(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2022.07.08

(21) Номер заявки

202191024

(22) Дата подачи заявки

2021.04.14

(51) Int. Cl. A01N 25/18 (2006.01)

A01N 43/50 (2006.01)

A01N 59/12 (2006.01)

C06D 3/00 (2006.01)

C01D 9/00 (2006.01)

C08L 1/02 (2006.01)

C01B 7/24 (2006.01)

A01P 3/00 (2006.01)

(54) ПРОТИВОГРИБКОВЫЙ ДЕЗИНФИЦИРУЮЩИЙ ПРЕПАРАТ

(43) 2022.07.06

(96) KZ2021/016 (KZ) 2021.04.14

(71)(72)(73) Заявитель, изобретатель и

патентовладелец:

ИЗМАЙЛОВ ТИМУР ХУСАИНОВИЧ

(KZ)

(74) Представитель:

Налибаева Г.К. (KZ)

(**56**) EA-A1-201600286 BY-C1-15166 CN-A-102633744

Изобретение относится к сельскому хозяйству, в частности к ветеринарии, и может быть (57) использовано для дезинфекции объектов ветеринарного надзора: помещений и оборудования в присутствии животных и птицы. Бактерицидное средство содержит энилконазол, монохлорид иода, калий и/или натрий азотнокислый, карбогидрат и/или карбогидрат с лигнином. Заявляемое бактерицидное средство обладает высокой бактерицидной активностью, малотоксично в эффективных бактерицидных концентрациях, эффективно против патогенной микрофлоры и обеспечивает меньшую норму расхода.

Изобретение относится к сельскому хозяйству, в частности к ветеринарии, и может быть использовано для дезинфекции объектов ветеринарного надзора: помещений и оборудования в присутствии животных и птицы. Бактерицидное средство содержит энилконазол, монохлорид иода, калий и/или натрий азотнокислый, карбогидрат и/или карбогидрат с лигнином.

Заявляемое бактерицидное средство обладает высокой бактерицидной активностью, малотоксично в эффективных бактерицидных концентрациях, эффективно против патогенной микрофлоры и обеспечивает меньшую норму расхода.

Известен противогрибковый препарат "Клинафарм", содержащий активное вещество энилконазол. Активен в отношений бактерий Aspergillus fumigatus и Aspergillus Spp спор и дерматофитов (Dr. J. van Cutsem, F. van Gerven, P.A.J. Janssen, In Vitro Activity of Enilconazole - Against Aspergillus Spp. and its Fungicidal Efficacy in a Smoke Generator Against Aspergillus fumigatus). Композиция широко используется в современных инкубаторах и не требует условий для организации системы вентиляции (см., например, Дезинфицирующий препарат против Аспергиллеза Клинафарм дым, адрес в Интернете: https://petdog.ru/klinafarm-dym-1-sht.html).

Аэрозольная обработка помещений средством "Клинафарм" производится путем сжигания порошка "Клинафарм" в помещении при горении порошка, пары и аэрозоль которого проникают в труднодоступные места и обеспечивают эффективную дезинфекцию объема помещения и его поверхностей.

Также известно средство "Эконафарм" для противогрибковой и антибактериальной дезинфекции объектов ветеринарного надзора. Один генератор дыма содержит в качестве активного вещества Энилконазол 5 г. Производитель Farmabase Saude Animal / Фармабасе Сауде Анимал, Бразилия (подробнее: https://vetagro61.ru/p484609233-ekonafarm-shashki-analog.html).

Недостатками вышеописанных средств являются меньшая эффективность, большой расход в сравнении с заявляемым изобретением.

Задачей заявляемого изобретения является разработка более эффективного, безопасного и менее токсичного средства для дезинфекции воздуха и помещений ветеринарного надзора.

Техническим результатом предлагаемого изобретения является его повышенная биоцидная активность за счет комбинации двух дезинфицирующих средств: энилконазола и монохлорида иода, снижение нормы расхода, что обеспечивает эффективную дезинфекцию при низкой токсичности вещества.

