

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2021.10.25
- (22) Дата подачи заявки 2019.11.14

(51) Int. Cl. A61K 31/712 (2006.01) A61K 31/7125 (2006.01) C07H 21/02 (2006.01) C12N 15/11 (2006.01) C12N 15/113 (2010.01)

(54) МОДУЛЯТОРЫ ЭКСПРЕССИИ FOXP3

- (31) 62/767,123; 62/924,001
- (32) 2018.11.14; 2019.10.21
- (33) US
- (86) PCT/US2019/061508
- (87) WO 2020/102558 2020.05.22
- (71) Заявитель: АЙОНИС ФАРМАСЬЮТИКАЛЗ, ИНК. (US)
- (72) Изобретатель:
 Ревенко Алексей, Маклеод Роберт А.,
 Фрейер Сьюзан М. (US)
- (74) Представитель:
 Поликарпов А.В., Соколова М.В.,
 Путинцев А.И., Черкас Д.А., Игнатьев
 А.В., Билык А.В., Дмитриев А.В.,
 Бучака С.М., Бельтюкова М.В. (RU)
- (57) В вариантах осуществления настоящего изобретения предусмотрены способы, соединения и композиции, применимые для подавления экспрессии FOXP3, которые могут быть применимы для лечения, предупреждения или уменьшения интенсивности проявлений рака. Определенные варианты осуществления, представленные в данном документе, направлены на эффективные и переносимые соединения и композиции, применимые для подавления экспрессии FOXP3, которые могут быть применимы для лечения, предупреждения, уменьшения интенсивности проявлений или замедления прогрессирования рака. В определенных вариантах осуществления рак ассоциирован с иммуносупрессивным микроокружением или стромой.

МОДУЛЯТОРЫ ЭКСПРЕССИИ FOXP3

Перечень последовательностей

Настоящая заявка подается вместе с перечнем последовательностей в электронной форме. Перечень последовательностей представлен в виде файла под названием BIOL0344WOSEQ_ST25.txt, созданного 11 ноября 2019 г., размер которого составляет 698 кБ. Информация из перечня последовательностей в электронной форме включена в данный документ посредством ссылки во всей своей полноте.

Область техники

В вариантах осуществления настоящего изобретения предусмотрены способы, соединения и композиции, применимые для подавления экспрессии FOXP3, которые могут быть применимы для лечения, предупреждения или уменьшения интенсивности проявлений рака.

15

20

10

5

Предпосылки изобретения

Гохр3 представляет собой фактор транскрипции регуляторных Т-клеток (Treg), определяющий линию дифференцировки, который контролирует ограниченный набор генов, связанных с иммуносупрессией. Treg подавляют иммунитет (в том числе противоопухолевый иммунитет) посредством нескольких эффекторных механизмов. Присутствие Treg в опухоли характеризуется неблагоприятным прогнозом исхода при нескольких типах рака. Treg не имеют известного уникального поверхностного маркера или сигнального белка, который мог бы обеспечить нацеливание с помощью биологических средств. На FOXP3 не могут нацеливаться моноклональные антитела или традиционные малые молекулы.

25 Краткое описание изобретения

Определенные варианты осуществления, представленные в данном документе, направлены на эффективные и переносимые соединения и композиции, применимые для подавления экспрессии FOXP3, которые могут быть применимы для лечения,

предупреждения, уменьшения интенсивности проявлений или замедления прогрессирования рака. В определенных вариантах осуществления рак ассоциирован с иммуносупрессивным микроокружением или стромой. Определенные варианты осуществления направлены на соединения и композиции, применимые для подавления экспрессии FOXP3 в Treg, которые могут быть применимы для лечения, предупреждения, уменьшения интенсивности проявлений или замедления прогрессирования рака, ассоциированного с иммуносупрессивными Treg.

Подробное описание

5

10

15

20

25

Следует понимать, что как вышеприведенное общее описание, так и нижеследующее подробное описание являются лишь иллюстративными и пояснительными и не ограничивают заявляемые варианты осуществления. В данном документе использование формы единственного числа включает форму множественного числа, если конкретно не указано иное. Как используется в данном документе, использование "или" означает "и/или", если не указано иное. Более того, использование термина "включающий", а также других форм, таких как "включает" и "включен", не является ограничивающим.

Используемые в данном документе заголовки разделов служат только в организационных целях и не должны пониматься как ограничивающие описываемый объект. Все документы или части документов, процитированные в настоящей заявке, включая без ограничения патенты, патентные заявки, статьи, книги, научные труды и записи эталонных последовательностей в GenBank и NCBI, настоящим явно включены посредством ссылки на части документа, обсуждаемые в данном документе, а также во всей их полноте.

Понятно, что последовательность, приведенная под каждым из SEQ ID NO в примерах, содержащихся в данном документе, не зависит от какой-либо модификации сахарного компонента, межнуклеозидной связи или нуклеинового основания. В силу этого соединения, определенные под SEQ ID NO, могут независимо содержать одну или несколько модификаций сахарного компонента, межнуклеозидной связи или нуклеинового основания. Номер ION у описанных под ним соединений указывает на комбинацию последовательности нуклеиновых оснований, химической модификации и мотива.

Если не указано иное, следующие термины имеют следующие значения.

"2'-Дезоксинуклеозид" означает нуклеозид, содержащий 2'-H(H)-фуранозильный сахарный компонент, обнаруживаемый во встречающихся в природе дезоксирибонуклеиновых кислотах (ДНК). В определенных вариантах осуществления 2'-дезоксинуклеозид может содержать модифицированное нуклеиновое основание или может содержать нуклеиновое основание РНК (урацил).

5

10

15

20

25

- "2'-О-метоксиэтил" (также 2'-МОЕ и 2'-О(СН₂)₂-ОСН₃) относится к О-метоксиэтильной модификации в 2'-положении фуранозильного кольца. 2'-О-метоксиэтил-модифицированный сахар является модифицированным сахаром.
- "2'-МОЕ-нуклеозид" (также 2'-О-метоксиэтилнуклеозид) означает нуклеозид, содержащий 2'-МОЕ-модифицированный сахарный компонент.
- "2'-Замещенный нуклеозид" или "2-модифицированный нуклеозид" означает нуклеозид, содержащий 2'-замещенный или 2'-модифицированный сахарный компонент. Как используется в данном документе, "2'-замещенный" или "2-модифицированный" применительно к сахарному компоненту означает, что сахарный компонент содержит по меньшей мере одну 2'-замещающую группу, отличную от Н или ОН.
- "3'-Концевой сайт-мишень" относится к нуклеотиду нуклеиновой кислоты-мишени, который является комплементарным нуклеотиду конкретного соединения, наиболее близкому к 3'-концу.
- "5'-Концевой сайт-мишень" относится к нуклеотиду нуклеиновой кислоты-мишени, который является комплементарным нуклеотиду конкретного соединения, наиболее близкому к 5'-концу.
- "5-Метилцитозин" означает цитозин с присоединенной в 5-положении метильной группой.
- "Приблизительно" означает в пределах \pm 10% от значения. Например, если указано, что "соединения осуществляли подавление FOXP3 на по меньшей мере приблизительно 70%", подразумевается, что уровни FOXP3 подавляются на величину в диапазоне от 60% до 80%.

"Введение" или "осуществление введения" относится к путям введения индивидууму соединения или композиции, предусматриваемых в данном документе, для выполнения их предполагаемой функции. Пример пути введения, который можно применять, включает без

ограничения парентеральное введение, такое как подкожная, внутривенная или внутримышечная инъекция или инфузия.

"Вводимые одновременно" или "совместное введение" означает введение двух или более соединений любым способом, при котором у пациента проявляются фармакологические эффекты их обоих. Для одновременного введения не требуется, чтобы оба соединения вводились в одной фармацевтической композиции, в одной и той же лекарственной форме, посредством одного и того же пути введения или в одно и то же время. Эффекты обоих соединений не обязательно должны проявляться в одно и то же время. Эффекты должны перекрываться только в течение определенного периода времени и не обязательно должны иметь одинаковую длительность. Одновременное введение или совместное введение охватывает параллельное или последовательное введение.

5

10

15

20

25

30

"Уменьшение интенсивности проявлений" относится к улучшению или ослаблению по меньшей мере одного показателя, признака или симптома ассоциированного заболевания, нарушения или состояния. В определенных вариантах осуществления уменьшение интенсивности проявлений включает задержку или замедление прогрессирования или снижение степени тяжести одного или нескольких показателей состояния или заболевания. Прогрессирование или степень тяжести показателей может определяться с помощью субъективных или объективных мер, которые известны специалистам в данной области.

"Животное" относится к человеку или отличному от человека животному, в том числе без ограничения мышам, крысам, кроликам, собакам, кошкам, свиньям и отличным от человека приматам, в том числе без ограничения нечеловекообразным обезьянам и шимпанзе.

"Антитело", используемое в настоящем изобретении, относится к иммуноглобулину или его фрагменту или производному и охватывает любой полипептид, содержащий антигенсвязывающий участок, независимо от того, получен ли он in vitro или in vivo. Данный термин включает без ограничения поликлональные, моноклональные, моноспецифические, полиспецифические, неспецифические, гуманизированные, одноцепочечные, химерные, синтетические, рекомбинантные, гибридные, мутантные и привитые антитела. Для целей настоящего изобретения термин "антитело", если только он иначе не модифицирован термином "интактное", как в случае "интактных антител", также включает фрагменты антитела, такие как Fab, F(ab')2, Fv, scFv, Fd, dAb и другие фрагменты антитела, которые сохраняют антигенсвязывающую функцию, т. е. способность специфично связывать,

например, CTLA-4 или PD-L1. Как правило, такие фрагменты будут содержать антигенсвязывающий домен.

"Антитело к СТLА-4" относится к антителу или его антигенсвязывающему фрагменту, которые специфично связывают полипептид СТLА-4. Иллюстративные антитела к СТLА-4 описаны, например, в патентах США №№ 6682736, 7109003, 7123281, 7411057, 7824679, 8143379, 7807797 и 8491895 (в них тремелимумаб обозначен как 11.2.1), которые включены в данный документ посредством ссылки. Тремелимумаб (патент США № 6682736) является иллюстративным антителом к СТLА-4.

5

10

15

20

25

30

"Антитело к ОХ40" относится к антителу или его антигенсвязывающему фрагменту, которые специфично связывают ОХ40. Антитела к ОХ40 включают в себя моноклональные и антитела, которые являются специфичными антигенсвязывающие фрагменты. В определенных аспектах антитела к ОХ40, описанные в представляют собой моноклональные данном документе, антитела антигенсвязывающие фрагменты), например, мышиные, гуманизированные или полностью человеческие моноклональные антитела. В одном конкретном варианте осуществления антитело к ОХ40 представляет собой агонист рецептора ОХ40, такой как мышиное моноклональное антитело к человеческому ОХ40 (9В12), описанное в Weinberg et al. J Immunother 29, 575-585 (2006). В другом варианте осуществления антитело к ОХ40 представляет собой MEDI0562, описанное в US 2016/0137740, включенном в данный документ посредством ссылки. В других вариантах осуществления антитело, которое специфично связывается с ОХ40, или его антигенсвязывающий фрагмент связываются с тем же эпитопом OX40, что и mAb 9B12.

"Антитело к PD-L1" относится к антителу или его антигенсвязывающему фрагменту, которые специфично связывают полипептид PD-L1. Иллюстративные антитела к PD-L1 описаны, например, в US2013/0034559, патентах США №№ 8779108 и 9493565, которые включены в данный документ посредством ссылки. Дурвалумаб (МЕDI4736) представляет собой иллюстративное антитело к PD-L1. Другие антитела к PD-L1 включают BMS-936559 (Bristol-Myers Squibb) и MPDL3280A (атезолизумаб) (Roche).

"Антитело к PD-1" относится к антителу или его антигенсвязывающему фрагменту, которые специфично связывают полипептид PD-1. Иллюстративные антитела к PD-1 описаны, например, в патентах США №№ 7521051, 8008449, 8354509, 9073994, 9393301, 9402899 и

9439962, которые включены в данный документ посредством ссылки. Иллюстративные антитела к PD-1 включают без ограничения ниволумаб, пембролизумаб, пидилизумаб и AMP-514.

5

10

15

20

25

30

"Антигенсвязывающий домен", "антигенсвязывающий фрагмент" и "связывающий фрагмент" относятся к части молекулы антитела, которая содержит аминокислоты, отвечающие за специфичное связывание между антителом и антигеном. В тех случаях, когда антиген является крупным, антигенсвязывающий домен может связываться только с частью антигена. Фрагмент молекулы антигена, который отвечает за специфичные взаимодействия с антигенсвязывающим доменом, называется "эпитопом" или "антигенной детерминантой". Антигенсвязывающий домен, как правило, содержит вариабельную область легкой цепи антитела (VL) и вариабельную область тяжелой цепи антитела (VH), однако он не обязательно должен содержать их обе. Например, так называемый Fd-фрагмент антитела состоит только из VH-домена, однако по-прежнему сохраняет некоторую антигенсвязывающую функцию интактного антитела. Связывающие фрагменты антитела получают с помощью методик рекомбинантной ДНК или с помощью ферментативного или химического расщепления интактных антител. Связывающие фрагменты включают в себя Fab, Fab', F(ab')2, Fv и одноцепочечные антитела. Подразумевается, что антитела, V "биспецифического" или "бифункционального" антитела, все из его связывающих участков являются идентичными. Расщепление антител ферментом папаином приводит к образованию двух идентичных антигенсвязывающих фрагментов, известных также как "Fab"-фрагменты, и "Fc"-фрагмента, не обладающего антигенсвязывающей активностью, но обладающего способностью к кристаллизации. Расщепление антител ферментом пепсином приводит к образованию F(ab')2-фрагмента, в котором два плеча молекулы антитела остаются связанными и содержат два антигенсвязывающих участка. F(ab')2-фрагмент обладает способностью к перекрестному связыванию антигена. При использовании в данном документе "Fv" относится к минимальному фрагменту антитела, в котором сохраняются как антигенраспознающий, так и антигенсвязывающий участки. При использовании в данном документе "Fab" относится к фрагменту антитела, который содержит константный домен легкой цепи и СН1-домен тяжелой цепи.

"MAb" относится к моноклональному антителу. Антитела по настоящему изобретению включают в себя без ограничения полные нативные антитела, биспецифические антитела;

химерные антитела; Fab, Fab', одноцепочечные фрагменты на основе V-областей (scFv), слитые полипептиды и нестандартные антитела.

"Антисмысловая активность" означает любую поддающуюся выявлению и/или измерению активность, связанную с гибридизацией антисмыслового соединения с его нуклеиновой кислотой-мишенью. В определенных вариантах осуществления антисмысловая активность представляет собой уменьшение количества или экспрессии нуклеиновой кислоты-мишени или белка, кодируемого такой нуклеиновой кислотой-мишенью, по сравнению с уровнями нуклеиновой кислоты-мишени или уровнями белка-мишени в отсутствие антисмыслового соединения для мишени.

5

10

15

20

25

30

"Антисмысловое соединение" означает соединение, содержащее олигонуклеотид и необязательно один или несколько дополнительных компонентов, таких как конъюгированная группа или концевая группа. Примеры антисмысловых соединений включают однонитевые и двухнитевые соединения, такие как олигонуклеотиды, рибозимы, siRNA, shRNA, ssRNA и соединения, активность которых зависит от степени занятости активных центров.

"Антисмысловое подавление" означает снижение уровней нуклеиновой кислоты-мишени в присутствии антисмыслового соединения, комплементарного нуклеиновой кислоте-мишени, по сравнению с уровнями нуклеиновой кислоты-мишени в отсутствие антисмыслового соединения.

"Антисмысловые механизмы" представляют собой все такие механизмы, предполагающие гибридизацию соединения с нуклеиновой кислотой-мишенью, где результатом или эффектом гибридизации является либо разрушение мишени, либо занятие мишени с сопутствующей блокировкой клеточного механизма, предполагающего, например, транскрипцию или сплайсинг.

"Антисмысловой олигонуклеотид" означает олигонуклеотид, имеющий последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте-мишени или ее области или сегменту. В определенных вариантах осуществления антисмысловой олигонуклеотид способен к специфичной гибридизации с нуклеиновой кислотой-мишенью или ее областью или сегментом.

"Бициклический нуклеозид" или "BNA" означает нуклеозид, содержащий бициклический сахарный компонент. "Бициклический сахар" или "бициклический сахарный

компонент" означает модифицированный сахарный компонент, содержащий два кольца, где второе кольцо образовано с помощью мостика, соединяющего два атома в первом кольце, за счет чего обеспечивается образование бициклической структуры. В определенных вариантах осуществления первое кольцо бициклического сахарного компонента представляет собой фуранозильный компонент. В определенных вариантах осуществления бициклический сахарный компонент не содержит фуранозильный компонент.

5

10

15

20

25

30

"Разветвляющаяся группа" означает группу атомов с по меньшей мере 3 положениями, которые могут образовывать ковалентные связи с по меньшей мере 3 группами. В определенных вариантах осуществления разветвляющаяся группа обеспечивает несколько реакционноспособных сайтов для присоединения связанных лигандов к олигонуклеотиду с помощью конъюгирующего линкера и/или расщепляемого компонента.

"Компонент, нацеливающий на клетку" означает конъюгированную группу или фрагмент конъюгированной группы, которые способны связываться с клеткой конкретного типа или с клетками конкретных типов.

"cEt" или "конформационно ограниченный этилом" означает бициклический фуранозильный сахарный компонент, содержащий мостик, соединяющий 4'-атом углерода и 2'-атом углерода, при этом мостик имеет формулу: 4'-CH(CH₃)-O-2'.

"cEt-нуклеозид" означает нуклеозид, содержащий cEt-модифицированный сахарный компонент.

"Химическая модификация" в соединении описывает замещения или изменения в результате химической реакции любой из структурных единиц в соединении по сравнению с исходным состоянием такой структурной единицы. "Модифицированный нуклеозид" означает нуклеозид, независимо имеющий модифицированный сахарный компонент и/или модифицированное нуклеиновое основание. "Модифицированный олигонуклеотид" означает олигонуклеотид, содержащий по меньшей мере одну модифицированную межнуклеозидную связь, модифицированный сахар и/или модифицированное нуклеиновое основание.

"Химически отличная область" относится к области соединения, которая некоторым образом химически отличается от другой области того же самого соединения. Например, область с 2'-О-метоксиэтилнуклеотидами химически отличается от области с нуклеотидами без 2'-О-метоксиэтильных модификаций.

"Химерные антисмысловые соединения" означают антисмысловые соединения, которые имеют по меньшей мере 2 химически отличные области, при этом на каждое положение приходится несколько субъединиц.

5

10

15

20

25

30

"Хирально обогащенная совокупность" означает множество молекул с идентичной молекулярной формулой, при этом количество или процентная доля молекул в совокупности, которые имеют конкретную стереохимическую конфигурацию у конкретного хирального центра, превышает количество или процентную долю молекул, которые, как ожидается, будут иметь ту же конкретную стереохимическую конфигурацию у того же конкретного хирального центра в совокупности, если конкретный хиральный центр был стереослучайным. Хирально обогащенные совокупности молекул, имеющих несколько хиральных центров в каждой молекуле, могут содержать один или несколько стереослучайных хиральных центров. В определенных вариантах осуществления молекулы представляют собой модифицированные олигонуклеотиды. В определенных вариантах осуществления молекулы представляют собой соединения, содержащие модифицированные олигонуклеотиды.

"Расщепляемая связь" означает любую химическую связь, которая может быть разорвана. В определенных вариантах осуществления расщепляемая связь выбрана из амидной, полиамидной, сложноэфирной, эфирной, одной или обеих сложноэфирных в фосфодиэфирной связи, фосфоэфирной, карбаматной, дисульфидной или пептидной.

"Расщепляемый компонент" означает связь или группу атомов, которые расщепляются в физиологических условиях, например, внутри клетки, животного или человека.

"Комплементарный" применительно К олигонуклеотиду означает, что последовательность нуклеиновых оснований такого олигонуклеотида или одной или нескольких его областей соответствует последовательности нуклеиновых оснований другого олигонуклеотида или нуклеиновой кислоты или одной или нескольких их областей при выравнивании двух последовательностей нуклеиновых оснований в противоположных направлениях. Описанные в данном документе совпадения нуклеиновых оснований или комплементарные нуклеиновые основания ограничены следующими парами: аденин (А) и тимин (T), аденин (A) и урацил (U), цитозин (C) и гуанин (G) и 5-метилцитозин (m C) и гуанин (G), если не указано иное. Комплементарные олигонуклеотиды и/или нуклеиновые кислоты не обязательно должны характеризоваться комплементарностью нуклеиновых оснований по каждому нуклеозиду и могут содержать одно или несколько несовпадений нуклеиновых "полностью комплементарные" 100% оснований. В отличие от этого, "на

комплементарные" применительно к олигонуклеотидам означает, что такие олигонуклеотиды характеризуются совпадениями нуклеиновых оснований по каждому нуклеозиду без каких-либо несовпадений нуклеиновых оснований.

"Конъюгированная группа" означает группу атомов, которая присоединена к олигонуклеотиду. Конъюгированные группы содержат конъюгируемый компонент и конъюгирующий линкер, который присоединяет конъюгируемый компонент к олигонуклеотиду.

5

10

15

20

25

30

"Конъюгирующий линкер" означает группу атомов, содержащую по меньшей мере одну связь, которая соединяет конъюгируемый компонент с олигонуклеотидом.

"Конъюгируемый компонент" означает группу атомов, которая присоединена к олигонуклеотиду посредством конъюгирующего линкера.

"Смежный" применительно к олигонуклеотиду относится к нуклеозидам, нуклеиновым основаниям, сахарным компонентам или межнуклеозидным связям, которые непосредственно прилегают друг к другу. Например, "смежные нуклеиновые основания" означают нуклеиновые основания, которые непосредственно прилегают друг к другу в последовательности.

"Конструирование" или "сконструированный для" относится к способу конструирования соединения, которое специфично гибридизируется с выбранной молекулой нуклеиновой кислоты.

"Разбавитель" означает ингредиент в композиции, который не обладает фармакологической активностью, но является фармацевтически необходимым или желательным. Например, разбавитель в композиции для инъекции может быть жидкостью, например физиологическим раствором.

"Модифицированные разными способами" означает химические модификации или химические заместители, которые отличаются друг от друга, включая отсутствие модификаций. Так, например, МОЕ-нуклеозид и немодифицированный нуклеозид ДНК являются "модифицированными разными способами", даже несмотря на то, что нуклеозид ДНК является немодифицированным. Аналогичным образом, ДНК и РНК являются "модифицированными разными способами", даже несмотря на то, что обе они представляют собой встречающиеся в природе немодифицированные нуклеозиды. Нуклеозиды, которые являются одинаковыми, но содержат различные нуклеиновые основания, не являются

способами. содержащий модифицированными разными Например, нуклеозид, 2'-ОМе-модифицированный сахар и немодифицированное нуклеиновое адениновое основание, И нуклеозид, содержащий 2'-ОМе-модифицированный caxap немодифицированное тиминовое нуклеиновое основание, не являются модифицированными разными способами.

5

10

15

20

25

30

"Доза" означает определенное количество соединения или фармацевтического средства, предоставляемое за одно введение или за определенный период времени. В определенных вариантах осуществления дозу можно вводить в виде двух или более болюсов, таблеток или инъекций. Например, в определенных вариантах осуществления, если необходимо подкожное введение, для необходимой дозы может потребоваться объем, который трудно вместить в одну инъекцию. В таких вариантах осуществления для достижения необходимой дозы можно применять две или более инъекции. В определенных вариантах осуществления дозу можно вводить за две или более инъекции для сведения к минимуму реакции в месте инъекции у индивидуума. В других вариантах осуществления соединение или фармацевтическое средство вводят путем инфузии в течение длительного периода времени или непрерывно. Дозы могут быть указаны в виде количества фармацевтического средства в час, день, неделю или месяц.

"Схема введения доз" представляет собой комбинацию доз, разработанную для достижения одного или нескольких необходимых эффектов.

"Двухнитевое антисмысловое соединение" означает антисмысловое соединение, содержащее два олигомерных соединения, которые являются комплементарными друг другу и образуют дуплекс, и где одно из двух указанных олигомерных соединений содержит олигонуклеотид.

"Эффективное количество" означает количество соединения, достаточное для достижения необходимого физиологического результата у индивидуума, нуждающегося в соединении. Эффективное количество может варьироваться для индивидуумов в зависимости от состояния здоровья и физического состояния индивидуума, подлежащего лечению, таксономической группы индивидуумов, подлежащих лечению, состава композиции, оценки медицинского состояния индивидуума, а также других учитываемых факторов.

"Эффективность" означает способность обеспечивать желаемый эффект.

"Экспрессия" включает в себя все функции, посредством которых закодированная в гене информация преобразуется в присутствующие и функционирующие в клетке структуры. Такие структуры включают без ограничения продукты транскрипции и трансляции.

"Гэпмер" означает олигонуклеотид, содержащий внутреннюю область, имеющую несколько нуклеозидов, которые способствуют расшеплению под действием РНКазы Н, расположенную между внешними областями, имеющими один или несколько нуклеозидов, где нуклеозиды, образующие внутреннюю область, химически отличаются от нуклеозида или нуклеозидов, образующих внешние области. Внутренняя область может называться "гэпом", а внешние области могут называться "флангами".

5

10

15

20

25

30

"Гибридизация" означает отжиг олигонуклеотидов и/или нуклеиновых кислот. Без ограничения конкретным механизмом, наиболее распространенный механизм гибридизации предполагает образование водородных связей, которое может представлять собой образование водородных связей по типу уотсон-криковского, хугстиновского или обратного хугстиновского взаимодействия между комплементарными нуклеиновыми основаниями. В определенных вариантах осуществления комплементарные молекулы нуклеиновой кислоты включают без ограничения антисмысловое соединение и нуклеиновую кислоту-мишень. В определенных вариантах осуществления комплементарные молекулы нуклеиновой кислоты включают без ограничения олигонуклеотид и нуклеиновую кислоту-мишень.

"Непосредственно прилегающий" означает, что между непосредственно прилегающими элементами одного типа отсутствуют промежуточные элементы (например, между непосредственно прилегающими нуклеиновыми основаниями отсутствуют промежуточные нуклеиновые основания).

"Ингибитор контрольных точек иммунного ответа" означает средство, которое подавляет экспрессию или активность белка, подавляющего иммунный ответ. В одном варианте осуществления ингибитор контрольных точек иммунного ответа представляет собой средство, которое подавляет сигнальные пути СТLA-4 или PD-1. Конкретные ингибиторы контрольных точек включают в себя антитела, которые подавляют PD-1, PD-L1 или СТLA-4.

"Иммуномодулирующее средство" означает средство, которое усиливает иммунный ответ (например, противоопухолевый иммунный ответ). Иллюстративные иммуномодулирующие средства по настоящему изобретению включают антитела, такие как антитело к CTLA-4, антитело к PD-L1, антитело к PD-1 и антигенные фрагменты любого из них, а также агонисты ОХ40, в том числе белки, такие как слитый белок на основе лиганда

OX40, антитело к OX40 или их фрагменты. В одном варианте осуществления иммуномодулирующее средство является ингибитором контрольных точек иммунного ответа.

"Индивидуум" означает человека или отличное от человека животное, выбранных для лечения или терапии.

"Подавление экспрессии или активности" относится к снижению или блокированию экспрессии или активности относительно экспрессии или активности в необработанном или контрольном образце и не обязательно указывает на полное устранение экспрессии или активности.

5

10

15

20

25

30

"Межнуклеозидная связь" означает группу или связь, которые образуют ковалентную связь между прилегающими друг к другу нуклеозидами в олигонуклеотиде. "Модифицированная межнуклеозидная связь" означает любую межнуклеозидную связь, отличную от встречающейся в природе фосфатной межнуклеозидной связи. Нефосфатные связи называются в данном документе модифицированными межнуклеозидными связями.

"Удлиненные олигонуклеотиды" представляют собой олигонуклеотиды, которые содержат один или несколько дополнительных нуклеозидов по сравнению с олигонуклеотидом, раскрытым в данном документе, например, исходным олигонуклеотидом.

"Связанные нуклеозиды" означают прилегающие друг к другу нуклеозиды, связанные между собой межнуклеозидной связью.

"Линкерный нуклеозид" означает нуклеозид, который связывает олигонуклеотид с конъюгируемым компонентом. Линкерные нуклеозиды расположены в конъюгирующем линкере соединения. Линкерные нуклеозиды не считаются частью олигонуклеотидного фрагмента соединения, даже если они являются смежными с олигонуклеотидом.

"Несовпадающее" или "некомплементарное" означает нуклеиновое основание первого олигонуклеотида, которое не является комплементарным соответствующему нуклеиновому основанию второго олигонуклеотида или нуклеиновой кислоты-мишени при выравнивании первого и второго олигонуклеотидов. Например, нуклеиновые основания, в том числе без ограничения универсальные нуклеиновые основания инозин и гипоксантин, способны гибридизироваться с по меньшей мере одним нуклеиновым основанием, но тем не менее являются несовпадающими или некомплементарными относительно нуклеинового основания, с которым они гибридизируются. В качестве другого примера, нуклеиновое основание первого

олигонуклеотида, которое не способно гибридизироваться с соответствующим нуклеиновым основанием второго олигонуклеотида или нуклеиновой кислоты-мишени, при выравнивании первого и второго олигонуклеотидов является несовпадающим или некомплементарным нуклеиновым основанием.

"Модулирование" относится к изменению или корректировке признака в клетке, ткани, органе или организме. Например, модулирование РНК FOXP3 может означать увеличение или уменьшение уровня РНК FOXP3 и/или белка FOXP3 в клетке, ткани, органе или организме. "Модулятор" осуществляет изменение в клетке, ткани, органе или организме. Например, соединение, оказывающее воздействие на FOXP3, может представлять собой модулятор, который уменьшает количество РНК FOXP3 и/или белка FOXP3 в клетке, ткани, органе или организме.

"МОЕ" означает метоксиэтил.

5

10

15

20

25

30

"Мономер" относится к одной структурной единице олигомера. Мономеры включают без ограничения нуклеозиды и нуклеотиды.

"Мотив" означает паттерн немодифицированных и/или модифицированных сахарных компонентов, нуклеиновых оснований и/или межнуклеозидных связей в олигонуклеотиде.

"Природный" или "встречающийся в природе" означает нахождение в природе.

"Небициклический модифицированный сахар" или "небициклический модифицированный сахарный компонент" означает модифицированный сахарный компонент, который содержит модификацию, такую как заместитель, который не образует мостик между двумя атомами сахара с образованием второго кольца.

"Нуклеиновая кислота" относится к молекулам, состоящим из мономерных нуклеотидов. Нуклеиновая кислота включает без ограничения рибонуклеиновые кислоты (РНК), дезоксирибонуклеиновые кислоты (ДНК), однонитевые нуклеиновые кислоты и двухнитевые нуклеиновые кислоты.

"Нуклеиновое основание" означает гетероциклический компонент, способный к спариванию с основанием другой нуклеиновой кислоты. Как используется в данном документе, "встречающееся в природе нуклеиновое основание" представляет собой аденин (А), тимин (Т), цитозин (С), урацил (U) и гуанин (G). "Модифицированное нуклеиновое основание" представляет собой встречающееся в природе нуклеиновое основание, которое

является химически модифицированным. "Универсальное основание" или "универсальное нуклеиновое основание" представляет собой нуклеиновое основание, отличное от встречающегося в природе нуклеинового основания и модифицированного нуклеинового основания и способное к спариванию с любым нуклеиновым основанием.

"Последовательность нуклеиновых оснований" означает порядок расположения смежных нуклеиновых оснований в нуклеиновой кислоте или олигонуклеотиде независимо от какого-либо сахара или межнуклеозидной связи.

5

10

15

20

25

"Нуклеозид" означает соединение, содержащее нуклеиновое основание и сахарный компонент. Нуклеиновое основание и сахарный компонент независимо друг от друга являются немодифицированными или модифицированными. "Модифицированный нуклеозид" означает нуклеозид, содержащий модифицированное нуклеиновое основание и/или модифицированный сахарный компонент. Модифицированные нуклеозиды включают в себя нуклеозиды с удаленными азотистыми основаниями, у которых отсутствует нуклеиновое основание.

"Олигомерное соединение" означает соединение, содержащее один олигонуклеотид и необязательно один или несколько дополнительных компонентов, таких как конъюгирующая группа или концевая группа.

"Олигонуклеотид" означает полимер из связанных нуклеозидов, каждый из которых может быть модифицированным или немодифицированным независимо друг от друга. Если не указано иное, олигонуклеотиды состоят из 8-80 связанных нуклеозидов. "Модифицированный олигонуклеотид" означает олигонуклеотид, где по меньшей мере один сахар, нуклеиновое основание или межнуклеозидная связь являются модифицированными. "Немодифицированный олигонуклеотид" означает олигонуклеотид, который не содержит какую-либо модификацию сахара, нуклеинового основания или межнуклеозидной связи.

"Исходный олигонуклеотид" означает олигонуклеотид, последовательность которого применяют в качестве основы для конструирования большего количества олигонуклеотидов со сходной последовательностью, но с различной длиной, мотивами и/или химическими структурами. Новые сконструированные олигонуклеотиды могут иметь такую же или перекрывающуюся последовательность в сравнении с исходным олигонуклеотидом.

"Парентеральное введение" означает введение путем инъекции или инфузии. Парентеральное введение включает подкожное введение, внутривенное введение, внутримышечное введение, внутриартериальное введение, внутрибрюшинное введение или внутричерепное введение, например, интратекальное или интрацеребровентрикулярное введение.

5

10

15

20

25

"Фармацевтически приемлемый носитель или разбавитель" означает любое вещество, подходящее для применения при введении индивидууму. Например, фармацевтически приемлемый носитель может представлять собой стерильный водный раствор, такой как PBS или вода для инъекций.

"Фармацевтически приемлемые соли" означают физиологически и фармацевтически приемлемые соли соединений, таких как олигомерные соединения или олигонуклеотиды, т. е. соли, которые сохраняют необходимую биологическую активность исходного соединения и не придают ему нежелательные токсикологические эффекты.

"Фармацевтическое средство" означает соединение, которое оказывает терапевтически благоприятный эффект при введении индивидууму.

"Фармацевтическая композиция" означает смесь веществ, подходящих для введения индивидууму. Например, фармацевтическая композиция может содержать одно или несколько соединений или их соль и стерильный водный раствор.

"Фосфотиоатная связь" означает модифицированную фосфатную связь, в которой один из немостиковых атомов кислорода замещен атомом серы. Фосфотиоатная межнуклеозидная связь представляет собой модифицированную межнуклеозидную связь.

"Фосфорный компонент" означает группу атомов, содержащую атом фосфора. В определенных вариантах осуществления фосфорный компонент включает моно-, ди- или трифосфат или фосфотиоат.

"Фрагмент" означает определенное количество смежных (т. е. связанных) нуклеиновых оснований нуклеиновой кислоты. В определенных вариантах осуществления фрагмент представляет собой определенное количество смежных нуклеиновых оснований нуклеиновой кислоты-мишени. В определенных вариантах осуществления фрагмент представляет собой определенное количество смежных нуклеиновых оснований олигомерного соединения.

"Предупреждение" относится к задержке или предотвращению начала проявления, развития или прогрессирования заболевания, нарушения или состояния в течение периода времени от нескольких минут до неопределенного срока.

"Пролекарство" означает соединение в форме вне организма, которое при введении индивидууму метаболизируется до другой формы внутри его организма или клеток. В определенных вариантах осуществления метаболизированная форма является активной или более активной формой соединения (например, лекарственного средства). Как правило, пролекарства внутри облегчается превращение организма благодаря действию фермента(ферментов) (например, эндогенного вирусного фермента) или или химического(химических) вещества(веществ), присутствующих в клетках или тканях, и/или физиологическим условиям.

5

10

15

20

25

"Снижение" означает доведение до меньших степени, размера, количества или числа.

"№ в RefSeq" представляет собой уникальную комбинацию букв и цифр, присвоенных последовательности, которые указывают на то, что последовательность соответствует конкретному транскрипту-мишени (например, гену-мишени). Такая последовательность и информация о гене-мишени (в совокупности запись о гене) могут быть найдены в базе данных генетических последовательностей. Базы данных генетических последовательностей включают базу данных эталонных последовательностей NCBI, GenBank, Европейский архив нуклеотидов и Японский банк данных о ДНК (последние три образуют Международное сотрудничество баз данных о нуклеотидных последовательностях или INSDC).

"Область" определяется как фрагмент нуклеиновой кислоты-мишени, имеющий по меньшей мере одну идентифицируемую структуру, функцию или характеристику.

"Соединение для RNAi" означает антисмысловое соединение, которое действует, по меньшей мере частично, посредством RISC или Ago2, но не посредством РНКазы Н, модулируя нуклеиновую кислоту-мишень и/или белок, кодируемый нуклеиновой кислотой-мишенью. Соединения для RNAi включают без ограничения двухнитевую siRNA, однонитевую РНК (ssRNA) и микроРНК, в том числе миметики микроРНК.

"Сегменты" определяются как более мелкие фрагменты или субфрагменты областей в пределах нуклеиновой кислоты.

"Побочные эффекты" означают физиологическое заболевание и/или состояния, связанные с лечением, которые отличаются от желаемых эффектов. В определенных вариантах осуществления побочные эффекты включают реакции в месте инъекции, аномалии функциональных печеночных проб, аномалии функционирования почек, гепатотоксичность, почечную токсичность, аномалии функционирования центральной нервной системы, миопатии и недомогание. Например, повышенные уровни аминотрансферазы в сыворотке крови могут указывать на гепатотоксичность или аномалию функционирования печени. Например, повышенные уровни билирубина могут указывать на гепатотоксичность или аномалию функционирования печени.

5

10

15

20

25

30

"Однонитевое" применительно к соединению означает, что соединение имеет только один олигонуклеотид. "Самокомплементарный" означает олигонуклеотид, который по меньшей мере частично гибридизируется сам с собой. Соединение, состоящее из одного олигонуклеотида, где олигонуклеотид соединения является самокомплементарным, является однонитевым соединением. Однонитевое соединение может быть способно связываться с комплементарным соединением с образованием дуплекса.

"Сайты" определяются как уникальные положения нуклеиновых оснований в пределах нуклеиновой кислоты-мишени.

"Способный к специфичной гибридизации" относится к олигонуклеотиду, характеризующемуся достаточной степенью комплементарности между олигонуклеотидом и нуклеиновой кислотой-мишенью для индуцирования желаемого эффекта, проявляющему в то же время минимальные эффекты или не проявляющему такие эффекты в отношении нуклеиновых кислот, не являющихся мишенями. В определенных вариантах осуществления специфичная гибридизация происходит в физиологических условиях.

"Специфичное подавление" применительно к нуклеиновой кислоте-мишени означает снижение или блокирование экспрессии нуклеиновой кислоты-мишени при проявлении в то же время меньших, минимальных эффектов или без проявления таких эффектов в отношении нуклеиновых кислот, не являющихся мишенями. Снижение не обязательно указывает на полное устранение экспрессии нуклеиновой кислоты-мишени.

"Стандартный клеточный анализ" означает анализ(анализы), описанные в примерах, и их приемлемые варианты.

"Стандартный эксперимент in vivo" означает процедуру(процедуры), описанные в примере(примерах), и их приемлемые варианты.

"Стереослучайный хиральный центр" применительно к совокупности молекул с идентичной молекулярной формулой означает хиральный центр, имеющий случайную стереохимическую конфигурацию. Например, в совокупности молекул, содержащих стереослучайный хиральный центр, количество молекул, имеющих (S)-конфигурацию стереослучайного хирального центра, может необязательно являться таким же, как количество молекул, имеющих (R)-конфигурацию стереослучайного хирального центра. Стереохимическая конфигурация хирального центра считается случайной, если она является результатом способа синтеза, который не предназначен для контроля стереохимической конфигурации. В определенных вариантах осуществления стереослучайный хиральный центр представляет собой стереослучайную фосфотиоатную межнуклеозидную связь.

5

10

15

20

25

30

"Сахарный компонент" означает немодифицированный сахарный компонент или модифицированный сахарный компонент. "Немодифицированный сахарный компонент" или "немодифицированный caxap" означает 2'-ОН(Н)-фуранозильный компонент, обнаруживаемый в РНК ("немодифицированный сахарный компонент РНК"), или 2'-Н(Н)-компонент, обнаруживаемый в ДНК ("немодифицированный сахарный компонент ДНК"). Немодифицированные сахарные компоненты имеют один атом водорода в каждом из 1'-, 3'- и 4'-положений, атом кислорода в 3'-положении и два атома водорода в 5'-положении. "Модифицированный сахарный компонент" или "модифицированный сахар" означает модифицированный фуранозильный сахарный компонент или имитатор "Модифицированный фуранозильный сахарный компонент" означает фуранозильный сахар, содержащий неводородный заместитель вместо по меньшей мере одного атома водорода немодифицированного сахарного компонента. В определенных вариантах осуществления модифицированный фуранозильный сахарный компонент представляет собой 2'-замещенный сахарный компонент. Такие модифицированные фуранозильные сахарные компоненты включают в себя бициклические сахара и небициклические сахара.

"Имитатор сахара" означает модифицированный сахарный компонент, отличный от фуранозильного компонента, который может связывать нуклеиновое основание с другой группой, такой как межнуклеозидная связь, конъюгированная группа или концевая группа, в олигонуклеотиде. Модифицированные нуклеозиды, содержащие имитаторы сахаров, могут

быть включены в состав олигонуклеотида в одном или нескольких положениях, и такие олигонуклеотиды способны к гибридизации с комплементарными соединениями или нуклеиновыми кислотами.

"Синергизм" или "действовать синергично" относится к эффекту комбинации, который превышает сумму эффектов каждого компонента по отдельности в тех же дозах.

"FOXP3" означает любую нуклеиновую кислоту или белок FOXP3. "Нуклеиновая кислота FOXP3" означает любую нуклеиновую кислоту, кодирующую FOXP3. Например, в определенных вариантах осуществления нуклеиновая кислота FOXP3 включает в себя последовательность ДНК, кодирующую FOXP3, последовательность РНК, транскрибируемую из ДНК, кодирующей FOXP3 (включая геномную ДНК, содержащую интроны и экзоны), и последовательность мРНК, кодирующую FOXP3. "мРНК FOXP3" означает мРНК, кодирующую белок FOXP3. Мишень может быть указана в верхнем или нижнем регистре.

"Специфичный ингибитор FOXP3" относится к любому средству, способному к специфичному подавлению экспрессии или активности PHK FOXP3 и/или белка FOXP3 на молекулярном уровне. Например, специфичные ингибиторы FOXP3 включают нуклеиновые кислоты (в том числе антисмысловые соединения), пептиды, антитела, малые молекулы и другие средства, способные к подавлению экспрессии PHK FOXP3 и/или белка FOXP3.

"Ген-мишень" относится к гену, кодирующему мишень.

5

10

15

20

25

"Нацеливание" означает специфичную гибридизацию соединения с нуклеиновой кислотой-мишенью с целью индуцирования желаемого эффекта.

Все из "нуклеиновой кислоты-мишени", "РНК-мишени", "РНК-транскрипта-мишени" и "нуклеиновой кислоты-мишени" означают нуклеиновую кислоту, на которую способны нацеливаться соединения, описанные в данном документе.

"Область-мишень" означает фрагмент нуклеиновой кислоты-мишени, на который нацеливается одно или несколько соединений.

"Сегмент-мишень" означает последовательность нуклеотидов нуклеиновой кислоты-мишени, на которую нацеливается соединение. "5'-концевой сайт-мишень" относится к нуклеотиду сегмента-мишени, наиболее близкому к 5'-концу. "3'-концевой сайт-мишень" относится к нуклеотиду сегмента-мишени, наиболее близкому к 3'-концу.

"Концевая группа" означает химическую группу или группу атомов, которая ковалентно связана с концом олигонуклеотида.

"Терапевтически эффективное количество" означает количество соединения, фармацевтического средства или композиции, которое обеспечивает терапевтически благоприятный эффект для индивидуума.

"Лечение" относится к введению соединения или фармацевтической композиции животному с целью осуществления изменения или улучшения в отношении заболевания, нарушения или состояния у животного.

Определенные варианты осуществления

5

10

15

20

25

30

В определенных вариантах осуществления предусмотрены способы, соединения и композиции для подавления экспрессии FOXP3.

В определенных вариантах осуществления предусмотрены соединения, нацеленные на нуклеиновую кислоту FOXP3. В определенных вариантах осуществления нуклеиновая кислота FOXP3 имеет последовательность, приведенную в RefSeq или GENBANK под NM 014009.3 (SEQ ID NO: номером доступа 1), NT 011568.12 TRUNC 11907130 11921808 COMP (SEQ ID NO: 2), NM 001114377.1 (SEQ ID NO: 3), NC 000023.11 TRUNC 49247001 49273000 COMP (SEQ ID NO: 4) или в UCSC UC064ZFP.1, которая соответствует доступа геномным координатам chrX:49251334-49259240 в сборке GRCh38/hg38 (SEQ ID NO: 5); каждый из которых включен посредством ссылки во всей своей полноте. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединения соединение является однонитевым. В определенных вариантах осуществления

соединение является двухнитевым. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 9-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 9 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов.

5

10

15

20

25

30

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 10-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 10 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 11-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 11 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 11-30 связанных нуклеозидов.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 12-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 12

смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 12-30 связанных нуклеозидов.

5

10

15

20

25

30

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий фрагмент из по меньшей мере 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований, комплементарный фрагменту равной длины в пределах нуклеотидов 2269-2284 в SEQ ID NO: 1. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий фрагмент из по меньшей мере 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований, комплементарный фрагменту равной длины в пределах нуклеотидов 1233-1248, 2156-2171,

2735-2750, 4661-4676, 7307-7322, 7331-7346, 7980-7995, 11581-11596 или 12396-12411 в SEQ ID NO: 2. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

5

10

15

20

25

30

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и являющийся комплементарным по отношению к SEQ ID NO: 1 в пределах нуклеотидов 2269-2284. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и являющийся комплементарным по отношению к SEQ ID NO: 2 в пределах нуклеотидов 1233-1248, 2156-2171, 2735-2750, 4661-4676, 7307-7322, 7331-7346, 7980-7995, 11581-11596 или 12396-12411. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую фрагмент из по меньшей мере 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, который имеет

последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575.

В определенных вариантах осуществления соединение, нацеленное на FOXP3, представляет собой ION 1063734. Из более чем 3000 соединений, которые были подвергнуты скринингу, как описано в разделе "Примеры" ниже, ION 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313 оказались наилучшими лидерными соединениями.

5

10

15

20

25

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит по меньшей мере одну модифицированную межнуклеозидную связь, по меньшей мере один модифицированный сахар и/или по меньшей мере одно модифицированное нуклеиновое основание.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит по меньшей мере один модифицированный сахар. В определенных вариантах осуществления по меньшей мере один модифицированный сахар содержит 2'-О-метоксиэтильную группу. В определенных вариантах осуществления по меньшей мере один модифицированный сахар представляет собой бициклический сахар, такой как содержащий группу 4'-СH(CH₃)-O-2', группу 4'-CH₂-O-2' или группу 4'-(CH₂)₂-O-2'.

В определенных вариантах осуществления модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь, такую как фосфотиоатная межнуклеозидная связь.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит по меньшей мере одно модифицированное нуклеиновое основание, такое как 5-метилцитозин.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым 30 фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар. В определенных вариантах осуществления модифицированный

олигонуклеотид имеет длину 16-80 связанных нуклеозидов и имеет последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных И последовательность нуклеиновых нуклеозидов имеет оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и имеет последовательность нуклеиновых оснований, состоящую из последовательности, указанной под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575.

5

10

15

20

25

30

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 9-3246, или состоит из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575, или состоит из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575, или состоит из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5

10

15

20

25

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; где каждый нуклеозид каждого флангового сегмента содержит сЕt-нуклеозид; где каждая межнуклеозидная связь представляет собой фосфотиоатную связь; и где каждый цитозин представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под SEQ ID NO: 449, или состоит из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; где каждый нуклеозид каждого флангового сегмента содержит сЕt-нуклеозид; где каждая межнуклеозидная связь представляет собой фосфотиоатную связь; и где каждый цитозин представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит ION 1063734 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

5

В определенных вариантах осуществления соединение содержит натриевую соль ION 1063734 или состоит из нее, при этом она имеет следующую химическую структуру:

5 В любом из вышеперечисленных вариантов осуществления соединение или олигонуклеотид могут быть на по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95%, по меньшей мере 98%, по меньшей мере 99% или 100% комплементарными нуклеиновой кислоте, кодирующей FOXP3.

В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым. В определенных вариантах осуществления соединение содержит дезоксирибонуклеотиды. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления соединение является двухнитевым и содержит рибонуклеотиды. В любом из вышеперечисленных вариантов осуществления

10

соединение может представлять собой антисмысловое соединение или олигомерное соединение.

В любом из вышеперечисленных вариантов осуществления соединение может иметь длину 8-80, 10-30, 12-50, 13-30, 13-50, 14-30, 14-50, 15-30, 15-50, 16-30, 16-50, 17-30, 17-50, 18-22, 18-24, 18-30, 18-50, 19-22, 19-30, 19-50 или 20-30 связанных нуклеозидов. В определенных вариантах осуществления соединение содержит олигонуклеотид или состоит из него.

5

10

15

20

25

30

В определенных вариантах осуществления соединения или композиции, предусмотренные в данном документе, содержат соль модифицированного олигонуклеотида. В определенных вариантах осуществления соль представляет собой натриевую соль. В определенных вариантах осуществления соль представляет собой калиевую соль.

В определенных вариантах осуществления соединения или композиции, описанные в данном документе, характеризуются высокой переносимостью, что демонстрируется наличием по меньшей мере одного из увеличения значения уровня аланинтрансаминазы (ALT) или аспартаттрансаминазы (AST) в не более чем 4 раза, 3 раза или 2 раза по сравнению с животными, обработанными физиологическим раствором, или увеличения массы печени, селезенки или почки на не более чем 30%, 20%, 15%, 12%, 10%, 5% или 2% по сравнению с животными, обработанными контролем. В определенных вариантах осуществления соединения или композиции, описанные в данном документе, характеризуются высокой переносимостью, что демонстрируется отсутствием увеличения уровней ALT или AST по сравнению с животными, обработанными контролем. В определенных вариантах осуществления соединения или композиции, описанные в данном документе, характеризуются высокой переносимостью, что демонстрируется отсутствием увеличения массы печени, селезенки или почки по сравнению с контрольными животными.

В определенных вариантах осуществления предусмотрена композиция, содержащая соединение согласно любому из вышеуказанных вариантов осуществления или его соль и по меньшей мере один из фармацевтически приемлемого носителя или разбавителя. В определенных вариантах осуществления композиция имеет вязкость, составляющую менее чем приблизительно 40 сантипуазов (сП), менее чем приблизительно 30 сантипуазов (сП), менее чем приблизительно 15 сантипуазов (сП) или менее чем приблизительно 10 сантипуазов (сП). В определенных вариантах осуществления композиция, имеющая любое из вышеуказанных значений вязкости, содержит

соединение, предусмотренное в данном документе, в концентрации, составляющей приблизительно 100 мг/мл, приблизительно 125 мг/мл, приблизительно 150 мг/мл, приблизительно 175 мг/мл, приблизительно 200 мг/мл, приблизительно 225 мг/мл, приблизительно 250 мг/мл, приблизительно 275 мг/мл или приблизительно 300 мг/мл. В определенных вариантах осуществления композиция, имеющая любое из вышеуказанных значений вязкости и/или концентрации соединения, имеет температуру, соответствующую комнатной температуре или составляющую приблизительно 20°С, приблизительно 21°С, приблизительно 22°С, приблизительно 23°С, приблизительно 24°С, приблизительно 25°С, приблизительно 26°С, приблизительно 29°С или приблизительно 30°С.

Некоторые показания

Определенные варианты осуществления, представленные в данном документе, относятся к способам подавления экспрессии FOXP3, которые могут быть применимы для лечения, предупреждения или уменьшения интенсивности проявлений рака у индивидуума путем введения соединения, которое нацеливается на FOXP3. В определенных вариантах осуществления соединение может представлять собой специфичный ингибитор FOXP3. В определенных вариантах осуществления соединение может представлять собой антисмысловое соединение, олигомерное соединение или олигонуклеотид, нацеленный на FOXP3.

Примеры форм рака, поддающихся лечению, предупреждению и/или уменьшению интенсивности проявлений с помощью соединений и способов, предусмотренных в данном документе, включают формы рака с FOXP3-положительными (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (HCC), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную,

рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL).

5

10

15

20

25

В определенных вариантах осуществления В-клеточная лимфома представляет собой неходжкинскую В-клеточную лимфому. Примеры неходжкинской В-клеточной лимфомы из определенных вариантов осуществления, которые можно лечить с помощью соединений, предусмотренных В данном документе, включают без ограничения диффузную крупноклеточную B-клеточную лимфому (DLBCL), лимфому из активированных B-клеток (ABC-DLBCL), лимфому из В-клеток зародышевого центра (GCB DLBCL), фолликулярную лимфому, лимфому из лимфоидной ткани слизистых оболочек (MALT), мелкоклеточную лимфоцитарную лимфому, хронический лимфоцитарный лейкоз, мантийноклеточную лимфому (MCL), лимфому Беркитта, медиастинальную крупноклеточную В-клеточную лимфому, макроглобулинемию Вальденстрема, узловую В-клеточную лимфому из клеток маргинальной зоны (NMZL), лимфому из клеток маргинальной зоны селезенки (SMZL), внутрисосудистую крупноклеточную В-клеточную лимфому, первичную эффузионную лимфому и лимфогранулематоз.

В определенных вариантах осуществления Т-клеточная лимфома, которую можно лечить с помощью соединений, предусмотренных в данном документе, включает без ограничения периферическую Т-клеточную лимфому и анапластическую крупноклеточную лимфому (ALCL).

В определенных вариантах осуществления лейкоз, который можно лечить с помощью соединений, предусмотренных в данном документе, включает без ограничения острый лимфоцитарный лейкоз (ALL).

В определенных вариантах осуществления рак молочной железы имеет одну или несколько из следующих характеристик: положительный по андрогеновому рецептору, рост зависит от андрогена; негативный по эстрогеновому рецептору (ER), рост не зависит от

5

10

15

20

25

30

эстрогена; негативный по прогестероновому рецептору (PR), рост не зависит от прогестерона, или Her2/neu-негативный. В определенных вариантах осуществления рак молочной железы является трижды негативным по ER, PR и HER2 (ER-, PR-, HER2-). В определенных вариантах осуществления рак молочной железы является трижды негативным и AR-положительным (ER-, PR-, HER2-, AR+). В определенных вариантах осуществления рак молочной железы является ER-негативным и AR-положительным (ER-, AR+). В определенных вариантах осуществления рак молочной железы является ER-положительным и AR-положительным (ER+, AR+). В определенных вариантах осуществления рак молочной железы является апокринным. Формы апокринного рака молочной железы зачастую являются "трижды негативными", что означает, что клетки не экспрессируют рецепторы ER, PR или HER2 и обычно, но не обязательно, являются AR-положительными. В определенных вариантах осуществления апокринный рак молочной железы является трижды негативным по ER, PR и HER2 и AR-положительным (ER-, PR-, HER2-, AR+). В определенных вариантах рак осуществления апокринный молочной железы является ER-негативным AR-положительным (ER-, AR+). В определенных вариантах осуществления апокринный рак молочной железы происходит из потовой железы груди. В определенных вариантах осуществления апокринный рак молочной железы представляет собой протоковый рак или раковую клетку молочной железы. В определенных вариантах осуществления апокринный рак молочной железы может иметь один или несколько из следующих признаков: большое количество эозинофильной гранулярной цитоплазмы, четко определенные края, большие везикулярные ядра, ядерно-цитоплазматическое отношение, составляющее приблизительно 1:2, и/или скопления секреторных гранул в апикальной части цитоплазмы, известные как апикальные выступы. В определенных вариантах осуществления рак молочной железы является ER-негативным и AR-положительным (ER-, AR+) молекулярным апокринным раком молочной железы. В определенных аспектах ER-негативный и AR-положительный (ER-, AR+) апокринный рак молекулярный молочной железы может быть, кроме РR-положительным, PR-негативным, HER2-негативным или HER2-положительным. В вариантах осуществления определенных рак молочной железы HER2-положительным. В определенных вариантах осуществления рак молочной железы является РК-положительным. В определенных вариантах осуществления рак молочной железы является ER-положительным. Рак молочной железы может быть идентифицирован как положительный или негативный в отношении рецепторов гормонов, таких как ER, PR или НЕR2, с помощью стандартных гистологических методик. Например, в некоторых вариантах осуществления гистологические образцы рака молочной железы могут быть классифицированы как "трижды негативные" (ER-, PR-, HER2-), если менее 1% клеток демонстрируют ядерное окрашивание на эстрогеновые и прогестероновые рецепторы, а иммуногистохимическое окрашивание на HER2 показывает 0, 1- или 2-кратный положительный балл и отношение FISH (сигналов гена HER2 к сигналам хромосомы 17) менее 1,8 согласно соответствующим рекомендациям ASCO и CAP (Meyer, P. et al., PLoS ONE 7(5): e38361 (2012)).

5

10

15

20

25

30

В определенных вариантах осуществления способ лечения, предупреждения или уменьшения интенсивности проявлений рака у индивидуума включает введение индивидууму соединения, содержащего специфичный ингибитор FOXP3, за счет чего осуществляется лечение, предупреждение или уменьшение интенсивности проявлений рака. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на FOXP3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, 16-80 нуклеозидов имеющий имеющий длину связанных последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид, соединение содержит который имеет последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов

осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ІОХ 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления введение соединения приводит к подавлению или снижению иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования. В определенных вариантах осуществления введение соединения приводит к индуцированию или активации противоопухолевого противоракового или иммунитета; противоракового противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации Т-клеток; активации или инфильтрации CD8 Т-клеток; активации или инфильтрации NK-клеток; активации или инфильтрации макрофагов И дендритных клеток; воспаления или экспрессии провоспалительных цитокинов или хемокинов.

5

10

15

20

25

30

В определенных вариантах осуществления способ подавления экспрессии FOXP3 у индивидуума, у которого имеется рак или риск его наличия, включает введение индивидууму соединения, содержащего специфичный ингибитор FOXP3, за счет чего обеспечивается подавление экспрессии FOXP3 у индивидуума. В определенных вариантах осуществления введение соединения приводит к подавлению экспрессии FOXP3 в Тгед-клетках, микроокружении опухоли, строме опухоли, опухолях, инфильтрированных Тгед, иммунных клетках, лимфоидной ткани, лимфатических узлах или внутриопухолевых Foxp3+ клетках. В определенных вариантах осуществления у индивидуума имеются рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Тгед в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточная карцинома легкого (NSCLC), мелкоклеточная карцинома легкого (SCLC), плоскоклеточная карцинома (SCC), рак головы и шеи, плоскоклеточная карцинома головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак

10

15

20

25

30

ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярная карцинома (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиома, формы саркомы (например, эпителиоидная, рабдоидная и синовиальная), хордома, рак почки, почечноклеточная карцинома (RCC), рак головного мозга, нейробластома, глиобластома, рак кожи, меланома, базальноклеточная карцинома, карцинома из клеток Меркеля, рак крови, рак кроветворной системы, миелома, множественная миелома (ММ), В-клеточные злокачественные новообразования, лимфома, В-клеточная лимфома, лимфома Ходжкина, Т-клеточная лимфома, лейкоз или острый лимфоцитарный лейкоз (ALL) или риск их наличия. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на FOXP3. определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 нуклеозидов связанных имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид, соединение содержит который последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ІОХ 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления введение соединения приводит к подавлению или снижению иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования. В определенных вариантах осуществления введение соединения приводит к индуцированию или активации противоракового противоопухолевого иммунитета; противоракового или противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации Т-клеток; активации или инфильтрации CD8 Т-клеток; активации или инфильтрации NK-клеток; активации или инфильтрации макрофагов И дендритных клеток; воспаления экспрессии провоспалительных цитокинов или хемокинов. В определенных вариантах осуществления у индивидуума идентифицировано наличие рака или риск его наличия.

5

10

15

20

25

30

В определенных вариантах осуществления способ подавления экспрессии FOXP3 в клетке включает приведение клетки в контакт с соединением, содержащим специфичный ингибитор FOXP3, за счет чего обеспечивается подавление экспрессии FOXP3 в клетке. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления клетка представляет собой Treg-клетку, клетку микроокружения опухоли, клетку стромы опухоли, Treg-клетку, инфильтрирующую опухоль, иммунную клетку, лимфоидную клетку, клетку лимфатического узла или внутриопухолевую клетку. В определенных вариантах осуществления клетка находится в микроокружении опухоли, строме опухоли или лимфатическом узле индивидуума, у которого имеется рак или риск его наличия. В определенных вариантах осуществления рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак

10

15

20

25

30

желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL). В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный FOXP3. определенных вариантах осуществления соединение содержит модифицированный длину 8-80 нуклеозидов олигонуклеотид, имеющий связанных имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный соединение содержит олигонуклеотид, который последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ІОХ 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

5

10

15

20

25

30

В определенных вариантах осуществления способ снижения или подавления иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования у индивидуума, у которого имеется рак или риск его наличия, включает введение индивидууму соединения, содержащего специфичный ингибитор FOXP3, за счет чего обеспечивается снижение или подавление иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования у индивидуума. В определенных вариантах осуществления способ индуцирования или активации противоракового или противоопухолевого иммунитета; противоракового или противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации Т-клеток; активации или инфильтрации CD8 Т-клеток; активации или инфильтрации NK-клеток; активации или инфильтрации макрофагов и дендритных клеток; воспаления или экспрессии провоспалительных цитокинов или хемокинов у индивидуума, у которого имеется рак или риск его наличия, включает введение индивидууму соединения, содержащего специфичный ингибитор FOXP3. В определенных вариантах осуществления у индивидуума имеются рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточная карцинома легкого (NSCLC), мелкоклеточная карцинома легкого (SCLC), плоскоклеточная карцинома (SCC), рак головы и шеи, плоскоклеточная карцинома головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярная карцинома (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиома, формы саркомы (например, эпителиоидная, рабдоидная

10

15

20

25

30

и синовиальная), хордома, рак почки, почечноклеточная карцинома (RCC), рак головного мозга, нейробластома, глиобластома, рак кожи, меланома, базальноклеточная карцинома, карцинома из клеток Меркеля, рак крови, рак кроветворной системы, миелома, множественная миелома (ММ), В-клеточные злокачественные новообразования, лимфома, В-клеточная лимфома, лимфома Ходжкина, Т-клеточная лимфома, лейкоз или острый лимфоцитарный лейкоз (ALL) или риск их наличия. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах соединение содержит олигонуклеотид, нацеленный на FOXP3. В осуществления определенных вариантах осуществления соединение содержит модифицированный 8-80 олигонуклеотид, имеющий длину нуклеозидов имеющий связанных последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный 16-80 олигонуклеотид, имеющий длину связанных нуклеозидов имеюший последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид, который соединение содержит имеет последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ІОХ 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления у индивидуума идентифицировано наличие рака или риск его наличия.

5

10

15

20

25

30

Определенные варианты осуществления охватывают соединение, содержащее специфичный ингибитор FOXP3, для применения в лечении рака. В определенных вариантах осуществления рак представляет собой характеризующийся наличием рак, FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL). В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на FOXP3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, который имеет последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ION 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение может представлять собой антисмысловое соединение или олигомерное соединение.

5

10

15

20

25

30

Определенные варианты осуществления охватывают соединение, содержащее ингибитор FOXP3, для применения в снижении специфичный или подавлении иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования у индивидуума, у которого имеется рак. Определенные варианты осуществления охватывают соединение, содержащее специфичный ингибитор FOXP3, для применения в индуцировании или активации противоракового или противоопухолевого иммунитета; противоракового или противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации Т-клеток; активации или инфильтрации СD8 Т-клеток; активации или инфильтрации NK-клеток; активации или инфильтрации макрофагов и дендритных клеток; воспаления или экспрессии провоспалительных цитокинов или хемокинов у индивидуума, у которого имеется рак. В определенных вариантах осуществления рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого

10

15

20

25

30

(SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL). В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на FOXP3. определенных осуществления соединение содержит модифицированный вариантах олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный 16-80 олигонуклеотид, имеющий длину связанных нуклеозидов имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, который последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ION 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

5

10

15

20

25

30

Определенные варианты осуществления охватывают применение соединения, содержащего специфичный ингибитор FOXP3, для изготовления или получения лекарственного препарата для лечения рака. Определенные варианты осуществления охватывают применение соединения, содержащего специфичный ингибитор FOXP3, для получения лекарственного препарата для лечения рака. В определенных вариантах собой осуществления рак представляет рак, характеризующийся FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL). В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на FOXP3. В определенных вариантах осуществления

10

15

20

25

30

соединение содержит модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, который имеет последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ІОХ 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

Определенные варианты осуществления охватывают применение соединения, специфичный содержащего ингибитор FOXP3, для изготовления или получения лекарственного препарата иммуносупрессии, для снижения или подавления иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования у индивидуума, у которого имеется рак. Определенные варианты осуществления охватывают применение соединения, содержащего специфичный ингибитор FOXP3, для изготовления или получения лекарственного препарата для индуцирования или активации противоракового или противоопухолевого иммунитета; противоракового или

10

15

20

25

30

противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации Т-клеток; активации или инфильтрации CD8 Т-клеток; активации или инфильтрации NK-клеток; активации или И дендритных клеток; инфильтрации макрофагов воспаления или провоспалительных цитокинов или хемокинов у индивидуума, у которого имеется рак. В определенных вариантах осуществления рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL). В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на FOXP3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на FOXP3. модифицированный определенных вариантах осуществления соединение содержит 8-80 олигонуклеотид, имеющий длину связанных нуклеозидов имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В соединение определенных вариантах осуществления содержит модифицированный имеющий 16-80 длину олигонуклеотид, связанных нуклеозидов имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В определенных вариантах осуществления модифицированный олигонуклеотид, который соединение содержит последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575. В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 10-30 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой ІОХ 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

5

10

15

20

25

30

В любом из вышеперечисленных способов или путей применения соединение может быть нацеленным на FOXP3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, например, модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов, имеющий длину 10-30 связанных нуклеозидов, имеющий длину 12-30 связанных нуклеозидов или имеющий длину 20 связанных нуклеозидов, состоит ИЗ него. В определенных или вариантах осуществления модифицированный олигонуклеотид является на по меньшей мере 80%, 85%, 90%, 95% или 100% комплементарным по отношению к любой из последовательностей нуклеиновых оснований, указанных под SEQ ID NO: 1-5. В определенных вариантах осуществления модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь, по меньшей мере один модифицированный сахар и/или по меньшей мере одно модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированная межнуклеозидная связь представляет собой фосфотиоатную межнуклеозидную связь, модифицированный сахар представляет собой бициклический сахар или 2'-О-метоксиэтил-модифицированный сахар, а модифицированное нуклеиновое основание представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид содержит гэп-сегмент, состоящий из связанных дезоксинуклеозидов; 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов, где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, непосредственно прилегая к ним, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

5

10

15

20

25

30

В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид может иметь длину 12-30, 15-30, 15-25, 15-24, 16-24, 17-24, 18-24, 19-24, 20-24, 19-22, 20-22, 16-20, или 17, или 20 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид является на по меньшей мере 80%, 85%, 90%, 95% или 100% комплементарным по отношению к любой из последовательностей нуклеиновых оснований, указанных под SEQ ID NO: 1-5. В определенных вариантах осуществления модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь, по меньшей мере один модифицированный сахар и/или по меньшей мере одно модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированная межнуклеозидная связь представляет собой фосфотиоатную межнуклеозидную связь, модифицированный сахар представляет собой бициклический сахар или 2'-О-метоксиэтил-модифицированный сахар, а модифицированное нуклеиновое основание представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид содержит гэп-сегмент, состоящий из связанных 2'-дезоксинуклеозидов; 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов, где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, непосредственно прилегая к ним, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

В любом из вышеперечисленных способов или путей применения соединение может содержать модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 9-3246, или состоять из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных 2'-дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

5

10

15

20

25

В любом из вышеперечисленных способов или путей применения соединение может содержать модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575, или состоять из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В любом из вышеперечисленных способов или путей применения соединение может содержать модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575, или состоять из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; где каждый нуклеозид каждого флангового сегмента содержит сЕt-нуклеозид; где каждая межнуклеозидная связь представляет собой фосфотиоатную связь; и где каждый цитозин представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под SEQ ID NO: 449, или состоит из него, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5

10

15

20

25

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; где каждый нуклеозид каждого флангового сегмента содержит сЕt-нуклеозид; где каждая межнуклеозидная связь представляет собой фосфотиоатную связь; и где каждый цитозин представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16-30 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов.

В любом из вышеперечисленных способов или путей применения соединение может содержать ION 1063734 или его соль или состоять из них, при этом они имеют следующую химическую структуру:

В любом из вышеперечисленных способов или путей применения соединение может содержать ION 1063734 или состоять из него, при этом он имеет следующую химическую структуру:

В любом из вышеперечисленных способов или путей применения соединение можно вводить парентерально. Например, в определенных вариантах осуществления соединение можно вводить посредством инъекции или инфузии. Парентеральное введение включает подкожное введение, внутривенное введение, внутримышечное введение, внутриартериальное введение, внутрибрюшинное введение или внутричерепное введение, например, интратекальное или интрацеребровентрикулярное введение.

5

10

Некоторые комбинации и средства комбинированной терапии

5

10

15

20

25

30

В определенных вариантах осуществления первое средство, содержащее соединение, описанное в данном документе, вводят совместно с одним или несколькими вторичными средствами. В определенных вариантах осуществления такие вторые средства предназначены для лечения того же заболевания, нарушения или состояния, что и первое средство, описанное в данном документе. В определенных вариантах осуществления такие вторые средства предназначены для лечения другого заболевания, нарушения или состояния по сравнению с средством, описанным в данном документе. В определенных осуществления первое средство предназначено для лечения нежелательного побочного эффекта второго средства. В определенных вариантах осуществления вторые средства вводят совместно с первым средством для лечения нежелательного эффекта первого средства. В определенных вариантах осуществления такие вторые средства разработаны для лечения нежелательного побочного эффекта одной или нескольких фармацевтических композиций, описанных в данном документе. В определенных вариантах осуществления вторые средства вводят совместно с первым средством для получения сочетанного эффекта. В определенных вариантах осуществления вторые средства вводят совместно с первым средством для получения синергического эффекта. В определенных вариантах осуществления совместное введение первого и второго средств позволяет применять более низкие дозировки, чем потребовавшиеся бы для достижения терапевтического или профилактического эффекта, если бы средства вводили в качестве независимой терапии.

В определенных вариантах осуществления одно или несколько соединений или композиций, предусмотренных в данном документе, вводят совместно с одним или несколькими вторичными средствами. В определенных вариантах осуществления одно или несколько соединений или композиций, предусмотренных в данном документе, и одно или несколько вторичных средств вводят в разные моменты времени. В определенных вариантах осуществления одно или несколько соединений или композиций, предусмотренных в данном документе, и одно или несколько вторичных средств получают вместе в одном составе. В определенных вариантах осуществления одно или несколько соединений или композиций, предусмотренных в данном документе, и одно или несколько вторичных средств получают по отдельности.

В определенных вариантах осуществления вторичное средство выбрано из активаторов клеток врожденного иммунитета, в том числе без ограничения агонистов TLR

MEDI9197) и STING (например, MK-1454); ингибиторов (например, агонистов иммуноингибирующих медиаторов, в том числе без ограничения ингибиторов CD39 и CD73 (например, олеклумаба), ингибиторов IDO1 (например, эпакадостата) и ингибиторов аргиназы (например, INCB001158); активаторов Т-клеточных костимулирующих рецепторов, в том числе без ограничения агонистов CD137 (например, урелумаба, утомилумаба), агонистов CD27 (например, варлимумаба) и агонистов CD40 (например, MEDI5083); ингибиторов Т-клеточных ингибирующих рецепторов, в том числе без ограничения ингибиторов LAG3 (например, релатлимаба), ингибиторов TIM3 (например, LY3321367) и ингибиторов TIGIT (например, тираголумаба); активаторов ингибирующих рецепторов Treg, в том числе без ограничения агонистов GITR (например, MEDI1873); стратегий активации NK-клеток, в том числе без ограничения NKG2a (например, монализумаба); противораковых вакцин (например, сипулейцела-Т) и иммуногенного уничтожения опухоли, в том числе без ограничения онколитических вирусов, радиоактивного излучения, фотодинамической терапии и химиотерапии (например, антрациклинов, оксалиплатина и т. д.).

5

10

15

20

25

30

В определенных вариантах осуществления вторичное средство выбрано из иммуноонкологических (IO) средств; ингибиторов контрольных точек иммунного ответа; иммуномодулирующих средств; ингибиторов сигнального пути PD1-PDL1/2; ингибиторов PD-L1, в том числе без ограничения дурвалумаба, авелумаба и атезолизумаба; ингибиторов PD-1, в том числе без ограничения ниволумаба и пембролизумаба; ингибиторов СТLА-4, в том числе без ограничения ипилимумаба и тремелимумаба; ингибиторов STAT3, в том числе без ограничения siRNA для STAT3, антисмысловых олигонуклеотидов для STAT3 и данватирсена (AZD9150); а также антагонистов аденозиновых рецепторов 2A (A2AR), в том числе без ограничения AZD4635.

Определенные варианты осуществления направлены на применение соединения, нацеленного на FOXP3, описанного в данном документе, в комбинации со вторичным средством. В конкретных вариантах осуществления такое применение относится к способу лечения пациента, страдающего раком, включающим без ограничения рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак

ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL). В определенных вариантах осуществления вторичное средство выбрано из иммуноонкологических (IO) средств; ингибиторов контрольных точек иммунного ответа; иммуномодулирующих средств; ингибиторов сигнального пути PD1-PDL1/2; ингибиторов PD-L1, в том числе без ограничения дурвалумаба, авелумаба и атезолизумаба; ингибиторов PD-1, в том числе без ограничения ниволумаба и пембролизумаба; ингибиторов CTLA-4, в том числе без ограничения ипилимумаба и тремелимумаба; ингибиторов STAT3, в том числе без ограничения siRNA для STAT3, антисмысловых олигонуклеотидов для STAT3 и данватирсена (AZD9150).

5

10

15

20

25

30

Определенные варианты осуществления охватывают комбинацию соединения, нацеленного на FOXP3, описанного в данном документе, и вторичного средства, такого как вторичное средство, выбранное из иммуноонкологических (IO) средств; ингибиторов контрольных точек иммунного ответа; иммуномодулирующих средств; ингибиторов сигнального пути PD1-PDL1/2; ингибиторов PD-L1, в том числе без ограничения дурвалумаба, авелумаба и атезолизумаба; ингибиторов PD-1, в том числе без ограничения ниволумаба и пембролизумаба; ингибиторов CTLA-4, в том числе без ограничения ипилимумаба и тремелимумаба; ингибиторов STAT3, в том числе без ограничения siRNA для STAT3, антисмысловых олигонуклеотидов для STAT3 и данватирсена (AZD9150).

В определенных вариантах осуществления соединение, нацеленное на FOXP3, описанное в данном документе, и вторичное средство применяют в комбинированном лечении путем введения двух средств одновременно, раздельно или последовательно. В определенных вариантах осуществления два средства составляют в виде комбинированного продукта с фиксированной дозой. В других вариантах осуществления два средства предоставляют

пациенту в виде отдельных единиц, которые затем могут приниматься одновременно либо серийно (последовательно).

В определенных вариантах осуществления соединение, нацеленное на FOXP3, описанное в данном документе, применяют в комбинации с иммуномодулирующим средством, таким как антитело к PD-L1 (или его антигенсвязывающий фрагмент), антитело к PD-1 (или его антигенсвязывающий фрагмент), антитело к CTLA-4 (или его антигенсвязывающий фрагмент) или агонист ОX40 (например, слитый белок на основе лиганда ОX40 или агонистическое антитело к ОX40 или его антигенсвязывающий фрагмент).

