В изобретении предложены антитела, которые специфически связывают тау. Антитела по изобретению ингибитируют или задерживают развитие патологий, ассоциированных с тау, и ассоциированного с ними ухудшения симптоматики.
АНТИТЕЛА, РАСПОЗНАЮЩИЕ ТАУ

ПЕРЕКРЕСТНАЯ СЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

СЫЛКА НА ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

[0002]Перечень последовательностей, записанный в файле 2020_02_07_542496WO_SEQLST.txt, имеющем размер 3560 килобайт, был создан 7 февраля 2020 года и настоящим включен в данный документ посредством ссылки.

УРОВЕНЬ ТЕХНИКИ

[0004]Тау является основным компонентом нейрофиламентных клубков, которые наряду с бляшками являются характерным признаком болезни Альцгеймера. Клубки представляют собой аномальные фибриллы диаметром 10 нм, расположенные попарно в виде спирали с регулярной периодичностью 80 нм. Тау в нейрофиламентных клубках аномально фосфорилируется (гиперфосфорилируется) с помощью фосфатных групп,
прикрепленных к определенным участкам молекулы. При болезни Альцгеймера тяжелое поражение нейрофилилярных клубков наблюдается в нейронах слоя II энторинальной коры, CA1 и субикулярных областях гиппокампа, миндалевидном теле и более глубоких слоях (слои III, V и поверхностный слой VI) неокортика. Также сообщалось, что гиперфосфорилированный тау нарушает сборку микротрубочек, что может способствовать разрушению нейронной сети.

[0005] Включения тау являются частью определяющей нейропатологии нескольких нейродегенеративных заболеваний, включая болезнь Альцгеймера, лобно-височную лобарную дегенерацию, прогрессирующий надъядерный парадев и болезнь Пика.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[0007] Некоторые такие антитела содержат три CDR легкоцей цепи и три CDR тяжелой цепи моноклонального антитела 9F5, где 9F5 является мышьим антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:7, и вариабельной областью легкоцей цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:11.

[0008] В некоторых таких антителах три CDR тяжелой цепи CDR-H1, CDR-H2 и CDR-H3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO: 8, 9 и 10, соответственно), за исключением того, что положение H28 может быть занято N или T, положение H51 может быть занято I или V, положение H54 может быть занято N или D, а положение H56 может быть занято D или E, и три CDR легкоцей цепи CDR-L1, CDR-L2 и CDR-L3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO: 12, 13 и 14, соответственно), за исключением того, что положение L27b занято L, D, T или Q, положение L27c занято L, D, G, S, E, T, N, A, P или I, положение L30 может быть занято I,

[0010] Некоторые антитела представляют собой 9F5 или его химерную, венированную или гуманизированную форму. В некоторых антителах вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. Некоторые антитела представляют собой гуманизированные антитела.

[0011] Некоторые антитела представляют собой гуманизированное или химерное антитело 9F5, которое специфически связывается с человеческим тау, где 9F5 представляет собой мышьинное антитело, характеризующееся зрелой вариабельной областью тяжелой цепи SEQ ID NO: 7 и зрелой вариабельной областью легкой цепи SEQ ID NO: 11. Некоторые антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, содержащую три CDR тяжелой цепи 9F5, и гуманизированную зрелую вариабельную область легкой
цепи, содержащую три CDR легкой цепи 9F5. В некоторых антителах CDR соответствуют определению, выбранному из группы Kabat, Chothia, композитному определению по Kabat/Chothia, AbM и Contact.

В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 9F5 согласно композитному определению по Kabat/Chothia (SEQ ID NO:8-10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 9F5 согласно композитному определению по Kabat/Chothia (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 9F5 по Kabat (SEQ ID NO:40, SEQ ID NO:9 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 9F5 по Kabat (SEQ ID NO:12-14). В некоторых антителях гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 9F5 по Chothia (SEQ ID NO:41, SEQ ID NO:42 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 9F5 по Chothia (SEQ ID NO:12-14). В некоторых антителях гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 9F5 по AbM (SEQ ID NO:8, SEQ ID NO:43 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 9F5 по AbM (SEQ ID NO:12-14). В некоторых антителях гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 9F5 по Contact (SEQ ID NO:44-46), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 9F5 по Contact (SEQ ID NO:47-49).

Например, антитело может представлять собой гуманизированное антитело, венированное антитело или химерное антитело.

Есть такие антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:15-22 и SEQ ID NO:109-129, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:23-29, SEQ ID NO:61-108 и SEQ ID NO:130-171.

В некоторых антителях по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H1 занято E, H17 занято T, H20 занято I, H69 занято M, H75 занято T, H93 занято T, H94 занято T, а H109 занято V. В некоторых антителях
положения H1, H17, H20, H69, H75, H94 и H109 заняты E, T, I, M, T, T, Т и V, соответственно.

[0019]В некоторых антителах положение H28 в области VH занято T.

[0020]В некоторых антителах по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H54 занято D, а H56 занято E. В некоторых антителах положения H54 и H56 заняты D и E, соответственно.

[0021]В некоторых антителах положение H40 в области VH занято A.

[0028] В некоторых антителах положение H80 в области VH занято P. В некоторых антителах положение H80 в области VH занято D. В некоторых антителах положение H82c в области VH занято G. В некоторых антителах положение H82c в области VH занято D. В некоторых антителах положение H82 в области VH занято P. В некоторых антителах положение H80 в области VH занято G. В некоторых антителах положение H82 в области VH занято K. В некоторых антителах положение H82 в области VH занято R. В некоторых антителах положение H82 в области VH занято E. В некоторых антителах положение H82 в области VH занято N.

[0029] В некоторых антителах положение H79 в области VH занято D. В некоторых антителах положение H79 в области VH занято N. В некоторых антителах положение H79 в области VH занято G. В некоторых антителах положение H80 в области VH занято E. В некоторых антителах положение H80 в области VH занято G. В некоторых антителах положение H82c в области VH занято S. В некоторых антителах положение H79 в области VH занято Q. В некоторых антителах положение H82a в области VH занято G.

[0031] В некоторых антителах положение L66 в области VL занято G. В некоторых антителах положение L64 в области VL занято S.

[0032] В некоторых антителах положение L17 в области VL занято E. В некоторых антителах по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L11 занято L, L51 занято G, а L54 занято R.

[0033] В некоторых антителах положения L11, L51 и L54 заняты L, G и R, соответственно. В некоторых антителах положение L30 в области VL занято Y.

[0036] В некоторых антителах вариабельная область легкой цепи содержит любую аминокислотную последовательность из SEQ ID NO:133, 135-137, 142-144, 149, 158, 159 и 168. В некоторых антителах вариабельная область легкой цепи содержит аминокислотную последовательность SEQ ID NO:133. В некоторых антителах вариабельная область легкой цепи содержит аминокислотную последовательность SEQ ID NO:137. В некоторых антителах вариабельная область легкой цепи содержит аминокислотную последовательность SEQ ID NO:149. В некоторых антителах вариабельная область легкой цепи содержит аминокислотную последовательность SEQ ID NO:159.

В некоторых антителах положение L27с в области VL занято D, положение L37 в области VL занято G, а положение L51 в области VL занято G. В некоторых антителах вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:149.

В некоторых антителах положение L27с в области VL занято D, положение L37 в области VL занято Q, а положение L51 в области VL занято G. В некоторых антителах вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:137.

В некоторых антителах положение L27с в области VL занято S, положение L37 в области VL занято L, а положение L51 в области VL занято G. В некоторых антителах вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:159.

В некоторых антителах положение L27с в области VL занято D, положение L37 в области VL занято Q, а положение L51 в области VL занято K. В некоторых антителах вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:138.

В некоторых антителах положение L27с в области VL занято S, положение L37 в области VL занято Q, а положение L51 в области VL занято G. В некоторых антителах вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:133.

В некоторых антителах положение L51 в области VL занято E. В некоторых антителах положение L51 в области VL занято D. В некоторых антителах положение L27c в области VL занято D. В некоторых антителах положение L27c в области VL занято G. В некоторых антителах положение L27c в области VL занято S. В некоторых антителах положение L27c в области VL занято E. В некоторых антителах положение L30 в области VL занято K. В некоторых антителах положение L27c в области VL занято T.

В некоторых антителах положение L27c в области VL занято N. В некоторых антителах положение L27b в области VL занято D. В некоторых антителах положение L30 в области VL занято G. В некоторых антителах предложное положение L33 в области VL занято N. В некоторых антителах положение L27c в области VL занято A. В некоторых антителах положение L33 в области VL занят T. В некоторых антителах положение L33 в области VL занято S. В некоторых антителах положение L33 в области VL занято R. В некоторых антителах положение L30 в области VL занято Q. В некоторых антителах положение L27b в области VL занято T.

В некоторых антителах положение L31 в области VL занято G. В некоторых антителах положение L27b в области VL занято Q. В некоторых антителах положение L33 в области VL занято G. В некоторых антителах положение L27c в области VL занято P. В некоторых антителах положение L78 в области VL занято R. В некоторых антителах положение L78 в области VL занято P. В некоторых антителах положение L27b в области VL занято G. В некоторых антителах положение L31 в области VL занято Q. В некоторых антителах положение L33 в области VL занят Q. В некоторых антителах положение L27b в области VL занято G.
некоторых антитела предложенное положение L75 в области VL занято Q. В некоторых антителах положение L75 в области VL занято G. В некоторых антителах положение L73 в области VL занято P. В некоторых антителах положение L73 в области VL занято G. В некоторых антителах положение L78 в области VL занято Q. В некоторых антителах положение L76 в области VL занято G.

В некоторых антителах положение L92 в области VL занято D. В некоторых антителах положение L86 в области VL занято T. В некоторых антителах положение L92 в области VL занято E. В некоторых антителах положение L92 в области VL занято G. В некоторых антителах положение L92 в области VL занято Q. В некоторых антителах положение L93 в области VL занято G. В некоторых антителах положение L85 в области VL занято G. В некоторых антителах положение L92 в области VL занято T. В некоторых антителах положение L89 в области VL занято G.

В некоторых антителах положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, D, Q, G, R и I, соответственно. В некоторых антителах положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, D, Q, K, R и I, соответственно. В некоторых антителах положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, Q, K, R и I, соответственно. В некоторых антителах положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, Q, K, G и I, соответственно. В некоторых антителах положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, S, Q, K, G и I, соответственно.

[0058] В некоторых антителах положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, S, Q, K, G и I, соответственно. В некоторых антителах положения L3, L27c, L37,

[0060] В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:26. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную
последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:15, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:29.

В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:16, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:16, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:16, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:16, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:26. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:16, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:16, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:26. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:29.
тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:17, а зрелая
вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID
NO:26. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет
аминокислотную последовательность SEQ ID NO:17, а зрелая вариабельная область
легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых
антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную
последовательность SEQ ID NO:17, а зрелая вариабельная область легкой цепи имеет
аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрелая
вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID
NO:17, а зрелая вариабельная область легкой цепи имеет аминокислотную
последовательность SEQ ID NO:29.

[0063]В некоторых антителах зрелая вариабельная область тяжелой цепи имеет
аминокислотную последовательность SEQ ID NO:18, а зрелая вариабельная область
легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых
антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную
последовательность SEQ ID NO:18, а зрелая вариабельная область легкой цепи имеет
аминокислотную последовательность SEQ ID NO:24. В некоторых антителах зрелая
вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID
NO:18, а зрелая вариабельная область легкой цепи имеет аминокислотную
последовательность SEQ ID NO:25. В некоторых антителах зрелая вариабельная область
тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:18, а зрелая
вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID
NO:26. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет
аминокислотную последовательность SEQ ID NO:18, а зрелая вариабельная область
легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых
антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную
последовательность SEQ ID NO:18, а зрелая вариабельная область легкой цепи имеет
аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрелая
вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID
NO:18, а зрелая вариабельная область легкой цепи имеет аминокислотную
последовательность SEQ ID NO:29.

[0064]В некоторых антителах зрелая вариабельная область тяжелой цепи имеет
аминокислотную последовательность SEQ ID NO:19, а зрелая вариабельная область
легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых
антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:19, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:19, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:19, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:26. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:19, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:19, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:19, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:29.

[0065] В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:26. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антителах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрела вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрела
вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:20, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:29.

[0066]В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:26. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:21, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:29.

[0067]В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:23. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:24. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:25. В некоторых антигенах зрела вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID
В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:27. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:28. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:22, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:29.

В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:149. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:142. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:159. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:148.

В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:158. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:143. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:144. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:133.

В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:160. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:161. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:139. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:128, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:168.

Некоторые такие антитела содержат три CDR легкой цепи и три CDR тяжелой цепи моноклонального антитела 10C12, где 10C12 является мышцным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:7, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:11.

В некоторых таких антителах три CDR тяжелой цепи CDR-H1, CDR-H2 и CDR-H3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:8, 9 и 10, соответственно), а три CDR легкой цепи CDR-L1, CDR-L2 и CDR-L3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:12, 13 и 14, соответственно).
Некоторые антитела представляют собой 10C12 или его химерную, венирированную или гуманизированную форму. В некоторых антителах вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. Некоторые антитела представляют собой гуманизированные антитела.

Некоторые антитела представляют собой гуманизированное или химерное антитело 10C12, которое специфически связывается с человеческим тау, где 10C12 представляет собой мышцееевое антитело, характеризующееся зрецей вариабельной областью тяжелой цепи SEQ ID NO:7 и зрецей вариабельной областью легкой цепи SEQ ID NO:11. Некоторые антитела содержат гуманизированную зрецю вариабельную область тяжелой цепи, содержащую три CDR тяжелой цепи 10C12, и гуманизированную зрецую вариабельную область легкой цепи, содержащую три CDR легкой цепи 10C12. В некоторых антителах CDR соответствуют определению, выбранному из группы Kabat, Chothia, композитному определению по Kabat/Chothia, AbM и Contact.

В некоторых антителах гуманизированная зрецая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 10C12 согласно композитному определению по Kabat/Chothia (SEQ ID NO:8-10), а гуманизированная зрецая вариабельная область легкой цепи содержит три CDR легкой цепи 10C12 согласно композитному определению по Kabat/Chothia (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрецая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 10C12 по Kabat (SEQ ID NO:40, SEQ ID NO:9 и SEQ ID NO:10), а гуманизированная зрецая вариабельная область легкой цепи содержит три CDR легкой цепи 10C12 по Kabat (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрецая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 10C12 по Chothia (SEQ ID NO:41, SEQ ID NO:42 и SEQ ID NO:10), а гуманизированная зрецая вариабельная область легкой цепи содержит три CDR легкой цепи 10C12 по Chothia (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрецая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 10C12 по AbM (SEQ ID NO:8, SEQ ID NO:43 и SEQ ID NO:10), а гуманизированная зрецая вариабельная область легкой цепи содержит три CDR легкой цепи 10C12 по AbM (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрецая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 10C12 по Contact (SEQ ID NO:44-
46), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 10C12 по Contact (SEQ ID NO:47-49).

[0076] Например, антитело может представлять собой гуманизированное антитело, венированное антитело или химерное антитело.

[0077] Некоторые такие антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:214-215, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:216-217.

[0015] В некоторых антителах положение L64 в области VL занято S.

[0015] В некоторых антителах по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L64 занято S, L104 занято V или L. В некоторых антителах положение L64 занято S. В некоторых антителах положения L64 и L104 в области VL заняты S и L, соответственно.

[0080] Некоторые антитела содержат зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 95% идентичную любой из SEQ ID NO:214-215, и зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 95% идентичную любой из SEQ ID NO:216-217. Некоторые антитела содержат зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 98%

[0082] Некоторые такие антитела содержат три CDR легкой цепи и три CDR тяжелой цепи моноклонального антитела 12C4, где 12C4 является мышинным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:219, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:11.

[0083] В некоторых таких антителах три CDR тяжелой цепи CDR-H1, CDR-H2 и CDR-H3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:8, 220 и 10, соответственно), а три CDR легкой цепи CDR-L1, CDR-L2 и CDR-L3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:12, 13 и 14, соответственно).

[0084] Некоторые антитела представляют собой 12C4 или его химерную, венерованную или гуманизированную форму. В некоторых антителах вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах каждая из вариабельной области тяжелой
цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. Некоторые антитела представляют собой гуманизированные антитела.

[0085] Некоторые антитела представляют собой гуманизированное или химерное антитело 12C4, которое специфически связывается с человеческим тау, где 12C4 представляет собой мышцелковое антитело, характеризующееся зрелой вариабельной областью тяжелой цепи SEQ ID NO:219 и зрелой вариабельной областью легкой цепи SEQ ID NO:11. Некоторые антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, содержащую три CDR тяжелой цепи 12C4, и гуманизированную зрелую вариабельную область легкой цепи, содержащую три CDR легкой цепи 12C4. В некоторых антителах CDR соответствуют определению, выбранному из группы Kabat, Chothia, композитному определению по Kabat/Chothia, AbM и Contact.

[0086] В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 12C4 согласно композитному определению по Kabat/Chothia (SEQ ID NO:8, 220 и 10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 12C4 согласно композитному определению по Kabat/Chothia (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 12C4 по Kabat (SEQ ID NO:40, SEQ ID NO:220 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 12C4 по Kabat (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 12C4 по Chothia (SEQ ID NO:41, SEQ ID NO:42 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 12C4 по Chothia (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 12C4 по AbM (SEQ ID NO:8, SEQ ID NO:257 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 12C4 по AbM (SEQ ID NO:12-14). В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 12C4 по Contact (SEQ ID NO:44, 258 и 46), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 12C4 по Contact (SEQ ID NO:47-49).

[0087] Например, антитело может представлять собой гуманизированное антитело, венерированное антитело или химерное антитело.
Некоторые такие антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:221-222, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:223-224.

В некоторых антителах по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H1 занято Q или E, H48 занято M или I, H93 занято A или T, H94 занято R или T. В некоторых антителах положения H1, H48, H93 и H94 в области VH заняты E, I, T и T, соответственно.

В некоторых антителах положения в области VL заняты указанной аминокислотой: L64 занято G или S, L104 занято V или L. В некоторых антителах положения L64 и L104 в области VL заняты S и L, соответственно.

Некоторые антитела содержат зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 95% идентичную любой из SEQ ID NO:221-222, и зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 95% идентичную любой из SEQ ID NO:223-224. Некоторые антитела содержат зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 98% идентичную любой из SEQ ID NO:221-222, и зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 98% идентичную любой из SEQ ID NO:223-224. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 221-222, а зрелая вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 223-224.

В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:221, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:223. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:221, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:224. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:222, а зрелая вариабельная область легкой цепи имеет аминокислотную
последовательность SEQ ID NO:223. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:222, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:224.

[0093] Некоторые такие антитела содержат три CDR легкой цепи и три CDR тяжелой цепи моноклонального антитела 17C12, где 17C12 является мышьным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:225, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:228.

[0095] Некоторые антитела представляют собой 17C12 или его химерную, венированную или гуманизированную форму. В некоторых антителах вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. Некоторые антитела представляют собой гуманизированные антитела.

[0096] Некоторые антитела представляют собой гуманизированное или химерное антитело 17C12, которое специфически связывается с человеческим тау, где 17C12 представляет собой мышьное антитело, характеризующееся зрелой вариабельной областью тяжелой цепи SEQ ID NO:225 и зрелой вариабельной областью легкой цепи SEQ ID NO:228. Некоторые антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, содержащую три CDR тяжелой цепи 17C12, и гуманизированную зрелую вариабельную область легкой цепи, содержащую три CDR легкой цепи 17C12. В некоторых антителах CDR соответствуют определению, выбранному из группы Kabat, Chothia, композитному определению по Kabat/Chothia, AbM и Contact.

[0097] В некоторых антителах гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 17C12 согласно композитному определению по

[0098] Например, антитело может представлять собой гуманизированное антитело, венированное антитело или химерное антитело.

[0099] Некоторые такие антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:232-233, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:234-235.

[0102] В некоторых антителах по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, а L36 занято L. В некоторых антителах положения L2 и L36 заняты V и L, соответственно.

[0105] В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:232, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:234. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:232, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:235. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:233, а зрелая вариабельная область легкой цепи имеет аминокислотную
последовательность SEQ ID NO:234. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:233, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:235.

[0106] Некоторые такие антитела содержат три CDR легкой цепи и три CDR тяжелой цепи моноклонального антитела 14Н3, где 14Н3 является мышьным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:240, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:244.

[0108] Некоторые антитела представляют собой 14Н3 или его химерную, венированную или гуманизированную форму. В некоторых антителах вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых антителах каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. Некоторые антитела представляют собой гуманизированные антитела.

[0109] Некоторые антитела представляют собой гуманизированное или химерное антитело 14Н3, которое специфически связывается с человеческим тау, где 14Н3 представляет собой мышьное антитело, характеризующееся зрелой вариабельной областью тяжелой цепи SEQ ID NO:240 и зрелой вариабельной областью легкой цепи SEQ ID NO:244. Некоторые антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, содержащую три CDR тяжелой цепи 14Н3 и гуманизированную зрелую вариабельную область легкой цепи, содержащую три CDR легкой цепи 14Н3. В
некоторых антителах CDR соответствуют определению, выбранному из группы Kabat, Chothia, композитному определению по Kabat/Chothia, AbM и Contact.

[0111] Например, антитело может представлять собой гуманизированное антитело, венированное антитело или химерное антитело.

[0112] Некоторые такие антитела содержат гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:248-249, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:250-251.

[0113] В некоторых антителах положение H35B в области VH занято S.

или S. В некоторых антителах положение H35B в области VH занято S. В некоторых антителах положения H35B, H108 и H113 в области VH заняты S, L и S, соответственно.

[0115] В некоторых антителах по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, а L87 занято F. В некоторых антителах положения L2 и L87 заняты V и F, соответственно.

[0117] Некоторые антитела содержат зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 95% идентичную любой из SEQ ID NO:248-249, и зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 95% идентичную любой из SEQ ID NO:250-251. Некоторые антитела содержат зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 98% идентичную любой из SEQ ID NO:248-249, и зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 98% идентичную любой из SEQ ID NO:250-251. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 248-249, а зрелая вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 250-251.

[0118] В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:248, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:250. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:248, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:251. В некоторых антителах зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:249, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:250. В некоторых антителах зрелая вариабельная область
тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:249, а зрелая
вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID
NO:251.

[0119] Например, антитело может представлять собой химерное антитело. Например, антитело может представлять собой венированное антитело.

[0120] Антитело может представлять собой интактное антитело. Антитело может представлять собой связывающий фрагмент. В одном варианте осуществления связывающего фрагмента представляет собой одноцепочечное антитело, фрагмент Fab или Fab’2. Антитело может представлять собой фрагмент Fab или одноцепочечный Fv. Некоторые антитела имеют изотип IgG1 человека, а другие могут иметь изотип IgG2 или IgG4 человека. Некоторые антитела имеют зрелую вариабельную область легкой цепи, слитую с константной областью легкой цепи, и зрелую вариабельную область тяжелой цепи, слитую с константной областью тяжелой цепи. Константная область тяжелой цепи некоторых антител представляет собой мутантную форму константной области тяжелой цепи природного человеческого антитела, которая имеет пониженное связывание с рецептором Fcγ по сравнению с константной областью тяжелой цепи природного человеческого антитела. В некоторых антителах константная область тяжелой цепи имеет изотип IgG1.

[0121] Некоторые антитела могут иметь по меньшей мере одну мутацию в константной области, например, мутацию, которая снижает фиксацию или активацию комплемента константной областью, например, мутацию в одном или более из положений 241, 264, 265, 270, 296, 297, 318, 320, 322, 329 и 331 по нумерации EC. Некоторые антитела имеют алюмин в положениях 318, 320 и 322. Некоторые антитела могут иметь чистоту не менее 95% мас./мас. Антитело может быть конъюгировано с терапевтическим, цитотоксическим, цитостатическим, нейротрофическим или нейропротективным агентом.

[0122] В другом аспекте в изобретении предложена фармацевтическая композиция, содержащая любое из антител, раскрытых в настоящем документе, и фармацевтически приемлемый носитель.

[0123] В другом аспекте в изобретении предложена нуклеиновая кислота, кодирующая тяжелую цепь и/или легкую цепь любого из раскрытых в данном документе антител, рекомбинантный вектор экспрессии, содержащий нуклеиновую кислоту, и клетку-хозяина, трансформированная рекомбинантным вектором экспрессии. Некоторые
нуклеиновые кислоты имеют последовательность, включающую любую из SEQ ID NO:38-39.

[0124] В другом аспекте в изобретении предложен вектор, содержащий нуклеиновую кислоту, кодирующую зрелую вариабельную область тяжелой цепи и зрелую вариабельную область легкой цепи, функционально связанную с одной или более регуляторными последовательностями для осуществления экспрессии в клетке млекопитающего любого из раскрытых в данном документе антител, рекомбинантный вектор экспрессии, содержащий нуклеиновую кислоту, клетку-хозяйну, трансформированную рекомбинантным вектором экспрессии, и клетку-хозяйну, трансформированную нуклеиновой кислотой. Некоторые нуклеиновые кислоты дополнительно кодируют константную область тяжелой цепи, слитую с зрелой вариабельной областью тяжелой цепи, и константную область легкой цепи, слитую со зрелой вариабельной областью легкой цепи. В некоторых векторах антитело представляет собой scFv. В некоторых векторах антитело представляет собой фрагмент Fab. В некоторых векторах одна или более регуляторных последовательностей включают одну или более из промотора, энхансера, сайта связывания рибосомы и сигнала терминации транскрипции. В некоторых векторах нукleinовая кислота дополнительно кодирует сигнальные пептиды, слитые со зрелыми вариабельными областями тяжелой и легкой цепей. В некоторых векторах нукleinовая кислота оптимизирована по кодонам для экспрессии в клетке-хозяине. В некоторых векторах одна или более регуляторных последовательностей включают эукариотический промотор. В некоторых векторах нукleinовая кислота дополнительно кодирует селектируемый ген.

[0125] В еще одном аспекте в изобретении предложены способы экспрессии антитела в клетке млекопитающего, включающие включение раскрытых в данном документе нукleinовых кислот в геном трансгенного животного, в результате чего происходит экспрессия антитела.

[0126] В еще одном аспекте в изобретении предложены первый и второй векторы, соответственно включающие нукleinовые кислоты, кодирующие зрелую вариабельную область тяжелой цепи и зрелую вариабельную область легкой цепи, каждая из которых функционально связана с одной или более регуляторными последовательностями для осуществления экспрессии в клетке млекопитающего любого из раскрытых в данном документе антител, и клетке-хозяине, содержащей нукleinовые кислоты. В некоторых первых и вторых векторах нукleinовые кислоты, соответственно, дополнительно кодируют константную область тяжелой цепи, слитую со зрелой вариабельной областью
тяжелой цепи, и константную область легкой цепи, слитую со зрелой вариабельной областью легкой цепи.

[0127] В еще одном аспекте в изобретении предложены способы экспрессии антитела в клетке млекопитающего, включающие включение любой из раскрытых в данном документе нуклеиновых кислот в геном трансгенного животного, в результате чего происходит экспрессия антитела.

[0128] В еще одном аспекте в изобретении предложены способы гуманизации любого нечеловеческого антитела, описанного в данном документе, например, мышиного антитела 9F5, причем 9F5 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:7 и зрелой вариабельной областью легкой цепи SEQ ID NO:11, например, антитело мыши 10C12, где 10C12 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:7 и зрелой вариабельной областью легкой цепи SEQ ID NO:11; например, мышьякового антитела 2D11, причем 2D11 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:7 и зрелой вариабельной областью легкой цепи SEQ ID NO:11; например, антитело мыши 12C4, где 12C4 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:219 и зрелой вариабельной областью легкой цепи SEQ ID NO:11; например, мышьякового антитела 17C12, причем 17C12 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:225 и зрелой вариабельной областью легкой цепи SEQ ID NO:228; например, мышьякового антитела 14H3, причем 14H3 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:240 и зрелой вариабельной областью легкой цепи SEQ ID NO:244. Такие способы могут включать выбор одного или более акceptorных антител, определение аминокислотных остатков мышьякового антитела, которые необходимо сохранить; синтез нуклеиновой кислоты, кодирующей гуманизированную тяжелую цепь, содержащую CDR тяжелой цепи мышьякового антитела и нуклеиновую кислоту, кодирующую гуманизированную легкую цепь, содержащую CDR легкой цепи мышьякового антитела, и экспрессию нуклеиновых кислот в клетке-хозяине для получения гуманизированного антитела.

[0129] Также предложены способы получения антител, таких как гуманизированные, химерные или венированные антитела, например, гуманизированные, химерные или венированные формы 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3. В таких способах клетки, трансформированные нуклеиновыми кислотами, кодирующими тяжелую и легкую цепи антитела, культивируются таким образом, что клетки секретируют антитело. Затем антитело может быть очищено из среды для культивирования клеток.
Клеточные линии, продуцирующие любое из раскрытых в данном документе антител, могут быть получены путем введения в клетки вектора, кодирующего тяжелую и легкую цепи антитела и селектируемого маркера, размножения клеток в условиях отбора клеток с увеличенным числом копий вектора, выделения единичных клеток из отобранных клеток; и создания банков клеток, клонированных из отдельной клетки, отобранной на основе выхода антитела.

Некоторые клетки можно размножить в селективных условиях и провести скрининг клеточных линий, естественно экспрессирующих и выделяющих по меньшей мере 100 мг/л/10⁶ клеток/24 ч. Из отобранных клеток можно выделить отдельные клетки. Клетки, клонированные из отдельной клетки, можно затем поместить в банк. Отдельные клетки могут быть отобраны на основе желаемых свойств, таких как выход антитела. Примерами клеточных линий являются клеточные линии, экспрессирующие 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3.

В изобретении также предложены способы ингибирования или снижения агрегации тау у субъекта, имеющего или подверженного риску развития тау-опосредованного амилоидоза, включающие введение субъекту антитела, раскрытого в данном документе, по эффективной схеме, тем самым ингибируя или снижая агрегацию тау у субъекта. Примеры антител включают гуманизированные версии 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3.

Также предложены способы лечения или профилактики тау-ассоциированного заболевания у субъекта, включающие введение антитела, раскрытого в данном документе, по эффективной схеме, и тем самым обеспечивая лечение или профилактику заболевания. Примерами такого заболевания являются болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный парадич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появлением аргирофильных зерен, глобулярная глиальная тауопатия, боковой амнотрофический склероз/комплекс паркинсонизм-деменция Гуама, кортикобазальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХТЭ), глобулярная глиальная тауопатия (ГТТ), болезнь Паркинсона или прогрессирующий надъядерный парадич (ПНП). В некоторых способах заболевание, связанное с тау, представляет собой болезнь Альцгеймера. В некоторых способах пациент является носителем ApoE4.
Также предложены способы снижения аберрантной передачи тау, включающие введение антитела, раскрыто го в данном документе, по эффективной схеме, и тем самым снижения передачу тау.

Также предложены способы индуцирования фагоцитоза тау, включающие введение антитела, раскрыто го в данном документе, по эффективной схеме, и тем самым индуцируя фагоцитоз тау.

Также предложены способы ингибитования агрегации или осаждения тау, включающие введение эффективного антитела, раскрыто го в данном документе, по эффективной схеме и тем самым ингибитование агрегации или осаждения тау.

Также предложены способы ингибитования образования клубков тау, включающие введение антитела, раскрыто го в данном документе, по эффективной схеме.

В изобретении также предложен способ обнаружения отложений белка тау у субъекта, имеющего или подверженного риску заболевания, связанного с агрегацией или отложением тау, включающий введение субъекту антитела, раскрыто го в данном документе, и обнаружение антитела, связанного с тау у субъекта. Примерами такого заболевания являются болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа C, надъядерный паралич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появление аргиропирологических зерен, глобулярная глиальная тауопатия, боковой амиотрофический склероз/комплекс паркинсонизма-деменция Гуама, кортикобазальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХТЭ), глобулярная глиальная тауопатия (ГГТ), болезнь Паркинсона или прогрессирующий надъядерный паралич (ПНП). В некоторых вариантах осуществления антитело вводится путем внутривенной инъекции в организм субъекта. В некоторых вариантах осуществления антитело вводится непосредственно в мозг субъекта путем внутривенной инъекции или путем просверливания отверстия в черепе субъекта. В некоторых вариантах осуществления антитело является меченным. В некоторых вариантах осуществления антитело является меченным флуоресцентной меткой, парамагнитной меткой или радиоактивной меткой. В некоторых вариантах осуществления радиоактивная метка обнаруживается с помощью позитронно-эмиссионной томографии (ПЭТ) или однофотонной эмиссионной компьютерной томографии (ОФЭКТ).
В изобретении также предложен способ измерения эффективности лечения субъекта, получающего лечение от заболевания, ассоциированного с агрегацией или отложением тау, включающий измерение первого уровня отложений белка тау у субъекта до лечения путем введения субъекту антитела, раскрытого в данном документе, и обнаружения первого количества антитела, связанного с тау у субъекта, введения субъекту лечения, измерение второго уровня отложений белка тау у субъекта после лечения путем введения субъекту антитела и обнаружения антитела, связанного с тау у субъекта, причем снижение уровня отложений белка тау указывает на положительный ответ на лечение.

В изобретении также предложен способ измерения эффективности лечения субъекта, получающего лечение от заболевания, ассоциированного с агрегацией или отложением тау, включающий измерение первого уровня отложений белка тау у субъекта до лечения путем введения субъекту антитела, раскрытого в данном документе, и обнаружения первого количества антитела, связанного с тау у субъекта, введения субъекту лечения, измерение второго уровня отложений белка тау у субъекта после лечения путем введения субъекту антитела и обнаружения второго количества антитела, связанного с тау у субъекта, причем отсутствие изменений в уровне отложений белка тау или небольшое увеличение отложений белка тау указывает на положительный ответ на лечение.

В изобретении также предложено выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков (Q/E)IVYK(S/P) (SEQ ID NO:56). В изобретении также предложено выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков QIVYK (SEQ ID NO:57). В изобретении также предложено выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков IVYKSP (SEQ ID NO:58). В изобретении также предложено выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков EIVYKS (SEQ ID NO:277).

В изобретении также предложено выделенное моноклональное антитело, которое специфически связывается с полипептидом SEQ ID NO:1 на эпитопе, включающем по меньшей мере один остаток в пределах 307-312 из SEQ ID NO:1. Некоторые такие антитела связываются с эпитопом в пределах остатков 307-312 SEQ ID NO:1. В изобретении также предложено выделенное моноклональное антитело, которое специфически связывается с полипептидом SEQ ID NO:1 на эпитопе, включающем по меньшей мере один остаток в пределах остатков 391-397 SEQ ID NO:1. Некоторые такие

[0143] В изобретении также представлен способ лечения или профилактики тау-ассоциированного заболевания у субъекта, включающий введение иммуногена, включающего тау-пептид, содержащий до 20 смежных аминокислот SEQ ID NO:1, с которым специфически связывается антитело 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3, при этом пептид вызывает образование антител, специфически связывающихся с тау у субъекта. В некоторых таких способах пептид тау состоит из 4-7 смежных аминокислот из остатков 307-312 SEQ ID NO:1 или из остатков 391-397 SEQ ID NO:1 или из остатков 391-396 SEQ ID NO:1. В некоторых таких способах тау-пептид состоит из остатков (Q/E)IVYK(S/P) (SEQ ID NO:56). В некоторых таких способах тау-пептид состоит из остатков QIVYK (SEQ ID NO:57). В некоторых таких способах тау-пептид состоит из остатков EIVYKSP (SEQ ID NO:58). В некоторых таких способах тау-пептид состоит из остатков EIVYKS (SEQ ID NO:277). В некоторых таких способах тау-пептид присоединен к молекуле гетерологического конъюгата.

[0144] В изобретении также представлен способ получения антитела, которое специфически связывается с эпитопом, содержащим (Q/E)IVYK(S/P) (SEQ ID NO:56), включающий иммунизацию животного с применением тау или его фрагмента, и скрининг антител, которые специфически связываются с эпитопом. В некоторых таких способах животное иммунизируют человеческим тау, состоящим из 383 аминокислот (4R0N). В некоторых таких способах человеческий тау содержит мутацию P301S. В некоторых таких способах человеческий тау рекомбинантно помещен His-меткой на N-конец.
В некоторых таких способах скрининг выполняется в отношении пептидов из 15 аминокислот, содержащих QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58) EIVYKS (SEQ ID NO:277) или любой другой консенсусный мотив, представленный (Q/E)IVYK(S/P) (SEQ ID NO:56). В некоторых таких способах пептиды содержат QIVYKP (SEQ ID NO:57) или EIVYKSP (SEQ ID NO:58), или EIVYKS (SEQ ID NO:277).

В некоторых таких способах животное иммунизируют фрагментом тау, содержащим пептид, представленный (Q/E)IVYK(S/P) (SEQ ID NO:56), связанный с носителем. В некоторых таких способах пептид представляет собой QIVYKP (SEQ ID NO:57) или EIVYKSP (SEQ ID NO:58), или EIVYKS (SEQ ID NO:277).

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На фигурах 1А и 1В изображено выравнивание вариабельных областей тяжелой цепи мышиного антитела 9F5 (SEQ ID NO:7) и гуманизированных версий антитела 9F5 (hu9F5VHv1, hu9F5VHv2, hu9F5VHv3, hu9F5VHv4, hu9F5VHv5, hu9F5VHv6, hu9F5VHv7 и hu9F5VHv8) с последовательностью вариабельной области тяжелой цепи зародышевой линии человека IGKV1-69-2*01 (SEQ ID NO:33) с последовательностью вариабельной области акцепторной тяжелой цепи человека AAN16432-VH_huFrwk (AAN16432_H; SEQ ID NO:31) и с последовательностью вариабельной области акцепторной тяжелой цепи человека 2RCS-VH_huFrwk (2RCS_H; SEQ ID NO:32). hu9F5VHv1 представляет собой SEQ ID NO:15, hu9F5VHv2 представляет собой SEQ ID NO:16, hu9F5VHv3 представляет собой SEQ ID NO:17, hu9F5VHv4 представляет собой SEQ ID NO:18, hu9F5VHv5 представляет собой SEQ ID NO:19, hu9F5VHv6 представляет собой SEQ ID NO:20, hu9F5VHv7 представляет собой SEQ ID NO:21, и hu9F5VHv8 представляет собой SEQ ID NO:22. CDR VH мышьяного 9F5, согласно композитному определению по Kabat/Chothia, выделены жирным шрифтом.

На фигурах 2А и 2В изображено выравнивание вариабельных областей тяжелой цепи мышиного антитела 9F5 (SEQ ID NO:11) и гуманизированных версий антитела 9F5 (hu9F5VLv1, hu9F5VLv2, hu9F5VLv3, hu9F5VLv4, hu9F5VLv5, hu9F5VLv6 и hu9F5VLv7) с последовательностью вариабельной области легкой цепи зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (IGKV2-28*01_IGKJ2*01; SEQ ID NO:37) с акцептором человека CAB51297-VL_huFrwk (CAB51297_L; SEQ ID NO:35) и с акцептором человека 1911357B-VL_huFRwk (1911357B_L; SEQ ID NO:36). hu9F5VLv1 представляет собой SEQ ID NO:23, hu9F5VLv2 представляет собой SEQ ID NO:24, hu9F5VLv3 представляет собой...
SEQ ID NO:25, hu9F5VLv4 представляет собой SEQ ID NO:26, hu9F5VLv5 представляет собой SEQ ID NO:27, hu9F5VLv6 представляет собой SEQ ID NO:28, и hu9F5VLv7 представляет собой SEQ ID NO:29. CDR VL мышц комбинированного 9F5, согласно определению Kabat, выделены жирным шрифтом.

[0149] На фигуре 3 изображены результаты анализа, показывающего, что мышечное антитело 9F5 блокирует интернализацию тау нейронами.

[0150] На фигурах 4А и 4В изображено выравнивание вариабельных областей тяжелой цепи мышц комбинированного 9F5 (SEQ ID NO:7) и гуманизированных версий антитела 9F5 (hu9F5VHv1, hu9F5VHv2, hu9F5VHv3, hu9F5VHv4, hu9F5VHv5, hu9F5VHv6, hu9F5VHv7, hu9F5VHv8, hu9F5VHv9 и hu9F5VHv10) с последовательностью вариабельной области тяжелой цепи зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) с последовательностью вариабельной области акцепторной тяжелой цепи человека AAN16432-VH_huFrwk (AAN16432_H; SEQ ID NO:31) и с последовательностью вариабельной области акцепторной тяжелой цепи человека 2RCS-VH_huFrwk (2RCS_H; SEQ ID NO:32). hu9F5VHv1 представляет собой SEQ ID NO:15, hu9F5VHv2 представляет собой SEQ ID NO:16, hu9F5VHv3 представляет собой SEQ ID NO:17, hu9F5VHv4 представляет собой SEQ ID NO:18, hu9F5VHv5 представляет собой SEQ ID NO:19, hu9F5VHv6 представляет собой SEQ ID NO:20, и hu9F5VHv7 представляет собой SEQ ID NO:21, hu9F5VHv8 представляет собой SEQ ID NO:22, hu9F5VHv9 представляет собой SEQ ID NO:127, и hu9F5VHv10 представляет собой SEQ ID NO:128. CDR VH мышц комбинированного 9F5, согласно композитному определению по Kabat/Chothia, выделены жирным шрифтом. Остатки, идентичные остаткам VH мышц комбинированного 9F5, обозначены «».

[0151] На фигурах 5А и 5В изображено выравнивание вариабельных областей тяжелой цепи мышц комбинированного 9F5 (SEQ ID NO:11) и гуманизированных версий антитела 9F5 (hu9F5VLv1, hu9F5VLv2, hu9F5VLv3, hu9F5VLv4, hu9F5VLv5, hu9F5VLv6, hu9F5VLv7, hu9F5VLv8 и hu9F5VLv9) с последовательностью вариабельной области легкой цепи зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (IGKV2-28*01 IGKJ2*01; SEQ ID NO:37) с акцептором человека CAB51297-VL_huFrwk (CAB51297_L; SEQ ID NO:35) и с акцептором человека 1911357B-VL_huFrwk (1911357B_L; SEQ ID NO:36). hu9F5VLv1 представляет собой SEQ ID NO:23, hu9F5VLv2 представляет собой SEQ ID NO:24, hu9F5VLv3 представляет собой SEQ ID NO:25, hu9F5VLv4 представляет собой SEQ ID NO:26, hu9F5VLv5 представляет собой SEQ ID NO:27, hu9F5VLv6 представляет собой SEQ ID NO:28, hu9F5VLv7 представляет собой SEQ ID NO:2, hu9F5VLv8 представляет собой SEQ ID NO:130 и hu9F5VLv9 представляет собой SEQ ID NO:131. CDR VL.
мышьного 9F5, согласно определению Kabat, выделены жирным шрифтом. Остатки, идентичные остаткам VL мышьного 9F5, обозначены «.»

На фигуре 7 изображено выравнивание вариабельных областей тяжелой цепи мышиного антитела 10C12 (SEQ ID NO:7, обозначено m10C12 VH на фигуре 7) и гуманизированных вариантов антитела 10C12 (hu10C12VHv1 и hu10C12VHv2) с последовательностью вариабельной области тяжелой цепи зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) и с последовательностью вариабельной области акцепторной тяжелой цепи человека CAC20421 VH (SEQ ID NO:218). hu10C12VHv1 представляет собой SEQ ID NO:214 и hu10C12VHv2 представляет собой SEQ ID NO:215. CDR VH мышиного 10C12, согласно композитному определению по Kabat/Chothia, выделены жирным шрифтом.
На фигуре 8 изображено выравнивание вариабельных областей легкой цепи мышечного 10C12 (SEQ ID NO:11) и гуманизированных вариантов антитела 10C12 (hu10C12VLv1 и hu10C12VLv2) с последовательностью вариабельной области легкой цепи зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) и с акцептором человека CAB51297-VL_huFrwk (SEQ ID NO:35). hu10C12VLv1 представляет собой SEQ ID NO:216 и hu10C12VLv2 представляет собой SEQ ID NO:217. CDR VL мышечного 10C12, согласно определению Kabat, выделены жирным шрифтом.

На фигуре 9 изображено выравнивание вариабельных областей тяжелой цепи мышечного антитела 12C4 (SEQ ID NO:219) и гуманизированных вариантов антитела 12C4 (hu12C4VHVv1 и hu12C4VHVv2) с последовательностью вариабельной области тяжелой цепи зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) и с последовательностью вариабельной области акцепторной тяжелой цепи человека CAC20421 VH (SEQ ID NO:218). hu12C4VHVv1 представляет собой SEQ ID NO:221 и hu12C4VHVv2 представляет собой SEQ ID NO:222. CDR VH мышечного 12C4, согласно композитному определению по Kabat/Chothia, выделены жирным шрифтом.

На фигуре 10 изображено выравнивание вариабельных областей легкой цепи мышечного антитела 12C4 (SEQ ID NO:11) и гуманизированных вариантов антитела 12C4 (hu12C4VLv1 и huVVLv2) с последовательностью вариабельной области легкой цепи зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) и с акцептором человека CAB51297 (SEQ ID NO:35). hu12C4VLv1 представляет собой SEQ ID NO:223 и hu12C4VLv2 представляет собой SEQ ID NO:224. CDR VL мышечного 12C4, согласно определению Kabat, выделены жирным шрифтом.

На фигуре 11 изображено выравнивание вариабельных областей тяжелой цепи мышечного антитела 17C12 (SEQ ID NO:225) и гуманизированных вариантов антитела 17C12 (hu17C12VHVv1 и hu17C12VHVv2) с последовательностью вариабельной области тяжелой цепи зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) и с последовательностью вариабельной области акцепторной тяжелой цепи человека CAC20421 VH (SEQ ID NO:218). hu17C12VHVv1 представляет собой SEQ ID NO:232 и hu17C12VHVv2 представляет собой SEQ ID NO:233. CDR VH мышечного 17C12, согласно композитному определению по Kabat/Chothia, выделены жирным шрифтом.

На фигуре 12 изображено выравнивание вариабельных областей легкой цепи мышечного антитела 17C12 (SEQ ID NO:228) и гуманизированных вариантов антитела 17C12 (hu17C12VLv1 и hu17C12VLv2) с последовательностью вариабельной области легкой цепи зародышевой линии человека IGKV2-29*02 и IGKJ4*01 (SEQ ID NO:239) и с
акцептором человека QDO16713 VL (SEQ ID NO:238). hu17C12VLv1 представляет собой SEQ ID NO:234 и hu17C12VLv2 представляет собой SEQ ID NO:235. CDR VL мышевого 17C12, согласно определению Kabat, выделены жирным шрифтом.

[0159] На фигуре 13 изображено выравнивание вариабельных областей тяжелой цепи мышевого антитела 14H3 (SEQ ID NO:240) и гуманизированных вариантов антитела 14H3 (hu14H3VHv1 и hu14H3VHv2) с последовательностью вариабельной области тяжелой цепи зародышевой линии человека IGHV2-70*04 и IGHJ4*01 (SEQ ID NO:254) и с последовательностью вариабельной области акцепторной тяжелой цепи человека QDJ57937VH hFwrk (SEQ ID NO:253). hu14H3VHv1 представляет собой SEQ ID NO:248 и hu14H3VHv2 представляет собой SEQ ID NO:249. CDR VH мышевого 14H3, согласно композитному определению по Kabat/Chothia, выделены жирным шрифтом.

[0160] На фигуре 14 изображено выравнивание вариабельных областей легкой цепи мышевого антитела 14H3 (SEQ ID NO:244) и гуманизированных вариантов антитела 14H3 (hu14H3VLv1 и hu14H3VLv2) с последовательностью вариабельной области легкой цепи зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (IGKV2-28*01_IGKJ2*01; SEQ ID NO:37) и с акцептором человека ABC66914VL_hFwrk (SEQ ID NO:256). hu14H3VLv1 представляет собой SEQ ID NO:250 и hu14H3VLv2 представляет собой SEQ ID NO:251. CDR VL мышевого 14H3, согласно определению Kabat, выделены жирным шрифтом.

[0161] На фигуре 15 изображены результаты анализа, показывающего, что мышевое антитело 10C12, мышевое антитело 12C4, мышевое антитело 2D11, мышевое антитело 17C12, мышевое антитело 14H3 и мышевое антитело 9F5 блокируют интернализацию тау нейронами.

[0162] На фигуре 16 изображены результаты анализа, показывающего, что мышевое антитело 10C12, мышевое антитело 12C4, мышевое антитело 2D11 и мышевое антитело 9F5 предотвращают токсичность тау в первичных нейронах (животные модели нейронов).

[0163] На фигуре 17 изображены результаты анализа, показывающего, что мышевое антитело 10C12, мышевое антитело 12C4, мышевое антитело 2D11 и мышевое антитело 9F5 предотвращают токсичность тау в первичных нейронах (высвобождение ЛДГ).

[0164] На фигуре 18 изображены результаты анализа методом вестерн-блюттинга, показывающие, что мышевое антитело 10C12, мышевое антитело 12C4, мышевое антитело 2D11, мышевое антитело 17C12, мышевое антитело 14H3 и мышевое антитело 9F5 обнаруживают тау в образцах из головного мозга пациентов с болезнью Альцгеймера.
На фигуре 19 изображены результаты анализа иммунопрепаратации с использованием мышечного антитела 10C12, мышечного антитела 12C4, мышечного антитела 2D11, мышечного антитела 17C12, мышечного антитела 14H3 и мышечного антитела 9F5, и образца из головного мозга пациента с болезнью Альцгеймера.

На фигуре 20 изображены результаты анализа для измерения способности гуманизированных вариантов 9F5 противостоять агрегации, вызванной стрессом при перемешивании.

На фигуре 21 изображены результаты анализа для измерения способности гуманизированных вариантов 9F5 выдерживать воздействие низкого pH.

На фигуре 22 изображены результаты анализа для измерения способности гуманизированных вариантов 9F5 к агрегации в сформированных условиях высокой концентрации.

На фигурах 23А-Ф изображены результаты иммунологических анализов с использованием контроля, мышечного 2D11, мышечного 9F5, мышечного 12C4, мышечного 14H3 и мышечного 17C12.

На фигуре 25 показано выравнивание вариабельных областей легкой цепи мышечного антитела 9F5 (SEQ ID NO:11), мышечного антитела 10C12 (SEQ ID NO:11), мышечного антитела 2D11 (SEQ ID NO:11), мышечного антитела 12C4 (SEQ ID NO:11), мышечного антитела 14H3 (SEQ ID NO:244) и мышечного антитела 17C12 (SEQ ID NO:228). CDR VL мышечного 9F5, согласно определению Kabat, выделены жирным шрифтом.

КРАТКОЕ ОПИСАНИЕ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В SEQ ID NO:1 представлена аминокислотная последовательность изоформы человеческого тая (Swiss-Prot P10636-8).

В SEQ ID NO:2 представлена аминокислотная последовательность изоформы человеческого тая (Swiss-Prot P10636-7).
[0174] В SEQ ID NO:3 представлена аминокислотная последовательность изоформы человеческого тау (Swiss-Prot P10636-6), (человеческий тау 4R0N).

[0175] В SEQ ID NO:4 представлена аминокислотная последовательность изоформы человеческого тау (Swiss-Prot P10636-5).

[0176] В SEQ ID NO:5 представлена аминокислотная последовательность изоформы человеческого тау (Swiss-Prot P10636-4).

[0177] В SEQ ID NO:6 представлена аминокислотная последовательность изоформы человеческого тау (Swiss-Prot P10636-2).

[0178] В SEQ ID NO:7 представлена аминокислотная последовательность вариабельной области тяжелой цепи мышнина антитела 9F5.

[0179] В SEQ ID NO:8 представлена аминокислотная последовательность CDR-H1 согласно композитному определению по Kabat/Chothia мышнина антитела 9F5.

[0182] В SEQ ID NO:11 представлена аминокислотная последовательность вариабельной области легкой цепи мышнина антитела 9F5.

[0186] В SEQ ID NO:15 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu9F5VHv1.

[0187] В SEQ ID NO:16 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu9F5VHv2.

[0188] В SEQ ID NO:17 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu9F5VHv3.
В представленной аминокислотной последовательности вариабельной области гуманизированной тяжелой цепи hu9F5VHv4.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VHv5.

В представленной аминокислотной последовательности вариабельной области гуманизированной тяжелой цепи hu9F5VHv6.

В представленной аминокислотной последовательности вариабельной области гуманизированной тяжелой цепи hu9F5VHv7.

В представленной аминокислотной последовательности вариабельной области гуманизированной тяжелой цепи hu9F5VHv8.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VLv1.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VLv2.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VLv3.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VLv4.

В представленной аминокислотной последовательности вариабельной области легкой цепи гуманизированного антитела hu9F5VLv5 9F5.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VLv6.

В представленной аминокислотной последовательности вариабельной области гуманизированной легкой цепи hu9F5VLv7.

В представленной аминокислотной последовательности структурной модели вариабельной области тяжелой цепи PDB. № 5OBF-VH_mSt.

В представленной аминокислотной последовательности акцептора вариабельной области тяжелой цепи, номер доступа в GenBank AAN16432-VH_huFrwk.

В представленной аминокислотной последовательности акцептора вариабельной области тяжелой цепи PDB № 2RCS-VH_huFrwk.
В SEQ ID NO:33 представлена аминокислотная последовательность вариабельной области тяжелой цепи зародышевой линии IMGT № IGHV1-69-2*01.

В SEQ ID NO:34 представлена аминокислотная последовательность структурной модели вариабельной области легкой цепи PDB № 5OBF-VL_mSt.

В SEQ ID NO:35 представлена аминокислотная последовательность акцептора вариабельной области легкой цепи, номер доступа в GenBank CAB51297-VL_huFwck.

В SEQ ID NO:36 представлена аминокислотная последовательность акцептора вариабельной области легкой цепи, номер доступа в GenBank 1911357B-VL_huFwck.

В SEQ ID NO:37 представлена аминокислотная последовательность вариабельной области легкой цепи зародышевой линии IMGT № IGKV2-28*01 и IGKJ2*01.

В SEQ ID NO:38 представлена последовательность нуклеиновой кислоты, кодирующая вариабельную область тяжелой цепи мышнего антитела 9F5.

В SEQ ID NO:39 представлена последовательность нуклеиновой кислоты, кодирующая вариабельную область легкой цепи мышнего антитела 9F5.

В SEQ ID NO:40 представлена аминокислотная последовательность CDR-H1 по Kabat мышнего антитела 9F5.

В SEQ ID NO:41 представлена аминокислотная последовательность CDR-H1 по Chothia мышнего антитела 9F5.

В SEQ ID NO:42 представлена аминокислотная последовательность CDR-H2 по Chothia мышнего антитела 9F5.

В SEQ ID NO:43 представлена аминокислотная последовательность CDR-H2 по AbM мышнего антитела 9F5.

В SEQ ID NO:44 представлена аминокислотная последовательность CDR-H1 по Contact мышнего антитела 9F5.

В SEQ ID NO:45 представлена аминокислотная последовательность CDR-H2 по Contact мышнего антитела 9F5.

В SEQ ID NO:46 представлена аминокислотная последовательность CDR-H3 по Contact мышнего антитела 9F5.

В SEQ ID NO:47 представлена аминокислотная последовательность CDR-L1 по Contact мышнего антитела 9F5.

[0223] В SEQ ID NO:52 представлена аминокислотная последовательность альтернативной CDR-H2 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VHv8).

[0227] В SEQ ID NO:56 представлена аминокислотная последовательность эпитопа антитела 9F5.

[0228] В SEQ ID NO:57 представлена аминокислотная последовательность консенсусного мотива пептида, связываемого антителом 9F5.

В представлены аминокислотная последовательность линкера.

В представлены аминокислотная последовательность контрольного пептида НА.

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_M51E).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_M51D).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cD).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cG).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cS).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cE).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30E).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30K).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cT).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cN).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27bD).

В представлены аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30G).
[0244] В SEQ ID NO:73 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33N).

[0245] В SEQ ID NO:74 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cA).

[0246] В SEQ ID NO:75 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33T).

[0247] В SEQ ID NO:76 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33S).

[0248] В SEQ ID NO:77 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33R).

[0249] В SEQ ID NO:78 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30Q).

[0250] В SEQ ID NO:79 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27bT).

[0251] В SEQ ID NO:80 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_T31G).

[0252] В SEQ ID NO:81 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27bQ).

[0253] В SEQ ID NO:82 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33G).

[0254] В SEQ ID NO:83 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cP).

[0255] В SEQ ID NO:84 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78R).

[0256] В SEQ ID NO:85 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75D).
SEQ ID NO:86 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78D).

SEQ ID NO:87 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78E).

SEQ ID NO:88 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78P).

SEQ ID NO:89 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78K).

SEQ ID NO:90 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_R77D).

SEQ ID NO:91 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78G).

SEQ ID NO:92 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_S76P).

SEQ ID NO:93 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75P).

SEQ ID NO:94 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75Q).

SEQ ID NO:95 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75G).

SEQ ID NO:96 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L73P).

SEQ ID NO:97 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L73G).

SEQ ID NO:98 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78Q).
[0270] В SEQ ID NO:99 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_S76G).

[0271] В SEQ ID NO:100 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92D).

[0272] В SEQ ID NO:101 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_Y86T).

[0273] В SEQ ID NO:102 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92E).

[0274] В SEQ ID NO:103 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92G).

[0275] В SEQ ID NO:104 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92Q).

[0276] В SEQ ID NO:105 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L93G).

[0277] В SEQ ID NO:106 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V85G).

[0278] В SEQ ID NO:107 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92T).

[0279] В SEQ ID NO:108 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_A89G).

[0282] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82cG).

[0283] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82cD).

[0284] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82P).

[0286] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82K).

[0287] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82R).

[0288] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82E).

[0289] В представленна аминокислотная последовательность варианта варнебельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82N).

[0292]В SEQ ID NO:121 представлена аминокислотная последовательность варианта вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_Y79G).

[0293]В SEQ ID NO:122 представлена аминокислотная последовательность варианта вариабельной области тяжелой цепи hu9F5VHv5 (также известного как hu9F5VHv5_M80E).

[0294]В SEQ ID NO:123 представлена аминокислотная последовательность варианта вариабельной области тяжелой цепи hu9F5VHv5 (также известного как hu9F5VHv5_M80G).

[0295]В SEQ ID NO:124 представлена аминокислотная последовательность варианта вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82cS).

[0296]В SEQ ID NO:125 представлена аминокислотная последовательность варианта вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_Y79Q).

[0297]В SEQ ID NO:126 представлена аминокислотная последовательность варианта вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_S82aG).

[0298]В SEQ ID NO:127 представлена аминокислотная последовательность вариабельной области тяжелой цепи hu9F5VHv9.

[0299]В SEQ ID NO:128 представлена аминокислотная последовательность вариабельной области тяжелой цепи hu9F5VHv10 (также известного как hu9F5VHv9_Q38K_G42E).

[0300]В SEQ ID NO:129 представлена аминокислотная последовательность вариабельной области тяжелой цепи hu9F5VHv10_L82cG.

[0301]В SEQ ID NO:130 представлена аминокислотная последовательность вариабельной области легкой цепи hu9F5VLv8.

[0302]В SEQ ID NO:131 представлена аминокислотная последовательность вариабельной области тяжелой цепи hu9F5VLv9 (также известного как hu9F5VLv8_N60D).

В SEQ ID NO:139 представлена аминокислотная последовательность варианта вариабельной области легкой цепи hu9F5VLv8 (hu9F5VLv8_V3Q, L27cG, L37Q, M51K, L54R, L92I, также известных как hu9F5VLv8_DIM8).

В SEQ ID NO:180 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_L27cN).

В SEQ ID NO:181 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_L27cA).

В SEQ ID NO:182 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_L27cP).

В SEQ ID NO:183 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv8_DIM26).

В SEQ ID NO:184 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_I30E).

В SEQ ID NO:185 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_I30K).

В SEQ ID NO:186 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_I30G).

В SEQ ID NO:187 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_I30Q).

В SEQ ID NO:188 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_T31G).

В SEQ ID NO:189 представлена аминокислотная последовательность альтернативной CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv2_L33N).

[0370] В секвенте NO:199 представлена аминокислотная последовательность альтернативной CDR-L2 по Kabat гуманизированного антитела 9F5 (присутствует в

B SEQ ID NO:206 представлена аминокислотная последовательность альтернативной CDR-L3 по Kabat гуманизированного антителя 9F5 (присутствует в hu9F5VlLv2_A89G).

[0385] В SEQ ID NO:214 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu10C12VHV1.

[0386] В SEQ ID NO:215 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu10C12VHV2.

[0387] В SEQ ID NO:216 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu10C12VLv1.

[0388] В SEQ ID NO:217 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu10C12VLv2.
В SEQ ID NO:218 представлена аминокислотная последовательность акцептора вариабельной области тяжелой цепи CAC20421-VH_huFrwk.

В SEQ ID NO:219 представлена аминокислотная последовательность вариабельной области тяжелой цепи мышьного антителя 12C4.

В SEQ ID NO:221 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu12C4VHv1.

В SEQ ID NO:222 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu12C4VHv2.

В SEQ ID NO:223 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu12C4VLv1.

В SEQ ID NO:224 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu12C4VLv2.

В SEQ ID NO:225 представлена аминокислотная последовательность вариабельной области тяжелой цепи мышьного антителя 17C12.

В SEQ ID NO:226 представлена аминокислотная последовательность CDR H1 согласно композитному определению по Kabat-Chothia мышьного антителя 17C12.

В SEQ ID NO:227 представлена аминокислотная последовательность CDR H2 по Kabat мышьного антителя 17C12.

В SEQ ID NO:228 представлена аминокислотная последовательность вариабельной области легкой цепи мышьного антителя 17C12.

В SEQ ID NO:229 представлена аминокислотная последовательность CDR-L1 по Kabat мышьного антителя 17C12.

В SEQ ID NO:230 представлена аминокислотная последовательность CDR-L2 по Kabat мышьного антителя 17C12.

В SEQ ID NO:231 представлена аминокислотная последовательность CDR-L3 по Kabat мышьного антителя 17C12.

В SEQ ID NO:232 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu17C12VHv1.
В SEQ ID NO:233 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu17C12VHv2.

В SEQ ID NO:234 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu17C12VLv1.

В SEQ ID NO:235 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu17C12VLv2.

В SEQ ID NO:236 представлена аминокислотная последовательность структурной модели вариабельной области тяжелой цепи 3PP3-VH_mSt.

В SEQ ID NO:237 представлена аминокислотная последовательность структурной модели вариабельной области легкой цепи 3PP3-VL_mSt.

В SEQ ID NO:238 представлена аминокислотная последовательность акцептора вариабельной области легкой цепи QDO16713-VL_huFrwk.

В SEQ ID NO:239 представлена аминокислотная последовательность вариабельной области легкой цепи зародышевой линии IGKV2-29*02 и IGKJ4*01.

В SEQ ID NO:240 представлена аминокислотная последовательность вариабельной области тяжелой цепи мышц проксимального антитела 14H3.

В SEQ ID NO:241 представлена аминокислотная последовательность CDR H1 согласно композитному определению по Kabat-Chothia мышц проксимального антитела 14H3.

В SEQ ID NO:242 представлена аминокислотная последовательность CDR H2 по Kabat мышц проксимального антитела 14H3.

В SEQ ID NO:243 представлена аминокислотная последовательность CDR H3 по Kabat мышц проксимального антитела 14H3.

В SEQ ID NO:244 представлена аминокислотная последовательность вариабельной области легкой цепи мышц проксимального антитела 14H3.

В SEQ ID NO:245 представлена аминокислотная последовательность CDR L1 по Kabat мышц проксимального антитела 14H3.

В SEQ ID NO:246 представлена аминокислотная последовательность CDR L2 по Kabat мышц проксимального антитела 14H3.

В SEQ ID NO:247 представлена аминокислотная последовательность CDR L3 по Kabat мышц проксимального антитела 14H3.
[0419] В SEQ ID NO:248 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu14H3VHv1.

[0420] В SEQ ID NO:249 представлена аминокислотная последовательность вариабельной области гуманизированной тяжелой цепи hu14H3VHv2.

[0421] В SEQ ID NO:250 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu14H3VLv1.

[0422] В SEQ ID NO:251 представлена аминокислотная последовательность вариабельной области гуманизированной легкой цепи hu14H3VLv2.

[0423] В SEQ ID NO:252 представлена аминокислотная последовательность структурной модели вариабельной области тяжелой цепи 2VQ1-VH_mSt.

[0424] В SEQ ID NO:253 представлена аминокислотная последовательность акцептора вариабельной области тяжелой цепи QDJ57937-VH_huFrwk.

[0425] В SEQ ID NO:254 представлена аминокислотная последовательность вариабельной области тяжелой цепи зародышевой линии IGHV1-70*04 и IGHJ4*01.

[0426] В SEQ ID NO:255 представлена аминокислотная последовательность структурной модели вариабельной области легкой цепи 2VQ1-VL_mSt.

[0427] В SEQ ID NO:256 представлена аминокислотная последовательность акцептора вариабельной области легкой цепи ABC66914-VL_huFrwk.

[0429] В SEQ ID NO:258 представлена аминокислотная последовательность CDR-H2 по Contact мышьиного антитела 12C4.

[0430] В SEQ ID NO:259 представлена аминокислотная последовательность CDR-H1 по Chothia мышьиного антитела 17C12.

[0431] В SEQ ID NO:260 представлена аминокислотная последовательность CDR-H2 по AbM мышьиного антитела 17C12

[0432] В SEQ ID NO:261 представлена аминокислотная последовательность CDR-H2 по Contact мышьиного антитела 17C12.

[0433] В SEQ ID NO:262 представлена аминокислотная последовательность CDR-L1 по Contact мышьиного антитела 17C12.
B SEQ ID NO:263 представлена аминокислотная последовательность CDR-L2 по Contact мышиного антитела 17C12.

B SEQ ID NO:264 представлена аминокислотная последовательность CDR-L3 по Contact мышиного антитела 17C12.

B SEQ ID NO:265 представлена аминокислотная последовательность CDR-H1 по Kabat мышиного антитела 14H3.

B SEQ ID NO:266 представлена аминокислотная последовательность CDR-H1 по Chothia мышиного антитела 14H3.

B SEQ ID NO:267 представлена аминокислотная последовательность CDR-H2 по Chothia мышиного антитела 14H3.

B SEQ ID NO:268 представлена аминокислотная последовательность CDR-H2 по AbM мышиного антитела 14H3.

B SEQ ID NO:269 представлена аминокислотная последовательность CDR-H1 по Contact мышиного антитела 14H3.

B SEQ ID NO:270 представлена аминокислотная последовательность CDR-H2 по Contact мышиного антитела 14H3.

B SEQ ID NO:271 представлена аминокислотная последовательность CDR-H3 по Contact мышиного антитела 14H3.

B SEQ ID NO:272 представлена аминокислотная последовательность CDR-L1 по Contact мышиного антитела 14H3.

B SEQ ID NO:273 представлена аминокислотная последовательность CDR-L2 по Contact мышиного антитела 14H3.

B SEQ ID NO:274 представлена аминокислотная последовательность CDR-L3 по Contact мышиного антитела 14H3.

B SEQ ID NO:275 представлена аминокислотная последовательность альтернативной CDR H1 согласно композитному определению по Kabat-Chothia гуманизированного антитела 14H3 (присутствует в hu14H3VHv1 и hu14H3VHv2).

B SEQ ID NO:276 представлена аминокислотная последовательность консенсусного мотива пептида, связываемого антителом 9F5, 10C12, 2D11, 12C4, 17C12 и 14H3.

B SEQ ID NO:277 представлена аминокислотная последовательность консенсусного мотива пептида, связываемого антителом 2D11.
ОПРЕДЕЛЕНИЯ

[0449]Моноклональные антитела или другие биологические соединения обычно предоставляются в выделенной форме. Это означает, что антитело или другое биологическое соединение обычно имеет чистоту не менее 50% масс./масс. от интерферирующих белков и других загрязняющих веществ, возникающих в результате его производства или очистки, но не исключает возможности того, что моноклональное антитело комбинируется с избытком фармацевтически приемлемого носителя или другой несущей среды, предназначенной для облегчения его применения. Иногда моноклональные антитела являются по меньшей мере на 60%, 70%, 80%, 90%, 95% или 99% масс./масс. чистыми от интерферирующих белков и загрязняющих веществ, полученных при производстве или очистке. Часто выделенное моноклональное антитело или другое биологическое соединение является преобладающим видом макромолекул, остающимся после его очистки.

[0450]Специфическое связывание антитела с его антигеном-мишенью означает аффинность и/или avidность по меньшей мере 10^6, 10^7, 10^8, 10^9, 10^{10}, 10^{11} или 10^{12} М^-1. Специфическое связывание заметно выше по величине и отличается от неспецифического связывания, происходящего по меньшей мере с одной неродственной мишенью. Специфическое связывание может быть результатом образования связей между конкретными функциональными группами или определенного пространственного соответствия (например, тип замка и ключа), тогда как неспецифическое связывание обычно является результатом действия сил Ван-дер-Ваальса. Однако специфическое связывание не обязательно означает, что антитело связывает одну и только одну мишень.

[0451]Основная структурная единица антитела представляет собой тетramer субъединиц. Каждый тетramer включает две идентичные пары полипептидных цепей, каждая пара имеет одну «легкую» (около 25 кДа) и одну «тяжелую» цепь (около 50-70 кДа). Аминокислотная часть каждой цепи включает вариабельную область от около 100 до 110 или более аминокислот, в основном ответственных за распознавание антигена. Данная вариабельная область первоначально экспрессируется связанной с расцепляемым сигнальным пептидом. Вариабельную область без сигнального пептида иногда называют зеленой вариабельной областью. Таким образом, например, зеленая вариабельная область легкой цепи означает вариабельную область легкой цепи без сигнального пептида легкой
цепи. Карбоксиконцевая часть каждой цепи определяет константную область, в первую очередь ответственную за эффекторную функцию.

[0452] Легкие цепи классифицируются как каппа или лямбда. Тяжелые цепи классифицируются как гамма, мю, альфа, дельта или эпсилон и определяют изотип антилита как IgG, IgM, IgA, IgD и IgE, соответственно. В легкой и тяжелой цепях вариабельные и константные области соединены областью «J» из около 12 или более аминокислот, при этом тяжелая цепь также включает область «D» из около 10 или более аминокислот.

[0453] См. в целом, Fundamental Immunology, Paul, W., ed., 2nd ed. Raven Press, N.Y., 1989, Ch. 7 (включена в данный документ в полном объеме для всех целей).

[0454] Вариабельная область легкой или тяжелой цепи иммуноглобулина (также называемая в данном документе «вариабельным доменом легкой цепи» («доменом VL»)) или «вариабельным доменом тяжелой цепи» («доменом VH»), соответственно) состоит из «каркасной» области, прерванной тремя «определяющими комплементарность областями» или «CDR». Каркасные области служат для выравнивания CDR для специфического связывания с эпитопом антигена. CDR включают аминокислотные остатки антилита, которые в первую очередь отвечают за связывание антигена. От аминокислота до карбоксилного конца оба домена VL и VH содержат следующие каркасные области (FR) и CDR: FR1, CDR1, FR2, CDR2, FR3, CDR3 и FR4. CDR 1, 2 и 3 домена VL также упоминаются в данном документе, соответственно, как CDR-L1, CDR-L2 и CDR-L3; CDR 1, 2 и 3 домена VH также упоминаются в данном документе, соответственно, как CDR-H1, CDR-H2 и CDR-H3. Когда в заявке раскрывается последовательность VL с R в качестве C-концевого остатка, R альтернативно можно рассматривать как N-концевой остаток константной области легкой цепи. Таким образом, заявку также следует понимать как раскрытие последовательности VL без C-концевого R.

один и тот же номер. Когда говорят, что антитело содержит CDR согласно определению CDR (например, по Kabat), это определение указывает на минимальное количество остатков CDR, присутствующих в антителе (м.е. CDR по Kabat). Это не исключает, что присутствуют и другие остатки, подпадающие под другое традиционное определение CDR, но не входящие в указанное определение. Например, антитело, содержащее CDR, определенные Кабатом, включает среди других возможностей антитело, в котором CDR содержат остатки CDR по Kabat и не содержат других остатков CDR, и антитело, в котором CDR H1 соответствует композитному определению CDR H1 по Chothia-Kabat и другие CDR содержат остатки CDR по Kabat и не содержат дополнительных остатков CDR на основе других определений.

