(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2022.11.03

(21) Номер заявки

202090172

(22) Дата подачи заявки

2017.06.29

(51) Int. Cl. A61K 9/10 (2006.01) **A61K 47/14** (2017.01) **A61K 47/36** (2006.01)

СУСПЕНЗИЯ НА ОСНОВЕ ЛЕВОКЛОПЕРАСТИНА ФЕНДИЗОАТА С ПОВЫШЕННЫМИ РАСТВОРИМОСТЬЮ И РЕСУСПЕНДИРУЕМОСТЬЮ

(43) 2020.04.21

(86) PCT/TR2017/050290

(87) WO 2019/004953 2019.01.03

(71)(73) Заявитель и патентовладелец: ИЛЬКО ИЛАЧ САНАЙИ ВЕ ТИДЖАРЕТ АНОНИМ ШИРКЕТИ (TR)

(72) Изобретатель: Онджель Хатидже, Чапан Йилмаз, Пынарбашлы Онур, Акансель

Сибель, Саррачоглу Нагехан (TR)

(74) Представитель: Носырева Е.Л. (RU)

P. ALIPRANDI ET AL.: "Therapeutic (56)Use of Levocloperastine as an Antitussive Agent: An Overview of Preclinical Data and Clinical Trials in Adults and Children", CLINICAL DRUG INVESTIGATION, vol. 22, no. 4, 1 April 2002 (2002-04-01), pages 209-220, XP055451980, NZ, ISSN: 1173-2563, DOI: 10.2165/00044011-200222040-00001,

Pharmacokinetic Profile; paragraphs [0003], [0004] na ET AL.: of RP-HPLC Sharma "Development Validation Method Simultaneous Estimation of Levocloperastine Fendizoate and Chlorpheniramine Maleate in their Combined Dosage Form", Austin J. Anal. Pharm. Chem., 19 April 2017 (2017-04-19), XP055451970, Retrieved from the Internet: URL: http://austinpublishinggroup.com/analytical-ph armaceutical-chemistry/download.php?file=fulltext/a japc-v4-id1083.pdf [retrieved on 2018-02-16], abstract, page 1, right-hand column, paragraph 2 EP-A1-0894794

EP-A1-0385491 US-A1-2017128379

Изобретение относится к фармацевтической суспензии для перорального применения с (57) улучшенными свойствами ресуспендируемости и растворения, содержащей терапевтически эффективное количество суспендированного левоклоперастина или его фармацевтически приемлемой соли; по меньшей мере одно суспендирующее средство; по меньшей мере одно поверхностно-активное вещество и эффективное количество композиции подсластителя для обеспечения приятного вкуса, при этом лекарственное вещество - левоклоперастина фендизоат характеризуется распределением частиц по размерам (D₉₀) менее чем 100 мкм, что измеряли с помощью лазерной дифракции.

Область техники

Настоящее изобретение относится к составу стабильной фармацевтической композиции в форме суспензии для перорального применения с повышенными свойствами растворимости и ресуспендируемости, содержащей терапевтически эффективное количество нерастворимого в воде лекарственного вещества левоклоперастина или его фармацевтически приемлемой соли с распределением частиц по размерам (D_{90}) менее 100 мкм, предпочтительно менее 50 мкм.

Уровень техники

Левоклоперастин представляет собой левовращающий изомер DL-клоперастина с молекулярной формулой $C_{20}H_{24}CINO$, химическое название которого представляет собой 1-[2-[(4-хлорфенил)фенил-метокси]этил]пиперидин. Его впервые представили в 1972 г. в Японии, а затем в Италии в 1981 г. Левоклоперастин фармацевтической степени чистоты существует в виде соли, обычно в форме левоклоперастина гидрохлорида или левоклоперастина фендизоата. В настоящем изобретении изучается жидкая пероральная лекарственная форма, предпочтительно суспензия, левоклоперастина фендизоата. Структурная формула левоклоперастина фендизоата представлена ниже (формула I):

Формула (I)

Клоперастин впервые был изучен Takagi и соавт. в Токийском Университете. Эта исследовательская группа изучала фармакологическую активность нескольких производных дифенгидрамина - антигистаминного вещества и обнаружила, что клоперастин имел наибольшую эффективность в отношении кашля, вызванного трахеальным механическим раздражителем у морской свинки. Этот эффект был в 1,9 раза больше, чем у кодеина, при этом без какого-либо наркотического действия. Клоперастин, который также обладает бронхолитической и антигистаминной активностью, способствовал расслаблению мускулатуры бронхов, которая становилась сжатой в результате стимуляции ацетилхолином и гистамином.

В документе EP 0894794 A1 раскрывается левовращающий энантиомер L(-)-клоперастин и его соли (например, гидрохлорид - фендизоат), который обеспечил возможность получения более активного, менее токсичного продукта с меньшим числом побочных эффектов по сравнению с D(+)-изомером и рацемической смесью, доступной на данный момент на рынке. В области клинического применения это означает лучшую переносимость и безопасность применения лекарственного средства.

Кашель является нормальным механизмом для поддержания здоровой дыхательной системы. Он характеризуется начальной, короткой фазой вдоха, за которой следует закрытие голосовой щели, и быстрый выдох с сильным выбросом воздуха. В общем, это важный защитный механизм, который удаляет инфекционный или избыточный секрет из трахеобронхиального дерева и удаляет и перемещает экссудаты, клеточный детрит и инородные тела.

Фармакологический и клинический обзор клоперастина при лечении кашля показал, что данное соединение можно безопасно применять в широкой группе населения (дети, подростки и взрослые) в соответствии с указаниями на маркировке и соответствующей медицинской оценкой. Начальная реакция при терапевтическом диапазоне доз (10-20 мг три раза в сутки для взрослых) начинается через 20-30 мин после перорального введения. Кроме того, длительность действия одной дозы клоперастина составляет 3-4 ч.

Симптоматическое лечение с помощью противокашлевых средств обычно используют, если кашель непродуктивный, лающий и сильно мешает самочувствию пациента-ребенка или взрослого (вызывая, например, тошноту, рвоту, бессонницу и/или головную боль). Противокашлевые средства можно разделить на две основные категории в зависимости от того, является ли механизм действия центральным или периферическим. Противокашлевые средства центрального действия включают наркотические средства и ненаркотические средства и действуют более или менее селективно на кашлевой центр, расположенный в продолговатом мозге. Ненаркотическая терапия является предпочтительной для детей, поскольку наркотические противокашлевые средства (например, леворфанол, кодеин) могут вызывать подавление дыхательного центра, тошноту, рвоту, запор, привыкание и физическую зависимость.