5

10

15

20

25

В определенных вариантах осуществления соединение, нацеленное на FOXP3, описанное в данном документе, применяют в комбинации с ингибитором контрольных точек иммунного ответа, таким как антитело к PD-L1 (или его антигенсвязывающий фрагмент), антитело к PD-1 (или его антигенсвязывающий фрагмент) или антитело к CTLA-4 (или его антигенсвязывающий фрагмент).

Антитела к PD-L1 известны из уровня техники. Иллюстративные антитела к PD-L1 включают MEDI4736 (дурвалумаб), MPDL3280A, BMS936559, 2.7A4, AMP-714, MDX-1105 и MPDL3280A (атезолизумаб).

Антитела к PD-1 известны из уровня техники. Иллюстративные антитела к PD-1 включают ниволумаб, пембролизумаб, пидилизумаб и AMP-514.

Антитела к CTLA-4 известны из уровня техники. Иллюстративные антитела к CTLA-4 включают тремелимумаб и ипилимумаб, также называемый MDX-010 (или BMS-734016).

Агонисты ОХ40 и антитела к ОХ40 известны из уровня техники. Иллюстративные агонисты ОХ40 и/или антитела к ОХ40 включают MEDI6383, 9B12 и MEDI0562.

В одном варианте осуществления комбинация включает антисмысловой олигонуклеотид Ionis 651987 или его соль и по меньшей мере один иммуномодулятор, выбранный из группы, состоящей из MEDI4736, MPDL3280A, BMS936559, 2.7A4, AMP-714, MDX-1105, ниволумаба, пембролизумаба, пидилизумаба, MPDL3280A, тремелимумаба, ипилимумаба, MEDI0562 и MEDI0562.

В одном варианте осуществления комбинация включает антитело к PD-L1 MEDI4736 (дурвалумаб) и ION 1063734.

30 В одном варианте осуществления комбинация включает ION 1063734, антитело к PD-L1 MEDI4736 (дурвалумаб) и антитело к CTLA-4 тремелимумаб.

Некоторые антитела к РД-L1

5

10

15

20

25

30

Антитела, которые специфично связывают и подавляют PD-L1, включены в настоящее изобретение.

Дурвалумаб (MEDI4736) является иллюстративным антителом к PD-L1, которое является избирательным в отношении полипептида PD-L1 и блокирует связывание PD-L1 с рецепторами PD-1 и CD80. Дурвалумаб может ослаблять PD-L1-опосредованное подавление активации человеческих Т-клеток in vitro и подавлять рост опухоли в ксенотрансплантатной модели посредством Т-клеточно-зависимого механизма.

Информацию, касающуюся дурвалумаба (или его фрагментов) для применения в способах, предусмотренных в данном документе, можно найти в патенте США № 8779108, раскрытие которого включено в данный документ посредством ссылки во всей своей полноте. Домен дурвалумаба, представляющий собой кристаллизующийся фрагмент (Fc), содержит тройную мутацию в константном домене тяжелой цепи IgG1, которая уменьшает связывание с компонентом С1q системы комплемента и Fcγ-рецепторами, отвечающими за опосредование антителозависимой клеточноопосредованной цитотоксичности (ADCC). В определенных вариантах осуществления МЕDI4736 или его антигенсвязывающий фрагмент для применения в способах, предусмотренных в данном документе, содержит последовательности CDR вариабельной области тяжелой цепи и вариабельной области легкой цепи антитела 2.14Н9ОРТ, раскрытого в патентах США №№ 8779108 и 9493565, которые включены в данный документ посредством ссылки во всей своей полноте.

Существует множество антител к PD-L1, опубликованных в литературе, которые могут быть предложены в настоящем изобретении, в том числе соединения, находящиеся в разработке и/или в клинических испытаниях, такие как дурвалумаб (MEDI4736), MPDL3280A, ВМS936559, 2.7А4, АМР-714 и MDX-1105. Описания патентов, раскрывающие антитела к PD-L1, которые могут быть применимы в настоящем изобретении, включают патенты США №№ 7943743, 8383796, 9102725, 9273135 (ВМS/Medarex), US2006/0153841 (Институт рака Дэйны-Фарбера), патенты США №№ 8552154 и 9102727 (Институт рака Дэйны-Фарбера), патент США № 8217149 (Genentech), в том числе выданный патент США № 8217149, US2012/0039906 (INSERM), US2016/0031990 (Amplimmune), патент США № 8779108 (MedImmune - в отношении дурвалумаба/МЕDI4726 и 2.7А4), US2014/0044738 (Amplimmune - в отношении АМР-714) и US2010/0285039

(Университет Джонса Хопкинса). Каждое из этих раскрытий включено в данный документ посредством ссылки во всей своей полноте.

Некоторые антитела к CTLA-4

5

10

15

20

25

30

Антитела, которые специфично связывают СТLА-4 и подавляют активность СТLА-4, являются применимыми для усиления противоопухолевого иммунного ответа. Информацию, касающуюся тремелимумаба (или его антигенсвязывающих фрагментов) для применения в способах, предусмотренных в данном документе, можно найти в US 6682736 (где он обозначен как 11.2.1), раскрытие которого включено в данный документ посредством ссылки во всей своей полноте. Тремелимумаб (также известный как СР-675,206, СР-675, СР-675206 и тицилимумаб) представляет собой человеческое моноклональное антитело IgG2, которое является высокоизбирательным в отношении СТLА-4 и блокирует связывание СТLА-4 с СD80 (В7.1) и СD86 (В7.2). Было показано, что он приводит к активации иммунитета in vitro, и у некоторых пациентов, получавших лечение тремелимумабом, наблюдали регрессию опухоли. В определенных вариантах осуществления тремелимумаб или его антигенсвязывающий фрагмент для применения в способах, предусмотренных в данном документе, содержат последовательности CDR вариабельной области тяжелой цепи и вариабельной области легкой цепи антитела 11.2.1, раскрытого в патенте США № 6682736, который включен в данный документ посредством ссылки во всей своей полноте.

Другие антитела к CTLA-4 описаны, например, в US 20070243184. В одном варианте осуществления антитело к CTLA-4 представляет собой ипилимумаб, также называемый MDX-010; BMS-734016.

Некоторые агонисты ОХ40

Агонисты ОХ40 взаимодействуют с рецептором ОХ40 на CD4+ Т-клетках во время или непосредственно после примирования антигеном, что в результате приводит к увеличению ответа CD4+ Т-клеток на антиген. Взаимодействие агониста ОХ40 с рецептором ОХ40 на антигенспецифических CD4+ Т-клетках может приводить к увеличению пролиферации Т-клеток по сравнению с ответом на антиген в отдельности. Повышенный ответ на антиген может поддерживаться в течение определенного периода времени значительно дольше, чем при отсутствии агониста ОХ40. Таким образом, стимуляция посредством агониста ОХ40 приводит к повышению антигенспецифического иммунного ответа благодаря усилению

распознавания Т-клетками антигенов, например, опухолевых клеток. Агонисты ОХ40 описаны, например, в патентах США №№ 6312700, 7504101, 7622444 и 7959925, которые включены в данный документ посредством ссылки во всей своей полноте. Способы применения таких агонистов в лечении рака описаны, например, в US2015/0098942 и в US2015/0157710, каждый из которых включен в данный документ посредством ссылки во всей своей полноте.

Агонисты ОХ40 включают в себя без ограничения ОХ40-связывающие молекулы, например, связывающие полипептиды, например, лиганд ОХ40 ("ОХ40L") или его ОХ40-связывающий фрагмент, вариант или производное, такие как растворимые внеклеточные домены лигандов и слитые белки на основе ОХ40L, а также антитела к ОХ40 (например, моноклональные антитела, такие как гуманизированные моноклональные антитела) или их антигенсвязывающий фрагмент, вариант или производное. Примеры моноклональных антител к ОХ40 описаны, например, в патентах США №№ 5821332 и 6156878, раскрытия которых включены в данный документ посредством ссылки во всей своей полноте. В определенных вариантах осуществления моноклональное антитело к ОХ40 представляет собой 9В12 или его антигенсвязывающий фрагмент, вариант или производное, как описано в Weinberg, A.D. et al. J Immunother 29, 575-585 (2006), которая включена в данный документ посредством ссылки во всей своей полноте. В другом варианте осуществления антитело к ОХ40 представляет собой МЕDI0562, описанное в US 2016/0137740.

В других вариантах осуществления антитело, которое специфично связывается с ОХ40, или его антигенсвязывающий фрагмент связываются с тем же эпитопом ОХ40, что и mAb 9B12. Иллюстративное гуманизированное антитело к ОХ40 описано в Morris et al., Mol Immunol. May 2007; 44(12): 3112–3121. 9B12 представляет собой мышиный IgG1 — mAb к ОХ40, направленное против внеклеточного домена человеческого ОХ40 (CD134) (Weinberg, A.D. et al. J Immunother 29, 575-585 (2006)). Оно было выбрано из панели моноклональных антител к ОХ40 ввиду его способности вызывать агонистический ответ для передачи сигнала от ОХ40, стабильности и ввиду высокого уровня его выработки гибридомой. Для применения в клинической практике mAb 9B12 уравновешивают фосфатно-солевым буферным раствором, pH 7,0, и его концентрацию доводят до 5,0 мг/мл путем диафильтрации.

"Лиганд OX40" ("OX40L") (также известный под разными названиями как представитель 4 суперсемейства лигандов-факторов некроза опухоли, gp34, гликопротеин-1 с ТАХ-опосредованной активацией транскрипции и CD252) обнаруживается в основном на

10

15

20

25

30

антигенпрезентирующих клетках (АРС), и его экспрессия может индуцироваться на активированных В-клетках, дендритных клетках (DC), клетках Лангерганса, плазмоцитоидных DC и макрофагах (Croft, M., (2010) Ann Rev Immunol 28:57-78). Другие клетки, в том числе активированные Т-клетки, NK-клетки, тучные клетки, эндотелиальные клетки и гладкомышечные клетки, могут экспрессировать OX40L в ответ провоспалительные цитокины (там же). ОХ40L специфично связывается с рецептором ОХ40. Человеческий белок описан в патенте США № 6156878. Мышиный OX40L описан в патенте США № 5457035. OX40L экспрессируется на поверхности клеток и содержит внутриклеточный, трансмембранный и внеклеточный рецепторсвязывающий Функционально активная растворимая форма OX40L может быть получена путем удаления внутриклеточных и трансмембранных доменов, как описано, например, в патентах США №№ 5457035, 6312700, 6156878, 6242566, 6528055, 6528623, 7098184 и 7125670, раскрытия которых включены в данный документ во всех отношениях. Функционально активная форма ОХ40L представляет собой форму, которая сохраняет способность специфично связываться с OX40, иными словами, которая имеет "рецепторсвязывающий домен" для ОХ40. Примером являются аминокислоты 51-183 человеческого ОХ40L. Способы определения способности молекулы или производного ОХ40L специфично связываться с ОХ40 обсуждаются ниже. Способы получения и применения ОХ40L и его производных (таких как производные, которые содержат ОХ40-связывающий домен) описаны в патентах США №№ 6156878, 6242566, 6528055, 6528623, 7098184 и 7125670, где также описываются белки, содержащие растворимую форму ОХ40L, связанную с другими пептидами, такими как Fc-области человеческих иммуноглобулинов ("Ig"), которые можно получать для облегчения очистки лиганда OX40 от культивируемых клеток или для повышения стабильности молекулы после введения млекопитающему in vivo (см. также патенты США №№ 5457035 и 7959925, оба из которых включены в данный документ посредством ссылки во всей своей полноте).

В определение ОХ40L также включены варианты лиганда ОХ40, которые отличаются по аминокислотной последовательности от встречающихся в природе молекул лиганда ОХ40, но которые сохраняют способность специфично связываться с рецептором ОХ40. Такие варианты описаны в патентах США №№ 5457035, 6156878, 6242566, 6528055, 6528623, 7098184 и 7125670. В родственном варианте осуществления применяют мутантную форму ОХ40L, утратившую способность специфично связываться с ОХ40, например, содержащую

аминокислоты 51-183, в которых фенилаланин в положении 180 рецепторсвязывающего домена человеческого ОХ40L был замещен аланином (F180A).

Агонисты ОХ40 включают в себя слитый белок, в котором один или несколько доменов ОХ40L соединены ковалентной связью с одним или несколькими дополнительными белковыми доменами. Иллюстративные слитые белки на основе ОХ40L, которые можно применять в качестве агонистов ОХ40, описаны в патенте США № 6312700, раскрытие которого включено в данный документ посредством ссылки во всей своей полноте. В одном варианте осуществления агонист ОХ40 включает в себя слитый полипептид на основе ОХ40L, который подвергается самосборке в мультимерный (например, тримерный или гексамерный) слитый белок на основе ОХ40L. Такие слитые белки описаны, например, в патенте США № 7959925, который включен в данный документ посредством ссылки во всей своей полноте. Мультимерный слитый белок на основе ОХ40L демонстрирует увеличенную эффективность в повышении антигенспецифического иммунного ответа у субъекта, в частности у субъекта-человека, благодаря его способности к спонтанной сборке в высокостабильные тримеры и гексамеры.

В другом варианте осуществления агонист ОХ40, способный к сборке в мультимерную форму, включает в себя слитый полипептид, содержащий в направлении от N-конца к С-концу: домен иммуноглобулина, где домен иммуноглобулина включает в себя Fc-домен, тримеризационный домен, где тримеризационный домен включает в себя суперспиральный тримеризационный домен, и рецепторсвязывающий домен, где рецепторсвязывающий домен представляет собой домен, связывающий рецептор ОХ40, например, ОХ40L или его ОХ40-связывающий фрагмент, вариант или производное, где слитый полипептид способен к самосборке в тримерный слитый белок. В одном аспекте агонист ОХ40, способный к сборке в мультимерную форму, способен связываться с рецептором ОХ40 и стимулировать по меньшей мере одну активность, опосредованную ОХ40. В определенных аспектах агонист ОХ40 содержит внеклеточный домен лиганда ОХ40.

Тримеризационный домен агониста ОХ40, способный к сборке в мультимерную форму, служит для содействия самосборке отдельных молекул слитого полипептида на основе ОХ40L в тримерный белок. Таким образом, слитый полипептид на основе ОХ40L с тримеризационным доменом подвергается самосборке в тримерный слитый белок на основе ОХ40L. В одном аспекте тримеризационный домен представляет собой домен "изолейциновую застежку" или другую суперспиральную полипептидную структуру.

Иллюстративные суперспиральные тримеризационные домены включают домены TRAF2 (№ доступа в GENBANK® Q12933, аминокислоты 299-348); тромбоспондина 1 (№ доступа РО7996, аминокислоты 291-314); матрилина-4 (№ доступа О95460, аминокислоты 594-618); СМР (матрилина-1) (№ доступа NP-002370, аминокислоты 463-496); HSF1 (№ доступа ААХ42211, аминокислоты 165-191) и кубилина (№ доступа NP-001072, аминокислоты 104-138). В определенных конкретных аспектах тримеризационный домен включает в себя тримеризационный домен ТRAF2, тримеризационный домен матрилина-4 или их комбинацию.

5

10

15

20

25

30

OX40L FP является слитым белком на основе лиганда человеческого OX40 и IgG4P, который специфично связывается с человеческим рецептором ОХ40, являющимся представителем суперсемейства TNFR, и запускает передачу сигнала от него. OX40L FP также раскрыт в US2016/0024176, который включен в данный документ посредством ссылки во всей своей полноте. OX40L FP состоит из трех различных доменов: (1) внеклеточных рецепторсвязывающих доменов (RBD) лиганда человеческого ОХ40, которые образуют гомотримеры и связывают рецептор ОХ40; (2) тримеризационных доменов "изолейциновых застежек", полученных из TNFR-ассоциированного фактора 2, которые стабилизируют гомотримерную структуру RBD лиганда ОХ40, и (3) доменов, представляющих собой кристаллизующиеся гамма-фрагменты (Fcy) человеческого IgG4, которые способствуют кластеризации Fcy-рецепторов слитым белком при связывании с рецепторами ОХ40 и содержат замену серина на пролин в положении 228 (согласно ЕU-нумерации) в шарнирных областях (IgG4P) для содействия стабильности двух наборов гомотримеров RBD лиганда OX40. Fc-домен IgG4P слит непосредственно с тримеризационным доменом "изолейциновой застежкой", полученным из аминокислотных остатков 310-349 человеческого фактора 2, ассоциированного с рецептором фактора некроза опухоли (TRAF2). С С-концом домена TRAF2 слиты аминокислотные остатки 51-183 внеклеточного рецепторсвязывающего домена (RBD) человеческого OX40L (название гена TNFSF4). Домен TRAF2 стабилизирует гомотримерную структуру RBD OX40L, обеспечивая возможность связывания с ОХ40 и его активации, тогда как Fc-домен IgG4P придает стабильность в сыворотке крови, обеспечивает димеризацию тримеров ОХ40L и способствует кластеризации Fcy-рецепторов гексамерным слитым белком. Один вариант OX40L FP имеет мутацию по типу замены фенилаланина (F) на аланин (A) по аминокислоте, соответствующей положению 180 в ОХ40L. Другой вариант OX40L FP имеет замещение Fc-домена IgG4P Fc-доменом человеческого IgG1. В конкретных вариантах осуществления агонистом OX40 для применения в настоящем изобретении является один из вариантов OX40L FP.

В конкретных вариантах осуществления агонист ОХ40 для применения в настоящем изобретении был модифицирован для увеличения его периода полувыведения из сыворотки крови. Например, период полувыведения агониста ОХ40 из сыворотки крови можно увеличить путем конъюгирования с гетерологичной молекулой, такой как сывороточный альбумин, Fc-область антитела или PEG. В определенных вариантах осуществления агонисты ОХ40 можно конъюгировать с другими терапевтическими средствами или токсинами с образованием иммуноконъюгатов и/или слитых белков. В определенных вариантах осуществления агонист ОХ40 можно составить таким образом, чтобы облегчить введение и содействовать стабильности активного средства.

Производные антител

5

10

15

20

25

30

Антитела для применения в настоящем изобретении (например, антитела к CTLA-4, антитела к PD-L1, антитела к PD-1, антитела к OX40) могут включать в себя варианты таких последовательностей, которые сохраняют способность к специфичному связыванию своих мишеней. Такие варианты могут быть получены из последовательности данных антител специалистом в данной области с применением методик, хорошо известных из уровня техники. Например, замены, делеции или добавления аминокислот можно осуществлять в FR и/или в CDR. Тогда как изменения в FR обычно предназначены для улучшения стабильности и иммуногенности антитела, изменения в CDR, как правило, предназначены для увеличения аффинности антитела в отношении его мишени. Варианты FR также включают встречающиеся в природе аллотипы иммуноглобулинов. Такие изменения, увеличивающие аффинность, можно определить эмпирически с помощью обычных методик, которые включают изменение CDR и тестирование аффинности антитела в отношении его мишени. Например, консервативные аминокислотные замены можно осуществлять в любой из раскрытых CDR. Различные изменения можно осуществлять в соответствии со способами, описанными в Antibody Engineering, 2nd ed., Oxford University Press, ed. Borrebaeck, 1995. Они включают в себя без ограничения изменения нуклеотидных последовательностей путем замены другими кодонами, которые кодируют функционально эквивалентный аминокислотный остаток в последовательности, с получением таким образом "молчащего" изменения. Например, неполярные аминокислоты включают аланин, лейцин, изолейцин, валин, пролин, фенилаланин, триптофан и метионин. Полярные нейтральные аминокислоты включают глицин, серин, треонин, цистеин, тирозин, аспарагин и глутамин. Положительно заряженные (основные) аминокислоты включают аргинин, лизин и гистидин. Отрицательно заряженные (кислые) аминокислоты включают аспарагиновую кислоту и глутаминовую кислоту.

5

10

15

20

25

30

Производные и аналоги антител по настоящему изобретению можно получить с помощью различных методик, хорошо известных из уровня техники, в том числе с помощью рекомбинантных и синтетических способов (Maniatis (1990) Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., и Bodansky et al. (1995) The Practice of Peptide Synthesis, 2nd ed., Spring Verlag, Berlin, Germany). Аналогичные методики перетасовывания или комбинаторные методики также раскрыты у Stemmer (Nature (1994) 370: 389-391), который описывает методику применительно к гену β-лактамазы, но отмечает, что данный подход можно применять для получения антител.

Можно получать новые VH- или VL-области, несущие одну или несколько последовательностей, полученных из последовательностей, раскрытых в данном документе, путем применения случайного мутагенеза одного или нескольких выбранных генов VH и/или VL. Одна из таких методик, ПЦР с внесением ошибок, описана у Gram et al. (Proc. Nat. Acad. Sci. U.S.A. (1992) 89: 3576-3580).

Другой способ, который можно применять, представляет собой направление мутагенеза на CDR генов VH или VL. Такие методики раскрыты у Barbas et al. (Proc. Nat. Acad. Sci. U.S.A. (1994) 91: 3809-3813) и Schier et al. (J. Mol. Biol. (1996) 263: 551-567).

Аналогичным образом, одну или несколько или все три CDR можно привить на репертуар VH- или VL-доменов, которые затем подвергают скринингу в отношении антигенсвязывающего фрагмента, специфичного в отношении CTLA-4 или PD-L1.

Часть вариабельного домена иммуноглобулина будет содержать по меньшей мере одну CDR, как по сути изложено в данном документе, и необязательно промежуточные каркасные области из scFv-фрагментов, как изложено в данном документе. Данная часть может содержать по меньшей мере приблизительно 50% любой из FR1 и FR4 или их обеих, при этом 50% представляют собой С-концевые 50% FR1 и N-концевые 50% FR4. Дополнительные остатки на N-конце или С-конце значительной части вариабельного домена могут представлять собой остатки, которые обычно не относятся к встречающимся в природе областям вариабельных доменов. Например, конструирование антител с помощью методик рекомбинантных ДНК может приводить к введению N- или C-концевых остатков, кодируемых

линкерами, вводимыми для облегчения клонирования или других стадий манипуляции. Другие стадии манипуляции включают введение линкеров для присоединения вариабельных доменов к дополнительным белковым последовательностям, в том числе к константным областям тяжелой цепи иммуноглобулина, другим вариабельным доменам (например, при получении диател) или белковым меткам, обсуждаемым более подробно ниже.

5

10

15

20

25

30

Специалисту в данной области будет понятно, что антитела для применения в настоящем изобретении могут содержать антигенсвязывающие фрагменты, содержащие только одну CDR из VL- либо из VH-домена. Каждый из одноцепочечных специфических связывающих доменов можно применять для скрининга в отношении комплементарных доменов, способных образовывать двухдоменный специфический антигенсвязывающий фрагмент, способный, например, к связыванию с CTLA-4 и PD-L1.

Антитела для применения в настоящем изобретении, описанные в данном документе, можно связывать с другой функциональной молекулой, например, с другим пептидом или белком (альбумином, другим антителом и т. д.). Например, антитела можно связывать с помощью химической сшивки или с помощью рекомбинантных способов. Антитела можно также связывать с одним из ряда небелковых полимеров, например, полиэтиленгликолем, полипропиленгликолем или полиоксиалкиленами, таким образом, как изложено в патентах США №№ 4640835, 4496689, 4301144, 4670417, 4791192 или 4179337. Антитела можно модифицировать химическим путем посредством ковалентного конъюгирования с полимером, например, для увеличения их периода полувыведения из кровотока. Иллюстративные полимеры и способы их присоединения также показаны в патентах США №№ 4766106, 4179337, 4495285 и 4609546.

Антитела также можно изменять с получением профиля гликозилирования, который отличается от нативного профиля. Например, один или несколько углеводных компонентов могут быть удалены, и/или один или несколько сайтов гликозилирования могут быть добавлены к исходному антителу. Добавление сайтов гликозилирования к раскрытым в настоящем изобретении антителам можно осуществлять путем изменения аминокислотной последовательности таким образом, чтобы она содержала консенсусные последовательности сайтов гликозилирования, известные из уровня техники. Другим способом увеличения количества углеводных компонентов в антителах является химическое или ферментативное присоединение гликозидов к аминокислотным остаткам антитела. Такие способы описаны в WO 87/05330 и в Aplin et al. (1981) CRC Crit. Rev. Biochem., 22: 259-306. Удаление любых

углеводных компонентов из антител можно осуществлять химически или ферментативно, например, как описано в Hakimuddin et al. (1987) Arch. Biochem. Biophys., 259: 52; и Edge et al. (1981) Anal. Biochem., 118: 131, и в Thotakura et al. (1987) Meth. Enzymol., 138: 350. Антитела также можно метить с помощью детектируемой или функциональной метки. Детектируемые метки включают в себя радиоактивные метки, такие как 131I или 99Тс, которые также можно присоединять к антителам с помощью традиционных химических способов. Детектируемые метки также включают ферментные метки, такие как пероксидаза хрена или щелочная фосфатаза. Детектируемые метки дополнительно включают химические компоненты, такие как биотин, который можно выявлять посредством связывания со специфическим когнатным детектируемым компонентом, например, меченым авидином.

Антитела, в которых последовательности CDR лишь незначительно отличаются от изложенных в данном документе, охватываются объемом настоящего изобретения. Как правило, аминокислоту заменяют родственной аминокислотой, имеющей аналогичный заряд, гидрофобные или стереохимические характеристики. Такие замены будут находиться в пределах обычных навыков специалиста. В отличие от CDR, в FR можно осуществлять более существенные изменения без отрицательного воздействия на связывающие свойства антитела. Изменения в FR включают в себя без ограничения гуманизацию имеющих нечеловеческое происхождение или конструирование определенных каркасных остатков, которые имеют важное значение для контакта с антигеном или для стабилизации связывающего участка, например, изменение класса или подкласса константной области, изменение конкретных аминокислотных остатков, которое может привести к изменению эффекторной функции, такой как связывание с Fc-рецептором, например, как описано в патентах США №№ 5624821 и 5648260, а также в Lund et al. (1991) J. Immun. 147: 2657-2662 и Morgan et al. (1995) Immunology 86: 319-324, или изменение вида, из которого получают константную область.

Специалисту в данной области будет понятно, что модификации, описанные выше, не являются всеобъемлющими, и что множество других модификаций будет очевидно специалисту в данной области в свете идей настоящего изобретения.

Некоторые соединения

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, могут представлять собой антисмысловые соединения. В определенных вариантах осуществления антисмысловое соединение содержит олигомерное соединение или состоит из

него. В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную последовательности нуклеиновой кислоты-мишени.

В определенных вариантах осуществления соединение, описанное в данном документе, содержит модифицированный олигонуклеотид или состоит из него. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную последовательности нуклеиновой кислоты-мишени.

5

10

15

20

25

30

вариантах осуществления соединение или антисмысловое определенных соединение является однонитевым. Такое однонитевое соединение или антисмысловое соединение содержит олигомерное соединение или состоит из него. В определенных вариантах осуществления такое олигомерное соединение содержит олигонуклеотид и необязательно конъюгированную группу или состоит из них. В определенных вариантах осуществления олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления олигонуклеотид является модифицированным. В определенных вариантах осуществления олигонуклеотид однонитевого антисмыслового соединения или олигомерного соединения содержит самокомплементарную последовательность нуклеиновых оснований.

В определенных вариантах осуществления соединения являются двухнитевыми. Такие двухнитевые соединения содержат первый модифицированный олигонуклеотид, имеющий область. комплементарную нуклеиновой кислоте-мишени, второй модифицированный олигонуклеотид, имеющий область, комплементарную В определенных модифицированному олигонуклеотиду. вариантах осуществления модифицированный олигонуклеотид представляет собой РНК-олигонуклеотид. В таких вариантах осуществления тиминовое нуклеиновое основание в модифицированном олигонуклеотиде замещено урациловым нуклеиновым основанием. В определенных вариантах осуществления соединение содержит конъюгированную группу. В определенных вариантах осуществления один из модифицированных олигонуклеотидов является конъюгированным. В определенных вариантах осуществления оба модифицированных олигонуклеотида являются конъюгированными. В определенных вариантах осуществления первый модифицированный олигонуклеотид является конъюгированным. В определенных вариантах осуществления второй модифицированный олигонуклеотид является конъюгированным. В определенных вариантах осуществления первый модифицированный олигонуклеотид имеет длину 12-30 связанных нуклеозидов, и второй модифицированный олигонуклеотид имеет длину 12-30 связанных нуклеозидов. В определенных вариантах осуществления один из модифицированных олигонуклеотидов имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из SEQ ID NO: 9-3246.

5

10

15

20

25

30

В определенных вариантах осуществления антисмысловые соединения являются двухнитевыми. Такие двухнитевые антисмысловые соединения содержат первое олигомерное соединение, имеющее область, комплементарную нуклеиновой кислоте-мишени, и второе олигомерное соединение, имеющее область, комплементарную первому олигомерному соединению. Первое олигомерное соединение в таких двухнитевых антисмысловых соединениях, как правило, содержит модифицированный олигонуклеотид и необязательно конъюгированную группу или состоит из них. Олигонуклеотид второго олигомерного соединения в таком двухнитевом антисмысловом соединении может быть модифицированным немодифицированным. Любое ИЗ олигомерных соединений в двухнитевом антисмысловом соединении или они оба могут содержать конъюгированную группу. Олигомерные соединения в двухнитевых антисмысловых соединениях могут содержать некомплементарные нуклеозиды выступающих концов.

Примеры однонитевых и двухнитевых соединений включают без ограничения олигонуклеотиды, siRNA, олигонуклеотиды, нацеливающиеся на микроРНК, и однонитевые соединения для RNAi, такие как малые шпилечные РНК (shRNA), однонитевые siRNA (ssRNA) и миметики микроРНК.

В определенных вариантах осуществления соединение, описанное в данном документе, имеет последовательность нуклеиновых оснований, которая, будучи записанной в направлении 5'-3', содержит последовательность, обратно комплементарную сегменту-мишени нуклеиновой кислоты-мишени, на которую оно нацеливается.

В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 10-30 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 12-30 связанных субъединиц. В определенных вариантах осуществления—соединение, описанное в данном документе, содержит олигонуклеотид,

10

15

20

25

30

имеющий длину 12-22 связанные субъединицы. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 14-30 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 14-20 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 15-30 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 15-20 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 16-30 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 16-20 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 17-30 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 17-20 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 18-30 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 18-21 связанную субъединицу. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 18-20 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 20-30 связанных субъединиц. Другими словами, такие олигонуклеотиды имеют длину 12-30 связанных субъединиц, 14-30 связанных субъединиц, 14-20 субъединиц, 15-30 субъединиц, 15-20 субъединиц, 16-30 субъединиц, 16-20 субъединиц, 17-30 субъединиц, 17-20 субъединиц, 18-30 субъединиц, 18-20 субъединиц, 18-21 субъединица, 20-30 субъединиц или 12-22 связанные субъединицы соответственно. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 14 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 16 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, олигонуклеотид, имеющий длину 17 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 18 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 19 связанных субъединиц. В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 20 связанных субъединиц. В других вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид из 8-80, 12-50, 13-30, 13-50, 14-30, 14-50, 15-30, 15-50, 16-30, 16-50, 17-30, 17-50, 18-22, 18-24, 18-30, 18-50, 19-22, 19-30, 19-50 или 20-30 связанных субъединиц. В определенных таких вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 или 80 связанных субъединиц или длину в диапазоне, ограниченном любыми двумя из приведенных выше значений. В определенных вариантах осуществления связанные субъединицы представляют собой нуклеотиды, нуклеозиды или нуклеиновые основания.

В определенных вариантах осуществления соединение может дополнительно содержать дополнительные компоненты или элементы, такие как конъюгированная группа, которые присоединены к олигонуклеотиду. В определенных вариантах осуществления такие соединения представляют собой антисмысловые соединения. В определенных вариантах осуществления такие соединения представляют собой олигомерные соединения. В вариантах осуществления, в которых конъюгированная группа содержит нуклеозид (т. е. нуклеозид, который связывает конъюгированную группу с олигонуклеотидом), нуклеозид конъюгированной группы не учитывается в длине олигонуклеотида.

В определенных вариантах осуществления соединения могут быть укороченными или усеченными. Например, одна субъединица может быть удалена с 5'-конца (5'-концевое усечение) или, в качестве альтернативы, с 3'-конца (3'-концевое усечение). В укороченном или усеченном соединении, нацеленном на нуклеиновую кислоту FOXP3, могут быть удалены две субъединицы на 5'-конце или, в качестве альтернативы, могут быть удалены две субъединицы на 3'-конце соединения. В качестве альтернативы, удаленные нуклеозиды могут быть распределены по всему соединению.

При наличии в удлиненном соединении одной дополнительной субъединицы дополнительная субъединица может быть расположена на 5'- или 3'-конце соединения. При

наличии двух или более дополнительных субъединиц добавленные субъединицы могут прилегать друг к другу, например, в соединении, имеющем две субъединицы, добавленные на 5'-конце (5'-концевое добавление) или, в качестве альтернативы, на 3'-конце (3'-концевое добавление) соединения. В качестве альтернативы, добавленные субъединицы могут быть распределены по всему соединению.

5

10

15

20

25

30

Можно увеличить или уменьшить длину соединения, такого как олигонуклеотид, и/или ввести несовпадающие основания без устранения активности (Woolf et al. *Proc. Natl. Acad. Sci. USA* 1992, 89:7305-7309; Gautschi *et al. J. Natl. Cancer Inst.* March 2001, 93:463-471; Maher and Dolnick *Nuc. Acid. Res.* 1998, 16:3341-3358). Однако, казалось бы, небольшие изменения в последовательности, химических структурах и мотивах олигонуклеотида могут сильно повлиять на одно или несколько из множества свойств, требуемых для клинического исследования (Seth et al. *J. Med. Chem.* 2009, 52, 10; Egli et al. *J. Am. Chem. Soc.* 2011, 133, 16642).

В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой соединения на основе интерферирующей РНК (для RNAi), которые включают в себя соединения на основе двухнитевой РНК (также называемые короткими интерферирующими РНК или siRNA) и соединения на основе однонитевой RNAi (или ssRNA). Такие соединения осуществляют свою функцию по меньшей мере частично посредством сигнального пути RISC с разрушением и/или секвестрацией нуклеиновой кислоты-мишени себя (следовательно, включают В соединения основе микроРНК/миметиков микроРНК). Подразумевается, что используемый в данном документе термин "siRNA" эквивалентен другим терминам, используемым для описания молекул нуклеиновой кислоты, которые способны опосредовать RNAi, специфичную в отношении последовательности, например, короткой интерферирующей РНК (siRNA), двухнитевой РНК (dsRNA), микроРНК (miRNA), короткой шпилечной РНК (shRNA), короткому интерферирующему олигонуклеотиду, короткой интерферирующей нуклеиновой кислоте, интерферирующему модифицированному олигонуклеотиду, короткому модифицированной siRNA, РНК для посттранскрипционного сайленсинга генов (ptgsRNA) и другим. Кроме того, подразумевается, что используемый в данном документе термин "RNAi" эквивалентен другим терминам, используемым для описания РНК-интерференции, специфичной в отношении последовательности, таким как посттранскрипционный сайленсинг генов, подавление трансляции или эпигенетические механизмы.

5

10

15

20

25

30

В определенных вариантах осуществления соединение, описанное в данном документе, может содержать любую из описанных в данном документе олигонуклеотидных последовательностей, нацеленных на FOXP3. В определенных вариантах осуществления соединение может быть двухнитевым. В определенных вариантах осуществления соединение содержит первую нить, содержащую фрагмент из по меньшей мере 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 смежных нуклеиновых оснований из любой из SEQ ID NO: 9-3246, и вторую нить. В определенных вариантах осуществления соединение содержит первую нить, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246, и вторую нить. В определенных вариантах осуществления соединение рибонуклеотиды, при этом первая нить содержит урацил (U) вместо тимина (T) в любой из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит (i) первую нить, содержащую последовательность нуклеиновых оснований, комплементарную сайту в FOXP3, на который нацеливается любая из SEQ ID NO: 9-3246, и (ii) вторую нить. В определенных вариантах осуществления соединение содержит один или несколько модифицированных нуклеотидов, у которых в 2'-положении в сахаре содержится галоген (такой как группа фтора; 2'-F) или содержится алкоксигруппа (такая как метоксигруппа; 2'-ОМе). В определенных вариантах осуществления соединение содержит по меньшей мере одну 2'-F-модификацию сахара и по меньшей мере одну 2'-ОМе-модификацию сахара. В определенных вариантах осуществления по меньшей мере одна 2'-F-модификация сахара и по меньшей мере одна 2'-ОМе-модификация сахара расположены в виде чередующегося паттерна на протяжении по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 смежных нуклеиновых оснований вдоль нити соединения dsRNA. В определенных вариантах осуществления соединение содержит между прилегающими нуклеотидами одну или несколько связей, отличных от встречающейся в природе фосфодиэфирной связи. Примеры таких связей включают фосфорамидные, фосфотиоатные и дифосфотиоатные связи. Соединения также могут представлять собой химически модифицированные молекулы нуклеиновой кислоты, как изложено в патенте США № 6673661. В других вариантах осуществления соединение содержит одну или две кэпированные нити, как раскрыто, например, в WO 00/63364, поданной 19 апреля 2000 г.

В определенных вариантах осуществления первая нить соединения представляет собой направляющую нить siRNA, а вторая нить соединения представляет собой сопровождающую нить siRNA. В определенных вариантах осуществления вторая нить соединения

комплементарна первой нити. В определенных вариантах осуществления каждая нить соединения имеет длину 16, 17, 18, 19, 20, 21, 22 или 23 связанных нуклеозида. В определенных вариантах осуществления первая или вторая нить соединения может содержать конъюгированную группу.

5

10

15

20

25

30

В определенных вариантах осуществления соединение, описанное в данном документе, может содержать любую из описанных в данном документе олигонуклеотидных последовательностей, нацеленных на FOXP3. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления такое соединение представляет собой однонитевое соединение для RNAi (ssRNAi). В определенных вариантах осуществления соединение содержит фрагмент из по меньшей мере 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 смежных нуклеиновых оснований из любой из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит рибонуклеотиды, при этом урацил (U) располагается на месте тимина (T) в любой из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит последовательность нуклеиновых оснований, комплементарную сайту в FOXP3, на который нацелена любая из SEQ ID NO: 9-3246. В определенных вариантах осуществления соединение содержит один или несколько модифицированных нуклеотидов, у которых в 2'-положении в сахаре содержится галоген (такой как группа фтора; 2'-F) или содержится алкоксигруппа (такая как метоксигруппа; 2'-ОМе). В определенных вариантах осуществления соединение содержит по меньшей мере одну 2'-F-модификацию сахара и по меньшей мере одну 2'-ОМе-модификацию сахара. В определенных вариантах осуществления меньшей одна 2'-F-модификация сахара и по меньшей 2'-ОМе-модификация сахара расположены в виде чередующегося паттерна на протяжении по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 смежных нуклеиновых оснований вдоль нити соединения. В определенных вариантах осуществления соединение содержит между прилегающими нуклеотидами одну или несколько связей, отличных от встречающейся в природе фосфодиэфирной связи. Примеры таких связей включают фосфорамидные, фосфотиоатные и дифосфотиоатные связи. Соединения также могут представлять собой химически модифицированные молекулы нуклеиновой кислоты, как изложено в патенте США № 6673661. В других вариантах осуществления соединение содержит кэпированную нить, как раскрыто, например, в WO 00/63364, поданной 19 апреля 2000 г. В определенных вариантах осуществления соединение состоит из 16, 17, 18, 19, 20, 21, 22 или 23 связанных нуклеозидов. В определенных вариантах осуществления соединение может содержать конъюгированную группу.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды. Определенные модифицированные олигонуклеотиды имеют один или несколько центров асимметрии и поэтому образуют энантиомеры, диастереомеры и другие стереоизомерные конфигурации, которые можно определять с точки зрения абсолютной стереохимии как (R) или (S), как α или β, как, например, в случае аномеров сахаров, или как (D) или (L), как, например, в случае аминокислот и т. д. В модифицированные олигонуклеотиды, предусмотренные в данном документе, включены все такие возможные изомеры, в том числе их рацемические и оптически чистые формы, если не указано иное. Аналогичным образом, также включены все цис- и транс-изомеры и таутомерные формы.

Соединения, описанные в данном документе, включают в себя варианты, в которых один или несколько атомов заменены нерадиоактивным изотопом или радиоактивным изотопом указанного элемента. Например, соединения согласно данному документу, которые содержат атомы водорода, охватывают все возможные замещения дейтерием каждого из атомов водорода ¹Н. Изотопные замещения, охватываемые соединениями согласно данному документу, включают в себя без ограничения: ²Н или ³Н вместо ¹H, ¹³С или ¹⁴С вместо ¹²С, ¹⁵N вместо ¹⁴N, ¹⁷О или ¹⁸О вместо ¹⁶О, а также ³³S, ³⁴S, ³⁵S или ³⁶S вместо ³²S. В определенных вариантах осуществления замещения нерадиоактивными изотопами могут придавать соединению новые свойства, которые являются благоприятными для его применения в качестве инструмента терапии или исследований. В определенных вариантах осуществления замещения радиоактивными изотопами могут делать соединение подходящим для исследовательских или диагностических целей, таких как визуализационный анализ.

Некоторые механизмы

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды или состоят из них. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой антисмысловые соединения. В определенных вариантах осуществления соединения содержат олигомерные соединения. В определенных вариантах осуществления

соединения, описанные в данном документе, способны гибридизироваться с нуклеиновой кислотой-мишенью, что приводит к по меньшей мере одной форме антисмысловой активности. В определенных вариантах осуществления соединения, описанные в данном документе, избирательно воздействуют на одну или несколько нуклеиновых кислот-мишеней. Такие соединения содержат последовательность нуклеиновых оснований, которая гибридизируется с одной или несколькими нуклеиновыми кислотами-мишенями, что приводит к одной или нескольким формам желаемой антисмысловой активности, и не гибридизируется с одной или несколькими нуклеиновыми кислотами, не являющимися мишенями, или не гибридизируется с одной или несколькими нуклеиновыми кислотами, не являющимися мишенями, таким образом, что это приводит к значительной нежелательной антисмысловой активности.

При определенных формах антисмысловой активности гибридизация соединения, описанного в данном документе, с нуклеиновой кислотой-мишенью приводит к привлечению белка, который расщепляет нуклеиновую кислоту-мишень. Например, определенные соединения, описанные в данном документе, приводят к расщеплению нуклеиновой кислоты-мишени, опосредованному РНКазой Н. РНКаза Н представляет собой клеточную эндонуклеазу, которая расщепляет нить РНК в дуплексе РНК:ДНК. ДНК в таком дуплексе РНК:ДНК не обязательно должна быть немодифицированной ДНК. В определенных вариантах осуществления соединения, описанные в данном документе, являются достаточно "ДНК-подобными", чтобы вызывать активность РНКазы Н. Кроме того, в определенных вариантах осуществления допускаются один или несколько нуклеозидов, не являющихся ДНК-подобными, в гэпе гэпмера.

При определенных формах антисмысловой активности соединения, описанные в данном документе, или фрагмент соединения включаются в состав РНК-индуцируемого комплекса сайленсинга (RISC), что в конечном счете приводит к расщеплению нуклеиновой кислоты-мишени. Например, определенные соединения, описанные в данном документе, приводят к расщеплению нуклеиновой кислоты-мишени с помощью белка Argonaute. Соединения, которые включаются в состав RISC, являются соединениями для RNAi. Соединения для RNAi могут быть двухнитевыми (siRNA) или однонитевыми (ssRNA).

В определенных вариантах осуществления гибридизация соединений, описанных в данном документе, с нуклеиновой кислотой-мишенью не приводит к привлечению белка, который расщепляет эту нуклеиновую кислоту-мишень. В определенных подобных вариантах

осуществления гибридизация соединения с нуклеиновой кислотой-мишенью приводит к изменению сплайсинга нуклеиновой кислоты-мишени. В определенных вариантах осуществления гибридизация соединения с нуклеиновой кислотой-мишенью приводит к подавлению связывающего взаимодействия между нуклеиновой кислотой-мишенью и белком или другой нуклеиновой кислотой. В определенных подобных вариантах осуществления гибридизация соединения с нуклеиновой кислотой-мишенью приводит к изменению трансляции нуклеиновой кислоты-мишени.

5

10

15

20

25

30

Формы антисмысловой активности можно наблюдать непосредственно или опосредованно. В определенных вариантах осуществления наблюдение или выявление антисмысловой активности предполагает наблюдение или выявление изменения количества нуклеиновой кислоты-мишени или белка, кодируемого такой нуклеиновой кислотой-мишенью, изменения соотношения сплайс-вариантов нуклеиновой кислоты или белка и/или фенотипического изменения в клетке или у животного.

Нуклеиновые кислоты-мишени, области-мишени и нуклеотидные последовательности

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотид, содержащий область, комплементарную нуклеиновой кислоте-мишени, или состоят из него. В определенных вариантах осуществления нуклеиновая кислота-мишень представляет собой молекулу эндогенной РНК. В определенных вариантах осуществления нуклеиновая кислота-мишень кодирует белок. В определенных подобных вариантах осуществления нуклеиновая кислота-мишень выбрана из мРНК и пре-мРНК, содержащей интронные, экзонные и нетранслируемые области. В определенных вариантах осуществления РНК-мишень представляет собой мРНК. В определенных вариантах осуществления нуклеиновая кислота-мишень представляет собой пре-мРНК. В определенных подобных вариантах осуществления область-мишень полностью находится в пределах интрона. В определенных вариантах осуществления область-мишень охватывает точку сочленения интрона и экзона. В определенных вариантах осуществления по меньшей мере 50% области-мишени находится в пределах интрона.

Нуклеотидные последовательности, которые кодируют FOXP3, включают в себя без ограничения следующие: приведенные в RefSeq под № NM_014009.3 (SEQ ID NO: 1), NT_011568.12_TRUNC_11907130_11921808_COMP (SEQ ID NO: 2), NM_001114377.1 (SEQ ID NO: 3), NC 000023.11 TRUNC 49247001 49273000 COMP (SEQ ID NO: 4) или в UCSC

под № доступа UC064ZFP.1, которая соответствует геномным координатам chrX:49251334-49259240 в сборке GRCh38/hg38 (SEQ ID NO: 5); каждая из которых включена посредством ссылки во всей своей полноте.

5 Гибридизация

10

15

20

25

30

В некоторых вариантах осуществления между соединением, раскрытым в данном документе, и нуклеиновой кислотой FOXP3 происходит гибридизация. Наиболее распространенный механизм гибридизации предполагает образование водородных связей (например, образование водородных связей по типу уотсон-криковского, хугстиновского или обратного хугстиновского взаимодействия) между комплементарными нуклеиновыми основаниями молекул нуклеиновой кислоты.

Гибридизация может происходить в различных условиях. Условия гибридизации зависят от последовательности и определяются природой и составом молекул нуклеиновой кислоты, подлежащих гибридизации.

Способы определения того, способна ли последовательность к специфичной гибридизации с нуклеиновой кислотой-мишенью, хорошо известны из уровня техники. В определенных вариантах осуществления соединения, предусмотренные в данном документе, способны к специфичной гибридизации с нуклеиновой кислотой FOXP3.

Комплементарность

Считается, что олигонуклеотид является комплементарным другой нуклеиновой кислоте, если последовательность нуклеиновых оснований такого олигонуклеотида или одной или нескольких его областей соответствует последовательности нуклеиновых оснований другого олигонуклеотида или нуклеиновой кислоты или одной или нескольких их областей при выравнивании двух последовательностей нуклеиновых оснований в противоположных направлениях. Описанные в данном документе совпадения нуклеиновых оснований или комплементарные нуклеиновые основания ограничены следующими парами: аденин (А) и тимин (Т), аденин (А) и урацил (U), цитозин (С) и гуанин (G) и 5-метилцитозин (т) и гуанин (G), если не указано иное. Комплементарные олигонуклеотиды и/или нуклеиновые кислоты не обязательно должны характеризоваться комплементарностью нуклеиновых оснований по каждому нуклеозиду и могут содержать одно или несколько несовпадений нуклеиновых

оснований. Олигонуклеотид является полностью комплементарным или на 100% комплементарным, если такие олигонуклеотиды характеризуются совпадениями нуклеиновых оснований по каждому нуклеозиду без каких-либо несовпадений нуклеиновых оснований.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды или состоят из них. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой антисмысловые соединения. В определенных вариантах осуществления соединения содержат олигомерные соединения. Некомплементарные нуклеиновые основания между соединением и нуклеиновой кислотой FOXP3 могут допускаться при условии, что соединение сохраняет способность к специфичной гибридизации с нуклеиновой кислотой-мишенью. Более того, соединение может гибридизироваться с одним или несколькими сегментами нуклеиновой кислоты FOXP3 таким образом, что промежуточные или прилегающие сегменты не участвуют в событии гибридизации (например, с образованием петлевой структуры, несовпадения или шпилечной структуры).

В определенных вариантах осуществления соединения, предусмотренные в данном документе, или их определенный фрагмент являются комплементарными нуклеиновой кислоте FOXP3, ее области-мишени, сегменту-мишени или определенному фрагменту на 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или 100%, или на по меньшей мере такую величину, или на значение, не превышающее такую величину. В определенных вариантах осуществления соединения, предусмотренные в данном документе, или их определенный фрагмент являются комплементарными нуклеиновой кислоте FOXP3, ее области-мишени, сегменту-мишени или определенному фрагменту на 70%-75%, 75%-80%, 80%-85%, 85%-90%, 90%-95%, 95%-100% или любую величину в пределах этих диапазонов. Процент комплементарности соединения по отношению к нуклеиновой кислоте-мишени можно определить с помощью стандартных способов.

Например, соединение, в котором 18 из 20 нуклеиновых оснований соединения являются комплементарными области-мишени и, следовательно, будут специфично гибридизироваться, будет представлять 90-процентную комплементарность. В этом примере остальные некомплементарные нуклеиновые основания могут образовывать кластеры или чередоваться с комплементарными нуклеиновыми основаниями и не обязательно должны быть смежными друг с другом или с комплементарными нуклеиновыми основаниями. Соответственно, соединение, длина которого составляет 18 нуклеиновых оснований, имеющее

четыре некомплементарных нуклеиновых основания, которые фланкированы двумя областями, комплементарными нуклеиновой кислоте-мишени, будет полностью характеризоваться общей комплементарностью с нуклеиновой кислотой-мишенью, составляющей 77,8%. Процент комплементарности соединения с областью нуклеиновой кислоты-мишени можно определить обычным образом с помощью программ BLAST (средства поиска основного локального выравнивания) и программ PowerBLAST, известных из уровня техники (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656). Процент гомологии, идентичности или комплементарности последовательностей можно определить, например, с помощью программы Gap (Wisconsin Sequence Analysis Package, версия 8 для Unix, Genetics Computer Group, University Research Park, Мэдисон, Висконсин), используя настройки по умолчанию, в которой используется алгоритм Смита-Уотермана (Adv. Appl. Math., 1981, 2, 482-489).

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, или их определенные фрагменты являются полностью комплементарными (т. е. на 100% комплементарными) нуклеиновой кислоте-мишени или ее определенному фрагменту. Например, соединение может быть полностью комплементарным нуклеиновой кислоте FOXP3 или ее области-мишени, или сегменту-мишени, или последовательности-мишени. Как используется в данном документе, "полностью комплементарное" означает, что каждое нуклеиновое основание соединения является комплементарным соответствующему нуклеиновому основанию нуклеиновой кислоты-мишени. Например, соединение из 20 нуклеиновых оснований является полностью комплементарным нуклеиновой кислоте-мишени длиной 400 нуклеиновых оснований, при условии, что в нуклеиновой кислоте-мишени имеется соответствующий фрагмент из 20 нуклеиновых оснований, который является полностью комплементарным соединению. "Полностью комплементарный" также можно использовать применительно к определенному фрагменту первой и/или второй нуклеиновой кислоты. Например, фрагмент из 20 нуклеиновых оснований в соединении из 30 нуклеиновых оснований может быть "полностью комплементарным" нуклеиновой кислоте-мишени длиной 400 нуклеиновых оснований. Фрагмент из 20 нуклеиновых оснований в соединении из 30 нуклеиновых оснований является полностью комплементарным последовательности-мишени, если в последовательности-мишени имеется соответствующий фрагмент из 20 нуклеиновых оснований, в котором каждое нуклеиновое основание является комплементарным нуклеиновому основанию во фрагменте из 20 нуклеиновых оснований в соединении. В то же

самое время все соединение из 30 нуклеиновых оснований может быть или может не быть полностью комплементарным последовательности-мишени в зависимости от того, являются ли остальные 10 нуклеиновых оснований в соединении также комплементарными последовательности-мишени.

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат одно или несколько несовпадающих нуклеиновых оснований относительно нуклеиновой кислоты-мишени. В определенных подобных вариантах осуществления антисмысловая активность в отношении мишени снижается за счет такого несовпадения, но активность в отношении молекулы, не являющейся мишенью, снижается на еще большую величину. Таким образом, в определенных подобных вариантах осуществления улучшается избирательность соединения. В определенных вариантах осуществления несовпадение имеет конкретное местоположение в пределах олигонуклеотида, имеющего гэпмерный мотив. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3, 4, 5, 6, 7 или 8 от 5'-конца области гэпа. В определенных подобных вариантах осуществления несовпадение находится в положении 9, 8, 7, 6, 5, 4, 3, 2, 1 от 3'-конца области гэпа. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3 или 4 от 5'-конца фланговой области. В определенных подобных вариантах осуществления несовпадение находится в положении 4, 3, 2 или 1 от 3'-конца фланговой области. В определенных вариантах осуществления несовпадение имеет конкретное местоположение в пределах олигонуклеотида, не имеющего гэпмерный мотив. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 от 5'-конца олигонуклеотида. В определенных подобных вариантах осуществления несовпадение находится в положении 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 от 3'-конца олигонуклеотида.

Местоположение некомплементарного нуклеинового основания может находиться на 5'-конце или на 3'-конце соединения. В качестве альтернативы, некомплементарные нуклеиновое основание или нуклеиновые основания могут находиться во внутреннем положении—соединения. При наличии двух или более некомплементарных нуклеиновых оснований они могут быть смежными (т. е. связанными) или несмежными. В одном варианте осуществления некомплементарное нуклеиновое основание расположено во фланговом сегменте гэпмерного олигонуклеотида.

В определенных вариантах осуществления соединения, описанные в данном документе, длина которых составляет 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 нуклеиновых оснований или не превышает такую величину, содержат не более 4, не более 3, не более 2 или не более 1 некомплементарного(некомплементарных) нуклеинового(нуклеиновых) основания(оснований) относительно нуклеиновой кислоты-мишени, такой как нуклеиновая кислота FOXP3 или ее определенный фрагмент.

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, длина которых составляет 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 или 30 нуклеиновых оснований или не превышает такую величину, содержат не более 6, не более 5, не более 4, не более 3, не более 2 или не более 1 некомплементарного(некомплементарных) нуклеинового(нуклеиновых) основания(оснований) относительно нуклеиновой кислоты-мишени, такой как нуклеиновая кислота FOXP3 или ее определенный фрагмент.

В определенных вариантах осуществления соединения, описанные в данном документе, также включают в себя те соединения, которые являются комплементарными фрагменту нуклеиновой кислоты-мишени. Как используется в данном документе, "фрагмент" относится к определенному количеству смежных (т. е. связанных) нуклеиновых оснований в пределах области или сегмента нуклеиновой кислоты-мишени. "Фрагмент" также может относиться к определенному количеству смежных нуклеиновых оснований в соединении. В определенных вариантах осуществления соединения-являются комплементарными фрагменту из по меньшей мере 8 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 9 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 10 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 11 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 12 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения комплементарными фрагменту из по меньшей мере 13 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 14 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 15 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту из по меньшей мере 16 нуклеиновых оснований в Также предусматриваются сегменте-мишени. соединения, которые являются комплементарными фрагменту из по меньшей мере 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 или больше нуклеиновых оснований в сегменте-мишени или фрагменту в диапазоне, ограниченном любыми двумя из этих значений.

Идентичность

5

10

15

20

25

30

Соединения, предусмотренные в данном документе, также могут характеризоваться определенным процентом идентичности с конкретной нуклеотидной последовательностью, SEQ ID NO или соединением, представленным под конкретным номером ION, или их фрагментом. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой антисмысловые соединения или олигомерные соединения. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой модифицированные олигонуклеотиды. Как используется в данном документе, соединение является идентичным последовательности, раскрытой в данном документе, если оно обладает способностью образовывать такие же пары нуклеиновых оснований. Например, РНК, которая содержит урацил вместо тимидина в раскрытой последовательности ДНК, будет считаться идентичной последовательности ДНК, поскольку как урацил, так и тимидин образуют пару с аденином. Также предусматриваются укороченные и удлиненные варианты соединений, описанных в данном документе, а также соединения, имеющие неидентичные основания относительно соединений, предусмотренных в данном документе. Неидентичные основания могут прилегать друг к другу или быть распределены по всему соединению. Процент идентичности соединения вычисляют по количеству оснований, которые обладают свойствами образования идентичных пар оснований по сравнению с последовательностью, с которой его сравнивают.

В определенных вариантах осуществления соединения, описанные в данном документе, или их фрагменты являются идентичными одному или нескольким соединениям, или SEQ ID NO, или их фрагменту, раскрытым в данном документе, на 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или 100% или по меньшей мере на такие

значения. В определенных вариантах осуществления соединения, описанные в данном документе, являются идентичными конкретной нуклеотидной последовательности, SEQ ID NO или соединению, представленному под конкретным номером ION, или их фрагменту, на приблизительно 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% или любую процентную величину между такими значениями, при этом соединения содержат олигонуклеотид, имеющий одно или несколько несовпадающих нуклеиновых оснований. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 от 5'-конца олигонуклеотида. В определенных подобных вариантах осуществления несовпадение находится в положении 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 от 3'-конца олигонуклеотида.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат антисмысловые соединения или состоят из них. В определенных вариантах осуществления фрагмент антисмыслового соединения сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени. В определенных вариантах осуществления фрагмент из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 нуклеиновых оснований сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды или состоят из них. В определенных вариантах осуществления фрагмент олигонуклеотида сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени. В определенных вариантах осуществления фрагмент из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 нуклеиновых оснований сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени.

Некоторые модифицированные соединения

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды, состоящие из связанных нуклеозидов, или состоят из них. Олигонуклеотиды могут представлять собой немодифицированные олигонуклеотиды (РНК или ДНК) или могут представлять собой модифицированные олигонуклеотиды. Модифицированные олигонуклеотиды содержат по меньшей мере одну модификацию по сравнению с немодифицированной РНК или ДНК (т. е. содержат по меньшей мере один модифицированный нуклеозид (содержащий модифицированный сахарный компонент и/или

модифицированное нуклеиновое основание) и/или по меньшей мере одну модифицированную межнуклеозидную связь).

А. Модифицированные нуклеозиды

5

10

15

20

25

30

Модифицированные нуклеозиды содержат модифицированный сахарный компонент или модифицированное нуклеиновое основание или как модифицированный сахарный компонент, так и модифицированное нуклеиновое основание.

1. Модифицированные сахарные компоненты

В определенных вариантах осуществления сахарные компоненты представляют собой небициклические модифицированные сахарные компоненты. В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой бициклические или трициклические сахарные компоненты. В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой имитаторы сахаров. Такие имитаторы сахаров могут содержать одно или несколько замещений, соответствующих замещениям в других типах модифицированных сахарных компонентов.

В определенных вариантах осуществления модифицированные сахарные компоненты собой модифицированные представляют небициклические сахарные компоненты, содержащие фуранозильное кольцо с одним или несколькими ациклическими заместителями, в том числе без ограничения заместителями в 2'-, 4'- и/или 5'-положениях. В определенных вариантах осуществления один или несколько ациклических заместителей в небициклических модифицированных компонентах сахарных являются разветвленными. Примеры 2'-замещающих групп, подходящих для небициклических модифицированных сахарных компонентов, включают без ограничения 2'-F, 2'-ОСН3 ("ОМе" или "О-метил") и 2'-O(CH₂)₂OCH₃ ("MOE"). В определенных вариантах осуществления 2'-замещающие группы выбраны из галогена, аллила, амино, азидо, SH, CN, OCN, CF₃, OCF₃, O-C₁-C₁₀-алкокси, замещенного $O-C_1-C_{10}$ -алкокси, $O-C_1-C_{10}$ -алкила, замещенного $O-C_1-C_{10}$ -алкила, S-алкила, $N(R_m)$ -алкила, О-алкенила, S-алкенила, $N(R_m)$ -алкенила, О-алкинила, S-алкинила, N(R_m)-алкинила, О-алкиленил-О-алкила, алкинила, алкарила, аралкила, О-алкарила, O-аралкила, $O(CH_2)_2SCH_3$, $O(CH_2)_2ON(R_m)(R_n)$ или $OCH_2C(=O)-N(R_m)(R_n)$, где каждый R_m и R_n независимо представляет собой Н, защитную группу для аминогруппы или замещенный или незамещенный C_1 - C_{10} -алкил, и 2'-замещающих групп, описанных в Cook et al., U.S. 6531584, Cook et al., U.S. 5859221, и Cook et al., U.S. 6005087. В определенных вариантах осуществления эти 2'-замещающие группы могут быть дополнительно замещены одной или несколькими замещающими группами, независимо выбранными из гидроксила, амино, алкокси, карбокси, бензила, фенила, нитро (NO₂), тиола, тиоалкокси, тиоалкила, галогена, алкила, арила, алкенила и алкинила. Примеры 4'-замещающих групп, подходящих для линейных небициклических модифицированных сахарных компонентов, включают без ограничения алкокси (например, метокси), алкил и группы, описанные в Manoharan et al., WO 2015/106128. Примеры 5'-замещающих групп, подходящих для небициклических модифицированных сахарных компонентов, включают без ограничения 5'-метил (R или S), 5'-винил и 5'-метокси. В определенных вариантах осуществления небициклические модифицированные сахара содержат более одного немостикового заместителя в сахаре, например, в случае с 2'-F-5'-метил-модифицированными сахарными компонентами, а также модифицированными сахарными компонентами, описанными в Мідаwa et al., US2010/190837, и Rajeev et al., US2013/0203836.

5

10

15

20

25

30

В определенных вариантах осуществления 2'-замещенный нуклеозид или небициклический 2'-модифицированный нуклеозид содержит сахарный компонент, содержащий линейную 2'-замещающую группу, выбранную из F, NH₂, N₃, OCF₃, OCH₃, O(CH₂)₃NH₂, CH₂CH=CH₂, OCH₂CH=CH₂, OCH₂CH₂OCH₃, O(CH₂)₂SCH₃, O(CH₂)₂ON(R_m)(R_n), O(CH₂)₂O(CH₂)₂N(CH₃)₂ и N-замещенного ацетамида (OCH₂C(=O)-N(R_m)(R_n)), где каждый R_m и R_n независимо представляет собой H, защитную группу для аминогруппы или замещенный или незамещенный C_1 - C_{10} -алкил.

В определенных вариантах осуществления 2'-замещенный нуклеозид или небициклический 2'-модифицированный нуклеозид содержит сахарный компонент, содержащий линейную 2'-замещающую группу, выбранную из F, OCF_3 , OCH_2 , OCH_2 CH2OCH3, $O(CH_2)_2SCH_3$, $O(CH_2)_2ON(CH_3)_2$, $O(CH_2)_2O(CH_2)_2N(CH_3)_2$ и $OCH_2C(=O)$ - $N(H)CH_3$ ("NMA").

В определенных вариантах осуществления 2'-замещенный нуклеозид или небициклический 2'-модифицированный нуклеозид содержит сахарный компонент, содержащий линейную 2'-замещающую группу, выбранную из F, OCH₃ и OCH₂CH₂OCH₃.

Нуклеозиды, содержащие модифицированные сахарные компоненты, такие как небициклические модифицированные сахарные компоненты, обозначают по положению (положениям) замещения (замещений) в сахарном компоненте нуклеозида. Например, нуклеозиды, содержащие 2'-замещенные или 2-модифицированные сахарные

компоненты, называют 2'-замещенными нуклеозидами или 2-модифицированными нуклеозидами.

Определенные модифицированные сахарные компоненты содержат мостиковый заместитель в сахаре, который образует второе кольцо, в результате чего образуется бициклический сахарный компонент. В определенных подобных вариантах осуществления бициклический сахарный компонент содержит мостик между 4'- и 2'-атомами фуранозного кольца. Примеры таких 4'-2'-мостиковых заместителей в сахаре включают без ограничения 4'-CH₂-2', 4'-(CH₂)₂-2', 4'-(CH₂)₃-2', 4'-CH₂-O-2' ("LNA"), 4'-CH₂-S-2', 4'-(CH₂)₂-O-2' ("ENA"), 4'-CH(CH₃)-O-2' (называемый "конформационно ограничивающим этилом" или "cEt" в *S*-конфигурации), 4'-CH₂-O-CH₂-2', 4'-CH₂-N(R)-2', 4'-CH(CH₂OCH₃)-O-2' ("конформационно ограничивающий МОЕ" или "сМОЕ") и его аналоги (см., например, Seth et al., U.S. 7399845, Bhat et al., U.S. 7569686, Swayze et al., U.S. 7741457, и Swayze et al., U.S. 8022193), 4'-C(CH₃)(CH₃)-O-2' и его аналоги (см., например, Seth et al., U.S. 4'-CH₂-N(OCH₃)-2' и его аналоги (см., например, Prakash et al., U.S. 8278425), 4'-CH₂-O-N(CH₃)-2' (см., например, Allerson et al., U.S. 7696345, и Allerson et al., U.S. 8124745), 4'-CH₂-C(H)(CH₃)-2' (см., например, Zhou, et al., J. Org. Chem., 2009, 74, 118-134), 4'-CH₂-C(=CH₂)-2' и его аналоги (см., например, Seth et al., U.S. 8278426), R, R_a и R_b независимо представляет собой H, защитную группу или C_1 - C_{12} -алкил (см., например, Imanishi et al., U.S. 7427672).

В определенных вариантах осуществления такие 4'-2'-мостики независимо содержат от 1 до 4 связанных групп, независимо выбранных из $-[C(R_a)(R_b)]_n$ -, $-[C(R_a)(R_b)]_n$ -O-, $-C(R_a)=C(R_b)$ -, $-C(R_a)=N$ -, $-C(=NR_a)$ -, -C(=O)-, -C(=S)-, -O-, $-Si(R_a)_2$ -, $-S(=O)_x$ - и $-N(R_a)$ -;

х равняется 0, 1 или 2;

где:

5

10

15

20

25

30

п равняется 1, 2, 3 или 4;

каждый R_a и R_b независимо представляет собой H, защитную группу, гидроксил, C_1 - C_{12} -алкил, замещенный C_1 - C_{12} -алкил, C_2 - C_{12} -алкинил, замещенный C_2 - C_{12} -алкинил, C_5 - C_{20} -арил, замещенный C_5 - C_{20} -арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил, алициклический C_5 - C_7 -радикал, замещенный алициклический C_5 - C_7 -радикал, галоген, OJ_1 , NJ_1J_2 , SJ_1 , N_3 , $COOJ_1$, ацил (C(=O)-H), замещенный ацил, CN,

сульфонил ($S(=O)_2$ - J_1) или сульфоксил (S(=O)- J_1); и каждый J_1 и J_2 независимо представляет собой H, C_1 - C_{12} -алкил, замещенный C_1 - C_{12} -алкил, C_2 - C_{12} -алкенил, замещенный C_2 - C_{12} -алкинил, C_5 - C_{20} -арил, замещенный C_5 - C_{20} -арил, ацил (C(=O)-H), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал, C_1 - C_{12} -аминоалкил, замещенный C_1 - C_{12} -аминоалкил или защитную группу.

5

10

15

20

25

Дополнительные бициклические сахарные компоненты известны из уровня техники, см., например: Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Wengel et al., U.S. 7053207, Imanishi et al., U.S. 6268490, Imanishi et al., U.S. 6770748, Imanishi et al., U.S. RE44779; Wengel et al., U.S. 6794499, Wengel et al., U.S. 6670461; Wengel et al., U.S. 7034133, Wengel et al., U.S. 8080644; Wengel et al., U.S. 8034909; Wengel et al., U.S. 8153365; Wengel et al., U.S. 7572582; и Ramasamy et al., U.S. 6525191, Torsten et al., WO 2004/106356, Wengel et al., WO 1999/014226; Seth et al., WO 2007/134181; Seth et al., U.S. 7547684; Seth et al., U.S. 7666854; Seth et al., U.S. 8088746; Seth et al., U.S. 7750131; Seth et al., U.S. 8030467; Seth et al., U.S. 8268980; Seth et al., U.S. 8546556; Seth et al., U.S. 8530640; Migawa et al., U.S. 9012421; Seth et al., U.S. 8501805; Allerson et al., US2008/0039618; и Migawa et al., US2015/0191727.

В определенных вариантах осуществления бициклические сахарные компоненты и нуклеозиды, в состав которых включены такие бициклические сахарные компоненты, дополнительно определяются изомерной конфигурацией. Например, нуклеозид LNA (описанный в данном документе) может быть представлен в конфигурации α-L или в конфигурации β-D.

5

10

15

20

25

LNA (β -D-конфигурация) α -L-LNA (α -L-конфигурация) мостик = 4'-CH₂-O-2' мостик = 4'-CH₂-O-2'

α-L-метиленокси-модифицированные (4'-CH₂-O-2') или имеющие конфигурацию α-L-LNA бициклические нуклеозиды были включены в состав олигонуклеотидов, демонстрировали антисмысловую активность (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372). В данном документе общее описание бициклических нуклеозидов включает обе изомерные конфигурации. Если положения конкретных бициклических нуклеозидов (например, LNA или cEt) идентифицированы В вариантах осуществления, проиллюстрированных в данном документе на примерах, то они представлены в конфигурации β-D, если не указано иное.

В определенных вариантах осуществления модифицированные сахарные компоненты содержат один или несколько немостиковых заместителей в сахаре и один или несколько мостиковых заместителей в сахаре (например, в случае с 5'-замещенными и содержащими 4'-2'-мостик сахарами).

В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой имитаторы сахаров. В определенных подобных вариантах осуществления атом кислорода в сахарном компоненте заменен, например, атомом серы, углерода или азота. В определенных подобных вариантах осуществления такие модифицированные сахарные компоненты также содержат мостиковые и/или немостиковые заместители, описанные в данном документе. Например, определенные имитаторы сахаров содержат 4'-атом серы и замещение в 2'-положении (см., например, Bhat et al., U.S. 7875733, и Bhat et al., U.S. 7939677) и/или в 5'-положении.

В определенных вариантах осуществления имитаторы сахаров содержат кольца с числом атомов, отличным от 5. Например, в определенных вариантах осуществления имитатор сахара содержит шестичленный тетрагидропиран ("ТНР"). Такие тетрагидропираны могут быть дополнительно модифицированными или замещенными. Нуклеозиды, содержащие такие модифицированные тетрагидропираны, себя без ограничения включают ("HNA"), аннит-нуклеиновую ("ANA"), гексит-нуклеиновую кислоту кислоту

маннит-нуклеиновую кислоту ("MNA") (см., например, Leumann, СJ. *Bioorg. & Med. Chem.* 2002, *10*, 841-854), фтор-HNA:

5

10

15

20

F-HNA

("F-HNA", см., например, Swayze et al., U.S. 8088904, Swayze et al., U.S. 8440803, и Swayze et al., U.S. 9005906, F-HNA также может обозначаться как F-THP или 3'-фтортетрагидропиран), и нуклеозиды, содержащие дополнительные модифицированные соединения THP следующей формулы:

где независимо для каждого указанного модифицированного ТНР-нуклеозида:

Вх представляет собой компонент, являющийся нуклеиновым основанием;

каждый из Т₃ и Т₄ независимо представляет собой межнуклеозидную связывающую ТНР-нуклеозид группу, связывающую модифицированный c остальной частью олигонуклеотида, или один из Т₃ и Т₄ представляет собой межнуклеозидную связывающую ТНР-нуклеозид модифицированный связывающую c остальной частью олигонуклеотида, а другой из Т₃ и Т₄ представляет собой Н, защитную группу для гидроксильной группы, связанную конъюгированную группу или 5'- или 3'-концевую группу; каждый из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 независимо представляет собой H, C_1 - C_6 -алкил, замещенный C_1 - C_6 -алкил, C_2 - C_6 -алкенил, замещенный C_2 - C_6 -алкенил, C_2 - C_6 -алкинил или замещенный C_2 - C_6 -алкинил; и каждый из R_1 и R_2 независимо выбран из водорода, галогена, замещенного или незамещенного алкокси, NJ_1J_2 , SJ_1 , N_3 , $OC(=X)J_1$, $OC(=X)NJ_1J_2$, $NJ_3C(=X)NJ_1J_2$ и CN, где Xпредставляет собой O, S или NJ_1 , а каждый из J_1 , J_2 , и J_3 независимо представляет собой H или C_1 - C_6 -алкил.

В определенных вариантах осуществления предусмотрены модифицированные ТНР-нуклеозиды, где каждый из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 представляет собой H. В определенных вариантах осуществления по меньшей мере один из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 является отличным от H. В определенных вариантах осуществления по меньшей мере один из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 представляет собой метил. В определенных вариантах осуществления предусмотрены модифицированные ТНР-нуклеозиды, где один из R_1 и R_2 представляет собой F. В определенных вариантах осуществления R_1 представляет собой метокси, а R_2 представляет собой H, и в определенных вариантах осуществления R_1 представляет собой метокси, а R_2 представляет собой H, и в определенных вариантах осуществления R_1 представляет собой метокси, а R_2 представляет собой нетоксиэтокси, а R_2 представляет собой метоксиэтокси, а R_2 представляет собой нетоксиэтокси, а R_2 представляет собой нетоксиэтокси.

В определенных вариантах осуществления имитаторы сахаров содержат кольца, содержащие более 5 атомов и более одного гетероатома. Например, сообщалось о нуклеозидах, содержащих морфолиновые сахарные компоненты, и об их применении в олигонуклеотидах (см., например, Braasch et al., Biochemistry, 2002, 41, 4503-4510, а также Summerton et al., U.S. 5698685; Summerton et al., U.S. 5166315; Summerton et al., U.S. 5185444; и Summerton et al., U.S. 5034506). Используемый в данном документе термин "морфолиновый компонент" означает имитатор сахара со следующей структурой:

5

10

15

20

25

В определенных вариантах осуществления морфолиновые компоненты могут быть модифицированы, например, путем добавления или изменения различных замещающих групп в приведенной выше структуре морфолинового компонента. Такие имитаторы сахаров в данном документе называются "модифицированными морфолиновыми компонентами".

В определенных вариантах осуществления имитаторы сахаров содержат ациклические компоненты. Примеры нуклеозидов и олигонуклеотидов, содержащих такие ациклические имитаторы сахаров, включают без ограничения пептидную нуклеиновую кислоту ("PNA"), ациклическую бутил-нуклеиновую кислоту (см., например, Kumar et al., *Org. Biomol. Chem.*, 2013, *11*, 5853-5865), а также нуклеозиды и олигонуклеотиды, описанные в Manoharan et al., US2013/130378.

Из уровня техники известны многие другие бициклические и трициклические кольцевые системы сахаров и имитаторов сахаров, которые могут применяться в модифицированных нуклеозидах.

2. Модифицированные нуклеиновые основания

5

10

15

20

25

30

Нуклеиновые основания (или основания) с модификациями или замещениями структурно отличаются ОТ встречающихся природе или синтетических немодифицированных нуклеиновых оснований, но являются функционально взаимозаменяемыми с ними. В образовании водородных связей могут принимать участие как природные, так и модифицированные нуклеиновые основания. Такие модификации нуклеиновых оснований могут придавать антисмысловым соединениям стабильность к действию нуклеаз, сродство связывания или некоторое другое благоприятное биологическое свойство.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько нуклеозидов, содержащих немодифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько нуклеозидов, которые не содержат нуклеиновое основание, называемых нуклеозидами с удаленными азотистыми основаниями.

