(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2022.01.28

(21) Номер заявки

201992459

(22) Дата подачи заявки

2017.05.26

(51) Int. Cl. C12N 1/14 (2006.01) **A01H 17/00** (2006.01) A01N 63/04 (2006.01) **A01N 25/22** (2006.01)

(54) ШТАММ МИКРООРГАНИЗМА CLONOSTACHYS ROSEA F. CATENULATA В КАЧЕСТВЕ БИОФУНГИЦИДА, СТИМУЛЯТОРА РОСТА РАСТЕНИЙ И ПРОДУЦЕНТА МЕТАБОЛИТОВ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРИМЕНЕНИЯ

2017117282 (31)

(32) 2017.05.18

(33) RU

(43) 2020.04.30

(86) PCT/RU2017/000357

(87) WO 2018/212673 2018.11.22

(71)(73) Заявитель и патентовладелец:

ООО "ЭКОГЕН" (RU)

(72) Изобретатель:

Глобус Галина Алексеевна, Голубев Андрей Сергеевич, Бровцев Михаил Анатольевич, Гадаборшева Светлана Александровна (RU)

WO-2015035504 (56) RU-S1-2415917 RU-C2-2154381 WO-A2-2011117271

Изобретение относится к биотехнологии и сельскохозяйственной микробиологии. Описан штамм (57) микроорганизма Clonostachys rosea f. catenulata ВКПМ-F1324, обладающий фунгицидными, антибактериальными и ростстимулирующими свойствами. Данный штамм может быть использован в качестве средства для защиты сельскохозяйственных растений от различных заболеваний, вызываемых фитопатогенными грибами и бактериями. Данный штамм также является продуцентом ценных метаболитов, таких как аминокислоты и фитогормоны, которые используются в сельском хозяйстве. Изобретение за счет своих свойств позволяет повысить урожайность сельскохозяйственных растений.

Изобретение относится к микробиологии, биотехнологии и сельскому хозяйству и представляет собой штамм микроорганизма Clonostachys rosea f. catenulata ВКПМ-F1324, используемый для защиты сельскохозяйственных растений от различных заболеваний, вызываемых фитопатогенными грибами и бактериями, а также в качестве стимулятора роста растений и продуцента метаболитов для сельскохозяйственного применения.

Микроорганизмы Clonostachys rosea f. catenulata известны, с одной стороны, в качестве деструктора поливинилового спирта. Из уровня техники известен документ RU 2415915 C1 10.04.2011, в котором описан штамм Clonostachys rosea f. catenulata (J.C. Gilman et E.V. Abbott) Schroers ВКПМ F-991, используемый в качестве биодеструктора поливинилового спирта.

С другой стороны, известно, что микроорганизмы вида Clonostachys rosea f. catenulata используют в сельском хозяйстве. Известно использование для улучшения роста растений, например, в составе композиций, содержащих помимо микроорганизма также мульчу (см. WO 2014076663 A1 22.05.2014).

Из уровня техники известны фунгицидные смеси на основе азолопиримидиниламинов, в которых в качестве противогрибковых агентов биологического контроля, биоактиваторов растений используют штамм или бесклеточный экстракт и/или мутант этого штамма или экстракта, имеющий все отличительные характеристики соответствующего штамма или экстракта Clonostachys rosea f. catenulata (WO 2011/117271 29.09.2011).

Из уровня техники известно также использование других видов данного микроорганизма. Так, известен штамм Clonostachys rosea f. rosea, IDAC 040913-01, который подавляет или контролирует заболевание или патоген, которые поражают листья, цветы, плоды и/или корни растения (WO 2015/035504, 19.03.2015). В данном документе описана также композиция, включающая выделенную культуру данного штамма, способ обработки растения агентом биологической защиты, включающий контактирование растения с выделенной культурой, спорами гриба или указанной композицией, способ уменьшения порчи растительного материала, где способ включает контактирование растительного материала с выделенной культурой, спорами гриба или композицией.

Штамм Clonostachys solani f. nigrovirens (van Beyma) Schroers ВКПМ F-990 известен как биодеструктор термопластичного полиуретана и латекса на основе акриловой кислоты (RU 2415917 C1 10.04.2011).