Таблица 1

Традиционные определения CDR с использованием нумерации по Kabat

<table>
<thead>
<tr>
<th>Петля</th>
<th>Kabat</th>
<th>Chothia</th>
<th>Композитное определение по Chothia и Kabat</th>
<th>AbM</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L24--L34</td>
<td>L24--L34</td>
<td>L24--L34</td>
<td>L24--L34</td>
<td>L30--L36</td>
</tr>
<tr>
<td>L2</td>
<td>L50--L56</td>
<td>L50--L56</td>
<td>L50--L56</td>
<td>L50--L56</td>
<td>L46--L55</td>
</tr>
<tr>
<td>L3</td>
<td>L89--L97</td>
<td>L89--L97</td>
<td>L89--L97</td>
<td>L89--L97</td>
<td>L89--L96</td>
</tr>
<tr>
<td>H1</td>
<td>H31--H35B</td>
<td>H26--H32..H34*</td>
<td>H26--H35B*</td>
<td>H26--H35B</td>
<td>H30--H35B</td>
</tr>
<tr>
<td>H2</td>
<td>H50--H65</td>
<td>H52--H56</td>
<td>H50--H65</td>
<td>H50--H58</td>
<td>H47--H58</td>
</tr>
<tr>
<td>H3</td>
<td>H95--H102</td>
<td>H95--H102</td>
<td>H95--H102</td>
<td>H95--H102</td>
<td>H93--H101</td>
</tr>
</tbody>
</table>

*CDR-H1 по Chothia может заканчиваться на H32, H33 или H34 (в зависимости от длины петли). Это связано с тем, что схема нумерации по Kabat помещает вставки дополнительных остатков в положения 35A и 35B, тогда как нумерация по Chothia помещает их в положения 31A и 31B. Если нет ни H35A, ни H35B (нумерация по Kabat), петля CDR-H1 по Chothia заканчивается на H32. Если присутствует только
N35A, она заканчивается на N33. Если присутствуют как N35A, так и N35B, она заканчивается на N34.

[0457] Примерами биспецифических антител также могут быть: (1) антитело с двойным вариабельным доменом (DVD-Ig), где каждая легкая и тяжелая цепь содержит два
вариабельных домена в тандеме через короткую пептидную связь (Wu et al., Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-Ig™) Molecule, In: Antibody Engineering, Springer Berlin Heidelberg (2010)); (2) тандемное диатело, которое представляет собой слияние двух одноцепочечных диател, в результате чего получается четырехвалентное биспецифическое антитело, имеющее два сайта связывания для каждого из целевых антигенов; (3) флекститело, которое представляет собой комбинацию scFvs с диателом, в результате чего получается поливалентная молекула; (4) так называемая молекула «dock and lock», основанная на «домене димеризации и стыковки» в белковой киназе A, которая при применении к Fab может дать трехвалентный биспецифический связывающий белок, состоящий из двух идентичных Fab-фрагментов, соединенных с другим Fab-фрагментом; или (5) так называемая молекула Скорпиона, включающая, например, два scFv, слитых с обоими концами человеческой Fc-области. Примеры платформ, применимых для получения биспецифических антител, включают BiTE (Micromet), DART (MacroGenics), Fcab и Mab2 (F-star), Fc-сконструированный IgG1 (Xencor) или DuoBody (на основе обмена Fab-плечами, Genmab).

[0459] Антитела, которые распознают одинаковые или перекрывающиеся эпитопы, можно идентифицировать с помощью простого иммуноанализа, показывающего способность одного антитела конкурировать со связыванием другого антитела с антигеном-мишенью. Эпипоп антитела также может быть определен рентгеновской кристаллографией антитела, связанного с его антигеном, для идентификации контактных остатков. Альтернативно, два антитела имеют один и тот же эпитоп, если все аминокислотные мутации в антигене,
которые уменьшают или устраняют связывание одного антитела, уменьшают или устраняют связывание другого. Два антитела имеют перекрывающиеся эпитопы, если некоторые аминокислотные мутации, которые уменьшают или устраняют связывание одного антитела, уменьшают или устраняют связывание другого.

[0460] Конкуренцию между антителами определяют с помощью анализа, в котором тестируемое антитело ингибирует специфическое связывание эталонного антитела с общим антителом (см., например, Junghans et al., Cancer Res. 50:1495, 1990). Тестируемое антитело конкурирует с эталонным антителом, если избыток тестируемого антитела (например, по меньшей мере 2х, 5х, 10х, 20х или 100х) ингибирует связывание эталонного антитела по меньшей мере на 50%, как измерено в анализе конкурентного связывания. Некоторые тестируемые антитела ингибируют связывание эталонных антител по меньшей мере на 75%, 90% или 99%. Антитела, идентифицируемые в конкурентном анализе (конкурирующие антитела), включают антитела, связывающиеся с тем же эпитопом, что и эталонное антитело, и антитела, связывающиеся со смежным эпитопом, расположенным достаточно близко к эпитопу, связываемому эталонным антителом, для появления стерического затруднения.

[0461] Термин «фармацевтически приемлемый» означает, что носитель, разбавитель, экскipients или вспомогательное вещество совместимы с другими ингредиентами лекарственного состава и по существу не являются вредными для их реципиента.

[0463] Индивидуум подвержен повышенному риску заболевания, если у него имеется по крайней мере один известный фактор риска (например, генетический, биохимический, семейная история и ситуационное воздействие), в результате чего индивидуумы с этим фактором риска подвергаются статистически значимо большему риску развития заболевания, чем индивидуумы без этого фактора риска.

[0464] Термин «биологический образец» относится к образцу биологического материала, находящемуся внутри или полученному из биологического источника, например, человека или млекопитающего. Такие образцы могут быть органами, органеллами, тканями, частями тканей, жидкостями организма, периферической кровью, плазмой крови, сывороткой крови, клетками, молекулами, такими как белки и пептиды, и любыми частями или комбинациями, полученными из них. Термин «биологический образец» также может охватывать любой материал, полученный в результате обработки образца.
Производный материал может включать клетки или их потомство. Обработка биологического образца может включать одно или более из фильтрации, дистилляции, экстракции, концентрирования, фиксации, инактивации идентифицирующих компонентов и т.п.

**Термин «контрольный образец» относится к биологическому образцу, о котором не известно или не предполагается, что он включает пораженные участки тау-ассоциированным заболеванием, или по меньшей мере не известно или не предполагается, что он включает пораженные участки определенного типа. Контрольные образцы могут быть получены от людей, страдающих тау-ассоциированным заболеванием. В качестве альтернативы контрольные образцы можно получить от пациентов, страдающих тау-ассоциированным заболеванием. Такие образцы могут быть получены одновременно с биологическим образцом, предположительно содержащим тау-ассоциированное заболевание, или в другом случае. Биологический образец и контрольный образец могут быть получены из одной и той же ткани. Предпочтительно контрольные образцы состоят в основном или полностью из нормальных, здоровых областей и могут использоваться по сравнению с биологическим образцом, который, как считается, включает участки, пораженные тау-ассоциированным заболеванием. Предпочтительно ткани в контрольном образце относятся к тому же типу, что и ткани в биологическом образце. Предпочтительно клетки, пораженные тау-ассоциированным заболеванием, которые, как предполагается, присутствуют в биологическом образце, происходят из того же типа клеток (например, нейронов или глии), что и тип клеток в контрольном образце.

**Термин «заболевание» относится к любому аномальному состоянию, которое нарушает физиологическую функцию. Этот термин широко используется для обозначения любого расстройства, заболевания, аномалии, патологии, недомогания, состояния или синдрома, при которых нарушена физиологическая функция, независимо от природы этиологии.

**Термин «симптом» относится к субъективным признакам заболевания, таким как измененная реакция согласно ощущениям субъекта. «Признак» относится к объективным свидетельствам заболевания, наблюдаемым врачом.

**Термин «положительный ответ на лечение» относится к более благоприятному ответу у отдельного пациента или к среднему ответу в популяции пациентов по сравнению со средним ответом в контрольной популяции, не получающей лечение.
В целях классификации аминокислотных замен как консервативных или неконсервативных, аминокислоты сгруппированы следующим образом: группа I (гидрофобные боковые цепи): met, ala, val, leu, ile; группа II (нейтральные гидрофильные боковые цепи): cys, ser, thr; группа III (кислотные боковые цепи): asp, glu; группа IV (основные боковые цепи): asn, gln, his, lys, arg; группа V (остатки, влияющие на ориентацию цепи): gly, pro; и группа VI (ароматические боковые цепи): trp, tyr, phe.

Консервативные замены включают замены между аминокислотами одного и того же класса. Неконсервативные замены представляют собой замену члена одного из этих классов членом другого класса.

Процент идентичности последовательностей определяют с использованием последовательностей антител, максимально выровненных согласно системе нумерации по Kabat. После выравнивания, если субъектная область антитела (например, вся зрелая вариабельная область тяжелой или легкой цепи) сравнивается с той же областью эталонного антитела, процент идентичности последовательностей между исследуемой и эталонной областями антитела представляет собой количество положений, занимаемых одной и той же аминокислотой как в исследуемой, так и в эталонной области антитела, разделенное на общее количество выровненных положений двух областей без учета пробелов, умноженное на 100 для преобразования в процент.

Композиции или способы, «содержащие» или «включающие» один или более перечисленных элементов, могут включать в себя другие элементы, не указанные конкретно. Например, композиция, которая «содержит» или «включает» антитело, может содержать антитело отдельно или в комбинации с другими ингредиентами.

Обозначение диапазона значений включает в себя все целые числа в пределах диапазона или определяющие диапазон, и все поддиапазоны, определяемые целыми числами в пределах диапазона.

Если иное не очевидно из контекста, термин «около» охватывает несущественные вариации, такие как значения в пределах стандартной погрешности измерения (например, COC) установленного значения.

Статистическая значимость означает p ≤ 0,05.

Формы единственного числа включают ссылки на формы множественного числа, если из контекста явно не следует иное. Например, термин «соединение» или «по меньшей мере одно соединение» может включать множество соединений, включая их смеси.
ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

I. Общие сведения

[0476] В изобретении предложены антитела, которые связываются с тау. Некоторые антитела специфически связываются с эпитопом в пределах (Q/E)IVYK(S/P) (SEQ ID NO:56). Некоторые антитела специфически связываются с пептидом, содержащим аминокислотную последовательность QIVYKP (SEQ ID NO:57, что соответствует остаткам 307-312 тау-изоформы SEQ ID NO:1). Некоторые антитела специфически связываются с пептидом, содержащим аминокислотную последовательность EIVYKSP (SEQ ID NO:58, что соответствует остаткам 391-397 тау-изоформы SEQ ID NO:1). Эти антитела отличаются от 3D6 и других антител, характеризующихся связыванием с областью связывания микротрубочек (MTBR) человеческого тау, наличием дополнительного эпитопа рядом с C-концом тау. Дополнительная C-концевая специфичность эпитопа обеспечивает основу для связывания антителом повышенного числа конформационных форм тау, ассоциированных с патологией. Некоторые антитела специфически связываются с пептидом, содержащим аминокислотную последовательность EIVYKS (SEQ ID NO:277, что соответствует остаткам 391-396 тау-изоформы SEQ ID NO:1). Примерами антител по изобретению являются 9F5, 10C12, 2D11, 12C4, 17C12 и 14H3. Некоторые антитела по изобретению служат для ингибирования или отсрочки развития патологий, ассоциированных с тау, и ассоциированного с ними ухудшения симптоматики. Хотя понимание механизма не требуется для осуществления изобретения, снижение токсичности может происходить в результате того, что антитело индуцирует фагоцитоз тау, ингибирует меж- или внутримOLEкулярную агрегацию тау или связывание с другими молекулами, стабилизацией нетоксичной конформации, ингибированием межклеточной или внутриклеточной передачи патогенных форм тау, блокадой фосфорилирования тау, предотвращением связывания тау с клетками или индуцированием протеолитического расщепления тау, среди прочих механизмов. Некоторые антитела по изобретению применимы для увеличения агрегации тау за счет увеличения молекулярной массы определенных агрегированных видов тау для снижения токсичности/поглощения клетками и/или увеличения клиренса. Большие агрегаты молекул тау могут проявлять пониженное поглощение нейронными клетками. Некоторые антитела по изобретению за счет двухвалентного связывания с тау сближают отдельные молекулы тау, способствуя агрегации в агрегат тау, слишком большой для поглощения нейронными клетками. Кроме того, для Fc-опосредованного фагоцитоза необходимо, чтобы несколько тау-связывающих антител находились в непосредственной близости.
Большой агрегат молекул тау может иметь множество связанных с ним антител к тау и обеспечивать кластер, необходимый для Fc-опосредованного фагоцитоза макрофагами. Антитела по изобретению или средства, которые индуцируют такие антитела, можно использовать в способах лечения или проведения профилактики болезни Альцгеймера и других заболеваний, связанных с тау.

II. Целевые молекулы

Если иное не очевидно из контекста, ссылка на тау означает природную человеческую форму тау, включая все изоформы, независимо от того, присутствует ли посттрансляционная модификация (например, фосфорилирование, гликирование или ацетилирование). Существует шесть основных изоформ (вариантов сплайсинга) тау, встречающихся в головном мозге человека. Самый длинный из этих вариантов содержит 441 аминокислоту, от которых отщеплен исходный остаток met. Остатки пронумерованы в соответствии с изоформой 441. Таким образом, например, ссылка на фосфорилирование в положении 404 означает положение 404 изоформы 441 или соответствующее положение любой другой изоформы при максимальном выравнивании с изоформой 441. Аминокислотные последовательности изоформ и номера доступа в Swiss-Prot указаны ниже.

P10636-8 (SEQ ID NO:1)

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAEP</td>
<td>RQEFV</td>
<td>MEDHAGTYGL</td>
<td>GDRKDOGGYT</td>
<td>MHQDQEGD</td>
<td>TDAGL</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>SETSD</td>
<td>AKSTP</td>
<td>TAEDVTAP</td>
<td>LVS</td>
<td>DEGAP</td>
<td>GQKA</td>
</tr>
<tr>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
</tr>
<tr>
<td>HVT</td>
<td>QARMV</td>
<td>SK</td>
<td>DGTGS</td>
<td>DDK</td>
<td>KAK</td>
</tr>
<tr>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
</tr>
<tr>
<td>TPP</td>
<td>SGEPPK</td>
<td>SGD</td>
<td>RS</td>
<td>GYSSP</td>
<td>GSP</td>
</tr>
<tr>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
</tr>
<tr>
<td>SRLQ</td>
<td>TAPV</td>
<td>PM</td>
<td>DKL</td>
<td>NVK</td>
<td>SKI</td>
</tr>
<tr>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td>360</td>
</tr>
<tr>
<td>PGGG</td>
<td>SVQ</td>
<td>IVY</td>
<td>K</td>
<td>PV</td>
<td>DLS</td>
</tr>
<tr>
<td>370</td>
<td>380</td>
<td>390</td>
<td>400</td>
<td>410</td>
<td>420</td>
</tr>
<tr>
<td>TH</td>
<td>VP</td>
<td>GGNN</td>
<td>KK</td>
<td>IE</td>
<td>THK</td>
</tr>
<tr>
<td>430</td>
<td>440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>P10636-7 (SEQ ID NO:2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAEPRQEFVEV MEDHAGTYGL GDRKDQGGGYT MHQDQEGD TD AGLKESPLQT PTEDGSEE PG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SETS DAKSTP TAAE EAGIG DTPSLEDEAA GHVTQARMVS KSKDGT GSD DDKKAKGADGKT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KIATPRGAAP PGQKQANAT RIPAKTPPAP KTPPSSGEP KSPGDSGYSS PGSPGTGSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRTPSLPTPP TREP KKVAVVP RPPKSPSSA KSR LQTPAVP MPDLKNSKKS IGSTENLKHQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PGGKQTVIIN KKLDSLNVQS KCGSKDNKIH VPGGGSVQIV YKPVDSLKVT SKCGSLGNIH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HKPPGGQVEV KSEKLDFKDR VQSKIGSLDN ITHVPPGGGNK KIETHKLTFR ENAKAKTDHG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AEIVYKSPV SGDTSPRLHS NVSSTGSIDM VDSPQLATLA DEVSASLAKQ GL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10636-6 (человеческий тау 4R0N) (SEQ ID NO:3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAEPRQEFVEV MEDHAGTYGL GDRKDQGGGYT MHQDQEGD TD AGLKAEAGI GDTPSLEDEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGHVTQARMVS KSKDGTGSD DKKKAKGADGK TKIATPRGAAP PPGQKQANANA TRIPAKTPPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PKTPSSGEP PKSGDRSGYS SPGSPGTPGS RSRTPSLPTP TREP KKVAV VRTPPKSPSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AKSR LQTPAVP MPDLKNSKKS IGSTENLKH QPGGKVQII NKKLDSLNVQS SKCGSKDNIK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HVGGGGSVQ VYKPVDSLKVT SKCGSLGNI HHKPPGGQVE VKSEKLDFKRD VQSKIGSLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NITHVPPGGGN KIETHKLTFR ENAKAKTDHG GAEIVYKSPV VSGDTSPRL SNVSSTGSID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MVDSPQLATLA DEVSASLAKQGL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10636-5 (SEQ ID NO:4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAEPRQEFVEV MEDHAGTYGL GDRKDQGGGYT MHQDQEGD TD AGLKESPLQT PTEDGSEE PG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGHVTQARMVS KSKDGTGSD DKKKAKGADGK TKIATPRGAAP PPGQKQANANA TRIPAKTPPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HVGGGGSVQ VYKPVDSLKVT SKCGSLGNI HHKPPGGQVE VKSEKLDFKRD VQSKIGSLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NITHVPPGGGN KIETHKLTFR ENAKAKTDHG GAEIVYKSPV VSGDTSPRL SNVSSTGSID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETS</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PSGGGQVEVKS</th>
<th>EKLDFKDRVQ</th>
<th>SKIGNSLDNIT</th>
<th>HVPGGGNKKI</th>
<th>ETHKTLTFREN</th>
<th>AKAKTDHGAE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>380</td>
<td>390</td>
<td>400</td>
<td>410</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| IVYKSPVVSG| DTPSPRHLNV| SSTGSIDMVD| SPQLATLADE| VSASLAKQGL| | |

P10636-4 (SEQ ID NO:5)

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KIATPRGAAP</th>
<th>PGQKGQANAT</th>
<th>RIPAKTTPAP</th>
<th>KTPPSSGEPP</th>
<th>KSGDRSGYSS</th>
<th>PGSPGTGSR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td>360</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PGGGKVQIVY</th>
<th>KVPDLKSVTS</th>
<th>KCGLGNIHH</th>
<th>KPGGGQVEVK</th>
<th>SEKLDKFDRV</th>
<th>QSKIGSLDN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THVPGGGNKK</th>
<th>IETHKTLTFRE</th>
<th>NAKAKTDHGAE</th>
<th>EIVYKSPVVSV</th>
<th>GDTPSPRHLNSN</th>
<th>VSSTGSIDMVD</th>
<th></th>
</tr>
</thead>
</table>

P10636-2 (SEQ ID NO:6)

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

| AGHVTQARMV| SKSKDGTGSD| DKKAKGADGK| TKIATPRGAAP| PPGQKGQANA| TRIPAKTTPPA| | |
|------------|-----------|-----------|------------|------------|-------------|-----|
| 130 | 140 | 150 | 160 | 170 | 180 | |
Ссылка на тау включает известные природные вариации, около 30 из которых перечислены в базе данных Swiss-Prot и их перестановки, а также мутации, ассоциированные с патологиями тау, такими как деменция, болезнь Пика, нейродегенеративные заболевания и т. д. (см., например, база данных Swiss-Prot и Poorkaj, et al. Ann Neurol. 43:815-825 (1998)). Некоторыми примерами мутаций тау, пронумерованных изоформой 441, являются мутация лизина в треонин в аминокислотном остатке 257 (K257T), мутация изолейцина в валин в положении аминокислоты 260 (I260V); мутация глицина в валин в положении аминокислоты 272 (G272V); мутация аспарагин в лизин в положении аминокислоты 279 (N279K); мутация аспарагин в гистидин в положении аминокислоты 296 (N296H); мутация пролина в серин в положении аминокислоты 301 (P301S); мутация пролина в лейцин в положении аминокислоты 301 (P301L); мутация глицина в валин в положении аминокислоты 303 (G303V); мутация серина в аспарагин в положении 305 (S305N); мутация глицина в серин в положении аминокислоты 335 (G335S); мутация валина в метионин в положении 337 (V337M); мутация глутаминовой кислоты в валин в положении 342 (E342V); мутация лизина в изолейцин в положении аминокислоты 369 (K369I), мутация глицина в аргинин в положении аминокислоты 389 (G389R), и мутация аргинина в триптофан в положении аминокислоты 406 аминокислоты (R406W).

Тау может быть фосфорилирован по одному или более аминокислотным остаткам, включая тирозин в положениях аминокислот 18, 29, 97, 310 и 394, серин в положениях аминокислот 184, 185, 198, 199, 202, 208, 214, 235, 237, 238, 262, 293, 324, 356, 396, 400, 404, 409, 412, 413 и 422, и треонин в положениях аминокислот 175, 181, 205, 212, 217, 231 и 403.
Если иное не очевидно из контекста, ссылка на тау или их фрагменты включает природные человеческие аминокислотные последовательности, включая их изоформы, мутанты и аллельные варианты.

III. Антитела

A. Специфичность связывания и функциональные свойства

В изобретении предложены антитела, которые специфически связываются с тау. Некоторые антитела специфически связываются с тау на эпитопе, образованном аминокислотами одной или обеих из двух областей тау, имеющих общий основной мотив IVYK (SEQ ID NO:276). Эти области определяются остатками 307-312 и 391-397 или 391-396 SEQ ID NO:1, соответственно. Таким образом, антитело с одним сайтом связывания для тау, такое как scFv, может специфически связываться с тау на эпитопе, образованном из аминокислот в пределах любой из данных областей по отдельности, или с гибридным эпитопом, образованным аминокислотами из обеих этих областей. Антитело с двумя сайтами связывания для тау может также связывать эпитопы в пределах 307-312 и 391-397 или в пределах 391-396 одновременно из двух своих сайтов связывания. Эпитоп может находиться на одной или разных молекулах тау. Некоторые антитела по изобретению специфически связываются с пептидом, состоящим из остатков 307-312 тау, а именно остатков QIVYK (SEQ ID NO:57). Некоторые антитела по изобретению специфически связываются с пептидом, состоящим из остатков 391-397 тау, а именно EIVYKSP (SEQ ID NO:58). Некоторые антитела по изобретению специфически связываются с пептидом, состоящим из остатков 391-396 тау, а именно EIVYKS (SEQ ID NO:277). Некоторые антитела по изобретению специфически связываются с пептидом, состоящим из консенсусного мотива (Q/E)IVYK(S/P) (SEQ ID NO:56). Эти антитела можно получить путем иммунизации тау-полипептидом, очищенным из природного источника или рекомбинантно экспрессированным. Антитела могут быть проверены на предмет связывания тау в нефосфорилированной форме, а также в форме, в которой один или более остатков, чувствительных к фосфорилированию, являются фосфорилированными. В изобретении также представлены антитела, связывающиеся с тем же эпитопом, что и любое из вышеуказанных антител, например, эпитопом 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3. Также включены антитела, конкурирующие за связывание с тау с любым из вышеуказанных антител, такими как, например, конкурирующие с 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3. В одном варианте осуществления антитела, связывающиеся с тем же эпитопом, что и этalonное антитело, такое как 9F5, или конкурирующие с этalonным антителом, обладают одним или более функциональными свойствами, такими как
способность ингибировать интернализацию тау в нейронных клетках. Необходимо, таким свойством обладают в той же степени и пределах экспериментальной ошибки или большей, чем эталонное антитело.

[0483] В изобретении предложено антитело, конкурирующее с 9F5 за связывание с тау и имеющее пониженную склонность к агрегации в условиях высокой концентрации. Примером антитела, которое конкурирует с 9F5 за связывание с тау и имеет пониженную
склонность к агрегации в условиях высокой концентрации, является L37Q/M51G/L54R в комбинации с исходным лейцинном в положении L27с (DIM27), также известное как hu9F5VHv9/hu9F5VLv8_DIM27 SEQ ID NO: 127/ SEQ ID NO: 158.

[0485]Пептид с необязательным спейсером и носителем можно использовать для иммунизации лабораторных животных или В-клеток, как более подробно описано ниже. Супернатанты гибридом можно тестировать на способность связывать тау-пептид,
содержащий или состоящий из аминокислотной последовательности QIVYKP (SEQ ID NO:57), пептид, содержащий или состоящий из аминокислотной последовательности EIVYKSP (SEQ ID NO:58), пептид, содержащий или состоящий из аминокислотной последовательности EIVYKS (SEQ ID NO:277), или пептид, содержащий или состоящий из аминокислотной последовательности (Q/E)IVYK(S/P) (SEQ ID NO:56) и/или fosфорилированные и не fosфорилированные формы тау, такие как, например, полноразмерная изоформа тау с положением 404 в fosфорилированной форме. Пептид может быть присоединен к носителю или другой метке для облегчения скринингового анализа. В этом случае носитель или метка предпочитительно отличается от комбинации спейсера и молекулы-носителя, используемой для иммунизации для устранения антител, специфичных для спейсера или носителя, а не тау-пептида. Может быть использована любая из изоформ тау.

[0486] Антитело, обозначенное 9F5, представляет собой пример антитела, специфически связывающегося с тау. Если иное не очевидно из контекста, ссылку на 9F5 следует понимать как относящуюся к любой из мышц, химерных, венированных или гуманизированных форм этого антитела. Антитело было депонировано как [HOMER ДЕПОЗИТА]. Данное антитело специфически связывает пептид, содержащий или состоящий из аминокислотной последовательности QIVYKP (SEQ ID NO:57), пептид, содержащий или состоящий из аминокислотной последовательности EIVYKSP (SEQ ID NO:58), или пептид, содержащий или состоящий из аминокислотной последовательности (Q/E)IVYK(S/P) (SEQ ID NO:56). CDR согласно композитному определению по Kabat/Chothia тяжелой цепи 9F5 обозначены SEQ ID NO:8, 9 и 10, соответственно, а CDR по Kabat легкой цепи 9F5 обозначены SEQ ID NO:12, 13 и 14, соответственно.

[0487] Дополнительные антитела, которые конкурируют с 9F5 за связывание с тау и/или связывают тот же или перекрывающийся эпитоп, что и 9F5, были выделены, обозначены 10C12, 2D11, 12C4, 17C12 и 14H3, и продуцированы гибридомами с такими же названиями. 10C12 имеет зрелые вариабельные области тяжелых и легких цепей (после отцепления сигнального пептида), охарактеризованные SEQ ID NO:7 и SEQ ID NO:11, соответственно. Если иное не очевидно из контекста, ссылку на 10C12 следует понимать как относящуюся к любой из мышц, химерных, венированных и гуманизированных форм этого антитела. 10C12 депонирован как [HOMER ДЕПОЗИТА]. 10C12 дополнительно характеризуется своей способностью связывать как непатологические, так и патологические формы и конформации тау, а также неправильно свернутые/агрегированные формы тау. 10C12 связывает структурные признаки, такие как
клубки тау и дистрофические нейриты в ткани, вызванные болезнью Альцгеймера, и осаждаются как мономерный, так и агрегированный тау из экстрактов болезни Альцгеймера.

[0488] 2D11 имеет зрелые вариабельные области тяжелых и легких цепей (после отщепления сигнального пептида), охарактеризованные SEQ ID NO:7 и SEQ ID NO:11, соответственно. Если иное не очевидно из контекста, ссылку на 2D11 следует понимать как относящуюся к любой из мышиных, химерных, венированных и гуманизированных форм этого антитела. 2D11 депонирован как [НОМЕР ДЕПОЗИТА]. 2D11 дополнительно характеризуется своей способностью связывать как непатологические, так и патологические формы и конформации тау, а также неправильно свернутые/агрегированные формы тау. 2D11 связывает структурные признаки, такие как клубки тау и дистрофические нейриты в ткани, вызванные болезнью Альцгеймера, и осаждаются как мономерный, так и агрегированный тау из экстрактов болезни Альцгеймера.

[0489] 12C4 имеет зрелые вариабельные области тяжелых и легких цепей (после отщепления сигнального пептида), охарактеризованные SEQ ID NO:219 и SEQ ID NO:11, соответственно. Если иное не очевидно из контекста, ссылку на 12C4 следует понимать как относящуюся к любой из мышиных, химерных, венированных и гуманизированных форм этого антитела. 12C4 депонирован как [НОМЕР ДЕПОЗИТА]. 12C4 дополнительно характеризуется своей способностью связывать как непатологические, так и патологические формы и конформации тау, а также неправильно свернутые/агрегированные формы тау. 12C4 связывает структурные признаки, такие как клубки тау и дистрофические нейриты в ткани, вызванные болезнью Альцгеймера, и осаждаются как мономерный, так и агрегированный тау из экстрактов болезни Альцгеймера.

[0490] 17C12 имеет зрелые вариабельные области тяжелых и легких цепей (после отщепления сигнального пептида), охарактеризованные SEQ ID NO:225 и SEQ ID NO:228, соответственно. Если иное не очевидно из контекста, ссылку на 17C12 следует понимать как относящуюся к любой из мышиных, химерных, венированных и гуманизированных форм этого антитела. 17C12 депонирован как [НОМЕР ДЕПОЗИТА]. 17C12 дополнительно характеризуется своей способностью связывать как непатологические, так и патологические формы и конформации тау, а также неправильно свернутые/агрегированные формы тау.

[0491] 14Н3 имеет зрелые вариабельные области тяжелых и легких цепей (после отщепления сигнального пептида), охарактеризованные SEQ ID NO:240 и SEQ ID NO:244, соответственно. Если иное не очевидно из контекста, ссылку на 14Н3 следует понимать как относящуюся к любой из мышиных, химерных, венированных и гуманизированных
форм этого антитела. 14НЗ депонирован как [НОМЕР ДЕПОЗИТА]. 14НЗ дополнительно характеризуется своей способностью связывать как непатологические, так и патологические формы и конформации тау, а также неправильно свернутые/агрегированные формы тау. 14НЗ связывает структурные признаки, такие как клубки тау и дистрофические нейриты в ткани, вызванные болезнью Альцгеймера.

[0492] Выравнивания зрелых вариабельных областей тяжелой цепи мышьихого антител 9F5, 10C12, 2D11, 12C4, 14Н3 и 17C12 изображены на фигуре 24, а выравнивания зрелых вариабельных областей легкой цепи мышьихого антител 9F5, 10C12, 2D11, 12C4, 14Н3 и 17C12 изображены на фигуре 25. Аминокислотная последовательность зрелой вариабельной области тяжелой цейпи мышьихого антитела 10C12 имеет 100% идентичность последовательности с последовательностью мышьихого антитела 9F5, а зрелая вариабельная область легкой цепи мышьихого антитела 10C12 имеет 100% идентичность последовательности с последовательностью мышьихого антитела 9F5. Аминокислотная последовательность зрелой вариабельной области тяжелой цепи мышьихого антитела 2D11 имеет 100% идентичность последовательности с последовательностью мышьихого антитела 9F5, а зрелая вариабельная область легкой цепи мышьихого антитела 2D11 имеет 100% идентичность последовательности с последовательностью мышьихого антитела 9F5. Аминокислотная последовательность зрелой вариабельной области тяжелой цепи мышьихого антитела 12C4 имеет 96,6% идентичность последовательности с последовательностью мышьихого антитела 9F5, а зрелая вариабельная область легкой цепи мышьихого антитела 12C4 имеет 100% идентичность последовательности с последовательностью мышьихого антитела 9F5. Аминокислотная последовательность зрелой вариабельной области тяжелой цепи мышьихого антитела 17C12 имеет 95,9% идентичность последовательности с последовательностью мышьихого антитела 9F5, а зрелая вариабельная область легкой цепи мышьихого антитела 17C12 имеет 70,5% идентичность последовательности с последовательностью мышьихого антитела 9F5. Аминокислотная последовательность зрелой вариабельной области тяжелой цепи мышьихого антитела 14Н3 имеет 35,0% идентичность последовательности с последовательностью мышьихого антитела 9F5, а зрелая вариабельная область легкой цепи мышьихого антитела 14Н3 имеет 73,2% идентичность последовательности с последовательностью мышьихого антитела 9F5.

[0493] Необязательно, антитела по изобретению не включают антитело 10C12. Необходимо, антитела по изобретению не включают антитело 2D11. Необязательно, антитела по
изобретению не включают антитело 17С12. Необязательно, антитела по изобретению не включают антитело 14Н3.

[0494]Некоторые антитела по изобретению связываются с тем же или перекрывающимся эпитопом, что и антитело, обозначенное 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3. Последовательности зрелых вариабельных областей тяжелой и легкой цепей этого 9F5 обозначены SEQ ID NO: 7 и 11, соответственно. Последовательности зрелых вариабельных областей тяжелой и легкой цепей 10C12 обозначены SEQ ID NO: 7 и 11, соответственно. Последовательности зрелых вариабельных областей тяжелой и легкой цепей 2D11 обозначены SEQ ID NO: 7 и 11, соответственно. Последовательности зрелых вариабельных областей тяжелой и легкой цепей 12C4 обозначены SEQ ID NO: 219 и 11, соответственно. Последовательности зрелых вариабельных областей тяжелой и легкой цепей 17C12 обозначены SEQ ID NO: 225 и 228, соответственно. Последовательности зрелых вариабельных областей тяжелой и легкой цепей 14Н3 обозначены SEQ ID NO: 240 и 244, соответственно. Другие антитела, обладающие такой специфичностью связывания, можно получить путем иммунизации мышей с помощью тау или его части, включая желаемый эпитоп (например, тау-пептид, содержащий или состоящий из аминокислотной последовательности QIVYK (SEQ ID NO: 57), тау-пептид, содержащий или состоящий из аминокислотной последовательности EIVYKSP (SEQ ID NO: 58), тау-пептид, содержащий или состоящий из аминокислотной последовательности EIVYKS (SEQ ID NO: 277), или тау-пептид, содержащий или состоящий из аминокислотной последовательности (Q/E)IVYK(S/P) (SEQ ID NO: 56)) и скрининга полученных антител на предмет связывания с тау, необязательно в конкуренции с антителом, имеющим вариабельные области мышинных 9F5 (IgG1/kappa), 10C12 (IgG2a/kappa), 2D11 (IgG2a/kappa), 12C4 (IgG2a/kappa), 17C12 (IgG2a/kappa) или 14Н3 (IgG2a/kappa). Фрагменты тау, включая желаемый эпитоп, могут быть связаны с носителем, который помогает вызывать ответ антител на фрагмент, и/или объединяться с адъювантом, что помогает вызывать такой ответ. Такие антитела можно подвергать скринингу на предмет дифференциального связывания с тау или его фрагментом по сравнению с мутантами по указанным остаткам. Скрининг на предмет таких мутантов более точно определяет специфичность связывания, позволяющую идентифицировать антитела, связывание которых ингибируется мутагенезом определенных остатков и которые, вероятно, обладают функциональными свойствами других приведенных в качестве примеров антител. Мутации могут представлять собой систематическую замену аланином (или серином, если аланин уже присутствует) по одному остатку за раз или с более широкими интервалами по всей
мишени или по всему ее участку, в котором, как известно, находится эпитоп. Если один и тот же набор мутаций значительно снижает связывание двух антител, два антитела связывают один и тот же эпитоп.

[0495] Антитела, обладающие специфичностью связывания с выбранным мышьым антителом (например, 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3), также могут быть получены с использованием варианта метода фагового дисплея. См. Winter, WO 92/20791. Этот метод особенно подходит для получения человеческих антител. В этом методе в качестве исходного материала используется вариабельная область тяжелой или легкой цепи выбранного мышьым антитела. Если, например, в качестве исходного материала выбрана вариабельная область легкой цепи, создается фаговая библиотека, члены которой отображают одну и ту же вариабельную область легкой цепи (т.е. исходный мышьым материал) и другую вариабельную область тяжелой цепи. Вариабельные области тяжелой цепи можно, например, получить из библиотеки реаранжированных вариабельных областей тяжелой цепи человека. Выбирают фаг, демонстрирующий сильное специфическое связывание с тау или его фрагментом (например, по меньшей мере 10⁸ и предпочтительно по меньшей мере 10⁹ М⁻¹). Затем вариабельная область тяжелой цепи этого фага служит исходным материалом для создания дополнительной фаговой библиотеки. В этой библиотеке каждый фаг отображает одну и ту же вариабельную область тяжелой цепи (т.е. область, идентифицированную из первой отображаемой библиотеки) и другую вариабельную область легкой цепи. Вариабельные области легкой цепи можно получить, например, из библиотеки реаранжированных вариабельных областей легкой цепи человека. Опять же, выбирают фаг, демонстрирующий сильное специфическое связывание с тау или его фрагментом. Полученные антитела как правило обладают такой же или сходной эпитопной специфичностью, что и мышьым исходный материал.

[0496] CDR согласно композитному определению по Kabat/Chothia тяжелой цепи 9F5 обозначены SEQ ID NO:8-10, соответственно, а CDR по Kabat легкой цепи 9F5 обозначены SEQ ID NO:12-14, соответственно.

[0497] CDR согласно композитному определению по Kabat/Chothia тяжелой цепи 10C12 обозначены SEQ ID NO:8-10, соответственно, а CDR по Kabat легкой цепи 10C12 обозначены SEQ ID NO:12-14, соответственно.

[0498] CDR согласно композитному определению по Kabat/Chothia тяжелой цепи 2D11 обозначены SEQ ID NO:8-10, соответственно, а CDR по Kabat легкой цепи 2D11 обозначены SEQ ID NO:12-14, соответственно.
<table>
<thead>
<tr>
<th>Петля</th>
<th>Kabat</th>
<th>Chothia</th>
<th>Композитное определение по Chothia и Kabat</th>
<th>AbM</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L30--L36 SEQ ID NO:47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L46--L55 SEQ ID NO:48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L96 SEQ ID NO:49</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>H31--H35B SEQ ID NO:40</td>
<td>H26--H32 SEQ ID NO:41</td>
<td>H26--H35B SEQ ID NO:8</td>
<td>H30--H35B SEQ ID NO:44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H50--H65 SEQ ID NO:9</td>
<td>H52--H56 SEQ ID NO:42</td>
<td>H50--H65 SEQ ID NO:9</td>
<td>H47--H58 SEQ ID NO:45</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H93--H101 SEQ ID NO:46</td>
<td></td>
</tr>
</tbody>
</table>
CDR согласно композитному определению по Kabat/Chothia тяжелой цепи 12C4 обозначены SEQ ID NO: 8, 220 и 10, соответственно, а CDR по Kabat легкой цепи 12C4 обозначены SEQ ID NO: 12-14, соответственно.

Таблица 3 указывает на CDR 12C4 согласно определениям по Kabat, Chothia, композитному определению по Chothia и Kabat (также именуемому здесь как «композитное определение по Kabat/Chothia»), определениям по AbM и Contact.
Таблица 3: CDR 12C4, согласно определениям по Kabat, Chothia, композитному определению по Chothia и Kabat, определениям по AbM и Contact

<table>
<thead>
<tr>
<th>Петля</th>
<th>Kabat</th>
<th>Chothia</th>
<th>Композитное определение по Chothia и Kabat</th>
<th>AbM</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L24--L34 SEQ ID NO:12</td>
<td>L30--L36 SEQ ID NO:47</td>
</tr>
<tr>
<td>L2</td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L50--L56 SEQ ID NO:13</td>
<td>L46--L55 SEQ ID NO:48</td>
</tr>
<tr>
<td>L3</td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L97 SEQ ID NO:14</td>
<td>L89--L96 SEQ ID NO:49</td>
</tr>
<tr>
<td>H1</td>
<td>H31--H35B SEQ ID NO:40</td>
<td>H26--H32 SEQ ID NO:41</td>
<td>H26--H35B SEQ ID NO:8</td>
<td>H26--H35B SEQ ID NO:8</td>
<td>H30--H35B SEQ ID NO:44</td>
</tr>
<tr>
<td>H2</td>
<td>H50--H65 SEQ ID NO:220</td>
<td>H52--H56 SEQ ID NO:42</td>
<td>H50--H65 SEQ ID NO:220</td>
<td>H50--H58 SEQ ID NO:257</td>
<td>H47--H58 SEQ ID NO:258</td>
</tr>
<tr>
<td>H3</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H93--H101 SEQ ID NO:46</td>
</tr>
</tbody>
</table>

[0502] CDR согласно композитному определению по Kabat/Chothia тяжелой цепи 17C12 обозначены SEQ ID NO:226, 227 и 10, соответственно, а CDR по Kabat легкой цепи 17C12 обозначены SEQ ID NO:229-231, соответственно.
Таблица 4: CDR 17C12, согласно определениям по Kabat, Chothia, композитному определению по Chothia и Kabat, определениям по AbM и Contact

<table>
<thead>
<tr>
<th>Петля</th>
<th>Kabat</th>
<th>Chothia</th>
<th>Композитное определение по Chothia и Kabat</th>
<th>AbM</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L24--L34 SEQ ID NO:229</td>
<td>L24--L34 SEQ ID NO:229</td>
<td>L24--L34 SEQ ID NO:229</td>
<td>L24--L34 SEQ ID NO:229</td>
<td>L30--L36 SEQ ID NO:262</td>
</tr>
<tr>
<td></td>
<td>L50--L56 SEQ ID NO:230</td>
<td>L50--L56 SEQ ID NO:230</td>
<td>L50--L56 SEQ ID NO:230</td>
<td>L50--L56 SEQ ID NO:230</td>
<td>L46--L55 SEQ ID NO:263</td>
</tr>
<tr>
<td></td>
<td>L89--L97 SEQ ID NO:231</td>
<td>L89--L97 SEQ ID NO:231</td>
<td>L89--L97 SEQ ID NO:231</td>
<td>L89--L97 SEQ ID NO:231</td>
<td>L89--L96 SEQ ID NO:264</td>
</tr>
<tr>
<td>H1</td>
<td>H31--H35B SEQ ID NO:40</td>
<td>H26--H32 SEQ ID NO:259</td>
<td>H26--H35B SEQ ID NO:226</td>
<td>H26--H35B SEQ ID NO:226</td>
<td>H30--H35B SEQ ID NO:44</td>
</tr>
<tr>
<td>H2</td>
<td>H50--H65 SEQ ID NO:227</td>
<td>H52--H56 SEQ ID NO:42</td>
<td>H50--H65 SEQ ID NO:227</td>
<td>H50--H58 SEQ ID NO:260</td>
<td>H47--H58 SEQ ID NO:261</td>
</tr>
<tr>
<td>H3</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H95--H102 SEQ ID NO:10</td>
<td>H93--H101 SEQ ID NO:46</td>
</tr>
</tbody>
</table>

Таблица 5 указывает на CDR 14H3 согласно определениям по Kabat, Chothia, композитному определению по Chothia и Kabat (также именуемому здесь как «композитное определение по Kabat/Chothia»), определениям по AbM и Contact.
Таблица 5: CDR 14H3, согласно определениям по Kabat, Chothia, композитному определению по Chothia и Kabat, определениям по AbM и Contact

<table>
<thead>
<tr>
<th>Петля</th>
<th>Kabat</th>
<th>Chothia</th>
<th>Композитное определение по Chothia и Kabat</th>
<th>AbM</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L24--L34 SEQ ID NO:245</td>
<td>L24--L34 SEQ ID NO:245</td>
<td>L24--L34 SEQ ID NO:245</td>
<td>L24--L34 SEQ ID NO:245</td>
<td>L30--L36 SEQ ID NO:272</td>
</tr>
<tr>
<td>L2</td>
<td>L50--L56 SEQ ID NO:246</td>
<td>L50--L56 SEQ ID NO:246</td>
<td>L50--L56 SEQ ID NO:246</td>
<td>L50--L56 SEQ ID NO:246</td>
<td>L46--L55 SEQ ID NO:273</td>
</tr>
<tr>
<td>L3</td>
<td>L89--L97 SEQ ID NO:247</td>
<td>L89--L97 SEQ ID NO:247</td>
<td>L89--L97 SEQ ID NO:247</td>
<td>L89--L97 SEQ ID NO:247</td>
<td>L89--L96 SEQ ID NO:274</td>
</tr>
<tr>
<td>H1</td>
<td>H31--H35B SEQ ID NO:265</td>
<td>H26--H32 SEQ ID NO:266</td>
<td>H26--H35B SEQ ID NO:241</td>
<td>H26--H35B SEQ ID NO:241</td>
<td>H30--H35B SEQ ID NO:269</td>
</tr>
<tr>
<td>H2</td>
<td>H50--H65 SEQ ID NO:242</td>
<td>H52--H56 SEQ ID NO:267</td>
<td>H50--H65 SEQ ID NO:242</td>
<td>H50--H58 SEQ ID NO:268</td>
<td>H47--H58 SEQ ID NO:270</td>
</tr>
<tr>
<td>H3</td>
<td>H95--H102 SEQ ID NO:243</td>
<td>H95--H102 SEQ ID NO:243</td>
<td>H95--H102 SEQ ID NO:243</td>
<td>H95--H102 SEQ ID NO:243</td>
<td>H93--H101 SEQ ID NO:271</td>
</tr>
</tbody>
</table>

[0506] Другие антитела можно получить путем мутагенеза кДНК, кодирующей тяжелую и легкую цепи приведенного в качестве примера антитела, такого как 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3. Моно克莱нные антитела, которые по меньшей мере на 70%, 80%, 90%, 95%, 96%, 97%, 98% или 99% идентичны 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3 в аминокислотной последовательности зрелых вариабельных областей тяжелой...
и/или легкой цепи и сохраняющие свои функциональные свойства, и/или которые отличаются от соответствующего антитела небольшим количеством функционально несущественных аминокислотных замен (например, консервативных замен), делеций или вставок, также включены в изобретение. Также включены моноклональные антитела, имеющие по меньшей мере одну или все шесть CDR, как определено согласно любому традиционному определению, но предпочтительно по Kabat, которые на 90%, 95%, 99% или 100% идентичны соответствующим CDR 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3.

[0507] В изобретении также предложены антитела, имеющие некоторые или все (например, 3, 4, 5 и 6) CDR полностью или по существу из 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3. Такие антитела могут включать вариабельную область тяжелой цепи, которая имеет по меньшей мере две, а обычно все три, CDR полностью или в по существу из вариабельной области тяжелой цепи 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3 и/или вариабельную область легкой цепи, которая имеет по меньшей мере две, а обычно все три CDR полностью или по существу из вариабельной области легкой цепи 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3. Антитела могут включать в себя как тяжелые, так и легкие цепи. CDR по существу происходит из соответствующей CDR 9F5, если она содержит не более 4, 3, 2 или 1 замены, вставки или делеции, за исключением того, что CDR-H2 (в случае определения по Kabat) может иметь не более 6, 5, 4, 3, 2 или 1 замены, вставки или делеции. Такие антитела могут иметь по меньшей мере 70%, 80%, 90%, 95%, 96%, 97%, 98% или 99% идентичности 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3 в аминокислотной последовательности зрелых вариабельных областей тяжелой и/или легкой цепи и сохранять свои функциональные свойства, и/или отличаться от 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3 небольшим количеством функционально несущественных аминокислотных замен (например, консервативными заменами), делециями или вставками.

[0508] Некоторые антитела, идентифицированные с помощью таких анализов, могут связываться с мономерными, неправильно свернутыми, агрегированными, фосфорилированными или нефосфорилированными формами тау или другими формами. Аналогичным образом, некоторые антитела являются иммунореактивными в отношении непатологических и патологических форм и конформаций тау.

[0509] В изобретении дополнительно предложены средства для специфического связывания с пептидом, состоящим из остатков (Q/E)IVYK(S/P) (SEQ ID NO:56), остатков QIVYKP (SEQ ID NO:57), остатков EIVYKSP (SEQ ID NO:58) или остатков EIVYKS (SEQ ID NO:277). Примером средства является антитело, содержащее CDR тяжелой цепи SEQ
ID NO:8-10 и CDR легкой цепи SEQ ID NO:12-14. Примером средства является антитело, содержащее CDR тяжелой цепи SEQ ID NO:8, 220 и 10 и CDR легкой цепи SEQ ID NO:12-14. Примером средства является антитело, содержащее CDR тяжелой цепи SEQ ID NO:226, 227 и 10, и CDR легкой цепи SEQ ID NO:229-231. Примером средства является антитело, содержащее CDR тяжелой цепи SEQ ID NO:241-243 и CDR легкой цепи SEQ ID NO:245-247.

B. Нечеловеческие антитела

[0510] Получение других нечеловеческих антител, *например*, антител мыши, морской свинки, примата, кролика или крысы к тау или его фрагменту (например, пептид, включающий аминокислотную последовательность QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277) или (Q/E)IVYK(S/P) (SEQ ID NO:56)) может быть осуществлено, *например*, путем иммунизации животного с помощью тау или его фрагмента. Cм. Harlow & Lane, *Antibodies, A Laboratory Manual* (CSHP NY, 1988) (включена в данный документ для всех целей). Необходимо, иммуноген может представлять собой человеческий тау из 383 аминокислот (4R0N). Необходимо, иммуноген может представлять собой человеческий тау, содержащий мутацию P301S. Необходимо, иммуноген может представлять собой человеческий тау, причем человеческий тау является рекомбинационным His-меченным на N-конце. Необходимо, животное иммунизируют фрагментом тау, содержащим пептид, представленный (Q/E)IVYK(S/P) (SEQ ID NO:56), связанный с носителем. Необходимо, пептид представляет собой QIVYKP (SEQ ID NO:57) или EIVYKSP (SEQ ID NO:58) или EIVYKS (SEQ ID NO:277). Таким иммуноген можно получить из природного источника, путем синтеза пептидов или путем рекомбинантной экспрессии. Необходимо, иммуноген может быть введен слитым или иным образом объединенным с белком-носителем. Необходимо, иммуноген может быть введен с адъювантом. Можно использовать несколько типов адъюванта, как описано ниже. Полный адъювант Фрейнда с последующим неполным адъювантом может быть использован для иммунизации лабораторных животных. Для получения поли клональных антител обычно используют кроликов или морских свинок. Мышей обычно используют для получения моно клональных антител. Антитела подвергаются скринингу на предмет специфического связывания с тау или эпитопом внутри тау (например, QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277) или (Q/E)IVYK(S/P) (SEQ ID NO:56)). Необходимо, скрининг можно проводить в отношении пептидов из 15 аминокислот, содержащих QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58) EIVYKS
(SEQ ID NO:277) или любой другой консенсусный мотив, представленный (Q/E)IVYK(S/P) (SEQ ID NO:56). Необязательно, пептиды содержат QIVYKSP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277). Такой скрининг может быть осуществлен путем определения связывания антитела с набором вариантов тау, таких как варианты тау, содержащие или состоящие из аминокислотных остатков 307-312, 391-397 или 391-396 SEQ ID NO: 1) или мутаций в пределах этих остатков и определения того, какие варианты тау связываются с антителом. Связывание можно оценить, например, с помощью вестерн-блоттинга, FACS или твердофазного ИФА.

C. Гуманизированные антитела

Гуманизированное антитело представляет собой генетически сконструированное антитело, в котором CDR от нечеловеческого «донорского» антитела привиты к человеческим последовательностям «акцепторного» антитела (см., например, Queen, US 5 530 101 и 5 585 089; Winter, US 5 225 539; Carter, US 6 407 213; US Adair, 5 859 205; и Foote, US 6 881 557). Последовательности акцепторного антитела могут представлять собой, например, последовательность зрелого человеческого антитела, композитом таких последовательностей, консенсусной последовательностью последовательностей человеческого антитела или последовательностью области зародышевой линии. Таким образом, гуманизированное антитело представляет собой антитело, имеющее по меньшей мере три, четыре, пять или все CDR полностью или в по существу из донорского антитела и последовательностей каркасов вариабельной области и константных областей, если они присутствуют, полностью или по существу из последовательностей человеческого антитела. Аналогичным образом, гуманизированная тяжелая цепь имеет по меньшей мере одну, две и обычно все три CDR полностью или по существу из тяжелой цепи донорского антитела, а последовательность каркасов вариабельной области тяжелой цепи и константная область тяжелой цепи, если они присутствуют, по существу из последовательности каркаса вариабельной области тяжелой цепи и константной области человека. Аналогичным образом, гуманизированная легкая цепь имеет по меньшей мере одну, две и обычно все три CDR полностью или по существу из легкой цепи донорского антитела, а последовательность каркасов вариабельной области легкой цепи и константная область легкой цепи, если они присутствуют, по существу из последовательности каркаса вариабельной области легкой цепи и константной области человека. В отличие от нанотел и dAb, гуманизированное антитело содержит гуманизированную тяжелую цепь и гуманизированную легкую цепь. CDR в гуманизированном антителе по существу аналогична соответствующей CDR в
нечеловеческом антителе, когда по меньшей мере 85%, 90%, 95% или 100% соответствующих остатков (как определено согласно любому традиционному определению, но предпочтительно определено по Kabat) идентичны между соответствующими CDR. Последовательности каркасов вариабельной области цепи антителя или константной области цепи антителя по существу происходят из последовательности каркаса вариабельной области человека или константной области человека, соответственно, когда по меньшей мере 85%, 90%, 95% или 100% соответствующих остатков согласно определению по Kabat являются идентичными. Для отнесения антитела к категории гуманизированных в соответствии с определением гуманизированных антител, предоставленным в 2014 году Всемирной организацией здравоохранения (ВОЗ) по международным непатентованным наименованиям (МНН), антитело должно иметь не менее 85% идентичности с последовательностями антител зародышевой линии человека (т.е. до соматической гипермутации). Смешанные антитела представляют собой антитела, для которых одна цепь антитела (например, тяжелая цепь) соответствует пороговому значению, а другая цепь (например, легкая цепь) не соответствует пороговому значению. Антитело классифицируется как химерное, если ни одна из цепей не соответствует пороговому значению, даже если каркасные вариабельные области для обеих цепей были по существу человеческими с некоторыми обратными мутациями у мышей. См., Jones et al. (2016) The INNs and outs of antibody nonproprietary names, mAbs 8:1, 1-9, DOI: 10.1080/19420862.2015.1114320. См. также “WHO-INN: International nonproprietary names (INN) for biological and biotechnological substances (a review)” (Internet) 2014. Доступно по адресу: http://www.who.int/medicines/services/inn/BioRev2014.pdf, включено в данный документ посредством ссылки. Во избежание сомнений, термин «гуманизированный», используемый в данном документе, не предназначен для ограничения определением гуманизированных антител по МНН ВОЗ от 2014 года. Некоторые из гуманизированных антител, предложенных в данном документе, имеют по меньшей мере 85% идентичности последовательностей с последовательностями зародышевой линии человека, а некоторые из гуманизированных антител, предложенных в данном документе, имеют менее 85% идентичности последовательностей с последовательностями зародышевой линии человека. Некоторые из тяжелых цепей гуманизированных антител, предложенных в данном документе, имеют от около 60% до 100% идентичности последовательностей с последовательностями зародышевой линии человека, например, в диапазоне от около 60% до 69%, от 70% до 79%, от 80% до 84% или от 85% до 89%. Некоторые тяжелые цепи не соответствуют определению МНН ВОЗ от 2014 г. и имеют, например, около 64%, 65%, 66%, 67%, 68%,
69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81% или 82%, 83% или 84% идентичности последовательностей с последовательностями зародышевой линии человека, в то время как другие тяжелые цепи соответствуют определению МНН ВОЗ от 2014 г. и имеют около 85%, 86%, 87%, 88%, 89% или более идентичности последовательностей с последовательностями зародышевой линии человека. Некоторые из легких цепей гуманизированных антител, предложенных в данном документе, имеют от около 60% до 100% идентичности последовательностей с последовательностями зародышевой линии человека, например, в диапазоне от около 80% до 84% или от 85% до 89%. Некоторые легкие цепи не соответствуют определению МНН ВОЗ от 2014 г. и имеют, например, около 81%, 82%, 83% или 84% идентичности последовательностей с последовательностями зародышевой линии человека, в то время как другие легкие цепи соответствуют определению МНН ВОЗ от 2014 г. и имеют около 85%, 86%, 87%, 88%, 89% или более идентичности последовательностей с последовательностями зародышевой линии человека. Некоторые предложенные в данном документе гуманизированные антитела, которые являются «химерными» в соответствии с определением МНН ВОЗ от 2014 г., имеют тяжелые цепи с менее чем 85% идентичности с последовательностями зародышевой линии человека, спаренные с легкими цепями, имеющими менее 85% идентичности с последовательностями зародышевой линии человека. Некоторые гуманизированные антитела, предложенные в данном документе, являются «смешанными» в соответствии с определением МНН ВОЗ от 2014 г., например, имеющими тяжелую цепь с по меньшей мере 85% идентичности последовательности с последовательностями зародышевой линии человека, спаренную с легкой цепью, имеющей менее 85% идентичности последовательности с последовательностями зародышевой линии человека, или наоборот. Некоторые гуманизированные антитела, предложенные в данном документе, соответствуют определению МНН ВОЗ от 2014 г. в отношении термина «гуманизированный» и имеют тяжелую цепь с по меньшей мере 85% идентичности последовательности с последовательностями зародышевой линии человека, спаренную с легкой цепью, имеющей по меньшей мере 85% идентичности последовательности с последовательностями зародышевой линии человека. Примеры антител 12C4, которые соответствуют определению МНН ВОЗ от 2014 г. как «гуманизированные», включают антитела, имеющие зрелую тяжелую цепь с аминокислотной последовательностью SEQ ID NO:221 или SEQ ID NO:222, спаренную с последовательностью зрелой легкой цепи, имеющей аминокислотную последовательность SEQ ID NO:223 или SEQ ID NO:224. Примеры антител 14Н3, которые соответствуют определению МНН ВОЗ от 2014 г. как «гуманизированные», включают антитела,

В некоторых антителах только часть CDR, а именно подмножество остатков CDR, необходимых для связывания, называемых SDR, необходимы для сохранения связывания в гуманизированном антите. Остатки CDR, не контактирующие с антигеном и не входящие в SDR, могут быть идентифицированы на основании предыдущих исследований (например, остатки H60-H65 в CDR H2 часто не требуются) из областей CDR по Kabat, расположенных вне гипервариабельных петель по Chothia (Chothia, J. Mol. Biol. 196:901, 1987) путем молекулярного моделирования и/или эмпирически, или как описано у Gonzales et al., Mol. Immunol. 41: 863, 2004. В таких гуманизированных антителах в положениях, в которых один или более остатков донорских CDR отсутствуют или в которых опущены целые донорные CDR, аминокислота, занимающая это положение, может представлять собой аминокислоту, занимающую соответствующее положение (по нумерации Kabat) в последовательности акцепторного антитела. Количество таких замен акцепторных на донорные аминокислоты в CDR, которое необходимо включить, отражает баланс между конкурирующими соображениями. Такие замены потенциально полезны для уменьшения количества аминокислоты мыши в гуманизированном антителе и, следовательно, уменьшения потенциальной иммуногенности и/или соответствия определению МНН ВОЗ в отношении термина «гуманизированный». Однако замены также могут вызывать изменения аффинности, поэтому предпочитительно избегать значительного снижения аффинности. Положения для замены в CDR и заменяемые аминокислоты также могут быть выбраны эмпирически.

Последовательности акцепторных человеческих антител могут быть выбраны из множества известных последовательностей человеческих антител для обеспечения высокой степени идентичности последовательностей (например, 65-85% идентичности) между каркасами вариабельной области акцепторной последовательности человека и соответствующими каркасами вариабельной области донорской цепи антитела.

Некоторые гуманизированные и химерные антитела обладают одинаковыми (в пределах экспериментальной ошибки) или улучшенными функциональными свойствами, например, аффинностью связывания с человеческим тау, ингибирированием интернализации тау в нейроны, как описано в примерах, как мышьные антитела, из которых они были получены. Например, некоторые гуманизированные и химерные антитела обладают аффинностью связывания с коэффициентом 3, 2 или 1 от мышьного антитела, из которого они были получены, или аффинностью, неразличимой в пределах экспериментальной ошибки. Некоторые гуманизированные и химерные антитела ингибируют интернализацию тау в нейроны, как описано в примерах, с коэффициентом 3, 2 или 1 от
мышиного антитела, из которого они были получены, или ингибитируют то же самое в пределах экспериментальной ошибки, что и мышиное антитело, из которого они были получены.

Примером акцепторной последовательности тяжелой цепи 9F5 является зрелая вариабельная область тяжелой цепи человека гуманизированного Fab 48G7 с кодом доступа PDB 2RCS-VH_huFrwk (SEQ ID NO:32). Примером акцепторной последовательности тяжелой цепи 9F5 является зрелая тяжелая цепь человека, GenBank AAN16432-VH_huFrwk (SEQ ID NO:31). Вариабельные домены Fab 9F5 и 48G7 также имеют одинаковую длину в отношении петель CDR-H1, H2. Примером акцепторной последовательности тяжелой цепи 9F5 является зрелая вариабельная область тяжелой цепи человека, IMGT № IGHV1-69-2*01 (SEQ ID NO:33). CDR-H1 по Chothia в IMGT № IGHV1-69-2*01 (SEQ ID NO:33) относится к каноническому классу 1, а CDR-H2 по Chothia относится к каноническому классу 2. IMGT № IGHV1-69-2*01 (SEQ ID NO:33) принадлежит к подгруппе 1 тяжелой цепи человека. Примером акцепторной последовательности легкой цепи 9F5 является зрелая вариабельная область легкой цепи человека 1911357B-VL_huFrwk (SEQ ID NO:36). Примером акцепторной последовательности легкой цепи 9F5 является зрелая вариабельная область легкой цепи человека, CAB51297-VL_huFrwk (SEQ ID NO:35). Вариабельный домен легкой цепи антител 9F5, CAB51297 и 1911357B также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Примером акцепторной последовательности легкой цепи 9F5 является зрелая вариабельная область легкой цепи человека с IMGT № IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). CDR-L1 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 4. CDR-L2 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. CDR-L3 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к подгруппе 2 каппа человека.

Примером акцепторной последовательности тяжелой цепи 10C12 является зрелый человеческий CAC20421 (SEQ ID NO:218). Вариабельные домены VH 10C12 и CAC20421 также имеют одинаковую длину в отношении петель CDR-H1, H2. Примером акцепторной последовательности тяжелой цепи 10C12 является зрелая вариабельная область тяжелой цепи человека, IMGT № IGHV1-69-2*01 (SEQ ID NO:33). CDR-H1 по Chothia в IMGT № IGHV1-69-2*01 (SEQ ID NO:33) относится к каноническому классу 1, а CDR-H2 по Chothia относится к каноническому классу 2. IMGT № IGHV1-69-2*01 (SEQ ID NO:33) принадлежит к подгруппе 1 тяжелой цепи человека. Примером акцепторной
последовательности легкой цепи 10С12 является зрелая вариабельная область легкой цепи человека CAB51297-VL_huFtwk (SEQ ID NO:35). Вариабельный домен легкой цепи антител 10С12 и CAB51297 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Примером акцепторной последовательности легкой цепи 10С12 является зрелая вариабельная область легкой цепи человека с IMGT № IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). CDR-L1 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 4. CDR-L2 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. CDR-L3 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к подгруппе 2 капп человека.

Примером акцепторной последовательности тяжелой цепи 12С4 является зрелая вариабельная область тяжелой цепи человека CAC20421-VH_huFtwk (SEQ ID NO:218). Вариабельные домены VH 12С4 и CAC20421 также имеют одинаковую длину в отношении петель CDR-H1, H2. Примером акцепторной последовательности тяжелой цепи 12С4 является зрелая вариабельная область тяжелой цепи человека, IMGT № IGHV1-69-2*01 (SEQ ID NO:33). CDR-H1 по Chothia в IMGT № IGHV1-69-2*01 (SEQ ID NO:33) относится к каноническому классу 1, а CDR-H2 по Chothia относится к каноническому классу 2. IMGT № IGHV1-69-2*01 (SEQ ID NO:33) принадлежит к подгруппе 1 тяжелой цепи человека. Примером акцепторной последовательности легкой цепи 12С4 является зрелая вариабельная область легкой цепи человека CAB51297-VL_huFtwk (SEQ ID NO:35). Вариабельный домен легкой цепи антител 12С4 и CAB51297 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Примером акцепторной последовательности легкой цепи 12С4 является зрелая вариабельная область легкой цепи человека с IMGT № IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). CDR-L1 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 4. CDR-L2 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. CDR-L3 по Chothia IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) относится к подгруппе 2 каппа человека.

Примером акцепторной последовательности тяжелой цепи 17С12 является зрелая вариабельная область тяжелой цепи человека CAC20421-VH_huFtwk (SEQ ID NO:218). Вариабельные домены тяжелых цепей 17С12 и CAC20421 также имеют одинаковую длину в отношении петель CDR-H1, H2. Примером акцепторной последовательности тяжелой цепи 17С12 является зрелая вариабельная область тяжелой цепи человека, IMGT
№ IGTV-69-2*01 (SEQ ID NO:33). CDR-H1 по Chothia в IMGT № IGTV-69-2*01 (SEQ ID NO:33) относится к каноническому классу 1, а CDR-H2 по Chothia относится к каноническому классу 2. IMGT № IGTV-69-2*01 (SEQ ID NO:33) принадлежит к подгруппе 1 тяжелой цепи человека. Примером акцепторной последовательности легкой цепи 17C12 является зерлая вариабельная область легкой цепи человека QDO16713-VL_huFrwk (SEQ ID NO:238). Вариабельный домен легкой цепи антител 17C12 и QDO16713 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Примером акцепторной последовательности легкой цепи 17C12 является зерлая вариабельная область легкой цепи человека с IMGT № IGTV-29*02 и IGTVJ4*01 (SEQ ID NO:239).

[0519] Примером акцепторной последовательности тяжелой цепи 14H3 является зерлая вариабельная область тяжелой цепи человека QDJ57937-VH_huFrwk (SEQ ID NO:253). Вариабельные домены VH 14H3 и QDJ57937 также имеют одинаковую длину в отношении петель CDR-H1, H2. Примером акцепторной последовательности тяжелой цепи 14H3 является зерлая вариабельная область тяжелой цепи человека, IGTV-70*04 и IGTVJ4*01 (SEQ ID NO:254). Примером акцепторной последовательности легкой цепи 14H3 является зерлая вариабельная область легкой цепи человека, ABC66914-VL_huFrwk (SEQ ID NO:256). Вариабельный домен легкой цепи антител 14H3 и ABC66914 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Примером акцепторной последовательности легкой цепи 14H3 является зерлая вариабельная область легкой цепи человека с IMGT № IGTV-28*01 и IGTVJ2*01 (SEQ ID NO:37). CDR-L1 по Chothia IGTV-28*01 и IGTVJ2*01 (SEQ ID NO:37) относится к каноническому классу 4. CDR-L2 по Chothia IGTV-28*01 и IGTVJ2*01 (SEQ ID NO:37) относится к каноническому классу 4. CDR-L3 по Chothia IGTV-28*01 и IGTVJ2*01 (SEQ ID NO:37) относится к каноническому классу 1. IGTV-28*01 и IGTVJ2*01 (SEQ ID NO: 37) относится к подгруппе 2 каппа человека.

[0520] Если выбрано более одной последовательности акцепторного антитела человека, можно использовать композит или гибрид этих акцепторов, и аминокислоты, используемые в различных положениях вариабельных областей гуманизированной легкой цепи и тяжелой цепи, могут быть взяты из любой используемой последовательности акцепторных антител человека. Например, человеческие зрелые вариабельные области тяжелой цепи AAN16432-VH_huFrwk (SEQ ID NO:31) и Fab гуманизированного 48G7 с кодом доступа PDB 2RCS-VH_huFrwk (SEQ ID NO:32) были использованы в качестве гибридных акцепторных последовательностей для гуманизации зрелой вариабельной
области тяжелой цепи 9F5. Примерами положений, в которых эти два акцептора различаются, являются положение H1 (Е или Q), H5 (V или Q), H11 (V или L), H12 (K или V), H20 (V или L), H23 (K или T), H28 (T или N), H38 (R или K), H40 (A или R), H42 (G или E), H43 (K или Q), H48 (M или I), H54 (D или N), H66 (R или K), H69 (M или I), H75 (T или S), H76 (D или N), H80 (M или L), H81 (E или Q), H83 (R или T), H108 (L или T) или H109 (V или L). Гуманизированные версии вариабельной области тяжелой цепи 9F5 могут включать любую аминокислоту в любом из этих положений. Последовательность зародышевой линии человека IMGT № IGHV1-69-2*01 (SEQ ID NO:25) также использовали в качестве акцепторной последовательности для гуманизации вариабельной области зрелой тяжелой цепи 9F5. Например, вариабельные области зрелой легкой цепи человека CAB51297-VL_huFrwk (SEQ ID NO:35) и 1911357B-VL_huFrwk (SEQ ID NO:36) использовали в качестве гибридных акцепторных последовательностей для гуманизации вариабельной области зрелой легкой цепи 9F5. Примерами положений, в которых эти два акцептора различаются, являются положения L7 (S или A), L8 (P или A), L9 (L или F), L11 (L или N), L15 (P или L), L17 (E или T), L18 (P или S), L30 (Y или I), L31 (N или T), L54 (R или L), L60 (D или N), L66 (G или E) или L74 (K или R). Гуманизированные версии вариабельной области легкой цепи 9F5 могут включать любую аминокислоту в любом из этих положений. Последовательность зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) также использовали в качестве акцепторной последовательности для гуманизации вариабельной области зрелой легкой цепи 9F5.

[0521]Определенные аминокислоты из остатков каркаса вариабельной области человека могут быть выбраны для замены на основании их возможного влияния на конформацию CDR и/или связывание с антигеном. Исследование таких возможных влияний осуществляется путем моделирования, изучения характеристик аминокислот в определенных местах или эмпирического наблюдения за эффектами замены или мутагенеза определенных аминокислот.

[0522]Например, когда аминокислота отличается между остатком каркаса вариабельной области мыши и выбранным остатком каркаса вариабельной области человека, аминокислота каркасной области человека может быть заменена эквивалентной аминокислотой каркасной области мышьяного антигена, если обоснованно ожидается, что аминокислота:

1) нековалентно связывает антиген напрямую;
2) примыкает к области CDR или расположена внутри CDR согласно определению по Chothia, но не по Kabat;
(3) иным образом взаимодействует с областью CDR (например, находится в пределах около 6 Å от области CDR) (например, идентифицируется путем моделирования легкой или тяжелой цепи на решенной структуре известной гомологичной цепи иммуноглобулина), или
(4) представляет собой остаток, участвующий в интерфейсе VL-VH.

[0525] Другие каркасные остатки, которые являются кандидатами на замену, представляют собой остатки, создающие потенциальный сайт гликозилирования. Еще другими кандидатами на замену являются акцепторные каркасные аминокислоты человека, которые необычны для иммуноглобулина человека в этом положении. Эти аминокислоты могут быть заменены аминокислотами из эквивалентного положения мышечного донорного антитела или из эквивалентных положений более типичных иммуноглобулинов человека.

[0526] Другие каркасные остатки, которые являются кандидатами на замену, представляют собой N-концевые остатки глутамина (Q), которые могут быть заменены глутаминовой кислотой (E) для минимизации потенциала превращения пироглутамата [Y. Diana Liu, et al., 2011, J. Biol. Chem., 286: 11211–11217]. Превращение глутаминовой кислоты (E) в пироглутамат (pE) происходит медленнее, чем из глутамина (Q). По причине потери первичного амина при превращении глутамина в pE антитела становятся более кислыми. Неполное превращение вызывает неоднородность антитела, которую можно наблюдать в виде множественных пиков с использованием аналитических методов, основанных на заряде. Различия в гетерогенности могут указывать на недостаточный контроль процесса.

