(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2022.10.31
- (22) Дата подачи заявки 2016.06.15

(51) Int. Cl. A61K 35/74 (2015.01)
C12N 1/20 (2006.01)
A61P 1/00 (2006.01)
A61P 11/06 (2006.01)
A61P 29/00 (2006.01)
A61P 19/02 (2006.01)
A61P 25/28 (2006.01)
A61P 35/00 (2006.01)

(54) КОМПОЗИЦИИ, СОДЕРЖАЩИЕ БАКТЕРИАЛЬНЫЕ ШТАММЫ

- (31) 1510467.2; 1520501.6
- (32) 2015.06.15; 2015.11.20
- (33) GB
- (62) 201890051; 2016.06.15
- (71) Заявитель:
 - 4Д ФАРМА РИСЁРЧ ЛИМИТЕД (GB)
- (72) Изобретатель:

Грант Джордж, Патерссон Анджела Маргарет, Малдер Имке, Маккласки Синин, Рафтис Эмма (GB)

A61K 35/745 (2015.01)

- (74) Представитель: Медведев В.Н. (RU)
- (57) В изобретении предложены композиции, содержащие бактериальные штаммы, для лечения и профилактики воспалительных и аутоиммунных заболеваний.

КОМПОЗИЦИИ, СОДЕРЖАЩИЕ БАКТЕРИАЛЬНЫЕ ШТАММЫ

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области композиций, содержащих бактериальные штаммы, выделенные из пищеварительного тракта млекопитающих, и применению таких композиций для лечения заболевания.

УРОВЕНЬ ТЕХНИКИ

Кишечник человека считается стерильнымвнутриутробно, после рождения подвергается воздействию количества микроорганизмов матери и окружающей среды. После динамический период наступает колонизации последовательной смены микроорганизмов, на который влияют такие факторы, как способ родоразрешения, окружающая среда, диета и генотип хозяина, все из которых отражаются на составе микробиоты кишечника, особенно в раннем возрасте. Впоследствии микробиота стабилизируется иприобретает характеристики взрослого человека [і]. Микробиота кишечника человека содержит более различных филотипов, относящихся, по существу, к двум основным бактериальным группам:бактероидетам (Bacteroidetes) и фирмикутам [ii]. B (Firmicutes) результате эффективных симбиотических взаимосвязей, возникающих вследствие бактериальной колонизации кишечника человека, наблюдается широкий спектр метаболических, защитных И других полезных функций.Повышенная структурных, метаболическая активность колонизированного обеспечивает иного рода расщепление неперевариваемых компонентов диеты иного рода с выделением продуктов жизнедеятельности, обеспечивающих важный источник питательных веществ ДЛЯ хозяина.Точно так же иммунологическая значимость микробиоты кишечника хорошо известна и приведена в качестве примера у безмикробных животных с нарушенной иммунной системой, которая функционально восстанавливается после введения комменсальных бактерий [iii-iv].

Существенные изменения в составе микробиоты были зарегистрированы при нарушения желудочно-кишечного тракта, таких как воспалительное заболевание кишечника (ВЗК) Например, уровни

кластера XIVa бактерийClostridium у пациентов с ВЗК снижаются, в то время как количествоE. coli повышается, что говорит о сдвиге баланса симбионтов и патобионов в кишечнике [v-vi]. Примечательно, что этот микробный дисбиоз также ассоциирован с дисбалансом в популяциях эффекторных T-клеток.

Принимая во внимание потенциальный положительный эффект, который могут проявлять определенные бактериальные штаммы в кишечнике животных, были предложены различные штаммы для лечения многих заболеваний (см., например, [vii-viii]). Кроме того, включая в основном штаммыLactobacillus штаммы, Bifidobacterium, были предложены для применения при лечении различных воспалительных и аутоиммунных заболеваний, которые непосредственно не связаны с кишечником (см.обзорные статьи [ix] [х]). Однако остается не в полной мере охарактеризована взаимосвязь между различными заболеваниями И различными бактериальными штаммами, а эффекты конкретных также точные бактериальных штаммов на кишечниккак на системном уровне, так и на какие-либо конкретные виды заболеваний.

Поэтому, в данной области техники существует необходимость в разработке новых способов лечения воспалительных и аутоиммунных заболеваний. Существует также необходимость в более детальном изучении потенциальных эффектов бактерий кишечника с целью дальнейшей разработки новых способов лечения с применением бактерий кишечника.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Авторы разработали новые способы лечения и профилактики воспалительных и аутоиммунных заболеваний. В частности, авторы разработали новые способы лечения и профилактики заболеваний и патологических состояний, опосредованных IL-17 или путем Th17. В частности, авторы идентифицировали новый бактериальный штамм, который эффективен для уменьшения воспалительного ответа Th17. Как В примерах, пероральное введение описано содержащих бактерию, депонированную под номером доступа NCIMB 42380, силу воспалительного ответа, тэжом СНИЗИТЬ включая Th17, воспалительный OTBET В МЫШИНЫХ моделях ревматоидного артрита и рассеянного склероза. Как также описано

в примерах, пероральное введение композиций, содержащих бактерию, депонированную под номером доступа NCIMB 42380, может уменьшить размер опухоли в мышиных моделях рака, который может быть ассоциирован с воспалительным ответом Th17.

Поэтому В первом варианте реализации изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в способе лечения или профилактики заболевания или патологического состояния, опосредованного IL-17 или путем Th17. определили, ЧТО лечение с применением таких бактериальных штаммов может снизить уровень цитокинов, являющихся частью пути Th17, включая IL-17, может снизить уровень воспалительного Th17 и может проявлять клиническую эффективность ответа мышиных моделях воспалительных и аутоиммунных заболеваний, опосредованных IL-17 и путем Th17.

В конкретных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в способе лечения или профилактики заболевания или патологического состояния, выбранного из группы, состоящей из: рассеянного склероза; артрита, такого как ревматоидный артрит, остеоартрит, псориатический артрит или ювенильный идиопатический нейромиелита зрительного нерва (болезнь Девика); анкилозирующего спондилоартрита; спондилоартрита; псориаза; системной красной волчанки; воспалительного заболевания кишечника, такого болезнь Крона или язвенный колит; глютеиновой энтеропатии; астмы, например, аллергической астмы или нейтрофильной астмы; хронической обструктивной болезни легких (ХОБЛ); рака, такого как рак молочной железы, рак толстой кишки, рак легкого или рак яичников; увеита; склерита; васкулита; болезни Бехчета; атеросклероза; атопического дерматита; эмфиземы; периодонтита; аллергического ринита; и отторжения аллотрансплантата. Эффект на воспалительный ответ Th17, продемонстрированный для бактерии, депонированной под номером доступа NCIMB 42380, может обеспечить терапевтические преимущества при заболеваниях и патологических

состояниях, опосредованных IL-17 и путем Th17, таких как перечисленные выше.

предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в способе лечения или профилактики астмы, такой нейтрофильная астма или аллергическая астма. как Авторы обнаружили, что лечение с применением бактерии, депонированной номером доступа NCIMB 42380, может СНИЗИТЬ поступления нейтрофилов и эозинофилов в легкие, что может способствовать лечению или профилактике астмы. Кроме того, проанализировали и продемонстрировали эффективность авторы бактерии, депонированной под номером доступа NCIMB 42380, в жиншим жанишам астмы. В некоторых вариантах реализации настоящего изобретения композиция предназначена для применения в или профилактики нейтрофильной способе лечения астмы или эозинофильной астмы. Продемонстрированные эффекты композиций по настоящему изобретению на нейтрофилы и эозинофилы, подтверждают, что указанные композиции могут быть особенно эффективными для лечения или профилактики нейтрофильной астмы и эозинофильной астмы. Фактически, в некоторых вариантах реализации настоящего изобретения композиция предназначена для применения в способе снижения уровня нейтрофильного воспалительного ответа лечении или профилактике астмы, или композиция предназначена для способе снижения уровня отонапифонивое воспалительного ответа при лечении или профилактике астмы. некоторых реализации вариантах настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в лечении астмы. В особенно предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, для применения в лечении астмы, в частности нейтрофильной астмы. Показано, что бактерия, депонированная под номером доступа NCIMB 42380, оказывает особенно выраженный эффект на нейтрофилы в моделях астмы, при этом лечение с применением этой бактерии может быть особенно эффективным относительно нейтрофильной астмы.

дополнительных предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее в способе лечения или профилактики биотип, для применения артрита. Авторы обнаружили, ревматоидного ЧТО лечение С применением бактерии, депонированной под номером доступа NCIMB 42380, может обеспечить клиническую эффективность в мышиной модели ревматоидного артрита и может уменьшить припухлость суставов. В предпочтительных вариантах реализации настоящего композиция, содержащая изобретения предлагается бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в лечении ревматоидного артрита. Композиции с применением бактерии, депонированной под номером доступа NCIMB особенно эффективными 42380. могут быть ДЛЯ лечения ревматоидного артрита.

дополнительных предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в способе лечения или профилактики рассеянного склероза. Авторы обнаружили, ЧТО лечение применением бактерии, депонированной под номером доступа NCIMB 42380, может снизить частоту возникновения и тяжесть заболевания мышиной модели рассеянного склероза. В предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в лечении рассеянного склероза. Композиции с применением бактерии, депонированной под номером доступа NCIMB 42380, могут быть особенно эффективными для лечения рассеянного склероза.

В дополнительных предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в способе лечения или профилактики рака, такого как рак молочной железы, легких или печени. Авторы

обнаружили, что лечение с применением бактерии, депонированной под номером доступа NCIMB 42380, может уменьшить рост опухоли в мышиных моделях рака молочной железы, легких и печени. В некоторых вариантах реализации настоящего изобретения композиция предназначена для применения в способе уменьшения размера опухоли или предотвращения роста опухоли при лечении рака.

В дополнительных предпочтительных вариантах реализации настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения в способе лечения или профилактики увеита, такой как задний увеит. Композиции, содержащие бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, могут быть особенно эффективным при лечении увеита.

В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения в способе продукции IL-17 или снижения дифференцировки клеток Th17 при лечении или профилактике заболевания, ИЛИ патологического состояния, опосредованного IL-17 или путем Th17. В частности, композиции по настоящему изобретению можно применять для снижения продукции IL-17 или снижения дифференцировки клеток Th17 при лечении или профилактике астмы, ревматоидного артрита или рассеянного склероза, или астмы, ревматоидного артрита, Предпочтительно, рассеянного склероза, рака или увеита. настоящем изобретении предлагаются композиции, бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения с целью снижения продукции IL-17 или дифференцировки Th17 снижения клеток при лечении ИЛИ профилактике астмы, ревматоидного артрита ИЛИ рассеянного склероза. В настоящем изобретении также предлагаются композиции, содержащие бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, для применения с целью снижения продукции IL-17 или снижения дифференцировки клеток Th17 при лечении или профилактике рака.

В некоторых вариантах реализации настоящего изобретения композиция предназначена для применения у пациента с повышенными уровнями IL-17 или клеток Th17. Эффект на воспалительный ответ

Th17, продемонстрированный бактерией, депонированной под номером доступа NCIMB 42380, может быть особенно полезным для таких пациентов.

В предпочтительных вариантах реализации настоящего изобретения бактериальный штамм в композиции представляет собой бактерию, депонированную под номером доступа NCIMB 42380. Также применять бактериальные штаммы биотипа, ОНЖОМ такие как бактериальные штаммы, которые имеют последовательность рРНК 16s, являющуюся по меньшей мере на 95%, 96%, 97%, 98%, 99%, 99,5% или последовательности рРНК идентичной 16s депонированной под номером доступа NCIMB 42380. Предпочтительно бактериальный штамм имеет последовательность рРНК 16s, которая является по меньшей мере на 95%, 96%, 97%, 98%, 99%, 99,5% или 99,9% идентичной последовательности SEQ ID NO:1. Предпочтительно бактериальный штамм ДЛЯ применения согласно настоящему изобретению имеет последовательность рРНК 16s, представленную последовательностью SEO ID NO:1.

В некоторых вариантах реализации настоящего изобретения композиция по настоящему изобретению предназначена для Пероральное перорального введения. введение штаммов ПО настоящему изобретению может быть эффективным для лечения заболеваний и патологических состояний, опосредуемых IL-17 или Th17. того, пероральное введение удобно Кроме ДЛЯ пациентов и медицинских работников, при этом оно осуществлять доставку и/или частично ИЛИ колонизировать кишечник.

В некоторых вариантах реализации настоящего изобретения композиция по настоящему изобретению содержит одно или более фармацевтически приемлемых вспомогательных веществ или носителей.

В некоторых вариантах реализации настоящего изобретения композиция по настоящему изобретению содержит бактериальный штамм, который является лиофилизированным. Лиофилизиация является эффективным и удобным способом получения стабильных композиций, которые позволяют осуществлять доставку бактерий.

В некоторых вариантах реализации настоящего изобретения предлагается пищевой продукт, содержащий композицию, как описановыше.

В некоторых вариантах реализации настоящего изобретения предлагается вакцинная композиция, содержащая композицию, как описано выше.

Кроме того, в настоящем изобретении предлагается способ лечения или профилактики заболевания, или патологического состояния, опосредованного IL-17 или путем Th17, включающий введение композиции, содержащей бактерию, депонированную под номером доступом NCIMB 42380, или ее биотип.

вышеуказанного изобретения разработке идентифицировали и охарактеризовали бактериальный штамм, который пригоден для применения в лечении. Показано, бактерия, депонированная под номером доступа NCIMB 42380, эффективна для лечения описанных в настоящем документе заболеваний, таких как артрит, астма и рассеянный склероз. Исходя ИЗ вышеизложенного В другом аспекте настоящего изобретения предлагается клетка бактерии, депонированной под номером доступа NCIMB 42380, или ее производное. В настоящем изобретении также предлагаются композиции, содержащие клетки, или биологически чистые культуры таких клеток. настоящем изобретении также предлагается клетка бактерии, депонированная под номером доступа NCIMB 42380, ИЛИ производное, для применения в лечении, в частности описанных в настоящем документе заболеваний. Также показано, что бактерия, депонированная под номером доступа NCIMB 42380, эффективна для лечения рака.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

- фигура 1. Мышиная модель астмы, индуцированной клещом домашней пыли Общее количество клеток в жидкости бронхоальвеолярного лаважа (ЖБАЛ).
- **Фигура 2.** Мышиная модель астмы, индуцированной клещом домашней пыли Общее количество эозинофилов в ЖБАЛ.
- **Фигура 3.** Мышиная модель астмы, индуцированной клещом домашней пыли Доля эозинофилов в ЖБАЛ.

- **Фигура 4.** Мышиная модель астмы, индуцированной клещом домашней пыли Общее количество макрофагов в ЖБАЛ.
- **Фигура 5.** Мышиная модель астмы, индуцированной клещом домашней пыли Доля макрофагов в ЖБАЛ.
- **Фигура 6.** Мышиная модель астмы, индуцированной клещом домашней пыли Общее количество нейтрофилов в ЖБАЛ.
- **Фигура 7.** Мышиная модель астмы, индуцированной клещом домашней пыли Доля нейтрофилов в ЖБАЛ.
- **Фигура 8.** Мышиная модель астмы, индуцированной клещом домашней пыли Общее количество лимфоцитов в ЖБАЛ.
- **Фигура 9.** Мышиная модель астмы, индуцированной клещом домашней пыли Доля лимфоцитов в ЖБАЛ.
- Φ игура 10. Мышиная модель тяжелой нейтрофильной астмы Общее количество клеток в жидкости бронхоальвеолярного лаважа (ЖВАЛ).
- **Фигура 11.** Мышиная модель тяжелой нейтрофильной астмы Общее количество эозинофилов в ЖБАЛ.
- **Фигура 12.** Мышиная модель тяжелой нейтрофильной астмы Доля эозинофилов в ЖБАЛ.
- **Фигура 13.** Мышиная модель тяжелой нейтрофильной астмы Общее количество макрофагов в ЖБАЛ.
- **Фигура 14.** Мышиная модель тяжелой нейтрофильной астмы Доля макрофагов в ЖБАЛ.
- **Фигура 15.** Мышиная модель тяжелой нейтрофильной астмы Общее количество нейтрофилов в ЖБАЛ.
- **Фигура 16.** Мышиная модель тяжелой нейтрофильной астмы Доля нейтрофилов в ЖБАЛ.
- **Фигура 17.** Мышиная модель тяжелой нейтрофильной астмы Общее количество лимфоцитов в ЖБАЛ.
- **Фигура 18.** Мышиная модель тяжелой нейтрофильной астмы Доля лимфоцитов в ЖБАЛ.
- Φ игура 19. Мышиная модель ревматоидного артрита Показатели веса тела, дни от –14 до 0. Данные представлены в виде процентных средних значений \pm СОС начальных показателей веса

тела (День -14). Статистическая значимость. \blacktriangle р <0,05 и $\blacktriangle \blacktriangle \blacktriangle$ р <0,0001 по сравнению с группой, получавшей несущую среду.

фигура 20. Мышиная модель ревматоидного артрита – Показатели веса тела, дни от 0 до 42. Данные представлены в виде процентных средних значений \pm СОС начальных показателей веса тела (День 0). \blacktriangle р <0,05, \blacklozenge р <0,05, \blacktriangle р <0,001, •••• р <0,0001 по сравнению с группой, получавшей несущую среду.

фигура 21. Мышиная модель ревматоидного артрита – Баллы клинической оценки. Данные представлены как среднее \pm СОС. **** р <0,0001 по сравнению с Днем21 с группой, получавшей несущую среду. \downarrow , 0 р <0,05 по сравнению с группой, получавшей несущую среду в определенный день.

фитура 22. Мышиная модель ревматоидного артрита – Пролиферативный ответ спленоцитов на коллаген II. Количество в минуту с вычитанием фона среды [СІІ-стимулированный – фон среды] на основании включения 3H-TdR. Все данные представлены как среднее± СОС. ** р <0,01 по сравнению с группой, получавшей несущую среду.

фигура 23. Мышиная модель ревматоидного артрита – Уровни IFNy в супернатантах культуры тканей. Линии представляют собой медианные значения группы.

фигура 24. Мышиная модель ревматоидного артрита – Уровни IL-17A в супернатантах культуры тканей. Линии представляют собой медианные значения группы.

фигура 25. Мышиная модель ревматоидного артрита – Уровни IL-10 в супернатантах культуры тканей. Линии представляют собой медианные значения группы.

фигура 26. Мышиная модель ревматоидного артрита – Уровни IL-6 в супернатантах культуры тканей. Линии представляют собой медианные значения группы.

Фигура 27. Система балльной оценки гистопатологии.

Фигура 28. Мышиная модель астмы, индуцированной клещом домашней пыли - Общий IqE в сыворотке.

Фигура 29. Мышиная модель астмы, индуцированной клещом домашней пыли - HDM-специфический IqG1 в сыворотке.

- **Фигура 30.** Мышиная модель астмы, индуцированной клещом домашней пыли Общий IgE вЖБАЛ.
- **Фигура 31.** Мышиная модель астмы, индуцированной клещом домашней пыли HDM-специфический IgG1 в ЖБАЛ.
- фитура 32. Мышиная модель астмы, индуцированной клещом домашней пыли Гистологический анализ Средний балл перибронхиолярной инфильтрации
- фигура 33. Мышиная модель астмы, индуцированной клещом домашней пыли Гистологический анализ Средний балл периваскулярной инфильтрации
- фитура 34. Мышиная модель астмы, индуцированной клещом домашней пыли Гистологический анализ Средний балл воспаления (Среднее значение балла перибронхиолярной и периваскулярной инфильтрации)
- **Фигура 35.** Мышиная модель астмы, индуцированной клещом домашней пыли Гистологический анализ Балл количества слизи
- **Фигура 36.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IL-9 в легочной ткани
- **Фигура 37.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IL-1a в легочной ткани
- **Фигура 38.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IFNqв легочной ткани
- **Фигура 39.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IL-17A в легочной ткани
- **Фигура 40.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IL-4в легочной ткани
- **Фигура 41.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IL-5в легочной ткани
- **Фигура 42.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень IL-1bв легочной ткани
- **Фигура 43.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень RANTES в легочной ткани
- **Фигура 44.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень MIP-1a в легочной ткани
- **Фигура 45.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень КСв легочной ткани

- **Фигура 46.** Мышиная модель астмы, индуцированной клещом домашней пыли Уровень MIP-2в легочной ткани
- **Фигура 47.** Мышиная модель тяжелой нейтрофильной астмы HDM-специфический IgG1 в сыворотке.
- **Фигура 48.** Мышиная модель тяжелой нейтрофильной астмы HDM-специфический IgG2a в сыворотке.
- **Фигура 49.** Мышиная модель тяжелой нейтрофильной астмы HDM-специфический IgG1 в ЖБАЛ.
- **Фигура** 50. Мышиная модель тяжелой нейтрофильной астмы HDM-специфический IgG2a в ЖБАЛ.
- Фигура 51. Мышиная модель тяжелой нейтрофильной астмы Гистологический анализ Средний балл перибронхиолярной инфильтрации
- фигура 52. Мышиная модель тяжелой нейтрофильной астмы Гистологический анализ Средний балл периваскулярной инфильтрации
- Фигура 53. Мышиная модель тяжелой нейтрофильной астмы Гистологический анализ Средний балл воспаления (Среднее значение балла перибронхиолярной и периваскулярной инфильтрации)
- **Фигура 54.** Мышиная модель тяжелой нейтрофильной астмы Уровень TNFa в легочной ткани.
- **Фигура 55.** Мышиная модель тяжелой нейтрофильной астмы Уровень IL-1а в легочной ткани
- **Фигура 56.** Мышиная модель тяжелой нейтрофильной астмы Уровень IFNg в легочной ткани.
- **Фигура 57.** Мышиная модель тяжелой нейтрофильной астмы Уровень IL-17F в легочной ткани
- **Фигура 58.** Мышиная модель тяжелой нейтрофильной астмы Уровень IL-1b в легочной ткани
- **Фигура 59.** Мышиная модель тяжелой нейтрофильной астмы Уровень RANTESB легочной ткани.
- **Фигура 60.** Мышиная модель тяжелой нейтрофильной астмы Уровень MIP-2 в легочной ткани
- **Фигура 61.** Мышиная модель тяжелой нейтрофильной астмы Уровень КС в легочной ткани.

Фигура 62. Мышиная модель тяжелой нейтрофильной астмы - Уровень IL-17Aв легочной ткани

Фигура 63. Мышиная модель тяжелой нейтрофильной астмы - Уровень MIP-1ав легочной ткани

Фигура 64. Мышиная модель тяжелой нейтрофильной астмы - Уровень IL-33 в легочной ткани

фитура 65. Мышиная модель ревматоидного артрита - Визуальный шаблон для балльной оценки гистопатологии. Репрезентативные изображения, демонстрирующие суммарныебаллы для оценки степени тяжести коллаген-индуцированного артрита суставов предплюсны у мышей.

фигура 66. Мышиная модель ревматоидного артрита - Гистопатология. Баллы воспаления. Данные представлены как среднее± СОС. ** р <0,01 по сравнению с группой, получавшей несущую среду.

Фигура 67. Мышиная модель ревматоидного артрита – Гистопатология. Балльная оценка поражения хряща. Данные представлены как среднее± СОС.*** р <0,001 по сравнению с группой, получавшей несущую среду.

фигура 68. Мышиная модель ревматоидного артрита - Гистопатология. Балльная оценка поражения кости. Данные представлены как среднее± СОС.*** р <0,001 по сравнению с группой, получавшей несущую среду.

фигура 69. Мышиная модель ревматоидного артрита – Гистопатология. Суммарная балльная оценка. Данные представлены как среднее± СОС.* р <0,05, *** р <0,001 по сравнению с группой, получавшей несущую среду.

Фигура 70. Мышиная модель ревматоидного артрита Гистопатология. Репрезентативные изображения. В обозначен ID животного (# n. n) и конечность (R - правая, L левая). Верхнее левое изображение (несущая среда): обширное разрушение суставов и костей с воспалительным и мингодомф процессом, распространяющимся на перисуставные мягкие ткани.

Фигура 71. Мышиная модель рассеянного склероза - Клинический балл. **Фигура 72.** Мышиная модель рассеянного склероза - Частота возникновения заболевания.

Фигура 73. Мышиная модель рака молочной железы - Объем опухоли.

Фигура 74. Мышиная модель рака легких - Объем опухоли.

Фигура 75. Мышиная модель рака печени - Вес печени.

Фигура 76. Прикрепление MRX004 и штаммов типа B.brevek клеткам человека.

Фигура 77. Анализ продукции экзополисахаридов.

Фигура 78. Продукция **с**вязанных и высвобожденных экзополисахаридов посредством MRX004.

Фигура 79. Прикрепление MRX004 к клеткам Caco-2.

Фитура 80. Быстрый профиль ID 32 A отдельно MRX004 (A) и по сравнению со штаммами типа B. breve (B). Белый=отрицательная реакция (без изменения цвета), нисходящий перекрестный штрих=промежуточная положительная реакция (слабое изменение цвета) и черный=положительная реакция (сильное соответствующее изменение цвета).

Фигура 81. Анализ АРІ® 50 СН МЯХОО4. Восходящий перекрестный штрих=отрицательная реакция (без изменения цвета), нисходящий перекрестный штрих=промежуточная положительная реакция (слабое изменение цвета), черный=положительная реакция (сильное соответствующее изменение цвета) и белый=сомнительная реакция (непредвиденное изменение цвета).

ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Бактериальные штаммы

Композиции по настоящему изобретению содержат бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип. В примерах продемонстрировано, что такие бактерии пригодны для ИЛИ профилактике заболеваний применения В лечении патологических состояний, опосредуемых IL-17 или путем Th17. В примерах также показано, что такие бактерии пригодны применения в лечении или профилактике рака. Предпочтительным бактериальным штаммом является бактерия, депонированная под номером доступа NCIMB 42380.

Бактерия, депонированная под номером доступа NCIMB 42380, была проанализирована в Примерах и также упоминается в настоящем документе как штамм 751 или MRX004. Частичная последовательность 16S рРНК для анализируемого штамма 751 представлена в SEQ ID NO:1. Штамм 751 был депонирован в международном депозитарном учреждении NCIMB, Ltd. (Ferguson Building, Абердин, АВ219YA, Шотландия) компанией GT Biologics Ltd. (Life Innovation Building, Абердин, АВ252ZS, Шотландия) 12 марта 2015 года с присвоением номера доступа NCIMB 42380. Компания GT Biologics Ltd. В последствии изменила свое название на 4D Pharma Research Limited.

Геномная последовательность для штамма 751 представлена в SEQ ID NO:2.

Предполагается, что бактериальные штаммы, которые являются биотипами бактерии, депонированной под номером доступа NCIMB 42380, эффективны для лечения или профилактики заболеваний и патологических состояний, опосредованных IL-17 или путем Th17. Предполагается, что бактериальные штаммы, которые являются биотипами бактерии, депонированной под номером доступа NCIMB 42380, эффективны для лечения или профилактики рака. Биотип является близкородственным штаммом, который имеет аналогичные или очень похожие физиологические и биохимические характеристики.

В некоторых вариантах реализации бактериальные штаммы по изобретению имеют последовательность рРНК которая является по меньшей мере на 95%, 96%, 97%, 98%, 99,5% или 99,9% идентичной последовательности рРНК 16s бактерии, депонированной под номером доступа NCIMB 42380. Предпочтительно бактериальный штамм для применения согласно настоящему изобретению имеет последовательность рРНК 16s, которая является по меньшей мере на 95%, 96%, 97%, 98%, 99%, 99,5% или 99,9% идентичной последовательности SEQ ID NO: 1. Предпочтительно бактериальный штамм для применения согласно настоящему изобретению имеет последовательность рРНК 16s, представленную последовательностью SEQ ID NO:1.

В альтернативном варианте штаммы, которые являются биотипами бактерии, депонированной под номером доступа NCIMB 42380, и пригодны для применения в настоящем изобретении, можно идентифицировать путем секвенирования других нуклеотидных последовательностей для бактерии, депонированной под номером доступа NCIMB 42380. Например, по существу весь геном можно секвенировать, а штамм биотипа для применения в настоящем изобретении может характеризоваться по меньшей мере 95%, 96%, 97%, 98%, 99%, 99,5% или 99,9% идентичностью последовательности по меньшей мере на участке, составляющем 80% целого генома (например, по меньшей мере 85%, 90%, 95% или 99% или по всей длине целого генома). Другие пригодные последовательности для применения при идентификации штаммов биотипов могут включать hsp60 или повторяющиеся последовательности, такие как BOX, ERIC, [хі].Штаммы (GTG)₅, ИЛИ REP ИЛИ биотипов могут иметь последовательности, характеризующиеся по меньшей мере 95%, 96%, 97%, 98%, 99%, 99,5% или 99,9% идентичностью последовательности с соответствующей последовательностью бактерии, депонированной под номером доступа NCIMB 42380.

В некоторых вариантах реализации настоящего изобретения бактериальный штамм для применения согласно изобретению имеет геном с идентичностью последовательности SEQ ID NO:2. В предпочтительных вариантах реализации настоящего изобретения бактериальный штамм для применения в настоящем изобретении имеет геном по меньшей мере с 90% идентичностью последовательности (например, по меньшей мере 92%, 96%, 97%, 98%, 99% или 100% идентичностью последовательности) с последовательностью SEQ ID NO:2, по меньшей мере на участке, составляющем 60% (например, по меньшей мере 65%, 70%, 75%, 80%, 85%, 95%, 96%, 97%, 98%, 99% или 100%), последовательности SEQ NO:2. Например, бактериальный штамм для применения настоящем изобретении имеет геном, характеризующийся по меньшей мере 90% идентичностью последовательности с SEQ ID NO:2 меньшей мере на участке, составляющем 70% SEQ ID NO:2, или по меньшей мере 90% идентичностью последовательности с SEQ ID NO:2 на участке, составляющем80% SEQ ID NO:2, или по меньшей мере 90%

SEO ID NO:2 идентичностью последовательности с на участке, 90% SEO ID NO: 2. мере 90% составляющем ИЛИ ПО меньшей последовательности SEO NO:2 идентичностью ID на участке, составляющем 100% SEQ ID NO: 2, ИЛИ меньшей мере 95% ПО последовательности SEQ ID NO:2 идентичностью на участке, 70% SEQ 2, 95% составляющем ID NO: ИЛИ ПО меньшей мере SEO ID NO:2 идентичностью последовательности с на участке, 2, составляющем 80% SEO ID NO: ИЛИ ПО меньшей мере 95% SEO ID NO: 2 идентичностью последовательности с на 90% SEQ ID 2, составляющем NO: ИЛИ ПО меньшей мере 95% идентичностью последовательности с SEQ ID NO:2 на участке, 100% SEO ID 98% составляющем NO:2, ИЛИ ПО меньшей мере SEQ последовательности с ID NO:2 идентичностью на участке, составляющем 70% SEO ID NO:2, или ПО меньшей мере 98% идентичностью последовательности С SEO ID NO:2 участке, на SEQ 808 ID NO:2, ПО меньшей мере 98% составляющем ИЛИ идентичностью последовательности с SEO IDNO:2 на участке, составляющем 90% SEO ID NO:2, или меньшей 98% ПО мере идентичностью последовательности с SEQ ID NO:2 на участке, составляющем 100% SEQ ID NO:2.

В альтернативном варианте штаммы, которые биотипами бактерии, депонированной под номером доступа NCIMB 42380, и пригодны для применения в настоящем изобретении, можно идентифицировать с помощью номера доступа NCIMB 42380 и анализа рестрикционных фрагментов и/или ПЦР-анализа, например, применением полиморфизма длины флуоресцентных амплифицированных фрагментов (FAFLP) и (rep)ПЦР повторных ДНК-фрагментов методом генетических «отпечатков пальцев» или профилирования белка или частичного секвенирования 16S или 23s рДНК. В предпочтительных вариантах реализации настоящего изобретения такие методы можно применять для идентификации штаммов тех видов, что же И бактерия, депонированная под номером доступа NCIMB 42380.

В некоторых вариантах реализации настоящего изобретения штаммы, которые являются биотипами бактерии, депонированной под номером доступа NCIMB 42380, и пригодны для применения в настоящем изобретении, представляют собой штаммы, которые

обеспечивают такой же профиль, что и бактерия, депонированная под номером доступа NCIMB 42380, полученный при рестрикционном анализе амплифицированной рибосомальной ДНК (ARDRA), например, при применении рестрикционного фермента Sau3AI (типовые способы и рекомендации см., например, [xii]). В альтернативном варианте штаммы биотипа идентифицируют как штаммы, которые имеют такие же профили углеводной ферментации, что и бактерия, депонированная под номером доступа NCIMB 42380.

Бактериальные штаммы, которые являются биотипами бактерии, депонированной под номером доступа NCIMB 42380 и пригодны для применения в композициях и способах по настоящему изобретению, можно идентифицировать с помощью любого пригодного метода или стратегии, включая анализы, описанные в примерах. Например, биотипы для применения в настоящем изобретении можно идентифицировать путем культивирования в анаэробной YCFA и/или введения бактерий в мышиную модель артрита, индуцированного коллагеном типа II, с последующей оценкой уровней цитокинов. В частности, для применения в настоящем изобретении могут быть пригодны бактериальные штаммы, которые имеют сходные профили метаболический тип и/или поверхностные роста, антигены Cбактерией, депонированной под номером доступа NCIMB 42380. Штамм биотипа будет иметь сопоставимую иммуномодулирующую активность штаммом NCIMB 42380. В частности, штамм биотипа оказывать эффекты на модели астмы, артрита, рассеянного склероза и рака, и эффекты на уровни цитокинов сопоставимые с эффектами, продемонстрированными в Примерах, которые можно идентифицировать с применением протоколов культивирования и введения, описанных в Примерах.

Особенно предпочтительным штаммом по настоящему изобретению является бактерия, депонированная под номером доступа NCIMB 42380. Этот типовой штамм 751 был проанализирован в примерах, этом продемонстрирована его эффективность идп заболеваний. Исходя из вышеизложенного в настоящем изобретении предлагается клетка, такая как выделенная клетка, бактерии, депонированной под номером доступа NCIMB 42380, ИЛИ производное. В настоящем изобретении также предлагается

содержащая клетку бактерии, депонированной композиция, номером доступа NCIMB 42380, или ее производное. В настоящем изобретении также предлагается биологически чистая культура бактерии, депонированной под номером доступа NCIMB 42380. бактерии, настоящем изобретении также предлагается клетка 42380, депонированная ПОД номером доступа NCIMB ИЛИ производное, для применения в лечении, в частности описанных в настоящем документе заболеваний.

Производным бактерии, депонированной под номером доступа NCIMB 42380, может быть дочерний штамм (потомство) или штамм, культивированный (субклонированный) из оригинала. Производное штамма по настоящему изобретению можно модифицировать, например, на генетическом уровне, без удаления биологической активности. В частности, производный штамм по настоящему изобретению является терапевтически активным. Производный штамм будет иметь со штаммом NCIMB сопоставимую иммуномодулирующую активность 42380. В частности, производный штамм будет оказывать эффекты на модели астмы, артрита, рассеянного склероза и рака, и эффекты на уровни цитокинов сопоставимые с эффектами, продемонстрированными Примерах, которые можно идентифицировать с применением протоколов культивирования и введения, описанных в Примерах. Как правило, производный штамма NCIMB 42380 обычно представляет собой биотип штамма NCIMB 42380.

Ссылки на клетки бактерии, депонированной под номером доступа NCIMB 42380, охватывают любые клетки, которые обладают теми же характеристиками безопасности и терапевтической эффективности, что и штамм, депонированный под номером доступа NCIMB 42380, при этом такие клетки охватываются настоящим изобретением.

В предпочтительных вариантах реализации настоящего изобретения бактериальные штаммы в композициях по настоящему изобретению являются жизнеспособными и могут частично или полностью колонизировать кишечник.

В некоторых вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению характеризуется низким уровнем адгезии к

эпителиальным клеткам кишечника человека, в частности клеткам Caco-2. В предпочтительном варианте реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению характеризуется низким уровнем адгезии к эпителиальным клеткам кишечника человека, в частности, клеткам Caco-2, в YCFA по сравнению с Bifidobacteria, в частности, В. breve. В некоторых вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению демонстрирует адгезию менее 1% общей культуры, например, предпочтительно менее 0.5% или менее 0.3%, при проведении анализа в условиях, описанных в Примере 12.

В некоторых вариантах реализации настоящего изобретения бактериальный для применения согласно настоящему штамм изобретению продуцирует экзополисахариды, например, экзополисахариды, которые связаны с внеклеточной поверхностью бактериального штамма. В некоторых вариантах реализации настоящего изобретения продукция связанных экзополисахаридов увеличивает адгезию бактериального штамма для применения в настоящем изобретении к слизи или к поверхности эпителиальных клеток, например, эпителиальных клеток кишечника человека. В предпочтительном варианте реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению продуцирует в большей мере связанные поверхностные экзополисахариды по сравнению cBifidobacteria, в частности, B.breve.

В предпочтительном варианте реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению характеризуется низким уровнем адгезии к эпителиальным клеткам кишечника человека, в частности клеткам Сасо-2, в YCFA по сравнению с Bifidobacteria, в частности, B.Breve (например, адгезия менее 1% общей культуры, например, предпочтительно менее 0,5% или менее 0,3%, при проведении анализа в условиях, описанных в Примере 12), и продуцируетв большей мере связанные поверхностные экзополисахариды по сравнению с Bifidobacteria, в частности, B.breve.

В некоторых предпочтительных вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению способен ферментировать полисахаридную раффинозу, например, при культивировании в соответствующей суспензионной среде (такой как суспензионная среда API) при 37°С в течение 4 часов.

В некоторых вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему характеризуется пониженной способностью изобретению ферментировать α -глюкозидазу и/или β -глюкозидазу по сравнению cBifidobacteria. В. В частности breve, например, культивировании в соответствующей суспензионной среде (такой как суспензионная среда API) при 37°С в течение 4 часов.

В некоторых вариантах реализации настоящего изобретения бактериальный штамм ДЛЯ применения согласно настоящему изобретению содержит один или более генов, перечисленных в Таблице 1, например, 5, 10, 20, 50 или все гены в Таблице 1. В вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению содержит один или более генов, перечисленных в Таблице 1, которые выделены с помощью единичного подчеркивания, такие как трансмембранный компонент BL0694 индуцирующего модуля предполагаемого транспортера ЕСГ и/или компонент дублированной АТФазы индуцирующего модуля предполагаемого транспортера ЕСГ. В некоторых вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению содержит один или более генов, Таблице 1, которые перечисленных В выделены двойным подчеркиванием и выделены полужирным шрифтом, например, 1, 2, 3, 4 или 5 генов, выбранных из группы, состоящей из: глюкозидазы, мальтодекстрина (ЕС 3. 2. 1. 20), предполагаемой галактозидазы, целлюлозосинтазы (УД Φ -формированной) (ЕС 2. 4. 1. 12), хитиназы (ЕС 3. 2. 1. 14) и белка семейства сенсорного бокса/GGDEF. В некоторых вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему

изобретению содержит один или более генов, перечисленных Таблице 1, которые выделены курсивом, например 1, 2, 3, 4, 5, 6, 7, 8 или 9 генов, выбранных из группы, состоящей из: субъединицы PfaA синтазы омега-3 полинасьщенной жирной кислоты, поликетидсинтазы типа І, предполагаемой гликозилгидролазы с неизвестной функцией (DUF1680), компонента ВіоМ АТФазы индуцирующего модуля транспортера биотина ECF, семейства E1-E2 катионтранспортирующей АТФазы, белка RbsC пермеазы транспортной системы рибозы АВС (ТС 3. А. 1. 2. 1), АТФ-связывающего белка RbsA транспортной системы рибозы ABC (TC 3. A. 1. 2. 1), $3'-\kappa-5'$ олигорибонуклеазы (orn), мембранного белка, связанного с белком Actinobacillus (1944168).

