(22) Дата подачи заявки 2019.04.12

(51) Int. Cl. A61K 39/00 (2006.01) C07K 14/74 (2006.01) C07K 14/47 (2006.01)

(54) ПЕПТИДЫ ДЛЯ ПРИМЕНЕНИЯ В ИММУНОТЕРАПИИ РАКОВЫХ ЗАБОЛЕВАНИЙ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (31) 10 2018 111 819.8; 62/672,411
- (32) 2018.05.16
- (33) DE; US
- (86) PCT/EP2019/059522
- (87) WO 2019/219312 2019.11.21
- **(71)** Заявитель:

ИММАТИКС БАЙОТЕКНОЛОДЖИЗ ГМБХ (DE)

(72) Изобретатель:

Сонг Колетте, Хоффгаард Франциска, Ковалевски Дэниел, Шор Оливер, Фритше Йенс, Вайншенк Тони, Сингх Харпрет (DE)

(74) Представитель:

Костюшенкова М.Ю., Угрюмов В.М., Строкова О.В., Гизатуллин Ш.Ф., Гизатуллина Е.М., Джермакян Р.В., Парамонова К.В., Христофоров А.А., Глухарёва А.О., Лебедев В.В. (RU)

(57) Настоящее изобретение относится к пептидам, белкам, нуклеиновым кислотам и клеткам для применения в иммунотерапевтических методах. В частности, настоящее изобретение относится к иммунотерапии рака. Настоящее изобретение относится к опухолеассоциированным пептидным эпитопам Т-клеток, в отдельности или в комбинации с другими опухолеассоциированными пептидами, которые могут, например, служить в качестве активных фармацевтических ингредиентов вакцинных композиций, стимулирующих противоопухолевые иммунные ответы, или стимулировать Т-клетки ех vivo с их перенесением в организм пациента. Пептиды, связанные с молекулами главного комплекса гистосовместимости (МНС), или пептиды в отдельности могут быть также мишенями антител, растворимых Т-клеточных рецепторов и других связывающих молекул.

133190WO

Пептиды для применения в иммунотерапии раковых заболеваний

Настоящее изобретение относится к пептидам, белкам, нуклеиновым кислотам и клеткам для применения в иммунотерапевтических методах. В частности, настоящее изобретение относится к иммунотерапии рака. Настоящее изобретение относится далее к опухолеассоциированным пептидным эпитопам Т-клеток, в отдельности или в комбинации с другими опухолеассоциированными пептидами, которые могут, например, служить в качестве активных фармацевтических ингредиентов вакцинных композиций, стимулирующих противоопухолевые иммунные ответы, или стимулировать Т-клетки ех vivo с их перенесением в организм пациента. Пептиды, связанные с молекулами главного комплекса гистосовместимости (МНС), или пептиды в отдельности могут быть также мишенями антител, растворимых Т-клеточных рецепторов и других связывающих молекул.

Настоящее изобретение относится к нескольким новым пептидным последовательностям и их вариантам, образованным из молекул HLA I класса человеческих опухолевых клеток, которые могут быть использованы в вакцинных композициях для вызывания противоопухолевых иммунных ответов или в качестве мишеней для разработки фармацевтически / иммунологически активных соединений и клеток.

УРОВЕНЬ ТЕХНИКИ

Согласно данным Всемирной организации здравоохранения (ВОЗ) в 2012 г. рак находился среди четырех основных неинфекционных смертельно опасных заболеваний в мире. По данным за тот же год колоректальный рак, рак молочной железы и раковые заболевания дыхательных путей находились в списке 10 наиболее распространенных причин смерти в странах с высоким уровнем доходов.

Принимая во внимание серьезные побочные эффекты и высокие расходы, связанные с традиционными подходами к лечению рака, существует необходимость идентифицировать факторы, которые могут быть использованы для лечения рака вообще и острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза. колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и рака эндометрия в частности.

Также существует необходимость идентифицировать факторы, представляющие собой биомаркеры рака в целом и острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и рака эндометрия матки в частности, что позволит лучше ставить диагноз, составлять прогноз и предсказывать успех лечения.

Иммунотерапия рака представляет собой вариант специфического воздействия на раковые клетки при снижении до минимума побочных эффектов. В иммунотерапии рака находит применение существование опухолеассоциированных антигенов.

Актуальная классификация опухолеассоциированных антигенов (ТАА) включает следующие основные группы:

- а) Раково-тестикулярные антигены: первые в истории идентифицированные ТАА, которые могут распознаваться Т-клетками, принадлежат к этому классу, называвшемуся первоначально «раково-тестикулярные антигены» (СТ), так как его члены экспрессируются в отличных по гистологической структуре опухолях человека, а среди нормальных тканей только в сперматоцитах/сперматогониях семенника и изредка в плаценте. Так как клетки семенника не экспрессируют молекулы HLA I и II класса, то эти антигены не могут быть распознаны Т-клетками в нормальных тканях и поэтому могут рассматриваться как иммунологически опухолеспецифические. Хорошо известными примерами антигенов СТ являются члены семейства MAGE и NY-ESO-1.
- б) Антигены дифференциации: Данные ТАА встречаются в опухолевых и нормальных тканях, из которых образуется опухоль. Большинство из известных антигенов дифференциации обнаружено в меланомах и нормальных меланоцитах. Многие из этих линиеспецифических белков меланоцитов участвуют в биосинтезе меланина и поэтому не являются опухолеспецифическими, однако, несмотря на это, они широко применяются в противораковой терапии. Примеры включают, но не ограничиваются, тирозиназой и Melan-A/MART-1 для меланомы или ПСА для рака предстательной железы.
- в) Избыточно экспрессируемые ТАА: гены, кодирующие широко экспрессированные ТАА, были обнаружены в различных по гистологической структуре опухолях, а также во многих нормальных тканях, в основном, с более низким уровнем экспрессии. Возможно, что многие эпитопы, процессируемые и потенциально презентируемые нормальными тканями, находятся ниже порогового уровня для распознавания Т-клетками, в то время как их избыточная экспрессия в опухолевых клетках может инициировать противораковый ответ, нарушая установившуюся ранее толерантность. Известными примерами ТАА этого класса являются Her-2/neu, сурвивин, теломераза или WT1.
- г) Опухолеспецифические антигены: данные уникальные ТАА образуются в результате мутаций нормальных генов (таких как β-катенин, CDK4 и т. д.). Некоторые из этих молекулярных изменений ассоциированы с неопластической трансформацией и/или прогрессией. Опухолеспецифические антигены, в

основном, способны индуцировать сильные иммунные ответы, не заключая в себе риска аутоиммунных реакций по отношению к нормальным тканям. С другой стороны, данные ТАА в большинстве случаев подходят только для определенной опухоли, на которой они были идентифицированы, и обычно не являются общими для многих отдельных опухолей. Опухолевая специфичность (или ассоциация) пептида может также возникнуть, если пептид образован из опухолевого (опухольассоциированного) экзона в случае белков с опухоль-специфическими (-ассоциированными) изоформами.

- TAA. образующиеся в результате аномальных пост-трансляционных д) модификаций: такие ТАА могут образоваться из белков, которые не являются ни специфическими, ни избыточно экспрессируемыми в опухолях, однако, несмотря на это, становятся опухолеассоциированными в ходе пост-трансляционных процессов, происходящих преимущественно в опухолях. Примеры для этого класса возникают в результате изменения характера гликозилирования, приводящему к появлению новых эпитопов в опухолях, как в случае MUC1, или при таких событиях белковый сплайсинг деградации, которые могут быть во время опухолеспецифическими или могут не быть ими.
- е) Онковирусные белки: данные ТАА являются вирусными белками и могут играть ведущую роль в онкогенном процессе, и, так как они являются чужеродными (не человеческого происхождения), они могут провоцировать Т-клеточный ответ. Примерами таких белков являются вирусные белки вируса папилломы человека типа 16, Е6 и Е7, которые экспрессированы в карциноме шейки матки.

Мишенями иммунотерапии, основанной на Т-клетках, являются пептидные эпитопы, полученные из опухолеассоциированных или опухолеспецифических белков, которые презентируются молекулами главного комплекса гистосовместимости человека (MHC). Антигены, которые распознаются опухолеспецифическими Т-лимфоцитами, то есть их эпитопами, могут быть молекулами, образованными из любого класса белков, таких как ферменты, рецепторы, факторы транскрипции и т. д., которые экспрессируются и, по сравнению с не измененными клетками того же происхождения, обычно имеют повышенный уровень в клетках соответствующей опухоли.

Существуют два класса молекул МНС, МНС I класса и МНС II класса. Молекулы МНС I класса состоят из альфа-тяжелой цепи и бета-2-микроглобулина, молекулы МНС II класса — из альфа- и бета-цепи. Их трехмерная конформация образует связывающую бороздку, которая используется для нековалентного взаимодействия с пептидами.

Молекулы МНС I класса встречаются на большинстве клеток, имеющих ядро. Они презентируют пептиды, образующиеся при протеолитическом расщеплении преимущественно эндогенных белков, дефектных рибосомных продуктов (DRIP) и более крупных пептидов. Однако пептиды, образованные из эндосомальных компартментов или экзогенных источников, также часто встречаются на молекулах МНС І класса. Этот неклассический способ презентации І классом в литературе называется кросс-презентацией (Brossart and Bevan, 1997; Rock et al., 1990). Молекулы MHC класса МОГУТ встречаться преимущественно профессиональных антигенпрезентирующих клетках (АПК) и, в первую очередь, презентировать пептиды экзогенных или трансмембранных белков, которые ΑΠΚ, поглощаются например, во время эндоцитоза впоследствии И процессируются.

Комплексы пептида и молекул МНС I класса распознаются CD8-положительными Т-клетками, несущими подходящий Т-клеточный рецептор (ТКР), тогда как комплексы пептида и молекул МНС II класса распознаются CD4-положительными хелперными Т-клетками, несущими подходящий ТКР. Хорошо известно, что ТКР, пептид и МНС встречаются в стехиометрическом соотношении 1:1:1.

CD4-положительные хелперные Т-клетки играют важную роль в индуцировании и поддержании эффективных ответов CD8-положительных цитотоксических Т-клеток. Идентификация CD4-положительных Т-клеточных эпитопов, образованных

из опухолеассоциированных антигенов (ТАА), может быть чрезвычайно важна для разработки фармацевтических препаратов для инициации противоопухолевых иммунных ответов(Gnjatic et al., 2003). В месте локализации опухоли Т-хелперные клетки поддерживают благоприятное для ЦТЛ цитокиновое окружение(Mortara et al., 2006) и привлекают эффекторные клетки, к примеру, ЦТЛ, естественные киллерные клетки (NK), макрофаги, гранулоциты(Hwang et al., 2007).

При отсутствии воспаления экспрессия молекул МНС II класса преимущественно ограничена клетками иммунной системы, в особенности профессиональными антигенпрезентирующими клетками (АПК), например, моноцитами, образованными из моноцитов клетками, макрофагами, дендритными клетками. Было обнаружено, что опухолевые клетки больных раком пациентов экспрессируют молекулы МНС II класса (Dengjel et al., 2006).

Более длинные (удлиненные) пептиды по изобретению могут выступать в качестве активных эпитопов МНС II класса.

Т-хелперные клетки, активированные эпитопами МНС II класса, играют важную роль в управлении эффекторной функцией ЦТЛ в противоопухолевом иммунитете. Эпитопы Т-хелперных клеток, инициирующие ответы Т-хелперных клеток типа ТН1, поддерживают эффекторные функции CD8-положительных киллерных Т-клеток, которые включают цитотоксические функции, направленные против опухолевых клеток, проявляющих комплексы опухолеассоциированный пептид / МНС на их клеточной поверхности. Таким образом, опухолеассоциированные пептидные эпитопы Т-хелперных ИЛИ комбинации клеток, одни В другими опухолеассоциированными пептидами, могут служить в качестве активных фармацевтических ингредиентов вакцинных композиций, которые стимулируют противоопухолевые иммунные ответы.

На моделях млекопитающих животных, например, мышах, было показано, что даже при отсутствии CD8-положительных Т-лимфоцитов, CD4-положительных Т-клеток

достаточно для ослабления клинических проявлений опухолей посредством ингибирования ангиогенеза при секреции интерферон-гамма (ИНФ-гамма). (Beatty and Paterson, 2001; Mumberg et al., 1999). Существуют доказательства того, что CD4 Т-клетки являются эффекторными клетками прямого противоопухолевого действия (Braumuller et al., 2013; Tran et al., 2014).

Так как конститутивная экспрессия молекул HLA II класса обычно ограничена иммунными клетками, то выделение пептидов II класса непосредственно из первичных опухолей ранее считалось невозможным. Тем не менее, Dengjel с соавторами удалось идентифицировать ряд эпитопов МНС II класса непосредственно из опухолей (WO 2007/028574, EP 1 760 088 B1).

Так как оба вида ответов, зависящие от CD8 и от CD4, вносят свой вклад в противоопухолевый эффект сообща и синергически, то идентификация и характеристика опухолеассоциированных антигенов, распознаваемых как CD8+ Т-клетками (лиганд: молекула МНС I класса + пептидный эпитоп), так и CD4-положительными хелперными Т-клетками (лиганд: молекула МНС II класса + пептидный эпитоп) являются важными при разработке противоопухолевых вакцин.

Для того чтобы пептид МНС I класса инициировал (вызывал) клеточный иммунный ответ, он также должен связываться с молекулой МНС. Этот процесс зависит от аллеля молекулы МНС и специфических полиморфизмов аминокислотной последовательности пептида. Пептиды, связывающиеся с МНС I класса, как правило, имеют 8-12 аминокислотных остатков в длину и обычно содержат два консервативных остатка («якори») в их последовательности, которые взаимодействуют с соответствующей связывающей бороздкой молекулы МНС. Таким образом, каждый аллель МНС имеет «связывающий мотив», определяющий, какие пептиды могут специфически связываться со связывающей бороздкой.

В зависящей от МНС I класса иммунной реакции пептиды не только должны быть в состоянии связываться с конкретными молекулами МНС I класса,

экспрессируемыми опухолевыми клетками, но они также должны затем распознаваться Т-клетками, несущими специфические Т-клеточные рецепторы (ТКР).

были распознаны Т-лимфоцитами чтобы белки опухолеспецифических или -ассоциированных антигенов, и чтобы они могли использоваться в терапии, должны выполняться особые предварительные требования. Антиген должен экспрессироваться преимущественно опухолевыми клетками и не экспрессироваться или экспрессироваться в сравнительно малом количестве здоровыми тканями. В предпочтительном варианте осуществления пептид должен избыточно презентироваться опухолевыми клетками по сравнению нормальными здоровыми тканями. Кроме того, желательно, соответствующий антиген не только присутствовал в каком-либо виде опухоли, но и также имел высокую концентрацию (т. е. несколько копий соответствующего пептида на клетку). Опухолеспецифические и опухолеассоциированные антигены часто образованы из белков, напрямую задействованных в трансформации нормальной клетки в опухолевую, в связи с их функцией, например, при контроле клеточного цикла или подавлении апоптоза. Кроме того, нисходящие мишени белков, напрямую являющихся причиной трансформации, могут представлены в повышенном количестве и, таким образом, быть косвенно опухолеассоциированными. Такие косвенно опухолеассоциированные антигены могут также быть мишенями вакцинационного подхода (Singh-Jasuja et al., 2004). Необходимо, чтобы эпитопы присутствовали В аминокислотной чтобы гарантировать, последовательности антигена, что такой пептид («иммуногенный пептид»), образованный из опухолеассоциированного антигена, ведет к Т-клеточному ответу in vitro или in vivo.

В сущности, любой пептид, способный связываться с молекулой МНС может выполнять функцию Т-клеточного эпитопа. Предварительным условием для индукции Т-клеточного ответа *in vitro* или *in vivo* является присутствие Т-клетки с

соответствующим ТКР и отсутствие иммунологической толерантности к данному конкретному эпитопу.

Поэтому антигены ТАА являются отправной точкой для разработки терапии на Т-клеток. включающей противоопухолевые основе ограничивающейся ими. Методы идентификации и определения характеристики ТАА обычно основаны на использовании Т-клеток, которые могут быть выделены из организма пациентов или здоровых субъектов, или же они могут быть основаны генерировании различающихся транскрипционных профилей на или различающихся паттернов экспрессии пептидов между опухолевыми нормальными тканями. Однако идентификация генов. экспрессированных в опухолевых тканях или человеческих опухолевых клеточных линиях или же селективно экспрессированных в таких тканях или клеточных точной информации οб использовании линиях, не дает антигенов, транскрибированных с данных генов, в иммунотерапии. Это обусловлено тем, что только отдельная субпопуляция эпитопов этих антигенов подходит для такого применения, так как Т-клетка с соответствующим ТКР должна быть в наличии, и необходимо, чтобы отсутствовала или была минимальной иммунологическая толерантность этому конкретному эпитопу. Поэтому наиболее предпочтительном варианте осуществления изобретения важно выбрать только те пептиды, презентируемые в избытке или селективно, против которых может быть обнаружена функциональная и/или пролиферирующая Т-клетка. функциональная Т-клетка определяется как Т-клетка, которая при стимуляции специфическим антигеном может быть распространена посредством клонирования и способна к выполнению эффекторных функций («эффекторная Т-клетка»).

В случае нацеливания на комплексы пептида с МНС специфических ТКР (например, растворимых ТКР) и антител или других связывающихся с ними молекул (каркасов) в соответствии с изобретением иммуногенность лежащих в основе пептидов является второстепенной. В таких случаях презентация является определяющим фактором.

В первом аспекте настоящее изобретение относится к пептиду, включающему аминокислотную последовательность, выбранную из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 или его варианту, который по меньшей мере на 77%, предпочтительно, по меньшей мере на 88% гомологичен (предпочтительно, по меньшей мере на 77% или по меньшей мере на 88% идентичен) последовательности с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 где указанный вариант связывается с МНС и/или индуцирует Т-клеточную перекрестную реакцию с указанным пептидом, или его фармацевтически приемлемой соли, где указанный пептид не является базовым полипептидом полной длины.

Настоящее изобретение относится также к пептиду по настоящему изобретению, включающему последовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464, или его варианту, который по меньшей мере на 77%, предпочтительно, по меньшей мере на 88% гомологичен (предпочтительно, по меньшей мере на 77% или по меньшей мере на 88% идентичен) последовательности с SEQ ID NO: 1 по SEQ ID NO 387 и с SEQ ID NO: 463 по SEQ ID NO: 464, где указанный пептид или его вариант обладает общей длиной, составляющей 8 – 100, предпочтительно 8 – 30 и, наиболее предпочтительно, 8 – 14 аминокислот.

В последующих таблицах представлены пептиды в соответствии с настоящим изобретением, соответствующие им SEQ ID NO. и потенциальные исходные (лежащие в основе) гены для данных пептидов. В Таблице 1а пептиды с последовательностью с SEQ ID No. 1 по SEQ ID No. 382, а в Таблице 1б пептиды с последовательностью с SEQ ID No. 463 по SEQ ID No. 464 связываются с HLA-A*24. Пептиды из Таблицы 2 были раскрыты ранее в виде обширных списков в качестве результатов скринингов с высокой пропускной способностью с высокой долей ошибок или были вычислены с помощью алгоритмов, однако ранее ни в коей мере не были ассоциированы с раковыми заболеваниями. В Таблице 2 пептиды с

последовательностями с SEQ ID NO: 383 по SEQ ID NO: 387 связываются с HLA-A*24. Пептиды из Таблицы 3 являются дополнительными пептидами, которые могут быть полезны в комбинации с другими пептидами по изобретению. В Таблице 3 пептиды с последовательностями с SEQ ID NO: 388 по SEQ ID NO: 460 связываются с HLA-A*24.

Таблица 1а: Пептиды в соответствии с настоящим изобретением.

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
1	IFPKTGLLII	MAGEA4	A*24
2	LYAPTILLW	AFP	A*24
3	KFLTHDVLTELF	TRPM8	A*24
4	MVLQPQPQLF	POTEG, POTEH	A*24
5	LQPQPQLFFSF	POTEG, POTEH	A*24
6	IVTFMNKTLGTF	ADAM29	A*24
7	GYPLRGSSI	ALPP, ALPPL2	A*24
8	IMKPLDQDF	ADAM2	A*24
9	TYINSLAIL	TGM4	A*24
10	QYPEFSIEL	TGM4	A*24
11	RAMCAMMSF	TGM4	A*24
12	KYMSRVLFVY	CHRNA9	A*24
13	KYYIATMAL	CHRNA9	A*24
14	YYIATMALI	CHRNA9	A*24
15	FMVIAGMPLF	SLC6A3	A*24
16	GYFLAQYLM	TRPM8	A*24
17	IYPEAIATL	SLC6A3	A*24
18	KYVDINTFRL	MMP12	A*24
19	ILLCMSLLLF	CYP4Z1, CYP4Z2P	A*24
20	ELMAHPFLL	CYP4Z1, CYP4Z2P	A*24
21	LYMRFVNTHF	SPINK2	A*24
22	VYSSFVFNL	NLRP4	A*24
23	VYSSFVFNLF	NLRP4	A*24
24	KMLPEASLLI	NLRP4	A*24
25	MLPEASLLI	NLRP4	A*24
26	TYFFVDNQYW	MMP12	A*24
27	LSCTATPLF	KHDC1L	A*24
28	FWFDSREISF	OR51E2	A*24
29	IYLLLPPVI	OR51E2	A*24
30	RQAYSVYAF	SLC45A3	A*24
31	KQMQEFFGL	MMP1	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
32	FYPEVELNF	MMP1	A*24
33	FYQPDLKYLSF	NLRP4	A*24
34	LIFALALAAF	GAST	A*24
35	FSSTLVSLF	MAGEC1	A*24
36	VYLASVAAF	SLC45A3	A*24
37	ISFSDTVNVW	ITIH6	A*24
38	RYAHTLVTSVLF	ITIH6	A*24
39	KTYLPTFETTI	ENPP3, OR2A4	A*24
40	NYPEGAAYEF	ESR1	A*24
41	IYFATQVVF	SLC45A3	A*24
42	VYDSIWCNM	SCGB2A1	A*24
43	KYKDHFTEI	MAGEB1	A*24
44	FYHEDMPLW	FCRL5	A*24
45	YGQSKPWTF	PAX3	A*24
46	IYPDSIQEL	LOC645382, LOC645399, PRAMEF10	A*24
47	SYLWTDNLQEF	DNAH17	A*24
48	AWSPPATLFLF	LOXL4	A*24
49	QYLSIAERAEF	MSX1, MSX2	A*24
50	RYFDENIQKF	HEPHL1	A*24
51	YFDENIQKF	HEPHL1	A*24
52	SWHKATFLF	COL24A1	A*24
53	LFQRVSSVSF	HMCN1	A*24
54	SYQEAIQQL	NEFH	A*24
55	AVLRHLETF	CDK6	A*24
56	FYKLIQNGF	FLT3	A*24
57	RYLQVVLLY	NPSR1	A*24
58	IYYSHENLI	F5	A*24
59	VFPLVTPLL	PTPRZ1	A*24
60	RYSPVKDAW	KLHDC7B	A*24
61	RIFTARLYF	AICDA	A*24
62	VYIVPVIVL	OXTR	A*24
63	LYIDKGQYL	HMCN1	A*24
64	QFSHVPLNNF	ALX1	A*24
65	EYLLMIFKLV	HRNR, RPTN	A*24
66	IYKDYYRYNF	PLA2G2D	A*24
67	SYVLQIVAI	PTPRZ1	A*24
68	VYKEDLPQL	EML5, EML6	A*24
69	KWFDSHIPRW	ERVV-1, ERVV-2	A*24
70	RYTGQWSEW	IL9R	A*24

Seq	Последователь-		Аллотип
ID No		Ген(ы)	HLA
71	RYLPNPSLNAF	CYP1A1	A*24
72	RWLDGSPVTL	CLEC17A	A*24
73	YFCSTKGQLF	FCRL2	A*24
74	NYVLVPTMF	CAPN6	A*24
75	VYEHNHVSL	BTBD16	A*24
76	IYIYPFAHW	NPFFR2	A*24
77	LYGFFFKI	BTBD16	A*24
78	TYSKTIALYGF	BTBD16	A*24
79	FYIVTRPLAF	SUCNR1	A*24
80	SYATPVDLW	CDK6	A*24
81	AYLKLLPMF	SLC5A4	A*24
82	SYLENSASW	DLX5	A*24
83	VLQGEFFLF	KBTBD8	A*24
84	YTIERYFTL	GABRP	A*24
85	KYLSIPTVFF	UGT1A3	A*24
86	SYLPTAERL	SYT12	A*24
87	NYTRLVLQF	GABRP	A*24
88	TYVPSTFLV	GABRP	A*24
89	TYVPSTFLVVL	GABRP	A*24
90	TDLVQFLLF	MAGEA10	A*24
91	KQQVVKFLI	LOC100288966, POTEB, POTEC, POTED, POTEE, POTEF, POTEG, POTEH, POTEI, POTEJ, POTEKP, POTEM	A*24
			A*24;
92	RALTETIMF	ALPP, ALPPL2	B*15
93	TDWSPPPVEF	FAM178B	A*24
0.4	TUCCOTNUE	NANADAO	A*24;
94	THSGGTNLF	MMP12	B*38
95	IGLSVVHRF	OR51E2	A*24
96	SHIGVVLAF	OR51E2	A*24; B*15
90	SHIGVVLAI	ONSTEZ	A*24;
97	TQMFFIHAL	OR51E2	B*39
<u> </u>	1 0,000 1 10 10 10	OTTO TELE	A*24;
98	LQIPVSPSF	MAGEC1	B*15
			A*24;
99	ASAALTGFTF	SLC45A3	A*32
			A*24;
100	KVWSDVTPLTF	MMP11	A*32
101	VYAVSSDRF	DCX	A*24
102	VLASAHILQF	BTBD16	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
103	EMFFSPQVF	ACTL8	A*24
104	GYGLTRVQPF	ACTL8	A*24
		LOC100996407, LOC101060778,	
105	ITPATALLL	LOC441242	A*24
106	LYAFLGSHF	KISS1R	A*24
107	FFFKAGFVWR	MMP11	A*24
108	WFFQGAQYW	MMP11	A*24
			A*24;
109	AQHSLTQLF	GPC2	B*15
110	VYSNPDLFW	TRDV3	A*24
111	IRPDYSFQF	TRDV3	A*24
112	LYPDSVFGRLF	SMC1B	A*24
113	ALMSAFYTF	MMP11	A*24
114	KALMSAFYTF	MMP11	A*24
115	IMQGFIRAF	PAEP	A*24
116	TYFFVANKY	MMP1	A*24
			A*24;
117	RSMEHPGKLLF	ESR1	B*15
118	IFLPFFIVF	ADAM18	A*24
119	VWSCEGCKAF	ESR1, ESR2	A*24
120	VYAFMNENF	QRFPR	A*24
			A*24;
121	RRYFGEKVAL	ANO7	B*27
122	YFLRGRLYW	MMP11	A*24
123	FFLQESPVF	ABCC11	A*24
124	EYNVFPRTL	MMP13	A*24
125	LYYGSILYI	LOC100996718, OR9G1, OR9G9	A*24
126	YSLLDPAQF	SOX14	A*24
127	FLPRAYYRW	ANO7	A*24
128	AFQNVISSF	NMUR2	A*24
129	IYVSLAHVL	ANO7	A*24
130	RPEKVFVF	COL11A1	A*24
			A*24;
131	MHRTWRETF	ANO7	A*32
132	TFEGATVTL	FCRL5	A*24
133	FFYVTETTF	TERT	A*24
134	IYSSQLPSF	TFEC	A*24
135	KYKQHFPEI	MAGEB17	A*24
136	YLKSVQLF	RFX8	A*24
137	ALFAVCWAPF	QRFPR	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
138	MMVTVVALF	QRFPR	A*24
139	AYAPRGSIYKF	HHIPL2	A*24
140	IFQHFCEEI	SMC1B	A*24
141	QYAAAITNGL	SALL3	A*24
142	PYWWNANMVF	NOTUM	A*24
143	KTKRWLWDF	COL11A1	A*24
144	LFDHGGTVFF	ANO7	A*24
145	MYTIVTPML	OR1N1	A*24
146	NYFLDPVTI	TRIM51, TRIM51HP	A*24
		·	A*24;
147	FPYPSSILSV	DLL3	B*51
			A*24;
148	MLPQIPFLLL	COL10A1	A*02
4.40	T05510\(\frac{1}{1}\)	0014044	A*24;
149	TQFFIPYTI	COL10A1	A*32
150	FIPVAWLIF	MRGPRX4	A*24
151	RRLWAYVTI	ITIH6	A*24
150	MHDCV/LAAFLE	MMMD42	A*24; B*15
152 153	MHPGVLAAFLF	MMP13	
	AWSPPATLF	LOXL4	A*24
154	DYSKQALSL	LAMC2	A*24
155	PYSIYPHGVTF	F5	A*24
156	IYPHGVTFSP	F5	A*24
157	SIYPHGVTF	F5	A*24; B*15
158	SYLKDPMIV	DDX53	A*24
159	VFQPNPLF	WISP3	A*24
160	YIANLISCF	GLYATL3	A*24
100	TIANLIOUI	GETATES	A*24;
161	ILQAPLSVF	FCRL5	B*15
162	YYIGIVEEY	HEPHL1	A*24
163	YYIGIVEEYW	HEPHL1	A*24
164	MFQEMLQRL	TRIML2	A*24
			A*24;
165	KDQPQVPCVF	NAT1	B*15 [°]
166	MMALWSLLHL	ZACN	A*24
			A*24;
167	LQPPWTTVF	FCRL5	B*15
			A*24;
168	LSSPVHLDF	FCRL5	B*58
169	MYDLHHLYL	EPYC	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
170	IFIPATILL	ACSM1	A*24
171	LYTVPFNLI	SLC45A2	A*24
172	RYFIAAEKILW	HEPHL1	A*24
173	RYLSVCERL	NKX1-1, NKX1-2	A*24
174	TYGEEMPEEI	DNAH17	A*24
175	SYFEYRRLL	LAMC2	A*24
176	TQAGEYLLF	FLT3	A*24
177	KYLITTFSL	NLRP2	A*24
178	AYPQIRCTW	FLT3	A*24
179	MYNMVPFF	DCT	A*24
180	IYNKTKMAF	SLCO6A1	A*24
181	IHGIKFHYF	NMUR2	A*24
			A*24;
182	AQGSGTVTF	FCRL3	B*15
183	YQVAKGMEF	FLT3	A*24
184	VYVRPRVF	HMCN1	A*24
185	LYICKVELM	CTLA4	A*24
186	RRVTWNVLF	BTBD17	A*24
187	KWFNVRMGFGF	LIN28A, LIN28B	A*24
188	SLPGSFIYVF	HMCN1	A*24
189	FYPDEDDFYF	MYCN	A*24
190	IYIIMQSCW	FLT3	A*24
191	MSYSCGLPSL	KRT33A	A*24
192	CYSFIHLSF	NLRP2, NLRP7	A*24
193	KYKPVALQCIA	HMCN1	A*24
194	EYFLPSLEII	SLC24A5	A*24
195	IYNEHGIQQI	COL11A1	A*24
196	VGRSPVFLF	COL11A1	A*24
197	YYHSGENLY	PSG1, PSG3, PSG7	A*24
			A*24;
198	VLAPVSGQF	FCRL5	B*15
199	MFQFEHIKW	FBXW10	A*24
200	LYMSVEDFI	STK31	A*24
201	VFPSVDVSF	PTPRZ1	A*24
202	VYDTMIEKFA	PTPRZ1	A*24
203	VYPSESTVM	PTPRZ1	A*24
204	WQNVTPLTF	MMP16	A*24
205	ISWEVVHTVF	HMCN1	A*24
			A*24;
206	EVVHTVFLF	HMCN1	A*26

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
207	IYKFIMDRF	FOXB1	A*24
208	QYLQQQAKL	FOXB1	A*24
209	DIYVTGGHLF	KLHDC7B	A*24
210	EAYSYPPATI	HMCN1	A*24
211	MLYFAPDLIL	PGR	A*24
212	VYFVQYKIM	IL22RA2	A*24
213	FYNRLTKLF	OFCC1	A*24
214	YIPMSVMLF	HTR7	A*24
215	KASKITFHW	PTPRZ1	A*24
			A*24;
216	RHYHSIEVF	LOXL4	C*12
			A*24;
217	QRYGFSSVGF	RHBG	B*27
218	FYFYNCSSL	ERVV-1, ERVV-2	A*24
219	KVVSGFYYI	CCR8	A*24
220	TYATHVTEI	CCR8	A*24
221	VFYCLLFVF	CCR8	A*24
222	HYHAESFLF	HEPHL1	A*24
223	KLRALSILF	PTPRZ1	A*24
224	AYLQFLSVL	GREB1	A*24
225	ISMSATEFLL	CYP1A1	A*24
226	TYSTNRTMI	FLT3	A*24
227	YLPNPSLNAF	CYP1A1	A*24
228	VYLRIGGF	WNT7A	A*24
229	CAMPVAMEF	KBTBD8	A*24
230	RWLSKPSLL	KBTBD8	A*24
231	KYSVAFYSLD	LAMA1	A*24
232	IWPGFTTSI	PIWIL1	A*24
233	LYSRRGVRTL	DPPA3, DPPA3P2, LOC101060236	A*24
234	RYKMLIPF	NLRP2	A*24
235	VYISDVSVY	CLECL1	A*24
236	LHLYCLNTF	PGR	A*24
237	RQGLTVLTW	DNAH8	A*24
238	YTCSRAVSLF	OTOG	A*24
239	IYTFSNVTF	BTN1A1	A*24
			A*24;
240	RVHANPLLI	APOB	B*15
241	QKYYITGEAEGF	ESR1	A*24
242	SYTPLLSYI	C1orf94	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
			A*24;
243	ALFPMGPLTF	LILRA4	B*15
244	TYIDTRTVFL	CAPN6	A*24
245	VLPLHFLPF	HBG2	A*24
246	KIYTTVLFANI	NPFFR2	A*24
247	VHSYLGSPF	MPL	A*24
248	CWGPHCFEM	SEMA5B	A*24
249	HQYGGAYNRV	DLX5	A*24
250	VYSDRQIYLL	ABCC11	A*24
251	DYLLSWLLF	CNR2	A*24
252	RYLIIKYPF	SUCNR1	A*24
253	QYYCLLLIF	KLRF2	A*24
254	KQHAWLPLTI	TCL1A	A*24
255	VYLDEKQHAW	TCL1A	A*24
			A*24;
256	QHAWLPLTI	TCL1A	B*39
257	MLILFFSTI	OR56A3	A*24
258	VCWNPFNNTF	RNF183	A*24
259	FFLFIPFF	ADAM2	A*24
260	FLFIPFFIIF	ADAM2	A*24
261	IMFCLKNFWW	TBC1D7	A*24
262	YIMFCLKNF	TBC1D7	A*24
263	AYVTEFVSL	SCN3A	A*24
264	AYAIPSASLSW	HMCN1	A*24
265	LYQQSDTWSL	KIAA1407	A*24
			A*24;
266	TQIITFESF	CSF2	B*15
267	QHMLPFWTDL	NLRP2	A*24
268	YQFGWSPNF	CFHR5	A*24
269	FSFSTSMNEF	CAPN6	A*24
270	GTGKLFWVF	BTLA	A*24
271	INGDLVFSF	CAPN6	A*24
272	IYFNHRCF	SFMBT1	A*24
273	VTMYLPLLL	GPR143	A*24
274	EYSLPVLTF	PTPRZ1	A*24
275	PEYSLPVLTF	PTPRZ1	A*24
276	KFLGSKCSF	HAS3	A*24
277	MSAIWISAF	SLC24A5	A*24
278	TYESVVTGFF	HAS3	A*24
279	KYKNPYGF	MMP20	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
280	TIYSLEMKMSF	GLB1L3	A*24
281	MDQNQVVWTF	ROS1	A*24
282	ASYQQSTSSFF	FAM82A1	A*24
283	SYIVDGKII	PSG9	A*24
284	QFYSTLPNTI	ROS1	A*24
285	YFLPGPHYF	SOX30	A*24
286	HHTQLIFVF	ELP4, EXOSC7, KCNG2, TM4SF19, TOP2A	A*24
287	LVQPQAVLF	PAX5	A*24
288	MGKGSISFLF	PCSK1	A*24
289	RTLNEIYHW	FOXP3	A*24
290	VTPKMLISF	OR5H8P	A*24
291	YTRLVLQF	GABRP	A*24
292	KMFPKDFRF	TTLL6	A*24
293	MYAYAGWFY	SLC7A11	A*24
294	KMGRIVDYF	GABRP	A*24
295	KYNRQSMTL	APOB	A*24
			A*24;
296	YQRPDLLLF	GEN1	B*15
297	LKSPRLFTF	BTBD16	A*24
298	TYETVMTFF	BTBD16	A*24
299	FLPALYSLL	CXCR3	A*24
300	LFALPDFIF	CXCR3	A*24
301	RTALSSTDTF	CXCR3	A*24
302	YQGSLEVLF	MROH2A	A*24
303	RFLDRGWGF	ADAMTS12	A*24
304	YFGNPQKF	LAMA3	A*24
305	RNAFSIYIL	MRGPRX1	A*24
306	RYILEPFFI	SLC7A11	A*24
307	RILTEFELL	TRIM31	A*24
308	AAFISVPLLI	TAS2R38	A*24
309	AFISVPLLI	TAS2R38	A*24
310	EFINGWYVL	MCOLN2	A*24
311	IQNAILHLF	OR51B5	A*24
312	YLCMLYALF	KCNK18	A*24
313	IFMENAFEL	APOB	A*24
			A*24;
314	SQHFNLATF	DNMT3B	B*15
315	VYDYIPLLL	MROH2A	A*24
316	IWAERIMF	TDRD1	A*24
317	DWIWRILFLV	IGHV1-58	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
			A*24;
318	VQADAKLLF	FERMT1	B*15
			A*24;
319	ATATLHLIF	PCDHGB1, PCDHGB2	B*15
320	EVYQKIILKF	PASD1	A*24
321	VYTVGHNLI	KLB	A*24
322	SFISPRYSWLF	SPNS3	A*24
323	NYSPVTGKF	OTOL1	A*24
324	RYFVSNIYL	PRSS21	A*24
325	IFMGAVPTL	LPAR3	A*24
326	VHMKDFFYF	DYRK4	A*24
327	KWKPSPLLF	GPR126	A*24
328	IYLVGGYSW	KLHL14	A*24
329	YLGKNWSF	SPNS3	A*24
330	DYIQMIPEL	RTL1	A*24
331	EYIDEFQSL	RTL1	A*24
332	VYCSLDKSQF	RTL1	A*24
333	RYADLLIYTY	MYO3B	A*24
334	KVFGSFLTL	AGTR2	A*24
335	RYQSVIYPF	AGTR2	A*24
			A*24;
336	VYSDLHAFY	MANEAL	A*29 [°]
			A*24;
337	SHSDHEFLF	ARSH	B*38
338	VYLTWLPGL	IFNLR1	A*24
			A*24;
339	KQVIGIHTF	SFMBT1	B*15
340	FPPTPPLF	BCL11A	A*24
341	RYENVSILF	ADCY8	A*24
342	MYGIVIRTI	NPSR1	A*24
343	EYQQYHPSL	CLEC4C	A*24
			A*24;
344	YAYATVLTF	ABCC4	B*46
345	RYLEEHTEF	MROH2A	A*24
346	TYIDFVPYI	TEX15	A*24
347	AWLIVLLFL	CTCFL	A*24
348	RSWENIPVTF	C18orf54	A*24
349	IYMTTGVLL	TDRD9	A*24
350	VYKWTEEKF	TSPEAR	A*24
351	GYFGTASLF	SLC16A14	A*24

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
			A*24;
352	NAFEAPLTF	BRCA2	C*07
		0.550	A*24;
353	AAFPGAFSF	CRB2	C*07
354	QYIPTFHVY	SLC44A5	A*24
355	VYNNNSSRF	MYO10	A*24
356	YSLEHLTQF	ZCCHC16	A*24
357	RALLPSPLF	SPATA31D1	A*24
358	IYANVTEMLL	CYP27C1	A*24
359	TQLPAPLRI	GPR45	A*24
360	LYITKVTTI	FSTL4	A*24
361	KQPANFIVL	LOC100124692	A*24
362	NYMDTDNLMF	LOC100124692	A*24
363	QYGFNYNKF	PNLDC1	A*24
			A*24;
364	KQSQVVFVL	HMCN1, HMCN2, LOC101060175	B*48
			A*24;
365	KDLMKAYLF	TXNDC16	B*37
366	RLGEFVLLF	TGM6	A*24
367	HWSHITHLF	DPY19L1	A*24
368	AYFVAMHLF	TENM4	A*24
369	NFYLFPTTF	PNLDC1	A*24
			A*24;
370	TQMDVKLVF	GEN1	B*15
074	ED 0\4\4\4\6\TE	NOO	A*24;
371	FRSWAVQTF	NOS2	C*06
372	LYHNWRHAF	PDE11A	A*24
373	IWDALERTF	ABCC11	A*24
374	MIFAVVVLF	CCR4	A*24
375	YYAADQWVF	CCR4	A*24
376	KYVGEVFNI	DMXL1	A*24
377	SLWREVVTF	CEP250	A*24
378	VYAVISNIL	TNR	A*24
379	KLPTEWNVL	AKAP13	A*24
380	FYIRRLPMF	CHRNA6	A*24
381	IYTDITYSF	CHRNA6	A*24
382	SYPKELMKF	MROH2A	A*24

Таблица 16: Пептиды в соответствии с настоящим изобретением.

Seq	Последователь-		Аллотип
ID No	ность	Ген(ы)	HLA
463	VGGNVTSNF	CT45A4, CT45A5	A*24
		CT45A1, CT45A2, CT45A3, CT45A4,	
		CT45A6, LOC101060208, LOC101060210,	
464	VGGNVTSSF	LOC101060211	A*24

Таблица 2: Дополнительные пептиды в соответствии с настоящим изобретением,

ассоциация которых с раком не была известна ранее.

Seq ID No	Последовательность	Ген(ы)	Аллотип HLA
383	PYFSPSASF	SPERT	A*24
384	RTRGWVQTL	C6orf223	A*24
385	GYFGNPQKF	LAMA3	A*24
386	YQSRDYYNF	AR	A*24
387	THAGVRLYF	NUP155	A*24; B*38

Таблица 3: Пептиды в соответствии с настоящим изобретением, полезные,

например, для персонализированной противораковой терапии.

Seq ID	Последователь-	реванной противораковой терании.	Аллотип
No	ность	Ген(ы)	HLA
388	LFHPEDTGQVF	KLK3	A*24
389	AYSEKVTEF	KLK2	A*24
390	KYKDYFPVI	LOC392555 ,MAGEC2	A*24
391	VYGEPRELL	LOC392555, MAGEC2	A*24
392	SYEKVINYL	MAGEA9, MAGEA9B	A*24
393	SYNDALLTF	TRPM8	A*24
394	VYLPKIPSW	KCNU1	A*24
395	NYEDHFPLL	MAGEA10	A*24
396	SYVKVLHHL	LOC101060230, MAGEA12	A*24
397	RMPTVLQCV	KLK4	A*24
398	GYLQGLVSF	KLK4	A*24
399	VWSNVTPLKF	MMP12	A*24
400	RYLEKFYGL	MMP12	A*24
401	YLEKFYGL	MMP12	A*24
402	TYKYVDINTF	MMP12	A*24
403	LYFEKGEYF	ACPP	A*24
404	SYLKAVFNL	CYP4Z1, CYP4Z2P	A*24
405	NYPKSIHSF	MMP12	A*24
406	KYLEKYYNL	MMP1	A*24
407	RILRFPWQL	MMP11	A*24
408	VWSDVTPLTF	MMP11	A*24

Seq ID	Последователь-		Аллотип
No	ность	Ген(ы)	HLA
409	VYTFLSSTL	ESR1	A*24
410	IYISNSIYF	CXorf48	A*24
411	VYPPYLNYL	PGR	A*24
412	STIRGELFFF	MMP11	A*24
413	RYMKKDYLI	SLC35D3	A*24
414	TDSIHAWTF	SLC35D3	A*24
415	KYEKIFEML	CT45A1, CT45A2, CT45A3, CT45A4, CT45A5, CT45A6, LOC101060208, LOC101060210, LOC101060211	A*24
416	VFMKDGFFYF	MMP1	A*24
417	GYIDKVRQL	NEFH	A*24
418	VHFEDTGKTLLF	MMP13	A*24
419	RYVFPLPYL	SOX14	A*24
420	VYEKNGYIYF	MMP13	A*24
421	RYILENHDF	RFPL4B	A*24
422	VWSDVTPLNF	MMP13	A*24
423	IYPDVTYAF	CHRNA2	A*24
424	VQQWSVAVF	PTHLH	A*24
425	GYIDNVTLI	LAMC2	A*24
426	SVHKITSTF	LAMC2	A*24
427	VYFVAPAKF	LAMC2	A*24
428	WYVNGVNYF	TRPM8	A*24
429	YYSKSVGFMQW	FAM111B	A*24
430	VYIAELEKI	SMC1B	A*24
431	KTPTNYYLF	NMUR2	A*24
432	TRTGLFLRF	NLRP2,NLRP7	A*24
433	NYTSLLVTW	PTPRZ1	A*24
434	VYDTMIEKF	PTPRZ1	A*24
435	IYVTGGHLF	KLHDC7B	A*24
436	KYLQVVGMF	OXTR	A*24
437	VFKASKITF	PTPRZ1	A*24
438	SYSSCYSF	KRT13,KRT17	A*24
439	VYALKVRTI	CCR8	A*24
440	NYGVLHVTF	NLRP11	A*24
441	NYLVDPVTI	TRIM43,TRIM43B	A*24
442	KYLNSVQYI	RALGPS2	A*24
443	VFIHHLPQF	ACSM1	A*24
444	IYLSDLTYI	RALGPS2	A*24
445	TYIDTRTVF	CAPN6	A*24
446	IYGFFNENF	NPFFR2	A*24

Seq ID	Последователь-		Аллотип
No	ность	Ген(ы)	HLA
447	EYIRALQQL	ASCL1	A*24
448	PFLPPAACFF	ASCL1	A*24
449	QYIEELQKF	RALGPS2	A*24
450	QYDPTPLTW	ADAMTS12	A*24
451	FGLARIYSF	CDK6	A*24
452	VYKDSIYYI	KBTBD8	A*24
453	YYTVRNFTL	PTPRZ1	A*24
454	TLPNTIYRF	ROS1	A*24
455	KYLSIPTVF	UGT1A3	A*24
456	PYDPALGSPSRLF	SP5	A*24
457	LIFMLANVF	GABRP	A*24
458	DYLNEWGSRF	CDH3	A*24
459	SYEVRSTF	TAS2R38	A*24
460	VYPWLGALL	CYP2W1	A*24

Настоящее изобретение, кроме того, относится в общем к пептидам в соответствии с настоящим изобретением для применения при лечении пролиферативных заболеваний, таких как рак, таких как, например, острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, рака мочевого пузыря, рака матки и эндометрия.

Особенно предпочтительными являются пептиды — в отдельности или в комбинации — в соответствии с настоящим изобретением, выбранные из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464. Более предпочтительными являются пептиды — в отдельности или в комбинации — выбранные из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 89 и с SEQ ID NO: 463 по SEQ

ID: 464 (см. Таблицу 1а и Таблицу 1б), и их применение в иммунотерапии острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного глиобластомы, рака желудка, гепатоклеточной плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, и предпочтительно острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия.

Другой аспект настоящего изобретения относится к применению пептидов в С настоящим изобретением предпочтительно соответствии для комбинированного – лечения пролиферативного заболевания, выбранного из группы: острый миелоидный лейкоз, рак молочной железы, холангиоклеточная карцинома, хронический лимфоцитарный лейкоз, колоректальный рак, рак желчного пузыря, глиобластома, рак желудка, гепатоклеточная карцинома, плоскоклеточная карцинома головы и шеи, меланома, неходжкинская лимфома, рак легких TOM числе немелкоклеточный рак легких-аденокарцинома, плоскоклеточный немелкоклеточный рак легких и мелкоклеточный рак легких), рак яичника, рак пищевода, рак поджелудочной железы, рак предстательной железы, почечно-клеточная карцинома, рак мочевого пузыря, рак матки и эндометрия.

Настоящее изобретение, более того, относится к пептидам в соответствии с настоящим изобретением, имеющим способность связываться с молекулой главного комплекса гистосовместимости человека (МНС) І класса или – в удлиненной форме, такой как вариант по длине – МНС ІІ класса.

Настоящее изобретение далее относится к пептидам в соответствии с настоящим изобретением, где указанные пептиды (каждый из них) состоят или состоят по существу из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464.

Настоящее изобретение далее относится к пептидам в соответствии с настоящим изобретением, где указанный пептид модифицирован и/или включает непептидные связи.

Настоящее изобретение далее относится к пептидам в соответствии с настоящим изобретением, где указанный пептид является частью слитого белка, в частности слитого с N-терминальными аминокислотами HLA-DR антиген-ассоциированной инвариантной цепи (li), или слитого с антителом (или встроенный в последовательность), таким как, например, антителом, специфичным для дендритных клеток.

Настоящее изобретение далее относится к нуклеиновой кислоте, кодирующей пептиды в соответствии с настоящим изобретением. Настоящее изобретение далее относится к нуклеиновой кислоте в соответствии с настоящим изобретением, которая является ДНК, кДНК, ПНК, РНК или их комбинациями.