Левоклоперастин является противокашлевым средством, которое действует как центрально - на кашлевой центр в продолговатом мозге, так и периферически - на кашлевые рецепторы в трахеобронхи-альном дереве. Он также наделен антигистаминной (он имеет общий этиламиновый фрагмент с антагонистами H_1 рецептора) и подобной папаверину активностью, подобной кодеину, но без его наркотических эффектов. Этот двойной механизм действия делает его очень эффективным при лечении кашля, связанного со многими хроническими и острыми состояниями у пациентов всех возрастов. Фармакологические исследования показали, что молекула действует на кашлевой центр без угнетения дыхательного центра и что она не имеет отрицательных эффектов на сердечно-сосудистую систему.

Фармацевтические препараты левоклоперастина могут быть представлены в твердой форме (такой

как капсулы, таблетки, покрытые сахаром пилюли с немедленным или отсроченным действием, пакеты с одной дозой и т.д.), в жидкой форме (растворы или суспензии, готовые для применения или предусматривающие получение при необходимости); суппозитории и инъекционные растворы. Фармацевтические композиции, вводимые в твердой форме, обычно предназначены для проглатывания целиком. Для детей, людей старшего возраста и многих других людей, включая недееспособных или ограниченно дееспособных пациентов, часто вызывает сложность проглатывание таблеток или капсул. Для многих таких пациентов, включая пациентов-детей и пожилых людей, жидкая лекарственная форма является предпочтительной из-за простоты применения. В настоящем изобретении предпочтительной является жидкая пероральная доза левоклоперастина фендизоата в форме суспензии.

Суспензии представляют собой двухфазную систему с твердыми, по существу не растворимыми в воде частицами активного средства, диспергированными в жидкой среде. Суспензия не охватывает эмульсии, которые, как предполагается, описывают жидкости, суспендированные в жидких носителях, или составы сиропов, содержащие только по существу полностью растворимые фармацевтические активные средства.

Суспензионная форма должна быть физически стабильной (без заметного осаждения) в течение достаточного времени, химически стабильной в течение требуемого времени (срока годности), характеризоваться вязкостью, которая обеспечивает возможность ее применения для ее предполагаемой цели, быть легко восстанавливаемой (повторно диспергируемой) при встряхивании, быть легкой в изготовлении и быть приемлемой для применения для пациента, медработника или другого пользователя.

У Milani M. (2012) раскрыта клиническая эффективность левоклоперастина путем проведения нескольких клинических исследований с участием как взрослых, так и детей. Клинические исследования показали, что левоклоперастин может обеспечивать большее снижение интенсивности и частоты кашля по сравнению с другими противокашлевыми соединениями. Он является эффективным противокашлевым средством для лечения кашля у пациентов всех возрастных групп. Он имеет более быстрое начало действия, чем стандартные средства, с улучшенным профилем переносимости. Левоклоперастин представляет ценную альтернативу ныне применяемым противокашлевым средствам с дополнительным преимуществом, заключающимся в более быстром начале действия и улучшенной переносимости.

Хотя фармацевтическая лекарственная форма суспензии является известной, нет достаточного объема информации о лекарственной форме левоклоперастина фендизоата в форме суспензии, в частности о нежелательных свойствах агломерации/разделения фаз и ресуспендируемости, особенно с фармацевтически активной субстанцией, практически нерастворимой в воде. Более важно, свойства суспендируемости суспензий прямо влияют на однородность содержимого и точное дозирование.

Свойство нерастворимости левоклоперастина фендизоата представляет проблему в отношении составления при разработке продукта водного жидкого препарата для перорального применения. Таким образом, в настоящем изобретении будет желательным составление физически стабильной лекарственной формы левоклоперастина фендизоата в форме суспензии со сниженной склонностью к возникновению необратимой агломерации и/или разделению фаз и улучшенным свойством ресуспендируемости лекарственного продукта, который является подходящим для суспендирования фармацевтически активных субстанций, практически нерастворимых в воде.

Описание настоящего изобретения

Целью настоящего изобретения является обеспечение фармацевтических композиций в форме суспензии, содержащих терапевтически эффективное количество нерастворимого в воде лекарственного вещества, например левоклоперастина фендизоата, и по меньшей мере одного неактивного ингредиента, которые демонстрируют сниженную склонность к возникновению необратимой агломерации и/или разделению фаз.

Другой целью настоящего изобретения является обеспечение фармацевтических композиций в форме суспензии, содержащих терапевтически эффективное количество нерастворимого в воде лекарственного вещества, например левоклоперастина фендизоата, и по меньшей мере одного неактивного ингредиента, которые демонстрируют улучшенные свойства скорости растворения лекарственного средства и ресуспендируемости по сравнению с коммерчески доступным эталонным продуктом.

Конкретный вариант осуществления настоящего изобретения представляет собой применение лекарственного вещества левоклоперастина фендизоата с распределением частиц по размерам (D₉₀) менее 100 мкм, предпочтительно менее 50 мкм, что измеряли с помощью лазерной дифракции.

Настоящее изобретение направлено на жидкую фармацевтическую композицию для перорального применения, содержащую систему для суспендирования, содержащую в предпочтительном варианте осуществления водную композицию, которая содержит от 0,1 до 0,5% (вес./об.), предпочтительно от 0,2 до 0,4% (вес./об.) суспендирующего средства, предпочтительно ксантановой камеди; от 0,1 до 0,4% (вес./об.), предпочтительно от 0,2 до 0,3% (вес./об.) поверхностно-активного вещества, предпочтительно полиоксиэтилстеарата на водной основе (или "в водной среде"), и фармацевтически активное соединение левоклоперастин или его фармацевтически приемлемые соли.

Состав суспензии в соответствии с настоящим изобретением является особенно подходящим для простоты дозирования для детей и для взрослых, имеющих проблемы с проглатыванием капсул и

таблеток.

Лекарственная форма суспензии является предпочтительной и широко применяемой лекарственной формой для нерастворимых или плохо растворимых лекарственных средств для различных терапевтических применений. Однако, если применяют суспензию действующего вещества, существует проблема, состоящая в необходимости обеспечения однородности суспензии для обеспечения точного дозирования. Для суспензии требуется достаточное встряхивание контейнера для равномерного ресуспендирования лекарственного средства перед дозированием. Сложное повторное диспергирование лекарственного средства из осадка или, в худшем случае, из комков будет приводить к недостаточному и избыточному дозированию.

Терапевтически эффективное количество означает обеспечение достаточного количества вещества, которое является нетоксичным для субъекта, для достижения желаемого терапевтического эффекта. Термин "терапевтически эффективное количество" будет пониматься специалистом в данной области техники как включающий диапазон количеств, который будет варьироваться в зависимости от состояния, подлежащего лечению, его тяжести и профиля состояния здоровья и статуса субъекта, который получает лекарство. Точное количество может определить специалист в данной области техники.

