, J=9,0 Гц, 9H), 3,32 - 3,23 (m, 1H), 2,72 (s, 1H), 2,58 (s, 1H), 2,44 (s, 1H), 2,06 - 1,89 (m, 3H), 1,56 (s, 1H).	447,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,13 (d, $J = 2,6$ Гц, 1H), 7,60 (t, $J = 7,3$ Гц, 2H), 7,44 (dd, $J = 8,3$, 3,3 Гц, 2H), 6,46 (ddd, $J = 40,8$, 16,8, 10,3 Гц, 1H), 6,07 (dt, $J = 16,8$, 2,2 Гц, 1H), 5,62 (ddd, $J = 14,8$, 10,3, 2,5 Гц, 1H), 3,92 (t, $J = 9,2$ Гц, 1H), 3,79 (d, $J = 7,2$ Гц, 4H), 3,76 - 3,64 (m, 2H), 3,60 - 3,47 (m, 2H), 3,48 (s, 5H), 3,45 (s, 0H), 2,21 (s, 1H), 2,08 (dd, $J = 19,3$, 9,4 Гц, 1H), 2,01 - 1,80 (m, 4H).	445,25
4-{4-амино-7-метил- 6-[1-(проп-2- еноил)пирролидин- 3-ил]-7Н- пирроло[2,3- d]пиримидин-5-ил}- N-(пиридин-2- ил)бензамид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,81 (s, 1H), 8,41 (d, J = 4,9 Γц, 1H), 8,21 (d, J = 8,4 Γц, 1H), 8,17 - 8,08 (m, 3H), 7,91 -7,82 (m, 1H), 7,53 (d, J = 7,8 Γц, 2H), 7,22 -7,15 (m, 1H), 6,59 -6,40 (m, 1H), 6,15 - 6,05 (m, 1H), 5,63 (t, J = 11,4 Γц, 2H), 3,81 (d, J = 7,0 Γц, 6H), 3,57 (t, J = 9,6 Γц, 2H), 2,21 (s, 1H), 2,10 (d, J = 12,5 Γц, 1H).	468,20
1-(3-(4-амино-5-(1- циклопентил-1Н- пиразол-4-ил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,09 (d, J = 1,4 Гц, 1H), 7,87 (s, 1H), 7,48 (d, J = 6,2 Гц, 1H), 6,50 (ddd, J = 46,7, 16,8, 10,3 Гц, 1H), 6,11 (ddd, J = 16,8, 4,0, 2,5 Γц, 1H), 5,64 (ddd, J = 12,5, 10,2, 2,5 Γц, 1H), 4,73 (p, $J= 6,7 Γц, 2H), 3,93 – 3,46 (m, 8H),2,28 – 1,50 (m, 10H).$	406,30
1-[3-(4-амино-7-метил-5-{4-[4-(пропан-2-ил)пиперазин-1-ил]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил]проп-2-ен-1-он	H ₂ N N N O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,11 (s, 1H), 7,29 (d, J = 8,6 Гц, 2H), 7,08 (s, 2H), 6,36 - 6,23 (m, 1H), 6,23 - 6,14 (m, 1H), 5,76 - 5,61 (m, 1H), 3,84 (s, 5H), 3,68 (s, 2H), 3,61 (s, 2H), 3,59 - 3,39 (m, 2H), 3,32 (d, J = 1,7 Гц, 1H), 2,80 (s, 5H), 2,34 - 1,97 (m, 2H), 1,18 (d, J = 6,5 Гц, 6H).	474,45

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4- (азетидин-3- илокси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	H ₂ N N O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,12 (d, J = 7,3 Гц, 1H), 7,57 (dd, J = 8,1, 2,3 Гц, 1H), 7,50 (dd, J = 8,2, 2,4 Гц, 1H), 7,27 – 7,20 (m, 1H), 7,04 (ddd, J = 8,0, 5,5, 2,6 Гц, 1H), 4,99 (dt, J = 21,0, 6,5 Гц, 1H), 4,12 – 4,00 (m, 1H), 3,84 (d, J = 1,1 Гц, 3H), 3,68 (dd, J = 9,6, 6,4 Гц, 1H), 3,64 – 3,57 (m, 1H), 3,51 (t, J = 6,9 Гц, 3H), 3,43 (q, J = 7,2 Гц, 2H), 3,24 – 3,05 (m, 1H), 2,56 – 2,38 (m, 2H), 2,17 – 1,84 (m, 3H).	419,30
1-(3-{4-амино-7-метил-5-[4-(пирролидин-1-ил)фенил]-7Н-пирроло[2,3-d]пиримидин-6-ил} пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,21 (s, 1H), 8,11 (d, J = 1,4 Гц, 1H), 7,23 - 7,14 (m, 2H), 6,71 - 6,63 (m, 2H), 6,52 (dd, J = 16,8, 10,4 Гц, 1H), 6,36 - 6,10 (m, 1H), 5,66 (ddd, J = 37,9, 10,4, 2,1 Гц, 1H), 3,85 (s, 5H), 3,82 - 3,62 (m, 2H), 3,66 - 3,45 (dd, J = 12,3, 7,8 Гц, 4H), 3,36 (s, 1H), 2,28 (s, 2H), 2,07 (td, J = 7,5, 6,3, 4,2 Гц, 5H).	417,20
(R)-1-(3-(4-амино-5- (1-(2- (диметиламино)этил) -1H-пиразол-4-ил)-7- метил-7H- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,08 (d, J = 1,6 Гц, 1H), 7,82 (s, 1H), 7,48 (d, J = 8,2 Гц, 1H), 6,52 (ddd, J = 35,3, 16,7, 10,3 Гц, 1H), 6,12 (dt, J = 16,8, 2,1 Гц, 1H), 5,65 (td, J = 10,2, 2,5 Γц, 1H), 4,23 (t, J = 6,1 Γц, 2H), 3,93 (t, J = 8,9 Γц, 1H), 3,84 – 3,61 (m, 5H), 3,61 – 3,45 (m, 1H), 3,40 – 3,29 (m, 0H), 2,61 (t, J = 6,2 Γц, 2H), 2,14 (d, J = 1,7 Γц, 8H).	409,25
1-(3-(5-(1-ацетил-3,3-диметил-1,2,3,6-тетрагидропиридин-4-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,08 (s, 1H), 7,35 – 7,26 (m, 1H), 6,61 (ddd, J = 15,4, 7,8, 3,3 Гц, 1H), 6,44 (d, J = 12,0 Гц, 1H), 6,12 (dt, J = 15,7, 3,6 Гц, 1H), 4,23 – 4,07 (dd, J = 11,4, 6,4 Гц, 3H), 3,92 – 3,79 (m, 1H), 3,78 (d, J = 3,7 Гц, 4H), 3,73 (s, 1H), 3,71 – 3,60 (m, 1H), 3,44 (dd, J = 19,4, 4,4 Гц, 2H), 2,59 – 2,40 (dd, J = 12,0, 6,0 Гц, 1H), 2,28 – 2,06 (m, 1H), 2,16 (d, J = 6,0, 4,1 Гц, 3H), 1,16 (d, J = 19,4, 4,7 Гц, 6H).	423,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(6- циклопропоксипири дин-3-ил)-7-метил- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 8,20 (dd, J = 5,9, 2,4 Гц, 1H), 8,13 (s, 1H), 7,71 (dt, J = 8,4, 2,3 Γц, 1H), 6,93 (d, J = 8,4 Γц, 1H), 6,47 (ddd, J = 38,4, 16,7, 10,2 Γц, 1H), 6,09 (dt, J = 16,8, 2,8 Γц, 1H), 5,63 (ddd, J = 13,1, 10,2, 2,5 Γц, 3H), 4,25 (td, J = 6,1, 3,4 Γц, 1H), 3,81 – 3,59 (m, 5H),	405,25
1-(3-(4-амино-7-метил-5-(4-(пирролидин-1-ил)-3-(трифторметил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	F F N N N O	3,51 (m, 2H), 3,26 (s, 1H), 2,28 – 1,59 (m, 2H), 0,90 – 0,57 (m, 4H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 1,5 Гц, 1H), 7,58 – 7,30 (m, 2H), 7,11 (d, J = 8,6 Гц, 1H), 6,73 – 6,25 (m, 1H), 6,08 (ddd, J = 16,8, 9,1, 2,5 Гц, 1H), 5,62 (ddd, J = 20,0, 10,3, 2,3 Гц, 3H), 3,77 (d, J = 5,8 Гц, 4H), 3,65 (q, J = 8,8 Гц, 1H), 3,51 (dt, J = 21,3, 9,3 Гц, 1H), 3,36 (s, 4H), 2,39 – 1,96 (m, 2H), 1,92 (d, J = 6,0 Гц, 5H).	485,35
1-(4-(6-(1- акрилоилпирролидин -3-ил)-4-амино-7- метил-7Н- пирроло[2,3- d]пиримидин-5- ил)фенил)-3- циклопропилмочеви на	ONH ONH ON N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (s, 1H), 8,10 (d, J = 1,7 Гц, 1H), 7,57 – 7,44 (m, 2H), 7,23 (d, J = 8,2 Γц, 2H), 6,59 – 6,37 (m, 2H), 6,09 (ddd, J = 16,8, 4,2, 2,5 Γц, 1H), 5,63 (ddd, J = 13,1, 10,3, 2,5 Γц, 1H), 3,96 – 3,38 (m, 8H), 2,56 (dt, J = 7,1, 3,5 Γц, 1H), 2,31 – 1,94 (m, 2H), 0,65 (td, J = 6,9, 4,7 Γц, 2H), 0,47 – 0,38 (m, 2H).	446,35
5-(4-(6-(1-акрилоилпирролидин -3-ил)-4-амино-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенил)пирролиди н-2-он	O HN NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (t, J = 2,9 Γ ц, 2H), 7,39 (d, J = 2,5 Γ ц, 4H), 6,62 – 6,28 (m, 1H), 6,14 – 6,04 (m, 1H), 5,63 (ddd, J = 14,3, 10,2, 2,4 Γ ц, 2H), 4,75 (t, J = 7,0 Γ ц, 1H), 3,91 (t, J = 9,2 Γ ц, 1H), 3,79 (d, J = 6,8 Γ ц, 3H), 3,74 (s, 2H), 3,66 (d, J = 9,8 Γ ц, 1H), 3,54 (s, 1H), 2,30 – 2,20 (m, 2H), 2,20 (s, 1H), 2,09 (d, J = 8,3 Γ ц, 1H), 2,03 – 1,69 (m, 3H).	431,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(6-(1- акрилоилпирролидин -3-ил)-4-амино-7- метил-7Н- пирроло[2,3- d]пиримидин-5-ил)- 1-бензилпиридин- 2(1H)-он		¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,16 (d, J = 1,0 Гц, 1H), 7,78 (dd, J = 11,1, 6,8 Гц, 1H), 7,45 – 7,35 (m, 4H), 7,39 – 7,29 (m, 1H), 6,65 – 6,42 (m, 3H), 6,31 – 6,20 (m, 1H), 5,72 (ddd, J = 22,8, 10,4, 2,0 Гц, 1H), 5,25 (s, 2H), 4,08 – 3,43 (m, 8H), 2,44 – 2,18 (m, 2H).	455,35
1-(4-(6-(1- акрилоилпирролидин -3-ил)-4-амино-7- метил-7Н- пирроло[2,3- d]пиримидин-5- ил)фенил)имидазоли дин-2-он	NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 1,8 Гц, 1H), 7,66 (d, J = 8,1 Гц, 2H), 7,31 (d, J = 8,2 Гц, 2H), 7,02 (s, 1H), 6,48 (ddd, J = 33,0, 16,7, 10,3 Γц, 1H), 6,14 – 6,04 (m, 1H), 5,68 – 5,57 (m, 2H), 3,92 (dt, J = 15,5, 8,6 Γц, 2H), 3,78 (d, J = 6,3 Γц, 4H), 3,50 (s, 3H), 3,43 (t, J = 8,1 Γц, 2H), 3,27 (s, 1H), 2,20 (d, J = 12,5 Γц, 1H), 2,06 (s, 1H).	432,25
1-(3-(4-амино-7-метил-5-(4-(пирролидин-1-илметил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 2,1 Γ ц, 1H), 7,36 (ddd, J = 28,1, 7,8, 4,0 Γ ц, 4H), 6,66 – 6,22 (m, 1H), 6,08 (ddd, J = 16,9, 6,5, 2,4 Γ ц, 1H), 5,61 (ddd, J = 20,5, 10,3, 2,5 Γ ц, 1H), 3,81 – 3,71 (m, 4H), 3,68 – 3,63 (m, 1H), 3,63 (s, 2H), 3,59 – 3,42 (m, 1H), 3,26 (dd, J = 19,8, 9,4 Γ ц, 1H), 2,46 (s, 5H), 2,21 (s, 1H), 2,16 – 1,97 (m, 1H), 1,72 (d, J = 6,0 Γ ц, 4H).	431,50
(R)-1-(3-(4-амино-5- (4- (бензилокси)фенил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	H ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 1,6 Γ ц, 1H), 7,54 – 7,28 (m, 7H), 7,11 (d, J = 8,0 Γ ц, 2H), 6,52 (dd, J = 16,8, 10,3 Γ ц, 1H), 6,10 (ddd, J = 16,8, 5,7, 2,4 Γ ц, 1H), 5,63 (ddd, J = 15,0, 10,3, 2,5 Γ ц, 1H), 5,14 (s, 2H), 3,97 – 3,88 (m, 0H), 3,77 (d, J = 5,9 Γ ц, 4H), 3,70 – 3,58 (m, 1H), 3,57 – 3,40 (m, 1H), 3,27 (s, 1H), 2,26 – 1,87 (m, 2H).	454,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
2-(4-(6-(1-	-	¹ Η ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	433,25
акрилоилпирролидин	N	8,11 (d, $J = 2,0$ Гц, 1H), $7,32$ (d, $J =$	
-3-ил)-4-амино-7-		2,5 Гц, 4H), $6,45$ (dd, $J = 41,8, 10,3$	
метил-7Н-		Γ ц, 1H), 6,09 (ddd, J = 16,7, 6,1, 2,4	
пирроло[2,3-	📗	Γ ц, 1H), 5,63 (ddd, J = 13,5, 10,3,	
d]пиримидин-5-	NH ₂	2,5 Гц, 1H), $3,92$ (t, $J = 9,2$ Гц, 1H),	
ил)фенил)-N,N-	N N	3,81 – 3,74 (m, 6H), 3,72 – 3,63 (m,	
диметилацетамид	N N N	1H), 3,51 (dd, $J = 20,4$, 10,0 Γ u, 1H),	
		3,03 (s, 3H), 2,99 (s, 1H), 2,86 (s,	
	0	3H), 2,20 (d, J = 7,3 Γ ц, 1H), 2,09 (t,	
		$J = 10,3 \Gamma$ ц, 1H).	
1-(3-(4-амино-7-	F. F	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	447,10
метил-5-(6-(2,2,2-	× <u>-</u>	8,20 (t, J = 2,9 Гц, 1H), 8,12 (d, J =	
трифторэтокси)пири		1,5 Гц, 1H), 7,80 (dd, J = 8,3, 2,9 Гц,	
дин-3-ил)-7Н-	0	1H), 7,06 (d, J = 8,4 Γ ц, 1H), 6,51 –	
пирроло[2,3-	N N	$6,41$ (dd, $J = 16,7, 10,2$ Γ ц, 1H), $6,09$	
d]пиримидин-6-	NH ₂	(dt, $J = 16.9, 3.1 \Gamma \mu, 1H$), $5.80 - 5.50$	
ил)пирролидин-1-		(bar, 2H), 5,63 (ddd, $J = 15,3, 10,2,$	
ил)проп-2-ен-1-он	N N	2,5 Гц, 1H), $5,01$ (q, $J = 9,1$ Гц, 2H),	
	N N N	3,93 (t, J = 9,1 Γ ц, 1 H), 3,79 (d, J =	
	"	6,8 Гц, 4H), 3,67 (s, 1H), 3,56 – 3,43	
	-	(m, 1H), 3,31 – 3,22 (m, 1H), 2,25 –	
		1,89 (m, 2H).	
1-(4-(6-(1-	\	¹ Η ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	446,30
акрилоилпирролидин	,N¬	8,11 (d, $J = 1,8$ Гц, 1H), $7,68$ (d, $J =$	
-3-ил)-4-амино-7-	0=_N_	8,3 Гц, 2H), 7,32 (d, J = 8,1 Гц, 2H),	
метил-7Н-	l j	6,48 (ddd, J = 33,2, 16,8, 10,3 Γ ц,	
пирроло[2,3-		1H), 6,09 (ddd, $J = 16,8, 5,4, 2,5 \Gamma \mu$,	
d]пиримидин-5-	H ₂ N	1H), 5,62 (ddd, $J = 14,2, 10,3, 2,5$	
ил)фенил)-3-		Γ ц, 1H), 3,94 (t, J = 9,0 Γ ц, 1H),	
метилимидазолидин-	N N	3,80 (dd, J = 21,6, 7,2 Гц, 5H), 3,65	
2-он	N N N	(tt, $J = 18,0, 8,7$ Гц, 1H), $3,57 - 3,42$	
	\ 0	(m, 2H), 3,30 – 3,15 (m, 1H), 2,79 (s,	
		3H), 2,24 – 2,17 (m, 1H), 2,12 – 1,91	
		(m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-		¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	468,20
(2-гидрокси-1-		8,10 (d, $J = 2,7$ Гц, 1H), 7,41 – 7,35	
фенилэтил)фенил)-7-		(m, 2H), 7,34 – 7,26 (m, 6H), 7,20	
метил-7Н-) OH	$(tt, J = 5,6, 2,8 \Gamma \mu, 1H), 6,51 - 6,37$	
пирроло[2,3-		(ddd, $J = 16,9, 10,3, 3,9 \Gamma$ ц, 1H),	
d]пиримидин-6-	NH ₂ O	6,08 (ddd, $J = 16,8, 13,8, 2,3$ Гц,	
ил)пирролидин-1-		1H), $5,69 - 5,52$ (ddd, $J = 10,3, 4,6$,	
ил)проп-2-ен-1-он		2,4 Гц, 1H), 4,81 (t, J = 5,3 Гц, 1H),	
	N N	4,16 (t, $J = 7,2$ Гц, 1H), $4,08 - 3,94$	
	·	(m, 2H), 3,80 – 3,68 (m, 4H), 3,66 –	
		3,41 (m, 3H), 3,24 (dd, J=11,9,8,0	
		Γ ц, 1H), 2,18 – 1,91 (t, J = 10,7, 2H).	
1-(3-(4-амино-5-(4-	\triangleright	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	452,15
(циклопропилсульфо	<i>Y</i>	8,15 (d, J = 2,1 Гц, 1H), 7,96 (dd, J =	
нил)фенил)-7-метил-	o≈ _{\$} ≈ ₀	8,4,2,9 Гц, 2H), 7,65 (d, $J = 7,9$ Гц,	
7Н-пирроло[2,3-		2H), 6,59 – 6,40 (dd, <i>J</i> = 16,8, 10,3	
d]пиримидин-6-	NH ₂ Q	Γ ц, 1H), 6,10 (ddd, J = 16,8, 4,0, 2,5	
ил)пирролидин-1-		Γ ц, 1H), 5,64 (ddd, J = 14,4, 10,2,	
ил)проп-2-ен-1-он	N N	2,4 Гц, 1H), 3,94 – 3,72 (m, 3H),	
	"	3,71 – 3,55 (m, 3H), 3,55 – 3,44 (m,	
	\	1H), 3,27 (s, 1H), 2,96 – 2,87 (m,	
		1H), 2,21 (d, J = 6,7 Гц, 1H), 2,12 (t,	
		J = 10,3 Гц, 1H), 1,27 – 1,15 (m,	
		2H), 1,09 (dt, J = 8,2, 2,7 Γ u, 2H).	
(R)-1-(3-(4-амино-7-	_0	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	432,35
метил-5-(4-		8,11 (d, $J = 2.0$ Гц, 1H), 7,35 (q, $J =$	
(тетрагидро-2Н-		7,3, 6,7 Γ ц, 4H), 6,51 (dd, J = 16,8,	
пиран-4-ил)фенил)-		10,3 Гц, 1H), 6,38 (dd, J = 16,8, 10,3	
7Н-пирроло[2,3-		Γ ц, 0H), 6,08 (ddd, J = 16,8, 10,2,	
d]пиримидин-6-	NH ₂	2,5 Гц, 1H), $5,62$ (ddd, $J = 20,1$,	
ил)пирролидин-1-	N N	10,2, 2,5 Гц, 1H), 4,01 – 3,93 (m,	
ил)проп-2-ен-1-он	'\	2H), 3,93 – 3,84 (m, 1H), 3,79 (s,	
	N N	2H), 3,77 (s, 2H), 3,76 – 3,59 (m,	
	, ä	1H), $3,58 - 3,44$ (m, 2H), $3,43$ (d, $J =$	
		2,8 Гц, 1H), 3,36 – 3,21 (m, 1H),	
		2,89 – 2,79 (m, 1H), 2,10 (s, 1H),	
		2,08 (s, 1H), 1,97 (p = 10,9, 10,3 Γц,	
		1H), 1,72 (dq, J = 16,5, 12,6 Γ ц, 4H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-{4-амино-7-		¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	454,20
метил-5-[4-		8,12 (d, $J = 1,7$ Гц, 1H), $7,56$ (d, $J =$	
(феноксиметил)фени		7,8 Γ ц, 2H), 7,43 (d, J = 7,7 Γ ц, 2H),	
л]-7Н-пирроло[2,3-		7,32 (t, $J = 7,7 \Gamma \mu$, 2H), 7,06 (d, $J =$	
d]пиримидин-6-	o'	8,0 Γ ц, 2H), 6,97 (t, J = 7,3 Γ ц, 1H),	
ил}пирролидин-1-	>	$6,47 \text{ (ddd, } J = 37,4, 16,8, 10,3 Гц,}$	
ил)проп-2-ен-1-он		1H), 6,09 (ddd, $J = 16,6,7,2,2,4 \Gamma \mu$,	
	NII (_)	1H), 5,63 (ddd, $J = 15,7, 10,1, 2,5$	
	NH ₂	Γ ц, 1H), 5,17 (s, 2H), 3,94 (t, J = 9,2	
	N N	Γ ц, 1H), 3,79 (d, J = 6,2 Γ ц, 4H),	
	N N	3,66 (q, $J = 9,3$ Гц, 1H), $3,60 - 3,42$	
		(m, 2H), 3,28 (d, $J = 11.6 \Gamma \mu$, 1H),	
	0	2.08 (s, 4H), 1.16 (dt, $J = 26.1$, 13.1	
		Гц, 1Н).	
1-(3-(4-амино-5-(4-	^	¹ Н ЯМР (400 МГц, DMSO-d ₆) 8,10	418,25
циклобутоксифенил)	o-<	(d, $J = 1.7 \Gamma \mu$, 1H), 7,27 (d, $J = 8.1$	·
-7-метил-7Н-		Γ ц, 2H), 6,92 (d, J = 8,1 Γ ц, 2H),	
пирроло[2,3-	(,)	6,46 (ddd, J = 46,5, 16,8, 10,3 Гц,	
d]пиримидин-6-	NH ₂	1H), 6,09 (ddd, $J = 16,8,7,0,2,5 \Gamma \mu$,	
ил)пирролидин-1-	N N	1H), 5,83 – 4,98 (m, 2H), 4,72 (q, J =	
ил)проп-2-ен-1-он	N N	7,1 Гц, 1H), 3,93 – 3,60 (m, 5H),	
	N '', N	3,32 (s, 3H), 3,31 – 3,23 (m, 1H),	
	0	2,48 – 2,00 (m, 5H), 1,87 – 1,60 (m,	
		2H).	
1-(3-(4-амино-5-(4-	$\overline{}$	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	431,35
(циклопентиламино)		8,08 (d, $J = 1,8$ Гц, 1H), $7,05$ (d, $J =$	
фенил)-7-метил-7Н-	NН	7,7 Γ ц, 2H), 6,63 (d, J = 8,0 Γ ц, 2H),	
пирроло[2,3-		6,48 (ddd, $J = 41,0, 16,7, 10,3 \Gamma$ ц,	
d]пиримидин-6-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1H), 6,09 (ddd, J = 16,8, 7,6, 2,4 Γ ц,	
ил)пирролидин-1-	NH ₂	1H), 5,83 – 5,76 (m, 1H), 5,62 (ddd,	
ил)проп-2-ен-1-он	N N	J = 17,7, 10,2, 2,5 Гц, 1H), 3,95 –	
		3,70 (m, 6H), 3,70 – 3,42 (m, 1H),	
	" \	3,28 (d, $J = 10,9$ Гц, 1H), $2,25 - 1,85$	
		(m, 4H), 1,72 – 1,67 (m, 2H), 1,60 –	
		1,44 (m, 4H), 1,29 – 0,99 (m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(5-(4-(1H- имидазол-2- ил)фенил)-4-амино- 7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	HN N NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,58 (s, 1H), 8,13 (d, J = 1,8 Γц, 1H), 8,02 (d, J = 8,2 Γц, 2H), 7,45 (d, J = 7,9 Γц, 2H), 7,29 (d, J = 2,0 Γц, 1H), 7,07 (s, 1H), 6,47 (ddd, J = 27,8, 16,8, 10,3 Γц, 1H), 6,07 (ddd, J = 16,8, 5,9, 2,5 Γц, 1H), 5,60 (ddd, J = 19,1, 10,3, 2,5 Γц, 2H), 3,97 (t, J = 9,3 Γц, 0H), 3,80 (d, J = 6,6 Γц, 4H), 3,68 (d, J = 9,0 Γц, 1H), 3,60 – 3,49 (m, 2H), 2,04 (dq, J = 33,4, 11,2 Γц, 2H).	414,15
1-[3-(4-амино-7-метил-5-{4-[(1Н-пиразол-1-ил)метил]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил]проп-2-ен-1-он	NH ₂ NH ₂ N N	¹ H ЯМР (400 МГц, Метанол- d_4) 8,14 (d, J = 0,8 Гц, 1H), 7,80 (d, J = 2,3 Гц, 1H), 7,57 (d, J = 2,0 Гц, 1H), 7,46 - 7,38 (m, 2H), 7,32 (d, J = 8,1 Гц, 2H), 6,50 (dd, J = 16,8, 10,4 Гц, 1H), 6,39 (t, J = 2,2 Гц, 1H), 6,32 - 6,21 (td, J = 16,4, 2,1 Гц, 2H), 5,73 - 5,66 (dd, J = 10,3, 2,2 Гц, 1H), 5,51 (s, 1H), 5,45 (d, J = 2,6 Гц, 2H), 3,98 - 3,75 (m, 5H), 3,78 - 3,35 (m, 3H), 2,35 - 2,05 (s, 2H).	428,25
1-(3-(4-амино-7-метил-5-(4-(1-метил-1H-пиразол-4-ил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,19 (s, 1H), 8,12 (d, J = 1,8 Γ ц, 1H), 7,92 (s, 1H), 7,66 (d, J = 7,8 Γ ц, 2H), 7,36 (d, J = 7,8 Γ ц, 2H), 6,51 - 6,43 (dd, J = 16,8, 10,3 Γ ц, 1H), 6,07 (ddd, J = 16,7, 8,1, 2,5 Γ ц, 1H), 5,61 (ddd, J = 20,9, 10,3, 2,4 Γ ц, 2H), 3,95 (t, J = 9,2 Γ ц, 0H), 3,89 (s, 3H), 3,79 (d, J = 6,2 Γ ц, 4H), 3,67 (q, J = 12,0, 10,8 Γ ц, 1H), 3,56 (t, J = 10,1 Γ ц, 2H), 3,54 – 3,27 (d, J = 8,1 Γ ц, 1H), 2,25 - 1,95 (m, 1H).	428,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-	1	¹H ЯМР (400 МГц, DMSO-d ₆) δ	430,15
метил-5-(4-(5-метил-	\ 0	8,14 (d, $J=1,7$ Гц, 1H), $8,07$ (d, $J=$	
1,2,4-оксадиазол-3-	N N	8,2 Гц, 2H), $7,57$ (d, $J = 8,2$ Гц, 2H),	
ил)фенил)-7Н-		6,51 -6,42 (dd, J = 16,7, 10,3 Гц,	
пирроло[2,3-		1H), 6,06 (ddd, J = 16,8, 7,1, 2,4 Γ ц,	
d]пиримидин-6-	NH ₂	1H), 5,63 (dd, $J = 10,3, 2,5 \Gamma \mu$, 1H),	
ил)пирролидин-1-	N ~	5,57 (dd, <i>J</i> = 10,2, 2,5 Гц, 1H), 3,99	
ил)проп-2-ен-1-он		-3,90 (m, 1H), 3,81 (d, $J = 6,6$ Гц,	
	N N N	5H), 3,69 (d, <i>J</i> = 8,6 Гц, 1H), 3,58	
	\	$(d, J = 9,8 \Gamma ц, 1H), 3,50 -3,28 (d, J = 1)$	
	_	10,1 Гц, 1H), 2,70 (s, 3H), 2,26 –	
		2,19 (m, 1H), 2,11 – 1,94 (m, 1H).	
1-(3-(4-амино-5-(4-	_ 0	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) 8,12	481,25
((1,1-	O ;"	(d, $J = 2.2 \Gamma \mu$, 1H), $7.53 - 7.30$ (m,	
диоксидоизотиазоли	Ń,)	4H), 6,45 (ddd, J = 46,4, 16,7, 10,3	
дин-2-		Γ ц, 1H), 6,08 (dt, J = 16,7, 2,4 Γ ц,	
ил)метил)фенил)-7-		1H), 5,62 (ddd, J = 15,1, 10,2, 2,4	
метил-7Н-	NH ₂	Гц, 1H), 5,58 – 4,92 (s, 1H), 4,23 –	
пирроло[2,3-	N N	4,09 (m, 2H), 4,00 – 3,72 (m, 4H),	
d]пиримидин-6-		3,70 – 3,35 (m, 2H), 3,33 (s, 1H),	
ил)пирролидин-1-	N N	$3,28$ (t, $J = 7,7$ Γ II, $3H$), $3,14$ (td, $J =$	
ил)проп-2-ен-1-он	Ö Ö	$6,8, 2,3 \Gamma$ ц, 2H), 2,24 (p, J = 7,0 Γ ц,	
		3H), 2,09 (dt, $J = 14,1, 8,2 \Gamma \mu, 1H$),	
		$1,96$ (dqq, $J = 21,2, 10,5$ Γ ц, 1 H).	
1-(3-(4-амино-5-(4-	\wedge	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	430,35
(циклопентилметил)		8,10 (d, $J = 2,2$ Гц, 1H), $7,28$ (d, $J =$	
фенил)-7-метил-7Н-		2,6 Гц, 4H), $6,44$ (ddd, $J = 55,7$,	
пирроло[2,3-		16,7, 10,3 Γ u, 1H), 6,08 (ddd, J =	
d]пиримидин-6-	(_)	16,7,7,0,2,4 Гц, 1H), 5,61 (ddd, $J =$	
ил)пирролидин-1-	NH ₂	20,9, 10,2, 2,5 Гц, 2Н), 3,92 – 3,73	
ил)проп-2-ен-1-он	Ņ	(m, 4H), 3,64 (t, $J = 9,1 \Gamma \mu$, 1H),	
	N N	3,58 – 3,38 (m, 2H), 3,29 – 3,22 (m,	
		1H), 2,64 (d, $J = 7,5 \Gamma \text{H}$, 2H), 2,28 –	
	9	1,85 (m, 3H), 1,76 – 1,44 (m, 6H),	
		1,20 (q, $J = 10,2, 9,3$ Гц, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4- ((тетрагидро-2Н-пиран-4- ил)амино)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	ONH NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 2,0 Гц, 1H), 7,35 (q, J = 7,3, 6,7 Гц, 4H), 6,51 (dd, J = 16,8, 10,3 Гц, 1H), 6,38 (dd, J = 16,8, 10,2, 2,5 Гц, 1H), 5,71 (ddd, J = 18,2, 10,2, 2,5 Γц, 1H), 5,62 (ddd, J = 20,1, 10,2, 2,5 Γц, 1H), 4,01 – 3,93 (m, 2H), 3,93 – 3,84 (m, 1H), 3,79 (s, 2H), 3,77 (s, 2H), 3,76 – 3,59 (m, 1H), 3,58 – 3,44 (m, 2H), 3,43 (d, J = 2,8 Γц, 1H), 3,36 – 3,21 (m, 1H), 2,89 – 2,79 (m, 1H), 2,10 (s, 1H), 2,08 (s, 1H), 1,97 (p, J = 10,9, 10,3 Γц, 1H), 1,72 (dq, J = 16,5, 12,6 Гц, 4H).	447,35
1-(4-(6-(1- акрилоилпирролидин -3-ил)-4-амино-7- метил-7Н- пирроло[2,3- d]пиримидин-5- ил)бензил)пиридин- 2(1H)-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,11 (d, J = 2,0 Гц, 1H), 7,83 (dd, J = 6,9, 2,0 Гц, 1H), 7,46 (ddt, J = 8,7, 6,6, 1,9 Гц, 1H), 7,36 (d, J = 5,3 Гц, 4H), 6,56 – 6,34 (m, 2H), 6,31 – 6,23 (m, 1H), 6,08 (ddd, J = 16,8, 11,7, 2,4 Γц, 1H), 5,62 (ddd, J = 19,2, 10,3, 2,5 Γц, 1H), 5,18 (d, J = 1,7 Γц, 2H), 3,92 – 3,75 (m, 4H), 3,75 – 3,40 (m, 4H), 3,30 – 3,18 (m, 2H), 2,27 – 1,87 (m, 2H).	455,30
1-[3-(4-амино-5-{4- [циклопропил(гидро кси)метил]фенил}-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил]проп-2-ен-1-он	NH ₂ N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,12 (d, J = 2,2 Гц, 1H), 7,50 (d, J = 7,7 Гц, 2H), 7,38 – 7,31 (m, 2H), 6,53 - 6,43 (ddd, J = 16,9, 10,4, 3,3 Гц, 1H), 6,09 (ddd, J = 16,9, 8,8, 2,5 Гц, 1H), 5,76 - 5,63 (ddd, J = 16,5, 10,3, 2,4 Гц, 2H), 5,25 (dd, J = 4,5, 2,3 Гц, 1H), 4,06 (dd, J = 7,4, 4,4 Гц, 1H), 3,92 (t, J = 9,2 Гц, 1H), 3,79 (d, J = 6,5 Гц, 4H), 3,73 - 3,51 (dd, J = 21,7, 11,0 Гц, 3H), 3,31 – 3,21 (m, 1H), 2,20 - 1,93 (m, 2H), 1,13 - 1,06 (m, 1H), 0,44 (td, J = 12,9, 6,6 Γц, 4H).	418,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-[3-(4-амино-7-	- ^	¹ Н ЯМР (400 МГц, DMSO-d ₆) 8,11	442,25
метил-5-{4-[(3-	N N	$(t, J = 2,1 \Gamma ц, 1H), 7,73 (t, J = 2,6)$	
метил-1Н-пиразол-1-	N-N	Гц, 1H), 7,41 - 7,32 (m, 2H), 7,25	
ил)метил]фенил}-		(dd, $J = 8,3, 3,4 \Gamma \mu, 1H$), 7,14 (dd, J	
7Н-пирроло[2,3-		= 8,1, 3,7 Гц, 1H), 6,57 - 6,32 (m,	
d]пиримидин-6-	NH ₂	1H), 6,15 - 6,07 (m, 1H), 6,11 - 6,03	
ил)пирролидин-1-	N N	(m, 1H), 5,62 (ddt, J = 15,8, 10,3, 2,6	
ил]проп-2-ен-1-он	N. A.	Γ ц, 1H), 5,38 (s, 1H), 5,32 (d, J = 2,7	
		Гц, 1H), 3,81 - 3,75 (m, 3H), 3,79 -	
	Ö	3,56 (m, 2H), 3,58 - 3,41 (m, 2H),	
		3,32 - 3,15 (m, 1H), 2,20 (dd, J =	
		21,3, 2,3 Гц, 3H), 2,10 - 1,89 (m,	
		2H).	
1-(3-(4-амино-7-	\	¹H ЯМР (400 МГц, DMSO-d ₆) δ	428,25
метил-5-(4-(4-метил-		8,34 (s, 1H), $8,12$ (d, $J = 1,7$ Гц, 1H),	
1Н-пиразол-1-	N N	7,87 (d, $J = 8,1$ Гц, 2H), $7,60$ (s, 1H),	
ил)фенил)-7Н-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7,47 (d, J = 8,2 Гц, 2H), 6,47 (ddd, J	
пирроло[2,3-		= 31,9, 16,7, 10,2 Гц, 1H), 6,06 (ddd,	
d]пиримидин-6-		$J = 16,8, 7,5, 2,5 \Gamma$ ц, 1H), 5,60 (ddd,	
ил)пирролидин-1-	H ₂ N	$J = 21,7, 10,2, 2,5 \Gamma$ ц, 2H), 3,94 (d, J	
ил)проп-2-ен-1-он	N.	$= 9,1 \Gamma$ ц, 1H), 3,79 (d, $J = 6,3 \Gamma$ ц,	
	N N	3H), 3,67 (q, J = 9,1 Гц, 1H), 3,60 –	
	N, , O	3,45 (m, 1H), $3,29$ (d, $J = 10,7$ Гц,	
		1H), 2,33 (d, J = 2,2 Γ u, 1H), 2,13 (s,	
		5H).	
1-(3-(4-амино-7-	F	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) 8,68	509,20
метил-5-(4-((5-	F	-8,58 (m, 1H), $8,27$ (dt, $J = 8,7,2,8$	
(трифторметил)пири		Γ_{II} , 1H), 8,13 (d, J = 2,1 Γ_{II} , 1H),	
дин-2-	N-	$7,47$ (d, $J = 8,1$ Γ II, $2H$), $7,32$ (dd, $J =$	
ил)окси)фенил)-7Н-	()	9,1,4,1 Гц, 3H), 6,51 (ddd, $J = 32,6$,	
пирроло[2,3-	NH ₂	16,8, 10,3 Γ II, 1H), 6,13 (t, J = 1,9	
d]пиримидин-6-	N	Гц, 1H), 6,09 – 5,57 (m, 2H), 4,00 –	
ил)пирролидин-1-	L. N.	3,76 (m, 4H), 3,75 – 3,34 (m, 3H),	
ил)проп-2-ен-1-он	N IN THE	3,31 (s, 1H), 2,40 – 1,94 (m, 2H).	
	0		

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-	0	¹H ЯМР (400 МГц, DMSO-d ₆) δ	444,20
(циклопентанкарбон		8,14 (d, $J=1,8$ Гц, 1H), $8,06$ (d, $J=$	
ил)фенил)-7-метил-		7,9 Γ ц, 2H), 7,53 (d, J = 7,9 Γ ц, 2H),	
7Н-пирроло[2,3-	(/ >)	6,55-6,35 (dd, $J=16,7,10,3$ Гц,	
d]пиримидин-6-	NH ₂ O	1H), 6,07 (ddd, $J = 16,8, 7,0, 2,4 \Gamma \mu$,	
ил)пирролидин-1-	N N	1H), $5,63 - 5,58$ (dd, $J = 10,2,2,5$	
ил)проп-2-ен-1-он		Гц, 1H), 3,96 – 3,87 (m, 1H), 3,80	
	N N	(d, $J = 6,6$ Гц, 4H), 3,77 (s, 1H), 3,68	
		(d, $J = 8.9 \Gamma \mu$, 1H), 3,48 (t, $J = 9.8$	
		Γ ц, 1H), 3,27 (s, 1H), 2,21 (d, J = 7,3	
		Гц, 1H), 2,11 (s, 1H), 1,95 (s, 1H),	
		1,92 (d, $J = 8,1$ Гц, 1H), $1,80$ (s, 2H),	
		1,64 (td, $J = 8,4,7,0,4,9$ Гц, 4H).	
1-(5-(6-(1-		¹H ЯМР (400 МГц, DMSO-d ₆) δ	432,35
акрилоилпирролидин	0=	8,39 (t, $J = 6,8$ Гц, 2H), $8,13$ (d, $J =$	
-3-ил)-4-амино-7-	l Ï	1,7 Гц, 1H), 7,86 – 7,78 (m, 1H),	
метил-7Н-	N N	6,47 (ddd, $J = 32,7, 16,8, 10,3$ Гц,	
пирроло[2,3-	H ₂ N	1H), 6,13 – 6,04 (m, 1H), 5,68 – 5,57	
d]пиримидин-5-		(m, 3H), $4.05 - 3.95$ (t, $J = 9.2$ Γ H ,	
ил)пиридин-2-	N N N	3H), 3,79 (d, $J = 6,8$ Гц, 3 H), 3,76 –	
ил)пирролидин-2-он	N N	3,60 (m, 2H), 3,52 (dt, J = 16,6,9,1	
		Γ ц, 2H), 3,27 (s, 1H), 2,61 (t, J = 8,0	
		Гц, 2H), 2,13 – 1,90 (m, 4H).	
1-(3-(4-амино-5-(4-	N ₌	¹H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	415,15
(изоксазол-5-	0	8,70 (d, J = 1,9 Гц, 1H), 8,14 (d, J =	
ил)фенил)-7-метил-		1,8 Гц, 1H), 7,97 (d, J = 8,1 Гц, 2H),	
7Н-пирроло[2,3-		7,55 (d, J = 8,0 Гц, 2H), 7,10 (d, J =	
d]пиримидин-6-	NH ₂	2,0 Гц, 1H), $6,51-6,42$ (dd, $J=$	
ил)пирролидин-1-		16,8, 10,2 Γu, 1H), 6,11 – 6,01 (m,	
ил)проп-2-ен-1-он	N N	1H), $5,63 - 5,53$ (m, 1H), $3,95$ (t, $J =$	
		9,1 Гц, 1H), 3,80 (d, J = 6,7 Гц, 4H),	
		3,69 (s, 1H), 3,57 (t, $J = 9,6 \Gamma \text{L}, 1\text{H}$),	
	_	3,53 (s, 1H), 3,52 – 3,43 (m, 1H),	
		3,28 (d, $J = 9,7$ Гц, 1H), $2,21$ -1,97	
		(m, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-[(4-{4-амино-7-метил-6-[1-(проп-2-еноил)пирролидин-3-ил]-7Н-пирроло[2,3-d]пиримидин-5-ил}фенил)метил]морфолин-3-он	ONH ₂ N=N N O	¹ H ЯМР (400 МГц, DMSO- d_6) 8,12 (d, J = 2,2 Гц, 1H), 7,36 (qd, J = 8,2, 3,7 Гц, 4H), 6,51 - 6,39 (dd, J = 16,8, 10,3 Γц, 1H), 6,08 (dt, J = 16,8, 2,9 Γц, 1H), 5,84 - 5,47 (s, 2H), 4,63 (s, 2H), 4,15 (s, 2H), 3,94 - 3,83 (m, 2H), 3,84 - 3,62 (m, 5H), 3,54 (dt, J = 8,0, 5,6 Γц, 2H), 3,52 - 3,21 (m, 3H), 2,21 - 1,91 (m, 3H).	461,30
1-(3-(4-амино-5-(4- ((5-хлорпиримидин- 2-ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	CI NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (d, J = 3,5 Гц, 2H), 8,13 (d, J = 1,7 Гц, 1H), 7,50 – 7,44 (m, 2H), 7,35 (d, J = 8,6 Гц, 2H), 6,51 (ddd, J = 33,8, 16,7, 10,3 Γц, 2H), 6,11 (ddd, J = 16,8, 5,5, 2,4 Γц, 1H), 5,74 – 5,44 (m, 3H), 4,01 – 3,91 (m, 1H), 3,80 (d, J = 6,8 Γц, 3H), 3,74 – 3,52 (m, 3H), 3,35 (d, J = 11,1 Γц, 1H), 2,20 – 2,04 (m, 2H).	476,20
1-(3-(4-амино-5-(4- ((5-хлорпиридин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	CI NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,28 (dd, J = 7,5, 2,7 Гц, 1H), 8,13 (d, J = 2,2 Гц, 1H), 8,00 (dt, J = 8,8, 2,5 Гц, 1H), 7,47 – 7,37 (m, 2H), 7,25 (dd, J = 8,6, 3,1 Гц, 2H), 7,22 – 7,15 (m, 1H), 6,50 (ddd, J = 33,1, 16,8, 10,3 Γц, 1H), 6,11 (dt, J = 16,8, 2,3 Гц, 1H), 5,64 (td, J = 10,2, 2,5 Гц, 1H), 3,95 (t, J = 9,2 Гц, 1H), 3,84 – 3,68 (m, 5H), 3,62 – 3,47 (m, 2H), 2,28 – 1,91 (m, 2H).	475,1

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-	CI	¹ Η ЯМР (400 МГц, Хлороформ- <i>d</i>) δ	490,2
((5-хлор-6-		8,32 (d, J = 2,5 Γц, 1H), 7,68 (dd, J =	
метилпиридин-2-	N-V	8,6, 1,8 Гц, 1Н), 7,38 (d, J = 7,8 Гц,	
ил)окси)фенил)-7- метил-7H-	O	2H), 7,23 (t, $J = 7,2 \Gamma \mu$, 2H), 6,80 (t, $J = 8,6 \Gamma \mu$, 1H), 6,48 – 6,22 (m, 2H),	
пирроло[2,3-		5,69 (ddd, $J = 15,2,9,2,3,0 \Gamma \mu, 1H$),	
d пиримидин-6-	NH ₂	4,87 (s, 1H), 4,02 (dd, J = 11,4, 7,2	
ил)пирролидин-1-	N N	Гц, 0H), 3,92 – 3,80 (m, 3H), 3,80 –	
ил)проп-2-ен-1-он		3,47 (m, 2H), 2,53 (d, $J = 4,4$ Гц,	
	N N V	3H), 2,25 (q, J = 7,2 Γ µ, 1H), 2,03 (s,	
	, "ö	1H).	
(R)-1-(3-(4-амино-7-		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	455,20
метил-5-(4-((6-		8,14 (d, $J = 1,1 \Gamma \mu$, 1H), 7,79 – 7,72	ĺ
метилпиридин-2-	N	(m, 1H), 7,45 – 7,39 (m, 2H), 7,20	
ил)окси)фенил)-7Н-	/	$(dd, J = 8.5, 3.7 \Gamma \mu, 2H), 7.04 (d, J =$	
пирроло[2,3-		7,3 Гц, 1H), 6,84 (dd, J = 8,1, 4,2 Гц,	
d]пиримидин-6-	NH ₂ Q	1H), 6,49 (ddd, $J = 33,6, 16,8, 10,3$	
ил)пирролидин-1-		Γ ц, 1H), 6,10 (dt, J = 16,6, 2,0 Γ ц,	
ил)проп-2-ен-1-он	N.	1H), $5,69 - 5,51$ (m, 2H), $3,95$ (t, $J =$	
	N orl	9,2 Γ ц, 1H), 3,80 (d, J = 6,5 Γ ц, 4H),	
	\	3,70 - 3,47 (m, 3H), 2,36 (d, J = 3,8	
		Γu, 3H), 2,27 – 1,93 (m, 2H).	
(S)-1-(3-(4-амино-7-		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	455,20
метил-5-(4-((6-		$8,12$ (d, $J = 2,0$ Γ ц, 1H), $7,78 - 7,72$	
метилпиридин-2-	N O	(m, 1H), 7,46 – 7,36 (m, 2H), 7,19	
ил)окси)фенил)-7Н-		$(dd, J = 8,6, 3,9 \Gamma u, 2H), 7,04 (d, J = 7,0)$	
пирроло[2,3-		7,4 Γ u, 1H), 6,84 (dd, J = 8,1, 4,1 Γ u,	
d]пиримидин-6-	NH ₂	1H), 6,49 (ddd, $J = 33,2$, 16,7, 10,2	
ил)пирролидин-1-	N N	Гц, 1H), 6,10 (dd, $J = 16,7, 2,3$ Гц,	
ил)проп-2-ен-1-он	[]	1H), 5,63 (ddd, $J = 10.8, 9.0, 2.4 \Gamma \mu$, 1H), 3,95 (t, $J = 9.0 \Gamma \mu$, 1H), 3,79 (d,	
	N N	$J = 6.8 \Gamma \text{H}, 4\text{H}), 3.53 (dq, J = 18.8,$	
	`	9,7 Гц, 2H), 2,36 (d, J = 3,8 Гц, 3H),	
		2,27 – 1,94 (m, 2H).	
		2,21 1,77 (III, 211).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-		¹H ЯМР (400 МГц, DMSO-d ₆) δ	441,30
((6-метилпиридин-2-		11,82 (d, J = 2,6 Гц, 1H), 8,09 (s,	
ил)окси)фенил)-7Н-	N-2	1H), 7,76 (t, $J = 7,8$ Гц, 1H), 7,49 –	
пирроло[2,3-		7,36 (m, 2H), 7,22 (dd, $J = 8,5,2,1$	
d]пиримидин-6-		Γ ц, 2H), 7,04 (d, J = 7,4 Γ ц, 1H),	
ил)пирролидин-1-	NH ₂	$6,85 \text{ (d, } J = 8,1 \Gamma\text{II}, 1\text{H}), 6,58 \text{ (ddd, } J$	
ил)проп-2-ен-1-он	N N	$= 16.7, 10.3, 3.8 \Gamma \text{H}, 1\text{H}, 6.15 (dd, J)$	
		$= 16,7,2,5 \Gamma \mu, 1H), 5,67 (ddd, J =$	
	N N N	10,6, 8,5, 2,5 Γ _{II} , 2H), 3,99 (t, J = 8,8	
		Гц, 1H), 3,89 – 3,77 (m, 1H), 3,77 –	
		3,60 (m, 1H), 3,54 (dt, J = 11,0,5,4	
		Γ ц, 1H), 3,42 (d, J = 6,8 Γ ц, 1H),	
		2,37 (s, 3H), 2,36 – 2,07 (m, 2H).	
(S)-1-(3-(4-амино-5-		¹ H ЯМР (400 МГц, DMSO-d ₆) δ	441,30
(4-((6-		11,82 (s, 1H), 8,09 (s, 1H), 7,76 (t, J	
метилпиридин-2-	N-V	$= 7.8 \Gamma \text{u}, 1\text{H}), 7.43 \text{ (dd, } J = 8.5, 3.5)$	
ил)окси)фенил)-7Н-	0	Гц, 2H), 7,27 – 7,19 (m, 2H), 7,04	
пирроло[2,3-		$(d, J = 7,4 \Gamma \mu, 1H), 6,85 (d, J = 8,1)$	
d]пиримидин-6-	NH ₂	Γ ц, 1H), 6,59 (ddd, J = 16,8, 10,3,	
ил)пирролидин-1-	- /	$3.9 \Gamma \text{H}$, $6.15 \text{ (dd, } J = 16.8, 2.5)$	
ил)проп-2-ен-1-он	N	Гц, 1H), 5,76 (s, 1H), 5,67 (ddd, $J =$	
ini)iipoii 2 cii 1 cii	N H N	10,7, 8,5, 2,5 Гц, 1H), 4,06 – 3,78	
	н ∥ 🦠	(m, 1H), 3,77 – 3,60 (m, 1H), 3,54	
		(dt, $J = 11,2,5,4$ Гц, 1H), 3,42 (d, J	
		= 6,9 Гц, 1H), 2,37 (s, 3H), 2,37 –	
		2,10 (m, 2H).	
(R)-1-(3-(4-амино-5-		¹ H ЯМР (400 МГц, DMSO-d ₆) δ	441,25
(4-((6-		11,92 – 11,73 (m, 1H), 8,09 (s, 1H),	441,23
метилпиридин-2-	N-V	7.76 (t, $J = 7.8$ Γμ, 1H), 7.43 (dd, $J =$	
ил)окси)фенил)-7Н-) o	8,4, 3,5 Γμ, 2H), 7,27 – 7,16 (m, 2H),	
1 ' 1		7,04 (d, $J = 7,4$ Гц, 1H), $6,85$ (d, $J =$	
пирроло[2,3-	NH ₂		
d]пиримидин-6-	- /	8,1 Γ u, 1H), 6,58 (ddd, J = 16,8,	
ил)пирролидин-1-	N N	10,3, 3,8 Γ _H , 1H), 6,15 (dd, J = 16,7,	
ил)проп-2-ен-1-он	N N N	2,5 Γu, 1H), 5,90 – 5,75 (m, 2H),	
	" H	5,67 (ddd, $J = 10,6, 8,5, 2,5 \Gamma \mu$, 1H),	
	O	4,08 – 3,78 (m, 1H), 3,68 (dt, <i>J</i> =	
		28,8, 11,1 Γ u, 1H), 3,55 (td, J = 10,7,	
		6,7 Γu, 1H), 3,50 – 3,39 (m, 1H),	
		2,37 (s, 3H), 2,30 (q, 8,9, 7,8 Гц,	
		0H), 2,23 - 2,08 (m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4- (пиперидин-1-карбонил)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (d, J = 2,8 Гц, 1H), 7,45 (d, J = 6,8 Гц, 4H), 6,46 (ddd, J = 40,4, 16,8, 10,4 Гц, 1H), 6,08 (dt, J = 16,8, 2,4 Γц, 1H), 5,62 (ddd, J = 12,9, 10,4, 2,4 Γц, 1H), 3,96 – 3,87 (m, 0H), 3,79 (d, J = 7,6 Γц, 3H), 3,69 (q, J = 8,2 Γц, 1H), 3,61 – 3,44 (m, 1H), 2,23 (s, 1H), 2,03 (ddt, J = 50,6, 20,8, 10,4 Γц, 2H), 1,67 – 1,61 (m, 2H),	459,3
1-(3-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O N N N N N N N N N N N N N N N N N N	1,54 (s, 5H). ¹ H ЯМР (400 МГц, DMSO- d_6) δ 11,88 (s, 1H), 8,10 (d, J = 1,0 Γц, 1H), 7,72 – 7,60 (m, 2H), 7,45 (dd, J = 8,1, 3,6 Γц, 2H), 6,58 (ddd, J = 16,7, 10,3, 4,3 Γц, 1H), 6,14 (dd, J = 16,7, 2,5 Γц, 1H), 5,67 (ddd, J = 10,8, 8,8, 2,5 Γц, 3H), 3,83 (q, J = 9,2 Γц, 1H), 3,76 – 3,59 (m, 1H), 3,59 – 3,38 (m, 6H), 2,39 – 2,05 (m, 2H), 1,86 (dq, J = 19,0, 6,8 Γц, 4H).	431,15
1-(3-(4-амино-5-(4- (пирролидин-1- карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)бут-2-ин-1-он	NH ₂ O O N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,02 – 11,71 (m, 1H), 8,10 (d, J = 2,2 Гц, 1H), 7,64 (dd, J = 7,9, 4,8 Гц, 2H), 7,44 (dd, J = 7,9, 5,7 Γц, 2H), 5,68 (d, J = 65,3 Γц, 2H), 3,98 – 3,80 (m, 1H), 3,77 – 3,58 (m, 2H), 3,50 (t, J = 6,7 Γц, 4H), 3,38 (d, J = 11,0 Γц, 1H), 3,28 – 3,20 (m, 1H), 2,35 – 2,11 (m, 2H), 2,02 (s, 1H), 1,98 (s, 2H), 1,87 (dq, J = 19,0, 6,7 Γц, 4H).	443,25
1-(3-(4-амино-7-метил-5-(4- (пирролидин-1-карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)бут-2-ин-1-он	NH ₂ O N	¹ Н ЯМР (400 МГц, Хлороформ- <i>d</i>) δ 8,32 (d, J = 3,3 Гц, 1H), 7,68 (t, J = 9,1 Гц, 2H), 7,43 (d, J = 8,1 Гц, 2H), 4,86 (s, 2H), 3,99 – 3,82 (m, 5H), 3,69 (dt, J = 21,4, 8,0 Гц, 5H), 3,65 – 3,47 (m, 4H), 2,24 – 2,10 (m, 2H), 2,07 – 1,93 (m, 6H), 1,86 (s, 6H).	457,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-5-(4-	\ _	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	441,15
((5-метилпиридин-2-		11,82 (d, J = 2,5 Гц, 1H), 8,07 (dd, J	
ил)окси)фенил)-7Н-	N	$= 19,5, 1,7 \Gamma \text{u}, 2\text{H}), 7,71 \text{ (dd, } J = 8,3,$	
пирроло[2,3-)	2,5 Гц, 1H), 7,41 (dd, J = 8,5, 3,7 Гц,	
d]пиримидин-6-		2H), 7,24 – 7,16 (m, 2H), 7,02 (d, <i>J</i> =	
ил)пирролидин-1-	NH ₂	8,3 Γ ц, 1H), 6,58 (ddd, J = 16,8,	
ил)проп-2-ен-1-он	-	10,3, 2,8 Γ u, 1H), 6,15 (dd, J = 16,8,	
	N N	2,5 Гц, 1H), 5,75 (s, 1H), 5,67 (ddd,	
	N N N	J = 10,8, 8,7, 2,5 Гц, 2H), 3,99 (dd, J	
	" н "	= 9,9, 7,9 Гц, 1H), 3,87 – 3,77 (m,	
		1H), $3,75 - 3,59$ (m, 1H), $3,54$ (tt, $J =$	
		12,8, 6,9 Γ u, 1H), 3,41 (dd, J = 9,5,	
		6,1 Гц, 1H), 2,27 (s, 4H), 2,22 – 2,05	
		(m, 2H).	
1-(3-{4-амино-5-[4-	_ O HN	¹H ЯМР (400 МГц, DMSO-d ₆) δ	419,30
(азетидин-3-	0.92 OH "	9,27 (d, $J = 52,2 \Gamma \mu$, 2H), 8,58 – 8,34	
илокси)фенил]-7-	f F	(m, 1H), 7,35 (d, $J = 8,3$ Гц, 2H),	
метил-7Н-		6,97 (d, J = 8,0 Гц, 2H), 6,44 (ddd, J	
пирроло[2,3-	H ₂ N	$= 53,6, 16,7, 10,3 \Gamma \mu, 1H), 6,09 \text{ (ddd, }$	
d]пиримидин-6-	N N	$J = 16,8, 4,6, 2,4 \Gamma$ ц, 1H), 5,64 (ddd,	
ил}пирролидин-1-	N N N	J = 13,9, 10,3, 2,4 Гц, 1H), 5,15 (t, J	
ил)проп-2-ен-1-он;	, 0	$= 6.1 \Gamma \text{u}, 1\text{H}), 4.50 (\text{s}, 2\text{H}), 4.07 (\text{d}, J)$	
соль		$= 10.2 \Gamma \mu$, 2H), 3,97 – 3,43 (m, 7H),	
трифторуксусной		$3,28$ (dt, $J = 12,0, 9,1$ Γ ц, 1H), $2,31 -$	
кислоты		1,85 (m, 2H).	
N-(3-(4-амино-7-	/	¹H ЯМР (400 МГц, DMSO-d ₆) δ	469
метил-5-(4-((6-	N=	8,15 (d, $J = 12,7 \Gamma \mu$, 2H), 7,77 (td, J	
метилпиридин-2-	0~	= 7,7, 1,6 Гц, 1H), 7,39 (d, J = 8,3	
ил)окси)фенил)-7Н-		Гц, 2H), 7,26 – 7,19 (m, 2H), 7,05	
пирроло[2,3-		(d, $J = 7.3 \Gamma \mu$, 1H), 6.85 (dd, $J = 8.2$,	
d]пиримидин-6-	NH ₂ H	4,6 Гц, 1H), 6,24 – 6,15 (m, 1H),	
ил)циклопентил)акр	N N N N N N N N N N N N N N N N N N N	6,06 (dd, J = 17,1, 2,4 Гц, 1H), 5,56	
иламид	O O	(ddd, $J = 10,0, 3,7, 2,4 \Gamma \mu, 1H$), 4,27	
	, in	$-4,03$ (m, 1H), 3,81 (d, J = 10,3 Γ II,	
		3H), 3,65 (d, J = 43,2 Гц, 1H), 2,37	
		(s, 3H), 2,18 (s, 1H), 2,12 – 1,77 (m,	
		3H), 1,68 (q, J = 12,0 Γц, 1H), 1,62 –	
		1,48 (m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(3-(4-амино-7-		¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	483,20
метил-5-(4-((6-		8,10 (s, 1H), 7,77 (t, J = 7,7 Γ ц, 1H),	
метилпиридин-2-	N O	7,43 (d, J = 7,9 Гц, 2H), 7,22 (d, J =	
ил)окси)фенил)-7Н-		8,0 Гц, 2H), 7,04 (d, J = 7,4 Гц, 1H),	
пирроло[2,3-		6,84 (d, J = 8,1 Гц, 1H), 6,06 (t, J =	
d]пиримидин-6-	NH ₂	15,7 Гц, 1H), 5,63 (s, 2H), 4,69 (d, <i>J</i>	
ил)циклопентил)-N-	N N	= 173,3 Гц, 1H), 3,78 (s, 3H), 3,43	
метилакриламид	Ö	$(d, J = 10,4 \Gamma \mu, 1H), 2,67 (d, J = 54,3)$	
	N. 14	Гц, 3H), 2,35 (s, 3H), 2,11 – 1,50 (m,	
		6H).	
1-((2R)-4-(4-амино-7-	/	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	485,22
метил-5-(4-((6-	N=	8,13 (s, 1H), 7,75 (t, J = 7,8 Γц, 1H),	
метилпиридин-2-	o / /	$7,42$ (d, $J = 8,6$ Γ ц, $2H$), $7,21$ (d, $J =$	
ил)окси)фенил)-7Н-		8,6 Гц, 2H), $7,03$ (d, $J = 7,2$ Гц, 1H),	
пирроло[2,3-		6,88 – 6,80 (m, 1H), 6,53 (dd, J =	
d]пиримидин-6-ил)-	NH ₂ O	16,4, 10,4 Гц, 1H), 6,11 (d, J = 17,0	
2-	N N	Γ ц, 1H), 5,64 (dd, $J = 10,4, 2,4 \Gamma$ ц,	
(гидроксиметил)пир	OH	1H), 4,07 (s, 1H), 3,98 (s, 1H), 3,82	
ролидин-1-ил)проп-	W. M.	(d, $J = 7.4 \Gamma \mu$, 3H), $3.58 - 3.46$ (m,	
2-ен-1-он		2H), 2,35 (s, 3H).	
1-(3-(4-амино-7-	/	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	485,40
метил-5-(4-((6-	N=\	8,11 (d, $J = 1,2$ Гц, 1H), 7,75 (td, $J = 1$	
метилпиридин-2-	o-{ //	7,8, 3,3 Γu, 1H), 7,49 – 7,28 (m, 2H),	
ил)окси)фенил)-7Н-		7,16 (ddd, $J = 19,5, 8,4, 3,9 \Gamma \mu, 2H$),	
пирроло[2,3-		7,04 (d, J = 7,3 Гц, 1H), 6,82 (dd, J =	
d]пиримидин-6-ил)-	NH ₂ O	8,1,1,9 Гц, 1H), 6,42 (dd, $J = 16,7$,	
4-	N N	10,3 Гц, 1H), 6,20 (dd, J = 16,8, 10,1	
(гидроксиметил)пир		Γ ц, 1H), 6,04 - 5,58 (ddd, J = 10,2,	
ролидин-1-ил)проп-	N N	3,9, 2,5 Ги, 2H), $4,62$ (dt, $J = 15,6$,	
2-ен-1-он	ОН	5,0 Γ u, 1H), 3,95 (dq, J = 37,7, 8,1	
		Γ II, 1H), 3,79 (s, 3H), 3,62 (ddd, J =	
		17,2, 11,4, 7,4 Гц, 1Н), 3,52 – 3,35	
		(m, 1H), 3,18 (dq, $J = 10,2,5,1 \Gamma \mu$,	
		1H), 3,12 – 3,00 (m, 1H), 2,84 – 2,65	
		(m, 1H), 2,36 (d, $J = 7,9$ Гц, 3H),	
		2,08 (s, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4-(метил-5-(4-(метил(тетрагидро-2H-пиран-4-ил)амино)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 2,0 Гц, 1H), 7,35 (q, J = 7,3, 6,7 Гц, 4H), 6,51 (dd, J = 16,8, 10,3 Γц, 1H), 6,38 (dd, J = 16,8, 10,3 Γц, 0H), 6,08 (ddd, J = 16,8, 10,2, 2,5 Γц, 1H), 5,71 (ddd, J = 18,2, 10,2, 2,5 Γц, 1H), 5,62 (ddd, J = 20,1, 10,2, 2,5 Γц, 1H), 4,01 – 3,93 (m, 2H), 3,93 – 3,84 (m, 1H), 3,79 (s, 2H), 3,77 (s, 2H), 3,76 – 3,59 (m, 1H), 3,58 – 3,44 (m, 2H), 3,43 (d, J = 2,8 Γц, 1H), 3,36 – 3,21 (m, 1H), 2,89 – 2,79 (m, 1H), 2,78 (d, J = 7,0 Γц, 3H), 2,10 (s, 1H), 2,08 (s, 1H), 1,97 (p, J = 10,9, 10,3 Γц, 1H), 1,72 (dq, J = 16,5, 12,6 Γц, 4H).	461,35
3-(4-амино-7-метил- 5-(4-(пирролидин-1- карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- карбонитрил	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (s, 1H), 7,67 – 7,60 (m, 2H), 7,48 – 7,41 (m, 2H), 5,59 (s, 2H), 3,79 (s, 3H), 3,73 (td, $J = 9,2, 8,7,$ 6,9 Γц, 1H), 3,66 (t, $J = 8,8$ Гц, 1H), 3,55 – 3,42 (m, 5H), 3,46 – 3,33 (m, 2H), 2,15 (ddd, $J = 14,4, 7,3, 4,8$ Гц, 1H), 2,06 – 1,80 (m, 5H).	416,20
(S)-3-(4-амино-7-метил-5-(4- (пирролидин-1-карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1-карбонитрил	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (s, 1H), 7,67 – 7,60 (m, 2H), 7,48 – 7,41 (m, 2H), 5,59 (s, 2H), 3,79 (s, 3H), 3,73 (td, J = 9,2, 8,7, 6,9 Γц, 1H), 3,66 (t, J = 8,8 Γц, 1H), 3,55 – 3,42 (m, 5H), 3,46 – 3,33 (m, 2H), 2,15 (ddd, J = 14,4, 7,3, 4,8 Γц, 1H), 2,06 – 1,80 (m, 5H).	416,20
(R)-3-(4-амино-7-метил-5-(4- (пирролидин-1-карбонил)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1-карбонитрил	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (s, 1H), 7,67 – 7,60 (m, 2H), 7,48 – 7,41 (m, 2H), 5,59 (s, 2H), 3,79 (s, 3H), 3,73 (td, J = 9,2, 8,7, 6,9 Γц, 1H), 3,66 (t, J = 8,8 Γц, 1H), 3,55 – 3,42 (m, 5H), 3,46 – 3,33 (m, 2H), 2,15 (ddd, J = 14,4, 7,3, 4,8 Γц, 1H), 2,06 – 1,80 (m, 5H).	416,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(4-(4-амино-7-метил-	\wedge	¹H ЯМР (400 МГц, DMSO-d ₆) δ	481,20
6-(1-	_N	8,12 (s, 1H), 7,66 – 7,59 (m, 2H),	
(винилсульфонил)пи	~~ <u>~</u> 0	7,46 - 7,40 (m, 2H), 6,74 (dd, J =	
рролидин-3-ил)-7Н-		16,5, 10,0 Гц, 1H), 6,12 (d, J = 10,0	
пирроло[2,3-	()	Γ ц, 1H), 6,04 (d, J = 16,5 Γ ц, 1H),	
d]пиримидин-5-	NH ₂ O	5,58 (s, 1H), 3,78 (s, 3H), 3,67 (q, J	
ил)фенил)(пирролид	N N N	$= 9,4, 8,9 \Gamma \text{H}, 1\text{H}, 3,49 \text{ (ddd}, J =$	
ин-1-ил)метанон		13,2, 8,5, 6,2 Гц, 5Н), 3,32 – 3,25	
	N 1	(m, 1H), 3,18 (td, $J = 10,0,6,6$ Γ ц,	
		1H), 3,10 (t, $J = 10,1 \Gamma \text{H}$, 1H), 2,17	
		$(dq, J = 12.8, 7.0, 6.2 \Gamma H, 1H), 2.01 -$	
		1,81 (m, 5H).	
(R)-(4-(4-амино-7-	\wedge	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	481,20
метил-6-(1-	_N	8,12 (s, 1H), 7,66 – 7,59 (m, 2H),	
(винилсульфонил)пи	··/_0	7,46 - 7,40 (m, 2H), 6,74 (dd, J =	
рролидин-3-ил)-7Н-		16,5, 10,0 Гц, 1H), 6,12 (d, $J = 10,0$	
пирроло[2,3-	()	Γ ц, 1H), 6,04 (d, J = 16,5 Γ ц, 1H),	
d]пиримидин-5-	NH ₂ O	5,58 (s, 1H), 3,78 (s, 3H), 3,67 (q, J	
ил)фенил)(пирролид	N N N	$= 9,4, 8,9 \Gamma \text{H}, 1\text{H}, 3,49 \text{ (ddd}, J =$	
ин-1-ил)метанон		13,2, 8,5, 6,2 Гц, 5Н), 3,32 – 3,25	
	N 14	(m, 1H), 3,18 (td, $J = 10,0,6,6$ Гц,	
		1H), 3,10 (t, $J = 10,1 \Gamma \mu$, 1H), 2,17	
		$(dq, J = 12.8, 7.0, 6.2 \Gamma \text{u}, 1\text{H}), 2.01 -$	
		1,81 (m, 5H).	
(S)-(4-(4-амино-7-	\wedge	¹H ЯМР (400 МГц, DMSO-d ₆) δ	481,20
метил-6-(1-	N	8,12 (s, 1H), 7,66 – 7,59 (m, 2H),	
(винилсульфонил)пи	~ ~ 0	7,46 - 7,40 (m, 2H), 6,74 (dd, J =	
рролидин-3-ил)-7Н-		16,5, 10,1 Γ u, 1H), 6,12 (d, J = 10,0	
пирроло[2,3-	()	Γ ц, 1H), 6,04 (d, J = 16,6 Γ ц, 1H),	
d]пиримидин-5-	NH ₂ O	5,60 (s, 1H), 3,78 (s, 3H), 3,67 (q, J	
ил)фенил)(пирролид	N N N N	$= 9,9, 9,5 \Gamma \mu, 1H), 3,49 \text{ (ddd}, J =$	
ин-1-ил)метанон		13,2, 8,5, 6,3 Гц, 5Н), 3,32 – 3,25	
	N ',	(m, 1H), 3,18 (td, $J = 10,1, 6,7 \Gamma \mu$,	
		1H), 3,10 (t, J = 10,1 Γ u, 1H), 2,17	
		(dt, $J = 12.9$, 7,1 Γ u, 1H), 2,01 – 1,81	
		(m, 5H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-((R)-3-(4-амино-7-метил-5-((R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,01 (s, 1H), 6,62 (dt, J = 16,7, 11,2 Γц, 1H), 6,46 (s, 1H), 6,17 (dt, J = 16,8, 2,5 Гц, 1H), 5,69 (td, J = 10,0, 2,6 Гц, 1H), 4,05 – 3,80 (m, 2H), 3,68 (d, J = 5,9 Γц, 5H), 3,61 – 3,44 (m, 3H), 3,43 – 3,36 (m, 1H), 3,30 (d, J = 6,9 Γц, 2H), 2,91 (s, 1H), 2,23 (q, J = 36,2, 32,0 Γц, 6H), 1,90 (p, J = 6,7 Γц, 3H), 1,79 (p, J = 6,8 Гц, 3H).	449,25
(S)-1-(3-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-ил)проп-2-ен-1-он	NH ₂ N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,08 (s, 1H), 6,62 (dt, J = 17,4, 9,1 Γц, 3H), 6,21 (d, J = 16,1 Гц, 2H), 5,75 (d, J = 9,3 Гц, 2H), 4,53 (dd, J = 88,7, 39,5 Гц, 4H), 3,73 (s, 3H), 3,63 – 3,47 (m, 2H), 3,31 (s, 2H), 2,96 (d, J = 9,2 Γц, 1H), 2,30 (s, 2H), 2,17 (d, J = 7,2 Γц, 2H), 1,85 (dq, J = 36,4, 6,8 Γц, 6H).	447,25
(R)-1-(3-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)-2-хлорэтан-1-он	NH2 N CI	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 (dd, J = 4,9, 3,1 Гц, 1H), 8,13 (d, J = 2,8 Гц, 1H), 7,44 (d, J = 8,0 Γц, 2H), 7,30 (d, J = 8,0 Γц, 2H), 7,18 (d, J = 5,0 Γц, 1H), 4,37 – 4,08 (m, 2H), 3,93 – 3,41 (m, 7H), 3,25 (s, 1H), 2,43 (s, 3H), 2,36 – 1,92 (m, 2H).	478,25
(R)-1-(3-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1H-пиррол-1-ил)проп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,08 (s, 1H), 6,62 (dt, J = 17,4, 9,1 Γц, 3H), 6,21 (d, J = 16,1 Гц, 2H), 5,75 (d, J = 9,3 Гц, 2H), 4,53 (dd, J = 88,7, 39,5 Γц, 4H), 3,73 (s, 3H), 3,63 – 3,47 (m, 2H), 3,31 (s, 2H), 2,96 (d, J = 9,2 Γц, 1H), 2,30 (s, 2H), 2,17 (d, J = 7,2 Γц, 2H), 1,85 (dq, J = 36,4, 6,8 Γц, 6H).	447,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-(3-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)-2-хлорэтан-1-он	NH ₂ N CI	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 (dd, $J = 5,0$, 3,0 Гц, 1H), 8,13 (d, $J = 2,8$ Гц, 1H), 7,44 (d, $J = 8,0$ Гц, 2H), 7,30 (d, $J = 7,8$ Гц, 2H), 7,18 (d, $J = 5,0$ Гц, 1H), 5,60 (s, 1H), 4,37 – 4,09 (m, 2H), 3,66 (dd, $J =$ 105,6, 8,9 Γц, 7H), 3,28 (d, $J = 23,2$ Гц, 1H), 2,43 (s, 3H), 2,31 – 1,96 (m, 2H).	478,25
1-((R)-3-(4-амино-7-метил-5-((S)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	ONN NH2 NNNNNNO	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,01 (s, 1H), 6,62 (dt, J = 16,7, 11,2 Γц, 1H), 6,46 (s, 1H), 6,17 (dt, J = 16,8, 2,5 Гц, 1H), 5,69 (td, J = 10,0, 2,6 Гц, 1H), 4,05 – 3,80 (m, 2H), 3,68 (d, J = 5,9 Γц, 5H), 3,61 – 3,44 (m, 3H), 3,43 – 3,36 (m, 1H), 3,30 (d, J = 6,9 Γц, 2H), 2,91 (s, 1H), 2,23 (q, J = 36,2, 32,0 Γц, 6H), 1,90 (p, J = 6,7 Гц, 3H), 1,79 (p, J = 6,8 Гц, 3H).	449,25
1-((S)-3-(4-амино-7-метил-5-(((S)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,01 (s, 1H), 6,63 (dd, J = 16,7, 10,3 Γц, 1H), 6,43 (s, 1H), 6,24 – 6,05 (m, 1H), 5,69 (dt, J = 8,9, 2,9 Γц, 2H), 3,99 (s, 1H), 3,68 (d, J = 7,9 Γц, 6H), 3,61 – 3,45 (m, 2H), 3,41 (d, J = 9,5 Γц, 1H), 3,31 (d, J = 9,9 Γц, 2H), 2,90 (s, 1H), 2,44 – 2,31 (m, 1H), 2,24 (d, J = 19,4 Γц, 3H), 2,11 (d, J = 18,0 Γц, 2H), 1,89 (q, J = 6,7, 6,2 Γц, 3H), 1,79 (p, J = 6,7 Γц, 2H).	449,25
1-((S)-3-(4-амино-7-метил-5-((R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он	NH ₂ N N O	¹ H 9MP (400 MΓμ, DMSO- d_6) δ 8,02 (s, 1H), 6,62 (dt, J = 16,6, 11,1 Γμ, 1H), 6,45 (s, 1H), 6,17 (dt, J = 16,8, 2,6 Γμ, 1H), 5,69 (td, J = 11,1, 10,0, 3,6 Γμ, 2H), 4,12 – 3,36 (m, 10H), 3,30 (s, 1H), 2,91 (s, 1H), 2,47 – 1,95 (m, 6H), 1,85 (dq, J = 36,9, 6,8 Γμ, 6H).	449,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-[4-(4-амино-5-{3-		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	498,587
метокси-4-[(6-		8,10 (s, 1H), $7,68$ (t, $J = 7,7$ Гц, 1H),	·
метилпиридин-2-	N	7,17 (d, $J = 8.0 \Gamma\text{H}$, 1H), 7,10 – 7,05	
ил)окси]фенил}-7-		(m, 1H), 6,94 (d, $J = 7,3 \Gamma \mu$, 2H),	
метил-7Н-	NH ₂	6,76 (dd, $J = 16,7, 10,5 \Gamma \mu, 1H$), 6,64	
пирроло[2,3-	N O	$(d, J = 8,2 \Gamma H, 1H), 6,04 (dd, J =$	
d]пиримидин-6-	$N \longrightarrow N \longrightarrow$	16,7, 2,4 Γ II, 1H), 5,61 (dd, J = 10,4,	
ил)пиперидин-1-	N N W	2,5 Γц, 2H), 4,47 (s, 1H), 4,13 – 4,06	
ил]проп-2-ен-1-он	·	(m, 1H), 3,77 (s, 3H), 3,67 (s, 3H),	
		3,09 (s, 2H), 2,64 (s, 2H), 2,31 (s,	
		3H), 1,83 (s, 2H), 1,57 (s, 2H).	
N-((1r,4r)-4-(4-		¹ Н ЯМР (400 МГц, Метанол- <i>d</i> ₄) δ	512,614
амино-5-(3-метокси-		8,11 (s, 1H), 7,71 (t, $J = 7.8 \Gamma \mu$, 1H),	
4-(6-метилпиридин-	O N	7,24 (d, $J = 8.0$ Гц, 1H), 7,13 (d, $J =$	
2-илокси)фенил)-7-		2.0Γ ц, 1H), $7.05 (dd, J = 8.0, 1.9 \Gamma$ ц,	
метил-7Н-	NH ₂	1H), 6,97 (d, $J = 7,3 \Gamma \mu$, 1H), 6,71	
пирроло[2,3-	N	$(d, J = 8,3 \Gamma II, 1H), 6,22 (d, J = 6,0)$	
d]пиримидин-6-	i	Γ ц, 2H), 5,65 (t, J = 6,0 Γ ц, 1H),	
ил)циклогексил)акри		4,60 (s, 1H), 3,87 (s, 3H), 3,78 (s,	
ламид	,	3H), 3,70 (s, 1H), 2,98 (t, $J = 12,5$	
		Γ ц, 1H), 2,42 (s, 3H), 2,01 (d, J =	
		14,2 Гц, 2H), 1,94 (s, 2H), 1,81 (d, <i>J</i>	
		= 12,7 Γμ, 1H), 1,75 (d, $J = 12,6$ Γμ,	
		1H), 1,45 – 1,29 (m, 2H).	
N-((1s,4s)-4-(4-		¹ Н ЯМР (400 МГц, Метанол- <i>d</i> ₄) δ	512,614
амино-5-(3-метокси-	/ 0	8,11 (s, 1H), $7,71$ (t, $J = 7,8$ Гц, 1H),	
4-(6-метилпиридин-	O N	7,24 (d, $J = 8,0$ Гц, 1H), 7,13 (d, $J =$	
2-илокси)фенил)-7-		2,0 Гц, 1H), $7,05$ (dd, $J = 8,0, 1,9$ Гц,	
метил-7Н-	NH ₂	1H), 6,97 (d, $J = 7,3 \Gamma \mu$, 1H), 6,71	
пирроло[2,3-	N	$(d, J = 8,3 \Gamma II, 1H), 6,22 (d, J = 6,0)$	
d]пиримидин-6-	N NH	Γ ц, 2H), 5,65 (t, J = 6,0 Γ ц, 1H),	
ил)циклогексил)акри		4,60 (s, 1H), 3,87 (s, 3H), 3,78 (s,	
ламид	,	3H), 3,70 (s, 1H), 2,98 (t, $J = 12,5$	
		Γ_{II} , 1H), 2,42 (s, 3H), 2,01 (d, $J =$	
		14,2 Гц, 2H), 1,94 (s, 2H), 1,81 (d, <i>J</i>	
		= 12,7 Γμ, 1H), 1,75 (d, $J = 12,6$ Γμ,	
		1H), 1,45 – 1,29 (m, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-[4-(4-амино-5-{3-		¹ Η ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	496,571
метокси-4-[(6-		8,17 (s, 1H), $7,68$ (t, $J = 7,7$ Гц, 1H),	Í
метилпиридин-2-	N N	7,17 (d, $J = 8.0 \Gamma\text{H}$, 1H), 7,09 (d, $J =$	
ил)окси]фенил}-7-	/ \ -0	$2,6 \Gamma$ ц, 1H), $6,95 \text{ (dd, } J = 9,6, 7,6 \Gamma$ ц,	
метил-7Н-	NH ₂	2H), 6,79 (ddd, $J = 26,2, 16,7, 10,4$	
пирроло[2,3-	N O	Γ ц, 1H), 6,67 (d, J = 8,2 Γ ц, 1H),	
d]пиримидин-6-ил)-	'i'	6,12 (dq, $J = 16,7, 2,5$ Гц, 1H), $6,05$	
1,2,3,6-	N W	(s, 2H), 5,73 – 5,64 (m, 1H), 4,25 (s,	
тетрагидропиридин-	,	1H), 4,16 (d, J = 3,3 Гц, 1H), 3,69 –	
1-ил]проп-2-ен-1-он		3,60 (m, 8H), 2,31 (s, 3H), 2,17 (d, <i>J</i>	
		= 11,8 Гц, 2Н).	
N-(4-(4-амино-5-(3-	/	¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	510,598
метокси-4-(6-	N=	8,16 (s, 1H), 8,08 (d, $J = 7,6 \Gamma \mu$, 1H),	
метилпиридин-2-		7,72 - 7,64 (m, 1H), $7,18$ (d, $J = 8,0$	
илокси)фенил)-7-		Γ ц, 1H), 7,11 (d, J = 1,9 Γ ц, 1H),	
метил-7Н-	()	7,01-6,91 (m, 2H), 6,68 (d, $J=8,2$	
пирроло[2,3-	NH ₂	Γ ц, 1H), 6,22 (dd, J = 17,1, 10,0 Γ ц,	
d]пиримидин-6-	N NH	1H), 6,09 (dd, $J = 17,1, 2,4 \Gamma \mu$, 2H),	
ил)циклогекс-3-	NH "	5,86 (dt, $J = 4,9, 2,4$ Гц, 1H), $5,58$	
енил)акриламид	, , , , , , , , , , , , , , , , , , ,	(dd, $J = 10,0, 2,4 \Gamma \mu, 1H$), 3,93 (q, J	
		$= 8.9 \Gamma \mu$, 1H), 3,72 (s, 3H), 3,67 (s,	
		3H), 2,48 – 2,38 (m, 1H), 2,30 (s,	
		3H), 2,21 (d, $J = 10,1, 1H$), 2,13 –	
		2,01 (m, 2H), 1,87 - 1,79 (m, 1H),	
		$1,52$ (dq, $J = 11,2, 5,2$ Γ ц, 1 H).	
1-(3-(4-амино-7-	/	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	454,534
метил-5-(4-(6-	N=	8,12 (d, $J = 2,1$ Гц, 1H), $7,80 - 7,71$	
метилпиридин-2-	0	(m, 1H), 7,45 – 7,38 (m, 2H), 7,19	
илокси)фенил)-7Н-		$(dd, J = 8,6, 3,9 \Gamma II, 2H), 7,04 (d, J =$	
пирроло[2,3-	NH ₂ Q	7,3 Γ ц, 1H), 6,84 (dd, J = 8,2, 4,1 Γ ц,	
d]пиримидин-6-		1H), 6,49 (ddd, $J = 33.0$, 16,8, 10,3	
ил)пирролидин-1-	N N N	Γ ц, 1H), 6,10 (dt, J = 16,8, 1,9 Γ ц,	
ил)проп-2-ен-1-он	"NNN V	1H), 5,63 (ddd, $J = 10.8, 8.9, 2.5 \Gamma \text{H}$,	
	\	2H), $4,00 - 3,91$ (m, 1H), $3,79$ (d, $J =$	
		6,8 Гц, 4H), 3,68 (t, J = 9,3 Гц, 1H),	
		$3,53$ (dq, $J = 18,9, 9,5$ Γ ц, 2H), 2,36	
		(d, $J = 3.8 \Gamma \mu$, 3H), 2.28 – 2.20 (m,	
		1H), 2,17 – 1,93 (m, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5-(4-(6-метилпиридин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)циклогексил)акриламид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,25 (s, 1H), 7,67 (t, J = 7,7 Гц, 1H), 7,47 – 7,39 (m, 2H), 7,30 – 7,23 (m, 2H), 6,97 (d, J = 7,4 Гц, 1H), 6,81 (d, J = 8,1 Гц, 1H), 6,21 (dd, J = 16,9, 1,4 Гц, 1H), 5,97 (dd, J = 16,9, 10,3 Гц, 1H), 5,80 – 5,72 (m, 1H), 5,56 (dd, J = 10,3, 1,4 Гц, 1H), 5,36 (d, J = 7,2 Гц, 1H), 4,26 – 4,19 (m, 1H), 3,87 (s, 3H), 2,92 (dd, J = 16,9, 10,3 Гц, 1H), 2,44 (s, 3H), 1,94 (d, J = 11,5 Гц, 2H), 1,74 (d, J = 11,2 Гц, 2H).	482,588