Критерием эффективности заявляемого средства явились 100%-ная гибель тест-культур в опытах in-vitro и 95%-ная эффективность при проведении дезинфекции производственных птицеводческих помещений.

Поставленная задача достигается заявляемым бактерицидным средством, который содержит: энил-коназол, монохлорид иода, калий и/или натрий азотнокислый, карбогидрат и/или карбогидрат с лигнином, массовая доля в %: энилконазол - 3-6 г; монохлорид иода - 0,1-2 г; калий и/или натрий азотнокислый - 34-85 г; карбогидрат и карбогидрат с лигнином - 14-35 г.

Сочетание заявленных компонентов в определенных соотношениях позволяет достичь поставленный технический результат. Добавление в состав монохлорида иода - эффективного бактерицидного вещества в комбинации с энилконазолом существенно повышает биоцидную активность заявляемого средства. Данная комбинация неизвестна из уровня техники, что также делает ее уникальной.

Сравнительная характеристика заявляемого средства от аналогов

Заявка, патент	Доза,	Норма	Концентрация	
	содержание	расхода (м ³)	иода в мг/м ³	
	энинконазола			
	(г)			
Бактерицидное	5	50	_	
средство «Клинафарм»		50		
Бактерицидное	5	40	_	
средство «Эконафарм»		70	-	
Заявляемое				
бактерицидное	3	100	0,3	
средство по примеру 1				
Заявляемое				
бактерицидное	5	100	1,2	
средство по примеру 2				
Заявляемое				
бактерицидное	6	100	2,1	
средство по примеру 3				

Заявляемый термовозгонный дезинфицирующий противогрибковый препарат, шашка дымовая, где в качестве активно-действующего вещества выступает энилконазол - синтетическое антимикотическое средство. Активен в отношении возбудителей: Trichophyton verrucosum, Trichophyton mentagrophytes, Trichophyton equinum, Microsporum canis, Microsporum gypseum.

Ингибируя биосинтез эргостерина, триглицеридов, фосфолипидов, вызывает гибель грибов.

По степени воздействия на организм относится к умеренно токсичным веществам (3 класс опасности по ГОСТ 12.1.007-76), высоко токсичен для рыб.

При применении в рекомендуемых дозах не оказывает побочного действия.

Эффективность заявляемого средства определяли методом in vitro на эталонные тест-штаммы Candida albicans ATCC 10231, Aspergillus brasiliensis ATCC 16404.

Фунгицидную активность определяли методом двухкратных разведений в микропробирках типа Eppendorf, согласно CLSI M38-2A, "Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi", 2-nd edition. Для тестирования использовали бульон и агар Сабуро.

Суспензию тест-штаммов микроорганизмов готовили непосредственно перед проведением исследования. Для исследования брали только культуры в экспоненциальной фазе роста. Стандартизовали содержание микробных клеток в суспензии с помощью денситометра DEN-1 (BioSan, Латвия). Сначала готовили суспензию, содержащую 2,0 ед. по Мак-Фарланду, затем разбавляли эту суспензию в 100 раз в питательной среде. Окончательная концентрация суспензии тест-штаммов составляла $\sim 5 \times 10^6$ КОЕ/мл.

Навеску заявляемого термовозгонного дезинфицирующего противогрибкового препарата в количестве 20 мг растворяли в 5 мл физиологического раствора и получали базовый раствор исследуемого вещества с концентрацией 4 мг/мл.

В каждом тестовом ряду ставили положительные и отрицательные контроли:

- 1 микропробирка контроль роста тест-штамма без препарата;
- 2 микропробирка контроль стерильности питательной среды.