В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из 5-замещенных пиримидинов, 6-азапиримидинов, алкил- или алкинилзамещенных пиримидинов, алкилзамещенных пуринов и N-2-, N-6- и О-6-замещенных пуринов. В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из 2-аминопропиладенина, 5-гидроксиметилцитозина, 5-метилцитозина, ксантина, гипоксантина, 2-аминоаденина, 6-N-метилгуанина, 6-N-метиладенина, 2-пропиладенина, 2-тиоурацила, 2-тиотимина И 2-тиоцитозина, 5-пропинил(С≡С-СН3)-урацила, 5-пропинилцитозина, 6-азоурацила, 6-азоцитозина, 6-азотимина, 5-рибозилурацила (псевдоурацила), 4-тиоурацила, 8-галогена, 8-амино, 8-тиола, 8-тиоалкила, 8-гидроксила, 8-аза и других 8-замещенных пуринов, 5-галогена, в частности, 5-брома, 5-трифторметила,

5-галогенурацила и 5-галогенцитозина, 7-метилгуанина, 7-метиладенина, 2-F-аденина, 2-аминоаденина, 7-дезазагуанина, 7-дезазааденина, 3-дезазагуанина, 3-дезазааденина, 6-N-бензоиладенина, 2-N-изобутирилгуанина, 4-N-бензоилцитозина, 4-N-бензоилурацила, 5-метил-4-N-бензоилцитозина, 5-метил-4-N-бензоилурацила, универсальных гидрофобных оснований, оснований, обладающих способностью к неспецифическому фторированных спариванию, оснований с увеличенным размером И оснований. модифицированные нуклеиновые Дополнительные основания включают себя трициклические пиримидины, такие как 1,3-диазафеноксазин-2-он, 1,3-диазафенотиазин-2-он и 9-(2-аминоэтокси)-1,3-диазафеноксазин-2-он (G-образный зажим). Модифицированные нуклеиновые основания также могут включать в себя нуклеиновые основания, в которых пуриновое или пиримидиновое основание заменено другими гетероциклами, например, 7-дезазааденином, 7-дезазагуанозином, 2-аминопиридином и 2-пиридоном. Дополнительные нуклеиновые основания включают в себя нуклеиновые основания, раскрытые в Merigan et al., U.S. 3687808, нуклеиновые основания, раскрытые в The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J.I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y.S., раздел 15, Antisense Research and Applications, Crooke, S.T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; и нуклеиновые основания, раскрытые в главах 6 и 15 Antisense Drug Technology, Crooke S.T., Ed., CRC Press, 2008, 163-166 и 442-443.

5

10

15

20

25

30

Публикации, в которых изложено получение некоторых из вышеупомянутых нуклеиновых модифицированных оснований, а также других модифицированных нуклеиновых оснований, включают без ограничения Manoharan et al., US2003/0158403, Manoharan et al., US2003/0175906; Dinh et al., U.S. 4845205; Spielvogel et al., U.S. 5130302; Rogers et al., U.S. 5134066; Bischofberger et al., U.S. 5175273; Urdea et al., U.S. 5367066; Benner et al., U.S. 5432272; Matteucci et al., U.S. 5434257; Gmeiner et al., U.S. 5457187; Cook et al., U.S. 5459255; Froehler et al., U.S. 5484908; Matteucci et al., U.S. 5502177; Hawkins et al., U.S. 5525711; Haralambidis et al., U.S. 5552540; Cook et al., U.S. 5587469; Froehler et al., U.S. 5594121; Switzer et al., U.S. 5596091; Cook et al., U.S. 5614617; Froehler et al., U.S. 5645985; Cook et al., U.S. 5681941; Cook et al., U.S. 5811534; Cook et al., U.S. 5750692; Cook et al., U.S. 5948903; Cook et al., U.S. 5587470; Cook et al., U.S. 5457191; Matteucci et al., U.S. 5763588; Froehler et al., U.S. 5830653; Cook et al., U.S. 5808027; Cook et al., U.S. 6166199; и Matteucci et al., U.S. 6005096.

В определенных вариантах осуществления соединения, нацеленные на нуклеиновую кислоту FOXP3, содержат одно или несколько модифицированных нуклеиновых оснований. В определенных вариантах осуществления модифицированное нуклеиновое основание представляет собой 5-метилцитозин. В определенных вариантах осуществления каждый цитозин представляет собой 5-метилцитозин.

3. Модифицированные межнуклеозидные связи

5

10

15

20

25

30

Встречающаяся в природе межнуклеозидная связь в РНК и ДНК представляет собой 3'-5'-фосфодиэфирную связь. В определенных вариантах осуществления соединения, описанные в данном документе, имеющие одну или несколько модифицированных, т. е. не встречающихся в природе, межнуклеозидных связей, зачастую предпочтительнее соединений со встречающимися в природе межнуклеозидными связями благодаря их желательным свойствам, таким как, например, повышенное поглощение клетками, повышенное сродство с нуклеиновыми кислотами-мишенями и увеличенная стабильность в присутствии нуклеаз.

Иллюстративные межнуклеозидные связи, имеющие хиральный центр, включают без ограничения алкилфосфонатные И фосфотиоатные Модифицированные связи. олигонуклеотиды, содержащие межнуклеозидные связи, имеющие хиральный центр, можно получить в виде совокупностей модифицированных олигонуклеотидов, содержащих стереослучайные межнуклеозидные связи, или в виде совокупностей модифицированных олигонуклеотидов, содержащих фосфотиоатные связи в конкретных стереохимических конфигурациях. В определенных вариантах осуществления совокупности модифицированных олигонуклеотидов содержат фосфотиоатные межнуклеозидные связи, все ИЗ фосфотиоатных связей стереослучайными. Такие межнуклеозидных являются модифицированные олигонуклеотиды можно получать с применением таких способов синтеза, которые приводят к случайному выбору стереохимической конфигурации каждой фосфотиоатной связи. Тем не менее, как хорошо понятно специалистам в данной области, фосфотиоат каждой каждый отдельный отдельной молекулы олигонуклеотида стереоконфигурацией. В характеризуется определенной определенных вариантах осуществления совокупности модифицированных обогащены олигонуклеотидов модифицированными олигонуклеотидами, содержащими одну или несколько конкретных фосфотиоатных конкретной, выбранной межнуклеозидных связей В независимо стереохимической конфигурации. В определенных вариантах осуществления конкретная

конфигурация конкретной фосфотиоатной связи присутствует в по меньшей мере 65% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует в по меньшей мере 70% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует в по меньшей мере 80% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует в по меньшей мере 90% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует в по меньшей мере 99% молекул в совокупности. Такие хирально обогащенные совокупности модифицированных олигонуклеотидов можно получить с применением способов синтеза, известных из уровня техники, например, способов, описанных в Oka et al., JACS 125, 8307 (2003), Wan et al. Nuc. Acid. Res. 42, 13456 (2014) и WO 2017/015555. В определенных вариантах осуществления совокупность модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один указанный фосфотиоат в В (Sp)-конфигурации. определенных вариантах осуществления совокупность модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один фосфотиоат в (Rp)-конфигурации. В определенных вариантах осуществления модифицированные олигонуклеотиды, содержащие (Rp) и/или (Sp)-фосфотиоаты, предусматривают соответственно одну или несколько из следующих формул, где "В" указывает на нуклеиновое основание:

5

10

15

20

25

Если не указано иное, хиральные межнуклеозидные связи модифицированных олигонуклеотидов, описанных в данном документе, могут быть стереослучайными или быть представлены в конкретной стереохимической конфигурации.

В определенных вариантах осуществления соединения, нацеленные на нуклеиновую кислоту FOXP3, содержат одну или несколько модифицированных межнуклеозидных связей. В определенных вариантах осуществления модифицированные межнуклеозидные связи представляют собой фосфотиоатные связи. В определенных вариантах осуществления каждая межнуклеозидная связь антисмыслового соединения представляет собой фосфотиоатную межнуклеозидную связь.

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. Олигонуклеотиды с модифицированными межнуклеозидными связями содержат межнуклеозидные связи, в которых сохраняется атом фосфора, а также межнуклеозидные связи, которые не имеют атома фосфора. Иллюстративные фосфорсодержащие межнуклеозидные связи включают без ограничения фосфодиэфирные, фосфотриэфирные, метилфосфонатные, фосфорамидатные и фосфотиоатные связи. Хорошо известны способы получения фосфорсодержащих и не содержащих фосфор связей.

определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов могут быть связаны друг с другом с помощью любой межнуклеозидной связи. Два основных класса межнуклеозидных связывающих групп определяются наличием или отсутствием атома фосфора. Иллюстративные фосфорсодержащие межнуклеозидные связи включают без ограничения фосфатные связи, которые охватывают фосфодиэфирную связь ("Р=О") (также называемые немодифицированными или встречающимися в природе связями), фосфотриэфирные, метилфосфонатные, фосфорамидатные, а также фосфотиоатные ("P=S") и дифосфотиоатные ("HS-P=S") связи. Иллюстративные не содержащие фосфор межнуклеозидные связывающие группы включают без ограничения метиленметилиминогруппу (-СН2-N(СН3)-О-СН2-), тиодиэфирную, тионокарбаматную (-O-SiH2-O-) (-O-C(=O)(NH)-S-);силоксановую И N,N'-диметилгидразиновую (-СН2-N(СН3)-N(СН3)-) группы. Модифицированные межнуклеозидные связи, в отличие от встречающихся в природе фосфатных связей, можно использовать для изменения, как правило, увеличения, устойчивости олигонуклеотида к действию нуклеаз. В определенных вариантах осуществления межнуклеозидные связи, имеющие хиральный атом, можно получать в виде рацемической смеси или в виде отдельных энантиомеров. Иллюстративные хиральные межнуклеозидные связи включают без ограничения алкилфосфонатные и фосфотиоатные связи. Специалистам в данной области хорошо известны способы получения фосфорсодержащих и не содержащих фосфор межнуклеозидных связей.

Нейтральные межнуклеозидные связи включают без ограничения фосфотриэфирные, метилфосфонатные связи, ММІ (3'-CH2-N(CH3)-O-5'), 3-амидную (3'-CH2-C(=O)-N(H)-5'), 4-амидную (3'-CH2-N(H)-C(=O)-5'), формацетальную (3'-O-CH2-O-5'), метоксипропильную и тиоформацетальную связи (3'-S-CH2-O-5'). Дополнительные нейтральные межнуклеозидные связи включают неионные связи, включающие силоксановую (диалкилсилоксановую), карбоксилатную сложноэфирную, карбоксамидную, сульфидную, сульфонатную сложноэфирную и амидные связи (см., например: Carbohydrate Modifications in Antisense Research; Y.S. Sanghvi and P.D. Cook, Eds., ACS Symposium Series 580; разделы 3 и 4, 40-65). Дополнительные нейтральные межнуклеозидные связи включают неионные связи, содержащие комбинацию составляющих частей N, O, S и CH2.

5

10

15

20

25

30

В определенных вариантах осуществления олигонуклеотиды содержат модифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области в виде определенного паттерна или мотива из модифицированных межнуклеозидных связей. В определенных вариантах осуществления межнуклеозидные связи расположены в виде мотива, содержащего гэп. В таких вариантах осуществления межнуклеозидные связи в каждой из двух фланговых областей отличаются от межнуклеозидных связей в области гэпа. В определенных вариантах осуществления межнуклеозидные связи во флангах являются фосфодиэфирными, а межнуклеозидные связи в гэпе являются фосфотиоатными. Нуклеозидный мотив выбирают независимо, так что такие олигонуклеотиды, имеющие мотив из межнуклеозидных связей, содержащий гэп, могут иметь или могут не иметь нуклеозидный мотив, содержащий гэп, и если они действительно имеют нуклеозидный мотив, содержащий гэп, то длина флангов и гэпа может быть или может не быть одинаковой.

В определенных вариантах осуществления олигонуклеотиды содержат область, имеющую чередующийся мотив из межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотиды содержат область с однородно модифицированными межнуклеозидными связями. В определенных подобных вариантах осуществления олигонуклеотид содержит область, имеющую однородные связи, представляющие собой фосфотиоатные межнуклеозидные связи. В определенных вариантах осуществления олигонуклеотид имеет однородные фосфотиоатные связи. В определенных вариантах осуществления каждая межнуклеозидная связь олигонуклеотида выбрана из фосфодиэфирной и фосфотиоатной. В определенных вариантах осуществления каждая межнуклеозидная связь

олигонуклеотида выбрана из фосфодиэфирной и фосфотиоатной, и по меньшей мере одна межнуклеозидная связь является фосфотиоатной.

5

10

15

20

25

30

В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере 6 фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере 8 фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере 10 фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок из по меньшей мере 6 последовательно расположенных фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок из по меньшей мере 8 последовательно расположенных фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок из по меньшей мере 10 последовательно расположенных фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один меньшей мере 12 последовательно расположенных блок из по фосфотиоатных межнуклеозидных связей. В определенных подобных вариантах осуществления по меньшей мере один такой блок расположен на 3'-конце олигонуклеотида. В определенных подобных вариантах осуществления по меньшей мере один такой блок расположен в пределах 3 нуклеозидов на 3'-конце олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды содержат одну или несколько метилфосфонатных связей. В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный нуклеозидный мотив, содержат мотив из связей, содержащий связи, все из которых являются фосфотиоатными, за исключением одной или двух метилфосфонатных связей. В определенных вариантах осуществления одна метилфосфонатная связь находится в центральном гэпе олигонуклеотида, имеющего гэпмерный нуклеозидный мотив.

В определенных вариантах осуществления желательно упорядочить количество фосфотиоатных межнуклеозидных связей и фосфодиэфирных межнуклеозидных связей для поддержания устойчивости к действию нуклеаз. В определенных вариантах осуществления желательно упорядочить количество и положение фосфотиоатных межнуклеозидных связей и количество и положение фосфодиэфирных межнуклеозидных связей для поддержания устойчивости к действию нуклеаз. В определенных вариантах осуществления количество

фосфотиоатных межнуклеозидных связей можно уменьшить, а количество фосфодиэфирных межнуклеозидных связей можно увеличить. В определенных вариантах осуществления количество фосфотиоатных межнуклеозидных связей можно уменьшить, а количество фосфодиэфирных межнуклеозидных связей можно увеличить, при этом по-прежнему поддерживая устойчивость к действию нуклеаз. В определенных вариантах осуществления желательно уменьшить количество фосфотиоатных межнуклеозидных связей, при этом сохраняя устойчивость к действию нуклеаз. В определенных вариантах осуществления желательно увеличить количество фосфодиэфирных межнуклеозидных связей, при этом сохраняя устойчивость к действию нуклеаз.

10

15

20

25

30

5

Некоторые мотивы

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. Олигонуклеотиды могут иметь мотив, например, немодифицированных и/или модифицированных сахарных компонентов, нуклеиновых оснований и/или межнуклеозидных связей. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или модифицированных нуклеозидов, содержащих модифицированный сахар. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько модифицированных нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат одну модифицированных межнуклеозидных связей. В таких или несколько осуществления паттерн или мотив определяют модифицированные, немодифицированные и модифицированные разными способами сахарные компоненты, нуклеиновые основания и/или межнуклеозидные связи модифицированного олигонуклеотида. В определенных вариантах осуществления каждый из паттернов сахарных компонентов, нуклеиновых оснований и межнуклеозидных связей является независимым ОТ других. Таким образом, модифицированный олигонуклеотид можно описать с помощью его мотива из сахаров, мотива из нуклеиновых оснований и/или мотива из межнуклеозидных связей (как используется в данном документе, мотив из нуклеиновых оснований описывает модификации нуклеиновых оснований независимо от последовательности нуклеиновых оснований).

а. Некоторые мотивы из сахаров

В определенных вариантах осуществления соединения, описанные в данном

документе, содержат олигонуклеотиды. В определенных вариантах осуществления олигонуклеотиды содержат один или несколько типов модифицированных сахарных и/или немодифицированных сахарных компонентов, расположенных вдоль олигонуклеотида или его области в виде определенного паттерна или мотива из сахаров. В некоторых случаях такие мотивы из сахаров включают без ограничения любые обсуждаемые в данном документе модификации сахаров.

5

10

15

20

25

30

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат область, имеющую гэпмерный мотив, которая содержит две внешние области, или "фланги", и центральную или внутреннюю область, или "гэп", или состоят из нее. Три области гэпмерного мотива (5'-фланг, гэп и 3'-фланг) образуют непрерывную последовательность нуклеозидов, в которой по меньшей мере некоторые сахарные компоненты нуклеозидов каждого из флангов отличаются от по меньшей мере некоторых сахарных компонентов нуклеозидов гэпа. В частности, по меньшей мере сахарные компоненты нуклеозидов каждого фланга, которые располагаются ближе всего к гэпу (нуклеозида 5'-фланга, наиболее близкого к 3'-концу, и нуклеозида 3'-фланга, наиболее близкого к 5'-концу), отличаются от сахарного компонента соседних нуклеозидов гэпа, что таким образом определяет границу между флангами и гэпом (т. е. точку сочленения фланга и гэпа). В определенных вариантах осуществления все сахарные компоненты в гэпе являются одинаковыми. В определенных вариантах осуществления гэп содержит один или несколько нуклеозидов, имеющих сахарный компонент, который отличается от сахарного компонента одного или нескольких других нуклеозидов гэпа. В определенных вариантах осуществления все сахарные мотивы двух флангов являются одинаковыми (симметричный гэпмер). В определенных вариантах осуществления сахарный мотив 5'-фланга отличается от сахарного мотива 3'-фланга (асимметричный гэпмер).

В определенных вариантах осуществления фланги гэпмера содержат 1-5 нуклеозидов. В определенных вариантах осуществления фланги гэпмера содержат 2-5 нуклеозидов. В определенных вариантах осуществления фланги гэпмера содержат 3-5 нуклеозидов. В определенных вариантах осуществления все нуклеозиды гэпмера являются модифицированными нуклеозидами.

В определенных вариантах осуществления гэп гэпмера содержит 7-12 нуклеозидов. В определенных вариантах осуществления гэп гэпмера содержит 7-10 нуклеозидов. В определенных вариантах осуществления гэп гэпмера содержит 8-10 нуклеозидов. В

определенных вариантах осуществления гэп гэпмера содержит 10 нуклеозидов. В определенном варианте осуществления каждый нуклеозид гэпа гэпмера является немодифицированным 2'-дезоксинуклеозидом.

В определенных вариантах осуществления гэпмер является дезоксигэпмером. В таких вариантах осуществления нуклеозиды со стороны гэпа от каждой точки сочленения фланга и гэпа являются немодифицированными 2'-дезоксинуклеозидами, а нуклеозиды со стороны фланга от каждой точки сочленения фланга и гэпа являются модифицированными нуклеозидами. В определенных подобных вариантах осуществления каждый нуклеозид гэпа является немодифицированным 2'-дезоксинуклеозидом. В определенных подобных вариантах осуществления каждый нуклеозид каждого фланга является модифицированным нуклеозидом.

5

10

15

20

25

30

В определенных вариантах осуществления модифицированный олигонуклеотид имеет полностью модифицированный мотив из сахаров, где каждый нуклеозид модифицированного олигонуклеотида содержит модифицированный сахарный компонент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат область, имеющую полностью модифицированный мотив из сахаров, или состоят из нее, где каждый нуклеозид области содержит модифицированный сахарный компонент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат область, имеющую полностью модифицированный мотив из сахаров, или состоят из нее, где каждый нуклеозид в полностью модифицированной области содержит одинаковый модифицированный сахарный компонент, и такая область называется в данном документе однородно модифицированным мотивом из сахаров. В определенных вариантах осуществления полностью модифицированный олигонуклеотид является однородно модифицированным олигонуклеотидом. В определенных вариантах осуществления каждый нуклеозид однородно модифицированного олигонуклеотида содержит одинаковую 2'-модификацию.

В определенных вариантах осуществления модифицированный олигонуклеотид может содержать мотив из сахаров, описанный в Swayze et al., US2010/0197762; Freier et al., US2014/0107330; Freier et al., US2015/0184153; и Seth et al., US2015/0267195, каждый из которых включен в данный документ посредством ссылки во всей своей полноте.

Определенные варианты осуществления, представленные в данном документе, относятся к модифицированным олигомерным соединениям, применимым для подавления экспрессии нуклеиновой кислоты-мишени, которые могут быть применимы для лечения, предупреждения, уменьшения интенсивности проявлений или замедления прогрессирования

заболевания, ассоциированного с такой нуклеиновой кислотой-мишенью. В определенных вариантах осуществления модифицированные олигомерные соединения включают в себя антисмысловые олигонуклеотиды, которые являются гэпмерами, имеющими определенные мотивы из сахаров. В определенных вариантах осуществления мотивы из сахаров гэпмера, предусмотренные в данном документе, могут быть объединены с любой последовательностью нуклеиновых оснований и любым мотивом из межнуклеозидных связей с образованием эффективных антисмысловых олигонуклеотидов.

5

10

15

20

25

30

В определенных вариантах осуществления способ включает приведение клетки в контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив ekk-d9-kkee, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

В определенных вариантах осуществления способ включает приведение клетки в контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив k-d9-kekeke, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

В определенных вариантах осуществления способ включает приведение клетки в контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив kkk-d8-kekek, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

В определенных вариантах осуществления способ включает приведение клетки в

контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив kkk-d9-keke, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

В определенных вариантах осуществления способ включает приведение клетки в контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив kk-d9-kdkdk, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив kk-d9-eeekk, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления способ включает приведение клетки в контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив kk-d9-eeekk, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

В определенных вариантах осуществления способ включает приведение клетки в контакт с соединением или введение субъекту соединения, которое содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и имеющий мотив kk-d9-ekeke, где "d" представляет сахар 2'-дезоксирибозу, "k" представляет сЕt-нуклеозид, и "e" представляет 2'-МОЕ-нуклеозид. В определенных вариантах осуществления клетка представляет собой раковую клетку. В определенных вариантах

осуществления у субъекта имеется рак. В определенных вариантах осуществления введение соединения субъекту обеспечивает лечение рака у субъекта.

b. Некоторые мотивы из нуклеиновых оснований

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные нуклеиновые основания, расположенные вдоль олигонуклеотида или его области в виде определенного паттерна или мотива. В определенных вариантах осуществления каждое нуклеиновое основание является модифицированным. В определенных вариантах осуществления ни одно из нуклеиновых оснований не является модифицированным. В определенных вариантах осуществления каждый пурин или каждый пиримидин является модифицированным. В определенных вариантах осуществления каждый аденин является модифицированным. В определенных вариантах осуществления каждый гуанин является модифицированным. В определенных вариантах осуществления каждый тимин является модифицированным. В определенных вариантах осуществления каждый урацил является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных вариантах осуществления некоторые или все цитозиновые нуклеиновые основания в модифицированном олигонуклеотиде представляют собой 5-метилцитозин.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат блок из модифицированных нуклеиновых оснований. В определенных подобных вариантах осуществления блок расположен на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок расположен в пределах 3 нуклеозидов на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок расположен на 5'-конце олигонуклеотида. В определенных вариантах осуществления блок расположен в пределах 3 нуклеозидов на 5'-конце олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный мотив, содержат нуклеозид, содержащий модифицированное нуклеиновое основание. В определенных подобных вариантах осуществления один нуклеозид, содержащий модифицированное нуклеиновое основание, находится в центральном гэпе олигонуклеотида, имеющего гэпмерный мотив. В определенных подобных вариантах осуществления сахарный компонент указанного нуклеозида представляет собой 2'-дезоксирибозильный компонент. В

определенных вариантах осуществления модифицированное нуклеиновое основание выбрано из 2-тиопиримидина и 5-пропинпиримидина.

с. Некоторые мотивы из межнуклеозидных связей

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области в виде определенного паттерна или мотива. В определенных вариантах осуществления фактически представляет собой каждая межнуклеозидная связывающая группа фосфатную межнуклеозидную связь (Р=О). В определенных вариантах осуществления каждая межнуклеозидная связывающая группа модифицированного олигонуклеотида представляет собой фосфотиоат (P=S). В определенных вариантах осуществления каждая межнуклеозидная связывающая группа модифицированного олигонуклеотида независимо выбрана из фосфотиоатной и фосфатной межнуклеозидных связей. В определенных вариантах осуществления мотив из сахаров модифицированного олигонуклеотида представляет собой гэпмер, а все межнуклеозидные связи в гэпе являются модифицированными. В определенных подобных вариантах осуществления некоторые или все межнуклеозидные связи во флангах являются немодифицированными фосфатными связями. В определенных вариантах осуществления концевые межнуклеозидные связи являются модифицированными.

4. Некоторые модифицированные олигонуклеотиды

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды. В определенных вариантах осуществления вышеприведенные модификации (сахаров, нуклеиновых межнуклеозидных связей) включены в состав модифицированного олигонуклеотида. В осуществления модифицированные определенных вариантах олигонуклеотиды характеризуются по их модификации, мотивам и значениям общей длины. В определенных вариантах осуществления каждый из таких параметров является независимым от других. Таким образом, если не указано иное, каждая межнуклеозидная связь олигонуклеотида, имеющего гэпмерный мотив сахаров, может быть модифицированной ИЗ немодифицированной и может соответствовать или не соответствовать гэпмерному характеру модификаций сахаров. Например, межнуклеозидные связи во фланговых областях гэпмера из

сахаров могут быть одинаковыми или отличаться друг от друга и могут быть такими же, как межнуклеозидные связи в области гэпа мотива из сахаров, или отличными от них. Аналогичным образом, такие гэпмерные олигонуклеотиды могут содержать одно или несколько модифицированных нуклеиновых оснований независимо от гэпмерного характера модификаций сахаров. Кроме того, в некоторых случаях олигонуклеотид описывается общей длиной или диапазоном длин или длинами или диапазонами длин двух или более областей (например, областей из нуклеозидов, имеющих определенные модификации сахаров), и при таких обстоятельствах может быть возможным выбрать для каждого диапазона такие количества, которые в результате обеспечивают олигонуклеотид, имеющий общую длину, выходящую за пределы указанного диапазона. При таких обстоятельствах должны быть удовлетворены требования к обоим элементам. Например, в определенных вариантах осуществления модифицированный олигонуклеотид состоит из 15-20 связанных нуклеозидов и имеет мотив из сахаров, состоящий из трех областей А, В и С, где область А состоит из 2-6 связанных нуклеозидов, имеющих указанный мотив из сахаров, область В состоит из 6-10 связанных нуклеозидов, имеющих указанный мотив из сахаров, и область С состоит из 2-6 связанных нуклеозидов, имеющих указанный мотив из сахаров. Такие варианты осуществления не включают модифицированные олигонуклеотиды, в которых каждая из А и С состоит из 6 связанных нуклеозидов, а В состоит из 10 связанных нуклеозидов (несмотря на то, что эти количества нуклеозидов являются допустимыми согласно требованиям к А, В и С), поскольку общая длина такого олигонуклеотида составляет 22, что превышает верхний предел общей длины модифицированного олигонуклеотида (20). В данном документе, если в описании олигонуклеотида ничего не говорится относительно одного или нескольких параметров, то такой параметр не ограничен. Таким образом, модифицированный олигонуклеотид, описываемый только как имеющий гэпмерный мотив из сахаров без дополнительного описания, может иметь любую длину, любой мотив из межнуклеозидных связей и любой мотив из нуклеиновых оснований. Если не указано иное, все модификации являются независимыми от последовательности нуклеиновых оснований.

Некоторые коньюгированные соединения

5

10

15

20

25

30

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотид (модифицированный или немодифицированный) и необязательно одну или несколько конъюгированных групп и/или концевых групп или состоят из них. Конъюгированные группы состоят из одного или нескольких конъюгируемых

компонентов и конъюгирующего линкера, который связывает конъюгируемый компонент с олигонуклеотидом. Конъюгированные группы могут быть присоединены к любому одному или обоим концам олигонуклеотида и/или в любом внутреннем положении. В определенных осуществления конъюгированные группы присоединены нуклеозиду вариантах К модифицированного олигонуклеотида в 2'-положении. В определенных осуществления конъюгированные группы, присоединенные к любому одному или обоим концам олигонуклеотида, являются концевыми группами. В определенных подобных вариантах осуществления конъюгированные группы или концевые группы присоединены на 3'- и/или 5'-конце олигонуклеотидов. В определенных подобных вариантах осуществления конъюгированные группы концевые присоединены 3'-конце (или группы) на олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы присоединены возле 3'-конца олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы (или концевые группы) присоединены на 5'-конце олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы присоединены возле 5'-конца олигонуклеотидов.

В определенных вариантах осуществления олигонуклеотид является модифицированным. В определенных вариантах осуществления олигонуклеотид соединения имеет последовательность нуклеиновых оснований, которая комплементарна нуклеиновой кислоте-мишени. В определенных вариантах осуществления олигонуклеотиды являются комплементарными матричной РНК (мРНК). В определенных вариантах осуществления олигонуклеотиды являются комплементарными смысловому транскрипту.

Примеры концевых групп включают без ограничения конъюгированные группы, кэп-группы, фосфатные компоненты, защитные группы, модифицированные или немодифицированные нуклеозиды и два или более нуклеозида, которые независимо являются модифицированными или немодифицированными.

А. Некоторые конъюгированные группы

5

10

15

20

25

30

В определенных вариантах осуществления к олигонуклеотидам ковалентно присоединены одна или несколько конъюгированных групп. В определенных вариантах осуществления конъюгированные группы модифицируют одно или несколько свойств олигонуклеотида, к которому они присоединены, в том числе без ограничения фармакодинамические характеристики, фармакокинетические характеристики, стабильность,

связывание, всасывание, распределение в тканях, распределение в клетках, поглощение клетками, заряд и клиренс. В определенных вариантах осуществления конъюгированные группы придают новое свойство олигонуклеотиду, к которому они присоединены, например, флуорофоры или репортерные группы обеспечивают выявление олигонуклеотида.

Некоторые конъюгированные группы и конъюгируемые компоненты были описаны ранее, например: холестериновый компонент (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), холевая кислота (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), тиоэфир, например, гексил-S-тритилтиол (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Lett., 1993, 3, 2765-2770), тиохолестерин (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), алифатическая цепь, например, додекандиоловые или ундециловые остатки (Saison-Behmoaras et al., $EMBO\ J$., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), фосфолипид, например, дигексадецил-рац-глицерин или 1,2-ди-О-гексадецил-рац-глицеро-3-Н-фосфонат триэтиламмония (Manoharan al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), полиамин или цепь полиэтиленгликоля (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973) или адамантануксусная кислота, пальмитиловый компонент (Mishra et al., Biochim. Acta, 1995, 1264, 229-237), —октадециламиновый Biophys. гексиламинокарбонилоксихолестериновый компонент (Crooke et al., J. Pharmacol. Exp. Ther., 1996, i, 923-937), токоферольная группа (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; doi:10.1038/mtna.2014.72, и Nishina et al., Molecular Therapy, 2008, 16, 734-740) или кластер GalNAc (например, WO2014/179620).

1. Конъюгируемые компоненты

5

10

15

20

25

30

Конъюгируемые компоненты включают без ограничения интеркаляторы, репортерные молекулы, полиамины, полиамиды, пептиды, углеводы (например, GalNAc), витаминные компоненты, полиэтиленгликоли, тиоэфиры, полиэфиры, холестерины, тиохолестерины, компоненты, представляющие собой холевую кислоту, фолат, липиды, фосфолипиды, биотин, феназин, фенантридин, антрахинон, адамантан, акридин, флуоресцеины, родамины, кумарины, флуорофоры и красители.

В определенных вариантах осуществления конъюгируемый компонент содержит действующее лекарственное вещество, например, аспирин, варфарин, фенилбутазон, ибупрофен, супрофен, фенбуфен, кетопрофен, (S)-(+)-пранопрофен, карпрофен,

дансилсаркозин, 2,3,5-трийодбензойную кислоту, финголимод, флуфенаминовую кислоту, фолиновую кислоту, бензотиадиазид, хлортиазид, диазепин, индометицин, барбитурат, цефалоспорин, сульфамидное лекарственное средство, антидиабетическое средство, антибактериальное средство или антибиотик.

2. Конъюгирующие линкеры

5

10

15

20

25

30

Конъюгируемые компоненты присоединены к олигонуклеотидам с помощью конъюгирующих линкеров. В некоторых соединениях конъюгированная группа предусматривает одинарную химическую связь (т. е. конъюгируемый компонент присоединен к олигонуклеотиду с помощью конъюгирующего линкера посредством одинарной связи). В определенных вариантах осуществления конъюгирующий линкер содержит цепочечную структуру, такую как гидрокарбильная цепь, или олигомер из повторяющихся звеньев, таких как этиленгликолевые, нуклеозидные или аминокислотные звенья.

В определенных вариантах осуществления конъюгирующий линкер содержит одну или несколько групп, выбранных из алкильной, амино, оксо, амидной, дисульфидной, полиэтиленгликолевой, эфирной, тиоэфирной и гидроксиламино. В определенных подобных вариантах осуществления конъюгирующий линкер содержит группы, выбранные из алкильной, амино-, оксо-, амидной и эфирной групп. В определенных вариантах осуществления конъюгирующий линкер содержит группы, выбранные из алкильной и амидной групп. В определенных вариантах осуществления конъюгирующий линкер содержит группы, выбранные из алкильной и эфирной групп. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере один фосфорсодержащий компонент. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере одну фосфатную группу. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере одну фосфатную группу. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере одну фосфатную группу.

В определенных вариантах осуществления конъюгирующие линкеры, в том числе конъюгирующие линкеры, описанные выше, представляют собой бифункциональные связывающие компоненты, например, известные из уровня техники как применимые для присоединения конъюгированных групп к исходным соединениям, таким как олигонуклеотиды, предусмотренные в данном документе. Как правило, бифункциональный связывающий компонент содержит по меньшей мере две функциональные группы. Одна из функциональных групп выбрана для связывания с конкретным сайтом в соединении, а другая выбрана для связывания с конъюгированной группой. Примеры функциональных групп,

используемых в бифункциональном связывающем компоненте, включают без ограничения электрофилы для вступления в реакцию с нуклеофильными группами и нуклеофилы для вступления в реакцию с электрофильными группами. В определенных вариантах осуществления бифункциональные связывающие компоненты содержат одну или несколько групп, выбранных из амино, гидроксила, карбоновой кислоты, тиола, алкила, алкенила и алкинила.

5

10

15

20

25

30

Примеры конъюгирующих линкеров включают без ограничения пирролидин, 8-амино-3,6-диоксаоктановую кислоту (ADO), сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат (SMCC) и 6-аминогексановую кислоту (AHEX или AHA). Другие конъюгирующие линкеры включают без ограничения замещенный или незамещенный C_1 - C_{10} -алкил, замещенный или незамещенный C_2 - C_{10} -алкинил, где неограничивающий перечень предпочтительных замещающих групп включает гидроксил, амино, алкокси, карбокси, бензил, фенил, нитро, тиол, тиоалкокси, галоген, алкил, арил, алкенил и алкинил.

В определенных вариантах осуществления конъюгирующие линкеры содержат 1-10 линкерных нуклеозидов. В определенных вариантах осуществления такие линкерные нуклеозиды являются модифицированными нуклеозидами. В определенных вариантах осуществления такие линкерные нуклеозиды содержат модифицированный сахарный компонент. В определенных вариантах осуществления линкерные нуклеозиды являются немодифицированными. В определенных вариантах осуществления линкерные нуклеозиды содержат необязательно защищенное гетероциклическое основание, выбранное из пурина, замещенного пурина, пиримидина или замещенного пиримидина. В определенных вариантах осуществления расщепляемый компонент представляет собой нуклеозид, выбранный из цитозина, 4-N-бензоилцитозина, 5-метилцитозина, урацила, тимина, 4-N-бензоил-5-метилцитозина, 6-N-бензоиладенина, аденина, гуанина 2-N-изобутирилгуанина. Как правило, желательно, чтобы линкерные нуклеозиды отщеплялись от соединения после того, как оно достигнет ткани-мишени. Соответственно, линкерные нуклеозиды, как правило, связаны друг с другом и с остальной частью соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые связи представляют собой фосфодиэфирные связи.

5

10

15

20

25

30

В данном документе линкерные нуклеозиды не считаются частью олигонуклеотида. Соответственно, вариантах осуществления, В которых соединение содержит олигонуклеотид, состоящий из связанных нуклеозидов в определенном количестве или диапазоне количеств и/или характеризующийся определенным процентом комплементарности по отношению к эталонной нуклеиновой кислоте, и соединение также содержит конъюгированную группу, содержащую конъюгирующий линкер, содержащий линкерные нуклеозиды, эти линкерные нуклеозиды не учитываются при определении длины олигонуклеотида и не используются при определении процента комплементарности олигонуклеотида по отношению к эталонной нуклеиновой кислоте. Например, соединение может содержать (1) модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и (2) конъюгированную группу, содержащую 1-10 линкерных нуклеозидов, смежных с нуклеозидами модифицированного олигонуклеотида. Общее количество смежных связанных нуклеозидов в таком соединении превышает 30. В качестве альтернативы, соединение может содержать модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и не содержать конъюгированную группу. Общее количество смежных связанных нуклеозидов в таком соединении не превышает 30. Если не указано иное, конъюгирующие линкеры содержат не более 10 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 5 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 3 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 2 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 1 линкерного нуклеозида.

В определенных вариантах осуществления желательно, чтобы конъюгированная группа отщеплялась от олигонуклеотида. Например, при определенных обстоятельствах соединения, содержащие конкретный конъюгируемый компонент, лучше поглощаются клетками конкретного типа, однако после поглощения соединения желательно, чтобы конъюгированная группа отщеплялась с высвобождением неконъюгированного или исходного олигонуклеотида. Таким образом, некоторые конъюгаты могут содержать один или несколько расщепляемых компонентов, как правило, в составе конъюгирующего линкера. В определенных вариантах осуществления расщепляемый компонент представляет собой расщепляемую связь. В определенных вариантах осуществления расщепляемый компонент представляет собой группу атомов, содержащую по меньшей мере одну расщепляемую связь. В определенных

вариантах осуществления расщепляемый компонент содержит группу атомов, имеющую одну, две, три, четыре или более четырех расщепляемых связей. В определенных вариантах осуществления расщепляемый компонент избирательно расщепляется внутри клеточного или субклеточного компартмента, такого как лизосома. В определенных вариантах осуществления расщепляемый компонент избирательно расщепляется эндогенными ферментами, такими как нуклеазы.

5

10

15

20

25

30

В определенных вариантах осуществления расщепляемая связь выбрана из амидной, сложноэфирной, эфирной, одной или обеих сложноэфирных в фосфодиэфирной связи, фосфоэфирной, карбаматной или дисульфидной. В определенных вариантах осуществления расщепляемая связь является одной или обеими из сложноэфирных в фосфодиэфирной связи. В определенных вариантах осуществления расшепляемый компонент содержит фосфат или фосфодиэфир. В определенных вариантах осуществления расшепляемый компонент представляет собой фосфатную связь между олигонуклеотидом и конъюгируемым компонентом или конъюгированной группой.

В определенных вариантах осуществления расщепляемый компонент содержит один или несколько линкерных нуклеозидов или состоит из них. В определенных подобных вариантах осуществления один или несколько линкерных нуклеозидов связаны друг с другом и/или с остальной частью соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые связи представляют собой немодифицированные фосфодиэфирные связи. В определенных вариантах осуществления расщепляемый компонент представляет собой 2'-дезоксинуклеозид, который присоединен к 3'либо 5'-концевому нуклеозиду олигонуклеотида посредством фосфатной межнуклеозидной связи и ковалентно присоединен к остальной части конъюгирующего линкера или конъюгируемому компоненту посредством фосфатной или фосфотиоатной связи. В определенных подобных вариантах осуществления расщепляемый компонент представляет собой 2'-дезоксиаденозин.

Композиции и способы составления фармацевтических композиций

Соединения, описанные в данном документе, можно смешивать с фармацевтически приемлемыми активными или инертными веществами для получения фармацевтических композиций или составов. Композиции и способы составления фармацевтических композиций

зависят от ряда критериев, в том числе без ограничения от пути введения, степени заболевания или дозы, подлежащей введению.

5

10

15

20

25

30

В определенных вариантах осуществления предусмотрены фармацевтические композиции, содержащие одно или несколько соединений или их соль. В определенных вариантах осуществления соединения представляют собой антисмысловые соединения или олигомерные соединения. В определенных вариантах осуществления соединения содержат модифицированный олигонуклеотид или состоят из него. В определенных подобных фармацевтическая вариантах осуществления композиция содержит подходящий фармацевтически приемлемый разбавитель или носитель. В определенных вариантах осуществления фармацевтическая композиция содержит стерильный физиологический раствор и одно или несколько соединений. В определенных вариантах осуществления такая фармацевтическая композиция состоит из стерильного физиологического раствора и одного или нескольких соединений. В определенных вариантах осуществления стерильный физиологический раствор представляет собой физиологический раствор фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько соединений и стерильную воду. В определенных вариантах осуществления фармацевтическая композиция состоит из одного соединения и стерильной воды. В определенных вариантах осуществления стерильная вода представляет собой воду фармацевтической степени чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько соединений и фосфатно-солевой буферный раствор (PBS). В определенных вариантах осуществления фармацевтическая композиция состоит из одного или нескольких соединений и стерильного PBS. В определенных вариантах осуществления стерильный PBS представляет собой PBS фармацевтической степени чистоты. Композиции и способы составления фармацевтических композиций зависят от ряда критериев, в том числе без ограничения от пути введения, степени заболевания или дозы, подлежащей введению.

Соединение, описанное в данном документе, нацеленное на нуклеиновую кислоту FOXP3, можно использовать в фармацевтических композициях путем объединения соединения с подходящим фармацевтически приемлемым разбавителем или носителем. В определенных вариантах осуществления фармацевтически приемлемый разбавитель представляет собой воду, такую как стерильная вода, подходящая для инъекций. Соответственно, в одном варианте осуществления в способах, описанных в данном документе,

используют фармацевтическую композицию, содержащую соединение, нацеленное на нуклеиновую кислоту FOXP3, и фармацевтически приемлемый разбавитель. В определенных вариантах осуществления фармацевтически приемлемый разбавитель представляет собой воду. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, предусмотренный в данном документе, или состоит из него.

Фармацевтические композиции, содержащие соединения, предусмотренные в данном документе, охватывают любые фармацевтически приемлемые соли, сложные эфиры или соли таких сложных эфиров или любой другой олигонуклеотид, которые при введении животному, в том числе человеку, способны предоставить ему (непосредственно или опосредованно) их биологически активный метаболит или остаток. В определенных вариантах осуществления соединения представляют собой антисмысловые соединения или олигомерные соединения. В модифицированный определенных вариантах осуществления соединение содержит олигонуклеотид или состоит из него. Соответственно, например, настоящее изобретение также охватывает фармацевтически приемлемые соли соединений, пролекарства, фармацевтически приемлемые соли таких пролекарств и другие биоэквиваленты. Подходящие фармацевтически приемлемые соли включают без ограничения натриевые и калиевые соли.

Пролекарство может предусматривать включение дополнительных нуклеозидов на одном или обоих концах соединения, которые отщепляются под действием эндогенных нуклеаз в организме с образованием активного соединения.

20 В определенных вариантах осуществления соединения или композиции дополнительно содержат фармацевтически приемлемый носитель или разбавитель.

ПРИМЕРЫ

5

10

15

25

30

В приведенных ниже примерах описан способ скрининга для идентификации лидерных соединений, нацеленных на FOXP3. Из более чем 3000 олигонуклеотидов, которые подвергали скринингу, ION 1062428, 1062641, 1062835, 1062937, 1063268, 1063649, 1063655, 1063734, 1064096 или 1064313 оказались наилучшими лидерными соединениями.

Неограничивающее раскрытие и включение посредством ссылки

Несмотря на то, что в перечне последовательностей, прилагаемом к данной подаваемой заявке, каждая последовательность в соответствии с установленными требованиями идентифицирована как "РНК" либо как "ДНК", в действительности эти последовательности

могут быть модифицированы с помощью любой комбинации химических модификаций. Специалист в данной области легко поймет, что такое обозначение, как "РНК" или "ДНК", для описания модифицированных олигонуклеотидов В некоторых случаях является произвольным. Например, олигонуклеотид, содержащий нуклеозид, содержащий 2'-ОН-сахарный компонент и тиминовое основание, может быть описан как ДНК, имеющая модифицированный сахар (2'-ОН вместо природного 2'-Н в ДНК), или как РНК, имеющая модифицированное основание (тимин (метилированный урацил) вместо природного урацила в PHK).

Соответственно, подразумевается, что последовательности нуклеиновых кислот, предусмотренные в данном документе, в том числе без ограничения приведенные в перечне последовательностей, охватывают нуклеиновые кислоты, содержащие любую комбинацию из природных или модифицированных РНК и/или ДНК, в том числе без ограничения такие нуклеиновые кислоты с модифицированными нуклеиновыми основаниями. В качестве дополнительного примера И без ограничения, олигонуклеотид, который имеет "ATCGATCG", нуклеиновых оснований любые последовательность охватывает олигонуклеотиды, имеющие такую последовательность нуклеиновых оснований, независимо от того, являются ли они модифицированными или немодифицированными, в том числе без ограничения такие соединения, которые содержат основания РНК, такие как соединения, имеющие последовательность "AUCGAUCG", и соединения, имеющие несколько оснований ДНК и несколько оснований РНК, такие как "AUCGATCG", а также соединения, имеющие другие модифицированные нуклеиновые основания, такие как "AT^mCGAUCG", где ^mC указывает на цитозиновое основание, содержащее метильную группу в 5-положении.

Хотя некоторые соединения, композиции и способы, описанные в данном документе, были конкретно описаны в соответствии с некоторыми вариантами осуществления, нижеследующие примеры служат только для иллюстрации соединений, описанных в данном документе, и не подразумевают их ограничение. Каждый из литературных источников, указанных в настоящей заявке, включен в данный документ посредством ссылки во всей своей полноте.

Пример 1. Антисмысловое подавление человеческого Foxp3 в клетках LNCaP с помощью cEt-гэпмеров

30

5

10

15

20

25

5

10

15

20

25

30

Модифицированные разрабатывали олигонуклеотиды для нацеливания на нуклеиновую кислоту Foxp3, и тестировали их эффект в отношении уровня мРНК Foxp3 in vitro. Модифицированные олигонуклеотиды тестировали в серии экспериментов, в которых были сходные условия культивирования. Результаты каждого эксперимента представлены в показанных ниже отдельных таблицах. Культивируемые клетки LNCaP при плотности 30000 клеток на лунку трансфицировали с использованием электропорации с помощью 3000 нМ модифицированного олигонуклеотида. После периода обработки, составлявшего примерно 24 часа, РНК выделяли из клеток, и измеряли уровни мРНК Foxp3 с помощью количественной RT-PCR в реальном времени. Набор праймеров и зондов для человека RTS35925 (последовательность прямого праймера CTACTTCAAGTTCCACAACATGC, обозначенная в документе как SEQ ID NO: 6; последовательность обратного праймера CCAGTGGTAGATCTCATTGAGTG, обозначенная в данном документе как SEQ ID NO: 7; последовательность зонда ССТТТСАССТАСGCCACGCTCAT, обозначенная в данном документе как SEQ ID NO: 8) использовали для измерения уровней мРНК. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC). Модифицированные олигонуклеотиды со значениями процента контроля, отмеченными звездочкой (*), нацеливаются на область ампликона из набора праймеров и зондов. Можно использовать дополнительные анализы для измерения активности и эффективности модифицированных олигонуклеотидов, нацеливающихся на область ампликона.

Новые разработанные модифицированные олигонуклеотиды в приведенных ниже таблицах обозначены как сЕт-гэпмеры 3-10-3. Гэпмеры имеют длину 16 нуклеозидов, при этом центральный гэп-сегмент содержит десять 2'-дезоксинуклеозидов и фланкирован фланговыми сегментами в 5'-направлении и в 3'-направлении, каждый из которых содержит по три нуклеозида. Каждый нуклеозид в 5'-концевом фланговом сегменте и каждый нуклеозид в 3'-концевом фланговом сегменте и меет сЕт-модификацию сахара. Все межнуклеозидные связи в каждом гэпмере являются фосфотиоатными (P=S) связями. Все цитозиновые остатки в каждом гэпмере представляют собой 5-метилцитозин.

"Стартовый сайт" указывает на нуклеозид, наиболее близкий к 5'-концу в последовательности гена человека, на которую нацелен гэпмер. "Стоп-сайт" указывает на нуклеозид, наиболее близкий к 3'-концу в последовательности гена человека, на которую нацелен гэпмер. Каждый гэпмер, перечисленный в приведенных ниже таблицах, нацелен на SEQ ID NO: 1 (№ доступа в GENBANK NM 014009.3), либо на SEQ ID NO: 2 (комплементарную по отношению к последовательности с № доступа в GENBANK NT 011568.12 с отсеченными нуклеотидами 11907130-11921808), либо на SEQ ID NO: 3 (№ доступа в GENBANK NM 001114377.1), либо на SEQ ID NO: 4 (комплементарную по отношению к последовательности с № доступа в GENBANK NC 000023.11 с отсеченными нуклеотидами 49247001-49273000), либо на SEQ ID NO: 5 (№ доступа в UCSC UC064ZFP.1, соответствует геномным координатам chrX:49251334-49259240 в сборке GRCh38/hg38). "N/A" указывает на то, что модифицированный олигонуклеотид не нацеливается на такую конкретную последовательность гена со 100% комплементарностью. "N.D." указывает на то, что % UTC не определен для данного конкретного модифицированного олигонуклеотида в данном конкретном эксперименте. Активность этого модифицированного олигонуклеотида можно определить в другом эксперименте.

5

10

15

Таблица 1 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
895287	1168	1183	12038	12053	TTGAAGTAGTCCATGT	58*	9
910921	7	22	407	422	ATTTTTTTCGATGAGT	49	10
910925	77	92	477	492	TTTTATACCGAGAAGA	45	11
910929	376	391	6914	6929	TGCGATGGTGGCATGG	44	12
910933	564	579	7727	7742	GGCTGATCATGGCTGG	35	13
910937	765	780	8411	8426	CACCATTTGCCAGCAG	50	14
910941	1000	1015	N/A	N/A	TCGGATGATGCCACAG	42	15
910945	1144	1159	N/A	N/A	AACTCTGGGAATGTGC	72	16
910949	1416	1431	13826	13841	TGCGGAACTCCAGCTC	127	17
910953	1591	1606	14001	14016	GTGGAAACCTCACTTC	62	18
910957	1802	1817	14212	14227	GAAGTAATCTGTGCGA	37	19
910961	2114	2129	14524	14539	GAATTCTAACAGGCCG	36	20
910965	2216	2231	14626	14641	GGTATTTTTGGCAAGG	23	21
910969	2336	2351	N/A	N/A	CGGTACTGTGGGTTGG	19	22
910973	1851	1866	14261	14276	AGGGACAGGATTGTGA	54	23
910977	726	741	N/A	N/A	CCGAAAGGGTGCTGTC	81	24
910981	164	179	N/A	N/A	GTCCAAGGGCAGGCTT	44	25
910985	618	633	7781	7796	GGCCAGGCCGGGCCTT	88	26
910989	63	78	463	478	GAAAAACCACGCTGTA	65	27
910993	772	787	8418	8433	TTGCAGACACCATTTG	88	28
911000	1267	1282	13497	13512	TGGTAGATCTCATTGA	69*	29
911004	2108	2123	14518	14533	TAACAGGCCGTGTGTG	72	30
911008	1859	1874	14269	14284	GTTGAGTGAGGGACAG	54	31
911012	2272	2287	N/A	N/A	AGGCATGGATCAGGGC	32	32
911016	57	72	457	472	CCACGCTGTACGGTGT	39	33

							1
911020	1257	1272	13487	13502	CATTGAGTGTCCGCTG	65*	34
911024	382	397	6920	6935	TGCAGCTGCGATGGTG	59	35
911028	1741	1756	14151	14166	GGCTGCAGGGCTCGAC	25	36
911032	55	70	455	470	ACGCTGTACGGTGTGG	17	37
911036	898	913	9488	9503	AGAGACTGTACCATCT	121	38
911040	2112	2127	14522	14537	ATTCTAACAGGCCGTG	55	39
911044	2110	2125	14520	14535	TCTAACAGGCCGTGTG	56	40
911048	770	785	8416	8431	GCAGACACCATTTGCC	95	41
911052	163	178	N/A	N/A	TCCAAGGGCAGGCTTG	76	42
911056	2282	2297	N/A	N/A	GTCTAAGCTGAGGCAT	51	43
911060	133	148	533	548	CAGAAAAGGATCAGCC	63	44
911064	900	915	9490	9505	CCAGAGACTGTACCAT	90	45
911068	N/A	N/A	8373	8388	GCCGAAAGGGTGCTGG	73	46
911072	N/A	N/A	13638	13653	TGCCTATGAGCCCAGA	106	47
911076	N/A	N/A	13697	13712	CGTCAACCTCTGAGGC	111	48
911080	N/A	N/A	658	673	GTACATCCCACTGTAC	90	49
911084	N/A	N/A	1386	1401	GACAATGGTGTGAAGT	36	50
911088	N/A	N/A	1569	1584	CTAATTTGGTTACAGA	39	51
911092	N/A	N/A	2137	2152	GTTAATAACCATTCCA	50	52
911096	N/A	N/A	2390	2405	CTCTATAGTAAATGGA	78	53
911100	N/A	N/A	2663	2678	TAAAATGCCCAGATCC	54	54
911104	N/A	N/A	3219	3234	TGACAATTGCCCCTCT	115	55
911108	N/A	N/A	3358	3373	TGCATTTCGGTGAGGC	44	56
911112	N/A	N/A	4082	4097	AGATTTAAAGGATCCT	60	57
911116	N/A	N/A	4291	4306	TGACATGGGTGCTGGT	45	58
911120	N/A	N/A	5167	5182	GGTATTAAGTTCTTAG	21	59
911124	N/A	N/A	5704	5719	GCTCATGCTACACCCC	37	60
911128	N/A	N/A	5966	5981	TGGATTGGGTGCAAAA	60	61
911132	N/A	N/A	6111	6126	GACTTAATCTGAAGCT	50	62
911136	N/A	N/A	6376	6391	CACTTGAGAGCTGTTT	70	63
911140	N/A	N/A	6642	6657	TGAGATACTCGACCAC	95	64
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	24	65

119	
-----	--

911148	N/A	N/A	7644	7659	GCACATGTGGGCTGTG	69	66
911152	N/A	N/A	7964	7979	ATCTTTAAGGTTCTGC	23	67
911156	N/A	N/A	8561	8576	CTACTTATTGGGATGA	50	68
911160	N/A	N/A	8686	8701	CTTATTATACATACGA	77	69
911164	N/A	N/A	8824	8839	GATTCTAGAGCCTGGC	39	70
911168	N/A	N/A	9505	9520	GCATTACCTGCTGCTC	85	71
911172	N/A	N/A	9603	9618	CTTTATACCAGCCCTC	68	72
911176	N/A	N/A	9878	9893	CCTGAATGTGAGGTTA	51	73
911180	N/A	N/A	10317	10332	TGCTTTAACAACTCAG	16	74
911184	N/A	N/A	10546	10561	TACATTCGCATCATGA	33	75
911188	N/A	N/A	10690	10705	GTATTTATTAGAGCAC	59	76
911192	N/A	N/A	11343	11358	AGGATTAGGAGCTTGG	33	77
911196	N/A	N/A	11615	11630	GAATTACTTAGCAGGG	47	78
911200	N/A	N/A	11825	11840	CCAAAATAGTTCTCCC	49	79
911204	N/A	N/A	11885	11900	AGGTACTGTTTGCTGA	65	80
911208	N/A	N/A	12242	12257	CACATTTGAGGCACGG	42	81
911212	N/A	N/A	12289	12304	AGGTTTGGATTTGCGG	45	82
911216	N/A	N/A	12398	12413	GGCTATTTTATGGGTC	64	83
911220	N/A	N/A	12706	12721	GGGAATATCTGGTATC	62	84
911224	N/A	N/A	12812	12827	GATCAGTTTGGATTCA	63	85
911228	N/A	N/A	12898	12913	GGACATGGTTAGGTGG	61	86

 Таблица 2

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910922	11	26	411	426	CCAAATTTTTTCGAT	61	87
910926	80	95	480	495	TGCTTTTATACCGAGA	11	88
910930	485	500	7550	7565	GTGCATGAAATGTGGC	25	89
910934	694	709	8271	8286	GGATTTGGGAAGGTGC	59	90

910938	873	888	9463	9478	GGAGACATTGTGCCCT	45	91
910942	1022	1037	11178	11193	TACGATGCAGCAGGAG	59	92
910946	1174	1189	12044	12059	TGGAACTTGAAGTAGT	24*	93
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	126	94
910954	1656	1671	14066	14081	CAAAGGATATGATGGG	76	95
910958	1896	1911	14306	14321	GTGTACTGAGGCAGGC	13	96
910962	2116	2131	14526	14541	GTGAATTCTAACAGGC	25	97
910966	2217	2232	14627	14642	GGGTATTTTTGGCAAG	46	98
910970	2360	2375	N/A	N/A	AGCTCGGCTGCAGTTT	41	99
910974	434	449	7499	7514	GCCCAGCCGTGCCCCG	64	100
910978	69	84	469	484	CGAGAAGAAAACCAC	30	101
910982	1464	1479	13874	13889	GGCCAGGTGTAGGGTT	75	102
910986	1310	1325	13540	13555	GGCAGGATGGTTTCTG	99	103
910990	500	515	7663	7678	CACCGTTGAGAGCTGG	39	104
910994	768	783	8414	8429	AGACACCATTTGCCAG	62	105
910997	148	163	548	563	GGTGAAGTGGACTGAC	25	106
911001	1400	1415	13810	13825	ATCCACGGTCCACACA	96	107
911005	1219	1234	N/A	N/A	GCCCAGCGGATGAGCG	33*	108
911009	1657	1672	14067	14082	GCAAAGGATATGATGG	59	109
911013	2277	2292	N/A	N/A	AGCTGAGGCATGGATC	62	110
911017	1739	1754	14149	14164	CTGCAGGGCTCGACTG	50	111
911021	902	917	9492	9507	CTCCAGAGACTGTACC	82	112
911025	38	53	438	453	AGCCGCAGACCTCTCT	39	113
911029	65	80	465	480	AAGAAAAACCACGCTG	70	114
911033	2111	2126	14521	14536	TTCTAACAGGCCGTGT	57	115
911037	818	833	8464	8479	GAGGAAGTCCTCTGGC	43	116
911041	875	890	9465	9480	GAGGAGACATTGTGCC	43	117
911045	879	894	9469	9484	TCTGGAGGAGACATTG	62	118
911049	327	342	6865	6880	CTCGAAGATCTCGGCC	69	119
911053	64	79	464	479	AGAAAAACCACGCTGT	46	120
911057	2109	2124	14519	14534	CTAACAGGCCGTGTGT	49	121
911061	1850	1865	14260	14275	GGGACAGGATTGTGAC	53	122
	- I		1	1	I .	-	

911065	1598	1613	14008	14023	CAAGACAGTGGAAACC	45	123
911069	N/A	N/A	13585	13600	GGCCATCCCAGTCACC	72	124
911073	N/A	N/A	13670	13685	ACCAACAACCCACATC	107	125
911077	N/A	N/A	13663	13678	ACCCACATCCCGTTCC	55	126
911081	N/A	N/A	745	760	ATTAAGTACTTCACCT	75	127
911085	N/A	N/A	1447	1462	ATATGGACTCTGGTCA	34	128
911089	N/A	N/A	1828	1843	AAAAATGCACGCCCCC	62	129
911093	N/A	N/A	2163	2178	GCTATATATGTAATGG	16	130
911097	N/A	N/A	2522	2537	ATAACCATTGCAGTAC	33	131
911101	N/A	N/A	2734	2749	GTGAATAGTCAGTCCA	21	132
911105	N/A	N/A	3246	3261	TCATTAGGTGTCTGCA	17	133
911109	N/A	N/A	3711	3726	CAATCAAGGTTTTCGG	35	134
911113	N/A	N/A	4083	4098	TAGATTTAAAGGATCC	45	135
911117	N/A	N/A	4442	4457	CCAGATTTTTCCGCCA	48	136
911121	N/A	N/A	5275	5290	AGTATAGAAGGGTTCT	38	137
911125	N/A	N/A	5819	5834	CAGCATGGCAAGTGAC	66	138
911129	N/A	N/A	6042	6057	AGTGACATGGGTTTTA	34	139
911133	N/A	N/A	6197	6212	GCTATTGTAACAGTCC	20	140
911137	N/A	N/A	6497	6512	GTACATGTACATACCC	59	141
911141	N/A	N/A	6992	7007	ACAGTAAAGGTCGGCA	49	142
911145	N/A	N/A	7422	7437	GGCCATCCTGATCCTC	59	143
911149	N/A	N/A	7866	7881	GCCTACACTGCTCACA	44	144
911153	N/A	N/A	8186	8201	CACCTATGGAGGCTGT	86	145
911157	N/A	N/A	8565	8580	CTTACTACTTATTGGG	78	146
911161	N/A	N/A	8687	8702	TCTTATTATACATACG	61	147
911165	N/A	N/A	8859	8874	TGGCATGAGGAGTAGC	57	148
911169	N/A	N/A	9506	9521	GGCATTACCTGCTGCT	78	149
911173	N/A	N/A	9604	9619	CCTTTATACCAGCCCT	59	150
911177	N/A	N/A	9921	9936	GGGCATGTTTGGAGCT	58	151
911181	N/A	N/A	10330	10345	GGCTATTTGCATTTGC	28	152
911185	N/A	N/A	10551	10566	ATCTGTACATTCGCAT	28	153
911189	N/A	N/A	10691	10706	CGTATTTATTAGAGCA	41	154

911193	N/A	N/A	11446	11461	GCGGATGCATTTTCCC	32	155
911197	N/A	N/A	11617	11632	TGGAATTACTTAGCAG	47	156
911201	N/A	N/A	11826	11841	GCCAAAATAGTTCTCC	42	157
911205	N/A	N/A	11909	11924	GTCAACACCCGTGTCC	57	158
911209	N/A	N/A	12243	12258	TCACATTTGAGGCACG	38	159
911213	N/A	N/A	12295	12310	TGGTTTAGGTTTGGAT	68	160
911217	N/A	N/A	12406	12421	TAGCTTTAGGCTATTT	72	161
911221	N/A	N/A	12771	12786	GATGATTGCAGTGAGG	40	162
911225	N/A	N/A	12820	12835	GGGAATTTGATCAGTT	79	163
911229	N/A	N/A	12928	12943	GTTTGAATTATCGAGT	59	164

Таблица 3Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910923	12	27	412	427	TCCAAATTTTTTCGA	52	165
910927	178	193	6716	6731	GGCATCGGGTCCTTGT	51	166
910931	507	522	7670	7685	GGGCATCCACCGTTGA	57	167
910935	709	724	8286	8301	TTCCTGGGTGCACTGG	56	168
910939	944	959	9739	9754	CTGCATGGCACTCAGC	33	169
910943	1024	1039	11180	11195	GCTACGATGCAGCAGG	29	170
910947	1260	1275	13490	13505	TCTCATTGAGTGTCCG	27*	171
910951	1552	1567	13962	13977	GGCCTATCATCCCTGC	96	172
910955	1799	1814	14209	14224	GTAATCTGTGCGAGCA	19	173
910959	1922	1937	14332	14347	GATGATGCAGCTTTGA	19	174
910963	2117	2132	14527	14542	GGTGAATTCTAACAGG	26	175
910967	2303	2318	N/A	N/A	TAAATGAGTAGTTCCT	37	176
910971	992	1007	N/A	N/A	TGCCACAGATGAAGCC	63	177
910975	72	87	472	487	TACCGAGAAGAAAAC	56	178
910979	1855	1870	14265	14280	AGTGAGGGACAGGATT	36	179

910983	2072	2087	14482	14497	CCTCAGATCCTGAGGG	81	180
910987	421	436	7486	7501	CCGGAGGGTGCCACCA	52	181
910991	1092	1107	11248	11263	CAAACAGGCTGTCAGG	65	182
910995	78	93	478	493	CTTTTATACCGAGAAG	38	183
910998	1374	1389	13784	13799	CGCTCTCCACCCGCAC	41	184
911002	42	57	442	457	TGGAAGCCGCAGACCT	28	185
911006	2287	2302	N/A	N/A	CTGCAGTCTAAGCTGA	63	186
911010	423	438	7488	7503	CCCCGGAGGGTGCCAC	62	187
911014	1892	1907	14302	14317	ACTGAGGCAGGCTCTC	16	188
911018	1458	1473	13868	13883	GTGTAGGGTTGGAACA	84	189
911022	599	614	7762	7777	GGAGAAGACCCCAGTG	55	190
911026	66	81	466	481	GAAGAAAAACCACGCT	56	191
911030	2355	2370	N/A	N/A	GGCTGCAGTTTATTGG	36	192
911034	132	147	532	547	AGAAAAGGATCAGCCT	65	193
911038	1459	1474	13869	13884	GGTGTAGGGTTGGAAC	70	194
911042	59	74	459	474	AACCACGCTGTACGGT	44	195
911046	131	146	531	546	GAAAAGGATCAGCCTG	52	196
911050	326	341	6864	6879	TCGAAGATCTCGGCCC	94	197
911054	1517	1532	13927	13942	CACCAGTTTGGCCCCT	39	198
911058	52	67	452	467	CTGTACGGTGTGGAAG	51	199
911062	76	91	476	491	TTTATACCGAGAAGAA	38	200
911070	N/A	N/A	13594	13609	GGCACTTGAGGCCATC	74	201
911074	N/A	N/A	13661	13676	CCACATCCCGTTCCTC	62	202
911078	N/A	N/A	13570	13585	CGCCACCTCAGAGGAG	104	203
911082	N/A	N/A	1258	1273	AACTGATGCTCACTCT	66	204
911086	N/A	N/A	1495	1510	TGCAGAATCGAGCTCA	27	205
911090	N/A	N/A	1923	1938	CATAATAATACTCACC	63	206
911094	N/A	N/A	2189	2204	CAAATGATGAATTGGG	23	207
911098	N/A	N/A	2610	2625	GGGTTTATTGTGTGTC	13	208
911102	N/A	N/A	2766	2781	TGAGATAATTAGGGAG	25	209
911106	N/A	N/A	3269	3284	CCCTTCTACGCTGTCT	39	210
911110	N/A	N/A	3753	3768	GCCAATACAGAGCCCA	9	211
	1						

			1	1	T		
911114	N/A	N/A	4155	4170	ACAGATACTGGGACCC	34	212
911118	N/A	N/A	4660	4675	GCATAGATACATTCTC	15	213
911122	N/A	N/A	5541	5556	GGCTTTTCAGGATCCT	57	214
911126	N/A	N/A	5937	5952	TAGACATGAAGAGTCT	69	215
911130	N/A	N/A	6108	6123	TTAATCTGAAGCTGGA	64	216
911134	N/A	N/A	6271	6286	TCCTATTTTGCCCCAG	48	217
911138	N/A	N/A	6498	6513	GGTACATGTACATACC	59	218
911142	N/A	N/A	7068	7083	TGCATAAGTCACAGAC	45	219
911146	N/A	N/A	7561	7576	GTCCATACCTGGTGCA	51	220
911150	N/A	N/A	7886	7901	GAGTACTGCAATTCAG	45	221
911154	N/A	N/A	8495	8510	GTAGACTGGCACAGGC	72	222
911158	N/A	N/A	8581	8596	AGTTTAGCTCTTGCAT	36	223
911162	N/A	N/A	8710	8725	GGGTAAATAACAGCAC	17	224
911166	N/A	N/A	9385	9400	GGTGACCACGACAGGC	62	225
911170	N/A	N/A	9538	9553	CACTATCCCTATCCCT	50	226
911174	N/A	N/A	9646	9661	CCAGGCTACGGTCTTC	64	227
911178	N/A	N/A	10311	10326	AACAACTCAGGATCAC	28	228
911182	N/A	N/A	10378	10393	GGTTACATAGCTGGTC	19	229
911186	N/A	N/A	10625	10640	TTGAATAGGGCTCTTT	51	230
911190	N/A	N/A	10692	10707	CCGTATTTATTAGAGC	49	231
911194	N/A	N/A	11447	11462	AGCGGATGCATTTTCC	21	232
911198	N/A	N/A	11683	11698	TGGATAGGTGAGCTCG	34	233
911202	N/A	N/A	11846	11861	TTATTCTTTGCACCAC	33	234
911206	N/A	N/A	11921	11936	TGAGATCTCACCGTCA	83	235
911210	N/A	N/A	12245	12260	GGTCACATTTGAGGCA	49	236
911214	N/A	N/A	12303	12318	CTGGATGGTGGTTTAG	82	237
911218	N/A	N/A	12528	12543	GTATTGACATACTGGG	35	238
911222	N/A	N/A	12777	12792	AGCGATGATGATTGCA	64	239
911226	N/A	N/A	12821	12836	AGGGAATTTGATCAGT	43	240
911230	N/A	N/A	13042	13057	CCAACTTAAGGGTCAG	42	241

Таблица 4Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910924	54	69	454	469	CGCTGTACGGTGTGGA	13	242
910928	269	284	6807	6822	GGCTTTGGGTGCAGCC	96	243
910932	560	575	7723	7738	GATCATGGCTGGGCTC	28	244
910936	749	764	8395	8410	TGGGTAGGAGCTCTGG	27	245
910940	946	961	9741	9756	GCCTGCATGGCACTCA	43	246
910944	1028	1043	11184	11199	AGCAGCTACGATGCAG	53	247
910948	1309	1324	13539	13554	GCAGGATGGTTTCTGA	99	248
910952	1562	1577	13972	13987	GCACATCCAGGGCCTA	25	249
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	10	250
910960	2113	2128	14523	14538	AATTCTAACAGGCCGT	25	251
910964	2180	2195	14590	14605	GTCTGCACGGGACTCA	33	252
910968	2304	2319	N/A	N/A	ATAAATGAGTAGTTCC	28	253
910972	324	339	6862	6877	GAAGATCTCGGCCCTG	47	254
910976	2301	2316	N/A	N/A	AATGAGTAGTTCCTCT	35	255
910980	71	86	471	486	ACCGAGAAGAAAAACC	18	256
910984	385	400	N/A	N/A	AGCTGCAGCTGCGATG	44	257
910988	75	90	475	490	TTATACCGAGAAGAAA	68	258
910992	1893	1908	14303	14318	TACTGAGGCAGGCTCT	27	259
910996	36	51	436	451	CCGCAGACCTCTCTCT	36	260
910999	2302	2317	N/A	N/A	AAATGAGTAGTTCCTC	50	261
911003	413	428	7478	7493	TGCCACCATGACTAGG	62	262
911007	985	1000	9780	9795	GATGAAGCCTTGGTCA	50	263
911011	1901	1916	14311	14326	TTTGAGTGTACTGAGG	12	264
911015	1849	1864	14259	14274	GGACAGGATTGTGACA	56	265
911019	1792	1807	14202	14217	GTGCGAGCAGCTGAGG	13	266

911023	79	94	479	494	GCTTTTATACCGAGAA	5	267
911027	725	740	N/A	N/A	CGAAAGGGTGCTGTCC	78	268
911031	727	742	N/A	N/A	GCCGAAAGGGTGCTGT	48	269
911035	147	162	547	562	GTGAAGTGGACTGACA	43	270
911039	62	77	462	477	AAAAACCACGCTGTAC	61	271
911043	2280	2295	N/A	N/A	CTAAGCTGAGGCATGG	35	272
911047	659	674	8236	8251	GGACACCCATTCCAGG	59	273
911051	116	131	516	531	GGCTTGTGGGAAACTG	17	274
911055	158	173	N/A	N/A	GGGCAGGCTTGGTGAA	82	275
911059	43	58	443	458	GTGGAAGCCGCAGACC	23	276
911063	1169	1184	12039	12054	CTTGAAGTAGTCCATG	49*	277
911067	N/A	N/A	8302	8317	GTCCACTGACCTGTCC	111	278
911071	N/A	N/A	13600	13615	TGCGATGGCACTTGAG	51	279
911075	N/A	N/A	13564	13579	CTCAGAGGAGCTCACC	87	280
911079	N/A	N/A	13595	13610	TGGCACTTGAGGCCAT	119	281
911083	N/A	N/A	1275	1290	GCTACTAGGGTGAACA	22	282
911087	N/A	N/A	1547	1562	AATAGCTAACACTTCG	32	283
911091	N/A	N/A	2068	2083	GGAGTAAGGACATGAC	27	284
911095	N/A	N/A	2233	2248	ATCATAAGCATCACAA	49	285
911099	N/A	N/A	2639	2654	TATAAGTTTTAACACC	62	286
911103	N/A	N/A	2941	2956	TGTATTGCAAAGCAAC	38	287
911107	N/A	N/A	3357	3372	GCATTTCGGTGAGGCC	39	288
911111	N/A	N/A	3802	3817	TGCCTTTGGTCTGGGC	56	289
911115	N/A	N/A	4248	4263	CACTATGACAAGCCCC	29	290
911119	N/A	N/A	4945	4960	TCCCTTATGGCCCCCA	25	291
911123	N/A	N/A	5629	5644	TTCTATTGTCCTCACC	68	292
911127	N/A	N/A	5938	5953	ATAGACATGAAGAGTC	50	293
911131	N/A	N/A	6109	6124	CTTAATCTGAAGCTGG	22	294
911135	N/A	N/A	6309	6324	CATCTTGCCGGAGCTG	26	295
911139	N/A	N/A	6564	6579	CCCATAGTTGCACCCC	44	296
911143	N/A	N/A	7174	7189	ACTACAATACGGCCTC	44	297
911147	N/A	N/A	7572	7587	GCCCATTCACCGTCCA	48	298

911151	N/A	N/A	7963	7978	TCTTTAAGGTTCTGCA	40	299
911155	N/A	N/A	8496	8511	GGTAGACTGGCACAGG	33	300
911159	N/A	N/A	8684	8699	TATTATACATACGAGA	81	301
911163	N/A	N/A	8767	8782	AGATTTTGATCAAGAC	25	302
911167	N/A	N/A	9399	9414	GAAGATTCCATGCAGG	75	303
911171	N/A	N/A	9540	9555	CGCACTATCCCTATCC	12	304
911175	N/A	N/A	9868	9883	AGGTTAGGTTCCCTGC	34	305
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	10	306
911183	N/A	N/A	10451	10466	GGTTATGTGGCACCCT	21	307
911187	N/A	N/A	10686	10701	TTATTAGAGCACAGGT	72	308
911191	N/A	N/A	10716	10731	TGGAATCCCACAAAAC	61	309
911195	N/A	N/A	11611	11626	TACTTAGCAGGGTCCC	37	310
911199	N/A	N/A	11684	11699	GTGGATAGGTGAGCTC	29	311
911203	N/A	N/A	11864	11879	TGACATAAGTTGTATC	46	312
911207	N/A	N/A	11994	12009	ATGAATCAAGCCCCAT	95	313
911211	N/A	N/A	12284	12299	TGGATTTGCGGACAGG	33	314
911215	N/A	N/A	12324	12339	CAGAATTTGGCATGCT	51	315
911219	N/A	N/A	12530	12545	GTGTATTGACATACTG	67	316
911223	N/A	N/A	12790	12805	GGATTACAGAGTCAGC	36	317
911227	N/A	N/A	12893	12908	TGGTTAGGTGGTTAGG	59	318
911231	N/A	N/A	13242	13257	GGGTATGGTTCTG	38	319

Таблица 5 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	32	65
1062005	1	16	401	416	TTCGATGAGTGTGTGC	43	320
1062037	118	133	518	533	CTGGCTTGTGGGAAAC	30	321
1062069	310	325	6848	6863	TGGAAGGTTCCCCCTG	110	322