Пример 15

Трет-бутил-(2S)-4-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-4гидрокси-2-метилпирролидин-1-карбоксилат

[0355] Стадия 1: В круглодонную колбу загружали 4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин (1,7 г, 10,18 ммоль), ТНГ (30 мл) и магнитную мешалку. К вышеуказанному раствору при -78°C по каплям добавляли LDA (7,63 мл, 15,26 ммоль, 2М), после перемешивания в течение 1 часа при той же температуре добавляли раствор трет-бутил(S)-2-метил-4-оксопирролидин-1-карбоксилата (4,05 г, 20,35 ммоль) в ТНГ (10 мл), выдержанный при -78°C, и полученной смеси давали нагреться до комнатной температуры в течение 1 часа. Смесь гасили насыщенным водным раствором NH₄Cl (10 мл) и 3 раза экстрагировали этилацетатом (EtOAc) (40 мл), объединенные органические фазы промывали солевым раствором, сушили над Na₂SO₄ и концентрировали при пониженном давлении. Полученный сырой продукт очищали методом хроматографии на силикагеле (элюирование смесью PE/EtOAc= 2:1), в результате чего получали трет-бутил-(2S)-4-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-4-гидрокси-2-метилпирролидин-1-карбоксилат (550 мг, 1,50 ммоль, выход 15%) в виде твердого вещества почти белого цвета.

Трет-бутил-(2S)-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-4гидрокси-2-метилпирролидин-1-карбоксилат

[0356] **Стадия 2:** В открытую реакционную пробирку объемом 50 мл загружали трет-бутил-(2S)-4-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-4-гидрокси-2-метилпирролидин-1-карбоксилат (550 мг, 1,50 ммоль), NH₃/H₂O (10 мл, 25%~30%) и 1,4-диоксан (10 мл), пробирку плотно закрывали, и раствор смеси перемешивали при 100°C в течение 12 часов. Пробирку охлаждали до комнатной температуры, смесь выливали, концентрировали путем выпаривания растворителя, и полученный сырой

продукт 3 раза промывали DCM (100 мл) и концентрировали, в результате чего получали трет-бутил(2S)-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-4-гидрокси-2-метилпирролидин-1-карбоксилат (400 мг, выход 77%) в виде твердого вещества почти белого цвета.

(S)-7-метил-6-(5-метил-2,5-дигидро-1H-пиррол-3-ил)-7H-пирроло[2,3d]пиримидин-4-амин

[0357] Стадия 3: В круглодонную колбу загружали трет-бутил(2S)-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-4-гидрокси-2-метилпирролидин-1-карбоксилат (380 мг, 1,09 ммоль), НСІ (5 мл) и магнитную мешалку. Смесь перемешивали при 100°С в течение 2 часов. После охлаждения до комнатной температуры полученную смесь концентрировали и разбавляли водой (10 мл), доводили рН до уровня 7-8 и 3 раза экстрагировали DCM (20 мл). Органическую фазу объединяли и концентрировали при пониженном давлении, в результате чего получали сырой продукт, а именно (S)-7-метил-6-(5-метил-2,5-дигидро-1H-пиррол-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (330 мг) в виде твердого вещества коричневого цвета.

7-Метил-6-((5S)-5-метилпирролидин-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0358] **Стадия 4:** В герметизируемую реакционную пробирку загружали (S)-7-метил-6-(5-метил-2,5-дигидро-1H-пиррол-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (330 мг, сырого продукта), Pd/C (30 мг), MeOH (10 мл) и магнитную мешалку. Смесь три раза повергали процедуре вакуумирования и продувки азотом, после чего пять раз вакуумировали и продували водородом. Смесь перемешивали при 50°C в течение ночи. Затем смесь фильтровали, остаток на фильтре 5 раз промывали МеOH, органическую фазу концентрировали, в результате чего получали 7-метил-6-((5S)-5-

метилпирролидин-3-ил)-7H-пирроло[2,3-d]пиримидин-4-амин (220 мг, выход 63% по двум стадиям) в виде твердого вещества коричневого цвета.

Трет-бутил-(2S)-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-карбоксилат

[0359] Стадия 5: В круглодонную колбу загружали 7-метил-6-((5S)-5-метилпирролидин-3-ил)-7Н-пирроло[2,3-d]пиримидин-4-амин (220 мг, 0,95 ммоль), ТЕА (288 мг, 2,85 ммоль), МеОН (5 мл) и магнитную мешалку. Добавляли Вос₂О (308 мг, 1,42 ммоль), и раствор перемешивали в течение 12 ч при комнатной температуре. Смесь разбавляли водой (10 мл) и 3 раза экстрагировали DCM (50 мл). Органическую фазу объединяли и промывали солевым раствором, сушили над Na₂SO₄, концентрировали под вакуумом, и сырой продукт очищали методом препаративной ТСХ элюированием смесью DCM/MeOH (20:1), в результате чего получали третбутил(2S)-4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-карбоксилат (190 мг, выход 60%) в виде твердого вещества коричневого цвета.

Трет-бутил-(2S)-4-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-карбоксилат

[0360] **Стадия 6:** В круглодонную колбу загружали трет-бутил(2S)-4-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-2-метилпирролидин-1-карбоксилат (180 мг, 543 мкмоль), диметилформамид (15 мл) и магнитную мешалку. Затем добавляли NBS (101 мг, 570 мкмоль), и раствор перемешивали при 0°С в течение 1 часа. Смесь разбавляли DCM (50 мл), промывали водой и солевым раствором, сушили над безводным Na₂SO₄, концентрировали при пониженном давлении, и сырой продукт очищали методом препаративной TCX с элюированием смесью DCM:МЕОН (12:1), в результате чего получали трет-бутил(2S)-4-{4-амино-5-бром-7-метил-7H-пирроло[2,3-

d]пиримидин-6-ил}-2-метилпирролидин-1-карбоксилат (200 мг, выход 85%) в виде твердого вещества коричневого цвета.

Трет-бутил(2S)-4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-карбоксилат

[0361] Стадия 7: В герметизируемую реакционную пробирку загружали трет-бутил-(2S)-4-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-2-метилпирролидин-1-карбоксилат (200 мг, 487 мкмоль), 2-метил-6-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиридин (181 мг, 584 мкмоль), К₃РО₄ (309 мг, 1,46 ммоль), Рd(DtBPF)Cl₂ (47,5 мг, 73,0 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли смесь DMF:вода=16:1 (10 мл), и раствор перемешивали в течение 1 часа при 90°С. Смесь разбавляли ЕtOAc (50 мл), промывали водой и насыщенным солевым раствором по 3 раза соответственно. Органическую фазу сушили над безводным Na₂SO₄ и концентрировали при пониженном давлении. Сырой продукт очищали методом флэш-хроматографии на колонке C18, в результате чего получали трет-бутил(2S)-4-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-карбоксилат (140 мг, выход 56%) в виде маслянистой жидкости светло-коричневого цвета.

7-Метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-6-((5S)-5-метилпирролидин-3ил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0362] Стадия 8: В круглодонную колбу загружали трет-бутил(2S)-4-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-карбоксилат (140 мг, 272 мкмоль), ТFA/DCM (1:4 об./об., 15 мл) и магнитную мешалку. Раствор перемешивали при комнатной температуре в течение 3 часов. Растворитель удаляли, и сырой продукт разбавляли DCM, после чего рН доводили до уровня 7 водным раствором Na₂CO₃. Органическую фазу концентрировали, в результате чего получали 7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-6-[(5S)-5-метилпирролидин-3-ил]-7Н-пирроло[2,3-d]пиримидин-4-амин (90,0 мг, выход 100%), который использовали на следующей стадии без дополнительной очистки.

1-((2S)-4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-ил)проп-2-ен-1-он

[0363] **Стадия 9:** В круглодонную колбу загружали ТЕА (65,7 мг, 651 мкмоль), проп-2-еноилхлорид (15,6 мг, 173 мкмоль), 7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-6-[(5S)-5-метилпирролидин-3-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (90,0 мг, 217 мкмоль) и магнитную мешалку. Добавляли дихлорметан (5 мл), и полученный раствор перемешивали при -65°C в течение 0,5 часа. Смесь гасили МеОН и концентрировали.

Сырой продукт очищали методом препаративной ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: вода (раствор NH₄HCO₃ 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 25 В до 50 В в течение 8 мин; 220 нм; RT1: 7,23), в результате чего получали 1-[(2S)-4-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-метилпирролидин-1-ил]проп-2-ен-1-он (38,3 мг, выход 38%) в виде твердого вещества белого цвета.

[0364] Другие такие же соединения, полученные согласно способам, описанным в Примере 15, показаны в Таблице 14 ниже.

Таблица 14. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-((2R)-4-(4-амино-7-		¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	469,40
метил-5-(4-((6-		8,11 (s, 1H), $7,75$ (t, $J = 7,8$ Гц, 1H),	
метилпиридин-2-	N-X	7,43 (d, J = 8,0 Гц, 2H), 7,22 (d, J =	
ил)окси)фенил)-7Н-	l j	8,1 Гц, 2H), $7,02$ (d, $J = 7,4$ Гц, 1H),	
пирроло[2,3-		6,83 (d, $J = 8,2$ Гц, 1H), $6,50$ (dd, $J =$	
d]пиримидин-6-ил)-2-	NH_2 Q	$16,7, 10,4 \Gamma$ ц, 1H), $6,11$ (t, $J = 15,2$	
метилпирролидин-1-		Γ ц, 1H), 5,62 (d, J = 10,7 Γ ц, 1H),	
ил)проп-2-ен-1-он		4,00 (s, 2H), 3,79 (s, 3H), 3,47 - 3,34	
	N N	$(m, J = 2.8 \Gamma \mu, 1H), 2.32 (s, 4H),$	
	`	$1,65 \text{ (d, } J = 9.8 \Gamma\text{u, } 1\text{H), } 1,24 \text{ (s, } 1\text{H),}$	
		1,12 (d, $J = 6,6$ Гц, 3H).	
1-((2S)-4-(4-амино-7-		¹ Н ЯМР (400 МГц, DMSO-d ₆) δ	469,20
метил-5-(4-((6-		8,12 (s, 1H), 7,75 (t, $J = 7,8$ Гц, 1H),	
метилпиридин-2-	N~	7,44 (d, $J = 8,1$ Гц, 2H), $7,27 - 7,18$	
ил)окси)фенил)-7Н-		(m, 2H), 7,03 (d = 7,3 Гц, 1H), 6,83	
пирроло[2,3-		(d, $J = 8.2 \Gamma \mu$, 1H), $6.64 - 6.43$ (m,	
d]пиримидин-6-ил)-2-	NH_2 Q	1H), 6,17 – 6,07 (m, 1H), 5,75 – 5,38	
метилпирролидин-1-		(m, 2H), 4,24 – 3,94 (m, 2H), 3,79	
ил)проп-2-ен-1-он		$(d, J = 3.8 \Gamma \mu, 3H), 3.68 - 3.36 (m,$	
	N N	2H), 2,34 – 2,32 (m, 4H), 1,81 – 1,60	
	1	(m, 1H), 1,22 – 1,06 (m, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,2-диметилпирролидин-1-ил)проп-2-ен-1-он	NH ₂ O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (s, 1H), 7,76 (t, J = 7,7 Γ ц, 1H), 7,43 (d, J = 8,0 Γ ц, 1H), 7,38 (d, J = 8,2 Γ ц, 1H), 7,17 (t, J = 8,8 Γ ц, 2H), 7,03 (d, J = 7,4 Γ ц, 1H), 6,85 (d, J = 8,2 Γ ц, 1H), 6,42 (dd, J = 16,5, 10,4 Γ ц, 1H), 6,03 (d, J = 16,6 Γ ц, 1H), 5,52 (d, J = 10,3 Γ ц, 1H), 3,80 (s, 3H), 3,61 (t, J = 8,6 Γ ц, 1H), 3,59(s, 1H), 2,33 (s, 3H), 2,15 (s, 2H), 1,46 (s, 3H), 1,16 (s, 4H).	483,40
(R)-1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-метил-2,5-дигидро-1Н-пиррол-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,19 (s, 1H), 7,76 (dt, J = 12,1, 7,7 Γц, 1H), 7,44 – 7,37 (m, 2H), 7,23 (t, J = 5,3 Γц, 2H), 7,04 (t, J = 8,5 Γц, 1H), 6,82 (t, J = 9,7 Γц, 1H), 6,25 (d, J = 57,7 Γц, 1H), 5,94 (s, 2H), 5,33 – 4,74 (m, 2H), 4,57 – 4,19 (m, 3H), 3,75 (d, J = 4,7 Γц, 3H), 2,37 (s, 3H), 1,84 (s, 2H), 1,73 (s, 1H), 1,21 (d, J = 27,1 Γц, 1H), 0,96 (dd, J = 25,8, 6,3 Γц, 3H).	481,25
(S)-1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-метил-2,5-дигидро-1Н-пиррол-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 (s, 1H), 7,76 (dt, J = 12,1, 7,8 Γц, 1H), 7,44 – 7,37 (m, 2H), 7,23 (dd, J = 8,8, 3,0 Γц, 2H), 7,04 (t, J = 8,5 Γц, 1H), 6,82 (t, J = 9,7 Γц, 1H), 6,24 (d, J = 57,7 Γц, 1H), 5,94 (s, 2H), 5,31 – 4,75 (m, 2H), 4,60 – 4,17 (m, 3H), 3,75 (d, J = 5,0 Γц, 3H), 2,37 (s, 3H), 1,79 (d, J = 45,3 Γц, 3H), 0,96 (dd, J = 26,0, 6,3 Γц, 3H).	481,25
(R)-1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-метил-2,5-дигидро-1Н-пиррол-1-ил)проп-2-ен-1-он	NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,19 (d, J = 2,0 Гц, 1H), 7,75 (t, J = 7,7 Гц, 1H), 7,41 (t, J = 8,0 Гц, 2H), 7,22 (dd, J = 8,8, 2,3 Γц, 2H), 7,03 (d, J = 7,4 Γц, 1H), 6,80 (d, J = 8,1 Γц, 1H), 6,60 – 6,22 (m, 2H), 6,15 (ddd, J = 16,8, 5,1, 2,5 Γц, 1H), 5,97 (s, 2H), 5,66 (ddd, J = 22,4, 10,1, 2,5 Γц, 1H), 4,60 – 4,15 (m, 3H), 3,75 (d, J = 4,6 Γц, 3H), 2,36 (d, J = 8,8 Γц, 3H), 1,01 (dd, J = 6,2, 4,3 Γц, 3H).	467,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-метил-2,5-дигидро-1Н-пиррол-1-ил)проп-2-ен-1-он	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,19 (d, J = 2,0 Гц, 1H), 7,75 (t, J = 7,7 Гц, 1H), 7,41 (t, J = 8,0 Гц, 2H), 7,22 (dd, J = 8,8, 2,3 Γц, 2H), 7,03 (d, J = 7,3 Γц, 1H), 6,80 (d, J = 8,1 Γц, 1H), 6,55 (dd, J = 16,7, 10,3 Γц, 1H), 6,35 – 5,84 (m, 3H), 5,66 (ddd, J = 22,4, 10,2, 2,5 Γц, 1H), 4,60 – 4,14 (m, 3H), 3,75 (d, J = 4,6 Γц, 3H), 2,36 (d, J = 8,8 Γц, 3H), 1,01 (dd, J = 6,2, 4,4 Γц, 3H).	467,15
1-((2R,3R)-3-(4-амино- 7-метил-5-(4-((6- метилпиридин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метилпирролидин-1- ил)проп-2-ен-1-он	NH ₂ N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,11 (d, J = 0,9 Гц, 1H), 7,77 (t, J = 7,7 Гц, 1H), 7,40 (td, J = 5,7, 2,7 Гц, 2H), 7,19 (tt, J = 8,2, 2,2 Γц, 2H), 7,04 (dd, J = 7,4, 2,1 Γц, 1H), 6,85 (d, J = 8,1 Γц, 1H), 6,71 (dd, J = 16,6, 10,3 Γц, 1H), 6,51 (dd, J = 16,7, 10,3 Γц, 1H), 6,15 - 5,43 (ddd, J = 16,8, 12,1, 2,5 Γц, 2H), 4,55 (dp, J = 31,3, 6,6 Γц, 1H), 3,89 – 3,62 (m, 5H), 3,42 – 3,33 (m, 1H), 2,35 (d, J = 3,6 Гц, 3H) 1,85 (dtd, J = 22,6, 12,4, 6,1 Гц, 2H), 0,83 (d, J = 6,5 Гц, 3H).	469,20
1-((2S,3S)-3-(4-амино- 7-метил-5-(4-((6- метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- метилпирролидин-1- ил)проп-2-ен-1-он	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (s, 1H), 7,65 (t, J = 7,8 Γ ц, 1H), 7,43 (t, J = 3,9 Γ ц, 1H), 7,41 – 7,30 (m, 2H), 7,07 (dd, J = 8,1, 1,0 Γ ц, 1H), 7,00 (d, J = 2,0 Γ ц, 1H), 6,92 (d, J = 7,3 Γ ц, 1H), 6,81 (dd, J = 8,0, 1,6 Γ ц, 1H), 6,67 (ddt, J = 21,6, 8,0, 4,6 Γ ц, 2H), 6,23 (dt, J = 16,8, 2,2 Γ ц, 1H), 6,05 (s, 1H), 5,76 (ddd, J = 10,3, 3,7, 2,3 Γ ц, 1H), 5,00 (s, 1H), 4,95 (s, 1H), 4,73 (d, J = 17,7 Γ ц, 2H), 3,62 (d, J = 1,7, 3H), 3,56 (s, 3H), 2,29 (d, J = 3,6 Γ ц, 3H).	533,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-метил-2,5-дигидро-1Н-пиррол-1-ил)-2-метилпроп-2-ен-1-он	NH ₂ O O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,18 (s, 1H), 7,61 (d, J = 8,0 Гц, 2H), 7,43 (d, J = 7,7 Гц, 2H), 6,27 – 6,18 (m, 1H), 6,10 (s, 1H), 5,21 (d, J = 10,5 Γц, 1H), 5,07 (s, 1H), 4,89 (s, 1H), 4,17 – 4,03 (m, 1H), 3,98 (d, J = 14,4 Γц, 1H), 3,77 (s, 3H), 3,50 (t, J = 6,7 Γц, 2H), 3,44 (t, J = 6,4 Γц, 2H), 1,87 (dq, J = 17,8, 6,5 Γц, 5H), 1,70 (s, 2H), 1,26 (d, J = 6,4 Γц, 2H), 1,19 (d, J = 6,3 Γц, 1H).	471,30
1-((2S,4R)-4-(4-амино- 7-метил-5-(4- (пиперидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метилпирролидин-1- ил)проп-2-ен-1-он	NH ₂ O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (s, 1H), 7,48 (s, 4H), 6,52 (ddd, $J = 27,6$, 16,6, 10,2 Гц, 1H), 6,20 – 5,95 (m, 1H), 5,85 – 5,13 (m, 3H), 4,22 – 3,90 (m, 2H), 3,80 (s, 3H), 3,71 – 3,51 (m, 3H), 3,44 (t, $J = 10,9$ Гц, 1H), 3,14 (t, $J = 11,7$ Гц, 1H), 2,39 – 2,23 (m, 1H), 1,84 – 1,62 (m, 3H), 1,55 (t, $J = 10,8$ Гц, 5H), 1,06 (d, $J = 6,3$ Гц, 3H).	473,30
1-((2S,4R)-4-(4-амино- 5-(2-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-6-ил)-2- метилпирролидин-1- ил)проп-2-ен-1-он	N O N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,57 – 8,43 (m, 1H), 8,14 (s, 1H), 7,50 (td, J = 8,5, 3,8 Γц, 1H), 7,36 (ddt, J = 10,0, 4,8, 2,4 Γц, 1H), 7,27 – 7,13 (m, 2H), 6,75 – 6,41 (m, 1H), 6,19 – 5,98 (m, 1H), 5,80 – 5,33 (m, 3H), 4,36 – 3,91 (m, 2H), 3,80 (d, J = 4,0 Γц, 3H), 3,69 – 3,53 (m, 1H), 3,42 (dd, J = 20,4, 10,2 Γц, 1H), 2,42 (d, J = 8,0 Γц, 4H), 2,04 – 1,38 (m, 1H), 1,24 – 1,00 (m, 3H).	488,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-((2S,4S)-4-(4-амино-		¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	473,30
7-метил-5-(4-]	8,13 (d, $J = 1,5$ Гц, 1H), $7,45$ (dd, $J =$	
(пиперидин-1-	<u></u>	5,9,3,0 Гц, 4H), $6,49$ (ddd, $J = 69,2$,	
карбонил)фенил)-7Н-		16,7, 10,3 Γ ц, 1 H), 6,11 (ddd, J =	
пирроло[2,3-		16,4, 13,1, 2,5 Гц, 1H), 5,63 (ddd, <i>J</i>	
d]пиримидин-6-ил)-2-	NH ₂ O	$= 21.8, 10.2, 2.5 \Gamma \text{H}, 3\text{H}, 4.22 (dt, J)$	
метилпирролидин-1-		$= 39.9, 7.0 \Gamma \text{u}, 1\text{H}), 3.92 \text{ (dd, } J =$	
ил)проп-2-ен-1-он		15,7, 7,8 Γ ц, 2H), 3,79 (d, J = 11,1	
	N N	Γ ц, 3H), 3,70 (dd, J = 12,5, 9,0 Γ ц,	
	,	1H), 3,56 (d, J = 17,7 Γ ц, 3H), 3,42	
		(d, $J = 12.6 \Gamma \mu$, 1H), 2,37 – 2,06 (m,	
		1H), 1,95 (d, <i>J</i> = 12,4, 6,8 Гц, 1H),	
		1,58 (d, $J = 41,4$ Гц, 6H), $1,24$ (s,	
		1H), 1,14 (dd, $J = 10,0, 6,4 \Gamma \mu, 3H$).	
1-((2S)-4-(4-амино-7-	0.	¹ Η ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	463,30
метил-5-((R)-4-	N	8,02 (d, $J = 16,1$ Гц, 1H), 6,63 (ddd,	
(пирролидин-1-		$J = 26,2, 16,6, 10,2 \Gamma$ ц, 1H), 6,46 (s,	
карбонил)циклогекс-		1H), 6,16 (td, $J = 16,7, 2,6 \Gamma \mu$, 1H),	
1-ен-1-ил)-7Н-	NH ₂ O	5,88 – 5,49 (m, 2H), 4,44 – 3,96 (m,	
пирроло[2,3-	N N N	2H), 3,67 (d, $J = 5,2$ Γ ц, 4H), 3,52	
d]пиримидин-6-ил)-2-		(q, $J = 8,8,7,4 \Gamma \mu, 3H$), 3,32 (d, $J =$	
метилпирролидин-1-	N	5,6 Γ u, 2H), 2,94 (s, 1H), 2,43 (d, J =	
ил)проп-2-ен-1-он		6,3 Гц, 1H), 2,37 – 2,19 (m, 3H),	
		2,18 - 1,99 (m, 2H), 1,89 (q, J = 6,6	
		Γ ц, 3H), 1,80 (h, J = 8,1, 7,0 Γ ц,	
		3H), 1,27 (d, <i>J</i> = 18,0, 6,3 Гц, 3H).	
1-((2S)-4-(4-амино-7-	0	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	463,35
метил-5-((S)-4-	N	8,02 (d, $J = 16,7$ Гц, 1H), 6,64 (td, J	
(пирролидин-1-	abs	= 16,7, 10,5 Γц, 1H), 6,49 (s, 1H),	
карбонил)циклогекс-		6,28 – 6,03 (m, 1H), 5,87 – 5,58 (m,	
1-ен-1-ил)-7Н-	NH ₂ O	2H), 4,16 (d, J = 74,3 Γ ц, 2H), 3,67	
пирроло[2,3-	N N N	(d, $J = 4,2$ Гц, 4H), 3,53 (s, 3H), 3,31	
d]пиримидин-6-ил)-2-	abs	(s, 2H), 2,94 (s, 1H), 2,33 (s, 1H),	
метилпирролидин-1-	, , , , , , , , , , , , , , , , , , ,	2,27 (s, 4H), 1,89 (q, $J = 6,7 \Gamma \text{H}, 4\text{H}$),	
ил)проп-2-ен-1-он		1,80 (q, J = 6,7 Гц, 3H), 1,27 (dd, J =	
		21,1, 7,7 Гц, 3Н).	

Пример 16

Схема 13

Трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-4-фторпирролидин-1-карбоксилат

[0365] **Стадия 1:** В круглодонную колбу загружали трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-4-гидроксипирролидин-1-карбоксилат (200 мг, 0,39 ммоль), DCM (10 мл) и магнитную мешалку. Добавляли DAST(74,8 мг, 0,46 ммоль), и полученный раствор перемешивали в течение 3 часов при 0°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-

ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-4-фторпирролидин-1-карбоксилат (127 мг, выход 63%) в виде желтого твердого вещества.

6-(4-Аторпирролидин-3-ил)-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0366] Стадия 2: В герметизируемую реакционную пробирку загружали трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-4-фторпирролидин-1-карбоксилат (127 мг, 0,24 ммоль), DCM (5 мл) и магнитную мешалку. Добавляли ТFA (2 мл), и раствор перемешивали в течение 1 часа при 25°С. Реакционную смесь концентрировали, разбавляли водой, доводили ее величину рН до уровня 7 насыщенным водным раствором Na₂CO₃, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ. После концентрирования под вакуумом получали 6-(4-фторпирролидин-3-ил)-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин (77 мг, выход 77%) в виде твердого вещества коричневого цвета.

1-(3-(4-Амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)-4-фторпирролидин-1-ил)проп-2-ен-1-он

[0367] Стадия 3: В круглодонную колбу загружали 6-(4-фторпирролидин-3-ил)-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин (77 мг, 180 мкмоль), ТЕА (55,8 мг, 0,55 ммоль) DCM (5 мл) и магнитную мешалку. Затем добавляли акрилоилхлорид (13,2 мг, 147 мкмоль), и раствор перемешивали в течение 0,5 часа при -35°С. Реакционную смесь гасили МеОН, затем смесь концентрировали, и сырой материал очищали методом препаративной ВЭЖХ. После лиофилизации получали 1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-4-фторпирролидин-1-ил)проп-2-ен-1-он (5,2 мг, выход 6%) в виде твердого аморфного вещества белого цвета.

[0368] Другие такие же соединения, полученные согласно способам, описанным в Примере 16, показаны в Таблице 15 ниже.

Таблица 15. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-4-фторпирролидин-1-ил)проп-2-ен-1-он	NH ₂ O N N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,46 (s, 1H), 7,76 (td, J = 7,8, 4,4 Γц, 1H), 7,42 (s, 3H), 7,18 (s, 2H), 7,06 (dd, J = 7,3, 2,7 Γц, 1H), 6,87 (t, J = 8,1 Γц, 1H), 6,38 (ddd, J = 50,2, 16,7, 10,3 Γц, 1H), 6,07 (dt, J = 16,7, 2,8 Γц, 1H), 5,62 (td, J = 10,1, 2,4 Γц, 1H), 5,46 (ddd, J = 52,8, 19,4, 4,3 Γц, 1H), 4,58 – 3,27 (m, 8H), 2,30 (d, J = 1,4 Γμ, 3H)	473,20
	\ F	(m, 8H), 2,39 (d, $J = 1,4 \Gamma \text{II}$, 3H).	

Пример 17

Схема 14

Трет-бутил-3-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3гидроксипирролидин-1-карбоксилат

[0369] **Стадия 1:** В герметизируемую реакционную пробирку загружали 4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин (5 г, 29,9 ммоль), тетрагидрофуран (200 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем при -78°C по каплям добавляли LDA (30 мл, 59,9 ммоль), и смесь перемешивали в течение 30 минут при -78°C. Затем к полученной смеси по каплям

добавляли раствор трет-бутил-3-оксопирролидин-1-карбоксилата (17 г, 89,8 ммоль) в 100 мл ТНГ, и смесь перемешивали в течение 1 часа при -78°С. Смесь нагревали до комнатной температуры, после чего реакционную смесь разбавляли Н₂О (300 мл), и водную фазу трижды экстрагировали этилацетатом (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали, и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью PE/EA=10/1). После концентрирования под вакуумом получали трет-бутил-3-(4-хлор-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат (2,20 г, выход 20,9%) в виде твердого вещества светло-желтого цвета.

Трет-бутил-3-(4-хлор-5-иод-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3гидроксипирролидин-1-карбоксилат

[0370] **Стадия 2:** В круглодонную колбу загружали трет-бутил-3-{4-хлор-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил}-3-гидроксипирролидин-1-карбоксилат (976 мг, 2,76 ммоль), NIS (621 мг, 2,76 ммоль), TFA (943 мг, 8,28 ммоль) и магнитную мешалку. Затем добавляли DCM (20 мл), и раствор перемешивали при комнатной температуре в течение 3 часов под защитой атмосферы азота. Смесь гасили насыщенным водным раствором Na₂S₂O₃ (10 мл), и экстрагировали DCM (3*40 мл), органическую фазу объединяли и сушили над безводным раствором Na₂SO₄, концентрировали при пониженном давлении, и сырой продукт очищали методом флеш-хроматографии на колонке C18, в результате чего получали трет-бутил-3-{4-хлор-5-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил}-3-гидроксипирролидин-1-карбоксилата (980 мг, выход 73,9%) в виде твердого вещества белого цвета.

Трет-бутил-3-(4-хлор-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат

[0371] Стадия 3: В герметизируемую реакционную пробирку загружали трет-бутил-3- $\{4$ -хлор-5-иод-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил $\}$ -3-гидроксипирролидин-1-карбоксилат (800 мг, 1,67 ммоль), 2-метил-6-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиридин (519 мг, 1,67 ммоль), Pd(PPh₃)₂Cl₂ (175 мг, 250 мкмоль) К₃PO₄ (1,06 г, 5,01 ммоль) и магнитную мешалку. Добавляли смесь DMF/H₂O (25 мл), и раствор перемешивали при 50°C в течение 1 часа. Смесь разбавляли этилацетатом (EtOAc) (100 мл) и промывали водой (3*50 мл), органическую фазу концентрировали, и сырой продукт очищали методом флеш-хроматографии на колонке C18, после чего дополнительно очищали с помощью препаративной ТСХ с элюированием смесью EA:PE = 2:1, в результате чего получали трет-бутил-3-[4-хлор-7-метил-5-[4-[(6-метилпиридин-2-ил)окси]фенил[4]-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилата (140 мг, выход 15,6%) в виде твердого вещества светло-желтого цвета.

Трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат

[0372] **Стадия 4:** В герметизируемую реакционную пробирку загружали трет-бутил-3-(4-хлор-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат (120 мг, 223 мкмоль), NH₃H₂O (1,82 г, 52,0 ммоль) и магнитную мешалку. Добавляли диоксан (1,5 мл), плотно закрывали пробирку, и перемешивали раствор при 100°C в течение 10 часов. Смесь концентрировали, и сырой продукт очищали методом флеш-хроматографии на колонке C18, в результате чего получали трет-бутил-3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилата (62,4 мг, выход 54,2%) в виде маслянистой жидкости светло-желтого цвета.

3-(4-Амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)пирролидин-3-ол

[0373] Стадия 5: В круглодонную колбу загружали трет-бутил-3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат (80,0 мг, 154 мкмоль), ТFA (52,6 мг, 462 мкмоль) и магнитную мешалку. Добавляли DCM (25 мл), и раствор перемешивали при комнатной температуре в течение 5 часов. Смесь разбавляли водой и ее рН доводили до уровня 7 водным раствором Na₂CO₃, затем экстрагировали DCM (8*40 мл), органическую фазу концентрировали, и полученный сырой продукт, а именно 3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-3-ол (60,0 мг, выход 93,6%), использовали для следующей стадии без дополнительной очистки.

1-(3-(4-Амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)-3-гидроксипирролидин-1-ил)проп-2-ен-1-он

[0374] **Стадия 6:** В круглодонную колбу загружали 3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-3-ол (40 мг, 96,0 мкмоль), ТЕА (29,0 мг, 288 мкмоль), DСМ (15 мл) и магнитную мешалку. Затем добавляли проп-2-еноилхлорид (6,95 мг, 76,8 мкмоль, 3,4 мл), и полученный раствор перемешивали при -45°С в течение 0,5 часа. Смесь гасили МеОН, удаляли растворитель, и сырой продукт очищали методом ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 19*250 мм, 5 мкм), в результате чего получали 1-[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-ил]проп-2-ен-1-он (10,5 мг, выход 23,2%) в виде твердого вещества белого цвета.

[0375] Характеристики соединений, полученных согласно способам, описанным в Примере 17, показаны в Таблице 16 ниже.

Таблица 16. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-(4-амино-7-		¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,14	471,20
метил-5-(4-((6-	/	(s, 1H), 7,76 (t, $J = 7,6 \Gamma \mu$, 1H), 7,52 –	
метилпиридин-2-	N N	7,43(m, 2H), 7,24 – 7,21(m, 2H), 7,04	
ил)окси)фенил)-	0	(dd, $J = 7,4$, 1,9 Γ u, 1H), 6,84 (d, $J = 8,2$	
7Н-пирроло[2,3-		Гц, 1H), 6,61 – 6,25 (m, 1H), 6,15 –	
d]пиримидин-6-	NH ₂	6,05 (m, 1H), 5,88 – 5,83 (m, 1H), 5,65	
ил)-3-	- /	-5,59 (m, 1H), 3,96 (d, $J = 4,9$ Гц, 3H),	
гидроксипирролид	N HO N	3,89 - 3,81 (m, 1H), $3,69 - 3,53$ (m,	
ин-1-ил)проп-2-ен-	N N	1H), 3,47 – 3,41 (m, 1H), 3,29 – 3,22	
1-он	" ' ~ 0	(m, 1H), 2,36 – 2,30 (m, 3H), 2,21 –	
		2,10 (m, 1H), 2,16 – 1,88 (m, 1H).	

Пример 18.

Схема 15

Трет-бутил-3-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-2,5дигидро-1H-пиррол-1-карбоксилат

[0376] **Стадия 1:** В круглодонную колбу загружали 5-бром-6-иод-7-метилпирроло[2,3-d]пиримидин-4-амин (3 г, 8,50 ммоль), трет-бутил-3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-2,5-дигидропиррол-1-карбоксилат (3,01 г, 10,20 ммоль), $Pd(PPh_3)_4$ (982 мг, 850 мкмоль), K_3PO_4 (5,41 г, 25,5 ммоль) и магнитную мешалку. Добавляли смесь диметилформамид/вода (40 мл, об./об. =16:1), и полученный раствор

перемешивали в течение 2 часов при 50°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали трет-бутил-3-(4-амино-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1Н-пиррол-1-карбоксилат (2 г, выход 60%) в виде твердого вещества желтого цвета.

Трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидро-1H-пиррол-1-карбоксилат

[0377] Стадия 2: В герметизируемую реакционную пробирку загружали трет-бутил-3-[4-амино-5-бром-7-метилпирроло[2,3-d]пиримидин-6-ил]-2,5-дигидропиррол-1-карбоксилат (600 мг, 1,52 ммоль), 2-метил-6-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиридин (568 мг, 1,83 ммоль), Pd(DtBPF)Cl₂ (99 мг, 152 мкмоль), К₃РО₄ (0,97 г, 4,56 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли смесь DMF:вода=16:1 (10 мл), и раствор перемешивали в течение 3 часов при 90°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали трет-бутил-3-(4-амино-7-метил-5-[4-[(6-метилпиридин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидропиррол-1-карбоксилат (510 мг, выход 67%) в виде твердого вещества почти белого цвета.

Трет-бутил-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-4-гидроксипирролидин-1-карбоксилат

[0378] Стадия 3: В круглодонную колбу загружали трет-бутил-3-(4-амино-7-метил-5-[4-[(6-метилпиридин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-2,5-дигидропиррол-1-карбоксилат (450 мг, 0,90 ммоль), ТНГ (10 мл) и магнитную мешалку. Затем при 0°С добавляли ВН3-ТНГ (9,03 мл, 9,03 ммоль, 1М раствор в ТНГ), и полученный раствор перемешивали в течение 2 часов при комнатной температуре. После этого добавляли NаOH (9,03 мл, 9,03 ммоль, 1М раствор в H₂O) и H₂O₂ (0,21 мл, 30% раствор в воде) и перемешивали в течение еще 2 часов. Реакционную смесь гасили водой и доводили ее значение рН до уровня 7 раствором НС1 (2М), экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали трет-бутил-3-(4-амино-7-метил-5-[4-[(6-метилпиридин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-4-гидроксипирролидин-1-карбоксилат (160 мг, выход 34%) в виде твердого аморфного вещества коричневого цвета.

4-(4-Амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)пирролидин-3-ол

[0379] Стадия 4: В герметизируемую реакционную пробирку загружали трет-бутил-3-(4-амино-7-метил-5-[4-[(6-метилпиридин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-

6-ил)-4-гидроксипирролидин-1-карбоксилат (160 мг, 0,31 ммоль), DCM (5 мл) и магнитную мешалку. Добавляли TFA (2 мл), и раствор перемешивали в течение 1 часа при 25°С. Реакционную смесь концентрировали, разбавляли водой, доводили ее величину рН до уровня 7 насыщенным водным раствором Na₂CO₃, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной TCX. После концентрирования под вакуумом получали 4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-3-ол (100 мг, выход 78%) в виде твердого вещества коричневого цвета.

1-(3-(4-Амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)-4-гидроксипирролидин-1-ил)проп-2-ен-1-он

[0380] Стадия 5: В круглодонную колбу загружали 4-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-3-ол (82 мг, 170 мкмоль), ТЕА (52,8 мг, 0,52 ммоль), DCМ (5 мл) и магнитную мешалку. Затем добавляли акрилоилхлорид (12,8 мг, 142 мкмоль), и полученный раствор перемешивали в течение 0,5 часа при -35°С. Реакционную смесь гасили МеОН, полученную в результате смесь концентрировали, и сырой материал очищали методом препаративной ВЭЖХ (Колонка: Xselect CSH OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: вода(0,1% раствор FA), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 5 В до 27 В в течение 7 мин; 220 нм; RT1: 6,10, 6,80; RT2: -). После лиофилизации получали 1-(3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-4-гидроксипирролидин-1-ил)проп-2-ен-1-он (47,4 мг, выход 57%), содержащий: 1 (19,1 мг) в виде аморфного твердого вещества белого цвета и 2 (28,3 мг) в виде твердого вещества белого цвета белого цвета белого цвета.

[0381] Другие такие же соединения, полученные согласно способам, описанным в Примере 18, показаны в Таблице 17 ниже.

Таблица 17. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-((3R,4S)-3-(4- амино-7-метил-5-(4- ((6-метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)- 4- гидроксипирролидин -1-ил)проп-2-ен-1-он	NH ₂ O N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,42 (s, 1H), 7,76 (td, J = 7,8, 3,2 Γц, 1H), 7,44 (d, J = 8,4 Γц, 2H), 7,21 (d, J = 7,8 Γц, 2H), 7,05 (d, J = 7,4 Γц, 1H), 6,85 (t, J = 7,1 Γц, 1H), 6,41 (ddd, J = 59,1, 16,7, 10,2 Γц, 1H), 6,18 – 5,98 (m, 1H), 5,62 (t, J = 11,2 Γц, 1H), 4,42 (dd, J = 18,5, 7,3 Γц, 1H), 4,05 – 3,89 (m, 3H), 3,76 (s, 3H), 3,42 – 3,08 (m, 2H), 2,38 (s, 3H).	471,30
1-((3R,4R)-3-(4- амино-7-метил-5-(4- ((6-метилпиридин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)- 4- гидроксипирролидин -1-ил)проп-2-ен-1-он	NH ₂ N HO	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,40 (d, J = 2,1 Γ ц, 1H), 7,77 (td, J = 7,8, 3,7 Γ ц, 1H), 7,49 (ddd, J = 9,4, 6,7, 2,9 Γ ц, 2H), 7,34 – 7,18 (m, 2H), 7,06 (dd, J = 7,3, 2,4 Γ ц, 1H), 6,86 (d, J = 8,1 Γ ц, 1H), 6,43 (ddd, J = 104,5, 16,8, 10,3 Γ ц, 1H), 6,18 – 5,90 (m, 2H), 5,63 (ddd, J = 26,1, 10,2, 2,4 Γ ц, 1H), 4,05 (d, J = 4,3 Γ ц, 3H), 3,93 – 3,78 (m, 1H), 3,71 – 3,22 (m, 3H), 2,38 (d, J = 11,5 Γ ц, 3H), 2,34 – 2,10 (m, 1H), 2,00 (dt, J = 38,0, 10,5 Γ ц, 1H).	471,30

Пример 19

Схема 16

Трет-бутил-3-(4-хлор-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат

[0382] Стадия 1: В герметизируемую реакционную пробирку загружали трет-бутил-3-(4-хлор-5-иод-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат (700 мг, 1,46 ммоль), 2-метил-6-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиридин (546 мг, 1,75 ммоль), $Pd(PPh_3)_2Cl_2$ (102 мг, 146 мкмоль) $Pd(Ph_3)_2Cl_2$ (102 мг, 146 мкмоль) Pd(Ph

Трет-бутил-3-(4-хлор-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-фторпирролидин-1-карбоксилат

[0383] Стадия 2: В круглодонную колбу загружали трет-бутил-3-(4-хлор-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-гидроксипирролидин-1-карбоксилат (90,0 мг, 167 мкмоль), DAST (4,00 мг, 24,8 мкмоль) и магнитную мешалку. Затем добавляли дихлорметан (10 мл), и полученный раствор перемешивали при комнатной температуре в течение 2 часов. Смесь гасили водным раствором NaHCO₃ (10 мл) и 3 раза экстрагировали DCM (30 мл), органические фазы концентрировали, и сырой продукт очищали методом препаративной ТСХ (РЕ:EA = 1:1), в результате чего получали трет-бутил-3-(4-хлор-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-фторпирролидин-1-карбоксилат (40,0 мг, выход 44%) в виде твердого вещества коричневого цвета.

Трет-бутил3-амино-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-карбоксилат

[0384] Стадия 3: В герметизируемую пробирку загружали трет-бутил-3-(4-хлор-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-3-фторпирролидин-1-карбоксилат (40,0 мг, 74,3 мкмоль), смесь NH₃H₂O/1,4-диоксан (46 мл, об./об. =1:1) и магнитную мешалку, после чего пробирку герметизировали, и смесь перемешивали в течение 18 часов при 100°С.Смесь концентрировали, и сырой продукт очищали методом флеш-хроматографии на колонке C18, в результате чего получали трет-бутил-3-амино-3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-карбоксилат (26,0 мг, выход 68%) в виде маслянистой жидкости желтого цвета.

6-(3-Аминопирролидин-3-ил)-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0385] **Стадия 4:** В круглодонную колбу загружали трет-бутил-3-амино-3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-карбоксилат (26,0 мг, 50,4 мкмоль), смесь TFA/DCM (5 мл, об./об. =1:2) и магнитную мешалку, после чего раствор перемешивали при комнатной температуре в течение 2 часов. Смесь концентрировали, и сырой продукт очищали

методом флеш-хроматографии на колонке С18, в результате чего получали 3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-3-амин (15,0 мг, выход 72%) в виде маслянистой жидкости желтого цвета.

1-(3-Амино-3-(4-амино-7-метил-5-(4-((6-метилпиридин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил)проп-2-ен-1-он

[0386] **Стадия 5:** В круглодонную колбу загружали 3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)пирролидин-3-амин (15,0 мг, 36,1 мкмоль), проп-2-еноилхлорид (2,60 мг, 28,8 мкмоль), ТЕА (10,9 мг, 108 мкмоль) и магнитную мешалку. Затем добавляли дихлорметан (1 мл), и полученный раствор перемешивали при -65°С в течение 0,5 часа. Смесь гасили МеОН и концентрировали при пониженном давлении, сырой продукт очищали методом ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: не определена, Подвижная фаза В: не определена; Скорость пропускания: 60 мл/мин; Градиент: от 2 В до 22 В в течение 8 мин; 220 нм), в результате чего получали 1-[3-амино-3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пирролидин-1-ил]проп-2-ен-1-он (3,00 мг, выход 18%) в виде твердого вещества белого цвета.

[0387] Характеристики соединений, полученных согласно способам, описанным в Примере 19, показаны в Таблице 18 ниже.

Таблица 18. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(3-амино-3-(4- амино-7-метил-5- (4-((6- метилпиридин-2- ил)окси)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)пирролидин-1- ил)проп-2-ен-1-он	NH ₂ O NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,12 (s, 1H), 7,80 – 7,74 (m, 1H), 7,58 – 7,46 (m, 2H), 7,26 – 7,15 (m, 2H), 7,04 (dd, J = 7,4, 3,6 Γц, 1H), 6,89 – 6,82 (m, 1H), 6,58 – 6,51 (m, 1H), 6,28 – 6,17 (m, 1H), 6,14 – 6,03 (m, 1H), 5,66 – 5,54 (m, 1H), 4,00 (d, J = 4,5 Γц, 3H), 3,80 – 3,57 (m, 2H), 3,53 – 3,37 (m, 2H), 2,44 – 2,24 (m, 4H), 2,17	470,25
		- 1,95 (m, 2H).	

Пример 20

Схема 17

Этил-5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-карбоксилат

[0388] Стадия 1: В круглодонную колбу загружали 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолан) (610 мг, 2,4 ммоль), этил-5-бром-1-метил-1Н-пиразол-3-карбоксилат (464 мг, 2 ммоль), 6-иод-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин (916 мг, 2 ммоль), К₃РО₄ (1,27 г, 6 ммоль), смесь DMF/H₂O (8:1, 10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°С в течение 4 часов. После охлаждения смесь разбавляли водой, экстрагировали DCM, сушили над Na₂SO₄, упаривали в вакууме, и остаток очищали методом хроматографии на колонке C18 (Подвижная фаза А: вода (раствор 0,05% TFA), Подвижная фаза В: АСN; Скорость пропускания: 30 мл/мин; Градиент: от 0 В% до 45 В% в течение 25 мин; 254 нм;), в результате чего получали этил-5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-карбоксилат (100 мг, выход 10%) в виде почти белого твердого вещества.

5-(4-Амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)-1-метил-1H-пиразол-3-карбоновая кислота

[0389] **Стадия 2:** В круглодонную колбу загружали этил-5-(4-амино-7-метил-5-(4- ((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-

пиразол-3-карбоксилат (550 мг, 1,14 ммоль), NaOH (136 мг, 3,40 ммоль), MeOH (10 мл), H₂O (5 мл) и магнитную мешалку. Смесь перемешивали в течение 1 часа при комнатной температуре. Смесь концентрировали при пониженном давлении и доводили ее рН до уровня 3 раствором HCl (1 н.), фильтровали и сушили при пониженном давлении, в результате чего получали 5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1Н-пиразол-3-карбоновую кислоту (350 мг, выход 67%) в виде почти белого твердого вещества.

Трет-бутил-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-ил)карбамат

[0390] Стадия 3: В круглодонную колбу загружали 5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-карбоновую кислоту (310 мг, 0,68 ммоль), DPPA (280 мг, 1,02 ммоль), ТЕА (138 мг, 1,36 ммоль), смесь DMSO/'ВиОН (1:2, 24 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°С в течение 4 часов. После охлаждения смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄, упаривали под вакуумом, и остаток очищали методом хроматографии на колонке C18 (Подвижная фаза А: вода (раствор 0,05% TFA), Подвижная фаза В: АСN; Скорость пропускания: 30 мл/мин; Градиент: от 0 В% до 60 В% в течение 35 мин; 254 нм;), в результате чего получали (5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил) -7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-ил)карбамат (60 мг, выход 8,3%) в виде почти белого твердого вещества.

6-(3-Амино-1-метил-1H-пиразол-5-ил)-7-метил-5-(4-((4-метилпиримидин-2ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0391] **Стадия 4:** В круглодонную колбу загружали 2-хлор-4-метилпиримидин (60 мг, 0,11 ммоль), ТFA (0,4 мл), DCM (4 мл) и магнитную мешалку. Реакционную смесь перемешивали в течение 1 часа при комнатной температуре. Смесь концентрировали и растворяли в DCM (20 мл), промывали насыщенным водным раствором NaHCO₃ и солевым раствором, сушили над Na₂SO₄, упаривали в вакууме, и остаток очищали методом хроматографии на колонке C18 (Подвижная фаза А: вода (раствор 0,05% TFA), Подвижная фаза В: ACN; Скорость пропускания: 30 мл/мин; Градиент: от 0 В% до 60 В% в течение 35 мин; 254 нм;), в результате чего получали 6-(3-амино-1-метил-1H-пиразол-5-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин (35 мг, выход 74%) в виде твердого вещества желтого цвета.

N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-ил)метакриламид

[0392] **Стадия 5:** В круглодонную колбу загружали 6-(3-амино-1-метил-1H-пиразол-5-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин (70 мг, 0,16 ммоль), Na_2CO_3 (34 мг, 0,32 ммоль), ACN (20 мл) и магнитную мешалку. При -30°C в нее по каплям добавляли метакрилоилхлорид (14,6 мг, 0,14

ммоль), и полученную смесь перемешивали в течение 1 часа. Затем смесь гасили МеОН при -30°С, разбавляли водой (10 мл), экстрагировали DCM (20 мл*3), органическую фазу объединяли и два раза промывали солевым раствором, сушили над Na₂SO₄, концентрировали в вакууме, и остаток очищали методом ВЭЖХ и последующей лиофилизации, в результате чего получали N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-ил)метакриламид (12,5 мг, выход 15%) в виде твердого вещества белого цвета.