Настоящее изобретение далее относится к вектору экспрессии, способному к экспрессии и/или экспрессирующему нуклеиновую кислоту в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к пептиду в соответствии с настоящим изобретением, к нуклеиновой кислоте в соответствии с настоящим изобретением или к вектору экспрессии в соответствии с настоящим изобретением для применения в лечении заболеваний и в медицине, в частности, в лечении рака.

Настоящее изобретение далее относится к антителам, которые является специфическими по отношению к пептидам в соответствии с настоящим изобретением или комплексам указанных пептидов в соответствии с настоящим изобретением и МНС и способам их получения.

Настоящее изобретение далее относится к Т-клеточным рецепторам (ТКР), в частности, к растворимым ТКР и клонированным ТКР, встроенным в аутологичные или аллогенные Т-клетки, и способам их получения, а также к естественным киллерным клеткам (NK) или другим клеткам, несущим указанный ТКР или вступающим в перекрестную реакцию с указанными ТКР.

Антитела и ТКР являются дополнительными вариантами осуществления иммунотерапевтического применения пептидов в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к клетке-хозяину, включающей нуклеиновую кислоту в соответствии с настоящим изобретением или вектор экспрессии, описанный ранее. Настоящее изобретение далее относится к клетке-хозяину в соответствии с настоящим изобретением, которая является антигенпрезентирующей клеткой, предпочтительно – дендритной клеткой.

Настоящее изобретение далее относится к способу получения пептида в соответствии с настоящим изобретением, причем указанный способ включает культивацию клетки-хозяина в соответствии с настоящим изобретением и выделение пептида из указанной клетки-хозяина или его культуральной среды.

Настоящее изобретение далее относится к указанному способу в соответствии с настоящим изобретением, где антиген нагружен на молекулы МНС I или II класса, экспрессированные на поверхности подходящей антигенпрезентирующей клетки или искусственной антигенпрезентирующей клетки, при контактировании достаточного количества антигена с антигенпрезентирующей клеткой.

Настоящее изобретение далее относится к способу в соответствии с настоящим изобретением, где антигенпрезентирующая клетка включает вектор экспрессии, способный экспрессировать или экспрессирующий указанный пептид, содержащий последовательности с SEQ ID No. 1 по SEQ ID No.: 387 и с SEQ ID NO: 463 по Q ID: 464, предпочтительно содержащий последовательность с SEQ ID No. 1 по SEQ ID No. 89 и с SEQ ID NO: 463 по SEQ ID: 464 или вариантную аминокислотную последовательность.

Настоящее изобретение далее относится к активированным Т-клеткам, полученным способом в соответствии с настоящим изобретением, где указанная Т-клетка селективно распознают клетку, которая экспрессирует полипептид, включающий аминокислотную последовательность в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к способу уничтожения клеток-мишеней у пациента, чьи клетки-мишени аберрантно экспрессируют полипептид, включающий любую аминокислотную последовательность в соответствии с настоящим изобретением, причем способ включает введение пациенту эффективного числа Т-клеток, полученных в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к применению любого описанного пептида, нуклеиновой кислоты в соответствии с настоящим изобретением, вектора экспрессии в соответствии с настоящим изобретением, клетки в соответствии с настоящим изобретением, активированного Т-лимфоцита, Т-клеточного рецептора или антитела или других молекул, связывающихся с пептидом и/или комплексом

пептид-МНС в соответствии с настоящим изобретением в качестве лекарственного средства или в производстве лекарственного средства. Предпочтительно, если указанное лекарственное средство обладает активным противораковым действием.

Предпочтительно, если указанное лекарственное средство предназначено для клеточной терапии, является вакциной или белком на основе растворимого ТКР или антителом.

Настоящее изобретение относится далее к применению в соответствии с настоящим изобретением, где указанные раковые клетки являются клетками острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, и предпочтительно клетками острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия.

Настоящее изобретение далее относится к биомаркерам на основе пептидов в соответствии с настоящим изобретением, в настоящем документе называемым

«мишенями», которые могут быть использованы при постановке диагноза рака, предпочтительно острого миелоидного лейкоза, рака молочной железы, хронического холангиоклеточной карциномы, лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия. В роли маркера может выступать избыточная презентация самого(их) пептида(ов) или избыточная экспрессия соответствующего(их) гена(ов). Эти маркеры могут также использоваться для предсказания вероятности успеха лечения, предпочтительно иммунотерапии, и, наиболее предпочтительно, иммунотерапии, направленной на ту же мишень, которая была идентифицирована биомаркером. Например, для окрашивания срезов опухоли для выявления присутствия интересующего пептида в комплексе с МНС может использоваться антитело или растворимый ТКР.

Факультативно антитело обладает дополнительной эффекторной функцией, например, несет иммуностимулирующий домен или токсин.

Настоящее изобретение относится также к применению этих новых мишеней в контексте лечения рака.

Стимуляция иммунных ответов зависит от присутствия антигенов, распознаваемых иммунной системой хозяина как чужеродные. Открытие существования опухолеассоциированных антигенов повысило возможность использования иммунной системы хозяина для вмешательства в рост опухоли. Различные механизмы управления обеими ветвями иммунной системы, как гуморальной, так и клеточной, исследуются в настоящее время для иммунотерапии рака.

Специфические элементы клеточных иммунных ответов способны к специфическому распознаванию и уничтожению опухолевых клеток. Выделение Т-клеток из популяций опухоль-инфильтрирующих клеток или из периферической крови предполагает, что такие клетки играют важную роль в естественной иммунной защите против рака. В частности, CD8-положительные Т-клетки, которые распознают пептиды, связанные с молекулами I класса главного комплекса гистосовместимости (МНС), играют важную роль в этом ответе. Эти пептиды обычно состоят из 8-10 аминокислотных остатков, полученных из белков или дефектных рибосомных продуктов (DRIP), находящихся в цитозоле. Молекулы МНС человека называются также человеческими лейкоцитарными антигенами (HLA).

Все термины, используемые здесь, если не указано иное, имеют значения, данные ниже.

Понятие «Т-клеточный ответ» означает специфическую пролиферацию и активацию эффекторных функций, индуцированных пептидом *in vitro* или *in vivo*. Для цитотоксических Т-клеток, рестриктированных по МНС I класса, эффекторными функциями может быть лизис клеток-мишеней, нагруженных пептидом, нагруженных предшественником пептида, или клеток-мишеней, естественно презентирующих пептид; секреция цитокинов, предпочтительно интерферонагамма, TNF-альфа или ИЛ-2, индуцированная пептидом; секреция эффекторных молекул, предпочтительно гранзимов или перфоринов, индуцированная пептидом, или дегрануляция.

Понятие «пептид» в контексте настоящего описания обозначает серии аминокислотных остатков, связанных друг с другом обычно пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Пептиды предпочтительно имеют длину в 9 аминокислот, но могут быть короче – 8 аминокислот в длину, и длиннее – 10, 11 или 12 или длиннее и в случае пептидов, связанных с молекулами МНС II класса (удлиненные варианты пептидов по

изобретению), они могут иметь длину в 13, 14, 15, 16, 17, 18, 19 или 20 или более аминокислот.

Кроме того, понятие «пептид» включает в себя соли серий аминокислотных остатков, связанных друг с другом обычно пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Предпочтительно, если соли являются фармацевтически приемлемыми солями пептидов, такими как, например, хлорид или ацетат (трифторацетат). Было замечено, что соли пептидов в соответствии с настоящим изобретением существенно отличаются от пептидов в их состоянии(ях) *in vivo*, так как пептиды не являются солями *in vivo*.

Понятие «пептид» включает также понятие «олигопептид». Понятие «олигопептид» в контексте настоящего описания обозначает серии аминокислотных остатков, связанных друг с другом обычно пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Длина олигопептида не особенно важна для изобретения до тех пор, пока в нем сохраняются надлежащие эпитоп или эпитопы. Олигопептиды обычно бывают менее чем около 30 аминокислотных остатков в длину и более чем около 15 аминокислот в длину.

Понятие «полипептид» обозначает серии аминокислотных остатков, обычно связанных друг с другом пептидными связями между альфа-аминными и карбонильными группами смежных аминокислот. Длина полипептида не особенно важна для изобретения до тех пор, пока сохраняются надлежащие эпитопы. В отличие от терминов «пептид» или «олигопептид», термин «полипептид» введен для обозначения молекул, содержащих более приблизительно 30 аминокислотных остатков.

Пептид, олигопептид, белок или полинуклеотид, кодирующий такую молекулу, является «иммуногенным» (и, таким образом, «иммуногеном» в рамках настоящего изобретения), если он способен индуцировать иммунный ответ. В случае настоящего изобретения иммуногенность получает более специфическое

определение как способность индуцировать Т-клеточный ответ. Таким образом, «иммуноген» будет представлять собой молекулу, которая способна индуцировать иммунный ответ, и, в случае настоящего изобретения, молекулу, способную индуцировать Т-клеточный ответ. В другом аспекте иммуноген может быть пептидом, комплексом пептида и МНС, олигопептидом и/или белком, используемым для получения специфических антител или ТКР против него.

Для Т-клеточного «эпитопа» І класса необходим короткий пептид, который связан с рецептором МНС І класса, образующим трехчленный комплекс (альфа-цепь МНС І класса, бета-2-микроглобулин и пептид), который может быть распознан Т-клеткой, несущей подходящий Т-клеточный рецептор, связывающийся с комплексом МНС/пептид с подходящей аффинностью. Пептиды, связывающиеся с молекулами МНС І класса, типично имеют длину в 8-14 аминокислот и, особенно типично, длину в 9 аминокислот.

У человека имеется три различных генетических локуса, которые кодируют молекулы МНС I класса (молекулы МНС человека называются также человеческими лейкоцитарными антигенами (HLA)): HLA-A, HLA-B и HLA-C. HLA-A*01, HLA-A*02 и HLA-A*07 являются примерами различных аллелей МНС I класса, которые могут экспрессироваться из этих локусов.

Таблица 4: Значения частоты экспрессии F для серотипов HLA-A*02, HLA-A*01, HLA-A*03, HLA-A*24, HLA-B*07, HLA-B*08 и HLA-B*44. Частоты встречаемости гаплотипов Gf получены из исследования, в котором использовались данные HLA-типирования из реестра для более чем 6,5 миллионов доноров-добровольцев из США (Gragert et al., 2013). Частота гаплотипа - это частота обособленного аллеля на отдельной хромосоме. В связи с диплоидным набором хромосом в клетках млекопитающих частота встречаемости этого аллеля в генотипе выше и может быть рассчитана при помощи принципа Харди-Вайнберга (F = 1 – $(1-Gf)^2$).

		Рассчитанный фенотип по
Аллель	Популяция	частоте аллеля (F)
A*02	Афроамериканцы (N=28557)	32,3%

Аплель Популяция Белые европейцы (№1242890) Японцы (№24582) Датиноамериканцы, Юж. + Центр. Амер. (№146714) Афроамериканцы, Юж. + Центр. Амер. (№146714) Афроамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) А*01 А*01 А*01 А*01 А*01 А*03 Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№1242890) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№1242890) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№1242890) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Датиноамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№127978) Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№140708 Дароамериканцы, Юж. + Центр. Амер. (№146714) НОго-восточные азиаты (№140708 Дароамериканца (№140708 Дароамериканца (№140708 Дароамериканца (№140708 Дароамериканца (№140708 Дароамерикан			Рассчитанный фенотип по
(N=1242890) 49,3% Японцы (N=24582) 42,7% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 46,1% Юго-восточные азиаты (N=27978) 30,4% Афроамериканцы (N=28557) 10,2% Белые европейцы (N=1242890) 30,2% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 10,4% Афроамериканцы, (N=28557) 6,0%	Аллель	Популяция	частоте аллеля (F)
Японцы (N=24582) 42,7% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 46,1% Юго-восточные азиаты (N=27978) 30,4% Афроамериканцы (N=28557) 10,2% Белые европейцы (N=1242890) 30,2% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=2242890) 8,6% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 10,4% Афроамериканцы, (N=28557) 6,0%			
Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 46,1% Юго-восточные азиаты (N=27978) 30,4% Афроамериканцы (N=28557) 10,2% Белые европейцы (N=1242890) 30,2% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Поговосточные азиаты (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Поговосто			·
Центр. Амер. (N=146714) 46,1% Юго-восточные азиаты (N=27978) 30,4% Афроамериканцы (N=28557) 10,2% Белые европейцы (N=1242890) 30,2% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. +			42,7%
Юго-восточные азиаты (N=27978) 30,4% Афроамериканцы (N=28557) 10,2% Белые европейцы (N=24582) 30,2% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. +			
(N=27978) 30,4%			46,1%
Афроамериканцы (N=28557) 10,2% Белые европейцы (N=1242890) 30,2% Японцы (N=24582) 1,8% А*01 А*01 А*01 А*03 А*03 А*24 А*24 А*24 А*24 Впонцы (N=24582) 1,8% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Кого-восточные азиаты (N=28557) 14,8% Белые европейцы (N=28557) 14,8% Японцы (N=24582) 1,8% Японцы (N=24582) 1,8% Иого-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=28557) 2,0% Белые европейцы (N=28557) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Кого-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=28557) 14,7% Белые европейцы (N=28557) 14,7% Белые европейцы (N=24582) 11,4% Японцы (N=24582) 11,4% Японцы (N=24582) 11,4% Японцы (N=24582) 11,4% Дероамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Кого-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08			00.407
Велые европейцы (N=1242890) 30,2% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% Белые европейцы			·
A*01			10,2%
A*01 Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=14242890) 8,6% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=14282) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Мого-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			20.007
Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Датиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08			·
Центр. Амер. (N=146714) 14,0% Юго-восточные азиаты (N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=28557) 14,7% Белые европейцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Иого-восточные азиаты (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Иого-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы	A*01	· ` ` '	1,8%
(N=27978) 21,0% Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			14,0%
Афроамериканцы (N=28557) 14,8% Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 В*08		Юго-восточные азиаты	
Белые европейцы (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Белые европейцы (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы		(N=27978)	21,0%
A*03 (N=1242890) 26,4% Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=142890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + 12,2% Нентр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% Белые европейцы		Афроамериканцы (N=28557)	14,8%
Японцы (N=24582) 1,8% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 В*08 Белые европейцы (N=28557) 6,0%			
Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 В*08 Белые европейцы		(N=1242890)	26,4%
Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 14,4% Юго-восточные азиаты (N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 В*08 Белые европейцы	A*03	Японцы (N=24582)	1,8%
Неготочные азиаты (N=27978)	7 (00		
(N=27978) 10,6% Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Ного-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			14,4%
Афроамериканцы (N=28557) 2,0% Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 В*08 В*08 Белые европейцы Белые европейцы			
Белые европейцы (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы		(N=27978)	·
A*24 (N=1242890) 8,6% Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + 13,6% Юго-восточные азиаты 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			2,0%
A*24 Японцы (N=24582) 35,5% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			
Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			·
Центр. Амер. (N=146714) 13,6% Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы	A*24		35,5%
Юго-восточные азиаты (N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			40.004
(N=27978) 16,9% Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			13,6%
В*07 Афроамериканцы (N=28557) 14,7% Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			40.007
В*07 Белые европейцы (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% Белые европейцы		'	·
В*07 (N=1242890) 25,0% Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы	B*07		14,7%
В*07 Японцы (N=24582) 11,4% Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			05.007
Латиноамериканцы, Юж. + Центр. Амер. (N=146714) 12,2% Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			
Центр. Амер. (N=146714)12,2%Юго-восточные азиаты (N=27978)10,4%Афроамериканцы (N=28557)6,0%В*08Белые европейцы			11,4%
Юго-восточные азиаты (N=27978) 10,4% Афроамериканцы (N=28557) 6,0% Белые европейцы			40.00/
(N=27978)10,4%Афроамериканцы (N=28557)6,0%В*08Белые европейцы			12,2%
Афроамериканцы (N=28557) 6,0% В*08 Белые европейцы			10,4%
В*08 Белые европейцы		'	·
· · · · · · · · · · · · · · · · · · ·	B*08		,
			21,6%

		Рассчитанный фенотип по
Аллель	Популяция	частоте аллеля (F)
	Японцы (N=24582)	1,0%
	Латиноамериканцы, Юж. +	
	Центр. Амер. (N=146714)	7,6%
	Юго-восточные азиаты	
	(N=27978)	6,2%
	Афроамериканцы (N=28557)	10,6%
	Белые европейцы	22.004
	(N=1242890)	26,9%
B*44	Японцы (N=24582)	13,0%
D 44	Латиноамериканцы, Юж. +	
	Центр. Амер. (N=146714)	18,2%
	Юго-восточные азиаты	
	(N=27978)	13,1%

Пептиды по изобретению, предпочтительно когда они включены в состав вакцины по изобретению согласно описанию в настоящем документе, связываются с A*24. Вакцина также может включать универсальные пептиды, связывающиеся с МНС II класса. Поэтому вакцина по изобретению может применяться для лечения рака у пациентов, которые являются A*24-положительными, причем в связи с универсальной по связыванию природе данных пептидов не нужен подбор аллотипов МНС II класса.

Если пептиды A*24 ПО изобретению скомбинировать С пептидами, связывающимися с другим аллелем, например А*02, лечение может пройти более высокий процент любой популяции пациентов по сравнению с охватом каждого аллеля МНС I класса в отдельности. Тогда как в большинстве популяций любым одним аллелем могут быть охвачены менее чем 50% пациентов, вакциной, включающей эпитопы HLA-A*24 и HLA-A*02 можно лечить не менее 60% пациентов любой соответствующей популяции. Говоря конкретно, следующие процентные доли пациентов будут положительными по меньшей мере для одного из этих аллелей в различных регионах: США – 61%, Западная Европа – 62%, Китай – 75%, 77%, 86% Южная Корея – Япония – (рассчитано ПО данным www.allelefrequencies.net).

Таблица 5: Охват HLA-аллелем популяции европеоидной расы (рассчитано в соответствии с (Gragert et al., 2013)).

	охват (не менее чем одним А- аллелем)	в комбинации с В*07	в комбинации с В*44	в комбинации с В*07 и В*44
A*02 / A*01	70%	78%	78%	84%
A*02 / A*03	68%	76%	76%	83%
A*02 / A*24	61%	71%	71%	80%
A*'01 / A*03	52%	64%	65%	75%
A*01 / A*24	44%	58%	59%	71%
A*03 / A*24	40%	55%	56%	69%
A*02 / A*01 / A*03	84%	88%	88%	91%
A*02 / A*01 / A*24	79%	84%	84%	89%
A*02 / A*03 / A*24	77%	82%	83%	88%
A*01 / A*03 / A*24	63%	72%	73%	81%
A*02 / A*01 / A*03 / A*24	90%	92%	93%	95%

В предпочтительном варианте осуществления понятие «нуклеотидная последовательность» относится к гетерополимеру дезоксирибонуклеотидов.

Нуклеотидная последовательность, кодирующая конкретный пептид, олигопептид или полипептид, может быть встречающейся в природе или может быть синтезирована. В целом, сегменты ДНК, кодирующие пептиды, полипептиды и белки данного изобретения, собраны из фрагментов кДНК и коротких олигонуклеотидных линкеров или же из серий олигонуклеотидов для получения синтетического гена, который способен экспрессироваться в рекомбинантной транскрипционной единице, включающей регуляторные элементы, образованные из микробного или вирусного оперона.

В контексте настоящего описания понятие «нуклеотид, кодирующий пептид», относится к нуклеотидной последовательности, кодирующей пептид, включая искусственные (сделанные человеком) старт- и стоп-кодоны, совместимые с биологической системой, которой должна экспрессироваться последовательность,

например, дендритная клетка или другая клеточная система, пригодная для получения ТКР.

Используемая в контексте данного описания ссылка на последовательность нуклеиновой кислоты включает как однонитевую, так и двухнитевую нуклеиновую кислоту. Таким образом, например, для ДНК специфическая последовательность, если в контексте не указано иное, относится к однонитевой ДНК такой последовательности, дуплексу такой последовательности с его комплементом (двухнитевая ДНК) и комплементу такой последовательности.

Понятие «кодирующая область» относится к тому участку гена, который в естественных или обычных условиях кодирует продукт экспрессии того гена в его естественном геномном окружении, т. е., участку, кодирующему *in vivo* нативный продукт экспрессии гена.

Кодирующая область может быть получена из не мутировавшего («нормального»), мутировавшего или измененного гена или может даже быть получена из последовательности ДНК, или же гена, целиком синтезированного в лаборатории с использованием методов, хорошо известных специалистам области синтеза ДНК.

Понятие «продукт экспрессии» означает полипептид или белок, являющийся природным продуктом трансляции гена и любой последовательности нуклеиновой кислоты, которая кодирует эквиваленты, образующиеся в результате вырождения генетического кода и, таким образом, кодирует ту/те же самую(ые) аминокислоту(ы).

Понятие «фрагмент», если относится к кодирующей последовательности, означает участок ДНК, включающий меньше, чем полную кодирующую область, продукт экспрессии которого по существу сохраняет ту же самую биологическую функцию или активность, что и продукт экспрессии полной кодирующей области.

Понятие «сегмент ДНК» относится к полимеру ДНК в виде отдельного фрагмента или в качестве компонента более крупной конструкции ДНК, которая была образована из ДНК, выделенной по меньшей мере один раз в по существу чистой форме, т.е., без контаминирующих эндогенных материалов и в количестве или с концентрацией, позволяющей идентификацию, манипуляцию и восстановление сегмента и его составных нуклеотидных последовательностей стандартными например, биохимическими методами, С использованием вектора клонирования. Такие сегменты предлагаются в форме открытой рамки считывания, не прерываемой внутренними не-транслированными последовательностями или интронами, которые обычно присутствуют В эукариотических генах. Последовательности нетранслированной ДНК могут присутствовать за открытой рамкой считывания, где она не интерферирует с манипуляцией или экспрессией кодирующих областей.

Понятие «праймер» означает короткую последовательность нуклеиновой кислоты, которая может быть спарена с одной нитью ДНК с получением свободного конца 3'ОН, на котором ДНК-полимераза начинает синтезировать дезоксирибонуклеотидную цепь.

Понятие «промотор» означает участок ДНК, задействованный в связывании РНКполимеразы для инициации транскрипции.

Понятие «выделенный» означает, что материал удален из его исходного окружения (к примеру, естественного окружения, если он встречается в природе). Например, встречающийся в природе полинуклеотид или полипептид, представленный в живых организмах, не является выделенным, но тот же самый полинуклеотид или полипептид, отделенный от некоторых или всех сосуществующих материалов природной системы, является выделенным. Такие полинуклеотиды могли быть частью вектора и/или такие полинуклеотиды или полипептиды могли быть частью композиции и все-таки могли быть выделены, так что такой вектор или композиция не является частью своего естественного окружения.

Полинуклеотиды и рекомбинантные или иммуногенные полипептиды, раскрытые в соответствии с настоящим изобретением, могут также быть в «очищенной» форме. Понятие «очищенный» не требует абсолютной чистоты; скорее оно предназначено для дачи относительного определения и может включать препараты с высокой очисткой или препараты только с частичной очисткой, в соответствии с тем, как эти термины понимаются специалистами соответствующей области. Например, отдельные клоны, выделенные из библиотеки кДНК, как обычно очищались до электрофоретической гомогенности. Очистка исходного материала или природного материала от примесей по меньшей мере на один порядок величины, предпочтительно два или три порядка, и, более предпочтительно, четыре или пять порядков величины определенно рассматривается в изобретении. Более того, определенно включен заявленный полипептид, чистота которого составляет, предпочтительно, 99,999% или по меньшей мере 99,99% или 99,9%; и даже желательно 99% по массе или более.

Нуклеиновые кислоты и полипептиды как продукты экспрессии, раскрываемые в соответствии с настоящим изобретением, в равной степени, как и векторы экспрессии, содержащие такие нуклеиновые кислоты и/или такие полипептиды, могут быть в «обогащенной форме». Используемый здесь термин «обогащенный» означает, что концентрация материала по меньшей мере приблизительно в 2, 5, 10, 1000 раз выше его естественной концентрации (например), преимущественно 0,01%, по массе, предпочтительно, по меньшей мере, около 0,1% по массе. Рассматриваются также обогащенные препараты с концентрацией примерно 0,5%, 1%, 5%, 10% и 20% по массе. Последовательности, конструкции, векторы, клоны и другие материалы, включенные в настоящее изобретение, могут быть предпочтительно в обогащенной форме или выделенными. Понятие «активный фрагмент» означает фрагмент - обычно пептида, полипептида или последовательности нуклеиновой кислоты, - который дает иммунный ответ (т.е. введен обладает иммуногенной активностью), если ОН отдельно или факультативно с подходящим адъювантом или в векторе животному, такому как млекопитающее, например, кролику или мыши, также включая человека; причем такой иммунный ответ принимает форму стимуляции Т-клеточного ответа у животного-реципиента, такого как человек. Альтернативно «активный фрагмент» может также быть использован для инициации ответа Т-клетки *in vitro*.

В контексте настоящего описания понятия «участок», «сегмент» и «фрагмент», если они использованы по отношению к полипептидам, относятся к непрерывной остатков, последовательности таких как аминокислотные остатки, последовательность более крупной которых формирует подкласс последовательности. Например, если полипептид был подвергнут обработке любой из известных эндопептидаз, таких как трипсин или химотрипсин, то полученные в результате такой обработки олигопептиды будут представлять участки, сегменты или фрагменты исходного полипептида. При использовании по отношению к полинуклеотидам эти понятия относятся к продуктам, полученным при обработке указанных полинуклеотидов любой из эндонуклеаз.

В соответствии с настоящим изобретением понятие «процентная идентичности» или «идентичный с процентной долей», если оно относится к последовательности, последовательность сравнивается означает, что выравнивания заявленной или описанной последовательностью после сравниваемой последовательности («Сравниваемая последовательность») с описанной или заявленной последовательностью («Контрольная последовательность»). Процентная доля идентичности определяется затем по следующей формуле:

процентная доля идентичности = 100 [1–(C/R)]

где «С» является числом различий между Контрольной последовательностью и Сравниваемой последовательностью по длине выравнивания между Контрольной последовательностью и Сравниваемой последовательностью, где

(i) каждое основание или аминокислота в Контрольной последовательности, которые не имеют соответствующего выравненного основания или аминокислоты в Сравниваемой последовательности, и

- (ii) каждая брешь в Контрольной последовательности и
- (iii) каждое выравненное основание или аминокислота в Контрольной последовательности, которые отличаются от выравненного основания или аминокислоты в Сравниваемой последовательности, представляют собой различие; и
- (iiii) выравнивание должно начинаться с позиции 1 выравненных последовательностей;

и «R» – это число оснований или аминокислот в Контрольной последовательности по длине выравнивания со Сравниваемой последовательностью с любой брешью, образующейся в Контрольной последовательности, считающейся также за основание или аминокислоту.

Если существует противопоставление между Сравниваемой последовательностью и Контрольной последовательностью, для которых процентная доля идентичности, по расчетам выше, приблизительно равна или выше установленной минимальной Процентной доли идентичности, тогда Сравниваемая последовательность имеет установленную минимальную процентную долю идентичности с Контрольной последовательностью, если даже могут существовать выравнивания, в которых подсчитанная здесь выше процентная доля идентичности меньше, чем установленная процентная доля идентичности.

Как было упомянуто выше, в настоящем изобретении, таким образом, предложен пептид, включающий последовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 или ее вариант, который на 88% гомологичен последовательностям с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464, или их варианту, который индуцирует перекрестную реакцию Т-клеток с указанным пептидом. Пептиды по изобретению обладают способностью связываться с молекулой главного комплекса гистосовместимости человека (МНС) І класса или – удлиненные версии упомянутых пептидов – с МНС ІІ класса.

В настоящем изобретении термин «гомологичный» относится к степени идентичности (CM. выше, Процентная идентичности) доля между последовательностями двух аминокислотных последовательностей, т. е. полипептидных последовательностей. или Упомянутая пептидных ранее последовательностей, «РИЗОПОМОТЭ» определяется при сравнении двух сопоставляемых В оптимальных условиях для сравниваемых Такая гомология последовательностей последовательностей. может быть подсчитана с помощью создания выравнивания, например, по алгоритму ClustalW. Широко распространено программное обеспечение для анализа последовательностей, в частности, Vector NTI, GENETYX или другие инструменты, предоставляемые банками данных свободного доступа.

Специалист данной области будет в состоянии оценить, будут ли Т-клетки, индуцированные вариантом конкретного пептида, способны к перекрестной реакции с самим пептидом (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997).

Под аминокислотной последовательности «вариантом» данной авторы изобретения имеют в виду, что боковые цепи, например, одного или двух аминокислотных остатков, изменены (например, путем их замещения боковой цепью остатка другой встречающейся в природе аминокислоты или какой-либо другой боковой цепью) так, что пептид по-прежнему способен связываться с молекулой HLA по существу таким же путем, как и пептид, состоящий из данной аминокислотной последовательности с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464. Например, пептид может быть модифицирован таким образом, что он по меньшей мере сохранит, если не улучшит, способность взаимодействовать и связываться со связывающей бороздкой подходящей молекулы MHC, такой как HLA-A*02 или -DR, и, таким образом, он по меньшей мере сохранит, если не улучшит, способность связываться с ТКР активированных Тклеток.

Данные Т-клетки могут затем вступать в перекрестную реакцию с клетками и уничтожать клетки, которые экспрессируют полипептид, который содержит природную аминокислотную последовательность родственного пептида, как определено в аспектах этого изобретения. По информации из научной литературы и банков данных (Godkin et al., 1997; Rammensee et al., 1999), конкретные позиции связывающихся с HLA пептидов являются типичными якорными остатками, формирующими центральную последовательность, подходящую соединительному элементу рецептора HLA, который определяется полярными, электрофизическими, гидрофобными И пространственными свойствами полипептидных цепей, образующих связывающую бороздку. Так, специалист данной будет В состоянии модифицировать аминокислотные последовательности с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464, сохраняя известные якорные остатки, и будет в состоянии определить, сохранят ли такие варианты способность связываться с молекулами МНС І или ІІ класса. Варианты по настоящему изобретению сохраняют способность связываться с ТКР активированных Т-клеток, которые могут впоследствии вступать в перекрестную реакцию и уничтожать клетки, экспрессирующие полипептид, который содержит природную аминокислотную последовательность родственного пептида, как определено в аспектах настоящего изобретения.

Исходные (немодифицированные) пептиды, раскрываемые в данном описании, могут быть модифицированы путем замены одного или нескольких остатков в различных, возможно отобранных, участках по длине пептидной цепи, если не заявлено иное. Предпочтительно, если такие замены расположены на конце аминокислотной цепи. Такие замены могут носить консервативный характер, например, когда одна аминокислота заменяется аминокислотой с похожей структурой и характеристиками, так же как при замене гидрофобной аминокислоты на другую гидрофобную аминокислоту. Еще более консервативной будет замена аминокислот одинакового или похожего размера и химического характера, как, например, при замене лейцина на изолейцин. В исследованиях вариаций последовательностей внутри семейств встречающихся в природе гомологичных

белков определенные замены аминокислот допускаются чаще, чем другие, и они часто связаны со сходствами по размеру, заряду, полярности и гидрофобности между исходной аминокислотой и ее заменой; и таковой является основа определения «консервативных замен».

Консервативные замены определены в контексте настоящего описания как обмены внутри одной из последующих пяти групп: группа 1 — малые, алифатические, неполярные или слабо полярные остатки (Ala, Ser, Thr, Pro, Gly); группа 2 — полярные, отрицательно заряженные остатки и их амиды (Asp, Asn, Glu, Gln); группа 3 — полярные, положительно заряженные остатки (His, Arg, Lys); группа 4 — крупные, алифатические, неполярные остатки (Met, Leu, Ile, Val, Cys); и группа 5 — крупные, ароматические остатки (Phe, Tyr, Trp).

Менее консервативные замены могут охватывать замену одной аминокислоты другой, имеющей похожие характеристики, но отличающейся в какой-то степени по размеру, как в случае замены аланина остатком изолейцина. Высоко неконсервативные замены могут охватывать замену кислой аминокислоты полярной, или даже такой, которая имеет основный характер. Такие «радикальные» замены не могут, однако, быть отвергнуты как потенциально неэффективные из-за того, что химические эффекты не полностью предсказуемы, и радикальные замены могут неожиданно привести к благоприятным эффектам, не предсказуемым исходя из обычных химических принципов.

Разумеется, в таких заменах могут участвовать другие структуры, отличающиеся от обычных L-аминокислот. Таким образом, D-аминокислоты могут быть заменены L-аминокислотами, обычно встречающимися в антигенных пептидах по изобретению и также охватываемые настоящим раскрытием сущности изобретения. Кроме того, нестандартные аминокислоты (т. е. отличающиеся от повсеместно встречающихся протеиногенных аминокислот) могут быть также использованы в целях замены для получения иммуногенов и иммуногенных полипептидов в соответствии с настоящим изобретением.

Если были произведены замены в более чем одной позиции с получением пептида с по существу эквивалентной или большей антигенной активностью, как определено ниже, то комбинации таких замен будут проанализированы для определения того, приведут ли эти комбинации замен к дополнительным или синергическим эффектам по отношению к антигенности пептида. По большей части не более 4 позиций внутри пептида должны замещаться одновременно.

Пептид, состоящий по существу из аминокислотной последовательности, как указано в настоящей заявке, может иметь замену одной или двух неякорных аминокислот (см. ниже относительно якорного мотива), так что способность связываться с молекулой главного комплекса гистосовместимости человека (МНС) І или ІІ класса не будет существенно изменена или подвергнута негативному влиянию по сравнению с немодифицированным пептидом. В другом варианте осуществления в пептиде, состоящем, по существу, из аминокислотной последовательности, как указано в настоящей заявке, одна или две аминокислоты могут быть заменены партнерами по консервативной замене (см. информацию ниже), так что способность связываться с молекулой главного комплекса гистосовместимости человека (МНС) І или ІІ класса не будет существенно изменена или подвергнута негативному влиянию по сравнению с немодифицированным пептидом.

Аминокислотные остатки, которые не вносят существенный вклад во взаимодействие с Т-клеточным рецептором, могут быть модифицированы заменой на другую аминокислоту, включение которой существенно не влияет на реактивность Т-клетки и не устраняет связывание с соответствующим МНС. Таким образом, помимо данного условия, пептид по изобретению может быть любым пептидом (в этот термин авторы изобретения включают олигопептиды или полипептиды), который включает аминокислотные последовательности или их участок или их вариант, как дано.

Таблица 6: Варианты и мотив пептидов в соответствии с SEQ ID NO: 7, 10, 23 и 40

Поришая		1		2		3		4		5		6		7		8		9	
Позиция						<u>ა</u>		4		၁		О		1		0		9	
SEQ ID No							١.												
7	G		Υ		Р		L		R		G		S		S		1		
Вариант																	ᅵ		
																	F		
			F																
			F														L		
			F														F		
Позиция		1	<u> </u>	2		3		4		5		6		7		8	•	9	
SEQ ID No								_						'				$\overline{}$	
10	Q		Υ		Р		Е		F		S		I		Е		L		
Вариант																	ı		
																	F		
			F														Τ		
			F																
			F														F		
Позиция		1		2		3		4		5		6		7		8		9	10
SEQ ID No																			
23	V		Υ		S		S		F		V		F		Ν		L		F
Вариант																			1
•																			L
			F																-
			F																Ĺ
			F																
_		4	_					_		_		_		_		_		_	- 40
Позиция		1		2		3		4		5		6		7		8		9	10
SEQ ID No	l				_		_										_		_
40	N		Υ		Р		E		G		Α		Α		Υ		Е		F
Вариант																			1
																			L
			F																I
			F																L
			F																

Более длинные (удлиненные) пептиды также могут быть пригодными. Возможно, чтобы эпитопы, связывающиеся с молекулами МНС I класса, хотя они обычно имеют длину между 8 и 11 аминокислотами, были получены при процессинге пептидов из более длинных пептидов или белков, включающих истинный эпитоп. Предпочтительно, чтобы остатки, которые примыкают к истинному эпитопу,

существенно не влияли на протеолитическое расщепление, необходимое для презентации истинного эпитопа во время процессинга.

Пептиды по изобретению могут быть удлинены с помощью вплоть до четырех аминокислот, это значит, что 1, 2, 3 или 4 аминокислоты могут быть добавлены к одному из концов в любой комбинации, представленной между 4:0 и 0:4. Комбинации элонгаций в соответствии с изобретением могут быть взяты из Таблицы 7.

Таблица 7: Комбинации элонгаций пептидов по изобретению

С-конец	N-конец						
4	0						
3	0 или 1						
2	0 или 1 или 2						
1	0 или 1 или 2 или 3						
0	0 или 1 или 2 или 3 или 4						
N-конец	С-конец						
4	0						
3	0 или 1						
2	0 или 1 или 2						
1	0 или 1 или 2 или 3						
0	0 или 1 или 2 или 3 или 4						

Аминокислотами для элонгации/удлинения могут быть пептиды исходной последовательности белка или любая(ые) другая(ие) аминокислота(ы). Элонгация может быть использована для повышения стабильности или растворимости пептидов.

Таким образом, эпитопы настоящего изобретения могут быть идентичны встречающимся в природе опухолеассоциированным или опухолеспецифическим эпитопам или могут включать эпитопы, отличающиеся не более чем четырымя остатками от контрольного пептида, при условии, что они имеют, по существу, идентичную антигенную активность.

В альтернативном варианте осуществления пептид удлинен с одной или другой стороны или с двух сторон одновременно добавлением более 4 аминокислот, предпочтительно, до общей длины вплоть до 30 аминокислот. Это может привести к образованию пептидов, связывающихся с МНС II класса. Связывание с МНС II класса может быть проверено известными из уровня техники способами.

Соответственно, в настоящем изобретении предлагаются пептидные эпитопы и эпитопы пептидных вариантов, связывающихся с молекулами МНС I класса, в которых указанный пептид или вариант имеет общую длину между 8 и 100, предпочтительно между 8 и 30, и, наиболее предпочтительно, между 8 и 14, а именно 8, 9, 10, 11, 12, 13, 14 аминокислот, в случае удлиненных пептидов, связывающихся с молекулами МНС II класса, длина может также быть 15, 16, 17, 18, 19, 20, 21 или 22 аминокислоты.

Разумеется, пептид или вариант в соответствии с настоящим изобретением будет обладать способностью связываться с молекулой главного комплекса гистосовместимости человека (МНС) І или ІІ класса. Связывание пептида или варианта с комплексом МНС может быть проверено способами, известными из уровня техники.

Предпочтительно, чтобы Т-клетки, специфичные для пептида в соответствии с настоящим изобретением были испытаны относительно замещенных пептидов; концентрация пептида, при которой замещенные пептиды достигают половины максимального роста лизиса относительно фона, составляет не более чем около 1 мМ, предпочтительно, не более чем около 1 мкМ, более предпочтительно, не более чем около 1 нМ, и еще более предпочтительно не более чем около 100 пМ и, наиболее предпочтительно, не более чем около 10 пМ. Также предпочтительно, чтобы замещенный пептид распознавался Т-клетками более чем одного индивида, по меньшей мере двух и, более предпочтительно, трех индивидов.

В особенно предпочтительном варианте осуществления изобретения пептид состоит или по существу состоит из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464.

«Состоит по существу из» подразумевает, что пептид в соответствии с настоящим изобретением, помимо любой из последовательностей в соответствии с любой из SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 или его вариант содержит дополнительные находящиеся на N- и/или C-конце фрагменты последовательности аминокислот, которые не являются обязательно формирующими часть пептида, которая функционирует как эпитоп для молекул МНС.

Тем не менее, эти фрагменты могут быть важны для обеспечения эффективного введения пептида в соответствии с настоящим изобретением в клетки. В одном варианте осуществления настоящего изобретения пептид является частью слитого белка, которая включает, например, 80 N-терминальных аминокислот антигенассоциированной инвариантной цепи (р33, в дальнейшем «li») HLA-DR, как взятый из банка данных NCBI, инвентарный номер - GenBank Accession-number X00497. В других видах слияния пептиды по настоящему изобретению могут быть слиты с антителом, описанным в настоящем документе, или его функциональной частью, в частности встроены последовательность антитела. чтобы специфической мишенью указанного антитела, или, например, слиты с или встроены в антитело, являющееся специфичным для дендритных клеток, описанных в настоящей заявке.

Кроме того, пептид или вариант может быть дополнительно модифицирован для улучшения стабильности и/или связывания с молекулами МНС в целях получения более сильного иммунного ответа. Методы такой оптимизации пептидной последовательности хорошо известны из уровня техники и включают, например, введение реверсированных пептидных или непептидных связей.

В реверсированной пептидной связи аминокислотные остатки присоединены не пептидными связями (-CO-NH-), а пептидная связь реверсируется. Такие ретрообратные пептидомиметики могут быть получены методами, известными из уровня техники, например, такими, как описано в работе Meziere и соавт. (1997) (Meziere et al., 1997), включенной в настоящее описание по ссылке. Этот подход охватывает получение псевдопептидов, которые содержат изменения, охватывающие остов, но не ориентацию боковых цепей. Меziere и соавт. (Meziere et al., 1997) показывают, что эти псевдопептиды пригодны для связывания с МНС и индукции ответов Т-хелперных клеток. Ретро-обратные пептиды, которые содержат связи NH-CO вместо пептидных связей CO-NH, намного более устойчивы к протеолизу.

Непептидной связью является, например, -CH₂-NH, -CH₂S-, -CH₂CH₂-, -CH=CH-, -COCH₂-, -CH(OH)CH₂- и -CH₂SO-. В патенте США № 4 897 445 предлагается метод твердофазного синтеза непептидных связей (-CH₂-NH) в полипептидных цепях, который включает полипептиды, синтезированные с использованием стандартной методики, и непептидную связь, синтезированную при реакции аминоальдегида и аминокислоты в присутствии NaCNBH₃.

включающие последовательности, описанные выше, могут быть Пептиды, синтезированы с дополнительными химическими группами, находящимися на их аминном и/или карбоксильном концах, для увеличения стабильности, биологической доступности и/или аффинности пептидов. Например, гидрофобные такие как карбобензоксильные, данзильные третгруппы, или бутилоксикарбонильные группы, могут быть добавлены к аминным концам пептидов. Подобным образом, ацетильная группа или 9-флуоренилметоксикарбонильная группа может быть размещена на аминных концах пептидов. Кроме того, гидрофобная группа, трет-бутилоксикарбонильная или амидная группа может быть добавлена к карбоксильным концам пептидов.

Кроме того, все пептиды по изобретению могут быть синтезированы в целях изменения их пространственной конфигурации. Например, может быть использован D-изомер одного или нескольких аминокислотных остатков пептида, а не обычный L-изомер. Более того, по меньшей мере один из аминокислотных остатков пептидов по изобретению может быть замещен одним из хорошо известных не встречающихся в природе аминокислотных остатков. Изменения, такие как данные, могут служить для повышения стабильности, биологической доступности и/или связывающих свойств пептидов по изобретению.

вариант по изобретению может быть Подобным образом, пептид или модифицирован химическим способом посредством реакции отдельных аминокислот как до, так и после синтеза пептида. Примеры таких модификаций хорошо известны из уровня техники и обобщаются, например, в работе R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2004(Lundblad, 2004), которая включена в описание по ссылке. Химическая модификация аминокислот включает, но без ограничения, модификацию с помощью ацилирования, амидинирования, пиридоксилирования лизина, восстановительного алкилирования, тринитробензилирования 2,4,6аминных групп тринитробензолсульфоновой кислотой (TNBS), амидную модификацию карбоксильных групп и сульфгидрильную модификацию с помощью окисления надмуравьиной кислотой цистеина до цистеиновой кислоты, образование производных ртути, образование смешанных дисульфидов с другими тиоловыми соединениями, реакцию с малеимидом, карбоксиметилирование йодоуксусной кислотой или йодацетамидом и карбамоилирование цианатом при щелочном уровне рН, хотя не ограничиваясь ими. В этой связи специалист данной области может проконсультироваться с главой 15 в работе Current Protocols In Protein Science, Eds. Hassan и соавт. (John Wiley and Sons NY 1995-2000) (Coligan et al., 1995) для получения более обширной информации о методах, связанных с химической модификацией белков.

Вкратце, модификация, например, аргинильных остатков в белках часто основана на реакции вицинальных дикарбонильных соединений, таких как фенилглиоксаль, 2,3-бутандион и 1,2-циклогександион, с образованием аддукта. Другим примером является реакция метилглиоксаля с остатками аргинина. Цистеин может быть модифицирован без сопутствующей модификации других нуклеофильных сайтов, таких как лизин и гистидин. В результате для модификации цистеина доступно большое число реагентов. Веб-сайты компаний, таких как Sigma-Aldrich (http://www.sigma-aldrich.com), предоставляют информацию по конкретным реагентам.

Распространено также избирательное восстановление дисульфидных связей в белках. Дисульфидные связи могут быть образованы и окислены во время тепловой обработки биофармацевтических средств. К-реагент Вудворда может использоваться для модификации определенных остатков глютаминовой кислоты. N-(3-(диметиламинопропил)-N'-этилкарбодиимид использоваться может образования внутримолекулярных поперечных связей между остатком лизина и остатком глютаминовой кислоты. Например, диэтилпирокарбонат является реагентом для модификации гистидильных остатков в белках. Гистидин может также быть модифицирован при использовании 4-гидрокси-2-ноненаля. Реакция остатков лизина и других α-аминных групп полезна, например, при связывании пептидов с поверхностями или поперечной сшивке белков/пептидов. Лизин является сайтом присоединения полиэтиленгликоля и основным модификации при гликозилировании белков. Остатки метионина в белках могут быть модифицированы, например, с помощью йодацетамида, бромэтиламина и хлорамина Т.

Тетранитрометан и N-ацетилимидазол могут быть использованы для модификации тирозильных остатков. Поперечная сшивка посредством образования дитирозина может быть произведена с помощью перекиси водорода/ионов меди.

В последних исследованиях по модификации триптофана использовались N-бромсукцинимид, 2-гидрокси-5-нитробензилбромид или 3-бром-3-метил-2-(2-нитрофенилмеркапто)-3H-индол (BPNS-скатол).

Успешная модификация терапевтических белков и пептидов ПЭГ (полиэтиленгликолем) часто связана с увеличением полупериода циркуляции, тогда как поперечная сшивка белков глутаральдегидом, полиэтиленгликольдиакрилатом и формальдегидом используется для получения гидрогелей. Химическая модификация аллергенов для иммунотерапии часто достигается при карбамоилировании цианатом калия.

Пептид или вариант, в котором пептид модифицирован или включает непептидные связи, является предпочтительным вариантом осуществления изобретения.

Другой вариант осуществления настоящего изобретения относится к встречающемуся в природе пептиду, где указанный пептид состоит или состоит по существу из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 и был получен синтетическим способом (например, синтезирован) в виде фармацевтически приемлемой соли. Способы синтетического получения пептидов хорошо известны в данной области. Соли пептидов в соответствии с настоящим изобретением существенно отличаются от пептидов по своему состоянию(ям) in vivo, так как синтезированные пептиды не являются солями *in vivo*. Не встречающаяся в природе солевая форма пептида опосредует растворимость пептида, в частности, в контексте фармацевтических композиций, включающих пептиды, например вакцин на основе пептидов, раскрытых в настоящем описании. Достаточная и по меньшей мере существенная растворимость пептида(ов) необходима для эффективного введения пептидов субъекту, подлежащему Предпочтительно, если соли являются фармацевтически приемлемыми солями пептидов. Соли в соответствии с изобретением включают щелочные и щелочноземельные соли, такие как соли рядов Гофмейстера, включающие в качестве анионов PO₄³-, SO₄²-, CH₃COO-, CI-, Br-, NO₃-, CIO₄-, I-, SCN- и в качестве катионов NH₄+, Rb+, K+, Na+, Cs+, Li+, Zn²⁺, Mg²⁺, Ca²⁺, Mn²⁺, Cu²⁺ и Ва²⁺. В частности. соли выбраны из (NH₄)₃PO₄, (NH₄)₂HPO₄, (NH₄)H₂PO₄, (NH₄)₂SO₄, NH₄CH₃COO, NH₄CI, NH₄Br, NH₄NO₃, NH₄CIO₄, NH₄I, NH₄SCN, Rb₃PO₄, Rb₂HPO₄, RbH₂PO₄, Rb₂SO₄, Rb₄CH₃COO, Rb₄CI, Rb₄Br, Rb₄NO₃, Rb₄CIO₄, Rb₄I, Rb₄SCN, K₃PO₄, K₂HPO₄, KH₂PO₄, K₂SO₄, KCH₃COO, KCI, KBr, KNO₃, KCIO₄, KI, KSCN, Na₃PO₄, Na₂HPO₄, NaH₂PO₄, Na₂SO₄, NaCH₃COO, NaCl, NaBr, NaNO₃, NaClO₄, Nal, NaSCN, ZnCl₂ Cs₃PO₄, Cs₂HPO₄, CsH₂PO₄, Cs₂SO₄, CsCH₃COO, CsCl, CsBr, CsNO₃, CsClO₄, Csl, CsSCN, Li₃PO₄, Li₂HPO₄, LiH₂PO₄, Li₂SO₄, LiCH₃COO, LiCl, LiBr, LiNO₃, LiClO₄, Lil, LiSCN, Cu₂SO₄, Mg₃(PO₄)₂, Mg₂HPO₄, Mg(H₂PO₄)₂, Mg₂SO₄, Mg(CH₃COO)₂, MgCl₂, MgBr₂, Mg(NO₃)₂, Mg(ClO₄)₂, Mgl₂, Mg(SCN)₂, MnCl₂, Ca₃(PO₄)₁, Ca₂HPO₄, Ca(H₂PO₄)₂, $CaSO_4$, $Ca(CH_3COO)_2$, $CaCl_2$, $CaBr_2$, $Ca(NO_3)_2$, $Ca(ClO_4)_2$, Cal_2 , $Ca(SCN)_2$, $Ba_3(PO_4)_2$, Ba₂HPO₄, Ba(H₂PO₄)₂, BaSO₄, Ba(CH₃COO)₂, BaCl₂, BaBr₂, Ba(NO₃)₂, Ba(ClO₄)₂, Bal₂ и Ba(SCN)₂. Особенно предпочтительными являются ацетат NH, MgCl₂, KH₂PO₄, Na₂SO₄, KCI, NaCl и CaCl₂, такие как например, хлоридные или ацетатные (трифторацетатные) соли.

