

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

(51) Int. Cl. *H04L 12/66* (2006.01)

2021.12.17

(21) Номер заявки

201892273

(22) Дата подачи заявки

2018.11.07

(54) УСТРОЙСТВО ЦИФРОВОГО СОПРЯЖЕНИЯ ІР

(43) 2020.05.31

(96)2018000132 (RU) 2018.11.07

(71)(73) Заявитель и патентовладелец:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "МЕЖГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ РАЗВИТИЯ" (RU)

(72) Изобретатель:

Старченков Владимир Александрович (RU)

(74) Представитель:

Левчук Д.В., Ловцов С.В., Вилесов А.С., Коптева Т.В., Ясинский С.Я. (RU)

"Выбор НИКОНОВА A.O. структурного решения для функционального блока многофункционального конвертера интерфейсов", Электронный научно-практический "Современные научные исследования инновации", №8, 2016, Найдено в Интернет <URL: http://web.snauka.ru/issues/2016/08/70253>, рис. 1, 3

RU-U1-50693 RU-U1-80039 RU-U1-179300 RU-C1-2479904

Изобретение относится к технике электросвязи, а именно предназначено для передачи цифровых низкоскоростных каналов (С1-ФЛ-БИ, RS-232 и ОЦК - основной цифровой канал) по сетям пакетной передачи данных с ІР-протоколом. Изобретение может использоваться для соединения фрагментов сети с временным уплотнением каналов по проводным и беспроводным пакетным сетям связи. Изобретение решает задачу расширения функциональных возможностей устройства. Технический результат, на достижение которого направлено изобретение, заключается в обеспечении возможности подключения оконечного оборудования по стыкам ОЦК, С1-ФЛ-БИ и RS-485. УЦС IP включает приемопередатчик С1-ФЛ-БИ 1, приемопередатчик ОЦК 2, входамивыходами соединенные с ПЛИС 3, которая по шине данных 4 и по шине адреса 5 связана с оперативным запоминающим устройством 6 и с микропроцессором 7. Микропроцессор 7 входамивыходами соединен с приемопередатчиком RS-232/RS-4858 и с приемопередатчиком Ethernet 9.

Изобретение относится к технике электросвязи, а именно предназначено для передачи цифровых низкоскоростных каналов (С1-ФЛ-БИ, RS-232 и ОЦК - основной цифровой канал) по сетям пакетной передачи данных с IP-протоколом. Изобретение может использоваться для соединения фрагментов сети с временным уплотнением каналов по проводным и беспроводным пакетным сетям связи.

Известен конвертер Ethernet-C1-И, предназначенный для приема и передачи сигналов интерфейса Ethernet по линиям интерфейса C1-И. (http://www.supertel.ru/conv-eth-sl-i). В состав конвертера включены разъемы C1-И, преобразователь МП-C1-И, коммутатор на основе MAC-адресов, генератор, блок питания и разъемы LAN (Ethernet). Недостатком аналога является отсутствие возможности передачи сигналов ОЦК по IP-сети, отсутствие возможности подключения оборудования по стыкам RS-232 и RS-485.

Наиболее близким техническим решением, принятым в качестве прототипа, является блок многофункционального конвертера интерфейсов на основе программируемой логической интегральной схемы (далее - ПЛИС) и микроконтроллера (Никонова А.О. Выбор структурного решения для функционального блока многофункционального конвертера интерфейсов // Современные научные исследования и инновации. 2016. № 8 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2016/08/70253, см. рис. 3). В состав конвертера входят последовательно соединенные двухсторонней связью блок RS-232, ПЛИС, микроконтроллер, блок Ethernet. С ПЛИС подаются управляющие сигналы на блок ключей. Микроконтроллер выполняет прием/передачу данных по Ethernet. ПЛИС осуществляет прием/передачу и обработку данных каналов RS-232, организует доступ микроконтроллера к полученным данным. Недостатком прототипа является отсутствие возможности подключения оконечного оборудования по стыкам ОЦК, С1-ФЛ-БИ и RS-485.

Изобретение решает задачу расширения функциональных возможностей устройства. Технический результат, на достижение которого направлено изобретение, заключается в обеспечении возможности подключения оконечного оборудования по стыкам ОЦК, С1-ФЛ-БИ и RS-485.

Указанный технический результат достигается тем, что в устройство цифрового сопряжения IP (далее - УЦС IP), включающее ПЛИС, приемопередатчик RS-232 и приемопередатчик Ethernet, введены приемопередатчик C1-ФЛ-БИ, приемопередатчик основного цифрового канала, микропроцессор, соединенный входами-выходами по шине адреса и по шине данных с оперативным запоминающим устройством и с программируемой логической интегральной схемой. При этом приемопередатчик RS-232 выполнен в виде совмещенного приемопередатчика RS-232/RS-485, соединен входом-выходом с микропроцессором, который, в свою очередь, соединен входом-выходом с приемопередатчиком Ethernet. Приемопередатчик C1-ФЛ-БИ и приемопередатчик основного цифрового канала соединены входами-выходами с ПЛИС.

Изобретение поясняется чертежом, на котором приведена структурная схема УЦС ІР.