[0393] Другие такие же соединения, полученные согласно способам, описанным в Примере 20, показаны в Таблице 19 ниже.

Таблица 19. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-3-ил)метакриламид	NH ₂ NH ₂ N H N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,43 (s, 1H), 8,48(d, J = 4,2 Гц, 1H), 8,25 (s, 1H), 7,31 (d, J = 8,4 Γц, 2H), 7,24 (d, J = 8,8 Γц, 2H), 7,16 (d, J = 4,2 Γц, 1H), 6,84 (s, 1H), 5,87 (s, 1H), 5,49 (s, 1H), 3,59 (s, 3H), 3,27 (s, 3H), 2,41 (s, 3H), 1,93 (s, 3H).	496,10
N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1-метил-1H-пиразол-4-ил)метакриламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,53 (s, 1H), 8,47 (d, J = 4,8 Гц, 1H), 8,24 (s, 1H), 7,72(s, 1H), 7,37 (d, J = 8,4 Гц, 2H), 7,22 – 7,15 (m, 3H), 5,60 (s, 1H), 5,41 (s, 1H), 3,51 (s, 3H), 3,27 (s, 3H), 2,41 (s, 3H), 1,92 (s, 3H).	496,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(5-(4-амино-5-	/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	514,20
(3-фтор-4-((4-	N=\	10,44 (s, 1H), 8,49 (d, $J = 5$,0 Γ ц,	
метилпиримидин-	E O	1H), 8,26 (s, 1H), 7,41 (t, $J = 8,4$	
2-ил)окси)фенил)-	N	Гц, 1H), 7,23 – 7,18 (m, 2H), 7,11	
7-метил-7Н-	()	(m, 1H), 6,87 (s, 1H), 6,25 (s,	
пирроло[2,3-	NH ₂	1H), 5,88 (s, 1H), 5,54 – 5,46 (s,	
d]пиримидин-6-	N N	1H), 3,59 (s, 3H), 3,30 (s, 3H),	
ил)-1-метил-1Н-	N N O	2,42 (s, 3H), 1,94 (s, 3H).	
пиразол-3-	N 14		
ил)метакриламид			

Пример 21

Схема 18

4-Хлор-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин

[0394] Стадия 1: В трехгорлую колбу загружали 4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин (3 г, 17,96 ммоль), ТНГ (50 мл) и магнитную мешалку, после чего ее

трижды подвергали процедуре откачки и продувки азотом. Затем при -78°C по каплям добавляли LDA (13,5 мл, 26,9 ммоль). Реакционную смесь перемешивали в течение 1 ч при -78°C. Затем добавляли I_2 (5,9 г, 23,3 ммоль), и реакционную смесь перемешивали в течение 1 часа при -78°C. Смесь гасили водой, экстрагировали этилацетатом (EA), сушили над Na_2SO_4 , упаривали под вакуумом, и полученный остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью DCM/MeOH (50:1 ~ 10:1), в результате чего получали 4-хлор-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин (4 г, выход 76%) в виде твердого вещества желтого цвета.

N-(4-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

[0395] Стадия 2: В круглодонную колбу загружали 4-хлор-6-иод-7-метил-7H-пирроло [2,3-d]пиримидин (1 г, 3,4 ммоль), N-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)метакриламид (1,2 г, 4,1 ммоль), Pd(PPh₃)₂Cl₂ (4,5 г, 6,2 ммоль), K₃PO₄ (2,16 г, 10,2 ммоль), смесь DMF/H₂O (16:1, 20 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 1 ч при 50° C. После охлаждения смесь разбавляли водой, экстрагировали этилацетатом (EA), сушили над Na₂SO₄, упаривали под вакуумом, и полученный остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью DCM/MeOH (100:1 ~ 10:1), в результате чего получали N-(4-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (700 мг, выход 70%) в виде твердого вещества желтого цвета.

N-(4-(4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

[0396] **Стадия 3:** В круглодонную колбу загружали N-(4-(4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (0,7 г, 2,3 ммоль), Pd(PPh₃)₄ (0,26 г, 0,23 ммоль), DMF (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли Zn(CH₃)₂ (1M, 3,45 мл, 3,45 ммоль). Смесь перемешивали в течение 2 ч при 90°C. После охлаждения смесь

разбавляли водой, экстрагировали DCM, сушили над Na_2SO_4 , упаривали под вакуумом, и полученный остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью DCM/MeOH (100:1 \sim 10:1), в результате чего получали N-(4-(4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид (400 мг, выход 57%) в виде твердого вещества коричневого цвета.

6-Иод-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-4-амин

[0397] Стадия 4: В круглодонную колбу загружали N-(4-(4,7-диметил-7H-пирроло [2,3-d]пиримидин-6-ил)фенил)метакриламид (0,4 г, 1,3 ммоль), DCM (10 мл) и магнитную мешалку. Затем добавляли NBS (7,43 г, 1,3 ммоль). Смесь перемешивали в течение 1 ч. Реакционную смесь гасили насыщенным водным раствором NaHSO₃ до достижения уровня рН 8-9, экстрагировали DCM (100 мл*3), органическую фазу объединяли и дважды промывали солевым раствором, сушили с помощью Na₂SO₄, упаривали под вакуумом, полученный остаток растворяли в ACN (25 мл) и фильтровали, осадок на фильтре промывали ACN, сушили при пониженном давлении, в результате чего получали 6-иод-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин (340 мг, выход 67%) в виде почти белого твердого вещества.

N-(4-(5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7Hпирроло[2,3-d]пиримидин-6-ил)фенил)метакриламид

[0398] **Стадия 5:** В круглодонную колбу загружали 6-иод-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин (340 мг, 0,88

ммоль), 2-(2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)-4-метилпиримидин (330 мг, 1 ммоль), Pd(dppf)Cl₂ (66 мг, 0,09 ммоль), K₃PO₄ (560 мг, 2,64 ммоль), смесь DMF/H₂O (16:1, 10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 ч при 90°С. После охлаждения смесь разбавляли водой, экстрагировали DCM, сушили над Na₂SO₄, упаривали под вакуумом, и полученный остаток очищали методом препаративной ВЭЖХ, в результате чего получали 6-(4-аминофенил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин (46,6 мг, выход 10,4%) в виде твердого вещества белого цвета.

[0399] Другие такие же соединения, полученные согласно способам, описанным в Примере 21, показаны в Таблице 20 ниже.

Таблица 20. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5-(3-фтор-4-	/	¹ H ЯМР (400 МГц, DMSO-d ₆) δ 9,95	509,20
((4-	N=	(s, 1H), 8,74 (s, 1H), 8,48 (d, J = 5,0)	
метилпиримидин-	- o-\	Гц, 1H), 7,80 - 7,74 (m, 2H), 7,41 -	
2-ил)окси)фенил)-	N N	7,26 (m, 4H), 7,22 - 7,11 (m, 2H), 5,80	
4,7-диметил-7Н-		(s, 1H), 5,54 (t, $J = 1,5 \Gamma \mu$, 1H), 3,70	
пирроло[2,3-		(s, 3H), 2,40 (d, $J = 11.0 \Gamma \text{H}$, 6H), 1,95	
d]пиримидин-6-	N N	$(d, J = 1, 2 \Gamma \mu, 3H).$	
ил)фенил)метакрил	[] \		
амид	N N N		
	, 0 /		
N-(4-(5-(3-фтор-4-	,	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) 10,24	509,35
((4-	N=	(s, 1H), 8,74 (s, 1H), 8,47 (d, J = 5,0)	
метилпиримидин-	- o-()	Гц, 1H), 7,66 - 7,57 (m, 1H), 7,35 (d, <i>J</i>	
2-ил)окси)фенил)-	N N	$= 8.3 \Gamma \text{u}, 1\text{H}, 7.33 - 7.24 (m, 2\text{H}),$	
4,7-диметил-7Н-		7,17 (d, $J = 5,1$ Гц, 1H), 7,16 - 7,10	
пирроло[2,3-		(m, 1H), 6,45 (dd, $J = 17,0, 10,1 \Gamma \mu$,	
d]пиримидин-6-	N	1H), 6,28 (dd, $J = 17,0, 2,1 \Gamma \mu, 1H$),	
ил)-3-	ii	5,78 (dd, $J = 10,1, 2,1 \Gamma \mu, 1H$), 3,52 (s,	
метилфенил)акрила	N '\ /	3H), 2,41 (d, $J = 8,1$ Гц, 6H), 2,00 (s,	
мид		3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4,7-диметил-5-(4-(пирролидин-1-карбонил)циклогек с-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид	O N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 10,27 (s, 1H), 8,65 (s, 1H), 7,71 (dd, J = 4,9, 2,1 Γ ц, 1H), 7,66 - 7,58 (m, 1H), 7,24 (dd, J = 10,7, 8,3 Γ ц, 1H), 6,47 (dd, J = 17,0, 10,1 Γ ц, 1H), 6,29 (dd, J = 17,0, 2,1 Γ ц, 1H), 5,80 (dd, J = 10,1, 2,1 Γ ц, 1H), 5,66 (d, J = 14,9 Γ ц, 1H), 3,47 - 3,39 (m, 5H), 3,32 (s, 3H), 3,26 (t, J = 6,8 Γ ц, 2H), 2,65 (s, 3H), 2,27 - 2,16 (m, 1H), 2,07 (t, J = 3,8 Γ ц, 4H), 1,85 (p, J = 6,6 Γ ц, 2H), 1,74 (p, J = 6,5 Γ ц, 3H), 1,49 - 1,41 (m, 1H).	484,45
(R)-N-(4-(4,7-диметил-5-(4-(пирролидин-1-карбонил)циклогек с-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)акриламид	O N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 10,28 (s, 1H), 8,64 (s, 1H), 7,71 (dd, J = 5,1, 2,0 Гц, 1H), 7,62 (dt, J = 5,9, 3,2 Гц, 1H), 7,23 (dd, J = 10,6, 8,3 Гц, 1H), 6,47 (dd, J = 17,0, 10,1 Гц, 1H), 6,29 (dd, J = 17,0, 2,1 Гц, 1H), 5,79 (dd, J = 10,0, 2,0 Гц, 1H), 5,70 - 5,61 (m, 1H), 3,42 (s, 4H), 3,26 (t, J = 6,9 Гц, 2H), 2,65 (s, 3H), 2,18 (d, J = 10,3 Гц, 0H), 2,06 (d, J = 4,0 Гц, 4H), 1,85 (p, J = 6,7 Гц, 2H), 1,74 (p, J = 6,7 Гц, 3H), 1,45 (d, J = 12,9 Гц, 1H).	484,45
N-[4-(3-{3-фтор-4- [(4- метилпиримидин- 2-ил)окси]фенил}- 1,4-диметил-1H- пирроло[3,2- с]пиридин-2-ил)-3- метилфенил]проп- 2-енамид	F O N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,23 (s, 1H), 8,47 (d, J = 5,1 Γ ц, 1H), 8,29 (s, 1H), 7,64 (s, 1H), 7,61 (s, 1H), 7,59 (s, 1H), 7,30 (dd, J = 12,2, 8,6 Γ ц, 3H), 7,15 (dd, J = 17,4, 6,6 Γ ц, 2H), 6,45 (dd, J = 16,9, 10,1 Γ ц, 1H), 6,36 – 6,09 (m, 1H), 5,78 (d, J = 11,8 Γ ц, 1H), 3,56 (s, 3H), 2,45 (s, 3H), 2,40 (s, 3H), 2,01 (s, 3H).	508,25
N-(4-(4,7-диметил- 5-(4-((4- метилпиримидин- 2-ил)окси)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)-3- метилфенил)акрила мид	N O N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 10,22 (s, 1H), 8,73 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 7,64 - 7,55 (m, 2H), 7,36 - 7,26 (m, 3H), 7,17 - 7,08 (m, 3H), 6,44 (dd, J = 17,0, 10,1 Гц, 1H), 6,27 (dd, J = 17,0, 2,1 Гц, 1H), 5,78 (dd, J = 10,1, 2,1 Гц, 1H), 3,52 (s, 3H), 2,39 (d, J = 4,4 Гц, 6H), 1,99 (s, 3H).	491,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-[4-(5-{3-фтор-4- [(4- метилпиримидин- 2-ил)окси]фенил}- 4,7-диметил-7H- пирроло[2,3- d]пиримидин-6- ил)-3-метилфенил]- 2-метилпроп-2- енамид	F O N O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,87 (s, 1H), 8,74 (s, 1H), 8,47 (d, J = 5,0 Γц, 1H), 7,68 (d, J = 2,1 Γц, 1H), 7,65 - 7,61 (m, 1H), 7,34 (d, J = 8,3 Γц, 1H), 7,32 - 7,26 (m, 2H), 7,18 (d, J = 5,1 Γц, 1H), 7,16 - 7,10 (m, 1H), 5,81 (t, J = 1,1 Γц, 1H), 5,54 (s, 1H), 3,52 (s, 3H), 2,41 (d, J = 7,5 Γц, 6H), 1,99 (s, 3H), 1,97 -1,91 (m, 3H).	523,35
N-[4-(4,7-диметил- 5-{4-[(4- метилпиримидин- 2-ил)окси]фенил}- 7H-пирроло[2,3- d]пиримидин-6- ил)-3-метилфенил]- 2-метилпроп-2- енамид	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,85 (s, 1H), 8,73 (s, 1H), 8,46 (d, J = 5,0 Γц, 1H), 7,65 (d, J = 2,1 Γц, 1H), 7,63 – 7,59 (m, 1H), 7,50 – 7,27 (m, 3H), 7,18 – 6,92 (m, 3H), 5,80 (t, J = 1,0 Γц, 1H), 5,53 (d, J = 1,9 Γц, 1H), 3,52 (s, 3H), 2,39 (d, J = 4,6 Γц, 6H), 1,98 (s, 3H), 1,95 (d, J = 1,3 Γц, 3H).	505,35
N-(4-(4,7-диметил- 5-(4- феноксифенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами д	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,72 (s, 1H), 7,71 (d, J = 8,6 Гц, 2H), 7,46 - 7,32 (m, 2H), 7,30 (s, 2H), 7,29 (d, J = 8,7 Γц, 2H), 7,16 (t, J = 7,4 Γц, 1H), 7,07 - 7,00 (m, 2H), 6,96 (d, J = 8,6 Γц, 2H), 6,45 (dd, J = 16,9, 10,1 Γц, 1H), 6,28 (dd, J = 17,1, 2,0 Γц, 0H), 5,79 (dd, J = 10,1, 2,0 Γц, 1H), 3,70 (s, 3H), 2,34 (s, 3H).	461,30
N-(4-(4-метил-5-(4-феноксифенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)акрилами	O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,46 (s, 1H), 8,52 (t, J = 6,1 Гц, 1H), 8,22 - 7,98 (m, 4H), 7,96 - 7,76 (m, 4H), 7,42 (t, J = 7,8 Γц, 1H), 7,37 - 7,26 (m, 1H), 7,12 (d, J = 8,3 Γц, 2H), 6,88 (d, J = 8,3 Γц, 2H), 6,29 (dd, J = 17,1, 10,1 Γц, 1H), 6,14 (dd, J = 17,1, 2,3 Γц, 1H), 5,62 (dd, J = 10,0, 2,4 Γц, 1H), 4,28 (d, J = 5,9 Γц, 2H), 3,50 (s, 3H), 3,18 (s, 4H), 3,05 (s, 2H).	447,30
N-(4-(4,7-диметил- 5-фенил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами д	N N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,27 (s, 1H), 8,71 (s, 1H), 7,72 - 7,64 (m, 2H), 7,38 - 7,25 (m, 7H), 6,43 (dd, J= 17,0, 10,1 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 5,78 (dd, J = 10,0, 2,1 Γц, 1H), 3,70 (s, 3H), 2,28 (s, 3H).	369,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4,7-диметил- 5-(6-(4-метил-1Н- пиразол-1- ил)пиридин-3-ил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,75 (s, 1H), 8,37 (t, J = 1,0 Гц, 1H), 8,29 (dd, J = 2,3, 0,8 Γц, 1H), 7,90 (dd, J = 8,4, 2,3 Γц, 1H), 7,84 (dd, J = 8,4, 0,8 Γц, 1H), 7,76 - 7,69 (m, 2H), 7,65 (s, 1H), 7,42 - 7,34 (m, 2H), 6,43 (dd, J = 16,9, 10,0 Γц, 1H), 6,27 (dd, J = 17,0, 2,1 Γц, 1H), 5,78 (dd, J = 10,1, 2,1 Γц, 1H), 3,72 (s, 3H), 2,39 (s, 3H), 2,11 (d, J = 1,0 Гц, 3H).	450,30
N-(4-(4,7-диметил- 5-(4-((6- метилпиридин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,72 (s, 1H), 7,78 - 7,69 (m, 3H), 7,36 (d, J = 8,2 Γц, 2H), 7,30 (d, J = 8,0 Γц, 2H), 7,06 (d, J = 8,0 Γц, 2H), 7,01 (d, J = 7,4 Γц, 1H), 6,75 (d, J = 8,2 Γц, 1H), 6,44 (dd, J = 17,0, 10,1 Γц, 1H), 6,33 - 6,23 (m, 1H), 5,78 (d, J = 10,1 Γц, 1H), 3,71 (s, 3H), 2,34 (s, 6H).	476,15
N-(4-(7-изопропил- 4-метил-5-(4- феноксифенил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами д	NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,29 (s, 1H), 8,69 (s, 1H), 7,72 (d, J = 8,2 Гц, 2H), 7,41 (t, J = 7,8 Γц, 2H), 7,29 (dd, J = 16,6, 8,3 Γц, 4H), 7,16 (t, J = 7,3 Γц, 1H), 7,02 (d, J = 8,0 Γц, 2H), 6,90 (d, J = 8,2 Γц, 2H), 6,45 (dd, J = 16,9, 10,0 Γц, 1H), 6,29 (dd, J = 16,8, 1,9 Γц, 1H), 5,79 (dd, J = 10,2, 2,0 Γц, 1H), 4,43 (p, J = 6,8 Γц, 1H), 2,30 (s, 3H), 1,63 (d, J = 6,8 Γц, 6H).	489,15
N-(4-(5- (бензо[b]тиофен-2- ил)-4,7-диметил- 7H-пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами	NH NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,28 (s, 1H), 8,77 (s, 1H), 7,89 (d, J = 7,9 Гц, 1H), 7,86 - 7,79 (m, 1H), 7,75 - 7,68 (m, 2H), 7,52 - 7,43 (m, 3H), 7,42 - 7,29 (m, 2H), 6,42 (dd, J = 17,0, 10,1 Γц, 1H), 6,26 (dd, J = 16,9, 2,1 Γц, 1H), 5,77 (dd, J = 10,0, 2,1 Γц, 1H), 3,72 (s, 3H), 2,44 (s, 3H).	425,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(5- (бензо[b]тиофен-2- ил)-4-метил-7Н- пирроло[2,3- d]пиримидин-6- ил)фенил)акрилами	N S O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,74 (s, 1H), 10,25 (s, 1H), 8,68 (s, 1H), 8,05 - 7,95 (m, 1H), 7,89 (dd, J = 6,8, 1,8 Γц, 1H), 7,63 (d, J = 8,8 Γц, 2H), 7,57 - 7,49 (m, 3H), 7,45 - 7,35 (m, 2H), 6,41 (dd, J = 17,0, 10,1 Γц, 1H), 6,25 (dd, J = 17,0, 2,1 Γц, 1H), 5,77 (dd, J = 10,1, 2,1 Γц, 1H), 2,36 (s, 3H).	411,15

Пример 22

5-[2-(Трет-бутилдиметилсилил)этинил]-2-хлор-3-метилпиразин

[0400] **Стадия 1:** В круглодонную колбу загружали 5-бром-2-хлор-3-метилпиразин (1 г, 4,82 ммоль), трет-бутил(этинил)диметилсилан (810 мг, 5,78 ммоль), Pd(PPh₃)₂Cl₂ (675 мг, 964 мкмоль), CuI (364 мг, 1,92 ммоль), TEA (2,43 г, 24,1 ммоль) и магнитную

мешалку. Добавляли диметилформамид (20 мл), и раствор перемешивали в течение 2 часов при 50°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали 5-[2-(трет-бутилдиметилсилил)этинил]-2-хлор-3-метилпиразин (1 г, выход 77%) в виде желтой маслянистой жидкости.

6-{5-[2-(Трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-7Hпирроло[2,3-d]пиримидин-4-амин

[0401] Стадия 2: В герметизируемую реакционную пробирку загружали 5-[2-(третбутилдиметилсилил)этинил]-2-хлор-3-метилпиразин (600 мг, 2,24 ммоль), (4-{[(третбутокси)карбонил]амино}-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)бороновую кислоту (1,30 г, 4,48 ммоль), G3-X-рhos (189 мг, 224 мкмоль), Xphos (213 мг, 448 мкмоль) Xphos (213 мг, 448 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли смесь диоксан:вода = 16:1 (20 мл), и полученный раствор перемешивали в течение 2 часов при 90°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали 6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил} -7-метил-7H-пирроло[2,3-d] пиримидин-4-амин (600 мг, выход 70%) в виде почти белого твердого аморфного вещества.

5-Бром-6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0402] Стадия 3: В круглодонную колбу загружали 6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил} -7-метил-7Н-пирроло[2,3-

d]пиримидин-4-амин (500 мг, 1,32 ммоль), диметилформамид (5 мл) и магнитную мешалку. Затем добавляли NBS (234 мг, 1,32 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали 5-бром-6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (500 мг, выход 82%) в виде почти белого твердого аморфного вещества.

6-{5-[2-(Трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амин

[0403] Стадия 4: В герметизируемую реакционную пробирку загружали 4-метил-2-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиримидин (374 мг, 1,20 ммоль), 5-бром-6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (460 мг, 1,00 ммоль), Pd(dppf)Cl₂ (73,1 мг, 100 мкмоль), Cs₂CO₃ (975 мг, 3,00 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли смесь диоксан:вода = 16:1 (10 мл), и полученный раствор перемешивали в течение 2 часов при 90°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ. При концентрировании под вакуумом получали 6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил}-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-4-амин (500 мг, выход 73%) в виде почти белого твердого аморфного вещества.

6-(5-Этинил-3-метилпиразин-2-ил)-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-4-амин

[0404] **Стадия 5:** В круглодонную колбу загружали 6-{5-[2-(трет-бутилдиметилсилил)этинил]-3-метилпиразин-2-ил} -7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амин (480 мг, 852 мкмоль), CsF (387 мг, 2,55 ммоль) и магнитную мешалку.Добавляли ТНГ (10 мл), и полученный раствор перемешивали в течение 2 часов при 50°С. Затем реакционную смесь фильтровали, промывали DCM и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ. После лиофилизации получали 6-(5-этинил-3-метилпиразин-2-ил)-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амин (260 мг, выход 68%) в виде почти белого твердого аморфного вещества.

[0405] Другие такие же соединения, полученные согласно способам, описанным в Примере 22, показаны в Таблице 21 ниже.

Таблица 21. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(5-этинилпиразин-2-	/	¹ Н ЯМР (300 МГц, DMSO- <i>d</i> ₆) δ	435,30
ил)-7-метил-5-(4-((4-	N=	8,92 (d, $J = 1,5$ Гц, 1H), $8,50$ (d, J	
метилпиримидин-2-		$= 5.0 \Gamma\text{u}, 1\text{H}), 8.29 - 8.20 \text{(m)},$	
ил)окси)фенил)-7Н-	N-	2H), 7,43 – 7,33 (m, 2H), 7,33 –	
пирроло[2,3-	NH ₂	7,23 (m, 2H), 7,18 (d, $J = 5,0$ Гц,	
d]пиримидин-4-амин	_N	1H), 6,10 (s, 2H), 4,75 (s, 1H),	
		3,85 (s, 3H), 2,43 (s, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(5-этинил-3- метилпиразин-2-ил)-7- метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,81 (d, J = 0,8 Гц, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,20 - 7,12 (m, 5H), 4,73 (s, 1H), 3,57 (s, 3H), 2,38 (s, 3H), 1,98 -1,94 (m, 3H).	449,20
6-(5-этинил-3- метилпиразин-2-ил)-5- (3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,85 (s, 1H), 8,49 (d, $J = 5,0$ Гц, 1H), 8,35 (s, 1H), 7,35 (t, $J = 8,4$ Γц, 2H), 7,20 (d, $J = 5,0$ Γц, 2H), 7,08 (s, 1H), 6,92 (d, $J = 7,9$ Гц, 1H), 4,78 (s, 1H), 3,62 (s, 3H), 2,42 (s, 3H), 2,02 (s, 3H).	467,15
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-7-метил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,64 - 8,59 (m, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,43 (s, 1H), 8,21 (s, 1H), 7,52 (dd, J = 8,8, 2,8 Γц, 1H), 7,19 (d, J = 5,1 Γц, 1H), 6,88 - 6,81 (m, 1H), 4,86 (d, J = 0,8 Γц, 1H), 3,47 (s, 3H), 2,41 (s, 3H), 2,02 (d, J = 2,1 Γц, 3H).	467,30
5-(3-фтор-4-(4- метилпиримидин-2- илокси)фенил)-7- метил-6-(3-метил-5- (проп-1- инил)пиразин-2-ил)- 7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,72 (d, J = 0,8 Гц, 1H), 8,49 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 7,34 (t, J = 8,4 Γц, 1H), 7,19 (d, J = 5,1 Γц, 1H), 7,11 (d, J = 11,2 Γц, 1H), 6,93 (d, J = 8,3 Γц, 1H), 6,27 (s, 1H), 3,58 (s, 3H), 2,42 (s, 3H), 2,16 (s, 3H), 2,00 (d, J = 0,6 Γц, 3H).	481,15
(S)-(4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(пирролидин-1- ил)метанон	NH ₂ F	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,29 (d, J = 7,0 Гц, 1H), 8,18 (s, 1H), 5,93 (s, 1H), 4,21 (dd, J = 1,9, 0,9 Гц, 1H), 3,63 - 3,50 (m, 2H), 3,51 (s, 3H), 3,49 - 3,37 (m, 2H), 2,85 (q, J = 6,1 Гц, 1H), 2,45 - 2,28 (m, 2H), 2,21 (dd, J = 3,7, 2,2 Гц, 3H), 2,18 - 2,01 (m, 2H), 2,03 - 1,95 (m, 2H), 1,92 - 1,85 (m, 2H), 1,77 (dt, J = 12,1, 6,1 Гц, 2H).	459,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-(4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(пирролидин-1- ил)метанон	O N F F N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,29 (d, J = 7,0 Гц, 1H), 8,18 (s, 1H), 5,83 (dd, J = 3,8, 1,9 Гц, 1H), 4,21 (dd, J = 1,9, 0,8 Гц, 1H), 3,55 (dtd, J = 10,2, 6,6, 3,6 Гц, 2H), 3,51 (s, 3H), 3,43 (ddt, J = 9,3, 6,5, 3,7 Гц, 2H), 2,86 (p, J = 6,2 Гц, 1H), 2,44 - 2,31 (m, 1H), 2,28 (s, 1H), 2,21 (dd, J = 3,7, 2,2 Гц, 3H), 2,12 (d, J = 14,2 Гц, 2H), 2,04 - 1,96 (m, 2H), 1,94 - 1,86 (m, 2H), 1,79 (p, J = 6,9, 6,4 Гц, 2H).	459,30
6-(4-(диметиламино)- 6-этинилпиридин-3- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,1 Гц, 1H), 8,22 (s, 1H), 8,06 (s, 1H), 7,36 (t, J = 8,4 Γц, 1H), 7,24 – 7,16 (m, 2H), 7,09 (d, J = 8,6 Γц, 1H), 6,91 (s, 1H), 6,14 (s, 1H), 4,25 (s, 1H), 3,54 (s, 3H), 2,63 (s, 6H), 2,42 (s, 3H).	495,20

Пример 23

[0406] Другие такие же соединения, полученные согласно способам, описанным в Примере 23, показаны в Таблице 22 ниже.

Таблица 22. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
7-метил-6-(4-метил-2-винилпиримидин-5-ил)-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,76 (s, 1H), 8,46 (d, J = 5,1 Гц, 1H), 8,25 (s, 1H), 7,28 (d, J = 8,6 Гц, 2H), 7,19 (d, J = 8,7 Гц, 2H), 7,15 (d, J = 5,0 Гц, 1H), 6,81 (d, J = 10,7 Гц, 1H), 6,65 (d, J = 10,8 Гц, 1H), 5,82 (s, 1H), 3,54 (s, 3H), 2,40 (s, 3H), 2,17 (s, 3H).	451,10
7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-6-(2-(проп-1-ин-1-ил)пиримидин-5-ил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,75 (s, 2H), 8,48 (d, J = 5,0 Γц, 1H), 8,25 (s, 1H), 7,38 – 7,31 (m, 2H), 7,29 – 7,18 (m, 2H), 7,17 (s, 1H), 5,89 (d, J = 103,6 Γц, 1H), 3,71 (s, 3H), 2,43 (s, 3H), 2,12 (s, 3H).	449,15
5-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- этинилникотинонитр ил	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,63 (d, J = 2,2 Гц, 1H), 8,50 (d, J = 2,1 Гц, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,34 - 7,27 (m, 2H), 7,25 - 7,18 (m, 2H), 7,14 (d, J = 5,0 Гц, 1H), 5,03 (s, 1H), 3,68 (s, 3H), 2,40 (s, 3H).	459,10
7-метил-6-(4-метил-2- (проп-1-ин-1- ил)пиримидин-5-ил)- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,73 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,25 (d, J = 8,6 Гц, 2H), 7,26 – 7,13 (m, 3H), 3,53 (s, 3H), 2,41 (s, 3H), 2,12 (d, J = 3,2 Гц, 6H).	463,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-(3-метоксипроп- 1-ин-1-ил)-4- метилпиримидин-5- ил)-7-метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,29 - 7,17 (m, 5H), 4,40 (s, 2H), 3,55 (s, 3H), 3,36 (d, J = 1,4 Гц, 3H), 2,41 (s, 3H), 2,14 (s, 3H).	493,15
6-(6-этинил-2- фторпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N F	¹ H ЯМР (300 МГц, DMSO- d_6) 8,49 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 8,08 (dd, J = 9,6, 7,6 Гц, 1H), 7,65 (dd, J = 7,5, 1,7 Гц, 1H), 7,37 (t, J = 8,4 Гц, 1H), 7,27 - 7,17 (m, 2H), 7,07 (d, J = 8,3 Гц, 1H), 4,64 (s, 1H), 3,60 (s, 3H), 2,42 (s, 3H), 2,08 (s, 1H).	470,25
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)- 5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N F	¹ H ЯМР(300 МГц, DMSO- d_6) 8,47 (d, J = 5,0 Гц, 1H), 8,41 (s, 1H), 8,25 (s, 1H), 7,33 (t, J = 8,4 Γц, 1H), 7,24 - 7,12 (m, 2H), 7,03 (d, J = 9,4 Γц, 1H), 4,79 (s, 1H), 3,51 (s, 3H), 2,40 (s, 3H), 1,97 (d, J = 2,2 Γц, 3H).	484,35
6-(6-этинил-5- метокси-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	F O N O N O N O N O N O N O N O N O N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (d, J = 5,1 Гц, 1H), 8,32 (s, 1H), 8,24 (s, 1H), 7,32 (t, J = 8,4 Гц, 1H), 7,20 – 7,12 (m, 2H), 7,04 – 6,98 (m, 1H), 6,18 (s, 2H), 4,63 (s, 1H), 3,83 (s, 3H), 3,51 (s, 3H), 2,40 (s, 3H), 1,91 (s, 3H).	496,30
4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)- N-изобутилбензамид	O H NH ₂ F N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,35 (s, 1H), 8,25 (s, 1H), 7,83 – 7,76 (m, 2H), 7,29 – 7,22 (m, 2H), 6,12 (s, 2H), 4,80 (s, 1H), 3,51 (s, 3H), 3,06 (t, J = 6,4 Гц, 2H), 1,94 (d, J = 2,1 Гц, 3H), 1,82 (dq, J = 13,3, 6,7 Гц, 1H), 0,88 (d, J = 6,7 Гц, 6H).	457,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)- N-изобутил-N- метилбензамид	O N F N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,37 (s, 1H), 8,25 (s, 1H), 7,41 – 7,26 (m, 2H), 7,22 (d, J = 7,6 Γц, 2H), 6,16 (s, 2H), 4,78 (s, 1H), 3,53 (d, J = 7,5 Γц, 3H), 3,29 (d, J = 11,4 Γц, 1H), 3,05 – 2,80 (m, 4H), 1,89 (d, J = 26,0 Γц, 4H), 0,93 (dd, J = 17,7, 7,0 Γц, 3H), 0,63 (s,	471,25
4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-2- метокси-N-(2,2,2- трифторэтил)бензами д	O H F F F F F F F F F F F F F F F F F F	3H). ¹ H \mathfrak{MMP} (400 M Γ u, DMSO- d_6) 8,62 (t, $J = 6,4$ Γ u, 1H), 8,39 (s, 1H), 8,26 (s, 1H), 7,70 (d, $J = 7,9$ Γ u, 1H), 6,92 (d, $J = 1,5$ Γ u, 1H), 6,83 (dd, $J = 7,9$, 1,5 Γ u, 1H), 6,21 (s, 1H), 4,81 (d, $J = 0,8$ Γ u, 1H), 4,08 (td, $J = 9,7$, 6,6 Γ u, 2H), 3,75 (s, 3H), 3,52 (s, 3H), 1,97 (d, $J = 2,1$ Γ u, 3H).	513,35
((S)-4-(4-амино-6-(6- (3-метоксипроп-1-ин- 1-ил)-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,42 - 8,35 (m, 1H), 8,17 - 8,06 (m, 1H), 7,61 (d, J = 2,3 Γц, 1H), 6,67 (s, 2H), 5,69 (d, J = 36,7 Гц, 1H), 4,39 (s, 2H), 4,01 (t, J = 4,6 Γц, 1H), 3,45 (d, J = 6,6 Γц, 1H), 3,37 (s, 7H), 2,71 (d, J = 33,3 Γц, 1H), 2,24 (s, 1H), 2,18 - 2,03 (m, 4H), 2,00 - 1,42 (m, 8H), 1,13 - 1,01 (m, 3H).	499,30
((R)-4-(4-амино-6-(6- (3-метоксипроп-1-ин- 1-ил)-4- метилпиридин-3-ил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 – 8,34 (m, 1H), 8,13 (s, 1H), 7,61 (d, J = 2,2 Гц, 1H), 6,54 (s, 2H), 5,66 (d, J = 26,0 Γц, 1H), 4,39 (s, 2H), 4,04 (d, J = 37,4 Γц, 1H), 3,57 - 3,40 (m, 1H), 3,37 (s, 7H), 2,69 (s, 1H), 2,13 (d, J = 4,4 Γц, 5H), 2,05 - 1,42 (m, 8H), 1,08 (dd, J = 12,8, 6,5 Γц, 3H).	499,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-(3-метоксипроп- 1-ин-1-ил)-4- метилпиридин-3-ил)- 7-метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N O	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,49 (s, 1H), 8,46 (d, <i>J</i> = 5,0 Гц, 1H), 8,23 (s, 1H), 7,53 (s, 1H), 7,27 – 7,20 (m, 2H), 7,20 – 7,11 (m, 3H), 6,03 (s, 2H), 4,37 (s, 2H), 3,47 (s, 3H), 3,35 (s, 3H), 2,40 (s, 3H), 2,01 (s, 3H).	492,40
5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-(6-(3-метоксипроп-1-ин-1-ил)-4-метилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин	N N O F O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (s, 1H), 8,54 (s, 1H), 8,48 (d, J = 5,0 Γц, 1H), 7,57 (s, 1H), 7,36 - 7,27 (m, 2H), 7,18 (d, J = 5,0 Γц, 1H), 7,17 - 7,09 (m, 1H), 4,38 (s, 2H), 3,57 (s, 3H), 3,35 (s, 3H), 2,41 (d, J = 9,6 Γц, 6H), 2,06 (s, 3H).	509,25
5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-(2-(3-метоксипроп-1-ин-1-ил)хинолин-6-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ O O O O O O O O O O O O O O O O O O O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,46 (d, J = 5,0 Гц, 1H), 8,40 (d, J = 8,5 Гц, 1H), 8,26 (s, 1H), 8,09 (d, J = 1,9 Гц, 1H), 8,00 (d, J = 8,7 Гц, 1H), 7,74 (dd, J = 8,7, 2,0 Гц, 1H), 7,68 (d, J = 8,5 Гц, 1H), 7,32 (t, J = 8,4 Гц, 1H), 7,25 (dd, J = 11,3, 2,0 Гц, 1H), 7,20 - 7,11 (m, 2H), 6,09 (s, 2H), 4,45 (s, 2H), 3,69 (s, 3H), 3,40 (s, 3H), 2,39 (s, 3H).	546,25
5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-(4-метокси-6-(3-метоксипроп-1-ин-1-ил)пиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин	N N N O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,76 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 8,29 (s, 1H), 7,40 (s, 1H), 7,34 - 7,28 (m, 2H), 7,19 (d, J = 5,1 Гц, 1H), 7,10 (d, J = 8,3 Гц, 1H), 4,39 (s, 2H), 3,87 (s, 3H), 3,61 (s, 3H), 3,37 (s, 3H), 2,41 (d, J = 1,9 Гц, 7H).	525,25

Пример 24

Схема 21

(1R)-4-{4-амино-6-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}циклогекс-3ен-1-карбоновая кислота

[0407] Стадия 1: В круглодонную колбу загружали (1R)-4-{4-амино-6-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил}циклогекс-3-ен-1-карбоновую кислоту (1 г, 3,25 ммоль), диметилформамид (15 мл), пирролидин (462 мг, 6,50 ммоль), НАТИ (2,47 г, 6,50 ммоль), NaHCO₃ (546 мг, 6,50 ммоль) и мешалку, и раствор перемешивали в течение 1 часа при 25°С. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 40:1). После концентрирования под вакуумом получали (1R)-4-{4-амино-6-хлор-7-метил-7H-

пирроло[2,3-d]пиримидин-5-ил} циклогекс-3-ен-1-карбоновую кислоту (1 г, выход 85%) в виде аморфного твердого вещества желтого цвета.

6-{2-[2-(Трет-бутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3d]пиримидин-4-амин

[0408] Стадия 2: В герметизируемую реакционную пробирку загружали 6-хлор-7метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3d]пиримидин-4-амин (500 мг, 1,38 ммоль), 2-[2-(трет-бутилдиметилсилил)этинил]-4метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиримидин (541 мг, 1,51 ммоль), Na₂CO₃ (438 мг, 4,14 ммоль), X-phos (131 мг, 276 мкмоль), X-phos G3 (116 мг, 138 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли диоксан/H₂O (10 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли водой (30 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 40:1). После концентрирования под вакуумом получали 6-{2-[2-(третбутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7Н-пирроло[2,3-d]пиримидин-4-амин (500 мг, выход 59%) в виде желтого твердого аморфного вещества.

6-(2-Этинил-4-метилпиримидин-5-ил)-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-4-амин

[0409] Стадия 3: В круглодонную колбу загружали 6-{2-[2-(трет-

бутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (600 мг, 1,07 ммоль), ТВАГ (1,28 мл, 1,28 ммоль) и магнитную мешалку. Добавляли тетрагидрофуран (10 мл), и полученный раствор перемешивали при 25°С в течение 1 часа. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ. После лиофилизации получали 6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (109 мг, выход 23%) в виде твердого аморфного вещества почти белого цвета.

[0410] Другие такие же соединения, полученные согласно способам, описанным в Примере 24, показаны в Таблице 23 ниже.

Таблица 23. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-(4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-ил)(пирролидин-1-ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,68 (d, J = 13,6 Гц, 1H), 8,14 (s, 1H), 6,65 (s, 2H), 5,67 (s, 1H), 4,51 (d, J = 0,8 Γц, 1H), 3,54 – 3,39 (m, 5H), 3,27 (tt, J = 8,3, 4,3 Γц, 2H), 2,82 – 2,73 (m, 1H), 2,33 (d, J = 1,0 Γц, 3H), 2,19 (s, 2H), 1,96 (s, 2H), 1,80 (dp, J = 27,0, 7,0 Γц, 4H), 1,63 (d, J = 6,5 Γц, 2H).	442,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-(4-(4-амино-6-(2- этинил-4- метилпиримидин-5- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(пирролидин-1- ил)метанон	NH ₂	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,68 (d, J = 13,8 Γц, 1H), 8,14 (s, 1H), 6,66 (s, 2H), 5,70 (d, J = 19,4 Γц, 1H), 4,51 (d, J = 0,8 Γц, 1H), 3,58 – 3,39 (m, 5H), 3,26 (dd, J = 6,8, 3,2 Γц, 2H), 2,78 (t, J = 5,9 Γц, 1H), 2,33 (d, J = 1,0 Γц, 3H), 2,20 (s, 2H), 1,97 (s, 2H), 1,85 (q, J = 6,5 Γц, 2H), 1,77 (q, J = 6,6 Γц, 2H), 1,63 (d, J = 6,4 Γц, 2H).	442,15
(R)-(4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(2-окса-5- азаспиро[3.4]октан-5- ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 8,38 (d, J = 7,1 Γц, 1H), 8,12 (d, J = 1,1 Γц, 1H), 7,61 (s, 1H), 6,52 (s, 2H), 5,68 (d, J = 24,1 Γц, 1H), 5,26 (dt, J = 15,3, 4,2 Γц, 2H), 4,41 (d, J = 1,2 Γц, 1H), 4,15 (d, J = 4,9 Γц, 2H), 3,53 - 3,34 (m, 3H), 3,30 - 3,25 (m, 3H), 2,32 - 2,07 (m, 7H), 1,74 - 1,49 (m, 5H), 1,22 (s, 1H).	483,15
(R)-(4-(4-амино-6-(6-этинил-2-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-ил)(2-окса-5-азаспиро[3.4]октан-5-ил)метанон	NH ₂	¹ Н ЯМР (400 МГц, Метанол- d_4) 8,16 (s, 1H), 7,78 (dd, J = 9,0, 7,9 Гц, 1H), 7,55 (dd, J = 7,9, 4,8 Гц, 1H), 5,88 (d, J = 14,9 Гц, 1H), 5,52 - 5,44 (m, 2H), 4,41 (dd, J = 5,3, 2,1 Гц, 2H), 3,89 (d, J = 0,9 Гц, 1H), 3,58 (f, J = 14,1, 7,1, 6,6, 3,0 Гц, 2H), 3,48 (s, 3H), 2,90 (d, J = 5,9 Гц, 1H), 2,43 (d, J = 18,4 Гц, 1H), 2,37 (s, 3H), 2,43 - 2,23 (m, 3H), 2,22 (dd, J = 45,1, 24,5 Гц, 2H), 1,94 - 1,67 (m, 4H).	483,20
((R)-4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((S)-2- (метоксиметил)пиррол идин-1-ил)метанон	NH ₂	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,44 – 8,32 (m, 1H), 8,10 (d, J = 3,4 Гц, 1H), 7,60 (s, 1H), 6,63 (s, 2H), 5,72 (s, 1H), 4,40 (s, 1H), 4,04 (s, 1H), 3,51 – 3,32 (m, 5H), 3,24 – 3,14 (m, 5H), 2,76 (s, 1H), 2,21 (s, 1H), 2,12 (d, J = 4,3 Γц, 3H), 1,82 (d, J = 28,6 Γц, 6H), 1,57 (s, 2H).	485,40

185,25
185,40
185,40
185,40
185,40
185,40
185,40
185,40
185,40
185,40
185,40
185,20
155,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-1-(4-(4-амино-6-(6-	0	¹ Н ЯМР (300 МГц, DMSO-d ₆) δ	455,20
этинил-4-		8,37 (d, $J = 8,3$ Гц, 1H), $8,12$ (s,	
метилпиридин-3-ил)-	N.	1H), 7,64 – 7,57 (m, 1H), 6,43 (s,	
7-метил-7Н-		2H), 5,70 (d, J = 18,3 Γ ц, 1H), 4,39	
пирроло[2,3-		(s, 1H), 3,73 – 3,55 (m, 3H), 3,35	
d]пиримидин-5-	NH ₂	(d, $J = 1.9 \Gamma \mu$, 3H), 2.57 – 2.48 (m,	
ил)циклогекс-3-ен-1-	N N	1H), 2,28 (d, $J = 23,1 \Gamma \mu$, 2H), 2,11	
карбонил)пирролидин		(s, 3H), 1,89 (p, $J = 7.6 \Gamma \mu$, 4H),	
-2-он	\ \N^{\nu}\ \\	1,79 – 1,42 (m, 3H).	
((S)-4-(4-амино-6-(6-	^ 4	¹H ЯМР (400 МГц, DMSO-d ₆) δ	455,25
этинил-4-		8,49 - 8,31 (m, 1H), $8,14$ (d, $J = 3,3$,20
метилпиридин-3-ил)-	V-N ←O	Гц, 1H), 7,63 (s, 1H), 6,54 (s, 2H),	
7-метил-7Н-		5,67 (d, $J = 26,6 \Gamma \mu$, 1H), 4,43 (s,	
пирроло[2,3-		1H), 4,00 (s, 1H), 3,51 (s, 1H), 3,38	
d пиримидин-5-	NH ₂	$(d, J = 2.7 \Gamma \mu, 1H), 3.37 (s, 3H),$	
ил)циклогекс-3-ен-1-	N =N	$2,68 \text{ (t, } J = 1,9 \text{ \Gamma u, 1H), 2,53 (s,}$	
ил)((R)-2-		1 H), 2,14 (d, J = 4,4 Γ μ , 4H), 2,07 -	
метилпирролидин-1-	N N	1,44 (m, 8H), 1,07 (d, J=6,2 Гц,	
ил)метанон	\ /	3H).	
((S)-4-(4-амино-6-(6-	^ ^	¹ H ЯМР (400 МГц, DMSO-d ₆) δ	471,35
этинил-4-	ОН	8,45 - 8,36 (m, 1H), $8,14$ (d, $J =$	171,55
метилпиридин-3-ил)-	_NO	2,7 Гц, 1H), 7,63 (s, 1H), 6,51 (s,	
7-метил-7Н-		2H), 5,67 (d, <i>J</i> = 25,9 Гц, 1H), 4,95	
пирроло[2,3-		- 4,67 (m, 1H), 4,42 (s, 1H), 3,95	
d пиримидин-5-	NH ₂	$(d, J = 15, 4 \Gamma \mu, 1H), 3,47 (dt, J = 15,4 \Gamma \mu, 1H)$	
ил)циклогекс-3-ен-1-		10,0, 4,4 Гц, 2H), 3,37 (s, 3H), 3,29	
ил)циклогеке-3-ен-1- ил)((S)-2-		- 3,19 (m, 1H), 2,70 (s, 1H), 2,14	
1 ' ' ' '	N N N	$(d, J = 5.2 \Gamma \mu, 5H), 1.97 - 1.78 (m,$	
(гидроксиметил)пирро лидин-1-ил)метанон	\ /	6H), 1,58 (s, 2H).	
(S)-(4-(4-амино-6-(6-	_	¹H ЯМР: ¹H ЯМР (400 МГц,	483,20
(5)-(4-(4-амино-о-(6-	97	DMSO- d_6) 8,41 (d, J = 8,2 Γ u, 1H),	403,20
	0, 1	8,15 (s, 1H), 7,71 - 7,56 (m, 1H),	
метилпиридин-3-ил)- 7-метил-7H-	N N	6,59 (s, 1H), 5,71 (d, J = 24,5 Гц,	
пирроло[2,3-	\ _}	1H), 5,36 - 5,21 (m, 2H), 4,43 (s, 1H), 4,18 (d, J = 4,9 Γμ, 2H), 3,53 -	
d]пиримидин-5-	NH ₂		
ил)циклогекс-3-ен-1-	N	3,41 (m, 2H), 3,38 (s, 3H), 2,77 (s,	
ил)(2-окса-5-		1H), 2,39 - 2,18 (m, 4H), 2,14 (d, J	
азаспиро[3.4]октан-5-	N '\ /	= 2,8 Гц, 3H), 1,94 (d, J = 18,5 Гц,	
ил)метанон		2H), 1,71 (t, J = 6,8 Γц, 2H), 1,61	
		(s, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4-	/m/	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	455,20
метилпиридин-3-ил)-	\N	8,43 - 8,24 (m, 1H), $8,10$ (d, $J = 3,2$	
7-метил-5-[(4S)-4-	<u></u>	Гц, 1H), 7,60 (s, 1H), 5,67 (d, J =	
[(2S)-2-		27,0 Гц, 1H), 4,40 (s, 1H), 3,99 (s,	
метилпирролидин-1-	()	1H), 3,44 (s, 2H), 3,35 (s, 3H), 2,48	
карбонил]циклогекс-	NH ₂	(s, 2H), 2,11 (d, $J = 3,6 \Gamma \mu$, 2H),	
1-ен-1-ил]-7Н-	N PN	1,88 (s, 5H), 1,77 - 1,57(m, 4H),	
пирроло[2,3-		1,19 - 0,81 (m, 4H).	
d]пиримидин-4-амин	N N		
((R)-4-(4-амино-6-(6-	~ 4	¹Н ЯМР (400 МГц, DMSO-d ₆)	455,20
этинил-4-		8,45 - 8,37 (m, 1H), $8,13$ (d, $J = 4,3$	100,20
метилпиридин-3-ил)-	VN ≥O	Гц, 1H), 7,63 (s, 1H), 6,55 (s, 1H),	
7-метил-7Н-	\mathcal{F}	5,70 (d, $J = 37,1$ Γμ, 1H), 4,42 (d, J	
пирроло[2,3-		= 2,0 Гц, 1H), 4,01 (s, 1H), 3,47 (t,	
d]пиримидин-5-	NH ₂	J = 6,4 Гц, 1H), 3,40 - 3,35 (m,	
ил)циклогекс-3-ен-1-	N =N	4H), 2,72 (d, <i>J</i> = 33,0 Гц, 1H), 2,24	
ил)((R)-2-		(s, 1H), 2,19 - 2,13 (m, 4H), 1,85	
метилпирролидин-1-	N N)	(d, $J = 44.5 \Gamma \mu$, 5H), 1.57 (s, 2H),	
ил)метанон	\ /	1,47 (s, 1H), 1,13 - 1,03 (m, 3H).	
((R)-4-(4-амино-6-(6-	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	455,15
этинил-4-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8,42 - 8,37 (m, 1H), 8,14 (d, J = 3,2	155,15
метилпиридин-3-ил)-	_NO	Гц, 1H), 7,63 (d, J = 2,0 Гц, 1H),	
7-метил-7Н-	$\int_{-\infty}^{\infty}$	6,54 (s, 1H), $5,67$ (d, $J = 26,1$ Гц,	
пирроло[2,3-		1H), 4,42 (s, 1H), 4,05 (d, J = 39,4	
d]пиримидин-5-	NH ₂	Гц, 1H), 3,57 (d, J = 42,9 Гц, 1H),	
ил)циклогекс-3-ен-1-	$N \longrightarrow N$	3,35 - 3,48 (m, 4H), 2,69 (d, J = 6,9	
ил)((S)-2-		Гц, 1H), 2,14 (d, J = 4,3 Гц, 5H),	
метилпирролидин-1-	N N	$1,94 \text{ (d, J} = 18,5 \Gamma \text{u, 3H)}, 1,82 \text{ (s,}$	
ил)метанон	\ /	2H), 1,57 (s, 2H), 1,49 (d, J = 5,7	
		, ,, , , , , , , , , , , ,	
((S)-4-(4-амино-6-(2-		,	510,30
`` / `	() 0	, , , , , , , , , , , , , , , , , , , ,	,
	_NO	, , , , , , , , , , , , , , , , , , , ,	
1			
'	()		
** -	NH ₂		
	N T	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
I ' ' I	NH NH		
' ' ' '	N, N		
l '			
((S)-4-(4-амино-6-(2- этинил-1Н- бензо[d]имидазол-5- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((S)-2- (метоксиметил)пиррол идин-1-ил)метанон	NH ₂ NH	211), 1,37 (s, 211), 1,49 (d, 3 = 3,7 Γ μ, 1H), 1,09 (dd, J = 12,6, 6,6 Γ μ, 3H). ¹ H ЯМР (400 МГ μ, DMSO- d_6) δ 13,32 (s, 1H), 8,12 (d, J = 3,9 Γ μ, 1H), 7,73 (s, 1H), 7,56 (s, 1H), 7,38 (s, 1H), 6,3 (s, 2H), 5,79 (s, 1H), 4,71 (s, 1H), 4,02 (s, 1H), 3,59 (s, 3H), 3,53 – 3,37 (m, 3H), 3,24 (s, 4H), 2,72 (s, J = 32,8 Γ μ, 1H), 2,29 (d, J = 36,4 Γ μ, 2H), 1,90 (d, J = 13,4 Γ μ, 3H), 1,80 (d, J = 5,1 Γ μ, 3H), 1,54 (s, 2H).	510,

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
((R)-4-(4-амино-6-(2- этинил-1Н- бензо[d]имидазол-5- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((S)-2- (метоксиметил)пиррол идин-1-ил)метанон	NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 13,33 (d, J = 10,2 Гц, 1H), 8,13 – 8,08 (m, 1H), 7,72 (d, J = 8,0 Гц, 1H), 7,57 (d, J = 8,5 Гц, 1H), 7,38 (dd, J = 14,6, 8,7 Гц, 1H), 6,59 (s, 2H), 5,80 (s, 1H), 4,72 (d, J = 1,1 Γц, 1H), 4,05 (s, 1H), 3,59 (d, J = 6,7 Γц, 3H), 3,49 (d, J = 8,1 Гц, 1H), 3,27 – 3,22 (m, 1H), 3,17 (d, J = 1,3 Γц, 2H), 2,83 (s, 3H), 2,4 (s, 1H), 2,20 (s, 1H), 1,87 – 1,83 (m, 1H), 1,78 (s, 6H), 1,54 (s, 2H).	510,30
((S)-4-(4-амино-6-(6- этинил-4- метоксипиридин-3- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H 9MP (400 MΓ _{II} , DMSO- d_6) δ 8,28 - 8,25 (m, 1H), 8,16 - 8,10 (m, 1H), 7,41 (d, J = 4,3 Γ _{II} , 1H), 6,54 (s, 2H), 5,66 (d, J = 33,7 Γ _{II} , 1H), 4,46 (s, 1H), 4,15 - 3,96 (m, 1H), 3,91 (d, J = 3,4 Γ _{II} , 3H), 3,42 (d, J = 3,4 Γ _{II} , 4H), 3,34 (s, 1H), 2,72 (s, 1H), 2,17 (s, 2H), 2,04 - 1,72 (m, 5H), 1,66 (d, J = 30,2 Γ _{II} , 2H), 1,50 (d, J = 6,2 Γ _{II} , 1H), 1,13 - 1,04 (m, 3H).	471,35
((R)-4-(4-амино-6-(6- этинил-4- метоксипиридин-3- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,26 (s, 1H), 8,16 - 8,06 (m, 1H), 7,41 (s, 1H), 6,59 (d, $J = 95,2$ Гц, 2H), 5,83 - 5,57 (m, 1H), 4,45 (d, $J = 2,5$ Γц, 1H), 4,03 (d, $J = 8,5$ Γц, 2H), 3,91 (s, 3H), 3,48 (s, 1H), 3,42 (d, $J = 3,1$ Γц, 3H), 2,84 - 2,65 (m, 1H), 2,36 - 2,04 (m, 2H), 2,02 - 1,72 (m, 5H), 1,56 (d, $J = 60,9$ Гц, 3H), 1,17 - 1,01 (m, 3H).	471,35
(R)-(4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(4- азаспиро[2.4]гептан-4- ил)метанон	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,39 (d, J = 6,1 Γц, 1H), 8,13 (s, 1H), 7,62 (s, 1H), 6,53 (s, 1H), 5,66 (d, J = 28,0 Γц, 1H), 4,42 (s, 1H), 3,77 - 3,52 (m, 2H), 3,32 (m, 3H), 2,70 (s, 1H), 2,36 - 2,03 (m, 5H), 1,97 - 1,51 (m, 8H), 1,36 (s, 2H), 0,39 (s, 2H).	467,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-(4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(4- азаспиро[2.4]гептан-4-	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,39 (d, J = 6,1 Γц, 1H), 8,13 (s, 1H), 7,62 (s, 1H), 6,53 (s, 1H), 5,66 (d, J = 28,0 Γц, 1H), 4,42 (s, 1H), 3,77 - 3,52 (m, 2H), 3,32 (m, 3H), 2,70 (s, 1H), 2,36 - 2,04 (m, 5H), 1,98 - 1,50 (m, 8H), 1,35(s, 2H), 0,39 (s, 2H).	467,25
ил)метанон (S)-(4-(4-амино-6-(2-этинил-1-метил-1Н-бензо[d]имидазол-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-ил)(пирролидин-1-ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,11 (s, 1H), 7,76 (d, J = 1,5 Гц, 1H), 7,71 (d, J = 8,5 Гц, 1H), 7,47 (dd, J = 8,5, 1,6 Гц, 1H), 6,56 (s, 1H), 5,80 (s, 1H), 5,00 (s, 1H), 3,93 (s, 3H), 3,58 (s, 3H), 3,49 (dt, J = 10,1, 6,6 Гц, 1H), 3,43 - 3,37 (m, 1H), 3,28 (d, J = 6,4 Гц, 0H), 3,23 (dd, J = 11,9, 6,6 Гц, 1H), 2,80 (t, J = 5,9 Гц, 1H), 2,26 (q, J = 20,5, 18,0 Гц, 2H), 1,84 (q, J = 6,6 Гц, 4H), 1,55 (s, 2H).	480,25

6-(6-((Трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4-хлор-7метил-7H-пирроло[2,3-d]пиримидин

[0411] **Стадия 1:** В герметизируемую реакционную пробирку загружали 4-хлор-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин (1,2 г, 4,1 ммоль), N-6-((трет-бутилдиметилсилил)этинил)-2,4-диметил-3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-

ил)пиридин (1,82 г, 4,91 ммоль), PAd2nBu Pd-G2 (0,27 г, 0,41 ммоль), PAd2nBu (0,29 г, 0,82 ммоль), K_3PO_4 (2,61 г, 12,3 ммоль), диоксан (30 мл), H_2O (3 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 70°C в течение 15 часов. Затем реакционную смесь концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюируя смесью MeOH/DCM = $1/100 \sim 1/20$). При концентрировании под вакуумом получали 6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин (0,7 г, выход 42%) в виде твердого вещества коричневого цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин

[0412] **Стадия 2:** В герметизируемую реакционную пробирку загружали 6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин (0,7 г, 1,7 ммоль), Pd(PPh₃)₄ (0,2 г, 0,17 ммоль), THF (20 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли $Zn(CH_3)_2$ (1M, 2,04 мл, 2,04 ммоль). Смесь перемешивали при 70° C в течение 2 часов. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na_2SO_4 и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью MeOH/DCM = $1/100\sim1/30$). При концентрировании под вакуумом получали 6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин (0,4 г, выход 60%) в виде твердого вещества коричневого цвета.

5-Бром-6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7диметил-7H-пирроло[2,3-d]пиримидин

[0413] **Стадия 3:** В круглодонную колбу загружали 6-(6-((третбутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил) -4,7-диметил-7H-пирроло[2,3-d]пиримидин (0,4 г, 1 ммоль), DMF (10 мл) и магнитную мешалку. Добавляли NBS (0,18 г, 1 ммоль). Смесь перемешивали в течение 1 ч. Реакционную смесь гасили насыщенным водным раствором NaHSO₃, экстрагировали DCM (50 мл*3), органическую фазу объединяли и дважды промывали солевым раствором, сушили над Na₂SO₄, упаривали под вакуумом, остаток растворяли в ACN (25 мл) и фильтровали, остаток на фильтре промывали ACN, сушили при пониженном давлении, в результате чего получали 5-бром-6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидина (440 мг, выход 94%) в виде твердого вещества желтого цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин

[0414] Стадия 4: В круглодонную колбу загружали 5-бром-6-(6-((третбутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин (440 мг, 0,94 ммоль), 2-(2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)-4-метилпиримидин (371,5 мг, 1,1 ммоль), $Pd(PPh_3)_4$ (104 мг, 0,09 ммоль), K_3PO_4 (598 мг, 2,82 ммоль), DME/H_2O (10:1, 10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 ч при 90°C. После охлаждения смесь разбавляли водой, экстрагировали DCM, сушили над Na_2SO_4 , выпаривали под вакуумом, остаток очищали методом хроматографии на силикагеле (элюирование смесью $MeOH/DCM = 1/100\sim1/10$), в результате чего получали 6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-

диметил-7H-пирроло[2,3-d]пиримидин (300 мг, выход 54%) в виде твердого вещества коричневого цвета.

6-(6-Этинил-2,4-диметилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин

[0415] Стадия 5: В круглодонную колбу загружали 6-(6-((третбутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-5-(3-фтор-4-((4метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин (300 мг, 0,51 ммоль), ТНГ (10 мл) и магнитную мешалку. Затем по каплям добавляли ТВАГ (0,61 мл, 0,61 ммоль). Смесь перемешивали в течение 0,5 ч при комнатной температуре. Смесь разбавляли водой, экстрагировали DCM, промывали солевым раствором, сушили над Na₂SO₄, упаривали под вакуумом, остаток очищали методом препаративной ВЭЖХ, в результате чего получали (100 мг, выход 41%) в виде твердого вещества белого цвета. 100 мг целевого соединения направляли на хиральное разделение (Колонка: CHIRALPAK IF, 2*25 см, 5 мкм; Подвижная фаза А: Hex (0,5% 2M NH₃-MeOH), Подвижная фаза В: смесь EtOH:DCM=1:1 для ВЭЖХ; Скорость пропускания: 20 мл/мин; Градиент: от 20 В до 20 В в течение 15,5 мин; 220/254 нм; RT1: 10,826; RT2: 12,649; Объем вводимой пробы: 0,8 мл; Количество рабочих циклов: 5). После лиофилизации получали бывший пик (43,4 мг) и последующий пик (40,2 мг). [0416] Другие такие же соединения, полученные согласно способам, описанным в Примере 25, показаны в Таблице 24 ниже.

Таблица 24. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинилпиримидин- 5-ил)-4,7-диметил-5-(4- ((4-метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,87 (s, 2H), 8,79 (s, 1H), 8,49 (d, $J = 5,0$ Гц, 1H), 7,43 - 7,35 (m, 2H), 7,25 - 7,14 (m, 3H), 4,55 (s, 1H), 3,81 (s, 3H), 2,42 (s, 3H), 2,38 (s, 3H).	434,15
6-(2-этинил-4- метилпиримидин-5-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	F O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,83 (d, $J = 17.9$ Гц, 2H), 8,49 (d, $J = 5.0$ Гц, 1H), 7,46 – 7,29 (m, 2H), 7,17 (dd, $J = 18.9$, 6,7 Гц, 2H), 4,52 (s, 1H), 3,64 (s, 3H), 2,44 (s, 3H), 2,41 (s, 3H), 2,21 (s, 3H).	466,25
5-{4,7-диметил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-6-ил}-2-этинил-4-метилпиримидин		¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,73 (d, J = 11,1 Гц, 2H), 5,85 – 5,20 (m, 1H), 4,53 (s, 1H), 3,53 (d, J = 1,3 Γц, 3H), 3,45 (td, J = 6,8, 2,9 Γц, 2H), 3,26 (d, J = 6,8 Γц, 2H), 2,67 (s, 3H), 2,33 (d, J = 3,2 Γц, 4H), 2,22 – 2,00 (m, 4H), 1,99 – 1,81 (m, 2H), 1,77 (q, J = 6,7 Γц, 3H), 1,49 (t, J = 11,9 Гц, 1H).	441,35
5-{4,7-диметил-5-[(4S)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7Н-пирроло[2,3-d]пиримидин-6-ил}-2-этинил-4-метилпиримидин	O N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,73 (d, $J = 11,0$ Гц, 2H), 5,91 – 5,36 (m, 1H), 4,53 (s, 1H), 3,52 (d, $J = 1,3$ Γц, 3H), 3,45 (td, $J = 6,7$, 3,0 Γц, 2H), 3,26 (d, $J = 6,9$ Γц, 2H), 2,67 (s, 3H), 2,33 (t, $J = 2,8$ Γц, 4H), 2,15 (d, $J = 30,9$ Гц, 4H), 1,95 – 1,70 (m, 5H), 1,50 (s, 1H).	441,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
((R)-4-(6-(6-этинил-4-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-енил)(пирролидин-1-ил)метанон	N O N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) 8,69 (s, 1H), 8,44 (d, J = 11,8 Гц, 1H), 7,66 (s, 1H), 5,67 (d, J = 24,4 Гц, 1H), 4,45 (s, 1H), 3,45 (d, J = 11,5 Гц, 5H), 3,26 (t, J = 6,9 Гц, 2H), 2,67 (s, 3H), 2,47 (s, 1H), 2,26 - 2,02 (m, 7H), 1,92 - 1,81 (m, 2H), 1,77 - 1,75 (m, J = 6,7 Гц, 3H), 1,46 - 1,44 (m, 1H).	440,30
((S)-4-(6-(6-этинил-4-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-енил)(пирролидин-1-ил)метанон		¹ H ЯМР (400 МГц, DMSO- d_6) 8,69 (s, 1H), 8,44 (d, J = 11,9 Γц, 1H), 7,66 (s, 1H), 5,67 (d, J = 24,4 Γц, 1H), 4,45 (s, 1H), 3,45 (d, J = 11,4 Γц, 5H), 3,26 (t, J = 7,0 Γц, 2H), 2,67 (s, 3H), 2,50 (s, 1H), 2,26 - 1,99 (m, 7H), 1,94 - 1,80 (m, 2H), 1,80 - 1,69 (m, 3H), 1,46 - 1,44 (m, 1H).	440,25
2-{4-[6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5-ил]-2-фторфенокси}-4-метилпиримидин	F O N F	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,78 (s, 1H), 8,49 - 8,40 (m, 2H), 7,39 - 7,24 (m, 2H), 7,20 - 7,06 (m, 2H), 4,80 (d, J = 0,9 Γц, 1H), 3,59 (s, 3H), 2,39 (d, J = 13,1 Γц, 6H), 2,00 (d, J = 2,2 Γц, 3H).	483,30
4-хлор-6-(6-этинил-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (s, 1H), 8,58 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 7,60 (s, 1H), 7,34 - 7,26 (m, 2H), 7,18 (d, J = 5,0 Γц, 1H), 7,10 (dt, J = 8,4, 1,4 Γц, 1H), 4,47 (s, 1H), 3,61 (s, 3H), 2,40 (s, 3H), 2,05 (s, 3H).	485,10
6-(6-этинил-2-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин	N N O F N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,49 (d, J = 5,0 Γц, 1H), 7,62 (s, 1H), 7,37 - 7,29 (m, 2H), 7,19 (d, J = 5,0 Γц, 1H), 7,08 (d, J = 8,3 Γц, 1H), 4,61 (s, 1H), 3,61 (s, 3H), 2,45 (s, 3H), 2,41 (s, 3H), 2,09 (s, 3H).	483,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин	N N O F N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 7,62 (s, 1H), 7,37 - 7,29 (m, 2H), 7,19 (d, J = 5,1 Гц, 1H), 7,11 - 7,06 (m, 1H), 4,62 (s, 1H), 3,61 (s, 3H), 2,45 (s, 3H), 2,40 (d, J = 5,3 Гц, 3H), 2,09 (s, 3H).	483,25
6-(6-этинил-2-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин	N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,81 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 7,62 (s, 1H), 7,37 - 7,30 (m, 2H), 7,19 (d, J = 5,0 Γц, 1H), 7,11 - 7,06 (m, 1H), 4,62 (s, 1H), 3,61 (s, 3H), 2,46 (s, 3H), 2,41 (s, 3H), 2,09 (s, 3H).	483,25
6-(6-этинил-2,4- диметилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (s, 1H), 8,48 (d, J = 5,0 Гц, 1H), 7,45 (s, 1H), 7,34 - 7,25 (m, 2H), 7,18 (d, J = 5,0 Гц, 1H), 7,07 (d, J = 8,9 Гц, 1H), 4,39 (s, 1H), 3,51 (s, 3H), 2,44 (s, 3H), 2,40 (s, 3H), 2,19 (s, 3H), 2,05 (s, 3H).	479,35
4-хлор-6-(6-этинил-2- фтор-4-метилпиридин- 3-ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин	N O F N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,48 (d, J = 5,1 Гц, 1H), 7,63 (s, 1H), 7,31 (t, J = 8,5 Γц, 2H), 7,19 (d, J = 5,0 Γц, 1H), 7,05 (d, J = 8,3 Γц, 1H), 4,62 (s, 1H), 3,66 (s, 3H), 2,40 (s, 3H), 2,09 (s, 3H).	503,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-хлор-6-(6-этинил-2- фтор-4-метилпиридин- 3-ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин	СI	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,81 (s, 1H), 8,49 (d, J = 5,0 Γц, 1H), 7,63 (s, 1H), 7,36 - 7,29 (m, 2H), 7,19 (d, J = 5,0 Γц, 1H), 7,07 - 7,04 (m, 1H), 4,64 (s, 1H), 3,66 (s, 3H), 2,41 (s, 3H), 2,09 (s, 3H)	503,25
4-хлор-6-(6-этинил-2- фтор-4-метилпиридин- 3-ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин	N N N O F N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,81 (s, 1H), 8,49 (d, J = 5,0 Γц, 1H), 7,63 (s, 1H), 7,34 - 7,29 (m, 2H), 7,19 (d, J = 5,1 Γц, 1H), 7,08 - 7,04 (m, 1H), 4,64 (s, 1H), 3,66 (s, 3H), 2,41 (s, 3H), 2,09 (s, 3H).	503,25
2-{4-[4-хлор-6-(6- этинил-4- метоксипиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил]-2- фторфенокси}-4- метилпиримидин	N O F O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,76 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 8,31 (s, 1H), 7,44 (s, 1H), 7,34 – 7,25 (m, 2H), 7,19 (d, J = 5,0 Γц, 1H), 7,11 – 7,03 (m, 1H), 4,50 (s, 1H), 3,87 (s, 3H), 3,67 (s, 3H), 2,41 (s, 3H).	501,15
6-(6-этинил-2,4- диметилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	N N N O F N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,83 (s, 1H), 8,48 (d, $J = 5,1$ Гц, 1H), 7,46 (s, 1H), 7,36 – 7,24 (m, 2H), 7,19 (d, $J = 5,0$ Γц, 1H), 7,11 – 7,04 (m, 1H), 4,40 (s, 1H), 3,53 (s, 3H), 2,46 (s, 3H), 2,40 (s, 3H), 2,19 (s, 3H), 2,05 (s, 3H).	479,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2,4- диметилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	N N O F O N O N O N O N O N O N O N O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,79 (s, 1H), 8,48 (d, J = 5,0 Γц, 1H), 7,46 (s, 1H), 7,35 – 7,24 (m, 2H), 7,18 (d, J = 5,1 Γц, 1H), 7,11 – 7,04 (m, 1H), 4,39 (s, 1H), 3,51 (s, 3H), 2,45 (s, 3H), 2,40 (s, 3H), 2,19 (s, 3H), 2,06 (d, J = 14,0 Γц, 3H).	479,25

Пример 26

Метил-4-(4-амино-6-(2-((трет-бутилдиметилсилил)этинил)-4-метилпиримидин-5ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)бензоат

[0417] Стадия 1: В круглодонную колбу загружали метил-4-(4-амино-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)бензоат (3 г, 7,35 ммоль), 2-((третбутилдиметилсилил)этинил)-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиримидин (3,26 г, 8,82 ммоль), Pd(dppf)Cl₂ (538 мг, 735 мкмоль), Cs₂CO₃ (4,79 г, 14,7 ммоль), смесь DME:вода = 10:1 (4 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Раствор перемешивали в течение 1 часа при 90°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали метил-4-(4-амино-6-(2-((третбутилдиметилсилил)этинил)-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)бензоат (1,5 г, выход 39%) в виде желтого аморфного твердого вещества.