Задачей же настоящего изобретения является получение высокоэффективного штамма для использования в сельском хозяйстве для защиты сельскохозяйственных растений от различных заболеваний, вызываемых фитопатогенными грибами и бактериями, для ускорения роста и развития растений, для увеличения урожайности и качества продукции, а также для получения используемых в сельском хозяйстве ценных метаболитов, таких как аминокислоты и фитогормоны.

Авторами настоящего изобретения был выделен штамм Clonostachys rosea f. catenulata, депонированный во Всероссийской коллекции промышленных микроорганизмов под номером ВКПМ-F1324.

Штамм выделен из ризосферы хлопчатника в Ташкентской области.

Культурально-морфологические признаки штамма. Колонии на сусло-агаре вначале белые, опушенные, со временем приобретающие серо-зеленоватый цвет) с концентрической зональностью, реверс светло-желтый. Конидиеносцы по периферии колонии вертициллоидного типа, с широко расходящимися фиалидами, в центре преобладают конидиеносцы пенициллоидного типа с более плотно сжатыми фиалидами, двух- и трехярусные, конидии овальные) в длинных цепочках, слизистые.

Растет в аэробных условиях. Хороший рост при 10-30°C, растет в широких пределах рН от 3,0 до 9.

Для штамма характерен хороший рост и спороношение при выращивании на агаровых средах - сусло-агар, картофельно-сахарозная среда, среда Чапека, крахмально-соевая, среда из отвара отрубей.

Спорообразование начинается на пятый день роста при 24-26°C. Линейный рост колонии на агаризованных средах.

На сусло-агаровой среде на чашках Петри - на 10-й день роста - размером в 50 мм, на 20-й день - 80 мм.

На картофельном агаре на 14-й день роста - 45 мм, на 20-й день - 90 мм.

На агаровой среде Чапека с сахарозой на 12-й день роста - 45 мм, на 20-й день - 85 мм.

При глубинном культивировании на минеральных и органических средах штамм растет в виде гомогенной массы бежевого или зеленого цвета.

Колонии на агаре Чапека белые, распростертые, пушистые, с конидиеносной зоной в центре колонии, оливково-зеленого или зеленого цвета, при старении темно-зеленого, разделенной 1-2 концентрическими кругами (зонами) стерильного светлого мицелия. Воздушный мицелий обильный, часто в виде гифальных тяжей. Конидиеносцы обычно однократно, иногда двукратно ветвистые, грубые, с шероховатой или точечной оболочкой 50-125 μ длины, с цепочками конидий, соединенными слизью в плотную колонку до 150 fi длины. Первичные веточки 15-20=3,5-4 μ ; метули 15-25 μ , стеригмы 10-20 μ длины. Конидии эллиптические, гладкие, бледно- или темно-зеленые 4-7,5=3-4 μ .

Физиолого-биохимические свойства.

При росте на среде Чапека из источников углерода усваивает глюкозу, сахарозу, мальтозу, маннозу,

галактозу, лактозу, рафинозу, арабинозу, сорбозу, крахмал, глицерин. Из источников азота использует нитрат Na и нитрат K, сернокислый аммоний, нитрат аммония, хлористый аммоний, аммоний фосфорнокислый однозамещенный, пептон, лейцин, лизин, аспарагин.

Штамм синтезирует антибиотики: глиокладин, глиоверин, виридин; ферменты: β -1,2-глюконазу, целлобиазу, хитиназу; аминокислоты: глутаминовую, глицин, аргинин, пролин, цистеин, меионин, орнитин, лизин, фенилаланин; ауксины: индолилмолочную, индолилуксусную, индолилкарбоновую кислоты; гиберрилиновую и абсцизовую кислоту; углеводороды, в том числе этилен.

Штамм гриба Clonostachys rosea f. catenulata ВКПМ-F1324 не патогенен для теплокровных животных и человека.

Были исследованы антагонистические свойства по отношению к широкому перечню фитопатогенных грибов и бактерий. Также был проведен анализ синтеза ряда метаболитов.

В ходе проведенных экспериментов было обнаружено, что в результате действия штамма существенно снижается заболеваемость растений, снимаются острые формы поражения, ускоряется развитие растений, возрастает урожай и качество продукции.

Изобретение иллюстрируется следующими примерами.

Изучение антагонизма активности штамма Clonostachys rosea f. catenulata ВКПМ-F1324 сравнивалось с изученными штаммами Gliocladium в чашках Петри и на газонах фитопатогенных грибов Verticillium dahliae и Fusarium охуѕрогит. Активность оценивали по диаметру зоны отсутствия роста тестобъекта вокруг блока антагониста и по интенсивности воздействия антагониста на газон - степени просветления газона, что отмечено плюсами.