В соответствии с определениями растворимости, приведенными в USP, которые представлены в табл. 1, интерпретация термина "практически нерастворимый или нерастворимый" означает имеющий растворимость, при которой необходимо приблизительно более чем 10000 частей растворителя для растворения одной части лекарственного средства. Если растворителем является вода, тогда растворимость в воде "нерастворимого" лекарственного вещества может быть менее чем 0,1 мг/мл. Растворимость в воде левоклоперастина фендизоата составляет менее чем 0,1 мг/мл, следовательно, его классифицируют как нерастворимый в воде. Из-за данного свойства растворение продукта и биодоступность всегда являются проблемой при разработке продукта - левоклоперастина фендизоата, входящего в состав.

Таблица 1

Определения растворимости в соответствии с USP					
	Количество	частей	раство	рителя,	
Описательные термины	необходимое	для	1	части	
	растворенног	о вещест	ва		
Очень легкорастворимое	<1				
Легкорастворимое	1-10				
Растворимое	10-30				
Умеренно растворимое	30-100				
Малорастворимое	100-1000				
Очень малорастворимое	1000-10000				
Практически нерастворимое или нерастворимое	>10000				

В суспензиях как физические характеристики жидкости, так и размер частиц оказывают влияние на осаждение и агрегацию. На практике более мелкие частицы обычно образуют более стабильную суспензию. Размер частиц может также влиять на характеристики состава при обработке и, в конечном итоге, однородность его содержимого. Очевидно, распределение частиц по размерам будет также иметь прямое влияние на текстуру и ощущение готового продукта в отношении как эффективности, так и потребительского восприятия. Размер частиц левоклоперастина фендизоата в комбинации с другими факторами, такими как температура и вязкость композиции, может влиять на склонность частиц к агрегации, осаждению и неравномерному диспергированию в фармацевтической композиции. Агрегация нерастворимых частиц левоклоперастина фендизоата может изменять профиль высвобождения лекарственного средства.

Снижение размера частиц является способом замедления осаждения. Однако небольшие частицы имеют склонность к слеживанию более плотно из-за повышенной поверхностной энергии от большей площади поверхности, что делает повторное диспергирование намного более сложным и иногда невозможным.

Небольшой размер частиц является желательным по причинам, отличным от замедления скорости осаждения. Для лекарственных средств, которые являются не очень растворимыми, меньшие частицы обычно растворяются быстрее из-за повышения общей площади поверхности, что может, в свою оче-

редь, повышать биодоступность. Также меньшие частицы лекарственного средства с меньшей вероятностью вызывают зернистость, что улучшает рентабельность готового продукта.

В настоящем изобретении предусмотрена фармацевтическая композиция на основе левоклоперастина фендизоата в форме суспензии, которая характеризуется физической стабильностью и надлежащей однородностью, даже при умеренном встряхивании при получении и после него.

Размер частиц можно определять, например, путем рассеяния лазерного излучения в сухой дисперсной системе с применением анализатора размера частиц, такого как патентованное устройство MastersizerTM, доступное от Malvern Instruments Ltd. (Malvern Mastersizer-2000, одномодальное распределение с узким диапазоном). Лазерная дифракция обеспечивает измерение распределений частиц по размерам путем измерения изменения угла по интенсивности рассеяния света при прохождении лазерного луча через образец в виде диспергированных частиц. Большие частицы рассеивают свет под малыми углами относительно лазерного луча, а малые частицы рассеивают свет под большими углами. Данные интенсивности углового рассеивания затем анализируют для расчета размера частиц, ответственных за создание диаграммы рассеивания с применением теории Ми рассеивания света. Размер частицы указывают как объемный эквивалент диаметра сферы.

Стандартный подход к определению ширины распределения состоит в указании трех значений по оси х в виде D_{10} , D_{50} и D_{90} . Значение D_{50} , названное медианным, было определено как диаметр, ниже которого находится 50% значений в распределении. Аналогично, значение D_{90} было определено как такое, ниже которого находится 90% значений в распределении и 10% значений в совокупности находятся ниже значения D_{10} .

В соответствии с настоящим изобретением существует терапевтически эффективное количество суспендированного левоклоперастина или его фармацевтически приемлемой соли, причем лекарственное вещество - левоклоперастина фендизоат - характеризуется распределением частиц по размерам (D_{90}) менее 100 мкм, предпочтительно менее 50 мкм.

Результаты определения распределения частиц по размерам для левоклоперастина фендизоата, применяемого в настоящем изобретении, приведены ниже.

 $\overline{d(0,1)}$: 3,031 мкм d(0,5): 13,126 мкм d(0,9): 39,322 мкм

Материал с желаемым диапазоном размера частиц получают непосредственно из способа синтеза, или в качестве альтернативы можно применять любые известные способы снижения размера частиц, такие как без ограничения просеивание, измельчение, микронизация, измельчение в псевдоожиженном слое, размол на шаровой мельнице и подобные.

Как реализовано и полностью описано в данном документе, в настоящем изобретении предусмотрена фармацевтическая композиция в форме суспензии, содержащая:

- (а) терапевтически эффективное количество нерастворимого в воде лекарственного вещества левоклоперастина или его фармацевтически приемлемой соли с распределением частиц по размерам (D_{90}) менее чем 100 мкм, предпочтительно (D_{90}) менее чем 50 мкм, что измеряли с помощью лазерной дифракции;
- (b) систему для суспендирования, состоящую по сути из суспендирующего средства в количестве от $0.1\ \text{дo}\ 0.5\%$ (вес./об.);
 - (с) поверхностно-активное вещество в количестве от 0,1 до 0,4% (вес./об.);
 - (d) эффективное количество воды и
 - (е) эффективное количество композиции подсластителя для обеспечения приятного вкуса.

В соответствии с FDA лекарственный продукт с немедленным высвобождением считается "быстро растворимым", если 85% или более указанного на этикетке количества лекарственного вещества растворяется в течение 30 мин. Также продукт с немедленным высвобождением считается "очень быстро растворимым", если 85% или более указанного на этикетке количества лекарственного вещества растворяется в течение 15 мин.

Фармацевтическая композиция на основе левоклоперастина фендизоата в форме суспензии по настоящему изобретению характеризуется таким профилем растворения, что 85% левоклоперастина фендизоата высвобождается в течение 15 мин; и при этом скорость высвобождения измеряют с помощью аппарата 2 по USP (лопастная мешалка, 50 об/мин) с применением 900 мл 0,1н. НСl при 37±0,5°C.

Композиция по настоящему изобретению также содержит фармацевтически приемлемые вспомогательные вещества. Подходящие вспомогательные вещества для получения суспензии включают поверхностно-активное вещество, суспендирующее средство, консерванты, подсластители, ароматизаторы, противовспенивающее средство, средство, маскирующее вкус, средство для регулирования уровня рН и растворитель.

