(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

(51) Int. Cl. *G21G 1/00* (2006.01)

(56) RU-C1-2426184

CA-C-2933961

US-B2-9576691

2022.05.18

(21) Номер заявки

201992785

(22) Дата подачи заявки

2018.12.26

(54) СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОТОПА МОЛИБДЕН-99

(43) 2020.06.30

PCT/RU2018/000873 (86)

WO 2020/139104 2020.07.02 (87)

(71)(73) Заявитель и патентовладелец:

АКЦИОНЕРНОЕ ОБЩЕСТВО "РАДИЕВЫЙ ИНСТИТУТ ИМЕНИ В.Г. ХЛОПИНА" (RU)

(72) Изобретатель:

Костылев Александр Иванович, Рисованый Владимир Дмитриевич, Андронов Александр Олегович, Душин Виктор Николаевич, Трифонов Юрий Иванович, Яковлев Владимир Анатольевич, Мирославов Александр Евгеньевич (RU)

Изобретение относится к технологии получения радиоизотопов и может быть использовано для (57) производства радиоизотопа молибден-99, являющегося основой для создания радиоизотопных генераторов Mo-99/Tc-99m, нашедших широкое применение в ядерной медицине для диагностических целей. Предложенное изобретение основано на эффекте Сцилларда-Чалмерса и направлено на повышение удельной активности радиоактивного молибдена-99 до значений более 1000 Ки/г при возможности многократного использования соединения молибдена для изготовления мишени.

Изобретение относится к технологии получения радиоизотопов и может быть использовано для производства радиоизотопа молибден-99, являющегося основой для создания радиоизотопных генераторов Мо-99/Тс-99m, нашедших широкое применение в ядерной медицине для диагностических целей.

В настоящее время основным методом получения радиоизотопов Мо-99 является облучение ядер урана-235 в ядерных реакторах - реакторный делительный способ. Этот реакторный способ позволяет получить Мо-99 практически без носителей (других изотопов молибдена) с максимально высокой удельной активностью - более 5000 Ки/г. Альтернативным способом является активационный метод, когда изотопы Мо-98 облучают в ядерных реакторах нейтронами или мишени из Мо-98 и Мо-100 на ускорителе. До настоящего времени данный способ не получил широкого распространения из-за низкой удельной активности Мо-99 (обычно менее 1 Ки/г). Генераторы же Тс-99m, используемые в клинической практике, рассчитаны на использование в качестве материнского изотопа Мо-99 высокой удельной активности, не менее 1000-5000 Ки/г [Баранов В.Ю. (ред.). Изотопы: свойства, получение, применение. Т. 2, М. Физматлит, 2005, 728 с]. Поэтому стоит задача реализации эффективного способа получения Мо-99 высокой удельной активности.

В известном реакторном способе получения "осколочного" молибдена-99, основанном на реакции деления ядра урана-235 под действием нейтронов, двуокись урана с обогащением по изотопу уран-235 до 90% и выше облучают в потоке нейтронов ядерного реактора [Соколов В.А. Генераторы короткоживущих радиоактивных изотопов. М. Атомиздат, 1975; Герасимов А.С, Киселев Г.И., Ланцов М.Л. "Получение ⁹⁹Мо в ядерных реакторах". Атомная энергия. Т. 67, 1, 1989, с. 104-108]. Выделенный из продуктов деления радиоизотоп ⁹⁹Мо обладает удельной активностью порядка 10⁵ Ки/г. Основной недостаток этого способа состоит в том, что при делении ядра урана помимо ⁹⁹Мо образуются сопутствующие осколки, суммарная активность которых значительно превышает активность целевого радиоизотопа [Маркина М.А., Старизный В.С., Брегер А.Х. "Энергетическое распределение гамма-излучения продуктов деления U при малом времени облучения". Атомная энергия, 1979, т. 46, выпуск 6, с. 411]. Вопросы экологии и проблема обращения с долгоживущими продуктами деления являются главным сдерживающим фактором при попытке расширенного производства радиоизотопа молибдена-99 указанным способом.

