(19)

Евразийское (11) 039655 патентное ведомство

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

- (45) Дата публикации и выдачи патента 2022.02.22
- (21) Номер заявки 201990364

(51) Int. Cl. C07D 487/04 (2006.01) A61K 31/519 (2006.01) A61K 31/275 (2006.01) *A61P 29/00* (2006.01)

CN-A-107531711

TW-A-201524977

(22) Дата подачи заявки 2017.11.23

КРИСТАЛЛИЧЕСКИЕ И СОЛЕВЫЕ ФОРМЫ 7Н-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ И (54) СПОСОБ ИХ ПОЛУЧЕНИЯ

(56)

- 201611046683.X (31)
- (32) 2016.11.23
- (33) CN
- (43) 2019.10.31
- (86) PCT/CN2017/112493
- (87) WO 2018/095345 2018.05.31
- (71)(73) Заявитель и патентовладелец: УСИ ФОРЧУН ФАРМАСЬЮТИКАЛ КО., ЛТД (CN)
- (72) Изобретатель: Мао Вэйвэй, У Хао, Гуо Цян, Чжэн Сюэцзянь, Ляо Янган (CN)
- (74) Представитель: Нилова М.И. (RU)
- Изобретение относится к кристаллической и солевой формам 7H-пирроло[2,3-d]пиримидина и (57) способу их получения, а также к применению указанных кристаллической и солевой форм для получения лекарственного средства для лечения артрита.

039655

B

Область техники

Настоящее изобретение относится к кристаллическим и солевым формам 7H-пирроло[2,3d]пиримидинов и способу их получения, а также к применению указанных кристаллических и солевых форм для получения лекарственного средства для лечения артрита.

Уровень техники

ЈАК относится к семейству тирозинкиназ, участвующих в воспалении, аутоиммунных заболеваниях, пролиферативных заболеваниях, отторжении трансплантата, заболеваниях, связанных с нарушением обновления хряща, врожденных дефектах хряща и/или заболеваниях, связанных с гиперсекрецией IL6. В настоящем изобретении также предложены способ получения указанного соединения или фармацевтической композиции, содержащей указанное соединение, и способ предотвращения и/или лечения воспаления, аутоиммунных заболеваний, пролиферативных заболеваний, отторжения трансплантата, заболеваний, связанных с нарушением обновления хряща, врожденных дефектов хряща и/или заболеваний, связанных с гиперсекрецией IL6, путем введения соединения согласно настоящему изобретению.

Янус-киназы (JAK) представляют собой цитоплазматические тирозинкиназы, передающие цитокиновый сигнал от мембранных рецепторов к транскрипционным факторам STAT. В уровне техники описаны четыре представителя семейства JAK: JAK1, JAK2, JAK3 и TYK2. После связывания цитокинов со своими рецепторами представители семейства JAK аутофосфорилируются и/или трансфосфорилируются друг с другом, затем фосфорилируются STAT, а затем указанные молекулы поступают в ядро клетки для модуляции транскрипции. Внутриклеточный сигнальный путь JAK-STAT подходит для интерферонов, большинства интерлейкинов, а также различных цитокинов и эндокринных факторов, таких как EPO, TPO, GH, OSM, LIF, CNTF, GM-CSF и PRL (Vainchenker W. et al. (2008)).

Объединенное исследование генетических моделей и низкомолекулярных ингибиторов JAK выявило терапевтический потенциал нескольких JAK. В генетических исследованиях на мышах и на людях было подтверждено, что JAK3 является мишенью для иммуносупрессии (O'Shea J. etc. (2004)). Ингибитор JAK3 с успехом применяется в клинических исследованиях. Первоначально его использовали при отгоржении трансплантатов органов, а впоследствии также применяли при других иммуновоспалительных состояниях, таких как ревматоидный артрит (PA), псориаз и болезнь Крона (http://clinicaltrials.gov/). В генетических исследованиях на людях и нокаутных мышах было подтверждено, что TYK2 является потенциальной мишенью для иммуновоспалительных заболеваний (Levy D. and Loomis C. (2007)). JAK1 является новой мишенью в области терапии иммуновоспалительных заболеваний. Гетеродимеризация JAK1 с другими JAK вызывает передачу провоспалительного сигнала, индуцируемого цитокинами. Следовательно, как ожидается, JAK1 и/или другие JAK будут терапевтически полезны при ряде воспалительных заболеваний и других заболеваний, вызываемых передачей сигнала, опосредованной JAK.

Краткое описание изобретения

В настоящем изобретении предложена кристаллическая форма A следующего соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,38±0,2°, 13,34±0,2° и 22,09±0,2°.

Соединение 1

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы A соединения 1 содержит характеристические пики при следующих значениях угла 20: $12,38\pm0,2^{\circ}$, $13,34\pm0,2^{\circ}$, $15,85\pm0,2^{\circ}$, $22,09\pm0,2^{\circ}$, $23,71\pm0,2^{\circ}$, $25,38\pm0,2^{\circ}$, $26,21\pm0,2^{\circ}$ и $26,81\pm0,2^{\circ}$.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма (XRPD) кристаллической формы А соединения 1 является такой, как показано на фиг. 1.

В некоторых вариантах реализации настоящего изобретения аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы А соединения 1 являются такими, как показано в табл. 1.

Номер	Угол 20 (°)	Межплоскост- ное расстояние (Å)	Относитель- ная интенсивнос ть (%)	Номер	Угол 20 (°)	Межплоскост- ное расстояние (Å)	Относительная интенсивность (%)
1	12,383	7,142	77,4	13	29,056	3,0706	2,9
2	13,345	6,6293	68	14	29,352	3,0403	4,7
3	14,808	5,9773	2,3	15	31,968	2,7973	1,3
4	15,854	5,5852	61,2	16	33,094	2,7046	5,4
5	19,345	4,5846	10,3	17	33,473	2,6749	4,9
6	21,516	4,1267	10,9	18	34,598	2,5904	4,4
7	22,087	4,0212	100	19	36,412	2,4654	2,1
8	23,39	3,8	2,5	20	37,669	2,386	4,9
9	23,706	3,7501	62,4	21	38,008	2,3655	2,6
10	25,383	3,506	23,5	22	38,835	2,317	1,3
11	26,209	3,3974	29,7	23	39,015	2,3067	2,9
12	26,806	3,323	25,4				

Таблица 1. Аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы A соединения 1

В некоторых вариантах реализации настоящего изобретения кривая дифференциальной сканирующей калориметрии (ДСК) кристаллической формы А соединения 1 содержит эндотермический пик при 314,89±2°С.

В некоторых вариантах реализации настоящего изобретения ДСК-термограмма кристаллической формы А соединения 1 является такой, как показано фиг. 2.

В некоторых вариантах реализации настоящего изобретения потеря массы на кривой термогравиметрического анализа (ТГА) кристаллической формы А соединения 1 составляет до 0,2516±0,2% при 120,00±2°С.