В изобилии дополнительно предложено 95 примеров зрелых варiableльных областей
По таким причинам, как возможное влияние на конформацию CDR и/или связывание с антигеном, опосредование взаимодействия между тяжелой и легкой цепями, взаимодействие с конституцией, место для желательной или нежелательной посттранскрипционной модификации, необычный остаток для своего положения в последовательности вариабельной области человека и вследствие этого потенциальной иммуногенности, снижение потенциала агрегации и по другим причинам следующие 48 положений каркаса вариабельной области были рассмотрены в качестве кандидатов для замен в 95 примерах зрелых вариабельных областей легкой цепи человека и 29 примерах зрелых вариабельных областей тяжелой цепи человека, как далее указано в примерах: L3 (V3Q), L7 (A7S), L8 (A8P), L9 (F9L), L11 (N11L), L15 (L15P), L17 (T17E), L18 (S18P), L37 (L37Q, L37G, L37I), L39 (R39K), L60 (N60D), L64 (G64S), L66 (E66G), L73 (L73P, L73G), L74 (R74K), L75 (I75D, I75P, I75Q, I75G), L76 (S76P, S76G), L77 (R77D), L78 (V78R, V78D, V78E, V78P, V78K, V78G, V78Q), L85 (V85G), L86 (Y86T), L100 (G100Q), H1 (Q1E), H5 (Q5V), H11 (L11V), H12 (V12K), H17 (S17T), H20 (L20I), H23 (T23K), H38 (K38R, K38Q), H40 (R40A), H42 (E42G), H43 (Q43K), H48 (I48M), H66 (K66R), H69 (I69M), H75 (S75T), H76 (N76D), H79 (Y79Q, Y79D, Y79N, Y79G), H80 (L80M, L80P, ...
Здесь, как и в других местах, первый упомянутый остаток является остатком гуманизированного антитела, образованного путем прививки CDR по Kabat или CDR согласно композитному определению по Chothia-Kabat в случае CDR-H1 акцепторному каркасу человека, а второй упомянутый остаток является остатком, рассматриваемым для замены такого остатка. Таким образом, в пределах каркасов вариабельной области первым упомянутым остатком является человеческий, а в пределах CDR первым упомянутым остатком является мышинный.

Приведенные в качестве примера антитела включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областей тяжелой и легкой цепей hu9F5VHv1 (SEQ ID NO:15), hu9F5VHv2 (SEQ ID NO:16), hu9F5VHv3 (SEQ ID NO:17), hu9F5VHv4 (SEQ ID NO:18), hu9F5VHv5 (SEQ ID NO:19), hu9F5VHv6 (SEQ ID NO:20), hu9F5VHv7 (SEQ ID NO:21), hu9F5VHv8 (SEQ ID NO:22), hu9F5VHv9 (SEQ ID NO:127), hu9F5VHv10 (SEQ ID NO:128), hu9F5VHv10_L82cG (SEQ ID NO:129), hu9F5VHv4_L80P_L80D (SEQ ID NO:110), hu9F5VHv4_L82cG (SEQ ID NO:111), hu9F5VHv4_L82cD (SEQ ID NO:112),
hu9F5VHv4_L82P (SEQ ID NO:113), hu9F5VHv4_L80G (SEQ ID NO:114),
hu9F5VHv4_L82K (SEQ ID NO:115), hu9F5VHv4_L82R (SEQ ID NO:116),
hu9F5VHv4_L82E (SEQ ID NO:117), hu9F5VHv4_L82N (SEQ ID NO:118),
hu9F5VHv4_Y79D (SEQ ID NO:119), hu9F5VHv4_Y79N (SEQ ID NO:120),
hu9F5VHv4_Y79G (SEQ ID NO:121), hu9F5VHv5_M80E (SEQ ID NO:122),
hu9F5VHv5_M80G (SEQ ID NO:123), hu9F5VHv4_L82Cs (SEQ ID NO:124),
hu9F5VHv4_Y79Q (SEQ ID NO:125) и hu9F5VHv4_S82aG (SEQ ID NO:126), с любой из
приведенных в качестве примера зрелых варианабельных областей легкой цепи hu9F5VLv1
(SEQ ID NO:23), hu9F5VLv2 (SEQ ID NO:24), hu9F5VLv3 (SEQ ID NO:25), hu9F5VLv4
(SEQ ID NO:26), hu9F5VLv5 (SEQ ID NO:27), hu9F5VLv6 (SEQ ID NO:28), hu9F5VLv7
(SEQ ID NO:29), hu9F5VLv8 (SEQ ID NO:130), hu9F5VLv9 (SEQ ID NO:131),
hu9F5VLv2_M51E (SEQ ID NO:61), hu9F5VLv2_M51D (SEQ ID NO:62),
hu9F5VLv2_L27cD (SEQ ID NO:63), hu9F5VLv2_L27cG (SEQ ID NO:64),
hu9F5VLv2_L27cS (SEQ ID NO:65), hu9F5VLv2_L27cE (SEQ ID NO:66), hu9F5VLv2_I30E
(SEQ ID NO:67), hu9F5VLv2_I30K (SEQ ID NO:68), hu9F5VLv2_L27cT (SEQ ID NO:69),
hu9F5VLv2_L27cN (SEQ ID NO:70), hu9F5VLv2_L27bd (SEQ ID NO:71),
hu9F5VLv2_I30G, (SEQ ID NO:72), hu9F5VLv2_L33N (SEQ ID NO:73), hu9F5VLv2_L27cA
(SEQ ID NO:74), hu9F5VLv2_L33T (SEQ ID NO:75), hu9F5VLv2_L33S (SEQ ID NO:76),
hu9F5VLv2_L33R (SEQ ID NO:77), hu9F5VLv2_I30Q (SEQ ID NO:78), hu9F5VLv2_L27bT
(SEQ ID NO:79), hu9F5VLv2_T31G (SEQ ID NO:80), hu9F5VLv2_L27bQ (SEQ ID NO:81),
hu9F5VLv2_L33G (SEQ ID NO:82), hu9F5VLv2_L27cP (SEQ ID NO:83), hu9F5VLv2_V78R
(SEQ ID NO:84), hu9F5VLv2_I75D (SEQ ID NO:85), hu9F5VLv2_V78D (SEQ ID NO:86),
hu9F5VLv2_V78E (SEQ ID NO:87), hu9F5VLv2_V78P (SEQ ID NO:88), hu9F5VLv2_V78K
(SEQ ID NO:89), hu9F5VLv2_R77D (SEQ ID NO:90), hu9F5VLv2_V78G (SEQ ID NO:91),
hu9F5VLv2_S76P (SEQ ID NO:92), hu9F5VLv2_I75P (SEQ ID NO:93), hu9F5VLv2_I75Q
(SEQ ID NO:94), hu9F5VLv2_I75G (SEQ ID NO:95), hu9F5VLv2_L73P (SEQ ID NO:96),
hu9F5VLv2_L73G (SEQ ID NO:97), hu9F5VLv2_V78Q (SEQ ID NO:98), hu9F5VLv2_S76G
(SEQ ID NO:99), hu9F5VLv2_L92D (SEQ ID NO:100), hu9F5VLv2_Y86T (SEQ ID NO:101),
hu9F5VLv2_L92E (SEQ ID NO:102), hu9F5VLv2_L92G (SEQ ID NO:103),
hu9F5VLv2_L92Q (SEQ ID NO:104), hu9F5VLv2_L93G (SEQ ID NO:105),
hu9F5VLv2_V85G (SEQ ID NO:106), hu9F5VLv2_L92T (SEQ ID NO:107),
hu9F5VLv2_A89G (SEQ ID NO:108), hu9F5VLv8_DIM1 (SEQ ID NO:132),
hu9F5VLv8_DIM2 (SEQ ID NO:133), hu9F5VLv8_DIM3 (SEQ ID NO:134),
hu9F5VLv8_DIM4 (SEQ ID NO:135), hu9F5VLv8_DIM5 (SEQ ID NO:136),
hu9F5VLv8_DIM6 (SEQ ID NO:137), hu9F5VLv8_DIM7 (SEQ ID NO:138),
процессу, не ограничивающийся только внешними условиями эксперимента, а включая внутренние логические и структурные закономерности и зависимости, которые могут влиять на результаты измерений.

Существуют различные методы для оценки и устранения систематических погрешностей. Один из них - это методы корректировки данных. Метод корректировки данных предполагает, что известен ряд систематических погрешностей, которые необходимо учесть при анализе результатов эксперимента. Для этого необходимо провести дополнительные измерения и расчеты, которые позволят учесть эти погрешности и улучшить точность результатов.

Важно отметить, что корректировка данных должна проводиться в соответствии с методикой, которая была использована при проведении эксперимента. Это может включать в себя использование специальных программ и алгоритмов для обработки данных.

Например, в одной из статьй [0535] сообщается о корректировке данных в результате эксперимента. В этом случае были учтены систематические погрешности, которые возникали при использовании определенного оборудования. Это позволило улучшить точность результатов и сделать их более надежными.

В другой статье [0536] также рассматривается вопрос корректировки данных. В этом случае был использован метод корректировки данных, который позволил учесть систематические погрешности, возникающие при использовании определенных методов измерений. Это позволило улучшить результаты эксперимента и сделать их более точными.

В целом, корректировка данных является важным шагом в обеспечении точности и надежности результатов эксперимента.

В заключение следует отметить, что корректировка данных является важным элементом в обеспечении качества результатов эксперимента. Она позволяет учесть систематические погрешности, которые могут возникать при проведении эксперимента, и улучшить точность результатов. Это особенно важно при проведении сложных экспериментов, где необходимо обеспечить высокую точность и надежность результатов.

[0538] В изобретении предложены варианты гуманизированного антитела 9F5, в которых гуманизированная зрелая вариабельная область тяжелой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичности с hu9F5VHv1 (SEQ ID NO:15), hu9F5VHv2 (SEQ ID NO:16), hu9F5VHv3 (SEQ ID NO:17), hu9F5VHv4 (SEQ ID NO:18), hu9F5VHv5 (SEQ ID NO:19), hu9F5VHv6 (SEQ ID NO:20), hu9F5VHv7 (SEQ ID NO:21), hu9F5VHv8 (SEQ ID NO:22), hu9F5VHv9 (SEQ ID NO:127), hu9F5VHv10 (SEQ ID NO:128), hu9F5VHv10_L82cG (SEQ ID NO:129), hu9F5VHv4_L80P (SEQ ID NO:109), hu9F5VHv4_L80D (SEQ ID NO:110), hu9F5VHv4_L82cG (SEQ ID NO:111), hu9F5VHv4_L82cD (SEQ ID NO:112), hu9F5VHv4_L82P (SEQ ID NO:113), hu9F5VHv4_L80G (SEQ ID NO:114), hu9F5VHv4_L82K (SEQ ID NO:115), hu9F5VHv4_L82R (SEQ ID NO:116), hu9F5VHv4_L82E (SEQ ID NO:117), hu9F5VHv4_L82N (SEQ ID NO:118), hu9F5VHv4_Y79D (SEQ ID NO:119), hu9F5VHv4_Y79N (SEQ ID NO:120), hu9F5VHv4_Y79G (SEQ ID NO:121), hu9F5VHv5_M80E (SEQ ID NO:122), hu9F5VHv5_M80G (SEQ ID NO:123), hu9F5VHv4_L82Cs (SEQ ID NO:124), hu9F5VHv4_Y79Q (SEQ ID NO:125) или hu9F5VHv4_S82aG (SEQ ID NO:126), и гуманизированная зрелая вариабельная область легкой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичности с hu9F5VHv1 (SEQ ID NO:23), hu9F5VLv2 (SEQ ID NO:24), hu9F5VLv3 (SEQ ID NO:25), hu9F5VLv4 (SEQ ID NO:26), hu9F5VLv5 (SEQ ID NO:27), hu9F5VLv6 (SEQ ID NO:28), hu9F5VLv7 (SEQ ID NO:29), hu9F5VLv8 (SEQ ID NO:130), hu9F5VLv9 (SEQ ID NO:131), hu9F5VLv2_M51E (SEQ ID NO:61), hu9F5VLv2_M51D (SEQ ID NO:62), hu9F5VLv2_L27cD (SEQ ID NO:63), hu9F5VLv2_L27cG (SEQ ID NO:64), hu9F5VLv2_L27cS (SEQ ID NO:65), hu9F5VLv2_L27cE (SEQ ID NO:66), hu9F5VLv2_I30E (SEQ ID NO:67), hu9F5VLv2_I30K (SEQ ID NO:68), hu9F5VLv2_L27cT (SEQ ID NO:69), hu9F5VLv2_L27cN (SEQ ID NO:70), hu9F5VLv2_L27bD (SEQ ID NO:71),

В некоторых гуманизированных антителах 9F5 положение H28 в области VH занято T.

В некоторых гуманизированных антителах 9F5 по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H54 занято D, а H56 занято E. В некоторых гуманизированных антителах 9F5 положения H54 и H56 заняты D и E, соответственно.

В некоторых гуманизированных антителах 9F5 положение H40 в области VH занято A. В некоторых гуманизированных антителах 9F5 по меньшей мере одно из следующих
положений в области VH занято указанной аминокислотой: H5 занято V, H11 занято V, H12 занято K, H38 занято R, а H42 занято G.

[0552]В некоторых гуманизированных антителах 9F5 положение L66 в области VL занято G. В некоторых гуманизированных антителах 9F5 положение L64 в области VL занято S.

[0553]В некоторых гуманизированных антителах 9F5 положение L17 в области VL занято E.

[0555]В некоторых гуманизированных антителах 9F5 положение L30 в области VL занято Y.

области VL заняты S, P, L, L, P, E, P, N, K, G, R, D, G, K и Q, соответственно, как в
hu9F5VLv7.

[0560] В некоторых гуманизированных антителах 9F5 положения L7, L8, L11, L15, L17,
L39, L64, L66, L74 и L100 в области VL заняты S, P, L, P, E, K, S, G, K и Q,
соответственно, как в hu9F5VLv8. В некоторых гуманизированных антителах 9F5
положение L3 в области VL занято Q. В некоторых гуманизированных антителах 9F5
положение L27с в области VL занято D, G, I, L или S, положение L37 в области VL занято
G, I, L или Q, положение L51 в области VL занято E, G, I, K или M, положение L54 в
области VL занято G, L, R или T, а положение L92 в области VL занято G, I или L. В
нескольких гуманизированных антителах 9F5 положение L27с в области VL занято D или
S, положение L37 в области VL занято G, L или Q, положение L51 в области VL занято G
или K, положение L54 в области VL занято R, а положение L92 в области VL занято I.

[0561] В некоторых гуманизированных антителах 9F5 положение L27с в области VL
занято D, положение L37 в области VL занято G, а положение L51 в области VL занято G.
В некоторых гуманизированных антителах 9F5 вариабельная область тяжелой цепи имеет
аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная
область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID
NO:149.

[0562] В некоторых гуманизированных антителах 9F5 положение L27с в области VL
занято D, положение L37 в области VL занято, Q а положение L51 в области VL занято G.
В некоторых гуманизированных антителах 9F5 вариабельная область тяжелой цепи имеет
аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная
область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID
NO:137.

[0563] В некоторых гуманизированных антителах 9F5 положение L27с в области VL
занято S, положение L37 в области VL занято L, а положение L51 в области VL занято G.
В некоторых гуманизированных антителах 9F5 вариабельная область тяжелой цепи имеет
аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная
область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID
NO:159.

[0564] В некоторых гуманизированных антителах 9F5 положение L27с в области VL
занято D, положение L37 в области VL занято Q а положение L51 в области VL занято K.
В некоторых гуманизированных антителах 9F5 вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:138.

[0565] В некоторых гуманизированных антителах 9F5 положение L27с в области VL занято S положение L37 в области VL занято, Q а положение L51 в области VL занято G. В некоторых гуманизированных антителах 9F5 вариабельная область тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:127, а вариабельная область легкой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:133.

[0568] Вариабельная область легкой цепи любого из вышеупомянутых антител может быть модифицирована для дальнейшего снижения иммуногенности. Например, в некоторых гуманизированных антителах положение L27b в области VL занято D, T или Q; положение L27с в области VL занято D, G, S, E, T, N, A, I или P; положение L30 в области VL занято E, K, G или Q; положение L31 в области VL занято G; положение L33 в области VL занято N, T, S, R или G; положение L37 в области VL занято Q, G или I, положение L51 в области VL занято E, D, G, K или I; положение L54 в области VL занято G, R или T,
положение L60 в области VL занято D, положение L73 в области VL занято P или G; положение L75 в области VL занято D, P, Q или G; положение L76 в области VL занято P или G; положение L77 в области VL занято D; положение L78 в области VL занято R, D, E, P, K, G или Q; положение L85 в области VL занято G; положение L86 в области VL занято T; положение L89 в области VL занято G; положение L92 в области VL занято D, E, G, Q, I или T; и/или положение L93 в области VL занято G (нумерация по Kabat).

[0569]В некоторых гуманизированных антителах 9F5 положение L51 в области VL занято E, как в hu9F5VLv2_M51E. В некоторых гуманизированных антителах 9F5 положение L51 в области VL занято D, как в hu9F5VLv2_M51D. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято D, как в hu9F5VLv2_L27cD. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято G, как в hu9F5VLv2_L27cG. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято S, как в hu9F5VLv2_L27cS. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято E, как в hu9F5VLv2_L27cE. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято E, как в hu9F5VLv2_L27cE. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято K, как в hu9F5VLv2_L27cK. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято T, как в hu9F5VLv2_L27cT. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято N, как в hu9F5VLv2_L27cN)

В некоторых гуманизированных антителах 9F5 положение L27b в области VL занято Q, как в hu9F5VLv2_L27bQ. В некоторых гуманизированных антителах 9F5 положение L33 в области VL занято G, как в hu9F5VLv2_L33G. В некоторых гуманизированных антителах 9F5 положение L27c в области VL занято P, как в hu9F5VLv2_L27cP. В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято R, как в hu9F5VLv2_V78R. В некоторых гуманизированных антителах 9F5 положение L75 в области VL занято D, как в hu9F5VLv2_L75D. В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято D, как в hu9F5VLv2_V78D. В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято E, как в hu9F5VLv2_V78E. В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято P, как в hu9F5VLv2_V78P. В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято K, как в hu9F5VLv2_V78K. В некоторых гуманизированных антителах 9F5 положение L77 в области VL занято D, как в hu9F5VLv2_R77D.

В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято G, как в hu9F5VLv2_V78G. В некоторых гуманизированных антителах 9F5 положение L76 в области VL занято P, как в hu9F5VLv2_S76P. В некоторых гуманизированных антителах 9F5 положение L75 в области VL занято P, как в hu9F5VLv2_L75P. В некоторых гуманизированных антителах 9F5 положение L75 в области VL занято Q, как в hu9F5VLv2_L75Q. В некоторых гуманизированных антителах 9F5 положение L75 в области VL занято G, как в hu9F5VLv2_L75G. В некоторых гуманизированных антителах 9F5 положение L73 в области VL занято P, как в hu9F5VLv2_L73P. В некоторых гуманизированных антителах 9F5 положение L73 в области VL занято G, как в hu9F5VLv2_L73G. В некоторых гуманизированных антителах 9F5 положение L78 в области VL занято Q, как в hu9F5VLv2_V78Q. В некоторых гуманизированных антителах 9F5 положение L76 в области VL занято G, как в hu9F5VLv2_S76G. В некоторых гуманизированных антителах 9F5 положение L92 в области VL занято D, как в hu9F5VLv2_L92D.

В некоторых гуманизированных антителах 9F5 положение L86 в области VL занято T, как в hu9F5VLv2_Y86T. В некоторых гуманизированных антителах 9F5 положение L92 в области VL занято E, как в hu9F5VLv2_L92E. В некоторых гуманизированных антителах 9F5 положение L92 в области VL занято G, как в hu9F5VLv2_L92G. В некоторых гуманизированных антителах 9F5 положение L92 в области VL занято Q, как в hu9F5VLv2_L92Q. В некоторых гуманизированных антителах 9F5 положение L93 в
области VL занято G, как в hu9F5VLV2_L93G. В некоторых гуманизированных антителах 9F5 положение L85 в области VL занято G, как в hu9F5VLV2_V85G. В некоторых гуманизированных антителах 9F5 положение L92 в области VL занято T, как в hu9F5VLV2_L92T. В некоторых гуманизированных антителах 9F5 положение L89 в области VL занято G, как в hu9F5VLV2_A89G.

Вариабельная область тяжелой цепи любого из вышеупомянутых антител может быть также модифицирована для дальнейшего снижения иммуногенности. Например, в некоторых гуманизированных антителах положение H79 занято D, N, G или Q; положение H80 занято P, D, E или G; положение H82 занято P, K, R, E или N; положение H82 занято G; и/или положение H82c занято G, D или S.

В некоторых гуманизированных антителах 9F5 положение H80 занято P, как в hu9F5VHV4_L80P. В некоторых гуманизированных антителах 9F5 положение H80 занято D, как в hu9F5VHV4_L80D. В некоторых гуманизированных антителах 9F5 положение H82c занято G, как в hu9F5VHV4_L82cG и в hu9F5VHV10_L82cG. В некоторых гуманизированных антителах 9F5 положение H82c занято D, как в hu9F5VHV4_L82cD. В некоторых гуманизированных антителах 9F5 положение H82 занято P, как в hu9F5VHV4_L82P. В некоторых гуманизированных антителах 9F5 положение H80 занято G, как в hu9F5VHV4_L80G. В некоторых гуманизированных антителах 9F5 положение
H82 занято K, как в hu9F5VHV4_L82K. В некоторых гуманизированных антителах 9F5 положение H82 занято R, как в hu9F5VHV4_L82R. В некоторых гуманизированных антителах 9F5 положение H82 занято E, как в hu9F5VHV4_L82E. В некоторых гуманизированных антителах 9F5 положение H82 занято N, как в hu9F5VHV4_L82N.

[0586] В некоторых гумализированных антителях 9F5 CDR-H1 согласно композитному определению по Kabat-Chothia имеет аминокислотную последовательность, включающую SEQ ID NO: 50. В некоторых гумализированных антителях 9F5 CDR-H2 по Kabat имеет

[0587] Примеры гуманизированных антител включают гуманизированные формы мышиного 10C12, обозначенного Hu10C12.

[0588] Мышиное антитело 10C12 включает зрельные вариабельные области тяжелой и легкой цепи, имеющие аминокислотные последовательности SEQ ID NO:7 и SEQ ID NO:11, соответственно. В изобретении предложены 2 примера гуманизированных зрелих вариабельных областей тяжелой цепи: hu10C12VHv1 и hu10C12VHv2. В изобретении дополнительно предложения 2 примера зрелих вариабельных областей легкой цепи hu10C12VLv1 и hu10C12VLv2. На фигурах 7 и 8 показано выравнивание вариабельной области тяжелой цепи и вариабельной области легкой цепи, соответственно, мышиного 10C12 и различных гуманизированных антител.

[0589] По таким причинами, как возможное влияние на конформацию CDR и/или связывание с антигеном, опосредование взаимодействия между тяжелой и легкой цепями, взаимодействие с константной областью, место для желательной или нежелательной посттрансляционной модификации, необычный остаток для своего положения в последовательности вариабельной области человека и следствие этого потенциальной иммуногенности, снижение потенциала агрегации и по другим причинам следующие 9 положений каркаса вариабельной области были рассмотрены в качестве кандидатов для замен в 2 примерах зрелих вариабельных областей легкой цепи человека и 2 примерах зрелих вариабельных областей тяжелой цепи человека, как далее указано в примерах: L64 (G64S), L104 (V104L), H1 (Q1E), H24 (V24A), H48 (M48I), H67 (V67A), H69 (I69M), H93 (A93T) и H94 (R94T).
Здесь, как и в других местах, первый упомянутый остаток является остатком гуманизированного антитела, образованного путем прививки CDR по Kabat или CDR согласно композитному определению по Chothia-Kabat в случае CDR-H1 акцепторному каркасу человека, а второй упомянутый остаток является остатком, рассматриваемым для замены такого остатка. Таким образом, в пределах каркасов вариабельной области первым упомянутым остатком является человеческий, а в пределах CDR первым упомянутым остатком является мышиный.

Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областях тяжелой и легкой цепей hu10C12VHv1/ hu10C12VLv1, hu10C12VHv1/ hu10C12VLv2, hu10C12VHv2/ hu10C12VLv1, hu10C12VHv2/ hu10C12VLv2.

Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областях тяжелой цепи hu10C12VHv1 (SEQ ID NO:214) и hu10C12VHv2 (SEQ ID NO:215) с любой из приведенных в качестве примера зрелых вариабельных областей легкой цепи hu10C12VLv1 (SEQ ID NO:216) и hu10C12VLv2 (SEQ ID NO:217).

В изобретении предложены варианты гуманизированного антитела 10C12, в которых гуманизированная зрелая вариабельная область тяжелой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичности с hu10C12VHv1 (SEQ ID NO:214) или hu10C12VHv2 (SEQ ID NO:215), а гуманизированная зрелая вариабельная область легкой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичность с hu10C12VLv1 (SEQ ID NO:216) или hu10C12VLv2 (SEQ ID NO:217). В некоторых таких антителах по меньшей мере 1, 2, 3, 4, 5, 6, 7, 8 или все 9 обратных мутаций или других мутаций в SEQ ID NO:214-215 и SEQ ID NO:216-217) сохранены.

В некоторых гуманизированных антителах 10C12 положение L64 в области VL занято S.

В некоторых гуманизированных антителах 10C12 по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L64 занято S, L104 занято V или L.

В некоторых гуманизированных антителах 10C12 положения L64 и L104 в области VL заняты S, как в hu10C12VLv1. В некоторых гуманизированных антителах 10C12 положения L64 и L104 в области VL заняты S и L, соответственно, как в hu10C12VLv2.

В некоторых гуманизированных антителах 10C12 вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 10C12 вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 10C12 каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. В некоторых гуманизированных антителах 10C12 три CDR тяжелой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:8, 9 и 10), а три CDR легкой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO: 12, 13 и 14).

Примеры гуманизированных антител включают гуманизированные формы мышиного 12C4, обозначенного Hu12C4.

Мышиное антитело 12C4 включает зрелые вариабельные области тяжелой и легкой цепи, имеющие аминокислотные последовательности SEQ ID NO:219 и SEQ ID NO:11, соответственно. В изобретении предложены 2 примера гуманизированных зрелых вариабельных областей тяжелой цепи: hu12C4VHv1 и hu12C4VHv2. В изобретении дополнительно предложены 2 примера зрелых вариабельных областей легкой цепи hu12C4VLv1 и hu12C4VLv2. На фигурах 9 и 10 показано выравнивание вариабельной области тяжелой цепи и вариабельной области легкой цепи, соответственно, мышиного 12C4 и различных гуманизированных антител.
[0603] По таким причинам, как возможное влияние на конформацию CDR и/или связывание с антигеном, опосредование взаимодействия между тяжелой и легкой цепями, взаимодействие с константной областью, место для желательной или нежелательной посттрансляционной модификации, необычный остаток для своего положения в последовательности вариабельной области человека и вследствие этого потенциальной иммуногенности, получение потенциала агрегации и по другим причинам следующие 6 положений каркаса вариабельной области были рассмотрены в качестве кандидатов для замен в 2 примерах зрелых вариабельных областей легкой цепи человека и 2 примерах зрелых вариабельных областей тяжелой цепи человека, как далее указано в примерах: L64(G64S), L104(V104L), H1(Q1E), H48(M48I), H93(A93T) и H94(R94T).

[0604] Здесь, как и в других местах, первый упомянутый остаток является остатком гуманизированного антитела, образованного путем прививки CDR по Kabat или CDR согласно композитному определению по Chothia-Kabat в случае CDR-H1 акцепторному каркасу человека, а второй упомянутый остаток является остатком, рассматриваемым для замены такого остатка. Таким образом, в пределах каркасов вариабельной области первым упомянутым остатком является человеческий, а в пределах CDR первым упомянутым остатком является мышечный.

[0605] Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областях тяжелой и легкой цепей hu12C4VHv1/ hu12C4VLv1, hu12C4VHv1/ hu12C4VLv2, hu12C4VHv2/ hu12C4VLv1, hu12C4VHv2/ hu12C4VLv2.

[0606] Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областей тяжелой цепи hu12C4VHv1 (SEQ ID NO:221) и hu12C4VHv2 (SEQ ID NO:222) с любой из приведенных в качестве примера зрелых вариабельных областей легкой цепи hu12C4VLv1 (SEQ ID NO:223) и hu12C4VLv2 (SEQ ID NO:224).

[0607] В изобретении предложены варианты гуманизированного антитела 12C4, в которых гуманизированная зрелая вариабельная область тяжелой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичности с hu12C4VHv1 (SEQ ID NO:221) или hu12C4VHv2 (SEQ ID NO:222), а гуманизированная зрелая вариабельная область легкой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичность с hu12C4VLv1 (SEQ ID NO:223) или hu12C4VLv2 (SEQ ID NO:224). В некоторых таких антителях по меньшей мере 1, 2, 3, 4, 5, или все 6 обратных мутаций или других мутаций в SEQ ID NO:221-222 и SEQ ID NO:223-224) сохранены.
В некоторых гуманизированных антителах 12C4 по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H1 занято Q или E, H48 занято M или I, H93 занято A или T, H94 занято R или T.

В некоторых гуманизированных антителах 12C4 положения H1, H48, H93 и H94 в области VH заняты E, I, T и T, соответственно, как в hu12C4VHV2.

В некоторых гуманизированных антителах 12C4 по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L64 занято G или S, L104 занято V или L.

В некоторых гуманизированных антителах 12C4 положения L64 и L104 в области VL заняты S и L, соответственно, как в hu12C4VLv2.

В некоторых гуманизированных антителах 12C4 вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 12C4 вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 12C4 каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. В некоторых гуманизированных антителах 12C4 три CDR тяжелой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:8, 220 и 10), а три CDR легкой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO: 12, 13 и 14).

Примерами гуманизированных антител являются гуманизированные формы мышиного 17C12, обозначенного Hu17C12.

Мышиное антитело 17C12 включает зрелые вариабельные области тяжелой и легкой цепи, имеющие аминокислотные последовательности SEQ ID NO:225 и SEQ ID NO:228, соответственно. В изобретении предложены 2 примера гуманизированных зрелых вариабельных областей тяжелой цепи: hu17C12VHV и hu17C12VHV2. В изобретении дополнительно предложены 2 примера зрелых вариабельных областей легкой цепи hu17C12VLv1 и hu17C12VLv2. На фигурах 11 и 12 показано выравнивание вариабельной области тяжелой цепи и вариабельной области легкой цепи, соответственно, мышиного 17C12 и различных гуманизированных антител.

По таким причинам, как возможное влияние на конформацию CDR и/или связывание с антигеном, опосредование взаимодействия между тяжелой и легкой цепями, взаимодействие с константной областью, место для желательной или нежелательной
посттрансляционной модификации, необычный остаток для своего положения в последовательности вариабельной области человека и вследствие этого потенциальной иммуногенности, получение потенциала агрегации и по другим причинам следующие 13 положений каркаса вариабельной области были рассмотрены в качестве кандидатов для замен в 2 примерах зрелых вариабельных областей легкой цепи человека и 2 примерах зрелых вариабельных областей тяжелой цепи человека, как далее указано в примерах: L2 (I2V), L36 (Y36L), L43 (P43S), H1 (Q1E), H2 (V2I), H24 (V24A), H48 (M48I), H67 (V67A), H69 (I69M), H93 (A93T), H94 (R94T), H108 (T108L) и H113 (R113S).

[0616] Здесь, как и в других местах, первый упомянутый остаток является остатком гуманизированного антитела, образованного путем прививки CDR по Kabat или CDR согласно композитному определению по Chothia-Kabat в случае CDR-H1 акцепторному каркасу человека, и второй упомянутый остаток является остатком, рассматриваемым для замены такого остатка. Таким образом, в пределах каркасов вариабельной области первым упомянутым остатком является человеческий, а в пределах CDR первым упомянутым остатком является мышиний.

[0617] Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областях тяжелой и легкой цепей hu17C12VHv1/ hu17C12VLv1, hu17C12VHv1/ hu17C12VLv2, hu17C12VHv2/ hu17C12VLv1, hu17C12VHv2/ hu17C12VLv2.

[0618] Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областей тяжелой цепи hu17C12VHv1 (SEQ ID NO:232) и hu17C12VHv2 (SEQ ID NO:233) с любой из приведенных в качестве примера зрелых вариабельных областей легкой цепи hu17C12VLv1 (SEQ ID NO:234) и hu17C12VLv2 (SEQ ID NO:235).

[0619] В изобретении предложены варианты гуманизированного антитела 17C12, в которых гуманизированная зрелая вариабельная область тяжелой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичности с hu17C12VHv1 (SEQ ID NO:232) или hu17C12VHv2 (SEQ ID NO:233), а гуманизированная зрелая вариабельная область легкой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичность с hu17C12VLv1 (SEQ ID NO:234) или hu17C12VLv2 (SEQ ID NO:235). В некото...

В некоторых гуманизированных антителах 17C12 по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, а L36 занято L в некоторых гуманизированных антителах 17C12 положения L2 и L36 заняты V и L, соответственно.

В некоторых гуманизированных антителах 17C12 по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, L36 занято L, L43 занято P или S.

В некоторых гуманизированных антителах 17C12 положения L2 и L36 в области VL заняты V и L, соответственно, как в hu17C12VLv1. В некоторых гуманизированных антителах 17C12 положения L2, L36 и L43 в области VL заняты V, L и S, соответственно, как в hu17C12VLv2.

В некоторых гуманизированных антителах 17C12 вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 17C12 вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 17C12 каждая из вариабельных областей тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. В некоторых гуманизированных антителах 9F5 три CDR тяжелой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:226, 227 и 10), а
три CDR легкой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:229-231).

[0628] Мышиное антитело 14H3 включает зрелые вариабельные области тяжелой и легкой цепи, имеющие аминокислотные последовательности SEQ ID NO:240 и SEQ ID NO:244, соответственно. В изобретении предложены 2 примера гуманизированных зрелых вариабельных областей тяжелой цепи: hu14H3VHv1 и hu14H3VHv2. В изобретении дополнительно предложены 2 примера зрелых вариабельных областей легкой цепи hu14H3VLv1 и hu14H3VLv2. На фигурах 13 и 14 показано выравнивание вариабельной области тяжелой цепи и вариабельной области легкой цепи, соответственно, мышиного 14H3 и различных гуманизированных антител.

[0629] По таким причинам, как возможное влияние на конформацию CDR и/или связывание с антигеном, опосредование взаимодействия между тяжелой и легкой цепями, взаимодействие с константной областью, место для желательной или нежелательной посттрансляционной модификации, необъяснимый остаток для своего положения в последовательности вариабельной области человека и вследствие этого потенциальной иммуногенности, получение потенциала агрегации и по другим причинам следующие 8 положений каркаса вариабельной области были рассмотрены в качестве кандидатов для замен в 2 примерах зрелых вариабельных областей легкой цепи человека и 2 примерах зрелых вариабельных областей тяжелой цепи человека, как далее указано в примерах: L2 (I2V), L7 (T7S), L37 (L37Q), L87 (Y87F), L100 (G100Q), L104 (V104L), H108 (M108L) и H113 (L113S). Следующее положение CDR вариабельной области было рассмотрено в качестве кандидата на замену в 2 примерах зрелых вариабельных областей тяжелой цепи человека, как далее указано в примерах: H35B (G35BS). В некоторых гуманизированных антителах 14H3 CDR-H1 согласно композитному определению по Kabat-Chothia имеет аминокислотную последовательность, включающую SEQ ID NO:275.

[0630] Здесь, как и в других местах, первый упомянутый остаток является остатком гуманизированного антитела, образованного путем прививки CDR по Kabat или CDR согласно композитному определению по Chothia-Kabat в случае CDR-H1 акцепторному каркасу человека, а второй упомянутый остаток является остатком, рассматриваемым для замены такого остатка. Таким образом, в пределах каркасов вариабельной области первым упомянутым остатком является человеческий, а в пределах CDR первым упомянутым остатком является мышьный.
Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областях тяжелой и легкой цепей hu14H3VHv1/ hu14H3VLv1, hu14H3VHv1/ hu14H3VLv2, hu14H3VHv2/ hu14H3VLv1, hu14H3VHv2/ hu14H3VLv2.

Примеры антител включают любые перестановки или комбинации приведенных в качестве примера зрелых вариабельных областей тяжелой цепи hu14H3VHv1 (SEQ ID NO:248) и hu14H3VHv2 (SEQ ID NO:249) с любой из приведенных в качестве примера зрелых вариабельных областей легкой цепи hu14H3VLv1 (SEQ ID NO:250) и hu14H3VLv2 (SEQ ID NO:251).

В изобретении предложены варианты гуманизированного антитела 14H3, в которых гуманизированная зрелая вариабельная область тяжелой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичности с hu14H3VHv1 (SEQ ID NO:249) или hu14H3VHv2 (SEQ ID NO:250), а гуманизированная зрелая вариабельная область легкой цепи демонстрирует по меньшей мере 90%, 95%, 96%, 97%, 98% или 99% идентичность с hu14H3VLv1 (SEQ ID NO:251) или hu14H3VLv2 (SEQ ID NO:252). В некоторых таких антителах по меньшей мере 1, 2, 3, 4, 5, 6, 7, 8 или все 9 обратных мутаций или других мутаций в SEQ ID NO:249-250 и SEQ ID NO:251-252 сохранены.

В некоторых гуманизированных антителах 14H3 положение H35B в области VH занято S.

В некоторых гуманизированных антителах 14H3 по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H35B занято S, H108 занято M или L, H113 занято L или S.

В некоторых гуманизированных антителах 14H3 положение H35B в области VH занято S, как в hu14H3VHv1. В некоторых гуманизированных антителах 14H3 положения H35B, H108 и H113 в области VH заняты S, L и S, соответственно, как в hu14H3VHv2.

В некоторых гуманизированных антителах 14H3 по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, а L87 занято F. В некоторых гуманизированных антителах 14H3 положения L2 и L87 заняты V и F, соответственно.

В некоторых гуманизированных антителах 14H3 по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, L7 занято T или S, L37 занято L или Q, L87 занято F, L100 занято G или Q, L104 занято V или L.
В некоторых гуманизированных антителах 14НЗ положения L2 и L87 в области VL заняты V и F, соответственно, как в hu14Н3VlV1. В некоторых гуманизированных антителах 14НЗ положения L2, L7, L37, L87, L100 и L104 в области VL заняты V, S, Q, F, Q и L, соответственно, как в hu14Н3VlV2.

В некоторых гуманизированных антителах 14НЗ вариабельная область тяжелой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 14НЗ вариабельная область легкой цепи имеет ≥ 85% идентичности с человеческой последовательностью. В некоторых гуманизированных антителах 14НЗ каждая из вариабельной области тяжелой цепи и вариабельной области легкой цепи имеет ≥ 85% идентичности с последовательностью зародышевой линии человека. В некоторых гуманизированных антителах 14НЗ три CDR тяжелой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:241-243); при условии, что положение H35B занято G или S, а три CDR легкой цепи соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:245-247).

В некоторых гуманизированных антителах 14НЗ CDR-H1 согласно композитному определению по Kabat-Chothia имеет аминокислотную последовательность, включающую SEQ ID NO:275.

Области CDR таких гуманизированных антител 9F5, 10C12, 2D11, 12C4, 17C12 и 14НЗ могут быть идентичными или по существу идентичными областям CDR антител 9F5, 10C12, 2D11, 12C4, 17C12 или 14НЗ. Области CDR могут быть определены согласно любому традиционному определению (например, по Chothia, или композитному определению по Chothia и Kabat), но предпочтительно они соответствуют определению по Kabat.

Положения каркасов вариабельных областей соответствуют нумерации по Kabat, если не указано иное. Другие такие варианты обычно отличаются от последовательностей примеров тяжелых и легких цепей Hu9F5, Hu10C12, Hu12C4, Hu17C12 или Hu14НЗ небольшим количеством (например, обычно не более 1, 2, 3, 5, 10 или 15) замен, делений или вставок. Такие различия обычно возникают в каркасе, но могут также возникать в CDR.

Возможность дополнительных вариаций в гуманизированных вариантах 9F5, 10C12, 2D11, 12C4, 17C12 и 14НЗ представляют собой дополнительные обратные мутации в каркасах вариабельной области. Многие из каркасных остатков, не контактирующих с CDR в гуманизированном mAb, могут вмещать замены аминокислот из соответствующих
положений донорских мышьных mAb или других мышьных или человеческих антител, и даже многие потенциальные остатки, контактирующие с CDR, также поддаются замене. Даже аминокислоты в CDR могут быть изменены, например, остатки, найденные в соответствующем положении акцепторной последовательности человека, используются для снабжения каркасов вариабельных областей. Кроме того, могут быть использованы альтернативные акцепторные последовательности человека, например, для тяжелой и/или легкой цепи. При использовании различных акцепторных последовательностей одну или более обратных мутаций, рекомендованных выше, можно не проводить, так как соответствующие донорские и акцепторные остатки уже являются одинаковыми и без обратных мутаций.

[0645] Предпочтительно, замены или обратные мутации в гуманизированных вариантах 9F5, 10C12, 2D11, 12C4, 17C12 и 14H3 (консервативные или нет) не оказывают существенного влияния на аффинность связывания или мощность гуманизированного mAb, то есть на его способность связываться с тау.

[0646] Гуманизированные антитела 9F5 дополнительно характеризуются способностью связывать фосфорилированный и нефосфорилированный тау, а также неправильно свернутые/агрегированные формы тау.

D. Химерные и венированные антитела

[0647] В изобретении также предложены химерные и венированные формы нечеловеческих антител, в частности антитела 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3 из примеров.

[0648] Химерное антитело представляет собой антитело, в котором зрелые вариабельные области легких и тяжелых цепей нечеловеческого антитела (например, мыши) объединены с константными областями легких и тяжелых цепей человека. Такие антитела по существу или полностью сохраняют специфичность связывания мышьного антитела и примерно на две трети состоят из человеческой последовательности.

нечеловеческому антителу, а каркасы вариабельной области нечеловеческого антитела становятся более подобными человеческим благодаря заменам. В изобретение включены венированные формы антител 9F5, 10C12, 2D11, 12C4, 17C12 и 14H3.

E. Человеческие антитела

[0650] Человеческие антитела, специфически связывающиеся с тау или его фрагментом (например, пептид, включающий или состоящий из аминокислотной последовательности QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277) или (Q/E)IVYK(S/P) (SEQ ID NO:56)), получают с помощью различных методов, описанных ниже. Некоторые человеческие антитела отбирают с помощью экспериментов по конкурентному связыванию, способом фагового дисплея Винтера, описанного выше, или иным способом, чтобы иметь та же эпитопную специфичность, что и конкретное мышиное антитело, например, одно из мышиных моно克莱нальных антител, описанных в примерах. Человеческие антитела также могут быть проверены на специфичность эпитопа с использованием только фрагмента тау, такого как фрагмент тау, содержащий или состоящий из аминокислотной последовательности QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277) или (Q/E)IVYK(S/P) (SEQ ID NO:56) в качестве антигена-мишени, и/или путем скрининга антител в на предмет набора вариантов тау, таких как варианты тау, содержащие различные мутации в аминокислотных остатках 307-312, 391-397 и 391-396 SEQ ID NO:1.

F. Выбор константной области

человеческого IgG1. В некоторых антителах используется мутация в одном или более положениях, 318, 320 и 322 по нумерации EU человеческого IgG1. В некоторых антителах положения 234 н/или 235 замещены аланином н/или положение 329 замещено глицином. В некоторых антителах положения 234 и 235 замещены аланином. В некоторых антителах изотипом является человеческий IgG2 или IgG4.

[0654] Антитела могут экспрессироваться в виде тетramerов, содержащих две легкие и две тяжелые цепи, в виде отдельных тяжелых цепей, легких цепей, в виде Fab, Fab', F(ab')2 и Fv или в виде одноцепочечных антител, в которых вариабельные домены тяжелой и легкой цепи связаны посредством спейсера.

[0655] Человеческие константные области демонстрируют аллотипические вариации и изоаллотипические вариации у разных индивидуумов, то есть константные области могут различаться у разных индивидуумов в одном или более полиморфных положениях. Изоаллотипы отличаются от аллотипов тем, что сыворотки, распознающие изоаллотипы, связываются с неполиморфной областью одного или более других изотипов. Так, например, другая константная область тяжелой цепи представляет собой G1m3 IgG1 с C-концевым лизином или без него. Ссылка на константную область человека включает константную область с любым природным аллотипом или любую перестановку остатков, занимающих положения в природных аллотипах.

G. Экспрессия рекомбинантных антител

[0656] Известен ряд способов получения химерных и гуманизированных антител с использованием линии клеток, экспрессирующих антитела (например, гибриды). Например, вариабельные области иммуноглобулина антител можно клонировать и секвенировать с использованием хорошо известных способов. В одном способе вариабельную область VH тяжелой цепи клонируют с помощью OT-ПЦР с использованием мРНК, полученной из клеток гибридов. Консенсусные праймеры используют для лидерного пептида области VH, охватывающего кодон иницииации трансляции в качестве 5'-праймера и 3'-праймера, специфичного для константных областей g2b. Примеры праймеров описаны в патентной публикации США US 2005/0009150 Schenk et al. (далее «Schenk»). Последовательности из нескольких независимо полученных клонов можно сравнивать, чтобы гарантировать отсутствие изменений во время амплификации. Последовательность области VH также может быть определена или подтверждена секвенированием фрагмента VH, полученного с помощью методологии OT-ПЦР с 5'-RACE (быстрая амплификация концов кДНК) и праймера, специфичного для 3'g2b.
Аналогичным образом можно клонировать вариабельную область VL легкой цепи. В одном подходе набор консенсусных праймеров сконструирован для аmplификации областей VL с использованием 5'-праймера, сконструированного для гибридизации с областью VL, содержащей кодон инициации трансляции, и 3'-праймером, специфичным для области Сk, расположенной ниже области соединения V-J. Во втором подходе методология OT-ПЦР с 5'-RACE используется для клонирования кДНК, кодирующей VL. Примеры праймеров описаны у Schenk, выше. Затем клонированные последовательности объединяют с последовательностями, кодирующими константные области человека (или других видов, не относящихся к человеку).

В одном подходе вариабельные области тяжелой и легкой цепей реконструируют для кодирования донорных последовательностей спайсинга ниже соответствующих соединений VDJ или VJ и клонируют в вектор экспрессии млекопитающих, такой как pCMV-hy1 для тяжелой цепи и pCMV-Mcl для легкой цепи. Эти векторы кодируют константные области γ1 и Сk человека в виде экзонных фрагментов ниже вставленной кассеты вариабельной области. После проверки последовательности векторы экспрессии тяжелой цепи и легкой цепи можно котрансформировать в клетки СНО для получения химерных антител. Кондиционированные среды собирают через 48 часов после трансфекции и анализируют вестерн-блоттингом на предмет продукции антител или проводят твердофазный ИФА на предмет связывания антигена. Химерные антитела гуманизируют, как описано выше.

Химерные, венированные, гуманизированные антитела и антитела человека обычно получают путем рекомбinantной экспрессии. Рекомбинантные полинуклеотидные конструкции обычно включают последовательность контроля экспрессии, функционально связанную с кодирующими последовательностями цепей антител, включая естественно связанные или гетерологичные элементы контроля экспрессии, такие как промотор. Последовательности контроля экспрессии могут быть промоторными системами в векторах, способных трансформировать или трансформировать эукариотические или прокариотические клетки-хозяева. Как только вектор будет включен в соответствующего хозяина, для этого хозяина поддерживают такие условия, которые подходят для высокого уровня экспрессии нуклеотидных последовательностей, а также для сбора и очистки перекрестно реагирующих антител.

Данные векторы экспрессии, как правило, являются воспроизводимыми в организме-хозяине в виде эписом или в качестве составляющей части хромосомной ДНК хозяина. Обычно экспрессирующие векторы содержат маркеры селекции, например,
устойчивости к ампициллину или устойчивости к гигромицину, чтобы обеспечить обнаружение этих клеток, трансформированных желаемыми последовательностями ДНК.

[0661] *E. coli* является прокариотическим хозяином, применимым для экспрессии антител, особенно фрагментов антител. Для экспрессии можно также использовать другие микроорганизмы, такие как дрожжи. *Saccharomyces* представляет собой дрожжевой хозяин с подходящими векторами, имеющими последовательности контроля экспрессии, точку начала репликации, последовательности терминации и тому подобное, если желательно. К типичным промоторам относится 3-фосфоглицераткиназа и другие гликолитические ферменты. К индуцируемым дрожжевым промоторам относятся, среди прочих, промоторы из алкогольдегидрогеназы, изоцитохрома С и ферментов, которые отвечают за использование мальтозы и галактозы.

[0663] Альтернативно, кодирующие последовательности антител могут быть включены в трансгены для введения в геном трансгенного животного и последующей экспрессии в молоке трансгенного животного (см., например, патент США № 5 741 957; патент США № 5 304 489 и патент США № 5 849 992). Подходящие трансгены включают кодирующие последовательности для легких и/или тяжелых цепей, функционально связанных с промотором и энхансером из гена, специфичного для молочной железы, такого как казеин или бета-лактоглобулин.

[0664] Векторы, содержащие представляющие интерес сегменты ДНК, могут быть перенесены в клетку-хозяин способами, зависящими от типа клетки-хозяина. Например,
трансфекция хлоридом кальция обычно используется для прокариотических клеток, тогда как обработка фосфатом кальция, электропорация, липоферция, биолистика или трансфекция на основе вирусов могут использоваться для других клеток-хозяев. Другие способы, используемые для трансформации клеток млекопитающих, включают использование полибренна, слияния пропилластов, липосомы, электропорацию и микроинъекцию. Для получения трансгенных животных трансгены можно микроинъектировать в оплодотворенные ооциты или они могут быть включены в геном эмбриональных стволовых клеток или индуцированных линий стволовых клеток (ИПСК), а ядра таких клеток переносятся в энуклеированные ооциты.

[0665] После введения вектора(-ов), кодирующего(-их) тяжелую и легкую цепи антитела, в культуру клеток, пузы клеток могут быть проверены на продуктивность роста и качество продукта в бессывороточной среде. Пузы высокопродуцирующих клеток затем могут быть подвергнуты клонированию отдельных клеток на основе FACS для создания моноклональных линий. Можно использовать удельную продуктивность выше 50 или 100 пг на клетку в день, что соответствует титрам продукта выше 7,5 т/л культуры. Антитела, полученные из клонов отдельных клеток, могут быть также протестированы на мутность, фильтрационные свойства, посредством ПААГ, ИФ, УФ-сканирования, ВЭЭХ, картирования углеводов-олигосахаридов, масс-спектрометрии и анализа связывания, например, твердофазного ИФА или Biacore. Выбранный клон затем можно поместить в банк в нескольких фланках и хранить в замороженном виде для последующего применения.

[0666] После экспрессии антитела могут быть очищены в соответствии со стандартными процедурами в данной области, включая захват протеина A, очистку ВЭЖХ, колоночную хроматографию, гель-электрофорез и т.п. (см. в целом, Scopes, Protein Purification (Springer-Verlag, NY, 1982)).

[0667] Может быть использована методология коммерческого производства антител, включая оптимизацию кодонов, выбор промоторов, выбор элементов транскрипции, выбор терминаторов, бессывороточное клонирование одноклеточных, банкинг клеток, использование маркеров селекции для усиления числа копий, терминатора СНО или улучшения титра белка (см., например, US 5 786 464; US 6 114 148; US 6 063 598; US 7 569 339; W02004/050884; W02008/012142; W02008/012142; W02005/019442; W02008/107388; W02009/027471; и US 5 888 809).
IV. Активные иммуногены

[0668] Средство, используемое для активной иммунизации, служит для индукции у пациента тех же типов антител, которые описаны выше в связи с пассивной иммунизацией. Средствами, используемыми для активной иммунизации, могут быть те же типы иммуногенов, которые используются для генерации моно克莱альных антител у лабораторных животных, например, пептид из 3-15, или 3-12, или 5-12, или 5-8 смежных аминокислот из области тау, соответствующие остаткам 307-312 или 391-397 или 391-396 SEQ ID NO:1, такие как, например, тау-пептид, включающий или состоящий из остатков 307-312, 391-397 или 391-396 SEQ ID NO:1) или тау-пептид, содержащий или состоящий из аминокислотной последовательности QIVYKR (SEQ ID NO:57), тау-пептид, содержащий или состоящий из аминокислотной последовательности EIVYKSP (SEQ ID NO: 58), тау-пептид, содержащий или состоящий из кислотная последовательность EIVYKS (SEQ ID NO:277) или тау-пептид, содержащий или состоящий из аминокислотной последовательности (Q/E)IVYK(S/P) (SEQ ID NO:56). Для индукции связывания антител с тем же или перекрывающимся эпитопом, что и 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3, эпитопная специфичность этих антител может быть картирована (например, путем тестирования связывания с серией перекрывающихся пептидов, охватывающих тау). Затем в качестве иммуногена можно использовать фрагмент тау, содержащий из эпитопа, включающий или перекрывающий его. Такие фрагменты обычно используются в неfosфорилированной форме.

[0669] Гетерологический носитель и адъювант, если они используются, могут быть такими же, как используемые для получения моно克莱альных антител, но также могут быть выбраны для лучшей фармако-биологической пригодности для использования у людей. Подходящие носители включают сывороточные альбумины, гемоцитаны лимфы улитки, молекулы иммуноглобулина, тиреоглобулина, яичный альбумин, столбнячный антитоксин или антитоксин других патогенных бактерий, таких как дифтерия (например, CRM197), E. coli, холера или H. pylori, или производное аттенуированного токсина. Эпитопы T-клеток также являются подходящими молекулами-носителями. Некоторые конъюгаты могут быть образованы путем связывания средств по изобретению с иммуностимулирующей полимерной молекулой (например, трипальмитоил-S-глицирин цистеином (Pam3Cys), маннаном (полимер маннозы) или глюканом (полимер β 1→2)), цитокинами (например, IL-1, IL-1 альфа и β пептиды, IL-2, γ-INF, IL-10, ГМ-КСФ) и хемокинами (например, MIP1-α и β и RANTES). Иммуногены могут быть связаны с носителями с помощью аминокислот-спейсёров или без них (например, gly-gly). Дополнительные носители

как качестве компонента терапевтической композиции с активным средством или их можно вводить отдельно, до, одновременно или после введения терапевтического средства.

[0672] Пептиды (и необязательно носитель, слитый с пептидом) также можно вводить в форме нуклеиновой кислоты, кодирующей пептид и экспрессируемой in situ у пациента. Сегмент нуклеиновой кислоты, кодирующий иммуноген, обычно связан с регуляторными элементами, такими как промотор и энхансер, которые обеспечивают экспрессию сегмента ДНК в намеченных клетках-мишениях пациента. Для экспрессии в клетках крови, что желательно для индукции иммунного ответа, элементы промотора и энхансера из генов иммуноглобулинов легкой или тяжелой цепи или главного промежуточного раннего промотора и энхансера CMV подходят для направления экспрессии. Связанные регуляторные элементы и кодирующие последовательности часто клонируются в вектор. Антитела также можно вводить в форме нуклеиновых кислот, кодирующих тяжелую и/или легкую цепь антитела. Если присутствуют как тяжелая, так и легкая цепи, тогда цепи предпочтительно связаны как одноцепочечное антитело. Антитела для пассивного введения также можно получить, например, с помощью аффинной хроматографии из сыворотки пациентов, получавших пептидные иммуногены.

[0594] Векторы или их сегменты, кодирующие тяжелую и/или легкую цепь антитела, могут быть включены в клетки ex vivo, например, в клетки, экспланттированные от отдельного пациента (например, лимфоциты, аспираты костного мозга, биопсия ткани) или универсальные донорские гематопоэтические стволовые клетки с последующей повторной имплантацией клеток пациенту, обычно после отбора клеток, в которые включены трансгены (см., например, WO 2017/091512). Примеры клеток, полученных от пациента, включают полученные от пациента индуцированные плорипотентные стволовые клетки (ИПСК) или другие типы стволовых клеток (эмбриональные, гематопоэтические, нервные или мезенхимальные).

[0594] Вектор или его сегмент, кодирующий тяжелую и/или легкую цепь антитела, можно ввести в любую представляющую интерес область в клетках ex vivo, такую как ген альбумина или другой ген «безопасного убежища». Клетки, включающие вектор, можно имплантировать с предварительной дифференцировкой или без нее. Клетки можно имплантировать в конкретную ткань, такую как секреторная ткань или место патологии, или системно, например, путем инфузии в кровь. Например, клетки можно имплантировать в секреторную ткань пациента, такую как печень, необязательно с предварительной дифференцировкой в клетки, присутствующие в этой ткани, такие как гепатоциты в случае печени. Экспрессия антитела в печени приводит к секреции антитела в кровь.
H. Скрининговые анализы антител

[0675]Первоначально антитела можно подвергнуть скринингу на предмет предполагаемой специфичности связывания, как описано выше. Активные иммуногены также могут быть проверены на способность индуцировать антитела с такой специфичностью связывания. В этом случае активный иммуноген используется для иммунизации лабораторного животного, а полученные сыворотки тестируются на соответствующую специфичность связывания.

[0676]Затем антитела, обладающие желаемой специфичностью связывания, можно тестировать на клеточных и животных моделях. Клетки, используемые для такого скрининга, предпочитительно представляют собой нейрональные клетки. Сообщалось о клеточной модели патологии тау, в которой клетки нейробластомы трансформируют доменом с четырьмя повторами тау, необязательно с мутацией, связанной с патологией тау (например, дельта K280, см. Khlistunova, Current Alzheimer Research 4, 544-546 (2007)). В другой модели тау индуцируется в клеточной линии нейробластомы N2a путем добавления доксициклина. Клеточные модели позволяют изучать токсичность тау для клеток в растворимом или агрегированном состоянии, появление агрегатов тау после включения экспрессии гена тау, растворение агрегатов тау после повторного выключения экспрессии гена и эффективность антител в ингибировании образования агрегатов тау или их дезагрегации.

[0677]Антитела или активные иммуногены также можно подвергать скринингу на трансгенных животных моделях заболеваний, ассоциированных с тау. Такие трансгенные животные могут включать трансген тау (например, любую из изоформ человека) и, необязательно, трансген APP человека среди прочего, например, киназу, фосфорилирующую тау, ApoE, пресенилин или альфа-синуклеин. Такие трансгенные животные склонны к развитию по меньшей мере одного признака или симптома заболевания, ассоциированного с тау.

протекает постепенно. У мышей развиваются нейрофибриллярные клубки в нескольких областях головного мозга и спинного мозга, что полностью включено в настоящий документ посредством ссылок). Это отличная модель для изучения последствий развития клубков и для скринингового лечения, которое может ингибировать образование этих агрегатов. Еще одним преимуществом этих животных является относительно раннее начало патологии. В гомозиготной линии поведенческие аномалии, связанные с патологией тау, могут наблюдаться по меньшей мере уже через 3 месяца, но животные остаются относительно здоровыми по меньшей мере до 8-месячного возраста. Другими словами, в 8 месяцев животные передвигаются, едят и могут достаточно хорошо выполнять поведенческие задачи, чтобы можно было контролировать эффект лечения. Активная иммунизация этих мышей в течение 6-13 месяцев с помощью AI с KLH-PHF-1 дала титры около 1000 и показала меньшее количество нейрофибриллярных клубков, меньше pSer422 и меньшую потерю массы тела по сравнению с необработанными контрольными мышами.

[0679]Активность антител или активных средств можно оценить по различным критериям, включая снижение количества общего тау или фосфорилированного тау, снижение других патологических характеристик, таких как отложения амилоида Аβ, а также ингибитирование или задержку, или поведенческие нарушения. Активные иммуногены также можно тестировать на индукцию антител в сыворотках. Как пассивные, так и активные иммуногены можно тестировать на прохождение антител через гематоэнцефалический барьер в головной мозг трансгенных животных. Антитела или фрагменты, индуцирующие антитело, также можно тестировать на нечеловеческих приматах, у которых естественным путем или путем индукции развиваются симптомы заболеваний, характеризующихся тау. Тесты антитела или активного средства обычно проводят в сочетании с контролем, в котором проводят параллельный эксперимент, за исключением того, что антитело или активное средство отсутствуют (например, замены носителем). Снижение, задержка или ингибитирование признаков или симптомов заболевания, связанных с тестируемым антителом или активным средством, затем могут быть оценены относительно контроля.

V. Пациенты, поддающиеся лечению

[0680]Наличие нейрофибриллярных клубков было обнаружено при ряде заболеваний, включая болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичную возрастную таупатию, постэнцефалитный паркинсонизм, посттравматическую деменцию или деменцию боксеров, болезнь Пика, болезнь...
Нимана — Пика типа С, надъядерный парадич, лобно-височную деменцию, лобно-височную лобарную дегенерацию, заболевание, характеризующееся появлением аргиофильных зерен, глубулярную глиальную таупатию, боковой амнотрофический склероз/комплекс паркинсонизм-деменция Гуама, кортикобазальную дегенерацию (КБД), деменцию с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническую травматическую энцефалопатию (ХТЭ), глубулярную глиальную таупатию (ГГТ), болезнь Паркинсона или прогрессирующий надъядерный парадич (ПНП). Настоящие схемы также можно использовать для лечения или профилактики любого из этих заболеваний. Из-за широко распространенной связи между неврологическими заболеваниями и состояниями, а также тау, настоящие схемы могут использоваться для лечения или профилактики любого субъекта, у которого наблюдаются повышенные уровни тау или фосфорилированного тау (например, в СМЖ) по сравнению со средним значением у индивидуумов без неврологических заболеваний. Настоящие схемы также можно использовать для лечения или профилактики неврологического заболевания у индивидуумов, имеющих мутацию тау, ассоциированную с неврологическим заболеванием. Настоящие способы особенно подходят для лечения или профилактики болезни Альцгеймера, особенно у пациентов.

[0681] Пациенты, поддающиеся лечению, включают индивидуумов с риском развития заболевания, но не демонстрирующих симптомы, а также пациентов, у которых в настоящее время проявляются симптомы. К пациентам с риском развития заболевания относятся пациенты с известным генетическим риском развития заболевания. К таким индивидуумам относятся те, у кого есть родственники, перенесшие данное заболевание, и те, риск у которых определяется анализом генетических или биохимических маркеров. Генетические маркеры риска включают мутации тау, такие как те, что обсуждались выше, а также мутации в других генах, ассоциированных с неврологическим заболеванием. Например, аллель ApoE4 в гетерозиготной и тем более гомозиготной форме ассоциируется с риском развития болезни Альцгеймера. Другие маркеры риска развития болезни Альцгеймера включают мутации в гене APP, в частности, мутации в положении 717 и положениях 670 и 671, называемые мутацией Харди и шведской мутацией, соответственно, мутации в генах пресенилина, PS1 и PS2, БА, гиперхолестеринемия или атеросклероз в семейном анамнезе. Индивидуумов, страдающих в настоящее время болезнью Альцгеймера, можно распознать с помощью ПЭТ-визуализации по характерной деменции, а также по наличию факторов риска, описанных выше. Кроме того, доступен ряд диагностических тестов для выявления индивидуумов с БА. Они включают измерение...
уровней тау или фосфо-тау в СМЖ и Аβ42. Повышенные уровни тау или фосфо-тау и пониженные уровни Аβ42 указывают на наличие БА. Некоторые мутации, ассоциированные с болезнью Паркинсона, Ala30Pro или Ala53 или мутации в других генах, ассоциированных с болезнью Паркинсона, таких как киназа с высоким содержанием лейцина, PARK8. Индивидуумам также может быть поставлен диагноз любого из неврологических заболеваний, упомянутых выше, по критериям DSM IV TR (Диагностическое и статистическое руководство по психическим расстройствам, четвертая редакция, пересмотренная).

У бессимптомных пациентов лечение можно начинать в любом возрасте (например, 10, 20, 30). Однако обычно нет необходимости начинать лечение до достижения пациентом возраста 40, 50, 60 или 70 лет. Лечение, как правило, предполагает прием нескольких доз в течение определенного периода времени. За лечением можно осуществлять мониторинг, анализируя уровни антител с течением времени. Если ответ падает, назначается введение бестерной дозы. В случае потенциальных пациентов с синдромом Дауна лечение можно начинать в предродовой период с введения терапевтического средства матери или вскоре после рождения.

I. Нуклеиновые кислоты

В изобретении дополнительно предложены нуклеиновые кислоты, кодирующие любую из тяжелых и легких цепей, описанных выше (например, SEQ ID NO:7, SEQ ID NO:11, SEQ ID NO:15-22, SEQ ID NO:23-29, 61-108, 109-129, 130-171, 214-217, 219, 221-224, 225, 228, 232-235, 240, 244 и 248-251). Необходимо, чтобы нуклеиновые кислоты дополнительно кодируют сигнальный пептид и могут быть экпрессированы сигнальным пептидом, связанным с вариабельной областью. Кодирующие последовательности нуклеиновых кислот могут быть функционально связаны с регуляторными последовательностями для обеспечения экспрессии кодирующих последовательностей, таких как промотор, энхансер, сайт связывания ribosомы, сигнал терминации транскрипции и т.п. Регуляторные последовательности могут включать промотор, например, прокарциотический промотор или эукарциотический промотор. Нуклеиновые кислоты, кодирующие тяжелые или легкие цепи, могут быть оптимизированы по кодонам для экспрессии в клетке-хозяине. Нуклеиновые кислоты, кодирующие тяжелые и легкие цепи, могут кодировать выбранный ген. Нуклеиновые кислоты, кодирующие тяжелые и легкие цепи, могут находиться в выделенной форме или могут быть клонированы в один или более векторов. Нуклеиновые кислоты можно синтезировать, например, твердофазным синтезом или ПЦР перекрывающихся олигонуклеотидов. Нуклеиновые
кислоты, кодирующие тяжелую и легкую цепи, могут быть соединены как одна непрерывная нуклеиновая кислота, например, в векторе экспрессии, или могут быть отдельными, например, каждая клинирована в свой собственный вектор экспрессии.

J. Конъюгированные антитела

[0684] Конъюгированные антитела, которые специфически связываются с антителами, такими как тау, применимы для выявления наличия тау; мониторинга и оценки эффективности терапевтических средств, используемых для лечения пациентов, у которых диагностированы болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный паралич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появлением аргирофильных зерен, глобулярная глиальная тауопатия, боковой амиотрофический склероз/комплекс паркинсонизма-деменция Гуама, кортикобазальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХЭ), глобулярная глиальная тауопатия (ГТТ), болезнь Паркинсона или прогрессирующий надъядерный паралич (ПНП); ингибирования или уменьшения агрегации тау; ингибирования или уменьшения образования фибрилла тау; уменьшения или очищения отложений тау; стабилизации нетоксичных конформаций тау; лечения или профилактики болезни Альцгеймера, синдрома Дауна, легкого когнитивного нарушения, первичной возрастной тауопатии, постэнцефалитного паркинсонизма, посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана — Пика типа С, надъядерного паралича, лобно-височной деменции, лобно-височной лобарной дегенерации, заболевания, характеризующегося появлением аргирофильных зерен, глобулярной глиальной тауопатии, бокового амиотрофического склероза/комплекса паркинсонизма-деменция Гуама, кортикобазальной дегенерации (КБД), деменции с тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической травматической энцефалопатии (ХЭ), глобулярной глиальной тауопатии (ГТТ), болезни Паркинсона или прогрессирующего надъядерного паралича (ПНП). Например, такие антитела можно конъюгировать с другими терапевтическими соединениями, другими белками, другими антителами и/или детектируемыми метками. См. WO 03/057838; US 8 455 622. Такие терапевтические соединения могут представлять любое средство, которое может быть использовано для лечения, борьбы, облегчения, предотвращения или улучшения нежелательного состояния или заболевания у пациента, такого как болезнь
Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный парадич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появлением аргирофильных зерен, глобулярная глиальная тауопатия, боковой амитрофический склероз/комплекс паркинсонизм-деменция Гуама, кортикалисберальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХТЭ), глобулярная глиальная тауопатия (ГТТ), болезнь Паркинсона или прогрессирующий надъядерный парадич (ПНП).

[0685] Конъюгированные терапевтические соединения могут включать цитотоксические средства, цитостатические средства, нейротрофические средства, нейропротекторы, радиотерапевтические средства, радиоактивные (радиофармацевтические), флюоресцентные, парамагнитные индикаторы, ультразвуковые контрастные агенты, иммуномодуляторы или любые биологически активные средства, которые способствуют или усиливают активность антител, или изменяют биодоступность и распределение в организме или внутри органов. Цитотоксическое средство может представлять собой любое средство, токсичное для клетки. Цитостатическое средство может представлять собой любое средство, подавляющее пролиферацию клеток. Нейротрофическое средство может представлять собой любое средство, включая химические или белковые средства, которое способствует поддержанию, росту или дифференцировке нейронов. Нейропротективное средство может представлять собой любое средство, включая химические или белковые средства, которое защищает нейроны от острого поражения или дегенеративных процессов. Иммуномодулятор может представлять собой любое средство, которое стимулирует или ингибирует развитие или поддержание иммунологического ответа. Радиотерапевтическое средство может представлять собой любую молекулу или соединение, изучающее излучение. Если такие терапевтические фрагменты связаны с тау-специфическим антителом, таким как антитела, описанные в данном документе, связанные терапевтические фрагменты будут иметь специфическую аффинность к клеткам, пораженным тау-ассоциированным заболеванием по сравнению с нормальными клетками. Следовательно, введение конъюгированных антигенов напрямую нацелено на раковые клетки с минимальным повреждением окружающей нормальной здоровой ткани. Это может быть особенно полезно для терапевтических соединений, которые являются
слишком токсичными при введении отдельно. Кроме того, можно использовать меньшие количества терапевтических соединений.

[0688] Некоторые такие антитела могут быть связаны с другими терапевтическими соединениями. Такие терапевтические соединения могут быть, например, цитотоксическими, цитостатическими, нейротрофическими или нейропротективными. Например, антитела можно конъюгировать с токсичными химотерапевтическими лекарственными средствами, такими как майтанзин, гелданамицин, ингибиторами тубулина, такими как средство, связывающие тубулин (например, ауристатины), или средствами, связывающими малые бороздки, такими как калихеамицин. Другие репрезентативные терапевтические соединения включают средства, известные как применяемые для лечения, контроля или облегчения болезни Альцгеймера, синдрома Дауна, легкого когнитивного нарушения, первичной возрастной гауспатии,
постэнцефалитного паркинсонизма, посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана — Пика типа С, надъядерного паралича, лобно-височной деменции, лобно-височной лобарной дегенерации, заболевания, характеризующегося появлением аргиропильных зерен, глобулярной глиальной тауопатии, бокового амиотрофического склероза/комплекса паркинсонизма-деменция Гуама, кортикобазальной дегенерации (КБД), деменции с тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической травматической энцефалопатии (ХТЭ), глобулярной глиальной тауопатии (ГГТ), болезни Паркинсона или прогрессирующего надъядерного паралича (ПНП).

[0690] Описанные в данном документе антитела также могут быть связаны или конъюгированы с одним или более другими антителами (например, с образованием гетероконъюгатов антител). Такие другие антитела могут связываться с разными эпитопами внутри тау или могут связываться с другим антигеном-мишенью.

[0691] Антитела также могут быть связаны с детектируемой меткой. Такие антитела могут быть использованы, например, для диагностики болезни Альцгеймера, синдрома Дауна, легкого когнитивного нарушения, первичной возрастной тауопатии, постэнцефалитного паркинсонизма, посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана — Пика типа С, надъядерного паралича, лобно-височной деменции,
лобно-височной лобарной дегенерации, заболевания, характеризующегося появлением аргирофильных зерен, глоублярной глиальной тауопатии, бокового амнотрофического склероза/комплекса паркинсонизма-деменция Гуама, кортикобазальной дегенерации (КБД), деменции с тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической травматической энцефалопатии (ХТЭ), глоублярной глиальной тауопатии (ГГ), болезни Паркинсона или прогрессирующего надъядерного паралича (ПНП), и/или для оценки эффективности лечения. Такие антитела особенно применимы при проведении таких определений у субъектов, страдающих или предрасположенных к развитию таких заболеваний как болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный паралич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появлением аргирофильных зерен, глоублярная глиальная тауопатия, боковой амнотрофический склероз/комплекс паркинсонизма-деменция Гуама, кортикобазальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХТЭ), глоублярная глиальная тауопатия (ГГ), болезнь Паркинсона или прогрессирующий надъядерный паралич (ПНП), или в соответствующих биологических образцах, полученных от таких субъектов. Репрезентативные детектируемые метки, которые могут быть слиты или связаны с антителом, включают различные ферменты, такие как пероксидаза хrena, щелочная фосфатаза, бета-галактозидаза или ацетилхолинэстераза; простетические группы, такие как стрептавидин/биотин и авидин/биотин; флуоресцентные материалы, такие как умбеллиферон, флуоресцен, флуоресценизотиоцианат, родамин, дихлортриазиниламин, флуоресцен, динфилхлорид или фикоэритрин; люминесцентные материалы, такие как люминол; биолюминесцентные материалы, такие как люцифераза, люциферин и эквивор; радиоактивные материалы, такие как радиоактивное серебро-111, радиоактивное серебро-199, висмут-213, йод (131I, 125I, 123I, 121I), углерод (14C), сера (35S), трийди (3H), индий (115In, 113In, 112In, 111In), технеций (99Tc), таллий (201Tl), галлий (68Ga, 67Ga), палладий (103Pd), молибден (99Mo), ксенон (133Xe), фтор (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru, 68Ge, 57Co, 65Zn, 85Sr, 32P, 153Gd, 169Yb, 51Cr, 54Mn, 75Se, 113Sn и 117In; позитронно-активные металлы с использованием различных позитронно-эмиссионных томографов; нераdioактивные парамагнитные ионы металлов; и молекулы, которые помечены радиоактивными изотопами или конъюгированы с конкретными радиоизотопами.