вариантах реализации настоящего предпочтительных бактериальный штамм ДЛЯ применения согласно настоящему изобретению содержит один или более (например, 5, 10, 15, 20, 25, 30, 40, 45, 50 или все) генов, выбранных из группы, 2-сукцинил-5-енолпирувиль-6-гидрокси-3состоящей IEN циклогексен-1-карбоновой кислоты (EC 2. 2. 1. 9); олигорибонуклеазы (orn); альфа-галактозидазы (EC 3. 2. 1. 22); АТФазного компонента общего индуцирующего модуля транспортеров ECF; АТФазного компонента STY3233 индуцирующего модуля квеуозинрегулируемого транспортера ECF ; ATФ-зависимой ДНК-геликазы recG 6. 1. -); бета-глюкозидазы (ЕС 3. 2. целлюлозосинтазы (УДФ-формированной) (ЕС 2. 4. 1. 12); хитиназы (EC 3. 2. 1. 14); СОG1309: транскрипционного регулятора; (EC аланил-D-аланиновой карбоксипептидазы 3. 4. 4); дублированного АТФазного компонента ВL0693индуцирующего модуля предполагаемого транспортера ЕСГ; фруктокиназы (ЕС 2. 7. 1. 4); глюкоза/манноза: H+ симпортера GlcP; гликозилтрансферазы (EC 2. 4. 1. -); GMP-синтазы [глутамин-гидролизированной] (EC 6. 3. 5. 2); гипотетической сахарной киназы В кластере индигоидинсинтазой indA, семейства киназ PfkB; инозин-уридин предпочитающей нуклеозидгидролазой (ЕС 3. 2. 2. рибосомального белка L31p и LSU-рибосомального белка L31p, цинкнезависимого; LSUрибосомального белка L33p LSUрибосомального белка L33p, цинк-независимого; глюкозидазы мальтодекстрина (ЕС 3. 2. 1. 20); мембранного белка, связанного с белком Actinobacillus (1944168); предшественника мембранносвязаннойлитической муреиновой трансгликозилазы D (ЕС 3. 2. 1. -(EC 2. 1. 1. метилтрансферазы -); NADH-зависимой бутанолдегидрогеназы А (ЕС 1. 1. 1. -); фосфогликолят-фосфатазы (ЕС 3. 1. 3. 18); ыосфорибозилантранилат изомеразы (ЕС 5. 3. 1. 24); предполагаемойгликозилгидролазы с неизвестной функцией (DUF1680); рамнозосодержащей полисахаридной транслокационной пермеазы; рибокиназы (ЕС 2. 7. 1. 15); транспортной системы рибозы ABC, ATФ-связывающего белка RbsA (TC 3. A. 1. транспортной системы рибозы ABC, ATФ-связывающего белкаRbsA (TC 3. А. 1. 2. 1); транспортной системы рибозы АВС, высокоаффинной пермеазы RbsD (TC 3. A. 1. 2. 1); транспортной системы рибозы АВС, периплазматического рибозосвязывающего белка RbsB (TC 3. A. 1. 2. 1); транспортной системы рибозы ABC, белка пермеазы RbsC (ТС 3. А. 1. 2. 1); транспортной системы рибозы АВС, белка пермеазы RbsC (TC 3. A. 1. 2. 1); сорбитолдегидрогеназы (EC 1. 14);SSU-рибосомального белка S14p (S29e) SSUрибосомального белка S14p (S29e), цинк-независимого; субстрат-STY3230 специфического компонента квеуозин-регулируемого транспортера ECF; Сахароза-6-фосфатгидролазы (EC 3. 2. 1. B3); АТФ-связывающего белка TagH, экспортируемого тейхоевой кислотой 6. 3. 40); трансмембранного компонента BL0694 (EC индуцирующего **МОДУЛЯ** предполагаемого транспортера ECF; трансмембранного компонента STY3231 индуцирующего **К**ПКТОМ транспортера ЕСГ; квеуозин-регулируемого двухкомпонентного регулятора ответа, локализованного С транспортером рестрикционно-модифицированной системы типа I, субъединицы М (EC 2. 1. 1. 72); ДНК-метилтрансферазы рестрикционномодифицированной системы типа I, субъединицы рестрикции R (ЕС 3. 1. 3); рестрикционно-модифицированной системы субъединицы специфичности S (ЕС 3. 1. 21. 3); рестрикционномодифицированной системы типа I, субъединица специфичности S (EC 3. 1. 21. 3); рестрикционно-модифицированной системы типа І, (EC субъединица специфичности S 3. 1. ксилитолдегидрогеназы (ЕС 1. 1. 1. 9); и транспортера ксилозы

АВС, периплазматического ксилозосвязывающего белка XylF. В предпочтительных вариантах реализации настоящего изобретения бактериальный штамм для применения согласно настоящему изобретению содержит один или более (например, 5, 10, 15, 20, 25, 30, 35 или все) генов, которые указаны в предыдущем предложении и которые не выделены в Таблице 1.

Терапевтическое применение

Как продемонстрировано в примерах, бактериальные композиции изобретению эффективны настоящему ДЛЯ ПО уменьшения воспалительного ответа Th17. В частности, лечение с применением композиций по настоящему изобретению обеспечивает снижение уровней IL-17A и других цитокинов пути Th17 и обуславливает улучшения В ЖИВОТНЫХ моделях патологических клинические состояний, опосредованных IL-17 и путем Th17. Поэтому композиции по настоящему изобретению могут быть пригодны для лечения или профилактики воспалительных и аутоиммунных заболеваний и, частности заболеваний ИЛИ патологических состояний, опосредованных IL-17. В частности, композиции по настоящему могут изобретению быть пригодны ДЛЯ уменьшения или предотвращения повышения уровня воспалительного ответа IL-17.

Th17 представляют собой подмножество хелперов, которые продуцируют, например, IL-17A, IL17-F, IL-21 и Дифференцировка клеток Th17 и экспрессия IL-17 может индуцироваться посредством IL-23. Эти и другие цитокины образуют Th17, который части ПУТИ является хорошо сигнальным путем воспаления, который способствует развитию обусловливает ряд воспалительных и аутоиммунных заболеваний (как [xiii-xiv]).Заболевания, описано, например, в работах Th17 которых ПУТЬ является активированным, называются заболеваниями, опосредуемыми путем Th17. Патологические процессы при заболеваниях, опосредуемых путем Th17, можно ослабить или смягчить путем подавления пути Th17, что может быть достигнуто посредством уменьшения дифференцировки клеток Th17 или снижения цитокинов активности или снижения уровня ПУТИ Th17. Заболевания, опосредуемые путем Th17, могут характеризоваться повышенными уровнями цитокинов, продуцируемых клетками

такими как IL-17A, IL-17F, IL-21, IL-22, IL-26, IL-9 (см.обзор [xv]).Заболевания, опосредуемые путем Th17, могут характеризоваться повышенной экспрессией генов, связанных с Th-17, таких как Stat3 или IL-23R. Заболевания, опосредуемые путем Th17, могут быть ассоциированы с повышенными уровнями клеток Th17.

IL-17 представляет собой провоспалительный цитокин, который играет роль в патогенезе некоторых воспалительных и аутоиммунных заболеваний и патологических состояний. В данном контексте термин «IL-17» может относиться к любому представителю семейства IL-17, включая IL-17A, IL-17B, IL-17C, IL-17D, IL-17E и IL-17F. IL-17-опосредованные заболевания и патологические состояния характеризуются высокой экспрессией IL-17 и/или накоплением или присутствием IL-17-позитивных клеток в ткани, пораженной этим заболеванием или патологическим состоянием. Аналогично, IL-17опосредованные заболевания и патологические состояния являются заболеваниями И патологическими состояниями, усугубляются при высоких уровнях IL-17 или повышении уровней IL-17, и которые смягчаются при низких уровнях IL-17 или снижении уровней IL-17. Воспалительный ответ IL-17 может быть локальным или системным.

Примеры заболеваний и патологических состояний, которые быть опосредованы IL-17 или путем Th17, включают рассеянный склероз; артрит, такой как ревматоидный остеоартрит, псориатический артрит или ювенильный идиопатический нейромиелит зрительного нерва (болезнь Девика); анкилозирующий спондилоартрит; спондилоартрит; псориаз; воспалительное заболевание СИСТЕМНУЮ красную волчанку; кишечника, такое как болезнь Крона или язвенный глютеиновую болезнь; астму, например, аллергическую астму или нейтрофильную астму; хроническую обструктивную болезнь легких (ХОБЛ); рак, такой как рак молочной железы, рак толстой кишки, рак легкого или рак яичников; увеит; склерит; васкулит; болезнь Бехчета; атеросклероз; атопический дерматит; эмфизему; периодонтит; аллергический ринит; И отторжение аллотрансплантата. В предпочтительных вариантах реализации настоящего изобретения композиции по настоящему изобретению применяются для лечения или профилактики одного, или более из этих патологических состояний или заболеваний. В дополнительных предпочтительных вариантах реализации настоящего изобретения указанные патологические состояния или заболевания опосредованы IL-17 или путем Th17.

В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения в способе снижения продукции IL-17 или снижения дифференцировки клеток Th17 при профилактике заболевания ИЛИ ИЛИ патологического состояния, опосредованного IL-17 или путем Th17.B некоторых вариантах реализации настоящего изобретения композиции изобретению предназначены настоящему ДЛЯ ИЛИ профилактики воспалительного или аутоиммунного заболевания, при указанное лечение или профилактика достигается путем или предотвращения повышения воспалительного ответа В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для лечения пациента с воспалительным или аутоиммунным заболеванием, при пациента определяются повышенные уровни IL-17 ИЛИ повышенные уровни клеток Тh17 или проявляется воспалительный Th17. В некоторых вариантах реализации настоящего изобретения у пациента может быть диагностировано хроническое воспалительное или аутоиммунное заболевание, или патологическое ИЛИ композиция ПО настоящему изобретению может применяться для профилактики воспалительного или аутоиммунного заболевания, или патологического состояния, развивающегося хроническое воспалительное или аутоиммунное заболевание или патологическое состояние. В некоторых вариантах реализации настоящего изобретения заболевание или патологическое состояние может не отвечать на лечение ингибиторами $\text{TNF-}\alpha$. Эти варианты реализации изобретения могут применяться к любому из конкретных заболеваний или патологических состояний, перечисленных предыдущем абзаце.

IL-17 и путь Th17 часто ассоциируются с хроническими воспалительными и аутоиммунными заболеваниями, поэтому композиции по настоящему изобретению могут быть особенно пригодны для лечения или профилактики хронических заболеваний или патологических состояний, перечисленных выше. В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения у пациентов с хроническим заболеванием. В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения с целью профилактики развития хронического заболевания.

Композиции по настоящему изобретению могут быть пригодны заболеваний и патологических ДЛЯ лечения состояний, опосредованных IL-17 или путем Th17, И для воспалительного ответа Th17, поэтому композиции по настоящему изобретению МОГУТ быть особенно пригодны для лечения или профилактики хронических заболеваний, лечения или профилактики заболеваний у пациентов, которые не ответили на другие виды терапии (например, лечение ингибиторами $TNF-\alpha$), и/или лечения или предотвращения поражения тканей и развития симптомов, ассоциированных с IL-17 и клетками Th17. Например, IL-17, как известно, активирует разрушение матрикса в хрящевой и костной ткани, при этом IL-17 оказывает ингибирующее действие продукцию матрикса в хондроцитах и остеобластах, композиции по настоящему изобретению могут быть пригодны для лечения или предотвращения эрозии костей или поражения хрящей.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению обеспечивает снижение или предотвращает повышение уровней IL-17, в частности уровней IL-17A. В некоторых вариантах реализации настоящего изобретения лечение с применением композиций настоящему изобретению обеспечивает снижение или предотвращает повышение уровней IFN- γ , IL-1 β , RANTES, MIP-1 α , IL-8 или IL-6. снижение или предотвращение повышенных уровней Такое цитокинов может быть полезным для лечения или профилактики воспалительных и аутоиммунных заболеваний и патологических

состояний, в частности тех, которые опосредованы IL-17 или путем Th17.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению обеспечивает блокирование прикрепления или инвазии клеток человека, например, эпителиальных клеток человека, патогенными клетками, например, E.coli и/или S.enteritidis.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению уменьшает или предотвращает связывание патогенных клеток, например, $E.\ coli\$ и/или $S.\$ enteritidis, $\$ c эпителиальными клетками человека, например, $\$ c эпителиальными клетками кишечника человека.

В некоторых вариантах реализации настоящего изобретения И высвобождение экзополисахаридов бактериальными продукция штаммами композиций по настоящему изобретению могут иметь защитные эффекты против патогенных видов, например, E.coli и/или S.enteritidis. В некоторых вариантах реализации настоящего изобретения продукция и высвобождение экзополисахаридов бактериальными штаммами композиций по настоящему изобретению могут опосредовать действие бактерий на IL-17 или путь Th17 и могут влиять на иммунный ответ хозяина. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью продукции экзополисахаридов при лечении воспалительных и аутоиммунных заболеваний и, В частности заболеваний или патологических состояний, опосредованных IL-17.

В некоторых вариантах реализации настоящего изобретения низкий уровень адгезии к эпителиальным клеткам кишечника человека, в частности клеткам Сасо-2, бактериальных штаммов композиций по настоящему изобретению может повышать полезное влияние композиций по настоящему изобретению на IL-17 или путь Th17 и на заболевания, опосредованные IL-17 или путем Th17.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению обеспечивает повышенную ферментацию рафинозы в кишечнике.

Примеры демонстрируют, что бактериальные штаммы композиций по настоящему изобретению, ферментируют полисахаридную раффинозу, этом ферментация раффинозы может оказывать влияние организм хозяина, например, повышать уровень бутирата в слепой кишке и активизировать пролиферативные процессы в желудочнокишечном тракте. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены применения с целью повышения ферментации раффинозы ДЛЯ кишечнике при лечении воспалительных и аутоиммунных заболеваний заболеваний или патологических состояний, и, частности опосредованных IL-17.

Астма

предпочтительных вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены применения лечении ИЛИ профилактике астмы. Примеры В настоящему демонстрируют, композиций ЧТО С ПОМОЩЬЮ ПО изобретению достигают снижения поступления нейтрофилов и/или эозинофилов в дыхательные пути после сенсибилизации и введения экстракта клеща домашней пыли, и поэтому они могут быть пригодны для лечения или профилактики астмы. Астма представляет собой заболевание, характеризующееся воспалением сужением дыхательных путей. Воспаление при астме может быть опосредовано IL-17 и/или клетками Th17, поэтому композиции по настоящему изобретению могут быть особенно эффективными для профилактики или лечения астмы. Воспаление при астме может быть опосредовано эозинофилами и/или нейтрофилами.

некоторых вариантах реализации изобретения астма представляет собой эозинофильную ИЛИ аллергическую Эозинофильная и аллергическая астма характеризуются повышенным количеством эозинофилов в периферической крови и секрецией дыхательных путей, на патогенетическом уровне сопровождается базальной мембраны, фармакологически утолщением зоны а характеризуется восприимчивостью K лечению кортикостероидами [xvi].Композиции, которые уменьшают или ингибируют поступление или активацию эозинофилов, могут быть пригодны для лечения или профилактики эозинофильной и аллергической астмы.

В дополнительных вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике нейтрофильной астмы (или неэозинофильной астмы). Высокие уровни нейтрофилов тяжелой астмой, ассоциируются С которая тэжом быть невосприимчивой к лечению кортикостероидами. Композиции, которые уменьшают или ингибируют поступление, или активацию нейтрофилов, могут быть пригодны для лечения или профилактики нейтрофильной астмы.

Эозинофильная и нейтрофильная астма не являются взаимоисключающими патологическими состояниями, при этом способы лечения, которые помогают модулировать ответы эозинофилов и нейтрофилов, могут быть пригодны для лечения астмы в целом.

Повышенные уровни IL-17 и активация пути Th17 ассоциированы с тяжелой астмой, поэтому композиции по настоящему изобретению могут быть пригодны для профилактики развития тяжелой астмы или для лечения тяжелой астмы.

В некоторых вариантах реализации настоящего изобретения композиции ПО настоящему изобретению предназначены для применения в способах, ослабляющих эозинофильный воспалительный ответ при лечении или профилактике астмы, или для применения в способах, ослабляющих нейтрофильный воспалительный ответ лечении или профилактике астмы. Как отмечено выше, высокие водинофилов при астме патогенетическом на ассоциируются с утолщением зоны базальной мембраны, поэтому ослабление эозинофильного воспалительного ответа при лечении или способствовать профилактике астмы төжом специфическому воздействию на эту патологическую особенность заболевания. Кроме того, повышенное количество нейтрофилов, либо в сочетании с повышенным количеством эозинофилов, либо без него, ассоциируется тяжелой астмой и хроническим сужением дыхательных путей. Поэтому ослабление нейтрофильного воспалительного ответа может быть особенно пригодно для лечения тяжелой астмы.

В некоторых вариантах реализации настоящего изобретения композиции уменьшают перибронхиолярную инфильтрацию при аллергической астме или предназначены для уменьшения

перибронхиолярной инфильтрации при лечении аллергической астмы. В некоторых вариантах реализации настоящего изобретения композиции уменьшают перибронхиолярную и/или периваскулярную инфильтрацию при нейтрофильной астме или предназначены для уменьшения перибронхиолярной и/или периваскулярной инфильтрации при лечении аллергической нейтрофильной астмы.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению обеспечивает снижение или предотвращает повышение уровней $IL-1\beta$, $IFN\gamma$, RANTES, $MIP-1\alpha$ или IL-8.

В некоторых вариантах реализации настоящего изобретения настоящему изобретению предназначены композиции ПО ДЛЯ применения в способе лечения астмы, что приводит к ослаблению эозинофильного и/или нейтрофильного воспалительного ответа. некоторых вариантах реализации настоящего изобретения пациент, подлежащий лечению, ранее был идентифицирован как повышенный уровень нейтрофилов или эозинофилов, например, определено в результате анализа отобранных проб крови ИЛИ мокроты.

Композиции по настоящему изобретению могут быть пригодны для профилактики развития астмы у новорожденных при введении их новорожденному или беременной женщине. Композиции могут быть пригодны для профилактики развития астмы у детей. Композиции по настоящему изобретению могут быть пригодны для лечения или профилактики приобретенной астмы у взрослых. Композиции настоящему изобретению могут быть пригодны для лечения или облегчения симптомов астмы. Композиции по настоящему изобретению особенно пригодны интенсивности быть для снижения симптомов, ассоциированных астмой, С которая усугубляется аллергенами, такими как клещи домашней пыли.

Термин «лечение» или «профилактика» астмы может относиться, например, к уменьшению тяжести симптомов или к снижению частоты обострений, или к уменьшению числа инициирующих факторов, которые являются проблемными для пациента.

В некоторых вариантах реализации настоящего изобретения применением композиций по настоящему изобретению лечение с обеспечивает снижение концентрации фенилаланина и/или гистидина, например, в кишечнике или в плазме. Примеры демонстрируют, что бактериальные штаммы композиций по настоящему изобретению положительным анализом на ферментацию аминокислот, включая фенилаланин и гистидин, и повышенные концентрации фенилаланина и плазме, как сообщается, ассоциированы гистидина В эффектами при астме. В некоторых вариантах нежелательными реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения С целью снижения концентрации фенилаланина и/или гистидина в плазме при лечении астмы и, в частности при воздействии на продукцию гистамина или гиперчувствительность дыхательных путей, ассоциированных астмой.

некоторых вариантах реализации настоящего изобретения применением композиций по настоящему обеспечивает снижение концентрации галактозы и/или фруктозы, например, в кишечнике. Примеры демонстрируют, что бактериальные штаммы композиций настоящему изобретению ПО ферментируют углеводные субстраты, включая галактозу и фруктозу, при этом такая галактоза, как $\alpha-1$,3-галактоза, содержится в мясе и является известным аллергеном и причинным фактором анафилаксии, а уровни потребления фруктозы с пищей коррелируют с увеличением тяжести астмы. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью снижения концентрации галактозы и/или фруктозы при лечении астмы и, в частности при лечении тяжелой астмы.

Артрит

В предпочтительных вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике ревматоидного артрита (РА). Примеры демонстрируют, что с помощью композиций по настоящему изобретению достигают снижения интенсивности

клинических признаков РА в мышиной модели, уменьшения поражения хрящей и костей, а также снижения воспалительного ответа IL-17, и поэтому они могут быть пригодны для лечения или профилактики РА. РА представляет собой системное воспалительное заболевание, которое в первую очередь поражает суставы. РА ассоциируется с воспалительным ответом, который приводит ĸ отеку синовиальной гиперплазии и разрушению хряща и кости.IL-17и клетки Th17 могут играть ключевую роль при PA, например, с IL-17 ингибирует продукцию матрикса учетом TOPO, ЧТО В хондроцитах и остеобластах и активирует продукцию и функцию матриксных металлопротеиназ и с учетом того, что активность патологического процесса при РА коррелирует с уровням IL-17 и количеством клеток Th-17 [xvii,xviii]; поэтому композиции по настоящему изобретению могут быть особенно эффективными для профилактики или лечения РА.

В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения с целью снижения уровней IL-17 или предотвращения повышения уровней IL-17 при лечении или профилактике РА. В некоторых вариантах реализации настоящего применением композиций изобретения лечение с по настоящему изобретению обеспечивает снижение или предотвращает повышение уровней IL-17, в частности уровней IL-17A. В некоторых вариантах настоящего изобретения С реализации лечение применением композиций по настоящему изобретению обеспечивает снижение или предотвращает повышение уровней IFN-у или IL-6.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению приводит к уменьшению отека суставов. В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения у пациентов с отеками суставов или у пациентов, которые подвержены риску развития отека суставов. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в способе уменьшения отека суставов при РА.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению приводит к уменьшению поражения хрящей или поражения костей. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью уменьшения или предотвращения поражения хрящей или костей при лечении РА. В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения в лечении пациентов с тяжелым РА, которые подвержены риску поражения хрящей или костей.

уровни Повышенные IL-17 И количества клеток Th17 ассоциированы с разрушением хрящей и костей при РА [26,27]. IL-17, как известно, активирует разрушение матрикса в хрящевой и костной ткани, при этомIL-17 оказывает ингибирующее действие на продукцию матрикса в хондроцитах и остеобластах. Поэтому, некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью предотвращения эрозии костей или поражения хрящей при лечении РА. В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения в лечении пациентов, у которых отмечается эрозия кости или поражение хряща, пациентов, которые подвержены риску развития эрозии кости или поражения хряща.

 ${
m TNF-}\alpha$ также ассоциируется с PA, но ${
m TNF-}\alpha$ не участвует в патогенезе более поздних стадий заболевания. Напротив, ${
m IL-17}$ играет роль в патогенезе всех стадий хронического заболевания [xix]. Следовательно, в некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для лечения хронического PA или поздних стадий PA, например, заболевания, которое характеризуется разрушением суставов и потерей хрящей. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для лечения пациентов, которые ранее получали терапию анти- ${
m TNF-}\alpha$. В некоторых вариантах реализации настоящего изобретения

пациенты, которые подлежат лечению, не отвечают или больше не отвечают на терапию анти-TNF- α .

Композиции по настоящему изобретению могут быть пригодны для модуляции иммунной системы пациента, поэтому в некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для профилактики РА у пациента, который был идентифицирован как подверженный риску РА, или у которого была диагностирована ранняя стадия РА. Композиции по настоящему изобретению могут быть пригодны для предотвращения развития РА.

Композиции по настоящему изобретению могут быть пригодны для лечения или облегчения симптомов РА. Композиции по настоящему изобретению могут быть особенно пригодны для снижения интенсивности симптомов, ассоциированных с отеком сустава или разрушением кости. Термин «лечение» или «профилактика» РА может относиться, например, к уменьшению тяжести симптомов или к снижению частоты обострений, или к уменьшению числа инициирующих факторов, которые являются проблемными для пациента.

Рассеянный склероз

предпочтительных вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике рассеянного склероза. Примеры демонстрируют, что с помощью композиций по настоящему изобретению достигают снижения частоты возникновения и тяжести заболевания у мышиной модели рассеянного склероза (модель ЕАЕ), и поэтому они могут быть пригодны для лечения или профилактики рассеянного склероза. Рассеянный склероз представляет воспалительное заболевание, связанное с поражением миелиновых оболочек нейронов, особенно в головном мозге и спинном мозге. склероз является хронической патологией, Рассеянный постепенно инвалидизирует человека и протекает с обострениями. IL-17 и клетки Th17 могут играть ключевую роль при рассеянном склерозе, например, с учетом того, что IL-17 может коррелировать с множественными поражениями при склерозе, IL-17 может нарушать плотные соединения эндотелиальных клеток гематоэнцефалического

барьера, а клетки Th17 могут мигрировать в центральную нервную систему и вызывать гибель нейронов [xx,xxi].Поэтому композиции по настоящему изобретению могут быть особенно эффективными для профилактики или лечения рассеянного склероза.

некоторых вариантах реализации настоящего изобретения применением композиций по настоящему изобретению приводит к снижению частоты возникновения или ТЯЖЕСТИ заболевания. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены применения с целью снижения частоты возникновения или тяжести заболевания. В некоторых вариантах реализации настоящего лечение с применением композиций ПО изобретению предотвращает ослабление двигательной функции или приводит к улучшению двигательной функции. В некоторых вариантах настоящего изобретения композиции реализации ПО настоящему изобретению предназначены для применения с целью предотвращения ослабление двигательной функции или для применения с целью улучшения двигательной функции. В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по паралича. настоящему изобретению предотвращает развитие В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью предотвращения развития паралича при лечении рассеянного склероза.

Композиции по настоящему изобретению могут быть пригодны для модуляции иммунной системы пациента, поэтому в некоторых вариантах реализации настоящего изобретения композиции изобретению предназначены профилактики настоящему ДЛЯ рассеянного склероза у пациента, который был идентифицирован как подверженный риску развития рассеянного склероза, или у которого была диагностирована ранняя стадия рассеянного склероза или «рецидивирующе-ремиттирующий» рассеянный склероз. Композиции по настоящему изобретению могут быть пригодны для предотвращения развития склероза. Действительно, примеры демонстрируют, введение композиций по настоящему изобретению предотвращает развитие заболевания у многих мышей.

Композиции по настоящему изобретению могут быть пригодны облегчения симптомов рассеянного пля лечения или настоящему изобретению могут Композиции ПО быть особенно пригодны для снижения интенсивности симптомов, ассоциированных с рассеянным склерозом. Термин «лечение» ИЛИ «профилактика» рассеянного склероза может относиться, например, к уменьшению тяжести симптомов или к снижению частоты обострений или числа инициирующих факторов, которые являются уменьшению проблемными для пациента.

Увеит

предпочтительных вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике увеита. С помощью композиций по настоящему изобретению достигают снижения частоты возникновения и тяжести заболевания на модели увеита животных, следовательно, композиции могут быть пригодны для лечения или увеита. Увеит представляет собой воспаление сосудистой оболочки И может привести к разрушению сетчатки. Увеит может проявляться в разных анатомических формах (передней, промежуточной, задней или диффузной) И ЯВЛЯТЬСЯ результатом различных, но связанных причин, TOMчисле системных IL-17 аутоиммунных нарушений. И ПУТЬ Th17 централизованно участвуют В патогенезе увеитах, ПОЭТОМУ настоящему изобретению МОГУТ быть КОМПОЗИЦИИ ПО эффективными для профилактики или лечения увеита. В литературе [xxii-xxiii] описывают повышенные сывороточные интерлейкина-17А у пациентов с увеитом, специфическую ассоциацию генетических вариантов IL17A С панувеитом, роль Th17ассоциированных цитокинов в патогенезе экспериментального аутоиммунного увеита, дисбаланс между клетками Th17 TΛ регуляторными Т-клетками при монофазном экспериментальном аутоиммунном увеите, повышение регуляции IL-17A у пациентов увеитом и активной болезнью Адамантиадес-Бехчета и активной Фогта-Коянаги-Харада (VKH), болезнью лечение неинфекционного увеита секукинумабом (антитело анти-IL-17A) и Th17 в глазу, пораженном увеитом.

В некоторых вариантах реализации настоящего изобретения задний увеит. собой Залний представляет характеризуется первую очередь воспалением В сетчатки сосудистой оболочки, при ЭТОМ композиции ПО настоящему изобретению могут быть эффективными для уменьшения воспаления и поражения сетчатки.

В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению приводит к уменьшению поражения сетчатки. В некоторых вариантах настоящего изобретения композиции изобретению предназначены для применения с целью уменьшения или поражения сетчатки предотвращения при лечении увеита. некоторых вариантах реализации настоящего изобретения композиции предназначены для применения в лечении пациентов C увеитом, которые подвержены риску поражения сетчатки. В некоторых вариантах реализации настоящего изобретения лечение с применением композиций по настоящему изобретению приводит уменьшению воспаления диска зрительного нерва. В некоторых вариантах реализации настоящего изобретения композиции ПО настоящему изобретению предназначены для применения с целью предотвращения воспаления диска ИЛИ нерва. В некоторых вариантах реализации настоящего изобретения применением композиций по настоящему лечение с изобретению уменьшению инфильтрации тканей сетчатки приводит К воспалительными клетками. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью уменьшения инфильтрации тканей сетчатки воспалительными клетками. В некоторых вариантах реализации настоящего изобретения лечение С применением композиций по настоящему изобретению приводит к сохранению или улучшению зрения. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью сохранения или улучшения зрения.

В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения с целью лечения или профилактики увеита, ассоциированного с неинфекционным или

аутоиммунным заболеванием, таким как болезнь Бехчета, болезнь гетерохромный иридоциклит Фукса, гранулематоз полиангиитом, HLA-B27-связанный увеит, ювенильный идиопатический артрит, саркоидоз, спондилоартрит, мигрирующая офтальмия, тубулоинтерстициальный нефрит синдром увеита или И синдром Фогта-Коянаги-Харада. Продемонстрировано, что IL-17A участвует в патогенезе, например, болезни Бехчета и болезни Фогта-Коянаги-Харада.

Термин «лечение» или «профилактика» увеита может относиться, например, к уменьшению тяжести симптомов или профилактике рецидива.

Лечение рака

В предпочтительных вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике рака. Примеры демонстрируют, что введение композиций по настоящему изобретению может привести к уменьшению роста опухоли в ряде опухолевых моделей.

В некоторых вариантах реализации настоящего изобретения применением композиций по настоящему изобретению лечение с приводит к уменьшению размера опухоли или уменьшению роста опухоли. В некоторых вариантах реализации настоящего изобретения изобретению композиции ПО настоящему предназначены применения с целью уменьшения размера опухоли или уменьшения опухоли. Примеры демонстрируют, ЧТО композиции настоящему изобретению могут быть эффективным для уменьшения размера или роста опухоли. В некоторых вариантах реализации настоящего изобретения композиции предназначены для применения у пациентов С СОЛИДНЫМИ опухолями. В некоторых реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью уменьшения или предотвращения ангиогенеза при лечении рака. IL-17 и клетки Th17 играют ключевую роль В ангиогенезе. В некоторых вариантах настоящего изобретения композиции реализации ПО настоящему изобретению предназначены для применения с целью предотвращения метастазирования.

В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены применения в лечении или профилактике рака молочной железы. Примеры демонстрируют, что композиции по настоящему изобретению могут быть эффективным для лечения рака молочной железы. некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью уменьшения размера опухоли, уменьшения роста опухоли ИЛЛИ уменьшения ангиогенеза при лечении рака молочной железы. предпочтительных вариантах реализации настоящего изобретения рак представляет собой карциному молочной железы. В предпочтительных вариантах реализации настоящего изобретения рак представляет собой рак молочной железы IV стадии.

В некоторых вариантах реализации настоящего изобретения изобретению композиции настоящему предназначены ПО применения в лечении или профилактике рака легких. демонстрируют, что композиции по настоящему изобретению могут быть эффективным для лечения рака легких. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью уменьшения размера опухоли, уменьшения роста опухоли или уменьшения В ангиогенеза при лечении рака легких. предпочтительных вариантах реализации настоящего изобретения рак представляет собой карциному легких.

В некоторых вариантах реализации настоящего изобретения композиции настоящему изобретению предназначены ПО применения в лечении или профилактике рака легких. демонстрируют, что композиции по настоящему изобретению могут быть эффективным для лечения рака печени. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью уменьшения размера опухоли, уменьшения роста опухоли ИЛИ уменьшения ангиогенеза при лечении рака печени. В предпочтительных вариантах реализации настоящего изобретения рак представляет собой гепатому (гепатоцеллюлярную карциному).

В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике карциномы. Примеры демонстрируют, что композиции по настоящему изобретению могут быть эффективным для лечения многочисленных видов карциномы. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения в лечении или профилактике неиммуногенного рака. Примеры демонстрируют, что композиции по настоящему изобретению могут быть эффективным для лечения неиммуногенных раков.

IL-17 и путь Th17 играют ключевую роль в развитии рака и его прогрессировании, и, хотя роли IL-17 и клеток Th17 при раке полностью изучены, известны многочисленные протуморозные эффекты IL-17 и клеток Th17. Например, клетки Th17 и IL-17 могут способствовать ангиогенезу, усиливать пролиферацию, повышать выживаемость опухолевых клеток активировать И опухольпромотирующие факторы транскрипции [xxiv-, VMOTEON. [VXX композиции по настоящему изобретению могут быть пригодны для лечения или профилактики рака. Кроме TOPO, примеры демонстрируют, что композиции по настоящему изобретению эффективны для уменьшения объема опухоли при раке молочной железы, легких и печени, а IL-17 и клеткиTh17 играют важную роль в патогенезе этих специфических типов рака [xxvi-xxvii].

Терапевтический эффект композиций по настоящему изобретению при раке может быть опосредован провоспалительным механизмом. Воспаление может оказывать эффект, подавляющий рак [xxviii]; при этом для лечения рака исследуются провоспалительные цитокины, такие как $\text{TNF}\alpha$ [xxix]. Композиции по настоящему изобретению могут быть пригодны для лечения рака посредством аналогичного механизма. Например, композиции по настоящему изобретению могут IFNy. IFNy является мощным вызывать ответ типа фактором, активирующим макрофаги, который может стимулировать [xxx], при этом CXCL9 тубумороцидную активность например, также характеризуются противораковыми эффектами [хххі-, хххіі].Поэтому в некоторых вариантах реализации настоящего

изобретения композиции по настоящему изобретению предназначены для применения с целью активации воспаления при лечении рака. В предпочтительных вариантах реализации настоящего изобретения композиции ПО настоящему изобретению предназначены применения с цельюактивации Th1 воспаления при лечении рака. Клетки Th1 продуцируют IFNy и обладают мощными противораковыми [45]. В некоторых вариантах реализации настоящего эффектами изобретения композиции по настоящему изобретению предназначены для применения в лечении рака ранней стадии, такого как рак, который не метастазирован, или рак стадии 0 или стадии Активация воспаления может быть более эффективной при ранних стадиях рака [45]. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для применения с целью активации воспаления для усиления эффекта второго противоракового агента.

реализации настоящего изобретения других вариантах композиции настоящему изобретению предназначены или профилактики применения С целью лечения острого лимфобластного лейкоза (ОЛЛ), острого миелоидного лейкоза, адренокортикальной карциномы, базально-клеточной карциномы, рака желчных протоков, рака мочевого пузыря, опухоли кости, остеосаркомы/злокачественной йонгоддиф ГИСТИОЦИТОМЫ, ГЛИОМЫ головного мозга, опухоли головного мозга, астроцитомы мозжечка, астроцитомы головного мозга/злокачественной глиомы, эпендимомы, медуллобластомы, супратенториальных Примитивных молочной нейроэктодермальных опухолей, рака железы, аденомы/карциноидов бронхов, лимфомы Беркитта, карциноидной шейки матки, хронического лимфолейкоза, опухоли, рака хронического миелоидного лейкоза, хронических миелопролиферативных нарушений, рака толстой кишки, Т-клеточной лимфомы кожи, рака эндометрия, эпендимомы, рака пищевода, саркомы Юинга, внутриглазной меланомы, ретинобластомы, желчного пузыря, рака желудка, карциноидной опухоли желудочнокишечного тракта, стромальнойопухоли желудочно-кишечного тракта (СПЖКТ), эмбрионально-клеточной опухоли, глиомы, опухоли

зрительного проводящего пути и гипоталамуса у детей, лимфомы Ходжкина, меланомы, карциномы островковых клеток, саркомы Капоши, почечно-клеточного рака, рака гортани, лейкозов, лимфом, мезотелиомы, нейробластомы, неходжкинской лимфомы, рака, остеосаркомы, рака яичников, орофаренгиального поджелудочной железы, рака паращитовидной железы, рака глотки, гипофиза, неоплазии плазменных аденомы клеток, рака предстательной железы, почечно-клеточной карциномы, ретинобластомы, саркомы, рака яичек, рака щитовидной железы или рака матки.

Композиции по настоящему изобретению могут быть особенно при применении В комбинации C другими терапевтическими агентами. Иммуномодулирующее влияние композиций по настоящему изобретению может быть эффективным в комбинации с более имимерп противораковыми агентами. Следовательно, реализации некоторых вариантах настоящего изобретения предлагается композиция, содержащая бактерию, депонированную под номером доступа NCIMB 42380, или ее биотип, и противораковый агент. В предпочтительных вариантах реализации настоящего изобретения противоопухолевый агент представляет собой ингибитор иммунной контрольной точки, целевую иммунотерапию антителами, терапию CAR-T-клетками, онколитический вирус или цитостатический препарат. В предпочтительных вариантах реализации настоящего изобретения композиция содержит противораковый агент, выбранный из группы, состоящей из следующих препаратов: Ервой (ипилимумаб, BMS); Кейтруда (пембролизумаб, Merck); Опдиво (ниволумаб, BMS); MEDI4736 (AZ/MedImmune); MPDL3280A (Roche/Genentech); (AZ/MedImmune); CT-011 (пидилизумаб, CureTech); Тремелимумаб BMS-986015 (лирилумаб, BMS); MEDI0680 (AZ/MedImmune); 0010718C (Merck); PF-05082566 (Pfizer); MEDI6469 (AZ/MedImmune); BMS-986016 (BMS); BMS-663513 (урелумаб, BMS); IMP321 (Prima Biomed); LAG525 (Novartis); ARGX-110 (arGEN-X); PF-05082466 (Pfizer); CDX-1127 (варлилумаб; CellDex Therapeutics); TRX-518 Inc.);MK-4166 (Merck);JTX-2011 (Jounce Therapeutics); ARGX-115 (arGEN-X); NLG-9189 (индоксимод, NewLink Genetics); INCB024360 (Incyte); IPH2201 (Innate Immotherapeutics/AZ); NLG-

919 (NewLink Genetics); анти-ВИСТА (JnJ); Эпакадостат (INCB24360, Incyte); F001287 (Flexus/BMS); CP 870893 (Университет штата Пенсильвания); MGA271 (Macrogenix); Эмактузумаб (Roche/Genentech); Галинисертиб (Eli Lilly); (BMS); BKT140/BL8040 (Biokine Therapeutics); Улокуплумаб Бавитуксимаб (Peregrine Pharmaceuticals); СС 90002 (Celgene); 852A (Pfizer); VTX-2337 (VentiRx Pharmaceuticals); IMO-2055 (Hybridon, Idera Pharmaceuticals); LY2157299 (Eli Lilly); EW-7197 (Университет Ewha Women's, Корея); Вемурафениб (Plexxikon); (Genentech/GSK); BMS-777607 (BMS); Дабрафениб (Мемориальный противораковый центр Слоан-Кеттеринг); Унитуксин (динутуксимаб, United Therapeutics Corporation); Блинкито (блинатумомаб, Amgen); Цирамза (рамуцирумаб, Eli Lilly); Газива (обинутузумаб, Roche/Biogen); Кадсила (адо-трастузумаб эмтанзин, Roche/Genentech); Перьета (пертузумаб, Roche/Genentech); Адцетрис (брентуксимаб ведотин, Takeda/Millennium); Арзерра (офатумумаб, GSK); Вектибикс (панитумумаб, Amgen); (бевацизумаб, Roche/Genentech); Эрбитукс (цетуксимаб BMS/Merck); Бексар (тозитумумаб-I131, GSK); Зевалин (ибритумомаб тиуксетан, Biogen); Кампат (алемтузумаб, Bayer); Милотарг (гемтузумаб озогамицин, Pfizer); Герцептин (трастузумаб, Roche/Genentech); Ритуксан (ритуксимаб, Genentech/Biogen); волоциксимаб (Abbvie); (Abbvie); ABT-414 (Abbvie); Элотузумаб Энаватузумаб (Abbvie/BMS); ALX-0141 (Ablynx); Озарализумаб (Ablynx); Актимаб-C (Actinium); Актимаб-Р (Actinium); Милатузумаб-докс (Actinium); Эмаб-SN-38 (Actinium); Наптумонмаб эстафенатокс Biotech); AFM13 (Affimed); AFM11 (Affimed); AGS-16C3F (Agensys); AGS-16M8F (Agensys); AGS-22ME (Agensys); AGS-15ME (Agensys); GS-67E (Agensys); ALXN6000 (самализумаб, Alexion); ALT-836 (Altor Bioscience); ALT-801 (Altor Bioscience); ALT-803 Bioscience); AMG780 (Amgen); AMG 228 (Amgen); AMG820 (Amgen); AMG172 (Amgen); AMG595 (Amgen); AMG110 (Amgen); AMG232 (адекатумумаб, Amgen); AMG211 (Amgen/MedImmune); BAY20-10112 (Amgen/Bayer); рилотумумаб (Amgen); Денозумаб (Amgen); AMP-514 (Amgen); MEDI575 (AZ/MedImmune); MEDI3617 (AZ/MedImmune); MEDI6383 (AZ/MedImmune); MEDI551 (AZ/MedImmune); Mokcetymoma6

пазудотокс (AZ/MedImmune); MEDI565 (AZ/MedImmune); MEDI0639 (AZ/MedImmune); MEDI0680 (AZ/MedImmune); MEDI562 (AZ/MedImmune); AV-380 (AVEO); AV203 (AVEO); AV299 (AVEO); BAY79-4620 (Bayer); Анетумаб равтанзин (Bayer); вантиктумаб (Bayer); ВАҮ94-9343 (Bayer); сибротузумаб (Boehringer Ingleheim); BI-836845 (Boehringer Ingleheim); B-701 (BioClin); BIIB015 (Biogen); Обинутузумаб (Biogen/Genentech); BI-505 (Bioinvent); BI-1206 (Bioinvent); TB-403 (Bioinvent); BT-062 (Biotest) BIL-010t (Biosceptre); MDX-1203 (BMS); MDX-1204 (BMS); Нецитумумаб (BMS); CAN-4 (Cantargia AB); CDX-011 (Celldex); CDX1401 (Celldex); CDX301 (Celldex); U3-1565 (Daiichi Sankyo); патритумаб (Daiichi Sankyo); тигатузумаб (Daiichi Sankyo); нимотузумаб (Daiichi Sankyo); DS-8895 (Daiichi Sankyo); DS-8873 (Daiichi Sankyo); DS-5573 (Daiichi Sankyo); MORab-004 (Eisai); MORab-009 (Eisai); MORab-003 (Eisai); MORab-066 (Eisai); LY3012207 (Eli Lilly); LY2875358 (Eli Lilly); LY2812176 (Eli Lilly); LY3012217(Eli Lilly); LY2495655 (Eli Lilly); LY3012212 (Eli Lilly); LY3012211 (Eli Lilly); LY3009806 (Eli Lilly); циксутумумаб (Eli Lilly); Фланвотумаб (Eli Lilly); IMC-TR1 (Eli Lilly); Рамуцирумаб (Eli Lilly); Табалумаб (Eli Lilly); Занолимумаб (Emergent Biosolution); FG-3019 (FibroGen); FPA008 (Five Therapeutics); FP-1039 (Five Prime Therapeutics); FPA144 (Five Prime Therapeutics); катумаксомаб (Fresenius Biotech); IMAB362 (Ganymed); IMAB027 (Ganymed); HuMax-CD74 (Genmab); HuMax-TFADC (Genmab); GS-5745 (Gilead); GS-6624 (Gilead); OMP-21M18 (демцизумаб, GSK); мапатумумаб (GSK); IMGN289 (ImmunoGen); IMGN901 (ImmunoGen); IMGN853 (ImmunoGen); IMGN529 (ImmunoGen); IMMU-130 (Immunomedics); милатузумаб-докс (Immunomedics); IMMU-115 (Immunomedics); IMMU-132 (Immunomedics); IMMU-106 (Immunomedics); IMMU-102 (Immunomedics); Эпратузумаб (Immunomedics); Кливатузумаб (Immunomedics); IPH41 (Innate Immunotherapeutics); Даратумумаб (Janssen/Genmab); CNTO-95 (Интетумумаб, Janssen); CNTO-328 (силтуксимаб, Janssen); KB004 (KaloBios); могамулизумаб (Kyowa Hakko Kirrin); KW-2871 (экромексимаб, Life Science); Сонепцизумаб (Lpath); Маргетуксимаб (Macrogenics); Эноблитузумаб (Macrogenics); MGD006

(Macrogenics); MGF007 (Macrogenics); MK-0646 (далотузумаб, Merck); MK-3475 (Merck); Sym004 (Symphogen/Merck Serono); DI17E6 (Merck Serono); MOR208 (Morphosys); MOR202 (Morphosys); Xmab5574 (Morphosys); BPC-1C (энзитуксимаб, Precision Biologics); TAS266 (Novartis); BHQ880 (Novartis/Morphosys); (Novartis); LFA102 QGE031 (Novartis); HCD122 (лукатумумаб, Novartis); LJM716 (Novartis); AT355 (Novartis); OMP-21M18 (Демцизумаб, OncoMed); OMP52M51 (Oncomed/GSK); OMP-59R5 (Oncomed/GSK); вантиктумаб (Oncomed/Bayer); CMC-544 (инотузумаб озогамицин, Pfizer); PF-03446962 (Pfizer); PF-04856884 (Pfizer); PSMA-ADC (Progenics); REGN1400 (Regeneron); REGN910 (Hecbakymao, Regeneron/Sanofi); REGN421 (энотикумаб, Regeneron/Sanofi); RG7221, RG7356, RG7155, RG7444, RG7116, RG7458, RG7598, RG7599, RG7600, RG7636, RG7450, RG7593, RG7596, DCDS3410A, RG7414 (парзатузумаб), (имгатузумаб), RG7159 (обинтузумаб), RG7686, RG3638 (OHAPTYSYMAO), RG7597 (Roche/Genentech); SAR307746 (Sanofi); SAR566658 (Sanofi); SAR650984 (Sanofi); SAR153192 (Sanofi); SAR3419 (Sanofi); SAR256212 (Sanofi), SGN-LIV1A (линтузумаб, Seattle Genetics); SGN-CD33A (Seattle Genetics); SGN-75 (ворзетузумаб мафодотин, Seattle Genetics); SGN-19A (Seattle Genetics) SGN-CD70A (Seattle Genetics); SEA-CD40 (Seattle Genetics); ибритумомаб (Spectrum); MLN0264 (Takeda); ганитумаб (Takeda/Amgen); CEP-37250 (Teva); TB-403 (Thrombogenic); VB4-845 (Viventia); Xmab2512 (Xencor); Xmab5574 (Xencor); нимотузумаб (YM Biosciences); Карлумаб (Janssen); NY-ESO TCR (Adaptimmune); MAGE-A-10 TCR (Adaptimmune); CTL019 (Novartis); JCAR015 (Juno Therapeutics); KTE-C19 CAR (Kite Pharma); UCART19 (Cellectis); (Bellicum Pharmaceuticals); BPX-601 BPX-401 (Bellicum Pharmaceuticals); ATTCK20 (Unum Therapeutics); CAR-NKG2D (Celyad); Onyx-015 (Onyx Pharmaceuticals); H101 (Shanghai Sunwaybio); DNX-2401 (DNAtrix); VCN-01 (VCN Biosciences); Colo-Ad1 (PsiOxus Therapeutics); ProstAtak (Advantagene); Oncos-102 (Oncos Therapeutics); CG0070 (Cold Genesys); Пекса-вак (JX-594, Jennerex Biotherapeutics); GL-ONC1 (Genelux); T-VEC (Amgen); G207 (Medigene); HF10 (Takara Bio); SEPREHVIR (HSV1716, Virttu Biologics); OrienX010 (OrienGene Biotechnology); Реолизин

(Oncolytics Biotech); SVV-001 (Neotropix); Какатак (CVA21, Viralytics); Alimta (Eli Lilly), цисплатин, оксалиплатин, иринотекан, фолиновая кислота, метотрексат, циклофосфамид, фторурацил, Зикадия (Novartis), Тафинлар (GSK), Ксалкори (Pfizer), Иресса (AZ), Гилотриф (Boehringer Ingelheim), Тарцева (Astellas Pharma), Галавен (Eisai Pharma), Велипариб (Abbvie), AZD9291 (AZ), Алектиниб (Chugai), LDK378 (Novartis), Генетеспиб (Synta Pharma), Тергенпуматуцел-L (NewLink Genetics), GV1001 (Kael-GemVax), Тивантиниб (ArQule); Цитоксан (BMS); Онковин (Eli Lilly); Адриамицин (Pfizer); Гемзар (Eli Lilly); Кселода (Roche); Иксеипра (BMS); Абраксан (Celgene); Трелстар (Debiopharm); Таксотер (Sanofi); Нексавар (Bayer); IMMU-132 (Иммуномедика); E7449 (Eisai); Термодокс (Celsion); Кометрик (Exellxis); Лонсурф (Taiho Pharmaceuticals); Камптозар (Pfizer); UFT (Taiho Pharmaceuticals); и TS-1 (Taiho Pharmaceuticals).