В некоторых вариантах реализации настоящего изобретения ТГА-термограмма кристаллической формы А соединения 1 является такой, как показано на фиг. 3.

В настоящем изобретении предложена кристаллическая форма В соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,25±0,2°, 21,97±0,2° и 23,62±0,2°.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы В соединения 1 содержит характеристические пики при следующих значениях угла 20: $12,25\pm0,2^{\circ}$, $13,24\pm0,2^{\circ}$, $15,77\pm0,2^{\circ}$, $21,97\pm0,2^{\circ}$, $23,62\pm0,2^{\circ}$, $25,24\pm0,2^{\circ}$, $26,70\pm0,2^{\circ}$ и $37,51\pm0,2^{\circ}$.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма (XRPD) кристаллической формы В соединения 1 является такой, как показано на фиг. 4.

В некоторых вариантах реализации настоящего изобретения аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы В соединения 1 являются такими, как показано в табл. 2.

кристаллической формы В сосдинения т							
Номер	Угол 20 (°)	Межплоскостное расстояние (Å)	Относительная интенсивность (%)	Номер	Угол 20 (°)	Межплоскостное расстояние (Å)	Относительная интенсивность (%)
1	10,798	8,1866	1,5	12	26,705	3,3353	8,4
2	12,254	7,2171	100	13	29,384	3,0371	0,8
3	13,245	6,6793	11,4	14	32,956	2,7156	3,6
4	14,445	6,1268	2,3	15	33,33	2,686	0,7
5	15,774	5,6133	4,4	16	34,531	2,5953	0,9
6	21,376	4,1533	4,2	17	35,205	2,5471	0,3
7	21,966	4,0431	15,7	18	37,511	2,3956	18
8	23,623	3,7631	19,8	19	37,606	2,3899	9
9	24,731	3,5969	1,4	20	37,865	2,3741	1,7
10	25,241	3,5254	4,1	21	38,904	2,3131	0,9
11	26,073	3,4148	0,8				

Таблица 2. Аналитические данные рентгеновской порошковой дифрактометрии (XI	RPD)
кристаллической формы В соединения 1	

В некоторых вариантах реализации настоящего изобретения кривая дифференциальной сканирующей калориметрии (ДСК) кристаллической формы В соединения 1 содержит эндотермический пик при 322,33±2°С.

В некоторых вариантах реализации настоящего изобретения ДСК-термограмма кристаллической формы В соединения 1 является такой, как показано фиг. 5.

В некоторых вариантах реализации настоящего изобретения потеря массы на кривой термогравиметрического анализа (ТГА) кристаллической формы В соединения 1 составляет до $0,6939 \pm 0,2\%$ при $120 \pm 2^{\circ}$ С.

В некоторых вариантах реализации настоящего изобретения ТГА-термограмма кристаллической формы В соединения 1 является такой, как показано на фиг. 6.

В настоящем изобретении предложена кристаллическая форма С соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,40±0,2° и 37,65±0,2°.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы С соединения 1 содержит характеристические пики при следующих значениях угла 20: $12,40\pm0,2^{\circ}, 13,37\pm0,2^{\circ}, 21,51\pm0,2^{\circ}, 22,14\pm0,2^{\circ}, 24,87\pm0,2^{\circ}, 25,40\pm0,2^{\circ}$ и 37.65±0,2°.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма (XRPD) кристаллической формы С соединения 1 является такой, как показано на фиг. 7.

В некоторых вариантах реализации настоящего изобретения аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы С соединения 1 являются такими, как показано в табл. 3.

Таблица 3. Аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы С соединения 1

		Межплоскост-	Относитель-			Межплоскост-	Относитель-
Номер	Угол 20	ное	ная	Номер	Угол 20 (°)	ное	ная
	C)	расстояние (Å)	интенсивность (%)			расстояние (Å)	интенсивность (%)
1	12,4	7,1325	100	5	24,871	3,5771	1,3
2	13,367	6,6183	1,3	6	25,398	3,504	1,8
3	21,509	4,1279	1	7	37,651	2,3871	16,8
4	22,139	4,0118	9	8	37,744	2,3814	8,5

В некоторых вариантах реализации настоящего изобретения кривая дифференциальной сканирующей калориметрии (ДСК) кристаллической формы С соединения 1 содержит эндотермический пик при 326,62±2°С.

В некоторых вариантах реализации настоящего изобретения ДСК-термограмма кристаллической формы С соединения 1 является такой, как показано фиг. 8.

В некоторых вариантах реализации настоящего изобретения потеря массы на кривой термогравиметрического анализа (ТГА) кристаллической формы С соединения 1 составляет до 0,5564±0,2% при 120±2°С.

В некоторых вариантах реализации настоящего изобретения ТГА-термограмма кристаллической формы С соединения 1 является такой, как показано на фиг. 9.

В настоящем изобретении также предложена кристаллическая форма D соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,36±0,2° и 37,62±0,2°.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы D соединения 1 содержит характеристические пики при следующих значениях угла 20: 12,36±0,2°, 24,84±0,2° и 37,62±0,2°.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма (XRPD) кристаллической формы С соединения 1 является такой, как показано на фиг. 10.

В некоторых вариантах реализации настоящего изобретения аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы С соединения 1 являются такими, как показано в табл. 4.

Таблица 4. Аналитические данные рентгеновской порошковой дифрактометрии (XRPD)

	кристаллической формы D соединения т							
			Мажинаакаат	Относитель			Межплоскост-	Относитель-
	Hower	Угол 20		-ная	Hower	Угол	ное	ная
номер	(°)	(Å)	интенсивно	Помер	2θ (°)	расстояние	интенсивность	
			сть (%)			(Å)	(%)	
	1	12,365	7,1522	100	5	37,615	2,3893	14,1
	2	21,512	4,1274	0,4	6	37,706	2,3837	6,9
	3	22,089	4,0208	0,5	7	38,023	2,3646	0,9
	4	24,836	3,582	1,2				

В некоторых вариантах реализации настоящего изобретения кривая дифференциальной сканирующей калориметрии (ДСК) кристаллической формы D соединения 1 содержит эндотермический пик при 326,13±2°C.

В некоторых вариантах реализации настоящего изобретения ДСК-термограмма кристаллической формы D соединения 1 является такой, как показано фиг. 11.

В некоторых вариантах реализации настоящего изобретения потеря массы на кривой термогравиметрического анализа (ТГА) кристаллической формы D соединения 1 составляет до 0,3076±0.3% при 185,13±2°C.

В некоторых вариантах реализации настоящего изобретения ТГА-термограмма кристаллической формы D соединения 1 является такой, как показано на фиг. 12.