Суспендирующие средства применяются для предотвращения осаждения путем влияния на реологические характеристики суспензии. Идеальное суспендирующее средство должно иметь определенные свойства: (1) оно должно обеспечивать структурированную среду; (2) оно должно быть совместимо с другими ингредиентами состава и (3) оно должно быть нетоксичным. Обычно применяемые суспенди-

рующие средства в суспензии включают производные целлюлозы (метилцеллюлозу, карбоксиметилцеллюлозу, гидроксиэтилцеллюлозу и гидроксипропилметилцеллюлозу), синтетические полимеры (карбомеры, полоксамеры поливинилпирролидона и поливиниловый спирт) и полисахариды и камеди (альгинаты, ксантановую, гуаровую камедь и т.д.). В настоящем изобретении подходящей для применения является ксантановая камедь, которая представляет собой высокомолекулярную полисахаридную камедь. Ксантановая камедь была предпочтительной в качестве суспендирующего средства и стабилизатора в среде для диспергирования вследствие ее приемлемых токсикологических свойств и свойств безопасности для пищевых и фармацевтических применений. Она является растворимой в воде и придает ей высокую вязкость при низкой концентрации с тиксотропными свойствами текучести.

Поверхностно-активное вещество является общим названием для материалов, которые имеют поверхностную активность. Есть несколько общих классов поверхностно-активных веществ: анионные, катионные, амфотерные и неионогенные. Наибольшая группа поверхностно-активных веществ, применяемых в составе фармацевтических суспензий, представляет собой неионогенные поверхностно-активные вещества. Типы неионогенных поверхностно-активных веществ, применяемых в фармацевтических суспензиях, представляют собой сложные эфиры полиэтиленгликоля и жирных кислот, такие как полиоксиэтилстеарат, полиэтиленгликоль-2000-стеарат. В настоящем изобретении применяют полиоксиэтилстеарат. Включение поверхностно-активного вещества повышает растворимость и смачиваемость частиц лекарственного средства. Предпочтительно применение высокомолекулярного полиоксиэтилстеарата может повышать растворимость относительно слаборастворимых терапевтических средств.

Консервант означает противомикробные средства, применяемые для подавления роста микроорганизмов в продукте - фармацевтических составах. Подходящие консерванты могут включать одно или более из бензоата натрия, бензойной кислоты, этилендиаминтетрауксусной кислоты, сорбиновой кислоты, бронопола, бутилпарабена, метилпарабена, этилпарабена, пропилпарабена, пропионата натрия, хлоргексидина, сорбата калия, пропиленгликоля, бисульфита натрия, метабисульфита натрия, натриевых солей гидроксибензоата и подобных. В настоящем изобретении применяют комбинацию метилпарабена и пропилпарабена.

Подходящие подсластители могут включать одно или более из сахарозы, сорбита, ксилита, декстрозы, фруктозы, мальтита, ацесульфама калия, аспартама, сахарина, сахарина натрия, жидкого мальтита, жидкой глюкозы, цикламата, цикламата натрия и подобного. В настоящем изобретении применяют ксилит.

Подходящие ароматизаторы могут включать одно или более из искусственного ароматизирующего вещества с ароматом клубники, искусственного ароматизирующего вещества с ароматами сливок, ванили, вишни, малины, банана и подобного. В настоящем изобретении выбирают ароматизирующее вещество с ароматом банана.

Подходящие растворители могут включать одно или более из воды, глицерина, пропиленгликоля, полиэтиленгликоля, этанола и подобного.

pH состава можно изначально обеспечивать вспомогательными средствами, присутствующими в составе; в качестве альтернативы можно применять регулятор pH. В настоящем изобретении не применяют регулятор pH, конечный pH обеспечивается вспомогательными средствами, присутствующими в составе.

Если не указано иное, проценты, представленные для ингредиентов суспензии по настоящему изобретению, представляют проценты веса/объем (вес./об.). Эти проценты веса/объем представлены в единицах грамм на миллилитр.

Следующие примеры представлены для иллюстрации настоящего изобретения и не предназначены для его ограничения:

Пример 1.

B этом примере применяют лекарственное вещество - левоклоперастина фендизоат - с распределением частиц по размерам (D_{90}) менее чем 100 мкм.

Результаты определения распределения частиц по размерам для левоклоперастина фендизоата, применяемого в этом примере, приведены ниже.

d(0,1): 3,031 мкм	км d(0,5): 13,126 мкм		d(0,9): 39,322 мкм		
Суспензия на основе	левоклоперастина	фендизоата%	количества	В	стандартной
708 мг/100 мл		доз	ве (% вес/об.)		
Левоклоперастина фен,	дизоат	0,7	1		

Метилпарабен	0,1
Пропилпарабен	0,05
Ксантановая камедь	0,36
Полиоксиэтилстеарат	0,25
Ксилит	32,0
Ароматизирующее вещество с ароматом банана	в достаточном количестве
Деионизированная вода	в достаточном количестве

Пропилпарабен и метилпарабен растворяют в воде. При нагревании раствора ксилит и полиоксиэтилстеарат добавляют до получения прозрачного раствора. Лекарственное вещество - левоклоперастина фендизоат, ксантановую камедь и ароматизирующее вещество с ароматом банана добавляют и суспендируют при перемешивании. Суспензию доводят до объема водой и пропускают через гомогенизатор. Наконец, готовый продукт заполняют в стеклянные бутылки.

Пример 2.

Для проверки эффекта распределения частиц по размерам (D_{90}) лекарственного вещества - левоклоперастина фендизоата - на высвобождение лекарственного вещества выполняют такой же способ получения, что и в примере 1, с другим распределением частиц по размерам (D_{90}) лекарственного вещества - левоклоперастина фендизоата.

B этом примере применяют лекарственное вещество - левоклоперастина фендизоат - с распределением частиц по размерам (D_{90}) более чем 150 мкм.

Результаты определения распределения частиц по размерам для левоклоперастина фендизоата, применяемого в этом примере, приведены ниже.

d(0,1): 8,148 мкм d(0,5): 51,879 мкм d(0,9): 156,215 мкм

Пример 3.

С целью изучения эффекта количества ксантановой камеди в стандартной дозе в отношении высвобождения лекарственного вещества осуществляли такой же способ получения, что и в примере 1 (лекарственное вещество - левоклоперастина фендизоат с распределением частиц по размерам (D_{90}) менее чем 100 мкм), с низким отношением количества ксантановой камеди.

Суспензия на основе левоклоперастина фендизов	ата% количества в стандартной		
708 мг/100 мл	дозе (% вес/об.)		
Левоклоперастина фендизоат	0,71		
	0.4		
Метилпарабен	0,1		
Пистительной	0.05		
Пропилпарабен	0,03		
Ксантановая камедь	0,25		
Кештиновил кимедв	0,23		
Полиоксиэтилстеарат	0,25		
•			
Ксилит	32,0		
Ароматизирующее вещество с ароматом банана	в достаточном количестве		
Деионизированная вода	в достаточном количестве		

Пропилпарабен и метилпарабен растворяют в воде. При нагревании раствора ксилит и полиоксиэтилстеарат добавляют до получения прозрачного раствора. Действующее вещество - левоклоперастина фендизоат, ксантановую камедь и ароматизирующее вещество с ароматом банана добавляют и суспендируют при перемешивании. Суспензию доводят до объема водой и пропускают через гомогенизатор. Наконец, готовый продукт заполняют в стеклянные бутылки.

