

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2022.02.11

(21) Номер заявки

202100012

(22) Дата подачи заявки

2020.12.03

(51) Int. Cl. F04C 21/00 (2006.01) **F04C 2/107** (2006.01)

(54) СТАТОР ОДНОВИНТОВОГО ГЕРОТОРНОГО НАСОСА

(43) 2022.02.08

(96) 2020/EA/0079 (BY) 2020.12.03

(71)(72)(73) Заявитель, изобретатель и

патентовладелец:

УВАРОВ БОРИС ИВАНОВИЧ; ВЕРШУК ЛЮДМИЛА ЛЕОНТЬЕВНА (ВУ)

(56) EP-A1-0987438 DE-U1-202008001463 DE-U1-29911489

Изобретение относится к машиностроению и может быть использовано при изготовлении и эксплуатации одновинтовых героторных насосов, предназначенных для транспортирования технологических материалов в строительной, горнорудной, нефтехимической и других отраслях промышленности. Технический результат изобретения характеризуется упрощением конструкции статора одновинтового героторного насоса, оснащенного устройством, предотвращающим проворачивание статора вместе с ротором, исключающим выломы корпуса статора, обладающим высокой надежностью и универсальностью применения, снижающим стоимость изготовления и эксплуатации насосов. Винтовая пара по фиг. 1 включает ротор 1, статор 2, состоящий из жесткого корпуса 3 с внутренней винтовой эластичной поверхностью 4 и кинематического звена 5 устройства, предотвращающего проворачивание статора 2 вместе с ротором 1. Один конец 6 кинематического звена 5 прикреплен к жесткому корпусу 3 статора 2, а другой конец 10 кинематического звена 5 прикреплен к неподвижной части 7 насоса. Крутящий момент 9 ротора 1 за счет сил трения между ротором 1 и сопрягаемой внутренней винтовой эластичной поверхностью 4 статора 2 трансформируется во вращающий момент 8 статора. Реактивная сила кинематического звена 5 направлена вдоль кинематического звена 5 и противодействует вращающему моменту 8 статора 2. Кинематическое звено 5 может быть выполнено гибким, жестким или гибридным жесткогибким.

Область техники, к которой относится изобретение

Изобретение относится к машиностроению, в частности к гидравлическим машинам объемного вытеснения, и может быть использовано при изготовлении и эксплуатации одновинтовых героторных насосов, предназначенных для напорного транспортирования и дозирования различных технологических составов в строительной, горнорудной, нефтехимической и других отраслях промышленности.

Предпосылки создания изобретения

По принципу действия героторный одновинтовой насос относится к объемным роторным гидромашинам, конструкция которых позволяет регулировать производительность насоса без потери номинального давления. Рабочие органы представляют собой винтовую пару с внутренним циклоидальным зацеплением, состоящую из металлического ротора и эластичного статора. Ротор осуществляет планетарное движение относительно оси статора. Ротор и статор по всей длине образуют замкнутые камеры, ограниченные линиями их контакта, объем которых определяется эксцентриситетом и шагом ротора. При вращении ротора камеры, заполненные перекачиваемым раствором, непрерывно перемещаются ротором по винтовой линии вдоль оси статора от всасывающей полости насоса к нагнетательной. Наличие эластичного статора позволяет перекачивать абразивные растворы с твердыми наполнителями и исключает заклинивание ротора в статоре.

Одновинтовые героторные насосы используются для транспортировки пастообразных, вязких, абразивных технологических материалов (пульпы, шламовых и солевых растворов, загрязненных песком нефтепродуктов), а также строительных растворов (бетона, песчано-цементных и штукатурных растворов, шпатлевки, гипсовых и малярных растворов, клеев и красок). На базе одновинтовых насосов созданы штукатурные, малярные и шпатлевочные агрегаты, растворонасосы, перекачивающие пенобетон и тяжелые марки бетона, торкрет установки, установки, закачивающие песчано-цементный раствор в фундаментные скважины, а также мультифазные насосы. Винтовая пара, перекачивающая абразивные растворы под давлением в десятки атмосфер, работает в тяжелых условиях и является изнашиваемой расходной частью винтового насоса. Поэтому статор и ротор одновинтового насоса требуют регулярной замены.