1062101	422	437	7487	7502	CCCGGAGGGTGCCACC	212	323
1062133	594	609	7757	7772	AGACCCCAGTGGCGGT	69	324
1062165	752	767	8398	8413	CAGTGGGTAGGAGCTC	150	325
1062197	869	884	9459	9474	ACATTGTGCCCTGCCC	24	326
1062229	1049	1064	11205	11220	GACGACAGGGCCTTGG	53	327
1062261	1181	1196	12051	12066	CATGTTGTGGAACTTG	65*	328
1062293	1423	1438	13833	13848	CGTTTCTTGCGGAACT	105	329
1062325	1592	1607	14002	14017	AGTGGAAACCTCACTT	86	330
1062357	1848	1863	14258	14273	GACAGGATTGTGACAT	43	331
1062389	2026	2041	14436	14451	GCACACCCCTGTGTTG	61	332
1062421	2208	2223	14618	14633	TGGCAAGGCAGTGTGT	68	333
1062453	N/A	N/A	8298	8313	ACTGACCTGTCCTTCC	318	334
1062485	N/A	N/A	13599	13614	GCGATGGCACTTGAGG	143	335
1062549	N/A	N/A	684	699	TACCTGGCTGGAATCA	64	336
1062581	N/A	N/A	866	881	ACAGCATTTCAAGTTG	113	337
1062613	N/A	N/A	1108	1123	GATCGATGGAGTGTGG	104	338
1062645	N/A	N/A	1237	1252	AATGTAAAGGTCCTCG	23	339
1062678	N/A	N/A	1337	1352	AAAGCGATACAAGCAA	30	340
1062710	N/A	N/A	1475	1490	AGCCCTGAACAACCTG	67	341
1062742	N/A	N/A	1721	1736	CGGCACTTGGTCAAAT	102	342
1062774	N/A	N/A	1877	1892	ATAGGACAACCTTTTG	40	343
1062806	N/A	N/A	2074	2089	CTATTAGGAGTAAGGA	172	344
1062838	N/A	N/A	2159	2174	TATATGTAATGGCTGA	11	345
1062870	N/A	N/A	2391	2406	CCTCTATAGTAAATGG	62	346
1062902	N/A	N/A	2585	2600	GCTAAGTATTTACTGT	68	347
1062934	N/A	N/A	2731	2746	AATAGTCAGTCCATTA	46	348
1062966	N/A	N/A	2866	2881	GAAAGCTTGGACATGG	34	349
1062998	N/A	N/A	3067	3082	GCGAGAGGAGGATTGC	65	350
1063030	N/A	N/A	3244	3259	ATTAGGTGTCTGCAGG	74	351
1063062	N/A	N/A	3389	3404	GAGATCTAGGCTTGGA	21	352
1063094	N/A	N/A	3641	3656	ATCACCACGCTCTGGC	31	353
1063126	N/A	N/A	3863	3878	CCAAATACATGGCCAC	133	354

1063158	N/A	N/A	4102	4117	ATCATAGAACAGCATT	19	355
1063190	N/A	N/A	4223	4238	AGACCTGGCCCTTCTT	122	356
1063222	N/A	N/A	4402	4417	CCGGGCTTCATCGACA	99	357
1063253	N/A	N/A	4555	4570	TCCCTTTCTGACTGGG	198	358
1063285	N/A	N/A	4710	4725	AGAGCTAAGAATTCTC	65	359
1063317	N/A	N/A	5080	5095	CTGGGAGAGCACTGGT	62	360
1063349	N/A	N/A	5274	5289	GTATAGAAGGGTTCTG	43	361
1063381	N/A	N/A	5482	5497	CAGCCAACCCCATTAT	134	362
1063413	N/A	N/A	5655	5670	CTGTCCAAGCCACGCA	96	363
1063445	N/A	N/A	5855	5870	AGGAGGCGAGTCCAGG	65	364
1063477	N/A	N/A	6012	6027	AAGGACCGAGCTGACA	39	365
1063509	N/A	N/A	6133	6148	GCGAGAAGTGGGTAGA	47	366
1063541	N/A	N/A	6280	6295	TCCTCGGAGTCCTATT	163	367
1063573	N/A	N/A	6449	6464	GGCTTGCCTGCCCACG	65	368
1063605	N/A	N/A	6969	6984	GTCCAGGTACCCCACC	100	369
1063637	N/A	N/A	7171	7186	ACAATACGGCCTCCTC	127	370
1063669	N/A	N/A	7376	7391	ACTGCAAGCCCACATG	84	371
1063701	N/A	N/A	7802	7817	CTGAGGTGTTACCAGG	35	372
1063733	N/A	N/A	7968	7983	CTGCATCTTTAAGGTT	60	373
1063765	N/A	N/A	8045	8060	GCTTAAAGACGGCCAT	88	374
1063796	N/A	N/A	8559	8574	ACTTATTGGGATGAAG	92	375
1063828	N/A	N/A	8848	8863	GTAGCAGGGCAAAGCA	69	376
1063860	N/A	N/A	9051	9066	TAAGGGTTGTGTAG	318	377
1063892	N/A	N/A	9413	9428	TGCCTAAGTAGGGAGA	78	378
1063924	N/A	N/A	9644	9659	AGGCTACGGTCTTCCC	68	379
1063956	N/A	N/A	9960	9975	AGAGGGTTTGTAAGTA	155	380
1063988	N/A	N/A	10527	10542	ATAAATTACCACCAGC	55	381
1064020	N/A	N/A	10757	10772	TTTCAAAGCAAGGACG	113	382
1064052	N/A	N/A	11379	11394	ATGGAGCTCCTTTGCA	219	383
1064084	N/A	N/A	11550	11565	AGGCATGGCCCCAATC	109	384
1064118	N/A	N/A	11622	11637	GCTCCTGGAATTACTT	38	385
1064150	N/A	N/A	11717	11732	GCTAAGCCCACAGGCC	215	386
	·						

1064182	N/A	N/A	11803	11818	TGAAAAGAAGCGGAGT	98	387
1064214	N/A	N/A	11910	11925	CGTCAACACCCGTGTC	93	388
1064246	N/A	N/A	11978	11993	GCAGGACCTCCTAGCT	203	389
1064278	N/A	N/A	12199	12214	GGAATGGAGGAACCCA	256	390
1064310	N/A	N/A	12384	12399	TCCAGGAGAGGGTTAG	123	391
1064342	N/A	N/A	12578	12593	ATCAAATGGGTGTTAC	102	392
1064374	N/A	N/A	12781	12796	AGTCAGCGATGATGAT	64	393
1064406	N/A	N/A	12924	12939	GAATTATCGAGTATCT	57	394
1064438	N/A	N/A	13217	13232	AAGGGATCAGGACTGA	188	395

Таблица 6Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	60	65
1062006	2	17	402	417	TTTCGATGAGTGTGTG	38	396
1062038	119	134	519	534	CCTGGCTTGTGGGAAA	67	397
1062070	311	326	6849	6864	CTGGAAGGTTCCCCCT	109	398
1062102	424	439	7489	7504	GCCCCGGAGGGTGCCA	202	399
1062134	595	610	7758	7773	AAGACCCCAGTGGCGG	47	400
1062166	754	769	8400	8415	AGCAGTGGGTAGGAGC	77	401
1062198	876	891	9466	9481	GGAGGAGACATTGTGC	119	402
1062230	1050	1065	11206	11221	GGACGACAGGGCCTTG	164	403
1062262	1183	1198	12053	12068	CGCATGTTGTGGAACT	27*	404
1062294	1426	1441	13836	13851	CTCCGTTTCTTGCGGA	136	405
1062326	1593	1608	14003	14018	CAGTGGAAACCTCACT	117	406
1062358	1852	1867	14262	14277	GAGGGACAGGATTGTG	134	407
1062390	2028	2043	14438	14453	GGGCACACCCCTGTGT	194	408
1062422	2209	2224	14619	14634	TTGGCAAGGCAGTGTG	20	409
1062454	N/A	N/A	8299	8314	CACTGACCTGTCCTTC	117	410

1062486	N/A	N/A	13601	13616	CTGCGATGGCACTTGA	115	411
1062550	N/A	N/A	685	700	TTACCTGGCTGGAATC	91	412
1062582	N/A	N/A	867	882	GACAGCATTTCAAGTT	139	413
1062614	N/A	N/A	1109	1124	AGATCGATGGAGTGTG	107	414
1062646	N/A	N/A	1238	1253	AAATGTAAAGGTCCTC	28	415
1062679	N/A	N/A	1338	1353	TAAAGCGATACAAGCA	100	416
1062711	N/A	N/A	1476	1491	CAGCCCTGAACAACCT	83	417
1062743	N/A	N/A	1723	1738	ATCGGCACTTGGTCAA	63	418
1062775	N/A	N/A	1878	1893	AATAGGACAACCTTTT	143	419
1062807	N/A	N/A	2075	2090	CCTATTAGGAGTAAGG	140	420
1062839	N/A	N/A	2160	2175	ATATATGTAATGGCTG	31	421
1062871	N/A	N/A	2392	2407	ACCTCTATAGTAAATG	67	422
1062903	N/A	N/A	2609	2624	GGTTTATTGTGTGTCA	14	423
1062935	N/A	N/A	2732	2747	GAATAGTCAGTCCATT	54	424
1062967	N/A	N/A	2868	2883	TAGAAAGCTTGGACAT	156	425
1062999	N/A	N/A	3069	3084	GTGCGAGAGGAGGATT	111	426
1063031	N/A	N/A	3245	3260	CATTAGGTGTCTGCAG	37	427
1063063	N/A	N/A	3390	3405	TGAGATCTAGGCTTGG	41	428
1063095	N/A	N/A	3642	3657	CATCACCACGCTCTGG	110	429
1063127	N/A	N/A	3864	3879	CCCAAATACATGGCCA	77	430
1063159	N/A	N/A	4104	4119	GAATCATAGAACAGCA	20	431
1063191	N/A	N/A	4228	4243	TCTGAAGACCTGGCCC	90	432
1063223	N/A	N/A	4406	4421	TGCGCCGGGCTTCATC	87	433
1063254	N/A	N/A	4575	4590	CTGCACTGTCTGTTGG	176	434
1063286	N/A	N/A	4712	4727	CCAGAGCTAAGAATTC	81	435
1063318	N/A	N/A	5083	5098	GGCCTGGGAGAGCACT	153	436
1063350	N/A	N/A	5276	5291	GAGTATAGAAGGGTTC	68	437
1063382	N/A	N/A	5496	5511	TGGAAGGGACTGCCCA	145	438
1063414	N/A	N/A	5656	5671	CCTGTCCAAGCCACGC	19	439
1063446	N/A	N/A	5856	5871	AAGGAGGCGAGTCCAG	103	440
1063478	N/A	N/A	6013	6028	GAAGGACCGAGCTGAC	163	441
1063510	N/A	N/A	6135	6150	AGGCGAGAAGTGGGTA	53	442

1063542	N/A	N/A	6281	6296	CTCCTCGGAGTCCTAT	95	443
1063574	N/A	N/A	6455	6470	GCACCTGGCTTGCCTG	67	444
1063606	N/A	N/A	6981	6996	CGGCACCTGTAGGTCC	141	445
1063638	N/A	N/A	7172	7187	TACAATACGGCCTCCT	86	446
1063670	N/A	N/A	7377	7392	CACTGCAAGCCCACAT	66	447
1063702	N/A	N/A	7803	7818	GCTGAGGTGTTACCAG	109	448
1063734	N/A	N/A	7980	7995	GATTTTGACATTCTGC	11	449
1063766	N/A	N/A	8046	8061	AGCTTAAAGACGGCCA	147	450
1063797	N/A	N/A	8560	8575	TACTTATTGGGATGAA	75	451
1063829	N/A	N/A	8850	8865	GAGTAGCAGGGCAAAG	183	452
1063861	N/A	N/A	9052	9067	CTAAGGGTTGTGTA	235	453
1063893	N/A	N/A	9414	9429	GTGCCTAAGTAGGGAG	105	454
1063925	N/A	N/A	9645	9660	CAGGCTACGGTCTTCC	62	455
1063957	N/A	N/A	9961	9976	CAGAGGGTTTGTAAGT	102	456
1063989	N/A	N/A	10541	10556	TCGCATCATGAGAAAT	82	457
1064021	N/A	N/A	11113	11128	GCTTAAACTTCCCACT	106	458
1064053	N/A	N/A	11380	11395	CATGGAGCTCCTTTGC	182	459
1064085	N/A	N/A	11551	11566	GAGGCATGGCCCCAAT	211	460
1064119	N/A	N/A	11633	11648	GGAAAGGAGGTGCTCC	92	461
1064151	N/A	N/A	11719	11734	CTGCTAAGCCCACAGG	140	462
1064183	N/A	N/A	11804	11819	TTGAAAAGAAGCGGAG	141	463
1064215	N/A	N/A	11913	11928	CACCGTCAACACCCGT	63	464
1064247	N/A	N/A	11980	11995	ATGCAGGACCTCCTAG	244	465
1064279	N/A	N/A	12200	12215	GGGAATGGAGGAACCC	112	466
1064311	N/A	N/A	12385	12400	GTCCAGGAGAGGGTTA	241	467
1064343	N/A	N/A	12579	12594	GATCAAATGGGTGTTA	84	468
1064375	N/A	N/A	12784	12799	CAGAGTCAGCGATGAT	77	469
1064407	N/A	N/A	12925	12940	TGAATTATCGAGTATC	53	470
1064439	N/A	N/A	13219	13234	GTAAGGGATCAGGACT	136	471

Таблица 7Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	20	65
1062008	4	19	404	419	TTTTTCGATGAGTGTG	9	472
1062040	128	143	528	543	AAGGATCAGCCTGGCT	67	473
1062072	313	328	6851	6866	CCCTGGAAGGTTCCCC	49	474
1062104	459	474	7524	7539	GGAGTGCCTGTAAGTG	13	475
1062136	597	612	7760	7775	AGAAGACCCCAGTGGC	47	476
1062168	766	781	8412	8427	ACACCATTTGCCAGCA	59	477
1062200	878	893	9468	9483	CTGGAGGAGACATTGT	62	478
1062232	1091	1106	11247	11262	AAACAGGCTGTCAGGG	101	479
1062264	1185	1200	12055	12070	GTCGCATGTTGTGGAA	10*	480
1062296	1430	1445	13840	13855	CTGGCTCCGTTTCTTG	130	481
1062328	1595	1610	14005	14020	GACAGTGGAAACCTCA	15	482
1062360	1854	1869	14264	14279	GTGAGGGACAGGATTG	58	483
1062392	2040	2055	14450	14465	GTGTAGGCCTCTGGGC	45	484
1062424	2212	2227	14622	14637	TTTTTGGCAAGGCAGT	61	485
1062456	N/A	N/A	8301	8316	TCCACTGACCTGTCCT	73	486
1062488	N/A	N/A	13603	13618	AGCTGCGATGGCACTT	116	487
1062520	N/A	N/A	553	568	ACCTTGGTGAAGTGGA	63	488
1062552	N/A	N/A	687	702	CCTTACCTGGCTGGAA	187	489
1062584	N/A	N/A	879	894	CAGTTGCACCTGGACA	111	490
1062616	N/A	N/A	1111	1126	GGAGATCGATGGAGTG	37	491
1062648	N/A	N/A	1259	1274	GAACTGATGCTCACTC	26	492
1062681	N/A	N/A	1340	1355	TCTAAAGCGATACAAG	97	493
1062713	N/A	N/A	1490	1505	AATCGAGCTCACCCCA	76	494
1062745	N/A	N/A	1726	1741	ACAATCGGCACTTGGT	34	495

1062777	N/A	N/A	1886	1901	GAGCATAAAATAGGAC	57	496
1062809	N/A	N/A	2077	2092	ACCCTATTAGGAGTAA	144	497
1062841	N/A	N/A	2234	2249	CATCATAAGCATCACA	19	498
1062873	N/A	N/A	2396	2411	CTTAACCTCTATAGTA	51	499
1062905	N/A	N/A	2616	2631	GATCTTGGGTTTATTG	81	500
1062937	N/A	N/A	2735	2750	AGTGAATAGTCAGTCC	17	501
1062969	N/A	N/A	2905	2920	CCTGGTATAAGAACAG	23	502
1063001	N/A	N/A	3100	3115	GGACACATGCATGGAG	73	503
1063033	N/A	N/A	3248	3263	AGTCATTAGGTGTCTG	23	504
1063065	N/A	N/A	3392	3407	CCTGAGATCTAGGCTT	48	505
1063097	N/A	N/A	3658	3673	ACTGACATGCCTCCAT	54	506
1063129	N/A	N/A	3884	3899	GTCCACTCTGGAACAA	91	507
1063161	N/A	N/A	4123	4138	GTATAACACCAGGACC	63	508
1063193	N/A	N/A	4236	4251	CCCCTAGCTCTGAAGA	69	509
1063225	N/A	N/A	4414	4429	CGGCCGGATGCGCCGG	120	510
1063256	N/A	N/A	4584	4599	GCCGGCTTCCTGCACT	100	511
1063288	N/A	N/A	4714	4729	GGCCAGAGCTAAGAAT	71	512
1063320	N/A	N/A	5094	5109	CTCCGAACAAGGGCCT	30	513
1063352	N/A	N/A	5313	5328	CTGAGTTGGGCACACA	58	514
1063384	N/A	N/A	5521	5536	TCCTGGTCTGAGAGGA	76	515
1063416	N/A	N/A	5686	5701	GCCTCAAATGCCCACT	61	516
1063448	N/A	N/A	5858	5873	GCAAGGAGGCGAGTCC	55	517
1063480	N/A	N/A	6015	6030	TGGAAGGACCGAGCTG	101	518
1063512	N/A	N/A	6139	6154	GAGAAGGCGAGAAGTG	150	519
1063544	N/A	N/A	6293	6308	GTCTCGGACTTTCTCC	57	520
1063576	N/A	N/A	6483	6498	CCACACATGCCCCACG	102	521
1063608	N/A	N/A	6983	6998	GTCGGCACCTGTAGGT	50	522
1063640	N/A	N/A	7175	7190	GACTACAATACGGCCT	52	523
1063672	N/A	N/A	7382	7397	CTCTGCACTGCAAGCC	30	524
1063704	N/A	N/A	7867	7882	AGCCTACACTGCTCAC	60	525
1063736	N/A	N/A	8001	8016	TGTAAAGCTCTGTGGT	43	526
1063768	N/A	N/A	8048	8063	GAAGCTTAAAGACGGC	42	527

1063799	N/A	N/A	8563	8578	TACTACTTATTGGGAT	52	528
1063831	N/A	N/A	8852	8867	AGGAGTAGCAGGGCAA	60	529
1063863	N/A	N/A	9054	9069	TGCTAAGGGTTGTGTG	37	530
1063895	N/A	N/A	9425	9440	TCCGCCTGGCAGTGCC	40	531
1063927	N/A	N/A	9687	9702	ACATGAGGCCTCAGCC	91	532
1063959	N/A	N/A	9963	9978	GTCAGAGGGTTTGTAA	64	533
1063991	N/A	N/A	10543	10558	ATTCGCATCATGAGAA	33	534
1064023	N/A	N/A	11115	11130	AGGCTTAAACTTCCCA	60	535
1064055	N/A	N/A	11383	11398	CAGCATGGAGCTCCTT	27	536
1064087	N/A	N/A	11554	11569	GGTGAGGCATGGCCCC	57	537
1064121	N/A	N/A	11653	11668	GATTTTCCTTGGTCAG	119	538
1064153	N/A	N/A	11728	11743	CTCTGATCCCTGCTAA	84	539
1064185	N/A	N/A	11810	11825	CCGAGGTTGAAAAGAA	87	540
1064217	N/A	N/A	11919	11934	AGATCTCACCGTCAAC	107	541
1064249	N/A	N/A	11984	11999	CCCCATGCAGGACCTC	129	542
1064281	N/A	N/A	12202	12217	TTGGGAATGGAGGAAC	106	543
1064313	N/A	N/A	12396	12411	CTATTTTATGGGTCCA	14	544
1064345	N/A	N/A	12584	12599	TTAAGGATCAAATGGG	74	545
1064377	N/A	N/A	12786	12801	TACAGAGTCAGCGATG	60	546
1064409	N/A	N/A	12927	12942	TTTGAATTATCGAGTA	66	547
1064441	N/A	N/A	13221	13236	AGGTAAGGGATCAGGA	83	548

Таблица 8Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	24	65
1062009	5	20	405	420	TTTTTCGATGAGTGT	29	549
1062041	143	158	543	558	AGTGGACTGACAGAAA	39	550
1062073	314	329	6852	6867	GCCCTGGAAGGTTCCC	114	551

1062105	461	476	7526	7541	GAGGAGTGCCTGTAAG	61	552
1062137	600	615	7763	7778	GGGAGAAGACCCCAGT	86	553
1062169	771	786	8417	8432	TGCAGACACCATTTGC	75	554
1062201	895	910	9485	9500	GACTGTACCATCTCTC	87	555
1062233	1098	1113	11254	11269	GGACAGCAAACAGGCT	87	556
1062265	1186	1201	12056	12071	GGTCGCATGTTGTGGA	10*	557
1062297	1433	1448	13843	13858	CCTCTGGCTCCGTTTC	95	558
1062329	1596	1611	14006	14021	AGACAGTGGAAACCTC	85	559
1062361	1856	1871	14266	14281	GAGTGAGGGACAGGAT	16	560
1062393	2041	2056	14451	14466	TGTGTAGGCCTCTGGG	23	561
1062425	2215	2230	14625	14640	GTATTTTGGCAAGGC	19	562
1062457	N/A	N/A	8304	8319	CTGTCCACTGACCTGT	39	563
1062489	N/A	N/A	13609	13624	ACTTTGAGCTGCGATG	64	564
1062521	N/A	N/A	554	569	CACCTTGGTGAAGTGG	70	565
1062553	N/A	N/A	688	703	ACCTTACCTGGCTGGA	58	566
1062585	N/A	N/A	880	895	TCAGTTGCACCTGGAC	48	567
1062617	N/A	N/A	1112	1127	AGGAGATCGATGGAGT	67	568
1062649	N/A	N/A	1260	1275	AGAACTGATGCTCACT	41	569
1062682	N/A	N/A	1341	1356	CTCTAAAGCGATACAA	94	570
1062714	N/A	N/A	1491	1506	GAATCGAGCTCACCCC	56	571
1062746	N/A	N/A	1727	1742	AACAATCGGCACTTGG	31	572
1062778	N/A	N/A	1887	1902	GGAGCATAAAATAGGA	116	573
1062810	N/A	N/A	2078	2093	CACCCTATTAGGAGTA	94	574
1062842	N/A	N/A	2235	2250	CCATCATAAGCATCAC	24	575
1062874	N/A	N/A	2397	2412	TCTTAACCTCTATAGT	46	576
1062906	N/A	N/A	2618	2633	CTGATCTTGGGTTTAT	63	577
1062938	N/A	N/A	2736	2751	GAGTGAATAGTCAGTC	10	578
1062970	N/A	N/A	2920	2935	GCAAAACAGTGTGGCC	65	579
1063002	N/A	N/A	3125	3140	GATAGTGAGAGACATT	98	580
1063034	N/A	N/A	3249	3264	AAGTCATTAGGTGTCT	28	581
1063066	N/A	N/A	3393	3408	TCCTGAGATCTAGGCT	83	582
1005000							

1063130	N/A	N/A	3886	3901	CTGTCCACTCTGGAAC	69	584
1063162	N/A	N/A	4124	4139	AGTATAACACCAGGAC	36	585
1063194	N/A	N/A	4243	4258	TGACAAGCCCCTAGCT	112	586
1063226	N/A	N/A	4418	4433	ATGGCGGCCGGATGCG	147	587
1063257	N/A	N/A	4586	4601	CAGCCGGCTTCCTGCA	122	588
1063289	N/A	N/A	4719	4734	CACTTGGCCAGAGCTA	29	589
1063321	N/A	N/A	5095	5110	GCTCCGAACAAGGGCC	59	590
1063353	N/A	N/A	5314	5329	ACTGAGTTGGGCACAC	63	591
1063385	N/A	N/A	5522	5537	ATCCTGGTCTGAGAGG	52	592
1063417	N/A	N/A	5727	5742	CCAATTTCTGGCCCTC	51	593
1063449	N/A	N/A	5859	5874	GGCAAGGAGGCGAGTC	29	594
1063481	N/A	N/A	6016	6031	CTGGAAGGACCGAGCT	80	595
1063513	N/A	N/A	6140	6155	GGAGAAGGCGAGAAGT	46	596
1063545	N/A	N/A	6303	6318	GCCGGAGCTGGTCTCG	85	597
1063577	N/A	N/A	6563	6578	CCATAGTTGCACCCCA	37	598
1063609	N/A	N/A	6985	7000	AGGTCGGCACCTGTAG	56	599
1063641	N/A	N/A	7176	7191	GGACTACAATACGGCC	47	600
1063673	N/A	N/A	7387	7402	AAATACTCTGCACTGC	101	601
1063705	N/A	N/A	7868	7883	TAGCCTACACTGCTCA	72	602
1063737	N/A	N/A	8006	8021	AGCTTTGTAAAGCTCT	30	603
1063769	N/A	N/A	8049	8064	AGAAGCTTAAAGACGG	68	604
1063800	N/A	N/A	8564	8579	TTACTACTTATTGGGA	124	605
1063832	N/A	N/A	8854	8869	TGAGGAGTAGCAGGGC	47	606
1063864	N/A	N/A	9055	9070	CTGCTAAGGGTTGTGT	88	607
1063896	N/A	N/A	9503	9518	ATTACCTGCTGCTCCA	72	608
1063928	N/A	N/A	9688	9703	AACATGAGGCCTCAGC	80	609
1063960	N/A	N/A	10283	10298	TCTTAGAGTCAGAGGG	30	610
1063992	N/A	N/A	10545	10560	ACATTCGCATCATGAG	60	611
1064024	N/A	N/A	11116	11131	GAGGCTTAAACTTCCC	34	612
1064056	N/A	N/A	11386	11401	GGGCAGCATGGAGCTC	83	613
1064088	N/A	N/A	11560	11575	AGAGTGGGTGAGGCAT	94	614
1064122	N/A	N/A	11654	11669	CGATTTTCCTTGGTCA	26	615

1064154	N/A	N/A	11729	11744	TCTCTGATCCCTGCTA	94	616
1064186	N/A	N/A	11811	11826	CCCGAGGTTGAAAAGA	63	617
1064218	N/A	N/A	11920	11935	GAGATCTCACCGTCAA	69	618
1064250	N/A	N/A	11987	12002	AAGCCCCATGCAGGAC	80	619
1064282	N/A	N/A	12240	12255	CATTTGAGGCACGGCT	105	620
1064314	N/A	N/A	12399	12414	AGGCTATTTATGGGT	70	621
1064346	N/A	N/A	12585	12600	GTTAAGGATCAAATGG	78	622
1064378	N/A	N/A	12787	12802	TTACAGAGTCAGCGAT	105	623
1064410	N/A	N/A	12936	12951	CAGAGATGGTTTGAAT	75	624
1064442	N/A	N/A	13222	13237	TAGGTAAGGGATCAGG	76	625

Пример 2. Антисмысловое подавление человеческого Foxp3 в клетках SUP-M2 с помощью сЕt-гэпмеров

Модифицированные разрабатывали олигонуклеотиды для нацеливания на нуклеиновую кислоту Foxp3, и тестировали их эффект в отношении уровня мРНК Foxp3 in vitro. Модифицированные олигонуклеотиды тестировали в серии экспериментов, в которых были сходные условия культивирования. Результаты каждого эксперимента представлены в показанных ниже отдельных таблицах. Культивируемые клетки SUP-M2 при плотности 60000 клеток на лунку обрабатывали с использованием свободного поглощения с помощью 3000 нМ модифицированного олигонуклеотида. После периода обработки, составлявшего примерно 24 часа, РНК выделяли из клеток, и измеряли уровни мРНК Foxp3 с помощью количественной RT-PCR в реальном времени. Для измерения уровней мРНК использовали набор праймеров и зондов для человека RTS35925. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC). Модифицированные олигонуклеотиды со значениями процента контроля, отмеченными звездочкой (*), нацеливаются на область ампликона из набора праймеров и зондов. Можно использовать дополнительные анализы для измерения активности И эффективности модифицированных олигонуклеотидов, нацеливающихся на область ампликона.

20

25

30

5

10

15

Новые разработанные модифицированные олигонуклеотиды в приведенных ниже таблицах обозначены как сЕt-гэпмеры 3-10-3. Гэпмеры имеют длину 16 нуклеозидов, при этом центральный гэп-сегмент содержит десять 2'-дезоксинуклеозидов и фланкирован фланговыми сегментами в 5'-направлении и в 3'-направлении, каждый из которых содержит по три нуклеозида. Каждый нуклеозид в 5'-концевом фланговом сегменте и каждый нуклеозид в 3'-концевом фланговом сегменте и меет сЕt-модификацию сахара. Все межнуклеозидные связи в каждом гэпмере являются фосфотиоатными (P=S) связями. Все цитозиновые остатки в каждом гэпмере представляют собой 5-метилцитозин. "Стартовый сайт" указывает на нуклеозид, наиболее близкий к 5'-концу в последовательности гена человека, на которую нацелен гэпмер. "Стоп-сайт" указывает на нуклеозид, наиболее близкий к 3'-концу в последовательности гена человека, на которую нацелен гэпмер. Каждый гэпмер, перечисленный в приведенных ниже таблицах, нацелен на SEQ ID NO: 1 или SEQ ID NO: 2.

"N/A" указывает на то, что модифицированный олигонуклеотид не нацеливается на такую конкретную последовательность гена со 100% комплементарностью. "N.D." указывает на то, что % UTC не определен для данного конкретного модифицированного олигонуклеотида в данном конкретном эксперименте. Активность этого модифицированного олигонуклеотида можно определить в другом эксперименте.

5

Таблица 9Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	21	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	37	65
1062005	1	16	401	416	TTCGATGAGTGTGTGC	20	320
1062037	118	133	518	533	CTGGCTTGTGGGAAAC	63	321
1062069	310	325	6848	6863	TGGAAGGTTCCCCCTG	142	322
1062101	422	437	7487	7502	CCCGGAGGGTGCCACC	135	323
1062133	594	609	7757	7772	AGACCCCAGTGGCGGT	85	324
1062165	752	767	8398	8413	CAGTGGGTAGGAGCTC	66	325
1062197	869	884	9459	9474	ACATTGTGCCCTGCCC	101	326
1062229	1049	1064	11205	11220	GACGACAGGGCCTTGG	78	327
1062261	1181	1196	12051	12066	CATGTTGTGGAACTTG	111*	328
1062293	1423	1438	13833	13848	CGTTTCTTGCGGAACT	105	329
1062325	1592	1607	14002	14017	AGTGGAAACCTCACTT	67	330
1062357	1848	1863	14258	14273	GACAGGATTGTGACAT	101	331
1062389	2026	2041	14436	14451	GCACACCCCTGTGTTG	84	332
1062421	2208	2223	14618	14633	TGGCAAGGCAGTGTGT	66	333
1062453	N/A	N/A	8298	8313	ACTGACCTGTCCTTCC	133	334
1062485	N/A	N/A	13599	13614	GCGATGGCACTTGAGG	68	335
1062517	N/A	N/A	N/A	N/A	GGCGAGGCTCCTGAGA	92	626
1062549	N/A	N/A	684	699	TACCTGGCTGGAATCA	101	336
1062581	N/A	N/A	866	881	ACAGCATTTCAAGTTG	132	337
1062613	N/A	N/A	1108	1123	GATCGATGGAGTGTGG	65	338
1062645	N/A	N/A	1237	1252	AATGTAAAGGTCCTCG	27	339

1062678	N/A	N/A	1337	1352	AAAGCGATACAAGCAA	87	340
1062710	N/A	N/A	1475	1490	AGCCCTGAACAACCTG	85	341
1062742	N/A	N/A	1721	1736	CGGCACTTGGTCAAAT	96	342
1062774	N/A	N/A	1877	1892	ATAGGACAACCTTTTG	113	343
1062806	N/A	N/A	2074	2089	CTATTAGGAGTAAGGA	70	344
1062838	N/A	N/A	2159	2174	TATATGTAATGGCTGA	25	345
1062870	N/A	N/A	2391	2406	CCTCTATAGTAAATGG	108	346
1062902	N/A	N/A	2585	2600	GCTAAGTATTTACTGT	52	347
1062934	N/A	N/A	2731	2746	AATAGTCAGTCCATTA	78	348
1062966	N/A	N/A	2866	2881	GAAAGCTTGGACATGG	47	349
1062998	N/A	N/A	3067	3082	GCGAGAGGAGGATTGC	103	350
1063030	N/A	N/A	3244	3259	ATTAGGTGTCTGCAGG	45	351
1063062	N/A	N/A	3389	3404	GAGATCTAGGCTTGGA	26	352
1063094	N/A	N/A	3641	3656	ATCACCACGCTCTGGC	38	353
1063126	N/A	N/A	3863	3878	CCAAATACATGGCCAC	73	354
1063158	N/A	N/A	4102	4117	ATCATAGAACAGCATT	26	355
1063190	N/A	N/A	4223	4238	AGACCTGGCCCTTCTT	125	356
1063222	N/A	N/A	4402	4417	CCGGGCTTCATCGACA	108	357
1063253	N/A	N/A	4555	4570	TCCCTTTCTGACTGGG	108	358
1063285	N/A	N/A	4710	4725	AGAGCTAAGAATTCTC	108	359
1063317	N/A	N/A	5080	5095	CTGGGAGAGCACTGGT	111	360
1063349	N/A	N/A	5274	5289	GTATAGAAGGGTTCTG	64	361
1063381	N/A	N/A	5482	5497	CAGCCAACCCCATTAT	139	362
1063413	N/A	N/A	5655	5670	CTGTCCAAGCCACGCA	79	363
1063445	N/A	N/A	5855	5870	AGGAGGCGAGTCCAGG	92	364
1063477	N/A	N/A	6012	6027	AAGGACCGAGCTGACA	53	365
1063509	N/A	N/A	6133	6148	GCGAGAAGTGGGTAGA	47	366
1063541	N/A	N/A	6280	6295	TCCTCGGAGTCCTATT	116	367
1063573	N/A	N/A	6449	6464	GGCTTGCCTGCCCACG	134	368
1063605	N/A	N/A	6969	6984	GTCCAGGTACCCCACC	65	369
1063637	N/A	N/A	7171	7186	ACAATACGGCCTCCTC	92	370
1063669	N/A	N/A	7376	7391	ACTGCAAGCCCACATG	56	371

1063701	N/A	N/A	7802	7817	CTGAGGTGTTACCAGG	78	372
1063733	N/A	N/A	7968	7983	CTGCATCTTTAAGGTT	56	373
1063765	N/A	N/A	8045	8060	GCTTAAAGACGGCCAT	96	374
1063796	N/A	N/A	8559	8574	ACTTATTGGGATGAAG	70	375
1063828	N/A	N/A	8848	8863	GTAGCAGGGCAAAGCA	156	376
1063860	N/A	N/A	9051	9066	TAAGGGTTGTGTAG	136	377
1063892	N/A	N/A	9413	9428	TGCCTAAGTAGGGAGA	103	378
1063924	N/A	N/A	9644	9659	AGGCTACGGTCTTCCC	67	379
1063956	N/A	N/A	9960	9975	AGAGGGTTTGTAAGTA	78	380
1063988	N/A	N/A	10527	10542	ATAAATTACCACCAGC	41	381
1064020	N/A	N/A	10757	10772	TTTCAAAGCAAGGACG	81	382
1064052	N/A	N/A	11379	11394	ATGGAGCTCCTTTGCA	89	383
1064084	N/A	N/A	11550	11565	AGGCATGGCCCCAATC	168	384
1064118	N/A	N/A	11622	11637	GCTCCTGGAATTACTT	91	385
1064150	N/A	N/A	11717	11732	GCTAAGCCCACAGGCC	81	386
1064182	N/A	N/A	11803	11818	TGAAAAGAAGCGGAGT	80	387
1064214	N/A	N/A	11910	11925	CGTCAACACCCGTGTC	114	388
1064246	N/A	N/A	11978	11993	GCAGGACCTCCTAGCT	104	389
1064278	N/A	N/A	12199	12214	GGAATGGAGGAACCCA	133	390
1064310	N/A	N/A	12384	12399	TCCAGGAGAGGGTTAG	45	391
1064342	N/A	N/A	12578	12593	ATCAAATGGGTGTTAC	89	392
1064374	N/A	N/A	12781	12796	AGTCAGCGATGATGAT	64	393
1064406	N/A	N/A	12924	12939	GAATTATCGAGTATCT	99	394
1064438	N/A	N/A	13217	13232	AAGGGATCAGGACTGA	112	395

 Таблица 10

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	19	250

911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	41	65
1062006	2	17	402	417	TTTCGATGAGTGTGTG	31	396
1062038	119	134	519	534	CCTGGCTTGTGGGAAA	86	397
1062070	311	326	6849	6864	CTGGAAGGTTCCCCCT	131	398
1062102	424	439	7489	7504	GCCCGGAGGGTGCCA	99	399
1062134	595	610	7758	7773	AAGACCCCAGTGGCGG	57	400
1062166	754	769	8400	8415	AGCAGTGGGTAGGAGC	37	401
1062198	876	891	9466	9481	GGAGGAGACATTGTGC	107	402
1062230	1050	1065	11206	11221	GGACGACAGGGCCTTG	81	403
1062262	1183	1198	12053	12068	CGCATGTTGTGGAACT	66*	404
1062294	1426	1441	13836	13851	CTCCGTTTCTTGCGGA	115	405
1062326	1593	1608	14003	14018	CAGTGGAAACCTCACT	118	406
1062358	1852	1867	14262	14277	GAGGGACAGGATTGTG	68	407
1062390	2028	2043	14438	14453	GGGCACACCCCTGTGT	128	408
1062422	2209	2224	14619	14634	TTGGCAAGGCAGTGTG	19	409
1062454	N/A	N/A	8299	8314	CACTGACCTGTCCTTC	70	410
1062486	N/A	N/A	13601	13616	CTGCGATGGCACTTGA	114	411
1062550	N/A	N/A	685	700	TTACCTGGCTGGAATC	129	412
1062582	N/A	N/A	867	882	GACAGCATTTCAAGTT	42	413
1062614	N/A	N/A	1109	1124	AGATCGATGGAGTGTG	59	414
1062646	N/A	N/A	1238	1253	AAATGTAAAGGTCCTC	40	415
1062679	N/A	N/A	1338	1353	TAAAGCGATACAAGCA	82	416
1062711	N/A	N/A	1476	1491	CAGCCCTGAACAACCT	123	417
1062743	N/A	N/A	1723	1738	ATCGGCACTTGGTCAA	44	418
1062775	N/A	N/A	1878	1893	AATAGGACAACCTTTT	74	419
1062807	N/A	N/A	2075	2090	CCTATTAGGAGTAAGG	127	420
1062839	N/A	N/A	2160	2175	ATATATGTAATGGCTG	24	421
1062871	N/A	N/A	2392	2407	ACCTCTATAGTAAATG	103	422
1062903	N/A	N/A	2609	2624	GGTTTATTGTGTGTCA	5	423
1062935	N/A	N/A	2732	2747	GAATAGTCAGTCCATT	64	424
1062967	N/A	N/A	2868	2883	TAGAAAGCTTGGACAT	100	425
1062999	N/A	N/A	3069	3084	GTGCGAGAGGAGGATT	71	426

1063031	N/A	N/A	3245	3260	CATTAGGTGTCTGCAG	59	427
1063063	N/A	N/A	3390	3405	TGAGATCTAGGCTTGG	23	428
1063095	N/A	N/A	3642	3657	CATCACCACGCTCTGG	117	429
1063127	N/A	N/A	3864	3879	CCCAAATACATGGCCA	40	430
1063159	N/A	N/A	4104	4119	GAATCATAGAACAGCA	39	431
1063191	N/A	N/A	4228	4243	TCTGAAGACCTGGCCC	61	432
1063223	N/A	N/A	4406	4421	TGCGCCGGGCTTCATC	78	433
1063254	N/A	N/A	4575	4590	CTGCACTGTCTGTTGG	93	434
1063286	N/A	N/A	4712	4727	CCAGAGCTAAGAATTC	69	435
1063318	N/A	N/A	5083	5098	GGCCTGGGAGAGCACT	71	436
1063350	N/A	N/A	5276	5291	GAGTATAGAAGGGTTC	70	437
1063382	N/A	N/A	5496	5511	TGGAAGGGACTGCCCA	119	438
1063414	N/A	N/A	5656	5671	CCTGTCCAAGCCACGC	51	439
1063446	N/A	N/A	5856	5871	AAGGAGGCGAGTCCAG	127	440
1063478	N/A	N/A	6013	6028	GAAGGACCGAGCTGAC	104	441
1063510	N/A	N/A	6135	6150	AGGCGAGAAGTGGGTA	43	442
1063542	N/A	N/A	6281	6296	CTCCTCGGAGTCCTAT	33	443
1063574	N/A	N/A	6455	6470	GCACCTGGCTTGCCTG	59	444
1063606	N/A	N/A	6981	6996	CGGCACCTGTAGGTCC	113	445
1063638	N/A	N/A	7172	7187	TACAATACGGCCTCCT	54	446
1063670	N/A	N/A	7377	7392	CACTGCAAGCCCACAT	48	447
1063702	N/A	N/A	7803	7818	GCTGAGGTGTTACCAG	76	448
1063734	N/A	N/A	7980	7995	GATTTTGACATTCTGC	3	449
1063766	N/A	N/A	8046	8061	AGCTTAAAGACGGCCA	116	450
1063797	N/A	N/A	8560	8575	TACTTATTGGGATGAA	42	451
1063829	N/A	N/A	8850	8865	GAGTAGCAGGGCAAAG	112	452
1063861	N/A	N/A	9052	9067	CTAAGGGTTGTGTA	69	453
1063893	N/A	N/A	9414	9429	GTGCCTAAGTAGGGAG	48	454
1063925	N/A	N/A	9645	9660	CAGGCTACGGTCTTCC	113	455
1063957	N/A	N/A	9961	9976	CAGAGGGTTTGTAAGT	75	456
1063989	N/A	N/A	10541	10556	TCGCATCATGAGAAAT	58	457
1064021	N/A	N/A	11113	11128	GCTTAAACTTCCCACT	118	458
		•				•	•

1064053	N/A	N/A	11380	11395	CATGGAGCTCCTTTGC	122	459
1064085	N/A	N/A	11551	11566	GAGGCATGGCCCCAAT	143	460
1064119	N/A	N/A	11633	11648	GGAAAGGAGGTGCTCC	125	461
1064151	N/A	N/A	11719	11734	CTGCTAAGCCCACAGG	86	462
1064183	N/A	N/A	11804	11819	TTGAAAAGAAGCGGAG	55	463
1064215	N/A	N/A	11913	11928	CACCGTCAACACCCGT	58	464
1064247	N/A	N/A	11980	11995	ATGCAGGACCTCCTAG	131	465
1064279	N/A	N/A	12200	12215	GGGAATGGAGGAACCC	113	466
1064311	N/A	N/A	12385	12400	GTCCAGGAGAGGGTTA	88	467
1064343	N/A	N/A	12579	12594	GATCAAATGGGTGTTA	81	468
1064375	N/A	N/A	12784	12799	CAGAGTCAGCGATGAT	98	469
1064407	N/A	N/A	12925	12940	TGAATTATCGAGTATC	86	470
1064439	N/A	N/A	13219	13234	GTAAGGGATCAGGACT	66	471

 Таблица 11

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	18	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	36	65
1062008	4	19	404	419	TTTTTCGATGAGTGTG	13	472
1062040	128	143	528	543	AAGGATCAGCCTGGCT	111	473
1062072	313	328	6851	6866	CCCTGGAAGGTTCCCC	92	474
1062104	459	474	7524	7539	GGAGTGCCTGTAAGTG	78	475
1062136	597	612	7760	7775	AGAAGACCCCAGTGGC	98	476
1062168	766	781	8412	8427	ACACCATTTGCCAGCA	119	477
1062200	878	893	9468	9483	CTGGAGGAGACATTGT	64	478
1062232	1091	1106	11247	11262	AAACAGGCTGTCAGGG	129	479
1062264	1185	1200	12055	12070	GTCGCATGTTGTGGAA	5*	480

1062296	1430	1445	13840	13855	CTGGCTCCGTTTCTTG	91	481
1062328	1595	1610	14005	14020	GACAGTGGAAACCTCA	71	482
1062360	1854	1869	14264	14279	GTGAGGGACAGGATTG	76	483
1062392	2040	2055	14450	14465	GTGTAGGCCTCTGGGC	201	484
1062424	2212	2227	14622	14637	TTTTTGGCAAGGCAGT	154	485
1062456	N/A	N/A	8301	8316	TCCACTGACCTGTCCT	74	486
1062488	N/A	N/A	13603	13618	AGCTGCGATGGCACTT	123	487
1062520	N/A	N/A	553	568	ACCTTGGTGAAGTGGA	60	488
1062552	N/A	N/A	687	702	CCTTACCTGGCTGGAA	130	489
1062584	N/A	N/A	879	894	CAGTTGCACCTGGACA	81	490
1062616	N/A	N/A	1111	1126	GGAGATCGATGGAGTG	93	491
1062648	N/A	N/A	1259	1274	GAACTGATGCTCACTC	78	492
1062681	N/A	N/A	1340	1355	TCTAAAGCGATACAAG	104	493
1062713	N/A	N/A	1490	1505	AATCGAGCTCACCCCA	208	494
1062745	N/A	N/A	1726	1741	ACAATCGGCACTTGGT	84	495
1062777	N/A	N/A	1886	1901	GAGCATAAAATAGGAC	93	496
1062809	N/A	N/A	2077	2092	ACCCTATTAGGAGTAA	133	497
1062841	N/A	N/A	2234	2249	CATCATAAGCATCACA	101	498
1062873	N/A	N/A	2396	2411	CTTAACCTCTATAGTA	106	499
1062905	N/A	N/A	2616	2631	GATCTTGGGTTTATTG	207	500
1062937	N/A	N/A	2735	2750	AGTGAATAGTCAGTCC	76	501
1062969	N/A	N/A	2905	2920	CCTGGTATAAGAACAG	86	502
1063001	N/A	N/A	3100	3115	GGACACATGCATGGAG	95	503
1063033	N/A	N/A	3248	3263	AGTCATTAGGTGTCTG	49	504
1063065	N/A	N/A	3392	3407	CCTGAGATCTAGGCTT	77	505
1063097	N/A	N/A	3658	3673	ACTGACATGCCTCCAT	32	506
1063129	N/A	N/A	3884	3899	GTCCACTCTGGAACAA	123	507
1063161	N/A	N/A	4123	4138	GTATAACACCAGGACC	135	508
1063193	N/A	N/A	4236	4251	CCCCTAGCTCTGAAGA	106	509
1063225	N/A	N/A	4414	4429	CGGCCGGATGCGCCGG	158	510
1063256	N/A	N/A	4584	4599	GCCGGCTTCCTGCACT	145	511
1063288	N/A	N/A	4714	4729	GGCCAGAGCTAAGAAT	52	512

1063320	N/A	N/A	5094	5109	CTCCGAACAAGGGCCT	41	513
1063352	N/A	N/A	5313	5328	CTGAGTTGGGCACACA	93	514
1063384	N/A	N/A	5521	5536	TCCTGGTCTGAGAGGA	170	515
1063416	N/A	N/A	5686	5701	GCCTCAAATGCCCACT	91	516
1063448	N/A	N/A	5858	5873	GCAAGGAGGCGAGTCC	57	517
1063480	N/A	N/A	6015	6030	TGGAAGGACCGAGCTG	101	518
1063512	N/A	N/A	6139	6154	GAGAAGGCGAGAAGTG	109	519
1063544	N/A	N/A	6293	6308	GTCTCGGACTTTCTCC	217	520
1063576	N/A	N/A	6483	6498	CCACACATGCCCCACG	95	521
1063608	N/A	N/A	6983	6998	GTCGGCACCTGTAGGT	122	522
1063640	N/A	N/A	7175	7190	GACTACAATACGGCCT	83	523
1063672	N/A	N/A	7382	7397	CTCTGCACTGCAAGCC	91	524
1063704	N/A	N/A	7867	7882	AGCCTACACTGCTCAC	69	525
1063736	N/A	N/A	8001	8016	TGTAAAGCTCTGTGGT	61	526
1063768	N/A	N/A	8048	8063	GAAGCTTAAAGACGGC	34	527
1063799	N/A	N/A	8563	8578	TACTACTTATTGGGAT	158	528
1063831	N/A	N/A	8852	8867	AGGAGTAGCAGGGCAA	76	529
1063863	N/A	N/A	9054	9069	TGCTAAGGGTTGTGTG	108	530
1063895	N/A	N/A	9425	9440	TCCGCCTGGCAGTGCC	25	531
1063927	N/A	N/A	9687	9702	ACATGAGGCCTCAGCC	111	532
1063959	N/A	N/A	9963	9978	GTCAGAGGGTTTGTAA	63	533
1063991	N/A	N/A	10543	10558	ATTCGCATCATGAGAA	188	534
1064023	N/A	N/A	11115	11130	AGGCTTAAACTTCCCA	119	535
1064055	N/A	N/A	11383	11398	CAGCATGGAGCTCCTT	98	536
1064087	N/A	N/A	11554	11569	GGTGAGGCATGGCCCC	86	537
1064121	N/A	N/A	11653	11668	GATTTTCCTTGGTCAG	51	538
1064153	N/A	N/A	11728	11743	CTCTGATCCCTGCTAA	139	539
1064185	N/A	N/A	11810	11825	CCGAGGTTGAAAAGAA	150	540
1064217	N/A	N/A	11919	11934	AGATCTCACCGTCAAC	142	541
1064249	N/A	N/A	11984	11999	CCCCATGCAGGACCTC	96	542
1064281	N/A	N/A	12202	12217	TTGGGAATGGAGGAAC	151	543
1064313	N/A	N/A	12396	12411	CTATTTTATGGGTCCA	13	544

1064345	N/A	N/A	12584	12599	TTAAGGATCAAATGGG	65	545
1064377	N/A	N/A	12786	12801	TACAGAGTCAGCGATG	82	546
1064409	N/A	N/A	12927	12942	TTTGAATTATCGAGTA	83	547
1064441	N/A	N/A	13221	13236	AGGTAAGGGATCAGGA	150	548

 Таблица 12

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	17	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	53	65
1062009	5	20	405	420	TTTTTCGATGAGTGT	35	549
1062041	143	158	543	558	AGTGGACTGACAGAAA	117	550
1062073	314	329	6852	6867	GCCCTGGAAGGTTCCC	94	551
1062105	461	476	7526	7541	GAGGAGTGCCTGTAAG	103	552
1062137	600	615	7763	7778	GGGAGAAGACCCCAGT	107	553
1062169	771	786	8417	8432	TGCAGACACCATTTGC	159	554
1062201	895	910	9485	9500	GACTGTACCATCTCTC	126	555
1062233	1098	1113	11254	11269	GGACAGCAAACAGGCT	122	556
1062265	1186	1201	12056	12071	GGTCGCATGTTGTGGA	1*	557
1062297	1433	1448	13843	13858	CCTCTGGCTCCGTTTC	110	558
1062329	1596	1611	14006	14021	AGACAGTGGAAACCTC	117	559
1062361	1856	1871	14266	14281	GAGTGAGGGACAGGAT	95	560
1062393	2041	2056	14451	14466	TGTGTAGGCCTCTGGG	32	561
1062425	2215	2230	14625	14640	GTATTTTTGGCAAGGC	14	562
1062457	N/A	N/A	8304	8319	CTGTCCACTGACCTGT	160	563
1062489	N/A	N/A	13609	13624	ACTTTGAGCTGCGATG	63	564
1062521	N/A	N/A	554	569	CACCTTGGTGAAGTGG	144	565
1062553	N/A	N/A	688	703	ACCTTACCTGGCTGGA	141	566

1062585	N/A	N/A	880	895	TCAGTTGCACCTGGAC	118	567
1062617	N/A	N/A	1112	1127	AGGAGATCGATGGAGT	100	568
1062649	N/A	N/A	1260	1275	AGAACTGATGCTCACT	82	569
1062682	N/A	N/A	1341	1356	CTCTAAAGCGATACAA	125	570
1062714	N/A	N/A	1491	1506	GAATCGAGCTCACCCC	112	571
1062746	N/A	N/A	1727	1742	AACAATCGGCACTTGG	56	572
1062778	N/A	N/A	1887	1902	GGAGCATAAAATAGGA	97	573
1062810	N/A	N/A	2078	2093	CACCCTATTAGGAGTA	95	574
1062842	N/A	N/A	2235	2250	CCATCATAAGCATCAC	76	575
1062874	N/A	N/A	2397	2412	TCTTAACCTCTATAGT	105	576
1062906	N/A	N/A	2618	2633	CTGATCTTGGGTTTAT	63	577
1062938	N/A	N/A	2736	2751	GAGTGAATAGTCAGTC	21	578
1062970	N/A	N/A	2920	2935	GCAAAACAGTGTGGCC	112	579
1063002	N/A	N/A	3125	3140	GATAGTGAGAGACATT	73	580
1063034	N/A	N/A	3249	3264	AAGTCATTAGGTGTCT	77	581
1063066	N/A	N/A	3393	3408	TCCTGAGATCTAGGCT	101	582
1063098	N/A	N/A	3666	3681	CCTGACTGACTGACAT	148	583
1063130	N/A	N/A	3886	3901	CTGTCCACTCTGGAAC	121	584
1063162	N/A	N/A	4124	4139	AGTATAACACCAGGAC	54	585
1063194	N/A	N/A	4243	4258	TGACAAGCCCCTAGCT	121	586
1063226	N/A	N/A	4418	4433	ATGGCGGCCGGATGCG	103	587
1063257	N/A	N/A	4586	4601	CAGCCGGCTTCCTGCA	124	588
1063289	N/A	N/A	4719	4734	CACTTGGCCAGAGCTA	88	589
1063321	N/A	N/A	5095	5110	GCTCCGAACAAGGGCC	177	590
1063353	N/A	N/A	5314	5329	ACTGAGTTGGGCACAC	62	591
1063385	N/A	N/A	5522	5537	ATCCTGGTCTGAGAGG	138	592
1063417	N/A	N/A	5727	5742	CCAATTTCTGGCCCTC	115	593
1063449	N/A	N/A	5859	5874	GGCAAGGAGGCGAGTC	65	594
1063481	N/A	N/A	6016	6031	CTGGAAGGACCGAGCT	75	595
1063513	N/A	N/A	6140	6155	GGAGAAGGCGAGAAGT	95	596
1063545	N/A	N/A	6303	6318	GCCGGAGCTGGTCTCG	108	597
1063577	N/A	N/A	6563	6578	CCATAGTTGCACCCCA	135	598

WO 2020/102558	PCT/US2019/061508
	151

1063609	N/A	N/A	6985	7000	AGGTCGGCACCTGTAG	126	599
1063641	N/A	N/A	7176	7191	GGACTACAATACGGCC	118	600
1063673	N/A	N/A	7387	7402	AAATACTCTGCACTGC	105	601
1063705	N/A	N/A	7868	7883	TAGCCTACACTGCTCA	118	602
1063737	N/A	N/A	8006	8021	AGCTTTGTAAAGCTCT	117	603
1063769	N/A	N/A	8049	8064	AGAAGCTTAAAGACGG	11	604
1063800	N/A	N/A	8564	8579	TTACTACTTATTGGGA	103	605
1063832	N/A	N/A	8854	8869	TGAGGAGTAGCAGGGC	72	606
1063864	N/A	N/A	9055	9070	CTGCTAAGGGTTGTGT	104	607
1063896	N/A	N/A	9503	9518	ATTACCTGCTGCTCCA	142	608
1063928	N/A	N/A	9688	9703	AACATGAGGCCTCAGC	80	609
1063960	N/A	N/A	10283	10298	TCTTAGAGTCAGAGGG	45	610
1063992	N/A	N/A	10545	10560	ACATTCGCATCATGAG	57	611
1064024	N/A	N/A	11116	11131	GAGGCTTAAACTTCCC	104	612
1064056	N/A	N/A	11386	11401	GGGCAGCATGGAGCTC	157	613
1064088	N/A	N/A	11560	11575	AGAGTGGGTGAGGCAT	133	614
1064122	N/A	N/A	11654	11669	CGATTTTCCTTGGTCA	42	615
1064154	N/A	N/A	11729	11744	TCTCTGATCCCTGCTA	71	616
1064186	N/A	N/A	11811	11826	CCCGAGGTTGAAAAGA	118	617
1064218	N/A	N/A	11920	11935	GAGATCTCACCGTCAA	71	618
1064250	N/A	N/A	11987	12002	AAGCCCCATGCAGGAC	154	619
1064282	N/A	N/A	12240	12255	CATTTGAGGCACGGCT	140	620
1064314	N/A	N/A	12399	12414	AGGCTATTTTATGGGT	102	621
1064346	N/A	N/A	12585	12600	GTTAAGGATCAAATGG	117	622
1064378	N/A	N/A	12787	12802	TTACAGAGTCAGCGAT	125	623
1064410	N/A	N/A	12936	12951	CAGAGATGGTTTGAAT	67	624
1064442	N/A	N/A	13222	13237	TAGGTAAGGGATCAGG	79	625

Таблица 13 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	40	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	28	65
1062010	6	21	406	421	TTTTTTCGATGAGTG	22	627
1062042	145	160	545	560	GAAGTGGACTGACAGA	58	628
1062074	316	331	6854	6869	CGGCCCTGGAAGGTTC	149	629
1062106	462	477	7527	7542	GGAGGAGTGCCTGTAA	89	630
1062138	614	629	7777	7792	AGGCCGGGCCTTGAGG	138	631
1062170	793	808	8439	8454	ACCTTCTCACATCCGG	61	632
1062202	896	911	9486	9501	AGACTGTACCATCTCT	135	633
1062234	1100	1115	11256	11271	CCGGACAGCAAACAGG	105	634
1062266	1248	1263	13478	13493	TCCGCTGCTTCTCTGG	7*	635
1062298	1449	1464	13859	13874	TGGAACACCTGCTGGG	231	636
1062330	1599	1614	14009	14024	GCAAGACAGTGGAAAC	88	637
1062362	1887	1902	14297	14312	GGCAGGCTCTCTGTGT	84	638
1062394	2042	2057	14452	14467	CTGTGTAGGCCTCTGG	50	639
1062426	2245	2260	14655	14670	GAGTGAGGTGAGTGGC	43	640
1062458	N/A	N/A	8321	8336	GAGGATCCTTCCCAGC	156	641
1062490	N/A	N/A	13610	13625	CACTTTGAGCTGCGAT	185	642
1062522	N/A	N/A	555	570	TCACCTTGGTGAAGTG	137	643
1062554	N/A	N/A	689	704	GACCTTACCTGGCTGG	105	644
1062586	N/A	N/A	884	899	ATTTTCAGTTGCACCT	123	645
1062618	N/A	N/A	1113	1128	AAGGAGATCGATGGAG	140	646
1062650	N/A	N/A	1261	1276	CAGAACTGATGCTCAC	53	647
1062683	N/A	N/A	1342	1357	CCTCTAAAGCGATACA	70	648
1062715	N/A	N/A	1492	1507	AGAATCGAGCTCACCC	67	649
1062747	N/A	N/A	1728	1743	CAACAATCGGCACTTG	117	650
1062779	N/A	N/A	1889	1904	AGGGAGCATAAAATAG	135	651
1062811	N/A	N/A	2079	2094	ACACCCTATTAGGAGT	101	652

1062843	N/A	N/A	2237	2252	AACCATCATAAGCATC	78	653
1062875	N/A	N/A	2398	2413	CTCTTAACCTCTATAG	133	654
1062907	N/A	N/A	2619	2634	GCTGATCTTGGGTTTA	38	655
1062939	N/A	N/A	2737	2752	TGAGTGAATAGTCAGT	59	656
1062971	N/A	N/A	2940	2955	GTATTGCAAAGCAACA	217	657
1063003	N/A	N/A	3133	3148	GAACAAGAGATAGTGA	118	658
1063035	N/A	N/A	3251	3266	TTAAGTCATTAGGTGT	56	659
1063067	N/A	N/A	3395	3410	AGTCCTGAGATCTAGG	55	660
1063099	N/A	N/A	3668	3683	AGCCTGACTGACTGAC	52	661
1063131	N/A	N/A	3905	3920	CCCTAGGGCCTCAGTC	144	662
1063163	N/A	N/A	4125	4140	TAGTATAACACCAGGA	44	663
1063195	N/A	N/A	4245	4260	TATGACAAGCCCCTAG	156	664
1063227	N/A	N/A	4421	4436	GTCATGGCGGCCGGAT	121	665
1063258	N/A	N/A	4589	4604	GGGCAGCCGGCTTCCT	209	666
1063290	N/A	N/A	4720	4735	ACACTTGGCCAGAGCT	102	667
1063322	N/A	N/A	5117	5132	ACAGGAGTGTGGGTCT	164	668
1063354	N/A	N/A	5318	5333	CAGCACTGAGTTGGGC	106	669
1063386	N/A	N/A	5524	5539	TAATCCTGGTCTGAGA	113	670
1063418	N/A	N/A	5728	5743	CCCAATTTCTGGCCCT	95	671
1063450	N/A	N/A	5860	5875	GGGCAAGGAGGCGAGT	76	672
1063482	N/A	N/A	6017	6032	GCTGGAAGGACCGAGC	199	673
1063514	N/A	N/A	6158	6173	GAATGGGCTGGTGGCA	103	674
1063546	N/A	N/A	6363	6378	TTTCAAGCCTCAGGCC	169	675
1063578	N/A	N/A	6565	6580	CCCCATAGTTGCACCC	48	676
1063610	N/A	N/A	6986	7001	AAGGTCGGCACCTGTA	162	677
1063642	N/A	N/A	7195	7210	ACACATAGCTATGCTC	125	678
1063674	N/A	N/A	7388	7403	CAAATACTCTGCACTG	104	679
1063706	N/A	N/A	7869	7884	ATAGCCTACACTGCTC	219	680
1063738	N/A	N/A	8009	8024	ACTAGCTTTGTAAAGC	150	681
1063770	N/A	N/A	8056	8071	CTGGCAGAGAAGCTTA	207	682
1063801	N/A	N/A	8566	8581	TCTTACTACTTATTGG	88	683
1063833	N/A	N/A	8856	8871	CATGAGGAGTAGCAGG	291	684

|--|

1063865	N/A	N/A	9056	9071	GCTGCTAAGGGTTGTG	176	685
1063897	N/A	N/A	9504	9519	CATTACCTGCTGCTCC	120	686
1063929	N/A	N/A	9689	9704	AAACATGAGGCCTCAG	214	687
1063961	N/A	N/A	10285	10300	GATCTTAGAGTCAGAG	111	688
1063993	N/A	N/A	10547	10562	GTACATTCGCATCATG	80	689
1064025	N/A	N/A	11117	11132	AGAGGCTTAAACTTCC	131	690
1064057	N/A	N/A	11445	11460	CGGATGCATTTTCCCA	250	691
1064089	N/A	N/A	11564	11579	GTCCAGAGTGGGTGAG	78	692
1064123	N/A	N/A	11655	11670	CCGATTTTCCTTGGTC	111	693
1064155	N/A	N/A	11735	11750	TCAAGGTCTCTGATCC	96	694
1064187	N/A	N/A	11813	11828	TCCCCGAGGTTGAAAA	173	695
1064219	N/A	N/A	11922	11937	CTGAGATCTCACCGTC	121	696
1064251	N/A	N/A	11990	12005	ATCAAGCCCCATGCAG	144	697
1064283	N/A	N/A	12241	12256	ACATTTGAGGCACGGC	86	698
1064315	N/A	N/A	12430	12445	TAGGGCAAGGTGCAGA	86	699
1064347	N/A	N/A	12586	12601	AGTTAAGGATCAAATG	172	700
1064379	N/A	N/A	12788	12803	ATTACAGAGTCAGCGA	105	701
1064411	N/A	N/A	12937	12952	CCAGAGATGGTTTGAA	186	702
1064443	N/A	N/A	13223	13238	TTAGGTAAGGGATCAG	113	703

 Таблица 14

 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
895475	N/A	N/A	4422	4437	CGTCATGGCGGCCGGA	96	704
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	27	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	42	65
1062011	8	23	408	423	AATTTTTTCGATGAG	80	705
1062043	146	161	546	561	TGAAGTGGACTGACAG	83	706

1062075	318	333	6856	6871	CTCGGCCCTGGAAGGT	106	707
1062107	463	478	7528	7543	TGGAGGAGTGCCTGTA	64	708
1062139	615	630	7778	7793	CAGGCCGGGCCTTGAG	95	709
1062171	796	811	8442	8457	AAGACCTTCTCACATC	80	710
1062203	897	912	9487	9502	GAGACTGTACCATCTC	145	711
1062235	1101	1116	11257	11272	TCCGGACAGCAAACAG	120	712
1062267	1251	1266	13481	13496	GTGTCCGCTGCTTCTC	3*	713
1062299	1450	1465	13860	13875	TTGGAACACCTGCTGG	48	714
1062331	1738	1753	14148	14163	TGCAGGGCTCGACTGG	42	715
1062363	1894	1909	14304	14319	GTACTGAGGCAGGCTC	57	716
1062395	2043	2058	14453	14468	TCTGTGTAGGCCTCTG	11	717
1062427	2268	2283	N/A	N/A	ATGGATCAGGGCTCAG	28	718
1062459	N/A	N/A	8322	8337	CGAGGATCCTTCCCAG	144	719
1062491	N/A	N/A	13611	13626	CCACTTTGAGCTGCGA	98	720
1062523	N/A	N/A	556	571	CTCACCTTGGTGAAGT	131	721
1062555	N/A	N/A	690	705	AGACCTTACCTGGCTG	108	722
1062587	N/A	N/A	885	900	AATTTTCAGTTGCACC	96	723
1062619	N/A	N/A	1114	1129	AAAGGAGATCGATGGA	80	724
1062651	N/A	N/A	1263	1278	AACAGAACTGATGCTC	77	725
1062684	N/A	N/A	1343	1358	TCCTCTAAAGCGATAC	99	726
1062716	N/A	N/A	1493	1508	CAGAATCGAGCTCACC	58	727
1062748	N/A	N/A	1730	1745	TCCAACAATCGGCACT	78	728
1062780	N/A	N/A	1894	1909	AGTAGAGGGAGCATAA	100	729
1062812	N/A	N/A	2080	2095	AACACCCTATTAGGAG	77	730
1062844	N/A	N/A	2253	2268	CTATTTGACTGTATAA	134	731
1062876	N/A	N/A	2407	2422	GTACCCACACTCTTAA	100	732
1062908	N/A	N/A	2623	2638	TAATGCTGATCTTGGG	36	733
1062940	N/A	N/A	2739	2754	ATTGAGTGAATAGTCA	69	734
1062972	N/A	N/A	2943	2958	ATTGTATTGCAAAGCA	62	735
1063004	N/A	N/A	3144	3159	CGAGCAAGAGAGAACA	126	736
1063036	N/A	N/A	3252	3267	GTTAAGTCATTAGGTG	27	737
1063068	N/A	N/A	3396	3411	GAGTCCTGAGATCTAG	62	738

1063100	N/A	N/A	3710	3725	AATCAAGGTTTTCGGG	69	739
1063132	N/A	N/A	3906	3921	TCCCTAGGGCCTCAGT	81	740
1063164	N/A	N/A	4126	4141	ATAGTATAACACCAGG	31	741
1063196	N/A	N/A	4246	4261	CTATGACAAGCCCCTA	96	742
1063259	N/A	N/A	4591	4606	CTGGGCAGCCGGCTTC	104	743
1063291	N/A	N/A	4721	4736	GACACTTGGCCAGAGC	100	744
1063323	N/A	N/A	5118	5133	AACAGGAGTGTGGGTC	61	745
1063355	N/A	N/A	5321	5336	TCACAGCACTGAGTTG	82	746
1063387	N/A	N/A	5526	5541	TATAATCCTGGTCTGA	100	747
1063419	N/A	N/A	5729	5744	CCCCAATTTCTGGCCC	54	748
1063451	N/A	N/A	5862	5877	CAGGGCAAGGAGGCGA	77	749
1063483	N/A	N/A	6018	6033	AGCTGGAAGGACCGAG	79	750
1063515	N/A	N/A	6161	6176	ACAGAATGGGCTGGTG	118	751
1063547	N/A	N/A	6367	6382	GCTGTTTCAAGCCTCA	67	752
1063579	N/A	N/A	6582	6597	GGACATGTCCCGAGGG	51	753
1063611	N/A	N/A	6987	7002	AAAGGTCGGCACCTGT	190	754
1063643	N/A	N/A	7196	7211	GACACATAGCTATGCT	116	755
1063675	N/A	N/A	7390	7405	TTCAAATACTCTGCAC	107	756
1063707	N/A	N/A	7870	7885	AATAGCCTACACTGCT	205	757
1063739	N/A	N/A	8010	8025	GACTAGCTTTGTAAAG	94	758
1063771	N/A	N/A	8106	8121	CGAAAACCCTGACTCC	147	759
1063802	N/A	N/A	8567	8582	ATCTTACTACTTATTG	93	760
1063834	N/A	N/A	8857	8872	GCATGAGGAGTAGCAG	85	761
1063866	N/A	N/A	9098	9113	GTGCAAAGGCCTGGCT	167	762
1063898	N/A	N/A	9507	9522	TGGCATTACCTGCTGC	128	763
1063930	N/A	N/A	9690	9705	CAAACATGAGGCCTCA	127	764
1063962	N/A	N/A	10301	10316	GATCACAGTGTTTGGG	30	765
1063994	N/A	N/A	10578	10593	TAAACCCCCTGGCCT	65	766
1064026	N/A	N/A	11119	11134	CCAGAGGCTTAAACTT	120	767
1064058	N/A	N/A	11448	11463	GAGCGGATGCATTTTC	69	768
1064090	N/A	N/A	11573	11588	GTAGCTGGAGTCCAGA	61	769
1064124	N/A	N/A	11656	11671	CCCGATTTTCCTTGGT	154	770

1064156	N/A	N/A	11736	11751	GTCAAGGTCTCTGATC	100	771
1064188	N/A	N/A	11821	11836	AATAGTTCTCCCCGAG	95	772
1064220	N/A	N/A	11923	11938	CCTGAGATCTCACCGT	153	773
1064252	N/A	N/A	11991	12006	AATCAAGCCCCATGCA	133	774
1064284	N/A	N/A	12278	12293	TGCGGACAGGTTTGGG	30	775
1064316	N/A	N/A	12432	12447	TTTAGGGCAAGGTGCA	85	776
1064348	N/A	N/A	12587	12602	AAGTTAAGGATCAAAT	122	777
1064380	N/A	N/A	12789	12804	GATTACAGAGTCAGCG	102	778
1064412	N/A	N/A	12950	12965	TTTAGGTCAGAAGCCA	171	779
1064444	N/A	N/A	13224	13239	ATTAGGTAAGGGATCA	122	780

 Таблица 15

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	9	65
1062012	10	25	410	425	CAAATTTTTTCGATG	65	781
1062044	149	164	549	564	TGGTGAAGTGGACTGA	25	782
1062076	319	334	6857	6872	TCTCGGCCCTGGAAGG	89	783
1062108	464	479	7529	7544	CTGGAGGAGTGCCTGT	74	784
1062140	633	648	N/A	N/A	TGATCCCAGGTGGGAG	92	785
1062172	798	813	8444	8459	CGAAGACCTTCTCACA	106	786
1062204	901	916	9491	9506	TCCAGAGACTGTACCA	76	787
1062236	1102	1117	11258	11273	CTCCGGACAGCAAACA	92	788
1062268	1253	1268	13483	13498	GAGTGTCCGCTGCTTC	5*	789
1062300	1453	1468	13863	13878	GGGTTGGAACACCTGC	85	790
1062332	1740	1755	14150	14165	GCTGCAGGGCTCGACT	60	791
1062364	1895	1910	14305	14320	TGTACTGAGGCAGGCT	42	792
1062396	2050	2065	14460	14475	CGCTGCTTCTGTGTAG	31	793

1062428	2269	2284	N/A	N/A	CATGGATCAGGGCTCA	28	794
1062460	N/A	N/A	8323	8338	GCGAGGATCCTTCCCA	73	795
1062492	N/A	N/A	13612	13627	CCCACTTTGAGCTGCG	55	796
1062524	N/A	N/A	557	572	ACTCACCTTGGTGAAG	112	797
1062556	N/A	N/A	691	706	AAGACCTTACCTGGCT	72	798
1062588	N/A	N/A	928	943	CATCAAGAGCTAAGAG	96	799
1062620	N/A	N/A	1115	1130	GAAAGGAGATCGATGG	72	800
1062652	N/A	N/A	1265	1280	TGAACAGAACTGATGC	36	801
1062685	N/A	N/A	1350	1365	AAGGGTCTCCTCTAAA	62	802
1062717	N/A	N/A	1494	1509	GCAGAATCGAGCTCAC	53	803
1062749	N/A	N/A	1731	1746	GTCCAACAATCGGCAC	57	804
1062781	N/A	N/A	1895	1910	AAGTAGAGGGAGCATA	41	805
1062813	N/A	N/A	2081	2096	GAACACCCTATTAGGA	63	806
1062845	N/A	N/A	2255	2270	ACCTATTTGACTGTAT	56	807
1062877	N/A	N/A	2408	2423	AGTACCCACACTCTTA	52	808
1062909	N/A	N/A	2624	2639	CTAATGCTGATCTTGG	22	809
1062941	N/A	N/A	2741	2756	TTATTGAGTGAATAGT	54	810
1062973	N/A	N/A	2945	2960	GAATTGTATTGCAAAG	45	811
1063005	N/A	N/A	3145	3160	GCGAGCAAGAGAGAAC	58	812
1063037	N/A	N/A	3253	3268	GGTTAAGTCATTAGGT	19	813
1063069	N/A	N/A	3398	3413	TAGAGTCCTGAGATCT	95	814
1063101	N/A	N/A	3713	3728	CACAATCAAGGTTTTC	21	815
1063133	N/A	N/A	3946	3961	TAGGGCCTCTTGCCTA	110	816
1063165	N/A	N/A	4127	4142	AATAGTATAACACCAG	35	817
1063197	N/A	N/A	4249	4264	CCACTATGACAAGCCC	29	818
1063228	N/A	N/A	4438	4453	ATTTTTCCGCCATTGA	76	819
1063260	N/A	N/A	4608	4623	GGACCTAGAGGGCCGG	69	820
1063292	N/A	N/A	4722	4737	GGACACTTGGCCAGAG	53	821
1063324	N/A	N/A	5125	5140	CGTGAGAAACAGGAGT	20	822
1063356	N/A	N/A	5331	5346	CCGTTCCACCTCACAG	38	823
1063388	N/A	N/A	5527	5542	CTATAATCCTGGTCTG	64	824
1063420	N/A	N/A	5739	5754	TCAGAGTTCACCCCAA	48	825

1063452	N/A	N/A	5863	5878	TCAGGGCAAGGAGGCG	61	826
1063484	N/A	N/A	6019	6034	CAGCTGGAAGGACCGA	87	827
1063516	N/A	N/A	6162	6177	CACAGAATGGGCTGGT	46	828
1063548	N/A	N/A	6374	6389	CTTGAGAGCTGTTTCA	59	829
1063580	N/A	N/A	6584	6599	TGGGACATGTCCCGAG	59	830
1063612	N/A	N/A	6988	7003	TAAAGGTCGGCACCTG	84	831
1063644	N/A	N/A	7197	7212	GGACACATAGCTATGC	43	832
1063676	N/A	N/A	7424	7439	GAGGCCATCCTGATCC	52	833
1063708	N/A	N/A	7871	7886	GAATAGCCTACACTGC	75	834
1063740	N/A	N/A	8012	8027	TTGACTAGCTTTGTAA	34	835
1063772	N/A	N/A	8107	8122	TCGAAAACCCTGACTC	75	836
1063803	N/A	N/A	8580	8595	GTTTAGCTCTTGCATC	41	837
1063835	N/A	N/A	8860	8875	TTGGCATGAGGAGTAG	61	838
1063867	N/A	N/A	9107	9122	GGACGGCCTGTGCAAA	81	839
1063899	N/A	N/A	9508	9523	CTGGCATTACCTGCTG	91	840
1063931	N/A	N/A	9691	9706	ACAAACATGAGGCCTC	74	841
1063963	N/A	N/A	10305	10320	TCAGGATCACAGTGTT	19	842
1063995	N/A	N/A	10579	10594	CTAAACCCCCCTGGCC	71	843
1064027	N/A	N/A	11120	11135	CCCAGAGGCTTAAACT	87	844
1064059	N/A	N/A	11449	11464	TGAGCGGATGCATTTT	59	845
1064091	N/A	N/A	11575	11590	TAGTAGCTGGAGTCCA	16	846
1064125	N/A	N/A	11657	11672	CCCCGATTTTCCTTGG	32	847
1064157	N/A	N/A	11737	11752	AGTCAAGGTCTCTGAT	75	848
1064189	N/A	N/A	11822	11837	AAATAGTTCTCCCCGA	42	849
1064221	N/A	N/A	11924	11939	GCCTGAGATCTCACCG	42	850
1064253	N/A	N/A	11992	12007	GAATCAAGCCCCATGC	75	851
1064285	N/A	N/A	12282	12297	GATTTGCGGACAGGTT	67	852
1064317	N/A	N/A	12433	12448	GTTTAGGGCAAGGTGC	77	853
1064349	N/A	N/A	12589	12604	TGAAGTTAAGGATCAA	69	854
1064381	N/A	N/A	12793	12808	ATGGGATTACAGAGTC	40	855
1064413	N/A	N/A	12951	12966	CTTTAGGTCAGAAGCC	72	856
1064445	N/A	N/A	13225	13240	GATTAGGTAAGGGATC	104	857