Как правило, пептиды и варианты (по меньшей мере те, что содержат пептидные связи между аминокислотными остатками) могут быть синтезированы Fmoc-полиамидным способом твердофазного синтеза пептидов, как раскрыто у Lukas и соавт.(Lukas et al., 1981) и в прилагающихся ссылках. Временная защита N-аминогруппы производится 9-флуоренилметилоксикарбонильной (Fmoc) группой. Повторное расщепление этой высоко щелочелабильной защитной группы осуществляется при использовании 20% пиперидина в N, N-диметилформамиде. Функциональные группы боковой цепи могут быть защищены получением таких соединений, как их бутиловые эфиры (в случае серина, треонина и тирозина), бутиловые сложные эфиры (в случае глютаминовой кислоты и аспарагиновой кислоты), бутилоксикарбонильное производное (в случае лизина и гистидина), тритильное производное (в случае цистеина) и производное 4-метокси-2,3,6-триметилбензолсульфонила (в случае аргинина). Если глютамин или аспарагин являются С-терминальными остатками, для защиты амидогруппы боковой цепи

используется 4,4'-диметоксибензгидрильная группа. Твердофазный носитель основан на полимере полидиметилакриламиде, состоящем из трех мономеров: (каркасный мономер), диметилакриламида бис-акрилоилэтилендиамина (компонент для перекрестной СШИВКИ, линкер) метилового эфира И (функционализирующий Для акрилоилсаркозина агент). образования легкорасщепляемой связи пептида и смолы используется нестойкое к действию производное 4-гидроксиметилфеноксиуксусной Bce кислот кислоты. аминокислотные производные добавляются виде В предварительно синтезированных симметричных ангидридных производных за исключением аспарагина и глютамина, которые добавляются с применением обратной реакции N, N-дициклогексилкарбодиимид/1соединения, опосредованной гидроксибензотриазолом. Все реакции сочетания и снятия защитных групп отслеживались с помощью методов контроля с применением нингидрина, тринитробензолсульфоновой кислоты или изотина. После завершения синтеза пептиды отщепляются от смолы-носителя с сопутствующим удалением защитных групп боковой цепи при обработке 95% трифторуксусной кислотой, содержащей 50 % смеси поглотителей. Обычно используемые поглотители включают этандитиол. фенол, анизол и воду, окончательный выбор зависит от составляющих аминокислот синтезируемого пептида. Также возможна комбинация твердофазных и жидкофазных методов синтеза пептидов (см., например, (Bruckdorfer et al., 2004), и прилагаемые ссылки).

Трифторуксусную кислоту удаляют выпариванием в вакууме с последующим измельчением с диэтиловым эфиром для получения сырого пептида. Любые присутствующие поглотители удаляются простой технологией экстракции, которая позволяет получить сырой пептид без поглотителей после лиофилизации водной фазы. Реагенты для синтеза пептидов, как правило, имеются в наличии, например, в Calbiochem-Novabiochem (Ноттингем, Великобритания).

Очистка может быть произведена любой методикой или комбинацией таких методик как перекристаллизация, эксклюзионная хроматография, ионообменная

хроматография, хроматография гидрофобного взаимодействия и (обычно) обращено-фазовая высокоэффективная жидкостная хроматография с использованием, к примеру, градиентного разделения в системе ацетонитрил/вода.

Анализ пептидов может быть произведен при помощи тонкослойной хроматографии, электрофореза, в частности капиллярного электрофореза, твердофазной экстракции (ТФЭ), обращено-фазовой высокоэффективной жидкостной хроматографии, аминокислотного анализа после кислотного гидролиза и масс-спектрометрического анализа при бомбардировке быстрыми атомами (FAB), а также масс-спектрометрического анализа MALDI и ESI-Q-TOF.

В целях выбора презентируемых в избытке пептидов был рассчитан профиль презентации, позволяющий оценить медианное значение презентации образца, а также вариации повторных измерений. В профиле сравниваются образцы опухолевой формы, представляющей интерес, с фоновым уровнем образцов нормальной ткани. Каждый из этих профилей может быть затем консолидирован в показатель избыточной презентации путем расчета значения р по линейной модели со смешанными эффектами (Pinheiro et al., 2015), скорректировав ее для повторных анализов на уровень ложноположительных обнаружений(Benjamini and Hochberg, 1995)(ср. Пример 1, Фигуру 1).

Для идентификации и относительной количественной оценки лигандов HLA с помощью масс-спектрометрического анализа молекулы HLA из подвергнутых шоковой заморозке образцов тканей были очищены и из них выделены HLAассоциированные пептиды. Выделенные пептиды были разделены последовательности были идентифицированы с помощью методов жидкостной хроматографии и масс-спектрометрии (LC-MS) с ионизацией электрораспылением (nanoESI) режиме реального времени. Полученные результате последовательности пептида подтверждали сравнением картины фрагментации природных опухолеассоциированных пептидов (TUMAP), записанной на образцах (N = 263 образца) острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, рака гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия (N = 263 образца), с картинами фрагментации соответствующих синтетических контрольных пептидов идентичными последовательностями. Поскольку пептиды были идентифицированы непосредственно в качестве лигандов молекул HLA первичных опухолей, то эти результаты дают прямое доказательство естественного процессирования и презентации идентифицированных пептидов на ткани первичной раковой опухоли, полученной от 263 пациентов с острым миелоидным лейкозом, раком молочной железы, холангиоклеточной карциномой, хроническим лимфоцитарным лейкозом, колоректальным раком, раком желчного пузыря, глиобластомой, раком желудка, гепатоклеточной карциномой, плоскоклеточной карциномой головы и шеи, меланомой, неходжкинской лимфомой, раком легких (в том числе немелкоклеточным раком легких-аденокарциномой, плоскоклеточным немелкоклеточным раком легких и мелкоклеточным раком легких), раком яичника, раком пищевода, раком поджелудочной железы, раком предстательной железы, почечно-клеточной карциномой, карциномой мочевого пузыря и раком матки и эндометрия.

Технологическая платформа лекарственных средств, находящихся в разработке, XPRESIDENT® v2.1 (см., например, патентную заявку США 2013-0096016, включенную в настоящее описание в своей полноте путем ссылки) позволяет произвести идентификацию и выбор соответствующих избыточно презентируемых пептидов в качестве кандидатов для вакцины, основываясь на прямом относительном количественном определении уровней HLA-рестриктированных пептидов на раковой ткани в сравнении с несколькими различными нераковыми

тканями и органами. Это было осуществлено путем разработки дифференциального количественного определения на основе данных ЖХ-МС без использования изотопной метки (label-free), обработанных запатентованной технологической платформой для анализа данных, объединяющей алгоритмы для идентификации последовательности, спектральной кластеризации, подсчета ионов, выравнивания времени удерживания, деконволюции по состояниям заряда и нормализации.

Для каждого пептида и образца были подсчитаны уровни презентации, включающие оценки погрешности. Были идентифицированы пептиды, презентируемые исключительно на опухолевой ткани, и пептиды, избыточно презентируемые на опухолевых тканях в сравнении с не пораженными раком тканями и органами.

Комплексы HLA-пептид из образцов ткани острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, были очищены; HLA-ассоциированные пептиды были выделены и проанализированы методом ЖХ-МС (см. Пример 1). Все TUMAP, содержащиеся в настоящей патентной заявке, были идентифицированы с помощью этого подхода на образцах острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы шеи. меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, что подтверждает их презентацию на клетках острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия.

Пептиды TUMAP, идентифицированные на многочисленных тканях острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия и на нормальных тканях, были подвергнуты количественному анализу с помощью ЖХ/МС без использования изотопной метки, с использованием подсчета ионов. Метод основан на предположении, что площади пика пептида при анализе методом ЖХ/МС коррелируют с его содержанием в образце. Все количественные сигналы пептида в различных экспериментах с использованием ЖХ/МС были нормализованы, исходя из основной тенденции, было вычислено их среднее значение на образец, и сведены в гистограмму в т. н. профиль презентации. В профиле презентации консолидированы различные методы анализа, такие как поиск в банке данных белков, спектральная кластеризация, деконволюция состояния заряда (разряд) и выравнивание времени удерживания и нормализация.

Кроме избыточной презентации пептида была исследована экспрессия мРНК исходного гена. Данные по мРНК, полученные с помощью секвенирования РНК (RNASeq) из нормальных тканей и раковых тканей (ср. Пример 2, Фигуру 2). Пептиды, которые получены из белков, которые кодируются мРНК, демонстрирующей высокую степень экспрессии в раковой ткани, но ее очень низкий уровень или отсутствие в жизненно важных нормальных тканях, были включены как предпочтительные в настоящее изобретение.

В настоящем изобретении предложены пептиды, которые пригодны для лечения раковых заболеваний / опухолей, предпочтительно острого миелоидного лейкоза, рака молочной холангиоклеточной железы, карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечноклеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, которые презентируют в избытке или исключительно пептиды по изобретению. Как показал масс-спектрометрический анализ, ЭТИ пептиды естественно презентировались молекулами HLA на образцах первичного острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том немелкоклеточного рака легких-аденокарциномы, числе плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечноклеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия человека.

Как было показано, многие из исходных генов/белков (называемых также «белками полной длины» или «базовыми белками»), из которых были получены пептиды, были в высокой степени избыточно экспрессированы в раковых тканях по сравнению с нормальными тканями - понятие «нормальные ткани» в связи с настоящим изобретением подразумевает здоровые клетки крови, кровеносных сосудов, головного мозга, сердца, печени, легких, жировой ткани, надпочечной железы, желчного протока, мочевого пузыря, костного мозга, пищевода, глаза, желчного пузыря, головы и шеи, толстой кишки, тонкой кишки, почки, лимфатического узла, периферического нерва, поджелудочной железы, паращитовидной железы, брюшины, гипофиза, плевры, скелетных мышц, кожи, селезенки, желудка, щитовидной железы, трахеи, мочеточника или клетки других нормальных тканей, что демонстрирует высокую степень ассоциации исходных генов с опухолью (см. Пример 2). Более того, сами пептиды в высшей степени избыточно презентируются на опухолевой ткани – понятие «опухолевая ткань» в связи с настоящим изобретением подразумевает образец от пациента, страдающего от острого миелоидного лейкоза, рака молочной железы, холангиоклеточной хронического лимфоцитарного карциномы, лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, но не на нормальных тканях (см. Пример 1).

Связанные с HLA пептиды могут распознаваться иммунной системой, конкретно Тлимфоцитами. Т-клетки могут разрушать клетки, презентирующие распознанный комплекс НLА/пептид; к примеру, клетки острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, презентирующие полученные пептиды.

Было показано, что пептиды по настоящему изобретению способны стимулировать Т-клеточные ответы и/или избыточно презентируются и, поэтому, использоваться для получения антител и/или ТКР, такие как растворимые ТКР, в соответствии с настоящим изобретением (см. Пример 3, Пример 4). Кроме того, пептиды, если находятся в комплексе с соответствующей молекулой МНС, могут быть использованы для получения антител и/или ТКР, в частности растворимых ТКР, в соответствии с настоящим изобретением. Соответствующие способы хорошо известны специалисту данной области, а также могут быть найдены в соответствующих литературных источниках (см. также ниже). Таким образом, пептиды по настоящему изобретению пригодны для генерирования иммунного ответа в организме пациента для уничтожения опухолевых клеток. Иммунный ответ у пациента может быть индуцирован при непосредственном введении описанных пептидов или подходящих веществ-предшественников (к примеру, удлиненных пептидов, белков или нуклеиновых кислот, кодирующих эти пептиды) пациенту, в идеальном случае в комбинации с веществом, усиливающим иммуногенность (т. е. адъювантом). Можно ожидать, что иммунный ответ, вызванный такой терапевтической вакцинацией, будет высоко специфично направлен против опухолевых клеток, так как целевые пептиды по настоящему изобретению не презентируются на нормальных тканях в сравнимом количестве копий. предотвращая, тем самым, риск нежелательных аутоиммунных реакций против нормальных клеток у пациента.

Настоящее описание далее относится к Т-клеточным рецепторам (ТКР), включающим альфа-цепь и бета-цепь («альфа/бета-ТКР»). Также предложены пептиды в соответствии с изобретением, способные связываться с ТКР и антителами, если они презентируются молекулой МНС.

Настоящее описание также относится к фрагментам ТКР в соответствии с изобретением, которые способны связываться с пептидным антигеном в соответствии с настоящим изобретением, когда они презентируются молекулой НLА. Данный термин в частности относится к растворимым фрагментам ТКР, например, ТКР без трансмембранных сегментов и/или константным участкам, одноцепочечным ТКР и продуктам их слияния, например, с Ig.

Настоящее описание также относится к нуклеиновым кислотам, векторам и клеткам-хозяевам для экспрессии ТКР и пептидам по настоящему изобретению; и методам их применения.

Понятие «Т-клеточный рецептор» (аббревиатура ТКР) относится к гетеродимерной молекуле, включающей альфа-полипептидную цепь (альфа-цепь) и бета-полипептидную цепь (бета-цепь), где гетеродимерный рецептор способен связываться с пептидным антигеном, презентируемым молекулой НLA. Это понятие включает также так называемые гамма/дельта-ТКР.

В одном варианте осуществления согласно описанию предложен способ получения ТКР, согласно настоящему описанию, при чем способ включает культивацию клетки-хозяина, способной экспрессировать ТКР в условиях, подходящих для стимуляции экспрессии ТКР.

Настоящее описание в другом аспекте далее относится к способам в соответствии с настоящим описанием, где антиген нагружен на молекулы МНС I или II класса, экспрессированные на поверхности подходящей антигенпрезентирующей клетки

или искусственной антигенпрезентирующей клетки, при контактировании достаточного количества антигена с антигенпрезентирующей клеткой, или же антиген нагружен на тетрамеры МНС I или II класса путем тетрамеризации комплексов антиген-мономер МНС I или II класса.

Альфа- и бета-цепи альфа-/бета-ТКР и гамма- и дельта-цепи гамма-/дельта-ТКР, как правило, считаются такими, что каждая из них имеет два «домена», а именно вариабельные и константные домены. Вариабельный домен состоит из последовательно расположенных вариабельного сегмента (V) и соединительного сегмента (J). Вариабельный домен может также включать лидерный сегмент (L). Бета- и дельта-цепи могут также включать сегменты разнообразия (D). Константные домены альфа и бета могут также включать С-терминальные трансмембранные (ТМ) домены, которые заякоривают альфа- и бета-цепи на клеточной мембране.

В отношении гамма-/дельта-ТКР, понятие «гамма вариабельный домен ТКР», используемый в контексте данного изобретения, относится к соединению сегмента гамма V ТКР (TRGV) без лидерного сегмента (L) и сегмента ТКР гамма J (TRGJ), а понятие «константный домен ТКР гамма» относится к внеклеточному сегменту ТRGC или С-терминальной усеченной последовательности TRGC. В равной степени понятие «дельта вариабельный домен ТКР» относится к соединению сегмента ТКР дельта V (TRDV) без лидерного сегмента (L) и сегмента ТКР дельта D/J (TRDD/TRDJ), а понятие «константный домен ТКР-дельта» относится к внеклеточному сегменту TRDC или С-терминальной усеченной последовательности.

ТКР по настоящему изобретению предпочтительно связываются с комплексом пептида и молекулы HLA с аффинностью связывания (KD) около 100 мкМ или ниже, около 50 мкМ или ниже, около 25 мкМ или ниже или около 10 мкМ или ниже. Более предпочтительными являются высокоаффинные ТКР с аффинностью связывания, составляющей около 1 мкМ или ниже, около 100 нМ или ниже, около 50 нМ или ниже, около 25 нМ или ниже. Неограничивающие примеры диапазонов

предпочтительной аффинности связывания для ТКР по настоящему изобретению включают значения от около 1 нМ до около 10 нМ; от около 10 нМ до около 20 нМ; от около 20 нМ до около 30 нМ до около 40 нМ; от около 40 нМ до около 50 нМ; от около 50 нМ до около 60 нМ; от около 60 нМ до около 70 нМ; от около 70 нМ до около 70 нМ до около 90 нМ; и от около 90 нМ до около 100 нМ.

Понятие «специфическое связывание», используемое в связи с понятием ТКР по настоящему изобретению, и его грамматические варианты используются для обозначения ТКР с аффинностью связывания (KD) для комплекса пептида и молекулы HLA 100 мкМ или ниже.

Альфа/бета гетеродимерные ТКР согласно настоящему описанию могут иметь введенную дисульфидную связь между их константными доменами. Предпочтительные ТКР этого вида включают те, что имеют последовательность константного домена TRAC и последовательность константного домена TRBC1 или TRBC2, кроме тех случаев, когда Thr 48 домена TRAC и Ser 57 доменов TRBC1 или TRBC2 замещены остатками цистеина, причем указанные остатки цистеина образуют дисульфидную связь между последовательностью константного домена TRAC и последовательностью константного домена TRAC и последовательностью константного домена TRBC1 или TRBC2 TKP.

С введением межцепочечной связи, упомянутой выше, или без нее альфа/бета гетеродимерные TKP ПО настоящему изобретению могут иметь TRAC последовательность константного домена И последовательность константного домена TRBC1 или TRBC2, и последовательность константного домена TRAC и последовательность константного домена TRBC1 или TRBC2 TKP может быть связана встречающейся в природе дисульфидной связью между Cys4 экзона 2 домена TRAC и Cys2 экзона 2 домена TRBC1 или TRBC2.

ТКР по настоящему изобретению могут включать поддающуюся обнаружению метку, выбранную из группы, состоящей из радионуклида, флуорофора и биотина.

ТКР по настоящему изобретению могут конъюгированы с терапевтически активным ингредиентом, таким как радионуклид, химиотерапевтическим средством или токсином.

В одном варианте осуществления ТКР по настоящему изобретению, имеющий по меньшей мере одну мутацию альфа-цепи и/или имеющий по меньшей мере одну мутацию бета-цепи, обладает модифицированным гликозилированием в сравнении с ТКР без мутаций.

В одном варианте осуществления ТКР, содержащий по меньшей мере одну мутацию в альфа-цепи ТКР и/или бета-цепи ТКР, имеет аффинность связывания по отношению к и/или полупериод связывания по отношению к комплексу пептида и молекулы HLA, которые по меньшей мере вдвое выше, чем у ТКР, содержащего альфа-цепь ТКР без мутаций и/или бета-цепь ТКР без мутаций. Усиление аффинности опухолеспецифических ТКР, а также ее использование, опирается на существование «окна» с оптимальными показателями аффинности для ТКР. Существование такого окна основано на наблюдениях, что ТКР, специфические для HLA-A-рестриктированных патогенов, обладают показателями KD, которые, в основном, примерно в 10 раз ниже по сравнению с ТКР, специфическими для HLA-А-рестриктированных опухолеассоциированных аутоантигенгов. Сейчас известно, хотя опухолевые антигены имеют иммуногенный потенциал, поскольку опухоли возникают из собственных клеток индивида, только мутантные белки или белки с изменениями в трансляционном процессинге будут восприниматься иммунной системой как чужеродные. Антигены, уровень которых повышен или которые экспрессируются в избытке (так называемые аутоантигены), не будут в обязательном порядке вызывать функциональный иммунный ответ против опухоли: Т-клетки, экспрессирующие ТКР, которые являются высоко активными по отношению к данным антигенам, будут подвергаться отрицательному отбору внутри вилочковой железы в процессе, известном как центральная толерантность, что означает, что останутся лишь Т-клетки с низкоаффинными ТКР к аутоантигенам. Поэтому аффинность ТКР или вариантов согласно настоящему описанию по отношению к пептидам может быть усилена способами, хорошо известными из уровня техники.

Настоящее описание относится далее к способу идентификации и выделения ТКР в соответствии с настоящим описанием, причем указанный способ включает инкубацию МКПК HLA-A*024-отрицательных здоровых доноров с A24/пептидными мономерами, инкубацию МКПК с тетрамер-фикоэритрином (PE) и выделение Т-клеток с высокой авидностью с помощью сортировки клеток с активированной флуоресценцией (FACS)—Calibur.

Настоящее описание относится далее к способу идентификации и выделения ТКР в соответствии с настоящим описанием, причем указанный способ включает получение трансгенной мыши с целыми человеческими локусами гена ТСRαβ (1,1 и 0,7 млн. п. н.), Т-клетки которой экспрессируют различные ТКР человека, компенсируя недостаток ТКР у мыши, иммунизацию мыши пептидом, инкубацию МКПК, полученных у трансгенной мыши, с тетрамер-фикоэритрином (РЕ) и выделение Т-клеток с высокой авидностью с помощью сортировки клеток с активированной флуоресценцией (FACS)—Calibur.

В одном аспекте в целях получения Т-клеток, экспрессирующих ТКР согласно настоящему описанию, нуклеиновые кислоты, кодирующие цепи ТКР-альфа и/или ТКР-бета согласно настоящему описанию, клонируют в векторы экспрессии, такие как гамма-ретровирус или -лентивирус. Рекомбинантные вирусы получают и проводят испытание их функциональности, такой как антигенная специфичность и функциональная авидность. Аликвота конечного продукта затем используется для трансдукции целевой популяции Т-клеток (как правило, очищенных от МКПК пациента), которую культивируют перед инфузией пациенту.

В другом аспекте для получения Т-клеток, экспрессирующих ТКР согласно настоящему описанию, РНК ТКР синтезируют с помощью методик, известных из уровня техники, например, транскрипционные системы *in vitro*. Синтезированные *in*

vitro PHK TKP затем вводят с помощью электропорации в первичные CD8+ Т-клетки, полученные у здоровых доноров, в целях повторной экспрессии альфа- и/или бета-цепей опухолеспецифических TKP.

Для увеличения уровня экспрессии нуклеиновые кислоты, кодирующие ТКР согласно настоящему описанию, могут быть функционально связаны с сильными промоторами, такими как длинные терминальные повторы ретровируса (LTR), цитомегаловируса (CMV), вируса стволовых клеток мыши (MSCV) U3, фосфоглицерат-киназой (PGK), β-актином, убиквитином и комбинированным промотором вируса обезьян 40 (SV40)/CD43, фактором элонгации (EF)-1a и промотором вируса некроза селезёнки (SFFV). В предпочтительном варианте осуществления промотор является гетерологичным ПО отношению экспрессируемой нуклеиновой кислоте.

В дополнение к сильным промоторам экспрессионные кассеты ТКР согласно настоящему описанию могут содержать дополнительные элементы, которые могут усиливать экспрессию трансгена, включая центральный полипуриновый тракт (сРРТ), который способствует ядерной транслокации лентивирусных конструкций(Follenzi et al., 2000), и пост-транскрипционный регуляторный элемент вируса гепатита сурков (wPRE), который повышает уровень экспрессии трансгена за счет увеличения стабильности РНК (Zufferey et al., 1999).

Альфа- и бета-цепи ТКР по настоящему изобретению могут кодироваться нуклеиновыми кислотами, локализованными в отдельных векторах, или могут кодироваться полинуклеотидами, локализованными в одном и том же векторе.

Для достижение высоких уровней экспрессии ТКР на поверхности требуется транскрипция высоких уровней как цепей ТКР-альфа, так и ТКР-бета, введенного ТКР. Для этого цепи ТКР-альфа и ТКР-бета согласно настоящему описанию могут быть клонированы в бицистронные конструкции в одном векторе, который, как было показано, способен преодолеть данное препятствие. Использование участка

внутренней посадки рибосомы вируса (IRES) между цепями ТКР-альфа и ТКР-бета приводит к скоординированной экспрессии обеих цепей, поскольку цепи ТКР-альфа и ТКР-бета образуются из одного транскрипта, который разделяется на два белка во время транскрипции, обеспечивая получение равного молярного соотношения цепей ТКР-альфа и ТКР-бета (Schmitt et al., 2009).

Нуклеиновые кислоты, кодирующие ТКР согласно настоящему описанию, могут быть кодон-оптимизированы для увеличения экспрессии клеткой-хозяином. Избыточность генетического кода позволяет кодирование некоторых аминокислот более чем одним кодоном, однако некоторые конкретные кодоны менее «оптимальны», чем другие, по причине относительной доступности подходящих тРНК, а также других факторов (Gustafsson et al., 2004). Как было показано, модификации последовательностей генов ТКР-альфа и ТКР-бета, так чтобы каждая аминокислота кодировалась оптимальным кодоном для экспрессии генов млекопитающих, а также удаление нестабильных мотивов мРНК или криптических сайтов сплайсинга, существенно усиливали экспрессию генов ТКР-альфа и ТКР-бета (Scholten et al., 2006).

Кроме того, нарушение комплементарности между введенными и эндогенными цепями ТКР может привести к приобретению специфичности, которая будет представлять значительный риск для аутоиммунности. Например, формирование смешанных димеров ТКР может снизить число молекул CD3, имеющихся в наличии для формирования правильно спаренных комплексов ТКР, и, таким образом, может существенно снизить функциональную авидность клеток, экспрессирующих введенный ТКР(Kuball et al., 2007).

Для снижения ошибочного спаривания С-концевой домен введенных цепей ТКР согласно настоящему описанию может быть модифицирован в целях стимуляции межцепочечной аффинности, при этом снижая способность введенных цепей спариваться с эндогенным ТКР. Данные стратегии могут включать замещение С-концевых доменов ТКР-альфа и ТКР-бета-цепей человека их мышиными

эквивалентами (С-концевой «муринизированный» домен); получение второй межцепочечной дисульфидной связи в С-концевом домене за счет введения второго остатка цистеина в обе цепи: ТКР-альфа и ТКР-бета введенного ТКР (модификация цистеином); обмен взаимодействующими остатками в С-концевом домене ТКР-альфа и ТКР-бета-цепей («выступ-во-впадину»); и слияние вариабельных доменов цепей ТКР-альфа и ТКР-бета непосредственно в СDЗζ (слияние CDЗζ) (Schmitt et al., 2009).

В одном варианте осуществления клетка-хозяин генетически модифицирована, чтобы экспрессировать ТКР согласно настоящему описанию. В предпочтительных вариантах осуществления клетка-хозяин является человеческой Т-клеткой или предшественником Т-клетки. В одних вариантах осуществления Т-клетка или предшественник Т-клетки получены у пациента, больного раком. В других вариантах осуществления Т-клетка или предшественник Т-клетки получены у здорового донора. Клетки-хозяева согласно настоящему описанию могут быть аллогенными или аутологичными в отношении пациента, подлежащего лечению. В одном варианте осуществления клетка-хозяин является гамма/дельта Т-клеткой, трансформированной для экспрессии альфа-/бета-ТКР.

«Фармацевтическая композиция» является композицией, подходящей для введения человеку в медицинском учреждении. Предпочтительно, если фармацевтическая композиция является стерильной и произведена в соответствии с правилами GMP (надлежащей производственной практики).

Фармацевтические композиции включают пептиды как в свободной форме, так и в форме фармацевтически приемлемой соли (см. также выше). Используемое в контексте данного изобретения понятие «фармацевтически приемлемая соль» относится к производным раскрытых пептидов, причем пептид модифицирован путем получения кислых или основных солей вещества. Например, кислые соли получают из свободного основания (как правило, где нейтральная форма лекарственного средства имеет нейтральную группу –NH2) с применением реакции

с подходящей кислотой. Подходящие кислоты для получения кислых солей включают как органические кислоты, например, уксусную кислоту, пропионовую кислоту, гликолевую кислоту, пировиноградную кислоту, щавелевую кислоту, яблочную кислоту, малоновую кислоту, янтарную кислоту, малеиновую кислоту, фумаровую кислоту, винную кислоту, лимонную кислоту, бензойную кислоту, коричную кислоту, миндальную кислоту, метансульфоновую кислоту, этансульфоновую кислоту, п-толуолсульфокислоту, салициловую кислоту и подобные, так и неорганические кислоты, например, соляную кислоту, бромистоводородную кислоту, серную кислоту, азотную кислоту, фосфорную кислоту и тому подобные. И наоборот, приготовление основных солей кислотных компонентов, которые могут присутствовать на пептиде, производится при использовании фармацевтически приемлемого основания, такого как гидроксид натрия, гидроксид калия, гидроксид аммония, гидроксид кальция, триметиламин и тому подобных.

В одном особенно предпочтительном варианте осуществления фармацевтические композиции включают пептиды в виде солей уксусной кислоты (ацетаты), трифторацетатов или соляной кислоты (хлориды).

Предпочтительно, если лекарственное средство по настоящему изобретению является иммунотерапевтическим препаратом, таким как вакцина. Она может вводиться непосредственно пациенту, в пораженный орган или системно в/к, в/м, п/к, в/б и в/в или вноситься ех vivo в клетки, полученные от пациента, или в человеческую клеточную линию, которые затем могут вводиться пациенту или использоваться in vitro для селекции субпопуляции из иммунных клеток, полученных от пациента, которые после этого вновь вводятся пациенту. Если нуклеиновая кислота введена в клетки in vitro, то может быть полезно, чтобы клетки были трансфицированными, чтобы совместно экспрессировать иммуностимулирующие цитокины, такие как интерлейкин-2. Пептид может быть по существу чистым или в комбинации с иммуностимулирующим адъювантом (см. ниже) или использоваться в комбинации с иммуностимулирующими цитокинами или же вводиться с подходящей системой доставки, например, липосомами. Пептид может быть также конъюгирован с подходящим носителем, таким как гемоцианин фиссуреллы (КLH) или маннан (см. WO 95/18145 и(Longenecker et al., 1993)). Пептид может быть также меченым или может быть слитым белком или гибридной молекулой. Пептиды, последовательность которых дана в настоящем изобретении, как ожидается, стимулируют CD4+ или CD8+ Т-клетки. Тем не менее, стимуляция CD8 Т-клеток более эффективна в присутствии поддержки, предоставляемой CD4 хелперными Т-клетками. Таким образом, для эпитопов МНС I класса, которые стимулируют CD8 Т-клетки, партнеры в слиянии или участки гибридной молекулы надлежащим образом предоставляют эпитопы, которые стимулируют CD4-положительные Т-клетки. CD4- и CD8-стимулирующие эпитопы хорошо известны из уровня техники и включают те, что были идентифицированы в настоящем изобретении.

В одном аспекте вакцина включает по меньшей мере один пептид, имеющий аминокислотную последовательность, с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464, и по меньшей мере один дополнительный пептид, предпочтительно от двух до 50, более предпочтительно от двух до 25, еще более предпочтительно от двух до 20 и, наиболее предпочтительно, два, три, четыре, пять, шесть, семь, восемь, девять, десять, одиннадцать, двенадцать, тринадцать, четырнадцать, пятнадцать, шестнадцать, семнадцать или восемнадцать пептидов. Пептид(ы) может(могут) быть получен(ы) из одного или более специфических ТАА и может(могут) связываться с молекулами МНС I класса.

В еще одном аспекте изобретения предлагается нуклеиновая кислота (например, полинуклеотид), кодирующая пептид или вариант пептида по изобретению. Полинуклеотид может быть, например, ДНК, кДНК, ПНК, РНК или их комбинациями, как одно-, так и/или двухнитевыми; природными или стабилизированными формами полинуклеотидов, такими как, например, полинуклеотиды с фосфоротиоатным остовом, и может содержать или не содержать интроны при условии, что полинуклеотид кодирует пептид. Разумеется, только пептиды, которые

содержат встречающиеся в природе аминокислотные остатки, соединенные встречающимися в природе пептидными связями, могут кодироваться полинуклеотидом. В другом аспекте изобретения предложен вектор экспрессии, способный экспрессировать полипептид в соответствии с изобретением.

Был разработан ряд способов связывания полинуклеотидов, в особенности ДНК, с векторами, например, с помощью комплементарных липких концов. К примеру, к сегменту ДНК могут быть добавлены комплементарные гомополимерные хвосты для встраивания в векторную ДНК. Этот вектор и сегмент ДНК в таком случае соединены водородной связью между комплементарными гомополимерными хвостами, образуя молекулы рекомбинантной ДНК.

Синтетические линкеры, содержащие один или несколько сайтов рестрикции, обеспечивают альтернативный способ присоединения сегмента ДНК к векторам. Синтетические линкеры, содержащие ряд сайтов распознавания рестрикционной эндонуклеазы, имеются в продаже в различных источниках, включая International Biotechnologies Inc, Нью-Хейвен, Коннектикут, США.

В желаемом способе модификации ДНК, кодирующей полипептид по изобретению, используется полимеразная цепная реакция, как раскрыто в работе Saiki RK и соавт. (Saiki et al., 1988). Этот способ может быть использован для введения ДНК в подходящий вектор, например, при конструировании в подходящих сайтах рестрикции, или же он может быть использован для модификации ДНК другими пригодными путями, известными из уровня техники. Если используются вирусные векторы, то предпочтительными являются поксвирусные или аденовирусные векторы.

Затем ДНК (или в случае ретровирусных векторов РНК) может экспрессироваться в подходящем хозяине для получения полипептида, включающего пептид или вариант по изобретению. Таким образом, ДНК, кодирующая пептид или вариант по изобретению, может быть использована в соответствии с известными методиками,

модифицированными соответствующим образом с учетом раскрытых в данном описании идей, для конструирования вектора экспрессии, который затем используется для трансформации подходящей клетки-хозяина для экспрессии и получения полипептида по изобретению. Такие методики включают те, что раскрыты, например, в патентах США №№ 4 440 859, 4 530 901, 4 582 800, 4 677 063, 4 678 751, 4 704 362, 4 710 463, 4 757 006, 4 766 075 и 4 810 648.

ДНК (или в случае ретровирусных векторов — РНК), кодирующая полипептид, представляющий собой соединение по изобретению, может быть присоединена к обширному ряду других последовательностей ДНК для введения в соответствующего хозяина. ДНК-спутник будет зависеть от природы хозяина, способа введения ДНК хозяину и от того, желательно ли поддержание в эписомальной или интеграционной форме.

Как правило, ДНК вводится в вектор экспрессии, такой как плазмида, с соответствующей ориентацией и правильной рамкой считывания для экспрессии. Если необходимо, то ДНК может быть соединена с соответствующими нуклеотидными последовательностями, обеспечивающими координацию транскрипции и трансляции, распознаваемыми желательным хозяином, хотя такие контрольные элементы обычно имеются в векторе экспрессии. Вектор вводится затем хозяину стандартными способами. Как правило, не все хозяева трансформируются вектором. Поэтому будет необходимо трансформированные клетки-хозяева. Одна из методик отбора включает введение в вектор экспрессии последовательности ДНК с любыми необходимыми элементами контроля, которая кодирует выбранный признак В трансформированной клетке, такой как устойчивость к антибиотикам.

В качестве альтернативы ген для такого выбираемого признака может быть на другом векторе, который используется для совместной трансформации желаемой клетки-хозяина.

Клетки-хозяева, которые были трансформированы рекомбинантной ДНК по изобретению, культивируют затем в течение достаточного времени и при соответствующих условиях, известных специалистам данной области, с учетом раскрытых в данном описании идей, что ведет к экспрессии полипептида, который после этого может быть выделен.

Известно множество систем экспрессии, включающих бактерии (например, *E. coli* и *Bacillus* subtilis), дрожжи (например, *Saccharomyces cerevisiae*), мицелиальные грибы (например, *Aspergillus spec.*), растительные клетки, клетки животных и насекомых. Предпочтительно, чтобы система была клетками млекопитающих, такими как клетки СНО, имеющимися в наличии в Американской коллекции типовых культур ATCC.

Типичная клеточная векторная плазмида млекопитающих для конститутивной экспрессии включает промотор CMV или SV40 с подходящим концевым участком поли-А и маркером устойчивости, таким как неомицин. Одним примером является pSVL, имеющимся в наличии в компании Pharmacia, Пискатеуэй, Нью-Джерси, США. Примером индуцируемого вектора экспрессии млекопитающих является pMSG, также имеющийся в наличии в Pharmacia. Пригодными плазмидными векторами дрожжей являются pRS403-406 и pRS413-416, и они, как правило, имеются в наличии у компании Stratagene Cloning Systems, Ла Джолла, Калифорния 92037, США. Плазмиды pRS403, pRS404, pRS405 и pRS406 являются дрожжевыми интегрирующими плазмидами (Ylps) и включают дрожжевые селектируемые маркеры HIS3, TRP1, LEU2 и URA3. Плазмиды pRS413-416 являются дрожжевыми плазмидами с центромерами (Ycp). Основанные на промоторе CMV векторы (например, компании Sigma-Aldrich) обеспечивают кратковременную устойчивую экспрессию, цитоплазматическую экспрессию или секрецию и Nтерминальную или С-терминальную маркировку в различных комбинациях FLAG, 3xFLAG, с-myc или MAT. Данные слитые белки позволяют проводить выявление, очистку и анализ рекомбинантного белка. Слияния с двойной меткой обеспечивают гибкость при выявлении.

Сильный регуляторный участок промотора цитомегаловируса человека (CMV) повышает уровни конститутивной экспрессии белка, достигающие 1 мг/л в клетках COS. Для менее активных клеточных линий белковые уровни обычно составляют ~0,1 мг/л. Присутствие точки начала репликации SV40 будет приводить к высоким уровням репликации ДНК в пермиссивных клетках COS. Векторы CMV, например, могут содержать точку начала репликации рМВ1 (производное рВR322) в бактериальных клетках, ген бета-лактамазы для отбора устойчивости к ампициллину у бактерий, ројуА гормона роста человека, и точку начала репликации f1. Векторы, содержащие лидерную последовательность препротрипсина (PPT), могут направлять секрецию слитых белков FLAG в культуральной среде для очистки с использованием антител к FLAG, смол и планшетов. Другие векторы и системы экспрессии для применения с различными клетками-хозяевами хорошо известны из уровня техники.

В другом предпочтительном варианте осуществления кодируются два или более пептида или варианта пептидов по изобретению и, таким образом, они экспрессируются последовательно (как в случае структуры типа «бусины на нити»). В этих целях пептиды или варианты пептидов могут быть соединены или слиты воедино с помощью фрагментов линкерных аминокислот, таких как, например, LLLLL, или же могут быть соединены без какого(их)-либо дополнительного(ых) пептида(ов) между ними. Эти структуры могут быть также использованы в противораковой терапии и, возможно, индуцировать иммунные ответы с участием как молекул МНС I, так и МНС II класса.

Настоящее изобретение относится также к клетке-хозяину, трансформированной с помощью полинуклеотидной векторной конструкции по настоящему изобретению. Клетка-хозяин может быть как прокариотической, так и эукариотической. Бактериальные клетки могут быть, предпочтительно, прокариотическими клеткамихозяевами при некоторых условиях и обычно являются штаммом *E. coli*, таким как, например, *E. coli* штамма DH5, имеющимся в наличии в Bethesda Research

Laboratories Inc., Бетесда, Мэриленд, США, и RR1, имеющимся в наличии в Американской коллекции типовых культур («American Type Culture Collection» Мэриленд, США (№ АТСС 31343). Предпочтительные (ATCC), Роквил, эукариотические клетки-хозяева включают клетки дрожжей, насекомых и млекопитающих. позвоночных. предпочтительно клетки фибробластных клеток и клеток толстой кишки таких видов как мышь, крыса, обезьяна или человек. Дрожжевые клетки-хозяева включают ҮРН499, ҮРН500 и YPH501, которые, как правило, имеются в наличии в Stratagene Cloning Systems, Ла Джола, Калифорния 92037, США. Предпочтительные клетки-хозяева млекопитающих включают клетки яичника китайского хомяка (СНО), имеющиеся в наличии в ATCC как CCL61, эмбриональные клетки швейцарской мыши линии NIH/3T3, имеющиеся в наличии в ATCC как CRL 1658, клетки COS-1 из почек обезьяны, имеющиеся в наличии в ATCC как CRL 1650, и клетки 293, являющиеся эмбриональными клетками почек эмбрионов человека. Предпочтительными клетками насекомых являются клетки Sf9, которые могут трансфицироваться с помощью бакуловирусных векторов экспрессии. Обзор в отношении выбора подходящих клеток-хозяев для экспрессии представлен, например, в учебном пособии авторов Paulina Balbás и Argelia Lorence «Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols », часть первая, второе издание, ISBN 978-1-58829-262-9, и другой литературе, известной специалисту данной области.

Трансформация соответствующих клеток-хозяев с помощью ДНК-конструкции по настоящему изобретению производится при помощи хорошо известных способов, которые обычно зависят от типа используемого вектора. Относительно трансформации прокариотических клеток-хозяев см., например, работу Cohen и соавт. (Cohen et al., 1972) и (Green and Sambrook, 2012). Трансформация дрожжевых клеток описывается в работе Sherman и соавт. (Sherman et al., 1986). Также подходит метод Бигса (Beggs) (Beggs, 1978). Что касается клеток позвоночных, то подходящие для трансфекции таких клеток реагенты, например, фосфат кальция и DEAE-декстран или липосомальные составы, имеются в наличии в Stratagene

Cloning Systems или Life Technologies Inc., Гейтерсберг, Мэриленд 20877, США. Электропорация также подходит для трансформации и/или трансфекции клеток и хорошо известна из уровня техники для трансформации дрожжевых клеток, бактериальных клеток, клеток насекомых и клеток позвоночных.

Успешно трансформированные клетки, т. е. клетки, которые содержат конструкцию ДНК по настоящему изобретению, могут быть идентифицированы хорошо известными способами, такими как ПЦР. Альтернативно наличие белка в супернатанте может быть выявлено с применением антител.

Следует понимать, что некоторые клетки-хозяева по изобретению подходят для получения пептидов по изобретению, например, бактериальные, дрожжевые клетки и клетки насекомых. Тем не менее, в конкретных терапевтических методах могут использоваться другие клетки-хозяева. Например, антигенпрезентирующие клетки, такие как дендритные клетки, могут с пользой быть использованы для экспрессии пептидов по изобретению так, что их можно будет нагружать на подходящие молекулы МНС. Таким образом, в настоящем изобретении предложена клетка-хозяин, включающая нуклеиновую кислоту или вектор экспрессии в соответствии с изобретением.

В предпочтительном варианте осуществления клетка-хозяин является антигенпрезентирующей клеткой, частности, дендритной клеткой антигенпрезентирующей клеткой. АПК, нагруженные рекомбинантным слитым белком, содержащим простатическую кислую фосфатазу (РАР), были одобрены Управлением по контролю за продуктами питания и лекарственными средствам США (FDA) 29 апреля 2010 г. для применения при лечении метастатического HRPC (гормон-рефрактерного рака предстательной железы), протекающего бессимптомно или с минимально выраженными симптомами (сипулейцел-Т) (Rini et al., 2006; Small et al., 2006).

В другом аспекте изобретения предложен способ получения пептида или его варианта, причем способ включает культивацию клетки-хозяина и выделение пептида из клетки-хозяина или его культуральной среды.

В другом варианте осуществления пептид, нуклеиновая кислота или вектор экспрессии по изобретению применяются в медицине. Например, пептид или его вариант может приготавливаться для внутривенного (в/в) введения, подкожного (п/к) введения, внутрикожного (в/к) введения, внутрибрюшинного (в/б) введения, внутримышечного (в/м) введения. Предпочтительные способы введения пептидов включают п/к, в/к, в/б, в/м и в/в. Предпочтительные способы введения ДНК включают в/к, в/м, п/к, в/б и в/в. Вводиться могут, к примеру, дозы от 50 мкг до 1,5 мг, предпочтительно от 125 мкг до 500 мкг пептида или ДНК, в зависимости от соответствующего пептида или ДНК. Дозировка в данном диапазоне успешно использовалась в предыдущих клинических исследованиях (Walter et al., 2012).

Полинуклеотид, применяемый в активной вакцинации, может быть по существу чистым или содержаться в подходящем векторе или системе доставки. Нуклеиновая кислота может быть ДНК, кДНК, ПНК, РНК или их комбинацией. Методы конструирования и введения такой нуклеиновой кислоты хорошо известны из уровня техники. Обзор представлен, например, в работе Teufel и соавт. (Teufel et al., 2005). Полинуклеотидные вакцины просто получить, однако механизм действия этих векторов по индуцированию иммунного ответа понятен не полностью. Подходящие векторы и системы доставки включают вирусные ДНК и/или РНК, такие как системы, которые основаны на аденовирусе, вирусе осповакцины, ретровирусах, вирусе герпеса, аденоассоциированном вирусе или гибридах, содержащих элементы более чем одного вируса. Невирусные системы доставки включают катионные липиды и катионные полимеры и хорошо известны из уровня техники в области доставки ДНК. Также может быть использована физическая доставка, такая как посредством «генного пистолета». Пептид или пептиды, кодируемые нуклеиновой кислотой, могут быть слитым белком, например, эпитопом. который стимулирует Т-клетки против соответствующего противоположного определяющего комплементарность участка CDR, как описывается выше.

Лекарственное средство по изобретению может также включать один или более адъювантов. Адъюванты – это вещества, которые неспецифически усиливают или потенцируют иммунный ответ (например, иммунные ответы, опосредованные CD8положительными Т-клетками или хелперными Т-клетками (ТН) на антиген, и могут, таким образом, рассматриваться как полезные в лекарственном средстве по настоящему изобретению. Подходящие адъюванты включают, но без ограничения, 1018 ISS, соли алюминия, AMPLIVAX®, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, флагеллин или лиганды TLR5, полученные из флагеллина, лиганд FLT3, ГМ-КСФ, IC30, IC31, имиквимод (ALDARA®), резимиквимод, ImuFact IMP321, интерлейкины, такие как ИЛ-2, ИЛ-13, ИЛ-21, интерферон-альфа или бета или их пегилированные производные, IS Patch, ISS, ISCOMATRIX, иммуностимулирующие комплексы ISCOM, JuvImmune®, LipoVac, MALP2, MF59, монофосфорил липид A, Moнтанид IMS 1312, Moнтанид ISA 206, Moнтанид ISA 50V, Moнтанид ISA-51, эмульсии «вода в масле» и «масло в воде», ОК-432, ОМ-174, ОМ-197-МР-ЕС, ONTAK, OspA, векторную систему PepTel®, основанные на поли-(лактид когликолиде) [PLG] и декстране микрочастицы, талактоферрин SRL172, виросомы и другие вирусоподобные частицы, YF-17D, VEGF trap, R848, бета-глюкан, Pam3Cys, QS21, СТИМУЛОН Aquila который получают сапонина, И3 микобактериальные экстракты и синтетические имитаторы бактериальных клеточных стенок и другие запатентованные адъюванты, такие как Detox компании Ribi, Quil или Superfos. Предпочтительными адъювантами являются такие как адъювант Фрейнда или ГМ-КСФ. Несколько иммунологических адъювантов (например, МF59), специфических для дендритных клеток, и их получение были описаны ранее (Allison and Krummel, 1995). Также могут использоваться цитокины. Несколько цитокинов были непосредственно соотнесены с влиянием на миграцию дендритных клеток к лимфоидным тканям (например, TNF-), ускоряя созревание дендритных клеток до эффективных, презентирующих антиген Т-лимфоцитам, клеток (например, ГМ-КСФ, ИЛ-1 и ИЛ-4) (патент США № 5 849 589, специально включенный сюда в полном объеме путем ссылки) и действуя как иммуноадъюванты (например, ИЛ-12, ИЛ-15, ИЛ-23, ИЛ-7, ИНФ-альфа, ИНФ-бета) (Gabrilovich et al., 1996).

Об иммуностимулирующих олигонуклеотидах CpG также сообщалось, что они усиливают эффекты адъювантов в составе вакцин. Не желая быть связанными соответствием какой-либо конкретной теории, авторы полагают, что CpGолигонуклеотиды при активации врожденной (не приобретенной) иммунной системы действуют с помощью Toll-подобных рецепторов (TLR), в основном, TLR9. Вызванная CpG активация TLR9 усиливает антиген-специфичные гуморальные и клеточные ответы на широкий спектр антигенов, включая пептидные или белковые антигены, живые или убитые вирусы, вакцины из дендритных клеток, аутологичные клеточные вакцины и полисахаридные конъюгаты как в профилактических, так и терапевтических вакцинах. Более важно то, что улучшается созревание и дифференциация дендритных клеток, приводя к повышенной активации клеток типа ТН1 и интенсивной выработке цитотоксических Т-лимфоцитов (ЦТЛ) даже при отсутствии помощи со стороны CD4 Т-клеток. Активация TH1, вызванная стимуляцией TLR9, сохраняется даже в присутствии вакцинных адъювантов, таких как квасцы или неполный адъювант Фрейнда (IFA), которые обычно способствуют активации TH2. CpG-олигонуклеотиды проявляют даже большую адъювантную активность, если они входят в состав или вводятся в организм вместе с другими адъювантами или в таких составах как микрочастицы, наночастицы, липидные эмульсии или в подобных составах, которые в особенности необходимы для инициации сильного ответа, если антиген относительно слаб. Они также ускоряют иммунную реакцию и позволяют снизить дозы антигена приблизительно на два порядка в сравнении с ответами антитела на полную дозу вакцины без СрG, что наблюдалось в некоторых экспериментах (Krieg, 2006). В патенте США № 6 406 705 B1 описывается комбинированное применение CpG-олигонуклеотидов, адъювантов, не включающих нуклеиновые кислоты, и антигена для вызывания антиген-специфического иммунного ответа. Антагонистом CpG TLR9 является dSLIM (иммуномодулятор со структурой типа двухцепочечный стебель-петля) компании Mologen (Берлин, Германия), который является предпочтительным компонентом фармацевтической композиции по настоящему изобретению. Также могут быть использованы другие молекулы, связывающиеся с TLR, такие как TLR 7, TLR 8 и/или TLR 9, связывающиеся с PHK.