Ротор вращается валом двигателя одновинтового насоса. Часть крутящего момента ротора за счет сил трения сопрягаемых винтовых поверхностей ротора и статора и находящимся между ними под высоким давлением пастообразным перекачиваемым технологическим материалом передается статору и трансформируется во вращающий момент статора, оказывающий негативный эффект на работу насоса. Если корпус статора не зафиксирован каким-то образом, то происходит проворачивание статора вместе с ротором. При этом снижается производительность насоса, но самое главное, что при проворачивании статора стираются, срезаются уплотнительные эластичные выступы на торцах статора, нарушается герметичность и из-за высокого (25-30 атм) давления на выходе из статора технологический материал начинает подтекать через разрушенные уплотнения. Кроме того, проворачивание статора может привести к повреждениям деталей одновинтового насоса.

Известные корпуса необслуживаемых статоров, которые не имеют болтового обжимного кожуха для регулировки натяга ротор - статор, выполнены в виде цельных цилиндрических или винтообразных металлических труб определенной длины и диаметра.

В зависимости от модификации винтовой пары, ее технических параметров, натяга ротор - статор, природы, вязкости и абразивности транспортируемого материала предусматривается наличие или отсутствие специальных устройств, предотвращающих проворачивание статора. Винтовые пары малого диаметра с небольшим эксцентриситетом ротора, в которых не развивается большой вращающий момент статора, не всегда снабжены устройством от проворачивания статора, а фиксируются в агрегате путем очень сильного торцевого сжатия металлического корпуса статора болтовыми шпильками, стягивающими приемный и нагнетающий фланцы одновинтового насоса. Но такой способ фиксации не всегда гарантирует полную защиту от проворачивания статора и если статор проворачивается, то уплотнительные торцы статора выходят из строя. Кроме того, чрезмерное сжатие торцевых уплотнений деформирует и нарушает их целостность. Надежнее и безопаснее фиксировать статор в неподвижном положении в насосе, предотвращая проворачивание статора специальным устройством.

Известно устройство против проворачивания статора одновинтового героторного насоса, выполненное в виде металлического удлиненного стержня, выступающего в радиальном направлении от статора. Одним концом стержень устройства приварен к корпусу статора, а боковая поверхность стержня контактирует и упирается в одну из болтовых шпилек, стягивающих приемный и нагнетающий фланцы насоса. Удлиненный стержень служит консольным упором статора, ограничивающим проворачивание статора [1]. Удлиненный стержень устройства - это консольный рычаг, работающий на изгиб, с точкой приложения нагрузки в месте контакта с болтовой шпилькой насоса. Момент силы величина, равная произведению силы на плечо силы. Чем дальше от корпуса статора болтовая шпилька, тем длиннее плечо рычага и больше усилие вылома поверхности корпуса статора. При транспортировке и работе насоса приваренные стержни могут отломиться по месту сварки, тонкие стержни сгибаются, а при транспортировке царапают соседние статоры, ухудшая их товарный вид и вызывая ржавую коррозию.

Известен статор одновинтового героторного насоса, содержащий металлический корпус и внутрен-

нюю винтовую эластичную поверхность, а также устройство предотвращающее проворачивание статора в виде металлического стержня [2]. В выемке корпуса статора размещается приемная часть - гнездо стержня, которое приваривается, как отдельный элемент, прикрепленный к внешней стенке статора. Стержень вставляется в отверстие гнездового держателя, где в области контакта между держателем и удлиненным стержнем предусмотрено клеевое соединение или запрессовка. Удлиненный стержень служит консольным упором статора о болтовую шпильку, не позволяющим статору повернуться. Держатель стержня и стержень имеют очень точно изготовленные контактные поверхности, необходимые для обеспечения надежного клеевого соединения клея или запрессовки, что требует проведения сложных производственных процессов и, следовательно, значительных затрат. Крепление стержня к держателю стержня может быть выполнено только производителем. Статоры транспортируются с установленными стержнями, что создает неудобства и проблемы с ухудшением внешнего вида из-за царапания статора стержнем устройства.