Способы введения

Предпочтительно композиции по настоящему изобретению предназначены для введения в желудочно-кишечный тракт с целью обеспечения доставки и/или частичной или полной колонизации кишечника бактериальным штаммом по настоящему изобретению. Как правило, композиции по настоящему изобретению вводят перорально, но их можно вводить ректально, интраназально, или посредством буккального или сублингвального пути.

В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению можно вводить в форме пены, в форме спрея или геля.

В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению можно вводить в виде суппозитория, такого как ректальный суппозиторий, например, в форме масла плодов шоколадного дерева (масло какао), синтетического твердого жира (например, суппоцир, витепсол), глицерожелатина, полиэтиленгликоля или композиции мыльного глицерина.

В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению вводят в желудочно-кишечный тракт через зонд, такой как назогастральный зонд, орогастральный

зонд, желудочный зонд, еюностомический зонд (J-зонд), чрескожную эндоскопическую гастростому (ЧЭГ) или через отверстие, такое как отверстие в стенке грудной клетки, которое обеспечивает доступ к желудку, тощей кишке, и через другие пригодные отверстия для доступа.

Композиции по настоящему изобретению можно вводить один раз, или их можно вводить последовательно в рамках схемы лечения. В некоторых вариантах реализации настоящего изобретения композиции по настоящему изобретению предназначены для ежедневного введения.

В некоторых вариантах осуществления изобретения лечение согласно настоящему изобретению сопровождается оценкой микробиоты кишечника пациента. Лечение можно повторить, доставка и/или частичная или полная колонизация штаммом по настоящему изобретению достигнута И эффективность не отсутствует, или лечение можно прекратить, если доставка и/или частичная ИЛИ полная колонизация успешны И наблюдается эффективность.

В некоторых вариантах реализации настоящего изобретения композицию по настоящему изобретению можно вводить беременному животному, например, млекопитающему, например, человеку, для предотвращения воспалительного или аутоиммунного заболевания, развивающегося у плода внутриутробно и/или после его рождения.

Композиции настоящему изобретению ПО ОНЖОМ которому был поставлен диагноз заболевания патологического состояния, опосредованного IL-17 или путем Th17, или который был идентифицирован как подверженный риску развития заболевания или патологического состояния, опосредованного IL-17 Th17. Композиции также можно вводить качестве профилактической меры здоровому пациенту для предотвращения развития заболеваний или патологических состояний, опосредованных IL-17 или путем Th17.

Композиции по настоящему изобретению можно вводить пациенту, который был идентифицирован как имеющий патологическую микробиоту кишечника. Например, пациент может характеризоваться

уменьшенной или отсутствующей колонизацией бактерией, депонированной под номером доступа NCIMB 42380.

Композиции по настоящему изобретению можно вводить как пищевой продукт, такой как пищевая добавка.

Как правило, композиции по настоящему изобретению предназначены для лечения людей, хотя они могут применяться для лечения животных, включая моногастрических млекопитающих, таких как домашняя птица, свиньи, кошки, собаки, лошади или кролики. Композиции по настоящему изобретению могут быть пригодны для увеличения роста и работоспособности животных. При введении животным можно применять пероральный зонд.

Композиции

Как правило, композиция по настоящему изобретению включает бактерии. В предпочтительных вариантах реализации настоящего изобретения композиция составлена в лиофилизированной форме. Например, композиция по настоящему изобретению может содержать гранулы или желатиновые капсулы, например, твердые желатиновые капсулы, содержащие бактериальный штамм по настоящему изобретению.

Предпочтительно композиция по настоящему изобретению содержит лиофилизированные бактерии. Лиофилизация бактерий представляет собой общеизвестную процедуру, и соответствующие рекомендации доступны, например, в работах [xxxiii-, xxxiv].

В альтернативном варианте композиция по настоящему изобретению может содержать живую активную бактериальную культуру.

предпочтительных вариантах реализации настоящего изобретения композиция по настоящему изобретению помещена в капсулу с целью обеспечения доставки бактериального штамма в кишечник. Инкапсуляция защищает композицию от расщепления до доставки к необходимому месту, например, инактивируя химические физические факторы, такие как давление, ферментативная активность ИЛИ физический распад, ЧТО может быть изменениями рН. Для инкапсуляции можно применять любой пригодный способ. Типовые способы инкапсуляции включают окружение внутри пористой матрицы, прикрепление или адсорбцию на поверхностях

твердых носителей, самоагрегирование с помощью флокуляции или сшивающих агентов и механическое удерживание за микропористой мембраной или микрокапсулой. Руководство по инкапсуляции, которому можно следовать при приготовления композиций по настоящему изобретению, доступно, например, в работах [хххv] и [хххvi].

Композиция может вводиться перорально и может находиться в форме таблетки, капсулы или порошка. Инкапсулированные препараты являются предпочтительными, поскольку бактерия, депонированная под номером доступа NCIMB 42380, может быть анаэробной. Другие ингредиенты (такие как, например, витамин С) могут быть включены в качестве поглотителей кислорода и пребиотических субстратов для улучшения доставки и/или частичной или полной колонизации и выживания $in\ vivo$. В альтернативном варианте пробиотическая композиция по настоящему изобретению можно вводить перорально в виде пищевого или питательного продукта, такого как молоко или ферментированный молочный продукт на основе сыворотки или в виде фармацевтического препарата.

Композиция может быть составлена как пробиотик.

Композиция ПО настоящему изобретению включает терапевтически эффективное количество бактериального штамма по настоящему изобретению. Терапевтически эффективное количество достаточным, бактериального штамма является чтобы оказать положительный эффект у пациента. Терапевтически эффективное количество бактериального штамма может быть достаточным для обеспечения доставки и/или частичной или полной колонизации кишечника пациента.

Пригодная суточная доза бактерий, например, для взрослого человека, может составлять от около 1×10^3 до около 1×10^{11} колониеобразующих единиц (КОЕ); например, от около 1×10^7 до около 1×10^{10} КОЕ; в другом примере от около 1×10^6 до около 1×10^{10} КОЕ.

В некоторых вариантах реализации настоящего изобретения композиция содержит бактериальный штамм в количестве от около 1×10^6 до около 1×10^{11} КОЕ/г, по отношению к весу композиции;

например, от около 1×10^8 до около 1×10^{10} КОЕ/г. Доза может составлять, например, 1 г, 3 г, 5 г и 10 г.

Как правило, пробиотик, такой как композиция по настоящему изобретению, в некоторых случаях комбинируют по меньшей мере с пригодным пребиотическим соединением. Пребиотическое соединение обычно представляет собой неперевариваемый углевод, такой как олиго- или полисахарид, или сахарный спирт, который не расщепляется или не абсорбируется верхних В отделах пребиотики включают пищеварительного тракта. Известные коммерческие продукты, такие как инулин трансгалактоолигосахариды.

В некоторых вариантах реализации настоящего изобретения пробиотическая композиция по настоящему изобретению включает пребиотическое соединение в количестве от около 1 до около 30% по весу по отношению к общему весу композиции (например, от 5 до 20% по весу). Углеводы могут быть выбраны из группы, состоящей фруктоолигосахаридов (или FOS), короткоцепочечные фруктоолигосахаридов, инулина, изомальто-олигосахаридов, пектинов, ксилоолигосахаридов (или XOS), хитозан-олигосахаридов (или COS), бета-глюканов, модифицированной аравийской камеди и устойчивых крахмалов, полидекстрозы, D-тагатозы, волокон акации, рожкового дерева, овса и волокон цитрусовых. В одном аспекте представляют собой короткоцепочечные пребиотики фруктоолигосахариды (для простоты указаны в настоящем документе FOSs-c. c); указанные FOSs-c. с.не усваиваемыми углеводами, обычно получаемые путем превращения свекольного сахара и включают молекулу сахарозы, к которой присоединены три молекулы глюкозы.

Композиции по настоящему изобретению могут содержать фармацевтически приемлемые вспомогательные вещества или носители. Примеры таких пригодных вспомогательных веществ можно найти в работе [хххvii]. Приемлемые носители или разбавители для терапевтического применения хорошо известны в фармацевтической области и описаны, например, в работе [хххviii]. Примеры пригодных носителей включают лактозу, крахмал, глюкозу,

метилцеллюлозу, стеарат магния, маннит, сорбит и тому подобное. Примеры пригодных разбавителей включают этанол, глицерин и воду. Выбор фармацевтического носителя, вспомогательного вещества или разбавителя может быть осуществлен с учетом предполагаемого пути введения И стандартной фармацевтической практики. Фармацевтические композиции могут содержать ИЛИ дополнение к носителю, вспомогательному веществу или разбавителю любой пригодный связующий агент (агенты), смазывающий агент (агенты), суспендирующий агент (агенты), агент (агенты) покрытия, солюбилизирующий агент (агенты). Примеры пригодных связующих агентов включают крахмал, желатин, природные сахара, такие как глюкоза, безводная лактоза, свободно текущая лактоза, бета-лактоза, кукурузные подсластители, природные синтетические смолы, такие как акация, трагакант или альгинат карбоксиметилцеллюлоза полиэтиленгликоль. Примеры И пригодных смазывающих агентов включают олеат натрия, стеарат натрия, стеарат магния, бензоат натрия, ацетат натрия, хлорид натрия и тому подобное. В фармацевтической композиции могут содержаться консерванты, стабилизаторы, красители даже ароматизаторы. Примеры консервантов включают бензоат натрия, сорбиновую кислоту и сложные эфиры р-гидроксибензойной кислоты. Могут также применяться антиоксиданты и суспендирующие агенты.

Композиции по настоящему изобретению могут быть составлены продукта. Например, пищевой продукт может виде пищевого обеспечить питательную пользу в дополнение к терапевтическому эффекту настоящего изобретения, например, в пищевой добавке. Подобным образом, пищевой продукт может быть составлен для улучшения вкуса композиции по настоящему изобретению или для чтобы сделать композицию более привлекательной для употребления, более похожей на обычный пищевой продукт, а не на фармацевтическую композицию. В некоторых вариантах реализации настоящего изобретения композицию по настоящему изобретению составляют как продукт на основе молока. Термин «продукт основе молока» означает любой жидкий или полутвердый продукт на ИЛИ сыворотки, характеризующийся основе молока содержанием жира. Молочным продуктом может быть, например,

коровье молоко, козье молоко, овечье молоко, обезжиренное молоко, цельное молоко, молоко, восстановленное из сухого молока и сыворотки без какой-либо обработки, или молочный продукт может представлять собой обработанный продукт, такой как йогурт, простокваша, творог, кислое молоко, кислое цельное молоко, пахта и другие кисломолочные продукты. Другая важная группа включает как молочные напитки, такие напитки ИЗ сыворотки, ферментированное молоко, сгущенное молоко, молочные напитки для детей грудного или более старшего возраста; ароматизированное молоко, мороженое; продукты, содержащие молоко, такие как сладости.

В некоторых вариантах реализации настоящего изобретения композиция по настоящему изобретению содержат один бактериальный штамм или вид и не содержат никаких других бактериальных штаммов или видов. Такие композиции могут содержать только минимальные или биологически несущественные количества других бактериальных штаммов или видов. Такие композиции могут представлять собой культуру, которая по существу не содержит других видов организма.

Для композиций, предназначенных для применения согласно настоящему изобретению, может быть обязательным или необязательным получения разрешения на продажу.

В некоторых случаях лиофилизированный бактериальный штамм восстанавливают перед введением. В некоторых случаях восстановление осуществляют с применением разбавителя, описанного в настоящем документе.

Композиции по настоящему изобретению могут содержать фармацевтически приемлемые вспомогательные вещества, разбавители или носители.

В некоторых вариантах реализации настоящего изобретения предлагается фармацевтическая композиция, содержащая: бактериальный штамм по настоящему изобретению; и фармацевтически приемлемое вспомогательное вещество, носитель или разбавитель; причем бактериальный штамм находится в количестве, достаточном для лечения нарушения при введении субъекту, имеющего для этого показания; и при этом нарушение выбирают из группы, состоящей из

астмы, аллергической астмы, нейтрофильной астмы, остеоартрита, псориатического артрита, ювенильного идиопатического артрита, нейромиелита зрительного нерва (болезнь Девика), анкилозирующего спондилита, спондилоартрита, системной красной волчанки; глютеиновой энтеропатии; хронической обструктивной болезни легких (ХОБЛ); рака, рака молочной железы, рака толстой кишки, рака легкого, рака яичников, увеита, склерита, васкулита, болезни Бехчета, атеросклероза, атопического дерматита, эмфиземы, периодонтита, аллергического ринита и отторжения аллотрансплантата.

В некоторых вариантах реализации настоящего изобретения предлагается фармацевтическая композиция, содержащая: бактериальный штамм по настоящему изобретению; и фармацевтически приемлемое вспомогательное вещество, носитель или разбавитель; причем бактериальный штамм находится в количестве, достаточном для лечения или профилактики заболевания, или патологического состояния, опосредованного IL-17 ИЛИ путем Th17. В предпочтительных вариантах реализации настоящего изобретения указанное заболевание или патологического состояние выбирают из группы, состоящей из ревматоидного артрита, рассеянного склероза, псориаза, воспалительного заболевания кишечника, болезни Крона, язвенного колита, глютеиновой энтеропатии, астмы, нейтрофильной аллергической астмы, астмы, остеоартрита, псориатического артрита, ювенильного идиопатического артрита, нейромиелита зрительного нерва (болезнь Девика), анкилозирующего спондилита, спондилоартрита, системной красной волчанки, хронической обструктивной болезни легких (ХОБЛ); рака, рака молочной железы, рака толстой кишки, рака легкого, увеита, склерита, васкулита, болезни Бехчета, яичников, атеросклероза, атопического дерматита, эмфиземы, периодонтита, аллергического ринита и отторжения аллотрансплантата.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, в которой количество бактериального штамма составляет от около 1×10^{-5}

 10^3 до около 1×10^{11} колониеобразующих единиц на грамм по отношению к весу композиции.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, при этом композицию вводят в дозе 1 г, 3 г, 5 г или 10 г.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, при этом композицию вводят с помощью способа, выбранного из группы, состоящей из перорального, ректального, подкожного, назального, буккального и сублингвального пути.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, содержащая носитель, выбранный из группы, состоящей из лактозы, крахмала, глюкозы, метилцеллюлозы, стеарата магния, маннита и сорбита.

В некоторых вариантах реализации настоящего изобретения предлагается фармацевтическая композиция, содержащая разбавитель, выбранный из группы, состоящей из этанола, глицерина и воды.

В некоторых вариантах реализации настоящего изобретения фармацевтическая композиция, содержащая вспомогательное вещество, выбранное из группы, состоящей из крахмала, желатина, глюкозы, безводной лактозы, свободно текущей лактозы, бета-лактозы, кукурузного подсластителя, трагаканта, альгината натрия, карбоксиметилцеллюлозы, полиэтиленгликоля, олеата натрия, стеарата натрия, стеарата магния, бензоата натрия, ацетата натрия и хлорида натрия.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, дополнительно содержащая по меньшей мере один из консервантов, антиоксидантов и стабилизаторов.

В некоторых вариантах реализации настоящего изобретения предлагается фармацевтическая композиция, содержащая консервант, выбранный из группы, состоящей из бензоата натрия, сорбиновой кислоты и сложных эфиров р-гидроксибензойной кислоты.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, в которой указанный бактериальный штамм является лиофилизированным.

В некоторых вариантах реализации настоящего изобретения предлагается вышеописанная фармацевтическая композиция, причем, когда композицию хранят в герметичном контейнере при температуре около 4° С или около 25° С, и контейнер помещают в атмосферу с относительной влажностью 50° , по меньшей мере 80° бактериального штамма, измеренного в колониеобразующих единицах, остается после периода по меньшей мере около: 1 месяца, 3 месяцев, 6 месяцев, 1 года, 1,5 года, 2 лет, 2,5 года или 3 лет.

Способы культивирования

Бактериальные штаммы для применения в настоящем изобретении можно культивировать с применением стандартных микробиологических методов, как описано, например, в работах [xxxix-, x1].

Твердая или жидкая среда, применяемая для культивирования, может представлять собой агар YCFA или среду YCFA. Среда YCFA может включать (на 100 мл, приблизительные значения): казитон (1,0 г), экстракт дрожжей (0,25 г), NaHCO₃ (0,4 г), цистеин (0,1 г), K_2HPO_4 (0,045 г), K_2PO_4 (0,045 г), NaCl (0,09 г), K_4PO_4 (0,09 г), CaCl₂ (0,009 г), резазурин (0,1 мг), гемин (1 мг), биотин (1 мкг), кобаламин (1 мкг), раминобензойную кислоту (3 мг), фолиевую кислоту (5 мкг) и пиридоксамин (15 мкг).

Вактериальные штаммы для применения в вакцинных композициях Авторы изобретения определили, что бактериальные штаммы по настоящему изобретению пригодны для лечения или профилактики заболеваний, или патологических состояний, опосредованных IL-17 или путем Th17. Это, вероятно, связано с тем, что бактериальные штаммы по изобретению «обманывают» иммунную систему хозяина. Следовательно, композиции по настоящему изобретению могут также быть пригодны для профилактики заболеваний или патологических состояний, опосредованных IL-17 или путем Th17, при введении в

качестве вакцинных композиций. В некоторых таких вариантах реализации настоящего изобретения бактериальные штаммы по настоящему изобретению могут быть убиты, инактивированы или ослаблены. В некоторых таких вариантах реализации настоящего изобретения композиции могут содержать адъювант вакцины. В некоторых вариантах реализации настоящего изобретения композиции предназначены для введения путем инъекции, например, путем подкожной инъекции.

Общее описание

При практической реализации настоящего изобретения применяют, если не указано иное, традиционные методы химии, биохимии, молекулярной биологии, иммунологии и фармакологии, которые соответствуют данной области техники. Такие методы подробно описаны в литературе. См, например, работы [xli] и [xlii-xliii], и т. д.

Термин «содержащий» охватывает «включая», а также «состоящий»; например, композиция, содержащая «Х», может состоять исключительно из X или может включать какой-нибудь дополнительный элемент, например, X+Y.

Термин «около» относительно численного значениях является необязательным иозначает, например, x+10%.

Термин «по существу» не исключает «полностью», например, композиция, которая «по существу не содержит» У, может полностью не содержать У. При необходимости термин «по существу» может быть опущен из определения настоящего изобретения.

Ссылки на идентичность процентной последовательности между двумя нуклеотидными последовательностями означает, что при выравнивании этот процент нуклеотидов является одинаковым при сравнении двух последовательностей. Это выравнивание и процент гомологии или идентичности последовательности можно определить с помощью программ, известных в данной области техники, например, тех, которые описаны в разделе 7. 7. 18 работы[xliv]. Предпочтительное выравнивание определяется с помощью алгоритмом поиска гомологии Смита-Уотермана с использованием поиска аффинного гэпа со штрафом за открытие гэпа 12 и штрафом за

продление гэпа 2, матрицы BLOSUM 62. Алгоритм поиска гомологии Смита-Уотермана описан в работе [xlv].

Если не указано отдельно, процесс или способ, включающий множество этапов, может содержать дополнительные этапы в начале или конце способа, или может содержать дополнительные промежуточные этапы. Кроме того, этапы могут быть объединены, опущены или выполнены в альтернативном порядке, если это необходимо.

В настоящем документе описаны различные варианты реализации настоящего изобретения. Следует принимать во внимание, характеристики, указанные В каждом варианте реализации изобретения, могут объединены с быть другими указанными характеристиками, чтобы обеспечить дополнительных вариантов реализации изобретения. В частности, варианты реализации изобретения, описанные в настоящем документе как пригодные, типовые или предпочтительные, могут быть объединены друг с (за исключением случаев, когда они являются взаимоисключающими).

СПОСОБЫ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Пример 1. Эффективность бактериального инокулята в мышиной модели астмы, индуцированной клещом домашней пыли

Краткая характеристика

Мышам вводили композиции, содержащие бактериальные штаммы согласно настоящему изобретению, и затем вводили экстракт клеща домашней пыли (HDM), чтобы вызвать аллергический воспалительный Воспалительный ответ на HDM включает эозинофильные нейтрофильные компоненты, опосредуется IL-17 и путем Th17 является моделью для астмы. Величину И характеристики воспалительного ответа у мышей, получавших композиции настоящему изобретению, сравнивали с контрольными группами. Обнаружено, что композиции по настоящему изобретению снижают воспалительный ответ и уменьшают поступление эозинофилов нейтрофилов, что указывает на то, что указанные композиции могут пригодны лечения патологических состояний, ДЛЯ опосредованных IL-17, таких как эозинофилия, нейтрофилия астма.

Штамм

751: бактерия, депонированная под номером доступа NCIMB 42380

Дизайн исследования

Группы:

- 1. Группа отрицательного контроля Введение несущей среды в качестве контроля (перорально).
- 4. Введение инокулята штамма 751 терапевтической бактерии (перорально).
- 7. Группа положительного контроля Введение дексаметазона (в/бр).
 - 8. Контрольная группа, не получающая лечения

Количество мышей в группе=5

- Со дня -14 до дня 13: Ежедневное пероральное введение несущей среды в качестве контроля (группа 1).
- Со дня -14 до дня 13: Ежедневное пероральное введение инокулята терапевтической бактерии (группа 2-6).

День 0, 2, 4, 7, 9, 11 Введение 15 мкг НDM (экстракт клеща домашней пыли) — Номер по каталогу: XPB70D3A25, Номер партии: 231897, Greer Laboratories, Ленор, штат Северная Каролина, США) в объеме 30 мкл PBS назально (группа 1-8).

День 0, 2, 4, 7, 9, 11 Введение дексаметазона (в/бр,3 мг/кг, Sigma-Aldrich, номер по каталогу D1159) (группа 7).

День 14 Умерщвление всех животных для анализа.

Общее количество мышей=40.

Критерии оценки и анализ

На день 14 животных умерщвляли с помощью летальной внутрибрюшинной инъекции пентабарбитола (Streuli Pharma AG, Уцнах, номер по каталогу: 1170139A), после чего проводили бронхоальвеолярный лаваж (БАЛ).

Клетки выделяли из БАЛ (бронхоальвеолярного лаважа) и проводили дифференциальный подсчет клеток (200 клеток/образцы).

Материалы и методы

Мыши. Самки мышей BALB/с в возрасте 7 недель были приобретены у Charles River Laboratories и случайным образом распределены на клетки, в общей сложности по 5 мышей на клетку

(вентилируемые клетки, полученные от Indulab AG, Гамс, Швейцария, Тип клетки: клетка «The SealsafeTM - IVC». Номер товара 1248L). На клетках указывали номер исследования, номер группы и дату начала эксперимента. Мышей контролировали еженедельно и акклиматизировали к условиям содержания в течение 7 дней до начала исследования (день исследования -14). Животные были в возрасте 8 недель в день исследования -14. Питьевая вода и продукты питания были доступны без ограничения. Проводили обогащение клеток. Ежедневный уход за животными проводили в соответствии с одобренной местной лицензией № 2283. 1 (выдана и одобрена: Service de la consommation et des affaires vétérinaires du Canton de Vaud). Питьевая вода и продукты питания были доступны без ограничения и обновлялись один раз в день. Проводили обогащение клеток. Положения о благополучии животных соблюдались как указано официальными властями Швейцарии в соответствии с постановлением 455. 163 ФВО (Федерального ветеринарного управления) о лабораторном животноводстве, получении генетически модифицированных животных и методах экспериментов на животных.

Культивирование бактериального посевного материала. В пределах стерильной рабочей станции крио-флакон оттаивали путем нагревания в руке, одетой в перчатку, ивводили ~ 0,7 мл содержимого в пробирку Hungate (номер по каталогу 1020471, Glasgerätebau Ochs, Бовенден-Ленгрен, Германия), анаэробной YCFA. Как правило, готовили две содержащую 8 мл пробирки на штамм. Затем пробирки Hungate инкубировали (статически) при 37°С в течение 16 часов (штамм 751).

Культивирование контроля, содержащего несущую среду. Пробирку Hungate, содержащую 8 мл анаэробной YCFA, инкубировали (статически) при 37°C в течение 16 часов.

Введение инонулята бактерии или контроля, содержащего несущую среду. С помощью перорального зонда в день вводили 400 мкл инокулята культивируемых бактерий или контроля, содержащего несущую среду.

Интранавальная сенсибиливация. Мышей анестезировали путем в/бр инъекции 9,75 мг ксиласола и 48,75 мг кетасола на кг (Dr. E. Graeub AG, Берн, Швейцария) и вводили 15 мкг НDМ (Homep по каталогу: XPB70D3A25, Номер партии: 231897, Greer Laboratories, Ленор, штат Северная Каролина, США) в объеме 30 мкл PBS назально.

Приготовление и введение положительного контрольного соединения дексаметазон. 21-фосфат динатриевую соль дексаметазона (Sigma-Aldrich, номер по каталогу D1159, № партии: SLBD. 1030V) разводили в H_2O и вводили животным перорально в дозе 3 мг/кг в объеме 200 мкл в дни, указанные в протоколе исследования выше.

Конечная процедура. В день 14 животных умерщвляли с помощью летальной в/бр инъекции пентабарбитола (Streuli Pharma AG, Уцнах, номер по каталогу: 1170139A), сразу же после бронхоальвеолярного лаважа (БАЛ) в 500 мкл солевого раствора.

Измерение клеточных инфильтратов в БАЛ. Клетки выделяли из жидкости БАЛ и проводили дифференциальный подсчет клеток, основанный на стандартных морфологических и цитохимических критериях.

Графики и статистический анализ. Все графики генерировали с помощью программы Graphpad Prism, версия 6, при этом применяли однофакторный анализ ANOVA. Результаты статистического анализа были представлены в таблицах с индивидуальными данными. Планки погрешностей отображают стандартную ошибку среднего (СОС).

Результаты и анализ

Результаты этих экспериментов приведены на Фигурах 1-9.

Случаев заболеваемости или смертности у мышей, получавших бактерии или несущую среду, не зарегистрировано. Два контроля: несущая среда (отрицательный контроль) и дексаметазон (положительный контроль) проявляли ожидаемый профиль изменений, со снижением эозинофилии и нейтрофилии, отмеченным в результате воздействия дексаметазона.

Наиболее важные результаты этого эксперимента проиллюстрированы на Фигурах 6 и 7, в которых приведены данные об общем и процентном количестве нейтрофилов, выявленных в

жидкости бронхиолярного лаважа после введения HDM. Штамм 751 уменьшал общее количество нейтрофилов и долю нейтрофилов в БАЛ по сравнению только с контролем, содержащем несущую среду.

Пример 2. Эффективность бактериального инокулята в мышиной модели тяжелой нейтрофильной астмы

Краткая характеристика

Мышам вводили композиции, содержащие бактериальные штаммы согласно настоящему изобретению, затем сенсибилизировали подкожным введением экстракта клеща домашней пыли (HDM) и после вводили HDM, интраназально чтобы смоделировать воспалительный ответ тяжелой нейтрофильной астмы. Величину и характеристики воспалительного ответа у мышей, получавших композиции по настоящему изобретению, сравнивали с контрольными настоящему Было обнаружено, ЧТО композиции по изобретению ослабляют воспалительный ответ и, в частности, уменьшают поступление нейтрофилов в способ, сравнимый положительным контролем, включающий введение антител анти-IL-17. Следовательно, эти данные указывают на то, что композиции по настоящему изобретению могут быть пригодны ДЛЯ лечения патологических состояний, опосредованных IL-17 и Th17, таких как нейтрофилия и астма.

Штамм

751: бактерия, депонированная под номером доступа NCIMB 42380

Дизайн исследования

Группы:

- 1. Группа отрицательного контроля Введение несущей среды в качестве контроля (перорально).
- 4. Введение инокулята штамма 751 терапевтической бактерии (перорально).
- 7. Группа положительного контроля Введение анти-IL-17 (в/бр).
 - 8. Контрольная группа, не получающая лечения
 - 9: Здоровые мыши (исходный уровень).

Количество мышей в группе (группа 1-8)=5

Со дня -14 до дня 17: Ежедневное пероральное введение несущей среды в качестве контроля (группа 1).

Со дня -14 до дня 17: Ежедневное пероральное введение инокулята терапевтической бактерии (группа 2-6).

День 0: Сенсибилизация HDM в CFA (п/к) (Группа 1-8)

День 7: Сенсибилизация HDM в CFA (п/к) (Группа 1-8)

День 13, 15, 17: Введение нейтрализующего антитела анти-IL-17 в/бр(Группа 7)

День 14, 15, 16, 17: Введение HDM в 30 мкл PBS назально (группа 1-8).

День 18: Умерщвление всех животных для анализа.

Критерии оценки и анализ:

день 14 животных умерщвляли с помощью летальной внутрибрюшинной инъекции пентабарбитола (Streuli Pharma номер ПО каталогу: 1170139А), после чего проводили бронхоальвеолярный лаваж (БАЛ). Клетки выделяли из жидкости БАЛ дифференциальный подсчет клеток (200 клеток/образцы).

Материалы и методы.

Мыши. Самки мышейC57BL/6в возрасте 7 недель были приобретены y Charles River Laboratories и случайным образом распределены на клетки, в общей сложности по 5 мышей на клетку (вентилируемые клетки, полученные от компании Indulab AG, Гамс, Швейцария, Тип клетки: клетка «The SealsafeTM - IVC». Номер товара 1248L). На клетках указывали номер исследования, номер иппудп дату начала эксперимента. Мышей контролировали еженедельно и акклиматизировали к условиям содержания в течение 7 дней до начала исследования (день исследования -14). Животные были в возрасте 8 недель в день исследования -14. Питьевая вода и продукты питания были доступны без ограничения. Проводили обогащение клеток. Ежедневный уход за животными проводили в соответствии с одобренной местной лицензией № 2283. 1 (выдана и одобрена: Service de la consommation et des vétérinaires du Canton de Vaud). Питьевая вода и продукты питания были доступны без ограничения и обновлялись один раз в день. Проводили обогащение клеток. Положения о благополучии

животных соблюдались как указано официальными властями Швейцарии в соответствии с постановлением 455. 163 ФВО (Федерального ветеринарного управления) о лабораторном животноводстве, получении генетически модифицированных животных и методах экспериментов на животных.

Культивирование бактериального инокулята. В пределах стерильной рабочей станции крио-флакон бактерий оттаивали путем нагревания в руке, одетой в перчатку, и вводили ~ 0,7 мл содержимого в пробирку Hungate (номер по каталогу 1020471, Glasgerätebau Ochs, Бовенден-Ленгрен, Германия), содержащую 8 мл анаэробной YCFA. Как правило, готовили две пробирки на штамм. Затем пробирки Hungate инкубировали (статически) при 37°C в течение 16 часов (штамм 751).

Культивирование контроля, содержащего несущую среду. Пробирку Hungate, содержащую 8 мл анаэробной YCFA, инкубировали (статически) при 37°C в течение 16 часов.

Введение инонулята бактерии или контроля, содержащего несущую среду. С помощью перорального зонда в день вводили 400 мкл инокулята культивируемых бактерий или контроля, содержащего несущую среду.

Сенсибиливация НОМ. 50 мкг НОМ (Homep по каталогу: XPB70D3A25, Номер партии: 231897, Greer Laboratories, Ленор, штат Северная Каролина, США) в PBS эмульгировали в равном объеме полного адъюванта Фрейнда (CFA Chondrex Inc. штат Вашингтон, США) и вводили подкожно в объеме 200 мкл, дважды в течение двух недель в противоположные фланки. Через неделю после второй иммунизации мышей анестезировали путем в/бр инъекции 9,75 мг ксиласола и 48,75 мг кетасола на кг (Dr. E. Graeub AG, Берн, Швейцария), а затем интраназально вводили 15 мкг НОМ в объеме 30 мкл PBS в течение 4 последовательных дней. Анализ проводили через один день после последнего введения.

Приготовление и введение положительного контрольного соединения антитела против мышиного IL-17. Нейтрализующее антитело анти-IL-17 получали из клетки Віо X и хранили при 4° C (Clone 17F3, номер по каталогуВЕ0173, Віо X Cell) и вводили в/бр

в дозе 12,5 мг/кг в дни, указанные в протоколе исследования выше.

Конечная процедура. В день 18 животных умерщвляли с помощью летальной в/бр инъекции пентабарбитола (Streuli Pharma AG, Уцнах, номер по каталогу: 1170139A), сразу же после бронхоальвеолярного лаважа (БАЛ) в 500 мкл солевого раствора.

Измерение клеточных инфильтратов в БАЛ. Клетки выделяли из жидкости БАЛ и проводили дифференциальный подсчет клеток, основанный на стандартных морфологических и цитохимических критериях.

Графики и статистический анализ. Все графики генерировали с помощью программы Graphpad Prism, версия 6, при этом применяли однофакторный анализ ANOVA. Результаты статистического анализа представляли в таблицах с индивидуальными данными. Планки погрешностей отображают стандартную ошибку среднего (СОС).

Результаты и анализ

Результаты этого эксперимента приведены на Фигурах 10-18.

Случаев заболеваемости или смертности у мышей, получавших бактерии ИЛИ несущую среду, не зарегистрировано. проиллюстрировано на Фигурах 15 и 16, штамм 751 характеризовался эффективностью относительно уменьшения нейтрофильного воспалительного ответа. Кроме того, 751 продемонстрировало сопоставимые результаты штаммом лечением антителами анти-IL-17. Более того, штамм 751 уменьшал вопифонивое относительно контролей, проиллюстрировано на Фигурах 11 и 12.

Пример 3. Эффективность бактериального инокулята для лечения артрита в мышиной модели артрита, индуцированного коллагеном типа II

Материалы и методы

Штаммы

751: бактерия, депонированная под номером доступа NCIMB 42380

Бактериальные культуры

Бактериальные культуры выращивали для введения в анаэробную рабочую станцию (Don Whitley Scientific).

Бактериальный штамм # 751 выращивали с применением глицеринового бульона. Глицериновый бульон хранили при -80°С. Три раза в неделю глицериновый бульон оттаивали при комнатной температуре и наносили штрихами на планшеты с YCFA. В каждом случае применяли новую аликвоту глицерина. Бактерии оставляли расти на данном планшете в течение 72 часов.

Растворы, вводимые животным, готовили два раза в день с восьмичасовым интервалом для утреннего (УТР) и дневного (ВЕЧ) введения. Бактериальную колонию собирали из штрихового планшета и переносили в пробирку, содержащую среду ҮСГА. Бактериальный штамм # 751 оставляли расти в течение 16 часов до утреннего введения. Бактерии субкультивировали на 1% в среде ҮСГА для вечернего введения. Значения ОD регистрировали с для каждого штамма после утренних и вечерних введений.

Мышиная модель артрита, индуцированного коллагеном типа II

Взрослых самцов мышей DBA/1 случайным образом распределяли по экспериментальным группам и позволяли акклиматизироваться в течение двух недель. В день 0 животным с помощью подкожной инъекции вводили 100 мкл эмульсии, содержащей 100 мкг коллагена типа II (СІІ) в неполном адъюванте Фрейнда, дополненном 4 мг/мл Mycobacterium tuberculosis H37Ra. В день 21 животным с помощью подкожной инъекции вводили бустерную эмульсию, содержащую 100 мкг коллагена типа II в неполном адъюванте Фрейнда.

Лечение осуществлялось согласно графику введения ниже. Со дня -14 до конца эксперимента на день 45 животных взвешивали три раза в неделю. С дня 21 до конца эксперимента животных три раза в неделю оценивали на наличие клинических признаков артрита, включая припухлость задней и передней лап, радиокарпальных (запястных) суставов и тибиотарзальных (голеностопных) суставов.

В день 45 мышей умерщвляли и при умерщвлении отбирали образцы крови для анализа цитокинов.

В день -14, день 0 и день 45, собирали образцы фекалий для микробиологического анализа, немедленно подвергали быстрой заморозке и хранили при -80° C.

Мышиная модель артрита, индуцированного коллагеном (АИК), хорошо известной мышиной моделью для ревматоидного артрита [71]. Иммунизация с применением СІІ обуславливает патогенез, который включает несколько важных патологических ревматоидного артрита, особенностей включая синовиальную гиперплазию, инфильтрацию мононуклеарными клетками и деградацию является то, что развитие АИК опосредовано хряща. Важным клетками Th17 посредством секреции IL-17A [72]. Иммунный ответ, лежащий в основе модели артрита, усиливается за счет применения адъюванта Фрейнда, дополненного Mycobacterium tuberculosis.

В день 21 у трех сателлитных животных в каждой группе брали на исследование селезенки. Клетки культивировали в течение 72 часов при наличии или отсутствии коллагена типа II. Цитокины, включая $TNF-\alpha$, IL-6, $IFN-\gamma$, IL-4, IL-10 и IL-17, определяли количественно в супернатантах культуры и в сыворотке, отобранной при умерщвлении, с помощью Luminex. Пролиферацию клеток также определяли количественно с помощью метода включения тритированного тимидина.

Группы лечения и дозы

Все группы характеризовались n=15 (n=12 в основной группе изучения и n=3 в сателлитных группах)

Несущей средой, применяемой для биотерапевтических препаратов, была среда на основе дрожжевого экстракта с казитоном и жирными кислотами (YCFA).