Пример 4.

C целью изучения эффекта количества полиоксиэтилстеарата в стандартной дозе в отношении высвобождения лекарственного вещества осуществляли такой же способ получения, что и в примере 1 (лекарственное вещество - левоклоперастина фендизоат с распределением частиц по размерам (D_{90}) менее чем 100 мкм), с низким отношением количества полиоксиэтилстеарата.

Суспензия на основе левоклоперастина фендизо	рата% количества в стандартной
708 мг/100 мл	дозе (% вес/об.)
Левоклоперастина фендизоат	0,71
Метилпарабен	0,1
Пропилпарабен	0,05
Ксантановая камедь	0,36
Полиоксиэтилстеарат	0,06
Ксилит	32,0
Ароматизирующее вещество с ароматом банана	в достаточном количестве
Деионизированная вода	в достаточном количестве

Пропилпарабен и метилпарабен растворяют в воде. При нагревании раствора ксилит и полиоксиэтилстеарат добавляют до получения прозрачного раствора. Действующее вещество - левоклоперастина фендизоат, ксантановую камедь и ароматизирующее вещество с ароматом банана добавляют и суспендируют при перемешивании. Суспензию доводят до объема водой и пропускают через гомогенизатор. Наконец, готовый продукт заполняют в стеклянные бутылки.

Определение осаждения в образцах суспензии.

Полученные суспензии (примеры 1-4) упаковывали в стеклянную бутылку и оставляли как есть на 6 ч. Затем визуально наблюдали присутствие осадка в суспензии на дне бутылок. Никакого осадка не наблюдали через 6 ч для полученных суспензий (примеры 1-4).

Определение ресуспендируемости образцов суспензии.

Ресуспендируемость представляет способность повторного суспендирования осевших частиц при минимальном встряхивании после того, как суспензия осела при отстаивании в течение некоторого времени. Ресуспендируемость суспензий оценивали количественно с применением оценки однородности состава. С целью проверки однородности дозы полученных составов выполняли тест на однородность содержимого в соответствии с руководствами из фармакопеи. Однородность состава суспензии необходимо контролировать для введения точной и одинаковой дозы.

В соответствии с фармакопеей США общий критерий для приемлемых уровней однородности состава лекарственного средства в суспензиях составляет не менее 90,0 и не более 110,0% от количества на этикетке.

Процедура. Обеспечивали осаждение полученных суспензий (примеры 1-4) и коммерческого эталонного продукта в закрытых пробками стеклянных бутылках в течение 1 месяца. Все образцы повторно диспергировали путем встряхивания равное время (15 с) одинаковым образом. Некоторое количество образца отбирали с различной высоты (10 раз для каждой бутылки) и проводили оценку левоклоперастина фендизоата для определения однородности состава (анализ). Результаты оценки однородности состава приведены в табл. 2. Относительное стандартное отклонение (RSD%) рассчитывали в соответствии с руководствами из фармакопеи.

Таблица 2 Результаты анализа в отношении оценки однородности состава для левоклоперастина фендизоата

% Левоклоперастина фендизоата

№ образца	Эталонный продукт	Пример 1	Пример 2	Пример 3	Пример 4
1	92,1	99,8	92,5	99,8	91,5
2	88,6	98,2	96,5	98,9	105,9
3	91,3	99,5	96,8	99,2	97,5
3 4	86,8	100,1	91,5	100,3	91,3
5	105,6	99,8	93,8	99,5	88,1
6	87,7	99,9	98,6	98,1	92,3
7	89,8	98,7	94,8	99,4	101,5
8	90,8	100,5	96,1	99	91,8
9	111,9	99,9	92,8	100,5	85,6
10	93,5	99,8	96,1	99,5	99,7
Среднее	93,8	99,6	95,0	99,4	94,5
SD	8,28	0,68	2,25	0,69	6,38
RSD%	8,83	0,68	2,37	0,70	6,75

Оценка однородности содержимого показала, что суспензии, полученные в примере 1 и примере 3, являются более однородными суспензиями с минимальными стандартными отклонениями, чем коммерческий эталонный продукт. Эталонный продукт ресуспендируется со сложностями, и для него требуется большее число встряхиваний. Композиции по настоящему изобретению будут обычно повторно диспергированы не более чем за 15 с с улучшением однородности состава.

Профили растворения.

Выбор среды для растворения, которую применяют для исследования растворения, является наиболее важной частью разработки способа растворения. В настоящем изобретении состав представляет собой рН-зависимую фармацевтическую композицию на основе левоклоперастина фендизоата в форме, которая является менее растворимой при высоком рН и более растворимой при низком рН. Поскольку нет записанной среды для растворения, выбирали среду для растворения 0,1н. НСІ для исследований растворения.

Сравнительные исследования растворения проводили на основе общего метода проведения исследования растворения. Ход растворения контролировали в течение 60 мин. В исследовании растворения измеряют долю (%) левоклоперастина фендизоата, которая растворилась в среде для растворения. Исследование растворения проводили помощью аппарата II по USP, 0,1н. HCl, 50 об/мин и 900 мл. Вышеуказанные иллюстративные композиции, содержащие левоклоперастина фендизоат, тестировали in vitro и их сравнивали с коммерческим эталонным продуктом в форме суспензии. На фиг. 1 показан сравнительный график доли в процентах растворенного левоклоперастина фендизоата в зависимости от времени в каждом из тестовых образов, полученных с помощью примера 1, и коммерческого эталонного продукта.

Эталонный продукт высвобождает приблизительно 65% левоклоперастина фендизоата за 30 мин, тогда как фармацевтическая композиция по настоящему изобретению (пример 1) высвобождает приблизительно 80% левоклоперастина фендизоата за 30 мин. Это значительное увеличение доли высвобождения в процентах левоклоперастина фендизоата приводит к улучшенной смачиваемости, растворимости и, таким образом, повышенной доле высвобождения в процентах.

На фиг. 2 показан сравнительный график доли в процентах растворенного левоклоперастина фенди-

зоата в зависимости от времени в каждом из тестовых образов, полученных с помощью примера 2, и коммерческого эталонного продукта.