Известен статор одновинтового героторного насоса, содержащий металлический корпус и внутреннюю винтовую эластичную поверхность, а также устройство предотвращающее проворачивание статора в виде жесткой металлической пластины прямоугольного сечения [3, 4]. Круглый стержень имеет недостаточную жесткость, под нагрузкой может сгибаться и в согнутом состоянии прокручиваться вместе со статором мимо болтовых шпилек. Чтобы этого не происходило, консольный упор устройства выполнен в виде трапеции или усеченной к вершине утолщенной прямоугольной пластины, большая сторона сечения которой расположена в плоскости вращения. Для удобства транспортировки статоров предусмотрена возможность съема и установки упорных пластин, но для этого изготавливается держатель пластины сложной формы, затем приваривается к корпусу статора, а пластина с натягом фиксируется в держателе. Такие детали требуют точного механического изготовления и имеют немалую стоимость. Кроме того, держатель для пластины сложно прикрепить к поверхности статора, если статор имеет не цилиндрическую, а винтовую внешнюю поверхность. Статоры с приваренной наглухо пластиной имеют большие габариты, и пластины при перевозке царапают краску или пленку на корпусах соседних статоров, приводя к коррозии, ухудшая их товарный вид, снижая продажи.

Известен статор одновинтового героторного насоса, содержащий металлический корпус и внутреннюю винтовую эластичную поверхность, а также устройство предотвращающее проворачивание статора в виде стреловидного жесткого металлического стержня, снабженного внутренней резьбой [5,6]. Для компактности и уменьшения габаритного размера устройства, оно выполнено разборным из составных частей: штифта и оболочки. Штифт имеет небольшую длину и прочно приваривается к металлическому корпусу статора контактной, точечной или сваркой трением. Перед пуском в эксплуатацию винтовой пары на короткий штырь по резьбе накручивается длинная металлическая оболочка, которая может иметь в сечении разные конфигурации и диаметры. Стержень-оболочка, прикрепленный одним концом к корпусу статора, является консольным упором статора, ограничивающим поворот статора при контакте с болтовой шпилькой насоса. Для приваривания штифта или держателей на корпус статора необходимо применение специальных устройств, фиксирующих строго радиальное направление штыря. Изготовление такого устройства требует немалых материальных и трудовых затрат.

Известен статор одновинтового героторного насоса, содержащий металлический корпус и внутреннюю винтовую эластичную поверхность, а также устройство предотвращающее проворачивание статора в виде металлического стержня [7]. Устройство предотвращающее проворачивание статора содержит отдельный съемный стержень, который можно быстро и без инструментов установить в держатель. Стержень является консольным упором статора, работающим на изгиб и ограничивающим поворот статора при контакте с болтовой шпилькой насоса. Стержень фиксируется в держателе подпружиненной кольцевой защелкой, чтобы стержень не мог ослабнуть даже в случае сильных вибраций. Недостатки известного устройства - для приваривания держателя на корпус статора необходимо применение специальных устройств, фиксирующих строго радиальное направление стержня. Изготовление элементов такого устройства требует немалых материальных и трудовых затрат: съемный стержень с кольцевой подпружиненной канавкой и точной посадкой в держатель, держатель должен привариваться на определенном расстоянии от статора для свободного выхода конца стержня и раскрытия пружинного кольца. После установки стержень уже не может быть снят с корпуса статора.

Наиболее близким к заявляемому изобретению техническим решением, выявленным в качестве прототипа, является статор одновинтового героторного насоса, содержащий металлический корпус и внутреннюю винтовую эластичную поверхность и устройство предотвращающее вращение статора в виде жесткого удлиненного элемента [8]. Жесткий удлиненный элемент представляет собой металлический стержень, прочно прикрепленный одним концом к корпусу статора, и является консольным упором статора, работающим на изгиб и ограничивающим поворот статора при контакте с болтовой шпилькой насоса. Устройство содержит гайку, приваренную к корпусу статора и удлиненный стержень с наружной резьбой, ввернутый в гайку. Поверх резьбы стержня надет полимерный защитный колпачок, предотвращающий коррозию резьбы и сильный шум, появляющийся от вибрационного соприкосновения металлического стержня и болтовой шпильки насоса. Ввинчивание стержня может быть выполнено непосредственно перед вводом в эксплуатацию статора, при необходимости стержень может быть выкручен из гай-

ки. Статоры с таким съемным приспособлением легко транспортировать, но приспособление недостаточно надежно в эксплуатации. Во время работы одновинтовые насосы производят сильную вибрацию, которая приводит к ослаблению резьбового соединения устройства, раскручиванию и выпадению удлиненного металлического стержня.