Другие примеры пригодных к использованию адъювантов включают, но без ограничения, химически модифицированные CpG (например, CpR, Idera), аналоги dsPHK, такие как поли-(I:C) и их производные (например, AmpliGen®, Hiltonol®, поли-(ICLC), поли(IC-R), поли(I:C12U), бактериальные ДНК или РНК, отличные от CpG, а также иммуноактивные малые молекулы и антитела, такие как циклофосфамид, сунитиниб, бевацизумаб®, целебрекс, NCX-4016, силденафил, тадалафил, варденафил, сорафениб, темозоломид, темсиролимус, XL-999, CP-547632, пазопаниб, VEGF Trap, ZD2171, AZD2171, анти-CTLA4, другие антитела, нацеленные на основные структуры иммунной системы (например, антитела к CD40, TGFбета, рецептору TNFальфа) и SC58175, которые могут действовать терапевтически и/или как адъюванты. Количества и концентрации адъювантов и добавок, пригодных для использования в контексте настоящего изобретения, могут быть легко определены опытным специалистом без проведения излишних экспериментов.

Предпочтительными адъювантами являются анти-CD40, имиквимод, резиквимод, ГМ-КСФ, циклофосфамид, сунитиниб, бевацизумаб, интерферон-альфа, CpG олигонуклеотиды и их производные, поли-(I:C) и ее производные, РНК, силденафил и составы из твердых микрочастиц с PLG или виросомы.

В предпочтительном варианте осуществления фармацевтической композиции в соответствии с изобретением адъювант выбран из группы, состоящей из колониестимулирующих факторов, таких как гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, сарграмостим), циклофосфамид, имиквимод, резиквимод и интерферон-альфа.

В предпочтительном варианте осуществления фармацевтической композиции в соответствии с изобретением адъювант выбран из группы, состоящей из колониестимулирующих факторов, таких как гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ, сарграмостим), циклофосфамид, имиквимод и резиквимод. В предпочтительном варианте осуществления фармацевтической композиции в соответствии с изобретением адъювантом циклофосфамид, Еще является имиквимод или резиквимод. более предпочтительными адъювантами являются монтанид IMS 1312, монтанид ISA 206, монтанид ISA 50V, монтанид ISA-51, поли-ICLC (Hiltonol®) и моноклональные антитела к CD40 или их комбинации.

Эта композиция используется для парентерального введения, такого как подкожное, внутрикожное, внутримышечное или для перорального введения. Для этого пептиды и – факультативно – другие молекулы растворяют или суспендируют в фармацевтически приемлемом, предпочтительно водном, носителе. Помимо того, композиция может содержать вспомогательные вещества, такие как буферы, связующие агенты, балластные вещества, разбавители, ароматизаторы, смазочные вещества и т.д. Пептиды могут быть также введены вместе с иммуностимулирующими агентами, такими как цитокины. Обширный список вспомогательных веществ, которые могут быть использованы в такой композиции, может быть взят, например, из работы A. Kibbe, «Handbook of Pharmaceutical Excipients» (Kibbe, 2000). Композиция может использоваться для предупреждения, профилактики и/или лечения аденоматозных или раковых заболеваний. Примеры фармацевтических композиций могут быть взяты, например, из EP2112253.

Важно понимать, что иммунный ответ, вызванный вакциной в соответствии с изобретением, направлен на раковые клетки на различных стадиях клеточного цикла и различных стадиях развития опухоли. Кроме того, атака направлена на различные сигнальные пути, ассоциированные с раковым заболеванием. Это является преимуществом в сравнении с вакцинами, направленными только на одну или немногие мишени, что может привести к тому, что опухоль легко приспособится

к такой атаке (ускользание опухоли). Кроме того, не все отдельные опухоли имеют одинаковые паттерны экспрессии антигенов. Поэтому комбинация нескольких опухолеассоциированных пептидов гарантирует, что на каждой отдельной опухоли имеются по меньшей мере некоторые из этих мишеней. Композиция разработана исходя из того, что, как ожидается, каждая опухоль экспрессирует несколько антигенов и охватывает несколько независимых сигнальных путей, необходимых для роста и сохранения опухоли. Таким образом, вакцина в виде «готовой к применению» может быть легко использована для более крупной популяции пациентов. Это означает, что предварительный отбор пациентов для лечения вакциной может быть ограничен HLA-типированием, не требуя никакого дополнительного анализа биомаркеров экспрессии антигена, однако при этом остается гарантия одновременного воздействия на несколько мишеней в виде индуцированного иммунного ответа, что важно для эффективности (Banchereau et al., 2001; Walter et al., 2012).

В контексте настоящего описания понятие «каркас» относится к молекуле, которая специфически связывается с (например, антигенной) детерминантой. В одном варианте осуществления каркас способен направлять единицу, к которой он прикреплен (например, (второй) антиген-связывающий элемент) к сайту-мишени, например, к конкретному виду опухолевых клеток или стромы опухоли, несущих антигенную детерминанту (например, комплекс пептида с МНС в соответствии с настоящей патентной заявкой). В другом варианте осуществления каркас способен активировать пути передачи сигналов за счет его антигена-мишени, например, антигена комплекса Т-клеточного рецептора. Каркасы включают, но без ограничения, антитела и их фрагменты, антигенсвязывающие домены антитела, включающие вариабельный участок тяжелой цепи антитела и вариабельный участок легкой цепи антитела, связывающие белки, включающие по меньшей мере один мотив анкиринового повтора и однодоменные антигенсвязывающие (SDAB) молекулы, аптамеры, (растворимые) ТКР и (модифицированные) клетки, такие как аллогенные или аутологичные Т-клетки. Чтобы оценить, является ли молекула каркасом, связывающимся с мишенью, может быть проведен анализ связывания.

«Специфическое» связывание обозначает, что каркас связывается представляющим интерес комплексом пептида с МНС лучше, чем с другими встречающимися в природе комплексами пептида с МНС, в такой степени, что каркас, снабженный активной молекулой, способной уничтожать клетку, несущую специфическую мишень, не способен уничтожить другую клетку без специфической мишени, но презентирующую другой(ие) комплекс(ы) пептида с МНС. Связывание с другими комплексами пептида с МНС не играет роли, если пептид перекрестно реагирующего комплекса пептида с МНС не является встречающимся в природе, т. е. не образован из человеческого HLA-пептидома. Испытания для оценки потенциала уничтожения клетки-мишени хорошо известны из уровня техники. Они должны проводиться с использованием клеток-мишеней (первичные клетки или клеточные линии) с неизмененной презентацией комплексов пептида с МНС или клеток, нагруженных пептидами, таким образом, что будет достигаться уровень встречающихся в природе комплексов пептида с МНС.

Каждый каркас может включать метку, которая обеспечивает возможность обнаружения связанного каркаса за счет определения наличия или отсутствия подаваемого меткой. Например, каркас сигнала, может быть помечен флуоресцентным красителем или любой другой применимой маркерной молекулы клетки. Такие маркерные молекулы хорошо известны из области техники. Например, флуоресцентное мечение, например, с помощью флуоресцентного красителя, может обеспечивать визуализацию связанного аптамера посредством флуоресцентной или лазерной сканирующей микроскопии или проточной цитометрии.

Каждый каркас может быть конъюгирован со второй активной молекулой, такой как, например, ИЛ-21, антитело к CD3 и антитело к CD28.

Для получения дополнительной информации о полипептидных каркасах см., например, раздел уровня техники патентной заявки WO 2014/071978A1 и цитируемую в ней литературу.

Настоящее изобретение далее относится к аптамерам. Аптамеры (см., например, заявку WO 2014/191359 и цитируемую в ней литературу) — это короткие одноцепочечные молекулы нуклеиновых кислот, которые могут сворачиваться в определенные трехмерные структуры и распознавать специфические структурымишени. Оказалось, что они представляют собой подходящую альтернативу для разработки таргетной терапии. Как было продемонстрировано, аптамеры селективно связываются с различными сложными мишенями с высокой аффинностью и специфичностью.

Аптамеры, распознающие молекулы, которые находятся на поверхности клеток, были идентифицированы в последнее десятилетие и предоставляют возможность для разработки диагностических и терапевтических подходов. Так как было продемонстрировано, что аптамеры практически не обладают токсичностью и многообещающими для иммуногенностью, ОНИ являются кандидатами биомедицинского применения. Действительно, аптамеры, например, аптамеры, распознающие простатический специфический мембранный антиген, задействованы В таргетной терапии продемонстрировали успешно функциональность в моделях с ксенотрансплантатами *in vivo*. Кроме того, были идентифицированы аптамеры, распознающие конкретные опухолевые линии.

Могут быть отобраны ДНК-аптамеры, проявляющие широкий спектр свойств по распознаванию различных раковых клеток, и, в частности, клеток, образованных из солидных опухолей, тогда как неопухолегенные и первичные здоровые клетки не распознаются. Если идентифицированные аптамеры распознают не только конкретный опухолевый подтип, но и взаимодействуют с различными опухолями, это делает возможным применение аптамеров в качестве так называемых диагностических и терапевтических средств широкого спектра действия.

Более того, исследование поведения по связыванию с клетками с помощью проточной цитометрии показало, что аптамеры проявляли очень хорошую кажущуюся аффинность, которая выражалась на наномолярном уровне.

Аптамеры пригодны для диагностических и терапевтических целей. Кроме того, как могло быть продемонстрировано, некоторые аптамеры захватываются опухолевыми клетками и, таким образом, могут действовать в качестве молекулярных носителей для направленной доставки противораковых средств, таких как миРНК, в опухолевые клетки.

Могут быть отобраны аптамеры к сложным мишеням, таким как клетки и ткани и комплексы пептидов, включающих, предпочтительно состоящих из последовательности в соответствии с любой из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 в соответствии с представленным изобретением с молекулой МНС, используя метод cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment - систематическая эволюция лигандов при экспоненциальном обогащении).

Пептиды по настоящему изобретению могут использоваться для получения и разработки специфических антител к комплексам МНС/пептид. Они могут быть использованы в терапии, нацеливающей токсины или радиоактивные вещества на пораженную ткань. Другим видом использования данных антител может быть «нацеливание» радионуклидов на пораженную ткань в целях визуализации, такой как ПЭТ (позитронно-эмиссионная томография). Это может помочь в обнаружении небольших метастазов или в определении размера и точной локализации пораженных тканей.

Таким образом, в другом аспекте изобретения предложен способ получения рекомбинантного антитела, специфически связывающегося с главным комплексом гистосовместимости человека (МНС) І или ІІ класса в комплексе с

рестриктированным по HLA антигеном (предпочтительно пептидом в соответствии с настоящим изобретением), причем способ включает: иммунизацию генетически модифицированного, не являющегося человеком млекопитающего, содержащего экспрессирующие молекулы указанного главного комплекса гистосовместимости человека (МНС) I или II класса с растворимой формой молекулы МНС I или II класса в комплексе с указанным рестриктированным по HLA антигеном; выделение молекул мРНК из продуцирующих антитела клеток указанного не являющегося человеком млекопитающего; создание библиотеки фагового отображения, содержащей фаги, экспонирующие белковые молекулы, закодированные указанными молекулами мРНК; и выделение, по меньшей мере, одного фага из указанной библиотеки фагового отображения, причем указанный, по меньшей мере, один фаг, экспонирует на поверхности указанное антитело, специфически связывающееся С указанным главным комплексом гистосовместимости человека (МНС) I или II класса в комплексе с указанным рестриктированным по HLA антигеном.

В другом аспекте изобретения, таким образом, предложено антитело, которое специфически связывается с главным комплексом гистосовместимости человека (МНС) І или ІІ класса в комплексе с рестриктированным по НLА антигеном, где антитело предпочтительно является поликлональным антителом, моноклональным антителом, биспецифичным антителом и/или химерным антителом.

Соответствующие способы получения таких антител и одноцепочечных главных комплексов гистосовместимости I класса, в равной степени как и другие инструменты для получения данных антител, раскрыты в патентных заявках WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752 и в опубликованных работах (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003), которые все в целях настоящего изобретения в явном виде включены во всей полноте путем ссылки.

Предпочтительно, если антитело связывается с аффинностью связывания ниже 20 наномолей, предпочтительно ниже 10 наномолей, с комплексом, который также называется «специфическим» в контексте настоящего изобретения.

Настоящее изобретение относится к пептиду, включающему последовательность, которая выбрана из группы, состоящей из последовательностей с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 или их вариант, который по меньшей мере на 88% гомологичен (предпочтительно, если он идентичен) последовательности с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464, или их варианту, который индуцирует перекрестную реакцию Т-клеток с указанным пептидом, где указанный пептид не является базовым полипептидом полной длины.

Настоящее изобретение далее относится к пептиду, включающему последовательность, которая выбрана из группы с SEQ ID NO 1 по SEQ ID NO 387 и с SEQ ID NO 463 по SEQ ID NO 464 или его варианту, который по меньшей мере на 88% гомологичен (предпочтительно, идентичен) последовательности с SEQ ID NO 1 по SEQ ID NO 387 и с SEQ ID NO 463 по SEQ ID NO 464, где указанный пептид или его вариант имеет общую длину от 8 до 100, предпочтительно от 8 до 30 и, наиболее предпочтительно, от 8 до 14 аминокислот.

Настоящее изобретение далее относится к пептидам в соответствии с изобретением, способным связываться с молекулой главного комплекса гистосовместимости человека (МНС) I или II класса.

Настоящее изобретение далее относится к пептидам в соответствии с изобретением, где пептид состоит или состоит по существу из аминокислотной последовательности в соответствии с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464.

Настоящее изобретение далее относится к пептидам в соответствии с изобретением, где пептид модифицирован (химическим способом) и/или включает непептидные связи.

Настоящее изобретение далее относится к пептидам в соответствии с изобретением, где пептид является частью слитого белка, в частности включающим N-терминальные аминокислоты HLA-DR антиген-ассоциированной инвариантной цепи (li), или где пептид слит с антителом (или слит с последовательностью антитела), например, таким антителом, которое является специфичным для дендритных клеток.

Настоящее изобретение далее относится к нуклеиновой кислоте, кодирующей пептиды в соответствии с изобретением, при условии, что пептид не является полностью (целиком) человеческим белком.

Настоящее изобретение далее относится к нуклеиновой кислоте в соответствии с изобретением, которая является ДНК, кДНК, ПНК, РНК или их комбинациями.

Настоящее изобретение далее относится к вектору экспрессии, способному экспрессировать нуклеиновую кислоту в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к пептиду в соответствии с настоящим изобретением, к нуклеиновой кислоте в соответствии с настоящим изобретением или к вектору экспрессии в соответствии с настоящим изобретением для применения в медицине, в частности, в лечении острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной

железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия.

Настоящее изобретение далее относится к клетке-хозяину, включающей нуклеиновую кислоту в соответствии с изобретением или вектор экспрессии в соответствии с изобретением.

Настоящее изобретение далее относится к клетке-хозяину в соответствии с настоящим изобретением, которая является антигенпрезентирующей клеткой, предпочтительно – дендритной клеткой.

Настоящее изобретение далее относится к способу получения пептида в соответствии с настоящим изобретением, причем указанный способ включает культивацию клетки-хозяина в соответствии с настоящим изобретением и выделение пептида из указанной клетки-хозяина или его культуральной среды.

Настоящее изобретение далее относится к способу в соответствии с настоящим изобретением, где антиген нагружен на молекулы МНС I или II класса, экспрессированные на поверхности подходящей антигенпрезентирующей клетки, при контактировании достаточного количества антигена с антигенпрезентирующей клеткой.

Настоящее изобретение далее относится к способу в соответствии с изобретением, где антигенпрезентирующая клетка включает вектор экспрессии, способный экспрессировать указанный пептид, содержащий последовательность с SEQ ID NO: 1 по SEQ ID No. 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 или указанный вариант аминокислотной последовательности.

Настоящее изобретение далее относится к активированным Т-клеткам, полученным способом в соответствии с настоящим изобретением, где указанные Т-клетки селективно распознают клетку, которая аберрантно экспрессирует

полипептид, включающий аминокислотную последовательность в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к способу уничтожения клеток-мишеней у пациента, чьи клетки-мишени аберрантно экспрессируют полипептид, включающий любую аминокислотную последовательность в соответствии с настоящим изобретением, причем способ включает введение пациенту эффективного числа Т-клеток в соответствии с настоящим изобретением.

Настоящее изобретение далее относится к применению любого описанного пептида, нуклеиновой кислоты в соответствии с настоящим изобретением, вектора экспрессии в соответствии с настоящим изобретением, клетки в соответствии с настоящим изобретением или активированного цитотоксического Т-лимфоцита в соответствии с настоящим изобретением в качестве лекарственного средства или в производстве лекарственного средства. Настоящее изобретение далее относится к способу применения в соответствии с настоящим изобретением, где лекарственное средство проявляет противораковую активность.

Настоящее изобретение далее относится к способу применения в соответствии с изобретением, где лекарственное средство является вакциной. Настоящее изобретение далее относится к способу применения в соответствии с изобретением, где лекарственное средство проявляет противораковую активность.

Настоящее изобретение относится далее к применению в соответствии с изобретением, где указанные раковые клетки являются клетками острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких),

рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия или клетками других солидных или гематологических опухолей, таких острого миелоидного лейкоза, рака как клетки молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза. колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия.

Настоящее изобретение далее относится к конкретным белкам-маркерам и биомаркерам на основе пептидов в соответствии с настоящим изобретением, в контексте изобретения называемые «мишенями», которые могут быть использованы при постановке диагноза и/или составлении прогноза течения острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия. Настоящее изобретение относится также к применению этих новых мишеней для лечения рака.

Понятие «антитело» или «антитела» используется в контексте данного изобретения в широком смысле и включает как поликлональные, так и моноклональные антитела. В дополнение к интактным или «полным» молекулам

иммуноглобулина в понятие «антитела» включены также фрагменты (например, участки CDR, фрагменты Fv, Fab и Fc) или полимеры таких молекул иммуноглобулина и гуманизированные версии молекул иммуноглобулина, при условии, что они проявляют любое из желаемых свойств (например, специфически связываются с (поли)пептидным маркером острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, доставляют токсин к клетке острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного глиобластомы, гепатоклеточной пузыря, рака желудка, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, экспрессирующей раковый ген-маркер на повышенном уровне и/или ингибируют активность полипептида-маркера острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия) в соответствии с настоящим изобретением.

Если возможно, антитела по изобретению могут быть куплены в коммерческих источниках. Антитела по изобретению могут быть также получены при использовании хорошо известных способов. Опытному специалисту будет понятно, что для получения антител по изобретению могут использоваться как полипептидные маркеры острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия полной длины, так и их фрагменты. Полипептид, необходимый для получения антитела по изобретению, может быть частично или полностью очищенным из природного источника или же может быть получен с использованием методики рекомбинантной ДНК.

Например, кДНК, кодирующая пептид в соответствии с настоящим изобретением, такой как пептид с последовательностью с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID No. 464, полипептид или вариант или его фрагмент может быть экспрессирована в прокариотических клетках (например, бактерий) или эукариотических клетках (например, клетках дрожжей, насекомых млекопитающих), после чего рекомбинантный белок может быть очищен и использован в получении препарата моноклональных или поликлональных антител, которые специфически связываются с полипептидным маркером острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного глиобластомы, гепатоклеточной пузыря, рака желудка, карциномы,

плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, использованным для получения антитела по изобретению.

Специалисту данной области будет понятно, что получение двух или более различных наборов моноклональных или поликлональных антител увеличивает вероятность получения антитела CO специфичностью и аффинностью, необходимыми для предназначенного для него использования (например, для иммуногистохимии, визуализации *in* vivo, терапии иммунотоксина). Антитела испытывают на желаемую для них активность с помощью известных методов в соответствии с целью применения антител (например, ELISA, иммуногистохимия, иммунотерапия и т. д.; для получения дальнейшей информации по генерированию и испытанию антител см., например, Greenfield, 2014 (Greenfield, 2014)). Например, антитела могут быть исследованы с помощью ELISA или метода иммунного блоттинга (Western-blot), иммуногистохимического окрашивания зафиксированных формалином образцов раковых тканей или замороженных тканевых срезов. После первоначального определения их характеристик *in vitro* антитела, предназначаемые для терапевтического или диагностического применения in vivo исследуют в соответствии с известными методами клинического исследования.

Понятие «моноклональное антитело» в контексте настоящего изобретения обозначает антитело, полученное из, по существу, гомогенной популяции антител, т. е. отдельные антитела внутри популяции идентичны за исключением возможных естественных мутаций, которые могут быть представлены в небольших количествах. Моноклональные антитела в контексте настоящего изобретения специфически включают «химерные» антитела, в которых участок тяжелой и/или легкой цепи идентичен или гомологичен соответствующим последовательностям

антител, полученных из конкретного вида или относящихся к конкретному классу или подклассу антител, в то время как остальная(ые) часть(и) цепи идентична(ы) или гомологична(ы) соответствующим последовательностям антител, полученных из другого вида или относящихся к другому классу или подклассу антител, в равной степени как и фрагментов таких антител, пока они проявляют желаемую антагонистическую активность (Патент США № 4 816 567, который включен в настоящее описание в полном объеме).

Моноклональные антитела по изобретению могут быть получены при использовании гибридомного метода. В рамках гибридомного метода мышь или другое подходящее животное-хозяин обычно иммунизируется иммунизирующим веществом, чтобы инициировать лимфоциты, которые вырабатывают или способны вырабатывать антитела, которые будут специфически связываться с иммунизирующим веществом. Альтернативно лимфоциты могут быть иммунизированы *in vitro*.

Моноклональные антитела могут быть также получены с помощью технологий рекомбинантных ДНК, таких как описываемые в патенте США № 4 816 567. ДНК, кодирующая моноклональные антитела по изобретению, может быть легко выделена и секвенирована с помощью стандартных методик (например, при использовании олигонуклеотидных зондов, которые способны специфически связываться с генами, кодирующими тяжелые и легкие цепи мышиных антител).

In vitro-методы также подходят для получения моновалентных антител. Расщепление антител для получения их фрагментов, в особенности Fab-фрагментов, может быть произведено при использовании стандартных методик, известных из уровня техники. К примеру, расщепление может производиться при использовании папаина. Примеры расщепления под воздействием папаина описываются в заявке WO 94/29348 и в патенте США № 4 342 566. Расщепление антител под воздействием папаина обычно приводит к двум идентичным фрагментам, связывающимся с антигеном и называемым Fab-фрагментами,

каждый из которых имеет отдельный антиген-связывающий сайт и остаточный Fcфрагмент. В результате обработки пепсином получается фрагмент F(ab')2 и фрагмент pFc'.

Фрагменты антител, как связанные с другими последовательностями, так и не связанные, могут также включать вставки, делеции, замещения или другие выбранные модификации конкретных участков или аминокислотных остатков при условии, что активность фрагмента незначительно изменена или повреждена по сравнению с немодифицированным антителом или фрагментом антитела. Данные модификации могут внести некоторые дополнительные свойства, такие как добавление/удаление аминокислот, способных к дисульфидному связыванию. увеличение их биологической стойкости, изменение их секреторных характеристик и т. д. В любом случае, фрагмент антитела должен обладать свойством биологической активности, таким как активностью связывания, регуляцией связывания на связывающем домене и т. д. Функциональные или активные участки антитела могут быть идентифицированы при мутагенезе конкретного участка белка с последующей экспрессией и исследованием экспрессированного полипептида. Такие способы полностью очевидны для опытного специалиста данной области и могут включать сайт-специфический мутагенез нуклеиновой кислоты, кодирующей фрагмент антитела.

Антитела по изобретению могут далее включать гуманизированные антитела или человеческие антитела. Гуманизированные формы нечеловеческих (например, мышиных) антител - это химерные иммуноглобулины, иммуноглобулиновые цепи или их фрагменты (такие как Fv, Fab, Fab' или другие антиген-связывающие субпоследовательности антител), которые содержат минимальную последовательность, полученную ИЗ нечеловеческого иммуноглобулина. Гуманизированные антитела включают человеческие иммуноглобулины (антителореципиент), в которых остатки из комплементарных детерминантных областей (CDR) реципиента замещены остатками из CDR биологических видов, не являющихся человеком (донорское антитело), таких как мыши, крысы или кролики, имеющими желаемую специфичность, аффинность и связывающая способность. В некоторых случаях остатки Fv-каркаса (FR) человеческого иммуноглобулина замещены соответствующими остатками нечеловеческого происхождения. Гуманизированные антитела могут также включать остатки, встречаются ни в антителе-реципиенте, ни в импортированном CDR или каркасных последовательностях. Как правило, гуманизированное антитело будет включать по сути все из по меньшей мере одного и, как правило, двух вариабельных доменов, в которых все или по существу все участки CDR соответствуют таковым нечеловеческого иммуноглобулина, и все или по сути все из участков FR являются иммуноглобулина таковыми консенсусной последовательности Оптимально, чтобы гуманизированное антитело содержало также по меньшей мере часть константного участка иммуноглобулина (Fc), как правило, человеческого иммуноглобулина.

Способы гуманизации нечеловеческих антител хорошо известны из уровня техники. В целом, гуманизированное антитело имеет один или более аминокислотный остаток, введенный в него из источника, не являющегося человеческим. Такие аминокислотные остатки нечеловеческого происхождения часто называются «импортированными» остатками, которые обычно берутся из «импортированного» вариабельного домена. Гуманизация может быть по существу произведена посредством замены участков CDR или последовательностей CDR грызунов на соответствующие последовательности человеческого антитела. Соответственно, такие «гуманизированные» антитела являются химерными антителами (патент США № 4 816 567), где существенно меньшая часть, чем один интактный человеческий вариабельный была соответствующей домен заменена последовательностью видов, являющихся человеком. На практике не гуманизированные антитела являются обычно человеческими антителами, в которых некоторые остатки CDR и, возможно, остатки FR заменены на остатки аналогичных сайтов антител грызунов.

Использоваться могут трансгенные животные (например, мыши), которые способны при иммунизации вырабатывать полный спектр человеческих антител при отсутствии выработки эндогенного иммуноглобулина. Например, было описано, что гомозиготная делеция гена, кодирующего участок присоединения тяжелой цепи антитела у химерных и мутантных мышей зародышевой линии, приводит к полному ингибированию выработки эндогенных антител. Перенос генной матрицы иммуноглобулина клеток зародышевой линии человека в таких мутантных мышей зародышевой линии будет приводить к выработке человеческих антител после антигенной стимуляции. Человеческие антитела могут быть также получены в библиотеках фагового отображения.

Антитела по изобретению предпочтительно вводятся субъекту в фармацевтически приемлемом носителе. Подходящее количество фармацевтически приемлемой соли обычно используется в составе для придания композиции изотоничности. Примеры фармацевтически приемлемых носителей включают физиологический раствор, раствор Рингера и раствор глюкозы. Уровень рН раствора составляет, предпочтительно, от около 5 до около 8 и, более предпочтительно, от около 7 до около 7,5. Кроме того, предлагаются носители, включающие препараты пролонгированного высвобождения, такие как полупроницаемые матрицы твердых гидрофобных полимеров, содержащие антитело, матрицы которых имеют вид профилированных объектов, к примеру, пленки, липосомы или микрочастицы. Для специалиста данной области будет очевидно, что определенные носители могут быть более предпочтительными в зависимости от, например, способа введения и концентрации вводимого антитела.

Антитела могут вводиться субъекту, пациенту или в клетку посредством инъекции (например, внутривенно, внутрибрюшинно, подкожно, внутримышечно) или другими способами, такими как вливание, которое гарантирует доставку к кровотоку эффективным образом. Антитела также могут вводиться внутритуморальными или перитуморальными способами, чтобы вызвать местные, а также и системные

терапевтические эффекты. Предпочтительными являются местное или внутривенное введение.

Эффективная дозировка и режим введения антител могут быть определены эмпирически, а принятие таковых решений под силу специалисту данной области. Специалистам данной области будет понятно, что дозировка антител, которые должны быть введены, будет варьироваться в зависимости от, например, субъекта, которому будет вводиться антитело, способа введения, конкретного типа используемого антитела и других вводимых медикаментов. Типичная суточная доза антител при монотерапии антителами может варьироваться от около 1 мкг/кг вплоть до 100 мг/кг массы тела или более в день, в зависимости от факторов, упоминаемых выше. После введения антитела, предпочтительно для лечения острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких). рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, эффективность терапевтического антитела может быть оценена различными способами, известными компетентному специалисту данной области. Например, размер, количество и/или распределение рака у субъекта, проходящего лечение, может контролироваться с помощью стандартных методов визуализации опухоли. Введенное в терапевтических целях антитело, которое блокирует рост опухоли, приводит к уменьшению размера и/или предотвращает развитие новых опухолей в сравнении с течением болезни, которое бы имело место без введения антитела, и является эффективным антителом для лечения рака.

В другом аспекте изобретения предложен способ получения растворимого Т-клеточного рецептора (ТКР), распознающего конкретный комплекс пептида и МНС.

растворимые Т-клеточные рецепторы могут быть получены специфических Т-клеточных клонов, и их аффинность может быть повышена за счет мутагенеза, направленного на определяющие комплементарность участки. Для выбора Т-клеточного рецептора может использоваться фаговое отображение (заявка США 2010/0113300, (Liddy et al., 2012)). В целях стабилизации Т-клеточных рецепторов в процессе фагового отображения и в случае практического применения в качестве лекарственного средства альфа- и бета-цепи могут быть связаны, например, посредством не встречающихся в природе дисульфидных связей, других ковалентных связей (одноцепочечный Т-клеточный рецептор) или с помощью доменов димеризации (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999). В целях выполнения определенных функций на клетках-мишенях Тклеточный рецептор может быть связан с токсинами, лекарственными средствами, цитокинами (см., например, заявку США 2013/0115191) и доменами, рекрутирующими эффекторные клетки, такими как анти-CD3 домен, и т. д. Более того, он может быть экспрессирован на Т-клетках, используемых для адоптивного переноса. Дополнительную информацию можно найти в патентных заявках WO 2004/033685A1 и WO 2004/074322A1. Комбинация растворимых ТКР описывается в патентной заявке WO 2012/056407A1. Другие способы получения описаны в патентной заявке WO 2013/057586A1.

Помимо того, пептиды и/или ТКР или антитела или другие связывающиеся молекулы настоящего изобретения могут быть использованы для подтверждения диагноза рака, поставленного патоморфологом на основании исследования биоптата.

Эти антитела или ТКР могут также применяться для диагностики *in vivo*. Как правило, антитело помечают радионуклеотидом (таким как ¹¹¹In, ⁹⁹Tc, ¹⁴C, ¹³¹I, ³H, ³² Р или ³⁵ S), так что опухоль может быть локализована с помощью иммуносцинтиграфии. В одном варианте осуществления антитела или их фрагменты связываются с внеклеточными доменами двух или более мишеней

белка, выбранного из группы, состоящей из указанных выше белков, при показателе аффинности (Kd) ниже чем 1x10 мкМ.

Антитела для диагностических целей могут помечаться зондами, подходящими для обнаружения различными способами визуализации. Способы обнаружения зондов включают, но без ограничения, флуоресценцию, световую, конфокальную и электронную микроскопию; магнитно-резонансную томографию и спектроскопию; флюороскопию, компьютерную томографию позитронно-эмиссионную И томографию. Подходящие зонды включают, но без ограничения, флуоресцеин, родамин, эозин и другие флюорофоры, радиоизотопы, золото, гадолиний и другие лантаноиды, парамагнитное железо, фтор-18 и другие позитронно-активные радионуклиды. Более того, зонды могут быть би- или мультифункциональными и обнаруживаться более чем одним из приведенных способов. Данные антитела могут быть помечены напрямую или опосредованно указанными зондами. Присоединение зондов к антителам включает ковалентное присоединение зонда, внедрение зонда в антитело и ковалентное присоединение хелатирующего соединения для присоединения зонда, среди других широко признанных методов в данной области. Для иммуногистохимических исследований образец пораженной ткани может быть свежим или замороженным или может быть залит парафином и зафиксирован таким консервантом как формалин. Зафиксированный или залитый срез приводят в контакт с помеченным первичным антителом и вторичным антителом, где антитело используется для обнаружения экспрессии белков in situ.

изобретения Другой аспект настоящего включает способ получения активированных Т-клеток in vitro, причем способ включает контактирование Тклеток in vitro с нагруженными антигеном молекулами МНС человека, экспрессированными на поверхности подходящей антигенпрезентирующей клетки на период времени, достаточного для активации антиген-специфическим образом Т-клетки, где антиген является пептидом в соответствии с изобретением. Предпочтительно, если с антигенпрезентирующей клеткой применяется достаточное количество антигена.

Предпочтительно, если в клетке млекопитающих не имеется пептидного транспортера ТАР или имеется его пониженный уровень или пониженная функциональная активность. Подходящие клетки с дефицитом пептидного транспортера ТАР, включают Т2, RMA-S и клетки дрозофилы. ТАР - это транспортер, связанный с процессингом антигена.

Линия человеческих клеток с недостаточностью T2, на которые загружаются пептиды, имеется в наличии в Американской коллекции типовых культур, 12301 Parklawn Drive, Rockville, Maryland 20852, США под каталожным номером CRL 1992; клеточная линия дрозофилы, линия Schneider 2 имеется в наличии в АТСС под каталожным номером CRL 19863; клеточная линия мыши RMA-S описывается в работе Ljunggren и соавт. (Ljunggren and Karre, 1985).

Предпочтительно, если до трансфекции указанная клетка-хозяин, по существу, не экспрессирует молекулы МНС I класса. Также предпочтительно, если клеткастимулятор экспрессирует молекулу, важную для обеспечения сигнала костимуляции для Т-клеток, такую как любая из В7.1, В7.2, ICAM-1 и LFA 3. Последовательности нуклеиновых кислот многочисленных молекул МНС I класса и костимуляторных молекул общедоступны в банках данных GenBank и EMBL.

В случае использования эпитопа МНС I класса в качестве антигена, Т-клетки являются CD8-положительными Т-клетками.

Если антигенпрезентирующая клетка трансфицирована для экспрессии такого эпитопа, то предпочтительно, чтобы клетка включала вектор экспрессии, способный экспрессировать пептид, содержащий последовательности с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464 или вариант его аминокислотной последовательности.

Для получения Т-клеток *in vitro* могут быть использованы многие другие способы. ЦТЛ используются Например, для получения аутологичные инфильтрующие лимфоциты. Plebanski и соавт. (Plebanski et al., 1995) для получения Т-клеток использовали аутологичные лимфоциты периферической крови (ЛПК). Кроме того, возможно получение аутологичных Т-клеток посредством нагрузки дендритных клеток пептидом или полипептидом или посредством инфицирования рекомбинантным вирусом. Для получения аутологичных Т-клеток также можно использовать В-клетки. Кроме того, для получения аутологичных Тклеток могут быть использованы макрофаги, нагруженные пептидом или полипептидом или инфицированные рекомбинантным вирусом. S. Walter и соавт. (Walter et al., 2003) описывают прайминг Т-клеток in vitro с использованием искусственных антигенпрезентирующих клеток (иАПК), что является также подходящим способом получения Т-клеток против выбранного пептида. В настоящем изобретении иАПК были получены прикреплением предварительно образованных комплексов МНС-пептид к поверхности полистироловых частиц (микросфер) с помощью биохимического способа с биотином-стрептавидином. Данная система допускает точный контроль плотности МНС на иАПК, который позволяет селективно вызвать высоко- или низкоавидные антигенспецифические Т-клеточные ответы с высокой эффективностью в образцах крови. Кроме комплексов МНС-пептид, иАПК должны нести другие белки с костимуляторной активностью, такие как антитела к CD28, прикрепленные к их поверхности. Кроме того, такая основанная на иАПК система часто требует добавления соответствующих растворимых факторов, к примеру, цитокинов, таких как интерлейкин-12.

При получении Т-клеток могут быть также использованы аллогенные клетки, и этот способ подробно описывается в патентной заявке WO 97/26328, включенной сюда путем ссылки. Например, кроме клеток дрозофилы и Т2-клеток, для презентации антигенов могут использоваться другие клетки, такие как клетки яичника китайского хомяка (СНО), бакуловирус-инфицированные клетки насекомых, бактерии, дрожжи и инфицированные осповакциной клетки-мишени. Кроме того, могут быть

использованы растительные вирусы (см., например, работу Porta и соавт. (Porta et al., 1994), в которой описывается разработка мозаичного вируса китайской вигны как высокопродуктивной системы презентации чужеродных пептидов.

Активированные Т-клетки, которые направлены против пептидов по изобретению, пригодны для терапии. Таким образом, в другом аспекте изобретения предложены активированные Т-клетки, получаемые вышеупомянутыми способами по изобретению.

Активированные Т-клетки, полученные с помощью приведенного выше способа, будут селективно распознавать клетку, которая аберрантно экспрессирует полипептид, включающий аминокислотную последовательность с SEQ ID NO: 1 по SEQ ID NO: 387 и с SEQ ID NO: 463 по SEQ ID NO: 464.

Предпочтительно, чтобы Т-клетка распознавала клетку при взаимодействии посредством ее ТКР с комплексом HLA/пептид (например, при связывании). Тклетки пригодны для способа уничтожения клеток-мишеней у пациента, клеткимишени которого аберрантно экспрессируют полипептид, включающий аминокислотную последовательность по изобретению, где пациенту вводится эффективное число активированных Т-клеток. Т-клетки, которые введены пациенту, могут быть получены от пациента и активироваться, как описывалось выше (т. е. они являются аутологичными Т-клетками). Альтернативно Т-клетки получают не от пациента, а от другого индивида. Разумеется, предпочтительно, если индивид является здоровым индивидом. Под «здоровым индивидом» авторы изобретения имеют в виду, что индивид имеет хорошее общее состояние здоровья, предпочтительно, чтобы он имел компетентную иммунную систему и, более предпочтительно, не страдал ни одним заболеванием, которое можно легко проконтролировать и выявить.

Клетками-мишенями *in vivo* для CD8-положительных Т-клеток в соответствии с настоящим изобретением могут быть клетки опухоли (которые иногда

экспрессируют молекулы МНС II класса) и/или стромальные клетки, окружающие опухоль (опухолевые клетки) (которые иногда также экспрессируют молекулы МНС II класса; (Dengjel et al., 2006)).

Т-клетки по настоящему изобретению могут быть использованы в качестве активных ингредиентов в терапевтической композиции. Таким образом, в изобретении предложен также способ уничтожения клеток-мишеней у пациента, чьи клетки-мишени аберрантно экспрессируют полипептид, включающий аминокислотную последовательность по изобретению, причем способ включает введение пациенту эффективного числа Т-клеток, как определено выше.

Под понятием «аберрантно экспрессированный» авторы изобретения подразумевают также, что полипептид экспрессирован в избытке по сравнению с уровнями экспрессии в нормальных тканях, или что ген является «молчащим» в ткани, из которой образовалась опухоль, однако он экспрессирован в опухоли. Под понятием «экспрессирован в избытке» авторы изобретения понимают, что полипептид представлен на уровне, который, по меньшей мере, в 1,2 раза выше уровня, представленного в нормальной ткани; предпочтительно, по меньшей мере, в 2 раза и, более предпочтительно, по меньшей мере, в 5 или 10 раз выше уровня, представленного в нормальной ткани.

Т-клетки могут быть получены способами, известными из уровня техники, к примеру, теми, что описаны выше.

Протоколы для этого так называемого адоптивного переноса Т-клеток хорошо известны из уровня техники. С обзорами можно ознакомиться в работах Gattioni и соавт. и Morgan и соавт. (Gattinoni et al., 2006; Morgan et al., 2006).

Другой аспект настоящего изобретения включает применение пептидов в комплексе с МНС для получения Т-клеточного рецептора, нуклеиновая кислота которого клонирована и введена в клетку-хозяин, предпочтительно Т-клетку.

Данная сконструированная Т-клетка может быть затем введена пациенту для лечения рака.

Любая молекула по изобретению, т. е. пептид, нуклеиновая кислота, антитело, вектор экспрессии, клетка, активированная Т-клетка, Т-клеточный рецептор или нуклеиновая кислота, кодирующая его, пригодна для лечения нарушений, характеризующихся клетками, ускользающими от иммунного ответа. Поэтому любая молекула по настоящему изобретению может применяться в качестве лекарственного средства или в производстве лекарственного средства. Молекула может быть использована сама по себе или в комбинации с другой(ими) молекулой(ами) по изобретению или известной(ыми) молекулой(ами).

В настоящем изобретении также предложен набор, включающий:

- (а) контейнер, который содержит фармацевтическую композицию, как описанная выше, в виде раствора или в лиофилизированной форме;
- (б) факультативно второй контейнер, содержащий разбавитель или восстанавливающий раствор для лиофилизированного состава; и
- (в) факультативно инструкции по (i) применению раствора или (ii) восстановлению раствора и/или по применению лиофилизированного состава.

Кроме того, набор может также включать один или более (iii) буферов, (iv) разбавителей, (v) фильтров, (vi) игл или (v) шприцев. Контейнер является, предпочтительно, бутылью, флаконом, шприцем или пробиркой; и он может быть контейнером многоразового применения. Фармацевтическая композиция предпочтительно является лиофилизированной.

Набор согласно настоящему изобретению предпочтительно включает лиофилизированный состав по настоящему изобретению в подходящем контейнере и инструкции для его восстановления и/или по его применению. Подходящие контейнеры включают, например, бутыли, флаконы, (например, двухкамерные флаконы), шприцы (такие как двухкамерные шприцы) и пробирки.

Контейнер может быть изготовлен из разных материалов, таких как стекло или пластмасса. Предпочтительно, если набор и/или контейнер содержит(ат) инструкции по применению контейнера или связанные с ним инструкции, которые дают указания по восстановлению и/или применению. Например, на этикетке может быть указано, что лиофилизированный состав должен быть восстановлен до таких концентраций пептидов, как описано выше. На этикетке далее может быть указано, что состав применяется или предназначается для подкожного введения.

Контейнер с составом может быть флаконом многоразового использования, который позволяет повторное введение (например, от 2 до 6 введений) восстановленного состава. Набор может дополнительно включать второй контейнер, включающий подходящий разбавитель (например, раствор бикарбоната натрия).

После смешивания разбавителя и лиофилизированного состава окончательная концентрация пептида в восстановленном составе составляет предпочтительно по меньшей мере 0,15 мг/мл/пептида (=75 мкг) и, предпочтительно, не более чем 3 мг/мл/пептида (=1500 мкг). Набор может дополнительно включать другие материалы, желательные с коммерческой и с точки зрения пользователя, включая другие буферы, разбавители, фильтры, иглы, шприцы и вкладыши в упаковку с инструкциями по применению.

Наборы по настоящему изобретению могут включать один контейнер, который содержит лекарственную форму фармацевтических композиций в соответствии с настоящим изобретением с другими компонентами или без них (например, другие соединения или фармацевтические композиции этих других соединений) или может иметь отдельные контейнеры для каждого компонента.

Набор по изобретению предпочтительно включает состав по изобретению, упакованный для применения в комбинации с совместным введением второго соединения (такого как адъюванты (например, ГМ-КСФ), химиотерапевтического

средства, природного продукта, гормона или антагониста, средства против ангиогенеза или ингибитора ангиогенеза; апоптоз-индуцирующего средства или хелатора) или их фармацевтической композиции. Компоненты набора до введения пациенту могут быть предварительно смешаны, или же каждый компонент может находиться в отдельном контейнере. Компоненты набора могут быть предоставлены в виде одного или нескольких жидких растворов, предпочтительно, водного раствора, более предпочтительно, стерильного водного раствора. Компоненты набора также могут быть предоставлены в виде твердой формы, которая может быть превращена в жидкость при добавлении подходящих растворителей, которые, предпочтительно, предоставляются в другом, отдельном, контейнере.

Контейнер терапевтического набора может быть флаконом, пробиркой, колбой, бутылью, шприцем или любыми другими средствами, заключающими в себе твердое вещество или жидкость. Обычно, если имеется более одного компонента, набор содержит второй флакон или другой контейнер, что позволяет произвести отдельное введение. Набор может также содержать другой контейнер для фармацевтически приемлемой жидкости. Лечебный набор будет предпочтительно содержать аппарат (например, одну или более игл, шприцы, глазные пипетки, пипетки и т. д.), который обеспечивает введение веществ по изобретению, которые являются компонентами настоящего набора.

Настоящий состав подходит для введения пептидов любым приемлемым способом, таким как оральный (энтеральный), назальный, глазной, подкожный, внутрикожный, внутримышечный, внутривенный или чрескожный способ. Предпочтительно, чтобы введение было п/к и, наиболее предпочтительно, введение в/к с помощью инфузионного насоса.

Так как пептиды по изобретению были выделены из клеток острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря,

глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечноклеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, лекарственное средство по изобретению предпочтительно используется для лечения острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия.

Кроме того, настоящее изобретение далее относится к способу получения персонализированного фармацевтического препарата для отдельного пациента, включающий производство фармацевтической композиции, включающей по меньшей мере один пептид, выбранный из хранилища предварительно прошедших скрининг пептидов TUMAP, где по меньшей мере один пептид, используемый в фармацевтической композиции, выбран по его пригодности для отдельного пациента. В одном варианте осуществления фармацевтическая композиция является вакциной. Способ может быть адаптирован для получения Т-клеточных клонов для дальнейшего применения, например, при выделении ТКР или растворимых антител или других методов лечения.

«Персонализированный фармацевтический препарат» подразумевает разработанные специально для отдельного пациента терапевтические средства, которые будут применяться исключительно для лечения такого пациента, включая

активно персонализированные противораковые вакцины и средства адоптивной клеточной терапии с использованием аутологичной ткани пациента.

В контексте настоящего изобретения термин «хранилище» относится к группе или набору пептидов, которые предварительно прошли скрининг на иммуногенность и/или избыточную презентацию в конкретном виде опухоли. Понятие «хранилище» не подразумевает, что конкретные пептиды, включенные в вакцину, были изготовлены заблаговременно и хранились в реальном помещении, хотя эта возможность также принимается во внимание. Во внимание определенно принимается тот факт, что пептиды могут быть изготовлены de novo для каждой производимой индивидуализированной вакцины, или могут быть получены заранее и находиться на хранении. Хранилище (например, в форме банка данных) состоит из опухолеассоциированных пептидов, которые в высокой степени избыточно экспрессировались в опухолевой ткани пациентов с различными HLA-A, HLA-B и HLA-C-аллелями, больных острым миелоидным лейкозом, раком молочной железы, холангиоклеточной карциномой, хроническим лимфоцитарным лейкозом, колоректальным раком, раком желчного пузыря, глиобластомой, раком желудка, гепатоклеточной карциномой, плоскоклеточной карциномой головы и шеи, меланомой, неходжкинской лимфомой, раком легких (B TOM числе легких-аденокарциномой, немелкоклеточным раком плоскоклеточным немелкоклеточным раком легких и мелкоклеточным раком легких), раком яичника, раком пищевода, раком поджелудочной железы, раком предстательной железы, почечно-клеточной карциномой, карциномой мочевого пузыря и раком матки и эндометрия. Оно может содержать пептиды, связанные с молекулами МНС І класса и MHC II класса или удлиненные пептиды, связанные с молекулами MHC I класса. Помимо опухолеассоциированных пептидов, собранных из нескольких тканей острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, хранилище может содержать маркерные пептиды HLA-A*02, HLA-A*01, HLA-A*03, HLA-A*24, HLA-B*07, HLA-B*08 и HLA-B*44. Эти пептиды позволяют произвести количественное сравнение интенсивности Т-клеточного иммунного ответа, индуцированного пептидами TUMAP, и, следовательно, позволяют сделать важный вывод о способности вакцины вызывать противоопухолевые ответы. Вовторых, они выполняют функцию важных пептидов положительного контроля, полученных «не из собственного» антигена в случае, если у пациента не наблюдаются вызванные вакциной Т-клеточные ответы на пептиды TUMAP, полученные из «собственных» антигенов. И в-третьих, оно может позволить сделать заключения относительно статуса иммунокомпетентности пациента.

Пептиды TUMAP для хранилища были идентифицированы с помощью интегрированного подхода функциональной геномики, комбинирующего анализ экспрессии генов, масс-спектрометрию и Т-клеточную иммунологию (XPresident ®). Этот подход гарантирует, что только те пептиды TUMAP, которые действительно присутствуют в большом проценте опухолей, но не экспрессируются или экспрессируются лишь минимально на нормальной ткани, были выбраны для последующего анализа. В целях первоначального отбора пептидов образцы ткани острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, пациентов и кровь здоровых доноров были проанализированы поэтапно:

- 1. HLA-лиганды из злокачественного материала идентифицировали с помощью масс-спектрометрии.
- 2. Для идентификации экспрессированных в избытке генов в злокачественной ткани острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия), по сравнению с рядом нормальных органов и тканей применяли анализ экспрессии информационной рибонуклеиновой кислоты (мРНК) всего генома.
- 3. Идентифицированные HLA-лиганды сравнивали с данными по экспрессии генов. Пептиды, презентируемые в избытке или селективно презентируемые на опухолевой ткани, предпочтительно кодируемые селективно экспрессированными или экспрессированными в избытке генами, выявленными на этапе 2, считали подходящими TUMAP-кандидатами для мультипептидной вакцины.
- 4. Было произведено изучение литературы для выявления дополнительных свидетельств, подтверждающих релевантность идентифицированных в качестве TUMAP пептидов.
- 5. Релевантность избыточной экспрессии на уровне мРНК подтверждали повторным обнаружением выбранных на этапе 3 пептидов TUMAP на опухолевой ткани и отсутствием (или нечастым обнаружением) на здоровых тканях.
- 6. В целях оценки того, может ли быть осуществима индукция in vivo T-клеточных ответов выбранными пептидами, были проведены анализы иммуногенности in vitro при использовании человеческих Т-клеток здоровых доноров, а также пациентов, больных острым миелоидным лейкозом, раком молочной железы, холангиоклеточной карциномы, хроническим лимфоцитарным лейкозом. колоректальным раком, раком желчного пузыря, глиобластомой, раком желудка,

гепатоклеточной карциномой, плоскоклеточной карциномой головы и шеи, меланомой, неходжкинской лимфомой, раком легких (в TOM числе немелкоклеточным раком легких-аденокарциномой, плоскоклеточным немелкоклеточным раком легких и мелкоклеточным раком легких), раком яичника, раком пищевода, раком поджелудочной железы, раком предстательной железы, почечно-клеточной карциномой, карциномой мочевого пузыря, раком матки и эндометрия.