Таблица 1

Антагонистическая активность штаммов <i>Clonostachys rosea f. catenulata</i> ВКПМ-F1324 и Gliocladium по характеру взаимодействия с фитопатогенным грибом Verticillium dahliae на среде Чапека				
Грибы-антагонисты	Радиус антагонистич еского воздействия, см	Степень антагонист ического воздейств ия	Примечания	
Gliocladium roseum 1-27	2	+	+ слабая	
Gliocladium catenulatum 3	2,5	++	++ средняя	
Clonostachys rosea f. catenulata ВКП М-F1324	3	+++	+++ сильная	

Оценка защитного действия штаммов грибов-антагонистов проводилась на сероземной почве +2 т/га лигнина в микровегетационном опыте, где в почву совместно с антагонистами были внесены микросклероции Verticillium dahliae 0,15 г/кг. Для сравнения в опыт был включен штамм - Trichoderma harzianum 18 VIZR. Действие антагонистов на Verticillium dahliae в почве и на заражение хлопчатника вертициллезом представлено в табл. 2.

Таблица 2

Количество зачатков Verticillium dahliae в почве и заболеваемость хлопчатника вертициллезным вилтом при внесении грибов-антагонистов в сероземную почву с добавкой 2 т/га лигнина				
Варианты опыта	v. daniiae в почве,		Забопеваемость	Техническая эффективность, %
	ед./1			
	4 суток	10 суток		
Контроль, почва без антагониста	4200	2100	40	-
Gliocladium roseum 1-27	3800	600	10	75
Gliocladium catenulatum 3	500	100	10	75
Trichoderma harzianum 18 VIZR	2900	730	23	42
Clonostachys rosea f. catenulata ВКПМ- F1324	1000	100	5	85

Защитный эффект Clonostachys rosea f. catenulata ВКПМ-F1324 оказался сильнее других штаммов Gliocladium catenulatum и Trichoderma.

Оценка фитотоксичности культуральной жидкости штамма проводилась по методике Берестецкого на семенах огурца и томата в сравнении с другими Gliocladium catenulatum 3, Trichoderma harzianum 18

VIZR, Fusarium oxysporam и Verticillium dahliae.

Таблица 3

Действие фильтратов грибов-антагонистов и фитопатогенов на семена (размер корешков, см)

		Clonost					
		achysro	Glioclad	Gliocladi	u Trichoderm		
Название	Чистая	sea f. ca	ium cat	m	а	Verticillium	Fusarium o
среды	среда		enulatu	roseum 1	1- harzianum	dahliae	xysporum
		ВКПМ-	m 3	27	18 VIZR		
		F1324					
1	2	3	4	5	6	7	8
Огурец							
Чапека	3,2	4,6	4,2	3,5	4	2,9	2,8
Ричарда	4	6,5	5,1	3,8	4,3	3	2,7
HCP _{0,95}	0,23						
Томат							
Чапека	1,5	2,4	2,1	1,8	2,0	1,4	1,4
Ричарда	1,5	2,8	2,3	1,8	2,1	1,2	1,3
HCP _{0,95}	0,15						

Результат сравнения свидетельствует о значительном стимулирующем действии на прорастание семян при их замачивании в культуральной жидкости штамма ВКПМ-F1324.

Штамм Clonostachys rosea f. catenulata ВКПМ-F1324 способен также проявлять антибактериальные свойства. Оценка антибактериального действия штамма штамма Clonostachys rosea f. catenulata ВКПМ-F1324 проводилась на чашках Петри методом противоположных колоний со штаммом бактерии Ralstonia solanacearam. Активность оценивали по воздействию микроорганизмов друг на друга.

Через 3 дня после начала эксперимента произошло соприкосновение зон роста штамма Clonostachys rosea f. catenulata ВКПМ-F1324 и бактерии Ralstonia solanacearum. Рост бактерии прекратился и началось подавление Ralstonia solanacearum. Через 14 дней штамм бактерии Ralstonia solanacearam был полностью подавлен штаммом Clonostachys rosea f. catenulata ВКПМ-F1324.