			Введение		Индуцирование
	Группа	Доза	Способ	Схема	заболевания
			введения	0210114	
		5 мл/кг		2 р/сут:	День 0:
1	Несущая среда		п/о	День -14-	Коллаген/CFA,
				Конец	один раз, п/к
		5 мл/кг		2 р/сут:	День 21:
2	Биопрепарат #751		п/о	День -14-	Коллаген/IFA ,
				Конец	один раз, п/к

п/о: через пероральный зонд, п/к: подкожная инъекция, 2 р/сут: два раза в сутки, CFA: полный адъювант Фрейнда.

Показатели веса тела

Со дня -14 до конца эксперимента животных взвешивали три раза в неделю. Данные представляли на графике (среднее \pm COC).

Неспецифические клинические наблюдения

Со дня -14 до конца эксперимента животных ежедневно осматривали на наличие неспецифических клинических признаков, включающих аномальные позы (сгорбленные животные), аномальное состояние шерсти (пилоэрекция) и аномальные уровни активности (снижение или повышение активности).

Клинические наблюдения

С дня 21 до конца эксперимента в день 45 животных три раза в неделю оценивали на наличие клинических признаков артрита, включая припухлость задней и передней лап, радиокарпальных (запястных) суставов и тибиотарзальных (голеностопных) суставов. Каждую конечность оценивали по следующей шкале: (0) норма (1) незначительная припухлость, (2) легкая припухлость, (3) умеренная припухлость и (4) выраженная припухлость. Клинический балл рассчитывали путем суммирования балла каждой конечности. Максимально возможный клинический балл для животного составлял (16). Животных со баллом равным (12) в двух последовательных случаях и животных с баллом, превышающим (12), в любом одном случае, отбраковывали. Данные представляли на графике (среднее±СОС).

Анализ пролиферации клеток

В день 21 трех сателлитных животных на группу умерщвляли и иссекали селезенки. Селезенки культивировали в течение 72 часов при наличии или отсутствии коллагена типа II. По истечении 72 часов клетки возбуждали В течение ирон при наличии тритированного тимидина. Пролиферацию клеток определяли количественно с помощью измерения включения тимидина. Данные представляли на графике (среднее±COC). Супернатанты отбирали и анализировали на наличие ключевых цитокинов.

Анализ цитокинов

Терминальные супернатанты из культур клеток селезенки анализировали с целью количественного определения $TNF-\alpha$, IL-6, $IFN-\gamma$, IL-4, IL-10 и IL-17 с помощью Luminex. Данные представляли на графике (среднее $\pm COC$).

Микробиологический анализ

В день -14, день 0 и день 45, от каждого животного собирали

образцы фекалий, немедленно подвергали быстрой заморозке и хранили при -80° С. Слепую кишку (включая содержимое) немедленно подвергали быстрой заморозке и хранили при -80° С. Идентификационный анализ бактерий проводили ежедневно путем посева бактерий.

Гистопатология

В конце эксперимента задние лапы хранили в фиксаторе ткани. Образцы переносили в раствор для декальцинации. Образцы тканей обрабатывали, делали срезы и окрашивали гематоксилином и эозином. Срезы оценивались квалифицированным гистопатологом, не ознакомленным с дизайном эксперимента, на наличие признаков артрита, которые включают воспаление, поражение суставного хряща и поражение подлежащей метафизарной кости. Применяли подробную систему подсчета баллов (см. ниже). Данные представляли на графике (среднее±СОС). Приведены необработанные и проанализированные данные, а также репрезентативные фотографии.

Таблица 1. Система балльной оценки гистопатологии

Степень	Описание					
Воспаление						
0	Нормальный сустав					
1	Легкая синовиальная гиперплазия с воспалением, при котором					
	доминируют нейтрофилы. Низкое количество нейтрофилов и					
	макрофагов в суставной щели.					
2	Синовиальная гиперплазия с умеренно выраженным воспалением,					
	включающим как нейтрофилы, так и макрофаги. Нейтрофилы и					
	макрофаги в суставной щели; может быть незначительное количество					
	некротического тканевого дебриса.					
3	Синовиальная гиперплазия с выраженным воспалением, включающ					
	как нейтрофилы, так и макрофаги. Потеря синовиоцитной выстилки.					
	Воспаление может распространяться от синовиальной оболочки на					
	окружающие ткани, включая мышцы. Большое количество нейтрофилов					
	и макрофагов в суставной щели в сочетании со значительным					
	количеством некротического тканевого дебриса.					
Поражение суставного хряща						
0	Нормальный сустав					
1	В суставном хряще отмечаются только легкие дегенеративные					
	изменения. Периферически может наблюдаться раннее образование					
	паннуса.					
2	В суставном хряще отмечаются умеренные дегенеративные изменения					
	и потеря фокальных масс. Фокально наблюдается образование					

	паннуса.				
3	Значительное разрушение и потеря суставного хряща с обширным				
	образованием паннуса.				
Пораже	ние подлежащей метафизарной кости				
0	Нормальный сустав				
1	Без изменений в подлежащей метафизарной кости.				
2	Может отмечаться фокальный некроз или фиброз метафизарной кости				
3	Деструкция или разрушение метафизарной кости. Обширное				
	воспаление, некроз или фиброз, простирающийся до медуллярного				
	пространства метафиза.				

Результаты и анализ

Выживание и неспецифические клинические наблюдения

Некоторые животные были умерщвлены до запланированного окончания исследования из-за тяжести клинических признаков артрита или из-за тяжести неспецифических клинических симптомов.

Три животных были умерщвлены или найдены мертвыми, или умерщвлены в течение периода предварительного лечения (со дня – 14 до дня 0): одно животное в группе 1 (получавшее несущую среду; животное прибыло от поставщика со сломанной лапой и было отбраковано) и два животных в группе 2 (лечение биопрепаратом #751; возможное введение дозы в легкие в первый день предварительного лечения и клинические признаки после введения дозы во второй день предварительного лечения).

Из-за тяжести клинических признаков артрита было умерщвлено восемь животных: пять животных в группе 1 (получавшие несущую среду) и три животных в группе 2 (лечение биопрепаратом #751).

Из-за тяжести неспецифических клинических признаков, включая аномальную позу (сгорбленное животное), аномальное состояние шерсти (пилоэрекция), аномальные уровни активности (сниженная активность), были умерщвлены четыре животных: три животных в группе 1 (получавшие несущую среду) и одно животное в группе 2 (лечение биопрепаратом #751).

Показатели веса тела

Данные о весе тела, зарегистрированные со дня -14 по день 0 и выраженные в процентах от начальных (день -14) показателей веса тела, анализировали с помощью двухфакторного анализа ANOVA с последующим применением критерия Даннетта для множественных сравнений с днем -14, после чего - для множественного сравнения

с группой, получавшей несущую среду. Результаты представлены на Фигуре 19. Данные животных, умерщвленных до запланированного окончания эксперимента, были исключены из анализа.

По сравнению с днем -14, введение два раза в сутки через пероральный зонд обуславливало значительную потерю веса в группе, получавшей несущую среду, в день -9 и день -7.

Показатели массы тела в группах биотерапии, измеренные с дня -14 по день -1, не отличались от показателей массы тела, измеренных группе, получавшей несущую среду, в любой данный день.

Данные о весе тела, зарегистрированные со дня 0 по день 28 и выраженные в процентах от начальных (день 0) показателей веса тела, анализировали с помощью двухфакторного анализа ANOVA с последующим применением критерия Даннетта для множественных сравнений с днем 0 в группе, получавшей несущую среду, после чего - для множественного сравнения с группой, получавшей несущую среду. Результаты представлены на Фигуре 20. Данные животных, умерщвленных ДО запланированного окончания эксперимента и сателлитных животных, были исключены из анализа. День 28, день 35 и день 42 были дополнительно проанализированы с помощью однофакторного ANOVA, с последующим применением критерия Даннетта для множественных сравнений с группой, получавшей несущую среду.

Появление клинических признаков артрита было связано с значительной потерей массы тела в день 26 и день 28 (р <0,0001) по сравнению с днем 0 в группе, получавшей несущую среду.

Достоверных отличий между экспериментальными группами в день 35 или в день 42 не зарегистрировано.

Клинические наблюдения

Данные клинической балльной оценки анализировали с помощью двухфакторного анализа ANOVA с последующим применением критерия Даннетта для множественных сравнений между днями в группе, получавшей несущую среду, а затем — для множественного сравнения между экспериментальными группами и группой, получавшей несущую среду, каждый день. Результаты представлены на Фигуре 21. Зарегистрированные данные животных, умерщвленных до окончания

эксперимента, были исключены из анализа. Когда животных умерщвляли из-за тяжести клинических признаков артрита, последний зарегистрированный балл учитывали в течение следующих дней и использовали в статистических анализах.

Достоверное повышение баллов клинической оценки наблюдали в группе, получавшей несущую среду, со дня 28 по день 45 (р <0,0001) по сравнению с днем 21.

Биотерапевтический препарат #751 обуславливал снижение баллов клинической оценки по сравнению с группой, получавшей несущую среду, со дня 31 по день 45, хотя эти отличия не были статистически достоверными.

Анализ пролиферации клеток

С целью валидации анализа, спленоциты культивировали в присутствии растворимых анти-CD3 и анти-CD28 (анти-CD3/CD28) в качестве положительных контрольных стимулов для подтверждения пролиферативного потенциала клеток.

Сильные пролиферативные ответы на анти-CD3/CD28 наблюдались во всех экспериментальных группах, демонстрируя тот факт, что клетки здоровы, жизнеспособны и могут отвечать на сигналы активации.

Для анализа пролиферативного ответа в присутствии коллагена (CII) спленоциты культивировали в присутствии концентрации 50 мкг/мл. Пролиферативный ответ спленоцитов на СІІ анализировали С помощью двухфакторного анализа ANOVA последующим применением критерия Сидака для множественных сравнений между нестимулированными и CII-стимулированными помощью однофакторного анализа ANOVA спленоцитами и с последующим применением критерия Даннетта для сравнения CIIстимулированного ответа в разных экспериментальных группах с группой, получавшей несущую среду. Результаты представлены на Фигуре 22.

СІІ индуцировал высоко значимое увеличение 3 Н-тимидина (cpm) по сравнению с нестимулированными спленоцитами в группе, получавшей несущую среду (р <0,0001).

Группы, получавшие биотерапевтический препарат #751 продемонстрировали значительно более низкие уровниСІІ-

индуцированной пролиферации спленоцитов, по сравнению с группой, получавшей несущую среду.

Уровни цитокинов всупернатантах культуры ткани

Уровни каждого цитокина измеряли в супернатантах культуры ткани, полученных из стимулированных CD3/CD28 культур, с помощью анализа luminex. Они показали устойчивые ответы для всех измеренных цитокинов (средние уровни в группе несущей среды были следующими: IL-4=6406 пг/мл; IL-6=306 пг/мл; IL-10=10987 пг/мл; IL-17A=11,447 пг/мл; $IFN-\gamma=15581$ пг/мл; $TNF-\alpha=76$ пг/мл).

следующих разделах обобщены данные, полученные культур, стимулированных коллагеном ІІ. В случаях, когда это было применимо, статистический анализ различий между уровнями цитокинов В супернатантах нестимулированных стимулированных спленоцитов проводили с помощью двухфакторного анализа ANOVA с последующим применением критерия Сидака для множественных сравнений, тогда как однофакторный анализ ANOVA с последующим применением критерия Даннетта применяли сравнения СII-стимулированного ответа в группах, получавших биотерапевтический препарат, с группой, получавшей несущую среду. В обоих случаях между группами не было достоверных отличий по уровню цитокинов. Вероятно, это связано с небольшим размером выборки (n=3).

Для более точного представления распределения данных для цитокинов с существенным распространением данных, данные представлены как графики рассеяния.

Средние групповые значения уровней IL-4 в супернатантах культуры ткани после стимуляции СII составляли <5 пг/мл. Они не были расценены биологически значимыми и не включены в описание. Средние групповые значения уровней $TNF-\alpha$ в супернатантах культуры ткани после стимуляции коллагеном были ниже предела количественного определения.

Уровни IFN- γ в супернатантах (Фигура 23)

IFN- γ наряду с IL-17 является основным цитокином, опосредующим заболевание, в модели АИК. График рассеяния на Фигуре 23 демонстрирует уровни IFN- γ после стимуляции СII, при

этом среднее групповое значение было выше для группы, получавшей несущую среду, по сравнению с группой, получавшей биотерапевтический препарат. Резко отклоняющийся результат одного и того же субъекта группы 2 объясняет более высокую медиану в этой группе для $IFN-\gamma$ и IL-10.

Уровни IL-17A в супернатантах (Фигура 24)

Уровни IL-17A составляли 50 мкг/мл в культурах, стимулированных СII, для группы, получавшей несущую среду. Уровни этого цитокина оказались ниже в группе, получавшей биотерапевтический препарат, по сравнению с группой, получавшей несущую среду.

Уровни IL-10 в супернатантах (Фигура 25)

Уровни IL-10 в группе, получавшей несущую среду, составляли $13\ \text{пг/мл}$ и $2,1\ \text{пг/мл}$ для CII- стимулированных культур и культур контрольной среды, соответственно. В группе, получающей несущую среду, предположительно будут регистрироваться более высокие уровни IL-10 (который является противовоспалительным цитокином), поскольку воспаление и провоспалительная цитокиновая индукция может сопровождаться противовоспалительным механизмом обратной связи.

Уровни IL-6 в супернатантах (Фигура 26)

Воспалительные цитокины, такие как IL-6 и TNF- α , обычно не продуцируются в высоких уровнях в культурах анти-СII. Однако их уровни могут быть изменены в результате иммунной модуляции. Уровни IL-6 в СII-стимулированных культурах были невысокими и достигали 10 мкг/мл. Несмотря на более высокие уровни, чем в культурах с контрольной средой, эти различия были слишком малы, чтобы обеспечить обоснование для проведения статистических анализов.

Микробиологический анализ

Бактериальный рост подтверждали измерением оптической плотности при 600 нм с помощью спектрофотометра. Бактериальную идентичность подтверждали путем сравнения изображений штриховых планшетов с эталонными изображениями.

После улучшенного способа получения бактериального препарата последовательно вводили высокие дозы бактериального штамма со дня 2 по день 3, на что указывает полученные высокие значения OD.

Образцы фекалий собирали и замораживали в день -14, день 0 и при умерщвлении животного.

Гистопатология

Результаты гистопатологии представлены на Фигурах 66-70. Как и ожидалось для этой модели, внутрииндивидуальная и межиндивидуальная изменчивость наблюдалась относительно наличия/отсутствия артрита или тяжести существующих изменений.

Характер патологии для этой модели был также ожидаемым, с обширным смешанным хроническим активным воспалением синовиальной оболочки и растягивающейся сумкой с вовлечением в патологический процесс перисуставных мягких тканей (мышц, йовориж кожного коллагена). В наиболее пораженных суставах наблюдали дегенерация И полное разрушение суставного хряща внутрисуставным дебрисом, воспалительным процессом и нарушением суставной и костной структуры, обусловленным фиброзом воспалением.

Частота гистопатологических изменений составляла: несущая среда - 80% (16/20); биотерапевтический препарат (9/20). Лечение с применением биотерапевтического препарата #751 гистопатологической оценки обуславливало снижение баллов задних конечностях мыши по сравнению с группой, получавшей несущую среду (см. Фигуры 66-69). Баллы гистопатологической оценки анализировали с помощью однофакторного анализа ANOVA для непараметрических данных (тест Крускала-Уоллиса), с последующим применением критерия Данна для множественных сравнений группой, получавшей несущую среду. Биотерапевтический препарат #751 обуславливал достоверное снижение балльной оценки суставов, наблюдаемое гистопатологическом воспаления ичп исследовании, по сравнению с группой, получавшей несущую среду <0,01). Биотерапевтический препарат #751 обуславливал достоверное снижение балльной оценки поражения наблюдаемое при гистопатологическом исследовании, по сравнению с

группой, получавшей несущую среду (р <0,001). Биотерапевтический препарат #751 обуславливал достоверное снижение балльной оценки поражения кости, наблюдаемое при гистопатологическом исследовании, по сравнению с группой, получавшей несущую среду (р <0,001). Биотерапевтический препарат #751 обуславливал достоверное снижение общего балла гистопатологической оценки кости по сравнению с группой, получавшей несущую среду (р <0,01).

Краткая характеристика

Повышение балла клинической оценки наблюдали со дня 28 после первого введения коллагена типа II, как и ожидалось в этой модели артрита у мышей DBA/1. Показано, что биотерапевтический препарат #751 характеризовался эффективностью при лечении артрита в этой модели, при этом биотерапевтический препарат #751 проявлял эффективность в снижении балла тяжести клинического течения. Биотерапевтический препарат #751 также характеризовался эффективностью относительно снижения интенсивности патологических процессов в суставах, что продемонстрировано при гистопатологическом анализе.

Пролиферативные повторные реакции на коллаген II наблюдались в культурах спленоцитов из всех экспериментальных групп. Коллаген-специфический ответ достоверно ослаблялся после лечения биотерапевтическим препаратом#751 (группа 2).

Регистрировали заметное повышение уровней большинства анализируемых Т-клеточных цитокинов в образцах, стимулированных коллагеном II, по сравнению с контрольными средами в группе, получавшей несущую В среду. группе, получавшей биотерапевтический препарат, такие повышения уровней были не подтверждает пролиферативные СТОЛЬ очевидны. Это В целом повторные реакции на коллаген II, описанные выше.

Имеются данные о супрессии оси Th1/Th17, которая является патологическим ответом в этой модели и при PA у человека. Корреляция сниженных уровней цитокинов с ослаблением пролиферации свидетельствует о иммунной модуляции. Не было доказательств того, что указанная модуляция приводила либо к повышению уровней Th2-ассоциированного IL-4, либо к повышению

уровня иммуномодулирующего цитокина IL-10.

Пример 4. Дополнительный анализ эффективности бактериального инокулята в мышиной модели астмы, индуцированной клещом домашней пыли

Мышей, анализируемых в Примере 1, подвергали дальнейшему анализу для получения дополнительных характеристик влияние композиций по настоящему изобретению на воспалительный ответ при аллергической астме.

Материалы и методы

Забор крови и подготовка сыворотки в день 14. Образцы крови животных обирали при пункции сердца. Сыворотку отделяли от образца крови с помощью центрифугирования в течение 5 мин при 14000 г и хранили при -20° С.

Изъятие органа в день 14. Изъятие доли левого легкого и помещение в формалин для последующего гистологического анализа. Изъятие долей правого легкого (все остальные доли) и удаление сыворотки для быстрого замораживания и последующего анализа. Оставшуюся жидкость БАЛ быстро замораживали для последующего анализа.

Измерение уровней антител в сыворотке и в жидкости БАЛ

Продукцию общего IgE и специ ϕ ического антитела IgG1 к клещу домашней пыли (HDM) измеряли в БАЛ и в сыворотке методом ELISA.

Выделение легкого и гистологический анализ

Доли левого легкого фиксировали в формалине с последующей заливкой парафином, секционировали и окрашивали гематоксилином, эозином и PAS. Последующую гистологическую балльную оценку «заслепляли» следующим образом. В пяти случайных полях зрения в образце подсчитывали баллы воспаления (перибронхиальная инфильтрация и периваскулярная инфильтрация) и продукции слизи. Воспалительную инфильтрацию оценивали по следующей балльной системе:

- 0 норма
- 1 небольшие воспалительные инфильтраты
- 2 умеренные воспалительные инфильтраты
- 3 выраженные воспалительные инфильтраты

- 4 большие воспалительные инфильтраты
- 5 очень большие воспалительные инфильтраты

В каждом поле зрения измеряли дыхательные пути по размеру, а также количественно/мкм определяли число клеток слизи.

Измерение уровня медиаторов воспаления в легочной ткани

Доли правого легкого (все остальные доли), выделенные для количественной оценки воспалительных медиаторов, замораживали для последующего измерения ССL11, IFN-гамма, IL-1 альфа, IL-1 бета, IL-4, IL-5, IL-9, IL -17A, CXCL1, CCL3, CXCL2 и CCL5 с помощью коммерчески доступного мультиплексного анализа (Merck-Millipore). Анализ проводили согласно инструкциям производителя.

Результаты и анализ

Результаты этих экспериментов приведены на Фигурах 28-46.

В подтверждение результатов, описанных в Примере 1, анализ клеточных инфильтратов в легочной ткани мышей, получавших штамм 751, продемонстрировал заметное и статистически значимое снижение среднего балла воспаления (см. Фигуры 32 и 34).

Проанализированы уровни антител в жидкости БАЛ и сыворотке (см. Фигуры 28-31). Явного влияния воздействия бактерий на уровни антител в сыворотке не наблюдали. Это может отражать несостоятельность эксперимента, поскольку разброс данных и планок погрешностей для каждого вида лечения большой, а положительные и отрицательные контроли, похоже, не проявляли себя так, как ожидалось. Кроме того, исходные уровни антител в сыворотке могли маскировать любые изменения.

Аналогично, не наблюдали явного влияния воздействия бактерий на уровни цитокинов в ткани легких (см. Фигуры 36-46). Как и в предыдущем случае, это может отражать несостоятельность эксперимента, поскольку разброс данных и планок погрешностей для каждого вида лечения большой, а положительные и отрицательные контроли, похоже, не проявляли себя так, как ожидалось. Также что в механизм действия вовлекается влияние более возможно, ранних цитокиновых ответов, которые перестают обнаруживаться в 4 после последнего введения HDM в дыхательные Необходимо с осторожностью подходить к интерпретации уровней настоящем исследовании из-за изменчивости цитокинов в

обнаруживаемых уровней. Эта изменчивость может быть частично объяснена тем фактом, что легочную ткань отделяли для разных анализов, и, таким образом, одна доля легкого могла не быть полностью репрезентативной или сопоставимой с той же долей у других мышей из-за неоднородного распределения воспаления.

Пример 5. Дополнительный анализ эффективности бактериального инокулята в мышиной модели тяжелой нейтрофильной астмы

Мышей, анализируемых в Примере 2, подвергали дальнейшему анализу для получения дополнительных характеристик влияния композиций по настоящему изобретению на нейтрофильный ответ, ассоциированный с тяжелой астмой.

Материалы и методы

Изъятие органа в день 18. Изъятие доли левого легкого и помещение в формалин для последующего гистологического анализа. Изъятие долей правого легкого (все остальные доли) и удаление сыворотки для быстрого замораживания и последующего анализа. Оставшуюся жидкость БАЛ быстро замораживали для последующего анализа.

Измерение уровня медиаторов воспаления в легочной ткани (последующий анализ). Доли правого легкого (все остальные доли), выделенные для количественной оценки воспалительных медиаторов, замораживали для последующего измерения IFN-гамма, IL-1 альфа, IL-1 бета, CXCL1, CCL3, CXCL2, CCL5, IL-17A, TNF-альфа, IL-17F, IL-23 и IL-33 с помощью коммерчески доступного мультиплексного анализа (Merck-Millipore). Анализ проводили согласно инструкциям производителя.

Измерение уровней антител в сыворотке и в жидкости БАЛ (последующий анализ). Продукцию специфического антитела IgG1 к клещу домашней пыли (HDM) и антитела IgG2а измеряли в БАЛ и в сыворотке методом ELISA.

Выделение легкого и гистологический анализ (последующий анализ). Доли левого легкого фиксировали в формалине с последующей заливкой парафином, секционировали и окрашивали гематоксилином, эозином и PAS. Последующую гистологическую балльную оценку «заслепляли» следующим образом: В пяти случайных

полях зрения в образце подсчитывали баллы воспаления (перибронхиальная инфильтрация и периваскулярная инфильтрация) и продукции слизи. Воспалительная инфильтрация оценивали по следующей балльной системе:

- 0 норма
- 1 небольшие воспалительные инфильтраты
- 2 умеренные воспалительные инфильтраты
- 3 выраженные воспалительные инфильтраты
- 4 большие воспалительные инфильтраты
- 5 очень большие воспалительные инфильтраты

Результаты и анализ

Результаты этих экспериментов приведены на Фигурах 47-64.

Дополнительный анализ уровней антител показал, что эффективность бактериального штамма 751 также подтверждалась снижением уровней HDM-специфичного IgG1 в жидкости БАЛ и в сыворотке (см. Фигуры 47 и 49). Однозначных выводов относительно влияния на уровни IgG2a сделать возможности нет. В целом, данные анализа антител свидетельствуют о снижении их уровня, связанном с ослаблением общего воспалительного ответа, в отличие от избирательного эффекта на «переключение» изотипа антитела.

Гистологический анализ подтвердил результаты дифференциального подсчета клеток из жидкости БАЛ, демонстрирующего уменьшения количества клеток, вовлеченных в инфильтрат, у мышей, получавших штамм 751 (см. Фигуры 51-53).

Что касается уровней цитокинов, как в Примере 4, разброс данных и планок погрешностей для каждого вида лечения большой, а положительные и отрицательные контроли, похоже, не проявляли себя так, как можно было бы ожидать. Также возможно, что в механизм действия вовлекается влияние более ранних цитокиновых ответов, которые перестают обнаруживаться в день после последнего введения HDM в дыхательные пути. Необходимо осторожностью подходить к интерпретации уровней цитокинов настоящем исследовании из-за изменчивости обнаруживаемых уровней. Эта изменчивость может быть частично объяснена тем фактом, что легочную ткань отделяли для разных анализов, таким образом, одна доля легкого могла не быть

репрезентативной или сопоставимой с той же долей у других мышей из-за неоднородного распределения воспаления. Несмотря на эту изменчивость, был продемонстрирован явный противовоспалительный эффект штамма 751 на уровни цитокинов, при этом антитело анти-IL-17 в качестве положительного контроля, как правило, проявляло себя так, как и ожидалось.

С приведенными выше оговорками данные на Фигурах 56, 58, 59, 61 и 63 демонстрируют, что в результате введения бактериальных штаммов по настоящему изобретению и, в частности штамма 751, можно достичь снижения уровней IL-1b, IFNg, RANTES, MIP-1a и КС (мышиный ортолог IL-8 человека), что может указывать на механизм действия, связанный с влиянием на высвобождение хемокинов (и, следовательно, на привлечение клеток) стромальными или врожденными иммунными клетками. Эти цитокины являются частью пути Th17. С учетом этого набора данных, можно сделать четкий вывод о том, что штамм 751 проявлял высокую эффективность относительно противовоспалительной защиты мышей в указанной мышиной модели тяжелой нейтрофильной астмы.

Пример 6. Эффективность бактериального инокулята в мышиной модели рассеянного склероза

Краткая характеристика

Мышам вводили композиции, содержащие бактериальные штаммы согласно настоящему изобретению, и впоследствии мышей иммунизировали гликопротеином миелин-олигодендроцитов ПЛЯ индукции экспериментального аутоиммунного энцефаломиелита (ЭАЭ). представляет собой наиболее широко применяемую склероза экспериментальную модель рассеянного человека. Обнаружено, что композиции по настоящему изобретению оказывают выраженное влияние на частоты возникновения и тяжесть заболевания.

Штамм

751: бактерия, депонированная под номером доступа NCIMB 42380

Дизайн исследования

Группы:

- 1. Группа отрицательного контроля Введение несущей среды в качестве контроля (перорально).
- 4. Введение инокулята штамма 751 терапевтической бактерии (перорально).
- 9. Группа положительного контроля Введение дексаметазона (в/бр).
 - 10. Контрольная группа, не получающая лечения Количество мышей в группе=10
- Со дня -14 по день 27: Ежедневное пероральное введение несущей среды в качестве контроля (группа 1).
- Со дня -14 по день 27: Ежедневное пероральное введение инокулята терапевтической бактерии (группа 4).
- Дни 0-28: Введение дексаметазона (в/бр) три раза в неделю (группа 9)
- День 0: MOG35-55 (гликопротеин миелин-олигодендроцитов 2 мг/мл) и CFA (2 мг/мл МТВ) смешивали 1: 1, в результате чего получали раствор 1 мг/мл. 100 мкл смеси пептид-CFA вводили подкожно в каждую заднюю лапу. Введение коклюшного токсина внутрибрюшинно (300 нг).
- День 1: Введение коклюшного токсина внутрибрюшинно (300 нг).
- Дни 7 и далее: Анализ частоты возникновения заболевания и измерение веса три раза в неделю

Критерии оценки и анализ

Мышей анализировали относительно частоты возникновения и тяжести заболевания три раза в неделю. Подсчет баллов выполняли «заслепленно». Тяжесть заболевания оценивали с использованием балльной оценки клинической картины от 0 до 5, при этом балл 5 означал мертвую мышь (см. приведенную ниже систему балльной оценки клинической картины).

Наблюдение

В указанные дни мышей взвешивали и наблюдали с целью проведения балльной оценки активности и частоты возникновения заболевания.

Наблюдения с балльной оценкой активности заболевания:

- 0 \rightarrow Нет очевидных изменений в двигательной функции по сравнению с неиммунизированными мышами.
 - 0,5 →Кончик хвоста дряблый.
 - 1,0 Дряблый весь хвост.
 - 1,5 Дряблый хвост и замедление движения лапы.
 - 2,0 Дряблый хвост и слабость задних лап.
- ИЛИ Есть очевидные признаки наклона головы при ходьбе. Слабо удерживаемое равновесие.
 - 2,5 Дряблый хвост и волочение задних лап.
- ИЛИ Отмечается сильный наклон головы, из-за которого мышь иногда падает.
 - 3,0 Дряблый хвост и полный паралич задних лап.
 - 3,5 Дряблый хвост и полный паралич задних лап.
- В дополнение: Мышь двигается по клетке, но при опрокидывании ее на бок, не может подняться сама.

Задние лапы находятся на одной стороне тела.

- 4,0 Дряблый хвост и полный паралич задних лап и частичный паралич передних лап.
- Мышь минимально перемещается по клетке, но встает при возникновении тревоги и при кормлении
- 4,5 Полный паралич задних лап и частичный паралич передних лап, без передвижения по клетке.

Мышь немедленно подвергают эвтаназии и удаляют из клетки.

5,0 Мышь подвергают эвтаназии, учитывая развитие тяжелого паралича.

Когда у животного балл активности заболевания составляет 1 или выше, считается, что животное имеет положительный балл возникновения заболевания.

Результаты

Результаты исследования приведены на Фигурах 71 и 72.

Индуцирование заболевания в группах отрицательного контроля отмечалось успешным с высокими балльными показателями, продемонстрированными группой, получавшей несущую среду, и группой контроля, не получающей лечения. Эффект лечения штаммом 751 был поразительным, при этом мыши, получавшие штамм 751,

характеризовались заметно меньшей частотой развития и тяжестью заболевания. Действительно, снижение частоты развития и тяжести заболевания было сопоставимо с группой положительного контроля. Эти данные демонстрируют, что штамм 751 может быть пригоден для лечения или профилактики рассеянного склероза.

Пример 7. Эффективность бактериального инокулята в мышиной модели рака

Краткая характеристика

В указанном исследовании анализировали эффективность композиций, содержащих бактериальные штаммы согласно настоящему изобретению в четырех моделях опухолей.

Материалы

Исследуемое вещество - Бактериальный штамм #MRX004 (штамм 751).

Эталонное вещество - Антитело анти-CTLA-4 (клон: 9H10, каталог: BE0131, изотип: IgG1 хомяка сирийского, Bioxcell).

Несущие среды исследуемого и эталонного вещества -Среда для бактериальной культуры (среда с дрожжевым экстрактом, казитоном, жирной кислотой (YCFA)). Каждый день перед инъекционным введением мышам антитело разбавляли PBS (ном.: BE14-516F, Lonza, Франция).

Довы для лечения – Бактерия: 2×10^8 в 200 мкл. А-СТLА-4 вводили в дозе 10 мг/кг/инъекц. Анти-СТLА-4 вводили в дозе 10 мл/кг/введ (например, для одной мыши массой 20 г, вводили 200 мкл исследуемого вещества) с учетом последнего показателя веса тела мыши.

Пути введения – Бактериальный инокулят вводили через желудочный зонд (перорально, п/о) через канюлю. Канюли обеззараживали каждый день. Анти-СТLА-4 вводили в брюшную полость мышей (внутрибрюшинно, в/бр).

Условия культивирования бактериального штамма - Условия культивирования бактериального штамма были следующими:

Пипеткой переносили 10 мл YCFA (из подготовленных лабораторных флаконов 10 мл E&O) в пробирки Hungate

Пробирки герметично закупоривали и прокачивали ${\rm CO_2}$ с помощью устройства ввода и выпускной системы шприца

Пробирки Hungate автоклавировали

После охлаждения, в пробирки Hungate добавляли 1 мл глицеринового бульона

Помещали пробирки в статический инкубатор при 37° С на около 16 часов.

На следующий день отбирали 1 мл этой субкультуры и инокулировали 10 мл YCFA (предварительно разогретые прокачанные пробирки Hungate, все в двух повторениях)

Помещали их в статический инкубатор при 37°C на 5-6 часов **Линия клеток рака и условия культивирования** -

Линии клеток, которые применялись, подробно описаны в таблице ниже:

Линия клеток	Тиπ	Штамм мыши	Источник
EMT-6	Карцинома молочной железы	BALB/c	ATCC
LL/2 (LLC1)	Карцинома легких	C57BL/6	ATCC CRL1642
Hepa1-6	Гепатоцеллюлярная карцинома	C57BL/6	IPSEN INNOVATION

Линию клеток EMT-6 получали из трансплантируемой карциномы молочной железы мыши, которая возникала у мышей BALB/cCRGL после имплантации гиперпластического альвеолярного узла молочной железы [73].

Линию клеток LL/2 (LLC1) получали из легкого мыши C57BL с опухолью, возникшей в результате имплантации первичной карциномы легкого Льюиса [74].

Линия клеток Hepa 1-6 является производной от гепатомы мыши BW7756, которая возникает у мыши C57/L [7xlvi.

Условия культивирования клеток – Все линии клеток выращивали в виде монослоя при 37° С в увлажненной атмосфере (5% CO_2 , 95% воздуха). Среда и добавка при культивировании указаны в таблице ниже:

Линия клеток	Среда для культивирования	Добавка
EMT6	RPMI 1640, содержащая 2 мМ L- глутамина (ном.: BE12-702F, Lonza)	10% фетальная бычья сыворотка (ном.: #3302, Lonza)
LL/2	RPMI 1640, содержащая 2 мМ L-	10% фетальная бычья сыворотка
(LLC1)	глутамина (ном.: BE12-702F, Lonza)	(ном.: #3302, Lonza)
Hepa1-6	DMEM (Hom.: 11960-044, Gibco)	10% фетальная бычья сыворотка (ном.: #3302, Lonza) 2 мМ L-Глутамин пенициллин-стрептомицин (Sigma G-6784)

Для экспериментального использования адгезивные опухолевые клетки отделяли от культурального флакона с помощью 5-минутной обработки трипсин-версеном (ном.: BE17-161E, Lonza), в среде Хэнкса без кальция или магния (ном.: BE10-543F, Lonza) и нейтрализовали добавлением полной культуральной среды. Клетки подсчитывали в гемоцитометре, а их жизнеспособность оценивали с помощью анализа исключения 0,25% трипанового синего.

Использование животных -

Здоровые самки мышей Balb/C (BALB/cByJ), сопоставимые по весу и возрасту, получали от компании CHARLES RIVER (L'Arbresles) для экспериментов на модели EMT6.

Здоровые самки мышей C57BL/6 (C57BL16J), сопоставимые по весу и возрасту, получали от компании CHARLES RIVER (L'Arbresles) для экспериментов на модели LL/2 (LLC1) и Hepa1-6.

Животных содержали, поддерживая состояние здоровья SPF в соответствии с руководящими принципами FELASA, кроме экспериментальные процедуры проводили животноводческие и французскими и европейскими нормативами соответствии С И Руководством NRC по уходу и использованию лабораторных животных [76,77].Животные содержались В виварии при контролируемых условиях окружающей среды: Температура: 22 \pm 2°С, влажность 55 \pm 10%, световой период (12 часов света/12 часов темноты), отфильтрованный воздух НЕРА, 15 воздушных обменов в час без рециркуляции. Шкафы ДЛЯ снабжались стерильным ЖИВОТНЫХ достаточным пространством с подстилкой, продуктами питания водой, надлежащими экологическими и социальными условиями (групповое содержание), как описано: клетки 900 см² (ном.:

зеленый, Tecniplast) на вентилируемых стеллажах, подстилка Ерісеа (SAFE), диета, облученная $10~{\rm k\Gamma p}~({\rm A04-10},~{\rm SAFE})$, полноценное питание для иммунокомпетентных грызунов – ${\rm R/M-H}$ Extrudate, вода из бутылок с водой.

Экспериментальный дизайн и виды лечения

Противоопухолевая активность, модель ЕМТ6

Схема лечения- Начало введения первой дозы расценивалось как D0. В D0 не привитые мыши были рандомизированы согласно их индивидуальным массам 9/8 тела на группы ПО С помощью программного обеспечения Vivo manager® (Biosystemes, Кутернон, Франция). В D0 мыши получали несущую среду (культуральная среда) бактериальный штамм. В D14 всем мышам были привиты опухолевые клетки EMT-6, как описано ниже. В D24 мыши из группы положительного контроляполучали антитело анти-CTLA-4.

Схема лечения приведена в таблице ниже:

Группа	Кол-во	Лечение	Доза	Способ	Схема
	животных			введения	лечения
1	8	Нелеченные	_	-	_
2	8	Несущая среда	_	п/о	1 р/сут х 42
3	9	Бактериальный штамм # 1 (MRX004)	2×108 бактерий	п/о	1 р/сут х 42
4	8	анти-CTLA4	10 мг/кг	в/бр	2 р/нед х 2

Наблюдение за животными проводили, как описано ниже.

Индуцирование опухолей ЕМТ6 в животных – В D14 опухоли индуцировали подкожной инъекцией 1×10^6 клеток ЕМТ-6 в 200 мкл RPMI 1640 в правый фланг мышей.

Эвтаназия - Каждую мышь подвергали эвтаназии, когда она достигала гуманной критической точки, как описано ниже, или по истечению максимум 6 недель после первого введения дозы.

Противоопухолевая активность, модель LL/2 (LLC1)

Схема лечения — Начало введения первой дозы расценивалось как D0. В D0 не привитые мыши были рандомизированы согласно их индивидуальным массам тела на 7 групп по 9/8 с помощью программного обеспечения Vivo manager® (Biosystemes, Кутернон, Франция). В D0 мыши получали несущую среду (культуральная среда) или бактериальный штамм. В D14 всем мышам были привиты

опухолевые клетки LL/2, как описано ниже. В D27 мыши из группы положительного контроля получали антитело анти-CTLA-4.

Схема лечения приведена в таблице ниже:

Группа	Кол-во животных	Лечение	Дова	Способ введения	Схема лечения
1	8	Нелеченные	-	-	_
2	9	Несущая среда		п/о	1 р/сут х 42
3	9	Бактериальный штамм # 1 (MRX004)	2×10 ⁸ бактерий	п/о	1 р/сут х 42
4	8	анти-CTLA4	10 мг/кг	в/бр	2 р/нед х 2

Наблюдение за животными проводили, как описано ниже.

Индуцирование опухолей LL/2 (LLC1) в животных – В D14 опухоли индуцировали подкожной инъекцией 1×10^6 клеток LL/2 (LLC1) в 200 мкл RPMI 1640 в правый фланг мышей.

Эвтаназия - Каждую мышь подвергали эвтаназии, когда она достигала гуманной критической точки, как описано ниже, или по истечению максимум 6 недель после первого введения дозы.

Противоопухолевая активность, модель Нера1-6

Схема лечения — Начало введения первой дозы расценивалось как D0. В D0 не привитые мыши были рандомизированы согласно их индивидуальным массам тела на 7 групп по 9 с помощью программного обеспечения Vivo manager® (Biosystemes, Кутернон, Франция). В D0 мыши получали несущую среду (культуральная среда) или бактериальный штамм. В D14 всем мышам были привиты опухолевые клетки Нера 1-6, как описано ниже. В D16 мыши из группы положительного контроля получали антитело анти-CTLA-4.

Схема лечения приведена в таблице ниже:

Группа	Кол-во животных	Лечение	Дова	Способ введения	Схема лечения
1	9	Нелеченные	_	_	-
2	9	Несущая среда	_	п/о	1 р/сут х 42
4	9	Бактериальный штамм # 2 (MRX004)	2×10 ⁸ бактерий	п/о	1 р/сут х 42
7	9	анти-CTLA4	10 мг/кг	в/бр	2 р/нед х 2

Наблюдение за животными проводили, как описано ниже.

Ортотопическое индукцирование опухолевых клеток Нера 1-6 у животных с помощью внутриселезеночной инъекции – В D14, один миллион (1×10^6) опухолевых клеток Нера 1-6 в среде 50 мкл RPMI 1640 трансплантировали мышам с помощью внутриселезеночной инъекции. Вкратце, делали небольшой разрез в левой подреберной области и выводили конец селезенки. Селезенку укладывали на стерильную марлевую прокладку и под визуальным контролем вводили в нее клеточную суспензию с помощью иглы 27 калибра. После инокуляции клеток селезенку вырезали.

Эвтаназия - Каждую мышь подвергали эвтаназии, когда она достигала гуманной критической точки, как описано в разделе ниже, или по истечению максимум 6 недель после первого введения дозы.

Оценка опухолевой нагрузки при эвтаназии.- При умерщвлении у животных иссекали и взвешивали печень.

Наблюдение за животными

Клиническое наблюдение - Длину и ширину опухоли измеряли два раза в неделю кронциркулем, при этом объем опухоли оценивали по следующей формуле [78]:

Объем опухоли=(ширина 2 х длина) /2

Гуманные критические точки [79]: Признаки боли, страданий или дистресса: болевая поза, маска боли на лице, поведение; опухоль превышает 10% от нормального веса тела, но не превышает 2000 мм³; опухоли, препятствующие передвижению или питанию; изъязвленная опухоль или эрозия ткани; 20% потеря веса тела на дней подряд; неудовлетворительное состояние протяжении организма, истощение, кахексия, обезвоживание; длительное отсутствие добровольных реакций на внешние стимулы; учащенное затрудненное дыхание, анемия, значительное кровотечение; неврологические признаки: кружение, судороги, паралич; устойчивое снижение температуры тела; вздутие живота.