В одном из аспектов пептиды предварительно прошли скрининг на иммуногенность до их включения в хранилище. В качестве примера, но не для ограничения изобретения, иммуногенность пептидов, включенных в хранилище, определяется способом, включающим прайминг Т-клеток *in vitro* посредством повторных стимуляций CD8+ Т-клеток здоровых доноров клетками, презентирующими искусственный антиген, нагруженными комплексами пептид-МНС и антителами к CD28.

Этот способ является предпочтительным для редких видов рака и пациентов с редким профилем экспрессии. В отличие от мультипептидных коктейлей с постоянным составом, уже разработанных на данное время, «хранилище» позволяет достигнуть существенно более высокого соответствия фактической экспрессии антигенов в опухоли составу вакцины. Выбранные отдельные пептиды или комбинации из нескольких «готовых к применению» пептидов будут использоваться для каждого пациента в рамках мультитаргетного подхода. Теоретически, подход, основанный на выборе, например, 5 различных антигенных пептидов из библиотеки из 50 экземпляров, уже приведет приблизительно к 17 миллионам возможных составов лекарственного препарата (ЛП).

В одном аспекте для включения в вакцину пептиды выбирают по их пригодности для отдельного пациента на основе способа в соответствии с настоящим изобретением, как описано в настоящем документе или как изложено ниже.

Фенотип HLA, данные транскриптомики и протеомики собирают с опухолевого материала и образцов крови пациентов для идентификации наиболее подходящих пептидов для каждого пациента, в состав которых входят пептиды TUMAP как из хранилища, так и уникальные для пациента (т. е. мутированные). Выбирать будут те пептиды, которые селективно или избыточно экспрессируются в опухолях пациентов и, где это возможно, проявляют сильную иммуногенность *in vitro* при анализе с индивидуальными МКПК пациента.

Предпочтительно, чтобы были пептиды, включенные вакцину, В идентифицированы способом, включающим: (a) идентификацию пептидов (TUMAP), презентируемых опухолевым опухолеассоциированных образцом отдельного пациента; (б) сравнение идентифицированных на этапе (а) пептидов с хранилищем (банком данных) пептидов, как описано выше; и (в) выбор по меньшей мере одного пептида из хранилища (банка данных), который коррелирует с опухолеассоциированным пептидом, идентифицированным у пациента. Например, пептиды TUMAP, презентируемые опухолевым образцом, идентифицируют с помощью: (а1) сравнения данных по экспрессии в опухолевом образце с данными нормальной ткани, соответствующей типу ткани опухолевого образца, для идентификации белков, которые в опухолевом образце экспрессируются в избытке или аберрантно; и (а2) установления корреляции между данными экспрессии и последовательностями лигандов МНС, связанных с молекулами МНС I и/или II класса в опухолевом образце, в целях идентификации лигандов МНС, которые получены из белков, избыточно или аберрантно экспрессируемых опухолью. Предпочтительно, если последовательности лигандов МНС идентифицируются с помощью элюирования связанных пептидов из молекул МНС, выделенных из опухолевого образца, и секвенирования элюированных лигандов. Предпочтительно, если опухолевый образец и нормальная ткань получены от одного и того же пациента.

Помимо этого, или в качестве альтернативы этому, при выборе пептидов с использованием модели хранилища (банка данных) пептиды TUMAP могут быть

идентифицированы у пациента de novo и затем быть включены в вакцину. В TUMAP качестве одного примера: пептиды-кандидаты МОГУТ быть идентифицированы у пациента с помощью (а1) сравнения данных по экспрессии в опухолевом образце с данными нормальной ткани, соответствующей типу ткани опухолевого образца, для идентификации белков, которые в опухолевом образце экспрессируются в избытке или аберрантно; и (а2) установления корреляции между данными экспрессии и последовательностями лигандов МНС, связанных с молекулами МНС I и/или II класса в опухолевом образце, в целях идентификации лигандов МНС, которые получены из белков, избыточно или аберрантно В экспрессируемых опухолью. качестве другого примера: МОГУТ идентифицированы белки, имеющие мутации, являющиеся уникальными для опухолевого образца, соотносимого с соответствующей нормальной тканью отдельного пациента, и могут быть идентифицированы пептиды TUMAP, специфической мишенью которых является мутация. Например, геном опухоли и соответствующей нормальной ткани могут быть секвенированы методом полногеномного секвенирования: для обнаружения несинонимичных мутаций на кодирующих белок участках генов геномную ДНК и РНК экстрагируют из опухолевых тканей, а нормальную, не имеющую мутаций геномную ДНК зародышевой линии экстрагируют мононуклеарных клеток периферической (MΠK). ИЗ крови Применяемый подход секвенирования нового поколения (NGS) заключается в повторном секвенировании кодирующих белок участков (повторное секвенирование экзома). В этих целях экзонную ДНК из человеческих образцов фиксируют с помощью поставляемых изготовителем наборов для обогащения целевыми фрагментами, за чем следует секвенирование, например, с помощью системы HiSeq2000 (Illumina). В дополнение к этому опухолевую мРНК секвенируют для прямого количественного определения генной экспрессии и подтверждения того, что мутировавшие гены экспрессированы в опухолях пациентов. Считывание полученных в результате миллионов последовательностей осуществляется алгоритмами программного обеспечения. Получаемый список содержит мутации и экспрессию генов. Опухолеспецифические соматические мутации определяют сравнением с вариантами зародышевой линии из МКПК и устанавливают приоритетность. Идентифицированные *de novo* пептиды могут быть затем испытаны на иммуногенность, как описывается выше в случае хранилища, и пептиды-кандидаты TUMAP, обладающие подходящей иммуногенностью, выбирают для включения в вакцину.

В отдельном варианте осуществления изобретения пептиды, включенные в идентифицируют вакцину, С помощью: (a) идентификации опухолеассоциированных пептидов (TUMAP), презентируемых опухолевым образцом отдельного пациента способами, описанными выше; (б) сравнения пептидов, идентифицированных на этапе (а) с хранилищем пептидов, как описано выше, которые предварительно прошли скрининг на иммуногенность и избыточную презентацию в опухолях по сравнению с соответствующими нормальными тканями; (в) выбора по меньшей мере одного пептида из хранилища, который коррелирует с опухолеассоциированным пептидом, идентифицированным у пациента; и (г) факультативно, выбора по меньшей мере одного пептида, идентифицированного de novo на этапе (a) с подтверждением его иммуногенности.

В отдельном варианте осуществления изобретения пептиды, включенные в вакцину, идентифицируют с помощью: (а) идентификации опухолеассоциированных пептидов (TUMAP), презентируемых опухолевым образцом отдельного пациента; и (б) выбора по меньшей мере одного пептида, идентифицированного *de novo* на этапе (а) и подтверждения его иммуногенности.

После того, как отобраны пептиды для персонализированной вакцины на основе пептидов, изготавливают вакцину. Вакцина — это предпочтительно жидкая лекарственная форма, состоящая из отдельных пептидов, растворенных в ДМСО в концентрации 20-40%, предпочтительно около 30-35%, такой как около 33% ДМСО.

Каждый пептид, включаемый в продукт, растворяют в ДМСО. Концентрация отдельных пептидных растворов должна выбираться в зависимости от числа пептидов, предназначенных для включения в продукт. Растворы отдельных

пептидов в ДМСО смешивают в равном соотношении для получения раствора, содержащего все пептиды, предназначенные для включения в продукт, с концентрацией ~2,5 мг/мл на пептид. Смешанный раствор затем разбавляют водой для инъекций в соотношении 1:3 для достижения концентрации 0,826 мг/мл на пептид в 33% ДМСО. Разбавленный раствор фильтруют через стерильный фильтр с размером пор 0,22 мкм. Получают конечный нерасфасованный раствор.

Конечный нерасфасованный раствор разливают во флаконы и хранят при -20°С до использования. Один флакон содержит 700 мкл раствора, содержащего 0,578 мг каждого пептида. Из них 500 мкл (прибл. 400 мкг на пептид) будут вводить с помощью внутрикожной инъекции.

Кроме того, пептиды по настоящему изобретению пригодны не только для лечения рака, но и также в качестве диагностических средств. Так как пептиды были получены из клеток острого миелоидного лейкоза, рака молочной железы, холангиоклеточной хронического лимфоцитарного карциномы, лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, и так как было определено, что данные пептиды не присутствуют или присутствуют в небольшом количестве в нормальных тканях, то эти пептиды могут быть использованы для диагностики наличия рака.

Присутствие заявленных пептидов на тканевых биоптатах и в образцах крови может помочь патоморфологу в постановке диагноза рака. Выявление конкретных пептидов с помощью антител, масс-спектрометрии или других методов, известных из уровня техники, могут дать патоморфологу свидетельства того, что ткань образца является злокачественной или воспаленной или пораженной

заболеванием вообще, или же может использоваться в качестве биомаркера острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия. Присутствие групп пептидов может позволить классифицировать или выделить подклассы пораженных тканей.

Обнаружение пептидов на образцах пораженной заболеванием ткани может позволить принять решение о пользе от терапии, воздействующей на иммунную систему, в особенности, если Т-лимфоциты, как известно или ожидается, задействованы в механизме действия. Отсутствие экспрессии МНС является хорошо описанным механизмом, при котором инфицированные или злокачественные клетки уклоняются от иммунного контроля. Таким образом, присутствие пептидов показывает, что этот механизм не используется проанализированными клетками.

Пептиды по настоящему изобретению могут использоваться в анализе ответов лимфоцитов на действие этих пептидов, таких как Т-клеточные ответы или ответы в виде антител к пептиду или пептиду в комплексе с молекулами МНС. Данные ответы лимфоцитов могут использоваться в качестве прогностических маркеров для принятия решения о дальнейших этапах терапии. Данные ответы могут также использоваться в качестве суррогатных маркеров ответов в иммунотерапевтических подходах, направленных на индуцирование ответов лимфоцитов с помощью различных средств, например, вакцинации белком, нуклеиновыми кислотами, аутологичными материалами, адоптивным переносом лимфоцитов. В условиях, когда проводится генная терапия, в целях оценки

побочных эффектов могут быть проанализированы ответы лимфоцитов на пептиды. Мониторинг реакций лимфоцитов может также быть ценным инструментом для обследований в рамках последующего наблюдения после трансплантации, к примеру, для выявления реакций «хозяин против трансплантата» и «трансплантат против хозяина».

Настоящее изобретение будет описано ниже с помощью примеров, которые описывают его предпочтительные варианты осуществления, со ссылкой на сопровождающие фигуры, тем не менее, не ограничивая объема изобретения. В соответствии с целями настоящего изобретения все цитируемые источники включены в данное описание во всей полноте путем ссылки.

ФИГУРЫ

На Фигурах 1E-1J представлена избыточная презентация различных пептидов в различных раковых тканях (черные точки). Верхняя часть: Медианные показатели интенсивности МС-сигналов измерений технических репликатов нанесены в виде точек для единичных НLА-А*24-положительных образцов нормальной ткани (серые точки, левая часть изображения) и опухолевых образцов (черные точки, правая часть изображения), на которых был обнаружен пептид. Прямоугольниками («ящиками») обозначены медианное значение, 25-ый и 75-ый процентили нормализованного уровня интенсивности сигнала, тогда как «усы» распространяются до самой низкой точки данных, всё еще в пределах 1,5 межквартильного диапазона (IQR) нижнего квартиля и до наивысшей точки данных, всё еще в пределах 1,5 IQR верхнего квартиля. Нормальные органы расположены в соответствии с категориями риска (клетки крови, кровеносные сосуды, головной мозг, печень, легкие: высокий уровень риска, серые точки; органы репродуктивной системы, молочная железа, предстательная железа: низкий уровень риска, серые точки; все остальные органы: средний уровень риска; серые точки). Нижняя часть: Относительная частота обнаружения пептида в каждом органе представлена в виде столбчатой диаграммы. Цифры под графиком обозначают число образцов, на которых был обнаружен пептид из общего числа проанализированных образцов для каждого органа (N = 75 для образцов нормальных тканей, N = 263 для образцов опухолевых тканей). Если пептид был обнаружен на образце, но по техническим причинам не могло быть проведено количественное определение, образец включали в данный график репрезентации частоты обнаружения, но в верхней части фигуры точку не обозначали. Ткани (слева направо): Нормальные образцы: клетки крови; кров. сосуды (кровеносные сосуды); голов. мозг (головной мозг); сердце; печень; легкие; надпочечник; желчн. прот. (желчные протоки); желчн. пуз. (желчный пузырь); толст. киш. (толстая кишка); тонк. киш. (тонкая кишка); почка; периф. нерв (периферический нерв); подж. железа (поджелудочная железа); гипофиз; кожа; спинной мозг; селезенка; желудок; щитов. жел. (щитовидная железа). Опухолевые образцы: ОМЛ (острый миелоидный лейкоз); РМЖ (рак молочной железы); ХГК (холангиоклеточная карцинома); ХЛЛ (хронический лимфоцитарный лейкоз); *КРК* (колоректальный рак); *РЖП* (рак желчного пузыря); ГБМ (глиобластома); РЖ (рак желудка); ГКК (гепатоклеточная карцинома); ПлККГШ (плоскоклеточная карцинома головы и шеи); *МЕЛ* (меланома); *НХЛ* (неходжкинская лимфома); НМРЛадено (немелкоклеточный рак легких - аденокарцинома); *НМРЛдругие* (образцы НМРЛ, которые не могут быть однозначно отнесены к НМРЛадено и НМРЛплоск); *НМРЛплоск* (плоскоклеточный немелкоклеточный рак легких); PЯ (рак яичника); PП (рак пищевода); PПЖ (рак поджелудочной железы); РПрЖ (рак предстательной железы); ПКК (почечноклеточная карцинома); МРЛ (мелкоклеточный рак легких); КМП (карцинома мочевого пузыря); РЭМ (рак эндометрия и матки). Фигура 1A) символ гена: SLC6A3, пептид: FMVIAGMPLF (SEQ ID NO.: 15), Фигура 1B) символ гена: KLHDC7B, пептид: RYSPVKDAW (SEQ ID NO.: 60), Фигура 1C) символ гена: CAPN6, пептид: NYVLVPTMF (SEQ ID NO.: 74), Фигура 1D) символ гена: SYT12, пептид: SYLPTAERL (SEQ ID NO.: 86), Фигура 1E) символ гена: PTPRZ1, пептид: VYDTMIEKFA (SEQ ID NO.: 202), Фигура 1F) символ гена: PTPRZ1, пептид: EYSLPVLTF (SEQ ID NO.: 274), Фигура 1G) символ гена: LOC100124692, пептид: NYMDTDNLMF (SEQ ID NO.: 362), Фигура 1H) символ гена: AR, пептид: YQSRDYYNF (SEQ ID NO.: 386), Фигура 1I) символ гена: CT45A4, CT45A5, пептид: VGGNVTSNF (SEQ ID NO.: 463), и Фигура 1J) символ гена: CT45A1,

CT45A2, CT45A3, CT45A4, CT45A6, LOC101060208, LOC101060210, LOC101060211, пептид: VGGNVTSSF (SEQ ID NO.: 464).

На Фигурах 2A – 2Q представлены примеры профилей экспрессии исходных генов настоящего изобретения, которые экспрессированы в избытке в различных раковых образцах. Опухолевые (черные точки) и нормальные (серые точки) образцы сгруппированы по органам происхождения. на диаграммах размаха («ящик с усами») представлены медиана, 25-ый и 75-ый процентили (ящик) значений RPKM плюс усы, которые распространяются до самой низкой точки данных, всё еще в пределах 1,5 межквартильного диапазона (IQR) нижнего квартиля и до наивысшей точки данных, всё еще в пределах 1,5 IQR верхнего квартиля. Нормальные органы расположены в соответствии с категориями риска. FPKM = фрагментов на тысячу пар оснований на миллион картированных ридов. Ткани (слева направо): Нормальные образцы: клетки крови; кровен. сосуды (кровеносные сосуды); головной мозг; сердце; печень; легкое; жировая ткань; надпочечник; желчн. прот. (желчные протоки); мочев. п. (мочевой пузырь); КМ (костный мозг); пищевод; глаз; желчн. пуз. (желчный пузырь); голова и шея; толст. киш. (толстая кишка); тонк. киш. (тонкая кишка); почка; ЛУ (лимфатический узел); периф. нерв (периферический нерв); подж. железа (поджелудочная железа); паращит. (паращитовидная железа); брюшина; гипофиз; плевра; скел. мышца (скелетная мышца); кожа; селезенка; желудок; щитов. жел. (щитовидная железа); трахея; мочеточник; молочн. жел. (молочная железа); яичник; плацента; предст. жел. (предстательная железа); семенник; вилочк. жел. (вилочковая железа); матка. Опухолевые образцы: ОМЛ РМЖ (острый миелоидный лейкоз); (рак молочной железы): $X\Gamma K$ (холангиоклеточная карцинома); ХЛЛ (хронический лимфоцитарный лейкоз); КРК (колоректальный рак); $PЖ\Pi$ (рак желчного пузыря); $\Gamma Б M$ (глиобластома); PЖ (рак желудка); ГКК (гепатоклеточная карцинома); ПлККГШ (плоскоклеточная карцинома головы и шеи); МЕЛ (меланома); НХЛ (неходжкинская лимфома); НМРЛадено (немелкоклеточный рак легких - аденокарцинома); *HMPЛдругие* (образцы HMPЛ, которые не могут быть однозначно отнесены к НМРЛадено и НМРЛплоск); НМРЛплоск (плоскоклеточный немелкоклеточный рак легких); РЯ (рак яичника); РП (рак пищевода); $P\Pi \mathcal{K}$ (рак поджелудочной железы); $P\Pi p\mathcal{K}$ (рак предстательной железы); *ПКК* (почечноклеточная карцинома); *МРЛ* (мелкоклеточный рак легких); КМП (карцинома мочевого пузыря); РЭМ (рак эндометрия и матки). Фигура 2А) символ гена: MAGEA4, пептид: IFPKTGLLII (SEQ ID No.: 1), Фигура 2B) символ гена: TRPM8, пептид: KFLTHDVLTELF (SEQ ID No.: 3), Фигура 2C) символ гена: CHRNA9, пептид: KYYIATMAL (SEQ ID No.: 13), Фигура 2D) символ гена: ММР12, пептид: KYVDINTFRL (SEQ ID No.: 18), Фигура 2E) символ гена: SPINK2, пептид: LYMRFVNTHF (SEQ ID No.: 21), Фигура 2F) символ гена: OR51E2, пептид: FWFDSREISF (SEQ ID No.: 28), Фигура 2G) символ гена: ММР1, пептид: KQMQEFFGL (SEQ ID No.: 31), Фигура 2H) символ гена: MAGEC1, пептид: FSSTLVSLF (SEQ ID No.: 35), Фигура 2I) символ гена: ENPP3, пептид: KTYLPTFETTI (SEQ ID No.: 39), Фигура 2J) символ гена: POTEG, POTEH, пептид: MVLQPQPQLF (SEQ ID No.: 4), Фигура 2K) символ гена: OR51E2, пептид: TQMFFIHAL (SEQ ID No.: 97), Фигура 2L) символ гена: MMP11, пептид: FFFKAGFVWR (SEQ ID No.: 107), Фигура 2M) символ гена: MMP11, пептид: YFLRGRLYW (SEQ ID No.: 122), Фигура 2N) символ гена: SLC24A5, пептид: EYFLPSLEII (SEQ ID No.: 194), Фигура 2O) символ гена: SLC24A5, пептид: MSAIWISAF (SEQ ID No.: 277), Фигура 2P) символ гена: ELP4, EXOSC7, KCNG2, TM4SF19, TOP2A, пептид: HHTQLIFVF (SEQ ID No.: 286), Фигура 2Q) символ гена: LAMA3, пептид: YFGNPQKF (SEQ ID No.: 304).

На Фигурах 3A–3G представлены типичные результаты ответов *in vitro* пептидспецифических CD8+ Т-клеток здорового HLA-A*24+ донора. CD8+ Т-клетки примировали с помощью искусственных АПК, стимулированных моноклональными антителами к CD28 и HLA-A*24 в комплексе с пептидом с последовательностью SEQ ID No. 420 (VYEKNGYIYF, Seq ID NO: 420) (А, левая секция), с пептидом с SEQ ID NO: 411 (VYPPYLNYL, Seq ID NO: 411) (В, левая секция), с пептидом с SEQ ID NO: 5 (LQPQPQLFFSF, Seq ID NO: 5) (С, левая секция), с пептидом с SEQ ID NO: 77 (LYGFFFKI, Seq ID NO: 77) (D, левая секция), с пептидом с SEQ ID NO: 76 (IYIYPFAHW, Seq ID NO: 76) (Е, левая секция), с пептидом с SEQ ID NO: 32 (FYPEVELNF, Seq ID NO: 32) (F, левая секция), с пептидом с SEQ ID NO: 23 (VYSSFVFNLF, Seq ID NO: 23) (G, левая секция), соответственно. После трех

циклов стимуляции обнаружение клеток, реагирующих с пептидом, производилось с помощью двойного окрашивания мультимерами A*24/SEQ ID NO: 420 (A), A*24/SEQ ID NO: 411 (B), A*24/SEQ ID NO: 5 (C), A*24/SEQ ID NO: 77 (D), A*24/SEQ ID NO: 76 (E), A*24/SEQ ID NO: 32 (F), A*24/SEQ ID NO: 23 (G), соответственно. Правые секции (А) представляют собой контрольное окрашивание клеток, простимулированных нерелевантными комплексами пептида и А*24. Из числа отдельных жизнеспособных клеток путем гейтирования выделяли CD8+ лимфоциты. Гейты Буля помогали исключить ложно-положительные ответы, обнаруженные с помощью мультимеров, специфических в отношении различных Указывается специфических пептидов. частота выявления мультимерположительных клеток среди CD8+ лимфоцитов.

ПРИМЕРЫ

ПРИМЕР 1:

<u>Идентификация и количественное определение опухолеассоциированных</u> пептидов, презентируемых на поверхности клетки

Образцы тканей

Опухолевые ткани пациентов были получены из: Asterand Bioscience (Детройт, США и Ройстон, Хартфордшир, Великобритания), BioServe (Белтсвиль, Мэриленд, США), Conversant Bio (Хантсвилл, Алабама, США), Geneticist Inc. (Глендейл, Калифорния, США); Университетской клиники г. Гейдельберг (отд. нейрохирургии, Гейдельберг, Германия), Университетской клиники г. Гейдельберг (отд. общей, висцеральной и трансплантационной хирургии, Гейдельберг, Германия), Университетской клиники г. Гейдельберг (Торакальная клиника, Гейдельберг, Германия), Istituto Nazionale Tumori «Разсаle» (отделение молекулярной биологии и вирусной онкологии, Неаполь, Италия), Медицинского университета префектуры Киото (Киото, Япония), Медицинского центра Лейденского университеа (LUMC) (Лейден, Нидерланды), Осакского городского университета (Осака, Япония), ProteoGenex Inc. (Кальвер-Сити, Калифорния, США), Клиники св. Саввы (Афины, Греция), Tissue Solutions

(Глазго, Великобритания), Университетской клиники г. Бонн (III отд. внутренних болезней, гематологии и онкологии, Бонн, Германия), Университетской клиники г. Тюбинген (отд. общей, висцеральной и трансплантационной хирургии, Тюбинген, Германия), Университетской клиники г. Тюбинген (отд. иммунологии, Тюбинген, Германия), Университетской клиники г. Тюбинген (отд. урологии, Тюбинген, Германия), Университетской клиники г. Женева (отд. онкологии, Женева, Швейцария)

Нормальные ткани были получены из: Asterand Bioscience (Детройт, США и Ройстон, Хартфордшир, Великобритания), BioServe (Белтсвиль, Мэриленд, США), Capital BioScience Inc. (Роквилл, Мэриленд, США), Центра клинической трансфузиологии г. Тюбингена (Тюбинген, Германия), Geneticist Inc. (Глендейл, Калифорния, США), Университетской клиники г. Гейдельберг (Торакальная клиника, Гейдельберг, Германия), Медицинского университета префектуры Киото (Киото, Япония), ProteoGenex Inc. (Кальвер-Сити, Калифорния, г. Тюбинген Университетской клиники (отд. общей, висцеральной трансплантационной хирургии, Тюбинген, Германия), Университетской клиники г. Тюбинген (отд. урологии, Тюбинген, Германия)

Перед проведением хирургического операции или аутопсии было получено информированное согласие всех пациентов в письменной форме. Сразу же после удаления ткани были подвергнуты шоковой заморозке и хранились до выделения TUMAP-пептидов при температуре -70°C или ниже.

Выделение пептидов HLA из образцов тканей

Пулы пептидов HLA из подвергнутых шоковой заморозке образцов тканей были получены методом иммунопреципитации из плотных тканей в соответствии с незначительно измененным протоколом(Falk et al., 1991; Seeger et al., 1999) при использовании HLA-A*02-специфического антитела BB7.2, HLA-A, -B, -C-специфического антитела W6/32, HLA-DR-специфического антитела L243 и

специфического к HLA-DP антителу B7/21, CNBr-активированной сефарозы, кислотной обработки и ультрафильтрации.

Масс-спектрометрический анализ

Полученные пулы комплексов пептид-НLА были разделены в соответствии с их гидрофобностью обратнофазовой хроматографией (nanoAcquity UPLC system, Waters), и элюированные пептиды анализировали на гибридных массспектрометрах LTQ-velos и -fusion (ThermoElectron), снабженном источником ESI. Пулы пептидов наносили непосредственно на аналитическую микрокапиллярную колонку из плавленого кварца (75 мкм в/д х 250 мм) с обращеннофазовым сорбентом 1,7 мкм C18 (Waters) с применением скорости потока в 400 нл в минуту. Затем пептиды разделяли с использованием двухэтапного 180-минутного бинарного градиента от 10% до 33% растворителя В при скорости потока 300 нл в минуту. Для создания градиента использовали растворитель А (0,1% муравьиной кислоты в воде) и растворитель В (0,1% муравьиной кислоты в ацетонитриле). Позолоченный стеклянный капилляр (PicoTip, New Objective) использовали для введения в источник наноESI. Macc-спектрометры LTQ-Orbitrap работали в информационно-зависимом режиме с применением стратегии ТОР5. Вкратце, цикл сканирования начинался с полного сканирования с высокой точностью масс на спектрометре Orbitrap (R = 30 000), за чем следовало сканирование MC/MC также на Orbitrap (R = 7500) на 5 особенно многочисленных ионах-предшественниках с динамическим исключением отобранных ранее ионов. Тандемные масс-спектры были интерпретированы с помощью программ SEQUEST с фиксированным уровнем ложноположительных обнаружений (q≤0,05) и дополнительным контролем в ручном режиме. В случае, если идентифицированная последовательность пептида была неопределенной, ее дополнительно подтверждали сравнением полученной картины фрагментации природного пептида с картиной фрагментации синтетического контрольного пептида с идентичной последовательностью.

Относительное количественное определение методом ЖХ/МС без изотопных меток проводили путем подсчета ионов, т. е. с помощью экстракции и анализа

результатов ЖХ/MC(Mueller et al., 2007). Этот метод основан на предположении, что площадь пика ЖХ/МС сигнала пептида коррелирует с его концентрацией в характеристики обрабатывали образце. Извлеченные помощью деконволюционного анализа состояния заряда и путем выравнивания времени удерживания(Mueller et al., 2008; Sturm et al., 2008). Наконец, все результаты спектров ЖХ/МС были сопоставлены методом перекрестных ссылок с идентификации последовательности, результатами ПО чтобы объединить количественные данные различных образцов и тканей в профили презентации пептидов. Количественные данные были нормализованы с применением двухуровневой системы в соответствии с центральной тенденцией с целью учета вариабельности внутри технических и биологических повторных измерений. Таким образом, каждый идентифицированный пептид может быть ассоциирован с количественными данными, позволяющими провести относительную количественную оценку образцов и тканей. Кроме того, все количественные данные, полученные для пептидов-кандидатов, были проконтролированы вручную в целях обеспечения взаимной согласованности данных и для проверки точности автоматического метода анализа. Для каждого пептида был рассчитан профиль презентации, показывающий средний уровень презентации в образце, а также вариабельность репликатов. В профиле сравниваются образцы острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких-аденокарциномы, плоскоклеточного немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия с фоновым уровнем образцов нормальной ткани. презентации типичных пептидов, презентируемых в избытке, показаны на Фигуре 1.

В Таблице 8а и Таблице 8б показана презентация выбранных пептидов при различных раковых заболеваниях и, таким образом, конкретная значимость упомянутых пептидов для диагностики и/или лечения указанных раковых заболеваний (например, пептида с последовательностью SEQ ID No. 3 для рака предстательной железы (РПрЖ), пептида с последовательностью SEQ ID No. 20 для рака яичника (РЯ) и рака поджелудочной железы (РПЖ)).

Таблица 8а: Сводка данных презентации выбранных опухолеассоциированных пептидов по настоящему изобретению среди различных видов.

ОМЛ: острый миелоидный лейкоз; РМЖ: рак молочной железы; ХГК: холангиоклеточная карцинома; ХЛЛ: хронический лимфоцитарный лейкоз; КРК: колоректальный рак; РЖП: рак желчного пузыря; ГБМ: глиобластома; РЖ: рак желудка; ГКК: гепатоклеточная карцинома; ПлККГШ: плоскоклеточная карцинома головы и шеи; МЕЛ: меланома; НХЛ: неходжкинская лимфома; НМРЛадено: немелкоклеточный рак легких - аденокарцинома; НМРЛдругие: образцы НМРЛ, которые не могут быть однозначно отнесены к НМРЛадено и НМРЛплоск; НМРЛплоск: плоскоклеточный немелкоклеточный рак легких; РЯ: рак яичника; РП: рак пищевода; РПЖ: рак поджелудочной железы; РПрЖ: рак предстательной железы; ПКК: почечноклеточная карцинома; МРЛ: мелкоклеточный рак легких; КМП: карцинома мочевого пузыря; РЭМ: рак эндометрия и матки.

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
1	IFPKTGLLII	НМРЛадено, НМРЛплоск, РП
2	LYAPTILLW	КРК, РЖ, НМРЛадено, НМРЛплоск, РЭМ
3	KFLTHDVLTELF	РПрЖ
4	MVLQPQPQLF	НМРЛадено
5	LQPQPQLFFSF	РПрЖ
6	IVTFMNKTLGTF	НМРЛадено
7	GYPLRGSSI	РЖ
9	TYINSLAIL	НМРЛадено, РПрЖ, ПКК, КМП
10	QYPEFSIEL	РПрЖ
11	RAMCAMMSF	РПЖ
12	KYMSRVLFVY	XLK
13	KYYIATMAL	РЖ
14	YYIATMALI	РПрЖ

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
15	FMVIAGMPLF	ОМЛ, ХЛЛ, РЖ, ГКК, НХЛ, НМРЛдругие
16	GYFLAQYLM	ПКК
17	IYPEAIATL	РМЖ, НМРЛадено, НМРЛдругие, ПКК
18	KYVDINTFRL	НМРЛплоск
19	ILLCMSLLLF	НМРЛадено, НМРЛплоск, РПрЖ
20	ELMAHPFLL	РЯ, РПЖ
21	LYMRFVNTHF	ОМЛ
22	VYSSFVFNL	НХЛ
23	VYSSFVFNLF	НХЛ
24	KMLPEASLLI	НХЛ
25	MLPEASLLI	НХЛ
26	TYFFVDNQYW	НМРЛплоск, РП
27	LSCTATPLF	НМРЛадено
28	FWFDSREISF	РПрЖ
29	IYLLLPPVI	НМРЛадено, РПрЖ
30	RQAYSVYAF	РПрЖ
31	KQMQEFFGL	РЖ, НМРЛплоск
32	FYPEVELNF	ХГК, КМП
33	FYQPDLKYLSF	НХЛ
34	LIFALALAAF	РЭМ
35	FSSTLVSLF	РЯ
36	VYLASVAAF	РПрЖ
37	ISFSDTVNVW	ПКК
38	RYAHTLVTSVLF	РМЖ, МЕЛ
39	KTYLPTFETTI	РЭМ
40	NYPEGAAYEF	НМРЛадено, РЯ
41	IYFATQVVF	РПрЖ
42	VYDSIWCNM	РЭМ
43	KYKDHFTEI	РМЖ, РЖП, НХЛ, НМРЛадено, НМРЛплоск
44	FYHEDMPLW	НХЛ
45	YGQSKPWTF	ГКК, ПлККГШ, НМРЛадено, НМРЛплоск, РП, ПКК
46	IYPDSIQEL	ГКК
47	SYLWTDNLQEF	РП
48	AWSPPATLFLF	РЖ, МЕЛ, НМРЛплоск, РЯ, ПКК
49	QYLSIAERAEF	РЖ, КМП
50	RYFDENIQKF	РП
51	YFDENIQKF	НМРЛплоск, РП
52	SWHKATFLF	ОМЛ
53	LFQRVSSVSF	ГКК
54	SYQEAIQQL	РПрЖ
55	AVLRHLETF	XLK

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
56	FYKLIQNGF	ОМЛ
57	RYLQVVLLY	РЖ
58	IYYSHENLI	ХГК, КРК, РЖ, ГКК, НМРЛадено, НМРЛплоск, РЯ, РПрЖ
59	VFPLVTPLL	ГБМ
		ХГК, РЖП, НХЛ, НМРЛадено, НМРЛдругие, НМРЛплоск,
60	RYSPVKDAW	РЯ, РП
61	RIFTARLYF	НХЛ
62	VYIVPVIVL	ГБМ, НМРЛплоск
63	LYIDKGQYL	ГБМ, ПЛККГШ, МЕЛ, НМРЛадено, НМРЛплоск
64	QFSHVPLNNF	НМРЛплоск
65	EYLLMIFKLV	НМРЛадено, НМРЛплоск, РПрЖ
66	IYKDYYRYNF	НХЛ
67	SYVLQIVAI	ГБМ, МЕЛ
68	VYKEDLPQL	ХЛЛ, НМРЛплоск
69	KWFDSHIPRW	РЖП
70	RYTGQWSEW	КМП
71	RYLPNPSLNAF	ГКК, НМРЛадено
72	RWLDGSPVTL	НХЛ
73	YFCSTKGQLF	ХЛЛ, НХЛ
		ХГК, КРК, РЖП, РЖ, ГКК, НМРЛадено, НМРЛплоск, РЯ,
74	NYVLVPTMF	РЭМ
75	VYEHNHVSL	КМП
76	IYIYPFAHW	ГКК, НХЛ
77	LYGFFFKI	РЖ, ГКК, КМП
78	TYSKTIALYGF	КМП
79	FYIVTRPLAF	НХЛ, НМРЛадено
80	SYATPVDLW	ОМЛ, ХГК, МЕЛ, НМРЛплоск
81	AYLKLLPMF	РМЖ, ПлККГШ, МЕЛ
82	SYLENSASW	РМЖ, ПлККГШ, НМРЛадено, РП, МРЛ, РЭМ
83	VLQGEFFLF	НХЛ
84	YTIERYFTL	РЖ, НМРЛплоск, РЭМ
85	KYLSIPTVFF	ХГК, РЖП, РЖ, ГКК, НМРЛадено, РПрЖ, ПКК, КМП
		РЖП, ГБМ, РЖ, ГКК, НМРЛадено, НМРЛдругие,
86	SYLPTAERL	НМРЛплоск, РПЖ, РПрЖ, РЭМ
87	NYTRLVLQF	ХГК, РЖП, РЖ, НМРЛплоск, РП, РЭМ
88	TYVPSTFLV	ХГК, РЖП, РЖ, НМРЛплоск, РП, РПЖ
89	TYVPSTFLVVL	РЖ
90	TDLVQFLLF	ПКК
91	KQQVVKFLI	РПрЖ
92	RALTETIMF	РЭМ
93	TDWSPPPVEF	НМРЛплоск

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
94	THSGGTNLF	НМРЛадено
95	IGLSVVHRF	РПрЖ
96	SHIGVVLAF	РПрЖ
97	TQMFFIHAL	РПрЖ
98	LQIPVSPSF	МЕЛ
99	ASAALTGFTF	РЯ, РПрЖ
100	KVWSDVTPLTF	ХГК, НМРЛплоск, РПЖ
101	VYAVSSDRF	ГБМ
102	VLASAHILQF	НМРЛадено
103	EMFFSPQVF	КРК, ГКК, НМРЛадено
104	GYGLTRVQPF	НМРЛадено
105	ITPATALLL	НХЛ
106	LYAFLGSHF	ПКК
107	FFFKAGFVWR	НМРЛплоск, РЭМ
108	WFFQGAQYW	ГКК
109	AQHSLTQLF	ГБМ
110	VYSNPDLFW	НМРЛадено
111	IRPDYSFQF	НМРЛадено
112	LYPDSVFGRLF	РЯ
113	ALMSAFYTF	НМРЛплоск
114	KALMSAFYTF	XLK
115	IMQGFIRAF	НМРЛадено
116	TYFFVANKY	РЖ
117	RSMEHPGKLLF	НМРЛадено, РЭМ
118	IFLPFFIVF	РЖ
119	VWSCEGCKAF	КМП
120	VYAFMNENF	ПКК
121	RRYFGEKVAL	РПрЖ
122	YFLRGRLYW	НМРЛплоск, РЯ
123	FFLQESPVF	ГКК
124	EYNVFPRTL	КРК, РЖ, НМРЛадено, НМРЛплоск
125	LYYGSILYI	МЕЛ
126	YSLLDPAQF	КРК, НМРЛадено, РПЖ, РПрЖ, РЭМ
127	FLPRAYYRW	РПрЖ
128	AFQNVISSF	РЖ
129	IYVSLAHVL	РЖ, НМРЛдругие, НМРЛплоск, РПрЖ
130	RPEKVFVF	НМРЛадено
131	MHRTWRETF	РПрЖ
132	TFEGATVTL	КРК, МЕЛ, НХЛ
133	FFYVTETTF	НХЛ
134	IYSSQLPSF	ХЛЛ

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
135	KYKQHFPEI	ГКК
136	YLKSVQLF	НМРЛплоск
137	ALFAVCWAPF	НМРЛплоск
138	MMVTVVALF	НМРЛплоск, ПКК
139	AYAPRGSIYKF	РЖП, НМРЛадено
140	IFQHFCEEI	хлл
141	QYAAAITNGL	НМРЛплоск
142	PYWWNANMVF	НХЛ
143	KTKRWLWDF	НМРЛадено, НМРЛплоск
144	LFDHGGTVFF	ГБМ
145	MYTIVTPML	РЖ
146	NYFLDPVTI	РМЖ, МЕЛ, НМРЛадено, НМРЛплоск, РЯ
147	FPYPSSILSV	ГБМ
148	MLPQIPFLLL	РЯ
149	TQFFIPYTI	ХГК, РЖ, НМРЛплоск, РЯ
150	FIPVAWLIF	РЯ
151	RRLWAYVTI	МЕЛ
152	MHPGVLAAFLF	НМРЛадено
153	AWSPPATLF	МЕЛ
154	DYSKQALSL	НМРЛадено
155	PYSIYPHGVTF	ГКК
156	IYPHGVTFSP	РЖ
157	SIYPHGVTF	РПрЖ
158	SYLKDPMIV	хлл
159	VFQPNPLF	РЭМ
160	YIANLISCF	РЖП
		ХЛЛ, РЖ, МЕЛ, НХЛ, НМРЛадено, НМРЛдругие,
161	ILQAPLSVF	НМРЛплоск, РП, РПЖ, ПКК, МРЛ
162	YYIGIVEEY	ГКК, НМРЛплоск
163	YYIGIVEEYW	РЖ
164	MFQEMLQRL	МЕЛ
165	KDQPQVPCVF	РЖ
166	MMALWSLLHL	НМРЛплоск
167	LQPPWTTVF	РЖ, МЕЛ, НМРЛадено, НМРЛплоск
168	LSSPVHLDF	КРК, ГКК, НХЛ, НМРЛадено, РП, ПКК, РЭМ
169	MYDLHHLYL	НМРЛплоск
170	IFIPATILL	ГКК
171	LYTVPFNLI	НМРЛплоск
172	RYFIAAEKILW	ПлККПШ
173	RYLSVCERL	НМРЛплоск
174	TYGEEMPEEI	РПрЖ

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
175	SYFEYRRLL	НМРЛадено
176	TQAGEYLLF	ОМЛ
177	KYLITTFSL	НМРЛадено
178	AYPQIRCTW	ОМЛ
179	MYNMVPFF	НМРЛадено
180	IYNKTKMAF	МРЛ
181	IHGIKFHYF	РЖ
182	AQGSGTVTF	ХЛЛ
183	YQVAKGMEF	НМРЛадено
184	VYVRPRVF	НМРЛадено
185	LYICKVELM	РЖ
186	RRVTWNVLF	НМРЛплоск
	KWFNVRMGFG	
187	F	НХЛ
188	SLPGSFIYVF	НМРЛадено, ПКК
189	FYPDEDDFYF	НМРЛдругие
190	IYIIMQSCW	ОМЛ
191	MSYSCGLPSL	РЖ, ГКК
192	CYSFIHLSF	ГКК, НХЛ
193	KYKPVALQCIA	НМРЛадено
194	EYFLPSLEII	ХЛЛ
195	IYNEHGIQQI	ГБМ, НМРЛадено, НМРЛплоск
196	VGRSPVFLF	РЯ
197	YYHSGENLY	РЖ, НМРЛадено
		ХЛЛ, РЖП, РЖ, МЕЛ, НХЛ, НМРЛадено, НМРЛплоск,
198	VLAPVSGQF	МРЛ
199	MFQFEHIKW	НМРЛадено
200	LYMSVEDFI	НМРЛдругие
201	VFPSVDVSF	КРК, ГБМ
202	VYDTMIEKFA	ГБМ, НМРЛадено, НМРЛдругие, НМРЛплоск
203	VYPSESTVM	ГБМ
204	WQNVTPLTF	НМРЛплоск
205	ISWEVVHTVF	РПЖ
206	EVVHTVFLF	РЖП, МЕЛ, НМРЛадено, НМРЛплоск, РПрЖ, МРЛ
		ОМЛ, РЖП, РЖ, ГКК, НМРЛадено, НМРЛдругие,
207	IYKFIMDRF	НМРЛплоск, РП, РПрЖ, КМП
208	QYLQQQAKL	НМРЛадено
209	DIYVTGGHLF	РПрЖ
210	EAYSYPPATI	НМРЛадено, НМРЛплоск
211	MLYFAPDLIL	РЖ
212	VYFVQYKIM	КМП

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
213	FYNRLTKLF	НМРЛадено
214	YIPMSVMLF	НМРЛадено
215	KASKITFHW	ГБМ
216	RHYHSIEVF	ГКК
217	QRYGFSSVGF	ГКК
218	FYFYNCSSL	РЭМ
219	KVVSGFYYI	РЖ
220	TYATHVTEI	РЖ
221	VFYCLLFVF	ХГК, НМРЛплоск
222	HYHAESFLF	РП
223	KLRALSILF	РПрЖ
224	AYLQFLSVL	НМРЛдругие
225	ISMSATEFLL	РП
226	TYSTNRTMI	XLK
227	YLPNPSLNAF	ХЛЛ, РЖ, НМРЛадено, НМРЛплоск
		МЕЛ, НМРЛадено, НМРЛплоск, РП, РПрЖ, ПКК, МРЛ,
228	VYLRIGGF	КМП
229	CAMPVAMEF	НХЛ
230	RWLSKPSLL	НХЛ
231	KYSVAFYSLD	РЖ
232	IWPGFTTSI	РЖ
233	LYSRRGVRTL	РЯ
234	RYKMLIPF	РПрЖ
235	VYISDVSVY	НМРЛадено
236	LHLYCLNTF	XLK
237	RQGLTVLTW	НМРЛадено
238	YTCSRAVSLF	НМРЛадено
239	IYTFSNVTF	РЖ
240	RVHANPLLI	ГКК
044	QKYYITGEAEG	
241	F	PU
242	SYTPLLSYI	МЕЛ
243	ALFPMGPLTF	ХЛЛ
244	TYIDTRTVFL	TKK
245	VLPLHFLPF	ПКК
246	KIYTTVLFANI	TKK
247	VHSYLGSPF	ПКК
248	CWGPHCFEM	НМРЛплоск
249	HQYGGAYNRV	РЯ
250	VYSDRQIYLL	LKK
251	DYLLSWLLF	РЖ

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
252	RYLIIKYPF	РЖП
253	QYYCLLLIF	НМРЛадено, НМРЛплоск
254	KQHAWLPLTI	НХЛ
255	VYLDEKQHAW	хлл, нхл
256	QHAWLPLTI	нхл
257	MLILFFSTI	МЕЛ
258	VCWNPFNNTF	КРК
259	FFLFIPFF	НМРЛадено
260	FLFIPFFIIF	РЖ
261	IMFCLKNFWW	НМРЛадено, РЯ
263	AYVTEFVSL	РМЖ, РЖП
264	AYAIPSASLSW	ГКК
265	LYQQSDTWSL	ГКК, НМРЛадено
266	TQIITFESF	МЕЛ
267	QHMLPFWTDL	РП
268	YQFGWSPNF	РЖ
269	FSFSTSMNEF	РПрЖ
270	GTGKLFWVF	РПЖ
271	INGDLVFSF	ХЛЛ
272	IYFNHRCF	НМРЛадено
273	VTMYLPLLL	РЖ, НМРЛадено, НМРЛплоск, РЯ, ПКК
		ОМЛ, ХГК, ХЛЛ, КРК, РЖП, ГБМ, РЖ, ГКК, ПЛККГШ, МЕЛ, НМРЛадено, НМРЛдругие, НМРЛплоск, РЯ, РП,
274	EYSLPVLTF	ПКК, МРЛ, КМП, РЭМ
275	PEYSLPVLTF	НХЛ
277	MSAIWISAF	РП
278	TYESVVTGFF	МРЛ
279	KYKNPYGF	ГКК
280	TIYSLEMKMSF	НМРЛдругие, НМРЛплоск
281	MDQNQVVWTF	НМРЛадено
282	ASYQQSTSSFF	НМРЛадено
283	SYIVDGKII	РПрЖ
284	QFYSTLPNTI	ГКК
285	YFLPGPHYF	ПКК
286	HHTQLIFVF	РЖП, РПрЖ
287	LVQPQAVLF	ГБМ, РЖ, НМРЛадено, МРЛ, РЭМ
288	MGKGSISFLF	НМРЛадено
289	RTLNEIYHW	НМРЛадено, НМРЛплоск
290	VTPKMLISF	ХГК, НМРЛдругие

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
		ОМЛ, РМЖ, ХГК, ХЛЛ, КРК, РЖП, ГБМ, РЖ, ГКК,
		ПлККГШ, МЕЛ, НХЛ, НМРЛадено, НМРЛдругие,
291	YTRLVLQF	НМРЛплоск, РЯ, РП, РПЖ, РПрЖ, ПКК, МРЛ, КМП, РЭМ
292	KMFPKDFRF	KPK
293	MYAYAGWFY	KPK
294	KMGRIVDYF	ХГК, РЖП, РЖ
295	KYNRQSMTL	ГКК
296	YQRPDLLLF	ХЛЛ, МЕЛ
297	LKSPRLFTF	РЖП
298	TYETVMTFF	РЖП, РЖ, ГКК, НХЛ, КМП
299	FLPALYSLL	НМРЛадено
300	LFALPDFIF	НМРЛадено
301	RTALSSTDTF	НХЛ
302	YQGSLEVLF	НМРЛадено
303	RFLDRGWGF	KPK
304	YFGNPQKF	РЖ, РПЖ
305	RNAFSIYIL	КРК, НМРЛадено
		РМЖ, ХГК, КРК, РЖП, ГБМ, РЖ, ГКК, ПЛККГШ, МЕЛ,
		НХЛ, НМРЛадено, НМРЛдругие, НМРЛплоск, РЯ, РП,
306	RYILEPFFI	РПЖ, РПрЖ, ПКК, МРЛ, КМП, РЭМ
307	RILTEFELL	РЖ
308	AAFISVPLLI	ГКК
309	AFISVPLLI	НМРЛадено, НМРЛдругие
310	EFINGWYVL	ГКК
311	IQNAILHLF	МРЛ
312	YLCMLYALF	ХГК, РЖП, РЖ, НХЛ
313	IFMENAFEL	TKK
315	VYDYIPLLL	РЯ
316	IWAERIMF	НМРЛплоск
317	DWIWRILFLV	ГБМ
318	VQADAKLLF	РЖ, НМРЛадено, КМП
319	ATATLHLIF	РЭМ
320	EVYQKIILKF	РЖП
321	VYTVGHNLI	ГКК
322	SFISPRYSWLF	ОМЛ, КРК, НМРЛадено, НМРЛплоск, КМП
323	NYSPVTGKF	РП
324	RYFVSNIYL	РЖ, НМРЛадено, НМРЛплоск, РЭМ
325	IFMGAVPTL	ПлККГШ, НМРЛадено, РЯ, РП
326	VHMKDFFYF	ХЛЛ, МЕЛ, НХЛ, НМРЛадено, НМРЛплоск, РЯ, РПЖ
328	IYLVGGYSW	ХЛЛ
329	YLGKNWSF	ОМЛ, ХГК

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
330	DYIQMIPEL	РМЖ, РЖП, РЖ, МРЛ
332	VYCSLDKSQF	РМЖ, ХГК, РЖП, РЖ, МЕЛ
333	RYADLLIYTY	РЭМ
334	KVFGSFLTL	РЭМ
335	RYQSVIYPF	РЭМ
336	VYSDLHAFY	ХГК, РЖП, ГКК, НМРЛадено, РПЖ
337	SHSDHEFLF	РЭМ
338	VYLTWLPGL	хлл, нхл
339	KQVIGIHTF	ХЛЛ, РЖП, ГБМ, РЖ, ПКК
340	FPPTPPLF	ОМЛ
341	RYENVSILF	ГБМ, РЯ
342	MYGIVIRTI	РЖ
343	EYQQYHPSL	НХЛ
344	YAYATVLTF	РЖП, РЖ, НХЛ, НМРЛадено, КМП
345	RYLEEHTEF	РЖП, НМРЛадено, РЯ, РЭМ
346	TYIDFVPYI	РЖП, РЖ, НМРЛадено, РЯ, ПКК, РЭМ
347	AWLIVLLFL	НХЛ, РЭМ
348	RSWENIPVTF	ХГК
349	IYMTTGVLL	РЖ, НМРЛадено
350	VYKWTEEKF	РМЖ, НМРЛдругие, РП
351	GYFGTASLF	НМРЛадено, НМРЛдругие
352	NAFEAPLTF	РЯ
353	AAFPGAFSF	РЯ
354	QYIPTFHVY	РМЖ, ГБМ, ГКК, ПЛККГШ, НМРЛплоск, РП
		ХГК, КРК, РЖП, РЖ, ГКК, ПлККГШ, МЕЛ, НХЛ,
		НМРЛадено, НМРЛдругие, НМРЛплоск, РЯ, РП, РПЖ,
355	VYNNNSSRF	РПрЖ, ПКК, МРЛ, РЭМ
356	YSLEHLTQF	РЯ, РЭМ
357	RALLPSPLF	МЕЛ, НХЛ
358	IYANVTEMLL	РП
359	TQLPAPLRI	РЭМ
360	LYITKVTTI	НМРЛадено
361	KQPANFIVL	РЖП
362	NYMDTDNLMF	ХГК, РЖП, РЖ, ГКК, РЯ, РП, МРЛ
363	QYGFNYNKF	РЖ, НМРЛплоск
364	KQSQVVFVL	НМРЛплоск, РЯ, РПрЖ
365	KDLMKAYLF	РЖ, МРЛ
366	RLGEFVLLF	РЖ
367	HWSHITHLF	ХГК, КРК, ГБМ, РЖ, МЕЛ
		РЖП, ГБМ, ПлККГШ, МЕЛ, НХЛ, НМРЛадено,
368	AYFVAMHLF	НМРЛдругие, НМРЛплоск, РЯ, МРЛ, РЭМ

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
369	NFYLFPTTF	РЖ, НМРЛплоск
		РЖП, РЖ, ГКК, НХЛ, НМРЛадено, НМРЛплоск, РП,
370	TQMDVKLVF	КМП, РЭМ
371	FRSWAVQTF	ОМЛ, КРК, РЖ
372	LYHNWRHAF	РМЖ, РЯ, ПКК
		ХЛЛ, КРК, РЖП, ГБМ, РЖ, ГКК, ПлККГШ, МЕЛ, НХЛ,
373	IWDALERTF	НМРЛадено, НМРЛплоск, РЯ, РП, РПрЖ
374	MIFAVVVLF	РЖП, ГБМ, РЖ, МЕЛ, НХЛ, НМРЛадено, РЯ, РП, РПрЖ
		ОМЛ, РЖП, РЖ, ГКК, НХЛ, НМРЛадено, НМРЛдругие,
375	YYAADQWVF	НМРЛплоск, РП, РПЖ
376	KYVGEVFNI	ОМЛ, ХЛЛ, ГКК, НХЛ, НМРЛадено, НМРЛплоск, ПКК
377	SLWREVVTF	РЯ, ПКК
378	VYAVISNIL	ГБМ, НХЛ, НМРЛадено, МРЛ
		ХГК, ХЛЛ, КРК, РЖ, ГКК, НХЛ, НМРЛадено,
379	KLPTEWNVL	НМРЛдругие, НМРЛплоск, РП, ПКК, РЭМ
380	FYIRRLPMF	НХЛ, НМРЛадено, НМРЛплоск, РЯ, РП, ПКК
		ОМЛ, ХГК, РМЖ, ГКК, НХЛ, НМРЛадено, НМРЛплоск,
381	IYTDITYSF	РЯ, РП, ПКК
382	SYPKELMKF	РЖП, РЖ, ПлККГШ, НМРЛадено, РЯ, РЭМ
383	PYFSPSASF	НМРЛадено, НМРЛдругие, КМП
		РМЖ, ХГК, КРК, РЖП, РЖ, ГКК, ПЛККГШ, МЕЛ,
		НМРЛадено, НМРЛдругие, НМРЛплоск, РЯ, РП, РПЖ,
385	GYFGNPQKF	РПрЖ, ПКК, МРЛ, КМП, РЭМ
		КРК, РЖП, ГБМ, РЖ, ГКК, ПЛККГШ, НМРЛадено,
386	YQSRDYYNF	НМРЛплоск, РЯ, РПрЖ, КМП, РЭМ
007	T. I.A. O. (D.). (E.	КРК, РЖП, РЖ, ГКК, НХЛ, НМРЛадено, НМРЛплоск, РЯ,
387	THAGVRLYF	РП, РПрЖ, РЭМ

Таблица 8б: Сводка данных презентации выбранных опухолеассоциированных пептидов по настоящему изобретению среди различных видов.