Таблица 16Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	29	65
1062007	3	18	403	418	TTTTCGATGAGTGTGT	12	858
1062039	121	136	521	536	AGCCTGGCTTGTGGGA	68	859
1062071	312	327	6850	6865	CCTGGAAGGTTCCCCC	65	860
1062103	425	440	7490	7505	TGCCCCGGAGGGTGCC	87	861
1062135	596	611	7759	7774	GAAGACCCCAGTGGCG	47	862
1062167	762	777	8408	8423	CATTTGCCAGCAGTGG	76	863
1062199	877	892	9467	9482	TGGAGGAGACATTGTG	63	864
1062231	1060	1075	11216	11231	GACCAGGCTGGGACGA	42	865
1062263	1184	1199	12054	12069	TCGCATGTTGTGGAAC	2*	866
1062295	1428	1443	13838	13853	GGCTCCGTTTCTTGCG	214	867
1062327	1594	1609	14004	14019	ACAGTGGAAACCTCAC	48	868
1062359	1853	1868	14263	14278	TGAGGGACAGGATTGT	75	869
1062391	2037	2052	14447	14462	TAGGCCTCTGGGCACA	67	870
1062423	2211	2226	14621	14636	TTTTGGCAAGGCAGTG	54	871
1062455	N/A	N/A	8300	8315	CCACTGACCTGTCCTT	114	872
1062487	N/A	N/A	13602	13617	GCTGCGATGGCACTTG	74	873
1062551	N/A	N/A	686	701	CTTACCTGGCTGGAAT	78	874
1062583	N/A	N/A	868	883	GGACAGCATTTCAAGT	60	875
1062615	N/A	N/A	1110	1125	GAGATCGATGGAGTGT	61	876
1062647	N/A	N/A	1251	1266	GCTCACTCTCATAAAA	67	877
1062680	N/A	N/A	1339	1354	CTAAAGCGATACAAGC	43	878
1062712	N/A	N/A	1489	1504	ATCGAGCTCACCCCAG	11	879
1062744	N/A	N/A	1725	1740	CAATCGGCACTTGGTC	46	880

1062776	N/A	N/A	1879	1894	AAATAGGACAACCTTT	74	881
1062808	N/A	N/A	2076	2091	CCCTATTAGGAGTAAG	58	882
1062840	N/A	N/A	2162	2177	CTATATATGTAATGGC	14	883
1062872	N/A	N/A	2395	2410	TTAACCTCTATAGTAA	58	884
1062904	N/A	N/A	2615	2630	ATCTTGGGTTTATTGT	21	885
1062936	N/A	N/A	2733	2748	TGAATAGTCAGTCCAT	34	886
1062968	N/A	N/A	2873	2888	CAGAATAGAAAGCTTG	60	887
1063000	N/A	N/A	3088	3103	GGAGAGCCAGAGTGCA	81	888
1063032	N/A	N/A	3247	3262	GTCATTAGGTGTCTGC	3	889
1063064	N/A	N/A	3391	3406	CTGAGATCTAGGCTTG	46	890
1063096	N/A	N/A	3645	3660	CATCATCACCACGCTC	60	891
1063128	N/A	N/A	3865	3880	TCCCAAATACATGGCC	70	892
1063160	N/A	N/A	4122	4137	TATAACACCAGGACCT	66	893
1063192	N/A	N/A	4235	4250	CCCTAGCTCTGAAGAC	71	894
1063224	N/A	N/A	4412	4427	GCCGGATGCGCCGGGC	84	895
1063255	N/A	N/A	4582	4597	CGGCTTCCTGCACTGT	85	896
1063287	N/A	N/A	4713	4728	GCCAGAGCTAAGAATT	64	897
1063319	N/A	N/A	5093	5108	TCCGAACAAGGGCCTG	25	898
1063351	N/A	N/A	5277	5292	GGAGTATAGAAGGGTT	35	899
1063383	N/A	N/A	5497	5512	CTGGAAGGGACTGCCC	67	900
1063415	N/A	N/A	5685	5700	CCTCAAATGCCCACTC	65	901
1063447	N/A	N/A	5857	5872	CAAGGAGGCGAGTCCA	74	902
1063479	N/A	N/A	6014	6029	GGAAGGACCGAGCTGA	40	903
1063511	N/A	N/A	6136	6151	AAGGCGAGAAGTGGGT	24	904
1063543	N/A	N/A	6290	6305	TCGGACTTTCTCCTCG	45	905
1063575	N/A	N/A	6466	6481	GCAGAGGTCCAGCACC	70	906
1063607	N/A	N/A	6982	6997	TCGGCACCTGTAGGTC	87	907
1063639	N/A	N/A	7173	7188	CTACAATACGGCCTCC	62	908
1063671	N/A	N/A	7378	7393	GCACTGCAAGCCCACA	40	909
1063703	N/A	N/A	7804	7819	GGCTGAGGTGTTACCA	46	910
1063735	N/A	N/A	8000	8015	GTAAAGCTCTGTGGTT	19	911
1063767	N/A	N/A	8047	8062	AAGCTTAAAGACGGCC	59	912
1063767	N/A	N/A	8047	8062	AAGCTTAAAGACGGCC	59	91

1063798	N/A	N/A	8562	8577	ACTACTTATTGGGATG	90	913
1063830	N/A	N/A	8851	8866	GGAGTAGCAGGGCAAA	50	914
1063862	N/A	N/A	9053	9068	GCTAAGGGTTGTGT	58	915
1063894	N/A	N/A	9417	9432	GCAGTGCCTAAGTAGG	87	916
1063926	N/A	N/A	9685	9700	ATGAGGCCTCAGCCTG	100	917
1063958	N/A	N/A	9962	9977	TCAGAGGGTTTGTAAG	49	918
1063990	N/A	N/A	10542	10557	TTCGCATCATGAGAAA	101	919
1064022	N/A	N/A	11114	11129	GGCTTAAACTTCCCAC	91	920
1064054	N/A	N/A	11382	11397	AGCATGGAGCTCCTTT	38	921
1064086	N/A	N/A	11552	11567	TGAGGCATGGCCCCAA	106	922
1064120	N/A	N/A	11652	11667	ATTTTCCTTGGTCAGG	30	923
1064152	N/A	N/A	11727	11742	TCTGATCCCTGCTAAG	74	924
1064184	N/A	N/A	11805	11820	GTTGAAAAGAAGCGGA	30	925
1064216	N/A	N/A	11916	11931	TCTCACCGTCAACACC	81	926
1064248	N/A	N/A	11981	11996	CATGCAGGACCTCCTA	59	927
1064280	N/A	N/A	12201	12216	TGGGAATGGAGGAACC	68	928
1064312	N/A	N/A	12394	12409	ATTTTATGGGTCCAGG	27	929
1064344	N/A	N/A	12582	12597	AAGGATCAAATGGGTG	70	930
1064376	N/A	N/A	12785	12800	ACAGAGTCAGCGATGA	75	931
1064408	N/A	N/A	12926	12941	TTGAATTATCGAGTAT	83	932
1064440	N/A	N/A	13220	13235	GGTAAGGGATCAGGAC	70	933

 Таблица 17

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	18	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	35	65
1062013	13	28	413	428	ATCCAAATTTTTTCG	83	934

1062045	150	165	550	565	TTGGTGAAGTGGACTG	84	935
1062077	320	335	6858	6873	ATCTCGGCCCTGGAAG	114	936
1062109	466	481	7531	7546	TCCTGGAGGAGTGCCT	91	937
1062141	635	650	N/A	N/A	GTTGATCCCAGGTGGG	45	938
1062173	799	814	8445	8460	TCGAAGACCTTCTCAC	105	939
1062205	945	960	9740	9755	CCTGCATGGCACTCAG	104	940
1062237	1103	1118	11259	11274	CCTCCGGACAGCAAAC	133	941
1062269	1256	1271	13486	13501	ATTGAGTGTCCGCTGC	34*	942
1062301	1454	1469	13864	13879	AGGGTTGGAACACCTG	160	943
1062333	1742	1757	14152	14167	TGGCTGCAGGGCTCGA	57	944
1062365	1897	1912	14307	14322	AGTGTACTGAGGCAGG	25	945
1062397	2063	2078	14473	14488	CTGAGGGTACTGACGC	13	946
1062429	2270	2285	N/A	N/A	GCATGGATCAGGGCTC	69	947
1062461	N/A	N/A	8324	8339	GGCGAGGATCCTTCCC	117	948
1062493	N/A	N/A	13613	13628	GCCCACTTTGAGCTGC	122	949
1062525	N/A	N/A	559	574	ACACTCACCTTGGTGA	152	950
1062557	N/A	N/A	692	707	AAAGACCTTACCTGGC	41	951
1062589	N/A	N/A	929	944	GCATCAAGAGCTAAGA	109	952
1062621	N/A	N/A	1116	1131	GGAAAGGAGATCGATG	120	953
1062653	N/A	N/A	1267	1282	GGTGAACAGAACTGAT	77	954
1062686	N/A	N/A	1351	1366	CAAGGGTCTCCTCTAA	114	955
1062718	N/A	N/A	1496	1511	CTGCAGAATCGAGCTC	54	956
1062750	N/A	N/A	1747	1762	GAGAAACAACCGGAAT	91	957
1062782	N/A	N/A	1896	1911	TAAGTAGAGGGAGCAT	39	958
1062814	N/A	N/A	2083	2098	ATGAACACCCTATTAG	96	959
1062846	N/A	N/A	2256	2271	AACCTATTTGACTGTA	93	960
1062878	N/A	N/A	2409	2424	CAGTACCCACACTCTT	100	961
1062910	N/A	N/A	2625	2640	CCTAATGCTGATCTTG	72	962
1062942	N/A	N/A	2742	2757	GTTATTGAGTGAATAG	74	963
1062974	N/A	N/A	2952	2967	GGGTATTGAATTGTAT	69	964
1063006	N/A	N/A	3151	3166	CAAAGAGCGAGCAAGA	85	965
1063038	N/A	N/A	3254	3269	TGGTTAAGTCATTAGG	6	966

1063070	N/A	N/A	3399	3414	CTAGAGTCCTGAGATC	82	967
1063102	N/A	N/A	3714	3729	CCACAATCAAGGTTTT	47	968
1063134	N/A	N/A	3947	3962	ATAGGGCCTCTTGCCT	117	969
1063166	N/A	N/A	4129	4144	CAAATAGTATAACACC	101	970
1063198	N/A	N/A	4338	4353	CCGAGAACTGGCTGCC	51	971
1063229	N/A	N/A	4439	4454	GATTTTTCCGCCATTG	120	972
1063261	N/A	N/A	4610	4625	GAGGACCTAGAGGGCC	100	973
1063293	N/A	N/A	4725	4740	CCTGGACACTTGGCCA	142	974
1063325	N/A	N/A	5139	5154	TTAGAACATTACTGCG	46	975
1063357	N/A	N/A	5370	5385	TAAACTCTCTGGTGTG	88	976
1063389	N/A	N/A	5528	5543	CCTATAATCCTGGTCT	43	977
1063421	N/A	N/A	5744	5759	CCCCATCAGAGTTCAC	59	978
1063453	N/A	N/A	5870	5885	CTGGATCTCAGGGCAA	93	979
1063485	N/A	N/A	6020	6035	GCAGCTGGAAGGACCG	78	980
1063517	N/A	N/A	6192	6207	TGTAACAGTCCTGGCA	118	981
1063549	N/A	N/A	6377	6392	CCACTTGAGAGCTGTT	46	982
1063581	N/A	N/A	6585	6600	CTGGGACATGTCCCGA	159	983
1063613	N/A	N/A	6989	7004	GTAAAGGTCGGCACCT	113	984
1063645	N/A	N/A	7240	7255	ACCTACTTGGCCCCAG	67	985
1063677	N/A	N/A	7427	7442	TGAGAGGCCATCCTGA	93	986
1063709	N/A	N/A	7872	7887	AGAATAGCCTACACTG	88	987
1063741	N/A	N/A	8013	8028	TTTGACTAGCTTTGTA	65	988
1063773	N/A	N/A	8109	8124	CCTCGAAAACCCTGAC	39	989
1063804	N/A	N/A	8582	8597	GAGTTTAGCTCTTGCA	20	990
1063836	N/A	N/A	8863	8878	ATGTTGGCATGAGGAG	70	991
1063868	N/A	N/A	9108	9123	GGGACGGCCTGTGCAA	104	992
1063900	N/A	N/A	9524	9539	CTTACCCTCCACCGCC	83	993
1063932	N/A	N/A	9692	9707	CACAAACATGAGGCCT	45	994
1063964	N/A	N/A	10306	10321	CTCAGGATCACAGTGT	47	995
1063996	N/A	N/A	10580	10595	CCTAAACCCCCCTGGC	124	996
1064028	N/A	N/A	11121	11136	ACCCAGAGGCTTAAAC	111	997
1064060	N/A	N/A	11450	11465	GTGAGCGGATGCATTT	60	998

1064092	N/A	N/A	11577	11592	TATAGTAGCTGGAGTC	65	999
1064126	N/A	N/A	11658	11673	ACCCCGATTTTCCTTG	74	1000
1064158	N/A	N/A	11741	11756	TGACAGTCAAGGTCTC	113	1001
1064190	N/A	N/A	11823	11838	AAAATAGTTCTCCCCG	41	1002
1064222	N/A	N/A	11926	11941	AGGCCTGAGATCTCAC	70	1003
1064254	N/A	N/A	11993	12008	TGAATCAAGCCCCATG	125	1004
1064286	N/A	N/A	12283	12298	GGATTTGCGGACAGGT	16	1005
1064318	N/A	N/A	12434	12449	CGTTTAGGGCAAGGTG	97	1006
1064350	N/A	N/A	12616	12631	TGAGATGAAGGAGTTG	142	1007
1064382	N/A	N/A	12795	12810	GAATGGGATTACAGAG	92	1008
1064414	N/A	N/A	12952	12967	GCTTTAGGTCAGAAGC	105	1009
1064446	N/A	N/A	13226	13241	GGATTAGGTAAGGGAT	105	1010

Таблица 18Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	18	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	42	65
1062014	35	50	435	450	CGCAGACCTCTCTCT	57	1011
1062046	151	166	551	566	CTTGGTGAAGTGGACT	67	1012
1062078	321	336	6859	6874	GATCTCGGCCCTGGAA	33	1013
1062110	467	482	7532	7547	GTCCTGGAGGAGTGCC	69	1014
1062142	658	673	8235	8250	GACACCCATTCCAGGC	78	1015
1062174	800	815	8446	8461	TTCGAAGACCTTCTCA	131	1016
1062206	979	994	9774	9789	GCCTTGGTCAGTGCCA	36	1017
1062238	1104	1119	11260	11275	GCCTCCGGACAGCAAA	98	1018
1062270	1258	1273	13488	13503	TCATTGAGTGTCCGCT	75*	1019
1062302	1455	1470	13865	13880	TAGGGTTGGAACACCT	82	1020

1062334	1743	1758	14153	14168	TTGGCTGCAGGGCTCG	30	1021
1062366	1898	1913	14308	14323	GAGTGTACTGAGGCAG	12	1022
1062398	2064	2079	14474	14489	CCTGAGGGTACTGACG	49	1023
1062430	2271	2286	N/A	N/A	GGCATGGATCAGGGCT	75	1024
1062462	N/A	N/A	8325	8340	GGGCGAGGATCCTTCC	53	1025
1062494	N/A	N/A	13634	13649	TATGAGCCCAGACCCA	95	1026
1062526	N/A	N/A	560	575	GACACTCACCTTGGTG	96	1027
1062558	N/A	N/A	693	708	TAAAGACCTTACCTGG	87	1028
1062590	N/A	N/A	931	946	AGGCATCAAGAGCTAA	107	1029
1062622	N/A	N/A	1117	1132	AGGAAAGGAGATCGAT	107	1030
1062654	N/A	N/A	1268	1283	GGGTGAACAGAACTGA	56	1031
1062687	N/A	N/A	1352	1367	CCAAGGGTCTCCTCTA	95	1032
1062719	N/A	N/A	1497	1512	CCTGCAGAATCGAGCT	68	1033
1062751	N/A	N/A	1748	1763	CGAGAAACAACCGGAA	69	1034
1062783	N/A	N/A	1897	1912	TTAAGTAGAGGGAGCA	25	1035
1062815	N/A	N/A	2084	2099	GATGAACACCCTATTA	126	1036
1062847	N/A	N/A	2258	2273	CTAACCTATTTGACTG	70	1037
1062879	N/A	N/A	2410	2425	CCAGTACCCACACTCT	85	1038
1062911	N/A	N/A	2626	2641	ACCTAATGCTGATCTT	72	1039
1062943	N/A	N/A	2748	2763	GATAAAGTTATTGAGT	79	1040
1062975	N/A	N/A	2953	2968	TGGGTATTGAATTGTA	43	1041
1063007	N/A	N/A	3152	3167	ACAAAGAGCGAGCAAG	136	1042
1063039	N/A	N/A	3255	3270	CTGGTTAAGTCATTAG	26	1043
1063071	N/A	N/A	3401	3416	ACCTAGAGTCCTGAGA	132	1044
1063103	N/A	N/A	3716	3731	CCCCACAATCAAGGTT	78	1045
1063135	N/A	N/A	3949	3964	TCATAGGGCCTCTTGC	92	1046
1063167	N/A	N/A	4132	4147	CTTCAAATAGTATAAC	101	1047
1063199	N/A	N/A	4339	4354	TCCGAGAACTGGCTGC	62	1048
1063230	N/A	N/A	4440	4455	AGATTTTTCCGCCATT	102	1049
1063262	N/A	N/A	4611	4626	AGAGGACCTAGAGGGC	66	1050
1063294	N/A	N/A	4726	4741	GCCTGGACACTTGGCC	41	1051
1063326	N/A	N/A	5140	5155	CTTAGAACATTACTGC	33	1052

1063358	N/A	N/A	5398	5413	TAGGAAGTGTTTCCGT	82	1053
1063390	N/A	N/A	5529	5544	TCCTATAATCCTGGTC	103	1054
1063422	N/A	N/A	5765	5780	GTAGAAGCTTCTCTAC	100	1055
1063454	N/A	N/A	5923	5938	CTGGCATTAAATATGT	94	1056
1063486	N/A	N/A	6030	6045	TTTAGCTTGAGCAGCT	100	1057
1063518	N/A	N/A	6193	6208	TTGTAACAGTCCTGGC	44	1058
1063550	N/A	N/A	6378	6393	TCCACTTGAGAGCTGT	52	1059
1063582	N/A	N/A	6586	6601	GCTGGGACATGTCCCG	84	1060
1063614	N/A	N/A	6990	7005	AGTAAAGGTCGGCACC	98	1061
1063646	N/A	N/A	7244	7259	CCTCACCTACTTGGCC	32	1062
1063678	N/A	N/A	7428	7443	GTGAGAGGCCATCCTG	85	1063
1063710	N/A	N/A	7873	7888	CAGAATAGCCTACACT	85	1064
1063742	N/A	N/A	8015	8030	ATTTTGACTAGCTTTG	53	1065
1063774	N/A	N/A	8110	8125	GCCTCGAAAACCCTGA	30	1066
1063805	N/A	N/A	8587	8602	TCTCAGAGTTTAGCTC	60	1067
1063837	N/A	N/A	8864	8879	CATGTTGGCATGAGGA	40	1068
1063869	N/A	N/A	9110	9125	GAGGGACGCCTGTGC	108	1069
1063901	N/A	N/A	9525	9540	CCTTACCCTCCACCGC	35	1070
1063933	N/A	N/A	9693	9708	GCACAAACATGAGGCC	111	1071
1063965	N/A	N/A	10307	10322	ACTCAGGATCACAGTG	77	1072
1063997	N/A	N/A	10581	10596	ACCTAAACCCCCCTGG	75	1073
1064029	N/A	N/A	11124	11139	GTGACCCAGAGGCTTA	105	1074
1064061	N/A	N/A	11451	11466	TGTGAGCGGATGCATT	80	1075
1064093	N/A	N/A	11578	11593	ATATAGTAGCTGGAGT	71	1076
1064127	N/A	N/A	11659	11674	CACCCGATTTTCCTT	66	1077
1064159	N/A	N/A	11743	11758	GATGACAGTCAAGGTC	70	1078
1064191	N/A	N/A	11824	11839	CAAAATAGTTCTCCCC	30	1079
1064223	N/A	N/A	11929	11944	TACAGGCCTGAGATCT	69	1080
1064255	N/A	N/A	11995	12010	GATGAATCAAGCCCCA	55	1081
1064287	N/A	N/A	12296	12311	GTGGTTTAGGTTTGGA	13	1082
1064319	N/A	N/A	12453	12468	TAGAGTAAGAGCTGGG	64	1083
1064351	N/A	N/A	12638	12653	TCTGAGAAGGCATTGG	73	1084

1064383	N/A	N/A	12809	12824	CAGTTTGGATTCAGGA	55	1085
1064415	N/A	N/A	12953	12968	GGCTTTAGGTCAGAAG	133	1086
1064447	N/A	N/A	13229	13244	CTGGGATTAGGTAAGG	110	1087

 Таблица 19

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	33	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	36	65
1062015	37	52	437	452	GCCGCAGACCTCTCTC	32	1088
1062047	153	168	N/A	N/A	GGCTTGGTGAAGTGGA	48	1089
1062079	322	337	6860	6875	AGATCTCGGCCCTGGA	122	1090
1062111	483	498	7548	7563	GCATGAAATGTGGCCT	120	1091
1062143	661	676	8238	8253	CTGGACACCCATTCCA	126	1092
1062175	801	816	8447	8462	CTTCGAAGACCTTCTC	103	1093
1062207	980	995	9775	9790	AGCCTTGGTCAGTGCC	125	1094
1062239	1111	1126	11267	11282	CACAGGTGCCTCCGGA	165	1095
1062271	1259	1274	13489	13504	CTCATTGAGTGTCCGC	79*	1096
1062303	1456	1471	13866	13881	GTAGGGTTGGAACACC	140	1097
1062335	1744	1759	14154	14169	TTTGGCTGCAGGGCTC	35	1098
1062367	1899	1914	14309	14324	TGAGTGTACTGAGGCA	31	1099
1062399	2065	2080	14475	14490	TCCTGAGGGTACTGAC	108	1100
1062431	2273	2288	N/A	N/A	GAGGCATGGATCAGGG	42	1101
1062463	N/A	N/A	8326	8341	AGGGCGAGGATCCTTC	106	1102
1062495	N/A	N/A	13636	13651	CCTATGAGCCCAGACC	144	1103
1062527	N/A	N/A	561	576	GGACACTCACCTTGGT	113	1104
1062559	N/A	N/A	694	709	TTAAAGACCTTACCTG	116	1105
1062591	N/A	N/A	932	947	GAGGCATCAAGAGCTA	90	1106

1062623	N/A	N/A	1119	1134	GGAGGAAAGGAGATCG	149	1107
1062655	N/A	N/A	1271	1286	CTAGGGTGAACAGAAC	55	1108
1062688	N/A	N/A	1358	1373	CCCGCCCCAAGGGTCT	56	1109
1062720	N/A	N/A	1503	1518	GCTAAGCCTGCAGAAT	96	1110
1062752	N/A	N/A	1749	1764	ACGAGAAACAACCGGA	130	1111
1062784	N/A	N/A	1907	1922	TAGGGTTAGCTTAAGT	46	1112
1062816	N/A	N/A	2085	2100	AGATGAACACCCTATT	72	1113
1062848	N/A	N/A	2259	2274	ACTAACCTATTTGACT	89	1114
1062880	N/A	N/A	2411	2426	TCCAGTACCCACACTC	83	1115
1062912	N/A	N/A	2627	2642	CACCTAATGCTGATCT	63	1116
1062944	N/A	N/A	2761	2776	TAATTAGGGAGAAGAT	101	1117
1062976	N/A	N/A	2954	2969	CTGGGTATTGAATTGT	57	1118
1063008	N/A	N/A	3153	3168	CACAAAGAGCGAGCAA	108	1119
1063040	N/A	N/A	3256	3271	TCTGGTTAAGTCATTA	76	1120
1063072	N/A	N/A	3402	3417	CACCTAGAGTCCTGAG	130	1121
1063104	N/A	N/A	3739	3754	CATCATCAGACTCTCT	114	1122
1063136	N/A	N/A	3950	3965	TTCATAGGGCCTCTTG	74	1123
1063168	N/A	N/A	4151	4166	ATACTGGGACCCCTGG	123	1124
1063200	N/A	N/A	4340	4355	TTCCGAGAACTGGCTG	48	1125
1063231	N/A	N/A	4441	4456	CAGATTTTTCCGCCAT	84	1126
1063263	N/A	N/A	4613	4628	GTAGAGGACCTAGAGG	50	1127
1063295	N/A	N/A	4742	4757	GGTCACTTCTGAAGCT	71	1128
1063327	N/A	N/A	5142	5157	GGCTTAGAACATTACT	98	1129
1063359	N/A	N/A	5399	5414	TTAGGAAGTGTTTCCG	109	1130
1063391	N/A	N/A	5530	5545	ATCCTATAATCCTGGT	128	1131
1063423	N/A	N/A	5768	5783	CCTGTAGAAGCTTCTC	82	1132
1063455	N/A	N/A	5930	5945	GAAGAGTCTGGCATTA	73	1133
1063487	N/A	N/A	6031	6046	TTTTAGCTTGAGCAGC	174	1134
1063519	N/A	N/A	6194	6209	ATTGTAACAGTCCTGG	54	1135
1063551	N/A	N/A	6379	6394	CTCCACTTGAGAGCTG	81	1136
1063583	N/A	N/A	6587	6602	GGCTGGGACATGTCCC	147	1137
1063615	N/A	N/A	6991	7006	CAGTAAAGGTCGGCAC	188	1138

1063647	N/A	N/A	7305	7320	TCGAGTAACTTTTTAA	44	1139
1063679	N/A	N/A	7429	7444	GGTGAGAGGCCATCCT	108	1140
1063711	N/A	N/A	7874	7889	TCAGAATAGCCTACAC	121	1141
1063743	N/A	N/A	8017	8032	ACATTTTGACTAGCTT	40	1142
1063775	N/A	N/A	8111	8126	AGCCTCGAAAACCCTG	145	1143
1063806	N/A	N/A	8597	8612	GAACCCACAGTCTCAG	110	1144
1063838	N/A	N/A	8875	8890	AATAAGGCTGGCATGT	110	1145
1063870	N/A	N/A	9113	9128	GTGGAGGGACGGCCTG	92	1146
1063902	N/A	N/A	9535	9550	TATCCCTATCCCTTAC	180	1147
1063934	N/A	N/A	9694	9709	GGCACAAACATGAGGC	117	1148
1063966	N/A	N/A	10310	10325	ACAACTCAGGATCACA	62	1149
1063998	N/A	N/A	10582	10597	CACCTAAACCCCCCTG	114	1150
1064030	N/A	N/A	11157	11172	GTCGGATGATGCCTGG	81	1151
1064062	N/A	N/A	11452	11467	TTGTGAGCGGATGCAT	91	1152
1064094	N/A	N/A	11579	11594	AATATAGTAGCTGGAG	43	1153
1064128	N/A	N/A	11660	11675	CCACCCGATTTTCCT	125	1154
1064160	N/A	N/A	11744	11759	GGATGACAGTCAAGGT	50	1155
1064192	N/A	N/A	11827	11842	TGCCAAAATAGTTCTC	88	1156
1064224	N/A	N/A	11930	11945	CTACAGGCCTGAGATC	114	1157
1064256	N/A	N/A	11996	12011	GGATGAATCAAGCCCC	97	1158
1064288	N/A	N/A	12318	12333	TTGGCATGCTCTGGCC	118	1159
1064320	N/A	N/A	12455	12470	GTTAGAGTAAGAGCTG	101	1160
1064352	N/A	N/A	12639	12654	TTCTGAGAAGGCATTG	118	1161
1064384	N/A	N/A	12822	12837	CAGGGAATTTGATCAG	92	1162
1064416	N/A	N/A	12961	12976	GATGACTTGGCTTTAG	83	1163
1064448	N/A	N/A	13240	13255	GTATGGTTGTTCTGGG	101	1164

Таблица 20Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910956	1800	1815	14210	14225	AGTAATCTGTGCGAGC	23	250
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	40	65
1062016	40	55	440	455	GAAGCCGCAGACCTCT	53	1165
1062048	156	171	N/A	N/A	GCAGGCTTGGTGAAGT	48	1166
1062080	323	338	6861	6876	AAGATCTCGGCCCTGG	131	1167
1062112	484	499	7549	7564	TGCATGAAATGTGGCC	39	1168
1062144	662	677	8239	8254	CCTGGACACCCATTCC	42	1169
1062176	802	817	8448	8463	TCTTCGAAGACCTTCT	76	1170
1062208	981	996	9776	9791	AAGCCTTGGTCAGTGC	92	1171
1062240	1112	1127	11268	11283	CCACAGGTGCCTCCGG	49	1172
1062272	1261	1276	13491	13506	ATCTCATTGAGTGTCC	74*	1173
1062304	1460	1475	13870	13885	AGGTGTAGGGTTGGAA	41	1174
1062336	1746	1761	14156	14171	TGTTTGGCTGCAGGGC	19	1175
1062368	1900	1915	14310	14325	TTGAGTGTACTGAGGC	3	1176
1062400	2068	2083	14478	14493	AGATCCTGAGGGTACT	72	1177
1062432	2274	2289	N/A	N/A	TGAGGCATGGATCAGG	54	1178
1062464	N/A	N/A	8327	8342	GAGGGCGAGGATCCTT	40	1179
1062496	N/A	N/A	13637	13652	GCCTATGAGCCCAGAC	67	1180
1062528	N/A	N/A	567	582	GAGCAGGGACACTCAC	210	1181
1062560	N/A	N/A	728	743	TAAGTCTTCTGCCATT	23	1182
1062592	N/A	N/A	937	952	GATGAGAGGCATCAAG	140	1183
1062624	N/A	N/A	1142	1157	CAAGAAAAGAGAGCGG	39	1184
1062656	N/A	N/A	1273	1288	TACTAGGGTGAACAGA	77	1185
1062689	N/A	N/A	1393	1408	TACGGTTGACAATGGT	36	1186
1062721	N/A	N/A	1533	1548	CGTGAGCACTTACTTT	80	1187

1062753	N/A	N/A	1750	1765	AACGAGAAACAACCGG	26	1188
1062785	N/A	N/A	1908	1923	CTAGGGTTAGCTTAAG	81	1189
1062817	N/A	N/A	2086	2101	AAGATGAACACCCTAT	78	1190
1062849	N/A	N/A	2260	2275	GACTAACCTATTTGAC	66	1191
1062881	N/A	N/A	2419	2434	AGTCTGGCTCCAGTAC	89	1192
1062913	N/A	N/A	2628	2643	ACACCTAATGCTGATC	95	1193
1062945	N/A	N/A	2763	2778	GATAATTAGGGAGAAG	30	1194
1062977	N/A	N/A	2955	2970	GCTGGGTATTGAATTG	75	1195
1063009	N/A	N/A	3154	3169	ACACAAAGAGCGAGCA	119	1196
1063041	N/A	N/A	3257	3272	GTCTGGTTAAGTCATT	67	1197
1063073	N/A	N/A	3405	3420	TCCCACCTAGAGTCCT	78	1198
1063105	N/A	N/A	3742	3757	GCCCATCATCAGACTC	34	1199
1063137	N/A	N/A	3951	3966	CTTCATAGGGCCTCTT	35	1200
1063169	N/A	N/A	4152	4167	GATACTGGGACCCCTG	38	1201
1063201	N/A	N/A	4356	4371	CACCCCACAGGTTTCG	46	1202
1063232	N/A	N/A	4443	4458	CCCAGATTTTTCCGCC	70	1203
1063264	N/A	N/A	4631	4646	GAGATGATCTGTCTGG	47	1204
1063296	N/A	N/A	4800	4815	ATTTCGGTGCAAATGG	54	1205
1063328	N/A	N/A	5143	5158	GGGCTTAGAACATTAC	65	1206
1063360	N/A	N/A	5416	5431	GAACTCCACTTCTTTC	52	1207
1063392	N/A	N/A	5592	5607	TCCGGGCCCCCTGCTG	65	1208
1063424	N/A	N/A	5769	5784	GCCTGTAGAAGCTTCT	97	1209
1063456	N/A	N/A	5931	5946	TGAAGAGTCTGGCATT	179	1210
1063488	N/A	N/A	6032	6047	GTTTTAGCTTGAGCAG	31	1211
1063520	N/A	N/A	6195	6210	TATTGTAACAGTCCTG	30	1212
1063552	N/A	N/A	6381	6396	CCCTCCACTTGAGAGC	33	1213
1063584	N/A	N/A	6589	6604	TTGGCTGGGACATGTC	39	1214
1063616	N/A	N/A	6993	7008	CACAGTAAAGGTCGGC	71	1215
1063648	N/A	N/A	7306	7321	ATCGAGTAACTTTTA	14	1216
1063680	N/A	N/A	7430	7445	GGGTGAGAGGCCATCC	229	1217
1063712	N/A	N/A	7876	7891	ATTCAGAATAGCCTAC	105	1218
1063744	N/A	N/A	8018	8033	GACATTTTGACTAGCT	5	1219

				175			
1063776	N/A	N/A	8115	8130	CCTGAGCCTCGAAAAC	72	1220
1063807	N/A	N/A	8599	8614	TTGAACCCACAGTCTC	44	1221
1063839	N/A	N/A	8876	8891	GAATAAGGCTGGCATG	90	1222
1063871	N/A	N/A	9172	9187	TTGGAAGTGTGGTGAG	49	1223
1063903	N/A	N/A	9536	9551	CTATCCCTATCCCTTA	56	1224
1063935	N/A	N/A	9695	9710	TGGCACAAACATGAGG	131	1225
1063967	N/A	N/A	10312	10327	TAACAACTCAGGATCA	28	1226
1063999	N/A	N/A	10583	10598	TCACCTAAACCCCCCT	34	1227
1064031	N/A	N/A	11159	11174	TTGTCGGATGATGCCT	33	1228
1064063	N/A	N/A	11455	11470	CTTTTGTGAGCGGATG	50	1229
1064095	N/A	N/A	11580	11595	GAATATAGTAGCTGGA	12	1230
1064129	N/A	N/A	11661	11676	TCCACCCGATTTTCC	177	1231
1064161	N/A	N/A	11747	11762	CCAGGATGACAGTCAA	26	1232
1064193	N/A	N/A	11848	11863	ATTTATTCTTTGCACC	75	1233
1064225	N/A	N/A	11931	11946	TCTACAGGCCTGAGAT	77	1234
1064257	N/A	N/A	12017	12032	AGGAACTCTGTCAGAG	39	1235
1064289	N/A	N/A	12321	12336	AATTTGGCATGCTCTG	186	1236
1064321	N/A	N/A	12456	12471	AGTTAGAGTAAGAGCT	160	1237
1064353	N/A	N/A	12647	12662	GATGAAGGTTCTGAGA	39	1238
1064385	N/A	N/A	12824	12839	GTCAGGGAATTTGATC	89	1239
1064417	N/A	N/A	12965	12980	ATGGGATGACTTGGCT	81	1240
1064449	N/A	N/A	13243	13258	TGGGTATGGTTGTTCT	42	1241

 Таблица 21

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Ном соедин	-	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
9109	50	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	109	94
9111	44	N/A	N/A	7355	7370	TGCTATGATCATCCCC	12	65

1062017	44	59	444	459	TGTGGAAGCCGCAGAC	32	1242
1062049	161	176	N/A	N/A	CAAGGGCAGGCTTGGT	120	1243
1062081	325	340	6863	6878	CGAAGATCTCGGCCCT	52	1244
1062113	486	501	7551	7566	GGTGCATGAAATGTGG	34	1245
1062145	663	678	8240	8255	CCCTGGACACCCATTC	57	1246
1062177	803	818	8449	8464	CTCTTCGAAGACCTTC	127	1247
1062209	982	997	9777	9792	GAAGCCTTGGTCAGTG	35	1248
1062241	1116	1131	11272	11287	TACCCCACAGGTGCCT	53	1249
1062273	1268	1283	13498	13513	GTGGTAGATCTCATTG	61*	1250
1062305	1461	1476	13871	13886	CAGGTGTAGGGTTGGA	18	1251
1062337	1756	1771	14166	14181	GTGAAGGCTCTGTTTG	37	1252
1062369	1902	1917	14312	14327	GTTTGAGTGTACTGAG	23	1253
1062401	2070	2085	14480	14495	TCAGATCCTGAGGGTA	123	1254
1062433	2275	2290	N/A	N/A	CTGAGGCATGGATCAG	36	1255
1062465	N/A	N/A	8328	8343	GGAGGGCGAGGATCCT	100	1256
1062497	N/A	N/A	13642	13657	AATGTGCCTATGAGCC	136	1257
1062529	N/A	N/A	624	639	CCCGCCGTGCCTACCT	21	1258
1062561	N/A	N/A	740	755	GTACTTCACCTTTAAG	33	1259
1062593	N/A	N/A	938	953	GGATGAGAGGCATCAA	54	1260
1062625	N/A	N/A	1143	1158	GCAAGAAAAGAGAGCG	127	1261
1062657	N/A	N/A	1274	1289	CTACTAGGGTGAACAG	60	1262
1062690	N/A	N/A	1394	1409	CTACGGTTGACAATGG	44	1263
1062722	N/A	N/A	1570	1585	TCTAATTTGGTTACAG	55	1264
1062754	N/A	N/A	1751	1766	AAACGAGAAACAACCG	40	1265
1062786	N/A	N/A	1910	1925	ACCTAGGGTTAGCTTA	93	1266
1062818	N/A	N/A	2087	2102	TAAGATGAACACCCTA	125	1267
1062850	N/A	N/A	2261	2276	AGACTAACCTATTTGA	41	1268
1062882	N/A	N/A	2436	2451	CTGGGTTTGTCCCAGA	119	1269
1062914	N/A	N/A	2630	2645	TAACACCTAATGCTGA	128	1270
1062946	N/A	N/A	2767	2782	CTGAGATAATTAGGGA	52	1271
1062978	N/A	N/A	2956	2971	GGCTGGGTATTGAATT	36	1272
1063010	N/A	N/A	3155	3170	CACACAAAGAGCGAGC	45	1273

1063042	N/A	N/A	3267	3282	CTTCTACGCTGTCTGG	57	1274
1063074	N/A	N/A	3425	3440	GGAGAGAGCCAGAACC	30	1275
1063106	N/A	N/A	3748	3763	TACAGAGCCCATCATC	52	1276
1063138	N/A	N/A	3968	3983	AGTCAGGCAGCTTGCT	42	1277
1063170	N/A	N/A	4153	4168	AGATACTGGGACCCCT	69	1278
1063202	N/A	N/A	4363	4378	GATACCCCACCCACA	142	1279
1063233	N/A	N/A	4444	4459	GCCCAGATTTTTCCGC	51	1280
1063265	N/A	N/A	4632	4647	GGAGATGATCTGTCTG	72	1281
1063297	N/A	N/A	4801	4816	GATTTCGGTGCAAATG	95	1282
1063329	N/A	N/A	5159	5174	GTTCTTAGTCTCCTGG	20	1283
1063361	N/A	N/A	5418	5433	GAGAACTCCACTTCTT	121	1284
1063393	N/A	N/A	5602	5617	CCACAATGGCTCCGGG	51	1285
1063425	N/A	N/A	5818	5833	AGCATGGCAAGTGACA	41	1286
1063457	N/A	N/A	5932	5947	ATGAAGAGTCTGGCAT	130	1287
1063489	N/A	N/A	6033	6048	GGTTTTAGCTTGAGCA	63	1288
1063521	N/A	N/A	6196	6211	CTATTGTAACAGTCCT	86	1289
1063553	N/A	N/A	6395	6410	CAATGGTTGTTTCCCC	33	1290
1063585	N/A	N/A	6592	6607	GCATTGGCTGGGACAT	93	1291
1063617	N/A	N/A	6994	7009	CCACAGTAAAGGTCGG	46	1292
1063649	N/A	N/A	7307	7322	GATCGAGTAACTTTTT	16	1293
1063681	N/A	N/A	7555	7570	ACCTGGTGCATGAAAT	50	1294
1063713	N/A	N/A	7878	7893	CAATTCAGAATAGCCT	53	1295
1063745	N/A	N/A	8019	8034	TGACATTTTGACTAGC	25	1296
1063777	N/A	N/A	8134	8149	ATTTTGAGCTTCCCAC	146	1297
1063808	N/A	N/A	8600	8615	TTTGAACCCACAGTCT	160	1298
1063840	N/A	N/A	8877	8892	GGAATAAGGCTGGCAT	46	1299
1063872	N/A	N/A	9181	9196	GAGATAATGTTGGAAG	97	1300
1063904	N/A	N/A	9537	9552	ACTATCCCTATCCCTT	95	1301
1063936	N/A	N/A	9787	9802	CACCACAGATGAAGCC	48	1302
1063968	N/A	N/A	10313	10328	TTAACAACTCAGGATC	145	1303
1064000	N/A	N/A	10585	10600	AGTCACCTAAACCCCC	87	1304
1064032	N/A	N/A	11300	11315	TTACCTGGGAATGTGC	50	1305
						•	

1064064	N/A	N/A	11456	11471	GCTTTTGTGAGCGGAT	27	1306
1064096	N/A	N/A	11581	11596	CGAATATAGTAGCTGG	21	1307
1064130	N/A	N/A	11662	11677	ATCCACCCGATTTTC	111	1308
1064162	N/A	N/A	11769	11784	TGCAAGAGGTTAAATG	129	1309
1064194	N/A	N/A	11861	11876	CATAAGTTGTATCATT	116	1310
1064226	N/A	N/A	11932	11947	GTCTACAGGCCTGAGA	51	1311
1064258	N/A	N/A	12018	12033	GAGGAACTCTGTCAGA	122	1312
1064290	N/A	N/A	12322	12337	GAATTTGGCATGCTCT	50	1313
1064322	N/A	N/A	12457	12472	GAGTTAGAGTAAGAGC	51	1314
1064354	N/A	N/A	12648	12663	GGATGAAGGTTCTGAG	89	1315
1064386	N/A	N/A	12825	12840	GGTCAGGGAATTTGAT	134	1316
1064418	N/A	N/A	13014	13029	TTAAGAGTCAGGCTGG	59	1317
1064450	N/A	N/A	13244	13259	GTGGGTATGGTTGTTC	90	1318

Таблица 22Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	109	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	21	65
1062018	46	61	446	461	GGTGTGGAAGCCGCAG	49	1319
1062050	172	187	6710	6725	GGGTCCTTGTCCAAGG	43	1320
1062082	328	343	6866	6881	CCTCGAAGATCTCGGC	112	1321
1062114	487	502	7552	7567	TGGTGCATGAAATGTG	137	1322
1062146	664	679	8241	8256	TCCCTGGACACCCATT	37	1323
1062178	804	819	8450	8465	GCTCTTCGAAGACCTT	35	1324
1062210	984	999	9779	9794	ATGAAGCCTTGGTCAG	52	1325
1062242	1117	1132	11273	11288	CTACCCCACAGGTGCC	80	1326
1062274	1293	1308	13523	13538	AGAAGGCAAACATGCG	41	1327

1062306	1463	1478	13873	13888	GCCAGGTGTAGGGTTG	35	1328
1062338	1757	1772	14167	14182	TGTGAAGGCTCTGTTT	86	1329
1062370	1903	1918	14313	14328	TGTTTGAGTGTACTGA	46	1330
1062402	2071	2086	14481	14496	CTCAGATCCTGAGGGT	88	1331
1062434	2276	2291	N/A	N/A	GCTGAGGCATGGATCA	41	1332
1062466	N/A	N/A	8329	8344	AGGAGGGCGAGGATCC	43	1333
1062498	N/A	N/A	13645	13660	CCCAATGTGCCTATGA	55	1334
1062530	N/A	N/A	643	658	CCAGAGGGCCCCTGAC	52	1335
1062562	N/A	N/A	741	756	AGTACTTCACCTTTAA	17	1336
1062594	N/A	N/A	940	955	AAGGATGAGAGGCATC	158	1337
1062626	N/A	N/A	1180	1195	TAGGCTGGATGCTGGC	167	1338
1062658	N/A	N/A	1276	1291	TGCTACTAGGGTGAAC	126	1339
1062691	N/A	N/A	1395	1410	ACTACGGTTGACAATG	39	1340
1062723	N/A	N/A	1576	1591	CATGATTCTAATTTGG	21	1341
1062755	N/A	N/A	1773	1788	AGTCAGGGATGTTTAT	50	1342
1062787	N/A	N/A	1911	1926	CACCTAGGGTTAGCTT	134	1343
1062819	N/A	N/A	2088	2103	ATAAGATGAACACCCT	42	1344
1062851	N/A	N/A	2262	2277	AAGACTAACCTATTTG	48	1345
1062883	N/A	N/A	2437	2452	GCTGGGTTTGTCCCAG	71	1346
1062915	N/A	N/A	2632	2647	TTTAACACCTAATGCT	98	1347
1062947	N/A	N/A	2768	2783	TCTGAGATAATTAGGG	101	1348
1062979	N/A	N/A	2958	2973	ATGGCTGGGTATTGAA	24	1349
1063011	N/A	N/A	3178	3193	GGATACATAGAGACAA	57	1350
1063043	N/A	N/A	3276	3291	GCCAGGGCCCTTCTAC	114	1351
1063107	N/A	N/A	3750	3765	AATACAGAGCCCATCA	50	1352
1063139	N/A	N/A	3971	3986	GAAAGTCAGGCAGCTT	43	1353
1063171	N/A	N/A	4156	4171	CACAGATACTGGGACC	60	1354
1063203	N/A	N/A	4366	4381	GCAGATACCCCACCCC	24	1355
1063234	N/A	N/A	4449	4464	GACTTGCCCAGATTTT	28	1356
1063266	N/A	N/A	4633	4648	TGGAGATGATCTGTCT	48	1357
1063298	N/A	N/A	4802	4817	CGATTTCGGTGCAAAT	37	1358
1063330	N/A	N/A	5160	5175	AGTTCTTAGTCTCCTG	9	1359

1063362	N/A	N/A	5420	5435	TTGAGAACTCCACTTC	70	1360
1063394	N/A	N/A	5606	5621	CCCTCCACAATGGCTC	28	1361
1063426	N/A	N/A	5820	5835	CCAGCATGGCAAGTGA	46	1362
1063458	N/A	N/A	5933	5948	CATGAAGAGTCTGGCA	32	1363
1063490	N/A	N/A	6034	6049	GGGTTTTAGCTTGAGC	35	1364
1063522	N/A	N/A	6198	6213	GGCTATTGTAACAGTC	112	1365
1063554	N/A	N/A	6398	6413	GGGCAATGGTTGTTTC	82	1366
1063586	N/A	N/A	6593	6608	GGCATTGGCTGGGACA	110	1367
1063618	N/A	N/A	6996	7011	TGCCACAGTAAAGGTC	47	1368
1063650	N/A	N/A	7308	7323	AGATCGAGTAACTTTT	8	1369
1063682	N/A	N/A	7556	7571	TACCTGGTGCATGAAA	58	1370
1063714	N/A	N/A	7879	7894	GCAATTCAGAATAGCC	49	1371
1063746	N/A	N/A	8020	8035	CTGACATTTTGACTAG	35	1372
1063778	N/A	N/A	8146	8161	ACAAGGCCTCTCATTT	58	1373
1063809	N/A	N/A	8623	8638	GCCAGTCAGGGATGGA	55	1374
1063841	N/A	N/A	8878	8893	TGGAATAAGGCTGGCA	37	1375
1063873	N/A	N/A	9203	9218	CTTGAGCCTGGCCAGA	87	1376
1063905	N/A	N/A	9539	9554	GCACTATCCCTATCCC	16	1377
1063937	N/A	N/A	9789	9804	CTCACCACAGATGAAG	62	1378
1063969	N/A	N/A	10314	10329	TTTAACAACTCAGGAT	72	1379
1064001	N/A	N/A	10588	10603	GAAAGTCACCTAAACC	35	1380
1064033	N/A	N/A	11302	11317	TCTTACCTGGGAATGT	145	1381
1064065	N/A	N/A	11457	11472	AGCTTTTGTGAGCGGA	54	1382
1064097	N/A	N/A	11582	11597	CCGAATATAGTAGCTG	54	1383
1064131	N/A	N/A	11664	11679	GAATCCACCCGATTT	56	1384
1064163	N/A	N/A	11771	11786	GATGCAAGAGGTTAAA	43	1385
1064195	N/A	N/A	11863	11878	GACATAAGTTGTATCA	87	1386
1064227	N/A	N/A	11934	11949	GAGTCTACAGGCCTGA	38	1387
1064259	N/A	N/A	12019	12034	GGAGGAACTCTGTCAG	41	1388
1064291	N/A	N/A	12323	12338	AGAATTTGGCATGCTC	43	1389
1064323	N/A	N/A	12458	12473	GGAGTTAGAGTAAGAG	76	1390
1064355	N/A	N/A	12649	12664	AGGATGAAGGTTCTGA	77	1391

1064387	N/A	N/A	12847	12862	TTCGGTGTGGAGTGAG	82	1392
1064419	N/A	N/A	13016	13031	GGTTAAGAGTCAGGCT	40	1393
1064451	N/A	N/A	13245	13260	TGTGGGTATGGTTGTT	35	1394

 Таблица 23

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	200	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	14	65
1062019	49	64	449	464	TACGGTGTGGAAGCCG	65	1395
1062051	174	189	6712	6727	TCGGGTCCTTGTCCAA	38	1396
1062083	329	344	6867	6882	GCCTCGAAGATCTCGG	67	1397
1062115	488	503	7553	7568	CTGGTGCATGAAATGT	62	1398
1062147	669	684	8246	8261	CCGGCTCCCTGGACAC	61	1399
1062179	810	825	8456	8471	CCTCTGGCTCTTCGAA	148	1400
1062211	987	1002	9782	9797	CAGATGAAGCCTTGGT	39	1401
1062243	1118	1133	11274	11289	GCTACCCCACAGGTGC	108	1402
1062275	1312	1327	13542	13557	GTGGCAGGATGGTTTC	52	1403
1062307	1482	1497	13892	13907	CTTGATCTTGAGGTCA	59	1404
1062339	1764	1779	14174	14189	GGCTGGTTGTGAAGGC	40	1405
1062371	1904	1919	14314	14329	TTGTTTGAGTGTACTG	64	1406
1062403	2076	2091	14486	14501	GGGACCTCAGATCCTG	78	1407
1062435	2283	2298	N/A	N/A	AGTCTAAGCTGAGGCA	68	1408
1062467	N/A	N/A	8330	8345	TAGGAGGCGAGGATC	90	1409
1062499	N/A	N/A	13646	13661	CCCCAATGTGCCTATG	93	1410
1062531	N/A	N/A	644	659	ACCAGAGGGCCCCTGA	95	1411
1062563	N/A	N/A	742	757	AAGTACTTCACCTTTA	50	1412
1062595	N/A	N/A	1002	1017	CGGGAGAAAGAGAGGC	38	1413

1062627	N/A	N/A	1183	1198	CTCTAGGCTGGATGCT	65	1414
1062659	N/A	N/A	1287	1302	TGCAATCCTCCTGCTA	117	1415
1062692	N/A	N/A	1397	1412	AAACTACGGTTGACAA	71	1416
1062724	N/A	N/A	1577	1592	GCATGATTCTAATTTG	5	1417
1062756	N/A	N/A	1784	1799	TCCAAGGAAGCAGTCA	78	1418
1062788	N/A	N/A	1914	1929	ACTCACCTAGGGTTAG	92	1419
1062820	N/A	N/A	2089	2104	AATAAGATGAACACCC	73	1420
1062852	N/A	N/A	2305	2320	GGACTTTCTAAGCACA	48	1421
1062884	N/A	N/A	2438	2453	CGCTGGGTTTGTCCCA	65	1422
1062916	N/A	N/A	2634	2649	GTTTTAACACCTAATG	65	1423
1062948	N/A	N/A	2790	2805	GGAGTATGGTTTAACA	38	1424
1062980	N/A	N/A	2961	2976	CCCATGGCTGGGTATT	109	1425
1063012	N/A	N/A	3179	3194	GGGATACATAGAGACA	78	1426
1063044	N/A	N/A	3277	3292	GGCCAGGGCCCTTCTA	100	1427
1063076	N/A	N/A	3491	3506	GAATGGTAGCCCAGGT	64	1428
1063108	N/A	N/A	3751	3766	CAATACAGAGCCCATC	73	1429
1063140	N/A	N/A	3972	3987	TGAAAGTCAGGCAGCT	73	1430
1063172	N/A	N/A	4157	4172	CCACAGATACTGGGAC	97	1431
1063204	N/A	N/A	4367	4382	GGCAGATACCCCACCC	73	1432
1063235	N/A	N/A	4450	4465	CGACTTGCCCAGATTT	59	1433
1063267	N/A	N/A	4659	4674	CATAGATACATTCTCA	65	1434
1063299	N/A	N/A	4804	4819	ACCGATTTCGGTGCAA	65	1435
1063331	N/A	N/A	5161	5176	AAGTTCTTAGTCTCCT	19	1436
1063363	N/A	N/A	5421	5436	CTTGAGAACTCCACTT	69	1437
1063395	N/A	N/A	5609	5624	AAGCCCTCCACAATGG	53	1438
1063427	N/A	N/A	5821	5836	TCCAGCATGGCAAGTG	74	1439
1063459	N/A	N/A	5934	5949	ACATGAAGAGTCTGGC	37	1440
1063491	N/A	N/A	6036	6051	ATGGGTTTTAGCTTGA	21	1441
1063523	N/A	N/A	6199	6214	AGGCTATTGTAACAGT	52	1442
1063555	N/A	N/A	6399	6414	AGGGCAATGGTTGTTT	132	1443
1063587	N/A	N/A	6603	6618	GGTCAAAGCAGGCATT	30	1444
1063619	N/A	N/A	7005	7020	CCCGCCCAGTGCCACA	23	1445

1063651	N/A	N/A	7309	7324	GAGATCGAGTAACTTT	27	1446
1063683	N/A	N/A	7557	7572	ATACCTGGTGCATGAA	72	1447
1063715	N/A	N/A	7880	7895	TGCAATTCAGAATAGC	59	1448
1063747	N/A	N/A	8021	8036	GCTGACATTTTGACTA	63	1449
1063779	N/A	N/A	8147	8162	CACAAGGCCTCTCATT	78	1450
1063810	N/A	N/A	8658	8673	CGAGAGAAGCTAAGTA	71	1451
1063842	N/A	N/A	8879	8894	GTGGAATAAGGCTGGC	50	1452
1063874	N/A	N/A	9210	9225	CTCACCACTTGAGCCT	70	1453
1063906	N/A	N/A	9541	9556	GCGCACTATCCCTATC	74	1454
1063938	N/A	N/A	9790	9805	GCTCACCACAGATGAA	88	1455
1063970	N/A	N/A	10315	10330	CTTTAACAACTCAGGA	57	1456
1064002	N/A	N/A	10615	10630	CTCTTTACCACCCAAC	96	1457
1064034	N/A	N/A	11304	11319	ATTCTTACCTGGGAAT	110	1458
1064066	N/A	N/A	11458	11473	AAGCTTTTGTGAGCGG	79	1459
1064098	N/A	N/A	11583	11598	GCCGAATATAGTAGCT	70	1460
1064132	N/A	N/A	11665	11680	CGAATCCACCCGATT	114	1461
1064164	N/A	N/A	11773	11788	AGGATGCAAGAGGTTA	45	1462
1064196	N/A	N/A	11865	11880	CTGACATAAGTTGTAT	117	1463
1064228	N/A	N/A	11936	11951	GTGAGTCTACAGGCCT	46	1464
1064260	N/A	N/A	12021	12036	GTGGAGGAACTCTGTC	78*	1465
1064292	N/A	N/A	12325	12340	TCAGAATTTGGCATGC	59	1466
1064324	N/A	N/A	12459	12474	AGGAGTTAGAGTAAGA	97	1467
1064356	N/A	N/A	12650	12665	TAGGATGAAGGTTCTG	84	1468
1064388	N/A	N/A	12848	12863	GTTCGGTGTGGAGTGA	82	1469
1064420	N/A	N/A	13017	13032	GGGTTAAGAGTCAGGC	12	1470
1064452	N/A	N/A	13246	13261	GTGTGGGTATGGTTGT	66	1471

Таблица 24Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	202	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	30	65
1062020	50	65	450	465	GTACGGTGTGGAAGCC	41	1472
1062052	175	190	6713	6728	ATCGGGTCCTTGTCCA	37	1473
1062084	330	345	6868	6883	CGCCTCGAAGATCTCG	80	1474
1062116	490	505	N/A	N/A	AGCTGGTGCATGAAAT	104	1475
1062148	670	685	8247	8262	GCCGGCTCCCTGGACA	96	1476
1062180	811	826	8457	8472	TCCTCTGGCTCTTCGA	100	1477
1062212	999	1014	N/A	N/A	CGGATGATGCCACAGA	101	1478
1062244	1120	1135	11276	11291	TGGCTACCCCACAGGT	90	1479
1062276	1367	1382	13777	13792	CACCCGCACAAAGCAC	111	1480
1062308	1484	1499	13894	13909	TCCTTGATCTTGAGGT	113	1481
1062340	1790	1805	14200	14215	GCGAGCAGCTGAGGCA	70	1482
1062372	1906	1921	14316	14331	GGTTGTTTGAGTGTAC	9	1483
1062404	2077	2092	14487	14502	TGGGACCTCAGATCCT	72	1484
1062436	2284	2299	N/A	N/A	CAGTCTAAGCTGAGGC	42	1485
1062468	N/A	N/A	8331	8346	ATAGGAGGCGAGGAT	114	1486
1062500	N/A	N/A	13647	13662	TCCCCAATGTGCCTAT	111	1487
1062532	N/A	N/A	645	660	TACCAGAGGGCCCCTG	99	1488
1062564	N/A	N/A	744	759	TTAAGTACTTCACCTT	56	1489
1062596	N/A	N/A	1006	1021	ATGGCGGGAGAAAGAG	36	1490
1062628	N/A	N/A	1184	1199	GCTCTAGGCTGGATGC	107	1491
1062660	N/A	N/A	1294	1309	GGCACCTTGCAATCCT	36	1492
1062693	N/A	N/A	1398	1413	TAAACTACGGTTGACA	114	1493
1062725	N/A	N/A	1587	1602	CCAATATATAGCATGA	22	1494

1062757	N/A	N/A	1785	1800	ATCCAAGGAAGCAGTC	88	1495
1062789	N/A	N/A	1917	1932	AATACTCACCTAGGGT	79	1496
1062821	N/A	N/A	2107	2122	GCAAATCAATAAGGGA	40	1497
1062853	N/A	N/A	2313	2328	GTAGGAAAGGACTTTC	76	1498
1062885	N/A	N/A	2459	2474	CACACATAGGGCTTGG	26	1499
1062917	N/A	N/A	2638	2653	ATAAGTTTTAACACCT	56	1500
1062949	N/A	N/A	2803	2818	ACTGGAGGACCATGGA	115	1501
1062981	N/A	N/A	2987	3002	TAAAGAAGGCAAGGT	81	1502
1063013	N/A	N/A	3180	3195	AGGGATACATAGAGAC	88	1503
1063045	N/A	N/A	3288	3303	GAGTAGACAAGGGCCA	82	1504
1063077	N/A	N/A	3540	3555	GTCCAACCTGTGGGAA	118	1505
1063109	N/A	N/A	3752	3767	CCAATACAGAGCCCAT	74	1506
1063141	N/A	N/A	3986	4001	TCCTTGGAACCATCTG	48	1507
1063173	N/A	N/A	4159	4174	CTCCACAGATACTGGG	65	1508
1063205	N/A	N/A	4368	4383	GGGCAGATACCCCACC	92	1509
1063236	N/A	N/A	4452	4467	CCCGACTTGCCCAGAT	67	1510
1063268	N/A	N/A	4661	4676	AGCATAGATACATTCT	32	1511
1063300	N/A	N/A	4805	4820	TACCGATTTCGGTGCA	71	1512
1063332	N/A	N/A	5162	5177	TAAGTTCTTAGTCTCC	24	1513
1063364	N/A	N/A	5422	5437	ACTTGAGAACTCCACT	100	1514
1063396	N/A	N/A	5611	5626	GAAAGCCCTCCACAAT	98	1515
1063428	N/A	N/A	5822	5837	ATCCAGCATGGCAAGT	79	1516
1063460	N/A	N/A	5935	5950	GACATGAAGAGTCTGG	58	1517
1063492	N/A	N/A	6037	6052	CATGGGTTTTAGCTTG	78	1518
1063524	N/A	N/A	6200	6215	GAGGCTATTGTAACAG	53	1519
1063556	N/A	N/A	6400	6415	GAGGGCAATGGTTGTT	38	1520
1063588	N/A	N/A	6635	6650	CTCGACCACCTGAGCC	133	1521
1063620	N/A	N/A	7036	7051	AACCACTTCCTGTGCC	85	1522
1063652	N/A	N/A	7310	7325	GGAGATCGAGTAACTT	22	1523
1063684	N/A	N/A	7558	7573	CATACCTGGTGCATGA	97	1524
1063716	N/A	N/A	7881	7896	CTGCAATTCAGAATAG	66	1525
1063748	N/A	N/A	8028	8043	CGCAGGTGCTGACATT	56	1526
	1	1	I	1		1	

184

1063780	N/A	N/A	8148	8163	CCACAAGGCCTCTCAT	149	1527
1063811	N/A	N/A	8659	8674	TCGAGAGAAGCTAAGT	112	1528
1063843	N/A	N/A	8887	8902	TGGGAACAGTGGAATA	66	1529
1063875	N/A	N/A	9211	9226	ACTCACCACTTGAGCC	101	1530
1063907	N/A	N/A	9542	9557	TGCGCACTATCCCTAT	92	1531
1063939	N/A	N/A	9793	9808	GTCGCTCACCACAGAT	66	1532
1063971	N/A	N/A	10341	10356	CTGGCAAGTCTGGCTA	61	1533
1064003	N/A	N/A	10616	10631	GCTCTTTACCACCCAA	63	1534
1064035	N/A	N/A	11305	11320	CATTCTTACCTGGGAA	99	1535
1064067	N/A	N/A	11460	11475	GGAAGCTTTTGTGAGC	56	1536
1064099	N/A	N/A	11584	11599	GGCCGAATATAGTAGC	98	1537
1064133	N/A	N/A	11666	11681	GCGAATCCACCCCGAT	63	1538
1064165	N/A	N/A	11774	11789	AAGGATGCAAGAGGTT	78	1539
1064197	N/A	N/A	11866	11881	CCTGACATAAGTTGTA	86	1540
1064229	N/A	N/A	11941	11956	ACAAGGTGAGTCTACA	144	1541
1064261	N/A	N/A	12089	12104	ACCCAGCGGATGAGCG	39*	1542
1064293	N/A	N/A	12326	12341	GTCAGAATTTGGCATG	75	1543
1064325	N/A	N/A	12460	12475	AAGGAGTTAGAGTAAG	171	1544
1064357	N/A	N/A	12651	12666	CTAGGATGAAGGTTCT	55	1545
1064389	N/A	N/A	12849	12864	GGTTCGGTGTGGAGTG	98	1546
1064421	N/A	N/A	13018	13033	TGGGTTAAGAGTCAGG	32	1547
1064453	N/A	N/A	13256	13271	GGTTAGATGGGTGTGG	82	1548

Таблица 25 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	93	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	49	65

1062021	51	66	451	466	TGTACGGTGTGGAAGC	40	1549
1062053	176	191	6714	6729	CATCGGGTCCTTGTCC	81	1550
1062085	331	346	6869	6884	CCGCCTCGAAGATCTC	67	1551
1062117	494	509	N/A	N/A	TGAGAGCTGGTGCATG	129	1552
1062149	672	687	8249	8264	GTGCCGGCTCCCTGGA	83	1553
1062181	816	831	8462	8477	GGAAGTCCTCTGGCTC	98	1554
1062213	1001	1016	N/A	N/A	GTCGGATGATGCCACA	85	1555
1062245	1124	1139	11280	11295	TCCATGGCTACCCCAC	115	1556
1062277	1368	1383	13778	13793	CCACCGCACAAAGCA	114	1557
1062309	1485	1500	13895	13910	TTCCTTGATCTTGAGG	89	1558
1062341	1791	1806	14201	14216	TGCGAGCAGCTGAGGC	72	1559
1062373	1907	1922	14317	14332	AGGTTGTTTGAGTGTA	8	1560
1062405	2078	2093	14488	14503	TTGGGACCTCAGATCC	72	1561
1062437	2285	2300	N/A	N/A	GCAGTCTAAGCTGAGG	66	1562
1062469	N/A	N/A	8332	8347	GATAGGAGGCGAGGA	128	1563
1062501	N/A	N/A	13648	13663	CTCCCCAATGTGCCTA	87	1564
1062533	N/A	N/A	663	678	GCTGGGTACATCCCAC	127	1565
1062565	N/A	N/A	746	761	CATTAAGTACTTCACC	104	1566
1062597	N/A	N/A	1007	1022	GATGGCGGGAGAAAGA	96	1567
1062629	N/A	N/A	1185	1200	AGCTCTAGGCTGGATG	108	1568
1062661	N/A	N/A	1297	1312	CCCGGCACCTTGCAAT	87	1569
1062694	N/A	N/A	1399	1414	CTAAACTACGGTTGAC	107	1570
1062726	N/A	N/A	1613	1628	GTTAATTGAATAAAGC	113	1571
1062758	N/A	N/A	1797	1812	CCCTTTTCAGGAATCC	81	1572
1062790	N/A	N/A	1918	1933	TAATACTCACCTAGGG	99	1573
1062822	N/A	N/A	2109	2124	TGGCAAATCAATAAGG	95	1574
1062854	N/A	N/A	2316	2331	CAAGTAGGAAAGGACT	101	1575
1062886	N/A	N/A	2460	2475	TCACACATAGGGCTTG	59	1576
1062918	N/A	N/A	2649	2664	CCATTCAAGATATAAG	50	1577
1062950	N/A	N/A	2804	2819	AACTGGAGGACCATGG	115	1578
1062982	N/A	N/A	3017	3032	TCAACTGATGCTGCCT	53	1579
1063014	N/A	N/A	3181	3196	TAGGGATACATAGAGA	121	1580
			•				-

1063046	N/A	N/A	3308	3323	ACTGAGCACGGAGAGG	100	1581
1063078	N/A	N/A	3562	3577	CCCCACACTGTGATCG	76	1582
1063110	N/A	N/A	3754	3769	CGCCAATACAGAGCCC	109	1583
1063142	N/A	N/A	3987	4002	CTCCTTGGAACCATCT	56	1584
1063174	N/A	N/A	4163	4178	CAGGCTCCACAGATAC	85	1585
1063206	N/A	N/A	4369	4384	AGGGCAGATACCCCAC	158	1586
1063237	N/A	N/A	4454	4469	CCCCGACTTGCCCAG	32	1587
1063269	N/A	N/A	4662	4677	AAGCATAGATACATTC	69	1588
1063301	N/A	N/A	4806	4821	ATACCGATTTCGGTGC	119	1589
1063333	N/A	N/A	5163	5178	TTAAGTTCTTAGTCTC	39	1590
1063365	N/A	N/A	5423	5438	GACTTGAGAACTCCAC	110	1591
1063397	N/A	N/A	5613	5628	TTGAAAGCCCTCCACA	119	1592
1063429	N/A	N/A	5826	5841	ACGGATCCAGCATGGC	35	1593
1063461	N/A	N/A	5936	5951	AGACATGAAGAGTCTG	114	1594
1063493	N/A	N/A	6048	6063	AGTCAAAGTGACATGG	71	1595
1063525	N/A	N/A	6202	6217	AGGAGGCTATTGTAAC	85	1596
1063557	N/A	N/A	6401	6416	TGAGGGCAATGGTTGT	79	1597
1063589	N/A	N/A	6636	6651	ACTCGACCACCTGAGC	140	1598
1063621	N/A	N/A	7043	7058	ACCCAGAAACCACTTC	112	1599
1063653	N/A	N/A	7311	7326	TGGAGATCGAGTAACT	23	1600
1063685	N/A	N/A	7559	7574	CCATACCTGGTGCATG	117	1601
1063717	N/A	N/A	7888	7903	CAGAGTACTGCAATTC	73	1602
1063749	N/A	N/A	8029	8044	TCGCAGGTGCTGACAT	97	1603
1063781	N/A	N/A	8185	8200	ACCTATGGAGGCTGTG	78	1604
1063812	N/A	N/A	8662	8677	AGGTCGAGAGAAGCTA	131	1605
1063844	N/A	N/A	8888	8903	TTGGGAACAGTGGAAT	119	1606
1063876	N/A	N/A	9228	9243	CTGCATGTCAGGCCTG	85	1607
1063908	N/A	N/A	9543	9558	TTGCGCACTATCCCTA	51	1608
1063940	N/A	N/A	9794	9809	GGTCGCTCACCACAGA	73	1609
1063972	N/A	N/A	10373	10388	CATAGCTGGTCCTGCT	61	1610
1064004	N/A	N/A	10621	10636	ATAGGGCTCTTTACCA	83	1611
1064036	N/A	N/A	11306	11321	CCATTCTTACCTGGGA	110	1612

1064068	N/A	N/A	11465	11480	CGAAAGGAAGCTTTTG	152	1613
1064100	N/A	N/A	11585	11600	TGGCCGAATATAGTAG	90	1614
1064134	N/A	N/A	11667	11682	GGCGAATCCACCCCGA	96	1615
1064166	N/A	N/A	11777	11792	CCAAAGGATGCAAGAG	115	1616
1064198	N/A	N/A	11867	11882	ACCTGACATAAGTTGT	119	1617
1064230	N/A	N/A	11942	11957	TACAAGGTGAGTCTAC	140	1618
1064262	N/A	N/A	12092	12107	CTTACCCAGCGGATGA	62	1619
1064294	N/A	N/A	12330	12345	TAGGGTCAGAATTTGG	60	1620
1064326	N/A	N/A	12461	12476	GAAGGAGTTAGAGTAA	140	1621
1064358	N/A	N/A	12652	12667	GCTAGGATGAAGGTTC	87	1622
1064390	N/A	N/A	12850	12865	GGGTTCGGTGTGGAGT	81	1623
1064422	N/A	N/A	13019	13034	GTGGGTTAAGAGTCAG	127	1624
1064454	N/A	N/A	13329	13344	CAGGACTAGATGTGGG	100	1625

Таблица 26Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	179	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	51	65
1062022	53	68	453	468	GCTGTACGGTGTGGAA	59	1626
1062054	177	192	6715	6730	GCATCGGGTCCTTGTC	112	1627
1062086	332	347	6870	6885	CCCGCCTCGAAGATCT	31	1628
1062118	495	510	N/A	N/A	TTGAGAGCTGGTGCAT	153	1629
1062150	675	690	8252	8267	GCAGTGCCGGCTCCCT	45	1630
1062182	819	834	8465	8480	TGAGGAAGTCCTCTGG	124	1631
1062214	1002	1017	N/A	N/A	TGTCGGATGATGCCAC	56	1632
1062246	1141	1156	N/A	N/A	TCTGGGAATGTGCTGT	43	1633
1062278	1369	1384	13779	13794	TCCACCCGCACAAAGC	76	1634

1062310	1513	1528	13923	13938	AGTTTGGCCCCTGTTC	23	1635
1062342	1793	1808	14203	14218	TGTGCGAGCAGCTGAG	36	1636
1062374	1910	1925	14320	14335	TTGAGGTTGTTTGAGT	51	1637
1062406	2081	2096	14491	14506	GTGTTGGGACCTCAGA	42	1638
1062438	2296	2311	N/A	N/A	GTAGTTCCTCTGCAGT	59	1639
1062470	N/A	N/A	8333	8348	GGATAGGAGGCGAGG	31	1640
1062502	N/A	N/A	13649	13664	CCTCCCCAATGTGCCT	56	1641
1062534	N/A	N/A	664	679	AGCTGGGTACATCCCA	106	1642
1062566	N/A	N/A	747	762	GCATTAAGTACTTCAC	22	1643
1062598	N/A	N/A	1009	1024	CAGATGGCGGGAGAAA	165	1644
1062630	N/A	N/A	1188	1203	CAAAGCTCTAGGCTGG	87	1645
1062662	N/A	N/A	1299	1314	GCCCGGCACCTTGCA	46	1646
1062695	N/A	N/A	1400	1415	GCTAAACTACGGTTGA	40	1647
1062727	N/A	N/A	1630	1645	GCTTCAAAAACACTAC	104	1648
1062759	N/A	N/A	1803	1818	GCAACTCCCTTTTCAG	54	1649
1062791	N/A	N/A	1919	1934	ATAATACTCACCTAGG	49	1650
1062823	N/A	N/A	2110	2125	GTGGCAAATCAATAAG	32	1651
1062855	N/A	N/A	2337	2352	GGTGAACATTTATCTC	62	1652
1062887	N/A	N/A	2462	2477	AATCACACATAGGGCT	145	1653
1062919	N/A	N/A	2655	2670	CCAGATCCATTCAAGA	47	1654
1062951	N/A	N/A	2805	2820	AAACTGGAGGACCATG	95	1655
1062983	N/A	N/A	3018	3033	TTCAACTGATGCTGCC	72	1656
1063015	N/A	N/A	3182	3197	ATAGGGATACATAGAG	86	1657
1063047	N/A	N/A	3316	3331	CCTTCTACACTGAGCA	40	1658
1063079	N/A	N/A	3584	3599	GCCCAGCTCTTGTGAG	117	1659
1063111	N/A	N/A	3755	3770	TCGCCAATACAGAGCC	90	1660
1063143	N/A	N/A	3991	4006	CAAACTCCTTGGAACC	58	1661
1063175	N/A	N/A	4181	4196	AGCTCTGAGAGTGCCA	125	1662
1063207	N/A	N/A	4370	4385	GAGGGCAGATACCCCA	29	1663
1063238	N/A	N/A	4455	4470	GCCCCGACTTGCCCA	16	1664
1063270	N/A	N/A	4665	4680	GCAAAGCATAGATACA	35	1665
1063302	N/A	N/A	4807	4822	AATACCGATTTCGGTG	129	1666

1063334	N/A	N/A	5164	5179	ATTAAGTTCTTAGTCT	82	1667
1063366	N/A	N/A	5424	5439	TGACTTGAGAACTCCA	136	1668
1063398	N/A	N/A	5614	5629	CTTGAAAGCCCTCCAC	133	1669
1063430	N/A	N/A	5827	5842	CACGGATCCAGCATGG	135	1670
1063462	N/A	N/A	5939	5954	GATAGACATGAAGAGT	65	1671
1063494	N/A	N/A	6075	6090	AGCTTGGATGTAGTGG	88	1672
1063526	N/A	N/A	6203	6218	GAGGAGGCTATTGTAA	87	1673
1063558	N/A	N/A	6402	6417	ATGAGGGCAATGGTTG	42	1674
1063590	N/A	N/A	6637	6652	TACTCGACCACCTGAG	101	1675
1063622	N/A	N/A	7056	7071	AGACTTGCCTGGGACC	135	1676
1063654	N/A	N/A	7312	7327	ATGGAGATCGAGTAAC	13	1677
1063686	N/A	N/A	7560	7575	TCCATACCTGGTGCAT	73	1678
1063718	N/A	N/A	7906	7921	CCTGACACCTTTGACC	49	1679
1063750	N/A	N/A	8030	8045	TTCGCAGGTGCTGACA	64	1680
1063782	N/A	N/A	8212	8227	GTTGATCCCTGTGGGT	54	1681
1063813	N/A	N/A	8680	8695	ATACATACGAGAAAAC	59	1682
1063845	N/A	N/A	8892	8907	AACTTTGGGAACAGTG	71	1683
1063877	N/A	N/A	9251	9266	TAACACATGCCCCTCA	98	1684
1063909	N/A	N/A	9545	9560	TTTTGCGCACTATCCC	86	1685
1063941	N/A	N/A	9820	9835	TCTGAGTCTGCCACCA	35	1686
1063973	N/A	N/A	10374	10389	ACATAGCTGGTCCTGC	35	1687
1064005	N/A	N/A	10622	10637	AATAGGGCTCTTTACC	55	1688
1064037	N/A	N/A	11308	11323	GACCATTCTTACCTGG	58	1689
1064069	N/A	N/A	11466	11481	CCGAAAGGAAGCTTTT	95	1690
1064102	N/A	N/A	11592	11607	CTTCTGATGGCCGAAT	86	1691
1064135	N/A	N/A	11668	11683	GGGCGAATCCACCCCG	81	1692
1064167	N/A	N/A	11778	11793	ACCAAAGGATGCAAGA	136	1693
1064199	N/A	N/A	11868	11883	CACCTGACATAAGTTG	195	1694
1064231	N/A	N/A	11943	11958	CTACAAGGTGAGTCTA	56	1695
1064263	N/A	N/A	12093	12108	GCTTACCCAGCGGATG	165*	1696
1064295	N/A	N/A	12331	12346	TTAGGGTCAGAATTTG	155	1697
1064327	N/A	N/A	12462	12477	GGAAGGAGTTAGAGTA	129	1698

