Евразийское патентное ведомство

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

Дата публикации заявки: 2022.03.31
Дата подачи заявки: 2014.03.14

КОМПОЗИЦИИ мРНК CFTR И СВЯЗАННЫЕ С НИМИ СПОСОБЫ И ВАРИАНТЫ ПРИМЕНЕНИЯ

<table>
<thead>
<tr>
<th>(31)</th>
<th>61/783,663</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32)</td>
<td>2013.03.14</td>
</tr>
<tr>
<td>(33)</td>
<td>US</td>
</tr>
<tr>
<td>(62)</td>
<td>201591477; 2014.03.14</td>
</tr>
<tr>
<td>(71)</td>
<td>Заявитель: ШИР ХЬЮМАН ДЖЕНЕТИК ТЕРАПИС, ИНК. (US); ЭТРИС ГМБХ (DE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(31)</th>
<th>202190410</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32)</td>
<td>2013.03.14</td>
</tr>
<tr>
<td>(33)</td>
<td>US</td>
</tr>
<tr>
<td>(62)</td>
<td>201591477; 2014.03.14</td>
</tr>
<tr>
<td>(71)</td>
<td>Заявитель: ШИР ХЬЮМАН ДЖЕНЕТИК ТЕРАПИС, ИНК. (US); ЭТРИС ГМБХ (DE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(51)</th>
<th>Int. Cl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C07K 14/705 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>C07K 14/47 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 9/12 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 9/127 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 9/51 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>C12N 15/11 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 31/7105 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 31/7115 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 47/69 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61K 48/00 (2006.01)</td>
<td></td>
</tr>
<tr>
<td>A61P 11/00 (2006.01)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(54)</th>
<th>КОМПОЗИЦИИ мРНК CFTR И СВЯЗАННЫЕ С НИМИ СПОСОБЫ И ВАРИАНТЫ ПРИМЕНЕНИЯ</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(72)</th>
<th>Изобретатель: Хартлейн Майкл, Гилд Брэйдон Чарльз, Дероза Франк (US), Рудольф Карстен, Планк Кристиан (DE), Смит Лианн (US)</th>
</tr>
</thead>
</table>

| (74) | Представитель: Нилова М.И. (RU) |

Предложены материалы, препараты, способы получения и способы доставки мРНК CFTR для индукции экспрессии CFTR, в том числе в легких млекопитающих. Данное изобретение особенно полезно для лечения муковисцидоза.
КОМПОЗИЦИИ мРНК CFTR И СВЯЗАННЫЕ С НИМИ СПОСОБЫ И ВАРИАНТЫ ПРИМЕНЕНИЯ

РОДСТВЕННЫЕ ЗАЯВКИ

УРОВЕНЬ ТЕХНИКИ

[2] Данное изобретение относится к композициям мРНК трансмембранных регулятора муковисцидоза (CFTR), вариантам их использования и способам их создания и применения.

[5] Другой источник трудностей в индукции экспрессии CFTR в легких - это собственно среда легких. Легочный ПАВ показало уменьшение эффективности
трансфекции для катионно-липидных трансфекционных реагентов, таких как липофектамин (DOSPA:DOPE).

[7] Стоит также отметить, что CFTR - это относительно большой ген по сравнению с модельными или репортёрными генами, такими как люцифераза светлячка (FFL). Можно сравнить длинны кодирующей последовательности CFTR дикого типа (SEQ ID NO: 2) и кодирующей последовательности FFL (SEQ ID NO: 7). Разница в длине может влиять на стабильность при нейротических обстоятельствах, а значит и на то, будет ли, и в каких количествах, любая данная доза мРНК производить экспрессию белка. Более того, хотя in vitro синтез мРНК обычно предпочитительней, чем синтез в клетках из-за отсутствия нормальной клеточной мРНК и других компонентов клетки, являющихся нежелательными контаминантами, in vitro синтез мРНК с длинной кодирующей последовательностью, как мРНК CFTR, существенно сложнее осуществлять, чем in vitro синтез мРНК со сравнительно короткой кодирующей последовательностью, как FFL.

которые, как было установлено исследователями, такими как Andreis et al (см. выше), делают композиции мРНК неэффективными, даже если соответствующие композиции ДНК показывали некоторый уровень экспрессии.

[9] Поэтому существует необходимость в улучшенных материалах, препаратах, способах производства и способах доставки мРНК CFTR для индуksiи экспрессии CFTR, в том числе в легких млекопитающих, для лечения муковисцидоза.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[10] Данное изобретение основано, в частности, на разработке препаратов мРНК CFTR, и не природных мРНК CFTR, и методах их введения, которые могут вызвать экспрессию функционального CFTR in vivo. Композиции, способы и варианты использования, согласно настоящему изобретению, могут обеспечивать экспрессию CFTR в легких больших млекопитающих с благоприятным профилем безопасности, подходящим для эффективного лечения муковисцидоза.

[11] Таким образом, в одном аспекте, данное изобретение предусматривает метод получения CFTR in vivo, в частности в легких субъекта (например, млекопитающего), нуждающегося в доставке, путем доставки мРНК, кодирующую белок CFTR. В некоторых вариантах реализации изобретения мРНК, кодирующая белок CFTR, доставляется прямо в легкие субъекта. Использованный в данном документе термин "белок CFTR" подразумевает любой белок CFTR полной длины, его фрагмент или часть, которые могут быть использованы для замены активности встречающегося в природе белка и/или для уменьшения интенсивности, тяжести и/или частоты одного или больше симптомов, связанных с муковисцидозом. Например, подходящий белок CFTR в соответствии с данным изобретением может иметь аминокислотную последовательность, идентичную человеческому белку CFTR дикого типа (SEQ ID NO:1). В некоторых вариантах реализации изобретения подходящий белок CFTR в соответствии с данным изобретением может иметь аминокислотную последовательность на 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, или 99% идентичную человеческому белку CFTR дикого типа (SEQ ID NO:1).

[12] В одном варианте реализации изобретение предусматривает метод индуцирования экспрессии CFTR в эпителиальных клетках легких млекопитающих, включающий контакттирование эпителиальных клеток легких млекопитающих с
композицией, где композиция является фармацевтической композицией, включающей in vitro транскрибированную мРНК; in vitro транскрибированная мРНК содержит кодирующую последовательность, которая кодирует SEQ ID NO: 1. В другом варианте реализации изобретения in vitro транскрибированная мРНК содержит кодирующую последовательность, которая кодирует аминокислотную последовательность, которая по меньшей мере на около 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентична SEQ ID NO: 1.

[13] В одном варианте реализации изобретение предусматривает метод индукции экспрессии CFTR в целевой клетке млекопитающего, состоящий в контактировании клетки млекопитающего с композицией, содержащей in vitro транскрибированную мРНК, кодирующую аминокислотную последовательность SEQ ID NO: 1. В другом варианте реализации изобретения in vitro транскрибированная мРНК содержит кодирующую последовательность, которая кодирует аминокислотную последовательность, которая по меньшей мере на около 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентична SEQ ID NO: 1.

[14] В другом варианте реализации изобретение предусматривает молекулу мРНК неприродного происхождения, содержащую кодирующую последовательность, 5′-UTR и 3′-UTR, где кодирующая последовательность кодирует аминокислотную последовательность SEQ ID NO: 1 и кодирующая последовательность по меньшей мере на 80% идентична SEQ ID NO: 3. В другом варианте реализации изобретения кодирующая последовательность кодирует аминокислотную последовательность по меньшей мере на 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентичную SEQ ID NO: 1 и/или кодирующая последовательность на около 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% 99% идентична SEQ ID NO: 3.

[15] В другом варианте реализации изобретение предусматривает молекулу мРНК неприродного происхождения, содержащую кодирующую последовательность, 5′-UTR и 3′-UTR, где кодирующая последовательность кодирует аминокислотную последовательность SEQ ID NO: 1 и кодирующая последовательность содержит по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 65%, по меньшей мере 70%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90% или по меньшей мере 95% оснований не дикого типа,
приведенных в Таблице 1, в позициях кодирующей последовательности, приведенных в Таблице 1, относительно кодирующей последовательности дикого типа SEQ ID NO: 2.

[16] В другом варианте реализации изобретение предусматривает молекулу мРНК неприродного происхождения, содержащую кодирующую последовательность, 5'-UTR и 3'-UTR, где кодирующая последовательность кодирует аминокислотную последовательность SEQ ID NO: 1 и кодирующая последовательность содержит по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 65%, по меньшей мере 70%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90% или по меньшей мере 95% оснований не дикого типа, приведенных в Таблице 2, в соответствующих позициях кодирующей последовательности, приведенных в Таблице 2, относительно кодирующей последовательности дикого типа SEQ ID NO: 2.

[17] В некоторых вариантах реализации изобретение предусматривает молекулу мРНК неприродного происхождения, содержащую кодирующую последовательность сигнального пептида. В конкретном варианте реализации изобретение предусматривает мРНК не природного происхождения, содержащую кодирующую последовательность лидирующей последовательности гормона роста. В конкретном варианте реализации изобретение предусматривает мРНК не природного происхождения, содержащую кодирующую последовательность SEQ ID NO: 18 или SEQ ID NO: 19. В некоторых вариантах реализации изобретение предусматривает мРНК не природного происхождения, содержащую кодирующую последовательность по меньшей мере 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% от SEQ ID NO: 18 или SEQ ID NO: 19.

[18] В некоторых вариантах реализации изобретение предусматривает молекулу мРНК неприродного происхождения, содержащую последовательность SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ UD NO: 15, SEQ ID NO: 16, от SEQ ID NO: 17. В некоторых вариантах реализации изобретение предусматривает молекулу мРНК неприродного происхождения, содержащую последовательность по меньшей мере 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% от любой из SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ UD NO: 15, SEQ ID NO: 16, или SEQ ID NO: 17.

[22] В другом варианте реализации изобретение предусматривает устройство для распыления или аэрозолизации, наполненный фармацевтической композицией, соответствующей изобретению.

[23] В другом варианте реализации изобретение предусматривает культивированную клетку, содержащую мРНК, соответствующую изобретению, и экспрессию функционального CFTR из мРНК.

[24] В другом варианте реализации изобретение предусматривает вариант использования фармацевтической композиции, в соответствии с изобретением, для индукции экспрессии функционального CFTR.

[26] В другом варианте реализации изобретение предусматривает метод индуцирования экспрессии CFTR в целевой клетке млекопитающего, включающий контактэрирование целевой клетки с композицией, содержащей мРНК, соответствующей изобретению.

[27] В другом варианте реализации изобретение предусматривает метод лечения муковисцидоза введением нуждающемуся в лечении субъекту мРНК, кодирующую белок CFTR, как описано в данном документе. В одном варианте реализации изобретения мРНК вводится в легкие субъекта. В одном варианте реализации изобретения мРНК вводится путем небулизації, распыления, внутриназального введения
или аэрозолизации. В различных вариантах реализации изобретения введение мРНК приводит к экспрессии CFTR в легких пациента.

[28] В конкретном варианте реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность, которая кодирует SEQ ID NO: 1. В некоторых вариантах реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность, которая кодирует аминокислотную последовательность, по меньшей мере на около 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, или 99% идентичную человеческому белку CFTR дикого типа (SEQ ID NO: 1). В другом конкретном варианте реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность SEQ ID NO: 3. В некоторых вариантах реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность, по меньшей мере на около 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, или 99% идентичную SEQ ID NO: 3.

[29] В еще одном варианте реализации данное изобретение предусматривает метод получения мРНК, кодирующей белок CFTR, как описано в данном документе. В одном варианте реализации изобретение предусматривает метод получения мРНК CFTR in vitro, включающий контактное введение выделенных полинуклеотидов с РНК полимеразой в присутствии нуклеозидтрифосфатов, где: выделенный полинуклеотид и РНК полимераза содержатся не в клетке; выделенный полинуклеотид является матрицей для РНК полимеразы; выделенный полинуклеотид содержит промотор, функционально связанный с матричной последовательностью; матричная последовательность содержит последовательность, комплементарную последовательности SEQ ID NO: 1; и (a) матричная последовательность содержит меньше скрытых промоторов чем комплементарная последовательность к SEQ ID NO: 2, (b) матричная последовательность содержит меньше прямых и/или непрямых повторов, чем SEQ ID NO: 2, (c) матричная последовательность содержит меньше участков, комплементарных невыгодным кодонам, чем SEQ ID NO: 2, или (d) содержание GC последовательности, комплементарной k кодирующей, меньше, чем содержание GC SEQ ID NO: 2.
В другом варианте реализации изобретение предусматривает метод получения мРНК CFTR in vitro, включающий контактирование изолированных полинуклеотидов с РНК полимеразой в присутствии нуклеозидтрифосфатов, где: выделенный полинуклеотид и РНК полимераза содержатся не в клетке; выделенный полинуклеотид является матрицей для РНК полимеразы; выделенный полинуклеотид содержит промотор, функционально связанный с матричной последовательностью; и РНК полимераза синтезирует мРНК, содержащую последовательность, кодирующую SEQ ID NO: 1.

В некоторых вариантах реализации этих вариантов использования и методов, in vitro транскрибированная мРНК является мРНК природного происхождения или мРНК дикого типа, кодирующая человеческий CFTR (SEQ ID NO: 2), модифицированная для добавления UTR не природного происхождения. В других вариантах реализации изобретения in vitro транскрибированная мРНК - это мРНК природного происхождения, как описано выше.

Дополнительные объекты и преимущества изобретения будут разъяснены частью в последующем описании, и частью будут очевидны из описания или могут быть выяснены применением изобретения. Объекты и преимущества изобретения будут понятны и достигнуты с помощью элементов и комбинаций, в частности отмеченных в прилагающейся формуле изобретения.

Стоит понимать, что, как вышеприведенное общее описание, так и последующее детальное описание, приведены лишь для примера и объяснения, и не ограничивают изобретение, как было заявлено.

Прилагающиеся графические материалы, которые включены и составляют часть этой спецификации, иллюстрируют некоторые варианты реализации изобретения и, вместе с описанием, служат для объяснения принципов изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеуказанные аспекты и преимущества этого изобретения могут стать ясными из последующего детального описания со ссылками на прилагающиеся графические материалы.
[36] **Фигура 1А.** Детекция "С"-бэнда зрелого человеческого белка CFTR через 24 часа после трансфекции mPHK человеческого CFTR. Успешная продукция белка наблюдалась как для немодифицированной, так и для модифицированной (SNIM) mPHK (содержащей 25% 2-тиоуридина и 5-метилцицитидина). Иммунопреципитация была проведена с использованием антитела R&D Systems MAB25031 и детекции с использованием Ab570.

[37] **Фигура 1В.** Вестерн-блот анализ легких CFTR-нокаутной мыши через 24 часа после обработки PEI/немодифицированными наночастицами mPHK CFTR. Мыши обрабатывались с помощью небулайзер (джет-небулайзер Pari Boy) на протяжении около одного часа. Иммунопреципитация полученного человеческого белка CFTR была проведена в соответствии с предоставленными методами. "С"-бэнд, соответствующий зрелому белку, был детектирован у всех обработанных мышей, но отсутствовал у контрольных мышей.

[38] **Фигура 2.** Вольт-амперный график токов, вызванных 8-Br-cAMP, обработанных (4 мкг mPHK hCFTR) и необработанных HEK293T клеток. Высокий ток вызывался в клетках, трансфекированных mPHK hCFTR по сравнению с необработанными клетками. Обработанные клетки, которые подвергались воздействию специфического ингибитора белка CFTR, CFTRinh-172, показывают выраженное уменьшение (~89%) тока ионов Cl-.

[39] **Фигура 3.** Гистограмма токов, вызванных 8-Br-cAMP, обработанных (4 мкг mPHK hCFTR) и необработанных HEK293T клеток при создании +80мВ мембранного потенциала. Высокий ток вызывался в клетках, трансфекированных мРНК hCFTR по сравнению с необработанными клетками. Обработанные клетки, которые подвергались воздействию специфического ингибитора белка CFTR, CFTRinh-172, показывают выраженное уменьшение (~89%) тока ионов Cl-.

[40] **Фигура 4.** Вольт-амперный график сравнения профилей клеток HEK 293 в нативных условиях и под воздействием фосфолином и GlyN-101. Не наблюдалось никаких значительных изменений в токе ни в каком из сценариев.

[41] **Фигура 5.** Вольт-амперный график токов, вызванных фосфолином, обработанных (4 мкг mPHK hCFTR) и необработанных HEK293T клеток. Высокий ток вызывался в клетках, трансфекированных mPHK hCFTR по сравнению с необработанными клетками. Обработанные клетки, которые поддавались воздействию
специфичного ингибитора CFTR, GlyH-101, показывают выраженное уменьшение (~95%) тока ионов Cl-, как проиллюстрировано на ступенчатом графике (+100 mV) на его правой стороне.

[42] Фигура 6. Гибридизация in situ мРНК человеческого CFTR в необработанных (PBS) (слева) и обработанных (справа) легких CFTR-накоаутной мыши. Мыши поддавались воздействию 30 мкг инкапсулированной в PEI наночастицам немодифицированной мРНК hCFTR путем внутритрайхейного введения. Существенное положительное окрашивание наблюдается в обоих легких через 24 часа после введения.

[43] Фигура 7. Гибридизация in situ мРНК человеческого CFTR в обработанных легких CFTR-накоаутной мыши при разном увеличении (увеличение до 20х) Мыши поддавались воздействию 30 мкг инкапсулированной в PEI наночастицам немодифицированной мРНК hCFTR путем внутритрайхейного введения.

[44] Фигура 8. Большое увеличение (40х) характерного участка легких, демонстрирующее гибридизацию in situ мРНК человеческого CFTR в обработанных (справа) легких CFTR-накоаутной мыши. мРНК человеческого CFTR была детектирована в апикальной цитоплазме целевых бронхиальных эпителиальных клеток через 24 часа после введения. Мыши поддавались воздействию 30 мкг инкапсулированной в PEI наночастицам немодифицированной мРНК hCFTR путем внутритрайхейного введения.

[45] Риунк 9. Сравнение окрашивания при гибридизации in situ мРНК человеческого CFTR в обработанных легких CFTR-накоаутной мыши через 6 часов (слева) и 24 часа (справа) после гибридизации. Мыши поддавались воздействию 30 мкг инкапсулированной в PEI наночастицам немодифицированной мРНК hCFTR путем внутритрайхейного введения. Интенсивное положительное окрашивание наблюдается через 6 часов в обоих легких в бронхиальных и альвеолярных участках, при этом существенное положительное окрашивание еще наблюдалось через 24 часа после введения.

[46] Фигура 10. Гибридизация in situ мРНК человеческого CFTR в необработанных (PBS) (сверху) и обработанных (снизу) легких CFTR-накоаутной мыши. Мыши поддавались воздействию 15 мкг немодифицированной мРНК hCFTR, инкапсулированной в C12-200 липидных наночастицам, путем внутритрайхейного введения Существенное положительное окрашивание наблюдается по обоим легким через 6 часов после введения.
Фигура 11. Большое увеличение (40х) характерного участка легких, демонстрирующее гибридизацию in situ mPHK человеческого CFTR в обработанных легких CFTR-нокаутной мыши. mPHK человеческого CFTR была детектирована в апикальной цитоплазме целевых бронхиальных участках (слева), а также во внутриклеточных альвеолярных участках (справа) через 6 часов после введения. Мыши поддавались воздействию 15 мкг немодифицированной mPHK hCFTR, инкапсулированной в C12-200 липидных наночастицах, путем внутритрахеального введения.

Фигура 12. Скрининг разных клеточных линий для экспрессии hCFTR. Иммуноблот CHO, и COS-7 (A), и BHK, и PKC (B) клеток, трансфецированных конструктами, кодирующими hCFTR. Белковые лизаты были приготовлены через 24 часа после трансфекции и скринированы с использованием MA1-935 как первичного антитела. Стрелка указывает предполагаемый CFTR. См. обсуждение специфичности MA1-935 в примере 6.

Фигура 13. Перекрестная реактивность разных антител на человеческий CFTR. (A) – Мышиный анти-CFTR человека MA1-935 (Chemicon); (B) – Мышиный анти-CFTR человека AB570 (Cystic Fibrosis Foundation); (C) – Мышиный анти-CFTR человека AB596 (Cystic Fibrosis Foundation); (D) Кроличий анти-CFTR человека G449 (Rockefeller University). стрелка указывает CFTR.

Фигура 15. Иммунопрепципитация и вестерн-блоттинг мыши через 24 часа после применения IT распыления 20 мкг SNIM mPHK hCFTR/10 мкг SNIM PHK FFL, каждая в препарате HGT5001 в примере 6. Клетки T84 служили положительным контролем, показывая C-бэнд зрелого гликозилированного белка и В-бэнд маннозилированного hCFTR. “супернатант” содержал фракцию клеточного экстракта без иммунопрепципитированной фракции. “НПТ” - иммунопрепципитированная фракция.
[52] Фигура 16. Иммунопрепиципитация hCFTR из клеток T84 с использованием MAB25031 с последующей иммунодетекцией с использованием AB570 (A) и MAB1660 (B).

[53] Фигура 17. Иммунопрепиципитация CFTR из клеток NIH3T3 через 72 часа после трансференции различными конструктами.

[54] Фигура 18. Иммунопрепиципитация CFTR из клеток NIH3T3 через 72 часа после трансференции различными конструктами с использованием 500 мкг MAB1660 (левая и центральная панель) и увеличенное количество общего белка (8 мг) при использовании MAB25031 (правая панель).

[56] Фигура 20. Небулизация была проведена на анастезированных и провентилированных свиных (слева). Небулайзер был линейно связан с вентиляционной системой (справа, см. белую стрелку).

[57] Фигура 21. Экспрессия люциферазы, измеренная в гомогенатах образцов свиных тканей из разных областей легких, после аэрозольного введения 1 мг SNIM PHK FFL в препарате PEI в примере 6 с меш-небулайзером EFlow. Образцы легких были культивированы ex vivo в течение ночи перед измерениями люциферазы (пг/люциферазы/мг ткани легкого).

[58] Фигура 22. BLI экспрессии люциферазы в образцах характерных свиных тканей из разных областей легких после аэрозольного введения 1 мг SNIM PHK FFL в препарате PEI в примере 6. Образцы легких были культивированы ex vivo в течении ночи перед измерениями.