В настоящем изобретении также предложена п-толуолсульфонатная соль соединения 1, представляющая собой следующее соединение 2:

В настоящем изобретении предложена кристаллическая форма Е соединения 2, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 6,21±0,2°, 10,92±0,2° и 12,78±0,2°.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы Е соединения 2 содержит характеристические пики при следующих значениях угла 20: $6,21\pm0,2^{\circ}$, $10,92\pm0,2^{\circ}$, $12,34\pm0,2^{\circ}$, $12,78\pm0,2^{\circ}$, $15,16\pm0,2^{\circ}$, $20,23\pm0,2^{\circ}$, $22,77\pm0,2^{\circ}$ и $23,03\pm0,2^{\circ}$.

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма (XRPD) кристаллической формы Е соединения 2 является такой, как показано на фиг. 13.

В некоторых вариантах реализации настоящего изобретения аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы Е соединения 2 являются такими, как показано в табл. 5.

кристаллической формы Е соединения 2							
Номер	Угол 20 (°)	Межплоскостн ое расстояние (Å)	Относительн ая интенсивнос ть (%)	Номер	Угол 2ө (°)	Межплоскост ное расстояние (Å)	Относительна я интенсивност ь (%)
1	6,21	14,2216	71,7	21	22,774	3,9014	39,4
2	7,594	11,632	1,6	22	23,033	3,8581	38,5
3	10,919	8,0958	61,8	23	23,983	3,7075	3,4
4	12,343	7,1651	20,1	24	25,003	3,5585	3,3
5	12,776	6,9233	100	25	25,559	3,4822	3
6	14,882	5,9477	5,8	26	25,831	3,4463	8,9
7	15,16	5,8394	17,5	27	26,797	3,3241	9,4
8	15,656	5,6556	3,6	28	27,506	3,24	2,7
9	16,11	5,4972	15	29	27,718	3,2158	3,8
10	17,015	5,2067	1,7	30	28,216	3,1602	5,5
11	17,509	5,0609	9,2	31	29,068	3,0694	4,5
12	17,728	4,999	12,8	32	29,522	3,0232	12,8
13	18,18	4,8758	12,8	33	29,914	2,9845	23
14	18,513	4,7887	4,3	34	30,448	2,9333	5,3
15	20,231	4,3858	28	35	31,001	2,8823	8,5
16	20,447	4,3399	14,9	36	32,259	2,7727	2,7
17	20,805	4,2661	2,5	37	32,951	2,716	2,1
18	21,081	4,2108	2,7	38	34,019	2,6332	3,3
19	21,825	4,0689	5,9	39	37,408	2,402	3,6
20	22,458	3,9557	3,9	40	37,901	2,3719	2,5

Таблица 5. Аналитические данные рентгеновской порошковой дифрактометрии (Х	RPD)
кристаллической формы Е соединения 2	

В некоторых вариантах реализации настоящего изобретения кривая дифференциальной сканирующей калориметрии (ДСК) кристаллической формы Е соединения 2 содержит начальные точки эндотермических пиков при 90,87±2°С, 149,18±2°С и 207,91±2°С.

В некоторых вариантах реализации настоящего изобретения ДСК-термограмма кристаллической формы Е соединения 2 является такой, как показано фиг. 14.

В некоторых вариантах реализации настоящего изобретения потеря массы на кривой термогравиметрического анализа кристаллической формы С соединения 1 достигает 3,723±0.5% при 64,37±2°С.

В некоторых вариантах реализации настоящего изобретения ТГА-термограмма кристаллической формы Е соединения 2 является такой, как показано на фиг. 15.

В настоящем изобретении также предложена п-трифторацетатная соль соединения 1, представляющая собой следующее соединение 3:

Соединение 3

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы F соединения 3 содержит характеристические пики при следующих значениях угла 20: 12,89±0,2°, 18,79±0,2° и 24,70±0,2°. В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма кристаллической формы F соединения 3 содержит характеристические пики при следующих значениях угла 20: 12,89±0,2°, 15,78±0,2°, 17,67±0,2°, 18,79±0,2°, 19,38±0,2°, 20,47±0,2°, 24,70±0,2° и 25,66±0,2°.

		Межплоскост-	Относитель	- <u> </u>		Межплоскост-	Относитель-
Hoven	Vrog 20 (°)	ное	-ная	Howen	Угол	ное	ная
Помер	510.120()	расстояние	интенсивно	помер	2θ (°)	расстояние	интенсивность
		(Å)	сть (%)			(Å)	(%)
1	8,541	10,3438	17,3	18	24,304	3,6592	3
2	10,182	8,6804	5,7	19	24,698	3,6017	100
3	12,279	7,2025	2,5	20	25,663	3,4685	27,8
4	12,452	7,1027	2,6	21	25,923	3,4343	8,5
5	12,887	6,864	53,4	22	26,57	3,352	3,2
6	13,479	6,5637	6,2	23	27,128	3,2844	7,5
7	14,074	6,2875	12,5	24	27,678	3,2203	4,7
8	15,275	5,7957	37,5	25	27,996	3,1845	7,5
9	16,638	5,3237	15,7	26	28,334	3,1473	1,9
10	17,095	5,1825	13,3	27	28,671	3,111	3,8
11	17,668	5,0158	44,4	28	29,241	3,0517	4,1
12	18,415	4,814	31,5	29	30,264	2,9507	11
13	18,792	4,7181	44,9	30	30,82	2,8988	2,9
14	19,383	4,5756	26,4	31	34,255	2,6155	2,5
15	20,47	4,335	20,9	32	35,539	2,5239	2,1
16	21,141	4,1989	15,3	33	36,231	2,4773	2,7
17	23,135	3,8414	6,8	34	37,277	2,4102	2,3

Таблица 6. Аналитические данные рентгеновской порошковой дифрактометрии (XRPD) кристаллической формы F соединения 3

В некоторых вариантах реализации настоящего изобретения рентгеновская порошковая дифрактограмма (XRPD) кристаллической формы F соединения 3 является такой, как показано на фиг. 16.

В некоторых вариантах реализации настоящего изобретения кривая дифференциальной сканирующей калориметрии (ДСК) кристаллической формы F соединения 3 содержит начальную точку эндотермического пика при 203,73±2°С.

В некоторых вариантах реализации настоящего изобретения ДСК-термограмма кристаллической формы F соединения 3 является такой, как показано фиг. 17.

В некоторых вариантах реализации настоящего изобретения потеря массы на кривой термогравиметрического анализа (ТГА) кристаллической формы С соединения 1 достигает 0,9086±0,2% при 138,71±°С.

В некоторых вариантах реализации настоящего изобретения ТГА-термограмма кристаллической формы F соединения 3 является такой, как показано на фиг. 18.

Технический результат

Кристаллические формы A, B, C и D соединения 1, кристаллическая форма E соединения 2 и кристаллическая форма F соединения 3 являются стабильными, характеризуются низкой гигроскопичностью, превосходной растворимостью в воде и представляют собой многообещающие лекарственные средства.