VI. Фармацевтические композиции и способы применения

В профилактических целях антитело или средство для индукции антитела или фармацевтическую композицию вводят пациенту, воспринимчивому к заболеванию или имеющему другой риск развития заболевания (например, болезни Альцгеймера), по схеме (доза, частота и путь введения), эффективной для снижения риска, уменьшения тяжести или отсрочки появления по меньшей мере одного признака или симптома заболевания. В частности, схема предпочтительно является эффективной в отношении ингибирования или задержки тау или фосфо-тау и парных нитей, образованных из него в головном мозге,
и/или ингибирования или задержки его токсических эффектов и/или ингибирования/или задержки развития поведенческих нарушений. В терапевтических целях антитело или средство для индукции антитела, вводят пациенту с подозрением на наличие или уже страдающему заболеванием (например, болезнью Альцгеймера) по схеме (доза, частота и путь введения), эффективной для облегчения или по меньшей мере препятствования дальнейшему ухудшению по меньшей мере одного признака или симптома заболевания. В частности, схема предпочтительно является эффективной для снижения или по меньшей мере ингибирования дальнейшего повышения уровней тау, фосфор-тау или парных нитей, образовывающих из него, ассоциированных с ними токсичностей и/или поведенческих нарушений.

[0695] Схема считается терапевтически или профилактически эффективной, если у отдельного получавшего лечение пациента достигается более благоприятный результат, чем средний результат в контрольной популяции сопоставимых пациентов, не получавших лечение способами по изобретению, или если более благоприятный результат демонстрируется у получавших лечение пациентов по сравнению с контрольными пациентами в контролируемом клиническом исследовании (например, исследовании фазы II, фазы II/III или фазы III), на уровне р <0,05, 0,01 или даже 0,001.

[0696] Эффективные дозы варьируются в зависимости от многих различных факторов, таких как способы введения, целевой участок, физиологическое состояние пациента, является ли пациент носителем ApoE, является ли пациент человеком или животным, вводимые другие лекарственные препараты и является ли лечение профилактическим или терапевтическим.

[0697] Примеры диапазонов дозировки антител составляют от около 0,01 до 60 мг/кг, или от около 0,1 до 3 мг/кг, или 0,15–2 мг/кг, или 0,15–1,5 мг/кг массы тела пациента. Антитело можно вводить в таких дозах ежедневно, через день, ежедневно, раз в две недели, ежемесячно, ежеквартально или по любому другому графику, определенному эмпирическим анализом. Пример лечения предполагает введение нескольких дозированных форм в течение длительного периода времени, например, в течение по меньшей мере шести месяцев. Дополнительные примеры схем лечения предполагают введение один раз каждые две недели, или один раз в месяц, или один раз в каждые 3–6 месяцев.

[0698] Количество средства для активного введения варьируется от 0,1-500мг на пациента и более обычно от 1-100 или 1-10мг на инъекцию для введения человеку. Время введения
инъекций может значительно варьироваться от одного раза в день до одного раза в год и одного раза в десять лет. Типичная схема состоит из иммунизации с последующими повторными инъекциями через определенные промежутки времени, например, 6 недель или два месяца. Другая схема состоит из иммунизации с последующими повторными инъекциями через 1, 2 и 12 месяцев. Другая схема предполагает введение каждые два месяца пожизненно. В качестве альтернативы бустерные инъекции могут быть нерегулярными, на что указывает мониторинг иммунного ответа.

[0699] Антитела или средства для индукции антител предпочтительно вводят периферическим путем (т. е. таким, при котором введенное или индуцированное антитело пересекает гематоэнцефалический барьер, чтобы достичь намеченного участка в головном мозге. Пути введения включают местное, внутривенное, пероральное, подкожное, внутрисердечное, внутричерепное, интраназальное, внутриглазное, внутрикожное или внутримышечное. Некоторыми путями введения антител являются внутривенной и подкожный. Некоторыми путями активной иммунизации являются подкожный и внутримышечный. Этот тип инъекции чаще всего выполняется в мышцы руки или ноги. В некоторых способах средства вводят непосредственно в конкретную ткань, где накопились отложения, например, посредством внутримышечной инъекции.

[0700] Фармацевтические композиции для парентерального введения предпочитительно являются стерильными и практически изотоническими и производятся в условиях, соответствующих требованиям GMP. Фармацевтические композиции могут быть представлены в единичной лекарственной форме (т. е. дозированной форме для однократного введения). Фармацевтические композиции могут быть составлены с использованием одного или более физиологически и фармацевтически приемлемых носителей, разбавителей, экскipients и вспомогательных веществ. Лекарственный состав зависит от выбранного пути введения. Для инъекции антитела могут быть составлены в водных растворах, предпочитительно в физиологически совместимых буферах, таких как раствор Хэнка, раствор Рингерра или физиологический раствор или ацетатный буфер (для уменьшения дискомфорта в месте инъекции). Раствор может содержать составные вещества, такие как суспендирующие, стабилизирующие и/или диспергирующие вещества. В качестве альтернативы, антитела могут быть лиофилизированы для смешивания с подходящим носителем, например, стерильной апирогенной водой, перед применением.

Антитела вводят по эффективной схеме, означающей дозировку, путь введения и частоту введения, которые задерживают начало, уменьшают тяжесть, ингибируют дальнейшее ухудшение и/или облегчают по меньшей мере один признак или симптом заболевания, подлежащего лечению. Если пациент уже страдает заболеванием, схему можно назвать терапевтически эффективной схемой. Если пациент находится в группе повышенного риска развития заболевания по сравнению с популяцией в целом, но еще не испытывает симптомов, схему можно назвать профилактически эффективной. В некоторых случаях терапевтическая или профилактическая эффективность может наблюдаться у отдельного пациента относительно контроля истории болезни или прошлого опыта применения у того же пациента. В других случаях терапевтическая или профилактическая эффективность может быть продемонстрирована в доклиницических или клинических испытаниях на популяции получавших лечение пациентов по сравнению с контрольной популяцией не получавших лечение пациентов.

Примерами дозировок антитела являются 0,1-60 мг/кг (например, 0,5, 3, 10, 30 или 60 мг/кг) или 0,5-5 мг/кг массы тела (например, 0,5, 1, 2, 3, 4 или 5 мг/кг) или 10-4000 мг или 10-1500 мг в виде фиксированной дозировки. Помимо прочих факторов дозировка зависит от состояния пациента и ответа на предшествующее лечение, если таковое проводилось, от того, является ли лечение профилактическим или терапевтическим, а также от того, является ли заболевание острым или хроническим.

Введение может быть парентеральным, внутривенно, пероральным, подкожным, внутриартериальным, внутричерепным, интратекальным, внутрибрюшинным, местным, интраназальным или внутримышечным. Некоторые антитела можно вводить в системный кровоток путем внутривенно или подкожного введения. Внутривенное введение может осуществляться, например, посредством инфузии в течение периода, например, 30-90 мин.

Частота введения, среди прочих факторов, зависит от периода полужизни антитела в кровотоке, состояния пациента и пути введения. Частота может быть следующей: ежедневно, еженедельно, ежемесячно, ежеквартально или с нерегулярными интервалами в...
ответ на изменения в состоянии пациента или прогрессирование заболевания, которое подлежит лечению. Примером частоты внутривенноного введения является диапазон от еженедельного до ежеквартального в зависимости от продолжительной причины лечения, хотя также возможно более или менее частое дозирование. Для подкожного введения примерная частота дозирования составляет от ежедневного до ежемесячного, хотя также возможно более или менее частое дозирование.

[0706] Количествово вводимых доз зависит от того, является ли заболевание острым или хроническим, и от ответа заболевания на лечение. При острых заболеваниях или обострениях хронического заболевания часто бывает достаточно введения от 1 до 10 доз. Иногда однократной болюсной дозы, необязательно в разделенной форме, достаточно для лечения остrego заболевания или обострения хронического заболевания. Лечение можно повторить при рецидиве остrego заболевания или в случае обострения. При хронических заболеваниях антитело можно вводить с регулярными интервалами, например, еженедельно, раз в две недели, ежемесячно, ежеквартально, каждые шесть месяцев в течение по меньшей мере 1, 5 или 10 лет или в течение всей жизни пациента.

A. Способы диагностики и мониторинга

Визуализация in vivo, способы диагностики и оптимизация иммунотерапии

[0707] В изобретении предложены способы визуализации отложений тай in vivo (например, нейрофибрилярных клубков и включений тау) у пациента. Эти методы работают путем введения реагента, такого как антитело, которое связывает тау (например, мышное, гуманизированное, химерное или венированное антитело 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3), пациенту с последующим обнаружением реагента после связывания. Могут быть использованы антитела, специфически связывающиеся с тау на эпитопе в пределах аминокислотных остатков QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277) или (Q/E)IVYK(S/P) (SEQ ID NO:56). В некоторых способах антитело связывается с пептидом, состоящим из эпитопа в пределах аминокислотных остатков QIVYKP (SEQ ID NO:57), EIVYKSP (SEQ ID NO:58), EIVYKS (SEQ ID NO:277) или (Q/E)IVYK(S/P) (SEQ ID NO:56). Ответа на введенные антитела в виде выведения можно избежать или уменьшить с помощью фрагментов антител, не имеющих полноразмерной константной области, таких как Fab. В некоторых способах одно и то же антитело может служить в качестве как лекарственного средства, так и диагностического реагента.

[0708] Диагностические реагенты можно вводить путем внутривенноной инъекции в организм пациента или непосредственно в головной мозг путем внутричерепной инъекции
или путем просверливания отверстия в черепе. Дозировка реагента должна быть в тех же пределах, что и для способов применения в качестве лечения. Как правило, реагент является меченым, хотя в некоторых способах первичный реагент с аффинностью к тау является немеченым, и для связывания с первичным реагентом используется вторичный агент, выступающий в качестве метки. Выбор метки зависит от средств обнаружения. Например, флуоресцентная метка подходит для оптического обнаружения. Применение парамагнитных меток подходит для томографического обнаружения без хирургического вмешательства. Радиоактивные метки также можно обнаружить с помощью позитронно-эмиссионной томографии (ПЭТ) или однофотонной эмиссионной компьютерной томографии (ОФЭКТ).

Способы визуализации отложений тау in vivo применимы для диагностики или подтверждения диагноза таупатии, такой как болезнь Альцгеймера, лобно-височная лобарная дегенерация, прогрессирующий надъядерный парадич и болезнь Пика или предрасположенности к такому заболеванию. Например, эти способы можно применять для пациентов с симптомами деменции. Если у пациента имеются аномальные нейрофибриллярные клубки, то он, скорее всего, страдает болезнью Альцгеймера. В качестве альтернативы, если у пациента имеются аномальные включения тау, то, в зависимости от расположения включений, пациент может страдать лобно-височной лобарной дегенерацией. Эти методы также можно применять для бессимптомных пациентов. Наличие аномальных отложений тау-белка указывает на предрасположенность к симптоматическому заболеванию в будущем. Способы также применимы для мониторинга прогрессирования заболевания и/или ответа на лечение у пациентов, у которых ранее было диагностировано тау-ассоциированное заболевание.

Диагностика может быть выполнена путем сравнения количества, размера и/или интенсивности меченых локусов с соответствующими исходными значениями. Исходные значения могут представлять собой средние уровни в популяции не болеющих индивидуумов. Исходные значения также могут представлять собой предыдущие уровни, определенные у того же пациента. Например, исходные значения могут быть определены у пациента до начала лечения тау-иммуноферментацией, а измеренные значения после этого могут быть сравнены с исходными значениями. Уменьшение значений относительно исходного уровня свидетельствует о положительном ответе на лечение.

У некоторых пациентов проведение ПЭТ-сканирования может помочь в диагностике таупатии. ПЭТ-сканирование может быть выполнено, например, с использованием обычного ПЭТ-сканера и вспомогательного оборудования. Сканирование
обычно включает в себя одну или более областей головного мозга, которые, как правило, ассоциируются с отложениями тау-белка, и в качестве контроля одну или более областей, в которых обычно обнаруживается небольшое количество отложений, в случае их наличия.

[0712] Сигнал, обнаруженный при ПЭТ-сканировании, может быть представлен в виде многомерного изображения. Многомерное изображение может быть выполнено в двух плоскостях, представляющих поперечное сечение головного мозга, в трех плоскостях, представляющих трехмерное изображение головного мозга, или в четырех плоскостях, представляющих изменения в трехмерном изображении головного мозга с течением времени. Можно использовать цветовую шкалу, где разные цвета обозначают разное количество метки и, предположительно, обнаруженное отложение белка тау. Результаты сканирования также могут быть представлены в числовом виде с числами, относящимися к количеству обнаруженной метки и, следовательно, количеству отложений тау-белка. Метка, присутствующая в области мозга, о которой известно, что она ассоциируется с отложениями при определенной тауопатии (например, болезни Альцгеймера), может быть сравнена с меткой, присутствующей в области, о которой известно, что она не ассоциируется с отложениями, чтобы получить соотношение, указывающее на степень отложений в первой области. Для одного и того же радиоактивно меченного лиганда такие соотношения обеспечивают сравнимую меру отложений тау-белка и их изменений у разных пациентов.

[0713] В некоторых способах ПЭТ-сканирование проводится одновременно с МРТ или КАТ или в тот же визит пациента. МРТ или КАТ обеспечивают более подробное изображение анатомических структур головного мозга, чем ПЭТ-сканирование. Однако изображение, полученное при ПЭТ-сканировании, может быть наложено на изображение МРТ или КАТ-сканирования, что более точно указывает на расположение ПЭТ-лиганда и, соответственно, отложений тау относительно анатомических структур в головном мозге. Некоторые аппараты могут выполнять как ПЭТ-сканирование, так и МРТ или КАТ-сканирование без изменения положения пациента между сканированиями, что облегчает наложение изображений.

[0714] Подходящие ПЭТ-лиганы включают радиоактивно меченные антитела по изобретению (например, мышц, гуманизированные, химерные или венерованные антитела 9F5, 10C12, 2D11, 12C4, 17C12 или 14НЗ). Используемым радионизотопом может быть, например, С11, N13, O15, F18 или I123. Интервал между введением ПЭТ-лиганда и проведением сканирования может зависеть от ПЭТ-лиганда и, в частности, от скорости
его поглощения и выведения в головной мозг, а также от периода полужизни его радиоактивной метки.

[0715] ПЭТ-сканирование также может проводиться в качестве профилактической меры у бессимптомных пациентов или у пациентов с симптомами легкого когнитивного нарушения, у которых еще не диагностирована тауопатия, но имеется повышенный риск развития тауопатии. В случае бессимптомных пациентов сканирование особенно полезно для лиц, считающихся подверженными повышенному риску развития тауопатии в связи с семейным анамнезом, генетическими или биохимическими факторами риска или зрелым возрастом. Профилактическое сканирование можно начинать, например, у пациента в возрасте от 45 до 75 лет. Некоторым пациентам первое сканирование проводят в возрасте 50 лет.

[0716] Профилактическое сканирование можно проводить с интервалом, например, от шести месяцев до десяти лет, предпочтительно от 1 до 5 лет. У некоторых пациентов профилактическое сканирование проводится ежегодно. Если ПЭТ-сканирование, выполненное в качестве профилактической меры, указывает на аномально высокие уровни отложений тау-белка, можно начать иммунотерапию и выполнить последующее ПЭТ-сканирование, как у пациентов с диагнозом тауопатия. Если ПЭТ-сканирование, проведенное в качестве профилактической меры, показывает уровень отложений тау-белка в пределах нормы, дальнейшее ПЭТ-сканирование можно проводить с интервалом от шести месяцев до 10 лет, а предпочтительно 1-5 лет, как и раньше, или в ответ на появление признаков и симптомов тауопатии или легкого когнитивного нарушения. Сочетая профилактическое сканирование с назначением тау-направленной иммунотерапии, если и когда обнаруживается уровень отложений тау-белка выше нормы, уровень отложений тау-белка может быть снижен до или ближе к нормальному уровню, или по меньшей мере сдержан от дальнейшего увеличения, и у пациента может отсутствовать тауопатия в течение более длительного периода времени, чем в случае отсутствия профилактического сканирования и тау-направленной иммунотерапии (например, по меньшей мере 5, 10, 15 или 20 лет или до конца жизни пациента).

[0717] Нормальные уровни отложений тау-белка можно определить по количеству нейрофиллерных клубков или включений тау в головном мозге репрезентативной выборки индивидуумов в общей популяции, у которых не была диагностирована конкретная тауопатия (например, болезнь Альцгеймера), и которые не считаются подверженными повышенному риску развития такого заболевания (например, репрезентативная выборка здоровых индивидуумов в возрасте до 50 лет). В качестве
альтернативы, нормальный уровень может быть распознан у отдельного пациента, если сигнал ПЭТ в соответствии с настоящими способами в области головного мозга, в которой, как известно, развиваются отложения тау-белка, не отличается (в пределах точности измерения) от сигнала от области головного мозга, в которой, как известно, такие отложения обычно не образуются. Повышенный уровень у человека может быть распознан путем сравнения с нормальными уровнями (например, за пределами среднего значения и дисперсией стандартного отклонения) или просто по повышенному сигналу за пределами экспериментальной ошибки в области головного мозга, ассоциированной с отложениями тау-белка по сравнению с областью, которая не ассоциируется с отложениями. Для целей сравнения уровней отложений тау-белка у индивидуума и популяции, отложения тау-белка предпочтительно определять в одной и той же области (области) головного мозга, причем эти области включают по меньшей мере одну область, в которой, как известно, образуются отложения тау-белка, ассоциированные с конкретной таупатней (например, болезнью Альцгеймера). Пациент с повышенным уровнем отложений тау-белка является кандидатом на начало иммунотерапии.

[0718] После начала иммуноферапии снижение уровня отложений тау-белка можно сначала рассматривать как показатель того, что лечение дает желаемый эффект. Наблюдаемое снижение может находиться, например, в диапазоне 1-100%, 1-50% или 1-25% от исходного значения. Такие эффекты могут быть измерены в одной или более областях головного мозга, в которых, как известно, образуются отложения, или могут быть измерены в среднем по таким областям. Общий эффект лечения можно приближительно оценить, добавив процентное снижение относительно исходного уровня к увеличению отложений тау-белка, которое в противном случае произошло бы у среднестатистического не получающего лечения пациента.

[0719] Поддержание отложений тау-белка на приблизительно постоянном уровне или даже небольшое увеличение отложений тау-белка также может быть признаком ответа на лечение, хотя и субоптимального ответа. Такие реакции можно сравнить с динамикой уровней отложений тау-белка у пациентов с определенной таупатней (например, болезнью Альцгеймера), которые не получали лечения, чтобы определить, оказывает ли иммуноферапия эффект на ингибирование дальнейшего увеличения отложений тау-белка.

[0720] Мониторинг изменений отложений тау-белка позволяет корректировать схему иммуноферапии или другого лечения в ответ на лечение. ПЭТ-мониторинг позволяет определить характер и степень ответа на лечение. Затем можно определить, следует ли корректировать лечение, и, если это желательно, лечение может быть скорректировано в
ответ на ПЭТ-мониторинг. Таким образом, ПЭТ-мониторинг позволяет скорректировать тау-направленную иммунотерапию или другую схему лечения до того, как другие биомаркеры, МРТ или когнитивные меры дадут заметный ответ. Существенное изменение означает, что сравнение значения параметра после лечения по сравнению с исходным уровнем дает некоторые доказательства того, что лечение привело или не привело к благоприятному эффекту. В некоторых случаях изменение значений параметра у самого пациента свидетельствует о том, что лечение привело или не привело к благоприятному эффекту. В других случаях изменение значений, если оно имеется, у пациента сравнивается с изменением значений, если оно имеется, в репрезентативной контрольной популяции пациентов, не проходящих иммунотерапию. Отличие ответа у конкретного пациента от нормального ответа у пациента в контрольной группе (например, среднее значение плюс дисперсия стандартного отклонения) также может служить доказательством того, что схема иммунотерапии позволяет или не позволяет достичь благоприятного эффекта у пациента.

[0721] У некоторых пациентов мониторинг показывает обнаруживаемое снижение отложений тау-белка, но уровень отложений тау-белка остается выше нормы. У таких пациентов, если нет неприемлемых побочных эффектов, схему лечения можно продолжать как есть или даже увеличить частоту введения и/или дозу, если еще не достигнута максимальная рекомендуемая доза.

[0722] Если мониторинг показывает, что уровень отложений тау-белка у пациента уже снижен до нормального или практически нормального уровня, схема иммунотерапии может быть изменена с индукционной (т. е. снижающей уровень отложений тау-белка) на поддерживающую (т. е. поддерживающую отложения тау-белка на приблизительно постоянном уровне). На такую схему можно повлиять путем снижения дозы и/или частоты введения иммунотерапии.

[0723] У других пациентов мониторинг может показать, что иммунотерапия оказывает определенное благоприятное воздействие, но эффект является субоптимальным. Оптимальный эффект может быть определен как процентное снижение уровня отложений тау-белка в пределах верхней половины или квадрата изменения отложений тау-белка (измеренного или рассчитанного по всему головному мозгу или его репрезентативной области (областям), в которых, как известно, образуются отложения тау-белка), наблюдаемое в репрезентативной выборке пациентов с таупатней, проходящих иммунотерапию в данный момент времени после начала терапии. Пациент, у которого наблюдается меньшее снижение или пациент, у которого отложения тау-белка остаются
неизменными или даже увеличиваются, но в меньшей степени, чем ожидалось в отсутствие иммунотерапии (например, по данным контрольной группы пациентов, не получавших иммунотерапию), может быть классифицирован как имеющий положительный, но субоптимальный ответ. У таких пациентов, необязательно, может быть проведена корректировка схемы, при которой доза и или частота применения средства увеличивается.

[0724] У некоторых пациентов отложения тау-белка могут увеличиваться аналогично или в большей степени, чем отложения тау у пациентов, не получающих иммунотерапию. Если такое увеличение сохраняется в течение определенного периода времени, например, 18 месяцев или 2 лет, даже после любого увеличения частоты или дозы средств, иммунотерапия при желании может быть прекращена в пользу других вариантов лечения.

[0725] Вышеизложенное описание диагностики, мониторинга и корректировки лечения таупатий было в основном посвящено применению ПЭТ-сканирования. Однако любой другой способ визуализации и/или измерения отложений тау-белка, который допускает применение антител к тау по изобретению (например, мышиного, гуманизированного, химерного или венированного антитела 9F5, 10C12, 2D11, 12C4, 17C12 или 14Н3), может быть использован вместо ПЭТ-сканирования для осуществления таких способов.

[0726] Также предложены способы выявления иммунного ответа на тау у пациента, страдающего или предрасположенного к заболеваниям, ассоциированным с тау. Способы могут быть использованы для мониторинга хода терапевтического и профилактического лечения агентами, предложенными в данном документе. Профиль антител после пассивной иммунизации как правило показывает немедленный пик концентрации антител, за которым следует экспоненциальный спад. Без дополнительной дозы снижение приближается к уровню до лечения в течение периода от нескольких дней до нескольких месяцев в зависимости от периода полураспада введенного антитела. Например, период полураспада некоторых человеческих антител составляет порядка 20 дней.

[0727] В некоторых способах перед введением препарата проводится измерение исходного уровня антител к тау у субъекта, вскоре после этого проводится второе измерение для определения пикового уровня антител, и еще одно или более измерений проводятся через определенные промежутки времени для контроля снижения уровня антител. Когда уровень антитела снизился до исходного уровня или до предварительно определенного процента пика меньше исходного уровня (например, 50%, 25% или 10%), вводится следующая доза антитела. В некоторых способах пиковые или последующие измеренные уровни за вычетом фоновых сравниваются с эталонными уровнями, которые ранее были
определены как благоприятные для профилактической или терапевтической схемы лечения у других субъектов. Если измеренный уровень антител значительно меньше контрольного уровня (например, меньше среднего значения минус одно или, предпочитительно, два стандартных отклонения от контрольного значения в популяции субъектов, получающих пусь от лечения), показано введение дополнительной дозы антитела.

[0728] Также предложены способы обнаружения тау у субъекта, например, путем измерения тау в образце, полученном от субъекта, или путем визуализации тау in vivo у субъекта. Такие способы применимы для диагностики или подтверждения диагноза заболеваний, ассоциированных с тау, или предрасположенности к ним. Эти методы также можно применить у бессимптомных субъектов. Наличие тау указывает на предрасположенность к симптоматическому заболеванию в будущем. Способы также применимы для мониторинга прогрессирования заболевания и/или ответа на лечение у субъектов, у которых ранее были диагностированы болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа C, надъярный паралич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появлением аргирофильных зерен, глубулярная глиальная тауопатия, боковой амиотрофический склероз/комплекс паркинсонизм-деменция Гуама, кортикообазальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (XTЭ), глубулярная глиальная тауопатия (ITT), болезнь Паркинсона или прогрессирующий надъярный паралич (PNP).

[0729] Биологические образцы, полученные от субъекта, у которого имеется, подозревается наличие или существует риск развития болезни Альцгеймера, синдрома Дауна, легкого когнитивного нарушения, первичной возрастной тауопатии, постэнцефалитного паркинсонизма, посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана — Пика типа C, надъярного паралича, лобно-височной деменции, лобно-височной лобарной дегенерации, заболевания, характеризующегося появлением аргирофильных зерен, глубулярной глиальной тауопатии, бокового амиотрофического склероза/комплекса паркинсонизм-деменция Гуама, кортикообазальной дегенерации (КБД), деменции с тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической травматической энцефалопатии (XTЭ), глубулярной глиальной тауопатии (ITT), болезни Паркинсона или
прогрессирующего надъядерного паралича (ПНП), могут быть приведены в контакт с
раскрытыми в данном документе антителами для оценки наличия тау. Например, уровни
тау у таких субъектов можно сравнить с уровнями, присутствующими у здоровых
субъектов. Альтернативно, уровни тау у таких субъектов, получающих лечение
заболевания, могут быть сравнены с уровнями тау у субъектов, ранее не получавших
лечение по поводу болезни Альцгеймера, синдрома Дауна, легкого когнитивного
нарушения, первичной возрастной тауопатии, постэнцефалитного паркинсонизма,
посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана —
Пика типа C, надъядерного паралича, лобно-височной деменции, лобно-височной
лобарной дегенерации, заболевания, характеризующегося появлением аргирофильных
зерен, глобулярной глиальной тауопатии, бокового амиотрофического склероза/комплекса
паркинсонизм-деменция Гуама, кортикобазальной дегенерации (КБД), деменции с
тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической
травматической энцефалопатии (ХТЭ), глобулярной глиальной тауопатии (ГГТ), болезни
Паркинсона или прогрессирующего надъядерного паралича (ПНП). Некоторые из таких
тестов включают биопсию ткани, взятой у таких субъектов. Анализы методом
tвердофазного ИФА также могут быть пригодными способами, например, для оценки
содержания тау в образцах жидкости.

VII. Наборы

В изобретении также предложены наборы (напри мер, контейнеры), включающие
антитело, раскрытое в данном документе, и сопутствующие материалы, такие как
инструкция по применению (например, листок-вкладыш). Инструкция по применению
могут содержать, например, инструкции по введению антитела и, необязательно, одного
или более дополнительных средств. Контейнеры могут быть стандартными дозами,
упаковками со множеством доз (например, многодозовыми упаковками) или частичными
dозами.

Приготовленный раствор относится к инструкциям, обычно включаемым в коммерческие
упаковки терапевтических продуктов, которые содержат информацию о показаниях,
применении, дозировке, введении, противопоказаниях и/или предупреждениях,
касающихся применения таких терапевтических продуктов

Наборы также могут включать в себя второй контейнер, содержащий
farmaceutически приемлемый буфер, такой как бактериостатическая вода для инъекций
(БВДИ), фосфатно-солевой буферный раствор, раствор Рингера и раствор декстрозы.
Набор может дополнительно включать другие материалы, желательные с коммерческой
точки зрения и с точки зрения пользователя, включая другие буферы, разбавители, фильтры, иглы и шприцы.

VIII. Другие способы применения

[0733] Антитела можно использовать для обнаружения тау или его фрагментов в контексте клинической диагностики или лечения, или в исследованиях. Например, антитела можно использовать для обнаружения присутствия тау в биологическом образце в качестве индикатора того, что биологический образец содержит отложения тау. Связывание антител с биологическим образом можно сравнить со связыванием антител с контрольным образом. Контрольный образец и биологический образец могут содержать клетки, происходящие из одной и той же ткани. Контрольные образцы и биологические образцы могут быть получены от одного и того же человека или от разных людей и по одному и тому же случаю или по разным случаям. Если желательно, несколько биологических образцов и несколько контрольных образцов оцениваются многократно для защиты от случайных вариаций, не зависящих от различий между образцами. Затем можно провести прямое сравнение между биологическим образом (образцами) и контрольным образом (образцами), чтобы определить, увеличилось ли связывание антитела (т.е. присутствие тау) с биологическим образцом (образцами), уменьшилось ли оно или осталось прежним по сравнению со связыванием антитела с контрольным образом (образцами). Повышенное связывание антитела с биологическим образцом (образцами) по сравнению с контрольным образцом (образцами) указывает на присутствие тау в биологическом образце (образцах). В некоторых случаях повышенное связывание антител является статистически значимым. Необязательно, связывание антител с биологическим образцом по меньшей мере в 1,5, 2, 3, 4, 5, 10, 20 или 100 раз выше связывания антител с контрольным образом.

[0734] Кроме того, антитела могут быть применены для обнаружения наличия тау в биологическом образце для мониторинга и оценки эффективности терапевтического средства, используемого для лечения пациента, у которого диагностирована болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная таупатия, постэнцефалитный парkinsonизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный паралич, лобно-височная деменция, лобно-височная лобарная дегенерация, заболевание, характеризующееся появлением аргирофильных зерен, глобулярная глияная таупатия, боковой амиотрофический склероз/комплекс парkinsonизм-деменция Гуама, кортикобазальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни
Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХТЭ), глобулярная глиальная тауопатия (ГТТ), болезнь Паркинсона или прогрессирующий надъядерный парадич (ПНП). Биологический образец, полученный от пациента, у которого диагностированы болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичная возрастная тауопатия, постэнцефалитный паркинсонизм, посттравматическая деменция или деменция боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный парадич, лобно-височная деменция, лобно-височная лобная дегенерация, заболевание, характеризующееся появлением аргиофильных зерен, глобулярная глиальная тауопатия, боковой амиотрофический склероз/комплекс паркинсонизм-деменция Гуама, кортикасальная дегенерация (КБД), деменция с тельцами Леви, вариант болезни Альцгеймера с тельцами Леви (LBVAD), хроническая травматическая энцефалопатия (ХТЭ), глобулярная глиальная тауопатия (ГТТ), болезнь Паркинсона или прогрессирующий надъядерный парадич (ПНП), оценивают для установления исходного уровня связывания антител с образцом (т.е. исходного уровня наличия тау в образце) перед началом терапии терапевтическим средством. В некоторых случаях несколько биологических образцов, полученных от пациента, оцениваются многократно, чтобы установить как исходный уровень, так и мери случайной вариации, не зависящей от лечения. Затем вводят терапевтическое средство по схеме. Схема может включать многократное введение средства в течение периода времени. Необходимо, связывание антител (т.е. присутствие тау) оценивается в нескольких случаях в нескольких биологических образцах, полученных от пациента, как для определения меры случайной вариации, так и для выявления тенденции в ответ на иммунотерапию. Затем сравнивают различные оценки связывания антител с биологическими образцами. Если проведены только две оценки, можно провести прямое сравнение между двумя оценками, чтобы определить, увеличилось ли связывание антител (т.е. присутствие тау), уменьшилось или осталось неизменным между двумя оценками. Если выполнено более двух измерений, измерения можно проанализировать как временной интервал, начинаясь до лечения терапевтическим средством и продолжающийся в течение всего курса терапии. У пациентов, у которых уменьшилось связывание антител с биологическими образцами (т.е. наличие тау), можно сделать вывод, что терапевтическое средство было эффективно при лечении болезни Альцгеймера, синдрома Дауна, легкого когнитивного нарушения, первичной возрастной тауопатии, постэнцефалитного паркинсонизма, посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана — Пика типа С, надъядерного парадича, лобно-височной деменции, лобно-височной лобной дегенерации, заболевания,
характеризующегося появлением аргирофильных зерен, глобулярной глиальной тауопатии, бокового амиотрофического склероза/комплекса паркинсонизма-деменция Гуама, кортикобазальной дегенерации (КБД), деменции с тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической травматической энцефалопатии (ХТЭ), глобулярной глиальной тауопатии (ГГТ), болезни Паркинсона или прогрессирующего надъядерного паралича (ПНП) у пациента. Уменьшение связывания антител может быть статистически значимым. Необходимо, связывание уменьшается по меньшей мере на 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% или 100%. Оценка связывания антител может проводиться в сочетании с оценкой других признаков и симптомов болезни Альцгеймера, синдрома Дауна, легкого когнитивного нарушения, первичной возрастной тауопатии, постэнцефалитного паркинсонизма, посттравматической деменции или деменции боксеров, болезни Пика, болезни Нимана — Пика типа С, надъядерного паралича, лобно-височной деменции, лобно-височной лобарной дегенерации, заболевания, характеризующегося появлением аргирофильных зерен, глобулярной глиальной тауопатии, бокового амиотрофического склероза/комплекса паркинсонизма-деменция Гуама, кортикобазальной дегенерации (КБД), деменции с тельцами Леви, варианта болезни Альцгеймера с тельцами Леви (LBVAD), хронической травматической энцефалопатии (ХТЭ), глобулярной глиальной тауопатии (ГГТ), болезни Паркинсона или прогрессирующего надъядерного паралича (ПНП).

[0735] Антитела также можно использовать в качестве исследовательских реагентов для лабораторных исследований по обнаружению тау или его фрагментов. В таких случаях антитела могут быть помечены флюоресцентными молекулами, спин-меченными молекулами, ферментами или радионизотопами и могут быть предоставлены в виде набора со всеми необходимыми реагентами для выполнения анализа обнаружения. Антитела также можно использовать для очистки тау или партнеров связывания тау, например, с помощью аффинной хроматографии.

[0736] Все поданные патентные заявки, другие публикации, номера доступа и т. п., цитируемые выше или ниже, в полном объеме и во всех отношениях включены посредством ссылки в той же степени, как если бы для каждого отдельного пункта было специально и отдельно указано его включение посредством ссылки. Если с учетным номером в разное время связаны разные версии последовательности, подразумевается версия, связанная с номером доступа на момент действительной даты подачи данной заявки. Действительная дата подачи означает более раннюю фактическую дату подачи.
или дату подачи приоритетной заявки, ссылающейся на учетный номер, если это применимо. Аналогично, если разные версии публикации, веб-сайта и т. п. опубликованы в разное время, подразумевается версия, опубликованная ближе всего к действительной дате подачи заявки, если не указано иное. Любой признак, этап, элемент, вариант реализации или аспект изобретения можно использовать в комбинации с любыми другими, если четко не указано иное. Хотя настоящее изобретение было достаточно подробно описано путем иллюстрации и примера в целях ясности понимания, является очевидным, что на практике можно вносить определенные изменения и модификации в рамках объема прилагаемой формулы изобретения.

ПРИМЕРЫ

Пример 1. Идентификация и скрининг моноклональных антител тау

[0737] Иммунизации проводили с помощью рекомбинантного человеческого тау (4R0N) из 383 а/к, меченного на N-конец His-меткой, содержащего мутацию P301S [иммуноген А] или рекомбинантного человеческого тау (4R0N) из 383 а/к, содержащего мутацию P301S, лишенного N-концевой His-метки [иммуноген В]. Иммуногены эмульгировали в адъюванте РИБИ.

[0738]

[0739] Самок мышей линии A/J в возрасте пяти недель иммунизировали внутрибрюшинно 25 мкг иммуногена А в день 0 и 10 мкг иммуногена А, каждый в дни 7, 14, 21, 27, 34, 48 и 55. Для антителя 10С12 в день 43 у мышей брали кровь и титровали против иммуногена А. Животным с наивысшими титрами вводили бустер-дозу в день 54 с помощью терминальной иммунизации 50 мкг иммуногена А, который вводили 1/2 внутрибрюшинно и 1/2 внутривенно.

[0740] В отношении антител 9F5, 17С12, 2D11, 14Н3 и 12С4 животных иммунизировали дополнительными 10 мкг иммуногена А в день 62 и 10 мкг иммуногена В в дни 76 и 90. В дни 43 и 98 у мышей брали кровь и титровали против иммуногена А. Животным с наивысшими титрами вводили бустер-дозу в день 101 день с помощью терминальной иммунизации 50 мкг иммуногена В, который вводили 1/2 внутрибрюшинно и 1/2 внутривенно. Для всех антител слитые гибридомы подвергали скринингу с помощью твердофазного ИФА в отношении обоих иммуногенов.

[0741] Анализ интернализации с использованием сортировки активированных флуоресцентией клеток (FACS) выполняли для оценки способности различных антител блокировать интернализацию тау нейронами. Антитела, которые блокируют
интернализацию, скорее всего, заблокируют передачу тау. pHredo-меченный растворимый олигомер тау P301L (конечная концентрация 1,5 мкг/мл) предварительно инкубировали с антителами к тау (титрование дозы: начальная концентрация 80 мкг/мл с последующими 4-кратными серийными разведениями) в течение 30 мин при комнатной температуре в среде для культивирования клеток. Затем смесь TAU/антитело добавляли к клеточным линиям нейробластомы B103 при конечной концентрации 500 000 клеток/мл и инкубировали в течение 3-4 часов при 37°С в инкубаторе для тканевых культур (5% CO2). Затем клетки промывали 3 раза культуральной средой с последующей 10-минутной инкубацией в культуральной среде и дважды промывали буфером FACS (1% ФБС в ФСБ). Клетки ресуспендировали в 100 мкл буфера FACS и при средней интенсивности флуоресценции тихоокеанским красным, измеренной с помощью FACS LSR II. Флуоресценция тихоокеанским красным pHredo активируется низким pH, связанным с эндосомными компартментами при интернализации. Поскольку FACS обнаруживает клетки, а pHredo флуоресцирует только при интернализации, будет обнаружен только тау, интернализованный клетками. Чем ниже средняя интенсивность флуоресценции, тем меньше количество интернализованного тау, что предполагает более высокую блокирующую активность тестируемого антитела. Как показано в таблице 55 и на фигуре 3, мышьяковое антитело 3D6 (WO 2017/191560) и мышьяковое антитело 9F5 блокируют интернализацию нейронов значительно больше, чем другие протестированные антитела. Мышьяковое 9F5 было выбрано на основе его нового эпитопа и результатов анализа pHredo.

<p>| Таблица 55: Результаты анализа интернализации с мышьяковыми антителами 9F5, 3D6, 5G8, 16G7 и 16B5 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Контроль | 3D6 | 9F5 | 5G8 | 16G7 | 16B5 |
| Концентрация антитела (мкг/мл) | | | | | | |
| 62,5 | 87,7±4,8 | 14,2±1,7 | 18,1±5 | 77,7±3,2 | 33,9±1,3 | 61,9±5,7 |
| 15,625 | 86,2±2,6 | 31±1,6 | 24,2±3,9 | 88,1±7,6 | 51,4±0,8 | 72,8±6,2 |
| 3,9 | 81,2±5,3 | 41,2±2,2 | 35,9±4,2 | 94,3±5,3 | 62,2±6,5 | 80,1±3,1 |
| 0,98 | 75,4±4,8 | 64,3±0,6 | 71±6,0 | 78,8±3,7 | 56±4,3 | 88,1±9,1 |
| 0,244 | 82,9±1,5 | 82,2±9,2 | 71,7±6,5 | 86±4,6 | 74,6±7,6 | 85,9±1,6 |</p>
<table>
<thead>
<tr>
<th>Концентрация антитела (мкг/мл)</th>
<th>Контроль</th>
<th>9F5</th>
<th>10C12</th>
<th>17C12</th>
<th>2D11</th>
<th>14Н3</th>
<th>12C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>62,5</td>
<td>87,7±4,8</td>
<td>18,1±5</td>
<td>34,5±3,7</td>
<td>30,6±1,8</td>
<td>28,4±3,6</td>
<td>48,4±3,5</td>
<td>37,3±3,5</td>
</tr>
<tr>
<td>15,625</td>
<td>86,2±2,6</td>
<td>24,2±3,9</td>
<td>38,9±1,5</td>
<td>32,4±4,8</td>
<td>28,6±2,9</td>
<td>53,2±3,2</td>
<td>36,6±1,9</td>
</tr>
<tr>
<td>3,9</td>
<td>81,2±5,3</td>
<td>35,9±4,2</td>
<td>55,2±1,7</td>
<td>36,8±2,5</td>
<td>43±3,3</td>
<td>63,1±9,9</td>
<td>42,6±3,2</td>
</tr>
<tr>
<td>0,98</td>
<td>75,4±4,8</td>
<td>71±6,0</td>
<td>90,5±3,6</td>
<td>63,9±4,2</td>
<td>62,7±4,8</td>
<td>67,8±9,7</td>
<td>69,7±7,0</td>
</tr>
<tr>
<td>0,244</td>
<td>82,9±1,5</td>
<td>71,7±6,5</td>
<td>9,09±4,9</td>
<td>78,6±0,8</td>
<td>79,5±8,2</td>
<td>66±5,6</td>
<td>78,6±5,1</td>
</tr>
<tr>
<td>0,061</td>
<td>84,5±4,9</td>
<td>78,1±8,6</td>
<td>86,7±4,0</td>
<td>79,8±4,7</td>
<td>71,5±6,4</td>
<td>79,7±6,8</td>
<td>78,2±7,1</td>
</tr>
<tr>
<td>0</td>
<td>93,3±0,2</td>
<td>93,3±0,2</td>
<td>93,3±0,19</td>
<td>93,7±0,7</td>
<td>93,3±0,2</td>
<td>93,3±0,2</td>
<td>93,7±0,7</td>
</tr>
</tbody>
</table>

Пример 2. Картирование эпитеопов мышинных антител 9F5, 2D11, 10C12, 17C12, 12C4 и 14Н3 с помощью анализа методом твердофазного ИФА
Для картирования твердофазного ИФА использовали пептиды, охватывающие всю длину тау. Пептиды содержали 15 аминокислот с перекрытием в 5 аминокислот. Чтобы обеспечить связывание с поверхностью стрептавидина, пептиды также содержали N-концевой биотин. Пептиды инкубировали на планшете, покрытом стрептавидином, а планшет блокировали с применением 1% БСА в 1x ФСБ. После промывки антитела инкубировали на планшетах в течение 1 часа при комнатной температуре и промывали. Затем планшеты покрывали козьей антимышьиной пероксидазой хрена (HRP) и промывали. Планшеты проявили с помощью OPD, оптическую плотность считывали при 490 нм.

Данные твердофазного ИФА показывают, что мышьное антитело 9F5, мышьное антитело 10C12, мышьное антитело 2D11, мышьное антитело 17C12, мышьное антитело 12C4 и мышьное антитело 14H3 прочно связывают пептиды, содержащие остатки 302-316, а также остатки 383-397 самой длинной изоформы тау в ЦНС (441aa, Uniprot ID P10636-8; SEQ ID NO:1). Оба пептида 302-316 и 383-397 содержат повтор «IVYK» (SEQ ID NO:276), который, как было показано, важен для агрегации и самоассоциации тау, и формирует ядро β-листа агрегатов тау; кроме того, было продемонстрировано, что он является важным местом для высева тау. Это может позволить мышьному антителу 9F5, мышьному антителу 10C12, мышьному антителу 2D11, мышьному антителу 17C12, мышьному антителу 12C4 и мышьному антителу 14H3 связывать целый ряд агрегированных конформеров по сравнению с другими антителами, связывающими области в MTBR. Кроме того, было продемонстрировано, что повтор «IVYK» (SEQ ID NO:276) является важным участком для высева тау, что позволяет предположить, что связывание с антителом в этой области может прервать прогрессирование патологии тау или использоваться в диагностических целях для выявления видов, способных к высеву.

Пример 3. Картирование эпитопов мышьных антител 9F5, 2D11, 10C12 и 17C12 с помощью микроматричного анализа пептидов

Способ

Анализ эпитопов 9F5, 2D11, 10C12 и 17C12 выполняли с помощью микроматричного анализа пептидов. Последовательность полиоразмерного тау человека (441 аминокислота) была связана и удлинена с помощью нейтральных линкеров GSGSGSG (SEQ ID NO:59) на С- и N-конце, чтобы избежать усеченных пептидов. Связанная и удлиненная последовательность антигена транслировалась в пептиды из 15 аминокислот с пептид-пептидным перекрытием 14 аминокислот. Полученные пептидные микроматрицы
содержали 441 различных пептидов, напечатанных в двух повторностях (882 пептидных пятна), и были обрамлены дополнительными контрольными пептидами HA (YPYDVPDYAG, SEQ ID NO: 60, 82 пятна).

[0749] После синтеза микроматрицу блокировали для предотвращения неспецифического связывания (номер по каталогу Rockland MB-070). Затем мышьяковое антитело 9F5 наносили на микроматрицу в концентрации 1 мкг/мл вместе с мышьяковым моноэллипным антителом к HA (12CA5) DyLight800 (0,5 мкг/мл) в течение 16 часов при 4°C со встряхиванием при 140 об/мин. Микроматрицу промывали и наносили вторичное антитело (козье антимышьяковое антитело класса IgG (H+L) DyLight680 (0,2 мкг/мл) на 45 минут при комнатной температуре. После дополнительной промывки микроматрицу визуализировали с помощью системы визуализации Licor Odyssey.

[0750] Количественная оценка интенсивности пятен и аннотация пептидов были основаны на 16-битных tif-файлах серой шкалы при интенсивности сканирования 7/7, которые демонстрируют более высокий динамический диапазон, чем 24-битные цветные tif-файлы. Анализ изображений микроматрицу проводили с помощью анализатора PepSlide®. Программный алгоритм разделяет интенсивности флуоресценции каждого пятна на необработанный сигнал, сигнал переднего плана и фоновый сигнал и вычисляет усредненную медианную интенсивность переднего плана и межпозиционные отклонения повторностей пятен (см. вкладки «Необработанные данные»). На основе усредненных средних значений интенсивности переднего плана была создана карта интенсивности, и взаимодействия на карте пептидов были выделены цветовым кодом интенсивности: красным для обозначения высокой интенсивности и белым для обозначения низкой интенсивности пятен. Допускалось максимальное отклонение от пятна к пятну в 40%, в противном случае соответствующее значение интенсивности обнулялось.

[0751] Результаты

[0752] В случае мышьякового антитела 9F5, мышьякового антитела 10C12 и мышьякового антитела 17C12 наблюдался очень сильный ответ моноэллипного антитела против двух эпитопоподобных пятен, образованных смежными пептидами с очень похожими консенсусными мотивами QIVYK (SEQ ID NO:57) и EIVYKSP (SEQ ID NO:58), соответствующими аминокислотным последовательностям 307-312 и 391-397 соответственно самой длинной изоформы тау (441aa, Uniprot ID P10636-8; SEQ ID NO:1). Это указывает на эпитоп (Q/E)IVYK(S/P) (SEQ ID NO:56) для мышьякового 9F5, мышьякового 10C12 и мышьякового 17C12.
В случае мышьяного антитела 2D11 наблюдался очень сильный ответ мононуклонального антитела против двух эпитопоподобных пятен, образованных смежными пептидами с очень похожими консенсусными мотивами QIVYKP (SEQ ID NO:57) и EIVYKS (SEQ ID NO:277), соответствующими аминокислотным последовательностям 307-312 и 391-396 соответственно самой длинной изоформы тау (441aa, Uniprot ID P10636-8, SEQ ID NO:1). Это указывает на эпитоп (Q/E)IVYK(S/P) (SEQ ID NO:56) для мышьяного 2D11.

Пример 4. Конструирование гуманизированных антител 9F5

Исходным или донорским антителом для гуманизации было мышьяное антитело 9F5. Аминокислотная последовательность вариабельной области тяжелой цепи зрелого m9F5 представлена как SEQ ID NO:7. Аминокислотная последовательность вариабельной легкой цепи зрелого m9F5 представлена как SEQ ID NO:11. Аминокислотные последовательности CDR1, CDR2 и CDR3 тяжелой цепи согласно композитному определению по Kabat/Chothia представлены как SEQ ID NO:8-10, соответственно. Аминокислотные последовательности CDR1, CDR2 и CDR3 легкой цепи по Kabat представлены как SEQ ID NO:12-14, соответственно. Во всем тексте используется нумерация по Kabat.

Vk, поскольку она имела хорошее разрешение (1,92Å) и общее сходство последовательностей с Vh и Vk 9F5, сохраняя те же канонические структуры для петель.

Последовательности вариантов тяжелой и легкой цепей, полученные в результате процесса гуманизации антител, дополнительно выравнивали с последовательностями зародышевой линии человека с использованием инструмента IMGT Domain GapAlign для оценки степени гуманизации тяжелой и легкой цепей, как указано в руководящих принципах комитета BO3 по МНН. (WHO-INN: International nonproprietary names (INN) for biological and biotechnological substances (a review) (Internet) 2014. Доступно по адресу: http://www.who.int/medicines/services/inn/BioRev2014.pdf) Остатки были изменены для выравнивания с соответствующей последовательностью зародышевой линии человека, где это возможно, для повышения степени гуманизации и снижения потенциальной иммуногенности. Для гуманизированных вариантов VLv2, VLv3, VLv4, VLv5, VLv6, VLv7, VLv8 и VLv9 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). Для гуманизированных вариантов VHv2, VHv3, VHv4, VHv5, VHv6, VHv7, VHv8, VHv9 и VHv10 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33)
Дополнительные версии hu9F5-VH и hu9F5-VL были сконструированы для обеспечения возможности оценки различных каркасных остатков на предмет их вклада в связывание антигена, термостабильность и иммуногенность, а также для оптимизации дезаминирования, окисления, N-гликозилирования, протеолиза и аггегации. Положения, рассматриваемые для мутации, включают те, которые... Положения, рассматриваемые для мутации, включают те, которые...

- чувствительны к посттрансляционным модификациям, таким как гликозилирование или пироглютамилирование,

заняты остатками, которые, как предполагается, могут конфликтовать с CDR, согласно модели CDR 9F5, привычных к каркасам VH и VL, или

- заняты остатками, которые редко встречаются среди секвенированных человеческих антител, где либо остаток родительского мышьяка 9F5, либо какой-либо другой остаток гораздо более распространен в репертуаре человеческих антител.

Выравнивания мышьяка 9F5 и различных гуманизированных антител показаны для вариабельных областей легкой цепи (таблица 7 и фигуры 2А-2В, 5А-5В, 6А-6С) и вариабельных областей тяжелой цепи (таблица 6 и фигуры 1А-1В, 4А-4В).

Были сконструированы 10 вариантов вариабельной области гуманизированной тяжелой цепи и 9 вариантов вариабельной области гуманизированной легкой цепи,

<table>
<thead>
<tr>
<th>№</th>
<th>Остаток по Кабат. №</th>
<th>Линейный остаток. №</th>
<th>FR или CDR</th>
<th>VH мышечного 9F5 (SEQ ID NO:7)</th>
<th>IMGT. №</th>
<th>IGHV1-69-2*01 (SEQ ID NO:31)</th>
<th>AAN16432-VH1_Fw (SEQ ID NO:32)</th>
<th>2RCS-VH1 (SEQ ID NO:15)</th>
<th>Huv9FSV/1 (SEQ ID NO:19)</th>
<th>Huv9FSV/1 (SEQ ID NO:16)</th>
<th>Huv9FSV/1 (SEQ ID NO:17)</th>
<th>Huv9FSV/1 (SEQ ID NO:18)</th>
<th>Huv9FSV/1 (SEQ ID NO:20)</th>
<th>Huv9FSV/1 (SEQ ID NO:22)</th>
<th>Huv9FSV/1 (SEQ ID NO:127)</th>
<th>Huv9FSV/1 (SEQ ID NO:128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fr1</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fr1</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fr1</td>
<td>Q</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Fr1</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Fr1</td>
<td>Q</td>
<td>V</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Fr1</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr1</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fr1</td>
<td>G</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Fr1</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fr1</td>
<td>E</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>V</td>
<td>K</td>
<td>K</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>R</td>
<td>K</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>P</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>G</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>S</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>V</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>K</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>V</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>T</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Fr1</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Fr1</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR -H1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR -H1</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>CDR -H1</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>CDR -H1</td>
<td>I</td>
<td>F</td>
<td>L</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>CDR -H1</td>
<td>K</td>
<td>T</td>
<td>T</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>CDR -H1</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>CDR -H1</td>
<td>D</td>
<td>Y</td>
<td>L</td>
<td>T</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>CDR -H1</td>
<td>Y</td>
<td>Y</td>
<td>S</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>CDR</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>CDR</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>N</td>
</tr>
<tr>
<td>35A</td>
<td></td>
<td>CDR</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>35B</td>
<td></td>
<td>CDR</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>Fr2</td>
<td>W</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Fr2</td>
<td>V</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>Fr2</td>
<td>K</td>
<td>Q</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>Q</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>Fr2</td>
<td>Q</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Fr2</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>Fr2</td>
<td>P</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>Fr2</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>Fr2</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>Fr2</td>
<td>G</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>Fr2</td>
<td>L</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>Fr2</td>
<td>E</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>Fr2</td>
<td>W</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>Fr2</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>Fr2</td>
<td>G</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>CDR</td>
<td>W</td>
<td>L</td>
<td>G</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>CDR</td>
<td>I</td>
<td>V</td>
<td>F</td>
<td>I</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>CDR</td>
<td>D</td>
</tr>
<tr>
<td>52A</td>
<td>53</td>
<td>CDR</td>
<td>P</td>
</tr>
<tr>
<td>52B</td>
<td></td>
<td>CDR</td>
<td>-</td>
</tr>
<tr>
<td>52C</td>
<td></td>
<td>CDR</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>CDR</td>
<td>E</td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td>CDR</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>CDR</td>
<td>G</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>CDR</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>CDR</td>
<td>T</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>CDR</td>
<td>E</td>
<td>I</td>
<td>I</td>
<td>K</td>
<td>E</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>-H2</td>
<td>H2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>CDR</td>
<td>Y</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>CDR</td>
<td>A</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>CDR</td>
<td>S</td>
<td>E</td>
<td>Q</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td>CDR</td>
<td>F</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>CDR</td>
<td>Q</td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>CDR</td>
<td>G</td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td>Fr3</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>67</td>
<td>68</td>
<td>Fr3</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>A</td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>Fr3</td>
<td>T</td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td>Fr3</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td>Fr3</td>
<td>T</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>A</td>
</tr>
<tr>
<td>72</td>
<td>73</td>
<td>Fr3</td>
<td>D</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>75</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>Fr3</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td>Fr3</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>78</td>
<td>Fr3</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>79</td>
<td>Fr3</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>Fr3</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>Fr3</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>Fr3</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>Fr3</td>
<td>F</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82A</td>
<td>84</td>
<td>Fr3</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82B</td>
<td>85</td>
<td>Fr3</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82C</td>
<td>86</td>
<td>Fr3</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>87</td>
<td>Fr3</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>88</td>
<td>Fr3</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>89</td>
<td>Fr3</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>90</td>
<td>Fr3</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>91</td>
<td>Fr3</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>92</td>
<td>Fr3</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>93</td>
<td>Fr3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>94</td>
<td>Fr3</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>95</td>
<td>Fr3</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>92</td>
<td>96</td>
<td>Fr3</td>
<td>C</td>
</tr>
<tr>
<td>93</td>
<td>97</td>
<td>Fr3</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>94</td>
<td>98</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>95</td>
<td>99</td>
<td>CDR</td>
<td>S</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>S</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>G</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>100A</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>100B</td>
<td></td>
<td>CDR</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>100C</td>
<td></td>
<td>CDR</td>
<td>-</td>
</tr>
<tr>
<td>100D</td>
<td></td>
<td>CDR</td>
<td>-</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>100E</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>100F</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>100G</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>100H</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>100I</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>100J</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>100K</td>
<td>CDR</td>
<td>-H3</td>
<td>-</td>
</tr>
<tr>
<td>101</td>
<td>100</td>
<td>CDR</td>
<td>-H3</td>
<td>N</td>
<td>Q</td>
<td>N</td>
<td>I</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>102</td>
<td>101</td>
<td>CDR</td>
<td>-H3</td>
<td>G</td>
<td>H</td>
<td>K</td>
<td>Y</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>103</td>
<td>102</td>
<td>Fr4</td>
<td>W</td>
</tr>
<tr>
<td>104</td>
<td>103</td>
<td>Fr4</td>
<td>G</td>
</tr>
<tr>
<td>105</td>
<td>104</td>
<td>Fr4</td>
<td>Q</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>106</td>
<td>105</td>
<td>Fr4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>106</td>
<td>Fr4</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>107</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>108</td>
<td>Fr4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>109</td>
<td>Fr4</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>110</td>
<td>Fr4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>111</td>
<td>Fr4</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>112</td>
<td>Fr4</td>
<td>T</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 7
<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Линейный остаток №</th>
<th>FR или CDR</th>
<th>VL или мышьякого 9F5 (SEQ ID NO:11)</th>
<th>IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</th>
<th>CAB1297-137 V.L. huFw.k (SEQ ID NO:35)</th>
<th>1911357 B.V.L. huFw.k (SEQ ID NO:36)</th>
<th>Hu9F5V1x1 (SEQ ID NO:23)</th>
<th>Hu9F5V1x2 (SEQ ID NO:24)</th>
<th>Hu9F5V1x3 (SEQ ID NO:25)</th>
<th>Hu9F5V1x4 (SEQ ID NO:26)</th>
<th>Hu9F5V1x5 (SEQ ID NO:27)</th>
<th>Hu9F5V1x6 (SEQ ID NO:28)</th>
<th>Hu9F5V1x7 (SEQ ID NO:29)</th>
<th>Hu9F5V1x8 (SEQ ID NO:130)</th>
<th>Hu9F5V1x9 (SEQ ID NO:131)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fr1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fr1</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fr1</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Fr1</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Fr1</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Fr1</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr1</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fr1</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>A</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Fr1</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fr1</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>P</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>V</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>L</td>
<td>P</td>
<td>L</td>
<td>L</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>G</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>I</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>CD R-</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>CD R-</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CD R-</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CD R-</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>CD R-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>CD R-</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td>CD R-</td>
<td>L</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>27 D</td>
<td>31</td>
<td>CD R-L1</td>
<td>H</td>
</tr>
<tr>
<td>27E</td>
<td>32</td>
<td>CD R-L1</td>
<td>S</td>
</tr>
<tr>
<td>27F</td>
<td></td>
<td>CD R-L1</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>33</td>
<td>CD R-L1</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>CD R-L1</td>
<td>G</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>CD R-L1</td>
<td>I</td>
<td>Y</td>
<td>Y</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>Y</td>
<td>Y</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>31</td>
<td>36</td>
<td>CD R-L1</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>N</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Oстаток по Kabat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL_мышьного 9F5 (SEQ ID NO:11)</td>
<td>IGK2'-37</td>
<td>CAB1297-VL_huFrWk (SEQ ID NO:37)</td>
<td>1911357-VL_huFrWk (SEQ ID NO:35)</td>
<td>HuF5VLx1 (SEQ ID NO:23)</td>
<td>HuF5VLx2 (SEQ ID NO:24)</td>
<td>HuF5VLx3 (SEQ ID NO:25)</td>
<td>HuF5VLx4 (SEQ ID NO:26)</td>
<td>HuF5VLx5 (SEQ ID NO:27)</td>
<td>HuF5VLx6 (SEQ ID NO:28)</td>
<td>HuF5VLx7 (SEQ ID NO:29)</td>
<td>HuF5VLx8 (SEQ ID NO:30)</td>
<td>HuF5VLx9 (SEQ ID NO:31)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>CD</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>38</td>
<td>CD</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>39</td>
<td>CD</td>
<td>Y</td>
<td>D</td>
<td>D</td>
<td>Y</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>Fr2</td>
<td>W</td>
</tr>
<tr>
<td>36</td>
<td>41</td>
<td>Fr2</td>
<td>Y</td>
</tr>
<tr>
<td>37</td>
<td>42</td>
<td>Fr2</td>
<td>L</td>
</tr>
<tr>
<td>38</td>
<td>43</td>
<td>Fr2</td>
<td>Q</td>
</tr>
<tr>
<td>39</td>
<td>44</td>
<td>Fr2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>Fr2</td>
<td>P</td>
</tr>
<tr>
<td>41</td>
<td>46</td>
<td>Fr2</td>
<td>G</td>
</tr>
<tr>
<td>42</td>
<td>47</td>
<td>Fr2</td>
<td>Q</td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>Fr2</td>
<td>S</td>
</tr>
<tr>
<td>44</td>
<td>49</td>
<td>Fr2</td>
<td>P</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
<td>Fr2</td>
<td>Q</td>
</tr>
<tr>
<td>46</td>
<td>51</td>
<td>Fr2</td>
<td>L</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>47</td>
<td>52</td>
<td>Fr2</td>
<td>L</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>Fr2</td>
<td>I</td>
</tr>
<tr>
<td>49</td>
<td>54</td>
<td>Fr2</td>
<td>Y</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>CD L</td>
<td>Q</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>CD L</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td>V</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>52</td>
<td>57</td>
<td>CD L</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>58</td>
<td>CD L</td>
<td>N</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>CD L</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>CD L</td>
<td>A</td>
</tr>
<tr>
<td>56</td>
<td>61</td>
<td>CD L</td>
<td>S</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>57 62</td>
<td>Fr3</td>
<td>R-L2</td>
<td>G</td>
</tr>
<tr>
<td>58 63</td>
<td>Fr3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>59 64</td>
<td>Fr3</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>60 65</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>61 66</td>
<td>Fr3</td>
<td>R</td>
</tr>
<tr>
<td>62 67</td>
<td>Fr3</td>
<td>F</td>
</tr>
<tr>
<td>63 68</td>
<td>Fr3</td>
<td>S</td>
</tr>
<tr>
<td>64 69</td>
<td>Fr3</td>
<td>G</td>
</tr>
<tr>
<td>65 70</td>
<td>Fr3</td>
<td>S</td>
</tr>
<tr>
<td>66 71</td>
<td>Fr3</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>67 72</td>
<td>Fr3</td>
<td>S</td>
</tr>
<tr>
<td>68 73</td>
<td>Fr3</td>
<td>G</td>
</tr>
<tr>
<td>69 74</td>
<td>Fr3</td>
<td>T</td>
</tr>
<tr>
<td>70 75</td>
<td>Fr3</td>
<td>D</td>
</tr>
<tr>
<td>71 76</td>
<td>Fr3</td>
<td>F</td>
</tr>
<tr>
<td>72 77</td>
<td>Fr3</td>
<td>T</td>
</tr>
<tr>
<td>73 78</td>
<td>Fr3</td>
<td>L</td>
</tr>
<tr>
<td>74 79</td>
<td>Fr3</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>75 80</td>
<td>Fr3</td>
<td>I</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>76</td>
<td>81</td>
<td>Fr3</td>
<td>S</td>
</tr>
<tr>
<td>77</td>
<td>82</td>
<td>Fr3</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>Fr3</td>
<td>V</td>
</tr>
<tr>
<td>79</td>
<td>84</td>
<td>Fr3</td>
<td>E</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>Fr3</td>
<td>A</td>
</tr>
<tr>
<td>81</td>
<td>86</td>
<td>Fr3</td>
<td>E</td>
</tr>
<tr>
<td>82</td>
<td>87</td>
<td>Fr3</td>
<td>D</td>
</tr>
<tr>
<td>83</td>
<td>88</td>
<td>Fr3</td>
<td>V</td>
</tr>
<tr>
<td>84</td>
<td>89</td>
<td>Fr3</td>
<td>G</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>Fr3</td>
<td>V</td>
</tr>
<tr>
<td>86</td>
<td>91</td>
<td>Fr3</td>
<td>Y</td>
</tr>
<tr>
<td>87</td>
<td>92</td>
<td>Fr3</td>
<td>Y</td>
</tr>
<tr>
<td>88</td>
<td>93</td>
<td>Fr3</td>
<td>C</td>
</tr>
<tr>
<td>89</td>
<td>94</td>
<td>CD R-L3</td>
<td>M</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
<td>CD R-L3</td>
<td>Q</td>
</tr>
<tr>
<td>91</td>
<td>96</td>
<td>CD R-L3</td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>92 97</td>
<td>CD R-L3</td>
<td>L</td>
</tr>
<tr>
<td>93 98</td>
<td>CD R-L3</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
</tr>
<tr>
<td>94 99</td>
<td>CD R-L3</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td>L</td>
</tr>
<tr>
<td>95 100</td>
<td>CD R-L3</td>
<td>P</td>
</tr>
<tr>
<td>95 A</td>
<td>CD R-L3</td>
<td>-</td>
</tr>
<tr>
<td>95B</td>
<td>CD R-L3</td>
<td>-</td>
</tr>
<tr>
<td>95 C</td>
<td>CD R-L3</td>
<td>-</td>
</tr>
<tr>
<td>Остаток по Кабат, №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL. магнитного 9F5 (SEQ ID NO:11)</td>
<td>IGK2-28'-901 и IGK2'-901 (SEQ ID NO:37)</td>
<td>CAB1297-VL._huFw(kk) (SEQ ID NO:35)</td>
<td>1913577-B-VL._huFw(kk) (SEQ ID NO:36)</td>
<td>HuF5VLx1 (SEQ ID NO:23)</td>
<td>HuF5VLx2 (SEQ ID NO:24)</td>
<td>HuF5VLx3 (SEQ ID NO:25)</td>
<td>HuF5VLx4 (SEQ ID NO:26)</td>
<td>HuF5VLx5 (SEQ ID NO:27)</td>
<td>HuF5VLx6 (SEQ ID NO:28)</td>
<td>HuF5VLx7 (SEQ ID NO:29)</td>
<td>HuF5VLx8 (SEQ ID NO:30)</td>
<td>HuF5VLx9 (SEQ ID NO:31)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>------------------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>95D</td>
<td>CD R-L3</td>
<td>-</td>
</tr>
<tr>
<td>95E</td>
<td>CD R-L3</td>
<td>-</td>
</tr>
<tr>
<td>95F</td>
<td>CD R-L3</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>101 CD R-L3</td>
<td>L</td>
<td>Y</td>
<td>L</td>
<td>Y</td>
<td>L</td>
</tr>
<tr>
<td>97</td>
<td>102 CD R-L3</td>
<td>T</td>
</tr>
<tr>
<td>98</td>
<td>103</td>
<td>Fr4</td>
<td>F</td>
</tr>
<tr>
<td>99</td>
<td>104</td>
<td>Fr4</td>
<td>G</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>Fr4</td>
<td>A</td>
<td>Q</td>
<td>G</td>
<td>G</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>101</td>
<td>106</td>
<td>Fr4</td>
<td>G</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>Fr4</td>
<td>T</td>
</tr>
<tr>
<td>103</td>
<td>108</td>
<td>Fr4</td>
<td>K</td>
</tr>
<tr>
<td>104</td>
<td>109</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>L</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td>Fr4</td>
<td>E</td>
</tr>
<tr>
<td>106</td>
<td>111</td>
<td>Fr4</td>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>106</td>
<td>A</td>
<td>Fr4</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>112</td>
<td>Fr4</td>
<td>K</td>
</tr>
</tbody>
</table>

Таблица 8: Обратные мутации Vх, Vл и другие мутации для гуманизированного 9F5

<table>
<thead>
<tr>
<th>Вариант Vх или Vл</th>
<th>Последовательность акцептора экона Vх или Vл</th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu9F5VHVv1</td>
<td>Номер доступа в GenBank AAN16432-VH_huFrwk (SEQ ID NO:31) PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)</td>
<td>Отсутствует</td>
</tr>
</tbody>
</table>

202
Таблица 8: Обратные мутации V_H, V_L и другие мутации для гуманизированного 9F5

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Последовательность акцептора эзона V_H или V_L</th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
</table>
| Hu9F5VHV2 (SEQ ID NO:16) | Номер доступа в GenBank AAN16432-VH_huFrwk (SEQ ID NO:31)
PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)
IMGT № IGHV1-69-2*01 (SEQ ID NO:33) | H1, H17, H20, H69, H75, H93, H94, H109 |
| Hu9F5VHV3 (SEQ ID NO:17) | Номер доступа в GenBank AAN16432-VH_huFrwk (SEQ ID NO:31)
PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)
IMGT № IGHV1-69-2*01 (SEQ ID NO:33) | H1, H17, H20, H66, H69, H75, H81, H93, H94, H109 |
| Hu9F5VHV4 (SEQ ID NO:18) | Номер доступа в GenBank AAN16432-VH_huFrwk (SEQ ID NO:31)
PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)
<table>
<thead>
<tr>
<th>Вариант V<sub>H</sub> или V<sub>L</sub></th>
<th>Последовательность акцептора экона V<sub>H</sub> или V<sub>L</sub></th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDB ID 2RCS-VH_huFrwk (SEQ ID NO:32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td></td>
</tr>
<tr>
<td>Вариант V_H или V_L</td>
<td>Последовательность акцептора эзона V_H или V_L</td>
<td>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Вариант Vₜ или Vₗ</td>
<td>Последовательность акцептора экзона Vₜ или Vₗ</td>
<td>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Hu9F5VLv1 (SEQ ID NO:23)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L64, L66</td>
</tr>
<tr>
<td>Hu9F5VLv2 (SEQ ID NO:24)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L15, L64, L66, L100</td>
</tr>
<tr>
<td>Hu9F5VLv3 (SEQ ID NO:25)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L15, L17, L66, L100</td>
</tr>
<tr>
<td>Вариант Vₜ или Vₜ</td>
<td>Последовательность акцептора экона Vₜ или Vₜ</td>
<td>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hu9F5VLv4 (SEQ ID NO.26)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L11, L15, L17, L51, L54, L66, L100</td>
</tr>
<tr>
<td>Hu9F5VLv5 (SEQ ID NO.27)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L11, L15, L17, L30, L51, L54, L66, L100</td>
</tr>
<tr>
<td>Hu9F5VLv6 (SEQ ID NO.28)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L11, L15, L17, L30, L51, L54, L100</td>
</tr>
<tr>
<td>Вариант V или VL</td>
<td>Последовательность акцептора экона V или VL</td>
<td>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hu9F5VLv7 (SEQ ID NO:29)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L9, L11, L15, L17, L18, L31, L39, L51, L54, L60, L66, L74, L100</td>
</tr>
<tr>
<td>Hu9F5VLv8 (SEQ ID NO:130)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L11, L15, L17, L39, L64, L66, L74, L100</td>
</tr>
<tr>
<td>Hu9F5VLv9 (SEQ ID NO:131)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) Номер доступа в GenBank 1911357B-VL_huFrwk (SEQ ID NO:36) IMGT № IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L7, L8, L11, L15, L17, L39, L60, L64, L66, L74, L100</td>
</tr>
</tbody>
</table>
Таблица 9: Нумерация по Kabat каркасных остатков (или CDR) (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в тяжелых цепях гуманизированных антител 9F5

<table>
<thead>
<tr>
<th>Остаток</th>
<th>H1</th>
<th>H5</th>
<th>H11</th>
<th>H12</th>
<th>H17</th>
<th>H20</th>
<th>H23</th>
<th>H28</th>
<th>H38</th>
<th>H40</th>
<th>H42</th>
<th>H43</th>
<th>H48</th>
<th>H51</th>
<th>H54</th>
<th>H56</th>
<th>H66</th>
<th>H69</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>Q</td>
<td>E</td>
</tr>
<tr>
<td>V</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>V</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>V</td>
</tr>
<tr>
<td>K</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>K</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>T</td>
<td>S</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>K</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>N</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>Q</td>
<td>K</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>D</td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>E</td>
<td>N</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>R</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>R</td>
</tr>
<tr>
<td>M</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
</tr>
</tbody>
</table>

SEQ ID NO: 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H75</td>
<td>T</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>H76</td>
<td>D</td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>H80</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>H81</td>
<td>E</td>
<td>Q</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>H83</td>
<td>R</td>
<td>T</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>H93</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H94</td>
<td>G</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>H108</td>
<td>L</td>
<td>T</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H109</td>
<td>V</td>
<td>L</td>
<td>V</td>
</tr>
</tbody>
</table>

Таблица 10: Нумерация по Kabat каркасных остатков (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в легких цепях гуманизированных антител 9F5
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L7</td>
<td>S</td>
<td>A</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>L8</td>
<td>P</td>
<td>A</td>
<td>P</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>L9</td>
<td>L</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>L11</td>
<td>L</td>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L15</td>
<td>P</td>
<td>L</td>
<td>P</td>
<td>L</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>L17</td>
<td>E</td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>L18</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>L30</td>
<td>Y</td>
<td>I</td>
<td>Y</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>Y</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>L31</td>
<td>N</td>
<td>T</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>L39</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>L51</td>
<td>G</td>
<td>V</td>
<td>G</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>M</td>
</tr>
<tr>
<td>L54</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>L60</td>
<td>D</td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>L64</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>S</td>
</tr>
<tr>
<td>L66</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>L74</td>
<td>K</td>
<td>R</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>L100</td>
<td>G</td>
<td>G</td>
<td>Q</td>
<td>A</td>
<td>G</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
</tbody>
</table>

Таблица 11
Процентный показатель степени гуманизации тяжелых и легких цепей гуманизированных антител 9F5

<table>
<thead>
<tr>
<th>Вариант Vₜ или Vₖ</th>
<th>Степень</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Позиция</td>
<td>Уровень консерватизма</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Hu9F5VHv1 (SEQ ID NO:15)</td>
<td>66,3%</td>
</tr>
<tr>
<td>Hu9F5VHv2 (SEQ ID NO:16)</td>
<td>69,4%</td>
</tr>
<tr>
<td>Hu9F5VHv3 (SEQ ID NO:17)</td>
<td>71,4%</td>
</tr>
<tr>
<td>Hu9F5VHv4 (SEQ ID NO:18)</td>
<td>74,5%</td>
</tr>
<tr>
<td>Hu9F5VHv5 (SEQ ID NO:19)</td>
<td>80,6%</td>
</tr>
<tr>
<td>Hu9F5VHv6 (SEQ ID NO:20)</td>
<td>82,7%</td>
</tr>
<tr>
<td>Hu9F5VHv7 (SEQ ID NO:21)</td>
<td>84,7%</td>
</tr>
<tr>
<td>Hu9F5VHv8 (SEQ ID NO:22)</td>
<td>82,7%</td>
</tr>
<tr>
<td>Hu9F5VHv9 (SEQ ID NO:127)</td>
<td>80,6%</td>
</tr>
<tr>
<td>Hu9F5VHv10 (SEQ ID NO:128)</td>
<td>78,6%</td>
</tr>
<tr>
<td>Hu9F5VLv1 (SEQ ID NO:23)</td>
<td>78,0%</td>
</tr>
<tr>
<td>Hu9F5VLv2 (SEQ ID NO:24)</td>
<td>81,0%</td>
</tr>
<tr>
<td>Hu9F5VLv3 (SEQ ID NO:25)</td>
<td>83,0%</td>
</tr>
<tr>
<td>Hu9F5VLv4 (SEQ ID NO:26)</td>
<td>86,0%</td>
</tr>
<tr>
<td>Hu9F5VLv5 (SEQ ID NO:27)</td>
<td>87,0%</td>
</tr>
<tr>
<td>Hu9F5VLv6 (SEQ ID NO:28)</td>
<td>86,0%</td>
</tr>
<tr>
<td>Hu9F5VLv7 (SEQ ID NO:29)</td>
<td>92,0%</td>
</tr>
<tr>
<td>Hu9F5VLv8 (SEQ ID NO:130)</td>
<td>85%</td>
</tr>
<tr>
<td>Hu9F5VLv9 (SEQ ID NO:131)</td>
<td>86%</td>
</tr>
</tbody>
</table>

[0762] Положения, в которых канонические, верньерные или интерфейсные остатки различаются между акцепторными последовательностями мыши и человека, являются кандидатами на замену. Примеры взаимодействующих канонических остатков/остатков CDR включают остатки по Kabat H54 и H94 в таблице 6. Примеры верньерных остатков включают остатки по Kabat H28, H48, H69, H93 и H94 в таблице 6 и L64 и L66 в таблице 7. Примеры остатков интерфейса/упаковки (VH+VL) включают остаток по Kabat H93 в таблице 6.