[59] Фигура 23. BLI экспрессии люциферазы в образцах характерных свиных тканей из разных областей легких после аэрозольного введения 1 мг SNIM PHK FFL в препарате PEI в примере 6 с использованием джет-небулайзера PARI BOY. Образцы легких были культивированы ex vivo в течение ночи перед измерениями.
Фигура 24. BLI экспрессии люциферазы в образцах характерных свинных тканей из разных областей легких после аэрозольного введения 1 мг SNIM PHK FFL в препарате PEI в примере 6 с использованием меш-небулайзера Aeroneb. Образцы легких были культивированы ex vivo в течение ночи перед измерениями.

Фигура 26. BLI экспрессии люциферазы в образцах свинных тканей из разных областей легких из одной небоработанной контрольной свиньи. Другая необработанная контрольная свиньи показывала такой же результат (не проиллюстрировано).

Фигура 27. BLI экспрессии люциферазы в образцах легких из единожды обработанных свиней №3 и №6. Аэрозольное введение по 1 мг SNIM PHK FFL и SNIM PHK hCFTR в препарате PEI в примере 6 было проведено с использованием меш-небулайзера Aeroneb. Проиллюстрированы срезы целого легкого свиньи. Три верхних ряда: свиньи №3, три нижних ряда: свинья №6.

Фигура 28. BLI экспрессии люциферазы в образцах легких из дважды обработанных свиней №4 и №8. Аэрозольное введение по 1 мг SNIM PHK FFL и SNIM PHK hCFTR в препарате PEI в примере 6 было проведено с использованием меш-небулайзера Aeroneb. Проиллюстрированы срезы целого легкого свиньи. Три верхних ряда: свинья №4, три нижних ряда: свинья №8.

Фигура 29. BLI экспрессии люциферазы в образцах легких из трижды обработанных свиней №1 и №2. Аэрозольное введение по 1 мг SNIM PHK FFL и SNIM PHK hCFTR в препарате PEI в примере 6 было проведено с использованием меш-небулайзера Aeroneb. Проиллюстрированы срезы целого легкого свиньи. Три верхних ряда: свинья №1, три нижних ряда: свинья №2.

Фигура 30. Иммуногистохимия (IHC) на тканях легкого трижды обработанной свиньи №1. Аэрозольное введение по 1 мг SNIM PHK FFL и SNIM PHK hCFTR в препарате PEI в примере 6 было проведено с использованием меш-небулайзера
Aeroneb. Экспрессия люциферазы видна в красновато-розовом цвете (анти-люциферазное pAb 1:300, G7451, Promega, Refine AP-Kit, хромоген: фуксин новый).

[67] Фигура 31. Высоко BLI-положительная ткань трижды обработанной свины №1 была подана ИП/ББ. Полоса 1: клетки T84 (положительный контроль), полоса 2: ткань легкого необработанной свины (300 мг), полоса 3: ткань легкого обработанной свины (697 мг), полоса 4: ткань легкого обработанной свины (163 мг). Зрелый сложно-гликозилированный hCFTR проявился в виде размытого так называемого С-энда. Богатый маннозой hCFTR проявился в виде более плотной так называемого В-энда. Экспрессия hCFTR наблюдалась в клетках T84 и свиной легочной ткани обработанной SNIM-PHK hCFTR свины №1, в то время как экспрессия hCFTR не наблюдалась в необработанных свиных.

[68] Фигура 32. Иммунопредипитация hCFTR, с использованием MAB25031 и последующей иммунодетекцией с использованием AB570, из проб свиных легких после доставки SNIM PHK hCFTR в препарате PEI в примере 6. Полоса 1: проба из люциферазо-отрицательной левой каудальной доли свины №2, полоса 2: проба из люциферазо-положительной области легкого свины №1.

[69] Фигура 33 A и B. In vitro трансфекция клеток HEK 293T SNIM PHK, с оптимизированными кодонами, меченого C-концевым His10 (CO-CFTR-C-His10) и не меченого (CO-CFTR) человеческого CFTR. После трансфекции был приготовлен лизат из целой клетки и проанализирован на экспрессию с помощью Вестерх блота с использованием (A) анти-CFTR антитела №217 и (B) анти-His антитела 1187. Трансфекционные образцы сравнивались с лизатом не трансфекционных контрольных HEK 293T (полоска 3).

[70] Фигура 33 C. In vitro трансфекция клеток HEK 293T SNIM PHK, с оптимизированными кодонами, кодирующей человеческий CFTR с лидирующей последовательностью гормона роста и (GH-CO-CFTR) или SNIM PHK, с оптимизированными кодонами, кодирующей человеческий CFTR, меченный C-концевым His10 (CO-CFTR-C-His10). После трансфекции был приготовлен лизат из целой клетки и проанализирован на экспрессию с помощью Вестерх блота с использованием анти-CFTR антитела №217. Трансфекционные образцы сравнивались с лизатом не трансфекционных контрольных HEK 293T (полоска 3).
Фигура 34. In vivo трансфекция CFTR нокаутных мышей SNIM PHK, с оптимизированными кодонами, инкапсулированной в препаратах как липидных (сKK-E12), так и полимерных (PEI) наночастиц, кодирующей человеческий CFTR, меченный С-концевым His\textsubscript{10}. Последующая доставка, с помощью распыления, каждого соответствующего препарата mPHK, лизат тканей правого и левого легкого был приготовлен и проанализирован на экспрессию CFTR с помощью Вестериблота с использованием анти-His антитела 1187. Лизаты тканей контрольных CFTR нокаутных легких и CFTR-His\textsubscript{10} HEK293 были использованы как отрицательный и положительный контроль, соответственно.

Фигура 35. Биолюминисцентная детекция экспрессии FFL в образцах свиных легких, собранных после распыления водой для инъекции.

Фигура 36. Биолюминисцентная детекция экспрессии FFL в образцах свиных легких, собранных после распыления 1 мг SNIM PHK FFL + 1 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.

Фигура 37. Биолюминисцентная детекция экспрессии FFL в образцах свиных легких, собранных после распыления 1 мг SNIM PHK FFL + 5 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.

Фигура 38. Биолюминисцентная детекция экспрессии FFL в образцах свиных легких, собранных после распыления 1 мг SNIM PHK FFL + 10 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.

Фигура 39. Вычисление относительной экспрессии CFTR в разных группах. Интенсивности полос были нормализированы к полосе 150 кДа в белковом маркере.

Фигура 40. Характерный пример "CFTR-положительных" бронхов, с по меньшей мере одной эпителиальной клеткой, найденной в слое эпителиальных клеток, показывающей ясную мембрано-локализированный сигнал CFTR при иммунофлюоресцентной окраске CFTR с использованием анти-CFTR антител.

Фигура 41. Иммунофлюоресцентная окраска CFTR в свиных легких после аэрозольной доставки контроля (WFI) или 5 мг SNIM PHK CO-CFTR.

Фигура 42. Иллюстрирует "низкий" уровень экспрессии CFTR, проанализированной в свиных легких иммунофлюоресцентной окраской с помощью анти-CFTR, после аэрозольной доставки 5 мг SNIM PHK CO-CFTR.
Фигура 43. Иллюстрирует "средний" уровень экспрессии CFTR, проанализированной в свиных легких иммуногистохимической окраской с помощью анти-CFTR, после аэрозольной доставки 5 мг SNIM PHK CO-CFTR.

Фигура 44. Иллюстрирует "высокий" уровень экспрессии CFTR, проанализированной в свиных легких иммуногистохимической окраской с помощью анти-CFTR, после аэрозольной доставки 5 мг SNIM PHK CO-CFTR.

Фигура 45. Иммуногистохимическая окраска CFTR в свиных легких после аэрозольной доставки контроля (WFI) или 10 мг SNIM PHK CO-CFTR.

Фигура 46. Вычисление относительного количества CFTR-положительных бронхов / бронхиол на животное. Анализ каждой группы (WFI; и 1мг, 5мг, 10мг SNIM PHK человеческого CFTR) через 24 часа после аэрозольного введения. Экспрессия CFTR, нормализованная к интенсивности стандарта 150 кДа белка. (WFI=9.4±5.6%, 1MG=15.2±6.6%, 5MG=25.4±14.1%, 10MG=20.9±3.7%; WFI против 5MG p=0.0281, WFI против 10MG p=0.0174)

Фигура 47. Иллюстрирует мультиплексную in situ детекцию нуклеиновых кислот (A) убиквитина С и (B) dap В в свиных легких после аэрозольной доставки воды для инъекции небулайзером.

Фигура 48. Иллюстрирует мультиплексную in situ детекцию нуклеиновых кислот (A) убиквитина С и (B) dap В в свиных легких после аэрозольной доставки 1 мг SNIM PHK FFL + 10 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.

Фигура 49. Иллюстрирует мультиплексную in situ детекцию нуклеиновых кислот в (A) правой верхней и (B) левой верхней частях у свиней после аэрозольной доставки воды для инъекции небулайзером.

Фигура 50. Иллюстрирует мультиплексную in situ детекцию нуклеиновых кислот в (A) правой верхней и (B) левой верхней частях у свиней после аэрозольной доставки 1 мг SNIM PHK FFL + 1 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.

Фигура 51. Иллюстрирует мультиплексную in situ детекцию нуклеиновых кислот в (A) правой верхней и (B) левой верхней частях у свиней после аэрозольной доставки 1 мг SNIM PHK FFL + 5 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.
Фигура 52. Иллюстрирует мультиплексную in situ детекцию нуклеиновых кислот в (A) правой верхней и (B) левой верхней частях у свиней после аэrozольной доставки 1 мг SNIM PHK FFL + 10 мг SNIM PHK CO-CFTR в препарате разветвленного 25 кДа PEI.

Фигура 53. Иллюстрирует положительную детекцию активного белка люциферазы светлячка (FFL) у обработанных свиней с помощью люминесценции при воздействии мPHK FFL/CO-CFTR-C-His10, инкапсулированной в сKK-E12 липидных наночастицах. Свиньи обрабатывались 1 мг mPHK FFL + 9 мг mPHK CO-CFTR-C-His10, инкапсулированными в липидных наночастицах, с помощью распыления с использованием джет- небулайзера Pari и умерщвлены через 24 часа через после обработки. Люминесценция FFL была визуализирована с помощью биоиллюминометра IVIS.

Фигура 54. Иллюстрирует типичные результаты экспрессии hCFTR в клетках НЕК, трансфецированных, с использованием комплексов для небулизации, свиньям 10, 11 и 12 (доза в 1 мг).

Фигура 55. Иллюстрирует типичные результаты экспрессии hCFTR в клетках НЕК, трансфецированных, с использованием комплексов для небулизации, свиньям 13, 14 и 15 (доза в 5 мг) и в клетках НЕК, трансфецированных, с использованием комплексов для небулизации, свиньям 19, 20 и 21 (доза в 10 мг).

Фигура 56. Иллюстрирует типичные результаты экспрессии hCFTR в клетках НЕК, трансфецированных, с использованием комплексов для небулизации, свиньям 16 (доза в 5 мг), 22 (доза в 10 мг) и 67 (доза в 1 мг).

Фигура 57. Иллюстрирует типичные результаты экспрессии hCFTR в клетках НЕК, трансфецированных, с использованием комплексов для небулизации, свиньям 17, 18 (доза в 5 мг), 23, 24 (доза в 10 мг) и 68, 69 (доза в 1 мг).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения

Термин "полинуклеотид", использующийся в данном документе, обычно относится к нуклеиновой кислоте (т.е. ДНК или РНК). Термины полинуклеотид,
Нуклеиновая кислота, ДНК, РНК и мРНК включают молекулы, содержащие: стандартные, или немодифицированные остатки; нестандартные, или модифицированные остатки; и смеси стандартных и нестандартных остатков.

Термин "мРНК", использующийся в данном документе, обычно относится к модифицированной или немодифицированной РНК, включая как кодирующий, так и некодирующие участки.

Фраза "кодирующий участок", мРНК, использующаяся в данном документе, обычно относится к участку, который при транслации дает продукт экспрессии, такой как полипептид, белок или фермент.

"Нестандартное азотистое основание" - это основание, не относящееся к природным основаниям аденину (A), цитозину (C), гуанину (G), тимину (T) или урацилу (U). Нестандартное азотистое основание - это аналог специфичного азотистого основания (A, C, G, T или U), если его свойства спаривания в двойной спирали нуклеиновой кислоты и место инкорпорации ДНК или РНК полимеразой в двойную спираль нуклеиновой кислоты (включая локальную РНК-ДНК спираль, которая образуется во время транскрипции ДНК матрицы РНК полимеразой) наиболее схожи с одним из пяти приведенных ранее оснований, с оговоркой, что аналоги T обычно будут также и аналогами U и наоборот. Для целей определения процента идентичности первой последовательности относительно второй последовательности, аналог основания не является неправильной парой к природному основанию; например, псевдоуридин отвечает уридину, 5-метилцитидин отвечает цитидину и тому подобное.

Термин "нестандартный", использованный вместе с терминами, включающими, но не ограничивающими, "нуклеозид", "основание", "нуклеотид" или "остаток" должен быть интерпретирован также, как и при использовании смеси с термином "азотистое основание".

"содержание GC" - это часть или процент всех остатков азотистых оснований в последовательности нуклеиновой кислоты, которые относятся к остаткам гуанина, цитозина или их аналогов. Например, последовательность в 100 нк, содержащая точно 30 цитозинов, точно 30 гуанинов, точно один аналог цитозина и точно один аналог гуанина имеет содержание GC 62%.

"Неоптимальный кодон", использующийся в данном документе, относится к кодону, который транслируется менее эффективно или медленнее в клетке.
млекопитающего, чем другой кодон той же аминокислоты. Неоптимальные кодоны обычно включают кодоны с A или U в 3-ей, или "wobble" (неоднозначной) позиции кодона. Обсуждение неоптимальных кодонов см., например, в патентной публикации США 2009/0069256 А1.

[102] "Молекула мРНК не природного происхождения" - это мРНК, которая не образуется в ходе нормальной транскрипции и сплайсинга в клетках дикого типа. мРНК может быть определена как не встречающаяся в природе по виду ее последовательности (например, по наборам кодонов и/или одной или больше UTR, которые не встречаются ни в какой мРНК CFTR природного происхождения) и/или если она включает нестандартные нуклеотидные остатки. Молекула мРНК не природного происхождения может быть синтезирована in vitro.

[103] В каждой из таблиц 1 и 2 ниже, столбец NWT означает основание не дикого типа в позиции (Pos.) в кодирующей последовательности CFTR (см., например SEQ ID NO: 3), а столбец WT означает основание дикого типа в той же позиции (см., например SEQ ID NO: 2 или запись RefSeq для человеческого CFTR (№ доступа NM_000492.3, 10 февраля, 2013, версия доступная с GenBank, отметить, что последовательность NM_000492.3 содержит некодирующие последовательности, так что кодирующая последовательность расположена в позициях с 133 по 4575, так что, например, позиция 7 в таблице снизу соответствует позиции 139 последовательности NM_000492.3).

мРНК CFTR не природного происхождения

[104] В дополнение к предоставленным методам получения in vivo функционального CFTR с использованием мРНК CFTR природного происхождения или дикого типа (и составляющих, содержащихся в этой мРНК) изобретение также предусматривает мРНК не природного происхождения, которая кодирует белок CFTR (например, SEQ ID NO:1). В некоторых вариантах реализации изобретения мРНК CFTR не природного происхождения очищена или изолирована.

[105] В некоторых вариантах реализации изобретения мРНК CFTR не природного происхождения присутствует в клетке. В некоторых вариантах реализации изобретения клетка, содержащая мРНК CFTR не природного происхождения, не синтезировала мРНК CFTR не природного происхождения и/или не содержит ДНК, комплементарную к мРНК CFTR не природного происхождения и/или функциональный ген CFTR; клетка опционально может содержать неактивный ген CFTR, как например ген CFTR с нонсенс-,
миссес-мутациами, сдвигом рамки считывания или делециями, которые делают продукт экспрессии гена нефункциональным. В некоторых вариантах реализации изобретения клетка, содержащая mPHK CFTR не природного происхождения, содержала также функциональный белок CFTR, транслированный из mPHK CFTR не природного происхождения. Клетка может быть, например, эпителиальной клеткой легкого, клеткой печени или клеткой почки. В некоторых вариантах реализации изобретения "клетка" является культурой клеток.

Кодирующая последовательность CFTR

[106] В некоторых вариантах реализации изобретения mPHK CFTR, соответствующая изобретению, содержит кодирующую последовательность с меньшим числом участков, комплементарных скрытым промоторам, чем SEQ ID NO: 2 (то есть, кодирующая последовательность человеческого CFTR дикого типа), меньшим числом прямых и/или инвертированных повторов, чем SEQ ID NO: 2, меньшим числом неоптимальных кодонов, чем SEQ ID NO: 2, и/или содержание GC кодирующей последовательности меньше, чем содержание GC в SEQ ID NO: 2.

[108] В некоторых вариантах реализации изобретения mPHK CFTR, соответствующая изобретению, транскрибирована in vitro, то есть mPHK была синтезирована в искусственной системе, не в биологической клетке (например, в безклеточной in vitro транскрипционной системе). Обычно, транскрипция in vitro предполагает наличие ДНК-матрицы, содержащей промотор и последовательность, комплементарную к желаемой mPHK (которая может кольцевой или линейной), РНК полимеразы и нуклеозидтрифосфатов в подходящих условиях реакции (соли, буферы и температура). В реакционной смеси могут присутствовать ингибиторы РНКазы,
Восстанавливающие агенты и/или пирофосфатаза. В некоторых вариантах реализации изобретения РНК полимераза является РНК полимеразой T7.

[109] В некоторых вариантах реализации изобретения мРНК CFTR, соответствующая изобретению, содержит кодирующую последовательность, содержащую по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 65%, по меньшей мере 70%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90% или по меньшей мере 95% оснований не дикого типа, приведенных в таблице 1 в соответствующих позициях кодирующей последовательности, приведенных в таблице 1, относительно последовательности дикого типа SEQ ID NO: 2.

Таблица 1. Основания не дикого типа, которые могут быть использованы в кодирующей последовательности мРНК, кодирующей CFTR.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>12</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>15</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>18</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>30</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>33</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>36</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>45</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>48</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>52</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>53</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>54</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>60</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>61</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>63</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>66</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>69</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>70</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>72</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>75</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>78</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>81</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>84</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>85</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>87</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>91</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>93</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>96</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>99</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>105</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>111</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>117</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>123</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>126</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>129</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>135</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>138</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>141</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>144</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>147</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>150</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>153</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>156</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>157</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>159</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>163</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>165</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>174</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>175</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>177</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>180</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>183</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>186</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>189</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>198</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>201</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>204</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>210</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>213</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>216</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>219</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>220</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>222</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>223</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>225</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>228</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>231</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>238</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>240</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>243</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>252</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>255</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>261</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>264</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>268</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>270</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>276</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>282</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>291</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>294</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>297</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>300</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>303</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>304</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>309</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>310</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>312</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>315</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>318</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>321</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>324</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>327</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>333</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>342</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>345</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>351</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>352</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>353</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>354</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>363</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>366</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>369</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>372</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>375</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>378</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>379</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>381</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>384</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>385</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>387</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>390</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>393</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>396</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>399</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>402</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>408</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>409</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>411</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>412</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>414</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>417</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>423</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>426</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>429</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>435</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>444</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>447</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>457</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>462</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>474</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>480</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>483</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>486</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>492</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>493</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>495</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>498</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>501</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>504</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>505</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>506</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>507</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>510</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>513</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>514</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>516</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>522</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>525</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>526</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>527</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>528</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>531</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>534</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>537</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>538</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>540</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>543</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>544</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>545</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>546</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>549</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>553</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>554</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>555</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>558</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>564</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>573</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>579</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>585</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>588</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>589</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>609</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>612</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>615</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>624</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>627</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>630</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>631</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>633</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>639</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>642</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>645</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>652</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>657</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>663</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>672</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>678</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>681</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>684</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>687</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>693</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>696</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>697</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>699</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>702</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>703</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>705</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>720</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>724</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>726</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>741</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>742</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>744</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>747</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>756</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>759</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>762</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>766</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>767</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>768</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>777</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>780</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>783</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>786</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>789</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>798</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>804</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>810</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>813</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>816</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>819</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>822</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>825</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>840</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>846</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>849</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>862</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>864</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>865</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>867</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>873</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>876</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>888</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>891</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>897</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>900</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>906</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>907</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>909</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>912</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>919</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>920</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>921</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>927</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>936</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>939</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>948</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>951</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>954</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>958</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>960</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>963</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>966</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>967</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>969</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>972</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>978</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>979</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>981</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>984</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>987</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>990</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>993</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1002</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1005</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1008</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1017</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1020</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1023</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1035</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1036</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1047</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1050</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1053</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1065</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1071</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1074</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1077</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1092</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1101</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1104</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1113</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1116</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1119</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1125</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1137</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1140</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1146</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1147</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1152</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1155</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1158</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1159</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1161</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1164</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>1170</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1173</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1179</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1191</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1194</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1197</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1200</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1206</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1212</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1218</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1222</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1224</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1239</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1242</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1245</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1248</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1254</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1255</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1257</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1260</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1263</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1266</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1272</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1275</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1278</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1279</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1280</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1284</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1287</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1291</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1292</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1293</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1296</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1302</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1305</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1308</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1311</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1314</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1317</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1320</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1321</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>1830</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1836</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1839</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1845</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1848</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1849</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1851</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1854</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1855</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1857</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1860</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1866</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1867</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1868</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1869</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1870</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1871</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1875</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1881</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1884</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1887</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1890</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1896</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1897</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1899</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1905</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1906</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1908</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1914</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1920</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1921</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1922</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1923</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>1924</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1925</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1926</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1938</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1944</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1947</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1956</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1959</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1962</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1965</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>2742</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2754</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2760</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>2766</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2776</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2781</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2784</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2790</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2797</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2802</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2805</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2811</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2814</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>2817</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2820</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2823</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2829</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2832</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2835</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2838</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2842</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2844</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2850</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2853</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2857</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2859</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2863</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2864</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>2865</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2868</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2871</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2874</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2877</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2880</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2886</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2890</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2892</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>2895</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2899</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2901</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2904</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2907</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2910</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2913</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>2917</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2919</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2923</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2925</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2931</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>2940</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2964</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2967</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2970</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>2973</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2976</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2994</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2995</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2997</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3000</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3009</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3015</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3021</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3027</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3030</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3031</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3033</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3036</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3039</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3045</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3051</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3054</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3057</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3060</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3063</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3069</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3075</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3081</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3085</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3088</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3090</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3093</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3100</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3102</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3105</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3108</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3117</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3120</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3123</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3132</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3141</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3145</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3146</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3147</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3150</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3153</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3156</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3159</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3168</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3171</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3174</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3177</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3180</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3184</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3186</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3192</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3193</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3195</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3198</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3204</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3207</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3208</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3216</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3228</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3243</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3250</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3252</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3258</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3261</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3264</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3270</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3276</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3277</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3280</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3281</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3282</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3285</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3288</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3291</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3297</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>3300</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3304</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3306</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3309</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3312</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3324</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3333</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3336</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3339</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3342</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3345</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3348</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3351</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3357</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3360</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3363</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3366</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3372</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3375</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3378</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3382</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3384</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3387</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3402</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3403</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3405</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3414</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3417</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3423</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3426</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3438</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3441</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3445</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3446</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3448</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3449</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3450</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3453</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3466</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3472</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3474</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3477</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3480</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3481</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3482</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3483</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3484</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3486</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3501</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3510</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3513</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3516</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3519</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3522</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3525</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3528</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3531</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3532</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3533</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3534</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3537</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3543</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3546</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3555</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3559</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3561</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3562</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3563</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3564</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3567</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3570</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3576</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3579</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3585</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3586</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3587</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3588</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3600</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3615</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3616</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3617</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3618</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3624</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3627</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3633</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3636</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3639</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3642</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3645</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3648</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3660</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3663</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3666</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3669</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3672</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3675</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3678</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3679</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3681</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3684</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3690</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3693</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3697</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3698</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3699</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3702</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3705</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3708</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3711</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3715</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3717</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3723</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3724</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3726</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3727</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3729</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3732</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3735</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3738</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3741</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3747</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3750</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3751</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3752</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3753</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3756</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3760</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3762</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3765</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>3768</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3771</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3780</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3786</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3789</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3792</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3795</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3798</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3810</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3813</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3816</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3819</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3826</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3827</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3828</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3831</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3834</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3840</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3847</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3855</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3864</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3867</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3870</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3873</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3876</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3879</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3885</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3889</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3890</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3891</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3897</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3900</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3901</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3906</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3909</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3910</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3912</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3918</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3931</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3932</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3933</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3942</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3945</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3954</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3957</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3960</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3969</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3972</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3973</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3975</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3976</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3977</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3981</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3984</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3987</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3996</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3999</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4002</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4005</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4020</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4029</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>4032</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4038</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4039</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4040</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4041</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>4047</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>4057</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4059</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4066</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4071</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>4072</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4077</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4080</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4084</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4085</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4089</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4095</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4098</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4099</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4101</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>4104</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4105</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4107</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>4116</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4117</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4118</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4119</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>4122</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4126</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4131</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4134</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4140</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4143</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4146</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4149</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4152</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4158</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4161</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>4164</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4167</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4170</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4173</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4179</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4182</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4188</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4191</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4203</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4206</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4207</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4209</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>4212</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4215</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4218</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4224</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4233</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4240</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4242</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>4248</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4257</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4260</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4263</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4266</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4275</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4287</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>4293</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>4296</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4302</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4303</td>
<td>u</td>
<td>a</td>
</tr>
</tbody>
</table>
В некоторых вариантах реализации изобретения mPHK CFTR, соответствующая изобретению, содержит кодирующую последовательность, содержащую по меньшей мере 50%, по меньшей мере 55%, по меньшей мере 60%, по меньшей мере 65%, по меньшей мере 70%, по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90% или по меньшей мере 95% оснований не дикого типа, приведенных в таблице 2 в соответствующих позициях кодирующей последовательности, приведенных в таблице 2, относительно последовательности дикого типа SEQ ID NO: 2.