Недостатками известного уровня техники статоров одновинтовых героторных насосов с устройствами, предотвращающими проворачивание статора вместе с ротором, являются ненадежность, сложность и дороговизна изготовления устройств, проблемы транспортировки статоров с габаритными несъемными устройствами, обязательное изготовление и применение сложных металлических элементов устройств в виде держателей, стержней, трубок или пластин, прикрепляемых к металлическому корпусу статора. Радиально закрепленный одним концом на корпусе статора жесткий удлиненный стержневой элемент, контактируя боковой поверхностью незакрепленного конца с болтовой шпилькой насоса, служит консольным упором статора и ограничивает его вращение. Предотвращая вредный вращающий момент статора, удлиненный стержневой элемент работает на изгиб и действует как длинный консольный рычаг, выламывающий поверхность статора в месте крепления. Из-за вибрации при работе насоса приваренные держатели или гайки часто отлетают по месту сварки, а тем более по месту склейки. Если корпус статора выполнен из тонкостенной трубы, то стержень - рычаг может деформировать корпус в месте крепления, при этом нарушается радиальное направление стержня относительно оси статора и может нарушиться внутренняя винтовая поверхность статора. Если корпус статора выполнен не из металла, а из пластика, то первая проблема - как прочно приклеить удлиненный стержневой элемент к поверхности статора (т.к. приварить нельзя). Вторая - как при возникающей во время работы насоса вибрации и значительном вращающем моменте статора не выломать в точке крепления удлиненного стержневого элемента кусок пластмассового корпуса.

Раскрытие сущности изобретения

В основу изобретения поставлена техническая задача расширения области применения статора одновинтового героторного насоса с устройством, предотвращающим проворачивание статора вместе с ротором, повышение надежности работы, снижение стоимости производства и эксплуатации насосов.

Технический результат изобретения заключается в создании новой конструкции статора одновинтового героторного насоса с устройством, предотвращающим проворачивание статора вместе с ротором, исключающим возможные выломы корпуса статора, обладающим высокой надежностью и универсальностью применения, снижающим стоимость изготовления и эксплуатации насосов.

Сущность изобретения характеризуется новой конструкцией статора одновинтового героторного насоса с устройством, предотвращающим проворачивание статора вместе с ротором, с неизвестной ранее совокупностью признаков, необходимых и достаточных для осуществления изобретения с достижением указанного технического результата и реализована тем, что в статоре одновинтового героторного насоса, содержащем жесткий корпус с внутренней винтовой эластичной поверхностью и устройство, предотвращающее проворачивание статора вместе с ротором, в виде удлиненного элемента, связанного одним концом с корпусом статора, согласно изобретению, удлиненный элемент выполнен в виде кинематического звена, один конец кинематического звена прикреплен к неподвижной части героторного насоса, а другой конец кинематического звена прикреплен к жесткому корпусу статора, с возможностью противодействия вращающему моменту статора реактивной силой кинематического звена.

В статоре кинематическое звено может быть выполнено гибким.

В статоре кинематическое звено может быть выполнено жестким.

В статоре кинематическое звено может быть выполнено гибридным жестко-гибким.

Технический результат изобретения характеризуется высокой надежностью и упрощением конструкции статора одновинтового героторного насоса с устройством, предотвращающим проворачивание статора вместе с ротором, исключающим выломы корпуса статора, обладающим универсальностью применения, снижающим стоимость изготовления и эксплуатации насосов.

Новая совокупность существенных признаков изобретения не следует явным образом из известного уровня техники. Следовательно, конструкция статора одновинтового героторного насоса соответствует критерию "изобретательский уровень".

Подробное описание предпочтительного примера осуществления изобретения

Без намерения ограничения объема настоящего изобретения, ниже описаны предпочтительные варианты осуществления и признаки.

Для лучшего понимания изобретение поясняется чертежами, где

фиг. 1 - общий вид винтовой пары со статором одновинтового героторного насоса с устройством, предотвращающим проворачивание статора, в виде гибкого кинематического звена,

фиг. 2 - общий вид винтовой пары со статором одновинтового героторного насоса с устройством, предотвращающим проворачивание статора, в виде жесткого кинематического звена.