[0763] Обоснования выбора положений, указанных в таблице 6, в вариабельной области тяжелой цепи в качестве кандидатов на замену являются следующими.

[0764] Вариабельные области тяжелой цепи

[0765] hu9F5VHv1
состоит из петель CDR-H1, H2 и H3 9F5-VH, привитых на каркас AAN16432_VH и RCS-VH.

[0766]hu9F5VHv2

возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Вернье, или локализуются на интерфейсе доменов VH/VL или способствуют структурной стабильности. hu9F5VHv2 включает обратные мутации или замен в различных положениях, перечисленных ниже, что позволяет оценить вклад этих положений в антигенсвязывающую аффинность и иммуногенность.

[0767]hu9F5VHv3, hu9F5VHv4, hu9F5VHv5, hu9F5VHv6, hu9F5VHv7, hu9F5VHv8, hu9F5VHv9 и hu9F5VHv10,

состоят из дополнительных замен и либо для повышения стабильности Ab и/или оптимизации дезаминирования, окисления, N-гликоэлизирования, протеолиза и агрегации.

[0768]Q1E: представляет собой мутацию, повышающую стабильность, для уменьшения потенциала образования пироглутамата и снижения гетерогенности N-конца (Li, выше).

[0769]Q5V: представляет собой мутацию, выравнивающую зародышевую линию. Val находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

[0772]S17E: представляет собой мутацию, выравнивающую зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении. Замена Thr может повысить стабильность по сравнению с Ser в этом положении.
L20I: представляет собой мутацию, выравнивающую зародышевую линию. Це находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

T23K: представляет собой частотную и выравнивающую зародышевую линию мутацию. Lys находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

N28T: Это замена остатка CDR-H1 на Thr и мутация, выравнивающая зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

K38R: Arg находится в AAN16432-VH_huFtwk (SEQ ID NO:31) в этом положении и может повысить стабильность по сравнению с Lys в этом положении.

K38Q: K38Q представляет собой мутацию, выравнивающую зародышевую линию. Gln находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении. Эта замена делает антитело более подобным человеческой последовательности и одновременно сохраняет функцию антитела.

R40A: представляет собой частотную и выравнивающую зародышевую линию мутацию. Ala находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

E42G: представляет собой мутацию, выравнивающую зародышевую линию. Gly находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

Q43K: представляет собой частотную и выравнивающую зародышевую линию мутацию. Lys находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении. Lys в этом положении может повышать стабильность.

I48M: представляет собой частотную и выравнивающую зародышевую линию мутацию остатка в зоне Вернье. Met находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

I51V: Это замена остатка CDR-H2 на Val. Предполагается, что это положение является неантигенным контактным расположением в соответствии с моделью гомологии.
Это мутация, выравнивающая зародышевую линию. Val находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

[0783]N54D и D56E: Это замены остатков CDR-H2 и предполагается, что они являются неантигенными контактными положениями в соответствии с моделью гомологии. Предполагается, что замены N54D и D56E стабилизируют структуру антитела.

[0784]K66R: Предполагается, что Arg в этом положении образует H-связи с Ser 82a и Thr 83 в дополнение к образованию H-связи и солевого мостика с Asp 86.

[0785]I69M представляет собой обратную мутацию остатка зоны Вернье.

[0786]S75T: Предполагается, что Ser в этом положении образует H-связь с Asp 72 и Tyr 76. Предполагается, что Thr в этом положении также осуществляет такие контакты, но являясь доступным на поверхности остатком Thr может повышать стабильность антитела. S75T представляет собой мутацию, выравнивающую зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении. Thr находится в акцепторной последовательности AAN16432-VH_huFrwk в этом положении.

[0788]L80M: представляет собой мутацию, выравнивающую зародышевую линию. Met находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

[0789]Q81E: Предполагается, что Glu образует H-связь плюс солевой мостик с Lys19, следовательно, Glu в этом положении повышает стабильность антитела.

[0347] A93T: Положение H93 представляет собой остаток интерфейса тяжелой цепи/легкой цепи. Обратная мутация к мышиному остатку Thr в этом положении сохраняет этот интерфейс. A93T также представляет собой мутацию, выравнивающую зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01.
(SEQ ID NO:33) в этом положении. A93T в этом положении делает антитело более подобным человеческому антителу.

[S94T] S94T: представляет собой обратную мутацию канонического структурного остатка и верньерного остатка согласно определению по Chothia. S94T также представляет собой мутацию, выравнивающую зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

Обоснования выбора положений, указанных в таблице 7, в вариабельной области легкой цепи в качестве кандидатов на замену являются следующими.

вариабельные области легкой цепи

[hu9F5VLv1] hu9F5VLv1
- состоит из петель CDR-L1, L2 и L3 9F5-VL, привитых к каркасу VL CAB51297 и VL 1911357B наряду с возвратом всех каркасных замен в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Вернье или расположены на интерфейсе доменов VH/VL.

[A7S] A7S: представляет собой мутацию, выравнивающую зародышевую линию. Ser находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Замена Ser может повышать стабильность, так как боковая цепь Ser образует H-связь с основной цепью Phe9, делая петлю более стабильной.
А8Р: представляет собой частотную и выравнивающую зародышевую линию мутацию. Присходит в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

F9L: представляет собой мутацию, выравнивающую зародышевую линию. Leu находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

N11L: представляет собой частотную и выравнивающую зародышевую линию мутацию. Leu находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Присходит поддержки изгиба белка в этом положении.

L15P: представляет собой частотную и выравнивающую зародышевую линию мутацию. Присходит в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Присходит мутация, выравнивающая зародышевую линию.

T17E: представляет собой частотную мутацию. Glu часто встречается в этом положении, и предполагается, что Glu в этом положении образует H-связь с T14 и солевой мостик с Lys 107, оба остатка легкой цепи, и повышает стабильность антигена.

S18P: представляет собой мутацию, выравнивающую зародышевую линию. Присходит в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

I30Y: Это замена остатка CDR-L1, предположительно находящегося в зоне контакта с антигеном. Туг в этом положении образует структуру с Tug32 и His27D, повышая тем самым стабильность. Поскольку Ile и Tug являются гидрофобными, замена Tug может быть хорошо переносимой.

T31N: Это замена остатка CDR-L1. Asn в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

R39K: представляет собой мутацию, выравнивающую зародышевую линию. Lys находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Lys может обеспечивать структурную поддержку, эквивалентную Arg.

M51G: Это замена остатка CDR-L2, и предполагается, что он направлен в противоположную сторону от интерфейса антигена. Gly также представляет собой мутацию, выравнивающую зародышевую линию. Gly находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.
Предполагается, что данное положение является доступным на поверхности. Gly в этом положении, будучи нейтральным, снижает потенциал окисления Met.

[0809] L54R: Это замена остатка CDR-L2, и предполагается, что он направлен в противоположную сторону от интерфейса антигена. Arg также представляет собой мутацию, выравнивающую зародышевую линию. Arg в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Предполагается, что Arg образует H-связи с цепями Asn60 и Phe62, повышенная стабильность межцепочечной петли.

[0810] N60D: представляет собой мутацию, выравнивающую зародышевую линию. Asp находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

[0811] G64S представляет собой обратную мутацию остатка зоны Вернье. Обратная мутация G64S сохраняет конформацию CDR.

[0813] R74K: представляет собой мутацию, выравнивающую зародышевую линию. Lys находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

[0814] G100Q: представляет собой частотную и выравнивающую зародышевую линию мутацию. Gln находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Предполагается, что данный остаток является доступным на поверхности, и поэтому Gln в этом положении может быть лучше для растворимости антитела, поскольку он является гидрофильно нейтральным. Gln в этом положении может усиливать стабильность.

[0815] На основе этих человеческих каркасов были разработаны следующие варианты:

[0816] вариантные области тяжелой цепи

[0817] > hu9F5VHv1 (SEQ ID NO:15)
QVQLQQSGAELVKPGASVKLSTASGFTLSDYMNWVKQRPEQGLEWIGWGFDNGD
TEYASKFQGKATITADTSNTAYLQLSLTSEDATAVYYCASSNGWGQGTTLVSS

[0818] > hu9F5VHv2 (SEQ ID NO:16)
EVQLQSGAELVKPGATVKISCTASGFNIKKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGKATMTADTTSTNTAYLQLSSLTSEDATAVYYCTTSNGWGQGTTTVSS

[0819] > hu9F5VHv3 (SEQ ID NO:17)
EVQLQSGAELVKPGATVKISCTASGFNIKKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTTSTNTAYLQLELSLTSEDATAVYYCTTSNGWGQGTTTVSS

[0820] > hu9F5VHv4 (SEQ ID NO:18)
EVQLQSGAELVKPGATVKISCKASGFRTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTTSTNTAYLELSLRLSESDEATAVYYCTTSNGWGQGTTTVSS

[0821] > hu9F5VHv5 (SEQ ID NO:19)
EVQLQSGAELVKPGATVKISCKASGFRTIKDDYMNWVKQRPEKGLEWIGWVDPEDGET EYASKFQGRATMTADTTSTDTAYMELSSLRLSESDEATAVYYCTTSNGWGQGTLTVSS

[0822] > hu9F5VHv6 (SEQ ID NO:20)
EVQLQSGAELVKPGATVKISCKASGFRTIKDDYMNWVKQAPEKGLEWIMGWVDPEDGE TEYASKFQGRATMTADTTSTDTAYMELSSLRLSESDEATAVYYCTTSNGWGQGTLTVSS

[0823] > hu9F5VHv7 (SEQ ID NO:21)
EVQLQSGAELVKPGATVKISCKASGFNIKDDYMNWVRQAPGKGLEWIGWVDPEDGE TEYASKFQGRATMTADTTSTDTAYMELSSLRLSESDEATAVYYCTTSNGWGQGTLTVSS

[0824] > hu9F5VHv8 (SEQ ID NO:22)
EVQLQSGAELVKPGATVKISCKASGFNIKDDYMNWVRQAPGKGLEWIGWDPENGDT TEYASKFQGRATMTADTTSTDTAYMELSSLRLSESDEATAVYYCTTSNGWGQGTLTVSS

[0825] > hu9F5VHv9 (SEQ ID NO:127)
EVQLQSGAELVKPGATVKISCKASGFNIKDDYMNWVQRPGKGLEWIGWDPENGDT TEYASKFQGRATMTADTTSTNTAYMELSSLRLSESDEATAVYYCTTSNGWGQGTLTVSS

[0826] > hu9F5VHv10 (SEQ ID NO:128), (также известное как hu9F5VHv9_Q38K_G42E)
EVQLQSGAELVKPGATVKISCKASGFNIKDDYMNWVKQRPEKGLEWIGWDPENGDT EYASKFQGRATMTADTTSTNTAYMELSSLRLSESDEATAVYYCTTSNGWGQGTLTVSS
вариабельные области легкой капа-нити

> hu9F5VLv1 (SEQ ID NO:23)
DIVMTQAAFSNPVTLGTASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQMSNLASGVPNFSSSGSDTDLRISVREAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv2 (SEQ ID NO:24)
DIVMTQSPFSPVTPGTASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQMSNLASGVPNFSSSGSDTDLRISVREAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv3 (SEQ ID NO:25)
DIVMTQSPFSPVTPGEPASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQGSNRASGVPNFSSSGSDTDLRISVREAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv4 (SEQ ID NO:26)
DIVMTQSPFSLPVTPGEPASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQGSNRASGVPNFSSSGSDTDLRISVREAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv5 (SEQ ID NO:27)
DIVMTQSPFSLPVTPGEPASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQGSNRASGVPNFSSSGSDTDLRISVREAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv6 (SEQ ID NO:28)
DIVMTQSPFSLPVTPGEPASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQGSNRASGVPNFSSSGSDTDLRISVREAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv7 (SEQ ID NO:29)
DIVMTQSPFSLPVTPGEPASISCRSSKLHSNGITYLYWYLQRPGQPQQLIYQGSNRASGVPDFRSFSGSGDTDLKISRVEAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv8 (SEQ ID NO:130)
DIVMTQSPFSLPVTPGEPASISCRSSKLHSNGITYLYWYLQKPGQPQQLIYQMSNLASGVPNFSSSGSDTDLKISRVEAEVGVYYCAQNLELPLTFGQGKLEIK

> hu9F5VLv9 (SEQ ID NO:131), также известное как hu9F5VLv8_N60D

Пример 5. Иммуногенность hu9F5VHv4/hu9F5VLv2

Таблица 12. Результаты анализа иммуногенности, определяющего потенциальные пептиды в hu9F5VLv2 для деиммунизации

<table>
<thead>
<tr>
<th>Начальное положение (линейное)</th>
<th>Конечное положение (линейное)</th>
<th>Медианный процентильный ранг</th>
<th>Пептид</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>65</td>
<td>9,895</td>
<td>LLIYQMSNLASGVPN</td>
</tr>
<tr>
<td>46</td>
<td>60</td>
<td>15,18</td>
<td>GQSPQLLIYQMSNL A</td>
</tr>
<tr>
<td>26</td>
<td>40</td>
<td>16,055</td>
<td>SKSSLHSNGITYLYW</td>
</tr>
<tr>
<td>76</td>
<td>90</td>
<td>18,23</td>
<td>FTLRISRVEAE DVG V</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>19,455</td>
<td>TYLYWYLQRPGQSPQ</td>
</tr>
<tr>
<td>86</td>
<td>100</td>
<td>19,535</td>
<td>EDVGVYYCAQN LELP</td>
</tr>
</tbody>
</table>
На основании результатов анализа, представленных в таблице 12, были сконструированы варианты вариабельной области легкой цепи hu9F5VLv2, нацеленные на аминокислотные остатки, выделенные жирным шрифтом в таблице 13. Каждый вариант включает одну из следующих аминокислотных замен, как показано в таблице 14.

Таблица 13. Аминокислотные остатки, намеченные для замены.

<table>
<thead>
<tr>
<th>Целевые остатки вариабельной области легкой цепи hu9F5VLv2</th>
<th>Оригинальный SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1VMTQSPFSPVTPGTSASICRSSKSSL</td>
<td>24</td>
</tr>
<tr>
<td>HSNGITYLYWYLQRPGQSPOLL1YQMSNLA</td>
<td></td>
</tr>
<tr>
<td>SGVPNRFSSSGGTDFTLRISRV EAEDVGV</td>
<td></td>
</tr>
<tr>
<td>YYCAQNLELPLTFGQGKLEIK</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 14. Аминокислотные замены, сделанные в вариабельной области легкой цепи hu9F5VLv2 для снижения иммуногенности

<table>
<thead>
<tr>
<th>Линейный номер</th>
<th>Номер по Kabat</th>
<th>SEQ ID NO полученную вариабельной области легкой цепи</th>
</tr>
</thead>
<tbody>
<tr>
<td>M56E</td>
<td>M51E</td>
<td>SEQ ID NO:61</td>
</tr>
<tr>
<td>M56D</td>
<td>M51D</td>
<td>SEQ ID NO:62</td>
</tr>
<tr>
<td>L30D</td>
<td>L27cD</td>
<td>SEQ ID NO:63</td>
</tr>
<tr>
<td>L30G</td>
<td>L27cG</td>
<td>SEQ ID NO:64</td>
</tr>
<tr>
<td>L30S</td>
<td>L27cS</td>
<td>SEQ ID NO:65</td>
</tr>
<tr>
<td>L30E</td>
<td>L27cE</td>
<td>SEQ ID NO:66</td>
</tr>
<tr>
<td>I35E</td>
<td>I30E</td>
<td>SEQ ID NO:67</td>
</tr>
<tr>
<td>I35K</td>
<td>I30K</td>
<td>SEQ ID NO:68</td>
</tr>
<tr>
<td>L30T</td>
<td>L27cT</td>
<td>SEQ ID NO:69</td>
</tr>
<tr>
<td>L30N</td>
<td>L27cN</td>
<td>SEQ ID NO:70</td>
</tr>
<tr>
<td>L29D</td>
<td>L27bD</td>
<td>SEQ ID NO:71</td>
</tr>
<tr>
<td>I35G</td>
<td>I30G</td>
<td>SEQ ID NO:72</td>
</tr>
<tr>
<td>Линейный номер</td>
<td>Номер по Kabat</td>
<td>SEQ ID NO полученной вариабельной области легкой цепи</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>L38N</td>
<td>L33N</td>
<td>SEQ ID NO:73</td>
</tr>
<tr>
<td>L30A</td>
<td>L27cA</td>
<td>SEQ ID NO:74</td>
</tr>
<tr>
<td>L38T</td>
<td>L33T</td>
<td>SEQ ID NO:75</td>
</tr>
<tr>
<td>L38S</td>
<td>L33S</td>
<td>SEQ ID NO:76</td>
</tr>
<tr>
<td>L38R</td>
<td>L33R</td>
<td>SEQ ID NO:77</td>
</tr>
<tr>
<td>L35Q</td>
<td>L30Q</td>
<td>SEQ ID NO:78</td>
</tr>
<tr>
<td>L29T</td>
<td>L27bT</td>
<td>SEQ ID NO:79</td>
</tr>
<tr>
<td>T36G</td>
<td>T31G</td>
<td>SEQ ID NO:80</td>
</tr>
<tr>
<td>L29Q</td>
<td>L27bQ</td>
<td>SEQ ID NO:81</td>
</tr>
<tr>
<td>L38G</td>
<td>L33G</td>
<td>SEQ ID NO:82</td>
</tr>
<tr>
<td>L30P</td>
<td>L27cP</td>
<td>SEQ ID NO:83</td>
</tr>
<tr>
<td>V83R</td>
<td>V78R</td>
<td>SEQ ID NO:84</td>
</tr>
<tr>
<td>I80D</td>
<td>I75D</td>
<td>SEQ ID NO:85</td>
</tr>
<tr>
<td>V83D</td>
<td>V78D</td>
<td>SEQ ID NO:86</td>
</tr>
<tr>
<td>V83E</td>
<td>V78E</td>
<td>SEQ ID NO:87</td>
</tr>
<tr>
<td>V83P</td>
<td>V78P</td>
<td>SEQ ID NO:88</td>
</tr>
<tr>
<td>V83K</td>
<td>V78K</td>
<td>SEQ ID NO:89</td>
</tr>
<tr>
<td>R82D</td>
<td>R77D</td>
<td>SEQ ID NO:90</td>
</tr>
<tr>
<td>V83G</td>
<td>V78G</td>
<td>SEQ ID NO:91</td>
</tr>
<tr>
<td>S81P</td>
<td>S76P</td>
<td>SEQ ID NO:92</td>
</tr>
<tr>
<td>I80P</td>
<td>I75P</td>
<td>SEQ ID NO:93</td>
</tr>
<tr>
<td>I80Q</td>
<td>I75Q</td>
<td>SEQ ID NO:94</td>
</tr>
<tr>
<td>I80G</td>
<td>I75G</td>
<td>SEQ ID NO:95</td>
</tr>
<tr>
<td>L78P</td>
<td>L73P</td>
<td>SEQ ID NO:96</td>
</tr>
<tr>
<td>L78G</td>
<td>L73G</td>
<td>SEQ ID NO:97</td>
</tr>
<tr>
<td>V83Q</td>
<td>V78Q</td>
<td>SEQ ID NO:98</td>
</tr>
<tr>
<td>S81G</td>
<td>S76G</td>
<td>SEQ ID NO:99</td>
</tr>
<tr>
<td>Линейный номер</td>
<td>Номер по Kabat</td>
<td>SEQ ID NO полученой вариабельной области легкой цепи</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>L97D</td>
<td>L92D</td>
<td>SEQ ID NO:100</td>
</tr>
<tr>
<td>Y91T</td>
<td>Y86T</td>
<td>SEQ ID NO:101</td>
</tr>
<tr>
<td>L97E</td>
<td>L92E</td>
<td>SEQ ID NO:102</td>
</tr>
<tr>
<td>L97G</td>
<td>L92G</td>
<td>SEQ ID NO:103</td>
</tr>
<tr>
<td>L97Q</td>
<td>L92Q</td>
<td>SEQ ID NO:104</td>
</tr>
<tr>
<td>L99G</td>
<td>L93G</td>
<td>SEQ ID NO:105</td>
</tr>
<tr>
<td>V90G</td>
<td>V85G</td>
<td>SEQ ID NO:106</td>
</tr>
<tr>
<td>L97T</td>
<td>L92T</td>
<td>SEQ ID NO:107</td>
</tr>
<tr>
<td>A94G</td>
<td>A89G</td>
<td>SEQ ID NO:108</td>
</tr>
</tbody>
</table>

[0840] Аналогично, hu9F5VHv4 был проанализирован на потенциальную иммуногенность, и в таблице 15 показан пептид, выявленный для потенциальной деиммунизации.

Таблица 15. Результаты анализа иммуногенности, определяющего потенциальные пептиды в hu9F5VHv4 для деиммунизации

<table>
<thead>
<tr>
<th>Начальное положение (линейное)</th>
<th>Конечное положение (линейное)</th>
<th>Медианный процентильный ранг</th>
<th>Пептид</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>90</td>
<td>11,925</td>
<td>TNTAYLELSLRSED</td>
</tr>
</tbody>
</table>

[0841] На основе этих результатов были сконструированы варианты вариабельной области тяжелой цепи hu9F5VHv4 и вариабельной области тяжелой цепи hu9F5VHv5, нацеленные на аминокислотные остатки, выделенные жирным шрифтом в таблице 16. Каждый вариант включает одну из следующих аминокислотных замен, как показано в таблице 17.

Таблица 16. Аминокислотные остатки, намеченные для замены.

<table>
<thead>
<tr>
<th>Целевые остатки вариабельной области тяжелой цепи</th>
<th>Оригинальный SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu9F5VHv4</td>
<td>18</td>
</tr>
</tbody>
</table>
Таблица 17. Аминокислотные замены, сделанные в вариабельной области тяжелой цепи hu9F5VHv4 или v5, как указано, для снижения иммуногенности

<table>
<thead>
<tr>
<th>Линейный номер</th>
<th>Номер по Kabat</th>
<th>Вариант 9F5, в котором сделаны замены</th>
<th>SEQ ID NO полученной вариабельной области тяжелой цепи</th>
</tr>
</thead>
<tbody>
<tr>
<td>L81P</td>
<td>L80P</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:109</td>
</tr>
<tr>
<td>L81D</td>
<td>L80D</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:110</td>
</tr>
<tr>
<td>L86G</td>
<td>L82cG</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:111</td>
</tr>
<tr>
<td>L86D</td>
<td>L82cD</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:112</td>
</tr>
<tr>
<td>L83P</td>
<td>L82P</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:113</td>
</tr>
<tr>
<td>L81G</td>
<td>L80G</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:114</td>
</tr>
<tr>
<td>L83K</td>
<td>L82K</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:115</td>
</tr>
<tr>
<td>L83R</td>
<td>L82R</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:116</td>
</tr>
<tr>
<td>L83E</td>
<td>L82E</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:117</td>
</tr>
<tr>
<td>L83N</td>
<td>L82N</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:118</td>
</tr>
<tr>
<td>Y80D</td>
<td>Y79D</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:119</td>
</tr>
<tr>
<td>Y80N</td>
<td>Y79N</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:120</td>
</tr>
<tr>
<td>Y80G</td>
<td>Y79G</td>
<td>hu9F5VHv4</td>
<td>SEQ ID NO:121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>M81E</td>
<td>M80E</td>
<td>hu9F5VHVv5</td>
<td>SEQ ID NO:122</td>
</tr>
<tr>
<td>M81G</td>
<td>M80G</td>
<td>hu9F5VHVv5</td>
<td>SEQ ID NO:123</td>
</tr>
<tr>
<td>L86S</td>
<td>L82cS</td>
<td>hu9F5VHVv4</td>
<td>SEQ ID NO:124</td>
</tr>
<tr>
<td>Y80Q</td>
<td>Y79Q</td>
<td>hu9F5VHVv4</td>
<td>SEQ ID NO:125</td>
</tr>
<tr>
<td>S84G</td>
<td>S82aG</td>
<td>hu9F5VHVv4</td>
<td>SEQ ID NO:126</td>
</tr>
</tbody>
</table>

[0842]Пример 6 Иммуногенность hu9F5VLv8 и hu9F5VHVv10

Таблица 18. Результаты анализа иммуногенности, определяющего потенциальные пептиды в hu9F5VLv8 для деиммунизации

<table>
<thead>
<tr>
<th>Начальное положение (линейное)</th>
<th>Конечное положение (линейное)</th>
<th>Медианный процентильный ранг</th>
<th>Пептид</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>65</td>
<td>9,895</td>
<td>LLIYQMSNLASGVPN</td>
</tr>
<tr>
<td>46</td>
<td>60</td>
<td>15,18</td>
<td>GQSQPLLIYQMSNL</td>
</tr>
<tr>
<td>26</td>
<td>40</td>
<td>16,055</td>
<td>SKSLLHSNGITYLYW</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>17,995</td>
<td>DIVMTQSPFSLPVT</td>
</tr>
<tr>
<td>86</td>
<td>100</td>
<td>19,535</td>
<td>EDVGVYVYCAQNLELP</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>19,84</td>
<td>TYLYWYLQKPGQSPQ</td>
</tr>
</tbody>
</table>

[0844]На основании результатов анализа, представленных в таблице 19, были сконструированы варианты вариабельной области легкой цепи hu9F5VLv8, нацеленные на аминокислотные остатки, выделенные жирным шрифтом в таблице 19. Каждый вариант

Таблица 19. Аминокислотные остатки, намеченные для замены.

<table>
<thead>
<tr>
<th>Целевые остатки вариабельной области легкой цепи hu9F5VLv8</th>
<th>SEQ ID NO: hu9F5VLv8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVMTQSPFSLPVTPGESASISCRSSKSLL</td>
<td>130</td>
</tr>
<tr>
<td>HSNGYTLYWYLOKQGSQOLIYQMSNL</td>
<td></td>
</tr>
<tr>
<td>SGVPNRFSSSGSGTDFTLKISRVEAEDVGV</td>
<td></td>
</tr>
<tr>
<td>YYCAQNLELPLTFGQGKLEIK</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 20. Аминокислотные замены, сделанные в вариабельной области легкой цепи hu9F5VLv8 для снижения иммуногенности

<table>
<thead>
<tr>
<th>Название варианта</th>
<th>Замены в дополнительных вариантах в hu9F5VLv8, предназначенные для снижения иммуногенности (указать номер мутации(-ий) по Kabat)</th>
<th>SEQ ID NO полученными вариантом вариабельной области легкой цепи</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu9F5VLv8_DIM1</td>
<td>V3Q, L27cS, L37Q, M51G, L54G, L92I</td>
<td>SEQ ID NO:132</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM2</td>
<td>V3Q, L27cS, L37Q, M51G, L54R, L92I</td>
<td>SEQ ID NO:133</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM3</td>
<td>V3Q, L27cS, L37Q, M51G, L54T, L92I</td>
<td>SEQ ID NO:134</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM6</td>
<td>V3Q, L27cD, L37Q, M51G, L54R, L92I</td>
<td>SEQ ID NO:137</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM7</td>
<td>V3Q, L27cD, L37Q, M51K, L54R, L92I</td>
<td>SEQ ID NO:138</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM8</td>
<td>V3Q, L27cG, L37Q, M51K, L54R, L92I</td>
<td>SEQ ID NO:139</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM9</td>
<td>V3Q, L27cG, L37Q, M51K, L54G, L92I</td>
<td>SEQ ID NO:140</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM10</td>
<td>V3Q, L27cS, L37Q, M51K, L54G, L92I</td>
<td>SEQ ID NO:141</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM13</td>
<td>V3Q, L27cG, L37G, M51G, L54R</td>
<td>SEQ ID NO:144</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM16</td>
<td>V3Q, L27cG, L37G, M51G, L54T</td>
<td>SEQ ID NO:147</td>
</tr>
<tr>
<td>Название варианта</td>
<td>Замены в дополнительных вариантах в hu9F5VLv8, предназначенные для снижения иммуногенности (указан номер мутации(-ий) по Kabat)</td>
<td>SEQ ID NO полученной вариабельной области легкой цепи</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM19</td>
<td>V3Q, L27cS, L37I, M51I, L54R, L92I</td>
<td>SEQ ID NO:150</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM20</td>
<td>V3Q, L27cS, L37Q, M51I, L54G, L92I</td>
<td>SEQ ID NO:151</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM21</td>
<td>V3Q, L27cS, L37Q, M51I, L54G</td>
<td>SEQ ID NO:152</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM22</td>
<td>V3Q, L27cS, L37Q, M51E, L54R, L92I</td>
<td>SEQ ID NO:153</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM23</td>
<td>V3Q, L27cG, L37Q, M51E, L54G, L92I</td>
<td>SEQ ID NO:154</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM24</td>
<td>V3Q, L27cG, L37I, M51E, L54R, L92I</td>
<td>SEQ ID NO:155</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM26</td>
<td>V3Q, L27cI, L37I, M51E, L54R</td>
<td>SEQ ID NO:157</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM27</td>
<td>V3Q, L37Q, M51G, L54R, L92I</td>
<td>SEQ ID NO:158</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM28</td>
<td>V3Q, L27cS, M51G, L54R, L92I</td>
<td>SEQ ID NO:159</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM29</td>
<td>V3Q, L27cS, L37Q, L54R, L92I</td>
<td>SEQ ID NO:160</td>
</tr>
<tr>
<td>hu9F5VLv8_DIM30</td>
<td>V3Q, L27cS, L37Q, M51G, L92I</td>
<td>SEQ ID NO:161</td>
</tr>
</tbody>
</table>

Таблица 21 Аминокислотные замены, сделанные в вариабельной области легкой цепи hu9F5VLv9 для снижения иммуногенности

<table>
<thead>
<tr>
<th>Название варианта</th>
<th>Замены в дополнительных вариантах в hu9F5VLv9, предназначенные для снижения иммуногенности (указан номер мутации(-ий) по Kabat)</th>
<th>SEQ ID NO полученной вариабельной области легкой цепи</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu9F5VLv9_DIM1</td>
<td>V3Q, L27cS, L37Q, M51G, L54G, L92I</td>
<td>SEQ ID NO:162</td>
</tr>
<tr>
<td>hu9F5VLv9_DIM2</td>
<td>V3Q, L27cS, L37Q, M51G, L54R, L92I</td>
<td>SEQ ID NO:163</td>
</tr>
<tr>
<td>hu9F5VLv9_DIM4</td>
<td>V3Q, L27cS, L37Q, M51G, L54R, L92G</td>
<td>SEQ ID NO:164</td>
</tr>
<tr>
<td>hu9F5VLv9_DIM5</td>
<td>V3Q, L27cG, L37Q, M51G, L54R, L92I</td>
<td>SEQ ID NO:165</td>
</tr>
<tr>
<td>hu9F5VLv9_DIM8</td>
<td>V3Q, L27cG, L37Q, M51K, L54R, L92I</td>
<td>SEQ ID NO:166</td>
</tr>
<tr>
<td>hu9F5VLv9_DIM10</td>
<td>V3Q, L27cS, L37Q, M51K, L54G, L92I</td>
<td>SEQ ID NO:167</td>
</tr>
</tbody>
</table>
Обоснования выбора положений, указанных в таблице 20 и таблице 21, в вариабельной области легкой цепи в качестве кандидатов на замену являются следующими.

Мутация в V3Q была разработана на основе рекомендаций по результатам анализа деиммунизации. Gln в положении 3 является вторым по частоте в этом положении в человеческой последовательности, поэтому замена V3Q призвана снизить иммуногенность и сохранить последовательность более подобной человеческой последовательности. Прогноз иммуногенности в отношении замен hu9F5VLv8_V3Q показывает элиминацию N-концевого пептида 1-15.

Следующие мутации были разработаны на основе рекомендаций по результатам анализа деиммунизации, а также с учетом положения данного остатка в модели гомологии. Мутации также были разработаны для сохранения функциональности антитела за счет сохранения размера и заряда/полярности замещенного остатка. Приоритет отделялся остатку, если он совпадал с остатком в зародышевой линии человека.

L27cI, L27cS, L27cD, L27cG: для снижения иммуногенности
L37Q, L37G, L37I: для снижения иммуногенности
M51G, M51K, M51I, M51E: для снижения иммуногенности
M51G: Это замена остатка CDR-L2, и предполагается, что он направлен в противоположную сторону от интерфейса антигена. Gly также представляет собой мутацию, выравнивающую зародышевую линию. Gly находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Предполагается, что данное положение является доступным на поверхности. Gly в этом положении, будучи нейтральным, снижает потенциал окисления Met.
L54G, L54R, L54T: для снижения иммуногенности
L54R: Это замена остатка CDR-L2, и предполагается, что он направлен в противоположную сторону от интерфейса антигена. Arg также представляет собой
мутацию, выравнивающую зародышевую линию. Arg в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении. Предполагается, что Arg образует H-связи с цепями Asn60 и Phe62, повышая стабильность межцепочечной петли.

[0854] N60D: для снижения иммуногенности. N60D: также представляет собой мутацию, выравнивающую зародышевую линию. Asp находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

[0855] L92I, L92G: для снижения иммуногенности

Таблица 22. Результаты анализа иммуногенности, определяющего потенциальные пептиды в hu9F5VHv10 для деиммунизации

<table>
<thead>
<tr>
<th>Начальное положение (линейное)</th>
<th>Конечное положение (линейное)</th>
<th>Медианный процентильный ранг</th>
<th>Пептид</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>90</td>
<td>12,72</td>
<td>TNTAYMELSSLRSED</td>
</tr>
</tbody>
</table>

[0856] В таблице 22 показаны пептиды, которые могут быть выбраны для деиммунизации hu9F5VHv10, т.е. указаны области, в которых могут быть сделаны дополнительные замены для снижения потенциальной иммуногенности.

На основании этих результатов был сконструирован вариант вариабельной области тяжелой цепи hu9F5VHv10, нацеленный на аминокислотный остаток H82c, выделенный жирным шрифтом в таблице 23. Вариант hu9F5VHv10_L82cG включает замену L82cG, как показано в таблице 24.

Таблица 23. Аминокислотные остатки, намеченные для замены.

<table>
<thead>
<tr>
<th>Целевые остатки вариабельной области тяжелой цепи</th>
<th>Оригинальный SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>>hu9F5VHv10 EVQLVQGAEVKPGATVKIISCKASGFNIKDDYMNVKQRPE KGLEWIGWIDPENGDTTEYASKFQGRATMTADTSTNTAYMELSS LRSEDTAVYYCTTSNGWGQQTLVTVSS</td>
<td>128</td>
</tr>
</tbody>
</table>
Таблица 24. Аминокислотные замены, сделанные в вариабельной области тяжелой цепи hu9F5VHV10 для снижения иммуногенности

<table>
<thead>
<tr>
<th>Название варианта</th>
<th>Замены в дополнительных вариантах в hu9F5VHV10, предназначенные для снижения иммуногенности (указан номер мутации(-ий) по Kabat)</th>
<th>SEQ ID NO</th>
<th>области вариабельной области тяжелой цепи</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu9F5VHV10_L82cG</td>
<td>L82cG</td>
<td>SEQ ID NO:129</td>
<td></td>
</tr>
</tbody>
</table>

Пример 7 Анализ вариантов гуманизированного 9F5

Пример 8 Гуманизированные варианты 9F5 со спрогнозированными деиммунизирующимися заменами анализировали по нескольким характеристикам, включая аффинность связывания с мишенью, активность в клеточных анализах, термостабильность, характеристики экспрессии и количество замен. Во всех случаях результаты сравнивали с исходной последовательностью hu9F5VHV9/hu9F5VLv8, чтобы определить, отмечалась ли потеря активности или стабильности.

Пример 9 Анализ связывания мишени проводили с использованием Biacore T200 для сравнения аффинности связывания гуманизированных вариантов 9F5 с рекомбинантным тау 4R0N человека. Антитело против Fc человека иммобилизовали на сенсорном чипе CM3 посредством аминного связывания, и гуманизированные варианты 9F5 были захвачены до эквивалентных уровней. Различные концентрации рекомбинантного тау 4R0N человека (в диапазоне от 0,02 до 12,5 нМ) пропускали через захваченный лиганд со скоростью 50 мкл/мин в рабочем буфере (HBS + 0,05% P-20, 1 мг/мл BSA) в течение 180 секунд ассоциации/420 секунд диссоциации в качестве одного цикла. Из данных были вычислены значения холостой пробы для нерелевантного датчика, не содержащего антитела, и концентрации анализа 0 нМ. Анализ был проведен с использованием общей подгонки 1:1 с помощью программного обеспечения Biacore Evaluation.

Пример 10 Определение аффинности выявило ряд деиммунизированных вариантов, которые сохранили аффинность родительских антител, что было определено путем сравнения K_D каждого антитела. В данном случае, K_D антител были определены как сопоставимые в пределах 3-кратного уровня с hu9F5VHV9/hu9F5VLv8 (Таблица 25), включают hu9F5VHV9/hu9F5VLv8_DIM2, hu9F5VHV9/hu9F5VLv8_DIM5,
Таблица 25. Аффинность гуманизированных вариантов 9F5

<table>
<thead>
<tr>
<th>Гуманизированный вариант 9F5 и SEQ ID NO:</th>
<th>Замены в VH относительно hu9F5VHVv9 (номер мутации(-ий) по Kabat)</th>
<th>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</th>
<th>(K_a) (1/M c)</th>
<th>(K_d) (1/c)</th>
<th>(K_D) (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu9F5VHVv9/hu9F5VLv8</td>
<td></td>
<td></td>
<td>1716666,6 67</td>
<td>0,0004293 33</td>
<td>2,69333 E-10</td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv9/hu9F5VLv8_DIM1</td>
<td>V3Q, L27cS, L37Q, M51G, L54G, L92I</td>
<td></td>
<td>6620000</td>
<td>0,00559</td>
<td>8,44E-10</td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv9/hu9F5VLv8_DIM2</td>
<td>V3Q, L27cS, L37Q, M51G, L54R, L92I</td>
<td></td>
<td>1960000</td>
<td>0,000586</td>
<td>2,99E-10</td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHVv9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>K_a (1/M с)</td>
<td>K_d (1/c)</td>
<td>K_d (M)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM3 SEQ ID NO:127/SEQ ID NO:134</td>
<td>V3Q, L27cS, L37Q, M51G, L54T, L92I</td>
<td>1130000</td>
<td>0.00068</td>
<td>6E-10</td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM4 SEQ ID NO:127/SEQ ID NO:135</td>
<td>V3Q, L27cS, L37Q, M51G, L54R, L92G</td>
<td>542000</td>
<td>0.00143</td>
<td>2.63E-09</td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM5 SEQ ID NO:127/SEQ ID NO:136</td>
<td>V3Q, L27cG, L37Q, M51G, L54R, L92I</td>
<td>1750000</td>
<td>0.000295</td>
<td>1.69E-10</td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM6 SEQ ID NO:127/SEQ ID NO:137</td>
<td>V3Q, L27cD, L37Q, M51G, L54R, L92I</td>
<td>1530000</td>
<td>0.000272</td>
<td>1.78E-10</td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM7 SEQ ID NO:127/SEQ ID NO:138</td>
<td>V3Q, L27cD, L37Q, M51K, L54R, L92I</td>
<td>2360000</td>
<td>0.000424</td>
<td>1.8E-10</td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM8 SEQ ID NO:127/SEQ ID NO:139</td>
<td>V3Q, L27cG, L37Q, M51K, L54R, L92I</td>
<td>1320000</td>
<td>0.000576</td>
<td>4.35E-10</td>
<td></td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHV9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>K_a (1/M с)</td>
<td>K_d (1/c)</td>
<td>k_0 (M)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5Vlv8_DIM9 SEQ ID NO:127/SEQ ID NO:140</td>
<td>V3Q, L27cG, L37Q, M51K, L54G, L92I</td>
<td></td>
<td>2290000</td>
<td>0.0116</td>
<td>5.07E-09</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5Vlv8_DIM10 SEQ ID NO:127/SEQ ID NO:141</td>
<td>V3Q, L27cS, L37Q, M51K, L54G, L92I</td>
<td></td>
<td>1890000</td>
<td>0.0741</td>
<td>3.92E-09</td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHV9 (номер мутаций(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>K_a (1/M с)</td>
<td>K_d (1/c)</td>
<td>K_D (M)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM19</td>
<td>V3Q, L27cS, L37I, M51I, L54R, L92I</td>
<td></td>
<td>3610000</td>
<td>0,00215</td>
<td>5.97E-10</td>
</tr>
<tr>
<td>SEQ ID NO:127/SEQ ID NO:150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM20</td>
<td>V3Q, L27cS, L37Q, M51I, L54G, L92I</td>
<td></td>
<td>5640000</td>
<td>0,0694</td>
<td>1.23E-08</td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHV9 (номер мутаций(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутаций(-ий) по Kabat)</td>
<td>K_a (1/M с)</td>
<td>K_d (1/c)</td>
<td>K_D (M)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM21 SEQ ID NO:127/SEQ ID NO:152</td>
<td>V3Q, L27cS, L37Q, M51I, L54G</td>
<td></td>
<td>1310000</td>
<td>1,12</td>
<td>0,000000 858</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM22 SEQ ID NO:127/SEQ ID NO:153</td>
<td>V3Q, L27cS, L37Q, M51E, L54R, L92I</td>
<td></td>
<td>2250000</td>
<td>0,000878</td>
<td>3.9E-10</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM23 SEQ ID NO:127/SEQ ID NO:154</td>
<td>V3Q, L27cG, L37Q, M51E, L54G, L92I</td>
<td></td>
<td>6690000</td>
<td>0,0832</td>
<td>1.24E-09</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM24 SEQ ID NO:127/SEQ ID NO:155</td>
<td>V3Q, L27cG, L37I, M51E, L54R, L92I</td>
<td></td>
<td>2190000</td>
<td>0,000993</td>
<td>4.54E-10</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F 5VLv8_DIM26 SEQ ID NO:127/SEQ ID NO:157</td>
<td>V3Q, L27cI, L37I, M51E, L54R</td>
<td></td>
<td>3840000</td>
<td>0,004</td>
<td>1.04E-09</td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHVv9 (номер мутаций(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутаций(-ий) по Kabat)</td>
<td>K_a (1/M с)</td>
<td>K_d (1/c)</td>
<td>K_D (M)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F5VLv8_DIM27 SEQ ID NO:127/SEQ ID NO:158</td>
<td>V3Q, L37Q, M51G, L54R, L921</td>
<td></td>
<td>2410000</td>
<td>0.000385</td>
<td>1.6E-10</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F5VLv8_DIM29 SEQ ID NO:127/SEQ ID NO:160</td>
<td>V3Q, L27cS, L37Q, L54R, L921</td>
<td></td>
<td>1980000</td>
<td>0.000534</td>
<td>2.7E-10</td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F5VLv8_DIM30 SEQ ID NO:127/SEQ ID NO:161</td>
<td>V3Q, L27cS, L37Q, M51G, L921</td>
<td></td>
<td>1020000</td>
<td>0.000447</td>
<td>4.38E-10</td>
</tr>
<tr>
<td>hu9F5VHV10/hu9F5VLv9_DIM1 SEQ ID NO:128/SEQ ID NO:162</td>
<td>Q38K, G42E</td>
<td>V3Q, L27cS, L37Q, M51G, L54G, N60D, L921</td>
<td>2690000</td>
<td>0.00395</td>
<td>1.47E-09</td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHVv9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>K_a (1/M с)</td>
<td>K_d (1/c)</td>
<td>K_d (M)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>hu9F5VHVv10/hu9F5Vl9_DIM8 SEQ ID NO:128/SEQ ID NO:166</td>
<td>Q38K, G42E</td>
<td>V3Q, L27cG, L37Q, M51K, L54R, N60D, L92I</td>
<td>2710000</td>
<td>0.00232</td>
<td>8.59E-10</td>
</tr>
<tr>
<td>hu9F5VHVv10/hu9F5Vl9_DIM10 SEQ ID NO:/SEQ ID NO:167</td>
<td>Q38K, G42E</td>
<td>V3Q, L27cS, L37Q, M51K, L54G, N60D, L92I</td>
<td>6890000</td>
<td>0.026</td>
<td>3.77E-09</td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5 и SEQ ID NO:</td>
<td>Замены в VH относительно hu9F5VHV9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>K_a (1/M c)</td>
<td>K_d (1/c)</td>
<td>K_0 (M)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>hu9F5VHV10/hu9F5VLv9_DIM19 SEQ ID NO:128/170</td>
<td>Q38K, G42E</td>
<td>V3Q, L27cS, L371, M511, L54R, N60D, L921</td>
<td>3490000</td>
<td>0.00688</td>
<td>1.97E-09</td>
</tr>
</tbody>
</table>

[0861] Кроме того, в качестве вторичной характеристики были проанализированы термостабильность и титр для всех денищуминизированных вариантов. Уровни термостабильности и титра сравнивали для антител, которые были сопоставимы с Hu9F5VHV9/Hu9F5VLv8 на основании измерений аффинности, а антитела в таблице 26 перечислены в порядке, основанном на отклонении от T_m of Hu9F5VHV9/Hu9F5VLv8.

[0862] Значения термостабильности определяли с помощью дифференциальной сканирующей калориметрии (ДСК). Все сканирования ДСК проводились с использованием системы VP-Capillary DSC (Malvern). Все образцы были приготовлены в концентрации 0,5 мг/мл в 1хФСБ и сравнивались с эталоном 1хФСБ. Приблизительно 0,5 мл раствора белка и буфера вводили в образец и сравнительную ячейку. Калориметрическое сканирование проводилось при скорости сканирования 60°C/час, при температуре от 25°C до 110°C при постоянном давлении. Анализ проводили с использованием программного обеспечения Origin. Сообщаемые значения представляют собой температуру, при которой регистрируется максимальная теплоемкость пика Fab.
Титр определяли следующим образом. После экскреции в суспензии клеток 293 антитела очищали с использованием хроматографии на основе связывания с белком А, используя стандартные методы. После очистки антитела заменяли на 1хФСБ, и концентрации белка определяли по поглощению при 280 нм. Титры рассчитывали путем деления конечного выхода очищенного белка на начальный объем экспрессионной культуры и выражали в миллиграммах на литр.

Таблица 26. Термостабильность и титр гуманизированных вариантов 9F5

<table>
<thead>
<tr>
<th>Гуманизированный вариант 9F5</th>
<th>Замены в VH относительно hu9F5VHv9 (номер мутации(-ий) по Kabat)</th>
<th>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</th>
<th>Tₘ (°C) — отклонение пика Fab от hu9F5VHv9/hu9F5VLv8</th>
<th>титр (мг/л)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu9F5VHv9/hu9F5VLv8</td>
<td></td>
<td></td>
<td></td>
<td>491,6</td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127 / SEQ ID NO:149</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127 / SEQ ID NO:142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9/hu9F5VLv8_DIM28</td>
<td>V3Q, L27cS, M51G, L54R, L92I</td>
<td></td>
<td>-0,27</td>
<td>348,70</td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5</td>
<td>Замены в VH относительно hu9F5VHV9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>Tₘ (°C)—отклонение пика Fab от hu9F5VHV9/hu9F5VLv8</td>
<td>титр (мг/л)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:148</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F5VLv8_DIM6</td>
<td>V3Q, L27cD, L37Q, M51G, L54R, L92I</td>
<td>-0,77</td>
<td>569,80</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F5VLv8_DIM7</td>
<td>V3Q, L27cD, L37Q, M51K, L54R, L92I</td>
<td>-2,05</td>
<td>636,60</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHV9/hu9F5VLv8_DIM27</td>
<td>V3Q, L37Q, M51G, L54R, L92I</td>
<td>-0,16</td>
<td>351,20</td>
<td></td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5</td>
<td>Замены в VH относительно hu9F5VH v9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>T_m (°C)—отклонение пика Fab от hu9F5VHv9/hu9F5VLv8</td>
<td>титр (мг/л)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9/hu9F5VL v8_DIM2</td>
<td>V3Q, L27cS, L37Q, M51G, L54R, L92I</td>
<td>-0,3</td>
<td>474,30</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9/hu9F5VL v8_DIM29</td>
<td>V3Q, L27cS, L37Q, L54R, L92I</td>
<td>-1,83</td>
<td>327,50</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9/hu9F5VL v8_DIM30</td>
<td>V3Q, L27cS, L37Q, M51G, L92I</td>
<td>-0,92</td>
<td>372,50</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:127/ SEQ ID NO:139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гуманизированный вариант 9F5</td>
<td>Замены в VH относительно hu9F5VHV9 (номер мутации(-ий) по Kabat)</td>
<td>Замены в VL относительно hu9F5VLv8 (номер мутации(-ий) по Kabat)</td>
<td>T_m (°C)—отклонение пика Fab от hu9F5VHV9/ hu9F5VLv8</td>
<td>титр (мг/л)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>hu9F5VHV10/hu9F5VLv8</td>
<td>Q38K, G42E</td>
<td>V3Q, L27cG, L37G, M51G, L54R, N60D, L92I</td>
<td>-11,94</td>
<td>244,60</td>
</tr>
</tbody>
</table>

Пример 8. Нейтрализующая активность гуманизированных вариантов 9F5

Нейтрализующая активность гуманизированных вариантов 9F5 анализируется в клеточной модели интернализации тау. Для оценки способности антител блокировать интернализацию тау нейронами проводится анализ интернализации с использованием сортировки активированных флуоресценцией клеток (FACS). Антитела, которые блокируют интернализацию, скорее всего, блокируют передачу тау. pHроdo-меченный растворимый олигомер P301L тау 4R0N человека (конечная концентрация 1,5 мкг/мл) предварительно инкубируют с антителами к тау (титрование дозы: начальная концентрация 80 мкг/мл с последующими 4-кратными серийными разведениями) в течение 30 мин при комнатной температуре в среде для культивирования клеток. Затем смесь тау/антитело добавляют к клеточным линиям нейробластомы B103 при конечной концентрации 500 000 клеток/мл и инкубируют в течение 3-4 часов при 37° C в инкубаторе для тканевых культур (5% CO₂). Затем клетки промывают 3 раза культуральной средой с последующей 10-минутной инкубацией в культуральной среде и дважды промывают буфером FACS (1% ФБС в ФСБ). Клетки ресуспензируют в 100 мкл буфера FACS и при средней интенсивности флуоресценции техасским красным, измеренной с помощью FACS LSR II. Флуоресценция техасским красным pHроdo активируется низким pH, связанным с эндолизосомными компартментами при интернализации. Поскольку FACS обнаруживает клетки, а pHроdo флуоресцирует только...
при интернализации, будет обнаружен только тау, интернализованный клетками. Чем ниже средняя интенсивность флуоресценции, тем меньше количество интернализованного тау, что предполагает более высокую блокирующую активность тестируемого антитела.

Пример 9. Конструирование гуманизированных антител 10C12

Исходным или донорским антителом для гуманизации было мышьное антитело 10C12. Аминокислотная последовательность вариабельной области тяжелой цепи зрелого m10C12 представлена как SEQ ID NO:7. Аминокислотная последовательность вариабельной легкой цепи зрелого m10C12 представлена как SEQ ID NO:11. Аминокислотные последовательности CDR1, CDR2 и CDR3 тяжелой цепи согласно композитному определению по Kabat/Chothia представлены как SEQ ID NO:8-10, соответственно. Аминокислотные последовательности CDR1, CDR2 и CDR3 легкой цепи по Kabat представлены как SEQ ID NO:12-14, соответственно. Во всем тексте используется нумерация по Kabat.

[0868] Каркасы VH 10C12 имеют высокую степень сходства с соответствующими областями вариабельной области тяжелой цепи иммуноглобулина [Homo sapiens] CAC20421, клонированного Arnold-Schild et al [Cancer Res. 60 (15), 4175-4178 (2000)]. Вариабельные домены VH 10C12 и CAC20421 также имеют одинаковую длину в отношении петель CDR-H1, H2. Аналогично, каркасы VL 10C12 имеют высокую степень сходства последовательности с соответствующими областями человеческого антитела CAB51297, клонированного Capello et al [Identification of three subgroups of B-cell chronic lymphocytic leukemia based upon mutations of BCL-6 and IGV genes. Неопубликовано (прямая подача в GenBank)]. Вариабельный домен легкой цепи антител 10C12 и CAB51297 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Соответственно, каркасные области и VH CAC20421 и VL CAB51297 были выбраны в качестве акцепторных последовательностей для CDR 10C12. Модель CDR 10C12, привитых к соответствующим человеческим каркасам для VH и VL, была построена и использовалась в качестве руководства для дальнейших обратных мутаций.

[0869] Последовательности вариантов тяжелой и легкой цепей, полученные в результате процесса гуманизации антител, дополнительно выравнивали с последовательностями зародышевой линии человека с использованием инструмента IMGT Domain GapAlign для оценки степени гуманизации тяжелой и легкой цепей, как указано в руководящих принципах комитета ВОЗ по МНН. (WHO-INN: International nonproprietary names (INN) for biological and biotechnological substances (a review) (Internet) 2014. Доступно по адресу: http://www.who.int/medicines/services/inn/BioRev2014.pdf) Остатки были изменены для выравнивания с соответствующей последовательностью зародышевой линии человека, где это возможно, для повышения степени гуманизации и снижения потенциальной иммуногенности. Для гуманизированных вариантов VLv1 и VLv2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). Для гуманизированных вариантов VHv1 и VHv2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33)

[0870] Дополнительные версии hu10C12-VH и hu10C12-VL были сконструированы для обеспечения возможности оценки различных каркасных остатков на предмет их вклада в связывание антигена, термостабильность и иммуногенность, а также для оптимизации дезаминирования, окисления, N-гликозилирования, протеолиза и агрегации. Положения, рассматриваемые для мутаций, включают те, которые:

чувствительны к посттрансляционным модификациям, таким как гликозилирование или пироглютаминирование,

заняты остатками, которые, как предполагается, могут конфликтовать с CDR, согласно модели CDR 10C12, привитых к каркасам VH и VL, или

заняты остатками, которые редко встречаются среди секвенированных человеческих антител, где либо остаток родительского мышьяного 10C12, либо какой-либо другой остаток гораздо более распространен в репертуаре человеческих антител.

[0871]Выравнивания мышьяного 10C12 и различных гуманизированных антител показаны для вариабельных областей легкой цепи (таблица 28 и figura 8) и вариабельных областей тяжелой цепи (таблица 27 и figura 7).

[0872]Были сконструированы 2 вариантов вариабельной области гуманизированной тяжелой цепи и 2 вариантов вариабельной области гуманизированной легкой цепи, содержащие различные перестановки замен: hu10C12VHv1 или hu10C12VHv2, (SEQ ID NO:214-215, соответственно); и hu10C12VLv1 или hu10C12VLv2, (SEQ ID NO:216-217, соответственно) (таблицы 27 и 28). Примеры гуманизированных конструкций Vk и Vh с обратными мутациями и другими мутациями, основанными на выбранных каркасах человека, показаны в таблицах 27 и 28, соответственно. Области, выделенные жирным шрифтом, в таблицах 27 и 28, обозначают CDR, согласно композитному определению по Kabat/Chothia. Знак «->» в столбцах таблиц 27 и 28 указывает на отсутствие остатка в
указанном положении. SEQ ID NO:214-215 и SEQ ID NO:216-217 содержат обратные мутации и другие мутации, как показано в таблице 29. Аминокислоты в положениях в hu10C12VHv1 и hu10C12VHv2 перечислены в таблице 30. Аминокислоты в положениях в hu10C12VLv1 и hu10C12VLv2 перечислены в таблице 31.

Прецентный показатель степени гуманизации для гуманизированных VH цепей hu10C12VHv1 и hu10C12VHv2 (SEQ ID NO:214-215, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33), и для гуманизированных VL цепей hu10C12VLv1 и hu10C12VLv2 (SEQ ID NO:216-217, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37), показан в таблице 32.

<p>| Таблица 27 |
|---|---|---|---|---|---|---|---|---|---|
| Остаток по Kabat №| Линейный остаток №| FR или CDR| VH мышиного 10C12 (SEQ ID NO:7)| IMGT №| IGHV1-69-2*01 (SEQ ID NO:33)| ID CAC20421-VH_humFrwk (SEQ ID NO:218)| Hu10C12VHv1 (SEQ ID NO:214)| Hu10C12VLv2 (SEQ ID NO:215)|
| 1 | 1 | Fr1 | E | E | Q | Q | E | |
| 2 | 2 | Fr1 | V | V | V | V | V | |
| 3 | 3 | Fr1 | Q | Q | Q | Q | Q | |
| 4 | 4 | Fr1 | L | L | L | L | L | |
| 5 | 5 | Fr1 | Q | V | V | V | V | |
| 6 | 6 | Fr1 | Q | Q | Q | Q | Q | |
| 7 | 7 | Fr1 | S | S | S | S | S | |
| 8 | 8 | Fr1 | G | G | G | G | G | |
| 9 | 9 | Fr1 | A | A | A | A | A | |
| 10 | 10 | Fr1 | E | E | E | E | E | |</p>
<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Линейный остаток №</th>
<th>FR или CDR</th>
<th>VH мышечного 10C12 (SEQ ID NO:7)</th>
<th>IMGT №</th>
<th>IGHV-1-69-2*01 (SEQ ID NO:33)</th>
<th>CAC20421-VH_hufewk (SEQ ID NO:218)</th>
<th>Hu0C12VHv1 (SEQ ID NO:214)</th>
<th>Hu0C12VHv2 (SEQ ID NO:215)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>V</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Fr1</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-H1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-H1</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>CDR-H1</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>CDR-H1</td>
<td>I</td>
<td>F</td>
<td>F</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>CDR-H1</td>
<td>K</td>
<td>T</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>CDR-H1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>CDR-H1</td>
<td>D</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH мутаций 10C12 (SEQ ID NO:7)</td>
<td>IMGT № IGHV1-69-2s-01 (SEQ ID NO:33)</td>
<td>CAC20421-VH_huftrwk (SEQ ID NO:218)</td>
<td>Hu012C12VHv1 (SEQ ID NO:214)</td>
<td>Hu012C12VHv2 (SEQ ID NO:215)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>CDR-H1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>CDR-H1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>CDR-H1</td>
<td>N</td>
<td>H</td>
<td>H</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>35A</td>
<td></td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>35B</td>
<td></td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Fr2</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>Fr2</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Fr2</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>Fr2</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>Fr2</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>Fr2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>Fr2</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>CDR-H2</td>
<td>W</td>
<td>L</td>
<td>L</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>CDR-H2</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>CDR-H2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH мышечного 10C12 (SEQ ID NO: 7)</td>
<td>IMGT №</td>
<td>IGHV1-69-2*01 (SEQ ID NO: 33)</td>
<td>CAC2C02217-VH_hufrwkh (SEQ ID NO: 218)</td>
<td>Hu10C12/VHv1 (SEQ ID NO: 214)</td>
<td>Hu10C12/VHv2 (SEQ ID NO: 215)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>52A</td>
<td>53</td>
<td>CDR-H2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>52B</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52C</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>CDR-H2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td>CDR-H2</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>CDR-H2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>CDR-H2</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>CDR-H2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>CDR-H2</td>
<td>E</td>
<td>I</td>
<td>I</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>CDR-H2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>CDR-H2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>CDR-H2</td>
<td>S</td>
<td>E</td>
<td>E</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td>CDR-H2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td>CDR-H2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>CDR-H2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>CDR-H2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td>Fr3</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>67</td>
<td>68</td>
<td>Fr3</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td>Fr3</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 10C12 (SEQ ID NO:7)</td>
<td>IMGT №</td>
<td>IGHV1-69,2*01 (SEQ ID NO:23)</td>
<td>CAC20421-VH_hufRKv (SEQ ID NO:218)</td>
<td>Hu01C12/Vh1 (SEQ ID NO:214)</td>
<td>Hu01C12/Vh2 (SEQ ID NO:215)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>72</td>
<td>73</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>74</td>
<td>75</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>Fr3</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td>Fr3</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>77</td>
<td>78</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>78</td>
<td>79</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>Fr3</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>Fr3</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>Fr3</td>
<td>F</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>82A</td>
<td>84</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>82B</td>
<td>85</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>82C</td>
<td>86</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>83</td>
<td>87</td>
<td>Fr3</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>84</td>
<td>88</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>85</td>
<td>89</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>86</td>
<td>90</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>87</td>
<td>91</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>88</td>
<td>92</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>89</td>
<td>93</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>90</td>
<td>94</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машины 10C12 (SEQ ID NO:7)</td>
<td>IMGT №</td>
<td>IGHV-1-69*01 (SEQ ID NO:23)</td>
<td>CAC20421-VH_hufrhk (SEQ ID NO:218)</td>
<td>Hu0C12VHv1 (SEQ ID NO:214)</td>
<td>Hu0C12VHv2 (SEQ ID NO:215)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>91</td>
<td>95</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>92</td>
<td>96</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>93</td>
<td>97</td>
<td>Fr3</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>94</td>
<td>98</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>95</td>
<td>99</td>
<td>CDR-H3</td>
<td>S</td>
<td>I</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100A</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100B</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100C</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100D</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100E</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100F</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100G</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100H</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машины 10C12 (SEQ ID NO:7)</td>
<td>IMGT №</td>
<td>IGHV1-69*2.01 (SEQ ID NO:33)</td>
<td>CAC20421-VH_hufw (SEQ ID NO:218)</td>
<td>Hui01C12/VHv1 (SEQ ID NO:214)</td>
<td>Hui01C12/VHv2 (SEQ ID NO:215)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 100</td>
<td>CDR-H3</td>
<td>N</td>
<td>Q</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 101</td>
<td>CDR-H3</td>
<td>G</td>
<td>H</td>
<td>H</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 102</td>
<td>Fr4</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104 103</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 104</td>
<td>Fr4</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 105</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 106</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 107</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 108</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 109</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 110</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112 111</td>
<td>Fr4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113 112</td>
<td>Fr4</td>
<td>T</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 28
<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Длинный остаток №</th>
<th>FR или CDR</th>
<th>VL машины 10C12 (SEQ ID NO:11)</th>
<th>IGRK2-2801 и IGRK201 (SEQ ID NO:37)</th>
<th>CABSI297-VL huFrwk (SEQ ID NO:35)</th>
<th>Hu10C12VLv1 (SEQ ID NO:216)</th>
<th>Hu10C12VLv2 (SEQ ID NO:217)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fr1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fr1</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Fr1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr1</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fr1</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Fr1</td>
<td>F</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>N</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>L</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Пионерный остаток №</td>
<td>FR или CDR</td>
<td>VL 10C12 (SEQ ID NO:11)</td>
<td>IGKV2-2801 и IGK201 (SEQ ID NO:37)</td>
<td>CABSI297-VL_huFrw (SEQ ID NO:35)</td>
<td>Hu10C12VL1 (SEQ ID NO:216)</td>
<td>Hu10C12VL2 (SEQ ID NO:217)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>CDR-L1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-L1</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>27A</td>
<td>28</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27B</td>
<td>29</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>27C</td>
<td>30</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>27D</td>
<td>31</td>
<td>CDR-L1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>27E</td>
<td>32</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27F</td>
<td></td>
<td>CDR-L1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>33</td>
<td>CDR-L1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>CDR-L1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>CDR-L1</td>
<td>I</td>
<td>Y</td>
<td>Y</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>31</td>
<td>36</td>
<td>CDR-L1</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>CDR-L1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>38</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>39</td>
<td>CDR-L1</td>
<td>Y</td>
<td>D</td>
<td>D</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>36</td>
<td>41</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>37</td>
<td>42</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>38</td>
<td>43</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL машиноного 10C12 (SEQ ID NO:11)</td>
<td>IGKV2-2801 и IGRJ201 (SEQ ID NO:37)</td>
<td>CAB51297-VL_huFrwk (SEQ ID NO:35)</td>
<td>Hu10C12VL1 (SEQ ID NO:216)</td>
<td>Hu10C12VL2 (SEQ ID NO:217)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>39</td>
<td>44</td>
<td>Fr2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>41</td>
<td>46</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>42</td>
<td>47</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>Fr2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>44</td>
<td>49</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>46</td>
<td>51</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>47</td>
<td>52</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>Fr2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>49</td>
<td>54</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>CDR-L2</td>
<td>Q</td>
<td>L</td>
<td>L</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>CDR-L2</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>52</td>
<td>57</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>58</td>
<td>CDR-L2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>CDR-L2</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>CDR-L2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>56</td>
<td>61</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>57</td>
<td>62</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>59</td>
<td>64</td>
<td>Fr3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Длинный остаток №</td>
<td>FR или CDR</td>
<td>VL машинного 10C12 (SEQ ID NO:11)</td>
<td>IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>CAB51297_VL_huFrw (SEQ ID NO:35)</td>
<td>Hu10C12VL1 (SEQ ID NO:216)</td>
<td>Hu10C12VL2 (SEQ ID NO:217)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>61</td>
<td>66</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>67</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>63</td>
<td>68</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>64</td>
<td>69</td>
<td>Fr3</td>
<td>S</td>
<td>G</td>
<td>G</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>66</td>
<td>71</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>67</td>
<td>72</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>69</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>70</td>
<td>75</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>71</td>
<td>76</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>72</td>
<td>77</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>73</td>
<td>78</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>74</td>
<td>79</td>
<td>Fr3</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>75</td>
<td>80</td>
<td>Fr3</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>76</td>
<td>81</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>77</td>
<td>82</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>79</td>
<td>84</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>81</td>
<td>86</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>82</td>
<td>87</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL машинного 10C12 (SEQ ID NO:11)</td>
<td>IGKV2-2801 и IGLJ201 (SEQ ID NO:37)</td>
<td>CABSI297-VEL_huFtrwкk (SEQ ID NO:35)</td>
<td>Hu10C12VL1 (SEQ ID NO:216)</td>
<td>Hu10C12VL2 (SEQ ID NO:217)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>83</td>
<td>88</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>84</td>
<td>89</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>86</td>
<td>91</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>87</td>
<td>92</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>88</td>
<td>93</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>89</td>
<td>94</td>
<td>CDR-L3</td>
<td>A</td>
<td>M</td>
<td>M</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
<td>CDR-L3</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>91</td>
<td>96</td>
<td>CDR-L3</td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>92</td>
<td>97</td>
<td>CDR-L3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>93</td>
<td>98</td>
<td>CDR-L3</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>94</td>
<td>99</td>
<td>CDR-L3</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>CDR-L3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>95A</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95B</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95C</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95D</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95E</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95F</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>101</td>
<td>CDR-L3</td>
<td>L</td>
<td>Y</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>97</td>
<td>102</td>
<td>CDR-L3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>98</td>
<td>103</td>
<td>Fr4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Таблица 29: Обратные мутации V_H, V_L и другие мутации для гуманизированного 10C12

<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Линейный остаток №</th>
<th>FR или CDR</th>
<th>V_L машиноного 10C12 (SEQ ID NO:11)</th>
<th>IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</th>
<th>CAB51297-1VL01 (SEQ ID NO:35)</th>
<th>Hu10C12VL2 (SEQ ID NO:217)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>104</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>Fr4</td>
<td>A</td>
<td>Q</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>101</td>
<td>106</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>103</td>
<td>108</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>104</td>
<td>109</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td>Fr4</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>106</td>
<td>111</td>
<td>Fr4</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>106A</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>112</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Последовательность акцептора экзона V_H или V_L</th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вариант V_H или V_L</td>
<td>Последовательность акцептора экзона V_H или V_L</td>
<td>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hu10C12VHv1 (SEQ ID NO:214)</td>
<td>Номер доступа в GenBank CAC20421-VH_huFrwk (SEQ ID NO:218) IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>H24, H48, H67, H69, H93, H94</td>
</tr>
<tr>
<td>Hu10C12VHv2 (SEQ ID NO:215)</td>
<td>Номер доступа в GenBank CAC20421-VH_huFrwk (SEQ ID NO:218) IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>H1, H24, H48, H67, H69, H93, H94</td>
</tr>
<tr>
<td>Hu10C12VLv1 (SEQ ID NO:216)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35)</td>
<td>L64</td>
</tr>
<tr>
<td>Hu10C12VLv2 (SEQ ID NO:217)</td>
<td>Номер доступа в GenBank CAB51297-VL_huFrwk (SEQ ID NO:35) IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L64, L104</td>
</tr>
</tbody>
</table>

Таблица 30: Нумерация по Kabat каркасных остатков (или CDR) (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в тяжелых цепях гуманизированных антител 10C12
Таблица 31: Нумерация по Kabat каркасных остатков (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в легких цепях гуманизированных антител 10C12

<table>
<thead>
<tr>
<th>Остаток</th>
<th>CABS127/HL-HFTR (SEQ ID NO:35)</th>
<th>IGRY7-282F1 и IGR42FL (SEQ ID NO:37)</th>
<th>VH машинного 10C12 (SEQ ID NO:11)</th>
<th>Hu10C12VLx1 (SEQ ID NO:216)</th>
<th>Hu10C12VLx2 (SEQ ID NO:217)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Q E E Q E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>V V A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H48</td>
<td>M M I I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H67</td>
<td>V V A A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H69</td>
<td>I I M M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H93</td>
<td>A A T T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H94</td>
<td>R T T T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L64</td>
<td>G G S S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблица 32
Процентный показатель степени гуманизации тяжелых и легких цепей гуманизированных антител 10C12

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Степень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu10C12VHv1 (SEQ ID NO:214)</td>
<td>81,6 %</td>
</tr>
<tr>
<td>Hu10C12VHv2 (SEQ ID NO:215)</td>
<td>82,7 %</td>
</tr>
<tr>
<td>Hu10C12VLv1 (SEQ ID NO:216)</td>
<td>88,0 %</td>
</tr>
<tr>
<td>Hu10C12VLv2(SEQ ID NO:217)</td>
<td>88,0 %</td>
</tr>
</tbody>
</table>

[0874] Положения, в которых канонические, верньерные или интерфейсные остатки различаются между акцепторными последовательностями мыши и человека, являются кандидатами на замену. Примеры взаимодействующих канонических остатков/остатков CDR включают остатки по Kabat H24 и H94 в таблице 27. Примеры верньерных остатков включают остатки по Kabat H48, H67, H69, H93 и H94 в таблице 27 и L64 в таблице 28. Примеры остатков интерфейса/упаковки (VH+VL) включают остаток по Kabat H93 в таблице 27.