Таблица 2. Подгруппа оснований не дикого типа, которые могут быть использованы в кодирующей последовательности mPHK, кодирующей CFTR.
<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>15</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>18</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>33</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>45</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>54</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>60</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>61</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>63</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>66</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>72</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>81</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>84</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>85</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>87</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>93</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>96</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>126</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>129</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>135</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>138</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>141</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>147</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>150</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>159</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>163</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>165</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>175</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>177</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>180</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>183</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>186</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>189</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>201</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>213</td>
<td>c</td>
<td>u</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>225</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>238</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>240</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>252</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>255</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>270</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>282</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>291</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>294</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>304</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>309</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>310</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>312</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>315</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>318</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>324</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>327</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>333</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>342</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>345</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>351</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>369</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>372</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>375</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>378</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>384</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>385</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>390</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>396</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>399</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>409</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>412</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>417</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>423</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>429</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>435</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>444</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>447</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>457</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>462</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>492</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>498</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>501</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>504</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>507</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>510</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>514</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>525</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>526</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>527</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>531</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>534</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>538</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>544</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>545</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>555</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>558</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>564</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>573</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>588</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>615</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>624</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>631</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>642</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>645</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>663</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>672</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>684</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>697</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>702</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>703</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>720</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>724</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>726</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>741</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>742</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>744</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>756</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>759</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>762</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>768</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>777</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>780</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>786</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>789</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>798</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>813</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>816</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>819</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>825</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>840</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>864</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>865</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>867</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>873</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>891</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>897</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>900</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>906</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>907</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>909</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>912</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>921</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>927</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>939</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>948</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>951</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>954</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>960</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>963</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>966</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>967</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>972</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>979</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>984</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>990</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>993</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1002</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1008</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1017</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1020</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1023</td>
<td>G</td>
<td>a</td>
</tr>
<tr>
<td>1035</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1036</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1047</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1053</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1065</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1071</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1092</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1101</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1116</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1158</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1161</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1164</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>1170</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1179</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1194</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1197</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1200</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1206</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1212</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1218</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1245</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1255</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1257</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1266</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1275</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1278</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1279</td>
<td>u</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1293</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1308</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1311</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1314</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1317</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1321</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1350</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1362</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1368</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1371</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1383</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1386</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1389</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>1392</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>1401</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1402</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1425</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>1440</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1449</td>
<td>A</td>
<td>g</td>
</tr>
<tr>
<td>1455</td>
<td>C</td>
<td>u</td>
</tr>
<tr>
<td>1458</td>
<td>G</td>
<td>a</td>
</tr>
<tr>
<td>1459</td>
<td>C</td>
<td>a</td>
</tr>
<tr>
<td>1461</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td>1485</td>
<td>A</td>
<td>c</td>
</tr>
<tr>
<td>1497</td>
<td>C</td>
<td>u</td>
</tr>
<tr>
<td>1500</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>1521</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1524</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1527</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1530</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1557</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1563</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1569</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1576</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1590</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1593</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1599</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1602</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1611</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>1617</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1620</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1621</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1635</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1638</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1642</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1647</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1653</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1662</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1674</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1677</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1683</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>1698</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1713</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1716</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1719</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1722</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1734</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1737</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1740</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1761</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1765</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1766</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1767</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1770</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1782</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>1791</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>1797</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1812</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1815</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1830</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1839</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>1857</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1860</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1866</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>1869</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>1870</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>1871</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>1881</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>1887</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>2400</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2403</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2415</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2428</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2430</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2436</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2439</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2448</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2451</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>2454</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>2463</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2484</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2490</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>2514</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>2515</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2516</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2517</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>2526</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2532</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2535</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2548</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2553</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2562</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2572</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2573</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2583</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2586</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2589</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2598</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2601</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2613</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2622</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2625</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2628</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2631</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2634</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>2640</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2643</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2655</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2658</td>
<td>u</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2661</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2665</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2683</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2684</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2688</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2694</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2703</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2704</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2705</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2712</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2724</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2725</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2726</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2727</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2730</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>2742</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2760</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>2781</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2784</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2802</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2805</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2811</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2814</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>2820</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>2823</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2829</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2832</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2844</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2850</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2859</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2865</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>2868</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2877</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>2890</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2895</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>2901</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>2907</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>2910</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>2913</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>2917</td>
<td>u</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2923</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2925</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>2931</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>2970</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>2976</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3000</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3021</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3030</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3033</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3039</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3045</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3051</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3054</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3060</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3063</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3069</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3075</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3088</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3090</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3108</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3120</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3141</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3145</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3146</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3147</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3150</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3156</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3159</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3174</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3184</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3192</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3193</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3198</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3228</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3243</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3252</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3258</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3261</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3264</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3270</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>Pos.</td>
<td>NWT</td>
<td>WT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>3276</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3277</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3282</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3288</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3297</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3304</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3306</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3336</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3339</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3345</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3348</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3366</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3375</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3382</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3387</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3402</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3405</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3417</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3426</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3438</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3448</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3449</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3450</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3474</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3477</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3480</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3481</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3482</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3483</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3486</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3501</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3510</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3513</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3519</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3528</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3531</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3534</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3537</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3546</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3555</td>
<td>g</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>NWT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3559</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3564</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3570</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3579</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3588</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3615</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3624</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3633</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3648</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3660</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3666</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3669</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3672</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3675</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3681</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3684</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3693</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3702</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3711</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3717</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3723</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3724</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3729</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3732</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3741</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3747</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3750</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3751</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3752</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3753</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3756</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3765</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3786</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3795</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3810</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3813</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3816</td>
<td>u</td>
<td>g</td>
</tr>
<tr>
<td>3819</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3847</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3855</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3864</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3873</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3879</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3889</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3890</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>3891</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3901</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3912</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>3918</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3933</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>3945</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>3954</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3957</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>3960</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>3972</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>3981</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>3984</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>3996</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>3999</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4002</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4005</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4020</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4029</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>4032</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4039</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4040</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4041</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>4047</td>
<td>g</td>
<td>c</td>
</tr>
<tr>
<td>4059</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4071</td>
<td>g</td>
<td>u</td>
</tr>
<tr>
<td>4072</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>4077</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4080</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>4084</td>
<td>u</td>
<td>a</td>
</tr>
<tr>
<td>4085</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4089</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4095</td>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>4098</td>
<td>u</td>
<td>c</td>
</tr>
<tr>
<td>4104</td>
<td>c</td>
<td>g</td>
</tr>
<tr>
<td>4105</td>
<td>u</td>
<td>c</td>
</tr>
</tbody>
</table>
В некоторых вариантах реализации данное изобретение содержит мРНК CFTR не природного происхождения, содержащую кодирующую последовательность SEQ ID NO: 3. Дополнительные примеры мРНК CFTR не природного происхождения описаны в секции Краткое описание последовательностей, как например, SEQ ID NOs: 9, 10, 11, 12, 13, 14, 15, 16, или 17. В некоторых вариантах реализации данное изобретение содержит мРНК CFTR не природного происхождения, содержащую кодирующую последовательность, по меньшей мере на 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентичную к любой из SEQ ID NO: 3, 9, 10, 11, 12, 13, 14, 15, 16, или 17. В некоторых вариантах реализации изобретения мРНК CFTR не природного происхождения содержит 5’UTR, 3’UTR, кодирующую последовательность сигнального пептида или структуры кэпа или хвоста, как описано ниже.

Описанная выше мРНК CFTR, содержащая кодирующую последовательность, которая отличается от кодирующей последовательности CFTR дикого типа, может предоставить преимущества по отношению к эффективности и простоте приготовления. Например, реакция транскрипции in vitro с использованием полинуклеотида, содержащего матричную последовательность, комплементарную кодирующей последовательности CFTR, может давать больший выход PHK;
Последовательность сигнального пептида

[113] В некоторых вариантах вариантах реализации изобретения мРНК CFTR включает нуклеотидную последовательность, кодирующую сигнальный пептид. Термин "сигнальный пептид", использованный в данном документе, относится к пептиду, присутствующему в новосинтезированном белке, который способен направить белок на секреторный путь. В некоторых вариантах реализации изобретения сигнальный пептид отрезается после транслокации в эндолизматическом ретикулуме после трансляции мРНК. Сигнальный пептид также относится к сигнальной последовательности, лирующей последовательности или лирующему пептиду. Обычно, сигнальный пептид - это короткий (например, длиной 5-30, 5-25, 5-20, 5-15, или 5-10 аминокислот) пептид. Сигнальный пептид может присутствовать на N-конце новосинтезированного белка. Не углубляясь в какую-либо отдельную теорию, присоединение кодирующей последовательности сигнального пептида к мРНК, кодирующей CFTR, может улучшить секрецию и/или продукцию белка CFTR in vivo.

[114] Подходящий сигнальный пептид для данного изобретения может быть гетерогенной последовательностью, полученной из разных эукариотических и прокариотических белков, в частности секретируемых белков. В некоторых вариантах реализации изобретения подходящий сигнальный пептид является лейцин-богатой последовательностью. см. Yamamoto Y et al. (1989), Biochemistry, 28:2728-2732, которая включена посредством ссылки. Подходящий сигнальный пептид может быть получен из человеческого гормона роста (hGD), препробелка сывороточного альбумина, предшественника цепи Ig kappa, препробелка азуроцидина, предшественника цистатина-S, прекурсора трипсиногена-2, блокатора калиевого канала, альфа-конотоксина |p1.3, альфа-конотоксина, альфа-галактозидазы, целлюлозы, непентезин-1 аспартат-протеиназы, кислотной хитиназы, K28 препротоксина, предшественника киллер токсина зигоцина, и холерного токсина. Примеры последовательностей сигнальных пептидов описаны в

[115] В некоторых вариантах реализации изобретения мРНК, кодирующая CFTR, может включать последовательность, кодирующую сигнальный белок, полученную из человеческого гормона роста (hGH) или его фрагмента. Полная нуклеотидная последовательность, кодирующая сигнальный пепtid hGH показана ниже.

5’ последовательность человеческого гормона роста (hGH) (SEQ ID NO:18):

AUGGCCACUGGAUCAAGAACCUCCACUGCUCCCUUUGGACUGCUCCUUGCCUCGCGUUGCAAGAAGGAUCGCGUUUCCCGACCAUCCCACUCUCC

Альтернативная 5’ последовательность человеческого гормона роста (SEQ ID NO:19):

AUGGCAACUGGAUCAAGAACCUCCACUGCUCCCAUCGGCGCGUUGCAAGAAGGAACUGCGCGUUUCCCGACUAUCCCACUCUCC

[116] В некоторых вариантах реализации изобретения мРНК в соответствии с данным изобретением может включать последовательности, кодирующие сигнальный пептид, имеющие по меньшей мере 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, или выше, идентичности с SEQ ID NO:18 или SEQ ID NO:19.

5’-UTR, 3’-UTR, Поли-А хвост, кэп и нестандартные нуклеотидные основания.

[117] В некоторых вариантах реализации изобретения мРНК содержит последовательность в ее 5’-UTR, идентичную SEQ ID NO: 4 или по меньшей мере на 50%, по меньшей мере на 55%, по меньшей мере на 60%, по меньшей мере на 65%, по меньшей мере на 70%, по меньшей мере на 75%, по меньшей мере на 80%, по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 95%, по меньшей мере на 98% или по меньшей мере на 99% идентичную SEQ ID NO: 4.

[118] В некоторых вариантах реализации изобретения мРНК содержит последовательность в ее 3’-UTR, идентичную SEQ ID NO 5 или по меньшей мере на 50%, по меньшей мере на 55%, по меньшей мере на 60%, по меньшей мере на 65%, по меньшей мере на 70%, по меньшей мере на 75%, по меньшей мере на 80%, по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 95%, по меньшей мере на 98% или по меньшей мере на 99% идентичную SEQ ID NO: 5.

В некоторых вариантах реализации изобретения мРНК содержит 5’-кэп, например, кэп 1 структуру. мРНК кэпирующие ферменты и процедуры см, например, в Fechter, P.; Brownlee, G.G. “Recognition of mRNA cap structures by viral and cellular proteins” J. Gen. Virology 2005, 86, 1239-1249; еврейская патентная публикация 2 010 659 A2; патент США № 6,312,926. 5’ кэп обычно добавляется так: вначале терминальная РНК фосфатаза удаляет одну из концевых фосфатных групп с 5’ нуклеотида, оставляя две концевые фосфатные группы; потом гуанозинтрифосфат (GTP) присоединяется к концевым фосфатам гуанилил трансферазой, образуя 5’5’5 трифосфатную связь; и потом 7 атом азота гуанина метилируется метилтрансферазой. Примеры структур кэпа включают, но не ограничиваются, m7G(5’ppp (5’(A,G(5’ppp(5’))A и G(5’)ppp(5’))G.

В некоторых вариантах реализации изобретения мРНК содержит один или более нестандартных нуклеотидных остатков. Нестандартные нуклеотидные остатки
могут включать, например, 5-метилцитидин ("5mC"), псевдоурндин ("ψU") и/или 2-тиоуриндид ("2sU"). См., например, патент США №. 8278036 или WO2011012316 для обсуждения таких остатков и их инкорпорации в мРНК. В некоторых вариантах реализации изобретения мРНК может быть SNIM PHK. SNIM PHK, используемое в данном документе, является ацономом от "Stabilized Non-Immunogenic Messenger RNA", обозначающие мРНК, образованную транскрипцией in vitro (IVT), включающий некоторый процент модифицированных нуклеотидов в реакции IVT, как описано в РТ публикации WO 2011/012316. SNIM PHK, использованная в примерах, раскрывших в данном документе, была получена путем IVT, в которой 25% остатков U составлял 2-тиоуринид и 25% остатков С составлял 5-метилцитидин. Присутствие нестандартных нуклеотидных остатков может делить мРНК более стабильной и/или менее иммуногенной чем контрольная мРНК с той же последовательностью, но содержащей только стандартные нуклеотиды. В дополнительных вариантах реализации изобретения мРНК содержит один или более нестандартных нуклеотидных остатков, выбранных из изоцитозина, псевдоизоцитозина, 5-бромурацил, 5-пропинилурацил, 6-аминопурин, 2-аминопурин, инозин, диаминопурин и 2-хлор-6-аминопурин или комбинации этих модификаций и других модификаций азотистых оснований. Определенные варианты реализации изобретения могут еще включать дополнительные модификации фуранозного цикла или азотистых оснований. Дополнительные модификации могут включать, например, модификации или замещения сахара (например, одну или больше 2'-O-alkyl модификаций, замкнутую нуклениновую кислоту (LNA)). В некоторых вариантах реализации изобретения РНК может образовывать комплексы или гибридицироваться с дополнительными полинуклеотидами и/или пептидными полинуклеотидами (ПНК). В вариантах реализации изобретения, где модификация сахара является 2'-O-alkyl модификацией, такие модификации могут включать, но не ограничиваться, 2'-дезокси-2'-фтор модификацию, 2'-O-метил модификацию, 2'-O-метоксиэтил модификацию и 2'-дезокси модификацию. В определенных вариантах реализации изобретения любая из этих модификаций может присутствовать в 0-100% нуклеотидах — например, в более чем 0%, 1%, 10%, 25%, 50%, 75%, 85%, 90%, 95% или 100% составляющих нуклеотидов по отдельности или в комбинации.
Композиции, содержащие мРНК CFTR

[122] В определенных вариантах реализации изобретения молекулы мРНК изобретения могут быть введены как незащищенная или неупакованная мРНК. В некоторых вариантах реализации изобретения введение мРНК в композициях изобретения может быть улучшено добавлением подходящего носителя. В определенных вариантах реализации изобретения носитель выбирался на основе его способности улучшать трансфекцию целевой клетки одной или несколькими мРНК.

[123] Термин "носитель", использованный в данном документе, включает любой из стандартных фармацевтических носителей, связывателей, наполнителей и тому подобных, которые обычно используются для введения биологически активных агентов, включая мРНК.

[124] В определенных вариантах реализации изобретения носители, использованные в композициях изобретения, могут содержать липосомальные везикулы или другие способы улучшать внесение мРНК в целевые клетки и/или ткани. Подходящие носители включают, но не ограничиваются, носители, основанные на полимерах, такие как полиэтиленмин (PEI) и мультидоменные полимеры, липидные наночастицы и липосомы, нанолипосомы, керамид-содержащие нанолипосомы, протеолипосомы, как натуральные, так и синтетически полученные экzosомы, натуральные, синтетические и полусинтетические ламеллярные тельца, наночастицы, наночастицы фосфосиликатов кальция, наночастицы диоксида кремния, поли(D-аргинин), нанодендримеры, системы доставки, основанные на крахмале, микеллы, эмульсии, золь-гели, нисосомы, плазмиды, вирусы, кальций-fosфатные нуклеотиды, аптамеры, пептиды, пептидные конъюгаты, целевые низкомолекулярные конъюгаты и другие векторные метки. Также предусматривается использование бионанокапсул или других образований белков вирусного капсида как подходящих носителей. (Hum. Gene Ther. 2008 Sep;19(9):887-95).

[125] В некоторых вариантах реализации изобретения носитель содержит органический катион, как катионный липид или катионный органический полимер. В случае присутствия, катионный липид может быть компонентом липосомальных везикул, инкапсулирующих мРНК.

[126] В определенных вариантах реализации изобретения носитель создается с использованием полимера как носителя, отдельно или в комбинации с другими носителями. Подходящие полимеры могут включать, например, полиакрилаты,
полиалкилцианоакрилаты, полиактид, сополимеры полиактид-полигликолида, полиакпролактоны, декстран, альбумин, желатин, альгинат, коллаген, хитозан, циклодекстрины, протамины, пегилированный протамин, PLL, пегилированный PLL и полиэтиленмин (PEI). Если присутствует PEI, это может быть разветвленный PEI с молекулярным весом от 10 до 40 кДа, например, разветвленный PEI в 25 кДа (Sigma №408727). Дополнительные примеры полимеров, подходящих для данного изобретения, включают описанные в РСТ публикации WO2013182683, содержание которой включено в данный документ посредством ссылки.

В определенных вариантах реализации изобретения мРНК образует комплекс с липидными наночастицами для улучшения доставки к целевой клетке. В определенных вариантах реализации изобретения композиции изобретения могут быть совмещены с мультикомпонентной смесью липидов, которая содержит один или больше катионных липидов, дополнительные липиды, как некатионные липиды (также относятся к вспомогательным липидам), липиды на основе холестерина и/или пегилированные липиды для инкапсулирования мРНК.