В микропробирки № 3-17 вносили бульон Сабуро по 0,5 мл. В микропробирку № 3 внесли 0,5 мл базового раствора противогрибкового препарата МусеtoDez. В четвертую пробирку, содержащую 0,5 мл физраствора, внесли 0,5 мл из микропробирки № 3. Повторяли процедуру до микропробирки № 17. Из последней микропробирки ряда избыточный объем 0,5 мл удаляли в дезраствор. В результате в микропробирке оставалось по 0,5 мкл жидкости. После во все пробирки добавили по 0,05 мл тест-штаммов (5×10⁶ КОЕ/мл). После посева помещали пробирки в инкубатор во все на плотную питательную среду Сабуро. Посевы помещали в инкубатор на 3-5 суток при 22±1°С, после чего проводили учет результатов.

Взятие пробы воздуха 1500 м³ осуществлялось при помощи портативного прибора для микробиологического контроля воздуха AirPort MD8 (Sartorius). Отбор воздуха осуществлялся через фильтры из желатина с диаметром пор 0,22 мкм с последующим их нанесением на чашки Петри, содержащие питательные среды: питательный агар Сабуро (для определения общего числа грибов). Среды с фильтрами помещали в охладительный термостат (Binder KT115) на 5 суток при температуре 22±1°С. Предварительный подсчет выросших колоний производили через 72 ч, окончательный - через 120 ч. Производился подсчет общего числа выросших КОЕ на агаре.

Расчет концентрации микроорганизмов (X, KOE/м³), производили по формуле

$$X = \frac{N \times 1500}{V} \tag{1}$$

где N - количество колоний, выросших на чашке;

1500 - коэффициент пересчета на 1 м³ воздуха;

V - объем отобранной пробы воздуха, дм³.

Определение in vitro эффективности противогрибкового препарата. Перед началом эксперимента тест-культуры Candida albicans ATCC 10231 и Aspergillus brasiliensis ATCC 16404 подверглись реактивации с последующим субкультивированием. При контроле чистоты культуры и физиолого-биохимической активности доказано, что культуры однородны и соответствуют систематическому положению, их свойства в процессе хранения не изменились.

Контроль жизнеспособности тест-культур осуществляли параллельно с исследованием по следующей схеме: из исследуемой 72-часовой культуры приготовили ряд разведений в концентрациях $1,5\times10^3$ КОЕ/мл, $1,5\times10^2$ КОЕ/мл, $1,5\times10^1$ КОЕ/мл.

Для контроля жидкой питательной среды произвели высев в 2-х повторах в пробирки. Посевы были помещены в термостат при $22\pm1^{\circ}$ C на 72 ч. По истечении периода инкубации в питательной среде наблюдался отчетливо видимый рост тест-штаммов во всех пробирках, что послужило основанием считать ее пригодной для дальнейшего использования.

Из приготовленных разведений произвели высев в 2-х повторах на плотную питательную среду в объемах, указанных в табл. 1 и 2. Посевы были помещены в термостат при 22±1°C на 72 ч. По истечении времени инкубации произведен подсчет выросших колоний. Результаты представлены в табл. 1 и 2.

Таблица 1 Контроль жизнеспособности Candida albicans ATCC 10231

Разведение,	Высеваемый	Количество выросших колоний, КОЕ		лоний, КОЕ
КОЕ/мл	объем, мл	1 повтор	2 повтор	среднее
1,5x10 ¹	1,0	11	15	13
1,5x10 ²	0,1	11	13	12
1,5x10 ³	0,1	126	134	130

Из данных, представленных в табл. 1, видно, что культура Candida albicans ATCC 10231 обладает хорошей жизнеспособностью, суспензия приготовлена верно и соответствует степени разведения.