4-(4-Амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3d]пиримидин-5-ил)бензойная кислота

[0418] **Стадия 2:** В круглодонную колбу загружали метил-4-(4-амино-6-(2-((трет-бутилдиметилсилил)этинил)-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)бензоат (500 мг, 977 мкмоль), ТНГ (10 мл) и магнитную мешалку. Затем добавляли NaOH (2M, 1 мл, 1,95 ммоль), и полученный раствор перемешивали в

течение 1 часа при 60°С. После этого удаляли растворитель. Смесь растворяли в воде, и ее рН доводили до уровня рН=2 1М раствором НСl, затем смесь экстрагировали этилацетатом. Органические слои объединяли, а растворитель удаляли под вакуумом. В результате получали 4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)бензойную кислоту (230 мг, выход 63%) в виде твердого аморфного вещества желтого цвета.

(4-(4-Амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон

[0419] Стадия 3: В круглодонную колбу загружали (4- (4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон (210 мг, 0,55 ммоль), 2-этинилпирролидин (95 мг, 0,82 ммоль), НАТИ (312 мг, 0,82 ммоль), DIEA (211 мг, 1,64 ммоль) и диметилформамид (5 мл). Раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: YMC-Actus Triart C18, 30*250, 5 мкм; Подвижная фаза А: вода (раствор NH₄HCO₃ 10 ммоль/л), Подвижная фаза В: ACN; Скорость пропускания: 50 мл/мин; Градиент: от 35 В до 53 В в течение 8 мин; 220 нм; RT1: 7,03). При концентрировании под вакуумом получали (4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон (60 мг, выход 24%) в виде твердого вещества почти белого цвета.

(S)-(4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон и (R)-(4-(4-амино-6-

(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5ил)фенил)(2-этинилпирролидин-1-ил)метанон

[0420] **Стадия 4:** Рацемический (4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил) -7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон (60 мг, 0,13 ммоль) очищали методом хиральной ВЭЖХ (Колонка: CHIRAL ART Cellulose-SB, 4,6*100 мм, 3,0 мкм; Подвижная фаза: смесь Hex(0,2% IPAmine):(EtOH:DCM=1:1) = 50:50) После лиофилизации получали (S)-(4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон (3,9 мг, выход 13%) и (R)-(4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон (13,5 мг, выход 45%) в виде почтибелого твердого аморфного вещества.

[0421] Другие такие же соединения, полученные согласно способам, описанным в Примере 26, показаны в Таблице 25 ниже.

Таблица 25. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-(4-(4-амино-6-(6- этинил-4-метилпиридин- 3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)фенил)(2- этинилпирролидин-1- ил)метанон	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,47 (s, 1H), 8,24 (s, 1H), 7,53 – 7,42 (m, 3H), 7,22 (d, <i>J</i> = 7,8 Γц, 2H), 6,10 - 6,08 (m, 1H), 4,71 – 4,60 (m, 1H), 4,40 (s, 1H), 3,53 – 3,35 (m, 5H), 3,17 (s, 1H), 2,18 - 2,09 (m, 1H), 2,01 – 1,83 (m, 6H).	461,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-(4-(4-амино-6-(6- этинил-4-метилпиридин- 3-ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)фенил)(2- этинилпирролидин-1- ил)метанон	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (s, 1H), 8,24 (s, 1H), 7,59 – 7,46 (m, 3H), 7,22 (d, J = 7,8 Γц, 2H), 6,09 - 6,07 (m, 1H), 4,72 – 4,60 (m, 1H), 4,39 (s, 1H), 3,53 - 3,48 (m, 5H), 3,17 (s, 1H), 2,19 - 2,11 (m, 1H), 2,01 – 1,81 (m, 6H).	461,35
(S)-(4-(4-амино-6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)фенил)(2-этинилпирролидин-1-ил)метанон	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (d, J = 4,8 Гц, 1H), 8,26 (s, 1H), 7,53 (d, J = 8,5 Γц, 2H), 7,24 (d, J = 7,7 Γц, 2H), 4,66 (d, J = 50,5 Γц, 1H), 4,48 (d, J = 1,1 Γц, 1H), 3,55 (s, 5H), 3,17 (d, J = 2,0 Γц, 1H), 2,09 (s, 4H), 2,03 - 1,76 (m, 3H).	462,15
(R)-(4-(4-амино-6-(2- этинил-4- метилпиримидин-5-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-5- ил)фенил)(2- этинилпирролидин-1- ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (d, J = 4,8 Гц, 1H), 8,26 (s, 1H), 7,53 (d, J = 8,5 Γц, 2H), 7,24 (d, J = 7,7 Γц, 2H), 4,66 (d, J = 50,5 Γц, 1H), 4,48 (d, J = 1,1 Γц, 1H), 3,55 (s, 5H), 3,17 (d, J = 2,0 Γц, 1H), 2,09 (s, 4H), 2,03 - 1,76 (m, 3H).	462,20
(S)-(4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-5- ил)фенил)(2- этинилпирролидин-1- ил)метанон	NH ₂ N N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,36 (s, 1H), 8,25 (s, 1H), 7,51 (d, $J = 10,3$ Гц, 2H), 7,23 (d, $J = 7,7$ Γц, 2H), 6,13 (s, 2H), 4,80 (s, 1H), 4,65 (d, $J = 49,4$ Γц, 1H), 3,51 (s, 5H), 3,17 (s, 1H), 2,43 – 1,67 (m, 7H).	479,35
(R)-(4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-5- ил)фенил)(2- этинилпирролидин-1- ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,36 (s, 1H), 8,25 (s, 1H), 7,51 (d, J = 7,1 Γц, 2H), 7,23 (d, J = 7,8 Γц, 2H), 6,12 (s, 2H), 4,80 (s, 1H), 4,66 (d, J = 46,9 Γц, 1H), 3,52 (s, 5H), 3,17 (s, 1H), 2,36 - 1,72 (m, 7H).	479,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(6-(6-этинил-4-	, F	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	514,25
метоксипиридин-3-ил)-		8,76 (s, 1H), $8,28$ (t, $J = 6,1$ Гц,	
4,7-диметил-7Н-	V	1H), 8,20 (s, 1H), 7,69 (d, $J = 7.9$	
пирроло[2,3-	····>0	Гц, 1H), 7,41 (s, 1H), 7,02 (s,	
d]пиримидин-5-ил)-N-((1-		1H), 6,91 (d, J = 7,9 Гц, 1H), 4,45	
фторциклобутил)метил)-		(s, 1H), 3,88 (s, 3H), 3,77 (s, 3H),	
2-метоксибензамид		3,67 (d, $J = 6,1$ Гц, 1H), $3,62$ (s,	
	N	1H), 3,60 (s, 3H), 2,40 (s, 3H),	
		2,23-2,14 (m, 4H), $1,76$ (dd, $J=$	
	N '\	11,2, 7,1 Γμ, 1H), 1,58 – 1,49 (m,	
	\	1H).	

Пример 27

Схема 24

5-Бром-2-((трет-бутилдиметилсилил)этинил)-4-метилпиридин

[0422] Стадия 1: В герметизируемую реакционную пробирку загружали 2,5-дибром-4-метилпиридин (3 г, 11,9 ммоль), трет-бутил(этинил)диметилсилан (1,82 г, 13,0 ммоль),

ТЕА (3,60 г, 35,7 ммоль), CuI (452 мг, 2,38 ммоль), диметилформамид (40 мл) и магнитную мешалку, затем добавляли Pd(PPh₃)₂Cl₂ (834 мг, 1,19 ммоль), после чего пробирку трижды вакуумировали и продували азотом. Смесь перемешивали в течение 2 ч при 50°С. Реакционную смесь разбавляли H₂O (20 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (120 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 300 г; элюирование смесью PE/EA, 50/1-20/1). После концентрирования под вакуумом получали 5-бром-2-[2-(третбутилдиметилсилил)этинил]-4-метилпиридин (3,10 г, выход 83,9%) в виде твердого аморфного вещества желтого цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин

[0423] Стадия 2: В герметизируемую реакционную пробирку загружали 5-бром-2-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин (3 г, 9,66 ммоль), {4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}бороновую кислоту (2,43 г, 11,5 ммоль), К₃РО₄ (6,12 г, 28,9 ммоль), Pd(dppf)Cl₂ (706 мг, 966 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Добавляли диоксан/H₂O (50 мл), и полученную смесь перемешивали в течение 2 часов при 70°C.Водную фазу трижды экстрагировали диметилформамидом (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 300 г; элюирование смесью РЕ/EA, 10/1). После концентрирования под вакуумом получали 2-[2-(трет-бутилдиметилсилил)этинил]-5-{4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-4-метилпиридин (1,60 г, выход 41,7%) в виде оранжевого твердого аморфного вещества.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-4,7-диметил-7Hпирроло[2,3-d]пиримидин

[0424] **Стадия 3:** В герметизируемую реакционную пробирку загружали 2-[2-(трет-бутилдиметилсилил)этинил]-5-{4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-4-метилпиридин (1,5 г, 3,77 ммоль), диметилцинк (359 мг, 3,77 ммоль), Рd(PPh₃)₄ (435 мг, 377 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диметилформамид (20 мл), и смесь перемешивали в течение 1 часа при 90°С. Реакционную смесь разбавляли Н₂О (10 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 300 г; элюирование смесью дихлорметан/метанол, 40/1). После концентрирования под вакуумом получали 2-[2-(трет-бутилдиметилсилил)этинил]-5-{4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил}-4-метилпиридин (1,2 г, выход 84,4%) в виде почти-белого твердого аморфного вещества.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-5-иод-4,7-диметил-7H-пирроло[2,3-d]пиримидин

[0425] Стадия 4: В круглодонную колбу загружали 2-[2-(трет-

бутилдиметилсилил)этинил]-5- $\{4,7$ -диметил-7H-пирроло [2,3-d]пиримидин-6-ил $\}$ -4-метилпиридин (1,1 г, 2,92 ммоль), ТFA (849 мг, 8,76 ммоль), DCM (15 мл) и магнитную мешалку. Затем при 0°C добавляли NIS(722 мг, 3,21 ммоль), и смесь нагревали до комнатной температуры. Смесь гасили насыщенным водным раствором NaHSO $_3$ до достижения уровня рН 8-9, экстрагировали DCM (100 мл *3), органическую фазу объединяли и сушили над Na $_2$ SO $_4$. После концентрирования под вакуумом получали 2-

[2-(трет-бутилдиметилсилил)этинил]-5-{5-иод-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-6-ил}-4-метилпиридину (1,20 г, выход 81,5%) в виде желтого твердого аморфного вещества.

(R)-4-(6-(6-((трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)-6'-метил-3'H-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-ен

[0426] Стадия 5: В герметизируемую реакционную пробирку загружали (1R)-6'-метил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-3'Н-спиро[циклогексан-1,2'-фуро[2,3b]пиридин]-3-ен (40 мг, 122 мкмоль), 2-[2-(трет-бутилдиметилсилил)этинил]-5-{5-иод-4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил}-4-метилпиридин (73,3 мг, 146 мкмоль), K₃PO₄ (25,8 мг, 122 мкмоль), Pd(dppf)Cl₂ (89,2 мг, 122 мкмоль) и магнитную мешалку, после чего ее подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (2 мл), и полученную смесь перемешивали в течение 1 часа при 90°С. Реакционную смесь разбавляли H_2O (1 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 10 г; элюирование смесью дихлорметан/метанол, 15/1). После концентрирования под вакуумом получали (1R)-4-(6-{6-[2-(трет-бутил-диметилсилил)этинил]-4-метилпиридин-3-ил}-4,7-диметил-7Нпирроло[2,3-d]пиримидин-5-ил)-6'-метил-3'Н-спиро[циклогексан-1,2'-фуро[2,3-Ы пиридин 3-ен (35 мг, выход 49,8%) в виде твердого аморфного вещества черного цвета.

(R)-4-(6-(6-этинил-4-метилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)-6'-метил-3'H-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-

ен

[0427] **Стадия 6:** В круглодонную колбу загружали (1R)-4-(6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)-6'-метил-3'H-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-ен (30 мг, 52,0 мкмоль), фтористый цезий (23,6 мг, 156 мкмоль) и магнитную мешалку. Затем добавляли ТНГ (2 мл), и раствор перемешивали в течение 2 часов при 50°С. Затем фильтровали и упаривали. Полученный сырой материал очищали методом ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO3 10 ммоль/л + 0,1% NH3·H2O), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 30 В до 55 В в течение 7 мин; 220 нм; RT1: 5,97; RT2: -). После лиофилизации получали (1R)-4-[6-(6-этинил-4-метилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил]-6'-метил-3'Н-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-ен (3,90 мг, 16,9%) в виде почти белого твердого аморфного вещества.

[0428] Другие такие же соединения, полученные согласно способам, описанным в Примере 27, показаны в Таблице 26 ниже.

Таблица 26. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(6-(5-(3-фтор-4- ((6-метилпиридин-2- ил)окси)фенил)-4,7- диметил-7Н- пирроло[2,3- d]пиримидин-6-ил)- 5-метилпиридин-3- ил)метакриламид; частичная соль муравьиной кислоты	N 0.6 FA	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,12 (s, 1H), 8,90 (d, J = 2,4 Γц, 1H), 8,78 (s, 1H), 8,23 (d, J = 4,8 Γц, 1H), 8,06 (d, J = 2,4 Γц, 1H), 7,75 (ddd, J = 8,3, 7,3, 1,5 Γц, 1H), 7,68 - 7,63 (m, 1H), 7,27 - 7,16 (m, 2H), 7,02 (dd, J = 12,6, 8,1 Γц, 2H), 6,86 (t, J = 7,4 Γц, 1H), 5,87 (t, J = 1,0 Γц, 1H), 5,60 (d, J = 1,9 Γц, 1H), 3,61 (s, 3H), 3,33 (s, 3H), 2,28 (s, 3H), 1,97 (t, J = 1,2 Γц, 3H), 1,89 (s, 3H).	523,25
(1R)-4-[6-(6-этинил- 4-метилпиридин-3- ил)-4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5-ил]- 6'-метил-3'Н- спиро[циклогексан- 1,2'-фуро[2,3- b]пиридин]-3-ен	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,72 (s, 1H), 8,49 (d, J = 6,4 Гц, 1H), 7,69 (d, J = 4,4 Гц, 1H), 7,41 (dd, J = 7,3, 3,3 Гц, 1H), 6,68 (d, J = 7,3 Γц, 1H), 5,60 (d, J = 37,3 Гц, 1H), 4,47 (d, J = 2,1 Гц, 1H), 3,49 (s, 3H), 2,99 - 2,83 (m, 1H), 2,72 (s, 3H), 2,68 (p, J = 2,2 Γц, 1H), 2,47 - 2,31 (m, 2H), 2,30 (s, 3H), 2,25 (d, J = 18,4 Γц, 1H), 2,17 (d, J = 1,5 Γц, 3H), 2,12 - 1,94 (m, 1H), 1,89 (d, J = 12,7, 6,2 Γц, 1H), 1,74 (d, J = 14,0, 6,4 Гц, 1H).	462,30
(S)-4-(6-(6-этинил-4-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5-ил)-6'-метил-3'Н-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-ен	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,71 (s, 1H), 8,49 (d, J = 6,4 Гц, 1H), 7,69 (d, J = 4,3 Гц, 1H), 7,41 (dd, J = 7,2, 3,4 Гц, 1H), 6,68 (d, J = 7,3 Гц, 1H), 5,65 (s, 1H), 4,47 (d, J = 2,1 Гц, 1H), 3,52 - 3,47 (m, 3H), 2,91 (dd, J = 29,8, 16,2 Гц, 1H), 2,72 (s, 3H), 2,38 (d, J = 16,3 Гц, 3H), 2,30 (s, 3H), 2,27 (s, 1H), 2,19 - 2,14 (m, 3H), 2,06 (s, 1H), 1,89 (dd, J = 12,5, 6,1 Гц, 1H), 1,74 (dq, J = 14,1, 6,4 Гц, 1H).	462,20

Пример 28

Схема 25

5-Бром-2-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиримидин

[0429] **Стадия 1:** В герметизируемую реакционную пробирку загружали 5-бром-2-иод-4-метилпиримидин (600 мг, 2,00 ммоль), CuI (152 мг, 800 мкмоль), Et₃N (606 мг, 6,00 ммоль), Pd(PPh₃)₂Cl₂ (280 мг, 400 мкмоль), DMF (15 мл) и магнитную мешалку, после чего ее трижды вакуумировали и продували азотом, затем добавляли третбутил(этинил)диметилсилан (280 мг, 2,00 ммоль), и полученную смесь перемешивали при 50°C в течение 2 часов. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали этилацетатом (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ТСХ (РЕ: EA=8:1). При концентрировании под вакуумом получали 5-бром-2-[2-(третбутилдиметилсилил)этинил]-4-метилпиримидин (500 мг, выход 80%) в виде почти белого твердого аморфного вещества.

(2-((Трет-бутилдиметилсилил)этинил)-4-метилпиримидин-5-ил)бороновая кислота

[0430] Стадия 2: В герметизируемую реакционную пробирку загружали 5-бром-2-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиримидин (480 мг, 1,54 ммоль), 4,4,5,5-тетраметил-2-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,3,2-диоксаборолан (467 мг, 1,84 ммоль), АсОК (452 мг, 4,62 ммоль), Pd(dppf)Cl₂ (112 мг, 154 мкмоль), добавляли диоксан (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, и полученную смесь перемешивали при 80°С в течение 2 часов. Реакционную смесь разбавляли водой (15 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (15 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода 0%~60%, 30 мин). После лиофилизации получили {2-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}бороновую кислоту (400 мг, выход 94%) в виде почти белого твердого аморфного вещества.

6-(2-((Трет-бутилдиметилсилил)этинил)-4-метилпиримидин-5-ил)-7-метил-5-(4-((4-метилпирмидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0431] **Стадия 3:** В герметизируемую реакционную пробирку загружали 6-иод-7-метил-5- $\{4-[(4-метилпиримидин-2-ил)окси]$ фенил $\}$ -7H-пирроло[2,3-d]пиримидин-4-амин (520 мг, 1,13 ммоль), $\{2-[2-(трет-бутилдиметилсилил)$ этинил]-4-метилпиримидин-5-ил $\}$ бороновую кислоту (380 мг, 1,37 ммоль), Na_2CO_3 (358 мг, 3,38 ммоль), $Pd(dppf)Cl_2$ (82,6 мг, 113 мкмоль), добавляли $DMF/H_2O=16/1$ (15 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки

азотом, и полученную смесь перемешивали при 90°С в течение 1 часа. Реакционную смесь разбавляли водой (15 мл), и водную фазу трижды экстрагировали DCM (15 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (DCM/MeOH=15/1). После лиофилизации получали 6-{2-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-4-амин (200 мг, выход 34%) в виде желтого твердого аморфного вещества.

6-(2-Этинил-4-метилпиримидин-5-ил)-7-метил-5-(4-((4-метилпиримидин-2ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0432] Стадия 4: В круглодонную колбу загружали 6-{2-[2-(третбутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амин (180 мг, 319 мкмоль), ТВАF (638 мкг, 638 мкмоль) и магнитную мешалку. Затем добавляли тетрагидрофуран (5 мл), и раствор перемешивали при 25°С в течение 1 часа. Реакционную смесь разбавляли водой (10 мл), и водную фазу трижды экстрагировали дихлорметаном (10 мл). Объединенные органические слои десять раз промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (Колонка: SunFire Prep C18 OBD Column, 19×150 мм, 5 мкм, 10 нм; Подвижная фаза А: вода (раствор 0,05% FA), Подвижная фаза В: АСN (раствор 0,1% DEA) для ВЭЖХ; Скорость пропускания: 25 мл/мин; Градиент: от 15 В до 38 В в течение 8 мин; 220 нм; RT1: 6,36). После лиофилизации получали 6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амин (31,1 мг, выход 21%) в виде желтого твердого аморфного вещества.

[0433] Другие такие же соединения, полученные согласно способам, описанным в

Таблица 27. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(4-(4-амино-6-(2- этинилпиримидин-5- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)фенил)(пирролиди н-1-ил)метанон	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,75 (s, 2H), 8,25 (s, 1H), 7,60 – 7,43 (m, 2H), 7,38 – 7,21 (m, 2H), 5,81 (s, 1H), 4,52 (s, 1H), 3,72 (s, 3H), 3,45 (dt, J = 17,5, 6,5 Гц, 4H), 1,85 (dq, J = 18,0, 6,8 Гц, 4H).	424,10
6-(2- этинилпиримидин-5- ил)-7-метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 2H), 8,48 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,38 – 7,31 (m, 2H), 7,28 – 7,21 (m, 2H), 7,17 (d, J = 5,0 Гц, 1H), 6,08 (s, 1H), 4,52 (s, 1H), 3,72 (s, 3H), 2,42 (s, 3H).	435,20
(4-(4-амино-2-(6- этинилпиридин-3-ил)- 1-метил-1Н- пирроло[2,3- b]пиридин-3- ил)фенил)(пирролиди н-1-ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 – 8,41 (m, 1H), 8,24 (s, 1H), 7,84 (dd, J = 8,0, 2,3 Γц, 1H), 7,61 (dd, J = 8,1, 0,8 Γц, 1H), 7,52 (d, J = 8,1 Γц, 2H), 7,28 (d, J = 8,1 Γц, 2H), 4,44 (s, 1H), 3,66 (s, 3H), 3,44 (dt, J = 17,6, 6,4 Γц, 4H), 1,90 – 1,79 (m, 4H).	423,10
6-(6-этинилпиридин-3-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,51 – 8,45 (m, 2H), 8,23 (s, 1H), 7,89 (dd, J = 8,1, 2,3 Γц, 1H), 7,63 (dd, J = 8,1, 0,9 Γц, 1H), 7,34 – 7,27 (m, 2H), 7,25 – 7,18 (m, 2H), 7,16 (d, J = 5,1 Γц, 1H), 4,44 (s, 1H), 3,66 (s, 3H), 2,42 (s, 3H).	434,10
6-(2-этинил-4-метилпиримидин-5-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,30 – 7,23 (m, 2H), 7,23 – 7,13 (m, 3H), 6,06 (s, 2H), 4,49 (s, 1H), 3,55 (s, 3H), 2,41 (s, 3H), 2,14 (s, 3H).	449,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-5- фторпиридин-3-ил)-7- метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,0 Гц, 1H), 8,31 (t, J = 1,6 Гц, 1H), 8,25 (s, 1H), 8,02 (dd, J = 10,0, 1,8 Гц, 1H), 7,37 – 7,29 (m, 2H), 7,28 – 7,20 (m, 2H), 7,17 (d, J = 5,0 Гц, 1H), 4,84 (d, J = 0,8 Гц, 1H), 3,71 (s, 3H), 2,42 (s, 3H).	452,15
6-(6-этинил-2- метилпиридин-3-ил)- 7-метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,46 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,86 (d, J = 7,9 Гц, 1H), 7,50 (d, J = 7,8 Гц, 1H), 7,28 - 7,21 (m, 2H), 7,21 -7,12 (m, 3H), 6,01 (s, 1H), 4,41 (s, 1H), 3,48 (s, 3H), 2,41 (s, 3H), 2,14 (s, 3H).	448,20
6-(6-этинил-4-метилпиридин-3-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,52 – 8,44 (m, 2H), 8,24 (s, 1H), 7,56 (s, 1H), 7,28 – 7,21 (m, 2H), 7,21 – 7,12 (m, 3H), 4,41 (s, 1H), 3,48 (s, 3H), 2,41 (s, 3H), 2,02 (s, 3H).	448,20
1-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-1Н-пиррол-2,5-дион	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,2 Гц, 1H), 8,25 (s, 1H), 7,55 – 7,51 (m, 2H), 7,50 – 7,40 (m, 2H), 7,33 (dd, J = 2,0 Γц, 2H), 7,31 – 7,20 (m, 4H), 7,16 (d, J = 4,8 Γц, 1H), 3,65(s, 3H), 2,40(s, 3H).	504,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинил-4- метилпиримидин-5- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	F O N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,81 (s, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 7,35 (t, J = 8,4 Гц, 1H), 7,26 -7,16 (m, 2H), 7,08 -7,01 (m, 1H), 6,19 (s, 2H), 4,49 (s, 1H), 3,54 (s, 3H), 2,41 (s, 3H), 2,15 (s, 3H).	467,20
6-(6-этинил-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,51(s, 1H), 8,47 (S, 1H), 8,24 (s, 1H), 7,58 (s, 1H), 7,36 - 7,30(m, 1H), 7,19 - 7,16 (m, 2H), 7,06 - 7,03 (m, 1H), 4,42 (s, 1H), 3,47 (s, 3H), 2,41 (s, 3H), 2,02 (s, 3H).	466,20
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N F	¹ H ЯМР (400 МГц, DMSO- d_6) 8,47 (d, J = 5,0 Гц, 1H), 8,40 (s, 1H), 8,25 (s, 1H), 7,28 - 7,22 (m, 2H), 7,22 - 7,12 (m, 3H), 4,80 (d, J = 0,8 Гц, 1H), 3,52 (s, 3H), 2,40 (s, 3H), 1,96 (d, J = 2,2 Гц, 3H).	466,25
6-(6-этинил-5-фтор-2-метилпиридин-3-ил)-7-метил-5-(4-(4-метилпиримидин-2-илокси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ F	¹ H ЯМР (400 МГц, DMSO- d_6) 8,47 (d, J= 5,0 Гц, 1H), 8,25 (s, 1H), 8,04 (d, J = 9,3 Γц, 1H), 7,30 - 7,23 (m, 2H), 7,23 - 7,16 (m, 2H), 7,15 (d, J = 5,0 Γц, 1H), 4,80 (d, J= 0,8 Γц, 1H), 3,52 (s, 3H), 2,41 (s, 3H), 2,08 (d, J = 1,1 Γц, 3H).	466,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4-метилпиридазин-3-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N=N N=N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,27 (s, 1H), 7,39 – 7,29 (m, 3H), 7,28 – 7,20 (m, 2H), 7,17 (d, J = 5,0 Гц, 1H), 6,08 (s, 2H), 4,97 (s, 1H), 3,83 (s, 3H), 2,42 (s, 3H), 2,28 (d, J = 0,9 Гц, 3H).	449,20
6-(6-этинил-4- метилпиридин-3-ил)- 7-метил-5-(1-метил- 1H-пиразол-4-ил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,43 (s, 1H), 8,19 (s, 1H), 7,62 (d, J = 0,7 Γц, 1H), 7,57 (s, 1H), 7,17 (d, J = 0,8 Γц, 1H), 6,16 (s, 1H), 4,41 (s, 1H), 3,79 (s, 3H), 3,43 (s, 3H), 2,02 (s, 3H).	344,15
6-(6-этинил-4- метилпиридин-3-ил)- 7-метил-5-[4- (трифторметокси)фен ил]-7Н-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N	¹ H ЯМР: ¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,46 (s, 1H), 8,24 (s, 1H), 7,55 (s, 1H), 7,31 (q, J = 8,7 Γц, 4H), 6,05 (s, 1H), 4,41 (s, 1H), 3,47 (s, 3H), 1,97 (s, 3H).	424,10
6-(6-этинил-4-метилпиридин-3-ил)-5-(4-изопропоксифенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,44 (s, 1H), 8,21 (s, 1H), 7,53 (s, 1H), 7,12 - 7,04 (m, 2H), 6,91 - 6,84 (m, 2H), 5,95 (s, 2H), 4,58 (hept, $J = 6,0$ Γц, 1H), 4,39 (s, 1H), 3,46 (s, 3H), 1,98 (s, 3H), 1,25 (d, $J = 6,0$ Γц, 6H).	398,30
6-(4-этинил-3- фторфенил)-7-метил- 5-{4-[(4- метилпиримидин-2- ил)окси]фенил}-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ F	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,40 (d, J = 5,6 Гц, 2H), 7,32 (s, 1H), 7,29 (s, 2H), 7,25 – 7,20 (m, 2H), 7,05 (d, J = 1,6 Гц, 1H), 7,04 – 7,02 (m, 1H), 6,95 (d, J = 5,0 Гц, 1H), 5,13 (s, 2H), 3,77 (s, 3H), 3,39 (s, 1H), 2,53 (s, 3H).	451,05

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-5-метоксипиридин-3-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ O N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (300 МГц, DMSO- d_6) δ 8,45 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 8,09 (d, J = 1,7 Гц, 1H), 7,45 (d, J = 1,7 Гц, 1H), 7,35 – 7,26 (m, 2H), 7,25 – 7,17 (m, 2H), 7,14 (d, J = 5,0 Гц, 1H), 4,50 (s, 1H), 3,75 (s, 3H), 3,70 (s, 3H), 2,40 (s, 3H).	464,05
6-(4-этинил-3,5- дифторфенил)-7- метил-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ F	¹ H ЯМР (300 МГц, DMSO- d_6) 8,48 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,36 - 7,30 (m, 2H), 7,28 - 7,21 (m, 4H), 7,19 - 7,13 (m, 1H), 4,91 (s, 1H), 3,69 (s, 3H), 2,41 (s, 3H).	469,15
6-(3-этинил-1-метил- 1H-пиразол-5-ил)-7- метил-5-{4-[(4- метилпиримидин-2- ил)окси]фенил}-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N	¹ H ЯМР (300 МГц, DMSO- <i>d</i> ₆) δ 8,48 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 7,34 - 7,20 (m, 4H), 7,16 (d, J = 5,0 Γц, 1H), 6,91 (s, 1H), 4,23 (s, 1H), 3,57 (s, 3H), 3,33 (s, 3H), 2,42 (s, 3H).	437,25
6-(2- этинилбензо[d]оксазол -6-ил)-7-метил-5-(4- ((4-метилпиримидин- 2-ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,46 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,88 - 7,80 (m, 2H), 7,44 (dd, J = 8,3, 1,6 Γц, 1H), 7,35 - 7,27 (m, 2H), 7,20 - 7,12 (m, 3H), 5,75 (s, 1H), 5,16 (s, 1H), 3,64 (s, 3H), 2,40 (s, 3H).	474,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	F O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (s, 1H), 8,55 (s, 1H), 8,48 (d, J = 5,0 Гц, 1H), 7,59 (t, J = 0,9 Гц, 1H), 7,38 – 7,26 (m, 2H), 7,18 (d, J = 5,0 Гц, 1H), 7,16 – 7,09 (m, 1H), 4,44 (s, 1H), 3,56 (s, 3H), 2,41 (d, J = 8,9 Гц, 6H), 2,06 (s, 3H).	465,15
6-(6-этинил-4- метилпиридин-3-ил)- 5-(2-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 (d, J = 5,0 Гц, 1H), 8,40 (s, 1H), 8,24 (s, 1H), 7,56 (d, J = 7,9 Гц, 1H), 7,45 – 7,24 (m, 1H), 7,23 – 7,14 (m, 2H), 7,07 (dd, J = 8,4, 2,3 Гц, 1H), 6,01 (m, 2H), 4,40 (s, 1H), 3,49 (s, 3H), 2,42 (s, 3H), 2,06 (d, J = 19,2 Гц, 3H).	466,20
6-(6-этинил-2- метилпиридин-3-ил)- 5-(2-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 (d = 4,8 Гц, 1H), 8,24 (s, 1H), 7,75 (d, J = 7,6 Γц, 1H), 7,53 – 7,44 (m, 1H), 7,31 (m, 1H), 7,18 (m, 2H), 7,12 – 7,01 (m, 1H), 6,01 (m, 2H), 4,40 (s, 1H), 3,49 (s, 3H), 2,42 (s, 3H), 2,18 (m, 3H).	466,15
6-(6-этинил-4- фторпиридин-3-ил)-5- (3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	F O N NH ₂ NH ₂ N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,58 (d, J = 10,1 Гц, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,76 (d, J = 10,0 Гц, 1H), 7,35 (d, J = 8,4 Гц, 1H), 7,27 - 7,23 (m, 1H), 7,23 - 7,17 (m, 1H), 7,10 - 6,99 (m, 1H), 6,17 (s, 1H), 4,63 (s, 1H), 3,63 - 3,56 (m, 3H), 2,42 (s, 3H).	470,10

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,88 (d, J = 7,9 Гц, 1H), 7,52 (d, J = 7,8 Гц, 1H), 7,33 (t, J = 8,4 Гц, 1H), 7,20 – 7,11 (m, 2H), 7,06 – 6,99 (m, 1H), 6,13 (s, 1H), 4,42 (s, 1H), 4,42 (s, 5H), 3,47 (s, 1H), 2,41 (s, 1H), 2,14 (s, 1H),	466,15
2-{4-[6-(6-этинил-2-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5-ил]-2-фторфенокси}-4-метилпиримидин	F O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,78 (s, 1H), 8,48 (d, J = 5,0 Гц, 1H), 7,91 (d, J = 7,8 Гц, 1H), 7,54 (d, J = 7,9 Гц, 1H), 7,37 – 7,27 (m, 2H), 7,19 (d, J = 5,0 Гц, 1H), 7,12 (d, J = 8,2 Гц, 1H), 4,44 (s, 1H), 3,57 (s, 3H), 2,44 (s, 3H), 2,41 (s, 3H), 2,19 (s, 3H).	465,25
(5-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-этинилпиридин-4-ил)метанол	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,54 (d, J = 0,8 Гц, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,67 (s, 1H), 7,34 (t, J = 8,4 Гц, 1H), 7,23 - 7,16 (m, 2H), 7,06 (dd, J = 9,3, 1,6 Гц, 1H), 5,48 (t, J = 5,7 Гц, 1H), 4,46 (s, 1H), 4,25 (dd, J = 15,7, 5,8 Гц, 1H), 4,03 (dd, J = 15,6, 5,9 Гц, 1H), 3,46 (s, 3H), 2,41 (s, 3H).	482,15
6-(4- ((диметиламино)метил)-6-этинилпиридин-3- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,62 (d, J = 0,8 Гц, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,66 (s, 1H), 7,31 (d, J = 8,4 Гц, 1H), 7,19 - 7,13 (m, 2H), 4,46 (s, 1H), 3,46 (s, 3H), 3,23 (d, J = 15,1 Гц, 1H), 2,85 (d, J = 15,2 Гц, 1H), 2,40 (s, 3H), 1,97 (s, 6H).	509,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(4-(дифторметил)-6- этинилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N F	¹ H ЯМР (300 МГц, DMSO- d_6) 8,81 (d, J = 0,9 Гц, 1H), 8,44 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,82 (s, 1H), 7,30 (t, J = 8,4 Гц, 1H), 7,24 -7,11 (m, 2H), 7,03 (ddd, J = 8,3, 2,1, 0,9 Гц, 1H), 6,73 (s, 1H), 6,12 (s, 1H), 4,62 (s, 1H), 3,46 (s, 3H), 2,37 (s, 3H).	502,15
6-(2-этил-6- этинилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N NH ₂ N NH ₂ N NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,43 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,89 (d, J = 7,9 Гц, 1H), 7,51 (d, J = 7,8 Гц, 1H), 7,30 (t, J = 8,4 Гц, 1H), 7,20 - 7,05 (m, 2H), 6,99 (d, J = 8,2 Гц, 1H), 6,11 (s, 1H), 4,38 (s, 1H), 3,35 (s, 3H), 2,42 - 2,21 (m, 4H), 0,90 (t, J = 7,5 Гц, 3H).	480,15
6-(4-этил-6- этинилпиридин-3-ил)- 5-{3-фтор-4-[(4- метилпиримидин-2- ил)окси]фенил}-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,58 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,58 (s, 1H), 7,33 (t, J = 8,4 Гц, 1H), 7,22 – 7,12 (m, 2H), 7,04 (d, J = 8,3 Гц, 1H), 6,13 (s, 1H), 4,44 (s, 1H), 3,46 (s, 3H), 2,39 (d, J = 10,2 Гц, 4H), 2,22 (dt, J = 14,9, 7,6 Гц, 1H), 0,91 (t, J = 7,5 Гц, 3H).	480,30
6-(6-этинил-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-изопропил-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,53 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,56 (s, 1H), 7,31 (t, J = 8,4 Гц, 1H), 7,22 - 7,11 (m, 2H), 7,03 (d, J = 8,6 Гц, 1H), 6,08 (s, 2H), 4,43 (s, 1H), 4,11 - 4,00 (m, 1H), 2,41 (s, 3H), 2,06 (d, J = 14,2 Гц, 3H), 1,62 (d, J = 6,8 Гц, 3H), 1,50 (d, J = 6,7 Гц, 3H).	494,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4-	/	¹Н ЯМР (400 МГц, DMSO-d ₆)	494,35
метилпиридин-3-ил)-	N	δ 8,53 (s, 1H), 8,47 (d, J = 5,0	
5-(3-фтор-4-((4-	- o-()	Гц, 1H), 8,23 (s, 1H), 7,56 (s,	
метилпиримидин-2-	F N	1H), 7,31 (t, $J = 8,4$ Гц, 1H),	
ил)окси)фенил)-7-	// У изомер 1	7,21 - 7,12 (m, 2H), 7,04 (dd, <i>J</i>	
изопропил-7Н-	NH ₂	$= 8,2,2,1 \Gamma \mu, 1H), 6,10 (s, 1H),$	
пирроло[2,3-	NN	4,42 (s, 1H), $4,07$ (p, $J = 6,8$ Гц,	
d]пиримидин-4-амин		1H), 2,41 (s, 3H), 2,04 (s, 3H),	
	N N	$1,62 \text{ (d, } J = 6,8 \Gamma\text{u}, 3\text{H}), 1,50 \text{ (d,}$	
	<i>`</i>	$J = 6.8 \Gamma$ ц, 3H).	
6-(6-этинил-4-	1	¹ Н ЯМР (400 МГц, DMSO-d ₆)	494,35
метилпиридин-3-ил)-	N=	δ 8,53 (s, 1H), 8,47 (d, J = 5,0	
5-(3-фтор-4-((4-	04	Гц, 1H), 8,23 (s, 1H), 7,56 (s,	
метилпиримидин-2-	F N	1H), 7,31 (t, $J = 8,4$ Гц, 1H),	
ил)окси)фенил)-7-	/ У изомер 2	7,21 - 7,12 (m, 2H), $7,04$ (dt, $J =$	
изопропил-7Н-	NH ₂	8,3, 1,4 Гц, 1H), 6,09 (s, 1H),	
пирроло[2,3-	N PN	4,42 (s, 1H), $4,07$ (p, $J = 6,8$ Гц,	
d]пиримидин-4-амин		1H), 2,41 (s, 3H), 2,04 (s, 3H),	
	N N	$1,62$ (d, $J = 6.8$ Γ _H , 3H), $1,50$ (d,	
	<i>`</i>	$J = 6.8 \Gamma$ ц, 3H).	
6-(6-этинил-2-	/	¹ Н ЯМР (300 МГц, DMSO-d ₆)	494,20
метилпиридин-3-ил)-	N	δ 8,47 (d, J = 5,0 Γμ, 1H), 8,21	·
5-(3-фтор-4-((4-	04	(s, 1H), 7,90 (d, $J = 7,9 \Gamma \mu$, 1H),	
метилпиримидин-2-	F N	7,53 (d, $J = 7.8 \Gamma \mu$, 1H), 7,32 (t,	
ил)окси)фенил)-7-		$J = 8,4 \Gamma \mu, 1H$, 7,22 - 7,10 (m,	
изопропил-7Н-	NH ₂	2H), 7,02 (d, $J = 8,6 \Gamma \mu$, 1H),	
пирроло[2,3-		6,10 (s, 1H), 4,43 (s, 1H), 4,13 -	
d]пиримидин-4-амин		4,02 (m, 1H), 2,41 (s, 3H), 2,16	
	N >=N	(s, 3H), 1,62 (d, $J = 6.8 \Gamma \mu$, 3H),	
	<i></i>	1,50 (d, $J = 6.8 \Gamma \mu$, 3H).	
6-(6-этинил-2-	1	¹H ЯМР (400 МГц, DMSO-d ₆)	494,35
`	N=	δ 8,47 (d, J = 5,0 Γμ, 1H), 8,22	
· · · · · · · · · · · · · · · · · · ·			
` * * ``	F, N		
ил)окси)фенил)-7-		7,32 (t, $J = 8,4 \Gamma \text{H}$, 1H), 7,21 -	
' • ' •	NH ₂ изомер 1	7,11 (m, 2H), 7,02 (ddd, $J = 8,3$,	
1 1			
** *			
	`N´`N	1H), 2,41 (s, 3H), 2,16 (s, 3H),	
	/ / /	1,62 (d, $J = 6,8$ Гц, 3H), 1,50 (d,	
		J = 6.8 Гц, 3H).	
6-(6-этинил-2- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2-	F O N	(s, 3H), 1,62 (d, J = 6,8 Γ II, 3H), 1,50 (d, J = 6,8 Γ II, 3H). ¹ H ЯМР (400 М Γ II, DMSO- d_6) 8 8,47 (d, J = 5,0 Γ II, 1H), 8,22 (s, 1H), 7,89 (d, J = 7,9 Γ II, 1H), 7,52 (dd, J = 7,9, 0,7 Γ II, 1H), 7,32 (t, J = 8,4 Γ II, 1H), 7,21 - 7,11 (m, 2H), 7,02 (ddd, J = 8,3, 2,1, 0,9 Γ II, 1H), 6,04 (s, 2H), 4,42 (s, 1H), 4,08 (p, J = 6,7 Γ II, 1H), 2,41 (s, 3H), 2,16 (s, 3H), 1,62 (d, J = 6,8 Γ II, 3H), 1,50 (d,	494

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2- метилпиридин-3-ил)-	N=	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,47 (d, <i>J</i> = 5,0 Гц, 1H), 8,22	494,35
5-(3-фтор-4-((4-	- o-()	(s, 1H), 7,89 (d, $J = 7,8 \Gamma \mu$, 1H),	
метилпиримидин-2-	F N	7,53 (d, $J = 7.9$ Гц, 1H), 7,32 (t,	
ил)окси)фенил)-7-	ын. изомер 2	J = 8,4 Гц, 1H), 7,21 - 7,12 (m,	
изопропил-7Н-	NH₂	2H), 7,02 (d, $J = 8,1$ Гц, 1H),	
пирроло[2,3-	N N	6,04 (s, 1H), 4,42 (s, 1H), 4,08	
d]пиримидин-4-амин	N N >=N	$(t, J = 6.8 \Gamma \text{H}, 1\text{H}), 2.41 \text{ (s, 3H)},$	
		2,16 (s, 3H), 1,62 (d, J = 6,8 Γ ц,	
	,	3H), 1,50 (d, J = 6,8 Гц, 3H)	
6-(6-этинил-4-	√N.	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆)	452,15
метилпиридин-3-ил)-	() I	δ 8,68 (d, J = 4,8 Γμ, 2H), 8,52	
5-(3-фтор-4-	, o	(s, 1H), 8,27 (d, $J = 2,7 \Gamma \mu$, 1H),	
(пиримидин-2-		7,59 (s, 1H), 7,41 - 7,29 (m,	
илокси)фенил)-7-	NII ()	2H), 7,19 - 7,06 (m, J = 8,3 Гц,	
метил-7Н-	NH ₂	2H), 6,15 (s, 1H), 4,43 (s, 1H),	
пирроло[2,3-	N N	3,47 (s, 3H), 2,04 (s, 3H).	
d]пиримидин-4-амин	N		
6-(6-этинил-4-	/	¹H ЯМР (300 МГц, DMSO-d ₆)	465,35
метилпиридин-3-ил)-		δ 8,49 (s, 1H), 8,22 (s, 1H), 7,71	
5-(3-фтор-4-((6-	N	(dd, $J = 8,2, 7,3 \Gamma \mu, 1H$), 7,53	
метилпиридин-2-		(d, $J = 0.8 \Gamma \mu$, 1H), 7,22 (t, $J =$	
ил)окси)фенил)-7-	F	8,4 Γ u, 1H), 7,10 (dd, $J = 11,5$,	
метил-7Н-		2,0 Γц, 1H), 7,01 - 6,98 (m, 1H),	
пирроло[2,3-	NH ₂	$6,97$ (d, $J = 3,4$ Γ ц, 1 H), $6,83$ (d,	
d]пиримидин-4-амин	N N	$J = 8,1 \Gamma \mu, 1H), 6,15 (s, 2H),$	
		4,39 (s, 1H), 3,46 (s, 3H), 2,26	
	N 1, /	(s, 3H), 1,97 (s, 3H).	
6-(2-этинилпиридин-4-	/	¹H ЯМР (300 МГц, DMSO-d ₆)	452,15
ил)-5-(3-фтор-4-((4-		δ 8,60 (dd, J = 5,2, 0,9 Γμ, 1H),	·
метилпиримидин-2-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8,49 (d, $J = 5.0 \Gamma \mu$, 1H), 8,25 (s,	
ил)окси)фенил)-7-	N O	1H), 7,53 (t, J = 1,3 Гц, 1H),	
метил-7Н-	F	7,46 – 6,99 (m, 5H), 4,39 (s,	
пирроло[2,3-		1H), 3,68 (s, 3H), 2,43 (s, 3H).	
d]пиримидин-4-амин	NH ₂		
	N N N		

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4-метилпиридин-3-ил)-5-(3-фтор-4-((1-метил-1H-пиразол-3-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,45 (s, 1H), 8,20 (s, 1H), 7,60 (d, J = 2,3 Гц, 1H), 7,53 (d, J = 0,9 Гц, 1H), 7,17 - 7,04 (m, 2H), 6,92 (dt, J = 8,4, 1,5 Гц, 1H), 6,10 (s, 1H), 5,82 (d, J = 2,3 Гц, 1H), 4,39 (s, 1H), 3,70 (s, 3H), 3,43 (s, 3H), 1,97 (s, 3H).	454,10
6-(1- этинилизохинолин-4- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,61 (s, 1H), 8,48 - 8,37 (m, 2H), 8,29 (s, 1H), 7,87 - 7,80 (m, 2H), 7,63 - 7,56 (m, 1H), 7,26 - 7,17 (m, 2H), 7,14 (d, J = 5,1 Гц, 1H), 7,05 - 7,01 (m, 1H), 6,15 (s, 1H), 4,97 (s, 1H), 3,43 (s, 3H), 2,36 (s, 3H).	502,20
6-(6-этинил-4-метилпиридин-3-ил)-7-метил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N	¹ Н ЯМР (400 МГц, Метанол- d ₄) δ 8,58 (d, J = 2,7 Гц, 1H), 8,50 (s, 1H), 8,43 (d, J = 5,1 Гц, 1H), 8,22 (s, 1H), 7,70 (s, 1H), 7,46 (dd, J = 8,8, 2,8 Гц, 1H), 7,15 (d, J = 5,1 Гц, 1H), 6,92 (d, J = 8,7 Гц, 1H), 4,58 (s, 1H), 3,55 (s, 3H), 2,48 (s, 3H), 2,17 (s, 3H).	449,30
6-(4-хлор-6- этинилпиридин-3-ил)- 5-{3-фтор-4-[(4- метилпиримидин-2- ил)окси]фенил}-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N CI	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,62 (s, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 7,98 (s, 1H), 7,35 (s, 1H), 7,23 – 7,15 (m, 2H), 7,09 – 6,99 (m, 1H), 6,18 (s, 1H), 4,63 (s, 1H), 3,53 (s, 3H), 2,42 (s, 3H).	486,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-5-фтор-4-метоксипиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N O F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 8,18 (s, 1H), 7,38 - 7,34 (m, 1H), 7,23 - 7,18 (m, 2H), 7,08 - 7,05 (m, 1H), 6,13 (s, 1H), 4,84 (d, J = 1,0 Γц, 1H), 3,91 (d, J = 4,5 Γц, 3H), 3,56 (s, 3H), 2,51 (s, 3H).	500,15
4-(4-амино-6-(6- этинил-5-фтор-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-2- фтор-N- изобутилбензамид	NH ₂ F F	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,34 (s, 1H), 8,23 (s, 2H), 7,51 (t, J = 7,9 Гц, 1H), 7,10 - 6,98 (m, 2H), 6,16 (s, 1H), 4,79 (d, J = 0,8 Гц, 1H), 3,48 (s, 3H), 3,09 - 2,98 (m, 2H), 1,95 (d, J = 2,1 Гц, 3H), 1,79 (dp, J = 13,4, 6,7 Гц, 1H), 0,86 (d, J = 6,7 Гц, 6H).	475,30
5-(3-хлор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	CI ON N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,44 (s, 1H), 8,26 (s, 1H), 7,38 (s, 1H), 7,33 (d, J = 8,3 Γц, 1H), 7,22 - 7,13 (m, 2H), 6,18 (s, 2H), 4,81 (d, J = 0,8 Γц, 1H), 3,52 (s, 3H), 2,41 (s, 3H), 1,96 (d, J = 2,1 Γц, 3H).	500,15
2-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-7- ил)этан-1-ол	N N O F N N N O O H	¹ H ЯМР (300 МГц, DMSO- d_6) δ 8,55 (s, 1H), 8,48 (d, J = 5,0	496,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(1S,3r)-3-(4-амино-6- (6-этинил-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-7- ил)циклобутан-1-ол	N N N N N N N abs	¹ H ЯМР (400 МГц, Хлороформ- <i>d</i>) δ 8,44 (s, 1H), 8,41 - 8,33 (m, 2H), 7,42 (s, 1H), 7,28 (s, 2H), 7,23 (t, J = 8,2 Γц, 1H), 7,04 - 6,92 (m, 3H), 6,19 (s, 1H), 5,22 (s, 2H), 4,23 - 4,14 (m, 1H), 4,10 (p, J = 7,4 Γц, 1H), 3,24 (s, 1H), 3,03 (dt, J = 10,6, 6,5 Γц, 4H), 2,51 (s, 3H), 2,04 (s, 3H).	522,20
5-(3-хлор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-(6-этинил-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин	N CI NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,52 (s, 1H), 8,46 (d, J = 5,0 Γц, 1H), 8,25 (s, 1H), 7,58 (s, 1H), 7,41 - 7,27 (m, 2H), 7,25 - 7,13 (m, 2H), 6,14 - 6,11 (m, 1H), 4,43 (s, 1H), 3,47 (s, 3H), 2,42 (s, 3H), 2,02 (s, 3H).	482,15
5-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)-2- ((4-метилпиримидин- 2- ил)окси)бензонитрил	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,52 (d, J = 5,1 Гц, 2H), 8,25 (s, 1H), 7,70 (d, J = 2,2 Гц, 1H), 7,58 (d, J = 0,8 Гц, 1H), 7,49 (dd, J = 8,6, 2,3 Γц, 1H), 7,40 (d, J = 8,6 Γц, 1H), 7,25 (d, J = 5,1 Γц, 1H), 6,21 (s, 2H), 4,43 (s, 1H), 3,47 (s, 3H), 2,44 (s, 3H), 2,01 (s, 3H).	473,20
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)- 5-{2-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 (d, J = 5,0 Гц, 1H), 8,32 (d, J = 6,6 Гц, 1H), 8,25 (s, 1H), 7,35 (t, J = 8,6 Гц, 1H), 7,26 – 7,16 (m, 2H), 7,12 – 7,02 (m, 1H), 6,08 (s, 1H), 4,79 (d, J = 0,8 Гц, 1H), 3,54 (s, 3H), 2,41 (s, 3H), 2,00 (d, J = 24,8 Гц, 3H).	484,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4- фторпиридин-3-ил)-5- (3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	N N O N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,80 (s, 1H), 8,65 (d, J = 10,0 Γц, 1H), 8,49 (d, J = 5,0 Γц, 1H), 7,79 (d, J = 10,0 Γц, 1H), 7,43 - 7,30 (m, 2H), 7,17 (dd, J = 12,6, 6,7 Γц, 2H), 4,64 (s, 1H), 3,70 (s, 3H), 2,41 (d, J = 2,9 Γц, 6H).	469,30
5-{4-[(4,6- диметилпиримидин-2- ил)окси]-3- фторфенил}-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,51 (d, $J = 0,7$ Гц, 1H), 8,24 (s, 1H), 7,56 (t, $J = 0,8$ Гц, 1H), 7,30 (t, $J = 8,4$ Гц, 1H), 7,14 (dd, $J = 11,4$, 2,0 Гц, 1H), 7,07 – 6,99 (m, 2H), 6,16 (s, 1H), 4,42 (s, 1H), 3,49 (s, 3H), 2,33 (s, 6H), 2,00 (s, 3H).	480,35
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)- 5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-изопропил-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,42 (s, 1H), 8,22 (s, 1H), 7,31 (t, J = 8,4 Гц, 1H), 7,22 – 7,14 (m, 2H), 7,02 (ddd, J = 8,4, 2,3, 0,9 Гц, 1H), 6,09 (s, 2H), 4,82 (d, J = 0,7 Гц, 1H), 4,13 (p, J = 6,7 Гц, 1H), 2,39 (s, 3H), 1,99 (d, J = 2,1 Гц, 3H), 1,61 (d, J = 6,8 Гц, 3H), 1,51 (d, J = 6,7 Гц, 3H).	512,35
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-изопропил-7H-пирроло[2,3-d]пиримидин-4-амин	N N O F O F O O O O O O O O O O O O O O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,42 (d, J = 5,1 Гц, 1H), 8,36 (s, 1H), 8,23 (s, 1H), 7,29 (t, J = 8,2 Гц, 1H), 7,19 – 7,05 (m, 3H), 4,29 (p, J = 6,9 Гц, 1H), 4,19 (d, J = 0,8 Гц, 1H), 2,49 (s, 3H), 2,10 (d, J = 2,2 Гц, 3H), 1,72 (s, 3H), 1,60 (d, J = 6,8 Гц, 3H).	512,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-изопропил-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ NH ₂ N F	¹ Н ЯМР (400 МГц, DMSO- d_6) 8 8,48 (d, J = 5,0 Гц, 1H), 8,43 (s, 1H), 8,23 (s, 1H), 7,32 (t, J = 8,4 Гц, 1H), 7,22 – 7,13 (m, 2H), 7,02 (dd, J = 8,3, 2,1 Гц, 1H), 5,93 (d, J = 130,2 Гц, 1H), 4,82 (s, 1H), 4,14 (p, J = 6,7 Гц, 1H), 2,40 (s, 3H), 2,00 (d, J = 2,1 Гц, 3H), 1,62 (d, J = 6,8 Гц, 3H), 1,51 (d, J = 6,8 Гц, 3H).	512,40
	Атропизомер 2		
6-(6-этинил-4,5- диметилпиридин-3- ил)-5-{3-фтор-4-[(4- метилпиримидин-2- ил)окси]фенил}-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Γц, 1H), 8,33 (s, 1H), 8,24 (s, 1H), 7,32 (t, J = 8,4 Γц, 1H), 7,21 – 7,13 (m, 2H), 7,07 – 6,99 (m, 1H), 6,14 (s, 1H), 4,58 (s, 1H), 3,44 (s, 3H), 2,40 (d, J = 3,2 Γц, 6H), 2,00 (s, 3H).	480,30
6-(6-этинил-5- метоксипиридин-3- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	N N O N N O N N O N N N O N N N N O N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,79 (s, 1H), 8,48 (d, J = 5,0 Γц, 1H), 8,18 (d, J = 1,7 Γц, 1H), 7,57 (d, J = 1,7 Γц, 1H), 7,41 - 7,36 (m, 2H), 7,22 - 7,14 (m, 2H), 4,56 (s, 1H), 3,80 (s, 6H), 2,41 (d, J = 6,3 Γц, 6H).	481,20
6-(2- этинилхиноксалин-6- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8 9,04 (s, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 8,16 (d, J = 1,8 Гц, 1H), 8,08 (d, J = 8,7 Гц, 1H), 7,85 (dd, J = 8,6, 2,0 Гц, 1H), 7,38 - 7,24 (m, 2H), 7,20 - 7,11 (m, 2H), 4,90 (s, 1H), 3,71 (s, 3H), 2,38 (s, 3H), 1,15 (s, 1H).	503,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинилхиназолин- 6-ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N N N N N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,59 (s, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,26 (d, J = 2,0 Гц, 2H), 8,05 - 7,91 (m, 2H), 7,35 - 7,21 (m, 2H), 7,20 - 7,09 (m, 2H), 6,12 (s, 2H), 4,51 (s, 1H), 3,70 (s, 3H), 2,38 (s, 3H).	503,15
6-(3- этинилхиноксалин-6- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	N N N N N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,04 (s, 1H), 8,45 (d, J = 5,0 Γц, 1H), 8,26 (s, 1H), 8,15 - 8,08 (m, 2H), 7,83 (dd, J = 8,6, 1,9 Гц, 1H), 7,33 (t, J = 8,3 Гц, 1H), 7,28 (dd, J = 11,4, 2,0 Γц, 1H), 7,18 - 7,12 (m, 2H), 6,10 (s, 2H), 4,88 (s, 1H), 3,71 (s, 3H), 2,38 (s, 3H).	503,15
6-(2-этинилхиназолин- 7-ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,62 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 8,20 (d, J = 8,4 Гц, 1H), 8,04 (s, 1H), 7,74 (dd, J = 8,4, 1,7 Гц, 1H), 7,38 – 7,24 (m, 2H), 7,20 – 7,10 (m, 2H), 6,12 (s, 1H), 4,49 (s, 1H), 3,71 (s, 3H), 2,38 (s, 3H).	503,35
2'-этинил-5-(3-фтор-4- ((4-метилпиримидин- 2-ил)окси)фенил)-7,7'- диметил-7H,7'H-[6,6'- бипирроло[2,3- d]пиримидин]-4-амин	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 9,07 (s, 1H), 8,47 (d, $J = 5,0$ Гц, 1H), 8,29 (s, 1H), 7,34 (t, $J =$ 8,2 Гц, 1H), 7,25 (d, $J = 11,2$ Гц, 1H), 7,18 (d, $J = 5,1$ Гц, 1H), 7,10 (d, $J = 11,7$ Гц, 2H), 4,25 (s, 1H), 3,62 (s, 3H), 3,31 (s, 3H), 2,41 (s, 3H).	506,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинил-5-метил- 5Н-пирроло[3,2- d]пиримидин-6-ил)-5- (3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,07 (s, 1H), 8,47 (d, J = 5,0 Γц, 1H), 8,30 (s, 1H), 7,34 (t, J = 8,4 Γц, 1H), 7,26 (dd, J = 11,3, 2,1 Γц, 1H), 7,18 (d, J = 5,0 Γц, 1H), 7,11 (dd, J = 7,9, 1,9 Γц, 1H), 7,07 (s, 1H), 4,11 (s, 1H), 3,63 (s, 3H), 3,46 (s, 3H), 2,40 (s, 3H).	506,25
6-(2-этинил-1Н- бензо[d]имидазол-5- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7Н- пирроло[2,3- d]пиримидин	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 13,36 (d, J = 16,4 Гц, 1H), 8,75 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 7,77 - 7,67 (m, 1H), 7,53 (d, J = 9,6 Гц, 1H), 7,38 - 7,23 (m, 3H), 7,17 (d, J = 5,0 Гц, 2H), 4,72 (s, 1H), 3,69 (d, J = 3,6 Гц, 3H), 2,38 (q, J = 2,0 Гц, 6H).	490,30
6-(6-этинил-5-метокси-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин	N N O N N N O N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,79 (s, 1H), 8,47 (d, $J = 5,0$ Гц, 1H), 8,35 (s, 1H), 7,38 - 7,27 (m, 2H), 7,18 (d, $J = 5,0$ Гц, 1H), 7,11 (dd, $J = 8,4$, 2,0 Гц, 1H), 4,64 (s, 1H), 3,85 (s, 3H), 3,60 (s, 3H), 2,44 (s, 3H), 2,40 (s, 3H), 1,97 (s, 3H).	495,20
6-(6-этинил-4- метоксипиридин-3- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин	N O F O O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,77 (s, 1H), 8,49 (d, J = 5,0 Γ ц, 1H), 8,29 (s, 1H), 7,42 (s, 1H), 7,36 – 7,27 (m, 2H), 7,19 (d, J = 5,0 Γ ц, 1H), 7,14 – 7,07 (m, 1H), 4,48 (s, 1H), 3,87 (s, 3H), 3,61 (s, 3H), 2,41 (s, 6H).	481,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинилхинолин-6- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	N N O F O N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (d, J = 5,0 Гц, 1H), 8,40 (d, J = 8,5 Гц, 1H), 8,26 (s, 1H), 8,09 (d, J = 2,0 Гц, 1H), 8,00 (d, J = 8,7 Гц, 1H), 7,74 (dd, J = 8,8, 2,0 Гц, 1H), 7,69 (d, J = 8,4 Гц, 1H), 7,32 (t, J = 8,3 Гц, 1H), 7,24 (dd, J = 11,3, 2,0 Гц, 1H), 7,17 (d, J = 5,1 Гц, 1H), 7,15 - 7,09 (m, 1H), 6,08 (s, 1H), 4,56 (s, 1H), 3,69 (s, 3H), 2,39 (s, 3H).	502,20
6-(2-этинилхинолин-7- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,48 -8,41 (m, 2H), 8,26 (s, 1H), 8,04 (dd, J = 5,1, 3,3 Γц, 2H), 7,69 (d, J = 8,4 Γц, 1H), 7,60 (dd, J = 8,5, 1,6 Γц, 1H), 7,33 (t, J = 8,4 Γц, 1H), 7,26 (dd, J = 11,3, 2,0 Γц, 1H), 7,19 - 7,11 (m, 2H), 6,08 (s, 1H), 4,54 (s, 1H), 3,69 (s, 3H), 2,38 (s, 3H).	502,20
6-(3- этинилизохинолин-7- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,28 (s, 1H), 8,45 (d, J = 5,0 Γц, 1H), 8,26 (s, 1H), 8,22 (d, J = 1,7 Γц, 1H), 8,14 (s, 1H), 8,01 (d, J = 8,5 Γц, 1H), 7,76 (dd, J = 8,5, 1,7 Γц, 1H), 7,32 (t, J = 8,4 Γц, 1H), 7,24 (dd, J = 11,4, 2,1 Γц, 1H), 7,18 (d, J = 5,1 Γц, 1H), 7,12 (dd, J = 8,4, 2,0 Γц, 1H), 4,39 (s, 1H), 3,69 (s, 3H), 2,39 (s, 3H)	502,35
6-(3- этинилизохинолин-6- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,33 (s, 1H), 8,46 (d, J = 5,0 Γц, 1H), 8,26 (s, 1H), 8,19 (d, J = 8,4 Γц, 1H), 8,05 (d, J = 15,7 Γц, 2H), 7,69 (dd, J = 8,7, 1,5 Γц, 1H), 7,32 (t, J = 8,3 Γц, 1H), 7,24 (d, J = 11,0 Γц, 1H), 7,17 (d, J = 5,1 Γц, 1H), 7,14 – 7,08 (m, 1H), 6,2 - 5,4 (s, 1H), 4,37 (s, 1H), 3,69 (s, 3H), 2,39 (s, 3H).	502,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
2-этинил-6-(5-(3-фтор- 4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H- пирроло[2,3- d]пиримидин-6- ил)хиноксалин	N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 9,06 (s, 1H), 8,81 (s, 1H), 8,46 (d, J = 5,0 Гц, 1H), 8,24 (d, J = 1,9 Гц, 1H), 8,13 (d, J = 8,7 Гц, 1H), 7,92 (dd, J = 8,7, 2,0 Гц, 1H), 7,43 (dd, J = 11,3, 2,0 Гц, 1H), 7,31 (t, J = 8,3 Гц, 1H), 7,24 – 7,14 (m, 2H), 4,91 (s, 1H), 3,81 (s, 3H), 2,42 (s, 3H), 2,38 (s, 3H).	502,35
6-(3-этинилхинолин-7- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N N O F O N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) 8,93 (d, J = 2,1 Гц, 1H), 8,61 (d, J = 2,1 Гц, 1H), 8,45 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 8,09 – 8,00 (m, 2H), 7,63 (dd, J = 8,5, 1,7 Гц, 1H), 7,36 - 7,24 (m, 2H), 7,21 - 7,11 (m, 2H), 6,07 (s, 2H), 4,58 (s, 1H), 3,69 (s, 3H), 2,38 (s, 3H).	502,20
6-(7-этинил-1,8- нафтиридин-3-ил)-5- (3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N O F O NH ₂ N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,96 (d, J = 2,5 Гц, 1H), 8,66 (d, J = 2,5 Гц, 1H), 8,53 (d, J = 8,4 Гц, 1H), 8,47 (d, J = 5,1 Гц, 1H), 8,30 (s, 1H), 7,83 (d, J = 8,2 Гц, 1H), 7,39 – 7,27 (m, 2H), 7,21 – 7,11 (m, 2H), 6,00 - 6,72 (s, 1H), 4,70 (s, 1H), 3,75 (s, 3H), 2,40 (s, 3H).	503,25
6-(6-(этинил-d)-4-метилпиридин-3-ил)- 5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин	N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,51 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,58 (d, J = 0,8 Гц, 1H), 7,33 (t, J = 8,4 Гц, 1H), 7,22 - 7,12 (m, 2H), 7,07 - 7,01 (m, 1H), 6,14 (s, 1H), 3,47 (s, 3H), 2,41 (s, 3H), 2,02 (s, 3H).	467,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинил-7- метилхиноксалин-6- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-4-амин	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,00 (s, 1H), 8,42 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 7,30 - 7,20 (m, 2H), 7,15 (d, J = 5,1 Гц, 1H), 7,10 (dd, J = 8,4, 2,0 Гц, 1H), 6,12 (s, 1H), 4,88 (s, 1H), 3,48 (s, 3H), 2,35 (s, 3H), 2,23 (s, 3H).	517,20
4-(дифторметил)-6-(6- этинил-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин	F F N N N	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) 9,06 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 8,44 (s, 1H), 7,56 (dd, J = 11,2, 2,0 Гц, 1H), 7,50 -7,41 (m, 2H), 7,28 (ddd, J = 8,3, 2,1, 0,9 Гц, 1H), 7,21 (d, J = 5,1 Гц, 1H), 6,73 (s, 1H), 4,34 (s, 1H), 3,84 (s, 3H), 2,42 (s, 3H), 1,96 (s, 3H).	501,15
6-(6-этинил-4-метоксипиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,0 Гц, 1H), 8,22 (d, J = 1,6 Гц, 2H), 7,39 (s, 1H), 7,33 (t, J = 8,4 Гц, 1H), 7,22 – 7,12 (m, 2H), 7,03 (d, J = 7,9 Гц, 1H), 6,07 (s, 2H), 4,45 (s, 1H), 3,85 (s, 3H), 3,51 (s, 3H), 2,42 (s, 3H).	482,15

Пример 29

Схема 26

6-(4-Аминофенил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Hпирроло[2,3-d]пиримидин-4-амин

[0434] **Стадия 1:** В круглодонную колбу загружали 6-иод-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин (5 г, 10,9 ммоль), 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)анилин (3,1 г, 14,2 ммоль), Pd(dppf)Cl₂ (804 мг, 1,1 ммоль), K₃PO₄ (6,9 г, 32,7 ммоль), смесь DMF/H₂O (16:1, 50 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 1 часа при 90°С. После охлаждения смесь разбавляли водой, экстрагировали DCM, сушили над Na₂SO₄, упаривали под вакуумом, и полученный остаток растворяли в ACN (50 мл) и фильтровали, осадок на

фильтре промывали ACN и сушили при пониженном давлении, в результате чего получали 6-(4-аминофенил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин (3 г, выход 65%) в виде почти-белого твердого вещества.