Винтовая пара по фиг. 1 включает ротор 1, статор 2, содержащий жесткий корпус 3 с внутренней винтовой эластичной поверхностью 4 и устройство, предотвращающее проворачивание статора 2, выполненное в виде кинематического звена 5. Один конец 6 кинематического звена 5 прикреплен к жесткому корпусу 3, а другой конец 10 кинематического звена 5 прикреплен к неподвижной части 7 одновин-

тового героторного насоса. Вращающий момент 8 статора 2 совпадает с направлением крутящего момента 9 ротора 1.

В процессе работы одновинтового насоса ротор 1 приводится во вращение валом двигателя. Часть крутящего момента 9 ротора 1 за счет сил трения между ротором 1 и сопрягаемой внутренней эластичной винтовой поверхностью 4 статора 2 и транспортируемым под высоким давлением технологическим материалом передается статору 2 и трансформируется во вращающий момент 8 статора 2. Реактивная сила кинематического звена 5 направлена вдоль кинематического звена 5 и противодействует силе вращающего момента 8 статора 2.

В статоре 2 кинематическое звено 5 может быть выполнено гибким.

В статоре 2 кинематическое звено 5 может быть выполнено жестким.

В статоре 2 кинематическое звено 5 может быть выполнено гибридным жестко-гибким.

Рассмотрим пример по фиг. 1, когда кинематическое звено 5, выполнено гибким. Под действием возникающего вращающего момента 8 статора 2 гибкое кинематическое звено 5 натягивается по касательной прямой от крепления конца 10 к болтовой штанге 7 до контакта касания с поверхностью жесткого корпуса 3 статора 2. Гибкое кинематическое звено 5 обхватывает поверхность корпуса 3 статора 2 до крепления конца 6 кинематического звена 5 к корпусу 3. При работе статор 2 имеет возможность провернуться на какой-то угол до полного натяжения гибкого кинематического звена 5. Гибкое кинематическое звено 5 воспринимает вращающий момент 8 статора 2 как растягивающую нагрузку гибкого кинематического звена 5 и в натянутом состоянии реактивная сила гибкого кинематического звена 5 противодействует вращающему моменту 8 статора 2. В силу физических характеристик гибкого материала в гибком кинематическом звене 5 реактивная сила возникает только при нагрузке растяжения.

За счет того, что по фиг. 1 гибкое кинематическое звено 5 обхватывает поверхность корпуса 3 статора 2, часть усилия вращающего момента 8 статора 2, перераспределяется на корпус 3 статора 2 за счет сил трения между гибким кинематическим звеном 5 и поверхностью жесткого корпуса 3 статора 2. Обхват концом 6 гибким кинематическим звеном 5 поверхности корпуса 3 статора 2 устраняет нагрузку вырыва кинематического звена 5 из корпуса 3, приложенную к креплению конца 6 гибкого кинематического звена 5. В качестве гибкого кинематического звена 5 могут быть применены гибкие нерастяжимые материалы, такие как, плетеный трос, цепь, канат, проволока, брезентовая лента, и другие подобные нерастяжимые гибкие материалы.

В качестве гибкого кинематического звена 5 могут применены также гибкие упруго растяжимые материалы, например, жесткие пружины, тросы из авиационной резины и т.п.

Для крепления конца 6 гибкого кинематического звена 5 к корпусу 3 статора 2 могут использоваться пистоны, пружинные кнопки-защелки, винтовые саморезы, крючки. Возможно применение множества других способов крепления конца 6 гибкого кинематического звена 5 к корпусу 3, не упоминаемых в описании изобретения. Под действием натянутого и частично обернутого по корпусу 3 гибкого кинематического звена 5 крепление конца 6 работает на срез. Восприятие вращающего момента 8 статора 2 реактивной силой гибкого кинематического звена 5, по изобретению выгодно отличается от восприятия нагрузки вращающего момента статора устройствами известного уровня техники, где в местах крепления устройств к статору происходит вылом корпуса статора длинным консольным рычагом удлиненного стержня. Использование гибкого кинематического звена 5 полностью устраняет опасность образования трещин и выломов в корпусе 3 статора 2, а также снижает уровень вибрационного шума при работе одновинтового героторного насоса. Устраняются проблемы упаковки и транспортировки статоров 2 с новыми устройствами от проворачивания статора, оснащенными гибкими кинематическими звеньями 5.