Катионные липиды
В некоторых вариантах реализации изобретения подходящий липидный носитель содержит катионный липид. Фраза "катионный липид", использованная в данном документе, относится к любому из многих липидов, которые имеют суммарный положительный заряд при выбранном рН, таком как физиологический рН. Некоторые катионные липиды, в частности, которые известны как титруемые или рН-титруемые катионные липиды, особенно эффективны для доставки mРНК. Некоторые катионные (например, титруемые) липиды были описаны в литературе, многие из которых доступны в продаже. Особенно подходящими катионными липидами для использования в композициях и методах изобретения включают те, которые описаны в международной патентной публикации WO 2010/053572 (в частности, C12-200 описан в параграфе [00225]) и WO 2012/170930, каждая из которых включена в данный документ посредством ссылки. В некоторых вариантах реализации изобретения использован катионный липид cKK-E12 (описан в WO 2013/063468), рекомендации, которого включены в данный документ в полном объеме посредством ссылки. В некоторых вариантах реализации изобретения использован катионный липид N-[1-(2,3-диолеилокси)пропил]-N,N,N-триметиламмоний хлорид, или "DOTMA". (Feigner et al. (Proc. Nat’l Acad. Sci. 84, 7413 (1987); патент США. №. 4897355). DOTMA может быть использован отдельно или объединен с нейтральным липидом, диолеилфосфатидилэтаноламином, или "DOPE", или другими катионными или некатионными липидами в липосомный трансфекционный реагент или липидную наночастицу, и эти липосомы могут быть использованы для улучшения доставки нуклеиновых кислот в целевые клетки. Другой подходящий катионный липид включает, например, 5-карбоксицикпентадециламидоглицерилспермин, или "DOGS," 2,3-диолеилокси-N-[2-(сперминкарбоксамидоэтил)]-N,N-диметил-1-пропанамин, или "DOSPA" (Behr et al. Proc. Nat’l Acad. Sci. 86, 6982 (1989); патент США. №. 5171678; патент США. №. 5334761), 1,2-диолеил-3-диметиламмонийпропан, или "DODAP", 1,2-диолеил-3-триметиламмонийпропан, или "DOTAP". Рассматриваемые катионные липиды включают также: 1,2-дистеарилокси-N,N-диметил-3-амино пропан, или "DSDMA", 1,2-диолеилокси-N,N-диметил-3-амино пропан, или "DODMA", 1,2-диилиолеилокси-N,N-диметил-3-амино пропан, или "DLinDMA", 1,2-диилиолеилокси-N,N-диметил-3-амино пропан, или "DLenDMA", N-диолеил-N,N-диметиламмонийхлорид, или "DODAC", N,N-дистеарил-N,N-диметиламмонийбромид, или "DDAB", N-(1,2-диметилэтиламинопро-3-ил)-N,N-диметил-N-гидроксиэтиламмонийбромид, или "DMRIE", 3-диметиламино-2-(холест-5-ен-3-бета-оксиксуган-4-окси)-1-(цис,цис-9,12-

[130] В некоторых вариантах реализации изобретения один или больше катионных липидов, присутствующих в таких композициях, содержат по меньшей мере одно из следующего: имидазол, диалкиламин или гуанидиновый остаток. В предпочтительном варианте реализации изобретения один или более катионных липидов не содержат четвертичного амина.

Некатионные/вспомогательные липиды

[131] В некоторых вариантах реализации изобретения подходящая липидная наночастица содержит один или больше некатионных ("вспомогательных") липидов. Фраза "некатионный липид", использованная в данном документе, относится к любому нейтральному, цвиттерионному или анионному липиду. Фраза "анионный липид",
использованная в данном документе, относится к любому из многих липидов, которые имеют суммарный отрицательный заряд при выбранном рН, таком как физиологический рН. В некоторых вариантах реализации изобретения некационный липид является нейтральным липидом, который не несет суммарного заряда в условиях, при которых композиция приготовлена и/или вводится. Некационные липиды включают, но не ограничиваются, дистеарилфосфатидилхолин (DSPC), диолеилфосфатидилхолин (DOPC), дипальмитоилфосфатидилхолин (DPPC), диолеилфосфатидилглициерин (DOPG), дипальмитоилфосфатидилглициерин (DPPG), диолеилфосфатидилэтаноламин (DOPE), пальмитоилолеилфосфатидилхолин (POPC), пальмитоилолеилфосфатидилэтаноламин (POPE), диолеилифосфатидилэтаноламин-4-(N-малеинимидотетил)-циклогексан-1-карбоксилат (DOPE-mal), дипальмитоилфосфатидилэтаноламин (DPPE), димеристоил (DMPE), дистеарилфосфатидилэтаноламин (DSPE), 16-О-монометил РЕ, 16-О-диметил РЕ, 18-1-транс РЕ, 1-стеароил-2-олеилфосфатидилэтаноламин (SOPE), или их смеси.

Липиды на основе холестерина

Пегилированные липиды

[133] В некоторых вариантах реализации изобретения подходящая липидная наночастица содержит один или более пегилированных липидов. Например, использование полиэтиленгликоля (PEG-CER), включая N-октоаноил-сфингозин-1-[сукицил(метоксиполиэтилин)-2000] (C8 PEG-2000 керамид) предусматривается данным изобретением в комбинации с одним или больше катионных и, в некоторых вариантах реализации, других липидов. В некоторых вариантах реализации изобретения подходящие пегилированные липиды содержат PEG-керамиды, имеющие более короткие алкильные цепи (например, C14 или C18). В некоторых вариантах реализации изобретения может быть использован пегилированный липид DSPE-PEG-малеинимд лектин. Другие
предусмотренные пегилированные липиды включают, но не ограничиваются, полизетиленгликольную цепь длиной до 5 кДа, ковалентно связанную с липидом с алкильной (-ьми) цепью (-ями) длиной C₆-C₂₀. Не углубляясь в какую-либо отдельную теорию, предполагается, что добавление пегилированных липидов может предотвратить агрегацию и повысить период циркуляции, что может улучшить доставку mРНК, инкапсулированную в липосомах, в целевую клетку.

[134] В определенных вариантах реализации изобретения композиция содержит одну из следующих комбинаций липидов:

C12-200, DOPE, холестерин, DMG-PEG2K;
DODAP, DOPE, холестерин, DMG-PEG2K;
HGT5000, DOPE, холестерин, DMG-PEG2K;
HGT5001, DOPE, холестерин, DMG-PEG2K;
XTC, DSPC, холестерин, PEG-DMG;
MC3, DSPC, холестерин, PEG-DMG;
ALNY-100, DSPC, холестерин, PEG-DSG;
cKK-E12, DOPE, холестерин, PEGDMG2K.

[136] В некоторых вариантах реализации изобретения фармацевтические композиции в соответствии с изобретением не содержат муколитического агента (например, N-ацицилцистенина, эрдостеан, бромгексина, карбоцистена, гвайфенезина или йодированного глицерина).

Устройства, наполненные фармацевтической композицией

[137] В некоторых вариантах реализации изобретения фармацевтическая композиция в соответствии с изобретением, как основанная на липидах или основанная на
Варианты применения и способы

mPHK для вариантов применения и способов в соответствии с изобретением

Среди прочего, данное изобретение представляет методы для продукции белка CFTR in vivo, в частности, в легких млекопитающих. В некоторых вариантах реализации изобретение предусматривает методы для индукции экспрессии CFTR в эпителиальных клетках легких млекопитающих, что включает контактирование эпителиальной клетки с фармацевтической композицией, содержащей in vitro транскрибированную mPHK, где in vitro транскрибированная mPHK содержит кодирующую последовательность, которая кодирует SEQ ID NO: 1 (аминокислотную последовательность человеческого CFTR дикого типа). Изобретение также предусматривает варианты использования фармацевтических композиций, содержащих in vitro транскрибированную mPHK, где in vitro транскрибированная mPHK содержит кодирующую последовательность, которая кодирует SEQ ID NO: 1, для индукции экспрессии CFTR в эпителиальных клетках легких млекопитающих.

Изобретение также предусматривает методы для индукции экспрессии CFTR в целевой клетке млекопитающего, что включает контактирование целевой клетке млекопитающего с композицией, содержащей in vitro транскрибированную mPHK, кодирующую аминокислотную последовательность SEQ ID NO: 1. Изобретение также предусматривает вариант использования композиции, содержащей in vitro транскрибированную mPHK, кодирующую аминокислотную последовательность SEQ ID NO: 1, для индукции экспрессии CFTR в целевой клетке млекопитающего.
В некоторых вариантах реализации этих вариантов использования и способов, *in vitro* транскрибированная мРНК является мРНК природного происхождения или мРНК дикого типа, кодирующая человеческий CFTR (SEQ ID NO: 2). В других вариантах реализации изобретения *in vitro* транскрибированная мРНК - это мРНК не природного происхождения, как описано выше.

В некоторых вариантах использования *in vitro* транскрибированная мРНК содержит кодирующую последовательность, которая кодирует SEQ ID NO: 1, которая не менее чем на 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92% 95% или 100% идентична SEQ ID NO: 2 (кодирующей последовательности мРНК человеческого CFTR дикого типа).

мРНК, содержащая кодирующую последовательность, которая кодирует SEQ ID NO: 1, которая по меньшей мере на 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92% 95% или 100% идентична SEQ ID NO: 2, может иметь большее содержание скрытых промоторов, прямых и инвертированных повторов, и/или содержание GC, чем описанная выше мРНК. Было замечено, что векторы, содержащие SEQ ID NO: 2 часто подвергаются мутациям инсерции/делении/перестановкам в клетках хозяина при типичных условиях роста, что приводит к гетерогенной популяции векторов, которые не могут быть использованы напрямую для транскрипции *in vitro*. Было установлено, что выращивание клеток хозяина в условиях, таких как пониженная температура, послабленное освещение и/или уменьшение деления клеток, такое как CopyCutter®, уменьшало, но не устраивало появление мутаций. Соответственно, было бы желательно для *in vitro* реакций транскрипции мРНК, содержащей кодирующую последовательность, по меньшей мере на 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% или 100% идентичную SEQ ID NO: 2, использовать матрицу, полученную выращиванием вектора, как описано выше, собирая и линеаризируя вектор, и очищая желаемые молекулы для реакции транскрипции. Стадия очищения может быть, например, вытеснительной хроматографией или слабым анионным обменом.

In vitro транскрибированная мРНК для вариантов использования и методов, соответствующих изобретению, может содержать 5'-UTR, 3'-UTR, поли-A, поли-U и/или поли-C хвосты, кэп и/или нестандартные нуклеотиды, как описано в разделе выше, касающемся этих особенностей.
Фармацевтические композиции для вариантов применения и способов.

[144] Фармацевтические композиции для применения в соответствии с изобретением могут содержать мРНК для вариантов применения и способов, соответствующих изобретению, как описано в предыдущей секции, и дополнительные составляющие, как описано в секции выше, касающейся композиций, содержащих мРНК CFTR. Так что, предусмотрено использование и/или введение фармацевтических композиций, содержащих любой из носителей, описанных выше.

[145] В некоторых предпочтительных вариантах реализации изобретения фармацевтические композиции содержат PEI, такой как разветвленный PEI, имеющий молекулярная масса от 10 до 40 кДа, например, 25 кДА.

[146] В других предпочтительных вариантах реализации изобретения фармацевтические композиции содержат катионный липид, петилированный липид и дополнительный липид (такой как нейтральный липид). Катионный липид, петилированный липид и/или дополнительный липид могут быть выбраны из приведенных в секции выше, касающейся композиций, содержащих мРНК CFTR.

Пути введения для индукции экспрессии в легких.

[147] В некоторых вариантах реализации способов и вариантов применения для индукции экспрессии CFTR в легких млекопитающих, фармацевтическая композиция, как описано выше, вводится путем, выбранным из внутритрахеальной инстиляции, небулизации или распыления. Устройство для введения композиции может быть выбрано из устройств, приведенных в секции выше, касающейся устройств, наполненных фармацевтической композицией.

[148] В предпочтительных вариантах реализации изобретения композиция вводится путем небулизации или распыления. Некоторые липидные препараты могут иметь свойство агрегировать при попытке небулизации, но обычно возможно разрешить проблему агрегации путем изменения препарата, например, заменой катионного липида.

Лечение муковисцидоза
Среди прочего, данное изобретение может быть использовано для лечения муковисцидоза. В некоторых вариантах реализации данное изобретение предусматривает метод лечения муковисцидоза введением субъекту, нуждающемуся в лечении, мРНК, кодирующую белок CFTR, как описано в данном документе, или фармацевтическую композицию, содержащую мРНК. мРНК или фармацевтическая композиция, содержащая мРНК, может быть введена напрямую в легкие субъекта. Различные пути введения могут быть использованы для доставки в легкие. В некоторых вариантах реализации изобретения мРНК или композиция, содержащая мРНК, описанная в данном документе, вводится путем ингаляции, небуляции или распыления. В разных вариантах реализации изобретения введение мРНК приводит к экспрессии CFTR в легких субъекта (например, в эпителиальных клетках легких).

В конкретном варианте реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность, которая кодирует SEQ ID NO:1. В некоторых вариантах реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность, которая кодирует аминокислотную последовательность по меньшей мере на 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентичную SEQ ID NO:1. В другом отдельном варианте реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность SEQ ID NO: 3. В других вариантах реализации данное изобретение предусматривает метод лечения муковисцидоза введением в легкие нуждающегося в лечении субъекта мРНК, содержащую кодирующую последовательность, по меньшей мере на 65%, 70%, 75%, 80%, 85%, 90%, 95% или 99% идентичную SEQ ID NO: 3. Дополнительные примеры мРНК CFTR не природного происхождения, которые могут быть использованы для лечения муковисцидоза, описаны в секции краткого описания последовательностей, как, например, SEQ ID NOs:9, 10, 11, 12, 13, 14, 15, 16, 17. В некоторых вариантах реализации изобретения мРНК CFTR не природного происхождения, которые могут быть использованы для лечения муковисцидоза, по меньшей мере на 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% или 99% идентичны к любой из SEQ ID NO: 3, 9, 10, 11, 12, 13, 14, 15, 16, или 17.
ПРИМЕРЫ

[151] Последующие специфичные примеры должны рассматриваться как чisto иллюстративные и не никаким образом не ограничивающие оставшееся описание. Без дальнейших уточнений, предполагается, что специалист в данной области техники на основе приведенного в данном документе описания сможет в полной мере использовать данное изобретение.

[152] Если не указано иное, mPHK CFTR и PHK SNIM, которые использовались в показанных тут примерах, состояли из 5’ UTR с последовательностью SEQ ID NO: 4, кодируемых последовательностей (CDS) с последовательностью SEQ ID NO: 3, и 3’ UTR с последовательностью SEQ ID NO: 5. mPHK FFL и PHK SNIM, которые использовались в показанных тут примерах, состояли из 5’ UTR, кодируемых последовательностей (CDS) и 3’ UTR с последовательностями SEQ ID NOS: 6, 7, и 8, соответственно.

Пример 1. Синтезированная in vitro mPHK, кодирующая CFTR

[154] Типичные не встречающиеся в природных условиях mPHK CFTR, включая SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ UD NO:15, SEQ ID NO:16, или SEQ ID NO:17 описанные в Кратком Описании раздела Последовательности.

Пример 2. Экспрессия CFTR и его активность в клетках НЕК

[155] Этот пример показывает, что из доставленной в клетки синтетической mPHK человеческого CFTR экспрессировался полностью функциональный белок CFTR.
Клетки и трансфекция CFTR. Человеческие эмбриональные клетки почек HEK293T были выращены в DMEM (Invitrogen Cat №11965-092) с добавлением 10% эмбриональной телячей сыворотки, 2 мМ L-глютамина, 100 ЕД/мл пенициллина и 100 мкг/мл стрептомицина. За день до трансфекции клетки высевали в 6-луночные плашки при конфлюэнтности 50-60% и инкубировали при нормальных условиях культивирования тканей (36 °C во влажной атмосфере с 5% CO2 и 95% воздуха). 60 мкл липофектина 2000 (Invitrogen Cat № 11668019) разбавляли в 900 мкл среды OptiMem со сниженным содержанием сыворотки (Invitrogen Cat № 31985-062) и осторожно перемешивали с помощью вортекса. 24 мкг mРНК CFTR (4 мкг на лунку) разбавляли в 900 мкл среды OptiMem. К разбавленному липофектину немедленно добавляли mРНК и инкубировали при комнатной температуре в течении 30 минут. Культуральную среду HEK293T аккуратно удаляли путем аспирации и заменяли на 1 мл среды OptiMem со сниженным содержанием сыворотки. В каждую лунку добавляли по 300 мкл комплекса mРНК/липофектин, после чего клетки пребывали в нормальных для культивирования клеток условиях в течении 24 часов, предшествующих повторному посеву путем механического отделения от покрытых поли-L-лизином покровных стекол (BD Biosciences, BD Biocoat), таким образом клетки могли быть легко перемещены в регистрирующую камеру для электрофизиологической записи. Клетки инкубировали в стандартных для культивирования тканей условиях в течение как минимум последующих 24 часов и были использованы в эксперименте в течение 48 часов после последнего пассажа.

Электрофизиологические исследования. Локальную фиксацию потенциала клеточной мембраны с конфигурацией «whole cell» проводили при комнатной температуре при помощи усилителя Axopatch 200B с использованием электродов с сопротивлением 5-8 МОм. Данные были оцифрованы (50 кГц) и отфильтрованы (5 кГц), соответственно. Для минимизации погрешности напряжения была осуществлена компенсация добавочного сопротивления (70-80%). Измерения фиксации потенциала проводились со следующим пищеточным раствором: 140 мМ NMDG-Cl; 5 мМ EGTA; 1 мМ MgCl2; 10 мМ HEPES; pH 7,2; 310 мOsm/l. Омывающий раствор содержал: 140 мМ NaCl, 3 мМ KCl, 2 мМ MgCl2, 2 мМ CaCl2, and 10 мМ HEPES; pH 7,3, доведенный до 315 мOsm/l D-глюкозой. Измерения фиксации потенциала начинались через 3-5 минут после установления конфигурации whole-cell.
На измеряемые клетки HEK293T был направлен фиксированный потенциал в -60 мВ или 0 мВ и последовательность из положительных и отрицательных шагов потенциала (от -80 мВ до +80 мВ или от -100 до +100 мВ с шагом 20 мВ) с целью вызвать CFTR-индуцированные «whole-cell» хлорные (Cl-) токи. Мембранно-проницаемый аналог cAMP, 8-Br-cAMP (500 мкМ, Sigma Aldrich) был добавлен на 4 мин в измеряемые клетки для повышения токов CFTR. ‘Эталонный’ блокатор CFTR, CFTRinh-172 (10 мкмМ, Sigma) добавлялся в конце каждого измерения для блокирования CFTR-индуцированного тока Cl-. Контрольные измерения были проведены на нетрансфекционных клетках HEK293T.

Тестируемые вещества. Тестируемые вещества применялись с использованием быстрой перфузционной системы DAD-16VC (ALA Scientific Instruments, США) с пипеткой, размещенной приблизительно в 200 мкм от измеряемой клетки. 8-Br-cAMP был приготовлен со стоковой концентрацией 500 мМ в ddH2O. CFTRinh-172 был приготовлен со стоковой концентрацией 10 мМ в DMSO. Все вещества сохранялись при -20°C и перед самым использованием быстро размораживались и разводились в нужной конечной концентрации.

Анализ. Все анализы проводились с использованием программ Clampfit (MDS Analytical Technologies) и Excel (Microsoft). Все значения являются амплитудами вызванного максимального пикового тока. Статистические различия в данных были установлены с помощью t-критерия Стьюдента, для зависимых или независимых выборок, и считались значимыми при \(P < 0,05 \).

In vitro продукция человеческого белка CFTR. Продукция человеческого белка CFTR с помощью mPHK hCFTR производилась путем трансфекции mPHK человеческого CFTR в описанные в данном документе клетки HEK293T. Обработанные и необработанные клетки были отобраны и подвергнуты методам иммунопреципитации через 24 часа после трансфекции. Детекция человеческого белка CFTR методом Вестерн блота демонстрирует, что из синтетической матричной PHK был образован полноценный сложно гликозилированный белок CFTR (обозначен как "C"-бэнд) (фигура 1А).

In vitro активность человеческого белка CFTR. Для определения активности белка CFTR, полученного из синтетической mPHK человеческого белка CFTR после трансфекции, были проведены анализы локальной фиксации потенциала с конфигурацией «whole cell» в клетках HEK 293 и HEK 293T. Как обработанные, так и контрольные
клетки (необработанные и ложно трансфекированные) подвергались воздействию актигора (8-Br-cAMP, форсколин) и ингибитора (CFTRinh-172, GlyH-101) с целью определить разницу в токе (транспорт ионов хлора).

[163] НЕК293Т были трансфекированы 4 мкг mPHK hCFTR и проанализированы через 24 часа после трансфекции. Были проведены фиксации потенциала с «whole cell» конфигурацией для измерения тока, который является транспортом ионов хлора, при воздействии установленного потенциала. Вольт-амперный график изменения потенциала с -80 мВ до +80 мВ (изображен на фигуре 2) демонстрирует существенные различия в токе при сравнении необработанных и обработанных mPHK hCFTR клеток. Это повышение тока после добавления 8-Br-cAMP, известного актигора белка CFTR, позволяет предположить, что человеческий белок CFTR присутствует в этих клетках. При обработке этих ранее трансфекированных клеток известным специфичным ингибитором CFTR, CFTRinh-172, соответствующий ток опускался до уровня, близкого к контрольному (~89% уменьшения). Такое понижение после воздействия этого ингибитора подтверждает присутствие белка CFTR. Эти результаты вместе демонстрируют, что синтетическая mPHK hCFTR может образовывать активный белок CFTR.

[164] Кроме этого были проведены анализы активности CFTR с конфигурацией «whole cell» в клетках НЕК293 используя автоматизированную систему (IonWorks). Как описано выше, как обработанные, так и контрольные клетки (необработанные и ложно трансфекированные) подвергались воздействию субстратов актигора и ингибитора с целью определить разницу в токе (транспорт ионов хлора). В этих исследованиях форсколин был использован как актигор белка CFTR и часть клеток, трансфекированных mPHK hCFTR, далее были подданы воздействию специфичного ингибитора CFTR, GlyH-101. Считается, что GlyH-101 действует как блокатор поры CFTR, влияя на часть белка, расположенной на внешней стороне мембраны. Стоит отметить, что такой механизм действия отличается от такого у CFTRinh-172, для которого было проиллюстрировано функционирование с внутриклеточной стороны белка CFTR.

[165] Фигура 4 представляет вольт-амперный график родительских клеточных линий НЕК293, обработанных форсколином и GlyH-101. Не было замечено никаких значительных изменений в токе, что позволяет предполагать, что конкретно эти
специфичные активаторы/ингибиторы CFTR не оказывают никакого влияния на эндогенные белки, присутствующие в клеточной линии.

[166] Вольт-амперный график изменения потенциала с -100 mV до +100 mV (изображен на фигуре 5) демонстрирует существенные различия в токе при сравнении необработанных HEK293 клеток и обработанных mPHK hCFTR клеток. Это повышение тока после добавления форсиколина, известного активатора белка CFTR, позволяет предположить, что человеческий белок CFTR присутствует в этих клетках. При обработке этих ранее трансфецированных клеток известным специфическим ингибитором CFTR, GlyH-101, соответствующий ток опускался до уровня, близкого к контролльному (≈95% уменьшения). Такое понижение после воздействия этого ингибитора подтверждает присутствие белка CFTR.