Общеизвестно, что распределение частиц по размерам лекарственного вещества может иметь значительный эффект на характеристики готового лекарственного продукта (например, растворение, биодоступность, однородность содержимого, стабильность и т.д.). Скорость растворения нерастворимых в воде лекарственных средств, таких как левоклоперастина фендизоат, сильно зависит от распределения частиц по размерам. Удельная площадь поверхности повышается со снижением размера частиц лекарственного средства, что приводит к повышению скорости растворения. Профиль высвобождения лекарственного средства (фиг. 2) левоклоперастина фендизоата с распределением частиц по размерам (D₉₀) более чем 150 мкм показывает низкую скорость растворения относительно эталонного продукта. Низкая скорость растворения может приводить также к низкой биодоступности.

На фиг. 3 показан сравнительный график доли в процентах растворенного левоклоперастина фендизоата в зависимости от времени в каждом из тестовых образов, полученных с помощью примера 3, и коммерческого эталонного продукта.

Как показано на фиг. 3, доля в процентах высвобождения лекарственного средства повышается со снижением концентрации ксантановой камеди. Фармацевтическая композиция суспензии левоклоперастина фендизоата показывает улучшенные характеристики растворения по сравнению с коммерчески доступным эталонным продуктом.

Авторы настоящего изобретения заметили, что состав суспензии на основе левоклоперастина фендизоата, содержащий левоклоперастина фендизоат с распределением частиц по размерам (D_{90}) менее чем 100 мкм, предпочтительно менее чем 50 мкм; систему для суспендирования, состоящую по сути из суспендирующего средства в количестве от 0,1 до 0,5% (вес./об.), предпочтительно от 0,2 до 0,4% (вес./об.), предпочтительно ксантановой камеди; поверхностно-активного вещества в количестве от 0,1 до 0,4% (вес./об.), предпочтительно от 0,2 до 0,3% (вес./об.), предпочтительно полиоксиэтилстеарата, вместе обеспечивает значительное увеличение скорости растворения нерастворимого в воде лекарственного вещества - левоклоперастина фендизоата.

Эталонный продукт высвобождает приблизительно 65% левоклоперастина фендизоата за 30 мин, тогда как фармацевтическая композиция по настоящему изобретению (пример 3) высвобождает приблизительно 85% левоклоперастина фендизоата за 15 мин, что демонстрирует свойство "очень быстрого растворения" лекарственного средства. Это значительное увеличение доли в процентах высвобождения лекарственного средства левоклоперастина фендизоата является неожиданным эффектом настоящего изобретения, что приводит к улучшенной смачиваемости, растворению, и, таким образом, это будет повышать биодоступность.

На фиг. 4 показан сравнительный график доли в процентах растворенного левоклоперастина фендизоата в зависимости от времени в каждом из тестовых образов, полученных с помощью примера 4, и коммерческого эталонного продукта.

Как показано на фиг. 4, доля в процентах высвобождения лекарственного средства снижалась при снижении количества полиоксиэтилстеарата в стандартной дозе, тогда как концентрация ксантановой камеди остается постоянной. Это происходит из-за того, что поверхностно-активные вещества снижают поверхностное натяжение между частицами лекарственного средства и жидкости, таким образом, жидкость проникает в поры частицы лекарственного средства, заменяя воздух в них и, таким образом, обеспечивает смачивание. Применение полиоксиэтилстеарата на низком уровне снижало смачиваемость левоклоперастина фендизоата и вызывало снижение скорости растворения.

Также низкое количество поверхностно-активного вещества ухудшает свойство диспергируемости полученной суспензии, в то же время вызывая флокуляцию действующего вещества.

Pea	ультаты раство		-	створения: 0, по воклоперасти	
Время		фендизоата	ı		
	Эталонный продукт	Пример 1	Пример 2	Пример 3	Пример 4
15 мин.	45	56	30	85	26
30 мин.	68	81	38	93	51

Исследование стабильности.

Исследование стабильности суспензий является очень важным аспектом для облегчения приема пациентом предназначенного количества лекарственного средства(средств) в вводимой дозе. Исследования

стабильности необходимо представлять любому заявителю, который стремится получить одобрение для нового фармацевтического продукта. Требования к исследованиям стабильности описываются, например, в фармакопее США, в Надлежащей производственной практике (GMP), а также в руководствах FDA и ICH. Известно, что многие лекарственные средства характеризуются низкой или умеренной стабильностью при хранении. Уменьшение концентрации лекарственного средства в результате его разложения является само по себе нежелательным, поскольку это делает терапию лекарственным средством менее надежной. Проблемы в отношении стабильности могут быть вызваны факторами окружающей среды, такими как влажность, температура и подобные.

При разработке лекарственной формы левоклоперастина фендизоата в форме суспензии стабильность оценивали при трех различных условиях ($25\pm2^{\circ}$ C, $30\pm2^{\circ}$ C и $40\pm2^{\circ}$ C) в шкафах с программируемой температурой. Температура $25\pm2^{\circ}$ C/ $60\pm5\%$ RH (относительной влажности) представляет температуру окружающей среды и поддерживается до 24 месяцев; $30\pm2^{\circ}$ C/ $65\pm5\%$ RH представляет промежуточную температуру и поддерживается до 12 месяцев; $40\pm2^{\circ}$ C/ $75\pm5\%$ RH представляет экстремальные условия и поддерживается до 6 месяцев.

Физическую стабильность определяли как отсутствие изменений цвета, запаха и вкуса и оценку ресуспендирования твердой фазы с помощью приемлемого количества простых встряхиваний в течение 15 с. Физическая стабильность является такой же важной, как и химическая стабильность. Если продукт не ресуспендировался достаточно при встряхивании, доза будет неправильной. Неполное ресуспендирование вызывает проблемы в отношении однородности состава. Исходные отбираемые дозы будут с меньшей дозировкой. Это происходит вследствие того, что лекарственное средство остается на дне контейнера, что препятствует получению правильной концентрации суспензии при встряхивании. Если часть продукта отбирают с концентрацией, значительно меньшей, чем концентрация на этикетке, отбираемые дозы будут становиться более концентрированными. Это происходит, когда дополнительное встряхивание удаляет лекарственное средство со дна контейнера, и оно диспергируется в меньшем объеме жидкости.

В исследованиях стабильности для эталонного продукта требуется встряхивание в течение приблизительно 1 мин, чтобы он стал полностью ресуспендированным. Было обнаружено, что авторы настоящего изобретения (пример 1 и пример 3) улучшили характеристики ресуспендируемости суспензии. Суспензия, полученная из состава примера 1 и примера 3, ресуспендировалась в результате встряхивания в течение 15 с. Это время для ресуспендируемости намного ниже, чем время встряхивания, необходимое для эталонного продукта. С целью тестирования однородности состава образцов в отношении стабильности как суспендированный тестовый образец, так и эталонный продукт встряхивали в течение 15 с и образец отбирали из суспензии на 2 см ниже поверхности контакта жидкость/воздух (6 раз для каждой бутылки) и анализировали в отношении количества левоклоперастина фендизоата. Результаты подтвердили проблему в отношении однородности состава у эталонного продукта, тогда как тестовые продукты (пример 1 и пример 3) имели результаты анализа, близкие к теоретическим 100% на этикетке, и имели меньший разброс между образцами.