Определения и описание

Если не указано иное, следующие термины и выражения, используемые в настоящем изобретении, имеют следующие значения. Определенный термин или выражение не следует считать неопределенными или неясными, если отсутствует конкретное определение, и их следует понимать в соответствии с общепринятыми значениями. Когда используется торговое наименование, оно предназначено для обозначения соответствующего товара или его активных ингредиентов.

Промежуточные соединения согласно настоящему изобретению можно получать множеством способов синтеза, хорошо известных специалистам в данной области техники, включая конкретные варианты реализации, описанные ниже; варианты реализации, представляющие собой комбинации следующих ниже вариантов реализации с другими способами химического синтеза; и замещение на те же самые методы, хорошо известные специалистам в данной области техники. Предпочтительные варианты реализации включают, но не ограничиваются ими, примеры настоящего изобретения.

Химические реакции в вариантах реализации настоящего изобретения выполняются в подходящих растворителях, которые можно применять для химических изменений согласно настоящему изобретению, а также реактивов и материалов, требуемых для осуществления указанных реакций. Для получения соединений согласно настоящему изобретению специалист в данной области техники может модифицировать или выбирать подходящие стадии или схемы реакций на основании существующих вариантов реализации. Настоящее изобретение далее будет подробно описано в нижеследующих примерах, которые не предназначены для какого-либо ограничения объема настоящего изобретения. Растворители, используемые в настоящем изобретении, являются коммерчески доступными и непосредственно используются без дополнительной очистки. Следующие аббревиатуры используются в настоящем изобретении: ДФМА обозначает диметилформамид; MsOH обозначает метансульфоновую кислоту; EtOH обозначает этанол; и NaOH обозначает гидроксид натрия.

Соединения названы вручную или с помощью программного обеспечения ChemDraw(R), и для коммерчески доступного соединения используется наименование, указанное в каталоге поставщика.

Способ рентгеновской порошковой дифрактометрии (XRPD) согласно настоящему изобретению Модель оборудования: рентгеновский порошковый дифрактометр Brooke D8 Advance; и

Метод исследования: примерно 10-20 мг образца для XRPD определения.

Подробные параметры XRPD следующие:

Рентгеновская трубка: Cu, k α , (λ =1.54056Å);

Напряжение на трубке: 40 kV;

Ток трубки: 40 mA;

Щель расходимости: 0,60 мм;

Щель детектора: 10,50 мм;

Щель для защиты (предотвращения) от рассеянного излучения: 7,10 мм;

Скорость сканирования: 4-40°;

Диаметр шага: 0,02°;

Размер шага: 0,12 с; и

Скорость вращения: 15 об/мин.

Способ дифференциальной сканирующей калориметрии согласно настоящему изобретению Модель оборудования: дифференциальный сканирующий калориметр TAQ2000; и

Метод исследования: образец (примерно 1 мг) помещают в алюминиевую ячейку для ДСК исследования и нагревают указанный образец от 25 до 350°С со скоростью 10°С/мин в условиях 50 мл/мин N₂.

Условия анализа для ТГА согласно настоящему изобретению

Модель оборудования: TAQ5000IR термогравиметрический анализатор и

Метод исследования: образец (2-5 мг) помещают в платиновую емкость ячейку для TEA platinum pot для исследования и нагревают указанный образец от комнатной температуры до 350°C (или потери 20 мас.%) со скоростью 10°C/мин в условиях 25 мл/мин N₂.

Краткое описание графических материалов

Фиг. 1 представляет собой Cu-kα рентгеновскую порошковую дифрактограмму кристаллической формы A соединения 1;

фиг. 2 представляет собой ДСК-термограмму кристаллической формы А соединения 1;

фиг. 3 представляет собой ТГА-термограмму кристаллической формы А соединения 1;

фиг. 4 представляет собой Cu-ka рентгеновскую порошковую дифрактограмму кристаллической формы В соединения 1;

фиг. 5 представляет собой ДСК-термограмму кристаллической формы В соединения 1;

фиг. 6 представляет собой ТГА-термограмму кристаллической формы В соединения 1;

фиг. 7 представляет собой Cu-ka рентгеновскую порошковую дифрактограмму кристаллической формы C соединения 1;

фиг. 8 представляет собой ДСК-термограмму кристаллической формы С соединения 1;

фиг. 9 представляет собой ТГА-термограмму кристаллической формы С соединения 1;

фиг. 10 представляет собой Cu-kα рентгеновскую порошковую дифрактограмму кристаллической формы D соединения 1;

фиг. 11 представляет собой ДСК-термограмму кристаллической формы D соединения 1;

фиг. 12 представляет собой ТГА-термограмму кристаллической формы D соединения 1;

фиг. 13 представляет собой Cu-kα рентгеновскую порошковую дифрактограмму кристаллической формы Е соединения 2;

фиг. 14 представляет собой ДСК-термограмму кристаллической формы Е соединения 2;

фиг. 15 представляет собой ТГА-термограмму кристаллической формы Е соединения 2;

фиг. 16 представляет собой Cu-kα рентгеновскую порошковую дифрактограмму кристаллической формы F соединения 3;

фиг. 17 представляет собой ДСК-термограмму кристаллической формы F соединения 3 и

фиг. 18 представляет собой ТГА-термограмму кристаллической формы F соединения 3.

Подробное описание вариантов реализации

Настоящее изобретение далее проиллюстрировано при помощи комбинации конкретных примеров, представленных для лучшего понимания содержания настоящего изобретения, которые при этом не предназначены для какого-либо ограничения настоящего изобретения.

(40,0)(4-Стадия 2-хлоро-4-нитро-1-оксо-пиридин-1-ий 229,2 1: Г, ммоль) И метоксифенил)метиламин (63 г, 458,4 ммоль) растворяли в EtOH (400 мл), затем полученную смесь перемешивали с обратным холодильником в течение 5 ч. TCX (PE: EA = 2:1) показала, что реакция была завершена. Половину объема EtOH концентрировали и охлаждали на ледяной бане в течение 2-3 ч. Полученную холодную смесь фильтровали и отделенное твердое вещество промывали РЕ (60 мл×3) и ледяной водой (60 мл×3) соответственно. Затем сушили в вакууме с получением N-[(4-(метоксифенил)метил]-4-нитро-1-оксопиридин-1-ий-2-амина (38,6 г, 140,2 ммоль, выход 61,2%) в виде оранжевого твердого вещества. MS (ESI) Вычислено для $C_{13}H_{13}N_3O_4$ 275, обнаружено 276 $[M+H]^+$.