[167] В итоге, эти данные относительно ингибитирования, являющиеся результатом двух различных механизмов, подтверждают наличие полностью функционального белка CFTR, образованного из синтетической матричной РНК человеческого CFTR.

Пример 3. In vivo экспрессия CFTR

[168] Этот пример демонстрирует, что белок CFTR эффективно экспрессируется in vivo из mPHK, кодирующей CFTR, доставленной введением в легкие.

[169] Протокол создания препарата 1. Аликовты по 50 мг/мл растворов С12-200, DOPE, холестерина и DMG-PEG2K в этаноле были смешаны и разбавлены этанолом до конечного объема 3 мл. Отдельно был приготовлен водный буферный раствор mPHК CFTR (10 мМ цитрата/150 мМ NaCl, pH 4.5) из 1 мг/мл стока. Липидный раствор был быстро введен в водный раствор mPHК и взболтан с образованием конечной суспензии в 20% этаноле. Образованная суспензия наночастиц была отфильтрована, диафильтрована с помощью 1x PBS (pH 7.4), после чего водой, сконцентрирована и хранилась при 2-8°C. Конечная концентрация = 1.09 мг/мл mPHК CFTR (инкапсулированная). Z_{ave} = 80.2 нм (Dv_{50} = 55.5 нм; Dv_{90} = 99.6 нм).

[170] Протокол создания препарата 2. Аликовты по 2.0 мг/мл водного раствора PEI (разветвленного, 25 кДа) были смешаны с водным раствором mPHК CFTR (1.0 мг/мл). Полученную сложную смесь перемешивали пипеткой несколько раз, после чего оставляли
на 20 минут перед инъекцией. Конечная концентрация = 0.60 мг/мл мPHK CFTR (инкапсулированная). $Z_{ave} = 75.9$ нм ($D_{v(50)} = 57.3$ нм; $D_{v(90)} = 92.1$ нм).

[171] Анализ белков FFL и CFTR, образованных через внутритрахеальное введение mPHK-содержащих наночастиц. Все исследования проводились с использованием самок BALB/C мышей или CFTR-нокаутных мышей.
Образцы FFL вводились прямой инстиляцией (MicroSprayer®) или небулазацией (PARI Boy или Aeroneb) соответствующей дозы инкапсулированной mPHK FFL. mPHK CFTR вводилась с использованием джет-небулайзера PARI Boy. Мыши убивались и перфузировались раствором соли после истечения времени на экспрессию.

[172] Внутритрахеальное введение mPHK FFL. Тестируемые материалы FFL вводились единичным внутритехейным аэрозольным введением с помощью Microsprayer™ (50 мкл/животное), при этом животные были анестезированы внутриперитонеальной инъекцией смеси кетамина 50-100 мг/кг и ксилазина 5-15 мг/кг.

[173] Введение mPHK FFL небулзиацией (растворением). Тестируемые материалы FFL вводились единичной аэрозольной ингаляцией с помощью небулизатора Aeroneb® Lab (номинальный объем дозы был до 8 мл/группу), Тестируемый материал доставлялся в клетку, содержащую всю группу животных (n=4) и связанную с потоком кислорода и системой мускоросбора.

[174] Введение mPHK CFTR. mPHK CFTR готовилась способом, описанным ниже в примере 6. Четыре CFTR-нокаутные мыши помещались в аэрозольную камеру и подвергались воздействию в общем 2 мг немодифицированной mPHK CFTR с оптимизированными кодонами (содержащую кодирующую последовательность SEQ ID NO: 3) посредством небулазации (джет-небулайзер Pari Boy) на протяжении около одного часа. Мыши были убиты через 24 часа после обработки.

[175] Умерщвление. Животные умерщвлялись удушением CO2 за соответствующие периоды времени после введения дозы (± 5%), за чем следовала торакотомия и обескровливание. Вся кровь (максимально возможный для получения объем) собиралась путем разрыва и отделения сердца.

[176] Перфузия. После обескровливания, все животные подвергались перфузии сердца соляным раствором. Вкратце, внутрикардиальная перфузия всего тела производилась введением в просвет левого желудочка иглы 23/21 размера,
присоединенной к шприцу объемом 10 мл, содержащему раствор соли. Правое предсердие рассекалось для предоставления дренажного стока для перфузии. На поршень применялось мягкое и устойчивое давление для перфузирования животного после размещения иглы в сердце. Адекватный поток промывочного раствора достигался в случае, если вытекающий поток перфузата был чистым (не было видимой крови), что означало, что промывочный раствор наполнил тело и процедура завершена.

Сбор тканей. После перфузии у всех животных были собраны печень и легкие (правое и левое). В выбранных группах приблизительно половина печени и оба (левое и правое) легких были раздроблены в жидким азоте и хранились при номинальной температуре -70°C. В выбранных группах приблизительно половина печени размещалась в одной гистологической кассете на животное. Дополнительно, легкие были наполнены 10% NBF через пиетку, помещенную в трахею. Трахея была перевязана лигатурой, и интактные легкие (правое и левое) и трахея были помещены в одну гистологическую кассету на животное. Все гистологические кассеты хранились при комнатных условиях в 10% NBF в течение 24 часов и переносились в 70% этанол.

Экспрессия FFL в мышах, обработанных FFL. При анализе образцов ткани была детектирована экспрессия FFL в мышах, обработанных FFL.

Экспрессия CFTR в CFTR-нокаутных мышах. Экспрессия CFTR была детектирована иммунопрепаратацией-Вестерн блот анализом мышцных легких, обработанных mPHK CFTR. “C”-энд, соответствующий зрелому белку, был детектирован во всех обработанных мышах но отсутствовал в контрольных мышах. Были использованы антитела MAB25031 (R&D Systems) для иммунопрепаратации и SAB4501942 (Sigma) для детекции в Вестерн блот анализе.

Этот пример демонстрирует, что белок CFTR может эффективно экспрессироваться in vivo из mPHK, доставленной введением в легкие. Более того, факт того, что mPHK CFTR была удачно доставлена в легкие CFTR-нокаутных мышей, что привело к в эффективной продукции белка в легких, означает, что in vivo продукция белка на основе mPHK CFTR может быть использована для лечения недостатка белка CFTR.
Пример 4. Доставка мРНК CFTR в легкие с использованием полимерных наночастиц

[181] Доставка матричной РНК человеческого CFTR в мышьные легкие может быть осуществлена путем ингаляции или небулизации. С использованием методов гибридизации in situ возможна детекция мРНК CFTR после внутритрacheального введения мышам наночастиц, наполненных мРНК человеческого CFTR. Введение может быть осуществлено с использованием наночастиц на основе липидов (например, C12-200) или же полимерных наночастиц (например, полиэтиленамина, PEI).

[182] Введение мРНК CFTR с использованием полимерных наносителей. CFTR-нокаутные мыши обрабатывались наночастицами, основанными на полиэтиленмине, наполненными мРНК CFTR, путем внутритрacheального введения (30 мкг инкапсулированной мРНК). Обработанные мыши умерщвелись через шесть и через 24 часа после введения, и легкие были собраны и зафиксированы в 10% нейтральным забуференном формалине (NBF). Гибридизация in situ была использована для детекции экзогенной мРНК человеческого CFTR (фигура 6). Через 24 часа после введения наблюдалось существенное окрашивание с широким распределением в обоих мышьных легких обработанных CFTR-нокаутных мышей, в то время как в контрольных мышах, обработанных PBS, не наблюдалось какой-то окраски.

[183] Анализ обработанных легких при больших увеличениях (до 20х увеличения) показал существенное положительное внутриклеточное окрашивание обоих легким в бронхиальных и альвеолярных участках (фигура 7). При дальнейшем увеличении (40х) наблюдалось положительное окрашивание в цитоплазме целевых апикальных клеток бронхов (фигура 8). Так что, можно предположить, что матричная РНК API была удачно доставлена в целевые апикальные клетки бронхов. Кроме того, в то время как можно видеть существенное окрашивание при 6 часах после введения, значительное положительное окрашивание еще наблюдалось через 24 часа после введения (фигура 9).

[184] Существенное положительное окрашивание наблюдалось через 24 часа после введения по обоим легким в бронхиальных и альвеолярных участках.
Пример 5. Доставка mPHK CFTR в легкие с использованием наночастиц на основе липидов

[185] Введение mPHK CFTR с использованием наноносителей на основе липидов. Как упомянуто выше, успешная доставка mPHK человеческого CFTR в легкие может быть осуществлена через реагенты для доставки на основе липидных наночастиц. В данном документе описываются примеры катионных липидных наночастиц, наполненных mPHK hCFTR, использующих C12-200 в качестве катионного липидного компонента.

[186] Успешная детекция mPHK человеческого CFTR в легких CFTR-нокаутных мышей была осуществлена с помощью гибридизации in situ. Нокаутные мыши обрабатывались 15 мкг mPHK hCFTR, инкапсулированной в липидных наночастицах на основе C12-200, и умерщвлялись через 6 часов после введения. Положительная детекция mPHK hCFTR наблюдалась в бронхиальных и альвеолярных участках обоих легких, а отличий от контрольных мышей, обработанных PBS (фигура 10).

[187] При дальнейшем увеличении (40x) наблюдалась положительная детекция mPHK CFTR в апикальной цитоплазме эпителиальных клеток бронхов, также как и во внутrikлеточных концевых альвеолярных участках (фигура 11).

[188] В общем, успешная доставка синтетической матричной РНК человеческого CFTR может быть достигнута с помощью систем доставки на основе как полимерных (PEI), так липидных (C12-200) наночастиц. Эти системы позволяют накапливать субстанции препарата внутри целевых клеток мышей. Более того, существенные количества mPHK hCFTR присутствовали в этих целевых клетках через 24 часа после введения.

Пример 6. Подтверждение экспрессии человеческого CFTR с помощью специфических антител

[189] Подтверждение, на основе антител, детекции человеческого белка CFTR в клетках мышей, свиней и культивированных клетках. Были проведены эксперименты с целью идентифицировать антитело, специфичное к белку hCFTR, которое не реагирует с мышцейным и свинным аналогом и которое доступно в достаточной мере для дальнейших экспериментов. Вкратце, тестирование различных анти-hCFTR антител из академических и коммерческих источников привело к идентификации комбинации анти-hCFTR антител,
которые способны детектировать человеческий белок CFTR после иммунопреципитации
и Вестерн блотинга (ИП/ВБ), при этом не проявляя перекрестной реактивности с
мышьяками или свинцом CFTR. Так что, на основе результатов ИП/ВБ были
идентифицированы подходящие антитела для детекции белка hCFTR, не имеющие
перекрестной реактивности с мышьяком или свинцом CFTR.

[190] Клетки трансформировались мРНК hCFTR и белковый лизат готовился с
использованием ProteoExtract Transmembrane Kit (Merck) через 24 часа после
трансфекции, трансмембранная фракция скринировалась на наличие hCFTR вестерн-
блотингом используя мышьякое антитело к человеческому CFTR (MA1-935). Как
положительный контроль использовались лизаты из клеток 16HBE. Фигура 12A
иллюстрирует данные из клеток CHO и COS-7.

[191] Клетки почек новорожденных хомяков (BHK), описанные в литературе как
CFTR-негативные, трансформировали подобно клеткам CHO и COS-7, после чего белковые
лизаты анализировались при помощи вестерн-блот гибридизации. В отличие от данных
ранее опубликованных отчетов, четкий позитивный сигнал наличия CFTR был обнаружен
при помощи моноклональных анти-CFTR антител мыши (фигура 12B). Для проверки
специфичности антител, используемых в вестерн-блот анализе, клетки почек свиньи из
нокаутной по CFTR-нокаутной свиньи (PKC), любезно предоставленные Проф. Eckhardt
Wol (Ludwig Maximilians University, Мюнхен), были использованы в экспериментах по
tрансфекции, после чего белковые лизаты проверялись на наличие экспрессии CFTR. Как
видно из рисунка 12В, в клетках PKC не было обнаружено никаких сигналов CFTR. Тем
не менее, трансфекция также не приводила появлению к каких-либо сигналов,
свидетельствующих о наличии hCFTR. Применяя люциферазу для контроля
эффективности трансфекции, было обнаружено, что экспрессия люциферазы в клетках
PKC была в несколько раз ниже, чем в клетках CHO или COS-7. В связи с тем, что
значимых отличий в интенсивностях окраски бэндов hCFTR после трансфекции во всех
проанализированных клеточных линиях обнаружено не было, был проведен более
чувствительный и специфичный к hCFTR общий скрининг других антител hCFTR.

[192] Скрининг антител при помощи Вестерн-блот гибридизации. Белковые
лизаты были получены с клеточной линией клеток бронхиального эпителия человека
(BEAS-2B), линии эмбриональных клеток почки человека (HEK), мышьяков и свинцовых
легких при помощи ProteoExtract Transmembrane Kit (Merck), после чего трансмембранная
фракция была использована для иммуноблоттинга с применением различных первичных антител (MA1-935 от Thermo Scientific Pierce Antibodies, Rockford, IL, USA, AB596 от Cystic Fibrosis Consortium, University of Pennsylvania, PA, USA, и AB570 от Cystic Fibrosis Consortium, University of Pennsylvania, PA, USA). Данные обобщены на фигуре 13.

[193] В то время как MA1-935 показали наличие CFTR во всех трех образцах, AB596 выявили человеческий и мышьный, но не свиной CFTR, а антитела G449 специфично определяли только человеческий CFTR. В случае с AB570 не совсем понятно, действительно ли являлись обнаруженные в мышьных и свинных образцах бэнды с немного низкой молекулярной массой CFTR или были неспецифичными продуктами. В последующих экспериментах (данные не показаны), было установлено, что MA1-935 распознавали бэнд, который не являлся CFTR. Таким образом, в целом, результаты полученные с использованием MA1-935 рассматривались как подтверждающие полученные с использованием других антител результаты, но эксперименты, в которых единственными анти-CFTR антителами, которые применялись, были MA1-935, не считались убедительными.

[194] Иммунопрептипация hCFTR (IP-hCFTR) из образцов тканей. Учитывая, что все подвергшиеся анализу антитела приводили к образованию нескольких неспецифических бэндов и ни один из них не произвел паттерн бэндов, характерный для hCFTR (C-бэнд, представляющий полностью гликозилированный белок и V-бэнд, представляющий основную маннозилированную форму), иммунопрептипация (IP) hCFTR и последующий анализ при помощи Вестерн-блоттинга был применен для повышения чувствительности и специфичности анализа, приводя тем самым к увеличению соотношения сигнал-шум.

[196] Иммунопрептипация hCFTR с использованием трех различных антител (R29, R66/17 и R66/16), с последующей иммунодетекцией при помощи AB596,
показывала специфичную детекцию белка hCFTR в белковых лизатах из легких свиней, обработанных аэрозолем SNIM РНК hCFTR, как описано ниже в примере 8 (фигура 14).

[198] Иммунопреципитация hCFTR (IP-hCFTR) из in vitro трансфектированных клеток. Предварительные результаты ИП с использованием материалов тканей из свиней свидетельствовали о технической возможности детекции hCFTR после доставки транскрипта in vivo. Тем не менее, так как ни одно из антител, использованных в иммунопреципитации CFTR (R29, R66/17 и R66/16) не доступно для покупки, были исследованы другие коммерчески доступные антитела на предмет их эффективности в реакциях ИП. Были тестированы два антитела из R&D systems (MAB25031 и MAB1660).

[199] Белковые лизаты готовились из клеток T84 и 500 мкг общего белка использовалось в реакции ИП с использованием разных концентраций антитела MAB25031. После этого, количество иммунопреципитированного белка hCFTR детектировалось иммуноблоттингом с использованием AB570 (Cystic Fibrosis Foundation). В этих условиях AB596 создавало намного более высокий фон, поэтому далее не тестировалось. Как проиллюстрировано на фигуре 16A, при увеличении концентрации ИП антитела с 2 мкт/мл до 4 мкт/мл не наблюдалось дальнейшего повышения количества преципитированного белка CFTR. Были детектированы как полностью гликозилированная, так и коровая формы (C- и В-бэнд, соответственно). Те же иммунопреципитаты также были скринированы с использованием MAB1660 как первичного антитела в Вестерн блоте. Тем не менее, с этим антителом был виден только С-бэнд (фигура 16В).

[200] После успешной детекции эндогенного hCFTR из иммунопреципитатов T84 с использованием антитела MAB25031 были проведены эксперименты в клетках NIH3T3 с целью детектировать белок hCFTR после трансфекции. Клетки NIH3T3 были трансфектированы SNIM РНК hCFTR. Белковые лизаты были приготовлены через 72 часа
после трансфекции и количества белка оценивались методом BSA. Человеческий белок CFTR иммунопреципитировался из 500 мкг общего белкового лизата с использованием 2 мкг/мл антитела MAB25031 с последующим иммунооблотингом с использованием AB570 (фигура 17). Тем не менее, не было детектировано CFTR. Клетки, трансфектированные mPHK, кодирующей LacZ, были проанализированы как контрольные образцы эффекта трансфекции как такового на количество белка CFTR.

[201] Повышение количества общего белка, использованного в иммунопреципитации, с 500 мкг до 8 мг не приводило к образованию детектируемого hCFTR после иммунодетекции AB570. Другое специфичное к hCFTR антитело, MAB1660 (R&D Systems), также было скринировано в иммунопреципитации (фигура 18). Тем не менее, это антитело не преципитировало CFTR так же эффективно, как MAB25031. Поэтому, все дальнейшие иммунопреципитации были выполнены с MAB25031.

[202] Отсутствие детекции hCFTR в образцах, трансфектированных mPHK, не обязательно означает отсутствие функциональности mPHK, так как кинетические эксперименты с использованием люциферазы как маркерного гена показали, что максимальная экспрессия с mPHK наблюдалась через 24 часа после трансфекции. Отсутствие детекции hCFTR вызвано скорее недостаточной концентрацией hCFTR в исследуемых образцах или отсутствием специфичности применяемых антител.

[203] Препарат PEI. Установленные условия были проверены на предмет их приемлемости для детектирования hCFTR после доставки SNIM PHK hCFTR в свиней (м. пример 7) в препарате наночастиц с разветвленным PEI в 25 кДа (“Препарат PEI”), приготовленным следующим образом. Требуемое количество SNIM PHK непосредственно перед применением было разбавлено в воде для инъекции (Braun, Melsungen) к общему объему 4 мл и быстро добавлено с использованием пипетки к 4 мл водного раствора разветвленного 25 кДА PEI при соотношении N/P 10. Раствор перемешивался с использованием пипетки десять раз и поочередно небулизировался как две отдельные фракции по 4.0 мл в легкие свиней с использованием указанного небулайзера. Как положительный и отрицательный контроль они рассматривались, соответственно, образец из областей легких свини №1, которые экспрессировали люциферазу, и другой образец из каудальной доли свиньи №2, где не детектировалась активность люциферазы, тем самым показывая отсутствие доставки mPHK и/или экспрессии. Белковые лизаты, приготовленные из этих образцов,
иммунопреципитировались с использованием MAB25031 (R&D Systems) и белок hCFTR детектировался с использованием AB570. Как проиллюстрировано на фигуре 19, экспрессия люциферазы коррелировала с экспрессией hCFTR. Образец из левой каудальной доли свиньи №2, где не детектировалась активность люциферазы, был также отрицательным по hCFTR (полоса 1), в то время как hCFTR детектировался в образцах из свиньи №1, которые были положительными по люциферазе (полоса 2).

Пример 7. Аэрозольная доставка мРНК

[204] Установление аэрозольной доставки мРНК в легкие свиней. Аэрозольное введение SNIM PHK люциферазы светлячка (FFL) в легкие свиней было произведено с помощью последовательной процедуры эксперимента. На первой стадии препараты SNIM PHK FFL были небулизированы в анестезированных свиней при контролируемой вентиляции. На второй стадии легкие были немедленно вырезаны после завершения аэрозольного введения и фрагменты легких инкубировались в культуральной среде в течении ночи перед тем, как в них производилось ex vivo измерение люциферазы с помощью BLI.

[205] Свиньи породы немецкий ландрас были получены в Техническом Университете Мюнхена, Вайнштейн, Германия. Вес свиней составлял от 35 до 90 кг. Каждая обработке выполнялась на одной свиньи. В сумме были обработаны пять свиней. Первая свинья (весом 90 кг) обрабатывалась SNIM PHK FFL в препарате PEI из примера 6, используя меш-небулизер EFlow и измерение активности люциферазы в гомогенатах легких. Вторая свинья (весом 60 кг) обрабатывалась SNIM PHK FFL в препарате PEI из примера 6, используя джет-небулизер PARI BOY и измерение активности люциферазы в фрагментах легких с помощью BLI. Третья свинья (весом 60 кг) обрабатывалась SNIM PHK FFL в препарате PEI из примера 6, используя джет-небулизер PARI BOY и измерение активности люциферазы в фрагментах легких с помощью BLI. Четвертая свинья (весом 60 кг) обрабатывалась SNIM PHK FFL/ mPHK hCFTR в препарате PEI из примера 6, используя меш-небулизер Aeroneb и измерение активности люциферазы в фрагментах легких с помощью BLI. Пятая свинья (весом 35 кг) обрабатывалась SNIM PHK FFL/ в препарате HGT5001 из примера 6, используя меш-небулизер Aeroneb и измерение активности люциферазы в фрагментах легких с помощью BLI.
Седация свиней осуществлялась путем их премедикации азапероном в дозе 2 мг/кг массы тела, кетамином в дозе 15 мг/кг массы тела, атропином в дозе 0,1 мг/кг веса тела с последующей капельной внутривенной инфузии в латеральную ушную вену. По мере необходимости осуществлялось анестезирование свиней путем внутривенного введения пропофола в дозе 3-5 мг/кг веса тела. Анестезия поддерживалась изофуроном (2-3%) и введением ударной дозы 1% пропофола в дозе от 4 до 8 мг/кг массы тела для усиления анестезии в случае необходимости. Длительность анестезии равнялась около 1-3 часам. Свиньи были убиты инъекцией ударной дозы пентobarбитала (100 мг/кг массы тела) и хлорида калия в латеральную ушную вену. Легкие вырезались и собирались фрагменты тканей из разных участков легких, с последующей инкубацией в культуральной среде в течение ночи. Для измерения активности люциферазы образцы ткани либо гомогенизировались и анализировались при помощи трубчатого фотометра, или же инкубировались в среде, содержащей субстрат D-люциферин и ex vivo подвергались люциферазной BLI.