1-(4-(4-Амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Hпирроло[2,3-d]пиримидин-6-ил)фенил)-2-оксопирролидин-3-карбоновая кислота

[0435] **Стадия 2:** В круглодонную колбу загружали 6-(4-аминофенил)-7-метил-5-(4- ((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амин (3 г, 7 ммоль), 6,6-диметил-5,7-диоксаспиро[2,5]октан-4,8-дион (2,38 г, 14 ммоль), ЕtOH (50 мл) и магнитную мешалку. Смесь перемешивали в течение ночи при 90°С. Растворитель упаривали под вакуумом, полученный остаток промывали этилацетатом (ЕА) (50 мл) и фильтровали, осадок на фильтре промывали АСN, сушили при пониженном давлении, в результате чего получали 1-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-2- оксопирролидин-3-карбоновую кислоту (2 г, выход 53%) в виде почти-белого твердого вещества.

1-(4-(4-Амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-3-метиленпирролидин-2-он

[0436] Стадия 3: В круглодонную колбу загружали 1-(4-(4-амино-7-метил-5-(4-((4метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-2оксопирролидин-3-карбоновую кислоту (2 г, 3,73 ммоль), водный раствор НСНО (0,46 г, 5,6 ммоль), диэтиламин (0,54 г, 7,46 ммоль), DMF (30 мл) и магнитную мешалку. Смесь перемешивали в течение 2 ч при 90°C. После охлаждения смесь разбавляли водой, экстрагировали DCM, сушили над Na₂SO₄, упаривали под вакуумом, и полученный остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью DCM/MeOH (50:1 ~ 10:1). Сырой продукт очищали методом препаративной ВЭЖХ, в результате чего получали 1-(4-(4-амино-7-метил-5-(4-((4метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-3метиленпирролидин-2-он (150 мг) в виде твердого вещества почти белого цвета. [0437] Другие такие же соединения, полученные согласно способам, описанным в

Примере 29, показаны в Таблице 28 ниже.

Таблица 28. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-амино-7- метил-5-(4-((4- метилпиримидин-	N N	¹ H ЯМР (400 МГц, Метанол- d_4) δ 8,41 (d, J = 5,1 Гц, 1H), 8,22 (s, 1H), 7,84 (t, J = 8,0 Гц, 2H), 7,44 – 7,34	504,20
2-ил)окси)фенил)- 7H-пирроло[2,3-	N O	(m, 4H), $7,20 - 7,11$ (m, 3H), $6,06$ (s, 1H), $5,53$ (d, $J = 2,7$ Γ II, 1H), $4,45$	
d]пиримидин-6- ил)фенил)-3- метиленпирролиди н-2-он	NH ₂	(d, $J = 2.8 \Gamma \text{ц}$, 1H), 3,97 (t, $J = 6.9 \Gamma \text{ц}$, 1H), 3,72 (s, 3H), 2,97 (s, 1H), 2,50 (s, 3H), 1,94 (d, $J = 2.1 \Gamma \text{ц}$, 1H), 1,32 (t, $J = 7.3 \Gamma \text{ц}$, 1H).	
(R)-1-(3-хлор-4- (4,7-диметил-5-(4-		¹ H ЯМР (400 МГц, DMSO-d ₆) δ 8,68 (s, 1H), 8,23 (dd, J = 4,9, 2,2	530,25
(пирролидин-1- карбонил)циклогек		Гц, 1H), 7,86 (ddd, J = 8,6, 2,3, 1,4 Гц, 1H), 7,54 (dd, J = 9,6, 8,5 Гц,	
c-1-ен-1-ил)-7H- пирроло[2,3- d]пиримидин-6-	N N N N N N N N N N N N N N N N N N N	1H), 5,98 (td, J = 2,8, 1,0 Γμ, 1H), 5,69 (dd, J = 9,5, 4,3 Γμ, 1H), 5,55 (dt, J = 3,0, 1,5 Γμ, 1H), 3,96 (qt, J =	
ил)фенил)-3- метиленпирролиди н-2-он	N CI O	9,7, 4,9 Γμ, 2H), 3,50 (d, J = 6,3 Γμ, 3H), 3,43 (td, J = 6,7, 5,1 Γμ, 2H),	
n-2-Un		3,26 (t, $J = 6,8 \Gamma \mu$, 2H), 2,91 (tt, $J = 5,9$, 2,6 $\Gamma \mu$, 2H), 2,67 (d, $J = 1,5 \Gamma \mu$, 3H), 2,36 - 1,69 (m, 10H), 1,48 (ddt, $J = 29,8$, 12,3, 6,6 $\Gamma \mu$, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-(3-хлор-4- (4,7-диметил-5-(4- (пирролидин-1- карбонил)циклогек с-1-ен-1-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-3- метиленпирролиди н-2-он	O N N CI O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,68 (s, 1H), 8,23 (dd, J = 4,9, 2,2 Γц, 1H), 7,86 (ddd, J = 8,5, 2,3, 1,4 Γц, 1H), 7,54 (dd, J = 9,6, 8,5 Γц, 1H), 5,98 (td, J = 2,8, 1,0 Γц, 1H), 5,69 (dd, J = 10,6, 4,1 Γц, 1H), 5,55 (td, J = 2,6, 1,0 Γц, 1H), 3,96 (qt, J = 9,7, 4,9 Γц, 2H), 3,50 (d, J = 6,3 Γц, 3H), 3,47 - 3,39 (m, 2H), 3,26 (t, J = 6,9 Γц, 2H), 2,96 - 2,86 (m, 2H), 2,67 (d, J = 1,6 Γц, 3H), 2,29 - 1,69 (m, 10H), 1,46 (dtt, J = 29,5, 12,2, 6,7 Γц, 1H).	530,25
1-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3-метилфенил)-3-метиленпирролиди н-2-он	NH ₂ NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,46 (s, 1H), 8,22 (s, 1H), 7,76 – 7,72 (m, 2H), 7,40(d, J = 8,4 Γц, 1H), 7,26 (t, J= 8,4 Γц, 2H), 7,16 – 7,13(m, 3H), 5,92 (s, 1H), 5,77 (s, 1H), 3,90 (t, J = 13,6 Γц, 2H), 3,43 (s, 3H), 2,87 (t, J = 13,6 Γц, 2H), 2,40 (s, 3H), 2,01 (s, 3H).	518,20
1-(4-(5-(3-фтор-4- ((4- метилпиримидин- 2-ил)окси)фенил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-6- ил)-3-метилфенил)- 3- метиленпирролиди н-2-он	F O N N N N N N N N N N N N N N N N N N	¹ H ЯМР: ¹ H ЯМР (400 МГц, DMSO- d_6) 8,75 (s, 1H), 8,47 (d, J = 5,0 Гц, 1H), 7,82 - 7,73 (m, 2H), 7,45 (d, J = 8,4 Γц, 1H), 7,35 - 7,25 (m, 2H), 7,20 - 7,11 (m, 2H), 5,96 - 5,90 (m, 1H), 5,52 - 5,47 (m, 1H), 3,90 (t, J = 6,8 Γц, 2H), 3,52 (s, 3H), 2,88 (d, J = 14,1 Γц, 0H), 2,88 (s, 2H), 2,41 (d, J = 6,4 Γц, 6H), 2,05 (s, 3H).	535,40
1-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин- 2-ил)окси)фенил)- 7-метил-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-3- метиленпирролиди н-2-он	F O N NH ₂ NH ₂ N O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, $J = 5,0$ Гц, 1H), 8,22 (s, 1H), 7,89 – 7,84 (m, 2H), 7,48 – 7,40 (m, 2H), 7,35 (t, $J = 8,4$ Гц, 1H), 7,24 – 7,07 (m, 3H), 5,93 (dt, $J = 2,8$, 1,7 Гц, 1H), 5,49 (dt, $J = 3,0$, 1,5 Гц, 1H), 3,90 (t, $J = 6,9$ Гц, 2H), 3,61 (s, 3H), 2,88 (dt, $J = 7,1$, 3,6 Гц, 2H), 2,42 (s, 3H).	522,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-1-(4-(4-амино- 7-метил-5-(4- (пирролидин-1- карбонил)циклогек с-1-ен-1-ил)-7H- пирроло[2,3- d]пиримидин-6- ил)фенил)-3- метиленпирролиди н-2-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (d, J = 16,6 Γ ц, 1H), 7,98 - 7,91 (m, 2H), 7,60 - 7,50 (m, 2H), 6,55 (s, 1H), 5,94 (q, J = 2,4 Γ ц, 1H), 5,78 (d, J = 3,7 Γ ц, 1H), 5,50 (q, J = 1,9 Γ ц, 1H), 3,94 (t, J = 6,9 Γ ц, 2H), 3,59 (s, 3H), 3,51 (dt, J = 10,1, 6,7 Γ ц, 1H), 3,48 - 3,40 (m, 1H), 3,32 - 3,26 (m, 1H), 3,25 (d, J = 5,6 Γ ц, 1H), 2,91 (d, J = 6,8 Γ ц, 2H), 2,84 (t, J = 5,8 Γ ц, 1H), 2,36 - 2,17 (m, 2H), 1,88 (dd, J = 13,4, 6,7 Γ ц, 4H), 1,76 (p, J = 6,8 Γ ц, 2H), 1,64 (d, J = 6,0	497,20
(S)-1-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогек с-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-3-метиленпирролиди н-2-он	NH ₂ N N N	Γι, 2H). ¹ H ЯМР (400 МΓι, DMSO- d_6) δ 8,16 (d, $J = 14,7$ Γι, 1H), 7,98 - 7,87 (m, 2H), 7,61 - 7,53 (m, 2H), 7,05 (d, $J = 26,7$ Γι, 1H), 5,94 (td, $J = 2,8$, 1,1 Γι, 1H), 5,86 - 5,73 (m, 1H), 5,51 (td, $J = 2,5$, 1,0 Γι, 1H), 3,94 (t, $J = 6,9$ Γι, 2H), 3,62 (s, 3H), 3,52 (dt, $J = 10,1$, 6,6 Γι, 1H), 3,43 (dt, $J = 10,0$, 6,8 Γι, 1H), 3,30 (d, $J = 7,0$ Γι, 1H), 3,28 - 3,21 (m, 1H), 2,95 - 2,80 (m, 3H), 2,38 - 2,15 (m, 2H), 1,88 (h, $J = 6,5$, 5,6 Γι, 4H), 1,81 - 1,55 (m, 4H).	497,15

Схема 27

(S)-1-(4-хлорфенил)-5-метилпирролидин-2-он

[0438] **Стадия 1:** В герметизируемую реакционную пробирку загружали (5S)-5-метилпирролидин-2-он (1 г, 10,0 ммоль), 1-хлор-4-иодбензол (3,57 г, 15,0 ммоль), N1,N2-диметилэтан-1,2-диамин (196 мг, 2,00 ммоль), CuI (191 мг, 1,00 ммоль), CsF (9,78 г, 30,00 ммоль), THF (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 25°C в течение ночи. Реакционную смесь разбавляли H₂O (10 мл), и водную фазу трижды экстрагировали EtOAc (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Остаток очищали методом колоночной хроматографии на силикагеле. В результате получали (S)-1-(4-хлорфенил)-5-метилпирролидин-2-он (1,91 г, выход 91%).

Этил-2-((5S)-1-(4-хлорфенил)-5-метил-2-оксопирролидин-3-ил)-2-оксоацетат

[0439] Стадия 2: В герметизируемую реакционную пробирку загружали (5S)-1-(4-хлорфенил)-5-метилпирролидин-2-он (1 г, 4,76 ммоль), диэтилоксалат (764 мг, 5,23 ммоль), NaH (228 мг, 9,52 ммоль), THF (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 80°С в течение 2 часов. Реакционную смесь гасили H₂O (10 мл), и водную фазу трижды экстрагировали EtOAc (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Остаток очищали методом колоночной хроматографии на силикагеле. В результате получали этил-2-((5S)-1-(4-хлорфенил)-5-метил-2-оксопирролидин-3-ил)-2-оксоацетат (1,1 г, выход 74,8%).

(S)-1-(4-хлорфенил)-5-метил-3-метиленпирролидин-2-он

[0440] **Стадия 3:** В герметизируемую реакционную пробирку загружали этил-2-[(5S)-1-(4-хлорфенил)-5-метил-2-оксопирролидин-3-ил]-2-оксоацетат (1,1 г, 3,55 ммоль), (СН₂О)_п (513 мг, 17,7 ммоль), Et₂NH (657 мг, 10,6 ммоль), DMF (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 100°С в течение 1 часа. Реакционную смесь разбавляли H₂O (10 мл), и водную фазу трижды экстрагировали EtOAc (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Остаток очищали методом колоночной хроматографии на силикагеле. В результате получали (S)-1-(4-хлорфенил)-5-метил-3-метиленпирролидин-2-он (300 мг, выход 38%).

(S)-5-метил-3-метилен-1-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2ил)фенил)пирролидин-2-он

[0441] Стадия 4: В герметизируемую реакционную пробирку загружали (5S)-1-(4-хлорфенил)-5-метил-3-метилиденпирролидин-2-он (300 мг, 1,35 ммоль), АсОК (396 мг, 4,05 ммоль), Хрhos-2G (155 мг, 135 мкмоль), Хрhos (212 мг, 270 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диоксан (8 мл), и полученную смесь перемешивали при 90°С в течение 2 часов. Реакционную смесь разбавляли H₂O (8 мл), и водную фазу трижды экстрагировали EtOAc (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Остаток очищали методом колоночной хроматографии на силикагеле. В результате получали (S)-5-метил-3-метилен-1-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил)пирролидин-2-он (300 мг, выход 71%).

(S)-1-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-5-метил-3-метиленпирролидин-2-он и (S)-1-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)фенил)-3,5-диметил-1,5-дигидро-2H-пиррол-2-он

[0442] **Стадия 5:** В герметизируемую реакционную пробирку загружали (5S)-5-метил-3-метилиден-1-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]пирролидин-2-он (200 мг, 638 мкмоль), 6-иод-7-метил-5- $\{4-[(4-метилпиримидин-2-ил)окси]$ фенил}-7H-пирроло[2,3-d]пиримидин-4-амин (350 мг, 765 мкмоль), K_3PO_4 (337 мг, 1,59 ммоль), $Pd(dppf)Cl_2$ (46,6 мг, 63,8 мкмоль) и магнитную мешалку, после чего ее трижды

подвергали процедуре откачки и продувки азотом. Добавляли DME (5 мл) и H₂O (1 мл), и полученную смесь перемешивали при 90°C в течение 2 часов. Реакционную смесь разбавляли H₂O (2 мл), и водную фазу трижды экстрагировали EtOAc (5 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Hex(0,2% IPAmine):(EtOH:DCM=1:1) = 50:50). После лиофилизации получали (5S)-1-[4-(4-амино-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]-5-метил-3-метилиденпирродилин-2-он (2.5 мг. выход 0.7%) в виде белого

7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]-5-метил-3-метилиденпирролидин-2-он (2,5 мг, выход 0,7%) в виде белого твердого аморфного вещества и (5S)-1-[4-(4-амино-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]-3,5-диметил-2,5-дигидро-1H-пиррол-2-он (120,7 мг, выход 36,5%) в виде белого твердого аморфного вещества.

[0443] Другие такие же соединения, полученные согласно способам, описанным в Примере 30, показаны в Таблице 29 ниже.

Таблица 29. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(5-(4-амино-7-	/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	505,25
метил-5-(4-((4-	N=	8,54 - 8,44 (m, 2H), 8,40 - 8,39	
метилпиримидин-2-	0	(m, 1H), 8,23 (s, 1H), 7,94 - 7,92	
ил)окси)фенил)-7Н-	N	(m, 1H), 7,37 - 7,29 (m, 2H), 7,25	
пирроло[2,3-	NH ₂	-7,18 (m, 2H), $7,16$ (d, $J = 5,0$	
d]пиримидин-6-		Гц, 1H), 6,02 - 5,96 (m, 2H), 5,57	
ил)пиридин-2-ил)-3-	N N	- 5,52 (m, 1H), 4,05 - 3,97 (m,	
метиленпирролидин-		2H), 3,65 (s, 3H), 2,86 (s, 2H),	
2-он	\	2,41 (s, 3H).	
1-(5-(4-амино-7-	/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	505,25
метил-5-(4-((4-	N=	8,47 (d, $J = 5,0$ Гц, 1H), $8,42$ -	
метилпиримидин-2-	o-\/	8,40 (m, 1H), 8,35 - 8,34 (m, 1H),	
ил)окси)фенил)-7Н-	N-	8,23 (s, 1H), 7,92 - 7,90 (m, 1H),	
пирроло[2,3-	, (,)	7,41 - 7,30 (m, 2H), 7,26 - 7,19	
d]пиримидин-6-	NH ₂	(m, 2H), 7,18 - 7,09 (m, 2H), 5,99	
ил)пиридин-2-ил)-3-	N N	(s, 1H), 4,54 (q, $J = 2,1 \Gamma \mu$, 2H),	
метил-1,5-дигидро-		3,64 (s, 3H), 2,41 (s, 3H), 1,86 (q,	
2Н-пиррол-2-он	" \ " 0"	J = 1,9 Гц, 3H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-(4-(4-амино-7-	/	¹ Н ЯМР (400 МГц, Хлороформ-	518,22
метил-5-(4-((4-	N=	<i>d</i>) δ 8,40 – 8,38 (m, 2H), 7,60 (d,	
метилпиримидин-2-	o-\	$J = 8.0 \Gamma$ ц, 2H), 7,34 - 7,17 (m,	
ил)окси)фенил)-7Н-	N ³	3H), 6,94 (d, $J = 5,2$ Гц, 2H), 6,81	
пирроло[2,3-	(_)	(s, 2H), 5,12 (s, 2H), 4,65 (s, 1H),	
d]пиримидин-6-	NH ₂	3,78 (s, 3H), 2,53 (s, 3H), 2,06 –	
ил)фенил)-5-метил-3-	N N	$1,91 \text{ (m, 2H)}, 1,29 \text{ (d, J} = 6,7 \Gamma ц,$	
метиленпирролидин-		3H).	
2-он	l ' ' ő		
(S)-1-(4-(4-амино-7-	,	¹ Н ЯМР (400 МГц, Метанол- <i>d</i> ₄)	518,22
метил-5-(4-((4-	N=	δ 8,41 (d, J = 5,1 Γμ, 1H), 8,22 (s,	
метилпиримидин-2-		1H), 7,62 – 7,59 (m, 2H), 7,47 –	
ил)окси)фенил)-7Н-	N N	7,36 (m, 4H), 7,18 – 7,02 (m, 3H),	
пирроло[2,3-		7,03 (t, $J = 1.8 \Gamma \mu$, 1H), 4,85 -	
d]пиримидин-6-	NH ₂	4,83 (m, 1H), 3,73 (s, 3H), 2,50	
ил)фенил)-3,5-	N N	(s, 3H), 1,94 (3, 3H), 1,25 (d, J =	
диметил-1,5-дигидро-		6,7 Гц, 3Н).	
2Н-пиррол-2-он	" " "		
(R)-1-(4-(4-амино-7-	/	¹ Н ЯМР (400 МГц, Хлороформ-	518,22
метил-5-(4-((4-	N=	<i>d</i>) δ 8,42 – 8,36 (m, 2H), 7,64 –	
метилпиримидин-2-	0	7,56 (m, 2H), 7,37 – 7,29 (m, 4H),	
ил)окси)фенил)-7Н-	N N	7,23 – 7,15 (m, 2H), 6,94 (d, J =	
пирроло[2,3-	NH ₂	5,0 Гц, 1H), 6,17 (s, 1H), 5,48 (s,	
d]пиримидин-6-		2H), 4,42 - 4,38 (m, 1H), 3,77 (s,	
ил)фенил)-5-метил-3-	N N	3H), 3,17 - 3,11 (m, 1H), 2,55 -	
метиленпирролидин-		$2,49$ (m, 4H), $1,28$ (d, $J = 6,7$ Γ ц,	
2-он	ď	3H).	
(R)-1-(4-(4-амино-7-	/	¹ Н ЯМР (400 МГц, Хлороформ-	518,22
метил-5-(4-((4-	N	<i>d</i>) δ 8,42 – 8,36 (m, 2H), 7,65 –	
метилпиримидин-2-	o-\	7,57 (m, 2H), 7,37 – 7,28 (m, 4H),	
ил)окси)фенил)-7Н-	N ⁻	7,23 – 7,15 (m, 2H), 6,94 (d, J =	
пирроло[2,3-	()	5,0 Гц, 1H), $5,48$ (t, $J = 2,1$ Гц,	
d]пиримидин-6-	NH ₂	1H), 5,13 (s, 1H), 4,47 – 4,35 (m,	
ил)фенил)-3,5-	N N	1H), 3,77 (s, 3H), 3,14 (s, 1H),	
диметил-1,5-дигидро-		2,58 – 2,47 (m, 3H), 1,29 (d, J =	
2Н-пиррол-2-он	o	6,2 Гц, 3Н).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-1-(4-(4-амино-7-метил-5-(4-((5-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4-метил-3-метиленпирролидин-2-он	NH2 NH2 N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,39 (d, J = 5,0 Гц, 2H), 7,83 -7,76 (m, 2H), 7,36 - 7,28 (m, 4H), 7,23 -7,16 (m, 2H), 6,94 (d, J = 5,0 Гц, 1H), 6,19 (d, J = 2,8 Гц, 1H), 5,45 (d, J = 2,5 Гц, 1H), 5,13 (s, 2H), 4,03 (dd, J = 9,4, 8,6 Гц, 1H), 3,75 (s, 3H), 3,44 (dd, J = 9,5, 5,6 Гц, 1H), 3,13 (s, 1H), 2,53 (s, 3H), 1,37 (d, J = 6,9 Гц, 3H).	518,35
1-(4-(4-амино-7-метил-5-(4-(4-метилпиримидин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-3-метиленпиперидин-2-он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,47 (d, $J = 5,0$ Гц, 1H), 8,21 (s, 1H), 7,40 (s, 4H), 7,36 - 7,29 (m, 2H), 7,23 - 7,13 (m, 3H), 6,18 - 5,74 (m, 2H), 5,41 (d, $J = 2,2$ Гц, 1H), 3,75 (t, $J = 5,7$ Гц, 2H), 3,63 (s, 3H), 2,74 - 2,61 (m, 2H), 2,41 (s, 3H), 1,95 - 1,93 (m, 2H).	518,25
1-(4-(4-амино-7-метил-5-(4-(4-метилпиримидин-2-илокси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-3-метил-5,6-дигидропиридин-2(1H)-он	NH ₂ NH ₂ N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,38 (s, 4H), 7,36 - 7,29 (m, 2H), 7,23 - 7,17 (m, 2H), 7,16 (d, J = 5,0 Гц, 1H), 6,69 - 6,46 (m, 1H), 5,89 (s, 1H), 3,82 (t, J = 6,8 Гц, 2H), 3,63 (s, 3H), 2,42 - 2,36 (m, 5H), 1,82 - 1,80 (m, 3H).	518,35
(S)-1-(4-(4-амино-7-метил-5-(4-((5-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4-метил-3-метиленпирролидин-2-он	NH ₂ O N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, Хлороформ- d) δ 8,39 (d, J = 5,3 Гц, 2H), 7,82 - 7,62 (m, 2H), 7,36 - 7,28 (m, 4H), 7,23 - 7,15 (m, 2H), 6,94 (d, J = 5,0 Гц, 1H), 6,18 (d, J = 2,9 Гц, 1H), 5,45 (d, J = 2,5 Гц, 1H), 5,11 (s, 2H), 4,03 (t, J = 9,0 Гц, 1H), 3,75 (s, 3H), 3,44 (dd, J = 9,4, 5,5 Гц, 1H), 3,12 (s, 1H), 2,52 (s, 3H), 1,36 (d, J = 6,9 Гц, 3H).	518,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(4-амино-7-метил-5-(4-(((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)фенил)-4,4-диметил-3-метиленпирролидин-2-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,86 – 7,80 (m, 2H), 7,46 – 7,39 (m, 2H), 7,35 – 7,25 (m, 2H), 7,23 – 7,12 (m, 3H), 5,90 (s, 1H), 5,50 (s, 1H), 3,67 (s, 2H), 3,62 (s, 3H), 2,41 (s, 3H), 1,27 (s, 6H).	532,20
7-(4-амино-7-метил-5- (4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- метилен-3,4- дигидронафталин- 1(2H)-он	H ₂ N O	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,46 (1H, d), 8,22 (1H, s), 7,91 (1H, d), 7,60 (1H, dd), 7,44 (1H, d), 7,35 - 7,27 (2H, m), 7,22 - 7,10 (3H, m), 5,81 (3H, dd), 3,61 (3H, s), 3,02 (2H, t), 2,90 - 2,82 (2H, m), 2,40 (3H, s)	489,30
6-(4-амино-7-метил-5- (4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- метилен-3,4- дигидронафталин- 1(2H)-он	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,46 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,93 (d, J = 8,1 Гц, 1H), 7,42 (d, J = 1,7 Γц, 1H), 7,36 (dd, J = 8,0, 1,7 Γц, 1H), 7,35 - 7,27 (m, 2H), 7,24 - 7,13 (m, 3H), 6,06 (d, J = 2,1 Γц, 1H), 5,99 (s, 2H), 5,56 (d, J = 2,0 Γц, 1H), 3,68 (s, 3H), 2,96 (t, J = 6,3 Γц, 2H), 2,84 (t, J = 6,1 Γц, 2H), 2,41 (s, 3H).	489,35

Пример 31

Схема 28

2,5-Дихлор-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол

[0444] Стадия 1: В круглодонную колбу загружали 2,5-дихлор-1Н-бензо[d]имидазол (1 г, 5,4 ммоль), диметилформамид (5 мл) и магнитную мешалку. Затем добавляли NaH (дисперсия 60%, 259 мг, 6,48 ммоль), и полученный раствор перемешивали в течение 10 минут при 0°С. Добавляли SEMCl (896 мг, 5,4 ммоль), и полученный раствор перемешивали в течение 10 часов при 0°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Итоговую смесь очищали с помощью хроматографической колонки C18. После концентрирования под вакуумом получали 2,5-дихлор-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол (820 мг, выход 48%) в виде желтой маслянистой жидкости.

2-((Трет-бутилдиметилсилил)этинил)-5-хлор-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол

[0445] Стадия 2: В круглодонную колбу загружали 2,5-дихлор-1-((2- (триметилсилил)этокси)метил)-1H-бензо[d]имидазол (800 мг, 1,30 ммоль), трет-бутил(этинил)диметилсилан (274 мг, 1,96 ммоль), Pd(PPh₃)₂Cl₂ (183 мг, 261 мкмоль), CuI (99 мг, 0,52 ммоль), TEA (395 мг, 3,09 ммоль) и магнитную мешалку. Добавляли диметилформамид (20 мл), и полученный раствор перемешивали в течение 2 часов при 50°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Итоговую смесь очищали с помощью хроматографической колонки C18. После концентрирования под вакуумом получали 2- ((трет-бутилдиметилсилил)этинил)-5-хлор-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол (500 мг, выход 47%) в виде маслянистой жидкости желтого цвета.

2-((Трет-бутилдиметилсилил)этинил)-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол

[0446] Стадия 3: В круглодонную колбу загружали 2-((трет-

бутилдиметилсилил)этинил)-5-хлор-1-((2-(триметилсилил)этокси)метил)-1Н-бензо[d]имидазол (480 мг, 1,14 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолан) (579 мг, 2,28 ммоль), Pd(dppf)Cl₂ (83 мг, 114 мкмоль), AcOK (335 мг, 3,42 ммоль) и магнитную мешалку. Затем добавляли диоксан (10 мл), и полученный раствор перемешивали в течение 2 часов при 90°С. Итоговую смесь очищали с помощью хроматографической колонки C18. После концентрирования под вакуумом получали 2-((трет-бутилдиметилсилил)этинил)-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1-((2-(триметилсилил)этокси)метил)-1Н-бензо[d]имидазол (550 мг, выход 94%) в виде белой маслянистой жидкости.

6-(2-((Трет-бутилдиметилсилил)этинил)-1-((2-(триметилсилил)этокси)метил)-1Hбензо[d]имидазол-5-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0447] **Стадия 4:** В герметизируемую реакционную пробирку загружали 2-((трет-бутилдиметилсилил)этинил)-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1-((2-(триметилсилил)этокси)метил)-1Н-бензо[d]имидазол (480 мг, 0,86 ммоль), 5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (273 мг, 0,57 ммоль), Pd(dppf)Cl₂ (42 мг, 57 мкмоль), K₃PO₄ (363 мг, 1,71 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли смесь DME:вода = 10:1 (10 мл), и полученный раствор перемешивали в течение 1 часа при 90°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ. После концентрирования под вакуумом получали 6-(2-((трет-бутилдиметилсилил)этинил)-1-((2-(триметилсилил)этокси)метил)-1Н-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (260 мг, выход 62%) в виде желтого твердого аморфного вещества.

6-(2-Этинил-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол-5-ил)-5-(3фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3d]пиримидин-4-амин

[0448] Стадия 5: В круглодонную колбу загружали 6-(2-этинил-1-((2- (триметилсилил)этокси)метил)-1Н-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4- метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (240 мг, 0,33 ммоль), ТНГ (4 мл) и магнитную мешалку. Затем добавляли ТВАГ (1М, 0,7 мл, 0,66 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой, экстрагировали DСМ, сушили над Nа₂SO₄ и концентрировали под вакуумом. Остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью DСМ/МеОН (8:1). После концентрирования под вакуумом получали 6-(2-этинил-1-((2- (триметилсилил)этокси)метил)-1Н-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4- метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (100 мг, выход 49%) в виде желтой маслянистой жидкости.

6-(2-Этинил-1H-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0449] Стадия 6: В круглодонную колбу загружали 6-(2-этинил-1-((2-(триметилсилил)этокси)метил)-1H-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (80 мг, 852 мкмоль), DCM (4 мл) и магнитную мешалку.Затем добавляли TFA (44 мг, 0,39 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь вакуумировали. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: YMC-Actus Triart C18, 30*250, 5 мкм; Подвижная фаза А: вода (раствор NH₄HCO₃ 10 ммоль/л + 0,1% NH₃·H₂O), Подвижная фаза В: ACN; Скорость пропускания: 50 мл/мин; Градиент: от 30 В до 65 В в течение 8 мин; 220 нм; RT1: 7,22).После лиофилизации получали 6-(2-этинил-1H-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (22,1 мг, выход 35%) в виде почти белого твердого аморфного вещества.

[0450] Другие такие же соединения, полученные согласно способам, описанным в Примере 31, показаны в Таблице 30 ниже.

Таблица 30 Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинил-1Н- бензо[d]имидазол-5- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ NH	¹ H ЯМР (300 МГц, DMSO- <i>d</i> ₆) δ 13,29 (s, 1H), 8,44 (s, 1H), 8,20 (s, 1H), 7,67 - 7,18 (m, 4H), 7,15 (d, J = 5,0 Γц, 3H), 4,67 (s, 1H), 3,61 (s, 3H), 2,38 (s, 3H).	491,20
6-(2-этинил-1,6- диметил-1Н- бензо[d]имидазол-5- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-4-амин	N N O F N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,43 (d, J = 5,1 Гц, 1H), 8,23 (s, 1H), 7,70 (s, 1H), 7,56 (s, 1H), 7,28 (t, J = 8,4 Гц, 1H), 7,21 – 7,13 (m, 2H), 7,12 – 7,05 (m, 1H), 6,03 (s, 2H), 4,95 (s, 1H), 3,87 (s, 3H), 2,38 (s, 3H), 2,12 (s, 3H).	519,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(2-этинил-1-метил- 1H-бензо[d]имидазол-5- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (d, J = 5,2 Гц, 1H), 8,22 (s, 1H), 7,70 (d, J = 1,5 Гц, 1H), 7,65 (d, J = 8,4 Гц, 1H), 7,40 – 7,26 (m, 2H), 7,24 – 7,06 (m, 3H), 5,99 (s, 2H), 4,98 (s, 1H), 3,89 (s, 3H), 3,58 (s, 3H), 2,40 (s, 3H).	505,20
6-(2-этинил-6-фтор-1-метил-1Н-бензо[d]имидазол-5-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6)8,44 (d, J = 5,0 Γц, 1H), 8,23 (s, 1H), 7,72 (dd, J = 9,8, 8,1 Γц, 2H), 7,30 (t, J = 8,4 Γц, 1H), 7,21 (dd, J = 11,3, 2,0 Γц, 1H), 7,16 (d, J = 5,1 Γц, 1H), 7,13 - 7,07 (m, 1H), 6,04 (s, 2H), 5,00 (s, 1H), 3,87 (s, 3H), 3,52 (s, 3H), 2,38 (s, 3H).	523,20
6-(2-этинил-1-метил- 1H-бензо[d]имидазол-6- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,44 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,70 (d, J = 1,6 Гц, 1H), 7,65 (s, 1H), 7,30 (t, J = 8,4 Гц, 1H), 7,26 -7,14 (m, 3H), 7,14 - 7,08 (m, 1H), 6,02 (s, 2H), 4,99 (s, 1H), 3,85 (s, 3H), 3,62 (s, 3H), 2,39 (s, 3H).	505,20
6-(2-этинил-6-метокси- 1-метил-1Н- бензо[d]имидазол-5- ил)-5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,44 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,48 (s, 1H), 7,34 (s, 1H), 7,28 (t, J = 8,4 Гц, 1H), 7,18 - 7,10 (m, 2H), 7,05 (dd, J = 8,4, 2,0 Гц, 1H), 5,99 (s, 2H), 4,91 (s, 1H), 3,88 (s, 3H), 3,84 (s, 3H), 3,44 (s, 3H), 2,38 (s, 3H).	535,20

Пример 32

Схема 29

3-Бром-6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин

[0451] **Стадия 1:** В герметизируемую реакционную пробирку загружали 3-бром-6-хлор-2,4-диметилпиридин (8 г, 36,2 ммоль), трет-бутил(этинил)диметилсилан (5,58 г, 39,8 ммоль), CuI (1,37 г, 7,24 ммоль), Pd(PPh₃)₂Cl₂ (2,54 г, 3,62 ммоль), ТЕА (10,9 г, 108 ммоль), диметилформамид (100 мл) и магнитную мешалку, после чего ее трижды

подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 часов при 80°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу объединяли, трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали 3-бром-6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин (10,0 г, выход 85%) в виде почти белой маслянистой жидкости.

6-[2-(Трет-бутилдиметилсилил)этинил]-2,4-диметил-3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин

[0452] Стадия 2: В герметизируемую реакционную пробирку загружали 3-бром-6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин (9,6 г, 29,52 ммоль), 4,4,5,5-тетраметил-2-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,3,2-диоксаборолан (14,88 г, 59,04 ммоль), Pd(dppf)Cl₂ (2,15 мг, 2,95 мкмоль), AcOK (8,66 г, 88,44 ммоль), диметилформамид (150 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали при 90°С в течение 12 часов. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали 6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметил-3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин (2,5 г, выход 27%) в виде твердого вещества аморфного почти белого цвета.

6-{6-[2-(Трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-7-метил-7Hпирроло[2,3-d]пиримидин-4-амин

[0453] Стадия 3: В герметизируемую реакционную пробирку загружали 6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметил-3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-

ил)пиридин (1,3 г, 3,49 ммоль), 6-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (952 мг, 3,49 ммоль), бис(адамантан-1-ил)(бутил)фосфан (125 мг, 349 мкмоль), палладий(1+)2'-амино-1,1'-бифенил-2-ил-бис(адамантан-1-ил)(бутил)фосфана хлорид (233 мг, 349 мкмоль), К₃РО₄ (2,2 г, 1,05 ммоль), смесь диоксан/Н₂О (15 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Полученную смесь перемешивали при 90°С в течение 6 часов. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали 6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (500 мг, выход 37%) в виде желтого твердого аморфного вещества.

5-Бром-6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-7метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0454] **Стадия 4:** В круглодонную колбу загружали 6-{6-[2-(третбутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (500 мг, 1,27 ммоль), NBS (272 мг, 1,53 ммоль), диметилформамид (20 мл) и магнитную мешалку. Раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 20 г; элюирование смесью дихлорметан/метанол, 12:1). После концентрирования под вакуумом получали 5-бром-6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (500 мг, выход 88,3%) в виде красного твердого аморфного вещества.

6-{6-[2-(Трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7Н-пирроло[2,3-d]пиримидин-4амин

[0455] Стадия 5: В герметизируемую реакционную пробирку загружали 5-бром-6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (460 мг, 977 мкмоль), 2-[2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (643 мг, 1,95 ммоль), Рd(PPh₃)₄ (112 мг, 97,7 мкмоль), К₃РО₄ (621 мг, 2,93 ммоль), DME/H₂O (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 ч при 90°С. Реакционную смесь гасили водой и экстрагировали DCM. Органическую фазу трижды промывали солевым раствором, сушили над Na₂SO₄, фильтровали и упаривали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. При концентрировании под вакуумом получали 6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (250 мг, выход 43%) в виде оранжевого твердого аморфного вещества.

6-(6-Этинил-2,4-диметилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0456] Стадия 6: В круглодонную колбу загружали 6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (230 мг, 387 мкмоль), СsF (176 мг, 1,16 ммоль) и магнитную мешалку. Затем добавляли тетрагидрофуран (8 мл), и полученный раствор перемешивали в течение 2 часов при 50°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: вода (раствор NH₄HCO₃ 10 ммоль/л), Подвижная фаза В: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 20 В до 45 В в течение 8 мин; 220 нм; RT1: 7,12;). После лиофилизации получали 6-(6-этинил-2,4-диметилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (100 мг, 208 мкмоль) в виде почти белого твердого аморфного вещества.

6-(6-Этинил-2,4-диметилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0457] Стадия 7: Полученный сырой материал очищали методом препаративной хиральной ВЭЖХ (Колонка: DZ-CHIRALPAK IF-3, 4,6*50 мм, 3 мкм; Подвижная фаза А: Hex(0,2% IPAmine):(EtOH:DCM=1:1) = 75:25). После лиофилизации получали 6-(6-этинил-2,4-диметилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (Пик 1) (33,7 мг, 70,2 мкмоль, выход 33,7%) в виде твердого аморфного вещества почти белого цвета; 6-(6-этинил-2,4-диметилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (Пик 2) (25 мг, 52,1 мкмоль, выход 25%) в виде твердого аморфного вещества почти белого цвета. [0458] Другие такие же соединения, полученные согласно способам, описанным в Примере 32, показаны в Таблице 31 ниже.

Таблица 31. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,59 (s, 1H), 7,35 (t, J = 8,4 Гц, 1H), 7,19 (d, J = 5,1 Γц, 1H), 7,13 (dd, J = 11,3, 2,1 Γц, 1H), 7,01 - 6,96 (m, 1H), 6,21 (s, 1H), 4,59 (s, 1H), 3,49 (s, 3H), 2,41 (s, 3H), 2,02 (s, 3H).	484,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин	N N O F N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,48 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,59 (s, 1H), 7,36 (d, J = 8,4 Гц, 1H), 7,19 (d, J = 5,1 Γц, 1H), 7,14 (dd, J = 11,3, 2,1 Γц, 1H), 7,04 - 6,93 (m, 1H), 6,21 (s, 2H), 4,59 (s, 1H), 3,50 (s, 4H), 2,41 (s, 3H), 2,03 (s, 3H).	484,15
6-(6-этинил-2-фтор-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин	N N O F NH ₂ N F Aтропизомер 2	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,48 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,59 (s, 1H), 7,36 (d, J = 8,4 Гц, 1H), 7,19 (d, J = 5,1 Γц, 1H), 7,14 (dd, J = 11,3, 2,1 Γц, 1H), 7,04 - 6,93 (m, 1H), 6,21 (s, 2H), 4,59 (s, 1H), 3,50 (s, 4H), 2,41 (s, 3H), 2,03 (s, 3H).	484,15
6-(6-этинил-2,4- диметилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-4-амин	N N O NH ₂ N N N	¹ H ЯМР (300 МГц, DMSO- d_6) 8,45 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 7,42 (s, 1H), 7,30 (t, J = 8,4 Γц, 1H), 7,16 (d, J = 5,0 Гц, 1H), 7,05 (dd, J = 11,5, 2,0 Γц, 1H), 6,94 (dt, J = 8,3, 1,4 Γц, 1H), 6,16 (s, 1H), 4,35 (s, 1H), 3,32 (s, 3H), 2,38 (s, 3H), 2,14 (s, 3H), 2,00 (s, 3H).	480,15
6-(6-этинил-2,4- диметилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H-пирроло[2,3- d]пиримидин-4-амин	N	¹ H ЯМР (400 МГц, DMSO- d_6) 8,47 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 7,44 (s, 1H), 7,32 (t, J = 8,4 Гц, 1H), 7,18 (d, J = 5,1 Гц, 1H), 7,07 (dd, J = 11,4, 2,1 Гц, 1H), 7,00 -6,93 (m, 1H), 6,15 (s, 2H), 4,36 (s, 1H), 3,34 (s, 3H), 2,41 (s, 3H), 2,16 (s, 3H), 2,02 (s, 3H).	480,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2,4- диметилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7Н-пирроло[2,3- d]пиримидин-4-амин	NH ₂ F	¹ H ЯМР (400 МГц, DMSO- d_6) 8,47 (d, J = 5,0 Γц, 1H), 8,24 (s, 1H), 7,44 (s, 1H), 7,32 (t, J = 8,4 Γц, 1H), 7,18 (d, J = 5,0 Γц, 1H), 7,07 (dd, J = 11,4, 2,0 Γц, 1H), 6,97 (d, J = 8,5 Γц, 1H), 6,15 (s, 2H), 4,37 (s, 1H), 3,41 (s, 3H), 2,41 (s, 3H), 2,16 (s, 3H), 2,02 (s, 3H).	480,15
	Атропизомер 2		
N-(4-(4-амино-7-метил- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-3,5- диметилфенил)метакри ламид	NH ₂ NH ₂ NH ₀	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,74 (s, 1H), 8,45 (d, J = 5,0 Γц, 1H), 8,21 (s, 1H), 7,50 (s, 2H), 7,28 – 7,10 (m, 5H), 5,80 (m, 2H), 5,52 (s, 1H), 3,37 (s, 3H), 2,40 (s, 3H), 1,96 (m, 9H).	520,40
((S)-4-(4-амино-6-(6- этинил-2-фтор-4- метилпиридин-3-ил)-7- метил-7Н-пирроло[2,3- d]пиримидин-5-ил) циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂ F N	¹ H ЯМР (400 МГц, DMSO- d_6) 8 8,14 (t, J = 2,8 Гц, 1H), 7,65 (s, 1H), 6,61 (s, 2H), 5,61 (s, 1H), 4,60 (d, J = 1,1 Гц, 1H), 4,01 (s, 1H), 3,51 (d, J = 8,6 Гц, 2H), 3,46 – 3,36 (m, 3H), 2,71 (s, 1H), 2,17 (s, 5H), 1,91 – 1,80 (s, 5H), 1,62 (s, 1H), 1,49 (d, J = 5,0 Гц, 1H), 1,17 – 1,03 (m, 3H).	473,30

Пример 33

Схема 30

(S)-4-(4-амино-6-(6-((трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбоновая кислота

[0459] Стадия 1: В круглодонную колбу загружали (1S)-4-{4-амино-6-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил} циклогекс-3-ен-1-карбоновую кислоту (6 г, 19,5 ммоль), {6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил} бороновую кислоту (10,7 г, 39,0 ммоль), Na₂CO₃ (6,19 г, 58,4 ммоль), Xphos Pd G3 (1,65 г, 1,95 ммоль), Xphos (928 мг, 1,95 ммоль), смесь диоксан/H₂O (120 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 1 часа при 90°С. Затем реакционную смесь фильтровали, промывали DCM, фильтрат концентрировали под вакуумом, затем полученный сырой материал очищали методом комбинированной флеш-хроматографии (A: 0,1% TFA в воде, В: ацетонитрил). После концентрирования под вакуумом получали (1S)-4-(4-амино-6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-

метилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1карбоновую кислоту (6,20 г, выход 63%) в виде твердого вещества желтого цвета.

(S)-1-((S)-4-(4-амино-6-(6-((трет-бутилдиметилсилил)этинил)-4-метилпиридин-3ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1карбонил)пирролидин-2-карбонитрил

[0460] Стадия 2: В круглодонную колбу загружали (1S)-4-(4-амино-6-(6-[2-(третбутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбоновую кислоту (5 г, 9,96 ммоль), (2S)-пирролидин-2-карбонитрил (2,86 г, 29,8 ммоль), НАТИ (7,56 г, 19,9 ммоль), DMF (100 мл) и магнитную мешалку. Затем добавляли DIEA (15,0 г, 116 ммоль), и полученный раствор перемешивали в течение 2 ч при комнатной температуре. Реакционную смесь разбавляли водой (150 мл), и водную фазу трижды экстрагировали этилацетатом (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 200 г; элюирование смесью дихлорметан/метанол в соотношении 30:1). При концентрировании под вакуумом получали (2S)-1-[(1S)-4-(4-амино-6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбонил]пирролидин-2-карбонитрил (2,80 г, выход 48%) в виде темной маслянистой жидкости.

(S)-1-((S)-4-(4-амино-6-(6-этинил-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3d]пиримидин-5-ил)циклогекс-3-ен-1-карбонил)пирролидин-2-карбонитрил

[0461] **Стадия 3:** В круглодонную колбу загружали (2S)-1-[(1S)-4-(4-амино-6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-7-метил-7H-пирроло[2,3d]пиримидин-5-ил)циклогекс-3-ен-1-карбонил]пирролидин-2-карбонитрил (2,7 г, 4,65 ммоль), ТГФ (10 мл) и магнитную мешалку. Затем добавляли ТВАГ (1,21 г, 4,65 ммоль), и полученный раствор перемешивали в течение 30 мин при комнатной температуре. Реакционную смесь разбавляли водой (150 мл), и водную фазу трижды экстрагировали DCM (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом флеш-хроматографии (Подвижная фаза А: вода, Подвижная фаза В: АСN). Затем полученный сырой материал очищали методом ВЭЖХ (Колонка: Xselect CSH OBD Column, 30*150 мм 5 мкм, п; Подвижная фаза А: вода (раствор 0,1% FA), Подвижная фаза В: МеОН для ВЭЖХ; Скорость пропускания: 60 мл/мин; Градиент: от 20 В до 45 В в течение 7 мин; 220 нм; RT1: 7,13; RT2: -). После лиофилизации получали (2S)-1-[(1S)-4-[4-амино-6-(6этинил-4-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил]циклогекс-3-ен-1-карбонил]пирролидин-2-карбонитрил (520 мг, выход 24%) в виде почти белого твердого аморфного вещества.

[0462] Другие такие же соединения, полученные согласно способам, описанным в Примере 33, показаны в Таблице 32 ниже.

Таблица 32. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(2S)-1-[(1S)-4-[4-	0 \(¹ H ЯМР (400 МГц, DMSO-d ₆) δ	466,30
амино-6-(6-этинил-2-	N	8,15 (s, 1H), 7,88 – 7,64 (m, 1H),	
метилпиридин-3-ил)-		7,53 (d, $J = 7,9$ Гц, 1H), 6,57 (s,	
7-метил-7Н-	NH (_)	1H), 5,70 (d, J = 11,1 Гц, 1H),	
пирроло[2,3-	NH ₂ N	4,92 – 4,54 (m, 1H), 4,43 (s, 1H),	
d]пиримидин-5-	N _	3,68 (d, $J = 8,0$ Гц, 1H), $3,53$ –	
ил]циклогекс-3-ен-1-		3,43 (m, 1H), 3,38 (s, 3H), 2,81	
карбонил]пирролидин	N 14 /-14	(d, $J = 6.4 \Gamma \mu$, 1H), 2,28 (d, $J =$	
-2-карбонитрил		2,3 Гц, 3H), 2,23 (s, 2H), 2,13 (d,	
		$J = 6.5 \Gamma$ ц, 2H), 2.09 – 1.73 (m,	
		4H), 1,61 (s, 2H).	
(2S)-1-[(1R)-4-[4-	0 /	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	466,20
амино-6-(6-этинил-4-	N N	8,41 (d, $J = 25,1$ Гц, 1H), $8,17$ (s,	
метилпиридин-3-ил)-		1H), 7,64 (d, J = 3,9 Γ ц, 1H), 6,73	
7-метил-7Н-	〈	(s, 1H), 5,71 (d, $J = 28.0 \Gamma\text{L}$, 1H),	
пирроло[2,3-	NH ₂ N	4,71 (dd, $J = 7,9, 3,8$ Гц, 1H),	
d]пиримидин-5-	N	4,43 (s, 1H), 3,70 – 3,48 (m, 2H),	
ил]циклогекс-3-ен-1-		3,39 (d, $J = 1,5$ Гц, 3H), $2,86 -$	
карбонил]пирролидин	N 14 /	2,74 (m, 1H), 2,28 – 2,20 (m, 2H),	
-2-карбонитрил		2,14 (d, $J = 7,2$ Гц, 5H), $2,06 -$	
		1,83 (m, 4H), 1,72 – 1,58 (m, 2H).	
(2S)-1-[(1S)-4-[4-	0 /	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	466,35
амино-6-(6-этинил-4-	N N	8,40 (d, $J = 5,1$ Гц, 1H), $8,14$ (s,	
метилпиридин-3-ил)-		1H), 7,64 (d, J = 1,9 Γ ц, 1H), 6,53	
7-метил-7Н-	│	(s, 1H), 5,76 (s, 1H), 4,70 (dt, J =	
пирроло[2,3-	NH ₂ N	7,3, 3,2 Гц, 1H), 4,43 (d, $J = 1,2$	
d]пиримидин-5-	N /=N	Гц, 1H), 3,69 (s, 1H), 3,65 – 3,42	
ил]циклогекс-3-ен-1-		(m, 1H), 3,38 (d, $J = 0.9 \Gamma \mu$, 3H),	
карбонил]пирролидин	N N N	2,80 (s, 1H), 2,24 (s, 2H), 2,14 (s,	
-2-карбонитрил		5H), 2,07 – 1,81 (m, 4H), 1,60 (s,	
		2H).	

Пример 34

Схема 31

5-Бром-2-((трет-бутилдиметилсилил)этинил)-4-метилпиридин

[0463] Стадия 1: В герметизируемую реакционную пробирку загружали 5-бром-2-иод-4-метилпиридин (5,00 г, 16,8 ммоль), диметилформамид (50 мл), CuI (1,28 г, 6,72 ммоль), Et₃N (8,48 г, 84 ммоль), Pd(PPh₃)₂Cl₂ (2,36 г, 3,36 ммоль), третбутил(этинил)диметилсилан (2,35 г, 16,8 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 ч при 50°С. Реакционную смесь разбавляли водой (200 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью гептанов и этилацетата, 10:1). После концентрирования под вакуумом получали 5-бром-2-((трет-

бутилдиметилсилил) этинил) - 4-метилпиридин (4 г, выход 77%) в виде твердого аморфного вещества желтого цвета.

2-((Трет-бутилдиметилсилил)этинил)-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин

[0464] Стадия 2: В герметизируемую реакционную пробирку загружали 5-бром-2- ((трет-бутилдиметилсилил)этинил)-4-метилпиридин (3,5 г, 11,3 ммоль), 4,4,5,5- тетраметил-2-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,3,2-диоксаборолан (3,07 г, 12,1 ммоль), АсОК (2,37 г, 24,2 ммоль), Pd(dppf)Cl₂ (589 мг, 807 мкмоль), диоксан (40 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, и полученную смесь перемешивали при 80°С в течение 1 часа. Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (элюирование смесью ацетонитрил/вода, 0~50%). После лиофилизации получали 2-((третбутилдиметилсилил)этинил)-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин (3,90 г, выход 90%) в виде твердого вещества почти белого цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-7-метил-7Hпирроло[2,3-d]пиримидин-4-амин

[0465] Стадия 3: В герметизируемую реакционную пробирку загружали 2-((трет-бутилдиметилсилил)этинил)-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборан-2-ил)пиридин (2,6 г, 7,26 ммоль), 6-иод-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (1,67 г, 6,05 ммоль), Pd(dppf)Cl₂ (442 мг, 605 мкмоль), К₃PO₄ (3,83 г, 18,1 ммоль), смесь DME:H₂O (10:1,25 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, и полученную смесь перемешивали при 90°C в течение 3 часов. Реакционную смесь разбавляли водой (40 мл), и водную фазу трижды

экстрагировали DCM (40 мл). Объединенные органические слои промывали насыщенным солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (элюирование смесью ацетонитрил/вода = 0~50%). После лиофилизации получали 6-(6-((трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-амин (1,6 г, выход 70%) в виде твердого аморфного вещества желтого цвета.

5-Бром-6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин

[0466] **Стадия 4:** В круглодонную колбу загружали 6-(6-((третбутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (1,6 г, 4,24 ммоль), DCM (20 мл) и магнитную мешалку. Затем добавляли NBS (754,7 мг, 4,24 ммоль). Смесь перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили насыщенным водным раствором NaHSO₃ до достижения уровня рН 8-9, экстрагировали DCM (100 мл*3), органическую фазу объединяли и промывали солевым раствором, сушили над Na₂SO₄, упаривали под вакуумом, полученный остаток растворяли в ACN (25 мл) и фильтровали, осадок на фильтре промывали ACN, сушили при пониженном давлении, в результате чего получали 5-бром-6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (1,6 г, выход 83%) в виде почти белого твердого вещества.

(S)-(4-(4-амино-6-(6-((трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-ил)(пирролидин-1-ил)метанон

[0467] Стадия 5: В герметизируемую реакционную пробирку загружали 5-бром-6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (500 мг, 1,09 ммоль), смесь DME:H₂O (10:1,8 мл), [(4S)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]бороновую кислоту (290 мг, 1,30 ммоль), Pd(dppf)Cl₂ (79,6 мг, 109 мкмоль), K₃PO₄ (693 мг, 3,27 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 2 ч при 90°С. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (30 мл). Объединенные органические слои промывали насыщенным солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный неочищенный материал очищали методом хроматографии на силикагеле (колонка 1 г; элюирование этилацетатом (EA)). После концентрирования под вакуумом получали 6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил} -7-метил-5-[(4S)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (110 мг, выход 18%) в виде коричневого твердого вещества.

(S)-(4-(4-амино-6-(6-этинил-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-ил)(пирролидин-1-ил)метанон

[0468] **Стадия 6:** В герметизируемую реакционную пробирку загружали 6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил} -7-метил-5-[(4S)-4-(пирролидин-1-

карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (100 мг, 180 мкмоль), ТНГ (6 мл) и магнитную мешалку. Затем добавляли ТВАГ (2,2 мл, 216 мкмоль), и полученную смесь перемешивали в течение 30 мин при комнатной температуре. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали DCM (20 мл). Объединенные органические слои пять раз промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (ацетонитрил/вода/10 ммоль NH4HCO₃), Скорость пропускания: 60 мл/мин; Градиент: от 40 В до 65 В в течение 8 мин. После лиофилизации получали 6-(6-этинил-4-метилпиридин-3-ил)-7-метил-5-[(4S)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-4-амин (27,6 мг, выход 35%) в виде твердого аморфного вешества почти белого цвета.

[0469] Другие такие же соединения, полученные согласно способам, описанным в Примере 34, показаны в Таблице 33 ниже.

Таблица 33. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-(4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(пирролидин-1- ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) 8,40 (d, J = 11,7 Гц, 1H), 8,13 (s, 1H), 7,63 (d, J = 2,7 Гц, 1H), 6,59 (s, 1H), 5,69 (d, J = 30,0 Γц, 1H), 4,42 (d, J = 1,1 Гц, 1H), 3,51 - 3,38 (m, 2H), 3,37 (d, J = 1,4 Γц, 3H), 3,28 (s, 2H), 2,75 (s, 1H), 2,68 (p, J = 1,8 Γц, 2H), 2,34 (p, J = 1,9 Γц, 5H), 2,20 (d, J = 7,1 Γц, 1H), 1,93 (d, J = 9,1 Γц, 2H), 1,85 (q, J = 6,1 Γц, 2H), 1,60 (d, J =	441,35
(S)-(4-(4-амино-6-(6-этинил-4-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-ил)(пирролидин-1-ил)метанон	NH ₂	7,0 Гц, 2H). ¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,39 (d, J = 6,7 Гц, 1H), 8,17 (s, 1H), 7,65 (d, J = 3,2 Гц, 1H), 5,99 – 5,76 (m, 1H), 3,89 (d, J = 1,8 Гц, 1H), 3,62 – 3,50 (m, 2H), 3,49 (s, 3H), 3,43 (ddt, J = 9,3, 6,4, 3,7 Гц, 2H), 2,90 – 2,78 (m, 1H), 2,44 – 2,30 (m, 1H), 2,24 (d, J = 3,1 Гц, 4H), 2,11 (s, 2H), 1,98 (qd, J = 6,4, 2,1 Гц, 2H), 1,90 (td, J = 6,5, 1,4 Гц, 2H), 1,76 (dq, J = 14,4, 6,3 Гц, 2H).	441,35

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5-ил)- N-циклобутил-2- метоксибензамид	O NH O NH ₂ O	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,45 (s, 1H), 8,27 (s, 1H), 7,77 (d, J = 7,8 Гц, 1H), 7,56 (s, 1H), 7,00 – 6,89 (m, 2H), 4,48 (p, J = 8,3 Гц, 1H), 3,86 (s, 1H), 3,81 (s, 3H), 3,60 (s, 3H), 2,38 (d, J = 8,2 Гц, 2H), 2,13 – 1,99 (m, 5H), 1,85 – 1,75 (m, 2H).	467,15
6-(6-этинил-2- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин	F O N	¹ H ЯМР (400 МГц, DMSO) 9,22 (s, 1H), 8,95 (s, 1H), 8,45 (d, J = 5,0 Γц, 1H), 7,99 (d, J = 7,9 Γц, 1H), 7,60 (d, J = 7,9 Γц, 1H), 7,38 -7,23 (m, 2H), 7,17 (d, J = 5,1 Γц, 1H), 7,07 (ddd, J = 8,4, 2,2, 0,8 Γц, 1H), 4,47 (s, 1H), 3,57 (s, 3H), 2,40 (s, 3H), 2,14 (s, 3H).	451,15
(R)-(4-(6-(6-этинил- 2-метилпиридин-3- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(пирролидин-1- ил)метанон		¹ H ЯМР (400 МГц, DMSO- d_6) 9,14 (s, 1H), 8,86 (s, 1H), 7,86 (dd, J = 20,9, 7,9 Γц, 1H), 7,58 (d, J = 7,9 Γц, 1H), 5,81 (s, 1H), 4,47 (d, J = 1,7 Γц, 1H), 3,51 - 3,42 (m, 5H), 3,27 (t, J = 6,8 Γц, 2H), 2,61 (d, J = 12,8 Γц, 1H), 2,26 (t, J = 14,0 Γц, 7H), 1,87 (p, J = 6,7 Γц, 2H), 1,78 - 1,73 (m, 3H), 1,50 (td, J = 12,1, 5,7 Γц, 1H).	426,30
(S)-(4-(6-(6-этинил- 2-метилпиридин-3- ил)-7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- ил)(пирролидин-1- ил)метанон	O N N	¹ H ЯМР (400 МГц, DMSO- d_6) 9,14 (s, 1H), 8,86 (s, 1H), 7,86 (dd, J = 20,9, 7,9 Гц, 1H), 7,58 (d, J = 7,8 Γц, 1H), 5,81 (s, 1H), 4,46 (d, J = 1,7 Γц, 1H), 3,47 (dd, J = 6,8, 4,7 Γц, 5H), 3,30 (s, 2H), 2,61 (d, J = 11,0 Γц, 1H), 2,28 (d, J = 7,5 Γц, 3H), 2,23 (s, 2H), 2,18 (s, 1H), 1,91 - 1,83 (m, 2H), 1,85 -1,72 (m, 4H), 1,50 (td, J = 11,9, 5,5 Γц, 1H).	426,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2- метилпиридин-3-ил)- 5-[(4S)-4-(2- этинилпирролидин- 1- карбонил)циклогекс- 1-ен-1-ил]-7-метил- 7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,14 (d, J = 2,6 Γ ц, 1H), 7,73 (td, J = 6,7, 5,6, 2,4 Γ ц, 1H), 7,51 (s, 1H), 6,53 (s, 2H), 5,74 – 5,64 (m, 1H), 4,83 (d, J = 7,3 Γ ц, 1H), 4,43 (s, 1H), 3,61 (s, 1H), 3,38 (s, 3H), 3,26 (d, J = 11,8 Γ ц, 1H), 3,08 (d, J = 2,0 Γ ц, 1H), 2,96 – 2,63 (m, 1H), 2,32 – 2,15 (m, 3H), 2,15 – 2,06 (m, 2H), 2,04 – 1,80 (m, 6H), 1,75 – 1,53 (m, 2H).	465,30
6-(6-этинил-2- метилпиридин-3-ил)- 5-[(4S)-4-[(2R)-2- этинилпирролидин- 1- карбонил]циклогекс- 1-ен-1-ил]-7-метил- 7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,13 (d, J = 3,1 Гц, 1H), 7,80 – 7,66 (m, 1H), 7,52 (d, J = 7,8 Гц, 1H), 6,56 (s, 2H), 5,71 (dd, J = 24,3, 13,7 Γц, 1H), 4,87 – 4,52 (m, 1H), 4,43 (s, 1H), 3,57 – 3,48 (m, 1H), 3,38 (s, 3H), 3,30 – 3,19 (m, 1H), 3,11 – 2,99 (m, 1H), 2,97 – 2,60 (m, 1H), 2,38 – 2,31 (m, 3H), 2,18 (d, J = 46,6 Γц, 3H), 1,92 (dd, J = 39,2, 17,7 Γц, 6H), 1,61 (s, 2H).	465,30
((S)-4-(4-амино-6-(6- этинил-4- метилпиридин-3- ил)пирроло[2,1- f][1,2,4]триазин-5- ил)циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,34 (s, 1H), 7,86 – 7,81 (m, 2H), 7,53 (d, J = 2,2 Γ ц, 1H), 6,88 (s, 1H), 5,83 (s, 1H), 4,32 (s, 1H), 4,00 (t, J = 6,5 Γ ц, 1H), 3,58 – 3,50 (m, 1H), 3,40 (s, 1H), 2,82 (t, J = 5,7 Γ ц, 1H), 2,27 (s, 5H), 1,99 – 1,72 (m, 5H), 1,66 – 1,38 (m, 3H), 1,09 (dd, J = 6,4, 2,0 Γ ц, 3H).	44 1,30
((R)-4-(4-амино-6-(6- этинил-4- метилпиридин-3- ил)пирроло[2,1- f][1,2,4]триазин-5- ил)циклогекс-3-ен-1- ил)((R)-2- метилпирролидин-1- ил)метанон	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,34 (d, J = 1,9 Γц, 1H), 7,83 (d, J = 3,2 Γц, 2H), 7,52 (s, 1H), 7,20 (s, 1H), 5,86 (s, 1H), 4,32 (s, 1H), 4,08 – 3,93 (m, 1H), 3,50 (d, J = 7,6 Γц, 1H), 3,46 – 3,39 (m, 1H), 2,88 (s, 1H), 2,27 (s, 5H), 2,07 – 1,26 (m, 8H), 1,08 (dd, J = 38,2, 6,3 Γц, 3H).	441,30

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4- метилпиридин-3-ил)- 5-(3-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)пирр оло[2,1- f][1,2,4]триазин-4- амин	NH ₂ F N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,49 (d, $J = 5.0$ Гц, 1H), 8,23 (s, 1H), 7,99 (d, $J = 12.0$ Гц, 2H), 7,45 (s, 1H), 7,37 (t, $J = 8.3$ Гц, 1H), 7,27 - 7,18 (m, 2H), 7,12 - 7,05 (m, 1H), 5,76 (s, 1H), 4,30 (s, 1H), 2,42 (s, 3H), 2,07 (s, 3H).	452,20
(R)-6-(6-этинил-4-метилпиридин-3-ил)-7-метил-5-(6'-метил-3'Н-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-ен-4-ил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (d, J = 16,1 Гц, 1H), 8,17 (s, 1H), 7,66 (d, J = 5,6 Гц, 1H), 7,42 (dd, J = 7,3, 4,0 Гц, 1H), 6,68 (d, J = 7,3 Гц, 1H), 6,48 (d, J = 45,8 Гц, 2H), 5,64 (d, J = 52,5 Гц, 1H), 4,45 (d, J = 2,1 Гц, 1H), 3,49 - 3,37 (m, 3H), 2,98 - 2,62 (m, 2H), 2,30 (s, 6H), 2,17 (d, J = 4,3 Γц, 3H), 2,14 - 1,81 (m, 2H), 1,71 (ddddd, J = 19,5, 12,6, 6,6 Γц, 1H).	463,20
(S)-6-(6-этинил-4-метилпиридин-3-ил)-7-метил-5-(6'-метил-3'Н-спиро[циклогексан-1,2'-фуро[2,3-b]пиридин]-3-ен-4-ил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (d, J = 16,2 Гц, 1H), 8,18 (s, 1H), 7,66 (d, J = 5,6 Гц, 1H), 7,41 (dd, J = 7,3, 4,0 Гц, 1H), 6,68 (d, J = 7,3 Γц, 1H), 6,51 (s, 1H), 5,64 (d, J = 52,2 Гц, 1H), 4,44 (d, J = 2,0 Гц, 1H), 3,40 (s, 3H), 2,92 - 2,63 (m, 2H), 2,49 - 2,32 (m, 1H), 2,30 (s, 6H), 2,17 (d, J = 4,4 Γц, 3H), 2,13 - 1,81 (m, 2H), 1,70 (td, J = 12,5, 6,8 Γц, 1H).	463,25
(S)-4-(4-амино-6-(6- этинил-4- метилпиридин-3-ил)- 7-метил-7H- пирроло[2,3- d]пиримидин-5-ил)- 2'- метилспиро[циклоге ксан-1,6'- циклопента[b]пирид ин]-3-ен-7'(5'H)-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,45 (d, J = 5,7 Гц, 1H), 8,16 (s, 1H), 7,85 (t, J = 8,6 Гц, 1H), 7,66 (d, J = 4,8 Гц, 1H), 7,49 (d, J = 7,9 Гц, 1H), 6,63 (s, 1H), 5,73 (d, J = 62,3 Γц, 1H), 4,45 (d, J = 2,7 Γц, 1H), 3,40 (d, J = 1,7 Γц, 3H), 2,89 - 2,58 (m, 2H), 2,55 (s, 3H), 2,44 - 2,28 (m, 1H), 2,17 (d, J = 2,3 Γц, 4H), 2,12 - 1,65 (m, 3H), 1,49 (dd, J = 17,5, 6,5 Γц, 1H).	475,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-4-(4-амино-6-(6-	~/	¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	475,30
этинил-4-		8,45 (d, $J = 5,4$ Гц, 1H), $8,16$ (s, 1H),	
метилпиридин-3-ил)-	∕~ N	7,85 (t, J = 8,6 Гц, 1H), 7,67 (d, J =	
7-метил-7Н-		4,8 Гц, 1H), $7,49$ (dd, $J = 8,1, 1,5$ Гц,	
пирроло[2,3-	~ ` `0	1H), 6,58 (d, J = 31,4 Γ ц, 2H), 5,74	
d]пиримидин-5-ил)-	NH ₂	$(d, J = 62, 1 \Gamma ц, 1H), 4,45 (d, J = 2,7)$	
2'-	\	Γ ц, 1H), 3,41 (d, J = 1,7 Γ ц, 3H),	
метилспиро[циклоге		2,93 - 2,58 (m, 2H), 2,55 (s, 3H),	
ксан-1,6'-	N N)	2,43 - 2,31 (m, 1H), $2,17$ (d, $J = 2,3$	
циклопента[b]пирид	\ /	Гц, 4H), 2,16 - 1,63 (m, 3H), 1,49	
ин]-3-ен-7'(5'Н)-он		(dt, $J = 11.4$, 6,8 Γ u, 1H).	