Таблица 2 Контроль жизнеспособности Aspergillus brasiliensis ATCC 16404

1		1 0		
Разведение,	Высеваемый	Количество выросших колоний, КОЕ		
КОЕ/мл	объем, мл	1 повтор	2 повтор	среднее
1,5x10 ¹	1,0	9	12	10,5
1,5x10 ²	0,1	12	13	12,5
1,5x10 ³	0,1	103	108	105,5

Из данных, представленных в табл. 2, так же видно, что культура Aspergillus brasiliensis ATCC 16404 обладает хорошей жизнеспособностью, суспензия приготовлена верно и соответствует степени разведения

Определение in vitro эффективности противогрибкового препарата. Для определения фунгицидной эффективности заявляемого из базового раствора (4000 мкг/мл) был приготовлен ряд двукратных разведений от 2000 до 0,125 мкг/мл. Данные противогрибковой активности заявляемого средства представлены в табл. 3.

Таблица 3 Минимальная фунгицидная концентрация заявляемого средства

Тест-штамм	Минимальная фунгицидная концентрация, мкг/мл
Aspergillus brasiliensis ATCC 16404	8,0
Candida albicans ATCC 10231	16,0

Исходя из полученных данных испытуемый препарат обладает фунгицидной активностью по отношению как к тест-штамму Candida albicans ATCC 10231, так и к Aspergillus brasiliensis ATCC 16404. Наиболее выраженный фунгицидный эффект отмечен в отношении Aspergillus brasiliensis ATCC 16404, для которого фунгицидная концентрация составила 8,0 мкг/мл. В отношении Candida albicans ATCC 10231 - 16,0 мкг/мл, что также указывает на достаточно высокую фунгицидную активность.

Микробиологический мониторинг воздуха производственных помещений до и после применения заявляемого средства.

Фунгицидную активность дезинфицирующего препарата определяли в производственных условиях: инкубаторах и местах для хранения корма птицеводческого хозяйства АО "Алатау-Кус".

Отбор проб воздуха проводили до и после его обработки. Санацию помещений проводили методом термической возгонки в отсутствии птиц.

Заявляемый противогрибковый препарат представлен в форме дымовой шашки, расфасован в полимерные флаконы. Для проведения обработок испытуемый препарат располагали равномерно в разных частях помещения и в инкубаторе на несгораемой поверхности и поджигали бытовой спичкой. При возгорании термовозгонных композиций образовывался аэрозоль серо-молочного цвета с характерным запахом костра. Препарат применяли согласно рекомендуемым дозировкам - 1 флакон на 100 м³. Обработка проводилась однократно. Отбор проб воздуха для бактериологического контроля после дезинфекции осуществляли через 30 мин (инкубатор № 2) и 12 ч (инкубатор № 1) после дезинфекции.

Отбор проб воздуха прибором AirPort MD8 с предварительно установленным желатиновым фильтром осуществлялся в течение 5 мин со скоростью потока воздуха 50 л/мин. По истечении 5 мин переносили желатиновый фильтр на поверхность плотной питательной среды Сабуро. Посевы помещали в охладительный термостат. Результаты исследования противогрибковой активности заявляемого средства

представлены в табл. 4, 5 и на фиг. 1, 2.

Таблица 4 Количество КОЕ в образцах воздуха до и после 30-минутной обработки заявляемым средством

	•	
Место забора воздуха	Количество выросших колоний	
	До обработки воздуха	После обработки
		воздуха
Инкубатор №2	52 КОЕ/чашка	23 КОЕ/чашка
	208 КОЕ/м ³	92 KOE/m ³

Как видно из данных, приведенных в табл. 4 и фиг. 1, до обработки инкубатора № 2 выросло 52 КОЕ/чашку, что в пересчете согласно формуле (1) составит 208 КОЕ/м 3 , а после обработки выросло на 55% меньше патогенных грибов - 23 КОЕ/чашку, что соответствует 92 КОЕ/м 3

Таблица 5 Количество КОЕ в образцах воздуха до и после 12-часовой обработки заявляемым средством

Место забора воздуха	Количество выросших колоний		
	До обработки воздуха	После обработки	
		воздуха	
Инкубатор № 1	43 КОЕ/чашка	2 КОЕ/чашка	
	172 KOE/m ³	8 KOE/m ³	

Как видно из данных, приведенных в табл. 5 и фиг. 2, до обработки инкубатора № 1 выросло 43 КОЕ/чашку, что в пересчете согласно формуле (1) составит 172 КОЕ/м³, а после обработки выросло на 95% патогенных грибов меньше - 2 КОЕ/чашку, что соответствует 8 КОЕ/м³.