ОМЛ: острый миелоидный лейкоз; РМЖ: рак молочной железы; РЖП: рак желчного пузыря; РЖ: рак желудка; ГКК: гепатоклеточная карцинома; ПлККГШ: плоскоклеточная карцинома головы и шеи; НМРЛадено: немелкоклеточный рак легких - аденокарцинома; НМРЛплоск: плоскоклеточный немелкоклеточный рак легких; РЯ: рак яичника.

SEQ	Последователь	
ID No.	ность	Презентация пептидов при раковых заболеваниях
463	VGGNVTSNF	ОМЛ, РМЖ, РЖП, РЖ, ГКК, ПЛККГШ, НМРЛПЛОСК, РЯ
464	VGGNVTSSF	РМЖ, РЖП, РЖ, ПлККПШ, НМРЛадено, НМРЛплоск, РЯ

ПРИМЕР 2:

Определение профиля экспрессии генов, кодирующих пептиды по изобретению Избыточной презентации или специфической презентации пептида на опухолевых клетках по сравнению с нормальными клетками достаточно для его пригодности в иммунотерапии, и некоторые пептиды являются опухолеспецифическими, несмотря на присутствие их исходных белков также и в нормальных тканях. Тем не менее, выявление профилей экспрессии мРНК привносит дополнительный уровень безопасности при отборе пептидных мишеней для иммунотерапии. В особенности в случае терапевтических методов с высокой степенью риска для безопасности, таких как ТКР с созревшей аффинностью, идеальный целевой пептид будет получен из белка, являющегося уникальным для опухоли и не встречающегося на нормальных тканях.

Источники и приготовление РНК

Хирургически удаленные тканевые препараты были предоставлены различными организациями, которые перечислены выше (см. Пример 1) после получения письменной формы информированного согласия от каждого пациента. Препараты опухолевой ткани были мгновенно заморожены после операции и впоследствии гомогенизированы с помощью ступки и пестика в жидком азоте. Суммарная РНК была приготовлена из данных образцов с использованием реагента TRI (Ambion, Дармштадт, Германия) с последующей очисткой на RNeasy (QIAGEN, Хильден, Германия); оба метода осуществлялись в соответствии с указаниями производителей.

Суммарная РНК здоровых тканей человека для экспериментов по секвенированию РНК (RNASeq) была получена из: Asterand (Детройт, Мичиган, США и Ройстон, Хартфордшир, Великобритания); Bio-Options Inc. (Бри, Калифорния, США); Geneticist Inc. (Глендейл, Калифорния, США); ProteoGenex Inc. (Кальвер-Сити, Калифорния, США); Tissue Solutions Ltd (Глазго, Великобритания). Суммарная РНК опухолевых тканей для экспериментов RNASeq была получена из: Asterand

(Детройт, Мичиган, США и Ройстон, Хартфордшир, Великобритания), BioCat GmbH (Гейдельберг, Германия), BioServe (Белтсвиль, Мэриленд, США), Geneticist Inc. (Глендейл, Калифорния, США), Istituto Nazionale Tumori «Pascale» (Неаполь, Италия), ProteoGenex Inc. (Кальвер-Сити, Калифорния, США), Университетской клиники г. Гейдельберг (Гейдельберг, Германия)

Качество и количество всех образцов РНК оценивали на биоанализаторе Agilent 2100 (Agilent, Вальдбронн, Германия) с использованием набора RNA 6000 Pico LabChip Kit (Agilent).

Эксперименты по секвенированию РНК

Анализ экспрессии гена в образцах РНК опухолевой и нормальной ткани поводили способом секвенирования следующего поколения (RNAseq) лабораторией CeGaT (Тюбинген, Германия). Вкратце, библиотеки секвенирования подготавливали при использовании набора реактивов Illumina HiSeq v4 согласно протоколу производителя (Illumina Inc., Сан-Диего, Калифорния, США), в который входит фрагментация РНК, синтез кДНК и добавление адаптеров секвенирования. Библиотеки, полученные из многочисленных образцов, смешивали в эквимолярном соотношении и секвенировали на системе компании Illumina HiSeq 2500 согласно инструкциям производителя, получая одноконцевые риды длиной 50 пар оснований. Обработанные риды картируют на человеческий геном (GRCh38) с помощью программного обеспечения STAR. Данные по экспрессии представляются на уровне транскриптов в виде RPKM (число ридов на тысячу пар нуклеотидов, отнесенное на миллион картированных ридов с помощью программного обеспечения Cufflinks) и на уровне экзонов (общее число ридов, получаемых с помощью программного обеспечения Bedtools), на основании идентификаций по банку данных последовательностей ensembl (Ensembl77). Для получения значений RPKM риды экзонов нормализованы по длине экзона и размеру выравнивания.

Типичные профили экспрессии исходных генов, предложенных в настоящем изобретении, которые в высокой степени экспрессированы в избытке или

исключительно экспрессированы в случае острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия, представлены на Фигуре 2. Показатели экспрессии других иллюстративных генов показаны в Таблице 9а и Таблице 9б.

Таблица 9а: Показатели экспрессии. В таблице для каждого пептида представлены виды опухолей, экзон для которых в очень высокой степени избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (+++), в высокой степени избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (++) или избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (+). Фоновый уровень данного показателя рассчитывали по измерениям следующих соответствующих нормальных тканей: клетки крови, кровеносные сосуды, ткань головного мозга, сердца, печени, легких, жировая ткань, ткань надпочечника, желчного протока, костного мозга, ткань пищевода, глаза, желчного пузыря, головы и шеи, почки, толстой кишки, лимфатического узла, поджелудочной железы, паращитовидной железы, нерва, брюшины, гипофиза, плевры, скелетных мышц, кожи, тонкой кишки, селезенки, желудка, щитовидной железы, трахеи, мочеточника, мочевого пузыря. В случае, если в наличии имелись данные для нескольких образцов одного и того же вида ткани, для расчетов использовали среднее арифметическое всех соответствующих образцов. ОМЛ: острый миелоидный лейкоз; РМЖ: рак молочной железы; ХГК: холангиоклеточная карцинома; ХЛЛ: хронический лимфоцитарный лейкоз; КРК: колоректальный рак; РЖП: рак желчного пузыря; ГБМ: глиобластома; РЖ: рак желудка; ГКК: гепатоклеточная карцинома; ПлККГШ: плоскоклеточная карцинома головы и шеи; МЕЛ: меланома; НХЛ: неходжкинская лимфома; НМРЛадено: немелкоклеточный рак легких - аденокарцинома; НМРЛдругие: образцы НМРЛ, которые не могут быть однозначно отнесены к НМРЛадено и НМРЛплоск; НМРЛплоск: плоскоклеточный немелкоклеточный рак легких; РЯ: рак яичника; РП: рак пищевода; РПЖ: рак поджелудочной железы; РПрЖ: рак предстательной железы; ПКК: почечноклеточная карцинома; МРЛ: мелкоклеточный рак легких; КМП: карцинома мочевого пузыря; РЭМ: рак эндометрия и матки.

	Последовательн	Экспрессия экзона в разных видах опухолей в сравнении с		
Seq ID		рядом нормальных тканей		
No .	ость	избыточная	в высокой степени	в очень высокой степени избыточная
		экспрессия (+)	избыточная экспрессия (++)	экспрессия (+++)
		экспрессия (+)	Зкспрессия (++)	РЖП, ПлККГШ,
		РМЖ, КРК, РЖ,	 ГКК, НМРЛадено,	МЕЛ, НМРЛплоск,
1	IFPKTGLLII	P9M	КМП	РЯ, РП, МРЛ
2	LYAPTILLW	РЖП		ХГК, ГКК
3	KFLTHDVLTELF	МЕЛ	ГБМ, МРЛ	РПрЖ
		РЖП, ГКК, НХЛ,	·	
4	MVLQPQPQLF	РЯ, КМП		РПрЖ
		РЖП, ГКК, НХЛ,		
5	LQPQPQLFFSF	РЯ, КМП		РПрЖ
6	IVTFMNKTLGTF	нхл		хлл
7	GYPLRGSSI		РЯ	РЭМ
		РМЖ, КРК, РЖП, РЖ, НМРЛплоск,		
_		РПЖ, МРЛ, КМП,		
8	IMKPLDQDF	РЭМ	НМРЛадено	РПрЖ
9	TYINSLAIL			РПрЖ
10	QYPEFSIEL			РПрЖ
11	RAMCAMMSF			РПрЖ
		МЕЛ, НМРЛадено, НМРЛплоск, РЯ,		
12	KYMSRVLFVY	РП, КМП, РЭМ	ГБМ, ПлККГШ, МРЛ	НМРЛдругие
		МЕЛ, НМРЛадено,		
		НМРЛплоск, РЯ,		
13	KYYIATMAL	РП, КМП, РЭМ	ГБМ, ПлККГШ, МРЛ	НМРЛдругие
		МЕЛ, НМРЛадено,		
14	YYIATMALI	НМРЛплоск, РЯ, РП, КМП, РЭМ	 ГБМ, ПлККГШ, МРЛ	 НМРЛдругие
17	THATIVIALI	НМРЛадено,	T DIVI, TIJIKKI III, IVIF JI	ГПИГЛДРУГИС
15	FMVIAGMPLF	НМРЛплоск		ПКК
16	GYFLAQYLM	ГБМ, МЕЛ		РПрЖ
17	IYPEAIATL	НМРЛадено		ПКК
			ХГК, РЖ, МЕЛ, НХЛ,	
			НМРЛадено, РЯ,	КРК, РЖП, ПлККГШ,
18	KYVDINTFRL	ГКК, ПКК	РПЖ, РЭМ	НМРЛдругие,

		· -	на в разных видах опух	•
Seq ID	Последовательн	Γ Γ	ядом нормальных тка в высокой степени	неи В очень высокой
No	ость	 избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		Chemperson ()	Champedown ()	НМРЛплоск, РП,
				мрл, кмп [′]
19	ILLCMSLLLF	РЯ		РМЖ
20	ELMAHPFLL	РЯ		РМЖ
21	LYMRFVNTHF			ОМЛ
		РЖП, ГБМ, МЕЛ,		
22	VYSSFVFNL	РЯ, КМП	ХЛЛ	НХЛ
		РЖП, ГБМ, МЕЛ,		
23	VYSSFVFNLF	РЯ, КМП	ХЛЛ	НХЛ
0.4	LANDE A OLLI	РЖП, ГБМ, МЕЛ,	VEE	
24	KMLPEASLLI	РЯ, КМП	ХЛЛ	НХЛ
25	 MLPEASLLI	РЖП, ГБМ, МЕЛ, РЯ, КМП	 хлл	 НХЛ
25	IVILPEAGLLI	PA, NIVII I	ХГК, КРК, РЖП, РЖ,	UVII
			ПлККГШ, МЕЛ,	
			НМРЛадено, РЯ,	
			РП, РПЖ, МРЛ,	НМРЛдругие,
26	TYFFVDNQYW	ГКК, НХЛ, ПКК	КМП, РЭМ	НМРЛплоск
		НМРЛдругие,		
27	LSCTATPLF	НМРЛплоск, МРЛ	РП	ПлККГШ
28	FWFDSREISF			РПрЖ
29	IYLLLPPVI			РПрЖ
30	RQAYSVYAF			РПрЖ
			РЖ, НМРЛадено,	
0.4	LONGEFEC	KOK MEE DENK	НМРЛплоск, РП,	
31	KQMQEFFGL	КРК, МЕЛ, РПЖ	KMΠ	ПлККГШ
			ПлККГШ, НМРЛадено,	
		 КРК, РЖ, МЕЛ,	НМРЛплоск, РП,	
32	FYPEVELNF	РПЖ	КМП	
33	FYQPDLKYLSF	ХЛЛ, РЖП	НХЛ	
		7.0.10.1, 1.71.1.1	РЖ, ПлККГШ,	
			НМРЛплоск, РП,	
34	LIFALALAAF	РЖП	РПЖ	
35	FSSTLVSLF	РЖП, МРЛ	ГКК, МЕЛ	
36	VYLASVAAF		РПрЖ	
37	ISFSDTVNVW	РМЖ, РПрЖ	МЕЛ	
38	RYAHTLVTSVLF		МЕЛ	
39	KTYLPTFETTI	РЭМ	ПКК	
40	NYPEGAAYEF		РМЖ, РЯ, РЭМ	
41	IYFATQVVF		РПрЖ	
42	VYDSIWCNM		РЯ, РЭМ	

			а в разных видах опу ядом нормальных тка	•
Seq ID	Последовательн	Ρ	в высокой степени	в очень высокой
No	ость	 избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		РМЖ, МЕЛ,		
		НМРЛадено,		
43	KYKDHFTEI	НМРЛплоск, МРЛ	РЖП, ГКК, НХЛ	
44	FYHEDMPLW	нхл	хлл	
45	YGQSKPWTF		МЕЛ	
46	IYPDSIQEL		ГКК	
47	0)/////////////////////////////////////	DUCE MADE	ПлККГШ,	
47	SYLWTDNLQEF	РЖП, МРЛ	НМРЛплоск, РП	
48	AWSPPATLFLF	XLK	МЕЛ	
49	QYLSIAERAEF		РЭМ	
50	RYFDENIQKF	НМРЛдругие, РП	ПлККГШ	
51	YFDENIQKF	НМРЛдругие, РП	ПлККГШ	
52	SWHKATFLF		ОМЛ	
53	LFQRVSSVSF		МЕЛ	
54	SYQEAIQQL		РПрЖ	
55	AVLRHLETF	ГБМ, РЖ, РП	ОМЛ	
56	FYKLIQNGF		ОМЛ	
57	RYLQVVLLY	ГБМ, РПЖ	КРК, РЖП, РЖ	
58	IYYSHENLI	XLK	ГКК	
59	VFPLVTPLL		ГБМ	
60	RYSPVKDAW	РМЖ, НМРЛплоск, РП, КМП	ПлККГШ	
61	RIFTARLYF		НХЛ	
62	VYIVPVIVL	ГБМ, РЯ	хгк	
63	LYIDKGQYL		МЕЛ	
64	QFSHVPLNNF		МЕЛ	
65	EYLLMIFKLV	нхл	ПлККГШ, МЕЛ	
66	IYKDYYRYNF	МЕЛ	НХЛ	
67	SYVLQIVAI		ГБМ	
68	VYKEDLPQL		НХЛ	
69	KWFDSHIPRW	РМЖ, ХЛЛ, НХЛ, ПКК	КМП	
70	RYTGQWSEW	ОМЛ	КМП	
71	RYLPNPSLNAF		НМРЛдругие	
72	RWLDGSPVTL		хлл, нхл	
73	YFCSTKGQLF	нхл	хлл	
74	NYVLVPTMF	РЖ	РЭМ	
75	VYEHNHVSL		КМП	
76	IYIYPFAHW	РЖП	ГКК	
77	LYGFFFKI		КМП	

		· -	а в разных видах опух	
Seq ID	Последовательн	р	ядом нормальных ткаі	
No	ость		в высокой степени	в очень высокой
		избыточная	избыточная	степени избыточная
70	TYOUTHALYOF	экспрессия (+)	экспрессия (++)	экспрессия (+++)
78	TYSKTIALYGF		КМП	
79	FYIVTRPLAF	ОМЛ	XLK	
80	SYATPVDLW	ГБМ, РЖ	ОМЛ	
81	AYLKLLPMF		МЕЛ	
82	SYLENSASW		РЭМ	
83	VLQGEFFLF	НХЛ	ХЛЛ	
84	YTIERYFTL	РЖП, РЖ, РЭМ	РПЖ	
85	KYLSIPTVFF		ГКК	
86	SYLPTAERL		ХГК	
87	NYTRLVLQF	РЖП, РЖ, РЭМ	РПЖ	
88	TYVPSTFLV	РЖП, РЖ, РЭМ	РПЖ	
89	TYVPSTFLVVL	РЖП, РЖ, РЭМ	РПЖ	
		, ,	РЖП, РЖ, ПлККГШ,	
			НМРЛплоск, РЯ, РП,	
90	TDLVQFLLF	ГКК, НМРЛадено	МРЛ, КМП	МЕЛ
		РЖ, ПлККГШ,		
		НХЛ, НМРЛплоск,		
01	KOOMKELI	РП, РПЖ, МРЛ,		DMNC DDaNC
91	KQQVVKFLI	КМП, РЭМ	РЖП, РЯ	РМЖ, РПрЖ
92	RALTETIMF	РЖ, НМРЛплоск,	PSA ERK HERKEIN	РЭМ
93	TDWSPPPVEF	РПЖ, МРЛ, РЭМ	РЖП, ГКК, ПлККГШ, РП	МЕЛ
	IBWOITI VEI	1 1 1710, 1911 31, 1 0191	ХГК, КРК, РЖ, МЕЛ,	14121
			НХЛ, НМРЛадено,	ГБМ, ПлККГШ,
			РЯ, РП, РПЖ, МРЛ,	НМРЛдругие,
94	THSGGTNLF	ГКК, ПКК	КМП, РЭМ	НМРЛплоск
95	IGLSVVHRF			РПрЖ
96	SHIGVVLAF			РПрЖ
97	TQMFFIHAL			РПрЖ
98	LQIPVSPSF	РЖП, МРЛ	ГКК, МЕЛ	•
99	ASAALTGFTF	,	РПрЖ	
			РМЖ, ХГК, КРК,	
			РЖП, РЖ, ПлККГШ,	
			НМРЛадено,	
			НМРЛплоск, РЯ, РП,	
100	KVWSDVTPLTF	ГКК, ПКК, МРЛ	РПЖ, КМП, РЭМ	
101	VYAVSSDRF		ГБМ, МРЛ	
102	VLASAHILQF		КМП	
		РЖ, ПлККГШ,		
		МЕЛ, НМРЛадено,	DMDIC VEIG ICDIC	
103	 EMFFSPQVF	НМРЛплоск, РП, РПЖ, ПКК, МРЛ	РМЖ, ХГК, КРК, РЖП, ГКК, РЯ, КМП	
103	LIVIFFOFUVF	LLIWY LIVE INCHINA	FANI, INN, FA, NIVIII	

			а в разных видах опух	•
Seq ID	Последовательн	<u> </u>	ядом нормальных тка	
No .	ость		в высокой степени	в очень высокой
		избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		РЖ, ПлККГШ,		
		МЕЛ, НМРЛадено,	DMDK ALK KDK	
104	GYGLTRVQPF	НМРЛплоск, РП,	PMX, XFK, KPK,	
	·	РПЖ, ПКК, МРЛ	РЖП, ГКК, РЯ, КМП	
105	ITPATALLL	НХЛ	ХЛЛ	
400	L VAEL COLIE	PMЖ,	Пии	
106	LYAFLGSHF	НМРЛадено, РЭМ	UKK KEK KOK	
			PMX, XFK, KPK,	
			РЖП, РЖ, ПлККГШ,	
			∣НМРЛадено, ∣НМРЛплоск, РП,	
107	FFFKAGFVWR	ГКК, РЯ, МРЛ	РПЖ, КМП, РЭМ	
107	ITTRAGIVWK	TINN, EZI, IVIEJI	РМЖ, ХГК, КРК,	
			РЖП, РЖ, ПлККГШ,	
			НМРЛадено,	
			НМРЛплоск, РП,	
108	WFFQGAQYW	ГКК, РЯ	РПЖ, КМП, РЭМ	
109	AQHSLTQLF		ГБМ, МРЛ	
110	VYSNPDLFW		хлл	
111	IRPDYSFQF	OME VEK DVK	ХЛЛ	
		ОМЛ, ХГК, РЖ, ПлККГШ,		
		НМРЛдругие,	РМЖ, РЖП, ГКК,	
		НМРЛплоск, РП,	МЕЛ, НМРЛадено,	
112	LYPDSVFGRLF	P9M	РЯ, МРЛ, КМП	
112	ETT BOTT CITE	1 0101	РМЖ, ХГК, КРК,	
			РЖП, РЖ, ПлККГШ,	
			НМРЛадено,	
			НМРЛплоск, РП,	
113	ALMSAFYTF	ГКК, РЯ, ПКК, МРЛ		
		,	РМЖ, ХГК, КРК,	
			РЖП, РЖ, ПлККГШ,	
			НМРЛадено,	
			НМРЛплоск, РП,	
114	KALMSAFYTF	ГКК, РЯ, ПКК, МРЛ	РПЖ, КМП, РЭМ	
115	IMQGFIRAF	ХГК, ГКК, РЯ	НМРЛадено	
		КРК, РЖ,		
		НМРЛадено, РПЖ,	ПлККГШ,	
116	TYFFVANKY	КМП	НМРЛплоск, РП	
117	RSMEHPGKLLF		РМЖ, РЯ, РЭМ	
		РМЖ, РЖП, ГКК,		
		РП, РПрЖ, КМП,		
118	IFLPFFIVF	РЭМ	хгк, пкк	
119	VWSCEGCKAF		РМЖ, РЯ, РЭМ	

		· -	а в разных видах опух	•
Seq ID	Последовательн	рр	ядом нормальных тка	
No	ость	 избыточная	в высокой степени избыточная	в очень высокой степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
120	VYAFMNENF	НМРЛплоск, РП	ПКК	Экспрессия (ттт)
		MIVIEJIIIJIOCK, ETI		
121	RRYFGEKVAL		РПрЖ РМЖ, ХГК, КРК,	
			РЖП, РЖ, ПлККГШ,	
			НМРЛадено,	
			НМРЛплоск, РП,	
122	YFLRGRLYW	ГКК, РЯ	РПЖ, КМП, РЭМ	
123	FFLQESPVF	ГКК, МЕЛ, РПрЖ	РМЖ	
			ПлККГШ,	
124	EYNVFPRTL	НМРЛадено, КМП	НМРЛплоск, РП	
125	LYYGSILYI		МЕЛ	
		РЖП, ГКК,		
		ПлККГШ,		
		НМРЛадено,		
126	YSLLDPAQF	НМРЛдругие, РП, МРЛ, КМП, РЭМ	КРК, РЖ, РПрЖ	
127	FLPRAYYRW	IVII JI, KIVII I, I OIVI	РПрЖ	
128	AFQNVISSF	НМРЛплоск, РЭМ	РЖ, РПЖ	
129	IYVSLAHVL	THINIT THISTOCK, I CIVI	РПрЖ	
123	TIVOLATIVE	ХГК, КРК, ГБМ,	РМЖ, РЖП, РЖ,	
		НМРЛдругие,	ПлККГШ, МЕЛ,	
		НМРЛплоск, РЯ,	НМРЛадено, РП,	
130	RPEKVFVF	МРЛ	РПЖ	
131	MHRTWRETF		РПрЖ	
132	TFEGATVTL	НХЛ	хлл	
		ОМЛ, РЖ, РЯ, РП,		
133	FFYVTETTF	МРЛ, РЭМ	ГКК, НХЛ	
134	IYSSQLPSF	нхл	ХЛЛ	
135	KYKQHFPEI		ГКК	
136	YLKSVQLF	РМЖ, МЕЛ	ОМЛ	
137	ALFAVCWAPF	НМРЛплоск, РП	ПКК	
138	MMVTVVALF	НМРЛплоск, РП	ПКК	
120	AVADDOGIVIZE	PMЖ,	FIGIC	
139	AYAPRGSIYKF	НМРЛадено, РЯ ОМЛ, РМЖ, РЖП,	ГКК	
		ГСКИЛ, РІМЖ, РЖП, ГКК, МЕЛ,		
140	IFQHFCEEI	НМРЛадено	РЯ, МРЛ	
141	QYAAAITNGL	МРЛ	ГБМ	
142	PYWWNANMVF		ГКК	
		ХГК, КРК, ГБМ,		
		РЖ, НМРЛдругие,	РМЖ, РЖП,	
143	KTKRWLWDF	НМРЛплоск, РЯ	ПлККГШ, МЕЛ,	

		· -	а в разных видах опуж ядом нормальных тка	•
Seq ID No	Последовательн ость	избыточная	ядом нормальных тка в высокой степени избыточная	в очень высокой степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
			НМРЛадено, РП, РПЖ	
144	LFDHGGTVFF		РПрЖ	
145	MYTIVTPML	ГБМ	РЯ	
146	NYFLDPVTI		МЕЛ	
147	FPYPSSILSV	МЕЛ	ГБМ, МРЛ	
148	MLPQIPFLLL	КРК, ПлККГШ, НМРЛплоск, РЯ, КМП, РЭМ КРК, ПлККГШ, НМРЛплоск, РЯ,	РМЖ, ХГК, РЖП, РЖ, НМРЛадено, РП, РПЖ РМЖ, ХГК, РЖП, РЖ, НМРЛадено,	
149	TQFFIPYTI	ГПМЕЛПЛОСК, РЭ, КМП, РЭМ	ГРЖ, ПМРЛАДЕНО, ГРП, РПЖ	
150	FIPVAWLIF	ПлККГШ, КМП	МЕЛ	
151	RRLWAYVTI	TBRACK ED, TAVILLE	МЕЛ	
152	MHPGVLAAFLF	НМРЛадено, КМП	ПлККГШ, НМРЛплоск, РП	
153	AWSPPATLF	хгк	мел	
154	DYSKQALSL	ХГК, РЖ, НМРЛадено, НМРЛдругие, РПЖ, КМП, РЭМ	ПлККГШ, НМРЛплоск, РП	
155	PYSIYPHGVTF	XFK	ГКК	
156	IYPHGVTFSP	XLK	ГКК	
157	SIYPHGVTF	XCK	ГКК	
158	SYLKDPMIV	РЭП, ПлККГШ, МЕЛ, НМРЛадено, МРЛ	ГКК	
159	VFQPNPLF	РЖ, НМРЛплоск, РПЖ	КРК, ПлККГШ, МЕЛ, РЯ, РП, КМП	
160	YIANLISCF		МРЛ, РЭМ	
161	ILQAPLSVF	нхл	хлл	
162	YYIGIVEEY	НМРЛдругие, РП	ПлККГШ	
163	YYIGIVEEYW	НМРЛдругие, РП	ПлККГШ	
164	MFQEMLQRL	РМЖ, РЖП, НМРЛплоск, РЯ, КМП	ПлККГШ, МЕЛ, РП, РПЖ	
165	KDQPQVPCVF		РМЖ	
166	MMALWSLLHL		МРЛ	
167	LQPPWTTVF	нхл	хлл	
168	LSSPVHLDF	нхл	хлл	

		· -	а в разных видах опу	•
Seq ID	Последовательн	р	ядом нормальных тка	
No	ость		в высокой степени	в очень высокой
		избыточная	избыточная	степени избыточная
		экспрессия (+) КРК, РЖП,	экспрессия (++) РМЖ, РЖ, МЕЛ,	экспрессия (+++)
		ГЛРК, РЖП, ПЛККГШ, НХЛ,	РМЖ, РЖ, МЕЛ, НМРЛадено, РЯ,	
169	MYDLHHLYL	НМРЛплоск, РЭМ	РП, РПЖ	
170	IFIPATILL	РПрЖ	ГКК	
171	LYTVPFNLI	ГКК	МЕЛ	
172	RYFIAAEKILW	РΠ	ПлККГШ	
173	RYLSVCERL	ПлККГШ, НМРЛадено, НМРЛплоск, РП, МРЛ, РЭМ	НМРЛдругие	
		НМРЛдругие,		
174	TYGEEMPEEI	НМРЛплоск	ПлККГШ, РП	
175	SYFEYRRLL	РЖ, НМРЛадено, НМРЛдругие, РПЖ, КМП	ХГК, ПлККГШ, НМРЛплоск, РП	
176	TQAGEYLLF	T TIZIC, ICIVIII	ОМЛ	
170	IQAOLILLI	РМЖ, РЖ,	Olvisi	
177	KYLITTFSL	ПлККГШ, НХЛ, НМРЛадено, РП, РПЖ, РПрЖ, МРЛ	ХГК, РЖП, НМРЛплоск, РЯ, КМП, РЭМ	
178	AYPQIRCTW		ОМЛ	
179	MYNMVPFF		МЕЛ	
		ПлККГШ, МЕЛ, РЯ,		
180	IYNKTKMAF	РП, МРЛ	ГКК, КМП	
181	IHGIKFHYF	РПЖ, РЭМ	РЖ	
182	AQGSGTVTF		хлл, нхл	
183	YQVAKGMEF		ОМЛ	
184	VYVRPRVF		МЕЛ	
185	LYICKVELM	НХЛ	хлл	
186	RRVTWNVLF	МРЛ	ГБМ	
187	KWFNVRMGFG F	РЖП, МЕЛ, РЯ, КМП, РЭМ	ГКК, МРЛ	
188	SLPGSFIYVF		МЕЛ	
189	FYPDEDDFYF	ГБМ, МЕЛ, РЯ, МРЛ, КМП	ОМЛ, РЭМ	
190	IYIIMQSCW		ОМЛ	
191	MSYSCGLPSL	ПлККГШ	МЕЛ	
192	CYSFIHLSF	РМЖ, ХГК, РЖ, ПлККГШ, НХЛ, НМРЛадено, РП, РПЖ, РПрЖ, МРЛ	РЖП, НМРЛплоск, РЯ, КМП, РЭМ	
193	KYKPVALQCIA		МЕЛ	

			а в разных видах опу	
Seq ID	Последовательн	Ρ	ядом нормальных тка	
No	ость	 избыточная	в высокой степени избыточная	в очень высокой степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
194	EYFLPSLEII	OKONPOCONA (1)	МЕЛ	OKONPECCIA (111)
101	LII EI OLLII	ХГК, КРК, РЖП,		
		ГБМ, РЖ,		
		ПлККГШ,		
		НМРЛдругие,		
		НМРЛплоск, РЯ,	РМЖ, МЕЛ,	
195	IYNEHGIQQI	РП	НМРЛадено, РПЖ	
		ХГК, КРК, РЖП,		
		ГБМ, РЖ, ПлККГШ,		
		НМРЛдругие,		
		НМРЛплоск, РЯ,	РМЖ, МЕЛ,	
196	VGRSPVFLF	РП	НМРЛадено, РПЖ	
197	YYHSGENLY	МЕЛ	ХГК	
198	VLAPVSGQF	нхл	хлл	
199	MFQFEHIKW		ГКК	
		РЖ, ПлККГШ,		
		МЕЛ, НМРЛадено,		
000	LVAAOVEDEL	НМРЛплоск, РЯ,	KDK DXC	
200	LYMSVEDFI	РП, РПЖ, КМП	КРК, РЖП	
201	VFPSVDVSF		ГБМ	
202	VYDTMIEKFA		ГБМ	
203	VYPSESTVM	DNANG	ГБМ	
204	WQNVTPLTF	PMЖ	ГБМ, МЕЛ	
205	ISWEVVHTVF		МЕЛ	
206	EVVHTVFLF	LIVE LIMBERS	МЕЛ	
207	 IYKFIMDRF	НХЛ, НМРЛадено, НМРЛплоск, РЯ	 МРЛ, РЭМ	
201		НХЛ, НМРЛадено,	I IVIEJI, E OIVI	
208	QYLQQQAKL	НМРЛплоск, РЯ	МРЛ, РЭМ	
		РМЖ, НМРЛплоск,		
209	DIYVTGGHLF	РП, КМП	ПлККГШ	
210	EAYSYPPATI		МЕЛ	
211	MLYFAPDLIL	РМЖ	РЭМ	
		РМЖ, ПлККГШ,		
		НМРЛдругие,		
		НМРЛплоск, РЯ,	VEK LIVE	
212	VYFVQYKIM	РП, РПЖ, КМП, РЭМ	ХГК, НХЛ, НМРЛадено	
Z 1Z	VIEVQINIVI	КРК, РЖП,	пигладено	
		ПлККГШ, МЕЛ,		
213	FYNRLTKLF	НХЛ, НМРЛадено,	РП, КМП	

			на в разных видах опу	•
Seq ID	Последовательн	<u> </u>	рядом нормальных тка Принаской отологии	
No	ость	 избыточная	в высокой степени избыточная	в очень высокой
				степени избыточная
		экспрессия (+) НМРЛплоск, РП,	экспрессия (++)	экспрессия (+++)
		РПЖ, РЭМ		
		ОМЛ, НМРЛплоск,		
214	YIPMSVMLF	РП	ПлККГШ, КМП	
215	KASKITFHW		ГБМ	
216	RHYHSIEVF		МЕЛ	
217	QRYGFSSVGF		ГКК	
		РМЖ, ХЛЛ, НХЛ,		
218	FYFYNCSSL	ПКК	КМП	
		РМЖ, ХГК,		
		ПлККГШ, МЕЛ,		
		НМРЛадено,		
		НМРЛдругие,		
219	KVVSGFYYI	│НМРЛплоск, РП, │КМП	НХЛ	
219	KVVSGFTTI	РМЖ, ХГК,		
		ГГМИК, ХГК, ПЛККГШ, МЕЛ,		
		НМРЛадено,		
		НМРЛдругие,		
		НМРЛплоск, РП,		
220	TYATHVTEI	КМП	НХЛ	
		РМЖ, ХГК,		
		ПлККГШ, МЕЛ,		
		НМРЛадено,		
		НМРЛдругие,		
		НМРЛплоск, РП,		
221	VFYCLLFVF	КМП	НХЛ	
222	HYHAESFLF	РП	ПлККГШ	
223	KLRALSILF		ГБМ	
		РМЖ, ГКК, МЕЛ,		
224	AYLQFLSVL	РЯ, МРЛ, РЭМ	РПрЖ	
225	ISMSATEFLL		НМРЛдругие	
226	TYSTNRTMI		ОМЛ	
227	YLPNPSLNAF		НМРЛдругие	
		ХГК, ПлККГШ,		
228	VYLRIGGF	РПЖ, КМП, РЭМ	РЯ	
229	CAMPVAMEF		хлл, нхл	
230	RWLSKPSLL		ХЛЛ, НХЛ	
		МЕЛ, НМРЛплоск,		
231	KYSVAFYSLD	ПКК, МРЛ	РЯ, РЭМ	
232	IWPGFTTSI	РЖП, РЖ, РПЖ,	KPK	
		МРЛ, РЭМ		
233	LYSRRGVRTL	ХГК, РЯ	РПЖ	

		· ·	на в разных видах опу оядом нормальных тка	•
Seq ID No	Последовательн ость	избыточная	в высокой степени избыточная	в очень высокой степени избыточная
234	RYKMLIPF	экспрессия (+) РМЖ, ХГК, РЖ, ПлККГШ, НХЛ, НМРЛадено, НМРЛплоск, РП, РПЖ, МРЛ, РЭМ	экспрессия (++) РЖП, РЯ, КМП	экспрессия (+++)
235	VYISDVSVY	ОМЛ, НХЛ	ХЛЛ	
236	LHLYCLNTF	РМЖ	РЭМ	
237	RQGLTVLTW	ОМЛ, РМЖ, КРК, РЖ, МЕЛ, НМРЛадено, РЯ, РП, РПЖ, РПрЖ, МРЛ, РЭМ РЖП, ГКК, НМРЛдругие, РЯ,	НХЛ	
238	YTCSRAVSLF	ПКК ПКК	МРЛ	
239	IYTFSNVTF		НХЛ	
240	RVHANPLLI		ГКК	
241	QKYYITGEAEGF	РЯ	РМЖ, РЭМ	
242	SYTPLLSYI	МРЛ	ГБМ	
243	ALFPMGPLTF	НХЛ	хлл	
244	TYIDTRTVFL	РЖ	РЭМ	
245	VLPLHFLPF	ГКК, ПлККГШ, НМРЛплоск, КМП	РЖП, МЕЛ, НХЛ	
246	KIYTTVLFANI	РЖП	ГКК	
247	VHSYLGSPF		ОМЛ	
248	CWGPHCFEM	ГБМ	ПКК	
249	HQYGGAYNRV		РЭМ	
250	VYSDRQIYLL		РМЖ	
251	DYLLSWLLF	НХЛ	ХЛЛ	
252	RYLIIKYPF	ОМЛ	XLK	
253	QYYCLLLIF	XLK	ОМЛ	
254	KQHAWLPLTI		ХЛЛ, НХЛ	
255	VYLDEKQHAW		ХЛЛ, НХЛ	
256	QHAWLPLTI		ХЛЛ, НХЛ	
057	MULTECT	РЖП, ГКК, ПлККГШ, МЕЛ, НМРЛадено, НМРЛдругие, НМРЛплоск, РЯ, РП, МРЛ, КМП,	DAMA	
257	MLILFFSTI	PЭM	PMЖ	

		· · · · · · · · · · · · · · · · · · ·	на в разных видах опу оядом нормальных тка	
Seq ID	Последовательн	<u> </u>	в высокой степени	в очень высокой
No	ость	избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
258	VCWNPFNNTF	НМРЛдругие, РЯ, ПКК, МРЛ	РЭМ	
259	FFLFIPFF	НМРЛадено, РПрЖ	РЯ	
260	FLFIPFFIIF	НМРЛадено, РПрЖ	РЯ	
261	IMFCLKNFWW		МЕЛ	
262	YIMFCLKNF		МЕЛ	
263	AYVTEFVSL		МРЛ	
264	AYAIPSASLSW		МЕЛ	
265	LYQQSDTWSL		хлл	
266	TQIITFESF	НМРЛадено, НМРЛплоск, РП, КМП РМЖ, ХГК, НМРЛадено,	ПлККГШ	
267	QHMLPFWTDL	НМРЛплоск, РЯ, РП, КМП, РЭМ	РЖП	
268	YQFGWSPNF		ГКК	
269	FSFSTSMNEF		РЭМ	
270	GTGKLFWVF	нхл	ХЛЛ	
271	INGDLVFSF		РЭМ	
272	IYFNHRCF		ХЛЛ	
273	VTMYLPLLL		МЕЛ	
274	EYSLPVLTF		ГБМ	
275	PEYSLPVLTF		ГБМ	
276	KFLGSKCSF	ПлККГШ, НМРЛплоск, РП	КМП	
277	MSAIWISAF		МЕЛ	
278	TYESVVTGFF	ПлККГШ, НМРЛплоск, РП	КМП	
279	KYKNPYGF	РМЖ, КРК, РЖ, ПлККГШ, НХЛ, НМРЛдругие, РЯ, РП, МРЛ, РЭМ	НМРЛплоск	
280	TIYSLEMKMSF	НМРЛадено	РПрЖ	
281	MDQNQVVWTF	НМРЛдругие, НМРЛплоск	НМРЛадено	
282	ASYQQSTSSFF		ХЛЛ	
283	SYIVDGKII	ПлККГШ, МЕЛ, НМРЛплоск, РПЖ	ХГК	

			а в разных видах опу ядом нормальных тка	
Seq ID	Последовательн	Ρ	в высокой степени	в очень высокой
No	ость	 избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		НМРЛдругие,		
284	QFYSTLPNTI	НМРЛплоск	НМРЛадено	
285	YFLPGPHYF	ХЛЛ, КРК, ГБМ, РЖ, ПлККГШ, МЕЛ, НМРЛадено, НМРЛплоск, РЯ, РП, РПЖ, РПрЖ, МРЛ	нхл	
		МЕЛ, НМРЛплоск,		
286	HHTQLIFVF	РП	ПлККГШ	
287	LVQPQAVLF	НХЛ	хлл	
288	MGKGSISFLF	ГБМ, РПЖ	МРЛ	
289	RTLNEIYHW		НХЛ	
290	VTPKMLISF		ГКК	
291	YTRLVLQF	РЖП, РЖ, РЭМ	РПЖ	
292	KMFPKDFRF	РПЖ	ПКК	
293	MYAYAGWFY	ПлККГШ, НМРЛадено, РП	НМРЛплоск	
294	KMGRIVDYF	РЖП, РЖ, РЭМ	РПЖ	
295	KYNRQSMTL	, ,	ГКК	
296	YQRPDLLLF	нхл	хлл	
297	LKSPRLFTF		КМП	
298	TYETVMTFF		КМП	
299	FLPALYSLL		хлл	
300	LFALPDFIF		хлл	
301	RTALSSTDTF		хлл	
302	YQGSLEVLF	РЭМ	КМП	
303	RFLDRGWGF	РМЖ, КРК, РЖП, РЖ, ПлККГШ, НМРЛадено, НМРЛдругие, НМРЛплоск, РП, РПЖ, КМП	ХГК	
304	YFGNPQKF	ХГК, РЖ, ПлККГШ, НМРЛдругие, НМРЛплоск, РПЖ, КМП	РП	
305	RNAFSIYIL	ПлККГШ	МЕЛ	
306	RYILEPFFI	ПлККГШ, НМРЛадено, РП	НМРЛплоск	
307	RILTEFELL	РЖП, РЖ	КРК	

		Экспрессия экзона в разных видах опухолей в срав		
Seq ID	Последовательн	Ρ	в высокой степени	в очень высокой
No	ОСТЬ	избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		РЖП, РЖ, РПЖ,		
308	AAFISVPLLI	КМП	KPK	
309	AFISVPLLI	РЖП, РЖ, РПЖ, КМП	КРК	
310	EFINGWYVL	НХЛ	ХЛЛ	
311	IQNAILHLF	РЖП, ГКК, ПлККГШ, МЕЛ, НМРЛадено, НМРЛдругие, РПЖ, МРЛ	НХЛ	
312	YLCMLYALF	ГБМ	РЯ	
313	IFMENAFEL	ואוס ו	ГКК	
314	SQHFNLATF		ОМЛ	
315	VYDYIPLLL	РЭМ	КМП	
316	IWAERIMF	РМЖ	РПрЖ	
310	IVVAERIIVIE	РМЖ, МЕЛ,	FTIPA	
317	DWIWRILFLV	НМРЛплоск	РЖП	
318	VQADAKLLF	РЖ, ПлККГШ, НМРЛплоск, РП, КМП	KPK	
319	ATATLHLIF	ГБМ		
320	EVYQKIILKF	РЖП, МЕЛ, РЯ, МРЛ		
321	VYTVGHNLI	ГКК		
322	SFISPRYSWLF	ОМЛ		
323	NYSPVTGKF	МЕЛ		
324	RYFVSNIYL	ОМЛ, РЖП, МЕЛ, РЯ		
325	IFMGAVPTL	ПлККГШ, РЯ, РП, РПрЖ		
326	VHMKDFFYF	хлл, нхл		
327	KWKPSPLLF	ХГК		
328	IYLVGGYSW	хлл, РЯ		
329	YLGKNWSF	ОМЛ		
330	DYIQMIPEL	МРЛ		
331	EYIDEFQSL	МРЛ		
332	VYCSLDKSQF	МРЛ		
333	RYADLLIYTY	ПлККГШ, РЯ, КМП, РЭМ		
334	KVFGSFLTL	НМРЛдругие, РЭМ		
335	RYQSVIYPF	НМРЛдругие, РЭМ	_	
336	VYSDLHAFY	МРЛ		

		· -	а в разных видах опу	•
Seq ID	Последовательн		ядом нормальных тка в высокой степени	в очень высокой
No	ость	 избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		РМЖ, РЖП, МЕЛ,	OKONPOCONT (· ·)	OKONPOCONT (***)
		НМРЛадено,		
		НМРЛдругие, РЯ,		
337	SHSDHEFLF	РПрЖ, КМП, РЭМ		
338	VYLTWLPGL	хлл, нхл		
339	KQVIGIHTF	хлл		
340	FPPTPPLF	ОМЛ, ХЛЛ, НХЛ		
341	RYENVSILF	ГБМ		
		КРК, РЖП, РЖ,		
342	MYGIVIRTI	РПЖ		
343	EYQQYHPSL	ХЛЛ, НХЛ		
344	YAYATVLTF	РПрЖ		
345	RYLEEHTEF	КМП		
		МЕЛ, РЯ, ПКК,		
346	TYIDFVPYI	МРЛ		
347	AWLIVLLFL	РЖП, НХЛ, РЯ		
240	DOM/ENIDY/TE	РМЖ, МЕЛ, НХЛ, МРЛ		
348	RSWENIPVTF			
349	IYMTTGVLL	МЕЛ		
350	VYKWTEEKF	КРК, РПЖ, МРЛ		
351	GYFGTASLF	НМРЛдругие		
		ОМЛ, ХЛЛ, КРК, ПлККГШ, НХЛ,		
352	NAFEAPLTF	НМРЛплоск, МРЛ		
353	AAFPGAFSF	FEM		
333	AAI I OAI OI	ГБМ, ГКК,		
		ПлККГШ,		
		НМРЛадено, РЯ,		
354	QYIPTFHVY	РП, МРЛ, КМП		
355	VYNNNSSRF	МЕЛ		
356	YSLEHLTQF	ГКК		
357	RALLPSPLF	ГКК		
358	IYANVTEMLL	ПлККГШ, РП, КМП		
359	TQLPAPLRI	ГБМ		
360	LYITKVTTI	КМП		
361	KQPANFIVL	РЖП, РЖ, РПЖ		
362	NYMDTDNLMF	РЖП, РЖ, РПЖ		
		РМЖ, ПлККГШ,		
363	QYGFNYNKF	МЕЛ, РП		
364	KQSQVVFVL	МЕЛ		
365	KDLMKAYLF	РПрЖ, МРЛ		

		Экспрессия экзона в разных видах опухолей в сравнении с рядом нормальных тканей		
Seq ID	Последовательн	Ρ	в высокой степени	в очень высокой
No	ость	 избыточная	избыточная	степени избыточная
		экспрессия (+)	экспрессия (++)	экспрессия (+++)
		ПлККГШ,		,
366	RLGEFVLLF	НМРЛплоск		
		ХГК, РЖП, ГБМ,		
367	HWSHITHLF	МЕЛ		
368	AYFVAMHLF	ГБМ, РЯ, МРЛ		
369	NFYLFPTTF	ПлККГШ, МЕЛ, РП		
370	TQMDVKLVF	хлл		
371	FRSWAVQTF	КРК		
372	LYHNWRHAF	РПрЖ		
373	IWDALERTF	РМЖ		
374	MIFAVVVLF	НХЛ		
375	YYAADQWVF	НХЛ		
376	KYVGEVFNI	РПрЖ		
377	SLWREVVTF	МРЛ		
378	VYAVISNIL	ГБМ		
379	KLPTEWNVL	хлл		
380	FYIRRLPMF	МЕЛ		
381	IYTDITYSF	МЕЛ		
382	SYPKELMKF	КМП		
		КРК, РЖП,		
		ПлККГШ, НМРЛадено,		
		ПМРЛадено, НМРЛплоск, РЯ,		
383	PYFSPSASF	РП, МРЛ	 кмп	
		ГКК, НМРЛадено,		
		НМРЛплоск, РПЖ,		
384	RTRGWVQTL	МРЛ	КРК, РЖП, РЖ, ПКК	
		ХГК, РЖ, ПлККГШ,		
		НМРЛдругие,		
385	GYFGNPQKF	│НМРЛплоск, РПЖ, │КМП	PΠ	
386	YQSRDYYNF	РМЖ, ГКК, РПрЖ	1 11	
330	TOOKDITM	НМРЛдругие,		
387	THAGVRLYF	НМРЛплоск, МРЛ		

Таблица 9б: Показатели экспрессии. В таблице для каждого пептида представлены виды опухолей, экзон для которых в очень высокой степени избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (+++), в высокой степени избыточно экспрессируется в опухолях в сравнении с панелью

нормальных тканей (++) или избыточно экспрессируется в опухолях в сравнении с панелью нормальных тканей (+). Фоновый уровень данного показателя рассчитывали по измерениям следующих соответствующих нормальных тканей: клетки крови, кровеносные сосуды, ткань головного мозга, сердца, печени, легких, жировая ткань, ткань надпочечника, желчного протока, костного мозга, ткань пищевода, глаза, желчного пузыря, головы и шеи, почки, толстой кишки, поджелудочной железы, паращитовидной железы, лимфатического узла, периферического нерва, брюшины, гипофиза, плевры, скелетных мышц, кожи, тонкой кишки, селезенки, желудка, щитовидной железы, трахеи, мочеточника, мочевого пузыря. В случае, если в наличии имелись данные для нескольких образцов одного и того же вида ткани, для расчетов использовали среднее арифметическое всех соответствующих образцов. ОМЛ: острый миелоидный лейкоз; РЖП: рак желчного пузыря; ПлККГШ: плоскоклеточная карцинома головы и шеи; МЕЛ: меланома; НХЛ: неходжкинская лимфома; НМРЛплоск: плоскоклеточный немелкоклеточный рак легких; РЯ: рак яичника; РП: рак пищевода.