Детали и результаты для свиньи №1. Постановка эксперимента проиллюстрирована на фигуре 20. Для аэрозольного введения меш-небулайзер EFlow был линейно связан с вентиляционной трубкой респиратора. Аэрозольное введение занимало около 60 минут и было дольше, чем ожидалось из контрольных экспериментов с открытыми системами. Это, по-видимому, было обусловлено увеличением обратного давления в течении небуллизации, о чем свидетельствует аэрозольный отток в резервуаре меш-небулайзера. Были приготовлены восемь миллилитров препарата PEI из примера 6, содержащего 1 мг SNIM PHK FFL в воде для инъекции, как описано в WP5, которые были небуллизированы двумя отдельными порциями по 4 мл каждая. Измерение активности люциферазы проводили в гомогенатах образцов тканей легких, вырезанных из различных частей легких, после инкубации в культуральной среде в течение ночи. Значения экспрессии были нанесены в соответствии с происхождением фрагментов легких (фигура 21).

Результаты показали экспрессию люциферазы в тканях свинных легких. Экспрессия люциферазы была наивысшей в центральных частях легких и затухала к более дальним частям легких. Паттерн экспрессии коррелировал с ожидаемым паттерном расположения вдыхаемых SNIM PHK FFL в PEI наночастицах, в соответствии с выбранными параметрами вентиляции. Уровни экспрессии люциферазы были в тех же
пределах, что и наблюдаемые в экспериментах с мышами в WP5 с использованием того же препарата PEI из примера 6.

[209] Детали и результаты для свиньи № 2. Аэрозольное введение SNIM PHK FFL в препарате PEI из примера 6 было проведено в свинье №2, а также в свинье №1, но активность люциферазы измерялась методом измерения биолюминесценции (BLI). Этот эксперимент был проведен для измерения люциферазы с помощью BLI в культивированных фрагментах легких. Активность люциферазы отчетливо наблюдалась в отдельных фрагментах тканей разных участков легких обработанной свиньи (фигура 22). Эксперимент подтвердил результаты, полученные из свиньи №1.

[210] Детали и результаты для свиньи № 3. Аэрозольное введение в свиней №1 и №2 с использованием меш-небулайзера EFlow выявило некоторые технические сложности и неадекватное время небулизации. Поэтому, свинья №3 обрабатывалась джет-небулайзером PARI BOY, связанным с вентиляционными трубками через T-коннектор. Аэрозольное введение длилось дольше (около 80 минут), чем с меш-небулайзером EFlow и аэрозольное введение было неудовлетворительным. Очень слабая активность люциферазы наблюдалась в срезах легких из разных участков легких обработанной свиньи (фигура 23).

[211] Детали и результаты для свиньи № 4. Результаты предыдущих исследований показали, что меш-небулайзер лучше подходит для аэрозольного введения в легкие свиньи в выбранной установке, чем джет-небулайзер. По этой причине, другой меш-небулайзер был тестирован для этой цели, который удовлетворительно небулизировал препарат PEI из примера 6 при тестировании в открытой системе. Свинья №4 обрабатывалась меш-небулайзером Aeroneb, линейно соединенным с трубкой респиратора. В этом эксперименте 1 мг mPHK hCFTR доставлялся совместно с 1 мг SNIM PHK FFL в препарате PEI из примера 6. Это было сделано для проверки стабильности и совместимости с небулизацией объединенных препаратов SNIM PHK FFL /mPHK hCFTR-PEI наночастиц относительно повторения дозировки для проведения в примере 8. Препарат оказался стабильным и не показывал несовместимости с небулизацией. Активность люциферазы отчетливо наблюдалась в отдельных фрагментах тканей разных участков легких обработанной свиньи (фигура 24).

[212] Эксперимент подтвердил результаты, полученные из свиньи №1 и свиньи №2, хотя были получены более высокие значения экспрессии. Эксперимент показал, что
меш-небулайзер Aeroneb оказался наиболее подходящим для доставки в легкие свиней препарата PEI из примера 6. Более того, эксперимент показал, что SNIM PHK FFL сохраняла активность при совместной доставке с мPHK hCFTR.

[213] Детали и результаты для свиньи №5. Свинья №3 обрабатывалась 1 мг SNIM PHK FFL в препарате HGT5001 из примера 6 путем распыления меш-небулайзером Aeroneb. Препарат может быть распылен без технических сложностей. Активность люциферазы отчетливо наблюдалась в отдельных фрагментах тканей разных участков легких обработанной свиньи (фигура 25).

[214] Эксперимент показал, что SNIM PHK FFL в препарате HGT5001 из примера 6 проявляет активность в тканях легких свиней, хотя уровни экспрессии были в около 15-20 раз меньше, чем у свиней, обработанных препаратом PEI из примера 6.

[215] Заключение. Были получены успешные результаты с использованием меш-небулайзера Aeroneb с препаратом PEI из примера 6. Четыре свиньи обрабатывались препаратом PEI из примера 6 с целью определить оптимальную установку эксперимента для аэрозольной доставки. Результаты показали, что экспрессия люциферазы может быть детектирована в гомогенатах легких свиней методом BLI. Экспрессия люциферазы была наивысшей в центральных частях легких и была еле заметна в дальних частях легких. Было установлено, что наилучшие результаты, вместе с наиболее коротким временем доставки, показывал меш-небулайзер Aeroneb. В соответствии с этими экспериментами, другая свинья была обработана SNIM PHK FFL, инкапсулированной в препарате HGT5001 из примера 6. Хотя экспрессия люциферазы отчетливо наблюдалась в некоторых частях легких свиней, уровни экспрессии были меньше, чем для SNIM PHK FFL в препарате PEI из примера 6. Результаты этой части работы явно демонстрируют, что доставка SNIM PHK в легкие свиней, как преклиническую модель большого животного, была возможна с использованием разных препаратов, таких как препарат на основе полимеров (например, PEI) и препарат на основе липидов (например, HGT5001). Результаты этого примера предоставляют доказательство концепции доставки SNIM PHK, используя небулайзеры, применимые в клинической практике, в легкие больших животных, что близко имитирует ситуацию с человеческими пациентами.
Пример 8. In vivo доставка мРНК (еженедельная доза)

[216] Было произведено испытание для установления целесообразности еженедельного аэрозольного применения у свиней. Целесообразность была определена проведением трех аэрозольных обработок модифицированной мРНК с интервалами в одну неделю, при которых не вызывались заболевания легких (отсутствие побочных эффектов, выше чем 2 степени). Дополнительными целями было установить: 1) степень недомогания животных, 2) побочные эффекты лабораторных и клинических осмотров свиней и 3) замеры образованных белков (люциферазы и hCFTR).

[217] Было проведено повторяющееся аэрозольное введение SNIM PHK в препарате PEI в легкие свиней. Группы по двое свиней обрабатывались SNIM PHK FFL/SNIM PHK hCFTR в препарате PEI из примера 6, один, два или три раза с короткими интервалами. Контролем служили две необработанные свиньи. Через 24 часа после обработки легкие были вырезаны и ex vivo активность люциферазы измерялась в изолированных легких методом BLI. Экспрессия белка hCFTR анализировалась с использованием ИП/ВБ. Для детекции экспрессии люциферазы на клеточном уровне применялась иммуногистохимия (ИГС). Токсикология изучалась измерением воспалительных цитокинов в содержаниях сыворотки и крови. На образцах легких применялась гистопатология. Протокол исследования "пилотного проекта: Повторяемое применение модифицированной мРНК для установления животной модели для аэрозольной терапии муковисцидоза у свиней" был утвержден местными властями перед началом экспериментов (лицензия для экспериментов над животными №: 0-045-12).

[218] Дизайн эксперимента. Свиньи, немецкий ландрас, самки возрастом около 6 недель (в среднем массой ~25 кг) на момент небуллизации, были куплены в техническом Университете Мюнхена, Вайнштейн, Германия. Свиньи были распределены случайным образом и обрабатывались в соответствии со схемой ниже (Таблица 3). Группы обработки, в каждой по 2 свиньи, были следующие:

Группа 0. Контрольная группа без обработки

Группа I. Аэрозольное введение 1 мг SNIM PHK FFL и 1 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в первый день.

Группа II. Аэрозольное введение 2 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в первый день, и 1 мг SNIM PHK FFL и 1 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в день 8.
Group III. Аэрозольное введение 2 мг SNIM PHK hCFTR (6379-186) в препарате PEI, из примера 6, в день 1 и 8, аэрозольное введение 1 мг SNIM PHK FFL и 1 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в день 15.

[219] Схема обработки и оценки каждой группы показана в таблице 3. Кроме показанных вмешательств, также каждый день проводился медицинский осмотр свиней.

<table>
<thead>
<tr>
<th>Группа 0 (необработанные животные):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1° Euth.</td>
</tr>
<tr>
<td>Bw ↓ d1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа 1 (1 аэрозольное применение: срок существования 1д):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1° 1° Bw</td>
</tr>
<tr>
<td>AA Euth. ↓ ↓</td>
</tr>
<tr>
<td>d1, d2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа 2 (2 аэрозольных применения: срок существования 8д):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1° 1° 2° 2° Bw</td>
</tr>
<tr>
<td>AA Euth ↓ ↓ ↓ ↓</td>
</tr>
<tr>
<td>d1, d2, d3, d4, d5, d6, d7, d8, d9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа 3 (3 аэрозольных применения: срок существования 15д):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1° 1° 2° 2° 3° 3° Bw</td>
</tr>
<tr>
<td>AA Euth ↓ ↓ ↓ ↓ ↓</td>
</tr>
<tr>
<td>d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16</td>
</tr>
</tbody>
</table>

[221] Процедура эксперимента. Седация свиней осуществлялась путем их премедикации азепероном в дозе 15 мг/кг массы тела, кетамином в дозе 15 мг / кг массы тела, атропином в дозе 0,1 мг / кг веса тела с последующей капельной внутривенной инфузией в латеральную ушную вену. По мере необходимости осуществлялось анестезирование свиней путем внутривенного введения пропофола в дозе 3-5 мг / кг веса.
тела. По мере надобности, анестезия поддерживалась непрерывной внутривенной инфузий 1% пропофола. Параметры вентиляции подбирались исходя из их концентрации углекислого газа в выдыхаемом воздухе и при необходимости регулировались. Анестезия, респираторные и сердечно-сосудистые параметры постоянно контролировались при помощи пульсоксиметрии, капнографии, ректального датчика температуры и контроля рефлекторного статуса. Животным вводили сбалансированный раствор электролитов в дозе 10 мл/кг/ч. Длительность анестезии равнялась около 80-120 мин. При изменении показателей спонтанного дыхания, свиньи экстубировались. Свиньи умерщвлялись инъекцией ударной дозы пентобарбитала (100 мг / кг массы тела) в латеральную ушную вену, последующую седацию. Легкие вырезали и разрезали на препараты образцов тканей толщиной около 1 см, которые были собраны из разных участков легких, после чего инкубировались в культуральной среде. Для измерения люциферазной активности образцы ткани инкубировались в культуральной среде, содержащей субстрат D-Дициферин и подвергались ex vivo BLI люциферазы.

Экспрессия люциферазы в обрабатываемых группах, определенная с помощью BLI

[222] В группе 0 (контрольная группа, не подвергалась обработке), люциферазная активность не обнаружена в срезах легких (фигура 26).

[223] В группе I (аэрозольное введение 1 мг SNIM PHK FFL и 1 мг SNIM PHK hCFTR в препарате PEI из примера 6) отчетливо детектировалась активность люциферазы во фрагментах легких один раз обработанных свиней №3 и №6 (фигура 27). Экспрессия люциферазы была наивысшей в центральных частях легких.

[224] В группе II (аэрозольное введение 2 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в первый день, и 1 мг SNIM PHK FFL и 1 мг SNIM PHK hCFTR в препарате PEI, из примера 6, на 8 день), отчетливо детектировалась активность люциферазы во фрагментах легких дважды обработанных свиней №4 и №8 (фигура 28). Экспрессия люциферазы была наивысшей в центральных частях легких. Стоит упомянуть, что образцы хранились дополнительные 10 часов в культуральной среде перед измерением из-за пропадания электричества в день измерений и соответствующих технических проблем с системой BLI.

[225] В группе III (аэрозольное введение 2 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в день 1 и день 8, аэрозольное введение 1 мг SNIM PHK FFL и 1 мг SNIM PHK hCFTR в препарате PEI, из примера 6, в день 15), отчетливо детектировалась
активность люциферазы во фрагментах легких трижды обработанных свиней №1 и №2 (фигура 29). Экспрессия люциферазы была наивысшей в центральных частях легких.

[226] Свойства наночастиц SNIM PHK-PEI. Размеры частиц и дзэта-потенциал измерялись для препаратов PEI SNIM PHK перед небулизацией (Таблица X1). Наночастицы SNIM PHK-PEI могут быть воспроизводимо образованы с размером 25-37 нм и дзэта-потенциалом 30-49 мВ.

Таблица X1. Измерения размера частиц и дзэта-потенциала

<table>
<thead>
<tr>
<th>Свинья №</th>
<th>Обработка №</th>
<th>Радиус ± С.О.(нм)</th>
<th>Дзэта-потенциал ± С.О.(мВ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>26.7±0.3</td>
<td>36.9±5.9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>33.3±0.6</td>
<td>42.5±5.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>31.6±0.4</td>
<td>41.3±3.4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>24.7±0.5</td>
<td>32.9±3.3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>34.9±0.2</td>
<td>41.5±1.4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>32.5±0.4</td>
<td>29.1±1.1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>35.2±0.8</td>
<td>42.9±1.9</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>36.9±1.1</td>
<td>45.4±0.6</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>27.5±0.1</td>
<td>30.5±6.6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>33.0±0.8</td>
<td>49.1±3.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>25.5±0.1</td>
<td>44.0±2.1</td>
</tr>
</tbody>
</table>

[227] Экспрессия люциферазы в обрабатываемых группах, определенная с помощью ПГХ. ИГХ FFL проводили на срезах образцов тканей легких (Sophistolab AG, Эглиссуэ, Швейцария), которые были BL1-положительными и сравнивались с тканями легких контрольных свиней и с люцифераза-позитивными опухольевыми тканями мыши как положительным контролем. Как и следовало ожидать, сильный сигнал был обнаружен в люцифераза-позитивных опухольевских тканях мыши, в то время как в легочной ткани контрольной с свиньи не обнаружено специфичного окрашивания. Явно детекируемый паттерн окрашивания мог наблюдатьться в тканях легких свиньи №1, которая обрабатывалась трижды. Наиболее выраженной экспрессией FFL была в эпителии бронхов больших и малых дыхательных путей (Фигура 30).

[228] Детекция белка hCFTR в тканях легких свиней, обрабатываемых при помощи ИП/ВБ. Высоко BL1-положительная ткань трижды обработанной свиньи была поддана ИП/ВБ в соответствии с протоколом, описанным van Barneveld A et al., Cell
Physiol Biochem. 30, 587-95 (2012) (Фигура 31). Зрелый сложногликозирированный hCFTR проявился в виде размытого так называемого С-энда. Обогащенный манозой hCFTR формировал более плотный так называемый В-энд. Сильная экспрессия hCFTR была обнаружена в клетках позитивного контроля T84 и легочных тканях свиньи №1, обработанной SNIM PHK hCFTR в препарате PEI в примере 6. Экспрессия белка hCFTR не наблюдалась в необработанных свиньях. Сравнение с экспрессией белка hCFTR в тканях легких человека из опубликованной работы, использующей идентичный протокол (van Barneveld A et al., выше) позволяет предположить, что экспрессия hCFTR в свиных тканях легких, после их аэрозольной обработки SNIM PHK hCFTR, была близка к такой в здоровых легких человека.

[229] Этот результат был в дальнейшем подтвержден использованием набора антител для детекции белка hCFTR с помощью ИП/ВБ в обработанных свиных легких (см. пример 6). Как положительный и отрицательный контроли рассматривались, соответственно, образец из областей легких свиньи №1, которые экспрессировали люциферазу, и другой образец из каудальной доли свиньи №2, где не детектировалась активность люциферазы, тем самым показывая отсутствие доставки mPHK и/или экспрессии. Белковые лизаты, приготовленные из этих образцов, иммунопреципитировались с использованием MAB25031 (R&D Systems) и белок hCFTR детектировался с использованием AB570. Как проиллюстрировано на фигура 32, экспрессия люциферазы коррелировала с экспрессией hCFTR. Образец из левой каудальной доли свиньи №2, где не детектировалась активность люциферазы, был также отрицательным по hCFTR (полоса 1), в то время как hCFTR детектировался в образцах из свиньи №1, которые были положительными по люциферазе (полоса 2).

[230] Токсикология: Предварительное оценивание образцов легких. Было проведено гистологическое оценивание образцов легких из трех животных после умерщвления. После введения в парафин, срезы образцов легких красились гематоксилином-эозином для морфологического исследования. Результаты были согласованными среди образцов из трех свиней, две из которых (свинья №1 и свинья №2) получали три аэрозольных введения, а третья (свинья №7) являлась необработанным контролем, в которую не проводилось аэрозольного введения.
[231] **Токсикология: недомогание.** Только свиньи № 2 и № 1 показали легкие признаки недомогания на 2–4 день после обработки. Так что, три аэrozольных обработки в течении трех недель вызвали только легкое недомогание.

[232] **Токсикология: побочные эффекты.** Вид и частота побочных эффектов (ПЭ) анализировались лабораторными параметрами (кровь, MBS и БАЛ) и медицинским осмотром свиней (было вторично целью этих исследований).

[233] Образцы сыворотки и всей крови собирались в моменты времени, определенные протоколом исследования. Были выбраны двенадцать показательных параметров (гемоглобин, гематокрит, артериальное давление, АЛТ, АСТ, КК, билирубин, креатинин, глюкоза, калий, тромбоциты и бельые клетки крови), которые являются индикаторами органо-специфичных патологий (крови, спинного мозга, печени, мышц и почек), и результаты, полученные из VetMedLab, Людовигсбург, Германия, были классифицированы в соответствии с VCOG, версия 2011.

[234] Результаты показали, что свиней не наблюдалось сильных ПЭ (ПЭ степеней 3, 4 или 5 квалифицируются как сильные). Ухудшения лабораторных параметров после аэрозольной обработки SNIM PHK в препарате PEI из примера 6 не было. Малые изменения в некоторых параметрах (непример, КК или ферменты печени) более вероятно могли возникнуть вследствии экспериментальной процедуры как таковой (например, внутримышечных инъекций и анестезии). Также не было заметно никаких отрицательных эффектов при повторном применении - даже после третьего применения свиньи группы 3 не показывали ПЭ, выше чем ПЭ 2 степени. Даже ПЭ 1 и 2 степени были редки и не показывали корреляции с аэрозольной обработкой SNIM PHK в препарате PEI из примера 6.

[235] Кроме повторяемых проб крови, два других параметра также рассматривались для оценки патологических процессов в легких: i) жидкость бронхоальвеолярного лаважа (BALF) - полученная после умерщвления и ii) микробиологические пробы (MBS) (мазок из трахеи, взятый во время анестезии). BALF была взята с каждой свиньи при аутопсии и хранилась при -80°C для дальнейших обследований. Трахейные мазки брались перед каждой аэрозольной обработкой и обследовались микробиологически. Эти обследования показали широкий спектр патогенов, включая Bordetella bronchiseptica (обычный патоген дыхательного пути.
свиней) и Escherichia coli. Свиньи были один раз обработаны внутримышечной инъекцией тулатромицина (1 мл 10% Draxxin®).

[236] Медицинское обследование. В дополнение к лабораторным параметрам, было проведено медицинское обследование свиней в периоды наблюдения между аэрозольными обработками (подробности см. 1.1.2 в приложениях 1 и 2 протокола исследований. Так как не определено никаких систем документирования, оценок и присваивания происхождения ПЭ, для интервенций или чего-то другого, была использована система общего токсикологического критерия (СТС), установленная для собак и кошек (опубликована VOCG в 2011). Для оценки лабораторных параметров были использованы видоспецифичные ВГМ (верхняя граница нормы) и НГН (нижняя граница нормы). Клинические оценивания были сделаны по таким шести категориям ПЭ:

1) аллергические/иммунологические эффекты, 2) легочные/дыхательные; 3) конституционные клинические признаки; 4) дерматологические/кожные; 5) желудочно-кишечные; и 6) легочные/дыхательные.

[237] Результаты показали, что у свиней не наблюдалось сильных ПЭ (не было степеней 3, 4 или 5). Ухудшения параметров, полученных при медицинском обследовании, после аэрозольной обработки SNIM PHK в препарате PEI из примера было. Две свиньи из группы 3 показали степень ПЭ 1 и 2 по трем дыхательным параметрам (бронхоспазм/хрипы, отек гортани и диспноэ), но эти слабые или средние показатели ограничивались одним или двумя днями. Так как эти явления проявились только после первого применения анестезии/интубации/аэрозольной обработки в этих двух свиньях, но не после второго и третьего применения в этих же свиньях или любых других, то маловероятно, что эти показатели были вызваны исследуемыми веществами.

[238] Вывод. Результаты этого примера показывают, что препарат PEI со SNIM PHK, кодирующей FFL и hCFTR, может быть успешно доставлен в легкие свиней повторяемой аэрозолизацией, при этом не теряя активности после каждого цикла обработки и не проявляя побочных эффектов. Экспрессия люциферазы была наивысшей в центральных частях легких и была еле заметна в дальней частях легких. Паттерн экспрессии коррелировал с ожидаемым паттерном расположения препарата PEI из примера 6, в соответствии с выбранными параметрами вентиляции. Иммуногистохимия выбранных образцов легких из обработанных свиней показывает экспрессию люциферазы в основном в бронхиальном эпителие больших и малых дыхательных путей. ИП/ВБ
отчетливо демонстрируют проявление C-энда зрелого сложногликозилированного человеческого CFTR в легких обработанных свиней, который отсутствовал в легких необработанных свиней и люциферазо-отрицательных фрагментах легких. Экспрессия hCFTR в тканях легких свиней после аэрозольной обработки SNIM PHK hCFTR была сравнима с экспрессией hCFTR в легких здорового человека, если сравнивать ее с опубликованной работой, использующей идентичный протокол детекции hCFTR.
Побочные эффекты 1 и 2 степени были редки и не показывали корреляции с аэрозольной обработкой SNIM PHK в препарате PEI. Так что, экспрессия белка hCFTR была успешно показана в легких свиней, обработанных SNIM mPHK hCFTR.