Анестезия - При проведении всех процедур применяли анестезию газом изофлуран: хирургические вмешательства или инокуляции опухолей, в/в инъекции, сбор крови. Анестезию

кетамином и ксилазином применяли при стереотаксической хирургической операции.

Анальгезия - Протокол анальгезии с применением карпрофена и мультимодальной анальгезии с применением карпрофена/бупренофрина адаптировали к сложности хирургической процедуры. Для всех болезненных процедур была предусмотрена нефармакологическая помощь. Кроме того, по рекомендации присутствующего ветеринарного врача предоставляли фармакологическую помощь, не препятствующую исследованиям (топическое лечение).

Эвтаназия - Эвтаназию животным выполняли путем введения высоких доз газовой анестезии (изофлуран), с последующим смещением шейных позвонкови обескровливанием.

Результаты

Противоопухолевая активность, модель ЕМТ6

Результаты приведены на Фигуре 73. Лечение с применением бактериального штамма по настоящему изобретению обуславливало выраженное уменьшение объема опухоли по сравнению с обоими отрицательными контролями. В группе положительного контроля также регистрировалось уменьшение объема опухоли, как и следовало ожидать.

Противоопухолевая активность, модель LL/2 (LLC1)

Результаты приведены на Фигуре 74. Группы отрицательного и положительного контроля не отображаются так, как ожидалось, поскольку объем ОПУХОЛИ был больше У мышей, получавших положительный контроль, по сравнению с группами отрицательного Тем не менее объем опухоли у мышей, получавших бактериальный штамм по настоящему изобретению, был сопоставим с группой положительного контроля, что подтверждает надлежащий терапевтический эффект.

Противоопухолевая активность, модель Нера1-6

Результаты приведены на Фигуре 75. Группа отрицательного контроля, не получавшая лечения, не отображается так, как ожидалось, поскольку вес печени в этой группе был ниже, чем в других группах. Тем не менее, группа отрицательного контроля, получавшая несущую среду, и группа положительного контроля отображаются так, как ожидалось, поскольку мыши, получавшее одну

только несущую среду, имели более крупную печень, по сравнению с мышами, получавшими антителами анти-CTLA4, что свидетельствует о высокой опухолевой нагрузке в группе отрицательного контроля, получавшей несущую среду. Лечение С применением бактериального штамма по настоящему изобретению обуславливало выраженное снижение веса печени (и, следовательно, опухолевой сравнению с мышами из группы отрицательного нагрузки) ПО контроля, получавшими несущую среду.

Эти данные демонстрируют, что штамм 751/MRX004 может быть пригоден для лечения или профилактики рака и, в частности для уменьшения объема опухоли при раке молочной железы, легких и печени.

Пример 8. Прикреплениек клеткам человека в среде YCFA Краткая характеристика

Количество штаммов Bifidobacterium breve И уровень связывания штамма 751 с клетками человека определяли отдельные момента времени в среде YCFA. Бактерии, прикрепленные человека, ресуспендировали В среде клеткам затем анализировали оптическую плотность среды - чем выше оптическая количество бактериальных плотность, тем больше клеток следовательно, тем выше уровень связывания бактериальных клеток с клетками человека. Обнаружено, что штамм 751 характеризуется меньшей силой прикрепления к клеткам человека по сравнению с эталонными штаммами Bifidobacterium breve.

Результаты и анализ

Результаты описанного эксперимента представлены на Фигуре 76.

Как показано на Фигуре 76, штаммы Bifidobacterium breve характеризуются высокой степенью прикрепления к клеткам человека С ВΟ все моменты времени. другой стороны, штамм 751 характеризуются резко сниженной степенью прикрепления клеткам человека. Следовательно, низкая степень адгезии штамма 751 клеткам человека төжом повышать полезное композиций по настоящему изобретению на IL-17 или путь Th17 и на заболевания, опосредованные IL-17 или путем Th17.

Пример 9. Анализ, определяющий продукцию экзополисахаридов

Краткая характеристика

экзополисахарида (ЭПС) бактериальным продукции штаммом по настоящему изобретению (751) и количество штаммов Bifidobacterium breve анализировали при 37°C в течение 48 часов и при 30°C в течение 72 часов. ЭПС представляют собой полисахариды, связываются продуцируемые некоторыми бактериями, которые внешней поверхностью бактериальной клетки. Уровень поверхности бактерий можно определить с помощью анализа применением КОНГО красного, который связывается полисахаридами. Более высокая интенсивность поглощения конго на более высокую концентрацию красного указывает поверхности бактерий. Установлено, что бактериальный штамм по продуцирует И изобретению связывает большее количество ЭПС, чем штаммы Bifidobacterium breve.

Результаты и анализ

Результаты описанного эксперимента представлены на Фигуре 77.

77, Фигуре бактериальный Как показано на настоящему изобретению характеризовался большей абсорбцией конго Bifidobacterium красного, чем штаммы breve идп обеих моментах времени. Следовательно, температурах И штамм ПО настоящему изобретению демонстрирует более высокую продукцию ЭПС и более высокий уровень внеклеточных связанных ЭПС. Поскольку ЭПС бактериям связываться С позволяют СЛИЗИСТЫМИ эпителиальными клетками, бактериальный штамм ПО изобретению может быть пригоден для конкурирования с патогенными клетками для участков связывания на эпителиальных клетках внутри слизистых оболочек. Таким образом, бактериальный штамм по настоящему изобретению может быть пригоден для модулирования лечения ряда заболеваний, ассоциированных микробиома И микробиомом.

Пример 10. Проверка стабильности

Композицию, описанная в настоящем документе, содержащая по меньшей мере один бактериальный штамм, описанный в настоящем документе, хранят в герметичном контейнере при $25\,^{\circ}$ С или $4\,^{\circ}$ С, а

контейнер помещают в атмосферу с относительной влажностью 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90% или 95%. Через 1 месяц, 2 месяца, 3 месяца, 6 месяцев, 1 год, 1,5 года, 2 года, 2,5 года или 3 года не менее 50%, 60%, 70%, 80% или 90% бактериального штамма остается в количестве, измеренном в колониеобразующих единицах и определенном стандартными протоколами.

Пример 11. Анализ продукции MRX004-связанных и высвобожденных экзополисахаридов

Для экстракции ЭПС MRX004 культивировали в 10 мл YCFA до достижения поздней экспоненциальной фазы, во время бактериальные клетки и супернатанты отделяли с помощью центрифугирования. Клетки промывали один раз PBS для удаления оставшейся культуральной среды. Секретируемый ЭПС высвобожденный (ЭПС-В) осаждали ИЗ культуральных супернатантов обработкой ледяным 100% этанолом (в течение ночи идп NGU осторожном перемешивании). Для экстракции капсулярного или связанного ЭПС (ЭПС-С) клетки инкубировали с 0,05 ЭДТА (в течение ночи 4°C идп при осторожном перемешивании), а супернатанты, полученные в результате этой обработки, собирали и затем обрабатывали 100% ледяным этанолом (в течение ночи при 4°C при осторожном перемешивании) ЭПС-В. Осажденные ЭПС-С и ЭПС-В осаждали путем осаждения центрифугирования и оставляли на короткое время в ламинарном боксе до их повторного суспендирования в достаточно стерильной чистоты с сверхвысокой целью получения однородного раствора. Для дальнейшей очистки образцов их диализировали с стерильной водой сверхвысокой чистоты в соотношении 1: 100 в течение 48 часов с 3 заменами буфера. ЭПС-С и ЭПС-В определяли количественно с помощью метода с применением фенол-серной кислоты, а также глюкозы в качестве стандарта. Установлено, что применении этого анализа MRX004 продуцирует большее количество ЭПС-В (115 мкг), чем ЭПС-С (17 мкг) (Фигура 78).

Пример 12. Анализ прикрепления MRX004 к клеткам Caco-2

Прикрепление MRX004 к клеткам-хозяевам анализировали с помощью анализа совместного культивирования $in\ vitro\ c$

эпителиальными клетками кишечника Сасо-2. Клетки Сасо-2 высевали с плотностью 1 × 10.Бактерии культивировали в 10 мл YCFA до тех пор, пока они не достигали поздней экспоненциальной фазы, течение которой их гранулировали, дважды промывали ресуспендировали в среде для культивирования без антибиотиков. Бактериальную ПЛОТНОСТЬ корректировали ДЛЯ приблизительной множественности заражения (MOI) 10: подтверждалось покрытием на агаре YCFA С применением стандартного протокола WASP), а MRX004 совместно инкубировали с клетками Сасо-2 в анаэробных условиях при 37°С в течение 2 часов. Затем среду извлекали, и несвязанные бактерии удаляли путем тройного промывания клеток Caco-2 с помощью PBS. Связанные с бактериями клетки Сасо-2 лизировали и удаляли из сосуда путем обработки 0,1% Тритоном X-100, и 50 мкл объема разбавленного лизата высевали в агар YCFA с применением WASP. Прикрепление рассчитывали путем подсчета количества бактерий, извлеченных из выражали ЭTО как процент OTобщего И бактерий. Обнаружено, что MRX004 характеризуется низким уровнем адгезии (0,3% общей культуры) к клеткам Сасо-2 (Фигура 79).

Пример 13. Характеристика ферментативной активности

Тест-система «Аналитический индекс профилей» (АРІ®) состоит из полосок, содержащих миниатюрные биохимические тесты, которые анализируют ферментативную активность у бактериальных видов. МЯХОО4 (штамм 751, бактерия, депонированная под номером доступа NCIMB 42380) была охарактеризована с помощью двух тест-систем API: Rapid ID 32A - Эта система разработана специально для анаэробных видов и включает тесты на метаболизм углеводов, аминокислот и нитратов, а также активность щелочной фосфатазы; а также API® 50 CH - Эта система анализирует ферментацию 49 источников углеводов и может применяться в сочетании со средой API® CHL для анализа анаэробных видов.

Тестирование системой Rapid ID 32A проводилось на бактериальных колониях согласно инструкциям производителя. Вкратце, бактерии культивировали на агаре YCFA в течение 24 часов при 37°C в анаэробной рабочей станции. Колонии удаляли из

планшета с помощью стерильной 5 мкл инкубационной петли ресуспендировали в 2 мл ампуле среды для суспензии API® до тех пор, пока не получали плотность, приблизительно эквивалентную плотности стандарта McFarland №4. Пятьдесят пять микролитров бактериальной суспензии добавляли к каждой купуле на полоске тест-системы Rapid ID 32A, а на полоску для уреазного теста минерального масла. Полоски наносили две капли покрывали пластиковой крышкой и инкубировали аэробно при 37°C в течение 4 часов, после чего нижний ряд купул разрабатывали с применением следующих реагентов: NIT: 1 капля каждого из NIT1 и NIT2; IND: 1 капля реагента Джеймса; все оставшиеся купулы: 1 капля реагента FastBlue. Полоски инкубировали при комнатной температуре течение 5 минут, после чего регистрировали цвет каждой купулы и значение отрицательного, промежуточного положительного или положительного результата.

Результаты анализа с тест-системой Rapid ID 32A приведены на Фигуре 80. MRX004 характеризовался положительным результатом относительно ферментацию нескольких источников углеводов, именно: α -галактозидазы и β -галактозидазы, α -глюкозидазы и β глюкозидазы, lpha-арабинозы, маннозы И раффинозы, аминокислот:аргинина, пролина, фенилаланина, лейцина, гистидина. Представляют интерес сообщения о роли некоторых из этих аминокислот при астме. Например, повышенные концентрации в плазмефенилаланина и гистидина, как сообщается, ассоциированы с нежелательными эффектами при астме, включая интенсивности воспаления, образование гистамина гиперчувствительность дыхательных путей. Кроме того, метаболизм аргинина участвует в патогенезе астмы, поскольку повышенные уровни аргининового метаболита L-орнитина были зарегистрированы у детей, а введение аргинина снижало интенсивность воспаления в модели астмы in vivo. Исходя из этих сообщений, возможно, что метаболизм аминокислот, осуществляемый с помощью MRX004, может участвовать в противоастматических эффектах этого штамма.

Сравнительный анализ Rapid ID 32A проводили между MRX004 и четырьмя штаммами типа *B.breve*, которые обозначены на Фигуре 80B

как Bif Ref 1 (DSM 20091), Bif Ref 2 (DSM 20213), Bif Ref 6 (JCM 7017) и Bif Ref 7 (UCC2003). Этот анализ показал, что MRX004 был единственным штаммом, который характеризовался положительным результатом относительно ферментации полисахаридной рафинозы, ЧТО может быть значимым, поскольку рафиноза участвует продукции бактериальных компонентов, таких как экзополисахариды, кроме того, ферментация раффинозы также может оказывать влияние на организм хозяина, например, повышать уровень бутирата в слепой кишке активизировать пролиферативные процессы И В желудочно-кишечном тракте и потерю веса.

Анализ с применением тест-системы API® 50 CH проводили для дополнительного изучения углеводного обмена в MRX004. Согласно инструкциям производителя, бактерии культивировали в 10 мл бульона YCFA в течение 16-18 часов при 37°C в анаэробной рабочей станции. Эту культуру разбавляли в 10 мл среды API® CHL с целью получения плотности, примерно эквивалентной стандарту McFarland \mathbb{N}^2 , и 110 мкл этой смеси применяли для инокуляции каждой купулы на набор тест-полосок API® 50 CH. Тестовые полоски инкубировали в увлажненном боксе для инкубации при 37°C в анаэробной рабочей станции в течение 48 часов, после чего регистрировали цвет каждой купулы определяли значение отрицательного, промежуточного положительного, положительного или сомнительного результата.

В анализе с тест-системой АРІ® 50, МЯХОО4 продемонстрировал положительный результат для использования следующих источников углеводов: амидон (крахмал), амигдалин, арбутин, целлобиоза, эскулин, галактоза, гентиобиоза, глюкоза, гликоген, фруктоза, фукоза, лактоза, мальтоза, манноза, маннитол, мелибиоза, мелезитоза, метил-D-глюкопиранозид, N-ацетилглюкозамин, сахароза (цукроза), салицин, сорбитол, трегалоза, тураноза и ксилитол. Эти результаты коррелируют с результатами, полученными с тестсистемой Rapid ID 32A, в котором МЯХОО4 продемонстрировал ферментацию галактозы, глюкозы, маннозы и раффинозы в обеих тестовых системах. Представляет интерес тот факт, что некоторые углеводные субстраты МЯХОО4, а именно галактоза и фруктоза, могут быть вовлечены в механизм действия этого штамма в

зависимости от своих эффектов, о которых сообщено в литературе. Такая галактоза как α -1,3-галактоза, содержащаяся в мясе, является известным аллергеном и причинным фактором анафилаксии, а уровни потребления фруктозы с пищей коррелируют с увеличением тяжести астмы. В совокупности эти результаты анализа с применением тест-ситсемы API® для MRX004 дают основания предположить, что метаболизм этого штамма может играть роль в его антиастматических эффектах.

Пример 14. Геномный анализ

Сравнение содержания генома штамма MRX004 и эталонных штаммов 1, 2, 6 и 7B. breve, выполняли с помощью программы blastn в составе набора программ BLAST+2. 3. 0. В ходе всего анализа применяли максимальный балл граничного Е-значения, составляющий 10E-5.

Идентифицировали 333 гена (Таблица 1), которые присутствуют в геноме штамма MRX004, но отсутствуют в эталонных штаммах 1 (DSM 20091), 2 (DSM 20213), 6 (JCM 7017) и 7 (UCC2003) B.breve. ИЗ генов, перечисленных В Таблице 1, характеризуются гипервариабельностью среди штаммов В. breve [80]. Как и ожидалось, области вариабельности включают гены, кодирующие белки, участвующие в обмене и транспорте углеводов, ассоциированных с фагом генов, подвижных элементов, а также 173 генов, прогнозируемо участвующих в кодировании белков, или генов с неизвестной функцией.

Гены, которые присутствуют в МRX004, но отсутствуют эталонных штаммах B. brevel, 2, 6 и 7, перечислены в Таблице 1. Гены, которые не выделены, отсутствуют в более чем одном из штаммов. четырех эталонных Большое количество MRX004, но отсутствующих в присутствующих В многочисленных эталонных штаммах B. breve, дает основание предположить, что MRX004 отличается и/или может отличаться от этих известных штаммов B.breve. Гены, выделенные С ПОМОЩЬЮ подчеркивания, присутствуют в МRX004, но отсутствуют в эталонном 1B. breve. выделенные С штамме Гены, ПОМОШЬЮ лвойного подчеркивания и полужирного шрифта, присутствуют в MRX004, но отсутствуют в эталонном штамме 2B. breve. Гены, выделенные курсивом, присутствуют в MRX004, но отсутствуют в эталонном штамме 6B. breve. В анализе blastn применяли максимальный балл граничного Е-значения, составляющий 10E-5.

Таблица 1

	Facility of the second of the
4DBb_0021c	АВС-транспортер сложных сахаров, субстрат-связывающий белок
4DBb_0023	Вероятный LacI-подобный регулятор транскрипции
4DBb_0024	Сахароза-6-фосфатгидролаза (ЕС 3. 2. 1. ВЗ)
4DBb_0026c	Мальтодекстрин-глюковидава (ЕС 3. 2. 1. 20)
4DBb_0036c	Гипотетический белок
4DBb_0038c	Опероновый регуляторный белок MSM (метаболизм сложных сахаров)
4DBb_0119c	Гипотетический белок
4DBb_0120c	Гипотетический белок
4DBb_0187	Гипотетический белок
4DBb_0188	Гипотетический белок
4DBb_0203c	Белок клеточного деления FtsL
4DBb_0204c	Гипотетический белок
4DBb_0205c	Гипотетический белок
4DBb_0206c	Транскрипционный регулятор, семейство HxlR
4DBb_0207	Rrf2-связанная НАДФ-флавинредуктаза
4DBb_0208	RecG-связанный белок АТФ-зависимой ДНК-геликазы
4DBb_0209c	Гипотетический белок
4DBb_0210	Предполагаемый транспортер
	Субъединица синтазы полиненасыщенных жирных кислот Омега-3,
4DBb_0211	PfaA
4DBb_0212	Поликетидсинтаза типа I
4DBb_0213c	Гипотетический белок
4DBb_0214c	Гипотетический белок
4DBb_0215	Гипотетический белок
4DBb_0216c	Консервативный гипотетический белок
4DBb_0218c	Гипотетический белок
4DBb_0219c	ДНК-цитозин-метилтрансфераза
4DBb_0220c	Гипотетический белок
4DBb_0221c	Гипотетический белок
4DBb_0222c	Гипотетический белок
4DBb_0223c	Интеграза
4DBb_0256	Гипотетический белок
4DBb_0257c	LacI-подобный регулятор транскрипции
	Предполагаемая гликозилгидролаза с неизвестной функцией
4DBb_0258	(DUF1680)

4DBb_0284	Транскрипционный регулятор, семейство AraC
	АВС-транспортная система N-ацетил-D-глюкозамина, сахар-
4DBb_0285	связывающий белок
4DBb_0286	Пермеаза ABC-транспортер сахаров
	АВС-транспортная система N-ацетил-D-глюкозамина, пермеазный
4DBb_0287	белок2
4DBb_0288	Альфа-галактозидаза (ЕС 3. 2. 1. 22)
	АТФазный компонент BioM индуцирующего модуля ECF-транспортера
4DBb_0329c	биотина
4DBb_0330	Суперсемейство основных мембранных транспортеров MFS $_1$
4DBb_0368	GMP-синтаза [глутамин-гидролиз] (EC 6. 3. 5. 2)
4DBb_0369c	Mu-подобный белок профага gp29
4DBb_0410	Предполагаемая галактовидава
4DBb_0419	Гипотетический белок
4DBb_0421	Гликозилтрансфераза SypP
4DBb_0422	Белок биосинтеза капсульного полисахарида
4DBb_0423	Гипотетический белок
4DBb_0424	Гликозилтрансфераза
	Мембранный белок, участвующий в экспорте О-антигена, тейхоевой
4DBb_0425	кислоты, липотейхоевых кислот
4DBb_0426	Гликозилтрансфераза (ЕС 2. 4. 1)
	Синтаза 2-сукцинил-5-енолпирувил-6-гидрокси-3-циклогексен-1-
4DBb_0427	карбоновой кислоты (ЕС 2. 2. 1. 9)
4DBb_0428	Гипотетический белок
4DBb_0429	Белок мобильного элемента
4DBb_0430	Гипотетический белок
4DBb_0431c	Гипотетический белок
4DBb_0432c	Белок мобильного элемента
4DBb_0433c	Гипотетический белок
4DBb_0434c	Гипотетический белок
4DBb_0435	Гипотетический белок
4DBb_0436	Гипотетический белок
4DBb_0437c	Гипотетический белок
4DBb_0438c	Белок мобильного элемента
4DBb_0439c	Гипотетический белок
4DBb_0440c	Белок мобильного элемента
4DBb_0518c	Белок домена PIN
4DBb_0519c	Гипотетический белок
4DBb_0555c	Гипотетический белок
4DBb_0556c	Гипотетический белок
4DBb 0557c	LSU рибосомальныйбелок L31p и LSU рибосомальный белок L31p,

	цинк-независимый
	SSUрибосомальный белок S14p (S29e) и SSU рибосомальный белок
4DBb_0558c	S14p (S29e), цинк-независимый
	LSU рибосомальныйбелок L33p и LSU рибосомальный белок L33p,
4DBb_0559c	цинк-независимый
4DBb_0560c	Гипотетический белок
4DBb_0561	Гипотетический белок
4DBb_0613c	<u>Целлюловосинтава (УДФ-формированная) (ЕС 2. 4. 1. 12)</u>
4DBb_0614	<u> Хитинава (ЕС 3. 2. 1. 14)</u>
4DBb_0615	Белок семейства сенсорного бокса/GGDEF
4DBb_0660	Белок мобильного элемента
4DBb_0662	Белок мобильного элемента
4DBb_0663c	Нейраминидаза NanP
4DBb_0664	Гипотетический белок
4DBb_0665	Гипотетический белок
4DBb_0666	Белок мобильного элемента
4DBb_0667	Белок мобильного элемента
4DBb_0668	Белок мобильного элемента
4DBb_0718	Предполагаемый биотин-регуляторный белок BioR (семейство GntR)
4DBb_0719	Гипотетический белок
4DBb_0720	Гипотетический белок
4DBb_0778	Гипотетический белок
4DBb_0789c	Белок мобильного элемента
4DBb_0790c	Белок мобильного элемента
4DBb_0837c	Возможный консервативный интегральный мембранный белок.
4DBb_0840	Макролид-эффлюсный белок
4DBb_0866	Катион-транспортирующая АТФаза, семейство E1-E2
4DBb_0867	Гипотетический белок
4DBb_0872	Гипотетический белок
4DBb_0879c	Транскрипционный регулятор, семейство Cro/CI
4DBb_0880c	Интегральный мембранный белок
4DBb_0946	Транспортер общего субстрата MFS
4DBb_0947c	Предполагаемый мембранный белок
4DBb_0948c	Белок мобильного элемента
4DBb_0952c	Гипотетический белок
4DBb_0953	Гипотетический белок
4DBb_0954c	Гипотетический белок
4DBb_0955c	Гипотетический белок
4DBb_0956c	Предполагаемые пермеазы
4DBb_0957	Узкоконсервативный гипотетический белок
4DBb_0958c	Консервативный гипотетический белок

4DBb_0986c	Гипотетический белок
	Удвоенный АТФазный компонент BL0693 индуцирующего модуля
<u>4DBb</u> 0987c	предполагаемого ЕСF-транспортера
	Трансмембранный компонент BL0694 индуцирующего модуля
4DBb_0988c	предполагаемого ЕСF-транспортера
4DBb_1009c	Фаговый холин
	Предшественник мембранно-связанной литической муреин-
4DBb_1010c	трансгликозилазы D-(EC 3. 2. 1)
4DBb_1011c	Гипотетический белок
4DBb_1012	Гипотетический белок
4DBb_1013c	Гипотетический белок
4DBb_1014c	Гипотетический белок
4DBb_1015c	Гипотетический белок
4DBb_1016c	Гипотетический белок
4DBb_1017c	Белок отростка фага
4DBb_1018c	Белок отростка фага с длиной мерной ленты
4DBb_1019c	Гипотетический белок
4DBb_1020c	Гипотетический белок
4DBb_1021c	Гипотетический белок
4DBb_1022c	Гипотетический белок
4DBb_1023c	Гипотетический белок
4DBb_1024c	Гипотетический белок
4DBb_1025c	Гипотетический белок
4DBb_1026c	Гипотетический белок
4DBb_1027c	Гипотетический белок
4DBb_1028c	Гипотетический белок
4DBb_1029c	Гипотетический белок
4DBb_1030c	Фаговый белок
4DBb_1031c	Фаговая терминаза, большая субъединица # Pham2
4DBb_1032c	Фаговая терминаза, большая субъединица
4DBb_1033c	Гипотетический белок
4DBb_1034	Гипотетический белок
4DBb_1035	Гипотетический белок
4DBb_1036c	FIG00424913: Гипотетический белок
4DBb_1037c	Гипотетический белок
4DBb_1038c	Гипотетический белок
4DBb_1039c	Гипотетический белок
4DBb_1040c	Гипотетический белок
4DBb_1041c	Гипотетический белок
4DBb_1042c	Гипотетический белок
4DBb_1043c	Гипотетический белок

4DBb_1044c	Гипотетический белок
4DBb_1045c	Гипотетический белок
4DBb_1046c	Гипотетический белок
4DBb_1047c	Хромосомный (плазмидный) белок разделения ParB
4DBb_1048c	Гипотетический белок
4DBb_1049c	Гипотетический белок
4DBb_1050c	Одноцепочечный ДНК-связывающий белок
4DBb_1051c	Гипотетический белок
4DBb_1052c	Гипотетический белок
4DBb_1053c	Гипотетический белок
4DBb_1054c	Гипотетический белок
4DBb_1055c	Гипотетический белок
4DBb_1056	Гипотетический белок
4DBb_1057c	Гипотетический белок
4DBb_1058c	Гипотетический белок
4DBb_1059	Гипотетический белок
4DBb_1060	Гипотетический белок
4DBb_1061	Гипотетический белок
4DBb_1062c	Гипотетический белок
4DBb_1063c	Гипотетический белок
4DBb_1064	Предполагаемая фаговая интеграза
4DBb_1113	Пермеазы суперсемейства основных мембранных транспортеров
4DBb_1142	Гипотетический белок
4DBb_1143c	Гипотетический белок
4DBb_1172	Интеграза
4DBb_1173c	Гипотетический белок
4DBb_1174c	Узкоконсервативный гипотетический белок
4DBb_1175	Гипотетический белок
4DBb_1176c	Гипотетический белок
4DBb_1177	АВС-транспортер, АТФ-связывающий белок
4DBb_1178	Гипотетический белок
4DBb_1179	Гипотетический белок
4DBb_1180	Гипотетический белок
4DBb_1181	Гипотетический белок
4DBb_1182	Двухкомпонентная система сенсорной киназы
4DBb_1183	Гипотетический белок
4DBb_1203c	Регуляторный белок, LacI
4DBb_1204c	FIG01131316: Гипотетический белок
4DBb_1205c	Транспортная система пермеазы
	Предполагаемая транспортная система АВС олигосахарида рамнозы,
4DBb_1206c	пермеазный компонент 2

4DBb_1207c	внеклеточный аналит-связывающий белок, семейство 1
4DBb 1212c	<u>Гипотетический белок</u>
4DBb_1213c	Гипотетический белок
4DBb_1214	Белок мобильного элемента
4DBb_1215	Белок мобильного элемента
4DBb_1219	Гипотетический белок
4DBb_1220c	Гипотетический белок
4DBb_1221c	Белок с неизвестной функцией семейства DUF262
4DBb_1222c	Гипотетический белок
4DBb_1223	Гипотетический белок
4DBb_1224	Белок мобильного элемента
	Транспортная система сахаров АВС-типа, периплазматический
4DBb_1234c	компонент
4DBb_1235	Гипотетический белок
4DBb_1328c	Предполагаемая фаговая интеграза
4DBb_1329	Гипотетический белок
4DBb_1330	Гипотетический белок
4DBb_1331c	Гипотетический белок
4DBb_1332	Гипотетический белок
4DBb_1333	Гипотетический белок
4DBb_1334	Гипотетический белок
4DBb_1335c	Гипотетический белок
4DBb_1336c	Отрицательный регулятор экспрессии бета-лактамазы
4DBb_1337c	Гипотетический белок
4DBb_1338c	Гипотетический белок
4DBb_1339c	Гипотетический белок
4DBb_1340c	Гипотетический белок
4DBb_1341c	Гипотетический белок
4DBb_1342c	Гипотетический белок
4DBb_1343c	Гипотетический белок
4DBb_1344	Гипотетический белок
4DBb_1345c	Волоконный белок отростка фага
4DBb_1346c	Гипотетический белок
4DBb_1347c	Белок малого отростка фага
4DBb_1348c	Гипотетический белок
4DBb_1349c	Гипотетический белок
4DBb_1350c	Фаговый белок
4DBb_1351c	Фаговый белок
4DBb_1352c	Фаговый белок
4DBb_1353c	Фаговый белок
4DBb_1354c	Гипотетический белок

4DBb_1355c	Гипотетический белок
4DBb_1356c	Основной капсидный белок фага # Fam0025 # Pham164
4DBb_1357c	Предполагаемая интеграза проголовки фага
4DBb_1358c	Белок входных ворот фага
4DBb_1359c	др2, терминаза
4DBb_1360c	Гипотетический белок
4DBb_1361c	Гипотетический белок
4DBb_1362c	Гипотетический белок
4DBb_1363c	Гипотетический белок
4DBb_1364c	Гипотетический белок
4DBb_1365c	Гипотетический белок
4DBb_1366c	Гипотетический белок
4DBb_1367c	Гипотетический белок
4DBb_1368c	Гипотетический белок
4DBb_1369c	Гипотетический белок
4DBb_1370c	Гипотетический белок
4DBb_1371c	Гипотетический белок
4DBb_1372c	Одноцепочечный ДНК-связывающий белок
4DBb_1373c	Гипотетический белок
	Рекомбинантный ДНК-репарационный белок RecT (ассоциированный с
4DBb_1374c	профагом)
4DBb_1375c	Связанный с фагом белок
4DBb_1376c	Гипотетический белок
4DBb_1377c	Гипотетический белок
4DBb_1378c	Гипотетический белок
_	Гипотетический белок
4DBb_1380c	Метилтрансфераза (EC 2. 1. 1)
4DBb_1381c	Гипотетический белок
4DBb_1382c	Гипотетический белок
4DBb_1383c	Гипотетический белок
4DBb_1384	Гипотетический белок
4DBb_1385	Гипотетический белок
4DBb_1386	Гипотетический белок
4DBb_1387	Гипотетический белок
4DBb_1388	Гипотетический белок
	Пермеаза сахарозы, суперсемейство основных мембранных
4DBb_1456	транспортеров
4DBb_1486c	Эстераза/липаза
4DBb_1487c	Глюкоза/манноза:H+ симпортер GlcP
4DBb_1488c	Двухкомпонентный регулятор ответа $yesN$
4DBb_1533c	<u>Гипотетический белок</u>

4DBb_1534c	Гипотетический белок
	Рестрикционно-модификационная система типа I, рестрикционая
4DBb_1535c	субъединица R (EC 3. 1. 21. 3)
4DBb_1536c	АТФ-зависимая ДНК-геликаза $recG$ (ЕС 3. 6. 1)
	Рестрикционно-модификационная система типа I, субъединица
4DBb_1537c	специфичности S (EC 3. 1. 21. 3)
	Рестрикционно-модификационная система типа I, субъединица ДНК-
4DBb_1538c	метилтрансферазы М (ЕС 2. 1. 1. 72)
4DBb_1539c	Гипотетический белок
	Рестрикционно-модификационная система типа I, субъединица
4DBb_1540	специфичности S (EC 3. 1. 21. 3)
4DBb_1541	Интеграза
	Рестрикционно-модификационная система типа I, субъединица
4DBb_1542c	специфичности S (EC 3. 1. 21. 3)
	ABC-транспортная система рибозы, высокоаффинная пермеаза RbsD
4DBb_1545c	(TC 3. A. 1. 2. 1)
	АВС-транспортная система рибозы, периплазматический
4DBb_1546c	рибозосвязывающий белок RbsB (TC 3. A. 1. 2. 1)
	ABC-транспортная система рибозы, белок пермеазы $RbsC$ (TC 3. A .
4DBb_1547c	1. 2. 1)
	ABC-транспортная система рибозы, ATФ-связывающий белок RbsA
4DBb_1548c	(TC 3. A. 1. 2. 1)
4DBb_1550c	Гипотетический белок
4DBb_1551	Гипотетический белок
4DBb_1552c	LacI-подобный регулятор транскрипции
4DBb_1553c	Подобно белку резистентности к тетрациклину
4DBb_1554c	Рибокиназа (EC 2. 7. 1. 15)
4DBb_1555c	НАДФ-зависимая бутанолдегидрогеназа A (EC 1. 1. 1)
4DBb_1556c	Фосфогликолятная фосфатаза (ЕС 3. 1. 3. 18)
	Нуклеозидгидролаза, предпочитающая инозин-уридин (EC 3. 2. 2.
4DBb_1557c	1)
4DBb_1558c	Фруктокиназа (ЕС 2. 7. 1. 4)
4DBb_1559c	Фосфорибозилантранилат изомераза (ЕС 5. 3. 1. 24)
	АТФазный компонент STY3233 индуцирующего модуля квеуозин-
4DBb_1560c	регулируемого транспортера ЕСГ
	АТФазный компонент основного индуцирующего модуля
4DBb_1561c	транспортеров ЕСГ
	Трансмембранный компонент STY3231 индуцирующего модуля
4DBb_1562c	квеуозин-регулируемого транспортера ЕСF
	Субстрат-специфический компонентSTY3230 квеуозин-
4DBb_1563c	регулируемого транспортера ЕСГ
4DBb_1564	Гипотетическая киназа сахаров в кластере с индигоидинсинтазой

	indA, PfkB-семейство киназ
4DBb_1569	Транскрипционный регулятор, семейство TetR
4DBb_1570c	Эстераза/липаза
4DBb_1571c	Гипотетический белок
4DBb_1572c	Гипотетический белок
4DBb_1573	COG1309: Транскрипционный регулятор
4DBb_1574c	Гипотетический белок
4DBb_1578c	Белок-носитель мелибиозы
4DBb_1579c	Гипотетический белок
4DBb_1580c	Транскрипционный регулятор, семейство TetR
4DBb_1581	Гипотетический белок
	Двухкомпонентный регулятор ответа, снабженный транспортером
4DBb_1582	HrtAB
4DBb_1583	Гипотетический белок
4DBb_1584c	Гипотетический белок
4DBb_1585	Сенсорная гистидинкиназа
4DBb_1586	АТФазный белок C для транспорта Mg (2+)
4DBb_1587	Транскрипционный регулятор, семейство AbrB
4DBb_1588	Гипотетический белок
4DBb_1620c	3'-к-5' олигорибонуклеаза (orn)
4DBb_1769c	Транскрипционный активатор MltR
4DBb_1770c	Ксилитдегидрогеназа (ЕС 1. 1. 9)
4DBb_1771c	Транспортер рибита/ксилита/арабита, суперсемейство MFS
4DBb_1773c	Белок семейства глиоксалазы
4DBb_1774c	Транспортер рибита/ксилита/арабита, суперсемейство MFS
4DBb_1775c	Сорбитолдегидрогеназа (ЕС 1. 1. 1. 14)
4DBb_1926c	Мембранный белок, близкий к белку $Actinobacillus$ (1944168)
4DBb_1928c	Гликозильная трансфераза, белок семейства группы 2
	ATФ-связывающий белок TagH, экспортирующий тейхоевую кислоту
4DBb_1929c	(EC 3. 6. 3. 40)
4DBb_1930c	Ремнозосодержащая полисахаридная транслокационная пермеаза
4DBb_1934c	Гипотетический белок
4DBb_1935	Возможная гликозилтрансфераза
4DBb_1936c	Белок поверхности клеточной стенки семейства якорных белков
4DBb_1937c	D-аланил-D-аланиновая карбоксипептидаза (EC 3. 4. 16. 4)
4DBb_1965	Гипотетический белок
4DBb_2010c	Белок мобильного элемента
4DBb_2011	Транскрипционный регулятор, семейство LacI
	АВС-транспортер ксилозы, периплазматический ксилозосвязывающий
4DBb_2012	белок XylF
4DBb_2013	ABC-транспортная система рибозы, $AT\Phi$ -связывающий белок $RbsA$

	(TC 3. A. 1. 2. 1)
	АВС-транспортная система рибозы, белок пермеазы RbsC (ТС 3. А.
4DBb_2014	1. 2. 1)
4DBb_2015	Гипотетический белок
4DBb_2016	Белок мобильного элемента
4DBb_2028c	Бета-глюкозидаза (EC 3. 2. 1. 21)

Последовательности

SEQ ID NO: 1 (консенсусная последовательность 16S рРНК для штамма 751)

GGGACAGGCTCAGGATGAACGCCGGCGGCGTGCTTAACACATGCAAGTCGAACGGGATC TGCACCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGGATGCTCCATCACACCGCATGGTGTG TTGGGAAAGCCTTTGCGGCATGGGATGGGGTCGCGTCCTATCAGCTTGATGGCGGGGTAACGGC CCACCATGGCTTCGACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACATTGGGACTGAGATACG GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGC GACGCCGCGTGAGGGATGGAGGCCTTCGGGTTGTAAACCTCTTTTGTTAGGGAGCAAGGCACTT TGTGTTGAGTGTACCTTTCGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT AGGGTGCAAGCGTTATCCGGAATTATTGGGCGTTAAAGGGCTCGTAGGCGGTTCGTCGCGTCCGG TGTGAAAGTCCATCGCTTAACGGTGGATCCGCGCCGGGTACGGCGGGCTTGAGTGCGGTAGGG GAGACTGGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG GCAGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATA $\verb|CCCTGGTAGTCCACGCCGTAAACGGTGGATGCTGGATGTGGGGCCCGTTCCACGGGTTCCGTGT| \\$ CGGAGCTAACGCGTTAAGCATCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGAAAT TGACGGGGGCCCGCACAAGCGGCGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTAC $\tt CTGGGCTTGACATGTTCCCGACGATCCCAGAGATGGGGTTTCCCTTCGGGGCGGGTTCACAGGT$ GGTGCATGGTCGTCGTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACC $\tt CTCGCCCGTGTTGCCAGCGGATTGTGCCGGGAACTCACGGGGGACCGCCGGGGTTAACTCGGA$ GGAAGGTGGGGATGACGTCAGATCATCCCCCTTACGTCCAGGGCTTCACGCATGCTACAAT GGCCGGTACAACGGGATGCGACAGCGCGAGCTGGAGCGGATCCCTGAAAACCGGTCTCAGTTCG GATCGCAGTCTGCAACTCGACTGCGTGAAGGCGGAGTCGCTAGTAATCGCGAATCAGCAACGTC GCGGTGAATGCGTTCCCGGGCCTTGTACACACCGCCCGTCAAGTCATGAAAGTGGGCAGCACCC GAAGCCGGTGGCCTAACCCCTGCGGGAGGGAGCCKC

SEQ ID NO:2 (последовательность генома штамма 751) - см. перечень последовательностей в электронном виде.

Литература

[[]i] Spor et al. (2011) Nat Rev Microbiol. 9(4):279-90.

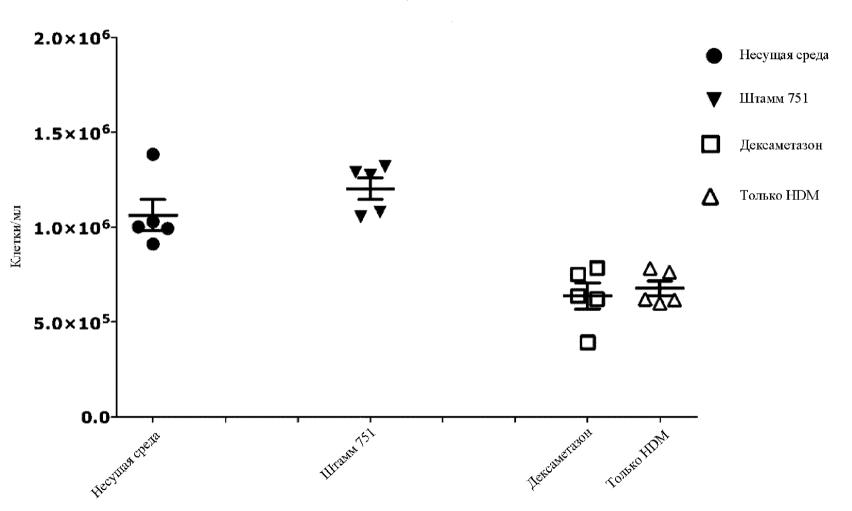
```
[ii] Eckburg et al. (2005) Science. 10; 308 (5728): 1635-8.
[iii] Macpherson et al. (2001) Microbes Infect. 3 (12):1021-35.
[4] Macpherson et al. (2002) CellMol Life Sci. 59(12):2088-96.
[5] Mazmanian et al. (2005) Cell15;122(1):107-18.
[6] Frank et al. (2007) PNAS104(34):13780-5.
[7] Scanlanet al. (2006) J Clin Microbiol. 44 (11): 3980-8.
[8] Kang et al. (2010) Inflamm Bowel Dis. 16(12):2034-42.
[9] Machiels et al. (2013) Gut. 63(8):1275-83.
[10] WO 2013/050792
[11] WO 03/046580
[12] WO 2013/008039
[13] WO 2014/167338
[14] Goldin and Gorbach (2008) Clin Infect Dis. 46 Suppl 2:S96-
100.
[15] Azad et al. (2013) BMJ.347:f6471.
[16] Masco et al. (2003) Systematic and Applied Microbiology,
26:557-563.
[17] Srůtková et al. (2011) J. Microbiol. Methods, 87(1):10-6.
[18] Ye et al. (2015) PLoS One.10(1):e0117704.
[19] Fabro et al. (2015) Immunobiology. 220(1):124-35.
[20] Yin et al. (2014) Immunogenetics. 66(3):215-8.
[21] Cheluvappa et al. (2014) Clin Exp Immunol. 175(2):316-22.
[22] Schieck et al. (2014) J Allergy Clin Immunol. 133(3):888-91.
[23] Balato et al. (2014) J Eur Acad Dermatol
Venereol.28(8):1016-24.
[24] Monteleone et al. (2011) BMC Medicine. 2011, 9:122.
[25] Fahy (2009) Proc Am Thorac Soc6.256-259
[26] Miossec and Kolls (2012) Nat Rev Drug Discov. 11(10): 763-76.
[27] Yang et al. (2014) Trends Pharmacol Sci. 35 (10): 493-500.
[28] Koenders et al. (2006) J. Immunol. 176: 6262-6269.
[29] Amedei et al. (2012) Int J Mol Sci.13(10):13438-60.
[30] Shabgah et al. (2014) Postepy. Dermatol. Alergol. 31 (4): 256-61.
[31] Zhang (2015) Inflammation. Aug 23.
[32] Sun et al. (2015) Cytokine. 74(1):76-80.
[33] Mucientes et al. (2015) Br J Ophthalmol, 99(4):566-70.
[34] Jawad et al. (2013) Ocul Immunol Inflamm, 21(6):434-9.
[35] Maya et al. (2014) J. Ophthalmology. 310329
[36] Chi et al. (2007) J. Allergy and Clinical Immunology. 119(5):1218-1224.
[37] Chi et al. (2008) Investigative Ophthalmology & Visual Science. 49(7); 3058–3064.
[38] Luger and Caspi (2008) Semin. Immunopathol. 30(2):134-143.
[39] Numasaki et al.(2003) Blood.101:2620-2627.
[40] Zhang et al. (2008) Biochem. Biophys. Res. Commun. 374; 533-537.
[41] Karin (2006) Nature. 441: 431-436.
[42] Faghih et al. (2013). Iranian Journal of
Immunology.10(4):193-204.
[43] Numasaki et al. (2005) J. Immunol. 175: 6177-6189
[44] Hammerich and Tacke (2014) Clin Exp Gastroenterol.7:297-
306.
[45] Haabeth et al. (2012) OncoImmunology1(1):1146-1152.
[46] Lejeune et al. (2006) Cancer Immun. 6:6
```

[49] Arenberg et al. (1996) J. Exp. Med. 184:981-92.