Пример 35

Схема 32

5-Иод-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0470] **Стадия 1:** В круглодонную колбу загружали 5-иод-7H-пирроло [2,3-d]пиримидин-4-амин (2 г, 7,69 ммоль), Сs₂CO₃ (7,49 г, 23,0 ммоль) и магнитную мешалку. Добавляли диметилформамид (40 мл), и полученный раствор перемешивали в течение 30 мин при 0°C.Затем добавляли [2-(хлорметокси)этил]триметилсилан (1,53 г, 9,22 ммоль). Реакционную смесь разбавляли H₂O (20 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 50 г; элюирование смесью дихлорметан/метанол, 40/1-30/1). После концентрирования под вакуумом получали 5-иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (1,60 г, выход 53,2%) в виде почти белого твердого аморфного вещества.

5-(4-((4-Метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0471] **Стадия 2:** В герметизируемую реакционную пробирку загружали 5-иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (1,6 г, 4,09 ммоль), 4-метил-2-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиримидин; бис(метан) (1,54 г, 4,49 ммоль), K_3PO_4 (2,58 г, 12,2 ммоль), смесь DME/H₂O (16 мл/2 мл), Pd(dppf)Cl₂ (298 мг, 409 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли H_2O (10 мл),

и водную фазу трижды экстрагировали дихлорметаном (80 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 50 г; элюирование смесью дихлорметан/метанол, 20/1). После концентрирования под вакуумом получали 5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-амин (1,60 г, выход 87,0%) в виде оранжевого твердого аморфного вещества.

6-Иод-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]-метил}-7Н-пирроло[2,3-d]пиримидин-4-амин

[0472] Стадия 3: В круглодонную колбу загружали 5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (1,6 г, 3,56 ммоль), иод(сульфанил)амин (680 мг, 3,91 ммоль), дихлорметан (20 мл) и магнитную мешалку, после чего добавляли ТFA (1,02 г, 10,6 ммоль) при 0°С. Смесь перемешивали в течение 1 часа при комнатной температуре. Затем смесь гасили насыщенным водным раствором NaHSO₃ до достижения уровня рН 8-9, трижды экстрагировали DCM (100 мл), органическую фазу объединяли и сушили над Na₂SO₄, после чего концентрирвали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 50 г; элюирование смесью дихлорметан/метанол, 15/1). После концентрирования под вакуумом получали 6-иод-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (1,40 г, выход 68,5%) в виде желтого твердого аморфного вещества.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7Н-пирроло[2,3-d]пиримидин-4-амин

[0473] Стадия 4: В герметизируемую реакционную пробирку загружали 6-иод-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Нпирроло[2,3-d]пиримидин-4-амин (400 мг, 696 мкмоль), 2-[2-(третбутилдиметилсилил)этинил]-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2ил)пиримидин (274 мг, 765 мкмоль), K₃PO₄ (440 мг, 2,08 ммоль), Pd(dppf)Cl₂ (50,8 мг, 69,6 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (8 мл/2 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли H₂O (3 мл), и водную фазу трижды экстрагировали дихлорметаном (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 10 г; элюирование смесью дихлорметан/метанол, 15/1). После концентрирования под вакуумом получали 6-{2-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиримидин-5-ил}-5-{4-[(4метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Нпирроло[2,3-d]пиримидин-4-амин (310 мг, выход 65,5%) в виде желтого твердого аморфного вещества.

6-(6-Этинил-4-метилпиридин-3-ил)-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0474] Стадия 5: В круглодонную колбу загружали 6-{6-[2-(трет-

бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-амин (290 мг, 427 мкмоль), ТВАГ (133 мг, 512 мкмоль), ТНГ (3 мл) и магнитную мешалку, затем полученный раствор перемешивали при комнатной температуре в течение 1 часа. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 20 г; элюирование смесью дихлорметан/метанол, 15/1). После концентрирования под вакуумом получали 6-(2-этинил-4-метилпиримидин-5-ил)-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-амин (230 мг, выход 95,3%) в виде черного твердого аморфного вещества.

6-(6-Этинил-4-метилпиридин-3-ил)-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0475] Стадия 6: В круглодонную колбу загружали 6-(6-этинил-4-метилпиридин-3-ил)-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (210 мг, 372 мкмоль) и магнитную мешалку. Затем добавляли ТFA/DCM (40 мл), и полученный раствор перемешивали при

комнатной температуре в течение 30 минут. Раствор концентрировали под вакуумом. Затем добавляли MeOH/EDA (20 мл), и полученный раствор перемешивали при комнатной температуре в течение 10 мин. Раствор концентрировали под вакуумом.Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 5 г; элюирование смесью дихлорметана и метанола, соотношение 20:1). Полученный сырой материал очищали методом ВЭЖХ (Колонка: YMC-Actus Triart C18, 30*250 мм, 5 мкм). После лиофилизации получали 6-(6-этинил-4-метилпиридин-3-ил)-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-4-амин (37,0 мг, выход 22,9%) в виде почти белого твердого аморфного вещества.

[0476] Другие такие же соединения, полученные согласно способам, описанным в Примере 35, показаны в Таблице 34 ниже.

Таблица 34. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4- метилпиридин-3-ил)- 5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- d_6) δ 12,12 (s, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,34 (s, 1H), 8,18 (s, 1H), 7,51 (s, 1H), 7,31 – 7,24 (m, 2H), 7,24 – 7,18 (m, 2H), 7,16 (d, J = 5,0 Γц, 1H), 5,97 (s, 1H), 4,37 (s, 1H), 2,42 (s, 3H), 2,08 (s, 3H).	434,25
6-(2-этинил-4- метилпиримидин-5- ил)-5-(4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-4-амин	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,59 (s, 1H), 8,48 (d, J = 5,2 Γц, 1H), 8,20 (s, 1H), 7,31 (d, J = 8,2 Γц, 3H), 7,23 (d, J = 8,3 Γц, 4H), 7,16 (d, J = 5,1 Γц, 1H), 4,44 (s, 1H), 2,42 (s, 3H), 2,21 (s, 3H).	435,25

Пример 36

Схема 33

Трет-бутил-N-[(1r,3r)-3-[2-(4,6-диаминопиримидин-5ил)этинил]циклобутил]карбамат

[0477] **Стадия 1:** К перемешиваемому раствору 5-иодпиримидин-4,6-диамина (1,00 г, 4,237 ммоль) и трет-бутил-N-[(1г,3г)-3-этинилциклобутил]карбамата (0,99 г, 5,084 ммоль) в DMF (10 мл) добавляли Pd(PPh₃)₂Cl₂ (297,40 мг, 0,424 ммоль), CuI (161,39 мг, 0,847 ммоль) и TEA (1,29 г, 12,711 ммоль). Полученную смесь перемешивали в течение 2 часов при 50°C в атмосфере азота. Результаты ЖХ-МС соответствовали норме. Остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью CH₂Cl₂/MeOH (20:1), в результате чего получали трет-бутил-N-[(1г,3г)-3-[2-(4,6-диаминопиримидин-5-ил)этинил]циклобутил]карбамат (600 мг, выход 46,7%) в виде твердого вещества коричневого цвета.

6-((1r,3r)-3-аминоциклобутил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0478] **Стадия 2:** К перемешиваемому раствору трет-бутил-N-[(1г,3г)-3-[2-(4,6-диаминопиримидин-5-ил)этинил]циклобутил]карбамата (600,00 мг, 1,978 ммоль) в NMP (10 мл) добавляли трет-бутоксикалий (665,81 мг, 5,933 ммоль). Полученную смесь перемешивали в течение 3 ч при 100 °C. Результаты ЖХ-МС соответствовали норме. Остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью CH₂Cl₂/ MeOH (1:1), в результате чего получали 6-[(1г,3г)-3-аминоциклобутил]-7H-пирроло[2,3-d]пиримидин-4-амин (300 мг, выход 74,6%) в виде твердого вещества коричневого цвета.

5-Бром-6-[(1r,3r)-3-аминоциклобутил]-7H-пирроло[2,3-d]пиримидин-4-амин

[0479] **Стадия 3:** К перемешиваемому раствору 6-[(1г,3г)-3-аминоциклобутил]-7Н-пирроло[2,3-d]пиримидин-4-амина (300,00 мг, 1,476 ммоль) в DMF (5 мл) добавляли NBS (262,71 мг, 1,476 ммоль). Полученную смесь перемешивали в течение 1 ч при 0°С. Результаты ЖХ-МС соответствовали норме. Остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью CH₂Cl₂/MeOH (1:1), в результате чего получали 5-бром-6-[(1г,3г)-3-аминоциклобутил]-7Н-пирроло[2,3-d]пиримидин-4-амин (200 мг, выход 48%) в виде твердого вещества коричневого цвета.

N-((1r,3r)-3-(4-амино-5-бром-7H-пирроло[2,3-d]пиримидин-6ил)циклобутил)метакриламид

[0480] **Стадия 4:** К перемешиваемому раствору 5-бром-6-[(1r,3r)-3-аминоциклобутил]-7H-пирроло[2,3-d]пиримидин-4-амина (10,00 мг, 0,035 ммоль) и ТЕА (10,76 мг, 0,106 ммоль) в DCM (1 мл) добавляли метакрилоилхлорид (3,70 мг, 0,035 ммоль).

Полученную смесь перемешивали в течение 1 ч при -30°С. Реакционную смесь фильтровали через слой целита (Celite®), затем слой промывали DCM, и фильтрат концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали N-((1r,3r)-3-(4-амино-5-бром-7H-пирроло[2,3-d]пиримидин-6-ил)циклобутил)метакриламид (3,00 мг, выход 24,5%) в виде твердого аморфного вещества белого цвета.

N-((1r,3r)-3-(4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6ил)циклобутил)метакриламид

[0481] **Стадия 5:** К перемешиваемому раствору 2-метил-N-[(1г,3г)-3-[4-амино-5-бром-7H-пирроло[2,3-d]пиримидин-6-ил]циклобутил]проп-2-енамида (60 мг, 0,171 ммоль) и Cs₂CO₃ (167,46 мг, 0,514 ммоль) в DMF (2 мл) добавляли CH₃I (24,32 мг, 0,171 ммоль). Полученную смесь перемешивали в течение 1 ч при 0°C. Затем полученную смесь фильтровали, и остаток на фильтре промывали DMF. Сырой продукт использовали на следующей стадии без какой-либо дополнительной очистки.

N-((1r,3r)-3-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)циклобутил)метакриламид

[0482] Стадия 6: К раствору 2-метил-N-[(1г,3г)-3-[4-амино-5-бром-7-метилпирроло[2,3-d]пиримидин-6-ил]циклобутил]проп-2-енамида (10,00 мг, 0,027 ммоль) и 4-(пирролидин-1-карбонил)фенилбороновой кислоты (7,22 мг, 0,033 ммоль) в DMF (1 мл) и воде (0,1 мл) добавляли CsF (12,51 мг, 0,082 ммоль) и Pd(DtBPF)Cl₂ (1,79 мг, 0,003 ммоль). Смесь перемешивали в течение 2 ч при 90°С в атмосфере азота.

Реакционную смесь разбавляли водой (10 мл), и водную фазу трижды экстрагировали дихлорметаном (10 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 5 г; элюирование смесью дихлорметан/метанол/0,1% триэтиламина; соотношение -). При концентрировании под вакуумом получали N-((1г,3г)-3-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)циклобутил)метакриламид (3,0 мг, выход 24,2 %) в виде белого твердого аморфного вещества.

[0483] Другие такие же соединения, полученные согласно способам, описанным в Примере 36, показаны в Таблице 35 ниже.

Таблица 35. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-(4-(3-(4-амино-7-	/	¹ H ЯМР (400 МГц, DMSO-d ₆) δ 8,11	523,64
метил-	N=\	(s, 1H), 7,75 (t, $J = 7,7 \Gamma \mu$, 1H), 7,42 –	
5-(4-(6-	9	7,36 (m, 2H), 7,23 – 7,17 (m, 2H), 7,03	
метилпиридин-2-		$(d, J = 7,4 \Gamma \mu, 1H), 6,82 (d, J = 8,1 \Gamma \mu,$	
илокси)фенил)-7Н-	NH ₂	1H), 6,75 (dd, $J = 16,7$, 10,5 Γ u, 1H),	
пирроло[2,3-	N N	6,05 (dd, $J = 16,7, 2,4 \Gamma \mu, 1H$), 5,73 (s,	
d]пиримидин-6-	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	1H), 5,63 (dd, $J = 10,5, 2,4 \Gamma \mu$, 1H),	
ил)азетидин-1-		3,99 (p, $J = 8,0$ Гц, 1H), $3,88$ (d, $J =$	
ил)пиперидин-1-		13,2 Гц, 1H), 3,75 (d, J = 13,4 Гц, 1H),	
ил)проп-2-ен-1-он		3,67 (s, 3H), $3,54$ (t, $J = 6,9$ Гц, 2H),	
		3,15 (t, $J=11,5$ Гц, 1H), $2,99$ (t, $J=$	
		11,2 Гц, 1H), 2,77 (s, 2H), 2,35 (s, 3H),	
		2,07 (s, 1H), 1,48 (s, 2H), 1,03 (s, 2H).	
1-(4-(3-(4-амино-5-	/	¹ H ЯМР (400 МГц, DMSO-d ₆) δ 8,11	553,66
(3-метокси-4-(6-	N=\	(s, 1H), 7,68 (t, $J = 7,7$ Гц, 1H), 7,20 (d,	
метилпиридин-2-	-0. 0	J = 8,0 Гц, 1H), 7,10 (d, J = 1,9 Гц,	
илокси)фенил)-7-		1H), $7,00 - 6,92$ (m, 2H), $6,76$ (dd, $J =$	
метил-7Н-	NH ₂	$16,7, 10,5 \Gamma$ ц, 1H), $6,69 (d, J = 8,2 \Gamma$ ц,	
пирроло[2,3-	N N	1H), 6,05 (dd, J = 16,7, 2,4 Γ ц, 2H),	
d]пиримидин-6-	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	5,63 (dd, $J = 10,5, 2,5 \Gamma \mu, 1H$), 4,03 (p,	
ил)азетидин-1-		J = 8,1 Гц, 1H), 3,90 (d, J = 12,9 Гц,	
ил)пиперидин-1-		1H), 3,69 (d, J = 14,5 Γ ц, 5H), 3,59 (s,	
ил)проп-2-ен-1-он		2H), 3,15 (s, 1H), 2,97 (d, J = 11,5 Γ ц,	
		1H), 2,81 (s, 2H), 2,30 (s, 3H), 2,09 (s,	
		1H), 1,50 (s, 2H), 1,04 (s, 2H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-((1r,3r)-3-(4- амино-7-метил-5- (4-(пирролидин-1- карбонил)фенил)- 7H-пирроло[2,3- d]пиримидин-6- ил)циклобутил)мет акриламид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,22 (d, $J = 6,4$ Гц, 1H), 8,11 (s, 1H), 7,62 (d, $J = 7,7$ Гц, 2H), 7,44 (d, $J = 7,8$ Гц, 2H), 5,64 (s, 2H), 5,36 – 5,31 (m, 1H), 4,08 – 4,00 (m, 2H), 3,70 (s, 3H), 3,54 – 3,44 (m, 4H), 2,29 (t, $J = 7,5$ Γц, 4H), 1,88 (dt, $J = 11,3$, 5,7 Гц, 3H), 1,84 (s, 4H).	459,20

Пример 37

Схема 34

(4-(4-Амино-7-метил-6-винил-7H-пирроло[2,3-d]пиримидин-5ил)фенил)(пирролидин-1-ил)метанон

[0484] Стадия 1: В герметизируемую реакционную пробирку загружали 6-иод-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-4-амин (1 г, 2,23 ммоль), трибутил(этенил)станнан (846 мг, 2,67 ммоль), Рd(PPh₃)₄ (257 мг, 223 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диметилформамид (20 мл), и полученную смесь перемешивали в течение ночи при 110°С. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали 6-этенил-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d] пиримидин-4-амин (700 мг, выход 90%) в виде твердого аморфного вещества желтого цвета.

Трет-бутил-N-[(трет-бутокси)карбонил]-N-{6-этенил-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-4-ил}карбамат

[0485] **Стадия 2:** В круглодонную колбу загружали 6-этенил-7-метил-5-[4- (пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-4-амин (700 мг, 2,01 ммоль), ди-трет-бутилдикарбонат (1,75 г, 8,04 ммоль), Et₃N (813 мг, 8,04 ммоль), DMAP (24,5 мг, 201 мкмоль), дихлорметан (20 мл) и магнитную мешалку. Смесь

перемешивали в течение ночи при комнатной температуре. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали трет-бутил-N-[(трет-бутокси)карбонил]-N-{6-этенил-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-4-ил} карбамата (990 мг, выход 89%) в виде твердого аморфного вещества желтого цвета.

2-(4-{Бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-6-ил)циклопропан-1-карбоксилат

[0486] Стадия 3: В герметизируемую реакционную пробирку загружали трет-бутил-N-[(трет-бутокси)карбонил]-N-{6-этенил-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-4-ил} карбамат (800 мг, 1,46 ммоль), этилпропаноат (149 мг, 1,46 ммоль), 5,10,15,20-тетрафенил-21H,23H-порфин (19,6 мг, 29,2 мкмоль), толуол (15 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Реакционную смесь перемешивали при 110°С в течение 2 ч. Затем реакционную смесь фильтровали через слой целита (Celite®), затем этот слой промывали дихлорметаном и фильтрат концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали этил-2-(4-{бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-6-ил)циклопропан-1-карбоксилату (550 мг, выход 59%) в виде твердого аморфного вещества желтого цвета.

2-(4-{Бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-6-ил)циклопропан-1-карбоновая кислота

[0487] Стадия 4: В круглодонную колбу загружали этил-2-(4-{бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-6-ил)циклопропан-1-карбоксилат (1,7 г, 2,68 ммоль), МеОН (15 мл) и магнитную мешалку. Затем добавляли водный раствор NаОН (2М) (15 мл), и полученный раствор перемешивали в течение 2 часов при комнатной температуре. рН раствора доводили до уровня 3~4 водным раствором НСІ (2М), отделяли твердую фазу и сушили под вакуумом, в результате чего получали 2-(4-{бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-6-ил)циклопропан-1-карбоновую кислоту (1,30 г, выход 80%) в виде почти белого твердого вещества.

Трет-бутил(трет-бутоксикарбонил)(6-(2-((третбутоксикарбонил)амино)циклопропил)-7-метил-5-(4-(пирролидин-1карбонил)фенил)-7H-пирроло[2,3-d]пиримидин-4-ил)карбамат

[0488] Стадия 5: В круглодонную колбу загружали 2-(4-{бис[(третбутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-6-ил)циклопропан-1-карбоновую кислоту (400 мг, 660

мкмоль), ТЕА (73,3 мг, 726 мкмоль), DPPA (2,18 г, 7,92 ммоль) и магнитную мешалку. Затем к раствору добавляли t-BuOH (10 мл), и раствор перемешивали в течение 4 ч при 80°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали трет-бутил-N-[2-(4-{бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7H-пирроло[2,3-d]пиримидин-6-ил)циклопропил]карбамат (200 мг, выход 49%) в виде почти белого твердого аморфного вещества.

(4-(4-Амино-6-(2-аминоциклопропил)-7-метил-7H-пирроло[2,3-d]пиримидин-5ил)фенил)(пирролидин-1-ил)метанон

[0489] **Стадия 6:** В круглодонную колбу загружали трет-бутил-N-[2-(4-{бис[(трет-бутокси)карбонил]амино}-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-6-ил)циклопропил]карбамат (200 мг, 295 мкмоль) и магнитную мешалку. Затем добавляли смесь DCM:TFA = 4:1 (11 мл), и раствор перемешивали в течение 1 часа при комнатной температуре. Растворитель удаляли, а сырой продукт (200 мг) использовали на следующей стадии непосредственно, без какой-либо дополнительной очистки.

N-(2-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)циклопропил)акриламид

[0490] Стадия 7: В круглодонную колбу загружали 6-(2-аминоциклопропил)-7-метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-4-амин (200 мг, 0,42 ммоль), ТЕА (213 мг, 2,1 ммоль), дихлорметан (10 мл) и магнитную мешалку. Затем при 0°С добавляли проп-2-еноилхлорид (38 г, 0,42 ммоль). Реакционную смесь перемешивали в течение 0,5 часа при 0°C. Растворитель удаляли, и полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 30×150 мм, 5 мкм; Подвижная фаза А: не определено, подвижная фаза В: не определено; Скорость пропускания: 60 мл/мин; Градиент: от 11 В до 35 В в течение 7 мин; 254 нм; RT1: 6,75; RT2: -; Объем вводимой пробы: - мл; Количество рабочих циклов: -;). После лиофилизации получали N-(2-{4-амино-7метил-5-[4-(пирролидин-1-карбонил)фенил]-7Н-пирроло[2,3-d]пиримидин-6ил}циклопропил)проп-2-енамид (140 мг, выход 77%) в виде почти белого твердого аморфного вещества. Материал направляли на хиральное разделение (Колонка: CHIRALPAK IG, 2*25 см, 5 мкм; Подвижная фаза A: Hex:DCM = 3:1(10 мМ NH₃-МЕОН) для ВЭЖХ, Подвижная фаза В: EtOH для ВЭЖХ; Скорость пропускания: 20 мл/мин; Градиент: от 30 B до 30 B в течение 18 мин; 220/254 нм; RT1: 7,758; RT2: 10,625; Объем вводимой пробы: 0,6 мл; Количество рабочих циклов: 10;), Выход по четырем пикам, Пик 1 (16,7 мг), Пик 2 (28,5 мг), Пик 3 (18,1 мг), Пик 4 (28,8 мг). [0491] Другие такие же соединения, полученные согласно способам, описанным в Примере 37, показаны в Таблице 36 ниже.

Таблица 36. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-((1S,2S)-2-(4-амино-	0 /	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	431,20
7-метил-5-(4-	N N	8,40 (d, $J = 5,0$ Гц, 1H), $8,22$ (s, 1H),	
(пирролидин-1-		7,70 – 7,56 (m, 2H), 7,51 – 7,37 (m,	
карбонил)фенил)-7Н-	(/ 🌂	2H), 6,50 – 5,89 (m, 3H), 5,61 (dd, <i>J</i>	
пирроло[2,3-	NH ₂	= 9,6, 2,6 Гц, 1H), 3,89 (s, 3H), 3,49	
d]пиримидин-6-	N	$(t, J = 6.9 \Gamma \mu, 2H), 3.44 (q, J = 6.4)$	
ил)циклопропил)акри		Γ ц, 2H), 2,70 (dq, J = 8,8, 4,5 Γ ц,	
ламид	N '\ NH	1H), 2,19 (ddd, J = 9,8, 6,4, 3,8 Γ ц,	
	o ≕ (1H), 1,87 (ddq, $J = 25,5, 13,0, 6,7,$	
		5,8 Гц, 4H), $1,01$ (dt, J = $9,8$, $5,1$ Гц,	
	,	1H), 0,57 (dt, $J = 7.6$, 5,7 Γ u, 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-((1R,2S)-2-(4- амино-7-метил-5-(4- (пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)циклопропил)акри ламид	NH ₂ NH ₂ NH O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,20 (s, 1H), 7,70 (d, $J = 6,5$ Гц, 1H), 7,69 – 7,61 (m, 2H), 7,47 – 7,40 (m, 2H), 6,19 (s, 2H), 5,99 (d, $J = 6,2$ Гц, 2H), 5,48 (t, $J = 6,2$ Гц, 1H), 3,73 (s, 3H), 3,50 (td, $J = 6,8$, 3,0 Гц, 5H), 3,47 – 3,40 (m, 1H), 2,27 (dt, $J = 9,1$, 7,1 Гц, 1H), 1,88 (dp, $J = 19,1$, 6,7 Гц, 4H), 1,29 – 1,04 (m, 1H), 0,41 (q, $J = 5,7$ Гц, 1H).	431,20
N-((1R,2R)-2-(4- амино-7-метил-5-(4- (пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)циклопропил)акри ламид	NH ₂ N NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,39 (d, $J = 5,0$ Гц, 1H), 8,20 (s, 1H), 7,67 – 7,53 (m, 2H), 7,49 – 7,40 (m, 2H), 6,45 – 5,98 (m, 3H), 5,61 (dd, J = 9,7, 2,7 Гц, 1H), 3,88 (s, 3H), 3,50 (d, $J = 6,8$ Гц, 2H), 3,49 – 3,40 (m, 2H), 2,70 (ddd, $J = 8,7$, 6,5, 3,1 Гц, 1H), 2,19 (ddd, $J = 9,8$, 6,4, 3,8 Гц, 1H), 1,89 (t, $J = 6,6$ Гц, 2H), 1,82 (q, J = 6,3 Гц, 2H), 1,01 (dt, $J = 9,8$, 5,2 Гц, 1H), 0,57 (dt, $J = 7,6$, 5,7 Гц, 1H).	431,20
N-((1S,2R)-2-(4- амино-7-метил-5-(4- (пирролидин-1- карбонил)фенил)-7H- пирроло[2,3- d]пиримидин-6- ил)циклопропил)акри ламид	NH ₂ NH ₂ NH O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,17 (s, 1H), 7,69 (d, $J = 6,5$ Гц, 1H), 7,67 – 7,59 (m, 2H), 7,48 – 7,41 (m, 2H), 5,99 (d, $J = 6,2$ Гц, 3H), 5,47 (t, J = 6,2 Гц, 1H), 3,72 (s, 3H), 3,50 (td, $J = 7,0$, 3,5 Гц, 4H), 3,47 – 3,40 (m, 1H), 2,27 (dt, $J = 9,1$, 7,1 Гц, 1H), 1,88 (dp, $J = 18,9$, 6,8 Гц, 4H), 1,16 (td, $J = 8,5$, 5,8 Гц, 1H), 0,41 (dt, $J = 7,1$, 5,5 Гц, 1H).	431,20

Пример 38

Схема 35

1,4-Диметил-5-(трибутилстаннил)-1Н-пиразол

[0492] **Стадия 1:** К раствору 1,4-диметилпиразола (2,00 г, 20,805 ммоль) в ТНГ (15 мл) по каплям добавляли раствор н-бутиллития (2,5 М в ТНГ, 1,07 мл, 16,644 ммоль) при - 78° С в атмосфере N_2 . Реакционную смесь перемешивали при - 78° С в течение 30 минут. Затем по каплям добавляли раствор Bu_3SnCl (10,16 г, 31,207 ммоль), и смесь перемешивали в течение еще 2 часов. Реакцию гасили насыщенным раствором NH_4Cl

(100 мл), и затем смесь экстрагировали этилацетатом (EtOAc) (3*50 мл). Объединенные органические экстракты промывали солевым раствором (50 мл), сушили над безводным Na_2SO_4 и концентрировали под вакуумом, в результате чего получали сырой продукт, который очищали методом колоночной хроматографии на силикагеле (PE/EA = 4:1), и в результате получали 1,4-диметил-5- (трибутилстаннил)пиразол (5,6 г, выход 69,9%) в виде бесцветной маслянистой жидкости.

6-(1,4-Диметил-1H-пиразол-5-ил)-7-метил-5-(4-((4-метилпиримидин-2ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0493] Стадия 2: Раствор (смесь) 6-иод-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-4-амина (1,40 г, 3,055 ммоль), 1,4-диметил-5-(трибутилстаннил)пиразола (2,94 г, 7,638 ммоль), тетракис(трифенилфосфин)палладия (353,03 мг, 0,306 ммоль) и иодида меди(I) (116,37 мг, 0,611 ммоль) в толуоле перемешивали в течение ночи при 110°С в атмосфере азота. Реакционную смесь разбавляли водой и экстрагировали CH₂Cl₂ (3 х 50 мл). Объединенные органические слои промывали солевым раствором (1 х 70 мл) и сушили над безводным Na₂SO₄. После фильтрования фильтрат концентрировали при пониженном давлении. Остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью CH₂Cl₂/MeOH (12:1), в результате чего получали 6-(2,4-диметилпиразол-3-ил)-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-4-амин (320 мг, выход 24,6%) в виде твердого вещества светло-желтого цвета.

6-(3-Иод-1,4-диметил-1H-пиразол-5-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0494] Стадия 3: Раствор (смесь) 6-(3-иод-1,4-диметил-1Н-пиразол-5-ил)-7-метил-5-(4- ((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-4-амина (320 мг, 0,75 ммоль), NIS (337 мг, 1,50 ммоль) и трифторацетальдегида (368 мг, 3,75 ммоль) в DCM перемешивали в течение 48 ч при 60°С. Реакционную смесь разбавляли водой и экстрагировали CH₂Cl₂ (3 х 30 мл). Объединенные органические слои промывали солевым раствором и сушили над безводным Na₂SO₄. После фильтрования фильтрат концентрировали при пониженном давлении. Полученный остаток очищали методом препаративной ТСХ (элюируя смесью CH₂Cl₂/MeOH, 10:1), в результате чего получали 6-(3-иод-1,4-диметил-1Н-пиразол-5-ил)-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-4-амина (171 мг, выход 41,3%) в виде твердого вещества светло-желтого цвета.

Трет-бутил-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1,4-диметил-1H-пиразол-3-ил)карбамат

[0495] **Стадия 4:** Раствор (смесь) 6-(5-иод-2,4-диметилпиразол-3-ил)-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-4-амина (170 мг, 0,31 ммоль), трет-бутилкарбамата (72 мг, 0,62 ммоль), иодида меди(I) (12 мг, 0,063 ммоль) и перформиата калия (86 мг, 0,62 ммоль) в диоксане перемешивали в течение ночи при

 90° С в атмосфере азота. Реакционную смесь разбавляли водой и экстрагировали CH_2Cl_2 (3 х 30 мл). Объединенные органические слои промывали солевым раствором (1 х 30 мл) и сушили над безводным Na_2SO_4 . После фильтрования фильтрат концентрировали при пониженном давлении. Полученный остаток очищали методом препаративной TCX (элюируя смесью $CH_2Cl_2/MeOH$, 10:1), в результате чего получали трет-бутил-N-[5-(4-амино-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-1,4-диметилпиразол-3-ил]карбамат (25 мг, выход 15%) в виде бесцветной маслянистой жидкости.

6-(3-Амино-1,4-диметил-1H-пиразол-5-ил)-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-4-амин

[0496] **Стадия 5:** Смесь трет-бутил-N-[5-(4-амино-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-1,4-диметилпиразол-3-ил]карбамата (25 мг, 0,046 ммоль) и раствора НСІ (газообразного) в 1,4-диоксане (1 мл) перемешивали в течение 10 мин при комнатной температуре.Полученную смесь концентрировали при пониженном давлении. В результате 5-(4-амино-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-1,4-диметилпиразол-3-амин (25 мг, выход 98%) в виде желтой маслянистой жидкости.

N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-1,4-диметил-1H-пиразол-3-ил)метакриламид

[0497] **Стадия 6:** В круглодонную колбу загружали 5-(4-амино-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-1,4-диметилпиразол-3-амин (17 мг, 0,039 ммоль), ТЕА (11,7 мг, 0,116 ммоль) в DCM (2 мл) при 0°С, затем добавляли метакрилоилхлорид (3,62 мг, 0,035 ммоль) и перемешивали в течение 2 часов. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 30×150 мм, 5 мкм; Подвижная фаза А: вода (раствор 10 ммоль/л NH₄HCO₃), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 20 В до 45 В в течение 8 мин; 220 нм; RT1: 5,78; RT2: -; Объем вводимой пробы: - мл; Количество рабочих циклов: -;). После лиофилизации получали N-[5-(4-амино-7-метил-5-[4-[(4-метилпиримидин-2-ил)окси]фенил]пирроло[2,3-d]пиримидин-6-ил)-1,4-диметилпиразол-3-ил]-2-метилпроп-2-енамид (2,1 мг, выход 10,7%) в виде почти белого твердого аморфного вещества.

Таблица 37. Примеры соединений

N-(5-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6- 1H ЯМР (400 МГц, Хлороформ-дамин (400 MГц, Хлороформ-дамин (Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
ил)-1,4-диметил- 1H-пиразол-3- ил)метакриламид	метил-5-(4-((4- метилпиримидин- 2-ил)окси)фенил)- 7Н-пирроло[2,3- d]пиримидин-6- ил)-1,4-диметил- 1Н-пиразол-3-	NH ₂ N N O	d) 8,44 (s, 1H), 8,39 (d, J = 5,0 Γι, 1H), 7,54 (s, 1H), 7,26 (q, J = 8,7 Γι, 4H), 6,95 (d, J = 5,0 Γι, 1H), 5,89 (s, 1H), 5,52 (s, 1H), 5,28 (s, 2H), 3,68 (s, 3H), 3,38 (s, 3H), 2,52 (s, 3H), 2,08 (s, 3H),	

Пример 39

Схема 36

N-(4-(4-амино-3-бромпиразоло[1,5-а]пиразин-2-ил)фенил)метакриламид

[0498] В круглодонную колбу загружали 3-бром-2-иодпиразоло[1,5-а]пиразин-4-амин (1 г, 2,95 ммоль), 2-метил-N-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]проп-2-енамид (1,26 г, 4,42 ммоль), Pd(dppf)Cl₂ (215 мг, 295 мкмоль), K₃PO₄ (1,87 г, 8,85 ммоль), диоксан (15 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Реакционную смесь перемешивали в течение 1 ч при 90°С. Реакционную смесь разбавляли водой (50 мл) и экстрагировали DCM (40 мл*3), сушили над безводным сульфатом натрия, фильтровали и упаривали под вакуумом. Остаток очищали методом колоночной хроматографии на силикагеле, в результате чего получали N-(4-(4-амино-3-бромпиразоло[1,5-а]пиразин-2-ил)фенил)метакриламид (860 мг, выход 78,8%) в виде почти белого твердого аморфного вещества.

N-(4-(4-амино-3-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)пиразоло[1,5а]пиразин-2-ил)фенил)метакриламид

[0499] В круглодонную колбу загружали N-(4-{4-амино-3-бромпиразоло[1,5-а]пиразин-2-ил}фенил)-2-метилпроп-2-енамид (100 мг, 268 мкмоль), 1-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)циклогекс-3-ен-1-карбонил]пирролидин (112 мг, 402 мкмоль), Pd(dtbpf)Cl₂ (17,4 мг, 26,8 мкмоль), CsF (122 мг, 804 мкмоль), смесь DMF/H₂O (10:1, 5 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Реакционную смесь перемешивали в течение 1 ч при 90°C. Затем реакционную смесь разбавляли водой (20 мл) и экстрагировали DCM (10 мл*3). Объединенную органическую фазу сушили над безводным сульфатом натрия, фильтровали и упаривали. Остаток очищали методом препаративной ВЭЖХ

(Колонка: Xselect CSH OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: вода(0,1% раствор FA), Подвижная фаза В: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 28 В до 60 В в течение 8 мин; 220/254 нм; RT1: 6,55; RT2: -). После лиофилизации получали целевое соединение (25 мг, выход 13%) в виде твердого аморфного вещества белого цвета.

[0500] Другие такие же соединения, полученные согласно способам, описанным в Примере 39, показаны в Таблице 38 ниже.

Таблица 38. Дополнительные примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-3-(4- ((4- метилпиримидин-2- ил)окси)фенил)пираз оло[1,5-а]пиразин-2- ил)фенил)метакрила мид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 8,46 (d, J = 5,0 Гц, 1H), 7,96 (d, J = 4,9 Гц, 1H), 7,63 – 7,56 (m, 2H), 7,55 – 7,45 (m, 4H), 7,38 – 7,30 (m, 2H), 7,30 (d, J = 4,9 Гц, 1H), 7,17 (d, J = 5,1 Гц, 1H), 5,83 – 5,78 (m, 1H), 5,55 – 5,50 (m, 1H), 2,53 (s, 3H), 2,04 (dd, J = 1,7, 0,9 Гц, 3H).	478,20
N-(4-(4-амино-3-(4- (пирролидин-1- карбонил)фенил)пир азоло[1,5-а]пиразин- 2- ил)фенил)метакрила мид	NH ₂ O NH	¹ Н ЯМР (400 МГц, Метанол- d_4) δ 7,97 (d, J = 4,8 Γ ц, 1H), 7,68 (d, J = 7,9 Γ ц, 2H), 7,55 (dd, J = 11,1, 8,2 Γ ц, 4H), 7,42 (d, J = 8,7 Γ ц, 2H), 7,31 (d, J = 4,9 Γ ц, 1H), 5,80 (s, 1H), 5,53 (s, 1H), 3,65 (t, J = 6,9 Γ ц, 2H), 3,56 (t, J = 6,5 Γ ц, 2H), 2,05 (d, J = 6,5 Γ ц, 1H), 2,03 (s, 4H), 1,97 (p, J = 6,9 Γ ц, 2H).	467,20
(S)-N-(4-(4-амино-3- (4-(пирролидин-1- карбонил)циклогекс- 1-ен-1- ил)пиразоло[1,5- а]пиразин-2- ил)фенил)метакрила мид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 7,90 (d, J = 4,6 Γц, 1H), 7,77 (d, J = 2,7 Γц, 4H), 7,22 (d, J = 4,7 Γц, 1H), 6,74 (s, 2H), 5,95 (s, 1H), 5,83 (s, 1H), 5,54 (s, 1H), 3,63 – 3,53 (m, 1H), 3,49 (q, J = 8,7, 7,8 Γц, 1H), 3,39 (s, 1H), 3,36 (d, J = 5,0 Γц, 1H), 3,32 – 3,24 (m, 1H), 3,00 (s, 1H), 2,39 (s, 2H), 2,20 – 1,70 (m, 11H).	471,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-3- (4-(пирролидин-1- карбонил)циклогекс- 1-ен-1- ил)пиразоло[1,5- а]пиразин-2- ил)фенил)метакрила мид	NH ₂ O NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 7,90 (d, J = 4,6 Γц, 1H), 7,77 (d, J = 2,7 Γц, 4H), 7,22 (d, J = 4,7 Γц, 1H), 6,74 (s, 2H), 5,95 (s, 1H), 5,83 (s, 1H), 5,54 (s, 1H), 3,63 – 3,53 (m, 1H), 3,49 (q, J = 8,7, 7,8 Γц, 1H), 3,39 (s, 1H), 3,36 (d, J = 5,0 Γц, 1H), 3,32 – 3,24 (m, 1H), 3,00 (s, 1H), 2,39 (s, 2H), 2,20 – 1,70 (m, 11H).	471,25
N-(4-(4-амино-3-(4- (пирролидин-1- карбонил)циклогекс- 1-ен-1- ил)пиразоло[1,5- а]пиразин-2- ил)фенил)метакрила мид	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 9,91 (s, 1H), 7,90 (d, J = 4,6 Γ ц, 1H), 7,77 (d, J = 2,7 Γ ц, 4H), 7,22 (d, J = 4,7 Γ ц, 1H), 6,74 (s, 2H), 5,95 (s, 1H), 5,83 (s, 1H), 5,54 (s, 1H), 3,63 – 3,53 (m, 1H), 3,49 (q, J = 8,7, 7,8 Γ ц, 1H), 3,39 (s, 1H), 3,36 (d, J = 5,0 Γ ц, 1H), 3,32 – 3,24 (m, 1H), 3,00 (s, 1H), 2,39 (s, 2H), 2,20 – 1,70 (m, 11H).	471,25
2-(6-этинил-4-метилпиридин-3-ил)-3-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-4Н-пиразоло[5,1-с][1,4]оксазин	N O F O N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,47 (d, J = 5,0 Γ ц, 1H), 8,33 (s, 1H), 7,52 (d, J = 0,9 Γ ц, 1H), 7,29 (t, J = 8,4 Γ ц, 1H), 7,18 (d, J = 5,1 Γ ц, 1H), 7,02 (dd, J = 11,7, 2,1 Γ ц, 1H), 6,85 - 6,78 (m, 1H), 5,02 (s, 2H), 4,36 (s, 1H), 4,27 (t, J = 5,1 Γ ц, 2H), 4,17 (t, J = 5,2 Γ ц, 2H), 2,42 (s, 3H), 2,07 (s, 3H).	442,15

Пример 40

Схема 37

19

4-Метил-2-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиримидин

[0501] Стадия 1: В раствор 2-хлор-4-метилпиримидина (5,00г, 1,2 экв., 38,80 ммоль) и 4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенола (7,10 г, 32,30 ммоль) в DMF (30,0 мл) порциями добавляли *t*-ВиОК (7,24 г, 2,0 экв., 77,6 ммоль), и полученный раствор перемешивали при 120°С в течение 12 ч. Реакционную смесь охлаждали и разбавляли водой (50,0 мл), затем экстрагировали этилацетатом (EtOAc) (30,0 мл х 3), и объединенные органические слои концентрировали при пониженном давлении. Остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 10/1 до 4/1). 4-метил-2-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиримидин (2,90 г, выход 22,9%) получали в виде смеси, которую применяли на следующей стадии без дополнительной очистки.

4-Хлор-5-иод-7-{[2-(триметилсилил)этокси]метил}-7*Н*-пирроло[2,3-*d*]пиримидин [0502] Стадия 2: К раствору 4-хлор-5-иод-7*H*-пирроло[2,3-*d*]пиримидина (5,00 г, 17,80 ммоль) в DMF (20,0 мл) добавляли NaH (1,06 г, 1,5 экв., 26,70 ммоль, 60% чистоты), полученную смесь перемешивали при 25°С в течение 0,5 часа, затем добавляли SEMC1 (3,85 г, 1,3 экв., 23,14 ммоль). Реакционную смесь перемешивали при 25°С в течение 12 ч. Затем реакционную смесь фильтровали и концентрировали при пониженном давлении. Остаток очищали методом колоночной хроматографии (петролейный эфир/ЕtOAc = от 10/1 до 4/1). 4-хлор-5-иод-7-{[2-(триметилсилил)этокси]метил}-7*Н*-пирроло[2,3-*d*]пиримидин (3,90 г, 53,4% выхода) получали в виде твердого вещества белого цвета.

5-Иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин

[0503] **Стадия 3:** Раствор 4-хлор-5-иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидина (3,90 г, 9,51 ммоль) в диоксане (15,0 мл) и NH₃·H₂O (15,0 мл, 15,8 экв, 150,26 ммоль, 25% чистоты) перемешивали при 130°C в течение 19 часов в автоклаве. Реакционную смесь охлаждали и концентрировали при пониженном давлении. Остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 4/1 до 2/1). 5-иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (3,50 г, 94,3% выхода) получали в виде твердого вещества белого цвета.

$5-\{4-[(4-Метилпиримидин-2-ил)окси]$ фенил $\}-7-\{[2-(триметилсилил)этокси]$ метил $\}-1-\{[2-(триметилсилил)этокси]$ метил $\}-1-\{[2-(триметилсилил)этокси]$ метил $\}-1-\{[2-(триметилсилил)этокси]$ метил $\}-1-\{[2-(триметилсилил)этокси]$ метил $\}-1-\{[2-(триметилсилил)а]$ метил $\}-1-\{[2-(триметилсилил)а]$ метил $\}-1-\{[2-(триметилсилил)а]$ метил $\}-1-\{[2-(триметилсилил)а]$ метил $\}-1-\{[2-(триметил)а]$ мет

[0504] Стадия 4: Раствор 5-иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амина (2,58 г, 6,62 ммоль), 4-метил-2-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)пиримидина (2,90 г, 1,4 экв., 9,27 ммоль), Pd(PPh₃)₄ (764,0 мг, 0,1 экв., 0,66 ммоль), K₃PO₄ (3,50 г, 2,5 экв., 16,55 ммоль) в диоксане (30,0 мл) и H₂O (10,0 мл) перемешивали при 80°C в течение 5 часов. Реакционную смесь охлаждали и фильтровали, фильтрат концентрировали, и остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 1/1 до 0/1). 5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (1,70 г, выход 57,4%) получали в виде маслянистой жидкости желтого цвета.

6-Бром-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7*H*-пирроло[2,3-*d*]пиримидин-4-амин

[0505] Стадия 5: К раствору 5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амина (1,60 г, 3,56 ммоль) в DMF (30,0 мл) порциями добавляли NBS (695,0 мг, 1,1 экв, 3,92 ммоль). Реакционную смесь перемешивали при 25°С в течение 0,5 часа. Затем реакционную смесь концентрировали, и остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 4/1 до 2/1). Целевой продукт 6-бром-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-4-амин (1,20 г, 64,1% выхода) получали в виде твердого вещества светло-желтого цвета.

Метил-5-бром-2-хлорпиридин-4-карбоксилат

[0506] **Стадия 6:** К раствору 5-бром-2-хлорпиридин-4-карбоновой кислоты (15,00 г, 63,40 ммоль) в МеОН (50,0 мл) медленно добавляли SOCl₂ (11,30 г, 1,5 экв., 95,10 ммоль) при 0°С. Затем реакционную смесь нагревали до 70°С и выдерживали при этой температуре в течение 6 ч. Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 10/1 до 5/1) Метил-5-бром-2-хлорпиридин-4-карбоксилат (12,00 г, 75,9% выхода) получали в виде бесцветной маслянистой жидкости.

(5-Бром-2-хлорпиридин-4-ил)метанол

[0507] **Стадия 7:** К раствору метил-5-бром-2-хлорпиридин-4-карбоксилата (11,5 г, 45,90 ммоль) в ТНГ (100,0 мл) медленно добавляли LiBH₄ (1,49 г, 1,5 экв., 68,85 ммоль) при 0°С. Полученный раствор нагревали до 25°С и перемешивали при этой температуре в течение 2 ч, затем гасили MeOH. Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 10/1 до 3/1). (5-Бром-2-хлорпиридин-4-ил)метанол (6,70 г, 65,6% выхода) получали в виде твердого вещества белого цвета.

5-Бром-4-(бромметил)-2-хлорпиридин

[0508] Стадия 8: Раствор (5-бром-2-хлорпиридин-4-ил)метанола (1,00 г, 4,49 ммоль), PPh₃ (1,76 г, 1,5 экв., 6,73 ммоль) и СВг₄ (2,23 г, 1,5 экв., 6,73 ммоль) в DCM (15,0 мл) перемешивали при 0° С в течение 0,5 часа. Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 20/1 до 10/1). 5-Бром-4-(бромметил)-2-хлорпиридин (1,20 г, 93,7% выхода) получали в виде бесцветной маслянистой жидкости.

1,3-Диметил-2-[(5-бром-2-хлорпиридин-4-ил)метил]пропандиоат

[0509] **Стадия 9:** NaH (1,07 г, 1,1 экв., 26,95 ммоль, 60% чистоты) суспендировали в сухом ТНF (70,0 мл) при 0°С и по каплям обрабатывали раствором диметилмалоната (3,23 г, 1,0 экв., 24,50 ммоль). После перемешивания в течение 30 мин при 25°С добавляли раствор 5-бром-4-(бромметил)-2-хлорпиридина (7,00 г, 24,50 ммоль) в сухом ТНF (10,0 мл), и перемешивание продолжали в течение еще 2 часов. Реакционную смесь гасили водой (1,0 мл) и концентрировали при пониженном давлении, полученный остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 1/0 до 10/1). 1,3-Диметил-2-[(5-бром-2-хлорпиридин-4-ил)метил]пропандиоат (5,80 г, 70,3% выхода) получали в виде твердого вещества белого цвета.

Метил-3-(5-бром-2-хлорпиридин-4-ил)пропаноат

[0510] **Стадия 10:** Раствор 1,3-диметил-2-[(5-бром-2-хлорпиридин-4-ил)метил]пропандиоата (5,3 г, 15,70 ммоль), NaCl (912,0 мг, 1,0 экв., 15,70 ммоль) и H_2O (563,0 мг, 2,0 экв., 31,40 ммоль) в DMSO (80,0 мл) перемешивали при 160°C в течение 2 часов. После охлаждения до комнатной температуры реакционную смесь

вливали в этилацетат (EtOAc) (70,0 мл). Полученный раствор промывали H_2O (500,0 мл), солевым раствором (300,0 мл), сушили над безводным MgSO₄ и затем концентрировали при пониженном давлении, полученный остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 20/1 до 10/1). Метил-3-(5-бром-2-хлорпиридин-4-ил)пропаноат (2,60 г, 59,9% выхода) получали в виде бесцветной маслянистой жидкости.

Метил-3-[2-хлор-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-4ил]пропаноат

[0511] Стадия 11: Раствор метил-3-(5-бром-2-хлорпиридин-4-ил)пропаноата (1,00 г, 3,59 ммоль), ВРD (1,09 г, 1,2 экв., 4,30 ммоль), КОАс (1,05 г, 3,0 экв., 10,77 ммоль) и $Pd(dppf)Cl_2$ (525,0 мг, 0,2 экв., 0,72 ммоль) в диоксане (20,0 мл) перемешивали при 70° С в течение 12 часов в атмосфере N_2 . Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом колоночной хроматографии (петролейный эфир/EtOAc = от 20/1 до 10/1). Метил-3-[2-хлор-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-4-ил]пропаноат (0,90 г, 77,5% выхода) получали в виде твердого вещества белого цвета.

Метил-3-[5-(4-амино-5- $\{4-[(4-метилпиримидин-2-ил)окси]$ фенил $\}$ -7- $\{[2-(триметилсилил)$ этокси]метил $\}$ -7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропаноат

[0512] **Стадия 12:** Раствор 6-бром-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7*H*-пирроло[2,3-*d*]пиримидин-4-амина (550,0 мг, 1,04 ммоль), метил-3-[2-хлор-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-4-ил]пропаноата (403,0 мг, 1,2 экв., 1,24 ммоль), Pd[Pd(*t*-Bu)₃]₂ (106,0 мг, 0,2 экв., 0,21 ммоль) и CsF (521,0 мг, 3,3 экв., 3,43 ммоль) в THF (20,0 мл) и H₂O (20,0 мл)

перемешивали при 50°С в течение 12 ч в атмосфере N_2 . Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом колоночной хроматографии (MeOH/EtOAc = от 0/1 до 1/10). Метил-3-[5-(4-амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропаноат (420,0 мг, выход 62,4%) получали в виде коричневого твердого вещества.

3-[5-(4-Амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2- (триметилсилил)этокси]метил}-7*H*-пирроло[2,3-*d*]пиримидин-6-ил)-2- хлорпиридин-4-ил]пропан-1-ол

[0513] Стадия 13: LiBH₄ (20,1 мг, 3,0 экв., 927,0 ммоль) медленно добавляли к раствору метил-3-[5-(4-амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропаноата (200,0 мг, 309,0 мкмоль) в ТНГ (15,0 мл) и МеОН (24,7 мг, 2,0 экв., 618,0 ммоль). Реакционную смесь перемешивали в течение 2 ч при 25°С, затем гасили МеОН (0,2 мл), реакционную смесь концентрировали, и полученный остаток очищали методом колоночной хроматографии (DCM/MeOH = от 1/0 до 10/1). 3-[5-(4-Амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (180,0 мг, выход 94,2%) получали в виде белого твердого вещества.

3-{5-[4-Амино-7-(гидроксиметил)-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7*H*-пирроло[2,3-*d*]пиримидин-6-ил]-2-хлорпиридин-4-ил}пропан-1-ол

[0514] Стадия 14: Раствор 3-[5-(4-амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7*H*-пирроло[2,3-*d*]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ола (190,0 мг, 307,0 мкмоль) в DCM (15,0 мл) и TFA (6,0 мл) перемешивали при 25°С в течение 2 часов. Реакционную смесь концентрировали при пониженном давлении. 3-{5-[4-амино-7-(гидроксиметил)-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7*H*-пирроло[2,3-*d*]пиримидин-6-ил]-2-хлорпиридин-4-ил}пропан-1-ол (155,0 мг, 97,4% выхода) получали в виде бесцветной маслянистой жидкости, которую можно использовать на следующей стадии без дополнительной очистки.

3-[5-(4-Амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол

[0515] **Стадия 15:** Раствор 3-{5-[4-амино-7-(гидроксиметил)-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7*H*-пирроло[2,3-*d*]пиримидин-6-ил]-2-хлорпиридин-4-ил}пропан-1-ола (155,0 мг, 299,0 мкмоль) в ТНГ (15,0 мл) и ТЕА (6,0 мл) перемешивали при 25°С в течение 2 часов. Смесь реагентов концентрировали, и полученный остаток очищали методом колоночной хроматографии (смесь DCM/MeOH

= от 1/0 до 10/1). $3-[5-(4-амино-5-{4-[(4-метилпиримидин-2-ил)окси]}фенил}-7H-пирроло[2,3-<math>d$]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (120,0 мг, 82,7% выхода) получали в виде твердого вещества белого цвета.

3-Хлор-13-(4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0516] Стадия 16: Раствор 3-[5-(4-амино-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7*Н*-пирроло[2,3-*d*]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ола (180,0 мг, 368,0 мкмоль), PPh₃ (193,0 мг, 2,0 экв., 736,0 мкмоль) и DIAD (148,0 мг, 2,0 экв., 736,0 мкмоль) в ТНГ (5,0 мл) перемешивали при 25°С в течение 12 часов в атмосфере N₂. Реакционную смесь концентрировали, и полученный остаток очищали методом колоночной хроматографии (элюирование смесью DCM/MeOH = от 20/1 до 10/1). 3-Хлор-13-(4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (90,0 мг, 52,3% выхода) получали в виде твердого вещества белого цвета.

13-(4-((4-Метилпиримидин-2-ил)окси)фенил)-3-((триметилсилил)этинил)-6,7дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0517] **Стадия 17:** Раствор 3-хлор-13-(4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амина (100,0 мг, 212,0 мкмоль), триметилсилацетилена (171,0 мг, 8,2 экв., 1,74 ммоль), Pd(PPh₃)₂Cl₂

(61,7 мг, 0,4 экв., 84,8 мкмоль), PPh₃ (45,9 мг, 0,8 экв., 169,6 мкмоль), CuI (33,5 мг, 0,8 экв., 169,6 мкмоль) и Et₃N (443,0 мг, 20,0 экв., 4,24 ммоль) в 2-Me-THF (4,0 мл) перемешивали при 90°С в течение 12 часов в атмосфере N₂. Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом колоночной хроматографии (элюирование смесью DCM/MeOH = от 10/0 до 10/1). 13-(4-((4-Метилпиримидин-2-ил)окси)фенил)-3-((триметилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (120,0 мг, 107% выхода по сырому продукту) получали в виде коричневой смеси, которую можно было использовать на следующей стадии без дополнительной очистки.

3-Этинил-13-(4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0518] Стадия 18: К раствору 13-(4-((4-метилпиримидин-2-ил)окси)фенил)-3- ((триметилсилил)этинил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амина (100,0 мг, 188,0 мкмоль) в ТНГ (20,0 мл) добавляли раствор ТВАГ в ТНГ (376,0 мкл, 2,0 экв, 376,0 моль). Полученную смесь перемешивали при 25°С в течение 2 часов. Реакционную смесь концентрировали при пониженном давлении, и полученный остаток очищали методом препаративной ВЭЖХ (NH₃·H₂O). 3-Этинил-13-(4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (2,6 мг, выход 3,0%) получали в виде твердого вещества белого цвета.

Таблица 39. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-тинил-13-(4-((4-метилпиримидин- 2-ил)окси)фенил)- 6,7-дигидро-5Н- пиридо[3,4- с]пиримидо[5',4':4, 5]пирроло[1,2- а]азепин-12-амин		¹ H ЯМР (400 МГц, CDCl ₃): δ 8,41 - 8,36 (m, 2H), 8,21 (s, 1H), 7,48 (s, 1H), 7,41 - 7,38 (m, 2H), 7,31 - 7,28 (m, 2H), 6,96 (s, 1H), 5,14 (s, 2H), 4,28 (m, 2H), 3,21 (s, 1H), 2,85 - 2,81 (m, 2H), 2,54 (s, 3H), 2,40 - 2,36 (m, 2H).	460,3

Пример 41

Схема 38

Трет-бутил-3-(3-бромфенил)-2,5-дигидро-1Н-пиррол-1-карбоксилат

[0519] Стадия 1: Смесь 1-бром-3-иодбензола (956,0 мг, 3,4 ммоль), *трет*-бутил-3- (4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-2,5-дигидро-1*H*-пиррол-1-карбоксилата (500,0 мг, 1,7 ммоль), Pd(dppf)Cl₂ (123,0 мг, 169,0 мкмоль) и K₂CO₃ (466,0 мг, 3,4 ммоль) в диоксане (20,00 мл) и H₂O (4,0 мл) перемешивали при 80°C в течение 12 часов в атмосфере N₂. Смесь концентрировали, в результате чего получали остаток, который растворяли в этилацетате (50 мл) и H₂O (30 мл). Водный слой отделяли и экстрагировали этилацетатом (30 мл х 3). Объединенные органические слои промывали солевым раствором (25 мл), сушили над безводным Na₂SO₄, фильтровали и концентрировали, в результате чего получали остаток, который очищали методом хроматографии на силикагеле (используя раствор этилацетат в петролейном эфире = от 0% до 11%), в результате чего получали целевой продукт, а именно *трет*-бутил-3-(3-бромфенил)-2,5-дигидро-1*H*-пиррол-1-карбоксилат (450,0 мг, 82,2% выхода) в виде маслянистой жидкости желтого цвета.

Tpem-бутил-3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1H-пиррол-1-карбоксилат

[0520] Стадия 2: Смесь *трет*-бутил-3-(3-бромфенил)-2,5-дигидро-1H-пиррол-1-карбоксилата (450,0 мг, 1,4 ммоль), 4,4,5,5-тетраметил-2-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,3,2-диоксаборолана (700,0 мг, 2,8 ммоль), Pd(dppf)Cl₂ (101,0 мг, 138,0 мкмоль) и AcOK (202,0 мг, 2,1 ммоль) в диоксане (20,00 мл) перемешивали при 100°С в течение 12 часов под защитой атмосферы N_2 . Смесь концентрировали, в результате чего получали остаток, который растворяли в этилацетате (50 мл) и H_2O (30

мл). Водный слой отделяли и экстрагировали этилацетатом (30 мл х 3). Объединенные органические слои промывали солевым раствором (25 мл), сушили над безводным Na₂SO₄, фильтровали и концентрировали, в результате чего получали остаток, который очищали методом хроматографии на силикагеле (используя раствор этилацетат в петролейном эфире концентрацией от 0% до 12%), в результате чего получали целевой продукт, а именно *трет*-бутил-3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1*H*-пиррол-1-карбоксилат (450,0 мг, 87,8% выхода) в виде маслянистой жидкости желтого цвета.

3-[3-(4,4,5,5-Тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1H-пиррола гидрохлорид

[0521] **Стадия 3:** *Трет*-бутил-3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1H-пиррол-1-карбоксилат (450,0 мг, 1,2 ммоль) добавляли в раствор HCl в EtOAc (6,00 мл, 4 M). Смесь перемешивали при 25°C в течение 2 часов. Затем смесь концентрировали, в результате чего получали 3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1H-пиррола гидрохлорид (372,0 мг, 100% выхода) в виде маслянистой жидкости желтого цвета.

1-{3-[3-(4,4,5,5-Тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1*H*-пиррол-1-ил}проп-2-ен-1-он

[0522] **Стадия 4:** Раствор проп-2-еноилхлорида (140,0 мг, 1,6 ммоль) в DCM (3,00 мл) добавляли в смесь 3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-

дигидро-1*H*-пиррола гидрохлорида (372,0 мг, 1,2 ммоль) и DIEA (1,04 мл, 6,0 ммоль) в DCM (12,00 мл) при 0°С. Смесь перемешивали при 25°С в течение 4 часов. Затем смесь разбавляли DCM (20 мл), промывали насыщенным NaHCO₃ (20 мл), солевым раствором (20 мл), сушили над безводным Na₂SO₄, фильтровали и концентрировали, в результате чего получали остаток, который очищали методом хроматографии на силикагеле (элюирование раствором этилацетат в петролейном эфире с концентрацией от 0% до 45%), в результате чего получали продукт, а именно 1-{3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1H-пиррол-1-ил} проп-2-ен-1-он (210,0 мг, 53,8% выхода) в виде маслянистой жидкости желтого цвета.

1-[3-(3-{4-Амино-5-бром-7-метил-7*H*-пирроло[2,3-*d*]пиримидин-6-ил}фенил)-2,5дигидро-1*H*-пиррол-1-ил]проп-2-ен-1-он

[0523] Стадия 5: Смесь 1-{3-[3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2,5-дигидро-1H-пиррол-1-ил} проп-2-ен-1-она (210,0 мг, 645,0 мкмоль), 5-бром-6-иод-7-метил-7H-пирроло[2,3-d] пиримидин-4-амина (250,0 мг, 709,0 мкмоль), Pd(PPh₃)₄ (74,4 мг, 64,5 мкмоль) и K_3 PO₄ (271,0 мг, 1,28 ммоль) в DMF (16,00 мл) и H_2 O (4,00 мл) перемешивали при 50°C в течение 12 часов под защитой атмосферы N_2 . Смесь разбавляли этилацетатом (30 мл), промывали H_2 O (20 мл х 3), солевым раствором (15 мл), сушили над безводным N_2 SO₄, фильтровали и концентрировали, в результате чего получали остаток, который очищали методом хроматографии на силикагеле (элюирование раствором метанола в дихлорметане с концентрацией от 0% до 14%), в результате чего получали продукт, а именно 1-[3-(3-{4-амино-5-бром-7-метил-7 H-пирроло[2,3-d]пиримидин-6-ил}фенил)-2,5-дигидро-1H-пиррол-1-ил]проп-2-ен-1- он (70,0 мг, 25,6% выхода) в виде маслянистой жидкости желтого цвета.

1-{3-[3-(4-Амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]-2,5-дигидро-1H-пиррол-1-ил}проп-2-ен-1-он

[0524] Смесь 1-[3-(3-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}фенил)-2,5-дигидро-1H-пиррол-1-ил]проп-2-ен-1-она (50,0 мг, 117,0 мкмоль), 2-метил-6-[4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]пиридина (54,4 мг, 175,0 мкмоль), Pd₂(dba)₃ (10,7 мг, 117,0 мкмоль), XPhos (11,1 мг, 117,0 мкмоль), K₂CO₃ (48,4 мг, 117,0 мкмоль) в диоксане (4,00 мл) и H₂O (1,00 мл) перемешивали при 95°С в течение 12 часов под защитой атмосферы N₂. Смесь фильтровали, и фильтрат концентрировали, в результате чего получали остаток, который очищали методом препаративной ВЭЖХ (HCl) с получением продукта, а именно 1-{3-[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)фенил]-2,5-дигидро-1H-пиррол-1-ил проп-2-ен-1-она (4,9 мг, 7,41% выхода) в виде твердого вещества белого цвета.

[0525] Другие такие же соединения, полученные согласно способам, описанным в Примере 41, показаны в Таблице 40 ниже.