[0875] Обоснования выбора положений, указанных в таблице 27, в вариабельной области тяжелой цепи в качестве кандидатов на замену являются следующими.

[0876] вариабельные области тяжелой цепи

[0877] hu10C12VHv1
состоит из петель CDR-H1, H2 и H3 10C12-VH, привитых к каркасу SAC20421-VH. Кроме того, hu10C12VHv1 также возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являться частью зоны Верные или локализуются в интерфейсе домена VH/VL, способствуют структурной стабильности.

[0880]V67A: представляет собой обратную мутацию остатка зоны Верные и подвергается обратной мутации для сохранения конформации CDR.

[0881]I69M: представляет собой обратную мутацию остатка зоны Верные, и обратная мутация сделана для сохранения целостности упаковки CDR.

[0882]A93T: Положение Н93 представляет собой остаток интерфейса VH/VL и подвергается обратной мутации на Thr для сохранения целостности интерфейса антитела.

[0884]hu10C12VHv2

- 10C12VHv2 сохраняет все возвращенные каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или локализуются в интерфейсе домена VH/VL, способствуют структурной стабильности. Кроме того, hu10C12VHv2 включает обратные мутации или замену на наиболее часто встречающийся остаток в данном положении и для оптимизации дезаминации, окисления, N-гликозилирования, протеолиза и агрегации. Мутации в VHv2, которые не включены в hu10C12VHv1:

[0885]Q1E: представляет собой мутацию, повышающую стабильность, для уменьшения потенциала образования пироглутамата и снижения гетерогенности N-конца (Liu, выше).

[0886]Обоснования выбора положений, указанных в таблице 28, в вариабельной области легкой цепи в качестве кандидатов на замену являются следующими.
вариабельные области легкой цепи

[0888]

hu10C12VLv1
- состоит из петель CDR-L1, L2 и L3 10C12-VL, привитых на каркас CAB51297-VL. Кроме того, hu10C12VLv1 также возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или локализуются в интерфейсе домена VH/VL, способствуют структурной стабильности.

[0889]

G64S: представляет собой обратную мутацию остатка зоны Верные. Обратная мутация G64S сохраняет упаковку CDR.

[0890]

hu10C12VLv2
- сохраняет все возвращенные каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или локализуются в интерфейсе домена VH/VL, способствуют структурной стабильности. Кроме того, hu10C12VLv2 включает обратные мутации или замену на наиболее часто встречающийся остаток в данном положении и для оптимизации дезаминирования, окисления, N-гликозилирования, протеолиза и агрегации. Мутации в VLv2, которые не включены в hu10C12VLv1:

[0891]

V104L: представляет собой мутацию, выравнивающую зародышевую линию. Leu находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

[0892]

На основе этих человеческих каркасов были разработаны следующие варианты:

[0893]

вариабельные области тяжелой цепи

> hu10C12VHv1 (SEQ ID NO:214)
QVQLVQSGAEVKPGATVKISCKASGFNLKDDYMNWVQQAPGKGLEWIGWDPENGDT
TEYASKFQGRATMTADTDSTDTAYMELSSLRSEDVYYCTTSSNGWGQGTLVTVSS

> hu10C12VHv2 (SEQ ID NO:215)
EVQLVQSGAEVKPGATVKISCKASGFNLKDDYMNWVQQAPGKGLEWIGWDPENGDT
TEYASKFQGRATMTADTDSTDTAYMELSSLRSEDVYYCTTSSNGWGQGTLVTVSS
вариабельные области легкой ката-нети

>hu10C12VLv1 (SEQ ID NO:216)
DIVMTQSPLSLPVTGPESISCRRSSKLHSNGITYLYWLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSTDFTLKISRVEAEVGYYCAQNLELPFTFGGGTKVEIK

>hu10C12VLv2 (SEQ ID NO:217)
DIVMTQSPLSLPVTGPESISCRRSSKLHSNGITYLYWLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSTDFTLKISRVEAEVGYYCAQNLELPFTFGGGTKLEIK

Пример 10. Конструирование гуманизированных антител 12C4

Исходным или донорским антителом для гуманизации было мышьное антитело 12C4. Аминокислотная последовательность вариабельной области тяжелой цепи зрелого m12C4 представлена как SEQ ID NO:219. Аминокислотная последовательность вариабельной области легкой цепи зрелого m12C4 представлена как SEQ ID NO:11. Аминокислотные последовательности CDR1, CDR2 и CDR3 тяжелой цепи согласно композитному определению по Kabat/Chothia K представлены как SEQ ID NO:8, 220 и 10, соответственно. Аминокислотные последовательности CDR1, CDR2 и CDR3 легкой цепи по Kabat представлены как SEQ ID NO:12-14, соответственно. Во всем тексте используется нумерация по Kabat.

[0899] Последовательности вариантов тяжелой и легкой цепей, полученные в результате процесса гуманизации антител, дополнительно выравнивали с последовательностями зародышевой линии человека с использованием инструмента IMGT Domain GapAlign для оценки степени гуманизации тяжелой и легкой цепей, как указано в руководящих принципах комитета BO3 по МНН. (WHO-INN: International nonproprietary names (INN) for biological and biotechnological substances (a review) (Internet) 2014. Доступно по адресу: http://www.who.int/medicines/services/inn/BioRev2014.pdf) Остатки были изменены для выравнивания с соответствующей последовательностью зародышевой линии человека, где это возможно, для повышения степени гуманизации и снижения потенциальной иммуногенности. Для гуманизированных вариантов VLv1 и VLv2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). Для гуманизированных вариантов VHv1 и
VHV2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33)

[0900]Дополнительные версии hu12C4-VH и hu12C4-VL были сконструированы для обеспечения возможности оценки различных каркасных остатков на предмет их вклада в связывание антигена, термостабильность и иммуногенность, а также для оптимизации дезаминарирования, окисления, N-гликозилирования, протеолиза и агрегации. Положения, рассматриваемые для мутации, включают те, которые:

- чувствительны к посттрансляционным модификациям, таким как гликозилирование или пироглютаминирование,

- заняты остатками, которые, как предполагается, могут конфликтовать c CDR, согласно модели CDR 12C4, привитых к каркасам VH и VL, или

- заняты остатками, которые редко встречаются среди секвенированных человеческих антител, где либо остаток родительского мышьного 12C4, либо какой-либо другой остаток гораздо более распространен в репертуаре человеческих антител.

[0901]Выравнивания мышьного 12C4 и различных гуманизированных антител показаны для вариабельных областей легкой цепи (таблица 34 и фигура 10) и вариабельных областей тяжелой цепи (таблица 33 и фигура 9).
Были сконструированы 2 варианта вариабельной области гуманизированной тяжелой цепи и 2 варианта вариабельной области гуманизированной легкой цепи, содержащие различные перестановки замен: hu12C4VHv1 или hu12C4VHv2, (SEQ ID NO:221-222, соответственно); и hu12C4VLv1 или hu12C4VLv2, (SEQ ID NO:223-224, соответственно) (таблицы 33 и 34). Примеры гуманизированных конструкций Vk и Vh с обратными мутациями и другими мутациями, основанными на выбранных каркасах человека, показаны в таблицах 33 и 34, соответственно. Области, выделенные жирным шрифтом, в таблицах 33 и 34, обозначают CDR, согласно композитному определению по Kabat/Chothia. Знак «→» в столбцах таблиц 33 и 34 указывает на отсутствие остатка в указанном положении. SEQ ID NO:221-222 и SEQ ID NO:223-224 содержат обратные мутации и другие мутации, как показано в таблице 35. Аминокислоты в положениях в hu12C4VHv1 и hu12C4VHv2 перечислены в таблице 36. Аминокислоты в положениях в hu12C4VLv1 и hu12C4VLv2 перечислены в таблице 37.

Процентный показатель степени гуманизации для гуманизированных VH цепей hu12C4VHv1 и hu12C4VHv2 (SEQ ID NO:221-222, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33), и для гуманизированных VL цепей hu12C4VLv1 и hu12C4VLv2 (SEQ ID NO:223-224, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37), показан в таблице 38.

Таблица 33

<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Линейный остаток №</th>
<th>FR или CDR</th>
<th>VH машинального 12C4 (SEQ ID NO:219)</th>
<th>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</th>
<th>CAC20421 VH (SEQ ID NO:218)</th>
<th>Hu12C4VHv1 (SEQ ID NO:221)</th>
<th>Hu12C4VHv2 (SEQ ID NO:222)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fr1</td>
<td>E</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Остаток по Колб №</td>
<td>Динейный остаток №</td>
<td>FR или CDR</td>
<td>VH мышечного 12C4 (SEQ ID NO:219)</td>
<td>IMGT №</td>
<td>VHIV1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC204241 VH (SEQ ID NO:218)</td>
<td>Hu12C4VHv1 (SEQ ID NO:221)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Fr1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Fr1</td>
<td>Q</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fr1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Fr1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fr1</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>V</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Fr1</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-H1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Остаток по Кат. №</td>
<td>Подчинённый остаток №</td>
<td>FR или CDR</td>
<td>VH мутаций 12C4 (SEQ ID NO:219)</td>
<td>IMGT № Est1Hvh-69-2*01 (SEQ ID NO:33)</td>
<td>CAC20421 VH (SEQ ID NO:218)</td>
<td>Hu12C4VH1 (SEQ ID NO:221)</td>
<td>Hu12C4VH2 (SEQ ID NO:222)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-H1</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>CDR-H1</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>CDR-H1</td>
<td>I</td>
<td>F</td>
<td>F</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>CDR-H1</td>
<td>K</td>
<td>T</td>
<td>T</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>CDR-H1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>CDR-H1</td>
<td>D</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>CDR-H1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>CDR-H1</td>
<td>N</td>
<td>H</td>
<td>H</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35A</td>
<td></td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35B</td>
<td></td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Fr2</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>Fr2</td>
<td>R</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Fr2</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>Fr2</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>Fr2</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>Fr2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Динейный остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 12C4 (SEQ ID NO:219)</td>
<td>IMGT №</td>
<td>VH1-GVH1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC20421 VH (SEQ ID NO:218)</td>
<td>Hu12C4VH1 (SEQ ID NO:221)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>Fr2</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>CDR-H2</td>
<td>W</td>
<td>L</td>
<td>L</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>CDR-H2</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>CDR-H2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>52A</td>
<td>53</td>
<td>CDR-H2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>52B</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52C</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>CDR-H2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td>CDR-H2</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>CDR-H2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>CDR-H2</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>CDR-H2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>CDR-H2</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>CDR-H2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>CDR-H2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>CDR-H2</td>
<td>S</td>
<td>E</td>
<td>E</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td>CDR-H2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td>CDR-H2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>CDR-H2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>CDR-H2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td>Fr3</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>67</td>
<td>68</td>
<td>Fr3</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Длина остатка №</td>
<td>FR или CDR</td>
<td>VH макленього 12C4 (SEQ ID NO:219)</td>
<td>IMGT №</td>
<td>IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC20421 VH (SEQ ID NO:218)</td>
<td>Hu12C4VH1 (SEQ ID NO:221)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td>Fr3</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>72</td>
<td>73</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>74</td>
<td>75</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>Fr3</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td>Fr3</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>77</td>
<td>78</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>78</td>
<td>79</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>Fr3</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>Fr3</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>Fr3</td>
<td>F</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>82A</td>
<td>84</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>82B</td>
<td>85</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>82C</td>
<td>86</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>83</td>
<td>87</td>
<td>Fr3</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>84</td>
<td>88</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>85</td>
<td>89</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>86</td>
<td>90</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>87</td>
<td>91</td>
<td>Fr3</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 12C4 (SEQ ID NO:219)</td>
<td>IMGT №</td>
<td>IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC20421 VH (SEQ ID NO:218)</td>
<td>Hu12C4VH2 (SEQ ID NO:222)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>88</td>
<td>92</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>89</td>
<td>93</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>90</td>
<td>94</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>91</td>
<td>95</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>92</td>
<td>96</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>93</td>
<td>97</td>
<td>Fr3</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>94</td>
<td>98</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>95</td>
<td>99</td>
<td>CDR-H3</td>
<td>S</td>
<td>-</td>
<td>I</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>P</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>G</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100A</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100B</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100C</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100D</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100E</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100F</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100G</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100H</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100I</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100J</td>
<td></td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Длиннейш. остаток №</td>
<td>FR или CDR</td>
<td>VH машины 12C4 (SEQ ID NO:219)</td>
<td>IMGT №</td>
<td>IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC20421 VH (SEQ ID NO:218)</td>
<td>Hu12C4VHv1 (SEQ ID NO:221)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>100K</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101 100</td>
<td>CDR-H3</td>
<td>N</td>
<td>Q</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>102 101</td>
<td>CDR-H3</td>
<td>G</td>
<td>H</td>
<td>H</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>103 102</td>
<td>Fr4</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>104 103</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>105 104</td>
<td>Fr4</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>106 105</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>107 106</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>108 107</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>109 108</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>110 109</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>111 110</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>112 111</td>
<td>Fr4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>113 112</td>
<td>Fr4</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Таблица 34
<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Динейный остаток №</th>
<th>FR или CDR</th>
<th>VL машины 12C4 (SEQ ID NO:11)</th>
<th>IGKV2-28*01 и IGKJ2-011 (SEQ ID NO:37)</th>
<th>CAB51297 VL (SEQ ID NO:35)</th>
<th>Hul12C4VLv1 (SEQ ID NO:223)</th>
<th>Hul12C4VLv2 (SEQ ID NO:224)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>FrI</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>FrI</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>FrI</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>FrI</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>FrI</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>FrI</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>FrI</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>FrI</td>
<td>A</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>FrI</td>
<td>F</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>FrI</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>FrI</td>
<td>N</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>FrI</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>FrI</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>FrI</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>FrI</td>
<td>L</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>FrI</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>FrI</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>FrI</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>FrI</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>FrI</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>FrI</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Динейный остаток №</td>
<td>FR или CDR</td>
<td>VL машиноного 12C4 (SEQ ID NO:11)</td>
<td>IGKV2-28*01 и IGKV2-01 (SEQ ID NO:37)</td>
<td>CAB51297 VL (SEQ ID NO:35)</td>
<td>Hul2C4VLv1 (SEQ ID NO:223)</td>
<td>Hul2C4VLv2 (SEQ ID NO:224)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>CDR-L1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-L1</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>27A</td>
<td>28</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27B</td>
<td>29</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>27C</td>
<td>30</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>27D</td>
<td>31</td>
<td>CDR-L1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>27E</td>
<td>32</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27F</td>
<td>33</td>
<td>CDR-L1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>33</td>
<td>CDR-L1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>CDR-L1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>CDR-L1</td>
<td>I</td>
<td>Y</td>
<td>Y</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>31</td>
<td>36</td>
<td>CDR-L1</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>CDR-L1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>38</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>39</td>
<td>CDR-L1</td>
<td>Y</td>
<td>D</td>
<td>D</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>36</td>
<td>41</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Длинный остаток №</td>
<td>FR или CDR</td>
<td>VL машины 12C4 (SEQ ID NO:11)</td>
<td>IGKV2-2-01 и IGKJ2-01 (SEQ ID NO:37)</td>
<td>CAB51297 VL (SEQ ID NO:35)</td>
<td>HuL2C4VLv1 (SEQ ID NO:223)</td>
<td>HuL2C4VLv2 (SEQ ID NO:224)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>37</td>
<td>42</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>38</td>
<td>43</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>39</td>
<td>44</td>
<td>Fr2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>41</td>
<td>46</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>42</td>
<td>47</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>Fr2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>44</td>
<td>49</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>46</td>
<td>51</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>47</td>
<td>52</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>Fr2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>49</td>
<td>54</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>CDR-L2</td>
<td>Q</td>
<td>L</td>
<td>L</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>CDR-L2</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>52</td>
<td>57</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>58</td>
<td>CDR-L2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>CDR-L2</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>CDR-L2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>56</td>
<td>61</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>57</td>
<td>62</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Остаток по Kabat, №</td>
<td>Длинный остаток, №</td>
<td>FR или CDR</td>
<td>VL машины 12C4 (SEQ ID NO:11)</td>
<td>IgKV2-28-01 и IgKJ2-01 (SEQ ID NO:37)</td>
<td>CAB51297 VL (SEQ ID NO:35)</td>
<td>Huh12C4VLv1 (SEQ ID NO:223)</td>
<td>Huh12C4VLv2 (SEQ ID NO:224)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>59</td>
<td>64</td>
<td>Fr3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>61</td>
<td>66</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>67</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>63</td>
<td>68</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>64</td>
<td>69</td>
<td>Fr3</td>
<td>S</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>S</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>66</td>
<td>71</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>67</td>
<td>72</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>69</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>70</td>
<td>75</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>71</td>
<td>76</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>72</td>
<td>77</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>73</td>
<td>78</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>74</td>
<td>79</td>
<td>Fr3</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>75</td>
<td>80</td>
<td>Fr3</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>76</td>
<td>81</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>77</td>
<td>82</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Динейный остаток №</td>
<td>FR или CDR</td>
<td>VL мышевого 12C4 (SEQ ID NO:11)</td>
<td>IGV12-28-01 и IGV12-01 (SEQ ID NO:37)</td>
<td>CAB51297 VL (SEQ ID NO:35)</td>
<td>Hu12C4VLv1 (SEQ ID NO:223)</td>
<td>Hu12C4VLv2 (SEQ ID NO:224)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>79</td>
<td>84</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>81</td>
<td>86</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>82</td>
<td>87</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>83</td>
<td>88</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>84</td>
<td>89</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>86</td>
<td>91</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>87</td>
<td>92</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>88</td>
<td>93</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>89</td>
<td>94</td>
<td>CDR-L3</td>
<td>A</td>
<td>M</td>
<td>M</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
<td>CDR-L3</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>91</td>
<td>96</td>
<td>CDR-L3</td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>92</td>
<td>97</td>
<td>CDR-L3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>93</td>
<td>98</td>
<td>CDR-L3</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>94</td>
<td>99</td>
<td>CDR-L3</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>CDR-L3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>95A</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95B</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95C</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95D</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Диэнейный остаток №</td>
<td>FR или CDR</td>
<td>VL мышиного 12C4 (SEQ ID NO:11)</td>
<td>IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>CAB51297 VL (SEQ ID NO:35)</td>
<td>Huc2C4Vl1 (SEQ ID NO:223)</td>
<td>Huc2C4Vl2 (SEQ ID NO:224)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>95E</td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95F</td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>101</td>
<td>CDR-L3</td>
<td>L</td>
<td>Y</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>97</td>
<td>102</td>
<td>CDR-L3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>98</td>
<td>103</td>
<td>Fr4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>99</td>
<td>104</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>Fr4</td>
<td>A</td>
<td>Q</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>101</td>
<td>106</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>103</td>
<td>108</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>104</td>
<td>109</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>L</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td>Fr4</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>106</td>
<td>111</td>
<td>Fr4</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>106A</td>
<td>Fr4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>112</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

Таблица 35: Обратные мутации V₇, Vₛ и другие мутации для гуманизированного 12C4
<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Последовательность акцептора эзонна V_H или V_L</th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu12C4VHv1 (SEQ ID NO:221)</td>
<td>Номер доступа в GenBank CAC20421 VH (SEQ ID NO:218)</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Hu12C4VHv2 (SEQ ID NO:222)</td>
<td>Номер доступа в GenBank CAC20421 VH (SEQ ID NO:218) IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>H1, H48, H93, H94</td>
</tr>
<tr>
<td>Hu12C4VLv1 (SEQ ID NO:223)</td>
<td>Номер доступа в GenBank CAB51297 VL (SEQ ID NO:35)</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Hu12C4VLv2 (SEQ ID NO:224)</td>
<td>Номер доступа в GenBank CAB51297 VL (SEQ ID NO:35) IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L64, L104</td>
</tr>
</tbody>
</table>

Таблица 36: Нумерация по Kabat каркасных остатков (или CDR) (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в тяжелых цепях гуманизированных антител 12C4
<table>
<thead>
<tr>
<th>Остаток</th>
<th>CAC20421 VH (SEQ ID NO:218)</th>
<th>IMGT. № IGHTV1-69-2*01 (SEQ ID NO:33)</th>
<th>VH мишина 12C4 (SEQ ID NO:219)</th>
<th>Hu12C4VHv1 (SEQ ID NO:221)</th>
<th>Hu12C4VHv2 (SEQ ID NO:222)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>Q</td>
<td>E</td>
</tr>
<tr>
<td>H48</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>H93</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>H94</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

Таблица 37: Нумерация по Kabat каркасных остатков (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в легких цепях гуманизированных антител 12С4

<table>
<thead>
<tr>
<th>Остаток</th>
<th>CAB51297 VL (SEQ ID NO:35)</th>
<th>VLa2Q28VH1 и IGKJ28VH1 (SEQ ID NO:37)</th>
<th>VLa мишина 12C4 (SEQ ID NO:11)</th>
<th>Hu12C4VLv1 (SEQ ID NO:223)</th>
<th>Hu12C4VLv2 (SEQ ID NO:224)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L64</td>
<td>G</td>
<td>G</td>
<td>S</td>
<td>G</td>
<td>S</td>
</tr>
<tr>
<td>L104</td>
<td>V</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>L</td>
</tr>
</tbody>
</table>
Таблица 38
Процентный показатель степени гуманизации тяжелых и легких цепей гуманизированных антител 12C4

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Степень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu12C4VHv1 (SEQ ID NO:221)</td>
<td>86,6%</td>
</tr>
<tr>
<td>Hu12C4VHv2 (SEQ ID NO:222)</td>
<td>85,7%</td>
</tr>
<tr>
<td>Hu12C4VLv1 (SEQ ID NO:223)</td>
<td>89,0 %</td>
</tr>
<tr>
<td>Hu12C4VLv2 (SEQ ID NO:224)</td>
<td>88,0 %</td>
</tr>
</tbody>
</table>

[0904] Положения, в которых канонические, верньерные или интерфейсные остатки различаются между акцепторными последовательностями мыши и человека, являются кандидатами на замену. Примеры взаимодействующих канонических остатков/остатков CDR включают остаток по Kabat H94 в таблице 33. Примеры верньерных остатков включают остатки по Kabat H48, H93 и H94 в таблице 33 и L64 в таблице 34. Примеры остатков интерфейса/упаковки (VH+VL) включают остаток по Kabat H93 в таблице 33.

[0905] Обоснования выбора положений, указанных в таблице 33, в вариабельной области тяжелой цепи в качестве кандидатов на замену являются следующими.

[0906] Вариабельные области тяжелой цепи

[0907] hu12C4VHv1
 - состоит из петель CDR-H1, H2 и H3 12C4-VH, привитых на каркас SACE20421.

[0908] hu12C4VHv2
 - возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Вернье, или локализуются на интерфейсе доменов VH/VL или способствуют структурной стабильности. 12C4-VH_v2 включает обратные мутации или замену на наиболее часто встречающийся остаток в указанном положении.

[0909] Q1E: представляет собой мутацию, повышающую стабильность, для уменьшения потенциала образования пироглутамата и снижения гетерогенности N-конца (Liu, выше)

[0913] R94T: представляет собой обратную мутацию остатка зоны Верхнее. R94T также представляет собой мутацию, выравнивающую зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

[0914] Обоснования выбора положений, указанных в таблице 34, в вариабельной области легкой цепи в качестве кандидатов на замену являются следующими.

[0915] вариабельные области легкой катапети

[0916] hu12C4VLv1
- состоит из петель CDR-L1, L2 и L3 12C4-VL, привитых к каркасу VL CAB51297 наряду с возвратом всех каркасных замен в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верхнее или расположены на интерфейсе доменов VH/VL. Для hu12C4VLv1 ни одно положение, кроме G64, не соответствует данному критерию, поэтому обратная мутация не осуществляется. На основании анализа модели гомологии Gly в положении 64 может быть переносимым, поэтому изменения в положении 64 в 12C4VLv1 не вносятся, попытка замены на Ser предпринята в hu12C4VLv2.

[0917] [0918] Hu12C4VLv2
- hu12C4VLv2 включает замены, которые способствуют структурной стабильности или увеличивают степень гуманизации антигена.

[0919] G64S: представляет собой обратную мутацию остатка зоны Верхнее. Обратная мутация G64S сохраняет упаковку CDR.

[0920] V104L: представляет собой мутацию, выравнивающую зародышевую линию. Leu находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ*01 (SEQ ID NO:37) в этом положении.

[0921] На основе этих человеческих каркасов были разработаны следующие варианты:

[0922] вариабельные области тяжелой цепи
>hu12C4VHv1 (SEQ ID NO:221)
QVQLVQSGAEVKPGATVKISCKVSGFNIKDDYMNWVQQAPGKCLEWMGWIDPENGDTAYASKFQGRVTITADTDY temporal substitution was not mentioned.
QVQLVQSGAEVKPGATVKISCKVSGFNIKDDYMNWVQQAPGKCLEWMGWIDPENGDTAYASKFQGRVTITADTDY temporal substitution was not mentioned.
QVQLVQSGAEVKPGATVKISCKVSGFNIKDDYMNWVQQAPGKCLEWMGWIDPENGDTAYASKFQGRVTITADTDY temporal substitution was not mentioned.
>hu12C4VHv2 (SEQ ID NO:222)
EVQLVQSGAEVKPGATVKISCKVSIGFNNIKDDYMNQWQQAPGKGLEWIGWDQPENGD
TAYASFKGRVTITADSTDTAYMELSRLSDTAAYYCTTSNGWGGQGTLVTVSS

[0923] варiableнные области легкой каппа-чет

>hu12C4VLv1 (SEQ ID NO:223)
DIVMTQSPLSPVTPGEPASISCRRSSKLHSNGITYLYWLYQLPKPQSPQLYQMSNLAS
GVPDRFSGSGTDFLTKISRVEAEVGYYCAQNLELPTFGGGTKVEIK

>hu12C4VLv2 (SEQ ID NO:224)
DIVMTQSPLSPVTPGEPASISCRRSSKLHSNGITYLYWLYQLPKPQSPQLYQMSNLAS
GVPDRFSSSGTDFLTKISRVEAEVGYYCAQNLELPTFGGGTKLEIK

Пример 11. Конструирование гуманизированных антител 17C12

[0925] Исходным или донорским антителом для гуманизации было мышьное антитело 17C12. Аминокислотная последовательность вариабельной области тяжелой цепи зрелого m17C12 представлена как SEQ ID NO:225. Аминокислотная последовательность вариабельной области легкой цепи зрелого m17C12 представлена как SEQ ID NO:228. Аминокислотные последовательности CDR1, CDR2 и CDR3 тяжелой цепи согласно композитному определению по Kabat/Chothia K представлены как SEQ ID NO:226, 227 и 10, соответственно. Аминокислотные последовательности CDR1, CDR2 и CDR3 легкой цепи по Kabat представлены как SEQ ID NO:229-231, соответственно. Во всем тексте используется нумерация по Kabat.

[0927] Каркасы VH 17C12 имеют высокую степень сходства с соответствующими областями человеческого антитела CAC20421, клонированного Arnold-Schild, et al [Cancer Res. 60 (15), 4175-4178 (2000)]. Вариабельные домены тяжелых цепей 17C12 и CAC20421 также имеют одинаковую длину в отношении петель CDR-H1, H2. Точно так же каркасы VL 17C12 имеют высокую степень сходства последовательностей с соответствующими областями VL человеческого антитела QDO16713, клонированного Cho et al [Cell Rep 28 (4), 909-922.e6 (2019)]. Вариабельный домен легкой цепи антител 17C12 и QDO16713 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Соответственно, каркасные области и VH CAC20421 и VL QDO16713 были выбраны в качестве акцепторных последовательностей для CDR 17C12. Модель CDR 17C12, привитых к соответствующим человеческим каркасам для VH и VL, была построена и использовалась в качестве руководства для дальнейших обратных мутаций.

[0928] Последовательности вариантов тяжелой и легкой цепей, полученные в результате процесса гуманизации антител, дополнительно выравнивали с последовательностями зародышевой линии человека с использованием инструмента IMGT Domain GapAlign для оценки степени гуманизации тяжелой и легкой цепей, как указано в руководящих принципах комитета ВОЗ по МНН. (WHO-INO: International nonproprietary names (INN) for biological and biotechnological substances (a review) (Internet) 2014. Доступно по адресу: http://www. who.int/medicines/services/inn/BioRev2014.pdf) Остатки были изменены для выравнивания с соответствующей последовательностью зародышевой линии человека, где
это возможно, для повышения степени гуманизации и снижения потенциальной иммуногенности. Для гуманизированных вариантов VLv2 и VLv2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGKV2-29*02 и IGKJ4*01 (SEQ ID NO:239). Для гуманизированных вариантов VHv1 и VHV были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO.33).

[0929] Дополнительные версии hu17C12-VH и hu17C12-VL были сконструированы для обеспечения возможности оценки различных каркасных остатков на предмет их вклада в связывание антитела, термостабильность и иммуногенность, а также для оптимизации дезаминации, окисления, N-гликозилирования, протеолиза и агрегации. Положения, рассматриваемые для мутации, включают те, которые:

- чувствительны к посттрансляционным модификациям, таким как гликозилирование или пироглютаминирование,

- заняты остатками, которые, как предполагается, могут конфликтовать с CDR, согласно модели CDR 17C12, привитых к каркасам VH и VL, или

- заняты остатками, которые редко встречаются среди секвенированных человеческих антител, где либо остаток родительского мышьяконого 17C12, либо какой-либо другой остаток гораздо более распространен в репертуре человеческих антител.
Выравнивания мышечно гуманизированных антител показаны для вариабельных областей легкой цепи (таблица 40 и фигура 12) и вариабельных областей тяжелой цепи (таблица 39 и фигура 11).

Были сконструированы 2 вариантов вариабельной области гуманизированной тяжелой цепи и 2 вариантов вариабельной области гуманизированной легкой цепи, содержащие различные перестановки замен: hu17C12VHv1 или hu17C12VHv2 (SEQ ID NO:232-233, соответственно); и hu17C12VLv1 или hu17C12VLv2 (SEQ ID NO:234-235, соответственно) (таблицы 39 и 40). Примеры гуманизированных конструкций Vк и Vh с обратными мутациями и другими мутациями, основанными на выбранных каркасах человека, показаны в таблицах 39 и 40, соответственно. Области, выделенные жирным шрифтом, в таблицах 39 и 40, обозначают CDR, согласно композитному определению по Kabat/Chothia. Знак «» в столбцах таблиц 39 и 40 указывает на отсутствие остатка в указанном положении. SEQ ID NO:232-233 и SEQ ID NO:234-235 содержат обратные мутации и другие мутации, как показано в таблице 41. Аминокислоты в положениях в hu17C12VHv1 и hu17C12VHv2 перечислены в таблице 42. Аминокислоты в положениях в hu17C12VLv1 и hu17C12VLv2 перечислены в таблице 43.

Процентный показатель степени гуманизации для гуманизированных VH цепей hu17C12VHv1 и hu17C12VHv2 (SEQ ID NO:232-233, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33), и для гуманизированных VL цепей hu17C12VLv1 и hu17C12VLv2 (SEQ ID NO:234-235, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGKV2-29*02 и IGKJ4*01 (SEQ ID NO:239), показан в таблице 44.
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fr1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>E</td>
<td>Q</td>
<td>Q</td>
<td>E</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Q</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH мишени 17C12 (SEQ ID NO:225)</td>
<td>IMGT N IGHV1-69*2-01 (SEQ ID NO:33)</td>
<td>CAC20421:YH_hufrwk (SEQ ID NO:218)</td>
<td>Hul7C12VH1 (SEQ ID NO:232)</td>
<td>Hul7C12VH2 (SEQ ID NO:233)</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Fr1</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-H1</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-H1</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>CDR-H1</td>
<td>N</td>
<td>T</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>CDR-H1</td>
<td>I</td>
<td>F</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>CDR-H1</td>
<td>K</td>
<td>T</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>CDR-H1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>CDR-H1</td>
<td>D</td>
<td>Y</td>
<td>Y</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>CDR-H1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>CDR-H1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>CDR-H1</td>
<td>N</td>
<td>H</td>
<td>H</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>35A</td>
<td></td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>35B</td>
<td></td>
<td>CDR-H1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Fr2</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>Fr2</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Fr2</td>
<td>R</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>Fr2</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>Fr2</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>Fr2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>Fr2</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>CDR-H2</td>
<td>W</td>
<td>L</td>
<td>L</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>CDR-H2</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>CDR-H2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>52A</td>
<td>53</td>
<td>CDR-H2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>52B</td>
<td>-</td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>52C</td>
<td>-</td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>CDR-H2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td>CDR-H2</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>CDR-H2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>CDR-H2</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>CDR-H2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>CDR-H2</td>
<td>K</td>
<td>I</td>
<td>I</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>CDR-H2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>CDR-H2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>CDR-H2</td>
<td>S</td>
<td>E</td>
<td>E</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td>CDR-H2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td>CDR-H2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>CDR-H2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>CDR-H2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td>Fr3</td>
<td>K</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>68</td>
<td>Fr3</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td>Fr3</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>73</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>75</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>Fr3</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td>Fr3</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>78</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>79</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>Fr3</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>Fr3</td>
<td>Q</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Остаток по Колб №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машиної 17C12 (SEQ ID NO:225)</td>
<td>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC202421-VH_hufTrk (SEQ ID NO:218)</td>
<td>Hu17C12/HV1 (SEQ ID NO:232)</td>
<td>Hu17C12/HV2 (SEQ ID NO:233)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>82A</td>
<td>84</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>82B</td>
<td>85</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>82C</td>
<td>86</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>87</td>
<td>Fr3</td>
<td>T</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>88</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>89</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>90</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>91</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>92</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>93</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>94</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>95</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>96</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>97</td>
<td>Fr3</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>98</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>99</td>
<td>CDR-H3</td>
<td>S</td>
<td>I</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Остаток по Katat №</td>
<td>Нийней остаток №</td>
<td>FR или CDR</td>
<td>VH машиноч 1C12 (SEQ ID NO:225)</td>
<td>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>CAC20421-YH_huFwtk (SEQ ID NO:218)</td>
<td>Hu17C12VHv4 (SEQ ID NO:232)</td>
<td>Hu17C12VHv2 (SEQ ID NO:233)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100B</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100C</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100D</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100E</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100F</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100G</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100H</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100I</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100J</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100K</td>
<td></td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>100</td>
<td>CDR-H3</td>
<td>N</td>
<td>Q</td>
<td>D</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>101</td>
<td>CDR-H3</td>
<td>G</td>
<td>H</td>
<td>H</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>102</td>
<td>Fr4</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>103</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>104</td>
<td>Fr4</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>105</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>106</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>107</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>108</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>109</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>110</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Динамический остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 17C12 (SEQ ID NO: 225)</td>
<td>IMGT № IGHV1-69-2*01 (SEQ ID NO: 33)</td>
<td>CAC20421-VH_huFrwk (SEQ ID NO: 218)</td>
<td>hu17C12YH1 (SEQ ID NO: 222)</td>
<td>hu17C12YH2 (SEQ ID NO: 223)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>111</td>
<td>Fr4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>112</td>
<td>Fr4</td>
<td>A</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Остаток по Кабат №</th>
<th>Динамический остаток №</th>
<th>FR или CDR</th>
<th>VL машинного 17C12 (SEQ ID NO: 228)</th>
<th>IGKV2-2902 и IGKd401 (SEQ ID NO:239)</th>
<th>ODO16713-VL_huFrwk (SEQ ID NO:238)</th>
<th>hu17C12VLv1 (SEQ ID NO:234)</th>
<th>hu17C12VLv2 (SEQ ID NO:225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fr1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fr1</td>
<td>V</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Fr1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Остаток по Кабел №</td>
<td>Значение остатка №</td>
<td>FR или CDR</td>
<td>Тип ВЛ машинного 17C12 (SEQ ID NO.: 228)</td>
<td>Группа VL машинного 17C12 (SEQ ID NO.: 228)</td>
<td>QDO16713-VL_huFrwk (SEQ ID NO.: 238)</td>
<td>Hul7C12VLv1 (SEQ ID NO.: 234)</td>
<td>Hul7C12VLv2 (SEQ ID NO.: 235)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Fr1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fr1</td>
<td>T</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>I</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>CDR-L1</td>
<td>T</td>
<td>K</td>
<td>K</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-L1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Денежный остаток №</td>
<td>FR или CDR</td>
<td>VL машины 17C12 (SEQ ID NO: 228) (LGKV2-29-02 и LGK4#01 (SEQ ID NO:239))</td>
<td>QDO16713-VL_huFrwK (SEQ ID NO:238)</td>
<td>Hu17C12VLv1 (SEQ ID NO:234)</td>
<td>Hu17C12VLv2 (SEQ ID NO:235)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>27A</td>
<td>28</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>27B</td>
<td>29</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>27C</td>
<td>30</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>27D</td>
<td>31</td>
<td>CDR-L1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>27E</td>
<td>32</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>27F</td>
<td></td>
<td>CDR-L1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>33</td>
<td>CDR-L1</td>
<td>N</td>
<td>D</td>
<td>D</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>CDR-L1</td>
<td>R</td>
<td>G</td>
<td>G</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>CDR-L1</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>36</td>
<td>CDR-L1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>CDR-L1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>38</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>39</td>
<td>CDR-L1</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>41</td>
<td>Fr2</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>42</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>43</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>44</td>
<td>Fr2</td>
<td>R</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>46</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>47</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>Fr2</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Остаток по Кабел №</td>
<td>Длинный остаток №</td>
<td>FR или CDR</td>
<td>VL машинного 17C12 (SEQ ID NO: 228)</td>
<td>IGC VK2-2902 и IGC f401 (SEQ ID NO:239)</td>
<td>QD016713-VL_huFrwk (SEQ ID NO:238)</td>
<td>Hu17C12VL-1 (SEQ ID NO:234)</td>
<td>Hu17C12VL-2 (SEQ ID NO:235)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>44</td>
<td>49</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
<td>Fr2</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>46</td>
<td>51</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>47</td>
<td>52</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>Fr2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>49</td>
<td>54</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>CDR-L2</td>
<td>L</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>CDR-L2</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>52</td>
<td>57</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>58</td>
<td>CDR-L2</td>
<td>K</td>
<td>S</td>
<td>N</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>CDR-L2</td>
<td>L</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>CDR-L2</td>
<td>E</td>
<td>F</td>
<td>F</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>56</td>
<td>61</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>57</td>
<td>62</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>59</td>
<td>64</td>
<td>Fr3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>61</td>
<td>66</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>67</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>63</td>
<td>68</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>64</td>
<td>69</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Остаток по каталог №</td>
<td>Динейный остаток №</td>
<td>FR или CDR</td>
<td>VL машинного 17C12 (SEQ ID NO: 228)</td>
<td>IGKV2-29<sup>®</sup> и IGK4<sup>®</sup>01 (SEQ ID NO:239)</td>
<td>QD016713-<sub>0</sub>VL_/huFwrk (SEQ ID NO:238)</td>
<td>Hu17C12VLv1 (SEQ ID NO:234)</td>
<td>Hu17C12VLv2 (SEQ ID NO:235)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>66</td>
<td>71</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>67</td>
<td>72</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>69</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>70</td>
<td>75</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>71</td>
<td>76</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>72</td>
<td>77</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>73</td>
<td>78</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>74</td>
<td>79</td>
<td>Fr3</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>75</td>
<td>80</td>
<td>Fr3</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>76</td>
<td>81</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>77</td>
<td>82</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>79</td>
<td>84</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>81</td>
<td>86</td>
<td>Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>82</td>
<td>87</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>83</td>
<td>88</td>
<td>Fr3</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>84</td>
<td>89</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>86</td>
<td>91</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>87</td>
<td>92</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Динамический остаток №</td>
<td>FR или CDR</td>
<td>VL_машинного 17C12 (SEQ ID NO: 228)</td>
<td>IGKV2-29+92 и IGK4#01 (SEQ ID NO:239)</td>
<td>QDO16713-VL_huFwrk (SEQ ID NO:238)</td>
<td>Hu17C12VLv1 (SEQ ID NO:234)</td>
<td>Hu17C12VLv2 (SEQ ID NO:235)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>88</td>
<td>93</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>89</td>
<td>94</td>
<td>CDR-L3</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
<td>CDR-L3</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>91</td>
<td>96</td>
<td>CDR-L3</td>
<td>T</td>
<td>G</td>
<td>S</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>92</td>
<td>97</td>
<td>CDR-L3</td>
<td>T</td>
<td>I</td>
<td>I</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>93</td>
<td>98</td>
<td>CDR-L3</td>
<td>H</td>
<td>H</td>
<td>Q</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>94</td>
<td>99</td>
<td>CDR-L3</td>
<td>F</td>
<td>L</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>CDR-L3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>95A</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95B</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95C</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95D</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95E</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95F</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>101</td>
<td>CDR-L3</td>
<td>R</td>
<td>L</td>
<td>P</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>97</td>
<td>102</td>
<td>CDR-L3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>98</td>
<td>103</td>
<td>Fr4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>99</td>
<td>104</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>101</td>
<td>106</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>103</td>
<td>108</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>
Расшифровка таблицы 41: Обратные мутации V_H, V_L и другие мутации для гуманизированного 17C12

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Последовательность акцептора экзона V_H или V_L</th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu17C12VHv1 (SEQ ID NO:232)</td>
<td>Номер доступа в GenBank CAC20421-VH_huFrwk (SEQ ID NO:218) IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>H2, H24, H48, H67, H69, H93, H94</td>
</tr>
<tr>
<td>Вариант V_H или V_L</td>
<td>Последовательность акцептора экона V_H или V_L</td>
<td>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hu17C12VHv2 (SEQ ID NO:232)</td>
<td>Номер доступа в GenBank CAC20421-VH_huFrwk (SEQ ID NO:218) ИМГТ № IGHV1-69-2*01 (SEQ ID NO:33)</td>
<td>H1, H2, H24, H48, H67, H69, H93, H94, H108, H113</td>
</tr>
<tr>
<td>Hu17C12VLv1 (SEQ ID NO:233)</td>
<td>Номер доступа в GenBank QDO16713-VL_huFrwk (SEQ ID NO:238)</td>
<td>L2, L36</td>
</tr>
<tr>
<td>Hu17C12VLv2 (SEQ ID NO:234)</td>
<td>Номер доступа в GenBank QDO16713-VL_huFrwk (SEQ ID NO:238) ИГКV2-2902 и ИГКJ401 (SEQ ID NO:239)</td>
<td>L2, L36, L43</td>
</tr>
</tbody>
</table>

Таблица 42: Нумерация по Kabat каркасных остатков (или CDR) (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в тяжелых цепях гуманизированных антител 17C12
Таблица 43: Нумерация по Kabat каркасных остатков (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в легких цепях гуманизированных антител 17C12

<table>
<thead>
<tr>
<th>Остаток</th>
<th>CAC20421-VH_4uFr/4k (SEQ ID NO:218)</th>
<th>IMGT № IGHV1-69-2*01 (SEQ ID NO:33)</th>
<th>VH машинного 17С12 (SEQ ID NO:225)</th>
<th>Hu17C12VHv1 (SEQ ID NO:232)</th>
<th>Hu17C12VHv2 (SEQ ID NO:233)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Q</td>
<td>E</td>
<td>K</td>
<td>Q</td>
<td>E</td>
</tr>
<tr>
<td>H2</td>
<td>V</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>H24</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>H48</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>H67</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>H69</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>H93</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H94</td>
<td>R</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H108</td>
<td>T</td>
<td>L</td>
<td>L</td>
<td>T</td>
<td>L</td>
</tr>
<tr>
<td>H113</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>Остаток</td>
<td>ODO16713-3VL, huFrk (SEQ ID NO:238)</td>
<td>TGKV2-29802 и TGK34=01 (SEQ ID NO:239)</td>
<td>VL мышиного 17C12 (SEQ ID NO:228)</td>
<td>Hu17C12VLv1 (SEQ ID NO:234)</td>
<td>Hu17C12VLv2 (SEQ ID NO:235)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>L2</td>
<td>I</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>L36</td>
<td>Y</td>
<td>Y</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L43</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

Таблица 44
Процентный показатель степени гуманизации тяжелых и легких цепей гуманизированных антител 17C12

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Степень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu17C12VHv1 (SEQ ID NO:232)</td>
<td>79,6%</td>
</tr>
<tr>
<td>Hu17C12VHv2 (SEQ ID NO:233)</td>
<td>80,6%</td>
</tr>
<tr>
<td>Hu17C12VLv1 (SEQ ID NO:234)</td>
<td>85,0%</td>
</tr>
<tr>
<td>Hu17C12VLv2 (SEQ ID NO:235)</td>
<td>86,0%</td>
</tr>
</tbody>
</table>

[0933]Положения, в которых канонические, верньерные или интерфейсные остатки различаются между акцепторными последовательностями мыши и человека, являются кандидатами на замену. Примеры взаимодействующих канонических остатков/остатков CDR включают остатки по Kabat H94 в таблице 39 и L2 в таблице 40. Примеры верньерных остатков включают остатки по Kabat H2, H24, H48, H67, H69, H93 и H94 в таблице 39, а также L2 и L36 в таблице 40. Примеры остатков интерфейса/упаковки (VH+VL) включают остаток по Kabat H93 в таблице 39 и L36 в таблице 40.
Обоснования выбора положений, указанных в таблице 39, в вариабельной области тяжелой цепи в качестве кандидатов на замену являются следующими.

Вариабельные области тяжелой цепи

hu17C12VHv1
- состоит из петель CDR-H1, H2 и H3 17C12-VH, привитых на каркас CAC20421. Кроме того, hu17C12VHv1 также возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или локализуются в интерфейсе домена VH/VL, способствуют структурной стабильности.

V2I: представляет собой обратную мутацию остатка зоны Верные для сохранения зоны Верные.

V24A: представляет собой обратную мутацию остатка канонической структуры по Chothia, и обратная мутация может повысить стабильность.

M48I: представляет собой обратную мутацию остатка зоны Верные.

V67A: представляет собой обратную мутацию остатка зоны Верные и подвергается обратной мутации для сохранения конформации CDR.

I69M: представляет собой обратную мутацию остатка зоны Верные, и обратная мутация сделана для сохранения целостности упаковки CDR.

A93T: представляет собой обратную мутацию остатка интерфейса VH/VL и подвергается обратной мутации для сохранения целостности интерфейса антитела.

R94T: представляет собой обратную мутацию канонического структурного остатка по Chothia. R94T также представляет собой мутацию, выравнивающую зародышевую линию. Thr находится в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) в этом положении.

hu17C12VHv2
- hu17C12VHv2 также сохраняет все возвращенные каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или локализуются в интерфейсе домена VH/VL,
способствуют структурной стабильности. Кроме того, hu17C12VHV2 включает обратные мутации или замену на наиболее часто встречающийся остаток в данном положении и для оптимизации дезаминирования, окисления, N-гликозилирования, протеолиза и агрегации. Мутации в hu17C12VHV2, которые не включены в hu17C12VHV1:

[0945]Q1E: представляет собой мутацию, повышающую стабильность, для уменьшения потенциала образования пирогlutамата и снижения гетерогенности N-конца (Liu, выше).

[0947]R113S: представляет собой частотную и выравнивающую зародышевую линию мутацию. Arg в этом положении встречается редко, а Ser в гене зародышевой линии человека IGHV1-69-2*01 (SEQ ID NO:33) встречается в этом положении и является наиболее частым остатком в этом положении.

[0948]Обоснования выбора положений, указанных в таблице 40, в вариабельной области легкой цепи в качестве кандидатов на замену являются следующими.

[0949]вариабельные области легкой катта-цети

[0950]hu17C12VLv1

– состоит из петель CDR-L1, L2 и L3 17C12-VL, привитых к каркасу VL QDO16713 наряду с возвратом всех каркасных замен в положениях, которые являются ключевыми для определения канонических классов по Cothia, являются частью зоны Верные или расположены на интерфейсе доменов VH/VL.

[0951]I2V: представляет собой обратную мутацию остатка зоны Верные и обратная мутация осуществляется для сохранения конформации упаковки CDR.

[0952]Y36L: представляет собой обратную мутацию остатка интерфейса VH/VL и зоны Верные, и обратная мутация осуществляется для сохранения целостности интерфейса.
hu17C12VLv2 включает замены, которые способствуют структурной стабильности или увеличивают степень гуманизации антитела.

P43S: представляет собой частотную и выравнивающую зародышевую линию мутацию. Противоположен редко и заменяется на Ser, который имеется в этом положении в гене зародышевой линии человека IGKV2-29*02 & IGKJ4*01 (SEQ ID NO:239).

На основе этих человеческих каркасов были разработаны следующие варианты:

Вариабельные области тяжелой цепи

>hu17C12VHv1

QIQLVQSGAEVKKPATVKISCKASAFNIKDDYMNWVQQAPGKGLEWIGWIDPENGDTKYASKFOQGRATMTADTDSTDTAYMELSSLRSEDTAVYYCTTNSNGWGQGTTVTR

>hu17C12VHv2

EVQLQQSGAEVKKPATVKISCTASGFNIKDDYMNWVQRPEQGLEWIGWIDPENGDTEYASKFOQGKATMTADTSNTAYQLSSLTSEDATAVYYCTTNSNGWGQGTTVTS

Вариабельные области легкой канта-цепи

>hu17C12VLv1

DVVMQTQPLSLSVTPGQPASISCTSSQSSLHSNKTYLHWWLQKPGQPPQLLILYLVSKE SGVPRDFSGSGSGTDFTLKISRVEAEDGVYYCLQTTHFPRTFGGGTKVEIK

>hu17C12VLv2

DVVMQTQPLSLSVTPGQPASISCTSSQSSLHSNKTYLHWWLQKPGQSPQLLILYLVSKE SGVPRDFSGSGSGTDFTLKISRVEAEDGVYYCLQTTHFPRTFGGGTKVEIK

Гуманизированные последовательности генерируют с использованием протокола двухэтапной ПЦР, который позволяет вводить множественные мутации, делеции и

Пример 12. Конструирование гуманизированных антител 14Н3

[0959] Исходным или донорским антителом для гуманизации было мышьное антитело 14Н3. Аминокислотная последовательность вариабельной области тяжелой цепи зрелого m14Н3 представлена как SEQ ID NO:240. Аминокислотная последовательность вариабельной области легкой цепи зрелого m14Н3 представлена как SEQ ID NO:244. Аминокислотные последовательности CDR1, CDR2 и CDR3 тяжелой цепи согласно композитному определению по Kabat/Choitha представлены как SEQ ID NO:241-243, соответственно. Аминокислотные последовательности CDR1, CDR2 и CDR3 легкой цепи по Kabat представлены как SEQ ID NO:245-247, соответственно. Во всем тексте используется нумерация по Kabat.

single T cell epitope drives the neutralizing anti-idiotypic antibody response to natalizumab in patients with multiple sclerosis Unpublished (прямая подача в GenBank (2019)).

Variablen domeny VH 14H3 и QDJ57937 такжe имеют одинаковую длину в отношении петель CDR-H1, H2. Точно так же каркасы VL 14H3 имеют высокую степень сходства последовательностями с соответствующими областями человеческого антигена ABC66914, клонированного Shriner et al. [Vaccine 24 (49-50), 7159-7166 (2006)]. Вариабельный домен легкой цепи антител 14H3 и ABC66914 также имеет одинаковую длину в отношении петель CDR-L1, L2 и L3. Соответственно, каркасные области и VH QDJ57937 и VL ABC66914 были выбраны в качестве акцепторных последовательностей для CDR 14H3. Модель CDR 14H3, привитых к соответствующим человеческим каркасам для VH и VL, была построена и использовалась в качестве руководства для дальнейших обратных мутаций.

[0962] Последовательности вариантов тяжелой и легкой цепей, полученные в результате процесса гуманизации антител, дополнительно выравнивали с последовательностями зародышевой линии человека с использованием инструмента IMGT Domain GapAlign для оценки степени гуманизации тяжелой и легкой цепей, как указано в руководящих принципах комитета BOЗ по МНХ. (WHO-INN: International nonproprietary names (INN) for biological and biotechnological substances (a review) (Internet) 2014. Доступно по адресу: http://www.who.int/medicines/services/inn/BioRev2014.pdf) Остатки были изменены для выравнивания с соответствующей последовательностью зародышевой линии человека, где это возможно, для повышения степени гуманизации и снижения потенциальной иммуногенности. Для гуманизированных вариантов VLv1 и VLv2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37). Для гуманизированных вариантов VHv1 и VHv2 были введены мутации, чтобы сделать последовательности более похожими на ген зародышевой линии человека IGHV1-70*04 и IGHJ4*01 (SEQ ID NO:254)

[0963] Дополнительные версии hu14H3-VH и hu14H3-VL были сконструированы для обеспечения возможности оценки различных каркасных остатков на предмет их вклада в связывание антигена, термостабильность и иммуногенность, а также для оптимизации дезаминации, окисления, N-гликозилирования, протеолиза и агрегации. Положения, рассматриваемые для мутации, включают те, которые:

and Dübel S (eds). *Antibody Engineering*. Heidelberg, Germany: Springer International Publishing AG.),

- чувствительны к посттрансляционным модификациям, таким как гликозилирование или пироглутаминирование,

- заняты остатками, которые, как предполагается, могут конфликтовать с CDR, согласно модели CDR 14H3, привитых к каркасам VH и VL, или

- заняты остатками, которые редко встречаются среди секвенированных человеческих антител, где либо остаток родительского мышиного 14H3, либо какой-либо другой остаток гораздо более распространен в репертуаре человеческих антител.

[0964] Выравнивания мышьяного 14H3 и различных гуманизированных антител показаны для вариабельных областей легкой цепи (таблица 46 и фигура 14) и вариабельных областей тяжелой цепи (таблица 45 и фигура 13).

[0965] Были сконструированы 2 варианта вариабельной области гуманизированной тяжелой цепи и 2 вариантов вариабельной области гуманизированной легкой цепи, содержащие различные перестановки замен: hu14H3VHv1 или hu14H3VHv2, (SEQ ID NO:248-249, соответственно); и hu14H3VLv1 или hu14H3VLv2, (SEQ ID NO:250-251, соответственно) (таблицы 45 и 46). Примеры гуманизированных конструкций Vκ и Vλ с обратными мутациями и другими мутациями, основанными на выбранных каркасах человека, показаны в таблицах 45 и 46, соответственно. Области, выделенные жирным шрифтом, в таблицах 45 и 46, обозначают CDR, согласно композитному определению по Kabat/Chothia. Знак «-» в столбцах таблиц 45 и 46 указывает на отсутствие остатка в указанном положении. SEQ ID NO:248-249 и SEQ ID NO:250-251 содержат обратные мутации и другие мутации, как показано в таблице 47. Аминокислоты в положениях в
hu14H3VHv1 и hu14H3VHv2 перечислены в таблице 48 Аминокислоты в положениях в hu14H3VLv1 и hu14H3VLv2 перечислены в таблице 49.

10966] Процентный показатель степени гуманизации для гуманизированных VH цепей hu14H3VHv1 и hu14H3VHv2 (SEQ ID NO:248-249, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGHV1-70*04 и IGHJ4*01 (SEQ ID NO:254), и для гуманизированных VL цепей hu14H3VLv1 и hu14H3VLv2 (SEQ ID NO:250-251, соответственно) по отношению к наиболее сходному гену зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37), показан в таблице 50.

<p>| Таблица 45 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Остаток по Kabat №</th>
<th>Линейный остаток №</th>
<th>VH мышц. 14H3 (SEQ ID NO:240)</th>
<th>IGHV2-7004 и IGHJ401 (SEQ ID NO:254)</th>
<th>QD35793VH hFrwk (SEQ ID NO:253)</th>
<th>Hu4H4VHv1 (SEQ ID NO:248)</th>
<th>Hu14H3VHv2 (SEQ ID NO:249)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fr1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Fr1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Fr1</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Fr1</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Fr1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Fr1</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Fr1</td>
<td>I</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fr1</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Остаток по Кабат №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 14H3 (SEQ ID NO:240)</td>
<td>IGHV2-700-04 и IGHJ401 (SEQ ID NO:254)</td>
<td>QDQ57937VH HFrwk (SEQ ID NO:253)</td>
<td>Hu4H3VHv1 (SEQ ID NO:248)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Fr1</td>
<td>Q</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fr1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Fr1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Fr1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fr1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Fr1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Fr1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Fr1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Fr1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-H1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-H1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>CDR-H1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>CDR-H1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>CDR-H1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>CDR-H1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>CDR-H1</td>
<td>Y</td>
<td>S</td>
<td>S</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>CDR-H1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Остаток по Katat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH варианта 1413 (SEQ ID NO: 240)</td>
<td>IGHV2-7004 и IGHJ01 (SEQ ID NO: 254)</td>
<td>QDD5793YHFrwk (SEQ ID NO: 253)</td>
<td>Huh4H3VHv1 (SEQ ID NO: 248)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>CDR-H1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>CDR-H1</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>G</td>
</tr>
<tr>
<td>35A</td>
<td>36</td>
<td>CDR-H1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>35B</td>
<td>37</td>
<td>CDR-H1</td>
<td>G</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>37</td>
<td>39</td>
<td>Fr2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>38</td>
<td>40</td>
<td>Fr2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>39</td>
<td>41</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td>Fr2</td>
<td>S</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>42</td>
<td>44</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>43</td>
<td>45</td>
<td>Fr2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>44</td>
<td>46</td>
<td>Fr2</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>45</td>
<td>47</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>46</td>
<td>48</td>
<td>Fr2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>47</td>
<td>49</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>48</td>
<td>50</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>49</td>
<td>51</td>
<td>Fr2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>50</td>
<td>52</td>
<td>CDR-H2</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>51</td>
<td>53</td>
<td>CDR-H2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>52</td>
<td>54</td>
<td>CDR-H2</td>
<td>W</td>
<td>D</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Остаток по Каби №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 14H3 (SEQ ID NO:240)</td>
<td>IGHV2-70-04 и IGHJ4*01 (SEQ ID NO:254)</td>
<td>QD157937VH Hfwk (SEQ ID NO:253)</td>
<td>Hu4H3VHv1 (SEQ ID NO:248)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>52A</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52B</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52C</td>
<td></td>
<td>CDR-H2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53 55</td>
<td></td>
<td>CDR-H2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>54 56</td>
<td></td>
<td>CDR-H2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>55 57</td>
<td></td>
<td>CDR-H2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>56 58</td>
<td></td>
<td>CDR-H2</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
</tr>
<tr>
<td>57 59</td>
<td></td>
<td>CDR-H2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>58 60</td>
<td></td>
<td>CDR-H2</td>
<td>Y</td>
<td>F</td>
<td>F</td>
<td>Y</td>
</tr>
<tr>
<td>59 61</td>
<td></td>
<td>CDR-H2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>60 62</td>
<td></td>
<td>CDR-H2</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>61 63</td>
<td></td>
<td>CDR-H2</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>62 64</td>
<td></td>
<td>CDR-H2</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>A</td>
</tr>
<tr>
<td>63 65</td>
<td></td>
<td>CDR-H2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>64 66</td>
<td></td>
<td>CDR-H2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>65 67</td>
<td></td>
<td>CDR-H2</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>S</td>
</tr>
<tr>
<td>66 68</td>
<td></td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>67 69</td>
<td></td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>68 70</td>
<td></td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>69 71</td>
<td></td>
<td>Fr3</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>70 72</td>
<td></td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Остаток по каталогу №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH мишени 14H3 (SEQ ID NO:240)</td>
<td>IGHV2-7004 и IGHJ401 (SEQ ID NO:254)</td>
<td>QDJ57937VH1 Hfrwk (SEQ ID NO:253)</td>
<td>Hu4H3VHv1 (SEQ ID NO:248)</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>71</td>
<td>73</td>
<td>Fr3</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>72</td>
<td>74</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>73</td>
<td>75</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>74</td>
<td>76</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>75</td>
<td>77</td>
<td>Fr3</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>76</td>
<td>78</td>
<td>Fr3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>77</td>
<td>79</td>
<td>Fr3</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>78</td>
<td>80</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>Fr3</td>
<td>F</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>80</td>
<td>82</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>81</td>
<td>83</td>
<td>Fr3</td>
<td>K</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>82</td>
<td>84</td>
<td>Fr3</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>82A</td>
<td>85</td>
<td>Fr3</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>82B</td>
<td>86</td>
<td>Fr3</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>82C</td>
<td>87</td>
<td>Fr3</td>
<td>V</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>83</td>
<td>88</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>84</td>
<td>89</td>
<td>Fr3</td>
<td>T</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>Fr3</td>
<td>A</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>86</td>
<td>91</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>87</td>
<td>92</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>88</td>
<td>93</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Остаток по Кабл. №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH машинного 14H3 (SEQ ID NO:240)</td>
<td>IGHV2-70-04 и IGHJ4*01 (SEQ ID NO:254)</td>
<td>QDJ57937VH HFrwk (SEQ ID NO:253)</td>
<td>HuH4H3VHv1 (SEQ ID NO:248)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>89</td>
<td>94</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>91</td>
<td>96</td>
<td>Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>92</td>
<td>97</td>
<td>Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>93</td>
<td>98</td>
<td>Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>94</td>
<td>99</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>CDR-H3</td>
<td>N</td>
<td>N</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>96</td>
<td>101</td>
<td>CDR-H3</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>V</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100B</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100C</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100D</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100E</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100F</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100G</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100H</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100I</td>
<td></td>
<td>CDR-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Остаток по Кабат Н.е.</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VH machinery 14H3 (SEQ ID NO: 240)</td>
<td>IGHV2-70-04 и IGHJ4*01 (SEQ ID NO: 254)</td>
<td>QDJ5793VH frwk (SEQ ID NO: x253)</td>
<td>Hu4H3VHv1 (SEQ ID NO: 248)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>100J</td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100K</td>
<td>CDR-H3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>CDR-H3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>102</td>
<td>103</td>
<td>CDR-H3</td>
<td>Y</td>
<td>Y</td>
<td>I</td>
<td>Y</td>
</tr>
<tr>
<td>103</td>
<td>104</td>
<td>Fr4</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>104</td>
<td>105</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>105</td>
<td>106</td>
<td>Fr4</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>106</td>
<td>107</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>107</td>
<td>108</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>108</td>
<td>109</td>
<td>Fr4</td>
<td>T</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>109</td>
<td>110</td>
<td>Fr4</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>Fr4</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>112</td>
<td>113</td>
<td>Fr4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>113</td>
<td>114</td>
<td>Fr4</td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Таблица 46
<table>
<thead>
<tr>
<th>Остаток по Колбат №</th>
<th>Линейный остаток №</th>
<th>FR или CDR</th>
<th>VL машинного 14H3 (SEQ ID NO:244)</th>
<th>IGKV2-28*01 и IGKd2=01 (SEQ ID NO:37)</th>
<th>ABC66914VL_hFwrk (SEQ ID NO:256)</th>
<th>Hu14H3VLx1 (SEQ ID NO:250)</th>
<th>Hu14H3VLx2 (SEQ ID NO:251)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Frl1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Frl1</td>
<td>V</td>
<td>I</td>
<td>I</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Frl1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Frl1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Frl1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Frl1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Frl1</td>
<td>T</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Frl1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Frl1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Frl1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Frl1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Frl1</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Frl1</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Frl1</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Frl1</td>
<td>L</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Frl1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Frl1</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Frl1</td>
<td>Q</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Frl1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Frl1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Frl1</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Остаток по Kaban №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL машины 14H3 (SEQ ID NO:244)</td>
<td>IGKV22801 и IGKd2*01 (SEQ ID NO:37)</td>
<td>ABC66914VL_hFwrk (SEQ ID NO:256)</td>
<td>Hu14H3VLx1 (SEQ ID NO:250)</td>
<td>Hu14H3VLx2 (SEQ ID NO:251)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Fr1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Fr1</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>CDR-L1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>CDR-L1</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>27A</td>
<td>28</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27B</td>
<td>29</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>27C</td>
<td>30</td>
<td>CDR-L1</td>
<td>V</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>27D</td>
<td>31</td>
<td>CDR-L1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>27E</td>
<td>32</td>
<td>CDR-L1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27F</td>
<td></td>
<td>CDR-L1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>33</td>
<td>CDR-L1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>29</td>
<td>34</td>
<td>CDR-L1</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>CDR-L1</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>31</td>
<td>36</td>
<td>CDR-L1</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>32</td>
<td>37</td>
<td>CDR-L1</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>33</td>
<td>38</td>
<td>CDR-L1</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>39</td>
<td>CDR-L1</td>
<td>H</td>
<td>D</td>
<td>D</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>Fr2</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>36</td>
<td>41</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Остаток по Колт Nº</td>
<td>Длинный остаток Nº</td>
<td>FR или CDR</td>
<td>VL машинного 14H3 (SEQ ID NO:244)</td>
<td>IGKv2-2801 и IGKd01 (SEQ ID NO:37)</td>
<td>ABC66914VL_hFwrk (SEQ ID NO:256)</td>
<td>Hu14H3VLv1 (SEQ ID NO:250)</td>
<td>Hu14H3VLv2 (SEQ ID NO:251)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>37</td>
<td>42</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Q</td>
</tr>
<tr>
<td>38</td>
<td>43</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>39</td>
<td>44</td>
<td>Fr2</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>41</td>
<td>46</td>
<td>Fr2</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>42</td>
<td>47</td>
<td>Fr2</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>Fr2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>44</td>
<td>49</td>
<td>Fr2</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
<td>Fr2</td>
<td>K</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>46</td>
<td>51</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>47</td>
<td>52</td>
<td>Fr2</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>Fr2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>49</td>
<td>54</td>
<td>Fr2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>CDR-L2</td>
<td>K</td>
<td>L</td>
<td>L</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>CDR-L2</td>
<td>V</td>
<td>G</td>
<td>G</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>52</td>
<td>57</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>58</td>
<td>CDR-L2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>CDR-L2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>55</td>
<td>60</td>
<td>CDR-L2</td>
<td>F</td>
<td>A</td>
<td>A</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>56</td>
<td>61</td>
<td>CDR-L2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>57</td>
<td>62</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Остаток по Кабел №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL машины 14H3 (SEQ ID NO:244)</td>
<td>IGKV2-2*01 и IGKd2-01 (SEQ ID NO:37)</td>
<td>ABC66914VL_hFwrk (SEQ ID NO:250)</td>
<td>Hu14H3VLx1 (SEQ ID NO:250)</td>
<td>Hu14H3VLx2 (SEQ ID NO:251)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>58</td>
<td>63</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>59</td>
<td>64</td>
<td>Fr3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>61</td>
<td>66</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>62</td>
<td>67</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>63</td>
<td>68</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>64</td>
<td>69</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>66</td>
<td>71</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>67</td>
<td>72</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
<td>Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>69</td>
<td>74</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>70</td>
<td>75</td>
<td>Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>71</td>
<td>76</td>
<td>Fr3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>72</td>
<td>77</td>
<td>Fr3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>73</td>
<td>78</td>
<td>Fr3</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>74</td>
<td>79</td>
<td>Fr3</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>75</td>
<td>80</td>
<td>Fr3</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>76</td>
<td>81</td>
<td>Fr3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>77</td>
<td>82</td>
<td>Fr3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Остаток по Kohat №</td>
<td>Филиан/CDR</td>
<td>VL машины 14H3 (SEQ ID NO:244)</td>
<td>IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>ABC66914/VL_hFwrk (SEQ ID NO:256)</td>
<td>Hul4H3VLx1 (SEQ ID NO:250)</td>
<td>Hul4H3VLx2 (SEQ ID NO:251)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>84 Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85 Fr3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>86 Fr3</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>87 Fr3</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>88 Fr3</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>89 Fr3</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>90 Fr3</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>91 Fr3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>92 Fr3</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>93 Fr3</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>94 CDR-L3</td>
<td>S</td>
<td>M</td>
<td>M</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>95 CDR-L3</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>96 CDR-L3</td>
<td>S</td>
<td>A</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>97 CDR-L3</td>
<td>T</td>
<td>L</td>
<td>L</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>98 CDR-L3</td>
<td>L</td>
<td>Q</td>
<td>Q</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>99 CDR-L3</td>
<td>V</td>
<td>T</td>
<td>T</td>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100 CDR-L3</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>95A</td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>L</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>95B</td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>95C</td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>95D</td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Остаток по Kabat №</td>
<td>Линейный остаток №</td>
<td>FR или CDR</td>
<td>VL машиноног 14H3 (SEQ ID NO:244)</td>
<td>IGKV2-2801 и IGKd01 (SEQ ID NO:37)</td>
<td>ABC66914VL_hFwrk (SEQ ID NO:256)</td>
<td>Hu14H3VLx1 (SEQ ID NO:250)</td>
<td>Hu14H3VLx2 (SEQ ID NO:251)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>95E</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>95F</td>
<td></td>
<td>CDR-L3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>101</td>
<td>CDR-L3</td>
<td>W</td>
<td>Y</td>
<td>L</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>97</td>
<td>102</td>
<td>CDR-L3</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>98</td>
<td>103</td>
<td>Fr4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>99</td>
<td>104</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>Fr4</td>
<td>G</td>
<td>Q</td>
<td>G</td>
<td>G</td>
<td>Q</td>
</tr>
<tr>
<td>101</td>
<td>106</td>
<td>Fr4</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>Fr4</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>103</td>
<td>108</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>104</td>
<td>109</td>
<td>Fr4</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>L</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td>Fr4</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>106</td>
<td>111</td>
<td>Fr4</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>106A</td>
<td></td>
<td>Fr4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>112</td>
<td>Fr4</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

Таблица 47: Обратные мутации V₉, V₈ и другие мутации для гуманизированного 14H3
<table>
<thead>
<tr>
<th>Вариант Vₜ или Vₜ</th>
<th>Последовательность акцептора ээона Vₜ или Vₜ</th>
<th>Изменения акцепторных каркасных остатков (или CDR) (на основе композитных определений CDR по Kabat/Chothia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu14H3VHv1 (SEQ ID NO:248)</td>
<td>Номер доступа в GenBank QDJ57937VH hFwrk (SEQ ID NO:253) IGHV2-7004 и IGHJ401 (SEQ ID NO:254)</td>
<td>H35B</td>
</tr>
<tr>
<td>Hu14H3VHv2 (SEQ ID NO:249)</td>
<td>Номер доступа в GenBank QDJ57937VH hFwrk (SEQ ID NO:253) IGHV2-7004 и IGHJ401 (SEQ ID NO:254)</td>
<td>H35B, H108, H113</td>
</tr>
<tr>
<td>Hu14H3VLv1 (SEQ ID NO:250)</td>
<td>Номер доступа в GenBank ABC66914VL_hFwrk (SEQ ID NO:256)</td>
<td>L2, L87</td>
</tr>
<tr>
<td>Hu14H3VLv2 (SEQ ID NO:251)</td>
<td>Номер доступа в GenBank ABC66914VL_hFwrk (SEQ ID NO:256) IGKV2-2801 и IGKJ201 (SEQ ID NO:37)</td>
<td>L2, L7, L37, L87, L100, L104</td>
</tr>
</tbody>
</table>

Таблица 48: Нумерация по Kabat каркасных остатков (или CDR) (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в тяжелых цепях гуманизированных антител 14H3
Таблица 49: Нумерация по Kabat каркасных остатков (на основе CDR согласно композитному определению Kabat/Chothia) для обратных мутаций и других мутаций в легких цепях гуманизированных антител 14H3

<table>
<thead>
<tr>
<th>Остаток</th>
<th>QD157937VH_hFrw (SEQ ID NO:253)</th>
<th>IGHV2-7 (SEQ ID NO:254)</th>
<th>VH мышиного 14H3 (SEQ ID NO:240)</th>
<th>Hu14H3VL1 (SEQ ID NO:248)</th>
<th>Hu14H3VL2 (SEQ ID NO:249)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H35B</td>
<td>S</td>
<td>S</td>
<td>G</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>H108</td>
<td>M</td>
<td>L</td>
<td>T</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>H113</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>L</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Остаток</th>
<th>ABC60914VL1_HFw (SEQ ID NO:256)</th>
<th>IGHV2-28 (SEQ ID NO:37)</th>
<th>VH мышиного 14H3 (SEQ ID NO:244)</th>
<th>Hu14H3VL1 (SEQ ID NO:250)</th>
<th>Hu14H3VL2 (SEQ ID NO:251)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>I</td>
<td>I</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>L7</td>
<td>T</td>
<td>S</td>
<td>T</td>
<td>T</td>
<td>S</td>
</tr>
<tr>
<td>L37</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Q</td>
</tr>
<tr>
<td>L87</td>
<td>Y</td>
<td>Y</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>L100</td>
<td>G</td>
<td>Q</td>
<td>G</td>
<td>G</td>
<td>Q</td>
</tr>
</tbody>
</table>
Таблица 50
Процентный показатель степени гуманизации тяжелых и легких цепей гуманизированных антител 14Н3

<table>
<thead>
<tr>
<th>Вариант V_H или V_L</th>
<th>Степень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu14H3VHv1 (SEQ ID NO:248)</td>
<td>89,9%</td>
</tr>
<tr>
<td>Hu14H3VHv2 (SEQ ID NO:249)</td>
<td>89,9%</td>
</tr>
<tr>
<td>Hu14H3VLv1 (SEQ ID NO:250)</td>
<td>85,0%</td>
</tr>
<tr>
<td>Hu14H3VLv2 (SEQ ID NO:251)</td>
<td>85,0%</td>
</tr>
</tbody>
</table>

[0967] Положения, в которых канонические, верньерные или интерфейсные остатки различаются между акцепторными последовательностями мыши и человека, являются кандидатами на замену. Примеры взаимодействующих канонических остатков/остатков CDR включают остаток по Kabat L2 в таблице 46. Примеры верньерными остатков включают остаток по Kabat L2 в таблице 46. Примеры остатков интерфейса/упаковки (VH+VL) включают остаток по Kabat L87 в таблице 46.