УЦС IP включает приемопередатчик С1-ФЛ-БИ 1, приемопередатчик ОЦК 2, входом-выходом соединенный с ПЛИС 3, которая входами-выходами по шине данных 4 и по шине адреса 5 соединена с оперативным запоминающим устройством 6 и с микропроцессором 7. Микропроцессор 7 входами-выходами соединен с приемопередатчиком RS-232/RS-4858 и с приемопередатчиком Ethernet 9.

УЦС IP работает следующим образом.

Сигнал ОЦК поступает на вход приемопередатчика ОЦК 2, в котором сравниваются и выделяются сигналы отдельно для положительных и отрицательных уровней. Далее выделенные цифровые сигналы поступают в ПЛИС 3. ПЛИС 3 осуществляет тактовую и октетную синхронизации потока и декодирование информации.

Сигнал С1-ФЛ-БИ поступает на вход приемопередатчика С1-ФЛ-БИ 1, который компарирует входное напряжение и выдает цифровой сигнал. Полученный сигнал поступает в ПЛИС 3. ПЛИС 3 осуществляет тактовую синхронизацию потока и декодирование информации.

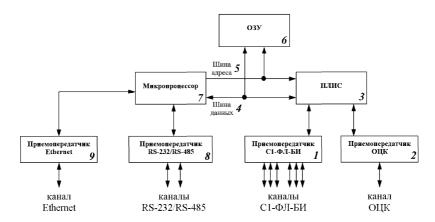
Дальнейшая обработка осуществляется аналогично для потоков ОЦК и С1-ФЛ-БИ. Принимаемые информационные биты сигнала поступают в сдвиговый регистр, реализованный в ПЛИС 3. При заполнении регистра данные переписываются в буфер, реализованный в ПЛИС 3 и организованный по принципу очереди (FIFO, "первый пришел - первый ушел"). При заполнении очереди выше определенного уровня, который задается программно, в зависимости от скорости канала, генерируется запрос на прерывание, который передается в микропроцессор 7. Микропроцессор 7 обрабатывает запрос, считывает данные, формирует пакеты в соответствии с протоколом UDP/IP и передает пакеты на приемопередатчик Ethernet 9.

При приеме пакетов UDP/IP они поступают в микропроцессор 7 через приемопередатчик Ethernet 9. При этом возможно изменение порядка поступления пакетов по сравнению с исходным. Поэтому каждый пакет снабжен номером, который циклически увеличивается на единицу для каждого следующего пакета. При приеме в микропроцессоре 7 происходит сравнение номера приходящего пакета с ожидаемым номером. Если номер оказывается меньше ожидаемого, то пакет был продублирован сетью передачи и он отбрасывается. Если номер пакета больше ожидаемого, то пакет запоминается. Если номер равен ожидаемому, то пакет записывается в ПЛИС 3 (возможно, с другими ранее сохраненными пакетами). Таким образом восстанавливается исходная последовательность переданных пакетов.

При передаче данных по сети с коммутацией пакетов появляется переменная временная задержка

(джиттер). Для предотвращения разрывов выходных потоков ОЦК и С1-ФЛ-БИ в УЦС ІР реализуется буфер передачи. Поступающие пакеты данных после восстановления последовательности записываются в буфер, реализованный в ПЛИС. При этом поддерживается заполнение буфера на заданном уровне, для чего регулируется в небольших пределах выходная скорость передачи канала.

Настройка и конфигурирование УЦС IP осуществляется с персонального компьютера, подключенного по стыку RS-232 (RS-485) через приемопередатчик RS-232/RS-4858 или Ethernet через приемопередатчик Ethernet 9.


ОЗУ 6 служит для хранения данных и программы микропроцессора 7.

УЦС IP обеспечивает передачу цифровых потоков при работе в сетях с большим джиттером задержки пакетов (например, сети сотовых операторов связи). Для увеличения надёжности передачи потоков ОЦК и С1-ФЛ-БИ обеспечивается многократная передача IP-пакетов (реализовано в микропроцессоре). На приёмной стороне осуществляется восстановление исходной последовательности пакетов. Например, можно передавать непрерывные потоки по нескольким каналам сотовой связи.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Устройство цифрового сопряжения IP, состоящее из программируемой логической интегральной схемы, предназначенной для тактовой и октетной синхронизации потока и декодирования информации, и приемопередатчика RS-232 и приемопередатчика Ethernet, предназначенных для передачи IP-пакетов в сеть,

отличающееся тем, что дополнительно включает приемопередатчик С1-ФЛ-БИ, приемопередатчик основного цифрового канала, выполненный с возможностью сравнения и выделения сигналов отдельно для положительных и отрицательных уровней, связанный двусторонне с программируемой логической интегральной схемой для передачи выделенных сигналов, причем программируемая логическая интегральная схема снабжена сдвиговым регистром для записи принимаемых сигналов и буфером для переписи сигналов при заполнении регистра, микропроцессор, выполненный с возможностью обработки запроса на прерывание от программируемой логической интегральной схемы по шине адреса и по шине данных с оперативного запоминающего устройства, при этом приемопередатчик RS-232 выполнен в виде совмещенного приемопередатчика RS-232/RS-485 с возможностью подключения персонального компьютера и двусторонне связан с микропроцессором для настройки и конфигурирования устройства цифрового сопряжения IP, с которым двусторонне связан приемопередатчик Ethernet для передачи IP-пакетов.

1

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2