Таблица 40. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
1-{3-[3-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7 <i>H</i> -пирроло[2,3-d]пиримидин-6-ил)фенил]-2,5-дигидро-1 <i>H</i> -пиррол-1-ил}проп-2-ен-1-он	NH ₂	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,57 (s, 1H), 7,73 - 7,70 (m, 1H), 7,63 - 7,60 (d, J = 8,0 Гц, 1H), 7,49 - 7,45 (m, 2H), 7,35 - 7,28 (m, 3H), 7,32 - 7,28 (m, 3H), 7,14 - 7,10 (m, 2H), 7,02 - 7,00 (d, J = 7,6 Гц, 1H), 6,79 - 6,76 (m, 1H), 6,69 - 6,59 (m, 1H), 6,49 (s, 1H), 6,23 - 6,15 (m, 1H), 5,75 - 5,70 (m, 1H), 4,69 (s, 1H), 4,55 - 4,47 (d, J = 32,4 Гц, 2H), 4,32 (s, 1H), 3,75 - 3,73 (d, J = 6,8 Гц, 3H), 2,31 - 2,29 (d, J = 7,2 Гц, 3H).	529,3
1-{3-[4-(4-амино-7-метил-5-{4-[(6-метилпиридин-2-ил)окси]фенил}-7 <i>H</i> -пирроло[2,3- <i>d</i>]пиримидин-6-ил)фенил]-2,5-дигидро-1 <i>H</i> -пиррол-1-ил}проп-2-ен-1-онгидрохлорид	HCI N NH ₂	¹ Н ЯМР (400 МГц, DMSO- d_6): δ 8,43 (s, 1H), 8,13 - 8,07 (m, 1H), 7,6 (d, J = 7,6 Гц, 2H), 7,46 (d, J = 7,6 Гц, 2H), 7,41 (d, J = 8,0 Гц, 2H), 7,32 - 7,27 (m, 3H), 7,06 (d, J = 8,4 Гц, 1H), 6,81 - 6,64 (m, 1H), 6,49 - 6,36 (m, 2H), 5,87 - 5,82 (m, 1H), 4,79 (s, 1H), 4,67 (s, 2H), 4,49 (s, 1H), 3,83 (s, 3H), 2,61 (d, J = 3,2 Гц, 3H).	529,1

Схема 39

6-(6-((Трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4-хлор-7метил-7H-пирроло[2,3-d]пиримидин

[0526] Стадия 1:В герметизируемую реакционную пробирку загружали 4-хлор-6-иод-7-метил-7H-пирроло[2,3-d]пиримидин (1,50 г, 5,11 ммоль), {6-[2-(третбутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}бороновую кислоту (1,62 г, 5,62 ммоль), K₃PO₄ (3,24 г, 15,3 ммоль), PAd₂nBu (183 мг, 511 мкмоль), PAd₂nBuPd-G2 (341 мг, 511 мкмоль), DME/H₂O (20 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, и полученную смесь перемешивали при 70°С в течение ночи. Реакционную смесь разбавляли водой (30 мл), и водную фазу трижды экстрагировали дихлорметаном (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 30:1). После концентрирования под вакуумом получали 6-[2-(третбутилдиметилсилил)этинил]-3-{4-хлор-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-2,4-диметилпиридин (1,50 г, выход 65%) в виде твердого аморфного вещества желтого цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин

[0527] Стадия 2: В герметизируемую реакционную пробирку загружали 6-[2-(трет-бутилдиметилсилил)этинил]-3-{4-хлор-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил}-2,4-диметилпиридин (3,50 г, 8,51 ммоль), тетрагидрофуран (40 мл), К₃РО₄ (5,40 г, 25,5 ммоль), Рd(dppf)Сl₂ (622 мг, 851 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли триметил-1,3,5,2,4,6-триоксатриборинан (50%) (6,4 г, 25,5 ммоль), и полученную смесь перемешивали в течение 2 часов при 70°С. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали DCM (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 80:1). После концентрирования под вакуумом получали 6-[2-(трет-бутилдиметилсилил)этинил]-3-{4,7-диметил-7Н-пирроло[2,3-d]пиримидин-6-ил}-2,4-

диметилпиридин (2,80 г, выход 84%) в виде твердого аморфного вещества желтого цвета.

5-Бром-6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7диметил-7H-пирроло[2,3-d]пиримидин

[0528] Стадия 3: В круглодонную колбу загружали 6-[2-(трет-

бутилдиметилсилил)этинил]-3-{4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил}-2,4-диметилпиридин (2,80 г, 7,16 ммоль), диметилформамид (30 мл) и магнитную мешалку. Затем добавляли NBS (1,39 г, 7,87 ммоль) и полученный раствор перемешивали в течение 1 часа при 25°С. Реакционную смесь гасили водным раствором Na₂SO₃ (30 мл), затем реакционную смесь фильтровали через слой целита (Celite®), который затем промывали водой, и остаток на фильтре сушили под вакуумом, в результате чего получали 3-{5-бром-4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил}-6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин (3,02 г, выход 90%) в виде желтого твердого аморфного вещества.

Этил-4-(6-(6-((трет-бутилдиметилсилил)этинил)-2,4-диметилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбоксилат

[0529] **Стадия 4:** В герметизируемую реакционную пробирку загружали 3-{5-бром-4,7-диметил-7H-пирроло[2,3-d]пиримидин-6-ил}-6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин (3,00 г, 6,38 ммоль), DME/H₂O (30 мл), этил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)циклогекс-3-ен-1-карбоксилат (1,96 г, 7,01 ммоль), K_3PO_4 (4,04 г, 19,1 ммоль), $Pd(dppf)Cl_2$ (466 мг, 638 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, и полученную смесь перемешивали при 70°С в течение 1 часа.

Реакционную смесь разбавляли водой (30 мл), и водную фазу трижды экстрагировали дихлорметаном (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 40:1). После концентрирования под вакуумом получали этил-4-(6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбоксилат (2,50 г, выход 72%) в виде желтого твердого аморфного вещества.

4-(6-(6-Этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3d]пиримидин-5-ил)циклогекс-3-ен-1-карбоновая кислота

[0530] **Стадия 5:** В круглодонную колбу загружали этил-4-(6-{6-[2-(трет-бутилдиметилсилил)этинил]-2,4-диметилпиридин-3-ил}-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбоксилат (2,48 г, 4,56 ммоль), NaOH (543 мг, 13,6 ммоль) и магнитную мешалку. Затем добавляли МеОН/Н₂О (20 мл), и полученный раствор перемешивали в течение 1 часа при 60°C. Реакционную смесь корректировали по рН до уровня 5~6, в результате чего получали 4-[6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил]циклогекс-3-ен-1-карбоновую кислоту (2,2 г, сырого продукта) в виде черного твердого аморфного вещества.

(2S)-1-(4-(6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбонил)пирролидин-2-карбоксамид

[0531] Стадия 6: В круглодонную колбу загружали 4-[6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил]циклогекс-3-ен-1-карбоновую кислоту (1,7 г, 4,24 ммоль), диметилформамид (20 мл), ТЗР (5,38 г, 8,48 ммоль), ТЕА (856 мг, 8,48 ммоль) и магнитную мешалку. Затем добавляли (2S)-пирролидин-2-карбоксамид (967 мг, 8,48 ммоль), и полученный раствор перемешивали в течение 1 часа при 25°С. Реакционную смесь разбавляли водой (30 мл), и водную фазу трижды экстрагировали дихлорметаном (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали (2S)-1-{4-[6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил]циклогекс-3-ен-1-карбонил} пирролидин-2-карбоксамид (1,5 г, выход 71%) в виде черного твердого аморфного вещества.

(2S)-1-(4-(6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин-5-ил)циклогекс-3-ен-1-карбонил)пирролидин-2-карбонитрил

[0532] Стадия 7: В герметизируемую реакционную пробирку загружали (2S)-1-{4-[6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин-5ил]циклогекс-3-ен-1-карбонил}пирролидин-2-карбонитрил (320 мг, 668 мкмоль), тетрагидрофуран (5 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли реагент Бургесса (316 мг, 1,34 ммоль), и полученную смесь перемешивали в течение 2 часов при 25°C. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 30×150 мм, 5 мкм; Подвижная фаза А: вода (раствор 10 ммоль/л $NH_4HCO_3 + 0.1\% NH_3 \cdot H_2O$), Подвижная фаза В: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 20 В до 45 В в течение 8 мин; 220 нм; RT1: 7,23; RT2: -; Объем вводимой пробы: - мл; Количество рабочих циклов: -;). После лиофилизации получали (2S)-1-{4-[6-(6-этинил-2,4-диметилпиридин-3-ил)-4,7диметил-7Н-пирроло[2,3-d]пиримидин-5-ил]циклогекс-3-ен-1-карбонил}пирролидин-2-карбонитрил (160 мг, выход 50%) в виде почти белого твердого аморфного вещества.

Стадия 8: Полученный материал (160 мг) направляли на хиральное разделение (Колонка: CHIRALPAK IF, 2*25 см, 5 мкм; Подвижная фаза А: Нех (0,5% 2М NH₃-МеОН), Подвижная фаза В: смесь EtOH:DCM=1:1 для ВЭЖХ; Скорость пропускания: 20 мл/мин; Градиент: от 35 В до 35 В в течение 11 мин; 220/254 нм; RT1: 6,855; RT2: 8,514; Объем вводимой пробы: 0,7 мл; Количество рабочих циклов: 6). После лиофилизации получали Пик 1 (76 мг) и Пик 2 (67 мг). Затем опять проводили хиральное разделение, Пик 1 (Колонка: CHIRAL ART Cellulose-SB S-5um, 2*25 см, 5 мкм; Подвижная фаза А: Нех (0,5% 2М NH₃-МеОН) для ВЭЖХ, Подвижная фаза В: EtOH:DCM=1:1 для ВЭЖХ; Скорость пропускания: 20 мл/мин; Градиент: от 20 В до 20 В в течение 17 мин; 220/254 нм; RT1: 13,481; RT2: 15,128; Объем вводимой пробы: 0,65 мл; Количество рабочих циклов: 5), выход изомера 2 - 27,2 мг и изомера 4 - 25 мг в виде почти белого твердого аморфного вещества. Пик 2 (Колонка: CHIRAL ART Cellulose-SB S, 2*25 см, 5 мкм; Подвижная фаза А: Нех (0,5% 2М NH₃-МеОН) для ВЭЖХ, Подвижная фаза В: EtOH:DCM=1:1 для ВЭЖХ; Скорость пропускания: 20 мл/мин; Градиент: от 20 В до 20 В в течение 18 мин; 220/254 нм; RT1: 13,832; RT2:

15,921; Объем вводимой пробы: 0,7 мл; Количество рабочих циклов: 6), выход изомера 1 - 25,7 мг и изомера 3 - 21,4 мг в виде почти белого твердого аморфного вещества.

Таблица 41. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-((S)-4-(6-(6- этинил-2,4- диметилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	abs N O Orl	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,71 (s, 1H), 7,50 (s, 1H), 5,68 (s, 1H), 4,70 (dd, J = 7,7, 3,5 Гц, 1H), 4,39 (s, 1H), 3,67 (ddd, J = 9,6, 7,0, 4,5 Гц, 1H), 3,54 – 3,44 (m, 1H), 3,42 (s, 3H), 2,68 (d, J = 3,5 Гц, 3H), 2,60 (d, J = 9,3 Гц, 1H), 2,20 (d, J = 2,8 Гц, 5H), 2,18 – 2,07 (m, 3H), 2,06 –	[M+1] 479,25
	изомер 1	1,94 (m, 6H), 1,76 (d, J = 13,1 Гц, 1H), 1,53 – 1,37 (m, 1H).	
(S)-1-((R)-4-(6-(6- этинил-2,4- диметилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	N abs N O Or1 N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,73 (s, 1H), 7,50 (s, 1H), 5,67 (s, 1H), 4,71 (dd, J = 7,6, 3,7 Гц, 1H), 4,39 (s, 1H), 3,63 (ddd, J = 11,3, 7,0, 4,4 Гц, 1H), 3,56 – 3,46 (m, 1H), 3,42 (s, 3H), 2,69 (s, 3H), 2,59 (s, 1H), 2,19 (s, 6H), 2,18 – 2,06 (m, 3H), 2,04 (s, 3H), 2,00 (dd, J = 7,4, 3,4 Гц, 2H), 1,80 (d, J = 13,0 Гц, 1H), 1,57 – 1,45 (m, 1H).	479,25
(S)-1-((S)-4-(6-(6- этинил-2,4- диметилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	Abs N O O Or1 N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,71 (s, 1H), 7,49 (s, 1H), 5,64 (s, 1H), 4,71 (dd, J = 7,6, 3,7 Гц, 1H), 4,39 (s, 1H), 3,64 (ddd, J = 11,4, 7,2, 4,6 Гц, 1H), 3,51 (q, J = 8,0 Гц, 1H), 3,41 (s, 3H), 2,68 (s, 3H), 2,60 (s, 1H), 2,19 (d, J = 2,2 Гц, 5H), 2,12 (tq, J = 13,0, 5,1, 3,3 Гц, 4H), 2,04 (s, 3H), 1,99 (dd, J = 10,0, 6,1 Гц,	479,30
	изомер 3	2H), 1,81 (d, J = 13,2 Γ μ , 1H), 1,50 (dd, J = 12,0, 5,2 Γ μ , 1H).	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-((R)-4-(6-(6- этинил-2,4- диметилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	N abs N O Or1 N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,74 (s, 1H), 7,50 (s, 1H), 5,68 (s, 1H), 4,70 (dd, J = 7,7, 3,6 Гц, 1H), 4,40 (s, 1H), 3,71 – 3,61 (m, 1H), 3,55 – 3,44 (m, 1H), 3,42 (s, 3H), 2,70 (d, J = 3,5 Гц, 3H), 2,60 (d, J = 8,7 Гц, 1H), 2,19 (s, 5H), 2,17 – 2,07 (m, 4H), 2,04 (s, 3H), 2,01 (dd, J = 9,6, 5,3 Гц, 2H), 1,77 (d, J =	479,25
	изомер 4	12,9 Γ _{II} , 1H), 1,48 (td, J = 11,8, 5,5 Γ _{II} , 1H).	
(S)-1-((S)-4-(6-(6- этинил-4- метоксипиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	abs N O O O O O O O O O O O O O O O O O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,67 (s, 1H), 8,33 (d, J = 8,8 Гц, 1H), 7,44 (d, J = 1,4 Гц, 1H), 5,64 (d, J = 23,1 Гц, 1H), 4,73 (dd, J = 7,6, 3,7 Гц, 1H), 4,47 (s, 1H), 3,91 (d, J = 1,7 Гц, 3H), 3,51 (s, 4H), 2,66 (d, J = 2,8 Гц, 3H), 2,28 – 2,11 (m, 4H), 2,08 (s, 2H), 2,02 (s, 2H), 1,83 (s, 1H), 1,66 – 1,45 (m, 2H), 1,45 – 1,34 (m, 1H), 1,24 (s, 1H).	481,4
S)-1-((R)-4-(6-(6- этинил-4- метоксипиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	abs N O or1	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,67 (s, 1H), 8,34 (d, J = 7,8 Гц, 1H), 7,45 (d, J = 3,4 Гц, 1H), 5,66 (d, J = 14,2 Гц, 1H), 4,72 (dd, J = 7,8, 3,5 Гц, 1H), 4,48 (d, J = 1,3 Гц, 1H), 3,91 (d, J = 2,0 Гц, 3H), 3,68 (s, 1H), 3,52 (s, 4H), 2,66 (s, 4H), 2,20 (s, 3H), 2,14 (d, J = 7,8 Гц, 2H), 2,08 (s, 1H), 2,02 (d, J = 8,5 Гц, 3H), 1,80 (s, 1H), 1,54 (d, J = 8,2 Гц, 1H), 1,45 – 1,39 м (1H), 1,24 (s, 1H), 1,16 (d, J = 7,2 Гц, 1H).	481,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-((S)-4-(4-амино-6- (6-этинил-2,4- диметилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) 8 8,13 (s, 1H), 7,47 (s, 1H), 6,55 (s, 2H), 5,65 (q, J = 2,8, 2,2 Гц, 1H), 4,70 (dd, J = 7,4, 3,4 Гц, 1H), 4,38 (s, 1H), 3,69 (ddd, J = 10,9, 7,4, 3,8 Гц, 1H), 3,47 (td, J = 8,9, 6,7 Гц, 1H), 3,31 (s, 3H), 2,79 (t, J = 6,2 Гц, 1H), 2,24 (s, 2H), 2,19 (s, 3H), 2,13 (ddd, J = 9,8, 6,7, 3,5 Гц, 2H), 2,03 (s, 5H), 1,90 (s, 2H), 1,61 (s, 2H).	480,25
(6-этинил-2,4- диметилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	δ 8,14 (s, 1H), 7,47 (s, 1H), 6,58 (s, 2H), 5,66 (s, 1H), 4,70 (dd, J = 7,4, 3,6 Γμ, 1H), 4,38 (s, 1H), 3,74 – 3,65 (m, 1H), 3,47 (q, J = 8,6 Γμ, 1H), 3,31 (s, 3H), 2,88 (s, 1H), 2,25 (s, 2H), 2,21 – 2,09 (m, 5H), 2,04 (s, 5H), 1,88 (s, 2H), 1,60 (d, J = 9,4 Γμ, 2H).	
(S)-1-((R)-4-(4-амино-6- (6-этинил-2,4- диметилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,48 (s, 1H), 6,72 (s, 2H), 5,66 (s, 1H), 4,71 (dd, J = 7,9, 3,7 Гц, 1H), 4,38 (s, 1H), 3,60 (t, J = 6,1 Γц, 1H), 3,53 (q, J = 8,1 Γц, 1H), 3,32 (s, 3H), 2,84 – 2,77 (m, 1H), 2,25 (s, 2H), 2,18 (s, 4H), 2,05 (s, 3H), 2,04 – 1,96 (m, 2H), 1,89 (s, 2H), 1,63 (d, J = 6,3 Γц, 2H), 1,16 (t, J = 7,3 Γц, 1H).	480,25
(S)-1-((R)-4-(4-амино-6- (6-этинил-2,4- диметилпиридин-3-ил)- 7-метил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,16 (s, 1H), 7,47 (s, 1H), 6,72 (s, 2H), 5,65 (s, 1H), 4,71 (dd, J = 7,9, 3,7 Γц, 1H), 4,39 (s, 1H), 3,61 (dd, J = 10,4, 4,6 Γц, 1H), 3,53 (q, J = 8,5, 8,0 Γц, 1H), 3,32 (s, 3H), 2,80 (t, J = 6,1 Γц, 1H), 2,24 (s, 1H), 2,20 (s, 5H), 2,05 – 1,95 (m, 5H), 1,91 (s, 2H), 1,64 (s, 2H), 1,16 (t, J = 7,3 Γц, 1H).	480,25

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-1-((R)-4-(6-(6- этинил-4-метокси-2- метилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	О NC	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,65 (d, J = 1,4 Гц, 1H), 7,28 (s, 1H), 5,60 (s, 1H), 4,70 (t, J = 7,7, 3,5 Гц, 1H), 4,41 (d, J = 1,1 Гц, 1H), 3,81 (s, 3H), 3,70 - 3,57 (m, 1H), 3,51 (t, J = 8,5 Гц, 1H), 3,41 (s, 3H), 2,68 - 2,56 (m, 4H), 2,27 - 2,08 (m, 6H), 2,04 (d, J = 15,4 Гц, 6H), 1,79 (d, J = 13,1 Гц, 1H).	495,25
(S)-1-((R)-4-(6-(6- этинил-4-метокси-2- метилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	О NC	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 8,65 (s, 1H), 7,28 (s, 1H), 5,58 (s, 1H), 4,71 (dd, J = 7,6, 3,7 Гц, 1H), 4,41 (s, 1H), 3,82 (d, J = 2,3 Γц, 3H), 3,70 - 3,59 (m, 1H), 3,51 (q, J = 8,2 Γц, 1H), 3,42 (s, 3H), 2,66 (d, J = 3,3 Γц, 3H), 2,56 (s, 1H), 2,17 (s, 5H), 2,15 - 2,05 (m, 4H), 2,02 (t, J = 7,0 Γц, 2H), 1,81 (d, J = 13,1 Γц, 1H), 1,56 (d, J = 6,6 Γц, 1H).	495,30
(S)-1-((S)-4-(6-(6- этинил-4-метокси-2- метилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	О NC	1 Н ЯМР (400 МГц, DMSO- d_{6}) δ 8,66 (s, 1H), 7,28 (s, 1H), 5,60 (s, 1H), 4,71 (dd, J = 7,7, 3,5 Гц, 1H), 4,42 (s, 1H), 3,82 (s, 3H), 3,67 (ddd, J = 9,5, 7,2, 4,4 Гц, 1H), 3,49 (dd, J = 9,4, 7,3 Гц, 1H), 3,42 (s, 3H), 2,66 (d, J = 2,5 Гц, 3H), 2,62 - 2,56 (m, 1H), 2,17 (d, J = 2,2 Гц, 4H), 2,16 - 1,95 (m, 6H), 1,78 (dd, J = 13,1, 3,3 Гц, 1H), 1,61 - 1,43 (m, 2H).	495,25
(S)-1-((S)-4-(6-(6- этинил-4-метокси-2- метилпиридин-3-ил)- 4,7-диметил-7Н- пирроло[2,3- d]пиримидин-5- ил)циклогекс-3-ен-1- карбонил)пирролидин- 2-карбонитрил	О NC	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,65 (s, 1H), 7,28 (s, 1H), 5,60 (d, $J = 25.9$ Гц, 1H), 4,71 (d, $J =$ 6,4 Гц, 1H), 4,42 (s, 1H), 3,82 (s, 3H), 3,66 (s, 1H), 3,59 - 3,50 (m, 1H), 2,91 (s, 1H), 2,65 (s, 3H), 2,17 (s, 5H), 2,10 (d, $J =$ 14,7 Γц, 2H), 2,01 (s, 2H), 1,79 (d, $J = 24.2$ Гц, 1H), 1,45 (s, 1H), 1,24 (s, 4H), 1,15 (d, $J =$ 9,2 Гц, 1H).	495,30

Пример 43

Схема 40

(5-Бром-2-хлорпиридин-4-ил)метанол

[0533] Стадия 1: Раствор метил-5-бром-2-хлорпиридин-4-карбоксилата (75,0 г, 299 ммоль) в ТНГ (1,5 л) охлаждали до -20°С. Затем в течение 1,5 ч к нему по каплям добавляли LiBH4 (179 мл, 358 ммоль, 2М в ТНГ), одновременно поддерживая температуру на уровне ниже -15°С. Полученный раствор нагревали до комнатной температуры и перемешивали в течение 2 часов при 25°С, затем осторожно гасили добавлением по каплям насыщенного водного раствора NH4Cl (200 мл), и водную фазу трижды экстрагировали этилацетатом (EtOAc) (1,2 л). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 450 г; элюирование смесью петролейный эфир:этилацетат в соотношении 10:1). После концентрирования под вакуумом получали (5-бром-2-хлорпиридин-4-ил)метанол (40 г, выход 60,1%) в виде твердого вещества почти белого цвета.

5-Бром-4-(бромметил)-2-хлорпиридин

[0534] Стадия 2: К смеси (5-бром-2-хлорпиридин-4-ил)метанола (54,0 г, 242 ммоль) и СВг₄ (87,2 г, 266 ммоль) в DCM (1,5 л) по каплям добавляли раствор PPh₃ (69,6 г, 266 ммоль) в DCM (300 мл) при 0°С, и смесь перемешивали при 0°С в течение 1 часа. Затем реакционную смесь гасили солевым раствором (500 мл). После расслоения слои отделяли. Водную фазу экстрагировали DCM (1 л х 3). Объединенные органические слои промывали солевым раствором (1 л), сушили над безводным Na₂SO₄, фильтровали и концентрировали, в результате чего получали остаток. Остаток очищали методом флэш-хроматографии на силикагеле (элюируя смесью петролейный эфир:этилацетат = 30:1), в результате чего получали продукт, а именно 5-бром-4-(бромметил)-2-хлорпиридин (51 г, выход 73,9%) в виде твердого вещества белого цвета.

1,3-Диметил-2-[(5-бром-2-хлорпиридин-4-ил)метил]пропандиоат

[0535] Стадия 3: К смеси 1,3-диметилпропандиоата (62,0 г, 470 ммоль) в ТНГ (900 мл) добавляли NaH (18,6 г, 470 ммоль) при -10°С, затем смесь перемешивали в течение 30 мин при -10°С, в вышеуказанный раствор по каплям добавляли раствор 5-бром-4-(бромметил)-2-хлорпиридина (45,0 г, 157 ммоль) в 300 мл ТНГ, и проводили перемешивание в течение 2 часов. Смесь гасили с помощью насыщенного водного раствора NH₄Cl (600 мл). Водную фазу трижды экстрагировали этилацетатом (EtOAc) (1 л). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 500 г; элюирование смесью петролейный эфир:этилацетат в соотношении 15:1). После концентрирования под вакуумом получали 1,3-диметил-2-[(5-бром-2-хлорпиридин-4-ил)метил]пропандиоат (40 г, выход 75,7%) в виде твердого аморфного вещества почти белого цвета.

Метил-3-(5-бром-2-хлорпиридин-4-ил)пропаноат

[0536] Стадия 4: В круглодонную колбу загружали 1,3-диметил-2-[(5-бром-2-хлорпиридин-4-ил)метил]пропандиоат (39,5 г, 117 ммоль), NaCl (20,3 г, 351 ммоль), H₂O (6,31 г, 351 ммоль) и магнитную мешалку. Затем добавляли DMSO (800 мл), и полученный раствор перемешивали в течение 1 часа при 160°C. Реакционную смесь разбавляли этилацетатом (EtOAc) (1,5 л), и водную фазу четыре раза промывали солевым раствором (600 мл). Объединенные органические слои сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 300 г; элюирование смесью петролейный эфир:этилацетат в соотношении 15:1). После концентрирования под вакуумом получали метил-3-(5-бром-2-хлорпиридин-4-ил)пропаноат (22,0 г, выход 67%) в виде твердого аморфного вещества белого цвета.

Метил-3-(2-хлор-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-4ил)пропаноат

[0537] Стадия 5: В герметизируемую реакционную пробирку загружали метил-3-(5-бром-2-хлорпиридин-4-ил)пропаноат (10 г, 35,9 ммоль), 4,4,5,5-тетраметил-2-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,3,2-диоксаборолан (11,8 г, 46,6 ммоль), Pd(dppf)Cl₂ (2,62 г, 3,59 ммоль), KOAc (10,4 г, 107 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диоксан (200 мл), и полученную смесь перемешивали в течение 12 часов при 70°С. Катализатор и соль отфильтровывали через слой целита (Celite®) и трижды промывали этилацетатом (ЕtOAc) (100 мл). Объединенный органический слой сушили над Na₂SO₄, фильтровали и упаривали при пониженном давлении. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 200 г; элюирование смесью петролейный эфир:этилацетат в соотношении 15:1). После концентрирования под вакуумом получали метил-3-[2-хлор-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-4-ил]пропаноат (6,5 г, выход 56,0%) в виде твердого аморфного вещества белого цвета.

Метил-3-(5-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2хлорпиридин-4-ил)пропаноат

[0538] Стадия 6: В герметизируемую реакционную пробирку загружали 6-бром-5-{3- ϕ тор-4-[(4-метилпиримидин-2-ил)окси] ϕ енил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-амин (14,5 г, 26,5 ммоль), метил-3-[2-хлор-5-(4,4,5,5тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-4-ил]пропаноат (12,9 г, 39,7 ммоль), Pd(DTBPF)Cl₂ (1,72 г, 2,65 ммоль), CsF (12,0 г, 79,5 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли ТНГ/Н2О (300 мл), и полученную смесь перемешивали в течение 12 часов при 70°C. Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали дихлорметаном (500 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 200 г; элюирование смесью дихлорметан/метанол, 20:1). После концентрирования под вакуумом получали метил-3-[5-(4-амино-5-{3-фтор-4-[(4метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Нпирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропаноат (7,00 г, выход 40%) в виде твердого аморфного вещества коричневого цвета.

3-(5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2хлорпиридин-4-ил)пропан-1-ол

[0539] Стадия 7: В круглодонную колбу загружали метил-3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропаноат (7,00 г, 10,5 ммоль), DCM (120 мл) и магнитную мешалку. Затем добавляли DIBAL (8,39 мл, 12,6 ммоль) при 0°С, и полученный раствор перемешивали в течение 3 часов при 0°С. Реакционную смесь разбавляли МеОН (10 мл) и водой (60 мл), и водную фазу трижды экстрагировали дихлорметаном (100 мл). Объединенные органические слои фильтровали и промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный неочищенный материал очищали методом флеш-хроматографии на колонке С18 (используя смесь ацетонитрил/вода/0,1% муравьиная кислота). После лиофилизации получали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (3,00 г, выход 45%) в виде твердого аморфного вещества желтого цвета.

3-(5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3d]пиримидин-6-ил)-2-хлорпиридин-4-ил)пропан-1-ол

[0540] Стадия 8: В круглодонную колбу загружали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (2,60 г, 4,08 ммоль), СН₃SO₃H/THF (40 мл) и магнитную мешалку. Раствор перемешивали в течение 1 ч при 70°С. Реакционную смесь разбавляли водой (100 мл), и водную фазу доводили значение рН до 7 посредством Na₂CO₃ и трижды экстрагировали DCM (150 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 50 г; элюирование смесью дихлорметан/метанол, 12:1). При концентрировании под вакуумом получали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (800 мг, выход 39%) в виде твердого аморфного вещества почти белого цвета.

3-Хлор-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0541] Стадия 9: В герметизируемую реакционную пробирку загружали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (680 мг, 1,34 ммоль), DIAD (406 мг, 2,01 ммоль), тетрагидрофуран (8 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли PPh₃ (526 мг, 2,01 ммоль) в 2 мл ТНГ, и полученную смесь перемешивали в течение 1 часа при 25°С. Реакционную смесь разбавляли водой (5 мл), и водную фазу трижды экстрагировали DCM (25 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом.Полученный сырой материал очищали методом препаративной ТСХ (элюирование смесью дихлорметана и метанола, 15:1). После концентрирования под вакуумом получали 3-хлор-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (450 мг, выход 69%) в виде твердого аморфного вещества желтого цвета.

3-((Трет-бутилдиметилсилил)этинил)-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0542] Стадия 10: В герметизируемую реакционную пробирку загружали 3-хлор-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (430 мг, 881 бутил(этинил)диметилсилан (246 мг, 1,76 ммоль), Pd(dppf)Cl₂ (128 мг, 176 мкмоль), CuI (66,8 мг, 352 мкмоль), ТЕА (266 мг, 2,64 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диметилформамид (1 мл), и полученную смесь перемешивали в течение 2 часов при 50°С. Реакционную смесь разбавляли водой (5 мл), и водную фазу трижды экстрагировали DCM (25 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ (элюирование смесью дихлорметана и метанола, 15:1). При концентрировании под 3-((трет-бутилдиметилсилил)этинил)-13-(3-фтор-4-((4вакуумом получали метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5Н-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амину (350 мг, выход 67%) в виде твердого аморфного вещества почти белого цвета.

3-Этинил-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0543] Стадия 11: В круглодонную колбу загружали 3-((третбутилдиметилсилил)этинил)-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (340 мг, 574 мкмоль), тетрагидрофуран (2 мл) и магнитную мешалку. Затем добавляли ТВАГ (179 мг, 688 мкмоль), и полученный раствор перемешивали при комнатной температуре в течение 1 часа. Реакционную смесь очищали методом хроматографии на силикагеле (колонка на 20 г; элюирование смесью дихлорметан/метанол, 10:1). Проводили концентрирование под вакуумом, и сырой продукт растворяли в DMF (3 мл), фильтровали, и осадок на фильтре трижды промывали АСN (10 мл) и DCM (10 мл) и затем сушили при пониженном давлении. После лиофилизации получали 3-этинил-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (173,1 мг, 362 мкмоль, выход 63,1%) в виде твердого аморфного вещества желтого цвета.

Таблица 42. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-этинил-13-(3-фтор-4-		¹H ЯМР (400 МГц, DMSO-	478,10
((4-метилпиримидин-2-	N	d_6) δ 8,51 (d, J = 5,0 Γ μ , 1H),	
ил)окси)фенил)-6,7- дигидро-5H-пиридо[3,4-	N O	8,21 (s, 1H), 8,04 (s, 1H), 7,67 (s, 1H), 7,50 – 7,34 (m, 2H),	
с]пиримидо[5',4':4,5]пирр	F_	7,24 – 7,20 (m, 2H), 6,36 –	
оло[1,2-а]азепин-12-амин	N.//	5,89 (m, 1H), 5,76 (s, 1H),	
	H ₂ N	4,40 (s, 1H), 4,15 (s, 2H), 2,79	
	N N	$(t, J = 7.0 \Gamma \text{H}, 2\text{H}), 2.44 (s, 2\text{H}), 2.65 (s, 2\text{H}), 2.44 (s, 2$	
	"\\"\"\\"\"\\"\"\\"\"\\"\"\\"\"\\"\"\\\"\\\"\\\"\\"\\"\\"\\"\\\"\\"\\"\\"\\"\\"\\"\\"\\"\\"\\\"\\"\\"\\"\\"\\"\\\"\\"\\\"	3 H $)$, 2,25 (t, J = 7,1 Γ ц, 2H $)$.	

Пример 44

Схема 41

3-(5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-((трет-бутилдиметилсилил)этинил)пиридин-4-ил)пропан-1-

0Л

[0544] Стадия 1: В герметизируемую реакционную пробирку загружали 3-[5-(4амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3d]пиримидин-6-ил)-2-хлорпиридин-4-ил]пропан-1-ол (90,0 мг, 177 мкмоль), Pd(dppf)Cl₂ (25,9 мг, 35,4 мкмоль), СиІ (13,4 мг, 70,8 мкмоль), ТЕА (53,6 мг, 531 мкмоль), третбутил(этинил)диметилсилан (49,6 мг, 354 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диметилформамид (5 мл), и смесь перемешивали в течение 2 часов при 50°C. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (25 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ (элюирование смесью дихлорметана и метанола, 15:1). После концентрирования под вакуумом получали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-[2-(трет-бутилдиметилсилил)этинил]пиридин-4ил пропан-1-ол (80,0 мг, выход 74%) в виде твердого аморфного вещества желтого цвета.

3-(5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-этинилпиридин-4-ил)пропан-1-ол

[0545] **Стадия 2:** В круглодонную колбу загружали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2-[2-(трет-бутилдиметилсилил)этинил]пиридин-4-ил]пропан-1-ол (70,0 мг, 114 мкмоль), тетрагидрофуран (5 мл) и магнитную мешалку. Затем добавляли ТВАF (35,3 мг, 136 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционный материал очищали методом хроматографии на силикагеле

(колонка на 10 г; элюирование смесью дихлорметан/метанол, 10:1). Проводили концентрирование под вакуумом, и сырой продукт 5 раз промывали водой, органическую фазу концентрировали, и итоговый сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 30×150 мм, 5 мкм; Подвижная фаза А: вода (раствор 10 ммоль/л NH₄HCO₃ + 0,1% NH₃·H₂O), Подвижная фаза В: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 15 В до 45 В в течение 8 мин; 220 нм; RT1: 7,23). После лиофилизации получали 3-[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7H-пирроло[2,3-d]пиримидин-6-ил)-2- этинилпиридин-4-ил]пропан-1-ол (11,2 мг, выход 19,8%) в виде твердого аморфного вещества белого цвета.

Таблица 43. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-(5-(4-амино-5-(3-фтор- 4-((4-метилпиримидин- 2-ил)окси)фенил)-7Н- пирроло[2,3- d]пиримидин-6-ил)-2- этинилпиридин-4- ил)пропан-1-ол	NH ₂ NH ₂ OH	¹ H ЯМР (400 МГц, DMSO- d ₆) δ 12,21 (s, 1H), 8,48 (d, J = 5,0 Γц, 1H), 8,37 (s, 1H), 8,19 (s, 1H), 7,51 (s, 1H), 7,35 (t, J = 8,4 Γц, 1H), 7,23 – 7,16 (m, 2H), 7,06 (dd, J = 8,0, 2,0 Γц, 1H), 6,10 – 6,00(m, 1H), 4,44 (s, 1H), 4,39 (s, 1H), 3,30 – 3,10 (m, 4H), 2,42 (s, 3H), 1,53 – 1,47 (m, 2H).	496,25

Пример 45

Схема 42

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)фуро[2,3d]пиримидин-4-амин

[0546] **Стадия 1:** В герметизируемую реакционную пробирку загружали 5-бромфуро[2,3-d]пиримидин-4-амин (800 мг, 3,73 ммоль), 2-[2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (1,84 г, 5,59 ммоль), $Pd(dppf)Cl_2$ (2,72 г, 3,73 ммоль), K_3PO_4 (790 мг, 3,73 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H_2O (15 мл), и полученную смесь перемешивали в

течение 2 часов при 90°С. Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали DCM (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 100 г; элюирование смесью гептанов и этилацетата, соотношение 1:1). При концентрировании под вакуумом получали 5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}фуро[2,3-d]пиримидин-4-амин (800 мг, выход 64%) в виде почти белого твердого аморфного вещества.

6-6-Бром-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)фуро[2,3d]пиримидин-4-амин

[0547] Стадия 2: В круглодонную колбу загружали 5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}фуро[2,3-d]пиримидин-4-амин (800 мг, 2,37 ммоль), DCM (15 мл) и магнитную мешалку. Затем при 0°C добавляли Br₂ (379 мг, 2,37 ммоль), и раствор перемешивали в течение 1 часа при 0°C. Реакцию гасили насыщенным водным раствором тиосульфата натрия. Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали DCM (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (ацетонитрил/вода/0,1% препаративной муравьиная кислота). После лиофилизации получали 6-бром-5-{3-фтор-4-[(4-метилпиримидин-2ил)окси] ϕ енил} ϕ уро[2,3-d]пиримидин-4-амин (700 мг, выход 71%) в виде твердого аморфного вещества почти белого цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)фуро[2,3-d]пиримидин-4-амин

[0548] Стадия 3: В герметизируемую реакционную пробирку загружали 6-бром-5-{3фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}фуро[2,3-d]пиримидин-4-амин мг, 1,63 ммоль), 2-[2-(трет-бутилдиметилсилил)этинил]-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин (872 мг, 2,44 ммоль), Pd(dppf)Cl₂ (238 мг, 0,326 ммоль), К₃РО₄ (1,03 г, 4,89 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (20 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 50 г; дихлорметан/метанол В соотношении 30:1). После элюирование смесью концентрирования под вакуумом получали 6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}фуро[2,3d]пиримидин-4-амин (530 мг, выход 57%) в виде твердого аморфного вещества черного цвета.

6-(6-Этинил-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2ил)окси)фенил)фуро[2,3-d]пиримидин-4-амин

[0549] Стадия **4**: В круглодонную колбу загружали 6-{6-[2-(третбутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}фуро[2,3-d]пиримидин-4-амин (500 мг, 0,88 ммоль), тетрагидрофуран (10 мл) и магнитную мешалку. Затем добавляли ТВАF (0,88 г, 0,88 ммоль), и полученный раствор перемешивали в течение 30 мин при комнатной температуре. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 50 г; элюирование смесью дихлорметан/метанол в соотношении 10:1). После концентрирования под вакуумом получали сырой продукт. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Prep OBD C18 Column, 30×150 мм, 5 мкм; Подвижная фаза А: вода (раствор 10 ммоль/л $NH_4HCO_3 +$ 0,1% NH₃·H₂O), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 25 B до 55 B в течение 8 мин; 220 нм; RT1: 7,23. После лиофилизации получали 6-(6-этинил-4-метилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2ил)окси]фенил}фуро[2,3-d]пиримидин-4-амин (215 мг, выход 54%) в виде твердого аморфного вещества белого цвета.

Таблица 44. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4-		¹ Н ЯМР (400 МГц, DMSO-d ₆)	453,15
метилпиридин-3-ил)-5- {3-фтор-4-[(4-	N N	δ 8,50 (d, J = 5,0 Γπ, 1H), 8,41 (s, 1H), 8,33 (s, 1H), 7,59 (s,	
метилпиримидин-2-	NO	1H), 7,47 – 7,40 (m, 2H), 7,23 –	
ил)окси]фенил}фуро[2,3-	F	7,19 (m, 2H), 4,45 (s, 1H), 2,43	
d]пиримидин-4-амин	NH ₂	(s, 3H), 2,20 (s, 3H).	
	N [*] U)		

Пример 46

Схема 43

Метил-7Н-пирроло[2,3-d]пиримидин-4-карбоксилат

[0550] **Стадия 1:** В реактор высокого давления загружали 4-хлор-7H-пирроло[2,3-d]пиримидин (30 г, 195 ммоль), ТЕА (59,1 г, 585 ммоль), [(R)-(+)-2,2'-бис(дифенилфосфино)-1,1'-бинафтил]палладий(II)хлорид (1,55 г, 1,95 ммоль), МеОН (500 мл) и магнитную мешалку. Смесь перемешивали в течение 12 ч при 100°С в атмосфере СО (10 атм). Реакционную смесь фильтровали через слой целита (Celite®), затем этот слой промывали этилацетатом (EA), и фильтрат концентрировали под

вакуумом, в результате чего получали метил-7Н-пирроло[2,3-d]пиримидин-4-карбоксилат (25,0 г, выход 72%) в виде твердого аморфного вещества желтого цвета.

Метил-7-метил-7Н-пирроло[2,3-d]пиримидин-4-карбоксилат

[0551] Стадия 2: В круглодонную колбу загружали метил-7Н-пирроло[2,3d]пиримидин-4-карбоксилат (20 г, 112 ммоль), DMF (100 мл) и магнитную мешалку. Затем добавляли NaH (10,7 г, 448 ммоль), и полученную смесь перемешивали в течение 30 мин при 0°C. Затем добавляли MeI (15,8 г, 112 ммоль), и полученный раствор перемешивали в течение 1 часа при 0°C. Реакционную смесь разбавляли водой (500 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 100 г; элюирование смесью гептанов И этилацетата, соотношение 3:1). При получали метил-7-метил-7Н-пирроло [2,3концентрировании под вакуумом d]пиримидин-4-карбоксилат (13,0 г, выход 61%) в виде твердого аморфного вещества почти белого цвета.

Метил-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-4-карбоксилат

[0552] Стадия 3: В круглодонную колбу загружали метил-7-метил-7Н-пирроло[2,3-d]пиримидин-4-карбоксилат (10 г, 52,3 ммоль), DMF (200 мл) и магнитную мешалку. Затем добавляли NBS (11,1 г, 62,7 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь разбавляли водой (300 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (300 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 100 г;

элюирование смесью дихлорметан/метанол, 50:4-17561). При концентрировании под вакуумом получали метил-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-4-карбоксилат (10,0 г, выход 71%) в виде твердого вещества почти белого цвета.

(5-Бром-7-метил-7Н-пирроло[2,3-d]пиримидин-4-ил)метанол

[0553] Стадия 4: В круглодонную колбу загружали метил-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-4-карбоксилат (3 г, 11,1 ммоль), ТНГ (50 мл) и магнитную мешалку. Затем добавляли LiBH4 (11,1 мл, 11,1 ммоль) при -50°С. Реакционную смесь перемешивали в течение 1 ч при -50°С. Реакцию гасили добавлением 2 мл этилацетата (ЕА). Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали DCM (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 50 г; элюирование смесью гептанов и этилацетата, соотношение 1:1). При концентрировании под вакуумом получали {5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-4-ил}метанол (850 мг, выход 32%) в виде твердого аморфного вещества почти белого цвета.

5-Бром-4-(((трет-бутилдиметилсилил)окси)метил)-7-метил-7H-пирроло[2,3-d]пиримидин

[0554] Стадия 5: В круглодонную колбу загружали {5-бром-7-метил-7Н-пирроло [2,3-d]пиримидин-4-ил}метанол (400 мг, 1,65 ммоль), 1Н-имидазол (561 мг, 8,25 ммоль), ТНГ(10 мл) и магнитную мешалку. Затем добавляли ТВSC1 (745 мг, 4,94 ммоль), и полученный раствор перемешивали в течение 12 часов при комнатной температуре. Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали этилацетатом (ЕА) (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под

вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 20 г; элюирование смесью гептанов и этилацетата, соотношение 1:1). После концентрирования под вакуумом получали 5-бром-4-{[(трет-бутилдиметилсилил)окси]метил}-7-метил-7Н-пирроло[2,3-d]пиримидин (330 мг, выход 56%) в виде твердого аморфного вещества желтого цвета.

4-(((Трет-бутилдиметилсилил)окси)метил)-5-(3-фтор-4-((4-метилпиримидин-2ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин

[0555] Стадия 6: В герметизируемую реакционную пробирку загружали 5-бром-4-{[(трет-бутилдиметилсилил)окси]метил}-7-метил-7Н-пирроло[2,3-d]пиримидин (750 мг, 2,10 ммоль), 2-[2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4метилпиримидин (832 мг, 2,52 ммоль), K₃PO₄ (1,33 г, 6,30 ммоль), Pd(dppf)Cl₂ (307 мг, 0,42 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (20 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали DCM (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 50 г; элюирование смесью РЕ:ЕА в соотношении 1:1). После концентрирования под вакуумом получали 2-[4-(4-{[(третбутилдиметилсилил)окси]метил}-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2фторфенокси]-4-метилпиримидин (760 мг, выход 75%) в виде твердого аморфного вещества желтого цвета.

6-Бром-4-(((трет-бутилдиметилсилил)окси)метил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин

7: [0556] Стадия В круглодонную колбу загружали 2-[4-(4-{[(третбутилдиметилсилил)окси]метил}-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-2фторфенокси]-4-метилпиримидин (700 мг, 1,45 ммоль), диметилформамид (20 мл) и магнитную мешалку. Затем добавляли DBDMH (331 мг, 1,16 ммоль), и полученный раствор перемешивали в течение 2 часов при 0°C. Реакцию гасили водным раствором Na₂SO₃. Реакционную смесь разбавляли водой (100 мл), и водную фазу трижды экстрагировали DCM (100 мл). Полученный сырой материал очищали методом препаративной ТСХ (элюирование смесью DCM и MeOH в соотношении 20:1). После концентрирования вакуумом получали 2-[4-(6-бром-4-{[(третпод бутилдиметилсилил)окси]метил}-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-2фторфенокси]-4-метилпиримидин (400 мг, выход 49%) в виде твердого аморфного вещества черного цвета.

6-(6-((Трет-бутилдиметилсилил)этинил)-4-метилпиридин-3-ил)-4-(((трет-бутилдиметилсилил)окси)метил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин

[0557] Стадия 8: В герметизируемую реакционную пробирку загружали 2-[4-(6-бром-4-{[(трет-бутилдиметилсилил)окси]метил}-7-метил-7Н-пирроло[2,3-d]пиримидин-5ил)-2-фторфенокси]-4-метилпиримидин (350 мг, 0,63 ммоль), 2-[2-(третбутилдиметилсилил)этинил]-4-метил-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2ил)пиридин (893 мг, 2,50 ммоль), Na₂CO₃ (198 мг, 1,87 ммоль), Pd(PPh₃)₄ (144 мг, 0,1253 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диоксан/Н₂О (20 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали DCM (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали 2-[4-(6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-4-{[(третбутилдиметилсилил)окси]метил}-7-метил-7H-пирроло[2,3-d]пиримидин-5-ил)-2фторфенокси]-4-метилпиримидин (140 мг, выход 31%) в виде маслянистой жидкости желтого цвета.

(6-(6-Этинил-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-ил)метанол

[0558] **Стадия 9:** В круглодонную колбу загружали 2-[4-(6-{6-[2-(трет-бутилдиметилсилил)этинил]-4-метилпиридин-3-ил}-4-{[(трет-бутилдиметилсилил)окси]метил}-7-метил-7Н-пирроло[2,3-d]пиримидин-5-ил)-2-фторфенокси]-4-метилпиримидин (130 мг, 0,18 ммоль), ТНГ (10 мл) и магнитную мешалку. Затем добавляли ТВАГ (0,45 мл, 0,45 ммоль), и полученный раствор перемешивали в течение 30 минут при комнатной температуре. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Shield RP18 OBD

Соlumn, 30*150 мм, 5 мкм; Подвижная фаза А: вода (раствор NH₄HCO₃ 10 ммоль/л + 0,1% NH₃·H₂O), Подвижная фаза В: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 20 В до 50 В в течение 8 мин; 254/220 нм; RT1: 7,28). После лиофилизации получали [6-(6-этинил-4-метилпиридин-3-ил)-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-метил-7Н-пирроло[2,3-d]пиримидин-4-ил]метанол (39,4 мг, выход 46%) в виде твердого аморфного вещества почти белого цвета.

Таблица 45. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(6-(6-этинил-4-метилпиридин-3-ил)-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-метил-7Н-пирроло[2,3-d]пиримидин-4-ил)метанол	HO N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,92 (s, 1H), 8,55 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 7,59 (s, 1H), 7,37 – 7,27 (m, 2H), 7,19 (d, J = 5,0 Гц, 1H), 7,13 (dd, J = 8,3, 2,2 Гц, 1H), 5,19 (s, 1H), 4,59 – 4,42 (m, 3H), 3,59 (s, 3H), 2,41 (s, 3H), 2,06 (s, 3H).	481,25

Пример 47

Схема 44

N-(4-бром-3-метоксифенил)-2-метилпроп-2-енамид

[0559] **Стадия 1:** В круглодонную колбу загружали 4-бром-3-метоксианилин (2,9 г, 14,3 ммоль), дихлорметан (30 мл), ТЕА (4,33 г, 42,9 ммоль) и магнитную мешалку. Затем добавляли 2-метилпроп-2-еноилхлорид (1,64 г, 15,7 ммоль), и полученный раствор перемешивали в течение 1 часа при 0°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали N-(4-бром-3-метоксифенил)-2-метилпроп-2-енамида (3,1 г, выход 80,3%) в виде твердого вещества желтого цвета.

N-[3-метокси-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2-метилпроп-2-енамид

[0560] Стадия 2: В герметизируемую реакционную пробирку загружали N-(4-бром-3-метоксифенил)-2-метилпроп-2-енамид (2,8 г, 10,3 ммоль), 4,4,5,5-тетраметил-2-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-1,3,2-диоксаборолан (5,23 г, 20,6 ммоль), Pd(dppf)₂Cl₂ (753 мг, 1,03 ммоль), AcOK (3,02 г, 30,9 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диоксан (30 мл), и полученную смесь перемешивали при 90°С в течение 2 часов. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали N-[3-метокси-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2-метилпроп-2-енамид (2,2 г, выход 67,4%) в виде твердого вещества желтого цвета.

N-(4-{4-амино-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-6-ил}-3-метоксифенил)-2-метилпроп-2-енамид

[0561] Стадия 3: В герметизируемую реакционную пробирку загружали N-[3-метокси-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2-метилпроп-2-енамид (200)мг, 630 мкмоль), 6-хлор-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1ил]-7H-пирроло[2,3-d]пиримидин-4-амин (181 мг, 504 мкмоль), XPhos Pd G3 (53,3 мг, 63,0 мкмоль), XPhos (29,9 мг, 63,0 мкмоль), K₃PO₄ (398 мг, 1,88 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (6 мл), и полученную смесь перемешивали в течение 2 ч при 90°C. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 30*150 мм, 5 мкм; Подвижная фаза A: вода (раствор NH_4HCO_3 10 ммоль/л + 0,1% $NH_3 \cdot H_2O$), Подвижная фаза B: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 25 B до 50 B в течение 8 мин; 254/220 нм; RT1: 7,2). После лиофилизации получали N-(4-{4-амино-7-метил-5-[(4R)-4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил]-7H-пирроло[2,3-d]пиримидин-6-ил}-3метоксифенил)-2-метилпроп-2-енамид (70,0 мг, выход 27%) в виде твердого аморфного вещества почти белого цвета.

Таблица 46. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-N-(4-(4-амино-7-		¹ Η ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	515,30
метил-5-(4-		9,94 (s, 1H), 8,08 (d, J = 7,0 Γ ц,	
(пирролидин-1-		1H), 7,64 (dd, $J = 7,0, 1,9 \Gamma \text{H}, 1\text{H}),$	
карбонил)циклогекс-	_N	7,39 (ddd, J = 8,0, 5,9, 1,9 Γ ц, 1H),	
1-ен-1-ил)-7Н-)	7,15 (dd, J = 8,2, 3,5 Γ ц, 1H), 6,54	
пирроло[2,3-	abs	(s, 1H), 6,35 (s, 1H), 5,85 (t, $J = 1,1$	
d]пиримидин-6-ил)-	NH ₂	Γ ц, 1H), 5,66 (d, J = 22,8 Γ ц, 1H),	
3-метоксифенил)		5,56 (s, 1H), 3,76 (d, $J = 2,7 \Gamma \text{H}$,	
метакриламид	N NH	3H), 3,46 (ddt, $J = 18,3, 11,7, 6,1$	
	N N N	Γ ц, 2H), 3,39 (d, J = 3,0 Γ ц, 3H),	
	" \ ó.	3,31 (s, 2H), 2,84 - 2,64 (m, 1H),	
	\	2,42 - 2,02 (m, 3H), 1,98 (t, J = 1,3	
		Гц, 3H), 1,94 - 1,80 (m, 3H), 1,78 -	
		1,68 (m, 3H), 1,64 - 1,36 (m, 1H).	
N-(4-(4-амино-7-		1 Н ЯМР (400 МГц, DMSO- d_{6}) δ	513,35
метил-5-((R)-4-((R)-		9,85 (s, 1H), 8,16 - 8,01 (m, 1H),	
2-метилпирролидин-	~ /	7,71 (d, $J = 2,3$ Гц, 1H), 7,62 (dt, J	
1-	abs	= 8,3, 2,0 Гц, 1H), 7,25 - 7,12 (m,	
карбонил)циклогекс-	_N_O	1H), 6,56 (s, 2H), 5,83 (s, 1H), 5,67	
1-ен-1-ил)-7Н-		(ddt, $J = 17.5, 4.3, 2.2 \Gamma \mu$, 1H),	
пирроло[2,3-	abs	5,54 (t, $J = 1,5$ Гц, 1H), $4,10 - 3,93$	
d]пиримидин-6-ил)-	NH_2 O. //	(m, 1H), 3,46 (td, $J = 6,9, 2,5 \Gamma \mu$,	
3-		2H), 3,34 (d, $J = 2,7 \Gamma \text{H}$, 3H), 2,80 -	
метилфенил)метакри	'i	2,64 (m, 1H), 2,38 - 1,97 (t, $J = 1,2$	
ламид	`N* `N	Γ_{H} , 3H), 1,90 (dddt, $J = 10,3,7,0$,	
	, ,	5,3, 3,1 Гц, 3H), 1,83 - 1,70 (m,	
		2H), 1,67 - 1,41 (m, 3H), 1,15 -	
		1,00 (m, 3H).	
(R)-N-(4-(4-амино-7-		¹ Н ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ	517,30
метил-5-(4-	_	10,05 (s, 1H), 8,13 (d, J = 2,9 Γ ц,	
(пирролидин-1-	{]	1H), 7,65 (dt, J = 11,8, 2,1 Γ ц, 1H),	
карбонил)циклогекс-	O	7,52 (d, $J = 2,3$ Гц, 1H), 6,68 - 6,57	
1-ен-1-ил)-7Н-		(s, 1H), 5,85 (s, 1H), 5,65 (d, $J =$	
пирроло[2,3-	abs	3,9 Гц, 1H), 5,59 (s, 1H), 3,51 –	
d]пиримидин-6-ил)-	NH_2 F O	3,41 (m, 2H), 3,42 (s, 3H), 3,26 (t,	
3-фтор-5-		$J = 6.9 \Gamma \text{L}, 2\text{H}, 2.85 - 2.78 \text{ (m, 2H)}$	
метилфенил)метакри	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2,19 (s, 2H), 2,05 (s, 3H), 1,97 (d, <i>J</i>	
ламид	N° N	$= 1,2 \Gamma \mu, 5H), 1,86 (p, J = 6,8 \Gamma \mu,$	
		2H), 1,76 (q, J = 6,7 Γ ц, 2H), 1,61	
		$(d, J = 4, 1 \Gamma \mu, 2H).$	

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7H-пирроло[2,3-d]пиримидин-6-ил)-	NH ₂ F O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 10,04 (s, 1H), 8,12 (d, J = 3,4 Γц, 1H), 7,64 (d, J = 11,6 Γц, 1H), 7,51 (s, 1H), 6,62 (s, 1H), 5,85 (s, 1H), 5,65 (s, 1H), 5,59 (d, J = 1,8 Γц, 1H), 2,75 (s, 1H), 2,19 (s, 2H), 2,05 (s, 3H), 2,00 - 1,94 (m, 5H), 1,85	517,45
3-фтор-5- метилфенил)метакри ламид	N N N N N N N N N N N N N N N N N N N	(q, $J = 6.7 \Gamma \mu$, 2H), 1,76 (q, $J = 6.8 \Gamma \mu$, 2H), 1,61 (s, 2H).	

Пример 48

Схема 45

N-(4-(4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил)-3,5диметилфенил)метакриламид

[0562] **Стадия 1:** В герметизируемую реакционную пробирку загружали N-[3,5-диметил-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенил]-2-метилпроп-2-енамид (300 мг, 951 мкмоль), 6-иод-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин (260

мг, 951 мкмоль), Pd(AdnBuP)-G2 (63,4 мг, 95,1 мкмоль), P(AdnBu)HBF₄ (34,1 мг, 95,1 мкмоль), K₃PO₄ (604 мг, 2,85 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли смесь диоксан/H₂O (10:1, 10 мл), и полученную смесь перемешивали в течение 12 часов при 70°С. Смесь разбавляли водой, и водную фазу трижды экстрагировали дихлорметаном (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ (элюирование смесью дихлорметана и метанола, 15:1). После концентрирования под вакуумом получали N-(4-{4-амино-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-3,5-диметилфенил)-2-метилпроп-2-енамид (180 мг, выход 59%) в виде твердого вещества желтого цвета.

N-(4-(4-амино-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5диметилфенил)метакриламид

$$NH_2 \quad Br \quad \longrightarrow NH$$

[0563] Стадия 2: В круглодонную колбу загружали N-(4-{4-амино-7-метил-7Н-пирроло [2,3-d]пиримидин-6-ил}-3,5-диметилфенил)-2-метилпроп-2-енамид (180 мг, 536 мкмоль), диметилформамид (5 мл) и магнитную мешалку. Затем добавляли NBS (95,4 мг, 536 ммоль), и полученный раствор перемешивали в течение 0,5 часа при комнатной температуре. Смесь гасили водным раствором NaHSO₃ и экстрагировали DCM (3*20 мл). Органическую фазу объединяли и концентрировали. Полученный сырой материал очищали методом препаративной TCX (DCM/MeOH= 15:1), в результате чего получали N-(4-{4-амино-5-бром-7-метил-7H-пирроло[2,3-d]пиримидин-6-ил}-3,5-диметилфенил)-2-метилпроп-2-енамид (160 мг, выход 72%) в виде твердого вещества коричневого цвета.

N-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-3,5-диметилфенил)метакриламид

[0564] Стадия 3: В герметизируемую реакционную пробирку загружали N-(4-{4амино-5-бром-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил} -3,5-диметилфенил)-2метилпроп-2-енамид (150 мг, 362 мкмоль), 4-метил-2-[4-(4,4,5,5-тетраметил-1,3,2диоксаборолан-2-ил) фенокси] пиримидин (113 мг, 362 мкмоль), $Pd(dppf)Cl_2$ (26,4 мг, 36,2 мкмоль), K_3PO_4 (228 мг, 1,08 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (8 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли водой (50 мл), и водную фазу трижды экстрагировали этилацетатом (EtOAc) (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (Колонка: YMC-Actus Triart С18, 30*250, 5 мкм; Подвижная фаза А: не определена, Подвижная фаза В: не определена; Скорость пропускания: 50 мл/мин; Градиент: от 45 В до 70 В в течение 8 мин; 220 нм; RT1: 7,23). После лиофилизации получали N-[4-(4-амино-7-метил-5-{4-[(4-метилпиримидин-2-ил)окси]фенил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5диметилфенил]-2-метилпроп-2-енамид (18,2 мг, выход 10%) в виде твердого аморфного вещества белого цвета.

Таблица 47. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
N-(4-(4-амино-7-метил-5-(4-((4-метилпиримидин-2-ил)окси)фенил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5-диметилфенил)метакр иламид	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	¹ H ЯМР (400 МГц, DMSO- <i>d</i> ₆) δ 9,74 (s, 1H), 8,45 (d, <i>J</i> = 5,0 Гц, 1H), 8,21 (s, 1H), 7,50 (s, 2H), 7,28 – 7,10 (m, 5H), 5,80 (m, 2H), 5,52 (s, 1H), 3,37 (s, 3H), 2,40 (s, 3H), 1,96 (m, 9H).	520,40
N-(4-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-7H- пирроло[2,3- d]пиримидин-6-ил)- 3,5- диметилфенил)метакр иламид	N N N O F NH ₂ NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,67 (d, J = 7,5 Гц, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,25 - 8,09 (m, 1H), 7,57 - 7,41 (m, 2H), 7,36 - 6,94 (m, 4H), 6,02 - 5,62 (m, 1H), 5,43 (s, 1H), 5,34 (t, J = 1,6 Γц, 1H), 3,78 (s, 3H), 2,42 (s, 3H), 2,10 (s, 3H), 1,85 (s, 3H), 1,78 (d, J = 1,2 Γц, 3H).	538,30
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5-диметилфенил)метакр иламид	N О Атропизомер 1 N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,64 (d, $J = 5,8$ Гц, 1H), 8,14 (d, $J = 1,9$ Гц, 1H), 7,74 (dd, $J = 18,2$, 10,8 Гц, 1H), 7,10 (d, $J = 6,0$ Гц, 1H), 5,84 – 5,74 (m, 1H), 5,65 (s, 1H), 5,54 – 5,47 (m, 1H), 3,76 (s, 3H), 3,59 – 3,43 (m, 2H), 2,78 – 2,62 (m, 1H), 2,37 – 2,14 (m, 3H), 2,10 – 1,99 (m, 9H), 1,99 – 1,91 (m, 5H), 1,88 (d, $J = 14,7$ Гц, 2H), 1,79 (p, $J = 6,7$ Гц, 1H), 1,24 (s, 1H).	513,40

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(S)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5-диметилфенил)метакр иламид	Атропизомер 2 NH ₂ О NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,64 (s, 1H), 8,13 (s, 1H), 7,72 (d, $J = 9,4$ Гц, 1H), 7,08 (d, $J = 1,3$ Гц, 1H), 5,80 (d, $J = 16,7$ Гц, 1H), 5,76 (s, 1H), 5,66 (d, $J = 23,7$ Гц, 1H), 5,53 – 5,49 (m, 1H), 3,76 (s, 3H), 3,48 (dt, $J = 24,2$, 8,0 Гц, 2H), 3,17 (d, $J = 5,2$ Гц, 1H), 2,77 – 2,63 (m, 1H), 2,30 (d, $J = 26,8$ Гц, 3H), 2,08 (s, 2H), 2,01 (d, $J = 6,9$ Гц, 8H), 1,96 (d, $J = 10,0$ Гц, 5H), 1,92 – 1,81 (m, 2H), 1,78 (q, $J = 6,7$ Гц, 1H), 1,29 – 1,15 (m, 1H).	513,40
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5-диметилфенил)метакр иламид	N О Атропизомер 1 NH ₂ N NH	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,64 (d, J = 6,1 Гц, 1H), 8,13 (d, J = 1,6 Гц, 1H), 7,72 (d, J = 16,7 Γц, 1H), 7,08 (d, J = 6,0 Гц, 1H), 5,78 (t, J = 10,2 Гц, 1H), 5,65 (s, 1H), 5,51 (dt, J = 6,3, 1,5 Γц, 1H), 3,76 (s, 3H), 3,53 – 3,41 (m, 2H), 3,30 – 3,28 (m, 1H), 2,80 – 2,61 (m, 1H), 2,36 – 2,21 (m, 3H), 2,08 (s, 1H), 2,05 – 2,00 (m, 5H), 1,98 – 1,95 (m, 3H), 1,89 (q, J = 7,3, 6,8 Γц, 4H), 1,78 (q, J = 6,7	513,35
(R)-N-(4-(4-амино-7-метил-5-(4-(пирролидин-1-карбонил)циклогекс-1-ен-1-ил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-3,5-диметилфенил)метакр иламид	N О Атропизомер 2 N N N N N N N N N N N N N N N N N N	Γιι, 2H), 1,67 (d, J = 8,6 Γιι, 1H), 1,28 – 1,15 (m, 1H). ¹ H ЯМР (400 МΓιι, DMSO- d 6) δ 8,64 (d, J = 2,4 Γιι, 1H), 8,13 (s, 1H), 7,73 (d, J = 7,9 Γιι, 1H), 7,07 (d, J = 1,4 Γιι, 1H), 5,82 (s, 1H), 5,77 (d, J = 6,7 Γιι, 1H), 5,69 (s, 1H), 5,63 (s, 1H), 5,51 (d, J = 7,0 Γιι, 1H), 3,76 (s, 3H), 3,57 – 3,38 (m, 3H), 2,76 (s, 1H), 2,67 (d, J = 1,9 Γιι, 1H), 2,34 – 2,23 (m, 2H), 2,12 (s, 1H), 2,08 (s, 1H), 2,02 (s, 5H), 2,01 – 1,97 (m, 3H), 1,95 (s, 5H), 1,89 (d, J = 14,7 Γιι, 2H), 1,79 (p, 6,7 Γιι, 1H), 1,24 (s, 2H).	513,35

Пример 49

Схема 46

4-Хлор-6-(6-хлор-5-фтор-4-метилпиридин-3-ил)-7-метил-7H-пирроло[2,3d]пиримидин

[0565] Стадия 1: В герметизируемую реакционную пробирку загружали (4-хлор-7-метил-7Н-пирроло[2,3-d]пиримидин-6-ил)бороновую кислоту (2 г, 9,48 ммоль), 5-бром-2-хлор-3-фтор-4-метилпиридин (2,3 г, 10,4 ммоль), Pd(dtbpf)Cl₂ (617 мг, 0,948 мкмоль), K₃PO₄ (6 г, 28,44 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли смесь диоксан:вода=5:1 (40 мл), и полученный раствор перемешивали в течение 2 часов при 70°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄, концентрировали под вакуумом, упаривали под вакуумом, и остаток очищали методом колоночной хроматографии на силикагеле, элюируя смесью PE/EA (30:1 ~ 1:1), в результате чего получали 4-хлор-6-(6-хлор-5-фтор-4-метилпиридин-3-ил)-7-метил-7Н-

пирроло[2,3-d]пиримидин (1,3 г, выход 44%) в виде твердого аморфного вещества желтого цвета.

6-(6-Хлор-5-фтор-4-метилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3d]пиримидин

[0566] Стадия 2: В герметизируемую реакционную пробирку загружали 4-хлор-6-(6хлор-5-фтор-4-метилпиридин-3-ил)-7-метил-7Н-пирроло[2,3-d]пиримидин (1,28 г, 4,13 ммоль), Pd(PPh₃)₄ (478 мг, 0,413 ммоль), DMF (20 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли Zn(CH₃)₂ (2 M, 1,4 мл), и полученный раствор перемешивали в течение 2 часа при 90°С. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали вакуумом. Остаток очищали методом колоночной под хроматографии на силикагеле, элюируя смесью РЕ/ЕА (30:1 ~ 1:2), в результате чего получали 6-(6-хлор-5-фтор-4-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3d]пиримидин (420 мг, выход 68%) в виде твердого аморфного вещества желтого цвета.

6-(5-Фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин

[0567] Стадия 3: В герметизируемую реакционную пробирку загружали 6-(6-хлор-5фтор-4-метилпиридин-3-ил)-4,7-диметил-7Н-пирроло[2,3-d]пиримидин (1,28 Γ , 4,13 ммоль), $Pd(PPh_3)_2Cl_2$ (580)мг, 0,826 ммоль), CuI мг, 1,65 (313)этинилтриизопропилсилан (526 мг, 2,89 ммоль), ТЕА (1,25 г, 12,39 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DMF (20 мл), и полученный раствор перемешивали в течение 2 часов при 90°C. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Итоговую смесь очищали с помощью хроматографической колонки С18. После концентрирования под вакуумом получали 6(6-хлор-5-фтор-4-метилпиридин-3-ил)-4,7-диметил-7H-пирроло[2,3-d]пиримидин (720 мг, выход 40%) в виде твердого аморфного вещества желтого цвета.