В известном активационном способе получения Мо-99 проводят облучение мишени из оксида молибдена МоО₃ в ядерном реакторе, после извлечения мишени из реактора ее растворяют с получением раствора молибдата натрия Na₂MoO₄, который используется для заполнения хромотографических (не экстракционных) генераторов технеция-99m (Mo-99/Tc-99m). После распада Мо-99 до фоновых значений молибдата натрия Na₂MoO₄ его используют для повторного изготовления мишени из оксида молибдена MoO₃ [Скуридин В.С. Методы и технологии получения радиофармпрепаратов: учебное пособие. Изд-во Томского политехнического университета, 2013. с. 140]. В данном способе удельная активность Мо-99 не превышает 10 Ки/г, что более чем на два порядка ниже, чем у "осколочного" Мо-99. В активационном Мо-99 на один атом Мо-99 приходится более 10 тыс. атомов других изотопов молибдена (изотопы - носители). Адсорбирующие колонки в составе генераторов Тс-99m "забиваются" изотопами-носителями и не позволяют эффективно извлекать технеций-99m при прокачке колонок медицинским физиологическим раствором. Это ограничивает и в большинстве случаев не позволяет использовать активационный молибден-99 в традиционных генераторах Мо-99/Тс-99m.

Для повышения удельной активности "активационного" Мо-99 предложен способ с использованием наномишеней [Радченко В.М., Ротманов К.В., Маслаков Г.И., Рисованный В.Д., Гончаренко Ю.Д. "Способ получения радионуклида 99Мо". Патент РФ № 2426113, опуб. 10.08.2011]. В качестве стартового материала предложено использовать радиационно и термически устойчивые соединения молибдена в виде частиц размером до 100 нм, облучение которых проводят нейтронами с плотностью потока более 10¹⁴ $cm^{-2}c^{-1}$ в течение 7-15 суток, а радиоизотоп 99 Мо выделяют из поверхностного слоя частиц путем растворения этого слоя в кислоте или щелочи. Повышенная концентрация 99Мо на поверхности частиц реализуется за счет эффекта Сцилларда-Чалмерса. Технические сложности реализации процесса связаны с тем, что при использовании стартового материала с размером частиц менее 5 нм наблюдается большое вымывание порошка в раствор. А при использовании материала с большими размерами снижаются количественные показатели выхода продукта. Основной же недостаток этого способа производства 99Мо состоит в недостаточной удельной активности получаемого радиоизотопа. При стравливании поверхностного слоя частиц молибдена кислотой или щелочью в раствор попадает в основном ⁹⁸Mo - стартовый материал частиц. При получаемой удельной активности ⁹⁹Мо на уровне 1-10 Ки/г невозможно использовать стандартный ⁹⁹Mo/^{99m}Tc-генератор сорбционного типа, поскольку потребуются большие колонки и, соответственно, размеры генератора тоже станут неприемлемо большие, в результате чего увеличатся весогабаритные характеристики радиационной защиты. Кроме того, для элюирования ^{99m}Tc из такой колонки понадобится большой расход жидкости, что приведет к снижению объемной активности раствора и необходимости последующей концентрации ^{99m}Tc.

Развитием приведенного выше способа получения активационного Мо-99, основанного на использовании метода "горячих" атомов или эффекта Сцилларда-Чалмерса, является способ согласно патента № 2426184 [Радченко В.М., Ротманов К.В., Маслаков Г.И., Рисованый В.Д., Гончаренко Ю.Д., Способ получения радионуклида Мо-99, РФ № 2426184 от 2010-07-02], который является наиболее близким к

заявляемому и выбран нами в качестве прототипа.

Данный способ получения радионуклида ⁹⁹Мо включает облучение стартового материала нейтронами и последующее выделение активационных изотопов. При этом в качестве стартового материала используют тугоплавкие радиационно и термически устойчивые соединения молибдена с размером частиц (5÷100)×10⁻⁹ м. Проводят облучение стартового материала нейтронами, а активационные изотопы выделяют из поверхностного слоя стартового материала растворением этого слоя в кислоте или щелочи, или смеси кислот, или смеси щелочей. В качестве стартового материала используют предпочтительно карбид молибдена (Мо₂С) с естественным содержанием в молибдене изотопа ⁹⁸Мо или с обогащенным молибденом по изотопу ⁹⁸Мо. Облучение стартового материала нейтронами проводят до удельного накопления радионуклида ⁹⁹Мо более 1 Ки/г. Активационные изотопы выделяют из поверхностного слоя стартового материала растворением этого слоя в кислотах или щелочах, или смеси кислот, или смеси щелочей в течение 10-30 мин. После выделения активационных изотопов многократно повторяют облучение стартового материала.

Использование в качестве стартового материала тугоплавкого радиационно и термически устойчивого соединения молибдена позволяет обеспечить его физическую стойкость в радиационных полях и при высоких температурах с сохранением химических свойств, что позволяет многократно без регенерации использовать стартовый материал и применять для вывода продуктов облучения широкий ряд реагентов. Вышеуказанными свойствами в наибольшей мере обладает карбид молибдена (Mo_2C) с естественным содержанием в молибдене изотопа 98 Мо или с обогащенным молибденом по изотопу 98 Мо. Указанная возможность многократного облучения является достоинством данного способа.