Com ID	Поотологото и	Экспрессия экзона в опухолевых видах в сравнении с рядо нормальных тканей		
Seq ID No	Последовательн ость	избыточная экспрессия (+)	в высокой степени избыточная экспрессия (++)	в очень высокой степени избыточная экспрессия (+++)
463	VGGNVTSNF	ОМЛ, ПлККГШ, МЕЛ, НХЛ, РП	РЖП, НМРЛплоск, РЯ	
464	VGGNVTSSF	ПлККГШ, НХЛ	РЖП, НМРЛплоск, РЯ	

ПРИМЕР 3:

Иммуногенность in vitro для пептидов, презентируемых МНС I класса

Для получения информации об иммуногенности пептидов TUMAP по настоящему изобретению заявители провели исследования с использованием прайминга Т-клеток *in vitro* на основе повторных стимуляций CD8+ Т-клеток искусственными антигенпрезентирующими клетками (иАПК), нагруженными комплексами пептид-МНС и антителом к CD28. Таким образом заявители могли показать иммуногенность для рестриктированных по HLA-A*24:02 пептидов TUMAP по

изобретению, демонстрируя, что эти пептиды являются Т-клеточными эпитопами, против которых у человека имеются CD8+ Т-клетки-предшественники (Таблица 10).

Прайминг CD8+ Т-клеток in vitro

В целях проведения стимуляций *in vitro* искусственными антигенпрезентирующими клетками, нагруженными комплексом пептид-МНС (рМНС) и антителом к CD28, заявители сначала выделили CD8+ Т-клетки из свежего продукта лейкафереза HLA-A*24 методом позитивной селекции с помощью микросфер CD8 (Miltenyi Biotec, Бергиш-Гладбах, Германия). Кровь была получена от здоровых доноров (после подписания формы информированного согласия) из Университетской клиники г. Мангейм, Германия.

МКПК и выделенные CD8+ лимфоциты инкубировали до использования в Т-клеточной среде (TCM), состоящей из RPMI-Glutamax (Invitrogen, Карлсруэ, Германия) с добавлением 10% инактивированной нагреванием человеческой сыворотки AB (PAN-Biotech, Эйденбах, Германия), 100 Ед/мл пенициллина / 100 мкг/мл стрептомицина (Cambrex, Кёльн, Германия), 1 мМ пирувата натрия (СС Рго, Обердорла, Германия) и 20 мкг/мл гентамицина (Cambrex). 2,5 нг/мл ИЛ-7 (РготоСеll, Гейдельберг, Германия) и 10 Ед/мл ИЛ-2 (Novartis Pharma, Нюрнберг, Германия) также добавляли на этом этапе в среду ТСМ.

Получение микросфер, покрытых рМНС и антителами к CD28, стимуляции Т-клеток и считывание производили на хорошо исследованной системе *in vitro*, используя четыре различные молекулы рМНС для каждого цикла стимуляций и 8 различных молекул рМНС для каждого цикла считывания.

Очищенный костимуляторный IgG2a мыши к антителам человека CD28 Ab 9.3(Jung et al., 1987) был химически биотинилирован с использованием сульфо-N-гидроксисукцинимидобиотина, как рекомендуется изготовителем (Perbio, Бонн, Германия). Использованные микросферы представляли собой полистирольные

частицы размером 5,6 мкм, покрытые стрептавидином (Bangs Laboratories, Иллинойс, США).

рМНС, использованные для положительных и отрицательных контрольных стимуляций, были A*0201/MLA-001 (пептид ELAGIGILTV (SEQ ID NO. 461) из модифицированного Melan-A/MART-1) и A*0201/DDX5-001 (YLLPAIVHI из DDX5, SEQ ID NO. 462), соответственно.

800 000 микросфер / 200 мкл вносили в лунки 96-луночного планшета в присутствии 4 х 12,5 нг другого биотинилированного комплекса рМНС, промывали и затем добавляли 600 нг биотинилированных антител к CD28 в объеме 200 мкл. Стимуляцию проводили в 96-луночных планшетах путем совместной инкубации 1x106 CD8+ Т-клеток с 2x105 промытых покрытых микросфер в 200 мкл среды ТСМ с добавлением 5 нг/мл ИЛ-12 (PromoCell) в течение 3 дней при 37°С. Половина среды была затем заменена на свежую среду ТСМ с добавлением 80 Ед/мл ИЛ-2, и инкубация была продолжена в течение 4 дней при 37°C. Данный цикл стимуляций производили в общей сложности три раза. Для считывания с рМНС-мультимеров использовали 8 различных молекул рМНС на цикл. Использовался двумерный комбинаторный подход к кодировке, как было описано ранее(Andersen et al., 2012) с незначительными изменениями, относящимися к мечению с 5 различными Наконец, проводили флуорохромами. анализ мультимеров посредством окрашивания клеток набором для определения жизнеспособности клеток при воздействии ближнего ИК-излучения с красителем Live/dead (Invitrogen, Карлсруэ, Германия), клоном SK1 антител CD8-FITC (BD, Гейдельберг, Германия) и мультимерами рМНС с флуоресцентными метками. Для анализа использовали цитометр BD LSRII SORP, снабженный подходящими лазерами и фильтрами. Пептид-специфические клетки были подсчитаны как процентная доля от всех CD8+ клеток. Оценку результатов анализа мультимеров проводили с помощью программы FlowJo (Tree Star, Operon, США). Прайминг in vitro специфических мультимер-положительных CD8+ лимфоцитов оценивали сравнением стимуляциями отрицательного контроля. Иммуногенность для заданного антигена была определена, если было обнаружено, что по меньшей мере в одной подлежащей оценке простимулированной *in vitro* лунке одного здорового донора содержалась специфическая CD8+ Т-клеточная линия после стимуляции *in vitro* (т. е. когда данная лунка содержала по меньшей мере 1% специфичных мультимер-положительных среди CD8-положительных Т-клеток и процентная доля специфичных мультимер-положительных клеток была по меньшей мере в 10 раз выше медианного значения стимуляций отрицательного контроля).

Иммуногенность *in vitro* пептидов острого миелоидного лейкоза, рака молочной железы, холангиоклеточной карциномы, хронического лимфоцитарного лейкоза, колоректального рака, рака желчного пузыря, глиобластомы, рака желудка, гепатоклеточной карциномы, плоскоклеточной карциномы головы и шеи, меланомы, неходжкинской лимфомы, рака легких (в том числе немелкоклеточного рака легких и мелкоклеточного рака легких), рака яичника, рака пищевода, рака поджелудочной железы, рака предстательной железы, почечно-клеточной карциномы, карциномы мочевого пузыря, рака матки и эндометрия

Для проанализированных пептидов, связанных с молекулами HLA I класса, иммуногенность in vitro могла быть продемонстрирована генерированием пептидспецифических линий. Т-клеточных Типичные результаты проточного цитометрического TUMAP-специфического анализа после окрашивания мультимеров для 2 пептидов по изобретению показаны на Фиг. 3 вместе с соответствующими отрицательными контролями. Результаты для 47 пептидов по изобретению обобщаются в Таблицах 10а и 10б.

Таблица 10а: Иммуногенность *in vitro* пептидов HLA I класса по изобретению Типичные результаты экспериментов по иммуногенности *in vitro*, проведенных заявителем для пептидов по изобретению.

			Положительные
Seq ID No	Последовательность	Код пептида	лунки [%]
390	KYKDYFPVI	MAGEC2-003	+

			Положительные
Seq ID No	Последовательность	Код пептида	лунки [%]
392	SYEKVINYL	MAGEA9-001	+
393	SYNDALLTF	TRPM8-004	+++
		MAGEA10-	
395	NYEDHFPLL	002	++
398	GYLQGLVSF	KLK4-001	++
399	VWSNVTPLKF	MMP12-014	+
400	RYLEKFYGL	MMP12-006	+
402	TYKYVDINTF	MMP12-004	+
406	KYLEKYYNL	MMP1-001	++
408	VWSDVTPLTF	MMP11-001	+
409	VYTFLSSTL	ESR1-006	+
411	VYPPYLNYL	PGR-002	++++
415	KYEKIFEML	CT45-002	+
416	VFMKDGFFYF	MMP1-002	+
420	VYEKNGYIYF	MMP13-001	++++
422	VWSDVTPLNF	MMP13-002	+
		FAM111B-	
429	YYSKSVGFMQW	008	++
433	NYTSLLVTW	PTP-018	+
434	VYDTMIEKF	PTP-016	+
436	KYLQVVGMF	OXTR-001	+
440	NYGVLHVTF	NLRP11-002	+
447	EYIRALQQL	ASCL1-001	+
448	PFLPPAACFF	ASCL1-002	+
		ADAMTS12-	
450	QYDPTPLTW	002	+
453	YYTVRNFTL	PTP-014	+
455	KYLSIPTVF	UGT1A3-001	+

Таблица 10б: Иммуногенность *in vitro* пептидов HLA I класса по изобретению Типичные результаты экспериментов по иммуногенности *in vitro*, проведенных заявителем для пептидов по изобретению.

Seq ID No			Положительные
	Последовательность	Код пептида	лунки [%]
1	IFPKTGLLII	MAGEA4-008	++
5	LQPQPQLFFSF	POT-002	++
22	VYSSFVFNL	NLRP4-006	+
23	VYSSFVFNLF	NLRP4-007	++

26	TYFFVDNQYW	MMP12-020	+
32	FYPEVELNF	MMP1-009	+++
38	RYAHTLVTSVLF	ITIH6-003	++
44	FYHEDMPLW	FCRL5-004	+
47	SYLWTDNLQEF	DNAH17-003	+
52	SWHKATFLF	COL24-002	+
56	FYKLIQNGF	FLT3-010	+
58	IYYSHENLI	F5-005	++
63	LYIDKGQYL	HMCN1-011	+
76	IYIYPFAHW	NPFFR2-002	+++
77	LYGFFFKI	BTBD16-002	++++
78	TYSKTIALYGF	BTBD16-004	++
79	FYIVTRPLAF	SUCN-002	+
81	AYLKLLPMF	SLC5A4-001	+
86	SYLPTAERL	SYT12-001	+
87	NYTRLVLQF	GABRP-004	+
88	TYVPSTFLV	GABRP-005	+

ПРИМЕР 4:

Синтез пептидов

Все пептиды были синтезированы стандартным и общепринятым методом твердофазного синтеза пептидов с использованием Fmoc-методики. Идентичность и чистоту каждого отдельного пептида определяли с помощью масс-спектрометрии и аналитической ОФ ВЭЖХ. Были получены пептиды в виде белого или грязнобелого лиофилизата (соль трифторацетата) со степенью чистоты >50%. Все пептиды ТUMAP предпочтительно вводят в виде солей трифторацетатов или ацетатов, возможны также другие солевые формы.

ПРИМЕР 5:

Анализ связывания МНС

Пептиды-кандидаты для Т-клеточной терапии в соответствии с настоящим изобретением далее были испытаны на их способность связываться с МНС (аффинность). Отдельные комплексы пептида и молекулы МНС были получены с помощью реакции обмена лигандами под воздействием УФ-излучения, при которой УФ-чувствительный пептид расщепляется под воздействием УФ-излучения, и

получается продукт обмена с исследуемым пептидом. Только пептиды-кандидаты, которые могут эффективно связываться и стабилизировать восприимчивые к пептиду молекулы МНС, предотвращают диссоциацию комплексов с МНС. Для определения выхода продукта реакции обмена проводили анализ методом ELISA на основе обнаружения легкой цепи (β2m) стабилизированных комплексов с МНС. Этот анализ производили, в основном, как описано у Rodenko и соавт. (Rodenko et al., 2006).

В 96-луночные планшеты MAXISorp (NUNC) на ночь вносили 2 мкг/мл стрептавидина в PBS при комнатной температуре, промывали 4 раза и блокировали в течение 1 часа при 37°С в блокирующем буфере с 2% БСА. Полученные в результате рефолдинга мономеры HLA-A*02:01/MLA-001 служили в качестве стандарта, покрывающего диапазон 15-500 нг/мл. Мономерные комплексы пептид-МНС после реакции обмена под воздействием УФ-излучения100-кратно разводили в блокирующем буфере. Образцы инкубировали в течение 1 ч при 37°C, промывали четыре раза, инкубировали в течение 1 ч при 37°C с 2 мкг/мл пероксидазы хрена, конъюгированной с антителом к β2m, снова промывали и проводили обнаружение с помощью раствора ТМБ; реакцию останавливали NH₂SO₄. Величину поглощения измеряли при длине волны 450 нм. Пептиды-кандидаты, которые демонстрировали высокий выход реакции обмена (предпочтительно более 50%, наиболее предпочтительно, более 75%) обычно являются предпочтительными для генерирования и получения антител или их фрагментов и/или Т-клеточных рецепторов или их фрагментов, поскольку они проявляют достаточную авидность по отношению к молекулам МНС и предотвращают диссоциацию комплексов МНС.

Таблица 11: Показатели связывания с молекулами МНС I класса. Связывание рестриктированных по молекулам HLA I класса пептидов с HLA-A*24 распределено по выходу пептидного обмена: >10% = +; >20% = ++; >50 = +++; >75% = ++++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
1	IFPKTGLLII	MAGEA4-008	++++
2	LYAPTILLW	AFP-001	++++
3	KFLTHDVLTELF	TRPM8-009	++++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
5	LQPQPQLFFSF	POT-002	++++
6	IVTFMNKTLGTF	ADAM29-001	+
9	TYINSLAIL	TGM4-003	++++
10	QYPEFSIEL	TGM4-001	+++
11	RAMCAMMSF	TGM4-002	++
12	KYMSRVLFVY	CHRNA9-002	++
13	KYYIATMAL	CHRNA9-003	+++
14	YYIATMALI	CHRNA9-004	++++
15	FMVIAGMPLF	SLC6A3-001	++
16	GYFLAQYLM	TRPM8-008	+++
17	IYPEAIATL	SLC6A3-002	++++
18	KYVDINTFRL	MMP12-018	++++
20	ELMAHPFLL	CYP4Z-002	++
21	LYMRFVNTHF	SPINK2-002	++
22	VYSSFVFNL	NLRP4-006	+++
23	VYSSFVFNLF	NLRP4-007	+++
24	KMLPEASLLI	NLRP4-004	++
25	MLPEASLLI	NLRP4-005	++++
26	TYFFVDNQYW	MMP12-020	++++
27	LSCTATPLF	KHDC1L-001	+++
28	FWFDSREISF	OR51E2-002	++++
29	IYLLLPPVI	OR51E2-004	++++
30	RQAYSVYAF	SLC45A3-005	++
31	KQMQEFFGL	MMP1-010	+++
32	FYPEVELNF	MMP1-009	++++
33	FYQPDLKYLSF	NLRP4-003	++++
34	LIFALALAAF	GAST-001	+
35	FSSTLVSLF	MAGEC1-003	++
36	VYLASVAAF	SLC45A3-006	++++
37	ISFSDTVNVW	ITIH6-001	+
38	RYAHTLVTSVLF	ITIH6-003	++++
39	KTYLPTFETTI	ENP-002	++
40	NYPEGAAYEF	ESR1-008	++++
41	IYFATQVVF	SLC45A3-004	++++
42	VYDSIWCNM	SCGB2A1-001	++++
43	KYKDHFTEI	MAGEB1-001	++++
44	FYHEDMPLW	FCRL5-004	++++
45	YGQSKPWTF	PAX3-001	++
46	IYPDSIQEL	LOC-019	+++
47	SYLWTDNLQEF	DNAH17-003	++++

Seg ID No	Последовательность	Код пептида	Пептидный обмен
48	AWSPPATLFLF	LOXL4-003	++++
49	QYLSIAERAEF	MSX-001	++++
50	RYFDENIQKF	HEPHL-004	++++
51	YFDENIQKF	HEPHL-006	+++
52	SWHKATFLF	COL24-002	++++
53	LFQRVSSVSF	HMCN1-010	+++
54	SYQEAIQQL	NEFH-003	+++
55	AVLRHLETF	CDK6-006	++
56	FYKLIQNGF	FLT3-010	++++
58	IYYSHENLI	F5-005	++++
59	VFPLVTPLL	PTP-042	++++
60	RYSPVKDAW	KLHDC7B-006	++++
61	RIFTARLYF	AICD-001	+++
62	VYIVPVIVL	OXTR-002	++++
63	LYIDKGQYL	HMCN1-011	++++
64	QFSHVPLNNF	ALX1-001	++
66	IYKDYYRYNF	PLA2G2D-001	++++
67	SYVLQIVAI	PTP-041	+++
68	VYKEDLPQL	EML-002	++++
69	KWFDSHIPRW	ERV-002	++++
70	RYTGQWSEW	IL9R-001	++++
71	RYLPNPSLNAF	CYP1A1-002	++++
72	RWLDGSPVTL	CLEC17-005	++++
73	YFCSTKGQLF	FCRL2-004	++++
74	NYVLVPTMF	CAPN6-003	++++
75	VYEHNHVSL	BTBD16-006	+++
76	IYIYPFAHW	NPFFR2-002	++++
77	LYGFFFKI	BTBD16-002	++++
78	TYSKTIALYGF	BTBD16-004	++++
79	FYIVTRPLAF	SUCN-002	+++
80	SYATPVDLW	CDK6-007	++++
81	AYLKLLPMF	SLC5A4-001	++++
82	SYLENSASW	DLX5-003	++++
83	VLQGEFFLF	KBTBD8-005	++++
84	YTIERYFTL	GABRP-007	++++
85	KYLSIPTVFF	UGT1A3-002	++++
86	SYLPTAERL	SYT12-001	++++
87	NYTRLVLQF	GABRP-004	++++
88	TYVPSTFLV	GABRP-005	++++
89	TYVPSTFLVVL	GABRP-006	++++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
90	TDLVQFLLF	MAGEA10-003	++
92	RALTETIMF	ALP-011	++
93	TDWSPPPVEF	FAM178B-001	+++
94	THSGGTNLF	MMP12-019	++
95	IGLSVVHRF	OR51E2-003	++++
96	SHIGVVLAF	OR51E2-005	++
98	LQIPVSPSF	MAGEC1-004	+
99	ASAALTGFTF	SLC45A3-003	++
100	KVWSDVTPLTF	MMP11-023	+++
101	VYAVSSDRF	DCX-001	++++
102	VLASAHILQF	BTBD16-005	++
103	EMFFSPQVF	ACTL8-002	++
104	GYGLTRVQPF	ACTL8-003	++
106	LYAFLGSHF	KISS1R-003	++++
108	WFFQGAQYW	MMP11-024	++
109	AQHSLTQLF	GPC2-002	++
110	VYSNPDLFW	TRDV3-002	++++
111	IRPDYSFQF	TRDV3-001	++
112	LYPDSVFGRLF	SMC1B-003	++++
113	ALMSAFYTF	MMP11-020	++++
114	KALMSAFYTF	MMP11-022	+++
115	IMQGFIRAF	PAE-002	++
116	TYFFVANKY	MMP1-011	+
117	RSMEHPGKLLF	ESR1-010	+++
118	IFLPFFIVF	ADAM18-001	++++
119	VWSCEGCKAF	ESR-001	++
120	VYAFMNENF	QRFPR-004	++++
121	RRYFGEKVAL	ANO7-005	++
123	FFLQESPVF	ABCC11-004	++++
124	EYNVFPRTL	MMP13-004	++
125	LYYGSILYI	OR9-001	++++
126	YSLLDPAQF	SOX14-002	+++
127	FLPRAYYRW	ANO7-001	++
128	AFQNVISSF	NMUR2-003	++++
129	IYVSLAHVL	ANO7-002	++++
130	RPEKVFVF	COL11A1-005	++
131	MHRTWRETF	ANO7-004	++
133	FFYVTETTF	TERT-003	++++
134	IYSSQLPSF	TFEC-004	++++
135	KYKQHFPEI	MAGEB17-001	+++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
136	YLKSVQLF	RFX8-001	++
137	ALFAVCWAPF	QRFPR-002	++
138	MMVTVVALF	QRFPR-003	+++
139	AYAPRGSIYKF	HHIPL2-001	++++
140	IFQHFCEEI	SMC1B-002	++
141	QYAAAITNGL	SALL3-002	+++
142	PYWWNANMVF	NOTU-001	++++
143	KTKRWLWDF	COL11A1-004	+++
144	LFDHGGTVFF	ANO7-003	+++
145	MYTIVTPML	OR1N1-001	++++
146	NYFLDPVTI	TRI-005	+++
148	MLPQIPFLLL	COL10-001	++
149	TQFFIPYTI	COL10-002	++
150	FIPVAWLIF	MRGPRX4-001	+++
151	RRLWAYVTI	ITIH6-002	+
152	MHPGVLAAFLF	MMP13-005	+++
153	AWSPPATLF	LOXL4-002	++++
154	DYSKQALSL	LAMC2-018	++
155	PYSIYPHGVTF	F5-006	++++
156	IYPHGVTFSP	F5-004	+
157	SIYPHGVTF	F5-007	++
158	SYLKDPMIV	DDX53-001	+++
159	VFQPNPLF	WISP3-002	++
160	YIANLISCF	GLYATL3-001	++
161	ILQAPLSVF	FCRL5-005	++
162	YYIGIVEEY	HEPHL-007	+++
163	YYIGIVEEYW	HEPHL-008	++++
164	MFQEMLQRL	TRIML2-001	+
165	KDQPQVPCVF	NAT1-001	+
166	MMALWSLLHL	ZAC-001	+
167	LQPPWTTVF	FCRL5-006	++
168	LSSPVHLDF	FCRL5-007	++++
169	MYDLHHLYL	EPY-001	++++
170	IFIPATILL	ACSM1-001	++++
171	LYTVPFNLI	SLC45A2-006	++++
172	RYFIAAEKILW	HEPHL-005	++++
173	RYLSVCERL	NKX-001	++++
174	TYGEEMPEEI	DNAH17-004	++
175	SYFEYRRLL	LAMC2-019	++
176	TQAGEYLLF	FLT3-012	++++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
177	KYLITTFSL	NLRP2-008	++++
178	AYPQIRCTW	FLT3-009	++++
179	MYNMVPFF	DCT-002	+++
180	IYNKTKMAF	SLCO6-001	++++
181	IHGIKFHYF	NMUR2-004	+++
182	AQGSGTVTF	FCRL3-004	++
183	YQVAKGMEF	FLT3-014	+
184	VYVRPRVF	HMCN1-013	++
185	LYICKVELM	CTL-001	++++
186	RRVTWNVLF	BTBD17-003	++
187	KWFNVRMGFGF	LIN-001	++
188	SLPGSFIYVF	HMCN1-012	++
189	FYPDEDDFYF	MYCN-002	+++
190	IYIIMQSCW	FLT3-011	+++
191	MSYSCGLPSL	KRT33A-001	+++
192	CYSFIHLSF	NLR-006	++++
193	KYKPVALQCIA	HMCN1-009	++
195	IYNEHGIQQI	COL11A1-003	++++
196	VGRSPVFLF	COL11A1-006	++
198	VLAPVSGQF	FCRL5-009	+++
199	MFQFEHIKW	FBXW10-001	++
200	LYMSVEDFI	STK31-001	++++
201	VFPSVDVSF	PTP-043	++++
202	VYDTMIEKFA	PTP-044	++
203	VYPSESTVM	PTP-045	++
204	WQNVTPLTF	MMP16-002	++
205	ISWEVVHTVF	HMCN1-008	++++
206	EVVHTVFLF	HMCN1-007	++
207	IYKFIMDRF	FOXB1-001	++++
208	QYLQQQAKL	FOXB1-002	++++
209	DIYVTGGHLF	KLHDC7B-005	+++
210	EAYSYPPATI	HMCN1-006	+++
211	MLYFAPDLIL	PGR-004	++
212	VYFVQYKIM	IL22RA2-001	+
213	FYNRLTKLF	OFCC-001	++++
214	YIPMSVMLF	HTR7-002	+++
215	KASKITFHW	PTP-038	++
216	RHYHSIEVF	LOXL4-004	++
217	QRYGFSSVGF	RHBG-001	++++
218	FYFYNCSSL	ERV-001	++++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
219	KVVSGFYYI	CCR8-003	+
220	TYATHVTEI	CCR8-003	++++
222	HYHAESFLF	HEPHL-003	++++
223	KLRALSILF	PTP-039	+
224	AYLQFLSVL	GREB-002	++++
225	ISMSATEFLL	CYP1A1-001	+++
226	TYSTNRTMI	FLT3-013	++++
227	YLPNPSLNAF	CYP1A1-003	++
228	VYLRIGGF	WNT7A-002	++
229	CAMPVAMEF	KBTBD8-003	++
230	RWLSKPSLL	KBTBD8-003	++++
231	KYSVAFYSLD	LAMA1-008	++
232	IWPGFTTSI	PIWIL1-003	++++
234	RYKMLIPF	NLRP2-010	+++
235	VYISDVSVY	CLECL-003	++++
236	LHLYCLNTF	PGR-003	+++
238	YTCSRAVSLF	OTOG-001	++
239	IYTFSNVTF	BTN1-003	++++
240	RVHANPLLI	APOB-081	+
241	QKYYITGEAEGF	ESR1-009	++++
242	SYTPLLSYI	C1orf94-002	++++
243	ALFPMGPLTF	LILRA4-003	++
244	TYIDTRTVFL	CAPN6-005	++++
245	VLPLHFLPF	HBG2-001	++++
246	KIYTTVLFANI	NPFFR2-003	++++
247	VHSYLGSPF	MPL-001	++
249	HQYGGAYNRV	DLX5-002	++
250	VYSDRQIYLL	ABCC11-006	++++
251	DYLLSWLLF	CNR2-003	++++
252	RYLIIKYPF	SUCN-003	+++
254	KQHAWLPLTI	TCL1A-003	+
255	VYLDEKQHAW	TCL1A-005	++++
256	QHAWLPLTI	TCL1A-004	+
258	VCWNPFNNTF	RNF183-001	+++
259	FFLFIPFF	ADAM2-001	++
263	AYVTEFVSL	SCN3A-001	++++
264	AYAIPSASLSW	HMCN1-005	++
265	LYQQSDTWSL	KIAA140-001	++
266	TQIITFESF	CSF2-001	++
267	QHMLPFWTDL	NLRP2-009	+++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
269	FSFSTSMNEF	CAPN6-001	++
270	GTGKLFWVF	BTL-003	+
271	INGDLVFSF	CAPN6-002	++
272	IYFNHRCF	SFMBT1-001	+++
273	VTMYLPLLL	GPR143-001	++
274	EYSLPVLTF	PTP-037	+++
275	PEYSLPVLTF	PTP-040	++++
276	KFLGSKCSF	HAS3-003	++++
278	TYESVVTGFF	HAS3-004	++
279	KYKNPYGF	MMP20-001	+
280	TIYSLEMKMSF	GLB1L3-001	++
281	MDQNQVVWTF	ROS-008	+++
282	ASYQQSTSSFF	FAM82A1-001	++
283	SYIVDGKII	PSG9-001	+
284	QFYSTLPNTI	ROS-009	+
285	YFLPGPHYF	SOX30-001	++++
288	MGKGSISFLF	PCSK1-001	++
289	RTLNEIYHW	FOXP3-001	++
290	VTPKMLISF	OR5H8P-001	+
291	YTRLVLQF	GABRP-008	++
292	KMFPKDFRF	TTLL6-001	++
294	KMGRIVDYF	GABRP-003	++++
295	KYNRQSMTL	APOB-080	++++
296	YQRPDLLLF	GEN-004	++
297	LKSPRLFTF	BTBD16-001	++
298	TYETVMTFF	BTBD16-003	++++
299	FLPALYSLL	CXCR3-001	+++
300	LFALPDFIF	CXCR3-002	++
302	YQGSLEVLF	MROH2A-006	++
303	RFLDRGWGF	ADAMTS12-005	++++
306	RYILEPFFI	SLC7A11-007	++++
307	RILTEFELL	TRIM31-001	+++
308	AAFISVPLLI	TAS2R38-002	++++
309	AFISVPLLI	TAS2R38-003	++++
310	EFINGWYVL	MCOLN2-002	++
311	IQNAILHLF	OR51B5-001	++++
312	YLCMLYALF	KCNK18-001	++
313	IFMENAFEL	APOB-079	++++
314	SQHFNLATF	DNMT3B-003	++
315	VYDYIPLLL	MROH2A-005	++++

Seg ID No	Последовательность	Код пептида	Пептидный обмен
316	IWAERIMF	TDRD1-001	+++
318	VQADAKLLF	C20-002	+
319	ATATLHLIF	PCD-007	+
320	EVYQKIILKF	PASD-001	++++
321	VYTVGHNLI	KLB-003	++++
322	SFISPRYSWLF	SPNS3-005	++++
323	NYSPVTGKF	OTOL-001	++++
325	IFMGAVPTL	LPAR3-001	++++
326	VHMKDFFYF	DYRK4-001	++++
327	KWKPSPLLF	GPR126-002	++++
328	IYLVGGYSW	KLHL14-007	++++
329	YLGKNWSF	SPNS3-006	++
330	DYIQMIPEL	RTL-002	++++
331	EYIDEFQSL	RTL-003	++++
332	VYCSLDKSQF	RTL-004	++++
333	RYADLLIYTY	MYO3B-005	++++
334	KVFGSFLTL	AGTR2-001	++
335	RYQSVIYPF	AGTR2-002	++++
336	VYSDLHAFY	MANEAL-004	++++
337	SHSDHEFLF	ARSH-001	+
338	VYLTWLPGL	IFNLR-001	++++
339	KQVIGIHTF	SFMBT1-002	+
340	FPPTPPLF	BCL11A-002	+
341	RYENVSILF	ADCY8-001	++++
342	MYGIVIRTI	NPSR-001	++++
343	EYQQYHPSL	CLEC4C-001	++++
344	YAYATVLTF	ABCC4-002	++
345	RYLEEHTEF	MROH2A-003	++++
346	TYIDFVPYI	TEX15-001	++++
348	RSWENIPVTF	C18orf54-001	++
349	IYMTTGVLL	TDRD9-002	++++
350	VYKWTEEKF	TSPE-001	++++
351	GYFGTASLF	SLC16A14-001	++++
352	NAFEAPLTF	BRCA2-004	+++
353	AAFPGAFSF	CRB2-002	++
354	QYIPTFHVY	SLC44A5-003	++++
355	VYNNNSSRF	MYO10-003	++++
356	YSLEHLTQF	ZCCHC16-001	++
357	RALLPSPLF	SPATA31D1-001	++
358	IYANVTEMLL	CYP27C-001	++++

Seq ID No	Последовательность	Код пептида	Пептидный обмен
359	TQLPAPLRI	GPR45-001	++
360	LYITKVTTI	FSTL4-002	++++
361	KQPANFIVL	LOC1001246-001	++
362	NYMDTDNLMF	LOC1001246-002	++++
363	QYGFNYNKF	PNLD-002	++++
365	KDLMKAYLF	TXNDC16-006	+++
366	RLGEFVLLF	TGM6-001	+++
367	HWSHITHLF	DPY19L1-003	++++
368	AYFVAMHLF	TENM4-007	++++
369	NFYLFPTTF	PNLD-001	++++
370	TQMDVKLVF	GEN-003	++
371	FRSWAVQTF	NOS2-002	++
372	LYHNWRHAF	PDE11-002	++++
373	IWDALERTF	ABCC11-005	++
375	YYAADQWVF	CCR4-004	++++
376	KYVGEVFNI	DMXL1-001	++++
377	SLWREVVTF	CEP250-004	+++
378	VYAVISNIL	TNR-003	++++
379	KLPTEWNVL	AKAP13-005	++++
380	FYIRRLPMF	CHRNA6-001	++++
381	IYTDITYSF	CHRNA6-002	++++
382	SYPKELMKF	MROH2A-004	++++
383	PYFSPSASF	SPER-001	++++
385	GYFGNPQKF	LAMA3-002	++++
386	YQSRDYYNF	AR-002	++++
387	THAGVRLYF	NUP155-012	++
463	VGGNVTSNF	CT45-004	+++
464	VGGNVTSSF	CT45-005	+++

Список цитируемой литературы

Allison, J. P. et al., Science. 270 (1995): 932-933

Andersen, R. S. et al., Nat Protoc. 7 (2012): 891-902

Appay, V. et al., Eur J Immunol. 36 (2006): 1805-1814

Banchereau, J. et al., Cell. 106 (2001): 271-274

Beatty, G. et al., J Immunol. **166** (2001): 2276-2282

Beggs, J. D., Nature. 275 (1978): 104-109

Benjamini, Y. et al., Journal of the Royal Statistical Society Series B (Methodological),. **Vol.57** (1995): 289-300

Boulter, J. M. et al., Protein Eng. 16 (2003): 707-711

Braumuller, H. et al., Nature.(2013)

Brossart, P. et al., Blood. 90 (1997): 1594-1599

Bruckdorfer, T. et al., Curr Pharm Biotechnol. 5 (2004): 29-43

Card, K. F. et al., Cancer Immunol Immunother. 53 (2004): 345-357

Cohen, C. J. et al., J Mol Recognit. 16 (2003a): 324-332

Cohen, C. J. et al., J Immunol. 170 (2003b): 4349-4361

Cohen, S. N. et al., Proc Natl Acad Sci U S A. 69 (1972): 2110-2114

Coligan, J. E. et al., Current Protocols in Protein Science.(1995)

Colombetti, S. et al., J Immunol. 176 (2006): 2730-2738

Dengjel, J. et al., Clin Cancer Res. 12 (2006): 4163-4170

Denkberg, G. et al., J Immunol. 171 (2003): 2197-2207

Falk, K. et al., Nature. **351** (1991): 290-296

Follenzi, A. et al., Nat Genet. 25 (2000): 217-222

Fong, L. et al., Proc Natl Acad Sci U S A. 98 (2001): 8809-8814

Gabrilovich, D. I. et al., Nat Med. 2 (1996): 1096-1103

Gattinoni, L. et al., Nat Rev Immunol. 6 (2006): 383-393

Gnjatic, S. et al., Proc Natl Acad Sci U S A. **100** (2003): 8862-8867

Godkin, A. et al., Int Immunol. 9 (1997): 905-911

Gragert, L. et al., Hum Immunol. **74** (2013): 1313-1320

Green, M. R. et al., Molecular Cloning, A Laboratory Manual. 4th (2012)

Greenfield, E. A., Antibodies: A Laboratory Manual. 2nd (2014)

Gustafsson, C. et al., Trends Biotechnol. 22 (2004): 346-353

Hwang, M. L. et al., J Immunol. **179** (2007): 5829-5838

Jung, G. et al., Proc Natl Acad Sci U S A. 84 (1987): 4611-4615

Kibbe, A. H., Handbook of Pharmaceutical Excipients. **rd** (2000)

Krieg, A. M., Nat Rev Drug Discov. 5 (2006): 471-484

Kuball, J. et al., Blood. 109 (2007): 2331-2338

Liddy, N. et al., Nat Med. **18** (2012): 980-987

Ljunggren, H. G. et al., J Exp Med. **162** (1985): 1745-1759

Longenecker, B. M. et al., Ann N Y Acad Sci. 690 (1993): 276-291

Lukas, T. J. et al., Proc Natl Acad Sci U S A. 78 (1981): 2791-2795

Lundblad, R. L., Chemical Reagents for Protein Modification. 3rd (2004)

Meziere, C. et al., J Immunol. **159** (1997): 3230-3237

Morgan, R. A. et al., Science. 314 (2006): 126-129

Mortara, L. et al., Clin Cancer Res. 12 (2006): 3435-3443

Mueller, L. N. et al., J Proteome Res. 7 (2008): 51-61

Mueller, L. N. et al., Proteomics. 7 (2007): 3470-3480

Mumberg, D. et al., Proc Natl Acad Sci U S A. 96 (1999): 8633-8638

Pinheiro, J. et al., nlme: Linear and Nonlinear Mixed Effects Models (http://CRANR-projectorg/package=nlme) (2015)

Plebanski, M. et al., Eur J Immunol. 25 (1995): 1783-1787

Porta, C. et al., Virology. 202 (1994): 949-955

Rammensee, H. et al., Immunogenetics. 50 (1999): 213-219

Rini, B. I. et al., Cancer. 107 (2006): 67-74

Rock, K. L. et al., Science. 249 (1990): 918-921

Rodenko, B. et al., Nat Protoc. 1 (2006): 1120-1132

Saiki, R. K. et al., Science. 239 (1988): 487-491

Schmitt, T. M. et al., Hum Gene Ther. 20 (2009): 1240-1248

Scholten, K. B. et al., Clin Immunol. 119 (2006): 135-145

Seeger, F. H. et al., Immunogenetics. **49** (1999): 571-576

Sherman, F. et al., Laboratory Course Manual for Methods in Yeast Genetics.(1986)

Singh-Jasuja, H. et al., Cancer Immunol Immunother. 53 (2004): 187-195

Small, E. J. et al., J Clin Oncol. 24 (2006): 3089-3094

Sturm, M. et al., BMC Bioinformatics. 9 (2008): 163

Teufel, R. et al., Cell Mol Life Sci. 62 (2005): 1755-1762

Tran, T. T. et al., Photochem Photobiol. **90** (2014): 1136-1143

Walter, S. et al., J Immunol. **171** (2003): 4974-4978

Walter, S. et al., Nat Med. 18 (2012): 1254-1261

Willcox, B. E. et al., Protein Sci. 8 (1999): 2418-2423

Zaremba, S. et al., Cancer Res. **57** (1997): 4570-4577

Zufferey, R. et al., J Virol. **73** (1999): 2886-2892

133190WO

Формула изобретения

- 1. Пептид, включающий аминокислотную последовательность, выбранную из группы последовательностей, состоящей из SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464 и вариантные последовательности, которые по меньшей мере на 88% гомологичны последовательностям с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464, и где указанный вариант связывается с молекулой(ами) главного комплекса гистосовместимости МНС и/или индуцирует перекрестную реакцию Т-клеток с указанным вариантным пептидом; и его фармацевтически приемлемая соль, где указанный пептид не является полипептидом полной длины.
- 2. Пептид в соответствии с п. 1, где указанный пептид имеет способность связываться с молекулой МНС I или II класса, и где указанный пептид, когда он связан с указанной молекулой МНС, в состоянии распознаваться Т-клетками СD4 и/или CD8.
- 3. Пептид или его вариант в соответствии с п. 1 или п. 2, где его аминокислотная последовательность включает непрерывный фрагмент аминокислот в соответствии с любой из последовательностей с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464.
- 4. Пептид или его вариант в соответствии с любым из пп. 1–3, где указанный пептид или его вариант имеет общую длину от 8 до 100, предпочтительно от 8 до 30, и более предпочтительно от 8 до 16 аминокислот, и, наиболее предпочтительно, где пептид состоит или состоит по существу из аминокислотной последовательности в соответствии с любой из последовательностей с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464.

- 5. Пептид или его вариант в соответствии с любым из пп. 1–4, где указанный пептид модифицирован и/или включает непептидные связи.
- 6. Пептид или его вариант в соответствии с любым из пп. 1–5, где указанный пептид является частью слитого белка, в частности, включающим N-терминальные аминокислоты антиген-ассоциированной инвариантной цепи (Ii) HLA-DR.
- 7. Антитело, в частности растворимое или связанное с мембраной антитело, предпочтительно моноклональное антитело или его фрагмент, которое специфически распознает пептид или его вариант в соответствии с любым из пп. 1—5, предпочтительно пептид или его вариант в соответствии с любым из пп. 1—5, когда он связан с молекулой МНС.
- 8. Т-клеточный рецептор, предпочтительно растворимый или связанный с мембраной, или его фрагмент, который реагирует с HLA-лигандом, причем указанный лиганд является пептидом или его вариантом в соответствии с любым из пп. 1–5, предпочтительно пептидом или его вариантом в соответствии с любым из пп. 1–5, когда он связан с молекулой МНС.
- 9. Т-клеточный рецептор в соответствии с п. 8, где указанная аминокислотная последовательность лиганда по меньшей мере на 88% идентична любой из последовательностей с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464, или где аминокислотная последовательность указанного лиганда состоит из любой из последовательностей с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464.
- 10. Т-клеточный рецептор в соответствии с п. 8 или п. 9, где указанный Т-клеточный рецептор представлен в виде растворимой молекулы и, факультативно, обладает дополнительной эффекторной функцией, например, несет иммуностимулирующий домен или токсин.

- 11. Аптамер, который специфически распознает пептид или его вариант в соответствии с любым из пп. 1–5, предпочтительно пептид или его вариант в соответствии с любым из пп. 1–5, который связан с молекулой МНС.
- 12. Нуклеиновая кислота, кодирующая пептид или его вариант в соответствии с любым из пп. 1–5, антитело или его фрагмент в соответствии с п. 7, Т-клеточный рецептор или его фрагмент в соответствии с п. 8 или п. 9, факультативно связанная с гетерологичной последовательностью промотора, или вектор экспрессии, экспрессирующий указанную нуклеиновую кислоту.
- 13. Рекомбинантная клетка-хозяин, включающая пептид в соответствии с любым из пп. 1–6, антитело или его фрагмент в соответствии с п. 7, Т-клеточный рецептор или его фрагмент в соответствии с п. 8 или п. 9 или нуклеиновую кислоту или вектор экспрессии в соответствии с п. 12, где указанная клетка-хозяин предпочтительно является антигенпрезентирующей клеткой, такой как дендритная клетка, Т-клетка или NK-клетка.
- 14. Способ получения активированных Т-лимфоцитов *in vitro*, где способ включает контактирование Т-клеток *in vitro* с нагруженными антигеном молекулами МНС человека I или II класса, экспрессированными на поверхности подходящей антигенпрезентирующей клетки или искусственной конструкции, имитирующей антигенпрезентирующую клетку, в течение периода времени, достаточного для активации указанных Т-клеток антиген-специфическим образом, где указанный антиген является пептидом в соответствии с любым из пп. 1—4.
- 15. Активированный Т-лимфоцит, полученный с помощью способа в соответствии с п. 14, который селективно распознает клетку, которая презентирует полипептид, включающий аминокислотную последовательность, указанную в любом из пп. 1–4.
- 16. Фармацевтическая композиция, включающая по меньшей мере один активный ингредиент, выбранный из группы, состоящей из пептида в соответствии с любым из пп. 1–6, антитела или его фрагмента в соответствии с п. 7, Т-клеточного

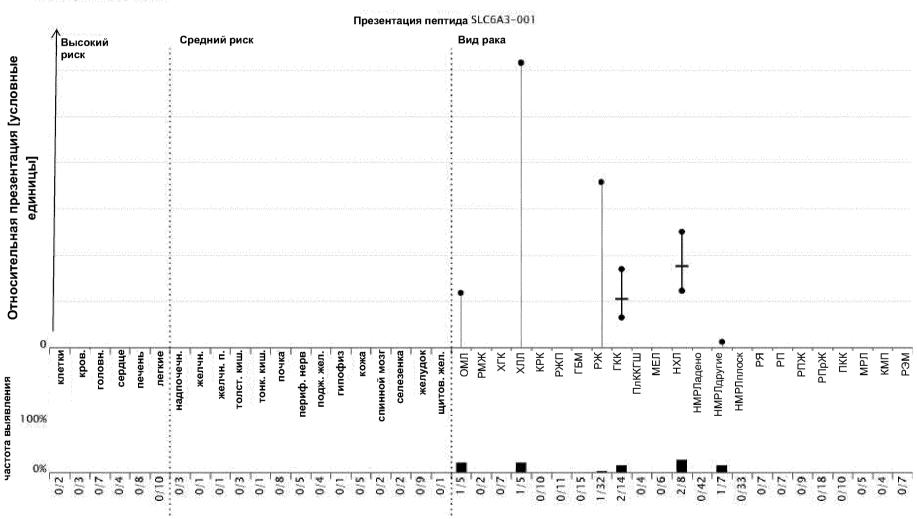
рецептора или его фрагмента в соответствии с п. 8 или п. 9, аптамера в соответствии с п. 11, нуклеиновой кислоты или вектора экспрессии в соответствии с п. 12, клетки-хозяина в соответствии с п. 13 или активированного Т-лимфоцита в соответствии с п. 15 или конъюгированного или меченного активного ингредиента и фармацевтически приемлемый носитель, и факультативно фармацевтически приемлемых вспомогательных веществ и/или стабилизаторов.

- 17. Способ получения пептида или его варианта в соответствии с любым из пп. 1—6, антитела или его фрагмента в соответствии с п. 7 или Т-клеточного рецептора или его фрагмента в соответствии с п. 8 или п. 9, причем способ включает культивирование клетки-хозяина в соответствии с п. 13 и выделение пептида или его варианта, антитела или его фрагмента или Т-клеточного рецептора или его фрагмента из указанной клетки-хозяина и/или ее культуральной среды.
- 18. Пептид в соответствии с любым из пп. 1–6, антитело или его фрагмент в соответствии с п. 7, Т-клеточный рецептор или его фрагмент в соответствии с п. 8 или п. 9, аптамер в соответствии с п. 11, нуклеиновая кислота или вектор экспрессии в соответствии с п. 12, клетка-хозяин в соответствии с п. 13 или активированный Т-лимфоцит в соответствии с п. 15 для применения в медицине.
- 19. Способ уничтожения клеток-мишеней у пациента, чьи клетки-мишени презентируют полипептид, включающий аминокислотную последовательность, данную в любом из пп. 1—4, где способ включает введение пациенту эффективного числа активированных Т-клеток, как определено в п. 15.
- 20. Пептид в соответствии с любым из пп. 1–6, антитело или его фрагмент в соответствии с п. 7, Т-клеточный рецептор или его фрагмент в соответствии с п. 8 или п. 9, аптамер в соответствии с п. 11, нуклеиновая кислота или вектор экспрессии в соответствии с п. 12, клетка-хозяин в соответствии с п. 13 или активированный Т-лимфоцит в соответствии с п. 15 для применения в диагностике и/или лечении рака или для применения в производстве лекарственного средства против рака.