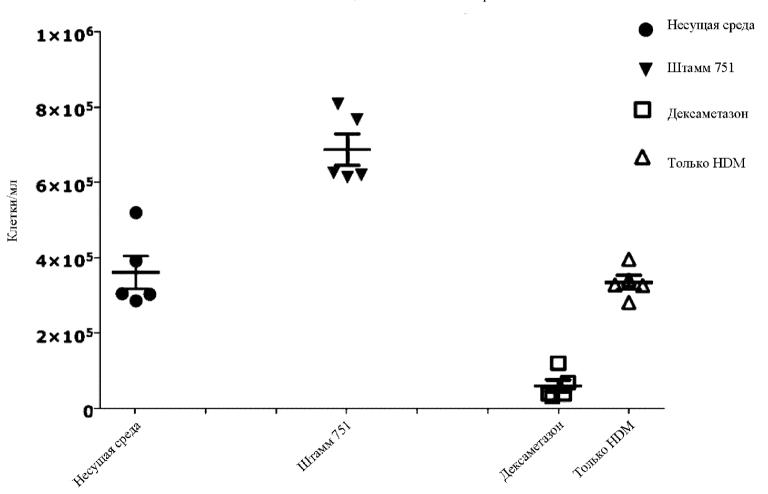
[50] Sgadari et al.(1997) Blood.89:2635-43.

[48] Sgadari et al. (1996) PNAS. 93:13791-6.

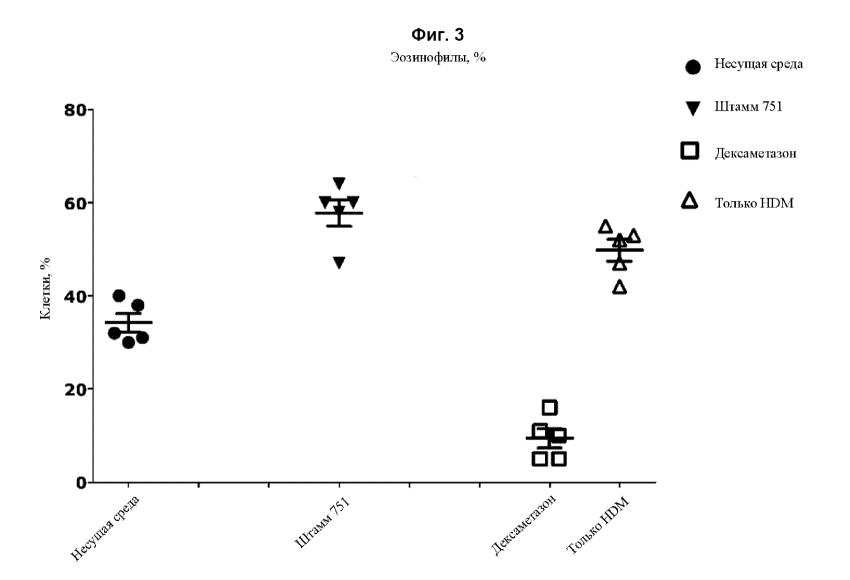
[47] Pace et al. (1983) PNAS.80:8782-6.

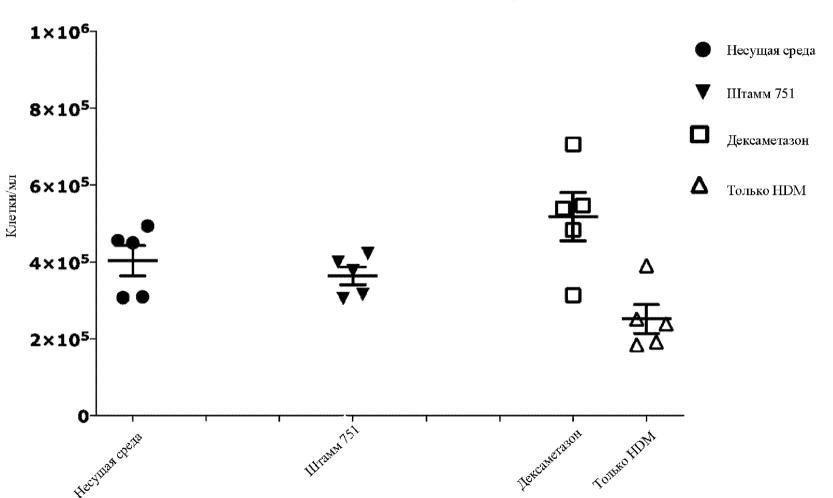

- [51] Miyamoto-Shinohara et al. (2008) J. Gen. Appl. Microbiol., 54, 9-24.
- [52] Cryopreservation and Freeze-Drying Protocols, ed. by Day and McLellan, Humana Press.
- [53] Leslie et al. (1995) Appl. Environ. Microbiol. 61, 3592-3597.
- [54] Mitropoulou et al. (2013) J Nutr Metab. (2013) 716861.
- [55] Kailasapathy et al.(2002) Curr Issues Intest Microbiol.3(2):39-48.
- [56] Handbook of Pharmaceutical Excipients, 2nd Edition, (1994), Edited by A Wade and PJ Weller
- [57] Remington's Pharmaceutical Sciences, Mack Publishing Co.(A.R.Gennaro edit.1985)
- [58] Handbook of Microbiological Media, Fourth Edition (2010) Ronald Atlas, CRC Press.
- [59] Maintaining Cultures for Biotechnology and Industry (1996) Jennie C. Hunter-Cevera, Academic Press
- [60] Strobel (2009) Methods Mol Biol. 581:247-61.
- [61] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.
- [62] Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al., eds., 1998, Academic Press).
- [63] Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)
- [64] Handbook of Experimental Immunology, Vols. I-IV (D.M. Weir and C.C. Blackwell, eds. 1986, Blackwell Scientific Publications)
- [65] Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition (Cold Spring Harbor Laboratory Press).
- [66] Handbook of Surface and Colloidal Chemistry (Birdi, K.S. ed., CRC Press, 1997)
- [67] Ausubel et al. (eds) (2002) Short protocols in molecular biology, 5th edition (Current Protocols).
- [68] PCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Graham eds., 1997, Springer Verlag)
- [69] Current Protocols in Molecular Biology (F.M.Ausubel et al., eds., 1987) Supplement 30
- [70] Smith & Waterman (1981) Adv. Appl. Math. 2:482-489.
- [75] Darlington (1987) Meth Enzymol.151:19-38.

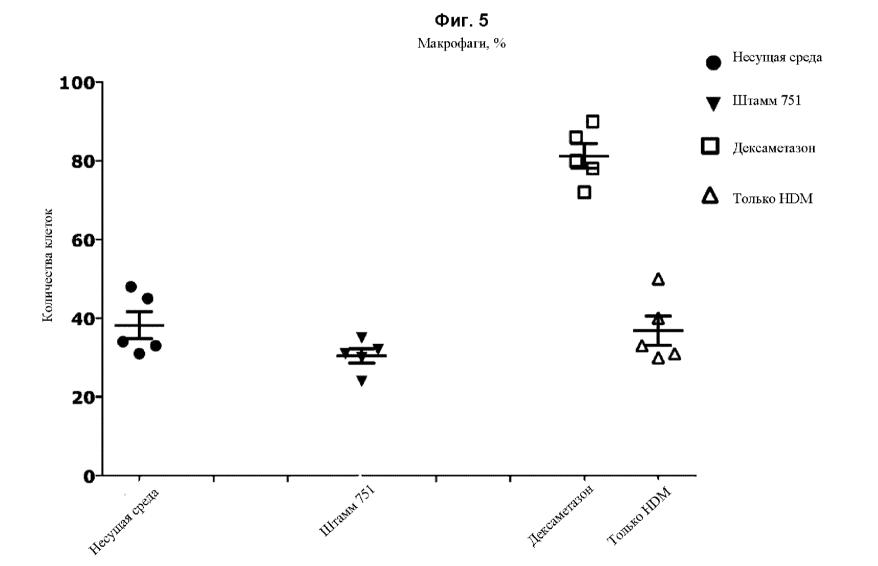
ФОРМУЛА ИЗОБРЕТЕНИЯ

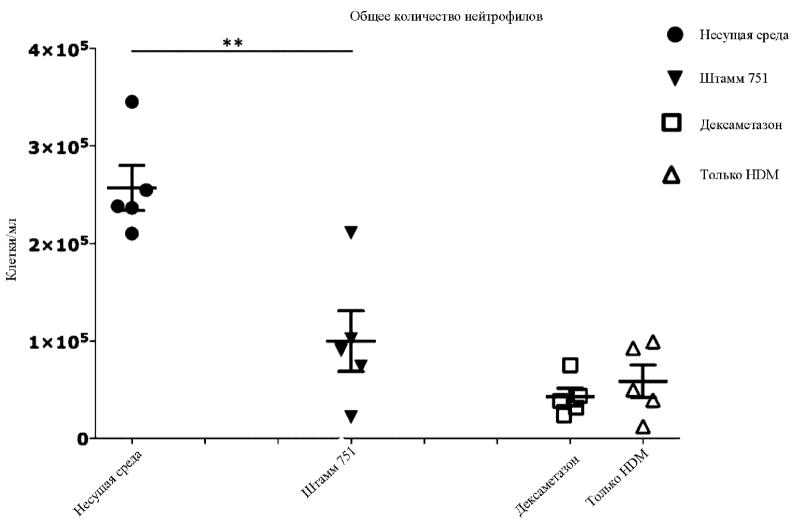

- 1. Фармацевтическая композиция, содержащая бактериальный штамм, который имеет последовательность рРНК 16s, которая по меньшей мере на 95% идентична SEQ ID NO: 1, где SEQ ID NO: 1 представляет собой консенсусную последовательность рРНК 16s бактерии Bifidobacterium breve, депонированной под номером доступа NCIMB 42380; для лечения или профилактики астмы, артрита, рассеянного склероза или рака.
- 2. Композиция по п.1, где композиция предназначена для лечения или профилактики астмы, такой как нейтрофильная астма или аллергическая астма.
- 3. Композиция по п.2, где композиция предназначена для уменьшения нейтрофилии или эозинофилии при лечении астмы.
- 4. Композиция по п.1, где композиция предназначена для лечения или профилактики ревматоидного артрита.
- 5. Композиция по п.4, где композиция предназначена для уменьшения отека суставов при ревматоидном артрите.
- 6. Композиция по п.1, где композиция предназначена для лечения или профилактики рассеянного склероза.
- 7. Композиция по п.1, где композиция предназначена для лечения или профилактики рака, такого как рак легких, рак груди или рак печени.
- 8. Композиция по п.7, где композиция предназначена для уменьшения размера опухоли, уменьшения роста опухоли, предотвращения метастазирования или предотвращения ангиогенеза.
- 9. Композиция по любому из предшествующих пунктов, где композиция предназначена для применения у пациента с повышенными уровнями IL-17 или клеток Th17.
- 10. Композиция по любому из пп. 1-9, где биотип имеет последовательность 16s pPHK, которая по меньшей мере на 96%, 97%, 98%, 99%, 99,5% или 99,9% идентична SEQ ID NO: 1.
- 11. Композиция по любому из предшествующих пунктов, где композиция предназначена для перорального введения.
- 12. Композиция по любому из предшествующих пунктов, где композиция содержит один или более фармацевтически приемлемых наполнителей, в частности носитель.

- 13. Композиция по любому из предыдущих пунктов, где бактериальный штамм лиофилизирован.
- 14. Композиция вакцины, содержащая композицию по любому из предшествующих пунктов и адъювант вакцины, для лечения или профилактики астмы, артрита, рассеянного склероза или рака.
- 15. Штамм бактерии Bifidobacterium breve, депонированный под номером доступа NCIMB 42380, для лечения или профилактики астмы, артрита, рассеянного склероза или рака.
- 16. Композиция по п.15, содержащая фармацевтически приемлемый наполнитель, в частности носитель.

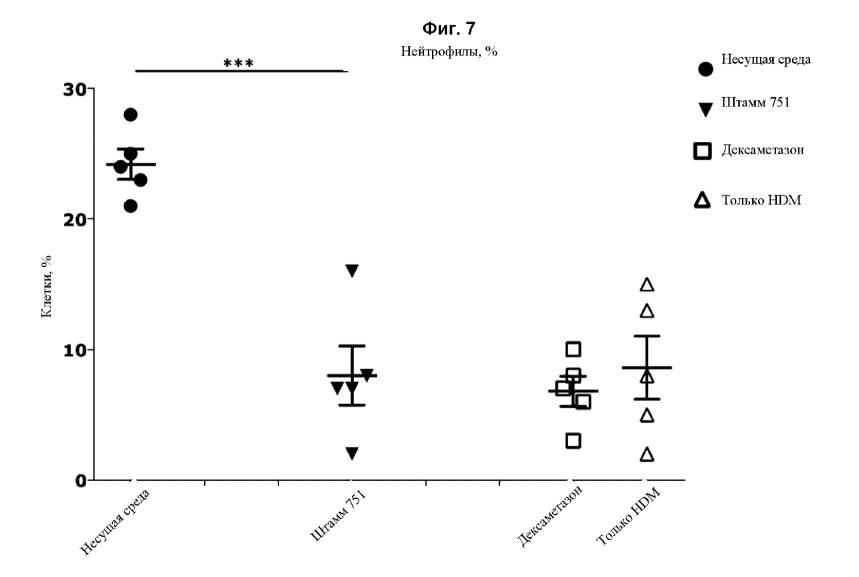

Фиг. 1 Общее количество клеток

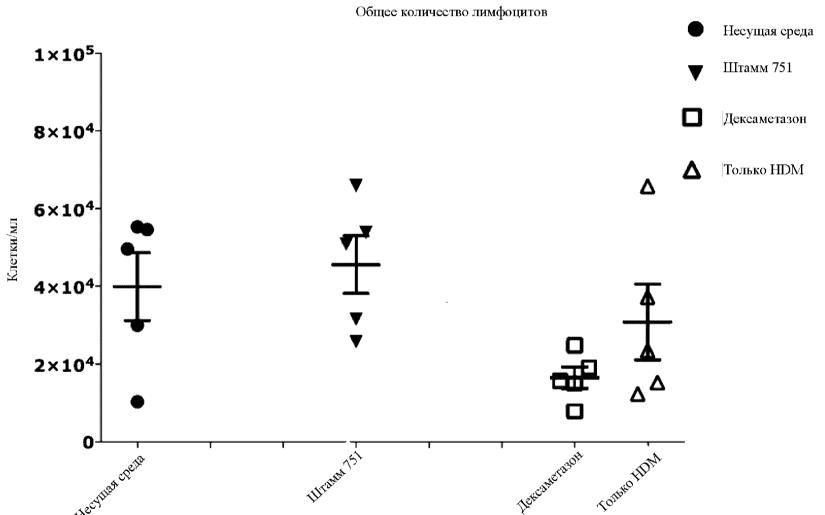

Фиг. 2
Общее количество эозинофилов

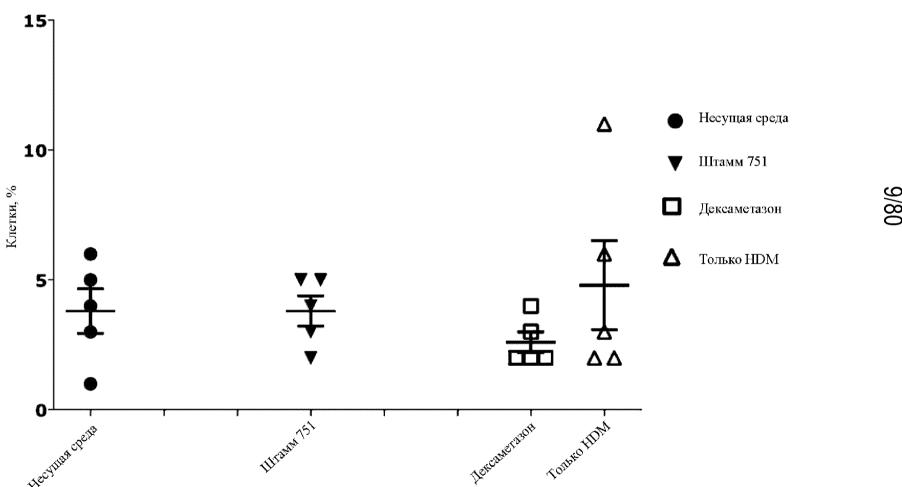


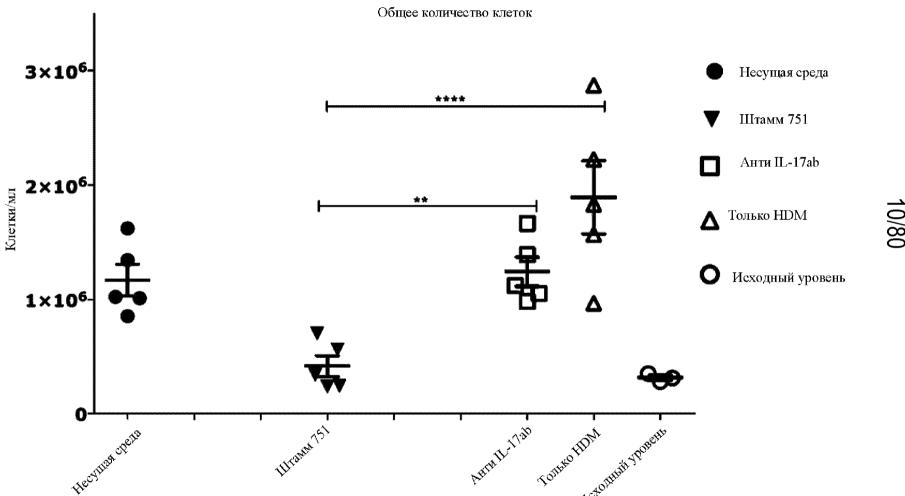


Фиг. 4 Общее количество макрофагов

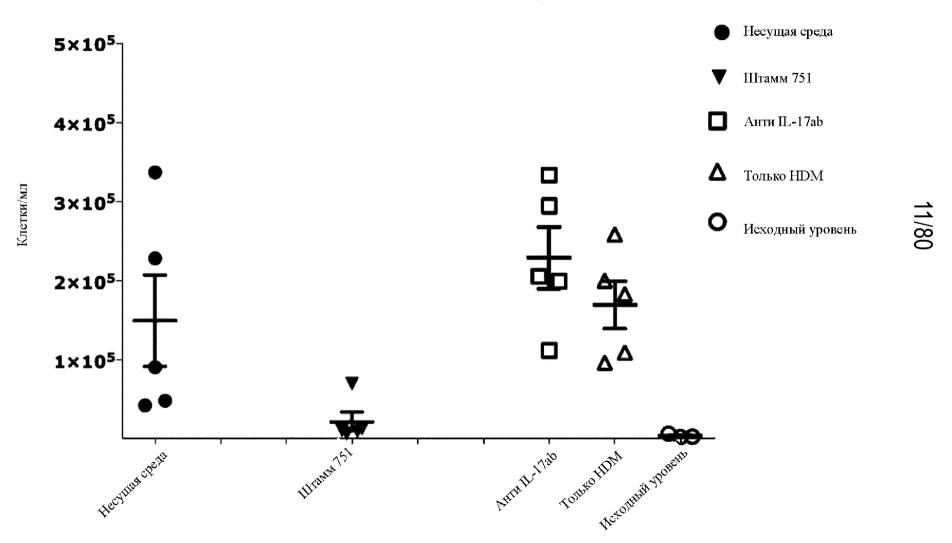


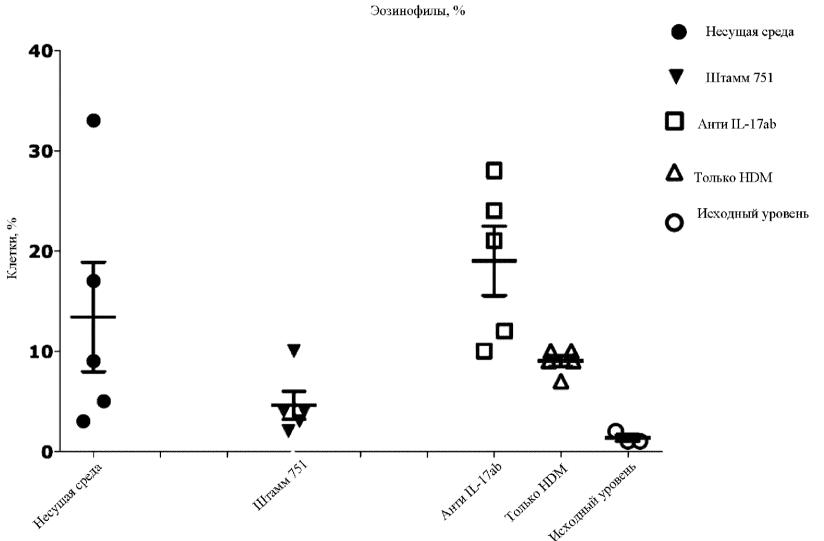

Фиг. 6



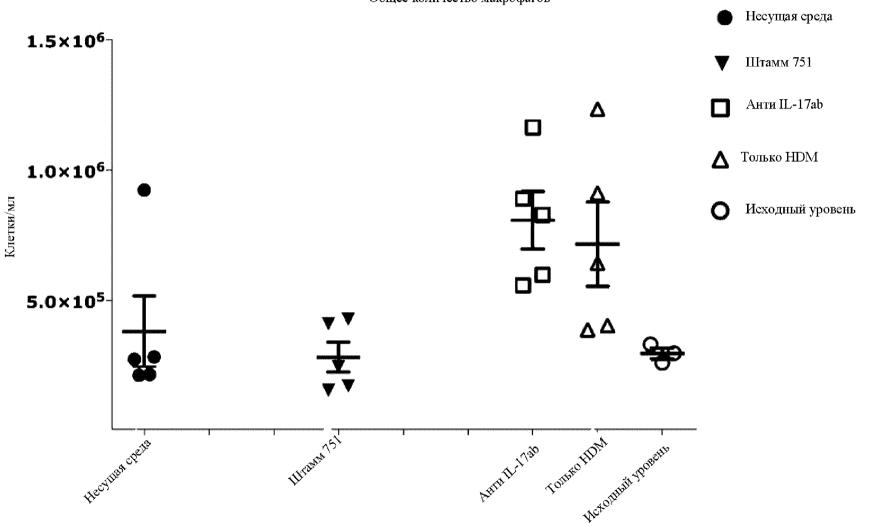

Фиг. 8

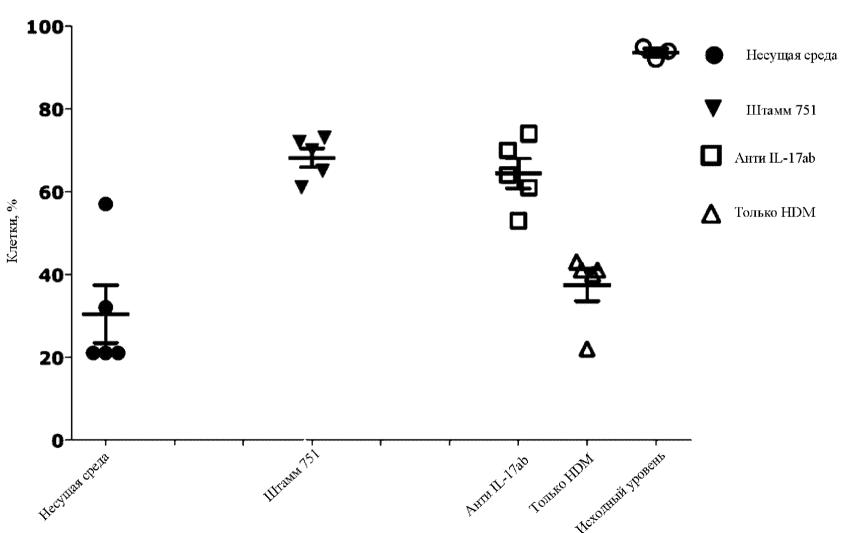
Фиг. 9 Лимфоциты, %

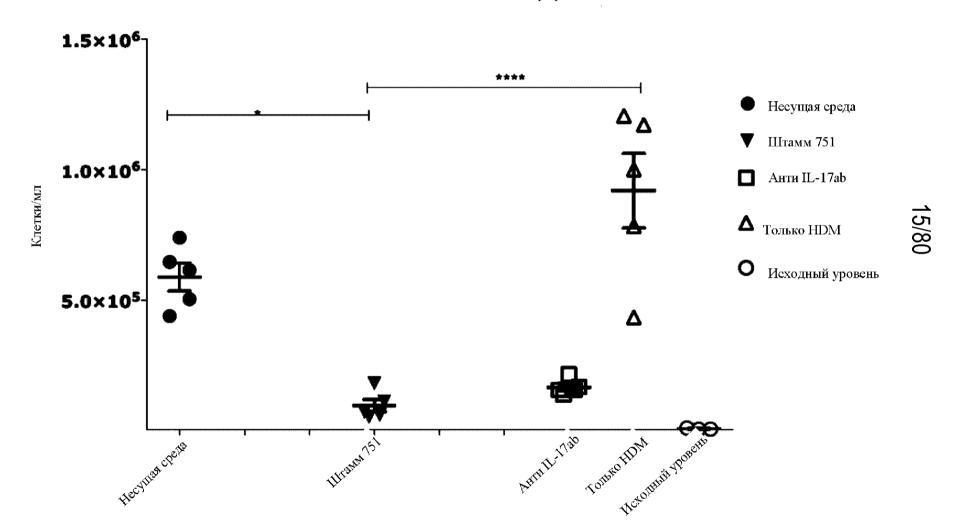


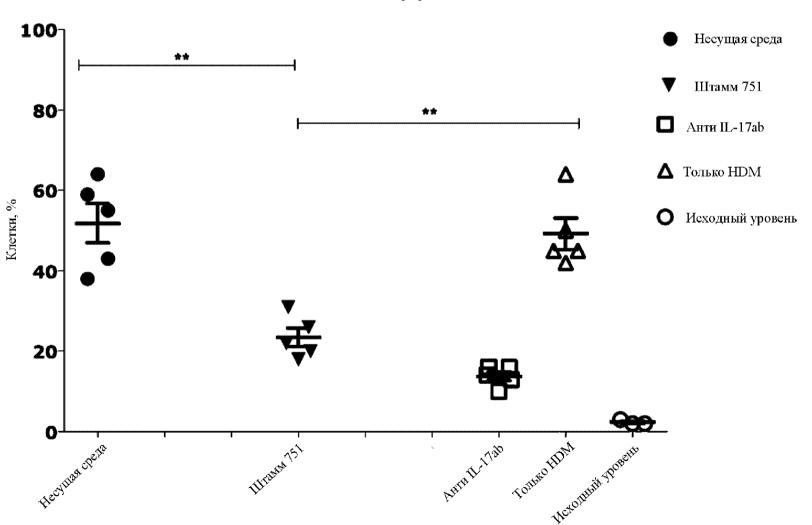


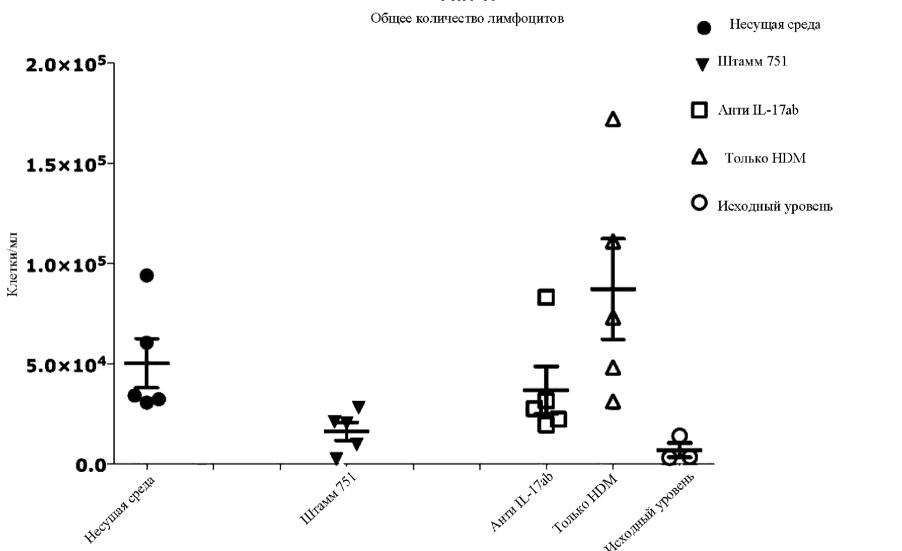
Фиг. 10

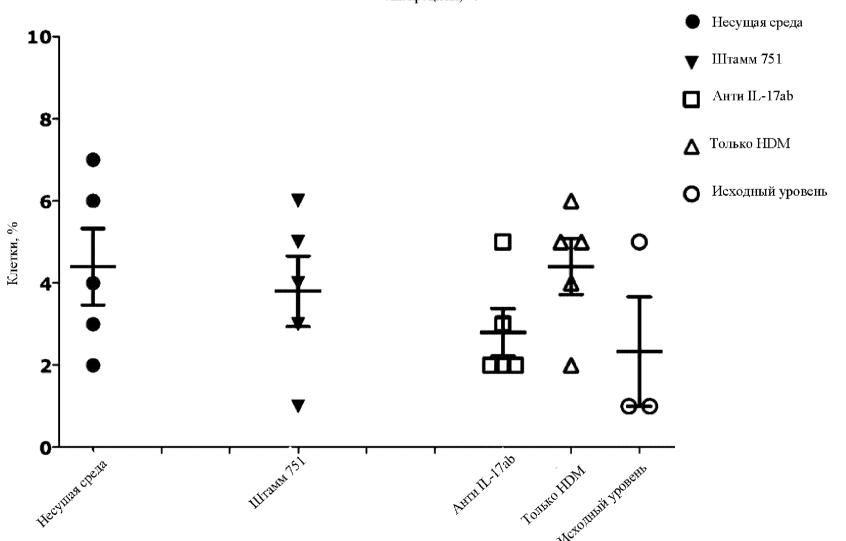

Фиг. 11 Общее количество эозинофилов

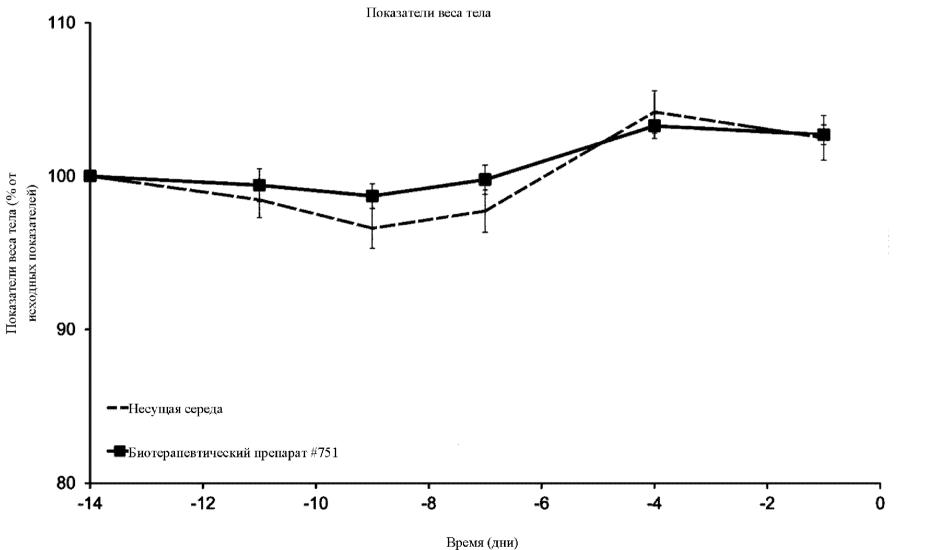

Фиг. 12


Фиг. 13 Общее количество макрофагов

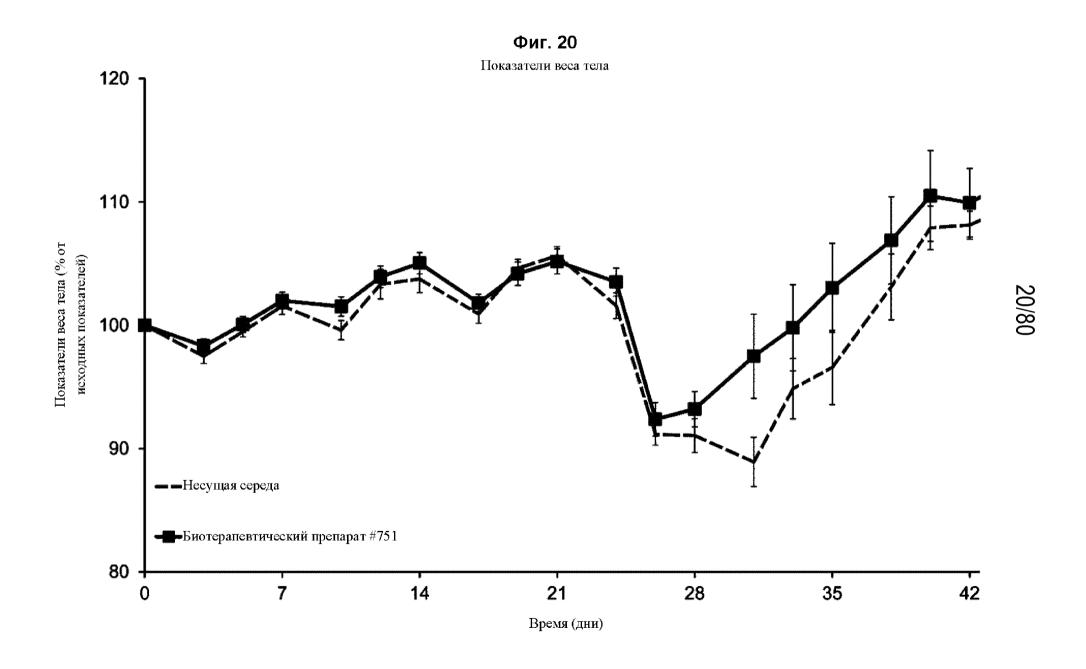

Фиг. 14 Макрофаги, %


Фиг. 15 Общее количество нейтрофилов

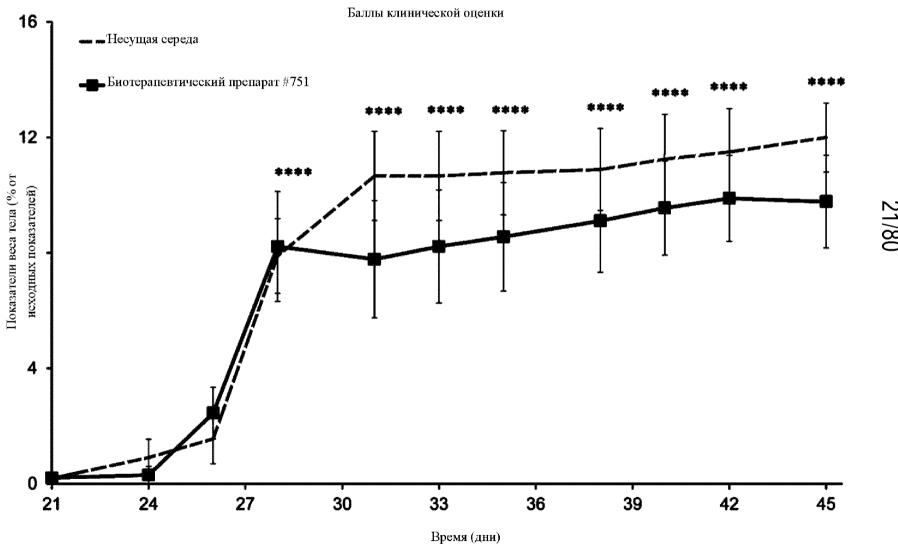

Фиг. 16 Нейтрофилы, %



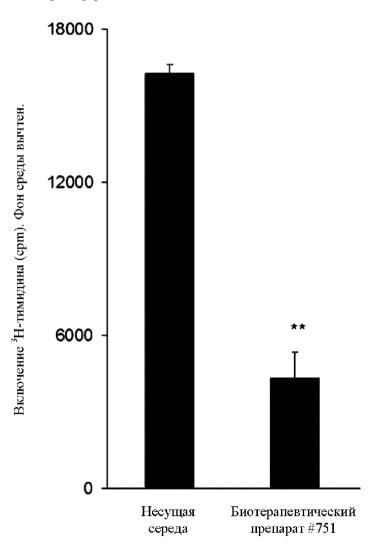
Фиг. 17

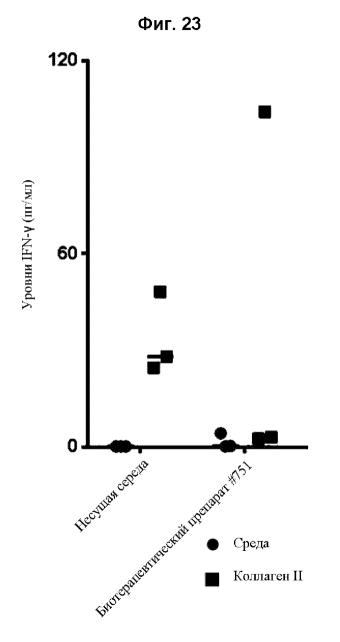


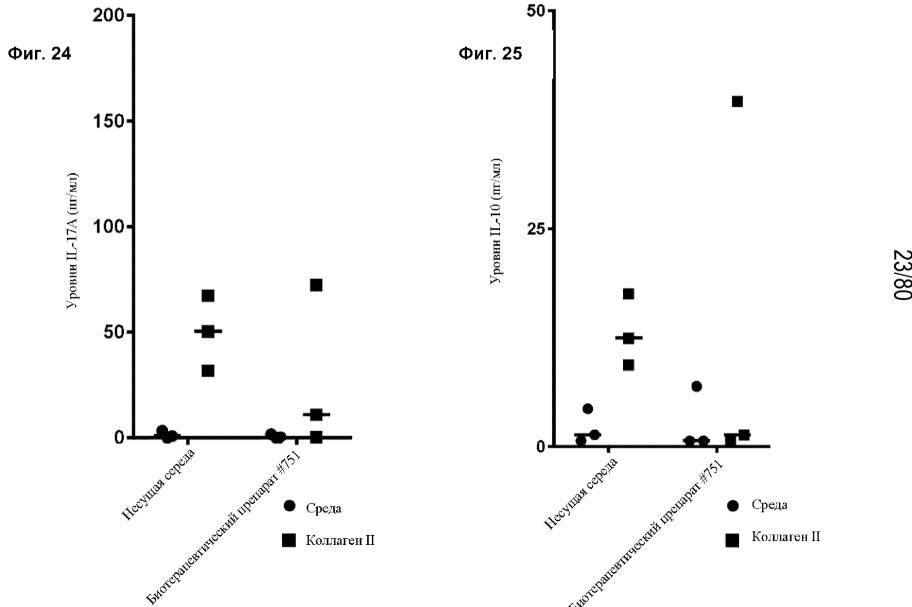
Фиг. 18 Лимфоциты, %

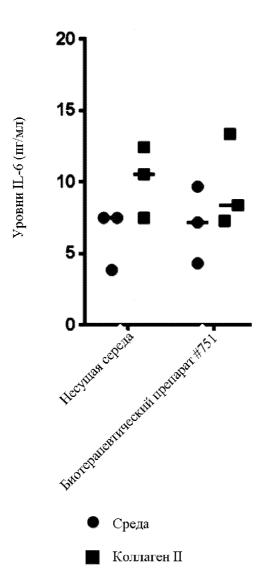


Фиг. 19




Фиг. 21


Фиг. 22



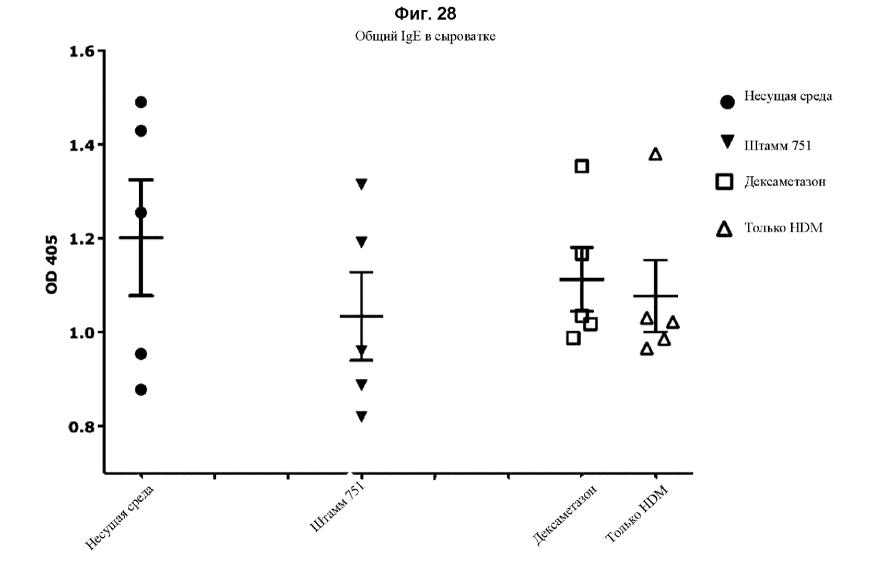
Фиг. 26

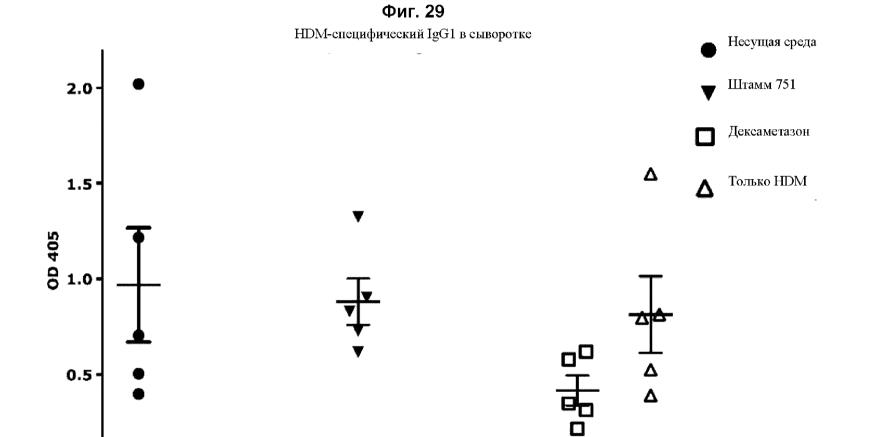
Фиг. 27

Система балльной оценки гистопатологии

Воспаление

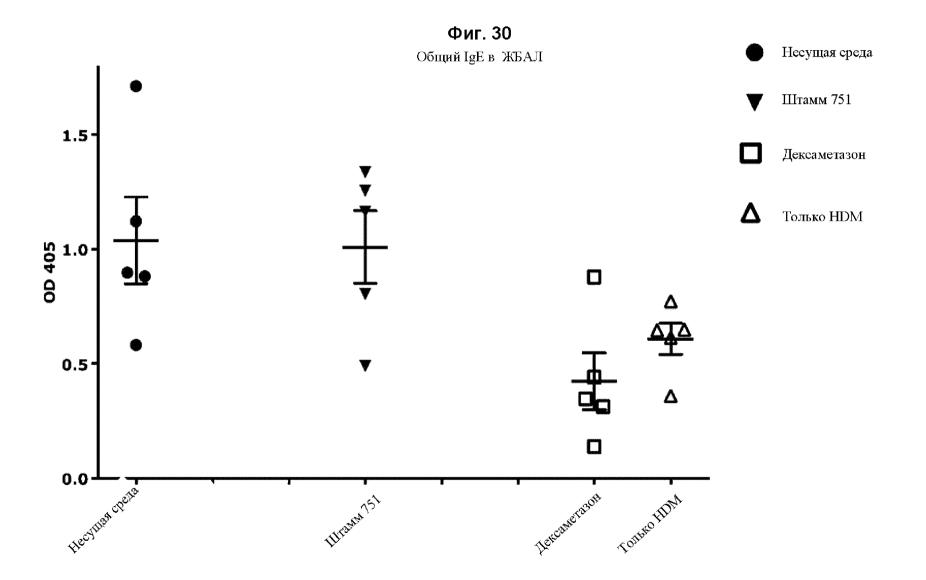
0 Нормальный сустав

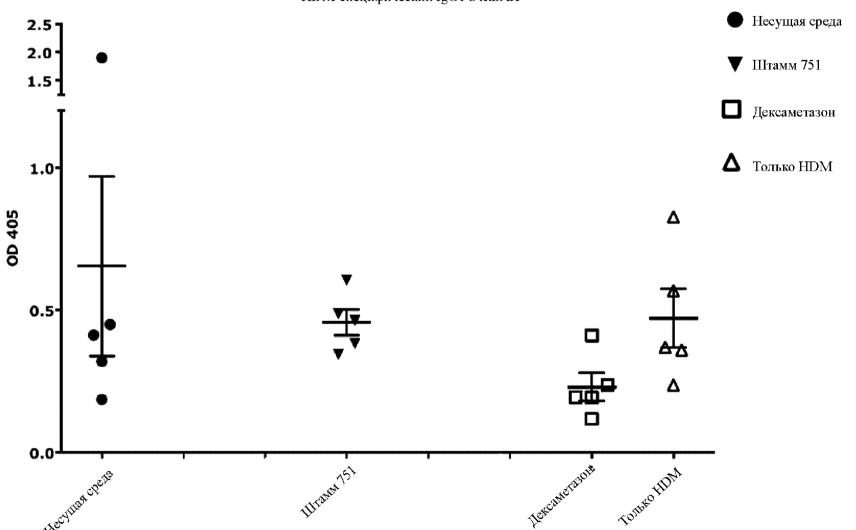

- 1 Легкая синовиальная гиперплазия с воспалением, при котором доминируют нейтрофилы. Низкое количество нейтрофилов и макрофагов в суставной щели.
- 2 Синовиальная гиперплазия с умеренно выраженным воспалением, включающим как нейтрофилы, так и макрофаги. Нейтрофилы и макрофаги в суставной щели; может быть незначительное количество некротического тканевого дебриса.
- 3 Синовиальная гиперплазия с выраженным воспалением, включающим как нейтрофилы, так и макрофаги. Потеря синовиоцитной выстилки. Воспаление может распространяться от синовиальной оболочки на окружающие ткани, включая мышцы. Большое количество нейтрофилов и макрофагов в суставной щели в сочетании со значительным количеством некротического тканевого дебриса.