Суспензии левоклоперастина фендизоата по настоящему изобретению (пример 1 и пример 3) являются стабильными при трех различных условиях в обычной упаковке, например в стеклянных бутылках.

Кроме того, продукты, полученные с помощью примера 1 и примера 3, тестировали в отношении микробного загрязнения в пересчете на общее количество жизнеспособных аэробных микроорганизмов, общее число дрожжевых и плесневых грибов и Escherichia coli через равные промежутки времени. Оба из них прошли микробиологическое тестирование в течение 6-месячного периода при экстремальных условиях 40 ± 2 °C, 75 ± 5 % RH.

Исследование биоэквивалентности.

В соответствии с рекомендациями FDA США под названием "Исследование биодоступности и биоэквивалентности для вводимых перорально лекарственных продуктов - Общие положения" биоэквивалентность определяется как "отсутствие значительной разницы в скорости и степени, в которой активный ингредиент или активный фрагмент в фармацевтических эквивалентах или фармацевтических вариантах становится доступным в месте действия лекарственного средства при введении в одинаковой молярной дозе при одинаковых условиях в соответствующим образом разработанном испытании."

Следующие фармакокинетические параметры оценивали с помощью некомпартментных методов с применением фактического прошедшего времени с момента дозирования:

 C_{max} (нг/мл): максимальная наблюдаемая концентрация в плазме, полученная непосредственно из данных наблюдаемой концентрации относительно времени;

 t_{max} (ч): время для максимальной наблюдаемой концентрации в плазме, полученной непосредственно из данных наблюдаемой концентрации относительно времени;

 $AUC_{0-\infty}$ (нг/мл·ч): площадь под кривой от момента времени ноль, экстраполированной до бесконечности, рассчитанная линейно-логарифмическим методом трапеций и экстраполированная до бесконечности путем добавления последней определяемой количественно концентрации, разделенной на константу скорости элиминации;

 $AUC_{0-tlast}$ (нг/мл·ч): площадь под кривой от момента времени ноль до времени последней измеримой концентрации, рассчитанная линейно-логарифмическим методом трапеций.

Исследования in vivo проводили с участием 36 здоровых добровольцев для оценки биоэквивалентности композиции на основе левоклоперастина фендизоата в форме суспензии для перорального применения по настоящему изобретению (пример 1 - суспензия на основе левоклоперастина фендизоата
708 мг/100 мл для перорального применения; № партии: 1505001) относительно коммерческого эталонного продукта при использовании открытого, однодозового, 2-периодного перекрестного, рандомизированного исследования при условиях натощак.

Два лекарственных продукта считаются "биоэквивалентными", если они являются фармацевтическими эквивалентами, скорость и степень поглощения которых значительно не различаются при введении пациентам или субъектам в одинаковой молярной дозе при одинаковых условиях эксперимента, и когда 90% доверительный интервал (СІ) для AUC и C_{max} попадает в 80-125% для отношения тестовый/эталонный образец.

Оценку фармакокинетических профилей и относительной биодоступности левоклоперастина фендизоата проводили для тестового препарата (пример 1 - суспензия на основе левоклоперастина 708 мг/100 мл для перорального применения) по сравнению с эталонным продуктом, чтобы показать биоэквивалентность тестового продукта относительно эталонного продукта в условиях натощак. Результаты приведены в табл. 4 и 5).

Таблица 4

Фармакокинетические параметры левоклоперастина для композиции по настоящему изобретению, полученной с помощью тестового получения (пример 1 - суспензия левоклоперастина фендизоата 708 мг/100 мл для перорального применения), относительно коммерческого эталонного продукта

Фармакокинетические результаты левоклоперастина (условия натощак)

	$\mathrm{AUC}_{0 ext{-tlast}}$	$\mathrm{AUC}_{0\text{-}\infty}$	C_{max}	t _{max}
	[нг/мл·ч.]	[нг/мл·ч.]	[нг/мл]	[ч.]
N		36		
Тестовый (Т)	74,71 ± 42,24	$117,56 \pm 67,51$	$4,26 \pm 2,80$	$5,59 \pm 3,69$
(№ партии: 150500	1)			
Эталонный (R)	66,24 ± 33,82	$99,23 \pm 48,82$	$4,06 \pm 2,77$	$4,65 \pm 1,65$
(№ партии: 34002)				

Таблица 5

Статистические результаты левоклоперастина для композиции по настоящему изобретению, полученной с помощью тестового получения (пример 1 - суспензия левоклоперастина фендизоата 708 мг/100 мл для перорального применения), относительно коммерческого эталонного продукта Статистические результаты левоклоперастина (тестовый относительно эталонного); n=36

Первичные фармакокинетические параметры

90% доверительный интервал

AUC _{0-tlast}	ANOVA:	101,51% - 120,25%			
	точечная оценка (отношение):	110,49%			
	90% доверительный интервал				
C_{max}	ANOVA:	92,45% – 124,35%			
	точечная оценка (отношение):	107,22%			
Вторичные фармакокинетические параметры					
	90% доверительный интервал				
$\mathrm{AUC}_{0\text{-}\infty}$	ANOVA:	105,79% – 122,38%			
	точечная оценка (отношение):	113,78%			
	90% доверительный интервал				
t _{max}	Непараметрический анализ:	−1,00 ч. − 0,00 ч.			
	Среднее (разница эталонного и тестового):	-0,32 ч.			

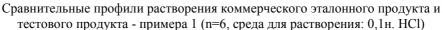
На основе результатов данного испытания степень ($AUC_{0\text{-tlast}}$) и скорость (C_{max}) биодоступности левоклоперастина из тестового препарата (пример 1 - суспензия левоклоперастина фендизоата 708 мг/100 мл для перорального применения) и коммерческого эталонного продукта являются довольно соизмеримыми. 90% доверительный интервал для логарифмически трансформированных $AUC_{0\text{-tlast}}$ и C_{max} левоклоперастина соответствует критериям биоэквивалентности 80-125%, таким образом, они становятся биоэквивалентными при условиях натощак.

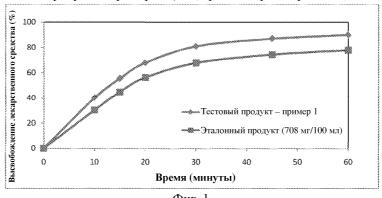
В настоящем изобретении предусматривается состав фармацевтической суспензии на основе левоклоперастина фендизоата для перорального применения, который имеет большое сходство между результатами растворения in vitro и биоэквивалентности in vivo. Как показано на фиг. 1, тестовый продукт (пример 1) демонстрирует более высокие значения скорости растворения лекарственного средства, чем эталонный продукт, как показано в среде для растворения 0,1н. HCl, и в то же время профиль зависимости средней концентрации левоклоперастина в плазме от времени (фиг. 5) демонстрирует аналогичное поведение с более высокими значениями степени накопления лекарственного средства в плазме.