Пример 9. mPHK, кодирующая CFTR, содержащая сигнальный пептид

[239] Этот пример демонстрирует, что белок CFTR может быть эффективно экспрессирован из mPHK, кодирующей CFTR, содержащей последовательность сигнального пептида.

[240] Синтез информационной PHK. Для эксперимента были синтезированы, с помощью in vitro транскрипции из плазмидной ДНК матрицы, используя стандартные методы, SNIM PHK кодон оптимизированного трансмембранныго регулятора муковисцидоза, меченого C-концевым (O-CFTR-C-His\textsubscript{10})(SEQ ID NO:15) кодон оптимизированного человеческого CFTR, имеющего сигнальную лидирующую последовательность (GH-CO-CFTR)(SEQ ID NO:16) и кодон оптимизированного человеческого CFTR (CO-CFTR)(SEQ ID NO:17). Клетки и трансфекция CFTR.
Человеческие эмбриональные клетки поочек HEK293T были выращены в DMEM (Invitrogen Cat №11965-092) с добавлением 10% эмбриональной телячьей сыворотки, 2 мМ L-глутамина, 100 ЕД/мл пенициллина и 100 мкг/мл стрептомицина. За день до трансфекции клетки высевали в 6-луночные плашки при конфлюэнтности 50-60% и инкубировали при нормальных условиях культивирования тканей (36 °C во влажной атмосфере с 5% CO2 и 95% воздуха). При подготовке к трансфекции, 60 мкл липоферктина 2000 (Invitrogen Cat № 11668019) разбавляли в 900 мкл среды OptiMem со сниженным содержанием сыворотки (Invitrogen Cat №31985-062) и осторожно перемешивали с помощью вортекса. Для эксперимента 4 мкг CO-CFTR, GH-CO-CFTR или CO-CFTR-C-His\textsubscript{10} SNIM PHK разбавлялись в 900 мкл среды OptiMem. К разбавленному Липоферктину® немедленно добавляли МРНК и инкубировали при
комнатной температуре в течение 30 минут. Культуральную среду аккуратно удаляли путем аспирации и заменяли на 1 мл среды OptiMem со сниженным содержанием сыворотки и 300 мкл каждого соответствующего комплекса mPHK/Lipofectamine®. Клетки инкубировали в стандартных условиях для культивирования тканей.

[241] **Вестерн-блют анализ.** Через около 48 часов после трансфекции клетки были убраны из соответствующих плашек и лизированы. Лизат всей клетки был подвергнут разделению с помощью SDS-PAGE и исследован вестерн блютом. Как проиллюстрировано на фигуре 33, сильная экспрессия человеческого белка CFTR детектировалась, антителами анти-CFTR (A и B) или анти-His (C), после трансфекции mPHK O-CFTR, GH-CO-CFTR и человеческого CO-CFTR-C-His$_{10}$ (фигура 33).

Пример 10. **In vivo** доставка mPHK CO-CFTR-C-His$_{10}$ в CFTR-нокаутных мышей

[242] **Анализ продукции человеческого CFTR, образующегося при внутретрахейном введении наночастиц, наполненных mPHK.** Все исследования проводились с использованием CFTR-нокаутных мышей. Препарат mPHK CFTR или контрольный реагент доставки вводились с использованием джет-небулайзера PARI Boy. Мыши убивались и перфузировались раствором соли после истечения заранее установленного времени на экспрессию белка из mPHK.

[243] **Синтез информационной РНК.** Для эксперимента были синтезированы, с помощью in vitro транскрипции из плазмидной ДНК матрицы, SNIM PHK кодон оптимизированного трансмембранныго регулятора муковисцидоза, меченого С-концевым His$_{10}$ и SNIM PHK кодон оптимизированной FFL.

[244] **Препарат PEI.** В подходе, доставка и экспрессия mPHK CO-CFTR-C-His$_{10}$ в легких CFTR-нокаутных мышей осуществлялась с использованием препаратов наночастиц, как полимерных, так и липидных. Полимерные препараты наночастиц с разветвленным 25 кДа PEI готовились следующим образом. Требуемое количество SNIM PHK непосредственно перед применением было разбавлено в воде для инъекции (Braun, Melsungen) к общему объему 4 мл и быстро добавлено с использованием пипетки к 4 мл водного раствора разветвленного 25 кДА PEI при соотношении N/P 10. Раствор перемешивался с использованием пипетки десять раз и поочередно небулизировался как
две отдельные фракции по 4.0 мл в легкие мышей с использованием указанного небулайзера.

[246] **Введение небулацией (распылением) mPHK человеческого CO-CFTR-C-His10.** Тестируемые материалы CFTR вводились единичной аэрозольной ингаляцией с помощью джет-небулайзера PARI Boy (номинальный объем дозы был до 8 мл/группу), Тестируемый материал доставлялся в клетку, содержащую всю группу животных (n=4) и связанную с потоком кислорода и системой муссоросбора.

[247] **Введение mPHK человеческого CO-CFTR-C-His10.** mPHK CFTR готовилась способом, описанным выше. Четыре CFTR-нокаутные мыши помещались в аэрозольную камеру и подвергались воздействию в общем 2 мг немодифицированной mPHK CFTR с оптимизированными кодонами (содержащую кодирующую последовательность SEQ ID NO: 3) посредством небулации (джет-небулайзер Pari Boy) на протяжении около одного часа. Мыши были убиты через 24 часа после обработки.

[248] **Умершление.** Животные умершевлялись удушением CO2 за соответствующие периоды времени после введения дозы (± 5%), за чем следовала торакотомия и обескровливание. Вся кровь (максимально возможный для получения объем) собиралась разрывом и отделением сердца.

[249] **Перфузия.** После обескровливания все животные подвергались перфузии сердца соляным раствором. Вкратце, внутрикардиальная перфузия всего тела производилась введением в просвет левого желудочка иглы 23/21 размера, присоединенной к шприцу объемом 10 мл, содержащему раствор соли. Правое предсердие рассекалось для предоставления дренажного стока для перфузии. На поршень применялось мягкое и устойчивое давление для перфузирования животного после размещения игры в сердце. Адекватный поток промывочного раствора достигался в случае, если вытекающий поток перфузата был чистым (не было видимой крови), что означало, что промывочный раствор наполнил тело и процедура завершена.
[250] Сбор тканей. После перфузии у всех животных были собраны печень и легкие (правое и левое). Оба (левое и правое) легких были раздроблены в жидким азоте и хранились при номинальной температуре -70°C.

[251] Экспрессия человеческого CFTR из mPHK CO-CFTR-C-His10 в CFTR-нокаутных мышах. Экспрессия CFTR была детектирована вестерн-блот анализом лизата тканей, собранных из мышинных легких, обработанных mPHK CFTR. "C"-бэнд, соответствующий зрелому белку, был детектирован в левом и правом легких во всех обработанных мышах, как для препаратов, основанных на липидах, так и для препаратов, основанных на полимерах (фигура 34). Появление "C"-бэнда было подтверждено сравнением с лизатом, собранным из клеток HEK 293T, положительных по человеческому CO-CFTR-C-His10, как описано в примере 9. В отличии от этого, в лизатах из необработанных мышей дикого типа не наблюдалось видимого сигнала (фигура 34). В целом, эти данные позволяют предположить, что как полимерный, так и липидный препараты (такие как препарат cKK-E12, приведенный выше) являются эффективными для доставки mPHK CFTR в легкие, пример, путем ингаляции, и при доставке кодон оптимизированная mPHK CFTR может эффективно экспрессировать человеческий белок CFTR.

Пример 11. In vivo изучение эскалации доз

[252] Эскалация дозы аэрозольной доставки mPHK, инкапсулированной в PEI, в легкие свиней. Аэрозольное введение в легкие свиней комбинации SNIM PHK люциферазы светляка (FFL) кодон оптимизированной SNIM PHK CFTR (CO-CFTR) при различных концентрациях было проведено с помощью последовательной процедуры эксперимента. На первой стадии препараты SNIM PHK FFL/CO-CFTR были небулизированы в анестезированных свиней при контролируемой вентиляции. На второй стадии, свиньи умерщвлялись инъекцией ударной дозы пентобарбитала (100 мг/кг массы тела) и хлорида калия в латеральную ушную вену после седации, через 24 часа после завершения аэрозольного введения. Легкие вырезались и разрезались на фрагменты тканей толщиной около 1 см. Для измерения активности люциферазы фрагменты тканей инкубировали в омывающей среде, содержащей субстрат D-люциферин и проводили ex vivo BLI люциферазы. После BLI, образцы из люциферазо-положительных и люциферазо-отрицательных участков были взяты на гистопатологию, иммуногистохимию и
гидридиации in situ. Оставшиеся фрагменты были резко заморожены в жидкок азоте после чего хранились при -80°C до анализов ИП/ВБ и Elisa.

[253] Синтез информационной РНК. В примере были синтезированы, с помощью in vitro транскрипции из плазмидной ДНК матрицы с использованием стандартных методов, SNIM PHK кодон оптимизированного трансмембранного регулятора муковисцидоза (CO-CFTR) и SNIM PHK кодон оптимизированной FFL.

[254] Дизайн эксперимента. Свиньи породы немецкий ландрас были получены в Техническом Университете Мюнхена, Вайенштефан, Германия. Вес свиней составлял от 35 до 90 кг. Исследования были организованы с использованием свиней, соответствующих как по возрасту, так и по весу, для контроля изменчивости. Единственная группа из 6 свиней (3 самца и 3 самки) была установлена для 4-направленного изучения. Первая группа обрабатывалась только водой для инъекций (WFI), которая вводилась с использованием меш-небулайзера Aeroneb. Вторая группа обрабатывалась раствором 1 мг SNIM PHK FFL и 1 мг SNIM PHK кодон оптимизированного человеческого CFTR (CO-CFTR) в препарате PEI, описанном ниже, с использованием меш-небулайзера Aeroneb. Третья группа получала 1 мг SNIM PHK FFL и 5 мг SNIM PHK кодон оптимизированного человеческого CFTR (CO-CFTR) в препарате PEI, описанном ниже. Четвертая группа обрабатывалась 1 мг SNIM PHK FFL и 10 мг SNIM PHK кодон оптимизированного человеческого CFTR (CO-CFTR) в препарате PEI, описанном ниже. Схема обработки и оценивания каждой группы показана ниже в таблице 4

<table>
<thead>
<tr>
<th>Группа</th>
<th>Свиньи (№ и пол)</th>
<th>Обработка</th>
<th>Препарат</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 (3 самца + 3 самки)</td>
<td>N/A</td>
<td>WFI</td>
</tr>
<tr>
<td>2</td>
<td>6 (3 самца + 3 самки)</td>
<td>1 мг FFL + 1 мг CO-CFTR</td>
<td>Разветвленный 25 кДа PEI + WFI</td>
</tr>
<tr>
<td>3</td>
<td>6 (3 самца + 3 самки)</td>
<td>1 мг FFL + 5 мг CO-CFTR</td>
<td>Разветвленный 25 кДа PEI + WFI</td>
</tr>
<tr>
<td>4</td>
<td>6 (3 самца + 3 самки)</td>
<td>1 мг FFL + 10 мг CO-CFTR</td>
<td>Разветвленный 25 кДа PEI + WFI</td>
</tr>
</tbody>
</table>
Препарат mPHK - PEI. Пример стандартизированной процедуры создания препарата, описанный ниже, проводился непосредственно перед обработкой животных.

Материалы:

Насос шприцевой (оборудование для смешивания):
Производитель: KD Scientific
Тип: KDS-210-CE

Шприц:
Производитель: B. Braun
Тип: Omniflix, 20 мл или 30 мл / Luer Lock Solo
Ссылка: 4617207V

Трубки:
Производитель: B. Braun
Тип: Safeflow Extension Set
Ссылка: 4097154

Шприц:
Производитель: B. Braun
Тип: Sterican, 20G x 1 ½"
Ссылка: 4657519

Смесительный клапан:
Производитель: B. Braun
Тип: Discofix C 3SC
Ссылка: 16494C

Вода для инъекций:
Производитель: B. Braun
Тип: Вода
Ссылка: 82423E

Пример метода для подготовки полиплексов, содержащих 1 мг SNIM PHK hCFTR и 1 мг SNIM PHK FFL с N/P 10 в объеме 8 мл: 3 мл воды для инъекций и 3 мл стокового раствора PHK (с: 1 мг/мл в воде; 1.5 мл mPHK FFL + 1.5 мл mPHK CFTR) наполнялись в 15 мл пробирке falcon. Во второй пробирке falcon были смешаны 5.61 мл воды для инъекций с 0.39 мл стокового раствора разветвлённого PEI (с: 10 мг/мл в воде. Два шприца на 20 мл были установлены в устройстве для перемешивания. Каждый из них был связан с иглой через трубку. Один шприц был наполнен раствором PHK, а другой раствором PEI, используя функцию отвода поршня шприца. (Установки: Диаметр: 20.1 мм, Поток: 5 мл/мин, Объем: 5.9 мл). Иглы изымались и трубки подключались к
смесительному клапану. Было важно соединить содержащий раствор РНК шприц с наклонной позицией клапана. Была подсоединенена игла для контроля диаметра выходного отверстия. Перемешивание было проведено с использованием функции вливания поршня шприца (Установки: Диаметр: 20.1 мм, Поток: 40мл/мин, Объем: 5.8мл). Для достижения воспроизводимого индекса полидисперсности образцы фракционировались в основном во время перемешивания. Первые несколько мкл перед тем, как поток становился стабильным (100-200мкл), и последние несколько мкл, содержали пузырьки воздуха и собирались в отдельную пробирку. Раствор инкубировался 30 мин при комнатной температуре для образования полилекса и после этого хранился на льду. Для разных доз параметры были изменены и адаптированы, как показано в таблице 5.

Таблица 5. Примеры объемов и установок для разных объемов смеси

<table>
<thead>
<tr>
<th>Группа</th>
<th>Компонент mРНК</th>
<th>Компонент PEI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V (SNIM PHK RNA FFL 1 mg/ml) (мл)</td>
<td>V (SNIM PHK RNA hCFTR 1 mg/ml) (мл)</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
<td>5.83</td>
</tr>
<tr>
<td>4</td>
<td>1.09</td>
<td>10.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа</th>
<th>V(отвода)(мл)</th>
<th>V(влияния)(мл)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5,9</td>
<td>5,8</td>
</tr>
<tr>
<td>3</td>
<td>13,9</td>
<td>13,8</td>
</tr>
<tr>
<td>4</td>
<td>23,9</td>
<td>23,8</td>
</tr>
</tbody>
</table>

V (отвода) и V (влияния) обозначают настройку насосного шприца для удаления и отправки, соответственно, компонентов mРНК и PEI.

[257] Трансфекция клеток НЕК для проверки функциональности небулизированных комплексов. После небулизации была использована аликвота комплексов (80мкл) для трансфекции клеток НЕК. За день до трансфекции 1x10⁶ были поставлены на 6-лучевые плашки. В день трансфекции среда была удалена из клеток, клетки промывались один раз PBS, после чего в каждую лунку было добавлено 80 мкл комплексов вместе с 920 мкл безсывороточной среды MEM. Три повтора были приготовлены для каждого комплекса. Клетки инкубировали с комплексами в стандартных условиях для культивирования клеток в течение 4 часов. В конце инкубации
среда, содержащая комплекс, удалялась и добавлялась 1 мл MEM среды, содержащей сыворотку, на лунку. Плашки инкубировали в стандартных условиях для культивирования клеток. Через 24 часа после трансфекции готовились белковые лизаты, используя те же протоколы и буфера, использованные для тканей животных, кроме стадии гомогенизации. Клетки из трех лунок были использованы для анализа. Экспрессия человеческого CFTR детектировалась с использованием иммунопреципитации с антителом R24.1 (R&D Systems) и вестерн блотом в комбинации с антителами 217, 432 и 596 (все получены из Cystic Fibrosis Consortium, Университет Пенсильвании, PA, США). hCFTR может быть детектирован для всех комплексов, небулизированных свиньям (см. рисунки 54-57).

[258] Применение. Аэрозоль (44 мл WFI; препарат РЕИ с модифицированной мРНК в WFI: 8, 24 и 44 мл) небулизировали и вдыхался анастезированной свиньям через меш-небулизатор Aeroneb®. Седация свиней осуществлялась путем их премедикации азапероном в дозе 2 мг/кг массы тела, кетамином в дозе 15 мг / кг массы тела, атропином в дозе 0,1 мг / кг веса тела с последующей капельной внутривенной инфузии в латеральную ушную вену. По мере необходимости осуществлялось анестезирование свиней путем внутривенного введения пропофола в дозе 3-5 мг / кг веса тела. Аnestезия поддерживалась изофураном (2-3%) и введением ударной дозы 1% пропофола в дозе от 4 до 8 мг / кг массы тела для усиления анестезии в случае необходимости. Длительность анестезии равнялась примерно 1-3 часам. Свиньи были убиты инъекцией ударной дозы пентобарбитала (100 мг/кг массы тела) и хлорида калия в латеральную ушную вену через 24 часа после завершения распыления. Легкие вырезались и собирались фрагменты тканей из разных участков легких. Полученные образцы были использованы для разных методов оценивания, таких как биохимисцценция, гистопатология, ИП/вестерн блот и Elisa.

[259] Анализ биохимисцценции. Для измерения активности люцерферазы образцы ткани либо гомогенизировались и анализировались при помощи трубчатого фотометра, или же инкубировались в среде, содержащей субстрат D-люцерфери и подвергались люцерферазной BLI ex vivo. Данные показывают сильный сигнал биохимисцценции, который наблюдался для каждой группы 2-4 (1 мг, 5, мг и 10 мг, соответственно), если сравнивать с контрольными образцами тканей легких из группы 1 (WFI контроль реагента доставки) (Фигуры 35-38).
Анализ экспрессии CFTR вестерн блотом и иммуногистохимией. FFL-положительные образцы тканей вырезались (минимум 10 образцов для каждой свиньи внутри группы) и анализировались иммунопреципитацией/ вестерн блотом (ИП-ВБ). Вкратце, белковые лизаты из легких свиней готовились следующим образом: Для анализа было использовано 300-400мг тканей легких. Ткань гомогенизировалась в щелочном буфере (20мM Tris, 150 mM NaCl, pH 8.0), содержащем ингибиторы протеазы с использованием LysingMatrixA (MPBiomedicals, Ref.6910-500) и Homogeniser “FastPrep24” (MP Biomedicals). Полная смесь переносилась в новый 2 мл охлажденный закрывающийся эпендорф и добавлялась 25 мл йодацетамида (Sigma: I6125) и мл Omni cleave (1:5 разведенный в буфере Omni cleave) (Epicenter: OC7810K). После этого образцы инкубировались 5 минут на льду, после чего добавлялось 26 млк 10% раствора SDS. Далее образцы инкубировались 60 минут при 4°C на шейкере. После инкубации в образцы добавлялось 260 млк лизисного буфера (850млк щелочного буфера + 10% TritonX-100 + 5% дезоксирибоза натрия) и они инкубировались при 4°C на шейкере 90 минут. В конце белковые лизаты центрифугировались при 13000 оборотов в минуту при 4°C в течение 10-20 минут и супернатант переносился в новый эпендорф. Концентрация белка измерялась с использованием BCA Protein Assay (Pierce). Образцы были разделены на аликвоты, содержащие 10 мг общего белка и конечный объем был доведен щелочным буфером до 1 мл на образец. Основываясь на данных, представленных на фигуре 6, иммунопреципитация CFTR была проведена с использованием антитела R24.1, за чем следовал вестерн-блот иммунодетекция CFTR, с использованием тройной комбинации из трех разных антител, полученных из Cystic Fibrosis Consortium, Университет Пенсильвании, PA, США (антитела 217, 432, 596). Для контроля внутригрупповой вариабельности среди разных животных и вариабельности экспрессии CFTR были установлены маркерные бэндя стандартного белкового размера в 150 кDa и интенсивности бэндов разных групп нормализовались к этим маркерам. Как проиллюстрировано на фигуре 39, только 16% проанализированного образца тканей из контрольной свиньи из группы 1 показало экспрессию CFTR, выше чем базовая. В отличие от этого, в группах 3 и 4, которые представляют группы, обрабатываемые 5 мг и 10 мг, соответственно, больше 30% образцов тканей легких показывали экспрессию CFTR, выше чем базовая (Figure 39). Более того, наблюдаемое повышение экспрессии CFTR в группах 3 и 4 было почти в два раза больше, чем в контроле.
Иммуногистохимический анализ CFTR проводился подсчетом CFTR-положительных бронхов и бронхиол. Бронхи и бронхиолы считались положительными, если по меньшей мере одна эпителиальная клетка в слое эпителиальных клеток показывала заметный мембрано-локализированный сигнал CFTR. Характерное изображение "положительного" образца приведено на фигуре 40. Условия иммуногистохимии CFTR были оптимизированы путем оценки специфичности доступных антител к CFTR, используя отдельные антитела или комбинации до трех антител. Явные CFTR-специфичные сигналы наблюдались после инкубации с антителом 596. Данные показывают, что CFTR-положительные эпителиальные клетки детектировались в срезах тканей легких во всех четырех группах, что демонстрирует детекцию человеческого и свинного CFTR с помощью процедуры иммуногистохимии (рисунки 41 and 45). В то время, как наблюдаемые уровни экспрессии CFTR в группе 3 были низкими (фигура 42), средними (фигура 43) и высокими (фигура 44), общие данные показывают, что обработка 5 мг кодон оптимизированного человеческого SNIM PHK CFTR приводила к большим количествам CFTR-положительных клеток и большей суммарной интенсивности, по сравнению с контролем дотакви. Данные также демонстрируют дальнейшее повышение экспрессии CFTR после обработки 10 мин, тем самым показывая явный дозозависимый эффект (фигура 45). Вычисление абсолютного и относительного количества CFTR-положительных бронхов / бронхиол еще больше подтверждает эти результаты, показывая значительно более высокие значения у животных, обработанных 5 или 10 мг человеческого SNIM PHK CFTR по сравнению с контролем доставки (фигура 46). Указывание общего оценивания уровней экспрессии CFTR следовало за обработкой человеческим CFTR SNIM PHK.