Стадия 2: К раствору N-[(4-(метоксифенил)метил]-4-нитро-1-оксопиридин-1-ий-2-амину (5,0 г, 18,16 ммоль) в CHCl₃ (50 мл) добавляли по каплям PCl₃ (8,4 г, 60,8 ммоль) при 0°С. После добавления реакционную смесь нагревали до 25°С и интенсивно перемешивали в течение 16 ч. TCX (PE: EA= 1: 1) показала, что реакция была завершена. Реакционную смесь фильтровали и полученное твердое вещество промывали PE (30 мл×3) с получением N-[(4-(метоксифенил)метил]-4-нитропиридин-2-амина (3) (4,2 г, неочищенный продукт) в виде желтого твердого вещества, которое непосредственно использовали на следующей стадии без дополнительной очистки. MS (ESI) Вычислено для $C_{15}H_{18}Ne$ 259, обнаружено 260 [M+H]⁺.

Стадия 3: К раствору N-[(4-(метоксифенил)метил]-4-нитропиридин-2-амину (4,2 г, 16,2 ммоль) в толуольном растворе (10 мл) добавляли по каплям ТФУ (5,0 мл) при комнатной температуре. Смесь перемешивали при 80°С в течение 2 ч. ТСХ (РЕ: EA= 1:1) показала, что реакция была завершена. Смесь концентрировали при пониженном давлении с удалением растворителя. Остаток разбавляли H₂O (50 мл) и его pH доводили до нейтрального с помощью твердого NaHCO₃. Водную фазу экстрагировали EA (50 мл×3). Объединенную органическую фазу сушили безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении. Полученный остаток очищали с помощью колоночной хроматографии (диоксид кремния, петролейный эфир/этилацетат = $1/0 \sim 1:1$) с получением 4-нитропиридин-2-амина (700 мг, 5,0 ммоль, выход 31,1%) в виде оранжевого твердого соединения. MS (ESI) Вычислено для C₅H₅N₃O₂ 139, обнаружено 140 [M+H]⁺.

Стадия 4: К 4-нитропиридин-2-амину (200 мг, 1,4 ммоль) в DME (5 мл) добавляли этил-3-бром-2оксопропаноат (280 мг, 1,4 ммоль) при комнатной температуре. Полученную смесь перемешивали при 25°С в течение 1 ч, затем концентрировали при пониженном давлении с удалением растворителя. Остаток растворяли в EtOH (10 мл) и кипятили с обратным холодильником в течение 3 ч. ТСХ показала, что реакция была завершена. Реакционную смесь охлаждали до комнатной температуры и растворитель концентрировали при пониженном давлении. Остаток подщелачивали насыщенным водным раствором Na-HCO₃ (25 мл). Водную фазу экстрагировали ДХМ (15 мл×3), затем объединенную органическую фазу сушили безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении. Полученный остаток очищали с помощью быстрой колоночной хроматографии (EA:PE=10-60%) с получением этил-7-нитроимидазо[1,2-]пиридин-2-карбоксилата (302 мг, выход 88,9%) в виде бледно-желтого твердого соединения. MS (ESI)

Вычислено для C₁₀H₉N₃O₄ 235, обнаружено 236 [M+H]⁺.

Стадия 5: К раствору этил-7-нитроимидазо[1,2-]пиридин-2-карбоксилата (150 мг, 637,8 ммоль) в этаноле (20 мл) добавляли HCl (7 мг, 0,2 ммоль) и PtO₂ (15 мг, 0,6 ммоль) при комнатной температуре. Реакционную систему поочередно вакуумировали и заполняли азотом три раза, затем заполняли H₂ (50 psi) и перемешивали при 50°С для взаимодействия в течение 16 ч. TCX (PE: EA =1:1) показала, что реакция была завершена. Половину объема смеси концентрировали и фильтровали, с получением гидрохлорида этил-7-амино-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксилата (6) (120 мг, неочищенный продукт) в виде белого твердого соединения.

MS (ESI)

Вычислено для C₁₀H₁₅N₃O₂ 209, обнаружено 210 [M+H]⁺.

Стадия 6: Гидрохлорид этил-7-амино-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксилата (100 мг, 0,4 ммоль) и 4-хлор-7-(п-толуолсульфонил)пирроло[2,3-d]пиримидин (137 мг, 0,4 ммоль) растворяли в n-BuOH (5 мл) и добавляли DIEA (158 мг, 1,2 ммоль). Полученную смесь перемешивали и кипятили с обратным холодильником для взаимодействия в течение 16 ч. ЖХ-МС показала, что реакция была завершена. Реакционную смесь концентрировали при пониженном давлении, затем полученный остаток разбавляли водой (10 мл). Водную фазу экстрагировали EA (20 мл×3), затем объединенную органическую фазу сушили безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении. Полученный остаток очищали с помощью препаративной TCX (PE:EA= 0:1) с получением этил-7-[[7-(п-толуолсульфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксилата (7) (55 мг, 0,11 ммоль, выход 28,1%) в виде бледно-желтого твердого соединения. МS (ESI)

Вычислено для C₂₃H₂₄N₆O₄ 480

Обнаружено 481 [M+H]⁺.

Стадия 7: К раствору этил-7-[[7-(п-толуолсульфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8тетрагидроимидазо[1,2-а]пиридин-2-карбоксилата (3,0 г, 6,2 ммоль) в ТГФ (150 мл) партиями добавляли NaH (499 мг, 12,5 ммоль) при 0°С в атмосфере N₂. Смесь перемешивали при данной температуре в течение 1 ч и затем по каплям добавляли MeI (7,1 г, 50,2 ммоль). После добавления смесь перемешивали при комнатной температуре в течение 1 ч. ТСХ показала, что реакция была завершена. Реакцию завершали добавлением насыщенного NH₄ (10 мл), после чего разбавляли ледяной водой (50 мл). Водную фазу экстрагировали смешанным растворителем ДХМ/МеОН (3:1, 50 мл×3). Объединенную органическую фазу сушили безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении. Полученный неочищенный продукт очищали посредством быстрой колоночной хроматографии (ДХМ: MeOH = 10:1) с получением этил-7-[метил-[7-(п-толуолсульфонил)пирроло[2,3-d]пиримидин-4ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксилата (8) (1,5 г, выход 45%) в виде бледножелтого твердого вещества.

MS (ESI)

Вычислено для $C_{24}H_{26}N_6O_4$ 494, обнаружено 495 $[M+H]^+$.

Стадия 8: К раствору 7-[метил-[7-(п-толуолсульфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксилата (4,0 г, 8,1 ммоль) в ТГФ (40 мл) и воде (8 мл), затем добавляли LiOH·H₂O (509 г, 12,1 ммоль) и полученную смесь перемешивали при 20°С в течение 10 ч. ТСХ показала, что реагент был полностью израсходован. Реакционную смесь концентрировали при пониженном давлении, затем полученный остаток разбавляли водой (10 мл). Твердое вещество отфильтровывали и концентрировали при пониженном давлении с получением 7-[метил-[7-(птолуолсульфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2карбоновой кислоты (9) (3,6 г, выход 95,4%) в виде белого твердого вещества. MS (ESI) Вычислено для $C_{22}H_{22}N_6O_4$ 466, обнаружено 467 [M+H]⁺.