Основной недостаток способа, выбранного нами в качестве прототипа, связан с незначительной активностью получаемого Mo-99 - порядка $1~{\rm Ku/r}$, что не позволяет использовать его в стандартных коммерческих генераторах ${\rm Tc-99}$.

Техническая проблема, на решение которой направлено предлагаемое изобретение, заключается в устранении указанного недостатка, а именно повышении удельной активности радиоактивного молибдена-99 до значений более 1000 Ки/г при возможности многократного использования соединения молибдена для изготовления мишени и упрощении процесса.

Обозначенный технический результат достигается способом получения радиоизотопа молибден-99, который включает изготовление мишени из молибдена-98; облучение мишени нейтронами с активацией молибдена-98 до молибдена-99; отделение после облучения из мишени не активированного молибдена-98 от активированной части мишени молибдена-99; растворение активированной части мишени молибдена-99 в растворе щелочи NaOH с получением радиоизотопа молибден-99; при этом для изготовления мишени используют гексафторид молибдена-98, помещенный в герметичную капсулу; отделение из мишени после ее облучения неактивированной части молибдена-98 осуществляют в виде газа путем испарения жидкости при нагревании выше температуры фазового перехода из жидкости в газ; удаленную газообразную фракцию неактивированного молибдена-98 конденсируют в жидкое состояние и используют для повторного изготовления мишени.

В предлагаемом способе используют герметичную капсулу, представляющую собой разборное устройство с двумя соединенными кранами отсеками, в первом из которых проводят облучение химического соединения в жидком состоянии, а во втором после нагрева его собирают в газообразном состоянии.

В предлагаемом способе используют герметичную капсулу, представляющую собой петлевое устройство, позволяющее периодически переводить химическое соединение из жидкого в газообразное состояние с растворением активированной части мишени молибдена-99 в растворе щелочи NaOH и получением радиоизотопа молибден-99.

В предлагаемом способе используют гексафторид молибдена-98 с изотопным содержанием молибдена-98 от природного уровня 23,75% до уровня обогащения 99,95%.

В предлагаемом способе облучение мишени проводят при температуре от 20 до 100°С.

Способ осуществляют следующим образом.

Гексафторид молибдена природного изотопного состава или обогащенный по изотопу Mo-98 помещают в металлическую капсулу путем конденсации, капсулу заваривают, помещают в защитный металлический контейнер и облучают в потоке нейтронов 110^8 - 110^{15} н/(см²-с) в течение от 1 до 15 суток. Облученную мишень в течение 1 суток переносят в горячую камеру, вскрывают, подсоединяют к вакуумной системе и конденсируют газообразный гексафторид молибдена. Мишень отсоединяют от вакуумной системы и заполняют рассчитанным количеством раствора щелочи NaOH с концентрацией 0,2-0,3 М. При облучении в результате захвата нейтронов ядрами мишени 98 MoF₆ образовавшиеся ядра 99 Мо первоначально находятся в возбужденном состоянии. При снятии возбуждения путем испускания мгновенных у-квантов часть атомов отдачи (99 Мо) получает импульс, достаточный для разрыва химических связей с отщеплением атома фтора и образованием низшего фторида молибдена, который осаждается на стенках мишени. После завершения облучения и удаления основной массы гексафторида молибдена нелетучие компоненты, образовавшиеся в результате активации 98 МоF₆, растворяются в щелочи с образованием молибдата натрия Na₂ 98 MoO₄. Полученный раствор используют для зарядки генераторов. Удельная ак-

тивность Мо-99 в полученном растворе на момент изготовления составляет от 10 до 5000 Ки/г в зависимости от величины потока нейтронов и времени облучения.

Пример 1.

Для изготовления мишени использовали 64,5 г гексафторида молибдена-98 с изотопным составом, представленным в табл. 1.

Таблица 1

TT U		1		_
Изотопный	COCTAB	rereamtor	мпа	молиолена
TISOTOTITIBIN	COCTAB	τοκοαφτορ	тда	молиодена

Содержание	Mo-92	Mo-94	Mo-95	Mo-96	Mo-97	Mo-98	Mo-100
нуклида в							
смеси, %							
Мишень	0,041	0,031	0,062	0,074	1,237	98,357	0,98

Мишень помещали в титановую капсулу объемом 0.5 л путем переконденсации в вакууме. Капсула представляет собой разборное устройство с двумя соединенными кранами отсеками, в первом из которых проводили облучение химического соединения в жидком состоянии, а во втором после нагрева его собирали в газообразном состоянии. Капсулу с гексафторидом молибдена-98 устанавливали в облучательное устройство, содержащее 4 источника нейтронов на калифорнии-252 с потоком нейтронов от каждого 2×10^7 н/с. Для коррекции спектра нейтронов капсула окружена полиэтиленом толщиной 50 мм. Облучение проводится 2 суток при комнатной температуре.