1064359	N/A	N/A	12653	12668	CGCTAGGATGAAGGTT	126	1699
1064391	N/A	N/A	12864	12879	TGAGGTTAGTTGTGGG	22	1700
1064423	N/A	N/A	13020	13035	GGTGGGTTAAGAGTCA	141	1701
1064455	N/A	N/A	13330	13345	ACAGGACTAGATGTGG	65	1702

Таблица 27Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
582998	N/A	N/A	8468	8483	ACTTGAGGAAGTCCTC	105	1703
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	90	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	28	65
1062023	56	71	456	471	CACGCTGTACGGTGTG	104	1704
1062055	204	219	6742	6757	CCGAGGGCTTGCCAGG	94	1705
1062087	333	348	6871	6886	CCCCGCCTCGAAGATC	28	1706
1062119	496	511	N/A	N/A	GTTGAGAGCTGGTGCA	82	1707
1062151	680	695	8257	8272	GCAGAGCAGTGCCGGC	82	1708
1062183	820	835	8466	8481	TTGAGGAAGTCCTCTG	56	1709
1062215	1003	1018	N/A	N/A	TTGTCGGATGATGCCA	75	1710
1062247	1151	1166	N/A	N/A	GTGGAGGAACTCTGGG	26	1711
1062279	1370	1385	13780	13795	CTCCACCCGCACAAAG	54	1712
1062311	1514	1529	13924	13939	CAGTTTGGCCCCTGTT	59	1713
1062343	1794	1809	14204	14219	CTGTGCGAGCAGCTGA	57	1714
1062375	1913	1928	14323	14338	GCTTTGAGGTTGTTTG	22	1715
1062407	2082	2097	14492	14507	CGTGTTGGGACCTCAG	22	1716
1062439	2298	2313	N/A	N/A	GAGTAGTTCCTCTGCA	32	1717
1062471	N/A	N/A	8354	8369	GACAGAGGGTGTCAGG	114	1718
1062503	N/A	N/A	13650	13665	TCCTCCCCAATGTGCC	57	1719
1062535	N/A	N/A	666	681	GTAGCTGGGTACATCC	46	1720

1062567	N/A	N/A	753	768	GCCCATGCATTAAGTA	83	1721
1062599	N/A	N/A	1010	1025	ACAGATGGCGGGAGAA	123	1722
1062631	N/A	N/A	1189	1204	ACAAAGCTCTAGGCTG	92	1723
1062663	N/A	N/A	1312	1327	AAGTGCTCAGCTTGCC	70	1724
1062696	N/A	N/A	1401	1416	AGCTAAACTACGGTTG	76	1725
1062728	N/A	N/A	1683	1698	GAGGACAGTCTTGTCC	96	1726
1062760	N/A	N/A	1821	1836	CACGCCCCTTTGCCC	27	1727
1062792	N/A	N/A	1920	1935	AATAATACTCACCTAG	111	1728
1062824	N/A	N/A	2113	2128	GCTGTGGCAAATCAAT	59	1729
1062856	N/A	N/A	2341	2356	CATAGGTGAACATTTA	47	1730
1062888	N/A	N/A	2478	2493	TAAGTGCCTGGCTAAA	70	1731
1062920	N/A	N/A	2656	2671	CCCAGATCCATTCAAG	48	1732
1062952	N/A	N/A	2806	2821	CAAACTGGAGGACCAT	113	1733
1062984	N/A	N/A	3019	3034	GTTCAACTGATGCTGC	41	1734
1063016	N/A	N/A	3183	3198	GATAGGGATACATAGA	92	1735
1063048	N/A	N/A	3317	3332	CCCTTCTACACTGAGC	48	1736
1063080	N/A	N/A	3591	3606	TCACCTAGCCCAGCTC	75	1737
1063112	N/A	N/A	3756	3771	TTCGCCAATACAGAGC	47	1738
1063144	N/A	N/A	3994	4009	GTCCAAACTCCTTGGA	104	1739
1063176	N/A	N/A	4189	4204	AGGTTTGAAGCTCTGA	33	1740
1063208	N/A	N/A	4371	4386	AGAGGCAGATACCCC	83	1741
1063239	N/A	N/A	4456	4471	AGCCCCGACTTGCCC	44	1742
1063271	N/A	N/A	4666	4681	AGCAAAGCATAGATAC	49	1743
1063303	N/A	N/A	4808	4823	TAATACCGATTTCGGT	110	1744
1063335	N/A	N/A	5165	5180	TATTAAGTTCTTAGTC	47	1745
1063367	N/A	N/A	5426	5441	AGTGACTTGAGAACTC	67	1746
1063399	N/A	N/A	5616	5631	ACCTTGAAAGCCCTCC	28	1747
1063431	N/A	N/A	5828	5843	GCACGGATCCAGCATG	85	1748
1063463	N/A	N/A	5942	5957	GTAGATAGACATGAAG	59	1749
1063495	N/A	N/A	6076	6091	CAGCTTGGATGTAGTG	55	1750
1063527	N/A	N/A	6235	6250	AGATTCATCTGGCTGC	46	1751
1063559	N/A	N/A	6403	6418	TATGAGGGCAATGGTT	77	1752

1063591	N/A	N/A	6638	6653	ATACTCGACCACCTGA	76	1753
1063623	N/A	N/A	7060	7075	TCACAGACTTGCCTGG	83	1754
1063655	N/A	N/A	7331	7346	CGTATGGAAACTGAGG	19	1755
1063687	N/A	N/A	7562	7577	CGTCCATACCTGGTGC	94	1756
1063719	N/A	N/A	7907	7922	ACCTGACACCTTTGAC	89	1757
1063751	N/A	N/A	8031	8046	ATTCGCAGGTGCTGAC	64	1758
1063814	N/A	N/A	8682	8697	TTATACATACGAGAAA	108	1759
1063846	N/A	N/A	8895	8910	TAGAACTTTGGGAACA	73	1760
1063878	N/A	N/A	9253	9268	CTTAACACATGCCCCT	82	1761
1063910	N/A	N/A	9551	9566	AGAAGGTTTTGCGCAC	20	1762
1063942	N/A	N/A	9866	9881	GTTAGGTTCCCTGCAC	68	1763
1063974	N/A	N/A	10375	10390	TACATAGCTGGTCCTG	34	1764
1064006	N/A	N/A	10623	10638	GAATAGGGCTCTTTAC	87	1765
1064038	N/A	N/A	11309	11324	GGACCATTCTTACCTG	104	1766
1064070	N/A	N/A	11467	11482	CCCGAAAGGAAGCTTT	65	1767
1064103	N/A	N/A	11594	11609	CCCTTCTGATGGCCGA	28	1768
1064136	N/A	N/A	11669	11684	CGGGCGAATCCACCCC	110	1769
1064168	N/A	N/A	11779	11794	CACCAAAGGATGCAAG	109	1770
1064200	N/A	N/A	11869	11884	GCACCTGACATAAGTT	77	1771
1064232	N/A	N/A	11944	11959	CCTACAAGGTGAGTCT	100	1772
1064264	N/A	N/A	12094	12109	TGCTTACCCAGCGGAT	107*	1773
1064296	N/A	N/A	12333	12348	GTTTAGGGTCAGAATT	105	1774
1064328	N/A	N/A	12463	12478	GGGAAGGAGTTAGAGT	107	1775
1064360	N/A	N/A	12654	12669	GCGCTAGGATGAAGGT	102	1776
1064392	N/A	N/A	12866	12881	GATGAGGTTAGTTGTG	93	1777
1064424	N/A	N/A	13041	13056	CAACTTAAGGGTCAGG	86	1778
1064456	N/A	N/A	13331	13346	GACAGGACTAGATGTG	91	1779

Таблица 28Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	90	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	39	65
1062024	58	73	458	473	ACCACGCTGTACGGTG	92	1780
1062056	205	220	6743	6758	GCCGAGGGCTTGCCAG	103	1781
1062088	334	349	6872	6887	GCCCGCCTCGAAGAT	56	1782
1062120	498	513	N/A	N/A	CCGTTGAGAGCTGGTG	68	1783
1062152	682	697	8259	8274	GTGCAGAGCAGTGCCG	78	1784
1062184	822	837	N/A	N/A	GCTTGAGGAAGTCCTC	79	1785
1062216	1004	1019	11160	11175	CTTGTCGGATGATGCC	49	1786
1062248	1157	1172	12027	12042	CATGTTGTGGAGGAAC	69	1787
1062280	1372	1387	13782	13797	CTCTCCACCCGCACAA	67	1788
1062312	1515	1530	13925	13940	CCAGTTTGGCCCCTGT	88	1789
1062344	1795	1810	14205	14220	TCTGTGCGAGCAGCTG	43	1790
1062376	1915	1930	14325	14340	CAGCTTTGAGGTTGTT	30	1791
1062408	2105	2120	14515	14530	CAGGCCGTGTGTGA	64	1792
1062440	2299	2314	N/A	N/A	TGAGTAGTTCCTCTGC	56	1793
1062472	N/A	N/A	13560	13575	GAGGAGCTCACCTTCC	106	1794
1062504	N/A	N/A	13655	13670	CCCGTTCCTCCCAAT	34	1795
1062536	N/A	N/A	668	683	CGGTAGCTGGGTACAT	36	1796
1062568	N/A	N/A	755	770	CTGCCCATGCATTAAG	70	1797
1062600	N/A	N/A	1011	1026	GACAGATGGCGGGAGA	98	1798
1062632	N/A	N/A	1190	1205	TACAAAGCTCTAGGCT	82	1799
1062664	N/A	N/A	1314	1329	TTAAGTGCTCAGCTTG	77	1800
1062697	N/A	N/A	1402	1417	CAGCTAAACTACGGTT	86	1801
1062729	N/A	N/A	1684	1699	TGAGGACAGTCTTGTC	69	1802

1062761	N/A	N/A	1827	1842	AAAATGCACGCCCCCT	36	1803
1062793	N/A	N/A	1997	2012	GTAATCACAAGATGCA	56	1804
1062825	N/A	N/A	2120	2135	ATAAAGAGCTGTGGCA	81	1805
1062857	N/A	N/A	2345	2360	CCAACATAGGTGAACA	2	1806
1062889	N/A	N/A	2479	2494	TTAAGTGCCTGGCTAA	73	1807
1062921	N/A	N/A	2668	2683	TACCCTAAAATGCCCA	55	1808
1062953	N/A	N/A	2807	2822	TCAAACTGGAGGACCA	112	1809
1062985	N/A	N/A	3024	3039	GGCTGGTTCAACTGAT	50	1810
1063017	N/A	N/A	3184	3199	AGATAGGGATACATAG	89	1811
1063049	N/A	N/A	3318	3333	GCCCTTCTACACTGAG	32	1812
1063081	N/A	N/A	3592	3607	CTCACCTAGCCCAGCT	103	1813
1063113	N/A	N/A	3757	3772	CTTCGCCAATACAGAG	74	1814
1063145	N/A	N/A	4023	4038	CTCAGTATGTGTAGGC	35	1815
1063177	N/A	N/A	4190	4205	CAGGTTTGAAGCTCTG	73	1816
1063209	N/A	N/A	4372	4387	AAGAGGCAGATACCC	81	1817
1063240	N/A	N/A	4457	4472	CAGCCCCGACTTGCC	65	1818
1063272	N/A	N/A	4668	4683	TCAGCAAAGCATAGAT	77	1819
1063304	N/A	N/A	4809	4824	CTAATACCGATTTCGG	93	1820
1063336	N/A	N/A	5166	5181	GTATTAAGTTCTTAGT	71	1821
1063368	N/A	N/A	5428	5443	ATAGTGACTTGAGAAC	101	1822
1063400	N/A	N/A	5617	5632	CACCTTGAAAGCCCTC	35	1823
1063432	N/A	N/A	5829	5844	TGCACGGATCCAGCAT	123	1824
1063464	N/A	N/A	5943	5958	TGTAGATAGACATGAA	67	1825
1063496	N/A	N/A	6094	6109	GATCAGGAGCAGTGCT	93	1826
1063528	N/A	N/A	6251	6266	TAGGCATGGACTCAAA	78	1827
1063560	N/A	N/A	6404	6419	CTATGAGGGCAATGGT	82	1828
1063592	N/A	N/A	6639	6654	GATACTCGACCACCTG	66	1829
1063624	N/A	N/A	7066	7081	CATAAGTCACAGACTT	93	1830
1063656	N/A	N/A	7352	7367	TATGATCATCCCCCTT	73	1831
1063688	N/A	N/A	7563	7578	CCGTCCATACCTGGTG	89	1832
1063720	N/A	N/A	7908	7923	GACCTGACACCTTTGA	60	1833
1063752	N/A	N/A	8032	8047	CATTCGCAGGTGCTGA	70	1834

1063783	N/A	N/A	8469	8484	CACTTGAGGAAGTCCT	92	1835
1063815	N/A	N/A	8683	8698	ATTATACATACGAGAA	90	1836
1063847	N/A	N/A	8899	8914	GAGCTAGAACTTTGGG	80	1837
1063879	N/A	N/A	9254	9269	CCTTAACACATGCCCC	59	1838
1063911	N/A	N/A	9553	9568	ACAGAAGGTTTTGCGC	57	1839
1063943	N/A	N/A	9867	9882	GGTTAGGTTCCCTGCA	56	1840
1063975	N/A	N/A	10376	10391	TTACATAGCTGGTCCT	36	1841
1064007	N/A	N/A	10624	10639	TGAATAGGGCTCTTTA	84	1842
1064039	N/A	N/A	11311	11326	AAGGACCATTCTTACC	135	1843
1064071	N/A	N/A	11468	11483	TCCCGAAAGGAAGCTT	64	1844
1064105	N/A	N/A	11602	11617	GGGTCCCTCCCTTCTG	69	1845
1064137	N/A	N/A	11670	11685	TCGGGCGAATCCACCC	88	1846
1064169	N/A	N/A	11782	11797	GCACACCAAAGGATGC	110	1847
1064201	N/A	N/A	11870	11885	AGCACCTGACATAAGT	81	1848
1064233	N/A	N/A	11945	11960	CCCTACAAGGTGAGTC	79	1849
1064265	N/A	N/A	12095	12110	CTGCTTACCCAGCGGA	93*	1850
1064297	N/A	N/A	12334	12349	GGTTTAGGGTCAGAAT	51	1851
1064329	N/A	N/A	12477	12492	TGGCATAAAGGCTGGG	48	1852
1064361	N/A	N/A	12682	12697	GTGAGGTTCAGGTTTG	54	1853
1064393	N/A	N/A	12867	12882	GGATGAGGTTAGTTGT	98	1854
1064425	N/A	N/A	13043	13058	GCCAACTTAAGGGTCA	68	1855
1064457	N/A	N/A	13332	13347	GGACAGGACTAGATGT	91	1856

Таблица 29Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	143	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	53	65

1062025	60	75	460	475	AAACCACGCTGTACGG	143	1857
1062057	206	221	6744	6759	GGCCGAGGGCTTGCCA	88	1858
1062089	337	352	6875	6890	TGGGCCCCGCCTCGAA	232	1859
1062121	499	514	N/A	N/A	ACCGTTGAGAGCTGGT	423	1860
1062153	693	708	8270	8285	GATTTGGGAAGGTGCA	138	1861
1062185	824	839	N/A	N/A	GTGCTTGAGGAAGTCC	305	1862
1062217	1006	1021	11162	11177	CCCTTGTCGGATGATG	97	1863
1062249	1159	1174	12029	12044	TCCATGTTGTGGAGGA	448*	1864
1062281	1376	1391	13786	13801	CTCGCTCTCCACCCGC	69	1865
1062313	1516	1531	13926	13941	ACCAGTTTGGCCCCTG	127	1866
1062345	1796	1811	14206	14221	ATCTGTGCGAGCAGCT	69	1867
1062377	1917	1932	14327	14342	TGCAGCTTTGAGGTTG	52	1868
1062409	2107	2122	14517	14532	AACAGGCCGTGTGTGT	67	1869
1062441	2300	2315	N/A	N/A	ATGAGTAGTTCCTCTG	47	1870
1062473	N/A	N/A	13561	13576	AGAGGAGCTCACCTTC	139	1871
1062505	N/A	N/A	13656	13671	TCCCGTTCCTCCCAA	110	1872
1062537	N/A	N/A	669	684	ACGGTAGCTGGGTACA	141	1873
1062569	N/A	N/A	785	800	ATCAATTGATGAATTC	64	1874
1062601	N/A	N/A	1012	1027	AGACAGATGGCGGGAG	71	1875
1062633	N/A	N/A	1191	1206	GTACAAAGCTCTAGGC	40	1876
1062665	N/A	N/A	1315	1330	GTTAAGTGCTCAGCTT	146	1877
1062698	N/A	N/A	1409	1424	GTCCACACAGCTAAAC	75	1878
1062730	N/A	N/A	1686	1701	TGTGAGGACAGTCTTG	520	1879
1062762	N/A	N/A	1829	1844	TAAAAATGCACGCCCC	70	1880
1062794	N/A	N/A	1998	2013	AGTAATCACAAGATGC	201	1881
1062826	N/A	N/A	2121	2136	AATAAAGAGCTGTGGC	144	1882
1062858	N/A	N/A	2346	2361	GCCAACATAGGTGAAC	147	1883
1062890	N/A	N/A	2480	2495	GTTAAGTGCCTGGCTA	59	1884
1062922	N/A	N/A	2670	2685	TATACCCTAAAATGCC	63	1885
1062954	N/A	N/A	2808	2823	TTCAAACTGGAGGACC	166	1886
1062986	N/A	N/A	3026	3041	CTGGCTGGTTCAACTG	65	1887
1063018	N/A	N/A	3185	3200	GAGATAGGGATACATA	149	1888

1063050	N/A	N/A	3323	3338	AATTTGCCCTTCTACA	98	1889
1063082	N/A	N/A	3610	3625	ACCTATGGAGTCCGGG	57	1890
1063114	N/A	N/A	3758	3773	CCTTCGCCAATACAGA	410	1891
1063146	N/A	N/A	4024	4039	TCTCAGTATGTGTAGG	57	1892
1063178	N/A	N/A	4191	4206	CCAGGTTTGAAGCTCT	33	1893
1063210	N/A	N/A	4373	4388	GAAGAGGCAGATACC	239	1894
1063241	N/A	N/A	4460	4475	TCACAGCCCCGACTT	317	1895
1063273	N/A	N/A	4674	4689	CCTGACTCAGCAAAGC	238	1896
1063305	N/A	N/A	4810	4825	ACTAATACCGATTTCG	97	1897
1063337	N/A	N/A	5169	5184	CAGGTATTAAGTTCTT	67	1898
1063369	N/A	N/A	5429	5444	CATAGTGACTTGAGAA	379	1899
1063401	N/A	N/A	5618	5633	TCACCTTGAAAGCCCT	67	1900
1063433	N/A	N/A	5830	5845	ATGCACGGATCCAGCA	76	1901
1063465	N/A	N/A	5956	5971	GCAAAAGTGCAGGTGT	127	1902
1063497	N/A	N/A	6097	6112	CTGGATCAGGAGCAGT	533	1903
1063529	N/A	N/A	6254	6269	GACTAGGCATGGACTC	62	1904
1063561	N/A	N/A	6405	6420	TCTATGAGGGCAATGG	283	1905
1063593	N/A	N/A	6640	6655	AGATACTCGACCACCT	243	1906
1063625	N/A	N/A	7067	7082	GCATAAGTCACAGACT	121	1907
1063657	N/A	N/A	7354	7369	GCTATGATCATCCCCC	90	1908
1063689	N/A	N/A	7565	7580	CACCGTCCATACCTGG	461	1909
1063721	N/A	N/A	7909	7924	AGACCTGACACCTTTG	41	1910
1063753	N/A	N/A	8033	8048	CCATTCGCAGGTGCTG	164	1911
1063784	N/A	N/A	8470	8485	TCACTTGAGGAAGTCC	117	1912
1063816	N/A	N/A	8685	8700	TTATTATACATACGAG	214	1913
1063848	N/A	N/A	8900	8915	GGAGCTAGAACTTTGG	208	1914
1063880	N/A	N/A	9361	9376	GCTCAATGCTCTGAAT	93	1915
1063912	N/A	N/A	9554	9569	GACAGAAGGTTTTGCG	28	1916
1063944	N/A	N/A	9869	9884	GAGGTTAGGTTCCCTG	63	1917
1063976	N/A	N/A	10377	10392	GTTACATAGCTGGTCC	28	1918
1064008	N/A	N/A	10626	10641	GTTGAATAGGGCTCTT	51	1919
1064040	N/A	N/A	11312	11327	CAAGGACCATTCTTAC	78	1920

1064072	N/A	N/A	11469	11484	ATCCCGAAAGGAAGCT	68	1921
1064106	N/A	N/A	11607	11622	TAGCAGGGTCCCTCCC	177	1922
1064138	N/A	N/A	11671	11686	CTCGGGCGAATCCACC	74	1923
1064170	N/A	N/A	11790	11805	AGTAACTTGCACACCA	81	1924
1064202	N/A	N/A	11871	11886	GAGCACCTGACATAAG	215	1925
1064234	N/A	N/A	11946	11961	CCCCTACAAGGTGAGT	70	1926
1064266	N/A	N/A	12096	12111	CCTGCTTACCCAGCGG	62*	1927
1064298	N/A	N/A	12336	12351	TAGGTTTAGGGTCAGA	27	1928
1064330	N/A	N/A	12478	12493	TTGGCATAAAGGCTGG	55	1929
1064362	N/A	N/A	12683	12698	GGTGAGGTTCAGGTTT	82	1930
1064394	N/A	N/A	12868	12883	AGGATGAGGTTAGTTG	199	1931
1064426	N/A	N/A	13044	13059	GGCCAACTTAAGGGTC	98	1932
1064458	N/A	N/A	13334	13349	AGGGACAGGACTAGAT	109	1933

Таблица 30Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	162	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	55	65
1062026	61	76	461	476	AAAACCACGCTGTACG	70	1934
1062058	246	261	6784	6799	TGGGCGAGGCTCCTGG	70	1935
1062090	342	357	6880	6895	AGGCATGGGCCCCGCC	53	1936
1062122	501	516	7664	7679	CCACCGTTGAGAGCTG	140	1937
1062154	702	717	8279	8294	GTGCACTGGGATTTGG	82	1938
1062186	826	841	N/A	N/A	CAGTGCTTGAGGAAGT	51	1939
1062218	1007	1022	11163	11178	GCCCTTGTCGGATGAT	92	1940
1062250	1162	1177	12032	12047	TAGTCCATGTTGTGGA	49*	1941
1062282	1377	1392	13787	13802	TCTCGCTCTCCACCCG	71	1942

1062314	1520	1535	13930	13945	TCCCACCAGTTTGGCC	104	1943
1062346	1797	1812	14207	14222	AATCTGTGCGAGCAGC	59	1944
1062378	1919	1934	14329	14344	GATGCAGCTTTGAGGT	19	1945
1062410	2115	2130	14525	14540	TGAATTCTAACAGGCC	40	1946
1062442	2318	2333	N/A	N/A	GCCTTGGATCCCAAAT	57	1947
1062474	N/A	N/A	13562	13577	CAGAGGAGCTCACCTT	131	1948
1062506	N/A	N/A	13658	13673	CATCCCGTTCCTCCCC	64	1949
1062538	N/A	N/A	670	685	CACGGTAGCTGGGTAC	108	1950
1062570	N/A	N/A	788	803	CGTATCAATTGATGAA	17	1951
1062602	N/A	N/A	1014	1029	ACAGACAGATGGCGGG	59	1952
1062634	N/A	N/A	1214	1229	TACTATTATTAAACGC	79	1953
1062666	N/A	N/A	1316	1331	AGTTAAGTGCTCAGCT	52	1954
1062699	N/A	N/A	1411	1426	AGGTCCACACAGCTAA	42	1955
1062731	N/A	N/A	1687	1702	ATGTGAGGACAGTCTT	117	1956
1062763	N/A	N/A	1830	1845	TTAAAAATGCACGCCC	95	1957
1062795	N/A	N/A	2014	2029	GCCAATGAATAGTAAA	110	1958
1062827	N/A	N/A	2125	2140	TCCAAATAAAGAGCTG	97	1959
1062859	N/A	N/A	2347	2362	AGCCAACATAGGTGAA	147	1960
1062891	N/A	N/A	2512	2527	CAGTACATATGAGGAA	19	1961
1062923	N/A	N/A	2672	2687	CATATACCCTAAAATG	220	1962
1062955	N/A	N/A	2809	2824	TTTCAAACTGGAGGAC	70	1963
1062987	N/A	N/A	3029	3044	TCTCTGGCTGGTTCAA	44	1964
1063019	N/A	N/A	3186	3201	AGAGATAGGGATACAT	134	1965
1063051	N/A	N/A	3324	3339	CAATTTGCCCTTCTAC	151	1966
1063083	N/A	N/A	3611	3626	GACCTATGGAGTCCGG	139	1967
1063115	N/A	N/A	3759	3774	GCCTTCGCCAATACAG	54	1968
1063147	N/A	N/A	4032	4047	TCCCAAAGTCTCAGTA	100	1969
1063179	N/A	N/A	4192	4207	CCCAGGTTTGAAGCTC	117	1970
1063211	N/A	N/A	4374	4389	AGAAGAGGCAGATAC	157	1971
1063242	N/A	N/A	4462	4477	TGTCACAGCCCCCGAC	86	1972
1063274	N/A	N/A	4683	4698	GTGGGATGGCCTGACT	148	1973
1063306	N/A	N/A	4811	4826	AACTAATACCGATTTC	129	1974

1063338	N/A	N/A	5170	5185	CCAGGTATTAAGTTCT	49	1975
1063370	N/A	N/A	5430	5445	CCATAGTGACTTGAGA	213	1976
1063402	N/A	N/A	5619	5634	CTCACCTTGAAAGCCC	85	1977
1063434	N/A	N/A	5833	5848	ATCATGCACGGATCCA	154	1978
1063466	N/A	N/A	5957	5972	TGCAAAAGTGCAGGTG	55	1979
1063498	N/A	N/A	6104	6119	TCTGAAGCTGGATCAG	151	1980
1063530	N/A	N/A	6255	6270	TGACTAGGCATGGACT	173	1981
1063562	N/A	N/A	6407	6422	CCTCTATGAGGGCAAT	237	1982
1063594	N/A	N/A	6643	6658	ATGAGATACTCGACCA	60	1983
1063626	N/A	N/A	7069	7084	CTGCATAAGTCACAGA	83	1984
1063658	N/A	N/A	7356	7371	ATGCTATGATCATCCC	26	1985
1063690	N/A	N/A	7568	7583	ATTCACCGTCCATACC	68	1986
1063722	N/A	N/A	7910	7925	GAGACCTGACACCTTT	57	1987
1063754	N/A	N/A	8034	8049	GCCATTCGCAGGTGCT	55	1988
1063785	N/A	N/A	8471	8486	CTCACTTGAGGAAGTC	101	1989
1063817	N/A	N/A	8705	8720	AATAACAGCACAAACG	71	1990
1063849	N/A	N/A	8901	8916	AGGAGCTAGAACTTTG	133	1991
1063881	N/A	N/A	9380	9395	CCACGACAGGCCTGGT	72	1992
1063913	N/A	N/A	9557	9572	GTGGACAGAAGGTTTT	44	1993
1063945	N/A	N/A	9870	9885	TGAGGTTAGGTTCCCT	73	1994
1063977	N/A	N/A	10381	10396	GCAGGTTACATAGCTG	57	1995
1064009	N/A	N/A	10662	10677	CGTATGTGGCCACTGA	56	1996
1064041	N/A	N/A	11313	11328	GCAAGGACCATTCTTA	86	1997
1064073	N/A	N/A	11476	11491	CACGGACATCCCGAAA	74	1998
1064107	N/A	N/A	11608	11623	TTAGCAGGGTCCCTCC	59	1999
1064139	N/A	N/A	11672	11687	GCTCGGGCGAATCCAC	117	2000
1064171	N/A	N/A	11792	11807	GGAGTAACTTGCACAC	89	2001
1064203	N/A	N/A	11883	11898	GTACTGTTTGCTGAGC	31	2002
1064235	N/A	N/A	11966	11981	AGCTAGCTCCCTGTCC	50	2003
1064267	N/A	N/A	12097	12112	CCCTGCTTACCCAGCG	71*	2004
1064299	N/A	N/A	12358	12373	GAGGTGGACATCTGGA	52	2005
1064331	N/A	N/A	12483	12498	TTGGGTTGGCATAAAG	69	2006

1064363	N/A	N/A	12698	12713	CTGGTATCATGTAGGG	53	2007
1064395	N/A	N/A	12869	12884	AAGGATGAGGTTAGTT	74	2008
1064427	N/A	N/A	13045	13060	AGGCCAACTTAAGGGT	74	2009
1064459	N/A	N/A	13337	13352	ATCAGGGACAGGACTA	177	2010

 Таблица 31

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	34	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	16	306
1062027	70	85	470	485	CCGAGAAGAAAAACCA	69	2011
1062059	247	262	6785	6800	CTGGGCGAGGCTCCTG	129	2012
1062091	343	358	6881	6896	GAGGCATGGGCCCCGC	104	2013
1062123	502	517	7665	7680	TCCACCGTTGAGAGCT	85	2014
1062155	710	725	8287	8302	CTTCCTGGGTGCACTG	101	2015
1062187	833	848	N/A	N/A	CGCCTGGCAGTGCTTG	112	2016
1062219	1009	1024	11165	11180	GAGCCCTTGTCGGATG	129	2017
1062251	1164	1179	12034	12049	AGTAGTCCATGTTGTG	45*	2018
1062283	1379	1394	13789	13804	CTTCTCGCTCTCCACC	104	2019
1062315	1523	1538	13933	13948	GCCTCCCACCAGTTTG	61	2020
1062347	1798	1813	14208	14223	TAATCTGTGCGAGCAG	37	2021
1062379	1920	1935	14330	14345	TGATGCAGCTTTGAGG	32	2022
1062411	2128	2143	14538	14553	TGAGATACACAGGTGA	63	2023
1062443	2319	2334	N/A	N/A	GGCCTTGGATCCCAAA	121	2024
1062475	N/A	N/A	13563	13578	TCAGAGGAGCTCACCT	138	2025
1062507	N/A	N/A	13659	13674	ACATCCCGTTCCTCCC	77	2026
1062539	N/A	N/A	671	686	TCACGGTAGCTGGGTA	79	2027
1062571	N/A	N/A	802	817	ATCCTATCCATCTACG	110	2028

1062603	N/A	N/A	1023	1038	AGTGTAGCGACAGACA	129	2029
1062635	N/A	N/A	1215	1230	TTACTATTATTAAACG	128	2030
1062667	N/A	N/A	1317	1332	CAGTTAAGTGCTCAGC	39	2031
1062700	N/A	N/A	1415	1430	GGGTAGGTCCACACAG	40	2032
1062732	N/A	N/A	1688	1703	GATGTGAGGACAGTCT	116	2033
1062764	N/A	N/A	1831	1846	TTTAAAAATGCACGCC	73	2034
1062796	N/A	N/A	2015	2030	GGCCAATGAATAGTAA	101	2035
1062828	N/A	N/A	2138	2153	GGTTAATAACCATTCC	90	2036
1062860	N/A	N/A	2348	2363	AAGCCAACATAGGTGA	64	2037
1062892	N/A	N/A	2523	2538	TATAACCATTGCAGTA	58	2038
1062924	N/A	N/A	2678	2693	CATCATCATATACCCT	113	2039
1062956	N/A	N/A	2813	2828	GGCATTTCAAACTGGA	97	2040
1062988	N/A	N/A	3040	3055	ACATTTGCTGGTCTCT	45	2041
1063020	N/A	N/A	3189	3204	CTGAGAGATAGGGATA	79	2042
1063052	N/A	N/A	3342	3357	CCTGAGATCTCTGGTC	63	2043
1063084	N/A	N/A	3614	3629	CCTGACCTATGGAGTC	100	2044
1063116	N/A	N/A	3845	3860	CGCCAGAGATGGCAAC	103	2045
1063148	N/A	N/A	4039	4054	TCTACGGTCCCAAAGT	65	2046
1063180	N/A	N/A	4193	4208	ACCCAGGTTTGAAGCT	55	2047
1063212	N/A	N/A	4387	4402	ACCACGGAGGAAGAGA	94	2048
1063243	N/A	N/A	4467	4482	CCTGTTGTCACAGCCC	64	2049
1063275	N/A	N/A	4685	4700	ATGTGGGATGGCCTGA	123	2050
1063307	N/A	N/A	4813	4828	CAAACTAATACCGATT	96	2051
1063339	N/A	N/A	5171	5186	TCCAGGTATTAAGTTC	56	2052
1063371	N/A	N/A	5431	5446	CCCATAGTGACTTGAG	83	2053
1063403	N/A	N/A	5626	5641	TATTGTCCTCACCTTG	77	2054
1063435	N/A	N/A	5834	5849	GATCATGCACGGATCC	73	2055
1063467	N/A	N/A	5958	5973	GTGCAAAAGTGCAGGT	117	2056
1063499	N/A	N/A	6105	6120	ATCTGAAGCTGGATCA	99	2057
1063531	N/A	N/A	6257	6272	AGTGACTAGGCATGGA	47	2058
1063563	N/A	N/A	6408	6423	TCCTCTATGAGGGCAA	120	2059
1063595	N/A	N/A	6644	6659	TATGAGATACTCGACC	129	2060
	1	1	I	1	I	1	

1063627	N/A	N/A	7075	7090	CAACATCTGCATAAGT	93	2061
1063659	N/A	N/A	7357	7372	GATGCTATGATCATCC	114	2062
1063691	N/A	N/A	7570	7585	CCATTCACCGTCCATA	110	2063
1063723	N/A	N/A	7911	7926	TGAGACCTGACACCTT	78	2064
1063755	N/A	N/A	8035	8050	GGCCATTCGCAGGTGC	98	2065
1063786	N/A	N/A	8472	8487	ACTCACTTGAGGAAGT	152	2066
1063818	N/A	N/A	8760	8775	GATCAAGACACTTAAC	30	2067
1063850	N/A	N/A	8902	8917	GAGGAGCTAGAACTTT	88	2068
1063882	N/A	N/A	9381	9396	ACCACGACAGGCCTGG	87	2069
1063914	N/A	N/A	9560	9575	ATGGTGGACAGAAGGT	47	2070
1063946	N/A	N/A	9871	9886	GTGAGGTTAGGTTCCC	14	2071
1063978	N/A	N/A	10383	10398	CTGCAGGTTACATAGC	116	2072
1064010	N/A	N/A	10683	10698	TTAGAGCACAGGTGCG	115	2073
1064042	N/A	N/A	11314	11329	TGCAAGGACCATTCTT	110	2074
1064074	N/A	N/A	11478	11493	GCCACGGACATCCCGA	98	2075
1064108	N/A	N/A	11609	11624	CTTAGCAGGGTCCCTC	45	2076
1064140	N/A	N/A	11673	11688	AGCTCGGGCGAATCCA	102	2077
1064172	N/A	N/A	11793	11808	CGGAGTAACTTGCACA	52	2078
1064204	N/A	N/A	11887	11902	ACAGGTACTGTTTGCT	50	2079
1064236	N/A	N/A	11967	11982	TAGCTAGCTCCCTGTC	100	2080
1064268	N/A	N/A	12153	12168	TTGGGAGGCAGGTCCC	85	2081
1064300	N/A	N/A	12359	12374	TGAGGTGGACATCTGG	47	2082
1064332	N/A	N/A	12484	12499	GTTGGGTTGGCATAAA	78	2083
1064364	N/A	N/A	12699	12714	TCTGGTATCATGTAGG	70	2084
1064396	N/A	N/A	12870	12885	CAAGGATGAGGTTAGT	148	2085
1064428	N/A	N/A	13113	13128	GACATTTCAGGGTTGG	71	2086
1064460	N/A	N/A	13338	13353	AATCAGGGACAGGACT	123	2087
		•	•	•		•	•

Таблица 32Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	53	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	16	306
1062028	81	96	481	496	TTGCTTTTATACCGAG	8	2088
1062060	248	263	6786	6801	GCTGGGCGAGGCTCCT	53	2089
1062092	346	361	6884	6899	GAGGAGGCATGGGCCC	74	2090
1062124	503	518	7666	7681	ATCCACCGTTGAGAGC	118	2091
1062156	723	738	N/A	N/A	AAAGGGTGCTGTCCTT	77	2092
1062188	835	850	N/A	N/A	TCCGCCTGGCAGTGCT	83	2093
1062220	1012	1027	11168	11183	CAGGAGCCCTTGTCGG	109	2094
1062252	1165	1180	12035	12050	AAGTAGTCCATGTTGT	44*	2095
1062284	1386	1401	13796	13811	CAGCCCCTTCTCGCT	126	2096
1062316	1551	1566	13961	13976	GCCTATCATCCCTGCC	153	2097
1062348	1801	1816	14211	14226	AAGTAATCTGTGCGAG	36	2098
1062380	1921	1936	14331	14346	ATGATGCAGCTTTGAG	43	2099
1062412	2129	2144	14539	14554	GTGAGATACACAGGTG	45	2100
1062444	2337	2352	N/A	N/A	ACGGTACTGTGGGTTG	36	2101
1062476	N/A	N/A	13569	13584	GCCACCTCAGAGGAGC	141	2102
1062508	N/A	N/A	13665	13680	CAACCCACATCCCGTT	74	2103
1062540	N/A	N/A	672	687	ATCACGGTAGCTGGGT	95	2104
1062572	N/A	N/A	803	818	AATCCTATCCATCTAC	161	2105
1062604	N/A	N/A	1033	1048	AGAGAGTCTGAGTGTA	121	2106
1062636	N/A	N/A	1220	1235	CGACATTACTATTATT	78	2107
1062668	N/A	N/A	1318	1333	TCAGTTAAGTGCTCAG	25	2108
1062701	N/A	N/A	1442	1457	GACTCTGGTCACACAC	88	2109
1062733	N/A	N/A	1701	1716	CAAAGTTCATGCTGAT	58	2110

1062765	N/A	N/A	1842	1857	GGGTCATAAACTTTAA	43	2111
1062797	N/A	N/A	2025	2040	AAGCATGAATGGCCAA	34	2112
1062829	N/A	N/A	2139	2154	AGGTTAATAACCATTC	40	2113
1062861	N/A	N/A	2350	2365	AGAAGCCAACATAGGT	28	2114
1062893	N/A	N/A	2524	2539	TTATAACCATTGCAGT	54	2115
1062925	N/A	N/A	2694	2709	CAGTTTGAAATGTCAC	128	2116
1062957	N/A	N/A	2815	2830	GTGGCATTTCAAACTG	116	2117
1062989	N/A	N/A	3041	3056	AACATTTGCTGGTCTC	23	2118
1063021	N/A	N/A	3193	3208	CTGGCTGAGAGATAGG	52	2119
1063053	N/A	N/A	3355	3370	ATTTCGGTGAGGCCCT	49	2120
1063085	N/A	N/A	3624	3639	AACTAGGCCTCCTGAC	64	2121
1063117	N/A	N/A	3847	3862	TCCGCCAGAGATGGCA	115	2122
1063149	N/A	N/A	4068	4083	CTAGAATCTCAAAACC	133	2123
1063181	N/A	N/A	4196	4211	AGGACCCAGGTTTGAA	105	2124
1063213	N/A	N/A	4388	4403	CACCACGGAGGAAGAG	139	2125
1063244	N/A	N/A	4469	4484	GCCCTGTTGTCACAGC	63	2126
1063276	N/A	N/A	4686	4701	CATGTGGGATGGCCTG	73	2127
1063308	N/A	N/A	4814	4829	ACAAACTAATACCGAT	106	2128
1063340	N/A	N/A	5174	5189	GAATCCAGGTATTAAG	72	2129
1063372	N/A	N/A	5432	5447	TCCCATAGTGACTTGA	53	2130
1063404	N/A	N/A	5627	5642	CTATTGTCCTCACCTT	42	2131
1063436	N/A	N/A	5837	5852	TGTGATCATGCACGGA	35	2132
1063468	N/A	N/A	5999	6014	ACATTACCTGAGATGG	130	2133
1063500	N/A	N/A	6107	6122	TAATCTGAAGCTGGAT	168	2134
1063532	N/A	N/A	6261	6276	CCCCAGTGACTAGGCA	78	2135
1063564	N/A	N/A	6413	6428	ATGTGTCCTCTATGAG	129	2136
1063596	N/A	N/A	6649	6664	GGCGGTATGAGATACT	97	2137
1063628	N/A	N/A	7081	7096	GCCCTGCAACATCTGC	70	2138
1063660	N/A	N/A	7360	7375	GTAGATGCTATGATCA	36	2139
1063692	N/A	N/A	7571	7586	CCCATTCACCGTCCAT	36	2140
1063724	N/A	N/A	7912	7927	CTGAGACCTGACACCT	71	2141
1063756	N/A	N/A	8036	8051	CGGCCATTCGCAGGTG	71	2142

1063787	N/A	N/A	8474	8489	CCACTCACTTGAGGAA	90	2143
1063819	N/A	N/A	8765	8780	ATTTTGATCAAGACAC	52	2144
1063851	N/A	N/A	8904	8919	TAGAGGAGCTAGAACT	90	2145
1063883	N/A	N/A	9396	9411	GATTCCATGCAGGTGA	135	2146
1063915	N/A	N/A	9564	9579	GCACATGGTGGACAGA	20	2147
1063947	N/A	N/A	9872	9887	TGTGAGGTTAGGTTCC	10	2148
1063979	N/A	N/A	10411	10426	CGCCATCTTGAAATCT	45	2149
1064011	N/A	N/A	10684	10699	ATTAGAGCACAGGTGC	82	2150
1064043	N/A	N/A	11315	11330	GTGCAAGGACCATTCT	130	2151
1064075	N/A	N/A	11505	11520	ACTCGAGACCATATGG	111	2152
1064109	N/A	N/A	11610	11625	ACTTAGCAGGGTCCCT	108	2153
1064141	N/A	N/A	11674	11689	GAGCTCGGGCGAATCC	109	2154
1064173	N/A	N/A	11794	11809	GCGGAGTAACTTGCAC	49	2155
1064205	N/A	N/A	11888	11903	CACAGGTACTGTTTGC	51	2156
1064237	N/A	N/A	11968	11983	CTAGCTAGCTCCCTGT	134	2157
1064269	N/A	N/A	12190	12205	GAACCCACTCTGAGGG	134	2158
1064301	N/A	N/A	12360	12375	CTGAGGTGGACATCTG	47	2159
1064333	N/A	N/A	12529	12544	TGTATTGACATACTGG	133	2160
1064365	N/A	N/A	12704	12719	GAATATCTGGTATCAT	141	2161
1064397	N/A	N/A	12871	12886	GCAAGGATGAGGTTAG	107	2162
1064429	N/A	N/A	13152	13167	GTCTGGGATGGAGTTG	64	2163
1064461	N/A	N/A	13339	13354	TAATCAGGGACAGGAC	68	2164

 Таблица 33

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	35	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	23	306

1062029	82	97	482	497	TTTGCTTTTATACCGA	7	2165
1062061	249	264	6787	6802	AGCTGGGCGAGGCTCC	185	2166
1062093	347	362	6885	6900	AGAGGAGGCATGGGCC	36	2167
1062125	505	520	7668	7683	GCATCCACCGTTGAGA	29	2168
1062157	724	739	N/A	N/A	GAAAGGGTGCTGTCCT	266	2169
1062189	842	857	9432	9447	AAGATGGTCCGCCTGG	76	2170
1062221	1014	1029	11170	11185	AGCAGGAGCCCTTGTC	188	2171
1062253	1166	1181	12036	12051	GAAGTAGTCCATGTTG	76*	2172
1062285	1395	1410	13805	13820	CGGTCCACACAGCCCC	99	2173
1062317	1553	1568	13963	13978	GGGCCTATCATCCCTG	103	2174
1062349	1803	1818	14213	14228	TGAAGTAATCTGTGCG	29	2175
1062381	1923	1938	14333	14348	TGATGATGCAGCTTTG	56	2176
1062413	2130	2145	14540	14555	CGTGAGATACACAGGT	11	2177
1062445	2338	2353	N/A	N/A	GACGGTACTGTGGGTT	94	2178
1062477	N/A	N/A	13572	13587	ACCGCCACCTCAGAGG	81	2179
1062509	N/A	N/A	13666	13681	ACAACCCACATCCCGT	43	2180
1062541	N/A	N/A	673	688	AATCACGGTAGCTGGG	72	2181
1062573	N/A	N/A	825	840	CTGGCAGCTGACATAT	148	2182
1062605	N/A	N/A	1034	1049	AAGAGAGTCTGAGTGT	43	2183
1062637	N/A	N/A	1223	1238	CGGCGACATTACTATT	87	2184
1062669	N/A	N/A	1319	1334	TTCAGTTAAGTGCTCA	9	2185
1062702	N/A	N/A	1445	1460	ATGGACTCTGGTCACA	74	2186
1062734	N/A	N/A	1702	1717	TCAAAGTTCATGCTGA	42	2187
1062766	N/A	N/A	1845	1860	AGAGGGTCATAAACTT	71	2188
1062798	N/A	N/A	2055	2070	GACCAGACAACCAAAA	212	2189
1062830	N/A	N/A	2143	2158	TGAAAGGTTAATAACC	36	2190
1062862	N/A	N/A	2351	2366	TAGAAGCCAACATAGG	34	2191
1062894	N/A	N/A	2525	2540	ATTATAACCATTGCAG	15	2192
1062926	N/A	N/A	2696	2711	CCCAGTTTGAAATGTC	110	2193
1062958	N/A	N/A	2826	2841	TTGTGATGAATGTGGC	159	2194
1062990	N/A	N/A	3042	3057	GAACATTTGCTGGTCT	62	2195
1063022	N/A	N/A	3196	3211	GGACTGGCTGAGAGAT	113	2196
			·		I .		

1063054	N/A	N/A	3356	3371	CATTTCGGTGAGGCCC	18	2197
1063086	N/A	N/A	3625	3640	CAACTAGGCCTCCTGA	110	2198
1063118	N/A	N/A	3848	3863	CTCCGCCAGAGATGGC	153	2199
1063150	N/A	N/A	4072	4087	GATCCTAGAATCTCAA	38	2200
1063182	N/A	N/A	4197	4212	GAGGACCCAGGTTTGA	78	2201
1063214	N/A	N/A	4390	4405	GACACCACGGAGGAAG	45	2202
1063245	N/A	N/A	4473	4488	CTGGGCCCTGTTGTCA	78	2203
1063277	N/A	N/A	4689	4704	ACACATGTGGGATGGC	87	2204
1063309	N/A	N/A	4847	4862	ACTCAGTTGTGGTACT	143	2205
1063341	N/A	N/A	5176	5191	GAGAATCCAGGTATTA	93	2206
1063373	N/A	N/A	5433	5448	GTCCCATAGTGACTTG	145	2207
1063405	N/A	N/A	5628	5643	TCTATTGTCCTCACCT	114	2208
1063437	N/A	N/A	5838	5853	GTGTGATCATGCACGG	31	2209
1063469	N/A	N/A	6000	6015	GACATTACCTGAGATG	98	2210
1063501	N/A	N/A	6110	6125	ACTTAATCTGAAGCTG	61	2211
1063533	N/A	N/A	6264	6279	TTGCCCCAGTGACTAG	104	2212
1063565	N/A	N/A	6424	6439	CCCTGGTGTGGATGTG	85	2213
1063597	N/A	N/A	6650	6665	GGGCGGTATGAGATAC	92	2214
1063629	N/A	N/A	7090	7105	ATTTTCTTGGCCCTGC	105	2215
1063661	N/A	N/A	7362	7377	TGGTAGATGCTATGAT	40	2216
1063693	N/A	N/A	7641	7656	CATGTGGGCTGTGGTT	40	2217
1063725	N/A	N/A	7916	7931	GCCTCTGAGACCTGAC	57	2218
1063757	N/A	N/A	8037	8052	ACGGCCATTCGCAGGT	24	2219
1063788	N/A	N/A	8475	8490	GCCACTCACTTGAGGA	150	2220
1063820	N/A	N/A	8766	8781	GATTTTGATCAAGACA	118	2221
1063852	N/A	N/A	8905	8920	CTAGAGGAGCTAGAAC	72	2222
1063884	N/A	N/A	9397	9412	AGATTCCATGCAGGTG	128	2223
1063916	N/A	N/A	9578	9593	GAACTTGGTTTCTGGC	53	2224
1063948	N/A	N/A	9873	9888	ATGTGAGGTTAGGTTC	20	2225
1063980	N/A	N/A	10416	10431	GTGGTCGCCATCTTGA	12	2226
1064012	N/A	N/A	10685	10700	TATTAGAGCACAGGTG	31	2227
1064044	N/A	N/A	11316	11331	AGTGCAAGGACCATTC	79	2228

1064076	N/A	N/A	11506	11521	CACTCGAGACCATATG	104	2229
1064110	N/A	N/A	11612	11627	TTACTTAGCAGGGTCC	84	2230
1064142	N/A	N/A	11675	11690	TGAGCTCGGGCGAATC	107	2231
1064174	N/A	N/A	11795	11810	AGCGGAGTAACTTGCA	33	2232
1064206	N/A	N/A	11889	11904	GCACAGGTACTGTTTG	83	2233
1064238	N/A	N/A	11969	11984	CCTAGCTAGCTCCCTG	32	2234
1064270	N/A	N/A	12191	12206	GGAACCCACTCTGAGG	106	2235
1064302	N/A	N/A	12361	12376	GCTGAGGTGGACATCT	106	2236
1064334	N/A	N/A	12531	12546	GGTGTATTGACATACT	52	2237
1064366	N/A	N/A	12732	12747	TCAGGGTTTCAGTTCA	57	2238
1064398	N/A	N/A	12872	12887	GGCAAGGATGAGGTTA	120	2239
1064430	N/A	N/A	13158	13173	TGAAAGGTCTGGGATG	121	2240
1064462	N/A	N/A	13342	13357	AGGTAATCAGGGACAG	105	2241

Таблица 34Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
910950	1434	1449	13844	13859	GCCTCTGGCTCCGTTT	15	94
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	23	65
1062030	83	98	483	498	CTTTGCTTTTATACCG	3	2242
1062062	251	266	6789	6804	CCAGCTGGGCGAGGCT	107	2243
1062094	348	363	6886	6901	AAGAGGAGGCATGGGC	26	2244
1062126	556	571	7719	7734	ATGGCTGGGCTCTCCA	36	2245
1062158	728	743	8374	8389	AGCCGAAAGGGTGCTG	103	2246
1062190	843	858	9433	9448	GAAGATGGTCCGCCTG	59	2247
1062222	1015	1030	11171	11186	CAGCAGGAGCCCTTGT	104	2248
1062254	1167	1182	12037	12052	TGAAGTAGTCCATGTT	57*	2249
1062286	1397	1412	13807	13822	CACGGTCCACACAGCC	76	2250

1062318	1554	1569	13964	13979	AGGGCCTATCATCCCT	74	2251
1062350	1804	1819	14214	14229	CTGAAGTAATCTGTGC	33	2252
1062382	1924	1939	14334	14349	GTGATGATGCAGCTTT	16	2253
1062414	2169	2184	14579	14594	ACTCAAGAGACCCACT	39	2254
1062446	2339	2354	N/A	N/A	GGACGGTACTGTGGGT	20	2255
1062478	N/A	N/A	13573	13588	CACCGCCACCTCAGAG	67	2256
1062510	N/A	N/A	13667	13682	AACAACCCACATCCCG	109	2257
1062542	N/A	N/A	674	689	GAATCACGGTAGCTGG	14	2258
1062574	N/A	N/A	828	843	AGACTGGCAGCTGACA	56	2259
1062606	N/A	N/A	1052	1067	CCAGGAGAGATGCGGG	85	2260
1062638	N/A	N/A	1224	1239	TCGGCGACATTACTAT	29	2261
1062670	N/A	N/A	1324	1339	CAAAGTTCAGTTAAGT	24	2262
1062703	N/A	N/A	1448	1463	AATATGGACTCTGGTC	50	2263
1062735	N/A	N/A	1703	1718	ATCAAAGTTCATGCTG	53	2264
1062767	N/A	N/A	1847	1862	AGAGAGGTCATAAAC	45	2265
1062799	N/A	N/A	2065	2080	GTAAGGACATGACCAG	27	2266
1062831	N/A	N/A	2148	2163	GCTGATGAAAGGTTAA	31	2267
1062863	N/A	N/A	2352	2367	CTAGAAGCCAACATAG	75	2268
1062895	N/A	N/A	2526	2541	TATTATAACCATTGCA	32	2269
1062927	N/A	N/A	2716	2731	ATCCCAACAACCCCTC	50	2270
1062959	N/A	N/A	2846	2861	ACATATGGAGAGAACT	56	2271
1062991	N/A	N/A	3043	3058	AGAACATTTGCTGGTC	9	2272
1063023	N/A	N/A	3211	3226	GCCCCTCTATCCAGGG	76	2273
1063055	N/A	N/A	3359	3374	CTGCATTTCGGTGAGG	22	2274
1063087	N/A	N/A	3626	3641	CCAACTAGGCCTCCTG	81	2275
1063119	N/A	N/A	3850	3865	CACTCCGCCAGAGATG	31	2276
1063151	N/A	N/A	4073	4088	GGATCCTAGAATCTCA	60	2277
1063183	N/A	N/A	4198	4213	AGAGGACCCAGGTTTG	55	2278
1063215	N/A	N/A	4391	4406	CGACACCACGGAGGAA	68	2279
1063246	N/A	N/A	4477	4492	GCATCTGGGCCCTGTT	57	2280
1063278	N/A	N/A	4692	4707	CAAACACATGTGGGAT	87	2281
1063310	N/A	N/A	4870	4885	GATCAATTTCTGTTGC	11	2282
	·	1	1		I .		1

1063342	N/A	N/A	5177	5192	TGAGAATCCAGGTATT	38	2283
1063374	N/A	N/A	5435	5450	TAGTCCCATAGTGACT	104	2284
1063406	N/A	N/A	5630	5645	CTTCTATTGTCCTCAC	31	2285
1063438	N/A	N/A	5839	5854	AGTGTGATCATGCACG	96	2286
1063470	N/A	N/A	6001	6016	TGACATTACCTGAGAT	30	2287
1063502	N/A	N/A	6112	6127	AGACTTAATCTGAAGC	29	2288
1063534	N/A	N/A	6267	6282	ATTTTGCCCCAGTGAC	66	2289
1063566	N/A	N/A	6425	6440	GCCCTGGTGTGGATGT	79	2290
1063598	N/A	N/A	6651	6666	AGGGCGGTATGAGATA	30	2291
1063630	N/A	N/A	7118	7133	TCCAATCTCTGAGGCC	45	2292
1063662	N/A	N/A	7363	7378	ATGGTAGATGCTATGA	57	2293
1063694	N/A	N/A	7662	7677	ACCGTTGAGAGCTGGG	35	2294
1063726	N/A	N/A	7928	7943	TGGAGTTTCCAAGCCT	67	2295
1063758	N/A	N/A	8038	8053	GACGGCCATTCGCAGG	54	2296
1063789	N/A	N/A	8497	8512	CGGTAGACTGGCACAG	58	2297
1063821	N/A	N/A	8773	8788	ACTGGGAGATTTTGAT	104	2298
1063853	N/A	N/A	8906	8921	TCTAGAGGAGCTAGAA	38	2299
1063885	N/A	N/A	9405	9420	TAGGGAGAAGATTCCA	83	2300
1063917	N/A	N/A	9582	9597	AGGTGAACTTGGTTTC	20	2301
1063949	N/A	N/A	9879	9894	ACCTGAATGTGAGGTT	42	2302
1063981	N/A	N/A	10418	10433	CTGTGGTCGCCATCTT	4	2303
1064013	N/A	N/A	10694	10709	AGCCGTATTTATTAGA	29	2304
1064045	N/A	N/A	11317	11332	TAGTGCAAGGACCATT	33	2305
1064077	N/A	N/A	11507	11522	ACACTCGAGACCATAT	93	2306
1064111	N/A	N/A	11613	11628	ATTACTTAGCAGGGTC	22	2307
1064143	N/A	N/A	11677	11692	GGTGAGCTCGGGCGAA	36	2308
1064175	N/A	N/A	11796	11811	AAGCGGAGTAACTTGC	50	2309
1064207	N/A	N/A	11891	11906	GGGCACAGGTACTGTT	60	2310
1064239	N/A	N/A	11970	11985	TCCTAGCTAGCTCCCT	35	2311
1064271	N/A	N/A	12192	12207	AGGAACCCACTCTGAG	49	2312
1064303	N/A	N/A	12362	12377	GGCTGAGGTGGACATC	23	2313
1064335	N/A	N/A	12553	12568	TTGGGAATGGTGCCCA	35	2314

1064367	N/A	N/A	12738	12753	GCTAGGTCAGGGTTTC	68	2315
1064399	N/A	N/A	12884	12899	GGTTAGGCTCAGGGCA	71	2316
1064431	N/A	N/A	13159	13174	GTGAAAGGTCTGGGAT	89	2317
1064463	N/A	N/A	13344	13359	GCAGGTAATCAGGGAC	86	2318

 Таблица 35

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	42	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	19	306
1062031	97	112	497	512	CGTATCAAAAACAACT	98	2319
1062063	268	283	6806	6821	GCTTTGGGTGCAGCCC	104	2320
1062095	375	390	6913	6928	GCGATGGTGGCATGGG	67	2321
1062127	559	574	7722	7737	ATCATGGCTGGGCTCT	57	2322
1062159	729	744	8375	8390	CAGCCGAAAGGGTGCT	136	2323
1062191	844	859	9434	9449	AGAAGATGGTCCGCCT	48	2324
1062223	1023	1038	11179	11194	CTACGATGCAGCAGGA	65	2325
1062255	1170	1185	12040	12055	ACTTGAAGTAGTCCAT	56*	2326
1062287	1413	1428	13823	13838	GGAACTCCAGCTCATC	85	2327
1062319	1555	1570	13965	13980	CAGGGCCTATCATCCC	103	2328
1062351	1805	1820	14215	14230	CCTGAAGTAATCTGTG	102	2329
1062383	1925	1940	14335	14350	TGTGATGATGCAGCTT	14	2330
1062415	2173	2188	14583	14598	CGGGACTCAAGAGACC	93	2331
1062447	2357	2372	N/A	N/A	TCGGCTGCAGTTTATT	36	2332
1062479	N/A	N/A	13576	13591	AGTCACCGCCACCTCA	53	2333
1062511	N/A	N/A	13668	13683	CAACAACCCACATCCC	97	2334
1062543	N/A	N/A	675	690	GGAATCACGGTAGCTG	31	2335
1062575	N/A	N/A	829	844	AAGACTGGCAGCTGAC	56	2336

1062607	N/A	N/A	1053	1068	GCCAGGAGAGATGCGG	124	2337
1062639	N/A	N/A	1225	1240	CTCGGCGACATTACTA	41	2338
1062671	N/A	N/A	1325	1340	GCAAAGTTCAGTTAAG	53	2339
1062704	N/A	N/A	1449	1464	GAATATGGACTCTGGT	74	2340
1062736	N/A	N/A	1705	1720	CAATCAAAGTTCATGC	63	2341
1062768	N/A	N/A	1848	1863	CAGAGAGGGTCATAAA	72	2342
1062800	N/A	N/A	2066	2081	AGTAAGGACATGACCA	66	2343
1062832	N/A	N/A	2149	2164	GGCTGATGAAAGGTTA	11	2344
1062864	N/A	N/A	2353	2368	ACTAGAAGCCAACATA	110	2345
1062896	N/A	N/A	2527	2542	CTATTATAACCATTGC	44	2346
1062928	N/A	N/A	2718	2733	TTATCCCAACAACCCC	58	2347
1062960	N/A	N/A	2847	2862	CACATATGGAGAGAAC	84	2348
1062992	N/A	N/A	3058	3073	GGATTGCCTCAAATAA	69	2349
1063024	N/A	N/A	3216	3231	CAATTGCCCCTCTATC	85	2350
1063056	N/A	N/A	3368	3383	ACTCTGCCGCTGCATT	69	2351
1063088	N/A	N/A	3627	3642	GCCAACTAGGCCTCCT	112	2352
1063120	N/A	N/A	3853	3868	GGCCACTCCGCCAGAG	127	2353
1063152	N/A	N/A	4075	4090	AAGGATCCTAGAATCT	70	2354
1063184	N/A	N/A	4199	4214	GAGAGGACCCAGGTTT	83	2355
1063216	N/A	N/A	4393	4408	ATCGACACCACGGAGG	74	2356
1063247	N/A	N/A	4497	4512	ATGTTTTCATATCGGG	39	2357
1063279	N/A	N/A	4693	4708	CCAAACACATGTGGGA	113	2358
1063311	N/A	N/A	4943	4958	CCTTATGGCCCCCAGA	99	2359
1063343	N/A	N/A	5178	5193	GTGAGAATCCAGGTAT	55	2360
1063375	N/A	N/A	5440	5455	TTCCGTAGTCCCATAG	103	2361
1063407	N/A	N/A	5633	5648	GCTCTTCTATTGTCCT	64	2362
1063439	N/A	N/A	5845	5860	TCCAGGAGTGTGATCA	106	2363
1063471	N/A	N/A	6003	6018	GCTGACATTACCTGAG	83	2364
1063503	N/A	N/A	6116	6131	TCTGAGACTTAATCTG	95	2365
1063535	N/A	N/A	6269	6284	CTATTTTGCCCCAGTG	92	2366
1063567	N/A	N/A	6426	6441	AGCCCTGGTGTGGATG	125	2367
1063599	N/A	N/A	6654	6669	GCTAGGGCGGTATGAG	127	2368

1063631	N/A	N/A	7119	7134	CTCCAATCTCTGAGGC	99	2369
1063663	N/A	N/A	7364	7379	CATGGTAGATGCTATG	110	2370
1063695	N/A	N/A	7793	7808	TACCAGGTGGGAGGCC	106	2371
1063727	N/A	N/A	7959	7974	TAAGGTTCTGCACCTG	123	2372
1063759	N/A	N/A	8039	8054	AGACGGCCATTCGCAG	70	2373
1063790	N/A	N/A	8499	8514	GCCGGTAGACTGGCAC	88	2374
1063822	N/A	N/A	8776	8791	GGAACTGGGAGATTTT	39	2375
1063854	N/A	N/A	8907	8922	ATCTAGAGGAGCTAGA	117	2376
1063886	N/A	N/A	9406	9421	GTAGGGAGAAGATTCC	120	2377
1063918	N/A	N/A	9584	9599	CCAGGTGAACTTGGTT	99	2378
1063950	N/A	N/A	9893	9908	CCCTAGCTCTCAGGAC	152	2379
1063982	N/A	N/A	10419	10434	TCTGTGGTCGCCATCT	31	2380
1064014	N/A	N/A	10698	10713	CATGAGCCGTATTTAT	56	2381
1064046	N/A	N/A	11318	11333	GTAGTGCAAGGACCAT	73	2382
1064078	N/A	N/A	11509	11524	CGACACTCGAGACCAT	128	2383
1064112	N/A	N/A	11614	11629	AATTACTTAGCAGGGT	90	2384
1064144	N/A	N/A	11681	11696	GATAGGTGAGCTCGGG	52	2385
1064176	N/A	N/A	11797	11812	GAAGCGGAGTAACTTG	102	2386
1064208	N/A	N/A	11893	11908	ACGGGCACAGGTACTG	89	2387
1064240	N/A	N/A	11971	11986	CTCCTAGCTAGCTCCC	75	2388
1064272	N/A	N/A	12193	12208	GAGGAACCCACTCTGA	91	2389
1064304	N/A	N/A	12378	12393	AGAGGGTTAGGTATGG	97	2390
1064336	N/A	N/A	12559	12574	GAAAGGTTGGGAATGG	88	2391
1064368	N/A	N/A	12762	12777	AGTGAGGCTATCAGTC	84	2392
1064400	N/A	N/A	12891	12906	GTTAGGTGGTTAGGCT	64	2393
1064432	N/A	N/A	13160	13175	GGTGAAAGGTCTGGGA	79	2394
1064464	N/A	N/A	13375	13390	AGCCATCTGACATGGG	144	2395

 Таблица 36

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	23	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	20	306
1062032	111	126	511	526	GTGGGAAACTGTCACG	51	2396
1062064	270	285	6808	6823	AGGCTTTGGGTGCAGC	247	2397
1062096	377	392	6915	6930	CTGCGATGGTGGCATG	236	2398
1062128	563	578	7726	7741	GCTGATCATGGCTGGG	94	2399
1062160	730	745	8376	8391	ACAGCCGAAAGGGTGC	306	2400
1062192	845	860	9435	9450	CAGAAGATGGTCCGCC	245	2401
1062224	1025	1040	11181	11196	AGCTACGATGCAGCAG	124	2402
1062256	1171	1186	12041	12056	AACTTGAAGTAGTCCA	44*	2403
1062288	1414	1429	13824	13839	CGGAACTCCAGCTCAT	224	2404
1062320	1556	1571	13966	13981	CCAGGGCCTATCATCC	62	2405
1062352	1806	1821	14216	14231	CCCTGAAGTAATCTGT	75	2406
1062384	1926	1941	14336	14351	GTGTGATGATGCAGCT	38	2407
1062416	2174	2189	14584	14599	ACGGGACTCAAGAGAC	118	2408
1062448	2358	2373	N/A	N/A	CTCGGCTGCAGTTTAT	24	2409
1062480	N/A	N/A	13579	13594	CCCAGTCACCGCCACC	51	2410
1062512	N/A	N/A	13669	13684	CCAACAACCCACATCC	249	2411
1062544	N/A	N/A	676	691	TGGAATCACGGTAGCT	72	2412
1062576	N/A	N/A	833	848	CATAAAGACTGGCAGC	77	2413
1062608	N/A	N/A	1054	1069	GGCCAGGAGAGATGCG	121	2414
1062640	N/A	N/A	1227	1242	TCCTCGGCGACATTAC	163	2415
1062672	N/A	N/A	1332	1347	GATACAAGCAAAGTTC	177	2416
1062705	N/A	N/A	1451	1466	CTGAATATGGACTCTG	88	2417
1062737	N/A	N/A	1706	1721	TCAATCAAAGTTCATG	24	2418

1062769	N/A	N/A	1849	1864	GCAGAGAGGGTCATAA	76	2419
1062801	N/A	N/A	2067	2082	GAGTAAGGACATGACC	110	2420
1062833	N/A	N/A	2151	2166	ATGGCTGATGAAAGGT	24	2421
1062865	N/A	N/A	2354	2369	GACTAGAAGCCAACAT	163	2422
1062897	N/A	N/A	2542	2557	CTCCTGAGGAAGGTAC	61	2423
1062929	N/A	N/A	2720	2735	CATTATCCCAACAACC	80	2424
1062961	N/A	N/A	2850	2865	ACCCACATATGGAGAG	218	2425
1062993	N/A	N/A	3060	3075	GAGGATTGCCTCAAAT	130	2426
1063025	N/A	N/A	3227	3242	CTTCAAGTTGACAATT	61	2427
1063057	N/A	N/A	3375	3390	GATTTCAACTCTGCCG	38	2428
1063089	N/A	N/A	3628	3643	GGCCAACTAGGCCTCC	202	2429
1063121	N/A	N/A	3855	3870	ATGGCCACTCCGCCAG	254	2430
1063153	N/A	N/A	4076	4091	AAAGGATCCTAGAATC	277	2431
1063185	N/A	N/A	4200	4215	GGAGAGGACCCAGGTT	53	2432
1063217	N/A	N/A	4394	4409	CATCGACACCACGGAG	73	2433
1063248	N/A	N/A	4498	4513	TATGTTTTCATATCGG	20	2434
1063280	N/A	N/A	4694	4709	CCCAAACACATGTGGG	206	2435
1063312	N/A	N/A	4944	4959	CCCTTATGGCCCCCAG	57	2436
1063344	N/A	N/A	5180	5195	GTGTGAGAATCCAGGT	86	2437
1063376	N/A	N/A	5446	5461	GCCGAGTTCCGTAGTC	70	2438
1063408	N/A	N/A	5644	5659	ACGCAAGACCTGCTCT	198	2439
1063440	N/A	N/A	5846	5861	GTCCAGGAGTGTGATC	71	2440
1063472	N/A	N/A	6004	6019	AGCTGACATTACCTGA	63	2441
1063504	N/A	N/A	6119	6134	GATTCTGAGACTTAAT	62	2442
1063536	N/A	N/A	6270	6285	CCTATTTTGCCCCAGT	89	2443
1063568	N/A	N/A	6427	6442	CAGCCCTGGTGTGGAT	59	2444
1063600	N/A	N/A	6656	6671	GTGCTAGGGCGGTATG	76	2445
1063632	N/A	N/A	7121	7136	GCCTCCAATCTCTGAG	228	2446
1063664	N/A	N/A	7368	7383	CCCACATGGTAGATGC	222	2447
1063696	N/A	N/A	7795	7810	GTTACCAGGTGGGAGG	51	2448
1063728	N/A	N/A	7960	7975	TTAAGGTTCTGCACCT	92	2449
1063760	N/A	N/A	8040	8055	AAGACGGCCATTCGCA	61	2450

,					<u>-</u>		
1063791	N/A	N/A	8501	8516	GGGCCGGTAGACTGGC	102	2451
1063823	N/A	N/A	8787	8802	TCTGTCACTCAGGAAC	104	2452
1063855	N/A	N/A	8908	8923	CATCTAGAGGAGCTAG	88	2453
1063887	N/A	N/A	9407	9422	AGTAGGGAGAAGATTC	82	2454
1063919	N/A	N/A	9585	9600	CCCAGGTGAACTTGGT	71	2455
1063951	N/A	N/A	9918	9933	CATGTTTGGAGCTGGG	76	2456
1063983	N/A	N/A	10448	10463	TATGTGGCACCCTGTG	100	2457
1064015	N/A	N/A	10706	10721	CAAAACAGCATGAGCC	93	2458
1064047	N/A	N/A	11342	11357	GGATTAGGAGCTTGGG	26	2459
1064079	N/A	N/A	11511	11526	CCCGACACTCGAGACC	50	2460
1064113	N/A	N/A	11616	11631	GGAATTACTTAGCAGG	30	2461
1064145	N/A	N/A	11682	11697	GGATAGGTGAGCTCGG	27	2462
1064177	N/A	N/A	11798	11813	AGAAGCGGAGTAACTT	94	2463
1064209	N/A	N/A	11894	11909	CACGGGCACAGGTACT	69	2464
1064241	N/A	N/A	11972	11987	CCTCCTAGCTAGCTCC	123	2465
1064273	N/A	N/A	12194	12209	GGAGGAACCCACTCTG	97	2466
1064305	N/A	N/A	12379	12394	GAGAGGGTTAGGTATG	162	2467
1064337	N/A	N/A	12565	12580	TACAAGGAAAGGTTGG	87	2468
1064369	N/A	N/A	12775	12790	CGATGATGATTGCAGT	70	2469
1064401	N/A	N/A	12892	12907	GGTTAGGTGGTTAGGC	75	2470
1064433	N/A	N/A	13162	13177	GAGGTGAAAGGTCTGG	36	2471
1064465	N/A	N/A	13379	13394	CCCGAGCCATCTGACA	88	2472

Таблица 37Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	35	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	15	306

1062033	113	128	513	528	TTGTGGGAAACTGTCA	51	2473
1062065	280	295	6818	6833	AGCAGGTCTGAGGCTT	101	2474
1062097	378	393	6916	6931	GCTGCGATGGTGGCAT	81	2475
1062129	566	581	7729	7744	GAGGCTGATCATGGCT	47	2476
1062161	732	747	8378	8393	GCACAGCCGAAAGGGT	72	2477
1062193	846	861	9436	9451	CCAGAAGATGGTCCGC	71	2478
1062225	1026	1041	11182	11197	CAGCTACGATGCAGCA	108	2479
1062257	1172	1187	12042	12057	GAACTTGAAGTAGTCC	80*	2480
1062289	1415	1430	13825	13840	GCGGAACTCCAGCTCA	95	2481
1062321	1558	1573	13968	13983	ATCCAGGGCCTATCAT	74	2482
1062353	1807	1822	14217	14232	GCCCTGAAGTAATCTG	65	2483
1062385	1927	1942	14337	14352	TGTGTGATGATGCAGC	32	2484
1062417	2175	2190	14585	14600	CACGGGACTCAAGAGA	54	2485
1062449	2361	2376	N/A	N/A	GAGCTCGGCTGCAGTT	88	2486
1062481	N/A	N/A	13580	13595	TCCCAGTCACCGCCAC	40	2487
1062513	N/A	N/A	13671	13686	CACCAACAACCCACAT	68	2488
1062545	N/A	N/A	677	692	CTGGAATCACGGTAGC	36	2489
1062577	N/A	N/A	836	851	ATCCATAAAGACTGGC	53	2490
1062609	N/A	N/A	1092	1107	TCAAGATGGAGGAGAC	109	2491
1062641	N/A	N/A	1233	1248	TAAAGGTCCTCGGCGA	30	2492
1062673	N/A	N/A	1333	1348	CGATACAAGCAAAGTT	79	2493
1062706	N/A	N/A	1452	1467	CCTGAATATGGACTCT	61	2494
1062738	N/A	N/A	1712	1727	GTCAAATCAATCAAAG	65	2495
1062770	N/A	N/A	1854	1869	AATTAGCAGAGAGGGT	75	2496
1062802	N/A	N/A	2069	2084	AGGAGTAAGGACATGA	18	2497
1062834	N/A	N/A	2154	2169	GTAATGGCTGATGAAA	39	2498
1062866	N/A	N/A	2355	2370	AGACTAGAAGCCAACA	83	2499
1062898	N/A	N/A	2543	2558	ACTCCTGAGGAAGGTA	76	2500
1062930	N/A	N/A	2721	2736	CCATTATCCCAACAAC	79	2501
1062962	N/A	N/A	2860	2875	TTGGACATGGACCCAC	89	2502
1062994	N/A	N/A	3061	3076	GGAGGATTGCCTCAAA	115	2503
1063026	N/A	N/A	3231	3246	AGGGCTTCAAGTTGAC	71	2504