6-(5-Фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-5-иод-4,7диметил-7H-пирроло[2,3-d]пиримидин

[0568] Стадия 4: В круглодонную колбу загружали 6-(5-фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-4,7-диметил-7Н-пирроло [2,3d]пиримидин (400 мг, 1,60 ммоль), DCM (8 мл), добавляли TFA (547 мг, 4,8 ммоль) и магнитную мешалку.Затем добавляли NIS (396 мг, 1,76 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле. После концентрирования под вакуумом получали 6-(5-фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-5-иод-4,7-диметил-7Н-пирроло[2,3d]пиримидин (760 мг, выход 85%) в виде твердого аморфного вещества желтого цвета.

6-(5-Фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-4,7-диметил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин

[0569] **Стадия 5:** В круглодонную колбу загружали 6-(5-фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-5-иод-4,7-диметил-7H-пирроло[2,3-d]пиримидин (740 мг, 1,32 ммоль), 4-метил-2-((6-(трибутилстаннил)пиридин-3-ил)окси)пиримидин (1,26 г, 2,64 ммоль), Pd(PPh₃)₄ (153 мг, 0,132 ммоль), CuI (50 мг, 0,264 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DMF (15 мл), и полученный раствор

перемешивали в течение 2 ч при 90°С. Реакционную смесь концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ТСХ. После концентрирования под вакуумом получали 6-(5-фтор-4-метил-6-((триизопропилсилил)этинил)пиридин-3-ил)-4,7-диметил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин (540 мг, выход 66%) в виде твердого аморфного вещества желтого цвета.

6-(6-Этинил-5-фтор-4-метилпиридин-3-ил)-4,7-диметил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин

[0570] Стадия 6: круглодонную колбу загружали 6-(5-фтор-4-метил-6-В ((триизопропилсилил)этинил)пиридин-3-ил)-4,7-диметил-5-(5-((4-метилпиримидин-2ил)окси)пиридин-2-ил)-7Н-пирроло[2,3-d]пиримидин (520 мг, 0,84 ммоль), ТНГ (8 мл) и магнитную мешалку. Затем добавляли ТВАГ (1мкл, 1 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na₂SO₄ и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: XBridge Shield RP18 OBD Column, 30*150 мм, 5 мкм; Подвижная фаза А: вода (раствор NH_4HCO_3 10 ммоль/л + 0,1% $NH_3\cdot H_2O$), Подвижная фаза В: ACN; Скорость пропускания: 60 мл/мин; Градиент: от 20 В до 45 В в течение 8 мин; 254/220 нм; RT1: 7,77). После лиофилизации получали 6-(6-этинил-5-фтор-4-метилпиридин-3ил)-4,7-диметил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3d]пиримидин (213,2 мг, выход 55%) в виде твердого аморфного вещества белого цвета.

Таблица 48. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-5-фтор-4-метилпиридин-3-ил)-4,7-диметил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин	N N N N F	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,81 (s, 1H), 8,54 (d, J = 2,7 Гц, 1H), 8,50 (d, J = 5,0 Гц, 1H), 8,43 (s, 1H), 7,61 (dd, J = 8,5, 2,8 Гц, 1H), 7,27 (d, J = 8,5 Гц, 1H), 7,19 (d, J = 5,0 Гц, 1H), 4,82 (d, J = 0,8 Гц, 1H), 3,63 (s, 3H), 2,40 (s, 3H), 1,98 (d, J = 2,1 Гц, 3H).	446,15
6-(6-этинил-4-метоксипиридин-3-ил)-7-метил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7H-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,59 (d, J = 2,8 Гц, 1H), 8,48 (d, J = 5,0 Гц, 1H), 8,26 (s, 1H), 8,19 (s, 1H), 7,56 – 7,49 (m, 1H), 7,51 (s, 1H), 7,19 (d, J = 5,0 Гц, 1H), 6,88 (d, J = 8,7 Гц, 1H), 4,49 (s, 1H), 3,89 (s, 3H), 3,48 (s, 3H), 2,42 (s, 3H).	465,20
6-(6-этинил-5-фтор-4-метоксипиридин-3-ил)-7-метил-5-(5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7Н-пирроло[2,3-d]пиримидин-4-амин	NH ₂ N N N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,59 (d, J = 2,9 Гц, 1H), 8,49 (d, J = 5,0 Гц, 1H), 8,16 (s, 1H), 8,07 (s, 1H), 7,61 (dd, J = 8,8, 2,8 Гц, 1H), 7,27 (d, J = 9,0 Гц, 1H), 7,20 (d, J = 5,0 Гц, 1H), 5,60 (d, J = 0,9 Гц, 1H), 3,75 (s, 3H), 3,52 (s, 3H), 2,43 (s, 3H).	483,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-4- метоксипиридин-3-ил)-5- (2-фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-4,7- диметил-7H-пирроло[2,3- d]пиримидин	N O N O	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,77 (s, 1H), 8,50 (d, J = 5,0 Гц, 1H), 8,23 (d, J = 97,8 Гц, 1H), 7,46 (d, J = 19,1 Гц, 1H), 7,38 (s, 1H), 7,33 – 6,95 (m, 3H), 4,47 (d, J = 3,7 Гц, 1H), 3,91 (s, 3H), 3,64 (d, J = 9,7 Гц, 3H), 2,42 (s, 3H), 2,38 (s, 3H).	481,15
6-(6-этинил-4- метилпиридин-3-ил)-5- (3-фтор-5-((4- метилпиримидин-2- ил)окси)пиридин-2-ил)- 7-метил-7H-пирроло[2,3- d]пиримидин-4-амин	NH ₂ N N N	¹ H 9MP (400 MΓu, DMSO- d_6) δ 8,62 – 8,56 (m, 1H), 8,52 (d, J = 5,0 Γu, 1H), 8,36 (s, 1H), 8,28 (s, 1H), 7,77 (dd, J = 11,0, 2,3 Γu, 1H), 7,61 (s, 1H), 7,23 (d, J = 5,1 Γu, 1H), 7,02 (s, 1H), 4,42 (s, 1H), 3,52 (s, 3H), 2,43 (s, 3H), 2,05 (s, 3H).	467,30
6-(6-этинил-4-метокси-2-метилпиридин-3-ил)-5-(3-фтор-5-((4-метилпиримидин-2-ил)окси)пиридин-2-ил)-7-метил-7H-пирроло[2,3-d]пиримидин-4-амин	N O N O N O N O N O N O N O N O N O N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,58 (s, 1H), 8,53 (d, J = 5,0 Γц, 1H), 8,23 (s, 1H), 7,76 (dd, J = 11,0, 2,3 Γц, 1H), 7,30 (s, 1H), 7,23 (d, J = 5,0 Γц, 1H), 6,87 (s, 1H), 4,41 (s, 1H), 3,84 (s, 3H), 3,46 (s, 3H), 2,43 (s, 3H), 1,92 (s, 3H), 1,24 (s, 1H).	497,20
6-(6-этинил-4- метоксипиридин-3-ил)-5- (3-фтор-5-((4- метилпиримидин-2- ил)окси)пиридин-2-ил)- 7-метил-7H-пирроло[2,3- d]пиримидин-4-амин	N N O N N N N O O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,59 (d, J = 2,3 Γц, 1H), 8,53 (d, J = 5,1 Γц, 1H), 8,23 (s, 1H), 8,04 (s, 1H), 7,80 – 7,72 (m, 1H), 7,45 (s, 1H), 7,24 (d, J = 5,0 Γц, 1H), 7,01 – 6,96 (m, 1H), 4,47 (s, 1H), 3,88 (s, 3H), 3,56 (s, 3H), 2,44 (s, 3H).	483,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
6-(6-этинил-2,4- диметилпиридин-3-ил)-5- (3-фтор-5-((4- метилпиримидин-2- ил)окси)пиридин-2-ил)- 7-метил-7Н-пирроло[2,3- d]пиримидин-4-амин	N N O N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,57 (dd, J = 2,3, 0,9 Гц, 1H), 8,52 (d, J = 5,0 Гц, 1H), 8,25 (s, 1H), 7,78 (dd, J = 11,0, 2,3 Гц, 1H), 7,43 (s, 1H), 7,23 (d, J = 5,0 Гц, 1H), 6,81 (s, 2H), 4,37 (s, 1H), 3,44 (s, 3H), 2,42 (s, 3H), 2,13 (s, 3H), 1,97 (s, 3H).	491,20
6-(6-этинил-2,4- диметилпиридин-3-ил)-5- (3-фтор-5-((4- метилпиримидин-2- ил)окси)пиридин-2-ил)- 7-метил-7Н-пирроло[2,3- d]пиримидин-4-амин	N N O N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,57 (d, $J = 2,2$ Гц, 1H), 8,52 (d, $J = 5,0$ Гц, 1H), 8,25 (s, 1H), 7,78 (dd, $J = 11,0$, 2,3 Гц, 1H), 7,43 (s, 1H), 7,22 (s, 1H), 6,81 (s, 2H), 4,37 (d, $J = 0,8$ Γц, 1H), 3,44 (s, 3H), 2,42 (s, 3H), 2,13 (s, 3H), 1,97 (s, 3H).	481,20
6-(6-этинил-4- метоксипиридин-3-ил)-5- (3-фтор-5-((4- метилпиримидин-2- ил)окси)пиридин-2-ил)- 4,7-диметил-7H- пирроло[2,3- d]пиримидин	N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,79 (s, 1H), 8,53 (d, J = 5,0 Гц, 1H), 8,49 (d, J = 2,2 Гц, 1H), 8,19 (s, 1H), 7,86 (dd, J = 10,3, 2,3 Гц, 1H), 7,41 (s, 1H), 7,24 (d, J = 5,1 Гц, 1H), 4,47 (s, 1H), 3,84 (s, 3H), 3,68 (s, 3H), 2,42 (d, J = 11,5 Гц, 6H).	482,10

Схема 47

Трет-бутил-(6-(6-хлор-4-(2-гидроксиэтокси)пиридин-3-ил)-5-иод-7-((2-(триметилсилил)этокси)метил)-7Н-пирроло[2,3-d]пиримидин-4-ил)карбамат

[0571] Стадия 1: В круглодонную колбу загружали трет-бутил-N-[(третбутокси)карбонил]-N-{6-[6-хлор-4-(2-гидроксиэтокси)пиридин-3-ил]-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-ил}карбамат (3 г, 4,71 ммоль), ТҒА (2,27 г, 23,5 ммоль), дихлорметан (40 мл) и магнитную мешалку. Затем добавляли NIS (1,27 г, 5,65 ммоль), и полученный раствор перемешивали в течение 1 часа при комнатной температуре. Реакционную смесь разбавляли водой (40 мл), и водную фазу трижды экстрагировали дихлорметаном (60 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали флеш-хроматографии (элюирование смесью ацетонитрил/вода) методом концентрировали под вакуумом, в результате чего получали трет-бутил-(6-(6-хлор-4-(2-гидроксиэтокси)пиридин-3-ил)-5-иод-7-((2-(триметилсилил)этокси)метил)-7Нпирроло[2,3-d]пиримидин-4-ил)карбамат (600 мг) трет-бутил-N-[(трет-И бутокси)карбонил]-N-{6-[6-хлор-4-(2-гидроксиэтокси)пиридин-3-ил]-5-иод-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-ил}карбамат (3,00 г, выход 83%) в виде твердого аморфного вещества желтого цвета.

2-((5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2хлорпиридин-4-ил)окси)этан-1-ол

[0572] **Стадия 2:** В герметизируемую реакционную пробирку загружали трет-бутил-N- {6-[6-хлор-4-(2-гидроксиэтокси)пиридин-3-ил]-5-иод-7-{[2- (триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-ил} карбамат (500 мг, 755 мкмоль), 2-[2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (299 мг, 906 мкмоль), K₃PO₄ (479 мг, 2,26 ммоль), Pd(dppf)Cl₂ (55,2

мг, 75,5 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (10 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 10 г; элюирование смесью дихлорметан/метанол в соотношении 15:1). После концентрирования под вакуумом получали 2-((5-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил)окси)этан-1-ол (320 мг, выход 66%) в виде твердого аморфного вещества желтого пвета.

2-((5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-((третбутилдиметилсилил)этинил)пиридин-4-ил)окси)этан-1-ол

[0573] **Стадия 3:** В герметизируемую реакционную пробирку загружали 2-{[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил]окси}этан-1-ол (280 мг, 438 мкмоль), трет-бутил(этинил)диметилсилан (122 мг, 876 мкмоль), CuI (33,2 мг, 175 мкмоль), TEA (132 мг, 1,31 ммоль), Pd(dppf)Cl₂ (64,1 мг, 87,6 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DMF (5 мл), и полученную смесь перемешивали в течение 2 ч при 50°C. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (30 мл). Объединенные органические слои

промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом флешхроматографии (элюирование смесью ацетонитрил/вода). При концентрировании под вакуумом получали 2-((5-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-((третбутилдиметилсилил)этинил)пиридин-4-ил)окси)этан-1-ол (110 мг, выход 34%) в виде твердого аморфного вещества почти-белого цвета.

2-((5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2этинилпиридин-4-ил)окси)этан-1-ол

[0574] Стадия 4: В круглодонную колбу загружали 2-{[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-[2-(трет-бутилдиметилсилил)этинил]пиридин-4-ил]окси}этан-1-ол (100 мг, 134 мкмоль), ТНГ (5 мл) и магнитную мешалку. Затем добавляли ТВАГ (35,0 мг, 134 мкмоль), и полученный раствор перемешивали в течение 30 мин при комнатной температуре. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 5 г; элюирование смесью дихлорметан/метанол в соотношении 10:1). После концентрирования под вакуумом получали 2-((5-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7-((2-(триметилсилил)этокси)метил)-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-этинилпиридин-4-ил)окси)этан-1-ол (80,0 мг, выход 95%) в виде твердого аморфного вещества коричневого цвета.

2-((5-(4-Амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-этинилпиридин-4-ил)окси)этан-1-ол

[0575] Стадия 5: В круглодонную колбу загружали 2-{[5-(4-амино-5-{3-фтор-4-[(4-метилпиримидин-2-ил)окси]фенил}-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-2-этинилпиридин-4-ил]окси}этан-1-ол (70 мг, 111 мкмоль) и магнитную мешалку. Затем добавляли СН₃SO₃H/MeOH (1:2, 2 мл), и полученный раствор перемешивали в течение 1 часа при 70°С, после чего значение рН раствора доводили до уровня 7 с помощью ТЕА. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 5 г; элюирование смесью дихлорметан/метанол в соотношении 10:1) и концентрировали под вакуумом.Затем сырой материал очищали методом препаративной ВЭЖХ (Колонка: YMC-Actus Triart С18, 30*250, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO₃ 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 15 В до 48 В в течение 7 мин; 254/220 нм; RT1: 6,48). После лиофилизации получали 2-((5-(4-амино-5-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-7H-пирроло[2,3-d]пиримидин-6-ил)-2-этинилпиридин-4-ил)окси)этан-1-ол (9,20 мг, выход 17%) в виде твердого аморфного вещества почти белого цвета.

Таблица 49. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
2-((5-(4-амино-5-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7H- пирроло[2,3- d]пиримидин-6-ил)-2-	N N O F N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 12,07 (s, 1H), 8,49 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 8,16 (s, 1H), 7,40 – 7,30 (m, 2H), 7,27 – 7,17 (m, 2H), 7,10 (dd, J = 8,2, 2,0 Гц, 1H), 6,06 (s, 1H), 4,87	498,30
этинилпиридин-4-ил)окси)этан-1-ол	OH OH	(t, $J = 5.4 \Gamma \text{u}$, 1H), 4,40 (s, 1H), 4,01 (t, $J = 4.9 \Gamma \text{u}$, 2H), 3,56 (q, $J = 5.1 \Gamma \text{u}$, 2H), 2,43 (s, 3H).	

Пример 51

Схема 48

2-((5-Бром-2-хлорпиридин-4-ил)окси)этан-1-ол

[0576] Стадия 1: В круглодонную колбу загружали этан-1,2-диол (81,9 г, 1,32 моль), DMSO (800 мл) и магнитную мешалку. Затем добавляли NaH (7,58 г, 316 ммоль), и полученный раствор перемешивали в течение 30 минут при комнатной температуре, а затем добавляли 5-бром-2,4-дихлорпиридин (60 г, 264 ммоль), и раствор перемешивали в течение 1 часа при 50°С. Реакционную смесь разбавляли водой (500 мл), и водную фазу трижды экстрагировали этилацетатом (EA) (500 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 500 г; элюирование смесью DCM/EA в соотношении 1:1). При концентрировании под вакуумом получали 2-[(5-бром-2-хлорпиридин-4-ил)окси]этан-1-ол (55,0 г, выход 82%) в виде маслянистой жидкости желтого цвета.

5-Бром-4-(2-((трет-бутилдиметилсилил)окси)этокси)-2-хлорпиридин

[0577] Стадия 2: В круглодонную колбу загружали 2-[(5-бром-2-хлорпиридин-4-ил)окси]этан-1-ол (55 г, 217 ммоль), имидазол (73,5 г, 1,08 моль), DMF (1000 мл) и магнитную мешалку. Затем добавляли TBSCl (65,4 г, 434 ммоль), и полученный раствор перемешивали в течение 16 часов при комнатной температуре. Реакционную смесь экстрагировали этилацетатом (ЕА) (1000 мл), объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 600 г; элюирование смесью РЕ/ЕА, соотношение 40:1). При концентрировании под вакуумом получали 5-бром-4-(2-((третбутилдиметилсилил)окси)этокси)-2-хлорпиридин (82,4 г, 100%) в виде твердого кристаллического вещества почти-белого.

Трет-бутил-N-[(трет-бутокси)карбонил]-N-[6-(4-{2-[(трет-бутилдиметилсилил)окси]этокси}-6-хлорпиридин-3-ил)-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-ил]карбамат

[0578] Стадия 3: В герметизируемую реакционную пробирку загружали 5-бром-4-{2-[(трет-бутилдиметилсилил)окси]этокси}-2-хлорпиридин (28 г, 76,3 ммоль), {бис[(трет-бутокси)карбонил]амино}-7-{[2-(триметилсилил)этокси]метил}-7Нпирроло[2,3-d]пиримидин-6-ил)бороновую кислоту (77,2 г, 152 ммоль), CsF (34,6 г, 228 ммоль), Pd(dtbpf)Cl₂ (4,97 г, 7,63 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диоксан/Н₂О (600 мл), и полученную смесь перемешивали в течение 2 часов при 70°C. Реакционную смесь разбавляли водой (400 мл), и водную фазу трижды экстрагировали DCM (500 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом флеш-хроматографии (элюирование смесью ацетонитрил/вода). После концентрирования под вакуумом получали трет-бутил-N-[(трет-бутокси)карбонил]-N-[6-(4-{2-[(трет-бутилдиметилсилил)окси]этокси}-6хлорпиридин-3-ил)-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3d]пиримидин-4-ил]карбамат (30,0 г, выход 52%) в виде твердого аморфного вещества желтого цвета.

2-((5-(4-Амино-7H-пирроло[2,3-d]пиримидин-6-ил)-2-хлорпиридин-4-ил)окси)этан-1-ол

[0579] Стадия 4: В круглодонную колбу загружали трет-бутил-N-[(третбутокси)карбонил]-N-[6-(4-{2-[(трет-бутилдиметилсилил)окси]этокси}-6хлорпиридин-3-ил)-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3d]пиримидин-4-ил]карбамат (29 г, 38,6 ммоль) и магинтную мешалку. Затем добавляли смесь НСІ (12М) и МеОН (1:1, 600 мл), и полученный раствор перемешивали в течение 3 ч при комнатной температуре, после чего значение рН раствора доводили до уровня 8 с помощью TEA при 0°C, и затем раствор концентрировали под вакуумом. Осажденную твердую фазу отфильтровывали и трижды промывали ACN (300 мл), сушили под вакуумом, в результате чего получали 2-((5-(4-амино-7H-пирроло[2,3d]пиримидин-6-ил)-2-хлорпиридин-4-ил)окси)этан-1-ол (8,00 г, выход 67%) в виде твердого аморфного вещества почти белого цвета.

3-Хлор-6,7-дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин

[0580] **Стадия 5:** В герметизируемую реакционную пробирку загружали 2-[(5-{4-амино-7H-пирроло[2,3-d]пиримидин-6-ил}-2-хлорпиридин-4-ил)окси]этан-1-ол (7,9 г, 25,8 ммоль), DIAD (10,4 г, 51,6 ммоль), ТНГ (80 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли PPh₃ (13,5 г, 51,6 ммоль) в ТНГ (40 мл), и полученную смесь перемешивали в течение 3 часов при 30°C. Растворитель удаляли под вакуумом. Остаток промывали DCM (200 мл) и сушили под вакуумом, в результате чего получали 3-хлор-6,7-дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (5,00 г, выход 67%) в виде твердого аморфного вещества почти белого цвета.

3-((Триизопропилсилил)этинил)-6,7-дигидропиридо[3,4f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин

[0581] Стадия 6: В герметизируемую реакционную пробирку загружали 3-хлор-6,7дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d] [1,4]оксазепин-12-амин (4,9 г, 17,0 ммоль), DMF (150 мл), TEA (5,15 г, 50,9 ммоль), CuI (1,29 г, 6,80 ммоль), $Pd(dppf)Cl_2.CH_2Cl_2$ (2,77 г, 3,40 ммоль) и магнитную мешалку, после чего ее трижды подвергали продувки азотом. Затем добавляли процедуре откачки И этинилтрис(пропан-2-ил)силан (6,20 г, 34,0 ммоль), и полученную смесь перемешивали в течение 2 часов при 70°C. Реакционную смесь разбавляли водой (500 мл), и водную фазу трижды экстрагировали дихлорметаном (400 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 100 г; элюирование смесью дихлорметана и метанола, соотношение 20:1). После концентрирования под вакуумом получали 3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2d][1,4]оксазепин-12-амин (4,5 г, выход 61,0%) в виде твердого аморфного вещества коричневого цвета.

13-Иод-3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин

[0582] Стадия 7: В круглодонную колбу загружали 3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (4,4 г, 10,1 ммоль), ТFA (3,45 г, 30,3 ммоль) и магнитную мешалку. Затем добавляли дихлорметан (100 мл), после чего добавляли NIS (3,39 г, 15,1 ммоль) при 0°С, и полученный раствор перемешивали в течение 1 часа при комнатной температуре, Реакцию гасили водным раствором NaHSO₃, после чего рН раствора доводили до уровня 6-7 бикарбонатом натрия. Реакционную смесь разбавляли водой (30 мл), осажденные твердые вещества отделяли фильтрованием и промывали ACN (300 мл). После сушки под вакуумом получали 13-иод-3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (5,50 г, выход 97%) в виде твердого аморфного вещества почти белого цвета.

13-(3-Фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин

[0583] Стадия 8: В герметизируемую реакционную пробирку загружали 13-иод-3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4-f] [5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (5,4 г, 9,65 ммоль), 2-[2-фтор-4-(4,4,5,5тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (4,75)ммоль), K₃PO₄ (6,13 г, 28,9 ммоль), Pd(dppf)Cl₂.CH₂Cl₂ (787 мг, 965 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O(100 мл), и полученную смесь перемешивали в течение 1 часа при 90°С. Реакционную смесь разбавляли водой (80 мл), и водную фазу трижды экстрагировали дихлорметаном (100 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 100 г; элюирование смесью дихлорметана и метанола, соотношение 20:1). После концентрирования под вакуумом получали 13-(3фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (4,70 г, выход 76%) в виде твердого аморфного вещества коричневого цвета.

3-Этинил-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7дигидропиридо[3,4-f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин

[0584] Стадия 9: В круглодонную колбу загружали 13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7-дигидропиридо[3,4-

f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (4,6 г, 7,23 ммоль), тетрагидрофуран (60 мл) и магнитную мешалку. Затем добавляли ТВАF (1,89 г, 7,23 ммоль), и полученный раствор перемешивали в течение 30 мин при комнатной температуре. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 100 г; элюирование смесью дихлорметана и метанола, соотношение 20:1). После концентрирования под вакуумом остаток промывали водой (50 мл) и ACN (100 мл), в результате чего получали 3-этинил-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидропиридо[3,4-

f]пиримидо[5',4':4,5]пирроло[1,2-d][1,4]оксазепин-12-амин (3,00 г, выход 86%) в виде твердого аморфного вещества светло-желтого цвета.

Таблица 50. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-этинил-13-(3-фтор-4- ((4-метилпиримидин-2- ил)окси)фенил)-6,7- дигидропиридо[3,4- f]пиримидо[5',4':4,5]пир роло[1,2- d][1,4]оксазепин-12- амин	NH ₂ N N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,53 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 8,02 (s, 1H), 7,54 – 7,41 (m, 2H), 7,34 – 7,27 (m, 1H), 7,25 (s, 1H), 7,22 (d, J = 5,1 Γц, 1H), 6,11 (s, 1H), 4,67 (s, 4H), 4,39 (s, 1H), 2,46 (s, 3H).	480,15

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
(R)-3-этинил-13-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-6,7- дигидропиридо[3,4- f]пиримидо[5',4':4,5]пир роло[1,2- d][1,4]оксазепин-12- амин	N O F N Abs O	¹ H ЯМР (400 МГц, DMSO- d_6) 8,54 (d, J = 5,0 Гц, 1H), 8,22 (s, 1H), 8,05 (s, 1H), 7,52 (d, J = 8,5 Гц, 2H), 7,36 (s, 1H), 7,29 -7,17 (m, 2H), 5,76 (s, 1H), 5,62 -5,37 (m, 1H), 4,73 (dd, J = 12,8, 4,3 Гц, 1H), 4,60 (d, J = 12,6 Гц, 1H), 4,37 (s, 1H), 2,46 (s, 3H), 1,39 (d, J = 7,1 Гц, 3H).	494,20
(S)-3-этинил-13-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-6- метил-6,7- дигидропиридо[3,4- f]пиримидо[5',4':4,5]пир роло[1,2- d][1,4]оксазепин-12- амин	N N O F N N	¹ Н ЯМР (400 МГц, DMSO- d_6) 8,53 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 8,04 (s, 1H), 7,51 - 7,41 (m, 2H), 7,30 - 7,20 (m, 3H), 5,76 (s, 1H), 4,94 (td, J = 6,4, 2,8 Гц, 1H), 4,64 (dd, J = 15,3, 2,8 Гц, 1H), 4,42 (s, 1H), 4,34 (dd, J = 15,3, 6,4 Гц, 1H), 2,46 (s, 3H), 1,32 (d, J = 6,4 Гц, 3H).	494,20
(S)-3-этинил-13-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-7- метил-6,7- дигидропиридо[3,4- f]пиримидо[5',4':4,5]пир роло[1,2- d][1,4]оксазепин-12- амин	N N O F N N abs O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,54 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 8,05 (s, 1H), 7,52 (d, J = 8,6 Γц, 2H), 7,32 (d, J = 28,4 Гц, 1H), 7,23 - 7,16 (m, 2H), 6,12 (s, 1H), 5,54 - 5,39 (m, 1H), 4,73 (dd, J = 12,8, 4,3 Γц, 1H), 4,60 (d, J = 12,6 Γц, 1H), 4,37 (s, 1H), 2,46 (s, 3H), 1,39 (d, J = 7,2 Γц, 3H).	494,15
(R)-3-этинил-13-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-6- метил-6,7- дигидропиридо[3,4- f]пиримидо[5',4':4,5]пир роло[1,2- d][1,4]оксазепин-12- амин	N O F N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,53 (d, J = 5,0 Гц, 1H), 8,24 (s, 1H), 8,04 (s, 1H), 7,57 - 7,35 (m, 2H), 7,34 - 7,17 (m, 3H), 6,21 (s, 1H), 4,94 (td, J = 6,4, 2,8 Γц, 1H), 4,65 (dd, J = 15,3, 2,9 Γц, 1H), 4,42 (s, 1H), 4,34 (dd, J = 15,3, 6,4 Γц, 1H), 2,46 (s, 3H), 1,32 (d, J = 6,4 Гц, 3H).	494,20

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-этинил-13-(3-фтор-4- ((4-метилпиримидин-2- ил)окси)фенил)-6,7- дигидропиридо[3,2- f]пиримидо[5',4':4,5]пир роло[1,2- d][1,4]оксазепин-12- амин	N O F N O N O	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,52 (d, J = 5,0 Гц, 1H), 8,23 (s, 1H), 7,49 – 7,34 (m, 3H), 7,29 – 7,20 (m, 3H), 6,15 (s, 1H), 4,64 (t, J = 5,1 Γц, 2H), 4,55 (t, J = 5,2 Γц, 2H), 4,44 (s, 1H), 2,45 (s, 3H).	480,20

Пример 52

Схема 49

Метил-3-(3-(4-амино-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3d]пиримидин-6-ил)-6-хлорпиридин-2-ил)пропаноат

[0585] Стадия 1: В колбу 6-иод-7-{[2круглодонную загружали (триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-4-амин (23,8 г, 61,0 метил-3-[6-хлор-3-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)пиридин-2ммоль), ил]пропаноат (21,8 г, 67,1 ммоль), Pd(dtbpf)Cl₂ (3,97 г, 6,10 ммоль), CsF (27,8 г, 183 ммоль) и магнитную мешалку. Затем добавляли диоксан/Н2О (500 мл), и полученный раствор перемешивали в течение 2 часов при 90°C. Реакционную смесь разбавляли водой (500 мл), и водную фазу трижды экстрагировали дихлорметаном (800 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом ВЭЖХ (элюирование смесью МеСN/H2O = 0%~50%; 30 мин). После концентрирования под вакуумом получали метил-3-[3-(4-амино-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-6-хлорпиридин-2ил пропаноат (13 г., выход 46%) в виде твердого аморфного вещества желтого цвета.

3-(3-(4-Амино-7-((2-(триметилсилил)этокси)метил)-7H-пирроло[2,3-d]пиримидин-6-ил)-6-хлорпиридин-2-ил)пропан-1-ол

[0586] **Стадия 2:** В круглодонную колбу загружали метил-3-[3-(4-амино-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-6-хлорпиридин-2-ил]пропаноат (13,0 г, 28,1 ммоль), добавляли тетрагидрофуран (200 мл). При -30°C добавляли LiAlH₄ (1,28 г, 33,7 ммоль), и полученный раствор перемешивали при -30°C

в течение 2 часов. Реакционную смесь гасили водой (2,44 мл), и реакционную смесь фильтровали через слой целита (Celite®), затем этот слой промывали DCM, и фильтрат концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 40:1). После концентрирования под вакуумом получали 3-[3-(4-амино-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)-6-хлорпиридин-2-ил]пропан-1-ол (6,30 г, выход 52%) в виде твердого аморфного вещества желтого цвета.

3-(3-(4-Амино-7H-пирроло[2,3-d]пиримидин-6-ил)-6-хлорпиридин-2-ил)пропан-1ол

[0587] **Стадия 3:** В круглодонную колбу загружали 3-[3-(4-амино-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)-6-хлорпиридин-2-ил]пропан-1-ол (5,00 г, 11,5 ммоль) и магнитную мешалку. Затем добавляли HCl/MeOH (50 мл), и полученный раствор перемешивали в течение 1 часа при 40°C. Реакционную смесь концентрировали под вакуумом. После разбавления посредством MeCN (20 мл) реакционную смесь фильтровали через слой целита (Celite®), затем этот слой промывали MeCN, и остаток, полученный на фильтре, представлял собой 3-(3-{4-амино-7H-пирроло[2,3-d]пиримидин-6-ил}-6-хлорпиридин-2-ил)пропан-1-ол (3,00 г, выход 90%) в виде твердого аморфного вещества почти-белого цвета.

3-Хлор-6,7-дигидро-5H-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12амин

[0588] **Стадия 4:** В герметизируемую реакционную пробирку загружали 3-(3-{4-амино-7H-пирроло[2,3-d]пиримидин-6-ил}-6-хлорпиридин-2-ил)пропан-1-ол (3,50

г, 11,5 ммоль), тетрагидрофуран (40 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DIAD (3,47 г, 17,2 ммоль) и PPh₃ (4,52 г, 17,2 ммоль), после чего смесь перемешивали в течение 2 часов при 25°C. Реакционную смесь разбавляли водой (40 мл), и водную фазу трижды экстрагировали дихлорметаном (40 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 30:1). После концентрирования под вакуумом получали 3-хлор-6,7-дигидро-5Н-пиридо[3,2с]пиримидо[5',4":4,5]пирроло[1,2-а]азепин-12-амин (2,00 г, выход 61%) в виде твердого аморфного вещества желтого цвета.

3-((Триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,2с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0589] Стадия 5: В герметизируемую реакционную пробирку загружали 3-хлор-6,7дигидро-5Н-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (1,98 г, 6,92 ммоль), диметилформамид (20 мл), CuI (524 мг, 2,76 ммоль), TEA (2,09 г, 20,7 ммоль), $Pd(dppf)Cl_2$ (505 мг, 692 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки продувки азотом. Затем И добавляли этинилтрис(пропан-2-ил)силан (2,51 г, 13,8 ммоль), и полученную смесь перемешивали в течение 2 часов при 90°C. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 40/1). После концентрирования под вакуумом получали 3-((триизопропилсилил)этинил)-6,7дигидро-5Н-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (1,50)выход 50%) в виде твердого аморфного вещества желтого цвета.

13-Иод-3-((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,2с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0590] Стадия 6: В круглодонную колбу загружали 3-((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (1.88)г, 4,35 ммоль), диметилформамид (2 мл), NIS (978 мг, 4,35 ммоль) и магнитную мешалку, после чего полученный раствор перемешивали в течение 1 часа при 25°C. Реакционную смесь разбавляли водным раствором Na₂SO₃ (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 40:1). После вакуумом получали 13-иод-3концентрирования под ((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,2c]пиримидо[5',4':4,5]пирроло[1,2-a]азепин-12-амин (1,50 г, выход 62%) в виде твердого

> 13-(3-Фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,2с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

аморфного вещества желтого цвета.

[0591] **Стадия 7:** В герметизируемую реакционную пробирку загружали 13-иод-3- ((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,2- с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (1,48 г, 2,65 ммоль), 2-[2-фтор-4-

(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (960 мг, 2,91 ммоль), K₃PO₄ (1,68 г, 7,95 ммоль), Pd(dppf)Cl₂ (193 мг, 265 мкмоль), DME/H₂O (20 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом, и полученную смесь перемешивали при 90°C в течение 1 часа. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (элюирование смесью дихлорметан/метанол; 30:1). После концентрирования под вакуумом получали 13-(3-фтор-4-((4-метилпиримидин-2ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,2c]пиримидо[5',4':4,5]пирроло[1,2-a]азепин-12-амин (1 г, выход 60%) в виде твердого аморфного вещества желтого цвета.

3-Этинил-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0592] Стадия 8: В круглодонную колбу загружали 13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (980 мг, 1,55 ммоль), тетрагидрофуран (20 мл), ТВАБ (2,07 мл, 2,07 ммоль) и магнитную мешалку, после чего полученный раствор перемешивали в течение 1 часа при 25°С. Реакционную смесь разбавляли водой (20 мл), и водную фазу трижды экстрагировали дихлорметаном (20 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Затем сырой материал очищали методом ВЭЖХ (Колонка: YMC-Actus Triart С18, 30*250, 5 мкм; Подвижная фаза А: вода (раствор NH4HCO₃ 10 ммоль/л), Подвижная фаза В: АСN; Скорость пропускания: 60 мл/мин; Градиент: от 25 В до 60 В

в течение 7 мин; 254/220 нм; RT1: 6,32). После лиофилизации получали 3-этинил-13- $(3-\phi Top-4-((4-метилпиримидин-2-ил)окси) фенил)-6,7-дигидро-5H-пиридо[3,2-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (250 мг, выход 34%) в виде твердого аморфного вещества почти белого цвета.$

Таблица 51. Примерные соединения

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-этинил-13-(3-фтор-4- ((4-метилпиримидин-2- ил)окси)фенил)-6,7- дигидро-5Н-пиридо[3,2- с]пиримидо[5',4':4,5]пирр оло[1,2-а]азепин-12-амин	N O F N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,50 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 7,45 – 7,35 (m, 3H), 7,29 – 7,19 (m, 3H), 6,12 (s, 2H), 4,41 (s, 1H), 4,17 (d, J = 7,0 Γц, 2H), 2,92 (t, J = 7,1 Γц, 2H), 2,44 (s, 3H), 2,31 (q, J = 6,8 Γц, 2H).	478,20
(S)-1-((S)-4-(12-амино-3- этинил-6,7-дигидро-5Н- пиридо[3,4- с]пиримидо[5',4':4,5]пирр оло[1,2-а]азепин-13- ил)циклогекс-3-ен-1- карбонил)пирролидин-2- карбонитрил	H ₂ N N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,53 (s, 1H), 8,15 (s, 1H), 7,66 (s, 1H), 6,80 (s, 1H), 5,89 (s, 1H), 4,74 (dd, $J = 7,4$, 3,4 Γц, 1H), 4,43 (s, 1H), 4,09 (s, 2H), 3,77 (s, 1H), 3,53 (q, $J = 8,4$ Γц, 1H), 3,02 – 2,89 (m, 1H), 2,66 (d, $J = 7,0$ Γц, 2H), 2,34 (d, $J = 6,1$ Γц, 2H), 2,29 – 1,93 (m, 8H), 1,80 – 1,74 (m, 2H).	478,25
(S)-1-((R)-4-(12-амино-3- этинил-6,7-дигидро-5Н- пиридо[3,4- с]пиримидо[5',4':4,5]пирр оло[1,2-а]азепин-13- ил)циклогекс-3-ен-1- карбонил)пирролидин-2- карбонитрил	Abs N O N N N N N N N N N N N N N N N N N	¹ Н ЯМР (400 МГц, DMSO- d_6) δ 8,53 (s, 1H), 8,11 (s, 1H), 7,65 (s, 1H), 6,61 (d, J = 46,1 Гц, 1H), 5,87 (s, 1H), 4,75 (dd, J = 7,9, 3,7 Гц, 1H), 4,42 (s, 1H), 4,20 (s, 1H), 3,96 (s, 1H), 3,83 – 3,47 (m, 2H), 2,98 (d, J = 5,9 Гц, 1H), 2,76 – 2,59 (m, 2H), 2,33 (s, 2H), 2,28 – 2,10 (m, 4H), 2,04 (d, J = 6,7 Гц, 4H), 1,80 (d, J = 6,2 Гц, 2H).	478,25

Схема 50

Метил-3-[2-хлор-5-(4-хлор-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3d]пиримидин-6-ил)пиридин-4-ил]пропаноат

[0593] **Стадия 1:** В герметизируемую реакционную пробирку загружали 4-хлор-6-иод-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин (5 г, 12,2 ммоль), {2-[6-хлор-4-(3-метокси-3-оксопропил)пиридин-3-ил]-4,5,5-триметил-1,3,2-диоксаборолан-4-ил}метилий (4,73 г, 14,6 ммоль), CsF (5,54 г, 36,5 ммоль), Pd(dtbpf)Cl₂

(795 мг, 1,22 ммоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (100 мл), и полученную смесь перемешивали в течение 1 часа при 70°С. Реакционную смесь разбавляли H₂O (400 мл), и водную фазу трижды экстрагировали дихлорметаном (200 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 300 г; элюирование смесью PE/EA, 30/1). После концентрирования под вакуумом получали метил-3-[2-хлор-5-(4-хлор-7-{[2-(триметилсилил)этокси]метил}-7H-пирроло[2,3-d]пиримидин-6-ил)пиридин-4-ил]пропаноат (2,00 г, выход 34,0%) в виде твердого аморфного вещества черного цвета.

Метил-3-[2-хлор-5-(4-метил-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3d]пиримидин-6-ил)пиридин-4-ил]пропаноат

[0594] Стадия 2: В герметизируемую реакционную пробирку загружали метил-3-[2-хлор-5-(4-хлор-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-4-ил]пропаноат (1,9 г, 3,94 ммоль), Рd(PPh₃)₄ (455 мг, 394 мкмоль), диметилформамид (25 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диметилцинк (413 мг, 4,33 ммоль), и полученную смесь перемешивали в течение 2 часов при 90°С. Реакционную смесь разбавляли H₂O (100 мл), и водную фазу трижды экстрагировали этилацетатом (80 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка 300 г; элюирование смесью PE/EA, 10/1). После концентрирования под вакуумом получали метил-3-[2-хлор-5-(4-метил-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-4-ил]пропаноат (850 мг, выход 46,9%) в виде твердого аморфного вещества черного цвета.

3-[2-Хлор-5-(4-метил-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3d]пиримидин-6-ил)пиридин-4-ил]пропан-1-ол

[0595] Стадия 3: В круглодонную колбу загружали метил-3-[2-хлор-5-(4-метил-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-4-ил]пропаноат (800 мг, 1,73 ммоль), тетрагидрофуран (10 мл) и магнитную мешалку. Затем добавляли алюмогидрид лития (98,2 мг, 2,59 ммоль), и полученный раствор перемешивали при -30°С. Реакционную смесь гасили Н₂О (50 мл), и водную фазу трижды экстрагировали дихлорметаном (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом, в результате чего получали 3-[2-хлор-5-(4-метил-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-4-ил]пропан-1-ол (570 мг, выход 76,1%) в виде твердого аморфного вещества почти белого цвета.

3-(2-Хлор-5-{4-метил-7H-пирроло[2,3-d]пиримидин-6-ил} пиридин-4-ил)пропан-1ол

N N N CI

[0596] Стадия 4: В круглодонную колбу загружали 3-[2-хлор-5-(4-метил-7-{[2-(триметилсилил)этокси]метил}-7Н-пирроло[2,3-d]пиримидин-6-ил)пиридин-4-ил]пропан-1-ол (550 мг, 1,27 ммоль) и магнитную мешалку. Затем добавляли НСІ/МеОН (10 мл), и полученный раствор перемешивали в течение 1 часа при 40°С. Раствор концентрировали под вакуумом. Затем добавляли МеОН (5 мл) и этилендиамин (76,3 мг, 1,27 ммоль), после чего раствор перемешивали в течение 30 минут при комнатной температуре. Реакционную смесь разбавляли Н₂О (50 мл), и водную фазу трижды экстрагировали DCM (50 мл). Объединенные органические слои

промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом, в результате чего получали 3-(2-хлор-5-{4-метил-7H-пирроло[2,3-d]пиримидин-6-ил}пиридин-4-ил)пропан-1-ол (360 мг, выход 93,7%) в виде твердого аморфного вещества почти белого цвета.

3-Хлор-12-метил-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2а]азепин

[0597] Стадия 5: В герметизируемую реакционную пробирку загружали 3-(2-хлор-5-{4-метил-7H-пирроло[2,3-d]пиримидин-6-ил}пиридин-4-ил)пропан-1-ол (340 мг, 1,12 ммоль), PPh₃ (510 мг, 1,68 ммоль), тетрагидрофуран (10 мл) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DIAD (655 мг, 1,68 ммоль), и полученную смесь перемешивали в течение 1 часа при 40°С.Реакционную смесь разбавляли H₂O (50 мл), и водную фазу трижды экстрагировали дихлорметаном (50 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Остаток очищали методом хроматографии на силикагеле (колонка на 300 г; элюирование смесью PE/EA; 1/1). При концентрировании под вакуумом получали 3-хлор-12-метил-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин (180 мг, выход 56,6%) в виде аморфного твердого вещества почти белого цвета.

12-Метил-3-((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин

[0598] **Стадия 6:** В герметизируемую реакционную пробирку загружали 3-хлор-12-метил-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин (160 мг, 561 мкмоль), ТЕА (169 мг, 1,68 ммоль), СиІ (42,5 мг, 224 мкмоль), Рd(pddf)Сl₂ (81,9 мг, 112 мкмоль), трис(пропан-2-ил)силан (88,8 мг, 561 мкмоль) и магнитную мешалку,

после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли диметилформамид ($10\,$ мл), и полученную смесь перемешивали в течение $2\,$ часов при 70° С.Реакционную смесь разбавляли H_2O ($50\,$ мл), и водную фазу трижды подвергали экстракции этилацетатом (EA) ($20\,$ мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на $50\,$ г; элюирование смесью гексанов и этилацетата, 15/1). При концентрировании под вакуумом получали 12-метил-3- ((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,4-

с]пиримидо[5',4':4,5]пирроло[1,2-a]азепин (150 мг, выход 62,2%) в виде твердого аморфного вещества оранжевого цвета.

13-Иод-12-метил-3-((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин

[0599] **Стадия** 7: В круглодонную колбу загружали 12-метил-3- ((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,4-

с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин (150 мг, 348 мкмоль), дихлорметан (5 мл), ТFA (118 мг, 1,04 ммоль) и магнитную мешалку. Затем добавляли 1-иодпирролидин-2,5-дион (85,9 мг, 382 мкмоль) при 0°С, и полученный раствор перемешивали в течение 30 минут при комнатной температуре. Смесь гасили насыщенным водным раствором NaHSO₃ до достижения уровня рН 8-9, экстрагировали DCM (100 мл *3), и органическую фазу объединяли и сушили над Na₂SO₄. При концентрировании под вакуумом получали 13-иод-12-метил-3-((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин (180 мг, выход 93,2%).

13-(3-Фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-12-метил-3-((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин

[0600] Стадия 8: В герметизируемую реакционную пробирку загружали 13-иод-12метил-3-((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин (160 мг, 287 мкмоль), 2-[2-фтор-4-(4,4,5,5тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (113 мкмоль), K₃PO₄ (182 мг, 861 мкмоль), Pd(PPh₃)₄ (331 мг, 287 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли DME/H₂O (6 мл), и полученную смесь перемешивали в течение 1 часа при 90°C. Реакционную смесь разбавляли H₂O (50 мл), и водную фазу трижды экстрагировали дихлорметаном (30 мл). Объединенные органические слои промывали солевым раствором, сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом хроматографии на силикагеле (колонка на 50 г; элюирование смесью гексанов и этилацетата, 1/1). После концентрирования под вакуумом получали 13-(3-фтор-4-((4метилпиримидин-2-ил)окси)фенил)-12-метил-3-((триизопропилсилил)этинил)-6,7дигидро-5Н-пиридо[3,4-с]пиримидо [5',4':4,5]пирроло[1,2-а]азепин (100 мг, выход 55,2%) в виде твердого аморфного вещества черного цвета.

3-Этинил-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-12-метил-6,7дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин

[0601] Стадия 9: В круглодонную колбу загружали 13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-12-метил-3-((триизопропилсилил)этинил)-6,7-дигидро-5Нпиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин (90 мг, 142 мкмоль), тетрагидрофуран (1 мл) и магнитную мешалку. Затем добавляли ТВАГ (34,4 мг, 142 мкмоль), и полученный раствор перемешивали при комнатной температуре. Реакционную смесь разбавляли DCM (100 мл), Объединенные органические слои шесть раз промывали Н₂О (200 мл), сушили над сульфатом натрия, фильтровали и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной ВЭЖХ (Колонка: YMC-Actus Triart C18, 20*250 мм, 5 мкм; 12 нм; Подвижная фаза А: не определена, Подвижная фаза В: не определена; Скорость пропускания: 60 мл/мин; Градиент: от 40 B до 65 B в течение 8 мин; 220/254 нм; RT1: 7,07). После лиофилизации получали 3-этинил-13-(3-фтор-4-((4-метилпиримидин-2ил)окси)фенил)-12-метил-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2а]азепин (18,9 мг, выход 27,9%) в виде твердого аморфного вещества почти белого цвета.

Таблица 52. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-этинил-13-(3-фтор-4- ((4-метилпиримидин-2- ил)окси)фенил)-12- метил-6,7-дигидро-5H- пиридо[3,4- с]пиримидо[5',4':4,5]пи рроло[1,2-а]азепин	N F N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,75 (s, 1H), 8,51 (d, J = 5,1 Γц, 1H), 8,12 (s, 1H), 7,71 (s, 1H), 7,50 (d, J = 11,2 Γц, 1H), 7,42 (t, J = 8,3 Γц, 1H), 7,29 (d, J = 8,4 Γц, 1H), 7,21 (d, J = 5,0 Γц, 1H), 4,44 (s, 1H), 4,27 (t, J = 6,4 Γц, 2H), 2,80 (t, J = 7,0 Γц, 2H), 2,43 (d, J = 9,3 Γц, 6H), 2,29 (t, J = 6,9 Гц, 2H).	477,25

Пример 54

Схема 51

13-(3-Фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3-((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5] пирроло[1,2-а]азепин-12-амин

[0602] В герметизируемую реакционную пробирку загружали 13-иод-3- ((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4-

с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (180 мг, 322 мкмоль), 2-[2-фтор-4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси]-4-метилпиримидин (159 мг, 482 мкмоль), K_3PO_4 (204 мг, 965 мкмоль), $Pd(PPh_3)_4$ (37,1 мг, 32,1 мкмоль) и магнитную мешалку, после чего ее трижды подвергали процедуре откачки и продувки азотом. Затем добавляли $DME:H_2O = 10:1$ (3 мл), и полученный раствор перемешивали при 90°С в течение 2 часов. Реакционную смесь гасили водой, экстрагировали DCM, сушили над Na_2SO_4 и концентрировали под вакуумом. Полученный сырой материал очищали методом препаративной TCX (DCM:MeOH = 15:1). После концентрирования под вакуумом получали 13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3((триизопропилсилил)этинил)-6,7-дигидро-5H-пиридо[3,4-

с]пиримидо[5',4':4,5]пирроло[1,2-a]азепин-12-амин (90,0 мг, выход 44%) в виде твердого аморфного вещества желтого цвета.

3-(Этинил-d)-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5H-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин

[0603] В герметизируемую реакционную пробирку загружали 13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-3((триизопропилсилил)этинил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (90 мг, 141 мкмоль), ТВАГ (14,7 мг, 56,4 мкмоль), D₂O (310 мг, 15,5 ммоль) тетрагидрофуран (2 мл) и магнитную мешалку. Реакционную смесь перемешивали в течение 30 мин при 100°С в микроволновом реакторе. После охлаждения растворитель удаляли, и полученный остаток очищали методом препаративной ТСХ (DCM:MeOH = 15:1). После перекристаллизации из АСN получали 3-(этинил-d)-13-(3-фтор-4-((4-метилпиримидин-2-ил)окси)фенил)-6,7-дигидро-5Н-пиридо[3,4-с]пиримидо[5',4':4,5]пирроло[1,2-а]азепин-12-амин (11,8 мг, выход 17%) в виде твердого аморфного вещества почти белого цвета.

Таблица 53. Примеры соединений

Соединение	Структурная формула	Данные протонного ЯМР	MC [M+1]
3-(этинил-d)-13-(3- фтор-4-((4- метилпиримидин-2- ил)окси)фенил)-6,7- дигидро-5Н-пиридо[3,4- с]пиримидо[5',4':4,5]пир роло[1,2-а]азепин-12- амин	N O F D N N N N N N N N N N N N N N N N N N	¹ H ЯМР (400 МГц, DMSO- d_6) δ 8,51 (d, J = 5,0 Гц, 1H), 8,21 (s, 1H), 8,04 (s, 1H), 7,68 (s, 1H), 7,49 – 7,33 (m, 2H), 7,28 – 7,18 (m, 2H), 5,76 (s, 1H), 4,15 (t, J = 6,7 Γц, 2H), 2,80 (t, J = 7,2 Γц, 2H), 2,45 (s, 3H), 2,30 – 2,22 (m, 2H).	479,15

Пример 55

[0604] Соединения согласно настоящему изобретению также испытывали, подвергая их биохимическому анализу на FGFR2 по методике Caliper. Готовили 10 мМ растворы соединений в DMSO и последовательно 3-кратно разбавляли их, в результате чего получали по 11 рабочих концентраций. В 384-луночный планшет добавляли по 200 нл раствора соединения и 15 мкл 1,3-кратного раствора фермента (белок FGFR2 (0,06 нМ), FLPeptide30 (1,5 мкМ), MgCl₂ (10 мМ)), и планшет инкубировали при комнатной температуре в течение 30 минут. Для запуска реакции добавляли 5 мкл раствора АТР (100 мкМ), и планшет инкубировали в течение 90 минут, после чего добавляли 70 мкл останавливающего буфера (0,5М EDTA) для завершения реакции. Каждую лунку анализировали с помощью планшетного ридера EZ.

[0605] Результаты биохимического анализа на FGFR2 по методике Caliper представлены в Таблице 1. Соединения, имеющие значения IC_{50} менее или равные 100 нМ, представлены как "A"; соединения, имеющие значения IC_{50} более 100 нМ, но менее или равные 250 нМ, представлены как "B"; соединения, имеющие значения IC_{50} более 250 нМ, но менее или равные 1 μ M, представлены как "C"; и соединения, имеющие значения IC_{50} более 1 μ M, но менее или равные 100 μ M, представлены как "D".

Пример 56

[0606] Соединения согласно настоящему изобретению также испытывали, подвергая их анализу на пролиферацию линии раковых клеток SNU16. Испытуемые соединения брали в виде их исходных 10 мМ растворов в DMSO. По 45 мкл исходного раствора переносили в 384-луночный планшет, и по 11 раз последовательно выполняли их 3-кратное разбавление. Клетки SNU16 высевали в специализированный 384-луночный планшет для культивирования клеток и инкубировали при 37°С в течение 24 часов. По 40 нл раствора соединения каждой концентрации переносили из планшета с испытуемыми соединениями в соответствующие лунки планшета для культивирования клеток посредством жидкостного манипулятора Echo550. Планшеты инкубировали в течение 96 часов, затем уравновешивали до комнатной температуры в течение 15 минут. В каждую лунку добавляли по 20 мкл реагента CellTiter Glo, после чего планшет осторожно встряхивали в течение 30 минут при комнатной температуре. Далее проводили измерение показателей хемилюминесценции ридером EnVision.

[0607] Результаты анализа пролиферации линии раковых клеток SNU16 представлены в Таблице 1. Соединения, имеющие значения IC_{50} менее или равные 100 нМ, представлены как "А"; соединения, имеющие значения IC_{50} более 100 нМ, но менее или равные 250 нМ, представлены как "В"; соединения, имеющие значения IC_{50} более 250 нМ, но менее или равные 1 μ M, представлены как "С"; и соединения, имеющие значения IC_{50} более 1 μ M, но менее или равные 100 μ M, представлены как "D".

ВКЛЮЧЕНИЕ ПОСРЕДСТВОМ ССЫЛКИ

[0608] Все публикации и патенты, упомянутые в настоящем документе, включены в настоящее описание посредством ссылки во всей их полноте для всех целей, как если бы каждая отдельная публикация или патент были специально и индивидуально включены посредством ссылки. В случае противоречий преимущество будет иметь настоящая заявка, включая любые определения, представленные в настоящем документе.

ЭКВИВАЛЕНТЫ

[0609] Несмотря на то, что здесь обсуждались конкретные варианты реализации заявленного изобретения, приведенное выше описание является лишь иллюстративным и не является ограничивающим. После ознакомления с данным описанием для специалистов в данной области техники станут очевидными и многие другие вариации настоящего раскрытия. Полный объем настоящего раскрытия должен быть определен с учетом формулы изобретения вместе с полным объемом его эквивалентов, а также описания изобретения вместе со всеми подобными вариациями.

[0610] Если не указано иное, все числа, выражающие количества ингредиентов, условия реакций и т.п., используемые в данном описании и формуле изобретения, во всех случаях следует понимать как неявно включающие термин «примерно». Соответственно, если не указано иное, численные параметры, изложенные в настоящем описании и прилагаемой формуле изобретения, являются приблизительными и могут варьироваться в зависимости от желаемых результатов, которые предположительно должны быть получены при применении настоящего изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение формулы І-1:

I-1

или его фармацевтически приемлемая соль, где:

$$\mathbb{C} y^A$$
 представляет собой \mathbb{R}^7 , \mathbb{R}^8 , \mathbb{R}^9 , \mathbb{R}^7 ,

где * представляет собой связь с R^5 , а * представляет собой связь с Cy^6 ;

 R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^{5} - R^{5B} ;

 ${\bf R}^{\rm 5B}$ представляет собой водород или ${\bf R}^{\rm B}$, при этом ${\bf R}^{\rm 5B}$ замещен п вариантами ${\bf R}^{\rm 5D}$;

Су⁶ представляет собой фенилен; двухвалентное насыщенное или частично ненасыщенное 3-14-членное карбоциклическое кольцо; двухвалентное насыщенное или частично ненасыщенное 3-14-членное гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или 5-14-членный гетероарилен, содержащий 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом Су⁶ замещен р вариантами R⁶ помимо -L⁶-R^W;

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два вариант R^6 , вариант R^6 и вариант R^6 и вариант R^6 и вариант R^{WA} , или вариант R^6 и вариант R^{7a} совместно с находящимися между ними атомами образуют 4-8-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 R^7 представляет собой H или R^B , при этом R^7 замещен t вариантами R^{7A} ;

 R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

 R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, где одно или два метиленовых звена указанной цепи необязательно и независимо заменены на - $CH(R^L)$ -, - $C(R^L)$ 2-, C_{3-6} циклоалкилен, 3-6-членный гетероарилен, - $N(R^L)$ -, - $N(R^L)$ -,

членного гетероарилена необязательно замещен одним вариантом $R^{\rm A}$ или $C_{1\text{-}6}$ алифатического алкила;

каждый из R^{WA}, R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C₁₋₆ алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^L или R^{WC} и вариант R^L вместе с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено w вариантами R^C ;

 R^{WD} представляет собой галоген или $-OS(O)_2R$;

в каждом случае R^{5C} , R^{5D} , R^{7A} и R^L независимо представляет собой R^A или R^B и замещен и вариантами R^C ; или

два варианта R^{5C} , один вариант R^{5C} и один вариант R^{5D} или два варианта R^{5D} совместно с находящимися между ними атомами образуют 3-7-членное насыщенное, частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено у вариантами R^{C} ;

- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C_{1-6} алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное

моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)₂R, -S(O)₂R, -S(O)₂F, -OS(O)₂F, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(NR)NR₂, -N(R)S(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота объединены с находящимися между ними атомами с образованием 4-7-членного насыщенного, частично ненасыщенного или гетероарильного кольца, содержащего 0-3 гетероатома, помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы;

каждый из m, n, p, q, r, t, u, v и w независимо равен 0, 1, 2, 3 или 4.

- 2. Соединение по п. 1, где Су^А представляет собой
- 3. Соединение формулы І:

или его фармацевтически приемлемая соль, где:

 R^5 представляет собой - R^{5A} - L^5 - R^{5B} ;

 R^{5A} представляет собой бивалентный радикал R^{B} , при этом R^{5A} замещен m группами R^{5C} помимо - L^{5} - R^{5B} ;

 R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен п вариантами R^{5D} ;

 Cy^6 представляет собой фенилен или 6-членный гетероарилен, содержащий 1-3 атома азота, при этом Cy^6 замещен р вариантами R^6 помимо - L^6 - R^W ;

$$R^{W}$$
 представляет собой галоген, -CN, R^{WA} , R^{WB} ,

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

 R^7 представляет собой H или R^B , при этом R^7 замещен t вариантами R^{7A} ;

каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную

углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на -CH(\mathbb{R}^L)-, -C(\mathbb{R}^L)2-, C₃₋₅ циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, -N(\mathbb{R}^L)-, -NHC(O)-, -N(\mathbb{R}^L)C(O)-, -C(O)NH-, -C(O)N(\mathbb{R}^L)-, -NHS(O)2-, -N(\mathbb{R}^L)S(O)2-, -S(O)2NH-, -S(O)2N(\mathbb{R}^L)-, -O-, -C(O)-, -C(O)O-, -S-, -S(O)- или -S(O)2-;

каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, галоген, -CN, - C(O)R, -C(O)OR, - $C(O)NR_2$, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или

 R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы;

 R^{WD} представляет собой галоген или -OS(O)₂R;

- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^{L} независимо представляет собой R^{A} или R^{B} и замещен и вариантами R^{C} ;
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(O)R₂, -N(R
- в каждом случае R^B независимо представляет собой C_{1-6} алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное

или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;

в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)₂R, -S(O)₂R, -C(O)₂R, -C(O)₂R,

каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота совместно с находящимися между ними атомами образуют 4-7-членное насыщенное, частично ненасыщенное или гетероарильное кольцо, содержащее 0-3 гетероатома помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы; и

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

4. Соединение по любому из пп. 1-3, в котором - Cy^6 - L^6 - R^W в совокупности представляет собой:

5. Соединение по любому из пп. 1-4, в котором R^5 представляет собой:

6. Соединение по любому из пп. 1-4, в котором \mathbb{R}^5 представляет собой:

7. Соединение формулы X-1, XI-1, XII-1 или XIII-1:

или его фармацевтически приемлемая соль, где:

$$R^8$$
 R^8 R^8

 R^{5B} представляет собой водород или R^{B} , при этом R^{5B} замещен п вариантами R^{5D} ;

в каждом случае R^6 независимо представляет собой R^A или R^B , при этом R^6 замещен q вариантами R^C ; или

два варианта R^6 или вариант R^6 и вариант R^L совместно с находящимися между ними атомами образуют 4-7-членное частично ненасыщенное или ароматическое кольцо, содержащее 0-4 гетероатома, независимо выбранных из азота, кислорода и серы; при этом указанное кольцо замещено г вариантами R^C ;

- ${\bf R}^7$ представляет собой H или ${\bf R}^{\rm B}$, при этом ${\bf R}^7$ замещен t вариантами ${\bf R}^{7{\rm A}}$;
- R^8 представляет собой H, -NR₂, галоген, -OH или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;
- R^9 представляет собой H, -NR₂, галоген или C_{1-6} алифатический алкил, необязательно замещенный 1-3 галогенами;
- R^{10} представляет собой H или C_{1-6} алифатический алкил, необязательно замещенный 1- 3 галогенами;
- каждый из L^5 и L^6 независимо представляет собой ковалентную связь или C_{1-4} бивалентную, насыщенную или ненасыщенную, линейную или разветвленную углеводородную цепь, при этом одно или два метиленовых звена указанной цепи необязательно и независимо заменены на $-CH(R^L)$ -, $-C(R^L)_2$ -, C_{3-5} циклоалкилен, 3-5-членный гетероциклоалкилен, 5-6-членный гетероарилен, -NH-, $-N(R^L)$ -, -NHC(O)-, $-N(R^L)$ -, -C(O)NH-, $-C(O)N(R^L)$ -, $-NHS(O)_2$ -, $-N(R^L)S(O)_2$ -, $-S(O)_2NH$ -, $-S(O)_2N(R^L)$ -, -O-, -C(O)-, -
- каждый из R^{WA} , R^{WB} и R^{WC} независимо представляет собой водород, дейтерий, галоген, -CN, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; или
 - R^{WA} и R^{WB} , R^{WB} и R^{WC} , R^{WA} и вариант R^{L} или R^{WC} и вариант R^{L} совместно с находящимися между ними атомами образуют 4-7-членное насыщенное или частично ненасыщенное кольцо, содержащее 0-2 гетероатома, независимо выбранных из азота, кислорода и серы;
- R^{WD} представляет собой галоген или -OS(O)₂R;
- в каждом случае R^{5C} , R^{5D} , R^{7A} и R^L независимо представляет собой R^A или R^B и замещен и вариантами R^C ;
- в каждом случае R^A независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)R, -S(O)NR₂, -C(O)R, -C(O)OR, -C(O)NR₂,

- -C(O)N(R)OR, -OC(O)R, $-OC(O)NR_2$, -N(R)C(O)OR, -N(R)C(O)R, $-N(R)C(O)NR_2$, $-N(R)C(NR)NR_2$, $-N(R)S(O)_2NR_2$ или $-N(R)S(O)_2R$;
- в каждом случае R^B независимо представляет собой C₁₋₆ алифатический алкил; фенил; 5-6-членное моноциклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 8-10-членное бициклическое гетероарильное кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы; 3-7-членное насыщенное или частично ненасыщенное карбоциклическое кольцо; 3-7-членное насыщенное или частично ненасыщенное моноциклическое гетероциклическое кольцо, содержащее 1-2 гетероатома, независимо выбранных из азота, кислорода и серы; или 7-12-членное насыщенное или частично ненасыщенное бициклическое гетероциклическое кольцо, содержащее 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- в каждом случае R^C независимо представляет собой оксогруппу, галоген, -CN, -NO₂, -OR, -SR, -NR₂, -S(O)₂R, -S(O)₂NR₂, -S(O)₂R, -S(O)₂R, -S(O)₂F, -OS(O)₂F, -C(O)R, -C(O)OR, -C(O)NR₂, -C(O)N(R)OR, -OC(O)R, -OC(O)NR₂, -N(R)C(O)OR, -N(R)C(O)R, -N(R)C(O)NR₂, -N(R)C(NR)NR₂, -N(R)S(O)₂NR₂, -N(R)S(O)₂R или необязательно замещенную группу, выбранную из C_{1-6} алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы;
- каждый R независимо представляет собой водород или необязательно замещенную группу, выбранную из C₁₋₆ алифатического алкила, фенила, 3-7-членного насыщенного или частично ненасыщенного гетероциклического кольца, содержащего 1-2 гетероатома, независимо выбранных из азота, кислорода и серы, и 5-6-членного гетероарильного кольца, содержащего 1-4 гетероатома, независимо выбранных из азота, кислорода и серы, или

две группы R при одном и том же атоме азота совместно с находящимися между ними атомами образуют 4-7-членное насыщенное, частично ненасыщенное или гетероарильное кольцо, содержащее 0-3 гетероатома помимо уже имеющегося атома азота, независимо выбранных из азота, кислорода и серы; и

каждый из m, n, p, q, r, t и u независимо равен 0, 1, 2, 3 или 4.

8. Соединение по любому из пп. 1-7, в котором R^W представляет собой R^{WA}

9. Соединение по любому из пп. 1-7, в котором
$$R^W$$
 представляет собой R^{WA}

- 10. Соединение по любому из пп. 1-9, в котором L^6 представляет собой -NH-.
- 11. Соединение по любому из пп. 1-10, при этом указанное соединение выбрано из соединений, показанных в Таблице 1, или его фармацевтически приемлемых солей.
- 12. Фармацевтическая композиция, содержащая соединение по любому из пп. 1-11 и фармацевтически приемлемый носитель.
- 13. Способ ингибирования сигнальной активности FGFR2 у субъекта, включающий введение терапевтически эффективного количества соединения по любому из пп. 1-11 или фармацевтической композиции по п. 12 субъекту, нуждающемуся в этом.
- 14. Способ лечения опосредованного FGFR2 заболевания у субъекта, включающий введение терапевтически эффективного количества соединения по любому из пп. 1-11 или фармацевтической композиции по п. 12 нуждающемуся в этом субъекту.
- 15. Способ лечения заболевания у субъекта, включающий введение терапевтически эффективного количества соединения по любому из пп. 1-11 или фармацевтической композиции по п. 12 субъекту, нуждающемуся в этом, при этом указанное заболевание представляет собой рак желчного протока, рак печени, рак молочной железы, рак предстательной железы, рак легкого, рак щитовидной железы, рак желудка, рак яичников, рак прямой кишки, рак эндометрия или рак уротелия.
- 16. Способ по п. 15, в котором указанное заболевание представляет собой рак желчного протока.

- 17. Способ по п. 16, в котором указанный рак желчного протока представляет собой внутрипеченочную холангиокарциному.
- 18. Способ по п. 15, в котором указанное заболевание представляет собой рак печени.
- 19. Способ по п. 18, в котором указанный рак печени представляет собой гепатоцеллюлярную карциному.
- 20. Способ по п. 15, в котором указанное заболевание представляет собой рак легкого.
- 21. Способ по п. 20, в котором указанный рак легкого представляет собой плоскоклеточный рак легкого или немелкоклеточный рак легкого.