Стадия 9: К раствору 7-[метил-[7-(п-толуолсульфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоновой кислоты (1,8 г, 3,9 ммоль) в ДМФА (20 мл) добавляли CDI (751 мг, 4,6 ммоль) при 0°С. Реакционный раствор нагревали до 25°С и перемешивали в течение 2 ч, затем добавляли твердый хлорид аммония (2,1 г, 38,6 ммоль), после чего оставляли на ночь при комнатной температуре. ЖХ-МС показала, что реагенты были полностью израсходованы. Реакционную смесь выливали в ледяную воду (50 мл) и выделяли белое твердое вещество. Твердое вещество фильтровали, промывали водой (20 мл) и высушивали в центрифуге с получением 7-[метил-[7-(птолуолсульфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2карбоксамида (10) (2,5 г, неочищенный продукт) в виде белого твердого вещества, которое непосредственно использовали на следующей стадии. MS (ESI) Вычислено для $C_{22}H_{23}N_7O_3S$ 465, обнаружено 466 [M+H]⁺.

Стадия 10: 7-[Метил-[7-(п-толуолсольфонил)пирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксамид (2,5 г, 5,4 ммоль) растворяли в ТГФ (20 мл), МеОН (10 мл) и H₂O (6 мл) и добавляли NaOH (429,6 мг, 10,7 ммоль). Смесь нагревали до 60°С и перемешивали в течение 30 мин. ЖХ-МС показала, что реагенты были полностью израсходованы. Реакционную смесь концентрировали при пониженном давлении с получением 7-[метил-7-гептагидропирроло[2,3-d]пиримидин4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-карбоксамида (2,0 г неочищенного продукта) в виде белого твердого вещества, которое непосредственно использовали на следующей стадии. MS (ESI) Вычислено для C₁₅H₁₇N₇O 311, обнаружено 312 [M+H]⁺.

Стадия 11: К раствору 7-[метил-[7-гептагидропирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8тетрагидроимидазо[1,2-а]пиридин-2-карбоксамида (2,0 г, 6,4 ммоль) и триэтиламина (3,9 г, 38,5 ммоль) в ТГФ (20 мл) добавляли по каплям ТФА (трифторуксусный ангидрид) (4,1 г, 19,3 ммоль) при 0°С. После добавления реакционную смесь перемешивали при комнатной температуре в течение 30 мин. ЖХ-МС показала, что исходное сырье было полностью израсходовано. Реакционную смесь выливали в ледяную воду (20 мл) и экстрагировали ДХМ/МеОН (5:1, 100 мл×2). Объединенный органический слой промывали насыщенной соленой водой (20 мл), сушили над безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении с получением остатка. Остаток очищали с помощью колоночной хроматографии (ДХМ/МеОН=40/1 до 20:1) с получением 7-[метил-[7-гидропирроло[2,3d]пиримидин-4-ил]амино]-5,6,7,8-тетрагидроимидазо[1,2-а]пиридин-2-нитрила (12,378 мг, выход 19,8%). MS (ESI) Вычислено для С₁₅H₁₅N₇ 293, обнаружено 294 [M+H]⁺.

¹H ЯМР (400 МГц, ДМСО-d₆) 11,44-11,71 (m, 1H), 7,99-8,17 (m, 2H), 7,11-7,20 (m, 1H), 6,63 (dd, J=1,76, 3,26 Γц, 1H), 5,33 (br. s., 1H), 4,21-4,31 (m, 1H), 4,13 (dt, J=4,14, 12,49 Γц, 1H), 3,27 (s, 3H), 2,91-3,11 (m, 2H), 2,31-2,44 (m, 1H), 2,07 (d, J=11,54 Γц, 1H).

Стадия 12: Рацемический 7-[метил-[7-гидропирроло[2,3-d]пиримидин-4-ил]амино]-5,6,7,8тетрагидроимидазо[1,2-а]пиридин-2-нитрил (30 мг, 102,3 мкмоль) разделяли с помощью хиральной колонки с получением соединения 1 (10 мг, выход 32,8%).

Условия разделения SFC (сверхкритическая флюидная хроматография):

Колонка: AD)(250 мм×30 мм,10 мкм) хиральная колонка

Подвижная фаза: А: сверхкритический CO₂, В: В: этанол (содержащий 0,1% изопропанола), A:B=55:45

Расход: 80 мл/мин

Температура колонки: 38°С

Длина волны: 220 ни

Давление впрыска: 100 Бар

Температура сопла: 60°С

Температура испарения: 20°С

Температура кондиционирования: 25°С

Соединение 1: время удерживания 6,407 мин; MS (ESI) Вычислено для $C_{15}H_{15}N_7$ 293, обнаружено 294 $[M+H]^+$. Чистота 98.8%, е.е. было 98.9%; $[\alpha]_D^{20} = +78.4^\circ$ (с = 0.6, ДМСО). MS (ESI) Вычислено для $C_{15}H_{15}N_7$ 294, обнаружено 294 $[M+H]^+$.

¹H ЯМР (400 МГц, ДМСО-d₆) δ ppm 2,02-2,15 (m, 1H), 2,39 (qd, J=12,42, 5,90 Γц, 1H), 2,92-3,12 (m, 2H), 3,28 (s, 3H), 4,05-4,36 (m, 2H), 5,20-5,45 (m, 1H) 6,64 (dd, J=3,26, 2,51 Γц, 1H) 8,02-8,17 (m, 2H) 11,59 (br s, 1H).

Пример 2. Получение кристаллической формы F соединения 3 и кристаллической формы A соединения 1

1 г соединения 1 добавляли в 5 мл ацетона и 0,5 мл ТФА и нагревали с обратным холодильником. Добавляли 10 мл МТБЭ. Смесь фильтровали для удаления нерастворимых веществ. Полученный раствор оставляли на 12 ч для отделения твердого осадка, который затем отфильтровывали. Осадок промывали МТБЭ и высушивали с получением трифторацетатной соли соединения 1, в частности, кристаллической формы F соединения 3. После того как каждый грамм соединения 3 растворили добавлением 10 мл воды, 0,1 мл ТФА и 1 мл МеОН, систему доводили щелочной среды с помощью насыщенного раствора NaHCO₃. На этот раз отделяли и фильтровали белое твердое вещество. Осадок была промывали водой (5 мл×3) для удаления неорганических солей. В результате сушки под вакуумом получали чистое белое твердое вещество, в частности, кристаллическую форму A соединения 1.

Пример 3. Получение кристаллической формы В соединения 1

Примерно 20 мг кристаллической формы А соединения 1 добавляли в 20 мл этанола, затем смесь растворяли для ультразвуковой обработки и центрифугировали. Полученный супернатант испарялся естественным образом в вытяжном шкафу. Оставшиеся твердые образцы высушивали в течении ночи в вакуумной печи (30°С) с получением кристаллической формы В соединения 1.