Таким образом, штамм Clonostachys rosea f. Catenulata, депонированный во Всероссийской коллекции промышленных микроорганизмов ФГУП "ГосНИИГенетика" 18 мая 2016 г. под регистрационным номером ВКПМ-F1324, может быть успешно и эффективно использован против возбудителей грибных и бактериальных болезней растений, а также для стимуляции роста растений.

Анализ фитогормонов (ауксинов, гиббереллинов, абсцизовой кислоты) в культуральной жидкости гриба.

Для экстракции ауксинов, гиббереллинов и абсцизовой кислоты брали 20 мл культуральной жидкости или стерильной питательной среды (контроль). Растворы доводили до рН 3,0 4н. соляной кислотой и экстрагировали эквивалентными объемами этилацетата. Полученные экстракты выпаривали досуха под вакуумом при 350°С и растворяли в 350 мкл 18% ацетонитрила. Анализ ауксинов в полученных пробах проводили методом ультра-производительной жидкостной хроматографии (UPLC) на системе Waters ACQUITY UPLC H-класса (Waters, CША). Анализ содержания ауксинов проводили с использованием флуоресцентного детектора при длинах волн Ex=280 нм, Eм=350 нм. Анализ проводили на хроматографической колонке Waters ACQUITY UPLC BEH RP18 Shield 1,7 мкм × 50 мм в 18% растворе ацетонитрила с добавлением 0,1% уксусной кислоты при скорости потока 0,3 мл/мин. После анализа каждого образца колонку промывали 3 мин 80% ацетонитрилом. Анализ абсцизовой и гибберелловой кислот проводился по той же методике, но с обнаружением целевого метаболита на ультрафиолетовом диодноматричном детекторе при длине волны 265 нм (абсцизовая кислота) и 208 нм (гиббереллины).

Результаты анализа представлены в табл. 4.

Таблица 4

Биосинтез ауксинов, абсцизовой и гибберелловой кислот, нг/мл

Индолилмолочная кислота - 32,0.

Индолилкарбоновая кислота - 4,1.

ИУК - 103,4.

Абсцизовая кислота - 69,5.

Гибберелловая кислота - 322,4.

Анализ содержания аминокислот в культуральных жидкостях.

Равные объемы культуральных жидкостей (по 50 мл) концентрировали под вакуумом на ротационном испарителе до объема 3 мл. Для определения состава аминокислот использовался современный высокочувствительный метод AccQ-Tag (Waters, США), основанный на применении дериватизационного реагента ACQ - 6-aminoquinolyl-N-hydrozysuccinimidyl carbamate, превращающего аминокислоты в стабильные флуоресцирующие производные. Полученные производные разделялись методом обращеннофазовой хроматографии на колонке C18 Waters AccQ-Tag с обнаружением на флуоресцентном детекторе

согласно стандартной методике Waters. Определение содержания L-триптофана проводилось в тех же концентрированных образцах, но без обработки реактивом ACQ с обнаружением на флуоресцентном детекторе (длина волны возбуждения флуоресценции - 280 нм, длина эмиссионной волны - 350 нм).

Количество обнаруженных аминокислот представлено в табл. 5. Показано, что культуральная жидкость гриба отличается повышенным количеством глутаминовой кислоты и глицина.

Содержание аминокислот, мкг/мл

0,14

0,92

0,87

1,36

1,16

0,03

Аминокислота	Стерильная среда	Гриб
Аспарагиновая	1,24	0,19
Серин	2,82	1,00
Глутаминовая	1,33	3,30
Глицин	0	2,44
Гистидин	3,76	0,49
Аргинин	0	0,33
Треонин	13,10	0,71
Аланин	2,52	1,42
Пролин	0,41	0,52
GABA	2,45	0,16
Цистеин	0,04	0,25
Тирозин	4,61	1,16
Валин	1,82	1,02
Метионин	0,10	0,13

0,01

0.14

3,34

3,01

0,80

0,18

Контроль - стерильная питательная среда. GABA - у-аминомасляная кислота.

Орнитин Лизин

Изолейцин

Лейцин

Фенилаланин

Триптофан

ФОРМУЛА ИЗОБРЕТЕНИЯ

Штамм микроорганизма Clonostachys rosea f. catenulata ВКПМ-F1324, используемый для защиты растений от различных заболеваний, вызываемых фитопатогенными грибами и бактериями, а также в качестве стимулятора роста растений и продуцента метаболитов, таких как фитогормоны и аминокисло-