Поражение суставного хряща

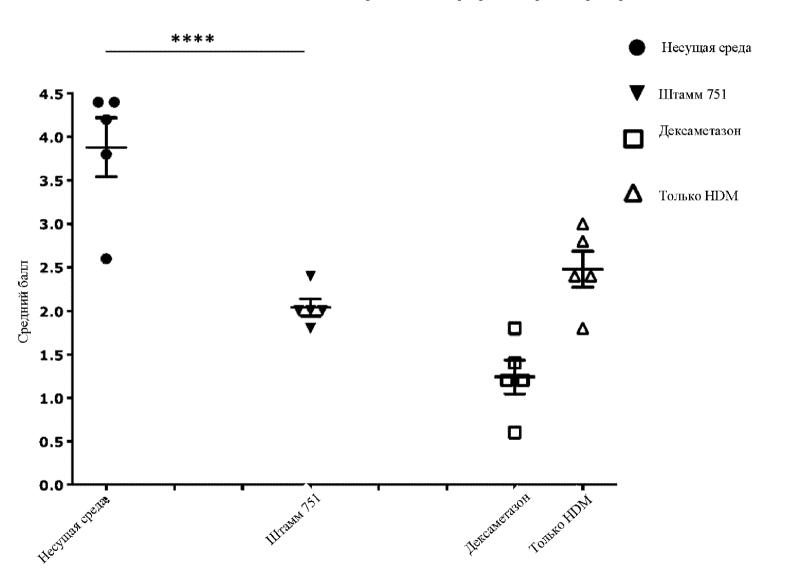
- 0 Нормальный сустав
- 1 В суставном хряще отмечаются только легкие дегенеративные изменения. Периферически может наблюдаться раннее образование паннуса.
- 2 В суставном хряще отмечаются умеренные дегенеративные изменения и потеря фокальных масс. Фокально наблюдается образование паннуса.
- Значительное разрушение и потеря суставного хряща с общирным образованием паннуса.

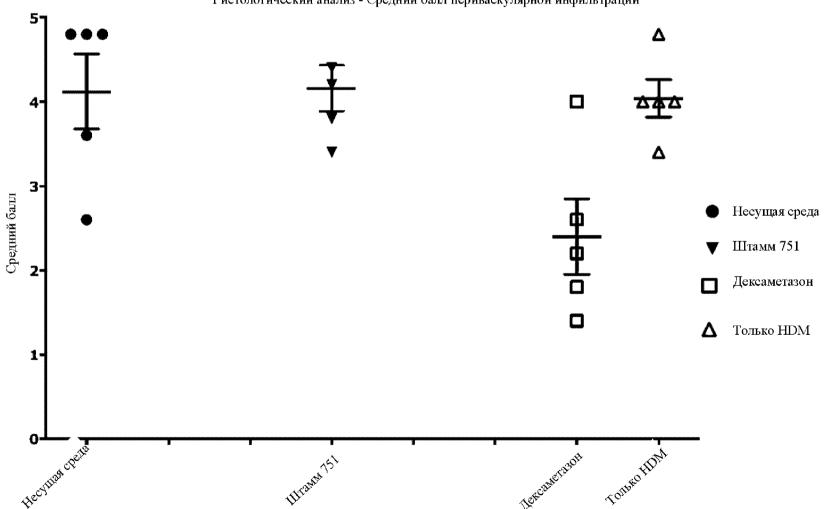
Поражение подлежащей метафизарной кости

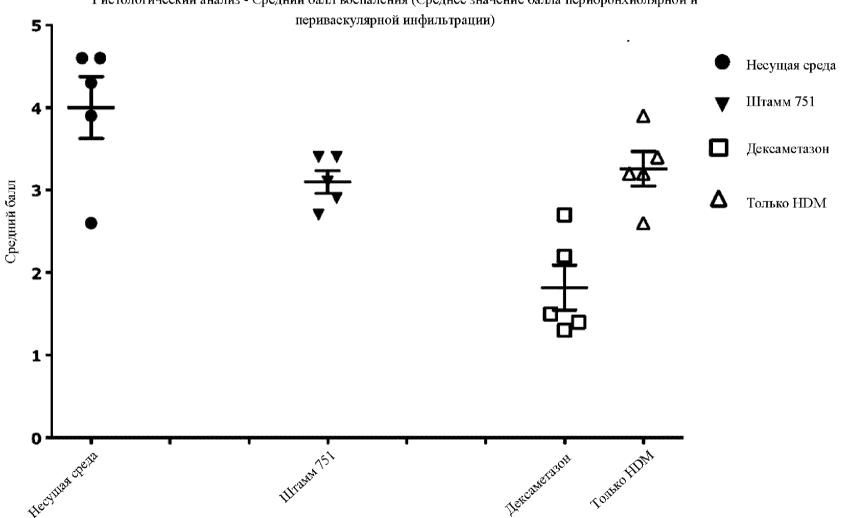

- 0 Нормальный сустав
- 1 Без изменений в подлежащей метафизарной кости.
- 2 Может отмечаться фокальный некроз или фиброз метафизарной кости
- 3 Деструкция или разрушение метафизарной кости. Общирное воспаление, некроз или фиброз, простирающийся до медуллярного пространства метафиза.

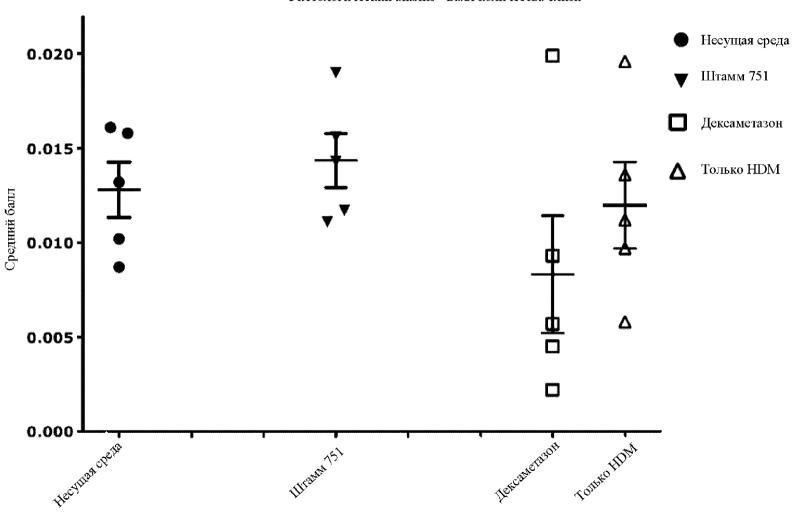


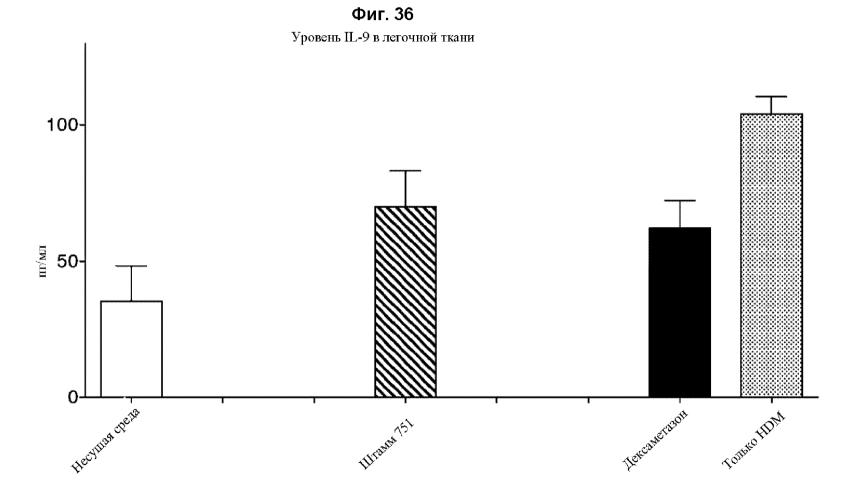
O.O Heerylian especia



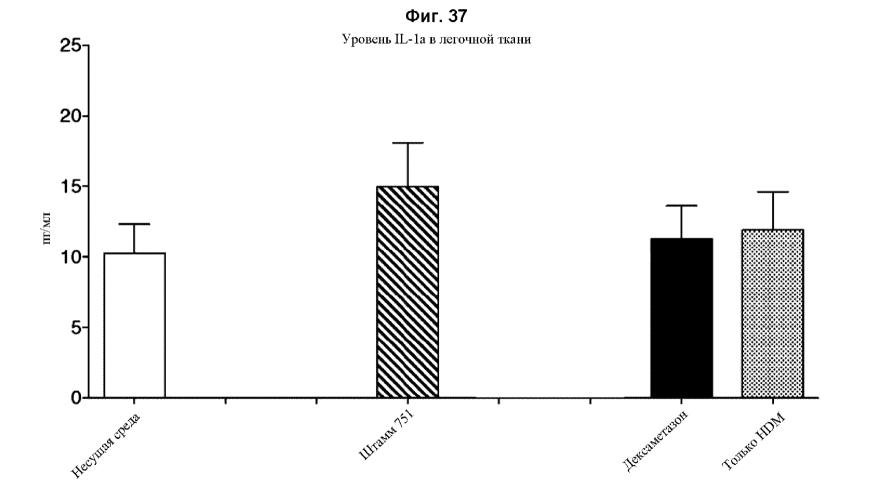

Фиг. 31 HDM-специфический IgG1 в ЖБАЛ


Фиг. 32 Гистологический анализ - Средний балл перибронхиолярной инфильтрации

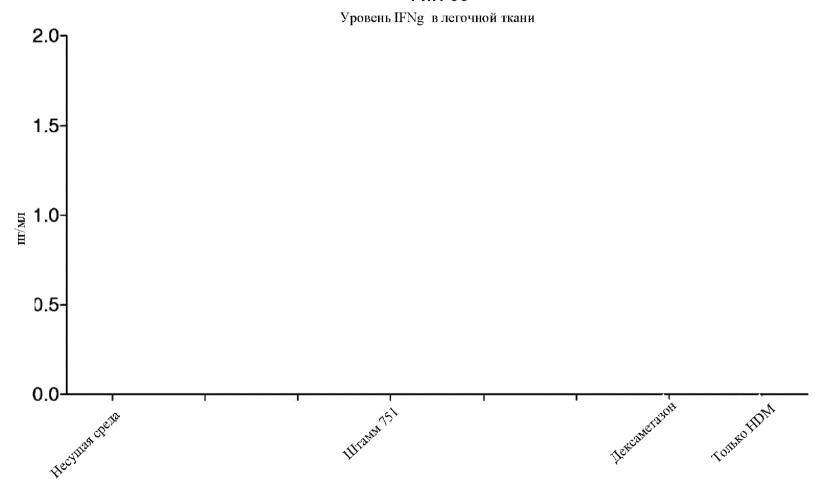

Фиг. 33
Гистологический анализ - Средний балл периваскулярной инфильтрации

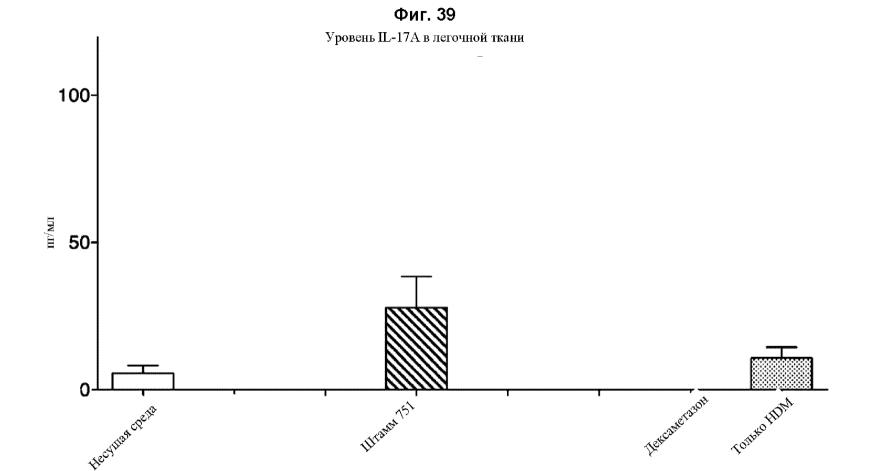


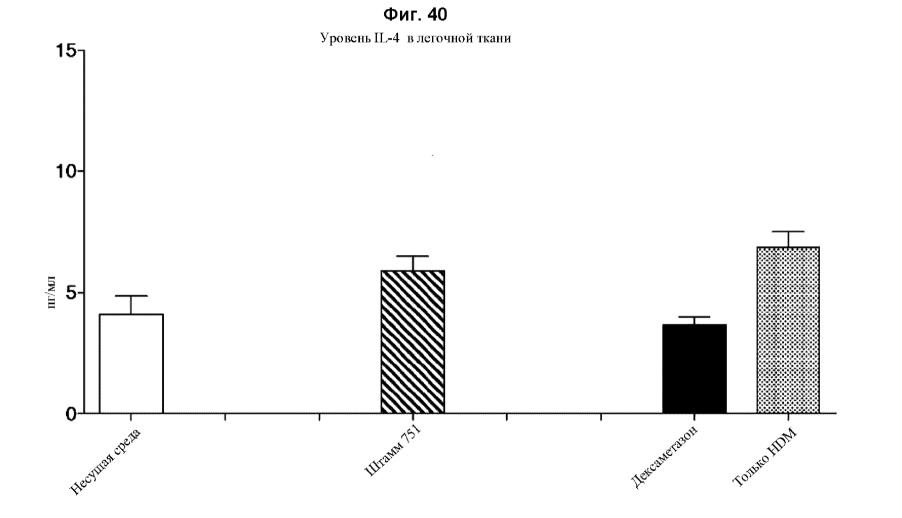
Фиг. 34
Гистологический анализ - Средний балл воспаления (Среднее значение балла перибронхиолярной и периваскулярной инфильтрации)

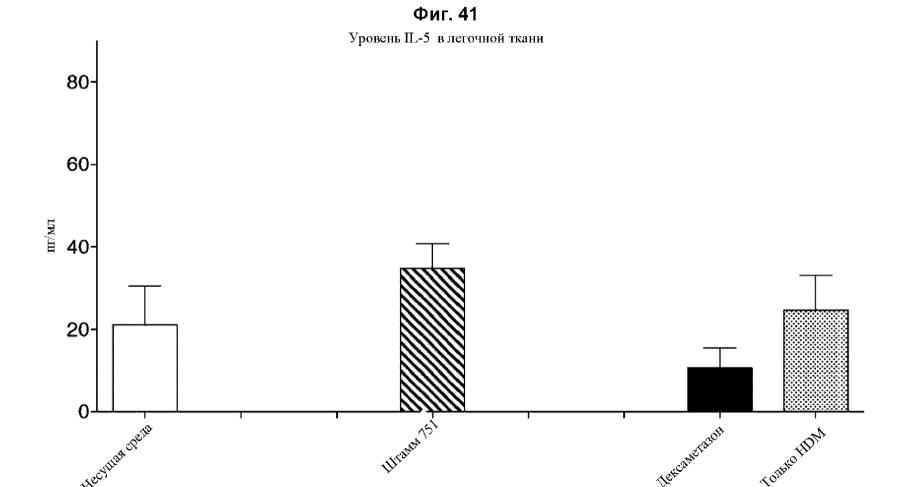


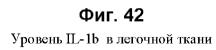
Фиг. 35
Гистологический анализ - Балл количества слизи

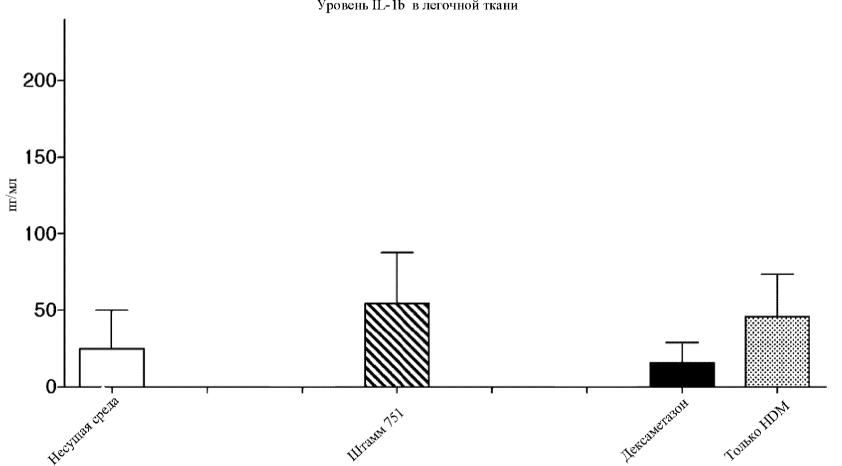


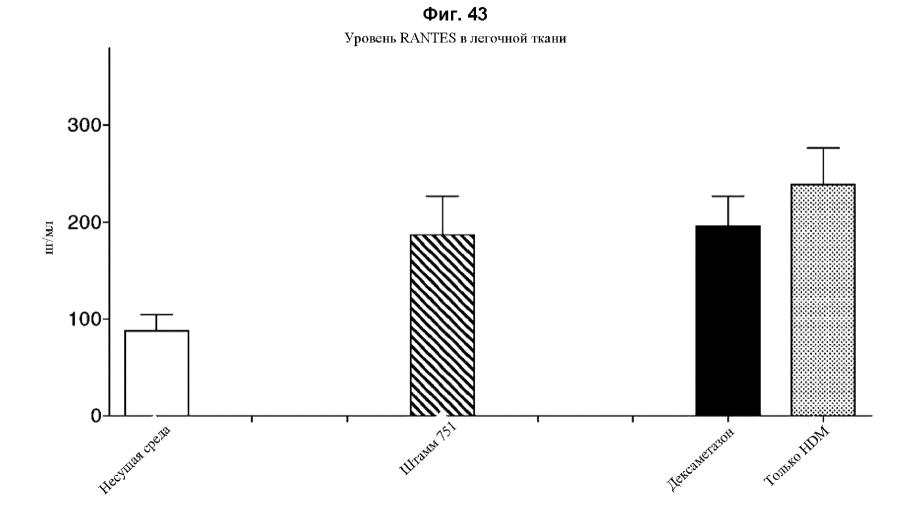


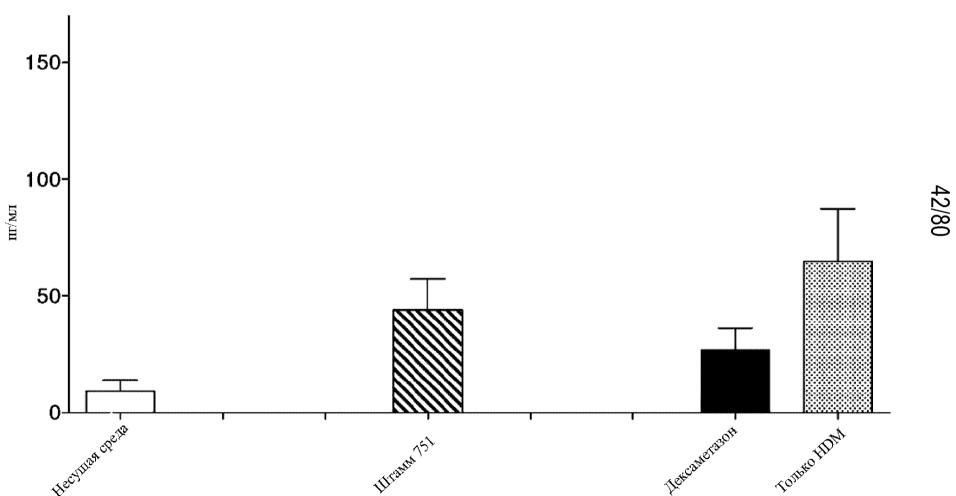


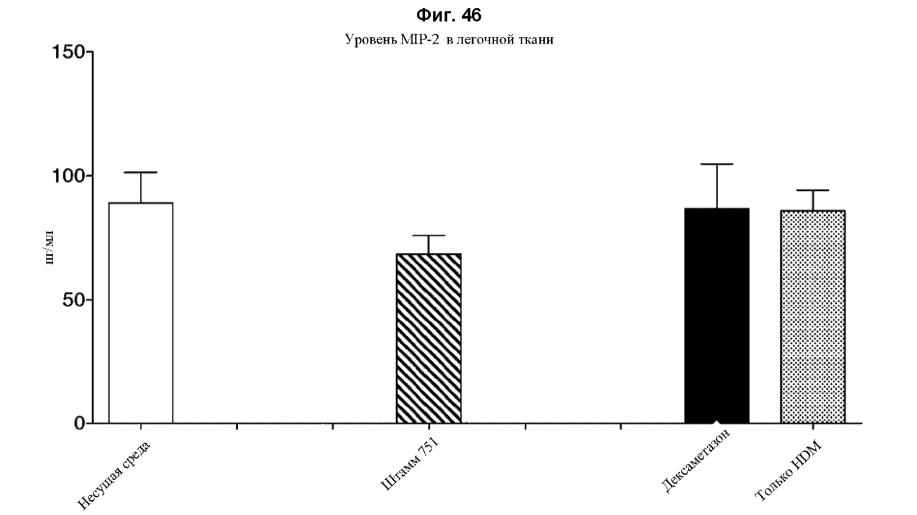


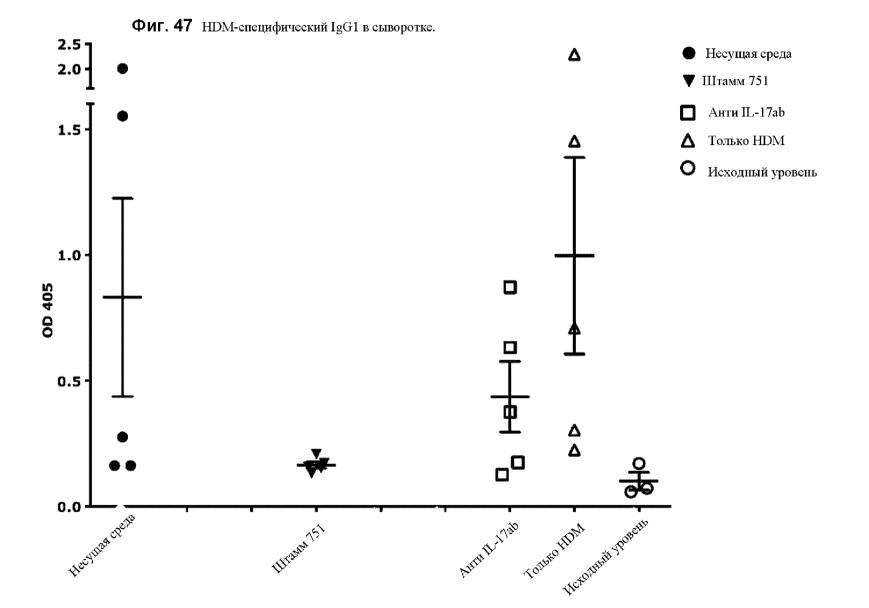


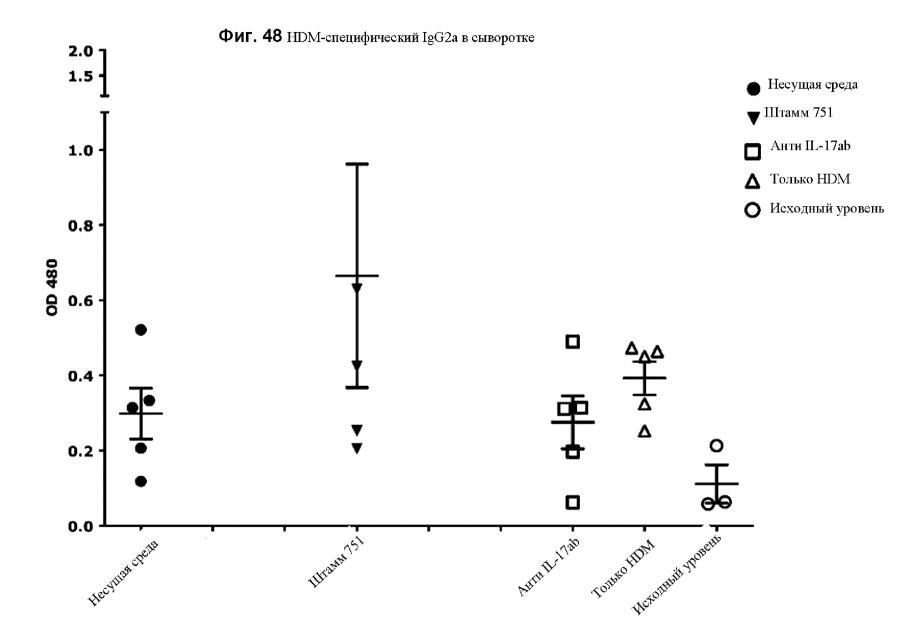


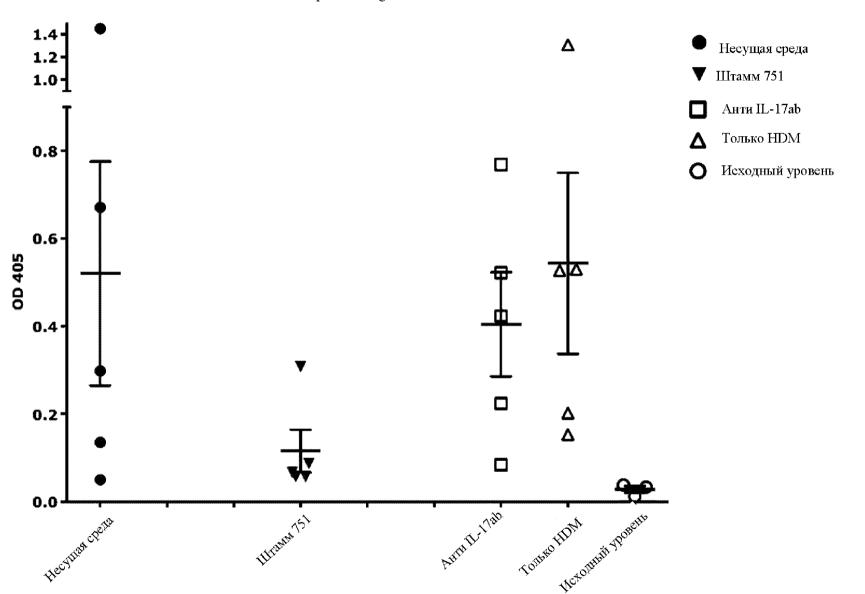


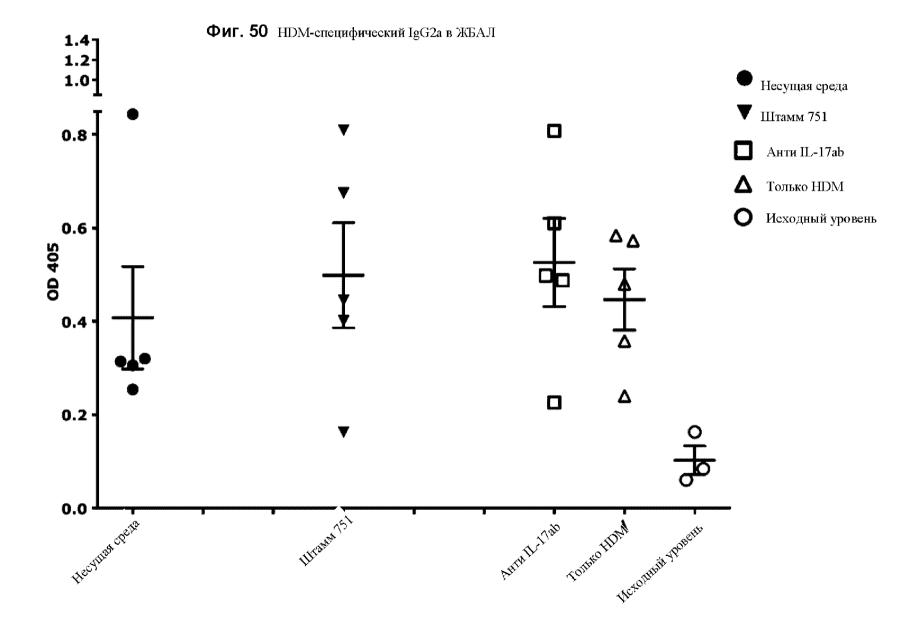


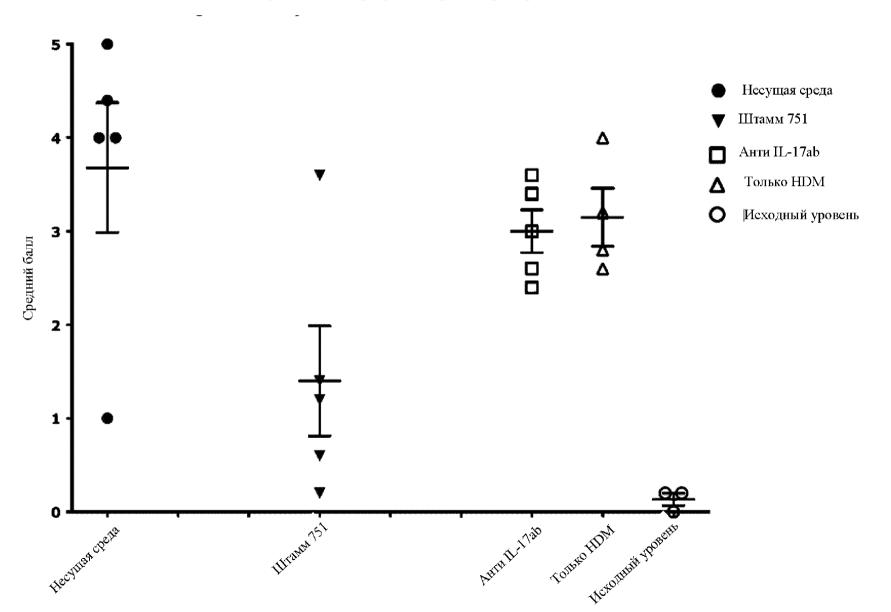




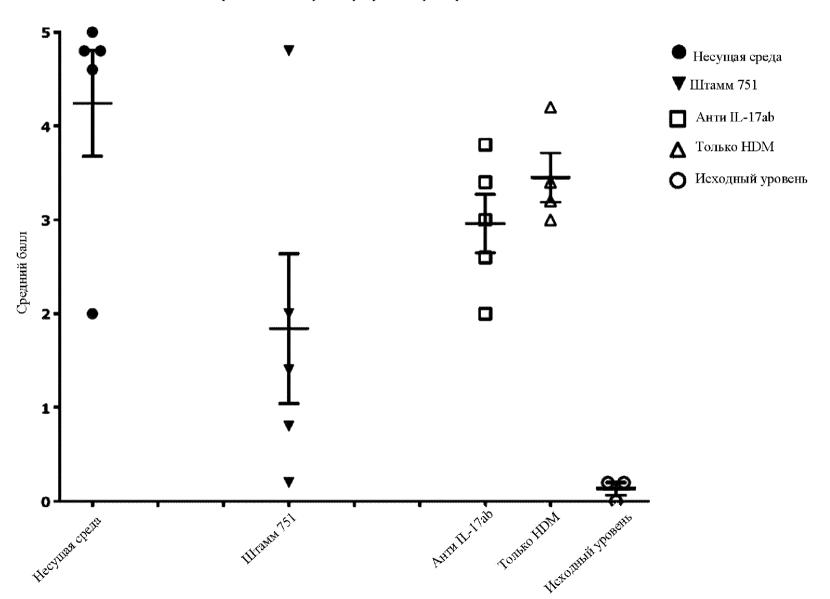

Фиг. 44 Уровень МІР-1а в легочной ткани



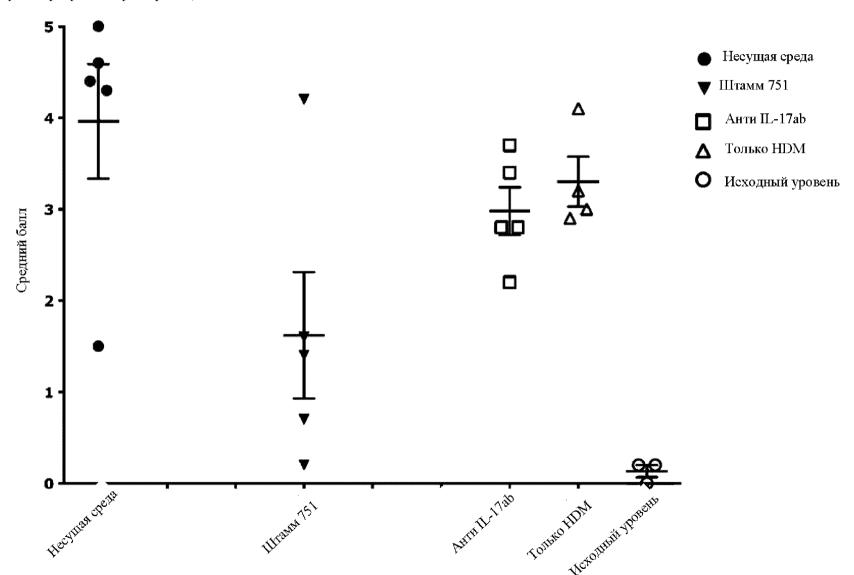




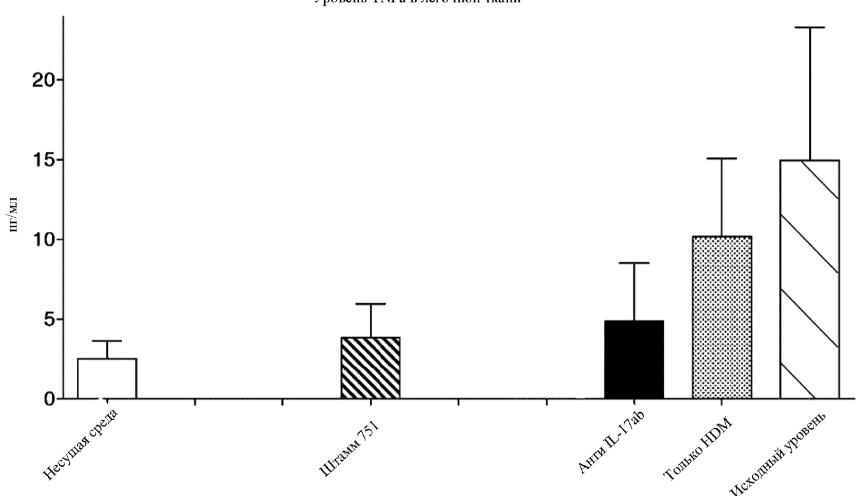
Фиг. 49 HDM-специфический IgG1 в ЖБАЛ



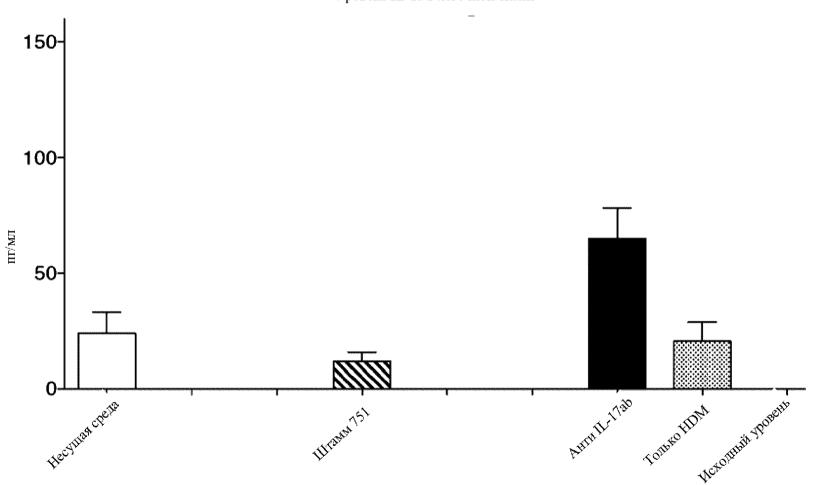
Фиг. 51 Гистологический анализ - Средний балл перибронхиолярной инфильтрации