1063058	N/A	N/A	3376	3391	GGATTTCAACTCTGCC	24	2505
1063090	N/A	N/A	3634	3649	CGCTCTGGCCAACTAG	59	2506
1063122	N/A	N/A	3859	3874	ATACATGGCCACTCCG	93	2507
1063154	N/A	N/A	4077	4092	TAAAGGATCCTAGAAT	83	2508
1063186	N/A	N/A	4210	4225	CTTGGGTTGTGGAGAG	58	2509
1063218	N/A	N/A	4395	4410	TCATCGACACCACGGA	77	2510
1063249	N/A	N/A	4499	4514	TTATGTTTTCATATCG	50	2511
1063281	N/A	N/A	4695	4710	CCCCAAACACATGTGG	135	2512
1063313	N/A	N/A	5000	5015	TAACAAAGATTGCCAG	75	2513
1063345	N/A	N/A	5185	5200	GATGAGTGTGAGAATC	81	2514
1063377	N/A	N/A	5448	5463	ATGCCGAGTTCCGTAG	46	2515
1063409	N/A	N/A	5645	5660	CACGCAAGACCTGCTC	81	2516
1063441	N/A	N/A	5850	5865	GCGAGTCCAGGAGTGT	46	2517
1063473	N/A	N/A	6008	6023	ACCGAGCTGACATTAC	79	2518
1063505	N/A	N/A	6122	6137	GTAGATTCTGAGACTT	74	2519
1063537	N/A	N/A	6272	6287	GTCCTATTTTGCCCCA	40	2520
1063569	N/A	N/A	6435	6450	CGCTAGCACAGCCCTG	102	2521
1063601	N/A	N/A	6673	6688	GGAAAGGAGTCACACG	117	2522
1063633	N/A	N/A	7126	7141	GGAGAGCCTCCAATCT	95	2523
1063665	N/A	N/A	7369	7384	GCCCACATGGTAGATG	76	2524
1063697	N/A	N/A	7796	7811	TGTTACCAGGTGGGAG	107	2525
1063729	N/A	N/A	7961	7976	TTTAAGGTTCTGCACC	106	2526
1063761	N/A	N/A	8041	8056	AAAGACGGCCATTCGC	51	2527
1063792	N/A	N/A	8511	8526	CCACAAGCCAGGGCCG	88	2528
1063824	N/A	N/A	8820	8835	CTAGAGCCTGGCTACA	70	2529
1063856	N/A	N/A	8909	8924	CCATCTAGAGGAGCTA	79	2530
1063888	N/A	N/A	9409	9424	TAAGTAGGGAGAAGAT	94	2531
1063920	N/A	N/A	9586	9601	TCCCAGGTGAACTTGG	88	2532
1063952	N/A	N/A	9922	9937	TGGGCATGTTTGGAGC	59	2533
1063984	N/A	N/A	10450	10465	GTTATGTGGCACCCTG	36	2534
1064016	N/A	N/A	10717	10732	GTGGAATCCCACAAAA	103	2535
1064048	N/A	N/A	11344	11359	CAGGATTAGGAGCTTG	80	2536

1064080	N/A	N/A	11512	11527	GCCCGACACTCGAGAC	64	2537
1064114	N/A	N/A	11618	11633	CTGGAATTACTTAGCA	57	2538
1064146	N/A	N/A	11685	11700	AGTGGATAGGTGAGCT	63	2539
1064178	N/A	N/A	11799	11814	AAGAAGCGGAGTAACT	99	2540
1064210	N/A	N/A	11895	11910	CCACGGGCACAGGTAC	96	2541
1064242	N/A	N/A	11973	11988	ACCTCCTAGCTAGCTC	93	2542
1064274	N/A	N/A	12195	12210	TGGAGGAACCCACTCT	87	2543
1064306	N/A	N/A	12380	12395	GGAGAGGGTTAGGTAT	N.D.	2544
1064338	N/A	N/A	12566	12581	TTACAAGGAAAGGTTG	112	2545
1064370	N/A	N/A	12776	12791	GCGATGATGATTGCAG	109	2546
1064402	N/A	N/A	12920	12935	TATCGAGTATCTTACG	68	2547
1064434	N/A	N/A	13164	13179	GTGAGGTGAAAGGTCT	91	2548
1064466	N/A	N/A	13381	13396	ACCCCGAGCCATCTGA	N.D.	2549

Таблица 38Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	38	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	24	306
1062034	114	129	514	529	CTTGTGGGAAACTGTC	23	2550
1062066	289	304	6827	6842	CGGGCCCCCAGCAGGT	87	2551
1062098	379	394	6917	6932	AGCTGCGATGGTGGCA	89	2552
1062130	569	584	7732	7747	TGTGAGGCTGATCATG	65	2553
1062162	734	749	8380	8395	GGGCACAGCCGAAAGG	83	2554
1062194	847	862	9437	9452	TCCAGAAGATGGTCCG	73	2555
1062226	1027	1042	11183	11198	GCAGCTACGATGCAGC	116	2556
1062258	1173	1188	12043	12058	GGAACTTGAAGTAGTC	40*	2557
1062290	1417	1432	13827	13842	TTGCGGAACTCCAGCT	112	2558

1062322	1569	1584	13979	13994	CCTGTGGGCACATCCA	33	2559
1062354	1808	1823	14218	14233	AGCCCTGAAGTAATCT	62	2560
1062386	1934	1949	14344	14359	GTGTGATTGTGATG	32	2561
1062418	2176	2191	14586	14601	GCACGGGACTCAAGAG	50	2562
1062450	2362	2377	N/A	N/A	GGAGCTCGGCTGCAGT	86	2563
1062482	N/A	N/A	13583	13598	CCATCCCAGTCACCGC	62	2564
1062514	N/A	N/A	13695	13710	TCAACCTCTGAGGCCA	78	2565
1062546	N/A	N/A	678	693	GCTGGAATCACGGTAG	41	2566
1062578	N/A	N/A	856	871	AAGTTGTTCAAAGCTC	40	2567
1062610	N/A	N/A	1093	1108	GTCAAGATGGAGGAGA	78	2568
1062642	N/A	N/A	1234	1249	GTAAAGGTCCTCGGCG	37	2569
1062674	N/A	N/A	1334	1349	GCGATACAAGCAAAGT	56	2570
1062707	N/A	N/A	1453	1468	TCCTGAATATGGACTC	55	2571
1062739	N/A	N/A	1713	1728	GGTCAAATCAATCAAA	31	2572
1062771	N/A	N/A	1855	1870	GAATTAGCAGAGAGGG	30	2573
1062803	N/A	N/A	2070	2085	TAGGAGTAAGGACATG	N.D.	2574
1062835	N/A	N/A	2156	2171	ATGTAATGGCTGATGA	17	2575
1062867	N/A	N/A	2356	2371	GAGACTAGAAGCCAAC	80	2576
1062899	N/A	N/A	2544	2559	GACTCCTGAGGAAGGT	63	2577
1062931	N/A	N/A	2723	2738	GTCCATTATCCCAACA	45	2578
1062963	N/A	N/A	2861	2876	CTTGGACATGGACCCA	87	2579
1062995	N/A	N/A	3063	3078	GAGGAGGATTGCCTCA	99	2580
1063027	N/A	N/A	3232	3247	CAGGGCTTCAAGTTGA	67	2581
1063059	N/A	N/A	3386	3401	ATCTAGGCTTGGATTT	97	2582
1063091	N/A	N/A	3636	3651	CACGCTCTGGCCAACT	67	2583
1063123	N/A	N/A	3860	3875	AATACATGGCCACTCC	86	2584
1063155	N/A	N/A	4080	4095	ATTTAAAGGATCCTAG	118	2585
1063187	N/A	N/A	4213	4228	CTTCTTGGGTTGTGGA	37	2586
1063219	N/A	N/A	4396	4411	TTCATCGACACCACGG	34	2587
1063250	N/A	N/A	4535	4550	TCAGAAGCTGAATGGG	36	2588
1063282	N/A	N/A	4707	4722	GCTAAGAATTCTCCCC	57	2589
1063314	N/A	N/A	5072	5087	GCACTGGTGAGATGAG	N.D.	2590

1063346	N/A	N/A	5192	5207	TGAGGGAGATGAGTGT	73	2591
1063378	N/A	N/A	5453	5468	CTCAGATGCCGAGTTC	51	2592
1063410	N/A	N/A	5646	5661	CCACGCAAGACCTGCT	N.D.	2593
1063442	N/A	N/A	5852	5867	AGGCGAGTCCAGGAGT	80	2594
1063474	N/A	N/A	6009	6024	GACCGAGCTGACATTA	76	2595
1063506	N/A	N/A	6123	6138	GGTAGATTCTGAGACT	54	2596
1063538	N/A	N/A	6273	6288	AGTCCTATTTTGCCCC	29	2597
1063570	N/A	N/A	6437	6452	CACGCTAGCACAGCCC	97	2598
1063602	N/A	N/A	6674	6689	GGGAAAGGAGTCACAC	84	2599
1063634	N/A	N/A	7151	7166	CCTGAGACAGGGATTG	55	2600
1063666	N/A	N/A	7371	7386	AAGCCCACATGGTAGA	65	2601
1063698	N/A	N/A	7798	7813	GGTGTTACCAGGTGGG	35	2602
1063730	N/A	N/A	7962	7977	CTTTAAGGTTCTGCAC	110	2603
1063762	N/A	N/A	8042	8057	TAAAGACGGCCATTCG	53	2604
1063793	N/A	N/A	8526	8541	ACCCTAGACCTCTCCC	44	2605
1063825	N/A	N/A	8823	8838	ATTCTAGAGCCTGGCT	92	2606
1063857	N/A	N/A	8910	8925	GCCATCTAGAGGAGCT	109	2607
1063889	N/A	N/A	9410	9425	CTAAGTAGGGAGAAGA	117	2608
1063921	N/A	N/A	9605	9620	TCCTTTATACCAGCCC	25	2609
1063953	N/A	N/A	9923	9938	CTGGGCATGTTTGGAG	60	2610
1063985	N/A	N/A	10452	10467	TGGTTATGTGGCACCC	39	2611
1064017	N/A	N/A	10723	10738	TCTGAGGTGGAATCCC	21	2612
1064049	N/A	N/A	11345	11360	TCAGGATTAGGAGCTT	47	2613
1064081	N/A	N/A	11535	11550	CCCCAAGGGAGTCAGG	73	2614
1064115	N/A	N/A	11619	11634	CCTGGAATTACTTAGC	57	2615
1064147	N/A	N/A	11686	11701	CAGTGGATAGGTGAGC	25	2616
1064179	N/A	N/A	11800	11815	AAAGAAGCGGAGTAAC	88	2617
1064211	N/A	N/A	11896	11911	TCCACGGGCACAGGTA	86	2618
1064243	N/A	N/A	11975	11990	GGACCTCCTAGCTAGC	54	2619
1064275	N/A	N/A	12196	12211	ATGGAGGAACCCACTC	87	2620
1064307	N/A	N/A	12381	12396	AGGAGAGGGTTAGGTA	68	2621
1064339	N/A	N/A	12569	12584	GTGTTACAAGGAAAGG	68	2622

1064371	N/A	N/A	12778	12793	CAGCGATGATGATTGC	60	2623
1064403	N/A	N/A	12921	12936	TTATCGAGTATCTTAC	101	2624
1064435	N/A	N/A	13165	13180	AGTGAGGTGAAAGGTC	72	2625
1064467	N/A	N/A	13384	13399	CCTACCCGAGCCATC	69	2626

Таблица 39Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	23	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	17	306
1062035	115	130	515	530	GCTTGTGGGAAACTGT	29	2627
1062067	302	317	6840	6855	TCCCCCTGGGCCCCGG	1	2628
1062099	412	427	7477	7492	GCCACCATGACTAGGG	154	2629
1062131	582	597	7745	7760	CGGTGGTGGTGT	106	2630
1062163	750	765	8396	8411	GTGGGTAGGAGCTCTG	58	2631
1062195	848	863	9438	9453	ATCCAGAAGATGGTCC	81	2632
1062227	1029	1044	11185	11200	CAGCAGCTACGATGCA	178	2633
1062259	1175	1190	12045	12060	GTGGAACTTGAAGTAG	8*	2634
1062291	1418	1433	13828	13843	CTTGCGGAACTCCAGC	265	2635
1062323	1570	1585	13980	13995	CCCTGTGGGCACATCC	66	2636
1062355	1809	1824	14219	14234	CAGCCCTGAAGTAATC	190	2637
1062387	2019	2034	14429	14444	CCTGTGTTGACAGTGC	90	2638
1062419	2177	2192	14587	14602	TGCACGGGACTCAAGA	104	2639
1062483	N/A	N/A	13592	13607	CACTTGAGGCCATCCC	123	2640
1062515	N/A	N/A	13696	13711	GTCAACCTCTGAGGCC	123	2641
1062547	N/A	N/A	680	695	TGGCTGGAATCACGGT	134	2642
1062579	N/A	N/A	857	872	CAAGTTGTTCAAAGCT	91	2643
1062611	N/A	N/A	1094	1109	GGTCAAGATGGAGGAG	77	2644

1062643	N/A	N/A	1235	1250	TGTAAAGGTCCTCGGC	53	2645
1062676	N/A	N/A	1335	1350	AGCGATACAAGCAAAG	51	2646
1062708	N/A	N/A	1469	1484	GAACAACCTGTTTGCT	65	2647
1062740	N/A	N/A	1718	1733	CACTTGGTCAAATCAA	72	2648
1062772	N/A	N/A	1857	1872	GAGAATTAGCAGAGAG	37	2649
1062804	N/A	N/A	2072	2087	ATTAGGAGTAAGGACA	86	2650
1062836	N/A	N/A	2157	2172	TATGTAATGGCTGATG	53	2651
1062868	N/A	N/A	2364	2379	CCATAAAAGAGACTAG	93	2652
1062900	N/A	N/A	2548	2563	CAAAGACTCCTGAGGA	124	2653
1062932	N/A	N/A	2724	2739	AGTCCATTATCCCAAC	80	2654
1062964	N/A	N/A	2863	2878	AGCTTGGACATGGACC	162	2655
1062996	N/A	N/A	3064	3079	AGAGGAGGATTGCCTC	90	2656
1063028	N/A	N/A	3234	3249	TGCAGGGCTTCAAGTT	52	2657
1063060	N/A	N/A	3387	3402	GATCTAGGCTTGGATT	174	2658
1063092	N/A	N/A	3637	3652	CCACGCTCTGGCCAAC	113	2659
1063124	N/A	N/A	3861	3876	AAATACATGGCCACTC	93	2660
1063156	N/A	N/A	4081	4096	GATTTAAAGGATCCTA	70	2661
1063188	N/A	N/A	4215	4230	CCCTTCTTGGGTTGTG	77	2662
1063220	N/A	N/A	4397	4412	CTTCATCGACACCACG	92	2663
1063251	N/A	N/A	4548	4563	CTGACTGGGTTTCTCA	35	2664
1063283	N/A	N/A	4708	4723	AGCTAAGAATTCTCCC	67	2665
1063315	N/A	N/A	5073	5088	AGCACTGGTGAGATGA	43	2666
1063347	N/A	N/A	5255	5270	GAGCAGTTGCTCCTTC	174	2667
1063379	N/A	N/A	5454	5469	GCTCAGATGCCGAGTT	112	2668
1063411	N/A	N/A	5648	5663	AGCCACGCAAGACCTG	106	2669
1063443	N/A	N/A	5853	5868	GAGGCGAGTCCAGGAG	36	2670
1063475	N/A	N/A	6010	6025	GGACCGAGCTGACATT	68	2671
1063507	N/A	N/A	6127	6142	AGTGGGTAGATTCTGA	44	2672
1063539	N/A	N/A	6274	6289	GAGTCCTATTTTGCCC	68	2673
1063571	N/A	N/A	6438	6453	CCACGCTAGCACAGCC	222	2674
1063603	N/A	N/A	6964	6979	GGTACCCCACCCTGCC	86	2675
1063635	N/A	N/A	7169	7184	AATACGGCCTCCTCCT	217	2676

1063667	N/A	N/A	7372	7387	CAAGCCCACATGGTAG	61	2677
1063699	N/A	N/A	7799	7814	AGGTGTTACCAGGTGG	23	2678
1063731	N/A	N/A	7966	7981	GCATCTTTAAGGTTCT	6	2679
1063763	N/A	N/A	8043	8058	TTAAAGACGGCCATTC	266	2680
1063794	N/A	N/A	8557	8572	TTATTGGGATGAAGCC	21	2681
1063826	N/A	N/A	8842	8857	GGGCAAAGCAGGAGTG	126	2682
1063858	N/A	N/A	8911	8926	AGCCATCTAGAGGAGC	101	2683
1063890	N/A	N/A	9411	9426	CCTAAGTAGGGAGAAG	421	2684
1063922	N/A	N/A	9633	9648	TTCCCTGGGAGTGCCC	37	2685
1063954	N/A	N/A	9927	9942	AGGTCTGGGCATGTTT	27	2686
1063986	N/A	N/A	10453	10468	GTGGTTATGTGGCACC	61	2687
1064018	N/A	N/A	10742	10757	GCCCTCTTCTAAATTC	40	2688
1064050	N/A	N/A	11347	11362	TGTCAGGATTAGGAGC	67	2689
1064082	N/A	N/A	11541	11556	CCCAATCCCCAAGGGA	118	2690
1064116	N/A	N/A	11620	11635	TCCTGGAATTACTTAG	212	2691
1064148	N/A	N/A	11687	11702	GCAGTGGATAGGTGAG	20	2692
1064180	N/A	N/A	11801	11816	AAAAGAAGCGGAGTAA	270	2693
1064212	N/A	N/A	11897	11912	GTCCACGGGCACAGGT	124	2694
1064244	N/A	N/A	11976	11991	AGGACCTCCTAGCTAG	169	2695
1064276	N/A	N/A	12197	12212	AATGGAGGAACCCACT	118	2696
1064308	N/A	N/A	12382	12397	CAGGAGAGGGTTAGGT	79	2697
1064340	N/A	N/A	12576	12591	CAAATGGGTGTTACAA	234	2698
1064372	N/A	N/A	12779	12794	TCAGCGATGATGATTG	84	2699
1064404	N/A	N/A	12922	12937	ATTATCGAGTATCTTA	74	2700
1064436	N/A	N/A	13176	13191	GCTAGGGCTGAAGTGA	101	2701
1064468	N/A	N/A	13389	13404	TATGACCTACCCGAG	131	2702

Таблица 40Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	30	65
911179	N/A	N/A	10316	10331	GCTTTAACAACTCAGG	21	306
1062036	117	132	517	532	TGGCTTGTGGGAAACT	36	2703
1062068	309	324	6847	6862	GGAAGGTTCCCCCTGG	44	2704
1062100	420	435	7485	7500	CGGAGGGTGCCACCAT	14	2705
1062132	591	606	7754	7769	CCCCAGTGGCGGTGGT	47	2706
1062164	751	766	8397	8412	AGTGGGTAGGAGCTCT	81	2707
1062196	857	872	9447	9462	GCCCTTCTCATCCAGA	52	2708
1062228	1047	1062	11203	11218	CGACAGGGCCTTGGCT	280	2709
1062260	1176	1191	12046	12061	TGTGGAACTTGAAGTA	33*	2710
1062292	1421	1436	13831	13846	TTTCTTGCGGAACTCC	141	2711
1062324	1584	1599	13994	14009	CCTCACTTCTTGGTCC	51	2712
1062356	1847	1862	14257	14272	ACAGGATTGTGACATT	83	2713
1062388	2025	2040	14435	14450	CACACCCCTGTGTTGA	81	2714
1062420	2178	2193	14588	14603	CTGCACGGGACTCAAG	67	2715
1062484	N/A	N/A	13593	13608	GCACTTGAGGCCATCC	106	2716
1062516	N/A	N/A	13730	13745	TCTGTGGAAGGCCGGG	95	2717
1062548	N/A	N/A	681	696	CTGGCTGGAATCACGG	141	2718
1062580	N/A	N/A	863	878	GCATTTCAAGTTGTTC	5	2719
1062612	N/A	N/A	1107	1122	ATCGATGGAGTGTGGT	63	2720
1062644	N/A	N/A	1236	1251	ATGTAAAGGTCCTCGG	23	2721
1062677	N/A	N/A	1336	1351	AAGCGATACAAGCAAA	58	2722
1062709	N/A	N/A	1471	1486	CTGAACAACCTGTTTG	95	2723
1062741	N/A	N/A	1719	1734	GCACTTGGTCAAATCA	24	2724
1062773	N/A	N/A	1874	1889	GGACAACCTTTTGGAA	105	2725

1062805	N/A	N/A	2073	2088	TATTAGGAGTAAGGAC	70	2726
1062837	N/A	N/A	2158	2173	ATATGTAATGGCTGAT	18	2727
1062869	N/A	N/A	2365	2380	GCCATAAAAGAGACTA	58	2728
1062901	N/A	N/A	2554	2569	TCTAAACAAAGACTCC	81	2729
1062933	N/A	N/A	2729	2744	TAGTCAGTCCATTATC	42	2730
1062965	N/A	N/A	2864	2879	AAGCTTGGACATGGAC	70	2731
1062997	N/A	N/A	3066	3081	CGAGAGGAGGATTGCC	94	2732
1063029	N/A	N/A	3235	3250	CTGCAGGGCTTCAAGT	77	2733
1063061	N/A	N/A	3388	3403	AGATCTAGGCTTGGAT	142	2734
1063093	N/A	N/A	3639	3654	CACCACGCTCTGGCCA	96	2735
1063125	N/A	N/A	3862	3877	CAAATACATGGCCACT	87	2736
1063157	N/A	N/A	4084	4099	TTAGATTTAAAGGATC	78	2737
1063189	N/A	N/A	4218	4233	TGGCCCTTCTTGGGTT	99	2738
1063221	N/A	N/A	4401	4416	CGGGCTTCATCGACAC	36	2739
1063252	N/A	N/A	4553	4568	CCTTTCTGACTGGGTT	77	2740
1063284	N/A	N/A	4709	4724	GAGCTAAGAATTCTCC	97	2741
1063316	N/A	N/A	5074	5089	GAGCACTGGTGAGATG	43	2742
1063348	N/A	N/A	5273	5288	TATAGAAGGGTTCTGG	32	2743
1063380	N/A	N/A	5481	5496	AGCCAACCCCATTATA	116	2744
1063412	N/A	N/A	5653	5668	GTCCAAGCCACGCAAG	114	2745
1063444	N/A	N/A	5854	5869	GGAGGCGAGTCCAGGA	91	2746
1063476	N/A	N/A	6011	6026	AGGACCGAGCTGACAT	68	2747
1063508	N/A	N/A	6132	6147	CGAGAAGTGGGTAGAT	52	2748
1063540	N/A	N/A	6278	6293	CTCGGAGTCCTATTTT	100	2749
1063572	N/A	N/A	6440	6455	GCCCACGCTAGCACAG	69	2750
1063604	N/A	N/A	6965	6980	AGGTACCCCACCCTGC	96	2751
1063636	N/A	N/A	7170	7185	CAATACGGCCTCCTCC	83	2752
1063668	N/A	N/A	7374	7389	TGCAAGCCCACATGGT	148	2753
1063700	N/A	N/A	7800	7815	GAGGTGTTACCAGGTG	97	2754
1063732	N/A	N/A	7967	7982	TGCATCTTTAAGGTTC	28	2755
1063764	N/A	N/A	8044	8059	CTTAAAGACGGCCATT	206	2756
1063795	N/A	N/A	8558	8573	CTTATTGGGATGAAGC	221	2757

1063827	N/A	N/A	8847	8862	TAGCAGGGCAAAGCAG	107	2758
1063859	N/A	N/A	8915	8930	CAGCAGCCATCTAGAG	83	2759
1063891	N/A	N/A	9412	9427	GCCTAAGTAGGGAGAA	155	2760
1063923	N/A	N/A	9642	9657	GCTACGGTCTTCCCTG	61	2761
1063955	N/A	N/A	9938	9953	GACAGATTTCCAGGTC	94	2762
1063987	N/A	N/A	10460	10475	GACCTATGTGGTTATG	242	2763
1064019	N/A	N/A	10744	10759	ACGCCCTCTTCTAAAT	34	2764
1064051	N/A	N/A	11374	11389	GCTCCTTTGCACCCTC	55	2765
1064083	N/A	N/A	11546	11561	ATGGCCCCAATCCCCA	200	2766
1064117	N/A	N/A	11621	11636	CTCCTGGAATTACTTA	80	2767
1064149	N/A	N/A	11688	11703	AGCAGTGGATAGGTGA	62	2768
1064181	N/A	N/A	11802	11817	GAAAAGAAGCGGAGTA	53	2769
1064213	N/A	N/A	11907	11922	CAACACCCGTGTCCAC	93	2770
1064245	N/A	N/A	11977	11992	CAGGACCTCCTAGCTA	147	2771
1064277	N/A	N/A	12198	12213	GAATGGAGGAACCCAC	321	2772
1064309	N/A	N/A	12383	12398	CCAGGAGAGGGTTAGG	165	2773
1064341	N/A	N/A	12577	12592	TCAAATGGGTGTTACA	91	2774
1064373	N/A	N/A	12780	12795	GTCAGCGATGATGATT	306	2775
1064405	N/A	N/A	12923	12938	AATTATCGAGTATCTT	261	2776
1064437	N/A	N/A	13177	13192	GGCTAGGGCTGAAGTG	66	2777
1064469	N/A	N/A	13390	13405	CTATGACCTACCCCGA	214	2778

 Таблица 41

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
678925	N/A	N/A	12902	12917	TCAGGGACATGGTTAG	75	2779
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	33	65
1154721	84	99	484	499	ACTTTGCTTTTATACC	20	2780

1154727	336	351	6874	6889	GGGCCCCGCCTCGAAG	99	2781
1154733	1147	1162	N/A	N/A	AGGAACTCTGGGAATG	53	2782
1154739	1154	1169	12024	12039	GTTGTGGAGGAACTCT	54	2783
1154745	1255	1270	13485	13500	TTGAGTGTCCGCTGCT	16*	2784
1154751	1914	1929	14324	14339	AGCTTTGAGGTTGTTT	30	2785
1154757	1931	1946	14341	14356	TGATTGTGTGATGATG	64	2786
1154763	2125	2140	14535	14550	GATACACAGGTGAATT	83	2787
1154769	2247	2262	14657	14672	GGGAGTGAGTGAGTG	51	2788
1154775	N/A	N/A	621	636	GCCGTGCCTACCTCCC	40	2789
1154781	N/A	N/A	628	643	CCCCCCGCCGTGCCT	66	2790
1154787	N/A	N/A	679	694	GGCTGGAATCACGGTA	64	2791
1154793	N/A	N/A	859	874	TTCAAGTTGTTCAAAG	47	2792
1154799	N/A	N/A	1106	1121	TCGATGGAGTGTGGTC	63	2793
1154805	N/A	N/A	1291	1306	ACCTTGCAATCCTCCT	43	2794
1154811	N/A	N/A	1379	1394	GTGTGAAGTGCTCCCT	31	2795
1154817	N/A	N/A	1572	1587	ATTCTAATTTGGTTAC	46	2796
1154823	N/A	N/A	1580	1595	ATAGCATGATTCTAAT	89	2797
1154829	N/A	N/A	1710	1725	CAAATCAATCAAAGTT	112	2798
1154835	N/A	N/A	1820	1835	ACGCCCCTTTGCCCC	51	2799
1154841	N/A	N/A	1853	1868	ATTAGCAGAGAGGGTC	51	2800
1154847	N/A	N/A	2023	2038	GCATGAATGGCCAATG	73	2801
1154853	N/A	N/A	2155	2170	TGTAATGGCTGATGAA	28	2802
1154859	N/A	N/A	2511	2526	AGTACATATGAGGAAA	31	2803
1154865	N/A	N/A	2519	2534	ACCATTGCAGTACATA	17	2804
1154871	N/A	N/A	2622	2637	AATGCTGATCTTGGGT	59	2805
1154877	N/A	N/A	2800	2815	GGAGGACCATGGAGTA	101	2806
1154883	N/A	N/A	3037	3052	TTTGCTGGTCTCTGGC	34	2807
1154889	N/A	N/A	3218	3233	GACAATTGCCCCTCTA	54	2808
1154895	N/A	N/A	3266	3281	TTCTACGCTGTCTGGT	63	2809
1154901	N/A	N/A	3354	3369	TTTCGGTGAGGCCCTG	47	2810
1154907	N/A	N/A	3377	3392	TGGATTTCAACTCTGC	50	2811
1154913	N/A	N/A	3492	3507	GGAATGGTAGCCCAGG	54	2812

1154919	N/A	N/A	3657	3672	CTGACATGCCTCCATC	72	2813
1154925	N/A	N/A	3715	3730	CCCACAATCAAGGTTT	89	2814
1154931	N/A	N/A	4022	4037	TCAGTATGTGTAGGCC	29	2815
1154937	N/A	N/A	4247	4262	ACTATGACAAGCCCCT	63	2816
1154943	N/A	N/A	4453	4468	CCCCGACTTGCCCAGA	47	2817
1154949	N/A	N/A	4652	4667	ACATTCTCAGACAGGG	72	2818
1154955	N/A	N/A	4758	4773	CATGTGGCTGGCCTGT	92	2819
1154961	N/A	N/A	5158	5173	TTCTTAGTCTCCTGGG	40	2820
1154967	N/A	N/A	5539	5554	CTTTTCAGGATCCTAT	92	2821
1154973	N/A	N/A	5699	5714	TGCTACACCCCCTGCC	109	2822
1154979	N/A	N/A	5970	5985	GAGTTGGATTGGGTGC	52	2823
1154985	N/A	N/A	6043	6058	AAGTGACATGGGTTTT	58	2824
1154991	N/A	N/A	6070	6085	GGATGTAGTGGGCAAG	27	2825
1154997	N/A	N/A	6276	6291	CGGAGTCCTATTTTGC	90	2826
1155003	N/A	N/A	6562	6577	CATAGTTGCACCCCAG	202	2827
1155009	N/A	N/A	6648	6663	GCGGTATGAGATACTC	126	2828
1155015	N/A	N/A	7006	7021	TCCCGCCCAGTGCCAC	84	2829
1155021	N/A	N/A	7178	7193	TGGGACTACAATACGG	46	2830
1155027	N/A	N/A	7239	7254	CCTACTTGGCCCCAGT	61	2831
1155033	N/A	N/A	7315	7330	CTCATGGAGATCGAGT	92	2832
1155039	N/A	N/A	7398	7413	GTGTCTAATTCAAATA	97	2833
1155045	N/A	N/A	7903	7918	GACACCTTTGACCCCC	55	2834
1155051	N/A	N/A	7971	7986	ATTCTGCATCTTTAAG	68	2835
1155057	N/A	N/A	8002	8017	TTGTAAAGCTCTGTGG	27	2836
1155063	N/A	N/A	8050	8065	GAGAAGCTTAAAGACG	92	2837
1155069	N/A	N/A	8556	8571	TATTGGGATGAAGCCT	79	2838
1155075	N/A	N/A	8813	8828	CTGGCTACATGGGTTC	106	2839
1155081	N/A	N/A	9160	9175	TGAGTTGAGAATGGGC	76	2840
1155087	N/A	N/A	9420	9435	CTGGCAGTGCCTAAGT	106	2841
1155093	N/A	N/A	9602	9617	TTTATACCAGCCCTCG	82	2842
1155099	N/A	N/A	9875	9890	GAATGTGAGGTTAGGT	15	2843
1155105	N/A	N/A	10282	10297	CTTAGAGTCAGAGGGT	34	2844

1155111	N/A	N/A	10309	10324	CAACTCAGGATCACAG	32	2845
1155117	N/A	N/A	10415	10430	TGGTCGCCATCTTGAA	36	2846
1155123	N/A	N/A	10462	10477	GTGACCTATGTGGTTA	119	2847
1155129	N/A	N/A	10702	10717	ACAGCATGAGCCGTAT	93	2848
1155135	N/A	N/A	11570	11585	GCTGGAGTCCAGAGTG	81	2849
1155141	N/A	N/A	11808	11823	GAGGTTGAAAAGAAGC	53	2850
1155147	N/A	N/A	12338	12353	GGTAGGTTTAGGGTCA	80	2851
1155153	N/A	N/A	12568	12583	TGTTACAAGGAAAGGT	102	2852
1155159	N/A	N/A	12703	12718	AATATCTGGTATCATG	109	2853
1155165	N/A	N/A	12805	12820	TTGGATTCAGGAATGG	80	2854
1155176	N/A	N/A	13341	13356	GGTAATCAGGGACAGG	50	2855

 Таблица 42

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	26	65
1154723	112	127	512	527	TGTGGGAAACTGTCAC	84	2856
1154729	837	852	9427	9442	GGTCCGCCTGGCAGTG	41	2857
1154735	1149	1164	N/A	N/A	GGAGGAACTCTGGGAA	75	2858
1154741	1249	1264	13479	13494	GTCCGCTGCTTCTCTG	1*	2859
1154747	1908	1923	14318	14333	GAGGTTGTTTGAGTGT	17	2860
1154753	1918	1933	14328	14343	ATGCAGCTTTGAGGTT	N.D.	2861
1154759	1933	1948	14343	14358	TGTGATTGTGATGA	27	2862
1154765	2127	2142	14537	14552	GAGATACACAGGTGAA	14	2863
1154771	2249	2264	14659	14674	ATGGGAGTGAGGTGAG	44	2864
1154777	N/A	N/A	623	638	CCGCCGTGCCTACCTC	63	2865
1154783	N/A	N/A	650	665	CACTGTACCAGAGGGC	72	2866
1154789	N/A	N/A	784	799	TCAATTGATGAATTCA	44	2867

1154795	N/A	N/A	862	877	CATTTCAAGTTGTTCA	30	2868
1154801	N/A	N/A	1193	1208	GTGTACAAAGCTCTAG	38	2869
1154807	N/A	N/A	1320	1335	GTTCAGTTAAGTGCTC	32	2870
1154813	N/A	N/A	1403	1418	ACAGCTAAACTACGGT	69	2871
1154819	N/A	N/A	1574	1589	TGATTCTAATTTGGTT	53	2872
1154825	N/A	N/A	1704	1719	AATCAAAGTTCATGCT	75	2873
1154831	N/A	N/A	1816	1831	CCCCTTTGCCCCAGCA	85	2874
1154837	N/A	N/A	1823	1838	TGCACGCCCCTTTGC	103	2875
1154843	N/A	N/A	1876	1891	TAGGACAACCTTTTGG	39	2876
1154849	N/A	N/A	2071	2086	TTAGGAGTAAGGACAT	50	2877
1154855	N/A	N/A	2164	2179	TGCTATATATGTAATG	60	2878
1154861	N/A	N/A	2514	2529	TGCAGTACATATGAGG	24	2879
1154867	N/A	N/A	2614	2629	TCTTGGGTTTATTGTG	36	2880
1154873	N/A	N/A	2676	2691	TCATCATATACCCTAA	86	2881
1154879	N/A	N/A	2849	2864	CCCACATATGGAGAGA	75	2882
1154885	N/A	N/A	3039	3054	CATTTGCTGGTCTCTG	34	2883
1154891	N/A	N/A	3242	3257	TAGGTGTCTGCAGGGC	15	2884
1154897	N/A	N/A	3290	3305	TGGAGTAGACAAGGGC	36	2885
1154903	N/A	N/A	3371	3386	TCAACTCTGCCGCTGC	28	2886
1154909	N/A	N/A	3404	3419	CCCACCTAGAGTCCTG	72	2887
1154915	N/A	N/A	3653	3668	CATGCCTCCATCATCA	78	2888
1154921	N/A	N/A	3660	3675	TGACTGACATGCCTCC	65	2889
1154927	N/A	N/A	3800	3815	CCTTTGGTCTGGGCCT	37	2890
1154933	N/A	N/A	4035	4050	CGGTCCCAAAGTCTCA	43	2891
1154939	N/A	N/A	4269	4284	GGTAGGTGATGTCCAT	46	2892
1154945	N/A	N/A	4459	4474	CACAGCCCCCGACTTG	60	2893
1154951	N/A	N/A	4657	4672	TAGATACATTCTCAGA	58	2894
1154957	N/A	N/A	5096	5111	GGCTCCGAACAAGGGC	85	2895
1154963	N/A	N/A	5437	5452	CGTAGTCCCATAGTGA	74	2896
1154969	N/A	N/A	5600	5615	ACAATGGCTCCGGGCC	86	2897
1154975	N/A	N/A	5766	5781	TGTAGAAGCTTCTCTA	83	2898
1154981	N/A	N/A	6035	6050	TGGGTTTTAGCTTGAG	18	2899

1154987	N/A	N/A	6049	6064	GAGTCAAAGTGACATG	57	2900
1154993	N/A	N/A	6145	6160	GCAGTGGAGAAGGCGA	74	2901
1154999	N/A	N/A	6292	6307	TCTCGGACTTTCTCCT	63	2902
1155005	N/A	N/A	6617	6632	GTGGACACTCCTCTGG	85	2903
1155011	N/A	N/A	7001	7016	CCCAGTGCCACAGTAA	82	2904
1155017	N/A	N/A	7008	7023	CCTCCCGCCCAGTGCC	64	2905
1155023	N/A	N/A	7189	7204	AGCTATGCTCATGGGA	46	2906
1155029	N/A	N/A	7243	7258	CTCACCTACTTGGCCC	67	2907
1155035	N/A	N/A	7351	7366	ATGATCATCCCCCTTT	66	2908
1155041	N/A	N/A	7810	7825	GGTACGGGCTGAGGTG	50	2909
1155047	N/A	N/A	7942	7957	CGTTTTTTGGAGGGTG	13	2910
1155053	N/A	N/A	7996	8011	AGCTCTGTGGTTTTGT	31	2911
1155059	N/A	N/A	8004	8019	CTTTGTAAAGCTCTGT	32	2912
1155065	N/A	N/A	8052	8067	CAGAGAAGCTTAAAGA	96	2913
1155071	N/A	N/A	8663	8678	GAGGTCGAGAGAAGCT	95	2914
1155077	N/A	N/A	8880	8895	AGTGGAATAAGGCTGG	105	2915
1155083	N/A	N/A	9326	9341	TGGGAGTTCTCTCCTC	91	2916
1155089	N/A	N/A	9422	9437	GCCTGGCAGTGCCTAA	103	2917
1155095	N/A	N/A	9607	9622	CTTCCTTTATACCAGC	44	2918
1155101	N/A	N/A	9881	9896	GGACCTGAATGTGAGG	71	2919
1155107	N/A	N/A	10302	10317	GGATCACAGTGTTTGG	4	2920
1155113	N/A	N/A	10380	10395	CAGGTTACATAGCTGG	54	2921
1155119	N/A	N/A	10420	10435	CTCTGTGGTCGCCATC	15	2922
1155125	N/A	N/A	10550	10565	TCTGTACATTCGCATC	23	2923
1155131	N/A	N/A	11156	11171	TCGGATGATGCCTGGG	85	2924
1155137	N/A	N/A	11572	11587	TAGCTGGAGTCCAGAG	74	2925
1155143	N/A	N/A	11915	11930	CTCACCGTCAACACCC	97	2926
1155149	N/A	N/A	12400	12415	TAGGCTATTTTATGGG	85	2927
1155155	N/A	N/A	12580	12595	GGATCAAATGGGTGTT	67	2928
1155161	N/A	N/A	12731	12746	CAGGGTTTCAGTTCAG	46	2929
1155167	N/A	N/A	12888	12903	AGGTGGTTAGGCTCAG	66	2930
1155172	N/A	N/A	12959	12974	TGACTTGGCTTTAGGT	96	2931

1155178	N/A	N/A	13388	13403	ATGACCTACCCGAGC	104	2932
1133170	1 1/ / 1	1 1/2 1	13300	15105	11101100111000001100	101	1 2/32

 Таблица 43

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	24	65
1154724	144	159	544	559	AAGTGGACTGACAGAA	73	2933
1154730	838	853	9428	9443	TGGTCCGCCTGGCAGT	46	2934
1154736	1150	1165	N/A	N/A	TGGAGGAACTCTGGGA	85	2935
1154742	1250	1265	13480	13495	TGTCCGCTGCTTCTCT	8*	2936
1154748	1909	1924	14319	14334	TGAGGTTGTTTGAGTG	35	2937
1154754	1928	1943	14338	14353	TTGTGTGATGATGCAG	4	2938
1154760	1935	1950	14345	14360	TGTGTGATTGTGAT	57	2939
1154766	2243	2258	14653	14668	GTGAGGTGAGTGGCAG	49	2940
1154772	2267	2282	N/A	N/A	TGGATCAGGGCTCAGG	34	2941
1154778	N/A	N/A	625	640	CCCCGCCGTGCCTACC	26	2942
1154784	N/A	N/A	656	671	ACATCCCACTGTACCA	78	2943
1154790	N/A	N/A	786	801	TATCAATTGATGAATT	134	2944
1154796	N/A	N/A	864	879	AGCATTTCAAGTTGTT	47	2945
1154802	N/A	N/A	1270	1285	TAGGGTGAACAGAACT	79	2946
1154808	N/A	N/A	1321	1336	AGTTCAGTTAAGTGCT	63	2947
1154814	N/A	N/A	1470	1485	TGAACAACCTGTTTGC	104	2948
1154820	N/A	N/A	1575	1590	ATGATTCTAATTTGGT	41	2949
1154826	N/A	N/A	1707	1722	ATCAATCAAAGTTCAT	47	2950
1154832	N/A	N/A	1817	1832	CCCCTTTGCCCCAGC	47	2951
1154838	N/A	N/A	1824	1839	ATGCACGCCCCTTTG	108	2952
1154844	N/A	N/A	1902	1917	TTAGCTTAAGTAGAGG	43	2953
1154850	N/A	N/A	2150	2165	TGGCTGATGAAAGGTT	48	2954

1154856	N/A	N/A	2165	2180	TTGCTATATATGTAAT	104	2955
1154862	N/A	N/A	2515	2530	TTGCAGTACATATGAG	77	2956
1154868	N/A	N/A	2617	2632	TGATCTTGGGTTTATT	58	2957
1154874	N/A	N/A	2789	2804	GAGTATGGTTTAACAA	63	2958
1154880	N/A	N/A	2906	2921	CCCTGGTATAAGAACA	112	2959
1154886	N/A	N/A	3044	3059	AAGAACATTTGCTGGT	44	2960
1154892	N/A	N/A	3243	3258	TTAGGTGTCTGCAGGG	69	2961
1154898	N/A	N/A	3291	3306	GTGGAGTAGACAAGGG	21	2962
1154904	N/A	N/A	3372	3387	TTCAACTCTGCCGCTG	48	2963
1154910	N/A	N/A	3411	3426	CCAGGGTCCCACCTAG	115	2964
1154916	N/A	N/A	3654	3669	ACATGCCTCCATCATC	70	2965
1154922	N/A	N/A	3661	3676	CTGACTGACATGCCTC	56	2966
1154928	N/A	N/A	4017	4032	ATGTGTAGGCCAGTGT	31	2967
1154934	N/A	N/A	4037	4052	TACGGTCCCAAAGTCT	97	2968
1154940	N/A	N/A	4270	4285	TGGTAGGTGATGTCCA	96	2969
1154946	N/A	N/A	4508	4523	GGACACAGATTATGTT	90	2970
1154952	N/A	N/A	4658	4673	ATAGATACATTCTCAG	50	2971
1154958	N/A	N/A	5097	5112	AGGCTCCGAACAAGGG	75	2972
1154964	N/A	N/A	5531	5546	GATCCTATAATCCTGG	96	2973
1154970	N/A	N/A	5601	5616	CACAATGGCTCCGGGC	74	2974
1154976	N/A	N/A	5914	5929	AATATGTGAGTGGAGG	68	2975
1154982	N/A	N/A	6038	6053	ACATGGGTTTTAGCTT	62	2976
1154988	N/A	N/A	6051	6066	GAGAGTCAAAGTGACA	74	2977
1154994	N/A	N/A	6189	6204	AACAGTCCTGGCAAGT	129	2978
1155000	N/A	N/A	6308	6323	ATCTTGCCGGAGCTGG	68	2979
1155006	N/A	N/A	6618	6633	CGTGGACACTCCTCTG	93	2980
1155012	N/A	N/A	7002	7017	GCCCAGTGCCACAGTA	104	2981
1155018	N/A	N/A	7009	7024	CCCTCCCGCCCAGTGC	67	2982
1155024	N/A	N/A	7190	7205	TAGCTATGCTCATGGG	47	2983
1155030	N/A	N/A	7304	7319	CGAGTAACTTTTAAA	103	2984
1155036	N/A	N/A	7353	7368	CTATGATCATCCCCCT	64	2985
1155042	N/A	N/A	7885	7900	AGTACTGCAATTCAGA	57	2986

1155048	N/A	N/A	7965	7980	CATCTTTAAGGTTCTG	16	2987
1155054	N/A	N/A	7997	8012	AAGCTCTGTGGTTTTG	49	2988
1155060	N/A	N/A	8014	8029	TTTTGACTAGCTTTGT	45	2989
1155066	N/A	N/A	8053	8068	GCAGAGAAGCTTAAAG	79	2990
1155072	N/A	N/A	8664	8679	TGAGGTCGAGAGAAGC	121	2991
1155078	N/A	N/A	8883	8898	AACAGTGGAATAAGGC	65	2992
1155084	N/A	N/A	9329	9344	CTCTGGGAGTTCTCTC	85	2993
1155090	N/A	N/A	9423	9438	CGCCTGGCAGTGCCTA	89	2994
1155096	N/A	N/A	9608	9623	CCTTCCTTTATACCAG	102	2995
1155102	N/A	N/A	9954	9969	TTTGTAAGTAGAAGGG	32	2996
1155108	N/A	N/A	10303	10318	AGGATCACAGTGTTTG	18	2997
1155114	N/A	N/A	10412	10427	TCGCCATCTTGAAATC	57	2998
1155120	N/A	N/A	10421	10436	GCTCTGTGGTCGCCAT	34	2999
1155126	N/A	N/A	10584	10599	GTCACCTAAACCCCCC	54	3000
1155132	N/A	N/A	11322	11337	CCGTGTAGTGCAAGGA	106	3001
1155138	N/A	N/A	11574	11589	AGTAGCTGGAGTCCAG	42	3002
1155144	N/A	N/A	12285	12300	TTGGATTTGCGGACAG	57	3003
1155150	N/A	N/A	12550	12565	GGAATGGTGCCCAGTT	105	3004
1155156	N/A	N/A	12700	12715	ATCTGGTATCATGTAG	80	3005
1155162	N/A	N/A	12758	12773	AGGCTATCAGTCAGGA	74	3006
1155168	N/A	N/A	12894	12909	ATGGTTAGGTGGTTAG	92	3007
1155173	N/A	N/A	12966	12981	GATGGGATGACTTGGC	76	3008
1155179	N/A	N/A	13391	13406	GCTATGACCTACCCCG	96	3009

 Таблица 44

 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	30	65

1154725	152	167	N/A	N/A	GCTTGGTGAAGTGGAC	48	3010
1154731	839	854	9429	9444	ATGGTCCGCCTGGCAG	48	3011
1154737	1152	1167	N/A	N/A	TGTGGAGGAACTCTGG	74	3012
1154743	1252	1267	13482	13497	AGTGTCCGCTGCTTCT	7*	3013
1154749	1911	1926	14321	14336	TTTGAGGTTGTTTGAG	40	3014
1154755	1929	1944	14339	14354	ATTGTGTGATGATGCA	38	3015
1154761	2066	2081	14476	14491	ATCCTGAGGGTACTGA	75	3016
1154767	2244	2259	14654	14669	AGTGAGGTGAGTGGCA	33	3017
1154773	N/A	N/A	619	634	CGTGCCTACCTCCCTG	48	3018
1154779	N/A	N/A	626	641	CCCCGCCGTGCCTAC	33	3019
1154785	N/A	N/A	660	675	GGGTACATCCCACTGT	83	3020
1154791	N/A	N/A	787	802	GTATCAATTGATGAAT	100	3021
1154797	N/A	N/A	865	880	CAGCATTTCAAGTTGT	71	3022
1154803	N/A	N/A	1277	1292	CTGCTACTAGGGTGAA	22	3023
1154809	N/A	N/A	1322	1337	AAGTTCAGTTAAGTGC	38	3024
1154815	N/A	N/A	1523	1538	TACTTTGTGCCAAACG	62	3025
1154821	N/A	N/A	1578	1593	AGCATGATTCTAATTT	28	3026
1154827	N/A	N/A	1708	1723	AATCAATCAAAGTTCA	76	3027
1154833	N/A	N/A	1818	1833	GCCCCTTTGCCCCAG	26	3028
1154839	N/A	N/A	1825	1840	AATGCACGCCCCTTT	108	3029
1154845	N/A	N/A	1906	1921	AGGGTTAGCTTAAGTA	40	3030
1154851	N/A	N/A	2152	2167	AATGGCTGATGAAAGG	39	3031
1154857	N/A	N/A	2190	2205	GCAAATGATGAATTGG	34	3032
1154863	N/A	N/A	2516	2531	ATTGCAGTACATATGA	52	3033
1154869	N/A	N/A	2620	2635	TGCTGATCTTGGGTTT	33	3034
1154875	N/A	N/A	2792	2807	ATGGAGTATGGTTTAA	23	3035
1154881	N/A	N/A	2968	2983	AGGGACACCCATGGCT	87	3036
1154887	N/A	N/A	3045	3060	TAAGAACATTTGCTGG	33	3037
1154893	N/A	N/A	3250	3265	TAAGTCATTAGGTGTC	21	3038
1154899	N/A	N/A	3314	3329	TTCTACACTGAGCACG	49	3039
1154905	N/A	N/A	3373	3388	TTTCAACTCTGCCGCT	79	3040
1154911	N/A	N/A	3412	3427	ACCAGGGTCCCACCTA	112	3041

1154917	N/A	N/A	3655	3670	GACATGCCTCCATCAT	51	3042
1154923	N/A	N/A	3662	3677	ACTGACTGACATGCCT	55	3043
1154929	N/A	N/A	4018	4033	TATGTGTAGGCCAGTG	11	3044
1154935	N/A	N/A	4226	4241	TGAAGACCTGGCCCTT	90	3045
1154941	N/A	N/A	4273	4288	ATGTGGTAGGTGATGT	45	3046
1154947	N/A	N/A	4609	4624	AGGACCTAGAGGGCCG	122	3047
1154953	N/A	N/A	4663	4678	AAAGCATAGATACATT	69	3048
1154959	N/A	N/A	5098	5113	GAGGCTCCGAACAAGG	57	3049
1154965	N/A	N/A	5532	5547	GGATCCTATAATCCTG	114	3050
1154971	N/A	N/A	5603	5618	TCCACAATGGCTCCGG	72	3051
1154977	N/A	N/A	5944	5959	GTGTAGATAGACATGA	91	3052
1154983	N/A	N/A	6039	6054	GACATGGGTTTTAGCT	63	3053
1154989	N/A	N/A	6052	6067	GGAGAGTCAAAGTGAC	81	3054
1154995	N/A	N/A	6268	6283	TATTTTGCCCCAGTGA	60	3055
1155001	N/A	N/A	6396	6411	GCAATGGTTGTTTCCC	38	3056
1155007	N/A	N/A	6641	6656	GAGATACTCGACCACC	59	3057
1155013	N/A	N/A	7003	7018	CGCCCAGTGCCACAGT	78	3058
1155019	N/A	N/A	7092	7107	GGATTTTCTTGGCCCT	94	3059
1155025	N/A	N/A	7192	7207	CATAGCTATGCTCATG	99	3060
1155031	N/A	N/A	7313	7328	CATGGAGATCGAGTAA	25	3061
1155037	N/A	N/A	7358	7373	AGATGCTATGATCATC	114	3062
1155043	N/A	N/A	7900	7915	ACCTTTGACCCCCAGA	61	3063
1155049	N/A	N/A	7969	7984	TCTGCATCTTTAAGGT	89	3064
1155055	N/A	N/A	7998	8013	AAAGCTCTGTGGTTTT	57	3065
1155061	N/A	N/A	8016	8031	CATTTTGACTAGCTTT	48	3066
1155067	N/A	N/A	8192	8207	ACAGGGCACCTATGGA	85	3067
1155073	N/A	N/A	8691	8706	CGTTTCTTATTATACA	75	3068
1155079	N/A	N/A	8890	8905	CTTTGGGAACAGTGGA	83	3069
1155085	N/A	N/A	9331	9346	CCCTCTGGGAGTTCTC	99	3070
1155091	N/A	N/A	9424	9439	CCGCCTGGCAGTGCCT	41	3071
1155097	N/A	N/A	9609	9624	TCCTTCCTTTATACCA	71	3072
1155103	N/A	N/A	9959	9974	GAGGGTTTGTAAGTAG	94	3073

1155109	N/A	N/A	10304	10319	CAGGATCACAGTGTTT	12	3074
1155115	N/A	N/A	10413	10428	GTCGCCATCTTGAAAT	54	3075
1155121	N/A	N/A	10422	10437	TGCTCTGTGGTCGCCA	27	3076
1155127	N/A	N/A	10609	10624	ACCACCCAACTGTGAC	88	3077
1155133	N/A	N/A	11424	11439	TGAGTGGCGGCAGCTG	91	3078
1155139	N/A	N/A	11576	11591	ATAGTAGCTGGAGTCC	35	3079
1155145	N/A	N/A	12298	12313	TGGTGGTTTAGGTTTG	68	3080
1155151	N/A	N/A	12564	12579	ACAAGGAAAGGTTGGG	84	3081
1155157	N/A	N/A	12701	12716	TATCTGGTATCATGTA	110	3082
1155163	N/A	N/A	12759	12774	GAGGCTATCAGTCAGG	62	3083
1155169	N/A	N/A	12896	12911	ACATGGTTAGGTGGTT	93	3084
1155174	N/A	N/A	13278	13293	GGTGAAGTGTCGGGTT	58	3085
1155180	N/A	N/A	13392	13407	GGCTATGACCTACCCC	N.D.	3086

 Таблица 45

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	25	65
1154726	335	350	6873	6888	GGCCCGCCTCGAAGA	62	3087
1154732	1146	1161	N/A	N/A	GGAACTCTGGGAATGT	40	3088
1154738	1153	1168	12023	12038	TTGTGGAGGAACTCTG	71	3089
1154744	1254	1269	13484	13499	TGAGTGTCCGCTGCTT	24*	3090
1154750	1912	1927	14322	14337	CTTTGAGGTTGTTTGA	37	3091
1154756	1930	1945	14340	14355	GATTGTGTGATGATGC	25	3092
1154762	2067	2082	14477	14492	GATCCTGAGGGTACTG	55	3093
1154768	2246	2261	14656	14671	GGAGTGAGGTGAGTGG	41	3094
1154774	N/A	N/A	620	635	CCGTGCCTACCTCCCT	39	3095
1154780	N/A	N/A	627	642	CCCCCGCCGTGCCTA	54	3096

1154786	N/A	N/A	662	677	CTGGGTACATCCCACT	98	3097
1154792	N/A	N/A	858	873	TCAAGTTGTTCAAAGC	37	3098
1154798	N/A	N/A	968	983	GCAAGACAGGGTGAGC	91	3099
1154804	N/A	N/A	1288	1303	TTGCAATCCTCCTGCT	95	3100
1154810	N/A	N/A	1323	1338	AAAGTTCAGTTAAGTG	60	3101
1154816	N/A	N/A	1562	1577	GGTTACAGAAATACTA	84	3102
1154822	N/A	N/A	1579	1594	TAGCATGATTCTAATT	66	3103
1154828	N/A	N/A	1709	1724	AAATCAATCAAAGTTC	N.D.	3104
1154834	N/A	N/A	1819	1834	CGCCCCTTTGCCCCA	45	3105
1154840	N/A	N/A	1844	1859	GAGGGTCATAAACTTT	66	3106
1154846	N/A	N/A	1913	1928	CTCACCTAGGGTTAGC	76	3107
1154852	N/A	N/A	2153	2168	TAATGGCTGATGAAAG	80	3108
1154858	N/A	N/A	2247	2262	GACTGTATAAAACCAT	20	3109
1154864	N/A	N/A	2518	2533	CCATTGCAGTACATAT	27	3110
1154870	N/A	N/A	2621	2636	ATGCTGATCTTGGGTT	45	3111
1154876	N/A	N/A	2795	2810	ACCATGGAGTATGGTT	102	3112
1154882	N/A	N/A	3036	3051	TTGCTGGTCTCTGGCT	74	3113
1154888	N/A	N/A	3094	3109	ATGCATGGAGAGCCAG	91	3114
1154894	N/A	N/A	3263	3278	TACGCTGTCTGGTTAA	60	3115
1154900	N/A	N/A	3353	3368	TTCGGTGAGGCCCTGA	70	3116
1154906	N/A	N/A	3374	3389	ATTTCAACTCTGCCGC	46	3117
1154912	N/A	N/A	3490	3505	AATGGTAGCCCAGGTT	63	3118
1154918	N/A	N/A	3656	3671	TGACATGCCTCCATCA	75	3119
1154924	N/A	N/A	3712	3727	ACAATCAAGGTTTTCG	21	3120
1154930	N/A	N/A	4021	4036	CAGTATGTGTAGGCCA	11	3121
1154936	N/A	N/A	4231	4246	AGCTCTGAAGACCTGG	62	3122
1154942	N/A	N/A	4451	4466	CCGACTTGCCCAGATT	68	3123
1154948	N/A	N/A	4638	4653	GGACATGGAGATGATC	78	3124
1154954	N/A	N/A	4664	4679	CAAAGCATAGATACAT	66	3125
1154960	N/A	N/A	5104	5119	TCTGTGGAGGCTCCGA	72	3126
1154966	N/A	N/A	5535	5550	TCAGGATCCTATAATC	84	3127
1154972	N/A	N/A	5604	5619	CTCCACAATGGCTCCG	68	3128

1154978	N/A	N/A	5946	5961	AGGTGTAGATAGACAT	45	3129
1154984	N/A	N/A	6040	6055	TGACATGGGTTTTAGC	48	3130
1154990	N/A	N/A	6069	6084	GATGTAGTGGGCAAGA	55	3131
1154996	N/A	N/A	6275	6290	GGAGTCCTATTTTGCC	67	3132
1155002	N/A	N/A	6499	6514	AGGTACATGTACATAC	74	3133
1155008	N/A	N/A	6647	6662	CGGTATGAGATACTCG	79	3134
1155014	N/A	N/A	7004	7019	CCGCCCAGTGCCACAG	73	3135
1155020	N/A	N/A	7177	7192	GGGACTACAATACGGC	32	3136
1155026	N/A	N/A	7194	7209	CACATAGCTATGCTCA	38	3137
1155032	N/A	N/A	7314	7329	TCATGGAGATCGAGTA	16	3138
1155038	N/A	N/A	7359	7374	TAGATGCTATGATCAT	58	3139
1155044	N/A	N/A	7901	7916	CACCTTTGACCCCCAG	40	3140
1155050	N/A	N/A	7970	7985	TTCTGCATCTTTAAGG	59	3141
1155056	N/A	N/A	7999	8014	TAAAGCTCTGTGGTTT	86	3142
1155062	N/A	N/A	8022	8037	TGCTGACATTTTGACT	74	3143
1155068	N/A	N/A	8498	8513	CCGGTAGACTGGCACA	94	3144
1155074	N/A	N/A	8811	8826	GGCTACATGGGTTCAA	89	3145
1155080	N/A	N/A	9124	9139	AAGCATTCTGGGTGGA	53	3146
1155086	N/A	N/A	9389	9404	TGCAGGTGACCACGAC	74	3147
1155092	N/A	N/A	9552	9567	CAGAAGGTTTTGCGCA	50	3148
1155098	N/A	N/A	9874	9889	AATGTGAGGTTAGGTT	40	3149
1155104	N/A	N/A	10281	10296	TTAGAGTCAGAGGGTT	28	3150
1155110	N/A	N/A	10308	10323	AACTCAGGATCACAGT	79	3151
1155116	N/A	N/A	10414	10429	GGTCGCCATCTTGAAA	37	3152
1155122	N/A	N/A	10459	10474	ACCTATGTGGTTATGT	80	3153
1155128	N/A	N/A	10653	10668	CCACTGATGCTGGGAC	88	3154
1155134	N/A	N/A	11508	11523	GACACTCGAGACCATA	66	3155
1155140	N/A	N/A	11789	11804	GTAACTTGCACACCAA	62	3156
1155146	N/A	N/A	12304	12319	CCTGGATGGTGGTTTA	64	3157
1155152	N/A	N/A	12567	12582	GTTACAAGGAAAGGTT	103	3158
1155158	N/A	N/A	12702	12717	ATATCTGGTATCATGT	82	3159
1155164	N/A	N/A	12769	12784	TGATTGCAGTGAGGCT	102	3160

1155170	N/A	N/A	12900	12915	AGGGACATGGTTAGGT	66	3161
1155175	N/A	N/A	13340	13355	GTAATCAGGGACAGGA	107	3162
1155181	N/A	N/A	13421	13436	GCACATTCCCCAAACT	107	3163

 Таблица 46

 Подавление мРНК Foxp3 с помощью сЕt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения	SEQ ID NO: 1, стартовый сайт	SEQ ID NO: 1, стоп-сайт	SEQ ID NO: 2, стартовый сайт	SEQ ID NO: 2, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
911144	N/A	N/A	7355	7370	TGCTATGATCATCCCC	27	65
1154722	85	100	485	500	AACTTTGCTTTTATAC	N.D.	3164
1154728	836	851	9426	9441	GTCCGCCTGGCAGTGC	51	3165
1154734	1148	1163	N/A	N/A	GAGGAACTCTGGGAAT	65	3166
1154740	1155	1170	12025	12040	TGTTGTGGAGGAACTC	83	3167
1154746	1905	1920	14315	14330	GTTGTTTGAGTGTACT	67	3168
1154752	1916	1931	14326	14341	GCAGCTTTGAGGTTGT	49	3169
1154758	1932	1947	14342	14357	GTGATTGTGTGATGAT	20	3170
1154764	2126	2141	14536	14551	AGATACACAGGTGAAT	48	3171
1154770	2248	2263	14658	14673	TGGGAGTGAGTGAGT	57	3172
1154776	N/A	N/A	622	637	CGCCGTGCCTACCTCC	43	3173
1154782	N/A	N/A	649	664	ACTGTACCAGAGGGCC	77	3174
1154788	N/A	N/A	783	798	CAATTGATGAATTCAT	86	3175
1154794	N/A	N/A	861	876	ATTTCAAGTTGTTCAA	55	3176
1154800	N/A	N/A	1192	1207	TGTACAAAGCTCTAGG	32	3177
1154806	N/A	N/A	1313	1328	TAAGTGCTCAGCTTGC	71	3178
1154812	N/A	N/A	1385	1400	ACAATGGTGTGAAGTG	42	3179
1154818	N/A	N/A	1573	1588	GATTCTAATTTGGTTA	41	3180
1154824	N/A	N/A	1581	1596	TATAGCATGATTCTAA	67	3181
1154830	N/A	N/A	1729	1744	CCAACAATCGGCACTT	49	3182
1154836	N/A	N/A	1822	1837	GCACGCCCCTTTGCC	46	3183

1154842	N/A	N/A	1872	1887	ACAACCTTTTGGAAGG	85	3184
1154848	N/A	N/A	2027	2042	AAAAGCATGAATGGCC	72	3185
1154854	N/A	N/A	2161	2176	TATATATGTAATGGCT	40	3186
1154860	N/A	N/A	2513	2528	GCAGTACATATGAGGA	21	3187
1154866	N/A	N/A	2531	2546	GGTACTATTATAACCA	97	3188
1154872	N/A	N/A	2637	2652	TAAGTTTTAACACCTA	69	3189
1154878	N/A	N/A	2837	2852	GAGAACTGAATTTGTG	22	3190
1154884	N/A	N/A	3038	3053	ATTTGCTGGTCTCTGG	8	3191
1154890	N/A	N/A	3225	3240	TCAAGTTGACAATTGC	54	3192
1154896	N/A	N/A	3289	3304	GGAGTAGACAAGGGCC	14	3193
1154902	N/A	N/A	3363	3378	GCCGCTGCATTTCGGT	74	3194
1154908	N/A	N/A	3378	3393	TTGGATTTCAACTCTG	44	3195
1154914	N/A	N/A	3613	3628	CTGACCTATGGAGTCC	73	3196
1154920	N/A	N/A	3659	3674	GACTGACATGCCTCCA	42	3197
1154926	N/A	N/A	3717	3732	GCCCCACAATCAAGGT	91	3198
1154932	N/A	N/A	4031	4046	CCCAAAGTCTCAGTAT	92	3199
1154938	N/A	N/A	4250	4265	GCCACTATGACAAGCC	71	3200
1154944	N/A	N/A	4458	4473	ACAGCCCCGACTTGC	123	3201
1154950	N/A	N/A	4656	4671	AGATACATTCTCAGAC	49	3202
1154956	N/A	N/A	4785	4800	GATGTTTTCCACCACT	15	3203
1154962	N/A	N/A	5216	5231	GGGTGGTTGTCAGAGC	17	3204
1154968	N/A	N/A	5554	5569	TGAGGGAAGCACTGGC	42	3205
1154974	N/A	N/A	5700	5715	ATGCTACACCCCCTGC	74	3206
1154980	N/A	N/A	5971	5986	GGAGTTGGATTGGGTG	33	3207
1154986	N/A	N/A	6047	6062	GTCAAAGTGACATGGG	39	3208
1154992	N/A	N/A	6092	6107	TCAGGAGCAGTGCTAG	79	3209
1154998	N/A	N/A	6277	6292	TCGGAGTCCTATTTTG	63	3210
1155004	N/A	N/A	6607	6622	CTCTGGTCAAAGCAGG	74	3211
1155010	N/A	N/A	7000	7015	CCAGTGCCACAGTAAA	66	3212
1155016	N/A	N/A	7007	7022	CTCCCGCCCAGTGCCA	51	3213
1155022	N/A	N/A	7179	7194	ATGGGACTACAATACG	25	3214
1155028	N/A	N/A	7242	7257	TCACCTACTTGGCCCC	68	3215

1155034	N/A	N/A	7350	7365	TGATCATCCCCCTTTT	70	3216
1155040	N/A	N/A	7633	7648	CTGTGGTTCAGCCTGA	64	3217
1155046	N/A	N/A	7929	7944	GTGGAGTTTCCAAGCC	40	3218
1155052	N/A	N/A	7995	8010	GCTCTGTGGTTTTGTG	19	3219
1155058	N/A	N/A	8003	8018	TTTGTAAAGCTCTGTG	22	3220
1155064	N/A	N/A	8051	8066	AGAGAAGCTTAAAGAC	73	3221
1155070	N/A	N/A	8569	8584	GCATCTTACTACTTAT	24	3222
1155076	N/A	N/A	8827	8842	GCAGATTCTAGAGCCT	57	3223
1155082	N/A	N/A	9175	9190	ATGTTGGAAGTGTGGT	69	3224
1155088	N/A	N/A	9421	9436	CCTGGCAGTGCCTAAG	79	3225
1155094	N/A	N/A	9606	9621	TTCCTTTATACCAGCC	62	3226
1155100	N/A	N/A	9876	9891	TGAATGTGAGGTTAGG	6	3227
1155106	N/A	N/A	10286	10301	GGATCTTAGAGTCAGA	20	3228
1155112	N/A	N/A	10372	10387	ATAGCTGGTCCTGCTG	105	3229
1155118	N/A	N/A	10417	10432	TGTGGTCGCCATCTTG	23	3230
1155124	N/A	N/A	10549	10564	CTGTACATTCGCATCA	35	3231
1155130	N/A	N/A	10720	10735	GAGGTGGAATCCCACA	83	3232
1155136	N/A	N/A	11571	11586	AGCTGGAGTCCAGAGT	45	3233
1155142	N/A	N/A	11839	11854	TTGCACCACTTCTGCC	83	3234
1155148	N/A	N/A	12397	12412	GCTATTTTATGGGTCC	19	3235
1155154	N/A	N/A	12574	12589	AATGGGTGTTACAAGG	57	3236
1155160	N/A	N/A	12705	12720	GGAATATCTGGTATCA	70	3237
1155166	N/A	N/A	12886	12901	GTGGTTAGGCTCAGGG	51	3238
1155171	N/A	N/A	12930	12945	TGGTTTGAATTATCGA	37	3239
1155177	N/A	N/A	13345	13360	GGCAGGTAATCAGGGA	51	3240

Таблица 47 Подавление мРНК Foxp3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 3, 4 и 5

Номер соединения	SEQ ID NO: 3, стартовый сайт	SEQ ID NO: 3, стоп-сайт	SEQ ID NO: 4, стартовый сайт	SEQ ID NO: 4, стоп-сайт	SEQ ID NO: 5, стартовый сайт	SEQ ID NO: 5, стоп-сайт	Последовательность (5'-3')	FOXP3 (% UTC)	SEQ ID NO
1062517	N/A	N/A	N/A	N/A	11	26	GGCGAGGCTCCTGAGA	92	626
911066	395	410	N/A	N/A	162	177	CACCGTTGAGAGCTGC	54	3241
1062518	N/A	N/A	N/A	N/A	12	27	GGGCGAGGCTCCTGAG	75	3242
1063075	N/A	N/A	11215	11230	N/A	N/A	TAAACTGAGGCCTGCA	74	3243
1062451	393	408	N/A	N/A	160	175	CCGTTGAGAGCTGCAG	53	3244
1062452	394	409	N/A	N/A	161	176	ACCGTTGAGAGCTGCA	82	3245
1062519	N/A	N/A	N/A	N/A	13	28	TGGGCGAGGCTCCTGA	98	3246

Пример 3. Дозозависимое подавление человеческого Foxp3 в клетках LNCaP с помощью сEt-гэпмеров

Модифицированные олигонуклеотиды, описанные в приведенных выше исследованиях, тестировали в различных дозах на клетках LNCaP. Культивируемые клетки LNCaP при плотности 30000 клеток на лунку трансфицировали с использованием электропорации с помощью модифицированных олигонуклеотидов, разбавленных до концентраций 8000 нМ, 4000 нМ, 500 нМ и 125 нМ, в течение 24 часов. Через 24 часа измеряли уровни мРНК Foxp3 с использованием набора праймеров и зондов для человеческого Foxp3 RTS35925, как описано ранее. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC). IC50 вычисляли с использованием линейной регрессии на линейно-логарифмическом графике по данным в Excel.

 Таблица 48

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 с помощью модифицированных олигонуклеотидов в клетках LNCaP

		%	UTC		
No	125	500	2000	8000	IC ₅₀
ION	нМ	нМ	нМ	нМ	(мкМ)
911180	87	45	15	2	0,5
911032	74	63	28	9	0,7
910969	91	75	24	11	0,9
911120	73	57	19	15	0,5
911152	99	70	29	15	0,9
910965	112	70	34	22	1,1
911144	56	47	23	8	0,3
911028	99	67	36	22	1,1
911012	85	53	17	5	0,5
910926	75	58	32	14	0,7
910958	98	66	35	18	1,0
911093	83	76	33	16	1,1
911105	100	72	39	16	1,3
911133	75	41	27	10	0,4
911101	100	48	26	16	0,7
910930	89	58	25	4	0,7
910962	90	47	35	24	0,7

910997	105	52	27	19	0,7
911110	101	54	23	10	0,7

 Таблица 49

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 с помощью модифицированных олигонуклеотидов в клетках LNCaP

		%	UTC		
No	125	500	2000	8000	IC ₅₀
ION	нМ	нМ	нМ	нМ	(мкМ)
911098	80	53	24	8	0,6
911118	73	53	28	3	0,5
911014	104	53	26	16	0,7
911162	94	66	17	11	0,7
911182	103	70	27	10	0,9
910959	94	52	20	9	0,6
910955	59	64	39	13	0,9
911194	79	44	19	5	0,4
911023	92	69	30	14	0,9
910956	74	47	19	6	0,4
911179	106	55	21	8	0,7
911171	76	59	21	11	0,6
911011	116	58	30	11	0,9
910924	88	66	30	12	0,9
911019	76	52	24	6	0,5
911051	99	75	33	14	1,1
910980	67	41	33	10	0,4
911183	113	75	43	23	1,5
911180	105	46	30	7	0,7

Пример 4. Дозозависимое подавление человеческого Foxp3 в клетках SUP-M2 с помощью сЕt-гэпмеров

Модифицированные олигонуклеотиды, описанные в приведенных выше исследованиях, тестировали в различных дозах на клетках SUP-M2. № ION 141923 (МОЕ-гэпмер 5-10-5, CCTTCCCTGAAGGTTCCTCC, обозначенный в данном документе как SEQ ID NO: 3247), контрольный модифицированный олигонуклеотид, который не нацеливался на Foxp3, был включен в каждый эксперимент в качестве отрицательного контроля.

Культивируемые клетки SUP-M2 при плотности 60000 клеток на лунку обрабатывали с использованием свободного поглощения с помощью модифицированных олигонуклеотидов, разбавленных до концентраций 7000 нМ, 1750 нМ, 437,5 нМ и 109,375 нМ, в течение 24 часов. Через 24 часа измеряли уровни мРНК Foxp3 с использованием набора праймеров и зондов для человеческого Foxp3 RTS35925, как описано ранее. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC). IC50 вычисляли с использованием линейной регрессии на линейно-логарифмическом графике по данным в Excel. Модифицированные олигонуклеотиды со значениями процента контроля, отмеченными звездочкой (*), нацеливаются на область ампликона из набора праймеров и зондов. Можно использовать дополнительные анализы для измерения активности и эффективности модифицированных олигонуклеотидов, нацеливающихся на область ампликона.