Пример 4. Получение кристаллической формы С соединения 1

Примерно 20 мг кристаллической формы А соединения 1 добавляли в 20 мл тетрагидрофурана, затем смесь растворяли для ультразвуковой обработки и центрифугировали. Полученный супернатант испарялся естественным образом в вытяжном шкафу. Оставшиеся твердые образцы высушивали в течении ночи в вакуумной печи (30°С) с получением кристаллической формы В соединения 1.

Пример 5. Получение кристаллической формы D соединения 1

Примерно 25 мг кристаллической формы А соединения 1 по каплям добавляли в 10 мл смеси растворителей этанол-вода (3:1), затем указанную смесь помещели на магнитную мешалку и нагревали

(50°С до расстворения, затем быстро фильтровали. Фильтрат охлаждали в холодильнике при 5°С. Оставшиеся твердые образцы высушивали в течение ночи в вакуумной печи (30°С) с получением кристаллической формы D соединения 1.

Пример 6. Получение соединения 2

60 мг соединения 1 добавляли в стеклянный сосуд, затем добавляли 2 мл ДМСО. Смесь помещали на магнитную мешалку и нагревали (50°С) до растворения, затем медленно добавляли птолуолсульфоновую кислоту (молярное отношение соединения 1 к п-толуолсульфоновой кислоте 1:1). Наблюдения показали, что все образцы находились в состоянии раствора и осадок не появлялся. После нагревания и перемешивания в течение 1 ч нагревание прекращали; образцы растворов оставляли остывать при перемешивании. Спустя 3 ч образцы оставались в состоянии раствора, затем добавляли этилацетат. Раствор концентрировали роторным испарением, после чего замораживали с получением соединения 2.

Пример 7. Получение кристаллической формы Е соединения 2

Примерно 40 мг исходного соединения 2 добавляли в 0,4 мл метанола с образованием суспензии. Образец суспензии взбалтывали на термостатическом гомогенизаторе (40°C) в течение 2 дней (вдали от света). Оставшиеся твердые образцы высушивали в течении ночи в вакуумной печи (25°C) с получением кристаллической формы Е соединения 2.

Экспериментальный пример 1: Исследование стабильности кристаллической формы А соединения 1 в различных растворителях

Эти исследования растворимости проводились вручную последовательным разбавлением и наблюдением за растворимостью при комнатной температуре. Примерно 2 мг кристаллической формы A соединения 1 добавляли в сосуды, содержащие разные жидкие фазы, соответственно, затем постоянно добавляли небольшое количество органического растворителя или смеси растворителей (приведенных в табл. 7). Наблюдали растворение кристаллической формы A соединения 1. Результаты представлены в табл. 7.

Номер	Растворитель	Растворимость (мг/мл)	Заключение
1	Метанол	<2	Плохо растворимое/очень плохо растворимое
2	Этанол	<2	Плохо растворимое/очень плохо растворимое
3	Изопропанол	<2	Плохо растворимое/очень плохо растворимое
4	N-бутанол	<2	Плохо растворимое/очень плохо растворимое

Таблица 7. Растворимость формы А в различных растворителях

5	Ацетонитрил	<2	Плохо растворимое/очень
			плохо растворимое
6	Ацетон	<2	Плохо растворимое/очень
0		~2	плохо растворимое
7	Метилэтилкетон	2	Плохо растворимое/очень
/		~2	плохо растворимое
0	Метилизобутилилкетон	~	Плохо растворимое/очень
ð		<2	плохо растворимое
0	Этилацетат		Плохо растворимое/очень
9		<2	плохо растворимое
10	Изопропилацетат	2	Плохо растворимое/очень
10		<2	плохо растворимое
	Метилтретбутиловый эфир		Плохо растворимое/очень
11		<2	плохо растворимое
	Тетрагидрофуран		Плохо растворимое/очень
12		<2	плохо растворимое
	2-метиптетрагидрофуран		Плохо растворимое/очень
13		<2	плохо растворимое
	Топуод		
14	Tonyon	<2	
	Formati		
15	Тептан	<2	плохо растворимое/очень
16	Циклогексан	<2	Плохо растворимое/очень
			плохо растворимое
17	1,4-диоксан	<2	Плохо растворимое/очень
			плохо растворимое
18	Вода	<2	Плохо растворимое/очень
			плохо растворимое
19	Метанол-вода (1:1)	<2	Плохо растворимое/очень
			плохо растворимое
20	Метанол-вода (3:1)	<)	Плохо растворимое/очень
20		-2	плохо растворимое
21	Этанол-вода (1:1)	~	Плохо растворимое/очень
21		~2	плохо растворимое
22	Этанол-вода (3:1)	~	Плохо растворимое/очень
22		~2	плохо растворимое
22	Ацетонитрил-вода (1:1)	2	Плохо растворимое/очень
23		<2	плохо растворимое
24	Ацетон-вода (1:2)	<2	Плохо растворимое/очень
			плохо растворимое
	Изопропиловый спирт-вола (1.1)		Плохо растворимое/очень
25		<2	
			поло растворные

Экспериментальный пример 2: Исследование стабильности кристаллической формы А соединения 1 в различных растворителях

30 мг кристаллической формы A соединения 1 добавляли в 0,2 мл отдельного растворителя или смесь растворителей, приведенных в табл. ниже, соответственно; затем каждую смесь перемешивали при 40°C в течении 2 дней и центрифугировали. Собирали твердые вещества во всех образцах и высушивали в течении ночи в вакуумной печи (25°C). Кристаллические формы полученных твердых веществ определяли рентгеновской порошковой дифрактометрией, результаты представлены в табл. 8.

Номер	Растворитель	Появление (2 дня)	Результаты
1	Метанол	Суспензия	Кристаллическая форма А
2	Этанол	Суспензия	Кристаллическая
3	Изопропанол	Суспензия	форма А Кристаллическая
4	Ацетон	Суспензия	форма А Кристаллическая форма А
5	Этилацетат	Суспензия	Кристаллическая форма А
6	Тетрагидрофуран	Суспензия	Кристаллическая форма А
7	Метанол-вода (3:1)	Суспензия	Кристаллическая форма А
8	Этанол-вода (3:1)	Суспензия	Кристаллическая форма А
9	Ацетон-вода (1:2)	Суспензия	Кристаллическая форма А
10	Изопропиловый спирт-вода	Суспензия	Кристаллическая
	(1:1)		форма А

Таблица 8. Исследование стабильности кристаллической формы A соединения 1 в различных растворителях

Экспериментальный пример 3: Исследование стабильности кристаллической формы Е соединения 2 в условиях высокой температуры, высокой влажности и сильного освещения

Подходящее количество образца кристаллической формы Е соединения 2 помещали на дно стеклянного сосуда и распределяли тонким слоем. Сосуд, содержащий образцы, помещали в условия высокой температуры и высокой влажности и накрывали алюминиевой фольгой, при этом в алюминиевой фольге были проделаны отверстия для обеспечения достаточного контакта образцов с атмосферным воздухом; также образцы помещали под сильное излучение света и закрывали завинчивающейся крышкой. Отбирали образцы, которые помещали в разные условия, и исследовали рентгеновской порошковой дифрактометрией на 5 день и 10 день. Результаты исследований сравнивали с первоначальными результатами свежеприготовленного образца (день 0). Результаты сведены в табл. 9 ниже.