21. Применение в соответствии с п. 20, где указанное раковое заболевание выбирается из группы: острый миелоидный лейкоз, рак молочной железы, хронический холангиоклеточная карцинома, лимфоцитарный лейкоз, рак желчного пузыря, глиобластома, рак желудка, колоректальный рак, гепатоклеточная карцинома, плоскоклеточная карцинома головы и шеи, меланома, неходжкинская лимфома, рак легких (в том числе немелкоклеточный рак легкихаденокарцинома, плоскоклеточный немелкоклеточный рак легких мелкоклеточный рак легких), рак яичника, рак пищевода, рак поджелудочной железы, рак предстательной железы, почечно-клеточная карцинома, карцинома мочевого пузыря, рак матки и эндометрия и других опухолей, которые демонстрируют избыточную экспрессию белка, из которого получен пептид с последовательностью с SEQ ID No. 1 по SEQ ID No. 387 и с SEQ ID No. 463 по SEQ ID No. 464.

22. Набор, включающий:

- (а) контейнер, включающий фармацевтическую композицию, содержащую пептид(ы) или вариант в соответствии с любым из пп. 1—6, антитело или его фрагмент в соответствии с п. 7, Т-клеточный рецептор или его фрагмент в соответствии с п. 8 или п. 9, аптамер в соответствии с п. 11, нуклеиновую кислоту или вектор экспрессии в соответствии с п. 12, клетку-хозяина в соответствии с п. 13 или активированный Т-лимфоцит в соответствии с п. 15 в виде раствора или в лиофилизированной форме;
- (б) необязательно второй контейнер, содержащий разбавитель или восстанавливающий раствор для лиофилизированного состава;
- (в) необязательно по меньшей мере еще один пептид, выбранный из группы, состоящей из последовательностей с SEQ ID No. 1 по SEQ ID No. 460 и с SEQ ID No. 463 по SEQ ID No. 464, и
- (г) необязательно инструкции по (i) применению раствора или (ii) восстановлению и/или по применению лиофилизированного состава.

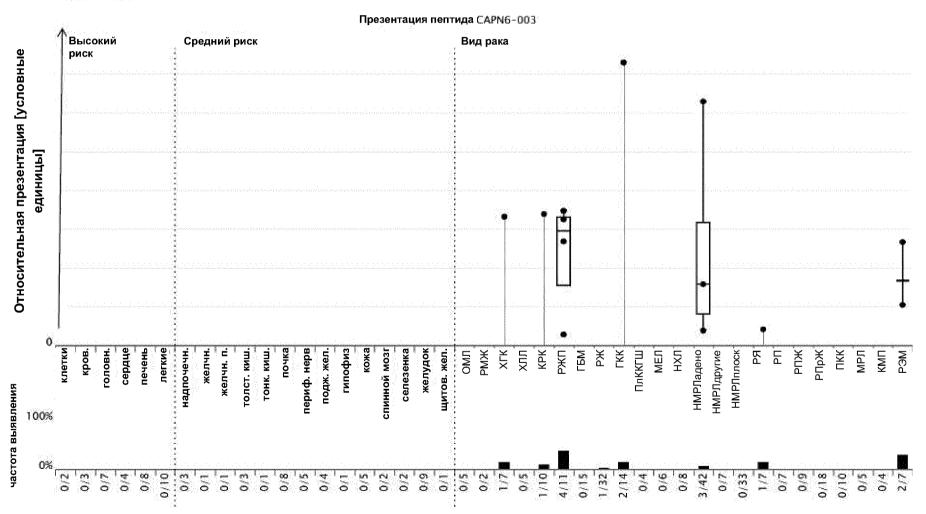

- 23. Набор в соответствии с п. 22, дополнительно включающий один или более из (iii) буфера, (iv) разбавителя, (v) фильтра, (vi) иглы или (v) шприца.
- 24. Способ получения персонализированной противораковой вакцины или медикаментозной и/или клеточной терапии для отдельного пациента, где указанный способ включает:
- а) идентификацию опухолеассоциированных пептидов (TUMAP), презентируемых опухолевым образцом указанного отдельного пациента;
- б) сравнение пептидов, идентифицированных на этапе а), с хранилищем пептидов, которые предварительно прошли скрининг на иммуногенность и/или избыточную презентацию в опухолях по сравнению с нормальными тканями;
- в) выбор по меньшей мере одного пептида из хранилища, который соответствует пептиду TUMAP, идентифицированному у пациента; и
- г) производство и/или приготовление лекарственной формы персонализированной вакцины или препарата для медикаментозной или клеточной терапии на основании этапа в).
- 25. Способ в соответствии с п. 24, где указанные пептиды TUMAP идентифицируют с помощью:
- а1) сравнения данных по экспрессии в опухолевом образце с данными образца нормальной ткани, соответствующей типу ткани опухолевого образца, для идентификации белков, которые в опухолевом образце экспрессируются в избытке или аберрантно; и
- а2) установление корреляции между данными экспрессии и последовательностями лигандов МНС, связанных с молекулами МНС I и/или II класса в опухолевом образце, в целях идентификации лигандов МНС, которые получены из белков, избыточно или аберрантно экспрессируемых опухолью.
- 26. Способ в соответствии с п. 24 или п. 25, где последовательности лигандов МНС идентифицируют с помощью элюирования связанных пептидов из молекул МНС, выделенных из опухолевого образца, и секвенирования элюированных лигандов.

- 27. Способ в соответствии с любым из пп. 24–26, где нормальную ткань, соответствующую типу ткани опухолевого образца, получают у одного и того же пациента.
- 28. Способ в соответствии с любым из пп. 24–27, где пептиды, включенные в хранилище, идентифицируют на основании следующих этапов:
- аа. Проведение анализа экспрессии информационной рибонуклеиновой кислоты (мРНК) всего генома с помощью методов с высокой степенью параллелизма, таких как выявление профилей экспрессии на основе микрочипов или секвенирования, включающих идентификацию генов, которые в избытке экспрессируются в злокачественной ткани по сравнению с нормальной тканью или тканями;
- аб. Выбор пептидов, которые кодируются генами, экспрессируемыми селективно или в избытке, как было обнаружено на этапе аа, и
- ав. Определение индукции *in vivo* Т-клеточных ответов выбранными пептидами, включая анализ иммуногенности *in vitro* при использовании человеческих Т-клеток здоровых доноров или указанного пациента; или
- ба. Идентификация HLA-лигандов из указанного опухолевого образца с помощью масс-спектрометрии;
- бб. Проведение анализа экспрессии информационной рибонуклеиновой кислоты (мРНК) всего генома с помощью методов с высокой степенью параллелизма, таких как выявление профилей экспрессии на основе микрочипов или секвенирования, включающих идентификацию генов, которые в избытке экспрессируются в злокачественной ткани по сравнению с нормальной тканью или тканями;
- бв. Сравнение идентифицированных НLА-лигандов с данными экспрессии указанных генов;
- бг. Выбор пептидов, которые кодируются генами, экспрессируемыми селективно или в избытке, обнаруженными на этапе бв.;
- бд. Повторное обнаружение отобранных пептидов TUMAP этапа бг. на опухолевой ткани и нечастое обнаружение или их отсутствие на здоровых тканях и подтверждение релевантности избыточной экспрессии на уровне мРНК; и

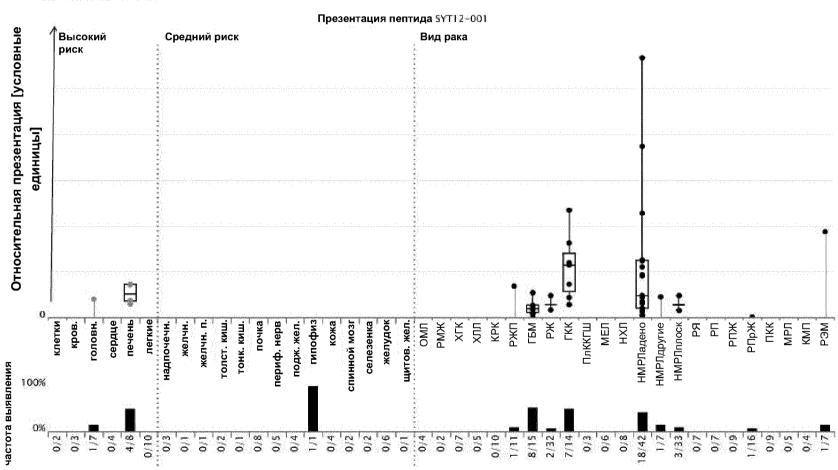
- бе. Определение индукции *in vivo* Т-клеточных ответов выбранными пептидами, включая анализы иммуногенности *in vitro* при использовании человеческих Т-клеток здоровых доноров или указанного пациента.
- 29. Способ в соответствии с любым из пп. 24–28, где иммуногенность пептидов, включенных в хранилище, определяют способом, включающим анализ иммуногенности *in vitro*, контроль иммунного статуса пациента на наличие связывания отдельных пептидов с молекулами HLA, окрашивание МНС-мультимеров, анализ методом ELISPOT и/или внутриклеточное окрашивание цитокинов.
- 30. Способ в соответствии с любым из пп. 24–29, где указанное хранилище включает множество пептидов, выбранных из группы, состоящей из последовательностей с SEQ ID No. 1 по SEQ ID No. 460 и с SEQ ID No. 463 по SEQ ID No. 464.
- 31. Способ в соответствии с любым из пп. 24–30, дополнительно включающий идентификацию по меньшей мере одной мутации, являющейся уникальной для опухолевого образца по сравнению с нормальной соответствующей тканью отдельного пациента, и выбор пептида, который коррелирует с мутацией, для включения в вакцину или получения средств клеточной терапии.
- 32. Способ в соответствии с п. 31, где указанную по меньшей мере одну мутацию идентифицируют методом полногеномного секвенирования.


Фигура 1А

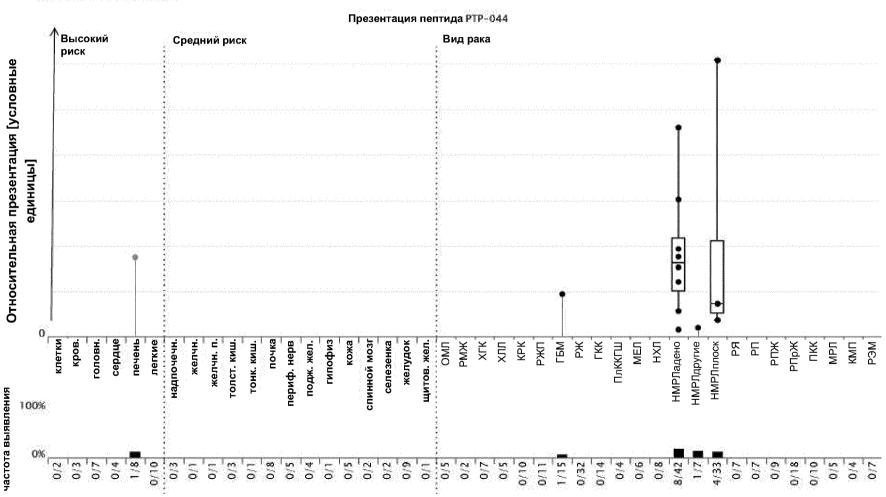
Пептид: FMVIAGMPLF (A*24)


Фигура 1В

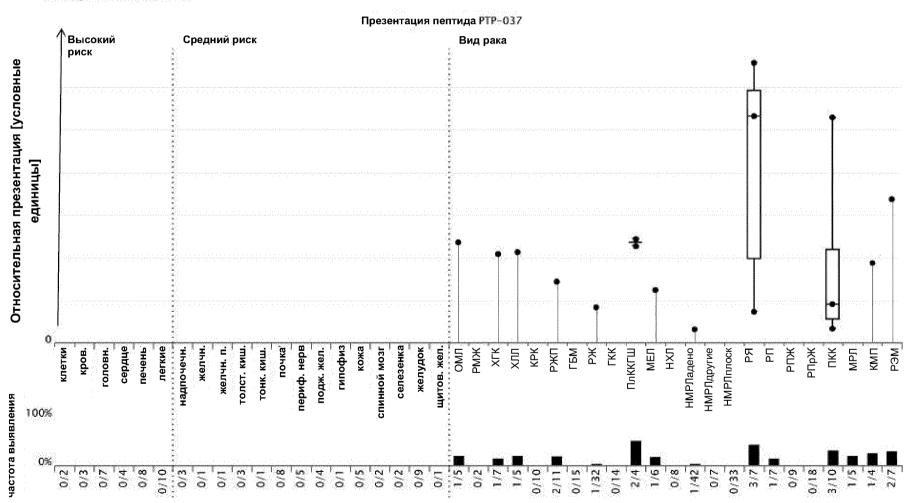
Пептид: RYSPVKDAW (A*24)


Фигура 1С

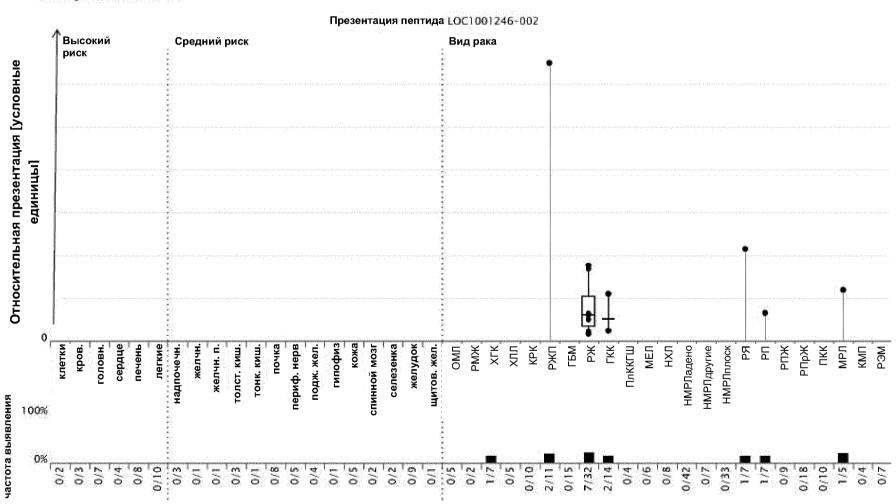
Пептид: NYVLVPTMF (A*24)


Фигура 1D

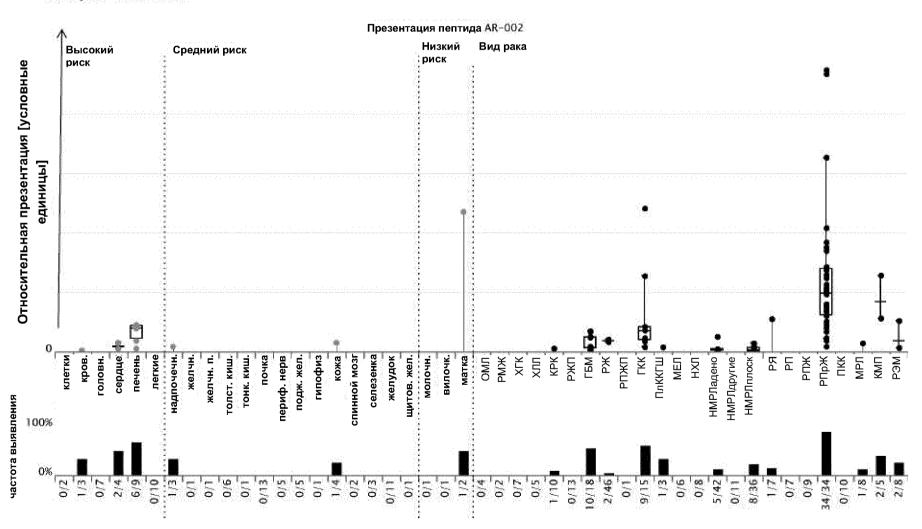
Пептид: SYLPTAERL (A*24)


Фигура 1Е

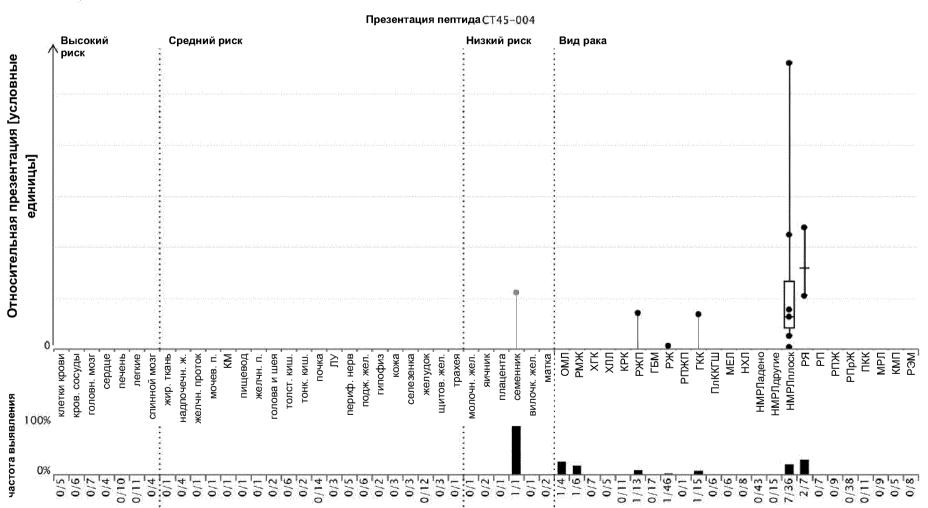
Пептид: VYDTMIEKFA (A*24)


Фигура 1F

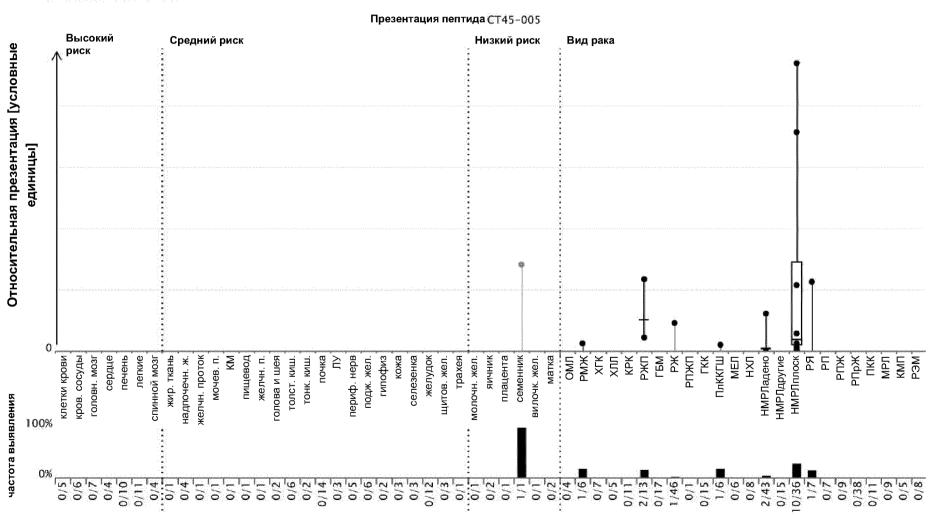
Пептид: EYSLPVLTF (A*24)


Фигура 1G

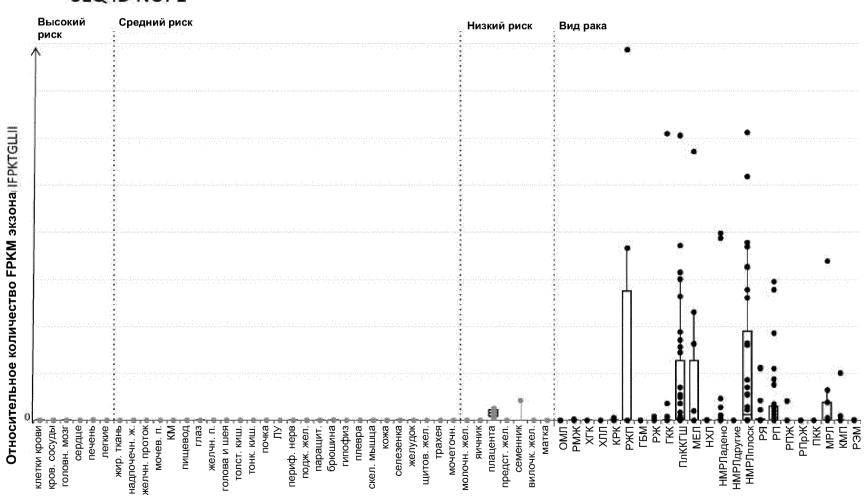
Пептид: NYMDTDNLMF (A*24)


Фигура 1Н

Пептид: YQSRDYYNF (A*24)

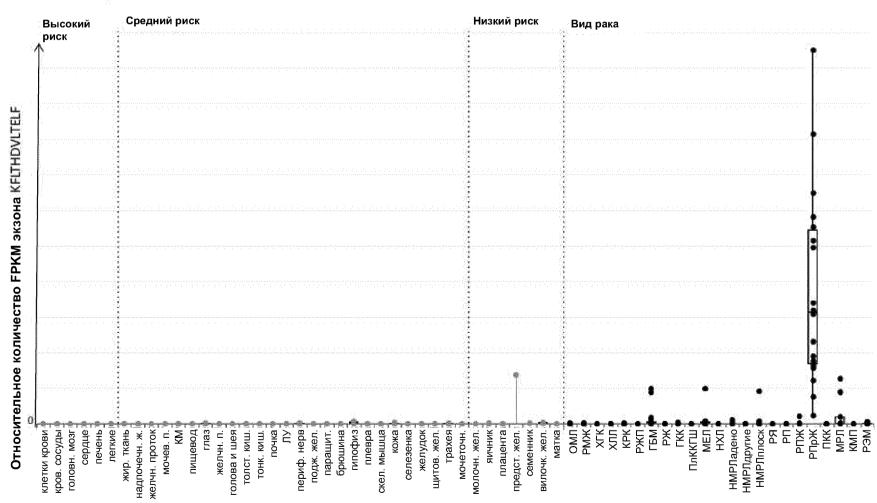

Фигура 1I

Пептид: VGGNVTSNF (A*24)


Фигура 1J

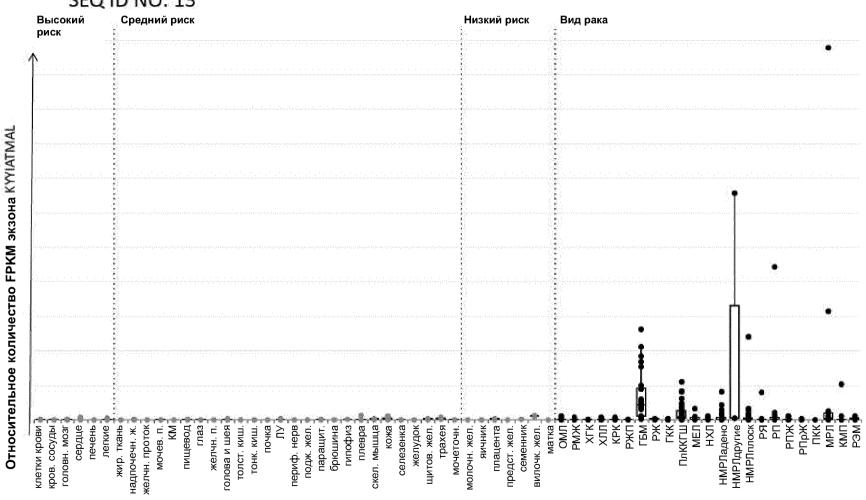
Пептид: VGGNVTSSF (A*24)

Фигура 2А


Ген: MAGEA4 Пептид: IFPKTGLLII

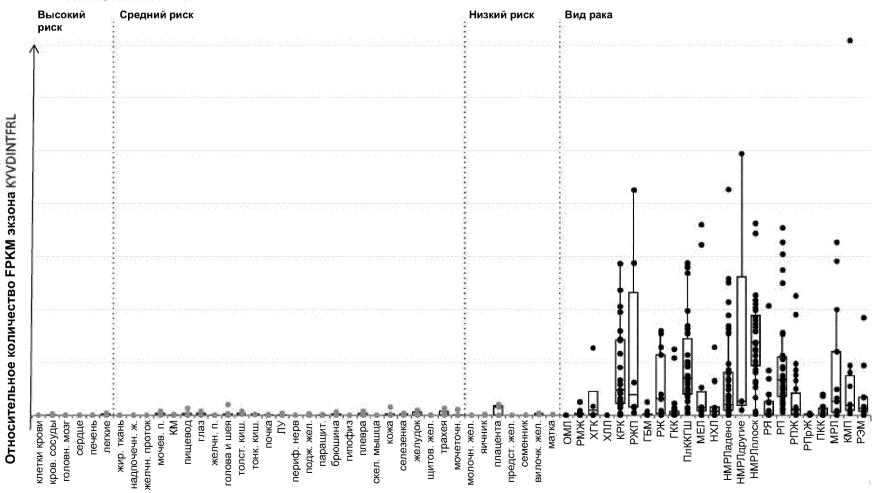
Фигура 2В

Ген: ТРРМ8


Пептид: KFLTHDVLTELF

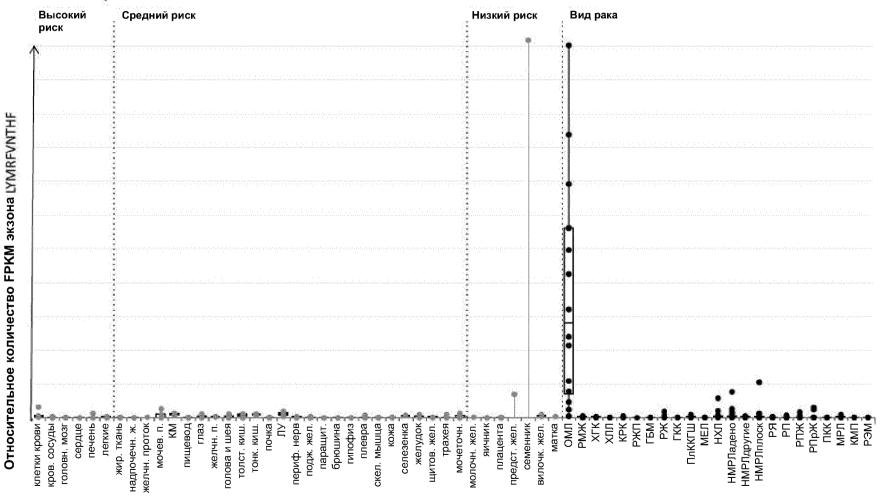
Фигура 2С

Ген:CHRNA9


Пептид: KYYIATMAL

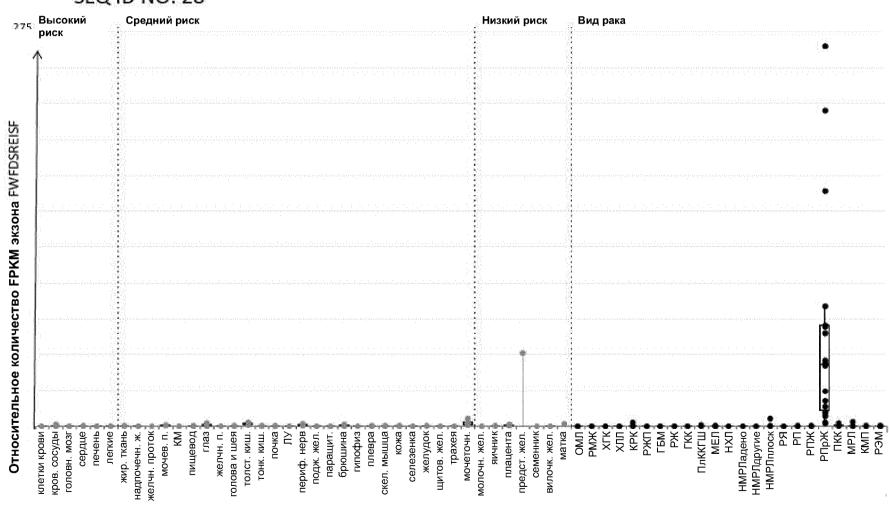
Фигура 2D

Ген: ММР12


Пептид: KYVDINTFRL

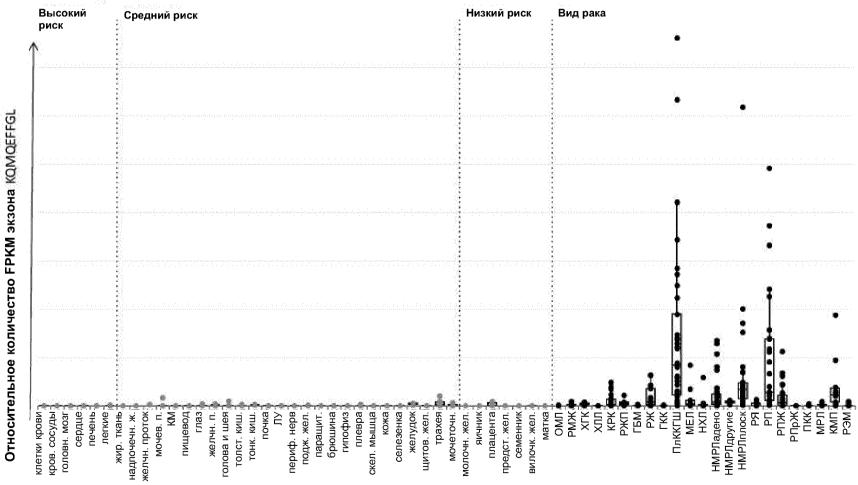
Фигура 2Е

Ген: SPINK2

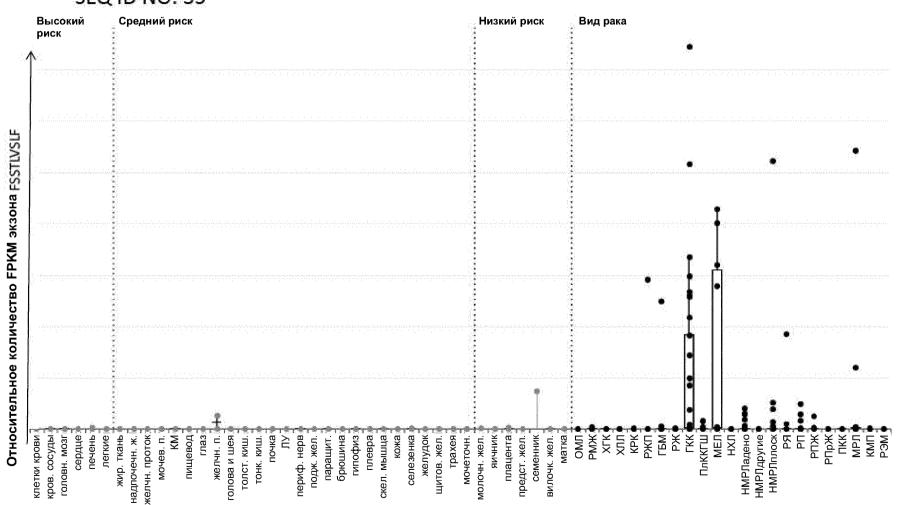

Пептид: LYMRFVNTHF

Фигура 2F

Ген: OR51E2

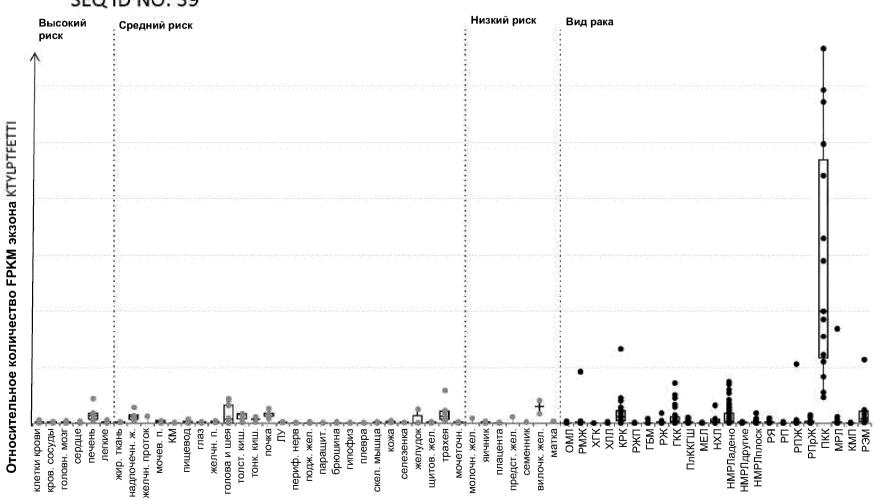

Пептид: FWFDSREISF

Фигура 2G

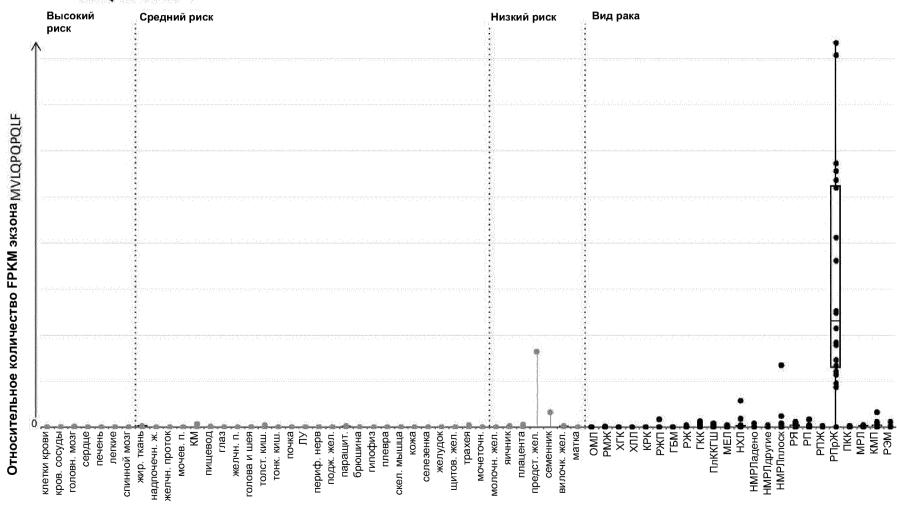

Ген: ММР1

Пептид: KQMQEFFGL

Фигура 2Н

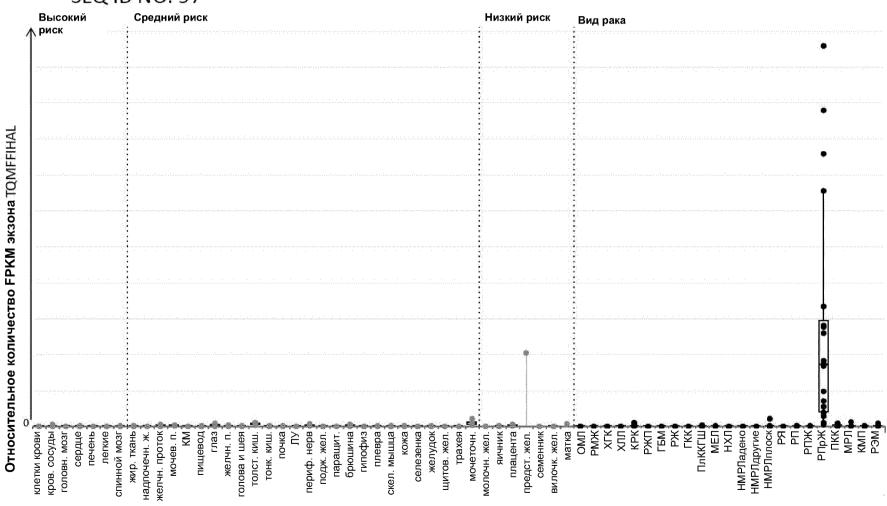

Ген: MAGEC1 Пептид: FSSTLVSLF SEQ ID NO: 35

Фигура 2I


Ген: ENPP3

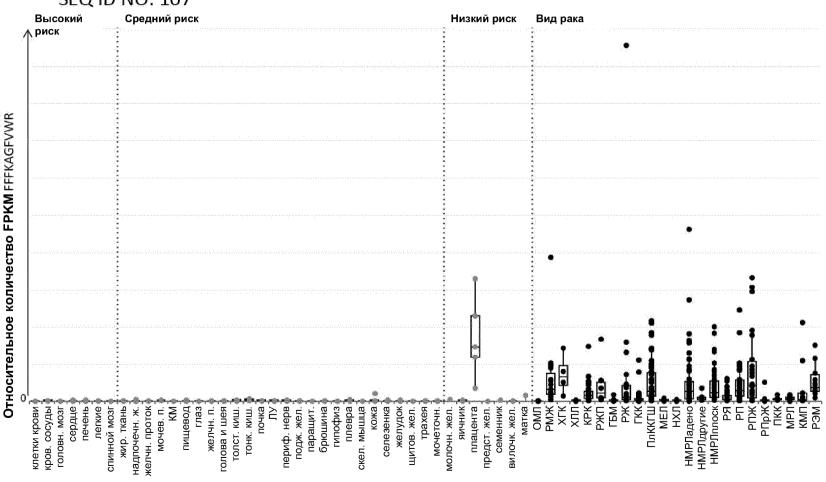
Пептид: KTYLPTFETTI

Фигура 2J


Ген:POTEG, POTEH Пептид:MVLQPQPQLF

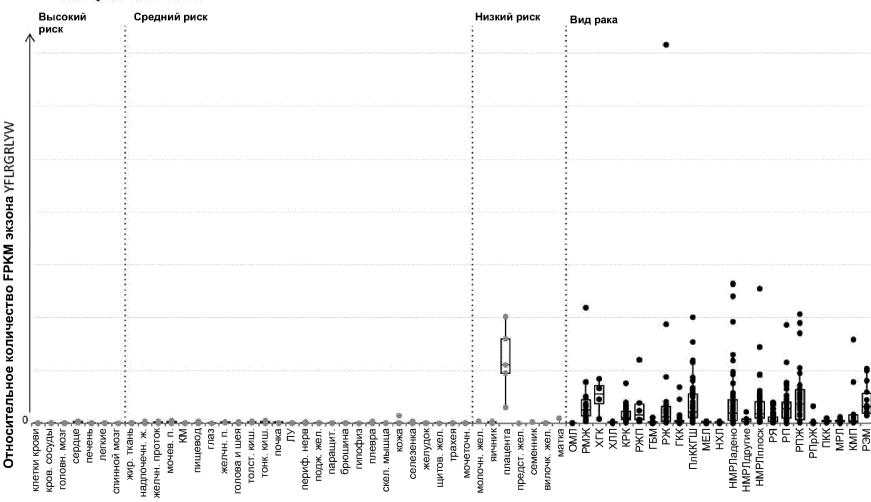
Фигура 2К

Ген: OR51E2

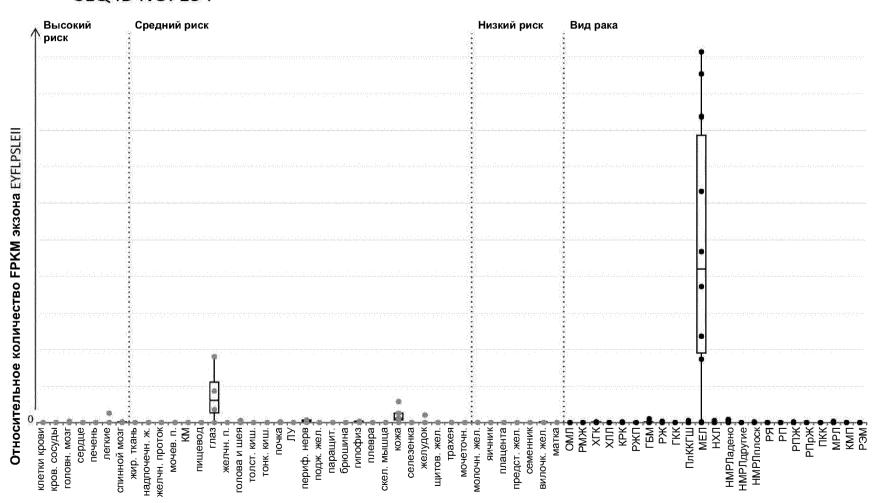

Пептид: TQMFFIHAL

Фигура 2L

Ген: ММР11

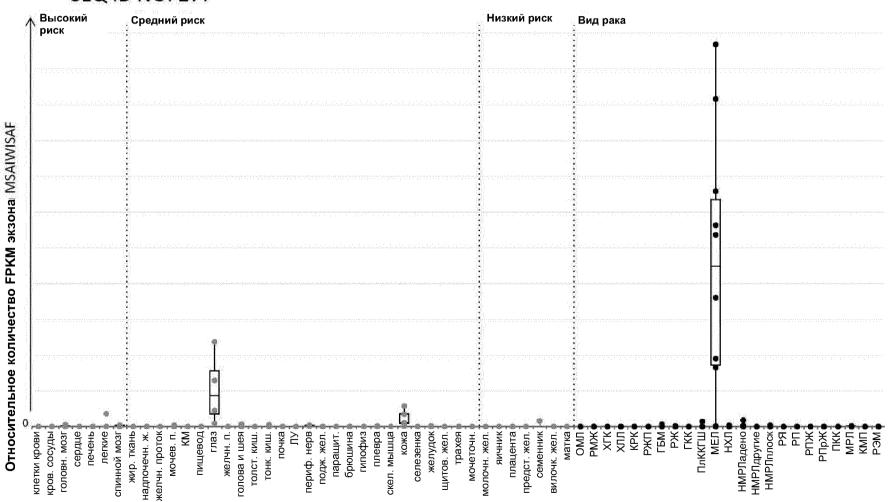

Пептид: FFFKAGFVWR

Фигура 2М


Ген: ММР11

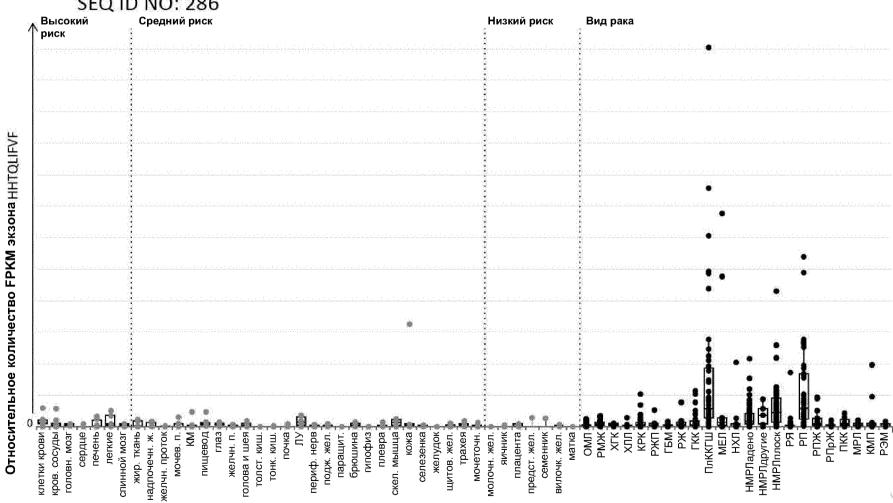
Пептид: YFLRGRLYW

Фигура 2N


Ген: SLC24A5 Пептид: EYFLPSLEII SEQ ID NO: 194

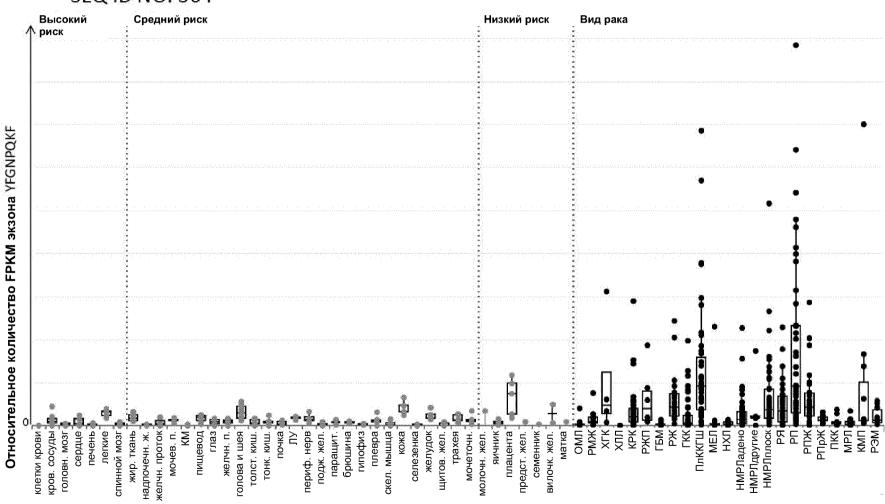
Фигура 20

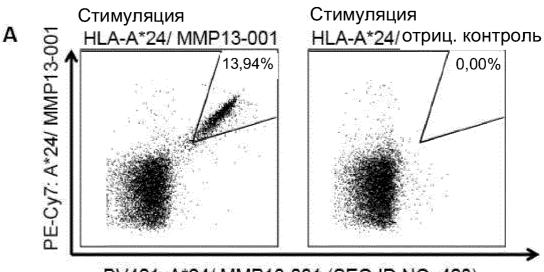
Ген:SLC24A5


Пептид: MSAIWISAF

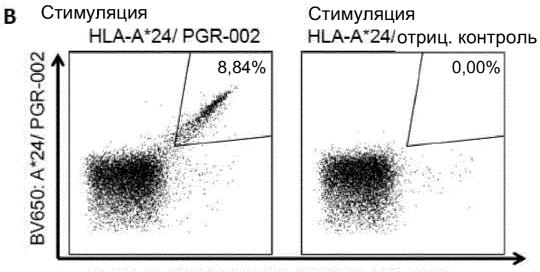
Фигура 2Р

Ген:ELP4, EXOSC7, KCNG2, TM4SF19, TOP2A

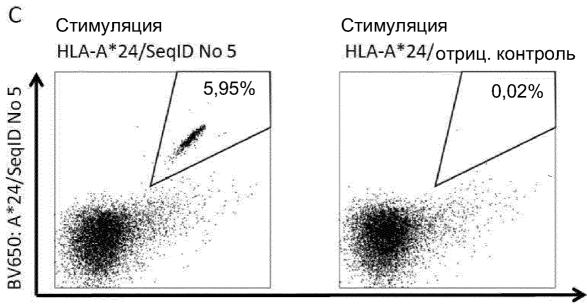

Пептид: HHTQLIFVF


Фигура 2Q

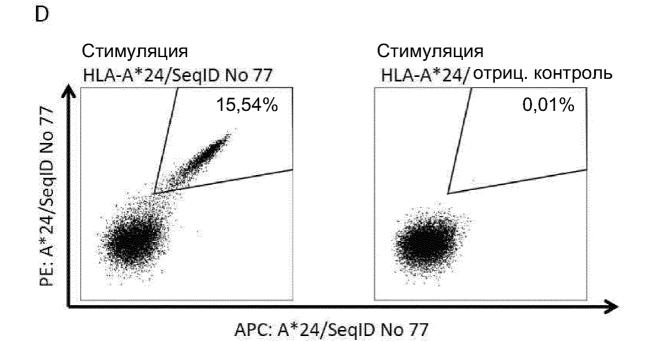
Ген: LAMA3


Пептид: YFGNPQKF

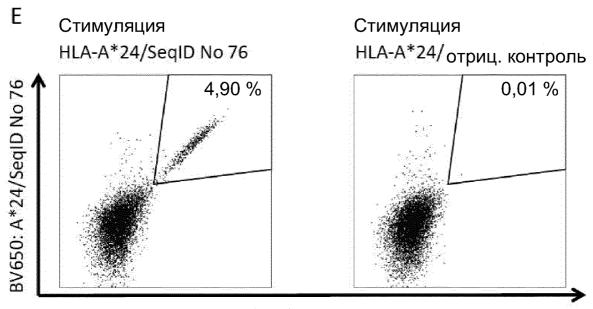
Фигура 3

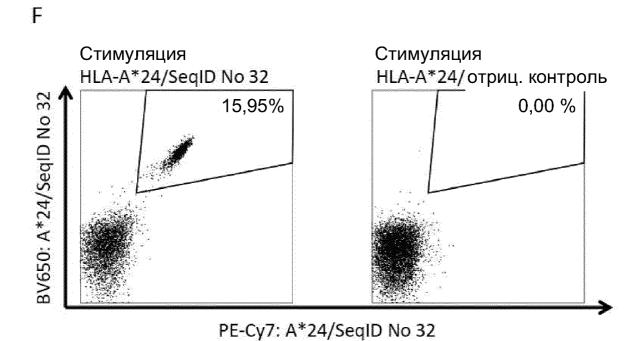


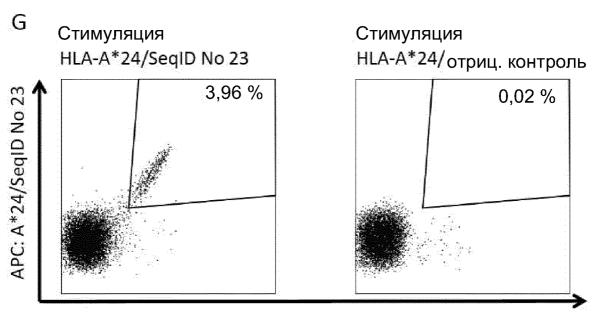
BV421: A*24/ MMP13-001 (SEQ ID NO: 420)



PE-Cy7: A*24/ PGR-002 (SEQ ID NO: 411)


Фигура 3 (продолжение)


BV421: A*24/SeqID No 5


Фигура 3 (продолжение)

PE: A*24/SeqID No 76

Фигура 3 (продолжение)

PE-Cy7: A*24/SeqID No 23