 Таблица 50

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% U	JTC		
	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
910956	82	73	39	26	1,2
911144	74	81	47	11	1,1
911179	75	44	19	10	0,4
1062005	121	75	19	6	1,1
1062006	97	65	41	15	1,1
1062166	99	127	109	94	> 7,0
1062422	114	104	75	51	> 7,0
1062645	148	93	49	17	2,0
1062838	137	88	28	11	1,4
1062839	72	82	54	20	1,5
1062903	108	47	9	7	0,7
1063062	123	78	36	18	1,5
1063063	98	63	21	14	0,8
1063094	150	126	78	60	> 7,0
1063158	138	97	66	43	4,3
1063159	71	90	66	23	2,4
1063542	103	107	101	88	> 7,0
1063734	73	45	11	5	0,3

1063988	130	119	60	26	3,1

 Таблица 51

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC						
	109,375	437,5	1750,0	7000,0	IC ₅₀			
№ ION	нМ	нМ	нМ	нМ	(мкМ)			
911144	112	68	42	12	1,3			
1062008	69	30	10	3	0,2			
1062009	80	40	18	5	0,4			
1062393	71	42	42	14	0,5			
1062425	58	23	5	2	< 0,1			
1062937	75	44	37	18	0,5			
1062938	62	41	21	5	0,2			
1063033	64	48	24	15	0,3			
1063097	79	43	23	12	0,5			
1063320	67	46	22	14	0,3			
1063353	81	52	54	52	> 7,0			
1063736	83	60	41	15	0,9			
1063768	65	64	20	19	0,5			
1063769	66	24	5	1	0,2			
1063895	74	44	34	11	0,5			
1063959	114	93	49	23	2,1			
1063960	73	35	19	9	0,3			
1064121	78	51	34	14	0,6			
1064122	82	61	41	13	0,8			

 Таблица 52

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC					
№ ION	109,375 нМ	437,5 нМ	1750,0 нМ	7000,0 нМ	IC ₅₀ (мкМ)		
911144	44	43	36	11	< 0,1		
1062010	64	28	10	3	0,2		
1062268	13*	19*	9*	3*	< 0,1*		
1062299	112	140	148	103	> 7,0		
1062331	138	93	113	59	> 7,0		
1062395	80	41	16	4	0,4		
1062426	101	57	27	13	0,8		

1062427	139	133	54	13	2,5
1062907	103	57	17	6	0,7
1062908	142	75	43	13	1,6
1063035	86	50	27	9	0,6
1063036	160	102	46	8	1,9
1063037	40	27	35	19	< 0,1
1063067	118	84	37	21	1,6
1063099	70	67	49	23	1,1
1063163	117	62	35	13	1,2
1063164	129	112	68	25	3,2
1063962	153	129	69	33	4,0
1064091	36	37	51	27	< 0,1

 Таблица 53

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% t	UTC		
	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	61	48	29	12	0,3
1062007	102	35	25	6	0,6
1062044	53	37	21	13	0,1
1062263	113*	72*	30*	6*	1,1*
1062396	47	44	34	23	< 0,1
1062428	59	37	19	14	0,2
1062712	67	78	42	18	0,9
1062840	102	41	37	7	0,7
1062904	60	86	32	26	0,9
1062909	47	44	22	13	< 0,1
1063032	85	41	11	3	0,4
1063101	49	35	22	8	< 0,1
1063197	51	47	31	14	0,2
1063319	47	42	62	54	0,6
1063324	86	43	26	13	0,6
1063511	89	53	50	14	0,9
1063735	86	27	34	12	0,4
1063963	49	33	18	7	< 0,1
1064312	56	42	50	33	0,3

Таблица 54

Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	80	51	41	14	0,7
1062015	76	66	41	39	1,6
1062047	86	68	46	16	1,1
1062206	88	87	92	87	> 7,0
1062335	86	68	63	28	2,1
1062336	91	73	36	18	1,1
1062367	90	61	36	11	0,9
1062368	68	29	9	7	0,2
1062431	66	54	45	30	0,7
1062560	97	63	40	21	1,2
1062753	77	71	41	39	1,7
1063648	115	69	29	11	1,1
1063649	71	35	14	1	0,3
1063743	110	81	43	17	1,5
1063744	82	47	10	4	0,4
1063967	90	90	88	80	> 7,0
1064094	71	59	37	21	0,7
1064095	94	78	40	12	1,2
1064161	80	71	67	36	3,4

 Таблица 55

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	39	22	21	7	< 0,1
1062372	83	51	23	11	0,6
1062596	44	44	63	42	4,3
1062660	43	31	62	58	1,1
1062724	51	19	7	2	< 0,1
1062725	101	80	31	14	1,2
1062885	93	41	48	15	0,8
1062979	116	39	25	14	0,8
1063203	95	54	25	20	0,8
1063234	71	78	27	17	0,8
1063268	55	36	22	7	0,1

1063331	52	23	10	3	< 0,1
1063332	104	75	34	16	1,2
1063394	86	69	38	22	1,1
1063491	49	18	9	4	< 0,1
1063587	88	87	59	40	3,9
1063619	39	20	17	9	< 0,1
1063651	101	71	38	18	1,2
1063652	75	61	25	12	0,6

 Таблица 56

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	81	54	35	9	0,6
1062087	51	30	23	8	< 0,1
1062247	66	52	27	21	0,4
1062375	51	26	14	5	< 0,1
1062376	102	67	39	15	1,1
1062439	103	48	26	18	0,8
1062504	188	173	105	57	> 7,0
1062536	100	97	81	19	3,2
1062760	59	29	17	18	0,1
1062761	136	103	39	49	3,4
1062857	57	65	37	24	0,6
1063049	134	117	57	24	2,8
1063145	141	103	28	21	1,8
1063399	93	109	33	21	1,7
1063400	106	54	77	22	2,1
1063912	75	48	40	26	0,7
1063975	110	100	39	18	1,7
1063976	51	33	16	6	< 0,1
1064103	72	48	24	22	0,4

 Таблица 57

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% U	J TC			
	109,375					
№ ION	нМ	нМ	нМ	нМ	(мкМ)	

911144	86	55	26	8	0,6
					<u> </u>
1062030	110	45	12	3	0,7
1062125	156	149	93	67	> 7,0
1062349	154	91	41	21	2,0
1062382	72	57	20	10	0,5
1062446	120	106	100	48	> 7,0
1062542	94	98	79	28	4,3
1062670	115	68	42	45	2,5
1062991	108	41	40	18	1,0
1063055	98	83	57	39	3,3
1063310	116	100	51	25	2,4
1063437	188	147	88	85	> 7,0
1063757	121	114	62	74	> 7,0
1063917	109	87	30	20	1,4
1063948	111	97	36	11	1,5
1063981	122	57	22	4	0,9
1064012	184	159	122	82	> 7,0
1064111	115	140	86	52	> 7,0
1064303	114	98	74	48	> 7,0

 Таблица 58

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

, , , , , , , , , , , , , , , , , , ,								
		% UTC						
	109,375	437,5	1750,0	7000,0	IC ₅₀			
№ ION	нМ	нМ	нМ	нМ	(мкМ)			
911144	114	70	22	9	1,0			
1062094	36	71	65	50	< 0,1			
1062383	76	71	54	23	1,4			
1062384	57	45	23	9	0,2			
1062447	85	96	62	35	3,8			
1062448	99	91	33	15	1,4			
1062543	64	57	23	9	0,4			
1062737	93	56	24	11	0,7			
1062802	92	48	21	8	0,6			
1062832	79	84	43	11	1,1			
1062833	93	75	30	12	1,0			
1063058	82	35	25	5	0,4			
1063247	70	55	40	11	0,6			
1063248	59	39	26	5	0,2			
1063822	78	77	80	57	> 7,0			
1063982	90	81	37	16	1,2			
1064047	112	86	51	20	1,9			

1064113	57	74	31	15	0,5
1064145	100	73	43	13	1,2

 Таблица 59

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC						
	109,375	437,5	1750,0	7000,0	IC ₅₀			
№ ION	нМ	нМ	нМ	нМ	(мкМ)			
911144	76	69	34	14	0,8			
1062035	91	57	32	18	0,9			
1062067	71	36	15	9	0,3			
1062100	120	132	106	69	> 7,0			
1062132	109	68	83	68	> 7,0			
1062580	96	35	9	0	0,5			
1062644	140	77	35	5	1,4			
1062741	109	71	35	11	1,2			
1062837	128	65	41	14	1,4			
1062933	109	75	46	26	1,8			
1063348	97	86	41	15	1,4			
1063410	86	88	58	49	6,3			
1063699	89	66	44	15	1,0			
1063731	70	27	8	3	0,2			
1063732	75	45	29	7	0,4			
1063794	88	116	122	93	> 7,0			
1063954	90	64	19	4	0,7			
1064019	74	73	45	31	1,4			
1064148	102	54	31	15	0,9			

 Таблица 60

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	88	71	29	11	0,9
1062078	123	118	110	88	> 7,0
1062334	93	68	40	12	1,0
1062365	60	26	9	2	0,1
1062366	98	60	22	6	0,7
1062397	70	46	25	9	0,4

1062783	83	72	34	13	0,9
1063038	77	34	17	5	0,3
1063039	96	76	55	35	2,6
1063326	114	89	48	21	1,9
1063646	93	75	59	39	3,2
1063774	87	86	61	37	3,6
1063804	79	58	37	15	0,7
1063901	125	92	81	55	> 7,0
1063964	83	92	49	21	1,8
1064060	117	85	55	35	2,8
1064120	85	85	58	46	5,0
1064184	96	72	33	19	1,1
1064191	85	79	52	20	1,5

 Таблица 61

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC					
	109,375	437,5	1750,0	7000,0	IC ₅₀		
№ ION	нМ	нМ	нМ	нМ	(мкМ)		
911144	100	62	25	5	0,8		
1062017	96	82	48	27	1,9		
1062305	67	57	36	16	0,5		
1062369	92	52	29	10	0,7		
1062529	33	14	13	9	< 0,1		
1062561	98	85	71	37	4,4		
1062562	139	94	45	22	2,1		
1062722	90	60	29	8	0,7		
1062723	104	103	48	16	1,9		
1062754	88	78	77	38	5,5		
1063074	83	74	60	22	1,8		
1063329	77	31	12	4	0,3		
1063330	60	37	15	4	0,2		
1063553	75	64	39	19	0,8		
1063650	119	40	10	2	0,7		
1063745	73	46	14	3	0,4		
1063905	109	89	31	6	1,2		
1064064	75	79	35	21	1,0		
1064096	65	35	9	3	0,2		

Таблица 62

Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC						
	109,375	437,5	1750,0	7000,0	IC ₅₀			
№ ION	нМ	нМ	нМ	нМ	(мкМ)			
911144	108	91	31	12	1,3			
1062021	60	47	29	12	0,3			
1062086	64	40	20	11	0,2			
1062310	84	54	24	11	0,6			
1062373	52	37	4	2	0,1			
1062407	93	52	25	13	0,7			
1062437	89	64	48	18	1,2			
1062470	93	78	37	2	1,0			
1062566	86	58	22	7	0,6			
1062823	114	98	76	35	4,6			
1063207	83	77	32	6	0,9			
1063237	32	22	18	11	< 0,1			
1063238	33	25	16	9	< 0,1			
1063333	71	44	23	10	0,4			
1063429	78	63	48	28	1,2			
1063653	79	36	15	4	0,3			
1063654	88	61	60	12	1,2			
1063655	99	60	29	8	0,8			
1063910	93	57	18	6	0,6			

 Таблица 63

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	100	80	29	7	1,0
1062377	95	101	51	23	2,2
1062378	65	45	24	6	0,3
1062410	117	80	50	53	4,1
1062441	90	71	60	48	5,2
1062570	79	50	26	9	0,5
1062633	104	77	67	42	4,2
1062699	106	70	37	19	1,3
1062890	81	64	47	30	1,4
1062891	68	35	15	6	0,2
1063082	83	101	73	63	> 7,0

1063140	5 89	77	50	52	4,7
1063178	3 79	71	43	15	1,0
1063529	98	90	76	50	> 7,0
1063658	96	61	30	12	0,9
106372	1 74	77	53	28	1,7
1063940	5 91	37	10	3	0,4
1064008	84	68	34	18	0,9
1064203	97	85	37	21	1,5

 Таблица 64

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	109,375	437,5	1750,0	7000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	94	53	24	5	0,7
1062028	34	26	3	1	< 0,1
1062029	46	26	3	0	< 0,1
1062347	95	137	107	82	> 7,0
1062348	66	51	35	13	0,4
1062379	88	56	23	6	0,6
1062413	74	24	19	4	0,2
1062667	76	65	24	8	0,6
1062668	93	29	11	3	0,4
1062669	81	45	14	3	0,4
1062700	69	50	32	12	0,5
1062861	76	77	44	31	1,6
1062894	94	57	31	11	0,8
1062989	82	44	11	3	0,4
1063054	106	90	55	15	1,8
1063818	110	112	99	109	> 7,0
1063915	94	73	33	10	1,0
1063947	66	36	5	3	0,2
1063980	71	35	9	1	0,3

 Таблица 65

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC				
	109,375	437,5	1750,0	7000,0	IC ₅₀	
№ ION	нМ	нМ	нМ	нМ	(мкМ)	

911144	98	58	12	22	0,8
1062034	75	56	20	8	0,5
1062322	107	73	29	13	1,1
1062385	93	56	18	5	0,6
1062386	74	51	22	14	0,5
1062481	56	67	42	27	0,7
1062545	99	90	49	14	1,6
1062641	96	59	27	7	0,8
1062739	92	59	28	7	0,7
1062771	73	57	27	6	0,5
1062803	92	59	33	16	0,9
1062834	117	55	14	7	0,8
1062835	80	53	18	12	0,5
1063314	141	56	18	5	1,0
1063538	38	29	15	5	< 0,1
1063921	77	41	19	5	0,4
1063984	78	35	21	5	0,3
1064017	96	61	31	12	0,9
1064147	99	74	38	11	1,1

Пример 5. Дозозависимое подавление человеческого Foxp3 в клетках SUP-M2 с помощью сЕt-гэпмеров

Модифицированные олигонуклеотиды, описанные приведенных выше исследованиях, тестировали в различных дозах на клетках SUP-M2. Культивируемые клетки SUP-M2 при плотности 60000 клеток на лунку обрабатывали с использованием свободного поглошения с модифицированных олигонуклеотидов, разбавленных помошью концентраций 6000 нМ, 1500 нМ, 375,0 нМ и 93,75 нМ, в течение 24 часов. Через 24 часа измеряли уровни мРНК Foxp3 с использованием набора праймеров и зондов для человеческого Foxp3 RTS35925, как описано ранее. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC). IC50 вычисляли с использованием линейной регрессии на линейно-логарифмическом графике по данным в Excel. Модифицированные олигонуклеотиды со значениями процента контроля, отмеченными звездочкой (*), нацеливаются на область ампликона из набора праймеров и зондов. Можно использовать дополнительные анализы для измерения активности и эффективности модифицированных олигонуклеотидов, нацеливающихся на область ампликона.

 Таблица 66

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	93,75	375,0	1500,0	6000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	69	81	61	30	2,1
1154721	149	89	49	18	1,7
1154747	198	140	106	39	5,1
1154751	170	107	60	32	2,7
1154754	77	91	81	46	> 6,0
1154765	151	98	88	33	3,8
1154853	205	149	57	23	2,7
1154861	81	86	69	40	5,0
1154865	143	77	44	13	1,4
1154891	197	188	111	32	5,5
1154931	150	118	52	24	2,3
1154981	106	122	113	37	> 6,0
1154991	218	154	63	37	3,3
1155047	90	72	28	13	0,8
1155057	273	110	75	29	2,8
1155099	73	57	22	6	0,4
1155107	47	41	20	8	< 0,1
1155119	198	182	87	45	5,3
1155125	91	130	56	29	3,1

 Таблица 67

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

		% UTC				
	93,75	375,0	1500,0	6000,0	IC ₅₀	
№ ION	нМ	нМ	нМ	нМ	(мкМ)	
911144	66	54	35	25	0,5	
1154778	139	130	68	40	4,1	
1154803	61	52	23	13	0,3	
1154821	98	83	79	20	2,4	
1154833	115	100	101	72	> 6,0	
1154858	55	62	64	30	1,3	
1154875	75	83	41	19	1,0	
1154893	30	39	23	5	< 0,1	
1154898	123	98	54	19	1,9	

1154924	53	89	49	31	1,5
1154928	162	72	44	22	1,6
1154929	96	78	33	9	0,9
1154930	84	99	28	12	1,0
1155031	95	82	77	44	> 6,0
1155032	44	52	19	11	0,1
1155048	65	51	24	5	0,3
1155108	100	60	24	9	0,7
1155109	95	86	39	12	1,1
1155121	129	143	125	34	> 6,0

 Таблица 68

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в клетках SUP-M2

	93,75	375,0	1500,0	6000,0	IC ₅₀
№ ION	нМ	нМ	нМ	нМ	(мкМ)
911144	74	71	56	31	1,6
1154722	77	83	81	67	> 6,0
1154756	92	77	61	28	2,0
1154758	109	95	69	49	6,0
1154860	135	102	88	41	5,1
1154864	114	81	60	35	2,5
1154878	131	132	145	95	> 6,0
1154884	119	81	37	15	1,2
1154896	107	90	59	27	2,1
1154956	110	85	39	20	1,4
1154962	98	90	50	5	1,2
1155022	79	92	64	61	> 6,0
1155052	92	69	36	17	0,9
1155058	112	125	110	57	> 6,0
1155070	71	63	53	23	0,9
1155100	125	65	32	8	1,0
1155104	149	92	60	29	2,4
1155106	108	99	64	31	2,8
1155118	85	80	42	27	1,3

Пример 6. Дозозависимое подавление человеческого Foxp3 в CD4 Т-клетках с помощью cEt-гэпмеров

Модифицированные олигонуклеотиды, описанные в приведенных выше исследованиях, тестировали в различных дозах на CD4 T-клетках, полученных из первичных

РВМС. Общую популяцию человеческих CD4 Т-клеток очищали из лейкаферезного образца периферической крови человека (Leukopak, StemCell Technologies) с использованием набора для выделения человеческих CD4 Т-клеток EasySep (StemCell Technologies). Очищенные человеческие CD4 клетки культивировали в среде для размножения Т-клеток ImmunoCult-XT (StemCell Technologies), дополненной 30 нг/мл человеческого рекомбинантного IL-2 (StemCell Technologies). Культивируемые CD4 Т-клетки при плотности 50000 клеток на лунку обрабатывали с использованием свободного поглощения с помощью модифицированных олигонуклеотидов, разбавленных до концентраций, указанных в приведенных ниже таблицах. После 48-часового инкубирования измеряли уровни мРНК Foxp3 с использованием набора праймеров и зондов для человеческого Foxp3 RTS35925, как описано ранее. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC).

 Таблица 69

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в CD4 Т-клетках

		% UTC						
	109,4	437,5	1750,0	7000,0				
№ ION	нМ	нМ	нМ	нМ				
141923	128	104	85	89				
911144	88	63	61	56				
1062008	63	94	104	107				
1062010	107	93	96	80				
1062086	128	111	120	120				
1062413	62	63	58	59				
1062425	70	47	54	39				
1062428	77	72	71	63				
1062529	111	125	125	125				
1062760	94	111	109	134				
1062891	108	104	101	84				
1062938	81	62	59	46				
1063101	117	81	89	85				
1063237	98	121	121	106				
1063238	122	118	149	120				
1063268	71	51	46	40				

1063619	103	109	127	127
1063963	84	80	83	81
1063976	89	84	79	50
1064313	80	79	64	52

 Таблица 70

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в CD4 Т-клетках

	% UTC						
	109,4	437,5	1750,0	7000,0			
№ ION	нМ	нМ	нМ	нМ			
141923	109	114	84	71			
911144	80	59	62	51			
1062247	79	84	109	86			
1062397	100	87	89	93			
1062580	103	103	98	101			
1062668	73	38	52	41			
1062669	83	75	92	82			
1062835	111	100	82	85			
1062937	75	76	57	46			
1063032	84	88	100	76			
1063038	100	93	107	111			
1063058	90	93	96	103			
1063320	96	108	97	124			
1063649	82	87	74	60			
1063734	58	48	43	32			
1063735	95	86	81	89			
1063744	102	90	94	108			
1063921	95	73	87	91			
1063946	79	62	86	56			
1064096	74	73	59	62			

 Таблица 71

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в CD4 Т-клетках

	% UTC					
	109,4 437,5 1750,0 7000					
№ ION	нМ	нМ	нМ	нМ		
141923	113	101	111	110		
582468	106	115	83	107		
911144	68	78	51	67		

911179	115	72	79	71
1062007	107	103	113	106
1062044	102	142	98	130
1062375	121	102	94	102
1062641	90	88	66	103
1062712	84	126	55	142
1062802	99	122	110	98
1062834	101	108	111	97
1062840	112	107	129	142
1062857	124	162	114	169
1063035	137	141	137	78
1063037	78	109	101	114
1063097	175	122	122	109
1063650	95	175	99	160
1063655	65	71	59	46
1063895	33	10	7	5
1063910	93	116	105	93

Пример 7. Дозозависимое подавление человеческого Foxp3 в регуляторных Т-клетках (T-reg) с помощью cEt-гэпмеров

Модифицированные олигонуклеотиды, описанные приведенных выше исследованиях, тестировали в различных дозах на дифференцированных in vitro регуляторных Т-клетках. Т-гед дифференцировались в течение 2 недель из "необученных" человеческих CD4 клеток (очищенных из замороженных PBMC (StemCell Technologies) с использованием набора для выделения "необученных" человеческих CD4 Т-клеток EasySep (StemCell Technologies)) в среде для размножения Т-клеток ImmunoCult-XT (StemCell Technologies), дополненной добавкой для дифференцировки человеческих Treg ImmunoCult и активатором человеческих Т-клеток на основе антител к CD3/CD28 ImmunoCult (StemCell Technologies). Культивируемые Т-гед-клетки при плотности 20000 клеток на лунку обрабатывали с использованием свободного поглощения с помощью модифицированных олигонуклеотидов, разбавленных до концентраций, указанных в приведенных ниже таблицах. После 48-часового инкубирования измеряли уровни мРНК Foxp3 с использованием набора праймеров и зондов для человеческого Foxp3 RTS35925, как описано ранее. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC).

 Таблица 72

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в T-reg-клетках

	% UTC				
	370,4	1111,1	3333,3	10000,0	
№ ION	нМ	нМ	нМ	нМ	
1062010	99	107	98	118	
1062835	89	92	102	87	
1062247	97	110	120	113	
1062840	94	84	83	83	
1062413	94	85	74	75	
1062857	103	97	94	98	
1062428	108	111	105	100	
1062891	90	87	72	61	
1062641	107	116	114	110	
1062937	88	69	63	59	
1063101	112	107	106	87	
1062669	94	95	86	72	
1062938	93	80	65	50	
911179	98	95	76	57	
1062712	113	95	104	107	
1063035	99	96	103	86	
1062802	106	105	106	99	
1063037	104	90	91	67	

 Таблица 73

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в T-reg-клетках

	% UTC				
№ ION	370,4 нМ	1111,1 нМ	3333,3 нМ	10000,0 нМ	
1063238	102	99	99	94	
1063734	75	64	54	35	
1063248	92	113	100	107	
1064096	85	81	74	72	
1063268	97	100	105	88	
1064313	97	92	92	81	
1063320	113	119	125	129	
1063619	108	111	120	115	
911179	97	77	65	54	

1063649	96	98	109	96
911144	104	104	89	61
1063650	96	89	82	61
1063655	95	91	87	80

 Таблица 74

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в T-reg-клетках

	% UTC				
	370,4	1111,1	3333,3	10000,0	
№ ION	нМ	нМ	нМ	нМ	
1062010	93	111	103	115	
1062835	90	100	102	81	
1062247	86	90	99	96	
1062840	97	84	86	75	
1062413	73	77	61	58	
1062857	118	94	81	87	
1062428	74	86	77	83	
1062891	79	67	70	47	
1062641	77	84	91	71	
1062937	66	66	58	41	
1063101	97	80	74	59	
1062669	64	66	62	56	
1062938	58	48	41	32	
911179	88	66	62	47	
1062712	66	64	68	64	
1063035	59	60	61	46	
1062802	55	65	75	71	
1063037	58	58	47	41	

 Таблица 75

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 посредством свободного поглощения модифицированных олигонуклеотидов в T-reg-клетках

	% UTC				
	370,4	1111,1	3333,3	10000,0	
№ ION	нМ	нМ	нМ	нМ	
1063238	111	108	81	70	
1063734	90	80	56	40	
1063248	97	105	102	102	
1064096	85	88	75	69	
1063268	94	92	94	87	

1064313	95	89	71	61
1063320	79	80	82	88
1063619	86	91	84	92
911179	59	56	54	40
1063649	65	69	64	69
911144	81	66	58	47
1063650	56	50	47	34
1063655	70	67	61	57

Пример 8. Переносимость модифицированных олигонуклеотидов, нацеливающихся на человеческий Foxp3, у мышей Balb/c

Мышей Balb/с обрабатывали модифицированными олигонуклеотидами, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Обработка

Группам самок мышей Balb/с (полученных от компании Charles River) вводили путем подкожной инъекции дважды в неделю на протяжении трех недель (в общей сложности в течение 7 процедур обработки) 50 мг/кг модифицированных олигонуклеотидов. Одной группе самок мышей BALB/с вводили путем инъекции PBS. Мышей подвергали эвтаназии в день 21 после начала обработки (через 24 часа после последнего введения).

Биохимические маркеры плазмы крови

Для оценки эффекта модифицированных олигонуклеотидов в отношении функции печени измеряли уровни азота мочевины крови (BUN), альбумина, аланинаминотрансферазы (ALT), аспартатаминотрансферазы (AST), общего билирубина (TBIL) и альбумина (ALB) в плазме крови с использованием автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Результаты представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали изменения уровней любого из маркеров функции печени или почек, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 76

Биохимические маркеры плазмы крови у самок мышей Balb/c

	Клинико-биохимический маркер плаз					
№ ION	крови					
JIE TON	ALB	ALT	AST	TBIL	BUN	
	(г/дл)	(ед/л)	(ед/л)	(мг/дл)	(мг/дл)	
PBS	2,6	86	108	0,3	19	
549148	2,8	30	48	0,2	20	
910956	2,7	992	1040	0,2	15	
910959	3,2	1311	869	1,3	15	
911019	3,6	1118	893	0,3	19	
911101	2,8	1709	1506	0,7	13	
911118	2,8	968	524	4,9	15	
911144	2,7	1138	843	0,3	22	
L0911171	3,1	1144	1120	0,6	21	
911179	2,9	453	353	0,2	20	
911180	2,5	170	143	0,2	16	

Значения массы тела и органов

Значения массы тела мышей Balb/с измеряли в день 22, и средняя масса тела для каждой группы представлена в приведенной ниже таблице. В конце исследования измеряли значения массы почки, селезенки и печени, и они представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 77
Значения массы тела и органов (в граммах)

№ ION	Масса тела (г)	Печень (г)	Почка (г)	Селезенка (г)
PBS	22	1,08	0,28	0,12
549148	21	1,16	0,29	0,12
910956	21	1,36	0,27	0,12
910959	22	1,38	0,35	0,12
911019	23	1,61	0,32	0,12
911101	18	1,48	0,26	0,13
911118	16	1,01	0,25	0,09
911144	22	1,49	0,26	0,15
911171	19	1,30	0,28	0,17
911179	20	1,26	0,25	0,14

911180	21	1,22	0,26	0,14	

Пример 9. Переносимость модифицированных олигонуклеотидов, нацеливающихся на человеческий Foxp3, у мышей CD-1

Мышей CD-1 обрабатывали модифицированными олигонуклеотидами, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Обработка

Группам самцов мышей CD-1 (полученных от компании Charles River) вводили путем подкожной инъекции один раз в неделю на протяжении шести недель (в общей сложности в течение 7 процедур обработки) 50 мг/кг модифицированных олигонуклеотидов. Одной группе самцов мышей CD-1 вводили путем инъекции PBS. Мышей подвергали эвтаназии в день 39 после начала обработки (через 24 часа после последнего введения).

Биохимические маркеры плазмы крови

Для оценки эффекта модифицированных олигонуклеотидов в отношении функции печени измеряли уровни азота мочевины крови (BUN), альбумина, аланинаминотрансферазы (ALT), аспартатаминотрансферазы (AST), общего билирубина (TBIL) и альбумина (ALB) в плазме крови с использованием автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Результаты представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали изменения уровней любого из маркеров функции печени или почек, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 78

 Биохимические маркеры плазмы крови у самцов мышей CD-1

№ ION	ркер плазмы к	грови			
No ION	ALB (г/дл)	ALT (ед/л)	AST (ед/л)	TBIL (мг/дл)	BUN (мг/дл)
PBS	2,8	27	48	0,2	19
1062008	2,2	836	1125	9,1	24
1062010	2,2	105	139	0,2	18

1062385	2,4	3206	3112	0,7	20
1062425	2,5	612	490	7,1	19
1062545	2,3	74	70	0,2	21
1062641	2,3	86	95	0,1	21
1062838	2,4	178	232	0,3	18
1062903	2,5	220	408	0,3	18
1062907	3,2	2055	1321	2,4	21
1062937	2,6	100	97	0,2	22
1063038	2,8	480	279	0,2	19
1063158	2,6	37	56	0,2	21
1063414	3,0	2316	1649	0,3	21
1063734	2,7	63	76	0,2	18
1063984	3,0	1382	767	6,3	26
1064060	3,4	3034	1927	0,8	21
1064313	2,3	107	109	0,2	17

Значения массы тела и органов

Значения массы тела мышей CD-1 измеряли в день умерщвления мышей, и средняя масса тела для каждой группы представлена в приведенной ниже таблице. В конце исследования измеряли значения массы почки, селезенки и печени, и они представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 79 Значения массы тела и органов (в граммах)

№ ION	Масса тела (г)	Печень (г)	Почка (г)	Селезенка (г)
PBS	38	1,88	0,58	0,12
1062008	34	2,65	0,49	0,84
1062010	40	2,21	0,57	0,18
1062385	37	2,65	0,60	0,19
1062425	33	3,13	0,46	0,18
1062545	36	2,09	0,56	0,12
1062641	40	2,31	0,54	0,20
1062838	39	2,04	0,53	0,14
1062903	33	2,04	0,55	0,16
1062907	37	3,85	0,54	0,19

1062937	38	2,23	0,63	0,13
1063038	39	2,56	0,65	0,27
1063158	39	1,96	0,62	0,13
1063414	35	2,75	0,67	0,17
1063734	39	2,05	0,59	0,14
1063984	28	2,09	0,38	0,07
1064060	36	2,64	0,58	0,08
1064313	39	2,04	0,62	0,14

Гематологические анализы

Кровь, полученную от групп мышей в день 40, отправляли в IDEXX BioResearch для измерения значений числа клеток крови. Полученные значения включают число эритроцитов (RBC), число лейкоцитов (WBC), уровень гемоглобина (HGB), гематокрит (HCT), средний корпускулярный объем (MCV), среднее количество корпускулярного гемоглобина (MCH), среднюю концентрацию корпускулярного гемоглобина (MCHC) и значения числа отдельных видов лейкоцитов, таких как моноциты (MON), нейтрофилы (NEU), лимфоциты (LYM), эозинофилы (EOS), базофилы (BAS), ретикулоциты (RETIC) и тромбоциты (PLT). Результаты представлены в приведенных ниже таблицах. N.D относится к образцам, данные о которых недоступны. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения числа клеток крови, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 80Число клеток крови у мышей CD-1

№ ION	RBC (млн/мкл)	RETIC (тыс/мкл)	HCT (%)	Н GB (г/дл)	MCV (фл)	МСН (нг)	МСНС (г/дл)
PBS	8	312	40	13	47	16	33
1062008	5	1308	36	9	72	18	26
1062010	10	310	43	15	45	15	34
1062385	8	339	37	12	45	15	32
1062425	8	272	36	11	47	15	32
1062545	9	267	41	14	45	15	33
1062641	8	332	38	13	45	15	33
1062838	8	299	40	12	48	15	31
1062903	8	431	39	12	50	16	32

1062907	9	410	42	13	46	14	31
1062937	11	346	52	17	47	15	33
1063038	8	279	40	12	50	15	30
1063158	11	376	50	16	47	15	31
1063414	8	154	36	11	48	15	31
1063734	10	328	48	14	47	14	30
1063984	8	381	38	11	50	15	31
1064060	8	303	35	11	45	14	31
1064313	10	350	49	15	47	15	31

Таблица 81Число клеток крови у мышей CD-1

№ ION	WBC (тыс/мкл)	LYM (/мкл)	MON (/мкл)	NEU (/мкл)	EOS (/мкл)	PLT (тыс/мкл)
PBS	4	2817	63	597	124	988
1062008	40	30502	1399	7366	379	208
1062010	6	3961	449	1159	181	775
1062385	21	12537	957	6621	572	1118
1062425	11	6560	1030	2608	692	963
1062545	4	3226	204	721	175	1182
1062641	3	2506	307	475	109	779
1062838	7	3961	539	1793	275	896
1062903	19	14165	1005	3595	451	595
1062907	8	5351	909	1635	193	885
1062937	4	2287	414	769	118	958
1063038	8	5063	1512	936	103	943
1063158	3	2145	210	707	108	1141
1063414	13	7724	1404	3786	270	1924
1063734	5	3822	795	644	92	1044
1063984	12	6263	1057	4238	232	1169
1064060	7	4110	1044	1459	94	1093
1064313	5	3475	515	1026	96	936

Пример 10. Переносимость модифицированных олигонуклеотидов, нацеливающихся на человеческий Foxp3, у мышей CD-1

Мышей CD-1 обрабатывали модифицированными олигонуклеотидами, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Обработка

Группам самцов мышей CD-1 (полученных от компании Charles River) вводили путем подкожной инъекции один раз в неделю на протяжении шести недель (в общей сложности в течение 7 процедур обработки) 50 мг/кг модифицированных олигонуклеотидов. Одной группе самцов мышей CD-1 вводили путем инъекции PBS. Мышей подвергали эвтаназии в день 40 после начала обработки (через 24 часа после последнего введения). Кроме того, 6 дополнительных групп мышей (обрабатываемых с помощью ION №№ 1062413, 1062669, 1062712, 1062835, 1063655 и 1063946) обрабатывали подкожно один раз в неделю на протяжении 5 недель (в общей сложности в течение 6 процедур обработки) с помощью 50 мг/кг модифицированных олигонуклеотидов. Мышей подвергали эвтаназии в день 33 после начала обработки (через 24 ч. после последнего введения).

Биохимические маркеры плазмы крови

Для оценки эффекта модифицированных олигонуклеотидов в отношении функции печени измеряли уровни азота мочевины крови (BUN), альбумина, аланинаминотрансферазы (ALT), аспартатаминотрансферазы (AST), общего билирубина (TBIL) и альбумина (ALB) в плазме крови с использованием автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Результаты представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали изменения уровней любого из маркеров функции печени или почек, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 82

 Биохимические маркеры плазмы крови у самцов мышей CD-1

№ ION	Кли	ркер плазмы к	грови		
JIV TON	ALB (г/дл)	ALT (ед/л)	AST (ед/л)	TBIL (мг/дл)	BUN (мг/дл)
PBS	2,8	23	42	0,2	28
1062007	2,1	1051	1244	1,1	31
1062413	2,5	95	68	0,2	27

1062580	2,4	220	154	0,2	23
1062669	2,4	61	82	0,1	21
1062712	2,3	101	107	0,2	20
1062724	2,6	999	694	0,2	25
1062802	2,7	153	101	0,2	23
1062835	2,3	120	104	0,1	24
1062857	2,6	66	73	0,2	24
1062891	2,5	64	81	0,1	25
1063032	2,5	452	282	0,2	25
1063238	2,7	71	74	0,2	26
1063248	2,1	103	171	0,1	25
1063650	2,8	59	76	0,2	25
1063655	2,3	52	93	0,1	20
1063744	2,4	308	212	0,2	22
1063910	2,5	371	296	0,1	24
1063946	3,0	1136	696	0,5	24
1063981	3,3	767	909	3,0	27

Значения массы тела и органов

Значения массы тела мышей CD-1 измеряли в день умерщвления мышей, и средняя масса тела для каждой группы представлена в приведенной ниже таблице. В конце исследования измеряли значения массы почки, селезенки и печени, и они представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 83

 Значения массы тела и органов (в граммах)

№ ION	Масса тела (г)	Печень (г)	Почка (г)	Селезенка (г)
PBS	40	2,08	0,61	0,11
1062007	34	2,76	0,52	0,65
1062413	38	2,20	0,55	0,11
1062580	38	2,47	0,58	0,18
1062669	39	2,47	0,54	0,15
1062712	35	2,01	0,61	0,17
1062724	34	2,92	0,54	0,22

1062802	37	1,97	0,58	0,12
1062835	36	2,27	0,59	0,16
1062857	41	2,42	0,66	0,13
1062891	40	2,36	0,65	0,19
1063032	39	2,87	0,80	0,23
1063238	39	2,44	0,61	0,11
1063248	39	2,42	0,54	0,16
1063650	37	2,28	0,58	0,12
1063655	38	1,96	0,59	0,15
1063744	44	2,73	0,78	0,20
1063910	49	3,64	0,66	0,19
1063946	37	2,88	0,64	0,21
1063981	35	4,08	0,49	0,14

Гематологические анализы

Кровь, полученную от групп мышей в день 40, отправляли в IDEXX BioResearch для измерения значений числа клеток крови. Полученные значения включают число эритроцитов (RBC), число лейкоцитов (WBC), уровень гемоглобина (HGB), гематокрит (HCT), средний корпускулярный объем (MCV), среднее количество корпускулярного гемоглобина (MCH), среднюю концентрацию корпускулярного гемоглобина (MCHC) и значения числа отдельных видов лейкоцитов, таких как моноциты (MON), нейтрофилы (NEU), лимфоциты (LYM), эозинофилы (EOS), базофилы (BAS), ретикулоциты (RETIC) и тромбоциты (PLT). Результаты представлены в приведенных ниже таблицах. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения числа клеток крови, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 84Число клеток крови у мышей CD-1

№ ION	RBC (млн/мкл)	RETIC (тыс/мкл)	HCT (%)	Н GB (г/дл)	MCV (фл)	МСН (нг)	МСНС (г/дл)
PBS	700	4	262	8	12	3395	37
1062007	29943	65	1018	4	8	19758	32
1062413	892	6	267	8	12	4416	38
1062580	1585	18	258	8	12	15847	36
1062669	732	6	292	9	13	4748	40
1062712	661	6	287	9	14	4716	42
1062724	3723	21	521	8	12	15787	37

1062802	1088	8	235	7	10	6087	30
1062835	1172	6	302	10	15	4172	44
1062857	730	6	325	10	15	4736	43
1062891	988	7	284	8	13	5892	38
1063032	1678	12	434	10	15	9049	44
1063238	986	7	304	10	15	5537	43
1063248	1246	10	293	9	14	8042	42
1063650	542	6	266	9	13	4770	41
1063655	883	6	337	9	14	4277	41
1063744	1218	9	388	10	16	7135	49
1063910	1171	12	246	8	12	9552	37
1063946	2081	17	369	9	14	12975	41
1063981	3304	20	297	9	14	14916	43

Таблица 85Число клеток крови у мышей CD-1

				Ι		
№ ION	WBC (тыс/мкл)	LYM (/мкл)	МОN (/мкл)	NEU (/мкл)	EOS (/мкл)	РLТ (тыс/мкл)
PBS	210	70	47	15	33	458
1062007	5231	1215	75	20	26	148
1062413	277	235	47	15	33	1215
1062580	584	341	45	15	34	1186
1062669	401	194	47	15	33	1076
1062712	349	195	46	15	34	984
1062724	1454	253	44	14	32	1186
1062802	372	301	46	15	33	1289
1062835	249	158	46	16	34	979
1062857	233	198	45	15	34	1072
1062891	397	196	46	15	33	909
1063032	583	261	46	15	33	837
1063238	241	133	46	15	34	963
1063248	725	247	47	16	33	728
1063650	222	213	46	15	33	950
1063655	228	159	46	16	34	892
1063744	468	261	49	16	33	708
1063910	857	259	47	15	32	847
1063946	918	520	44	15	34	797
1063981	1230	362	48	15	32	899

Пример 11. Переносимость модифицированных олигонуклеотидов, нацеливающихся на человеческий Foxp3, у мышей CD-1

Мышей CD-1 обрабатывали модифицированными олигонуклеотидами, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Обработка

Группам самцов мышей CD-1 (полученных от компании Charles River) вводили путем подкожной инъекции один раз в неделю на протяжении шести недель (в общей сложности в течение 7 процедур обработки) 50 мг/кг модифицированных олигонуклеотидов. Одной группе самцов мышей CD-1 вводили путем инъекции PBS. Мышей подвергали эвтаназии в день 41 после начала обработки (через 24 часа после последнего введения). Кроме того, 4 дополнительные группы мышей (обрабатываемых с помощью ION №№ 1062247, 1063619, 1063653 и 1064096) обрабатывали подкожно один раз в неделю на протяжении 5 недель (в общей сложности в течение 6 процедур обработки) с помощью 50 мг/кг модифицированных олигонуклеотидов. Мышей подвергали эвтаназии в день 38 после начала обработки (через 5 дней после последнего введения).

Биохимические маркеры плазмы крови

Для оценки эффекта модифицированных олигонуклеотидов в отношении функции печени измеряли уровни азота мочевины крови (BUN), альбумина, аланинаминотрансферазы (ALT), аспартатаминотрансферазы (AST), общего билирубина (TBIL) и альбумина (ALB) в плазме крови с использованием автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Результаты представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали изменения уровней любого из маркеров функции печени или почек, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 86

 Биохимические маркеры плазмы крови у самцов мышей CD-1

No ION	Клинико-биохимический маркер плазмы крови						
JU ION	ALB (г/дл)	ALT (ед/л)	AST (ед/л)	ТВІL (мг/дл)	BUN (мг/дл)		

PBS	3,4	27	44	0,18	33
1062034	3,7	623	401	0,19	28
1062044	3,7	2279	1471	3,13	33
1062086	3,6	271	167	0,22	26
1062247	3,0	123	150	0,28	22
1062397	2,9	1455	1777	3,11	26
1062428	2,8	132	110	0,26	23
1062529	2,7	991	612	0,17	25
1062668	2,6	537	448	0,17	21
1062760	2,6	1086	603	0,24	20
1062840	2,6	38	52	0,17	25
1063035	2,3	97	110	0,14	23
1063037	2,5	99	89	0,15	21
1063058	2,4	1173	1307	0,24	26
1063097	3,0	1239	1219	0,99	27
1063101	2,7	48	62	0,21	25
1063237	3,1	1108	736	0,27	21
1063268	3,0	60	76	0,21	26
1063320	3,4	69	72	0,25	23
1063619	3,1	99	126	0,26	26
1063649	3,0	67	85	0,18	20
1063653	3,7	3499	2440	1,11	31
1063735	2,7	1440	1224	0,36	22
1063895	3,1	1533	1261	0,63	24
1063921	1,3	674	1603	2,70	29
1063963	3,1	2918	2985	0,98	24
1064096	3,0	31	103	0,22	23

Значения массы тела и органов

Значения массы тела мышей CD-1 измеряли в день умерщвления мышей, и средняя масса тела для каждой группы представлена в приведенной ниже таблице. В конце исследования измеряли значения массы почки, селезенки и печени, и они представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 87

 Значения массы тела и органов (в граммах)

№ ION	Macca	Печень	Почка	Селезенка
	тела	(г)	(г)	(г)

	(г)			
PBS	37	1,97	0,58	0,10
1062034	41	2,64	0,66	0,16
1062044	35	3,50	0,54	0,15
1062086	37	2,52	0,53	0,15
1062247	37	2,13	0,57	0,14
1062397	36	2,52	0,54	0,13
1062428	36	2,31	0,51	0,14
1062529	41	3,63	0,73	0,27
1062668	35	2,37	0,56	0,17
1062760	37	2,58	0,58	0,15
1062840	41	2,43	0,68	0,20
1063035	42	2,52	0,61	0,18
1063037	43	2,76	0,63	0,21
1063058	36	2,75	0,57	0,20
1063097	35	2,67	0,52	0,19
1063101	42	2,42	0,67	0,16
1063237	38	2,74	0,51	0,15
1063268	40	2,19	0,51	0,12
1063320	42	2,64	0,62	0,18
1063619	37	36,75	2,10	0,56
1063649	37	2,18	0,55	0,17
1063653	35	3,54	0,57	0,13
1063735	41	2,39	0,56	0,18
1063895	40	3,29	0,66	0,20
1063921	35	1,19	0,35	0,06
1063963	30	3,14	0,46	0,09
1064096	41	2,14	0,58	0,18

Гематологические анализы

Кровь, полученную от групп мышей в день 40, отправляли в IDEXX BioResearch для измерения значений числа клеток крови. Полученные значения включают число эритроцитов (RBC), число лейкоцитов (WBC), уровень гемоглобина (HGB), гематокрит (HCT), средний корпускулярный объем (MCV), среднее количество корпускулярного гемоглобина (MCH), среднюю концентрацию корпускулярного гемоглобина (MCHC) и значения числа отдельных видов лейкоцитов, таких как моноциты (MON), нейтрофилы (NEU), лимфоциты (LYM), эозинофилы (EOS), базофилы (BAS), ретикулоциты (RETIC) и тромбоциты (PLT). Результаты представлены в приведенных ниже таблицах. N/A ниже относится к образцам, данные о которых недоступны из-за недостаточного объема крови. Из дальнейших исследований

исключали олигонуклеотиды Ionis, которые обуславливали изменения числа клеток крови, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 88Число клеток крови у мышей CD-1

№ ION	RBC (млн/мкл)	RETIC (тыс/мкл)	HCT (%)	HGB (г/дл)	MCV (фл)	МСН (нг)	МСНС (г/дл)
PBS	9	306	40	14	45	15	33
1062034	8	230	35	11	44	14	33
1062044	9	303	40	13	46	15	33
1062086	8	223	34	11	45	15	33
1062247	9	334	41	14	48	16	33
1062397	7	280	31	10	46	15	33
1062428	10	319	43	14	45	15	33
1062529	9	246	39	13	42	15	34
1062668	9	331	42	14	44	15	33
1062760	9	266	41	14	45	15	34
1062840	9	274	41	13	46	15	33
1063035	9	232	39	13	46	15	33
1063037	7	260	33	11	48	15	32
1063058	9	313	41	13	47	15	33
1063097	10	329	48	15	48	15	32
1063101	10	273	49	15	50	15	31
1063237	9	213	39	13	44	15	33
1063268	11	297	51	16	48	15	31
1063320	10	271	46	15	46	15	32
1063619	8	269	39	13	47	15	33
1063649	10	255	44	14	46	15	32
1063653	8	421	35	11	46	15	32
1063735	9	325	44	14	47	15	32
1063895	10	314	44	14	45	14	33
1063921	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1063963	9	394	44	14	48	15	32
1064096	8	316	37	12	46	15	33

Таблица 89Число клеток крови у мышей CD-1

№ ION WBC (тыс/мкл) C/мкл) MON NEU EOS PLT (/мкл) C/мкл) C/mkл)
--

PBS	6	4358	234	1097	133	1251
1062034	12	9581	718	1333	384	951
1062044	23	11726	1569	2757	521	1370
1062086	9	7082	743	1371	201	1066
1062247	6	4230	517	1447	75	971
1062397	21	15205	1188	4188	236	547
1062428	9	6947	526	875	222	1002
1062529	6	3214	461	2504	103	887
1062668	14	10018	1248	2217	378	1048
1062760	7	4690	517	1352	200	851
1062840	5	4274	506	594	102	772
1063035	11	8936	533	1402	294	1097
1063037	5	3493	69	1467	13	461
1063058	22	16671	1649	3215	324	942
1063097	15	10425	2326	1692	314	880
1063101	6	4212	503	953	124	990
1063237	5	3996	536	760	172	1242
1063268	5	4341	365	616	86	1082
1063320	7	5701	367	700	124	1129
1063619	6	4783	622	832	185	1198
1063649	7	5429	430	902	161	1116
1063653	18	9995	2571	4439	1228	1465
1063735	6	4547	630	1016	70	819
1063895	11	7987	965	1877	113	1223
1063921	N/A	N/A	N/A	N/A	N/A	N/A
1063963	25	15990	2336	5937	940	1443
1064096	10	8031	661	858	195	986

Пример 12. Переносимость модифицированных олигонуклеотидов, нацеливающихся на человеческий Foxp3, у крыс линии Спрег-Доули

Крысы линии Спрег-Доули представляют собой многоцелевую модель, используемую для оценивания безопасности и эффективности. Крыс обрабатывали модифицированными олигонуклеотидами Ionis из исследований, описанных в примерах выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Обработка

Крыс линии Спрег-Доули выдерживали в условиях цикла чередования 12 часов света и темноты и кормили *ad libitum* стандартным кормом для крыс Purina. Группам по 4 крысы линии Спрег-Доули в каждой еженедельно вводили путем подкожной инъекции 50 мг/кг олигонуклеотидов Ionis на протяжении 6 недель (всего 7 доз). Кроме того, группе из 3 крыс

линии Спрег-Доули вводили путем подкожной инъекции физиологический раствор на протяжении того же периода времени. Через сорок восемь часов после последней дозы крыс подвергали эвтаназии; и органы, мочу и плазму крови собирали для дополнительного анализа.

Биохимические маркеры плазмы крови

Для оценки эффекта олигонуклеотидов Ionis в отношении функции печени измеряли уровни трансаминаз в плазме крови с помощью автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Измеряли уровни ALT (аланинтрансаминазы) и AST (аспартаттрансаминазы) в плазме крови, и результаты, выраженные в МЕ/л, представлены в приведенной ниже таблице. Также измеряли уровни общего билирубина (TBIL), альбумина (ALB) и азота мочевины крови (BUN) в плазме крови с помощью того же биохимического анализатора, и результаты также представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды Ionis, которые обуславливали изменения уровней каких-либо маркеров функции печени, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 90

 Биохимические маркеры плазмы крови у крыс линии Спрег-Доули

№ ION	ALB (г/дл)	ALT (ME/л)	AST (ME/л)	ТВІL (мг/дл)	BUN (мг/дл)
Физиологический раствор	3,7	66	105	0,15	18
1062428	4,2	146	149	0,23	26
1062641	3,2	75	155	0,12	20
1062835	1,9	45	70	0,12	64
1062937	3,1	129	164	0,16	23
1063268	3,5	79	121	0,13	20
1063649	3,6	141	207	0,20	20
1063655	3,2	89	170	0,17	24
1063734	3,4	62	121	0,15	20
1064096	3,1	74	163	0,17	28
1064313	2,8	117	186	0,16	27

Гематологические анализы

Кровь, полученную от групп мышей в неделю 6, отправляли в IDEXX BioResearch для измерения значений числа клеток крови. Полученные значения включают число эритроцитов (RBC), число лейкоцитов (WBC), уровень гемоглобина (HGB), гематокрит (HCT), средний корпускулярный объем (MCV), среднее количество корпускулярного гемоглобина (MCH), среднюю концентрацию корпускулярного гемоглобина (MCHC) и значения числа отдельных видов лейкоцитов, таких как моноциты (MON), нейтрофилы (NEU), лимфоциты (LYM), эозинофилы (EOS), ретикулоциты (RETIC) и тромбоциты (PLT). Результаты представлены в приведенных ниже таблицах. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения числа клеток крови, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 91

 Число клеток крови у крыс линии Спрег-Доули

№ ION	RBC (млн/мкл)	WBC (тыс/мкл)	HGB (г/дл)	HCT (%)	MCV (фл)	МСН (нг)	МСНС (г/дл)
Физиологический	8	14	15	47	57	19	33
раствор	0	17	13	7/	37	17	33
1062428	7	20	14	42	61	20	32
1062641	7	22	14	41	57	19	33
1062835	9	15	16	47	54	18	33
1062937	8	17	13	41	53	17	33
1063268	7	15	13	39	55	18	32
1063649	7	12	13	41	54	18	33
1063655	8	12	14	43	55	18	33
1063734	8	18	15	45	55	18	33
1064096	7	21	13	40	56	18	33
1064313	8	15	14	42	54	18	33

Таблица 92 Число клеток крови у крыс линии Спрег-Доули

№ ION	МОN (/мкл)	NEU (/мкл)	LYM (/мкл)	EOS (/мкл)	RETIC (тыс/мкл)	РLТ (тыс/мкл)
Физиологический раствор	670	1296	11523	130	328	737
1062428	2742	602	16053	68	373	457
1062641	2344	1951	17379	56	194	567

1062835	1598	2239	10485	200	289	939
1062937	1856	1390	13361	48	244	604
1063268	821	1203	12352	88	132	611
1063649	1013	1048	9398	68	218	663
1063655	1113	1635	9214	115	207	728
1063734	1785	899	15240	42	276	702
1064096	1754	1126	17788	158	259	620
1064313	1268	638	12587	69	231	428

Функция почек

Для оценки эффекта олигонуклеотидов Ionis в отношении функции почек измеряли уровни общего белка и креатинина в моче с помощью автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Значения соотношения общего белка и креатинина (соотношения Р/С) представлены в приведенной ниже таблице. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения уровней соотношения, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 93Соотношение общего белка и креатинина у крыс линии Спрег-Доули

№ ION	Соотношение Р/С в моче
Физиологический	1,0
раствор	1,0
1062428	5,5
1062641	7,4
1062835	11,1
1062937	7,4
1063268	4,4
1063649	3,8
1063655	7,7
1063734	5,4
1064096	5,6
1064313	9,1

Значения массы тела и органов

В конце исследования измеряли значения массы печени, сердца, селезенки и почек, и они представлены в приведенной ниже таблице. Перед аутопсией измеряли конечную массу

тела. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 94

 Значения массы тела и органов

№ ION	Масса тела (г)	Печень (г)	Почка (г)	Селезенка (г)	
Физиологический					
раствор	467	19	3,4	0,9	
1062428	348	15	2,6	1,1	
1062641	352	18	3,0	2,4	
1062835	379	17	3,4	1,4	
1062937	360	15	3,3	1,4	
1063268	418	18	3,0	1,1	
1063649	385	19	3,6	1,7	
1063655	398	21	4,0	2,5	
1063734	341	17	2,9	1,5	
1064096	397	20	4,2	3,7	
1064313	381	20	4,4	2,8	

Пример 13. Эффект модифицированных олигонуклеотидов в отношении экспрессии человеческого Foxp3 в модели на мышах, гуманизированных с помощью PBMC

Мышей, гуманизированных с помощью PBMC, получали от компании Jackson Laboratory (hu-PBMC-NSG). Мышам NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ прививали человеческие PBMC для создания модели hu-PBMC-NSG. Мышей обрабатывали модифицированными олигонуклеотидами, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови, а также мРНК.

Обработка

Группам из 4 самок мышей hu-PBMC-NSG (полученных от компании Jackson Laboratory) вводили путем подкожной инъекции один раз в день (в общей сложности в течение 4 процедур обработки) 25 мг/кг модифицированных олигонуклеотидов. Мышей обрабатывали модифицированным олигонуклеотидом в группах по 4. Одной дополнительной группе из 8

самок мышей huPBMC вводили путем инъекции PBS. Мышей подвергали эвтаназии в день 4 после начала обработки (через 24 часа после последнего введения).

Биохимические маркеры плазмы крови

Для оценки эффекта модифицированных олигонуклеотидов в отношении функции печени измеряли уровни азота мочевины крови (BUN), альбумина, аланинаминотрансферазы (ALT), аспартатаминотрансферазы (AST), общего билирубина (TBIL) и альбумина (ALB) в плазме крови с использованием автоматического биохимического анализатора (Hitachi Olympus AU400c, Мелвилл, Нью-Йорк). Результаты представлены в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали изменения уровней любого из маркеров функции печени или почек, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

 Таблица 95

 Биохимические маркеры плазмы крови у самок мышей huPBMC

№ ION	Альбумин (г/дл)	ALT (ед/л)	AST (ед/л)	TBIL (мг/дл)	BUN (мг/дл)
PBS	3,1	26	73	0,24	22
549148	3,1	36	78	0,19	21
1062413	3,0	58	115	0,20	24
1062428	3,0	80	118	0,22	19
1062641	2,9	68	163	0,27	21
1063268	3,1	40	85	0,45	20
1063649	3,1	29	63	0,23	20
1063734	3,0	131	257	0,23	19
1064096	3,0	31	122	0,19	23

Значения массы тела

Значения массы тела мышей hu-PBMC-NSG измеряли в день умерщвления мышей, и средняя масса тела для каждой группы представлена в приведенной ниже таблице. Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые

обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для модифицированных олигонуклеотидов.

Таблица 96Значения массы тела и органов (в граммах)

№ ION	Масса тела (г)
PBS	21
549148	21
1062413	22
1062428	21
1062641	22
1063268	23
1063649	22
1063734	22
1064096	20

Анализ РНК

Экстрагировали спленоциты и лимфатические узлы для анализа РНК. Спленоциты выделяли из селезенок путем механического разрушения в пробирках для диссоциации тканей (Miltenyi) в диссоциаторе gentleMACS (Miltenyi). Наборы праймеров и зондов RTS35925, RTS35988 (последовательность описанный выше, И отомяцп праймера CAAATGGTGTCTGCAAGTGG, обозначенная в данном документе как SEQ ID NO: 3248; последовательность обратного праймера CTCTGGAGGAGACATTGTGC, обозначенная в данном документе как SEQ IDNO: 3249; последовательность CCTGGCAGTGCTTGAGGAAGTCC, обозначенная в данном документе как SEQ ID NO: 3250) использовали для измерения уровней РНК человеческого Foxp3 в отдельных ПЦР. Результаты представлены в виде процентного изменения уровня РНК по сравнению с контролем PBS, нормализованного по человеческому GAPDH либо по человеческому CD4. Человеческий GAPDH амплифицировали с использованием набора праймеров и зондов RTS104 (последовательность прямого праймера GAAGGTGAAGGTCGGAGTC, обозначенная в данном документе как SEQ ID NO: 3251; последовательность обратного праймера GAAGATGGTGATGGGATTTC, обозначенная в данном документе как SEQ ID NO: 3252; последовательность зонда CAAGCTTCCCGTTCTCAGCC, обозначенная в данном документе как SEQ ID NO: 3253). Человеческий CD4 амплифицировали с использованием набора праймеров и зондов ABI Hs01058407_m1.

Как представлено в приведенной ниже таблице, обработка с помощью модифицированных олигонуклеотидов Ionis приводила к снижению уровня РНК Foxp3 по сравнению с контролем PBS. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с контролем PBS (% контроля).

 Таблица 97

 Опосредованное модифицированным олигонуклеотидом подавление экспрессии РНК человеческого Foxp3 в модели huPBMC

	Спленоциты			Лимфатический узел				
№ ION	Нормализованные по Нормали		вованные Нормализ		вованные Нормализованны		зованные	
	GAPDH		по CD4		по GAPDH		по CD4	
	%	%	%	%	%	%	%	%
	контроля	контроля	контроля	контроля	контроля	контроля	контроля	контроля
	для	для	для	для	для	для	для	для
	уровней	уровней	уровней	уровней	уровней	уровней	уровней	уровней
	Foxp3	Foxp3	Foxp3	Foxp3	Foxp3	Foxp3	Foxp3	Foxp3
	(RTS3592	(RTS3598	(RTS3592	(RTS3598	(RTS3592	(RTS3598	(RTS3592	(RTS3598
	5)	8)	5)	8)	5)	8)	5)	8)
PBS	100	100	100	100	100	100	100	100
549148	79	87	84	93	91	91	107	102
106241	34	42	55	69	86	82	91	89
106242	65	73	80	96	60	58	89	89
106264 1	31	39	52	64	36	38	70	70
106326 8	61	75	56	70	60	55	97	89
106364 9	55	68	64	80	58	60	97	97
106373	34	43	55	66	82	74	106	94
106409	65	79	63	77	83	79	107	93

Проточная цитометрия

Уровни белка Foxp3 измеряли в регуляторных T-клетках с помощью проточной цитометрии. После инкубирования с модифицированными олигонуклеотидами CD4⁺ T-клетки окрашивали флуоресцентно меченными антителами к CD3, CD4, Helios и FOXP3 (Biolegend) с использованием набора буферов для факторов транскрипции True-Nuclear (Biolegend). Регуляторные T-клетки гейтировали как CD3⁺CD4⁺Helios⁺ клетки, и количественно определяли уровни белка Foxp3 с использованием медианной интенсивности флуоресценции при окрашивании антителом к Foxp3.

 Таблица 98

 Опосредованное модифицированным олигонуклеотидом подавление уровней человеческого белка Foxp3 в модели huPBMC

№ ION	% контроля для белка Foxp3
PBS	100
549148	74
1062413	63
1062428	59
1062641	48
1063268	53
1063649	22
1063734	33
1064096	54

Пример 14. Дозозависимое подавление модифицированным олигонуклеотидом уровней мРНК и белка для человеческого Foxp3 в CD4 Т-клетках, полученных от мышей hu-PBMC-NSG

Человеческие CD4⁺ Т-клетки выделяли из спленоцитов мышей, гуманизированных с помощью PBMC (hu-PBMC-NSG, Jackson Laboratory), посредством комбинации первоначальной очистки с использованием набора для очистки человеческих CD4 Т-клеток EasySep (StemCell Technologies) с последующей отрицательной селекцией с использованием набора для очистки мышиных CD4 Т-клеток EasySep (StemCell Technologies) для обогащения

только популяции человеческих клеток. Очищенные человеческие CD4⁺ Т-клетки культивировали в среде для размножения Т-клеток ImmunoCult-XT (StemCell Technologies), дополненной 30 нг/мл человеческого рекомбинантного IL-2 (StemCell Technologies). CD4⁺ Т-клетки обрабатывали *ex vivo* модифицированными олигонуклеотидами путем свободного поглощения в исследовании зависимости доза-ответ в течение 72 часов. Клетки активировали в течение 24 ч. в присутствии активатора человеческих Т-клеток на основе антител к CD3/CD28/CD2 ImmunoCult (StemCell Technologies). Клетки собирали и оценивали в отношении изменений уровней мРНК Foxp3.

Для измерения уровней РНК человеческого Foxp3 использовали набор праймеров и зондов RTS35988. Уровни РНК Foxp3 нормализовали по человеческому GAPDH либо по человеческому CD4. Человеческий GAPDH амплифицировали с использованием набора праймеров и зондов RTS104. Человеческий CD4 амплифицировали с использованием набора праймеров и зондов ABI Hs01058407_m1. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с контролем PBS (% контроля).

Уровни белка Foxp3 измеряли в регуляторных Т-клетках с помощью проточной цитометрии. После инкубирования с модифицированными олигонуклеотидами CD4⁺ Т-клетки окрашивали флуоресцентно меченными антителами к CD3, CD4, Helios и FOXP3 (Biolegend) с использованием набора буферов для факторов транскрипции True-Nuclear (Biolegend). Регуляторные Т-клетки гейтировали как CD3⁺CD4⁺Helios⁺ клетки, и количественно определяли уровни белка Foxp3 с использованием медианной интенсивности флуоресценции при окрашивании антителом к Foxp3.

 Таблица 99

 Опосредованное модифицированным олигонуклеотидом подавление экспрессии РНК

 человеческого Foxp3 в CD4 Т-клетках из модели huPBMC (нормализованное по GAPDH)

M. ION]	IC50				
№ ION	10 мкМ	2,5 мкМ	0,63 мкМ	0,16 мкМ	0,04 мкМ	(мкМ)
1062428	47	48	48	75	85	2,6
1062641	57	65	71	75	99	16,9
1062835	59	65	70	85	80	46,3
1062937	39	46	61	62	80	1,8
1063268	38	46	60	66	86	1,9

1063649	50	68	77	91	113	8,7
1063655	33	35	60	80	103	1,5
1063734	13	24	34	54	86	0,3
1064096	54	52	72	79	91	8,4
1064313	61	70	77	84	102	24,7
792169	138	87	87	71	81	>10

Таблица 100

Опосредованное модифицированным олигонуклеотидом подавление экспрессии РНК человеческого Foxp3 в CD4 Т-клетках из модели huPBMC (нормализованное по CD4)

M ION		IC50				
№ ION	10 мкМ	2,5 мкМ	0,63 мкМ	0,16 мкМ	0,04 мкМ	(мкМ)
1062428	48	47	46	70	90	2,3
1062641	50	60	64	70	86	8,5
1062835	59	62	66	79	79	40,6
1062937	41	44	55	61	74	1,5
1063268	41	45	61	66	82	2,2
1063649	55	62	75	87	110	9,9
1063655	34	37	60	75	97	1,5
1063734	13	23	33	51	82	0,2
1064096	46	49	65	75	90	3,8
1064313	59	65	73	79	97	20,6
792169	139	90	87	73	80	>10

 Таблица 101

 Дозозависимое подавление экспрессии человеческого белка Foxp3 с помощью модифицированных олигонуклеотидов в регуляторных Т-клетках

			% контр	ля		IC
№ ION	10 мкМ	2,5 мкМ	0,63 мкМ	0,16 мкМ	0,04 мкМ	IС ₅₀ (мкМ)
1062428	32	45	53	73	93	1,4
1062641	54	65	74	91	102	11,0
1062835	60	69	77	89	100	20,9
1062937	44	46	59	72	88	2,6
1063268	46	57	69	87	100	5,5
1063649	33	43	58	81	101	1,8
1063655	26	31	49	72	90	0,8
1063734	12	16	28	50	80	0,2
1064096	31	40	58	78	92	1,5
1064313	50	57	68	84	98	6,5

792169	105	94	97	106	107	>10

Пример 15. Дозозависимое подавление человеческого Foxp3 в клетках SUP-M2 с помощью модифицированного олигонуклеотида

Модифицированные олигонуклеотиды тестировали относительно их эффекта в отношении уровня мРНК Foxp3 *in vitro* в клетках SUP-M2. Культивируемые клетки SUP-M2 при плотности 35000 клеток на мл трансфицировали с использованием электропорации с помощью модифицированных олигонуклеотидов, разбавленных до концентраций 10 мкМ, 2,5 мкМ, 0,63 мкМ, 0,16 мкМ и 0,04 мкМ. После периода обработки, составлявшего примерно 48 часа, РНК выделяли из клеток, и измеряли уровни мРНК Foxp3 с помощью количественной RT-PCR в реальном времени. Оба набора праймеров и зондов RTS35925 и RTS35988 использовали для измерения уровней мРНК в отдельных реакциях RT-PCR. Уровни мРНК Foxp3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®, а также корректировали по уровням GAPDH, измеренным с помощью набора праймеров и зондов для человека RTS104. Результаты представлены в приведенных ниже таблицах как процент контроля количества мРНК Foxp3 по сравнению с необработанными контрольными клетками (% UTC).

 Таблица 102

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 с помощью модифицированных олигонуклеотидов в клетках SUP-M2

№ ION	% UT	IC ₅₀				
J\0 ION	10 мкМ	2,5 мкМ	0,63 мкМ	0,16 мкМ	0,04 мкМ	(мкМ)
1062428	7	18	48	84	95	0,6
1062641	10	30	61	92	101	0,9
1062835	17	42	77	94	126	>10
1062937	24	60	112	144	134	1,6
1063268	9	24	52	71	84	0,9
937101	43	50	58	64	69	1,8
549144	52	45	56	74	82	0,3
1063649	3	11	26	85	102	0,3
1063655	10	24	61	98	119	0,5
1063734	2	12	33	74	124	0,1
1064096	4	19	48	95	110	0,5

1064313	20	44	83	90	112	2,7
937101	49	70	69	72	83	>10
549144	52	66	79	83	94	>10

 Таблица 103

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 с помощью модифицированных олигонуклеотидов в клетках SUP-M2

	% UT	C - RTS3	5925, нор	мализова	нный по	
№ ION			RiboGre	en		IC ₅₀
342 1014	10	2,5	0,63	0,16	0,04	(мкМ)
	мкМ	мкМ	мкМ	мкМ	мкМ	
1062428	9	22	47	81	91	0,7
1062641	15	42	71	94	108	>10
1062835	25	49	89	102	125	2,8
1062937	19	45	72	95	97	>10
1063268	14	35	70	85	110	>10
937101	67	83	95	110	120	>10
549144	68	57	69	81	91	>10
1063649	4	13	30	82	88	0,4
1063655	13	29	68	102	111	0,2
1063734	3	16	39	80	129	0,4
1064096	6	21	51	92	99	0,8
1064313	25	53	91	93	115	>10
937101	80	113	107	111	121	1,7
549144	69	91	101	99	106	>10

 Таблица 104

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 с помощью модифицированных олигонуклеотидов в клетках SUP-M2

	% UT	IC ₅₀				
№ ION	10 мкМ	2,5 мкМ	GAPDI 0,63 mkM	0,16 мкМ	0,04 мкМ	(мкМ)
1062428	8	18	56	82	94	0,7
1062641	11	30	60	80	97	1,1
1062835	18	47	72	99	114	2,4
1062937	24	71	102	150	144	2,2
1063268	9	33	47	70	82	>10
937101	49	57	54	62	62	>10
549144	52	64	73	77	91	>10
1063649	3	10	38	76	112	0,2
1063655	9	21	46	76	115	0
1063734	4	12	29	72	93	0,3

1064096	8	22	53	82	104	0,5
1064313	25	49	74	92	104	2,3
937101	56	59	69	74	72	1,2
549144	69	71	77	88	93	0,4

 Таблица 105

 Дозозависимое подавление экспрессии мРНК человеческого Foxp3 с помощью модифицированных олигонуклеотидов в клетках SUP-M2

	% UT	C - RTS3	55988, нор RiboGre	мализова	нный по	
№ ION		IC ₅₀				
312 1011	10	2,5	0,63	0,16	0,04	(мкМ)
	мкМ	мкМ	мкМ	мкМ	мкМ	
1062428	10	23	53	78	91	0,7
1062641	17	42	67	82	101	1,8
1062835	26	55	84	104	116	1,8
1062937	20	54	65	98	106	1,8
1063268	14	48	64	90	108	2,3
937101	77	96	90	109	111	4,9
549144	67	84	93	90	102	>10
1063649	4	12	43	76	97	0,2
1063655	12	26	51	81	110	0
1063734	5	16	35	78	97	0,3
1064096	10	26	58	82	98	0,5
1064313	32	60	82	96	107	2,3
937101	93	98	109	116	108	1,2
549144	93	99	100	106	106	0,4

ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246.
- 2. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 9-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 9 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246.
- 3. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 10-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 10 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246.
- 4. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 11-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 11 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246.
- 5. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 12-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую по меньшей мере 12 смежных нуклеиновых оснований из любой из последовательностей нуклеиновых оснований под SEQ ID NO: 9-3246.
- 6. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под любым из SEQ ID NO: 9-3246.
- 7. Соединение, содержащее модифицированный олигонуклеотид, который имеет последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 9-3246.
- 8. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и являющийся комплементарным по отношению к SEQ ID NO: 1 в пределах нуклеотидов 2269-2284 или по отношению к SEQ ID NO: 2 в пределах нуклеотидов

1233-1248, 2156-2171, 2735-2750, 4661-4676, 7307-7322, 7331-7346, 7980-7995, 11581-11596 или 12396-12411.

- 9. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 8-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575.
- 10. Соединение, содержащее модифицированный олигонуклеотид, который имеет последовательность нуклеиновых оснований, состоящую из любой из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575.
- 11. Соединение по любому из пп. 1-10, где модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь, по меньшей мере один модифицированный сахар или по меньшей мере одно модифицированное нуклеиновое основание.
- 12. Соединение по п. 11, где модифицированная межнуклеозидная связь представляет собой фосфотиоатную межнуклеозидную связь.
- 13. Соединение по п. 11 или п. 12, где модифицированный сахар представляет собой бициклический сахар.
- 14. Соединение по п. 13, где бициклический сахар выбран из группы, состоящей из 4'-(CH₂)-O-2' (LNA), 4'-(CH₂)₂-O-2' (ENA) и 4'-CH(CH₃)-O-2' (cEt).
- 15. Соединение по п. 11 или п. 12, где модифицированный сахар представляет собой 2'-О-метоксиэтил.
- 16. Соединение по любому из пп. 11-15, где модифицированное нуклеиновое основание представляет собой 5-метилцитозин.
- 17. Соединение по любому из пп. 1-16, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

18. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований, содержащую любую из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

19. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под любым из SEQ ID NO: 449, 501, 544, 794, 1293, 1307, 1511, 1755, 2492 или 2575, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; где каждый нуклеозид каждого флангового сегмента содержит сЕt-нуклеозид; где каждая межнуклеозидная связь представляет собой фосфотиоатную связь; и где каждый цитозин представляет собой 5-метилцитозин.

20. Соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16-80 связанных нуклеиновых оснований и имеющий последовательность нуклеиновых оснований, содержащую последовательность, указанную под SEQ ID NO: 449, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; где каждый нуклеозид каждого флангового сегмента содержит сЕt-нуклеозид; где каждая межнуклеозидная связь представляет собой фосфотиоатную связь; и где каждый цитозин представляет собой 5-метилцитозин.

- 21. Соединение по любому из пп. 1-20, где олигонуклеотид является на по меньшей мере 80%, 85%, 90%, 95% или 100% комплементарным по отношению к любой из SEQ ID NO: 1-5.
 - 22. Соединение по любому из пп. 1-21, где соединение является однонитевым.
 - 23. Соединение по любому из пп. 1-21, где соединение является двухнитевым.
 - 24. Соединение по любому из пп. 1-23, где соединение содержит рибонуклеотиды.
- 25. Соединение по любому из пп. 1-23, где соединение содержит дезоксирибонуклеотиды.
- 26. Соединение по любому из пп. 1-25, где модифицированный олигонуклеотид состоит из 16-30 связанных нуклеозидов.
- 27. Соединение по любому из предыдущих пунктов, где соединение состоит из модифицированного олигонуклеотида.
- 28. Соединение, состоящее из фармацевтически приемлемой соли любого из соединений по пп. 1-27.
- 29. Соединение по п. 28, где фармацевтически приемлемая соль представляет собой натриевую соль.
- 30. Соединение по п. 28, где фармацевтически приемлемая соль представляет собой калиевую соль.

31. Соединение, имеющее формулу:

, или его соль.

32. Соединение, имеющее формулу:

- 33. Композиция, содержащая соединение по любому из пп. 1-32 и фармацевтически приемлемый носитель.
- 34. Композиция, содержащая соединение или модифицированный олигонуклеотид по любому из предыдущих пунктов, для применения в терапии.
- 35. Способ лечения или уменьшения интенсивности проявлений рака у индивидуума, включающий введение индивидууму соединения, нацеленного на FOXP3, за счет чего осуществляется лечение или уменьшение интенсивности проявлений рака.
- 36. Способ по п. 35, где соединение представляет собой антисмысловое соединение, нацеленное на FOXP3.
- 37. Способ по п. 35 или п. 36, где рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или

лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (HCC), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL).

- 38. Способ по любому из пп. 40-42, где введение соединения приводит к подавлению или снижению иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования или к индуцированию или активации противоракового или противоопухолевого иммунитета; противоракового или противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации Т-клеток; активации или инфильтрации CD8 Т-клеток; активации или инфильтрации NK-клеток; активации или инфильтрации макрофагов дендритных клеток; воспаления или экспрессии провоспалительных цитокинов или хемокинов.
- 39. Способ подавления экспрессии FOXP3 в клетке, включающий приведение клетки в контакт с соединением, нацеленным на FOXP3, за счет чего обеспечивается подавление экспрессии FOXP3 в клетке.
 - 40. Способ по п. 39, где клетка представляет собой раковую клетку.
- 41. Способ по п. 40, где рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC),

мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (HCC), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (MM), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL).

- 42. Способ снижения или подавления иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования у индивидуума, у которого имеется рак, включающий введение индивидууму соединения, нацеленного на FOXP3, за счет чего обеспечивается снижение или подавление иммуносупрессии, иммуносупрессивной активности Treg, пролиферации раковых клеток, роста опухоли или метастазирования у индивидуума.
- 43. Способ индуцирования или активации противоракового или противоопухолевого иммунитета; противоракового или противоопухолевого иммунного ответа; активации или инфильтрации иммунных клеток; активации или инфильтрации воспалительных клеток; активации или инфильтрации эффекторных иммунных клеток; активации или инфильтрации СD8 Т-клеток; активации или инфильтрации CD8 Т-клеток; активации или инфильтрации макрофагов и дендритных клеток; воспаления или экспрессии провоспалительных цитокинов или хемокинов у индивидуума, у которого имеется рак, включающий введение индивидууму соединения, нацеленного на FOXP3.
- 44. Способ по п. 43, где у индивидуума имеются рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточная карцинома легкого (NSCLC), мелкоклеточная карцинома легкого (SCLC), плоскоклеточная карцинома (SCC), рак головы и

шеи, плоскоклеточная карцинома головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярная карцинома (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиома, формы саркомы (например, эпителиоидная, рабдоидная и синовиальная), хордома, рак почки, почечноклеточная карцинома (RCC), рак головного мозга, нейробластома, глиобластома, рак кожи, меланома, базальноклеточная карцинома, карцинома из клеток Меркеля, рак крови, рак кроветворной системы, миелома, множественная миелома (MM),В-клеточные злокачественные новообразования, лимфома, В-клеточная лимфома, лимфома Ходжкина, Т-клеточная лимфома, лейкоз или острый лимфоцитарный лейкоз (ALL).

- 45. Способ по любому из пп. 35-44, где соединение представляет собой антисмысловое соединение, нацеленное на FOXP3.
- 46. Способ по любому из пп. 35-45, где соединение представлено соединением по любому из пп. 1-34 или композицией по п. 35 или п. 36.
 - 47. Способ по любому из пп. 35-46, где соединение вводят парентерально.
- 48. Применение соединения, нацеленного на FOXP3, для лечения, предупреждения или уменьшения интенсивности проявлений рака.
- 49. Применение по п. 48, где рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (HCC), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную

карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL).

- 50. Применение по п. 48 или п. 49, где соединение представляет собой антисмысловое соединение, нацеленное на FOXP3.
- 51. Применение по любому из пп. 48-50, где соединение представлено соединением по любому из пп. 1-32 или композицией по п. 33 или п. 34.
- 52. Применение соединения, нацеленного на FOXP3, при изготовлении лекарственного препарата для лечения или уменьшения интенсивности проявлений рака.
- 53. Применение по п. 51, где рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL).
- 54. Применение по п. 52 или п. 53, где соединение представляет собой антисмысловое соединение, нацеленное на FOXP3.
- 55. Применение по любому из пп. 52-54, где соединение представлено соединением по любому из пп. 1-32 или композицией по п. 33 или п. 34.

- 56. Применение соединения, нацеленного на FOXP3, при получении лекарственного препарата для лечения или уменьшения интенсивности проявлений рака.
- 57. Применение по п. 56, где рак представляет собой рак, характеризующийся наличием FOXP3-положительных (FOXP3+) Treg в микроокружении, или строме, или лимфатических узлах, дренирующих опухоль, рак легкого, немелкоклеточную карциному легкого (NSCLC), мелкоклеточную карциному легкого (SCLC), плоскоклеточную карциному (SCC), рак головы и шеи, плоскоклеточную карциному головы и шеи (HNSCC), рак желудочно-кишечного тракта, рак толстой кишки, рак тонкой кишки, рак желудка, рак ободочной кишки, рак ободочной и прямой кишки, рак мочевого пузыря, рак печени, гепатоцеллюлярную карциному (НСС), рак пищевода, рак поджелудочной железы, рак желчных протоков, желудочный рак, уротелиальный рак, рак молочной железы, трижды негативный рак молочной железы (TNBC), рак яичника, рак эндометрия, рак шейки матки, рак предстательной железы, мезотелиому, формы саркомы (например, эпителиоидную, рабдоидную и синовиальную), хордому, рак почки, почечноклеточную карциному (RCC), рак головного мозга, нейробластому, глиобластому, рак кожи, меланому, базальноклеточную карциному, карциному из клеток Меркеля, рак крови, рак кроветворной системы, миелому, множественную миелому (ММ), В-клеточные злокачественные новообразования, лимфому, В-клеточную лимфому, лимфому Ходжкина, Т-клеточную лимфому, лейкоз или острый лимфоцитарный лейкоз (ALL).
- 58. Применение по п. 56 или п. 57, где соединение представляет собой антисмысловое соединение, нацеленное на FOXP3.
- 59. Применение по любому из пп. 56-58, где соединение представлено соединением по любому из пп. 1-32 или композицией по п. 33 или п. 34.