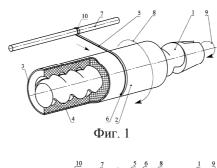
В винтовой паре по фиг. 2 кинематическое звено 5 устройства, предотвращающего проворачивание статора 2 вместе с ротором 1, может быть выполнено жестким, например, в виде металлической тяги. Винтовая пара по фиг. 2 включает ротор 1, статор 2, содержащий жесткий корпус 3 с внутренней винтовой эластичной поверхностью 4 и жесткое кинематическое звено 5 устройства, предотвращающего проворачивание статора 2. Конец 6 жесткого кинематического звена 5 прикреплен к жесткому корпусу 3, а конец 10 жесткого кинематического звена 5 прикреплен к неподвижной части 7 героторного насоса. Вращающий момент 8 статора 2 совпадает с направлением крутящего момента 9 ротора 1.

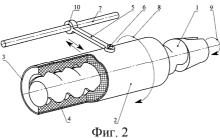
Прикрепленное одним концом 10 к неподвижной болтовой штанге 7 насоса, а другим концом 6 к корпусу 3 статора 2 жесткое кинематическое звено 5 противодействует вращающему моменту 8 статора 2 реактивной силой жесткого кинематического звена 5, которая имеет ту же величину, что и сила вращающего момента 8 статора 2, но направлена в противоположном направлении вдоль оси жесткого кинематического звена 5. Сила вращающего момента 8 статора 2 - активна, реактивная сила кинематического звена 5 -пассивна.

Жесткое кинематическое звено 5, в отличие от гибкого кинематического звена 5, невозможно обкрутить вокруг поверхности корпуса 3 статора 2. Предпочтительное крепление жесткого кинематического звена 5 - по касательной к корпусу 3 статора 2, тогда крепление конца 6 жесткого кинематического звена 5 работает только на срез. Крепление конца 6 жесткого кинематического звена 5 может быть выполнено в виде шарнира (на чертеже условно не показано). Возможно расположение жесткого кинематического звена 5 не по касательной к корпусу 3 статора 2, а под другим углом к корпусу 3 статора 2

вплоть до радиального расположения, тогда крепление конца 6 жесткого кинематического звена 5 будет работать на продольный разрыв и срез. При реверсе одновинтового героторного насоса вместе с изменением направления крутящего момента 9 ротора 1 меняется направление вращающего момента 8 статора 2, при этом реактивная сила жесткого кинематического звена 5 противодействует не растягивающей, а сжимающей нагрузке.

Кинематическое звено 5 устройства, предотвращающего вращение статора 2, может быть выполнено гибридным в виде жестко-гибкого кинематического звена 5 (на чертеже не показано). Принцип работы жестко-гибкого кинематического звена 5 аналогичен работе гибкого кинематического звена 5.


Промышленное освоение объекта промышленной собственности запланировано на территории Беларуси и стран $CH\Gamma$.


Источники информации

- 1. https://www.plasterersforum.com/threads/k%C3%84chele-rotors-stators-from-pft-central.64827 KÄCHELE Rotors & Stators from PFT Central
- 2. DE202014103665 F04C 2/1075, 06.08.2014.
- 3. DE202016104173 F04C 2/1075, 08.04.2016.
- 4. DE202016101870 F04C 2/1075, 08.04.2016.
- 5. DE202018100587 F04C 2/107, 15.02.2018.
- 6. WO 2019/149656A1 F04C 2/107, F01C 21/10 28.01.2019.
- 7. DE202016105789U1 F04C 2/107, 17.10.2016.
- 8. EP 0 987 438 F04C 2/107, 11.09.1999.

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Статор одновинтового героторного насоса, содержащий жесткий корпус с внутренней винтовой эластичной поверхностью и устройство, предотвращающее проворачивание статора вместе с ротором, в виде удлиненного элемента, связанного одним концом с корпусом статора, отличающийся тем, что удлиненный элемент выполнен в виде кинематического звена, один конец кинематического звена прикреплен к неподвижной части насоса, а другой конец кинематического звена прикреплен к жесткому корпусу статора с возможностью противодействия вращающему моменту статора реактивной силой кинематического звена.
 - 2. Статор по п.1, отличающийся тем, что кинематическое звено может быть выполнено гибким.
 - 3. Статор по п.1, отличающийся тем, что кинематическое звено может быть выполнено жестким.
- 4. Статор по п.1, отличающийся тем, что кинематическое звено может быть выполнено гибридным жестко-гибким.

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2