	• wound bird • in the	т е на мини не енсон ф	opinior in coordinate
Условия испытаний	Время	Появление	XRPD
-	свежеприготовленн	Белый порошок	Кристаллическая
	ыи образец (день 0)		форма Е
	лень 5	Белый порошок	Кристаллическая
Высокая температура	denis 5		форма Е
(60 °С, открытый)	лень 10		Кристаллическая
	день 10		форма Е
BLICORAS BRANHOCTL	лень 5	Белый порошок	Кристаллическая
комнатная температура	denis 5		форма Е
02.5% открытый)	тени 10		Кристаллическая
92,970, OIKpBIIBIN)	день 10		форма Е
	TOTU 5	Белый порошок	Кристаллическая
излучение	день 5		форма Е
(5000 more portan)	тень 10		Кристаллическая
(JOOO MORC, BOINSN)	день 10		форма Е

Таблица 9. Испытания стабильности кристаллической формы Е соединения 2

Исследование активности in vitro в отношении Jak 1, Jak 2 и Jak 3 киназ Исследуемые материалы

Рекомбинантные гуманизированные протеазы JAK1, JAK2 и JAK3 были приобретены у Life technology. Пептид LANCE Ultra ULight(TM)-JAK-l (Tyr 1023) и LANCE Eu-W1024 Антифосфотирозин (РТ66) были приобретены у PerkinElmer. Планшеты изучали при помощи мультиплексного ридера ферментов Envision (PerkinElmer).

Метод исследования

Исследуемое соединение подвергали трехкратному градиентному разбавлению с получением 11 конечных концентраций в диапазоне от 10 мкМ до 0,17 нМ, где каждая концентрация была представлена в двух лунках, и содержание ДМСО при определении реакции составляло 1%.

Ферментативная реакция ЈАК1

2 нМ JAK2 протеинкиназы, 50 нМ пептида LANCE Ultra ULight(TM)-JAK-1(Tyr1023), 38 мкМ АТФ, 50 мМ НЕРЕЅ (pH 7,5), 10 мМ MgCl₂, 1 мМ EGTA, 2 мМ DTT, 0,01% BRIJ-35. Планшет исследования представлял собой белый планшет Proxiplate 384-Plus plate (PerkinElmer). Реакцию проводили в течение 90 мин при комнатной температуре, и реакционная система составляла 10 мкл.

Ферментативная реакция ЈАК2

0,05 нМ JAK2 протеинкиназы, 50 нМ пептида LANCE Ultra ULight(TM)-JAK-1 (Tyr1023), 4 мкМ АТФ, 50 мМ HEPES (pH 7,5), 10 мМ MgCl₂, 1 мМ EGTA, 2 мМ DTT, 0,01% BRIJ-35. Планшет исследования представлял собой белый планшет Proxiplate 384-Plus plate (PerkinElmer). Реакцию проводили в течение 60 мин при комнатной температуре, и реакционная система составляла 10 мкл.

Ферментативная реакция ЈАК1

0,05 нМ JAK2 протеинкиназы, 50 нМ пептида LANCE Ultra ULight(TM)-JAK-1(Tyr1023), 4 мкМ АТФ, 50 мМ HEPES (pH 7,5), 10 мМgCl₂, 1 мМ EGTA, 2 мМ DTT, 0,01% BRIJ-35. Планшет исследования представлял собой белый планшет Proxiplate 384-Plus plate (PerkinElmer). Реакцию проводили в течение 90 мин при комнатной температуре, и реакционная система составляла 10 мкл.

Определение реакции:

В реакционный планшет добавляли 10 мкл детектирующего реагента, где конечная концентрация LANCE Eu-W1024 Антифосфотирозин (РТ66) составляла 2 нМ, конечная концентрация составляла EDTA составляла 10 нМ, инкубацию проводили в течение 60 мин при комнатной температуре и планшет считывали на Envision.

Анализ данных

Показания преобразовали в коэффициент ингибирования (%) согласно уравнению:

коэффициент ингибирования (%)=(Мин-Отношение)/(Макс-Мин)×100%.

Данные IC₅₀ определяли с помощью подбора 4-х параметрической кривой (Model 205 в XLFIT5, iDBS). Подробности в табл. 9.

Таблица 9

Coedimentie	JAKI	JAK2
Соединение 1	А	В

А≤10 нМ; 10<В≤100 нМ.

Соединение проявляло сильную ингибирующую активность в отношении JAK1 и относительно слабую активность в отношении JAK2, что свидетельствует о том, что соединение 1 проявляло улучшенную селективную ингибирующую активность по отношению к JAK.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Кристаллическая форма A следующего соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,38±0,2°, 13,34±0,2°, 15,85±0,2°, 22,09±0,2°, 23,71±0,2°, 25,38±0,2°, 26,21±0,2° и 26,81±0,2°

Соединение 1.

2. Кристаллическая форма В соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,25±0,2°, 13,24±0,2°, 15,77±0,2°, 21,97±0,2°, 23,62±0,2°, 25,24±0,2°, 26,70±0,2° и 37,51±0,2°.

3. Кристаллическая форма C соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,40±0,2°, 13,37±0,2°, 21,51±0,2°, 22,14±0,2°, 24,87±0,2°, 25,40±0,2° и 37,65±0,2°.

4. Кристаллическая форма D соединения 1, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,36±0,2°, 24,84±0,2° и 37,62±0,2°.

5. п-Толуолсульфонатная соль соединения 1, представляющая собой следующее соединение 2:

6. Кристаллическая форма E соединения 2, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 6,21±0,2°, 10,92±0,2°, 12,34±0,2°, 12,78±0,2°, 15,16±0,2°, 20,23±0,2°, 22,77±0,2° и 23,03±0,2°.

7. п-Трифторацетатная соль соединения 1, представляющая собой следующее соединение 3:

Соединение 3.

8. Кристаллическая форма F соединения 3, рентгеновская порошковая дифрактограмма которой содержит характеристические пики при следующих значениях угла 20: 12,89±0,2°, 15,78±0,2°, 17,67±0,2°, 18,79±0,2°, 19,38±0,2°, 20,47±0,2°, 24,70±0,2° и 25,66±0,2°.

- 18 -