[0968] Обоснования выбора положений, указанных в таблице 45, в вариабельной области тяжелой цепи в качестве кандидатов на замену являются следующими.

[0969] Вариабельные области тяжелой цепи

[0970] hu14H3VHv1
состоит из петель CDR-H1, H2 и H3 14H3-VH, привитых на каркас QDJ57937-VH. Кроме того, содержит замену G35bS в CDR-H1

G35bS: представляет собой мутацию остатка CDR. Предполагается, что остаток в положении H35b не находится в прямом контакте с антигеном, исходя из модели. Ген зародышевой линии человека IGHV1-70*04 и IGHJ4*01 (SEQ ID NO:254) имеет Ser в этом положении. L35bS представляет собой мутацию, выравнивающую зародышевую линию.

hu14H3VHv2

возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Вернье, или локализуются на интерфейсе доменов VH/VL или способствуют структурной стабильности. hu14H3VHv2 включает обратные мутации или замены в различных положениях, перечисленных ниже, что позволяет оценить вклад этих положений в антигенсвязывающую аффинность и иммуногенность.

возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Вернье, или локализуются на интерфейсе доменов VH/VL или способствуют структурной стабильности. hu14H3VHv2 включает обратные мутации или замены в различных положениях, перечисленных ниже, что позволяет оценить вклад этих положений в антигенсвязывающую аффинность и иммуногенность. Кроме того, включает обратные мутации или замену на наиболее часто встречающийся остаток в указанном положении.

M108L: представляет собой мутацию, выравнивающую зародышевую линию. Leu находится в гене зародышевой линии человека IGHV1-70*04 и IGHJ4*01 (SEQ ID NO:254) в этом положении.

L113S: представляет собой мутацию, выравнивающую зародышевую линию. Ser находится в гене зародышевой линии человека IGHV1-70*04 и IGHJ4*01 (SEQ ID NO:254) в этом положении.

Обоснования выбора положений, указанных в таблице 46, в вариабельной области легкой цепи в качестве кандидатов на замену являются следующими.
Вариабельные области легкой канта-цепь

- состоит из петель CDR-L1, L2 и L3 14H3-VL, привитых на каркас VL ABC66914. Кроме того, hu14H3VLv1 также возвращает все каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или локализуются в интерфейсе домена VH/VL, способствуют структурной стабильности.

L2V: представляет собой обратную мутацию остатка канонической структуры по Chothia с целью сохранения канонической структуры.

Y87F: представляет собой обратную мутацию остатка интерфейса VH/VL, с целью сохранения интерфейса тяжелая цепь: легкая цепь.

- Сохраняет все возвращенные каркасные замены в положениях, которые являются ключевыми для определения канонических классов по Chothia, являются частью зоны Верные или размещается в интерфейсе домена VH/VL. Кроме того, hu14H3VLv2 включает в себя обратные мутации или замену на наиболее часто встречающийся остаток в данном положении, что повышает реализуемость антитела. Мутации в hu14H3VLv2, которые не включены в hu14H3VLv1:

T75: представляет собой мутацию, выравнивающую зародышевую линию. Ser находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

L37Q: Leu в этом положении является иммуногенным, поэтому для снижения иммуногенности его заменяют на Gln. L37Q также представляет собой частотную мутацию. Gln представляет собой наиболее часто встречающийся остаток в этом положении.

G100Q: представляет собой мутацию, выравнивающую зародышевую линию. Gln находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.
V104L: представляет собой мутацию, выравнивающую зародышевую линию. Leu находится в гене зародышевой линии человека IGKV2-28*01 и IGKJ2*01 (SEQ ID NO:37) в этом положении.

На основе этих человеческих каркасов были разработаны следующие варианты:

вариабельные области тяжелой цепи

>hu14H3VHv1
QVTLKESGPALVKPTQTLTLTTTSFSGSFLSTYGMGVSWIRQPPGKALEWLANIWWDDIK
YYNAALKSRLTISKDTKNSQVVLTMNMDPVDATATYWCARNVDYWQGTMVTVSL

>hu14H3VHv2
QVTLKESGPALVKPTQTLTLTTTSFSGSFLSTYGMGVSWIRQPPGKALEWLANIWWDDIK
YYNAALKSRLTISKDTKNSQVVLTMNMDPVDATATYWCARNVDYWQGTLVTSS

вариабельные области легкой канап-цепи

>hu14H3VL v1
DVVMUTQITPLSLVPVTPGPASISCRSSQSLVHSNSGNTFLHWYLOQPKPGQSPQQLIIYKVS NRF
SGVPDRFSGSGSTQFKLISRVEAEVDGVYFCSQSTLVPWTFGGGTKVEIK

>hu14H3VL v2
DVVMUTQISPLSLVPVTPGPASISCRSSQSLVHSNSGNTFLHWYQQKPGQSPQQLIIYKVS NRF
SGVPDRFSGSGSTQFKLISRVEAEVDGVYFCSQSTLVPWTFGQGTKLEIK

Пример 13. Мышьяное антитело 9F5, мышьяное антитело 10С12, мышьяное антитело 12С4 и мышьяное антитело 2Д11 предотвращают токсичность тау в первичных нейронах.

Нейроны коры головного мозга по состоянию на 16-17-й день эмбрионального развития были получены из плодов мышей линии C57B16/J, как описано в Pillot et al., 1999; Kriem et al., 2005; and Garcia et al., 2010. Вкратце, диссоциированные клетки коры головного мозга высевали в 48-луночные планшеты (50 000 клеток/лунку),
предварительно покрытые 1,5 мкг/мл полиорнитина (Sigma). Клетки культивировали в среде Игла в модификации Дульбекко/F12, не содержащей сыворотки, и с добавлением гормонов, белков и солей. Культуры хранили при температуре 35°C в увлажненной с применением 6% CO₂ атмосфере.

Все обработки проводили в трех повторностях в дни 6-7 in vitro (DIV). Нейроны инкубировали либо с носителем, либо с олигомерами тау человека (конечная концентрация 1 мкМ на основе мономеров) в присутствии 5 возрастающих концентраций указанного антитела в течение 24 часов и в конечном объеме 140 мкл на лунку.

После инкубации жизнеспособность нейронов измеряли с использованием бромида 3-(4,5-диметил-2-тиазолил)-2,5-дифенил-2Н-тетразолия (MTT) с применением опубликованных протоколов (например, Mosmann et al., 1983). Клетки инкубировали при 35°C в течение 1 ч с использованием MTT. Для этого MTT солюбилизировали в ФСБ в концентрации 5 мг/мл. В каждую лунку добавляли 14 мкл раствора MTT. После инкубации среду удаляли, а клетки лизировали с применением 150 мкл DMSO в течение 10 минут в защищенном от света месте. После полной солюбилизации продукта формазана определяли оптическую плотность при 570 нм. Жизнеспособность в контроле носителем была определена как 100%. Данные были выражены как % жизнеспособности в контроле носителем. Результаты представлены в таблице 57 и на фигуре 16.

Таблица 57: Анализ MTT с использованием 9F5, 10C12, 2D11 и 12C4

<table>
<thead>
<tr>
<th>Количество антитела (молярные эквив.)</th>
<th>9F5</th>
<th>10C12</th>
<th>2D11</th>
<th>12C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>93,1±1,5</td>
<td>86,8±1,7</td>
<td>92,2±1,1</td>
<td>81,1±4,5</td>
</tr>
<tr>
<td>3</td>
<td>92,6±3,4</td>
<td>69,2±3</td>
<td>64±3,6</td>
<td>78,7±2,1</td>
</tr>
<tr>
<td>1</td>
<td>64,9±4,5</td>
<td>56,4±2,6</td>
<td>50,9±2,4</td>
<td>62,3±2,9</td>
</tr>
<tr>
<td>0,33</td>
<td>58±2,6</td>
<td>51,3±2,4</td>
<td>59,5±2,3</td>
<td>53,2±4,5</td>
</tr>
<tr>
<td>0,2</td>
<td>47,4±1,6</td>
<td>47,1±2,1</td>
<td>52,8±1,1</td>
<td>48,6±2,1</td>
</tr>
<tr>
<td>0</td>
<td>48,9±2,8</td>
<td>48,9±1,9</td>
<td>50,9±2,6</td>
<td>50,9±3,4</td>
</tr>
</tbody>
</table>
Все четыре антитела продемонстрировали способность защищать нейрона от токсичности, индуцированной тау. Было отмечено, что 9F5 продемонстрировал более высокую активность со способностью полностью ингибировать токсичность при более низкой концентрации, чем другие антитела.

Высвобождение лактатдегидрогеназы (ЛДГ) является индикатором гибели клеток. Снижение уровня ЛДГ указывает на пониженную гибель клеток в результате снижения интернализации тау. Для измерения высвобождения лактатдегидрогеназы (ЛДГ) культуральную среду (110 мкл) из каждой лунки переносили в пробирку Эппендорфа объемом 1,5 мл и заменили свежей средой для анализа МТТ. Собранную среду центрифугировали при 800 г в течение пяти минут и супернатант (100 мкл бесклеточной культуральной среды) переносили в 48-луночный планшет, который хранили при температуре 4°C в защищенном от света месте для дальнейшего анализа. Количественное определение ЛДГ в культуральной среде проводили в соответствии с рекомендациями производителя (набор для определения цитотоксичности [ЛДГ], арт. компании Roche 11 644 793 001). Результаты представлены в таблице 58 и на фигуре 17.

Таблица 58: Анализ ЛДГ с использованием 9F5, 10C12, 2D11 и 12C4

<table>
<thead>
<tr>
<th></th>
<th>9F5</th>
<th>10C12</th>
<th>2D11</th>
<th>12C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество антитела (молярные эквив.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>91,4±5,1</td>
<td>95,1±3,9</td>
<td>115,4±4,5</td>
<td>108,2±5,2</td>
</tr>
<tr>
<td>3</td>
<td>95,9±2,9</td>
<td>101,1±5,8</td>
<td>109±3,8</td>
<td>109,9±8,2</td>
</tr>
<tr>
<td>1</td>
<td>116,0±2,6</td>
<td>109±1,1</td>
<td>131,1±3,3</td>
<td>123,7±7,5</td>
</tr>
<tr>
<td>0,33</td>
<td>151,5±5,9</td>
<td>128,6±7,6</td>
<td>147,7±5,3</td>
<td>151,9±7,1</td>
</tr>
<tr>
<td>0,2</td>
<td>155,4±3,8</td>
<td>140±2,7</td>
<td>177±3,0</td>
<td>153,4±10,3</td>
</tr>
<tr>
<td>0</td>
<td>158,1±4,5</td>
<td>145,1±3,9</td>
<td>159,4±7,8</td>
<td>160,1±4,1</td>
</tr>
</tbody>
</table>
низкой концентрации, чем другие антитела, и даже снижал высвобождение ЛДГ до значений ниже исходного уровня при самой высокой добавленной концентрации.

Cсылки

Пример 14. Анализ поверхностного плазмонного резонанса (ППР) мышцного антителя 9F5, мышцного антителя 10C12, мышцного антителя 14Н3, мышцного антителя 17C12, мышцного антителя 2D11 и мышцного антителя 12C4

Анализ поверхностного плазмонного резонанса (ППР) с использованием Biacore выполняли путем иммобилизации антимышцного антитела (GE Lifesciences) на чипе CM3 с помощью EDC/NHS. Затем антитела захватывали на антимышцную поверхность до эквивалентных уровней. Регенерацию проводили посредством 2 инъекций 10 мМ глицина с pH 1,7 продолжительностью 30 секунд. Различные концентрации в диапазоне от 500 до 0,122 нМ, разведенного в 3-кратных разведениях, рекомбинантного тау человека 4R0N пропускали через датчик в течение 150-секундной фазы ассоциации и 300-секундной фазы диссоциации. Из данных были вычленены значения холодной пробы как для нерелевантного датчика, не содержащего тестируемое антитело, чтобы учесть нерелевантное связывание с подготовленной поверхностью датчика, так и для носителя с подвижной фазой, чтобы учесть диссоциацию тестируемого антитела. Затем данные были проанализированы с помощью встроенного программного обеспечения для оценки с использованием общей подгонки 1:1. Результаты представлены в Таблице 51. Все антитела продемонстрировали схожую кинетику связывания со значениями Kd в
Пределах 200 пМ друг от друга; профили кинетики характеризовались фазами быстрой ассоциации и медленной диссоциации.

Таблица 51: Параметры кинетики мышьяного антитела 9F5, мышьяного антитела 10C12, мышьяного антитела 14H3, мышьяного антитела 17C12, мышьяного антитела 2D11 и мышьяного антитела 12C4

<table>
<thead>
<tr>
<th>Антитело</th>
<th>k_a (M$^{-1}$ с$^{-1}$)</th>
<th>k_d (с$^{-1}$)</th>
<th>K_d (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9F5</td>
<td>6.39e+6</td>
<td>2.24e-3</td>
<td>3.50e-10</td>
</tr>
<tr>
<td>10C12</td>
<td>6.53e+6</td>
<td>2.45e-3</td>
<td>3.75e-10</td>
</tr>
<tr>
<td>14H3</td>
<td>7.60e+6</td>
<td>1.53e-3</td>
<td>2.02e-10</td>
</tr>
<tr>
<td>17C12</td>
<td>4.03e+6</td>
<td>1.94e-3</td>
<td>4.82e-10</td>
</tr>
<tr>
<td>2D11</td>
<td>6.93e+6</td>
<td>2.21e-3</td>
<td>3.18e-10</td>
</tr>
<tr>
<td>12C4</td>
<td>5.69e+6</td>
<td>2.06e-3</td>
<td>3.63e-10</td>
</tr>
</tbody>
</table>

Пример 15. Мышьяное антитело 9F5, мышьяное антитело 10C12, мышьяное антитело 14H3, мышьяное антитело 17C12, мышьяное антитело 2D11 и мышьяное антитело 12C4 обнаруживают тау в образцах, полученных от пациентов с болезнью Альцгеймера: анализ методом вестерн-блоттинга

Свежезамороженные образцы из лобной доли коры головного мозга были получены из головного мозга одного здорового контроля (ЗК) и четырех пациентов с болезнью Альцгеймера (БА). Образцы гомогенизовали в 10 объемах буфера RIPA, содержащего ингибиторы протеаз, и центрифугировали в течение 15 минут при 16 000 x g при температуре 4°C. Супернатанты были удалены для получения растворимой фракции. Пеллеты ресуспендировали в 1xФСБ, содержащем 1% саркозил и гомогенизовали. Саркозильные гомогенаты центрифугировали в течение 60 минут при 100 000 x g при температуре 4°C, а супернатанты и пеллеты были разделены. Гранулы ресуспендировали в одном объеме 2% SDS для получения нерастворимой фракции. Полученные растворимые и нерастворимые фракции разделяли методом ДСН-ПААГ-электрофореза, и подвергали иммуноблоттингу с указанными антителами в концентрации 0,5 мкг/мл, промывали и зондировали козьими антимышьными вторичными антителами, конъюгированными с
IRDye-800 (LiCor). После промывки блоты сканировали с помощью сканера LiCor. Результаты представлены на фигуре 18. Все антитела специфически выявляли тау, содержащийся в нерастворимых фракциях, полученных от пациентов с БА, и в разной степени выявляли тау в растворимых фракциях.

[1001] Для проверки способности антител захватывать агрегаты тау, нерастворимую в саркозиле фракцию, полученную от одного пациента с болезнью Альцгеймера (БА) и одного нормального контроля инкубировали с указанными антителами. Магнитные шары, конъюгированные с козьими антимышьными антителами (Life Technologies), добавляли к смеси экстракта с антителами для захвата комплексов антитело/антиген. Шарики тщательно промывали, кипятили в буфере для ДСН-ПААГ-электрофореза, содержащем ДТТ, а затем шарики удаляли. Полученные фракции разделяли методом ДСН-ПААГ-электрофореза, и подвергали иммуноблоттингу с применением поликлонального антитела K91A для обнаружения всех иммуно-захваченных видов тау. Результаты представлены на фигуре 19. Чередующиеся полосы представляют собой иммунопреципитаты из экстрактов нормальной ткани и ткани БА. Маркеры молекулярной массы указываются слева. Все антитела в разной степени захватывали нерастворимый тау, полученный от пациентов с БА, и продемонстрировали способность захватывать крупные нерастворимые агрегаты с высокой массой. Из протестированных антител 9F5, 2D11, 17С12, 10C12 и 12С4 показали схожие профили, с сильной иммунореактивностью, присутствующей в диапазоне 50-60 кДа, а также в концентрирующем геля. Захват 14Н3 также выявил аналогичные, хотя и менее многочисленные, виды тау. Эти данные показывают, что все протестированные антитела способны связывать аналогичный массив форм тау.

Пример 17. Способность гуманизированных вариантов 9F5 выдерживать стресс при перемешивании.

[1002] Характеристики реализуемости гуманизированных вариантов 9F5 были проверены на их способность противостоять агрегации, вызванной стрессом при перемешивании.
Антитела заменяли буфером в гистидиновом буфере (25 мМ гистидин, pH 6) в концентрации 1 мг/мл и перемешивали при 1500 об/мин при комнатной температуре в течение 48 ч. Образцы отбирали через 0, 24 и 48 часов, фильтровали через 0,22-
микронный фильтр и анализировали методом аналитической эксклюзивной
хроматографии (ЭХ). Для каждого антитела общая площадь основных пиков для каждой
временной точки была нормализована к площади основного пика при t=0ч, и антитела
были ранжированы на основе потери антитела до агрегации с течением времени.
Результаты представлены на фигуре 20 и в таблице 52. Сокращения наименований
гуманизированных вариантов 9F5, используемых на фигуре 20 соответствуют описанию,
приведенному во втором столбце таблицы 52. Хотя ни одна точечная мутация не может
служить причиной чувствительности к стрессу при перемешивании, некоторые
комбинации мутаций приводят к отсутствию устойчивости. Следует отметить, что
комбинации L27cG/L37G/M51G/L54R/L92I (DIM11), L27cS/L37G/M51GL54T (DIM17) и
L27cG/L37Q/M51G/L54R (DIM5) приводят к повышению чувствительности к
перемешиванию, в то время как комбинации, например, L27cS/L37Q/M51G/L54R (DIM2),
L27cG/L37G/M51G/L54T (DIM14) и L27cG/L37G/M51G/L54R (DIM13) приводят к
устойчивости к стрессу при перемешивании. Эти результаты свидетельствуют о создании
специфических комбинаций остатков в гуманизированных вариантах, которые с особой
вероятностью выдержат жесткие условия производства, обработки и транспортировки.

[1003]Таблица 52: Способность гуманизированных вариантов 9F5 выдерживать
стресс при перемешивании

<table>
<thead>
<tr>
<th>Ранг</th>
<th>Гуманизированный вариант 9F5</th>
<th>Мономер при встряхивании в течение 24 ч (%) t=0</th>
<th>Мономер при встряхивании в течение 48 ч (%) t=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIM2 [hu9F5VHv9/hu9F5VVLv8__DIM2 SEQ ID NO: 127/ SEQ ID NO: 133]</td>
<td>100,6</td>
<td>103,3</td>
</tr>
<tr>
<td>2</td>
<td>DIM14 [hu9F5VHv9/hu9F5VVLv8__DIM14 SEQ ID NO: 127/ SEQ ID NO: 145]</td>
<td>100,1</td>
<td>107,1</td>
</tr>
<tr>
<td>3</td>
<td>DIM13 [hu9F5VHv9/hu9F5VVLv8__DIM13 SEQ ID NO: 127/ SEQ ID NO: 144]</td>
<td>105,8</td>
<td>105,2</td>
</tr>
<tr>
<td>4</td>
<td>DIM7 [hu9F5VHv9/hu9F5VVLv8__DIM7</td>
<td>102,3</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DIM6 [hu9F5VHv9/hu9F5VLv8_DIM6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO:137]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DIM12 [hu9F5VHv9/hu9F5VLv8_DIM12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 143]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>103,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DIM18 [hu9F5VHv9/hu9F5VLv8_DIM18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127 / SEQ ID NO: 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>101,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DIM30 [hu9F5VHv9/hu9F5VLv8_DIM30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 161]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>101,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DIM8 [hu9F5VHv9/hu9F5VLv8_DIM8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 139]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DIM28 [hu9F5VHv9/hu9F5VLv8_DIM28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 159]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DIM29 [hu9F5VHv9/hu9F5VLv8_DIM29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 160]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DIM27 [hu9F5VHv9/hu9F5VLv8_DIM27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 158]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DIM5 [hu9F5VHv9/hu9F5VLv8_DIM5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 136]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DIM17 [hu9F5VHv9/hu9F5VLv8_DIM17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 148]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>H10L9-DIM11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[hu9F5VHv10/hu9F5VLv9_DIM11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 128/ SEQ ID NO: 168]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DIM11 [hu9F5VHv9/hu9F5VLv8_DIM11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127 / SEQ ID NO: 142]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Пример 18. Способность гуманизированных вариантов 9F5 выдерживать стресс, вызванный низким уровнем pH
Характеристики реализуемости гуманизированных вариантов 9F5 были проверены на их способность выдерживать воздействие низкого уровня рН, как это происходит на этапах инактивации вирусов в процессе производства. Антигена заменяли буфером в ацетатном буфере (10 mM ацетат, рН 3) в концентрации 1 мг/мл и инкубировали при комнатной температуре в течение 6 ч. Образцы отбирали через 0, 2 и 6 часов, фильтровали через 0,22-микронный фильтр и анализировали методом аналитической эксклюзационной хроматографии (ЭХ). Для каждого антигена общая площадь основных пиков для каждой временной точки была нормализована к площади основного пика при t=0ч, и антигена были ранжированы на основе потери антигена до агрегации с течением времени. Результаты представлены на фигуре 21 и в таблице 53. Сокращения наименований гуманизированных вариантов 9F5, используемых на фигуре 21 соответствуют описанию, приведенному во втором столбце таблицы 53. Кombинации L27cG/L37G/M51G/L54R/L92I (DIM11), L27cG/L37Q/M51G/L54R (DIM5) и L27cG/L37G/M51G/L54T (DIM14) приводят к повышению чувствительности к стрессу, вызванному низким уровнем рН, о чем свидетельствует снижение на >5% пика мономера через 6ч, в то время как комбинации, например, L27cS/L37Q/M51G/L54R (DIM2), L27cD/L37Q/M51G/L54R (DIM6) и L27cG/L37G/M51G/L54R (DIM13) приводят к устойчивости к стрессу, вызванному низким уровнем рН. Следует отметить, что включение мутации L27cD привело к появлению вариантов DIM18, DIM6 и DIM7, устойчивых к низкому уровню рН. Эти результаты свидетельствуют о создании специфических комбинаций остатков в гуманизированных вариантах, которые с особой вероятностью выдержат жесткие условия производства, в частности, включение инкубации при низком рН, обычно проводимой в процессе очистки.

<table>
<thead>
<tr>
<th>Ранг</th>
<th>Вариант h9F5</th>
<th>Мономер через 2ч воздействия рН 3 (% t=0)</th>
<th>Мономер через 6ч воздействия рН 3 (% t=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIM6 [hu9F5VHv9/hu9F5VLv8_DIM6 SEQ ID NO: 127/ SEQ ID NO:137]</td>
<td>100,8</td>
<td>100,6</td>
</tr>
<tr>
<td>2</td>
<td>DIM2 [hu9F5VHv9/hu9F5VLv8_DIM2]</td>
<td>100,6</td>
<td>99,6</td>
</tr>
<tr>
<td></td>
<td>SEQ ID NO: 127/ SEQ ID NO: 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 3 | DIM13 [hu9F5VHv9/hu9F5VLv8_DIM13
 SEQ ID NO: 127/ SEQ ID NO: 144] | 97,4 | 99,3 |
| 4 | DIM8 [hu9F5VHv9/hu9F5VLv8_DIM8
 SEQ ID NO: 127/ SEQ ID NO: 139] | 99,2 | 99,2 |
| 5 | DIM7 [hu9F5VHv9/hu9F5VLv8_DIM7
 SEQ ID NO: 127/ SEQ ID NO: 138] | 99,6 | 98,9 |
| 6 | DIM28 [hu9F5VHv9/hu9F5VLv8_DIM28
 SEQ ID NO: 127/ SEQ ID NO: 159] | 99,1 | 98,9 |
| 7 | DIM17 [hu9F5VHv9/hu9F5VLv8_DIM17
 SEQ ID NO: 127/ SEQ ID NO: 148] | 96,5 | 97 |
| 8 | DIM18 [hu9F5VHv9/hu9F5VLv8_DIM18
 SEQ ID NO: 127/ SEQ ID NO: 149] | 97,2 | 96,5 |
| 9 | DIM30 [hu9F5VHv9/hu9F5VLv8_DIM30
 SEQ ID NO: 127/ SEQ ID NO: 161] | 96,5 | 96,3 |
| 10| DIM11 [hu9F5VHv9/hu9F5VLv8_DIM11
 SEQ ID NO: 127/ SEQ ID NO: 142] | 93,6 | 94,5 |
| 11| DIM29 [hu9F5VHv9/hu9F5VLv8_DIM29
 SEQ ID NO: 127/ SEQ ID NO: 160] | 94,0 | 93,6 |
| 12| DIM12 [hu9F5VHv9/hu9F5VLv8_DIM12
 SEQ ID NO: 127/ SEQ ID NO: 143] | 93,9 | 93,3 |
| 13| DIM14 [hu9F5VHv9/hu9F5VLv8_DIM14
 SEQ ID NO: 127/ SEQ ID NO: 145] | 93,5 | 89,6 |
| 14| DIM5 [hu9F5VHv9/hu9F5VLv8_DIM5
 SEQ ID NO: 127/ SEQ ID NO: 136] | 93,6 | 89,2 |
| 15| H10L9-DIM11
 [hu9F5VHv10/hu9F5VLv9_DIM11
 SEQ ID NO: 128/ SEQ ID NO: 168] | 93,2 | 83,3 |
| 16| DIM27 [hu9F5VHv9/hu9F5VLv8_DIM27] | 91,3 | 68,4 |
Пример 19. Осадление ПЭГ вариантами 9F5

[1006] Осадление ПЭГ использовали для определения относительной склонности различных гуманизированных вариантов 9F5 к агрегации в сформированных условиях высокой концентрации. Антитела заменяли буфером в гистидиновом буфере (25 мМ гистидин, pH 6) и добавляли в микропланшет, содержащий указанное количество ПЭГ6000 до конечной концентрации белка 1 мг/мл, и инкубировали при комнатной температуре в течение 1 ч. После инкубации мутность измерялась при поглощении 350 нм. Результаты представлены в таблицах 59-60 и на фигуре 22.

[1007] Таблица 59 Осадление ПЭГ вариантов 9F5 DIM2, DIM13, DIM7, DIM6, DIM18, DIM8, DIM17 и DIM28

<table>
<thead>
<tr>
<th>PEG6000 %</th>
<th>DIM2</th>
<th>DIM13</th>
<th>DIM7</th>
<th>DIM6</th>
<th>DIM18</th>
<th>DIM8</th>
<th>DIM17</th>
<th>DIM28</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0,7784</td>
<td>0,7944</td>
<td>0,8912</td>
<td>0,7688</td>
<td>0,901</td>
<td>0,8085</td>
<td>0,811</td>
<td>0,733</td>
</tr>
<tr>
<td>20</td>
<td>0,7904</td>
<td>0,8737</td>
<td>0,7454</td>
<td>0,8063</td>
<td>0,8743</td>
<td>0,9733</td>
<td>1,001</td>
<td>0,842</td>
</tr>
<tr>
<td>15</td>
<td>0,4729</td>
<td>0,5612</td>
<td>0,3895</td>
<td>0,5658</td>
<td>0,6362</td>
<td>0,6438</td>
<td>0,7885</td>
<td>0,4952</td>
</tr>
<tr>
<td>12</td>
<td>0,1578</td>
<td>0,1952</td>
<td>0,1563</td>
<td>0,2206</td>
<td>0,2022</td>
<td>0,1592</td>
<td>0,3472</td>
<td>0,1586</td>
</tr>
<tr>
<td>10</td>
<td>0,1554</td>
<td>0,1582</td>
<td>0,1512</td>
<td>0,1541</td>
<td>0,1541</td>
<td>0,1538</td>
<td>0,1582</td>
<td>0,1583</td>
</tr>
<tr>
<td>8</td>
<td>0,1607</td>
<td>0,1546</td>
<td>0,15</td>
<td>0,15</td>
<td>0,1508</td>
<td>0,1506</td>
<td>0,1556</td>
<td>0,1591</td>
</tr>
<tr>
<td>6</td>
<td>0,1538</td>
<td>0,1519</td>
<td>0,1486</td>
<td>0,1564</td>
<td>0,1494</td>
<td>0,1502</td>
<td>0,1541</td>
<td>0,157</td>
</tr>
<tr>
<td>4</td>
<td>0,1526</td>
<td>0,1516</td>
<td>0,1526</td>
<td>0,1479</td>
<td>0,1462</td>
<td>0,1504</td>
<td>0,1513</td>
<td>0,1587</td>
</tr>
<tr>
<td>2</td>
<td>0,1495</td>
<td>0,1511</td>
<td>0,1523</td>
<td>0,148</td>
<td>0,1467</td>
<td>0,1478</td>
<td>0,1497</td>
<td>0,1518</td>
</tr>
<tr>
<td>0</td>
<td>0,1464</td>
<td>0,1481</td>
<td>0,1501</td>
<td>0,1458</td>
<td>0,1451</td>
<td>0,1471</td>
<td>0,1477</td>
<td>0,1496</td>
</tr>
</tbody>
</table>

[1008] Таблица 60 Осадление ПЭГ вариантов 9F5 DIM29, DIM14, DIM30, DIM27, DIM11, H10L9DIM11, DIM5 и DIM12

<table>
<thead>
<tr>
<th>PEG6000 %</th>
<th>DIM29</th>
<th>DIM14</th>
<th>DIM30</th>
<th>DIM27</th>
<th>DIM11</th>
<th>H10L9DIM11</th>
<th>DIM5</th>
<th>DIM12</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0,7422</td>
<td>0,8867</td>
<td>0,7759</td>
<td>0,8138</td>
<td>0,8785</td>
<td>0,7122</td>
<td>0,7042</td>
<td>0,7078</td>
</tr>
<tr>
<td>20</td>
<td>0,8623</td>
<td>1,0284</td>
<td>0,8549</td>
<td>0,732</td>
<td>0,8999</td>
<td>0,8663</td>
<td>0,8869</td>
<td>0,8767</td>
</tr>
<tr>
<td>15</td>
<td>0,4642</td>
<td>1,0377</td>
<td>0,598</td>
<td>0,1843</td>
<td>0,6288</td>
<td>0,5383</td>
<td>0,5228</td>
<td>0,6414</td>
</tr>
<tr>
<td>12</td>
<td>0,1564</td>
<td>0,8123</td>
<td>0,1752</td>
<td>0,1536</td>
<td>0,1802</td>
<td>0,1755</td>
<td>0,1652</td>
<td>0,2092</td>
</tr>
</tbody>
</table>
Сокращения наименований гуманизированных вариантов 9F5, используемых в таблицах 59-60 и на фигуре 22 соответствуют описанию, приведенному во втором столбце таблицы 53. Антитела были качественно ранжированы по концентрации PЭГ6000, которая вызывала наступление помутнения. DIM14 [hu9F5VHv9/hu9F5VLv8_DIM14; SEQ ID NO: 127/ SEQ ID NO: 145] и DIM17 [hu9F5VHv9/hu9F5VLv8_DIM17; SEQ ID NO: 127/ SEQ ID NO: 148] проявляли агрегацию при более низкой концентрации PЭГ6000 по сравнению с большинством антител, а DIM27 [hu9F5VHv9/hu9F5VLv8_DIM27; SEQ ID NO: 127/ SEQ ID NO: 158] проявляли агрегацию при более высокой концентрации PЭГ6000 по сравнению с большинством антител. Комбинации L27cG/L37G/M51G/L54T/L92I (DIM14) и L27cS/L37G/M51G/L54T (DIM17) приводили к снижению растворимости в присутствии возрастающего количества PЭГ6000, о чем свидетельствует более раннее наступление помутнения. Напротив, комбинация L37Q/M51G/L54R в сочетании с исходным лейцином в положении L27c(DIM27) приводит к увеличению растворимости в присутствии возрастающего количества ПЭГ6000. Эти результаты свидетельствуют о создании специфических комбинаций остатков в гуманизированных вариантах, которые с особой вероятностью выдержат составление при высоких концентрациях антител, как правило, необходимых для клинического применения.

Пример 20. Иммуногистохимический анализ образцов головного мозга человека с использованием контроля, мышцного 2D11, мышечного 9F5, мышечного 12C4, мышечного 14H3 и мышечного 17C12.

Свежезамороженные образцы головного мозга человека были помещены в ОСТ и разрезаны с использованием криостата для получения срезов размером 10 мкм. Срезы фиксировали на предметных стеклах с помощью 10% нейтрального забуференного формалина в течение 10 минут при 4°C и обрабатывали глюкозооксидазой для
блокирования эндогенных пероксидаз. Срезы окрашивали указанными первичными антителами с помощью системы BOND Polymer Refine Detection (Leica), содержащей хромаген DAB и гематоксилиновый контраст. Затем срезы дегидраталии в возрастающей серии концентраций этанола и ксилона перед покрытием. Результаты показаны на фигурах 23A-F. Как и ожидалось, неиммунное контрольное антитело практически не связывалось ни с нормальным контролем, ни с образцами, полученными от пациентов с болезнью Альцгеймера, при обеих исследуемых концентрациях. Напротив, антитела к MTBR продемонстрировали обильное связывание с патологическими признаками, присутствующими при болезни Альцгеймера, включая дистрофические нейриты и нейрофибриллярные клубки. Это связывание продемонстрировало зависимость от дозы, причем более сильное связывание наблюдалось при более высоких концентрациях антител. Подмножество антител показало незначительное связывание с нормальными контрольными срезами, в частности 9F5, 12C4 и 17C12. 14H3 и 2D11 показали связывание с нормальной контрольной тканью, что указывает на едва уловимые различия в специфичности по отношению к тау, присутствующему в этих образцах. Для 14H3 меньшая селективность в отношении БА по сравнению с контрольными образцами отражает разницу в имmunореактивности, обнаруженной в экспериментах иммунопрепципитации, что указывает на то, что это антитело связывает нормальные формы тау в большей степени, чем 2D11, 9F5, 12C4 и 17C12.

Пример 21. Примеры CDR

Примеры CDR антител по изобретению приведены в таблице 54.

[1011]Таблица 54: Примеры CDR

<table>
<thead>
<tr>
<th>CDR и определение</th>
<th>Аминокислотная последовательности CDR</th>
<th>SEQ ID NO:</th>
<th>Примеры VH или VL, в которых присутствует CDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR-H1 согласно композитному определению по Kabat/Chothia</td>
<td>GFNIKDDYMN</td>
<td>8</td>
<td>VH мышьяноого 9F5</td>
</tr>
<tr>
<td>CDR-H2 по Kabat</td>
<td>WIDPENGDTEYASKFQG</td>
<td>9</td>
<td>VH мышьяноого 9F5</td>
</tr>
<tr>
<td>CDR и определение</td>
<td>Аминокислотная последовательность CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-H3 Kabat</td>
<td>SNG</td>
<td>10</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSLHSGITLY</td>
<td>12</td>
<td>VL мышиного 9F5</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QMSNLAS</td>
<td>13</td>
<td>VL мышиного 9F5</td>
</tr>
<tr>
<td>CDR-L3 Kabat</td>
<td>AQNLLELPLT</td>
<td>14</td>
<td>VL мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H1 Kabat</td>
<td>DDYMN</td>
<td>40</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H1 Chothia</td>
<td>GFNIKDD</td>
<td>41</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H2 Chothia</td>
<td>DPENGD</td>
<td>42</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H2 по AbM</td>
<td>WIDPENGDTE</td>
<td>43</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H1 Contact</td>
<td>KDDYMN</td>
<td>44</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H2 Contact</td>
<td>WIGWIDPENGDTE</td>
<td>45</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-H3 Contact</td>
<td>TTSN</td>
<td>46</td>
<td>VH мышиного 9F5</td>
</tr>
<tr>
<td>CDR-L1 Contact</td>
<td>ITLYWY</td>
<td>47</td>
<td>VL мышиного 9F5</td>
</tr>
<tr>
<td>CDR-L2 Contact</td>
<td>LLIYQMSNLA</td>
<td>48</td>
<td>VL мышиного 9F5</td>
</tr>
<tr>
<td>CDR-L3 Contact</td>
<td>AQNLLELPL</td>
<td>49</td>
<td>VL мышиного 9F5</td>
</tr>
<tr>
<td>CDR и определение</td>
<td>Аминокислотная последовательности CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-H1 согласно композитному определению по Kabat-Chothia</td>
<td>GFTIKDDYMN</td>
<td>50</td>
<td>hu9F5VHv4, hu9F5VHv5 и hu9F5VHv6</td>
</tr>
<tr>
<td>CDR-H2 по Kabat</td>
<td>WVDPEDGETEYASKFQG</td>
<td>51</td>
<td>hu9F5VHv5, hu9F5VHv6 и hu9F5VHv7</td>
</tr>
<tr>
<td>CDR-H2 по Kabat</td>
<td>WVDPENGDTEYASKFQG</td>
<td>52</td>
<td>hu9F5VHv8</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSSLHSNGYTYLY</td>
<td>53</td>
<td>hu9F5VLv5 и hu9F5VLv6</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSSLHSNGINYLY</td>
<td>54</td>
<td>hu9F5VLv7</td>
</tr>
<tr>
<td>CDR-L2 по Kabat</td>
<td>QGSNRAS</td>
<td>55</td>
<td>hu9F5VLv4, hu9F5VLv5, hu9F5VLv6, hu9F5VLv7, SEQ ID NO:133, 135, 136, 137, 142, 143, 144, 149, 158, 159, 163, 164, 165, 168, 169</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSDLHSNGITYLY</td>
<td>172</td>
<td>hu9F5VLv2_L27bD, SEQ ID NO:71</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSTLHSNGITYLY</td>
<td>173</td>
<td>hu9F5VLv2_L27bT, SEQ ID NO:79</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSQLHSNGITYLY</td>
<td>174</td>
<td>hu9F5VLv2_L27bQ, SEQ ID NO:81</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSLDHSNGITYLY</td>
<td>175</td>
<td>hu9F5VLv2_L27cD, SEQ ID NO:63, hu9F5VLv8_DIM6, SEQ ID NO:137, hu9F5VLv8_DIM7, SEQ ID NO:138 и hu9F5VLv8_DIM18, SEQ ID NO:149</td>
</tr>
<tr>
<td>CDR и определение</td>
<td>Аминокислотная последовательности CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>CDR определение</td>
<td>Аминокислотная последовательность CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSLEHSNGITYLY</td>
<td>178</td>
<td>hu9F5VLv2_L27cE, SEQ ID NO:66</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSKSLTHSNGITYLY</td>
<td>179</td>
<td>hu9F5VLv2_L27cT, SEQ ID NO:69</td>
</tr>
<tr>
<td>CDR определение</td>
<td>Аминокислотная последовательности CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSLNHSNGITYLY</td>
<td>180</td>
<td>hu9F5VLv2_L27cN, SEQ ID NO:70</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSLAHSNGITYLY</td>
<td>181</td>
<td>hu9F5VLv2_L27cA, SEQ ID NO:74</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSLPHSNGITYLY</td>
<td>182</td>
<td>hu9F5VLv2_L27cP, SEQ ID NO:83</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSLIHSNGITYLY</td>
<td>183</td>
<td>hu9F5VLv8_DIM26, SEQ ID NO:157</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHNSGETLYL</td>
<td>184</td>
<td>hu9F5VLv2_L30E, SEQ ID NO:67</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGKTYLY</td>
<td>185</td>
<td>hu9F5VLv2_L30K, SEQ ID NO:68</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGGTYLY</td>
<td>186</td>
<td>hu9F5VLv2_L30G, SEQ ID NO:72</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGQTYLY</td>
<td>187</td>
<td>hu9F5VLv2_L30Q, SEQ ID NO:78</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGIGLYL</td>
<td>188</td>
<td>hu9F5VLv2_T31G, SEQ ID NO:80</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGITYNY</td>
<td>189</td>
<td>hu9F5VLv2_L33N, SEQ ID NO:73</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGITYTY</td>
<td>190</td>
<td>hu9F5VLv2_L33T, SEQ ID NO:75</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGITYSY</td>
<td>191</td>
<td>hu9F5VLv2_L33S, SEQ ID NO:76</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGITYRY</td>
<td>192</td>
<td>hu9F5VLv2_L33R, SEQ ID NO:77</td>
</tr>
<tr>
<td>CDR-L1 Kabat</td>
<td>RSSKSSLHSNGITYGY</td>
<td>193</td>
<td>hu9F5VLv2_L33G, SEQ ID NO:82</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QESNLAS</td>
<td>194</td>
<td>hu9F5VLv2_M51E, SEQ ID NO:61</td>
</tr>
<tr>
<td>CDR и определение</td>
<td>Аминокислотная последовательности CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QDSNLAS</td>
<td>195</td>
<td>hu9F5VLv2_M51D, SEQ ID NO:62</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QGSNLAS</td>
<td>196</td>
<td>hu9F5VLv8_DIM30, SEQ ID NO:161</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QMSNRA S</td>
<td>197</td>
<td>hu9F5VLv8_DIM29, SEQ ID NO:160</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QGSNGAS</td>
<td>198</td>
<td>hu9F5VLv8_DIM1, SEQ ID NO:132 и hu9F5VLv9_DIM1, SEQ ID NO:162</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QKSNRAS</td>
<td>200</td>
<td>hu9F5VLv8_DIM7, SEQ ID NO:138, hu9F5VLv8_DIM8, SEQ ID NO:139 и hu9F5VLv9_DIM8, SEQ ID NO:166</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QKSRNGAS</td>
<td>201</td>
<td>hu9F5VLv8_DIM9, SEQ ID NO:140, hu9F5VLv8_DIM10, SEQ ID NO:141 и hu9F5VLv9_DIM10, SEQ ID NO:167</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QISNRAS</td>
<td>202</td>
<td>hu9F5VLv8_DIM19, SEQ ID NO:150 и hu9F5VLv9_DIM19, SEQ ID NO:170</td>
</tr>
<tr>
<td>CDR-L2 Kabat</td>
<td>QISNGAS</td>
<td>203</td>
<td>hu9F5VLv8_DIM20, SEQ ID NO:151, hu9F5VLv8_DIM21. SEQ ID NO:152 и hu9F5VLv9_DIM20, SEQ ID NO:171</td>
</tr>
<tr>
<td>CDR и определение</td>
<td>Аминокислотная последовательности CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-L2 по Kabat</td>
<td>QESNRAS</td>
<td>204</td>
<td>hu9F5VLv8_DIM22, SEQ ID NO:153, hu9F5VLv8_DIM24, SEQ ID NO:155, hu9F5VLv8_DIM25, SEQ ID NO:156 и hu9F5VLv8_DIM26, SEQ ID NO:157</td>
</tr>
<tr>
<td>CDR-L2 по Kabat</td>
<td>QESNGAS</td>
<td>205</td>
<td>hu9F5VLv8_DIM23, SEQ ID NO:154</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>GQNLELPLT</td>
<td>206</td>
<td>hu9F5VLv2_A89G, SEQ ID NO:108</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>AQNDELPLT</td>
<td>207</td>
<td>hu9F5VLv2_L92D, SEQ ID NO:100</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>AQNEELPLT</td>
<td>208</td>
<td>hu9F5VLv2_L92E, SEQ ID NO:102</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>AQNQELPLT</td>
<td>210</td>
<td>hu9F5VLv2_L92Q, SEQ ID NO:104</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>AQNTELPLT</td>
<td>211</td>
<td>hu9F5VLv2_L92T, SEQ ID NO:107</td>
</tr>
<tr>
<td>CDR определение</td>
<td>Аминокислотная последовательность CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CDR и</td>
<td>Аминокислотная последовательность CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>определение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR-H1 согласно композитному определению по Kabat-Chothia</td>
<td>AQLNGLPT</td>
<td>213</td>
<td>hu9F5VLv2_L93G, SEQ ID NO:105</td>
</tr>
<tr>
<td>CDR-H2 по Kabat</td>
<td>WIDPENGDTAYASKFQG</td>
<td>220</td>
<td>VH мышиного 12C4</td>
</tr>
<tr>
<td></td>
<td>AFRIKDDYMN</td>
<td>226</td>
<td>VH мышиного 17C12</td>
</tr>
<tr>
<td>CDR-H2 по Kabat</td>
<td>WIDPENGDTKYASKFQG</td>
<td>227</td>
<td>VH мышиного 17C12</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>TSSQSLHLNRKTYLH</td>
<td>229</td>
<td>VL мышиного 17C12</td>
</tr>
<tr>
<td>CDR-L2 по Kabat</td>
<td>LVSQLES</td>
<td>230</td>
<td>VL мышиного 17C12</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>LQTHFPRT</td>
<td>231</td>
<td>VL мышиного 17C12</td>
</tr>
<tr>
<td>CDR-H1 согласно композитному определению по Kabat-Chothia</td>
<td>GFSLSTYGGMGVG</td>
<td>241</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H2 по Kabat</td>
<td>NIWWDDIKYYNAALKS</td>
<td>242</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H3 по Kabat</td>
<td>NVDY</td>
<td>243</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-L1 по Kabat</td>
<td>RSSQSLVHSNGNTFLH</td>
<td>245</td>
<td>VL мышиного 14H3</td>
</tr>
<tr>
<td>CDR-L2 по Kabat</td>
<td>KVSNRFS</td>
<td>246</td>
<td>VL мышиного 14H3</td>
</tr>
<tr>
<td>CDR и определение</td>
<td>Аминокислотная последовательность CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>CDR-L3 по Kabat</td>
<td>SQSLTVLPWT</td>
<td>247</td>
<td>VL мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H2 по Contact</td>
<td>WIGWIDPENGDTA</td>
<td>258</td>
<td>VH мышиного 12C4</td>
</tr>
<tr>
<td>CDR-H1 по Chothia</td>
<td>AFNITKDD</td>
<td>259</td>
<td>VH мышиного 17C12</td>
</tr>
<tr>
<td>CDR-H2 по AbM</td>
<td>WIPDENGDTK</td>
<td>260</td>
<td>VH мышиного 17C12</td>
</tr>
<tr>
<td>CDR-H2 по Contact</td>
<td>WIGWIDPENGDTK</td>
<td>261</td>
<td>VH мышиного 17C12</td>
</tr>
<tr>
<td>CDR-L1 по Contact</td>
<td>KTYLHHLW</td>
<td>262</td>
<td>VL мышиного 17C12</td>
</tr>
<tr>
<td>CDR-L2 по Contact</td>
<td>LLIYLVSKE</td>
<td>263</td>
<td>VL мышиного 17C12</td>
</tr>
<tr>
<td>CDR-L3 по Contact</td>
<td>LQTHFPR</td>
<td>264</td>
<td>VL мышиного 17C12</td>
</tr>
<tr>
<td>CDR-H1 по Kabat</td>
<td>TYGMGVG</td>
<td>265</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H1 по Chothia</td>
<td>GFSLSTYGM</td>
<td>266</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H2 по Chothia</td>
<td>WWDDI</td>
<td>267</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H2 по AbM</td>
<td>NIWWDDIKY</td>
<td>268</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H1 по Contact</td>
<td>STYGMGVG</td>
<td>269</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H2 по Contact</td>
<td>WLANIVWDDIKY</td>
<td>270</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H3 по Contact</td>
<td>ARNVD</td>
<td>271</td>
<td>VH мышиного 14H3</td>
</tr>
<tr>
<td>CDR-L1 по Contact</td>
<td>NTFLHWY</td>
<td>272</td>
<td>VL мышиного 14H3</td>
</tr>
<tr>
<td>CDR определение</td>
<td>Аминокислотная последовательность CDR</td>
<td>SEQ ID NO:</td>
<td>Примеры VH или VL, в которых присутствует CDR</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>CDR-L2 Contact</td>
<td>LLIYKVSNRF</td>
<td>273</td>
<td>VL мышиного 14H3</td>
</tr>
<tr>
<td>CDR-L3 Contact</td>
<td>SQSTLVPW</td>
<td>274</td>
<td>VL мышиного 14H3</td>
</tr>
<tr>
<td>CDR-H1 согласно композитному определению по Kabat-Chothia</td>
<td>GFSLSTYGMGV</td>
<td>275</td>
<td>hu14H3VHv1 и hu14H3VHv2</td>
</tr>
</tbody>
</table>

Перечень последовательностей

[1012] P10636-8 (SEQ ID NO: 1)

MAEPRQFEFEVMEDHAGTYGLDRKDQGGYTMHQDQEGDTDAGLKESEPQLQTYPTEDGSE
EGSETSDAKSTPTAEEDVTAPLVDGAPEGKQA.A.AQPHTIEPEGTTAAEEAGIDTPSLEDE
AAGHVTQARMVSKSKDGTSDDKKAKGADGKTKIAKTPRAAPPQKQGANATRAPAK
TPAAPTIPSSGGEPPKGDRSGYSSPGSPGTPRSRTPSLPTPPTREPKKAVVARTPPKSP
SSAKSRLQTAPVMPDLKNVKSKLGSTENLKHPQGGKVIIKKKLDSNVQSKCGSKD
NIKHPGGGGSQIVYKPVDLKSVKTSKCGSLGNIIHKPPGGQQVEVKSEKLDFKDRVQSKI
GSLDNITHPVG aggNKKIETHKLTIRENAAKAKTDHGAEIVYKSPVVS TPRHLSNVSTST
GSIDMVDSQPLATLADEVASLAKQGL

[1013] P10636-7 (SEQ ID NO: 2)

MAEPRQFEFEVMEDHAGTYGLDRKDQGGYTMHQDQEGDTDAGLKESEPQLQTYPTEDGSE
EGSETSDAKSTPTAEAEAGIDTPSLEDEAAAGHVTQARMVSKSKDGTSDDKKAKG
ADGKTKIAKTPRAAPPQKQGANATRAPAKTPAAPTIPSSGGEPPKGDRSGYSSPGSPG
TPAAPTIPPSLPTPPTREPKKAVVARTPPKSPSSAKSRLQTAPVMPDLKNVKSKLGSTEN
LKHPQGGGKVIIKKKLDSNVQSKCGSKDNIKHPGGGGSQIVYKPVDLKSVKTSKCGS
LGNIHKPQGGQVEVKSEKLDFKDRVQSKIGSLDNITHPVG aggNKKIETHKLTIRENAAK
AKTDHGAEIVYKSPVVS TPRHLSNVSTSTGSIDMVDSQPLATLADEVASLAKQGL
MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG

MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG

MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG

MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG

MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG

MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG

MAEPRQEFEMHAGTYGLGDRKDQQGYTMHQDQEGDAGLKEPLQPTEDGSEPSETSDAKSTPTAEAEAEAGIDTPSLEDEAAGHTQARMVSKSKDTGSGDDKAKAGADGTKIAETPRGAAPPGQGGQANATRIPAKTPPAKPSSGEPKSGDRSGYSSPGPTPSRTPSLTPPTREPPPCKVAVVTTPKSSSAKRLQTAPVMPDLMKNVKSKGSTENLKHQPQGGKQIVYPVDSLKVTSCGSLGNIHHPGGGQVEKSEKLFKDRVQSKIGSLNITHVPGGANKKIETHKLTFRNAAKTDHGAEIVKSPVVSGLTSPRLSNVSTSTGSDMVDSQLATLADVESASLAKQG
SEQ ID NO:7: Вариабельная область тяжелой цепи мышцного антитела 9F5
>m9F5VH
EVQLQQSGAELVRPGAVKLSCTASGFNIKDDYMNWVKQRPERGLEWIGWIDPENGDT
EYASKFQGKATMTADTSSNTAYLQFSSLTSEDTAVYYCTTSNGWQGTLVTVST

SEQ ID NO:8: CDR-H1 мышцного антитела 9F5 согласно композитному определению по Kabat/Chothia
GFNIKDDYMN

SEQ ID NO:9: CDR-H2 мышцного антитела 9F5 по Kabat
WIDPENGDTYEASKFQG

SEQ ID NO:10: CDR-H3 мышцного антитела 9F5 по Kabat
SNG

SEQ ID NO:11: Вариабельная область легкой цепи мышцного антитела 9F5
>m9F5VL
DIVMTQAAFSNPVTLGTSASISCRSSKSLLHSNGITYLYWYLQKPQGSPQLLIYQMSNLAS
SGVPDRFSSSGTDFTLRISERVEAEDVGVYYCAQNLELPLTFGAGTKLELK

SEQ ID NO:12: CDR-L1 мышцного антитела 9F5 по Kabat
RSSKULLHSNGITYLY

SEQ ID NO:13: CDR-L2 мышцного антитела 9F5 по Kabat
QMSNLAS

SEQ ID NO:14: CDR-L3 мышцного антитела 9F5 по Kabat
AQNLELPLT

SEQ ID NO:15: Вариабельная область тяжелой цепи hu9F5VHv1
QVQLQQSGAELVKPGAVKLSCTASGFNIKDDYMNWVKQRPEQGLEWIGWIDPENGDT
TEYASKFQGKATIDTSSNTAYLQFSSLTSEDTAVYYCTTSNGWQGTLTVSS

SEQ ID NO:16: Вариабельная область тяжелой цепи hu9F5VHv2
EVQLQQSGAELVKPGATVKISCTASGFNIKDDYMNWVKQRPEQGLEWIGWIDPENGDT
EYASKFQGKATMTADTSTNTAYLQFSSLTSEDTAVYYCTTSNGWQGTTTVSS

SEQ ID NO:17: Вариабельная область тяжелой цепи hu9F5VHv3
EVQLQQSGAELVKPGATVKISCTASGFNIKDDYMNWVKQRPEQGLEWIGWIDPENGDT
EYASKFQGRATMTADTSTNTAYLQFSSLTSEDTAVYYCTTSNGWQGTTTVSS
[1029] SEQ ID NO:18: Вариабельная область тяжелой цепи hu9F5VHv4
EVQLQQSGAELVKPGATVKISCKASGFITKDDYMNWVKQRPEQGLEWIGWIDPENGDT
EYASKFQGRATMTADTSTNTAYLELSLLRSEDTAYYCTTSNGWGQGTTVTVSS

[1030] SEQ ID NO:19: Вариабельная область тяжелой цепи hu9F5VHv5
EVQLQQSGAELVKPGATVKISCKASGFITKDDYMNWVKQRPEKGLEWIGWVDPEDGET
EYASKFQGRATMTADTSTDTAYMELSSLRSEDTAYYCTTSNGWGQGTLTVSS

[1031] SEQ ID NO:20: Вариабельная область тяжелой цепи hu9F5VHv6
EVQLQQSGAELVKPGATVKISCKASGFITKDDYMNWVKQAPEKGLEWGMGWVDPEDGE
TEYASKFQGRATMTADTSTDTAYMELSSLRSEDTAYYCTTSNGWGQGTLTVSS

[1032] SEQ ID NO:21: Вариабельная область тяжелой цепи hu9F5VHv7
EVQLVQSGAEVKPGATVKISCKASGFNIKDDYMNWVRQAPKGKGLEWIGWVDGEDGE
TEYASKFQGRATMTADTSTDTAYMELSSLRSEDTAYYCTTSNGWGQGTLTVSS

[1033] SEQ ID NO:22: Вариабельная область тяжелой цепи hu9F5VHv8
EVQLVQSGAEVKPGATVKISCKASGFNIKDDYMNWVRQAPKGKGLEWIGWVDPENGD
TEYASKFQGRATMTADTSTDTAYMELSSLRSEDTAYYCTTSNGWGQGTLTVSS

[1034] SEQ ID NO:23: Вариабельная область легкой цепи hu9F5VLv1
DIVMTQAASNFVPVTLGTSASICRSSHSSLLHNSGITYLWYLQRPQSPQLLQMSNLAS
SGVPNRFFSSGSSTDFTLRISREVAEADVGVVYYCAQNL ELPLTFGQGTKEIK

[1035] SEQ ID NO:24: Вариабельная область легкой цепи hu9F5VLv2
DIVMTQSPFSPVSVPVTPGTSASICRSSHSSLLHNSGITYLWYLQRPQSPQLLQMSNLAS
GVPNRFFSSGSGTDFTRISREVAEADVGVVYYCAQNL ELPLTFGQGTKEIK

[1036] SEQ ID NO:25: Вариабельная область легкой цепи hu9F5VLv3
DIVMTQSPFSPVSVPVTPGESASICRSSHSSLLHNSGITYLWYLQRPQSPQLLQMSNLAS
GVPNRFDGSGTDFTRISREVAEADVGVVYYCAQNL ELPLTFGQGTKEIK

[1037] SEQ ID NO:26: Вариабельная область легкой цепи hu9F5VLv4
DIVMTQSPFSLPVTGESASICRSSHSSLLHNSGITYLWYLQRPQSPQLLQYQSNAAS
GVPNRFDGSGTDFTRISREVAEADVGVVYYCAQNL ELPLTFGQGTKEIK

[1038] SEQ ID NO:27: Вариабельная область легкой цепи hu9F5VLv5
DIVMTQSPFSLPVTGESASICRSSHSSLLHNSGYTLYLWYLQRPQSPQLLQYQSNAAS
GVPNRFDGSGTDFTRISREVAEADVGVVYYCAQNL ELPLTFGQGTKEIK

[1039] SEQ ID NO:28: Вариабельная область легкой цепи hu9F5VLv6
DIVMTQSPFSLPVTPGESASISCRSSKSLHNSGYTYLYWLQRPGQSPQLLIYQGSRAS
GVPNRFSGSEGSGLTDFTLRISVEAEDVGVVVYCAQNLELPLTFGQGTLEIK

[1040] SEQ ID NO:29: Вариабельная область легкой цепи hu9F5VLv7
DIVMTQSPFLPVTPGEAPASISCRSSKSLHNSGINLYLYWLQPKQSPQLLIYQGSRAS
GVPDRFSGSGSTGDFTLKSIRVEAEDVGVVVYCAQNLELPLTFGQGTLEIK

[1041] SEQ ID NO:30: Структурная модель вариабельной области тяжелой цепи PDB № 5OBF-VH_mSt
EVQLQQSGAEVELVEPGASVKLSCTGSGFNIKVYYYYHLWLQHLQLEQGLEWGRIDPENGIT
YTPKFQDKATLTVDTSSNTAYLQLSLSTSEDAAVYYCVSSGYWQGQTTLVSS

[1042] SEQ ID NO:31: Автор вариантной области тяжелой цепи, номер доступа в GenBank AAN16432-VH_huFrvk
EVQLLQQSGAEVKPKPGASVKSCKVSGYTLTELSMHWVRQPAGKGLGWMDGFEDG
ETIYAPKFQGRVTMTEARDSATAMELSSLRSEDATAYCAGYRSMPMTANKWQGTL
VTSS

[1043] SEQ ID NO:32: Автор вариантной области тяжелой цепи, PDB № 2RCS-VH_huFrvk
QVQLLQQSGAEVKPKPGASVKSCTASGFNIKDTYMHWVQRPAGKGLGWMDGFEDG
KYPKFKQGKATITADTSNTAYLQLSLSTSEDAAVYYCASYYGYWWQGQTTLVSS

[1044] SEQ ID NO:33: Последовательность вариантной области тяжелой цепи зародышевой линии IMGT № IGHV1-69-2*01
EVQLLQQSGAEVKPKPGATVKISCKVSGYTFDTYYMHWVQRPAGKGLGWMDGFEDG
ETIYAEKFQGRVTITADTDSTMTASELMSSLRSEDATAYCAT-Q--HWGQGTLVTVSS

[1045] SEQ ID NO:34: Структурная модель вариабельной области легкой цепи PDB № 5OBF-VL_mSt
DIVMTQSAFSNPVTGLTASISCRSSKLLHRNGITYLYWLQKPGQPPQLLIYQMSNLAS
SGVPDRFTSSGSDFTLKSIRVEAEDVGVVVYCAQNLELWTFGGGTKLEIK

[1046] SEQ ID NO:35: Автор вариабельной области легкой цепи, номер доступа в GenBank CAB51297-VL_huFrvk
DIVMTQPSLPLPVTPGEAPASISCRSQQSLLHSNGYNYLQWDYLQKPGQSPQLLIYLSNRAS
GVPDRFSGSGSTGDFTLKSIRVEAEDVGVVYCMQALQTPTLFQGGGTKVEIK

[1047] SEQ ID NO:36: Автор вариантной области легкой цепи, номер доступа в GenBank 1911357B-VL_huFrvk
DIVMTQAAFNSVPVTLGTSASISPSSRLHGSNITFLWYLQRPGTSPQLLLYRVSNLASGVPRFSGSSEGTDFLIRSRVEAEVGVYYCAQLELPYTFGGGTKLEIK

[1048]SEQ ID NO:37: Последовательность вариабельной области легкой цепи зародышевой линии, IMGT № IGKV2-28*01 и IGKJ2*01

DIVMTQSPSLPVTGEPASISCSSQSLHHSYNYLDWYLQKPGQSPQLLIVLGSNRASGVPRFSGSSEGTDFLIRSRVEAEVGVYYCMQAALQTPFQQGTGTKLEIK

[1049]SEQ ID NO:38 Последовательность нукleinовой кислоты, кодирующая вариабельную область тяжелой цепи мышечного антитела 9F5

ATGAAATGCGTGGGTATCTTTCTCCTGAGTGCGATGGGTATAGGGGTCAATTCA
GAGGTTCACTGCAGCAGTCTGGGCTGAACCTGAGGACCAGGGCCCTCAGTCAA
GTGTGCCTTGACAGCAGTTCTGCTTTAATACATTAAGACGACTATATGAAGCTGGTGAA
ACAGAGACCTGAGCAGGGCGTGGAGTTGGATGAGGGATCTGTGAGAATGCTG
ATACTGAATATGCGCTGCAAGTTCCAGGGAAGGCACTATGACTGACAGAAGATCCAC
TCCTACACTACCTGAGCGAGCTGACGACATCTGAGGACACACTGCCTGCTAT
TACTGTACTACAAGTACCCGGTGGGGGCAAGCTGGTACTGGCTCTCTACA

[1050]SEQ ID NO:39 Последовательность нукleinовой кислоты, кодирующая вариабельную область легкой цепи мышечного антитела 9F5

ATGAGGGTTCTCTGCTCAGCTTCTGGGGCTGCTTGTGTCTCGATCCCTGGATCGATTG
CAGATATTGTGATGACGCCAGGCTCATCTCAATCCACTGACTCTTGGGAACATCACAG
CTCTCCACTCTCGAGGTCTAGTAAGATCTCTCTACTATATGAATGGCATCACTTATTT
GTATTGGGTATCTGCAAGAACGGCCAGGCTCATCTCCACTGCCTGTATATCAGATGTC
CAACCTGGCCTCAGGAGTCCAGGACAGATGACTGAGGCTGGGTGACTGGATTT
CAGACTGAGAATACGACAGGATGGCGCTAGGTGGATGGTGTGTATTACTGTGCTC
AAAATCTAGAAGCTCTCCGCAGTTCGGTGGGACACAGCTGGAGCTGAAA

[1051]SEQ ID NO:40: CDR-H1 мышечного антитела 9F5 по Kabat

DDYMN

[1052]SEQ ID NO:41: CDR-H1 мышечного антитела 9F5 по Chothia

GFNIKDD

[1053]SEQ ID NO:42: CDR-H2 мышечного антитела 9F5 по Chothia

DPENGD

[1054]SEQ ID NO:43: CDR-H2 мышечного антитела 9F5 по AbM

WDPENGDTE
[1055] SEQ ID NO:44: CDR-H1 мышевого антитела 9F5 по Contact KDDYMN

[1056] SEQ ID NO:45: CDR-H2 мышевого антитела 9F5 по Contact WIGWIDPENGDTE

[1057] SEQ ID NO:46: CDR-H3 мышевого антитела 9F5 по Contact TTSN

[1058] SEQ ID NO:47: CDR-L1 мышевого антитела 9F5 по Contact ITYLYWY

[1059] SEQ ID NO:48: CDR-L2 мышевого антитела 9F5 по Contact LLIYQMSNLA

[1060] SEQ ID NO:49: CDR-L3 мышевого антитела 9F5 по Contact AQNLELPL

GFTIKDDYMN

[1062] SEQ ID NO:51: Альтернативная CDR-H2 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VHv5, hu9F5VHv6 и hu9F5VHv7)
WVDPDEGETEYASKFQG

WVDPENGDTEYASKFQG

RSSKSSLHSNGYTYLY

[1065] SEQ ID NO:54: Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (присутствует в hu9F5VLv7)
RSSKSSLHSNGINLYL

QGSNRAS

[1067] SEQ ID NO:56: Эпитоп антитела 9F5 (Q/E)IVYK(S/P)

[1068] SEQ ID NO:57: Консенсусный мотив пептида, связываемого антителом 9F5, 10C12, 2D11 и 17C12
QIVYKP

[1069] SEQ ID NO:58: Консенсусный мотив пептида, связываемого антителом 9F5, 10C12 и 17C12
EIVYKSP

[1070] SEQ ID NO:59: Линкер
GSGSGSG

[1071] SEQ ID NO:60: Контрольный пептид HA
YPYDVPDYAG

[1072] SEQ ID NO:61: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_M51E)
DIVMTQSPFSNPVTPGTSASISCRRKSLLHSGITYLWYLQRPGQSPQLLLQIYQESNLAS
GVPNRFSSSGSTDFTLRISRVEAEVGVYVYCAQNLELPFTFGQGTKLEIK

[1073] SEQ ID NO:62: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_M51D)
DIVMTQSPFSNPVTPGTSASISCRRKSLLHSGITYLWYLQRPGQSPQLLLQIYQDSNLAS
GVPNRFSSSGSTDFTLRISRVEAEVGVYVYCAQNLELPFTFGQGTKLEIK

[1074] SEQ ID NO:63: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cD)
DIVMTQSPFSNPVTPGTSASISCRRKSLSLHSGITYLWYLQRPGQSPQLLLQIYQMSNLAS
GVPNRFSSSGSTDFTLRISRVEAEVGVYVYCAQNLELPFTFGQGTKLEIK

[1075] SEQ ID NO:64: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cG)
DIVMTQSPFSNPVTPGTSASISCRRKSLSLHSGITYLWYLQRPGQSPQLLLQIYQMSNLAS
GVPNRFSSSGSTDFTLRISRVEAEVGVYVYCAQNLELPFTFGQGTKLEIK
[1076] SEQ ID NO:65: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cS)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1077] SEQ ID NO:66: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cE)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1078] SEQ ID NO:67: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30E)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1079] SEQ ID NO:68: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30K)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1080] SEQ ID NO:69: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cT)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1081] SEQ ID NO:70: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cN)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1082] SEQ ID NO:71: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27bD)
DIVMTQPSFNSPVTGPSASICRSSHSSSHGITYLYWYLQRPGQSPQQLILLYYQMSNLASGVPNRFSSSGTDFTLISRVEAEVGYVYCAQNLELPLTFGQGKLEIK

[1083] SEQ ID NO:72: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I30G)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGTYLYWYLQRPGQSPQLLIIYQMSNLAS
SGVNRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1084] SEQ ID NO:73: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33N)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYNYWYLQRPGQSPQLLIIYQMSNLAS
GVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1085] SEQ ID NO:74: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cA)
DIVMTQSPFSNPVTPGTSASISCRSSKSLAHSNGITYLYWYLQRPGQSPQLLIIYQMSNLAS
GVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1086] SEQ ID NO:75: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33T)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYTYWYLQRPGQSPQLLIIYQMSNLAS
GVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1087] SEQ ID NO:76: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33S)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYSYWYLQRPGQSPQLLIIYQMSNLAS
GVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1088] SEQ ID NO:77: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33R)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITRYYWYLQRPGQSPQLLIIYQMSNLAS
GVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1089] SEQ ID NO:78: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L30Q)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGQTLYYWYLQRPGQSPQLLIIYQMSNLAS
SGVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK

[1090] SEQ ID NO:79: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27bT)
DIVMTQSPFSNPVTPGTSASISCRSSKSTLHSNGITYLYWYLQRPGQSPQLLIIYQMSNLAS
GVPRFSSSSGSSTDFTLRISRVEAEDGVVYYCAQNLELPLTFGQGTKEIK
[1091] SEQ ID NO:80: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_SEQ ID NO:146)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRISRVEAEVDVGVY YCAQNLELPLTFGQQGTKLEIK

[1092] SEQ ID NO:81: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27bQ)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRISRVEAEVDVGVYYCAQNLELPLTFGQQGTKLEIK

[1093] SEQ ID NO:82: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L33G)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRISRVEAEVDVGVYYCAQNLELPLTFGQQGTKLEIK

[1094] SEQ ID NO:83: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L27cP)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRISRVEAEVDVGVYYCAQNLELPLTFGQQGTKLEIK

[1095] SEQ ID NO:84: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78R)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRISRREAEDVGVY YCAQNLELPLTFGQQGTKLEIK

[1096] SEQ ID NO:85: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75D)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRDSRVEAEVDVGVY YCAQNLELPLTFGQQGTKLEIK

[1097] SEQ ID NO:86: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78D)
DIVMTQSPFSNPVTGPSTASISCRSSKSSLHSGIGYLYWYLQRPQSPQPLL1YQMSNLAS GVPNRFSSSGSGTDFTLRISRDEAEVDVGVYYCAQNLELPLTFGQQGTKLEIK

[1098] SEQ ID NO:87: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78E)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:88: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78P)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:89: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78K)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:90: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_R77D)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:91: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78G)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:92: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_S76P)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:93: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75P)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK

SEQ ID NO:94: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_I75Q)
DIVMTQSPFSNPVTPGTSASICRSSKSLLHSNGITYLYWLQRPGQSPQQLIYQMMSNLAS
GVPNRFSSSGSTDFTLRISREEADEVGVYCAQNLELPLTFGQGTKLEIK
[1106] SEQ ID NO:95: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_175G)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTLRGRVEAEDVGVYYCAQNLELPFLTFQGQGTKLEIK

[1107] SEQ ID NO:96: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_173P)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTPRISRVVEAEDVGVYYCAQNLELPFLTFQGQGTKLEIK

[1108] SEQ ID NO:97: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_173G)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTRGRISRVVEAEDVGVYYCAQNLELPFLTFQGQGTKLEIK

[1109] SEQ ID NO:98: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V78Q)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTRGRISRVQEAEDVGVYYCAQNLELPFLTFQGQGTKLEIK

[1110] SEQ ID NO:99: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_S76G)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTRGRVEAEDVGVYYCAQNLELPFLTFQGQGTKLEIK

[1111] SEQ ID NO:100: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92D)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTRISRVVEAEDVGVYYCAQNDLPLTFQGQGTKLEIK

[1112] SEQ ID NO:101: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_Y86T)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTRISRVVEAEDVGVTYCAQNLELPFLTFQGQGTKLEIK

[1113] SEQ ID NO:102: Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92E)
DIVMTQSPFSNPVTPGTSASISCRSSKLLHSNGITYLYWYLQRPGQSPQQLLIIYQMSNLAS
GVPNRFSSSGSTDFTRISRVVEAEDVGVYYCAQNEELPLTFQGQGTKLEIK
Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92G)
DIVMTQSPFSNPVTGTSASISCRSSKLHSGITYLYWLYLRQRPQSPQQLIYQQMSNLAS
GVPNRFSSSGTDFTLRISRVEAEDVGVYYCAQNGELPLTFGQGKTLEIK

Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92Q)
DIVMTQSPFSNPVTGTSASISCRSSKLHSGITYLYWLYLRQRPQSPQQLIYQQMSNLAS
GVPNRFSSSGTDFTLRISRVEAEDVGVYYCAQNGELPLTFGQGKTLEIK

Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L93G)
DIVMTQSPFSNPVTGTSASISCRSSKLHSGITYLYWLYLRQRPQSPQQLIYQQMSNLAS
GVPNRFSSSGTDFTLRISRVEAEDVGVYYCAQNLGELPLTFGQGKTLEIK

Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_V85G)
DIVMTQSPFSNPVTGTSASISCRSSKLHSGITYLYWLYLRQRPQSPQQLIYQQMSNLAS
GVPNRFSSSGTDFTLRISRVEAEDVGVYYCAQNLGELPLTFGQGKTLEIK

Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_L92T)
DIVMTQSPFSNPVTGTSASISCRSSKLHSGITYLYWLYLRQRPQSPQQLIYQQMSNLAS
GVPNRFSSSGTDFTLRISRVEAEDVGVYYCAQNTELPLTFGQGKTLEIK

Вариант вариабельной области легкой цепи hu9F5VLv2 (также известного как hu9F5VLv2_A89G)
DIVMTQSPFSNPVTGTSASISCRSSKLHSGITYLYWLYLRQRPQSPQQLIYQQMSNLAS
GVPNRFSSSGTDFTLRISRVEAEDVGVYYCQNLGELPLTFGQGKTLEIK

Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L80P)
EVQLQQSGAELVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWDPENGDT
EYASKFQGRATMTADTSTNTAYPLELSSLRSEDATAVYYCTTSNGWQQGTTVSS

Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L80D)
EVQLQQSGAELVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWDPENGDT
EYASKFQGRATMTADTSTNTAYDELSLRSEDATAVYYCTTSNGWQQGTTVSS
 SEQ ID NO:111: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82cG)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLELSSGRSEDTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:112: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82cD)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLELSSDRSEDTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:113: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82P)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLEPSSLRSERTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:114: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L80G)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYGELSSLRSEDTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:115: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82K)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLEKSSLRSEDTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:116: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82R)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLERSSLRSEDTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:117: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82E)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLEESSLRSEDTAVYYCTTTSNGWGQGTTTVSS

 SEQ ID NO:118: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82N)
EVQLQGSGALVKPGATVKISCKASGFTIKDDYMNWVKQRPEQGLEWIGWIDPENGDT EYASKFQGRATMTADTSTNTAYLENSSLRSEDTAVYYCTTTSNGWGQGTTTVSS
[1130] SEQ ID NO:119: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_Y79D)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEQGLEWIGWDPENGDT EYASKFQGRATMTADTSTNTADLESSLRRSEDDTVYYCTTNGWGQGTTTVTVSS

[1131] SEQ ID NO:120: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_Y79N)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEQGLEWIGWDPENGDT EYASKFQGRATMTADTSTNTANLESSLRRSEDDTVYYCTTNGWGQGTTTVTVSS

[1132] SEQ ID NO:121: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_Y79G)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEQGLEWIGWDPENGDT EYASKFQGRATMTADTSTNTAGLESSLRRSEDDTVYYCTTNGWGQGTTTVTVSS

[1133] SEQ ID NO:122: Вариант вариабельной области тяжелой цепи hu9F5VHv5 (также известного как hu9F5VHv5_M80E)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEKGLEWIGWVDPEDGET EYASKFQGRATMTADTSTDVTAYEELSSLRRSEDTTYCCTSNWGWGTLTVTVSS

[1134] SEQ ID NO:123: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv5_M80G)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEKGLEWIGWVDPEDGET EYASKFQGRATMTADTSTDVTAYGEELSSLRRSEDTTYCCTSNWGWGTLTVTVSS

[1135] SEQ ID NO:124: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_L82cS)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEQGLEWIGWDPENGDT EYASKFQGRATMTADTSTNTAYLELSRSEDTTYCCTSNWGWGTTTVTVSS

[1136] SEQ ID NO:125: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_Y79Q)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEQGLEWIGWDPENGDT EYASKFQGRATMTADTSTNTAQLESSLRRSEDTTYCCTSNWGWGTTTVTVSS

[1137] SEQ ID NO:126: Вариант вариабельной области тяжелой цепи hu9F5VHv4 (также известного как hu9F5VHv4_S82aG)
EVQLQGGAGLVPAGTVKISCKAGFFIKDDYMNWKQRPEQGLEWIGWDPENGDT EYASKFQGRATMTADTSTNTAYLELSRSEDTTYCCTSNWGWGTTTVTVSS
[1138] SEQ ID NO:127: Вариабельная область тяжелой цепи hu9F5VHV9
EVQLVQSGAEVKPGATVKISCKASGFKDNYMNDWVQQRPGKGLEWIGWDENGDT
TEYASKFQGRATMTADTSNTAYMELESSLRSEDTAVYYCTTSNGWGQGTLVTVSS

[1139] SEQ ID NO:128: Вариабельная область тяжелой цепи hu9F5VHV10 (также известного как hu9F5VHV9_Q38K_G42E)
EVQLVQSGAEVKPGATVKISCKASGFKDNYMNDWVQQRPGKGLEWIGWDENGDT
TEYASKFQGRATMTADTSNTAYMELESSLRSEDTAVYYCTTSNGWGQGTLVTVSS

[1140] SEQ ID NO:129: Вариабельная область тяжелой цепи hu9F5VHV10_L82cG
EVQLVQSGAEVKPGATVKISCKASGFKDNYMNDWVQQRPGKGLEWIGWDENGDT
TEYASKFQGRATMTADTSNTAYMELESSLGRSEDTAVYYCTTSNGWGQGTLVTVSS

[1141] SEQ ID NO:130: Вариабельная область легкой цепи hu9F5VLv8
DIVMTQSPFSLPVTPGESASICRSSKILLHNSGITYLYWYLQKPGQSPQLLIYQMSNLAS
GVPNFSSSGSMTDFTLKRISVREAEDVGVYVYCAQNLEPLTFQGGTKLEIK

[1142] SEQ ID NO:131: Вариабельная область легкой цепи hu9F5VLv9 (также известного как hu9F5VLv8_N60D)
DIVMTQSPFSLPVTPGESASICRSSKILLHNSGITYLYWYLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSMTDFTLKRISVREAEDVGVYVYCAQNLEPLTFQGGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKLSHSNGITYLYWYQQPKPGQSPQLLIYQGSNSAS
GVPNFSSSGSMTDFTLKRISVREAEDVGVYVYCAQNLEPLTFQGGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKLSHSNGITYLYWYQQPKPGQSPQLLIYQGSNRAS
GVPNFSSSGSMTDFTLKRISVREAEDVGVYVYCAQNLEPLTFQGGTKLEIK
DIQMTQSPFSLPVTPGESASICRSSKSLHSNGITYLYWYQQPGQSPQQLIYQGSNTASGVNPNSGSGSGLTDFTKLISRVEAEVYVYYCAQNIELPLTFGQGTKEIK

DIQMTQSPFSLPVTPGESASICRSSKSLHSNGITYLYWYQQPGQSPQQLIYQGSNRASGVNPNSGSGSGLTDFTKLISRVEAEVYVYYCAQNGELPLTFGQGTKEIK

DIQMTQSPFSLPVTPGESASICRSSKSLGSNGITYLYWYQQPGQSPQQLIYQGSNRASGVNPNSGSGSGLTDFTKLISRVEAEVYVYYCAQNIELPLTFGQGTKEIK

DIQMTQSPFSLPVTPGESASICRSSKSLDHGITYLYWYQQPGQSPQQLIYQGSNRASGVNPNSGSGSGLTDFTKLISRVEAEVYVYYCAQNIELPLTFGQGTKEIK

DIQMTQSPFSLPVTPGESASICRSSKSLDSNGITYLYWYQQPGQSPQQLIYQKSNRASGVNPNSGSGSGLTDFTKLISRVEAEVYVYYCAQNIELPLTFGQGTKEIK

DIQMTQSPFSLPVTPGESASICRSSKSLGHSNGITYLYWYQQPGQSPQQLIYQKSNRASGVNPNSGSGSGLTDFTKLISRVEAEVYVYYCAQNIELPLTFGQGTKEIK
DIQMTQSPFSLPVTGPESASISCRSSKSLGHSNGITYLYWYQQKPGQSPQLLIIYQKSNGAS
GVPNRFSSSGSTDFTLKISRVEAEDVGVYVYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTGPESASISCRSSKSLGHSNGITYLYWYQQKPGQSPQLLIIYQKSNGAS
GVPNRFSSSGSTDFTLKISRVEAEDVGVYVYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTGPESASISCRSSKSLGHSNGITYLYWYGQKPGQSPQLLIIYQGSNRAS
GVPNRFSSSGSTDFTLKISRVEAEDVGVYVYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTGPESASISCRSSKSLGHSNGITYLYWYGQKPGQSPQLLIIYQGSNRAS
GVPNRFSSSGSTDFTLKISRVEAEDVGVYVYCAQNGELPLTFGQGTKLEIK

DIQMTQSPFSLPVTGPESASISCRSSKSLGHSNGITYLYWYGQKPGQSPQLLIIYQGSNRAS
GVPNRFSSSGSTDFTLKISRVEAEDVGVYVYCAQNLLELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSHSGKSLGHSNGITYLYWYGKPGQSPQQLIYQGSNTAS
GVPNRFSSSGSGSTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGTKLEIK

[1157] SEQ ID NO:146: Вариант вариабельной области легкой цепи hu9F5VLv8
hu9F5VLv8_DIM15).
DIQMTQSPFSLPVTPGESASICRSSHSGKSLGHSNGITYLYWYGKPGQSPQQLIYQGSNTAS
GVPNRFSSSGSGSTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGTKLEIK

[1158] SEQ ID NO:147 Вариант вариабельной области легкой цепи hu9F5VLv8
DIQMTQSPFSLPVTPGESASICRSSHSGKSLGHSNGITYLYWYGKPGQSPQQLIYQGSNTAS
GVPNRFSSSGSGSTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGTKLEIK

[1159] SEQ ID NO:148: Вариант вариабельной области легкой цепи hu9F5VLv8
(hu9F5VLv8_V3Q, L27cS, L37G, M51G, L54T, L92I, также известных как
hu9F5VLv8_DIM17).
DIQMTQSPFSLPVTPGESASICRSSHSGKSLGHSNGITYLYWYGKPGQSPQQLIYQGSNTAS
GVPNRFSSSGSGSTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGTKLEIK

[1160] SEQ ID NO:149: Вариант вариабельной области легкой цепи hu9F5VLv8
(hu9F5VLv8_V3Q, L27cD, L37G, M51G, L54R, L92I, также известных как
hu9F5VLv8_DIM18)
DIQMTQSPFSLPVTPGESASICRSSHSGKSLGHSNGITYLYWYGKPGQSPQQLIYQGSNRAS
GVPNRFSSSGSGSTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGTKLEIK

[1161] SEQ ID NO:150: Вариант вариабельной области легкой цепи hu9F5VLv8
(hu9F5VLv8_V3Q, L27cS, L37I, M51I, L54R, L92I, также известных как
hu9F5VLv8_DIM19).
DIQMTQSPFSLPVTPGESASICRSSHSGKSLGHSNGITYLYWYGKPGQSPQQLIYQISNRASG
VPNRFSSSGSGSTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGTKLEIK

[1162] SEQ ID NO:151: Вариант вариабельной области легкой цепи hu9F5VLv8
(hu9F5VLv8_V3Q, L27cS, L37Q, M51I, L54G, L92I, также известных как
hu9F5VLv8_DIM20)
DIQMTQSPFSLPVTPGESASICRSSKSLHSNGITYLYWYQQKPGQSPQLLIIYQISNGASGVPNRFSSSGSTDFTLKISRVEAEDGVVYYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKSLHSNGITYLYWYQQKPGQSPQLLIIYQISNGASGVPNRFSSSGSTDFTLKISRVEAEDGVVYYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKSLHSNGITYLYWYQQKPGQSPQLLIIYQESNRASGVPNRFSSSGSTDFTLKISRVEAEDGVVYYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKSLGHSGITYLYWYQQKPGQSPQLLIIYQESNGASGVPNRFSSSGSTDFTLKISRVEAEDGVVYYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKSLGHSGITYLYWYIQKPGQSPQLLIIYQESNRASGVPNRFSSSGSTDFTLKISRVEAEDGVVYYCAQNIELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASICRSSKSLGHSGITYLYWYIQKPGQSPQLLIIYQESNRASGVPNRFSSSGSTDFTLKISRVEAEDGVVYYCAQNIELPLTFGQGTKLEIK

DIQMTQPSFLPVTPGESAISCRSSKSLHSNGITYLYWYIQKPGQSPQQLIYQGESNRASGVPNRFSSSGSTDFTLKISRVEAEVGVYVNYCAQNIELOPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASISCRSSKSLSHSNGITYLYWYQQKPGQSPQLLIIYQGSNRAS
GVPDRFSSSGSTDFTLKSIRVEAEVGVYVYCAQNGELPLTFGQGTKLEIK

DIQMTQSPFSLPVTPGESASISCRSSKSLGHSGNTILYWYQQKPGQSPQLLIIYQGSNRAS
GVPDRFSSSGSTDFTLKSIRVEAEVGVYVYCAQnellePLTFGQGTKeIK

DIQMTQSPFSLPVTPGESASISCRSSKSLGHSGNTILYWYQQKPGQSPQLLIIYQKSNRAS
GVPDRFSSSGSTDFTLKSIRVEAEVGVYVYCAQnellePLTFGQGTKeIK

DIQMTQSPFSLPVTPGESASISCRSSKSLGHSGNTILYWYQQKPGQSPQLLIIYQKSNRAS
GVPDRFSSSGSTDFTLKSIRVEAEVGVYVYCAQnellePLTFGQGTKeIK

DIQMTQSPFSLPVTPGESASISCRSSKSLGHSGNTILYWYGQPKPGQSPQLLIIYQGSNRAS
GVPDRFSSSGSTDFTLKSIRVEAEVGVYVYCAQnellePLTFGQGTKeIK

DIQMTQSPFSLPVTPGESASISCRSSKSLGHSGNTILYWYGQPKPGQSPQLLIIYQGSNRAS
GVPDRFSSSGSTDFTLKSIRVEAEVGVYVYCAQnellePLTFGQGTKeIK

DIQMTQPSFLPVTPEGASISCRSSKSLHSNGITYLYWYIQKPGQSPQQLIYQISNRASGVPDRFSSSNGTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGKTEIK

DIQMTQPSFLPVTPEGASISCRSSKSLHSNGITYLYWYIQKPGQSPQQLIYQISNGASGVPDRFSSSNGTDFTLKISRVEAEDVGVYYCAQNIELPLTFGQGKTEIK

[1183] SEQ ID NO:172 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27bD) (присутствует в hu9F5VLv2_L27bD, SEQ ID NO:71)

RSSKSDLHSNGITYLY

[1184] SEQ ID NO:173 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27bT) (присутствует в hu9F5VLv2_L27bT, SEQ ID NO:79)

RSSKSTLHSNGITYLY

[1185] SEQ ID NO:174 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27bQ) (присутствует в hu9F5VLv2_L27bQ, SEQ ID NO:81)

RSSKSQLHSNGITYLY

[1186] SEQ ID NO:175 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27cD) (присутствует в hu9F5VLv2_L27cD, SEQ ID NO:63, в hu9F5VLv8_DIM6, SEQ ID NO:137, в hu9F5VLv8_DIM7, SEQ ID NO:138 и в hu9F5VLv8_DIM18, SEQ ID NO:149)

RSSKSLDHSNGITYLY

[1187] SEQ ID NO:176 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27cG) (присутствует в hu9F5VLv2_L27cG, SEQ ID NO:64, в hu9F5VLv8_DIM5, SEQ ID NO:136, в hu9F5VLv8_DIM8, SEQ ID NO:139, в hu9F5VLv8_DIM9, SEQ ID NO:140, в hu9F5VLv8_DIM11, SEQ ID NO:142, в
RSSKSLGHSNGITYLY

RSSKSLSHSNGITYLY

[1189] SEQ ID NO:178 Альтернативная CDR-L1 по Kabat гуманизированного антигена 9F5 (L27cE) (присутствует в hu9F5VLv2_L27cE, SEQ ID NO:66)

RSSKSLLEHSNGITYLY

[1190] SEQ ID NO:179 Альтернативная CDR-L1 по Kabat гуманизированного антигена 9F5 (L27cT) (присутствует в hu9F5VLv2_L27cT, SEQ ID NO:69)

RSSKSLTHSNGITYLY

[1191] SEQ ID NO:180 Альтернативная CDR-L1 по Kabat гуманизированного антигена 9F5 (L27cN) (присутствует в hu9F5VLv2_L27cN, SEQ ID NO:70)

RSSKSLNHSNGITYLY
Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27cA) (присутствует в hu9F5VLv2_L27cA, SEQ ID NO:74)
RSSKSLAHSGITYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27cP) (присутствует в hu9F5VLv2_L27cP, SEQ ID NO:83)
RSSKSLPHSNGITYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L27cl) (присутствует в hu9F5VLv8_DIM26, SEQ ID NO:157)
RSSKSLIHSNGITYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (I30E) (присутствует в hu9F5VLv2_I30E, SEQ ID NO:67)
RSSKSSLHNSGETYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (I30K) (присутствует в hu9F5VLv2_I30K, SEQ ID NO:68)
RSSKSSLHNSGTKTYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (I30G) (присутствует в hu9F5VLv2_I30G, SEQ ID NO:72)
RSSKSSLHNSGGTYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (I30Q) (присутствует в hu9F5VLv2_I30Q, SEQ ID NO:78)
RSSKSSLHNSGQTLYLY

Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (T31G) (присутствует в hu9F5VLv2_T31G, SEQ ID NO:80)
RSSKSSLHNSIGTYLY
SEQ ID NO:189 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L33N) (присутствует в hu9F5VLv2_L33N, SEQ ID NO:73)

RSSKLLHSNGITYNY

SEQ ID NO:190 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L33T) (присутствует в hu9F5VLv2_L33T, SEQ ID NO:75)

RSSKLLHSNGITYTY

SEQ ID NO:191 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L33S) (присутствует в hu9F5VLv2_L33S, SEQ ID NO:76)

RSSKLLHSNGITYSY

SEQ ID NO:192 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L33R) (присутствует в hu9F5VLv2_L33R, SEQ ID NO:77)

RSSKLLHSNGITYRY

SEQ ID NO:193 Альтернативная CDR-L1 по Kabat гуманизированного антитела 9F5 (L33G) (присутствует в hu9F5VLv2_L33G, SEQ ID NO:82)

RSSKLLHSNGITYGY

SEQ ID NO:194 Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51E) (присутствует в hu9F5VLv2_M51E, SEQ ID NO:61)

QESNLAS

SEQ ID NO:195 Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51D) (присутствует в hu9F5VLv2_M51D, SEQ ID NO:62)

QDSNLAS

SEQ ID NO:196 Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51G) (присутствует в hu9F5VLv8_DIM30, SEQ ID NO:161)

QGSNLAS
Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (L54R) (присутствует в hu9F5VLv8_DIM29, SEQ ID NO:160)

QMSNRAS

Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51G L54G) (присутствует в hu9F5VLv8_DIM1, SEQ ID NO:132 и в hu9F5VLv9_DIM1, SEQ ID NO:162)

QGSNGAS

Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51G L54T) (присутствует в hu9F5VLv8_DIM3,SEQ ID NO:134, в hu9F5VLv8_DIM14, SEQ ID NO:145, в hu9F5VLv8_DIM15, SEQ ID NO:146, в hu9F5VLv8_DIM16, SEQ ID NO:147 и в hu9F5VLv8_DIM17, SEQ ID NO:148)

QGSNTAS

Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51K L54R) (присутствует в hu9F5VLv8_DIM7, SEQ ID NO:138, в hu9F5VLv8_DIM8, SEQ ID NO:139 и в hu9F5VLv9_DIM8, SEQ ID NO:166)

QKSNRAS

Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51K L54G) (присутствует в hu9F5VLv8_DIM9, SEQ ID NO:140, в hu9F5VLv8_DIM10, SEQ ID NO:141, и в hu9F5VLv9_DIM10, SEQ ID NO:167)

QKSNGAS

Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51I L54R) (присутствует в hu9F5VLv8_DIM19, SEQ ID NO:150 и в hu9F5VLv9_DIM19, SEQ ID NO:170)

QISNRAS

Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51I L54G) (присутствует в hu9F5VLv8_DIM20, SEQ ID NO:151, в hu9F5VLv8_DIM21. SEQ ID NO:152 и в hu9F5VLv9_DIM20, SEQ ID NO:171)
QISNGAS

[1215] SEQ ID NO:204 Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51E L54R) (присутствует в hu9F5VLv8_DIM22, SEQ ID NO:153, в hu9F5VLv8_DIM24, SEQ ID NO:155, в hu9F5VLv8_DIM25, SEQ ID NO:156 и в hu9F5VLv8_DIM26, SEQ ID NO:157)

QESNRAS

[1216] SEQ ID NO:205 Альтернативная CDR-L2 по Kabat гуманизированного антитела 9F5 (M51E L54G) (присутствует в hu9F5VLv8_DIM23, SEQ ID NO:154)

QESNGAS

GQNLELPLT

[1218] SEQ ID NO:207 Альтернативная CDR-L3 по Kabat гуманизированного антитела 9F5 (L92D) (присутствует в hu9F5VLv2_L92D, SEQ ID NO:100)

AQNDELPLT

[1219] SEQ ID NO:208 Альтернативная CDR-L3 по Kabat гуманизированного антитела 9F5 (L92E) (присутствует в hu9F5VLv2_L92E, SEQ ID NO:102)

AQNEELPLT

AQNGELPLT

[1221] SEQ ID NO:210 Альтернативная CDR-L3 по Kabat гуманизированного антитела 9F5 (L92Q) (присутствует в hu9F5VLv2_L92Q, SEQ ID NO:104)

AQNQELPLT
Альтернативная CDR-L3 по Kabat гуманизированного антитела 9F5 (L92T) (присутствует в hu9F5VLv2_L92T, SEQ ID NO:107)

AQNTTELPLT

Альтернативная CDR-L3 по Kabat гуманизированного антитела 9F5 (L92I) (присутствует в hu9F5VLv8_DIM1, SEQ ID NO:132, в hu9F5VLv8_DIM2, SEQ ID NO:133, в hu9F5VLv8_DIM3, SEQ ID NO:134, в hu9F5VLv8_DIM5, SEQ ID NO:136, в hu9F5VLv8_DIM6, SEQ ID NO:137, в hu9F5VLv8_DIM7, SEQ ID NO:138, в hu9F5VLv8_DIM8, SEQ ID NO:139, в hu9F5VLv8_DIM9, SEQ ID NO:140, в hu9F5VLv8_DIM10, SEQ ID NO:141, в hu9F5VLv8_DIM11, SEQ ID NO:142, в hu9F5VLv8_DIM14, SEQ ID NO:145, в hu9F5VLv8_DIM17, SEQ ID NO:148, в hu9F5VLv8_DIM18, SEQ ID NO:149, в hu9F5VLv8_DIM19, SEQ ID NO:150, в hu9F5VLv8_DIM20, SEQ ID NO:151, в hu9F5VLv8_DIM22, SEQ ID NO:153, в hu9F5VLv8_DIM23, SEQ ID NO:154, в hu9F5VLv8_DIM24, SEQ ID NO:155, в hu9F5VLv8_DIM27, SEQ ID NO:158, в hu9F5VLv8_DIM28, SEQ ID NO:159, в hu9F5VLv8_DIM29, SEQ ID NO:160, в hu9F5VLv8_DIM30, SEQ ID NO:161, в hu9F5VLv9_DIM1, SEQ ID NO:162, в hu9F5VLv9_DIM2, SEQ ID NO:163, в hu9F5VLv9_DIM5, SEQ ID NO:165, в hu9F5VLv9_DIM8, SEQ ID NO:166, в hu9F5VLv9_DIM10, SEQ ID NO:167, в hu9F5VLv9_DIM11, SEQ ID NO:168, в hu9F5VLv9_DIM19, SEQ ID NO:170 и в hu9F5VLv9_DIM20, SEQ ID NO:171)

AQNIELPLT

Альтернативная CDR-L3 по Kabat гуманизированного антитела 9F5 (L93G) (присутствует в hu9F5VLv2_L93G, SEQ ID NO:105)

AQNLGLPLT

Вариабельные области тяжелой цепи тяжелой цепи hu10C12VHv1

QVQLVQSGAEVKPGATVKISCKASGFNIKDDYMNWVQQAPKGKLEIWGIDPENGD TEYASKFQGRATMTADTSTDTAYMELSSLRSEDTAAVYCTTSNGWQGRTLVTVSS

Вариабельные области тяжелой цепи тяжелой цепи hu10C12VHv2

EVQLVQSGAEVKPGATVKISCKASGFNIKDDYMNWVQQAPKGKLEIWGIDPENGD TEYASKFQGRATMTADTSTDTAYMELSSLRSEDTAAVYCTTSNGWQGRTLVTVSS

Вариабельная область легкой цепи hu10C12VLv1
DIVMTQSPLSLPVTPGEPASISCRSSKSLHSGITYLYWYLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSHTDFLKLISRVEAEDVGVYCAQNLLELPLTFGGGTKVEIK

[1228] SEQ ID NO:217 Вариабельная область легкой цепи hu10C12VLv2
DIVMTQSPLSLPVTPGEPASISCRSSKSLHSGITYLYWYLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSHTDFLKLISRVEAEDVGVYCAQNLLELPLTFGGGTKLEIK

[1229] SEQ ID NO:218: Акцептор вариабельной области тяжелой цепи, CAC20421-VH_huFrwk
QVQLVQSGAEVKPGATVKISCKVSGTYFTDYMYHWVQQAPGKGLEWMGLVDPEDG
ETIYAEKFGQGRVTITADTSTDYTAYMELSSLRSLETAVYYCARIPLFGRDHWGQGTLVTVSS

[1230] SEQ ID NO:219 Вариабельные области тяжелой цепи мышечного антитела 12C4
EVQLVQSGAEVKPGATVKISCKVSGTYFTDYMYHWVQQAPGKGLEWMGLVDPEDG
AYASKFQGKATMTADTABSSNTAYLQFSSLTSADAVIDYCTTSNGWGQGTLVTVSA

[1231] SEQ ID NO:220: CDR-H2 мышечного антитела 12C4 по Kabat
WIDPENGDTAYASKFQG

[1232] SEQ ID NO:221 Вариабельные области тяжелой цепи тяжелой цепи hu12C4VHv1
QVQLVQSGAEVKPGATVKISCKVSGTYFTDYMYHWVQQAPGKGLEWMGLVDPEDG
DTAYASKFQGKATMTADTABSSNTAYLQFSSLTSADAVIDYCTTSNGWGQGTLVTVSS

[1233] SEQ ID NO:222 Вариабельные области тяжелой цепи тяжелой цепи hu12C4VHv2
EVQLVQSGAEVKPGATVKISCKVSGTYFTDYMYHWVQQAPGKGLEWMGLVDPEDG
TAYASKFQGKATMTADTABSSNTAYLQFSSLTSADAVIDYCTTSNGWGQGTLVTVSS

[1234] SEQ ID NO:223 Вариабельная область легкой цепи hu12C4VLv1
DIVMTQSPLSLPVTPGEPASISCRSSKSLHSGITYLYWYLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSHTDFLKLISRVEAEDVGVYCAQNLLELPLTFGGGTKVEIK

[1235] SEQ ID NO:224 Вариабельная область легкой цепи hu12C4VLv2
DIVMTQSPLSLPVTPGEPASISCRSSKSLHSGITYLYWYLQKPGQSPQLLIYQMSNLAS
GVPDRFSSSGSHTDFLKLISRVEAEDVGVYCAQNLLELPLTFGGGTKLEIK

[1236] SEQ ID NO:225 Вариабельные области тяжелой цепи мышечного антитела 17C12
KIQLQQSGAEVLVRPGASVKLSCSTASAFNKKDDYMNVKQRPERGLEWGIDPENGDT
KYASKFQGKATMTADTSSNTAYLQFSSLTSADAVIDYCTTSNGWGQGTLVTVSA
[1237]SEQ ID NO:226 CDR H1 мышьного антитела 17C12 согласно композитному определению по Kabat-Chothia
AFNIKDDYMN

[1238]SEQ ID NO:227 CDR H2 мышьного антитела 17C12 по Kabat
WIDPENGDTKYASKFQG

[1239]SEQ ID NO:228 Вариабельная область легкой цепи мышьного антитела 17C12
DVVMQTPLTLSVTIGQPASCTSSQSLHNSRKTLYLHWLLQRPGQSPKLLIYLVSKLES
GVPDRFSGSGMTDFTLKISRVEAEDLVGYYCLQTTHFPRTFGGGTKLEIK

[1240]SEQ ID NO:229: CDR-L1 мышьного антитела 17C12 по Kabat
TSSQSLHNSRKTLYL

[1241]SEQ ID NO:230: CDR-L2 мышьного антитела 17C12 по Kabat
LVSKLES

[1242]SEQ ID NO:231: CDR-L3 мышьного антитела 17C12 по Kabat
LQTTHFPRT

[1243]SEQ ID NO:232 Вариабельные области тяжелой цепи тяжелой цепи hu17C12VHv1
QIQLVQSGAELVKPGATVKISCKASAFNIKDDYMNWVQAPGKGLEWIGWIDPENGDT
KYASKFQGRATMTADTSTDSELTAYMELSSLRSEDTAVYYCTTSNGWGQGTTVTSR

[1244]SEQ ID NO:233 Вариабельные области тяжелой цепи тяжелой цепи hu17C12VHv2
EVQLQQSGAELVKPSGTASGFNIKDDYNWVQRPEQGLEYWIGWIDPENGDT
EYASKFQGKATMTADTSTNTAYQLSSLTSEDATAVYYCTTSNGWGQGTTTVSS

[1245]SEQ ID NO:234 Вариабельная область легкой цепи hu17C12VLv1
DVVMQTPLTLSVTPGPASCTSSQSLHNSRKTLYLHWLLQKPGQPPQQLIYLVSKLES
SGVPDRFSGSGMTDFTLKISRVEAEDLVGYYCLQTTHFPRTFGGGTKVEIK

[1246]SEQ ID NO:235 Вариабельная область легкой цепи hu17C12VLv2
DVVMQTPLTLSVTPGPASCTSSQSLHNSRKTLYLHWLLQKPGQSPQQLIYLVSKLES
SGVPDRFSGSMTDFTLKISRVEAEDLVGYYCLQTTHFPRTFGGGTKVEIK

[1247]SEQ ID NO:236 Структурная модель вариабельной области тяжелой цепи 3PP3-VH_mSt
СТРУКТУРНАЯ МОДЕЛЬ ВАРИАБЕЛЬНОЙ ОБЛАСТИ ЛЕГКОЙ ЦЕПИ 3P3-VL_mSt

DIVMTQTPLSVPVTGQPAISCKSSQSSLLHSDGKTYLYWYLQKPGQPPQLLIYEVSRRFS
GVPDRFSGSGSTDTFLKISRVMAEDSVGYYCMQGILPLTFGGTKEIK

АКЦЕПТОР ВАРИАБЕЛЬНОЙ ОБЛАСТИ ЛЕГКОЙ ЦЕПИ, QDO16713-VL_huFrwk

DIVMTQTPLSLSVTGQPAISCKSSQSSLLHSDGKTYLYWYLQKPGQPPQLLIYEVSRRFS
GVPDRFSGSGSTDTFLKISRVMAEDSVGYYCMQGILPLTFGGTKEIK

ПОСЛЕДОВАТЕЛЬНОСТЬ ВАРИАБЕЛЬНОЙ ОБЛАСТИ ЛЕГКОЙ ЦЕПИ ЗАРОДЫШЕВОЙ ЛИНИИ, IGKV2-29*02 и IGKJ4*01

DIVMTQTPLSLSVTGQPAISCKSSQSSLLHSDGKTYLYWYLQKPGQPPQLLIYEVSRRFS
GVPDRFSGSGSTDTFLKISRVMAEDSVGYYCMQGILPLTFGGTKEIK

ВАРИАБЕЛЬНЫЕ ОБЛАСТИ ТЯЖЕЛОЙ ЦЕПИ МЫШИНОГО АНТИТЕЛА 14H3

QVTLKESGPGLQPSQTLSTCSFSGSLSTYGMVGWIRQPSGKGLEWLANIWWDDIK
YYNAALKSLTISKDTSKIQVFLKIAVTDATATATYCCARNDYWGQGTLTVSS

CDR H1 мышиного антитела 14H3 согласно композитному определению по Kabat-Chothia

GFSLSTYGMGVG

CDR H2 мышиного антитела 14H3 по Kabat

NIWWDDIKYYNAALKS

CDR H3 мышиного антитела 14H3 по Kabat

NVDY

ВАРИАБЕЛЬНАЯ ОБЛАСТЬ ЛЕГКОЙ ЦЕПИ МЫШИНОГО АНТИТЕЛА m14H3

DVVMQQTPLSVPVLGDQASICRSQSLVHSNQNTFLHHWYLQKPGQSPKLLIYKVSNRF
SGVPDRFSGSGSTDTFLKISRVMAEDLGVVYFSQSTLWPWTGGTKEIK

CDR L1 мышиного антитела 14H3 по Kabat

RSSQSLVHSNQNTFLH
Вариабельные области тяжелой цепи тяжелой цепи hu14H3VHv1
QVTLKESGPALVKPTQTTLTLTCTFSGFLSTGYMGVSWIRQPQPKALEWLARIWWDDDIKYYNAALKSRLTISKDTSKNQVVLTMNTMNPVDVTATYYCARNVDYWGQGTMTVSL

Вариабельные области тяжелой цепи тяжелой цепи hu14H3VHv2
QVTLKESGPALVKPTQTTLTLTCTFSGFLSTGYMGVSWIRQPQPKALEWLARIWWDDDIKYYNAALKSRLTISKDTSKNQVVLTMNTMNPVDVTATYYCARNVDYWGQGTMTVSL

Вариабельная область легкой цепи hu14H3VLv1
DVVMTQTPLSLPVTGEPASISCRSSQSLVHNSGNTFHLHYLYKQGSPQOLLIIYKIVSNRFSGVPDRFGSSGTDFLKLISRVEAEDGVYFCSQSTLVPTFGGKTKEI

Вариабельная область легкой цепи hu14H3VLv2
DVVMTQPSPLSLPVTGEPASISCRSSQSLVHNSGNTFHLHYQYQKPGSPQOLLIIYKIVSNRFSGVPDRFGSSGTDFLKLISRVEAEDGVYFCSQSTLVPTFGQGTKEI

Структурная модель вариабельной области тяжелой цепи 2VQ1-VH_mSt
QITLLEEGPGILQPSQTLSTCSFGFLSSSAATSVQGWSIRQPSGKALEWLALH1WWNNDDKYYNPALKSRLTVSDKSDNQVFLIKASVVTADTATYYCARIPGFDFDYGQGTTTVSL

Акцептор вариабельной области тяжелой цепи, QDJ57937-VH_huFwrk
QVTLKESGPALVKPTQTTLTLTCTFSGFLSTSGMRVSWIRQPQPKALEWLARIDWDDDKFYSTSLKTRTLTISKDTSKNQVVLTMNTMNPVDVTATYYCARNLAVADAFDIGYWGQGTMVTVSL

Последовательность вариабельной области легкой цепи зародышевой линии, IGHV1-70*04 и IGHJ4*01
QVTLKESGPALVKPTQTTLTLTCTFSGFLSTSGMRVSWIRQPQPKALEWLARIDWDDDKFYSTSLKTRTLTISKDTSKNQVVLTMNTMNPVDVTATYYCARNLAVADAFDYGQGTMVTVSL
SEQ ID NO:255 Структурная модель вариабельной области легкой цепи 2VQ1-VL_mSt
DVVMQTPLSLVSGLDQASISCRSSQEQLVHSNGNTFLQWYLQKPGQSPKLIIYKVSNRF
SGVPDRFSGSGSGLTDFLRKISRMEAEGLGIYFCSTTHWPWLFGGGTLEIK

SEQ ID NO:256: Акцептор вариабельной области легкой цепи, ABC66914-VL_huFrwk
DIVMTQTPSLPVTPEGAPASCRSSQLLHSNGNYLQDWYLQKPGQSPQLYLFILGSNRA
SGVPDRFSGSGSGLTDFLRKISRVEAEVDGVYYCMQALQTPLTFGGGTKVEIK

SEQ ID NO:257: CDR-H2 мышечного антитела 12C4 по AbM
WIDPENGDTA

SEQ ID NO:258: CDR-H2 мышечного антитела 12C4 по Contact
WIGWIDPENGDTA

SEQ ID NO:259: CDR-H1 мышечного антитела 17C12 по Chothia
AFNIKDD

SEQ ID NO:260: CDR-H2 мышечного антитела 17C12 по AbM
WIDPENGDTK

SEQ ID NO:261: CDR-H2 мышечного антитела 17C12 по Contact
WIGWIDPENGDTK

SEQ ID NO:262: CDR-L1 мышечного антитела 17C12 по Contact
KTYLHWL

SEQ ID NO:263: CDR-L2 мышечного антитела 17C12 по Contact
LLIYLVSKLE

SEQ ID NO:264: CDR-L3 мышечного антитела 17C12 по Contact
LQTTTHFPR

SEQ ID NO:265: CDR-H1 мышечного антитела 14H3 по Kabat
TYGMGVG

SEQ ID NO:266: CDR-H1 мышечного антитела 14H3 по Chothia
GFSLSTGYGM
[1278] SEQ ID NO:267: CDR-H2 мышьяного антитела 14Н3 по Chothia
WWDDI

[1279] SEQ ID NO:268: CDR-H2 мышьяного антитела 14Н3 по AbM
NIWWDDIKY

[1280] SEQ ID NO:269: CDR-H1 мышьяного антитела 14Н3 по Contact
STYGMGVG

[1281] SEQ ID NO:270: CDR-H2 мышьяного антитела 14Н3 по Contact
WLANIWWDDIKY

[1282] SEQ ID NO:271: CDR-H3 мышьяного антитела 14Н3 по Contact
ARNVD

[1283] SEQ ID NO:272: CDR-L1 мышьяного антитела 14Н3 по Contact
NTFLHWY

[1284] SEQ ID NO:273: CDR-L2 мышьяного антитела 14Н3 по Contact
LLIYKVSNRF

[1285] SEQ ID NO:274: CDR-L3 мышьяного антитела 14Н3 по Contact
SQSTLVPW

[1286] SEQ ID NO:275 Альтернативная CDR H1 согласно композитному определению по Kabat-Chothia, как в hu14Н3VHv1 и hu14Н3VHv2
GFSLSSTYSGVGS

[1287] SEQ ID NO:276: Консенсусный мотив пептида, связываемого антителом 9F5, 10C12, 2D11, 12C4, 17C12 и 14Н3
IVYK

[1288] SEQ ID NO:277 Консенсусный мотив пептида, связываемого антителом 2D11
EIVYKKS
ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Выделенное моноклональное антитело, которое конкурирует с антителом 9F5 за связывание с человеческим тау.

2. Антитело по п. 1, в котором CDR-H3 тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:10.

3. Антитело по п. 1, в котором CDR-H1 тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:8.

4. Антитело по п. 2, в котором CDR легкой цепи, CDR-L1, CDR-L2 и CDR-L3, имеют аминокислотную последовательность, включающую SEQ ID NO:12, 13 и 14, соответственно.

5. Антитело по п. 4, в котором CDR-H1 тяжелой цепи имеет аминокислотную последовательность, включающую SEQ ID NO:8

6. Антитело по п. 1, которое связывается с тем же эпитопом на тау человека, что и 9F5.

7. Антитело по п. 1, содержащее три CDR легкой цепи и три CDR тяжелой цепи моноклонального антитела 9F5, причем 9F5 является мышьенным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:7, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:11.

9. Антитело по п. 8, в котором CDR-H1 имеет аминокислотную последовательность, включающую SEQ ID NO:50.

10. Антитело по п. 8, в котором CDR-H2 имеет аминокислотную последовательность, включающую SEQ ID NO:51.

11. Антитело по п. 8, в котором CDR-H2 имеет аминокислотную последовательность, включающую SEQ ID NO:52.

12. Антитело по п. 8, в котором CDR-L1 имеет аминокислотную последовательность, включающую любую из SEQ ID NO:53, SEQ ID NO:54 и SEQ ID NO:172-193.

13. Антитело по п. 8, в котором CDR-L2 имеет аминокислотную последовательность, включающую любую из SEQ ID NO:55 и SEQ ID NO:194-205.

14. Антитело по п. 8, в котором CDR-L3 имеет аминокислотную последовательность, включающую любую из SEQ ID NO: 206-213.

15. Антитело по п. 8, в котором CDR-H1 имеет аминокислотную последовательность, включающую SEq ID NO:50, а CDR-H2 имеет аминокислотную последовательность, включающую SEQ ID NO:51.

16. Антитело по п. 8, в котором CDR-L1 имеет аминокислотную последовательность, включающую SEQ ID NO:53, а CDR-L2 имеет аминокислотную последовательность, включающую SEQ ID NO:55.

17. Антитело по п. 8, в котором CDR-L1 имеет аминокислотную последовательность, включающую SEQ ID NO:54, а CDR-L2 имеет аминокислотную последовательность, включающую SEQ ID NO:55.

18. Антитело по любому из предшествующих пунктов, причем антитело представляет собой гуманизированное антитело.

19. Гуманизированное антитело по п. 18, в котором гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 9F5 по Kabat (SEQ ID NO:40, SEQ ID NO:9 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 9F5 по Kabat (SEQ ID NO:12-14).

23. Гуманизированное антитело по п. 22, в котором вариабельная область тяжелой цепи содержит аминокислотную последовательность SEQ ID NO:127.

25. Гуманизированное антитело по п. 24, в котором вариабельная область тяжелой цепи содержит аминокислотную последовательность SEQ ID NO:128.

27. Гуманизированное антитело по п. 21, в котором предложенные положения L3Q, L27c, L37, L51, L54 и L92 в области VL заняты Q, S, Q, G, R и I.

28. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, S, Q, G, T и I, соответственно.

29. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, Q, G, R и I, соответственно.

30. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, D, Q, G, R и I, соответственно.

31. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, D, Q, K, R и I, соответственно.

32. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, Q, K, R и I, соответственно.

33. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, G, R и I, соответственно.
34. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, G, G, R и G, соответственно.

35. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, G, T и I.

36. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, S, G, G, T и I, соответственно.

37. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, D, G, G, R и I, соответственно.

38. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L37, L51, L54 и L92 в области VL заняты Q, Q, G, R и I, соответственно.

39. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L51, L54 и L92 в области VL заняты Q, S, G, R и I, соответственно.

40. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L54 и L92 в области VL заняты Q, S, Q, R и I, соответственно.

41. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51 и L92 в области VL заняты Q, S, Q, G и I, соответственно.

42. Гуманизированное антитело по п. 21, в котором предложенные положения L3, L27c, L37, L51, L54 и L92 в области VL заняты Q, G, G, G, R и I, соответственно.

43. Гуманизированное антитело по п. 20, в котором зреяя вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO:15-22 и SEQ ID NO:109-129, а зреяя вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO:23-29, SEQ ID NO:61-108 и SEQ ID NO:130-171.

44. Гуманизированное антитело по п. 43, в котором зреяя вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а
зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:149.

45. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:142.

46. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:159.

47. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:148.

48. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:137.

49. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:145.

50. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:136.

51. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:138.
52. Гуманизированное антитело по п. 44, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:158.

53. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:143.

54. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:144.

55. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:133.

56. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:160.

57. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:161.

58. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:127, а зрелая вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:139.

59. Гуманизированное антитело по п. 43, в котором зрелая вариабельная область тяжелой цепи имеет аминокислотную последовательность SEQ ID NO:128, а
рельная вариабельная область легкой цепи имеет аминокислотную последовательность SEQ ID NO:168.

60. Антитело по п. 1, содержащее три CDR легкой цепи и три CDR тяжелой цепи монооклонального антитела 10C12, где 10C12 является мышинным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:7, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:11.

61. Антитело по п. 60, причем антитело представляет собой гуманизированное антитело.

62. Гуманизированное антитело по п. 61, в котором гуманизированная зрела вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 10C12 по Kabat (SEQ ID NO:40, SEQ ID NO:9 и SEQ ID NO:10), а гуманизированная зрела вариабельная область легкой цепи содержит три CDR легкой цепи 10C12 по Kabat (SEQ ID NO:12-14).

63. Гуманизированное антитело по любому из пп. 60-62, содержащее гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:214-215, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:216-217.

64. Гуманизированное антитело по п. 63, в котором по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H1 занято Q или E, H24 занято A, H48 занято I, H67 занято A, H69 занято M, H93 занято T, H94 занято T.

65. Гуманизированное антитело по п. 64, в котором предложенные положения H1, H24, H48, H67, H69, H93 и H94 заняты E, A, I, A, M, T и T, соответственно.

66. Гуманизированное антитело по п. 63, в котором по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L64 занято S, L104 занято V или L.
67. Гуманизированное антитело по п. 66, в котором положения L64 и L104 в области VL заняты S и L, соответственно.

68. Гуманизированное антитело по п. 63, в котором зрелая вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 214-215, а зрелая вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 216-217.

69. Антитело по п. 5, содержащее три CDR легкой цепи и три CDR тяжелой цепи моно克莱нового антитела 12C4, при этом 12C4 является мышьным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:219, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:11.

70. Антитело по п. 69, причем антитело представляет собой гуманизированное антитело.

71. Гуманизированное антитело по п. 70, в котором гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 12C4 по Kabat (SEQ ID NO:40, SEQ ID NO:220 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 12C4 по Kabat (SEQ ID NO:12-14).

72. Гуманизированное антитело по любому из пп. 69-71, содержащее гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:221-222, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:223-224.

73. Гуманизированное антитело по п. 72, в котором по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H1 занято Q или E, H48 занято M или I, H93 занято A или T, H94 занято R или T.

74. Гуманизированное антитело по п. 73, в котором предложенные положения H1, H48, H93 и H94 в области VH заняты E, I, T и T, соответственно.
75. Гуманизированное антитело по п. 72, в котором положения в области VL заняты указанной аминокислотой: L64 занято G или S, L104 занято V или L.

76. Гуманизированное антитело по п. 75, в котором предложенные положения L64 и L104 в области VL заняты S и L, соответственно.

77. Гуманизированное антитело по п. 72, в котором зреяя вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 221-222, а зрелая вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 223-224.

78. Антитело по п. 2, содержащее три CDR легкой цепи и три CDR тяжелой цепи монооклонального антитела 17C12, причем 17C12 является мышьным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:225, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:228.

79. Антитело по п. 78, причем антитело представляет собой гуманизированное антитело.

80. Гуманизированное антитело по п. 79, в котором гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 17C12 по Kabat (SEQ ID NO:40, SEQ ID NO:227 и SEQ ID NO:10), а гуманизированная зрелая вариабельная область легкой цепи содержит три CDR легкой цепи 17C12 по Kabat (SEQ ID NO:229-231).

81. Гуманизированное антитело по любому из пп. 78-80, содержащее гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:232-233, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:234-235.

84. Гуманизированное антитело по п. 81, в котором по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, L36 занято L, L43 занято P или S.

85. Гуманизированное антитело по п. 84, в котором предложенные положения L2, L36 и L43 в области VL заняты V, L и S, соответственно.

86. Гуманизированное антитело по п. 81, в котором зрелая вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO:232-233, а зрелая вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO:234-235.

87. Антитело по п. 1, содержащее три CDR легкой цепи и три CDR тяжелой цепи монооклонального антитела 14Н3, в котором 14Н3 является мышьным антителом, характеризующимся вариабельной областью тяжелой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:240, и вариабельной областью легкой цепи, имеющей аминокислотную последовательность, включающую SEQ ID NO:244.

88. Антитело по п. 87, в котором три CDR тяжелой цепи CDR-H1, CDR-H2 и CDR-H3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:241, 242 и 243, соответственно), за исключением того, что положение H35В может быть занято G или S, а три CDR легкой цепи CDR-L1, CDR-L2 и CDR-L3 соответствуют композитному определению по Kabat/Chothia (SEQ ID NO:245, 246 и 247, соответственно).

89. Антитело по п. 88, в котором CDR-H1 имеет аминокислотную последовательность, включающую SEQ ID NO:277.

90. Антитело по любому из пп. 87-89, причем антитело представляет собой гуманизированное антитело.

91. Гуманизированное антитело по п. 90, в котором гуманизированная зрелая вариабельная область тяжелой цепи содержит три CDR тяжелой цепи 14Н3 по Kabat (SEQ ID NO:265, SEQ ID NO:242 и SEQ ID NO:243), а гуманизированная зрелая
вариабельная область легкой цепи содержит три CDR легкой цепи 14Н3 по Kabat (SEQ ID NO:245-247).

92. Гуманизированное антитело по любому из пп. 87-91, содержащее гуманизированную зрелую вариабельную область тяжелой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:248-249, и гуманизированную зрелую вариабельную область легкой цепи, имеющую аминокислотную последовательность по меньшей мере на 90% идентичную любой из SEQ ID NO:250-251.

93. Гуманизированное антитело по п. 92, в котором по меньшей мере одно из следующих положений в области VH занято указанной аминокислотой: H35B занято S, H108 занято M или L, H113 занято L или S.

94. Гуманизированное антитело по п. 93, в котором предложенные положения H35B, H108 и H113 в области VH заняты S, L и S, соответственно.

95. Гуманизированное антитело по п. 92, в котором по меньшей мере одно из следующих положений в области VL занято указанной аминокислотой: L2 занято V, L7 занято T или S, L37 занято L или Q, L87 занято F, L100 занято G или Q, L104 занято V или L.

96. Гуманизированное антитело по п. 95, в котором предложенные положения L2, L7, L37, L87, L100 и L104 в области VL заняты V, S, Q, F, Q и L, соответственно.

97. Гуманизированное антитело по п. 92, в котором зрелая вариабельная область тяжелой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 248-249, а зрелая вариабельная область легкой цепи имеет любую аминокислотную последовательность из SEQ ID NO: 250-251.

98. Антитело по любому из пп. 1-97, причем антитело представляет собой интактное антитело.

99. Антитело по любому из пп. 1-97, причем антитело представляет собой связывающий фрагмент.

100. Антитело по любому из предшествующих пунктов, в котором изотип представляет собой человеческий IgG1.
101. Гуманизированное антитело по любому из пп. 18-59, 61-68, 70-77, 79-86 и 90-100, в котором зрелая вариабельная область легкой цепи слита с константной областью легкой цепи, а зрелая вариабельная область тяжелой цепи слита с константной областью тяжелой цепи.

102. Гуманизированное антитело по п. 101, в котором константная область тяжелой цепи представляет собой мутанную форму константной области тяжелой цепи природного человеческого антитела, которая имеет пониженное связывание с рецептором Fcy по сравнению с константной областью тяжелой цепи природного человеческого антитела.

103. Антитело по любому из пп. 1-99 и 101-102, в котором изотипом является человеческий IgG2 или IgG4.

104. Фармацевтическая композиция, содержащая антитело, как определено по любому из пп. 1-103, и фармацевтически приемлемый носитель.

105. Нуклеиновая кислота, кодирующая тяжелую цепь и/или легкую цепь антитела, описанного в любом из пп. 1-104.

106. Способ гуманизации мышиного антитела, включающий:
(a) отбор одного или более акцепторных антител;
(b) выявление аминокислотных остатков мышиного антитела, которые должны быть сохранены;
(c) синтез нуклеиновой кислоты, кодирующей гуманизированную тяжелую цепь, включающую CDR тяжелой цепи мышиного антитела, и нуклеиновой кислоты, кодирующей гуманизированную легкую цепь, включающую CDR легкой цепи мышиного антитела; и
(d) экспрессию нуклеиновых кислот в клетке-хозяине для получения гуманизированного антитела;

при этом мышиное антитело представляет собой 9F5, причем 9F5 характеризуется зрелой вариабельной областью тяжелой цепи SEQ ID NO:7 и зрелой вариабельной областью легкой цепи SEQ ID NO:11.
при этом мышиное антитело представляет собой 10С12, причем 10С12 характеризуется зре́лой вариабельной областью тяжёлой цепи SEQ ID NO:7 и зре́лой вариабельной областью ле́гкой цепи SEQ ID NO:11.

при этом мышиное антитело представляет собой 2D11, причем 2D11 характеризуется зре́лой вариабельной областью тяжёлой цепи SEQ ID NO:7 и зре́лой вариабельной областью ле́гкой цепи SEQ ID NO:11.

при этом мышиное антитело представляет собой 12С4, причем 12С4 характеризуется зре́лой вариабельной областью тяжёлой цепи SEQ ID NO:219 и зре́лой вариабельной областью ле́гкой цепи SEQ ID NO:11.

при этом мышиное антитело представляет собой 17С12, причем 17С12 характеризуется зре́лой вариабельной областью тяжёлой цепи SEQ ID NO:225 и зре́лой вариабельной областью ле́гкой цепи SEQ ID NO:228.

при этом мышиное антитело представляет собой 14Н3, причем 14Н3 характеризуется зре́лой вариабельной областью тяжёлой цепи SEQ ID NO:240 и зре́лой вариабельной областью ле́гкой цепи SEQ ID NO:244.

107. Способы ингибитирования или снижения агрегации тау у субъекта, имеющего или подверженного риску развития тау-опосредованного амиллоиздоза, включающие введение субъекту антитела по любому из пп. 1-104 по эффективной схеме, тем самым ингибируя или снижая агрегацию тау у субъекта.

108. Способ лечения или профилактики тау-ассоциированного заболевания у субъекта, включающий введение антитела по эффективной схеме, как определено по любому из пп. 1-104, и тем самым обеспечивая лечение или профилактику заболевания.

109. Способ по п. 108, в котором тау-ассоциированное заболевание представляет собой болезнь Альцгеймера, синдром Дауна, легкое когнитивное нарушение, первичную возрастную тауопатию, постэнцефалитный паркинсонизм, посттравматическую деменцию или деменцию боксеров, болезнь Пика, болезнь Нимана — Пика типа С, надъядерный паразич, лобно-височную деменцию, лобно-височную лобарную дегенерацию, заболевание, характеризующееся появлением артирофильтных зерен, глобулярную глиальную тауопатию, боковой амиотрофический склероз/комплекс паркинсонизм-деменция Гуама, кортикобазальную дегенерацию (КБД),
деменция с телцами Леви, вариант болезни Альцгеймера с телцами Леви (LBVAD – англ.: Lewy body variant of Alzheimer disease), хроническую травматическую энцефалопатию (ХТЭ), глобулярную глиальную тауопатию (ГГТ), болезнь Паркинсона или прогрессирующий надъядерный парадич (ПНП).

110. Способ по п. 109, в котором тау-ассоциированное заболевание представляет собой болезнь Альцгеймера.

111. Способ обнаружения отложений тау-белка у субъекта, имеющего или подверженного риску заболевания, связанного с агрегацией или отложением тау, включающий введение субъекту антитела, согласно определению по любому из пп. 1-104, и обнаружение антитела, связанного с тау у субъекта.

112. Выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков (Q/E)IVYK(S/P) (SEQ ID NO:56).

113. Выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков QIVYKQ (SEQ ID NO:57).

114. Выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков EIVYKSP (SEQ ID NO:58).

115. Выделенное моноклональное антитело, которое специфически связывается с пептидом, состоящим из остатков EIVYKS (SEQ ID NO:277).

116. Способ лечения или профилактики тау-ассоциированного заболевания у субъекта, включающий введение имmunогена, включающего тау-пептид, содержащий до 20 смежных аминокислот SEQ ID NO:1, с которым специфически связывается антитело 9F5, 10C12, 2D11, 12C4, 17C12 или 14H3, причем пептид вызывает образование антител, специфически связывающихся с тау у субъекта.
<table>
<thead>
<tr>
<th></th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH мышиного 9F5</td>
<td>L Q F S S L T S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>L V T V S</td>
<td>111</td>
</tr>
<tr>
<td>IGHV1-69-2*01</td>
<td>M E L S S L R S E D T A V Y Y C A</td>
<td>T Q H -- W G Q G T</td>
<td>L V T V S</td>
<td>110</td>
</tr>
<tr>
<td>2RCS_H</td>
<td>L Q L S S L T S E D T A V Y Y C A</td>
<td>S Y Y G I Y W G Q G T</td>
<td>L T T L T V S</td>
<td>113</td>
</tr>
<tr>
<td>hu9F5VHVv1</td>
<td>L Q L S S L T S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>L T T L T V S</td>
<td>111</td>
</tr>
<tr>
<td>hu9F5VHVv2</td>
<td>L Q L S S L T S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>T T V T V S</td>
<td>111</td>
</tr>
<tr>
<td>hu9F5VHVv3</td>
<td>L E L S S L R S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>T T V T V S</td>
<td>111</td>
</tr>
<tr>
<td>hu9F5VHVv4</td>
<td>L E L S S L R S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>T T V T V S</td>
<td>111</td>
</tr>
<tr>
<td>hu9F5VHVv5</td>
<td>M E L S S L R S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>L V T V S</td>
<td>111</td>
</tr>
<tr>
<td>hu9F5VHVv7</td>
<td>M E L S S L R S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>L V T V S</td>
<td>111</td>
</tr>
<tr>
<td>hu9F5VHVv8</td>
<td>M E L S S L R S E D T A V Y Y C T</td>
<td>T S N G -- W G Q G T</td>
<td>L V T V S</td>
<td>111</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VH мышиного 9F5</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGHV1-69-2*01</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN16432_H</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2RCS_H</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv1</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv3</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv4</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv7</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHVv8</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Фиг. 1B
<table>
<thead>
<tr>
<th>Протеин</th>
<th>Аминокислотный последовательность</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL мышиного 9F5</td>
<td>SVREAAEDGVYYCAQNLELPFTFGAGTKLEIK</td>
</tr>
<tr>
<td>IGKV2-28*01</td>
<td>SVREAAEDGVYYCMQALQTPYTFQGGTKLEIK</td>
</tr>
<tr>
<td>CAB51297_L</td>
<td>SVREAAEDGVYYCMQALQTPPLTFGGGTKVEIK</td>
</tr>
<tr>
<td>19113578_L</td>
<td>SVREAAEDGVYYCAQLELPLYPYTFGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv1</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv2</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv3</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv4</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv5</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv6</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
<tr>
<td>hu9F5VLv7</td>
<td>SVREAAEDGVYYCAQNLELPFTFGGGGTKLEIK</td>
</tr>
</tbody>
</table>

Фиг. 2B
<table>
<thead>
<tr>
<th>VH мышиного 9F5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGHVI-69-2*01</td>
<td>EVQLQSSGAELVRPGASVKLSCTAASGFNKIDDYMHNWVKQR</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN16432_H</td>
<td>V...VKK...T...IKV...YTFTY...H...Q...A</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2RCS_H</td>
<td>Q...K...T...H</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv1</td>
<td>Q...K</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv2</td>
<td>K...T...I</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv3</td>
<td>K...T...I</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv4</td>
<td>K...T...I...K...T</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv5</td>
<td>K...T...I...K...T</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv6</td>
<td>K...T...I...K...T</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv7</td>
<td>V...VKK...T...I...K</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv8</td>
<td>V...VKK...T...I...K</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9</td>
<td>V...VKK...T...I...K</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv10</td>
<td>V...VKK...T...I...K</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VH мышиного 9F5</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGHVI-69-2*01</td>
<td>PERGELWIGWIDPENGDTETAYASKFQGKATMTADTSNNAY</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN16432_H</td>
<td>GK...MLVD...DE.ET...EV...RV...I...TD...</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2RCS_H</td>
<td>Q...A...NK...DP</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv1</td>
<td>Q...A</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv2</td>
<td>Q</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv3</td>
<td>Q</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv4</td>
<td>Q</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv5</td>
<td>K...VD...ER...TD</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv6</td>
<td>K...VD...ER...TD</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv7</td>
<td>GK...V...DE...R...TD</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv8</td>
<td>GK...V...DE...R...TD</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9</td>
<td>GK...V...DE...R...TD</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv10</td>
<td>K</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Фиг. 4А
<table>
<thead>
<tr>
<th>Sequence</th>
<th>VHмыш.9F5</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGHV1-69-2*01</td>
<td>MEL</td>
<td>R</td>
<td>A</td>
<td>TQH</td>
<td></td>
</tr>
<tr>
<td>AAN16432_H</td>
<td>MEL</td>
<td>R</td>
<td>AGYRSMP_AK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2RCS_H</td>
<td>L</td>
<td></td>
<td>A</td>
<td>SYIYTL</td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv1</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv2</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv3</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv4</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv5</td>
<td>MEL</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv6</td>
<td>MEL</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv7</td>
<td>MEL</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv8</td>
<td>MEL</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv9</td>
<td>MEL</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9F5VHv10</td>
<td>MEL</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Фиг. 4В
Фиг. 5А
<table>
<thead>
<tr>
<th>VL мышиного 9F5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IGKV2-28*01</td>
<td>M A Q T Y Q I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAB51297_L</td>
<td>M A Q T G V I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1911357B_L</td>
<td>L Y G I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu9FSVLv9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Фиг. 5В
Фиг. 6В
Фиг. 6С
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>m10C12 VH</td>
<td>EVQLQSGAELEVRPGASVKLSCATSAGFNIKDDYMNWVKQR</td>
<td></td>
</tr>
<tr>
<td>IGTV1-69-2*01</td>
<td>...V...</td>
<td>VKK...T...I...KV...YTFTY...H...Q.A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAC20421 VH</td>
<td>Q...V...</td>
<td>VKK...T...I...KV...YTFTY...H...Q.A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu10C12VHv1</td>
<td>Q...V...</td>
<td>VKK...T...I...K...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu10C12VHv2</td>
<td>V...V...</td>
<td>VKK...T...I...K...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ФИГ. 7
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>m10C12 VL</td>
<td>DIVMTQAASNLGTSASI</td>
<td>SCR</td>
<td>RSS</td>
<td>KSL</td>
</tr>
<tr>
<td>IGKV2-2801 & IGKJ201</td>
<td>SPL</td>
<td>L</td>
<td>P</td>
<td>EP</td>
</tr>
<tr>
<td>CAB51297 VL</td>
<td>SPL</td>
<td>L</td>
<td>P</td>
<td>EP</td>
</tr>
<tr>
<td>hu10C12VLv1</td>
<td>SPL</td>
<td>L</td>
<td>P</td>
<td>EP</td>
</tr>
<tr>
<td>hu10C12VLv2</td>
<td>SPL</td>
<td>L</td>
<td>P</td>
<td>EP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>m10C12 VL</td>
<td>YLQ</td>
<td>KFG</td>
<td>QS</td>
<td>PQ</td>
</tr>
<tr>
<td>IGKV2-2801 & IGKJ201</td>
<td>L</td>
<td>G</td>
<td>R</td>
<td>.</td>
</tr>
<tr>
<td>CAB51297 VL</td>
<td>L</td>
<td>G</td>
<td>R</td>
<td>.</td>
</tr>
<tr>
<td>hu10C12VLv1</td>
<td>L</td>
<td>G</td>
<td>R</td>
<td>.</td>
</tr>
<tr>
<td>hu10C12VLv2</td>
<td>L</td>
<td>G</td>
<td>R</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>m10C12 VL</td>
<td>SRVEAEDVGVYYC</td>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>IGKV2-2801 & IGKJ201</td>
<td>M</td>
<td>A</td>
<td>QT</td>
</tr>
<tr>
<td>CAB51297 VL</td>
<td>M</td>
<td>A</td>
<td>QT</td>
</tr>
<tr>
<td>hu10C12VLv1</td>
<td>M</td>
<td>A</td>
<td>QT</td>
</tr>
<tr>
<td>hu10C12VLv2</td>
<td>M</td>
<td>A</td>
<td>QT</td>
</tr>
</tbody>
</table>

Фиг. 8
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>2C</th>
<th>3C</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml2C6VH</td>
<td>EVQLQSGAEVLRAEDSGSKTVKLSCTASGFNLKDDYMNVVRQRT</td>
<td>4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGHV1-69-2*01</td>
<td>.V...VXX...T...I...XV...YTF.T...Y...H...Q.A</td>
<td>4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAC20421 VH</td>
<td>Q...V...VXX...T...I...XV...YTF.T...Y...H...Q.A</td>
<td>4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu12C6VHv1</td>
<td>Q...V...VXX...T...I...XV...</td>
<td>4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu12C6VHv2</td>
<td>Q...V...VXX...T...I...XV...</td>
<td>4C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>6C</th>
<th>7C</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml2C6VH</td>
<td>PERGLEWIGWIDPENGDTAYASKFQGKATMTADTSNTAY</td>
<td>8C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGHV1-69-2*01</td>
<td>.GK...MLV...D.E.I...E...RV.I...TD...</td>
<td>8C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAC20421 VH</td>
<td>.GK...MLV...D.E.I...E...RV.I...TD...</td>
<td>8C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu12C6VHv1</td>
<td>.GK...MLV...D.E.I...E...RV.I...TD...</td>
<td>8C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hu12C6VHv2</td>
<td>.GK...MLV...D.E.I...E...RV.I...TD...</td>
<td>8C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>90</th>
<th>100</th>
<th>11C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml2C6VH</td>
<td>LQFSSLTSEDSAVYYCTT----SNWGQGTLVTVSA</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>IGHV1-69-2*01</td>
<td>KEL...R...T...A---TQH...S</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>CAC20421 VH</td>
<td>KEL...R...T...ARIPLFGRDH...S</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>hu12C6VHv1</td>
<td>KEL...R...T...AR---S</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>hu12C6VHv2</td>
<td>KEL...R...T...AR---S</td>
<td>112</td>
<td></td>
</tr>
</tbody>
</table>

Фиг. 9
<table>
<thead>
<tr>
<th></th>
<th>1C</th>
<th>20</th>
<th>3C</th>
<th>4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>m12C4VL</td>
<td>D I V K</td>
<td>T Q A</td>
<td>F S N P</td>
<td>V T L G</td>
</tr>
<tr>
<td>IGXV2-2801&IGKJ2C1</td>
<td>. . . .</td>
<td>S P L L</td>
<td>. P E P</td>
<td>. . . Q</td>
</tr>
<tr>
<td>CA351297 VL</td>
<td>. . . .</td>
<td>S P L L</td>
<td>. P E P</td>
<td>. . . Q</td>
</tr>
<tr>
<td>hu12C4VLv1</td>
<td>. . . .</td>
<td>S P L L</td>
<td>. P E P</td>
<td>. . . Q</td>
</tr>
<tr>
<td>hu12C4VLv2</td>
<td>. . . .</td>
<td>S P L L</td>
<td>. P E P</td>
<td>. . . Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5C</th>
<th>60</th>
<th>7C</th>
<th>8C</th>
</tr>
</thead>
<tbody>
<tr>
<td>m12C4VL</td>
<td>Y L Q K</td>
<td>X P G Q</td>
<td>S P Q L L I Y Q M S N L A S G V P D R F S S S G S G T D F T L R I</td>
<td>8C</td>
</tr>
<tr>
<td>CA351297 VL</td>
<td>. . . .</td>
<td>. . . L</td>
<td>G . . R</td>
<td>. . . G</td>
</tr>
<tr>
<td>hu12C4VLv2</td>
<td>. . . .</td>
<td>. . . L</td>
<td>G . . R</td>
<td>. . . G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>9C</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>m12C4VL</td>
<td>S R V E</td>
<td>A E D V</td>
<td>G V Y C</td>
</tr>
<tr>
<td>IGXV2-2801&IGKJ2C1</td>
<td>. . . .</td>
<td>. . . K</td>
<td>A Q T Y</td>
</tr>
<tr>
<td>CA351297 VL</td>
<td>. . . .</td>
<td>. . . K</td>
<td>A Q T Y</td>
</tr>
<tr>
<td>hu12C4VLv1</td>
<td>. . . .</td>
<td>. . . K</td>
<td>A Q T Y</td>
</tr>
<tr>
<td>hu12C4VLv2</td>
<td>. . . .</td>
<td>. . . K</td>
<td>A Q T Y</td>
</tr>
</tbody>
</table>

Фиг. 10
Фиг. 11
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>m17C12VL</td>
<td>D</td>
<td>V</td>
<td>V</td>
<td>M</td>
</tr>
<tr>
<td>hu17C12VLv1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>hu17C12VLv2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>m17C12VL</td>
<td>L</td>
<td>L</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>IGKV2-2902&IGKJ4*01</td>
<td>Y</td>
<td>.</td>
<td>K</td>
<td>.</td>
</tr>
<tr>
<td>Q0016713 VL</td>
<td>Y</td>
<td>.</td>
<td>K</td>
<td>.</td>
</tr>
<tr>
<td>hu17C12VLv1</td>
<td>.</td>
<td>.</td>
<td>K</td>
<td>.</td>
</tr>
<tr>
<td>hu17C12VLv2</td>
<td>.</td>
<td>.</td>
<td>K</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>m17C12VL</td>
<td>S</td>
<td>R</td>
<td>V</td>
</tr>
<tr>
<td>IGKV2-2902&IGKJ4*01</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Q0016713 VL</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>hu17C12VLv1</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>hu17C12VLv2</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Fиг. 13
<table>
<thead>
<tr>
<th></th>
<th>η1εH3VL</th>
<th>IGKV2-2801 & IGKJ201</th>
<th>ABC66914VL_hFwrk</th>
<th>hu16H3VLv1</th>
<th>hu16H3VLv2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>η1εH3VL</td>
<td>IGKV2-2801 & IGKJ201</td>
<td>ABC66914VL_hFwrk</td>
<td>hu14H3VLv1</td>
<td>hu14H3VLv2</td>
</tr>
</tbody>
</table>

Фиг. 14
% максимального значения

[mAb] (мкг/мл)

Фиг. 15
Фиг. 16
Фиг. 18
Антитела для ИФ (иммуноперекрестная реакция): контроль, 2011, 10C12, 9F5, 12C4, 14H3, 17C12

Блот: K9JA

Фиг. 19
Фиг. 20
Фиг. 21
Контрольное антитело

ЗК
1 мкг/мл

БА
0,1 мкг/мл

БА
1 мкг/мл

Фиг. 23А
2D11

3К
1 мкг/мл

БА
0,1 мкг/мл

БА
1 мкг/мл

Фиг. 23В
3К
1 мкг/мл

БА
0,1 мкг/мл

БА
1 мкг/мл

Фиг. 23С
3К
1 мкг/мл

БА
0,1 мкг/мл

БА
1 мкг/мл

Фиг. 23D
Фиг. 23F

17С12

ЗК
1 мкг/мл

БА
0,1 мкг/мл

БА
1 мкг/мл