Гамма-спектроскопическое измерение полученного гексафторида молибдена показало наработанную активность по молибдену-99 0.15×10^{-3} Ки (исходная титановая капсула). Неактивированная часть гексафторида молибдена переконденсирована во вторую часть капсулы. Ее активность составила 0.08×10^{-3} Ки. Масса 64.45 г. Активность активированной части молибдена-99 в исходной титановой капсуле - 0.08×10^{-3} Ки, масса - 0.05 г. Активированную часть переводили в раствор путем обработки внутренней поверхности капсулы 0.5н. NаOH. Получили раствор с удельной активностью по Mo-99 1.6×10^{-3} Ки. При использовании плутоний-бериллиевых источников нейтронов с потоком 2×10^{12} н/с получили раствор с удельной активностью по Mo-99, равной 1600 Ки/г. Неактивированную часть мишени также конденсировали и использовали для повторного изготовления мишени.

Пример 2.

Для изготовления мишени использовали 128 г гексафторида молибдена-98 с изотопным составом, представленным в табл. 2.

Таблица 2

Изотопный состав гексафторида молибдена

постави состав тексафторида мозтодена								
Содержание	Mo-92	Mo-94	Mo-95	Mo-96	Mo-97	Mo-98	Mo-100	
нуклида в смеси, %					:			
Мишень	0,041	0,031	0,062	0,074	1,237	98,357	0,98	

Мишень помещали в титановую капсулу объемом 0,5 л путем переконденсации в вакууме. Капсула представляет собой петлевое устройство с фильтром для молибдена-99. Капсулу с гексафторидом молибдена-98 устанавливали в облучательное устройство, содержащее 4 плутоний-бериллиевых источника нейтронов, с потоком нейтронов 2×10^{12} н/с от каждого. Облучение проводили 4 суток при комнатной температуре.

После переконденсации неактивированного гексафторида молибдена в приемный балон получили активность активированной части молибдена-99 - 1700 Ки/г, массу - 0,1 г.

Активированную часть переводили в раствор путем обработки внутренней поверхности капсулы 0,5н. NaOH. Неактивированную часть мишени конденсировали и использовали для повторного изготовления мишени.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения радиоизотопа молибден-99, включающий изготовление мишени из молибдена-98;

облучение мишени нейтронами с активацией молибдена-98 до молибдена-99;

отделение после облучения из мишени неактивированного молибдена-98 от активированной части мишени молибдена-99;

растворение активированной части мишени молибдена-99 в растворе щелочи NaOH с получением радиоизотопа молибден-99,

отличающийся тем, что для изготовления мишени используют гексафторид молибдена-98, помещенный в герметичную капсулу;

отделение из мишени после ее облучения неактивированной части молибдена-98 осуществляют в виде газа путем испарения жидкости при нагревании выше температуры фазового перехода из жидкости в газ;

удаленную газообразную фракцию неактивированного молибдена-98 конденсируют в жидкое со-

стояние и используют для повторного изготовления мишени.

- 2. Способ получения радиоизотопа молибден-99 по п.1, отличающийся тем, что используют герметичную капсулу, представляющую собой разборное устройство с двумя соединенными кранами отсеками, в первом из которых проводят облучение химического соединения в жидком состоянии, а во втором после нагрева первого отсека его собирают в газообразном состоянии.
- 3. Способ получения радиоизотопа молибден-99 по п.1, отличающийся тем, что используют герметичную капсулу, представляющую собой петлевое устройство, позволяющее периодически переводить химическое соединение из жидкого в газообразное состояние с растворением активированной части мишени молибдена-99 в растворе щелочи NaOH и получением радиоизотопа молибден-99.
- 4. Способ получения радиоизотопа молибден-99 по п.1, отличающийся тем, используют гексафторид молибдена-98 с изотопным содержанием молибдена-98 от природного уровня 23,75% до уровня обогащения 99,95%.
- 5. Способ получения радиоизотопа молибден-99 по п.1, отличающийся тем, что облучение мишени проводят при температуре от 20 до 100°C.

1

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2