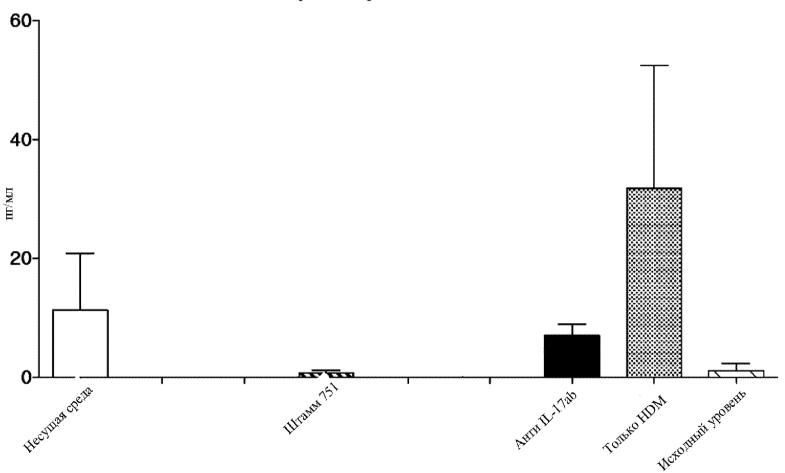
Фиг. 52 Гистологический анализ - Средний балл периваскулярной инфильтрации


51/8C

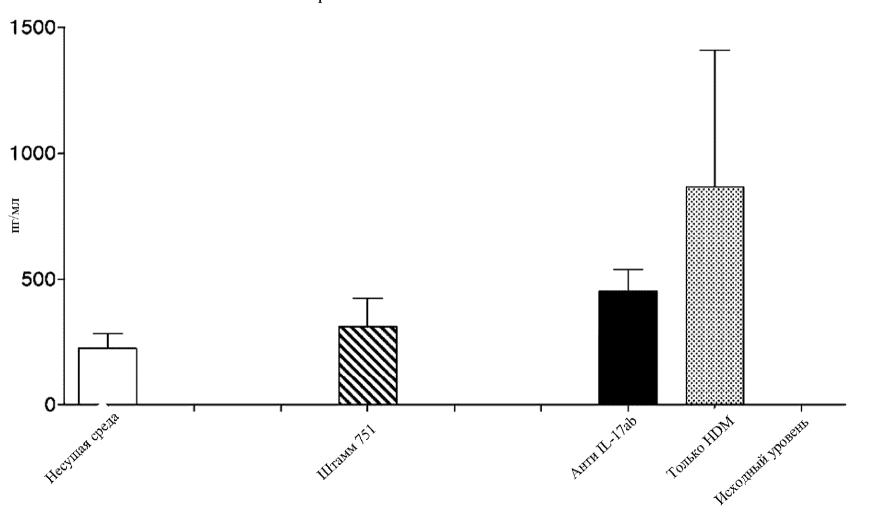
Фиг. 53 Гистологический анализ - Средний балл воспаления (Среднее значение балла перибронхиолярной и периваскулярной инфильтрации)



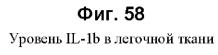
52/80

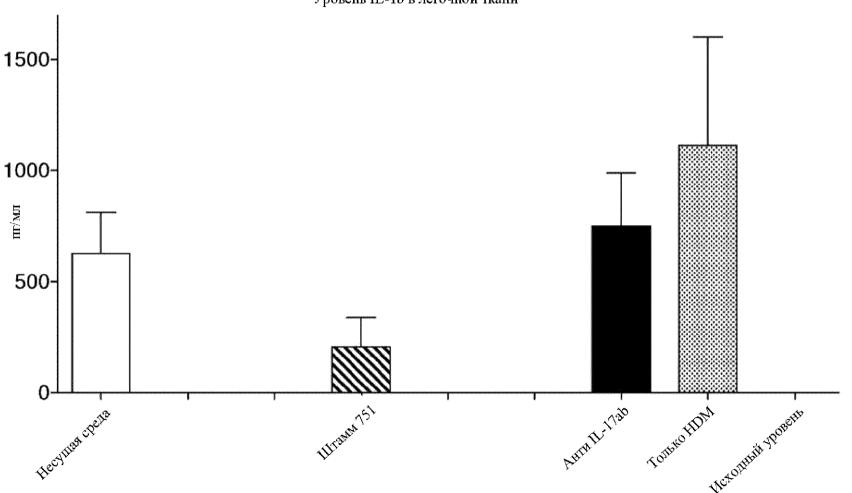

Фиг. 54 Уровень TNFa в легочной ткани

Фиг. 55 Уровень IL-1а в легочной ткани

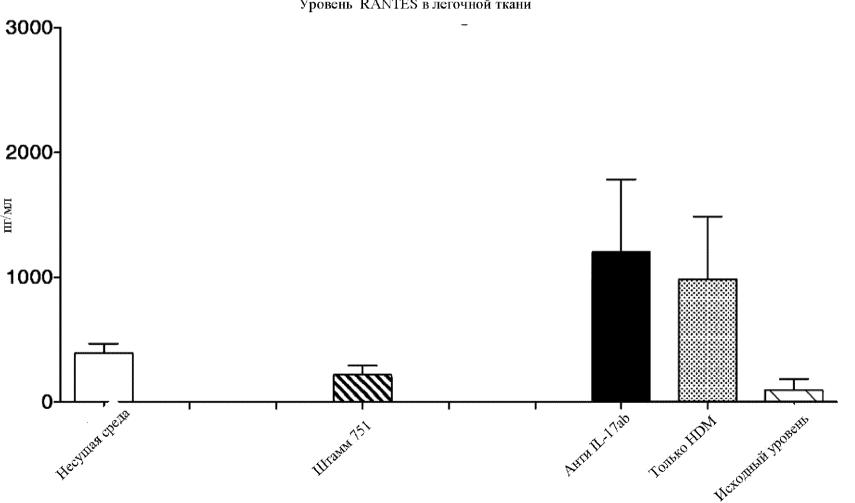


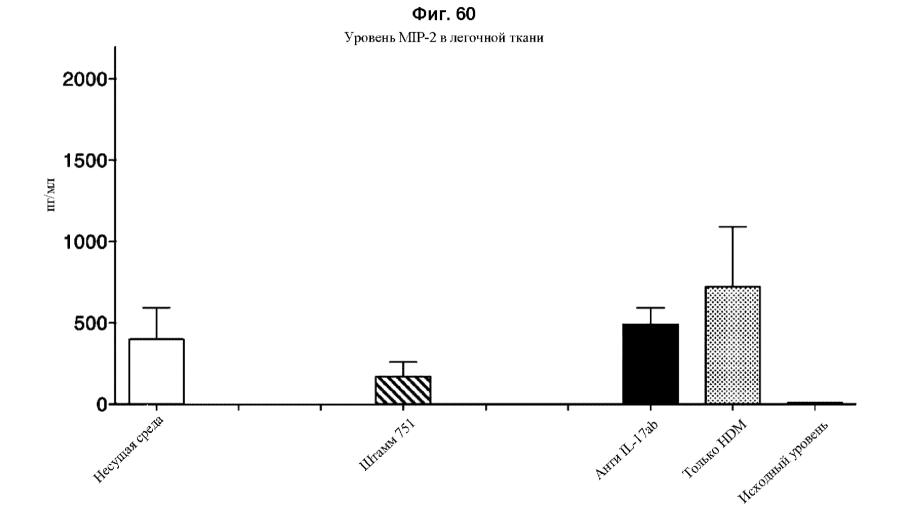
Фиг. 56 Уровень IFNg в легочной ткани

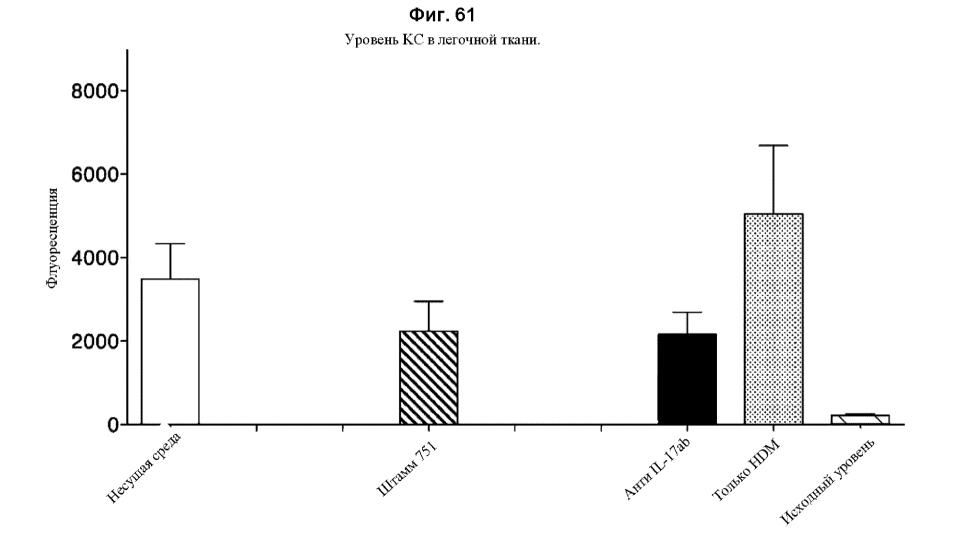


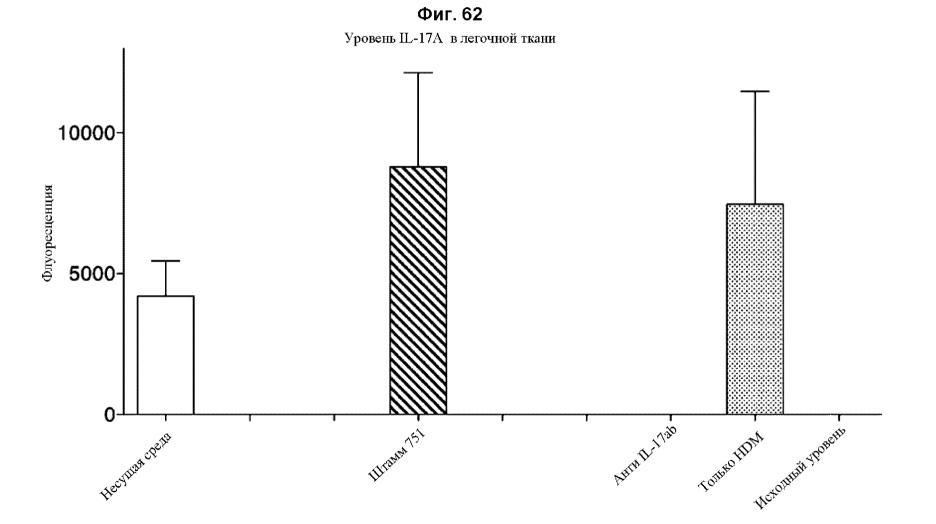

55/80

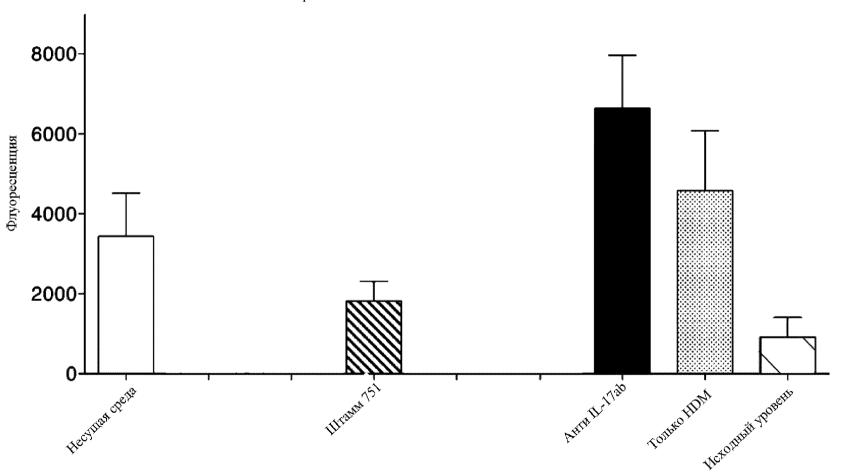
Фиг. **57** Уровень IL-17F в легочной ткани

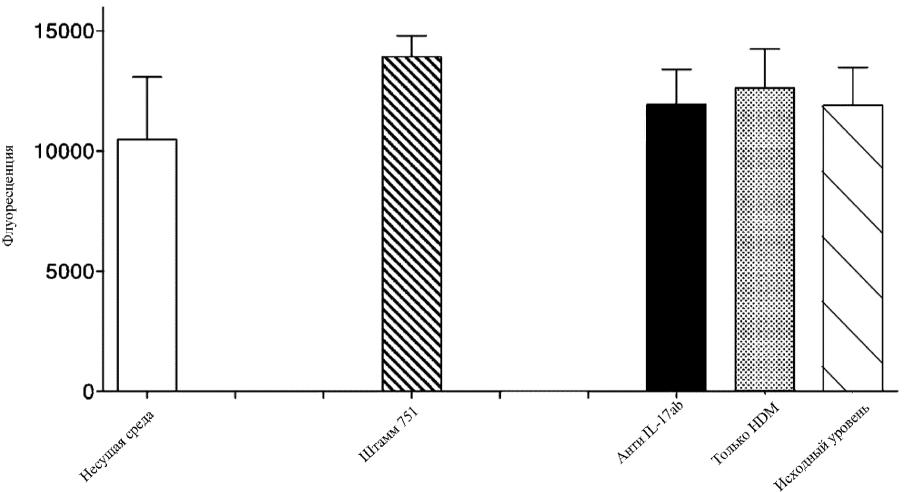



56/80

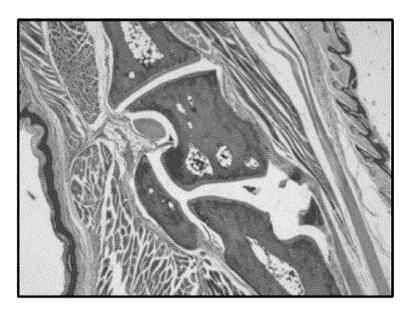






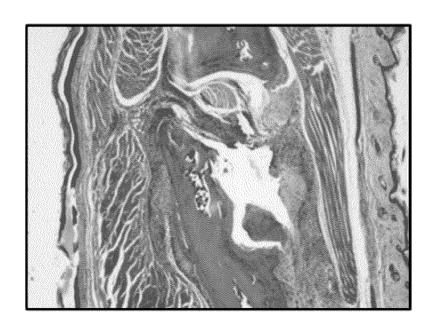

61/80

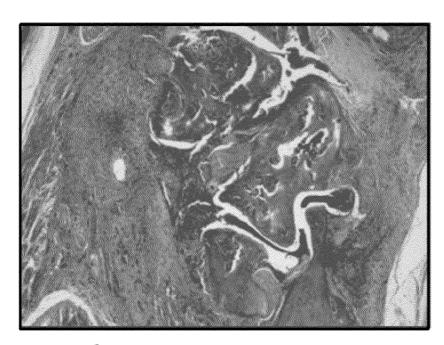
Фиг.63 Уровень MIP-1а в легочной ткани



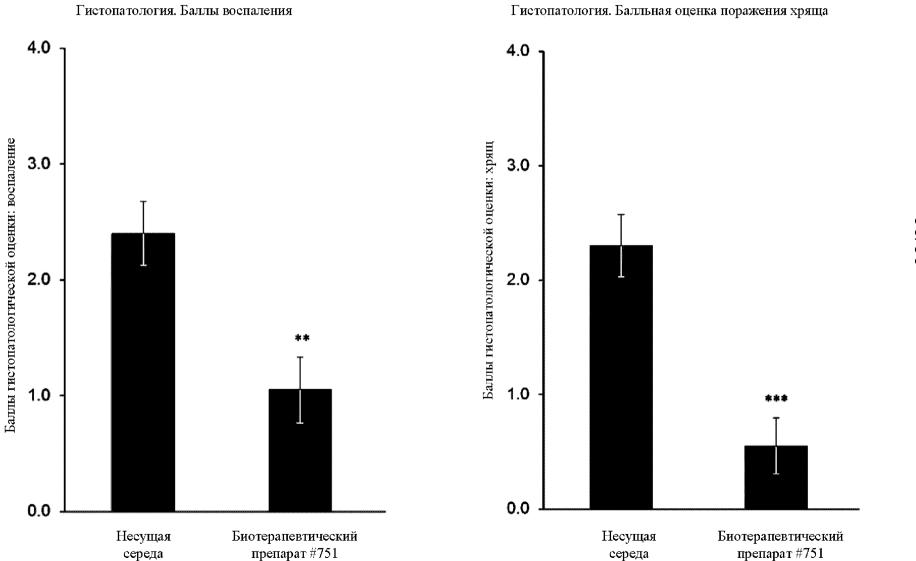
62/80

Фиг. 64 Уровень IL-33 в легочной ткани

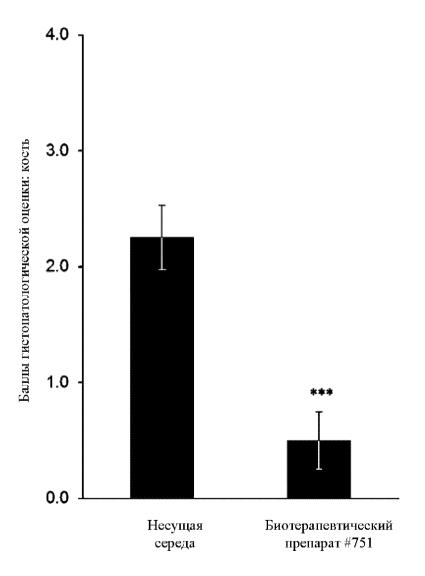

Фиг. 65
Визуальный шаблон для балльной оценки гистопатологии

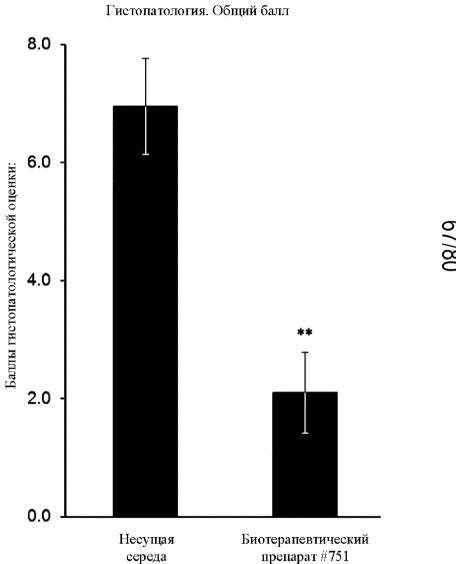

Степень 1

Фиг. 65 (продолжение)

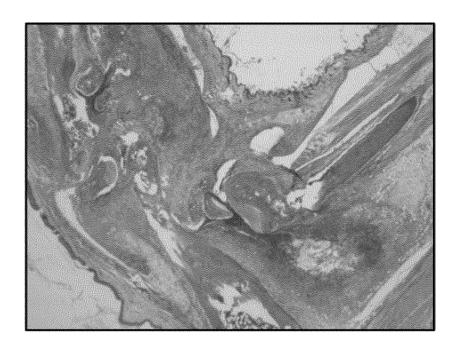

Степень 7

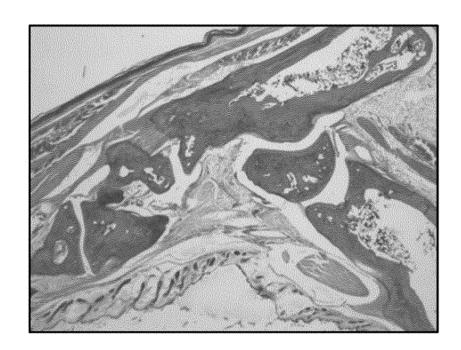
Степень 9


Фиг. 65 (продолжение)

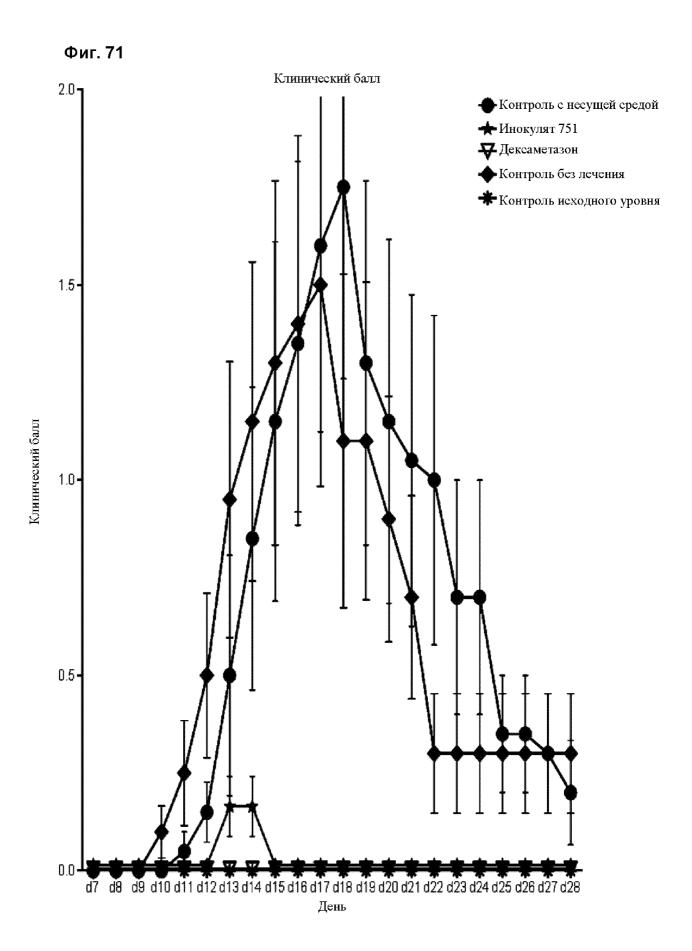

Фиг. 66 Фиг. 67

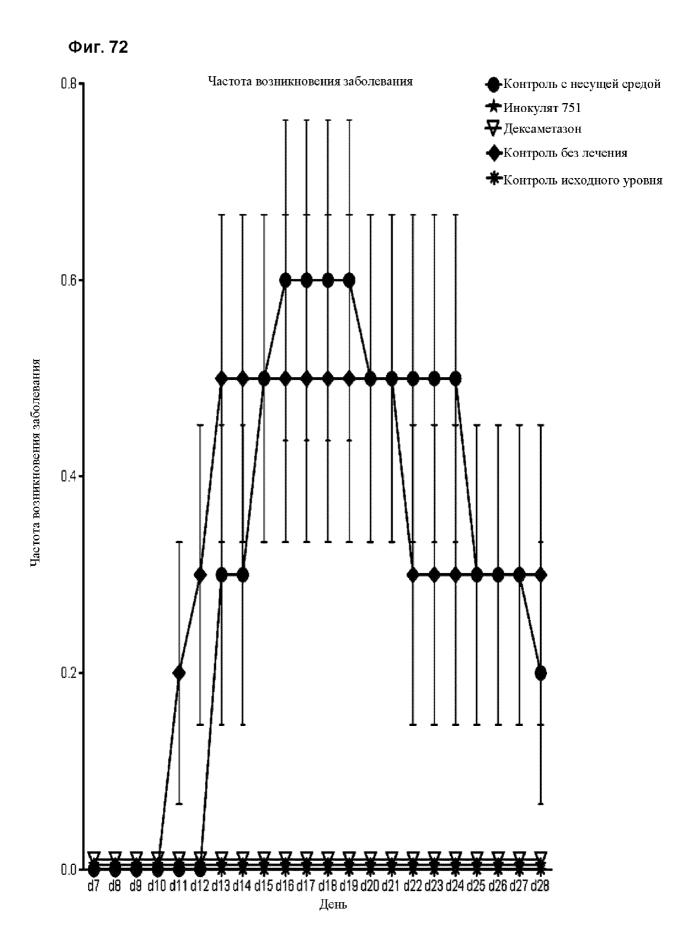
Гистопатология. Балльная оценка поражения кости


Фиг. 68

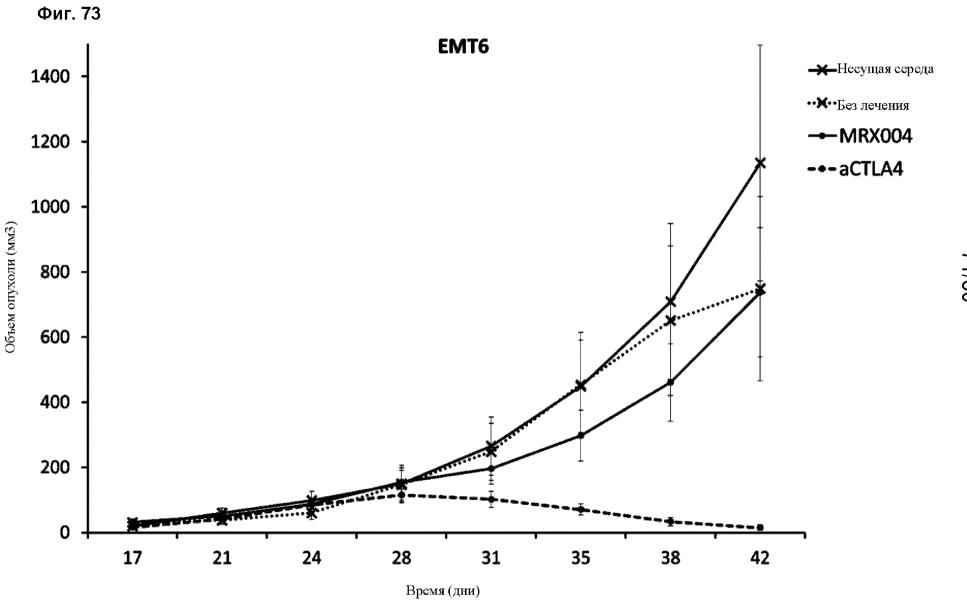


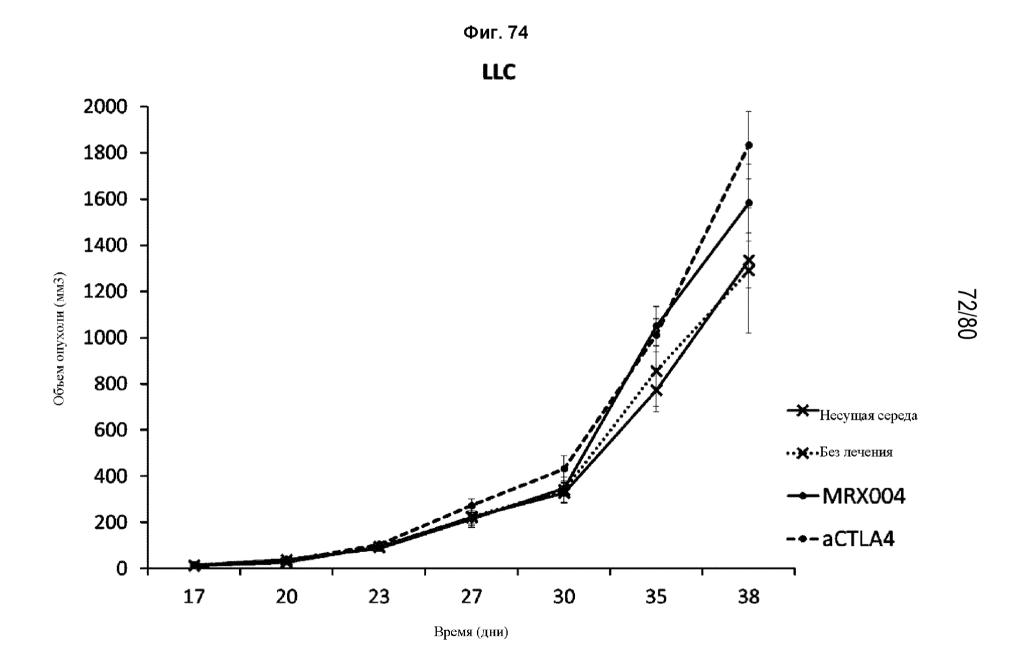
Фиг. 69

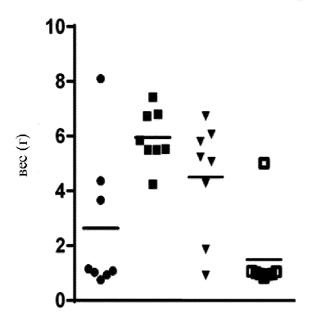

Фиг. 70

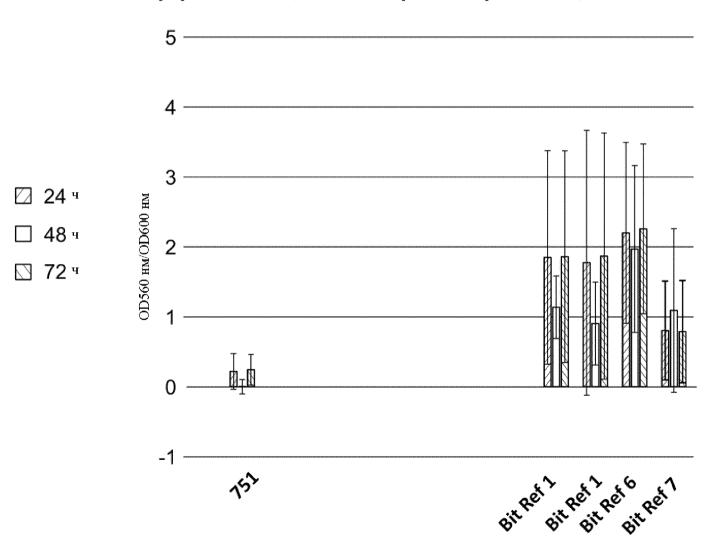


Несущая середа (#1.1 1R, степень 9)

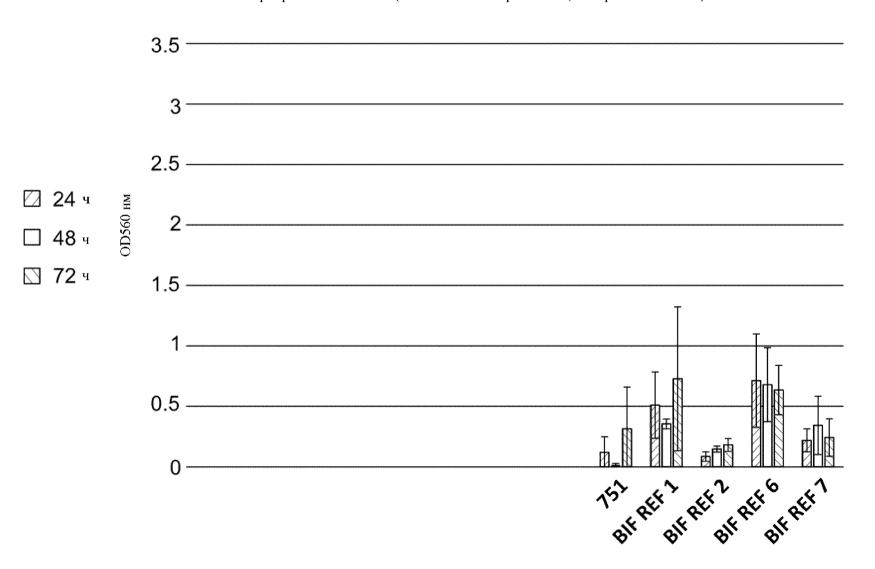



Штамм #751 (#2.7R, степень 0)

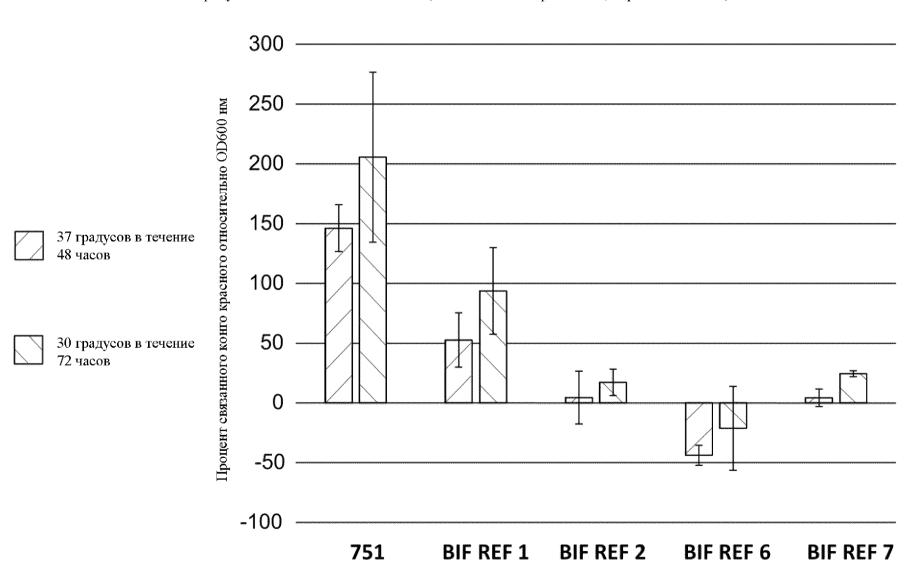



Фиг. 75

Вес печени при эвтаназии (г)

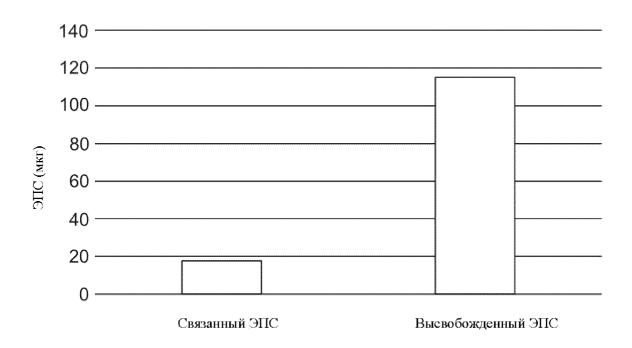

- Г1 Без лечения
- Г2 Носитель (несущая среда) п/о 1 р/сут х 42
- ▼ Г4 Бактериальный штамм #2 (MRX004) 2 x 10 бактерий п/о 1 р/сут x 42
- Г7 Анти-СТLА-4 10 мг/кг в/бр 2 р/нед х 2

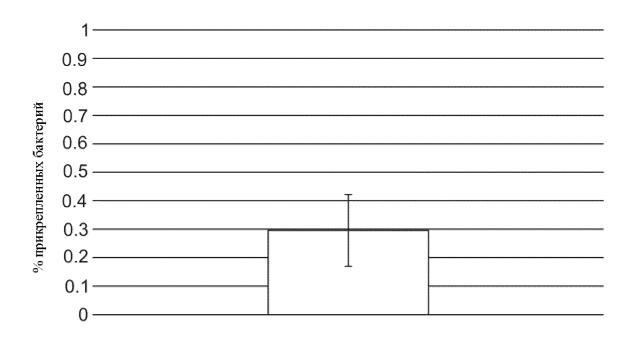
Фиг. 76 Прикрепление к клеткам человека Прикрепление в YCFA (2 биологических репликата, нормализованные)



Фиг. 76 (продолжение) Прикрепление к клеткам человека

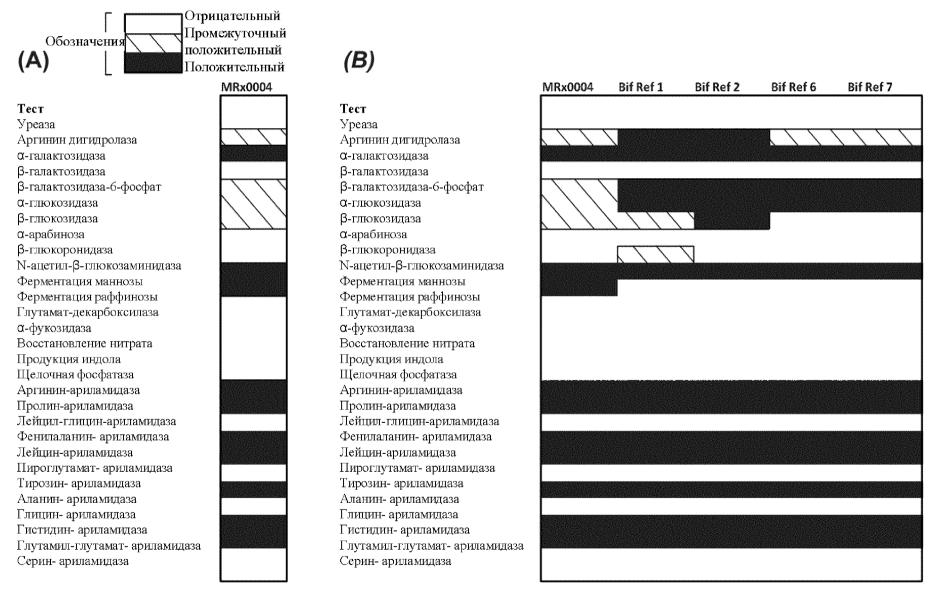
Прикрепление в YCFA (2 биологических репликата, ненормализованные)


Фиг. 77 Продукция связанного ЭПС Продукция связанного ЭПС в YCFA (2 биологических репликата, нормализованные)


Фиг. 77 (продолжение) Продукция связанного ЭПС

Продукция связанного ЭПС в YCFA (2 биологических репликата, ненормализованные) 100 80 Процент связанного красителя 37 градусов в течение 48 часов 60 40 30 градусов в течение 72 часов 20 -20 **751 BIF REF 1** BIF REF 2 **BIF REF 6** BIF REF 7

Фиг. 78 Продукция связанных и высвобожденных экзополисахаридов посредством MRX004



Фиг. 79 Прикрепление MRX004 к клеткам Caco-2

/9/

Фиг. 80 Профиль MRX004 по сравнению со штаммами типа Bifidobacterium Breve при применении тест-системы Rapid ID 32A

80/80

Фиг. 81 Анализ MRX004 с применением тест-системы API® 50 CH

Ψι	иг. от Анализ	в МКД004 с применением тес	ст-системы АРІ® 50 СН
Тест	Результат	Тест	Результат
Глицерол Эритритол		Салицин D-целлобиоза	Отрицательный Промежуточный Положительный
D-арабиноза	Y//J	D-мальтоза	чения Сомнительный
L- арабиноза		D-лактоза	
D-рибоза		D-мелибиоза	
D-ксилоза -	$1//\lambda$	D-сахароза (цукроза)	
L- ксилоза	1 ///	D-трехалоза	
D-адонитол	Y//	Инулин	\leftarrow
Метил - β-D-ксилопиранозид		D-мелезитоза	
D-галактоза		D-раффиноза	
D-глюкоза		Амидон (крахмал)	
D-фруктоза		Гликоген	
D-манноза		Ксилитол	
L-сорбоза	Y//J	Гентиобиоза	
L-рамноза	Y//	D-турано за	
Дулцитол	V/A	D-ликсоза	Y / /
Инозитол		D -тагатоза	V/A
D-маннитол		D- фукоза	
D-сорбитол		L-фукоза	
Метил- α- D-маннопиранозид		D-арабитол	V/A
Метил- α- D-глюкопиранозид		L- арабитол	V / /
N-ацетилглюкозамин		Калия глюконат	
Амигдалин		Калия 2-кетоглюконат	[//]
Арбутин		Калия 5-кетоглюконат	
Эскулин			

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(статья 15(3) ЕАПК и правило 42 Патентной инструкции к ΕΑΠΚ)

Номер евразийской заявки:

202191149

A.	КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ:
	u u

см. дополнительный лист

Согласно Международной патентной классификации (МПК)

Б. ОБЛАСТЬ ПОИСКА:

Просмотренная документация (система классификации и индексы МПК) A61K 35/74, 35/745, C12 N1/20, A61P 1/00, 11/06, 19/00, 29/00, 25/28, 35/00

Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, используемые поисковые термины) EAFIATUC, ESPACENET, PUBMED, EMBASE, GOOGLE;

В. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ

Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №
A	WO 2011/110918 Al (PROBIOTICAL SPA et al.) 2011-09-15 реферат, с. 7, 16, 18	1-16
A	WO 2009/072889 Al (NUTRICIA NV et al.) 2009-06-11 реферат, с. 11, формула пп. 1, 2	1-16
A	WO 2011/149335 Al (NUTRICIA NV et al.) 2011-12-01 реферат, с. 8, формула пп.1, 7	1-16
A	US 2010/284973 Al (SCHIFFER-MANNIOUI CECILE et al.) 2010-11-11 реферат, параграфы [0012], [0015], [0020], формула пп.1, 14	1-16
A	WO 2015/021936 Al (UNIV HONG KONG) 2015-02-19 реферат, с. 6, 18	1-16
A	KR 2010 0128168 A (UNIV CHUNG ANG IND et al.) 2013-12-07 реферат	1-16
A	BIN ZHENG et al. Bifidobacterium breve Attenuates Murine Dextran Sodium Sulfate-Induced Colitis and Increases Regulatory T Cell Responses, PLOS ONE, 2014, vol. 9, no. 5, page e95441, DOI: 10.1371/journal.pone.0095441 весь документ	1-16

последующие документы	указаны в продолжении

Дата проведения патентного поиска: 27/09/2022

Уполномоченное лицо:

Заместитель начальника Управления экспертизы Начальник отдела химии и медицины

B. Leyy A.B. Yebah

^{*} Особые категории ссылочных документов:

[«]А» - документ, определяющий общий уровень техники

[«]D» - документ, приведенный в евразийской заявке

[«]Е» - более ранний документ, но опубликованный на дату подачи евразийской заявки или после нее

[«]О» - документ, относящийся к устному раскрытию, экспонированию и т.д.

[&]quot;Р" - документ, опубликованный до даты подачи евразийской заявки, но после даты испрашиваемого приоритета"

[«]Т» - более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения

[«]X» - документ, имеющий наиболее близкое отношение к предмету поиска, порочащий новизну или изобретательский уровень, взятый в отдельности

[«]Y» - документ, имеющий наиболее близкое отношение к предмету поиска, порочащий изобретательский уровень в сочетании с другими документами той же категории

^{«&}amp;» - документ, являющийся патентом-аналогом L» - документ, приведенный в других целях

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(дополнительный лист)

Номер евразийской заявки:

202191149

	ИФИКАЦИЯ ПРЕДМ	ІЕТА ИЗОБРЕ	ТЕНИЯ (продо	лжение графы	A)	
A61K	35/74 (2015.01)		<u>X-1-73-</u>			
	1/20 (2006.01)					
	1/00 (2006.01)					
<i>A61P</i>	11/06 (2006.01)					
	29/00 (2006.01)					
	19/02 (2006.01)					
<i>A61P</i>	25/28 (2006.01)					
	35/00 (2006.01)					
ADIK	35/745 (2015.01)					