В другом аспекте состав суспензии на основе левоклоперастина фендизоата, полученный в примере 3, имеет более высокие значения скорости растворения, чем в примере 1, а также эталонный продукт. Таким образом, продукты, полученные с помощью состава примера 3, как предполагается, имеют повышенную биодоступность.

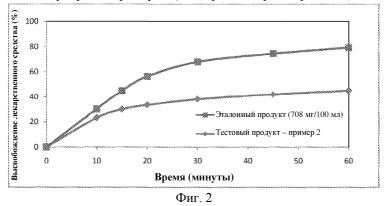
Таким образом, на основе результатов, представленных в данном документе, очевидно, что фармацевтически приемлемая лекарственная форма - суспензия для перорального применения на основе по сути нерастворимого в воде лекарственного вещества - левоклоперастина фендизоата - может быть получена с применением композиций ингредиентов и способов изготовления, обсуждаемых в данном документе. Такие композиции демонстрируют повышенные значения скорости растворения лекарственного средства и ресуспендируемости по сравнению с эталонным продуктом.

Хотя настоящее изобретение было описано в отношении его конкретных вариантов осуществления, некоторые модификации и эквиваленты будут очевидны специалистам в данной области техники, и предполагается, что они включены в объем настоящего изобретения.

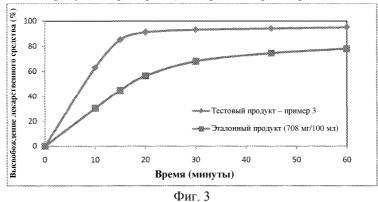

Пояснение графических материалов.

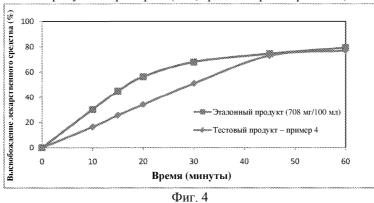

- Фиг. 1. Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта примера 1 (n=6, среда для растворения: 0,1н. HCl).
- Φ иг. 2. Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта примера 2 (n=6, среда для растворения: 0,1н. HCl).
- Фиг. 3. Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта примера 3 (n=6, среда для растворения: 0,1н. HCl).
- Фиг. 4. Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта примера 4 (n=6, среда для растворения: 0,1н. HCl).

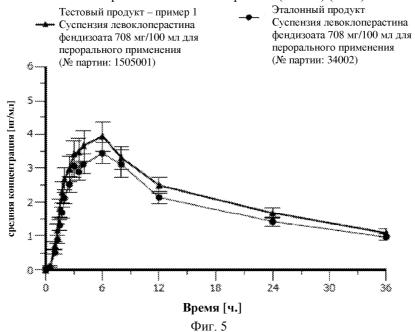
Фиг. 5. Линейные профили зависимости средней концентрации левоклоперастина в плазме от времени (\pm SEM) (n=36).


ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Фармацевтическая композиция в форме суспензии для перорального применения, содержащая:
- (i) терапевтически эффективное количество левоклоперастина или его фармацевтически приемлемой соли с распределением частиц по размерам (D_{90}) менее чем 100 мкм, измеренным с помощью лазерной дифракции;
 - (ii) от 0,1 до 0,4% (вес./об.) полиоксиэтилстеарата в качестве поверхностно-активного вещества;
 - (ііі) от 0,1 до 0,5% (вес./об.) ксантановой камеди в качестве суспендирующего средства;
 - (iv) одно или более фармацевтически приемлемых вспомогательных веществ.
- 2. Фармацевтическая композиция в форме суспензии для перорального применения по п.1, где действующее вещество представляет собой левоклоперастина фендизоат.
- 3. Фармацевтическая композиция в форме суспензии для перорального применения по п.1, где указанное лекарственное вещество характеризуется распределением частиц по размерам (D_{90}) менее 50 мкм, измеренным с помощью лазерной дифракции.
- 4. Фармацевтическая композиция в форме суспензии для перорального применения по любому из предыдущих пунктов, где система для суспендирования содержит от 0.2 до 0.4% (вес./об.) ксантановой камеди и от 0.2 до 0.3% (вес./об.) полиоксиэтилстварата.
- 5. Фармацевтическая композиция в форме суспензии для перорального применения по любому из предыдущих пунктов, где композиция характеризуется таким профилем растворения, что по меньшей мере 85% левоклоперастина фендизоата высвобождается в течение 15 мин, причем скорость высвобождения измерена с помощью аппарата 2 (USP, лопастная мешалка, 50 об/мин) с применением 900 мл 0,1н. HCl при $37\pm0,5$ °C.
- б. Фармацевтическая композиция в форме суспензии для перорального применения по любому из предыдущих пунктов, где фармацевтически приемлемые вспомогательные вещества включают одно или более из суспендирующих или повышающих вязкость средств, поверхностно-активных веществ, подсластителей, консервантов, ароматизаторов, растворителей.
- 7. Фармацевтическая композиция в форме суспензии для перорального применения по п.6, где подсластители включают одно или более из сахарозы, сорбита, ксилита, декстрозы, фруктозы, мальтита, ацесульфама калия, аспартама, сахарина, сахарина натрия, жидкого мальтита, жидкой глюкозы, цикламата, цикламата натрия.
- 8. Фармацевтическая композиция в форме суспензии для перорального применения по п.6, где консерванты включают одно или более из бензоата натрия, бензойной кислоты, этилендиаминтетрауксусной кислоты, сорбиновой кислоты, бронопола, бутилпарабена, метилпарабена, этилпарабена, пропилпарабена, пропионата натрия, хлоргексидина, сорбата калия, пропиленгликоля, бисульфита натрия, метабисульфита натрия, натриевых солей гидроксибензоата.
- 9. Фармацевтическая композиция в форме суспензии для перорального применения по п.6, где ароматизаторы включают одно или более из искусственного ароматизирующего вещества с ароматом клубники, искусственного ароматизирующего вещества с ароматами сливок, ванили, вишни, малины.
- 10. Фармацевтическая композиция в форме суспензии для перорального применения по п.6, где растворители включают одно или более из воды, глицерина, пропиленгликоля, полиэтиленгликоля, этанола.




Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта - примера 2 (n=6, среда для растворения: 0,1н. HCl)


Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта - примера 3 (n=6, среда для растворения: 0,1н. HCl)

Сравнительные профили растворения коммерческого эталонного продукта и тестового продукта - примера 4 (n=6, среда для растворения: 0,1н. HCl)

Линейные профили зависимости средней концентрации левоклоперастина в плазме от времени (± SEM) (n=36)