Таким образом, из представленных выше данных видно, что применение заявляемого дезинфицирующего противогрибкового препарата в помещениях птицефабрики препятствует росту плесневых грибов. Полученные результаты показали, что при 30-минутном воздействии рост плесневых грибов снижается на 55%, а через 12 ч после проведения дезинфекции рост плесневых грибов снижается на 95%.

Заявляемое дезинфицирующее средство, шашка дымовая, обладает противогрибковой активностью в отношении плесневых грибков как в опытах in vitro, так и в производственных испытаниях.

Фунгицидные свойства исследуемого препарата сохраняются на высоком уровне вплоть до 12 ч с момента проведения дезинфекции, приводя к 95% гибели патогенных микроорганизмов.

Полученные результаты специфической антимикотической активности испытуемого противогрибкового препарата свидетельствуют о перспективности его дальнейшего изучения на предмет использования в качестве фунгицида в ветеринарии и/или медицине.

Таким образом, заявляемое бактерицидное средство высокоэффективен против патогенной микрофлоры, обладая высокой бактерицидной активностью, и обеспечивает меньшую норму расхода.

Изобретение иллюстрируется следующими примерами.

Пример 1.

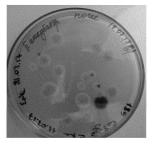
Смешивают 3 г энилконазола, 0,1 г монохлорида иода, 34 г калия или натрия азотнокислого, 14 г целлюлозы, получая состав 1 при следующем соотношении компонентов, г: энилконазол - 3; монохлорид иода - 0,1; калий и/или натрий азотнокислый - 34; карбогидрат и карбогидрат с лигнином - 14.

Пример 2

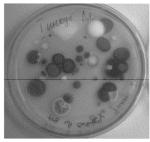
Смешивают 4 г энилконазола, 1,5 г монохлорида иода, 60 г калия или натрия азотнокислого, 25,3 г целлюлоза с лигнином, получая состав 2 при следующем соотношении компонентов, г: энилконазол - 4; монохлорид иода - 1,5; калий и/или натрий азотнокислый - 60; карбогидрат или карбогидрат с лигнином - 22.

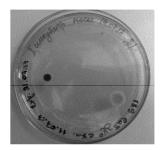
Пример 3.

Смешивают 6 г энилконазола, 0,2 г монохлорида иода, 85 г калия или натрия азотнокислого, 35 г целлюлоза с лигнином, получая состав 3 при следующем соотношении компонентов, мас.%: энилконазол - 3-6 г; монохлорид иода - 0,1-2 г; калий и/или натрий азотнокислый - 34-85 г; карбогидрат и карбогидрат с лигнином - 14-35 г.


ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Термовозгонная дымовая шашка для противогрибковой дезинфекции, содержащая энилконазол, калий и/или натрий азотнокислый, карбогидрат и/или карбогидрат с лигнином, отличающаяся тем, что с целью повышения микробоцидного действия дополнительно содержит монохлорид иода.


- 2. Термовозгонная дымовая шашка по п.1, отличающаяся тем, что представлена составом, г: энилконазол 3-6; монохлорид иода 0,1-2; калий и/или натрий азотнокислый 34-85; карбогидрат и карбогидрат с лигнином 14-35.
- 3. Термовозгонная дымовая шашка по п.1, отличающаяся тем, что в качестве карбогидрата используют целлюлозу и ее производные.


а) Инкубатор № 2 до обработки

б) Инкубатор № 2 после обработки Φ иг. 1

а) Инкубатор № 1 до обработки

б) Инкубатор № 1 после обработки

Фиг. 2