Анализ экспрессии CFTR с помощью гибридизации in situ (ISH). FFL-положительные образцы были вырезаны (минимум 10 образцов для каждой свиньи внутри группы) и анализировались гибридизацией in situ с использованием зондовой технологии RNAScope® (Advanced Cell Diagnostic) "ZZ". Пробы создавались на основе кодон оптимизированной последовательности кодон оптимизированного человеческого CFTR SNIM PHK (SEQ ID NO:17). Коротко говоря, метод RNAScope® - это анализ гибридизации in situ, созданный для визуализирования отдельных молекул PHK на клетку в фиксированных в формалине, введенных в парафин (FFPE) тканях, помещенных на пластинки. Каждый включенный образец ткани был прежде обработан, в соответствии с протоколом изготовителей, и инкубирован с PHK зондом, специфичным к мишени в
человеческом CFTR. Было показано, что зонд к hCFTR связывается с CFTR, перекрестно реагируя с человеческим, мышьным, крысиным, свиным и обезьяным белками. При связывании зонд гибридизируется к каскаду молекул, амплитфицирующих сигнал, через ряд из 6 последовательных раундов амплификации. Потом образец обрабатывался HRP-меченным зондом, специфичным к кассете, амплитфицирующей сигнал, и анализировался цветной визуализацией с использованием 3,3’-диаминофендиазина (DAB). Как положительный контроль использовался зонд, специфичный к убиквитину-C (рисунки 47А и 48А), в то время как отрицательным контролем был dapB (рисунки 47В и 48В). Положительный сигнал CFTR был сравним с необработанными и обработанными контролем доставки свиными тканями легких (фигура 49 А и B). Окрашенные образцы визуализировались стандартным световым микроскопом. Данные демонстрируют, что обработка 1 мг кодон оптимизированной SNM PHK CFTR приводила к значительному повышению экспрессии CFTR в тканях правого (А) и левого (B) легких в группе 2, при сравнении с контролем доставки (фигуры 49, 50 А и B). Более того, наблюдалось дальнейшее повышение экспрессии CFTR для групп, обработанных 5 мг и 10 мг, что показано сильным повышением окрашивания, наблюдаемым в образцах правого и левого легких в проанализированных группах 3 и 4 (фигуры 51 и 52 А и B). В целом, эти данные твердо подтверждают эффективную доставку PHK путем ингаляции и экспрессию человеческого CFTR в обоих долях легких и их различных тканях.

[263] Заключение. Этот пример показал, что PHK как люциферазы, так и CFTR могут быть эффективно доставлены in vivo в ткани легких. Экспрессия люциферазы наблюдалась в образцах разных тканей, собранных из различных участков из правой и левой долей легких. Это предполагает, что небулизація является эффективным подходом для введения PHK и проявляет довольно равномерное распределение. Более того, в дополнение к люциферазе, PHK CFTR была также эффективно доставлена в легкие, что приводило к повышению экспрессии этого белка. Экспрессия и активность белка были подтверждены ИП-ВВ, иммуногистохимией и гибридизацией in situ. Каждый подход отчетливо демонстрировал дозозависимое повышение в доставке PHK и экспрессии и/или активности в тканях легких. В целом, эксперименты освещают общую практичность и целесообразность доставки PHK CFTR в легкие людей и показывают эффективность in vivo продукции CFTR для терапевтических целей.
Пример 12. *In vivo* экспрессия в легких

[264] Этот пример показывает успешную экспрессию *in vivo* в легких после доставки наночастиц, несущих мРНК. Все исследования проводились с использованием свиней породы немецкий ландрас, полученных в Техническом Университете Мюнхена, Вайенштефан, Германия. Масса свиней составляла от 35 до 90 кг. Препарат мРНК FFL/CO-CFTR-C-His10 или контрольный реагент доставки вводились с использованием джет-небулайзера Pari. Мышь убивались и перфузировались раствором соли после истечения заранее установленного времени на экспрессию белка из мРНК.

[267] Аэрозольное применение. Аэрозоль (препарат раствора соли или CO-FFL cKK-E12) небуллизировался и вдыхался анестезированными свиньями. Седация свиней осуществлялась путем их премедикации азапером в дозе 2 мг/кг массы тела, кетамином в дозе 15 мг/кг массы тела, атропином в дозе 0,1 мг/кг веса тела с последующей капельной внутривеннной инфузии в латеральную ушную вену. По мере необходимости осуществлялось анестезирование свиней путем внутривенного введения пропофола в дозе 3-5 мг/кг веса тела. Анестезия поддерживалась изофураном (2-3%) и введением ударной дозы 1% пропофола в дозе от 4 до 8 мг/кг массы тела для усиления анестезии в случае необходимости. Длительность анестезии равнялась примерно 1-3 часам. Свиньи были убиты инъекцией ударной дозы пентобарбитала (100 мг/кг массы тела) и хлорида калия в латеральную ушную вену. Легкие вырезались и собирались фрагменты тканей из разных участков легких, с последующей инкубацией в культуральной среде в течение ночи. Полученные образцы были использованы для детекции биолюминисценции.

[268] Анализ биолюминисценции. Для измерения активности люциферазы образцы ткани либо гомогенизировались и анализировались при помощи трубчатого фотометра, или же инкубировались в среде, содержащей субстрат D-люциферин и подвергались
люциферазной BLI *ex vivo*. Наблюдался сильный сигнал биолюминисценции для каждой свиньи, обработанной мРНК FFL/CO-CFTR-C-His10 (A) если сравнивать с контрольными (B) образцами тканей легких из контрольных свиней (контроль соляного реагента доставки) (Фигура 53 A и B).

[269] Эти данные показывают, что мРНК FFL/CFTR была успешно доставлена в легкие аэрозольным введением и экспрессировалась там.

КРАТКОЕ ОПИСАНИЕ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

SEQ ID NO 1. Аминокислотная последовательность CFTR дикого типа.

SEQ ID NO 2. Кодирующая последовательность мРНК CFTR дикого типа.

SEQ ID NO 3. Кодирующая последовательность мРНК CFTR не природного происхождения №1.

SEQ ID NO 4. мРНК CFTR 5'-UTR.

SEQ ID NO 5. мРНК CFTR 5'-UTR №1.

SEQ ID NO 6. FFL 5’ UTR.

SEQ ID NO 7. Кодирующая последовательность FFL.

SEQ ID NO 8. FFL 3’ UTR.

SEQ ID NO 9. Кодирующая последовательность мРНК CFTR не природного происхождения № 2.

SEQ ID NO 10. Кодирующая последовательность мРНК CFTR не природного происхождения № 3.

SEQ ID NO 11. Кодирующая последовательность мРНК CFTR не природного происхождения № 4

SEQ ID NO 12. Кодирующая последовательность мРНК CFTR не природного происхождения № 5

SEQ ID NO 13. Кодирующая последовательность мРНК CFTR не природного происхождения № 6
SEQ ID NO 14. Кодирующая последовательность мРНК CFTR не природного происхождения № 7

SEQ ID NO 15. Кодирующая последовательность мРНК кодон оптимизированного человеческого CFTR, слитого с C-концевым His10.

SEQ ID NO 16. Кодирующая последовательность мРНК оптимизированного человеческого CFTR с лидирующей последовательностью гомоныя роста.

SEQ ID NO 17. Кодон оптимизированная мРНК человеческого CFTR

SEQ ID NO 18. Лидирующая последовательность мРНК №1

SEQ ID NO 19. Лидирующая последовательность мРНК №2

SEQ ID NO 20. мРНК CFTR 5'-UTR №2.

SEQ ID NO: 1

MQRSPLEKAVSKLFFSWTRPIRLKGYQRQLLELSDIYQIPSVD SADNLSEKLEREWDRASKNPKINLARCCFFWRFMYGFLYGLGEVTQAVQPLL GRIASYDPKEESIAILYIGLGLMFMIVTTLHHAPFGLHLHIGQMIRAMFSLI YKKTLLKSSRLDKISIQQLVSLSSNLKDFEGLALAHFVWIAPLQVALLMGLWEL LQASACGGLGFILVLALFQAQLGRMMMKYRDRAGKISERLVITSEMENIQSVKAYC WEEAMEKMIENLRQTELKLTRKAAAYVRFNYSSAFFSGFFVFLSVLPYALIKGIIIL RIFTISFCIVLRMAVTRQFPWAVQTVYDSLGAINKIQQDLQKETYKTLEYNLTTTVE VMENVTAFWEEGFGELFEKAKQNNNRRKTNSGDSDLSFFSNLGLGTVKLKIDNFKIER GQLLAVAGSTGAGKTSLLVMIGELEPSEGKIKHSGRISFSCSFWISMPFGITKENIIF GVSYDEYRYSVQACQLEDISKFAEDNIVLGEGITTSLQGQRASILARAYVDK DLYLLDSFPYLDVLTEKEIFESCVCKLMANKTRILVTSKMEHLKKADKILHELGS YFFYGTISENLQNLQDFSSKLMQCDSDQFSAEERRSLTETLHRFSLEGDAVPWSTET KQQFSQKQTGEFGRKVNSILNPINSIRKFSIQQKTPQMGEEDEPLERLRLVP DSEQGEAIPRISVISTGPTLQARRQVSNLNMTHSVQGNUHRRKKTASTRKVSLAP QANLTELIDYRSLQLAQTEVSEIEELDKCEFDDMESISAPVTTWNTYLRYRTVH KSLIFVWLICVLFLAVSLVWLLGNTPLQDKGNSTHSNNYAVITTSYY VFYVYVGVADTLLAMGFFRLVPLVHTLTVSISKLHHKMLHVSLVAPMSLTLKAGGI LNRFSKDIADLDDLPLTIFDFIQLLIVGIAIAVVALQPYIFVATPVIPAVIMLR AYFLQTSTQQKLQLESEGRSPFITHTLVSTLKGLWTLRAFGRQPYPFETLHFKLANLHTAN WFYLSTLRWFQMRMIFIVFIATVFISITGTEGREGVGIITLMNITMSTLQWA VNNSIDVDLSMRVSRVFKEIDMTEGPKSTPKPYKNGQSLKVMIESHVKKDIW PSGQMTVVLKDTAKYTEGNAILENSFISPFQORVGLRGTGSKSSTLSAFRLRN TEGEIQIDGVWSITLQQWRKAFGVIPQVKVFISGTFRKNLDPYEQWSQEQIWKVAD EGVLRSL VieQFPKLDFVLVDSEGCEVLHSHGQLMCLARSVLKAIKILLDEPSAHLDVP VTYQIIRRTLQKAFADCTVILCEHRIEAMLQCLQFLVIEENKVRQYDISIQKLNNERSL FRQAIQPSDRVKLFPHRNSKCCSKPKQIAKLEEETEEVQDTRL (SEQ ID NO: 1)
CUUUGAAGCAAGCCUUCUGCUGACUGACCCGGCAACCGGAAUCGAGGCCA
UGCUUGAGUGAAGCCACAGGUUUCCUGGUCAUCGAGAAGAAAACAGUGCCGAUACUGACUG
AUCCAAAACUCUGAAGAGCCGCUCCUUUCUCGGCAAGCAUCCGCAUCCAGGG
GGAAAGGUGUGUCCUCAGGGAAAGCUCAAAAGGCAAAAGCGACGUGCCGAC
UUGAAAGAAGAAACCGGAAGAAGAGUCCAAAGACACUAGGUUGUAG (SEQ ID NO:11)
Аналоги

[270] Описание становится наиболее ясным в свете идей, представленных в ссылках, цитируемых в описании. Варианты реализации изобретения в описании предоставляют иллюстрацию вариантов реализации изобретения и не должны истолковываться как ограничивающие возможности изобретения. Специалист в данной области техники без труда поймет, что изобретение охватывает множество других вариантов реализации. Все публикации и патенты, указанные в данном документе, включены в качестве ссылки во всей их полноте. По мере того, как включенный посредством ссылок материал противоречит или не согласуется с этим описанием, данное описание заменяет любой такой материал. Цитирование любого источника в данном документе не означает, что такие источники являются первоочередными по отношению к данному изобретению.

[271] Все числа, выражающие количества ингредиентов, условий реакции и тому подобные, использованные в описании, включая формулу изобретения, следует понимать как приблиźительные и способные меняться в зависимости от свойств, которые планируются получить с помощью данного изобретения. По меньшей мере и не в качестве попытки ограничить применение доктрины эквивалентов к объему формулы изобретения, каждый числовой параметр следует истолковывать, принимая во внимание число значащих цифр и обычных подходов округления. Повторение серии чисел с различным числом значащих цифр в описании не должно быть истолковано как подразумевающее, что числа с меньшим количеством значащих цифр имеют такую же точность, как числа с большим количеством значащих цифр.

[272] Использование единственного числа в сочетании с термином "содержащий" в формуле изобретения и/или в описании может означать "один", но это также согласуется со значением "один или более", "по меньшей мере один" и "один или более одного". Использование термина "или" в формуле изобретения используется для обозначения "и/или", если явно не указано, что это относится только к альтернативе или
если варианты являются взаимоисключающими, хотя описание поддерживает определение, которое относится только к альтернативам и "и/или ".

[273] Термин "по меньшей мере", предшествующий ряду элементов, следует понимать как обозначение каждого элемента в последовательности, если не указано иное. Специалисты в данной области техники поймут или будут способны убедиться, используя не более, чем рутинные техники, множество эквивалентов к отдельным вариантам реализации изобретения, описанным в данном документе. Такие эквиваленты охватываются последующей формулой изобретения.

[274] Если не указано иное, все технические и научные термины, используемые в данной заявке, имеют то же значение, которое обычно понимается специалистом с обычной квалификацией в данной области техники, к которой это изобретение принадлежит. Хотя любые способы и материалы, аналогичные или эквивалентные тем, которые описаны в данном описании могут быть использованы в практике настоящего изобретения, предпочтительные способы и материалы описаны ниже.

[275] Публикации, обсуждаемые в данном документе, приводятся исключительно для их раскрытия до даты подачи настоящей заявки. Ничто в данном документе не должно быть истолковано как признание того, что настоящее изобретение не может предшествовать такой публикации в силу ее предшествия данному изобретению. Кроме того, приведенные даты публикации могут отличаться от фактических дат публикации, которые могут нуждаться в независимом подтверждении.

[276] Благодаря этому описанию и раскрытым примерам, и другие варианты осуществления настоящего изобретения будут очевидны для среднего специалиста в данной области техники. Предполагается, что описание и примеры рассматриваются только в качестве иллюстрации, а истинная сущность и предназначение изобретения указаны в прилагаемой формуле изобретения.
ИЗМЕНЕННАЯ ФОРМУЛА ИЗОБРЕТЕНИЯ

c к ответу на уведомление Экспертизы от 18.06.2021 г.

1. Способ продукции белка регулятора трансмембранной проводимости при муковисцидозе (CFTR) в легком млекопитающего, указанный способ включает:
 введение в легкое указанного млекопитающего посредством аэрозолизации композиции, содержащей нагрузженную мРНК наночастицу, при этом указанная наночастица представляет собой липосому, при этом указанная мРНК представляет собой in vitro транскрибируемую мРНК и имеет кодирующую последовательность, которая по меньшей мере на 80% идентична SEQ ID NO: 3, при этом указанная мРНК кодирует белок CFTR человека, содержащий аминокислотную последовательность SEQ ID NO: 1, и при этом указанная мРНК является немодифицированной.

2. Способ по п. 1, отличающийся тем, что указанная мРНК имеет кодирующую последовательность, по меньшей мере на 90% идентичную SEQ ID NO: 3.

3. Способ по п. 1, отличающийся тем, что указанная мРНК имеет кодирующую последовательность, по меньшей мере на 100% идентичную SEQ ID NO: 3.

4. Способ по п. 1, отличающийся тем, что указанная мРНК содержит 5'-нетранслируемую область (UTR) и/или 3'-UTR.

5. Способ по п. 4, отличающийся тем, что указанная 5'-UTR содержит SEQ ID NO: 4 и/или указанная 3'-UTR содержит SEQ ID NO: 5.

6. Способ по п. 4, отличающийся тем, что указанная мРНК дополнительно содержит поли-А хвост.

7. Способ по п. 6, отличающийся тем, что указанный поли-А хвост имеет длину по меньшей мере 70, 100, 120, 150, 200, или 250 остатков.

8. Способ по п. 4, отличающийся тем, что указанная мРНК дополнительно содержит 5'-кэп.

9. Способ по п. 1, отличающийся тем, что указанная аэрозолизация представляет собой небулизацию.

10. Способ по п. 1, отличающийся тем, что указанный белок CFTR человека экспрессируется в эпителиальных клетках легкого.
11. Способ по п. 1, отличающийся тем, что указанная композиция дополнительно содержит фармацевтически приемлемый носитель.

12. Способ по п. 1, отличающийся тем, что указанная липосома содержит один или более пегилированных липидов.

13. Способ по п. 1, отличающийся тем, что указанная липосома дополнительно содержит один или более катионных липидов и один или более некатионных липидов.
Фигура 1А
Фигура 1В

"С" - бэнд CFTR.
Фигура 2
Фигура 3
Родительские HEK-293

Фигура 4
Трансфекировано 4 мкг мРНК - 24 часа спустя

Фигура 5
Фигура 6
Фигура 7
Фигура 8
Фигура 9
Фигура 10
Фигура 11
Фигуры 12А и В
Фигуры 13A-D
Фигура 14
Фигура 15
Фигура 16А и В
Фигура 17
Фигура 18
Фигура 19
Фигура 20
Фигура 21

Дорзальный вид на свинью
Фигура 22
Фигура 23
Фигура 24
Фигура 25
Фигура 26
Фигура 27
Фигура 28
Фигура 29
Фигура 30
Фигура 31
Фигура 32
Фигура 33

A

L 1 2 3 4

кДа

L = Маркер
1= CO-CFTR-His$_{10}$
2= CO-CFTR-His$_{10}$
3= CO-CFTR
4= WT HEK 293T

Antibody: Abcam #ab1187 Anti-His

(Biologisches von HRP)

B

L 1 2 3 4

кДа

L = Маркер
1= CO-CFTR
2= GH-CO-CFTR
3= WT HEK 293T

C

L 1 2 3

кДа

L = Маркер
1= CO-CFTR
2= GH-CO-CFTR
3= WT HEK 293T
Фигура 34
Фигура 35
Изучение влияния дез.

Экспериментальная группа 1.2

Аэрозольное применение:

1 мг SNIM PHK CFTR

Цв. шкала
Мин=3000
Макс=50000

Фигура 36
Фигура 38
Фигура 39
Фигура 40
Фигура 41
Фигура 42
Фигура 43
Фигура 44
Фигура 45
Фигура 46
Фигура 47A и B
Фигура 48А и B
Фигура 49А и В
Фигура 50A и B
Фигура 51А и В
Фигура 52A и B
A
Соляной раствор

B
cKK-E12

Фигура 53A и B
Клетки НЕК трансфелированы с использованием комплексов, дававшихся свиньям 10, 11 и 12 (доз 1 мг).
НЕК-УТ - нетрансфелированные клетки.

Фигура 54
Клетки НЕК трансфектированы с использованием комплексов, дававшихся свиньям 13, 14 и 15 (доза 5 мг)
Клетки НЕК трансфектированы с использованием комплексов, дававшихся свиньям 19, 20 и 21 (доза 10 мг).

NEK-UT - нетрансфектированные клетки, использованные для комплексов из свиней 19-21
NEK-UT - нетрансфектированные клетки, использованные для комплексов из свиней 13-25

Фигура 55
Клетки НЕК трансфекированы с использованием комплексов, дававшихся свиньям 16 (доза 5 мг), 22 (доза 10 мг) и 67 (доза 1 мг)

НЕК-UT 16 - нетрансфекированные клетки, использованные для комплексов из свиней 16, 22 и 67

Фигура 56
Клетки HEK трансформированы с использованием комплексов, дававшихся свиньям 17-18 (доза 5 мг), 23-24 (доза 10 мг) и 68-69 (доза 1 мг)

NEK-UT - нетрансформированные клетки

Фигура 57
А. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ:
См. дополнительный лист

Согласно Международной патентной классификации (МПК)

Б. ОБЛАСТЬ ПОИСКА:

Просмотренная документация (система классификации и индексы МПК)
- C07K 14/705, 14/47, A61K 9/00, 9/127, 9/51, 31/7105, 31/7115, 47/69, 48/00, A61P 11/00, C12N 15/11

Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, используемые поисковые термины)
- Espacenet, EAPATICS, EPOQUE Net, Reaxys, Google

В. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ

<table>
<thead>
<tr>
<th>Категория*</th>
<th>Ссылки на документы с указанием, где это возможно, релевантных частей</th>
<th>Относится к пункту №</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2011/012316 A2 (LUDWIG-MAXIMILIANS UNIVERSITAET et al.) 03.02.2011, реферат, формула</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>База данных: NCBI Reference Sequence: NP_000483.3, 03.03.2013, последовательность</td>
<td>1-13</td>
</tr>
</tbody>
</table>

* Особые категории ссылочных документов:
- **А** - документ, определяющий общий уровень техники
- **О** - документ, приведенный в мировой заявке
- **Е** - более ранний документ, не опубликованный на дату подачи мировой заявки или после нее
- **Р** - документ, опубликованный до даты подачи мировой заявки, но после даты написания приоритета

Т - более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения

Х - документ, имеющий наиболее близкое отношение к предмету поиска, порождающий новизну или изобретательский уровень, взятый в отдельности

У - документ, имеющий наиболее близкое отношение к предмету поиска, порождающий изобретательный уровень в сочетании с другими документами той же категории

Ап - документ, являющийся патент-аналогом

Л - документ, приведенный в других целях

Дата проведения патентного поиска: 25 февраля 2022 (25.02.2022)

Уполномоченное лицо:
Заместитель начальника Управления экспертизы - начальник отдела формальной экспертизы

Д.Ю. Рогокин
<table>
<thead>
<tr>
<th>КЛАССИФИКАЦИЯ ПРЕДЕМЕТА ИЗОБРЕТЕНИЯ (продолжение графы A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C07K 14/705 (2006.01)</td>
</tr>
<tr>
<td>C07K 14/47 (2006.01)</td>
</tr>
<tr>
<td>A61K 9/12 (2006.01)</td>
</tr>
<tr>
<td>A61K 9/127 (2006.01)</td>
</tr>
<tr>
<td>A61K 9/51 (2006.01)</td>
</tr>
<tr>
<td>C12N 15/11 (2006.01)</td>
</tr>
<tr>
<td>A61K 31/7105 (2006.01)</td>
</tr>
<tr>
<td>A61K 31/7115 (2006.01)</td>
</tr>
<tr>
<td>A61K 47/69 (2017.01)</td>
</tr>
<tr>
<td>A61K 48/00 (2006.01)</td>
</tr>
<tr>
<td>A61P 11/00 (2006.01)</td>
</tr>
</tbody>
</table>